From c7a9f84efe1c6b4730f777fd2c00905724808c3f Mon Sep 17 00:00:00 2001 From: DanRie Date: Sat, 15 Nov 2025 16:07:24 +0300 Subject: [PATCH] LR3 done --- labworks/LW1/model_1h100_2h50.keras | Bin 0 -> 357890 bytes labworks/LW3/images/1.png | Bin 0 -> 7437 bytes labworks/LW3/images/2.png | Bin 0 -> 7168 bytes labworks/LW3/images/3.png | Bin 0 -> 30661 bytes labworks/LW3/images/4.png | Bin 0 -> 7712 bytes labworks/LW3/images/5.png | Bin 0 -> 7572 bytes labworks/LW3/images/6.png | Bin 0 -> 124395 bytes labworks/LW3/images/7.png | Bin 0 -> 11799 bytes labworks/LW3/images/8.png | Bin 0 -> 11289 bytes labworks/LW3/images/9.png | Bin 0 -> 61643 bytes labworks/LW3/lab3.ipynb | 739 ++++++++ .../lab3_full.ipynb | 1661 +++++++++++++++++ labworks/LW3/report.md | 554 ++++++ 13 files changed, 2954 insertions(+) create mode 100644 labworks/LW1/model_1h100_2h50.keras create mode 100644 labworks/LW3/images/1.png create mode 100644 labworks/LW3/images/2.png create mode 100644 labworks/LW3/images/3.png create mode 100644 labworks/LW3/images/4.png create mode 100644 labworks/LW3/images/5.png create mode 100644 labworks/LW3/images/6.png create mode 100644 labworks/LW3/images/7.png create mode 100644 labworks/LW3/images/8.png create mode 100644 labworks/LW3/images/9.png create mode 100644 labworks/LW3/lab3.ipynb create mode 100644 labworks/LW3/notebook с полными выводами/lab3_full.ipynb create mode 100644 labworks/LW3/report.md diff --git a/labworks/LW1/model_1h100_2h50.keras b/labworks/LW1/model_1h100_2h50.keras new file mode 100644 index 0000000000000000000000000000000000000000..9cdd8125b92f1f5680b2078b6fc4be3125133751 GIT binary patch literal 357890 zcmeFY3tWxc)-b*zgeW9QNJ5l!qgrbYLUfT-DoOVXmDK7g39GBs{eHi#?rlN{Y0W`s zlY3~}xovGiny|0zAD(El03e73j;I=eXsI;(mG`1)*D*zE4_9N-x2?jPXk>!ZMySI|^d zS5s9}P?1+)pxhk;oP*un`s+2+G#1WR)19xOuBX0;t)a_asH?EU>~E&3);Kjvg_)!O zGn$#o)z@dE=ca*)w)naQdAs+I^li%i30%FM0|FdFoWj?OR_4 ze7nLRK)_!B9M!)e80hcp>ErD3ZPY;jAoqTp1GjPeN87IOPv_IOWI)Y)y**vG{euZN zdiy#DYHBF#UaO2jC{C3fhPSO|Ae25bD*n-BQx>0rEd6+ zh_;TFJu}200Tc$2??;jA>>toim5t8c0sU0+ciyz=+pZ2)43gNhe@e%12=&wWA1|C~ z`PUbs@9x7)-@m?pzo~BhZH^im{muX9_p^V&K|Y>={X3h-4`fL8*PZ@d!#_rX*%Ox_Pj5HJzv8m*{QP%L$_{3n|E&zH`QL+q z86x~^0%?%T7ye*!hGzf9GXI#r`dj|zFgYW=?Ekkjxz_(sCRhJEOzyieaEo(D|AKx< z^6wVdpkDc(!{iJ5dEB1a!ta9rA4_`%J%*{XePrK|^ey#oOK4-^bHulcPUli!-W`vCP$UzdwwDsimW_P)CD7YOA~F zCXYZzH+NU(ZU3e~UA;ZIKK)k2UsUQQZ(kQ@Z^wV%&|eem>>boU$AJ3nKNapm1*yut1W2&j@>N0cp*ZMN|hpqme%ynU-|2HF@F{%GDkhd>mzn$gCnAzNZvuXh7Z>H=&$Ug4OrAmZrC*fs&oy#Bu2Z?^w86u%SkuP1g7WWf6?HZW$OYmmP) zv#fq@`wqz%{mflz0Ac`F{~#Yncjry+{@(or7$n@c1vzrv{TfgZftb_Vsn(>F?kF43@tYm@lV+A0h*9{=mC>$oC&2to}b1OJ<;c+`#yMhO@L- zv4X`w4vs(g9_Yqu|2{oSY_Q_T`~N8l7_L}q*1uqzfmJIFyqgF3Y@o;rX6~x}zrWv# zS**Xv&jElzK2;m+@K4?%tf7Cyzmfy|t2E+!N2h`Q-}(37&c~nm_n%Djqxt`G3jCRW z2jv)lK&}lge~>@FG5cWUf8o8>bd7#L5BJOd{)a#5`+IPn+JSP*(A>G|K=I(*IdI`QjB)$x4`;WIax&H z8_oOa{+)*3DK<#YeqSnoK!)_!87yC8@~v%Pqy8F>X=eS6_mU|OioL;o7<7aUkpC}w za-d#Qw0{uh`4ha>;5H5RV=Tw-fCJxLiN7iSDEy$n4+{LCzz+)ipui6b{Gh-O3jCnJ z4+{LCzz+)ipui6b{1+(jkNo6+_Rst?Ke^b{???>#asCS^{pk8XkOF`9Gs+LFp=ZFq zH@Kv4ej%pt-9My0@YWdcRk2t)gMk0y`ycTySN8h=DRST6|BQbnXMBen^i%zd)Bgbb zzk~vR=HEfTb?pHE3@&pp&NJvIH5_dCPre8J2s{N2+!2xm4>=9&z8VE>bd|2OOQkK$!E3f~cR8o>9T$${ps@AMm_^MA8t z{y^vdXA1mT4h){7dilSdSZ$!FKJXqqUwVHF_Ai&d%K?$U#7WGieeXIrZpc76NB&

GhwDm-Wl#!FXAJ?5jWC_H9oFHb#V{^o`CUL%vr?4g|E^2B`n%@=zut zr5|#f{B$PgrT>viy2+)TlN(mZnj$xqXt2!#m3>YyZnQQY^wh$wV+%3NItS*!H$PnImKY|ghyJG z!$33N6}vsl;Zj;Y@Rs+nbp)}rDOej*AqzNDbsXIBt&V?jpsSdeMSgS%nL5cYTr z$erfXN!l)`SZIl|x!GW1gTKoAL;#%@4vemXok+(JuI{#Ryqpdv!XdWkb`ENSF{PjXvV7^ku#w zvig<_^-}GGb&7mE_hBbGeb(fZU#usstNVx`wHS&d@_|22i@rZL1ZzJR3zgnKAbJTh zoT%YeAeJ}@BYZ?a?r9;>F=OE;mEAa6Tm@y4{i&TyJCUC!O>JX>kbOf7d;DFX^Fkax zY7n4cwH4?2y)rbb(xrOCp0W$7twCJg2+s?(kj~l(dee(JwZ|S3C&Nupb7(JFbl(@R zhiRbBIvLvd;8BC&j0O_C_Bt&!+($32-iWu%Vvxsqz~WY*=rRv ztlSQUqOw$NeKa&qzQDO@TmdiaXJONRIcyyk1~S_=61`U1aP{^qtY+&{(xHKZ4HKyN zf{`HUxE$W?kb>%%C6M!e34C%!UnSpO>EbUpwX`*F)rN~FJx@R>pscA zg8M=nLq&S4h>!a}#zXD?yTX`K7I^sNl9-Rvuu?4+*tRCvsA@{Sj441#^?MxI8>7H* z(t9%e!fE;{X9WK7`(i9_OduH>MX*QoBek(PPU^oTL-XAfs(DWx9j?v?u?e=w5|JeO z*|}8hv?DBG1=b7sD`5|1{M*Q%el5YSK~p70`CV z1KNKIK=#2ZniJSf4quE#jk7WEQCb3729{tfB89IGWkLPhN}|ve4rjBgp;_4wBvVu~8?G18+kBMm@nQp28MX=w+_z)k`|YS7wE+Z|cL*P>9*?7+tD;epBDTwnB~Ns+ z@XM-VFesPB>*`ZM|4A}Pa#w1N!!w#$aPfi)>-=Qq%zv{ZX>6yXJe=2d72pMjQqRS09=>C4{rC)*0-b>I<-VjWN4yi#ms;VejW*YokMn3DZ<)|fKONbL~qMHrM#!cLZxC?ytq~b6*V~^|4hJ< z-xvkQUoS_|ZONEpewgH_#FCcwDhSbbr|ogufz`T>+7$Q`R`qIK|D|P6v12&?B%zJn zvyRdlm)&r;qX--)reM3p3b2{Xrv=j0q|-Npwoe_yVV(L!dv?1LzLhxCwM>K%Up{Qw zWQp>-R!>XF*6=I;qXu z3LzI}(vX@*#JyetWv2(B_>FAbc|r!<6dFiQ#coiEj-pyEsi5aNl2}ikjy)4ng--)> zLGap>=Lm#wE;42#XvKUIirTVI37{!h)ViU zWHkWV+?hy@JzRyaJtEORzY0}fg`i8ye8FZ=NAs++yAXpYn?na*>Qi`U~vh*G4Ts(??i4?<%ish*K z=rH`L}*-lxq&sz7=q1GpwaI(yWqt+N*rF%@mW!DtD1`ifh8!bs)Q-l zrubTRDC*U&$Cl*RLR-IVAlqX|NNXUGRr^3WR&m(eycJjyfwX+yI;hT_N65MZbm530 z7`kXT*wwnj>mh(B*G}A_q1Bl5PH@-(vG*y7sp{KqI!j_Cj55X78>r>?{7E{LGMn9yAW9z8%xB_g; zN`sEt$CSQYrk>zUZoOz70mg_@iY#MSSOvt>oQ{nZRIVe8qD{YPMC2Q9tVD*`EMDh3#Mi%9BBv>&R z_$d_R_S6$2<9Iw7qm81g3qU416#N3pP|0i!WvvNhFVdL~9xsz=$SM;mwQMIuSOnp- zHY05P=~t3;-VrDKHXCma*@WdgY``XE4%O=lqD4Eb(CSqHnn!!0WP>-@y`KY{n_1Yk zVk@+}=8^XGcgVc1GH{zx4p-;p;MRR9*t}UAmL~?|uTvGUv$h0JWXHh9@C8UbBPn-# zDA-(dhNv4cw9U_rbUt;b^6UA+yE@YF_(U;Czgvm3Pkp3P>toT{G6QO#`japF)RB8x zhO})M4KkC9iOKXcbmcPUY%GW-W>wBa_CX%Fx~{>JeHj>2RsioSrsJE?5(qwhoC+SP z2wP4r0Ty>HNQz66H%VD|Xpc0sdZnP6=R=N;zBJ*bAEGjwt+8&&2wWtw0ejj^A!?W! zOf*`JI*Pv#?^dZni(@C4T3IuDG(IIA=u)$Lj^uDZvNEHFzO*=-z*0E0puxU~*6y#OG&3X4}r*sN#{n-#*f@2`A zMgVDkdGItQ9IJ0mNBzrNvDrMF@FR+0-jPV`D&7StIll{=*2F==stItq`ZWzvzDjNO zxDm5GqNve+mg;!AQrll%(#BSnP+$LNvf`8h=5T$0xQ;~LmV>0tS_&jXpVBVJi4b+3f*CGZ61^>RHIUCI!T%Lh2+%7qEq()+IBbuZMt=V#fw;U$wCt&7gS=DxHyFV zHV*_@GPL|qB>nQFl&U$`a(XVN(zBTncwtgKRaq8GUf5{jfj4u}E+ik6!jiCEBM_oH z)ytF48?u3_O)TLHp zA^3$ljIV-^9=9ovu{YIL=##*tQaG*MM^kQxlI|Qf?)H?zN8LKex}(UM*By+FaG$;H zh!KwbgO6NE6)NMg5j$>Ff!^rR$Q%AiSaMwo#f{ZatT3Lix}|kxwypq=4Uy1qejZbd zS9Gq>h{?fdF>NARyiW$aJ_MgSmLk>uiME-vkYDPgQOre-j2e@PdxENfyCshZI3A^kT!D-9iX-h_gaQUrZ9P7`A`bkTu-0BIi$Vd-U zq<$9Koy>#2@|7Savz}ZUV-1oRMA{Fef{AbrEP8W;+GSiIjUTQP*05znvc7<}i70_w zKpZ%2c`i(_FM!O-GQ2JyfyM?RpmM_*Is$Y-?@l>kFDL|)uj!=XeLe>H=+7ym zvR5)O6uN23g8A4!OiFm^U_8xu5(J%J6p8YANxW3*3%Z{x(9lZ_D^hl&@MIYlT-L-s z`#^wFHSD{>!463tN#0nE`xoSZZPR=ZIPkzN-2w$sR9HJ94MJB{fJg5-vfw1+3n@I# z=}VMAdC?u@gU2SkkgkU(pGx7P@=>?S4usnpM9&a zePW=nM*I%xoHB{z#3+%J@x!Q_-)>-a6p&_JMUrNfh0XkR@X=Ts&u;R=jFq8alCch) z)~iElT?Le{je%Z^c5-`39Xo#(Tn!uMe zAmU%Gu=83T6?2FoH~LDjEyDN}&WL+-)h{aeMoI_5c%|5BI1$%h z-3(S!t7!h0W!RP&MQ_D>(~22WaE8)cc=@wE2i7e?OR072@jK)3^`r{Q_8bN=9kC6I z*7VX#iL+r^YdoBCl*f5qLFjI?5EdOb!Wly=fh3=x{1*w7U)xLbb&K%*>1>>pmq=<^ z-X!;UD0%Ofjxi5%VCc_k6FRk%UXN z9ANh@FS7BrD&7uC0&~s`h&iu|Te%*veR4Y8{z#KH&2}eW)24xfY&PA>=#dKDRB+oG z4AzBxj@p3(^kq@$J_ARN%ZGOLca@;-ksr756bw?T!KeqmRh1PqIPe z$pbQa!YJ~*vH2(&~f@Ov=W>rC%=}!PD3^nOI)YHbGk?$Kbrk!ZLqM+ z7Ko~43e3K-3%W-YLiy%VjBfUX*-(sk9OTH2ARTmZO2JDr6H(YI0W;Mr$f_a{d^#+M zxF3nZ=_DWdmsW6oIUPq|h0MfNW7mVVd>`GPQA3uz{y;28Fm{|mH&MTD2(w;F;;gD2 zkaRU0tXvnPg4;Gsd;g3moY$ebzm(wCldDm4o+_L_m@3@pmI{R%_%L}I4`dp%F?rJm znrpX=ZLJXp&1>U1zkNEyKA@+`86lGky3f4n+LLiqwKoga?_GfE*Trz(!FaeFD2uFY zMRZ>vO)OzJjqsO)UoR`5xM(hBNH-3nv4`Ag-VPG)EAaUI;bdOV z9O3j&@i1ds6m~z$CF`a|60Z*Cyr*T+Lv4|;=*DVz_j@W`rK*M64LO)Qy{KV<>JnU| z!6m=_u1O9C=8^P#XR`HeGRUYTgXIh((EM!!W>|$c>_~8hVIM3==gc{f%(8{6)BUmA zYBSqZaEEH!+rY&!<#1|_U9|0v34R7%}CA!%|2pU z>8O5eFQ>iK9-UVJ#v4AT8s2r}!sOee_uvasT&Tca92o)6YKGz6R~}G!yBwP*^5F5* zxnLA@iQ_4jh(&H)bZYooQg|o{&YY?Q=gZk7b@T_)eRMRG`z?l_PW(omS-PV1W?S-3 zVGhW=i@=>aO$~vYvT^ort7+bsDBSFkO+lxOF4-{@-t?}5`NnLR<+Kog&e}xwJyfNc z1tUT2<#noiIvmd*WYNI3V%R&Sme$;I;E0c1OSQHp!m$NHlJfE-oqTl*SPy9t>YWxq ze9wLI$ITS><4q+XD+q^u4FI=C83?D&jt9-9-Q>%cH1_es)wCl{B z44u&^oY>gF5s}WsX%AiS@sqvu`2GS|tS3Vr^7hiK{VaGtR|X8kDnV+J0v7Ac1NlEP zF=FU&+St+|EPo#Y(>J8UXVu44-gP&69X5dGk9|67mDwp_|hQf@%0C;$_2;*j*qFIl!;Q3HTcsWcA!quu#-ro%h zZm2=eADf~3wFr2PV0=@??jX6SN?5S+7_FC;CPAA=W1Vao-Cw8zji*j?Six4h?1LTj zi#Z>)Y7F3GurXF%+l)#}S75CmpJVYj5*ByOfLilt)L4}Pt2Ve};J!Pg=u|LrgTpal z(KeWJf{k5Oc2Ms;niednhQ`xe;qqD|92FFWTWSBDScjU-_lKURdBXOR3!IPx641VQ zCB4=zhrB>}cEikjluVuvy|<;P&74fgqrX#2x7$?SK9TTx4mWtz*-*7#hrx@Q<@mIE zJ}_1R{?@$$lTlEsCk-;jcW7szDBgbilFCOP<>ZJiB2pEec)zb0 z4H=s`<=t%H%?am7`c-4CRxu%mW5Bq3D6-vIV0Bj>k+FF?By7OrffgqCRS}y-3Bax1 z0&ab&r2R%LEdO;f#%(e~#ih~kvL^v$8J)Ocxg7RkJ8ADyB%-d_R3#MfDDMMZW;GL8 z-P-JO6IbvE)}zgDW)MYHLpakKh1Dg2By0U=YLaaXdj4aCypbZDJriBfW|}tyrV4QX zsz3}hFNBoeYba}OH1I?8LH>OlhgV*WdfIkS@v;p4hx+37O>*d_XaYa8$`~KIGjsPW z1dpNbNR8QAWc3~uN-c4NYO8xhc9#|UNzTV^;|TD&my8z^8QI#tgSZc`#)NlLkapS@ z13kfl1+u4 z(y_o!3I~(+0@#0TJi13DVq^CT2wV_O-qf2x?>R*nGIImo&0h*mrY0o9BaiW)+tJ$P zM>r;WWpFlW2*|K+kdT)DD#K_RR-}drg$Z`$M}iAq3jzI8YDsU@$aT%E*?Tq-Dl_VQ=;#7(Xon zBJ~7#GqDT}U$s)KR!5uLew6n*nr-;=Rnj!`DQ)xaCgSFMiNebYtkYfz-t2v3qMitP zNESh(8XuH0ccaQNC$N4u7SxCGk);E5H;W?B#y<-zWIurY;SccVKY+!?%E*=>@A9p5)V~>Ojo%J;bdyF`+ z|416}_Kw3Yrw}G~=SD2I2cgr3t3>RN0BTk;nZ$VWK>?r8i9N=6lOqQfEkn`C+Y0nc zZ;|Q%P4e;u57*V^qY8TxG`{c#y_vTg_Az(o&MxNuv0WVG&sPYme{%)vLjojbvw(GI zGP~&$lAeuoP%oNC+^QF0Tge`V>V*fen52f5m1(0R241ow|| zY-WW*uZV9wK(|G@6m<8j|SkBolOF7_mY~HQo=j8hC^Z!A!;_`^X@c(>FFcU_E|hQ zo=U+Pwq+h#QQ5RZAlz_<%SCALsL$8Q2X?!rB!wQtpC8sn|N-v$L%{;*|ur9|x zta+$sSdE>JHZU>kUrEZBCB%kZ0X%yp+O*6XdN1cgJ68+1J)cR+`{6`VEJCPu=mpux z=mB1OGKb~4i7Mx1p~Aifn%kOzZ`2L(%@=@9Mqdc8rlH}%K=dxz4!zpJQ2%HQ_3ACB zJvXgE;l4V0%#^3CThgfRf?>FFlsw#gJ`Za;E5L2-2-ItqC0^du(3I(bS8Kh{-+DTJ zSsVcg)ALFFr-@V#G>D3f1<3#Yfa6hdntqNNg1jiwkfL;mj%r$kD!OaY|CB3c@W(^@ z@8dYt{;{m8v9^!C8nT=894`^J17$n^Eg{uv=C?7YTcF_&cR+0uS z1q(@g^&w&sQ%7#ExYB{gdLz*bGfBVR}3lF2GK$1NFK!U*_>pQKJ)cTQ%K z0dr5iMQ%EmK&^8$kxyPjI+cpi^{46Rv``GW8ZOYbghg3HgaziQFyw(BjDi(UEJSKa_TcD4e5(?Hk2=`x^gQdEwab=1;%nK|A z*S!-$WVmVm($q}Vi>q5sQMc^$MLEDx6gs1D>aehh|s?{D8 z#?GC>@Qgi(85P34y2Y3@Qv<*BrK6HK6N^&X4Yi{r$T`gsC|_fSxewN&q~aTn&X`JQ ziYg{718?%U$p+QlF?#QyBiMSqqkFF9!L)^^samcMwG4EI`Y$U8n>P;G<7PtTvgxp2 z^(7T3zTg~-aL4M09i(-S4nz(2h3s{+&|fy2AIaU zq5rEixNXVEGSSU&d+}tn`&|_lon3*g8yGII8irvy#;Cwi1iiU7!sZuNs6Q-*cxUdy z?p=j2)OsZvZe-#_MGC}uF>_AdMS-5L1T?P}k}F3PQKelGT8lLxr1T=y3J!!Ck_>H| z=i(iwHE378kGAjXrt&U~OtDRe7RU#~0#!!78VN7xbR)nJm1rQ?>jqfsB=;HYskUKL2`6DjS&9~N} z7we#p=0W(wWhgkk6oxF~LAy%RvGJ5@wvn(|hlyOw7-*N8D`aJ-VZmr)@cEsI0VnMzPf{IGqi{Uz z8s&#(2LeE4TmrP)nL*oW9Wr*T2O1j1)3#x9wB1+(EyT*;Y55!o{hW;+$raG+?+LBB zTzH_QgZsUdpv^XmaD8711&^6{#8okvb7>{=gHv0gdq)cNjPs{j8m+XqDTM6zJw@d&WeYFm@{knd z!5)KbXfzsyZVP@Vh6^RA>sEJ^`4WIGH;N#Kb(Ms1xX^ecg2QhbPtGJ7p}&g(Ht%Vo z*X^?Kjdc^1)Zvk3pK{@BRVk<$kD!mvM_|t}ZI~a)$DdjkA}das_*7h>yM1WCi_FHr zb5U^RD1&G07t#};2+e)wq<)tjuw+y?EjJz$v(hx;aq0;%E16DPAH1S2I??bTDjZZJ zq%clzJaARwgl)Qc(8c&8#&3y(+QgmcMpLo*=~gfk$;9?BePOSP0@<(oi3)PQklJ+z zh}fFnNmyAfv@BXkLZ0P7SV#q(Jk%2H9Qg1wb``SlsIYu~4dKmY@@md+5=M5{TN|AZR%fjEA|VxLKnJd4BsFOfF?n_Kspq2~-DuQW)&<;p0&?eXOxbq25ys z;O_V$(0Rb*RMc01&b53hy((cIfWbSB+vfxy*nqHE$fV+M?EI4_PjPg{0j?zHj z1(*tVCoDl7QxO^>Jsnh!?ncQwe#GVaEaYun$u`_$0d-x4(3e^O9TQ%Y@)Sp~k&z$? z-n*ehBMOyl<0$uo8SuSJi1P9%+-q5d=Qawkxh#^oKR7~H7?T=Svl4WI-xJo{C{D9w zB9rfsj-5uXc(bVtA4jb~o}&rS+iB#=Yb6ln7ScJ)9msO~ebO-XR~nO(4Q^o}(4(dX zYWwRrXFFrz=DEq(Atn#yVQ>9U=JDu9UF2o!^O=>t|3}HFu za?G<$P+>H4XDQy!;kGY@X?3H)Tf7+Ln7AoFi-kG&lhOagP^i7X18%wMpyE$?(DU{g zd8JlH1CNB$7Qa={a$T2pWm$sKGAnR02iUJzMaNH_1?^_HNzuwZG$huLd#PK|aK3X}PHgkf275&rkjMnL}@BA*ziJU@JBG*9l zPZC%cI1$8O{6u;evWP_ra~2-WglTD?Xs5>%B6-;v-nfOpB~-)Em51s3x0N{R)O@&< zZVyEl#sF)<1>K`#vY5QF*`$TkQOn6D(5Co=sy1AvJy*0K?U$jjw}{Eb{8)*1N;5Dl zCmGB-Cy}zsMQAp24Jt00!{k_P1K#6TlqFKfPO0T_5ol8XktSqiqg;Fvj-9Fk z9tXC=hVxZOU6+7WT?H0DjllL8TYC4}STMUcgXoQu77E5Q_rIDQL`x(P1bsYWW)J}$ zj4z?(%v;iA{G3K*>!K=%;Z~_)yyoPB3JBrG7P#(aiHQZJc9H)5Ip?&Jrfq==BO{-&F)9%PVkPK_NDKcoQYR1;pdIH4#^~ zgW&~R&}7Rka*4^alAKV?#N-7K;;#=8`*$<;{$#8RvV^>$C#lwj4`lYTc<4B*0;SRl z5Vb80`&u&5dvpbE`M|@KYVp`}FkZ;FRsu`sTwpC7D)fH)kr>oxpu^#pbj8{t?6GpC zm#YnMac&_fZ80X?*XGb7na5%E>eQzgq(S~DM+`nv4r1-|h=-j7aaxi^TgE8U>O0Ii zEG*?D?G}NZ#)S|Pl}K2(HnZiGS5a1gKani-f=_45(Ib92*oWw#x4;OMj>|ybv1fFt zjw{+293U;;87Q!Fr!lfTTyTSrfzjU3@kSp?%}PN|AqqY%i9pF+TcF^NQaGR&j9=~+ zK+EN1vTWL1=v$fsV&~R@+SDxas=4xd^727hz7s8*+Ug4?<^zBQH3R-McOcr2Kb4+~`}hw_*xa+MouFQO2C> zj~>zj%`DW)^nk2KZ|U2o<1mUNk9TJj6Bkucxc=CYiBme@2D@@}nvy_y>u)zS$2Cy? zG;?Zp{e{p&b`^?^D}#iQGr=-_DJtEXhTM~OR| zW9J;yk>-HRp(zmOnGLcvTzs)S9FOjq1mfm5$XVMg6x-86nhSeLiv2~-)kI0$&*a`n zPHhr)>M{8h83`okWfYV*Ery$^(fCq01kbbckc#XA`Skakomx{M$G3r;6^uoe_BFQN z&oenIhff3klPPpaDHpko*&Mg(b41M~mPGv;NBlcupk;U(N76YHSkjfWeaCU(&2UFt zDpG~7JV#*L#Sf%Obsn=fX%M!+8Oqbk2roIUVbW(s46}Sdq82E^hp|PdS5qzIsYnU+ zAEiRmZ&7sH@2TkIwu{uJji90%`$+YuVPuql0XpdwAvt%F=&jPA8(7LXw|)%vn%<=+ zjh)fV@11b%13kPnDUvj}XW-q`co?zGAKMl>fxc`B)f03zygjiTCC#PCbft9UvLmU~ zjU*B#2e47o8&mqqh^av+y6migFun@#+9pG#awc@@+@P}_C?I>X47}6Jg!U=o9JwRI zQE%B{j)dbjG}|0ZdW(K0EuYWO#_0>t$!vzua>IL)ux$+#vB!eK#d+8~X%cC5E`zQ& zkq|a5lZyVVg*WH(f%m1G-TvVtv6-7kQq%&d^sqFnixiN9lO&PFy+{t)8lqvzJ!&Yl zhI+L%Xt5;|$KOlBN|OSRUL%cWdmTx6jT+p#!O-g%AyOOCs738K*t0Vnl+J%5+qOny zThk1*WK|OB>@i>#W{w*rmtv!_9Ef=bLc47R<2z~;YUam5+T6?rXVvR;MEC(3{>q1{ zramC{%S&PTUU?{M)Q0gbRXEJ&G95Z!n~Gn~g~FebY0Sih5PQXdJlksm$+HQxZkbG9 zS=hq?yS*G6TgDdN;fj};T-2wknRp}%NVE)Hr0*b%T!DCM!km38{i0G@`Fvor} zRE%07{3R$@_fUc^F3G5ZueY8PW05@#UXQ=ft&3(tsDTIQnI0t4(>$?ir2usEcVf#_ zGdQ-r5FWXE;cACGU{{D@gWncV?4C?~HL;qc4$VH=I%=g`n&vWw8;#@4WxU+;0v#hAQ$#xXP6*2$QkPdcZXTifEiDcFe zCa?Y%2Xe1`Jj|SOm?({$-H>gXfx~wfV_`=RN6Z*NN}?FYebffQm0q%U_f|68EeCy7 z3qe$D2TrYy<5X>^K+5Qfy;#e8qT`5N6p+%BcrF6VC_FAwgJc%fv*?_meXQ z$#}PGEPD4;qIL+6T0C>XXD*dg?u;I6t$sk2>kkv>5ned-buLLsPlLV%j>OzgA8g;G zK(u-X)s0G`fx~q;N}@r+uVxXXbA<{VJ75m1(|1Ve-Zk`B#%H)pGJxZ^%MjnGvLUwc zGM)N<9y%v4hY_<2smuLhusvst@3$rZWEVkqaF+1a4OOgJngLUC4dLp{BK+z8O00L= zjl{l?n7I{mPTk>=(qe&U21nVp$8>n}?V; zkTEed{=_)UW%342G5U6TNgOy!pW^IDor#u7e(?Fm{RZLrczP&sx^VoMB%Iuli3#jv zsG!4WyWAvjxr?;@jtB_Hy1>lmd^m|g;9q`AxOc)_hR{v?aRW7?#G8TsW{zj6FQovH2x${W;PN$B% zO2s7B5iMah?s8iWW}2cf&Ecl-dSxUHahQg^dGlf0st5F?Pzjz|^wL9Ox5)agMbtgw zC}&j8Qz8&ufp;=|aE9b|np2$$bH3!kP?5#7<_QPaZOMRr5+5lI48@|cvFJQ>4}B1u z4%c!P2_HW2z@T_OMl7mCX(oTnFgqRUtDa-GJ$WE4 zApxrne{Q(iI2}!2Z^f99m*nMTaTNEe24%AjTD)!(xbMnEyrJCtz*q8y*6ZTW(_0!PC!H-<= zIYtle>m*H^&eLV)Ode_LZ0d5T3NEkKhfe{c;mhMSaD7D#Xn(rP8GR}n?eYWY{E3T& zi9UdJtIa|5;5xYPaj_xAIFn|iT_n0M9pFa2EIE221D&R_;H`NciZ;#%@ddkqy>O=R zLS`7=-bU$~sw}*3%14=(HZVVkhs%#VBDUQ;Xj(FbW@KKaj)h4?^5kbSHfjizxKwiX zM5f>`H!d}>^QYjc^f9pekJVUoejP|Vi4&FkyNUM4_d9hc68F=DqgXxqoK8aQNTX9%HH596s;!URQ`E4Jvvr!T!zaCD1?evGm zhFQV~ZrM2XK?NRLEsbjwR*|B0(nQ8R7P%0E>vA7)5*te4am7zKOqx%$FN~sdnwDef zrc78Bk&U;$h+^=C7v$6A(YW8Fi71qL(p)(v-p308HswH>LnZbZ zgu;IL9rV$ye9pwyEIb^WcHCrsC|Ovah6iL$Qtv6%I7LsNc-PGmx-;>DSsNBmrEw0h z{Zt|x-F}kj%l%6BT=fBsI&+Rg*b?Y4-AA|FT1Ho>2GaG9#=u(#YqCQ(0p-TB>C(B! z$uU7HyjMCX-150<3E7}583@XG_k^R&i#fj*=Aa_$Avv;f z2PFz~$a*xZyLJN-F(A z0*l#jZc`^!&CUeV-3kUaf{R zn-Pr#{ z(Rqer`Mz;n%V-*;LjE3nH^M{8p6H?g`#e-ss>5}G+p($d0|`^eBWg2ZVKlUuRPraozrtW;l2XrD#gHAr3-m@cOr^8xcDshqQD^Y^^PM!o9bMwr|<=uy2`S)Mc!>AH&PkbhllRVIJWyW-Wt}G8`y7iuBRQ66`%S4bD}D z!q=CJDd`GCZhIZb+SuSaZ+W;p;ELjMKgfbYUASoSo2-=9fn`;TIB{N=NUt)I{4Oo% zb&a6aQPn7Mg=J$a9gt_!H+oJn1|%y&+NZko;O?;-43idz#Y;Gdj#cQ~@Pnw@&&G9U z{*pK|b>JxJ;`3+8Wbb)4eK*R%SzC+9G~@SVpnEaiabw_u!)Gd1*h`Ow<#6Y$oI^Z{ zw!lc*O`>(!1b4W^;nc`<8TJtFZf3G4sL{xKR=Vd`|N0fktq!N z*OEzr889GLMfI!rNw29i^!|~<_dUDeBgokWS z8s1V#x+8?()!$8EHkpF)$Nw@v#&+W>d39oVH;N98#ZWk022qn%nDp`xXm|3V^3`l6 z_puo6W4ju%ofqhYnmbkt<+10u{V+4R9ug#rVT*<=&Rix9rVqksd%hKP_uZ%47Odu) z<=h}DjUpH$GD3K5!a?L~6)X=`gpo#Xly*9Z%lev0VOIiZs4b?BS#`MH=P+zs!Onq4 z)!?j5B|MquP7Lc3!Lm}7eDkh_GT$&rxqFtemkq$zfs<5L<~prrzcX#_aik!2Ib@9_ z;GVxxaQ$vN_Glg$-xk7aQ?WQ98HHY#vdJ9PpG4Yz0~!UV!H7;6 z_NzRli`iMI)>sY*`#3?raxEk!%0p^?D*U?dMkUs4!IWhgApOUV&em@yXCo}h#vg`U z;GGU`E0bYA%OC7oG)T6YmcY-Ie&A^Gh|Ik>L>_)Cg`gQ%$d(HS(QijBX0Cim&&dgs zS<*RRU3QFF{^P)UY90;?bl1U&2_;B-!sdGWn?ciSFRHK|<~4#zP*rAv**wMM)9E_I z1-2j{pn-QDui-q2RfZ;$bU5g>g6)AIU0|e%rBeowG24rb_@sdX6#(s|L9*oe6)O6& zl)E%dkc6y?g@WYWU~FXq z(`+Y++nXjLKO9eP&E>B&O~MS@j_u)gOs+ zYvYgM?XUIZ@xFdKx+k6+_{0jQebvT=oBQaEKRUp_qX^oYtJ{<7mygrLP}WV3Yb*9Mazo-^jhT;ZuGn;kyBUO&udg zR`^4o!%m29^+VUua1?L!fc8y$k#4w0jGc18E=LL;eU66USJ8C2LKNuq5R7iMhXYjs z*yQ904J#gTt^NuU)j|h)TtJ8GlqXHQU5em(Q8M&D-OX$X5~YPl(#g`4G}L&~MZd9K z{3GY>VQFRpX8+|97ge^Cw^0x-Z@ta+iiiQRsN-P0Y=j85usrZ3c7`@H0zz3n{9SYn zaNfp3p;Ic(Z-|BTs>@WIFOOXMnSkp)6`<(%F#7G?Av_y+mR9j>fap&V*r6VPTVABX zn!PHR+Ao5VlFzgl+kkb^ABsd;I}s^#81TnoV|^i-Xrl~9GrmDp0vEXmW**lIdA3VJwPz;CS><9Ylz__m z3v|!S`S5Gpy1hnuHVpbX(!C@Rf4W%FriZ22J|hcm2rdWT@&ef4DhKoLt|3qCZ19M# z8#=xBfyBxfYCpCP1iR^Bg|J9+N>_(Uzz1XHx{>9?(|NbSao%!_ zku$=|C|z87y^zf3Wiz$6Gw|nGHX|v!N(4UYk&{xnM0s>66xOqM&(ajqyHppat_tJ7 zB0Jbs(M4pQ4>7sdR-?hC7xeFmV#-x9!;f51PT{|qptUTSit(1y<@I84YuE{-mnz}2 zXPc?(G|Jf?cm$(1DG_6n6yocj2x*gliCfP}c7F4gRGaUH(8ft3`8gX8N*d#w8-1jj zRKlJU_eg-m5KqJ;ept~gkpDAUc_YW@+@u)%9wnWOw zs{r0Zaismx8vO6DE~-VcGq!6Y*zEk9x;)i}Nijn_)HfGaty>Hnp&~eY>k-jgeGIrd zu0*Xd6q}!j;#am4P&=!av){rATg)=iXt5rW1?-vbR|&Z_-3-2+_)G3&C&R5Z3@I}T z0HqFbc<|^Beb&LwM>ZRwZVUi3%h7VJJFePWi97E+C%<2YqT<`@ zwDE}*S!j9~RNUu6(z8;?J>Ep>GZOH(&tGc%s2Z~BU(@rKY{22aNRX1~BuiBvQg4Q)?XOo4hW&z)gv%EZ2{PARVQN3o~X8YAzbH}5EnfOaNAk|Wfoen zcqj(6?BXH#yeO*Z$5T11WR7$BF!kRh!rU=sT`LV3ug(uL50n_U@}tPNeVp6#comN1 z8PLa8VR)WbjlNf{fLBK5&@&cGat4&)p?U;YdEeGq+$0Qs3^-R&Ztqh0%Tp`{4IaK*qKUGuL!-u+wRJ3&uh+0O$*y9CwLc$7; zemjVcrkfx*!Hrh>XOed@AzT4HRm#DQm=L)dUpttfl=^ba)h)*K3ljvzZZh4LQE0H> z4m~G5kGx4*gtdo7NRLG`)&G?TrXl=bQCQCmXyj8rmIq!sw-((e9+G7PYQPtj4R>dW zlFy#e#KYbIJb15B&-cHHK94S}4(=dE+WGK(n+M$A-1-i5z0b^fc5b5YBr>8mIt+SWhi#1j08NCCZ7)oaTVD-N%gBRhPUZL zvrPg09Pfqgo%MJ!C>;7684P>r0MZwO;iOR!q?}5{sJHQW^nM`~RFR}7SL8r`0iM@! zu7ceGFNvf1B_=CR3Epdd;BXaBF(ZrK5k^K3r5r!dm5nRtq^2_o3i(ZxHr!)W|J0%c z>(toKx&v;nRK?9*mC$%T7uRe{MZq(vc;jF@xp8|tk@(b40^>VrTXQVoh z1HENI5Tnab*4;G(k$ZEg zR?ZgsxWy3%T8cU6_Ae*=#E|)%nv4nLD$N>Si~c#hXgQFNvSac%y?Y&gce_mwAMwKz z3wR;Z+60!p`#_sU%`xFh4lGj0;I7un#f@;SXJ zzl3ZnYk>icEn7`WiWSKIakJtv&8yd;;Y!e)nZ6+~V z;<#|-+_sdJm2f%oJu#d2Q`?%%L;0O4B;bQHep-8tR@&}?IzLOy*%*%geQLNPAQ6iU z*>mmdBnFNa)5%0<{HSDu&_2L~+Q;CuXen;&xpCs1=1kwHWa8(R9pFx*@#$D3Sj@i9 zy}Q8xa!T*h-M{1U?($ghjxNEnKfCBfqxoRhSwr}01wr-aVzj!K0vgwrz~($}kk#D@ zM^inJXK^X!)i=;s88`SnU4SVysD%}?QgDl#B1V2(jL!FY!DCef9eWW88e>WD@kTUQ zB(0~HD~z#YlPaEdxl2L^&GFFAdicTKm%8T7fi?~Yju|cFQfFIK7LEqZ6Vu3T`$)78 z$RG{f$#|(ficZa%2EHj7XjT$S^J9MymrHD={NEIr#aG$xIGTlVTRre}aUPhn&)-M- z{Pb70Axt~tMHq_|tZci^k<>OKMzPC)%Q7PS&&pwNPayfX#S|Vo+M(Fx?WEy;2U$0m z1M;@Iq*d1z+?;37>Jd|D*Uv^FI}`9xI0o?v-Vp0o3~?XrVCa(@2>cSD8IO2T`o=c$ zXwaJ`71q-r!`no9=r5_Q(`GXq0g^kpj$ZbzBWzwtljdc^3{uVw)JVX+x9#ZE69@2r zQAK7RP{ppbflM-G`*FkBxUqZ&P3Nc~!)6QXdE?0)g)9(Ntw*6tS$L#1g|qfw3Djs@ zq3-etI8}EHG^=G%@4zQUKGuNy&OMjhdR&UhGdf81R1Y0<{Z0Dw)KK-wDej*={%|!R zl}w44lTE+6wMWgpFzMSp?(W$+ctuwZ1I71&yxga@B|P8AR04Z<9%TDO>?3@i2kRKz z%ARlDzNeq1AJ8uyMxcB{7}u`2z?C>_fb~re3BOPcG2aNZgY7kHDDB3Rx31AManX3T z`!5|7aDk6mCd7ZE9&lMVh&CcLjf@zc9d*W>4h^n0rsIfcSgJ*dh=^;h* zXsm@slN{Jx9KbrzcC!4JEIs&06@PEgLIvJ?q)cWfPJbK;lT8W8AL~Vm3K{erc}Hv? zY+>1q`NSs63c*V4>r5xXbZ?fjxHE5hDkEOEYk4f@LEIJ4nnVz$do*r^@!I z1ovE~`^xUJ&P5U0Y*q|;@_=)B{h*b-pU4|ZB2Q{I3UXM#QRyEhO)3>iWIvEM=l&40 z!c=_vSBUAqWC1hZ-={nkE{t<>7*tpRw@F@y>IN0FeEdV2wTNY^okh52aeql*MFJ^s zZY5#f#cX#Y27L?IGw6pJcruISsQnPkuO@fBt{se6_2t#uAkh28*I;~d?873^#YFrf}nW97Ekmt( zkx%J_ejDlUUJab-JFr095;V?Lp|6n+WL#vkq%F~);Sfjr$~pw9HxWzhq<&H2I+{KEIf@4XVhEI68Up}*z5I_ zsAmTdRr3oZ&@qPOe=Nd~Y%MJ3v&E+Q+R#$J7AHZ@{@Uka!{qty7~4(MOi#YC)a;s|yskiT~A)WIwZHuV5J-(3k8X1*ugc`wLQ z0U0jOi?8i!P9@knAp@!|Z0Gc064&sFDAZ3#5?_f})V;0&M_aO?YuAnTH;J>s**=BQ zvdx00tXE;no=7Zul#C~~B!h1AJPgbEN$f=*(}OR@Nr+-J9;AaLquLazFR8%I`dZX{ zR)@y)7U``hBn{IP@x+g}bbP#psh4m9nZFqzdSxMAy627=GSA4LVO6yJ{FU*w<|F;p z9xz_lMgO>~qVIbb;O&TluVeAh$a9i*S1Dt}0GFA$)*A#@YoZN1OY@;dm~_M%eLY^2 ziW8f-6*JPodHM%Z=NW-bm7lp9K}pae*+x>*vPszOQuJuJOe`^is=jX`PxDz$voRiR z=2(EQaSt9(rF9+x*y_3v`c9bPg}l2Y zLjGWTSEDHRke&lp-$+89giy*3Ij*scWyrT_)MhLb?HXEe5ZGmcj`kPOm8B-eza$}JIms#8cSPX0%p zq|AVcoF1g{CgI4=u4>KOqmyOQv( zdn9=MlEpin0$6fE5G*`)VZ^yL?GKz~sI7c7s?M{Atd3dW8`4jgpV$WpJ;CTO&kjrC zHQ~zZ8tmUGLppe~U}jk?T&bA>RWuP4_)n3h%5f57`+(%od$jdp1bVc6AfwBw@M-lb zhG$>)g^rc+sGInyz4by8yb+NhRSoI5X~7fXoZ?AdA7eRE-RW#j(oHYTs;5_t4`WQ} zD!A}moMyZ~PV9c|!`7;$pi~|Y-y05s>w#!|u+SPN`c=vI=eZzww~?Ds=TBFNI$`yl zEbz6xMV_?#;D}NJO_8`u`bLW(=V%TgUna=Rg9#`ovl)1OIk;up42-a?hyJ@^5vo!{)&0xITpSspM5s zGq$t&uv`=K*behpX$d^|!FC`?LA&z3R=QlT8hK{taRL+c@Glb&3maJvM)+DXe#@N5 z84Oc7MgWY%LukjXt8|GMFYCbw$CMRbP*Hk@Osq2`6-&R9?pJf5=}9v)Pd*dFtXyC- zd$;kN9gqE4x0%1ef?#)$55q!vF=4(9{hLt)iLduzlf^E0GZ2GMMg=>1?GyiX@FTXbOkW zIj1YwZkq<{Oo#v7mY{tGIhY$LaN9UTE?#ry83M!$HA$(7)sd85!&*^NoOghAiUjP$_{O z0paj}C(`(^0P*iN`HO&$A-3`zVoGkhmpiM{MR z>p|UbqI+pS*G%vzNd23jt(r*r8KlGO5)cp!*BDZ;nU8g zpe3He^4SN_{;eeRS{#GF9x-_8&oSt}P=_sBYCy{`7UUen!9VOjHoJ3#cM{3aa>yNw z>+5lSUOXOD%>w66wwIH71nw4BK}3r=$NAI(+GH}t91Qn{`hYgFriJw-c4R`v)+=QF z^I)vV6Ql*X((vHrax!q>CcPG)f#hE|aXw)~t_M5gBgY8T_!&*h9;SheO#qY76#yE) zIPkHNb(QS&BTHlJu_Ij^`S&IOzG8bki<85x8AgJ#O z;@5WLG_O2d%a@H2^#n>JrfBW47(CJakMye4V${63u)O*^C4N82YsFf&-}Z}hwp0dp z1M6&5SVD)3bwuPm5vwpeFFw zcI!50z(b$^Xn{g8j%Vml>#H~EnxGwM{CPY5&d)lmMD8-1@}|Rut){SLe;)FzZ_(yC z_MA%>?O|QeIS^)^MtJs1w5v<7oc$ebP+^@T8m%_){b~_}_?NMKmk#V39;SV9>p@3M z7&g(R;B2ymc{k#O_LZZ=*IfW2@}4ramszg-`xN7><3@JOGr&FfKhXMddGxgzC(jL2 zLGo%C9Bzz7%c{-b>v@n=RG2WnTh21)mquW{hc0oJu_l&BkWQaueJ`${C<~FN-9uQD8hCt;f;CSeR7NLVN3VV3lD^u8S+7+H_mez$&~~Is!dw zXooMV7jd^33DWt>A&~ct<=!uq5`X4c|iNwU$rAY0WYycE}7>*1RIOU)MoGLN18w z*Wmd51d4f1WX^0OoJNY!sCOoORXU2#Z!LlBs!Sij^bE7zYfla#IfvUC(Wyi1w9c1 zkYar~?=*QyPEk3%{mz~QvG=Y{{dms01z+itSQ+rH`AGhwE8vc|1rBL@;`_m9Ob#>y zz3dQX!2&@rkev;T$Tpx&T4cpaEvOC#mT~_|sysRPD*GZSi%(%z%&Di@4LY!2hf4$Q z2e26r!G^z2s7~T7?TbGp;b65GYFxGf4;OPNI3Wv{vy|{aQ4N{;FBu=LNyU_;gXkZs z4qKhANs!1j?lXrl3=y}dQ4c+-lfD`LHE@O}`_7Q$l$lWAznRp99OEvwPzRkykvMC| z4jliz2d_HJh{eg-wV-)FlPKM8qyx({V6gK%Qy6EDLfz}Z;QSxvuc;zr zgk|8~wmAAGwtzc-*cwm!^)Q(d>yf{HKF)un4bgWCL43x3Cg$V@@Y7`ZBlbSrZoC_A z4+zm`PI2_1q6FR(7ht)5HqRC{foC$QFsu-ZUEPVKsG$yTpLK;tiOo!a$4smZ4}$l7 z)@V_2o17~crB>_2I4zqUu>O24zBevMk?Zb^D0^Q&(0l+cdFN4|^I0gjB?y$$CrCu) zASJU3$!DJ#;6HJfPFmNq;f)yx^5!ugRmxFXI0oO0Ue&(+_zCHVHOGr#p|G?xmb*eJ z8XneYqM!CHQZl!J_+;9mxK$qb&5nYr4g0vR{wzDaMGV?MvVPX_v(zN40#=_d#qHv= zK{)w7UG_8vP6?~v)GaqG41CHhH%!99-F#$KrX<8CUSqDDS%{xgTG>uf42~q*l6I9e z2-tgzycQN^V)D(H!U6XE7Igs3ZDTo%wkdQ)uo zWpFM@&XPq_;|;K1wT(F5*#tGX88o`|sQ&pwX!InB)^DtUp=x`4s}lp+f6f!P(KtN# zCZ3&*$zlxaFx3s}WPOGW-W?IZVN<#A%q59sp95*kt?>7t=j(3)mI zzbPN50xm+_(`7km|7ry&vn;}gbMHv@7ehilvtZsoWpsFT48NF-t#8ME&c0vlEF$DH zndm9Oj9YT(bznL=e7D5P@Kk7!sYZLjW|DsB4z)QROFGznym~I)(5s}U zmpEf~%gy#lma}CdLde_S(s=#(JNo6xQL-!bBiXpK0PJM1akEXL@%MCnGTZwk_pnYq z4)jN`{`jNNG;)bq?Nxy@#G`0SH!|d^6XcEN;JX`z)MCXmPR5HkdOhtNiE>ZozRB)j zmYpyH0na0_Q+zW7PS)ekUe*n@v5XlQ4?+oeMR$JA2E*V(U@N*41~8h2{41lw|6Qi3 z^^55F!*eNb#{n=ky+^n8K5Xw$JfxA45pdP0l66tBjQNH(vX136Y7`fOYEm42Xtp47f2TwDZJsoNp>*zaS~Q3o3LHZ2u!P!01j7%sm)h` z@Ra#Ded{(@Vt5$N%~}hB(`S%&nL(;ke4D6cO3wPqe1#F*ipLF}`iUGQ;?hdCvA`hUji+cuH&i_O-t{Ym5N+A+p zV(yIg>7gX)o)_FW_Ktk)HHT~E$yoSK3amGjz`VJi$huGgd}X7-o)K*E<`C=WpQQok zIuBq=`ET}ae~G9bV7<4$qtRD3l6*dG0-NkuznAJ!dXhgL|5R$h^Sz^_a>GJ6?=VTG zTwjvQ>c`u6`Psqmzt4zB%?3Dn#vP+a&TzXO$Laig8r1atBj$daGH8r9Go6y6z#6n_Xj@QT!)j3AevnP3~=4dSVO7z?!c*jXy;DYt(@!;=nU=Za|Xzr30I z???v5Uu>a~L+Ws>{wEn*pF+2pRg#7k`_Rx*6&8;>!R{3H`IViA+xJ(K1;%SYtKy2fF%FHPii15;RtOGXn#)u%5>nT;6VmGcgH7=2kZH$vH9CI!m#5 zAQ2w5-=L*zZ)ily0B&jr00#SDGW(vKIjMt^7IScp!$UH)GZ~e8bxj?m*D zv`}-{j{MxZ9(LCjGD0jYcx`GiwD(qkBKtYNmaU~9{yyT~aL~u@9C7e&oR1gAQb5yH z1%tmx;jG|u@VdK)9+#K_Evu`^?uSu0XOt~|*_oAh zs3%lPnS)D!CkXAofG2l-Ca)rd$zqKkRNm?|Wtk5V8$@p>l zLg4MaPO4uT!@acSH0+Bqr1u0eeS&N7^p3AYdUPW;pVDNz94T-fGO%oY4IFPQV>DO! zpqO9{iDNl4?<>~$HFhf&KTg570)3!%!v}*6ma$n-9Yk=1iGaseV)Y;!99Bis0b3j9 zl#vZc6=h-C7%vIgtb%IY%du~vB)8zdE(oa%q#dHt_|ql@I+Ciec&{4XSh1I7-m~xo z&jLL5$QO7YE`~{|Z1@;(iaza7L1Dc=WRd6*$oVw~oOw^d_nC`9?I%O>%hdqpZJsXI@Y+0= zs;%iHalLaeX31UR>V5(E({=&pK_XmDm4t28hoE3=DPA&0(wDY{hz_&8z2kYbx>k(} zKN7^c%O}xPE&vwXVmtS}NF1d+;PUt$nmKTjOygSOcB>5d-8~I9trsUVjf>%07!UGk z6>%@x4`KR7XVmnqf>e*^G-hmq{M#x9Ygk`yn7|5n!0xBw4bFssT@o8H7^2a<`csSeu(NhWy33EXEhx6*S_T#d)P=%{*^2yz}nlxH7~i9F`K zYtToxabfrpbez`B%tp6_8?eAFn@VWj#)Av<;o`MwTJxZiY}m#!NE?P|+TIQ*nO93* zWUirmU7ldjmeg=L`WjLQ{ZWh3QUxi;!Sf$-10V=d@G2A7rS(!U;ZY& zefvD@eZK>(1>>l^%XXUU=uXAwd?5*edx?pX6t%eEfCrw;BpZJgGh5@Y zA~0PRZg`b}gKao-R)(F=na{!QvUcX9lObfU$b(AIR3FU5X#ZET+_LFkM%fp3m z)Zi4p(^UYWiZLdi%^MO!?T~q%M;eO{V{p_I^>EL}7|#wYxhM_`WAx#u>v41}>Y_!z zS#oj`W-_~Q3S?cPJu7`3}I@YA-1ev1-CwGgQ%St zD)h9$W9j7(cl;^mj(9vSI#|V7H&jnQ`8i_KlEoO?#tXAIgwWk__u$lGF|=N}245E% zkl!y>V4e&Q+)}Z{1vL{iF{=+82W#+G{dGEYSrXF)r%0vcXZ#}&g*vT+uvE_;jM|=) z7d>}qZ@I6wW(WiI-($diayBw{Qs_Q<4xjqBK>dF{5U~C=F?s1o2b`v{=L-{vp3{zU zHlCorRgwBXPKK%fxDY(^82%fr$E_EQpqsja>*;uSzas|pw|8)KKWjkhXbZFJ`vcZ1 zQbXpcTY*N88C}r(gS%f)1#)uR@b}ml*YcAXm$#`ISYrde+&;loiYx$|TYBIS{*IiO zy^GObc90sBunz8*cj*ipOJLYtMT=ceK~?%M+WQc2c9RfdgJvOUIC=#5*!jfM2Q_Hnq=<#F*GOw(HL6G`V(_}zc=YTR%$FFXYJXJl zRKptBa7!C_wa;K}<4txSKr9509LDEP8IZ5>0&nb=Brg6(>E(U<;alJf5E%>t>F*lg zef|U%+2oPnqXsy?ssv_S;)1ue6~0Pt!9&+B(}cT4DS`(2hfi~Qz%uU+-Pe5_=UmqZ*As1ItGpt8CzS=cku{7;{SYJbmOY<_^U^nE zyP#Deg%+EcV)D*lY^Yy=GgtrNEKv)?{do@DQ^WP39QC7pw%G+>#`dG~VKpcy(F5Dh ziS!?1MPAGvBh~>IQ7z~nxplsgT6nQ8CQ&82v?dOXLnBx^?lSvqeY?3}k3>cS~gu^=CoXjhWnQ5oiXg&MP?uY<1s=m*aVRN!S~F7{8d z=Y&WJa1J&lIaj4IPb3llY^uR!w6Oi@>_p6WNPxK~4KalqjXkReiNjG(5bkV)$cXD? zua_jwiY@@v>tp1d{5g#82*4$0V@c@vGV)`YA8eo-VB4XWM7*>b#Ee-+=#3tp4ow2y z`c-&ZOOc)NmO;h5+1PVQlh(erC1WEhpt5KdwTnN)oU?dHV#dmeWMIH|M5Hw)SqQ{bi5>5F0)X~ zKnR@fsNpv+L3&U42dyZH#lT0Dd;OUVG+$-UO|J`p21bLuRwV5mKf^5S5k~##b+BMW z2lFzdsbk*}TyABLGbE>B>zUI?hewz*etPIE&U*E~e5QP-6d9*2YVfb&DUAx<4LQZ0 z$bD0aj~g`c!Q2VX-ZR0_WVsz~TC#WEqe)o5JB`-#C&Tf@m(k|ACK=F90Y&Ydc*SD? zOqAK3L{SzPGn)siLgLV>B?+3ltI>CDFn8LlOltg%7hbhKBVJnhbZ_5w$QbKD)t%?b z#)F5UY{HaIg{Ncaa|=*u{J=DRNx-7y3NUW+rSacSg3#-38WUYYeow~0c1=h6=!ZQu zH%@{XwY(4(uZgnWz2xQ@f0W!~0=ImGsMFag?slCra%ZTIYyT*PwhV5=#e)?@kmX}# z{**(0rvaFF%%a}mPUQO+A?mS%0DpxdSS9kq-DPE@^7DuF(lge;*m)NytjmF*QI-L8 z<73bGYOq785u3g>VBYPkbkm#ljGjymyvZzsAmhU@tdau`17+GD0$CT}i9g&=%FX1r z&?eZU!wVdXtJJ?Y89WPHsl&t~6#3&uG?Mp0YGXFkKF)@W2WRQ~*d~0F6opcogXvyH zmQ!Nq4fk0d{-KTr2GBxa)M9b)g$+&yS>ggMUwW`pf%U=chD);!vCsN5 z@R>gjk>yebn(LwYG}{sXa2gg{N20K?G|QNJ(TxecwC~t^`j<%{iRnLR5_#x zzH5=!E1fE^Ea}9XvvB0oI>@z-gZs}6s2lNthRq?6T~~y9b2CB3$rP`SNzsT@2S^jH zhmZrA)TEIi<}+eA7R5EVNi-ciCIw)DP8oZy_QxodEIORxi!X(pNt*3@qF+4(lzSf~4e9HLW`2cjuU5cBtykWxTJ2TKJ1_1_w(B3sb#&<7-eK!24 zpAiAy8#luUdj>hSQVP+jn$2iy;kutPe*5{6d-Z%A*}tm^&%8K*`JZQzzT-SpIVlF_ zE@j>EWOX5^|LLKv?w_dq%8z7< z*9vb4q{F_~d>CSAN2QDlxw|iRSAO2FROXQ9}<|_S71SX15b-?@chhyBJhP z0rp=^!5fiUkefj1hJ@=-@96=)=50jLxrP`X4#xV~=g93<(GV(=!Kq}ksfs~IoW|bJ z|G7p$p3Ng>6hy&dW-GPSS%z-ItBIhV2fl9qN>^>|=623b!(>|8KJR%sx5uji>h>n% z-QJT}I&+*xJD*@VpmUCAQAAv%zjTr3AIwM0{=|^W*IGJ{Xw*N(H5ETyb z{u!__Wdm%eT8v+I)zSxbd{`{Q?ru}g#s%*a;e$vF{#Gr5@KO$P6*KVppD|`eU_Y&O zO2d6wxv0OPns{%!$LLqhpo&`!;PHeN{P-h^w@cb%7MRbO1OyU&aV&U%WJj z-FH}11x;+OD6>L`4tLIFGNek;m3^n*jLC$QSseJFuLx#L0sI}~XXXAk=qKNI3Qau6$=+yJ zP?ar*T|Bbz{a6rmn77cchGOK6br75?D~5woN;oU;5Lmy;#c4z7Xv+2;wXF)lQ~EHS z`JoAY#I``T?oDcQYBs$32UPU|l0~`lu+C2#Rm0f#R@WZ#`-TyoOLrnK#&=*(d?^n7 zu!6w8P-G7I(#0B4+^^y;U8;tdH(<%ARl!5z)} z9}MuhDPnRTv*V`kNa|L11*%=3;^@t+{B|B0dP_a{tf&=0yGq!iQ)T4~#Sc`_*+ z)%MgT5$B1ngnV`v=+I*m@RUtNZ+5T3^1SyXKO&XB-CqGG{$+FXlC$x#su6yk(4*OD zPszmdI9PgjkjWY_g|6jkTt}lJ(mQ7%`)*99p2jv<;(P#pF1pM-?0iK6g7Yy$&x&3n zf^hy?CRT=SB|o1SL%_)xFf#i_!=IU9EU|LyU5&!qSpjfk+efPZ-49|q7jmahnt|WqNQ}Riz~*xC*XByN zrkJvg8vL%QrWZkLhA`_l5qV6QC$#4E%UnQk!4z> zT-F(DW$fYH{A^GeFw)leDuK?i3}#KsM=_z>D62(~xMPtRTy_|x z*Z6>hkS17V#?rYu?vQ%O7-F)I;oAn9chHZTF$|;=_3O^h|UM z3WYyL3h+193a4Kw2bV+>nDt^0-iqVLD9^2A?Hlg;OTmZXcU&hixN?t5mPBCx=qjAU z&RSNzWOsF!$J1SNJi-6eOR6r+?ssT)r?VE`CFO@|xLM6xU{+iLkzjWhuQd{YBorS0$9yW>f{uzg)TdvC%GRYpbz}{M{P>SP){<#I@<;)<9k<5b z$T4;&P8s@Yl!BbJ4{k1sfCss&X%~Ax*=~BB2Ay1j+;jPG;aUzkRlO(ZW!>LB4JF2L%#DOzdSB1g?Kgqo(d*Gcu%Q!}VBo(%6 zu-aT6N?LfKWp*q%{!(Bd1Ngy{>Y5+AQ{kluqRX?`sE~{mB9X3!@=@qF!5k$NaXvp8IfDVk#6b zip8*v<#>>sCZg~7iPQ^gj5=J4;W-H`2dhrr7bW4pn|sijn@F861d=lwWQgkJYxGL| z7bfq8F`Y{LM7-Rdk&47fSW<5aUlUmtNi+|ht_p%L9&C3?S`)7rtV8P$KKS(WZ@Oqx zFxj`m1uwFmRc2oh%ITD{T=#T1HWoy1^L%ICkXLM%r zSkPEK6XqBy!^|u531JKv3o+(lmdK&1OElSRDhnP7jYIoQrWh%|k{6gfy*(u$0?L%# ziDU@N2T>1V{7s!4viC>7udVdYo+?PZ5Ce79acIfTeJPD{>VC0;eOI}{9&J}hGH0nLbs_p{NI05kIA_vN=vcO_&B`?^j22$!x zWbK;@w0Kd(Wv4SX!{kI1%)LZ|$1?`}f9p8$V~x~odK?(`Zikj*>1fwIhwOU48z(%B zMUP~0e6=(c%dTjF%NakSYEceKU!(EklS91loj=qf`vb95OQ4bAW9g|7=7`uf$@C?c z2JTZjm^ZkODomAUxd<^VSIxphZ{o%(PrApwfhcA;VWRZ_QPCf*GwK|}rZ z*nB=2b_E@R)eZA;b7(Aaf1JP@NoAq@OG^~l8O|7JCy0+^7W~-A93h7oo7?;p6-g2# zw~Vino*BofdsZ~bQ94B&TDG7BY9cjq#Iurtcyj%6{I;ST#Xc=Si**j*kZOWIO2%Pr zj2Rg*&_{{yhd^q>8DdfHM~CZ_$%ej-*vsxNv-3@{;D!>*pN0TGT8(S_-_e2gB08`# zotAXRL*DoMG^O@Gv}+e8^tul?s3CR#z7TfbVtm6-(WJ1+88c+IkR^UuxVWQ^el(Dx z0$RQ%8P?sTM9l;XEaIWe{WgC~em7(V)oyiG(H;T8E)jQ9NTE>QJdWRm@$K3Sx$U ztNM1sK*e{yv!3mpj}`I8A#dw|W5 zJ1VK6!!|g$I2)DXQt3+P@t{;RhTk(Q8m`hvI9*+gwHJKolEYPug*+J*mWM(1hDCVi zVKmG*bpZE#-VM!8V_Fo}hOSVvrqEfo} zv?=I&)bkf_IHBFEt7MPD6FQ(GMDN^ZUZ;Sg{M$nouuW?k&R-saQrvtikKd)9R?!%+DGZxEMN#arG2>OnwNDvW122Di5ce@R=*zJ$$fb8S5IiCX zwVA!dEBqRXG>E~ExfN(Udytr|l!mtL2CxSs@K|#RRCj8D{`FGo<=_ZT3ueHDcd^*^ zaW4edC_$(CDLS{r2i=>qIR&8`WLR=Ci42s2U)={GQ7j)*HtT`EGJyS#u~@`1qQi~x zba-Vl|M^!Wn%mmr-=Bp5V(gxEKOOuIuETrTMUbX0j_3rM`wF*;lp&kKmMZdZXdR-YaZqDL0uw4Vh~JB4+f_AMp@oy(zjV<~p}t%2Gi zCDL5NfzN;m+C&}#3(v8{WA0U|Gj0V~=p^y}%Ej&O>`V`h*ga~KK`MM zDHEH>lzy9D3K~O>cs;%8RRz`!e|f#Bzxnb1ZGfVq7C2MHkv+zl7i7L1W}F(~ zw^o+ItS@DZL!n4^&oiKUH)C=7f^+m?i8?HD7KGt76X3;-Wc1j)50Y9#;g$9>ytjBS zXYIEZKPH!frf@Q2{5&ScSJmjZu;ctKB^!)aufpe#qsh75-e4xqyslXZyb8OA1?3%r z%guq9l4OFN+e~mmt1`^)|70>w`w+N|q!Rn22x>RC3T>9ZCvCyENJd;e*(a6*S3FCXZx`nie-~RUwhhC6Y5|SSHF*8DIF&v- z8C2cH@lQ%MZ2CMMJ)Vcb49}_H=2nW2MYq#KR#tfC!8#Ny-i-^lmBTfm%VewJ0XTl% z42={Rulm7CtP|bYuJt1Tm3L@^n2-QG$PU9DU)gS7fpIf8`rzP3J3fErZdj%B#q_6r zK1Ov+#`2#mf3Q*=CP(gJ?8*}OWU~AHvbxJbi~%*oix}%2^VA}vbQPom`|Q<8oX>Lr1R2v zZcQ3w&zuHxI@iI)69FK=ICkR|S(nF(#h9eCscpj_zGsmwjA{g6!v3Y$^Ee6`LwO== zmkhe?vUJOyMdU(!KNXZ)iNW2=@HXpus>oD8(i?BQ>a>@>+mr=cd=8)8W-o)eUF`eYfaZL=$oI-cMh{SJ> z3rP0-Xjs`_MTK%_()X1G7#Q2ye)@tr_B6X<2L|HW#w4!La2E_j`Qq!`Qf#u?4w;Xv zA?@Q7T(QQ3T;8CG`P1h^&)4bDK1Lh&T#6+^)%mEUp#jrJgYcwk0t~xkgW;ecF3Ly% ztFk;e8B))wg@5C7wdUi7Z^9rcdzL(vON66yoglmsyMTr-fxK?k3RdA=98!Gy(fl3qkGvY0|fVouA(0aMp7bZg_PyOgJMz zTD=G9Jp1kFF)$O-e~IJMr4?}Ro(~-HsRrHKalBIKcY25BFfP_@x*_s2f9;?*T>F*? zHp||zettC#AGyrC3V-2K0=Mx2^`-c6qZ=-et2J#fQpO$E*TRC4`wHT;_;$TCRUS11NPS=oj(Yd&4Od|;U zO#>0NUQ;W_EktF(BqFG#2omC=a3khF{At)u;sbrKGP4%U`>W|bSsQra83Wh-n>o$* zxzK#Rme5_!P&IB5Zaf_g#-m0!X5M?!T<3t_i;Vf_J&gTu)0}qb9UvQ3o4O&O-m?aAK`QjWQ=G_@CE(3mvr zQOv>jJ6H};vK-pg{?X*4Wn_L?Jo)}85RXqVz_7JqMB}{`cTvs|5=D-I9_wV+?Q^1) zNotU$y9oy`t%GEfba1p5z@2ZEV9l&^^y~cqlGGJRj)!Vdt+j6;?P>)${F26_lcT|N zL+^8Z zR7W(h4QktzJ;j8@%7Z_j z1v7wTvaag%4E!5D4Sq(N(!Z>KF?4$mPA~dFU0-{^=_wwtWKIu#dZ!U5tcqgYMhmz) z;~N>h>x+HHE5Y3B9xZwhMq+wY@b_R8X*isKZebh9(j~@pX7~l_Y8Vf{raGf`ZXE18 zmxRg#Y&Q^)NHSU^V9BNvWN*CzF%s4!e?HXV4asUun8nU#Hj}nX`$#%I9VUEz4xOr_k0$Cz32yqo;7&Y*BYf6_u#RSE8nanhPPhH(3M6kFEjXy3?FCQ$mP4BKK}-_ z4Kao=i{B=@T66HyD`(Vk5{JE0mf+Mdc~~Vn3+d@5`nzx+{`Z0>#vlyGDo=u7{&>6~ zJQejvJgJ&!K2DtI3wIj(>1b#xEgMRp@zxiJk$MzFpDM)4-GdmOT8d^|E|l(8<1deO z0f*KER7Zx@Wg!XNus$5EI62uT=uXdN75_dD69E*#i63pN+OAx4?8=;}KUo-GDU z8$Jwe7IiRiHwCM%XOrcJQ(>7Ga|WHzheOo?aE0Y4{*zijLOhhv&pH9`U2mYzpG}6h z^X%yreW&ZgN62NNo%rqVFM8(rOmeq=J<8t`0H;OnkZBb~7rYw8x9i>T z`l29cbz}FO`GRP(bBNwvnTe-cPJp(93tvo1;4d;IbTU5qIvX?}orLNdDf~0I8Fc0X%+-nmjjU;4T^36R^AutK zio^JVcZW~L-WYhy0d|a;LKu1(t;#U?UZTB& zu@;oSIYQkWHz*4k5A7)_IQdf}Ikmfj>J~P^nm?f+n>N51XC2_Ph8V}FN*2=I$f1`S zyCe0o?AX^tfYsl5EfXW|lt&&dtw_KHv5!dG%v79T><<6>)fxJ7FUw9GMB`6KV2Su* z7(AkdRU@lHy*1`QP{zaTl6mgr!^w7f9`@u1@h?mk_g!|0o(WxK^?buAb zrLU8Q9OU7@w3YDiTM?1T@s9`%(Ved?+T5y5Cy+)Jw( z(@pihC_nBx76q6?U+*hUpDe_s!Yt3$IEx&Wu7Q>8-`Lmkz;`O)7ZsTRt2$A2EGoG6n6ETHtwGIVp>HPVStxf=egUaNaUGqQidP3f2vX zSmK69ExU+XjSAcwV~)i;d*H8c6sSnY-~{W_;1wSYW9#HPq`y>w)aZ2@vE3Jbu$`D? zt$*qJ!ttCxVkhHB_&~CHi9Xo%DAmMufNEVGVJIP7HyGRvN*IzMk zwsQ>_4@lD?c`t6OPAOFEp9ve zM{%|ly|D3-9hBP|)4$`|OtmWmNwUZ#G?ta?5P4I{U-*A-yT24t-ekk^sbzGc0%NAk z5HizunbC3mUmQ+mcUpbXU=V%pMy@IM(QhiV;EClYP$KuCIJBK>eSeIuQi{Xyrvr4z zFa^arC!^or9-Qa-4symbW}WSMw6W3#w|2Ij7|g}$TW+-Uq91&3xs1XSni{XMZ*zhMDCU?vAn^en0B%ct_omXNlcFUZyW+u+*#3CeGz zKy41oq5SG44<}T#PpOaPav0}xqLdh~a`q;kpsi$!FmtmX)`rcxO_)?|Ng7llc%jEt zWaDbq%{36i_uX?LaMOA4F!$!)@q1{U`4wFB%mH@#ETy_KT}11R9(=7!fcLh!M65y> zx6kXuAG?L=wWm7pwYUsc+?vguu8qg#E(^ed`Au)AP9syge9$=i88J}Q#)Lm-IjQHD z@RQUNGp`fimc-uNXzrMjk1Tjzm6?fJXOQ2_40gtll2c{%G6PB;d3ZoUO>krr_lWq?72T1#+$`+$#i>- z4jf)V@b4T02*)kZW3UMvH@Z;Ho_%5{m>m6mGdlN&_@uztuOYWXlwUm+tX0GP?=! z=22p)IFbCG3euIUF*j>Io~^rprf!!(eM$p#s}JM!q48!72hZ?zvJZ%1v;x=&UUqDWl z6=2gZBa~9H0zOKfIWc81edW=1{n0aQPSeTzJgy*nybiE_Fh%`_d=fTeGv@c)A@{i> zBs_Huc_!EhO-tJ`a_&(YxwQo&`=q&$g;AVq%^GOdQ^85jHT=2wIE?t!h$ox2<12&H z{O=InR7ZI|MjffbE!v;3Xy`g!_tp)rwYP)u13?@~$_C;n$*(jnrYdTmX>x@vu6O&v zKg#gM`lUap%k6~_Bals>`AV71)l5LKkWjEszQ>J!stpJHMPRpaD=E2=1{w$ANcs^4 zw8$uj)Sq*S{(EtF>eJ7^oG>0Q`3#`<=V=|mR~?{UJ(EaAbz%RwYWTYDB2Bqmi1XYs z!R^owvLLM&LH#&!OP4!Ubk7XWH~<_vewNJjXKw8Ik1)PpjP1Upq3go|(%Sf!F8(bI z-yS_68>_-h2Tu9p&EKbCPMM%tz`Yzu|9F93*`5G9%*}Dlwi{}*5ko)*%^#;V}Hkm zkNIV7!}u*T5msJnrQylIFTc@BY^N6CP}CSY`pO#?zMV(@%Tpua6*c(Lx*a|>6oR&H z2EzJ5{*&MZ(*HgW{a!4>u}8k}S@))NxR~al(|LAJe({lCzdRoLJswlbe~iN%x&sam zB@(mFRdBYsfV>v)q+6FZl0#2&u-Enpbvrx^$NqJY4=Wnz*K3o}{7p3s+6CgU;%%BD z&;)6Ya#((2KTYLZ@!6@Z)PBxIZf;jO*`YKRnhiM|b9)InE%g%Q+X`V!iY}>~#F%9! zAK|_3PqMBq9nM{e1?f_GFcX!-$L_(*;jsjJPekAqf$!kd=M7`Fg`o1eH?Sm42BdY{ z$(GI^WLPB?WDOQztCcf+x|@a*EL*73@)I!O)J?d&!x$t*?t{*%R7}c0gCj;&uy$1j zJ?VCwhKsI*YZD5Ho=p_JofQNV_XiWTn@bpT@dMhc#p4H=6z+6kD9Tq4^H+u1;d_rh zK;$c&=cNQgowJb?SJ9*Sso>t~OFpSvqNVj&@|V5gdXJjmY5QqpntVO&-?*AP&=ds! zI*!21sAh~vx5PVV_JiU2izp#-4PVgZIP{%Zvlz>~RhZ%hlb`&y z#j&7SS<1bh*iHCcDfp0g#t8V*4ENW$})|h1Mx;_R?{bqo;gf9+n-GHUZ zeZch#f!)LVl$WRhC0P}GqBI{ZDmrmrHh_`&co0f8#)&JsQSaAuZu9R)bZDa=#<~il ztaAl7`^jclurUJ!S`uKglP+x4Y30sct_830Szx8fc#AueSWm ztX#!7<~81T~sLK3F3T=8Vk3pB% z_kt+J-30MF-QXoR29G~n2aT7bu$D5<`m=Q0Tc1v)Ph6*7DrMZoE@$T9(}KpH3YdKP z12?B5h%R~I#olj%={f^>P{wR{aTo%4~In13G9e}*J1?0zP zS+i{MiKyZA9_{AalB*Z@!ecovSU5S1yYziN?76T5r^qmmT5ua}cMX68f2TlO{&oy~ zUWIRG_``ZtFKn81gYg6-Xq-b2T_2%AJx}MD>M{T9^Z8wXDr~m!y8^%7tU)REw(j^l zK>UJwz|i^%3T$np-#_c{%bu)&h_-M{?#zPn4HD#K07v!B85@VO@r(W>@jp#_c==~8 z(D3>w#%ue+g4_8RqH~KYZA-wNf9?{`-vTK0c{la7n9b=w&A@xY`$6b_2^UoRAGB@m zf^Dh6?e;}u@cZ;)?AhE)zQu}h1wBb{^SdZGGM0UG-D6nRZh{JDipX`XOJtFv6X<0X zfzDM`u!wv{u1(rYKG|e*UlnBFPhLFvYI>gQ{CAwY`g$U6j29-WzsZ5TCwp7SOv6E@ z{jiv-OgG^+41O|1K0dXjTbHlKSGt+#El*f?T!c&RRK&pp^U$w$hzPY%vibFF6pVdD zr`xOHi9K(*Grnqgl4apWdc(o+?hyPsElLF2w!yxzRJ2kV1JiCT!9TT+`Mj_gm>qZ= z)c?7`Pv)IyG!-M044h!OeFiT&EQPbK=<)*2;t+MQpVoOb;S9Y(_@FMw9WSiH^H+Pw z%~^dk)qf0qVmAhswjCsWUYQ`ht_m-Fu*Te#qBzUd7$)tFqyDdE!GdT9I31!4g0HNw zjpae4jT10)el`vp-zA#Icf-YodEwYE7z{CYfViAAg87gC!`;4`pg1Ft>gc&*OO80*eDf;aWP62|yBCw)ALbG3 zwZ4q~e+0goy(Z^(d*hcK!O+{k7}XWKIk~qX#QuX0r*d%>?edt4Lm%s5V!=Bq&gPZ} z#wCIJ_&Dg&ZXxQ;Q6P0AfaWjFr;~pzq{k$NxLuo^(fF|=Y;$CJw>vv=jztQT^fNZ{ zmBXyR*F>IAiGZkyTBtZDAB$VOal(uka?x7J)aKztoV`B|;w9bCNgx;^pWdUP%g$oU zOfCMA-tzXB?aaTuW*vNYyFe?pw4jmz%Y^MdOX8lN-C@+KMTv`FZgu}y3xX%PCzTs(VFtR$9dy#7fA z6Dwgu{24kJrH-;*^FTdY9#6Eb=dal1W2tQ-3=GbN)pROAjxeut^$#%}+eUO_g5may zC1lE15ztjAL808SaQew}dQY_kl}zH{P&ije@PtgNL<~YKc zPD}JsSqu`L<`BQVj;eJQv(NAW(UXv&85;*MG%|p^-_!**bK_`Sr4l8QcR9V{I;=68 zgnxr2z(j5%^Lz&LKh*Z%ry1(tt*K7^m2zQ~q%dWEdLBOy@A}uGLm(kRJ3f-`i+6Z=mV=NR=Zj)T?C_YQ06yPd&8a>bqoeLq1*rz~$3EkemQNSR;0yTv{j^=}c-vnH!n~d$o_Bg*Tp81Ky z$d_>mROq23N=k2sOJkM5CTlzq5IF)>pYupAw;URx{mDTGWwbnPjL%C#N!ylkI;qAJ zcFH`XTSg1O?#n1SlvhBeI2TbphdFS|{Sv*feIXv7?})EmRd|Q3nmBiD1#Qlhq&X>d zw3HqI(ew;_`s5H6W`#q!w+{CyRTEcii^uKUf8gx99z@qg%5!WvX@F2);5;dn|t9&;XtU})m=_Jg_Fuw`!&gdEI; z%X_B~?O`vt9LIc_-zw4Rwj#05e@TDX`r|y8671Zx4NC{I=;@LKa5kBZE#{HXsoX#- zQY%bH18Bw#3r@_tT?Nl#V0F^9!V9^Y5+}mOVcXEVb!M!{(;b0ma zy0#4N$60{?=3{Un>Lk#zF?cjC4x-Q0;vz2zJhf~op1GQb6y{*;Qb96yLkS36)2B*~ z`S>3@Pi~m?5KXB;vh4Rm>e*D>zWrMk^@_@;VQgmk;>|(2QhP5y_Ul;qWWEEhFLZ+= z$M-_q>>t!kT8f65yl!{B70)`BwJ>-q4J6C}U(9<)p4PnQHf{02FL&KZfYeMl7*K>_ z%8Rf;YbC#k8qr7as=ajQe>7rt5^joN?()ql^nynY-j*vz&msXRYzYLx)%H|Y;S{+e zng=5*4$-xL6ku|_5$Y%GhyS{L*>~+MsIbnavQ}weH8vP$Z%@P#pH$%1>Z4;|B4#<1 zFcuQXUk<)ST zX&?r#%*E#Gp_oock~j^`f@H-7dC^j8UZpi;wc-&q?5G zlQ^^w$V7?BN4YQM+O)#AiELlYe%F_j;Z_YfyvX(!q4CPNta^lN4=F|og@q7i_=;9O zDua&P!{qPHi^QI}oXQRl(BbqYwCzYGeI~*3)U%Vwm&Lj!@e|YGgkB`5=62F+XJTM< zOc})8wngO}#^4znPgf( zrk$)KGhr!)#YW*{REJw<`pEF5cb)Tj1 zqCypFp2-DEx9uzg?F!k0*NL)+Ke=XSjoT`=pjK5Z*!x$IpH2a=ymfQ?ZtFO#wamc> z^4B=!hE=r6I~vBfHB$ed5!8H+CjOe&!+%_9!@u1hN}{c`s9J6;b!KOlY-};CPYuGj zc|p*f5rrc+WbjbgTD<>zJg&Xv0cIjroPg?cQ~B0qaP_P=W=9-EQI_9sU)W6FdYmCM zE+2$DkE2MZD|6>PsxamE3S(?<3EX#^1JOG_(GQi5m&?I9Z5H%@ zy+OVx?uYE(>@7FZ9v$~)q2}kAWP5TYwLVhE%`tJoy=!!9hDpnxTIul>!cevt7+nE)%}n&Dgf@0=IFXo78Gnup{mRiGD@D1RTm;a$L}C`u{?oY zKnke;&_~&WCx}vrHt%$oF-y%#sZ`J~FHmv7wDWr~l^T?!>wo1y%0F)qsj((nYt>N0 zr-bNy+mAomEKs;n4hl0;AhKM73$*z~db6E~Wq=W0{%{Ba*x!|FO&Rmj-lYCp>@e9+ z86$J8U_if%lv!4jW1HtdfX=MDpA`S8d6J-zIj1Yg#i4N_U=pU=*D@Y;l&MAEHd1gyfOZF7qLE>J)PE$KTIziuE~l~}#ix~? zyX}m71@a*_r2>D=i3N+v`><^4c&?lAV~uYnu($FA5-5BCj3YjgW2!t?QYD1W+7VbQ zl16Q&F9O46f}0ByVBpN<-9jnGo)d4HHzkNTpN{wnnUxtSz>f6m@Sv7qs3m^|$(p$*Ti@u{dDh#Xr; zir(1bKp*9mUokgEK`C5+G0O6*EBH=f1@4$Vfp+Gr3ElXV8vf3rIcrT}?mjh)T<^@? z$+*Kf&MRTh+a&DNp9(fb7O3PwV9Mr1v}-NLANi~BivjB?E?1+=^b)c2*d{O=mH`3n z4dC7tfF}jQ(C3^CBpL}(i8IVcQNY|~(V=L;cJO(lebnyUSW>vk9^D;_i0aigniiUm zGA#-CuY4T3PrOJYr@EQ8-RdJ2lk=hAjvKYm=xwK-UJyAL!`&MFL%KYK$koUMJi9dy zE;fgN*W4sbtZ~QOXDhMv%U&Xu7LVB`t8pf`26HF);2qb;^wp_HbZgorDz>ASlZj2k z&2n|bUDO8FY^uf%^)&2itbkbISm-`7!WUQ>!K>TsJpSQDIXKf4Nj{(h}p~6!W_ur-sgWL#}1UBz&CRU8YQ51{54UnRsn9pIDA_m z04;ZR!MGS5=7dPYKh1~mNnV_3Z(}}L)0&2d1Jlr$O9n^vWHjzC0ynBk`u+CPK&1h) zE1dO=4T@23?@u~)n*mwg&+>+r2GohM>+Vg|W*zV}*vN8wIbG|ad{;($wAM~CJs=*` z{qk^za4LL!c7ocN&7so_dbn}9syNuJ347>ztZ*};AE%aKR-6nL$sDx7|x5(#_Ho$^h@zsnq9M)OYE(kBe(+&++}Zh*6zddchfYz*3_Mb*Vv zZ-#xh-`lbcb<7`-!DUIN*WWLOHyTA;P_Z#4FhjV}hASjoZyx#VcbBZLtwJ&=j*VCR zVC!WWc)hzCoP52o^Wx_=Th@L3fw5vv)3G+UyX%>mfnzZVJTGH)5NZ`=H$P}bGT1pW_W_}hz^{7K}W{1`KW>` zu3gzhT;4~6+vfvF#2(Sr2GuzJWg@KmnG3tVR70HHPUwa)IQ4chghCE)pDsid*E>V| zPb1nSuoSxImBJ#%2aFxk1}o1ncy~4m|5+x0fnYwq-4 z83f_yJJn=`ZF&zJe7y3FAmA9QUIr#Yju@GKFH#5(I#I`0nTh9}py$)l{nIzbLKOH5$EyI=8 zQ?cen27K(%$GMeCpnE|cZLd8d9ft!TLazo@lj5Q3$sQOQ6~@akE z3bwxeOB&W^!X@bhsM8g}D%WH>_45Lv7@bRvJ{^L|B5z5Cj18qm=ctY0L0I~x2viMM zQ9F-C7!pv9S-*YIwss;m|1QVOC=)DZ@6L&83&1(W6ONdr;4@1jVj2{O8l%h+ct{r} zo6aOR*Cj#wlpo|tyeG_AqQZ54%7qHcz1*U+I#}1di~8y2^XGoK!y@Ac^pAT9+!D>h zM5XB%zA+kW-8jg9@{*us4_&yZ9Hze%z-2kpaXfQOZhWPQ^G1D$U;iNz_&6WM{xSb) zOdLi{UW3c-`{11Wi*eHqOEM)m8#5J>;EeboS{;3Xu07E}R7G|{PuD)MP(IE3e;B3v zmz9(2tvVQYDWAxG`^Ihie3zDg7w4YsWwWBk>&b(nLYO-}7B!c2@%g9XNbuEc{Bw30 z`O(eJ=+8=+pT2|f?s91io7;T3SwkzHd?vdVZ$hE`brAAK2=dpAL*s~Os9zHbS9b29 zBf2tpvN{;MmC9j-zds1r_+z9%HP}r2Nl#9ELf0zpf^BonufjF#qeAJm=UU6Tde zGTDR6YxZ-qL~7sz>y7_hy%-Jl7{a9rXV|^{4V}I&1J`Vtgim}kaP1uhn5HAf{=age z(R(*GFHFL&3q{~Ap9TL(F+WL9JhU)Imi}D0*V2CE4IM}>&pVY+=W!~{Zpp=bH5b@o{*GQ2)TPyj%Sghl zRiF|fiV|&v$fz6v-|H!GR_+h|w3zi9@)K}rfH(MkO~4`#H5|?kB6Yp1P+TSop6)7w zBbEwe$7l)aHplY+_=6ba&7s!J3}}o`MRAvJ{Ez7ekh0EMtbZh?3@)Mv-phci!c5$v z?2OkAl!BRJ6`t%i!yrZW`)*JKxo&%?>y;NY@cVYowlc+pR<+Umhh~qEbf>F=t*Su{~0aCTjQS#Cye1a$_FoKas=reOGABgD$$a zD}%f3U5uS=>)?&V7t=es6c~hwY#ok+-->}SGjlmSS~d%dg9~_bI|kF$T3usmfgIQ~q84UXUGz1<_k=hgz8!m?zQ zt_6HWm?nvulmN|hMNw2v0Ybu9m#ZtCEHSacUjsAH&3groQJa7zC)m#R4SN@6D&d&S zz3p`&iy50?Ar>ap;WCNc(8;ZZxB9=ycNu-u8ov!H#e*?CErCsouF&+s*P~F>Hg0C30P&uag_kmp@??=INZuMt>6s2_ zwcQ7c^ykphVk=a0-3iZwSD{MjShzXPi%Pya1QDhpQ6l@9bLm=w)6_|5Wc2k?MS{B44J!UyPz*lsuyo66>Csaa}V=7WfJ%3MpT+mgL^K= zvc2OByzhS$OCS2t1-r|M-_IDbEyoM&#*BvyWkurYRYCKo+@T|8*YUvfEcksg3YX8# z!IY=*ptJBXty~;{T84Ve{gjF_;hs3VPaGN_t^mb(p*T~q6pi$3QTJ{S)jvK&3r@$k z7t}tX7dGr1p`9?m_UhxJUD5Y-3>;?nm&S4sR3@5Ii5eQG7X%dmio zC5)?9DF~OxuSV~!&3vK2X2`X40%c<_thGIim1|C7-H%o>X?YlGu)XFx;PC5%laS){ zhrVAi9aFxfqLXVAv{%GJsG7?j$ytX_Ik#_EOy$da#JI#>w)U z zZ^GtMjfP-vN~xJi0&115g?y)TRCkpjd^(wcf7eKMjF11qZ3tWfEie0Eud6;(Y*_@K zH#K3XQa5fl*#Z;Yf6$|f2chht9&8BzO06Qy@sC&oH^+Pl-v8-D*5$4u5oRlKXv_u7 z7+H-A{bNxfeiu$%Hy&r%6p(`pibzL52I~p*5_Y5s zM(g3DV=O8)oToQ#dZ0+j5a~BN1>-)?1nXUoVa4xQ#$_tRpDGgcvqL0JR4?ZZ=cwWq zN5u}cf-~fB=QK#$cpV03+hNHUZGQR<)=}NL2Qf09*p|KIDq6OoK*>So8BJ;bu<RnYIjW6r_AmKGZIlVpd3aO#BzoyxdhKTDSK!S|+cW5>lJQQHrn zoASVYMjkd)Il>(6Ej$@_1FokBlECS{IP>UKvngL5f`^hEYBU}qV@_sZ!-^(+RGvi^ zSIXn+MRI1pTy9bUg+@^0Y~i9?4Q@X^jqWvB2#UL|LaS0FIQbvJT{2{;B|HT27Kr*aaLNd6UFoK!wA5*vu-%# zkOGPN)7jo+6h-#A@h?g%A+x@LPVr+i(hJi_@WSJ0vi%Y^&nU(1hV0z>UdoNHGa%dX zEwR3oP0Sxmh6Q;gIPXOcHMti{`!cVSX)E2KMWq)URC&|m^eL*YC_?9pkFkBfJvwO% z!oRPg)X(A_4%aa+n*Ai~QyL-KvjZ`4{dXA1lEmLfi-?0oE6O;pf$JM~5W$T?n3-^# z(oe=6YH^ckw)aagkyb>TFhwxTUrc^&RYmtCW6*FhCDy;)xDuKIw#iB0|FZ%b-V~Cn zhg%_UKpOmmj^SG)S?psP2s?fVn%S-CXS_~jvpo-nsZ!YxX08f@Ayo|$up_qP z(z+g)FZztu%G`qf7m=WF<}|clP$H@{4!5e7qbl<_m#<)bGG8|HS+E8tdp-j@!7Ffd zgP_@6tNZlE-fJd}Zm~EjR*2fGjzRZov5uSjKax9>iXh(71I9UI!jkD7@W|E-CqC+> zDZjhDMQ_DGB7@B+- zo^9#}#fRHS#I00*OGF_r*6l#Ht@{gHzlTcL$HV>YLGUrtId5#D90cRfb zZtR7l4zgysM-nhMK^O|z?_vB#EnJoQmCSxEP1hW#f$Swa$h_ESxO?;wXXz{gFD~W5 z`Xi6wdqp^&3<`!{ss`x4LA^uYFN)S}ID>z`#8Hlln57&O?f4z}2RNSru)Ld#a@7Yg zD#RU6I8E-j^r8{|Hg3iGrgq3dVaTnwF*_AxhDW`HJFdp;r$=+`LE&B$e9V`Im##ee zR*eIn*t2xER{-M@odH$Gm+QRtf(Sa-kOzVm^RY7;QN{Kr`SBr=Zrmhpc8m3+&ig<|sJCoK zz4#Cr|7`(Wj2-|69K#v^qv$;Rv3lP)j_e{u5fUk6R7&AF_w^JqLX?amg+gg)iD=k+ zuOwuIGSU>zeLWP3c73&{B3cp+N%cFw|G*39ocq46&*%N#@e7AsMEMfmg#-u85@6U= z41R>~ftH8X&=cwa9Z&9qqTUm(yS7oF_C^PmuWn$sX$pwF=nKXsr2@am9!2X{$9P9~ zt%Zqag6O+D*VuA@Cv;7GLN4Zx7dYytQ^k=mnm@K48rnJLu(OGvNg^8a1TOIVKrHPw z?ZUeYV^HeX0F)W0gPqWPcry1ST#@bo>BApr*1yB_ZA(1fPm91qPxnB@?&tX7Zvh@& zJWnwB^cjd+-^R0OJ54;^)etSUW1Be`e4v^o`BvWq}| z$9h=vXAWuxzu@{FS9mSg_Of5J?ZD!>CQR7z7XPZcfW{&@BtOnV(D6`6PZP(3uI;GU zQi%_(W`L)OF{Wo;fo~Gk%oOn?^!pJD^SwV&{g64dHOe17cI)Hi-$)~Fa{YMQJBSh7 z`{CFcda);$Oj{))sPH<~RA&(fIjiLaYYhrec2^#zzC2D3zH%mVVxIWn<3vHk_Cbi) zWQa48gTW@|EG?6Fhh4WFG5LZ5Xr2<{zun%36DmXnE_3E{^LiD~xY3B8BX@(*_GVmg z>M=_B1z^{q*JS31T+_hK5QvP(Lfdp(j0@Bg#Q#)-*IfVh_31zeT|UCP__m-)PZqu% zISTU3R`#IG6O3M_1x4!0bP2}8y0W`;{zOOk*EA7t%NwK46Bpg|hb?@mkfhQ(uA|~?OSm)BklyQB27Pz5 z1%12;f(tjeckL}_4CAG+mlp{O9JEFFa*KP3+80~yIZi}_noL~Bk0y-nMZz1CftrYV z)c=wLhf{A81L0OUQDy995;VXuGQ({^&8$W93M+BY*>tjdSw`) zIYKLUbKJY|^(4fx62%6`sD{~D<}vRbm9swz2j~0;6Z$#U%s(U8U{cQ9ZOx#?&vrny z>=d$Og9EvK1;NW#hwoW>6a%J7k$roucwQP+aPB&vo}JJDx+1pZ*N1d4yYYxgf?U%4 zMjF3N5y8!YJ3zL^9phc&p=s0=<47R#j;F!c<2w52jxc<1oq{9#6VY^S8qTuMqvw>Z zAm&mnZqOX!zH8rU_2^tdv6n3WW3dp{^JCyy?o_Py9!2k%@dDRTj+gbepVxmN#%VL{HIFb=&o!i^o@k0p4;%Me*m|yy29FRdVpsJS9cN&>7zs<<4@6q?s@5jG4Bq3SI?h>LS(V@0Q<q?lMtecZ!kh@j)S|fTV<;`)_)fN#c=+)n$PAc{%hqtS`ttiw+x?Wy9QPS- zUoarE<-Xvu<@tCiV;S68t0u5Nw-e_+N@1rf#WX$9UriL|D8g*PHkc9A%VdXeUi!0l zQD58}CJg2CI+fnA9@=eCkns+_AHBlV&FH3spK_?(2^pdh--D2}7i8}G;W?Jefk{-7 z)o-s8y~nl0I;;yU?%9$VpY!q9!iylqe}E+-$57$WBhvCv4kG2v@j0W-taROhJM-(% z(ytTq!#9K4kF&V@TN<@ovJuxV7veH~UZiQ%hz7LQK+UEU8vQyAFF42J1)t}1s9*+7 zp7;w?vK~^e2SaS#gjYo4;9TsRyaxXJTuy^~jnN_{he>(u0Sh;9yypwngl*spHl2%y zC%y@o`?j90;4+CJb{hEY&<#xNS0e9j3+SqAM`29Y5QI;Q;ctf#vQt)6aH`1(jCRMe ze=XnA`<;8SXkHT6k6n%nRy0B~PZazfMq^;jcvx4?x$R{S;F-xUNlFaIKEF~yIz1-9 zkK{~zyt)*#!(;K)VO5OOMSR+6PZDQF;&sgZF3)iBu;CEFhq@2m4?TT}-MO1=w0e_|?iz~B^MTo1e2G>?pJ2*;2(wLCgkL0SMZf=CPj3gNVV;JJVA4Ey@E^I}6tPbf#{PVu zT^^jbX+RSr9@RWze)m)QLAFp<}|WTg_E&$K4R@DN9MO`4Sie7^;k^y!H(VYKxe{E^th{m zJC98jT>G?$=YMN!o{qG%`dV$>MRUic7sf}+hm#MZ72{+gVU|| zu^{mw`4ke)+~YFWsW+2xn$9ZNT{{hQ1RAhK*clzaUZ<3EF}74ZqpJGGcyy9Hv>V=~ zzUmcF;BXgKiUE>mvmE5?V!_2~5xDbT!^`z&LB4q_40AK?O(QR9U!M%@xGaTb z-9sd3><=~==Y#FS2wbr@1si&$AZbD(I%Uqm=AO;ylreyP+jqjq^+XaTrT`8%afc3NpBiU%1(#ka;5V`ZfhD!SgixW^_Qf5q8v8=`o(_xDgs0ErI2}X z2xiRu%{sYB3+$@*Vyn(DV}#BZ4Df5vZ>m-Okrx~!LP^IMUBsPJg|Ee9j#@Zo zpDBX8TlV-}Ity|)xM6;j7TNbB0Bs%WAhbyj2e!<__eT35TF0ER&9j4r-~JLuyo^oP z7vRsvC^&gjlJ9gq2|~7?#lq<-`29maV_OqJ&L|ASjiEHSn^6pIA2v~|=-DKt;RxIv zy2|8#$);lCUQ!$kLaS4vkaE`p44kylb-pnOFVlf3t27{T_!t%4vIgn9Z$z^7K76V@ zgw@|7!KM2E>6J|+k`CKIXxccqez=c75s!NRT16Zq!)eOeKxox#fonq-$m9Kibgy4D zdKi?`>_gnQ^(xYF@`a>6L%`cpu8I!CgnT=7j67<)Mgk{@qSOM)&4lhj&$z8{_@OAK zW_D7XoQb39UZCUSh@*eZajD%#yna3$CQS%Hc7p-u25zUO=X2=1Q@!MXdL(OT` zpP`oytVZ#^T4MZ|>ni4yk_eK)d44U>F0GY_-z_4>x*K5K+XBpucP812^H6E=E;tgg z4JT@aBQ77MngRASu=X*O?gqN^Dch@$$&wVlt`yGSB98*LQUl6YnC4kmc*mpZ0of`H5 z%^o9zjTf1~lONIRL=eq1v0#Qq7}i8*AzW%`0=J1~++4ez)hVhWKU$F(91X_42fyLb zV|QHU=?=CLGvMUub{vy)fU-@}n4gu+d8{2^%G0M9le~&o>Ao4Rym<^s!;i4iSU_AQ z4>0cBPTI+b^Rt){?AT zc$)e7F`NE*T?FkrIB&=s9yuVK2X>BiI8SpwWV~&{j2ZW7PF^_1%;)9 z-A*Mv>fp@NL^7Vpf@elBc~BLOvAj#LLL~xGknysi;daO9w=Zv?t8E##BaDXb`O?hr2R-;Fw*ts?#Jdg^u)!dYn~m^MN4%Xm z`11b|KcH&uMg#IGMk33VsOLL3GuPX-VEgvTdyx z({#2R{H~XpMzpSB*EVF~ubKLI(rFFE6)Hg5J2iBPUB%_GqKMbwrlw2XC2&32t!$6ZSRAq!#H z-*Oacw&W2fjvK#YO&0ulpAL7$Jvbg_A_*0EfV)WqbWW~gh8|xal1@F`ygU{sR3)L+ zy=1EYr136MZ*j(ipGRIBBF9$GRtDgyI@_Wb%ZmcN+%p z^u@&e(-Mrx+KHF1wqo@=F-YvR!E+sA;HDnUZuI54?yAvn=)p(k-b)7(^B z({8}F2PNc+xjfHz_X?=~wFD&6E3xxU41CaZBOU|(*!jX5XvQU6b|4R5>9=G3*gdNJ zYd#a4It2%&&Ii+}&*{ts?Nsb#BDiepWH$ZXgDRJv(}A>Q=oKCdr&?apq2USm$T|_e zf4Yc^+f|{$Xey+tR*}M$mzm-7*_2UdxbN-=UDU*#M{|?8tdJ)Z>ZX8$AQPk>wDE50 z+<|T)hn)^7aL|4YI`2xv{HFJ0uapq1OXM8NTCP}LS4FSSO2Rk2P4th?Su*OPN{!lb zn5sMbAa2VGnz^ryl#A}?7?h#hUS$V7P?&;0j{a#naWx6rUq!*>V_hJ!?JIFrFNG^g z0+hd#L4{r~hmtqlG;s0)RE(;FQ}Xwj_K&5Q5a!S9;a-JLkNbet@|`ermg7E*T%jHF zI5yw*4tAFGVYca4C@kJxi+Qsr;As%BS!Q=iGwM+DXtfA&T@&>}OwMC7Jc} zB=OPcr|`R$etP+l^3F!$znNb6_}_8-aU&f0I}NZnB?X_D&%&8Ezu}aEoseBC%%3~M z4a;OtLTKL|^7;YC+~>a{A%>F7N|y<+*p|RfZkJg(U72kzHbwsJHMo&~5t^n1W5t)v z*c{`9J6b!LY*gk7;wP&@06Jhb}v{{}?TKG8vCoOebdP+&x3b12r4} z&_LU>psbOHZ(HXuzq#%}QS%6SbGZ`MbMDCHaY58O>^&WxmrFc4Oie$w?neu?9iZRl zfL8J0+_}#SuGlWXk%un{svg3mgPqJdm3yq?B}+8@lnMV7rSZI?G`&-_11&^ekbRex z$i=D^xJ9`d6&niR%CQJoYp{aeUebzszimliQVE^2yBV%6Is)02#^l|bIZfN%9swuq zEb5&o3~Ak8m?hR{N$LKT;4&PIQKIs&C*vxsY$uB?tvXQecMi;FOouw(MdgC7n$s_Zba*p1lGbD?RY7=~}pdaS4Qb{3Ve~bHU#ti91{B zf+pMMHz^s&JZAukZ(_KVrS)A8f`zb09Jg>a`s4Ex=y z+4|)i=g!3kGP^6-zxyVWCk=^Q&ruXJ^DdEr0%!End`tBHR-@9SJ@DMI05Goxt-o{5 zi@JT7@Mt%_tJT1k>KJJ7PbO551SNXAiTbkf5aPN8Je!kI!c`rlMWWzeUp~BPECequ zw>vlx3iFbZVV<=<{9Tp?&LjXr20NK)M*HZANt`ZjKRS2&fis{zwD0YWt9<^M% z4eNq-V)cg@t=La0yNyv{M+z-< z)5GogzerIXgLQ{e*)=AasCTxBo%cf;9nvb{P_Pe8ld5gtxet&XUtW+q@}_upNecNe z91XTAvoS|j9M+vqfbsj<=?E_cuS;`T&?oa@nO6+eu(H6Uk5h1?lp1|?LIqxR0a$$n zqI|x9-O~S%q;Bz}vQD?@3zrmb-sp`*WHy>h8e#n3$*5@qFu&gkcb1fqJw_!EI~~9+ zFA$x+<`Dlm+T?rT z+rZJKe};F_Fc#e!xM^V4wqy5 zc55wqDQLm;%RBJP)->{2ECK(nDuV`bTe$Sh5X+JhsC$GCE{U?n;?0}Daq2NR`Q$im z8jA*{-Uq~LQW3O0kLMgo>7?u+_ijwl0%>Jg#9LXo;B+CaH7dd4U7a+$d=8qPnhT4b zEu)>+RzXZ#H=EvNgc}VT$YQBvh;viMneuA*_+1oCx@d@l1wYB2+v{QWdTkh#A0hH9 zrUE>?%~;QSNnVcvzFhp3O?>r&4ZZw~$zEjuCuO)D)8s;2c6%!RyLyurv>Zj5jcEW8 za`-X%3)P+;j}zmcvQdAz&g$a_B>&}1c&e<9=BwAhuHx6E$uR_$clGBm?;=!TplgWw#VEnCTT38qGhv6?me znORUc-4l(hOX#3U2AAbOj=A%GQ}uNmV>L0f>7hpu&bp%kN0lmZ&EctdWY7wIw6k%( z$b8tXFAqiE!m-IO2Ze+dH7NhCp%v>DAWzx}zvUFtQEiUf>-Cj2`g90wwANDkhhtgH z42VaFAOd&CZ3iLchuk~w9Pzc` z*lw}YpvGwf=RBVYqFp((IC3Ryay0{?l^5BmOLO40_fgpBAA`;hf0FQkq^6RgbR2Q1 zC)vLvDgU=7ND8OYk%m4}*%FR>Z5m0Q$VNCbzLhG;E~Ixn{n5{y>jBN)$+?9i$%5i7 zxL|x9jBIwNXONn!(h>5cCZ!2D8gyu(?2!zAihC z!Q<7T=*UVmOwPj9J$Br_`2f4WTom`^rD5_w3S=MmCXK3g>?Ga+aNSh?{~iP#xRs2} zq07;CcpQGnY$8GXT;Ygs4D-||13P3hVN}}~4czQ8e!ne>_E^E}zt`xcx-@k5PlE$D zieS!7X|T5HW&*0FfY;|t5DA)w&tyAjaoJ~LHcgoB=-ZEWd(%+!KqVHNEuxpST50{2 zU@ZPN89tj$zz;Q|5KUH4#S4nq@{FOimoC!W*&ETg%z|79_M`cJC-7U|30U4H0+(G} zA*ALmdEHV+zCO%Bg=FsUwY30di!Q_+-V*dinJws^8;=HOq@bWDirQp`;=eHuGXIZ& zz#|KMXlRN;T{)<|><1O9&PTVpa9lOy3+d|9n+k$Vq1`=?8kD7=m;KYGFv(=tYcv`6 zPdy2TIVR=ugIrhMazFYFt-u>?JxuucL=3#?h0R&rWcp|#>%G+%%N&;AK>GzMx5NTG zw@pFr(gO+2PH-$FAH>(*r%4+$;m|%&=J(rZ!aFjH2zTs3a|vsD|3wsZcIq%Z&xLeP zmpVOe5l608{-t6x4c}bmn8T4C;Gv|0sdFMQ+2aU2kWnSqB(?+p`d^y)WgolJMFKj# zXOIaqmonm^0g$`%4E=K_3O39ZhLavLIMc}$XD|H9D1=19Xr?w^wV4jAWfbC}Cg$Js zB>K&k+vg=1V%Pj+eEg<@sF*$>4m65-*{s4D+Co&=v>ZEfq{(OD4J3grfEm)0Fth5rjz4l(i$%NJ;ie> zY1@;6@pLja%g5n?^knQ-EulB94d9iv5>&l6M|BH7v{`VRL@TQjx6o49b6Nx&9+`oa z{V!7BZ$byp$3TH7w`+)1!L@4+kU;nL(gm-$@NXM`S_K*7%qg|$Z9gZp_*Ri?pg09SHO`5HF#LI z04GgRgzpVyFwsgL-4}AsC9W4m?744~;{sS`kV!-8qUrsjDbUR2AElO>(VQ2#RCX*K zx20P#>76kU@h6x>Un+u#uamK6fjkPInacIdrQwa*4AOrx0R3CCIgaB+GTvk#_F6q= zCwy-w3Qrxt#BJ-Pr~515w_O0pbr81tXDpmw&1D7~FVdqw5;$*SCF!xZM&0+e_^`AT zb2%3G_+md)SG9u`q=s`TXk*Ojm*iPg0d5SgAty}h=$2D*Tn5Jz^IJ1Os`w7EG(OE+ zr7VyAF%KE}u&K;i8(E@T)6dHITxa6;so^oh0^D-Qm4x)PAy?cNV&#;X$-j%x;e{{!DNCcl$r*UJFp|Dm zc(dWWlL}UqY{y^Wam=A?KXTM+B^1GJ|F%A_D&jq7Lr9kc+ffbHl=(M5jr2jz(uAA!zU4;+mxb}_Q^Ep84 zG#oKTJPr>|I7Z{bebIk=3br-;p%QaSNz}y?=rgE|akj0bvM~i^`$&81U8@|%u zoZ1n7@Ia7?dCwD|<2lm*s%7wI`!?8Sa))`{IEmaYUyM27E7%;)kN!wko31>0l}YA* zWF9UrfvCAvm^9Wxj;vZhcveR2A-5@zGM~!^YR2Mj-#TtzvKxt&H@Ta0g7(%_;efv% zdiD9@-d##9@1{W3 zoeOY|wEZBnUJ|5a#06`1W#FEBd91YScuX9~Wch~P^y}4d+HgI<^i9@XRFq6Z zZHu!^!!4GssryHg106uhpJOhs&Z9RoTgln~X5*l7ERD;M=DZjqXy4HS-Ujj{CBzu- z|N6!{AF!cAVufJKWjiAK+8#Q2#ruD-epo{c%+o|#3=TA5IUdQ)6}CLG?K zdCN?@_XI9qs)Pv}lkjTx5IJgINY{-Xz@N#+#K&tT?mGC2%sO@kQxsz0ei#otue#uN zyUm#C?EqO};vib`0`D3c;V`cZ*V{zk?w-GG8^$MkFn{bfa`uHJ^``7EPVtqR%aWLR~dDdgRn zb`;(p!f_ou5H`kvkI_voqmoNi%%%$RMGeW*3M)3-Bahv~ecPw^n$cR3IJoho7=HC% z$2~uc@ZikRu>^|XFaVRo&c*=VtG+>C*Z}V zPDnmcj=yf%!nPfzkjXhCJ*CCqa<3O`QL=%aNGEz*e>}72Ii){DbHQxaNhaNGBffCm zj5hIr5tft5-soAd^_vz?qC*#2mf4`Kb{tIjlts6HO@+lvi&@LU4R~)(2?;MXV77%N zQC{I8(yu*@|M6rTnbb56!!ve~%q@l}eozJ`ltKbUIAIa57YjE+_jsJ|7X$u9)-^W!GEsv(3P z-uf8KoQ}gbB}Aduw`t4RdukT$PD5=2L2p|%{P z64{Z7lGLdq6&(!6^W`)1iP4o*_~bK*^JGWRkM|zYAU78{#LfLCUUsHWRgU6d(;56~ z$@wT&mH_-<9bm#~XHz@{p-B=JabtOSriLleU zjoMcF!#&Y!G)6xG1S{JZ+4S37$|3_&{aUccRt@JHCSy}x7po>a86US^L?6dncyF-; zy__3J$1l1-2hhO4N&^RII<_90j}kp2O(Quy7J9RobIg(52+R0TAW1()5Qdp z9#%*maCb_TFc5r@1n>SPtjHb5pZMLA-<>a5Jkv;UbG#7RKdhm%#{Gp? z^ZLlAxhjBV)1d3cIBW|!3AxFhFurvMeIT0)8Sgr&f`1&5wizQOvra?8SGGElgr=i8r6>y5E%!_& zYX~;?CV|iz3M;HdsYh`nsoh)6I$g@+I%N5H@>4Z)(DVo%dsskhDh*8kJjf+Gmi01! zR3qWa)>`_+p36#gE0EV)&T{7qd61RizG?H9z@ZLJf%M@r4B0RZLyaZjAX|muv$@Rh z`fWJjjwi;sFXi^y=BO|~ha}DP1#Sw+xdKb*g7*x*P_m}G`nXQ)o(ekSTrQlu8G-%g zb)=_31I~FgvpYU_Ly6={EVb3ZuWftT2XZB_WN#9AEp`(QRs_SJg%Ttn*N_={VC*tH}fUs|_1)dX(i|i-6VuS>5+mi)aN6ynQ z_AQwx!Fe%84?