|
После Ширина: | Высота: | Размер: 7.3 KiB |
|
После Ширина: | Высота: | Размер: 7.0 KiB |
|
После Ширина: | Высота: | Размер: 30 KiB |
|
После Ширина: | Высота: | Размер: 7.5 KiB |
|
После Ширина: | Высота: | Размер: 7.4 KiB |
|
После Ширина: | Высота: | Размер: 122 KiB |
|
После Ширина: | Высота: | Размер: 12 KiB |
|
После Ширина: | Высота: | Размер: 11 KiB |
|
После Ширина: | Высота: | Размер: 60 KiB |
@ -0,0 +1,739 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": [],
|
||||
"gpuType": "T4"
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"accelerator": "GPU"
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Задание 1"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "oZs0KGcz01BY"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "gz18QPRz03Ec"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# импорт модулей\n",
|
||||
"import os\n",
|
||||
"os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')\n",
|
||||
"\n",
|
||||
"from tensorflow import keras\n",
|
||||
"from tensorflow.keras import layers\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.metrics import classification_report, confusion_matrix\n",
|
||||
"from sklearn.metrics import ConfusionMatrixDisplay"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "mr9IszuQ1ANG"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр. "
|
||||
],
|
||||
"metadata": {
|
||||
"id": "FFRtE0TN1AiA"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# загрузка датасета\n",
|
||||
"from keras.datasets import mnist\n",
|
||||
"(X_train, y_train), (X_test, y_test) = mnist.load_data()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Ixw5Sp0_1A-w"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "aCo_lUXl1BPV"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# создание своего разбиения датасета\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"# объединяем в один набор\n",
|
||||
"X = np.concatenate((X_train, X_test))\n",
|
||||
"y = np.concatenate((y_train, y_test))\n",
|
||||
"\n",
|
||||
"# разбиваем по вариантам\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y,\n",
|
||||
" test_size = 10000,\n",
|
||||
" train_size = 60000,\n",
|
||||
" random_state = 23)\n",
|
||||
"# вывод размерностей\n",
|
||||
"print('Shape of X train:', X_train.shape)\n",
|
||||
"print('Shape of y train:', y_train.shape)\n",
|
||||
"print('Shape of X test:', X_test.shape)\n",
|
||||
"print('Shape of y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "BrSjcpEe1BeV"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "4hclnNaD1BuB"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Зададим параметры данных и модели\n",
|
||||
"num_classes = 10\n",
|
||||
"input_shape = (28, 28, 1)\n",
|
||||
"\n",
|
||||
"# Приведение входных данных к диапазону [0, 1]\n",
|
||||
"X_train = X_train / 255\n",
|
||||
"X_test = X_test / 255\n",
|
||||
"\n",
|
||||
"# Расширяем размерность входных данных, чтобы каждое изображение имело\n",
|
||||
"# размерность (высота, ширина, количество каналов)\n",
|
||||
"\n",
|
||||
"X_train = np.expand_dims(X_train, -1)\n",
|
||||
"X_test = np.expand_dims(X_test, -1)\n",
|
||||
"print('Shape of transformed X train:', X_train.shape)\n",
|
||||
"print('Shape of transformed X test:', X_test.shape)\n",
|
||||
"\n",
|
||||
"# переведем метки в one-hot\n",
|
||||
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
||||
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
|
||||
"print('Shape of transformed y train:', y_train.shape)\n",
|
||||
"print('Shape of transformed y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "xJH87ISq1B9h"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "7x99O8ig1CLh"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# создаем модель\n",
|
||||
"model = Sequential()\n",
|
||||
"model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n",
|
||||
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
||||
"model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n",
|
||||
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
||||
"model.add(layers.Dropout(0.5))\n",
|
||||
"model.add(layers.Flatten())\n",
|
||||
"model.add(layers.Dense(num_classes, activation=\"softmax\"))\n",
|
||||
"\n",
|
||||
"model.summary()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Un561zSH1Cmv"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# компилируем и обучаем модель\n",
|
||||
"batch_size = 512\n",
|
||||
"epochs = 15\n",
|
||||
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
|
||||
"model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "q_h8PxkN9m0v"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "HL2_LVga1C3l"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Оценка качества работы модели на тестовых данных\n",
|
||||
"scores = model.evaluate(X_test, y_test)\n",
|
||||
"print('Loss on test data:', scores[0])\n",
|
||||
"print('Accuracy on test data:', scores[1])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "81Cgq8dn9uL6"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "KzrVY1SR1DZh"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# вывод двух тестовых изображений и результатов распознавания\n",
