Вы не можете выбрать более 25 тем
Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
231 строка
5.9 KiB
Python
231 строка
5.9 KiB
Python
# ---
|
|
# jupyter:
|
|
# jupytext:
|
|
# formats: py:percent,ipynb
|
|
# text_representation:
|
|
# extension: .py
|
|
# format_name: percent
|
|
# format_version: '1.3'
|
|
# jupytext_version: 1.17.3
|
|
# kernelspec:
|
|
# display_name: .venv
|
|
# language: python
|
|
# name: python3
|
|
# ---
|
|
|
|
# %%
|
|
from typing import Optional
|
|
|
|
# %%
|
|
# %% tags=["parameters"]
|
|
data_path: Optional[str] = None
|
|
# Полный путь к файлу (CSV) с исходным датасетом. Если не установлен, ищется файл в `data/<data_relpath>`.
|
|
data_relpath: str = 'cars.csv'
|
|
# Путь к файлу (CSV) с исходным датасетом относительно директории данных `data`. Игнорируется, если установлен data_path.
|
|
|
|
data_aug_pickle_path: Optional[str] = None
|
|
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
|
|
data_aug_pickle_relpath: str = 'cars.aug.pickle'
|
|
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
|
|
|
|
mlflow_tracking_server_uri: str = 'http://localhost:5000'
|
|
mlflow_registry_uri: Optional[str] = None
|
|
|
|
mlflow_experiment_name: str = 'Current price predicion for used cars'
|
|
mlflow_experiment_new: bool = False
|
|
mlflow_run_name: str = 'Baseline model'
|
|
|
|
# %%
|
|
import os
|
|
import pathlib
|
|
import pickle
|
|
|
|
# %%
|
|
import mlflow
|
|
import mlflow.models
|
|
import mlflow.sklearn
|
|
import sklearn.compose
|
|
import sklearn.ensemble
|
|
import sklearn.metrics
|
|
import sklearn.model_selection
|
|
import sklearn.pipeline
|
|
import sklearn.preprocessing
|
|
|
|
# %%
|
|
BASE_PATH = pathlib.Path('..')
|
|
|
|
# %%
|
|
mlflow.set_tracking_uri(mlflow_tracking_server_uri)
|
|
if mlflow_registry_uri is not None:
|
|
mlflow.set_registry_uri(mlflow_registry_uri)
|
|
|
|
# %%
|
|
DATA_PATH = (
|
|
pathlib.Path(os.path.dirname(data_path))
|
|
if data_path is not None
|
|
else (BASE_PATH / 'data')
|
|
)
|
|
|
|
# %%
|
|
with open(
|
|
(
|
|
data_aug_pickle_path
|
|
if data_aug_pickle_path is not None
|
|
else (DATA_PATH / data_aug_pickle_relpath)
|
|
),
|
|
'rb',
|
|
) as input_file:
|
|
df_orig = pickle.load(input_file)
|
|
|
|
# %%
|
|
df_orig.head(0x10)
|
|
|
|
# %%
|
|
len(df_orig)
|
|
|
|
# %%
|
|
df_orig.info()
|
|
|
|
# %%
|
|
feature_columns = (
|
|
'selling_price',
|
|
'driven_kms',
|
|
'fuel_type',
|
|
'selling_type',
|
|
'transmission',
|
|
#'owner',
|
|
'age',
|
|
)
|
|
|
|
target_columns = (
|
|
'present_price',
|
|
)
|
|
|
|
# %%
|
|
features_to_scale_to_standard_columns = (
|
|
'selling_price',
|
|
'driven_kms',
|
|
'age',
|
|
)
|
|
assert all(
|
|
(col in df_orig.select_dtypes(('number',)).columns)
|
|
for col in features_to_scale_to_standard_columns
|
|
)
|
|
|
|
features_to_encode_one_hot_columns = (
|
|
'fuel_type',
|
|
'selling_type',
|
|
'transmission',
|
|
#'owner',
|
|
)
|
|
assert all(
|
|
(col in df_orig.select_dtypes(('category', 'object')).columns)
|
|
for col in features_to_encode_one_hot_columns
|
|
)
|
|
|
|
# %%
|
|