^mZqp;j4nd9lU;6#yFxNyS*)ud074~i+YBfyw`exOa&O;UIruM|LX z@mwfbHV#tquMuzkNL;G?2#now>3M06#as3nWCwa^es49g`p^K!0`hs+PAuX)23|zq zT~1uKzd*&9BRFYcE;ByjDlD-rVbU+0M~$_%Os+%%(N8>${thqk;es^~c6T+FZ%Kgr z3#w`4o9SrIWv1+Z>VT8YGAKj|=Go-;O<}w;2z~y9@WSgL?B5)mHth>$Ee(dP8e3sy z;cN0S`~fA$#|zx}jSSiC1!q*3;DTdMaAk=UN_PGtVNW~hWdDd!`}w0g>fJpLiK8_Hw9aQojL;^rKHnigC?YReYteA5h^e`FBxHPcyX{jH?N$_?CAf8o`$ zN2!EX7*6LEu#aa-3px*HBm4IRgOeR_&cPT+E?G~sy7+W%)Jh0;O~;+rzTmunMrg_T zhVK8%;@lCL7#=3ov|MM5WLxFJR)bTJa$+Cd`;HHKrml=BD~V@|dm2xQc;Gg9H4;C( zlygIUC8Eov1Xbk+o5ohWVB=OR5yvxUaMR=m%#xBwQkdn-d8?*z4jKm#;dN3C|72)< zwg7H`99}Dqh85ROlCrcS;P-rIKetxHR{wt_eA!9FvwW}(8i$dZvZyw!0Q0lM$imky zAUC)Nq@_zR;A$Pnz5a+>k`JJ2(k@WgKOa5)IChUSmtl34f|KbHM9gtL`^!!hYC;ho zdndx)nE8S?o=<4V`(FCk_%h64+QIE~8uDgN6cklo!p?F_`l(_fybsa=QSlqhTMtD{ z5paH&VqNIa4uj!ucgWh{V&sz4f<1qhVx8C!RNvA;V>>Z^{QLc6(Tp*&LdlMQEZl^? zt5O%NO`pWiKE-h?SBgPy{06}iG;DHBB;FentmniY^iZCIo}~Fm}xXc zAhX~YeJGs@*~TigUszVqf3ugT5PSoAw{iQ8H)r8tg_J-lB9A_*N+3pawqp6?>HL5B zlhD2}1nX*EQ1xG2jzT*gyXa~fafj>Z1-C(;_z^0+U4>c?9!13nOSrH;8=BHgnPWi` zg0dq|NwKUe_=oBtYE0yxY*>upRf5;mBI@DLc2ouNZFyV{{*xitZgF!L$R7f|y9%W50 z2#X8W-rT`4!}H;j<#+Tut%sjdqCk?Hg9ptUf>%qG$<_pW)Qznqlcrgc4cmqJ#`n(< ziS%_~p2Ge7il4}$KtGV1#Lb@Df@$1$7Tf2ZK_BlzY$N@kHtRBLe<=#&&KHxJ>qdy$ z%{X(D0sS5FkEpJ6_{A=_rzs@>;_56pEczDp?hrIna`y6 zyNn>qs1~F5N}-ziT~@YrEo^ldM;%4RsNVK!FpyeG#ZqLR{HyikMmh0sYy``6T zjgf;@npkT;9?zZMj=s{i^rH&LchmO7xvlGw--`DY!}Vpu;uxENAHZOS&OLWHpm&QZfdK_Phr=Zy9Y9I+e$jVo{=)aSBc+Y+ajSR-H;hr`( z54VONd*ZMzEHuh>O-+dFW5 z)lT&8nn>7@4@6L)iKW|al3g=1uutm?`4Vo9P1lOB{`+p&*YlUSm{-Erq1EVZ;!eBg zu4+8i>VZxl6$PnMq3r#6cj1aoERmS;47W}^1-BPV@WQsA!x5h@h{=_~$<8mh^Y%H| zp^}0NXb*GReF;X6Oc8_y6w;~ReCVMI4yb!lo5Xs^(=Krny3RvLFqRO8!{W_E5Zgk! zFSf!8j%8muT~45Fc^u5&^5LziJ*?Z>&OEzaj)Oh+=%}1RQv60p*~e$-RV_^GjC;sD z-*m9P(nIU6FQ&z-gFyPU7%4Oa7~sydhq5!6Mcg;dv+fqgaQmyl#AuAYH<><@_yPNM zIX821EJEum61LR>v$*V;@Znu-m^KgPY`ZzPuN){|y9CLfW%zgFEyQo^+YEA~kDD(is0p4sej}rEEHJu20-aBtz^6(X9Am|mvft<9CvCv&<+*fH zmkhsw+YP?3a=_hd8qs898`xgIyDvO}ch1<}z0gVRz(7e3@AY^=9&TH7bL1 zJvhMefw>g+pM;T`H!SWxi@Gm425-!2K|oV7Ja(Q+MXlnQWiu|2whI-sDE-srJzDT zaJdstjW{@vZplosZ9u+O8tfN+K}8G0AR}1|&t9m5e$L@`C-F57uT|l9p6h8?FiReX zKHTG2#W}3QS?&%xi$Ka#VL`dv4|?u`B|hBLf!W?C$VQz8YU^vl_o`FpL%AZXdMk@s zpJ!o`5$7t-`%P|Iwa||W^H4Tf2%F!xP!}af&{xt!>B|#|P0nG?xv5A_8s=heRS9b> zvkm26@1)H?cH`=c3WDwoWoE^zR=T8LQ!u$vmUsN^YEa8PMIRKkV1t5~;NJP`WLsVV z?pwJVJoQe}&&KNf!xs8PbYmJC>|${J)#vQQ?)!j0gJFZlW;UoV8NDKo!1FcB1vS29 zka|goq&pbzHC?r=iQ9> zsv3>Z5!FJvwv=I3bOg%vrQ@ucRVZJuk%sxNhw7x4tcmJgj;ZjO8gJ}FwVqli`w|ab zOevY@pG5jjNC;-}9Ku$1|Bg>=&h`l8-Oa+LP<2dYJ2A9Z ziU0UuExH`I#vFgx%&JGE!1i}V@T_@+9rN~v{)UN4CPa!Y3BIb zubxc3z;b7P3Bf6)UOMBo8mN9%%m|63LPo~bk}u0s-B+)F`o*lYVk5qtslTkVW(m1(ICdO zYyd4*tbpr&l7gwt+i7^!KiHTc0@-RSAZ|pO|0KYVT%VZ)4I3l`a+{ViTEjf7Rh|wK zT_50CL<2n9{1K*pJ;ky5ld&#j4Kc58V`u#RiO&<=@TK=U8h_Lt&c|<~U!wKE`E4BU zY*8`v7tDgII?)*OAr-FBNrFckMFs4&a@5=vj-5G0T=#hvabEQkH(SgBqtV&8v5V|PT)AhG4Gjk9f`~&>4#)kyb-PjtMQv2`qHq!+&8N*mlTI`Oz}&JaNyr` zI{nND*`8yFlD21nEQve;i~upgC_P``iryvLpilh}>~WZb8&;c> zufcZUcH#nSqx68fZu|k8EP`?S%5#tsmrp<2T%rz29G_We27GcYAfZ9RG(X*}S@kZW<8O@bb{F6s z=T~&z)Ks!;M+(}Ddy@J3$#h9{4RY285Hi)Ka{EWX`N$Mp7qA+}2XKyp<}hxj)(!sF zm7ME7il~T5kQTLEnt$*Oz7JL4A3JYJ*1Xz>{RRI&7hI;#4&>6Fux8$F84W>``2jMi zT3N7I?<(rm385lm3?KE5(d<7*0XMRg&&|EU`X7-68w4&aWo;<_PK>CvAIgE!p7ShGQ|=D7IA|s~OJA&9{cWd)?&l>30}V_X&D+ z&2jJgL#SbXgi5>oq|OPoxZZOUE-B``J@5X*$H&}ZWt;+TbCse7>e={nLRgqncu!(vmzNr6`Dxq*e{}R=p9?0L#gttVWRip0sa%2BG_j-jk(?y z0B-W!ocY%_(*I8tACC{iRe{T~w>BQ8c~2s8F5?7moyG}#oT@O8;~ZPgFDIN4ooU!_ z3c3%BI3JQN+>6PDJ^Um*dh-};mpTlpV~g0@DT3ygbx zj(AG%2bG$upq_S&jB@X>y$7#Qd5-CNaX=Y1AD5zi`dfK)V+E0}X(H-|%TT;>1Df7U zhFOdFSRWEd&nrk^-+dp@{V|S+t=B_KQ4KVae@?%f*#Q$CObv!6P@TPR$)AKd+`mW- z&Q?)G@3vDUg~rgCcY>K!ce`0p<}==R&w}xs-@SX>IuLbxk6#=9(Z-FfSf}$7udEAT z<)Rvy(NSescC!plJGb-le3G$I8itkx+W;BGQlTZy=)q{e`~NfMJ=l)kPZJe;HRiQNHa0OJvZOM*Rq*-?j+}N5IRWa zzm>u9LA&wzi5?O;G#%b?vrY$YKJ_vzk_OyGuw7|{qM~KAqwpfm=iA5f*Y8 zs6!*#@N8ENybpKB2N$nn;UJRU`d0ePG68qBUuX6haLk}j<25inB6TH~ghL5(0 zV?tjRMvTdEd&Vkw6#9e=2c3b4R!vCi91mJ+LZ8 z1cMrL$@^R9z_mP@v{aSBTaS0-VS5?42XAMd`gFp%i}^&@If5)IRl+UXOUTLsN5&?Y zW4u>CruG_M5EhtA)11agrK32%%k&=hR*d7zJ^V%LrzCLQkT&M$fHAqaUBgt_JkCJO4c|IPMhU743~!X*Gte(G$d^k);HIZS6gRbYxrYkh1MY~cV9z-4?ZRzmz@N^qXsZ_cru@;4VmQ5lw>oGfi8f5n9!oZ*>mQ=0;v7t$joM_6L^p7#TtJ^?&sWr?E zRKVSHj9}@=GE87EGQ}UYaH~@y!!9*J9pgBhn|O=v<1+uYJ#F-caW<~=55#Zob5XD} z5}yZg&)xSh(%Wsq%}BhOd=+l6?SF+Zyk7_QN9`no=2oERa-4)oA#b%=HTC!_hp9p5 zaKZc#)N^=1>Y`7P06j@+XgrZv?#=*LZclR|>kG4exjtlfXX5KOGvRZDCoWb_g}Dch zL#EOr^6o-5o-60FGr@at?YAS4I>Q`}_VCEhto=0o+IPBy`<*_usHIz7vPhz7Atqhp z+(h9D*MygZ2Et0KTX_Y8)1Y=(`yBCzqoOSo`sZ&p z)az&C$|>q7RR2GU&ch+6_YLFittFMTga)FF)_Lx?h(ab9!O4@sCr$LFL zI?w$!C`m+!kWwTovZ8$Xo!_5O?>Xmr?)$o~&ou#;7VXB}hQS#3OOvh4nFWfX!c<;Q z9h28)K>r_6a{lu)cvpEA?@!T!*S}+_zTsr}xo;h`=3PLaFNtt)JdVayaXgeK$Ixc9 z2$g5#5#xp=xYKqHKB*Z%Lc>!=$Yl@snaANe&R8ROo9KLf|pzft!oJUIu z1fvS!@<2YvLrsN8N}_ZtH>cIN{-c7*q3BSx5qHjAt00oP6ow54ju-pP*-MIw-B`&p2Q~B6qCNs*VwRG zig`+6|>3wPqEG^}fb7RJGQrKM%kY_2J~jYD4^* z?}SDNEb)HnZ}No~2l3oJb#d$%ZP)%w-fGOpFQNCT1Q{WU?-Jo@+*G1IoJ0Gb_LD8{ zF_6xl<2vZ95pFYhe~Ud1o#-RlQo#HPZ==cgt#RmF6=~OfK!W<;(C^20!l0EE9+cIB z7usR$UeATNGBOs;dJ1vduWT^=b&&)g@rPrN+KDok;Q@sc@KZdK)3(-gno%=T<}n|R zKTf4%Ns{E7+bCTQ31D*mJ!3W{AMB1bk)6dEV0bj2q>Ya=zN%q(+@lC>To&OLy)?9! zI*rV+Fp~E;2DCj?(P!Wkc0WGNHj*f?*X<=mqJ}u(;64cacLdU3juB4qfybX7Qomd& z%;djdZYXae*=uItor*8?UQg-_l75n`!I@M?I*VTPn1z}a=g@VIB7Q7Q05eyv%X!&8-1B53 zZg{l<22}a%egjz;4V;H-KM6sXoH8@_pdoA7lmx}!u8_V7@wk22bK39g0W)`VT1So@ z`DUts4^4|;)4e2;HE&Jq`;r7l8Vt4(c>pk@QCHfJ2gx z=#0J<#KW)vO*uYsI+x8<(ygtN_29ZD9{Z6~SFBOJXfrB2@`VQ{dDNGCDC$-x6Kjtm zSbFy?l+D>oT+CmQ7qA)z_hey5n>M}hHk$MA@QMB1Lh5m3_XTrC54-Y!6o`*9#~&jL$w4%14hP1rLvAF7R&;ip_DE0&#yKE^sYcu(aMn zck@~7c!H#5p${G3d55}h7Q*{vF-~lhgrg_D>Gl>G44ySYTg%62pY>lR_v~>fk#c7P z=hzZ0nE?DPxDEug87x)}0i~cDq+7O$y|gwJ-9qwU;J7|MG82UBIXR%J6pwt@Fj!h= zLpIKTNd7K4gsTp0LD~MY+FcjD@bbnmV&}RX-)-8(c=$xXzSDorHFmDXe;h-?SM(?A zutb>Df2t(4ZpM^1Sc2=uE}~%hDJ+?q1_q9Pcz3ov$J|kYzg1`POvgr~O(#*}Yy@4q zKAB_7D&al#8cG)ss`vFBot2h}ms0Y{w+(Yh=?IeZlA-vz#2Q{NQ$&671hCXLf?<+? z(`92}lBp`@_LW2a(QHU9jD!`>a&dp?H98V_9LcPiuyjoi_1B4k%?|G<@4{M~?vg^8 z-?`BAQJhYBs*PjmHE6PC3%bngr4K#kf{m374(vV$`9q1+G;%BM?~Fs+KW;!&LNVz5 zSx7e92fpqBIQ2&x+wdX`+KwtQU*(c9N?;PSm$>1#Z!@@AI-kl8br4XBgi3)-G}}9$ z4ycya`S=T?@n#L^;RoZqyW)6hZa0LORzPCk9PHkuzpi4@`H-#=ahCP>%BhB zdd7J?Lo7jamL$lm)Z_ZZ3ZOE;4Yj8g;3vr`7?Cgywrm&Se3!O3n!E>Z2HUfLlwUDE z%}S_LuoqhmPQ$vf8`S-oGWqlE0-l&U4f37EDIS;zc%hd$@GF(Pkr`)C_kFD$6SRSj zeovAh;|P~a&O-YmC9w4sz-iMia~(+DnEB2E^t{*O+zFnj^*99H%d*6kmSWM$-E`W& zNhqQ%3aHvcGL%}0^zQ-2%(WKx-W#KqFXn>1iaP`tZ%5SxN)FA>g;akhvMWdf_n+lh zc!zQ@VY3mcWp`MpR@GpoaW-AO^e%oK46Snw6$WiKjoQ7tT=!?+EfCI}3CHECnAJ&^ zwCTAh$zFdBu5@1}TFxB%e1#qF~rlwP@V3C>_thTz(`nlP&k60P_D6x{uuo{B3^A$K|;zRUAreS;U6lz!VsBY4& z-6-K{QTMvCoS86PADYzUp`=zHFYH@{G2F8f+WD#OYQZ`vxLiYb?`)%Ho+79xF^Dg< z7!pF(lHJ0q@ztOpC~lZXAH_sM@Bvv+&9VlAA8jNYj^YKAx5OnV46`n4pcdDWhU(ME z*k3DL!R@e>s{+7ZvjvN9jnFH{U(;wmf1K8~2TJn_>0!Bv@J}F#8D)*gQvXciHRKM4 zo*Agfm%|C!SKu1^1|BRmKn;$Q%}d(Eb%E`ISGj$3mImQEo2%hjWH{_I)MB(dksPy< z#&xjIN15DGrg{ho| zr+#J@9v0tiu~{M>J^CVH@|@|gp)C<&?JMZB=XL1NDg-vB$xuJOhOTM3iROBtGhM^DMuy~>^j5Xcj zvXg}vY~zcqfmg|%DGHz={tA*SZ^LP~`^0JY50c|l#44q(p(26xWXW{{OsvU)!_hui zFMk@3O?eKzB7BH=GzX3(UV(6z7N+f2G}nvjjgDq&=vCrE&3ksC36l+3Ta<_nGXOcF zcBC(`zD~{C8NRgyK)7iGc!j-%&QnX6UXDHgLA!(+Evcjfkv8~It_=6~%SRbr0NZ{J_AWBC`!uvan4KRt{ce* z-0$}yom+!x%i<=wBIq#8a7ahLxC6|&u1_?xZ6X?exy5k8G^jg&=h$e^nf{;eNZrbE z2-!SH3O+9b4;PLjf3E=ZWje?&?_)@sbg1@HUoM{-ju*J^MR#9G-O8zV=(P07L}&OA zCZ}+-du$sGGv>G}&U0Y-)|+_$J(8-h1uSfBC#rT&AkK9b&a)b!{VN6NFXcUSLCSQr z&JD$(&6}X|^EUSD!<$5LN;B?!dV^VA;{yd2p77tyKr%1C9iAzL0CQ&%j#^(q)!ox* z{?S;fRBQyl^f+JdmHay4DITn<2KvLlVf8eAaJX9LmpJfaU@QsH6Fdy{Fv;vc}VR zi3}eX{IP+;+5m_RtYLLa?TN5O9@ z4w=xHv;*FVoxoGeb1n85`oW(2!L)CeIY>Jl0O5iV)YZ9wFUw`@~>hsi+blRV0wr-|2_C*jJo7pX%;Ce9T*R=aUa3{1Xo5j+Hv@#FXF=s2KVa z-(t9QgA)JIkR;Ch-GqB)4Z(^@m9S*;Q>@w}1;?dINw$kS{9CgM|2+Fi!e-y2f{Y?I z6*=X zn@9PEyg+(nUK9*heCN(tQ8fBlgcBnVLs_FFzoRz=w2H1`(e`>=Y@|SaFJ8nuaiQ#) zM@L|;q6W|TPb6(#CPsQ<q(q8SOHsBUZTvE>v-MvzXAUH z(@o{!pheWx2(&8}=LN-Vgy<8TC%df*YW>n6ydVke7yxZeU06BQfXImz!0q27?1Q8s z{BqjcA}HhxKeuBloqubXCT03S$@r>);L}u>|s)h7zSspWtnT z1sRUXWBMYs*bv?Z;L9|U&+$#>tqbPxvkbn%kNcH0eAid%U$6{)Tx00aLQWfNO+_vH zHezR&#@!{R*5)mvbPQW(>uZwJiHx1=n@B!llkl%sS~L81PBQ zms}@Yio{#8V@Vs=&2|>YR;>ly4d0kjGaLL;Z35mwn&^J_0C7@Aa#H#vX*wnc``k^K zvaxVH*K?I*J{9D97VU=J;?d|nJ%{=B{Q>T}br3v6E1_(>7~eQn5t}_3^xIy7+r-wg zo*B)sT*U-#r~SeCYs+v>l`!v~g9p2?@E9GDtfK;RDu~qVL|S$999&Fxfx+4R*tgal z1R{>2*O^mz&L$Y{YBr(7EM=|-V2Davzk}my{dDt&2YBGnSL*XM8fSP9(cjsn7GXDK zaAe~N+<0OWhP*wGzkVq~ilZe_U{#1y7|nMP#Zy@$@)MX-9ziOM(@Gku>q z#$VW46g@N(9$Kx0-jp=F{YdMYIzoojZ0pHCvkTi6WWgeuWr-UO;S zzgqiLJNVc!9~TdPgIU&(aO;Y%pdONkFMXzQ+P5}&x@QJYc+&4$zt?xE&1*B*XJn3^ z#;3^-YYWuySAnC?L-Br3q(vF85_!|EfeS~>Sjas?Bl9OfZE`fzkUxeC^!Y?ZdL3FE zFK0d_H)5@s9lP3aoG!Wk1}>&tq8mNZ!M@6dWOH8Mr6VKMb5jY{#dPD1{SPekPL*Nk zlw;UGmIXVusiH+uFMitSg7qabyuzJsxcW^MX%rU6cds|_U)J1VJY9@i!pjlCF&y zIhew+XB{A3M1e_|%ER&S-@r?|1mW_ZsIKxl>YiCfMBj3(qm!a&u<$fwDBL8UWA>19 zDkbD~haf5Eau;&j)IczS>%q9N94?BEz$?QPIFynPj&1v4>`ezXJ^2y$yO!WI1#5IW z@Err9v{(~YTU~tfegE&Rh=3GyTxc;TS2m zPlndXTM>$Vn3CNVVEtB|uXC-C>aBkO6XV7CN6s}d$%h`YtbrNtc=UYuaxV&(Zb@R5 z%_JG8fOfk0iWx-64Z`@|g%C{^^F^M>^PhGdB%&f^_*X9nPUL(eo1^~2gv*|IyD1G8 zM7;s2sEOD|r!xosX2Px5VBXh#++5nI&u3>D!#aayn98xogA!lhw|Nr$TO7Mk?7bV# zkABI_=ltfKeC0J>6pdDnd85DUPy+X z|DL0)V+*YB)CJAv$yDvTE<|3@gOrtSXuJCz-TP6AH)m5JQR$Ay1}ihV)#(TMqnwBQ z#1wpaW+G@k>!9LqR=_X~gn_9Wsfc_dRemi=UPKX4lsV{CnqXVDF<-5ca7H|JzuE z_9mL3=$^|?|M3?*?Vgb`o)9nOg9$xy#1@0oRN=*OTUk zY%PxznOp(7J`(H)v+%>S5Red126y2=^bBo<{=RH*jj+K`-!xKqOoSg?Qx3h{^Y2m` zhY`NtnF@vZc%h*RRj*m_967$krJ8GGQuj4f%S%S7ZKBxqd^a;oH5m)F2XN*USGZ#B z$5U)NLB7f6F{NK?%v-&C*`Bl~_^)1qcXfp_uPJ8+_-z&Ce~jNqwr8+(f5UP*HM0S% zoK2yj#hCv>I2bo{n)8~^Y4bAv^44#DuduVP^C={hO`EU%B`oIBd$tYnpdJ zZU0VwuKj1sh`0r=;hHEU@4@tUn=+HKit(ge5RJEqf$GKAnJMkH)aq>-lvz)Qqo0a# zn=F^5*Do=5wosy$3i5DYaxKREHwy97;viW32UEbWguP2Th`_m@_-^`NbTLq-cG|b` z_!&M(RCBDCtSaW@%0a4TIf;bvDS2Rg1E;l=Lcsb)6tV2bGvznwJ~4HErk)o6P9Mit zauk5ML#AMEnU0TTbwR-@7HVr!usk9ivI>USMul?J7Y>4FA3n1!-zM?j=G>x&CKCM2 z_sKB()n#ZAyo;)A0oQ5giYIM?YnI;C<9)XbCnei7;n}>0wU->M_{Z#;nE!It!mE4z z=zKYx>|M%b4Za=XjV(V4@@F5R;`Dpebi9vVQW-|mU0nBvWd;dt&W2yJl5vTRC4R2F zN}t~tBVP|`Vxt|OF61ra=UmFhE~nQ}eo&bA@#iy?IB*Q!Y5u@C(hN`8QDWjygzMiV zk^_X9^AiJ;u zCj=-#y<`(!7L6gZ90MV2SqqFsuEwKbuQ7G00nrV2rGLs^gV@CFxI$fszj-~!fG=o7 z$K|1@)wmPn#Y9lm@H??M>_R_s=Sa-%Luhv|f|Ty-gsq3{*map2tiq8bltvL=fd5|_ zaxou2RR5r_x2ckXyi~AXH;cdbz5wi!BJ&t(#Z z-a!%RrNzIGLxR2q4suxx{<~hnwK8)oOl!Og@2IV&GR{%|%4{2Qf@%M5LWQ>qDm{?r zAGXZE1$ugPv$zaN_5KA%cM0+;I(2bcLM}d@xQ&^Z9}KaNLNICk0<)q1KRQWS74vsa zz}M@f_^s3D@@?2aB1GNMQFsO&57fr>pXQT>#1JsAxr)D{qhWJ{6-1x0 z+{;(t-`*O9AKN0(Oy)XVe1Cxza(jZm-bJH#Ln|zpfHd2ft2mICCbl25;j>vV{xr7b zTZBC06h3QgG2yxwy(C-W98b%cTBm324&hLIDxS!h?$MGDXhG_8A>jU$!R zbTQ&8&G#fN6e5y@`Lm8m(Fb7}aBg!u`)gYt`j%|Q31`%)m%ciX z>9J(;`2vhN5(B>{pQh!DZ;%y1ec06;0iE$8y!PxF{67I+U@yH9Wo#xBWlpzdhd58? z6poQQ;72moPKKBfS-kY_5KVB2gO1BT$b(G|_;=}QBC#u;RWMmXw%9h%r^(X1`0T%$OCMm7=jkmnc1#M9G7XEC`Yk9u}z!`2(GVSC#G z{7}*f+QY**nGkJ0x%yI$Izo)Y@=!yME#KEM+BcC;qE*vZ$68a zkrVK_xE(}@TEnj9bnv=S3wH0KsokS1RA6QdXx+Mk)}{B*Lia0`Hj;zoX@*oJ`Up4+ zxzk9Z_3)>gs+U6#Bs_~J`V9&tvkWj3$c!D2x|6|&fov_42 zoHv@~1%Ivtle1?cXxWMZc;%By{IYd$pJ*%4Vm%NxuYx-#5% z4hQnGF*98TCKg|=nclG(S{;>9kI(hdEiK~u53-ptk%#2pZ6^@#I71hotRgDA3L)Jl ziG4Xy4|26vqWf_Ta;9G!UF+NM_y#e|d{ap{2rCial?M`6A6QgRp9Q}+q|mR^cA>8( z4}Z$X;yA}9ksVcs%U1F9zY>CrIc}rJgmUUBlL1pq18ItH46xQZJVR-5zTWGvAo}q* zd3$gI%;bp?{+fHZed!ijHeD4utiMtr!`0;TbV>dNRaf}n|B((pNWk{M=k)pZi@+#f zuKRS>5+=(82Gm+P$tWUh2S7O4&V*Jz; zOH(W#;U)J8P~sg%B$g{+{}!@Ty7SA zN-Kqq;2ASrVtU~?4SLXzYVlIM!(4XhS8X6=W4OJ|w>T;_;N7Hakz#x^1yG~bg<|`GSSY0 zH9zUdoy$}BK{?kj{KNv1^g6XPQpU#>ZFQ-Srp(G&2&-X)=nLI>{tcBHYbRmCcHsXyu&iD5Z>Jsu$dO|aq zzgvX=&0vh4{Jsfh-@U_l1^6@msh{Eg&~7&7Z4D%rNaEM!2k-$S2tSH{q3BPpV_Q2E zMt^clks3fd^J{qdRRFv{fH0|srE7g{;X-{R80{3ZIGP{{Vz!rHJ}(8A2Up_XIU=}W zn>{Yo=km)6;q+BoE1cl+s>f$_F<$r9v!b`p!OUk8uq!K*L^NK4)Zs=_d9@pR&L6?- zt>ZMfa}IslPDrr#S8yzt#CMDn;IC}6Cv_e3plnY&S#?^FZIH4-sdp;;P^I#^04?rp zn{kW&*6G3pZ<8^>U63EjWpZ?mJK?u$Wpv_N;PMh&ZX=Bn1x`y@|4|tmsRLAXA49Jm zC5{DuhQ8P=4Nd;(j9_&X)O2zzDhV4nXBv-1Zxrcv%T?5LQ7{-M=|a|bX;_-2#g&|J zEC5M;^6`lU@U+v=KVuRu-5X9mE^4HQb0WYp(G}kN_fyj}IlO7g=W-m^$Sq?9rakZ! zE{)oQ_KXzPRGGn@p-`v|FJ%WgFGXR)dHRF%a(dqjfE~YNU`9wcd3m}LR?VM+ubqRa z@a#WSz5Wc-bb;%JvdF|APHq;{P79;yEP4I}?Ipy$|2~A2g<*Z{c~E%ZLYkLw?7S(( z%!Y!k=ryQZ zt?sCx@!$X?9p+gGE6>C7xBf($Ml($(qG5Mh85EpZNQ7k>-%_%sHW`adxLCO;+tUiF|) zGwC?hhnyELKxD5p*gV^f-+zgtZILgNb}1V|UN^Dkzfz#2*Bw&6X0k&Wad5vR5;ddh zn2^F==C(sBe%yQwHKoM))$3xh>7Ny5Wpe!svTE=?_W@}Ui6q}mWKpP65=2k6FqZ#) zrnv^yxG*M<9t$#tQ`=s^!!s(p`|k=!r27lJJ#PqCU%tQ^PiTST@~1fNbpSq#NWiKo ze$-O_E__(t45q7gfJyKnWS>~DcR2p#5hWQc*==eO%I&agF#y}jdO&+987E)Tftoo6 zu&I0sd{fXsNfmLZTiH%`EI0*=ZXd?YT4s=K{*&yV`ii-_nNOG6?x(ZutngiNK5ewq z0?Ds{(PL@I9+%;H*TvKE3UQt?nSh<#|1$TnB!7wNdqzF`B6-Vy1k)$}CEJGw$t}tE z?A*82pg5clp0?Jww&0CLuwE|RaJ8E8%6m!PugrppYpfutHI-#sWssf^Pz*JFV4dg!^W-^q)47cgAs6U_7L!(#*YKsS)m-y1kSz`g|Z zdpyL>bL(ZUhp)Gnv-8XG1khF{nKgwVnjQ*|+)NEUkbk4l_7!vp-k`+Q7->op|1hpxoRt z^z{Lt{#Hx7b9^;v?iSr z@|kiMboe(;neUV4!hq~f41Ki&zwTADa43uer^5aCUrZDJHxN(mDJ(&TJqYCyhvA+< zJk8`dEY{0?$)Lum2Fr3ODHv)V2(xbD9Ka%FxzK95&p4)|Zft%|E@kC`DPjdOPv zg9)@}fIx6Z54Lyf!HXb4xDmJ<%|3;ru)|51`E3<$np8o)Z!aa9ksN0=a0$sfYESk| z+e#yvw*qf@9CN`ug}IX;h0!yPq5J+23$d=D1SP%vNLVGdoWez=E z_^-|=DizbrgfXHfl4N}fLTO$OPCFEY;pJrVR zRQnSOTT}yR!;u+8LtGb&*PfvVKFZ+1tI6ohy=xr`!LZgP#3I=$op$am1W1pCp!+9K zMkg8M+=a-4rRH?f&`;X(cQgD;Sqe&VJ7E3Tc5H3Fz$E?GPOtc_gn3g(naS6$*U8=E zxC6q*`1a3vTD#R02Dooji_`+pxjzHlkFCd31}SJ&bDo{DYy(yVxuZn8KR!*$gwdXC zV8zx$VApzZjtHY8&n7`Qv4;3EH@3t~iNtoiCwpJa2G8o#q^fEo{Gkc#HMA2in%%`>3{%$^; zvii%ayX%u{(-Uy5j5N$V6OL!Z0--Q;A>0xxMxkg!e7(yUDtDOC6R-B8KmRq?6Oo3F z=abmeA%hGt>>9!f|`)B5hMR_+~jCXtsdY2las&?qwGi$l{9N zOwySZiOMc{_^o9Y3Pf=oXhwM`b!98->XJ^V#09)&qXA9}SL1F6paD^(be}>2wtv4! zPsRAcslOt$;a~-0{%P1<`>4&`}|T-)%%8=sTxxI|ahp z>vpjJ;~ua$>;c)!BOs$q2KNI4N|Ek zt4Q4Le5iQ!ml_P60q=Go_bv_6pzZ{6`^6Ah5N!*_eo1v@9B0g+J_20@lpyrDA-KEh z;?7A0=EWIvvGb zFN*}j4S_g!OCk977C@+TA$s3F&g@y|i#}0@&^#rXY6UssvL_DM$HbHN=<5u5vL5cF zjniK?n_%q;Iq2YgE0%gwg{M*i|Ncm*dRf6F;s)WH2su|70GZ!*_2mkD}X zh2Ttl6f#!TY}*wZh{#XE(`XM_6)y1lKsbIXRe-x6PU4Ie#=tl~r2~y_cv>L_=dMkG zXXfWP-j*A^G{1>fa!i+xv)ZZins^)-SOvXLr$RHQ!{69@4o1!df_eE8ob6$RB3;kO zB>O1**{jL4%sh)v6w@$l$y}!6do7aq;Q5rS5L$wd7Obshjp5N#%ayj3E&&+HKB%L;*; zrywls`b9Y73&{Ekfj#FMC(c5nc5w81JiO;LG242<2tt#*6ZtFK!E(t=6G&mK;NL z+A*BIJE~4Uz?HNgF@ivj@9jBrCA_`13a39gOKjA2$kg2RXu{tMU7O`$`-i>6aN!JA z^~F`T*w_f&8ceWIVlm$Sk#6qAUkSguOwnJ-0gu^RfLwYwd7dDSDwEwo@=hH3k93fP zZJf^1st87sYlu%AgMk8H>y~t`Lcg2~w2||(eq1(-o>-kv5_S66+cN`!nHUKT_1tbZ zP84s<35GPe%iQm97RqlfqAnFaDDl7(^MnM+fnR&cGoeuI$(n(gF0)CvX&L~%h#r3{ z@Mry5P?@v}=U$5@!%Js_Cbu^z+OY%^?)Vao{9;&|o&aHXlJuPVIJ-HiKY9PNtirrfiCZA!DdGl zb7z7gZCr0i&vTwZeq1KrkX*pF4?Ey`ZnrghWgk8Y+)I4Tq==nqBbP1We8UG%$(u>*EyVDqc`(+Z6^ zvG<`MB)t!`jUsUUvBf3w=)h0vc5VyU z#NNUKd%iF$Ta3U;$PfC=5Mr5s%-RbLxU1Ta{7INXr`~vo*!zZYyk80>JitZeiA1l{ z1fJTAF%3FX7&XUH^02WScerwW^)aVW`SD?t*%*NFKRs~ygvGGhHyTSdQjk}zkMX@1 zNrnO9z4EE(^mr-+em#L2C&IDBzy+k6J80a81E_Iw1yl9*4ZU?L9@>Jez|M@zx?a0P zr&djZzv($-nbHZ;-;#sP7pBvL(u;}rnqh`Wr?SJdb7B9iVDJdCMkiGRvcl&b)%u(V z<{ZN)A#ng)14H1)vGpKzC71r&!to?EuHv$>U@F;hj~rH*ODpc}!IvEgXrsQ4)L3#m z^vKEJJ6RE(#s)yBzy}%(#ravEDqyjp4;t+=fTRc8(PjS-Eg73+(U7XotM}bQRNI@# z^Z{vfo*v88?|4T3thz?xmU*+rn?74)wFVJ;WeF@9$Y;+!?;#Quk&v$X0gK~CFl{6j zZaK=pgG)1Dm1zih^!XcUexO4F=6-;3yOkWLQj)J@YK~g!&ZwSLgu2a^IL>8bnq_jK z(X^L&9KMR&c+cH^!ZXN>>GxpXnJajB?j_K#<$P1$IUiC&80t^lOQXO4Un~5I+oH?S zTMHSkwvaY1jAd)g>Mg`p9tA1iAUK|Ik;oj=f_uK#NW1Gbt|MVJ{C&r9jTGWgruHuC ze%}Tyrx!wX%LBUJ^DCKCvleRi>BH!^GZ4RJ2im@`$2>m;Xt})~FAF!R1BQpdGZ(XZPUL>f}5TWUPvg$twMe*`ae zOhlWOcG%4JlK<|Fva8iR;46O-?s?mZTP+H}UVSqO2#3`44+qZ7Gb%rBh#=1>T=p%}3MC(d=yk#H=nsA4ZQp=rrJ4yt)c;^Ml!rAFIHA z^L13?aF6S*he7+Y0NmWuO>Om}F{N3Ce`2jO@w&SopU=8QL#7MCqyRIX^A9e=a##*7 zj4IPhIXhvh*fu;>kT@&|Wp%ZXJE;=cnouqWpADskYT(k;2M1L0;F3%;^r`j2 zJR2Eq#~sJm$+Qy_(Ytuei~HuE>nF{>BS9p}2YY1{Q8ciR{rO6m$@J#f-BcP&gA$13 zpHpb&R7tF6@(Dlf20oK$rFBoHu?0F|aI{aG*QK%*%Xi(T^Cr~e?@Sxe_!GoVZBNBQ zg)lrEE)2h|RUqoIFBqIzRChD*3t5|b5{!zSa7GMEw|a^46xu@=lMe^rTxS9#NuEb- zEl0ZbVKbR2bDjCU*#)Gg9>)wDC4zO&aEg!?8pLddIHNbzi_;TLojv&tDm4I(dazG= zAc?1LwC%@I99LL5NHdeJS)A>U-pQAE#^JxDNxj)jraIh-CPvoew4b z``8z9-B>!pLUqPJu3P#g*+<0aq1BOehF}rLW|!qx*m}aIWmjSFb~D{(wV(1!YN?l! z4%z*mJ+zLkq5l$naR1H%=K0Mwa+!OVH#gK_@`(|WT_w%$)+69@maE;ZSjy>vyW!@e zQ2KKIGvZddiJVqXB-7p2VCm&Y+}Y1(jcU?p!g4uWuzrjn*Hh5O>6m^S+|W%(jwyCo zfsZ^xSdD8hQ7c`Mx4-2L2oE~Ld8t**m4Y19wyh@)`JDIdX$7luSCJR+I-ZLBs-(J& zGkJ=yFEb@7!Q_p4B)pGX3a@<}P?c>W6ZuAc(ug}C1Mj6f{!5P&!L1o*cF zEoey3WSqUw82*z}sN)qx;B)M zNLY^vVJ$>PNt}F`7lq0L3D9{b1deEUv2DN2;C!e62352WmvRCA&0b|*tiWaBP|0Ab z*bKZFR0K-7PvE>+G*e(yL|1&1<(Jq$W&78}VTbWzWSqw6{$Nv70qQm8NIv;!V9Mp&?B|#5 z;HRR?KN#Ew13HN?vg87F$Bv1@Si~58nJ0(dwtg6Ph!2}&qR71a9^iT7GbspL1kr2n;?a*9P`NP# z^wJYCcl9G0r7H>gho|vcvXiMTm#v$;Q3_8O%%Hb9U%HX#7s5MRj`JSQr)l&2ss2L` zoVKHg?2K!LDE(wQQ$hmIRr|yEsfkz+BtT0IH$W=|_dz!vvlVq3Cp|hhF{da#+(rC!z<@&%@|Hn zsy8Ej?B{{uvegKiBH)L*3@k2~iJgK)M85Y9D|UPq)vY;%cLX29=Kwxgb;}LKuT94H zRz~P+F$QCEns8fMB-FP*C;v{XL&Iecq`D@=exU?9wYk&JhACjEwH1cjIA+uNlXUja z$$Y`u0$kCp!qc%Fh4&FGJny+vXV>}=3z#I#*vN-U`|s?|?K5#!n>w$de-f-x6X#vI zd>;gz_ffwR6YSCs!bKhPdEYK`*-hCyIJy5S^zP-s!pzfnb=e4gRkMk}hctZDpG}A5 zvZ&0n*}T1@ariYr3mdO&gl1ty$Ts3S2sxjQ?3_e0cwLC6C2mP>R=z~{ErzUI@lA{D z!6JO%E&&PG@}WNBBYg4k#WiF$nPG4gM*rWhX6a7#0^D(@(E?m3)8qAz~Q_)ViLIp|8%O-N|y{c6r4?d z#dzS7#z^c~txVe&jl-x`A+xw^5ri~rLguf2Sn?u()f!rkNiAH){mU{CT^UZMiU(82 zk3XP~%RU|QmgBel*5`*m-wRpo&Jbf80l}Q#^vjOf{H$&z*pkVBmCtDy5TF?F`5#o4 zKZTsG0G_I-G+tmzG4f{`d>FK&wY?v~Td)sJuHPmulYfx@g;ybCjN7r9GF*Q^F**gb zVf)E^OjEQXZk9&8%}2Jv$%zHjO(YM(uJDO&F_&>ZcZ?qF2*ZP(xg=6+Bbj?-7W#Gz z^S2pXgvk*}7^gW4V}s1FCWiZ7I^HnPKY1Qc3xshz&p`UOAqn@K;yRt=$}z!iK0D)9 zKK=SgA5#n~AltTxemt81-wiKeir;dc)@d_b5QPBuS^8RH6jtn<01ce?^i4<>B*o}s zLDe%QcIC8)Y@#e4)=XI9^e1EWYe}hNsrQCRfE&&_-U5``tQ7 zb*m=tL7{eC`)R~$0%53@`xex0MB?)!Igl514R#-x!JG2k7p~7($g%%K_=}vS@pW1N z;cGe8o_is~vz(p>iU%zCdvC14cdI(d&2(PA@kE}I(j_EhH(6zO7=6bIQ0Mso(xnqo?EN5Z zThm1TvzkOrTF#-&sCQk|?o=3dA7Q^VjMHS(13b-D9uX=NTdU4;^=Q_vn`+dJMQ{n65ci@zN z3nw1)!LXVd#DRN%uHk51Q zcqh>UOmqHxh&_=^=B(o~BD-5*BtjKJJWEho+!%Ks5+nW(Bf*oKy*K(qGBO+P(Z4?O zY}mLAJL~H^kV-p6|MQy3>{+)ODyQvbgF?#TVY>>m`Fj#maP1}zD%Zi6pHAGYdLDD@ zNSWyqA;PYdNWg3rRbIw!4W`CDo=vgf&XhYQGRGx0LiVkCzO?FZmlX1MEE3> z9k1m%DP15kg0cLKUN?A0-i2VILJwwq6=CP^UJR0Qm$}(hE*2bI%uI{#HMKTrp`V*m z`8Mmk_yP7BbaBrYyk}s?OzCvNgOfyfgU&bL<n~VXbD49?@1c{6 z-_c3y=d(UHLNHt6KDY0S#5<3*m>GeSp{tP(zR6#3wO9qe<>egs6B0pmwoGC6=!#*V ziXFarb_Yn&Wmx=(w&B3*nE_sg#`i%YX7en*;cj=dVY_%xuo^L%>d0}DrL#vttR zDkdblm;Yr=4059d6oVO{aG;qN+YIFSGchJ@r3*twZ-DxbHk^IzB|3F>!Cw8{=p8M` zxNHt*%*&SIe+F+c!8!x8m`JE5jkq=;720i&kTUiH>$LX^5icJkX>1a+CgT=*0vM>PBHdAcaI!) z><~&?YcR~wT|B!%61bnO@%I>oCW1SPHaZbOB9LJ{^c4v2^v05hW-QGodrYWQIYBOe8 zE$6j3vIKW&|0Ub=sd<;_`5Y&nScd>E5*BCn zX)Wb)oEFTLY3FcC$tqUcWCyKw%7r_#d=Y4&YJN8zg8_qp*PVa zf~Sna{_4!Z1GAW;d$y63@n^WTw-_T^ym^V$E8u}(ChwihH<&OzmNh!JnGV^G!V~pq zhWIsLyB_kJ180MA9QXX23E-oAE!I%w3G~(pKuzCAI90C4E}J69ti788J+GGIlmEQI z$5{joyguQ1wwuh_eiTM8A=ml40>vjNy?y5>9(x$YlhB_E{hNf?i~gK5@~|YkwR$3J zy!t-0zcg(qN_q>Z^i+|M zk8OB&p)%vUU@Bj6iv?Tx%^juAF9ZqsH~2y_i~6lA#&vX@pqd@E36{fW=7CuBOC62s z7Gd1!Ix=ME36GlPnUR>;plvddjT3wf!CzA#Uso6}-e;jdRvfQCK_H6K=&2oz;>p8w z_V-pI^}G)KqU#_gX)WWhDH=)`Zr$mMK=0R$5PhftFM4Ui$N>>1>9;N0teD4h+}6j} zTVMg3*2}Py^BcHsbSCNe_!iifT>iF=x`12PP?@I%xLSM_cO$HVCmV&Bd0raKyy}Oz zx+Dj0NuQ^a#M?AjH%N- zuflQVcq5GIOlAvHE`n@O9e!BmM*^%QsF0`y+wAih)%PEVb?VEYJ2{`eIldh3g~Y&0 z-*f!W=Q6>nYfwfsYv)GJPj7yh$porDs1e$JrGk`4M(<`qw<9~*#GJx`KOZx_NR2Q zb4Cny{u!k?YU|;{@Dwnb_$RPIry zOKqgsY*``JH=>q=M?S;a1(c?Da5Jy648FjPFL2Xsgq&|SLq%;xCRDTzEiVm&z0@8? zGRGSC73h#xla$yGE0c+mr6LPmd7wV9k)O7-pLiT7L7v7wTr+IM8a`urrVgh;o*8T~ zDsqGKj4t!%v?@V&zFE|XVUpx98CxwH@V9OT-Ysl`^^LitW&zj5TYUnh;ucdmZxgiV z_NunVd0Zc75)8`plXLSpZ|p;PuutOLFsBJ|t`%gv+Sb86>1$+FZx|Sb?SloobFfD1 z2mQQ$7B=Ml!v`bR=!{?~-tUtFY*vUPXccGzUr!VdcX-1_Z%H<1`xd*qx=%E|ymUmpoNG?A!^T#T`J2vSyV5OVF}331^N~fQ>(k z%{%xI^3DWJoj;Rfvv@tE(hoSN zS8+QLaaLqMSe0U;q&CjVj3C(42UGuEgqki@BAM|Lnnx_)c=!O8N{KOUB@DJ}MDe3; zIWluAkJFo0X?VV90c%l}52gzRSQB{{aMpLhl`Ct>W19%<@0W#h*K!f%<#Wr+(>#f5qFWY1Te)n&HlqG?Pd16?KF+^(=H6>B0NO z)flB70BR|l;c~_=^vV5*Vrk!?Sv3TvTy?7S02Z3^YE zw&@~Dw@hSo9v&iPR!^`!JDq&q6AHDLI_pZrLLhzg8{Sza#VjZkWQNYvLX^2HWL_Vl zb~8(1ZkZ{}kz)C${f=Y9_OtZly$Fo_E5N85Gbl3m9{s8iN8TNK3!1NO={C;qaea6n zTKya%e-8cy{m47mboCE^@&*=%^eRcYG0>y0))I+)ZJhh_8@vh-gXza#(24sr(bxJv zaJ|fN$_>`TYs(*`G0p;Z2n9mkQ$;FX;|Lu^Md-@0`9A);je#az<(p{+CL!L^f}&F#TR^6X$SB5Ar+m&^ zn$XHC_M1$TlLX-s^~XDjq0~@r0}O4wYWB}Rl$2NO$LPSb{F__Ofy|{q5La8p8{gm# z&*d}7)|F{=Nv>Lu1DU;M%d5^kYCjPTBf`ce!gm%(41}f@8_VHQSAM+?jz!w+FQD^((Ny zVuZqPZSb2YOaFzL5>LgCJUBQBEiGJOP_zRlwS3{D;CozexDs}m_JhlmF_8D2LQkw6 zs;_lTM!EVVSpU3~M!)3P5#LH-x?U|AD~ZB%MKQcNm`|MgjPd^EiXo4Vn93c0j|;QC6a#Oa6v+tt^6Ryc=*mB%*{ji zPP>E~T}*KxHm=Bd)cHgw86qV|aLXwC8-Lxrz3MQ?Fc-8axQac;= z{P_w-^8jsTq|#4X1$2UqIy`+P!NwP@MQvQox@&Z;giZV3$ z1DWwf1k4=nK=aaRBsQa&H<5E(Z9QoUcMi-T6GLXh-}EpDt7{AY z!RPd?76mo;T{uDS5`L?8pc&In;I(xfWcip0l+7+C?|6k6xA`&IKB&RmyClH=;`Wg0 zn+;)Y$}60&stHjk`pmNZ9aPZfG|F!fVQusCVMtMnL>v@`&JVMgtIq1w_@qADBdw0R z>P~=7hXGVwcgLe0Tn|uU5bFY6~fv^tDvNCIE2O= z1*!YVkn(aOWB%wgPV>LRfAQuZe~nHblpbj_J8<&|)iD^O-uB@T`0yW%?yv!obU|+I zh~_#AjpSG~g&m?f#Q13hJ@aEHKX3bN?0&zHEnyTGxypwmtEmT`|FFQXpLg@EcK)E# zOtjgMm#x%)!hELUt|o2B6k_RL9h_}3n=$%R1YffH=sKANFmZ1he@0&jsP5FjF()6Q zaC!mg{f&mMoI+4Cwqkn17Ey`Mt#~^^lc^iof;^ua)IantEWFV|U*UGr#FU|XH|Kk} zv7Fz%staq?9zttsHV zfxp*jvohV;kgz-#a#HMRLMZn)I1?qZzVo`*G(b$N6a-JIA#>LXv0tr)*=aZL;EbFl zeDhiF$>^s3A*RM1N#7dpkMy;mEW9|-`GH5atjZpBYly43bhIl3A>;AOuzK!rRr zbSMjg9Hl5cou2{i`>sMdcURsUIfK`Jt1>&SF7RKr*J5wa6C9lN zm-2n)lAs-Nbm;CknB5{o9Zic+>`Wf*bn_wsk`#EQfmn4}0d@$KL1ITb`X(8`hdtNe zW59Me93p_mj*3^R@`V|bSHs}6N)uc~C(z9C-&9rT1*VuUgI9ki@v{APL00@<(lpkM zN$Cz;cX1QA{7a@6d(V=4N%F9z?*=}gIiPdlEOxslL88!c=niYbBW|y-Ric0_St-N+Aksi~ zc0b0DXSVpG=qx?qF&{^2v|ymE=io%#X;Nx{WaavR+kuFvR8|AlGhOBL&ulp!um|wuUo6ER!;wuo9Z>8db zXSu*z9j|8AS$rIM13J0S$E4?wCu*M1rsP4~d%h5TZXY&v`6#Y)Zld32xuDtmN;I;X zfY4OnWhv^DvzqJI!-g21~H3}(CVi2RQ!&^QU#&IdVaX45F-YJ|! z18XjKn5~2LMTR`MV}Z)jiNIHG=huvcqwUuq8Wy{u{^z4xRH)38@8(@b)t8>Y)dRxd zkQfTveKg_0?l{;W`jS7Z_cZ-+bAXyu%YgoW&7}Kr0$5!0!I#-rczeC_fhNX+_W^=v zRSUPDR%5|LeeA#EN7`SP;yxF5{CO2%{Nfyx$*Lin-^AdKxtT!*uAg zJBXOOVfvD2dar6JkW?-c{qr~xxfjPXC$69)69ij6&4+K7toUipM+qOXtO}IWl;Vh5f;cF!2`P#P%0T3 z9G@kEZV308%>Q82QXAag8sVd)EKK>Jioz<#s7hJ@cPFt9r6%Q}UPK^Xck~DO)E@;?z zVdIlm^ucW#ynQJKXWbAYg26_3I@pz@a!CZe3ziszFZd2Qp|t8-3FbyDr28s&!+2x~ zI`VyBm4zGhCWKIw8!Yh+7cBMb+^+uyTcSrK_0}uM2r_x+5d!U?f zoanqt#C84KQGV$OlIs1AOg+o>+n>LuffJ(|{8dU($l3xtuRbNiF@yX3)952{8L1slHs7?@o5z{$PI#U9+N2KEZ>ycm|TTLp2i*R#_1B?m; z;qzxP^lNVk_`12_o;iu!Ie(mJD24%V(;3jTQpS@D(x9zf0@Q>vNLAQ0vinmcj2+a+ z0Tp%fa<>I&Z(WNWT&{0qW(>)X^8$9?2`mltF#9@o6xEV;(~cj&O74dE2!sy-S}Z39Burli`5V@f!@qLph-(eq7@h(drZcK((^+iPmHS5cRKZ9jvN zn^L(hn*^D0C;)#S^dmu8npmf&j{+ZF5C_3b?4Q1iW(A#vT>Th`k#C^gt%4Tew<9iW zOhFMtj!ocG07LaoIPr)L8htrLz9nGlzWR9B6kd)zRVn zZ8EKVow7GHx)>}N{|C{TLx+N>&a9%v>?Yu};dn4d)>Q$=tZW~md=iW*C zk*ZJ7!@p*`K)NOd5A#l7MSnI~amN-s?w`Y1*2Vl*%XF}p9VeIesi0HxB6zxn^8y%@ z(fvjr$+lUR81yy|{Z@V_kp&g}KU#C~-ghfJ)1r>QJ*rXdgB1BW&k4e7<75A0 zSam=O4%r^ZCv(%Nd*TFqxSykHI+oG!&_<#ycL2+GCt`GX5Z*f6M{VUe)<{7Lk$;@P zv3Tzhe+fBi?6RINTKtNCVBu2e82MnPd;T1DB;O<5T!wAMl+$$0OdaxTqc*DUo;xVjBZjfJsQBn8wQ_u{fse)Ox|8HANmq;8oIc(olxv(Tg1@h23Yt2vTC z2FpQn$_<*ab{kFR*4P|R2fpUcK(ci87O<>W=1-iQ0S#+h&B897L&akeq~nDrl@#@) zi%)rhrd|zRyj;xVJ=_YzUT$DB!et9(Ent>wFr*#TqB0wn!=*Fl$=?qVU^d+x4}PyA zYxPz5Vmf|ccc>KvANk{2`TwY8N(D`t{+xt2>!E)BIG=a^7YVoTX?WkZh-22pL&*EV^oJ&YvBwoqLfvxF-G**cR2^W#b3$fCq0XC3yP3hKZMF9xgm$g5HT@sDAniZ4Expb3dwsiJPVIw00XA zrA4Temq1=~>vgc{37p)slfVoKTvC36yi`8NhkISPN~@YT%#%X%_@iXPb49v!OD**X zSbzntso;^Y9c0`?z$erML!8!O_)kl$*fgKU)SrY@6=~A^L=3}ZPNLjZ?!M+$06liY z7nYb?;PAOXpsw8P?Mo8`XV+ktY6{oC>q8lNQAS%S0Rpa%@avjHU|{AFd>gWcKWZWi zIVNUg68G*2?rx`h^iA=eOB-HTt&YhV;c#VWA-6UT^VHZ<#A~`_p5hqkvX9~KX_f}% zsCa%!vOZ|7xDGE}YKgE)m+9Ozf6y>G4r<>X)21DFV0rBi+H2wpPc4f;>bedH$5JwV zWIDvnm4@FhN2!R42FCnNMctXQv`wyy#(hhrFOs5Y{WO4m(ep6PL=;bl?Q0n8x`8=q zbMSCYI^7VYgW(4Xc+;}N`JobAw%~pZ(XIqs+xUy09CCt2J<-CpoknWTS3KW#oLXqKbn)|PehDG^9 zTN=*j1t$PrJ-h}}Pupm&z{J43;tK-UNrlvr?y+8q{RH&h*f4BbK+@p}dSmu*UZEU)0^z60QaA3)P3i+D(= zvWq(ro12tq??a9qU;C9mZJ!i`jh`WIGv|SkoH@v5w9;FNt8nuJU*Z{j1|t--snLQ| zV)Zux|LEIu^BERA{eLv{ytKitUwoebrC4;AT4dH;*npj(i=j~VB4#fDJniR*^&dKM z+H_CIe>4Nt7Muc$Ab(UdUjqJ?Rha7<2ugW#VOf9!{#hP{4ZF`S`JKO2exos z^_QtMrEeM7iT6QnNhnO(k^|R*<(WU6?_{{;D7l+?p72|?K*mri2<9IEV~Hd1=&%D_ zZN+7TR_O5F{IsTp++MmddIz+vH^fa1*U`dE5kf1j)6^yEIMH1gpQteCnz@r#KN3q< z2Q-o*(Oh13(HQ-bc%Mx2GGZ?-mxG1V?J_GsipSd!iUy?lX?bN%~;q%`th0Vz5QEo0Lv_kFoz!csCCF(T%=^s3*UQjNW?&BTt@# z+=s~w8+aH><Jh*KCC~?~j6A*cz~mGKSDrj{V8yJJ~PSuq(88%?#9xRAYM`HsqMwa8B_6S)*eer7g*;y2r z!{RW@&lJ+vALDJZR$^8i*2lq`Z@jt|HzKmIke|IqkUkd8#8-wlu*rBjSlZd}URrRS zwx$58u3QFFB@XlRr(VT{rs0s`w2vKe?j?Ws9iRgVPtkKh51Nn$oOA0g9rZYY|145b za`Sf3_R2uz)mHS0N(#R9QDw^>ia=*Fe``vo*-<|~ z>SDK^iXGO0JLje|0lJlRk!d4zX<6XrJa?M5dNXQ2n*~p^F7a5=sqo-+8LarwN`59L zkfCoX`6qT85<)({NYfl$#7H+sDY;{g2=qH;Y#+LP*b+VAr@m zA-+x`?1Un2rqzBLi_|0e`PDz6_2_bPbGR92$!-JNrDyR}!xj?$S{GwtCo((-dC1x& z0@4QIFdX}rj3;W4$Ckz5ey4@zt(wWq@74re@uTR)&9T<|`l7Cg6m0QV;Vp8Cfy@rh z@nQIlh*%}lSZ>c5DAWuWr*eGsqBK1IjS|U;YuJ|g5zsnb3C~VQ(I-}t(8h7{9%RD7cAONKhC-Pq zXdU;?n#uK)4m^6zzZ%H$EYiC1sj@IL>hcJln*B!E9ktNB*9q!}&VidlIY!TTj+b&L zv0iP(JhO>+XpLwiRhQ-19+MPdmLTT`H9CVzIzqhrn;3X|FA;k(Ly7JJ4JQB1Vmv-pP;|xc5goCW=X8`A8vAS#$_mZkjP(pMPQ7qb|5_J&$xR*~H}@N~mS^ z8~FHA3mBgWEGm5i>y@tK$>rI+q$BE>I?aiQzD))>u)@g$VW_Hf224Nc()+V2sdVQx zs$Uz6%PO8xHR%pg{6~h8ya`}Fe>te_btD$Qx#!qxGUMSQ&nBNSgM0tE!s3Y~VB2(+ z7VI#A7uA<>j_MVXJ>La;Klad%eWSeh16=OVdM~?K#Do2DP=-O1YcRNAJKbv757uon z*||dQ`0UC9nDVuS=D3Jp?_NO&mione_*a-oaoO)K^Ihu)P_kx6zi66w!Wr6wY8!Y3lZF^CL)az3sp zL*#ChBKv^rd9ASD!5^7iLrQ_m65JQY$8N#o*guYIR~St)9|z%*sd~)lra*L=c%KTt z?I(wwxbO0e7^D1@k7A*5{Fgz9k!PE*SEiO0ipRqX{VKTOEW!kP39z$-y5aNpXEa4y z9#+~v!!2#1Ab7_T1U!y`$(nrd-erY(Nh{#A?0pEI83JBuyXIZ*jM z3N8)XV%BtP)X$D0p<^28SY-*>x}(VI#}TbCUE;8gPrQdTSo9ENKWIfl#TpG}y`d`T zJPU#K%bZyw#d=)rB*w%XmxXIf_1QT`D&VQq4Vpf20yAGkni0QMO0M1w2fJOIlXB$` zFi!tRcNVwuKlF;gzI}F}l)oQt9a#l#G3oRmm(i{YxI^E2X7B_zTQMEh$KXG?KHeg& zO0w&MG0e0t!3*yF=$M+!zh!E|^mU%&`mlk-Tk;gnu9QWotta?Wq0xAA$!RE)GiF{Z zL~@SQv-t9F0BlTCV-1sIVgJ@wnD#UkkDN2csm@ceYGFDaT`(1uYHaWie1bXE^7w4t zedsYe1)+cZ$ox!2Hatz3DR(P}O*^B&X(*aM-XD+eSG)03lpcX>ff4k}%w$-Z3GBPn z2;BBijokQL-7t1!K6XkPVY}p#hWER^qb1kP%uMI{L_3t=Kt%!_O)!J)-Enx0%a7{2 zW|Bz5d}wTwLLu)*BtJ2&;ne$NnB!B4mS*pWh4?AV+rsjHDl5TN%TstFat&+#PlKJi zC=yz(4noL%5nk@Z*Sxm73s{%5JaqZ^mFRp^;_1BTL0j1a(5YEY1`kUzAr%vt>wBM* z{PuU~dAy5iF8>AZ7)4glK!7Q!C~Yv7j-_YE=5YMuT6(y11j{?E;cv$+^2{~L%w|A> z(aGzDpdBYb(AF6aPq;=e$B4qB6lGHJbO)&X5n?_cQU#AI92daej1$bY(S~Jbh(atk zNAbIedlpJEp9cXKt&bv(SH+=dVmrRS7ftp^G|>30V7lI9DUr8`z!b+5=up`L^Y#xc z)^vOare+UuVMY;=vPwn4!&|`cq&<7;j|7~E5P_btQgUAUJ})_23iL-a@N2>+8Z~u4 zOuzA)V**8DSLbH>c25{cK9fP3mdAhfa0346-Oq~)<~#;ZPQW&OcRGWJGH*9nQqwIp zn0P=OqkRpTt>dPUvGpZ?r7+N;B?tJPAM<$jt2&9tE;-ibDCaBV&Ymyp9Eoe+N8S&? z-I&4UZSZLW*1Y>n3=^_RZM`HTQ`f_%390Opr3!Foi8{CmTqGB_IZ*|pKX6Di2&$+8 zGsWUB&)hqI+v5uF72Zh3h2u?(YWa}f2D>tNr9Vfy5HA^yxC#M6^y@mlCK z*!o!wH8b1cvaTGR#68QJ&+bFMbRz26+rZPlb~3AM2YnG$MTNQszW*zuWLtP5@@pM$<{#7NFYxG~^$d zfRm?dV6d_%F0vD2L**lJf`tlW-B^n|Cj5YzQ&zCoE>iNke2JOb!y=gWj$>gtoj^NH zJ>1gDQg6dd7<+si=s^q2_P4MCu><2U@Xq>ct@5h`4%b4(jKopy~fE2a4(Se2Wq<-^OoGp-oDkn>`_j+O>XG09D_b&${x0x_jmFYO%6v^9rekN<-u?Gv4Tu^6EDk$5f z!wRXpSfHMPIW;Dz>01rgHFaR^VMAyv%b}aN|Et?Km5JJC#P62UVMVtshV4~TN&FEF z=5gkGDx{&$Y~A0F#*){uH((eBwJbo&d63LCz04DCSOJ-X9GCUceOmtCBlPvtXE$Dq zMF9t2oc_Rou`dp1F0{J9+tm}<8;93|;?8h*ld~S09!fJeomar2JKNa}j+waR>Lg}( zX*GxlTS6bluv(GcL^hIMu=kQ-yw_)tpr>PWIcYPQ^}N^iTo+mU1*yot z3$H|ZY}^uS_AbX;@lDAk9USjF<~=vJH*kV&LM!=NPva(_>RSr%LI*&{L=?w%ascSBC#Qn(zj?&m^ET8QvDjuZK$cqyGIdjQ*m-Z7 z&^q8L-J>UlqwajNOwk{g`MF^GK3x)a+;3%4dU7j;$Rpok34BP zX7(Oe-jezkcu?af9Fvu$>)lqdy8_g}fAj>$KIZmE$$|9O%mY~O;SEQ+^l{vDIrk3wzUu;$q_GJn-Xd{}OWjIUSt3U~iyWHbdOxuRqJC#94 zDTccA$g<1Fl5vmKWg_j*WdRmxNIR{ZVvonIa4#J0Cj#+lm;8S!Z|iM>lZ{_yR_rB^00r5@XO zE)IeXj%M}PYwd@DcbkzItoBy9rm&&XPVju5*!e5GR}? zCdD*tI>(z;HJ9vj^=RAC3ruz&xtD3cT8vzS#-L-|Uh*3;e^5d5-|U2wlVd@R z?}7J2+QB&_5X_uQ(A}j0lg`?ql-NcPzaPx2`WwvUy<+jt+(=MJQ)WD)m(m4fl-z&z z06XrgFbbYp%#l;wSkUSQwf*mKOH4bg`V@=}g9h~Q3`NYi^&7$`Xn~-N8-DD3jtes{ zfMv@TJldIo3u;8jy#aZ~_|#GidwLG%FC}Ex#QVI@djHUET0Y+KpMk4&@A5OO?!wWo z4s0D)V16ja6630FeDsUO(2ve|Tr8PfRT#q-E_b>2%XXaVKSbhxR*{mB3+Ucl0H@62 z!P=scer%n9u@Xi2crpuL+;gbYzXg=v@*C#-F=VHG8m0R!{)2t-C+Q`nZrU2Z9qs2z zGr^~BP^+8G#71-q5w)to2X%?$8m}7PC>Npm;YK2UT7?dW<-^{3QAXI6?e**O24F)Oz{oO5l3VBr1Npj*6=2&o0Z@(ro5^O6ZOIBcv=oh_CSN4S6grMJJ?jUgqwpP_-|$-u7D| z4u`9-W>@ZzEm4vXdLWDE^>QljtBQu2Zfnue~;oi^DVSt`7ErOdmgp^9))(DNPH3+ z4;ov!?A@pnK3;1>-#ZJkk1oE1m(lkjYF;UdJ6^)q_ZD$8-~j&eHZf@b8wINx<`Ca# zZII@k!NmO`Wx9h}qhg3fv2#JM0cu_wSE?PnX{=dY^FfzU_%j2YcDSFe?KpIc|P*X!Y% znI`PbAOlD?s)Qn;U$9f9i#G5Sn1?2B15yt#=BAIzf2916$pHO=Z7I2 zpC)W`H5xn^fXq5urp^2sZ3$sP_f;Hvw23i#+LA z<0tnMxH0T1@5!?F@cVcanN62~&A2D{pU@%^MDC#*_cmfKYB}M6iwhfCL(Ol zgc8j85Q72(_IS~-5S&ZGXmXArbC8<_N;TPV^A~xlyPgjR^3%~zvYa$=?}HK1<+OaH zh*ll^3XzY!$nc8YP|w|kEDjqbdjmW8SKep9v4JFLUZn%>s~L>>n7}`;{g`Hrap%v` zS!SPhOoB&dSJ7^pB-2qbommv@h?C<(;i^ss#y2ga<#NjGMu~Qk6ng-Fn<+Dcl9s3_ zSO@NfAF0yST=d^1NCjSB0juN3;C;I-<{lD8s|jD=px0}dy-ke$+jAP%%pb=7jCEjR zY5}v^boktLi7c{t1cO17AfPr0hV8o1rFk8ka!BL*pF%V(kmMbIKbtu>Cx{OI-hfwk zR-^L=9*UOt(~10782?}=Ru~E~{IF=)dTlzpMq%9S<&)PWDl!^b<{FxRZYEv41vLM< zHOh_;K%I;RTi|WL{E`*GlE-ssRA@i^-6+d^Z`lX*)?K{qyo8-6eWZbjoSiC0`EJ=}N@%K_dx{>>#08My&2-6&PO0@Hbo5(u)g3adlTC z7EiE8fs63%kCp!3Pu$0Dq(ZPVFePoxd3mo|xhH_$u@WJ`xJX_lky8HffFt*JjVacb- z`H!ba04m|;kqk2Hk32hZqY9JhRRoqNFVH5xJs|vRIjoIDuon;~XD;1DtHA%jdMKTG z3N@2wxBtS_7F(`IGKz)gb&=oy1RiEZLe!GG*krB3@XIdZfZqUSC5SPHe{j61#b?Qz z5SHUJKEqz|P3#`yDl+9v7>vsM@>l-4fcG2bF@{h`-*_hCnk9=GWG>Hy_O17D%4`=H z*HdC|)y2S-Us-f1Bf<*Qx`VmiAX)@HCi&}1d5hw1;Ah)m;<_-F81Ojf-X}>`;h7O! z$!*2L4T?NV7CX))%loC5mOcQgC9+2P$O#vpm-Fw?901BY@i z@mojwpls6sYzvTriqKLJba=<}w4Ml~_ixeGs!OnYoMRKse1X=SfA(vC0Y;h3V=pTI zfaZ;nFyY)eOf{ZQ9&cO+GqkE;`kPIpF;okNpEmOD7`M`=4nmC2k_b4g)Iv&HB_soRYZM8_aPCnE;pXy3cpPU{`VpC&Gk^sBTuVC1LGGR;~VUL4EwVl@?^g_LyP2RGBIu;)%~r9KR(VzDVGg!@vS^<-R!~F z?GR#r7v$mlC&Tb1_a6PEr~(I92t!|EBDQWDrgrmd>FC~K6hHBdr>WdY79K+?HY|y@ z15(Vlwl4DT(^>xbreS(=`$_828U=qxOW?$;$(Z}HiHL`8fg^L);mG4j3@x;TbXOUO z6cuL79iJ1c78@|LE~m!dQ(@IV0}%XvpQu=Qk;QTg@ao(nR5VW=!kddgXT=MC)jK~L zbR`CUKKg-eKLugr?p$DQH{i3?3H0B}wOlq<2{!U9$XCG%NZV%!4^uoiuS^o@&m1BP z&F2LK(?ffp4 zR?;Dvhh7KAc=xx?!w@ky!Y|nX6Z#x6;h7H(PJK*_Qr)RzU<{nd?rZ3|u?Zw1#Nk`w zQYcszi)&{Vqv*7i=*gYe=B-#y-6z?R#cl1l{KDM^m3b{R{zWalzkMUQbu^S{f8L0p z-!sfK{w&8gKJ|F(M+?0_^*n48OT;B%X?&%jcx?JR0~o^{xTMpRh|KswhXN&GmG&G$ zw|t?yo^#G{*Cm*L{#>k63xsu>Q1u$~RrNUN| zNI=0FOmFwXuN@Jv>F^o2EOUY1xm^<5qcgnp<3@L_^e4hAzmkEPo!mQ4gzFh(q4uF@ zQeDM$0X@&*$FKYG!qij{?y!LD8gsnxMGx|1_k-fv6I82b8;<$7;B41kv-?aLDQ07_ zft&U5XQz-y=@K|?niTFEQNn+PlQ||wB%16{B*Rk4eAUQUQlq1dbCRO)RKx_>o975? z2iAehmOWtA)JocaYjI2!ajN}kAIO!Nm^MG#il2i#Aw4w+h;!UyrBQxl4KA8z4wFTS;hu&8ybsodZ{iE6vYI#k%PA!VjiIo@@jq@h6$3Ah&c|3g z3)o|P1{b>&(>=X^s8<@d_m3=4L5smJ?1IPp-k!&+m}1oCH{Y0SB#eN%2r1l(U7n;CEjAycNmtLia9JHXr64?+b>Hp4aJy|50=v{#dk0qv$4tz;vJby(JBe>F z8}0w8LBq>v$ZtymMkm&^dq*h#n-_&{vG%C!AcjV+>FD!cfT`T8WG?4HKsH+iySe%H z!Z+LC-Gj?!%DA}( z#O$dcduEViGuvRn%Rt(4dJUJ!ZzIw14j8#G3yqds#L;v6@I=o}GCbg3w{o`&oqHn? zq>LB9t??{e4m0>?MGxZJpkQ+Iq%G`9j)Q`0DdaCG;{h*yIO<>x)ioR8%B1DExy}|H z%Khn9&l}`<(mQ&}IvVyZJ%Ud?e-fc83tZo~A96CM(XBEAWVXP5uJ>bvp>v~P+;SfN zYvnStM{-OLwM<0UzA(I1bdw0o%LM6!0b(7pAM*{40{U8FxI{Qu7;Hs1mzi+VSq5rL z4&%40FNj~(Y1Gj_0T*7!;oO*sIBC{F$QhHwtoG}?e%lOG9#(^(w_+Uc*%+&SM)Gz4 zZ6LqS&Ec}}KTY?aOvO7Yu~?dtgTf1P>BHG-R9}?qK>W;r4kdG9@u$hucfBvU@*@(w zTQcES@_bxyV-sGOs0Ozcz3Gp-FQj4G4Ki|3jJ!Q_7+YtYr8}Oj$9cIin4OYLEzfk5 zN1>DP-!XlZzMqMOCI-a8d=?rVP3G0Oo`rNJQ@%o4C|WLjPX(w8E6FqAOnOm2!!+GWoWJu)6t;Hj;N)Gt*pM9r zPb>Rrl~fp>+3SnHVteR?qnQHlGZKG|+=fgCHT|BKC@|A)n3W zLT=3+m{{_PF5VLY9j79}_FWcDXy!5%>7KM$SCq`F`vw;tiSxA`LUCTpWg`4X7`A&K zgaOrabg#;85~Uafx)WB=4XOX=)xLk!Fl-Wv=v&}{hCb?6t%OUqZ6f;@S)k^_iO^?t zkhuAm((n_dyugniAZ_?D{HUrYbAry`-W_iE`O<0ddwh&8aoGX&Lk_t9#ud7CRz7;F z>*1=}9H>i_qq9`E;L>xuP(n0-l%{cicOx-yVGhe1c9DGjT z_C1q{mhNKw$@>bIrffi!8EYXs=m*CrwFHk9(flAueRL1E#_T7FFsnKY*IsqTg{QXQ z=-Nzd4m3c!o_jE-c0E2Ezlx@It#r)pIvq(4NA<|9^!yfpf&~{K%^(}@ar3977A^FM z3WlA>|B?LK9QtWh1PCL1Rvvu6{370L2ZnlHgI_6s zsr4&gnDMd%ylzvd3#g?(ho&(Onl1d#67#9_n|Ua+vK|iGZNmPk;n22i3*b>Z_~BfR z3gbU%ea~%(y6c4}Rwv?GHBan5)XbmecLVC3!lA`t5gHB*5aIPnXy@4jvZFXen0*?nzXYRNksA3~AAzfnJM#rSHK6zM zAPrO740da}Xkv~lytN8PslCT>re-vjk8Xz5HThU#S4rPV$8f!>`SkXLr?fcpGoA3< z60elJ#*p*U@TX`Z6J5OyN9&?ctp66>+2c%9@;Yh4l~&W1ij`2zab!FUE<=IcCB8&* z9si=8E840SpgxaMziBD>QMHh~tg_)R?2YDSuY3wObLOCZXc+F8bQh+^ufYn-4ji!@ zp)GP%bZVF=LiA_qs=%>rIUl^mgecA@@qkXAl1gv;SJ2|m;W&|*M9#(((HnJfe6yhI z$m96Z&y8hZwPhYCgs7p%ijPE~@(^nLc#F>5eot4b8U2>8MRSi7ynfvP>5=)kb!HLV zIvW7hD-&BgC zOU+z7#~j1Jjt9KZ=tb;<4}SSVufJN`dz55MI>Utz`R-W9YwYlmw`RL2POf9{ndmtr94A z77^p#HSgfr9FC)rHVsRTJp-LXDWG=nJ@oCdga6tTKtlgBZIjpl!BftWnyM){^XnC~ zgNLwZ@D;kM)$SM5n?l6$G}RX z@5H{V7#N|6P(ArAX^vS=3ST9lVRI2q%-n(#AIFo#`BTAukViK@62ksZGa$^-5k{`P zpk9;3@X4!3U;XO~`TrV>tt z#PdN7O27~;2};J5u8Se;h9GqRU4(vC9Iv@t6CV4@z^!xo7zRSjlvD$v{iqUNv`l5J z1p|2PzM*tp^dcA#$S1$U!l7(cIw-y8P)SyHbW@8KWX-$CWmNrey3%DDIqMO=N{Zl1 z^nT#&_U=T_bEjzi>m{IL?!oU`DMJ24tFUF~tx?1?0p2_^;$2kiI4R5)WUW>4 z((yLzE#>&PD$|)O$|IoXElwu6aP!Y22qsqrOzn=QK_YjCRcW)v(?{d+xB7PI_!ENq z59@K`#0GlQD1h_NbNu0%!|;B7I^=#F#r>9<1EPl2v{CR7j9C6@A8wGY`a0+_*9Wjys3hRCu@OP$N(;TSPJ#~BjGTY z!H@VinQ7}egYKSFm?{5FU<@bD#(Wu3#y>p}COdjkcQbV?JSvXPNi!LlT?Me>f+XuP z)W*4sZ_!>;Y39M-PEz$%0=rNcmvOtCg13{HQlZ_fLWmiDI}%Ex)vlm@WeLy3Ly;`L z^A4~3w4%G82sr8n081~SfZZWX`O=3;MhV!RA`X6Ed*H^Uaq4%Wf;c-ZXHz!YVP--L zaSGPLjLZjE@ii0d9aP|iSqOZVFo78dTwz9e8DuZtP46h>z$29jZ1}@T?6_+Ql?b{F ztqEZ$w3CM>Q!;4q9c5J6G>QDo@}|#&PBIyNpG~Ai{K%8)VA#9pJM5Nz!z=rE0P{Il z#Blu)xV0w(I`J}}|BrK3H=p6W?t*OYbxBy=e;1mRxX)9$Ad#JThPrIM58bkI*t1X= z51H@6hms%A{MS14zHopyvwSNsJC{&V6)C18>fb8hl6e~*-H^m@dLbNNOOgJac@yteo#5tEYHW+eVo(<|C1%`ydXcI) z42$SNrO7DD^l~}r%86`0ms#qzRDzWr?c{{NA^S5}h8;-b+%B6_NXPpdM6B*S@snN7 zE)#I)jrG`p$XgZE_?CqC7Mz1A)?N^-JqE^!s^oB10(H!GhhptK+N>P`dW)Sw*{h8CaMxp_Id<{%=FDDak?)<56a017BD+1G= zYU%JE&sv`zoh!{aX=Gx-na%va=0ngYu?{5y zYT%K_R1{rsm!>CQL0y;kH2ilH=$c8u^7GgEacK`|faEb06)EMFzly@S*Q`PC>w56` z^NX%D4&pep+d(_|2@YQ_hA=TD_QCJdbldMmJYN_c;C~FGNm2 zYJL~Fqh!t=jx0cz9iKo~U=pM>jiAb#4VYgwkFI?+0*}w!hGmz;Fuo=ZWw~tqjhZj8 zo8uMKanHy0HhI?jYc_;RxS*H>z+#~oG*>Rc%Jtc>HLj0$LgNtg_hLR?ot{G-n^l<~ z0}mm_`zlWD{YYl=+Q^~`KBT<7PR!yN$U1Jwrg{WJLdXSl9ezP7Wp?3`WqP2|tcBeM zlAw|t2A@@z;-dzRNq)KyZJs&cxdm!8X}}Ci^`7Eo%_G=rb{qW6qnKRv8=Mbxgg6ZS zgiOUaUd`8|?5X_MQ1aUsyFaQhbLH~DQPKl8Zxuyb#qT6c5IOf!47k4giKM6*$K)pB zS}s>hZYwjw)ho$L^9tI2N{%%U2qL;^JK>b(bU0kKhJHA6mRAf%(0+#~GpyVN)!o*x zBK!&-8ve{qU<+=YREXqgXLq(!J_;uS@3Qa8-98Xq@Ol} zhnusAbA>7#*~raT6@zJ~og(vkwkejcoyneU{6Ql=H_%a?+wiRPCd~6Y57{feW4x*` zq}`YZ_pW!KZD$n7zgo!7-d_vLhIhb*enGSuH|D?RX3DdbD#8BqWvc&pIV0{eg--E& zLz44P!ChY-D6|3|-1ie2pM>It`rk_eSH4pb&O=f+x)LS%O+3hheBu9$)Ux zgueX^G-FhJ$??w`B)jG}T8k})^N*|1T|gNJxV*BKj6CbfUZ5Wz8xh%cR`lF35Be`( z!ecLX(|?tMKRC`55rQ9X?JLVHV9*1Sd6auc{)-OYvxeWBV-l5{|3k+LdGYE{Kv%YxA(W z{w{cQgh7AIH8}O`BCazYK^>oPNR4TQ0N2;}%DtLYEx(4^N-G$bd(Y|b-7M8-L-0@6 z8v6F47Ajkwhp6_aa9$}1-g~ZLcUP3j>9udJa*#zlztr!?5#GzQf! zp*XX64(rd&XY*w=;q;S}B*#gZ31auMW;=@LXSxJpcV^-aEdfaFeu0iU%ivsGJS>=2 z1j%-xxGu9Dca<$pEma7(=JGCJg+vhSka^aV%)Q=|{)C`~c-UU^ys^vu_gUIl;|9 zWOTt~?l9~)^d2S+3Ba3jNv2q@i`xCyhsT8{AT|F6{hwY^o4HD?My?(kDL92OxTD5& zlojIl7bBRvxsx2IFvR~}$}*O%IiMi08n!QRX4m%BVtLt2W~6H_gD*L5)rKc_AEv_$e|Il@G-^IrrT=soY zusTY3XhD#xH2dumA@ino;;sHgT;Ii-J6HF^m5L=y{D*I36YoC=T+xSPGoH|8Iv04` z_^&`|xwfgUQUiS%TTZ`zKF!Rn(<1M$&c$A43FfWZ!Un~h=KZ~J0y?%g!@;(#AU$Ip z8>AP4iQYy0;VT7j+b@GPyOzuSyqhrO9nETJMAL57MXaPnIp6Nc8&s|1`j|d1z~Y4! zZf26`(^xC`UCnu7J+r_dW7B1rqaUWzJAysr#r14zr#}(gxcT%qxjdf5d`Wi6!xsFTEXK@L z=Jvf&y*PiT1cuFc#b2RZKnGKovz|+wFj1lu7nKbWSN9(N>fUiMiybCw1Kr?@NCTaE z_&RTy^esGXFpb9Zr_;=NA7J-3E2!^DrZP4m%<-wyn&QT6zjFhk0As8(ok1_h%=O{H9<09Hl8R z&oGP#u}9&$e+1|1&Ee*SEx1ng7ypY?7M$TS?$U*mv1Yv-uD!4tk|RFis%>`c1nb{m zoVOg3EjJRmsIOSP`4aTDf5nf_6xn|#Q|Nf66^ck+#?c@?v|ORQDFTR+o_tEyPk`d3 zoO9sQ7)or_WS3+#ku+x(b|3v!7t}gTtDHZWdOtY;?%~StB*PNtyvgH!|9a}SP@UcJ z`U!3jGo;JH7cqyvJSV-$F(l#M8Vs)GIMBSyFgq{~ubRxp*S}xFYFT+Wlzy|WYeFvM z7H~XEl_|_~5MVDm%d+2#$BCn!IVxzjz`2GysB>2qy$@}`!ue77F6<@zGO%HsJD%f< zYg2ghRcEll6Rgo?`g!ufbPiN48-Se4kyM%Md!^At3Kh>G@9Pe{CnW<$(e^OIbRIkN zSPj_g$Kg;g!*i|rPUc)yAu?beLvSXv53xjUd` zYa$%@kL7nd+~m{wmHhCsdiwZw3*KwX#Rj=de$i3^bu5K1GU{j`l8EPb ztC9uMIjH6t&-r~T=zpJgurn64z|0N(FlAZ~FEQr@u5#meqt8A-+r>LD%{T#VBE0d3 zz!KcMN(a^F$784LUmSe3ocZ+UDu|NB{1v6a@aIkpXbX12@*8$g|5uJ}+<6`ZDffKL zN`+gQ^5mIDGj6}Sm!H$Gf+zl(uy-e21LMlCbf(KcFb#f9t1^pl&)^$s^jDmX(~)Cd z)=g&|(reM@+6Q_@+ZR{Zo59(PSh7@cI&;A12t8}Nj$FtPU`~qO!(&-`{0#0S+gh7V z{4H|far-BH(c%Md2EB2R{YK7CDTf=`^-$Eh8m=sBH7(tFhKg4RvI`ZW@X*W4R3!K$ z+chbc4mM6;EZ&GQ-`!;4{Iy|v;MZp=ub|C4e`-24u-}5S^apWZPX!VDJ_$aPaav&| z#++Hjd9T{;VTzg$PG6M`5_4;b`AZMfJ-8i6oew%BSl~K80ldER98I!~B12L)>6)5k z_%a+r_o`Om-`yX1Vq(oWfAlHd7V^Or=Y#Rq;B)x3>LYmmG(uV3|L~G!Hc6a*A3iO* z46B3s&?V;$jk3`O{g2Wt-&T$Nkt4-AnQ1XWU6s5H;}#-ciXieg4CFLJp*g98gk^Q` zOYEl+^9Q!Pv{~}F&@u`V-7lE-#uk#?z^TmoYISsyPlXAdZ!qfa4Vsa|gY7|u=)w7b zq}iG5MI(J?<;XOqjq{mMy*%Pn(28}A`{??het4L8hGgxugnHRyq|x#p_nAD3eo>cD zHP?yUY5D={Hf&(VPF_Ui+-D>%P?){_As6??oq#4`BWRCTBm2eMiP4|$P`Duo^Rndd zemkE8ou0>fEbYVd-BTF1rX$RV`V3H5&BvkKANZ8>d0tjdpts&Bup3t>@}Rsq!CvH{ZLpHQc(yRcyU zZ1(rCKGP7ub*9DwSzS%!O_Y0J2?7jvHOU2pjvrC!d>{_-|;v;mn zo`U@%GPv$eD~vsw&&t!;OsSb1sFZ4AqqHy#7AQlWw-Pi?a)X{^D=O+xLkuGKQqALY znAH|Wz#Iw3dA#-L*d)rRieH1?-IwwDH}2dX>&4!veaegC-^XF=UQ(hHOgFbBz>4vo z@TMXT-A=aP$INutoT0)t?tWq_H=Emq*{o;o8dqYJVF%4gx`>T!F;t@b78(37iw&sw zfeGL1A^f}s^U_<0-7UJB*&$m^Yx*9bbp?Y9AI1^8_kFaeY6b3mX2QgLm{s>7!j=3o zQb7UNBHlIMJQ)9ThIe6_Bg7pT!f)w1?4v_G-pMx|nCC8n0(q`<*PHol|DlJpttSmk zGHW@1X$WaH?4}(jrZKIq^RVEl2Zncy;joM{@lrlOzgO0iz6>t&yzVsYl9OfJ9!Y@o ziUqL0^&0%gxvu18r^2?e4h$L6f>{SLpvc{k9~)UgCg_af`d0-oWWJfcouEZEWhO9g zRF^e=Rsce#X3WTjOund8Cf`Y@ijIx>lajVFaMO*htLE!N*iCQ@`-5-SN5SIG26T;S#_s|YUO#z(u@~LI z*~%H3wxv@WpFMm}z@!etY^>UKWJ#>vkl*%lPmDbveMy4H3n`HO25!Kbro&XAHKpi|FXRAXMsTqL;e3T$G2WUvK#U=k1vl*fnp_1dC_iEn7U;S5kIeS#ujhpo#^=lIb zXxN}&bSa-V+C-P7d4o-K4DL*xg&TrC@-7Xnz}|vvj1NnL)^~3}UiqMDPg*I~6}VDd z3)ql58U4~9;jo$rwXHkDA3RY7$I9f{1H0rnXUbQeU6dXT-;sq2TMcoKERSRPP6Y2g z=1k<4U%0|gf)NV3ggL?u*p9DBt5z=Fd3Xv0g}CpWCjpqn<$S$6)UiO{2$xTL4W)m% zUF+|kB&ziYnaI71PARGJ)q*8hgGZ~G0O45b{W1yVCXbRgsU~=M)-58q$P13i521wT zBf=YMqV1W7$QS=H`o}Gpw6)D--XZ7X@KinuII7`?axVfw<9jDX~vl9YdCN+9NWfVMdSnDr*@QbEe7Iu+9!K zr2E`>-G(bQuuF}Pe`Ix;6T}7w2L7Y}pQc;YtaU&s?zX09#gI7FLr zFj`KY`6Mxlo$-O7BUF#QY9(|sPY%q@xty56KbZOG61ANmLR_rH7`xVE=v=IWMPG!_ z==39u(@4a07GTktK%!-*3De&{1*J<0%sF?CC4a8UbbE~xY+F!Dj*qTDfSp#fa zLoDR4Nui&Tc2aMRaV#Pl}xKgRZEaB#ARXZeLOXzhF&U=Al6NYhNu{INW zq>^qAvxeGRs+jUV1GjPAg-v%osme2798gqcB2w-6!!O?8S)Bnm+#GD$oot8?xIOpH zwZ?2u%N<$};0jCbh?0ZeEIQnhX1-e5L20TFUiGO0=8P<}EusrfPS*hcKf7^ecQ!E> zoeDF%p7AJ8jxqW@O8;{d!S^pVfU=JPQyc6-9{)UtX+IocJT?v=cGshPkRo$>bv#v`~8wh6^sBWcN_F&wb90Xbw|RmI+_7RM5VB2fneH#)|H|!B357fPa>IaJSbRw7H~@Ba@`@ z`GV)P@^B^BA1mSdaZmB?viCf*f73C)eiJ$9F`ev!cjQR+LlTlZnK6p#2fGJfpzU5V zEYsV{+h|H@yXz}*OimWkqDtVk>kIPyy(?U4umJbn;*8W2ZuT0M$7|!&Da=fHp*kjm>Dra88 z_^Q_^qm+u#nTnwCun*(66_RUxCpor!3W~p7&av`7(WM;$F#gPeZ*w@57Rja3-~Z=L z^k2jgdr7v>U>Wh^hv21K+OT$NC3UWRjw8>mqqDgd%U|D0`tv8_*?~xC6`cnUH%PEr ze-t5WO*^dd4#b1Yg`p@$591!!z@KBaMD|?}K1$pUVOr;~(&R^-{=Q65cll&;FU%7x zJ`BTXQz6fE-$Kw!{{VW06Y*|e9*wr@hgE?(xV9yNd^q)-`2$-O-~QN3#*?~s~}_I;bu&x1(?-c zy{ioGH=dwB5?rZs_z_SOcB1|@UQnO24)uT6p#D>i$vIgSc0b`bpE;YzLbp(?e7Fw2 ze>wn$PcEQro-L%xE`fx8jv?i;3mIFAvr-$0@&+&HjTb@{HxcNp>m;t@7igpHW$N)} z30|#Oiunt*v0mX2CMn(^3;Ie>{`wsFYa)QNWc$epE=zhZses%U--!zEGwC(&{rG(P zM(DIlf?MT(N&mq-{H&M?Z})KQ?bHkyS+fK04vXT{BX#I$-iWXD0AFzDjnui1t_>ag zPG)Nv;((Mn4tKgk%+XYGZJr038*2jd(g&T~V{x=L00hfZNyX)#^wo7)aCoVJsdlqq zYQOZk*%Wm(48Cy-jxBdw7lGETwPBAq;QcVXJ zi$IcM82-JN18)~>0X6muU*+gJpxoKfUN{-tjyR#EuPp8~0~A-@2%1}5d6wE$yhVYO zZ@g$H%&*IXkS>4tqGSNCX5S-Q`;X%H<58Hn;Wd5M>(5tQ5z2X_!!e7?A(7`hpw3y3 zfA)noTyZIa`HK=UVn-r>e-W@BT?a_q8cR_suLYaQ{hm&@5!Tr}16$&SUE1P&laXgwMYx!ND!% zB;xx5XuO*TrS~G}#$z$in4|;YnrqR%)R*&iT*RwqXX2B?E_H+Z8~F2A3R2y(e5%6l z;7`01466ExT*r1T=aO*2O+nJ+v_IFuG>XMX4)RzxVFgH)2VnXwC3yWT2!|q?`2m-` zIL^5yIi|Fpe`s+C+9~A1NY!b+HRrGRZ`(_%T)vl^q3OaY@kZXBZPBnz_#3a|=xP)g zE+j{jPvUdYTVzg37riq#7LR`m0z-U99B(VY!q=%Bzh^lnCV4{`EJm@{H+cfpns{3z z0taTR;HZuy_BN$KvD8&EY3Wb$yUtU_`{CKcAqvjvOwSy1*i0_OYo zP>m`re0;P3gIc%Z+&@y#B6l2j``qCdUr@&m|5)fhXNCvj(=gD;m?I6Gk@gl}{p z_Z{Rg?Dq^j`l5`Sd~kqIe>>54-))gUdlpW=6vCaO4q?G_J+jfPhfd6>q8&eW(0n=z z4Y!>m8clBS`&$&pG*W~C33nRg*hf>04#RaKg!;dIP`a|6qt^0SQzUd$@eYz`jTxz}M zuk^^&;-o%4?{x;RC1**v%M4o5I|a-2kvD1|1uOpT;GBE=fmeMJk3OG6PqmqYkKShd zI;f0KAM3;0T7t)(&HxX(AKqyY_~h}GbZMu+T;~LIp5p^OLL5Ukz5sBW5!}wwg`=L_ zy;30&(#0;q-rGs|ysd$FOh~1@Rw?{KuS)vOrk&Sj977yRI7X6nE19=g3O!wO$&iC4 z>bx^W8IHf}ePsr&j5GvM^(1h)qeicDE>E3>@mQ%54yQ1W!d6eToD#x|jVQu7osz_8 zi6fEqvmyExA#}3DJna8gK_UzTP<6w9$U%T%*^PLdv*hv46B`LfQ10LaboEMjXhRn4UvGsEeQuBsSF?z)XfRBe8i~4TJkY&kMd$wXfe-#u zu~JQj==jCK#rM)U`Y8&w@3@WCYph@cQw|ZT{$v z&f#(Zy&a@=c>+xRCXbTS_n`6nsnF-|hK?ro=rMePem>Sm&beQOQv?3!zE2aLRI@Z` z(*V&}SPahRxM%-EIaZ|AqWr*lwCeIVoqqQ?U9~I^3Ii&MT6{ij))=MQ>Y0$8tb$pQ z0k9(ZJl|lpDHzr06W{VPoCngC1lF9x8AEZn^i(IY_xnXc&97n933<4DzL7pTeVM3# znhAGPrD?uBcZTGc;$;d#^m@4Yiwv#stGt@jz0lj@Z2J7JjT! z!m!8YeXtV?RaZl6h9W8Hd&G4;+8|xX939L~aQCGG9L*KRQHucFTIEVV zCW+AaTOpuRxsYi6$K|FB4v_Z>-zaah2mbEqCecyZc<=((!%%Lfhi)i>nZy%vbpyTf zw+<#vs3OYif~cW)BQ=QMOWyxz%<*ocg zT~~yF|M+a!+%5y>lhjZy_6mI{8U`nq?SY5o;#@{i6DDD=?9WjY=F zmI?hNP?wU!ikhIa{1#SZB$7L|@5sNi5oF@#t9-TA%^;N2fiePGn8O<5GW`<#v11S& z{u@NgP*KoX*8^5gZP?eb3&H~Tf>NM8R($3-hKIeWvTg^dvFk;g5l+ps$}w)PJov5q zO9oy`Lchl)kSii^zNZ3;b@XUa`7nKU%mA7te8~4lDcHkb2@Vd{u;=+jnw^Rywj~Ju zm6^ekX9uXqr?YT?<1~I!O@RHzALzV>hos~71%PmOoGhZqsDC~~qq!{Wd&e`}9xxrA z7$wobI4O`jZ;s=K1TcF}FWo)Dd4BKffDG5ucP|fwoL5Sm1Cj?VRa4mX9VR9Vxo%7n zGXq5Vjl?tI64yhigod)cC@Y@^z7AipJ;97SONT&7&RWDYAO5F{ck#7(EVrv_Axz78 zI_G&fxQ*GNs+T;veDxn=8C{7SO+Rki{PlF60VCF!{rON(jQs! zz<=_K9~hyFe_l$#rW7eWDAf<9q5H7dA&GRkZo-@Po>*)V3G29->yN}RJTaEYfA;en z92N2)+GaC}Z^;G{xVM@NzTi4WV#BoVU;`ZXtU_IW43$h%z~9_?SJ6KSgZDh==ADh$ zsc{+Pe8iw6MIQg-cKjbtT?Q(pS$ic@gg9#2)=eq+LPk@h$jcpp@K@Q7CL7qmr?>lf zRVC_mzW08R(I#uGT&@8Zc?aR_G(Jv!oW~!0u%EWvlwfI3 z2UDKQl3hneX-y0Ztbi^Err!cFnIIz2u?;hGw^2C>Gf;6;BI)~bV8(DfjKno@jIBd> z(Cag*aXTDwF2i;FY#?C{)ZsnH4X}pWa}8V(fMUT>NVviMkCcy6PR**+~{4m0lt!ganCT2A$+#}4%KHj1avui_p2obql`_gbD& zocN5opO{C|4Q7(!xOg1Xr?~b0c`Vo5Ou8gXsauCIqwzGmT{w|R7wDz82d0B2RcA`mf#z?thg=;UdR?d)jr`JSa}UP>^~<9n>>=uTa2cN5 zAkOqpUdqkT!?Ee*5_W~aefrHqgz+<9isp4?s3d$6%0uEY(Jqtx=_5Ez%!zml9)R{O zKl!ePQ)xdqV)esW)W+!r-CDOF;)Xj+{)PR+%fXXDUPp;u*kg+O57pB%DJAsViHopt zDi5mL2QgJN3_F~`Bz}!6KDNDwV>m`E=>||`WEhn*wrHSg#QT>gPo4(OLxBrtaKOA6 zkEfj_b|iynUpof7{JFEmv8zC&4XAke2=V6b5Sbxypm<>(b6WBzer@!EHKW0_sKEnv zT%E*Tv!B7>QvvqL{XCE>Z{qwMd8nSTjeQWY9Q=PU^udd(bsOisgDtj|uy9^17PN)p z^{vN1%5OXG>J4Em8VV+xA6dgT-)LHSMTVa7K90$}@AN;a%543d4E~oq(f_>;=VVH%xIFO0$?t(9?1z4Syo2aa~7RC&;n1iMR7&v;02*_R`g-wlg#+pl{;!-75vgkx2 zzZ-p8UShO$0OW*kqcyb&{8I6`JSl$%+`$(CIb#Jj>iIv?JiZJEdT-;b%}MZfm73{q zri;`U-{!CH5o4=o$I!_BL^2!8v78)5_eljfMe{BduL^))_nPRV7d2q?B_2-|=fX8j zdsz6ijQ0I1q_H`#Xp8hbkdO)If70n8!khJBN&QoD$utg9R4-@7~WB@uZ zeu``D^_b@z6Z=JN6x+=_gsy>kxP7lQmwVg8)3pBy%gX~`?UOJ%bwnEt1&nwB9p8~X zp1{)*@1UQ()?ny!KgNWc<38_Rj4Qazrpkv2#NWjhb}#$N-~L-1Z0RNboRk5i{)4c@ zZ8|=wIZN&t2&1c6 zeZ%X25Cwsg42h@Qd>X6Uk2Wr+;KzvXxfPPVKlNH414 zvfX2F+9U}T+}-h=&|HQeE62pz)UaopCE$m*Dp4MAVjPc72Ht;##Nt^6@lksNkBv21 z^S4=~?&Jy@@$5e8baL~>NETwxZeb!Y6gC|-qebeSSWv-o-I48Zgq6gmz`1ZBdKJf@ zHf1-0FysHFp1);A2L4gFiodtYvMtUC7p8K3$e$VbdC(EUD;v>EGX&0TY{$JbbMbdT z3V5aKvf0D>#AVY%o&P|Vi!`C{ zH4wce@Y%K>mkXGXt}$8YytA2VC)k2mD3_z(j$kHuk!*_;V^TN1MSUF+)Z2d;&hOmC z*V+6Gq*q_(JUVG;72Zt5EssO!q+a@J<{aj1Y9ZgL*qPBaZ^y$n9+>qwpPiX?kDE1& za4u*$*cDd``X@d?$Wsd_o?QcjDa&B(``6^DV>;RUp9P|b7nn-jpnJl+ae{&qBxS_m z$dg&zE@KVz;9N1euMVi^9!|RTSAv9vAA4r>FZ2zKBigQG%p%vqpYO-uaIFDue3S{z zvNv$u&?XQ(U`K~d9H3@RGJaUm1SdAEWDfTopb1lZ=}7wl{5|*%HoThxV+SAL$&Jcn zvT-GBj51^c`*(uY-XUn@pTV)rnb^B^5nj1s1B!F}klF|1%i4eRi$WHbtgWCjLAOzP z`F7g)SdSSP8=&d+$uu5Ao*&IGtIuf<7QB>jOdYI>6fc=*}$*1Z%FqWCXx{i#}hKwmt65avT^&x2Aji};L z$$P5*kJqzyA3TbZX2qR`N%;Fjh;>$C*GrdUUf&jGUz0K%K2Qvu1s<%*L@}s2xP<*a zGK5?HNa4BhY0TEm5BXX5e!!oPW%O$6Rd7(3VJ=^LgWX?xX^XK8j+-pz)#yfoe25tP z<<2G3>S-w)SN{V3Qdq_)yt;r_BcD>8s!<5_*#{Zzh3vPIQr?#DgY-ehT4s{TL7cig zipJyzQ%h$-Fswa}rJ6oG)manSE5#3}u*)EsnHvcABMTTWliMi0vj}}&G~;mzMdq9p zHbjb5TJXsL9vF5)sozTGk6;G;QgWsS;~l6m5{-8>wBh=^>sTJxfX0E- z*dzRRP;)tn>-JdC$&*hoBi=DMCViGxjB~x7pOcyIyKmE<(qz0jci=}#~( zUYKprK8c%~%-9<`mvP%}S@!1ooAly%4cR_VnyGerLbeCLgiTsfzhRoQ>E>6kbw6m#7?i9*niRAl6N%a{(I&%6#zEw)U%f#YNSLVHG% zk@*#fpK{~yugWSmWLgq)BQ*`|oG!yj4^5`-uq)hjIf3Q2GtgJ=H#{=t7%M;iQi*&4 zR%!nR{!|H5?5U7veECVR``=rB8hHbmY5(}!c&u+^(>V9A9M zT+)#P5*~|j>>V(7{@R1$)>OX}h8DOnCheKyk87w6lYhotdh_#a2-9hcMp{&DT8Bq~XZ(o~65 z_xn1UB0jP!5i%>%BAL;a_MoMmLd%G{-`B}Vi=>1~6q(5mq4GQ5-@hI`9=adh=bZPs zuGj1NoHU`F%5k0f1vnQ3wZ`c#OJR0uyAr!YbSll>?1b&N`qAa+dGtD=&m2*{K*ue8 zpj4s~<`fjdkJc_LK_52u?mKfN~L zbKhW?Y;zQP<;A$?P#WDgw1)nkW5HOyPvaFW6kvOH=(BMgb5nAGJ)3bO1zLWJ!0hO` zER$;l8k0A&0XE}w&4onbZe49z?zRs!AQAc}2{KK}Q_!pF0DM1s302HmXpmepQFjZ$ z32`|v!z+wx8bxAEiZSzK!(`stjue=bsS1p!F8f{VCJZgQN8I%5!ESLPCXCc3h8{5>&>2{cDt0+EfSbxpQD?V<@}t!#rmDe2z0*zKjjN#O;qo z^6@;c9zTLE?wv418kVJ@o1+O8nKBuMSIh7nqeR%#x1`w8=l{r$ZNlhg$FYe1ZE&To`yvJ zM^^T5jE?!@s9w?pb%ER1yJMeleA5C*47Z}W3Nu0Nxiyp1KZ&-~p2RM{HlAn8Equui zkhaZ7;KsxuQWy#?oXQ(a z@q<$)KdGYNU+_992c~;O8Ru`)Sq=XR((dd+-_@O9o#IWf?n6IW_%(>Qq~+kO|E$oi zY&tl5iQutI(~&*I@s=-4WMeeqAaN|E=BCCG^23$m9sG?VUZ*G170G(+kI|nX?pV!} zKD3(ssq>WnN#N7{Aup)CVKrLb+Dm@fXP`k`DvEQx7a6|+^v#&SW|(VY|NVI=)47@W z=EZQ1$g@~s^^7=XtH3qa5E`mpiHz1ZD69JjeeUKUx;c)YG4C1%-F^eR6J%NUrw{lJ z7j9vnSrW7Q@;f+lgN57K8K~^x44Yy(K6Q5kH-F^*Zazjt!J7MyK0QgB2IQIIg~F`7 z-Bf(`vl5obA41zwHKt@;6Kc3S!XM6`ZTnRoU+**K`Ua}(t}R@r;ie#CaXkcoJu|BL zEB71&tVB^EuO8yx-i3lr1{J!m!?-2KGCy36Uv~IHl)f^RywMNqi2^g6!Q;?lH$b4J z4AWk_qJwiY_Z$&pKGYV%5_uYSNf{y{(?^k8!a}J(!vj@mT*~_55Y&QGwlO(%Y zv=}U|a(S8dG<3Js;*u__oo)+~@k7XYY}jeLlE|7& zg6~pR(E|UkXw`ccm)R;XLp!QLMCu6EDitAY`$bjfY+x$6nLaVxW0`uI<2SEU1J!Be zc(3I$wm0qIeVewOS$F#exv+Nv>8f!=&I$}7`8p8bF%!4-d?Lv|Qt?mb9MG2O;aQ&I zoCUlHysmPscK3%&i0I{bn!XxL!A3WHeEJXhox#;OqAcns|w15k@Egh^v+j1uz>W-FSo z(g#c7;ir1E=k{kU?uXFeE%(gSJ!rYa@DGeEyiSbQTjM2nMYeZ?6R6MdW$R9R(5VKgL zwSL?4BL@4h{#glX&lp2djV^pPH3OEF&L#s*;k-h(ov@^B7cXz|7G_C_9^N@|6jX~O z*}ZOY5cT#PJ`Ihb>RUVU?9MdC;@B;i@?M(wowlGWCi3Ba(Yr~;^J8XFtkGr7duO1&k9K< zG++e!kLBQRhZsD+P?D8WyT$L=&p`c2t_!g043V~TM@!E}Qr3MMD_n{&sfxvC*&dAY z*5{!9a60m*OG4E{b#}Q~JXOjwhBIaDU~@Z|Z&?rue^SEvTQ@$(lA?KZt!@DX?!Cw^ zy}k&3owbI8dkh)#6O-v`mkB(h3;F2aeU;jWR}xv>iEQKIN2u|S^T>~IUKP@h|5PqR z*`8=p{Gbe994*2(t0sb$hADjhqK+3b&qDBq*SyAcPdJ|x#r22&&{<)QjOURVY@(DQ z?$b^{%jFL-S!fGAWpWG(haQkM{=?)>mJWKUSwm9O03`fT;5=uCF~CCw--xupqn2Wj zpUU~W-d?4VTRriIhbb$6JsO(pQn95#iSfNTo%wopX07Pw*VOpWC$dy-J7nK|N+q7C zliTXCc<-PSuSw(<4sY(|Z?v64t#_QG27$qFEufMwNo1HgRh-+V?lQGl^A+L}Q)@pR zjG@hi@91Q!G>}ZHppm&?(h)Yqu?It+W)ramWlS6g> zMVPwV7~jcoJ1Wa_aQxFRY|WlUEeo`{j=mU4+31cZ<#Is#Un_WzorH?gj@qq?wyfE* zEIKK>5_bCRWvjNB;rdzAas9%*Ok3PeczdxQU+J;e8}9d-*Ha+UCWGz4lwi2C#+vzNe>s@!SR^gP%Lv9f{dKdaraaH zn~giLSR)KPibZPgUc64WH*-B%uRZ(`6J2)kAP-87`ng%V8IxXn2Lv-r@I>xudSlvL zoPFvO$XvX`U#S}l+T!-aXRZ+6-OL0oPk%($ekjCM!AId-aWn*ZOn_%xZ+Kju#fv%J zWWPxt1h$`{&mUigmD$bsiSw2`khp--*>c2H_8j?W6vZoA^NED$yWx=ZEohI*M^T#) z=-Idw_s(hNXLIK-?Ky2U)liYi{iwsddz_EyTEqsk8Uf|VD7b}_@w$if73!k2$-`Po8GU&hKnrm54(#O z{L^8qCmUVV%~SJe(={i2`9TzKcWfiJ<1q+$ zkxY5(1ixQip{}KWNYC^)bc_0749?5rt(^M-gY{0rqoplm{G=AMh-t+S_v4^cFo|lW z9fJi!z2v^s85(OKi^C_4K*1##y05%PW%Fzp3F3I~D%EJVOa6ST5jRkU1)N-a${JvV%^3J~P!(`GYW z`X5HgbA8#j&ai&VY;ttRpk?LTpL{J#2i&3NXlcSRQXb9Q13%02IEDwuQw!~)A4{_6 zoK!J((_RJ8=AjSs4x{eB1G-C;yaqls`^QR7m7yIBT=S;J89KXOV^DMFd z-Uj-W_aINb8*3jfgyf*3aOF-c;h)fBj(O_Cnqgy@o^YNlxTwHtczy?w+>Ov4-p)I< zeG+rw;3c#V?S=q(Wx9Rj0EEgMBH|%Z&|G|wY_kc&TlF08r<^eT!rb+!)J*bB7viGs zZ}?VQf>rCeisgZ#D3#m>)1S7&pW-B#Wc&ulZ`fm~dI4-|yh5LH8LuC9LD;sj0Q1_K z$%_(>$8o;$Ce7URrKbJ^Chx|+QmuQ2Kx zH&by4#En%gxGwb*Hhtg6w#c^=ZKIi35gr0(iq|6Fqm{bx{(;KxSkTFQYBAd-8Ehs_ z!pVLeaOdC?&Ks9RepyCgNBI@pKkEd^o1FvBr_(XIv6gor`3GG7z6Z}D*SVY^IcydD6oZhadQOvpFBbjY>!-AMjnwu$JqTpSiIF4*zY(OSeUsew!+AcNzxiuqfysQ-G4Wqx=o> z=Hzx%2O0Px!{|;Oz-`A~6Tx;*UKgPR7Z^NO=(Fa!Q8dLr`T}it>^7 zsp-GYS{qD8ueT5I#hX~Xe9VP&%`!Dh3l^e_pDZ)C)eJq}58!#jsaPVF!}B$f2TkE5 zG%znj{`-Hl?(-Y8|F8gGI9`VVTFGw!TZU>!`Cb~xA6sCpLz`{oX{8q(# z=vR6ak`Eps&-I2uO~kKO@9QjhxKf^atxe~gSR3)r%SiZKC_&rX&cl{Ds_gg4U2d}47{~I+VreGp&T=s%o8Ht6}Uw_d1u_Cl?!!{z_=Lr*22)&R&v3XA-SP9O8 z%^QwGqogH9s|aCGnml>;Fq;^}8}pgZ3*nd#%k7KWc=gUla7{-QmX?IVfLI79+E>uc zW!qtTyBi)kCPhvAZqXs97Rw&tztn*!LxEi!hE&YKY5TXMjczJ#-kZpI-zK5BK|Q&h za~5|ygu`~rLcW#LCNg`+ankL#82p(CHye9Ae&h_{kFSP+ zI6drA*Fpa&sZ`G@6k~SW1&L5=yc-q>hb}Zz?UjnWE`4FllyxAb8BIKS2??5LwH3At z7UP%X?es)oBY2%SNH%)jBONM-$rWWE6jVF{*lz>)Dl|1xtPXG z%%@vbS3;=oO=@7|T3gY^bsKjC(degskYQ?#KlLSWj&vD)%=whx7n{cGQYDj2h!wvdD2||X}^FQSWiETb*7@=&CSwEjME^+)emMRt;O73$M8dI z44&MdTbsC43l}j>pCnPP zX$}-{`~EIrM{qxuL^AZhQKjT4KC2SJuaf=ZU2XcHL@12UonJk$B}EZeD6UXNcekP1DK0aV{g79*g4Is&6^ZeNGq)qLE%~i=sQ~wvu4gs5LFCCD?MR%rx9^5zfQl- zI>dF?eQ@KEVwiC=8(ZB{Vc*wy{I$yw3vP_nzRx{@wY&M(#~O;j@(#COh)zIRlNmHx zk8>(^7NZswp{KmAkgS_J@X|w`)K}}l%0-#Hp#)#BjNXH_^8aySkpUW;vWbeChd||D zZ7i(N!Ydo%KxRW4q+Ytn&oU52LDg*Tel|+qZ1G3+jmjvr%mPc&wn3IsAFtVWI)+sJ zw6x<`C8z9XgCuhvFQ|(XmyPd8;t~&Z$m<|icR1q#&ck>7NEF}5GX$xKJ!DEs;U@QT z8d+Y1jFmVH%}WO_jW}9>O2DXcx!Ka5d(>J2g;1Rz9-@V<5182ED z^qZM*%O@3n{#GDtf*TG5W}=K&D_L{Wo;+!IKoh@%B(ul z8$TDW{}qDVs_Cezd=qZWS4Qvm$H|>E7c{oqgcbFh>9J|4DB#`#7K6vBfn5}?fAoqh zK5M}14$i_KlQ_RYpDNt%OaqtH#kk|aL`c=r0(VVG+{{p3aQut7=d|v%7(F0m$uX$667>OF>?7H@hL?w#1t(F%Dhyu4nS*=r zDO7u|3gR($ptNZb(GB#%^igj#@;-rkN9^JE%4B}ubW<|)TM>9N99y0H|9(93hV=uo zP$Ha7F4m=xN(DpoI~77_HAmqN%_F$bNeJ3|kK^GDisW|5Vl-vq;Kgtf^_)K$tE3!x zaYV(D(?=$ZQD-3I?F3CcvcR( z)>weL-A?G<{gfE4cA~2#7m&GCDtP1SPW1m1R=ZBJ5}t%u(4F(Ecz3wmmqkG?