|
||||
"\n",
|
||||
"for n in [3,26]:\n",
|
||||
" result = model.predict(X_test[n:n+1])\n",
|
||||
" print('NN output:', result)\n",
|
||||
"\n",
|
||||
" plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n",
|
||||
" plt.show()\n",
|
||||
" print('Real mark: ', np.argmax(y_test[n]))\n",
|
||||
" print('NN answer: ', np.argmax(result))"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "dbfkWjDI1Dp7"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "YgiVGr5_1D3u"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# истинные метки классов\n",
|
||||
"true_labels = np.argmax(y_test, axis=1)\n",
|
||||
"# предсказанные метки классов\n",
|
||||
"predicted_labels = np.argmax(model.predict(X_test), axis=1)\n",
|
||||
"\n",
|
||||
"# отчет о качестве классификации\n",
|
||||
"print(classification_report(true_labels, predicted_labels))\n",
|
||||
"# вычисление матрицы ошибок\n",
|
||||
"conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
|
||||
"# отрисовка матрицы ошибок в виде \"тепловой карты\"\n",
|
||||
"display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n",
|
||||
"display.plot()\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "7MqcG_wl1EHI"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "amaspXGW1EVy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# загрузка собственного изображения\n",
|
||||
"from PIL import Image\n",
|
||||
"\n",
|
||||
"for name_image in ['цифра 3.png', 'цифра 6.png']:\n",
|
||||
" file_data = Image.open(name_image)\n",
|
||||
" file_data = file_data.convert('L') # перевод в градации серого\n",
|
||||
" test_img = np.array(file_data)\n",
|
||||
"\n",
|
||||
" # вывод собственного изображения\n",
|
||||
" plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n",
|
||||
" plt.show()\n",
|
||||
"\n",
|
||||
" # предобработка\n",
|
||||
" test_img = test_img / 255\n",
|
||||
" test_img = np.reshape(test_img, (1,28,28,1))\n",
|
||||
"\n",
|
||||
" # распознавание\n",
|
||||
" result = model.predict(test_img)\n",
|
||||
" print('I think it\\'s', np.argmax(result))"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "ktWEeqWd1EyF"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "mgrihPd61E8w"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"model_lr1 = keras.models.load_model(\"model_1h100_2h50.keras\")\n",
|
||||
"\n",
|
||||
"model_lr1.summary()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "DblXqn3l1FL2"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# развернем каждое изображение 28*28 в вектор 784\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y,\n",
|
||||
" test_size = 10000,\n",
|
||||
" train_size = 60000,\n",
|
||||
" random_state = 23)\n",
|
||||
"num_pixels = X_train.shape[1] * X_train.shape[2]\n",
|
||||
"X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n",
|
||||
"X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n",
|
||||
"print('Shape of transformed X train:', X_train.shape)\n",
|
||||
"print('Shape of transformed X train:', X_test.shape)\n",
|
||||
"\n",
|
||||
"# переведем метки в one-hot\n",
|
||||
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
||||
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
|
||||
"print('Shape of transformed y train:', y_train.shape)\n",
|
||||
"print('Shape of transformed y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "0ki8fhJrEyEt"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Оценка качества работы модели на тестовых данных\n",
|
||||
"scores = model_lr1.evaluate(X_test, y_test)\n",
|
||||
"print('Loss on test data:', scores[0])\n",
|
||||
"print('Accuracy on test data:', scores[1])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "0Yj0fzLNE12k"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:\n",
|
||||
"### - количество настраиваемых параметров в сети\n",
|
||||
"### - количество эпох обучения\n",
|
||||
"### - качество классификации тестовой выборки.\n",
|
||||
"### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений. "
|
||||
],
|
||||
"metadata": {
|
||||
"id": "MsM3ew3d1FYq"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Таблица1:"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "xxFO4CXbIG88"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n",
|
||||
"|----------|-------------------------------------|---------------------------|-----------------------------------------|\n",
|
||||
"| Сверточная | 34 826 | 15 | accuracy:0.990 ; loss:0.029 |\n",
|
||||
"| Полносвязная | 84 062 | 50 | accuracy:0.942 ; loss:0.198 |\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "xvoivjuNFlEf"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#####По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС намного лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "YctF8h_sIB-P"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Задание 2"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "wCLHZPGB1F1y"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. \n",
