|
|
|
|
@ -1,7 +1,7 @@
|
|
|
|
|
# ---
|
|
|
|
|
# jupyter:
|
|
|
|
|
# jupytext:
|
|
|
|
|
# formats: ipynb,py:percent
|
|
|
|
|
# formats: py:percent,ipynb
|
|
|
|
|
# text_representation:
|
|
|
|
|
# extension: .py
|
|
|
|
|
# format_name: percent
|
|
|
|
|
@ -16,12 +16,34 @@
|
|
|
|
|
# %%
|
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
# %% tags=["parameters"]
|
|
|
|
|
data_path: Optional[str] = None
|
|
|
|
|
# Полный путь к файлу (CSV) с исходным датасетом. Если не установлен, ищется файл в `data/<data_relpath>`.
|
|
|
|
|
data_relpath: str = 'cars.csv'
|
|
|
|
|
# Путь к файлу (CSV) с исходным датасетом относительно директории данных `data`. Игнорируется, если установлен data_path.
|
|
|
|
|
|
|
|
|
|
data_aug_pickle_path: Optional[str] = None
|
|
|
|
|
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
|
|
|
|
|
data_aug_pickle_relpath: str = 'cars.aug.pickle'
|
|
|
|
|
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
|
|
|
|
|
|
|
|
|
|
mlflow_tracking_server_uri: str = 'http://localhost:5000'
|
|
|
|
|
mlflow_registry_uri: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
mlflow_experiment_name: str = 'Current price predicion for used cars'
|
|
|
|
|
mlflow_experiment_new: bool = False
|
|
|
|
|
mlflow_run_name: str = 'Baseline model'
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
import os
|
|
|
|
|
import pathlib
|
|
|
|
|
import pickle
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
import mlflow
|
|
|
|
|
import mlflow.models
|
|
|
|
|
import mlflow.sklearn
|
|
|
|
|
import sklearn.compose
|
|
|
|
|
import sklearn.ensemble
|
|
|
|
|
import sklearn.metrics
|
|
|
|
|
@ -30,19 +52,12 @@ import sklearn.pipeline
|
|
|
|
|
import sklearn.preprocessing
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
# %% tags=["parameters"]
|
|
|
|
|
data_path: Optional[str] = None
|
|
|
|
|
# Полный путь к файлу (CSV) с исходным датасетом. Если не установлен, ищется файл в `data/<data_relpath>`.
|
|
|
|
|
data_relpath: str = 'cars.csv'
|
|
|
|
|
# Путь к файлу (CSV) с исходным датасетом относительно директории данных `data`. Игнорируется, если установлен data_path.
|
|
|
|
|
|
|
|
|
|
data_aug_pickle_path: Optional[str] = None
|
|
|
|
|
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
|
|
|
|
|
data_aug_pickle_relpath: str = 'cars.aug.pickle'
|
|
|
|
|
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
|
|
|
|
|
BASE_PATH = pathlib.Path('..')
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
BASE_PATH = pathlib.Path('..')
|
|
|
|
|
mlflow.set_tracking_uri(mlflow_tracking_server_uri)
|
|
|
|
|
if mlflow_registry_uri is not None:
|
|
|
|
|
mlflow.set_registry_uri(mlflow_registry_uri)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
DATA_PATH = (
|
|
|
|
|
@ -171,3 +186,45 @@ metrics = {
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
metrics
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
MODEL_PIP_REQUIREMENTS_PATH = BASE_PATH / 'requirements.txt'
|
|
|
|
|
MODEL_COMMENTS_FILE_PATH = BASE_PATH / 'comment.txt'
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
MODEL_INOUT_EXAMPLE_SIZE = 0x10
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
model_inout_example = (df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE), df_target.head(MODEL_INOUT_EXAMPLE_SIZE))
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
mlflow_model_signature = mlflow.models.infer_signature(model_input=model_inout_example[0], model_output=model_inout_example[1])
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
mlflow_model_signature
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
model_params = pipeline.get_params()
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
model_params
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
if mlflow_experiment_new:
|
|
|
|
|
experiment = mlflow.get_experiment(mlflow.create_experiment(mlflow_experiment_name))
|
|
|
|
|
else:
|
|
|
|
|
experiment = mlflow.set_experiment(experiment_name=mlflow_experiment_name)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
with mlflow.start_run(experiment_id=experiment.experiment_id, run_name=mlflow_run_name):
|
|
|
|
|
_ = mlflow.sklearn.log_model(
|
|
|
|
|
pipeline,
|
|
|
|
|
'model',
|
|
|
|
|
signature=mlflow_model_signature,
|
|
|
|
|
input_example=model_inout_example[0],
|
|
|
|
|
pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
|
|
|
|
|
)
|
|
|
|
|
_ = mlflow.log_params(model_params)
|
|
|
|
|
_ = mlflow.log_metrics({k: float(v) for k, v in metrics.items()})
|
|
|
|
|
if MODEL_COMMENTS_FILE_PATH.exists():
|
|
|
|
|
mlflow.log_artifact(str(MODEL_COMMENTS_FILE_PATH))
|
|
|
|
|
|