(Ufrp z*_bep8~ek{=w->I*>k{UE$3Paorq`Gek39LzVo{$d&9%ey2!7R2FX%kd^RnTmdp|& zKPo=+&(E*H2b<>MRF_Wj2v@+DLk;B3<}lJ(q=g<8!?lgxg6Od{o=yym0`d8yw0{Zb zwH7)-siPg1uGs=EB#tn4he0@S0X7CUlV9BLVfJh%Y+_Yul2aZqmp)L>YXHjCYtZns z0@=nr10_8vwcA*X@i&U0c*{@v_1|-%f+jXL${u#@hxEtVC z7=hiDiy-*GM>Rsdx2e72Ro+0#2`K-Yjj`K= zNaz($a%!qMkvrN-c z7|%1uBW7{HlT8IW^DesUnWCbxHBLIL#a7g0LD96!r1!-gYOeB#gjMH}*&nXc57dah zKJQ6ZU3P;9^PFMcykgw!kVTy*Zb!G#$HYTz2Er(zI?d;?OTQ7EzOBX$?_)^f!8`Qe z$aQS*T8Hhg6M5lUQFPq<17v=0BnO>OV-@qA8kZJfl~y!Z>B)dpz&dhu=sfn;U82Tk zkHeb;Rk-#?i#q4p60fVPP%lIiGURPYOxhI~mlLrNG>SmWCJ%gEmj)pom7sK6jn`~G zNU|jsV|2y`QayPs7CjLF*&UvA(O3>~I+ey>a!e2}_=)59i^|mZ{cgP0w+EhiNx`Gs z3AnvJ7XI%4MOGc3i!Rys>2E(DY>RwMUU<&}fVuGgXe9hfsv-Zb4AYfgJ&}AIp-D@V ziC6DW6!Kq9mj)e&I8j0*&Rrx^TR!kwwsOx8NiD8-(?(v>vmm!44)eN8uxr+Tz*A1a zI-lKG#WCAw9M=Rh^BWN8?SwT2j&x42D}GQ5;|)DCf?sV%_+eRRVB;nssM(ZH1!k&% z1qtSz*q)5lr`C}tF5|eTH-*bf9pt%0R>I*kvms%2AKR?V+}Xg z`S=+GdR6eNTq$>7egaeeS>edX2QVmhlJo3V;Lgs+bQ(7o)8|!S=Cx_qqsZN_gKr@0 z_rl3$jU;=I3CDjsZRvh(H=H-Sb~8_^lB{>)tqvJnC47>cvP{A1ZB3YPF^k%)K0^fT zjL^DM7XD3W;&VBZ_u8K(y8PFbTw(K+bw&BlOAHHO!|lt}E-pvV6e z;=rL(G;^~Id&S`q33*wLTO{&vLys41|MG{F5Wtb10vIn|&RpHMj^D9Lj{USP5d*qw zp?&pJ%f%d{EwNk|Uq$+GZ1y{RJua*9a)v)9rMHqLa|f_UFUxWubRlcDH34=>t^@XH zHFUR1lJ>02Fuh}%#eD-8Do|RRoMt5RbhBt zO_5zcEXTX5=>ew314y|{$~y}cxUy{zib)2+gu%a5?`$1OpPvh#xNhmBq-XS}nkPO~ z7GV#!%Hj-Z3wp8L1Qh?-nd;XL>Lbzob6Q_uwW~U`ZEoX#@v9(dcOT%-lYuZnR~o;~ zHK&;uQ)t!N(?syNDXx&-g(@R6uz9%v{@fzXs4j1ynv%!qz3<#}XJ#R6QESFU4?E!E zgBHH|fEft8-bO!nE3BWQ$=b}xqF(h^Nx}D2@Y!^ThACX-ufEelRMe-!BcnQK+j0-S z-Pn)+jrpRrf-dp6?13UntMS;39W>0R9K~ZbU}KXS^UrD=<5H?IF%!WBSf*j};Wu{;LOjbr$f`Zp+Jon^2K5O6@*|q}6 zU-5%lCAFiBnGC#^^#_~9+!>-`KGd%2x12lDiZg~SnL>kL)NA}kuO#m0x>Op_;C~J$ zuZ~1Bj%#9iBMs*sm_~neo}(u3So(!_LRxGHRb2fR?H=u+iWFy)}E-E8BXEw9*`K1 z!a7lHCaEbM6{?oQi4UvTpvHXsxkHy-FnR?mUUQ%2%W3erBG2WIuabaSJ;cbk465e* zgbxZ&V1~&E>YTWaGDnhV;FK4r2#I*R$Cq3a^FT3YuKyoo!2H2yng6|?e0Fz(C$1$`VsJBrlu6Lw0nZxcr8H;yY}rBMdIcICsLWG;JW$ho(w z2jDl?oAQue1V3iB@zg*q_^)BW^uXWR@oIaxL%X_{YaX9^JFsHT2=@R5p!9a4FXKZZxOow zqYst+V@gu8?&0yLS&*13#V+7j3w^w4VBrx3o@JF-wmue<7i97Uw>vYnISOpcW!+k` zjECo30_k-s!MZNELza%Hqkg;_2y`{TzZDeI{?5R-Pz7dX#dLJMT#klyg5Y`jGriM) z4b(m~V|$JO4Ycne>WgymjA07M9O_3YZB0hCDV~P6w9x`cFGk%&n>hBL;0(I)LYj=L4X^i?xJH(nBU-g^i_#y!}O zkjwcG%$UFpz5na^v%9^rxX)0J&Rz|c^^2_GtkEnq*|&~opz48>%e!&y#Cp2soB?~; zHxn|(C!q04Ir!2P%S_$34lEAa;*R-CaD4SO5cu#2b{Q<93syuDkw?!#cKuXVa6vf~ z&GUe9TWi9KPA8juF7afY%t0SGzClbVZT@kH+`hAmSSKu{91eRxElD8lJcQ}o_iq0&5vDs`mbFeYC&6m@So>FwnL93vxursIx8Xbxm21?Y>o}?Q znayVXsK9j`TQfx59!=dENzQ|_j8U98*D)}I-UpLdgCJrI z{+ySwGa6RiSxV~Ptzz2MLSdiNUFx?c4udmn_`%t7jHuyxI%r*uQx}{hm-!pvZ=2u$ zb{Vuz_9sUFY(#I}THrgMr3e4$vq{P#kULKRyJhCX^_kZ&vkS4OatA){k-S$z2oO9cyo#MOJ(-;ME~WQd)8I45B#zpdj@c6Slzf8m)2o~3oFsZW*^6tyUxs;Fa>8jjDn%R5qr4dDb`j0L!I$_T&X38 z7svIOw2!GED102JFWm~!Uu_wGI}s+us2dy1xeT354jl7(4-pn7mbPK7_|#g6<}`Di zw@c^nT+9j3@mUAVa%BjKjsU0NQy9EloE4KCfprIu60g0X_^m^f4O}gOs;k22o^;N~ z<@XeCi|~0BdEHcaSp>1#6~;SXW<*|d{`GV-aW+?al>g7B0DlCffCB#-aW++8_awiE zDMD6E^rd$E6VMIYvz9XM746{mTn2{2wb|;8H6*C)9t>RFLaH@52E6G6Twtli{Jy>b zOm(Jk-jHr4=Di^L4vEu$BX7`g$|6{Q$QT?a=9AdnPvGADR`}GBM5h}Bk#hY^dL<`| z$P9+VuFdw;vg|9Qw;HiL#i{h=^m?qWZy^iycfjTcN^GFZLe{)Zjj__7%4&B-^Tf0?W&)} zR=-}&dj00!8hZ}$R9hc|X$03Dj9H4g<+hC1UKVOB+}X`F3NS%Hi}`!?6tlbd3_695 z(xE|hzIV@0ygx;s@KVIVLp(GuxX-^kO%{~Co3Trhm08<|4$P+Y z6>NsDHfVUAhXRygUj<8`u7)!k)Os3bBxp0{efqe&%^l0ut_8n;F3e(m0cN?QC=8Mp zxU^y=P8u0QGtz`LWieo|?G!q{4Tr5pobmJUU;cybdQAG)1PBVrXOq7)@+_aIG7s$I z8D>IymiOev;;D@C>3-gU6_V_{2oc!ay_L})^I#{H+y_mk zF6`uT?bf?HxV(B4*6e(PE!!@DqR%y+p&R#pRJj7Yg)_kJRUsOc+`(@NPf&R60CqWz z!N@YM&!n3Tk;>ulymKB&bbAgM%40SiItu!CeDQwKL5#I4=RRLMnk>$P!B2HmdrdeR zGJZtae+i=zk%qmA8yNScF)+bZl3m{a5{`$&68EDL?3GS=_JpScc;%`xPj(96*QFeb z%{&pzR!w3TbSIG~-Yjq{K3r7e4TJVkY~e8xcyYKIT%6wW^^Vk%y*KZGNnj1sADqui zmk-0Uza-ed&kN}EN$c@l*iP&>@?`d&?IdNL7kOrC%{(QWSL9Ll1v1pgnW28mu{seA zwCr#e>64tnxP3Z=H7WV%c~gKH&rY>G*t3HXmla_Zb2Xvj$5uL-&#($TS1q#ww?W;L z8H~tpV>Gp_!ARrZMCi&y^xIMhtrzrIqm3dgiJZ=gUcAk7uw+Tk)iA8?&V#Pz70k`j z9hErQpsDtA;F52`KDmgB)4w(n5n2GT1yB`G2FM*XUGa+|y z25YiYfL*%f0BN1_5+{7?g&%IWK-RPkn@%2wlz&U1Y#Ga&dvP^hJSc$mFD?*q?kpb= z*$97kKC8&Z9-fW~ zGcMY|k6Hhjx(<|J-=qJ?ZKWu%XX4Ry)g!+2A46uYf(#R*#6t8|X}b5DCYcwIK`z;@ zhWtcb@-x~1@7LWRwAcTnRwAmk|eBYqIvax?4H0@EWPgm`F?G%U|j^Sd?)ZC z-f6&#YGqb?iXF4~a{|ry`5dL63G;S8;{1*G7?c#xq9Zc$IQ!3Z_`OzvjjH#Dl>8bp z)@g_Hj0f@4lU{z}oKG-#!I%|(ResO@^2ydD=pCyV!Fd6_NbaeLlB8h_~DPpeVY zaVm53KTc1#{{_j{eT1?83s{4l_0Ve0ah+6@_*r3T{7Qd0W~bv6xEy%`A9`P-xbi9A zN6jBHHf{qBMTfGkIYf4UI+YQs<4g9JQ00_sq+%qHCWZ#4 zT;B#$>{T((&4S85QDPr6CX8+8YQAiKEjk~of-60zXsh5PkaiNJH{MII4N(TMY296nA|dac6o3zhY_DbXuV^gvL#=5Zb8<)&D)Sxab**-O`rOy+Ry>->rta zuur7en}PW$Hq3M6y5a|F@NmXo%NJ#zaA9~V@^#ZulNf-*LOtvSe~6clhc695_%7o; znuLY&T|}hWXZ>^Fcq6yN@SMkN7?HqD@^evHTnRJRe!`o<+wtDLdvxCgIabWE9&Jb} zSlz27{qv`ic`IJk3a>o}(wGpjIb5zr~L@mcu zpsby+JQ+h+JiG~Rwi%FKF3-GrLo_^n8-s0in{mOk-Prf+HUuw;04*vF^V5rA|AH^P zrOp-%J2wmdMF}%Mr_Es_noRJB(QJ0U9QTgt-3E{Sf|>H)??L8qJ_+8`0lv4Yu$Xgy zjHh^k>SHs=VvEr;+7UNiv&U+^JhD_%i_GP^Mv0q7;Ihw~+L5sU@@|_A>>Z=EotEDq zTiX?WsBOhPTQ=Y((=Q;)B>d_>jm6mGEQjhREdjH_+k7xn*Z<27^?2 zTpg{=j*H5&@#!wO``}S_SxGQGq!@+Erp;rj)>P47gZ(-uVHda%m3->$CVC{ElFp2UJP`hgtWBpka2czb}!hS{U zO*w#LNoiy&il&phK zAD2oT@gSdgWM{6N^5o1uJM&hM3*z$o!DdGfhjKlW-hl=>LM`SMO4f3ptg|B2xh zG|s`mZBMCq{u4mM1F-&a0=A!=$Ts<%M9YRnoMYP!m)+4vtGO0DHQT?~xNjKy6qhi! z7s@k6#qwAbb)0kA$6$MWHr-)Z1Ih0-7eyyft_ON!omEy;G)n()7PFNU#g&Xlnkp)tSRamDA4(E7&~ zFDt0w{o6lD%BSV9z^DkMM`x2ir9y0PyD^t>e+_%|p3y7OsYEHfiSD1ek`?KigEwps zLbY`vZ|9jSAi3@=?Kz*#yVHLPTingSov1*{VtFtW*#Yc@GTgTAD{VTb1X@o{QK2h+ zWE+=zxFNF;1e{fH@>u~;h%VtVxofZ$p7Yfz|KZT-Xnt0n0{hJMBXo#dMU$JR_-(5u zn4gZIGS#J+X19tr^S|Y+@(xvYpVN6*v-BuDe=!rC)0CLjo!2lo=rx%em`~F7-lG!D z*T}N>hv38ViLmdc9-Oedi9>yqY(5@M%EN9D>pp#!92>-Tn|Qo<=QGWj{gjqitFbxK z3hbXUZ*)Cx&NS36qD|jtuw{N3sCj+`s{Xh^7uTJ^aD{wu9hAlo`Bk{@>vXn3rwIyn zb;GFYH}LNKK<<6nh`T)H;i`HED0cz@?)>U6Md&;6*%+F8jMuP48vcH%L&vQzIKS{T zJaT&t?flN=X=xX+8##}5Q`Vud=nUq~lYCOVfTDfi1?*U9#%QEWV3U>0;P0!~yg|b! zC^mZplin_+k%ldxe*F?89PPmGQFpN{=?RAGexx12lj+=h)9J!ZrZE5bE55YSWXo$u zhe+w-iKO@DU23(n6jrGort%w?k?%EP{C1yTH`_ivUpyScILB(+!ygBFx-JQXnI^6XKR_qE(_{HLvTuNk#ff z415*_o$m^8zr$j<8*@@g|_MJ2vk=w@E{c74>!DIrPw7V$pcsi0FcoN&uEUG$wN zd)=dr%Rjm{BL71Gi91jO?^83d@aQ1W?I{*(*LUE#t2b%AEP>zLdGK1*bOP&H+w?j|j;=9pA>Uvqv54K81D2J8z@l3yV^G5OF|`ix_FE8pnGR~zTj zueohh(|efM#|gsTzzFht(=sBo|01@P-67+J^H4^tBBzeY+4$9^&RB6T-mer9XY=Q%0&rgGgR*H6~?WBvv+S;ZeFa-hbD_v$amd z{=qbIyHhOWM zs%&sb6oIP)HTd{^4~*qrz$Yh^m?H!0xwB$0@7#mk;F3dl?)~k=* znjQ2NDWH{07&zu;K-_R0K91agf3r$p!PW|p4dZebr-tE!Wf|RgAOU$Vf~e21I@rC; z1SvyJh?_AV_XppC70RdShK6X=F*U@kPSZ&Jt_+U3sEeuxInKofOGx&Zhx=X)aJ|T% z#Kt5Qyj2V6aQYpK210Cc=N2a<87nC)^9lFA5v zcU_4CUtZ$Zz436=>PL-X-bLYm*J;6A0l)H0IuGkb=Dgi`^$ z?)=NodVPj2-=2vB89(Sd_c4-X32=W%p6`1j6KZbU#CaQ~P%z{od6g1`o&u^+Q+GnW5xcotgjc}K=7n|RDlMRdP)kG$Gx28CR{Zt#6H zB&kQ>o?o(1UHyW3*aX3WtZb6G$QXh>*5d7mTDbXRE+pT15jnha2Qu@1Djj?QpN0?eIqh1l#(!=zubn1bT`<&RI1v#PaJ=sW|ju1XTt zUA+Dh%F3xwmqGK|YaK3GP#OUTm=n)cv- zWCHqkdw>BuY-!w*hrd77(@)Y{^K>S-eik0P~mx?UxzSPCHwRS*J(|odm9)^rR zMlgjOz#k4y_+fx!C2+fc8TD-3qW_UTsO22o&v@AL^Eti!EC`OQj)#hYDX0?^3qRVz zz;>%6E|CeLIX5%uk^0Z%%`{bRj(-Jy`pV;PTVq-=5zzD;mm|M%nRf5~LLa>& zNc!0+z!SYkLW}l*YDgh9_|ZH zfMw3tdAf6-(0yH*aOi*!Cgj+n?Id|JfAs;Fzx@HxaP#DOT@k^j=e5Y-e+P)^N0t;b zlkl{gFqz-~v^SiJCPv#i=iRS!f_SXpEV>`zGQKz!?($=( zY{ClIQz%MSd<%vwqg7BbD#~4t0bnYA5|bc=E#6H2zBqQM^MsFp$PdnqW= zz+m^!`N-paCwjHH#KH1$YvYp#g3t8gRT~4f#=&LLYXR!NzF@7?EWR`oGum7Y?`3Jsj)f?jBE=nsNkv z`-3rHk|hMSyyfM6W1xl0la4GYhEJ~|P*vd<6&3$WU%1#pg#owWpQ1({tdF5RYD=)h zAP%2zOU2bO!DzZn5%X6qwEQs14)-UmK=#TB2)6mlzpd)Roka`ar`8BLqO>0LCu-5k zIVm_)yanczY{j+f>*?uG58TzYihBB+VB1~`OjOIp&@3BxmRN|9+>X1}G>^K8eW725 zL|}yw*Qw$>M_*=*^DpJ4QvK{u$m7_-4>*?mo>&tUmIxuc<`VSiu||(ax%}EIYfwC_ zk#32vAXn~25$%Fw^u?HZ?bV(L;4PGeu_>E5zwZicbeo2rm69Bz=p-)gDW*%UqUdWC zSD+W>)Q(OM2c=`9yk|0p^W zf2zJN4x6XUQz&z!5DDS#bwV@h;|A&DrJxO<&w(4bKLDk>$S z5|t)2zUTc9eB5)--FvO?_j$;cEJ2({=vY*6r{gdW9>mhjlLu$G(3QnsgK*ttwq{pX`n>9fYspm&qqEAsX z?NwBBY&R76Sy4$Febo6;3ZXWev8d!LaWPnp-=b5f(ZnM>evmF?jzV8=bb*^U{77L&6SUIQB{%bGY4cqOJk#k!vCy4GyUOx`Qsz_(2{7^RRxh zBMcw)#iO2%xWUy0aiDLQlppmYzH9mXeRCJ$NMI73GQOK=`N_eekBdPnd@JAj zyC02gVPG2LgMT+0z_Hd$qE{%2gB!Yd8@&d}({N9kF&1<_CEr}1;0$g~Ga>&u z-Pm2ppE2VUH=}!v#?qU4&PdUqaVc(}z_Gdnui|*fW6)fl3li^a;2~oRD@6_>uYWiB zymAfapj<=P8_hJ}@&R-`t_5SC3v9hdG>Po4S+p{rn+K`N@>V@-fRCE#xX!{BN_7vz z8JY8RQKLG{_j$;ZDD8)*Vb?LH`YicxlLsBN_Jg_Amgu!=Q)7C-dX)YUP1k!a2Hq_t z{#tu+)W5X{3m>^aLWdtYV7vkDK5>B;ngX`d4;$g;H6Lj!cMecD5rEwX`k-T3B5%4~ zIczuLL$gseF>pQqH@BSD$Jl;pmWWDg`;67X|F@ZNT9BC$jcwHd z=+!0&qn#Xo^QbWOdc2!j=)AMr7rGxZp73Dht9o2KK^=rS=Y{*-P&|{I48b>^qoG6u z?iVlvE%8~PnV1d*%U*(L!#PNOphi=jPCo4oU$huZzIyze`=z@Ya|-nO7DND4TBHS3OX^OLyputaGg>g3jFJU;6XDL8=P+gIFxqf)`G)Tk`CX2yVQY2_ zj9SXG0#&tSK~@8VmmG&V(v8IYm?^Ww_91RPK7)?4a;)FiE_!$IGyGG2h-_#npmx0} z^w|XN&Qm`R?-v~=2eLGn89pgs%$5@Ij&L-7Wy9slf55JTgD9fiN~W1-;ohT5h||K^ zboZr9dcnJkC+YW{-U`q|N%3SNRJs$#zUcBBTGznd_4lcI@dPIP#9?sz%=wI_?txvW zEIIe$d3=^B!batW(eW}JEc#ajC5zTFn*QfND0?yAae6k+i->`1>T$#~CJC2(zD)P4 zaNgv40qn|CWZv-`>88v&`pk3&Xj_EgDDztC7O&+{#r|P@kkmmsfq?OBEn2tCTp{HYDoj(%=^mW-Yp?V-C z6+?cy%d>$)eX#$~TmGR@hMzB0j{*=zCLKyZ$Hz-h;a@%;t^bUB`jsK=uNQ`@)pGee zE4b?GNwbsUAg(JIXS%)N)l4lUGL|)sO&`+mTK-;UiSSh{kP!f#7xUQ%)kavOGJ(}8 zFQtx4lo}1*=7QDqF1VN4POU#@;GM@)7`fCiMyCBYc_uf`@7hYGI zl)Z?jy|&S8{UVgTvVgQFRAcn27V_F?3b`I}fmcKsc6(SEuTDx5PA^M>iB7q2{IWIZ zi)CYC=zR6|eoJR#6tvCa}9{5v^`;6-ixjvsyGA8}2fkgTg%bQ-K zIWLpOXzYL)ODge5>>bkk;XV0MC&(l!bNzPzT^Pie;1l0kl$tgdMt5((8ifn6P>0KU zzFdi7Uv21@M`0YVwTj%V6JwM1HIOy18jNb=af6f+8_=T7{92HYS9iUpm%j|)fuheC zcXBp6eMuYLnIZ+wt;%4v`j*}DXPZEFsWXJmdk%j;?qTfiUjV)5YjLrI6xq6#g@gAk zS>bucczdco9LeYwT(EFF zNRqktp9ymff5%3`ocW)yZ2n%dlFNb#e2RsBd3!uqn*v`ir!r~5Exd(~E@NU|C;d}3 zhjyEa(3c!%hG`qYn|}+rJftFTn}9GQ&~_0Ya{Z~U?edVFFo|`l_-yy*oFU7*7tCwF zCIIeD9Dkp_#Vr{p@S(gTe$dHa_WsqToj-hdavN8myn+t)X>@L%Z8!t)><9!q+1 z&f93s%HkdD|A7^y0uaI)&~4?N^mJMk^l0ruYmshnpPz|qGk@~f&V$sXZlf1=Qy~j%ExBD_kJCsttCrWrdHlC5Y{0Em- z3o(Cs=CdhM-w}%p@O0W4jIpYNp3EpHyzK#DrBCc0JzPy%uS7D#t7bEU0ZXB0qYb%c z`Gn+den}S19>gVzb+j)!7*=i$g_tD{m@&Hz_TM|t`R2nh;@fZFLX!NhV}EeAr~nhH zVn^%>tmw8CzsSYuv*5;q9J*0#0)C#Ohf`NR#Z^ZoF{bA z`t=0!VJI5k?&^Z02E91h{Q~Ja+sTU%cL&e@G}`2E2$mlAVacf&l=tB7?Q#|jbrok8 z-Qjvp{fa!3YwlRO0vt|Ek6L$AKXN(2|b|byAem- zXRs^fA45-g7Jm4*6Z`o(&^K%iHLsB@&02&Dy$i4*_zW#RBE&B2*MPLabyTk;1U*2W z>HVV&K`9yV@ySoy%>Iq|qD>mN9WsKbp832*=8qt2@prs5IUi;f=z&qyX**l46LL`` z8eK2ygTM4g>;MJ$VJ`$KX4fEDM}=L%IaMEiYo#wPA7zempY5|0A?Ep36;6!OkI~+} zc-K~u>1?Zk2}=4TDflmJdK5zLKK{m!T74Rdn(v|G%u8s6f#_4%$vL)CDa~%@&k#rh zUu%~Bk&Bzib>^{OXTet0r;AB6ib>uWBo#7lnmzluG>|Z!xtz% zt+)q;0WnN$bPaZ9oP%TDGHlo0NAv{Y{2X0h=(FojsHSo>^UT!^7U+%O>$#a!xMn$X z!@Uxg^R9#5GC&s_Zbo%w3{u5Y=#cgXGXL;rS~Sa^KQZ_VPC6Y$5O)*3zv8f3$$(jO zSD7teqsO1Kn(LD1|0Bf#JT&-NkDN`J?tNTA;@-c)MsX?LfhuQyW#n5VUDqJgO%$>; zKHv&pA?C1f2bx`|C0`R>5w-0vU|cN{><q6gu9|@J z(q-6M2^of5^xEUuXTA(yJu!yKITwY_3q)ZRnZ~NDl>zI~M)<(xvGkuh;apcU=6B6Q zSZgwfT3nuDe9A^f*^tY=(IgO4hy><<7^6F4$=sLS400ib(6rNpN)#@pWg8!0Sdckc zwl)YvMJJ$YsuHuqr-yY_x$NN3Z$vT$p~mx5CO&G7R2SvXHZp2gl)^Em>_X3zo%0KU($DBYTq2j!Lp87 z)v^~PxqiVhhsCVtG-n+B;z1fEny#=pzED?T0JX=n@jDyBbpUnP`Z6J&d3QFQeD@dk zyU)?W-MSiIHFgS6nkM&2^rhj>Lp zgN=S_#J0RJhkdDvL~YQFhScw4jbqfvs`@NuVbwG6e5gcEc-CX~Uq1f#)D;8bujBZl z036n_BL4!pY>UnSbUz>Tr?f+}c@6*a_Ww1}?EtU9J zhqDbzadK%kkiGS|Db$FTDTy;epH{N|R`FnX;uiT*R)k^I4fyx-MX-B5h8dh^!_r@# zwdk+Gzbn6>khK%z(reqO=cWoXHa@|v74A&Rn{-~O5|4^2wbK>@YsSRyJI0HhCU;iK zvtl#nFs&{^tk5w5=C%DCCaUEg?3>2Dr#XJc+2A(x){oV)YJxElJ7(XR3uqAutkJ-1X42||%u3H0uvqCRowcT$Own(k zRX*|LFYgUr+bYB?^_2TQ5-U=_gk#1m zW|DU4v8{d|!Frh(n?3dg=_z|QEZBxwd%KqIa5#sXeo3-#&KWUsl8S8n-vf|tf0FDu zn@h%mF5vr_BJ8H>&Fq$|yBOX4D*hGs+d#%@V49K|S#y4vzNuMBJqp!XhxQ3LeQzBx z98)LhOI4ZOrJ5LJHWk*L5N47(2@}y71}m_@PWu6i2N=l7Ye>Y zXmJ~tBYKH(FQcf^?_BCT)c|E*ZD4{AIN-^C3asxNyMCKCq7o&*$l4bY?@uYX&Al1z zBwUE+4o#-sDHC_dg+X~u5rjoI!Dy2LQ)K!Q`|Gozuk$G^;n*e>+a=(iOa>e}(o7w< z)#EqLzwt#_m%04=C%W8~VM2$si2tulEH^pK#$4mW{nu8^Es;UocOw})KZr8VI-FR! z8}pb-eWkuEP#0LaKi$A8vb|VJ2xjbU?;3^BVix4@a3dKIMS8~%eY+O<+p%^G!OT%lIxoqu&_xv}l4II1pAn?sSF;iNQ>*7p+ z1JB7nQM!9c04`p>oIc+!OzPa< za&xO(Vh|>c@ikM}D1m8>n~nVVPh&6HwU0gI9V~nYIXR0UEv*u)c3mTZk8KEFnx!k8 z9)e@)MtE}LGXKXe5xV_9E|Y&c9-nY-vrYO_Nby=>M)YV8*ln53{;mkZhS3Us_RQ0b zwsMsBDdIHVyu=Rhd~XjS&ft$s1E0`^Hi2V$C6L9_w52S zvYx?Y-kt@6b5`?ymnqYhl^*c>U=PM#m;_U%rNSxO9}v(~0Uw?DFvnE`OYOO~sEP$P zpP9*scUR)1;6LaX-bLp7=fk#jDSSl@1!jFm1r7Z!%~bpoWHy{MVw$3VM(WJO~r zT&&-UmY0O-I11r{MLqQ7R~;sdt;B-+!hHLVH5jr^fadu{A>EgZFHf%`3EmsY(cKYr z@!BE&vAhW=cyTtfs(u}Oo8igC-_W#TH||RRNR`W_ zpe$zu-m0GG;fn_FQ#$~|!R@?H&scJ(JQ%m_yMaOqAOS+Izk$yz{=wmtl(u$0R=e4vXXALHL#5tN?o3(NgSFws+jwcol7 zuiicax^73fnci#ONQ5c#ci{+L(4EKZQW>Jmz3uq5U^|)OngN}+sf&@l}-}yap*azmYT(m46D%Zycux8bs2=^OQG_TJ0Km| zNX)`znNzI`V8M_nBQ(&Ct{gY3qJ<1=zXA zPU6>`bYdQ%1EHT4ak|1U7=a^jz9vqUa#Wn9J0)SWjuOV zCy{5#kH{jGOXP)PB6+-oW07Z@!$Rv#=r8I935yQHL4j0UQ+1aA3=dQM_#IL-PlM^x zQW2P1qifIV4_Wi2m;SK;8dIfzd2s+@O|7VrwrK$#gJhB5FtGke(Z}P`B?E|NHezWZ`xtIB~xe1}s)G2fyyX9zz+j-6j>> zU%lWQx~)`NC>2C}4`4k^M~@k{I9J7(KWlg+W(-L%^KNRRl3pp9WP75)WD+<3`6!J) z&+WthI7x;-fE*8e0rtqWQIXJmyrXvpEMmLq#O{2k;u*5J2P&XyL>Zp=L=&I&zrd~X zHMDa#P`RZqIIrv;TJ-rGzTct5Ox#dNw97b$k*hHKq3b?>O6*oV{Y?e)Wz;|md_X;F zh;(M12h#~}@zX*#96f9eY?2CFvVH=SxJH6p3S0p<_Iu%93vt$BWGeWC?}2&RR(Py0 z5j~gMvdd+~*!tW`2y?NeH%%UsQ@=GqukjD{RJsLkDo*m3eoTWOJ(^7Jt7I@Vk47+Y zN2i%pbf|3sFM3#(IVxX=4R3_lgw0PHH*N}S%wIwq>LPaF2_7&?v-`uOz z;Ji=X~hnmRkZ30Ye;aa}mp?-X}_do1XkYIwY%fZF-6R~H@E?ngE4=>(NBeS+D z0;9+AMhpRqyiyOo>aC6_bIVTn#LJej@;_WWysf{;#{Q>cZqhRdj-NFs#R9YWWG>5ZpaN^xG=Ubeb2 z8`qUaL$`?mJzi1>h0R6{2OrC$!mJGb4ErLYou!0gA9(QRhajw1=JIVKGOWC32pEzo zT%milLG}>GPRNJ`Cy8zp(vt@j=RMFwk8?c&#BD}^WNTHa{`&w-jn1e4 zo=Ol|j-@C2&7IfxOBueZIkI_)Jsj8Z2ejFSLTYa=nX%fGnU&B&H`M=u+Hh_L5ub$b zNjvRT*adC-y6FOs2$byOb{9@ZVctYRB68dg-@Nx=<5$0;kL?t3^kyx;&t4EkYPETb zCtt-^V|}>gt~FfWQ4Ipk4{*M^Ak#SP*!W+f0QpoTigP#rBJTN?SoSa$Z-ra2TN~FA zpS&UHRr~@wQ@3GhwL0s)(TV&JG>s;S6;)aGp7tcc&a5AM8if*PCG7?nM5z>f2PeM35;LPy^4h z>C9l}Q{wgQ1bj4nO7r3(F;b<2=deD4b}C5V^zR*T+SCaH|975Hw_$?ux#fH}J;`NA_wBEbD>Jc3A?Ua!Y7^+Sc=_* z;+yMnnYSEjX{w{Dn=5tezDAPRW01RAoWHC$kIHi0+)_nHSesnS-&^w%GdTFebhm%B z<;+u*5IO;t7d24mv?OEk^)i^xdkAj+y13nxPsRRg;72Xn$iufM=$`yYc%>K*V*LfXgb|+PnYL-MIT3F6p3Z?J~}z{I_8|NCR6|UKuk_0T7Ptb zvqtuWtqOpl-c;`s=%A; zq}`-Z+}T@emjT$6F6Ous!C26+0OsyE3Z@YqV4mcKqY7)_nt?KRM|=vK&vBiM@NQbE zybyLikYRcY1GydYY+}6o4kk_R1nuGXwE12fjVkqrH;1P}!~Fu>T072nf2@Tr6)bPd z_Zm{scNm*uDNSlsGi^s6eZQPwu7`Ddr6RoXWk8y<> zo|kYzw2sAe<`}?*qm+Ml4rG41fVL)Yh@6HmD&O^j)${i8|88ZFtxJQfbsTqXdk~J> z9)QBvfuNmoll1vcvs<2_f|=Ksb3IZCv@|Zao0qo?MH`pGzn(E-bu}F`R?WoCc?mEx zKM9}Ri37bSYB2psvF%`tBY@F#($3}OrtC__hm+HByzd_An2><=pFGg6FCTjDrQ(Ny zSS;AC2Lf|O$nrCBI2^Kos$V*ah8d##+x5yAcHRKHPL@OVL?@2*{)ty3TLR}p{K?0| zD{v@!DT-q@eA;z{r*fC$cQqWL!;Z1Ip5ea3X4?3ib8l5mw!)I>7JNx=f01rp$ob*R z`L({9@Hf(i816WTgRU`XE9{2v#grO<`Kyw=s0h6BZU($GPQV8f*d^c10H2Y)Yaof?U?ncP`{c*x-Jt4`evFmdERzgIyw*c>4uiFm*t9^9RV#(ThZEi1H9N6fRFE1;7Bva%{=9ek5XM?Rb&|ikz6gJob`sMQi_n;3^S$(aPHTJ@<5Fiaa_(vhe0%YedR3Q! z?b#`y;hK%{?}qFG(o9hHfIL`-&ceXV1yrU*2X5KMVV3;>HLA}hZPDov9C!@Icb8EG zRDkLKg+b_V8fZ*1#@T?0cqRG5mtE?hdNm(3r5F$~`9=6EMR~pr zmY})N4(eMuPWQ!ddTdhw-p$P8{1Xx|_G~h&&#;FVhvVV%gC(Gp9}X3r^HHeEn)kj= zgX{ts&~=W2Q=2Q`K+i0Ef2f2i-+Dpg4oIVNToS6kJq_2EmXLtDS{gWm`}^dA_|sEY zl6ddayb^6ie7A24oVL`3B^hfV_2Peg@2v}9?0pn9>8ilQ97LdRyQT)Sk z#bgeo!}Bt6(tNYOQDv<<*;(+OUhL!Z7khuE9;4-x%={QdbSrG4*Nvl-04%{^=bvEwXLAm8UbXa$i!T%lw<2e@} z*!Jl!b&NbmUHmoBN1XHSd56O!f!QSS^F8XA`jGgjNW$0aveqeXcuIXvuB0)hR#=sM5Y+PDkewy@7?YI*0p1y~B|#f| zD;I*EoG0y$Nd>RDw){VP^I%6qKe6619W`DG@ptv6Kw82J&hztv|6olNc~Hr5^KXa4 z?fpkU<>L{QE?2>F|5s$))o>Wu7((Qtljz&1O?2Qo=TH1}lqx6Wa+yML@NtTU-&Kkz zlP5t>ev5^XHB)en&vYo&c|axW;!w|k<8xT*o=_4&N-lOn;7 zcbsNuNWs%rsgSn+5HM4s(1^Qpvc=0lZnZl2J}5_x)|0^Jo(Dz40JtX-LdT@1f%5G{ zyH|teFh~6+NqtpFmUHKgk!yYAb3r0LITy>HIg9gDxI81>YFFqYyWOEo~ z071l+>K6VXcl;!vqgacWJwDbrmZJ{YkJ4bcZXNk_a5~*RJ&E3Uw+SQK+Ihd%C4#pF zOOD<8K?}?+Ag7-5NT1B3LNa2c{6BY&0qF~WT+TpA<4j!lNQdj!F!)qb7OF}kal_>} zh`RlYyepEVx2rQSUT2i@_<_i8SjTVNZ-`mpEU8|z1iWqk@a6nAbIi{~`cv2yHqX!I zMQuGzYt}45oAsS!sG*vl`}PJ6+Mo)*ht`57TS61oYk|w`Ianl+jPe)ak-u{*(bH@u zE?X(RX1x=&XAbigcGu7#4GZ8ch=YK0BYe%@Uhu@Xj+i?e!a>g69BG^kqqSx@(sBTt zU#sCYr&I(fS!zwaajsyot;O^Vl6R{BEtj=CHV2f`IG0tI zA8B=Shu!B&P;R7;j(wO3v6>0keKiR@cBF#Cidg(nr9{L3O~uL)GtdrMfC;LJRCjzk z?~7=B{mR@FIJhbWVz0FkOI>N?w>a_K?o5DI^<_B!>|(ybBonwi|25e$IRazXPUX$D zQ^%5u3OhOFG8i6CCF8Nj>F&+fxZlblyP!2Icq<%TU~gR`8R~vVUyUn6w_qsdo>+=m z5e2w#l?g`8Gy#$JE^@>w4B97jQk&QEL}^wcivOvDSJ!pn*s1`$p?Q*4KXfA}%8hWg znhox}>W(rdrf{6|7TbRH#1A4faOhhudHJe?u5ORVs+Z2dcXHxfTR9jbqXww4PU!1 zCUptH82O+Er6Y~;-p)*tJtLlf+B6X}ZSBx2(-b}8%E7qrZsR`rue`AlbKL*i00x)5 zC7+|p&_ybMZrU@G*U8P%eztw#_-m>7XYVQE{XP}9{Iwvn2S&-MIcfM$;1|#Bn=)H7 zZ6)g3DZrT-R*0W>Vd&4#TrVt&bX;Fbj!X$b)4U9v_Ij9@rJe?fs-<{ec_S*A#uBgm z#U#Jm3r_v8#KLRxd=Q=lYTrM@YFSAvcAWzUCi_A|ULyXG&VY64il9&)OJRuf-iM{a z1Eo>Y7_$k3Gv?wX#SGx(pMxK@O*Bp_1LR?Cd4^9g=YP z{2zX)(R|?jxJL4lr(oveb?~3%6sV}>L&78xcpI(&^A!fkKBrs|ePKxox7`JWHxBTv zIh!i|@q<(H2T)G7kbZj4(7;-2A|xIM?17)$9Wwx>9S9DM#M5KXEWkzFinVS)Y%i)QiVaz&wL=N2u<}K%P0hKA2`GdW3IPkuj2ECk% zv2Hf>edPi8uucl{XHH=M+|Ys=!9}>#jO#_(4bwhe2$&{6gix;6=A7UJXGOe7>6b{< z|G9(+tUX0f+&c#Q7ak^;wu!*0f*!COP=F$i%h9gYkNdav(xlM}y7SLXuyo<$!6|nj zqT36PZv{x7VU4rT_F?+w7Z^UuoyBkeM>&}&JPFzkJz;4$aCV?kcF>5)uy(K8=BSDJyzp`P%&b`s8gd;(QR zM#zC5dg$}_BW}8s1E*w;LEOq$xIxeXokcpZcoQGz|Ks+sF{Mk(bHtPuHTB6PH`k-Xp9Oj;cL_*Eb4Z2$Xf z3`-LvN#nR985>q*g~EP-kNg!}`Ev$ZeQ1Yyj<;yhb}cR!q`*ebCfJft%YWr|5d=Ke zi0SPPIQlb1#lpC2CDdKK({FWmi(oDY%4oDspaFHOQPQ2kp)?nUNox znW!{J=EC?j^ljSCd#>6@z6vR_2M;Acr)xRqTi62JTZCi%9fIPT640leCX_^-4#jTIVze(ShE0#JQT+$G z;Ja`Kqw1DJ!<+*f;}*7XdD^eMmwMXdjjAD-d#if9v|L zU}(2g#wo{jA%v!5P2wobRZM|M6k%GfMq0@ zJL^sG{G}sI;kqz)Vn^++2u)`mbPKQ&yUkenLLTlG9-!SSM^Ni;H}tN!jX}xc%onv- z&VL(AYJHxPX@~yt>cTUq(z-l6mURpSYAW#kb6dQhY|gxs6{UO)XSl!6p7m1b!Rq^8 zp>B3F-ujS-ZgXRpq}l+?2+QI6!CssL@d56!{6oU>?QovbP$GIr()sFIR4#_anLW!$H|_DP$%Ul33C|6XHj2K<+}>G zwO9%q(@a4-s1)7@-2ta5EHUXwx6@g25w~UBAyU)hVdLF9JjKavuzW`}Z{0^tEHri} zl7AJ@ZRQ||JH5dDHlpNeqAHur6JYcW73i|uuV7&XbeVDy1icf$d5wjPreFss+ODPA z@`s^cqL46Lrt%)gj`7*LmU?ZvOn#3EGhLg0l5Qtm8nba3E`8XFOrRpWt6Y@ayXioE zzg{3E;zMMHcq{LKpFKLX-N35M1bp=23AMV;LSXYPY|0mdr!^t4qIx|}Jz0k2Gk>jYTM>ph93Z_j)>8ul!KG}%_JYtn`xE7*}83Ej`Ln{bx9!-_D&S#I3-Ul8to-3lwb4l?xU zV!BIqnC3HG2$esG!}B`szA+B$NqHbWxfq!j16aC(_U!*or+tWk?+Ic!?{Yepd?|oq z2UOTUx?1Gq8%wI=UkQUM$5CynJ>J<71U@@Chm)f=%=|J)Z-q=i|A9i-GtrFL7b&v; z3jRd`*vX$bD>%Mwvg*TYd>f*l|4~Hyu~n4{(S4DI&c!X{L);x0__P-u*Jgs`!;i4d@Gxze zW5{N#+sAu7I~9k#<8XtOA&jgr29NN|WV-AEw(8{}(AnM${wsx;;gMc^=MjVLrY`jM zq%`J^<$4-vCBSrjH$~5G#U&J+2r{fBkP?_5(&vVDgT&{FM zTM~UU&artpmWy$0ENn^aJm*`S^bp6G8z`C~)_6wmGtOTa1SZ{PjG|l_ow#ZN>}j7##kqNZctjZJRo})4 zoeS7zpunu+I`?}E)Y*y8>S&V>#{=VXslU9g!p}!t;P~JYS)cNn4*S@F`>+Id^mUTC zjuX(KrXOotxw}$!GnAd%gTe}({?5H`S*udYd=iBa16I! zH&xh+G?pj(E}2eS`;dlw--a$OZIGt$hB|JzMdFl>Le8V5oHM7N7dfg5f@%9v>5COv zC}hf{OTLD4FGSed#S_rZs*Q(&Kk)vq4w7WHga3Qf1D0K8ShKxLKw=nn4Niv0#__#GpkUh(vMyFed zu=qRyy#K1Q*-J0;3bn7{qwVG7-4O!e=E>x#*EkFx5M-x@8!+s)D9E;d!yit04dsh_ zdD>sk@#e?s2;Sk`rf$x zOB3A7AA;K(s?jU>0lt#<2f=BjU_W^itLc(~m#)rdiU%wC#YxeO$Lz_R2UZD1laE4A z&mat^fn%6?>T_ZHG<3%5lf=6YAd|` ztk1liYDz9m*TU&;p715-G{lUF(cg?3U34b}vbQzRiWmvh=gYws@dw0wq!Ug2&qBf6 zSh(3;0@|p;mWOj5LVYFX_nH`HPV*$#h9@9lV;P2zFJ&XF2kFVk70hu)fzewznLLp; zW?M=@~SPn~@P>!B6|unK@T8*zV^ZtckKRJGDm^C%1aii5I` z9%(jfcz~QP?x%MuEmEH)I$Bm=UX_@~i)@9U)y&>LD%s3BxOvgoNYdVip zcfN-@%!lwCbC|H^HhD3`u>!bf$*56){pD~2uGbWR?fUl^SZvK~l#XGWYHxx7=dgcD z@;EQZN~9WT7>=r#bbk>vuIKs+A^RYCu@JlZl?>z3c!z}k{*P?k9L(NtmZaYt&VgUy zOAH)WW127gguMUfK#fG1)0ZA{zw=xksCE&ans$TZ%cwHh6C&qEg+8zhcL4xgdJIX9Dl|} z!^?Ln%$FmRSoyjSU^vkhzjdGB8<=a6toSqVQGEv+$IWuSe-vjWR-eJ`2k*n1TXpFB z=@RVdn$KSN0jTBK3`Zw^!Jm)ZY0AquYLR`IjsJWeoO7Ibd%lzdFHRrZOQtaa{g0{E zdKKoMhB16U`DQ4DRTjsE-EF0_L#ss~QWzySq*$T6-yog{~u-K%_!-!yahN^wO`I9#?&h}y-lP8G1gv?W#}>;gFzy!}VDQxe zjG!9qxR4lgVa^k{LNsvM%~MuU&kr*1P$JSN08?VZUWH;-tKa)k_;i^NP-9pA3jVgJPcg7aHN+2}2fc+=SthcH;q6 zX79}k9NN)`hLaRQ*EJEItNkFWCZ@t!|96m)zLH%~GXht>-lBW{=wNZI3XR!UicNdh zz+8bCn44XIY2!E0-Kqty@81tXbyFDW=u5c3)&RHEa2$hP5q6`j2&15H&d3f)u!RdU zVZzy~cw)4b<1Iwc*6;{&weU6+c)q{`r&{=T8b@iDkPmw=xR8j6ydhq?_d%i9hFQw( zdsRI&Xh2>rHV3|iKGTO#!R?~5-B;k@yOQh!Hz(FpS(6bHL}Xj`5NWMsD0S|oX>*m? z0d^vDTS|(N+R%q#0pf5pcoj1t^$$*U7H6~rw8@KA=^Sf!8UI~-GZ-$DWZSH};Q6=5 zxI7_|TyU!+Q-?kAu$lstr5G{VTT1Yj%4_}-^~sF)5kuUfd5PQWMPr1@d9Zq5hJmN6 zLAvfRsww56a0nl7DabQkiSAkV(7SMUFZmj;~yAXSBI=AKg7_MUSdbV_2AGw$@o{K&B1Dt%{GlorS#Hmn* zJr?MTA&+W_Vr&AGwoax~l$Mg>eedaxa&?ebo{xhmYzyX%R4yFRo2G8Uyhb|6qaKN36-;fT7QhE9ilLXJH(xx8M-r}^I!rYigT>wQYtZZHcxLqW0s8@&;cDaqM zLvz_Yv%lof4P!iEJ5iunbsL)I*z;<=uXri)GGscZzqFPv z={f{Q#2-=(#I8sqt*$xr80#Z=vibz7 z9&H83u9fVz#4wOejHj)NcIa7WieoR_ftkB&h=%4zSRt59!}AGNV4 z^)0%#*TDWV2~W_m9~^`jn8;mg&DM1ogD z!dAHju;q$?%urg+zA^B_%p29@ut7G8$kalI?oC+rn%_aP^Vn#$a2(9H!CkrXFcD*D z8`C0q_(FlMBpnd`-WeIx;rHhg(agaVb6phKIC>B!zu;%1Oag>O@-rEwb9Ch8AE@2i zOiXv^vG*x}zs?Oh=E#-CO)@!r?OM>0on3D(^eV^>;9qSev4 z7=2t4wBG-wzE_We@UEq_wfq~H^I7Oa%Y{HrlHl0F1H^mrY_8i&gnccNjfdqKH1T>0 zL(jyCeY!W)u!*GDdMk0W65@hZnV@W53Pdm84O=%iptSHZcJyf~?nxB`g<@qGDG!Dx zmvp#ApUiMvdJT2D<_=emw?Knw6MV3W!0P3;#uJThf$aeAs~9{_H=c0^_I4>69xS83 z_x_UNX#=ZE0$JRA0Axi;!PuHie0KZsLiHCW%g1M}?eQs<&bIGawf&I4dUxDGDc zdjwsc#gf0vcahQb7|c$n#6=&<(B*OjrJIgnbzh4BlA>{z^KE)TLLC~8{h+t4PhtIK z3&ErXw*-f(k3f^#N!(VP3D<>rU-yP@0=M!KxcAV8=cy_|THAEiD?1jAs>cB{Jp`9t z$N;yWCm65xemrQjgm}d_(SEO&m}#8_>9w*vb0vq7TN;haoc8bN#>D6(N=Z{YM<>6oF!Gu-apz{f#%(Y)p)i3m9d z2i*s;ac2_^iJ5@+zEqOu$}IaWMU}KT9DtV=DUF9~XXCKNWBPVoC0(rkTrl*)2jw=L zK@uO#45TFjUG0eR!7Cud{~S8LQQ?xO^kVb!Bmm%Lhv5mw`| zF~y7)jaET(M=I!o9JB{%aT|O1?rLia&2Jato|{@RQx27Y{0kchkFSSxex|kUoDZ3B zqX2vFv2Z*7ET|p$j;DAgOU31r#Ct%92rUU`e6qFiNl6O|rk_DSUn%ag@JvqTR~6Rx zIl!(29dxrFgy)mu;M^tzdG`}g(i?>SJGbKMB0X>z{YX|mP{5I)>->FUgzmTi<*YBD zK%DP4_0|Z+qan;Zp^evkjrsRi2>kbmaEsf%(;pk0;fs4HUiFB=r8D!uq)m;Ac$A}O zsyT@HxWRtiJ~R?Lj3)e<#4S@3?gUO{b%PCA%}EcaWo$ftO1#QQ@VNlZ3E2$&_YGdf zDxvt<6*y(%Te{+O8Qia_KviZxF!7hsJ#IEkUiODR9~RJiX~m$k)d)MD4l>b_TTtU! zDQenXr6lz%>{i$1Hg%MP>17Um{X1~tNIGuGzk&rag>=AiKXH-IXP(^Y!~G)E%?{_;l)V@ zsa$F#M%^qR2X?K)n$P-hqXqDg(%s<1H3vaYf7;cDZ*FF86znKmLxun|cK(+?5Tc zxwRPaT9flyRt#b_1}ye<;XzkQE_~<}gr-nxeepIvThT;w{Egs@jt6v~mVjLzPq4*% zAJ*ve`|b7;s92qj$DYlHM}7>kF68&MruU&kr<0t1`Iwa7-p%t*Zy+%{hY<@;fZ4oe z*z!9W@0q0Iykj#kvHt)nAC=;^Y?}tFRzAQ$!)Q8b=PhDjpvYbyna~&wmqW!jQ<63=Fh+`7RT}Z*{g71YX-y&^XI#Dvjje8PLZlIX;{ZF ztno-7PM+`$uU@Oi6lTgM3Q7SlmcZSw`0VsPL(JGvu`x*G1#Ah+p%gL`9KWS;`Lhgm(bhdMBCT1S$#D+1az)R{o z9aC_I8PLhax=|r?uo;E+j=Qk8=n?)ZJPV)r_x+3JQM%`07ls|(hU$+c*%+TmB(%C5 z|0syjC3P*#y5Ue%<}Q$`L2C?Fkbz;tc2Iq00{XRxzwe1YuQBJ7XULv+Xa4{((C2ba|f;m#{B;C%Nj z*wXEejY1c}~P+m0@OO0($WMC;!w4yj44bl|=`M|BdOypt%L! z9eGX;Pr5-(-ixx0ObxxaTZGNG&V(M`f4nob3Vd!{#B0W5nXp?LAXT1(p%?GqXXUl% zwXc;-b60GvJy(q$rEd7MF&VnW>#*WjC}Vb~9>vAe(EU;<3N?9C>6y{+jn8;ED7Z4q zKk}W%?s3p}CPEO|s0FuV_6gbzWCUv*Yhdr$K4zHDta(kmL{y_6(u`|?Xn(we@t*Jm zWLIS2CdJQWh4Ke%4a>#r<4f@1pNk~;Ne8OC_K}sjmT>R)6Y!WNg%g%mW5w~kM1P$& zmA$8o#n%>+k8gPo-aI+>i2giy;@Q-gKJ*%mQqH4o=m?tbtYucdY{I%8e>&}iPn^kU~AS>0J=y!J8Q zy9-PuRi#m|QoNb5?2g3O1L0tMXcG;)E010Gb8&9cqa~U>Z)u>uAx`M~LEkSFrc&=) z=mU`>P`~FQBZ*UCZB7(?nE!$}yfPw-G{w<#Xa;SXeTJlW@DI1Aet3CJ1w56k!iSm% zKzMu%+C;r2Jwempzt@>mXJ$Ihe6$3v-#h+)4kMg8u1xbP%E{Y}rC@Tw3DxFQl7+(> z=-8+a3)eZoDN}+c%_f7=xe(%D9e^_f4nW;S8&FVP40d1a?B-_& z-(yKF-yvT6`y0J8XAg$BqW2H~Cf5q((9k>>(s#t;J+J+EBK{e3Hc*N07;Pm>U1NC;?nDe8 zEucnsc%MOVDt*T$fNg6ac|Lv_q)pvOOt(ehb+-!;r(aKnV9WpMAjKBK9qCmN@xUL#s;9%>*$Y8=y#lHDDMeDhJAh;2 zQ_}L~6kMBIhAc5~jnogW9beOocsQx3;&IzhI}6+oHrGqS{QE#z&B zg5BYE@Z-H9-%H;GgYpHq%sYgxfWx@+aWrkq6GiibspwPbh26Wea7GPl9OesP(i;E) ztM5~VaWnC=%q}?n%$%t4XR#vbMp6-M1?ggc1j%rdPOX!}8>cQZyKIl)?HxJ9$Sw;t ze#Aqzyd*k2JVEWUm1x4jT=-~Ug%x=`GoT<9R)62k{Lp8}iepW*Z_IL+iJHJlIlOx#j%V#iu6*)|K?76w4jwltVKBKO*Ui5JyXJT^6vGLQ}B6H2wD7}8z#pTW86V;uswXA{2EkcXi@>TEm(w` z8iLW=?}qUN!&Kw(rwSlGZW4S_Kh66is|2=JBH(;pA}QC2B{z>H;m7T@f>V-?#LOxM zM~`*VD`7n2;b}H3;Be?=|ybGb?67POWn};gQ8mtY9fzanCA#mw9e0I2v$Rvc|75-RqAm z))`WJClIt_(?R@P0L?VAB=7tFF}KDh;(xg*{5-`H5_j6d;PiCChQ_lHzC{8;Pj-;f zh_PhCb0Zo#qn6m7Wg&C@Sm@c5f>ZgcK=XAFsN8qLvQP{1CnOl94(h=7`7^+#bQ?&v z1>@M6C7?djlDv9xT5wQpfOI_KcV~X55Z@+&1mAtR9;yUW^0&h)&muH68z7wvB0zEI zso>SMB_!8e6xZJ`hU`9mqXAR#XSfjfKG@569Nvt}nt;?jmco=M!0~~OxK_^*C5DUe zx>giO8}&0Yl7{H?_gR>_aX$KZg~LvpH_RD_c(nCfgRILS{VCbjI41ik(-d@pCO)4G zH-7SGk!z`#>zx5D=J!eZzu#2ZcmZ8MunQ;Tp29oYNhIY9uRiU$O-sHXBr{i~VZdpg zXS6*Dd@e`PAhE}!Z^W1`ANWL9mI;$_Wf>^7Bm=g1WWf}N6nJP_NshmWg4p@{@b!uV z7&x(t&*(A`^YvxJp1w>7oxGdA*tic5+~J)v{O`J-Ya{P>g=2qH0dCwGK@~nYqoiLj z_~joG4BS}<4#SZQ&QQauS@}5s%q;ko_lO<>HSE1SnZD_*rfo54D19s*6ytg3{&pSk z*4}~bf0CL191OAGK{51($MG}kA~ZRah4MPeP*M7vtY5MaH}!~;hV@5LPE&$xJ`_vq zjgQl>;Xi1xNH$Kn|8EOdSD3yOMv#P9C~;*)$5uicczltKO;b1W2pVhvl@cvW#>S)MscOp+ax1i|v zUBoj*7n?IpP7{2&m2z$G3 zlgr;l@cZ5nEbdrKu2`R@TV!j=E3r_bI=6WR^!{yi?C^j5demCKvjxBOmaLkZ-Ny+TbzKGz0LV->L zam#HlI!YbjKf8MZC4PSXd(UC;a|;9i(<`9cbOClPnhooF8kfu-x13nZ3d2F}ry$>I zJDL=Qk=1Wzfb%nL$X5xcdDj_uy-fqYKewW3ug!@{a2@@!|1^#&D?^^|DY(zGA2Rjq z@o1tr%~YLD$9E;bgEtGn-PR0U9|Td!b|YBgR>^a-uYh*BKF(flhfYEUaAIvHgpV7h zujm+9wuR+gcq^$)gBZXoOW1d$l^!UbPD;A&kkQ=Ju#M7)Ld~0 z2NcvWqNdciyL=(Bi9Z9Y?wzD&X-A=Uxh(1=6dhPlh+xG<$5@}#1OURrb-BJ&>L(=c1e3mJ=T!cMHC z=K|_{XD?))eoUJTXM+7UVKCzJK3V7g(Ro7i$n?Lr$!gUM?2i3TWpCHu+e-u@Og^DQ zlq9~aF2ga-9MqC<^w=-S`s}p@8WRh{_p@LnZNVJVU}#CZPR}muqeu6uvOCY4;cAsh z)F|;eo$CCI3A{fK-v!$AXfSdH8xBn5Bqzus3;%w$1JVCKdQz0Pm>nduG@qj zCuH&Bj6}Bo@l1H~#uR?cQ)aW*-^Oz8D4tB|AXYyju>Ws7N-58SS>vSTk>PWe@k{hNF{qW=wt4>It*2mWf$v@;;iT} zggzs7N^B8X@nr`jtTN<&FV#kt_rF;CX)$sVrW`GhXMc^I$mJeMB~#WY;E!wZOqNp? zd{gP6br;&1ioNq$E8a(be9I*Kswzz%x*M{)uS{n(x36JuWO-AAJ904Lln*9Pm_kmS zRff^c=LM%&8SHq!78gkkGAmpjfv9LY-OjED_Rmtf`}A1OTsi<5!|^0&=s7*7{RZFP zu^)#*Cedf+Fx_i4P;J&3`1FTo*vUqsXy92eOpwC# zE1KvmVFvQ5+Gyn%&Cf_UV8p8MA2*rn8vg=U-~l)+RZjk{JW5;Mh;h1Zy*#J2nm)=A zV{MMy$9aJX@ancMD)}#Bf5xq5Dnx8Rs>B%!;)AmZiiPFc=;-GxVa1yCxk-QlR#W^o#1vZ9p-LP7L1S1!@eFN zE_>hsKH4J0PS{$GnSO@+x5_#;AUzY;n$)7=G<%*m_!yXfE1+v%Gk7&dHqPqViMRN( z*tyAOpwzAa*?Wd@W-1E}+0N*8ISq@Z%_jGc$#RP>%>?=A_bBN*89hD6(5vwip-emg zvsIB!xcCaDDqcii?|!Tojlup>d-R_x&7CLW?A)aRAS@_le4Qtt`b{CW;@y4baDp(q zW5!GJMd%J)^QjC*A}@hL)^P}!s*EZ!;i$dmvLM*rg}&Z;BHv%vBQ8zn zaah9zCf2;Bk%jhn#H|q0_&M3F_52>U)tB^WZNYmo;@kzzRBSL8z((CxL7YuGtkABc zv%IcC)1}kk`tl+awC2&hzUm~!=U3y(i$?5k-5@f~<{ZuCeE@E+@8iu}pmKftSo_OM zXz#iRX1K*3?p;2~Ozx?`(qTuG(stx(c8SBkmGQuy?7(|*YT(^iZB!6w0?~&3=qwox zOvV^m_puBs?W{qU&kqI7zKzBz~7 z7LlQf3@Vx0N#-1T59eE=A!Tk7dL1-{`PqEOp8bfA&b|W)KCgbszmlZN*>H{R|G}+C zc6{D_G6Y>5$E}I2!4EzCa9x_x!B!!zvhNhr6c~?UBoFy#oiH zUjiemW_tVEbXec~OAuMg=TsKoz+$Noe5G`d3o#I4m9-4<$Z#T5XU>F-f*yJ^^%0Tq z=tr%;s_g6`R~!y_MQg9wL)^B1IIbre->)QW#{C%_*L)Ya2k-C!@6OX0jiyptrMQfV zRaF&H0l9FkTFvDamQKCDZHwoye`f0L58GrDN8?sN#~xeB(UgSd#XgP#0D z+`EReu*katr%LY3xGsn-O$cLyLTt_@Rl zm%vnKZH_b#l5=%$$cE|cGq?&hzjpp`nFo6#tQB~vuf_o_J_`jG{0PdGBI zREC{n&hydb3!n2l3m^~?-Ry;icU%ijPoREp2euEFG zjCqe1Vl%i+{CC9d>vLG2>$w73{;Z0_uS<_GiEEOHHa~+m8_ETdi@(W@F<-!2>?faNu!L!6&y&6R zb71*K5AL6gGB$Mtp`O_|{4i0Cm2(hx)L;|$Atb;A`6YJpuHIYkks_Az!VyVn3jXy-0`w4Wb?o}pgn+Qp` zD1^02t<+XalFd6Kj-q)rWZ=^zc7X3(CWroj6G;(_^}~7Wo53+`g6e&m@IHWKZj@nf ziteHJyQP6Hs&h%J)BJ+p8-tzL$mc5cEE*j?(Tz7yS1E44o?B|Z?FgV~%6dz3Dq> ziQJbGQI_+~B1y9PAiwK8&f=MW3oI_d-ra6owsmfbs@sa1|w#m z6?Z6oB8&N4fNakhRB(I1yVr%;;g-vciq#h|Z`+J#Ylq0>Hf=h7UoeDb6o8r#|BWQ< zNZkhI;c8L>m^E#KneJn`aAixbVQdpj8&1F(yZo4&|3ulPG1laom?I2@&ScwlF7Qrc zBX;wz--3lt_G2ySq<_}Dfa0_n+6+{%D#f$l zlIsJ!`F0As;p1HP`yV~-_q6%MxY7VcuU`N|(W#tSxe|A>JBB=c%;Ddv6vlbRVwCu( z#=Vi92Zi!wLiKm&3= ze*j*#L_gXCb6z;Y&lTCkaojBK=p$pcd{QK&t~H>Vs!O=r^4GwjcOeRe3qywUAP%f~ zNzJA$5gdFPg-%y$@vR&m`W@BALvi)wJfy<1mfujgsS;+}O=k}+n}PB|hWI>-=cF=q zQ29LuuJ;}`UVKM@4Sb%d>COPmzmh{bqouiDMP0bhax<)n)8_ho3gMH{S_qyYLoEuf z3BDz*V}p(h(;K<_SWE8!n9ACq)wBWJmAsi{71TM8qn>CpSVmIxvf=BnC9KH12P&%9 z$VD#~F5Zl=MNghUg@Gzo+&n6Ms5E*>Pu(fmd z8avH}@9Hya zpt7S7UDvc@LdSYKAt)DQ4xVQ$@~6P^D+21iQG)&B*o0x}3)q31WuRPpg?w!+#0Ao2 zDEqjUI#&p>dPY4YOHP$-+8qO0#cIamSA0Nc6$>!7%>jvBHN+_A7utNB!g_V7arrs3 z*mj8|+8DbZ6FjCu!`^L;nE?fOUZ?|(zYyh~Yz7cHhmbb^2)bFwu_x|?vHI8KaKAz% zYM#7ClvO^`^uH6>M4r9eWi5=p9!j968ct)RC&QucLpY;FiPP!&2wnxtxGZi4e(M?s zpI+P{hg=63i?M2~PDozku2f-m?<-x}ZSfXO#y;X1!?o~yRX0A_p^jTY8*Xha!OrV5 z*jUxW?CVS`X50NL!`WX7;6JgWu;E!W2n!q250ataA#j7wCy+?Gf26W8vfOpe5fJNH zgG2HQ1#QN{Tp0h1U1t!5#|~YkQ_c0+@^1ss^)}i#FjE&dX8Mo@YjO5U=?21f$#efA z>{(6aQ5v*9oId=Kj?dXsxSP{JgWb2lPD+mLiuncMd?wYvMTLBn)x(2U9q{ru!K}aw zs3@%lipqzXPiL*TPfO>aQL!eLcsQfJr!$?@Y0dSvh;TVmg;-b9TacE07VL1Wz=f1M03%0b=>znf+{#rj+2S%XSXFVclS;)1bir|5L3>shGz_1^h;B0&? zOdncHWeRWce25ar8%o86zOL}m?jikb84V+AI|#F1fhkk%5-j(64M~xza9nXAmR#l8 zO-{BDo_!GKJ}m@0tK;CSxsp}X_(0;LOQ7d@GI-BZ=B9WJVT8m*82Z{r&U<{P`%2G% z)PYtMOg09uQ@oSm+itpV?0-z<^&Ilzf-RP4gM?K#3qRR3=c*4~RUJk59=WnO5ywDK4ZNyn+JAH79 zuBEcu#<1s2_^e_2FxZm6g-pV-_ug}$<5v}lo`>3U9a2FPUY-Zr6QNsnhs-{B$)S0gqVIsTNsv8WVO~QgZ}lYbY#jpEERO%-&S|Qq>?T0%~G5s zAMXTilQvj-nq$Du(>QDUOxE8&1B>6Uh2zi8fJ*Of__Qbpx(*rA`BkN`di`a=rJYGs zp*NJ#iRmI{@3P={a4-bBH#dH(5r%Igb-4415vps>$1D0z;T*sFm6lsVI$ruh-jCf> zVox#2-uDFpH=Vet^cU7UomgR6cqXA8eFSC5ZElAjHqx7A|5-WEaqgnknEy#TbtMYy)+Xqe-y zz+KhY)CkEv^iP5j??kG=SL&fu^7R9lY`+=v??&++U<-8HEQvzR`>1T0Hmf5dhhx@q zkW+XK0_MA8Y`x(EIneh7X#MIbQALLoyFd{qC14xM|2?z)qhpjQVmqE#53v6%UA zXA>heJrLgNK7+jzHQ>EUBi-}B2X>v_Lav&c;;I+Yn0sRj$pa^6xlDk0XwC1aj>QhbZk?=@@gfH6%9t+kK(|6@t~4#6G+gNlk~_z4bFYb z7v^`zVNjVq)p$Q?f=yy`+0{SqfL(SA?6?w!HkRdh@Z)y$(j1^6+V71Wt9+sUnGIe` z)#kbQ-*CDEzoYPwV0@pif=~%xdhTRBd8fIFlsXuoWnwO@`>h1^FPc%pQ<%Fv+C&Uv zwQx(yF{oZOhV|cYfXbC-Udu^;8@ z^|6PfQ+X#lvb)s)qHbluA^z<4tb3TwAI!pDI*;589L2{wC4kKmL-SfM5L??q)U4LP zY~sN0tNv?v{^BPS_gWv--vq$wR3|Xqxer2D%dj7_l2JkEB0e;Eg~DV8Xzn-!PoE^< ztJ{=b zsFsy2kTt7-DPre{$@WF;i+DwHRrwU}G05hR)7?05$NQL%B_INH^%d+eoi;{Gm;m;>^*z88FE@ zkLoq5L)Ya*a>u)oMy*ld_>K~|dz_`;t@-@cGg%t*dl8=IvkO~L9*(Id;;yce{Kjt#b0@b_gtu*wU`?OKir+;iFq0S;eD}kzDplJDeqV6vkc z{~h+1ciHywjSmfYz9RvwEXS~;ithL(@j4?ssDwV!#wfS1ky*Vs2Zvl|v%5hYbuA0% zy{8k|f=K3l8Pt*c0n2T^dy}UceMvslP%tvaz3N{t0(hAXT-c9a_lbZ_!YO>+v zVQV9;u&~CJeJ8OwD~y^t6oHigc6gyHBUq)PNf&;f06RPFVc7f*-AtYP`w^Ht*RVpUX0tfl zrlpUEtrx<7wme%_v<&p4)6imc9Os(zo=%L7#>qOO=)He4taSTJ?&)R`|6yfLzQ7aK zOZdR&Z<8SFuMV!#5MmWv#UVzf83#IL*|*c?(}~R&n9aE%ko{O6^WX5Sx~t}bcDdIy zp(T{eik-(Tn>UkdcQuC^gSX`Ju8I8Yx0ft;l7fzxx8a29QY;-{(1FiTmi+8Qvoqt_ zS{)xe;lS_zG-W}r{1uf6VDahHpQzK6LOpFo*!Gf*aOzJr&fb;?(|C{R(9uFF@m`GU zy*Nre#P-0R24n2)mc{5I6^!($#jSF#{Ixip=B=#7l5P#U=*wn2@#YHOeV)PYXyLtM z2Evdk4Pe%sh)ve(@YfSIuu<9$!c^=FpZ(hM(zt~6N-)+#2GNSSQE+ANM zi>TUwgI{ie>8gwL`q6Z}%kv~QPOiaqx99L)A5(soQ-^<+hSPSZmja*scYs_Hd7#ca z=#pw-mC`YC%VU&DEwI1@NCTUF`CwXU1((0vBvR66arDPC9U%UNDqyL6&}9 z0zpnS5+!Gp=0I zM}z%B-SdfnlrPAs(?R=`?*r{KAcg^fx3 z;YOJ;W*!T}1aT+G{Beu6l-!|;7tZ2rC%{lQY5e|l8Tv{ehilF5mf0IoCzx)UZy*f7>IZp1WI#z81wZDVd=&^IDb10wkzBuD>Ce+|L&5xS zj9q|e+sm%0-?A4FnHcC0)EMYK_5>;fweNNl(B>*CW&~hE*&oX*oBVk zWx-Y49V{+qFlPrBlC~>h^yGd^L3i0@s%H0!DSvwk`UA3Y(vSb>)Y%#6C}RKzuF9cv zYyr`>Er7}fp3T&hN6bCF@uf@}?U`jmr`l>k)b5S+X>B-M=yait+au6@rxXTpyYY9W z7eqbV44#u6Aj<7G{dk1W;uW0%rz#EH=b(iClFKmo_zvRVxeo?1L&0QEE}7MIlrFfx z1wK!IK`+y_=x(2nnLK~~>)v2=jCd>v&W{Ge`h2qCdJtAv2?)a_(g&(6RyW5&;5aM% zHzx>9t3vQ!@ml=z?1~`$xd|q9CgYkdndqz-LcJY7kgr2&kbEH))mk(dw%r|-cI4n6 zo=a1G)QZMVw}-86=6LHN;W+VnGpc(wiNW!ymC%`~85bMjc zh<){3KJz^nmX@gEMC;Y~(rpd-_%1^5dZb-&K;tDXNH~PNuoE8LOT%S#vG{Oz2xvuq zZAd+ImDsuklP9a(K=XhtQ8m><#mTqG^i_^1*0K!uESXH)^Y>8;bxU-u;+@0-6}-L5 zAKq9Q;DqW7(sNJ+|6IN=m}_~CELk5&%xm-DWA`?6o2CtagFUfj#~sqicMs+dwUevP z2FMlU(2BE{8Ts$OnG%N2rP!RsyfQb8+N_GVl>>;Ex(B!np2oUj6`b>a3d~*{2{kMA z@cv3WIHq6De>+x?IG@evbDZy9%e0cZm}0&koB~$qsbsUbz91xb3U~+y;H#oNv~$BM z^x@ClCY@_}4_yddwR$toZY~$NA6$UjMn;wtx!2QQ>d&e6v3xLA4ud*A_qWh75-MdP z;BZb39&t*9yGfgIPL(@2+V6&9`IA&jDj57Lgz1Ru*f2B+V#_$F)&uKdAgVEHpo;13aj zUXM53RkMs<25ann^opr4EB0$zlK8ZvphV}F&mj&Z&dzoKZvYPzzs&un47SQoF8$9$ws1RX?_Yz{nz1wtTZ_F zQ~}41IZBW7%uCzwV}g(ydN9^56-rjRL*Mb!c=$;&o_9U~y*nS!ySZNM1{5fz_qTY^S+7;`ji8K zudBn+_D6yX7GA{R&o7cZna}B#9K;7+k@&P<7^H?~!^>|DFyHeOsW0(>9E}GgM&BIO z9v!6D<9Hr!>LrrbzXrT}{b1Yq@67bBR%5l(JMlq4V&k>JQ^MS(Qx^5tS{WCGPh*C8SbPL_;Yd4Q)v!o9vmrGomP|jQf3# zM1?d+q|ne(TJme6-}w)`u6xhmALa@Kw9XvE9bfA^hy}M z{+c|PI~j(P((w6%MDUdRKuR(!;O%H8?BUy!B?G#!_T~z{wdVzDyh0GII6l**@nAYU z;6NSJOUQZW5_o@djDF(XBG+PNkqwJRsRc){y}yeFFP4P97-v*$NJd944{N#SCKYJ> zLUmRIfnVkVyzO}wavPSDiTy)VQ&Ap17@NQ>juU!kyAl{5p3DDdJqdMnwt!D^1{mtu zfVk5-QgMF`&I_1AjiQ3;#2P9|xW{RHH8~c-{p`@Y_ZV2b?IBX_d!f`>1cqyr@Jz;L z+IhX0Zj}qeP`_EY`+YS0_PI$eibR^WSp`FZ#7ubYVMDL|iASB{*&t?hme*r+4qGh) zVaCfcJThvIQ|^rO8VpKdW6cuGw9GZzf2o`XS9sE;Ib-CRLOyJNM!?LrfwXOvglxw! z44mOgZaSFb->c`KbIW;t$Kh^LRg!?Z)ft%9RZ0>^DGEeY!QuVh5d4uPPo5ki%~!m! zMzEV|SSRuV4opI`BhP4apAG$VTmS-`oFVDCCI3)EASw;@!FG!%Ds+1j@w++~=V@K2 z^Oagb^pqm$hh!i6f<|JuhZWcF5KSPuu&NCAJ7%YRAdUjl2H65hl9jSbM3c2r_2Me^kQHAV)Md|^x`EMpT ze&XS5r4X#K^@5v!%+TiEYr?*~M~q{xQRqpf|1{>Kt*8#Y_@4%Jh5n%1jO*z)qh!AC zXT7>Mp8_y%IEE8-I4AANW8j-8zz=a%hL~k<$T~;L?{pcWfn~PzMzT2sTUMY}u_gNI zrco95c)=?K#JbMl@hFZdE}u=mJy4-m9G@*NM+9VVF2IDr#WZkM zBCS&vW<$1C68ZWtj9ESv_lWMts|NZ!#gIIHNZ1O7j`~2F`y8|jjR$v*3*5jf#qbr+ z!EIp~-Uu|oX!THDOh_!I99@jjakJR63j%1?s|RN7mv9%yEw7!)WfiVC@NA$KBBT>> z`EV~a-sA>5>em``2Z$8Gtkd)9pSq3ILS#0J<3+{4o%g>jPGi!qL45< zQ=^!C@yx>HmB&HQx*fMx_Tt8AYE*501NHhP-g@^hcxa)2+(&*FZ9-YEZkBI?q znKEpgyc2FnZ35LdSIJT?i#xHF!dmMtC_kD&!Vh@Be$LzD7%R-`&y_*F`B7M>7Xboo z@2JJ*)WrvW-b1_Wvs9q&4gS*Qx>bbh!#CgL-4X7iw|I_BW-`F*5Ot7gc4U6E*Q5FR ze*79D!esk=Cl!jwACxVL*4^; zp1B&|6-!{&{jcDCGN1hLxJ_;?{sqa)|4{b`RrUq9C+HgjHdJsbPD#9jFH{zT1J#Ev z*av6KyTB%703Gc2lAZb0V6`X>qnibpq269p?^p-N`h^%5oia>R3xtn(;#70Q0pq9a z#{#Xz9OI!0Jyz<$kK|UfNwV2IbDu@fYU4&!f+`{Rt0(w-a*TnGqi`s;ji^SoVuxWa zUGpju%HCO!|HcrU^`c;)P!-%cXWpS)2dJG@LatmNCo{Ip!u+m_XmREp?i&?g)Ptkw z6l<qI^CYWT-Yr4{&s+Z_tA;!j+mvR@9@UhJnH;mWLH&MA1F7lcP{a-4%-anQX|h^YUL z1^t)L@Ot$z5}$tude4^8WrOKh`S3Qp9h1aUT%J7(^A?o%A*fgoIH$&e{DyD%~Bxsegn!LTM3nqbHFpM0rE@2P^WYc45+2zmB-F> zZ(|ZB)dqlwHB?>Rh0dQmjhXj}V?Za#K~9w( zJKtnB8eglz{sV$_M~8r24AcWPzD=@D;pPZ@rL~o7BuurdSWZUUxHuMt5fHmz! z;V0bwEg^|`jEL}rERi(ZO5v6lB21dd7{?mfN+A3xxG)7cy!0eIb(zbAPtV4k? zJ_}>Y=2kpD;}t1URwTFQDzeKe#Oa;?_@v7_1W){%0A=(r^c>P;PV(a*?#@Kq(7K!n z*Hgh_naOzd=O*lmE+Xl}SD*NiJ8l;6R^!t;AF<$QHN&LK(M+R>}qRJt)t7t6d4c5I4>72*du8Qz%3U_W;YXoXSs^FP3$UERX7fpPW zu#!9X{gW@ot|mev{4*#seI0&D?jq-E%{i~8JILSN2mf8OrDlTiP_VibN-MH4gSbPf zv^os0qtrKNCQM9j<}cqOiH}YSQM1HgcRm$LNoR z6PWPol|=XNZph$zj&1*%P@TJnYE4pMmn0g%6Xq+-nl%M0eClb0!6&k+J{hW)F9)d3 z!ec_>JcnWrx==R|KN?g+nQSUqQ>zblwG^*^7s13k8f>9l7meyp;S0~Kp}W*8Am!9a za!@ayc55p^aDyfmJ>v6{NhRF#`AuThJCR9$W|Q^_F8CUDfta%+uUWd5eh_6a zr#gts(0qj*X6Vu?8KNp}RX z{_Q}cM1O&%eHw-)uH)RiSLmDmML1kF6W{%9^-y6J0>aUE)d8sgq`=k* zI$>hMdc2`}mVZJn6$KXkhQnR++2%A~G~HwXdNO}$+Nq6<8;wQPnYW<1##TDM zFA?sp2*SDjXXx#QKE74Xp1Mn(1*SH$by#VQ8SFnrCp>>Ol7FjvBJ;0h4!f@)2_~uJ z(6j+FJ{>9#b{j*Dt{O7+B-XdMQ?-e;x+yc?5~^YuJo?+|I{6mxLCb zLi^7W;2eI6FVeG^XOqV57T@3FNo{*X8V7UG?RXR@6^z5U`(8NSrOLip-$Wg`KGSw# zQ6^Zx2|~Z-(w3@4^r~MbOgP<4pa1Hj2QEmWJ%1hvt5;!p+>y(xY=_%Jip@&+ZxgA=4BVA+#<;A$eFEBJR==l z|6GL+A0)u&v;hCR{Ue;udE(oK7_+VY&v_~yd+>|y2+lJ61r`S;ke+4f(8hV41Lh53 z_x-0>s;SMyRt8|3&qU@>mN^!g*y69UQMB;aU=Hmm#Ob#iX@+GNxl}3wKg8!Tryegw z$Pr^?94a_IlNw|AArFj)2GHd1IdtgN#UgGea)q7CsP0o|{W4duMhZ3HXHamgj zDfs2`6V&#<$%}a{2`%{(VQtW7v>y>+9Of>E19v+?XOdT)^W~M0^U)GC9*Hn^Uej5X zU*FMj?MZ~fYH%rd1bTxZOwofXaNNhuC%UKMCtnvv?qn&svEd-7Y1^=#E9Vg3+*JG) z^_cn_{>6ngF0iR6jEtnL!6m=ukgR8qK*8xTVVwlnEi2Ms?`$DPVBsseW&bv&#c>sG zlKuqlXBUBxwHIh#zXuhobU~HtAzv-K2a~e{NL$Ze`YBh5o#H!-?W>Q2wOq!g{9^_@ zk&~v1{oC(PDC5iD5+PMCO&GAzYgE7nMi;@Wl&|jRPh)VJ(e>2 zyjhm%%P0knS|R4P=tXwI7E|W-O;6~o_hdf?=U|-qWt1K4hU_5?=4#?|yzOPe3e0>6 z?R)>woSSxx<2J5)l^O}pTYAZ@U{M&4o5-{2q5-;A49OE3Y&KX85H zQdZLID1HwkZ1<2QDd{i6St0!x;Uqw6Z{&sIFyJb~HEqGK|@ga6HoN4fD$G zz?9R~B&0}-)zF!Q;kSE;!G&qe-@kXriQZF;?ZJ4M?3Rd%N{$%T6UQtGzX&&`inINT z=CGgE$iboSy6mIr+p9!ziE0nD;P*kE}A_q_NEV~&}m5w76IKnoB&Rn1en z{S=-);f9NBs%K20tIsnA}G&Rx$awWreLDG@YqK?3%O#DO9Pqo-OU zjoRJ~vkF#2$kppanWK%?Dhn}Jj4W88t9L-?a{{nWrnAhBRam!A2%R<+f$?KMj`=qi z*U7&i(sRw2M&-lg=}&1;eYXSrNedM8XhGM)Rvd~u49oh@LsYdJCT#mmWi7U#lFv$J zmsvdyPn*C!KfXfI>i{&eTF&_lwqn8jaBgP42bh@?!76epj9;sVJ$mJMH)G545=XkW!8lftS0(sZDnd@uLU%Gt+Aa3D3Jo8?fO@6YNk(?9+ z=2tV}kg;dow5n0K=2nQGR+%yztE}<7J`WY*&%^h%Sy&J#$?8}BN9d`KXw9DiF?)}| z=@}_h?d&V!`luU>);RInCi76rS(O>u&f%0bg5coKbM%rM=V_Lz<1NfjfUw=Q)M|Jw znO`s$%^GX)-E2)Z@ixMEza2bA7N>7}NxnW?$xNGGhs$UFg#-2k+Z2!Bn>0nX>H2+G z)PD*4y}$Eb{tblc<}lpVA`UkPG?|U1GpJ5xA8D3rhCfYG zKI0p{shf)~3gOi6`(IeQ^E~a{DT}kf}e@|NBy zHrt-7j0O8;nbc>u;ar9|8}M71X{rmsG}TPJ{L+d|u@Yjx&&h%>5|4?r-+j<e3(rzPG_n8i;yjfiPuvP;4mUFK8f_FHmyaqRh zza&e@6KoWmz*xU|Ogf)R;*66^Sv$uzv!d3USXLm0v)eDyMSII(&Y=i0iQ`=xZa#_v zisrn5qGlZD{vQ!$Ex4~Y4yH=ZWG)S=L3jKB9h38CtayC0#;_C^8?=VzB5gP^Cd%B} ze}+2DzXJ!4PviB67h}8H1N8j69lowP505qO)o$G&1@{jg$JMp9G^?)}K3i3x^_vlR zb+`;JR{OzfX;I!Mu_z2TJObs*72$&Oa=P}|7kJr{MmN36zRm6)&i_URw-%!Etr!p=5@e;$yoJ)Q=G;Ey9F83|VH0LfWBty5 z!x?(H&?H`thhC{*nBX+rS3Cq8kNf}uX%9SD!MzittLfs?Ik05!B77D+4<-90;FM7y z&NazL;WceE=7%b~L+Ay$UuljHhIOHQQ8ZoT=}kL4^^kto!*IJ-FdCvoQjI&wjq~x? zZ=J{U*qx8}U)F=On-wUY{7v3I;KPL7<}}H>5$jI9g`#c2c>Vn(2(b`^p#>t)p*@YP zyjo3e-Lt}puN-jG$5l`}MHWmiJ>u1>7Ll+1RgiAEo&VG{n7FTd1EooCsKey9M4|N! zsacvs818p|>q$PePELVK_9obFdmVXW_rdqibVm2ME3xPG(@FiYAm>;K%H2z7V1^a3 zd#6D31)|}^(}Sc-Zit#N3ScdHyKc#V3xcCM^G7w)to*tM84VqVLZ^6W)3K}@y!@3| z{NXYOjS0l-;5aPr1_Uq->!=a}D#)ff)`GB=1IP?F!@LLvU7S|Y*KTp(%df@7i=RQ{ z&5L;DuQhgOCE`})7*eK`{KI^H)^G_u#odY5K3xc6 zw|?^bcb>r3c5!y=f54sZp5T$Sh4}K05IG(>2R8rKV06k^6jl&m9Y#9ge&x7H3r`$6 z!zSR5pRL%Nt_DB0+=kQs@^r`cNPK2}0T*<9sgpeA$TXkOgUT;$U=^1MV=wo^{9JK1 zW8G^~1FG2Wu@zqL-eC6iatzsCc^U1`6~gRo1t{z$3eO7M>AC~kKy-&4Y?m*F4<51f z{$m&H9@<6R{37{UX)UnX<~jaK`G@tZMM;&yM{3w{s!r7E9mfGpMEBWlFm`DgGku;a zoBu|TJrR+BVO5*p+`C7(Pw+Wkz;PCDF77cPpF>~b@z^fZi^_#lVVO{xHwaykn)rN&2&-W97AnGS z@!QQOF}rs=(^p$xP_5M$VarfDX!y6`&P;BOr7_N%;A9U`X2#6r9?tE)--^s?^}>In zy43xG6AG>nrViqrup!4B4u7CH6eNyMRqhd&8U3K+JrOGtcfqWN9(0j-N|lr@fX;SN z#(hm~-OeGd->@qbe|{on=WKq#$Mxc@!MFrolCpq(`)||xWqX7IQ=Mb61UX2^Dl9(q8BH)-fs+#b!r?V`!DXKhn+>49Ghv3gVQS9 zr>Ta5Hz#A@z}&i5@mD83Gnsf#4 zokJoxAr88RexYw)APh-I(d;EhA#RF1yXZk71W$fQcJ9iiy`-qd}{vFDq?raGKjZaIthqZh-4^Rt+}5d}E$ zi8CG4=0Qqe1#EPvB(H3iq0ihH6#0qt+q_dGz3&mqZ^^+T+j!_FPV`N+I3}zSW8doc z5@$9Ak~Dvi!Hje=t#Sa33h$C@@44)LO$A1M^+Ty0!mPw98}|H28UzaN#-k1g>4hCn zVbAi9RARa}JmmSox(xR^zH}=poH|3dc5-goXzu*EYbvPcNfKQ(GuCjH0>8&<9m%=( zf>^Cpqc67^;{7N!=J0!SR#|?W^q&ubD{YUVB-@sscq|Wk?8>2Ya1{=m*a?CqW2DR_ z6Yp-~?nMQ2VCHwObF{P+^QQ~L)tI9gc%_rN=u5ImHLj35bqO(^$1!@ij?^5V9OBB& zjPuo^&`LD1&VuyO_t$LkSmP_ODl$ibCl4^Or3*#`b8*2Og4}o$@8m7U7w(O)>hBb0 zZxf$(goW|`+tNoSM)Xk^%Y0N0yonK1f_XXb7~c24fQv*Gc-AwdfdAi2xUu~v&rbOT zZ`wA_<d@W%%~!1v>0!jkD(6MBzLE z_Vv5}5T+I(KYllE+mQpW_qX7o^{zzhxg)P&dmdHnEXRk@QapRxTNs|A!5VtY!@0XW zu77^HpsrRcuUBwCX&01@NKa3`xBRkogy4vS}AzxVHv(9DdGa+&P9orVM;}Qjg`__xa)W zg^+oDDPLMPi1f=&tBNrlVGP;Nl3CnO#rLJ^V@O7cS3|@e0SfyRk;U zfV@&K0eO7_b)0uej^pCUPO66Eo{d;~s}@szKamG^rnF^G3eDsmKtnq2^wQ6HaH`W5 z%oN|@9IH|c;;Z0)u4;^%b0kqLr?^2fn0O!APkK_~@T#UF{HuA)ZwQ=#<1R;VqEQWf zJTRRtDidNG4UIu!Z~`Rn`~qjE6cGJie^AqJ0ld&Y$GLt(@XYEQ`1sG6?%5T9O6BW$ z73*E-@s*_{FD@4B!_I?bM=+{&PbL;+dVEjAT+&x{7kaDb(9!N({>_fu^fuJWhmo6#X3WKxd zY1-jve$;~`Y;c#MZ?a^`zvZX$BV%}FW%TQ%T)oLr}jb zA1{_%pI9WytTFy+r(z@G-hYg$eD@oP9y@NJ2H4Kx8LCNFZb#4b7x6q-AZT_%R-y3LnyS{ z6g%!81e5n~=yG{GC>fsu^L7oB>j#rDVdE6s^0JhOygrK4UvI~fP8+!RZWiCSJk88v zaV+@C7UG?1Ef6f5Pjs3-Q|lMkh(K-}Mtl)PgE(_4JSz%)@1=mP-J~7uX5xyz4()XCHec!W_3o;{)QBu=and~Zz2W{Ta!5s=>(Xw z$sPvhcq8i;fYU=>(}6GC+~DL3Iv!ujcPmch73&AUFEJp>S2}R*?+SXv$qAh@(y(|S z5*AApg4jp`HY;nQ<%b!d!gk>bm+K^IQx)IXn3|$_K`>W9P>AF8kYVz%l)0< z^rZ4NzM-5i2t94){akmR2uVxH$eCj>A2Bt0bMw>g5b!QHF1OMSR zEM1Gl_K7imK9EnAZkUX@AGEpqkRp~uX%d24B&b8*YgOp4SdBEKjb`VDpq~QQDdrqjH}=iJga5rH^|rh5 z&+#U@N3E0Be)l%r^H>G9u3U}-wQgo%FJ7Yl>ZzEQe-t0ZFQIwU%%C{90Ai~W;8SNX z=qx%#^fqN+sjeiPbVz~Wf|b}g+Y-!~Eil7AhV(T|#p`xl&o=cG(bc(5-^DHggT28x zHH*h}Dz}5}PZQMUKI<`QeLPAH_&>$d;SaBX+gYz7*SP$>V@exUNs1yT?ySI_3V9HA z(g2Fr&!^GbortUS0gU^Rfi)j~P}WWW+qtaGaQqaAS~3+f@5I1AK~b3Sv=F`Ttb%GS zbKG3#%Nq)@!IhQiM7?1;ras8PPE~F6m*pg^J}uPI-wCfBw8tQOMVz{k>nvSPr{3Cg zVUk-2JllB|)zw{Kb^92-km1j_(@@}e(W>Ahc93JGnW8{RI^6SXCI|QZ;A`;8!Eb2? z*}h^kwp|Xw+cq|^S~Le-?w=tAtt;SkX)sQ>9Zr3#(qVaz7x6lqTxS!{-6hmgK=0Nz zEPHkUtS&s}t@v}8_AEL>y566G=8y+<^SC}in~4hCI_Qk=_!@9r)f&|~2j%TlGhD5} zr`wI3ai!lg@@HZJ=o^gF4;=4*L?j5e{)wS^C9_dw&H+5YB%@rq3>tWskj+a1@YPZc zGJnP#A}J$^MZeGBo>Ci}+P@DYd;3Y&^s~6N!G?r9I0qJHKgofWwm89}m>vie!!6t5 zp+rXjoUH7?yE+@LSD4Z1(GsXXrvQ)d4}jLdfs65U#j~-07u-8!laAy zKzs3D-n2cP)c-*-+;1d>PgoC8B~Bah{B z7`GGV@Se2#lNq^1DEwZVzW$|%%hiLh?8ZIb)+;mdgxF3p>m{J1k^?=D1^i{6!g%sc z3SIp%0WX@R;}XYMXp77T{h}<=@A{Db@N)r8vqHQlM5zO?yof|G)O~ADH;Q}VgY|xB zcRv;*r!4}_uxKzbGDfi*Tt>5YDosCg2p}HI4CFxFFidNTQY88IGkOhIV#!^lMNuJUN$6D=tf6Mea?KS!f2KtAmJLd?T4} z9R*pZxV_+fIew4#1@b|+q%Nhqo`@g(N4|2b>&2EMbhY$;a7whnImyDL_(}=>=J?)Q zk8kF>e;hIE>k~R*NN6P^Uhad(P`aL59;R_;_?d+PcuO!ELbr0Chra?Y zP0#?t+q$5oAqonLoEPIekl=P_C zqlk$aI*#|zziVCL@`M!pE-gp1eXf&tu0y=}Th_s7)LHEGk_WNCrEp-$AF@!r40PVP zV#>fl5FXu)(ian8_pUw~U8RkA2N%=Z^Iq~ZPX`0f{VZ*KSArK#1c8~!E|_nV1v_=5PpA=`_cV{5{qWUHVud|i5iP|Dt48WRCalFL;0X;LY$k3*mC=6*%j(JYMvO#gMz9@U8Vd z6`o&AuU(WT!^J@uur?2zcP->=8?DA0E6;$SRRp*t3vxMT3AF0es2i?0i*gG#;-V|x zNqXxBTIW;`vpOZ=RmUyTH*_4{jz6K1Z3plQ*HtJpyv*&vm*9@)>2%|jqaZ*35`GI! zhVdDqkZrC()FXD{@LUD3OrHWt8QG*eQX520ECto?_b|CqlDv9YfM*5Y(9?0jD6?D< zy^Vy(bHj4z{*Z`K6RP01@p4T5T?cvfJiL}~4dL7N(3P*b{5;2~b#7O|4e?xODwuOG znOLG(-CDX=c``~W&WEuPZ5WslOwZh#4Ff-7A#$5KcnvOueWiD;3Rwcie`qEKNFI+r3oS4^72C30$SnP6ypHMa%3cMof%B8>2L${A$@!S;t zlF!E2bYdn%WM$A5E?;TTOdegVT>&FfZS?qoW!Q8ffj-%v2{v1dz`I)&+c<{9*AL31 zt6i3-@zVk|e}&_)O)9y(iKUV$ZTusT(}~&MILw?~3Hd7(;A)*3w+~7ISMNkz`I3cQ zliJOmcnE={@Li%57=qW?EL@fTjhq&W1L?p`G%O*OlqvfX{Kbr-4r=sNT~cn@QASMo|9U*K!rbizeD+=#)@8N$nbU}od+f?hOC0yoPYVEdcJ zs%DnU1Vq62vK_R)v4w8t#lon01k}&INxa>S$a$GWita%$%k3-}hPb0lVH8ad*Tt*B z(Gax$BKi5i0>r->z$=|heEoBbs9hl#RwPNp)Y3@Uhe(Kx`32VoG9b750>0n85I?ER zC*~jXF@IGRP9NJ2K~r+jKsg_J>XPYQc~g3oI^iQ`l>8j8hQ|jNQVaJeBG5kum;S9K zpN%B=Uqlp`pa2n=RI(Y;0_Kvx8k}2pP>%@iPvA#SIs%;wT&e5v`&eWsgbU<-L3bpE zDr!%I_8p2ix9S}DxfH@D_=nTD^THDzceYI=DCP8U-DfMiL&q&KtqrdRg7r4#jYVXwC`)2uq5^e<4vbrL1~ zP?HyE6d!|@t1pqAsY^)e^D?x~60Zq!bB#UG&Ld2~9_<of?X9U%!&;;p*i6pc9#TTogdZ$GW+hj4d0kfN25i?P?0YQ zPalj<@#xy9%8u>qa8i ztAp`^3GDSUWp?WCWW00y47#>$!Y`o{a7K|ixvYGEPMG(W;~h#VjeCY21`##@>0zG?dy%~WQKJnNq zmPg3g#Zq)y`VM|>xd7XCjFD0-fQOSGpo332=ilV~KdVGcWt8VI`YR5>_J`wi633(Y z)A9%7eoulEZ;SEx{pWaIoxwGeeBkwBIaYL&GUtr&LEh{zB9w0mZcHJ)nH~=8j;+w5 zl8+^KCJ+}AjhW|9k`~$37$c|(BGo2z+On6#*|-Fj!Y5n%U4jnbQT*<`7PCp;9=#a{PkIPthC%pX@~(xd`P^KmBTj}r zXD`jFnrcD1!fe>c_3*uNCo)2hDTGEyvq7Rmq&k`7hjPz$XE!nYDd&RMtX)yiRUD1w=ioNyAn1t> zheI_^XmL9c4n6&X&m(G3>hp6LTw~&?7wSyO}=w=?fcH zPGQY5W}~|7L{?O72xsgThK_~uFt7d{;I>y#N#5e8_ku9JgY#Y&t^s-eYo4dbcfRLr z3p%z;1zO^kLd)}VD1N2Diim3Bi9<^4ebI}Y+cgH(SDuHOf{E;!YIXXlU<{S*s>#Sa z8QfD=N*sR(VQ_jPQTcTh>N5qIeW`|=)2fOtzpl!raALGT#; zgzB~LP+P+Zk2f`P*@zfAzqB1TTNm@x4wmBK0y(CvDUr%8z6I7}2JkCfl5JKMUbAIwjdK&{m| zyuQ0<;RncrcFlF7F!2LCI>=%gtHwCLOst6RxD^a9hi`&nL=`>tFcH&F4Pe6lSD0OW1V60~1>cROAYP>peI6fBSXv%u zIzGWOYo6fY7rVjRun<>N38O_sB$T&UkW)V&@^&rQjoI&S@SiPwNmspIMu?cL$P_#o){9>8^H{?f_0+@Mf{G;Rz}00D#K(r? z{%m!}72C?l;Pxrd{91=uu+khPtCPqE>lOI1+6CoJ0!e>zBszJgbIz%iP&6+G8{;GB z&m=DQyP=r(W`#d&*lmH)L%C3&Jwms%3uD;xY+_6fqg?-6`c$SGl~o$?=^j_iI+sA- z>1@DE-MuL9C(pbHnTU42N9d|;_mfNC1BhFToapx3J}lhtb~YTL5g$grs@YyF=zKa1mjW$1*`M9U(& zwd^jf%q_qZ(VAea>j*WsXXARwSf0-A2-Gi~%s91s(9n1Hp~d_WJ-cuVxaMWU)v#;$ zQ8k!1eaU9Lc32Pg8fM^D!wB|nw;20QNt&4)beG%B&SAz2H}cl^-R9UBoOf#LBi`7I z0{AlP04Zq>fz*&1^555g)KB~xO;F-Ecx4qhujoAJ#d95yWyH_9(cXv2B; zqB)jAC3xCsvW3P1I7MtdcZL^cCf9i}A5Pfw5AKNv-!w6H4S8awd_e(j)udwWoD6zt z?;>8=tsMUS^P3SC-h(?q33QR@Z_w(=2JdkzD&vncs_Iz?%8vFfJ?t1FLMHWWv33TjJu8nI_I&) z_$|E8lEbw16Jd{)3Etc4L0ZFKlg$E(Xwp50?zTz9XbTxCQAps+f5kWy`hb6@&6G$C zUk9ihqRgN$={v~)BHEV`WrsX=F(kY86ScZmmQ@~jRP_4zzVYD zr3>5H_X^Fty5aI0Z8qN^7H|6Q#&vR5uu(RG7`X0)R)S4O;-~Bu3zV=sCDB z!HYea?~LcPBKb``Lo72bgMG6lS#|F)xE`y{j9zS}S4X6o_u-CkJ>nnz7P|qRhZZ4U zAd)=VvXku^5Mhh%M1d_Y5VQ2{*@dc_{NslQ_*ca`K-$$G_E_g3uk0YG+?8aclWSm` z(id_j*Bd;QH!*iD_0hPo3TLG@@b)&H1x+J)V$MsZwY{O>-1kC;o=*wDHGhqmIp4EsT1OjQ z?CeEMN8bS9{~!y$S}?<3FY=sZN~ryu2>Rt;Az1xR1-Hw4=%VF{tVZb{vX57dBd**o z)YXgQ?{e%S7dd#Zy_Sram%~TC4}bk11@^@h8CF63FKjhk$Y0nE9OKdqql%kQtT&Br zc`3*wcNJr;VhRRry+H*NxIQGE%M7yxP<8AClNm_a{mZi9cJWkZ$u>*2MS3!5`pl*d zvV-6iV9dPb*|AHb25{`OIFmLwPIIOTF=`4k*Wypc6lY;B(@JFYQ{-I&%w>?7oud5#a@+*C*WJfDKz ziXooj21#bcmJh@va|9;dT*b_3DJ5P zE|zYlMUirhY*-f&Iyu5SC$GWoKl_?@YCs-czGcBMb)!>`JSASw*TeW)X?9l2H9Tmx zkeL#@p10q_40S#}fjdjraOd2|^sww~#z5~cE}G&FNqQ9^(^df&-r6vdckNJ4D~Meb zH4l`Saq55Biu#?lXV;6m;(s@D;iTmX?9*DvbiZ8-bxIG>psyJ9o=Y?1(IBZu~6AG(O3lJEy+pcx$hzZ{0DlzroTkzv40Hh6%g=!c}-!H3r+} zb;8F^3%EPSh3Q?|23q~Qn5Sj=Xk-*l_6H4v?!s^6n!zU4+V?nCD$T&ln;l?Lh!i#H zc>_KnZ%MR=JQk4eqU&9maY(FmzRq1b2Xmw?{(bA;HYWv{G|jt`^7SLSJPKmG0;kya*A;dqeBAi<}%CV zx1;I%9=NtC34IUwljpoHG!Nd+{7}0|qC=;!sXQ^p#?uvyloo@eb0kwN{{vDF?}V1F zIB@ULX1?1Rfc}fO^!A%R*z{@*)`ok+HY<+Dw>On%b{v?IP<5DZ@dDnDj=-NGE4)*` z3~YVwVmVpC%(R;eeU|I7OTUTkefbf`9mSaa!Hw8oIUhnqQb_6bBk*DK7Fwz!!md8o z!9Oiv4g$WOa427mQI1{+4^B=+gP5Jn>jruD_{oV(7x%vPI<^;IT9y&X+8d~1(u?`O z>(J<<0e(ytX7gCH+BC-1=?&+V zLu!9$IwQT{B07v+z@>)2A!EyAR(i1jR?iS3K93*K2{(Sz+KGk4zoU?-o?gINO}FBi zw-Ly?e&mh(DaQw{Htb>ZCjLd;1gNqd4ik`eqPhh6SJv6=}&#c&C;BSG_-h3}v6_cw?U z1AifGQs|>2PyN92_axS4Qw0pVp!EKrb^Wffe*1ATH$sY4S*)$hwBi8|r)3w;g|E(~4 zS;wdO8o=IBSis5%2;;Ye6FBl9fn4470OwQ%;cQD8MyRhBq}RWK$A2Gk{b%l3Dc4O} zc28zLNJL}7gAL#vBgV|RyAe;EmxmuW4af^mXEyh4K1LZ6)||?sp~?=rURi-z{cj&p zeaZoeh$U9Z9pbWEg)m*5Me)y}M7Btbt-Em+swSPoeb z_5P>myu-PA-#Cu!QC6Z-B2*}&GCt3J8X6>J7AYZRl%`6O>@73OOh!^lBIP{y(a=;P z(N>~KL#nSRe&_dx%ReqIJ~+>F-|zS9l?=2*Iq~v_XVf{$7O|*i8Tb&@}=n$CCc}V=%ZGwASzSM`@mppMZOOzsEuTscPbNu{4RF_R8l1#h7$0*9a&rH|+PA4N zjqe1{wm0M+WY(~u$+Fz0y)DF{<31QQ)IKuP!*U!-AQs1RQp}Yp8bYmfZo|R-Y8&~4T#y9m@ zGfH6b4r{cu(I9>={?c#7evk%=xVs@9R+VM*o#VBzD7wjF`@_RvxqBH-y1WF01_P)x z{~DU`&-x38v*`4XH}GypK8ci+=I+$>5VsXMC_Vp>K&;cBpK~b!m)D7>8^UqY*-P~A zwPLJ1vxreVTR|6aVq9MEc_=ubipI5K+_F7R*gN+B?3HkMMbw#>8vo&^z%RH?j3b;4 z?>p`ktJC9i0nZJExQ|DpQTo6p7|3tt*`dYk?e=cie$$w~Obf%WBPy_MsR>H9l?ZY! z5b(HL4Kp>u0arBRxNXH)?LC{DntvFMj1It)#ivQZy2BW`dJg>hD+@MPF5vK%Q{dY) zhWy*4MuH3`p|y7iokNa+=bsNm(7T8Ee*Xsj{vrWIcIYuz&V^wpgi`j`S~z{r5I4`K zg4_RkaQ*=iPFM9I{eJ2wE^1RE%3(<`8heM_gE;cTr~x-F5dmK03y<7%LFD8D2#mfB z1~o;5D-%#pBSo|_S0;~Um*X9;1w2RZ8{9592SfU^u(R|fSk}eD@Ms5l^+*a%?B0lq zg?gZy>jHKDkI*`&QLs@*AF6z>LFo4&-X06{d7;z?-PJ~-|dI* zHbQv8M+ug^dJWHS8ROz6Ic(ow0}fxx;6Tz;uJG>|u6NZ18rip$=xjU%hlC$u|BMdo zQ0zia1$}rH+`^WhUCb_bE5%jPW4HvR3=*6wO+xD<-~o-I3Pb$&ZZqDzQAM8B2$9E+ zz40_?`#6+zj{wsb964~yAFgJ6AkSS0=UDv`78j;MnKV2rU}JwE z%J3}3Ez7TB-^fY2zhE}V2~MHYOui@k#RFV6U4zC5A!d5#7n~e!f>%SlVAZ@`xZXmO zSp@=^SIawMmhw5Km?Bu(myW;woMG>n=i{fDlFTo`XDF+if@EDA7&j9Ok&Ge|f@AQU zK@GkhDWp$-KBsSbdT_`4ZIG()nHt*fht9lZxP8D0>@6EG`iu`2lu9s1Ru{tcgiOH< z8w=Fd+|16+DaEJRqmb>k1+V9FtZ$7yRP0tjg&R^_;CwAkcw!d*F5C)%)Pjk2mF7M# z(&f(9S)&7y;ys|emqgDL-l|{4*smSvEN=rRzfDFJvB-KKmk;oOIYAZ|NfMc)38d_B z1=c*|`Kn@1!8KbO)jl4A)VD40&*mEXXIgM?tSbb%TULSM=H)o)?k|*_w;cZ@1(B5r zlew)$0njaM04{FUc=&4}s%|Tzn`bff*HD>2VOs-){>ek}NgTv&9LsF=90%`uCs3XD zKkMh-R-^aL#-M)tE9%=5N9}~JQ~Fk3kkM3wEfdZ|h?@vAQ}#I7FnAIz`EH_fP$Svv zmqQ$j)`DozN!T#LdtT>mp+QD2xW}~)cdi)+SLNL3-*20EeyAphACm`#3%#T$eUO#= zH~?`6jV*Mi+hI4kLQ-E=(ym`sSQr^dPQ|xjWU@Q7_hn+d+rfy+eGq?lUHMsKJ8^8}JT8ct(;j8W@(qKZ`^(O3`8R z`I%B^*Ha9dHb(HkrT|1kny~cP7D4X9#W-iC3I0}SCPl*Mz>a>UfAr3<`>!6sEn8(^ z;?QQEEjtmWoWGBJ4HXtN-GN^%XCO5}jGAk|DK&sv1-j*A3Y zFH*p|LYv$3c!|aOmrjt=@EoolQv${L>hQ*-h#VT8O)~VBGO5Lp7<4%SiiMw2E5|YL z&~64)Bwa%5r+RqF>b^y--Fdot#1D5(3&5Jt8G`&43k&4uK|8111HlRoeveDD*!6A( zwJ14`TYtvmH2nc`MInUsz7vm^WEa9kYrfb1f%1LVe!BQSXB0X37&gR+Fnbk`3mo~* z;JM}7@V&YPy3O&%zcweZag{uCN35H4zn#R5JiTv`K06EjARmfDc46^OL+F_Ck$%dg z!ZW&!@NVIjf_8wcs!;bCv~4E z?X4>X-M%kiYQHJp`MQDcI~@fUCZV{T|9wpk?d83*Q`qYj`KWfVjZE48fWNn7;;-ku z=9ViYxNRpKsAti4*h#Lk#tAP4v(w|i=SL|xKT8AW`+DR}>~xT8sm9$M*C9Nae|_zC z;O+eBcy_Ze!SMzTP8mWYgiDX${&eeq!O_&;VplGc1<0 zh7IzsXq+Go_P^t~nsbVAvK%K^^?Ao?!+ZAd?v{`i7ZgM1cI&& z)SycWiq`XU-t#Lg<_g_{@E=zI2W_duZDB^QKnP1G^`WZaW88g&MW0_uf=#baWB;xR z#E3X{ro<%-=UyJWE%hHWmQ%=%#rdt-=xX?z z?*=vFDd`LJ`T`Zs?u{R|=p6*x<&9=6igU9?*T9BVw&)!1&MNyJ6G-TJ;)_`+c*%Pb zYUQs*>7*pQAnFAf=^=uTX2JOCze=>eE>FAH9>IcHu4LgdXa4*f25xgIsqoe)c1%GC zH3ts$Z06uA)mD1z@(>Q?c@uZ@r}%u{WU4HG1x%Ad;oj3!m@DK_e`EUqeeW?&VA&as z=dU~CgaY2#`)3kbJ{Y0x{=(pT&YSFPAEn+^AIaYNW^~qhL)KqyGtOgt!L(F`J6jwF zJv%PIt%O&wc6kh1F5o%*yVTh%zd2~XQ<3LPOa`5^eI)ImE_EKQ!@-sLf`MbHe3oPj z{u`D>b^mCZIJpX(#aGd;78TNe58#jCJ&=yChK)1&1gG~2@yv1~3?_y+sYFz;o6j|V zscr@P#2id;wxnjc*0?E{gCDI&uq{6d$`|WkQ=k~r?I6zhH|ju5(-hi&TL$}mYB2fb z2kZ#n4(GuIw`uTwXC-ZJ_w#9xq$i6dV@GMEMJ?94*Fe&Q6x1^@ftI*UY{5~dS~ky*^&L9dWj}iT*U#Q~?}>XugU}%90PN&*CKuT`Sf~GlC~d6q}wHp83Ffo;5)cr!@N5XAXW@lnDk`cF`+q zvPtc*H>Nz_%byV@VBlRV{P(9ECm!Zq9j#-jG?$Jmvs-DYTR&Y}lmK7572tHN5#1fB zjY6{0a4aN%DqZv-&TDM=v*|4w6B_|*?z`dm-iG>Ce!ds`h5tP{C5I*hC3Ix31F`P^ zEilr#4xjoBv4{V^wft8M+&h#FISbwkoJ3||Slu*w#G;pW?y(~kk6sI+oQ}YiSCwRI znmWEy@)v9>NCJDQ^$=~p5baf#!Zw{O_Q6Xt(l7Cd{0a=iziWbtQj!b)sT78&z1vXe zQ48yzmiZ{svBN-t75_oq( zDRx_JCHo|%VeEA^!P#DaXbFqNIr4W%ME7Kr{$mSfC3^H5zt@aT3ZwqZav@p46SOK- z`MiTJTf%3!R&-~A-S3rHKgJ9!E_BdIqd{n~Ujnmk$@5*>6S$f3{q%-h=ouEmnV*tC z>yVP*QQBn45Lyl$)84a@KI`D!-Mz3(J_^5VX(lBy1%f+AauNRvf^~Xx!M*7-bv-S> zFKi&gzKmMXc*sXKqm(C^(S#yV0FU-IZvmo^MoQ+pS2A~Q}a+PZ3%4r@P!22PeF<55_p;EjN-ROX|l*NJk}yfdqi~L z@ghAi#!j>D?RB=&Ke51JQ@#h}BoP&%B9i>Doh?*}K5^bay1 zxzh@TKFV0AYs#a>8b_AwKMV`+#Rz1FMrh)RXk0k4g9x1zn4dVLN0oQ!LDj+)@I>z* zdaPCl<#K*zn7V-+(^^d=zv+_H-#qi2+^1Hzk3q@n95~Uroz6HomhwD7Txg{Pc6-Cf z8wD@$TKbiq>y1V8T}7yIKZi7be?gC(Sxj>!jWEG~1ODZEFG1BuKxjnLBCOF>&>JI- z8r#d6+tz0VpK4`ZOO$q z_2u-c%^}u>-&x;NT#vpa83KQvL@PB9^i3#*D(P6vJ5vm0TaV&j>D{nxwK%lM<_KIa z?7+VE`()81QydOX#>v*d>2dFqDBs;6_}R1!JQmDhgKTr?{q`A<{wEDWG#OB~+z#!M zv!VU(D)_r=JybpO1vU44?0F*tebe-*TE+p)UUg9rIG)n5{ej@|tr&hyI|eRY;kd3& z6nDv#(l*yD5WbQRX>*EL+tra|!MgkO`W=sez!a{`3J%jvhDIpqGFC>&B~5G)B^ z0BLO%Bxoocr~Pw)m&@vCb>9HnpqfF`Vz-iut7pSHgDCXZJBd}LVeFH|3&~|&Vf;Lj zNj-gI@RhqZL^f=I`hlGmKMP7|r@RTJg#$E>XHPC&`jLO0pMvOpr%8-YxIp7!7+zPc zCl`+I#p7R#;rl&RDxQ84+#BB!)lZ5TG3z4z(BzDVw@=4k2d0%z5xTX9ua-3v2c6YA9Alx z39VFhsZB%}zG&JB4^o=|FPdpgmB4`74+KV=|nAfHU|78XgEU}L<5xY zRpKG|#GWL+D#2uZXg7TyTE_Qdrqgk&b)ZvU64n1i@{ai;HqMUktoZqnpxy^`S8xmw zaU6@;wE$s7JpwbMc(hlGhkyC}^LCsVouA6@sZxp|t#K_x{ShX|LUl2||1{4QS_}Ik z6Y+5WeHt#zQR!pC(A|?vR2N?{Hw|@xV~;05Xz3WdwyRfgzk3FnU4BbP|LjJ$>18Z- z+MtuV56Jp>ko{9!X|e)8XFE|q4_X`ty}NuasB0p6k5{FjyaLbd>!vD2fly?