|
||||
"### При этом:\n",
|
||||
"### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000\n",
|
||||
"### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов\n",
|
||||
"### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно. "
|
||||
],
|
||||
"metadata": {
|
||||
"id": "DUOYls124TT8"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "XDStuSpEJa8o"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# загрузка датасета\n",
|
||||
"from keras.datasets import cifar10\n",
|
||||
"\n",
|
||||
"(X_train, y_train), (X_test, y_test) = cifar10.load_data()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "y0qK7eKL4Tjy"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "wTHiBy-ZJ5oh"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# создание своего разбиения датасета\n",
|
||||
"\n",
|
||||
"# объединяем в один набор\n",
|
||||
"X = np.concatenate((X_train, X_test))\n",
|
||||
"y = np.concatenate((y_train, y_test))\n",
|
||||
"\n",
|
||||
"# разбиваем по вариантам\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y,\n",
|
||||
" test_size = 10000,\n",
|
||||
" train_size = 50000,\n",
|
||||
" random_state = 23)\n",
|
||||
"# вывод размерностей\n",
|
||||
"print('Shape of X train:', X_train.shape)\n",
|
||||
"print('Shape of y train:', y_train.shape)\n",
|
||||
"print('Shape of X test:', X_test.shape)\n",
|
||||
"print('Shape of y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "DlnFbQogKD2v"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Вывели 25 изображений из обучающей выборки с подписью классов."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "pj3bMaz1KZ3a"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n",
|
||||
" 'dog', 'frog', 'horse', 'ship', 'truck']\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(10,10))\n",
|
||||
"for i in range(25):\n",
|
||||
" plt.subplot(5,5,i+1)\n",
|
||||
" plt.xticks([])\n",
|
||||
" plt.yticks([])\n",
|
||||
" plt.grid(False)\n",
|
||||
" plt.imshow(X_train[i])\n",
|
||||
" plt.xlabel(class_names[y_train[i][0]])\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "TW8D67KEKhVE"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "d3TPr2w1KQTK"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Зададим параметры данных и модели\n",
|
||||
"num_classes = 10\n",
|
||||
"input_shape = (32, 32, 3)\n",
|
||||
"\n",
|
||||
"# Приведение входных данных к диапазону [0, 1]\n",
|
||||
"X_train = X_train / 255\n",
|
||||
"X_test = X_test / 255\n",
|
||||
"\n",
|
||||
"print('Shape of transformed X train:', X_train.shape)\n",
|
||||
"print('Shape of transformed X test:', X_test.shape)\n",
|
||||
"\n",
|
||||
"# переведем метки в one-hot\n",
|
||||
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
||||
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
|
||||
"print('Shape of transformed y train:', y_train.shape)\n",
|
||||
"print('Shape of transformed y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "iFDpxEauLZ8j"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "ydNITXptLeGT"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# создаем модель\n",
|
||||
"model = Sequential()\n",
|
||||
"\n",
|
||||
"# Блок 1\n",
|
||||
"model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n",
|
||||
" activation=\"relu\", input_shape=input_shape))\n",
|
||||
"model.add(layers.BatchNormalization())\n",
|
||||
"model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n",
|
||||
"model.add(layers.BatchNormalization())\n",
|
||||
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
||||
"model.add(layers.Dropout(0.25))\n",
|
||||
"\n",
|
||||
"# Блок 2\n",
|
||||
"model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n",
|
||||
"model.add(layers.BatchNormalization())\n",
|
||||
"model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n",
|
||||
"model.add(layers.BatchNormalization())\n",
|
||||
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
||||
"model.add(layers.Dropout(0.25))\n",
|
||||
"\n",
|
||||
"# Блок 3\n",
|
||||
"model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n",
|
||||
"model.add(layers.BatchNormalization())\n",
|
||||
"model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n",
|
||||
"model.add(layers.BatchNormalization())\n",
|
||||
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
||||
"model.add(layers.Dropout(0.4))\n",
|
||||
"\n",
|
||||
"model.add(layers.Flatten())\n",
|
||||
"model.add(layers.Dense(128, activation='relu'))\n",
|
||||
"model.add(layers.Dropout(0.5))\n",
|
||||
"model.add(layers.Dense(num_classes, activation=\"softmax\"))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"model.summary()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "YhAD5CllLlv7"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# компилируем и обучаем модель\n",
|
||||
"batch_size = 64\n",
|
||||
"epochs = 50\n",
|
||||
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
|
||||
