Родитель
f6714c0918
Сommit
41497aa039
@ -0,0 +1,173 @@
|
||||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.17.3
|
||||
# kernelspec:
|
||||
# display_name: .venv
|
||||
# language: python
|
||||
# name: python3
|
||||
# ---
|
||||
|
||||
# %%
|
||||
from typing import Optional
|
||||
|
||||
# %%
|
||||
import os
|
||||
import pathlib
|
||||
import pickle
|
||||
|
||||
# %%
|
||||
import sklearn.compose
|
||||
import sklearn.ensemble
|
||||
import sklearn.metrics
|
||||
import sklearn.model_selection
|
||||
import sklearn.pipeline
|
||||
import sklearn.preprocessing
|
||||
|
||||
# %%
|
||||
# %% tags=["parameters"]
|
||||
data_path: Optional[str] = None
|
||||
# Полный путь к файлу (CSV) с исходным датасетом. Если не установлен, ищется файл в `data/<data_relpath>`.
|
||||
data_relpath: str = 'cars.csv'
|
||||
# Путь к файлу (CSV) с исходным датасетом относительно директории данных `data`. Игнорируется, если установлен data_path.
|
||||
|
||||
data_aug_pickle_path: Optional[str] = None
|
||||
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
|
||||
data_aug_pickle_relpath: str = 'cars.aug.pickle'
|
||||
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
|
||||
|
||||
# %%
|
||||
BASE_PATH = pathlib.Path('..')
|
||||
|
||||
# %%
|
||||
DATA_PATH = (
|
||||
pathlib.Path(os.path.dirname(data_path))
|
||||
if data_path is not None
|
||||
else (BASE_PATH / 'data')
|
||||
)
|
||||
|
||||
# %%
|
||||
with open(
|
||||
(
|
||||
data_aug_pickle_path
|
||||
if data_aug_pickle_path is not None
|
||||
else (DATA_PATH / data_aug_pickle_relpath)
|
||||
),
|
||||
'rb',
|
||||
) as input_file:
|
||||
df_orig = pickle.load(input_file)
|
||||
|
||||
# %%
|
||||
df_orig.head(0x10)
|
||||
|
||||
# %%
|
||||
len(df_orig)
|
||||
|
||||
# %%
|
||||
df_orig.info()
|
||||
|
||||
# %%
|
||||
feature_columns = (
|
||||
'selling_price',
|
||||
'driven_kms',
|
||||
'fuel_type',
|
||||
'selling_type',
|
||||
'transmission',
|
||||
#'owner',
|
||||
'age',
|
||||
)
|
||||
|
||||
target_columns = (
|
||||
'present_price',
|
||||
)
|
||||
|
||||
# %%
|
||||
features_to_scale_to_standard_columns = (
|
||||
'selling_price',
|
||||
'driven_kms',
|
||||
'age',
|
||||
)
|
||||
assert all(
|
||||
(col in df_orig.select_dtypes(('number',)).columns)
|
||||
for col in features_to_scale_to_standard_columns
|
||||
)
|
||||
|
||||
features_to_encode_one_hot_columns = (
|
||||
'fuel_type',
|
||||
'selling_type',
|
||||
'transmission',
|
||||
#'owner',
|
||||
)
|
||||
assert all(
|
||||
(col in df_orig.select_dtypes(('category', 'object')).columns)
|
||||
for col in features_to_encode_one_hot_columns
|
||||
)
|
||||
|
||||
# %%
|
||||
df_orig_features = df_orig[list(feature_columns)]
|
||||
df_target = df_orig[list(target_columns)]
|
||||
|
||||
# %%
|
||||
DF_TEST_PORTION = 0.25
|
||||
|
||||
# %%
|
||||
df_orig_features_train, df_orig_features_test, df_target_train, df_target_test = (
|
||||
sklearn.model_selection.train_test_split(
|
||||
df_orig_features, df_target, test_size=DF_TEST_PORTION, random_state=0x7AE6,
|
||||
)
|
||||
)
|
||||
|
||||
# %%
|
||||
tuple(map(len, (df_target_train, df_target_test)))
|
||||
|
||||
# %%
|
||||
preprocess_transformer = sklearn.compose.ColumnTransformer(
|
||||
[
|
||||
('scale_to_standard', sklearn.preprocessing.StandardScaler(), features_to_scale_to_standard_columns),
|
||||
(
|
||||
#'encode_categoricals_one_hot',
|
||||
'encode_categoricals_wrt_target',
|
||||
#sklearn.preprocessing.OneHotEncoder(),
|
||||
sklearn.preprocessing.TargetEncoder(
|
||||
target_type='continuous', smooth='auto', cv=3, shuffle=True, random_state=0x2ED6,
|
||||
),
|
||||
features_to_encode_one_hot_columns,
|
||||
),
|
||||
],
|
||||
remainder='drop',
|
||||
)
|
||||
|
||||
# %%
|
||||
regressor = sklearn.ensemble.RandomForestRegressor(
|
||||
10, criterion='squared_error', max_features='sqrt', random_state=0x016B,
|
||||
)
|
||||
|
||||
# %%
|
||||
pipeline = sklearn.pipeline.Pipeline([
|
||||
('preprocess', preprocess_transformer),
|
||||
('regress', regressor),
|
||||
])
|
||||
|
||||
# %%
|
||||
pipeline
|
||||
|
||||
# %%
|
||||
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
||||
|
||||
# %%
|
||||
target_test_predicted = pipeline.predict(df_orig_features_test)
|
||||
|
||||
# %%
|
||||
metrics = {
|
||||
'mse': sklearn.metrics.mean_squared_error(df_target_test, target_test_predicted),
|
||||
'mae': sklearn.metrics.mean_absolute_error(df_target_test, target_test_predicted),
|
||||
'mape': sklearn.metrics.mean_absolute_percentage_error(df_target_test, target_test_predicted),
|
||||
}
|
||||
|
||||
# %%
|
||||
metrics
|
||||
Загрузка…
Ссылка в новой задаче