^|Llj4 zlD9f>7!pzrU;Zl*kj6?9JTZpcdasH;+&RG!jWWovIz--T>SN9KGV<@oSn|I06p2+2 zhiCrt!J5xXO&_BLv)6uQpM8))v#OQw!AcCwO!*!|N)k-mv5V*I9f4Ki-Q-QrF;>gK z0KGPygMR&DK~u>@!SDnjusrGr4^C&oh2$gHF1wh9t`EmkE2;!z3;St_{&|#`>TB_Q z2jAU&C&x30Pr`w*yjywVCFnQwB*Kn^yst_VU28>2kgYM5Y;K0e`{~%Llt_-y>2Paz zBQ{0Wf^X3Z{LerJ7cJ-{{YTD0=PpOKity**BlW0VxdK+aeJ{9DoR4YU5v*}o7M7Vh zqE5_3*jE$+AvN#G&nJs4yq*M*!c1#i)+jIX+ zf7UxODA*j5Os)!Q-b{zNfemEh#cJ5DiJd!hqcfg&4_lv9Oqg5P6 z?dfNiCC9=iwI}G+pa5QPGogc@3%kU}vr|IfLOg_$o%Ri6TcRZXnMhzPZBk- z44Z;yVVLz6C^r%U+lCQx-6mZyI+BBf{Fy{6_Ao5Zk_2s$0=n1688edYut%u@vo=N1 zB|#6ddRI4oJrsa*_}psv+y`|3G=TL|DX__H0o>X(l~Ia_!4AGd?kB>d8)EZoGGuf0Z(u%%jyQ5jTa zP}c`f&d-1Y8&YZij8NP+dYyFs>>+x&JgYBiItpihM~#!!SkNE?LF2~Yj4e74?Z1KV zFHUCM##HgWA0h6b;ZJaQxr;5Cd78=(eWTaC2S`;$6S$pk6{I=sLlrF@c%^?3qW-SL zS1u_;_Bx;M+FQ$}^=!wjOd>j0pN2hGUy+GV-^2M$3QX#laVY1a!`*lrhc=r}pzOi` zXlU+0S2uIg@0Uo8OWZ&vy#lr>oW-B+zgaoHXKsFx_a=5P0sd#kpC1$8@LWym6Uo98 z2}M-A*M)Lc=kQ>b81--JqWzn+V9^>)Oj^d`)YlgD@5*EJ`o4(>TdE+-B^I2rj^bFk zFbob)gVk3$_&)G{^z3uNyAvmK4PC0lVZ$1HtNjqBp1TR@;|UWv$p!A_{UU3ZyhSdj zAKSyL=;jqNFevGcciA6c*5D5J&u^q1iymU3$8EAKDT2!5TJlQFjxP5)4--!evNItU z-a5`>0yR~+Z_EZTt?+>-$p=xYc@FsW@;u7jv*Ab5ah~_3#7$q-gR7XaY?EsYL>&4A z^FjnTq4*74S>HqDZKLVAPyaxN3q#-B0^IUTAGaosL!E^$AkA+aoiR(4+nss?n&W;@ z*Lec-m*-#5;$^d_p}7p_vO5O39}>_W=|F@+{9)duGVrq!Vrp)blB%1UoUwl=wvMlSBkM0T|B_n&x_icpTSAa;UHanf|c~UOE;{w2WJOT`deVb5JUEXsWS_XF)WTcpU5$7{)MhbU5=ph{eJFXv)I z&Y|yPDI9$^fin^%#-NkMoD zH)Xp$em+r24Q|Kb_na3**mw;jJdh!h+8!26VyJ5BY#%yMj??UobN;n7%OLsr;_`r(d$xnygiF=M@%@mTVC~*0U9u3T!a_R z=ac``%^-^J?3PW7fU2jq%vV?5i+pP`mtHZRJ@i103)xx%;;*7XZyRAIDSX43)8=p^ z0lRVAO+C1OO%dxd*D?WxHT2KaN_z3i3W1lVDOGe(WSqCxlI1gv(70*8Kv}v3H)*~E z(Ou!-Cd-jvM{`D&iGl}u65Q*!5xTOu4z7|?^fy02U)?`PorWIao56g%suu*q!Xd=$ z^;g)xL6q}79E~L=eS8M%K59*3@k5p;zOQ1jsxhoT!j~b`7k(vqUg0D3(M_FSXUkfH9Ol# zU}qxSiuneP6&^78s~9I6Iu7qj=Aihg3p9DVEg5uE0lVr6kdu>2xeRr#Gh7kZ>^=i; zru-oL??`a>CkL`ozoThK?nzuLC(bO1nF8Y`bmQkM%ZY8OH1}vT2e$X#3r4!E8QEV` zxW35k+(WfLSodfHgch%)X)E=Z4@YZ>(FdOWyXq7?`Pd5ij!kfg-zZrgY{JXWh9GtB z8)~|&6MhJNgud=gXjQV7DdJ4wMX5N)$47AanQ!pX^cH?x%exBFUt`G|eQwp@HL~f! zS{fX^6apT{FkAWD(NjFy9qtv?aHsn1>MDY*Ji>OBPA}}_c^ZApU4fj41&8) zwP5BuoSJ>Y4t8jZeu5(!|~??dwUjsnwO!Qp+IB+yHE1_djPalzAO6xX_g)R_~GI_3eFZ_z)Sqi}cUBqCV-3ZKo52Sd#QK}7Xj zZuWFZ9C}X3-%IL(<2t^~)tQ;7)ZQsb9L&aXYI3}L^8qyVHDmn5%_#W6?^}1uqTH36 zXyKO%EhpBH@ktjUUVaa2FE0e_;9c4<;Xg7EQ3=~rtFf=&4jyD1G4mGop>3lQ*C{cb zD_|zTu0{$!{-f|}+bp^yQvexP_i^@h0hqAI0RD(2632}@$&?f~CX{Uh=g)^3op(tz zkw439@-m}3EmELf#*&BK2E^&{HNlq2t-O!Q6ideOU;AYW{;8n2>YypC=6C-C>Z;h3 zavCq48^?X&_oinfqT$>=VN?%qWRu<$(4R}~;m00HPI%s7GVM-_#eB*67$*~j`_Avg zjHp&(tJFgFMXq4x{hQCl6l-$AB0^lP!&D}5uNgi*@5D2&E?_~>DO|PM1g70dg0DJT zn2CKmAz0%d(YxJ>T7xw(*1HboIDG-J5??%d#f_0(TFJg1cNB*$2eDb!81_$jk3}!n zP~E^GR)taLdNowAM}vTkb`1JG@M5G}M=^A5H?B0P!K45sZnoAb=+iUdY&yc|GM@1k zqoai1Q^Igo;B#zw^#g*9O&Fc*Q__)185jF}+JDr%UeZYzB zUWvbdQ7n%22Ax;DM|zeu^XPXi(2MRcb#xJTkXdv^A@MtGuuKL=nFaNM^VTx^YeqoH zJDyoqt4u{FU!{K6Zdl0kx%!DRd9-|~pN0NQBnM{1LE3+L^!X1l7zlZV4*7N1!*jDP zbxYz4=c#nu+YRXRyb%A?>w=CU?CdQ4)~4jJYIy3CCSarj|PANo#-%qvqIwb8f{j8ICe|>8Yi9LGb;c5y2Pt>LxbQkc5OfqUmgKx^k)*gha&O?d8k&5L+0hQCiO zY~v+(+wk zTj2@s5lFD%GrxQJQVZH{749UMc6*iQ@=enz!!PGekFj|cVMUbHI`XNr;y z>7h4QFsJt)`NunY{%T&sb=!Br0jp57GL3|@WAEdMDTlchpF6m>YYJ?2s3TRzR-9S{ zgHN)S;v*{oXTDI9$q8zr=XGXtC0&8AICmXWrOdP4`*=6Slyah~QcFJk5ksN)7-r^? ztGKba0=x9Sz=w0o80+>JkZk@7+m`7tXTB$J{_3M(yv2+;T;R?b83-|RW^aZSIujX# zCDEX%b$|=_l|fRpc`l}RK4$t;*oWtd{lpJ!GOY$CK$7cSW5bA6)sy48SycM0F^V@k zqF1g5Gw^dh=jq^2XDumURaLVI5IcMpf9KnC+vZLJ(*vb&|8@-6t@!}z4O+x#hZ7f{S%?+# zNlc)*8WT;-aJ~iaaFW=^nwH)}6Bj%BXHbcY*kaBtYk5zvpXS{F(_@kGmSd*%zonW_ z`*B&s6o}{Ip`Y1;OH|Lp4Sv_q%O{*;_UDkdYo@_z3w!V@9?wnrlf;eLE5F6Km#^jsRl(d0bYv> zzGx^8t5Rg*oNapmzva(-UQd$5@`J#4o-LY z*LP_y{9PBySU$IAKDyP@scalZvcq7bbRSm@u7o2-$@pyAK5Sp_0m3>Cc<9wuoMsyd zcY8;vvj28`J9#fATt5OWxJKj~Zt+0E~3D1U-J=3JX^zvvJ~)%(W0cEBCMfPLKO1 zm=a@)ia!9Ce_qc#8QXyyU5`-3`w~q0j4<+*Kc7fSPhm1mZh^ID2rKEBh!tNy!Ro`k z)T3Pv7l~|z8BNNtIc6Q|q7pRp?S(&IL%`G70Y%TM;QEMsuxT$L(gE?{nEnkPWmJG+ zfjN}4&4ev8XlE64o6Y&w#ojX=%EMvt%yf!X9~U?bZZ58#I;_OW%Uc z4{OO{S0&CyBOYBE6qy;HGN4~f6ISI*aYw&S$An{h;8$lDOlDuwc|6}FOlB#wYjq|> zD6WLo+X@zuYrQy!B~MXjMmRdfO-HF?X0S0eo+yZTfa{}hjMnQB30`3hE<8u^*WFb_<#YmKcUzE5;gw36Z;3$x%!Z)4CGtlE|GM0bgaGL{=i9ix>bmb z?6;)Fxx8=Zp*GoAGXdfqWSPUa?$He$T`=jhFMODOmwNH&MT2qs7~j#=RC!G;G`bzf zs^7|jjv|CqV{uw09m+hZc}}d%B=BpiI(#_wQ*i6`6IfAD$@iNg$g3ddE2m$F!8ck2 zVeF9LzrlZSx;uy(uaAUN9?ytrLO)vPyR-66F72XIY}Ftc6|Lhr7AN1794;VYl9dHik_K07g= z{q)iXxD5#u-#&rq1BPf2GL~~OJ4+HazNLZwZeV^ZpLb}!pq44?;P+xV4AR$O?SDoC z<{XE)w^g8_gJM|1M37DrWsElRGx(1t%w7I2?=Jreqbo$Y>o!|@tX}k3##z!ML&2F zbsFAlW`oZ}ITl|CGtHBo@xNEo;9-M3%I(<$J0nt1M8=TOv)BzibGFg^!zEz}>k&ChOf{2?#nn@QQr@@M(T#{h|_S>S?al*;T#iO6{Jv!D)9=r7-$SRu+IIMMw zdIpST%H8MSag7)FC7Z)bVpY_1NiBWhLcl%{1a}rSQ>phe@!*dF3%eaXrX_a*@l`VDSI#!Qk7Ij>Mo4fzPzu31_ zU1KUt4Jl;f-q8BLm6MqZ_f}&VpYIvHkdK3%r4X?3F}+j#8xq%8Giyi2)2}i~_}u6n z9r5-+Wu+X@>Eay>6?}^OaSQZ_7UH<92{5vU?+zvyQKytsR7_tQGM_z%E5Bzz(XC>f zIWieEZv=zieMf8_e-@1Wb;#anFY(UrMDPt1NB4?ydb1+}f3)s}M^4g=#&1PtoMSPn zdHsVcN6heM@qBn^o>8AFSVen%qakzDrM{+7m0L(7=+5D($b6r{>as6zN^vmz;(;M| z(d!J{Tp-2Rbd`hkPFZ?7HHGTt73 zeR5`vbYf_&Puh_r9DL(8EVm^fnt=di?(`bKfpbl?MnRgJlzRfsrZq!< zy9%EAP)n>R)ay;X6 zRvFrT2I;OSEv8qZ9D?TF1C6GY_;bx?y2*bH$p6Wwhb9~Y5ldWxJ~)JYn=h4*XD?%VyBEoWtg; z8=;i`8w?#UMjr@Y!O4%$5nb))=((N$o5)uq%=HR^eeqiidLvBs=E+s zt}Kkd^O|hFkcSUqLL-5ihjc3rG9Xz$x<&wGjW0*v&||k{bSswV0Ym&a_U)ur0T-dzvBY zEBBGo5)`jjBS*x)=fg(h9=dvR0oqPFLvGKR0?SS6*a=R0Ak;gR^T?Fu zw9b4Z;|j-;F?&9u$nScL2nztkWpmNk;w$_#A@Hm2A@dJ>z|Buf>-Q!P zleuw*n8fF;C(w5(Xw5!^Gn`_}q>6rvD2gp7Go1>ovzQX4(>r zpEW>hU#sD%wlC!F)}KID4AJ?AcYsaES%JU%R660iE#zMwz{2k*ufDL2q&Tlx%ptv=Uc$jRA%6iBw00g)^$we8xzO^Wk%oSG`rpskuSm z`Ou2i2i`>o7b`sX^f&RIufl9L_)MF6+Mu12FRWR9l6;$W1~y9B*C!`h zk$9t>U>kjn91KkZSKcSp#`nzHzT84RhR?65R^rCS7Mxl0kiKHuQL@z++7~xNwwW?) zSno^@{H%gw`_EGUU;a3`xCD3TS5wQ!hEP|12^GR4*iz#O=(c_;0gUXk(q-R2w~S}e@jF4~31Y&T*_t{9cp z+K#ki4Jc@oS$qinPHOJ1ftVypLq^i@ja?GX6N-lTBjMO_!ic>8Cl6Zup5WM{pGcWLtSwA%S>(2W#Tm^STPNCGqrC@V&FI3*B z1OFREe0OCpb^5a!MJAO&h2mz~b9oWWD7mt-a1?VcPh4 zuEcv1v&{@%m_4DcfsQa+EgO&Y@vLRbArcmvfay!h$p_UrINoL*%8bu|re9lWy|)H? zr_~Uo{9h3{b3dLv^^MKt?yzcSuEBAGS=c6hi71XlKx}Ion)sTNPcsx??~kLPBC-VL zCfFdxX90C`M%}oBD5$9>E4?-8kGaRu(mV*qSFFPog|h^QWtL;XqynP#LJnRkv4Zh@ zhj-}COc?ex0pas}kIMEO4EGD*P})%afp-Qp`B6Ik5Ry!OFa@aRJ&pfc2&Bt|w}2~~ zKz7&~pxu*SL|pkK`p!8jY$K$KsOxRkTZt z&uo6-S>-!?Ayp>^GF~3WEkYAv>i$rY5p;kR1exHi6dSM^N(8_D@hI{*o|O_Sho4g8 z*;AW!(R=D#n&Y#8*l(MLYlpqSTK55wvQMTmBUT{#K?{P4i=a+V0?d{jg$e4CXjrRv z#coF`?}Rp{%JoWAW`{8@uUJkUqWb8pPhW}sV?XHaZW-i)fHLr7!bo&fi`OXN1h)4HaB> zrj<%hR)nO%IW%*E9E8c{f%lBRtd2ZG&p71ax$Cb;CI2}_N0!l$KZ;D4o(d z7jzHEQl&)`;kIiTF4gX>mzgz4FG@P$p5b_Ki>e@lkr8y**bdL?reNFlV#=^JZ6A{Tm8{(Y`MT?d;w`%WC6sZ6n?r6)c4{afnS^k z&uQBQ<$3p6#k;~ZX{QCgoiexn?bkh^cXkq}-H)(HBhTo-H3yj9pMj&Y*2KQy1oc_Y z?>lcT#uE$oz@62JX!tOM&v)oT@6=@CcF-I@M)uPksmH+Z#wKj(GRM}2OJt$F2VNMI zf~CzdX!7s|iNO@86WfQaIfbaF@r9n?{WU%bmbB&9cG{?W5|i&1!Gtu9hUDqe-uwLd zd}=w|_^<*(lh4xZZVR#?N{xhG7)$HadT70NDUNx)2pk0Z_&gvSlNL*|&!VDnvy%eK zs+VDjcq+8|$rICY-uxL^72ZEAB_R*8VdeIIQq=E9g&r+M%~hEgJ69AQUv=S~MXT_! zo)~Vl_Qd$(T2%Q%ILH|npu<`r_<5&*(8>jnSF@B(m05^B+lx@y?J5bbD!}3B4RECT zGf|gwht=i-w0P?woSB-!PQLVk&m~EN#R=YdQeDUHD`^m<^RCNo&rw=={4qKCZX-N$ z|2K!f#+~5;P_X33L)Y2fuBM_yEpV zb=`Eg1OI;NB8XFrhnvB>QLlFeBn<7R@aJVyB;ARkx2iHfCbc;eLOA+UNOBq1b6a=w8li_Ock+{!xC-6stEHOWc5zj4g z;ek}pcMhW#tG&_Y;WQkHDZt*_pGj%_KD-qe1@}{u&}Fl=U^(A$`Qg_~0xcu(v4jWg znm7v{FMUUPUT5%(sxXY$I3M>YZ3CGpLeOW#bApr=NLRi9uTNQnq8=Y9?AHV{VI9;k zo z9A?f_~@W>!CEZ#6}Mi`fbgs<(!NiG^_WL^*t2bB5jX^$RuNpQ8!GqS!Z~nMP%s!Gj7R zc=0oW-fdV=Z|b@Mj_N01K*#_5_9YcF(SN7!lhu{@1 zfjgF;$2f;vuzQn)o$}T=#q-nz$N<+2CHT{&i1GQwptYuO{=EgIr09$k zX8YKa#hPJc^R7p1l>ZE(e1h+r`<OdEaSC}ID%>?QP6w4-P0G~{$w@$8!#!QaUz!Sg*s!k)jvK+6a4 zRcAXC^9AT+EbiW+uJs`@osqQEH74l#P z_mo}s+gUA~!s9=E(E)MpH5Q@$SDKQ_aU zZ4b$+V=_#_1#_x#p%dGR9k}rY`$_7rMY!YdWt^=yhg-g095VxWj&G4SEHMkGb;109 zswIsit$7PeUY>+$o93X!wT&?Mz%_yS^ye5W7X)9tvgkbaDZ1ufq6)Rcf}x8}7?xcO zZN6@3(hy3{`mI7;o*;U7`c*ox+6ryAjZ$T;aM=Ge20P#VCfAcD;Dba(F7mY*Re98m zU$1w=K^~Ox{>@tAR{9@I>siMLW?8|HJ3BGH(G7py&p^L-kLZ&`zMtcB3$?n2;Ehx? zSdmjyf4n4E4D`@|sQ09XXFyFKOn_v&sW5LsA3b|x0i%A0z`$+?Jegj@W-PCR6D@A= zar13*B?EECmTrN`Ic3lnufan9arE`nmr(EOORg<6<-a=%1mb%vn0W1A(pXZDlQ#E* z9}J^3D*!c~!+Lp4so?F35U?Jc%Pu=8je`D3%%E=ok=IXynvzO1%IL10(0qxP|g50sH%w9cj*8Ki;63V5ZM2kQD$K>E?C1<=C@P%r>xQ?%U)w#15G#EPh zB|T?x5qo~0#50;KF0>vdZ7cKe*i;TT__px!qX(eo)C`g7I$Y~Q2MkowX1gA)pfnyx ziK{lZ-_RQMS1U7RdP8uE?|a-`v!1bZzXQKAr$A$B7CzRi!-~bZ_`dBL8tYK}lh#O% z)rSx#(-w?h)IdCPhwzebCh_8yqUM1D_;ARTuKA%0HuiTwS5llwbzX^EdI*F>^VupL zPu%4(n-+Ed6C{7BBS}Nyc=yUZeAjguPaQl;W+W6stHTNMboU0>b7~k;J@(O=!UO1Z zT%1{1ABmL>$wV^$l_2^oxB#ZYD0` z+4!%-b`v*E4K#9*C*rqn*gXg@AaX`iQS(MHC-!zujX~2AkgGY18oQ%VFk=?Ip1qo8 zXb*tx3K2N=ECDB$B?`Xh-UOyI39{DD!s3Bk!L-nNc=06|b@^|rZ+9KR`{@tduXqOs zZtB6S+DeRRrL2RACbcu!k81kn_+MHauC{%NO|cf-u@G|) zjq<(9kQR2B+u?fz<&&ZzxjPAjmp&tlD`qg8lVwoWZXGN(^~KlCQh4l%JFYvehwgLY zaHv_B`P+RAI#d(cQ=dN5?m`x4G_*oQH)6g}C7I$O1g}R@$ibKf60$rEM!$&C?@|=y zHVd#r*oe!Qo+r@av!oxkWx-HY7UqtZ<}~F$;{N_;>{Qj$_&2%+l2TLPz_u_PTvY)V znle#q@uC@4$6&N3A0u-lxl21LiM_529N(A@^^I{D#A$P*X2INGj1G1Z#4dJT+lAf z@5#SSK!Yzspqep_(}DZYzj`S-WhV;1mTAIn_yRwZODKA-hJpJh(9AgvEtQM-UZ*<| zl_*AqsUGn5$XL_Dtl+#8U7&v;~wkt(o8)G4B3*buQt(1ZQA59?b6Fr(OH|p=5sq#M>XE zva~A|ZUd?S~*KEC?NC7s6I=G3FmXRC-{gj2(Rw zxo6YIlNe74tcneRqZOu@Bc#UFDt*O0mj~(i+%kBotIWuJT+M|9*WtK5#_&$~IOe=k z#GAJiuDJsmh)8%jd zfnQ%=qNeRxBDvu-G>W7_`q&82>gP~%`wXt_xi0?MbquD63FG{mfmm1{37^fnh(f|@ z%sf8;zSC8JD9^&*Z^AHk%Nbl5s|n>VC85H660?=LgHL)5IorTJxGLohtSzwwxtF_` zfXb>Gx%E+~;iU`G>EG#+4f0IPx*%+KTZa=rhGBBe8!Fc*hnZRgpo=i&g$MRoEi5RWj#HZ!ji>MxX7IO8=iuX1UJE_W(Rj_8Q)(q ztb<*9o5_;&6N0oICQSXc65=-7kO_Pd#_ii4Z{OIrly?4^jrUgT)EpVygo-LwU|h42 zs7u7K`~H=&@^2<`(#Lk;*v(hyJjr{|nQ@yws9J?3lTEnyqOy1~^(u74PCyrNM=U$2 z!@EzM=oMCsi~8rxn22wLqIECOGQU{hF_Q;FeS7Pd^n;0#=RSC1Po%fk!1 zXEOJqjfnydz=BGDoF98pkm%_Taet@qU8x1Iwfr>AK3)ldT2Z(xI{?xY+K7#j6<9qp zh8w2h%<7+C=~R7!3o9JC52w$9d(T6RwkD(_HW-ge8gW{mBJuh5I;h0k*pOHb6Xq}E z)PfYaJL4>IOlKrN`woLZ?Nyw+=Np#fIS_$T82$b$lnm@Hzz`iZ=IbPVrd^^L%b)sU z#efWBr>4a0Z3exp%v zZ-NZ--FO7vS83zbOR_MB*+OiYQ@HRB3mNjYbn&1e%u(HiUNTRxN;DY5_5M+x(NOM> zX(%~u-a-FK3Nw2)DWmH69H?y4z%7xbsIyv{xdNfQ&*MDiUz%OLPUqo<~)KWe8)ei*iU`jkHtMg*Iu-fyG&x-09V3_~l0{+>I$j zr%$gTi5nH>Mxa(CC7p+K~+SCQlZ=c7+QFpF$wKwyAv=MzwqtJDS1@7>- zV8S|wFtDZ)t|wo|SvFeCeH_Cwb0Qeoule|&)fm_|_cwH|HezEVChL6fJ+ZuqRv$n8OwX5*%;gx^qt4w(@j% zwEPqn6m{@t_BIl9{sSz&n8Y1ew+%jQ4rY3~-jfyD0(?1JjqzGl3@?{lr$MQ4cIyB6 zV3rW#b<-C5@AE^PuA&P;e(xZ7cMi!edQNL>mXeT(EfCuBg1lx}HsbmlG<^D$)@0Oz z*2p~C_A`VYz9o)F3^#M;v(2d5t#D8mqcm=ht{}HYi>VcEK(E7ZP=7@!{OB`4&A3#Q zI?ubl@&&kBA9h;s5dy^yr+ihY>tDERTuenq44aAVCgh`+ncK7P9}JX)v)w#vzff0DLU;$V@?p?1*#fV5cK6|1-2y#%55cg@6tLAg0Sg=VV%Lr3 zxMHn1gH9H_pYN=|I$oG7f4rUu-?jtw`NDWS!x@b{Lvi+kLg;sVh7T&mG3RR^txdFn z+Fj3K(s4=dov$qO!Pg7h_*_L6M|NbpJv=IsgVLTD z`cv{W-qaM~oRsS^M*0$@P11s>`xTI~GL+k#aEWJ_@!Uwp8ul>SIA&pM&FA*%kaBP< zZ5>qttG5a`#q$hm30t!AH#vc;*jU~-y8;d?730$5D``qZIEtOQ2y)A9A;Y*CM(nc4 zPr)h>8?K}JbN|55_B`1AGzrg$eWU7H(d1Ep3&c3_492;xAi2^Vy6075d4T|bS?e%! z|3CX!8_Rbve$u{jF{ax#lN|B|Fx}}%YFC!P&5$T~%;-T+fR^CoM_o8w_7O6ZH-m1A zJ2sxG1OqW27++&+Uo|j7{7tWd(ur-fG~bkJZF6LT(-3k+7lLA3&W+7knZhK%6k_Y?5^?*w{yU^d?DJxjfk&er%v-lS9^ z2**zlXA&@m=1uyJFHMgNwu@(84(1f&qmf}RYGP*L% z1>Zee4i5j>F;I9&;A_I6{H!=AUt5UfTKDmnZ4KO#u*A<+ZrqHS9|Y$$+G)ZGBYYL^ z1g|!Kq(w3N(7?Hy{NeeDQj8=wDQp1OsfEI@kv-WuQ5w6l#$)t+VLJPd7k<$CL_gHa zbCOGDuz}*6U?zOT_mNikJ*N|z1xtw9v4xClUJ@9+Uk))bv#{rBH`RRBfoi&yVA3Z~ z>mMb;gpzzZd^83ekKcpv+m-a{zG(8|lRr97RH9kd8+hMY5SYrUP@N+y!E@6@B9(WU zc!yX)^U@wz4P&5J$&g(7-beMGX2FmDKSOR`#-oo0F~_$Svr?bajZ8UyX0-5KUlTMb zJgT|W@EL#FrctF3d#e6Cis)H?vESq!59#*tWa(OErn+u2Jy)kgCe3msx0P;^5z9Kb zo8*U2zWC#mBbR6)|IR#9wi0?>L%^`fk=4zd&c5JXb8@BqxJFG0r7tpMm)io=e$s$T zc~0^4M0IY_cng%uHDoL#5x()R!=vvdU_#?g?2=hRa|F@wIPMpA7lq@2u|wp8!%=pv zb}$Xhk3r8M8@PPYnQkhGgGp9FSpWSj{+z>6v5V$BtAu}!DCG;KsF!Po*ZjLnN<0*9wIxHtOA%`0cor6F`VslF=@76WjYOFM z7!)-^`}9v_+u=k|^znsn`&6Lwa4zY)9*Pz?jcBTzqH8@$_|B*(=enR6Q=W-|;>B8+ zURDdD|Ai1nAkOKnR0Ky~J=py2BhI*ejd#9|XC8?=(k;2oa9f7oeX=HCYi0ytg97}< zbK`{PPoWtvBS_-w_cg({r5JMet)oCL}|M6H*vf$ZU@_*@#5?^R* z)!@dvlM&%E2>q2xsHesmk(o2I~`c5Sk9V<;$vNg=fu zhjhIH^YrRMSnjYL9y!_YzF2LHO_>1>4;6@o$qzv7lL+S14k5rpI(r8+j#VeG+u?3h|@W&~~$aV8!f9^Zx|{PhWy zIskSut^7OWJOo`1tND4?2z)<=;;GjxiLg*+mffhspaUGwNR`5Rr5+M9xfE+dgoyis zM&2vBnkwBL2l8bFHFjl1=vr|DlRjtA?rS+@I%mme`U{~!`VUN7`_I14AOprEY~=T} zir~;63)cok;mp#NpyPZ6Rh6HhiH!vFqJBTzama?~iRVbuKnooaIHBh&YuLIY7>6^8 z5q%=j;^bs9cI{QPc#sB>d^R`VIi4;E?x1QxN8wEf@Aruez#64w(rCPw#Qk@jY?P=& zK~ElPToOkCn-1)^BWT%ngFgc#(B1n6aC-LvIMMWvioWx}+f8Y>^v^EAkeaBVWWr5Y zGGGkFrxZB7NinR~f38rs=OpoL&K5ZL|Ep=)ycmnCe2JCyJv!U#G_6r{WgaOf!3^aZ z@QauYoa#CJl|G-#9=-;Wkpv_+Cd22XYWqWSmN=c;L3OPDp_ji3qcoTdc<_T@_s?8- z6*n9IG@0Y!RWi(l!{UtFji7FI zv0Hr`zbps=8`wGt&t)YUM3{G#fgi!cMpU@uESo_U(`f@ALzAh1@B!kyo<5D zCj3+ZsXn_Jzvl~cetWl){i-6&)6J8)@?VzR51VIjY;7yiN5C*corawpPOfMQ)+9WcJ~+1-EIh3 z+rE=KnT}v8^pfO!DI>J{4F31;D3|uP3#Rw;!KU%oKv9|cSBc&SR9cC!_aOt5_RSCeSx@f?rb7cTMoxf&0x?(iq{ampyxSged#?uU zu!(_nlkK3Jzt4Xz+X0ogrqdHLlWX?u*n~%mMHy?uO?XB28{OHQYd0;~j!ShFVLrAQ z2&TFRfVSUydrM<^X38@&e0_Lj%?jxac*o6=tKze#ZhZ$>J9%Xgda)XGA|Jz-ot>C6 zHWS<2JK1qlWl?BPERGA~8Aa>@YM5{pu0_NMloJObN>PpOsS#n4YOK-et|9*8|4Yon zW7uk@%5&l_z|pQ|l*&0t<(9R<1=BieaC8%x7=5p~E_Ow*E<2xf?K+7uf88Lkdz5(V zX`?L9Q_*YuVgE4qJ*E8l{*6oyTg$bB(aTo0`lmc>JFWzW-z~!g>8mwL2^q*;-T=v) zj#9^mHE=WU0u(v?B5|RskUf7LeSh+~iop`rS$7Mlx_(B@jz2i9=p#-sDj>B@ybIZy z@Gf&D?tITlSl!V|A`+J)yLu;0y;=fKrhB45@f?`=oB_UEhfAO3;?_?Qs4EkIp`UO3 zzncKpFB)OA$33Y2G7q-(IYU!*B^X^ChKZ-bNpA2AdMGe}j@SufiU)@gS8l-FhkD$) zWwE68RRK(~IfK3TAA@c33nHQXjGq1Njxmv;?FCFdzR)UxqjRkt9sU1*g@`BmVvRa6{r2${prCZ5>WjDAEmrvRmxen^&XJqGWQ& zaX09@Wz+gEt~jM39+oK_XAeh7ptOPsoKi3&W{L6wueDLIzVH=}T+Bs>na}Cxe@AJP zNDbVM(glP5R`9I;2qN~WAR8ACTMrrVJC80}^B@y*`E352_cCzUL!A>@qReII<&yt? z@q3GiW)iqknbTd`MS8XS*ey$wQL>(&6N5Iy_>_@HiCf_J!VMUftifH%nu#~!ZJq za5d{h?H2}kv-jE;0S0;9L2>Rx&$FDkvF|^?w5&ay?+MbZY zPepHO?)s`4=9xDo4bvg%?LPaK&C_7;_FL*Ke3&}Pox$o7IV^fuNly+Y<4J>+VEi+S zd`eNnFXG3*t;7)D>tsUwws-a`Cza#E7hzaXsfZWOOHc>G=WbSOVe%bEd-l;Z42^w9 zpItZx&-s0Usz)q@p5DwBzdDXfS6+s|%~5b$bvGK!?G$`e8K5gOML-~YiSEd)hns$U zKVXdzH#8#?a&}%u;}`m*>-R#q?>hxY9?n3xmqIT6_YmhQh(N3J1DdWio!)%iM#s7E zS&_UDh>pmDolC>O$BFN&|FR=KE)@dLnfJ&nbL+5*Dm0e{&eW(8I{+xQ(?l^%OGic9v%+*VErw3{Y9#^^qzwvW3G^Qd9wt0vt6O_{Y2dBTSN33=i%K= zugH*V2tAt?OyRvYnXrT3CmPRzS-(d}auqL3Dhpt5!=T^iP>kx=!3EoAW6#JZTD{br_wOyCFP?bA4#QLoSnY;;U!K9_*{=BR zOESK7xJhpA*^lm`=G3xf6Dk)e;>m|aL_+f%eS2#@6#WTC^|uTzKRy-~w61|aa(s{X zyac2K_7cH{DExTLh6KDH1D<=NvDbJP2ES9M^W;Uzf#?=`dtC%POjU<3n)>)-Zz}F~ zGR7}|j$?tf8puq&Mi0fh5jXQAxZg?&YeUBY&ys{Qf7d~PV>E2i9FMnnX6wRPMsQ!D zh1%Va#{FZ(sFQjM&%a2ZuUj6G^u8!uu;(0vb)JDX2X%g5eh4#kqHv+{IV@_tFK|}s zpj$(Nu&$5ak$4GXPW5RJ%GwQGO({4zaV=R}VGr+jttEfgZ-dstsVFTTYoD+-0K)yW zaDQDm?i|X4M^g-tTh6;n!`FiIMwYfZ#$fK06QJ`X|gIGFDqM~2YGxO4UrOsCBv}ObSbnqstXl;%q z28OUgY6kkh-3Z6@chcN8W74<(BPo#IS~K5P2xDkd_v>jsvc0JSZRGofx_PRWf z5f~90$z(Ra>55?4gm|cEY$iX~@tM^AMHs(57}m$;f!;-eT*E8cC$|w^#+ac0^w}`C zHI6-YHIhymvP9cI=TNdD9(Qir2^w-QiOA?==y-S(1GgR}vBUu$FN+6rT|?YD^8vXi zHWzm*#$jXBX`)f^*S_;>G(OYGh6y+Q_&q=txS8g`itn+k-1=X{^@l3vM;Xzm`QoJe zYYu)h(Z$hCa|An%uAomhs=aR#(RWx}#RPfR+k z2j}8bFk-P3q#bdF`+^0)ofHFs^0%7EF=1%!?SfjI5B#u56F^-)_6tYRJ^%g#Gkzy5 z_Co|dq?=%8?M}$iTn&>hPjdH=eP1fB}bfujdasOI>G+)qT^cVpf$1BIq`;eeLP;X+ujJS7E=58*M*oG zw~jjBRDe~}H^6^WRiX4}6v_Ygn&f}yRrFU*WY$UY?!r>8;lLjiq$ zAdu7sTmU;k72Q+18IvC*(hM&h+MYX$rzpjfu{Vy=b2m@IEI%z+^zAnJS#L#dIEPUA zOe-+RQN`Zut#FOs)$E!V3sd1J|Bm2uQhzV88E>U{xAg(KM8O;{9L$En%~EL3=Z++c z#mKqHN7SL?Abxr$0YwrThx^9nZHeNDJK`Be#D?eeFHd_m4HRw8M5_f zHA#7hfc#nWkU?*I~rf?7lPc*4iHRPj2pi@ z;dZS6(szhwlLWU>yNK2JlMyCwe!J3T3!>2e!Z6w9`itCX8bE^y(XfvHu9*Jp6HaS< zNnW>aA)Qq|5Y(vy?RmH9($)Jx-Re0_Qu<2fqivgekcyahh@!ws^+qG#(yUrP;Q`0^UrrhJy@_6dXG zr>~$G9*?=@Yd}~#mh7Dz4pMd2#4j`#?neK|S_M`M*0&bH?LUP$eWD}{@DOE|`Y4e1 z#r5RMg)s87n7~Z^S2%smc)Tv#0Ah9qG@lL8U{kPZ@|m^ z4vzfGMS(;kD*sxF?lu9qrSb$db3F;ke{vAYn=z&8E;L9e2`--0N8Qc{kpAIZ@4di|!`J8Qp%NAvz=9)X0opBfD zx@y9so6D*iEuvt>RXOa~n2sy|SYzh=O<0&Rfty?*!fE7Ag>SJ}z_I8QjpO^i68Ha- zZ3D(kmC;rlh>XK}?^ISRattRDG(-$uxZ{S$x>)=)kkq8~f?2~IGE?~!s6|*|kA)P( zEM8r-ND~V@~x($IXrcdBi z$rHjRSwN6pBUsOF0#)fln1A{meXG0;?w|aOmhb_;IDP=Fx>>lmay8r#o(dP=je$$| zB4HqW5c^~DQN=kNBn*RaxYW!+-d^^Qa`=j#k7ie6}XD?j9(6jiRd258km3wEu_-?w0f+IxEjpEl)RG zQWuJo<23B+VxQ8;pZpo(Rjfc!aUwca4`7pNH2jQtk2fbR;*>@{!1^a&Q8wiofn9lc zdHV_^oHVn!W(S*8x|`;>NieGo(!sZJ7VL+5!Kc_)IQ48cCYbP^@Q7k^yjq@lGb;q? z%>6J&G7tU#M&qkZ=G-??7rSH2v;{KFYf)T&5jVWz7BQ7Phhwe9P<4Vkd^MYbaWZja zZ8Hb7RFNq*e?i*{Q&7Hm409}-!R)L&V&(E0l+}W9l8zK75I#d3x0!%Ti>O`t^eE~b z7>4><`Sk4VwPTEd9%oWP# zd=&(Y&xEd!A@at|mvIo-K~PL84EaPtWBPe|+*};)IUKb2y8eJ@e3oHKh4KjKg_D+~ zSZe*;k)+R)U~YBv;_j8#;ZeG+z~SWsnBK!MubjFeL*)d{ksXBbCB?9JRRo?09_F1! z6S$S_*>udbfroJpb(6kG&aGOA zGnf2Am!&>6EA~8vn{+jaoUsr~<`ts%qzX8@tPFnGnV_svJ8k_ugtLD?#d~GX4S4zH(c})&g zMT1X)z$HG1rIc~7n3p;Fij_&gp*&K=N>ty~NQBxbV>hMgl8o-Xa}b6*CCZ zcE>SKRS~{)@cg=~&tQ+r6Wo3G3aBd@V#$aZcX65#=ig$-O-bJdB{`=td&3c&dPxJ@ zcfH3?W>&cT$!D@jc?#$`D6>PU?;y8g0K7i02bm6G8u>tm*?Q$Z`8n|g$!NESw8iz9 zVsIb5_Wyxli{JEJ#Td@i>MAKSAyn*h1^wC~gAF?V82mtwOW=38&ic!sXpRsU`fC*i zDb54+I~Gv;6WJZJy*Ssv3%0twqHxzP3)dT1LT0E1lkYJVZv>{n_x>&LqH+>>*gpxr z>3_z+r{QGYG9j$lvw|5n9Eq1T=Hr(jO|C`u4b1*(ihJYckO~RD%ed?=9Br7&&n6c` zQp6H=#C{_jxS&RIW*+Bxul?|pJVxzY8ODe2$al^V<0^XFaC*2nh&-DK|F(;fvIE;O z^?4zk)FuQc8_o)<(`w*%K?fdLbQ6x(og`j4HITPNjRnJUd?g_Yi8d2qLuCTLO6X^YlAefWs1o4BZD6NXbC~!Az$+(0P*Ap8#o_6``f5j%0r< zq;d1daKkFMNc+=l!8XrF820fu278ZXZY^IA=a0@}i{zDPc&Hhz-LA&vq`iaoktFaV zvoY_)N!-=h1CGxb+#Z(0-#fdxj=lwKR)Gm<|B1mV27w?}&d>U%?8D+~tvplL0*B4K zQ0OI#JDlUO+;9r+UdZnNF79KZdTwHn$487=&(AxzuYe@2bL6u~22mC<#a^*wkZeiD zjkk@N%6+3yee@^k=lOW;QL3C{+!t7VQ39QmHbGezH&B4=#Jba~0**e9pp z;RbW+a#e|Ex|)&csutjX%oK8_f5TpxI$G|*2{vd);<_54TsKC4_TY~1Z;dR1jVr4ZOXHiPZ#hk5@E7w!vx&az_VJPJD}G=ZK!R^ zWLaiC6D#`=Gj^ymJCvq?S@vD_W7r0EjV$jFcFv%6OJCF4*{h(4v!OXLGw^li2E1Nj z4BFp&$Slz`L4cJ#soWAp(;KCj{+4WvOO;|=jy2H7wpU5y--~G5n+6M>Y{GFoD}3Ji zWV~}JAACFKV1C&+viWo|pR=w4Vm*r+w^xntKwRP-Jh^0^$banC-yOVr-GWNJ%R?Q{ zATGo%9as1z;5bnc?rv%&)aE=yv&#YyRdN8krg9h>vkD&0v;jzxV;=Hn7qiFm*z?T* zO_V9TE#AfK9c+gkS)Q1DEgdR)SoDw1fd@-OxwZ`t(P`mLaG#|?F4<`_b|+4Qu8}4) zO)?wPqIH>z`Zmm+$&>B-$t3R8{KJgAc`&>!5HK-ax*RPlg_b%!`1dE3EVfc1@8-LK z?0_sjc3J_aR#xC4rkIv&1Hh*vC^g|YR{ocX4i3`HqyS}NCw7cBMx+xdUjg%`Rf0S9 zU<~))DP#OtJeg6yeII|H=!H8{V_~HA3>;Xsha47B;Ecq+lc=^af(g>TAOqR>+13j* z9Fy!yryDR6G~Utd-Bz%7);CoBZj3Wds6(d6RI;O9i|9QRX9O!uVZrSPTzfbcCVpK7 z8SS41ZC3x$(Hlpg(&sUsU$3DS`t!+`>v8aDyd3viKa*9TsRPL`i@<*{9A`W|g;!o5 zgptl>>RG#)n>kOB)8g}+ZvOVT(pQ*W7ut{CL|O%V^GYzKG7{88v>3N%VqDefKxV4k zEcTNi8}&OEVlOdcjsyiV>yGoBt`IqlYEh--12;ibZxEedInkbzv$(Y&$NcGC4{Ar` zNGKwiF)I%q)_8HjiBp&sSkH{vZvhRb{joE|k;&R!$A9llWVR&S#uZ2O@yY}T8b5v< z_6My%i6`seX3;UKbFy48jqfn^>uiL*`K@46n}DM|A8DS_Aj!LP8@{i$gY{FyDMXB? z`=7Ux6}@BeXY2^A3hcpgk>L=tE{jgr`VFkJ9NxL@2d~u^Fq3lZ1k>lu#;xoon9gc2 zi<@l)`?gGjz`+EnzMvC?5|iMN?pHeNsZWj3*feln;|Klg&Op}fEBJf-P8cKf9QGem z;q*`2!73>yd|dhyH6yM;b%YsYwDyo*U3ZMuct&B_aS|oefe#~0X*Y?0kV*+=qPR9q zduEH&GhoOdZt`1EVk3gT&@ZVC$EI=_db?>1NiPu2odprQr!bnL%A9P&2F9Spgt7LKf{|D|?oi1>#;?GfR*ePt?(NKFm0cn# zYALugV3>~QT^RgDhvq{qOZexbeFncrSer<$j4dHE|LmdhGtSUm=Z2|4#acT4)LZaMYqDR%pNG_X z3doI|OYmP*G2L8i4!@S)7x1uFaD2BLbbTj-dtMAKU0ev|Jd-ZGsE1s=b^^P+B4OHv zBxMB5}o%^;n{vO!oQ+ zF^iX9qU*IhhS%4mR#JX2?BoC_L0>tMTh zx7OjsYoTwq2Fc?6ib^lOL7=@P)3|>sSJj}&Ebo}g6rHSwxDAeMvinpRQ|v6vZG z`cz=1yi(BLV2KC2H5q)D58pi=)Rf)5hT`|Gv14sGoYg0R9}XLVa?o3-J8%MS6#c;S z)h&2M&lm#eV(g+*;6C|R6Bf~fp}xGg`Qs0)k*Fd;!Zl!a@EG397G}omQp4MBCvoo+ zb5vdZoE#In2AqNjCN~)K^QY6)Hiw`4$^@Z(xEPj~>O!N}9TXltM>cik(N(q_j$fw@ z8bxhzPAlC=&KyWn-2fru7hdqv@jNF&Hzm5%hfSTC}RW zg);oEOj0NjegwY&L&+OBe%m>)6!L+t)E0Wq^%d=MYruT(wWtRJ#3ob*$|fI&k`*C> z&D#cvf05FpXmMtFFV6Jllh95?f91p%M;ecGa<$md~dp z-$gJ`B8nVapTf3lEJwu_F~-0DE?M&FB)Yt>r%B(=f!Vkt(DEq;?)Rv$N19_$N&YTb ze)tu;IqEf8u8@unS($h%L4xaPybBd`CNo>67viacm!M;>z(m}53>^jjG)*-XMGZz+ z8=nqi(LW5E92nSie_?q`x6k!YQmeManN6oKz5E%hAR(5@s*w>1o6BoA-{9< zf~XL_^cTYLy_xuZ9$-?%^S=_TtIq0^lkIv0HRHL#^7D61de8e0_;9h$*=v2j&*LxA0|~s@z+biwj;wFS z0~(HW&Hhj**wlqDY69>}c{ZBISCJ3v8_>B*iwx$9F#m}s;7MO~sBVm=Ypeq4ir1@* zB@X)2i<%el##T`#UR4Wa|LWogt`CY038G{AH!5~%oL3tq1Gdg$jB@Bn^7G9gVRo$q z?+GJX*jCHY2%gPxw3kI@p)JYr;bA7r%P8CRo$70;U|Ns>givAhcw@~Bv|AYe_!ABv ze4UJK<+35$-vR3PT&LN?1{ez>MV z3=*7|pv2yN_SsubI#brsdukr?;;LxxGW9ytyP$2H+QDLHVkL(TaFr&04wSR zLB#k!NX)Inj)`uvY3rylZ=F3#ZXY32eWJ-FPBI;sbC(DYm15hw#Y9zF9FyLPqU*#O z+Kj3|dlwKtd3UOk!AI3g0Yq}|8Vvic46@R7_&X>E{><&c&SXXUCr}a0Gtuv?6_`NQe-$~(~0>KkQt3fR?3FEV` z8ea@dMekY4@aWknUn%|sy`&tBF;P~|?1jig830ASF{M~?g@OFeII{h)$9UBLue+4X$dM;d@nn!{P zpJTT206C(aMbqCj5D6C#5*_v)%1WY9>8Li0?Jos(YL2$L-^uyMhL9)Q#)+$VUn4mAv7VPx z19aya)^Y9?NLxO-VE?4Ml)pff(Wv>%4>R?~;>Ab#-J;^KQ27C>HF==~*-yq);xPJ+ zIm8Zs!=b>_JpI#`L7`wF9#e3K?rqnh+0CCLSrNv0?iGo5CatG8jj!VPAUhLV-@~%h z&6%0!<4K2D4H#uTqc-^#EKkgUyGK12T6eNJlw^K z0rq{8&7Cvs-}0Q$K{_?c17dA#Nc`qeoGW$(Ro9J^7v1Tw)!yCM^LZ-vy%S+}pB$&t zS80O7oKATCy@8(*+YhS-55P>hedsWl&F-ZZGYzF? zz-F2ZJ@qo0v~_tvubwn>cCs4q*?f`ejI~sES1h_X`~Z)iQF!jUAFbZ6j5YJ_!1sk~ zknul&yDff#o74y61I>47VEZJdfn`{Ruo;#hmp1;#MUOB+KMp#ks*#?vBfOI@5^-@{ zD3#<%P*s*;xajhK5Od@rnd8|96~3Q1jdeZ7KXbZi{Jm#bH%XfL+XALK@Lg3Atv$<=%?jdStqGEE@0;_7p9AH1!h%3xwImtd+NXnk2pxuxMsY%&II3@ zr4h5l7EBK6=gEw`4I@23aS)3uAZuEd*+v$HPajyv?f=^6}C z+5orPCo`iCuStuB1$=!P3Gd|AQ7_#r+}YQK_r)$i_TT;F;f+^ht*t9wD^Em^rdj0f zb9HW}BSD#JUCwrob7;W!Z~h)mgNT$#xRWDHQV&J|qq7^exFI-qaTYkHT96Bd$B=i{ zn@prn;`+p>FoQQ9U|8WG-A9yh_Y*THHvUU@LJKje>i5e6}0kMu7#8dE|U0yje?TgSRG%`4+_Hv;x7kEhw^bG3#P@ zOD8x=O#6VN@zsUFxG!o6RZy7i*oA0b>4k=_l=#QRZUP|wKJT*`ZlmKW)J>% zW{9r-HjN$--j1yzZ&0{S3VgUPyXq9K<-#^Qot z1$*Dm+_?{3TluJR-JGmz^PtO)nX=sx3GgywIekgt@Ynt(9J`}{k}7{m$4X-|5;lRK zo0h?6k#U->YKjBK`S?4(m0I6$H=gzuaJ>6GGVX3PPX84-zOap`C8pqV;hXrq%!Asu z1dyev>}+I)qw&4;>$v&VOpe3KXyQKpfWG}Nh@}6X#Ac;J@TYcBjChpd@@Qf&T=p9TDcL|UOhvkM1NAg`6+m{^er*eE(ICeGTe~* zhGZJYW9Qdccor89cUt$rz2;mn*>xV><_5s|sIu@5&;^@t0 z((+UX6Qa^+_pChQ=lgt#;Av-A?kbD(ulSSc7SSYYk1e820{)7di#tghZU3_b17A6! z_~dBX^<#|eN!P;I;$kXQ(nRdTy+P~6D8_UTQ1#+8-ov}H5MIy#Uzbb+nO8T!vMCeI zudSh-O^9_Z`gpSTA6axd0eK-iao(f=u-A)&BLWxjf_5cde#3xwUH}~~)5qWMLW!G- zI67K|5L1CJ8k<)Hv!8{dRnuj^`ol+knya5wJSF5_r>9;aQY8EXhrV!^?$Hd{F^y z11)+tDVR>osU_Qkr-67Bo6|DXC6Q&p@an{L94YsQ!J1$kPE8>rLpgklgVJQ~Qf2tl zXh5r+qCsy!9`}pwpc}V6Cn!1_LlZ92-K!2lPVEE!#?zvx`1?Bj^IsAPNU5TuInDHC zP9UE6o`UY7*0Ao;QNHH;kMzWrji8#kmSYw&102^)rjq`d;N}wvowF9xii~;e8JC0W ztxMT=q%x{?b_ayb;o$576%yE#!k!DWq3O6EuH&Uaw4XnT438E+a;@CVm9XHaNz3VNLhhD|CdprxUQjb0gK zP5BFQa-|FIw%bK!jCl~wJYyV8*hbCfm0*Fx7^nJe0(o{M7os>T;LVdfcoIQPvFFu69)uLFH>x9vzWi%^71q;<(QE7WTYKE~6bfFcfCXqx^%zx6`U-Ajb zeMfI{S=Qv!7&Nvzj%Ti%#>OkrxR|$?^K|bsBK;TeF#B$D0@5o64{h2c`yt|u*oVG@4?S^Nb%J9bn2w15p!Dst*;N`yt z=a;7ti*X6aAc?3kV#_aBw1D$MZ4d5^jYSK?1N`!T(r`p1f~39C#oB>Sbcbgiw9YMs zURgo>D!zia+$f@Bd8**@l)&}&RFeEi7Ot$Ehlez;@Kc|2L7>5nu$Bel5VnNA)(Az; zqHJvbSxbM1v`{~@d&G`)&E`0GpbKA;ujap-WA!eF4pfH28^@D`P3=(LGkqL96p8yo z3qjd!0qlSIi&oAL1r{mCdR2C#@WyQDav-odd@-EcB2R5LO-DV&T#$GX1{vnLC@55b zt?w?=BTjYX~tjb~|u=9_w@M zH-&m#X`Fola9WNrR9{Z#BoxfRpqu~r_gkVldFmcG*FA!E9eYbw3YvmL+f8ESb`B1C zv)+X`4s25HW_gmG^!Dv0^2Umbk1Z3S(svKtoSp~wjvCO|)#2cHdO!Y?)5cFecZlSd zN${d|65TT7i@jQMbof&)oj81*4)u(ZBUkL`y4+;+ex*UijSXl^XgpM0k^`%dPAdIN zi(F>&BH<5G;FGB%Hh8H)>6doCG!u($Lt6Of<}bRUCj*wuwZl_GcI^Et37zc|kovPe zj@@c3zsDIw87ZjoEaXg{<3b8qZi@U5YmECG2YW58;IZcea`=~-_A6A98 z)yZtfU^$9)S;3?FaHGjRUw9!^Ie4ow6~~gVbA~&zFhii8?)a4p9`!CT)U=sXs;Gp_ zzEP53beE_&i;$E;6*yLtk2NxE_U=%MFBB$>Y=R<{PFC*bGS5q0esy8)G#BK zFf22Kv)YiFx^5@8ZFV8r-lG1K`f14F5YnG{4i@x@aQF*5IN!dX!SzwA;dAL>TypUY zI{oC}>ZY9#b&gLiud2Y^o0M=+#Tbq?gu+C>A-H@K<%8n}O zk>k(lF`Ijw$6I?zYEvF2StPRFY1kT;fW=zdsxk z1h$}+UL_s0+kzht?}Y=SZtOWKN}~5}g7z*)jDG!-cIp_x1<7ns6rYa<(iL#4=OE57 zjsfkygJ2=JiVBYAqQUlkKrBLGdU_#x{U;Ci#o7OVA0t{V5{=H^Ho#~C>+y{`0_i$C z@%PC>x|Q`6Kb+!En3=m^LTWzS(FA-V9E5g9{rTB!9{0=kR?e>*n^2&-l6N**9pgt= zVTa>EkYPvdn2IBI&&Bh!X^#(wj>n!7^DiiiOI z(pgD3KjR=qNy^~C4IcR9FOQrFSx3P-&GuRS@U5i&(Eg2WR@!ao(jeS@`Ev$X_WHM*`S0w3pXS_pfE|zdu{x z6GWn}2+MWfv5IqF))y>l7UQX$?Zmcb-MkGBv<#rgRqmZ>RAj8 zd})utVw(8)lN_jMmcbSq3(Pr?3j(S0aO1Rd;BR@4x}4I(`+w)tHPKP%H2(*NTNdC- z;pfKMV9I{oFj(K~PkR3@g!1ZYBt99q>-|aMJUR_eTdt$W--LqFrrDrwauuZBL__$a zM0_Ef1{J?9@%R18f%7_>iDE=Z+(n<2`~#0#b6DAYn@)Cc$5*+sc+GzrqZ=H` zKTuX|jIZ{?SW6p~*bxLHYcnw1M-|&e06c|UK(1*oJ(1r>OH;FOW9eTsHeHS8$xmp+ zf|pdx#gWq}$j2K2rk3}Zb2nfF_SYui%MdAeK4&ppo|1$S zInl6PS`b$gcj#7=dTzZ!z|rg>n; z6JlJ(*&TJNH{}Uv!0tTOQ8{oBqf^yU@3S!Xd$A`pr*yI1SxN`~q~Ow~l{mfnHmC-CeK^cq5CzlcEn;3seuBpbWf_w-a?FF2 z^PEw&dH5i77Kn#cl4o(J=`n%8gs`oN1 zdm;$$oaUlME+3?p2r-fG6p3fUS9*BuB23v9j}KnzWBY;k5PDMzf<*4%!m(aB^#SSk zr;TV;vx<9GyqBt2)brz`q)#b%a@~G4%NsT6Xv#YIrQxY4d~uo3e}n`XlM0& zdauqJQaw)62hX$VgDvH-`05w(eaaAdYpjcI+h5}}sWK?N9t7bxSWoy4RYtWz9cL}p zMX!UeXj zheOhg>U!1*^j8vuw){ZBkW!-R*@2doSKw{hK9-Xs%8V|r#QXah@~lUL+oH*UNM~nPrj!`3}mjCvy$tH#0{h z%xSdoLH^N~gBW9-$Zu{g!3iTX&f&p)I8e2WpQo^cPP?=bil#pxGr~Jy9-{+N`6kf0 z{5>^z){MKjs`Su?Z=B)xCfwb_ER#rmA;dPd;O74tVEa-rrWDknt9=f3`w2jNRwsBF zts`315DNcmyHENm#~P zkMp90IWhgUct@V~O+;T|S#oQzpo{fV_WNL3g)!7;U4S_pDdzs1OdK33gLb14xL()_ zGdkB3(UF<>{@q1XIK=XR9!T(-8_W9bTVL&)F6Es50O2h+($ozxg*n9 z2eT~8(&n=L$-7grF84XfUtq;dKGjb8Y&0S9aU&)@_(kWgn!&|{7u3;z3alznX1NI3 z_|+?!+)f$COXd&pqv8$FeC^Wl&-%WgjMMmVEUgy^2*5& z-Q8qJnb{TCCODfJ)QG|22y&Gj*%^@VS8U$Z4*#Y$ zLs7gDR-f98Z|ce^Zxh?0txtzN9YbjOD}{gb-XQ!Kx&l|y^Xa{%*<`ue5va{kfEu>N zm!y{hX=76u`4|0|=640i&pxt9=l9h&QmV`~@&6!djxfv_p8~>NcZk~le7HZX3{&sw zay7-{*{)s)n{CM=b3^=y^7r+q*fEV?SiOn6RD2K2I8lr<;*p+Y_eBY}ztG~CIamy;Jc;jtFV)a8=Q(PiB$9U>F#0tb(*%qd z&v-A!MI{t^kA6n6vLl>$>)$v(y&GNjmg3lDZ#H{t2m13}Am}8UQ)Kr-QpeNr{Bu*r zBx*a1Je1+86y?*7HQVv&Uw0z6-vm?Q*YfQY7m)b{B&h7`W5^g%Hyw2FF>=;nxLQ3 z0JS@=ppzY!D?B%VPRxp+R@1ex=;c?wOGqx&->(af1`D{$Hi>eVMJgaX^&#=UufV^S zo%Hk6!>D<1J%pZ`!sY%}WX=xUf)ff?fW>LR^MnF;oACUc`N5Qj)AjG#ELK{Vy3a5jx@*e*ZJcp@M{f)iu_@Rzb9hKj61!GypXOq1RS2bB47tU}2 z3(c2giL*9$vdOiw@9GdIjBW zMDc>j5q77)8vY&4@(x&5$NHw9 zSwWm<2{pd71Z!(!_ye9LB=7PD*wOnG50BT;uJbxjzqOt9cnh()o+5meR|-G-WvQ!e zIG$KSjq6M2v$d2~mKl77XbqUd*rPGJdwnJvi?SJ+0a<$IlN6)dcZ+{2l0 z7h#q>ilPx)5Q_b>QFW0k6Zm&BW_(>hqZhox#~$n%a;+VW+|}p{)o#w@4im2N>3=|H z1>wo=M<8-N!?-n&;8g{E6spakE^+GI1P9g|ac3v}n{u9~HSrUF)@~%L{!T?AXd&7?mKU?Z9N&`(W<%2?8J9#i1;gq3*qt>ZfPGVSy4b>hpytVF4Jvbp%CQ?YRf` z>%o-VV;pO?U+1(0LAWy+cMaFz^%Ekf`|1S*C<&tcb8S$*=|&Ge@&!E?ajr$LICPZ_ zgRcK15d9`k%)1_f%kkA<Sk$nRB_W>)ym zz_SVqiP!56{NqqZ57)~u5+A3-ffl3>V*kOc`qi{pw+919KZ3wd3kcb=kXg6*8d;cg z992{cN%!+S^ez)(Hl8)aCvwk>Embs`jB;0YesmGc*B!(QQ7#Y?_!7-^o*8@hin8(X zt=xuwB`(=`1gBnG3eIV>*j-#3uJI9My#E@IO24gKN%?eK{IQsCYsNmG0&k(=)3dnG zG=n}3y@1zf0n0n6faJRs{I7lau+hC9f{$+{;f9WIY3fYwirRT-`cRj-_DX;IW^>kI_Q;mTrol1<3y?hhc( zW=)kwBk-K~QE0VMg+|TqB+H|NBrqY6cU*~@pYp^4LsJxUcgD#4+3)BC!3>8T3wj2tBer#{JE=@S}7f3|}8*8HlX=&&`n|4nr84l7V-ugt1_C z4lLnj5g&_4cp~S;jr7&$Zaa5?FEL+=`~628BtA{WrrX;fDRKjLKluiJ<)JjuektK3 z6PSCc9UNl9px=&Vd`-Sig*H!yplWBB?>-A(ZO?)!BHQtYXg)0pZNn35r0Jzah45x} zD7HxK!Pg#!oc`8c{OO}ctJuupsAVUtUy#he6gPZOcP^boV9}@7YJpoy+jk zrxX-_FORP@_>@;`1@SV=L8mSjhBHI4SL6T@oZZOxUAqyVDlTBM^Dd%+UIhs6QiLUI zH(~rgdH#B*82;+rthZ~18^*BD(}OK52`mwUia2+y+$jVypPgYvr2~FUeGY5l=7RfP zTO6>N!12*>SZ)}FxASX=Vxj`$^hf|_^n3&Rqet*zO+Wj8cNffpXTqpA!m>Vfa#ggE zU(w@**3&2G$|*}oly4ojzEtO?3}wOXf{Vtte^kPK|GlW6Q-%5!g>dtH156AHa5a^R zsbr}p7QJ`i^8=b`WOp84EI^c7L*VSJCHztEI9fR%#N>((VZjS= z=tv*uSlO1MpM4Vc?7v9w&-FoG+a&N@!lMI6Yxw_79|CM?#1@MN=sn(u0S#==pr;(3 zv3(I+av7%1YrrqxMySLKW$4*2$`$j-r9mST)U%J!bKi&ITXP*`{r-Y+-uc*h@hJ6X zy`?)YM1X;>5~%#`LQdU0;GWl`Cm{g(PhaPK$@~g8xdI$NA2rNgxsZA9H;CUz5bEw% zpyn;+uu8s!nr(i9msNzgiCK2&Gmr|w&3W)<{dDr{*}tn&@l6n`6a?R%vb)MBb|`-H z2YMzILH4R4T)Isa*LLm1RhGg;b?P?^*W`ioPgk&2xq>rS#Bj9twZSd-T%td>kMoFY z!OxaX$G0W1WR4q!SwF*!K7Lh3al-@<-Mfm8u*E2`plQ1$&j)C14f@0Lm|63oS1(BRCGe=malSf|F$7h;3dd( zMgM|}Vp7zBw~x;Fa2pwJATh{phI%zu&@D;@k&S1`^u)UuKYI!8U3UxwIwcvS6}7m> zQW(kw<8f=sCFuCMm}m^N(%6`PB!1`|+ev3YK7Spj?_<94w)2tf8F`UhyO_f6hqGzI zU7nxo>qIBkpiC^=yJh@7iX|-RAk=4s^eeCA)9`3E%rQAe1Bnl_{nb8=l%(f zP7@&iEXBBe?aOhl@OxP0`jv3)!eRf_CbDX|KE83<2#G$Y`FGp|VB-xFbY5OY^DJZG z{yQaXzbQ>u5YXfN6TfqlQQ$RG`; z`pPoayc|r_oyol=T0*9{*>My~{L#bVHvh>)9+{LR3wq0&NxNYw?D#B)pDY{!T6Dl| z={L08?T<(8x02VN`?2|^t;l_5c6F_NzN7ji? zWw;T!cr<}ht7{?D>bn4(tBs~ZL5tvZRVb*sPGIM729<6Jr!s$qxwVeN_spK-C ze)9u==b1d{Q`lxqJ!@&e=b6m&$fL*`uvz^h*$pt|(K(p)vYR-MwZqNn9awj&4SpNkC24}Sm=GxdOm!fA`u-%k zTz5z7woVMy;^FK4og8Q1Q}}h^OClz`5rbkjFiO)E*bcS~&Kfua2C=pLP0?(gDuTPV~44Z zkLkj2DaJq~81JlCLMoL>e?>o|QJVql)>*^tc|v4MtSl~DX^LOYTj9z{Z4m6_Mkar= z1^<<|ATA*WM%1*hf8eZ9!Q0>1J>H2&XLsRB?tYAK^u;M&0*rJ*F33A9;wl}uPh8_4 zk-v9jxUPxCFj07i{2j5Q*~R0iRjqJmlfh^7AmxW?lUr*yD$y9n8~9UGQBl0fi-mQOH;Y!#aey z+|eCm{;({L#3kdLc}wsSmV(G^Ik;0tSZC31`eL>#zE9f^VnTK#&qowrOl3d!-RAhz zBiz_{gDouFzLfE}ABm^WT_D|gbK%9GdQ^H5#Io{cGiJZvk?ywvDE&+dnpfnL&w`?0 z^jV5GekcL`*w0~KXC-yExQVhNi}?wx$HUExhlj#n(Yu4D)OAM!z8k*7d8ZyvlO1i~ z?hgraWJL#fFXymVA#&+L@4-@0? zQsy|Bl`hBq@1g?tp@I?W$6G?qoF7=XU&4GUbd3XkUadm`Wp7B3E;$KDJCdO1Fsjd?=bHX z%X>eNp!+MKw{!vWRrSDK@eejM6VTBX2Iupaut9kT5#`>cw>R40rfO^8AVb?cCPRW) zHrbW30^j`in4~Yd&1spF3wj#jT#=CiIN+#H(h^u7;gSEq_z2L=J-5)p%m^|!i(};d zT(ZylHV9SpP%WWuST6mTowYAQjTcu)83mdc_#UshPsh;-KVsQ^fjTI#tegLK!m4f? z`upBH`XH#28m>&|eJIbw{Ng@Xc`6^|A-q{K2SrsHU_z6lA68m zA&P5?hx!ztQEGyma1erk@$EQ0W;QcVc?+HTGZWX%iKhXa^Y~J>kh*WT;skp{(s=%Q znEA9Az1IIBZ?%LVO;(fc-yeqe@=Wl*E5fvMMlI`MP2o7W_k%_wk2drdz*#vFRH}MJ z3a@LTuK!V3H+>WuUp(Wx-pB-7yPc%x&IEi4mEq1{?CIAON#9bAs7YTV1X_o}vQ_Vi@{~acHCBYVM@GoQvrq99%lqFKsEO(tTgcCjyD&D9 zPQ2~r@+0DJ;iZ2itkd{A5th>;oKv@O%7`I|$TOVR&*h-&TCVf(;QC{Dw4)l%@4E&o7p0>0=->=D1+C=%W*iAAPD2@(g`jL_;u zL@u9w-l|=}ZcBUe^yOo)vxBg)oIH0uy z)eqjlr7i!_5C5IxyBKxS{g>ZD#-iKw*vKn5eC{gb`Mo8@gC69;f^LKZpV(br9J)U2 z!Yg5Fka~{gn^b$^-e*&>qKl7T7ah1-E!V)Q8PuccTVvp<{vM9d!64!q$?igLo5E|) zvrz9_4a<@y(*eW(@V)*uXpc|BrGXy_hxNrTmzzp0&6>$A?P~fT6HgRhRTHUWxA5Ao z5l&u-27Pj(8k4?g;S{brEa`105xb4R>l*8iHfREi{C0Ky!bd$8`lFJgxo z$Qtb6>#^sqTy8*eh&6uluedk|k5#$iUuFo`_69MgYph0ooHUq$`k`rt;4eHaJ4(-okdcb`6f zsSEeKl-XRv0^Ag!iPfuPNyMMCxVK^(ik}bT%gri*_Ns$K#PcluJbsxLOs)cFu%h{z zhS*TN8rPbdq3+3MTz7RNCO&n6|28_nn&@31y6PU4WV6ufX6_jEl>_&Wgy8%9AlyTR zpiRyX56lUMt+Uq>#WfwAxcLQ`bW)UadFvyNXYV=KU>!w0Sze&&&Qib~S$JCL37J|X z0@wTIk|^ZE^CuhN`+89d+Cg|~FdJ0C|mbyxQ=y}3z*{d{FGfA|DWQ_Lk%X6CSc!j0u`-X;Q#F8t2sZ19!4%qOe=kTp4B zq%zAK%d8~XJ$e$P8!5noE-efn38gXW=YZE63lV#>==v%P3|+7q1gjRqwMornXUAet zSkEKULjd2ms?yVwPQ&_TKWTICJ@R0ODeN^rNR~;QMO9+?)-BDUbMv}6 zPkvpcc_Xu^PUsGDJK{h*+<7c<=GsiBr5g_p`MrvUKg^(H`a|=S!AAK-n!UrxL3j&eXXJC~{GKxzY5L4S}uvz^YT|0oZdG}l5;kyGm^lWftuONt? zk_BIRY20Qo8Gj1qqs;tH&aA{&oNK00ycok^Dwp({bcsmN*y?N=q~OgmeJ~l!X0X^|M!x@i7g6ftz-v(d3N|moWqgVOof!$TZm58A9Cn^ z4$59Xi7`Ztj>z}4!j@%;AG%29`xW4u9X-@#Zz4)f$m2!B zDAq5p2pw9}p=f6r%yV5tCluyFwRRM|e%E2#;g<*>Qj_40dMuqZaFp!0$&mU)K&RH3 zm@DH529k={=jcmu z>m{e~#+(GasO5kU_hsVmSPRI}N#mT^Jp=2u2ZEDrK75qV0$-|!My4mhV3|DH%-F_h zecDfdv*)An!c@AcxCE;T|Is;5lHswJ9?VQF#L0r05U#9G?_BqR;LGOFVY8l^3Z&x{ z9*-RSwHQl;A~8DA5urREq|EHeohQMx`J+ASuNx*sD<`4e*m3A|kO3R%K%6?&o-Rwh z#QAw(ADpPPgRP5hTxHCrpj&S&`rOswq(vt~5zDf!P*=skDU;ayO(I^9J4cN5l2L8f zZT@-o92J z9?^RWXHfszby`^B$?phsKmqsHH0H1=aT&^i;LR)0Ih6GVy=M3)8pFs~;5HgEaS*7~ zF&IutfkkN{DeH017F&$yS%eQF?Vwv)9*Pfa!lLpl;w$dSPx)~Wud}Y5AGOt#Ys8K~vuA;6 zz63r~=kt$_tcA=EZkVF-i8`-|$4542Q0-$0K-N3H7H)$}yPxn?+ykhmkrF@d=X=>_^6CF3AiKl+OZJikQp4{{*>stgpZ zGKJpqBj^>o17EF{2F}y>oVhLG@I*R-~z)8`vDAIry+F>b?+b(rEXLj^Y-)CbE_sI9WsD3^{a3^mS^j#@?6M3~u#PWzZ4t z;eD&uf)@os{6&X_>ANYj@vGS_>KvR$JpAJ!>aqsEd`&J?eAx?*)8@f9(=RkxshpVq zOXA!7wSb2u`$m?WUyC0lksB4>UgY zG3p7NiA!p$Q1#qW-t2ve7;&ov7FWM-{P4MiURt=DoZOg%=i(JO(%do-{o6#^rfGr8 zJa*PXbI7^Z1P$)*WV=Os;I_Lh99%x_s@9gXxaFQ5>64j7y04#y_e#?MhmJs?T{JZB z=Ypm>pJbyAc0d0@;*K4_pKkFuBY6j@`WZp9gzSveIFc}b_fC4OJqKH=qd{xrEB|0{ zCe00dW&D+Wo*D(5#GT95kShQ4D7tYsL>$PW&+0?z!Qb0pZPE%VJH(#9E5Fj@&u55# zd>*#PekS3LwXpnJI-N0{<#*~NZO zWp_p|cf-j5p6`XNkN_@Huw??nRzKa_>3k!O#*Et*!#Wx61Hec?5orUx4+WqVc_# zAG8$LV9B|q_(bR;9@Be>TY~dA3zNR{mL^{$mMq6#P5U0fU4&5_VOq zvE8pJoJ(3Ma5S$ReWuzIhh>qh&;2r0G(CzNZIa+?p*?Jxj^s>?83fi0kpaI=aAOt= zA|H>V_Lh`0d~}es=^0_+DmmmADx%JWH{=Q~0=EFfXG$@c8=r}Flb@28>r=5arI&N$ zQ9U?j6tXUkA7tIFE+Tw#0hq9N^8OJ=8mb`zvR)(j%l|pZ>`KLL7u#UW(hZlVmb3A> z%`m0!G_DjBgWnf&;Pps6q_4frxz{0!ZHIqx)_99Sb&?L=Ogs*nfjMATtx9~1wy`-$ zd%V!}oA0+jgswE$4+Y0V$Xtjfzg)cG`@JGO6)Q{A#_sUGC&=RvvN@pLOL4k|718i@ zf=f<3$ep$4A}c9eCBY$&8xeS2tu<_7qB&Ic-%F2>ofH&7+Qh2r`BXr!3I z&U+uzuWMUrDC?zqY^XuySfLEMYhPs{>EsL*) zce7WKaie+ses4?i(K{KxeG);LC8vRN?gPKallAHOF}RX-f^W5b!71U|(Uf4;`#XMv zGFNw#Nr9qZ79fhr1qa~m2m`AOd8q$p3>FBw(%*8@@OSY6^kAyNyy+U|&8elDZGX{q zOcIwReIsRhLcsr|Ohl{_A%@KfPIF{kAXy9%5tRXhvR}BqTo9jK)`$N*{GdHnACG0l zf%W)Dwo^0{UapWJBE>b3@>2(zD%04VNHkVi3&N#CMI_;KEU}*iq;I(>ciX-jWX9-P ze7OB5zu9Bpe-xc}SWf>N$15$RMYK!9N>Vh``P>gpq-16kGQ&4gMn=)pp4vMal$4}( zKKFytP#Oq{Y$XYiS@b)=mIOK9tYRMZ`T$riUa<-f8^P*rzja~4qL6xfwgQDs9J^44E2pc-IQqXHC8k>YsGhw)gm8z%j&!M{oG=>##3`94ntE2_`qiVSDi(YOaxLb;oT%yve5`e zt^A0xVl(0Y6600hyouiw^XU|0M58hRzJ^r`<)40zQP<_jdGXWG`K-ZQuiSuE@ZN)~ z%5h>cK^Q;Zk)rjHYRrT0%`mR`i*}!WNdNpcfE?pYXi#DCql6w2eJjI1BYlEivMFKr zZpwn)xyylhR#IEjRSMmo|Ki{KI%K(*D%|~9ggW0Qf$d8RbkR@8H+fBHzF!2trJta} zB{{6CRSWoEtALGvv+%ca1=@0*Iw#3_cyO@*Utb~%gjd>Q#q?pSw&yQeCoO};-A#mX zmcX}nFL0S1UtDgI1J~uMVC(8Fs57US*{^*Ok0$f!zc&xyP+2zck6oZC(hBfKJC*2F zp2wqa9Y~x;C;nW~g*#dcNqDX#&TL5_>RLBYRpd4<(T$=*hlKbVs}{1`Hl@%KAMP3? zguvP-NocXZpW*$yiffNgUUWdDhBTb!da1GrtoM(0$g!V``QMUJ;zb55h_C|LU{z#( z?Sr8E)5yz7qGaOJa=0kPy~n!D=YMst0lCeYsOkR`EBmYPv1bbEF=O=bUN=}A%DK1n z*MR&jY2Kn42^gt&i^%70LYEjj5K2h}@j1$L6-th5>!JFbB%HD;job;`~&btP-eDroGZ5UkW8wLIIeY;_YlnyK6?2b8eagIzQ4KwXA3ul(2y{;|XTB$QoCyPcS?*K#6a21GYw;bh z`tD@RJekZfHD~eWq=n)8(O=;4jPn+GPsOgX7a+Gdj+jd|vaQoI;povtJkjRQ^kjxL zWYzW63R?4E=ja=HFfp1|>`vw8Tc6oWzw%+ygUeVIZ3F9ar}CEcd17p;ENDJ2fD9*1 z{sP-xy4qqSL!~n6lf2e(=9U z_!a_qS*{nVs^1c|w96o-cby%!$|M}1*XAqo zZ+=NY>BSP%_@_Gw&MDL9{W(+41diH<93%5 z`SUY0=s$5pvE^4lrlSMuUX{XHnOd}x-;cUF-$CuO4phgyrG7`{Aiy&R970RbYNIYb zt}`Gb9eeRWe;ec($%4ZSQFzyw4T9DNuy^YZ(&F-hP8_iWhjJyfJvkGXtVkozlKgR6 zR1wTS)LuK?Y&Q*wKZAQ5s)?q`3A`aBLpO5QAahqNM2^bC!QeE~lO4;}7plu*Mtc8voDTR&kXK_~g2=?twX4Z@aWBT5cM5D75+~<5Jic5^qVL%t(>-?$>zO@!V z_i-7-pAX^WycB#A5e)6h0v!LV67K2;;FC12??wH|lFMV{KsX1 z#Y2AgLF{>R4zxe5qQ19O_{GO8*p<6WAb*Z7{^;7mL|*=Y3w1m&wmcQbU$jE0kTvtr zqJ@3A`ZwNqZVq>+OQ0Wf7T);WhMUK@3}sR%ebP`$OErAByv!AFa*U=+CJN%F&Q@Mp#^R`TUp5HVT?O82Hhw@y4a z|ISDEL(xFIdPv%bNRUs?AqV{QP`dm#d_3;~Z_8^*?YmbPeo_WshfL%xx;`1_ipawh z;VkaHssiz!u288Q2#&6UM0{QzwOIZc`;Nt-W1TUy{uIDb@o1Q06NzdmeOz}i8=7)M zxpT)IB7bcM(>G-gk`ETRbd*PK9p8cis~RC8G#+J^_SY&O8K5FQRhSSn8+0^^xel8Q zoY^V{Kc5QW=mje{EUk*Ii*p$}G48pqbdpq>ZHEqlzvSlbA?Bn_C)cM>qK&pyG&`MN zdu3H8^T59lc6P|2>3}8=W9y;u_CnIMOr00HF_iYrdqP2Q0)LTo4RMe>4^!mEIIm9z z@z%Zq9nS{vMq?tXYAh_-=gO{f+!)v!H$>xKxkneYw z%^p_a$M&Cstu2>HOoJ!X**T%pV5M?8emje_`iV2R@3>3?2FIvh z@=2_;6~W`dkJ)ecFQfk(D>B-ZgddO9(3?fcxNXf=nDwgwJH#&Fb(3ePy()=gl73`< z*AAdl>2>(3%+1mr8*s^J5LD&e=lq;{@MGT~MwH~?_1F@Siw{7jv*+-5&Mhq1x&oUF zHlf79`@|(k5ER^7aYEoHx`Zy}%}(73X$yI9l-z=h$MeBxcM+xq&*$4da3nWI%y~aO zDR$3WiOxkYh)kv*zUFw57KU9gww}wjrp3Ua?!9!@NDo^Y;{qITn3vu3luqTkHLg=^ zX?yJz$XD5d+6sFhuS5al&oU4%dIt@SCh@+{ZzLT(ddzl-hu~eoRYf_Ec=FjM`dzD? zEYJutPygM40cSnI_bml4^qWvRc}LGy|H zBi}^$Rh=W`mQE)I?318mhbPqf3&Z=0A5=v%3ofc;LhHvAvxS^vV>9Q9I(0aiTD8B# z^02pPU{?=HKaQYM)?-Yni~#aUg1=Hx4m}bYsOc*e=w=$>@8#FTEL@%V-dzqWHg6+x z`T6Xd$myg~@EBF|X=Dt)3i2&0OF{0iDr(NU2ChZ|{GQEcXymUHTK3-tY}k}b*=S1GsigaArbpXGH1wgfHFBtl#ai7=gxWYdTSM}e8 zbZ++l;m>of2lxsrk}sHP=?Y^rcNUvBI33*F&2dhMI`?k!5uT(^<8}WtV}N@X_@(`g z9JYAJ>Mhmbo4iusj}>fy8EP?@^Slwy*|Hn%Ch3K#r#a=Y5oV0Cc=x)^dUVxOh_lAFpno<9m# zzUAUru?8rtVdy^vRWx3~`4tA$z(MjJm#v-xl9xCRhiL+sM5V#xEw_MI8wbZtDKjSZ z6E5mqCpzM2O}T!Y+okx(adiK=gWhUXS` z(W`^jcz&M(#CP0cX2iTiUFBl@>aT+4p@9syBgegI1&meOF5=?Zh2cKQbi{u%S>3w@ z;q^U8%)L#||41f>`WsOpIUIkOe;mLVL zGd&LOJu1WUNfNws9xAYzmk$*jd;g+l1fq2U5lfdrvF6hx;&3^ccB2Cf1jljvXc8Pf zu$Y?8%Vsmi-QbO&03Mm)k15->F@=Bgc zmymsV+zeNxhb&Z?kA``R=;z)XTrCg?S%2?h$l=w*CZ?BtezOcf_y}yx--1_M#F^fT zyLdaR6ALv&Nd2NaG|J5nHq1;!yDSkpZU23oMvZp(;K($ zpN}8a|3e{hD`+Ik@lntZT6IF2|2H!m#eP)~bgU(DGk(LHzU8RpXiddauQ4afRA`d) zJ9yh1hqtR=;DjX#)GKo$h%InHF4cl@Q=@B=Rc_&_6Yj90DG{>&a9o_lHgx~e2k?Zb zfuO!F?5os5=A%AD44Gof{E7T;Q~#iPoe(IeU%^!lN7%++4`FRXIF?IW!?dwXxIr#L z`}k52zxEJjy%?9u!Jef>3lK>mFEDDpRLtS4g zOnuWrtretr&e31!4Q}VI62n06jArITLn6s^8$q5|3nZr{P_OYBShVdj?2H^BTfUs5 zXBTKPOZwlCZJzN^n)sRhwfVmJQRkQF@jHQee4*T2QK}ab%EkCMMIPa_2YYdaT05TN z&7zL)Y;j_8Ft;<5I>J;{VTywE{-Mlt2>}) zSunWGt*dQzaVKTHA6RKC14v)#N}St7`DeMjh@id%y!e?-SI0Gh-J)o6>v0FB+GOCF z3F&yh`#wA#iig#EqrvZ}0)6Y!2~XA2aDnk};%Qh1S>OH=)obtRDLZo}z~&wbxU9tb znqt&^-bqCaFTtm4Qap1{0X*|{3H!{IYtx*O1 z2~a~?FrB|AaSJp)iva8O!u(+GQaB?l$SYC31+orPcTJI#@n$&tweAr75PuC<-j%_3}ERy5GPv!?t;W*^N94pIt7tUP9!u}mR zoR)qadzJl|{2^VyU1_jmsRj72NT6rURG5Cr5itH>&X*F_rnUwIJ{!y9Ce3WzlUINf z4Ysk5IB&;Jp(Zw?qnY&Pl!C%PbFxEf7z(-fN52cpYhA0}zbObGCZyCLj2;n&7{R?7(#|w+WP{j{v^&>BrD7F zOjM!ACvlGTK`khj&?OhA8j{)HKcMiyAF6q^9UfLwbcvqJ#(p1T=9wzP#~L0nFj2(n z;9`)f-i=B@7W@q(eMJ56GfbHj1yMe(WLb zeNPTox*VamZ7$P$Vcc_J;Xj&uA_9|z=3-1(98C6%g#8CcnC*pQbmxI<@b27SR&aDT zUNg!hJC6ntCXMr|28-d!IIc)1u!etoD}y^!e!`bioy6mH5Ya8)2;aQ|z`H#ap3yi~ zzi|#<++hQ`wsRI5olAi-zrV1XW2?!>oW{Tl!M`$-)isDp)IG*0Ld#n~m{ zI1qe_=pGy4X4!uD(#{wq<(;r2Hi<92+(MOB9( z`X~d3+EU2hzi;TgE%mtL>vD`1;_k1^R`e$(_-5W$YG2N=G9L6pmBw7U=J8F?)D$N} z4-+9bvkbTSmNL!U|I1P38v2xnV2SE}_?&+WHw`$UjQ2e7%P)Ya!U{M!@iGi^bDTZf zHj*m}%_u8D_^P`%VWXiFd-J&{kDB*D(D?zPaI+A#EtlfCB@N(wsuS&=OQDHx1?b9z zkP}6VxGcIOEs|aV8qS$$GWZC-ar@C`FEj428PH=w2oE);Lz_e|)u*X0Pzvw^Wo=sn| zw<#3FoRXk5nPrm#&XG?$rqk?kR}9%+fL;}ybp1+QNa7pf-DM3R)t-aflACB`st*6W zs}hW5&4r5!r6a$An`;O)PL$xnX6%r7PMKe4;0_TVFwJ^Bwvz2{?3=@Qb$&1Q`Sh9P#J0x$ZP zKQ@@A(1oqXP(xpo|4Ad1{nIi5o-E~D1~y5wKc|d}SzRIL-9zb|5F?aT-2*xG^7M9( zHs|qLg9E1yQ){EnPX!u>EE_tUSL~KRb}_-jj+M0TGPVB^Ri^+>ZK7WcW@?R>P9(3NRL- z1)nD<@i=LI>_m@8I_7rg(N^JCVHh zn?BLDp!$}szzCd!YkGFrHFJ#G+|GpD2^%ml{XNQeUWRKDA5iGE4q2D?2+p09WpkcZ zK#t)T5IJ!YJ_IW>-tmFhw?Kq{YUwU8TX_Tj+ocDJ@0X!nX%GzD`;Ypx-6Km&Bx$^J z256-=;p(0{ge>;OEZt@J^!_q5k2^-%_VCQL?>7^J?UNxs*%B`HhY{LUOPWWcsA|#- zI%BywDtYzNZHj5ooAZ&z=mx-7ABJ{iYzO21D=1ZDiLdud!K~4pq{qe&YUYVC5ntwE z{j^=UNazstR4JiaBFIXxX|TUBmY6J@MDm$r47(eN65k$S<&h$Gzs-JntAVA%o$EN>E9yo<8A^~6N~3URay1-|1v`0%$3LPrD9*~J*_Rl->ZBX?$? zy^ijEl?}r-awPk96y0I?o!)m_2g2UfV56T)PjGpf$StqQ+O|_L9J~ZgS#Fnl;U{@H zg!Ihc&9tEG7a_{0xa|B&{H9gNG5f9nwLDE-ngUV0M+`oXoQ1z9g(*9XKr!J1=_!qdlx`E^^1GAfduKqy z%x0#QOhWtNBrwcQfJ7N9P?+|SwZ=yCIe#C}wq2Lub#MsBr3!>*FGu)XwiLD~bjki86n^!19hSy)E#OV@9W->+xD<{6Z*?-o z?XSsl;k7s^D4%n8bP&tGm*_lMhKwEafnAOQpm{t5*Lh`Qm+D@av8I?DXcdEw_{&7^ z$r>=J41@aS%haZL4hT91F@J+|K{{kPZk(_f{~c(cxz+i7J4H-X(yL^{H>YfsklgTmtS_!G1YlUiMbFq;YV&!pRxGPdf?p_&U zO*oe9&sF*6qX&+_x;YDBJk|^@O9g{bUnuy*q{G-k4ca!#oCYNZt>pL%6=v>qE?;`^Fx<6D#g46lSUB*5c1Y!* z`(rCmPPT*ArQ>AUcR%{}uQxMF?L^V!SZ>Ey(C05&Bi;sVD)7%Jg% z!kdGzOs-QLy`T3QSjU{nfwAvDQlho{bzLigBD%Q7r{Mw&~H-(p)f{ z?0|8O3HZ`o6s9~@X5Ee4VQWG*rsw~mP0tJPw22Vi)%t<9^@~GlZyxHb>Lix+8_@%G z(OY9br2L5C97ISx-$zn?^90%=!?KsT9LwG}V&)FvnY3R&6BU(Ph-W*cOMXyR%(ad^ zD%V4eXdIbjn*%f6%Y&kvD{;AHhNB-gVO6;$J-+lPl`yu0)hf|=OI8TSI**{!D^L7- zAp_^W+`$YrZD-nK)8H5PbN4w#DD8B@0WSC7Aes#!+vU+Ch0EQpk0wpa&B+apA#1W~ zHx5Lt8+2rlu zR`T_#31LEov8y#4$KyP4N8bi~6_H5;?fr;k^+ZhG@YG!1w1z17lo3m1W4vK(0_@}+ zuw4BYwYq(sC=VZ?0#)2B>S-P-BzwRt>2_)~pW|I$$ph)Px!gUHg^4<$P}Vk)#2t5o zBhM9pH8cftkU$>?9OL@o%Ud|dAJ;orUA_|{QdZ*FOh3};HVZfBgtET= z%hBoeB2ch8#hq&tiF>gEFN}ey(kHC?|Z0X;su-%q)kRgqHyH} zRbnGO6TZ<9Q2w?ORs2+mWX&whoR~&jW^-qU!%Ohh;f<_ww$@<0L$SkilYt6vhf(0?Y~yA(tYaGw1erz`L^<;QlTKC-HW}^I`!IXxIz; zpXFkT@IU$@;}v^&E063S>LdYmPMEan0IW?Zr4A{(@$mOF^Ckgb@;Pi79!a=Gy*wgu z_Ha7MIxT{Kw?*Pg_Zqs4Cj#|5oMHPFaUg?w@bkn~wyAh8jxF7cInQiCr>C9td9SCc z^$DoLTLo?B;$bbZhrlXQgq?S~2x|1azkH}*t zm&S>GqET5#(Z72&wypcau9Jv_tpl@RPE;#VaZSMmCyHv_mixiX>TvM!k47IngwMPh ziDrT;ObmEOEaVQM!@oi*cJ`W?{=X%-OWK&0B%0v9@4LXHJQCF(X0UzTY3w%H1>kO+ zLN>ZggS1c$RGcr2`(8xi@8kP`ih7ftusD2n-4Uf0T_k2-OYu(s5qS9_1%D(O!^_|q z@E~X%E%$0Co#}ocpq_`jv5?u&9YJF(i&5lyH~FTuh0$%%hx2dFquTwmwCT7B4D>b7 z>KIpSP}i0m7uyQ-x&6G6Ho! zQ!;5Vku9+gMl;|2NOktWt*6ll&QVN^2@lIemSOotuG15ik4?3KaPUA4>gzYs#K=gZ z^z5ej4F4V6;3y2Wt-^7{GZ)ueK8! z#gcHvj$BxzFqi7bpTgvY9&wdP{;r*(K1~?~C$B-*9uNS7hqzJ!tXv z16=y50sMsX+F_ojlPl>^p%-c7da^stxCjnTX~b!&2n_aVBFh>o`glWnuZA7i3(m2p?+Az!V~kMk~_E9pyV@6<-#M zZ{8qU+v9Q0)nFk_4I z7ly>=wRF=iH8^!D6z}P4;k2S?l!@ls~7fnL1Cxgg=Tu4{?L*6fm0sABKm{qY)$m-RlU>;kG z@BJR)+Od3cX7yxT){_B=AAYijd>?_@*Di+eH-hr|^{}A$A)PDXgqj0^WNYka)UG*3 z57c_0#$N*R=mFUKl{ESR)R1)>x(s8(?_={Ji7V{VRK z#^vgMzSo4Q_bS2Q9e1DG$YHUA8L>ZqChuK&n%7$d_jdJ=kd6iL>!BQs8$HMK zIk_NqO`GVD34}Gc0~VD^=$FfR;&SUU<{Z)*N*n~Sv0fkjNX}5JC+cH-P$MWR) z>rVM%^V=GB;*6)XLf|fmb40j_uZZ`bBcS_bKGd!#0cD#OHY#!x*qKMd4V^#G?I=Zj zUw(jlGwzZ^z6c)PxezzaX=5jszr@Pr!q9HiMc@C`CQTZvvFXnMq za1g;wYI`4%PLoXi_|f>E9j;du2b?tXSzlQtO2= zev>55(;8sIraRy%$8okeNdeQMV)3NPB=*;{X7qnJm$`O49X*7XLj8y5>=%wZpMEPE z77Dn)!FNG$@!SI7D|X>*EQaT{M&x8y6#L_%Bb1gnKn7R3ooW4?)gu;M*QS%EMgD=` zN>VuUb~dru^^%oZnnicDr{P%C8r*ek5P!XVPag*5)3@5{M9)r>hFOX7HfVcs=iZHY zLB5h+>NjBdiwdao*;vS({1Y{Ir!Y^wt02+-0A{?=p*>Fh%&9hx?K$xDUlfM5iaZ?{6p*<@gOkqCPcYcftavbw-sRhR06yV+RbfD&AA^2Lg2tNpPv9UVG zaF)X+91TNU))IxwOi$AlkFH_gXf=$^Qm3y4w~&q}zVJx26y7L*#FKYbVeN^b+Kp5Ez+M1rtjRVIAbc?=IEQ!r)ZHwOZbz|~Lx(Jckbfwd1qk14V+`)x0@uZdxn zB~AtJK6^G!^H0s;luUATS_&u$_F(e)GenJZgDYyr%OaejdW%Z+X;oO)!K?wwc+8rGmja10wOM78Ztm#CsK9==bC% zMo#zzp3XBcB+?#QatJFGsfUEo+n0Kw5uICbRBVpn**(nLpwS^1phpWiB79 znk$K2UMkkt8i2ip6z}8LjhIi?Kww21-u(BA&I(jQ?VC?Yq3UOr{c^-N<+*q) zLKU4FUy=Kr@li$fUu0 z`PE|kHZx8utLUaXpK9N_B;yYHikUgLjJe9>l8+7-(RIsu*gCHsLu@nP=P@7DFivGA zzszK{LgaXifCo%56UHC&li^7~Cf)f?j6a14;Lvw%@*$GrfN(Bswer_+++``wU3&p) zQ`F%}rU5l6H>cIX8|Y7^F_L7z21128K|5&zUpPw-bxi`uN`pE4lpX4Db)i1;9p95| z!x?OmfdCU`o=$&+y&)6i%1PdiMPS#tmKNM^26tUm{JWzO$G)UfYlmc5_fnL1+rMwk8(Lu3iVv#hi<2Vsp(Qsmpk`<}O_LZ<9CU+qn$iCzOo5hsRuE zNpV>OBz7fZYR6N$@n4KWZn}HDQgQ8GKpMk3tbC zaC@+Vw3VF4fLGJtzvnl|gEi8yqBs`aX1Tyn9SeoR`ut15+>H0_67jkFz?1^cuP8aAO2I&R#@11i2~Qey)(R2lDA zaGoHO5++{hIrW|&TytS{1k`!`!&-S^vPr&^F08pv=G^6B-|dC4V}~KGX&yoMptFps z-4^(mBf&ra(+{i*L%_b}C4IBNhs1qdi}!nSvFHz>z9!j_*cl1ZpD(ctz{6FQw~SN0>D>R*rryMHo5W9gI|9iUG0=oy;kDoPpC(Y~d(X394Q%xa)l_iYs+LaLTuZaHV!_71z4??(b z2VKCi`RW?Qpy6;BtoU9*%MO<@_vcqp6}dCeZR$wG^#K+^jqIp)hoD83X5dMfhI36m9jRsY{>? z|7Q0cdU^kQu$7F(wQCB=gNXt#-jGXOZO+25s~INrU%j9nm331 z;rsg_%-MN~`o*?`+Y>^bp4^Mh+eKisC>Vw!yuo3vInMrM$o_U8#+drISo3ik29!)? z(%=7s7Y4%oqa9gv<$v$-r=AmBKFPTODlfKd>)afd`H!&`BtiTdiN^GECgD1hYhc&RqGMySa9mH^pW%SbB6x{0*&dz`C zfo+>YNq^RL=x@`e-CbE^e3}|hbnZBf?tg^L0u5Mr)1S>M4us)YIo_~8w?jYl4C6zC zNhWbYFZmL@6H|;<^^&}u&!SPtHJ%=Pm<<{UwN%SO7B|OqlXXiZ`K^twpsTK!y{MN6 zeODh-B@DutfC*fuaU<3nM3TkxCh{G2iDGS-J?X5-heMYfq4viC)H(5zrsYkhRd%xc zPVol3WEn~WEv4XbR5=Fb_`@7UZ=AYQo;Ri731nqkLb(Ok{d^pS>%K|iEx%d3!2X?> z|M3qU4KH90YOJKe`pW$MYW6&@=43cCVopqj z$emu~UwZ^gmTU6#A6nx*T?3xW=33mjq70J#J;=!_QQiTryV@Hr&C4hf;9t33OI()> zP{-SHTAy2R;7A(`Ib=iR@=z#{x}N9!s%GkzUvhs1fMEobp_ z@J+nK%}ft?iSVCueV*9h&1gEK3ASxoi7vaUAWx}xjHh5-kTGEnlXa> zC}$_|uvOq|@wC~BfU{)!`|mK6UXJ>WnIw4A2z&6p8t>}73hn|=!)4|SpAsawogcom+JdyX3~+3;3|J_BEq5NK)}qWi}DK;PgxZqtdzh5D~J zhtpD$y*GxLB!36fJ!I$!=LQmJo`SvsYoU&NLp9k->4L*iFmJmqyySf7a}ou}$%$Lh zP}>gS?k$Mjt_QA3vV3<{eWq%sFP$u`LrS0iAbTxl<9m$?l$vM{X98Qvv-ggmY8pc) zt;!~Q(r?nxKL_EnQ5v%(I+T{g`O#KyS>%m!-m*LLJbFZqd#355xSt-j3e2MQj;>@w zV;!{%ldJWpOF`q!wkRW3i8a-;`6k8@R4ZGE1m8|VGlkXY^>{i|dQ0QO2iH(juz{R) z<+#7xE`;$!*6{CSCTy2r?b~Z%)bPO|`JPt6*6m#ei~e(@LR=5)nByodKDZi&-b6zA zj-U8temh?8wF6b|*%maZh&prv?vnc_Q$Mnh(LH?rgRbZy}j=G+- z0sf(du;sTCv#%$bebF^c+Vqy9MEzW99wQ1354B*ARsh)ltbnoM`FuBFW&U6?GRDu# zVc!N#&~K|JbvgQYuIV4$HF+sGDcnVeL#t`S^*;KmxQsrPe~u^S?1cW;7vamoOc3#` zp;tB-VJee|qL+5VL%U}3T0xfQvuq0QW}PmGkRy=4NtSLK_J*>B=fE$s9DSt)U{QZK zT~YRkh^bPyz6qyTK4dSt~G6Cz=Ie&pRx8q*T?TbIgz}uQq z;>3Rg@N@^p^bfP%-aJT^a={aYDsa~NEEKua17k0NqIlu_5jz^2|WK>8JH7}Zf29*bwk^&_7=WcY>^g8ano zE6Fswbs*@Y2j{klqQSG>RJijBO7G``tVlVlbWDeznmz-ixDH|Paee;jKZhYkdJn{a z6i>UZmrW;S_~M*BQ&D#Znb20gkT{f_vxMaI5xtczJpz zyWiyp?OLJ(Q=WXJ;2>hfmt)$Kk$<5yEPPXm}U#SX>0uh3teOHgHX8-Cweh@k;W zP(V)Nax5brZ_DvskvAO4522^qpJ0>EL>!AWLj84098>o-729%~3qh5E?;>vII^2l+ zRn=kMf)ca~Y(Xlz7>2zjfX8Ca1GHBhdOjb4`G1~Ma}8S<|J_V(^}E1^seZU^@-MV- zUXQ~~2RPT!M>>B(23)_afy4dhklB(;-w0L1MU4PlZu=ffbS7ZlkRMueyIli80k&;@ z276-TUzi)S9L{W-gEQNO_;EA;qiy#$QRz*BykAlmq3=c<5&63eLdKJ*?%q2jY2jK} zR2GggIzhO3p&km1sDogbyxHOfF?dtymHBJYPs}>zBPg{xGU;b@am~Y5*f8XaDOOMD z8iy;O)@A_%(iSLH;6$hDT%yxIKEWb|2DsC1kGn-A>G6_asL=mLNYQRko+SfG*1aTY z8RrkFJOrwz;;7iO1<)CziNk(B-~ba#mfex0>p2J5lA{|SeOCzP6zdb25PN3+_F5*< zAdDPav7NT{WScLM+6a2@BFUYYAFNu)8vM~dg>LDUL;L;KkaWY2ihkj`%!~=+(YGCA z%q}ub2de1SXg?z3&M`ORYq{T>1MONP?5~geL7F>5%xriJ)jLDri?s-R@RugmMYeF) zF%^?v%;dMth%k5bB*{BbY036aOV0|YiBM)zIqXkByfE) zy^r)8q(F=RGJNAY4F4Tzp-=B>;1aPG47&FU-}=k*hW@PvrtKo*s6LS|W)TJFGE!OK zeAfZZJmAgvL`^3+!LV2ZT25b&MN90kapqZixaR~}CwK$b6-~#5Mz`_Qu5Xz5Dho%4 zDzJMRL3-K_o9`R~QTYMtKUz!vIlE$;QyP(VNM-)09fLQne`!s_d3f7*7)@r+!(`VO zXnDE~_dP8FUsYM$XkiO~9+t!LcSmW(=X@e+ycm4~Yq0xBIJ@y;3;m!efsu1HXzK2( zq(%7#wLBhxpOs&L@@qh2)5A3V?Hw-jCQMJC|3{kAeKE~05}%AegX4UE9R2SbN%=AY zwHc?d`q&Qm{ptpZ6LBI!-?Xui|Fp)SM2Kg&{yS}D#6i%lgczRQ3SU%)@SMpeGTOU^ z$OQ}X%+gX!h+x=7!*o}dB$(hx3&*YeDx)d%WgpT>+RrC$mN<`8tH)x zoNDrdHR&;*1SgU{(_z;|^rUAaBfRZxKsxF5GH5C+rfr`i7uV`}52OmJ&j z5WT;Z<6`N=k&S+Lu`}NZlkE)P`A$jpJ#jB%`FFAxT9@^FG(N5+zAS zX{bar&=4Y`J+=4VL$pv*_qi&Ok)4%@@-s5a42kD{{sO(c>OSXO*XQ$on*iJrUX4FD z$Ij4E*gpScAu9Vmm-A{p@duq%1u$~m!H zyokB*3&!+gGR8hVLmkY&!(7V-%rtsUoBv%T@p_ZmtCDuMNj*T2%#|bh?oD*!vM{d$ z?4c;8jLte4g}aYL;WER=t<&{9Sy{dvY|7pzu!R($(2{n{vz~&Y+ME-Nf)6 z?Xc>XH_Tml4%>VN$#6jm2#v*(Wgaw1{_r z-rKYoRJ$87TVokyoJdBCx&l}noW(wSr-TB@33MVX3H(p@gR-?e8B)~YJi8ajnZGkI z-@6G@>*pFNzx~0+j5L!>C-HWba2Gll$bBP>W;4YWf)L@foaTg_fkKl>P)IF^p8ijI z!DI)=vhBk=nT6PRkmGjeh|OmlxrraEzri8+u4BO)d3RbRF0twr@?GXG2S)(_fT;< z5*${3gVY1J!Ol_*UoNdA?{&N&{QOdSKVTKO1ZklZ|9`0TNS5jJ-vHAWYzJnA7})lX z!uoM#RN=Y}L5uyE;BVtt`Q!!-KlhM{FIEH1iDYIW)vpR zxtx|ihth-)+*qbclILFpsUt&B5#5Jzjd$RkVHEzlBaOiaUNg73yQbgGJ6Lo)2vakE z(5=Q>$UU`2>ZNsr^9t++|A2BF<$l(^bTfW!d588tOd&m127TA8hc`({D8F6=D)R#1 z&dWf0#E0V$b}7M(Ya#I7nmdD@mEegz??bv48#xJ#);HF_ONO1pnU4?J;MA=?Ea5jqOZN}R%oCvFS58sUha(Un zM8MVKK8Ph(gKUr7Jtr zdJfH$_;cOSi5`0Rej(2CRs+?Ek7Tud3$9pR%D86zp!Zzrn9GG7%r)%*Fetf7oo^l^ zEzy%;U70)$tGoh_9%M5WAJpiFEv@)x&lwUqdjT}Xox@+aJ;VzlZ*ARe%2n0`8vq? zGzN)S|7JK&Hqa^CZxK0vf{j;0LB-4pJj__)_lJc`IvMOs;VNqWzKBd6*+xd<<>(ZX zji54H8{)#wf&0>M=q;^gotDXxx&2S@fwmT28N5XVIQCd|{utOClrb==ibi4WPi?=n zW`XGTD0r1Aj*GpyZms@WEGX5*_PEpdG1nMo|62^sIzIS!K@og=I~!N*VTseysW6e; zhF1M=n0cmK@%f{1LxZWZn7z>&rcU95>na8yv~v^OpK6S=ZTo0d;Y_q|h@tiRA-K|N z8-}bm1kqX%_K(ARVl~?cQe-ml;J+5OZtgRV#n=nyW3FL6$2UYdT@d`9M(f86AV~2H zK3IJmgN?e$@a-@R&HhaK1-KpAh8Q$9>tt`IZ-CFv->9}*2Wt_iimH}5pmx<09(o-o z4R;?f;p^%#BsL6>ncqU0xUDd9=rReLIz~4>pwwyM8TkLy@5bv<+0ZXO1H%7aCO7RrQIF)?u-t71+55tgJku72za3S$Gw&O#Q#wJb@HCVEHXI}# z&%noaf7w9)+vI@w2l7l(fjm;&3fE0iu{-2A?S8zMj!Tb|!|x;MspL~IeEl7Hd-D*= z4Q>SI)`!$;gEE%qR8!~i5XR4Y3XM5w1%gfM@a@)kT>Pnz-uNc~njCXw+4X#MKFV=r zzxiNo)fsx?f*Tw2w4tg zZ!R)I8+>2^e+*V{Z6lou>Cj*riDg$x=tTH=%2Y8(JYG^mFVkH-W$=TM=C8kqFa@QsIwxGUy&PrDo(L3h!@Zr0FhJ+_MDj z%jK|DLkEV0lDT-WC8YPn(FiBb!R%H8giM8N##to$5oH6Nmyt0eA5yz;3Jz6j-S#;7jpNk4f9*+D^o>0w6+++{dDnDfjgW#9!hG|cayDLpRxbB zDhTbjfCN7`7#;7U>oitFn5s1W9%v`O+f3oB(m8cf~00{r~Es=vZIguX@TKku(1dtgM-LkmDmC= z5**<5gSRwoY7-fh6o8JOkvJr|6c>fwWlVnOL2GvcM1uiw8oWcVK3M>6jp?{>We0KQ z*jUQLom8hz6jEOvhMD6k)Ho&p!YVng;v!XKL=5SjJa5$RO~khE2QX)HDkI>S1^+!@ zY3P3@MEmR)_BgGDL#`{y&plOCZ8(X1Qaa796feT&3MIJpdoPrmSS`Ypw{2|B_IpYcYA=UPzrY zSHLmjizMZkE`0a%e{lhe|-HqnltU?)n zQFIp2HU_%^=RE6Gc#T>SLkMcOh@&hcOT&`7roZpDN_TTv1*iiw~V;n^6F zwwe%bUKVd34wb?8NrCA*dZtZTw6V?Dz&`H!LBCmt{lKJUh-s%e{ZC zUz5#&w)jempDt&%u)B=|IBuLLw*0jP!x$yle`5tkZ7+d#K4Y$r6bEZv;=$*SJ*{`t z#%m3?xO<)`>Nf<>s?&k7RY5#91?^{~;2z@`+`eZEoYA;R z4eZU7Zu}sOB?4dqzzit)|>-ngk zbS<4k{^Mqw10)#^RppUoQIuXkEQO8bK6t`A3+4X`Qt8eD@KNt(yJH;)5401 zR&xF<$A30Gf%m>~Oye~P5U}Jp$apy7%RW+NY%;6v#j!-J4}iZ{ z34Bl}fr^vqoa=K3Tw2S`4c`1BGdZ`jf4ds+om^++R&tT?cTuK_zt*4>2Z_A%x`ZkC z6@aQN=bVF3bjfpi(x3`uvt~lUgJd}WX9+HMFvL3#%<=rbUV7pxH{Y;WjM59^ z@v0u@g8y`ms*j`+KKCS6)MGbn-kk-5|EgJ@u_)fTrO9!8CE(0Pao9Sv2%Whd^dXZt zG+FFRbI#;ZB9cL~Bvd)aWisAZ41|f1#ke_sGI)hY(>9$a)a&3cLX#Im`ekc0@wWn{ zlt3<%8VgOPRdiRG5V(apgX`EAlD9IPy#28Qq+c!to;mjoOo)bZ)&bSu2ct`k1sRPj zq@It3;m6i*L?kr;BJz-0N*p8cn2+LT*28?~N93Z>GVD{I52qHNWu{gwgR{4DK{f3V zc1t_sotRwO>B9)leZV=-9i49UAc3yOZlf&P45`1P@eKGV~~vf@;D zl_Nqs-MuiNdpeW4`)k`asm(<1OCk~aqeVM8hO)PeIOZ#|^o08bGQ#aZ${&=$jmqiR z`|>YaXR#GeoJheG=g%~9UoqUAmit#XAN$0NE2~qE2I0x-BdS~8hm@s%tC30?4Blj(I?l)IN zPZ8WQwSeTpQMWSqJGeKZmy89*9>*q2T8!k4w6C4alecseEt=O z9u4~Rzi)f-gQ6oYpPde>kCGtdVlcj&x{f#nC1UxD&t!MP94zuHffdq5WQEEm5St)4 zHiKg)rw&pBr3je!dV-zbmj`E-_K`k=B^Wq|-~zv7NVq3OHRR`^`1fOAv-hgen??&7 zaajwypPJBH&pgR}NP$$R15_``4GZ2*g5^Ss!1C=@>03KLdPtOX?pyz*Bu?-XH_>f3K=A0aGtMw;0jlv+c;0p1R zTh4tej-bSgAhv^hw=A1=g_`_IVar_m=w|;y@K~{#-1?aSmRl>Z?2`~^O%-9c+YB<% z7)Jl4)wemVtATGZ%_PIb6m$1aV{P}DaV!oM-1snxW;a>V&iYJJam@;j+|ox!u{(qhStzA$UE@BL~Kg(^WRv+@2^4?^cL_*ZC6ic8?VJ@GZhEJGis9|2q-d*w-S$O<^O=6~gE7G>$Uc}(bGOfFa}t<~=a05C zch>C38={G5Y;cRcmb)E#-Mxqmm#r=du7WuQ6Z9XKUFF+<7(OIBrWxZ%@M?r9AK|wkCJ7qUnbXy9_S{%7wNAn*dry-v?)T!O zVkIWj?S#Oa!K&9(mIDH0#J{&8;hW`ec{>&C6q>^BYy9`7Rl#x}{Tj5mG z1m5^2g^yH@k$%RUoIM*uzII9B2KSY4JffM_{ZofTgG7j1xdN5K?oivO`{0G}JreI) zjs|`W&||evpPGcj^np@L{=Jd56dk82cM{?4nQZF(y%aebFpe~?BgZahVW9OcOd2=_ zr<9z)W=#j}J5&u{?*+ro7$;`mt3K*zt%sFnm!QSy0+qGMAhFsEkr}mwxOdGk5}(BF zPu4@m(p$JOZ!x`Kyp0TP7~uM4Yst@5RdmhO8r)P;MuT=qz(I3y-fuU9HebDXT(x!| z4XP1=fy54cM#8A)t~wI31n{S`F*F@K1l1lT)F&*8%cwoaPv7{^+v6Ap=g7jyb3NF` z`^ho!#9Hkl*Ff%vm9VEt2a+3Bu$B3m5MK z$uTIr--9U^f}q&rFur_Viie%Dh^mJIV>=}ehIaf%l)fH-LBS_&t97m!optcXS;e++ zU*QMg_ew);bAVXY03h>zvLU}@V0?W9G%a~fmO974hqw*IjLRPy@P%Vm|4O{^R|2A3 z3J8Aj#|4ZjIL>xw?47%?JfRSGzBeFpAOGMM7dhO|d9zeqBboI&R`~hqb_g6UCaPh* z*ncS&GCz6Y%KP=WSVxW5vNI4?&W?dvRq^)4H(!Fmkr=2NETHpDE$D4-c7Nwc1?S|l z!g&c_&`)L?lX$68{F;E(JlH>Q>lyMw?x9WxYe~nHzfgHN18hc8 zpoa6JlqYn7-`?XmC$o%pgcpHJxEfnvSWf@YO!)Dmi6nkegxS}2qeAp8I4PnA1szvW z)4{auw=&#f@bY61_ z%)3|vUteg!U+qO;bRZp;9@>aa0xz-eYca}gd`}zPl)z$~wQcR*$5pYIZW8_-1Z5k3{v#7;k4jIEL`P?9kzM|47mBDRud-qUMIG8 z%gBk}pW#h|Av#Ye;v8|VyC0l|8!mJI&nLo3Np>c>tPq9UrY^Xz`yspgc_QYV6$P7z zW}vAhOI|O$OpDmXM!lNB7~j(gGLlPSrDO>zY<`GMB`q+Lf$ z?4CnDJ$lX2^G9peEj4Srpc(mj*ri1$9i3O@R!@)PGVsE zL?Fyt5ITyV#OCo#|me)7qI?#H1Z*i)F#kPO{44w{&P_B z?zYj!1B0+cz#LQWv$!&u#a&O!+41Dx*p;w@y&ocu-Ws>`-`+ceIkYm zk9={K&~i93(t-hcFUjmz`5?sSKy!kuA@AF1?maULhCc?vv2a;<^?M`erzNxQ;@`+Y zauip+en&cV<^#3QAX*NWsE%CvK@2W2P+O;sNtjw8~HF{)n;Sd?9 zI!xU59K#&$4O97b7G6EShrIArgD;(@=$Y{&$m_2`jY1FRzkEsFwd4|?K6kDc|dg}%}gC58x7>S zUdk_USda?ZD%lwEi;s6EydH~h+mnIJQ{euI+u7W#1>wsbu&eqV=9%hYK}Qzrl|>*| zVly7QH;I?IQ3V^O5xA`CPSS$qnWaO|v4W>VRtp`%#UWdvatT9(OCE4tnJK9HCYm}` z#zEc!HJtQ*I}C=n<5vk`-svBqFfXNEb7hgR&j zBDkW4TBtgK(85Nr7Q2f7-bq&Dtjzi5B_4dTh z^=PZsWpup1hs-qi4eK?Zz@t&Xqko<;-fb3C@k|s%HRh6|a_zXsyB3BGFSPEr`A7_f zgkZWy3Nb3o0@?5u{O%D;Jr5+%3?BvJ(XUAAoHW_f#m3OmEP(^^bMR*a$Ebd5jQ5Xe zV{~x>nFtNwe5EneanUT!AH0$Z9`d82;hEHJS1p#*YrtExY7!>(kv9C}0-xqAHtpPp zJwBB6QL~3~+fC3iaDrG!M4%_-{ho8$AuXPA+acaBnAGcU9mCmZX4EZ4a2v_{G$kTEOwkZusKpIMeg*NgKPe?AQzl0bWx`(&Tv77{7> zmijuX!;ueM4lZ;Vb~bM%4-Lg(b6PlDdD}vLyT{2u%OlLIeaKoZYG$VFiy}I9rBwdE zMd&Z3iZ$o^(C$MHY=5kdZO6?aoMVADEZ+{!BWh@{&z=+K?gjB@Zo0K&*l8*J<4z9!owT-`!e|K#ea^khn#_>RROB|PuE!?!`Q+fEpLT{|%?G6!;Y`QrtZpUjz(@ATK-ax_%COdI#N zz{7jrA$Hb6da_;#{ag+c3E3bTd%7NXzFp3HQgICeyLQ5~`{meu;{+^pjUgcwjU4N- zmWrILB|E1p!t-ec@F|av=dSdPDa*JHU#~0T(D)WGPnHE)r8Xk8Tm}1D22kO*4n3DV z1d-n^!LJW{akZZu4u`m)+@VldAnFbAr=@ZG>6P@phH`uI;V!6Jdm1gbpF-(jt{)K` z%^F6hg6_6C@TEw({jER>YM-77|826wVU>qqKf3~&pB!Tv_a~s10gKJU0`TJT?Dnp} zU|PxTnfoS|!y~Qs2oeL44(}lBWGq2NmG(0ZV!Z3o zZ)kPkHFSJ&6^gS2(Q!@$vDcdfr-W~UtB_E;qlPURXqCingE~62fS;H7et>f?)#17v z8N8LTmWup$hwxYQ!vghGRFghK90Wd~)c!DbB{z4|lehqz%Cb>z@@+J1o`6~2O|<83 z0a4t!2~WR0kC2RHIpG|D3&h&_jTbY##vEgPxaJ&N$sZ zi$~W;VNd2CLMGngx|`8xd0e@DZA8FV51|fdLIV)6$>z@;~dl}MnXnkFFts& z0TzF~Nj4sQhwDPQyWH$>;LDby!u&$*r-jPfnwp+c?>aSPYw|G0;39swH4RT+I}c5# zKVyT{7^IgK!WU*Ub9gI1ew!qZanl4y;vxnQjfmrCGg};P2nR>*d=R-hLb_e_@KQ+& zzFo!OX|4w?@pumvKBd6>bWyEcvA=<|7>TxPbKM@3w=MWBX9`S?x=#8ga&dHAzFi@7 zBg7QTpnYmJSuUE5JHq+kva$zT9~Z47UQe{1dN(xoehk`xC$eAVYRp-FNenHo{mGp7{H?}`z4K^JW z$7kH%*)xq2rYJ_2Ik$NZkyacdd-qJBO5!mbu;&NMJZQfZrB4kDcYsXAA;=Hr=3r^D zU}>0!eQTl+$Kp_W#TQ&EvJKmARDst8Q#3%zdi}hgCjuad|{lvT*X8B z4)Ccg6J)f%W5%)Bv`uLtPwwFzx@kcIy)OM0rbSA@qf7lY5zi4o^uT@ zzsiHZH>H6-v}*NVTZ=n+BSe4w3p|yXgs)%g8C_k+Ijv@^w{MW&3nD-3VC=a9+Kk^J zA<-Pe$}k39R+*qm<4ruYdL>A=A^UvEFp>Na4O+pius&o1T4zV&uHMNI5={XV3VOkj$JGxU3=khvo( z+JoQ8K!)NW7}hRfu3N{!8R1OSwDZArE?PKP;{}r48F2XI1NyZ$AM>}0fjPGy+#+=i zO{YDh{N^iQ#or+kd|#xUc_RRXd(RGCn~8%@!ttSa1P%*H86BIk24)Bca;}AL{F7(J z7K_{f&461_b}Nc$=+DAwYa&1;_$1x6^90saPM}5KGI+L!2aCuRhM#W|dEnVeX5Bo) z?f$mlL|-aX?B0ykfiI1O4_3pSynFDcd?t!?nBX7Tx#ZQ*O&U}m1spVn8b4}mlTnWV zMlT9K_A6tG^iF--J;)TfDGM0hI55rYEi`^0FVQw=X+?2-Rh)FeS38RkQvI ztvWItR&>U)FVE!R+=B_&`tCDae5OpJulnG1ClOwHbqY8KH;|NV;ym$UE1Z5V4Mx`k zOi$K^D@7?B|M3IaX1NPWOt`!npW6*F zM-O@;f14VHlo{i`%5=7cM;PW<0*}v5L3O<*tg3OOiToK<-F`Oty6`(z34MmC zyE%r=S6yry`p()v?b@<4dePzcUGhXV6FQ8%@TYP%4!z7Fiw6&pe!30JrMzI) zqz0VZ9na_=euwUEQ>o)rN$Psr2Kz52!i}nOba?p&ZvVXmC7XJ|bkA$l*`JPaoR8vm zcNe{KV>w(35yGdrxy0&LCabryh4U9gF(Su`n39j*Xu4YgNLZ8+nU720hrka2g~Q+% z9RqsZ{{j286uLi`!^p%Ye6x^qbGlrFvpW0`KB@vUt!tQrI={*8iEs4aE(4G|7mi1M zJSSU{6!5ah1{fX42W6`^qW?$+^czm$+N1Z-AZ{J*(eOYo&NGv=lk;-RMZ)qhhRcjb zGomXr$lr(OVc%9&+VJ8RE{)j<^-L7(s~3mK`>M#dotV+UE9XVs&<$ZfUQva2*^rwx9S-kZij|8qVb+$l;4Hh2 zBtFZ;pHR%@H~E17ei-V+WZ+U^No@b}h(_q{1#K=j*y#S2JZq@LpwJO+2GxL_!pEpw z%R#Q^8VPp$-f&E+N7VC6KFOI95$JmU8?6k|f0$u`I5>odiZ9A{x(eZb|hO&2)CnSLi9|09(#~1=`ho zhpCNe5Nzd1qVJ4DnEx}Db756M_2&^>)wz{S*SpAG>AOH`2G+stb7h$3pF+c&y!v0;AnEv)M?rc5CdU|s?#Oy2N#|=GZTlY%5t)&I4Q|7>c-6B@!pA4gVnh(FM zd<~(gwe;V5MHrp;mX=P^hj7~)a6#e`Bf4%X7-rss`PVph&e90HnyF7re9l05u?GA- z`w%^6u0z2wXPA%mc&V`mk6*6@xo&T864Zp7R2UT&%m6`oM5$E?xW{W9dbZwRyT4CI z`)AidHd~E^TnxjjQ~ap8&}kUD(L@ZMtia2mx6o5+9gVOsgRYIW=pEBapVu3}Da#4$ zotEB~Q}>U4eOF8ckGjD<>qDSfeLW~V6$;4-Tzz` zEMqRAN`gF2iSh$4l?$97Dh|WiR?)GX7!rMA2e3aa&`wen_p6f$m3P@<{5-h-G z19vc;AowtD0q1^l;ob)yN#o)w?3K7i4CIpO)*Wlf$&zXkSM38;R)z53QYxf3Y@#Ja ziB!Tm4`zv+!gHoI%!9BU?4`s8x@!ArSa+`<=-J;yDM1ULiW7 zoto*rLXQ$|HkOf0ro9Zrb@BP^ob2mx@OU?Qwo3|!=62B)NAfZG(F$xev&8;s96MP# zn3M~NqtSOO%;5H|;-4i+uCx*cIJl7|>*MhF*)>pfhYvm0Wx-|#Jq+>G!Z{^x$z7Lf z*x7fT7(YJ%60_COL_(J?)8;X~*G*CBL=pOHbfUdT2Nm^BfpD*N@GEvV2z@Oi0iTyM zueki*vV4A+w1W@#Z5ZdcWIOSh#Q?RBuV_28(g0p;i$sNhwN%h$Dyr*ufk{p$z7|y@ zuL577%9i=S%sN0i9R89N4P8*1a70IoHuzGu4yGTCLIdAG@X)tGE%(**ct6)=>~EkS z(z9_l^M!uAPN}c;P14&jiztsjWZtzEKr3lsJYXsSzZd$$^+ok`odUu!Nxi6^iJB%Zy zdE9P84t2~{!uGW9Bu+FPEVm8f)uBebH5LPzt4@Mer8{}Cq@Hd4nTokelc?do3uM|c zj(2%ahk28HhvXfQYz#uO(EU#M+zZ*5d)vbrfmj%JuXOg&$-wpy}!@%725WW&6G;OXAOxRu^v$@W> zcnd$;L<|rkx(6(U;t5_=1FP6==zG}+y|26A)D(+@tmI~ z7@}h4freWV#O!S0*hC-cwWCSE=Ny8}_ z{9W*a#3-zV6m-qNM^d$9b(BR2=aC3=($II>?`Ly zICs5~QH_?s)|acuf>)XJQYV3Ru`h|O=NL8oAPuG^7fJr@N=9hcUi96RgQ`c@;1{{C zZ0FP)M0wO5J13c8w{&|iP-k40ZOKWGgbKhI9X|L#vlA^_4$F;JXlN1HK1X`1(F?{CB=N(bINFQ`f_$kiDf?ChZU&ohoj^Q17=B8x zlsLeVTmdE+LOJb@G-$+*lhsfH9|yx(r`mRQx%oc0AoQRu_hu5zk#1wWT-=~%U@7FR zFv9iO+L$ey*``%vf`^YB2dO`jsPQ)kuhtua#D_3=Wy_Mf`%QFuV=;ZocMLPv7h^-) zId*rI3555ULqOjS461Pj{YP1-FgKFC;u|2L;{0fIb}H;%{jt^Q&SGpZ%EsFMt&o*G zA9z8@?2Uh=5PV!5)65L$Htye1m>CDJ^7!DK^$qgo*Kts2+6_V0tH3KUo+{6c;Ie|L zT(-ES?WDCNXgTblz46;1aVQG*@BT@v3o01Rt2`2PM;lB7tnlVG0!!S);7{2F+Wf?m zDPPMEMo@w~1voF){+XaFpGhLU6uFMGCw#de&RB2$kHpul!k~}W$^O}sG5N3(+{-Q` z^G>S39OEcFTUtaOcg=+StI?qOyOiwqae%_GS>(!&$@txF3&fnd%x)a*W{s+MfZ*xF z_~CjDdzdGH_S=54{A+H|*X8@5Xp3UKH50WH6??(mhNv1SkD}{ zDlxDgqUV;tiGNe5TcQCRmR*gVk8IeKw>KG;0u2a{&w12U!XU4har-C2n0V%Z zYMUeQEGuExq8ZR+lLzNF8^OFI6nGDO{QTjn*Gi1bv(VVIF(5W$Eq_m*`6sj_?^L-F&uJ(Sh8oKGj5Ez^yMB>V65WJnVD zRhD4m^L8TV8U-d!TvOYc`>v#x!b{C^{CmR%okZ`_Yr-7wX$qzHt6mUZPbl{A=7LFt z0&za$2ekuE(7AabyP21Z&cgu58Y#VW)(Ex2Ho?<%;ke|m1)a?Gsb&^el4A*}kbgN8 zBiDQ3j_+CAoPLB>aE{2v&w6l4N)b~|JYmEevv96$IyCuSBfHG=pu%%ECR_=G=7K30 z95n-dl{2{xbUc>l`r&f54ZvrpLa#Cb)OY1LO;p{>^~Mr77ppt)xcMV);P`zRdj&ew~d{k3DIWLBKBnmD>>JyGAb8;q)^q2Q?=GU{=L{b6p8yhm|xe)=Pl@Fp1+rLM)_ zBRy1Mb2Bljn++>AN?=Bh83>;7$34Q^;Ux!@R@KY|S+4iqDE5&VT}H{8OHb+6)%);G zloWcu5=Fj4RfhX|0h|8CQC>s^6x;}czoVaMXR9UGHMH)n zK>tJg!N0YL45#dXZ}%kN4#&4r;@%|+zM3$YortVK8SdaYGQp+U+AKg$q=x5CoW0a2xY@O=xS*u$pKklWFm$`wfk^e!#1PF52;Y7 zlSs!R!r1E;H)&0BGTgjbj1#d>nbr54aC>Gbj^!MMOM{<@mDN1*xw0B6EjN;mzw_YM zH!CbXoC?4HgpuDWCHP(@0)KIH=AGk7pmLjMbila;Je^C?HDW59Tz&*JwLg*ef+T#O z^O=0VYli3L%}7!I9Q6HF$nhKcjBIX&WA}rv<72uN20vxm5kGfjj)MSnn{Zy0)ZvG|^+#pL#_2gll`ZzH&vjY#_QqV3BgQGDy zc*CMVO2^iP5ilwW3rgwma$YaS)&A;#YNy~+&gAg`)0Nv zM3^aQe@VN8vf0ROIBf}##T5k=MMoHhhRzN zUOG1EvXL~`Wj-eUhi=#+h9MgZ@%_Pi)D4ou`5K;7J>ff$Gd)`DLxOKcf}89TIH0kN+|=nX(zvWai~YFVsrM~5~qRt{6T#>Wl#j+?z41pfd2Jz1|Gku+byLPF z-!{rtWYYB>CS<`TVJfe%5QdtLu#;=l&|7pmczJH5O=K-LaC`mNJ5o7sh%RpM$j6FO zE^~5z8En;e#4qc7Kx?5UuAO-T&i2m7PtTT<2-&4@CjA$?*_CrM&1cD$)v+XS!!#JO z9wXc9FA>#yjxasc0m^zEPb$2+m6F!UIsS0>Hd1AhZ3C`Wdd9I`ajl}