"model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "3otvqMjjOdq5"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Vv1kUHWTLl9B"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Оценка качества работы модели на тестовых данных\n",
|
||||
"scores = model.evaluate(X_test, y_test)\n",
|
||||
"print('Loss on test data:', scores[0])\n",
|
||||
"print('Accuracy on test data:', scores[1])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "SaDxydiyLmRX"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "OdgEiyUGLmhP"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# вывод двух тестовых изображений и результатов распознавания\n",
|
||||
"\n",
|
||||
"for n in [3,15]:\n",
|
||||
" result = model.predict(X_test[n:n+1])\n",
|
||||
" print('NN output:', result)\n",
|
||||
"\n",
|
||||
" plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))\n",
|
||||
" plt.show()\n",
|
||||
" print('Real mark: ', np.argmax(y_test[n]))\n",
|
||||
" print('NN answer: ', np.argmax(result))"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "t3yGj1MlLm9H"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "3h6VGDRrLnNC"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# истинные метки классов\n",
|
||||
"true_labels = np.argmax(y_test, axis=1)\n",
|
||||
"# предсказанные метки классов\n",
|
||||
"predicted_labels = np.argmax(model.predict(X_test), axis=1)\n",
|
||||
"\n",
|
||||
"# отчет о качестве классификации\n",
|
||||
"print(classification_report(true_labels, predicted_labels, target_names=class_names))\n",
|
||||
"# вычисление матрицы ошибок\n",
|
||||
"conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
|
||||
"# отрисовка матрицы ошибок в виде \"тепловой карты\"\n",
|
||||
"fig, ax = plt.subplots(figsize=(6, 6))\n",
|
||||
"disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)\n",
|
||||
"disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра\n",
|
||||
"plt.tight_layout() # чтобы всё влезло\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "od56oyyzM0nw"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#### По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85."
|
||||
],
|
||||
"metadata": {
|
||||
"id": "RF4xK1cxamBc"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@ -0,0 +1,554 @@
|
||||
# Отчёт по лабораторной работе №2
|
||||
|
||||
**Кнзев Станислав, Жихарев Данила — А-02-22**
|
||||
|
||||
---
|
||||
## Задание 1
|
||||
|
||||
### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули.
|
||||
|
||||
```python
|
||||
# импорт модулей
|
||||
import os
|
||||
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')
|
||||
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.models import Sequential
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from sklearn.metrics import classification_report, confusion_matrix
|
||||
from sklearn.metrics import ConfusionMatrixDisplay
|
||||
```
|
||||
|
||||
### 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр.
|
||||
|
||||
```python
|
||||
# загрузка датасета
|
||||
from keras.datasets import mnist
|
||||
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||
```
|
||||
|
||||
### 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.
|
||||
|
||||
```python
|
||||
# создание своего разбиения датасета
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# объединяем в один набор
|
||||
X = np.concatenate((X_train, X_test))
|
||||
y = np.concatenate((y_train, y_test))
|
||||
|
||||
# разбиваем по вариантам
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
||||
test_size = 10000,
|
||||
train_size = 60000,
|
||||
random_state = 23)
|
||||
# вывод размерностей
|
||||
print('Shape of X train:', X_train.shape)
|
||||
print('Shape of y train:', y_train.shape)
|
||||
print('Shape of X test:', X_test.shape)
|
||||
print('Shape of y test:', y_test.shape)
|
||||
```
|
||||
```
|
||||
Shape of X train: (60000, 28, 28)
|
||||
Shape of y train: (60000,)
|
||||
Shape of X test: (10000, 28, 28)
|
||||
Shape of y test: (10000,)
|
||||
```
|
||||
|
||||
### 4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.
|
||||
|
||||
```python
|
||||
# Зададим параметры данных и модели
|
||||
num_classes = 10
|
||||
input_shape = (28, 28, 1)
|
||||
|
||||
# Приведение входных данных к диапазону [0, 1]
|
||||
X_train = X_train / 255
|
||||
X_test = X_test / 255
|
||||
|
||||
# Расширяем размерность входных данных, чтобы каждое изображение имело
|
||||
# размерность (высота, ширина, количество каналов)
|
||||
|
||||
X_train = np.expand_dims(X_train, -1)
|
||||
X_test = np.expand_dims(X_test, -1)
|
||||
print('Shape of transformed X train:', X_train.shape)
|
||||
print('Shape of transformed X test:', X_test.shape)
|
||||
|
||||
# переведем метки в one-hot
|
||||
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||
print('Shape of transformed y train:', y_train.shape)
|
||||
print('Shape of transformed y test:', y_test.shape)
|
||||
```
|
||||
```
|
||||
Shape of transformed X train: (60000, 28, 28, 1)
|
||||
Shape of transformed X test: (10000, 28, 28, 1)
|
||||
Shape of transformed y train: (60000, 10)
|
||||
Shape of transformed y test: (10000, 10)