df_orig_features = df_orig[list(feature_columns)]
|
|
df_target = df_orig[list(target_columns)]
|
|
|
|
# %%
|
|
DF_TEST_PORTION = 0.25
|
|
|
|
# %%
|
|
df_orig_features_train, df_orig_features_test, df_target_train, df_target_test = (
|
|
sklearn.model_selection.train_test_split(
|
|
df_orig_features, df_target, test_size=DF_TEST_PORTION, random_state=0x7AE6,
|
|
)
|
|
)
|
|
|
|
# %%
|
|
tuple(map(len, (df_target_train, df_target_test)))
|
|
|
|
# %%
|
|
preprocess_transformer = sklearn.compose.ColumnTransformer(
|
|
[
|
|
('scale_to_standard', sklearn.preprocessing.StandardScaler(), features_to_scale_to_standard_columns),
|
|
(
|
|
#'encode_categoricals_one_hot',
|
|
'encode_categoricals_wrt_target',
|
|
#sklearn.preprocessing.OneHotEncoder(),
|
|
sklearn.preprocessing.TargetEncoder(
|
|
target_type='continuous', smooth='auto', cv=3, shuffle=True, random_state=0x2ED6,
|
|
),
|
|
features_to_encode_one_hot_columns,
|
|
),
|
|
],
|
|
remainder='drop',
|
|
)
|
|
|
|
# %%
|
|
regressor = sklearn.ensemble.RandomForestRegressor(
|
|
10, criterion='squared_error', max_features='sqrt', random_state=0x016B,
|
|
)
|
|
|
|
# %%
|
|
pipeline = sklearn.pipeline.Pipeline([
|
|
('preprocess', preprocess_transformer),
|
|
('regress', regressor),
|
|
])
|
|
|
|
# %%
|
|
pipeline
|
|
|
|
# %%
|
|
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
|
|
# %%
|
|
target_test_predicted = pipeline.predict(df_orig_features_test)
|
|
|
|
# %%
|
|
metrics = {
|
|
'mse': sklearn.metrics.mean_squared_error(df_target_test, target_test_predicted),
|
|
'mae': sklearn.metrics.mean_absolute_error(df_target_test, target_test_predicted),
|
|
'mape': sklearn.metrics.mean_absolute_percentage_error(df_target_test, target_test_predicted),
|
|
}
|
|
|
|
# %%
|
|
metrics
|
|
|
|
# %%
|
|
MODEL_PIP_REQUIREMENTS_PATH = BASE_PATH / 'requirements.txt'
|
|
MODEL_COMMENTS_FILE_PATH = BASE_PATH / 'comment.txt'
|
|
|
|
# %%
|
|
MODEL_INOUT_EXAMPLE_SIZE = 0x10
|
|
|
|
# %%
|
|
model_inout_example = (df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE), df_target.head(MODEL_INOUT_EXAMPLE_SIZE))
|
|
|
|
# %%
|
|
mlflow_model_signature = mlflow.models.infer_signature(model_input=model_inout_example[0], model_output=model_inout_example[1])
|
|
|
|
# %%
|
|
mlflow_model_signature
|
|
|
|
# %%
|
|
model_params = pipeline.get_params()
|
|
|
|
# %%
|
|
model_params
|
|
|
|
# %%
|
|
if mlflow_experiment_new:
|
|
experiment = mlflow.get_experiment(mlflow.create_experiment(mlflow_experiment_name))
|
|
else:
|
|
experiment = mlflow.set_experiment(experiment_name=mlflow_experiment_name)
|
|
|
|
# %%
|
|
with mlflow.start_run(experiment_id=experiment.experiment_id, run_name=mlflow_run_name):
|
|
_ = mlflow.sklearn.log_model(
|
|
pipeline,
|
|
'model',
|
|
signature=mlflow_model_signature,
|
|
input_example=model_inout_example[0],
|
|
pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
|
|
)
|
|
_ = mlflow.log_params(model_params)
|
|
_ = mlflow.log_metrics({k: float(v) for k, v in metrics.items()})
|
|
if MODEL_COMMENTS_FILE_PATH.exists():
|
|
mlflow.log_artifact(str(MODEL_COMMENTS_FILE_PATH))
|