=waMMi1fp!CQ5D^D=vj_}H*a8C60rMl|^E_0$D*~GNUSK`<1~Y6=F|4bTnhXq3iEtG-GcpUC2adD(93;`t zzX(rV6GiK$M0nL&2z&ok(ree}LQRnc%pG^b9+NNBne$@Lf61M7pK2hv-XA_?_7L>} zN9q&9z!hEw9Y1&o<#8DtdH91`m{&0?!ouL}I}42RFoUg~Nt9=El9sHu=FU~l-!8;Y zv{tW$PX`YZ>Aq09!&j7D(|ehi&%R8D8=}d&Yulhh?;&gQNCD<|8DikOYcMFf97or$ zfj{yF)bi7R^g}@yHWiJNvGGQtkd{v;zhoJS8F7#Akg6 z&|6o$O(AwJd-!7aBdI58XcfEuK@?}A(3pOP-GRjgpuSC~b)x8mniP-Cm{U&$nx zC^UzA-Qi$2Bn!e(X+(A;mA?4eK+ZJ?(;jCf%$o6l2HsO(7Zo&s?g@7o>79%(EXtWa zr4OY2@mVr3XBDW5a*plaaYQTS6`6OX9;2^BLS6Vj;xc)JEdFAF^9?T2pBs|kM9Br3 z7O4amO{=j(;|ihvmayMF6ZO9P!@+;x zVvZB|WG$8DKSmW&N@=77H^%3l} zn9q3I$J3)DX@=rP2g#Hh?qoxl4&0QFg{2LbQ1Ig|_DWN^W828 zOA!XcrIU=}uY}@(sb}!$eI2x@%%Wb;_5heSQLEF5_|9$v`M_|##P$E!s{K7ipEcT9 zH^m-WR@(-A3R6JyqYU(mu7?*rp3s<~jI#u_nfSX2M0&7~KHOD^^C#A`x{eRnIYaq4 z*_z`{rx-zzlmw2B@ZtPRl2qCIELbfsgjcU*$z-{YcsTtVb$Y1*Wvdp!tJHI_N_dyi zdOcGpBU3=P>3CaA1WVGM^)sI;1bM#|Er{7JGZeNr0H>Aq7&RRIKZ?#f9;^3_%2o;IzC;lf4N)jtMM^0dMfS=lku6(fL?oR1dZMAFFVYh2lu}BmwDdc_zxvaw z$K#yqzOT>c{U*zorD9_?pONU)HMrj@3&eA~soAWf_(SDB)%}`=>ptzo;pjXRF{)xB z!%JZMl~dFy)RJbcJb~X7%rG*+pH_tl8$WpVhY7Z9L0Ro&x*07oRKy2lYQv$cDj3dG zPBG4UsRp9H^`zrmJZxAJjLmhCa9m?6Mn4q7l@={jbD1$*J1TOn~ieoHWLE)r$Mp54n3NRRj+?pUq@CDs}?k<)+eL<|!+<-6Y z0J;qgke)A;z0&^@3MJF&@}DxsW$R|+v#sf{;H5gs)!)O>i{h}|%LfaeDS;CAY?D~_ z8*X_Dpy`fkQg-AbrbVT5{v%_$`>Z3HCE}j4#yb6$ z%xQiRqT+ZH{e5DvP~|V`m|EcW|B&`R&Ln{!s_2Hfq9imf2lp(Aho0tCR9J8fc1+5n ziz_wp>+w3MjM9S1UaR1}eE>u-)~GbS4))%5AS!oH;j~fyQaD5U9q0ND1O4!JD)(F zdm8#}sD_VsBw_ue2wa}=fL`0w2kWF}kY^tcL&)Gd;==X4FDZP6Y8gS^l;8XC)_W(E z3bDtf|Eb_FeF5VK6+`&Fd?!rnmWCY)dr0t|E4VW_0*5!RD^n<8WWDc+Np2CDNKhNUtBgkH=fE$lS!R}i+ zWET7*2}#n>c}&EZ=W&J9RZa!n2TScdu&q1%^^XU2HEn6Y8d|6we zKDdx$F6BZ)w;yYwvy!>6`xkMaH$XS}bN&C=)0obC0?!qCx${~H@;&7PBdwXo;dHxx`igY(QJAS!z)E-lN2abs!DFB`xJ{(rX09wr+k z3URr{WZo(k@Ts#1EwL6gURk_=@vWcK#YJ|Ja zZpY`BEwQU`q^PWN5~i8(ijqsd|7tN0k2oCBG0J87QeolUqQ6?oz`p$0D?gKMC2m zm=&*@1f83_$sxHXXfx+8G0fUa#`pw{??`gr#nd9oZkvG*VlrWy$qziqUusl%TN3rR zkI7|i~7FnBEzQ|scf`}N$qVR2goVMEpE^s^V%VP_SrPYRLn6Dz*cB=8-&$)mSk0lTfETHcdyjt7I*uw?y+q~uBs>&YO4sPPQlkrsWeOw0JnOP87#D~*kV(G0)Wjti*1tH9OFu%y{ zgoUp|uP8q+#qlXD>Zql2#ryE6h&;XgP=yy9^p5OaW=t>fr{QGD$Lx!4NiY>pqsJ#b zCz7Q%X?zLAfJ!S8kef!t9xlP7BZU~eaUbHd0IXZ}3`8S-lg+Lb%+=DVr1$(0$lH-m z>Ms7o3TO6k>5FrVYiZ!V!PdphW9-49q>*bG0MWO%1Ey8*2Bfwp8RU8y#OH!C|HKHb=d z5=lSVuTFZHULAyK$|88acsppQhr^c*+&N0D5B^)cji@fErmZ~*;D2~7UMqZMz!b;g zjp+uUo%k4Dz8IxRGKZkNYXMs7ZbSdBTE^K|oVFL<1wpAu{FtfB6G^`VT_0xSq?#D+ zJ-7p2x#VMiT`vgg%w!yoJi-oxL~5{>M?8Fgz`Q{tI@g76uCIbl88wEdwu=}GJeK9z z%!*^ykys4S2%osJ>a3#Ko^Tt2?0=&4O2Go|1fHiC4K=jRHR!k`YM{*P3q2*IzaeE*APiTmo zSpN{u+|Ev%zzUE1CDrlQb&ogNHKbx7!nqirdn0 z!dci@|Hg9cm9#;ncpb>Dx`SWJH?ot0n@CpPMjlVZo&B`1glsLVg#~8G;MJ533e|;d z&njb_RrUk#8AQ-cIom@ocOpLN1Awtnyk0L`VbyYsyt0%rz+yr zk|Z1utTM_=N`U}7ExaD4O2bWuNz0xOq}|&TwG@6**&j8;!r>cf;=RScYmZ=G%LqAZ zcb9XZ+QT;C0#yAg1~bym(6>#Kd1LAG;Df6(>YUDIj7R1})Iu|=7QTiNP!+@|iErkb(>V=iQTTj6E|W=t&nqKAU^oH>Zv8+zPagJ7N0S~r zL!ViCytG+r#!9z^(IfUPLT@5zs7aoiHG*#xBjlQcFK z;W}N+0A&B0iI(k?P&N5Jsa4~;wTjYM-u##5`}N@l?e|bp*hcuI3}bs=chD)7X_+nMXfEU={^6f=(&8 z7H^>Yk8PwZ`UqB9?;x+<|7zVoBM`MDe=^@TEHgfmmH~-7453S-4T`4jz13(6>N6$b80Rj51O_o$sUpa!}sn25Q^ivzBE8xHl??abFyZLLz-+d|3qUnm2<~ zr^q5U+hKbEkTs)A;L|eSRks`@EdJT58RRH#~qp zyTVAiSTt;ESdMlLj`U>481YKIOY|QV;+C*guvE8^Y6+i$v`JD#t2PTKZI1#E$NOwb zXdEqMGcmbV8=2Q4oSP|*J^l9^{GAkn2^p(s$l;BQ1m74A{M3fMV}Gd4wr(~#yPK^$ z8;*A$Od<2KB0%7c8U}UNft#lcN?s5mtG;T&-0m<8Y&C?%`!a~;FgJU)v{E7qEwT`+rHX#*bm8SSA#$~L99r#%8IK-I=#m*BB`+#*>CF$!4bk63Gz8G+j4PE2 zUV(le^l>Z4{n@ba4|!)%47F(jSQ9iGJbqKw^->?*ozg@1b7!D3nWa$RnuUJ3(M-AS zB(zQu1=TQ7Rw?-vm)$F55@`rZ<6p|Ztc_S%4$|(s?ijY;8;9c}Y0cCa+*Do*iFprE za()EfjLZVlMtj&a_c&{JJRLU-6aoL>J;o?wf^5}$Mk{8=;6V%b8uhl9^6(G4r||38ThOZr@vjw@Z4G>j(5G2^BvB| zEI~)CzT$=NaU%vc)nKBMIxRhUmi%?PNi!zhC1KaA$h}~1DqG!eRKEWYGzCwl8vOy( zac?hsc7_l=Fy_my`W;R$1xUj_opiX$IZcPG&!EcpljO7SGFWib9c0`BaC4g%-rY%v z2~NkQyQ{%*vK&o6q|3dVmceXpFWfFRnONs6z@}fr#GW+(tzI+Wm)Xgkot`$=)p^jM zZdL5rSVG>aa?VFC;8^hMJ9P~>M{>7vto*ME_$(y~USDm%vHgb7)L4LgO4V@5i!w`p zO~N48YAz=}1-$bgkzIVH#Af9M!q(tXiCT;F+W~-ArDqZr2*`iWJ z>Pr@Gdso0YV0YukkpZ$JKnZ3fM}nA@Cqk11=9wyEsQ(d&@@pnUV=lR}=^;*j?~Lw! z3Zzjy0=;|_;Q1A6_<6nzr^RvmWt9jLe$5rFGe^Z)6xAb1vysnCVeXCM9rOGXFs=zY*2S}=oKLfbq3GL^e4@*=x{!} z#j+4)DYm0ZP&S*p>l-r~T4wZ;oAum1<=}KD1AnV5TUWNnV~33@99>YzuBu!>pPbwQ zTP0fP5=#Rx(Ok})gKprdr@_tK2XtYgKOI^thy!-9$leV_Jux1AduS$jB)8B{s&3@h zBQKm;Q;bToX;j!h6}Mf_LftkAe7u+I5TrJO!JTkwV;YTDqqWFQj{-2en*hT<%W!^e z8LAe=aqqM{c**fKS!taKb=wx9_(l`l*ii%W2CGTp=UA?<+zd~LH=xts3pgsX4h0UZ zpf_7Da_*UMsL&9`LB$As@ogpys;^|uClsQO)mNJJ`WXGBt3?LuAJOiyK=4?rjCP05 zkr+cy;=@-64b!&5$<6zyQ|v7)fAkdO&1>2&2kwf&ZkJ{7 zY;PZvu6q-z-kX7D$6LmPKb?{}T#iAemn!W)i{lplWcViopGDG0*gJo6Kj7s$fr?`u2b@y$vvyXMigXbIhtQ%kV(AD>c|RjdL=s0HwY% zQeEJPKC(~P%KO4cX_aW+2)rk8hJ($xe|%$~;daZ=V)} z>HIkC=FiE&*3K2ru*mb@ORo2Y`4rv8*lh2XH?dL&x>U%QFR~{O2 zCi5=-;JAA)4+9gnhA3QoO2~S5aDC*`>c=L*zGV`)`<^A(JU ze2AVrmE$Xx!7bZsjO+6yI5Afd70Ww`__Q!Kwb~GNi_E0+qx7-k-W;0Nm_|!e6kyYz zSB&<*Jm{{Gh3u#xunyXfh6iskEtiEcHCYqyEJ=i;nQ?4wwgYCzyrI6SN-$JEA7*$v zL9?uak-KOG888JHuoMC5h1XFjdpmY4nSsKYS0VCnGAb_-K-)EZG$c|5e@t$r33C!* zjIR#^x5$IoeKq38-TORmb^*CL>TqGxF|6YSLQHWY{uCLbf)l4;>u@LK?K7qCN-gor z(i5D|Hk5h{Xk%+xCY*X!2}<0~4P7`#Z)y%!B`1?wejB`@r^|8Dgi*aOlCF6E95le3 zJPVwGGM?NlA#Q_m?<^o$SpZI{<Kaoqf4&d8!Zz=!E_!bH2MtpH>l)8oPgHY21 z_>_2>Ss|4KB{I<@a0$a6$!s9Gn1!(r&oMhzGVA1z#$QE0HBR1Pm zU8o)I>~sMwt6cQ-PlqS(Io86g0y@?DCn-E?jpH^6kd^X|6-$+ZucFQPrTz?cQb>fG zmQgrIlYt(^y`b{E9PF>SgZ8!4#A3fXt`Vss3)ZK#u9D6omx6!NYiqflLwybS78g^6 zkuhTMOdoA$Z^t7)g;9iG6$FCiaOhGj(~%Yf$&2_fv>_9Pl+Ezsx!thlix`eD5hzxE z2?q>qK>B+&qErvAzI2JSyp4o-SvO4L?ySuC0>NVEbxbQ+gsx6p=I!7VCTPogqM&vF z*L=|+f}7+~d7S|JV`c+9b>9i4eNWhOm3NF&TOsVt&BZx;=K?Fiu?8*G@P5)srcEFM zF1mW+Z>caYE0}@7QV&Q1=Ym}FZ6|JNn})}0ZSZl zfMfC!AZm1%1jOw@k={7CV^oZx+cG!s?zzfiY z$3^mBtH5>S7-iy-Sd5HaIGw#P0g`rc-IE*x49pEcz0W0ddy*jJxaEMRVH#B|&ZO5@ z_<-vTf9U+a8;e?4EN6zu)=B?Jz@ZYRaO4k1E{E881wn+P6nxjY zN8~oO(5~MEz9mVLQ9*S~ew7GvzjI)vTO=?G-66|!92@4ruW z9!Lk_*9>vJoQu74?9lBb0d%OM{RT@&y}c}TTANIVr}zN>f(;<}Dh{6c*+J!ta9j% zn`4&K_y%LPkDI%vTg&6!-v1cOU@e?75l0@Vi$ZbTH+G^;4*jhzvlo^M!N5Lq=+;Oi z;`v?V%5qm&aY-G+G;h;aLzytXOaoLCm!o2!5{4b+DExx9IHS}P4|AOmuQ}eNUsIjS z*R3OYyR}G7UKr8!PN9mCXUHwxKx!2Fne7mNPTeYFK^1PzFBA07IN_G2SE%1XW53|YYDY9_tlO{XAeJ*`( z>WfVeyl`{ReJUE?!d!7UftKHjVIu4}hLvlBYEwAXDK3LFt!u5vhGOZm2MIWCD^IqU zijvxz6JY&b7~V{*=eT9spdu6re(O6(>#9&{JS!S++*@RLax?)pX^k4aU^P+lrV<=$ zHV0i9o33uW1T4r9baXoBqY)CVSX1C6v)Mp=^s zU^H+TR6?||?DZN@W}C^hbEk2_vWUw4N=2bNYccWnT+k}X1oHz|*v>;j^wPHZq_$I) zHGdOGq!yp0xszj{Z7iIc>|MjGPFPF2A6_I=f}YdHT4%7ZI!X@@Z9{fS8@Xh%fbu)c zgpV@(nD^!e@v*u~Dti;a)$=q&wR_`#@ek-X*LG?;KOSThFVJ6;lc`YIXZCe#H~BXq z3=dMI>5Ri0@!fi1u6uYAfAPgbJ{e(N7ir+$f;w8t?acEu7UO4)aKh(x9N&blCtvsE zfCGmKIJbQr@fn#xFWAY!{)Q;%91R8Q>_d!Sd@o~t*MRrP{ z!{=`bpyHYy&Q+fQwB$W$vc62VB%cP;gCcmWKY=u!uz(L+@}aD5E$-Q?(rVW;oly`h zRg)-ZEpRvP)p=E{2zqYIgzzj~ zrqF;Ng77?%e%nlo3M#NI<0&(6!V3(vXTYN61?a^w%l6Hb$HoH*_*Tpm!?*ut8YQoi z=f8Sb|6l=i> z6}u=@T)hjzoq_W@F66xI#&CLL253mUqlyWe;QZz-XtG&|N~D^hWQ8Wk{C67pR%dc~ zqGPD>LjbDtDUoi7gYb#Nbl_|!lVFF1g*PS$Q4t7k^Cm{P2WEsbJ(=Xk_#`LXXzX z_oo}07NA-**Yo;T2Fmm`nb3bj?FUE5*hnhg8Zp4BMdjp!?sck|xP?v@Nrw8SGVVNk zlQyq0fN+P~MpJ+9pl83_r|}*F`PI$_<$T(JBxLG#?F!HuK& zFz-hQ+Gicalu5;~Ux+&^aLJV~8B)*|okLY5WZ~Xx2k`gHBU&=&>7(DpWbvDHsOaJ+ z0fNV|(A*E7YusY}tIiO}S%~{N=C#DMTo{-jKsQ)I+xQ|9bZb3n4)P_gzTKoPHiH_} zIKp{{DC~^6K{7%Xp_NY)F;Usc{hUg=M|2rvD3-#@=*h5G*8<&TuhYl-r{eZZbI8LK z^flr#!Wo`qW7QCu^nZ5IkwQ{xZ3ywt=3<4mJ1Un&gMZ0Zu#}I+F~?^#{jDctc*W!G z6&d(P%mEtt{m{lx9a1V&VSGjun4Uj|jXiC|U`!2eaCwLGA7??cVL7>RR2njkBk{D) z0W=efh3D@kvx^E$@M`#dDwMGgYR8Rmr{oLj)ssN-Qnq7rlQ+F_kDp}eso~U}-gJ+w zAc&1{chU~7;21d<1{!1V&$8L5`(-YA-8w)H)$!wghdjdfy~{{hzz(haTw%`aD46;% zmwIw%Nk8#q6gtLn$+BALiIb9WX{$B1rP`DI8Rf*RE{>dN;)Aj5L^K&PU{8GUft=L6 zTo2hC=Tt2Nlko$rlV%iN-JVFpJrtN3!g1Wr^&ogB9K+`G)^N5?4Csv;q@dgvU!2;7 z$~NOfFuVkJP5Z}wGBiNVj&yK~RfIn7?x3MZoINcgIpK@Y@Xta~|TE-8XnW*d>^?y3}Ij!+lrNWw^B!whyLLU-4K1S5vo{lcJyEoiGR2;4O-zD83*8u$P0jbj zqtEMfxPPLO-Sb-)<^IZ1nXBPNJCAsOkuy46!g0MP+_{;; z1!~ARDa}2O2gj1pd?BSy+?n6wsxA%x*~V^)bEVX%7!pDfF-PbF@!hWkyQi9h)$kK4 zSeXoE`u12_?G1f}J0RQNkJYtoqFQ3PT(0^%aS-S3US!nigFB~CVBKm`q^iX2tEQ2y zhdJl%;5P7BK8YPp5Q0k12bA+YbsBn{Fk$^Iq()MI_o4p`^fD#*KoO^)xsofe=(S?|4d%Ab9oi z*i}shAj|P#4!CIH(Qt9P!DI>@?B0s~X#ylSb1ytiyh1mB|442+W`d211o2*SnOqqO zWCa7lvA@9!b~fE1^L>}X%ReWeMg^#1*&6cFHWEiAUeotqjPUh?YTA)?o<8Y}rN`$6 zkWuAbXu4+x-ZnCUt%XXAbIE0+p7?yY8cvYkK^DXHwzP)c4+NDXM>$vOA+Y;Y1T76q zX;|Yus-?9Nu2j09-tqS&YxETCcHriYm$Pt6+8wGndYDnth{Mhq=cukg4(fCFey7j) zV7GRTVe+~pOc>ZtxZW__&HTumTE%rSQg1TM<5)1Nb3^-&*< z+GjVS$y;mu{aGD^?j}K&K(Nt2N6t8Dahh}J9Kaps7MO8|AL8xLV0(=^-Mq7c^1n2F9;Bi$f zoB|j4_brqB^x2FX_tfBY?wmb)q!{%pUXrxnbTTwp#yxw>saRzv^>cXK>a21c_5X8c z?${lMRZ-d$l(I3UbSK<#%LMmP4ScM8fEv6yK+?rs=&k4r;B@pb&9)MPL*mZRaBLGw zzxTk#zLPZbp9HHqsztY&alRCnd*r(h(%d>A;N zHinO8VxTSdHe=YUXMKM(^2MYL` z*Z@o>w-zm72Y)HhO4Yd-EN~3nyvo7ifG`S}++ZF;D)Uw-6gOu_LAS+kruugX3D-@6 zTH6GGRVMK7N*46!3c|O}M|e{(43lD$sP5r;G`lkoRs3JmSzkgy`P@ems40f8+Jr%N zxh?eQhZFgLt2C9)Vy?H@QE_KS>J`W3<1d%d{4$8)$BSU}ekI)ESoJesQCeZ^1+}j@7Oq<|>EpcA!SKzog0b82AJHn`&Yp9L!QuKM=$4#}$Bg31s=@vEz-BR= zjoeOs3KESrY4no^+U3x;KocB~WuV6AQ@BDs8qb{8B&(E1$;ut?;Z61fTDYZ{L4lBpJ1i;B8aCl)O~stX8%iole?2q=X(*6|F@Ovehr|) zB}HW1X=IubZ7G%Vv7Pv+8iv29{fWdx-Nk% zB~g@mxf-i~DWYnv7Wq6{#oV@xf!1+`%2z4k*U#7JS=}Q1Tr7xb!sp5Hp%ZAP|AJKg zl4U3N8$qDmb8^pXfQUZ4jt4XTQO=c2^|j{FS6?IdB99U$k2G2OZ(3N~Fe zAoFwG$dj!lq_H-JS&&sg-7HJc?BE8B$do|MOG5ZolShhH?MAs{|B~qk!s0s})W<$dKD$JUq2F_f@>u`7< zUGr*$N;nPB(;rX3{yra^Tj7LiZxun0eGB_lezgY67T}@nVJL53Le2zKksBP3Jn5eZ z{Hr%7AN~u6vs^c2(Ul#LmmSvndxxWu(kweRqQDcHUVS2uOH)Yi+mGb)lT?h4+DG>t z3m|r32jJ|}X~0)5N$1Xv!n606VaKXRq)x07ulhg0dAl8Ho<}1J@)zMS<3m>IKZl1B z`CJ#UkoojFgO1Ep028T1a(_CP33ac-j^qg7ajuPBas6<<&b9S6e=6G7s2MM+PseS; zF-Gh4WXbD~_o;}vHNI^qq>Jq}>3x}(c)@CdgeNnwp)&;}=W#3%Q7zv4zDH={@{p8& z?Znq#_me0)e>jmD%{=i?Ytg$gL2oZE#8VDKxWR|Z2>p?z=SDj~Qf?MZ3+<#`_bi~_ zoN{;MeDLvpGz^sjqbDVAc9zY1K6NCUMlu1}cV z4-IEN67i>1xbf^<_;57~|J&bB-7mdh;rbewqsVny+-4hFIargXBVxR+jBEHext)ES zc!ml)>ws&;J9a254jbmm7#U>6(sc#L!Dmtoy>P#e>w>Eo&;6(eR&%DI{oxnn%@#k7 zoy6@Yyv2-9KU9T|jpx{z`YX`#*HiNSYXJP4U5-H}E6^a$9V}Y5wazaQH2(E17XFEz z!=lOF7`VdT$Oksy@uSP3g*#6KS4Lsi-nG!e8))t|QYSKxBETRn0gwJ1BqG1LZo{Wc z&f`=CeYea|oSV&S%)?;YtlfBzKBAfN#_TUWF1LA4h1?m5rgzM@5LR{?9KRt&Mx{?- zwtYL6&lWVEt8|%m@r84YJ0JY1eitlS{o(lEA{z7W8hu&%iXIN*!*%Ws=rpI36fh28 zRKFNhhH6=llFQ(=h;y0!3?vDQHBsSv1kB4$!~gH7{B(NA!}rP%P;!wtb@t)Zlxiv; zUMNp%6od%zAgN;$5u=o23YLOrYSvxJ!l;c+^D)-R&{*#GRukGh{M-> z3p^~xb#NAC)6|^TutDWMDY{bx!2@5&52ZYao;?j?r`qGPpk~a_TYg z1WZ@HiDnK>FmFa1Z1qqF%MK$ZqgN7DGR!e_%Tea%dVAtoA;IA999;e$(*jcSDq@O+gO}U|(4@!xM}5C?ECQ8d^(`CC@2_nJne%UfF>kE#&9Opc*gP3JjHpVV+k;7ybd2_CPVz^ zL+G?@gmvNm{i$C98p1;;U$z=dp8P^Xfi7lky+0~I1gfi4!*D_yRsOI6RR#)bdXoWxy6pj;Dm!C+|M)uvul^gGo3r= zQ#nD)_Qrry?R?y1^b!V60sKoogSAsc!0lxRJT=Q?l!wo<+u1${_$F!GS1{Z7>bF|l zroj@YG6~)x>934mK@MEh;kflLxwGpLX^e0_U~+!;0Zjc{zjOx$#|f@pnZc)0V0%S;pH^^_0eqe?rga5qMYYH*xR(K+`Jb zarZPX;QytPUJgA7HryFO4L`%1L#L^5_5cZ}?8R5S>sY)nn{1hDh(kgb*cjd%H1bG|{ts3C@$Ex=^ICr~^`lngJ8Z1w8N zVXe4q#^DGs1pzD(|h+pUrCeawq_<~ ztDeA#h70VJD{frfBm{f@dxe7vU&+UF2XOoAU9gy^4I(z**>=lpb`SYM73XsPnw=6n zYLE;`S=-SwY7h*%48ii&JG%I?6t90o1j5GmvyToK!M=6Myf-J>jdWBN;vl2J-92T( z)q-Tq`7DHr>j&u{sk@|Vt33p-h$8>2W{?Kz2@WUbLCO*fa9JCGnHMkOJ=7sTU;2%L$|2j4IK@Iqu5JK7gv$**+y@a!W=f7rli zU5!1d!zc&{Utd<}j{U8c+8 zQ56%?A0hycGj%cKz#n3nmIAohP%(mSNRm?HCz4kWB{ijY9Po?96DZcPg zEFaCpU*f~3(byqXf%A^Av~~ygcbA=vCvJX#d8$q{c_f8y`cg*!+4ER6!4q&%FOmC< z8fm!QEZ&w6b|_aEPDX96z=+s4*woL`_YYs-Eb|xK9F&F~sEW(Rb$PK)Vlc{e_dn_6 zgTv2x(Eg~0o%ePcD19BLSHiXusildqH=c9Q%;da|g=u8Xv=sbjVF&52Byr#4FW8JH zadE&*v>h3O8%y8Nn9c6sW+gz6R7~Y5ul9xZdnZtEw++|L)B=TyuNc>$3hM2)Fg;q8 z+waCa4nCmKeRX)x?-iDvtfOUjJMiowc@WeWrN7)NNZUp$ z)b}1I`!^62xVRB)`i7XikR9+vTL5=#X(HY`$LLQRMLc|_iz!odhiIW?kRNM<4*wMr zlRs;~{L3zs)T_s=+rjYmE+=U_;g6SVS7Z7sewdqo20cYn7&iw#W7(EGCc5Y#sBtdY z)U)cWM$LEh{#lO9$sMT1UkGt#eKc!{8XVvF3kAEv$fhfHWNlj&bf_OC1^<-E!}v1L z*R%pTkr)y-%FXWW7pYi48-{#Lfk|8JiK(#?{_c-LUw3EvZ*?4P(M$);j{-dO%7-<7 zzcMNbaokRN58EZ5k4sz@L6xmI{5#}{A@S2mr_sY;^jSxxM$)mNsNM|Xu;tp$g`@T zUY?fVUY3iK%SLFOSPfi07()Ahd}B2Zhk|BQ8YbrjLr2D9%vTcSTxC{7`TkOjSy0iEZSZDqP>B&(bd_xTOpKXG*8_Q8^Fdk#A zvT*i-m011v7Czy)vgsrBWUWCE46x8u?Gx}4Kc zpB{0MCwrCt8pWJ@gSz3Z%!q>^cZQTEYid+ss*5lvL=4~|`y`M&8x1x^D#Y1D8a0o# zkxy6qamzw|F6Ux{HotDt0q!hyP`n5Nq@=O%*Eq~Wf7nQ4=+f}JjP>doV*1A&XP@{$ z%(O>Q;MqIUKQx=i3FpD>dJlqY!-^$r>ebtdxMbX=c9Me!W!Wrf_M#0*7BlM~nmtR>h2Yasah^o#cW~x{f9@(7) z$AxZDAw50FeJhK4e=}O8ckE`YqEC}B^_ke8x1IG4Zy~~cr{S)~c}5~Tg%~dlBNN5( zRLdv~9c!!bvCD0^n^Sto&LXtk;Er)OZO#o8yZ* zKKb1HvJbZps^RFR+pxQ;9yOii7_a0jpc$f1(>A7~zw`im|DhRP=k_%}4O7^K%Ndky z)!?n;{x1t}XToNY5qO?+4CZ*o!1@)Z;J;B}<3BJB%EeBw?)qF##47=BFTMt^4NCEI z(Qi67zaDROq~N5Thp=>`Ev_tcAuTpjaY?WwRtDZD3A!_Jv?3lO{dCBNh$I>mf1P>$ zyp*;@zND`$s!?igDOutZ#{{OHrUmx(=;LfiY9Be`#1>?(p0^vV%&2JHR}!!z z6aJPR#1Yvf`uU#;Xf7AU@T_pUN8>g%d_NaW9!0^d`4TuJX2hBZZ-o3f0p5Ql3&}0M z*>Lcc0DbDSn@qDVA(4O-RHKg5wEzNhhti?jSb8{6`_^9KGluqyzc*kCw zQV&1)7@Tokgm?RUFggvkQrn?V@L_>0?)%qiWHaRmeJ@?fdEhgNTT}?69eRqDUC!+= zo4I-E#30I5--WJ?Rah2&o_a+Jk44)!a($=H|a>twp$6BZIY*${##;rXhPk%nz9=;2kb5AqDF0*-> zmv1oBwxr<`xjcw+)hDRBV<{9{J z-W#ecpTKh4FEk0949nGA=@YlcmeKdan6hA$#N}~b(uo7GxP$BSSw1H_{)xkD-Or%x zw~C5iHf20Cv*6eM6wum`%wD%wz|r`HMvjBFV78zTBWni1LhdAJ1*qUv`Vt1`bmOLr zy|lk2nvMTG6|;&882%LtajVV>5>rmWBcYbe|Fa(swO=RyHf7O@);4gm)PW0~1vGfB z6`85h&b&9iLLc4ad<)M?VbWJ*RBW~IU{*TpJX?>=f3?^jHJ)6Swvx<=4TRB!-0UwZ z2t`u@A!8QTMQ6_;-;JkiS=M@3I?zCyz6{c)EvM;6TOs=4TLXQ6Hw|pQZGyl4-Nb$@ z1!N;riQop7{0W=~tD*~N@}nB2EJm8XzYqewcMicB5m8<{_x`5e?IH8vGCq^cOI$i$&e=zY4=-2%do+7sv5r{H~M<&R|XQ083bffcc;;b!5Wfj#ZP_K9fHxYMp|c`OR`@sKwFuob)HI|85SF*2O6KFr7*{X42b5r7(Mn zDlA)cy7j)c4Jv=}z?Z`kAd>ZuEO{D02aFd%`*&~1n&*Qr)&#PhBo)GElz{CD6L|OS z8vWpQh+Omaz;m+2^xbO~hm}HUsHV{WC_3+en!h)Wr=p}NEhF>;wr_ zJV@-&AMAQhawA@gAiy>r_OaZHh}%pQ_7Z?dQ!5NP6OL023-FWhR=9aE8AW%qIo%Eu z`e5}J8ZSN(J+2?ZAzlQG_f|nC|1I9~6GK$AHJ#h8TR?BiPRAC8W?#zUMb;-o{fCN#yD+DevZ4l(3fOmGVUC-5{&=9{451m^Ee=nxA-x-v~@jva* z;NgY_T9qj6m&8111Jo-j0n;{SLFef{67aN;_{lt_R^Wf`yye=;osb=i>`Qm#0P$k zXORoVp0H@65XLvl<2JuSn&Ui~s9!ot-zGAj)V6dy{%{HB*n602S{1-o-5&CMWdxby zK2E+&oR2HdC}B*83%PuJJ}8cPw;OJDK^1{Csyp{ulJ^ zq(<^_jV`^Oc!=JQJqefJE8|az99lZLjDA183pkHg#7D}SUj1hSdu*rRr0HQ8u;C@I zWVZ?gmK?>0ubtq#2GScH@5#%l@!%Q16U5SYk_Pt_G-*x)-K;bM>N2>wA`b-p*&Xtu z5co`yL%F3@G`6z{^>njg_7in%bnZqRlKBu`tRZA<~X!?oUDUd{eHl3&aA?mpJZ(RGQ z_H=4u;>0+$%R&9`F8HS_M))U(L(RP$;Tr}xtB&nqx_ z&Mt7)KSBR?t%k0dTKX)L|}vF)Zk2&$dTA9&o9I#ZRN~_0S$D^j82= z*s7(Ld^Q(*=FE*sE#`Sy&!r|| z3-MXa4rufNtQ#*Nj{jW9=j*lPyhbP-Ut0~|FQwsR!KLKc>B%z=4F_JHE*t$2~W=J(@bXfEGQn7vsUdc>E&=AU&eSK4ae{P*AOzpR2G`AR0w(PuOL zdxC)V8xOdAw*>ifyokc3sl2HN z>>%2|v;YJ0caZ&-9#~ZD3cHzK?)bq3w3t)Pd$FVdMrY>Y_pM)uj%qp;ke0{azhz*H zeHgyU@FeV0fsw>yQ+Ff%-ZGjCa(sY+H3H{t8y4KO~MOzGw7q+l@JlW5X&a4gv_}s;8&0uo+t`{ z!OR7Psk=ZIXD-tQy5Omb1L$9QvRlhGbv}qa*`YH3aa=4;v!?Sugk_Py*dy zrEI6N6CS%oGja#yy6Lr`Lbyi)k5=?8nih)lm2y-z+c{VaKdyu`ITr$ zM&;{3sK*bwURLu8C6eHey)>Dir;p)IY-W~G47x8Q!B8&&-aoU#z~A1~OUs<}M2vCy zCRQX{w2txr@<_2?B%JxS0aaQIL91AgI6jVr*gv5-9GM7SyAQ(QRms3tWCLr*S)Nm- zih1L;$tI<(=s!1!EL$pq(|;Ynwt+*G&$jZ+jK38yddmrqHYDKmDI#!Ex&o3r^I$;v z5KO9>g7IG+aPUkytj?Yd10UHegZ(Tol+8Nz_uK&H`J;kE6veD)><}&HtxK;*X0Qb17bReQy9$OkTT>sF8*})V zfu(u1a9=V9vu&qi$B-wFuc#2TP1*M))S>9%H2lry3NOcuz^`pTHcjHE$+8u2_NxFq znp6Sjvh!I#I{_8tvT#Fc4xaVX#Y>j|!T3}e_&u=-#50j3*43lhNh@^R>J7F&*{C(Q zm>2xU3&!q$CLL=nAYQwY>|c=!-~Y2krH1LKdnkg8&7MU)%@=^k^%=0q-w?t*u5y)k zm^+Hyp-0&FbYPhQ>%bZF#<%aH`RcCJEAu2-FW`&fYW(EF-yRyUbc~Mq)ba8KSJIRZ zF(`a~6Z8eJUC>|^9_R~0l~wF4_ud{q29~0T=5%;8I3GrSeqMCC{HobRP<1YT#t} z8dZl59feq(xF7v9^hy8bH8>+Ei29FABh+dZe()~FwVP5wRCyPMPsq^EcWx$^{%nFS z^KIb&x{Ukj;)iXqqEPZN633(cFg$t=>KLS<_2)no8Ola0mRs(7;SW9CcEI1L$9OV% zs3xWZGsLEnUWrcf;*An!JTc+^k{_&A%pq0@ambhI zO-$D0LFk(_w36{?W`Jdmhydi=iX?qHurLHsI4t|AIzd&qiT7gZNVaMM2b7!Hc9M>VS8g^xcp2HZC{-vevNfh>DUF%@V^iG@q2_xn};ve5|W`a z!Z@g2I~xr(y4qhemZ-vLEUNUUQLSlfVd8Zw{F`15hW7@Exb}X=D6G@(ZnOli?}Z>` z$@2Tli?EGvC-R*L);Ii^f&QbSaA#r^{FY<+or(zPxhYSFA7#>$ZyRXe$*FW)Srxm_ zYQhhrLbUZ;0-qUI@KS&!Jla1O1usT2Z$<>|h;^sD^fegH+^;+6fYpFtS4f6U=30GG?D&MT!^+wGvWKJOw2k{2=&2kyzKd7_sskr-ziUOob!Im7pxu4U(?0nY^|YK8st7tGroG)a)Ur`)?^|N41fa zen}v(eG_z;UT0mG0Ma*`u>!6>C8ok`hW>UPPweb;)NENq&xYB;>mAqW#%Vr?>&q(NtBgep>fl_;D1E{cVh)Ey%=4>+wVJYczIQ*S z7ConAWHThX1=H^ONqGNm37mhj55LS2gXba=?8ZHf$hM~94%0Z;H)Wg~&RYhbpN~?p z)_HJWrJdeYe$Ty`I|+j9n%i49{-Ns0an$-n9ZECyrt4Rm$$-V=61>@ahjdMGg8bb@aQcJ@GQ$FXJo%6ATv*2V zemwe3Zz+79noBFpBHKP*NyDL=8u&@Cg%?|JOZUr>NO)!C0g56iP*q{g_JDlw<3kb= zSRW1-?nPou?Fu~pON`gG&5^q@Z4Dd?u0s3DO?bUn9R+>=KfA7mN2+t-=Zq0<+p!QL zX!eerDtb&@w4LG9OILXBxrsq4Gf@22W|X}fg%fvhpcC?i^1J%L!9%s65N`!v{p@HD zJ4b7tiKp`{e$d&eIq>USA%xWh=}R5WA}L)($b}>QsH}j>(L?li?_PRhFT1}yeMZOziVPZdx7){0qSU-s-}0izIm6wTMg$+XJ0d2^hAv92XNG{PE%=Rr$1< zTf5c_4l6CBZJCQ;2g{U%%8ig>wr?@4Erkuo)bV&_IzHC>P0oK2#3lR(a{cY>B0y`KumV z-g`55vL+bLK1z2m--e0hCUR3e7Ob{S1LufhJZ^Xt);)EnO_v1l+wvAV$+Cr)Fj$Y` zM;WWs&I_EKPUtTktAUy=A4#iAC^n5*3(|_8Q1?Jv_|d$PV2(2Q>{^235 zXBh;6_jP#ceS>~R!%fmvxE&v46w%C;y;!}dkyH1bNinY$Z|NSyB*lq%S|b&Y9XU+v zT)xt$<>r`q>mgTJR)Yo4stHTbLE5tIM1cSQj)hW4JhuAZbAZ z&Pun3Z%22*Qsb@g;m{3Y^4%Tx9yp6m4R!eEbru~7m`4w-{X$y|Hlmq*2Hj|O>yIkHgDd7hI@S%qh{CGb+|DRO=EDjxcp zz?cXugRPWA%%|spUO*MJtLdQDpQ`rq88J|MG?|jy@uYO!JkXtXLqE3)LCJ`D_qID= zKgeUzIeFfq4Z>JpECNOm{ILD>WZJ3mmEG&YVV&|hjyH0RN>2+%%gHL}?R%2TySg4z zXC~mqwYk`__Y4-z_{Pm&w+LPcO~IY&t9WluO5-Q@U|!{!HlCx2B{T^QQ00shz17ly`ob< z-g+V4pDzt{ZGWl%wV7Pe;3^t+cd!0e15diJ>mqk|X)N`&J4G*C*XGQtQ&91SCF{hL zl6#H^spfyhSpV<}?)`q9x?SD}*B!g`zFH=d@v5uTTJ$X0ZLk%5_GY$smbt*b^dT7?_Ilx>3R?m6vk7uFC-UL`_a+i*;lgC+%Ewi)yA>Eu_2a4XI zxY#p6e}!cNXw1$8t2a9!bp9ng|4s=EHKc$S;SC~>@6z4sGw3@0oA{bBA}qVV(e&*s z%dS*_(n_n^-69-tZVL==e?xlDganG7M!% z^KcX$C&$lJUGL;FbIy^Q317J?lF0ibbQy|W?cs`P69kt_k^kQ@!+(mx8F?$ZHaZjT z-#UUN&Cg&}aTn<+T!-d!wHcF17~0eVq5p{+&usoOnk;b&4*OOTul}t>+i3~(KlO%6 z-J5i3^-NB6-4`MdcoDnSN0HQLi=pqcGv0rE7EfG@fskj~xTkM6L?y4`EvOMR_%h9x zOu8S1BO%N~#Jfel-?4+`I>mUX*%s?W{*m)bbI>Js4rXpr23zUd^icc=HU??ne^rA( z`a+n?^DeLJ-3`oJqlu}PcGELC>v7isbvzxpp2q3z#Yc6y#3tkb+Aod61zzbq)qVfL z_Kq-aqLVKq{wZO7lOj5KRE!GfcjLC7r*Peoa(F5dg^Rkgi0qoZ@aB9f8hpG1qwlNf zdSMTge3Am^&3@AtVYdiF;bMV(4gP!^1F~ZVcxU}7>Ta74ixntYIqMX+v^WscYV1iy zC(E}u-iEm$)~G&X0Cn4r;(|F_+TUXhoVtGwF3VOyx0w;V5Sqgq@Ek=_)9=jN`{V>QbH2&*b-zQ$BG2OM zC-P|Pz5#ZbW)jtG4u+nr03DItICQ5Cv+^D2M*W}d7ydP)$~F)5pJ+tom7I}}bt$4> zv_a-1RqFcnDV?ivg9M!T&V4@liRRzR#n*YKK#ujZKi~XE2WB`Dvq?fQ(svn-GdA_i z=a+Gtm@d4yIukbB<}m*7D4CX!L!P?@Li(3{(r#Kwf?nxh)B{nfobE`4@*6nbk!NIP z+ZyD(wk1A2ExfCT)?nlv8|aar2d@TYAYH%}PF26+_?B;n*Si4{3p=pUY8L66Z-M@Y zQsBo)GhFYNj8Tiy(RlBCOp|HFEDafQobd!4E^Wn?ep_I@*Z{HZF=IyD*eGxEu0`2`Tl*UB@V7(jO)zfQ9bI*^PX3FvG%kFG-} z+#;7x6_Z=&E@PI7mOBQ!F0r2ff4+FOPYnKY(&R#R2GVL552}2VWL$efUm0Hj!SQ4CMtThO%AIcI%eb5y-!KC-d(EV(?$hj6hL-gB`Bs+?vSzv%+XW9ueVg-&9E%a;Ln6xi5?g| zN1L_;43N`S0P4qtAx;O=y7kQruq2c2O~*RDkWvA#SyIBx(Ke`WlqltC4W zyqM2f6c0&XCpM2-Fg)ucc~a;|!!K7rp=%>JSZ zh}Fwf0wObTIe!2hz9UIB(^IiBsFKD;h{O5^sjw@nn~@}C!P49sW;o{J!%}{1)~^Tm zgh*bT;A4`jv=)v;9mf3^ZlH4tKNNfx1vl9zFfy7%Gy{52ODG5$qt(fc>uWJ!o*ZX0 zSOn4!y5ZU98pdQ41nXLF#;`92E48cOU91ev&Eb%6))?kKXuxYjf~Ym#fVX#k!zV+D zpz&=tDuM>?R+)A-DV{q2R%roOvFcPpsj9DZ$>Y~qP#_s0NB zm^Z;_Ci&zX4SS+pVcc>N9!x%gE7BUFwZas=TqYWL{`!VdCS{Bc(Uph+|AsHO)DD6y$Qv{U)2F7y0n5Vn<)*JeI>HX*5M}W3|`;^L9*h%DdfeW zA}mlUCtj~Rz>Y5g<}_u2>+bo$^LIdzyTxEE=mecZO}OSu1H1!2^opMh)7ooD>)ct` zAT*EGVG4aNa032z&m#`|CQ_$$S+Igt`rV`4L67-w>bCe{p8i#8b?-6f&*l;v{qO19 zRKMi8<`$3}F^}7CoGc+LwBl)K&?DM&VmV%(a0&Kq7r?l694dtk!J4HTLBVt;IQ-5B zi-ZWYxw4X59hyR_+lG0b|MJ=U6iFZaHpSZ!Exd`=U+IZ6#YFj{CskOLhCkR|fyFtf z)y$vVQ%OHCGiS5Qa|8^yNKEyU0?h^i5DR0Sa78ybIB6dds9gvh&-%fCe-$jgkPpUG z2M2AdiPY6GSRxwfmBi(ANsMra9Jmc%g&%-_iuu}{X%d(5<|XBDF#`VFO*2~#+{-I z;N`A5n0sIXrl=U>sF4Lau&mdH;ZrnFIF+2!%SW%ZawxM(6ZSoCphx#jpdwk0Xc=*j zmZ;{#*4JCwCFPLZtS-Wh(%r~6YnTX$_EBZKYmmuuaj&}6P{hHMH0@Hv=GqKM+^z`X z)h9Ufx2n`;Vgod(G(fY8ILTbCTBaTbJA68Xgmfyy;t;*3DMX8 zWDE828)5kTTblkX84mVtKt2gKa7gDcswEX3yvU^&7Inc1M{_v%;0O71^BtXjs*w~9 zO(S!;W)kU@0O8WPu>PbeHRhcrIj@{)lSC1OI!(g@?*U%K8aD_FE+R6gWWaK^J;-Nj zB?!}=p@ z@K#4BuH3=H1jgHVXZDi5Syha^4MF7LtT-$S5{IJbHE_Dd28`t{;*Y6w;Ki{ebjm{` z6t^GXww4va{G%h}$pT|E^_PL9J-HC;%TJZ$H^all`(Wi0YZ5tp0KS<`#WmKi><3Li^k!y6$<#a&;p6faky<>NCZR5L2S>B_MiSW7#;SSx~z$V)4x)| z=@jd}$Cbd7mYMKq!C&%(xv*}C>Y#dMCEXsq8@h^H>CVP&(AvHT>h?39qH`JPkJmwu zwHCP9a+uUSVjQr(0=PfG1Et&cpqeAY`eLi$hmZmlJ9mU`J(&s?w;Sn;EFIY1^ptq7 z_}U)oxdZ~860z1G0-{ud*q&bquf!H{e;mqLAEcE|)-d4RkXC`WFd2_HM_|Zs5AW^e zGMJuplT?{CrS6g9$?^CRpw1{NcuHaSb7Q>NhG3xwL z7Pm;rkk!Yx!oHBjv`;S{y{#sB@!dS+Kv3u=k8z8yx% zoBY)JVmm0kjDjwg5cs2CMTN_)NOMsLuBfUbn-u_Rzb}F9T{nqesvWrgJq04`6LI`X z2QSvt3BSe#L($+LuKNN3v8hh%b@)xi>_2kG`nuTY6$x^g7s*0>#$Wh#lKL(&BnQt- zWqn{Dq!R>TBtU{>i+B>pa!=G{$uAB5Vft$8PhNC)D0nzrBex}HW3PxIhTYl?ap#lT zmBbUdNncyx(A#Qs)j5owf4@_i(_#>^tetb&dZOK0O_U_BY5`xlm0%?uKr{D=Vrrog zUKXAYr?qWpoA)`o_2MMjET7LE6DvZ)GnJ?(o({{q_rcOe3H1Ku1qX9nc~KfyiCIn| zUeHcwzxK)SwRD`2iYRo*Is#vd7s0P131`&%;o&^hNLXZWB3 z`kc3*Pq&P|qxwXa-L)dAfAXO)CJ18h#z9qH3NQVFAk;c%fbrZw`ZCcKn+x)IH4*_d zP`w66r?}(5=y4Kfw;fw~)!c*+Ch$Fd0g&dWWQXy4Vt2He)4NuPKQD=3t9UwB>vs%n z%#b)7Zh=YJ(ICNQ@~^M2#{B!+xcyrX!@1B0>7M(6WH>SqMAgh-?a_^}%4HdZJeY@_Gv&#V;UKmvNWuO?E5Ty>8vJF8 z@OncuZmCE|o%^h3cu5p@1vHY}xx)IMw`8EEPlNUPX5qUNB@i*_54TGNaHrrWQmtBq zA?B-arFlOu&T%SLGj^YvN+}$ zT{Lut$hFl`P4*h-|2GSh{G)K*p&4j;pq9v-b_HqqS@7eM0*dSrM7_khsJ(YSoH<;A zdwxv7;cF8xUfc|B*lM7|BOY0I>Mn^fIY6})SSKjQnYPuNWA>9m{Pbupk?3^C)B*<# z{`{ABIxY>fAGkn?N#0zF_Ah_XO50TQ{$dF)q8#w{ z_EWUe+6lf4c%k&822k7<4wA<$$cy)ESMswApUM{Ee6?)&dNiN>V+Pt9%yZoFgC=hCqb+j{@qvgfd|_SLCF!bUN9}Vu_hCNBq%9(! zluEE~Yz;5m<^#va_CzLr#l&Q37Cpf_CXXtP;b7u1lKgrekz9J8c+33dJ};_=ks(tM zsy{&jAHSj_my+=6ts;z0p2md^$>H4UGTc)TMC#jR@XNmtj5y7QL1zNVcAMSkP=8N< zm2EgAM$|x?@g6Gpy`SXD#p23PmTk!`MD<5^$&+vEKw%^RH$>Vo*7H+tUuOyEpI;5( zr~3&0cozL|OA;$fLiIImZqtJnPigS`WoQ~*i&K(CP}E-xo_x1u zE{zmw+g;Tz*S7*n$Na$IRT*5g{z2k?*WhAXUz)pF6^@owql?jh`21uD;z~)djL?J` zXE$Ke!E{W$s)mZ@t8wy$4l=*2n7+^61uu?d!S9O+80BdPCi`l5raz|fMvoS-4qLc> zRaFrgj`Bf^wYAt_5RW#C|0Dl>tpyFXFHcHkocclssGD=1JF_E*yTzHogHRiIvpIr)reW&ZW!0HIv!h9`uSm^OVm?!haCWazCxS+`T+4pIBZ2bJGqjuK#&%#&Uo}n^ zw}EEW3c4eBAMftESf1Ha3A}DH0Zs&qV#}B=_F7rMghbR|J~I)PKb}tNBaPbUeThQP zuTglrUJ_pj9wpx#4RP7Lg(!JP1^iu8>9*Nfu)!mf`*I~8_9+gMeFgz2;3S7FZY+0I z&e*+j*fuLX4O?3(A*|7X9zDX5s9%f=G{p%z7iPeESLUzWs;pHA;k+BO$PGZY^H=af;}Ee@lWThDpqK5ga%$z=dDE$@Peq zVMmKHT`C<7>tcSAuFG4g@cvM;{HHlS*%1WmYH~20-DaD1g_8EpT{GI$n5N z2JZSth|0bZI@!bv3s1|!&L+n3U*SOLU==9+8z$o7eI&>@ z-xtUBDtY*Bfd>jV&w*a8U!<=zpN!aK;Fu}f58g2&D{gwBQ^`umAhm_MI2Ppwt>dp zL(sk778KSw!^ILMRC^{0H)j)UTE3FpZ>U7G4U2JUa5boHEr1Hv4_$sg3!9!T1bgco zkZdSLZ;gZ4@xp_)rzfNK#ibaRRE3U51&H%gBMfw2NaHLDQ1C(vG2f9ywMJE`PZ{%? zNi)`LKBbPo$H*6jeds42f=?n_Nuz!d(1$n3z(69bd&csgS2Uo*`%3$xmBo;HY7Gk8 zxnNn@0t|O~$19I=g76#B`u<}{IB?5?yYeFjBV|O{@6&8JAydJA`vXBqTA2&BtHMy9 zEbu>elBD~nQOce>(NpW8xL604v-3*+4=-$+ltY_--6RulDPU8n7U{cEObsVpB;(We zLOPq>^;K`CnLP+{?vsB`2QMx1*d-Rw8jT-AS~V_t>%4nP`O!kkIi;(4FoM z9h<~q_J{@R_w2>}u~q1w#?hun%vYBai|(Iy!f$0S0AE0*JDX@zk1EU19-vKuRiFiQxxE}kN_UqkdH6@Rlx6S28^(o-QVs1sEX`n=yBak56_wd{FfLf^iLtz zB=(Fa936#5yan*6KMD9mS*HBmW@y^?mREdW66*`4Ky*tDInSTYa*1zve7w77yy7EZ zY|}Ab`lhG6diFs#{BVv}I9;4|Jq}?v>H^<|%k5ou3Gn~tSLb*xRk0c(BQ@FRC6))l zEMsnPR1^)@$D+o`PO9Y>14rkZ!B}5EcigKGr%$d00~!sZeDguWFAVOtCBUXqQ|K7T z#c%7M)7y4F$X`DdE^aTvUsuzR?@4jH+7ETcZ({w^BL!6d4s$P0l?I;oO7!A6fT7GT zYN%(*IsO?U4gFfEe5RT1=T9JGNjkLHJC0Px?nQs~a86k#2AV$afxrS$YPDX4^f(BB zxz!e26~Up~;396u&0j>SZYhlI%H#N^Eybf=m&m6UT|C)Y$+|@+NucB_GFn&y>lb-o zk69s_F@I0>tgYzvngg%MGSpHnCh<2rsLZKo#>HfNLAR->QfmxKhHgNYEkG?{Zy5J5 zB?f8}!Q}cm5`SwgsogOJY#+xEk`NEMi;Cdd-b#4H7%TeCwb0#no|He?PouxYQT|vb z+;j~``Wk`IcDzv0>p z7~@Ubm#XFcqmhRf!WJ(*oGB-cS`80)hK#ZM=(r{h#yFv&-7{`yehCUYv)9?-Abq2v zh3`z#$QVxvQqC^HzFh?nA7+A|B1NFSe>=SM{6r`1$p-IW9&O$nh2w+jL}{H2)yj^C zUc0xXqH!LMg&INI#5iJQ$DTVEB@}EMpzYBsP_ii&LvISei{3QUN*d!{-kAhnh9V)I zH%^BS#o??$1x(b70=@;)K;cLt2^N>dyp@(1E}l-V9F7H@0B6SNP{!`tiO`dCkF1Tz zhveGR#LYnvHp{1hLfRPdx@N_=&6VI7^^f)iSAvc}EB!tBE?xE95H}M|SS@9MKg%A_ z@ykVYc||k~?A^xw{-p-t)hg}rr7SD0Y6Gzwlc4AK1j4r>6~67xMn9bde3v7LUNYMB zQdtQpkSW4jZi}$1JsXy$%*8JNkjz*G@Lrx6+f` z++vSi|KtIE#IWOy5ic`?@yqNz(JlK1Z@;-6BpN3{K*mFA7%Rc~h^7$na1qG8s)+T< zgu0Iw!c6PQ=n=%>Nu5d*w~3*Zr{keMZ3{FHL}1rMJ~XnMiR1Uua5#bO;z}=Zu|H#A z+wy#@OutTR+m>N}S{S;Oo4^xWJ1lQa|T|;AI8}Ck%1561qTbEq2d75e;y7qt~-OGxER#)Ia1drf*AjEGyUmu zly;Pa5Vwq#^xGD32sc-6FF2KthO;BUeY}=MHU;{+-ch$Ywi~@* z0^zX{`aeI4Knflpl>Oe- z=3%?}GBns+20!g~V~z6g-Z>phpAwfmnyB56`;Z^HBf48 z1&KDAghH`b$?9XOIAp};g0DF;H#G*QuL#2{1%6;T=NPSiRDlPdI>Al{A6OAC4j&d) z;61k~P&pSl{`r)qm#w7%QtD*qnRM=-mNaCE`oja}j*6crjD_CcXvyRwr0rT9WLi(< zSu&>Tqk%neZ@>+$cU8hprygqA(M*q?sDoK`hu|XrDssOlfliewgs$FNFxqWFmajG? zhyCnGtT)4XpWOm^XLTVymQdrdYl`Pd>1hN(1N#CpqP;z=L@Wsd?-irmP zFh|^AydE`kgw zUMtM}-B0f3uf+o48u%e`0G7UqL`Usy`U65CXnZ*XzD|q5{0k}2uSCg@H(A{2_;OBH zjQZ5#KldC~1|AcU|&9^dV!u!EPSkj3qRFclwza$5b+L##AW! zP>svZ6~N5e!@$uHVpy9)hI|&_jT}3C`qLdHTHV2_PnrHJR>DtSLo`Qn8hDE(Q_b_r zXmuwOmr59es*pLP8c&5=i~;xRR}*ztET@>}>SmUK z>2m{mq2^gm_>Ym)M@`Gn@K*m63zbWAN9@dpuD`AIuyaAafLAh`gB} zW@^o69_w_lb24Xatoit;s~oa!FTpmat)SG* zb{+yN{6#*`j0V-)ABmP=Eq7te4E}iuVt@Zp8oB2aZF3HVdWR^q{}T$Ed)F{`^KOv) z=7g&2fi0A-*TZwiI%$a3J#y|BW0kT!&B5phklx_~Mr*@q?@%iKx?T$}S43mk z?-Z1gFG7vDSp3|+97=b}k&R1Y*nQFjPj+O1@0Q8*Z%-Cf_nP7kp?LT+v=b8kX8(`9 z_YSIJi}rQN2!bGjBA}?CqJk0(z?x&Cf*3#$6ct3pgs5NuMNm`($sj>8NDg8`5J_u} z34#f8#w;oZ6v2Qw-QH*KeXGuSb?a4~KVH4}?p;-^UcI{M)jfN5&(R}%KiG1-KQ0?d zaOv_3SV?b!hzY} z*^)`YC}lGjox113&hB&U@xfRk)K%fE8ljfzT_L2H3HC?bG4h}+gssRhz=su4ctS`j zKXc7V;GC&K`NpTrdR-cvk#qw`&O|4dnqi4@4hFnm4QGpL>K2<@L&lSQRx>37zq#d# zRHkUd@-9IGDM@(#-t2@-;x(BRPccb3osAed1bBdVV?3# zK6w<;UMlEy;SoKA+WReOf*|BaBIf+lLYHUSo&xKbp48jjYdY0 zzwcyy=EFF#)7q6VTHyKz?LEZ$3%c&jkIgYlLg4N$mLw-0=VF|a7ak9tjfYMP{6CA) zkYoRpUHFp(0YrGFERujF5<-qZ!vf5nQYU`sRZq$zX5;75RLD5Oi|Z_Db^*}o+89} z;(L>2e~B#ASqp5c_x_avt2mawh&}IVPpP7jc7banIvoTKV6FABLrQj!S&w$l+-$jv4$1N{gBkTEalDsjzFZwu8 z;4zVW_VarvQ`o&5_CJ*r88(k)UT6DY$jTA;=&}l#q3k0*ZNCWDoeD0pKP@J$WGd+Gc$7$ z27fhYVQ+%r?&}yb*+`ZR6ntmvZ}x_u@}F$(2~CvNP{N!m_Tu@MMgVjuW3`e!oO9hH z{(kfjb1{0)&g}jm^6lzPj5U4m?JyxuMYCb`-Bfs5_E7ZV@i(!Zqba+t7%wmlMdU{3 zxBA^`J8-*pJ}$4@0QUsl;0Js1+5HSz(Zex4?9vfEHdJm9stAmZ%QY#mM2MUJv^xwH z)B3aM8OfMEs|=rPpN858-C$%$5Z?7O#@3In5PEs5z?-*&j4O-bO_mgS;#@4&&p1P- zuPA|(#RG7{xgGFbZ6j=ubj2={fhf{kjnjHo;DQaknVb%VO_M@N)m$^!w|fAqS&@ei zl1E}$;t-6Fx+HSxokOB`8$e8;0X*H2g^tdaH+y+7LP}aBk>Qlhq$n0(jgiLJ!vBGynDgu+|LCr3T!B2 z9L{0|ySAZEFP1z#9zD`CYF?}iLl3_=us!c6dhe_Q69#W$YTi58qF0q{LwpI7e(}e0 z=F4^X^tCLx+Mx;0)3tC@z$~aV7xa{Db7AduK$4bjSVSjeq~Z-%C%VWAay{&EKlTNs7GlUtbFy%v%4%Z2#q z_!byu=p)VxiNHg;2b}1z%6&&G* zuRC_u&jke`j&ao@7Z*)GTgzAP0Ki-}F)WeHJu(y%10rzArEIuimC9E4J_60l%t&KM z42+$h3@a?}l8t&RaqF)rrtdQb#`?zL_jP;Vj9Lu&wl5RpyUnm;d?6ba_m%9}WeD7F z3lU|H#Erk*&@n?v2y~1?C6PDkhU#L)^wmfv4S^_;9emCF#gz4Wb7^|(>t4R$gOOAcsLiw1g)t}{W2B44DBId9nr9FTQ4TJe`@hbu`-TeknDsz zNvB9pr2vW#&LursKSiY-;ozXGh}LK1al8-*Y1uDNmZU{M{rdwXbzLQqTCfM^)Rn+@ zX>-(kyai;N#=$jeOY~LWuO5bfOpH$+|gW&PNdQsmS1sLmHg+b?Dh)aK;AbI(T_-FoGw$f@PZXB+O z23rIz_*g3pSPLV32ZP=Y1vvXj(52ZdN9HUk z#viuppof28BRc|N!y`Q$MNLSaz|@@dGzgnct|DGaDI{a~3U=VjSk@I3!vgFrVV8C! zrs!&s{)g|9ck^V?VthQlFR_E-jRbxw9>A^ZrQmwNB{HBV3)~lQmic8LHs(x*MnNB^ zad--R%*w@Z-*h~iHswUa;i5qC=JL&CL2)p& zeYat^Kc~S%gI(~p`6|n*4lDOrwKdcMa#3351N#narm{Xbr zGKE)&Uv~^VxL*#^z9}Nnv;DC1$vpg!Tgdib31+_2)-!|I=Ae416fWfd6y4vn242m0 zM#A-?*}5!ycs+2vDAnjLIdgd={N~Zv7V@gDe%Dcv(l-~lC)5_s-aL<~P$qj#yyo0&;%{?^d9Jv`p6vV}ZfOf< zV`nPh<;sy{MnMYs;IW-ufAoa8g<67JkTb44DFJ1JZHd_)A1u7I8^8DQ$ALw%0vAJ; zL>dP|;?^>h+URRp@UvBH^m7q@J0OKCtyAIf%Qd)Vv7qngZ6{K>d{5*%C=-iia!@(o z5OfTlK{ok}1ErGw#MFG95MNyYfgzzVYOWunLN0UF@&qzJ*8{I>_>hD@0^1?D2=`3N zW;ZQmajw#J_Tz-W@jH-=r!JH-C&4aQ=Q9Fcz6ytCeN*vhKYuKXiUk9SIq>UQhq!4- z3ieB?Am5F4;&rJg)U(NiE-wdozTkscYtu;3PG5|h#J+6smpw?kWl>z^PqLd23w?bL zx(LtApRcN-Va;R=)E2=Ppe;>EE8ozZ$}1V+6-fDz|+fS=t|vUTTLTt9LTcsyDKhQFVS zZWa2V@t`Yg`{mO_FE(4Gzv?i^-X4UPUzWhU+551rCRB9ZLtqf*NRp(p`QlJZWAwd5 zpnIfG?ZH{e7+;t`Tm&xfv63Pf#~YabL3ea4y-&WD$3ohHcO=3hg}v4~5$rOYyOMEE(^;pG}q!n048!VR)OE z7=9G|K`Rf!`Jea6rp|cr@?H-a=8Z$!euv;e^~R*+bh<<*o+Z)ai%@&adiXhVQW}uoHr(%xyb6wT~WOGG+E>< zWE{P`CjRhYF6gzG;Q9P2@zinY;KL)KJPpG$KS(s4N?P{p=69WJ**^nL zk3A!P(UV8c+|-1rIVmL1`z+a5zXCVTiG~S_!okT&9{qU^4D@ssJLKh&x`xZ_q3;~H zRO|-%0_P`patRbq7wW5IPLo`tzG(BXh_&u<#%B#NFnrm1G@CsV#yMrfnf`fj?1nDv z7&r*7?^+6p;aTDhSFVYyY_(uQ%qY?_dI8hT5%}g8x1c!4lT7?+id!vhK=*4j9DEoH zGRmt(-;grzj=m(43Oyubr5{lH6u3H3RnRb+g|53^le1rng`AV&NY1Fk%s;b46J!MTT#!GQ zY!~9trGs`2g$3Er{kxT=NvNTs(@zpKsD|B8 zOeeQT4uT=wf?l1rB1StFfTCoV$ok}Mvc0>5OcndH=1f1u_Y$SL% z91&f+_?WB|Vo92xeD_${!F zy{{g?R$pym+gig|O=YU!LrcPEReHGk_#zl%YzxOs4w5ICt8wqEk<#H)z7$#ZCy*_CmRk15q(29#_?7;;3IsQTFm7_Bzm# zEo_f~6Q2SwH$Ij`{7Qw~Z30iR)e4piRF_)s2h!|=BmuyUIc<{Olea{Rg;B6PVK^WJ)*hxKHK?11`jRvz*PeOp-+(q*l2ta87L-#M<|8( zof+_8rNGbHV2kX{YOspa#Qk>|IX^y!eLj^+EILlH4}}xK_frA8cH5X7S|18#awDNi zCm7esC$ohrV{qCrPl%Wi3GclIkr@r8_|m>V-s(FMMr0mEDWQ#Pr)sfvl?O0a?K?@c z4uElUXM<0t4lYUFhYCOa;b0QQ4gFT*L$`F)pY2b&JwJ$}pM`$xz zZb;*Pi$9uXiXPC(@akzPTxDz7jly_AE8sHo6j%>&7L09a8I41q$KkOo58PO}9c%hD zu>;jYOfFym=8TX>xyDsslpy3bTueqL3c_ZHo6dv%r27R1V{0{&r5;Zy(0;@5566_ z$gYN{!t>hga95&<^;6xC=Aog;gBG!dTg70eaDgpYABwN~{}DZ(6vSTb7q}ofBgwW( zbzIwZhQY4^#QLb9kvrWAk5BLum5uR+nuxRPvDlrs3I1O1?ztib6>oHQ8w7s>$}GPt zm_VR<9_H4op|srvk(1SNX6x&NWe!=yJVD40>Kx2cX51C|?_Z6d0vatm`lhl+iB8xM z|AhGtABulOFT}HdOXDn0H(dYZin!~IJXFok$HgA$P+Xf0uY_ZWah?a}y(i$%`2)qL z{2j3Wz!uj1Wd!2LE#k9R3$e8%2Ve9ScxxHM;n2_`G;N*^S9&eNH{pJ`)+-Ay^q-2p ziGJWQAq8hT{U+ZVCtyZqF1lK-!4b=+!1KvF;jC5@3oSe#KDtdFePn9!30{3ed={n=M$F4OX`k;qyK#=m?$+GZvpE6K&GrcFkv^I$%6_f856E z-4^0&msB#ccMgcZM?!n=TO|8_A$W}`W(}g(qGXLT7D@MoJ}a<@f_E&J6M_^|7 zEbM~|u6x7IF}ZL!J`$E44-s^Croji@FXFjJ9B^R7P^|hRi#z7-h3DJ|oV}vR{QJc$ zD0vQh6_W#7NB0M%OYxT4r!R|QJKV|q_v4A*T_1G6mk3h+$C66D(t11!U!b5$G;8Ser*gQB3@H4;81hGA*Y4YAy*6+}gSIVf+C#)q3N;d{Ra zq&jgJggz$V9;k`U!afc7?hNZRzla*-&a>rhTj6kX0RHN)1uOh+kvU(#vgK=UF?glQ zIz)=N*riOob+8Wf%eW{WxkH;6ZQe~vRftt`+hNDeA{cpdIJvkuzm6RI zNX+WZg;-QEjO>a+Bd<^hZ4r)XSv=IPEPzoj6XEwQe<5y`j0q3)Fv8(1vuRI*fQh4_ zeQud}$lf2~jkao7btg|;t!q!DocrMWD=jRnzrdw1xXfC?ba#2PvfQuJNirE~y{rWQk=(l4ap#t29kw)4aDKo+b~{4{4(v%MnrEayKVl}7XD-E2X7&tQg)t&BMZD>y4n8fu z$qct9k^Xz-$f4Rayg&0DTP?&(E_$XziJl5Z(*l?;os3y$8;RVy;l#`*j#(~C!R;5u zqdv)ETPut}ECr?Ib><|ItPK!rhxw2_vZW9%$^hs3VC2f-c=%xw)8Cc~jqgrc zCVX^fY-W_8U%vy`^W&uG_&cJM{(>CdoPg*03<0H13cbRk$_8x3l0CHSbf9Q4{h8}hsd zvx|-oi0VFbwzg9myrvlfGaLj(!zM#d@jSGfJP?Dzc40z{23)OlXZihCqlduLzWjbG zE}TC?s4LK@Ki6W0xig00%BBKlEE9}3d*blk(X}|aX{I>wm%xK&O0eQZ1kSK9hvBi3 z=#*rGZjwdV_Le|n*>SRPZZF)ODdf(46rSBRuaU`z-w64O3qW1g9@6!^AmLmt>)a;P zpBV~dx^WSx)Rjx}BA1|!#Y#Ni*u!RwR>E_Nhl%RtdBl(54DV&d+u>xmfN+jsJr@*$(Y8KpgQT@9sOYy3^2)rA^z}Q95p!Yf;K4-O<%sMUP zUiPfS;BF7d)AbiSHmTzG%W9C66^Nrcvrx~?0KL?s$dq;+EMY?3#*{3OsGVh*_A~@v zJ)Q!c7w?mE708BM)+KYi-AP1+GWOXKjVkL0qJxmrBq7m@47qq+bl~VVmRVQ=2BzDf zh?+p~vw4>NM@QfY%P~UTQ8;)m^}|_4n$UNe0p7e40Yg&j#d)rAq^Dy69I=VOcLwV0 zTR<;CdoqJqJYOO3yn`{z%@gx3xr%C&UD)Qmg2tzsCj`G5BuZKs3&SMSA!K<3nC`1( zzHfVB?5G38_R&hzk5`1o!|&@QvPW7Z+iVB*zngScoeh~cnUzw)H zG3GvG6b#*Ejn#Ygp-70of1h^%M(FKQVM(x?u$+P zg?ojQ;IAr-7W>!jg=0$!u zyx)Rud;v?GC*=NaK2KiliDD$#8X89{uy6Pkp>5JSEUHW(Rs0j#`0R{$;YW9IqB9k}DznLum%)$_bO6qgK`_1667N*!uwyRX z zPSr_p?6trrITlM6F3JQQ8VK%-_Q1{MlR$O-Y!*4z6WUMM3Y^(m%Qg1|hLMw?*M8j% z=Q=prNJ>aa^pg1dRXgmT5C4ma>ObGBcFFuN*7)D^Ye@-N3CX_>{XgFRnrQw#gGxFDRDJiM{*g&s;wkIt)r2Fsn z6aL=tKkG|KME=iD|8Mv(r=XoIs1s@(lB>nFxB5aAuN4i-T}s|f`XxFe%7Pzh$#pkL zDqcFOh9lqAiOA3?06!gpJP(J@EyLi}uzfgHX*x-9n@u0T9nQut;$+-ef4JECf;g@H zBl7rgi|l9iY_OLxIyjg@{1YeSrbn?+;W#KBNMe7E4-|O28{tcEgZRF(D!wXoho;S| zA*wEc?QY)7q<<9Rw}bYu{8^Ns_g7y(SkSZ_l%YZ{-b@yIj-LeKrw*dW&7~yFG?FY@ zIt1(0+VFM3ayrXi6<4ar(b}OpTyE=9tZcrDpZ8{C=e02?SD;AW)ZZriFQ@g%Q zx*XE&z{lgc6CgWsJQET`qQvAXK1obtsM$901J-MYm z!dc+^e2>QOJM!`1NK;6BR3oy|(}LV%Aw)D~6I-#@TNGwH24|T{Vql*^81MCy-4PgU zio2RItG5E|oZSk(RoAf7a1_oO=YYQ(I+&!;oBrxBfA>nE-%0#^CEt1XcW?Uo;qU1@ z=V{aa>b-yd%j@4hW&HW?_5QtI{QLd?nf~w50yCyfne*3?F8t?k{~ZrBKmOe>{%r;S zWxjrYeg5|*HRIm}|IMkSg!F&vzpDTA-+(WF|E|YB+x@@mzrCi*{>PgC?)QIlcmB`6 z{eQFt{%imJ_kMWi(|_*2#{V3j$v@M7`|;%e=5haRXG#7~J8R=V*UP`#P5)=U_P^}M zfAi=5fBSF$j$8k=y_6*WJ~MyWVd_FFuV3b~>aRu^DA-?rUF(1S{oU4ok6iz@`(JaB z^1_?&k{15{uXdcle=L*y+YFOf`5$u<5~lx5|LgpJ->!T0_3s`y#NnS!|1$~r&$Isz z&#CUYL}kL(&{O7VJWk1sZtY(I+uMd=N=Q82)vd)ZR4k$weD?FMMl&9%eE^})8(;h^YPZ3 zRBE}e0au#@)8OMCkfnW-zHbZRo?32v%$2(^<4GHxHvb?rJvqS6^_xkLwBM!A`a03P z8!6mp#c&=pX+BlZT1D^JI`glBf2b;2#Y){P1g3 z(iLJ=zQg#-;a4EEE*8uq+L+za_559?CHFVgpsS>fcuYz-{pC@^@ktyVlmCJ*95I{r z?&r!svr4*SswLM~P_>Gd_oU+|p5_}T^<@>e)TrJ38W>;YO4r*v5XlYeVBC5=nwI3x z_~r?8oUtTbuNDs@^aU>5u$$cFPaUrdTpE% zD@jR5xuIuZ{W58MJ?0QS(W2T=@_srkeXK!4HD2+Jm!o;Y>B*$;v`Y|p_ynza)d0t9 zlX!<@1l>P&IrwDW8zP@b~apKk4yNS~Eth?n(k0`2B>D01D7>B`=C|J4@Mq(^Dm07rWNzz4Et z%LYDGZUgIE{|;&{?k6qVl4+**G3u^%hc2sgfYl9A(AhkNhs(+cwPw#DUUI%DG)R|j z*%r$~)_sO4CmzGgQIWiAaUqvA-@(t=PGA$IP53F3k!bnW06OOT!pr%#_~f}A6L_m6 zYX1k(Q+|&=XgEfzpUtFg$M#a48ZlQ;Zh%!2r(wFyGF}xa!Pj4_gx#jrbVK_+u2^uM zZ9Jk&T{HvPSJeZUu_lCGmDx<~kI&@&p7nw5tO{HkzaPpHz3GeUiF}u3CVBewC%oB` zhOakS@#3Sk5c9H*Pa2*>qo!8#o#jh#art`M-#MQfOsSxo-^Y{1)h)a-rw1oltB7A{ zbh7-xI&_@M6?(F4IE0j^@#FU2#CcDuh1}i`>`{=jkPB!@C+KDIjZVMtTGkMbgI;5H z=2oiEbCX{Tj6(CbHfSZg8V@Zw!&Os$;{yeOCwur5ZFA4#joa5?)eK|)?A9uLw8fLI zx)Vc9#s_n?6FK0tQCFzTRe`v-X>^}z2KRD!1N-}1(yNj&Otx>(TC?f-UJIC9;EUPx9R7jSv=V!n4ef2!`lOkVUw84PbN+CuBMoz1r5jEg9p$aM zUi^c3HD%*WaQWAx98%jc`&2UT>nq2PW`*)JHkN}!>&7GabkQ7k=~V;?Oics}Q#mfu zSqZ4;&(9WgL9?74O^r7JW%U@+`&1q;p8SJl__rf(u%zckCh={3t}u6khV_%uwFst(JbAKc<-uXo;f@>@S{_uPr@%F-n#?n=`ivN?R9l8B$a za|dth--Q+fd#Z7BE!7(AjZ}%UgUyM!$@V6eX6B>0NC!`rKSiyk^C&ML#ht?5pnT|C z=BU09cc)gMlA9BBYU|U_mmVN@9!rOQuVUpwj`Yp8Ikfld1kf(Aq0I^3K)cC|_HEAL zi&B*7;F1eCDtI&l!XnPo>S>> zyIdmnbywyi!%cXvmrr4eWF_@lwHw>i2hhq37IbX4CEY7|kQ#-|XIm!Q!PJ|f{Ajp2 zKC^oQ%l~YroA%mJ<(n7y(K)e#c6lFi-d__@*A7PgiRQyLxzY2ZCeq>`GQ3&^=z$TQ z)L^s{9VJ;0Y0DHFOtiY$cKv;@`%-^g>>SSBL(^dXhB`jqx{1D?Iz@O99rKZKK}lF8td2c)D^*481%clt;Td@|EWP zeBy^tvSE~%UUlkgbu{%fy&^k@`;2}}pC8}H+r1>I*<}^_=EF&tv0WCAxR`MPCxeai zw({*dqhZLtU3|*dGCGk>AnLV#_(xiitL7x3$)ty{+U+90^kzT3sFs1P28Cq0bpoI9 zz#LT02k~n17}{c{()**88a}2ns(B}admg^eAIU6*Q#Yfyywx81SV|hsH^=hoswiG| zyDu#}I*Jb~pUD$X+3}i6Nt$Z1n%Y-KBe@WP3cA^Rxyftnr{cjKkLXj=`eK;Y=RVW< zS%i5mD%?^blGiCO=ElcH(`cgyc=ve)yE*F(-T7R|s}|zy=2EewBTO1+_Ps{tRX4%u zWI0$CJe&4>+(55tIn&691XQtGMdPcE@#FOg^y~Otbi}s^oEqvvTdfuOKvSVsF#jyE zZyUou&brO2n=R?Q{buyNgBz9gzQbj-OsUi0jm8c*fB}gQS+Y|L9$cbK z6?+fiXPi~|4@YYrJ}Z@b{S4s+x0iC?_%?F$Vh~s8eSo`6ETGz1IS^9e&Ki2ja?o_5 z?}r@c+SX2VQrailYu`jVt@k6^qO?(D=a_=uyV7vMS8I5cX-A(HyK*OaMXO_dR&mD} zg=jA?*htR4)a1H7)fBk=FNJHo<3c-kc29@r=Y~^{^0_pB`bbQYPT-*T9d@i=&R=dC zL|u(?Xr#|97^PE-K1Wr^yOvS>+_Z4EVv8&FpMQjtbLB95p@h|&JSBQ}&`j>rs6h{= zp5h_`9Jr{+=e468UkpR73jGS%z;&?9Z)C1~tS^ z-$}=(8q?Kc%A;+_>D^O5CuiKR;&1FlO#CIMq9Z_Yd4pqr&{eA@}{b zzQAcsTdK}qb>z|JbV*tm+03{15ysiU3N$(GI1T=8%Fj#8V!M0Q!Qztze8~PK{EF2T zxWZ;polB~?EN42cTC#}GG4`1Z^%69)Z<=h5ovgk{zA=JhO?OY1$Q)uaYf8&7hX zQ6lc|^oqVacN6tJPhhln2;J6C)~c`HM>^L$nBQ@*MAsFQ>1w$bY-rsbY@cpV-ycfl zZ>DQv!IWZDTRfTXJ0wl}nN8)nYCbe|X__c+q!a%W6T~l?oZ_!!PQavzkz7+_0vFBC zz(I@EtyE=`Xy>NmIJ8KH-q0AyrDW6j>-Lj)@xTetu2rCScpu*QZ3>pyN7vuiH$=C@ zVMzQ1hQ`1g+JCH#a1W8=EA^1JHeDibio&?apbwv4^xJA@cF^*33DTmRo!f9ynCy*%B=FSg7 zXyvZsnCI=y3lFX*_L=8JkL`x@#kt?m;)fEwX)Fdj_?eL{BdL1922lO5n|G#Z^Q*z@ zxiv^zJ!_~Ia+-^&Qm#DZ?V79QVd)nz>%HOr}lqWv$r^BeB{elNH$;Qzhp2XLofX!TImmI$n879~> z58!d&EvohL0C^KyLlu8-;-UE^IC|PtZZJ!on>}hogJfup-5xgzcQ*^y$EW0PY2f72*v1UdXb(QLe zfkCIm<}3Tqcqv2PYdyi9Cz*Wn*G?FG$cv9Ss?Q^LQ+|5)MF@&|&E)%MgWkC{d`ek5 zSC896pTvzo>&K~lqT+rk6BC19?w+LuGXm*5^*HKbvKds{debjyeXMrOp2mA_%;!5} zG5l%(`RVblbo?++>J+EQ`}#Q1O6v-e_;fV2x|&1VjtcdF$Hwu9 zdz1J<=MzNv;$d1mpdI_XJ&9e9>!_#59XsA+@R#rJf|u(|ysrCVv7y8go!Q5WQG2ucT9o_JD)R4-V(MMGnRK{IhNYJr!0+kGdy9g=7=t zM>Jq$l>~lLh~bIQo5zc?>B{A)Tsftb?^37->9Vc7#PT=PhpVb zG%Wim2H%ek*z?7RZtQwZeUekDdCCMDzfX~zbvA@+LtW@vX&sv9cLTRDFKSbp2s>VB z!miW$TxshYK40+{GnPbdoEl4Rdfr20NoSgqBgt|#n(o2ff z{Cd$;?z`R=w;pH^-6b*&LH4U@xsgy0eBuCa*H}VFJyoX(5ha2c>^#n? zpj$m*I$Afbr=MlNpqiyLj=JT=CsmE+R}YM!$FA&S2|aK5!KAZjQ=7{ZKiuUvx@!dX z%{8crH=vt`?xR07s`(JJDtLM&hrjUChT4X+{H5Ym2qAxHwDOW#`|(TZOj6Qw}DzLRD7Rm% z!7t?y+BWhv%AH!oPlP$r&s`ySx0gI!7ZxvQL<@Fg$77L8))A^(upXUPCy=`{?qPe9 z9A?ROLCfzuAdI}+_7_F<;ECLI^Jq*`JVFQQujXGQwdi2RQSo>dv}c6TfDsYg((Ja7 z_ghBm?>>it#+M-feI5SFjHiAiod(nn;Z~;S@a&f#BuCm?$Zyi+YAR!>r&%&r(YEAE zyi$02|Fw{3CqbXm6h40UW?qza6Y4xXc!6|pI<%~mKUjMToEnnhvX8nrIh$cZ#dCac zZy8N9Tc+^x`UWy0fVO_J$U-rm241 z*zk$?X5v%vlO|(W@v)8fUa*u7gXMff=OT-Z1&hc5cR5^Y@`|?Rv~dL&Lprlp6m{o@ z7~6H6cRhFH>lE9l+p50&cYq$UDLT-O*FJRD_VIM#-U>cXDwX@YHIP5QROpj2 zbE)rSU%EQZkUu&s;(KNHg8tST{(a~K?%DqllMau^=&T~zF8`j}YE)z2AMdHZxGzem zx8X~P(Qvb?7quLDAG`9k8*cv^%EQ`<`BaOO9QUWA_S|eb@6~A>5%QicH95#;8NY>o z(_E;X{Q&AI^NIdW*W-h3CeqBerL^ApCDpythr$YLsO+mLp8GiXXGJGa5~(WbmLF^O9&+=EVsz~*)RsqtdQo)3|-!lYn2VOB0?I7QHbQ^i!Z?_Qez^as@Y zofEDbM_QtmM3o=8a48{o=`G(%o0l6vM*IMNCTAxc6X4w!v>x!gQ>0nH_ZHN2$~$80 zqYmazW$BQ6pLq9&0&cdVH&t${=SI6?>CSVHxa!zl(389xx)uh|tiUYZ+g6&Z?5(3u zE(Fm9Yq#^ss6)fcGo>uCC1H4?3EoMoTPL$Tj%W%^=m9(~rf9bZ)nK7`(l*zWC+J{abaYhWrW9%=Hzhd9e%q^oG!& z&52xbSUDZ9I27IADe_ZG7SO%6mEyZo3wf~iIGkaxLHxE}g7-dSQQl@TN2w!V)Z9w+ zy>qxigEalJP@ZdbAErHz7w`!m*OAd)maJvhB>w$T3m;K)fEVS>f=NOhTx9EP>i!^# zZ&JMWRyWG_d)#k(z#q$KH){e1pCfPFt2Q z_&Mfa#+_u*uniOVpS`sZlqNxUZ+eSvCx!f$h$8UP*~UjL?ZZ!Oh~-^r&1~ihOS+Wzo`hUeZPrR#}22JZYR-7Aqcas zhqL%4Bl)^UeZG9B125`hLH7=Bq04QT@WYS36VaVA${h+sR*OAo)fz*-SI`--l{B?j zvuZeuU1iR<)*a@j4X5+5l{Q>>&>>G8bV&BxJ8ZRU33VH?hE{p3CSyAUnBdXv5O*tu z7d%U&KXpEHnPopn!s85Dq>+gB_Z{)|I(2@uI{|c4Ge}x))d-%BE@O4Y{T7Oul+#2$dV81y}E{g(k^7>Ul+< z&PvjND;mLcy>lej7^g+Mjh4`u_ugHTHVT&Vdc6Rj8V=*$Wj{w{;74bNs> zRtj|Z-Wr7PeEz;Un+~pv1Rfngf4G^!>-HWlE|^7M+*h#b+-nP)US8u0lM^x8`~-Bb zIn6Zniuj&snl$yb6}@*^3l6>aM%AEWQFIH3$}rDO!{N~;<8X1U$&NP&XVEzi)83a z%IPZeZg^hu18+_(p+_8B_{h;#xO(3zY_d4VHbt-H&Ffe3&@bJv+C7-|tf|2k{TD)A zXfe!MxRsjgrofsnxjf%%Jl8X;q?^kYaW*gN-$+LOByO&^k$=(ArdoHu<1*zU{#&(`Zw)FWXQvs`Qgq4Gx`d- ze~#eoZwb6(L~pwMoee+VqRGE{7V|N`g_@T9@!;9kw_&#CXONh4h9@@Ef%J!k1lK z0PKMjU%O1s>gxkXs&iC=PTYBctK91WwTk{$2?KxQr|vP-@`V}99T!d$k1O+L4@>@F zX)x2b^U z>K;hkc^G$$u%}8oCN#5`1-hk1(M%~>RDX5^@InTuGf^UWSUa=q?2K^&GIdHjMSyawY~9=!d&Vm zR|s>$4+`ItI~3O_928{Gce~mL=*PdAUxO>#?72N z@ZHm+_-9HZIW5E~ZjNt(+^O%;c#%44*sIXEWJ$X3v<*L?7s3av?9X+csc_{bobS%u zO*gxSQ-@!5ym>(ePnkQA23V_d^Qv-wZtWLbIqn(R?c9gz3|q{EmNS$p&&pD{@LZ>zKf3)``dhco zf9kwbbzi#m&e_!LHM953W~NuqnqJ*sfBi<`J6Wgghe4uKVORcm94$7HTpoOqts8og zc(_btZq;sq%dV?I>665??R71E*PBg3le#s7I_K z*B)6wdRp(mY2UFhU1|q>D}6<-H{axa1maxlvu*fedoo!N5)RH`sd(s?8nl1R20z9E z<*rOf;z@YJi@x~O59Q;P8^j1^NkwS^-et2 zV?!Lx_B&6FM#u}_rd8sxD;>h`)mDOYRueGXC=Mr`aKy}qNy4L&JHgnsfLL}ZQ#e=# zwY}l+-FhSHN*A#~+eYK`!S-a1Lo|HdCrKB5%Lmi?{X)&puB7bz26WcS$NQW6;kvJ1 z$%d74z-PmKDmbqTBkqhN?nDi_-BL9pPJbokWm%~4UI)ucPO?)i1jONo5oU%W_7pRyr02*3H4$iUO$UT@15Ll7*)ynPAH%j%~2b6!zCM zK`}jTG#)V&5;LaYSgBHoXepr@7m8>|c{V9E9|)1DQy}VxHSar#r(A*=eZk)&?oYJH zoxCh~m_qU3XK^~dbPGuM@jj*lu{iX!D>&y$q2#MLtWw>LRh~YuFP#Iu>PE7-={a3{ z`v|ON8sMlw6etY6O;0RU183i2+UI4=uF=*bAG-?3wgg{%;y9j88xsQt)!U(}JPU26 zilfs`IVMo+6M87-W9aJ_uXkDIP|~%j(*iRjNi_NBKMULu>w!*F?6IM zbCBHeXd{_lw}7#92a(9_!JoeONb~bL6wGl!(TFg*A9JbV~f&v>B>|T#1AA)6Y#hy^=;4=j8NemS{ zo>GNTNk7?Z))koaVklW!rAIVf53nXdYG{8*j95FW;U`HIEEXTl?v8JUM}vk#@~EjW z=1Hx2lKctiN?ip3qtn4v_94=k7-(+UPDhWg1dGvzjNFxWSYLV&yL`(bJfjIzzs14> zeGTv*HX6Fa2Qpo6p9{AsMq|SYNx0eDNb8+{3Yqrl5G0JjAxE8X3ka|$xg1;^8*$T< zQX&@VLi14siQ_!zbG?U)T7S}?O0w|$;&*Jzd_hZwEycQfVNf|I5<()A2sf?(XZL-f z+cg5wEwK@$V-oRa@K9FKxPT^XGsJaQa&YnIPFlBm7@YHL#@RKF;8$2qx(I;7G94^< zX8@C`->`$%=3)9iRoD-J)yIzDu(w8(F%v->jWp^NHVaSGj-9Pg7LsX>rC%7(|u#8cM?hw0q6CK$Q!Jn1ny&1S{Pz=NTh_(*vR?zVRV z*-c^CGwO6ro3j#|sdfP8=~)rCwW2UlyP-x|%Ln3rXhVxDWLc+&EVkZFAP4 z+DG1=6LwRPXugKwb_vvzn+UlR^r3Z|Ej0V=A?i2!fzP&0X!0fi1b1_3bo@&yKeU=` zPhgPgeNE4L=Hm6>Trl{qM+Qnhq>{@Y(b{i`aKJN5xbQhc%0G+Jtl^3%J-e9~p5lT{9YJ zjgJM~c_4#V?^n`|+C2U(Kpf8Fd3-eUIjiI}8#~|D5-r~UDN($S+!pL(^=|G2uYp?d z$ehQ=jT(;ZEOA^U_(-aK)>lVI+TuDz4H&aM98E7)LhC^v5NC>T75_}!q^pSbU(~^B z<#?=rGXjpC51`Vjr5I*-XT5cnk0P2^jzQ+qi}oOWLkPMh6^PpitnH#-nd z59uR2j)vl{DFYGbSmUTyW9Sm&KHBib462lxNUY!;mW>($yO*El^Sf*Dr+g_Ltl3VE ze66I98>X^}b3$Rqti9&G+J3n$-Ig4TC27^vw8?J+In zk@9J>d+2s7c~*}TM~HKlFo90|*h1uUyCAzz8GC1KCcav0$;*OUG$wx#bK%1w@O3Xh zC4W8W?W!lfTOFa=vIA#Nn*mQWBf;pIA8yp&j_TADPq!||*$=caH&llkcG3vf%v*q+ zBOelxjn4=qB+;LF2xG_0&RajIqS%L2FPs;UG%h?y3=ABZD$6M~OkH5qK_tM`z!c#lezN zObmMoOM@GP`YVpZ^Y|c;exLx}rgdokC6IKs_~Pxa%SqDU{xtGn4qo4IhG@TdNvEGo zM6Kf!gmo4-=)OK9s7pxZeRmJ&##dhWF0_|~jFCXY7&jcbBOOI=h-Vyxll$XHu7N(PziJ>SZ;RqWH#3~1AA#Cs zJ79NPn=n6yuQ%1c8y}X-!$+?|diT*__{P^**VZ16lIuFmPMcgMeFHyJFV}v!)k6y= zJ6{K4Qh*6slklq5dK@A;AFs_>4%d0eo);x%)|{$Z_mH zLLPR-Z^Jf|v+Tz`E|_w19I7b2W~Z57gz6oMFe%^){Zvr`=Z9*-$W0G;9@%X;D^DKN zvW+3(`HJeHR+Lt>*Ff^J3K+k7gEwLPTu1Q+sR`plp6;F zp4$`49}lU^SmUk! zcr@b^*;Js0;$mOO#vX>2*9v%S#$K>Eok#CqEyv=pEP8*`TN-xK3gs-h;R9+{V zjo#Kt`Lfv5W?M9C7ZER9SH2DUoq9@BBR&jr^30c}>q>T5jRk-r2CM?HYVd!A5J5KC&;tHM^hEP6q22rOxNf$dX^ zY3zuDY>~7Hiug*RxZxE{>Ax48FYcw+zuAIo)Je>U*^Or{4XMYALuhaR9K;ttLz}2n zq8T?7Q%5?1!gh1KGCu|dI?_ms*TI=@4@m6%P}(JKfnI7yscnWnP#&K&rofLx_^4Bl z+Dp{=Rx+fXY!E2R2f!wm9_U?hfz*E)$Mb6>L7~b%GIN|6boQ;n6+ae2nZG1{xb~!G z^=CKG%C5q*lj3pi_p;Ub>m(;%Xm|>rpML}+H;Zs( z0ZT~JmtZJ6x)_{~1Vi3CTUZl%o(_L>kjAU8fc+1>NbLI@x<6NjDVT16-h*#~+NC&{ ze>(#WF1ulg_#N_zTS&u$MnTc{bCfw?4mo>rQEU25x?t^&YS)!n!t^b+@LgskoZtI| zHm+~S1fyi!eCh;TOR7b)k#_iLkPsH<%X5`G`cSHMBH7iEN9P2sMd7Y7Xd1nfj@`Bd z^cUX7yRYZc;i|gAlFHMtYN-;OU3d^gf(cC26i2%_e|VZK#u=;H(~SG2VCfge9(?qZ z&V3-t9etAvroJICz(5-3HzmT>A-x#C`4U70U!v>nY;k&uDi&=T!FbHr2CnrymtW&! z;rg=@U^$cLyw6sLl*Wm8CfthNynKsjxU|rrt*?YT#X5Gbvi zXjFHHE?p%>d;Qb+c$p1eOxA)Xz2VT7ERB;|`eE9Nksuk@MLK0(us!aL?E1)XQYqAi zi$U3RqjQANylXcko=jz>k|bcN@lu$JiDdDnJa`wki}$(5;M+;5!b4GuAZ_|9w!Wf? zE>_3`(ez~8R-Oj$RP)Ig6=f{#W9ez{CD1q|o~T+#k@>@`q0T)U7hNCD4Z2bQ4zrx_ zMcX&_Sbw?d(`*Et%wsNeH20GcGx#}&%_TZ0AeQd+)ud};?vaJ+V$75)k*Kl$Bo6vM z6N6Pu2y@08%I)UhG<77x^zAV1NCGsEsitGE#9;TmT~Mp7jIoOOB=o`_XkRJ~Hlxb0 zHuk6R=S>w_8$J|v1*^~(WeUtdT@{$wd6HVa3+XBBB^qTh0Ud1|FNy*Ulyd8lYcjjd0zu%>W{z!X803I4`n>KCL+^nL1}<7mbAH{jc7IK7H89(= zvO1URq-}}1U>a1w9_fBpt#>30E?L-t^d@WKn`@8VA65&CSBatA$1;*1${+zhV#!>4ob>erW8@m=9!MfB2s(5b~W?MKxRNoLhpY{MJHi}~ILSHhD1YjCJ zZ=R;3PXi?;fXV!|SksruZj8PyT>j({UmI~WSih75*JgG4^4WG!8{$Svr>ugtBaaA< zN>I}F{sSoMo`ICOQc^VQAi8Y|A*U~tqS(74>TvEnSUsu3Pd(xwa=a8R+j>!5>WP4mh0Vfn@l#F zOQ$sK!M=)ajLIkDvYQD%sf}>hh)+a@YlmVnC0yd&fERS$9#BvID6CummQ`JZsBig+ zj9vB|4yy*h+k2x}|5-|4)g8dshK{69SLtDaNFYirkEK74_`vX`;Q~?PT6(rEk{+*~ z0vm?xgFVUJ!p|0SAl$zcOOATMvxArLR)QZry0sF{nET;^?CDq}&SMVM!@;(xzNU2? z3r2A#gfp1E&^EULtkO<`|Ljh3zhgHxd#6HghZy&oCJTBrL+QO&d#KhrPFOnnDb-#k z&pldmn~X2hghK=NvX@p^Vra;I;<`1RPAHecXCW*3IqM31E_stU$Q$7uT^Zr_?JH5S z-IQvq`@pt`rNF&@fqX5Y_2_M)0_lA>&}Z%%vVXZbu7AIpmHj4!(|Iab`ym59sx60o z)1}R~dTqful~0J$Q&$M%ainQqSHP^qr8rwtA4`p!>A;EKFsgY44x73Q2U;}Y)M=y9 zXGFQM@In-y*Zv%)k9aA(6qtgytCqo-&T{frybioR?50z`#i5&74;h?LKn9ntMZZ~Q|b&eMjsg`B9GB5+%)DK|li)^;#<7;}p;Sz3qkcsyn zt;TfCqeO1dQC#ss6PSt?($#fLkh(Y+Uapu35TiubtW6-*`NL~o^Zk~8wXV8Oc!R$3 zZ-*UuV?h7jb)qSgg~`=1sBq{6Q8JiL*BfsK1y4Rk1=q+N&trlDmoA}3{Y>g_A_;l5 zS0F6D4uS%5pk|W~UKs3%Gh$A|jL4%r_t+HNKW#W}X>!1^-a@FTW}qW?qs&h%ss}B6J?IKyLt3uZbQb1HPkl=DH@Re+% zLrtHXUpmV`zu`~ttBnEd`?jC7H}v4Dm-0BXMqg<2F%}j2JK{|W+7 zNadcQ9~Yb>x`+DX-qj;uNSp}l7xSgDpZ?JG4>gBRNTIs<29S&3Yqkyz$FVDyp-RsY zsMboM<_f1+yOEaY_jnwBHOMA&FPo#Mx+F@S*+m0xWRnl)!lCf-1{9553;he;(i6QA z_{<`l>fKi&gCg!wcb^*6-rQb;b3U5Q5;I5Vwrj#w{+p4hF?==&NuE>0{Z(pWBJi-V)UcI4F)>%ju+Sq9aHsf`rT69=62%k)U zPbSrUAPWW%aGE$4JLNN}!z~do8Z?*0jkPD!7Kh-Ij2Kvz;{@);6Y-WILsl!jr+fK2 zgLiHv;t`qgbfhK&mrN(pYBq_mPs4lPkPLv4d8bsnuLrqvM zHwLd_D3NO(4i62YYS` z@T+?SY&f_BORw>`6aRR4XK4s$EH6Wt_hF3x8IQ8*La;$i=#&~sEqASg&m*RToO~!= zkz@GWFE2rd`2vvt;fonBGjNE>19X~p5Jiutfe(*4dKSK!+znNR<65VME9+}P{8kY} zUNRyQb3<#?FL%JKv!Cdk5*f@rFOODFbYba?Byz>+25svJXSd3{r!A^G;C@96ZGZ5F z1fP3H)JzAHZ0*f-_Ut%zS)2mgZ7iV4QZ?{#_G|j3!j%-9)r3(MvrtDcg}rBV6?H3O zNr7uV`MKN>?T3k>MgJCjQjtp~`d(<$!