|
||||
```
|
||||
|
||||
### 5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.
|
||||
|
||||
```python
|
||||
# создаем модель
|
||||
model = Sequential()
|
||||
model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
|
||||
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(layers.Dropout(0.5))
|
||||
model.add(layers.Flatten())
|
||||
model.add(layers.Dense(num_classes, activation="softmax"))
|
||||
|
||||
model.summary()
|
||||
```
|
||||
**Model: "sequential"**
|
||||
| Layer (type) | Output Shape | Param # |
|
||||
|--------------------------------|---------------------|--------:|
|
||||
| conv2d (Conv2D) | (None, 26, 26, 32) | 320 |
|
||||
| max_pooling2d (MaxPooling2D) | (None, 13, 13, 32) | 0 |
|
||||
| conv2d_1 (Conv2D) | (None, 11, 11, 64) | 18,496 |
|
||||
| max_pooling2d_1 (MaxPooling2D) | (None, 5, 5, 64) | 0 |
|
||||
| dropout (Dropout) | (None, 5, 5, 64) | 0 |
|
||||
| flatten (Flatten) | (None, 1600) | 0 |
|
||||
| dense (Dense) | (None, 10) | 16,010 |
|
||||
**Total params:** 34,826 (136.04 KB)
|
||||
**Trainable params:** 34,826 (136.04 KB)
|
||||
**Non-trainable params:** 0 (0.00 B)
|
||||
|
||||
```python
|
||||
# компилируем и обучаем модель
|
||||
batch_size = 512
|
||||
epochs = 15
|
||||
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
||||
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
|
||||
```
|
||||
|
||||
### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.
|
||||
|
||||
```python
|
||||
# Оценка качества работы модели на тестовых данных
|
||||
scores = model.evaluate(X_test, y_test)
|
||||
print('Loss on test data:', scores[0])
|
||||
print('Accuracy on test data:', scores[1])
|
||||
```
|
||||
```
|
||||
313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 4ms/step - accuracy: 0.9909 - loss: 0.0257
|
||||
Loss on test data: 0.02905484288930893
|
||||
Accuracy on test data: 0.9904999732971191
|
||||
```
|
||||
|
||||
### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.
|
||||
|
||||
```python
|
||||
# вывод двух тестовых изображений и результатов распознавания
|
||||
|
||||
for n in [3,26]:
|
||||
result = model.predict(X_test[n:n+1])
|
||||
print('NN output:', result)
|
||||
|
||||
plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))
|
||||
plt.show()
|
||||
print('Real mark: ', np.argmax(y_test[n]))
|
||||
print('NN answer: ', np.argmax(result))
|
||||
```
|
||||

|
||||
```
|
||||
Real mark: 2
|
||||
NN answer: 2
|
||||
```
|
||||

|
||||
```
|
||||
Real mark: 9
|
||||
NN answer: 9
|
||||
```
|
||||
|
||||
### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.
|
||||
|
||||
```python
|
||||
# истинные метки классов
|
||||
true_labels = np.argmax(y_test, axis=1)
|
||||
# предсказанные метки классов
|
||||
predicted_labels = np.argmax(model.predict(X_test), axis=1)
|
||||
|
||||
# отчет о качестве классификации
|
||||
print(classification_report(true_labels, predicted_labels))
|
||||
# вычисление матрицы ошибок
|
||||
conf_matrix = confusion_matrix(true_labels, predicted_labels)
|
||||
# отрисовка матрицы ошибок в виде "тепловой карты"
|
||||
display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)
|
||||
display.plot()
|
||||
plt.show()
|
||||
```
|
||||
```
|
||||
313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 5ms/step
|
||||
precision recall f1-score support
|
||||
|
||||
0 0.99 0.99 0.99 997
|
||||
1 1.00 1.00 1.00 1164
|
||||
2 0.99 0.98 0.99 1030
|
||||
3 1.00 0.99 0.99 1031
|
||||
4 0.99 1.00 0.99 967
|
||||
5 0.98 1.00 0.99 860
|
||||
6 0.99 1.00 1.00 977
|
||||
7 0.99 0.99 0.99 1072
|
||||
8 0.99 0.98 0.99 939
|
||||
9 0.99 0.98 0.99 963
|
||||
|
||||
accuracy 0.99 10000
|
||||
macro avg 0.99 0.99 0.99 10000
|
||||
weighted avg 0.99 0.99 0.99 10000
|
||||
```
|
||||

|
||||
|
||||
### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания.
|
||||
|
||||
```python
|
||||
# загрузка собственного изображения
|
||||
from PIL import Image
|
||||
|
||||
for name_image in ['цифра 3.png', 'цифра 6.png']:
|
||||
file_data = Image.open(name_image)
|
||||
file_data = file_data.convert('L') # перевод в градации серого
|
||||
test_img = np.array(file_data)
|
||||
|
||||
# вывод собственного изображения
|
||||
plt.imshow(test_img, cmap=plt.get_cmap('gray'))
|
||||
plt.show()
|
||||
|
||||
# предобработка
|
||||
test_img = test_img / 255
|
||||
test_img = np.reshape(test_img, (1,28,28,1))
|
||||
|
||||
# распознавание
|
||||
result = model.predict(test_img)
|
||||
print('I think it\'s', np.argmax(result))
|
||||
```
|
||||

|
||||
```
|
||||
I think it's 3
|
||||
```
|
||||

|
||||
```
|
||||
I think it's 6
|
||||
```
|
||||
|
||||
### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6.
|
||||
|
||||
```python
|
||||
model_lr1 = keras.models.load_model("model_1h100_2h50.keras")
|
||||
|
||||
model_lr1.summary()
|
||||
```
|
||||
**Model: "sequential_10"**
|
||||
| Layer (type) | Output Shape | Param # |
|
||||
|------------------|-------------:|--------:|
|
||||
| dense_22 (Dense) | (None, 100) | 78,500 |
|
||||
| dense_23 (Dense) | (None, 50) | 5,050 |
|
||||
| dense_24 (Dense) | (None, 10) | 510 |
|
||||
**Total params:** 84,062 (328.37 KB)
|
||||
**Trainable params:** 84,060 (328.36 KB)
|
||||
**Non-trainable params:** 0 (0.00 B)
|
||||
**Optimizer params:** 2 (12.00 B)
|
||||
|
||||
|
||||
```python
|
||||
# развернем каждое изображение 28*28 в вектор 784
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
||||
test_size = 10000,
|
||||
train_size = 60000,
|
||||
random_state = 23)
|
||||
num_pixels = X_train.shape[1] * X_train.shape[2]
|
||||
X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255
|
||||
X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255
|
||||
print('Shape of transformed X train:', X_train.shape)
|
||||
print('Shape of transformed X train:', X_test.shape)
|
||||
|
||||
# переведем метки в one-hot
|
||||
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||
print('Shape of transformed y train:', y_train.shape)
|
||||
print('Shape of transformed y test:', y_test.shape)
|
||||
```
|
||||
```
|
||||
Shape of transformed X train: (60000, 784)
|
||||
Shape of transformed X train: (10000, 784)
|
||||
Shape of transformed y train: (60000, 10)
|
||||
Shape of transformed y test: (10000, 10)
|
||||
```
|
||||
|
||||
```python
|
||||
# Оценка качества работы модели на тестовых данных
|
||||
scores = model_lr1.evaluate(X_test, y_test)
|
||||
print('Loss on test data:', scores[0])
|
||||
print('Accuracy on test data:', scores[1])
|
||||
```
|
||||
```
|
||||
313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 8ms/step - accuracy: 0.9453 - loss: 0.1872
|
||||
Loss on test data: 0.19880765676498413
|
||||
Accuracy on test data: 0.9416000247001648
|
||||
```
|
||||
|
||||
### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:
|
||||
### - количество настраиваемых параметров в сети
|
||||
### - количество эпох обучения
|
||||
### - качество классификации тестовой выборки.
|
||||
### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений.
|
||||
|
||||
Таблица1:
|
||||
|
||||
| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |
|
||||
|----------|-------------------------------------|---------------------------|-----------------------------------------|
|
||||
| Сверточная | 34 826 | 15 | accuracy:0.990 ; loss:0.029 |
|
||||
| Полносвязная | 84 062 | 50 | accuracy:0.942 ; loss:0.198 |
|
||||
|
||||
|
||||
##### По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС намного лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества.
|
||||
|
||||
## Задание 2
|
||||
|
||||
### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов.
|
||||
### При этом:
|
||||
### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000
|
||||
### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов
|
||||
### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно.
|
||||
|
||||
### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик.
|
||||
|
||||
```python
|
||||
# загрузка датасета
|
||||
from keras.datasets import cifar10
|
||||
|
||||
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
|
||||
```
|
||||
|
||||
### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.