&dY~};tyj%uO-hp? zvuXsl;+ZzweJjc&q{L$15oz$2DTbQ)wd9?03cT2qO6BCo@o~AeAc(@Tdf2_dL z(i=Er_aU-)-3c@|o(g+5YxDdlC$YKBwFdd;Kzv^$&DNTa!`U6wa7YARS=S1R%5vn% zvmG#E=`AWaX8`ZqFA?kh&jb_Hj^K)2BJeeW5=-g^y4?Xn@9w0g7fp7>x4S?I`G-R}oU19qY2h-{L7-~=s} z-waz%E}*m`dO85(Q@F<*+v za^WnL3~V6zr&mCWZ4f+;{7IwMsG-SiEpojn0V;eCz@_A$q{01`pv?Im%B(O%qq7;j zA7vn_PtT{0j%UF|y#yS*=8@7w1MpldE8L|v2s_lT(EXziVS;ihk0&su6JxI74CS%p z((4P{IMO>;aHt8`j!T$U+aYHGnM!U(KOz_y&F!6sL&n9=Yr1}4V2=sey`=d*^lg4 zx`~gAo;zQMc~2BjaYr3ao;+IMd}%)TR(zp$Qnw+lZ5`WM_f0r6asmtqY$QiMg+T1` zNMUVVApYo^LY@w>gqmO;)7^WYwg;pT>u1m5)z>;A(LI^D5;GLWa&{4Bs4?|9b(xxm77688$Cg2vS_rh(ohB_Q8elmj87>zBs2>Z*&BJRU zH^CPyPKj~LU(~Y?H43n4yaUX+l#ZvjX7F+DZV=gfpWb;t87*>7LCmNy!jAb)#o`K4 zbVDVIeG~=f!NI~}r?EKYtq+ZRTtjwLzX6Bl3vAE&m+-du6*YV5LEZ)I5!OZ+gPKPW zQ4WxUQe|i11>r0DZCNbTr%2*h=pyfyOkvucbLfy!FX*a90>iIW(=r8f_-2(L9G4J+ zqGn3ml`Y3`j=?(kvhq4UXw0L}JX)w!;6NOiz@m>@2C*PHWcB8&RPlrle6qaWis}91$X>p7Z=sk2&bW67NH0)2;gMb&ceRJ#eZ~7soI*WT~Yq zJH=CqTdmYcz9e=M?<4Z0+?~%edaweLH4eg}iu0skj1z{wyi4|NHLDpqcp!-F+AHju z5C|ri3hWF$oFTOZ`d4#!?v*s`9Ii|C^xsoYww216=AscFlR@m|6Ly@*V>+hl09~CQMru>m z;_y6v4%=@Tj^&?Sn=ik|3Y}04{jiTb4oSktQx@Pdkl~Cg17T^oH>`cD1NCtZ?1j)P z!Z$^l!ouTO5Vmm&Q5e{Y2XyX&^Q{0ZYA#1B_xmI|ECxLf8`7J)&*2!4MPcHOP=~Dp zQC8&@(d%!paa_?JN4?$S$%?18 zRN?R(2&_Jcv(oFpe%W_g@UDZZ-*d*YmbrL&whgY9?4;AiC1UF%Z}2KPMm4ubQ>jnN z_-tCPK+im`B>IAIXCb>w19rzR8bRqWDIqcAB~l32G_hd9Em-Nb0BHd7@{V8 zBUtEo3`*{Zfw(S@y^sc?t-cKkRz#ssgDI;}sSGz)HdHGMnuubau3*ceePB4OlrD{_ z#hbEsaAD5@_bJ8d(cKEeC?0-4I=1m1#w1Za6P!o*U@bc zjzZhmQJ}lpmnx(s08|`@0iOVZ#qSI6s3}2gmKH*A3>kY<6xFjv!Qt!Y(Bb0<5?q!A zMssc8{P7c{R-_m`+LK}Z@XK&wYX$6+oCDH>1BEu5TFqp~tAby|By8;1009pjAl~#T zACZ3s(L68R*HIpz(*8i`)>;Kl3bW`;i@hZJ!CjKJ;X57FR*f1)Jidu(qC&0Hd|ll% z@cZ$JTsmR_WBinH^}soJVYLZZ9~^@<5>Ev$-<#l%sU>Wtd;*R)4*~hqe0lE0&b0xfS7Q>%Bx=4TXJKQVYM(z%;K;<#s z^p%M#e8`s--g1}^Q3sEb)$)`G} zl!Vc-7jTg00H$AaJ#8khP}-!%T##E_qoHTQKD_LLn;S&nWO^oim6l?*@;Hc_QA3ym zVIx54Llt{XY!e*TwMY4>Yw^hGM&aX0*0}kMCfshfh37Um$>RuZcwun6=DL+KV(VfW ze|r#K-W>ok&b@5&kU)6+B?cWE?Qx$!N0Kc=sdkhDyiO5fR9q}NZ?wXrVMnP~y$aM{ z8N&$|M?hT1Jj|FDhx(X{F$vqydg3T_)X4(-mSt4!P&X!)J%J0yZqd*)_c3tPKPTDWDXtgp(k>R*muE?XkO1nD(*ECYAr?4XNfL68fJj=yUa*n^I+Wfc>Vh2q< ze*)((xIzP0w7~8x32M+3hzCD4vj=UI@rdnOEI#Or&U#zHbi-lHfA$FKPfoyBj5W3m zoB(+rbRllR1t@yeLH9{8ID3AqVBFCLcJFdyh_RZ9aoilV99jx<{Pz>ftSZdjeF04s zFHz6OX}C412rZw8lgLXf0c{@du!y6Nb(JuC`3_hqFM(m3F7kEeC16~Af0))K4qvJ( zaERmrV%HJ|r*>H4?)7_c!dF%B%ob%j>$HgM>tyzQRw&4F)3DmSN+|cFjJMS+Xuvy3 zjFcEot>wdEq#%~YYMuc#KGybPdkpMdIs@!dm(mAM`T9O$A8OtX;>aM;aEjqe@oAJL z+?aKpu3t~ESkVyt?x*0qmNUXjekH=*xrOM)EkLa^1IX2+_u#qc1g)KQ1TOZp5Eb`! z>eFq{^MnNBgprSNv{N8nu4_fv0~XZh)D>dt^qI(|C<~Ls#^AS|24p(DNW`Wm@EHv{ zsBm1nY0*7+<(4Ld~jy+=ct-dw8Gqyf{LI?Q@oW@5xSMX=uNhw<} zuSx4;&uIsoH0v|3Lq*m)VcxJs=DAis*)0Qj zZt}WV$mp;j%us!}vF;`~74m%A-s{n_)SpD}w-g>Wk*3}C$@pAPgiF!OhIZotR3Lj6 z4a@!T`<##D)`{IbX8I9I1l(eU-WEu5yz%CZnJ5g=ArA~*5Tiv^$vnYU4vh!tu$4Id@oF@#P-Yg3z9mZy+63L+uQ2X*HY_hu ztac{vupCyA($+K7)&vS(26NVK9vj$EIP4G}C)53bXrjGy7{n z@=9|UETX^;(p!REPkPAvNdvJiTN?z!T5wixF}j`lNK+mblSd>2J#s6tcZq-~&7F#! z_WiljJQjajpFS?#uL+M|8wq?7`H&h59@B(>$MVRDJLpdMn}~TzM@A@!m=>>M@V;b>D`imXAqw z(^=Rytc9$z>ZRo=GEkTnP4Ad3BroMk>AD9$$Qj*PP&LvNN)jZ&aN=ORry+(ri%sy( z{x@vxZFlyTmkw-bI!}F8_JbeKZVN9)j(`U_o7f$uFR9%YB{)*#F8rXl7M0Xu>B+Xq zuu52?@t>+h(Mfo}TP z`*RYq>hoag;uP9&?G)?eV~cl!&*Klt7Ges=uxnZjuv^RU)K49({gEyVJbsg=Rwv@s zhlk+SxGc6N{Q?awn}o?vjo{()WZ}@(T-arQle(V#NyckWK_lHkSoQTYJ;=vzrS{ar z-B)8ky=Et&>2cu8=Fy@OYZ&1*7GJfv!SjXpiKuu!9*P)3mImvBOF|)xEEfvDo^?RF z(T#rBs1$lmD}kC8b*LNBjM& zeg5~ngTI(5fAdHG<{SLo{?~a1SI+(=`TD|F-l9Zl{RE-lmSTo_6BiyPFq+oaNp?$xxJ=P2voYh4FzA4eDXZW2b?D3Q?S z4&mrPJ8Gn{gmzLL5@D+%9Cuk8y2o;j;Yl2OL0_2f;LnJK6R1@gBXD9&8AdFKlUN_eXu2kH z{qCAEZUalv<3%`=)lvno9)3nu#f{va3SDN_uzapIP#XR63OM~x8%F4oLf!P%GOllP zI7hFkjDhM4SbI0T#@t_oTXpa*s++pul0Z?8exCrD4t(xvdm`OG<{6LYp2xI*mSE5sf$0TFvb(Q_h`du+R zNA(-roOzS7<;y@TX*Q$0!wyT{DdA(2k(`R99jMKg!C6kvX!{~}IC1qE8QyprnkPiy zmnAcpCAa5u^9pNGv84v?R!K3-wQQKCR};W>M*@B?kHM_7Q<=V{6!Yyw(EIf!&S}>f zOsHSXg*Go|B5vg{%bWeUoF{$oSx=p7xW9*+p0CNAN<0MfBwC?lm^wP0%3_L@j4-ZX z7^7;Z$$k2G9(P!jqgUk&uD)V7-Wc!9P46AY3|KXmiC(dS>$}e4+T7!uw5&N3Xgv+f1hz9x z1!qFXGhe}jaZP)O^-~1&%i;{KTze82zIuU`GSN)Z*!hfHT^Z+FU&ss?IEN$s7cpOD z-=fb`VCeENoKk%rw#!Y0tXK!`vw}TSzP}c01mn5oHHnNy$q=r|JD+(isR}=M9T{?f zaMt@{xI}Y?i%MTiSKrwM)vC`xX36NWJwbru|ZGy?*E zR5Px^bS|JT1%meP1|#+qB;PTBiQg{6{r7sDaj`1SUml0i$2B;f37R>px0q{4>O|8Q zTVS`^ZdkYQ5OcHkA&L6<28XFwa7xp~IE~M_80@+jx^)y8+3TTPXrLV9wnmZ3^m9 zIh=yu4tauQo;TzA)t>Px@n;NTyRb!MD#s2;=FV%kV$Y1j*m8IrcdD=+qFNjoo321E zTl^NrtFB>QZeGY`tgm3^KFwvWi*4lWD;F`wEiRaw(umbMjX1z-A;dL!a32+GV9kqD zSUqwynXP4l7%WlsSRKQ?MSP#Hi1( z!l?e*+|*lDocswdZpHQQupwd_Gj{U@hKtSP4v$~MT;G_8F^(@VW|}>7NU4vgh6I6F z=Rqn6=tP|bHzCN}9b{IHgN*VvG}LOGa|z*7jr8#y!D)j&H&Iu^r&2!5NoiwkZX!CZBl%oJU< zW3&tVb9T0Kn02*F7`!`zkrOi92G?zLMwAlMShpW$Netro&m++{mEo3b9067ycHFnp zlO(UR3hs+!Giu{2xY=(Xf&9k%!cDW!;5MnL7|Yl(V~tM1`}QTw*9}9tz^J)g+G+{{ z%OWP^V=iZZQJhBgQ{jB}4QDiNXEIL57jgp{thoY94cf8DgDX%?XH4ThfKk9!jykr| zybVU2WobHer;cV$Tnl8<3uoiPrN(q#Pc-+Y<_5eEosOTgM46GvMqG$^BBHS(Cpuk} zk#;-4^L3eW{igad4;%ftYf(UKvjUioQQvWV-#o5MB!iLoxQvUuF^hRTpaqv`JFwT{ zbvfgaEQOP1mXj~xu^5aK%i$Lw`QCbQ|+V7)QKHr{#s{k!NOlw z$8T%nukG)7(k93M`F?*r?*I4gzqb?r)=&1^KK$MO*X_dS<-a8V%MSfdx&HU^lU4a; zQ=gAhdA#ed z{r>HT`cIAcS6ch)JpT7MrRe;(2HtQul;|Y_rFr#{rg%) zMEet+ICzx_~|e{NU(7CUhB(0N1VStG4uc9xc}~N$7cV! z^1s@z&3}%&|LFXGkFTcge|um3qy7I?KL6+X^kbtvO`K>>e!Tj?374jdd=(Bpgi<`@Omx*41>wN!uXz}E; zlDhmce=JhJkK@~re%}21s&&5Zo@@T@KpJlBc&lA!u{AHjKbGIR`^WJi{m$?|<+ILh k_1cLWS9`AUSRXji!+62mfrI||b^!l(oNvv8{*e9u0J|jtUH||9 literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/1.png b/labworks/LW3/images/1.png new file mode 100644 index 0000000000000000000000000000000000000000..19d337bd8c4e9ac357435e4c275fabca229f6cb3 GIT binary patch literal 7437 zcmd5>cT`i^zCIup5XFMhq^J}dMI%Ch03rwoh%`elGIXh-g>FSuV5Eph2m;cp(z_Hv zKoWWhB~k;@2}KCy?TmNkUe|r|?u_sK@mNHc$0X;Ry?s^~WJnj}QC>uuyn9xNL zA(0C_)~>EjC<$R<`#;_xHZ}PF}fq|V-(71nWAjoFM96e zzK3ge6Oz~5@!{k}&(F1eM(Rf}sGAVP_+EaR27*}l8TLV@_i1UNS8oC!i2n=^6hQyu zq3gO#3(6H06%sCEPc$_(BYyqW6mbyxaGHc6^!G=`#AMXf-OE9ZWCw(tfG1ouuh$Kw zfyC8YT3XlFNQLB^V_lAq`W$I+ywwWaqcDk)bBg`pFOD^kM z+pQx{{4v+lF)}k$HFB~X6hH* zPoBp_vVGfsLI{-AgC$ASIpmmNe$!sKy{jNY$) zv*}m0!YVtUth&6t_OYg>=E>^HWMZfnj+uo;F<&^x1%*Obfi*W5p~vwZ+IL1&)a?VQ zUn@#sY~)8v=x2Td(4UEdZ*-AJ(>Ut8m^?Q-bv>Pj*dVJ(E9T9eNGsc+uM zg25$J`j%nQ6KtZQqEpE+4w~NH-c|ikQBlqFYk}RbE}ADGjzByI6)FO5+_gYwUTsbEoAkbY#3o)M55Pq|l+viqSSJy^Q)pnB1)|9$_ zuIat7urSvKP7ir+BpBEWUxlkVrG0cg2Al&!I3<$-rVYi0JQHp0?A+GJqZEI8)AN`Y zw0pA4<|OdZ@84g-NAKQ$+!I$*x7Mm|2`DIpkND%|6&`3xOJ-Wjk=?w zqkKu(Txm1Pl04CJc-BsQ#PTf^P%QtKPVwJdNcCXu#nk!`&S|)omewddJUo09{$OYQ z%L67UE5F5OCUvG^Fts@8L6l{8rXD!o&h{1-Ry5%9jHD{Ux{P6CDCW5GlQ(>^#tSmk zohv8b#77T%nzyYH{fQ`kVPQOKVyrP73kzFb$?+dVO~iT(1zDRs7#{Q>2A@Id>Q2H@ zg)xo?e<>b%zHC_h$8`U7Kz)~vm=||$73Al8;x^au{vp-8Tm7YO8KlpSeq;`OwEs3a z4h!QDa{wUTUMC@}-hQimH~CgMT*``pf#D9o7Yp+D4Sh(WC6u629Li>|j89CQJ9%>W zdDI0Aipqa3E-sgCJI?@2Oab(?y=H+#R6T{>goGR%Cz0%GA0OC~uJYURLToK}c&+wX z71;F%837JCCnR*+%8G<$+7GcxOZo4MfBRORkB@IlnuO`lQb!~ya{Fq7?GNXzSg6_G z)YR18on_!gnJtPV=0gEyr_<+Y0QAxd3Um|{6yh5IX@G0i*3#;5OwPzqsWuh4O9MTw zNkL!rtgec)yAQ|y9xeP6vjfkWWwm+v zy>=)w;p);;@bKv9DR@VB_XPa3a!&cu4SBeagyB!~0AQbYK}Q9=a06b`Sy&jD94riJ z==_NEoY&3G4UH>bZdbv=ge$)#kW_)>lRl?urAS%v0@KupvK%aR!@`)P76M4Byr)X0 z(sU%{BXA zKY@$Qc=_^WE1?`sMjxPuSpB4Su6Kro9f^#Hz_@Y5;ZtU2W}XC6@c@)FH9h@CbaZs- z#@CDjpLG{bN%y-S?0@ui;7my2@`d~7&Yxcy3s+AsE!78r2TpIw<9Bz*4zpCvSEPmN zPU3~DW1DA-h+G@w&NMAid%|V4S0Y!z9KS|*ud?+=MMl~Hc*N&CsOI6LgIEGy`7?TN zep_t%^y${MYuBpq6d&oN5sAfSH*k5YK07X`>F!?0&cU&=P|IXDQWpfcD&*@IC?LKCMKe28VIW5I zK}}AF4pr&B|0Rg(0)YHZt&`$<7DpSXJ{*pkm<$rY{)#6(8|nlC92)bY{@qkZiZ`x& zeIf=60}F+Py-3f%A}`$L_F7eFHLo~}!*vGeiOSzp-+zJG0m+c9rKqZ9j9#g08tF4}dsPh2ro1t< zR!M^ASu`KVN8@lnvOJ5>WJ`SX$7d`Jrbi3{nYdRm(GqUyBvqb63z+KlQHS22)aAN; z(=;NvZHbEBIE;i_6KVoDk0s2Dx4x8Bg$NFZ;}>+l!1J7jYgkn;Ez7%v$n0#A!HNyF zu6}xP8Vi$jpIN}zI5@0g`l|e^NUG(-|5v`#`DB>C=+4%>Kf-DPA2$zJ$FXwVQXZb8 zsilRmI#qHtl^3z}30wjijmE;HPjJUk+Txvlb4 zNr@xxHgINMIG>dali+IJwqyI~a2rJ7pC%0_Si3mjgB&!@XG+Cn36qwUwE`CI=~D)L zv_|4}H12{)`-)nrLT8y53mkRpFekkCA^H9P~A;SLzNOjzD>A8$@p>Q_WEFs zl|H=RZE(tsO_B_EMI#M#jexG$%e;?{R~gVp*oI%QqlZV))2C16`c<(~dgcuwIsn&I z#KeE`0#Ej*78N0Z0jqK-9^RuCeMup#lR!ux8~Y_GDd~}YOk`wIcXzj6l{y+-vgzk< z9n1#fZ+`(n*OcmZYlGX{qO46PMHx%v&;U0APA!*FQnFrN$qkuWKbhRY>A$=4XvlN) z!0bSYR-$6)K?F87Hmf5=eHy5>8S<*Vy*)@8b8Ft~KGN$xl}hy>_?uy~1AvDDA1u7v zmrz9XGXPU%hF6c1Hae{sqHSSeG5Ky|!;4eGRq4^AM{UupkjMqkQrdHZf?dgKG5PlW zSCZboeK^#!NZDc+wT%ECXs(jtkOlH9SQH=wUA}9BDK#~6(lmRaeWPgs(xo|_nR&utq=jTrzyc7U-(2II|JbS{Sg;W0?Gymh)|JdQ&dAI`QB9TZd1Z}|nLqCoEAM@34 zT0m2Cv)k56&v`yR1)wRfW&A6@PEXesMvL0LJaXhnP4|0?<^+k$km)2@TNY>(m>eB@ z`z-gF-uSsWhn8rVA}1%OS^ppkkFd3|q0d^G?os>>>M5}V2Vx~+W*YE{g{7q}9*cMl zM_EoTJ`=9g1=hGN`Vbh#*dA|L&}@W7V6j}Q-@t#RK7Y6jxX$3bkQ0zQvh(eL|iZU`YUBe82lX?$#_flD&L;9fTn%Eos@y8+&Z$?Id}^;2xSfF(em;~`<@%I2l* z``#-6qXE`d(#jHe_prCXHayuw2QjK+8B+7}wPUW>w-?&?M}&nXba&rY4kOO@q-rE~ z_V%W##ax+sX0n+eR5o)7thdd0QzTfnWPsM=;rIY9yP=mxh$`)eg%wwLs?ma z+Q*=(O>cqJrGY}_0W}Tg&u?&^to{A>C{sf&GyVP>y5hV**&+?_&l%s}1sSqZK^b&XM-~)*c0JjVcv2qMN9Nz( z3_gXwC2`Ps?Iay2;LMbaK#F+G^rLThtV#pC?^UERI!UN>^3*YA=E;h+p*${|)+~df zoAmVbW_C+sjos!S2XL{HZvFN}XT`*j;4q=o&90Y>gJ5D0|l{2{^Ws1ueguifg` zbMN+DN(`ci@iI(~N11e|>ty7+&+1p~Y*U)>cqC|-LbwpN2*R7PiPv_W?d?bO{WnLs zvlO3}{KYWNqt0$Xk~kQ4*<)@XmuwE=_XBaW86eylVCsSV65g2ymX?)?TH#K(xw<|q z)GKjGGWOqcs{pP)Jv+Pm#c9QSr(wC;w8Z(26ML0QNm%b1Tp(Z-4mBxAjPCQRi?xw2 zUp}s!o0@ViDJjV=FCTD9uPy@j5EU2ah$fvp{F2<-vQOxm@;gLUUjv%Cs1RG*r03p>O3(A7|rQL)%?Q38=6(5 z21UHl8ESHSw4ddiu&_GN$_<=HWg>`eU7ek0K#=t+PX(=a*VY;_hr^-xs#db7?P&F$Z}qot{N zWP_Y<)1iIq)*I*1`YG@rp$+s`_Tp?K)qj%Q3WtArr}5oOnH-vbfNha&7#{MTKd^=V z+L_kW*w{AHm)8Y&l>R6`vuJymCGt104X zbSRDn7YYmJmN8~yW2;@-)cuDOt03bf&8jN-Bqa?})Z@BAHmfb<&L-8$HpI(-haF+e zNYb?dmRl|^?~~QzvVo~0!Xq6VW$e`m z93fIeV|W{6yE5j7*Gb79XKQO~r%;*g;{FQnB0F1Km;OR~ z6u^-O%nElID>d-z8KAP1DRuv^)It_Kiy3^*1~UYvWJT$L!{W$CApwB~J^_KU^V!8U zg2v^&K&o{^kD=zv$sysc_4*)hqq64{doz$Z?%>f7l^6Q*tjd5(?vFSBa<^d^w5kp` z418{>S=a-ZXxGvDU=&Cb_*{yLzW>f<*Z>&nYyH&B=}V3wy2h=4wi@`zVlqQbocj9u zGmk^=p*RBp;7dRjFI`@CC6U($KvOVyjR`SEdoN)2OWX%)>GkRfWer%*+M|EH{Qjrr a?(ChB6qIA1Fp7b|kFvr|`D{7U`~L-u+A^B} literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/2.png b/labworks/LW3/images/2.png new file mode 100644 index 0000000000000000000000000000000000000000..5f39f43ee61abac9521349fe5675877dd31453ce GIT binary patch literal 7168 zcmds6c{r47|9_A|Sx$S(a*Bjd31Ju&GD$>8#!^n!tTU6X8A=keM6wel%P^ymj0Pn+ z6$W7nV~rUG6N9n)-P3!W_gv@wz1!9Azu#Qua(S-%xu5%f?(g@ri8MQZMp#H(2!bGC zgps~E1o1ou-%Npx;L64JdV_P^qH4Klfc_POqjzV3Ea`o=Xsl$*Dg zs`Akz%0~`MyQ0xPC@mEg&%cjQ_V#m8dFXe^56mLyV`PJZAkiz_FHZqH-wlHHUPtJk zycm!%Nej7dIk(z4O;u{$>>6w%KRKCno1cH@$zCy%p}vH0UeEoNh0_hPbprZ_om(|c zVxr)WF4_!j*&GIcS$9rfLJ+?H>!qhgsb%4zrFXC6%Wv@JC?(zrHokR=L0>*owmf(C z7s^OqO|S~(%nafcJ%gj;tt+`SGn<7QN4043K&_3(iuXcLZ-#(06e`Fo06E@(mSeT zQq(=u@C60;YHIvOqBe)0B9KT+q>4eGFNmv0c5g9^it{44durl1``NOG+k-hVgj( z4uK81VR8e|z^LQecBG|c(%V5FbjAtawRuPhPp_qDIDkKlMD zpmQ2m>wv3;w|PR)Qq`S)o@>s|?jIk@7ZnypdNHS_tV~Q|&YnHH6{`j5MV_bOOIy1lV0!4c3=t^)cEVP@INha!wdMZx@w{Yvb6eZ=sVchU zWOoI#XwxOZ!$)QsZT`2%2t+`l{Ie{$~s?=Bey zK;)H~Pcw@*k2<}*BN(YG3`sW#pL?I)hoRbalY=?y*}plOpXY;&t{@P1Z}DwX*uCZ8 za0w6OwqHJ*M?(9?xg0Yir}y{Uwwc0mh8yD?*k1?)WrO_>Qg|Sv5JAz$Lqk_RyUP*P zHzwPc=9r!B?YYaWS_jZ2WJw1*yAnNVF^TZ-@JKH~s8w_^1EriQcOrPc*f37AM5F(v zh4G`qRqi3y*2yFiDVKQQfxxdDAUElKB8uAD%W2DrYv{VtEA_{{dQYgSsm+o4S)5NS zj$E}cqz6x&&F0hcpUOx}Pq#EPi=VLIfy|BG@-b3fvMzXfmaMU}*BObXx^2BxC^g4A zNM~(fI8t{9BpoihV(TMkn$}s$G3|Pd{4-ihrB1CU)EU zkE$B5{Y0T~kYxeWS1D>JddnO#F*%uDWf;X`9S`{KNKqr!u94_zRQup&RCD;|T`=mv zdpp*z8@g`u{ZnlD&o$Oy)Rw;Z2OwQFBPIRv+Sl&WY(k(6$X?P~8Te4bYL3|J9{8?q3)d zwd<=a9qM8G*CzxszeKt0VBqFW)qWjHjR40^Q4@uI52cGEw0s8ikQfHI0Sd)M{tFEK zcl(UI)g@eK4?ai?v1X}=o|e5j;gaRC7Tt47Nx zx@_bD#Ny&&mWQ~wIE;F8=7U_8$1zn^9qNX#lN2>0-Ko(3h2#Hj4Sy1V<56?h`n$ru zojNnW9}t|9@x8(7ldz_Zcj9%Z9aL%~hJY?}?^Iy!jKBJd?+?O&ZECH-F3*0i7ggLY z^nuQHTb`dhx}1p$8p}(*XlC~K*VA_k%F8b{#!47ptc6044{C-2bmPK$iESl;y6VwY z+}2&;QE{by<79uWLuIdDG+-L^^iacIuboi5E)0Ih%-)_bGc#k)(WK9I*?NzK@3Oy# z(_5YI@m7Sx9eOIgsZMb^H=Jm^P`lwNIG?+l+XaA;XN`@Y^zhyajf#%8w6>;tn1J@$ z|G=mTf}Ymi*=PnvJjI7(-^Af?=zb~~p(rMxf9A@SEBkGEp;?Pj(>Ioumh$^V&NN1D zlPl(4y9Mq#viqS-MP+5@Z;Rv{rq7kJ3Bh`D-HJl!rhLn ztZXC;VKOH@=;ltpabrQGq%Bz<?Bju2Cvv zpS48Lo%%uV6=eU4{0XS8`Dd#CN9Da`6P@(dZ_qRSg9wrSCub?T%S|W~8=F*m8rn8T z%U;o{7_1X)^*x5r<5k^^GI3BUcCfS@sk&=fvMl$1DfV}sy{~+;JPc#R!DJ0a!LYdw zi!6^Jn~UWtt8>JVIb@krW2_9CcXKb#&qB%7rwj{#*;yXlJv}wT}kqGGo9^Wvvp zt*jwEvSR`&Z3;vqjT|_RboRQaKX+ocJ&)DUk4$ zgz-Sq#bE)Zbn$Eoz3N%EU9R98*zE2jj-i;%M!7yGib4H)OwmRDP=Vj~>46UZTrUbQ zHajGfP063^scf8ZD0h8uQ`ey>MJM=1?h-%rRFJ~c@%3xrheSCK8VN&%InPggb@%j) ziS_Tta_**WfSyWGYJaJC{TewkGSVM#zn^7&WcU4Qd9LF6=%N?QnXd!s3ZWU%=^#iV6i46>5^Ab&yUCiFEmv zp0t+G=FQt^TcO8Nq?~L%!0p{HJ<~^b7zu5wYJXN2n4H+%-`SZ*AP^W# zBbieIGzcehNbQKI&VuISS?4vB9$@whUS5Q>w6q`^i?f`RnJJ+PL1QXoJm{Hkh)hkC zAwNI=habEd@V7=j>aVJ#q@?Bd?Vg{XAGedO?E?+ibPCwzMHH$m3p;N^^KF#y#d-)p z@ihP>f#98MJuPbBU~Oe}HeshSvS5x$#pmRl3|SeL!pu+DgrEAgIZe%&NS;qy!G#Qw zHbPHfI}e1bU;iRzO?z?e6O8(OFj#an=ZxV-{H;7yc7zxNF@*nnTKfm`!(Ta_nwsj{ z37+{0)%+BZ2%{DwtJ+Z}uYr`%q28B*_o12r^nuP-^~VFbfBM^Z9Bd2I#I za0V*Nqh?`fGes?-JZR3HqL!@U5X(fq3iSQ^(gTDZkB_^XWNKLgJM{6>r_ULhsE#jR zcB7gaqIX$dxR5hgAHf9F*159C?(FN!YJJ876;dpq&aSSa+}u-hb8}08U@?m`*SIB; znVH$Mda5IMqc&B2^UkJ?tGu1Tu2dnB8M`V&5Z~k#FCO z5=11lo_d4-04KXLp77?nGV3;cB|OyMwUV;4Sd;-eMd&eE5DP@K8dL+Mx;x3g}tJ z1#m>c8XbCnnyjI_eWFmj_|VeHjvb0tuJo47?n>`$U@Z60B)4qD0Be`26RbX}TtFt< zy>Tq1a%PrS!OwI#P~=y#rb07Nm!Dq^f9cutOec80prGK8^ZG-1i{q}X(mx1VOdW(bRE$h> zrnUw_YXJXtu=GV)8L=w60(iN9aOnSv4F2lle~cPhiYd?|r5(9)o1PXtRn-XkP0^N0 zr3MoMhhsEgR0tdX)7*3E{`Q3^gXo=sggshl*P*>*2B0RvUUnYgUlQ{F2@(FImrHlc zf8POLn~q!l23ucfgae4Ot5z4xgl_z)KmW-_|Lvs)qg%v?vng`d!JH^_P(1n+6ZJ#)S#ufAwhvJuDI(JGvsDu=1y1J)1 z;6QGJ?NN2suN0Ngy7XquC`UQCUjsqw0wZthLtLpO7)(ciL*Mi-Td_Fu&m%IO|X7<5WkRXOfi@W z`@oT;fF7WQ3tsVY>;6ofWG7eGm0`cWxYhTZZ5NHpQfLF0`Li9)?rZS>^FHX9FzyLohQFMKMk-Fph%(& zKQE8)o@4sW&CNfMYxaqh+rsxjcURZeB1`;nr}tZEVAqJn%@Aasm=9g9#gU(8NvW?E z#q8B^Z_73K*woZ9MXR0z_*w|$GFW;VJfy}xU@-iS+7`%2G^>`MV*;dvrLAr7X<;77 zOGMY7d~wX_5913Wt-r@9I}h;xq?!E*clbje=l1i*qgqJ(kRC6R#S8>lTWqWdb0;@p zBopbnREn1-sk$07-XVYO+BM+68YZIk_bVJe+yScKVP>XhM~=>D&L(ziSRe!FK87fJ zAj9I!nTS(4@yCu4u-U4mqQOg6T%hv%_PaOiAP5|u)zqy;{21*h83aU9G5uFD0VF2{ z$5G-c{af6f7!^VQYcG?7Dpqi{7{zBP5t2=(fj9vVI*>G))30*}f?jDp?T`=yaQ9ae z{@@r-xfe}~hFhNG>QZ3OFavcw%tuSTpHylOXH#~m9z2)gNV96^7L+J_r4%gnrf&92 z?|#X$e$D)3`yg&*iXZ#!9&mV=i7!Xfof8>B>{8dZTs$ET7@?ly=`w(!(zGx|FJ8QO zn4Fxii5e|<{`}}@O7t!jE}zy%h*C=``-(s#;mKrL!SJ^Qb@q4A+4dM6*y6WDLkW(u zEH7h~({Fw4TAmfrzQh#1dNEPX)C%~L^Vzzdw9DDmOhR=>cel8NRLIJ6j4^`xry3?t zIg~labP??E!h6+S*Vk4_Badt^T3I~mEZlv4<>b9t$ zzzmBe>#lr1ZC7*Crp&q7+{MLZHpLQeH3qn)^^ub8MO#}uz$CZ6*MWEKDlv= z0fI=cU0XKNh#{*?#>+An3b3-QJ}k#BOl0{zmHtMP4kRi=GVt3kiMZknU2HeP53I4J zDrz;=dmN95fLI1=5B6o zXj?aml?7ksqjMGI#PTme2gcBh`aN9xGj)DtrSe=_#$u;07 z`?!)GXpw@VB85zNNMA15W86Rb0gjgJfGY&A=MWqYcMb;9WNnodvKMph3CN=XCbt7s z(AnKx#1-_M{*c;ONu8qN;=|1ObLABk2y-H}aebb4*qM@50`yj4L4gs#rJ%J%I`A_f ziPjR{eWZ>=z60KG*T*D93~)nk0Jal?2oX(9=RiFi9{qx@kqk-)M_1~2iyHu%9eR5A z?nWI>FUtM;^^UF*TjA=MP8OfQI`Q>u*b=>(Rb$)G&>*f8RK7Nw4|n^JAbU462Oco- zyfHT<>$qFO6sRGt*8!fY6L=kAZR6OeC?N@*pxI{&`)1RT9+IGRcCNC4#^(kysj4nT zRaG|N{ZBI0gF9KZ{K@I*cpkou$hqyt!NJwH-#orxy;}cg;Am5Mbu@$uQ5!qo-{143 zx3{1XBN^cy^l9lb+K}|cwno^mAm)Wi9AQ453TT@ThiarKA zH%UEa0E}>(Cyhn}N%#c>BJzsMd`qTw{^+Rlj_unoRbG7t-X-9_(WQI(`@3sH)=fgN z8L&Wekb@xb%zDjyt_lREpu5Z^4pjKnc~dYYsKux%N%6gVF)ItxJW#o}5*z+1UNi8j{UR4Tgczk>uX>1(bLk_N7UgOlVre3qp`%e!UFuS%n zFV2i8iwV2}bx!K)>SCM#f^jwlsEhU(akY<=U&|ULU;(X34l~)li~%kBrgydd$m43={3t}^BQZ$g8WeRe*O5(%s$NCEeZK-Q95KM$h-2_xsMd zzkC1Sw{@?z*Pe5(xt?b{;~8Uni3ssNgU5u2f`WR+_vNz~6x2g#D5wVoa4_H*0ilZk}Jn@x7mkJ|dO*IIk4?R3X*Vo0z-m zBPHG^ICuBv<2p?z=g+88o&*N;G#Yb#N8QORCq0p>XR+qJ-2)`vNqFurIN<_PrCFfx z!M`&2gC2m_#wI>$$N?KhJ{ZVxM4}EC@UpN#fB|0cSz`#G!Hc`ckr)e<^!Sd|;Ly+$ z1ccA&Lz&qAFE~9h#ZbOCHgYBC@jq6jO`vq!z1XJcMNLE=JEPfzeHo|OMA_CsoHxZ)&Yt{I6ym09& zcfG#6e)Rq7u(}C~7LbH1jqG)n$r1HDx?iy1D9G~Sd}4kfC3wHmI1T=8fdWJd(^F>u^c^(l%T9DaCP#{{k0=b5f$;&|qnWNH%a*K*aLS~FZoG{u()5!pwdw7bW8xD)vp!oFu$v7L z7C16{-+4^1x4-l)QZ$A!>9%^dR6y;q5UN%c5%BgI0W-mc&l$cjg%lg6Z2@oRsY2O@* z_+wKCMs0UxtE+kG7$kDHiAgRpas4%cOv3F_$`R=-BIvF#GWF>SQ-NrDKgDXRflP6t z%d@?{jiGeK$$Yhu#BmFB-`){sm|)IPp|@q;931h*3hA)lgjWu;WZ*4rV8;ilGhJJ{ zri6U_-)&D?STPE74;0#q;~7?mRjeh1xgo>&LYjG0_6^RJ<^9 z1@-;+=hvQMzUB2_c7?@BFq|s;AX5Ov!NI|Pz0VbXx`mz4pJ2{(HTyh?Ks;auhFAJB zu(r)(@B`bb4XM+B)M<@Y8mqEL?!)IbXkYk#pry*9-HN^M8Ywn*deO7@-ioBG9vMZi zY5uXTZ0`h*Q5hQkvl$s|)5rleuqo-%he%jimk6$$PnTr8^Yu)1YGXd{6p-WzpM++0 zeB|bS%woNpVmw#pZ);Z@SLb+Dq}dgAG)h51k)Dw7OZSq6O>52Nq4KG}mTntQio?r~ z!LIMtj}y**=&#;>TG&&%PPcy>W~uvmmHzF(Scp=A#0PHXy1ROqh-ldj#>>3`QumCw zfnuS-6iW=g09sKN6nxgGEMa5~ZEf}92~ST?lPFvyq=x+ZTf5myK0dzg2&&}CD@5N? z)24J;8GZ{HZ;SIEQxmlGAubV}0vtKD-=n2s(vn0xW|Epv^t5{v7u?J8O(p}t^Iwig z_iJiSXs^6zz+Sl#S6=Wj6O4fr+-=v)moLzym9i(73jvtF*Cd$n=+TTZ@qEWrRG?!g z?}$u^f>6?F#pEu9BMhzDU<%*z+8Rq*NlA&G;o3_2JeE;9t8!Z=t{`n)Ubk+gaDp4j zuu#LE((?8h;c8Veb|hrZjs*|wjMr~YanZAOg+xemP}w}350d%wIonucg%Zv4-vn7_ zUD-s1=@iBgq-~0QiLrIVVOTvHj_qj|FhAnR((Bh^@|x7*_2~KD;V-nq(O@VcXp2Rw z!hVc7#JA1mTOFlNrjnx*AiHlX*QFhVX0Ku_Y8Rhc zRR!eEu9YdIalGKw4UGHwBQ#+56&hv+vH0HY=f5685Je<|AK>ERR$1+I{&Z;bDdX;bnhwTt-rD5b}7SG3cD*Le(6$Af;dA`+BL~n4JU> z=7t8N-u38Gr9~Bxh6a;PjY%_ei=Kskg#?lD0@a$MUKRz*5y|dI8jqE(@T0B#`na+1 z`FwbIc*^LWn%ZKlx(AcGWAf8-O6?$5ji^d~aOiXH=<6dQCT=HdV?2^C-1$iGz%^Xy zN-M$*3yfq7T#QD=+-IY;MQBef5<$DYa42#|ANILyd1zIEsl=!?O!iE8b&Sqzk zOZyaL(-)FVLrDFhJ6oh6L_<<$^~5V|tCd0Le#Hr?E%I#Mr{BTHM6Xh`?z8bvEw`+D zr~=Y&zq)xMr^3vqvYFo?2IrG$VV}zz$9n`Ls?7H%vpT|L5#FPj02T4$aTK&mgyE$z zBz_uKaNUK4Ki4ftZrW{RD~P?6r^EYwG9LJx6h)BhiXzrRs<^S|c)eV79q-PI-XV^v z;z@ik(*6v)Km^DX(3b3AIdusk(<9dpb%aqs&&a@GKyDxUFAUJIyEy*nkQVZ_rjfzy z(2~J_0gUi71c^_V_m{#E(t`}&=23J~(`qASbDlxAWf0`ZJ{&z7%ZtgBNXRn0pgU+n zxH&^0PQmZoB>-~wZ8BJVHw#JI>PV}747hrk(Fjr)hL_|K; zJKg9EraS?0d3hyVS?lt6qvmS2n$BA?>Ir0u?o~#F=#(l@&@c!U^VHm;5j5J*``E8O ze1k=VnO_RvAbj)2?G>pMrAGUU=QynGQFQv_b&f1ERhH26Jq&ZpY0*ZDq0&nD%*;_O zK4{{iq75FnPM!e)h&z*|>V0u+HK&vMLVQgvUwWV@b!_Ny4f(YsHz{fgFDY}G!-qSa z&J0hqH*ZX*hf=X`l39u`^oxfMaqFpRbic6P8H~l<4#YAQ&7IXa3REOBffHB+jRg$0 zOL}(&ANXPnyUEL2sC-Gcs=4Dtq1Vs7egZY^;7os1&$r+c;^+`q6fh=@lO`YUHp$}h zblP&4fUwVdV|O63`)2cnGR|aMk@9oOou*`3BPpwcXIm~|oqSzXBdKm~57RSiYHC`q z810UU!IN{mGc`ulXFxwxYj0grDn$0++wv<6O4{hY(`{=3M6e%j-ogq9R8qtlIl@PjlYiGnz3v^g)MAgo z*fG1-)`&e^ZITuBtt)&N@Jy#;HvVBm-M)2HiNsmgVCt!CR=9O^ zGKQGZCfh38GC(YL^|8#$cv>FNsnruCGD`MzOiS3;8s@YzJK$U{HMZ=0Vy5lR(rd*YXw5T#rNwGBHdhl zX~mn#Fd---y&E%Sv)!l0-@b6@Eo)>2a#L`NO68H`G;R}|y?NUhBqc$n*eYLx~ zVwld|_R`7_-lAI^1-qKz@nBiDRaR}?)f;z~sZwo;cqs=)QtzUm;=U@m_ZBu-J3?Dm z5!(_W8%)lt^QXZ zuyv{&)S1JD()ag$gSYP{0@O*?&XzJs?*}h|oEIP{Vt>|WYHIqKho?xj35MBv7eV5b zd%VmLD}eP74(iF1C(A1d62i7a<|K6F$7@ zJ{Wmrfl!QV>{cESo2X7bQBMY?NH%&E!>G1AfF-wxrn9seeS~q>YDzdgt1#mJ5zZQ& zZHquqF8p9Qw`b%z_b@dJ^R~jJ{3HD;Ls3zr`kT|}r6T|zCW^HY6B84gTU)8My3v(v z79Pu$=zLO8crBhL0Euz(#^oBck=PtTzcRep2b$rde9aG zMW^;8={j<2N-A9L@gzk{L7BAOX_{VTd@!S~g`=EmXI*IW;2Zc%msu+?qc;$IYp*Fe zZhUpEGg9d;kK3uX+Z-Xs!Xv12FwG|rZY-cp(98Pi3=7`ouuMxM{;={K#wex5Y*0;r zPIQb8n#F26K{%e>zi+A44_XDFkPmVtp6PLR-iwQBAaiglDdE)Gov8Ih(M1So8yBHc zD0Qz7Bv*nt3~ZfDo3>$h$FhtSP8-k{8_h7kL`L42EG2!0NvpCsoJnVw^MbrM{RyF9 z)bgtY`1f zgyYlt<|Wv|o>@8#Zv2|!t(7*{`!l12p8#jG8FjB^vP1_)N*&S9Po~|^NX}}fbS#Ou z({?C{+Xt$D!-Dl}+FV0JLqtldm0`|-3jnRyQzT5x&Y*Yv#2-EofO-s(n0I? z$9S9w3-6sdm>|nR*f}UH@RTR32fQJ?BdxP~ZsIjg$WgZ)d@J|>1ZS8tzrJ5x@~UTP zAL|_I@ipJsVe-hYTZ-eH`I_!BRoztMu}5QhrE>B*Oo^pYuy%szFDCDXB@;<`#+bMu z^%efvYc?IV!}`UE6R!Cd2CKK$aV%aP#cG(eHATj~q{^>NqwYE*&_^kx_jrW>=pTv5 z>dIR$sHQwjAf3{S6%s`m*|h81Q5Z<&M^m!jp#ykkXha^p5j|RYnv_b+I|`oq zLuVP-jkcG()>06%iZMX4aG&k&9k}x#@Rq+`>NalK-jQCyGTAu$mC7v@S7jC~uP*76 zMF)+xr2vo}=P+uuPtPMOT|$!pnpjc@8E0J`5(s-&<>)Bsd`AsAMZ%}e8V?1aR}6#o zg35i6SpYe8Pu$r&(gm!{%}p2NbE0H_5mhF+S#whMi8}s&h$>oSi9c-ACw?w;eZl|z z0b(%ie(jHe_u$*JD;k`idwZ)1f#(^hnHVO}Wd1K0H$}20@nhCz!VdI2@HUZaKkdNv zYUlSMCM!B=z%Bg`N>_MY+8=6In)kQQgRw0jr9>v^{Xw=?$K#3_FRV4?bF=H6Bf(Mp zEbhO-U{1+;$PM^2_G65Us6YQ)T+I0HUE>NN@^oMZEs~Fui zme!*Jl-?iG&DNpk=vzDIT-YQh;5rj!;y6%@EV2xMGpXx?@)* zp%*TGwflYg!h{fv=q0MI>gBfs16eGGUQGD20FD;FGYw>wvcMWPm&(58pH9OP+ElY_ z%)xOCE677NG2YZ{9W2-9Dq1K+{=@YOptX*2+ zWFq5n-Metnp+VVeIRdX6`JgBRwbdYrZdKIqGeeRAq|qw3IPqeN3Wq&=tyAaM%_B5L zl_zr>HWwrgbZ_AGFDA0+?7#b0VEO3U3pa2FlpjR?a4*X;VcLCas?DVMUbs4rJalqJ zu^!f$EoEeSNJqrP1t&t=c-^$9z z!9SYS_r)SkWZ&~BpYU)>T-8)|`uDD6)``(!eEIryv6D2PfRgg({=SJ(?TM6_nAj%m z5A3`eE)xMzX|hh|v)&g;Xo4%$IY)ONVvp_TgqL;|hzHp)utG zqAGK|T2-u3yhC;G+)MKk`nHEcV(9m;E{m-LXX4sZm!L1uZUTjsUVh8v0jhwxUrh+{y06%Jl56 z@C&h>OttA+lEIbrw#DX3aE@B>JZnF)1$xY?V!kkqC}>tc9W z%N}W{W;(Zxyd&>A=s<3LBw|6uU!nPA)Er z3Q!8g93B=ct2};;W?YPFxwj_G`NT*ov1R^EDHl?b(*FWh;!%7s+g2>7GX0WmDAFd-S#F+4=YQTx{YV`WK^Vm$6Vo z<(EO`?H*^7&62(6M-$Tl)eMPUO|};HZ^l++Mn0r>d4-7gtY}D%!aZUr_-TG=u=CM` ziz&;}iPDEXnsaV8aG$J9p z-_^zfV-;kDRtZsSZeF>m#qM!-nUP*$Jz^*x-n56AmK6%`9Lh`QPqku-yf*mEz&5pv zjv+4OF!d7tsHXkvnQ9B{!t{|13{e1P#}^uE0|#bj4ZGrr4aG;hbatbBm(yWg$FPgU zWP`|u+Ron>IiX)^ZcevlI?gJ*OGcFv9MSkFih^UmO;vY&$X|DNYrnX-xXJn>EcUDI z#nD^;KE%E+uqrb}FO;yc5x0Py~Cl#*QU!h-vIF6kXQo zw5{dxsX~?1~FzzxJdj7#og8Z#F8+FtnKwmVhwX1N!OhJuVw8uuW*0l7aB{y zPN4|rre5>g&fLHuV&1|+)w*8tI5#$=-g?IJPR9ehvPBwC?r!#+ zbw{#7)$1kZmcnX(!Usu2;Cnj^mq&hF{jVC^-m-3C**VSf4ZH2xIsDy3-^ml$JG5-bCbvL z^99x;xe^H$_oEHk^T#PIrra9tA5D=gV-dy;=+lJbd(-2cz5;q;U|;|Nmpw*1-Vt>s z{x0tox9VhxZq3=OJ*YhginWDT`{IQ`41Imo(b2I`*oLD%k|nu*Vz*nd^nBK4>Dj}F z56Lf#FGzn6eR@7MTuBWqQw<=LU$ff$3|F%A0_EV*YP2!)Xe66Gz4=D- z&d$ydmPb}LQau*XdS> )Psbw>gr1vEYG=PNyf4+xngkLZq^CDvlu-%+^FUe1oMi zng0kCMQ_*%M%)TIUkDPT@DSD){5K37hTcDD!$k(|3-4E?=+qi;u!uMspa3(NtBW<7 zsd}&v24XfO$Z!Di?+a{f#}4Pd%0Kr)1SPf$`QxWgu0s+^N=^++C+h>>o?+3Otcz#{ zug})nUw{i^0FDoeHvs3|+qd69UxvAiD!RvFZ#I@pz6`2BvkTSj+c#`4sE>1Xj-bK= zbIcv>B^zP-v2NfrKs6|_WYXF!}cCf8v*(52@059$eV2VET@*X+gojC*2d8DvcT$qj9)RZcj$L|dVMSxPR zT_Hdc0))Zpv0!a!?2dKvKx?dx-($5m*1p5J?fW_kw@?1d>^MMrc5Bg$QKM7DmQOBt zVg@n1kO~Hvepp?qrSa@K{QCM@ue3?oo2LGiA_uNd_}zDwD@l*iikMjIn%z;Ekw0`l z;_rq#tJ|U)jVtNRvl0OQRsN~{Ev$Aq)N`gyvwzFs>6r;NFXQdilFwVPR6UtZ$bUBx zKC|axa_Qm)Kt6)a6~O@m3QHI%{Pi^tdPi4J2->>Wrrg&(jPxf)dJhuj-O*T9zniLM z>UWNGd znMT@BP05@u>u|N-`-2#M{*~c6dn9Z2C~lwU@7%fNBH5Ej{~L7o+7OmauemUhLP<6@=un52D>_SuN~5@rB_!)2uQR2S{c7o6N}hgJGK8j3 zcQy0E>4Gt0womi0@9uS5m$d2#v|mA(wAN;2COffJ#c8F$?!_j0EupsQJPnP!vi|%y zFMz_Kh_r;1lbx}o{zK|&^iy*POTPvuuc(J6E1}PCq>;Ip%gqIrj0{Z={H6u;?+XCC zU(ND;v{EbQXm6;zs#5f*DV=W}0P(SIP|qxHWvS!Rr?zKv%S$O5EvvQnD-OaNw7n$+!3NmTDJq@#PPwk*1szO%<@FSbh$Or`9se{al zw{smUlxRAOa8jy~y1#IzjBtsXoQz3izAs|% z4grTF^k>PW5RUu5-PEBn(=_N9K=7{tw=L=cRp8Dc^ zWe=e0VWiS8>Yf>dXegh*>}6T)sS|eFIIuXKxY59XGuT#mwu7d1Wgdw}Sgg+xB*$u9 zzk9kCT381NQv%xQ#@Z!no0G1l>p9C@5;FRXm%*SP3n!c&$qr2)?U%|QE~cQcZS!nN z83amI`e^JSWnTZ6yXK3YfxN~#9ZS&i1(!=OzRpXGg=Bj9eIE_qckZi=c=FIE6Gy#RBdQe1<=!)Ypr;3wG?qKcvxcyo#HIC_?y#_;m<373mdLZci!URK_w5g zgU(uaxUv%;=yXw3>;k5~y|2$&Kv!3n9J~52-gJ+V3sa_}M=X8tvk%n+88W*;XNJQm zb`DfRZd2NcaKMUY1*>1togeMqP?SQYPW(91d+JT|ETn;zVD0gm(y`Ms!;ssB znt&jV+Z@Ytep_Yu+_-AcbX_g6|Ib+C-sHuL#VDS8UQ z&azt`QM@H?byMadB`S-#xgv!>(b%O!npiQ|`7HVaO?eiJ%chz-&z=f;MmcY{y*D+* z_^icBi2u{1u+yV9X%*@z(~%XET>&Thq-cqs=5n}*`A#p93S8wC|K2De>E9`cf*t)r%!)yyCAh_l;LohK-}c>>WrSSAn-emu(o)Vc^TVuy{cvp zr;j}R#YHYe%#rWFGDv1lg8#^{1Cq-Sil@X^?H z%A)qdA`0+;#_Z_hv6!AQ-^2OIrh^dLOq(xJZLDry*nm(*qF?Xz>MU*t`fw=6 z1WIl$tnZ|lW`p`Y8h>WoUYuV-(nn#5axoZ3o0k;onmeDt{aD65!oQ0^#8uphNr}OL zZa~*r3;RxVuFAuBS4W2`?&(L0e3vlub8<^Mq11c~ud^}5wjLQ>?JY-}4>ZRWjg|=i zq51GldVZ;y-b7|dI0wh#`Srf91r+F`EsPWvz6}1Mp7n$eCM#|8BR8m5)qc4=0KEw@ z8JTv#W!r3|hRal2kugl0G;x=QgGDf=77?WbGMprw>@HVtIWk+!Z*!@L5*nl=L@UY^ zqu@P>S~f<71vnUJ#K?>r;IppeMB z-(U^~O&=zsjShNH8`4hyA4Oj~7F_lptpFbO{Xa$gP$_q70^w&o$mYdB$ z*CdzS@B|E_lqc#*mc-H-LJX^I&}vU~Jj0w(xq6|D-n)z{deCRTb6BQLe3lF8gPs=q zeVJHFmt*~ZQ5%j}3XG~T(vF39Kbw_UUWe0DPwp8?ePqpe^+<34iH#)xBB;3OX$#DQ z1Ny3Nl2(SQLwSum3+1A6J5eXOfCgdwlwv=rrLRvst&NEkb7NU@6_@0E))eHJt>wsx z7NRi65K0WE!UUt~V;Sx^?k*4&t1L1@6E?;6E)UvJDVS?z1oA1K>h?Evo_aha?#jtw{=lB6z2*4eyltXF zPZWu*o;YQqNpsy#`wVG#l&1~tYlWR8zI2^D0=xk(hRb3rky)wDZi$tjK3N=1iPdh2 zoX`j%C_y1N$8uAGCjh61pQ6@%#%K*d36fAbr}D;%kBFe=iT+hUg06=9(HvvM|CN;vH0 zWX}(0WEQfQUHd+zrVhF*`8NxdgqTX|sVC>u-G&C|ZIfOVz1~#Y+YDc}6<@hq6)%jn z`&Z`rp$3GDg(aphr(FGbGO$=VG)b2S5sOY%4(TyTPDP47RgB!s#B_#!hQk^mnJsky z^cnMedws*1;!HOCc-d09i$Ac8DpK&ujORd3sNrh!$EMJ|;$QiPwzocCY-^IH+=uik zf4)LjwIQaN6=-zdpVd=OTb`#g*e%U9x1I*x8dNZQ_HaFHpPpA-Vb6VMa>$SCfHk%6 zXCX}EirN>Ofx~2-M6NhE{zzKck#1`&KR*=8+uIwR*@Ael_6&!jX1{SRPhLq$2=slI z%t86e-}W57RCV92=EIs=d(Y{cG+WzO^0qi+Vd9Ey%PWWtvAM5hRo>v$p{qx5UP{j{ z@6yfV>ZdOvVwb(d&cuz-Igr7~Z4C`PNk*%V+h5B1&h4&fTZTP9uFalOv+0v7;o%(P zM>=1smE6Wkpy{3gtP;STu&oU4)p887Y#txj1tJOt~ezMF7t(1@ghrz3{Z)Xjdk(j(sK(rbQR z1?uqd5YT|I{Nd!Orc0aFA7ra6NUE)N)Brphk#h!$LSHO~-h)aATy#(PgNAa2j_%P= z&;#tgel?~{q+sWqSZ4EzAPXURiN$cqps0us6UnQ+#*P>ScRyvt+ouYv$j^ z@}dTM=bXWH-oM3Rs7YXzVfHg(&W(^Nz==tA%hO&}5=&989yoSzJ}r%ar~uV7KF~7( zWUW>{WxJl}kyRTHBo%Qsi%&qK*tbI?Ym}ZRIq+WM@aiAIkfVkWe~FBcUhDD-Y}ya_ zFbC`j4qN2eHn&;W?j1vvJ0lah^5qDex%I3oXkv-c_v56~LsWb~mmm=k!@}_MxjT4R z?J7-|c<7C11;ECBeI!?^*Ai`9*D)fkthjRniuB;2bYb(BSJI5D69)7ULDa0>7FlOk zSFDoWGWox7rd%^l+gTBS(`=JuWan*_crlk3(#Q%eOEfcF;ed4iG>~lZQi%NG=oRWP zWvj1S^Z`4nwOleTy8^az;wS|-QPB~uw)5+0fKtruY;-m%>I0FWw6$SOW6a}%MP#+~ z58}d`SA+;W-+zo%?1@s5#r+AD2#}x|CT_VA(%Au2c-fdl&{R}ZXbzP>d$is%Ggkq+ z8T8&K%8lcPYG83}Tt;){X-pTJnfV?;(f^}VF|P`(qPp~7rHYV%{|1}HTp&bq{eX(} z^R!Ch3UccD9jk(d^3$EP(4fn>z-0pE>*&c1>hy^Iyih?{yJXH?AquCvX3uxZ9)+%) zU!+OzWE7T<&s7bF{&z5n&fd9&(AgwkdoFoz&+6|qM{{I>h%Ep@WQE2)!3Fd#p-@aa z$hdYL4G>-uB2Q#8UzO0m`5P5sr)-dPi~e6}ztJ$q`}^Jn#l^)1Im3-{(NCkRc!dKrKJTBUDy=)ojpKQqokzdi%!*;datrG z!IGZ3VXN)?Xt_76cye<#H`ZYavak&v=--N!2Dt)sUwNPQIWwA5(UQVLLq$bI=4l}r zI4Y%)-$N*lwWIcImS08&y{@j#V!huLo5d>T8J{RbbSWw-dVYC1SZ=KR9G88&Bp@c{ z^^fP+UqwV-G&D4@p3i?ndG%_9HKJa0Nh6`6A_AySka2MQ>+3o2@$rR%0bEGrvy4Gl zUR@moTxLye?ZxF*KA(`#D%j$dm$@3Xk zvO=Z-5<(NmcQU{6h1}7YoJsP4=YS5YaV>-ijfg-;C0AIFKtn@YJ9qy7C=;w+dQt}j z7{Sp-RbJ9cwy8V;$9J(H+~vrXdIJV6nq{{F8c4(Q>Mr%-98YDndZJnuTYU825rg$j z8XXzLf>T#hi)roP`}(zNenBcvfv?(+Hwj`Wb>kh7=SY9bG6`DH@|`#yHzm3`pt(qDX%raBTYV?CsmP z&@P^yaOpdM_WVB@IrZ2{ktGd0cJ??xmI`BSM>bSJ?4tYYHd`@e1q{O&ZixR@*X! z0udrx4P-ZBfZfiJMvT%N|1O=p74}V5RZj=aVX{D*lYG@Fo3&&f@ z8U1EIbHuU0T2O-PwB4QUOoamyC=?{U!5Uk0zzoUgyF&JOcrl=10j0V~yVsw{MXNjb zC}Udy9q_0?cfCGcNh31BWD4qYf2}ij_eUUSjaQlz0YAj!`6=W27BHn+`!hM8k(Ez{ z(X_gY=S>g@oIALn7VnCg#{s^??s&Z+N4B_PE3f+eVlCeGY{nY$M|ze%MDTiMJQ&G^2? zj&@PbGPLnUP|%VoV>3wf>31TyD?WRQqswINyh(gdyCia6GK0fKfn!269j8ZE+T3*5|Z9m($Ygz$oS;W|1YGWOZYB^`D+}qxAUND!tR3&o;VLUD zTkXvX+S)Qffw<}4fDXA6rWYBe)DSMZ0I<#AYHT&NeRb>UplQ23S(+{N4H;ZZuPYL$ z7X(fu{jLyFQc_Gn8#;zz&VW8RJX{)!>b?*W9*`8uGf);DsnEisrVg5Oy4tC^;J7`1 z3#yyamm%PbM7Kau77B*r`95ObiYu)&REC2o^Pq>Q7C@7i(|RpBU=AqnijXk2n0>iNoQ=*F-h* z&q@r1OFV+o)VxlBsewZ(<}0d2|);3I) z7$NC{Nx8a;DuDSipn+d?R67&h(J-sooJTQCd?Q^mB$v3&IR>|Z-)-N1IDD{0Gvp?H zT9<9l*#@a-a695*+7(Nft)+<)YSEyt=}*K<9kw5%KjZ=~5ONiT<$ODqwTVt#yvpNr zb2<;QlS<99kU*Lnd{^(<-`3^<;-lG!q%_it7bbjH5$ul4%(1B`rn=bec$Vs;ynU5n0=QkiLY5S-hewI-PZhaV4Ty(KlS&( zgDvZy#b?(ZY%KWUce)e?AhJu_stexob1vs{;ihr0JdVB5&cEuSj+NzYA$-~z?eMzv z>25;l7NE;^{<3MkEq$P^lM9?i8K&4O@$8Pbr~Hc`#^es%LRu^!#hBCMgd{tDsrOyQ7#mX+m@&Nx3OSU^}(dBx)=pV z)&iU{gyHk>au9ih;>l2-+MjN#0?j9ATji`iu(3tLz>v+g?CR>mreJzVOiY|{aM1he zFMn0b&*&X)fuqCsWo8s!nX4Ae-#xTrH17JGUh^N+0>!4-*vhhf{FBtr_ zlF|}UvR*_%WQ%PIc?uyyRJ0fl$4d)uZ}MrRjlI|G4iW3?Is$~qK(-5{8c0}J_6?T7 zzg4P!0r;Ece;ilBvy%!tBAXH|<*4sRC0|g^;Bv)0m{KKeF%C)6PiV6c*W^^$-ZHoP zrUir0gRnd!>0(*_YR_m^=&CrjO#Ncw>o4dQAze{{v?#VwI+b5gyER8b zATfRcclKg4JHNfFOa0<-1x;a2hZdMRmT4;+|B{a|M?0+l5xI)TwrTudca}1iwdIH< z6N#qFY-N^m`kHZlfkFBX@df-P<=PGkcj9$6yf3svzis6inZ8^Nh&sWjin}WW`ET>& z{KPB4wx8K3P9lzBw)6&IlTx!2CEV@F^XF;6Xou#|lvwR>U=7 z1e~l!$({kZ6Id=RAcF=%Qq4#+rV$-DpIyb-disC&_Pv1q}Ju)BvN|G8{kv@%&erUVfxplpYfm&YUp#fXKqx*F5ZJJS>`#mwZoEsnx&F z0cEq|^H%6c83VcLa%IzzWJHtcBH$!>xmL_unWQ03{$db+NabxE;IF)!6N--Ibf&40N zcvu2-nibg32UGbKXFVW^RzZ9zP72U350}~kv`;oiAbSa7d*K5Bxc`G~&c0igBF+A^ zdEdcuurNe(@W7;ttemknOhy#Nf*G4Wx(d1locaQdz!)z_tTfmagGOtAzX|bZ#(J)j z1_vDB94^!&g4V`iUZ1HhpK?P2UpmbV+}F80*l;sUDVbmt3sQpufc$s|4HO79I-Ea) z->ShetIjDmbap5zw$-N1Xaxj?o}9 z+Dymf5QGrU3SlW);D8X&pjERhK@I`+H3E=hs3U{3!T^n2^X>w%l#8*ivrH8zW=nw6 z3lOP=5HA#*X#JOaMM@tYpaX+``>-H-xZwYCiT6QV;(r~57~%fQ!=??qaqoY7<7j{| z=H34i##C_-Ntfm4-y8ZDFd&l%LV)`AL;I+YR|t8s|EpdRg)zsJX9%0q%iv}S^?%`P zjp{g}UC-`5eHM5O)g~tJ!HLZcC@?E`B1YBDE%R{G>kblGc>^l_LQjLepKPc=XW@us z>;$*aIu{_g7<##)yrvb2OKxNNlBnwTy-XNY9o~Acyl^y+$Sc#TBl)}J(K$Qxzc|3T z)q*1Qy8nYDX5u2Pro$H3x9ptrwsGt$UHTl~ej%xA%!wyEYN;(;smr@3jk~RLSY%+Z z;$-4_s#)n0f-q+0<{J~mM6^9y3YoSbq2|lFm1eP5TYy&`{ zsc3R@cxVPprZI%lkN)a7k9kcSP;g?(DNdF*FWXY-N)C;t<}lU-jMU#XE>XnISHeaE zGkphH+u@ z4!sQ-6t~N>%kC$m`bM7*_L-CIK?@r2O!{Kbv{L1RAD?J${@mEu2nPo@@6WP(Z&9uW z(Fr1%0@@Q`J<|qiADP@zPB^!xse zzWUOySB;;SqPwWj`{sm;ky4LuSp%GFlwEqEs^gx2%v`h9ZmjLK03zKgl&Ny#wOH%f zMD;d*p(8+~cV$Utp97++r_~ROPgr>EbjsNJL-~XOgg^H7h6g-lH!rSZGcc$CYAB1e z#pDy1M`mUw1oMD)P=VEs93UZ(aGbAA*)P|VpXPDs4iZ32YT|NoQT%Nb?Nlnoocqeu zlRsgk%!-F?`#B*Nt-<%%+`_;ugSz&@!=l`?zo>7^q+*j5xSe_+EqG>k%#QzV60)W zc-Q(-k??Tkb4(cG_wUs}!3^PBgaqe74e7Ao01L5pDp=20LVC^LpQ07n9%+>s&A|Vv zvfTOtXsRJ$j#Pk&5zr}J*5aMxKv!B+)YQo^iWKZhAP|;TFnwIC)sqBh9A8X2@87B? zx2Ji)j}8$tMk%P4t^->guA*IRuG8>edR*p!jxP{*Q~1-^=QWPx2dL>VHP`Q1o=Pom zG2R3-1dcH|+hX4}dRE51GS{EtK1;oh;PyXyPoGZx&Oq6kP;q0(XS%K(yj(Gd~t zKp3(yRh~a|4X6*bLYbIVz%NAs;nrU^PcUa_;DP+@>HPHR0qpbF86)+4BNF8A-+P0K ziMdCADD7Fi^Q~=c%YIAsGjt9jKQ8;5FB3a$hHr~0FD7KmX-j(5enxBx3;dSvIv2kA zn|znu5~mM3Sg7!3>SK}6OnKI zaDmf}odDsP#dxkDFxuzy_nz)dZGdhHz!dX&)w_#eH)?^d9>fI=WQ)g1Q)nnCD)iBn zVGTALCU(&n;aE^^oR=RY8@hu=0CWD~2;!S+dz zjskK<6kZI(kcjr9Xuaxz!h=X}nN95>Ue+fN1~` z$#3ow5QLB)5dktA{#*ImuOsZxfGd5c>~!%i-tiOzs5sUDd7#}J!!+{s5kM)PQ5jw7 zParxzFfWKs^0heFwVj>cAx=&#gnQK=5ue;Bq8b7uaA@E#(T7Vz+GNYK-qQ;i|g>ybg32C z=OD~AAYstK1+SNI@1PQZMFP^+1?w09gtEbbfepod?EE0xgx;W#hi={*_(h3m>Gc)> zi{`JCzXl?E0&o)m*ZL8Nk1SzW2ryFlNn9CpzR-LM{q6AoElJ3r0!FLz>w%*-U+Jlk z3R3VJMloCfl>Ywy|AK@6N8J3kqiq>|k~euj{~Jpt5a0hKg!ms1)*Yk@E{ClJAfZa{mc)k`_c(AcMENS;>{CzbPS*ZR+`C-c;9P>N=x9@YO-*?EUWb#-l@q8NdQO79w!DjwqSCo;QB)_5NY5Bn;!sIcM*^ z_Py@=w_X1|&lFd;LW?SU*GI3Tkm>VY_;l}fZ$24c|BCu4Ls|vLCbEY0O8zhqE|=T# zBCj^OhPWQ_WUd(>9-4Hv5)Lq(wHon0(!Lle)7;ZZ?S7-@qffT{oIibJw*J3U+z z(6Ln!dod~NFNIv<33Fv!0s{HX=EeV>h#F4x9>C}SEKVcliJH6qJ>+hVH;Vx*ajXo(ox~pPibY3WkWO4Li5oc=c#}f4|2GQ@Lee*Jxt?f3@ z4Vk~Awpa*eO@{GqV^YMR0Ec5gRKa{B<~kK_fr43t!2K)QDuJp0C&Y+qB08N@+|7aX z#jVcg;sJxsss9Ya+xiU;unzS-#;(y@cjYB_jMJKW zK7(4e?XCMfS&k{7wkF>fRZ}+DvPYz1sYpH8r8#T&hK?D}2}w*QTEF zH`6Fuu_6x#_DAH?aW^iJoJjJ)+f;ZHXIU7i#~!=yFn&>Rpj+qxW7KlT)-z8J4W7hx zH`aUAQA!cTZ*4{yau1^?HSt0nR!M+FgLX~$F*e1dj!C{^b#3kAHwwB1>g(!0IfW-q z*BxUE{o4Ax;m{ki)rQ~cAgFF`n9*r9V3cZ=@Iqz!+;bM26gSQz0L{`3T^b*@D5unD zvzO%y77usann_LaB{qG8WsHAp6xms<{rJoB) zUt7@p$XqQO%k5>ZmXhjA04OwB$+&R~!%7yGA_~Z>Y>Mld%rpUl8m-?S6D4k13BK0Y z$Y4H_lpS5@5u8P@BU{^eBv7Hdxq+*B&G`%&dG5A@M^M4+fQjOx)@bJ?b=zSEow&#x zCoKt~Fmj|kL<+x&i3#pb0fyiM2M>x}&dEcqFzwWb@|BY^FN4(CTpp|Q{z5wUSwcjPYF5b7i)@c1Q;^@s(ZRnjxF*R9r=S0oaZQe1DC zSLD95LUkQ&!PVi!UGloG?Ar3VGTW0{pTB$~u>Qu7D@>2eyA-QT0)1L#4-Zk|Lq}dM zTR8knJnC80tnqk$eA{asE`INOb&DH=^pgaj?bl>kSWHVM{@NhfXW6>YXjNglG34K| zt^ckr?_PDzYO ztgWA8BA1gs2yJ5qKf_YS_M6#_G5vuL30nq7y(Tp-81P=V+qi>865vzkiTgd5e{Tq7 zwW{+!X6yF{bfTrhI*;kAtXd)kPlk~gB5!#J;lq#&QwraERllEwfSEowvOK5%EHa?$ z#pioS9!XRUs{aUqPdMhc$Yv{~Nc}J`E|Ju5|EGYY^i+xLhyAhTga)Oq${wc&Sdja9 zq6g|)ttG98kuW!stiD*DRDX=acj~AsQXgen!aeZ)DRy zDhjKokn>Ra$voN*Y7hR&_?vNz?H^oR0X(^7&!Hf!sjV%6P!#N%oKWfix>Zm3m#z90 z{h-=_ecNSi%nc&_G={EXCpNHD+4Yr10Qv*miW8l=tl-WFaeeoH+(6rAQzNyU@#a8S!-)f0-!0?ndi5H zx1&KEbXRs^VSobd2dO}plD&BGp+y1$XVTP!E#@KH)T;#hj@LkxEjz@isu7g}8md7o zU+jxuUqW|hZAJymU4-xd-j2BfcL)B{@zrhnKOApt#9YTI>^%wo49cpiY{33n?6wv% zaft)r1nDz^5IoV`$``X=^O9fURg=}!eA?lXZ)pZ}l2<0>v54sd)Cq|(B}GMTEv*YC zCW#%JF)=Y<6cGQsG2L;{N*ZI3F6`lQ&T;vB_n*7$kNCCM78M$$O-#|zz#sZ_gzP@j ze6=<_m!<7J7>xI`!IxabU40RcRcab_d1ss|Xb@Ks1syEi^C4?}LD7qCT9Gs2RbN)h zPxVIU+Dck|8eO&Id0ZIfI>VS`(JAAyEv}}th`C%9cu>78dAKS;+>K*meUyY*34_;i z`hsRn|LSMzH`x`DWYK~bFRDjTXB%nYUB_JOa@5WzbCN=@Xsn69as*l;r}_ArZP1-L z#*1rfH^7+@g687lVv@NR55@!nP~5tT99Y5rAhiK5MBt|R!`{7Alc8Bs9Qbp;P%qPL zjeezpMtC6KIcwBKu}S?jd6|eGg!*yv)qkm?o{JIF%EqP|4T&9EdDO8LNv&=ra+*X; zcZ!z|^_!5KK6KLdg4tLKhDfiOTR`9$QbC+n zjXX+6rwnmNKv9K9MiRkR6%ETPy@)*%*msx_t`}e+Pk+kGcevuAR`gti10NGDqG27zLnAYeTPv0+tkmcG_UB}Mfz{xvhG);dn zAt_-@TBLham17q8Xu^+LP2lOO1M_29>k`?Mg{;xBaw-zt8bLw{pIS) z2YOQMO~bNq)0tnU)}@G-$6GjLWH2{#%Oe4>)=+5IeXcIbkB)&fQEPac!bjr%g1E3I&?rhDEmy9Q7;mipmB#u_Bw5uZWTd4G=zuW8=@WCHp z@faY492|@#5AeTs@)${RQtXSc(<@!$OZ%FwYCoy_-+ZV$dIMIDcM-n;C@mKixWlm44|Fl=>yCpVmFi4Y0tikudFC%Qg6l| zyTe9DWGfZVP!gZZL0?mBixsAX*=0X$+Io^;ZLY5gF5dh5gv5Ns_q4U2cN8Rmjd5LH zN1h{u4!!a?Qc^naV3v%1)w)OsWse-=tuoXfqqgqIY$(a*Z_r9`W0VV+(?K4j|!;dKVbXk4+F7SLhb4MF@V_-5JlLk3Wa9Y5< zhTa_F*9P0XiQ{*bFm?fOZZ(WUcPomLXiqGSNH_~}sZv(+>E2CEn%f+uiPlDeKYGh9 zED!&9;Sq~ZTxS(52eIyFPQOTwK;NVg8>25vs+9>W8TGNVxBqhNZTZ~YgpAtswr*D{)zPv*oz^8|g;kVK)6N}jN2lMw6o2tH$e)q? zrp;hQ_N^r_jXc;u!o@mc{%Iocx)4nH# znvbTO#Sd-raHUUay^UY9BQ?{-M5-?*dP)Ts_N$%2bZYjP_PQ#6g!^eIWl1SJG>8V`w-vd?|CM&(>e?HRPuBVWV^j-zNRouUT~@a;9;X{6_0t{T=W6%*InG zLsXn@oEx`Yj4a6Mwryo@WSeNzxPrF6pXr@d-^=ty%q8M!d#f5BmNXpxy+~WzdSK!L zW!NrtOAhO&*_^jPo*O&M_)X*e3Aojth%3O*qGa->X#WdbX;KM7xp9woaa@;nH0n98%fvQy<}L=k+P+U2We;*kwTp83}lN1Q5p>^BkYujB%~SZJz>w5F0HU!?`4(!w@g+6$?+?&iw99D1;lZ^pQxJss&Fc5ixNL zKp?>+rzJ=Z6=b3;G;UQMpQVAH)1RWxc>abVbgx@FzF%5eL8Sj@$MZdO4}Z2seFCxU z`xMZhwW}{sgMK7&e2obc$YdtgHsi>Zf7L&gFODWhFrbMS#vA3|v%FyGKZ$404nF!@ z>sFLDPTo=bisj(e0bJ_QAGI{}lYa(_-ab&(`@T>4JUPX)pFyIhx;r}3xV9R;UzGmy z!yun)Wsh(0lVCvpk2gC=8|H(I+`nZvxc)VJGU1O>f5xrqk^8}}Q7PipEB~gvMMm@e zG6t<=NO6?jLd;>OQQ`M!k&=AUV>W_mf`u+~b1VreEpbZ$HYVx{F^MD0_dL%E22v`i zfvqa1^bE&Mf$g10k?#Jfdfsv_Iy zWHWE8lg3qluhyx^XocAYXz>1p@h&xeG7en0e=l~rHe`en89IhVaOTS6ZXuJCCqEK& z6{5;7ss{=9tTh`qJT$+;Yg-i^XLuHnoh1B^3@|UvS8&Fj79!YbXK|svxZdnLsFuRk z*=1+B<1^dm8kNy$%XhjNSE#mA8aTFV@MD)Lc~5y7PDL~Hr9#tE4T9q!XxN_9gpeC> z@(^|@c&m|B2Bh##8}h$`HB|}U=uuB5*R;A{860mcy`Ib@V+Rzxci~Y}6W$sjbt~!H zO#IFTWz0I?DmGrQt`0`=5@PF8@zJt($L;@}38d>@+z*%5klxbE;>5jIj|S}BJT0hW zrETj)6i<4AgK1<*O*DQ)KJEpniwW(Hlh8WXx=@t>{ikeMN!8~*+?lcDk}Iw9uS_cw zkrWBwLECaoWj5Dln?8hb;K^0DAMG2|x^P^r0vcK_GheBcdvZ=6?>Ojz?kSmDGy2R& zM(kqiM{Lc(o{fy_x;8jI>}vwomQUy^!C-2 zXuQmm2AP$y^sLJ>WlhRo?K=AIG9kMfu6>(?=YJknxGBGHo zDhGr|M@Olss6;QpH|qIY#cdp8|U+&{0{eP?y!bJit<+Uh16s{5sc7g zRPdVuo{5zUVp_X}&f8x6A!T#M(~Bm@-wti+YGi))X|=_f7j&PEiI7tiVbfmvgu~%hjvJ?I&gvO5E}io3 zFP*gHq&~N(Y7TXAUiz#P{c5<*oWGQhNB)}#wW`23%w=67)R$It?cjKMfOn0vNw&PP z4wXb885>3E>+H{&R|Juo8+sDRz7P&f0PcwN_Z1yz3)a9~$yfaGA9-X~CY%-bkM``G zqTF5}nFI65T+QmC2sWt+{|KJWG+U9r^cg!>UymZ3 z6dYi|crG0dOli%~Vtb;<23^-t@CIGTt#rKlBZs3>jKQajFYw=UnbZTNwu8%MPVeH9 zy6YVh;8F{2_I*Eu?l!UONlKX3Q5CRR?&U)0k)e#s=&9x#mT7w5hp*^=I>X`1O2_!% zC4sXr<8RXzZ01jc?RUA-dmyT(Q7reTBM?Lgy%AfwT44CSrw-!j_|9Y!xUCf5*%d}FXy^K9$ z%%cx2&807=a56Uq*nxlE-zVm|Jg+$;{Cn@=Ar)`qjn+Y%v|(vr|wDTyx+@3JPt|hCQX-7dDc*E4{?u=&*OF0gF*(fX6Uw)&2kgj z3d#fMtZNOwORls?+(i=)KC&KqDGzl5Moo)Z&xB3Nxqtl7XB7zt+!s29T%j3(h$QwzfKz7@hlECorqV}mPSNz*$$ zmbZwQFCC0#;DX8i((o33o{m(v;)3S5+*@y{Il&|ys#Wa-+)cn^l0tHQ2vQdoV59)v zG#Ke07JaMFt@uaY#wGALZeae7VnD&vBD1zv=N7GNf5L+Pbp@Im?625>m38ZKrPV#2 z915nusJZr=`q`HbGLq81J%0t4ff9U*!L-1z5Oo?l0JxVuMrgcP0V)7NtZ1Y}EijXkXE$s5}9!+gc*W|Tz_S{fq1IUR;wl~PCAWq}wq1bPD< zdxP1h&20OOark9GZKK}U(E|m}0&(ws!3C)&h__XGd#hulXCGHCwEy*{o#_mB5T1*e z^C=3+1p@H0BT%6Ajg3Vh|CA0=l(|H?VtfP>#9m!Bx&w8R6~wXe+MyEKcz3vtNY!Fu zB$jf`*roaQYEjLl>)q5a`+gK*2&M~uxBNLbBg1UGIYBK}=!1YpZf6GwOfcyHMAc!9dFtweOi4tx$^lX&s+ zrOgfNO97d83TeVV4-p1rmV%Wv^J6qPRP*wlg0hbaobzN43jh@c)TF_s3MvJ$`EO%# zIHIUHI5q}4;6nDj#aF)3Q&GK$@piOQR>P;_q6=v#;9pJ)=xN-lAIV|xxgDd%4t$!P z(AzoSpfo#6_Z}$7v6z?`6|f>CymJ<4-vdiJ68}y7XIcjP2&1swiIW!$XU|8u?pgMd zuOs&kK(;Q^pM$eqDf;!WHfu|`x3RWc&!VwPHwA2XS)N8? zRn4(1VEfgBsI`cJfdPVU2aFN$jQ<4EdGoYxhH!#5#`Mh@r12i~Tzdcfoqc5dg5zG@ zd6Z?JaETn=bARn|)HXtZ60$xDT%QRS@hh*cCfiEFKFSC^8gYPxU{#@MdQSAne7`Ae5tp_xP13E(N6q zo+@|lRFH;=9l=|LrRjhecHQ>IGI~0@2yCw>U?+6Ez^Y{ob}_oV?Drv%>JKkohV)CG zL%;Oq>a-HjtHjVtFR)IBX}MVDuvt0Uz$RwK+!BsE&di(*-u6s7yutk?;NWAKA0r7- zp8KyMMG68HXoM+cyE|L9e#tP(xOq{9nn3i*U771ML=OdU=muSfXXg@J8(oQ=M{4n+ zT9f#!s4v&HvmwwTXY=`03`Ak|g02lz`84_;V~Zc_gB(mFgr@WYm9^kzQ~6dWfd>1< zW`|neC>i1*1}`%%-ddQ5^%1O9g?rE`ppjLpYO8YZo-_f>p4>{>A8r)nyG&|BI_dmk zU<-)6BuAJgT#Pd(f!zkoCs;vS;O)ikZ5Lw~Um2A=hh(J_Ts3&U)FDCU0Rd~>;7KED zYHCji)F6q+QNmUu$QV)x+jUieIzoU%%8;B6fd4gl*|YG0A8$y^Gw(vJjqMaY-088x z_#1!v;AvdVe<;*?!Pns;pE`94_y>xzvIK}t1?E7#^J(B;d402!?_*&yY+e%-f@s=+ z?G3YNJ!l)nn^Rfc5Nh-B@xj)G$Hq3oT}1@U7RhCD#7PHyvIcM=fsr}$ct;7084#yg zYW*nm&xZi(Ef$t2RFQpfwHcya0zUy_lvtD+ycv9sh3(}QnAi~^e|@H)r3=D;ALB&y zdHDv#L)A$xe*A%ayxe=R&=wykb$1O}r@VKTSwU-g2XeTc>Tm7s?H+KCuU6jkN(c?P z5^;O}4|u4RAxdZin~$a_{_*NVth%S!-}b44(V;W_FoV7d@n z3^1xSr{$GQNnz@1=u-x9yBkhka41_OnJ-%o;a>dzgq#KF$gy>9ig45fbR|Y$(bwU9 zoRN{SeEbb8`wOrg$f9a90N3I$M5YHJ^{FXA1#!YEu|^KLav2xJCT~1Bd3`&a+EPo8Y1!PD_@yRE-Liy@;h!Kp^Oz8>3O4TeC%V_4S#| z?FYMO-5_zTC$X~%G9GxLx(cj9Ev7zaGs^oNxeop(EC&$*oP)t6=KK)kT)g>2cfmM1 zG>v87YL)??5gIqA0D%g+CzhFXU(zvc+mm#1v@bSqfBzm382E>XNEB2!=fD_`lRwS} zgNm?qY~eX_z=pd$ghP?P>EYwYkiZ09Bm#K_#N5tS|L*a9S)JfU0lledzj){&GYHlr zU28A^l9G`j>Ri9~uGG!W9KF*l8Fm`qZ_1DY_zzsFy3?it|HJZ6M@}+VGR~qmL`Wy$ zc1G&XiWzjKdR;q>x8Vsz%x1_RZ2f_V48UXJ2q0GQ9p)_B;zV%(w z)eRpS9!>>_iE;^i;0OrxU51tCD$X{dy~68my|oZG5;TC<8sp@(p}mkrfGlQTk~srY zIHAICq|}f^`1#!IVJZQkq58o4e-$1TmBr8rM?r-<=TkM?t{8mGC z0dTk+MC8cH&4G$!=JP~&$%x=MeSoYrC zfr{w0O$YnE%}EZxaTdcl3Cum^uvj3+5g?3ys2KpS#RU1?rb?+f`1&mfI};AUL5Lyysel)&eshYAgD z`Czgi%MkPra-3q2k7C{S$Mdi-G`s_{fO>#wKjHJnY*GJJh;2h;8wsh+d@YXyC-xf--oYnmCqwAkMJUlvJln;lsPa=B@df(je)P};}dJcT#FJXmN zZ-U5>$JdG-QcdJ)az|CdKQFO*C-r-5Q2svI4-4gIs!^IIHr;lzOhc^ z8H1rh4A^E(RFsu9sT8!}a7ZjcBakh#By*0+83VrQlVO&AE<2Fhg6batILCB%lNPEg z_cM?i_tlZ{fgt!2bZL*#(M=R$UPG#hNlXq(9Vn+#kV8SP1C#;k_Sv$u2ZHc*eXGrq z+~>dIL$+Y$N`3L-Ay8|oZSKM0aWtx=CndMXok!jugZx+? zDjTsHWmCdz3JlEn5R0N7sJ%}Dt{jfbTY$@g9NN(!ekF^#pxbEJp?o%cK$= z_tu3^Nb~=!%Y-J#R2QHu0JQ2EgV+Ozi@GfB7-8~g`b*UgwKOB2Ahmd>zzWZG72dEdFs#hgkChqsyTS3_k zID>CxqgJ-;0I9Mtffs|l3L4#IjSP=qZ5I`nPt1oQ7_|FrysHc?2oub;rI8OIXjslA z9Lm9_5tf*!?&4B7EDGoIUCBnlPVj<@ix4Cczzbanup~KaKbI3!LmIF|zr5f}f^;2W zcj2@$p@p!Rk$i%ByeMH6%<|PR9li%v?K-UPXn+~-t}zqBORvKw4C+nf&?wQh63-21 zf>p z0dsb>&{`{a=PRTn9JkkNsHBb{E=ELhDf!nUfIwD{OOo zK{y1^X%ketNdF&}!4X`iNtTwR+;6J@RIS6nfLVv#ntyQcDEN_K7ziU+j_`;GFUhFb`%S22fj&@XO7VRakAc!;Eo&^uQq2IMKE>bB-9TcDtrgqjV8*$ptlgj{`e z^h>%9c4`9wOu(t8d(NSUe*gRWi7djuICJ*DetB+}@O7RYwSbs;2Arr%prW9DF-Okq G!T$r$YcN9q literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/4.png b/labworks/LW3/images/4.png new file mode 100644 index 0000000000000000000000000000000000000000..e714465a8dedd833301c4d63d2a4802071d7501a GIT binary patch literal 7712 zcmbtZ2{@E%-+!odv?(pJJ0WSYG%}bNEsD@WOtO{AWG6Ictf%Ejii1jG>`S(xkZp#F za+1crGeY)dEW?EG{ipMu&U?PAbKdVgpNq?N-PiLx_jBL(|Nq;bfYT?BuU{jy20@VZ zI@(7K5QHlh{>VS@z{uIUl-=-8%}wi^o1v4n8{y)$D~SF@H)ne%H+vf^iR)Lcx!O26 zqU016ZR^-swG;Up4?X`FjJ=@9Z=$$k zx}r!g#6bt$uUz(8Nq5`hfIHY73LoCykdU@LbVv|odn9tl1)ELJ84tOWa$^<`QO6SR z#PkLcOrwK8Mb;EE)7ky)PV>Y0ghjKLssk&Lm(q`{)Dh(4)KM-jMDMgFf^6Qh5qY_C z)k;L+(4U5m`i^jwq@}0p-oJnUgs!fk#Kvr~)yT(pswquP#(e_=d!+lmG^?sp{Dg#s zjZUAwpw5GQ+#!0<<8+xnAC|eOK8|y?v9W2AL=gUuhr6o7j5X7ZGwYt7Nlv1(Pf2=OTG0h%kqsCfd(IEdYps8o<-(#yH%>FM{3y8RKFlG^)x#DWZ$PxI^@w6;u?FNOVze`t&Z0hC+8Z-z4mmk*UDA&a-TodfwhN z!m&_>H`|<9l@jAKOtx`yV$)-pAOGVbzBA+3p>2{{9o#?p5v*IXFES!RL;0C{CMFRu z$=$nmsi?xjLPmto;ye-GqsoBOUm(L8q@T|q$GF~6EmYw>#E1y z_w^3}zpJVB6Wp>^vP7udlg<~z8M@ZiLQt8<;YG@!BVScA1iutN8bFMpaIZ)Y$l z+EV;ET*!RMErHW#&V)2&m?Y>&Di5{dV~ma*x#?Kgw=M6*i|fU{Mn(@0$DMZDvul?& zOB?YM+tt15tc3+dd}+e}iHb{nWo0FcUAk<(Z{I%BTwi!`XX*3j2HnmoMF1KKwUW>d zv5BQ>5|WZfnk_sthlhuYXxQ!Rc5h#|({ml7$rr{dU7_alrC@kuqt&NWuN%Ue6*j`+K=I|(B#&n^im+dpa*BQW!`TLLvj?j!t*vLTm$(v+Zd08UX+*w3%{s3;Q?6GlWngY+J% zexx~zO^0nQ!_>F5z;X55-9tr94^*@1+I2_x)IX667iZgPs7PgpDf*Y`m}M5-&E1`d z|HUg~)$0EZu;0Pl?+hKS>-uGbH%>(a%5HgSfe}ITWRvg~-ZMtbds1VqIbSKO9H1e#3O=A-A01*9TL9}BOVQ2L6=D?6yJ+nU{{C8&i+o5bBmvscT=Xm_<+9tF6H`(u9tPq=YCM97%S%gLH_qM5Wq#bl z`_FcIWnf58s8vW!j)9>ejRQuEh+<|*JDfTPnqd!bTQARK`4WFy^r7nVt-ljzx4C9} zzEg9CNzQ|qm@G|+*!9B7%aVwqDun+_9+g_ZB$7t^X$Q#ky9 zU7o9UuMj0@herD@5rMj{LM0cCP>SUo&m)>KAvFVjLPA0f4GoEPb#;Rdai_Jlw6uWy zhLr37y`8t6HZ%;Al9iE>>7R{?iW>B`G%_+uI=yR4=bANZ_*MClSpWULTg|RqNqXJw z?1u4}h@FAH)|H4`^&m2GkB+UQV^ATjuuzrMgpj)AGhl4xpPlDI?Nne zpG%WWrTA;uSS=6tbe!RxWx`E;J@$hiGI9f^RYIU@FWmQ$folTOtm*4R(4&zGe z4m6u3yncOHeX@LWWp#D)Xlu@9RWuSCJ}nn(UVMG%MZ0654;6S*r|!$#be{DGA@$jo zOSX1)^{;QQZLF({k8~^V$Nj7iyP(=SP~^i4$I>=Jd+SDf&HO z^mypyWW9(Ua^X;NB!I7y$HWC@6`%nXbqc$fOX#1j#ZMiW=c{!peIo9X)RXX{hP`57YE=R9Ebwn^cs{sc05JiA;=F54n}*nNLVg zN_vC2S#opF|B11`Lw4uxZSgj+u&^*IoSM4Etb(2GCA-l7Rm6fS&au$BKn(-r0Q{LI z-~&&*t*tE;MJAIOf>PqRf4a=eiq{y>;YckN9sG0v3h&bZ0rt zxe1;xiuF0zZ<`z!cgS;g^o+H2@_rO5&ui}52Qmf+N-8ZYtNBu}dUASJ$$5Y^UQrRG zrkE&DLoqLQYj?=k!Y)nCMb1qRjDVtOWY9cknoF0AKqYWm|DGU<_1<#H;MD~M7sC|@ zNqw8-D(4`Nr66W%O7s+c@44)knCYqa@}78~`T7_VUMlt3GewFB-Ad5_(G32NCg-nO zHDn_H6Hm$Tk?4_Y@@~oeti)eVYU_hUIsrdi&8!tyhQ;LRnGpii(JNthV0@lqG zbLb-|+;e8Cma?)-*ahG|BA!yZL;}eI`m6$Dc>X*{cn60Wx_wtkC%6mlWNnQDE-v=T`_{JQ*|{%_`WukJM!8|tSZ9^JI>2EMq{bLDQ*cI#Sw9P6u4f#(w>|F3lP8YY4*N`=AFWT;4=fSz0^|e5@h~K0Q;yTglRweh}ac09bIhKs;y zSeeHBpk$_L{&+mk(?9Ge^=b8LWKgtc{z$`{K!K6_XhzNKSo;C5&l7`V(0pp%^SS5G zpSPmicoG@;Ffy`zYyj*j{7&BELI&SZDSlC|=cyjgnzAgj;Mr-}*$VwjASLZy`f;^A zzoN@}(bjfeRK;2I&6_s?5!;a(84q(VqqAqPjrL_0V+G@ zk(_y2Rh1qHf{|CN#m~C9C}#PsK*}d}$KqqWjYHi=GV|Ydl#pg@_nphu3}yLazZ{a4 zm3@LCP}u5{9!Wr2XBTh`pps3^!N&rwL0`tanyd(3nn zpQ1*|=bp99s;;G3H1pn;t{ur^V`GenACLU(fp;wE=3!RpqdPy5LlSv6@ASZbRgc7( zMjQ>b2S;JiN4rY9FgF7QHuyh`j`m?Jn5^CK54Gu6!fMRkl&^T{tp{Grn{|d+1+7g* zK?X5P*PhIzdiPfeGOHfqEQZK}P`!lYgoH9smN7o_sRV0~0E`IGj2?I}H?-fl*X*Ei z84tqJ{)=?x4>0)-94=8Ns@*@*yKa@_3L3{;RJIRkCkUVCpGsXVFElJ{_28 zrtfk)W_oFX3A8vwCNL)HUQ_R67!lf1J>;Q_BQm`^oWEJi@67afLq}iEWItT|or|?Y zzuM`a*9rEJ1rOLh0NHWP)s==?Tv*5&60WvN{LRiPD+7iPK?VTf!ffVBbxjo!V-jhe z$Q<~mqJVeVXv)Srl!I<)tUK>G);+(IqDNHSMZ7oAvFuct*3!{ckkYvd#PfB1A}S;t^Y*v z($8&eZC10z;MUwfPjnByuzGX%)`s=S;3C!HR<=!j^5bBz3JHK~9JG*@mac8jD(Jae zz%b!QoaYLj4)}rikdj5AQ2nz479NMde+prJsJr*8{v(YY#)-*Pd3cxzm_r6yY;wjx#W>LOo*;i|K zEcS{o*R(s8W_FkP#}G;Z2W;nALlFMeKUTa%FD#|e%%QPrgC#@mfHUY3eOd#so9EJd47ejTHB~1R+F$8vjYMN} zvmGGM{1Uq~3rxK&lR+bW?)En_Fo+M>EVHu@iy(tZQLA-29n*1H*XgQ+k1x4!1_nK# zNX!+syWuRo^E_F#$IU^^zYX5B!M}Pz#ooTlZ7o!T17J}2sY0<3=+~^lA$8c)$3R^8F3UcJX%GAE2(ErP!_=>H+04A

%6U^dv8#giHLs=>9vb9JvA@SXl`!qgpTU6`^jZpm3nk&XlOhXgYTHe(9lr$4DYP; zZ zA4U)}F;XK)oLJ_cbIADSEj4LI=}NW@yVi@S0M}`em^60A@uE-v9%eONlJ4Yin_bgh zP5`~}2afGkWMc+cpTbVdB9vrLzJq*#ow$6cWfAJ;|BNUtkQ48WPTYLKkfNvWW_a5)C zUI`s`m#=TtTs8y?2?5n*Gu+?F&G$zQ*O|VskB9`TGP6Bdst}UiRf1G=^38NEHqb+YWTJW-UU9+X2x9 zf9C+?9xkC~`ug`9AM3Ec-o$Z%osf`SMmL~qdb9ja#%N@A78BCpEJ&s&PTYkr3`T~A zmsBF|doRq&VzHKBL7LzTLHdf-8_oq^P6KbDudlB-aD3MmfR)-SL?8S17y96MipGmZ zask3%kE%$CiEI4JLK8uI=+r^<-&k9_$yMW?D8^Xw*uBB}fihfhS-6Eq_bPB9HeWtZ zre$O_0BY=gi^&qp-#&yBRVSSV<6HUeT|l9_jLdNkJJ+672IkC#i~&59yPDVM>__sJ z6jR4SEpcyF2&kWo3RG=FgOpBZw74aMQ21EYHF=ymeG-5zt)#>PyU<$A2|=Gc5#j{t zB(`T z#x4~=xG~damnC>oIK4t(<5CKwO7l#3cPLzKp!bIN@}(IIpDPxzw|}L zZSa>MQA|?`oo^s&o4iE^Y_Q!(Q|9iyd+!zcPJMbOq;NsAY7Ptlr-)do)7^(F;xOP) zLlUFiHO`f;>4`j-??_(DbJG#@40bL6jB=#i)vL}- z>U7Yaef!*jjmLitk!(tkHnOuzUzjN4>jZN#C{@_Cyu=$@9L@C+XHROZDI*+OH`J&#Mwzgq0;-^hGL&IK(>pCE{8Y)>Fb1Jr@ z6uu?HXBHCcmPzi_khQlDJHl&>Pjr{nj=_=EdW(5{QIQ%u(DKV`;K}y~l#~kY3!{r_6OI>yr|ErnY343aa3OYSGT5>F&L+77 z2O9OsYK@SFmyr^69T`-joVQgU)pI;E%*d{i}{i%IZ9Hz(T6qcAtRGNd)o?cr8f z2r(?!Ll=T;=BAYlmFg%vLN34<2lh@piJKAXaDsd`tVKUfvl%ohK1wCufc)AGT^TfsCxUi3hE4m@Nqa-GlU$M3>x}Y#fDVeur z4<-Z`Ijh)XKI0~?uY(Vl>PxB;h-TM6G5O`bTw;1Z?Ozum6@b8xj@HSel*1Qp{0|JI B$y)#b literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/5.png b/labworks/LW3/images/5.png new file mode 100644 index 0000000000000000000000000000000000000000..49dfaa3a3c2516fb4731495511b9b2212476794c GIT binary patch literal 7572 zcmb_h2|Sef|9`NEl(v+cw#bpIrgDs{L&&ib$=$_}+hBwlN?1iUCF>Z3+()^Y8AmEh zjB<<|Ba)jL$Bb(n|L@d)+uhf{{r&d$+rQWAd3hPn%=h~|&*yzkq=~Wa4sIcC2!eL# z>zy%$AeJ<6V7GCASIj!HWx+2sADv4+7d#w&P*=PiAfqcjo~|A~uFhBY`#E?coju%P z3P+R_l;rk1`S^Gu)f5%ozMi4r;f+vyzI72} zhWnev2SK|7i1ewO$eX?V7VX{nEaS<0AP6nj8~{P}36ZR<&@X8r5Ohd-KNP~ny$!m2 z`%f=LmKJcXb?^sDA5Tvd;UKYHC866vwmB}4nOvYGf<51L#c6KRr z0Vt%itE(&X!9m@nm7qGtJ{v2mMEW);1a`=ro5}GtBcapKR)X9RGE=@eo1bhOGvS&N>E4fGM5&cn)j!lZn(IZo0;*U zW=hrwt7iVA2K`ZAe?PrZeDj&I-A+geqMu_S2Q9X(&6Kv&CNg63o<7yF zu<;5b69u+pw}a+Z{F@&vYewxS;oi+vOqH;T>8%Ud9>&w2ze63fcU{1M>35nvPO zwvh$yNa6QZ^fmItS?2}iDlqt3>fnwsKaAJ#~fco>-S!32K$ zpm*?66xEK(6CnOyU!W(aw1QFRPkYHJLJc97cIngAofQiB#E!NQtb>qx30 zzyfNlO;Loy`kI!j!VbrS99h-t)vOIp`#8jV4arfp1RMd5a3Nin z6{4LcV0^XDo()&1{&XXr6RaI398>UbQ zi^MQHt)7iHr>4egYl9kG?lp3j?Af?O=;-yI+zE8jnL0k`GGwq)Ii$HkyFd<@F6^uH zNDb!|FLEiWKAUvHtz&MuanI*Zk{e1!l1>L%O6-oDb_}hLcesB2Wn2;*RfKZfTwfhb z@W&Wa?6=n9QI4Z6af5>T8nuYPqX`KKg9&3}j?`9Nar7swvxmnraftRCnADeVv;Aw% z{05DFekr{t_yGFkz1w727b~Ot%mVii^C%X2Q zyn-V?{rWxC5MO0*JjjdVzhH~cU{gM*lgiBzI+);6Od!EwzEft@C<&k+{qV(>!^Qpx zK*t0a`sTIsX^NizXpt5oafxV{s!4|L;SK||K?6_&AAjQp9wsU(Iw*Mg*)Y#|PLi|s@g@krws&9xkFZ|`G16DE82?sXm~Vj~mzAtgP3ev`mJ z+@T*+3V>jx%&kfqJf4`$P9-7RHL}~1l&6!C#PeQW&v%Mz2K6^XKQ~<>h5% zW$$Y4;|?=3F?l-@cM9zO?wJEewnIuQl4T)QR#p=FmX?-BVh|1vI;o7jyLY((Bqv(l zyfOHs2Zdl-z9mgo+D({WpOu#%ADbtUNMgaz5uiyL8XAr)5J%meeI^)8Es!dpM1p9! z-H}dwlDxkb6Gk>|`y2(y17{YG4~Q z|Ei_Ez2{(zdiubCOH(4s;!vTo_LVr?b0j7UZukRLi_N^bIOYtLo z{N4EAgGJdq4ZXcf{+E+KjgH<#)ULzxgKPpOpAIHOh-2QvVb_1%MQsHx2M^m?Z4UC5w&Q;GZWU1OK!ifw`hw<7?DK0)0SJl7kM|Up zh?$w0FX>k3;l*~Xn8V9sNge?R45R-;0K#wP{V=v+s6p^=>H1e${M`@?MDckEt9oam z#_k?2njLn3y<)eUKR~tQ>%-@c2N%ss^n*1J}2q@deg#j~|17xRa-_&Q4Bq zL?1uD0K{9Zf5IJMK<8|#3ku|@t$@Y}u=!U0_8q4rCnKd&=7>Ra4V;4sz`9Wl)fq*2 z`~du*zSc?uFCMn%kRjMIYVhV@f=1wy|DQJD&;K@jhp-RXw?{@<+2WSAcD_aN{hOQj z;S`hoyMD5il$87i?9^z|bXlaexAfHq_wmjF^ZU%Tx|SsCq7ojemva5$Xu1cE~C zi}9Rh=H^eoKX}$@pvueY+2vbHv;93I6@P>=KIGiFb2Q+4b4p4~>sH%5%xrB7J335# zeSNW>j6Wcn#zeIAuokD!8~MsJTk2jP&ln{h)4$eq-`w0h&ao}gcVG!ZThdV&EDj*NNj%sFIZib9^Q#aN5~965%{!TXPr=m7%j*;;C&c4A z$X@2~W?x&fDr{~3`Lf4YTT(V66@9V4(xWGJYaLNuUe3J3rHFQtB4&O&duYQ;qaBdI z9Dcjg>nK5QB7J53!`9|%L1L~efm8+a*l+?Z;pBC6=`N+!C%@o+!$eg@nROBMEmiSz@jlC zR=B6~1{nS%3lK!d`PK|#SI{f-U}xlf;t z-bu|)PX~5fx(4{SkD^=v%P(!U9UL6i<{EkF3vU!tNf2NM?uf>B-CbQiR;j#@lG00h zXwG(ig|5DGm+~u(9MK}GN7wuT#P5r!rdL!{{8E}mB3*PqAX4X$?4c(CYW-hB5YJ^h zgf>xC-lobV|6*as8htv3;Y^XakR`3EYWX?HPEAdfx%4Q2>y|&V2S`7AF)Xd5c97GX}jiO{lp{J z&bE#)Z>T70;0OIRFuui^nG$VSxCP)+Sp@}>_|{6(9iHuwfI2Ht6`}DmUgyB~VW)nW zKJwP!b&NO_dvj$tf&c@I&NTCOg*T5z>=a!f@`!5=z>!4Naeu@|Le4mE@Jc9ZjNW6v zOcY_9-^pVQ$F=AjZT!^qGy&Fx*`a4&wa{{y0F%P? zd;BOQEKGoj2hH6=Ic}`c!RGp^yfRSXaO+0?|2kcM2P|m7Pm1@>8~}EZbS+Jsi)p&o z*Vn7;raKH2>BP*etN?`O>Zd)_RzU1C*j^l}7{I@F<>S37@A`O9Wjq`#i2n+(-wn{; zb52!)G8|8}_wTY$kjeGfG$N77v)D<*Rz7R?%Qih0Xk+)kEf>Br^6w@DVaW^8!u>r4 zdb_*hhV&uYov-`*7X%O`2;f#=?W63L{7gay27`^w$J+(yGuxj#Tzkyy?21A;d6!mH)qV@sLp(zt zySlqaYXJ%4COfm6)HgxA!vRXEp6##1F$)G;&jxl%xUl=g{Gyy4{=NQHP+pPtTMv7# zWNPe2v9zUXeTWv*=sSM=IMxT((sE9!`AdFojNrw2s)*Pc85xbiqhEoyW!D*-YkO_% zpL!9tz1(ls%I*ELlLvM0t4~(2v$Mx$uB`<`i^7+x#zPy@ZZ}+32g#d5shHK9IGGYi zd6#FN&$KUKa4t9kr+-MlrMWrMMH{Lg`ee?e7OUr1!$<{|8D(Y103+$eo_g|g_)gJ0 zAS<6qkTJOIv$;C%!dRNE+1g~7U%He7dI5TiJp?Ifui~j0Vzup+uDwS=D8l*8dV}Pv z0E2Y`qCvgW;jiWdpm_9wbG^h<#dQ;Hu`mm1G+T+vebbBS8I=9yJ22|CKpPwoU@Bm|AckLSzj zGZ7i@d37zR5hl_;EpBV%O2AYI4krIx)!u8OB+&Ko)xEtu9EG|^Uj1hNE40Baf>&8@#+=t(XYXZ;f z8a^utf_2T>R6Ym`Sxl2mOjgay&%f6@1`NLJ;lrJ)Eyv*xU^Jb>)O-z)`EAhMUAe;RB6t?o<(8~!;n zHa7N`k!!%~qgAd@^NWfuT3RNYaO=yg91Ji3t}sy}umV)F8T|vnTN?o*(aJPXk>!Gl z3KZX@XyrjC72l6&?8bh56xr9Jb^h7)=G_^QfkPZ2xfil)K(9Q}WNT}ypsd^js%Qb@ z?&W=ob~B(|aMcKx(Rc68Gk+I@!{Ka!DhDn!OJ&3Ww^4mrY2sp$jkD5~4=Ym`PhvGl z($&+&b%WQ%4udk>E7r!>w;V~C2xffxbbT4@MyGNWJdb1vP`zC{?pVzD{3efJMn45~ zO69^+E)&ZLZQc7K=iS^2nPwyg=wxnAjvgSG@Q1zctC88>NaS(HRsk|76@giZr|V?_ z;p*<_*o_PV#U!W+lOHtcf*5i(O5lmt$ZO|@+w9Eljjl(K71?PJ3sQunKG^xx%uJN3 z7?_-5P#Nr)8X3-K4FB?f>C!5yCj*0mbrkmjVFF1W)V_Nc{XtCvqU@DpanZMLv&!4o z+JJ)W0uos&7QF6d8#r6ebUI*?95qrRK}6738=m)?sfOu*u;z}RKRY@;o)5Z2EkI1QMGwV9xM|^!vaVp@BC+ykw+Fb#`K^7!+JaaEgjo zI(?h@4HV9!(FD4* z<9$&!5%DJBFR|~0bWBXxcK#dSu?37{QCBf&gFhI&SccI&UuH{DVbD=5CbqGpF#b>QdWATNx*A=hnf zc%YWaC|pz&Pfth3RSm1uwdNl&AM^6^Y_46)V2o>RO@e71cy^_6AVnjvKzG`lu}no- zSGxN$kJte!W*J`TJAHAvSt?a!Jeff+4xT-F^yon1ahCz`7|FosQNd-9fe($6`mx~Q zY{Uj*8OJH+Uk@yD)$7-1mzVlIaEFWW9n4aT0yu$`A=L`HSsQ6SZ}13k3y(pCmxl)l3&n!7mb#Om~AD4i~lo_#(e044E;mfJavJ?Acof zN5>klfX#rr6*ERyRp^%1u`{m&`9CPFr=be`@u3zE_5)k;& N*D*d*bn5c${{d|rYwZ94 literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/6.png b/labworks/LW3/images/6.png new file mode 100644 index 0000000000000000000000000000000000000000..a88cdf5d14f120bb75c04d4bac538e5ec39d87b8 GIT binary patch literal 124395 zcmbSy2T)VryRC|XNCyRJK_W$@_ZC2U2LYuhy>|$qg|4(9B~qjpF*HS*NQVFtdat1) z1PC2M?>zqZ-FxRhZ{D5xy*G2tB-xX5vL|QnZ>{fJ>x+7=rA+dO?$Mn)cSuxK6m;+0 z!K1r9IUeHQj)ayf>fF9acq$rt>bco^`dE0_+|jh~ba!_1bat?O=56Bvad2}LKTZ`R{M=xOv#|CV3co+}?%IUBw7;=MI_0zs|cwGKCIz?%uhhsv!Hu zH*@O>n&gZ&S|F3L`%zb4TsU)(l`pAcP{}G}1&1;&9BkAhfg*0 z`Eufs?>p5H7H?{x8|Aaq74nDPE#7x9vI*Qy$b`}z(21c5WISzNrrvGgJm{oOs>`dv z=Hl#Ue*T5$+pMNRX@9Z8jf*+>lTI+#r*AL*_aTLv-+A<(??3IAL`vKL*M||vp{%^l zW5s_RN!bW8y8pW7kRfpB_5U7!oR3`#jri|-DKiQE=eXj!_>R*2W5symT6ft`?cWTO zy_z=j0;tG4E8Y~pO-oHBpFtuAi>GfM+j3syz>Z}f3||*Ii`L_F&UD+JFGK)@c#LbG zjgF2=eb3x4X`iaJvvG9Xs87zl(ypU^KYXL`o9tz`{f%BVy-DboZR_V(Zt`Sw?Up(U z3V@(pyrqH^nUP15d)dw$c;LsU9bjk42Ve$FBKWn#BLC8z-ls2yDEiqqdvqClJ@=%h z?qvyNM~wBlTsCHePnM-ejkU4VYnz_qfKAFy+nY63 z`ZJMrKlI`eO8>BV#{+q>eFDRB4>Ie7Y#Tdatd|PFJLDAIb|d5$+ia+`B!Y_V#elcP zRF@1(r`>Bo->RX3pr$NdPVmhXhMl z@o0XTrbNvSN;wugKEc*{({H9~;rxJ0e!hKj6zHFv=(gR{{qHi@8QiHQ?W8JJ%x8L}kVp^n3^Mp95lil!IsxT$OZBjrR*`BGa zr7;>ozWF%Jlj(E0QXMG(6K)5WZ?rny8<+5&-p9djBDqaMb52LFd9S;oyY|Z%<|ajQ z29+kvoe`U(bEjX8%c?e8u5cqOy-I|FDR$2QjP#+t*1lmqlb2B*QhnfG^H71+=~j2C z2F$w>o|7hA3H?Sez28u+hn(y56Cazq?(#qLQrhLikyD@JVs{q_NY?*uj=|dnshJM2 zbT$7mk`iYz%seZk#aFHFwZq~`ZXAu$JP5@{x_Y?_L^*uuvtA1U>ULo?qZ8Z0)0u=C z$!W5Tsoh8$e?!+zHr`NIWqonqc#jj@_#(jNR6-Do7U&K<$d!4|3$gh#^W(TyHx658 zz$9eWI@x6=Sbi0u~WZq{U-eU*hUG|3R7gZL=;Z|C6!xU8XiPo9j1Z7-!Fb&phGqoQ!VvCIP@!