|
||||
|
||||
```python
|
||||
# создание своего разбиения датасета
|
||||
|
||||
# объединяем в один набор
|
||||
X = np.concatenate((X_train, X_test))
|
||||
y = np.concatenate((y_train, y_test))
|
||||
|
||||
# разбиваем по вариантам
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
||||
test_size = 10000,
|
||||
train_size = 50000,
|
||||
random_state = 23)
|
||||
# вывод размерностей
|
||||
print('Shape of X train:', X_train.shape)
|
||||
print('Shape of y train:', y_train.shape)
|
||||
print('Shape of X test:', X_test.shape)
|
||||
print('Shape of y test:', y_test.shape)
|
||||
```
|
||||
```
|
||||
Shape of X train: (50000, 32, 32, 3)
|
||||
Shape of y train: (50000, 1)
|
||||
Shape of X test: (10000, 32, 32, 3)
|
||||
Shape of y test: (10000, 1)
|
||||
```
|
||||
|
||||
### Вывели 25 изображений из обучающей выборки с подписью классов.
|
||||
|
||||
```python
|
||||
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
||||
'dog', 'frog', 'horse', 'ship', 'truck']
|
||||
|
||||
plt.figure(figsize=(10,10))
|
||||
for i in range(25):
|
||||
plt.subplot(5,5,i+1)
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.grid(False)
|
||||
plt.imshow(X_train[i])
|
||||
plt.xlabel(class_names[y_train[i][0]])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.
|
||||
|
||||
```python
|
||||
# Зададим параметры данных и модели
|
||||
num_classes = 10
|
||||
input_shape = (32, 32, 3)
|
||||
|
||||
# Приведение входных данных к диапазону [0, 1]
|
||||
X_train = X_train / 255
|
||||
X_test = X_test / 255
|
||||
|
||||
print('Shape of transformed X train:', X_train.shape)
|
||||
print('Shape of transformed X test:', X_test.shape)
|
||||
|
||||
# переведем метки в one-hot
|
||||
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||
print('Shape of transformed y train:', y_train.shape)
|
||||
print('Shape of transformed y test:', y_test.shape)
|
||||
```
|
||||
```
|
||||
Shape of transformed X train: (50000, 32, 32, 3)
|
||||
Shape of transformed X test: (10000, 32, 32, 3)
|
||||
Shape of transformed y train: (50000, 10)
|
||||
Shape of transformed y test: (10000, 10)
|
||||
```
|
||||
|
||||
### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.
|
||||
|
||||
```python
|
||||
# создаем модель
|
||||
model = Sequential()
|
||||
|
||||
# Блок 1
|
||||
model.add(layers.Conv2D(32, (3, 3), padding="same",
|
||||
activation="relu", input_shape=input_shape))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Conv2D(32, (3, 3), padding="same", activation="relu"))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.MaxPooling2D((2, 2)))
|
||||
model.add(layers.Dropout(0.25))
|
||||
|
||||
# Блок 2
|
||||
model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu"))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu"))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.MaxPooling2D((2, 2)))
|
||||
model.add(layers.Dropout(0.25))
|
||||
|
||||
# Блок 3
|
||||
model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu"))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu"))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.MaxPooling2D((2, 2)))
|
||||
model.add(layers.Dropout(0.4))
|
||||
|
||||
model.add(layers.Flatten())
|
||||
model.add(layers.Dense(128, activation='relu'))
|
||||
model.add(layers.Dropout(0.5))
|
||||
model.add(layers.Dense(num_classes, activation="softmax"))
|
||||
|
||||
|
||||
model.summary()
|
||||
```
|
||||
**Model: "sequential_9"**
|
||||
| Layer (type) | Output Shape | Param # |
|
||||
|--------------------------------------------|-------------------|---------:|
|
||||
| conv2d_41 (Conv2D) | (None, 32, 32, 32) | 896 |
|
||||
| batch_normalization_6 (BatchNormalization) | (None, 32, 32, 32) | 128 |
|
||||
| conv2d_42 (Conv2D) | (None, 32, 32, 32) | 9,248 |
|
||||
| batch_normalization_7 (BatchNormalization) | (None, 32, 32, 32) | 128 |
|
||||
| max_pooling2d_26 (MaxPooling2D) | (None, 16, 16, 32) | 0 |
|
||||
| dropout_24 (Dropout) | (None, 16, 16, 32) | 0 |
|
||||
| conv2d_43 (Conv2D) | (None, 16, 16, 64) | 18,496 |
|
||||
| batch_normalization_8 (BatchNormalization) | (None, 16, 16, 64) | 256 |
|
||||
| conv2d_44 (Conv2D) | (None, 16, 16, 64) | 36,928 |
|
||||
| batch_normalization_9 (BatchNormalization) | (None, 16, 16, 64) | 256 |
|
||||
| max_pooling2d_27 (MaxPooling2D) | (None, 8, 8, 64) | 0 |
|
||||
| dropout_25 (Dropout) | (None, 8, 8, 64) | 0 |
|
||||
| conv2d_45 (Conv2D) | (None, 8, 8, 128) | 73,856 |
|
||||
| batch_normalization_10 (BatchNormalization)| (None, 8, 8, 128) | 512 |
|
||||
| conv2d_46 (Conv2D) | (None, 8, 8, 128) | 147,584 |
|
||||
| batch_normalization_11 (BatchNormalization)| (None, 8, 8, 128) | 512 |
|
||||
| max_pooling2d_28 (MaxPooling2D) | (None, 4, 4, 128) | 0 |
|
||||
| dropout_26 (Dropout) | (None, 4, 4, 128) | 0 |
|
||||
| flatten_9 (Flatten) | (None, 2048) | 0 |
|
||||
| dense_17 (Dense) | (None, 128) | 262,272 |
|
||||
| dropout_27 (Dropout) | (None, 128) | 0 |
|
||||
| dense_18 (Dense) | (None, 10) | 1,290 |
|
||||
**Total params:** 552,362 (2.11 MB)
|
||||
**Trainable params:** 551,466 (2.10 MB)
|
||||
**Non-trainable params:** 896 (3.50 KB)
|
||||
|
||||
```python
|
||||
# компилируем и обучаем модель
|
||||
batch_size = 64
|
||||
epochs = 50
|
||||
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
||||
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
|
||||
```
|
||||
|
||||
### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.
|
||||
|
||||
```python
|
||||
# Оценка качества работы модели на тестовых данных
|
||||
scores = model.evaluate(X_test, y_test)
|
||||
print('Loss on test data:', scores[0])
|
||||
print('Accuracy on test data:', scores[1])
|
||||
```
|
||||
```
|
||||
313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 5ms/step - accuracy: 0.8507 - loss: 0.5097
|
||||
Loss on test data: 0.4886781871318817
|
||||
Accuracy on test data: 0.8521999716758728
|
||||
```
|
||||
|
||||
### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.
|
||||
|
||||
```python
|
||||
# вывод двух тестовых изображений и результатов распознавания
|
||||
|
||||
for n in [3,15]:
|
||||
result = model.predict(X_test[n:n+1])
|
||||
print('NN output:', result)
|
||||
|
||||
plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))
|
||||
plt.show()
|
||||
print('Real mark: ', np.argmax(y_test[n]))
|
||||
print('NN answer: ', np.argmax(result))
|
||||
```
|
||||

|
||||
```
|
||||
Real mark: 0
|
||||
NN answer: 0
|
||||
```
|
||||

|
||||
```
|
||||
Real mark: 2
|
||||
NN answer: 6
|
||||
```
|
||||
|
||||
### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.
|
||||
|
||||
```python
|
||||
# истинные метки классов
|
||||
true_labels = np.argmax(y_test, axis=1)
|
||||
# предсказанные метки классов
|
||||
predicted_labels = np.argmax(model.predict(X_test), axis=1)
|
||||
|
||||
# отчет о качестве классификации
|
||||
print(classification_report(true_labels, predicted_labels, target_names=class_names))
|
||||
# вычисление матрицы ошибок
|
||||
conf_matrix = confusion_matrix(true_labels, predicted_labels)
|
||||
# отрисовка матрицы ошибок в виде "тепловой карты"
|
||||
fig, ax = plt.subplots(figsize=(6, 6))
|
||||
disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)
|
||||
disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра
|
||||
plt.tight_layout() # чтобы всё влезло
|
||||
plt.show()
|
||||
```
|
||||
```
|
||||
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step
|
||||
precision recall f1-score support
|
||||
|
||||
airplane 0.86 0.86 0.86 986
|
||||
automobile 0.97 0.90 0.93 971
|
||||
bird 0.85 0.76 0.80 1043
|
||||
cat 0.72 0.74 0.73 1037
|
||||
deer 0.84 0.84 0.84 969
|
||||
dog 0.74 0.79 0.77 979
|
||||
frog 0.88 0.88 0.88 1025
|
||||
horse 0.86 0.89 0.88 948
|
||||
ship 0.92 0.93 0.93 1003
|
||||
truck 0.89 0.93 0.91 1039
|
||||
|
||||
accuracy 0.85 10000
|
||||
macro avg 0.85 0.85 0.85 10000
|
||||
weighted avg 0.85 0.85 0.85 10000
|
||||
```
|
||||

|
||||
|
||||
#### По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85.
|
||||