<3Ymncwg7}?Ay}J zkt{-AusN?}_{xwuC$d(>Y$t#dWN+L6U~|Mb`0st}yhantX{gV2+*9Klgcq#kmcNHh z^kWQuL_^VSjmxOedZqp5kX24PdSS`uUef*hgbNarJkloO)Y+DmpK>^sb@o?mDzuIi zCE&InokN0TUG!D;lM8beW(+$`JhN*6_5ClNd*TXfl%52)eh$ggvkBObdFg8!UVSFy zU!mH(nzvSHezCEcEWhF=-gHBaJ$feY$GxBxh*_|Axo$*XOkj_OlF@iG746>1%{hy1 zT%(62MHzds(85sN@2NrD57*x7<{;PY2vwrvYIFq@F1JfDe>ZvBk#MgiGee_Q7GOgE zFfae%ieG44+TaqsGd;#TgY7Lv_h?PnC7{$m1sxfzxOhNKLHiWt#&)3CSkQmGe+0wK z-}seN3}lKwPwU%HKk5@4bXI3XJ~4dJ{0N5vTqaBW?mH@(`cpBvGvxoLDmWhle!?D* z+t+N*Ao<~lYtSr*k2^WiQ5G_q7^1mgLB> zbWSj)-W>axHoYi@vU>c>*R)!B234&CKk1_13GwywOwmyqRoX81olI8ecD_-fnqhNB z1PPhLBVh^-ml`74@0|ur#w+j{N0}g370W+Ft(xXuR(C!x&+Y(M(v8M81|I-Oq*t9B zic3zc8vy~&a#5CLzYP?&sXyC_fBCBH8c!{%C@EJ_+MtQ)Q#~N{DzM{XDG_smKu=ib z;|r%+>R8Cr7tY;-s3^epn;sLp-V$PNq@;WN<)qOz5W5sPTNgNf=hk9nckvRtbL#*d zbb&qVs^@4j`^*h$$31Vd`6wU@JvwB@>(@jy(m~qUptTqYoTe@rf5!XRr8#p`u%>|Y z`LVi=M$l`xGl8|I&Ntp8m9j`x_<`GLjL(g7XNjfBvGmqe1}t3K&8 ztzoGJi6FxH@0{K2MiP-`!q_hHO;v zF5hmQx$4}r6|OoHD94hRh|rJsvQP)r*(W%!p7ygSh~k)&Es`)rsKYxs&>`t;rjws` zCJDjrbk0gmQ)FUa&5{N-c6l^6Px#uph+k0Z$GyTib^mD+pJ2Mk zD3;$}oH(}U8)x0hQBUIKe2;202ih`;V2)NTVy5U>ft2A}t$zZD)_KUj+qhjdUK`|G z_ifZ>WX}_pX=-T5T~?Jz*#u-`4{I7%n1&_Gb*2(qt81*`_*dND{N@9+-HXYMMdSSUGqB(vX&-jHxbY@CvwHzu^`s@uqg-PmDe@1!fKs1NHatr$_E4F ze*a#KuGKH5&uOMUkNzL{)%n-|`|21d==*CSmCR>Yok^Vd-7dhH*wWv;8Fwa?cv=&B z;r8M526V!OGLs4vn8uZk(K=TwjKdt~qFJU)C#^SQcz^#vw}V%MhZwOrACBvj|>sdqS5EakcS z`sKH7In4_>JX3@NoA-uixr+qFaU@qiYYBBaafTNcVyb0u&{(eRH%z581l?1Z7ZMkZ zuD%VlTlMzkzfBG#%lY1wnOUU;2HHC>OQT)WvdTw0aNUGdlC8fSYW=NZ&_qfem0?wm zftVxF^J@|Y96iW-AB&cLQKK0>QFaD3=I!)J>+W+Vx`>ds-D-K)plwLadP+6g#gG7= zLR3ib`5w(b>*fn+f*zrw-U=R8VAvO{<{FOWE|;Q}V+XZ&QJNol2A2Xvg;0b`FLF6( zn-ZsoCU?xU@;|0fiX6;rXycSTev1fpchCATY&tnc1s_7@vBT%2csUL!H8*3H2enRvwLq!UT z?nG~%l|<7dN*}1AbMZ9sIXC{J0_m}nifuZ`+NOQN1V51XRY4ftn(na1L;`b@PgB&i zLW4S0*Lh3H>bd;*3j-kbsMa@JiGSi|lUepvg z`LVYXwz%0&)n0vWD@LsxMa{o0cQ(!x6h_i0QJT{}b(#_zq}#au`9wZ*sqZR0+S2qv zq_Jhyu~fmF(uh)w$z({?hm&60ZQBo*;+NNoBjw&N1|w3wa@v(hbW-d}0ZOn_hD_JQ zSR0GxaI8*t*nMqfk!ZRRPdb^=Cbxjcin=AKkiH{ZPj|~IQ^p=az3<;_r&Nb38$9P5 z?03)9Xa~RRnxXI}#YC+IS04jjBcno2E(*m*;10pTBVv*~$8~ZPS5JVzEYg7thn}1G zlX7l3A~P8uT5OA$R+p?CAm*_{oFwyrg9{V9wNA>gk_)(m2Ah)H1C?EVq8a{G)A>B_ z@F87BW#yXQ{#96jqLSA0Ewgz3GTnGWBs}bsg-T~RBPVX*y<+9myDTQ(?H{7c#c+hfZNGjFfXdDEtLEMxt{V@pFi0peIZ@5j{tlww94YY6vh6G=W(BZ zODF-ET%Y*Yfc;(EWPs z1L#gPveWs5Ls&GEJRZ!PY=N>3G|Ryk8-}X^(*YenNf#HUlR8;;dT`{PeSte=qRBR1 zP&~ulbGiWhO9IU2F(vvJA5YHB48I1j_v54RLh;B?5cw*$Soh3|YCY80(CuTav7{hN zXXhRGb8prB`F$S{Ld{&f0D z{lDy|Uwz>xqO)G2DC}Tv1hn)cAXe@XHX>IVQd;Y~!GI#YAS_z1%i`XTw+3xN0=N|w zsHxqh>FC=DH?#eBKb+#qkasGyUDo|J0OSvs&N+;Z}duaBq)??Djx(?h) zEE$9R6;l{a-^<)Y?J@XXO%-?wFYs*&Q~0BLq9=nhNDj_di85*Iwx!F1uD|6CDmZn_ z9W-yIWA^;4W{w?a@;QPh^P}yUZJTo+o^L5A#5Ma-E`>uc`z}EP!DQ0DGARG!9f2Oc z^t49e*?h)#dY$a-6@8I_kEbJwnFvLN9`!YD2h)0Da1#!QLM*pVHn=g}{*|6>?6&id z2gWT!pFBDP zKl&Ce%r1y2UW~{b83dDpze52_-eH42M-pjoDGzgX=x$a&N7T_S@(XZqA(~<5O}2EK zT)>3FdGkVdrq!vQae+Sr6VX1S>tjC#gn=gFyBz&>&lAi^O1>)>$hez^g|YD+>(+3P zDZ#)tQ77BVb5@`BwOQ5!)blA(1f+n7(;d+O0#t(!qV(ttn;m-UcD?ErBVcQ%1L@iB zP4~+=o+MQrWVmn3gq0dQGj1!b#yHiyJ^T{Enq@kHYu?-M-Fv4YjW_ROhWboIpB?hq zLkhLb%y|fZ<;<$FxE*pS7}11((-Jtq=BE2fbIvtm+IZlEG9K+>9|j7Tr-iZm%s&LP zIc-FS(jCKF8Lh~9MalOEZiz)i<%K*1<|edjZiaeuefs zjv^H#;)Ag;mE!igXM0EZj2K)Qh!mG5n2K3KUhD|=hzIkR*0_f9nI@JaM3?S>3={~iQDVv1mdODO~8 z=DU&7hgDBL8EiJCiNF4*x$f_bvTm1YaCwuG651j~g_-4`TCI6+_?i z2c4h4PFZK)S}o%yb(p6=#qv80ID+F{HS&`gRogXPi-#Y+E-+-o5fzUkke0Y z7EdOQYTWW1OGI%NaFJdw!I zo`kfr7cB4yj+G7pm;DdrHDOn;vsmExBysp>1NWFX`2}LGVN)3PXFKc*@h}zU*ej7Q z?bWpxlJoa*v7+C0F=IF@aIvutIuFD~3QCb~Cst|Ci!4P|J_;haG?qS|mbitg4wmnFv2{V0B7(_yg7aWGvClpEDOQ1;mu4fA~nE zn$w879e9I^(`jV4Hfu>i9x5VY^a|a1Xc_((zs)pT>Z5HO{61bDw}nUhv<1V;mNhR5`nMA>n?#B%F%jM7tav5N;+80!AFieFvRn|Iu3dchH+k zqMfbQvn*qwu7I2lx3i^7ZIX;~8EmxOSI27S-d*j!%~pHovrexaAM`JKKZ;EN0;jmH zU3~9ouIDeRUcQQ1b?saVGdkt64KKJWhFRh#T{y>w@g5`ASGV{z&*SK6kkh876UU&bu=})w zTAadQpK4XKl`~%359QS=m?iR1Rs3#XkE^!>wWc{FdJ>B#5}GJpi*ct^Kj?Eso;^g> z%ms0x0z6q-^&* z3!bg_?K23zvU2{AK*yFA>!Q~8TZP^_%=!f!DtLFAxaCp5w|iHfgN`=Y_ve*h9Wjd> zc!z6qC_3ouIe!yDZ_(Q!b8(5VC<3$GSoSz3`N}+4*BDE6O-g$OpKSLVBE=ZDN%&Rc z{0n-U_7Ee^3r2@#)}UMuS_!wg}8;`_KIv)xGI)SG}dyPF(ixB!6SD|KYGQb1B>G zjDB}&zv|sO4XsI0&_{?X5=MBfpuqKxNQ}bbgrV)A|J@qzKaf=H^Z>ChNcHpM^ht%S zO(`&-Rr2@O@9BgC!|!U;dKP@7tHjv79#r0!N^?S72i6&nr8ceWkD*CE52Uch|2%p; z0iRa=qc+iq$Zit)O~3TjG{QGZsPN0Lb+-!LqUcgxk2+el&u_)}BX?=WhGb0ng^L8C zYIjDJNnCx#TScfkP2AE;RA#@tEcw#slE%W#e-oRSUy^0+&~#hGo|eAuCo{spz?C16 zsmP$i_*oD34O4A^vPl7~>+g#=sYv`!n@gKWc;I3_jak@fwAp2Xj#4CuCOOb5Zgoq1%&~zVI)uu!yCOZdLig)tzB_A9`|a)oTX{#gv)6Mz z*2uZbUe#ZS3*t)bIC6J%^y{ykYVj{q8g1M)HZ(M>%ueAk`RE&VNlC-|EoWu9xHDE@ zAX8d1xRsPoD)wkKERaMkB2|6Qe%a%+CJKDWs;OzB`FncZ8RYQ&pVbes!{q@{`oCj^ zdt`KQLw4k_?--Z2I-SX_@?DemgiDZ=9`c;#nDZ5w&@d1Vq3+v_SxI7apo3q{6c+LHDCdiSX{VH)|Fdip6o@-T3z6+< zfqx(igJntt-dk!CO@3C2E|*E*e)UeXr+AoOcxP6`X}zt66RyNyM5){x$jd2)WlWnS z!gW1!3{_NUytk2DNXGc_bd7Lql_wcI;2h6$D~$EJJMbQU7TTe3_=|XmP3C(gAFCcH zK$rsp-KBNDe2Sr4DSzl-sx@Mo!h!AT;#)P6Q1lr>*4DqHccI^cqQtO5xE3#EBn9y?JSa=zGVA zwK*=+(D;gGPHBT?9BAZ2RwbBpeZ;|+Z(#&J#PXRyrlaCQcamMsnAgF~6EjW*udOUy6 zyn&-*1nssbLrrO3bgFbJ1=>51OFcD>p&Pv(d4?jJb)S5JxJE6=Z`J5ztVtLgtx(X@ zRfivt*KNffd+q zrNSAC+^frD(lD}}U_4YL>5fnj15?gNU(3gkP8C>S;agcU<#eH|_50iIANCnEw3tFp zzZkq`3ce=ZFc!xu>heV7HG8!|g{ni1C*t2Y)-?(6n>Jh==PFw{5}&BiP<$UX*2%9X zTSMJ*Obj{Z(T3V)*r+VbJS*|c@W`%BqK8G2`qOfCGQ9T=!+z=cCS5BV^(I1D$G-_8 zQ$2SUU7)>&&ng9a2j&uk$<4Dypc6?MbRH>vih`Au70_Zqx-&+h|Vbf}FD=&{;o1S4Z;@sb{2L0j$i{&QTNjAk(% zzOU>u7CFT+wrv~H9~k1Z(<$Xg!?S4GrY#M>xX4L$c(p}P6dg+`6h~w;wk`6$C~$ME zBIaxCw5Dk2(fsGfnZkv4*B|v3#U{SoK#S+VtTjpgc25cV!q_%;&mR@hNHx+35Bd8b z@XsSI0Kz@xMYFtsD>HIlE>joIW}A(SGSTf)fqp3rhquPn4~#C;5pHAErSTY(xR&C3 zkg;$dhepQve~g9+O>65m?HOeY|CRLFi8y844PZyXrO&g-X&|=OR4D_Tu8U6%8$IbZ z#iGwo@XwOf2*rt!2mNHSAQj|isnOJ%#hZZZ1M$1BMt zix7cJ`GwD}r#V&qb1~+@egN#f2BxxIsgocA)PtUGz2el1F74epGH`y}(NF!?p&(`C zw<-0fKGQ|*E7Dw+$B+R*o#Ma7Oz*{NY62O`BFSd$lZJDf)+HH7SbQc06~!I8&>cZf zDJUY(%|$|UDpHe~>T2u0(Dpuf^v zGGAWCC6;BigHQShws6A064$UC(}C_9uULK&ajj`5<~kKV>uJ3$ddgguRGhe zs_jYy>$Ba3E>dSW3yI7{^Q!GIwsli3vhnqnNf&n5t}cMMQB>UP{4pvqF_j*eGgwAj ziO#*1WQ>e$RiI(i@{NPeB483*xC4*dJl?dmD;<3sNbW(;aFS*%d}|dIHF_)E+;koc z%8-F;ltat@AIKaZtiAphR$`lK7MOL~8@(1zPC;nqcX#PZzV_s3?eY1ebe;_>h}T$V z7Sei^Urbw~hgT+?t`bK$CYFL9$vj}I^L)ENr_7EOl%aT7$fuC?K5$VShQUV$Ew6^2 z`r#i4!(ahN?NsDu+3m-gg%wv2@v)EEi9FyuSOu)hXZG?AsuNqWZCV%L<+g85f0zp# z`J(*%Y_}NvF(QYxA`|lw)7?!7V`r;qHm#5G--?C>+??Dpat`<<70Vc7o-t$1YqKsp zqvx(W^aK9qIe|C_n6~uQeN^;8D$`0nrp%J|N{mfG0slgs9NkMq4kyJxw-(^n$y4Ia zoM=G^|5LwN>J2b=u_RoHOSb&zqU(f4EkTRdEOF^h_2>uwv1H{6@g`F-2;ovV)tU=* zxm8r|a)9aF6b46LQli+kzWS&uEHhmpYRskXV?XW#S9PE(?KI5S`!xJHT0=@Qie@qc zxxk{iC;Wko;`_*OAv%{&S@-W=T%F{atxOgh?nYw=Eog<5p-IY}+NsZ}Y06!Iiy*OH z2&6CZn%cr>LbyqzBgae>KqA6#IU}AFzBv%Ow$ga>Y@X)wY$1KV_VLO`=*5+&d?SSB z92CdUTH(JXcAkv%CdR5z#FvNfs`~I@}BJ{2?Tq&TP4<$zq%Gtr0p`aYf6+cdk8Kt+2pbzhe=CcT$K^@X+~Ly^*%&6C>v zf}z)0XV6Tlh={(U;gbro!Tz+XLi$J#ig8E7&Rpih1{f>}zkI$r+-B9occE(&Q)<${ zyz?)B<}vGl$oNwqIC^5Q)OsvDxc@0KM`Zm%X>o6I2adcQ_&v-EuCv@w8O)NK+li)j zbhP6|>_}#{2Y%4YlXddy6KEu_`V$)H`{|m}F^{)t-{&S&8fWR9x!Y$-9s;ucAE?=NJIEZ`@Ar#}kX{Wb(JqmSP(4fBJ zsLt3vKbgP|8>;8@dA#l9ZxGo88jbb&4U0-2K0_f8|AJ;)WE6OM#?QL;KKL)@daDub z#}j%~`nG~sXv22?{=}<6u4HCu+#^3e>Tce6fb5*J?fpSng}iM|ECvPPGiv*lP9e z-jS6$KNa#T>`B5bqrjQ!3^QB^xt#9RVV`7NIh?Wf?q(C@o^Th7l-W_yD=8I86O%s@ zzv}Lam+1q zjcXvKXEg-{QZ7{{5q0!iAS0yoYD*X1%Qd$ilJ*3$0t zJk-_FbZDY!SG*`OKaGZ|cm2Xtkz3tgq0FuFmO4DJ54wbw1In$Kz619d-h>4W)S>#; zT=c=rvojCu>R!-Rn%$6IL;33hOa?mkz< zW6i>WEzCy)@u759PVhG8rQ*HfM%meF$-%NbqmC-si>5`Z`U)^uFrh!i- z?U7LN(;}ji#VRy3l@HrO;vXa6_*TFva+1cFNHelJ96MZO`SIJkCz=-ONiVb&^0ZdF z+l_>Dc;g*-doa*LGK52Q*4~wTw1~gG$k3Q+v3V1{m(Z8-&C~1f2avWop(tQzbip z_s9@m`W+X6J=+&hpquR?fpq(-5_$N&fw{Y^5D7)LW72*m-o{e_R4jEI6-7L(^bEz4 zZIDL1TtZ6saWs0eIe}7ZMPL${9c`66_YUCXd_7A&f%9_f;%Y2C^M~L(q{N^vn+7oH zs~fyB(W+d^>SDYyo;42mG6La&7S~+IHLH{Z8PSScWzQA4La}}n6f+$pM3!m+?{e># zt^-{GBe@FU`t}2rxj)hK`b*6K$!l0Z~~t z{a+VeWtEyK&%I}h^b??n?^2p`@g`reGQiapio^X*_>`IqCj`BI8IgH8!DVnDlzh_R za$O4lhY3A9X(F8VZXM%NmcN@w&+;L67K~CoUnf$GKW08eYP4t+z@#}O;%BI~@Gxk# zRn$VRd0pN|e)d_`k%9JQiB1PL`&tME@ls2j$mi718uJV^;^F52xN{H}1u8SH7AD{6Y!y8{T8IkOiNVJAS~8IVFE6J?Q-A8A4gnzOUKzp!1VKeBd4AuN(O^0uoh z`UeLP=vA4(jcD@VqfO;lD``J84~#u}tWauyL1(|Q&S;CiP8JA)7;%p>vha20Zh$pT6v9$*b_qOI4AEfZbMUykkwaBfMiR>PNmz2YYR)EGPLo z8i0$-1711f?|&J%fRy*ecr~;!VuP#hr4FCbt{#-V4D`x3sE4e_njfz?x40Mm;n$RY z+X4>z`%&w7i`LC4ye1K+yf^#2%-7TC?2lq8f>^^_p74r)W8YtCu>T zQb8)M-}tsuDv_7_Yj&U`@5Y6Kf?N-o?$cMX2V~b6rVo=pzOk9UD|?lyWx=SRFfBZ` zTH{z0#gr-+=#hRLC+$Vpd$}=uTg9@ijbSql(K!C$gF3D;SCkP09AGlvIm+2DkMRou#HLL&+Lzi)bgEjK#7w*Np&9p(DYoLZ7SRUNion^#JwY1O8Ic&4J4q)eJ3l}m6K{Qp`S4|| z?cRZvQKprm!UzEH{2};fl2SQb#C}Wav_n)bU|(qU9tA}dmvgjwO2ziew_6CRL`mjS z9YE}&>|rbn#>MlEmpi9@^NDE6g^9JB_Rag~*i-gXZ4d#HTDznE=r6c`w=nfeLi3$j zj=0l+_R&kn6DClII4_`)-s_z7jC~+S1|MfkdyxR^dU*C4Au`eU3i9rE*ilTE8;w{2 zTzGZ;%ImNCrmdxAz&N4npey;uhDBJq0jqahI8zm9%!$>ZuTjYHDG^k!ZMNSW(7X1g zha7&AMpxPNyr}8W8=-$NNjtrpC3I9XBz>euRdk@4oNpo3D75kOWWn>!l2$p*(gw&e zoJK2P;DyENp(;#Id{(qk$oJtA-=9yWnGFwdTXIt`+M>$my%qk*%BWqRP!E@!ElcG) zG}z%ll}`RVj-2wh%Pqo#vaj!}sboe+z`atJNA`>~q<*eBE$Ma^ucf1s%fzMY z0bm~p489?|Dc^AL-F&Ze(SY6KCTEg~y{LzzRY$ngYqMpx zJ!wpD+(RHJR8POul^t0d{M760L@La0S8jmIDv0`|K_-~A$;H4U$y1_0)Rq&r;y8${ zf(heP>9$@>H)5CQ2|D?CIU9rMay0`%R>v~c#P3An5Po&UxZBijcP)*^G{hGjdl4(( z$jxO9jtFqFp6VSR?xcP=!OWo2l~NVQj<`r?Gg;WwH2cnS*0?@QX|%9gd0FFCD%{S| zqZ|(mR(R<$5R5>q5n#@5UAtIPGEC#G#xoIfhLp9wVgPOpo97U8s+zvx3GMu)?X>T@ zPYys5Hu;zZF3}=lD(!I6!-$JCzwHe_R5rS5$n4*mP5xcC`**ACKmmx(rMW4cDb%{f zQqPn`(q)67?aqzrx^W|qt;`&R%9};#mznpC$kLZxTAb$C%#?u?FuAP#sP?XAR=aYD@wSNbi5jB(}Z>oXhgDbN{|L0&vW*>SEO z)^9$m-d^AJm=NOq0VpHhdP<7U5o-OoG8m(LLsh7wW z5W2tKOD-zqoS{#0!N2Lh{c?4W@VOqrob#fgMTzGtrINxpBrz^dHr=4@elr!6NZYLC zKmxpPX=(I6oYjDl%vLKV)>r717agq8Zj9eO=pw*|%Cri3nN`_$aK0lNOn|D{Y5`NB zhZ0-2hs;pMgo2f8Cq~!g5wy{lzRQyIh?(NYD^5i;<+r*yRKhlT^>|0Uk#W?bY3i|2 zS|OD9AU#tk;`Xt2pj-1Zr2}}YoJ0rSrtn}+A5(BVc1KP-mp(m~dwK$itHT$x%_gpo zd&54u``HtW9%yRCT1cKoTyhral!?#yXhS(PMnuW+QPl$jo7zt+V+T? zrEx(q(MC@ODH$LzQIfBwEn`P{Zi}P=Y>eiBcbrA9+1Pt)F#aAo^6q9IW0u;3bjHc| z`7MgD+SZBL`3WUY`{L-5cH2LdGaa;7ck#Y0PCs8f!15O=B123?2O5AZl`^UhngZ2R z1lxB8ufEU>6^=Xe-JN{2Bvzju9U?`?>@SocJs3PSoBHeLQS9AKhre~>+^yo= zK$3uT(C3>h1ISP3quH*X-iu{}1Ko1%D2!I;;dzyV%hH8Xwm(DUzU^l- zOJ`!NIz_w&K6b^M{$dcc0(2As$JzYyWa{ap;SY4#61FfSxR5uYG1K1vuxFQg)c9P| z`)_R>ru2R63D<}iZVlw^1GTO-LCgJrxfUv1z@;qt%vNfMxPr}c7l4F~-k&@eWptI; zcdBImY9}U?B!EA0U|YhSbV-kWhyf`C$L|+R;RnpYJHDPnJ;{SM5_1H40?yXd$tzoH zbULlBC;hKw$O}E}Ga2XJ3iP;-+OHjUbEwx1pqLBIncs%g%Gl6tbVPW|&!)FmZ~iXL zj$D}b6SRIBQEcn}oS8I@E-^+g^RH7B@&1tnUAkmeC-Z>K@ZPvtWBZHe+vc=s#H<0% zxpzN{lI{g+xrVQb^2XvDQcy%wDiXG9eM(@_S#YSiHRyeCICL8ueh6Iz#%0JYJVY4@ z^yN!wp{xhU0yH&6PmkHRAahA#oJz-!)9!O97Z8)CXFPcPNsQEPb$B)qL*oA|Xn%^G z`FiZ;k{)&usT?bS@BNt~r=!EKL!okih!Smc!r@_lM2f%0w+hb1NX`NJK?t^eQW{+~||C(~BCJ4BVMlhAXAA zlA03j=xA-W@9+4ov9a-fjdbq$znJNNY)Htj`%(LylknoTRdWBg8k*TwqcNP0XEIAC*JB;(s=InjD&QCF|UreJT5D8sz*`xE=^hlTRc!Q{D3l zhaGlhiLmp1lNcdCqM{5}%pvQ)<^`^aXd|P;PYiw(A!X)`RJKVjpyqzk&6dhLO#AHKx`?PDB2X@ew z`t_xxGuzJ|QiSqzVzBXhA%ndD)b>CS?{y;#rX2aOJCq`P&CUXje^Ho_%!cleZqLDS zRG2@-L9K3nyzR>ivD3Rmin=|-xh-Qe4wUU0|CA{0^*7OSY;d1_3yf=#I}MoN6XF6?-8j;+YxgxK6b zO(9k_#_fZi_L}>;&`-nk&w!MY%XW*xP8o$QVo1M!^vQizDE;Z>1OUMUJyT;fR{jIcH+K?EmR1NpC` zZ!Mf^2>kRax91`b+0njz-c-GPdVny|SxBVL>O%11ZN$=d9gOv7E*4i@lY(6oXLBuydN*)Bn#%?hWzSEjewB^v2 zQn**@{W1|@z(ig8z2P_1 zownf5`_`}DuMn-7t@9Ggg2e1s!4>QG?&r1c9#a}~rnDRtl!=x9I14;myS0D*Ad|AS z)6N!<-i3cF{ImNP+PK$42-~fv!DeK*wbjzHE=N=BOV)1Mf9J5hdHV|aO-yai4s1#+ zVf$44Py%iMAXtSOEwg&mWlT@Px%ZKZj0_nxS~(&;Mclb=ZC>_VP)=xo776$8@o#jG7d(h<&(b8a7y3IFfvNH3rdZ{!j z3MhmV;7x_;_8si_qZNJMFCNk{u}cBWKwXw#yGi~*FUbln|8azkZ&ROwNC$RGwB?L# z(x<(S`H`aW&9UA*GX;fA3wXg5L)X)3UG~RMoHxP4ll7{E9!aLTul)A{%^SM8GGx30 z4QLJx>|MQl4-^2!Z0^S~t~F(5Hl`~hOhpe`jEVknJ!2{A=UVf7mmY!^|J};%R|+Gv zBTNZlyIXZctWW!iW*K-$kO9pV`vnMtPWHKCz-QWOx#+osudOR zmDS!5j3KwDL?3_~LZ=5F-!|p;cSNtH4UwrRtCSTA)@qAws{0V9(v3-yEfC?1T}YSq z)Aq;B{j1~6+Gl&yg%=2Oa!F=GLoO+)odCl=d?Inup>quyIUnS2o5KVyMb=}x&0Dcg z9{i@Mj=g%XfGV_7_{ovqGzIP5ebypT8K)CJRnrBk_^`Ax>i7b_GUra6n_pS3lW0eGqdN=JCmApI_ zfRE*&ewZlc*_+A2EBFlKEU%FQYE^KlDPo<32P!f007N#}b^_nx%jqWt)KVzFmXP{TuJcJO8z6#x~M2Lq#MQ9hE1f-W5^Q#4O)c zrStni72BXs-|PIloHwgE?Cgz#Lbl)Pi`&M+qSzyq-t7Kw%|GD#wT~ZNDbYqqrwC(B z>aVtY5Q}+?;Mo;FTcTQnn>uy7XQn?>FJda03aHG3)3VypjIH83eJcW}@oI4b2_fn& zdl&evp$2p$JJ6f(*|xpK{dEbXuCF)kb0h}}>d_>1$_U`3K*~699Z4~WQ7qo{m1Fu%N1D0yWz5m`OlP`EGr+~rN)B6t`FHm z>s@(6-$_m+jc*nx_4Oia2t6S=%l~`MyZ1h2jAtAMU&zQJD|fx_HRtu465`2jmZN;f ztfa@Q-X|e9<0$(%yFSXi^os^2qTUO$%;&xMUE*RNna56?DF zP<^Nvy;Rj-NSR|hcy9ax^Swucbz%@E%L49uXJJ@x@b2g=1m}BN#sRk76BRT^3J#6V zCaZrJ2uHkMe!f|tI^No)J}MJOT*ydsLut~ScFaGWGj8@+_Bi4uS@wPR zSE@V_f?UWNO|he7Q^$+Fm!s~NBc$7)#aNnVlx^oym?C{F;+H?IADO7f3y$^F_sjoa znP)2oaz6!OPvxa$WnGgyoE%d(7fx0rGlR#51BB1pj_UjbXLyq0s&Z-E-v1Mn#2{f? z=Rd7K38l=g~#@Xos5YkW&1H@hDusLv9`0;=+6zz(~#1fgissUNBVD1DM=I2 z4Ht)v_c?oB|8nbk zqPu24CuznD#f>}M>24P5N)^|?Dj9#DR(vy_oa4|+FC$G5KBAt`6ph_N{b6vmd2Lyi zzVd1cd0h}nrsxNR0R(Zm*Ubp*;p8uNCx~vs2+lqdQg-VZ3LJIS(u@VY?~ zlkL^Jg(qCU40E-uJLSEPE)rFrG|+DNpe21a5d}Dt(*xt0t@vy>-@~gsxw^Zo3MkLW zC@eC#1nBmv^k`UIMTcW-jgkxNtG~Fc`YA>Be_7~7P5#OX`mUuG1y8GruC(I72mHMK z`F&lUyP%k;1s8`GqRq)UTLD9t)zQ@M;Q@r9EU7BG{B4dvAJ}wc%_h=U1!sf?FxZQe zLd7st#sn-16b!jHQ*yFn`ozTLz-U-QHQ?V3B;e6fn0XAxY3hkXTihj|mf1Vn=Se%e zORY3(H?ZXLfqwKd*FxwtcJC+nl#dIFd>noXoWa9&><;MrV^xh+=Eb$DlPn)Kr5iPf zo2kShEo!6+qns{^i7o?g5kz6#81ZTnkslJTAk<0qq8h53*1DDr(IJ_GaPq~r%LD)E z;{+2oPEO?>Lv+I~Jn9Z2cHv8q-LmUsL4q1WLd@y=E!U|_)_Ru-wF&Q2cyaGczen}g zdu{t)M;fNT-BcDm4K*UWdguz>#aJThTx+Y`Obq_ueO-wLf5k5s8!B8?Lo(up@}Tu= zH-pG?h~pyOd>)x+H;1A+k~$s`g}uAtNC-J0D{c3?6Oljb+0pi3CQQu1j7%oe_+A@N zB*=NvIGQ`YJf`b+06meQALE-z4+D<#&A#u!7H{2!uU})(T;tC*r=eNr!rc{h&V>iZn zu_@wf)}6{!Ytx59QQj?i?vE!=4$98#4N~joRc29tK7bzxB;BuZ`*=l_Z5`W6qUOC~ z^?_~|wPICGldp*ie9hKrM0OA^uEr7&(iD5^)llYomnHw5_HcMsT)&MdeKGX&edda3 z(LlGBe@6!ZEO!b<)s7AjhT3*HhYg}vH+rE^?uITrI*5{jW?b7MsXo@zWY$41&lfP7 zMk4`xao~-8Jvnh85!dLM66f~_xHOnk%?}yQ zzLigNTor3d++l-H9Y|*DeKBL+Y0ea5;ka{s5;a5|jL?6aW;`RSrMdeNb{90krII|T zs5oG=OCppWsc5?`q@MD$yF47p$mwkCmQWFj4P#!ZD}VOv<&eKlUTs&b16AT(P|AqO zi`K0o(0u!%%GGy;OuKd~f9<=W_quzo@1)42)#iv|pY;)v1g}WA;c*o|IP8}M}yqwrbv=tR5rLjC`ohY1cU>nK$ROM2${P{@R z`2}`Vf27#`PZKqpq-`P)2@z-Ro4*QiVPY*~-h~?Qr60oBG5xUHm3E zGxzfO;|pr@ttaxC?+p#y@N=oqM{(?_T6IQ#&lHF9#$h|g`eyJ*Jj_(W+7e!-n#d?5#8=HOM(s4f<;}Z4%o*@x#z`RcTve+YMQ0=Gn4Kgc&pc= z{stW5+{-#aD@c3lWr9aIhIZ|8zNe#uMadC>+ovRTP5%D%19K)BGM3rrU z+2)B;tZNC}@R;(B0iWswe8V^5m?x3zouMSJd8uJnM2Z)uEU{Ll?|upj2vl+FjXB9< z^E#bv2=~Wjzq8B}lJ}Hh?`@>!Gzjpq|3bkH*y;#1{=akK{%5Ez#_8~|i(-%;*U9hf zD+17M>a&@z#+g$Nux$s%7@20@gVea7T`S|)%p1mO;;|cC!E0RBA3o^t4kni51^YMu zEDVgwKl6rng&hH)i=#{A4d(NYxHtk@&g~)lvI^3Evcb(&&6YR zR={r*Du;K^$jwbP;o~|8L`rS2GhaZGUll!*CfP9l1T^*E+p!_wuM)LNY>*>4M-}+# z_Ip$b=2z3^DGY8cx*kp0yNk{G!3eQnD-n`&t2h}>X50$#MuuH3)nIjZH7{tl3R;iW zNOmKVz3A5-NMKiaoHaZ!HWn{^)W;rwb*8|486O=NHwe6f8ydxtTIbkpC)*evVcQAV zqxyzc&FZ;de?Q^x)vg=cPnNB5TXFdBxP{TH>}&~7WuUPan|%knDCBtMur+c#?S~}o zEL~k)M>7p=Zxt2s`v-Wf{Wh$tTFIoKtSn#qsZ%?r{0EU{_d25#-&T}q;waK4FwjKy zay;(G8)X4VzUmTo>1<$SttZ24+dGC-}e3aK2rV7rT5p z)6feLIpU;pv>2i8I10icMU@L2eSjM|=;m+7dElDcvCZg}mG=wF%k4p2MS*%pOJ{9j zOtiER=78O*^J#tanD)a^{%&T%ITRrti&(xaTaIi$@8R#|($0-0APKlU^wyR=u7YsV z9t*sIAx0TD*p3@SYlH-W#Ls-|wTL&I*ji2-5*Z9{=_-F`F!a1|PT)Pvj{Ja3*`#JKm zp~uE_aOgO&bnwMS8se<=AgBr8Bemf7peZDnbfG&|eDfRR76Ava}m)re+ zF=MNkqkQ+~AA(P7@?!D=_M6Ug0Jp*~MC8$!0!2?yP!RfWj{{~Hvk0Jl3D4_!dGM%q zJW8Cj>%1QB8pZ6l^6C7i`IRFsr6Q1{4KpHz2xs!QKfxS;30Op+EVJC@RsmX1Tjrr0 zW=P0sqyXql!bUqT%`Y%e8eap9(DUwy`{=x@xxAi`kPtL5U+Oi>Do+C8a`tb2PK&3! z>LFaU6V9gFhet=DbIzjpi#)=`f9^-=F@BAvz47vLVZkJO*j8T-({ii9jn3i*G!m+l# zIe*%qJ73x)F_}#Y&}vVDS3VK1xViatF|7SvPhtp{6$D8iMlM;;&7mD9{+7d+z}UF2 zElmYQAJL;gX3|1JHJ7<{o8!RX1y0C4guV7Fv2(cF)r?!u*;0U8g%-+tw4v2&=Nyfg z*!Eh_4cIrlf&(*|QT)RTfHlD+1L%)Vl!AhS$I72;68^{EA&?f_(V)lKBG7~q?~+f% zf!Au`E;Gd1^VIXT6XDi{c z4#BNZ;J*gq5X@;kJw4Mfx8K{G?u>RKOw7z_85tQOaiD|NGkSCi=(VosK#ng!s~j&- z*;ooVcsN-7j^IPMI#Vxumjn#n{)qcr-Dg1tzE~_)ALg#q)cLGo;W}{P9x#{%Wn`WK zd*#oHN3wwiuZr#sSpdCo9XxM@v2Qg?`@1OwEMb_qAKd*(xEcgs@NWRk0K3pIm-{=o zo(!NuokatNVQsh#{=w#@6TXY`gG;^(V1lb(T*BJ;qH#R=0XgP|6Ko}*x zR6nzPgdvg0jg2((zaJU}>HBnpc)g!1?+e1?*AtX`7nzudqqg6TJH!xCOw@qrhE=BeVb`h?RS{$O2z4XdH4*}v2p(1VdS z@J&lieFyZ3VH|KtKd{zs0D9#oH~`&4Q)I$dv4k>>avClGegG}P%B7VZe}z5k0tcM# zHZ7GL|6YX$2f$x`V>tkg2CV;Gw5;vzReg46S^v}S^{qHkAK>ftNiCttFVM^c_X`Tb zs+?+-L9#iv&OE8VUkwD6T4H5mlRNX2<8li`F#Kny4jerTj03z=d1>0<%gIBbiu_+H zoJs#{cRp)7YfXGrw2sFfqyZd9&}t~ndKiOiypY{UA2R{XJjk$gNOWONK!NGRzBB_` zCW%XXU{YJ|nVy~=psqM_wA?1=o>cfUfpP8^3rJb6<%^tUZYiJLcqlX21OPp4jD1r$ z+N~LFE4KQ(;Fd0U!%UC<+@RxT}{e8W5&)x*O9^d z$aOpLsoj72`K%r29rgBObxU~tgD9no1m+8>ixl&VhjfgL$&aLb`moD{;3^kmn1zkP zU&Y|D-bV$3H7{}e{a=r7U%vo8*#WfmEquMadH?q&awbznNm2H^gJMALs)X?75{umc z&Oj+X&CkrQcJyuB-F1Vv(}Ep-YPlI-)Dx5x6xaVQlj|MC%*h8Axd#aXj{mz*1KVGqqHF8PyNe+^S@!nx zsP@L+CmH$9$;;<4%kk#;4f9kmnjatfcYFt*hl34lZEe>B+Rp+uXuxQijsLU*u(2fZ z2W_h#F|?x@4(FK9KQYIvFbBO^IxZIL@9Tr$#sS$WniG07{Nk_rxLPK(2Eu%U(iZ#> zF-JfzYs=zRDF)$7r}ePFA&TI`kRvD<2lW_y*3btm%LGF_AeihI-EKUzk>TXx+Nc1& z#Cil*ZoIKu>)YTXF7WFmOzv49pnBS-&jQ!knG*sITJ@LkrwxPbanfvO%V5GzYJOxj zQ>slruo>kI{`vE<1;EKB|81+&{Y4%y@IR`7rq5CV??Qt$WYH1YeayHH<~~5|t$zz= zN`x{6?80|w$awbg&t7lS$>9-leEhA)iGiym=Ck`h0Fb1KFQDW8PRygA<+C8T=|iOi z|5m=Fq@<%&3b4W7`*Zg7ey{;gbqm;jQ*k~PF8kOGG-&)dZ*;Ik?#kif?^fv6Uicq& zbTwJv70Nsf5Cv*~g`c63QQ}|u@PNuNMVu$HT4pOmInEEDQT<2T78#Wd026#;8J7iS zmpior{HfEg0jZztMk0IsjiP^$zn!=A&8z(ujMhabP1|2(2{(PFbWyKdr1yXEsE!#$ zLU{hqKmLD^sqGZtaAn=cfS`)Eta_4aV|pOTy?nFVop;*tEhi^ucYVbH=EtdA=-dFF zD?dm_{=W`H8UHyDkmS_-G~0f&^h7AKGFO*zg~8I9gxxa&@!mP3RC6JHBFf4%I$PwF8NL-6RD)gxL-2` z=8aB!>cSfmHh6eQUI2-Xa-qKEXG%@|^c=5o4YgjxO1_=h2;3#)zEx}XZS3ysbFJ$) zu5M5g3(N?-+G5Djy1&-cLX&(a)3WD>pRT#*Y&c2JrhPh76y6Q_2YHJs!RS80r)iN6$?MvD9;ZR7LV{}ZgM!|#9=cD z?QADTVniW-?nRc0XAY(RBLrmgu9yQ^@ySq$Xx-MUSuauygXb^B*PHy|1JU+5art$y zmDw#Ys_X0pbzPZ@yD_H4(Tt^BiP1EG%vCh&NT~h%r}1wh@OC@c;4Y7+Odh|v*r4br zf9(fNZ-q>DRO3kP4;!5HqEjdiByhkU6;fbeOAQ}XL(pgEgSsNOB{{Rx#+G0Hp0Ril zByNDE`KPAB`6iC^48*SWgq`&J5^JvyOr%^S^Jq-&B9!c;olM5wWcx*I+V9Pfu&mC| zp1Z?ID`$rxVM>n_?Y}BhYyZjukF5wcW-f%D_r?Ntx5ts+a|NCy;=XohB7zYV^k`dv zSOd$ zf9jGOp4Ex@;P9bXaB~*^BM)7XjF3!i969pSZW7-IDWb1?Z(tV1h0Wjr8yVRrF(#-~UDCnO_hh2RA zbaFaTu_|8>BF0xI9h<@!11sAH&p9i5%<&+bMnaT3TZhDOU*%C@S+ztA6!f_G3(3GS zKQd4hENJZcy#EafdXowfCgFE+)uB!wSkqE0@eH7`KckJTXUs+iFE7_(_Uk&wcGp?U zntB*Vl=z0-$b+usY9Z3W&nW0S{3+=1D2zP&*Lq`=JmN0HHu(Pm*X~A7bGfD}-;xJ{ z#)-#zd}XcKLD$`!{2)=OCt57;hl+_S;3sETyJqicBnjEibpLff;`KPVmP7} zpQb=M0E#9^LRB+7K^`pC-=4m)O+zNPj&HP1)-93kZ?D|I3haAP3-p?&_T)>}$GCk| zJUZ5^)L#BLJ5{p5yuvwzTdV9tCOtdc_#m@qmSnoN z)zn5_S2r#-r+s7HoM`CGicWU$i&D2}xeUQb$+O@8VEG@l_RezeA=qn9aPK*%Z;sUw z)^MEFGC0IJH+A~N3?sYhujeM(ZPXM@hrg9s?lffdn##djN75vt!~2`hHe2_wU@V%Y z`_{x-)-x)#CWDG5%R6#OJrZ@oVVK@A%8~HxH*(!R^EjIvaOoWfXJs5pv~2tu&+D1( z(ZTpvHaS(p_j(HjtYV{_mhV@a{L3KY-?ZZgDnBLHeHiLIe$iN$l|WQmW6i$2BdP12 zjWpFYyjDoR}DhbBnWoCa8{@d>R^ZDtQ2WrvDLVf7veW_|eZp zBL~Wp8FlX|pUCuFrqqr4z+Hw!Bdqu6tet9i@jg`&^&;D1E$bx5BYtzJ7IcA|Yr}$> zOpV95^jq3vpUOQ!!}$&#`SPLW0D~#<6#tlk?kZU!Po}j{CCufNqj>Dm94kc6REnnO zTPb1juB1Hg_^TV<-|x1J8&2Soi*rVNVhixTew6SNz<3Ii>OH)2jot(7RFezwd+<=` zEI}EQ=}o3+rABM0UO z7`8i0vi=mX!QzX^!4=G_r=Bu|n_ycRLbtNdm0<;`rx?@xb&>I?ZJp=}U$Cu}B!21M z&D9?SQA;=G#WP_CCnKr^Oi7%4;P$#2CRC_|1C=;s z0~NRTl@RnwtPCYZbbg6~;$t6))~c9!8t*tb7?GWi6dV>E*7_jUjY_fmm|F|wakIBf{grW>bH`*ql1Wl z6|Cc!_e6JkgO;cIRC>+UrbG+5;)0}Y`C`((bub)9-FCu>%R$tGQ#CR%wuiZcn?+*B zeqJ$prcL74126$O-~x^4z2v}P3Ah`j#d3OeF>ATlFe6P02hO-T^r~#>WrarFrvo>y zF}RMK1prc=tlPkGW|yTUMSJ)x^X|><85fsN6ba_Xdwdr!EGn!gxvHz{W@B@XsC*LT zKcsZ?y9I^OY^ude_*`vxixNhDplKdyX@>$zji`>LX!I3jOG|HDJgSK;BXWpV1GhQd zm7%?mzI2-vddK@dmV}CmE7YvP#Qok{L~DZuT?m5Gvm8hr(@Tti_Px|(dY)H)wgwOu z2#e-8eMtMIxWA~P;tvttb(7FQhgzags!hj>HBay@bdt7=OENlWnLzmL=S(UiSeIdw zr&^F9tYQu}ftn2yKcJ&`n9%2X+PdxMd{0RBW!nv{h=j^9hJ)1$>l~3x%xgMO=Y20k zAisr{MGL+xM<^0Q6!CbYM_?ifApr6aJBpxHf>bs{U_N@Ep}*9v_}>p({UItxT8Z<& z4;!uFG82>quRit{-ob43f7eIjMol`iwNpgf_BjlcRMhTb0ydTY@i(?jbZXV*dNBT6aJOedJSWM}{9m!is% z88_oK_kuve59*EWlgoJXSGgfWNV%?amEQB`YyM?9EQ8O7qaZF-^5n~t`z9_?EFBNP zt!j39iT%&a<#t@}h56-paJ1~Rv32$6;z&8@Fr}IdE-hLoqM3cvgXyy>iiOHyNAI$d z-sICYwtR^|wFsYXzotr(>Qw{X<1S5ivqJFJ4pOQlJMgjG_X$sQk4zU8TnhYy`LM8I zx?6Dr6bK&Srn6CGb+M1n{}N=XtR~9q_Au33BqCM2|3O-xqPY1t#av)jQf1_QfAqa1 zFE6CgunT`2$FxArXG$|6w8{lO;g%jjXwcdz)= zp$)&jz*D^wk?0_K#h~=%gQ6ipUO{tDxZ)c<(d;aS&BsBb>JhgbOdEbDt{Y}QcjKwd ze|z6Qy!cb7dU~?=DJgxslA>d+E#FjCj8=A+fRW34!cg(JwJC|cCmEH)utnB0-qqi- z5(5!L=-f*44`#PJNhqP;Bmnn+>bO`Fg{4?je{s-~MtCBM1Jw15KC5_|VN`03ENkn& z?Q8jjCxxSjwxWw0E`R<6-}<*Xp{tGD?h7_od|bqEE7mRMt1@df|x5DQxukWxY^lg{idUPC$9TowSIN>@PiJVlS3MT+4A~OzK_>P zOxyRrAKKw~eT}nBiDvYhO2JzZ*i(lDs3jBB8FUSqe8E-`GZ7Ezp4`O^m(KE zlX!`i)=J}RJpn~Aw#YX*iXSKs0T>Dn9e*3>;(>?`Zl#_0QDrW#A8`*KzB z+L^!gRq-UtVo3By{N{L2K3oL+UFCm!s9lu)dtIyl9=`-KE4n;Q-Sv;1_&_%e+WREU zsS?s}ek)c^5RRkc4H1b~qgPp?kUG?b+K=PsVh7EL{ZHrrw5{HIpONuke=u9SKvw3f z38NW#U6)UMB|!ot?0nR$$a+w!6~M=UWzD)=Ob-+lHMN2@`j( zyt!G)v~e_DzgMdX9(t!UAhlMu{w$-SdY=KlJ|gos3}sOn zp8JEi<%u65X4Az#aCNgI#8w1?rqmj;roi@3yzd?1yx4YOF`_dydsZfl-3u?pmLs8< z8Utdggn{dzD5F`Z(X|ox6v=wcGaLt7wb#foTTg?Pl21~}<_1kF23&jpc-UC}>4w_V zlx*Z<+vQIZJq!T{QoD%fC7OQ_jI?S8b|E)An0khT7wPCE3Pjh&A=@W)7}v)+)J_Xx zBv`A)A*ZW7ql${NCDf-!J(d;c`qXyrWyUQKPs0-1*aXpGP4#T6B8n?30Fc7;1A%mx z8QvIUU}c+lf~ea&fQr=We8tvCkC@Iewk_W~vh@M5v(ti`T~9~z`K{xR>>;5iwu8I@ zfF$_reKc|hq}CXq=U5nP;XVmTgEg6NJQm{I)O`&s{U0*aw_ z43AQpYFFoyM>wLH7FxnZXOd37?uoW7Y0N8RB$w8I<&;eQ>EAyFh1Gw)$S`!+Ohv^H z=a&mA1aYWwIwwIt{}QoGGB0U?EQMa;*t%l`O~t56MJoBNRiU#GZZXn5C084rB*~T= zB5PNn!39GP_HN{ku7PT~-IOCwmq&F8jC9?CN*Zy>8cmiaBq*ICnWaY*b#-&3f0Yw2 z2}vR7yNB9?Rl2Bz5wnbJ4q+hIcac(OE3#Mo?T2+K;Ici1 zMl&zu_=<>FKBM-#mrP{r{6ya4vz^|b9?#zsb--KZ_`RefzmPOB@?<}XM$_}HFW!AA z1O^hbpPyP+$|bv+4`tKtPCuY}+9~d9<{6XCp-7u~@xuAHZ8lF4_Jn12YR_2vw$!6L z`nYc=pkt1y&3?EIIsdlbtSxKLHB;>PxGANlS@mijObu3~Hrd0A;7SYb(0jMb31Bu?O{ z$U9C+UFLstXPw#q`)c+-wA!XL{od)1uqccmtGIlDJBUAcCi$WeW2;Ssq5abizT zgU97jTbGJ_I~UorQ*=l8b$N!X8$M}7;`P`GF7p&9A{ z_@ti;?Uy=7GcmRF60`U)_BZ>*M%&qDfYl6ck(s-EZ*kFF=A z<9~Uz#jR06cpfqmXHT+ytsmML#{5RJTyk7;a}DqI3{vLFgj$s>%8yR3f00ljC0zsg zQOD*49LzssV~csmazs->pVz+Bom%r-*1+1awqMMK1F{Y(J95wzIdV4nBPw<3OZdm# zW_+j#k)Xn>iE%AwhCz>CL|A6?R0G7fuuTmrDzPX}kYaFY`eoX|EKsc&Tu@;uwq~%F5)kw5;g!ZPJu>b2)i1sc!p?z?l+-Ne z*&}&yPv7$qP4h#Iy!8luv|Frt8#{3YLxAmQcI!Xxv_P?%Sv&vmIriVeVkGDu43K3i zksS~j5<(fb_tGsA0wT2d-9gR$ST#85m)ey)zj)ma)F3e*-7Yxu3P2}ni2wTANpP$@(E@8Mb8BH5NOV9}lU)p3zX%=JU&`CwomA-iJx2 zhpwy3Yt)YU2fw$8AcpNon9lu!`R@)7sqSnqxJ=wUI(c7JhRQdqp6r&4gv`ob>iHb} zY0Yg%l*9E2i;kk}{c>0W9kelb-2>E*OoNAsB#@%$lr)CHeX0VRjPBe(huiK&E!o$o?!Vq*dC6ZR#wX0iUzC!1OC(R@6gq>^dADIi8(^=Ts- zbV`gW@|hY;JL_G%4^NykE5f;-pBfv)QE&LW3jr%&XZdd%lON}6zjkf%@~;RoX`Zlj zPbJk0H)Unr8>ocf*+{fek=~Z+7H!tgsHwE)%iSBE-yN8jK1n>4K2kqVR_{Cb02VkS z902~e=FfSnwK9OosE5tP|7U0(4b?XPYRguGyK~)7zz8%`^O~JPXPdev+T!>VB(CXt zb(2kuN3Ev$xRQIIh|0}jeWrs}<_s8jG0Cd#5>eV_n3Xvmz{R%V#F@sl4JfwLW$PXm zeMwA?=Yrs6sZK|dPFG~-D)e$r#V+3MFJ>{yc^tFC76bI>Vx!x5!U z!~fE`NTciGJ(Z@hvwpYL%qPWE>PZO2IYgv&Si@&%rybm5<}t?4jp zPX>4-YYZ13&{zugG~el`b-6U=T7L}Q8gad_pK?ja$WH2vfG8%fk5XqV7?~EgDq96C zthhU?G4jK@PAc1k9tyt50_|B->{qaG2#RCEXh>{?r}LyDu6WV}k}MZN#MJl3>+HqG zZ_a+x6!Aku#AlDz{g9B$3EcQe2}25SJBUVw9e)JsGa_bD=bO@lSs@QDKkTlP(578} z0Ko&!S-QoRE;tLK-_XbD{+#T6#G_XEx!$36>8=Ts%GYM{T9>$nlleq3ITZ)`$Fui| z6{M!{Pz2yLpD?lDa^9hwAfjHK2Z4HuQS>5xE$V9OAtX`C8J^HFTB#(^-R0-8PW$T& z?m5gdEzGF+_fz$yo2)MR9ad)py%PH7V&o2gve;(Xl0@GKZIu|$~P$*Eh!K4vlb^7Ol8P@0#7PiYc9Oo4$_WUEt z?x|IMK-niKR1+L_aR+GCZy-{oqZrIi&+drY$K zEyPnVYG$axXX|zQEa`~PzGy;(3iK$Y-&cHpSA2Z2yn!BC2v4o zUR8+zi+0#>=Lf1PZmJwjH9`K?NLblu7yfPRc+J+VEgdySB1x$k6_6dzC`lCX$bQ6Y z?ie_I^o|;cmLrA-#beu!GDZ~wwdF?iyC%0l52&hUF3e^)!J#fyG_i>XE`O{n;J|~8 z$g;ZoL}nDuqYndm3aYRyOC+u53xkxSqgfcmtog4R!4Q9gutuG3eA?(&!fs01D80>C z*(X10j-A57k~+cI4b%HuZ-;5B_$6YuWi0qVl*FKtG}UxNIAatf&1$S-e_n6^&wIn6 zjI_NN58iBw(cGRoE5E7ZhT9Cc%gmQ#p3>J#ds1AGZfN(}RWixn@IFaVZ(I(D6h3jFLE&&hwQ>!R zY+3i~Ye&-intX-2t=os!Ak4voaF*c1TzIq~k^1+yjLdxU(nG;_kKQjd+TC6AdG8nv ze>BB(Sti;VeB$qwC@l`78?5g!8h;5WjhSZUI{|$RnT8Y3RciABvI6h4)csx-Z6$ps zZ{9K7ut<&`6W&n*@WKS5wG6{usmWUtE6`2Qt>j8p7BV3>-<**IFq>xPPVx2)3Bry5 zgrQK^{PAe-v%kq{ZLNSq-Qarz4VC*d=TY*M@rd$MXdysQmap5ZaI6B2FmPKE=IgqK z-s;i!N;t(HSx@o3$Kmccmqix(yTB8s8c-i68ko(_jRZy_g#< zXfst@uV@DjYSL*Y+0dpSB)RnFh+4Mq**-6wP2nv#n*w$&jcDAH>JmYTbl|lS+_Iq( z@RYf8Qp2P9@K?^!_HO`#>sWq^9r-!NDJAW>J|lQj0)km@PoS*`N>(VwNZOKnK;__bI4{Dj z@+u_IznL33%iyXIx3?@8dq6`4+UFROclRMbxbQH{&Z?FLg*cdi_%0Ied*BpVvEo~j ziRS#~-F4p-BnmuQfNDe9o|6mGBjMQ;JYOY;`B!3IEVpcnY?t_xl1Hq>)Z3hxTK>b?=bPT|7lWD{cQDcut5Su=C}CZz z%Zb5?m20Y~Ik9MLd%MT(+k&C_dpm`gS{irOa7nSOS|5evcD9h$DpXY5wui5KK41PO z+6$F4=Wy|jI>p6ly12}D)Fb?9non_daoz9UOO=cBNU%&89?|IpeZEO0BKH zLwq*M7mpW5Sc090R6$n4mx0itEv;;l>eTCWbW}mg-T{gDR>$!*;s6hKLkDYE!%Q^zvv}okwnJWV#@_c0d zq(VEn!{phc0f*PTt7a!Ob_0}h=o6Y~K_~A4Cj|t0oiSCw94dh+5)$VNi_N@3ln40@ z8N2cV7zGJ3cTQ~yXXlAU_~w~2)rDbZGEd30!9H^D^mKi^(j~xq6c52@#;dTWvsZkD ze4!E04m0m|TKwj2bI>Cz-N*oYiXKK;H}u1*Ax^pl(I<}eA4a13*r{s|F}m<<_#$OR z(Zf|xZQyQRsr=L*{j?8wN%Ry(nXaI4dbx@LS-VTV>sBgzM3va^SnJSU@!H1BS1cW@ z$=@ut=A`MDrTSyD3<6swVZQ}QMk$8Wpg`!ED^!@LN>^?_*ubf+%H(b!0wqMPFIPrR z5#nxBXxb>7UAL~Tt-V(XXTAx6UcvB|1C7bX)fQdWjoAK&V+?h|;Z8oZ8E5)T!&lj1 zMY;(0Pd5Gz&S_1N0Go3*?!v0K*uCtqc|R`XCV1xGv(PNoEB3FPcTY92M0WRtX9f1^ z^3aD8b|1Z*?ic0&%qo?pS{>1WEfjQg!T+}ByOwR)h2{3-PX8HHA#ssP)sT6Xrl`S7 znalm{9D|bU`>|o7zr<1Lg>RLCyn%AO(EHcGu%4I$U zVf2$EG@}ZP#^)d@dFIi8m;ml0F0TUxH`k(ejzUH!k+|OSN3%p&-&I=P;|vh}-DK>y zxKlmt@$B?`rzEyV!B0DVXs8U0I`JPIh!CX;et+|^s{H7Xb3M1BdAy}_A*v%?R>4qB zF?rn1b$>x>8utpUB^A`R*=7eUM3?Ouc{SU{J+RjeU&OBaI&j&S8G9cS^A5e2BiBFT z_mYGss}_(jDR57mwO>kaiUO%&GJ)E5{~#+fL!HKlY+AG&Xa;#xG?)|bTblQ2eWkE| zu6#d#@sDJvENH~Ypk#*8KVDIB$J3KizwgF+5|=>x4OqQ1)d>n63SbrNVspQozohoQ z2$I^8c95l=i*S;+m=LxK6K1Y0U0Q6?6OS8sx1z#^9|$sG)MNUlHUx4%JiY2gnoC5u z(5Cj=SzCZjet!v$M6fP3@bYC^`3c7$0^gG&Lsze5JMj+O@v*pr?2;HD5qkan;2Lox z2gGSTq3*j@lkAS0KrXB&%5MoE=o(>)xvD5IiJ9L_-k!Cg$sy`kaypyi@ys6C_)4cI zVVlp^MaKUvzVFj=szIufaqb{9N9+6d`$D;FWc5l-qOR$RZe23IjA7@yhEs!lX3Bd_ zKrVC6_xpkC_-58zCipe?QV7-o`uXHkVG22&rgO&0CMfwCsuA#=W54#0mhMQb`?yh` zFD*v!)h%AD($7X~NohK90eHbnX)JOP7C(dq|=0Wt~8S8*xSc0vc)6;hhv9&U6mjpzwpQX*sLmn zDgLPRHu~k|FSos-X!&ir4bhQ|^D)>>3JMDb5cgzP65zwtN*paP>J4V7SG%9rBLHfO z_RNQ2pykxJ zWFh3-wgaPE&$X%UhQJ38V8)N1b23}}v`wuN4!^3e|1u9K#0Bj;AV_^?`pqdWGk>}@ zPv|(5i!G6VrG>7(ip=pd)2Aq#B?2?Drr2)eVH9ST3zHnz&w&|gtGd^nA-$;n<@|Cs zrm>+Nh`|5BoL?>j<;lN)@>Ekqb~wqy4+kPh$A9l7sJNl0=pab#oX_Vk(HsyVy-jiY zcIKeOASs93UB^tGGfQJN+Mavmen6lEa`^01N<7jEfUPwLzZw)23&CfLZk#uL$n~hc zxfujeLK#NQaKd@y7Yaq{UV=)AN(r09-zV56IOBTQPN0@Vut=X5L3Vdg;!<`anq3^n zH%0obHpK*DrK6#djrGZ4?s#CAe6pgiD;)oA9B`6I&^-4anP`nmvD(KCl7nHbrSOWZApd3MKD6~%HOPj?2dqXAsjamP(M zut0b7`W`9>MBd6?Bs=Aby;eWn?|F_dF_U&oMpMLr>DGiwM&$!n+4gl6KrbSAp1QQ)?M7A`pVqtcwgXikDKRHTkrt=cjd-VkJL0qmQ>3scPc6aVear{7WhwnG=8t%^D1Z6!0E!AwmY5WV#r zCy`2^^y+|6<0yE(w`xUVaPN^K{9qj7w~*KniHU|l0A_s-j2A z+!>YE>P~hvy#`uBLp zYjg`Q!yN7RHGSzejGwin8Y>C7L^VtV*N0lMkoQs2W)*il@AOff45Pgu9nt3ETeYPo zzB^l9`o(?W_SlO#7Vt(9$!y6F68m6hax0J0M^^R=ZC9zr(SmLgpR*kQx(a+Dawkae z9ru9_%tDBgD&toRJ;n7cU3!w_^O%^z&}+QxIUT5R2Sgwj+r9e#gR!>`i>iGawM`Id zP>}9Wx*Mb$M3fHc?i?Bs7+OL)BqXGzYfx(F?i2;g*4%7nzJ6`m+jy+JA0~^9 z<^l|Q(Y-+im1#3Jj+Cn7Q~bjbB=esbEKDf$_@Wn*$WL9ARG5KeXLeWadmK>U^bCHG z5DKleF^rqvWW>yk+Mm<;Jz{Qo zy{qToZR8HTV}DSDEForVp=OQST}UC(W3dTA9N^7S5~rZOi7#SPY>4rkVwoDMKFbNE z3lylFSc*t5SGAY>*Bdc%xNS#m?e~gunRIvIEWWtoo8~ zQHq3zi8wiD+2_RVPq^&bQ+mnb*Hsk~DR0h29K#!p{4aV)Klbc%pv+(zrprZ>Clktt2q3;c0!Jdl$P4>;)^lS${GQh>(a~*<0Fruh&!NqE2xhz8 zHQ@fHn|n?^VtCfr$o^apmbyu~a{9oV{pyM6A0bEAudS>Qn)J}4)66+4G`Z0u&KB_1 z3bGqcjbm+qm2#vFck%Y4i(VJNllJ5gT^ zPdnJ>eEaoja&3n9axJeyO|V-b7%U@5>5xuG4>?)N+~%5pZogo37F#{Ey#_kH0=?!r zwk(ZtXmr1R)fNA@(Y;syV=t^#k5tAO4DOB5EOt@1aM?o-KN9}9yA_qT9D+fo&p+HU z0y&M;*i1`IeNrXukjN4b@yCZ>O=BT_O%c=Jf@@O&<~ai}tWDJzCcMtY_F{WN(8nvs`xc2E>qxA*r}_@iM#C z&p0rPOiK0oN^l+%YbrXb-WNn>k*~7wM_gDG?0=2aOr1ntV^Pu(lxhAjt)STFpSDYA zg_Jy7V9%hHz%17``7BQtYqR{rH`CELjLOjud-~rlVv(kbi<7^4DvTrzH;ix2;DC*A zpaWn`3OC-;3`PePv72J-KA=%Ne@U}D!t z8PVJTsaYH>FRww@7ErMKuVz5eR2GAScLyEgVeTNx z+zT$YO3thwY;k|WW_GA?`@k_y>FEWW2wyj^y$NSWf&w$n29qBwO^MCKzd-$6Y>k-6 zdF6XijQRJXeoL-nzO>2PV_UV=Mrz<@ zD<@eVN~aKUqbKmU3xD{3y&eh4;3s7JlH`}m8Wa-@H>Frdb;Pw+3LC*lt$ch4On_4gX|^? z#2sB?gYjTrPuRTaZJb!sFE~CD?+OKoY?f_9w844hBNi6jxjHOOtoG^h2H~4|y@NHJ zH9@;(`N2@@t62%nJz{z)0~XE!aLLGKUn!?dz;KW&*~j!rFN15p$y`50TJHB9XZ9r# z7y9zXavYNnkW%w}d-`cl?uv{%T}5=8C93JVkB!(J8M2G* zoqwyG^(mzrjx=D)kZjvKdb0C-U?lBorZLp_u?W}BE_=3&n5!L*KeftyU zFQ*A*o3#{fIX(g#M;X+o&F3G~5rwDvLA%0h6_deySAMrqQ5GUjP%KPn@K@9`e@Cn{_NdPiaqRZ z$y4%XP*AxasX!fnmKivwgzrdHS3Ohl6_f@!Nc3~7q!^W133kQA*zO`e(yJ#E zoQVQA@)m^_m@T{gwFHl3`%tcZphRWD)07isV;P|gS#EEk%%(Xn(PzT^{+wb=c`wr& zo7CoY#wGUL65+{?{p8OPlg!s_p$V`-yZHpv20V|Q_=M)MARlKM`}{n5e>ujY(bTq2 zUjC^0lFa}r!h1e|NS(;jf(mgka!5_{qeOl2mRP50ayrjUX6ScLcUzdMhm{N4f688P z;KytP4G%bdXR3n1cB3{=sc+1-4%h7#_w~(i7qmWg58OoWh_|==o zBB;vtAhSx1Zt+%M0)M3%Voqpgma{_%=!f2qR<_U889ktu`Y*7m$*v}#S-iN-|HQ-{ z^qD5$Sy-o@kGEqD|cuP3JH(>diAC_4JRL_DVOH|_>wZpRn(hg56XibZHyEd>~ytW`Jxf#023AAia6Y+>JThIxPqjV zd!_%*dJnNixk|{c_TM##hX?nbyzt!Ml_E_X!W(HwWQ>ah8;FMAIBat7)N_11YF1r} zaO*rWIb{~VMUIeJWJ3HN#&JbE?2I*wr}l6g_8WF|_8yPL0lT7|cL8CtgNOL?V@I#)G10nCILroSU#?ByaU}OaGkQ?HNg;LzZ*xF7Hi?zrWzWj$s_vRd zMCJHnVAg(*Dp9c!2^yPCQCmEEWuNxG{>d}!UX+nNdG!s>b(ak8y#~%|mO5_vA&(E^ zKtpvlSY2#9GpTlFsQTC1Iu~Vd6j{#Wvwv%~oqyS6`t;M%I`j51Wxzy858SCSsJZVC zCNa(MSGnb0T+Z3JV~Cg~iBrI{wQ6Z}YENqkhn(|FxF8nSx#)CE)GR+raF5Rz=q^zN z@y>>BK_!UDE~uZo=>8gZiHCbmZ` zFDIi<#E;cdIGA4J4r+ZJvZQZIaO&Aq{3WZzsG!lNx$gC5!+8(Dv~%FTa|GH#wX7U+^i)tA%HSI_M@odFsG*1rxtaTO zG4#aA%7KslLejnmEkHT%+w8XhAYJpi6Wc%&&Yl%6 zxbxQl_CwVWlA@#;?U2}Swov;TstUqr)5v0Q^UrvBQZbgEn7>G26Lr8~ZGf}K-=>B? zWXG0nwNx=Pg9tOieI)T>MSXY$Kfb*$l}gsUN~X!teh+hsv?7I=__(>CFV1_D8)7U& zzX3CNKlsU*`9;;;6Zg23zE!>>>9WrE(99X!rC`wK&#y)hp+%e$sv)kQ8k1l}U-@pJ z)t|)Z$Yv7kjWOc3HL_E1l63(|=-lhS?|=?Mp{8a>)rBkoBKoh6R%68hUef<2G>yCQ zTcD{o#Wo)N(%4j5%VQBmu#*1PODdC-S)cAR#9LXWc|60LW_KtZqIwsT8eLg6!7J4a zkQ5s?)a^8+3>B(B{fmNCp!&mJ2K+pIi1Mpq#i?v zR#A+9=mKnAaiYp+?FDIBVPRFAFnfAea_{eXMokA}3_!9s4^$6NeA-JKr?iBGhfpZJQal4M^(=B z*R3$}Gy<@NJ(Rz{^}GO~Q6v`js>f^_vA~Bk!!G_Ng@|6YoZlWBm%7oiGC%Q+TC|5@ zf|Li)ray&4tdS%JotRIRm|quS2Lrwo>kh|S zs>6pPIjj25u*5|ANHBT&Z&f-`%msIoLM#`R!kx&_i-#V~!~0*ds2ROX+i)qHDc0mj zP#t@qJ>#i23=@PrB+lsvBi9dhK}dpFL%UZarAvUGoUio)51(Y~lkY<3Dfnx%Pqv8_ z>>}u2H4g#h^>oi=^S;RwPNVbtO?vv@T3 z(2OOyTAx4M!6l9Nn8P47+#3*wdTuQr23;0r zj7eXuC#GJWE^3avU4;J?WO+I08vzId9yi*Rx#5%XH3SL%VlZmM=$c_Y`A)B=z-&{v zv6f2F8{hu%h&+q*Ttb3(CODTyR4&#}OD)JkkA1o%wX=!YOmkd~g+_zoqnWiU!5Z12 zAl7mBfZ)a8q>I>IKI#KNXO&>cGB=hd9C33*GrpiB4}bjFlFIn!YMYEP1;^TDjCSIU z&vXwe=Qc0*|71j^k^d}({-2q0V@#pw{aRr%Uly=fbPR39Vz)U4y8m!&JF>H6IYMNY z!;Y|QSBYp@Vclj$(cD)`jg{AvyqgCK@v$j&*O-XnDJ(_JtX*mBQm{fGh8q^ZI3tN` z3L^bb5wiPTZJNL>XA@^bTQJ~2v&}=Ih78dXtufgoJn!m%qsX%U~|dR^IvH>VK4J>w!aniXjmB__>4I?l4(3kMrxqa zU9E*1+>~@X<4jB-=laiXQDr$j?jd(xj;UMf40eVmllX0ga0wBE|isF!M_t4@k`K4t@^V~YtS+zRwt(((Z#9gGA{O2cW=URBO)iNv|rYnh6*@3j=;wusaoc`FKnIfCUq*IHR=-{<+siZVG0WHIA$ z7&wY_K9+GAZ!V1(VR!{xh zcB(FRkh?DrLpvAW&}gzVrG|38mX*zQ2p=2WwjMTS@sH%VJ^Jt_$tn1J-O?swckK4CqGaFG zp0z<%Zy|`k&T+EZp}V907sIOX`!=1CT|sRL!sCpFAf+F_eEj9C)&0-0==W)yy1gCH zt&MGyMSYVFzxY2h>Tgw>BCYp@1U2`**x#2>A^k`v5FXP!2o~TVjyIr0sP4U@2oWq0 z_dkAg<%_1o09Jm%F@t%Qvlq{~fQCv@_xQWZK+CP@8;8&tbpQ4zJF`4*2}29rStZ?j zS$=tPbYMzGhDC6l(7AXd2Fr{J`_Ue*R)^qvJ1^O6Q7b=k*pzj`7KT6XUcLz*GX@GL z$$tlszq=E3+oA8WI4M_+Hp^in;>-yGgTLnd{^7@wUCkfw#2EuK|8zo>57wgO>nkVq z$rH}nXo3(rsZ(MD2r)SS@NsSSg(b;OpxTK~K)IQ_-*_<7sY~2+08_ZdtWB9Ta4OOJ ztYQ_P#B@FwWQx6$pE*;c)y>x|dw9{e%PW5a9Q%)lM&TW1&PP}PZID#&Z$lvzTkWsX zIK@cW%W-j#Pg>w@`&+?L-y&;o>NSY*-G4hD&s1QM6t?ir1`m8;g36O-B3|DlQ^A=W@xC88yGTu`=UD;$tSr_ z#HUN%OR^P%706echKGivGV|JI>BgsV-ci09MyD~|ajK~u@%n2PSe7WyoY4uX(~(vE z3GO{MtCTWe{zP*2<7B73fd$|!0B@YFS8Z(ZqIeNp?UFL~CyUO5&|ZsUy}jiK%10u! z>TzK6ExkpdSiO_7sPs$T4Z#Syy_)GqMx|+qMKRoP_`3;+Op|DAd*sz>?n82A0ScjK zF7dUqw1wLA--S5ohpM>Fds8+GRbpICUbrz7L{8vobBNVk>vGLxms4YPnjglc-e%LQ zI8DsEbVU)iIWl>3`Txw3_D|Pt;05u}oe=(FptH-MjN#qjszTXRP`#0CH4<_6tBDyg z?jTpJqzuGalY0zrJp^of(gu0L7KE-CpiHXBnd1u3tlANck<(}9uha&R&zWY?`n=DE zuAZ`GHk9%ijGXYUoNc%aqTvTD*AE)tv5}^$_V2!@xlCX>^i zy1t7I&y{dS?;jQa+8x?kFi{HP^^QZ~Y%k>ZP7YgaiP0d@9@%AyK@>Ac!V2ZeqyvBX z&qw9drm@?o*zrx$r6}5oiiw*f3GoJ@0&q`LsOz^{rN*_c!s=%y!|SaN;j^?i)ge&p zQOMs+w=Z=$1JK{~7^Y?NMRvG*L8l}7l6YST%JxbEZm*wu#~`uzcOXw~MCPEOr3t$K(7{ zRSqq95Hdz%SgH=AEgbp6d*HW&=q3k*p_|z^Tp;XpLsTw8{8B&Eg6)opcI`b5R>o$j zph*$x>_d4bS#aAs{utjho;>{Tkigqaw!b=V25#4dJhN7;JDgek8*i@Q9?dv>m9v^=eZ5-PYU7^^7KB49KDRDo8bl3>l zxhc*!&$l-MtIM97kCqYZHMzJaB5hUcsMvJj$MqtST@xFT3J9?9eo{HbdhY|{9QapaSz^n0bKs<7dBecc>MC#FE?Bp zxyLr(Xq)X90k<6l>7_CoEmyVxWN^6%1I|!ow%65<71UN)1+;4XHgt1Q`0}&{??*{ zn|-OO8Q5QJChUhYY@L4zoa(ofg#sYnWy7D^ z;XA((wOP)TtpPF#nVDSM-ul5WdrZq;eFO2JWg`-&@ke@^!UaAxxsx24>A6!V0c0}! zoTgz^(u>hNpBOBd!Bj5Dq5u~@DO&E3LNplTOhl(LN%o$03Vh&ir`!mV%a6G5+vd#} zkbR!?PAKn7eXFjd34xgx-a@X^qRMlf?*%<1%_Hv3&=bbyf4x;W>eR{mRshOmVWht) zUEyuRT3ZcIAeeS1Ohg-ZdADN4Wc|Wn{8YC9*J94L1?U^jVzHAL86G6Ha2-!mA>kX` zW8&OVCH-T`Bzb2C)OYwbsrC)ADtUin|9((4!S7F9He{LhhW?!a2V&OayHRP`l@A&^ z`u0a9(QohmJV&~Tj{k&C3hlgXjnzG2z)lD^L-G{hZmesb223;6)TdU`F)=PaDd@ab=S42+Z^*_Nk8J_$MuBDV@&I1mCnyvXNZ!3TO%mdZ ziBLg>SGSwH2~G?CDTSG4={vaH92p!G71R`6v`q5%%wnoi1ipp*uKF0(XlU#>;E9@_ zNA4=NX&9do9|>9vK@Kx^!ElZDiqmrw&BJc!Dfnm@;&^%u8S8B))?(`m56sjGkZ)2r z(Ovbc!fThQ_a(B3SD4nV5AgB(nsh1vbu-fn4$~3rjPdm`HENu``CQ6QU;j?5+H64^ z&i8Z2=faJaRynE4GdI+sb_*t1^YoN{Ue>^^QdIE&s9bcGe93_lPyZxL=J&AG6@{8RRy}H0V+b?Z1jt2 z#~gCs&FOz<_RKi3E|?&3(Q*%i#E~w@z2uvb#N>;orKPmFBu{C@JPjD=nV~bI@~FA0 z7)ZCAENM!@4EC_ijLV&nRHad728e(2>MOL>2Kk{5FTZ-$NRv)-t|CWp6$dEX^i9(O z5>HzSqEzP}WYyJGc#mzUwhO#UFd&_1X?7!3dSkv_bswc97Y8)GMq*Q-?`>SkaGR!0|G+rC)8k4*f($p=VE3~qOhIkb!(sVttl_C2?=jZqbO&JxEEK+956%e5%br z*)!*JZMPw3wU-s@30C<^%d9y)d+QK?JmRR-M0U zy)Ak|c^;$Dzd=L0HtGXKR+B?6>Sm14`PaO-a(%^5F3d|}`z)&D(~S1djTobE{@-<9 zH8k6k-*UP-Dss-Gt|H{m%r8&khzWmz*j8W~wdE6_Blt#^+M?8ns=__Vig{ldhcvo0XL?PR(95_zsfvZPP& ztE*U5B8$mktpBE5a)G^GLF>1~AGC)KRCC-L6v=;mA1ynkEw3=@66T~#bmfHUF4r4W ze%b%pVx7m>}G*fHqb0`#n`>@c=?_*EIhL}?^DU&XVQO#HE%I@fKEF#92$@GKy(#^Jny zI`k&hLRI58j4*C{{Cd;dT@*h;k+J7SFxI-FklXL47mrB{_Yck13byv#Dc##Ut&4W8 znaoZ%N@bdaogM_Xa?zIp=yd?ZQSk&LIpml7L=iF)8iWMRe-<|x&<;?K+O$koJ4Q9_ z>sSKIwv%VZaHHUiWG8JblJwMzj}H}Nnk%=zf&5u!{#x$t)R}KjHZ!r(s_xV{q-Q+J zslO-$7E*Cyh(&4k&eRp_z;&FQ&8kXuwoz?*%+_W^jeK{AGbmf7%II`fn zOZ~bFP&?cgFdBK;ulL-Z^+=$s?o`AtnnoM|o5Y5G7&gP6W&#Nb$=tyk=9M1zdy&KY z-F6M&Pv-DKr6iw+cHDme#NrYF6~hv9t_#S8Tx9?q0v0xQ-#wZ4%*P)v5cqFN--`_Z zs`&|z1cGPH%i_TN|JR^U>6XWwa8HNk78GO#(B>z>xPG6`>h8JF_xNc5AU-}b!z6Jk zEkU2cVQl1o)31J&bJ@jYK9Vh#&}S}Vej|Pzq3$PzLm^C`rXq(!Das7+jN2P5;H7?U z?v|%mJXAHgCF*7xc*~xh@}ugJ49YWCD;L^dBVWP zI>6yCx`z)V3sL;~lH!Q8k>1C+qSQa$D~5%It?xSpwp`!M`5tmA4xcQdN=BQk3YiY= zGl%A<-sEQDQTO#eVm0p!=em8M-}A|s-h}g#hxV1=Y*2Mfr5jFa=fl39o}Py;Z?_&i z>gyM(;D>Xz5c(GS3Ts{7rp~1`9X9Yv?qqRoA-Bgp_IV6H9_oK|D&Bz{Ud%N(<$%G9 z{ufK8y2i`5$%7sF1>s}y6x7dXJ>u-D_2^`rIj1Q zxoWfU`>**A4PEo~R3N|v9{@<}>u`y?rbU4Ke^Tz`uM9aWcN+2m`j(nx?}Z)G*#TEJ zpoN8H#&%>z`#suQ=Sz)70Dj}yv_3;(U+=wB!}zj;czxt{Z)BZG0vYi{l3HNVIRpzA zcR=i7kxl||a+m{hkdx$w)~DwyEnbz^3+*=<*Fe`{i|E;;rd$20Qy^;L+AO@dB%oC*QooirR;LmAE+S?P_%pRKd@mXpye6}isY6gK@NNM15X^| z%H8e7#yzK-6KmsYw=(ByZQ~woe$fgSyN}?v*}$D?I-j@OaLYk0zR!vsrv^+?8~1vV zd#}npAwI%k!4(!GpoI6t?Z9`=BBjsx?#x)(&8-F)N=1OIeXmL(if>v-1S^z$NT~GN zU^xMzQvRO(+=M!4+2|p2N)kC}ls;&L;UIx)^hM6kK+tfJ2(bgW_=Ql@e*MBfv~@pm zj{5->I=|15gct`Ug$$Y!H<+vNAL_uqf@wVh|Q5 zK^dvwee_onR^!zQqgYMnvy&P@6yBb13bYIP4d^d(zpT`)VZ1JFzbY-!k?FX=uY_Tv>W@5|Xs5YXI|)B}*^r{P*qs_Zo5v zn6Q3~uu)&R-V~6=$GA9H5~&+%S-Cmj%u)*vl``3Js`THt>-1_zEn$iu05%Zbx*;IC zr0_AQ0xp5eVCtE38y2$KLHsk6fEoZV%;c5Un{W4jjw^cfAamm0YI6TTWQ{O~r7XHn zsA@LD?D<)8ZuYE-)^Q_$IjxA7Oxd~uG6D6Q^73+3ey3$tT3XT_M5Tj`Q99zlmD*1#Zt4!I3P-HYipzBra|~s4;G0OGMsQmvEx z-}=m{v&*rICT#H2Mq`J`>DBj(m?OE#?nNKwL+N}cXO)45$sES)l6bxK4hscZrK(~_ z;fdU;_zxq-l^JZy40eQ?bXX(7y};}tty^vS)Gt|qo~WEM@+7Kj;EEVKJ|cMMWPsxz z=fTN(qPmhOWy*cTdXGVU0TV#9_dqfmM_qb9hmd}~J;0!k4SIcygy*CH&!v8YW0uDX zv2Ewl($X(Kr0ZOJV7vWn)x%q3z@@P*&agrJ1&DuTR-%ln&$8wn*Fb1H;-^_>WW)c! zff@D}kc&&|n?MLl(CL``Y9l#IyG~{^^nO@20QY(_n|}Roj@zOD-TmF&jH?B}1M?IL zhQdBg6QvpZ`fv?iG-kv5fMmx1@^HRR8IV7*?T9F1FiLn6cmfQY{(i<>k7TL% z`cJm)rHktofE>r5%@`mpVCi-Mq+wWC8L$I1{FCsa;GmQ6z{_ygsgK%yPl*kVKBI=F z!vJZ*&9?f$y=}q9#wLEZqD2i@Zrx{2ZfKd^WbW3HOSuU#8v9n^wcfWMux4sI&q? zkR*;k~*4pg($*4Hcf`nFsH6I<5l>1pq3XZVI0;Cq;a z7g1J7oRz5e-KX2RHs6M7J#{CiO28Y@1bpH3Ot;~9cVV&0^HbB*Ll?8^)Ye1)!^HbM zzSdmP3V4OSDYG}38@*2{EM!C;g-fsstoYRcQ<}DcODHgh_us2thK7btVu73?J7cU% z`hV|(wWDJ)U}m~Y+O2Fi;&+&*|L2Bt+?{Z2Xa}BY8=rDX+z*}?1VJH$+N;^P7dimX zN1%`5$~ZFzE}%A8aB4Ty)7ResL?}ND+=lpmIW7q!;eoes-HVJ;?7QW|o9utQOY4A9 zrtm)X{Bw62AZKgpTY_`L}DSVq{ROVdx`#nfeCz%0|libnVJ5ExX-vDJm%Ki7cnz<&oqD4SV zp$xboG?HXxq3t$C)8nu2+k?3Lwv~+&>?+%|xYMGqx8x-f?#&j7(r+S9e!YdZ6U+Tm z37?cQc)w`AU(f&^uij>l-E|gYWaKq4_RH_Jl{H>$)aJuhF!TTU%zw5Gq{9RASQY>0 zy?g(*c`u00~{CG~Rdl%cu#y}Cb zbvAqL&FewadI@}okmq^(>bkb>I9kaGp|$OxHfwT;00Ut5nEKlPy4~P@v9DEO0MZ*6 zJuhm-iyFI?sl|RXW{uKJCd~@@_QPC!-^qxB6!jPT3H2z&JMpD zB|nz9xhbi45l*uWBwMDBB_za;_x?p#f4t)zEEnDr1M6CR()Do3Zlnj{Q0TU6Z4=hW zD{7y_B^-7`n>_S3)6O=eF+#jjt12!!c9W)_LKI*vN=3~3JvD<=nt;@%w`f~J7k>wN344z$uaQNd9w*9=8o(7-wUE2HxVige+B|z zclZMQTxj+!>*ZCd$_sK}7}p+fh9>EcwZ=qwjnUO9e<7K9V1Rv`25%=?8?LC6BcTa| z_0lW{VEA2!?5@q?kEVQl$pyt(C`74R9I<=8g{2&`mFR|b2R?VstR=S(`AFqewH4qk zuKm8NazYHV_aM>?(~(7R)T9#OgEErjnOPmPe% z$}v{gzX2EoiG^&1P}|Cbz9ld5=3=)ax(k2(Uvm+{ z$jLsqeH_Ol@gBcen?WZarDK-QEP8O($b6{@pd5W%!)30|aYOvGiCbI7-|?3F51i}f z(6pMK*ce$4s=E)%%;u`t3?e4a9oY~x(9aqtH*_v4Z*oi##&&B#8p_Vx9br??$*-iL z6h~Z_-Fb3cGx!5lj}ek_#=PX={m+oEKA^S93gSQhI&`+y!*N-)H5w&nZ9;+ojX8G^ z2aKg&Ezn*^3s2o*sOG;I#3I-AY6Ok*wP^q?lV?}Tz#`PuOUVbA##j1wau9=IKeIAY*R>v~=fM=AHN9BK@`#6y5yRd+ zA^cQe^RIka56Clz3V)Q?m@Xo07QMMRo+8-1XrPnCF~mP77IQe(WnnK6O-%nGZ&)4N zC63YbHZtt!Gky}VpGWIQG`fH)m*C$ZKJ=k*oLDCh7F3lW41hr|hoFU&i+9(Qi$Hbf z^sh&2?MQJYjry|A9F@D3-6OIuH@)GcZ($@Ak_!eWWFtm&t&&!!j#I-?#~HzgV!UkO zn2%d4qW;u532GB0t~{vJi;+O$p2BIw8?92R1GNPXG#ie{-Z%#C&Xk9Hd*CjkIz_U1 z`nN=C(c`KeSh@zZ&ZHK{A_xkUNEYCI`Qg-*6g&(j63v)_o4BT@Y-Mr#)d#Q(%*XU* zO5LiUPx9&lU6q%0cGPOM-|1O1@|<2NGxGquv{PIFl|jcG2p;2j2i|46qynmbX&ZFp89qlaIc8L+P#b?zqN95)l4%u@O^w?uPyd~FZz z9C3*Hp>fJ4rYJ^nbw;x(PPQ)*!g)vc(o|Lar5wvwcbdHYDHE=kr6E7TF59WpSt9I)bOc4x=Y{$wqr#TnG768RIB zODQJJQdMiAlJmBnf-ja2m#?@)u!6C=nG7a2l1ofmmWww39DuTV@fbxBGHF=d!NRL> z1lkGx>ElFeAMZ|vEC;kac-U z_?zymWJkdpUwvRPBM2jGo)NYw%1GDXxa`-?vfInq{p|}Kz!6!;I1-x_#Cf5SztH^W zw5isqV?$0~{}|F`!QeB3g+JSx7 zpW?*1DzF2gff`zo)5V`ZQTo>NIN?ys_7Z9R6q;}Qa`#i{=1+-%W|#8w?~&Ot1apk( z%~eAT6O$E>HPMGkRjM1WlH|E`Xyd{TQJV9+O}q;lq_##TWm%jG0>Wug)3%g^)I6V?4MQY`AR zYuNV;^{m@SR~@`dpqV56T9{|{t*P9W3sy9WwExl3KpG4A?~-umQ`!IGUx(FD$AvlQ zo2pmj2JGS4){d+Mh5Ib&7KSy82I(DN<2l0OXa1Dt7A7YvrUd7e++d|2If>gKg+fl_ zLyCv4j|q!8D3UGk1d0Y_Q_*ABKHvINLfZEwf?jgO<;#i7lh}D3${W^$d$UIJ#X+jX zwhE}&bsC71FH_ex{ifY3;lW*SRO^)zD@@*NFSJpRzg#G8G9}wGJJ7bMG4b}%fYgnL zI<9T_1(jTT1Q_h*_iPPoBS6rHoUfsqcDbRDadNT2E0+UsAPuKwpq$IkcrE(QnC<-d ze%Irx=UWO-*!z5`@awFU_B(m7c_CPZeweS5%Fz{JlGX2_*`k|&O^Koek*~R|GJk#_Y-IIW7%n;;0i5F!<-3(9pQ;qxH}n|z)2!&TyLTs-zs&Tir5c3+rbCcb zPOuQ#qmv*P%S(6Cns}(RTUl}9=F;=%4}UL(K!WxspLG0Me}VQ5$5*xcYF1~QbACfd zpor9vPv*0yD<9?GJvOHNQ7tA1axOls^)$VU(Q{hKtKH5WqKt{K+t81axQzhMR*3va z^o)+4udOx3*TMV9fvF2{> zMf@La2}0QanaS{%oUUP))j$)jS>ol#=i^D8?jcKTUno&%|Rn%^hQ%B~*5S5E=DrDZy0L zm+rJyS@6fI>=Yv5b&Uc?YmL#9&srx{PL1h!{sLPzTG*7q&Y=f<{miqe&V!y+(J$F1 z&Q5kJKBfPeh;z{Hu4k$YWW&wDo{)Nc6JmW$gs<2$ssP|AvkyN}#w?r(rAGV@VLM@H0}1Ug_4GzM^WiB)^*X zJgAQqBq&u79x>r8O0d4DUd_I<#3E@_y(%XHY@TdJ(Efx0cb8fHBHz`d*j=eTNFO`cYqCtk z)`*hhs?Fpx!;hJ`KdFTs5ctccIM`&Thro_!%NFExB@C7D(udblXC+}1a~W0YMgho| zje+wjWjf`nn9R%~I?PD0xA#Q!6=E)+KF+0VcorB41r zN+1k1DO#reZE#+kf%25DBFfk-M8HVdSFY`G;PKGk3Yc12$z1IS>{&*I>?VK6NT`W- z?9rR>$q4^+=;O|y*fU-tI`Ei(!;lo4(y2{Zk*S-)#d6R2mfU({t<7p`P>%3iLBdwAY&(g5}gUcS4|KHuR|8p*89n3e;)zn)|d^!o;%#j~*Si`fW zm6b_2)zf6nr!D(|>yez{d-RG4%>`wJHdtVs>;GyE(L9!~LDA(SQBBDAb5~zuq21|8 z8*a!$#xO$sIS}5iZpm>|elnt7gtJd;@ejg!I5!25EF?^M`(uJ8;rk+=_3j3y%^sEA znzXVrEKJT&?8`f>J%z8n+u1RZ`oGuD=i`#^+?LfBo$S zz7yT#0Vm5Y22~E^D=ma;dP}Vhb)@HyoyaAqmcq|mBUz}2zfwZ#%)V*Jy}f-LMNq|O zRk)BZ5-VQRZMs0BPcM?@Ui~`if)Utp{j#6vBz!L=cdqH}68)GT`|J54u4V21KBgjFMllH)V|6O?DbnN( z$G1t1f2GE(K;pSrI;t~C-m{LcO292)|6f(~+tXLq1RClf-vRRzu$ z1dRMCx&X^EPS;)$9{y`>XXn2%W|_QIYB1IESfEdbT)&@zXDmw|X4)2eg;+HqFD?C8 zmM;%G+A2m~uf0R*O@#FMUr_x<7Q7X&S9-c@SebUid^*b^OE$Qb;RZ5RL(e{pxOmj( zGv|a~XUNJQC*FWZ%SuUvw1)A9hh+wR=%tc0%pg=!B43CED?~$T1mw`^BHjcTFdZ5V z@>eDvnzjq_M`n**GuOAPJmpaHeeR!NI516W;hi)(&t&{wFn^5(rD7@hAN6eiV@>!! zk|^eh^_OI})dF^RK@hv&bb=JyjKb8UY#E6# zFt}67j_RzTCA-VcBC-AV4}JgP^d$hVADyec-be8m@4|NidbEpaD~wH(W}PBqDm9R0 zEsZOe7rD<-oEI)FQ*ifW)2CXxweaC~g_s^{h4xPNZ^oms4jsxh6_VZfA9WSG;^id9 zf9ks^v8Pia!Iv0&0+i)skXAysd4ua_G8)KX%SzV`YN*~s5G9RLe?yt_!Os+{w}&}g7XNS~zH=6UEreZ-<O(h5ls`crRyQ9_`;|PE zUceJEV#y#g-`pT5dA^H*4E^SN9D@Ef{GtGjR~=l{O7K4*p!`v)AHM?QAnCf0KKjDE+kn9Y@cjYFYvtLCWc<38Tw(Bt{>nWP>hiN-GmlJsUng#*xu9 zn#=OV^DXH}jUOi;PkcT97h`W3)MmGEf8RA|DNb<@P^7p!#T|+}6hd(eQXE<|6bbH9 z9EwAsXelKmxTZjh6WoJCkT*Ra-Z|&P^PhW$VFnp4u3USv_g;Ig-^x5e8skFR(3eO; zv=*Js?$ha}_Y}eIb%D3^RPVm}oXYJz@vc3O3jyYgUGhZySA^z&6ubXfS(0Tc15E+u z0L`H0sP@)z{uwGeS~H5qbWueGTYo+qq6SspAr9CF!Ql5Q-w7rqF+FtN8Wtrv zvabFt_iS{vsUDh3`bK;Irn4}MSvgleDZ}Db&(`aXvgzZq z4~X}X;ho`^SwKW5e3Gh!j6qS^co`_^gm^_i!KiVsr&{Cp_C1c+-_1AmwBvNg0hjA|eNI{8ZrH(1`Jy_pq`%B1cHVEn!YTZ+0wTiq`y zQRa!cq@3O8fVEGHVPC~!_nFd)ZWvga=nbB?;$Ncf>=~uAvd?)Cey%5qKbu`a+S{K7 z%D*07AqhhLb9IB*@1WR;dR1 zLOg;>I>z`Mva>W%T7i@w;%nK%l2nXm-3+hsg49Vc>KOkb7D?c zf+G%drBvncInhAj^yy+ENEy5ml1*SAE5nib?C8y*uCkdDY}g+Y&h`KK0z(rFRqQO)@Iu zMh5S;u4K^d`&shCP&zy6VUuma}Tn&BHVi?^Et!Dst#<3 zf^{}@LZOXXp`?=XmgIpWu$Qnon>Bhs+4HGTd5zRxF3WF^X+^>mMU{NNEjO_5egM|$ zAlnAyDd3pdc3V=HdwMFXfy}?=yC9YSPzyBw^uRc5AGv~!%Kau|zrh4zyYB~H$UH=q z8d=58!5iW}1UV%QjYrRl_|LCd7>n#D+J|E_KM4qEX1o9?jqg}R^30{!HI-Ev12K9@ zaxLl>;IlWTj4zE1YAk)e`YUI`3}b=9t^l^M!TT%c#Xiae)`F+{3imtu;x*@&Oe0Tk z?)K{Xv8PCTg$ybGjCYmNRf*Y0c<4n_TNQu|oGZ%_=XyofOyN0h`depNwU3&^<}sMC>9eDDNb0x@A8*u{6l?T^3|}&Q>=o$bH~VKAwUMzT zdm#P!$LM=69_T^e?4c5u*UhULGsZ=Sx+1RnI9(ce?{L7L5$o<&%nPFJ7CzrJ+T~Uk zbsJcBasG#*|JvpJKTa?nN>K^uzZG^|k87S|TC~P>viM25d(95~(m(B=>-MTog1>rpcGk%vvKwxl^+XlaTP5#9c^Hn1)1y6sG}Lf};D zMDjeN<+XXd&p6o``Q^pxo3lqK))DqV?X{JrQ9Fc6i%^!od3q_Iwvuqdh>TT_Gr#3K zJV6VuV~od6RMq9V^mc$UT8BK#BFa^k6LAK6cxr3=P>(vlaE&TG{H(E45*j?_676?C zDn;nN7_t9ap(L=+2@F5(CA9J!IU{tJy7vSZ_$|vYF18`ri{pU7#@eyCPeH!d`2mZQ z7;2;apW>BcpE5oaUiTd}>`s>GtQQFMli7W6ZZ;5Pv-t( z2ZI{@6oK~@;JBIVKGC8#^f#OtNSD`{y1FMFyxIc||Nh{unqzAa0a>U||e>>`oiXPva?!p;aa!bH{3z(FNQi9>K z7!NVmkHGXC6goEI-NP^qW|~TrkcB{UC^o_8$~ygQVTWwh94Cd^*-K0c*9%H>B1C~IWtYnamMH$AWFpDS-B zWh}jW3!#3wM7j!Jq^Z1}edaeY$Hz}lpYV1W7Qa)c*l#4;Q38>fosFWH-Ru_^a^U=?PR~uU}@E~n{qdWK8(8bpd-hChbg}xC9Tems0?F8vAhCP z{yFrDgO!yDPvI_3#*Y!RjzL=*$|J^{llx9w=AzI%OL6E}u;7FMEsu&dP-GbxhdMYtHyNXhqS0IBW7?jg zp}bW9Fefyj<>JIW8#&VHl=CveGf-O;PAc@XA7hGYJHC>y2BY~tYD^2KJZVml#0TA5 zBIbO2tXE54asP~P)WY*=A~@Vs&%4*YO8aF3ydU-^HcJh8CdTXVGQP?{m3}8>EHc^QH#S6$#{09d=MiFY)VJ-0=xSf%QnBZ?o@f`~5gb%01z~~-_vEV< zbLAw@qfXS9etSF|%6QvI?-xe(3(ssKMJGOGMGga3&G`N2H!g@p^FAvkP(~c-WBq?F~?Op0Zswk`!9UXAGZPk1CK3xf3hVQk@>%% zJr;1fiD2Oo`nV7iZd(A)b5;N3HDInhDR2H8}>?dq&Z*@}`Q zQW8`I9su5-h~+-Q$2*K}-N-~*#r!G3q-!NUD|FCZ!Ta;|2#);TLw&xfx9V|61GPU% zQWL+;8LNdgurrk@vq^lK69tN5;q7fli-x|CqB3i7i?~dFJ}Nl4HDJ@$3_8`05nytB z+ZUu2%=lle6aQ~nn`J8fiDh7(k25EI-fVON+}WdvPHdUqkLU`l<|!2?zHBw?OxVCF znnu|mEVey?++HW7uQq>dcYA99%iA2oTDk_khOOvLoB0n>qyTCu}WilDMK&J&iRyAcpt*Wzv*CY5mT%ztJO-8bE9%;etG<~yyws5UYMxmpWQ%4H&^-4*-;C- z+6X7wLw}5*sDS~qHh-dH5WtS{553H%9D5~@KonJoux*%QlzcMUus=_iDn}dq1hRi8 z21Q5n$r#7yOMEfNHdZJxg}d$umN(uG)mRr$?7~67JvLZF_V!5JbGIp5;6aA1$}RT~ zAi_5#nhhAh2l-WR6^~zZ;rI^Qf4ZeQ@{*K%o#9;XZzCp+Q~*8nifFhdT}^v)o{DG1 zC+}a%iW&|w^7-)VpKnBkg<9|(Rl2C0hF!>glHcR{I9F>YApRL;q!tWfgxx*2Dv){W z{;Wok+XOMVFa1$`W=JFjUj{h6vb`_CkkIE*V6#dCKBNyJrThGB#;3(XFPtOw#JbXx zw39IBTWyNB6F{VAAOzutPpVUuHI}nGA82rs<9s6Y11)S0Js}7}%)b{(3b9m3->j#5 zHi-}M+xz_^#LE+R4tB(d2$@#fLJ<;eZ<#y+1?Uh=qe-h@)Ia-N{d44ib(Vjq6~~B zndqAx-gp)Wb3lK%F0mGm9rvf^i`TA3+gVX>imU=2dAZngiNPh$;i57`v^->d39Q@t zz%{NfUeu*d_yom9j^0mavM}uaj)!okXX zVp#0-m!b=YK@&&2Roa-8qWG}25yH0Csf$8ggzggLQk2dCs1svcxXHN^80?pN!=Thg zw8}?=RHJiTa~xJL*8%bXl2wr>DzDqZ6X*}aFK2azA$>E`F{ixsGM{7$?lu+fa;|pQ zsAVal^!D9^F{ssTJQ5=IUnhhzO$5OYqp=~&_?S`x>4ioyqhCXU+*9WIJd>H?QK){t zxaZNR&g>ws#WCTPF3s_#SK3cl2sY0i^!Urr^#%z605yD_`McTmaVJJ=35pD+&a44~?M50G#i+>}lD4h?OT_-~6Bv7If5Gb4)dN0>!IKrH(oVx+ zJ*;uJ(FsLkKdKVBYud0^jbGK)(P|e?&x1yqqqwl|?WTmKxA(emoEA;gU89&k3_1lv)ijSEN8!Ivh3|fbjk7casAT`?0qg{vu;`Ts+r0Q@vXBrk z+PttPUvxv_{AU6ws~#})mdNJ^01ys;(@HfBDxY4@EC6Ww3qR~>c@eAUiA~gicaOiC zwDFsuUTdBIfR9c9t&=?6Zhxp!jOaQjZH??@)Y4rRMQPB<8ltz>C&@RCz5?wyy}-?ju=Y)kC7KoNF}N_x{hH zs0L-bf6l3zeLidN4-1G;zjHB;rCQ%?H+mfe$nAgDlYQ6s6O>EoHMvK%{Xr8`x(1t_ z(JiGIb9Q(doXU!xn6c?7vy@6w2$d(%kU2K z%hR$mMhuU!DJzW#1SfZ#V`h02;E?UnItOr638XJm5aql z*Za%&XbuFXu(7>=_C7QevniLkV&BXSyy;duKG|@0qu=Hc>496UPVXE3%IhatkvE}}UHD~Xq;yb;EddgBM zS9Kq5tfHgogUpi$^r&PJOxF(<$wlm(qQx$rA0kiMmrF8)&M|7)?Gpq6LB^3Z4W*pL zVGHT3yCJ81utS1(PnD-qQlktcduk#C(M9&$IC^p?&3J=jm^M)jXhuS$%A&JmQdv~? zyV%)rt+P;QbBM+3_5ww0*`Yv;?%3777*YF$xaY?DNUq_y#5E|g(gbG(kE2-Gv_Gz7 zd_D}Rh=1~+xeaXltnZ-{I49e~#iO76#bhQ~@=On7m-yzR%u8zj-=cL`GbyVRMCKyW z6qZXF zyJ49pdU3k72`jRlV*o%jWTmNhneaf5!={U?U9@WYt(oTn`0#DzVdN<%Xv6T-u-0TI zzQb!NJ~L9PV8b;(#cuw@w1#`G0M>Bljf`%&Oj#6wjKVdSgC)eG#xVVE!SZkhI{F{d zS#B_zH$c{7!f&;51wU~*p#T6eJs>n9+{-Pk7X4@Ogu&7WmDYMIdYu{t$+-i%XG#_s z1l4k;lvf!S=E@j^2=mP;C3(7wa*t*_xB?tXM2tN#Yx#WdqRt}){-h!v>lLov_K8>^ zAFtEnu8!c}j#Q=!?YbW!FgwKU_Z`y9(aHIAf%DK^GfM&#iS~YkU)=GF$IN?NDI3DL zBSNVd9z{#v?iQx9X!3x1)%r#<1*UGRT%+k$cqfn!bJpP;-{eCulEECM4w5U!VkiEr zRSL)Dy@2JC^d4Uk@NhX|)#Y?k%%f-NVl->#4qzTq7iIVevks6~jgP#D7FA#|`w=Ec z6w~^+^R8WU*SUbE_gp~5GW?VgL0{+4Yc4=-l-WM$x-d&_V&Ap-ct;ts2j}OcNB>H1 z(hN1=&IrG}d}bbqp`un>;qT0T+x3|O_T*De*R%^92kQ^oEm`4mHk5nHdAL1w(EhRDaBtJOgUV7YZMH|ZL!h?F10SEhJvMNg^ru! zjfU@>b(Yka?JkxuHKuu0fwOk}jyL8CC2FQSXVk*7oi10s1AXQLB$gS?yQX<)-$MW>9D~@_FHZVW9rU zm-BxgQ1|1yX=8-#$;D4fiRA^Drn)bd8kS6$uOl{66LEP9BkeNM?KC!i+Hn-nju9tC z#1HGEM6*5q%<(&(uzST*v|6?dI4BEhbu*4E|)hMb9_35;Qst@hwqwa zcj8b=>^g%H-XyN?{v9Z0g_k4X2SN*SbSXQjaLp#W*RJ6sov=U=mbXo&EaqrCeo?#&)ezifGPFVHLJ9D5;D+ zOjkq?JG}qiap~$2S$(Ej?rxG=&-U?pZ6Yiyu>z2ZTTy)SkTX0vQmmxl zIhU5Oz0F3J$lE2C1wCkPsLCi54o31z+G)RXiWX_z;^Wv0{lNxo zeX?uf%e!5Y*dkhOEhV*MZ>g|4B+jB*a|16W>10tsiXoO&_^Qs&IN~Otbr|*+mRmI;pUv zHs#l3%$&@ws^KqqRMf#&-GR*9G-A~@F8rX{(W(hYN^aV8k8J9c^8l29Z|@cKNCIGT zYAyqdBy{q~XHB@6wQ`_e`C=(35C02~*leiN2tPp%XQcvp}Pxc7nKN zFS|sjv!o$^$|&CBF}Xd%`a1E{pccDBn0Wr|bI>0c-!zD6BN%(Empox$6ZYuk2s)hv zMg95*-Miz9C$ok&&pHijYA*NwOnkh3qrjZRtc^9IEC3X78(sOg2heL1iQ@$r`S;5M zr*XGVI;lsm3~PAb-!FDA;)A*poIOO=J@8JBMV;;@DG`HN*NS?Zv=E?_0H&r6AHOKQ zsf)IYuo~^^C@X^@NA$P<(m9Pug*D_yClufL&G(K$^8dD7s9a1h!DMXT0I9~sM}>do zuzVy^Pg3WP8DXrR$i5X=9ZwhpfC8S?WIlfH(ir6O9Q9&{RDg)pxVU8{g)aRB@A5%G zaS|s(QF4Wr`HM{x&Y{O=!?WfVo7sP;C3Kxu`?x#0B%l z`%2qD25uHM?rAn9F5k+CU^4}1`3+u-V1VYs!1lucqAMn{a8~-z0JUAKVg-6+YDZ}) zi~ZgqjO~7iV)51VL6o;Iq;#)QLZq{f~2BSKF$HH}AiBglRg73WpuFZ%f`k7KxJzgWd5=P#t@u`g4 zB-N^orsww9ae1-s6zp`1PK4o~e>Ntosp0_;uZlHcGv$oPcG`%IB5&75B>g85D_(SQ zDB|n&_6|_>+p$##y17qchMB;<#&@%2BCbDz7=_oXKy1pB{e;rktvYwmp$ihZG5@8^>-~_2#z?Vf&~)KKMszyO`*m37=Qon2(K&{h?uQXOMF` zFh8z=%Cg{5;BZ65y8m7d(4bS>z8ZcxXl3#og`o$s!V;!(U2?=iUIgaMSqs)*a^-7+Q68I}1(P#+E= zoK7r&W{Bct_v1~g&o?BNZ?ENu*$0dH!mc~1why%9KBqVAt)Le@&w*eSo3l1!tZf0{ z+5mXs`lgv=R<*diBdfPO!O($W(jQ*-PiY~qIXwdD&eRUz7{}c}5U9GdSdjwcT zkH)8}$AfOQ7&%*a9W@@vEB;B0V9>ipQGt_stT~u;r&=$|am2C9?x33@!kTTR1X83$ z$Cn{k)sVSezCuGDtT_BJc?{|IB4T!9Ho$ugoaGhm^*}7u>!lB4LNRULmc%Pv^!6b< z(08w*a>!ol`uc2_aWsW|eLSX^khPyDNi%D|Gkp4EoeuTo%wY(*jYy9)_i3&7*Fx4e z3Tw+BZwZ%B#S#p6m>LiT1;9p(Vv*%ZpHC6ol1_cLml2Q*1_s&`0K+ySTUuz`wCTb; z7jg-ru^RB`r2;5c&7WIdo)nd|pI$aq|k;-0bv?#(!P=w#^Ij@iXO;tkz3 zCid6WhBb=XStC<^v}l9jo(5-ITp4;w5ii-+CoUJP1VxZynl;A7#wSu#$eD|IP)7C7|P!TU}U+7wj1n|`}zt}}k z?U1FrPo42jH;@s{lr>kmN@In%rC>E^Ifu+Joen&>V$q<-b`;uFQT|DXXXzDEluuEv zTQS1YvrGa%$GtARQpCf2tSh)XUkafZJ?N_s7QXTYPt(TODJq_jF5_u;1S~|k! z861k4n8*KoYTt>^8J7^yQFoEw%=Z<>l%xQ&fCerpS%NLU1AcXOvudx>AZKTB?)R_2LVr+Fiv z#~7Fi2scqNeQyHuOVNlwFZi$~CHcj(qc69tPdDRq^V44rV)Lrp72F}WF#bnMDw;4+ zCFDlqyG%U>*>m=~gbmRE#O z=N9YyO1!G^-ihh?cd6T6ArO0zM*N8%(emamQE7Qt%H`fGfNoXMw{KNVm}MXT&wr49 z#Ar{UFSl>#7^7_hmF@^6I3Tmn|J}%p^cR#}w zoEkaK7mm@c{bog>yzp)Se(s>Sg^Xm5+}ri&zaT1hHZAo*)Ud^KU5UySXi^x*Bx+ER zEwGOE{m927O47jcnL;9G-Ho+JuU?B1z>}<-4#@`nq=2AFYvev*L&GAM<`&9f7uGze zsK9Ts*TKY8(ZNktCN#E4>@R3}vSXwsDP8CzrDTc2DSJ>}Nr`slh;*$sW-cJi z5;tz5Sw~sdB`LZdY!MAR^9si8OV31!Z#j_;amHKcDJldFs`Cm)1e`iOp;k%vB&;u! z&f^^t6$DFv4#1o9KQu+?76hJ)5t73i=y7pBYXubL&z9G9uBw6EJI)Rj6`+tKUrsD+ z0-DrI+k_GZ49(_TH9F-5SS4$toAlN6YmK1|YU#)D!XQ=?fld6t7yg~r?q(q`Hd`7V z!b*v+Sp68tlU@!sB)j!|LVMRh;i%q=h5|(siZ&iYb`b-1NE;D8-Ru4P{-^myU*Qlb zf%&Cy%7PK=BMCf2*L5lcS}c8-c>mL9B-WTht{{!nCbTNi{j-*9xw}^PL-@NZ(w`7peya-;CnnyYYWH}Q9|+MNGsHZIbM$P;E=YhN zbA6e{6rdf|I!mX!2I7uKHmjEmhrEESv_(IVF^WvO&;RctoB!KD{y*BgtliOhdIa>P zCP%R_mFytUfkDbtF#a`N)|E{v4bO}}88nYna5p{>&0yKgZ=Xu^#->B}0iHmE=u0lf zx-@-f2bxbQsvt#HDo+IkrGd|>PO^Hd$6W3o{D3?!6V%ElL<8TB3sQEd3J#VHxa>mN z{IwneW8;8Qnq@>=wlT>(}5NTIIil(yuNH2{E{dZ)^dM~XihZEIui#go%b@@$HES_2CxoC!%(%}RM1VC&L6 z`+x)RNKtV1iEW&>V^YM2owx9bOv8(jL(v49o)Wh-K0)p4yVF~gq!wkXsQ3G?nk-is z2b8rR9W}fp64NE#APE&dE7m6-@!PxIjBq*w@BY{@D@0oqujwKlml{I@E-tJeR%ZfV z4t&w~zztfy3uIiZ2Qkrw*IFc#OMz9ee&zNl5^!QbU|P>V+795hRb!Jgc({1s2Cl}i zGA!1+(LxCp?(4ysFBke&+xF+|GhHf|Ca-2w-)bq8=>7zu((2YCKDSEMy(3az&CLU8 zOodR`v@!Yb!PnL3R)1_h;dgK;gjQCjieVYDJ!5B0T!Uu#@Y8x7!)&28k0m(+Y&W>4 zW)0NP+Dxe&@h3-l4YPtr=0mi9;KeW@r6eL^Sj%s5m6;Bj9jq&G7GHkq#NDZ?8_A# z70{<#@W*-2>g7_@yOk^d2Q4C6LFs@6w_)K!y~vc(B-mHe9%dk*A_rI0T8H%Py!sIt z5hbN!m%WPW%U+N3K+@!cNyz0LBW?p-b)mL+6IvQaK6BnJf>=azFFfSSW5=djk83*g z9mcozN5YgPEqAMKVTczsm0q(Y4?cECRaKW31;^~q((7=5jul;so59e?+~sQ1LSeFc z9`GE+v~@1=!V{v5#lpw6vLD`+>6VDm^_?e`LMyePmyPdEu)t=fZ|WBQCKSeMEeOkV zOe-|>u=kTf*KO%Bn4=Q7dnNIC-qtS3T-H{BZJ|IXZj5L`3;?iOhcSx;O0-zRd&0|f z{o)vY@VC~)fFr`Z>RnIx9KXN%{5|jZ2c?&pBSIt7kZpXaAFu;;lx9ApVO5G(zI@#& z&hp^2z9=vCb!+h>WDwnMzh(PX!{y0=#(XAI!+^7+NmC$y`otxh%}ZkLHBeCOli9`9 zXQw7C6=Ux?5BUcjoL~_pW0Emr4}p*TmOAq&+}#Ql#&=Pj?M815)rm~@-xU2yl7z}g zfuG&J$MSQ{uDmVV-H=>r!pIYt*8zsSjNAGJ`rPtFiY7PFSb>?S96E;Jv3vQ#Qbir{ z?|f^LRQ5GEEP46kRr{sQzm)|lW~u0eZb>rC-_t_pM(>5du`K2@B00=?JTQG_OoaoQ(zDC!E zmnR~#U+r#SK2;1_tRq52^nn4aP^Kp?R(yj`R+8!>6=U3>rn{hzfBJ;}`Da~SRY6wY z(muNrx4P=RlX0{fINl)XuA%?|n`jf|s@isi8-x~a&=JtaE zdUZ+IACA?0-e=#%^vIr;PY)dZ`kfUnO4NI|B`PW{ERrM5{4HT7`10{}jPD`*Tp-}# zuE%AA9dM zERX;S3V3M)`2q&Jui5p4tPLN16ic|my^{NPhwGTMHtCQOb57QHweVCsVv!F~Q#0TC zXZAj7ri=KwuMSdF?OHqIYyQ3?VyG--gX-Az>x~a*g6Xib=V@EKcuVZ4B>^Z#uwsEW z69b=LyIdh9taDSwJE6=$1#@QrXy4;D_t8@7-R~x0H7hy$5s)64+7eexjg>VF>(3*m zuNNv-UL|Ysre#V)P|1~r(hJ5Z_c7qhk{&#Ekss{_U&&g)%#K|5@ch19wqVTpT9Z)^ z&H%}aY$`>|=tYntb&hv30{h|Qej}Nrno*Wo()&Cw5Tf3-9w)`8M@QT`w)05{_-u>1 zmtPG*fK1(lA|nr2aW-@rKaGsjM;QsC&G=gC`X#npJ z+z>flR@%wRrRFd`cW>NH;qw7-=FCf3c${7c1O=jb-XFr65br8Kyur%2&h&}3fy<*? z^-TyNYr<`R!gvAN+p=1x?w6=G$)?y3evY)rO`9x#734Y3LuB#0qycVSE^Dim+}Gic z?6{i&`%{xqSInIpmdG#B`>zz+=wY!NLM~eC3?U&eptn*zT`(LaIpuijVEzpU0!s9xmGUPXdO<{4>^##H!~#8gIBo4famy=qjH?#sR zNINS0^^Gczk_uI5&S})g%s(RrLptOG{seSEF62;F?Ne*Y5>;CsjCz!}zGtp|>;Y8? zA8QjA6?t9wwzh7>G8wQg%ckRoKeQUe=tn1v!O(O)sg0aN4Ak*!{267=Go~mcXr{TQ zzVg_koS94@cH(&$vK&jVVa_uoihXXSaH$gZJMtIf_MU5O@T)cT<#Un;OYVFLsx0H@ z+$@A|rGoUOW^>kBGs{2MNJYa>Q6b{e$?eiCng@4l*WO0 z#R~MR46arn@eA4#BzIXcXnP62Fx2Dg?tnl|8AhvV9DhQ8nh`rxX3O#!1y43oXBmjb ztjOhISLC@gQ2ceEN>ev)Bobqq;Ez0M+&>C>eFg4^+v-t^c(TQ)ybhs__M~c1j+J_G zvRxGv4hZOp3*`zK#Z;4&!&0UVbG3H`uN3`n#s5r5WU<_9#rz=&{MM)%R2u{GBq5?C zV2>tf-maMwmfb5G?`?5DX*xISXoV6fkzX&RU*adruQ!JD}fiAVN!a{S*;*dL9Oe&mdIL^5te zED(V#QyYa{96N`cro40Ug$FWs%4d^vS7f#8xi9H|{x;*ikJiV3ojJ1X ze@V0$l_s^1=}C^J>JAA0XH_5TY$$}Zt`w;3C+IigH%ZLnuI#$tKr|!4lky#Lta)2P zy?W+rQ?cD-*O_4|=bXcX^Rd6=;^#&u{?}4^M*6SD2+bJ=)obX7cI@ByfYcp8p}e@o zB%e6r^vC92#&t^-`v$9DpUR~D{hl61YQMYuN+zZrDTe)QMpXf~p{q-%?fI;I5Ib2CdD3_zORnV1hZ!2y_{R0jB_xF{ySncajaJ425(ZIy zi)0aX0#@qN{Q}mh@bEi3oe)g7$l-%4cA7zYV#Y&Z)6x~Q;v4$TU}4QR;_6%-tlgv1 z$RNfPph~ID2BRrWnH1IhBVAR5zkPo>tBq6b(7R*JYf(enh?VXp5i6Jja!C)*SVwP*+j<#MLh=QH{bH)@s`K?Ye;OIluw(SIry z-NY<rv*Y=*ED9oBX}HnZ&d}9t`zSiW&fDpqNfM5g&1Z7)FF|MgFT1_P+^3TP%7meQ1t` zsF0?)D zXr<_qF1hT5_8N0innz3Xb>k;<+JrGTIJq6uu8*g*K}gJ_Py-&%((gY z5w3in`>nXKys?Pv1A!X{oeibM^SQW3UT1OpVW$j+NTkU#VoxeC|Z`l!4S z_$NQ*4wUmw-s6QdkEzGthmOZe=0qBquo#N5*`SwDa!bFY1{vzt>PSB;(ck%F&+Wz^ zVz0D1V%d{;REC`d@M+r}2~sr(Xo?cBq=;_#8wg}smVOvx3ZeZLlTs+D1$!slqr_#X zQw%LP;D0%TBWh)+-o%qhoJJv}1-lfd+_pa;X(ohjzZB@jr7PbQ5T;hn>hafDlQyec z2|n4n8j1&^YZSjmzK}99lnOFjY2zq>+cQG)(>M%*zMC}-3WgK>&YTyafZIn->*KF_ z;~bv6mTAe8hXeAtk>i#84 z|NVHE|KCc@|M=A~5$m;+$jZm;tZ3|&rZPK?Fks}{3p}_pa1d&V&xJ6asOA%g@ z1pR)AA8JD_WNJSR6}imYem;vkvZ$sj#H&Lbndb=jahb>7kd_427_wWNMs$DHcvciN z$@(p^_7@{2xb7wR!O>S!@tls$v- zce!{Z(Y5VChcv6&>aI-SLz(FeOpEn{d}YGbwm*yBp%w*6-%a%%GKwWqoVTw)OwtsycHlpt4L}+ePuI@ zo$J6~g7@>ELx^?NGMZe~I}BPn4v*D1t=e{0&4*L4jA(wgvs7SydinhgJ=4;s{pC$A z+6ryRTwpwZ6sG05RqjGq>5kehm~Mn?k2z7wa2s_q_z~mWzM@wq?!n#g~x>UruyvV z3X=Crvr%Hv!KRpc8=Sce`eb`>kYd}kAviF=@O3VIu`R@4Dg*H=Hh6znxZ0?6G$yb? zOVf2$TKU+HQgtV`QZ)Vd@0fvdqqFnZ^Ai&fKrdG*6E{iRLUm3?g8tQe*Jzj|)mean zQ}eUIu*sucP%YTs!8Wh06B}_c(maJRbWHgx`1#F- z5&3R)R&-qoImx8Tzz9ar&SHB)J*~Q>H}q?vIFF>=oASoeO4ktUp-H;y8FB9<1P;j2 z!5(t~3%OOZBx^}n-<7<+DxMVQ{NUrs5e`mfy`Yb1EjZm+*yYVIFzywbd+*q(2Fw#! z0}>KFtEfXYh0B8~BfMG^gI}ie-*TDI4OI@SJva$p%SKUTTv+~t`hKe%$FHQs)=ldF zo5oj(77zq3&v{)|PSBEp5^5*JCQo{{>o@HAWV0QG0!zO0?wO(-u9}z(vrNGNe4!&FYb$Em!5N#J z0#?)Bv_<(OmQVjLcTKLpYPr^}f-Z;l{k$GGQd`F7x_JtuxviG8CLxRKOI2R#c(pl3 zoI%N$XY))sE#!Q)U@2CA!!IUX?$t?h=f>CsSyx?rhRXB{WI@4E=k7_O7RvuBC}hpCjJXmuS;| zM^C&@Xt|ryT>PC%L7e!+VJnZEcprS3Mcd>X%BDn*^9gT>9)Iw?c5`H(L#V(|rGD9A z8@pJxR6UT z6pAYFS|aBweZ|?FCuUfXjK#e{W6r6i9^pqBk^?JaXtb0xnmF!~Y@x8o-^_Z7yZs_w z6G69`tOYWS!aUk@qYZo3KX19WUo^9Xd?zD1DTJiYLHg<~`#{Oe$@-~!55bwlj&>Vf z$jTPpf^+-Gli8iEiQ-15Uth!s$~tdEJ=eh1=55Dc(+l^t{Ta!MZ(|&&^@}FX%Q=O_ zv0teV1pQg+v=j_uNJPRR>Uw%pv0Af*H=dZ73#JgjRVp_{!4SPsh)}qwql+!l=TV zyTkkMUz?k^{d}^=F;G`A&Ed_SyKXA_yQBYbm`!(_*vg55Kj^(s%vv6mI86O}spD|^ zo7dOZ*S2#luId)0R^l6J_1ccO&8C{GsLOe3jzQw25j&Qg5pEx$R2F7jc~r2KxluW` zqE1NLUl#aZ!122b3$m*=>2F=$mMz^5aS+JR+|u3q0lTKjsVSyVOd91`fe~i^_7_?F z%CI_7<0TWhRZzoU-hcfF<`b)trGIIOF1tyyQ(EW!?O_HAg{mA23=CWsD7cF2yxn)t z*x0bUx?Q@z?GqI$m7VwB%=7FcHB#ZuNWqZB{cm@zcraLa47l|#b{|744w9B>zQvsC zvZTKo=n2POKj=72U%JX$N}8C^!Mtvm-_Q=;(E|YfqM`pHr%Rig4JNn0-t5%fecAin zWWOU?9`fu8^F$bOMBLN8#kt%ArgBR3IRslx<`h-`eP^pznCxiQbzG^Q2I1rX0Q9G8EnZdXtBs0n(p=4i-p-KwN2c{{{4I=_ z_ZpKr770BO(c3@9bRnc;;K4H26Ogr=ld%j10OQ4iuT_c50p1uvcn%t!25PjUyjqdP-QQH5-O=}}fIJzB%h3LoZUC`Gv-P{B#ugRX|G?jq5OCMM>Kf4d3Lix<*jL6`NIYh!Nh_={1O+9KwAgV-{cvfEo* zi5L!cGv;_nW$ z94sJ~TQD&BwuAQFH4#k9!&;Voei8;W9h#1*Fwp+{pUH_?T~B8GhnCG+5Txsd!7?jK zDX*9EVOm7~g1*-p;B+Y+2kq)EbLrIXojPF*nO;jn+#MQs*LC-%**Q6-b#>a90l(Hu ze^(FIz;%O2oo5DNIxRA=>4V<<i@$ z3T?;)iM7N3kFm3kimGcH{w*qqG$A>dyofoj2E+|3 zi`VdMKqX+ZcUph3?0C6cU)l*sEWG}e|LetO~Q=O971)@;|*iZW6c_Y%I?B>;#EleCPC~d%=CL*%Qok z+1+%}Jv<9|QJP;qyzl?#Ci5LKM(KOfNGc{7cjBYEv-QFj`O{c=!WKbd$J({r-Q$3( z<2e8!+#vD8L54T6+l)5&+Ah(2O^MGtwU28vH#KFs7ri@fok4PK4haEKA|oQy{VoBx zelUoVNzw`Mdi4n+*U=YpTo(vN0ZMlv>yQI&#eS>B`UzL0)i0+K+E927n?zh0r=#A z?E{PS2m}-(ihu+{zu;vvAjOf}{dv<#Q)1dx=VYX+(M>M#`KiFqS9-7i{@_VrS`|wG z<=v-jy2mFVjLi4X&AIEJ0k4XTj0_5efG&XH%Vf~^{w4w7hS+I1p4kOJ{iJ{*BTO&@ zBeC}~&IE5cC2B>avSEqOkD6V^mB3WJmkaH!U&FJP=K)tcX5y(NezRog_V#9dUTS~f!+$;lXJA6sTpzSgBt8;Q zqu2&yEP&~tvyH|Cd{|XkDGvA?%7HB`02e=h-e^DZgYc+Ow{UP~h93mdlE?i3;Qk_e zfc3^_eP586;|`vb)1PmH$;Ksx;o*yK`4^PJqrTt_l*4Gr>udK)GhCo{6?7dM%I;Wyx%dvh zJY7+&zkV}d=(c??DrkBQKbNWs)6He|~D=u=L0ATquEOsMB(bs7FYuf|ihsS_$ zg0sTV;TvP1nPde{{aQFd9sb1LKzDI=nQg)L9`NcAi2q3ob642?M}Nv8Ae7DFb4@a^ z?sz51meH-r6JL`DB~6#!r+`9%z-#vx!ID_1SFc)WeinDv8wjBF?Cu`SM)~8sLji<7 z;Ku+4h=m0N7%+Sw(8_0z^pi#b91eFKfKCF&zgvPpdtrL@3h4otUJLsq^x~^`Z#Uh# z_B)llu3KDSzN$9%JNyltFi``VsN}Qy@^T#r1ekhrFWWa9(F<@vyKuzyQvt?&tn~O+ z1gIn$SI_$XAIrqBfKxfjZ9^A`dCn)hX4$;K+`-TuU@@BfPiFQJLQT0(I$ZlIWLLXnOC8Z{dw>H>%YA!_=UThu3rxas*D^8l$x2Z%vCeB1*nix%t5b|6 zkRCb%#vH()G=aZld6vZr+G`W=*Dk5wQ}wzYWuwL}k;d@0`(L`xfhfUqofIxbU9Lu1 z>@WB30ntsH$?sr*$6y$UFnq^TE>W8^4Mx|0EVWa=zetsF63A=P=v$!q>&Lo9{91K& zF~E$A_MNB7_yibYI*exa5_o3G_kmgP`QO%+!%-6fKuYwuv~JqHxV$KNI3)3N7wZO)@k7kT&YtI^R}@2&S*vt!1n?MUE9F`AJk5C>f739a+laB zErC-{HgA>flg1)q*JeP@BV4S?0G{@Ny47+ zyqd{b%qC#Tna5VA1zesw1F>6GMFssr&#qH@E$+W~<13bS_3L-lnf3^e?Ql z*Ydv%P_Kv_>MRgus$R(8NKLk(N=OZK@O^P(q}x+N36jRX?P6ndXa4H2>1_*a@X+S% zn_$UZ6kjO9^H92#b=nS#O&PKE%s7z?zOlXY3VRYuZ`Oe45}T~gnlN{6yn?u2x~2tv zw*t-F-z}gN_akb@z0JCFF=_wE@!X#Uvo+nsy`^PQOX9yAZW3ehkOKr-fO(DOa)fTR zL?&;+@^yof>dbhU$4Ll=g){@^nSpGK)k~QAF4-jfF(V2Tf(7G&wd1HbRp8OO` z>bsIwmh)qyNCw%v@c0QWHHkiEHjeVEk;1X|31=w;?l1JaxdFUZ@DYJnxqukJhM3w; z9WtPx;7L^7Q*jJf$*OA7yZCiQ%_RhvZ+RuBX4m!=|6*P(+zuJSYe2tjT)k<;$?f^9RK zbOHIq&9PI4)(UUJ`I#9g!ia}UiFP2Q0S;DKVCut7rfz=Ll$Z=qw7awi5-96RldHI9STlw3(8zseQC*#!(EKCbb z2w(ZWq;plGTezneaIUv+d%a~Md8lIm7_cCqGbOg<*2KVjvcsVW$(Iwx0uR>i%|yK1 zOx#y$K^3$pzhq7Rxv^I3SqvtVQ7jIQ?D8CN>ZKu>%nVTskrs+#2Zis6tQQD>PyQil zDMA&Hx}cP8mFm#)Y)&p&m2RH4LLhZpCr$2{&7WU%nK0eefr)t6Wk&u_6@I{WsO%l9 zjJ=|F1l&^rasm&Gwb3YRT>XH+1D!VBLCi^B*R$LgF)0j*zGn(7N(--s!RHINpDj6g=78R+6IjB4w3E7*RS@ z&bwT(Al|alCh(wBy6MMIIKI|XP>lM%1(J2t1vQxw`!xLAWL1f+HX`vX3k!nYga!lu zMu1_fR5cK$Q&KsZznQd#D@Q^_h3OcK%n#b0iKhlt7Z5V9DxQ5%gS2K7GCjprR4`qRcZeQBryV%8RTg`{2<`T_LnQQ=S&C%qa}g z>|2tdb*}TTsS>akkyt~UY|@%5w+gC2sg1vWtW9!0nxC9u`Qw-*=)T6+e`5KrDIU>} z*!2J-)egT`Lr=u1`;8<6CS{nH&y+sG{MjPVyL>NNFUG^07~#u;3$(MOm<7JLsxqrn zdm-A=+vcyhwnLOC*`u~o^@Ibce|$S3QZ80#TJNtyGvOlW`%9Iz^}tLmuN9l43iY5e>wePN1z$xV?+;DNe>b(HfP zk}HQeQV>^bgMB?T2q$sBU}&eC(iX)wNQ#;x@u}c5Wi528?9sPniGpyT@>Ivg!RBB{ z`6BCAhK_t{i0i|&g`{Ox=vgVrevE6wNv~3C+CFsej%bDn$m&#y4MD4@B@vp$5qbjQ zIMM6*RPsFVFCg=#M!$FTTPP$aV~{7ta_AWoV+)}^e64M)aezaQm~kiMe+>fbCs3C+_!Qx zC`TlV{pXe6EUsx$uYL2Ic-L^FelY%iO;(ilogm%CCYtd1vHZYT0FkXb{cQxrH>{fL zK9s#I*Y(I{;G5X*hikJpjiXs@ZwKEhuA~O4Ei}%SUgF^->$_fl)~)B>UDpJ?pat%^ zAYui|{e`naQ*Cwc#SfwNZcy%Ms4VT2u70-dS+V-Eta!}MsIwegk^6cd-{{hC`)`bR$- zEe;$hcu1q3^r%IlIVba(QANwY8nK*(C~5n~NQh32)1Xnls-EMuarM3_|yV?I_C>!O7 z;YXwzmd&iS9#k7I5R4oA<5N7L(a&9;Nnd$qHboG_MlSq!?2Z^{HWkZw14b}Pkao3v z4E+Oz2KcOCNpf1Rd2XkJ9X#^X^+CllG?0Ht{2;SD@572+%Xr5}Zl7)j&cyok*ByGt2}{zFdlYK`Jx!^4X^ww8~6XiAo%nRDu0xrv0%r6a)f z_%3$&e0y|WiyX=0%XsqNaDcj28O^SnY{TV;^E%n=IRq*Y8MDEBpuyPyyakjQ0^P64 z=1;L>S$TWZ#L=XohnuY`K@>eDXG1<2fVUC%Ham@4)V+vF;{0;mfu5x#Cd78-L=K_i zJgmii)zg@#{fHM7!`zPYO={nBCGxfscg?mswP3bQ!$_XnXGe&hKGr1t#BAxCb>)3T zxinB#T+nE>Y~AdT-EMRA7p+Td^i7!i734tlXFJ*UW;t+54(mfTL3&Zzhbh=oM zrtRG1Bsu!lW7nSMl1)d?`-DF;JL;;zVu;GGu7D9oF>YzZQj*Yn#)p|tld8l+mqz3D zO$M1W&8t$Nah8c`c5wqJhRNN56_3YhYmWt|Af-G;@asVC@ug;*|;c$yjER+7-a>Uyy& zgpeqKlmmSu74T8}MMBk+Rq1N2_&wivReg*torW3dRz^fB{=qG}J}EjFoVZj2>&e{e zHZfD0>h1*1XI1tSp=j|=CL-LW=oPln2sG&Zb4i)}3mvT7_PL$_M}UCys{^#Eta!Ke}`6IIj ze2!5!mFcjtV>E`Tb*P@^#UyQ$tU$j6v25lZF?@`ya_Z^nrh)v5JnepeeUhKOrx1D( z+b&vz(fzo3TfawP`QoN&59z)XUv`#&J$Dt`+1%PPfqa0wEz&MZ{#HiA_U}oSw_Sg- z?twt1GBoIP5o!3Z;DGZrcLV{xlYh~W0yT;~1&}`k#t2V}hFDF&)3)`4i2iyNCW$-& zO6RL>_c^mW+*La~Ry!yz(%Q=xaIR3%74elGtYdyD^SsRERvkIB9DuF+Q8hPD`#x$P zfa@o9yn=i!gh{pD#7UaGvSPm~<})S!$F=rI#xR(c&7!1N`tzP=n-GXGjabm8JHjAe zXaAXwZn2r0OkJGGcCdt8TXQTPsy zK{wjU&-pl!@6T_=nIZ1)Y(|GhZ>LU{v9Jc|ZK`mM zofg8IG~o#e5v`O|oyoO&*^Qp;k1<-N$#VG>D`|xAh!VRJ83OFxFcqzNAuXnM3jj~_ zn&*I8Y(S8C!gGr<&f>c!tlRmUVywei;D-m5Mx*WLvkWahUe)g=W+_x-;%SA#J`qu^ zDAeZ?q0jQvR9I)~&dFQdetkp|Sg{7N)`xTpuMVv0OAI8gi@NhtmwSm4XDAF`f+gsf z{?Z)dDsLZvHjK-LMUP8cOL1cS_V+~l=2#ceRH++a4+~+Y~U@qJGq!lcv*@y;8`l}?j zbn>Le3Wg*#{cs&jLz7}pU6$YH37KWw!`5paWY1>tgp6|d{E`Cv1{kL(@X24TlNkYc z^L>D(<*LgK=sNq|1& zwsAWKmr_6yh2Cuh8a$)zp5UzYXlx}2lu?nR8&>oZhaI$|vIjPnG5HI#Wz^>gMppe9 zw_VBBxOC+Ux~vs$hi&uzI1N>>)WDH?77qUn%r7s?32p= zDqC6VZf))KHP5KCsI77O3Cu9f_YP)D7T{_-3bfMqwZehy2M3U)ulBMhS^M0~uY8w+ zXcXepZLVskLf&bC}NazCJ2kFmzojN*-q;d9oYx! zAE_y#RSS5p&|^LnWyNb>U%3#TwIFsVIwgNfeU^+;hT!EH$Ro$tvq)Wjr;`123wvm4 zR#Q-YH(^dF)$gkFGjw7_z>22Bvf^ZxYP2CGFm|Eyg!WLI8E0N%+4qWUt9|N0+pToP z%G>CdXn^Z19WJLjE3(gX>UNY8_bA@eN|LKCiBB4GK)WC4I5Dx7BBAkl%mMf215-u1B)|JeFu5?GUkao( z&d6!?|MP}+UcxqM4u4S+>U+vI`36Ilo)o(cA&H^OVEXKj`D@e^<2r2>sUF);B7HLh zz3W~?ZoG4|&tjlEKkKQ$PNr&?*GGyD$`woW)ar{6DaRc-lz1o%P7GGKceM7WJ$apl z=oph+8u`M&=A@Oqz4N9$K50xi8PL+X@#(?&Hf*XxaChC3Ay$~mo zHxj|M`}#e@+SF)mE-B5^8xOyFMMO7c<=hsVUlLw7HBjTdChhAmGIlF60F;tMz7}Ia zA2L`;lKH?en%>)#=v*7QH)`zp%ZuCuj=fFp7_e=S9kFs`K6CSk)l0+~&Ks}7MnM&- zHS^v6egi3#VaKxH{s=W4@?39nD6+3k2CxR{%$3OKy!7tt-c^n9@0639nKCHZw6*z^3lPZB z|499CgM(~Wi4~T&-Rf!9<0;b^_u4WCmCa|R z=7Nb7tX(#yp1jK`;dlD#D71s431FlxAF(xab4gkzd43U7jQf(U_OJBWv+C_S4pxpR zJw>Og0YX6tYd(yb)Gtj!p|64yq&TOGIJcGbui+z8OzSk4SL-*Xj)TkHrznWZE-lvW zgVFJP(|hMq@<4D$}XQQvL3dv2p zu|ecfI+vd=pKOYNKw@1y%}kNWx74CLlpytVa+wOmG6v~j*=#OAWbzjO_zmVy?d}}^ zf#MIj_s3Z?8E9eMY-UBE_tf*s@4?M*gW)S=h^J#Pe*d{{F3MuaP=o-JS`u)-H3)8x z_KDgK@iZVf;wTN;3pvQ{Gla0y{t_==A@>$F%x_5ZJmEp8t-NStL)$A>NLT)HH>_%c zITLe_FQ3%V>LBav}VcF z_Ww)e_&x657IpzO%sqj!H%L48_0OelEP1os$l8g`je;OZm-uKo_-YXye+1Vf%fA+u zKKH+!0j*F-9FgGk^Koe(zKpt8Hp4|!-5Y$%_OFkh>Ur8@W^*f}N7czzN9YWVTE0F> z4@Q7*J^Ab$;kioYWL<>YR62oa%A`whxK{9R1v6$bHA=zO3G^19FC>-i%Dw6yPJc?D zrate-AdvjvLZ5g?jc6$mQ8hpDd&?nTs`w>9#4XSoD=8p3uAY5v1e}0#wAL$oxDdUO z2O8#PV7Cu;(mZBr$W1)uNMDS{bLu z@JB1>aL`!QC-%qY{>h$sHJ7y#h?E63#p<^gDQ}0ZcI3a)&-W(UfArkJU?;*5Q(d(2IZkYlk>R&fr;{nK z)MT`1!=t3oCel>BmPfuRD`m0_M zluMv%ychGSDs-r(#`QI0EmykZkzd~%%3HJ{H<;MItR((yM{y_rgaZ>Z<5I(zIy8=v z;0&7-SD4KcvM^UJ0|*lHk#iS68mnmL_lR54SI)n?j4|Y8|D*kq|GQ(ON(s=?{E)QJ z5$6472KoNwUGE%dY3RXob(qDB;(2Niq)l-(L3O zv?Scg5n{=KU3>l2pPdH2#Q)j+1d2h%jyJq(=R!C8?8Lk&QdQpKRs;($Jul9x`B6jH zJEzebHx<3D14ibqyOzJ94Cip77bh%%Hr$=h^atxG8ElCdo2H$Jvm6$_uyaCycHQ zB^DtiIyfaeDa5APEZMp_J7n0NCR;b)WS}zS{PROcu~sa-a1=7 zr2VlJp82N&@fv=sPE2l5xMA_{Z-%+>hugbd`y94btH>!RhybYRh0GeSH}BLf=zaom z<+an+S-c{98?eAlTAYbny(nF%7;D6NA&6i}q6K`3BFN}WZ_Cd5m$bc#V5qWuH00T=s{?ml}*)0mbd{B$BEG`O1PdmHuQ4*M?IC?#+O$2pzNd{006`D4vzHo zSD`+3)K2Nz&+}=ZvD#CzdBa&U$^nVSOZ2txHtZ;T{xg6wz1EY^IUrR28;i;WZ!+h zH9EQ1LrnW0{%MCe$>`nI&%<9P6_|*_ZyD(ZV%}BGS$>f!#kUiYWfmKs=5tV{TcaMv zum|$?0Wg~W#3{_W@3#gkEN!fyc-(OyR<9CEr&CHsw~Z3Vi1UZ zOOtRNX@Va!(~>pfg$L*BBI~e{>9MgN?vsV7qjRoQ!I#6YoEX5&vx@T1q(D(>vwztx z*Wo{>X>6n!%^`i-z1?1>Q68WG`D*;6*Vjm9nZ2XJoFRLPLbh9bW%l>(BW!qbyNn_G+7*7P@ALQPD*qjBt~R zsE+<8f|jw5$S0g6Y+S)fGvA~h2@$w334FhE`03-44Xtac~DT1 zSJsfjw`u2Y>)lrnulOWyXbnwx6V92zhqp%;5iQ`1*|$1BU%M$OA%=F+Y}}00dopDS zOD}++$macgm_@rJ{apoG+k_5u41|jGd}!pNij6Do&%Y|{3mS_|-M?Hl1vaK{_<_bF z?O2cO_j*R07)s-u7$^an*UvPyAiRWUQPkg$f0D64)7ypYOz&jGD?$9l%ZTP-io?nc zYxP`i0wBGae@M{+wql9|(*`Xbc!>la7zQs79MD0ypVmMS`XbEXo*IVbbG(T1ukv#4 zw<_kT*9;2*N`-5Z>qTKt#d$~yK8u`C;91>G^z%ZmKEvT#eW+X22*k;zNhW4IcCK9I z`!&@(Ff z`N^~=ua)=Rbtd6P}PpTWvtbeTN~l8QiYUToY`{EQI_=Q;ZpBfca= zR3^VY(=f>m`@`-{*S@DuHmfqL<|99oh@#k(V02i$9iG#R>ddVC^MYSA`*eVT9+{1i zuuNu(^h6vUFiz!7qQbRhqB(UIb=oY>GLayEVv1-Ny=>0L9riPYJ*8nYn(q9_?p6bgM3r1zm6`l|igHaE!9%x; zs!uxw_i;OI=7)Po9=?;D#Pk~(UWc#9%gF$3yxD@E6l@58>RsP#W-Rg3ROrJ6zxx!O zpF+$}orit%bbuY(Ow8nj5vw~7CK$3*ZCWf|>iD|FJ7aJxJ*$Cge_(ih+3S9L*{tU) z+ea_0rnv%$mXw?rTzq%m^puUWi<1-Y?{fk$pDLOq=#3OKNhctt&< z-N<8K=TTBHzL$YJLkrdlM>xD@h`NLGW^k+EV_eh22P20a$GSRlCw<^Z78wT>9YelO-vgN&b23V*q{(#98l3Zuwn$bf6A1@f zA(h5&O(!yp*wshO;Ey)LYekU@bNaWd94Y%SY%!VMc}6beKCV2raaskcUY&z)XSlPA zZ=<&^Z;kkDBqz?VP@la#CWev5)Fy4^v4uJe7A{CK^+-ld;H6~zGi&YkK+>?5_g6Gb z>m60jw8a*OoyZ$L^FBLrwq9Sio&&Xmt=ZeyV3&b%_%9_r#Wax6%4hjT`guRJcKD

E@&?3&-cEH^oro#{Rf7#l>BOC$%aj1dvr$CjD2es|eTO#Wf z_q>S3->yfGeQo;EaC3Cloo_fg!)Ljs{gRJv*n;dZz|+$RD<3 zWoE0Vxb+RiAhNgR;~y6n1E+fs%l^Z3FI?iosNfX?b1y21H-By|G4n(_=GYzyRS`@o z&XcdN7IGW}k|dUCZL?#Pzy0nh98|6`tWC_UVoi8F`>UUO{pTYg`#>1KSI2r97Sj67 zw2pyy?!vSU>+i6>6?_uGXU8fB{^0FF5gnfjmp$*2ED_7#3>d!iy89-OdUe_~_bB$q z{koJAR5kg{gcYnx(69x2`|l?BZBHzH5d_CEO9QlI~V zw7N^ugp7|`&)>z!#NBLpI%5VbYp*EER9Xa)Wdtzy3&^ROT%8+0Q) zWA<%47RCG^$W6=@3tljJx-gy}?Q%P6E;^)A`a>h1!P~xHW*vuLjugE-Ht$x(M{_a1 zAA9y^1q7Ow1x_=1=OwqLSJh;_Eo54iQupd1C+D_5G^X2qY>kG8q6inur}ZgHT*Pz+ z{PNO*Ecf*a?Jwkf>Zn>|2t{+1Xb2-6GK+7E%@*nvi62Ep&$524IE!N9Bzu1U@T*jp zN}28bb!#PcE#zXeSYY5DWD7R1}cQ9>7|MD+wpWc-lAX>F^JpZK^~m zY)&rgql)Mz`@jEA(pwl~8umL+lgU>Fgtzs297O1u<$Fjjjm4Ya&}9+AO9YbI3i8dD zppr)dpg{n(PMzH3ClGaSrbUv z-4{6a2Gm<02~(ksN?Lit`!piEy&>VJkdRXuT%Wa1!-|O{_EY5?SS!=i=R4kds@QN{ z2-_H7HvSrsF6R&Bp&4+|?#T|x6-VN7p%R!v7@c=~N)?m<{^_%SI^iR$#_S;tUh348 zA<6rC#lfRLsOM%2Ea4Yw;wE=cj@c$+3}~04-%ghspsQrW(|Q1CL(X8=wfJ#PB@^^} zGP9B`U8-bqlY>>Et9yPJuHGvj3e(##SfNFC@XOOgC65tc7qsLEv3! zv#rebnqjL&>^BS+9EJXmLT6xg{YLPAs(k)u-NOIg@kuHZNK&0>f95t;c3+wOGfd=U z>RHuEl7%kPQ|oS_4U_aqj}~jmy@CFCJH>3R*htRLk=-a#Y|@**W_<8sOB{@mmIv;z z&%Q+6`7ieB1)I;U*wL)VRa%5*U|~_OMitbXTl0Z_3A6 z$mYR@VHJhB`1f$cm<5X#=fD^(7YqgpJ+3GuinRXx*{1zovS4>FH391kfu`-f!Ic}+ zdQC`tJ&I`Q}5}VU?D3EYW;9-Go0!2gv;_dkK%ndjf-}mQVzdCYhnlk4zwusM8 zKyp1O=-3uA-h9mv&pP#I!QIqfHh*3PMimi?%uR^&r-7aCVQOAvL9{?I@`D6$BfLp? zmQ)CuJDV<rB1wtRG9c*Ttq*~X~MIvzf1WdsvW4~0eCo;_MB$Jz!SW*%fBqxW1!V7`q9V178 z5>W`fC2;u)0kbo?4ga}MDsNO4Z3M9wKG|b6;|`-NzKzxJ{2J^ zt71g(-n*F2HW_inDYtgJ2w?@o&CK~Zp%)_Qp?JxY?6WqM*dOfkvHP5S(l5S-`>*&( z0_kk4krOsNUPJONct7guFL->!n3!Sy{31e%AkNm41n9dS(l2G;Sc}MWg5%|7q|*;t zovY;tt`#$)v3v>bu#tj@*0ySH?NQDl;zpd1sL#%HluIYp%y_uXB$BAIdSnwr4FZW$ zA@mlM0&}CZOAF|X|Fts|_wU`g247Uz()ON}HJC%6xkcP^iu)2(nX&QdNg!Ekj>RiL z_ffur&44j73_mtxwf%y&%bzt$5Q$wobTy6nT*>fodW4wq<4Gu6l56hECtJqCX14UQ zweD`J4;JXtBgb*n4B-&=Ly?#ZjYNv2_ma~uRXMOQs$&m(cCrkqIKhb6u~3Bm0d#se z?Y$??yFLmTe*8WbD}@}VKB+BBY|GS5XTjyGbe1TnLhpO#iq}J1Tr}9V^*-AvHPlhH z?5oBqSJV;UXh0wulZZ3N(RLUysp(#MbjBsI`S$s1#$5a+$Ytyc!t>A-EtAxrCKpFs zAYt7uHQuCZ>sJJ_9FHWjFHd&;#sIu8z6Wz~b%HS|JoF6yFfx=>WU}wW$(JZ5QVNPv z<_2QMxG6!+(3CI^uyRfytb4$$UO-VXUxP-7io2HIw$Nn1i-@J9{n>1!#`7+I+jJ!e zlJOS`JRJ!4p**kJn!}yOhYLxKb?F|Uf#$s$JF-@l^XCMg`_!k-z3s7wKoua;AsnWa zX8jaK4$)nD+N8+aD!g*G+P_$Oan1xk6w{-O<)8 zn&XnzlLZW|x(w(y=d|9L5Xk(iJ(A*fp`I)ZdT%lB+n1)S6bam`96Z|@#cv+psbqyT z8den3w#Nd`(eO1OREn}rMHWVKT)!3JfAFS!7Vxbds_T_~D z1G|4Xawa!^lH7Ys}JLrAo(lkHk??oxc7B10ofUC)v63$JC!h z_5LaL?Zk}b@@sH+=4%6h97xM6Nd{2Y1iDkyJTx9mA%uCuUEE9?@I#&#CNrxrnpr=x z-54|&uB&@rAX5}8{YFvuhuG$5O zZo5t7YSx}5pO;x%2qEeSLp9bPbuZ*wGSc@draeuOqsed%T};`XDR~{jL=r9<5qj@# zr_K-YN<_h{DhJzgal7#vq8Bs78KaHjqq|4ztCNCfpe0GufLE1tqZiv6#Ufq$6%TL( zX(}uIti$1?B-!obnQ8dlwa|@z6siT`OBGke72RuA zfB2i+np>+q)Oshdddj*I`-1++=-C%*xXp1ndEI%HVw!EUv?cGshPe4=ATI~QwVV)_&V{?me@ndOSp ztOLl-JzUAeeUH%iSf)5W5xp1_#Q=!^DL$g`RZoqxGwpt=r-M{c)Eg1<3V6B}p(UGUo4|=EC3FJ97geQ85?FfbG3tK@*^+GJ(X= zENq#&E6fb;Lez7llj|^sHj^4U4@7#4{;PvX$w1*iN%22t+y4d0zAga5lTU&+$%%(h zPbZ^g)H|3+!cJXgWShCjKk@#~7K=X*d3L`1M;qOhU#Q-y{UZUnP z^h*@SWQ6zTOUlwj#8dElZ^gtE8&L2uU#t>et)+{HkQfpu&2uy6jn#2%HAfl1qDspx zj|vSVT^voD=8Ty_j(373H5)&94%#oY;jO=1_(6U8-ft|p;lW6%%kr*Q7{WEy5w>q- zoY*LrO_JDs|Fr6AUuS_fkKWPLm|Z**&9~hSCe4YB8v>a}9=AI8FjIb?eqUnrOGV)E zEVpgKq{y=2MFA~zaWalO}}6w zuQLwi?lA&$H=uH(l|+au%#ESj6(6u#({?E`VtY<`)NSQ9>d z=;hy=GV1i>{?)RFnP$9y7e-VtaKSUJF~E`H!1LZC&vX#T8u@3e$${bc+3OQk1loPx z*UO2<`!nf5vQ(1lqGAqO9hf&wD#AuH1tF&j;C+MUoD1bNbfFw;R{?C9mZ|uxY?c{T{i^aDtBug{JfbD`%J27JyMJ$jciwVxe zMV+Ls4eYXAHRv0A&UwXXYMl^_933@V!v~W?Zp;8lD1;$ZCeO?a=bUyB7I#bu-$ z4=k-MI+ov?-%u|*k8L#aGP#7|tO)|~*2|(X+uGwtczyOv{4oRbI?!pgX*gWwFYhrF zSx@M`&CrrQb4uKLb6(TJ8OQA6-8T_NinF2W-yk3+HcAP`5y$iF7~)LdRr1~ z>p*0WJuS`Ei&RdSsc%j?x2D_cWeWM9)}v5OCT;#yo8GtP7atys48M6Bu9NEiV%axo ztG(tM*qMC3$Den9afS<}8HeV0I-f*ifdVQ-?<{GoGe4g8EB>(J(1x0^n-nBa76+jp ze{O%9{y5?k;%S_oTJv&8B+6_*@W&nBbLOT;eT%ds0eJh;x5ST{>_$^@8>iDrTx6)yd|AX;Jm|RWsf%F+*iYR= z_5sk@^!FDp$G=-qU6aH7$r17eI5Mzd;TY@dG&}FV^jm1Nr|6*(V1^I1RnCmCS^Yq0 z?z+UQ;P8~?pY7hHaZc0As!un@eDY`M83l1vm*gckX64`choazy9^*==sWYbG4aTX8 zQEpg-sQ(6l*DHPcr-In8RyWOry&0y>)@u@9S&3!Uw}j8DJgfZpRsXP-hT{E4p|0lS@_$(ziFyb(suV;<`k zt}-tB(ugQVWlR*JgOE&?hAUWzM!`&CJt!QF!o9Tn8tdMBL98iE0G|PwsK`LW6F9*F zhRr7C$mEZUi`6YpORg=19v?9G5^eB^*`s)zGlj!)5ep_*1Av?{0E6WRgI1hD#z&8IJw^&;vEw* zijQQC+c?=|Xe&P@JYE-zAcEO67QJw8_{7knVG&pKQiIC202!c`+fTa@{eJu9V4hBz zAaRJ*_Zl{zjNocr15$Vy@n?f+o_bx^loyfJ@;MJUt$B3tDpcKSXDVvn9LZ0&&SQCo zBvQYQ6L0@kf0V8gY}vx7N_4~1BEQPM9#Qeliv-U$fa&$gyGd|e5utcd9jd0zz5#iB z^yh}UZJfXtR?#QR>Ree7SNph~Cuw2X(c`Cc zemBqF`?sHWAIJM0@82+S-?P@W)_tw(I!_1O@~)&tGefMhDwRCRGRvva9clb(+1v85 zu>FfaPS?~2EQX-U{+AIHK-tGvK&C|TyY&YgfQm!m?*^xAt_6V- zKPe6q(szg;?O7X+`kG?QyT~RX?t&dr@T{cF@vfLDn^Sr}xrz$vkgTZ(l_zSq%f+()&%$XH^R7WaOy}nR=60`3j{w}r*}U& zE848F3g^}yD|s1Y{C%UM5qHq?d8AygTcdo=U-eMOocC_6+n98XYm*w_^{q$xRbp$u z1dq34+``Dkpcf$}F9i&IVUi#aSyS&t`X67TEn3R8F8Muyd8DAk9Cd`=k`|CKFmUHG zeKlmLZv2Eh{b$4FdVaz5kThId-Y9U)9*rql?^VY05@q?; zh2R_mpxjI$7Rpt6$@rltio+K_FHSB2b_FD|xh+nM_!gi@wK8I-BT>{KHM7*<>?J*L z7e}`8(Fou)oqp>;j+b9QG^g)SAF7d8se!}bmOOR{v%gRiI;P7|TC^6EHW1UnB zL9I`5qoWNKzs3)299=|+RtCGWuMRB1= z@=cKTX9Y$2i%q0|d0^uB1Hs8A3-^C+UrO9#dIWyrFhB!vhgX-S>=Of3fR-;OUj!BC z^VWoXHs4uJllHrn>G=8u*aw<)M&Z$o%@`iH5JX4eVF@!ePst!Wg-~V=ce4wq#6NID zvo%Q}&-W-AZc*>ifQ>$Vg7#>LJPM11<8;`B~Mo#^7W zlnE0K%`l%Q)|~5Gl{RdqSe3M-n~96NQ;+QzEE3@s5<1*`>g5pN4l7e}UM2q}|K-n| zla2xBSw%h7=`;yx+hl*vSsT$xTOtOznFls&!rRrFkkrUEPpcVMFc?paB{M~+gsMNl zKoo7`Mta#F(e9-Gy|U&h1Oo)Bq1g&xQt!=Cn$8;hTca9L()?<<4FjH}nOry!8P5fF zJmkkTDH%8b&i?H$~#<3ao3C3ff9#&g~-S>oht)HL2+$h+LY zC+cn2VI2vEh}haaDZ|g@jF|O5lVa2%aP!bkcTaEd#!72i5~2Y{Q>Qj-dRi0Jv-X0JAECo(czSL&V&c}87$jvKCxnpb;FwYMAQS4~dLx(`!=Qsmq4X8JwJ zU+&_T$dysX1ckqfF3lBOx@I2E1bh*|1|l3b9~ek*3L3o6`Rij}7{e)$* zH)_%@=7f_@fPbEx(B3HJs~PNEZeHCImE?PWZ)Rjm{K|M<_9pc!DBR;hb0UT4Q))zd zVg@9(z+ncC8O@DDyO z*bcwwS-<44)F1Db&vZM#ucuRu_SQ-gnhE<+WmTcpCJt1nIGMISojOZTHr%@Qz|ri3 zDBD)uh>OfVZv*z#*3BP@LhQ%1Q*0hnCaUc3(*QN;*Yj~z_PyCB8;zk!mo$rRi)bQ( z2S!>v8vUSj?Q09-Hx0;Qh0K&4eOqfIdI-FYxIciJM}novh$mK~jqF@2=}+r>;qML4 zS6^7}N$=jx6bA>~3D4(|hsT_lKb2n?vLW|OMy`&Uhsbm%HZFk+EmL?1zbaCxE1<(8 zenj3{@SdZ`9Sg7O2ny`OlBZXK_Qo?7=KZH7MEvFj>rr?0gu15LPt*yl$EB0;MX?*Z z@gr@?c5_){6HG>?*HIVR2)2@R7$U=By4EUbG|`4zkyfV5zX`W^_|rNs!ot{EeIzLV z)jRoLhvij9=KtC}Grk)a5{i6V!al5qMQt@Ar!zBdxibUGxh>UDThnCAq%3}K)FN!_ z^vw$$IF_?1xMhoXpu$bA#FK-Y_D=PN{hd*7pOmv`_n89LGx1;w0%*=DS(C6j?Q#5gCNp zj!VBE6XkbDPn@0AOT|yjd3Ot$4&}yuUl=1PvuY4FXF7%y*-R7Q&|pP^a-a#levc&W z)qHaLp`38j94&e3#L-uFse7;mCM=GM55kzqyJJ2cs-2ml8%9E8O9+oQ7dR{PAUtOR z{f++A==nI!P9kzYg{Ex&kM~5G2=&gn`?xf}_siRt*CNNK1luW|pR$6oAws52d#^ZM zE^L}~GE*$N#j8z+&>3~`wHTok#pk)ihWh@&aw-y6&m2v(;Xam2OzRHhFv57FkPXFQ z7fSc%FQP21;ok{;b|2BobUz z%-TN~;<~!P)1WfAjYemmGE=Q&v?-43`D}9h4yDRVc`)0-+WOkqN#xERR6ALpF5kVa z&n$KRuJ9Xq=F{3lgV*W4p-$?4n*wR4EYFbQ>wW%ZUs5|~l>2z6Jez~pdP-ND_l4Gn z(6Zsu;4Zv{z)o+mv+;@JIexCR00j1Qiost8gw^|&W>T|ILyofP!nUXD=9=q|!$8sZYb_edfBD64{?R>As3BEJ)ZuG|TRwsw;qrS1a;_E?qSHFXJi`8zppKZnTAh z0Jr2=ey0ASP%t!wOqwb>Sk9Sgvp~}#h0zIhWLK4%!bZ@)aUr65TgI_)`D&f-olDl# zIoklt4-u_)GH*S9BO0rqHBQD5d;dN+U`@rq_xfT;;g=_8^}YN;iqWu2+v!Ntl+&CP zW81#-2}ZGI<%|Ak=HU;zmyQ*`={8E5De8OvQsYjOJ(1ehUmG zMl-rA3Y~X5Glx*L+jMmZ!rXc0hRcd%|C2Oz2mgBs{x7kPDKc=^~^YeK1%+V_K?F^psbwHC#J0F_UzM(SrzJHPddG}V7YJv z!w&6^lh~Q@io<1&B;U?!5Z%}xr}+xXI?cR=C)!R8@45I2^;_N^X6pJQZajG35vmw7 z)BJI*C^ba9c&5oqOPY6DuC?~goj!i>@9gKy++epH6?UQuYqg$s!IJb;`L&M8ZQh-2 z3T!YgQgb#2H+-y~Mgq2^;rhn?+*Vh_0BmecaQj@g*XPe2A!SgAprx`j*SHm4HYQ%s zNkhB<;rXhhRiL@43>@lM z-ucX5segpk@6GqSTvmwLyD|Ob$Rc7OB6Arj!N0B**B#O`IW0;&?a4;DSR)Ta9+@lx$21hX9?e$EERHwHFXhPgFoXwcf_f z7Uu?gN1JsD$h$S(_B%d;O>pO zY?5kcHsnu#`gCi?xH5A=xNvf2A^Z@&(qy@R5$KGIE9^`YTO#$=Hleemx2x9#H=6V| zysrJROaLBfPzN??%Da=sV7Znbr>xNqt*XD+n+}eZ0`mRrY3E*;GH+CfT{MSUk;buJ zse?k^>hRpXxbJ|bz#>V~3#Kcu@X@#>gWNf0f@q8vfclLje_vpShRSd*Q7SN95haac zoogJSrwx0ft=;=t5!zsV>B#5`;20ZfC?q&Q@9~R?gE;4)7w5V^DH5ZOK5S{t$aFd- z`e6^O<;~7y^?^pm&`lTuHke78s{CnGZ9@&sGlJ#1sPTmx+C!zy*M0WnF$Y4sms7fECriny!hqGdaRb76T07_ z^@bsZ%BSr65mYmxw$?ApQ4|lnibbc9QdCtup0Aen4h37a_>U&PUEXSnq(=T}b!?c@ z1P9p6sA9lkb)oLQhpAHhdWVe0rGMY|RuNA?BbN^v$cKW6o?TTGrV6~Afk#rs zTO@T`#5j|;{_@SG({9ev?%Fl!ZTCPz9vgHjbbq@x)9$6l>$d4K8c#oda!?Tw@UJ4e z@&BJel)Vc6`}aG81YSgjRHTVj8WmCA=HG*k99h?Tem>0Gzbi~4U!H%_s*dJ%$7Rk@ zaot_ldkyidc`Nz-F*O|@ah)0im#z-W&Zx9ILRRxvF&=udp=liV&gLu>mmZR1VsxF) z{VH%1Rn&+`tXKmSFds~p=Q0uF3-RyaSEdugAm(d+gfENTX%z?BA#O?9=J_l*!$8o% zFY3JYGB%Xpf^a=IL@hl6e6%1uAwh#Xk?Kh>)qAPkN-a*bI!a9Ng%|(qyz7f5yq14l z0ynQ*`b^ijz^A44}j3gZQKm7MI5n6tgT@B(|U5ijwCoWrW4im^e`UU?wy(N^Qq!e|>ga-?gzK5<5xO!0lLuQR27@Uv;T+pNX+d;#`;U zP{gUFBJ!BDCLrK+fs2!bw70#?DFENG3r*?S+33r^Q4OyP8*yp*lVy!+&ryZ2E@*mo ztK4|QU`X0m1Yo(8u2|pSRx& zzM-suf$|8(aiA%lCi@pgI|vQ_C zdvYaMP^Dw!QoGo_XIdx-*h?}DnI|^$ZS#7N)nmKR)CE);KapjfD*DtZZWR-sz*n$P z=Ql+i36vL9%KAI;YKjar&c1dr>+SLPJl!Z!_1=>3p1p7_G2QWj`=!Ny=+vlMt^RnF zq~u}bS-8D=j8|}3hd)z#tb9^i&8q!qW5?sfIu>D?CY}4;YDmOriy>IHVtK0f9REPF zEnG16HoD7+4TMM2rt8WZek$rW9aJ8GKhg2*mqWYSYmjL=dYLAQiHI`gAKHU#u?h4I zjdM(r>+&tZsgu>_M3}NiXUe1We%;TZ)4iD7%@|ed{K3JRRc_phHbR#S7o-p=?)}*% z=Nm=(?BU0U=^tfagsHjj+UM75g&o2@j>LVa7=roM44jrx^v@-(C|l9-odJwT>_qpk88Zi`9yS`t*q0H6X2# zr>dm4DHYfYsI$`DdAeBB8z@|nG^Cw2q)RI#2~RZs?*Ymn!@rj}A?odk(R7Ugo_O!m zEwc)4HVhrs#DP#EbD`4N9Q9m~ZD(G(2RSrWC034KwR8n`7so80uX|+?pE-)eOssJH43E65bG;BsnZmwt>_7h~J3` zHby2649pRo6UIixKDjbT%~3CfLW6EAz!GHf18$U;NKl^h4<9MEvC3b8&OdVAXTI#0 z=*WDX*nS**<2GyefBQ9r%Pkv9y4rxJ{tI>Bsy|K}r1@7OOyUd#-!ZmUx}m zkW)demMv~Ez6%2B$HgCEtu~;I>Z;{>>u&I8iZg-UXWO_{V><2V`P$gdGZitos9jkBz_bIY}Vx~YbH9_dm zhbR8{4D0gQK-Lohg8D_H!;6ctLVPuxq0(2vcZk}}pN)^5R*Fvrg|%qRS03$5SKr_8(nULKa?R?^x6+6W{;D|l2G=FokqR=OJdz~yZjNP-|KV7Qvx%bv;c00DVQ(yZ2 zfCVOE)8@S2Uzd-}79xKQ++s}v4t8oY01B_n6tf@cuy zt_}dg*Bylbs65Y*hSJ;X^o~K3d;C%Hg4c8Rv6pYl+WWm6xo;1@Q~oFOrKbFx&!6Rg zAJL6DpGf{^bDo#|uh5k$aO>amV47&y&P$HC^ziX%^8y?hg4_E`4p0img9iBB(&>A^ zbzx_ zK;ccKKe$=0?28!tt)ja_i3dhTqKW~QdTUWubKfY3`X(i0n})P@lI4UYrVVL&CSh~0oc16XY+P; zITV%7{gtf$Ah{b5{Va5eiv0$+lLjHdy$?)Tt@6*lz^!~RBIM}u#}pEp@QcD?+AfpZ zq6t|($?=lL(J939Ud=qnDIPozfH-0xfg@qwuC3)b1AykA_ouopF#-OD6hQF+7%>1y zu1KV8R`V1S0eYpyI6Z*P9-E(MF}R+aUO9c23wi+go2+&O`~)D*ei-agL6jaZmXKT7 zfW|IC7j*2VOT?ki3NY^d3D5(2b^#hV;sMmlZ!<@msQA{0!W#vNOuyGydR&F2OO7-|)?cxaa+ zLE^M)Yin)O-ew2a2KT218x)6bLBL-C%D&V3F_bE3e{d=xZdzhm-?K#Y=BN`fWao`v z8Y2nelFM=hNY8!1xHx-z={9ZE-k!x2dN1NB=U7H>fwVC4z%QoGZ$0xGkWTna)hkmfiQ?>pRyj29o+>iO z{qO?rckBag`hgCu5YK9{7zo3;)KKd?`AM-EFW2ZqhG&HTj7aYw; zer=xTwg%uEvvkPRIb`|%w9IEeH25BX<-Za~0$-uel^nX<=Hs(w_ke=;nyozAk@1bSG5u zcCUxb?nJ}0H&Jx8KL4&f!#%T)y$#Omtm-rMtK zyR99MAV<|#$bBDv{tq0T%(lM$;zrTp+i-#%_R@nyXDnCYA8AZ$ zt2prWri!(k7M?vy8Wm7>Zd@-iAQVn|;CBAqC}TR=)YV^jgmfd?VSgNLIwlaZmb zKaPctGIGElN1T!BdIq{u1Eus-jAz$lu3P-7vt|bjx0m!Sf@@|cRCKZiw)~P6`s@`$JaH>)Y>jG0~V)W1HW0yBp>ML zaT@v$;-#ihgNI1IY^8&Og2F8*$OwTzK-}(ZH8xGhR`Z23WoH`#I1C=CdpkQn0sRy1 zT`k~X=t0>%E}iDNTxXDAdN5tElr_Kiz8X*O?+GWnFGq2s03KDig(@JMJn7LYz&%C` z^1yoQT2D)2uJSH`fgNjA*76B3S&2T#KGp$CRzx!}F9BBuLS55pBm6BZQH+jV%SXTw zLvCJghxtLiw1RvPTmW+v&|8GEYFEnv zW+-s>sJk%fMhy^{e(shwDL({ed0E*YXIIyO2m3*-SYe(X5a4v3hWH+q)XTZ)R(fC! zh>4EIeUNOJ?9bI80D+9ogHNXcm;f7ByJZQHkUb+{k^N_}04VwI9~=<2X_2al3UhOF zIoa9L|EPUDJUvZ5e|~d^0K)J2+$Z3QBE8mW5R+xzAAvx&9!O>z^`Jcfrk+#(SrO!N zNE(f+mj(*P0S+AQ7J*tiaOE0#nl0uUZ6rA-Gv71$fV z|IDqXrBn6>;2Iv3FyYf}fF^7pPbqnQGubYFTtz~!v~h>o9nr@?*7mJfuj$i+xMH>y z(xmIyNB3~mmw$=dW-jQp-I1T?YZrX(ZxJWsDg%I3Xnj2Wu6hB8=xx)r|2PD$@_m>! zbR7czky!w5b@r=Bkl(6pE@4^J>#QoB5bCfFjLO*3(o!RjVD_fH${xt#B|M#@K^OZ2 z3kcc@^btL5NFE}|!`q0S%@`?3lumQU!$7?MATwfxHX}q1q8|2~;myF|hW`D($p-)B z0lmQa-Tx`>&CC8*1KWSQNB%Fb{`WyMgEPnuA*%8m6_qYkIn+cezfrk=_tEk>UBZC8 zfkFDrSs_G!@-Cm#Y4#pmjl&##CSlS#YE{mio}zd!l8GAL-YyAj)*RHC^P4MX01q56 zQ?_Ccq_5K*SvRxpL(Hi@_>JD>4+?l-ecFt{-}YfR$%t0Y2U@Ob*v8$GY^)SIJz2@p z9XqL!X!)v)k`210(hcuRrGzL$rDn0!UD#kVLGaaODQa zvkD!yQqdrem42*peEDR`Uqo6s@w+20B@_lnXqxT7QWrH*aigVhVUU_Y=qk8V^{d`q zq!$6&@0eh@5^Z0{mUq_~4zWX~nR}x*QNavP&V1J-WDbuPw`&N9ULtcVq2MigqZnOU2yAH9xc!-;Ho-{IKs9Wv#3r2Fm-`q-S)l=S5! z#k@oEh6AHhlP5t5LCD*qTRyM0;8~UKPNa?6{Yz4jTyA|b%L$-*v;()9(*EfO(ZJiU z>qpd#K~kEs(0cws@4fx~77*xt+2s24{k_4U`+d`SXK#=XTB-hFt^09!1}51L1$Gtxk@5Z{YOM9yqPy#DKbK2 zd=X;<3^Lj4EcznWadv!2SIl{kz5W-zTPoxRg*x2b-`!tJGfJFLwb|axmrR>nuSE`S z^IeEdr?aeXt+#-)TCkR?d|)qQQR~7<=7nze2vyH)tl`okZ!;E_0;a$1-oYZJ++hQ# zVGvQopj{?;?r!h=(pT}=^tn4L#z-@Vh*E;1X4}hdeWUbKytH|+$U&86Czop3-#0qd z&kr$#6Mn5(+QS)Rv(ff^`Y;cWN4R?mnT)MI?ODGnBA1A~el65tl^GVUpP23NX?P>E z*%&77mA53W$W-^-IgTHJA8)`GgB*!<#YJD*+lkrFcbv! z8Yviib_Ay6^=e$r+x>Q&;o!V1i{>$6zuS!K1!VD{1$$#kFH^Z~S;P%M?Q6#$?42c|%|B$RDI>>~)M^;edjK`YY5nD5z&Pu8K zk~Gdwa7fw1$tVXTaiC7_SlF_uJ^pWL-$IF3k4?|o>|+69%6tYFdBo?$Yd2QgB~~Q) zfXRV`7rAWYA){^hAuh_nW3vX=jccPd@5H$u^Y6i3dFO(LSD0~T5Fg_+BtE*4m{jy~ z*?sDW|J$`8>ip4fHNwjaBT5DCY~0?y=7)dU?X)z%?z$OqNw%?fb!_$>iQedhJ!f|P z=0+}}WtE58Kg%jk_~}Wj1%`ucUUGr`t6kL`yRjnPWzja5x{6490*2Pc&=?m5yxpj> z6>&?VrKjNs?RI=J;05%w&ei~k>ab~kx-DcmL7Q)jHeFb^j=faG<&Jf)kx+Q)n~?4o zHBp=!Rn@Z3$$9F6g_GM)NU-XA^R|dFyhqG!GVPe%qQoQs&u$VXy3Y5b&5W$bzzD>PYm% zZ(f7RqiHq({Pygg=Fe-%jTl#9>nj zec3ZIf7*u2KIYY7;Cv*_+{VtI<`14raUEw9%x9xbggv?H291xRZFsyuHO>7F0R-2S zc^oSBOO*Ft0{89IbYxM6VVVA@nKysq;T35-AEZN@VzBZn?J)QuSzX(qu4(9?C8qb*GRGpILKD%flFYe9_&^C7O5AT7Fk=?D?`mHE5)@X2Q5=}8q?qqdGUPzLL zHy37-asBm%bek{2)%!w$v8@?8p_jl?;8e2iK-Nek{YStEY(N zohjvYj%?>iQOY|}nB6b1*1SFg#7F3}Ns4yBr+0rh+U42?Sy<5I{j(oKGQlhw6?V1n z-|7_^^3#<`7Y4(-FgPUwda1hgYlLe8j93@Gx%56W_X$5%@>qMaT`rbH)nUvjFxdIU zvZ`p}?zs0vuo5M#)Tuop6(*qAgT@U)G#oc@1k2Hf?2pVYp>F`YS9VDX*VO7YLhanQ zVB>R)`6HZam1$_LQ(>wecga-;{U`Ngs}!6a4(vqHSq96Pv=)7SK18#oOx81vmhC+$ zHW%&yo69cK3C1e<4`56xLwZU2RVEbsNpS~=BTwPhN^A!5n}o@F|M3#c`r>8Dx-$R~9x=Quf%8 zzv`$d$3OnWnC?Jiv0w0>oRSuV7pdMOM_R`ei#gnY$A5{-?1B^&B!nDN4k8(0BTt=5 zJ9JkXZKa_G8LW8N6l<77xI7R+X`3YFOw)LjYtgfp9~7g%h<1q6_VZ9jzMZ8pP$b(K zR+zX?iJCpYrZd(u#zc$0t5SvwQFgj?X-SJ+lI(G)jja*U+b?|YJ#Wv9mAs=o^A%i2 zN!(ujjMJ+dt@xH~cTEI4EtK|BHNrCS@lL``T7eP?1A#I8J*NriGuxdUCG7C*v0`Po zi<+O%&@&P79u7d)RkIX;>$Ozch{Qq=;wHi)Rj<~i|CTpDiyiNf z-xsA9#04foRk6Mor4x^%Y~_cbZ4czBIeU4|(u?K2gO1~BJB~Ey_@~T!DX{Tr|Ea3} z1cWkn_Ixa{i(kd;=t_|P$20|QG-%Pxw*JUQbqR4o#3*~^Ag9Jj@US;O_MC<_NybDFbvK{HC2_yXG1ar@ofGGM4ZAg zit&!H<4dJ*5NP!&sglq{aB`D&CkmTJ--JFFMe5~~L)b(aLV^h}%&jriFI4D5dgSQjEq~$Mix?stEGepdXVZRf2A;iD}HHPWfOR* z2F@{)T%KrE29^8{`M~0WrWFIH`T2*x%3M4YJSanv#bxbJ%O?6hZ+Eds#8t|D+E!OH zpxH-r?6m;;u$Ssd>3&3h1x{}mDMZM=%Z6F89`J0{R|@gkIlVC94qxlZ z^L!103ygd&3dW|rRHo!S4CdFoiuBO$ZTXQAf^nrk&03;0wZ^Z~bT zw@9_yJ>ce80i@xH%i`ZciGzckS$k~s&(gUvs?VMdo2>;^sp?l3m+aKd*d5=b)ujgdkJ$uWQ=AGc9$PWa6G48oH5jnY>tU5wAbrexF$H*WR-lH2*9}KhVApeqmJPpDoR}lk}>w{IA-0c+q08b zGf$SGr%JzZReqCUROkoq3?Vl#OSh0tJ*nKdRi&Kq_0@<;w+L|bB#uZGYdVvh%@@ij zc{bmu$qoPW0R)hgDVEo+4<_#6P#S{pZd%gxX7EqE+$2pOxbPiT8mqO8rJy{UtSco4`}z5;^KJ`b8W4|pg)aYjg?H_M>;efVd9NC zpnVV2fc+pC)^;&p7!kewi^1{g`V}d8m&Ay!C=cUUa-U_gg!f1A1bGUNYx50rEY12pbBs^^r;fXZ&(y;_4Sw7E zj&*DNa}*~VlzG>F6^17nHBkapO{mvp!6cZsYxkEJj4FHWo?T&F3DF7TJcm3ulz*%~ zrQLcSpY^oe_8&tMc}5NXb6RTg-xiq-%e(XTZ&-F_uWA)goXCq<8=D5dnmZOQfqC~> z6j)uu?%}AJDIg_FR~*YMpgD@8Cs7zTvV0IWR%inZA9E&4GbhCk^Y%vY0R+J zDX6*KTpZWOgPrHTm(=@P*h8qWP^i2<*0}95hR%Rj&_{?HB3PhR8h5N4k0l1O6cWP| z)PM}fza&|xK<($+QCZZRISBQrz|q)ht~i^)>NR~y8j6b$p0ISIq^Twnx_+Kzh^!|c zuFj~GM#=43deW~|zW41=uwaQ$-(Wc{t#s!xWqHF2B*B1jlxg47?*`Yw(%qpO~llxD*MNB3NZMK!-$!(8FbC#6>~b^b`3BLqu<8B8gIfd;H4;Qb~dR3%Nu zJ5*X9m3lx$G!Xt8uTvn0=~^00OWp%{3({0pZOAVo>)#J8ZG2dQBXe{cs-p9BgRY44d{80zT#Oo3jHnxLsz~+i zp*o}gJfrgGc{V-MtEfO(hrM{lbJj6GRFuby=e^V=gAV6Fma`#-6LYyol)uvY#;jsmt3XS0Bs`MPiQ^ z{LTAMjDXIKtj$Zf#3f1W^8KBw^ra8vFi3UN>m_cn6WwbO!_#*s@%Gq~Ru~?FOHLbv zntRg+vS)OzN`uV*#-laOSRc*r;H`g}iy@Zm-O>ku={6 zTd@xQfPR`m%{ARn7AK!9pZJX3Vjhd^vHOeP&5SL`;7p&_pCN$BWh)g$_n6&cX5hA9Mp$r}Vn&OJF zu5OvXYjFq~^n8iSG%l)Rwl6W6%=7MfP`Ly)RmLDDF77aptJ@Dj>lYE8r0sACc}u@r zP8AdbbbUAM7xO4_NSC5qn|lhlD=_)zs&+ZVGr&|^q~cyi2ZyhL2s#{p;}7_Ex2T?F zx2Q%0It=d7Quzl5M;XwG_?>5dbqm}1=5%r(c5!z{nAet@i*d^=(@5_L-0r^a3et#` z8!e1pQk~IpoDDh!&O>t*3!Sy)NkoX}_mlt2vHq{^1^=!>ae7aQHD60AM9RKxq7_8) z-6SS2v@3~^xJaD_>+i^!p6XH+YK;pBlpUnz*-(#hx%`9w+KJvS!r|r&| zR1RC&2R90bg+OVc=PqO3@u3BYM7YO=kb&xm>+eBx-MW;g(U+o@B)g^Vg z8N_+2e`==WpRi9dpQ%LhHujL7e2M4=ol>2Zl?%{GHIQsn&fe?d%n#F}ghH2a0bEUa zNw(UVRHC4B#4gVX(pN~#=?{(0S6*&uVQsaxM)5!=dD=hO(Hzek4(9Q$$L#oiq2NmO#ZSeS)0MZj*zhnxw=)|YGXJZ#j%i7kVGHic@w% z&e-hu&Ty4hE@xWFS{(JgJnjlUnzq3ue*Djhe%WO^E9viJW~c43g9eqF*u4W=Ft)MB zeyU`oiGi)?>&)!2OmU;n*e5P(ShdhM6a{vWpGve)Hd0~YC>zG4HQo3*6~wsP)_Q0g z&Ea$PY_P0^bzcKf%ndMl%_2UX)2&59b#k_>>ita9quXaSFT|yPHfwoJPml;Zi_gGU zhA#%aidQK@dT8+yCk&>{hb}5AfJh_T6AojL6G)TGg8Ct!xhdJD^HxOQmn(~HFN*+V zmHVgZ#E5RNoPqYK9P!@M?J73r;|4PcLhmG)38S(1y(%M;^tgV=5-T!W8S zlNWLCF6!LKp)!oTfSsu!Ps4nK)0b4C8^)Mm(qGXJ~4VSP^OB)<92RN+8hffdc$7O)!)rfu>rji zf=>Cm^oNudf8A|Ykc0XqeX!4MWgnh2bMkzqk^}h~<+NZSEj${B$iqu*2U$FJw(~P| zNug`iy$M8_^Ks=i5sPv+7fw!zj=yGboGv(b&O*C0c11VvM;B~{db5Ra4XmqXYwn}I zXUBxsAem0+Shc%hlYZ7Tej+xJpE*_poy2O=kdN`;TaZ=7DXlo{5 zdTgU6ku^aLLg;86ulLj2vKoh~MJV)W0VsN4^?7kfro%00ciu*EXyPP0cs;oH(gQx{ z;h4i}&jv%&b3s6_#s^|%_NQfdsQxAIRECH>!OV$uJ$n)u(xjqseo6>5eF z&R-Q4gHEHb*Pea<=n$;T9gtU6XXC~aE8(^wlA+6-kqKmpck+LlgA`q}E}H@{*Qamb ztg#qtvgTCA{OFu*bYIL(uiNf#)Kw4m+aU*wEhzmqi{{@DC~5cfmFCWSds1s3LB7!a z7{jV2jNO;viH1(`A}mN)|PbIWrM8l0A`* z2AB86RBteG?wi^lW=U+&p3xkMcbPKL!=D)8J;%*GKh3*JqS2DE_CX*AZk4HBf)Ag* zWb@ndDD+er_wSMMT`5j#>OGq8c)_a>)hG0)K$s^=1)LKFjmrMw(5RBYg2ew79~MAr zY9C63YF~I~`^OKBi`&!89GhIsZ&M_Fj&BexvQ_B$tZKin`NA2scE&f@Vzl92cH-G5 zqx3#nQjA4rTcjLicyIuSlzpfcL?ghvx5g$3{OTEe{Ur#<%iuFd$y zff=(x@o|7t0NfqQ`xxoYucMd)e!gyq9=*oD+KLyFktyCAHjwFL!tIYVo4FYZMB+V* z!ln{7-m7ZDDMQ{8Ak1Rs=d*U*bXd-E?Psi;8Y|47KQkKZc)SpAeTS{B8ek@aJ(b$< zZP@Eqd+rCKGaCzsr2F*vMcSl>Zb-7TJv%cor*7GMZs^e$ z?MLSD%tcjpwHNRi&Lt#;@XzjPD#+7*@)H(N<$dpCM&!PoSdh)+S9+4V0k^jIr0v2$ zas{bbwy2UJ)O?7k>t?z^H-jA%WMABd5Y)EJdc{2Pu~dw#Q%@7An?J&ji@VCnjgIE5Hxc^P zn30?@T-Ym}_os62gze^!S0MaQqxtHZsDoC&Mya;g07rVGouio0`C}e&$|eQMM9yc> z4Mua$_&-skxY47yKmaB1GJ;JcB;#GH4_{n-2j^ASR&drj@cNmsWZWMoB5wdYZpC4D z))^zQ5=3-28i#^15aEYy?JA9;>D`?aWp)#OWoku-ujkdCLHk@9nv&jglBF%Ba-^ zuZNk0W~Nw5mc?CQR49H~4x)lQ?(d{|MNbC;VF!p-mW5rV$R=GeKMM~i5={6m>V#dq zam-^f_dF5s*Q8n6Fo!}vEw|ED*my1d_S z`;hjOU$=!1z|>WWQPGv? z3H|{ZU^A!ofdUpD#{4ZoZEZEwly}+Qyto29uhSsjEU|~J=OU_S&!#^dXpLZPfVK~U zWL3$SKzMXR1-n`Flfpf1@E>1tL8pab-&jjrTD)*eNft*X=K$0y6%-~&jllX)5zg9g z5n>NV@BJZPm%%<+X-{QH%1~T1tdjAGN0RhTdy-t^QglbGbKQW1Y(VOAL{jv81J8<2 z3Cj``0IAN#sHx0+5h-I`gub2NuKVNH?l$biIC!P;^z>3wS|5Cdh5gQWM^mgHPkW*1 zML$#0AsDRh9Wdov_dH`S$Uz)Ex@>>s>1L&7?JTN0dxc4CwHH${dziBnou)!YwgJRjhK=X2h#v0HKhF6VD{LJ{Q}ba?)Urr3`lFY&0m zO@}sAqlUC8^vwOFREfVy7?1@I@xjd;mM{)^QU=8#hX*2?;J%!4qo>yWK2TZttMwl_ zOI-rSK=k*CSHkvEmR>;(-63JEL|N;jUHoipJJ(I{gSp%HaUt~d!W(h6ayiRv<4e?Xw`9Qej*x%(Ho2TofX^ zD4}1ZD@M6qqB#H+$w&?(Ycz z&RA9pBxkUz{bp>>Oud4$T6QrXgFK3OF8>V|tf=NFUc?zo$$YA!DwV|3c`->cQX&~< zO;roZpIOak53ZjUkPR1y3AqZwa^ba#%yGwRYSr;Y1T?}t%nIhIpIC4pmqs|Y-z z*(oqy2$B)}9Om?~L(Q3j!O9>!TJzg{wazLy@XUPBo5OzSOOQ+e4@MKr;>llFE(z|@ zilU;K6*=e@>(iboCFG9=T$~NyT&_2!=umR&ifoJLm3@YVhGAy?&l{mUtjI5W80m33lc^5{mRY2oeQbo5qC7Y- z->4cqvLFnd{phW9UbHTe4XORH*<|*hIfa(ibYj_qVxYs zdkhkv9@{Oq^j~@h9@H**ZF^;_>`?KP2AC`-4li)c0rxjvD%V zJ2m>nw2e8rXS6kw8tRByd)#|2Lw;A1pyG}D?|Sn8I=V@)E!&whIw#NiYTWaH-OfBx zj4R5=xDFkkZtRoRGd3JY|6w$7YAQJm&onjPw(o~Tr_bcLX0k(7LmAa1bOBBS_LFQYf%m}uj%q;Z zC8b2EL{im`aO5{{rSz-}yjzQiCSgCanYmSyx;d7^_Oci%ThTpfxe07wLD}`GquR&^g&1c8|OgIgi8(IuMRjU@-AW7pYR7(pfcMO zf7*sg7!>jLU#0Cj5DdH4hx@!v?U-i8Jx}vjC|h?1Wjt#R5g?Vbo^RPmvKfncM{Q4Q zVIU;!zS`U-dnLt0o$A=CSDFOQ|K~UEczu;fmNf?1ekj>Ioq&eK;?&&zjkDcpamfB` zQp)IjFj=KHF`vJ&ftS7{TkLu4-}myL#%8g1d=&@__q~s%quwE72Is?l+%9rHAC=yn zNHYb?!utgkGkAZ;BqiUEkzXa7bk!+pQZ?EarSgd2{T354>&8cNRs-Dl3@qfu;bK%Q zqguH!`dsN!?8Xz)gRqyy%^b8Q$iioz55+~LvO;?7Nq6^5m!EzoDF2i|K@8Qi8qQ3g z$mZMBwx>3WaO?|cuYclt_1q%dMg6hDFEeXZh1?7N)2=GKsSgPL;Kz7msI9%W;~^W^ z@PKl;I081R6~7m+v!)RnU`z*wp>Fj(GVfjIJ|e|m&nD`8ssT;DtdS){hi z40uAn9ebClY;CE<+c}31JZd?7JJ+DoUjMB!Lj1mSl>%(ysC%T|T;(x};L;Vy2>bN= zJu_n`he=n1)vdPs)T}Cp>fK`P^2BYTmB9vhuwH244rCM5%uGu=$~2TBuv6(eXOY&# z1g>@s7v`rmZ?31}>5+=o+<8Ati!=44PnRNkCK0#sRB>hDJ8Uq zUo4XtHS>@*QSa)0K}3i2wpGq7Gq{;#lxlqJiP@h?2v*o4(XRt4AtcS_zuafSduHS{ zKXnRnv|(Jj`={fQ5qqjF<=`uAi|na`)atNIZ_DS+xU{sd#gu054*Ly*oW7dX54T(r z#J66*y~BnESLWlks&Ck0cqcRfmGha`F?Xj_Oc|~Bqjs-rv!l%5XYMaiRgfF+vGce` z5_&`Tj>;p|#_GO@>`{X5ZJ3arxjT+smQ#PJuFA{)RT?%%c1tRT7qFqYiwp0}F&3(s z(fIkHhNZ6R+>c+BCS0l|K{j=&pF!na{Q&sk`JW^~gQ-=W+?4cQ<7Q%)S{O=U#@&0Y zlX2V}`~+UL4$26siTMo71?s*)*>hM}XJQi;?ncEJB>PCa{?-6>)N^)on7QCoS8nre zQb<}@{zN8iezy~f;=N`TjwCr>tye4<;Ht5|=VNY?WB*DK9A(=gSvo#k%nQIzqb|d*ID~^s*Fs}GC63r-AC5C!DTx!zr~d= zA5E!g$i}yEtn=tJ1js&|R}bL-ke5njzSC#=G97C6peL8|`B^(GXg z%1&Qwj>HKZu-81MT zyeQK?WO3bnvX41lWujpr>$oe9vo0v`5x0RT-hN(9?se1;l2bAi6ZQdYC6Xeh1v4=9qa zH@$j$$eeFb{5Cy&R#uaC+?Kgbk&Hil*0OGGg=u=@l`yUb_xvk-iOSD1m_c7Rx-0AO zoYv-Ogrg|H@lR4D5+1&?u^o8*(6TycQ!#3w^`n1(ndEAO-a&SaGm}HHD$6?og6CE5 z86W05;#%xgs;5!&d@f&;A58hJ#5Z?nT(zxR#?i61ShkyH#d>-G8)i_!TbuyEd=W-g^Vi-xR`V zLqe+Pk5e1W?v+e48oD!w+m)2D6>))0t2_b+84U&;_r6)GJtlLu)iMuo{zlBQ>fhQo zyy8nJM?oTz_R^srs9njEGMdpdC`op1R5Cw!5D^yB>7lRU1{8>-Nyj;jm|#G#8qCZa z87f8_^YXep@PZ#Wy;~co7chF6?u3P;dHR7dD#zvJeBopV%t|S#r`BYag{jtTMAFCT z-XT)>C#JBD*21cG4z~iG+SQ{h;b2uB1_6te%rY@A3+%HyuCE<4)qCQWc%Sgk!2OEB&U|?wB zvFml}vnpr2$K4?zwti2m9h$L^W-4JbH6O52Z0w{|B-pHi9!<(w3>t%0dtG#gf@SE| zbqUT3cz@^exkT*dyOD!fmWM^I@mgF+N2c+{cXNHL1n^nP& zSQRLAG)llYMKbLa_H?UN?!+Akw(HDgzAAi<5_Yh?IwhSNc5bE|7LJsq7?z2BfU20a zQqg38M-C>b%Fm8y1Bd0Sr0l$KJo1o~)Zz9}1V8#KU>0JTSHE_|1SAl>xF?{EFMO9Z za@?xI-EnG;JrCH{mmEL(0>t7dT*Z$3LX*-(@p(?UB+n}JPlVJ&cK1+61K=ue{GHM` zX5nBN6_t9j=%BZlGYOMN??CI$t1WcvaRm5sx!kA3-gsVwGo@XJcstm}Co$|h+W}78 zkzag*gGWW%?Z}l@Q2Y1%G=;+v^q3d8F^62ELCyyB1E$?gd?tR-OVHz1$0Xy_NS?U% z8Vf_+5ip3}VH1RfMI=1A9?Y_)h!ho)aN#tAX>A)=K0eQ5cHkFVjW`BT`PpDDv#xT% zA9j%Ajry!(ELxaDK^D@?bmcji!(lRT$BWyvZgAj%y96($E|{ukiKIrNUXtc_AilG& zmHyZ1NO6oqN@(ZIUB?Hk(PESN$%o$N0Ca^gIniL>$@rY2e*72y?jN6ier9?dt8!wx zHs4QCUp+M&&8*)7%Ovb}e^{hpZsf5}y%P{pzLFdZzTNRNEdiL-ysu|Q&5L)(L;aae zS2zPG*;wT!*`L+bHeBw&^&>`NjeiFtY5jWAt|lCbVZ}Eus0KXZC(RwmJHsqiJqup6g&y zu8Q0CndOUlkY%y!)V6dVXG~wFbhYGCzTo!tY|iQ<4_*)}gQVbcL(HVV9Z}e-W0!0k zP_Q-k#pn8ol__g((fKcggR=PZzz0Kkzj!ZXIFEo*bm%QORB78$z}f%P;%YRcWa^K> zlMS;6r~s*C1~*`Vg4B)o`jLHv&o{!Y*CuH`zrHz(0YOHmg?OHOK4k+nc%xvpvC)hg z4A-kkvU3!P`(E%#?B{W8O}5d?)AA(+l5=s$#S#q@oEep;)dkU(%q=1>CBY`i?AfvO z5G%Khys6LpSR`l1BGDbO0$I^Z{7HT!LYrb5p2!Rjyz-D?OivuwEa9zDV_crafRJ`e zN4={TM}@={^wQWXM+b((+ZHf(j{4WV21fWAe{g>oV;=A9b$$uAmh2nvou%4CSz5KD z?%|Jjs`}Vv)^LjyXWdIO z4wEbA@4Wf~6Uzx{EjZA_+hJ<|lNh%1Hd~oi2Dj3|3XlDgnIf_ z-6u~KorW@z#Pl!DlYcRWc7Hfh1j8`Pgc}x5wIpe0mMluNBkhxti`@wL<^JiZnUh1u zJj(22ASi8<6kP6o^n9mFQquRT?J)Ctcew@YQ;%3gj)KWRv|-M)5@lXo2VTU6>f6h^ zYtf5$0{A^Xg8Y1;N}e0hzrytvm+>}Qx(avMA%%h1ahk8>ZRDnR@-NvXcX>5W3KuDc zfsUh`wStaB%SXO5SRQwY1y$7X-1>MA7qtLcktR~;wB z+@kT?E6N6UPLU>~d$6?Pt!KZYKf9Vd;9=i;{y88jVA>=K^AC+7(1}y|OS@RDU=yQh zQ}x+r0hmf;W~7nRF&WY^vUBJD;v1&kH6YMOqKa6sxOi6&Hq|?-PhwS%`S!PA@5A5(@= zQUm3alabEHv9CQ262>Ty0e*Ln;!$!bH-<}of#p#dcPEZahamq3R5iThE4SAhC$Doc zh;VTFD}4M;w+)yauFCd7XHBvi7YV3_Gg3qViOki6yB>=Sr?Ory1d8K(V%Cs)@pD@V z53_zOd2{Y)2CNms+v{{IRr3v%y5SRZrh-#XvgFqYOKX$Ys|nZ2JRU6_7jk(54MP!& z2@qiQzLH~z)ZK*CDEq2K9Xuomy~n9Xz9fW0_4oK-0A%>_9qzy{2Es7lz8GBT(K=H8 z^2TB@>?&f|S^0&KlF8FluWbB1^3-|tq7^=gzo+%<+@RK3N8wu3g{j{S5)UZQ>0G~H zHm~dk_gkF|Jrl*;X!$WiO_KU$`imrX&EgE$ITEN-M-6{RB#I+@Uz&H-eSog~UITe< zYkJ%QH=&!4Og#j35t@dnpNr(*O^yDut|q$N?Khu_nf0@?=l~tTsM8S4ASIs@#5}IV zY>hjN+=JciMB!)*iJh34Zy=e=9w1mnVjxLbO4t#R>celX*lGMnf+0eufv&RV1R{$jsR9MUso2P{Q%w%dAw6!cU-O=p_oNs$oAkf`c-iI zNvR>#&ndWeI_Dp_$mC@U>Q>tCB+F=7#Jxfj;Y^w@l`P0f}Hj3Tio+D!-eYdApWUv|3xc=J7el>9dJW6uFbK9`&4}`f)sc{?M0CFs>Q?Y9Um! zBz*_fGpIS~P&U4_hcw~q3FT;MXvSgPIfD0lL$xZ`C8)qmtc zWvU1;07aH6I~u+W^W5;Q`d52e1j#2OM`t6&tJK27r>n1f{U&2+M2+#`u?|V7H|MqT z{?or@{la2IS*52TOEN;AbR0OM;XiNLGHOUwjHrv1S13SrgooHyo^JvIeQ0TEi3d0A z>^z#;)WJ&38G#i_?GM?D^IL!CU{~T_C%T(ZrjlxZL>!4YTG$xUk+Xd4;xZs^+N7c& zdjoET&BC*6<17NQ$8zIksK4y4@fiyXS?_h`lxvr+Li%Df^VK^L6>!lvDTV3nh`j=x z2p4fuf@t z|6So(4lUHNIlIsJ}B*%!7`_&v#Q5zsyLb@=2k)5DRvrb>@b0e8Agr5$vyp$ z-D-Q9L2Kbic)gyuh*h&CmFBmr>r0Hy031rmG#f8NMqqt{uEz(Bhx;HcPO8HNV&xa} zf{8K_*5A77XbB30latedsxS*_w=W_phA|!qj7#wzlg>oVU$^C50+X!1M`Py(5hA3QkB7N?e3^sKZYTYOu{PRi z^onkOvMxW{*kE5&b#ugn;u&;ZR74P~Y3$OeRymDBYP z=q4x?o1%x<;&&u5l7Ir5b0p$SA=7s_BC+(XoNWjwiJ&Tw>5hIFfQs-@q-Y0|)0P^> zH`%eXCpovxitV*p+RF?!g~*0_TX3CJI8yaue4?|3xM9aP`|s*5o1`|5zqhYZDEEWb zAib00v_v-s_vW1MK~Xeu^eYcszFVo($l0>wu!w&54IRDlFsvM&v-SonEhSURj0D8y zYbEL!lf=6>%R`L2lZb!C-u1gXg2}17>Y0?ldQm4;CUQ+djJitp4!?=urO)SL&F=Uc zhAE&X$(u70jf3GOdGHlqL~t2ih9ke{n0h>;I*UmoPOI&Z@h!&r?Bt>0vyF$C`3TFe z6*K=ZfABx+cJC-ct2njbbA?Lz51MN(i%*L z>(kGB4EgFuF7VZEd^~bqubv{p`izAv;QJ@x&-nPmur@~C$9Bp1bz6{@@J|s+sp{%| zxqtH&yVo^H!UmFm+{;n_f^%G4Y{~JdGJP=FzY6rFKUAC6B=~5y`5le&HcomlKj1me zi(+gLd-`=e86mJ5G&<5qi8`YgGFdjF%Vng=`lVN)b>)fd>~pfD;(qn#=PEYjy^6@xCE#_w9$|%&IjJ&nUO$g(|k& zz4$))GyjpSB~5fX#@Vbg&kI)hfEKOpn%G~?2S~*D9dx5&Mq|GXSZ$)6_z-7TxQElA z=_NE6&(vY2UE-xvuk?HjzMiGHWbXU6n~M7);?nzMDXvyx5eJW63KL_+nQBP}1(z@3 z&oQR7LsmoS=q$~aMEx&lX@jP9iN{Uwo^lg0#%XOvkLkq_2ja&7Yg~v*wJRTs@|YgD zEjDC+xSl{jN5%=#$@=Hr_rFXNEPAjjoF!+a;0Brbzc-ez2vf18NJJBEaYz08q~?D{?Qf3) zb<8>PWPXXK-`(D=DCv^9*XH86#uA?SGEoaUJb^xJRE zlg|2r@m9ciaX|)>X4_VU&aQG{+BqYPu~UyR%#&H#oFcuch^J5kJgWA3jA=e;E>mt3 zIEsXGoWYudI9ym*yn>VKCy-ws7PUf-Z_|-6x}z7_@SuID=*pPb`Opn9Uv8FZ#@oaAT{6A))Cas>(4n zGk7Dxo7jbu93RSo%gXaB2!|`C?K#vemLTFU&iVIoukSq9*tZK7A3{T9bsLn{WcW6_ z^}gP8Jv)jilLkxcIMEDC3xEAN%NXG=<4lp^H$|$dEK^3QkUP0?H0dydqnjpI{Tb*J zKc!G;)-M#G%7yR_W!bGuIX&pWWn?K7IIxy6R28zLQ%3CMk?23!7+3D}XT^`(LVY`73b|y`EgTIH&yr9^++Vg6+ z(Wd=!Q`uZi1SMRb#39q<<90al(%Y%T9pn>t-Lrk$ob;LK;uufYHog6I5R7-Z(LYu<%&DwX%q}v?Ssjlt_Y9TBeKBVLnD7i&WbyId4YKTb-rLc4+FmC8@0+uu(hCOOQ)B~J$JP;M=jd(N~eUDj$_ z`^ZC4YUtD1FqCbVBWcvntU}8rUCbe)8HXDvdq^dvZ!Yq#N4I#*S&2#BMn70ph$LziwS1BOLG|-+ z5?Q6;ottPppc)tqZ?IupTnfresZvie4$&+62787&amjM-j3d${u0~{MCNc%T_BdV% z6w>I=MG5*$zitNgZC~FLDJ7(B#VVG0HaAbGrQ14tnLa&2qibfn%GYm0QAI=hXpFJ3 z%Gawoh$_O8%r*8*@cc)nk7{^WJamR+jC9N-7B4HWm*y^Heoak%%c6mf&-E9`M>U{%|q|`F@DXb6GkZ)k8%jz|oXV;m=rSS)tfcl)qZygr@xkO!M^MkXw0M$^Pal+vmTG3v*G zjC|m0&NN-Fq8a9K7weRN$Rlx|YVw~>gQAxP!$#>>N61F_ZA6uxwW{n61%*{Gl4}(3eu5y*KD~_&xN453ta^OHHk`&&T{{(8nzg`|swyk4K^3?+ z^Rg+yx}73e)jzR)Q;`TdSSIKEGIWKXVu$j~zbO<0!hw~0LrF^6?(^+fFSw&lC6RYB zG`_yYt^8}lwi8j0zo7)BO@zzjBPfP!!C-jU>weXYR8}KDaxy`jjVa=ZE@C;a0YqR( zh|15CV~PV)^T+Q7`Kni)zi_r(azmD8VVwf3s}AqF??J-Ed6g-lb|9~3)?V6hpW!hNCkcK zJr>+pO;qU$ohaRn?_90l-ptnNW59r*LhI_H?PCs;#Wl zjL=ZF$({j1#}1DJ0^X_qiPj+8RaapZZA#(|YJrc@wLuj^k&a7|V}PxhZXi75FhS9X zq%fz=d%zuGUSYTUktxwCm0dr`;2yx&^Do$!f9n}tUKVX`uGsz{F!>()lVd?sjaLnB zo6RrYAthh`C})!w^JU75@S`W5H*0Fpoy=YN=5)UEc5sd)!8}m*W$50iRj^^PruX5Z zT-5C}*#~w6Zi*!Ng?H$A^_nT8(vm$M)4-De8usz$bZwWyvG3(ENrfs${HV}aCGlZs z(-ZjXWU3A*_n@JQQH1UNoF8?Da&gh2gbKEppO|Q*L9MuFuZrV^>q$wmsS4!#hF9y}L?ohjH z(y$0-_1{1BgBwad2FWKct=BnM^uBa<7UJUs9w9~xXWiVMT#$!m8cb)zT&xcJga^&k zENZc~NNT_48Vhmu3JtkTHGXGPTuIz4T~CUyQ@f0HL?fj!L*lJd;0ssQd)rh^WEeHt za0dINM-66@$?5)i#ni%>(gW6IbF9IsR%kn!VGBDrkV@NaUsYq8mZS5zd}3`MVDiQj zr8;d$d*l8o2$Pm6$Am-HVl7rtaVMyM0&{m#u=#D9ibihDg+RgmsD2t?;?I=YMMR@C zT{g~bA`MU{xZ#Nd}YMMiOfqIM2+SM;y&-8-H z_BA?OQX>TtK!&~f-qATo5ymw?5Rq03 zNH|rc$V2nNY1Tt}4(XEl2b4}+rz4*l zxX7(g3iA=e!Q-IKYn-7h7*Uh*-(F6T?>&^fu2)fc6dj!hyC5j!B4Sa0>os%ibY5&% z%gGGkuyL9XqN$qw9cQRei1YfFw4}Ilk7;hE3(n5)j5*L0z;m=ad8_mQBL&F&3l<7E zyQfg|RMFWBR$A_BtaLoqphE#$mD&$C^cDYj5mAI^9?Mib!_2vw&_Fp>B+<%!ha-FT zr`|(y^V&?D+wY#Oy@sdX-#Eanyh^oG<;Z!=Cr0LBfZeLxF#XbM;zUa0qT%k9^)+$z znrBauW|kXQ!YjMi+g0-&g~f#UKtM=Q@2!7`3WSC}qbTOC%T+0+iBK$J`x2wLR5XWO z#Qs2u>{zR5wfxuA(Y>N|4F?g8PQ%wCPHd4qDY9!2))AcF(@<)_1b)T3i8&7iCr)Tg%s@ul<2Qf=dRWV5Zce#SQdtUISKnKfXGPHgY7qj=?W ztN|=OJtV0VrH9P`^2!9Cru<$P?IJj|e|Mey=?SCOIuC2C%y%A)SmwPP*Pp?d=P*zEk+XBWl7?CStgk<6P>PUiPf{ z9^DI+BLSE2MN1gGA%*+t!iNG0$l+3RH<*ECORBJOospg}Nyc=x+|l>DdV)C9tAJn; zWBd~n>Foylz_L~+-w47twY62*_H+^g_^WiF+IeCFL)t35ut8N?f>4cg9LP0G*EZ~A zlSW}{%I0(Y>H7o?k#KkfPfpMxZA5HTFx7H?Z#rH(!g~ZgEEV;Mn$* z*Q`;T^0x4PqY9^t=Yfyj471XKl%*tvsZo~I-{CnHt1k0(d}sfq=KL>DME?=%&CFA0 zCt#xT+8xR9Q~%HNgk7@^VtnT4QAWj}O~g>wJA#zXQ=B`;cR=tzBR*pQMRL;qb21D{ ztXkUE#HyN~!{!Q!RcqA3{139)hiIK+c8w`J%l$L+-W()G<*4@z)AP*mPm*EIB{Qhw zzWwv@h-WJN9#a^(CvF*=!k=HNC2t;yUrGBY=BNvc(HNT<701+vc9KPf=fu2?%XfH< zAG$u`Po|O?Q(lYtuq@K7CsU8vDCxuZ9b2jb*&nwqNjs`54iZ==j#fsx{o{Zae(N>2xk+C#cF43n3=4QpkiXFc5nE>7r<)z_N6NNWaW} z?cDmRd)V*fkRVK%3jWoNB1#{-q0n~d_@)4OR#Orqf`tn%Y6i zzms|5J)CB0%S-z-tIcAznIXA|%To3f7%;SFaOkL}TltoB0!|HSE$5I2HD6p5= zAJRMiB9GsFBv|ShWBUcne{6)KZlB^Byuc5Q#ca#I?GbbW|D~udhbNP1CyG1jY_VrC z1%uT5b0s`I##Eh?=GLkES|#QdXDf&Vdf75KUmpJY=s;1OSAKH?s>y?8atOWXfbH#w ziyW>?_p*w^>G*T@JyM5>J};8gg0)rL6OdM^r^U3iFjG)u=Xx{C`wG?1wW>nCecCUR zh@*bO>LlT%(qhI`n4q!Lp8Gy~T&AKyA*5FpF$Z8p(+GH-$vMQyBbD8=UX*h>Ib z5p{F@37g5YQ3)v-mx(mX()(?yd-c`MAg@f7(>DF>xurw1!rs$t2(Ppct67TALKc`Z z>lUUB>Iv+_ZbOt2;y!8N^|sQo_mXZa($7GR^jf4ZPd%Xumnv(`>s^kc5se0hAXp=J zB_BxOYOJ4CnlLlXb9wtw0|kr~Cu_B00!k=bt1cVO*lU4cr8~XHAt1Ka@cKe&GOdocUf`8(->do9x+?bk#>U6Oy1ow6>>xTsk-mjib zg6vKMa|`m5dKmQ|bI$siWlUXMbQ*hq&eR)ilAQp9AR`vz1S((Qb5AJ^HHQRkml(VR zB_)4P4CR<^QHC-&lD7=+PQW1HCTe^4^h*_PnNqxE_>scGzv*lWckh$lSDSjHu@rDQ zqe<)nBik8$^2sdz;nY#hv3FIqal+TMj44J;)YV-xSuug@w33h zQL6d4#nsffS>U?L;veT$=1&I`XjI_~;eu3{UMgC(!#+SU)q7fYfe1b-AtI7tLmQHk zKI-*WSf|N;OH7=Y0YS=UugN>=KhaU0y~W9bJ$Z53k}aW^HH*FV#*I^wRHb&Sg#ws! zL74bar5}ZE9Rr#DXvw%x;tYX5J_~o^7e^wcDpV1k_e-g(kGE~V>AbrWnVeCU-TPIpox?wv zaMZwM!0T*>OVQ!|I$Z*`K3jldqj-tGDmS$m;} zvtd0bY!6d7@?DSpbolM07voCk;(+?w$xw6S@tH&^8OlNLH0Qm@0=&cdD81>;_Zxd# z&d8hw8v~*2iCY(4PA@k~>+6(5y2#-F=~-pysa!!M)XZEu6*0WaRtw_Ve(^bgNCGe` z@~}2l-d4&L)Ge_ka=phSE_HwTDs64K?3woHv7brBHska?zHbv2F>eRX1r-Vg@&pDi z9CB|I>nBG2h6BItY=O<8&EgYpf75q4++^lWZ&_$vZI47N$29%<__|N74J?l9+r5=T zuW!^xayVYR3f}kkIf<6tIzzR101h8-QoO zMg7Rr@D?)yc#Q}9uV#~J(mH&cD76GXjUs zhvI0`vL!YIfhoPto{V4!^ZtWs$0W1amab_TMAJstWwJQ_r|^YVt%e@cY^sqSnLe06p8_2J_bAc8kAx&M|i+ecLl&^Hhf1_3{i>t?H8^eHUR=^$rVx4~kVw1>oC&y!R)V-tf+@kRqM%xLAdQPE#VUB2~ zV!@&FnL5)8veJu-i~hvc>rb;)R&i$Bq&Mc9N|A7gQ$KsHte02g>FFt&jTrT?146u) zE?O?+fDCa(20H4ik>K@_EQyHeC|^@=KP(@K*(U@tn0Ys7aBr9C+ZV~eq%Fi(fizbbKb4A z1V|sO?n{sYVSoy7u+xku%rYqLKbtn>WM^j|o1JB@UG{CHh)6Qsjt4{zyt^YjbS5{j z(YB|h;p2Bp`Nct)acR_3<*W(d}^irekS8Sa(Fk2@n&$R$E<-yjb!o zZ8hz|y+eZphb^ejXvN{;U=d&vhQX*mh8&4E7p-?Uw+*hl*Q=|m0>UO6)dN7TxSU^K z?CaZ7-!s-bAZGhw8IgW*x$QF7dfZL!vwU%bPF261UpnW%d)tbP_}3c%vEe5v#Lhx5a1@;$Itchw{5S^yNrI09$g{ zcnEH-t)0GG#q--boU88t*FS1&fhrr|dJwMudZM%GF+IWQhwQ(#_e1HT_uVbpFhODy zvmM>d`=RUso5HtT>(sslX@2*oa>!b5KCElao9g?CpfPYLd|7^+pbyL4Mxx<4`rSlh zWH0Y7qwWAIVx8}F*YM60c0;@7?(UAdL-^gQ_`!$LZkL+902k#B<;zQUc32Om`qzu? z8~6D|)09yF&N6gOF<}$_b}}I7P{r+c&RZwoGobgh5B@P)$mm3wdyOO|B^~9ATAC7= z0f4LUNiW@PUZTMcde8atr`T-*^oglceJXXRtnay;X5@J7JW61KudpRSOzO-TIw}v+_boUGT z_yP0)*Y*B2V)()y$l|{PP?aNq^uT=ln5?uJSO5W>e66U(L*RwpBTs@mk3RJQS@M9- z(P}ZA-sY3;HfIGe;wb&gdGrxWuZx?T^_4|$01*Vvwn_7MF0_6Y;=EH<5l6K3xQR*?dvdI0Hn>)Q5o8I zK_fq5B%Gg{+%}Uf|(kNPZ;OwYSa z?Webd9CE*1CHk=R;(rG^VqYte z-EFoMH$k2TcdFK~DF_b>tqwaII#I~@BKr-Yrcojcc)~~i-awf~?EL3OC4T#*g*U28 zfEUv(m4vFwra1h0bqR~==bP4}L$|MbZnK}p#>Qwbmi<~+Z8YNR-`6HwiIAmt z8Yq}Z25xeFBO}kR?aUdv|1Ztqv9Rxb5|sWx;quR+rTX>%mx4){&#>dB`LYiZVw5wU2K^2@ag(aL=Y;uxltEC z%~+&an&5*v?`!cvk@?L7@Q_)hwg6&)Ckmwv+(@&-IAVnkn>5f^58z^)-cFY~Glknx*rVA6my<*j{!h}XF+%MZcLTF9X{TxbLBIQZSd{SpA8rx(re z0COkVXl(?@Oe;@X@Z2r_*X@&@ASR5XK~`E?dL1~`(DDXu%^8W`F$v(uG{Hp)6_H5=rLqldjquTRh$qv9bsJxHFkTB6()9r%;^kM7=*pWX5%{r2j z2Tcg&`qdzE;4+rtXuWp&^`7NqLPMo*W+urSU`~>YIyDS1fitY({{bjD``gy$kNz$H ze=MaMtpNRRSjz4+o_&KMFBl+)zQaIH=xbh6bDE1U9gW{C_@egF2c-A^V=a_{orrOW zcCI$i*aoNXaaaWa(9~b;6n*mW06BQQU37_C02(o;E+Wld;A)yWg{d3(p-l|{-$?8Q zJP!lNbmP)%pe-&3`g1MESGBD-cIf`of;VE&>1w;6AL!P-Rskc;B#5hlh6!@H8vF@$ zzW=Y61O0*ZFvIKY)3dX|X&UBIppO`valOtsHZ{fIcPisYf9N^gXofu5I6>d2>N5Jx zxKC1+ucb@s*09ixqW3DcVRWg_zRd}v-w7iv?Z1vRzzgFZ(Ib>wRHT3gng++!m`dON z_g;!ZyCLAEM4-BWrJ?=6&2%FU`0UJoj(4&9E$F^xqr1?+7nHgeXg>Z6I#(9?&kp;4 u{m1_tQTFdp-hX84{f{Lu|I=Fx-C??3yM#+VuwOO}Wmef>W~oNVF% literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/7.png b/labworks/LW3/images/7.png new file mode 100644 index 0000000000000000000000000000000000000000..05bcbaa5665f826ab3f7478769ca9af007980419 GIT binary patch literal 11799 zcmbuF2Ut^SyRO49qcbClGov6NGNYi<1(aSK5iwM0(m}eE5Ty4o&In4C(0c~~3DQdl zQRz~p1qcZO(g~3oNJw(N%=ypx_u1#{y?@X4x>yjeMZ#L&x1RTT@8^B-Ku`1ZkGwxZ zAdu70`*#f?5Vm~qmGk`x@IS_*Wg_64qOXRTuMynYH^9!@38HJ~>*WFW^>DTS)!)h6 z#})1=BO!G|;)d9-k9~c;d=w=mVgLIK3Ane5WU{xJH+YvHyzZO(Kp>oUtS`1#YGtkv zi1?q-yT2O;W|IhEUK2|h%wJ#OqV|j6!QA4O5qB6EQpdHsH1iXtOVblI0-^JJD!jC?H8oS2%r z5X=LKsPp~Y`_o{y!fw5qKm%L7UB`(q`i8Bkre+kEgw-oJf`)HB-szv)Wr8=nkG#a# zzNDLLxV4X7NJL~lQ1(Qdo=2pu(fwQycIm1RD#To>I1j!RSrM>X;EYUY-VQ0*vM!X#iUe45w7YB z<38^M*dAMooxCn(bMisxo@aU$`!lvZy~(JUo>7Q2f3DQc2xO|oi4j+3lp0O@1aTu+ zN<{Kb;HN)M`i|+!t@-59vL#wqFRSd0sAnn%)iOwP4A{+Ze#oPXyxVLy<>g<6(GFav zYn>2Op_=qmam!L`v_GauHLYJbYw!#j0=e4$lfdn2ETc8LtI*BeJt_>_*!Ym2pP&2+ z?&@lAHHoM7%QxRb0ukRcRP*;YaFu9u$g20}-oz2@Zy?$1R~VQ7S{o}9y_8T{SLZWD zQBqPeF*T*cQ+*Yyd=*tj`yr6nCs)Ebucv6aek|0OX%C}~P_#;rjqo{CX=!O9!w(Yi z#Ld_y65~lwtg=QwL>#3d%KIg;R-CGb`N1I}`z^y^p8vR>6gFRiA8xGyXESCUKq!fi zKSS@bJ$}{*!ym+RUxh%3*vl)~`#IW0B3XkXNqws!N{A)qJ>!%%+O=3Xq`uAWhG*E7 ziZ$KjqO`xx@^#4}vgyAelZL%_h<(?5$&XZBP{NtfC? zB;WrmAb2jW!~q`H|3d7YOn2AR&|M=JquJz@eY&_%$A0@+8AcVXUBYsqG?v5t$w9UN zd{X{~z%2VWkZ<2XzV;yHT=(hnHL{pIk96^6^?R9uT^uqq;MT}|4pDHBH~IKLfXAnH zVMq<3E4^&QlaRm>1Uq<54J>!m&~%%2Q40 zwl=$&vpD(7N35#nz|%Sc%IwU`e=KF}A%wbaimkXF9cjHhoToO5Jps8f6!$^hi`zD| zCO7P0T8)nEOb;vOgq-btr4xDgazSfr>&M5ZA?d%~TT;kRvkf;tefo5!QUFSoHa)!l zWxk`VYH-OLXjq2?B;p0U^W?}vS4>0Dt}_hZsLLnkX&e%QRz0XmC@(8pN!}M17ysZW zt)AB1-JNLjGvpCRbhZrk>PT^ArFNam@FY8@ay}otZJS?h7`*3_x4NxMo%t#D@$Dk?sX3*>1C>ZLpYGypG>INzhJ}gAVfuT zY{*{h_mHjBDYYRG2o9nxmI+APs>y47|c} zu72)IQuJMYxxTTXNi$`GbSDC7%wry}Ow7zw%rO}h>d`O)r60C#6y38(-78a58O8nx zxe*_CsP0wWPOVU-ujy}ezW60m${|vf`Z2+cvPEG1T$7X(@a;3<(#}IO`t^x+b22jm zCg!YUZ18^P_!;Ss#X>0=A?LteC1+*T(x|bxVSkHU{sz@V3u)DTw;9Rq>$$x@8#$;b zM;djdr#je&oq6>bBh5$U`z7kLm=a;S7J0cN!~KQOZrmJD{Jqtpgm_g<;wnKr%}c(&TmY?HopI~OW#fO@1Vv@sW+Iv|06vC44`wbXj`$mJ>2urKht z+KVCXT-h?qYvz-l$M=Pd;4TA(^&U=rXD8)WgTj3{zlWUtmi;RZo#}B4iK3XGZQ)yY zU!SXbq9Da=PAL41_in95>G83P+O2)!K^}9>+S1h4Wu371QB-HYvf6slI;%X>ZQWXo z3*+w4o&K}Sb8JoL`}>CHrZ2<9q^{SblLQku_N6)$iJK(sutRq&Z@<4qQJ_{ya}}}H zcZ2ko9Z6_<5;iUVo%(jf3S;roSKQ-&F35AKtnYA2>1q8-DwX2XT8%od(uMj(ocryx z1djulC%HqX#zSxj(jJPWe5_$LD3V!N4qZGmxW zjb{&ydh*qG{qH5}Odot2f}s^(T@vSkhwEhMBJCqN%6rqD&dWK9I<52SV7Nm+OOt2R zX_WL}^xaWo>3G8we}DtMSSr^?>TgU#t8VWZN=UD4-xFIgq_XQ-5T8TAw4!6_REeHjxp%k-q4^eO*<>Po2g$)Yo56 z>f^BH<>S-zhC(8wM1a?rthTM*+S)4UPrRaeNAd@V*O}N=NJV93lAxcz{~21ii_6N$ zFi|2$ud=q*d+IyLjqSKqNT!TS{QCNOJurm@WT!fF(sZ4suCDHtqe=*5G5g5G>zaP< z_`5$(Mzwpw;W!4JW@2q!WnSmJ7O%85qQ=}++jxIUay(nXXD_8XR0EWd*5yq1d)@@# z;)awX4z>uD`k@QIsM}UsHt8Yj{Ye%uVw<_`;d}0JJiamu-fnJfZB1R(RI31GrTp~( zSIuY+$pH0<`}dy`jx=Y?iURNLx=Qz3EOf`laSpWfq7NvDgOkq^o_a`0!`q&`M;~A< zny>*M^U5>A3IbrEwWN81?<{lOKrSq^oRZzLlChp6KdW~F2xtZRSvzWRgY;^39A}A~)v}Enx?k7X=r{WHBH+L&!IP*oT+YEfM#n?6jyT9OnXRXEF#6f@`%$NI^~83D=e0VIcbG(JmxFS($NYseD)Nh)(F3CLXX>%{CNBE};YDh7C`uqIpiNB>uWW32)M95Ps0!U;| z#^g9!EJb!A4aqQ1;~vOzSnZa%fe&ZBN~WN~mI5TRg0Yj^Cyl~N-J%0vBCwd?HDzzG zw9HW77v+@t62`XNhb0{h&8M+9`4@Qh9!fWbCB$;Co z*M6c_R<^mj4CT76(`n3Y+mOZM7#&Q1sc|rF2)p^C5!p8b0f#Ck-f|ptI;o4X{>%(` zRp)qxcb|ga!L`;gjsl&GM07B9-D1tTa;gs1bFL?dUTfCR9h#ia8Ih ztqDAmz^!e^eek)h_@1+>Q-)!6XWxip*L zaxO8m{M}(STkts}qb1sN2H0?VaFu0~=jw)sZ2#GBA}D_tAb1XDTYPSXQGNN91HUAz z>6eWGpL+4{&o5GqunF5Y$&r6@XMcach|W^y=SROaCtcG&gO(d35>a#-rLwivVq#*V zbtN~X-g%H0{J1t!piX_y-JX9+qWQMy!`Bx+K4XV;%k4sD&;iw|+b{Gv!swH`a_%_P zM0XsY->0{1bQ+e42Cc#P$VmQDf7(VKV=XUPuS^%)Bh~G8R9#zvP2S_qL zjMLh7C3jHt+pvamiaTOcc4FnE53xbQ8Es)%d+t=^<_+iv?qeT__RzRRqMg#Nkou*9 z;$N;E4~s%GLkgI9J?d^_L+5Fws}dV}dy<3PRJ!}gW4A%})eoZ8$v$Osy=8gfGc!L! zzNr3xINqO_%K3?g1E*hII2zPUqYOipsC<@}%y9GS#D*78BOQ!`6AyXjIw>tiPVhWM zLYEhplWpu-k7YGT~+oK#x@L1DYz)7jEp{_$xkN4Pxs`8;l6C;{GPSCMe-xEhWLV`R7?lb;`l zti)o*pv<2hJY3FO;Yrc@hq?Kx=2XhLDDcFtknk4w%1e>TFI#BGwI9b6ZKn3K14yDI z?5+JRB_eRf12j@h)8`xn=~16Q?_FU_Uw!io1k-Hbjo0+$2d`;gT3irY*0iiSaEbb; zOwWp8o!x{jsBW#s3$Ak`F-4$l?!qGj{=E^J%;Q^)?*s&k>vK$#zgHNKp&BP#J3L+jR= z7e~e%4X=(DYZ;N(IS)1SjVA}B_j5nuHmvb;A*17H+}SWeXjtTGE-|UGq4%uNg6&c1 z7U~ybgOTX9tYFi@FA0;0#i4y_@j@bpnx*#*3vgWePKnV+wsWIKl{%Qk$iSSPA1(I` z_G5WUsa9B~YC!idQd|`5>1e)?YdPc0#cV|?VlkcA_Bl= zkvpp89t;NSa6570#Q5y&YuB;T^0qcB_sQ1=z;Hg7;Dy{^WSn^5?p~RhmDLbJ@l@Fz zkomB(YtbIs5*)(Z^BT?xAeLXt3pGqoIY_s#wDbey*E)pMaHZV~^7ha<_{?K`BdnvH z*cMdh=H^xppHme#ue}SJ_~66&s0OEgE^EID6J)V&mh76k0QIFmnOKz&`uWP0CU3~w zX8(u7Y<>X&+DPDog`l(pl96g2j%B#r041pgKGqe7vM$?9>|aVAbdIuyKz^Cy;mkKI zFIL)WRyVbJ@=W4rjuW=Ay81vQ#n8lL;tjyH7Jk0I*|qxG+A-1@10y9hHQPFA-$E{E z4h2GP$;oYWaodg;C8!2JJY|Lr$F!o+Q4*T*7ZobQArag2vBZ#|q zpXGr9GHznR)ywMvaKas1-vO^)fkJI1V@B8NN7wc;#Ml8)$k<|2SYiF5>&9eN@K(#p zO_!l;J2l(-$BD?kV!%#S_b`o(viz!{W-RkwXAgP%*Q3^xto0DLY+QYDE%$+jM%T!$ zVusGWq^r7ySCc-*$q`@qZA_Mfnvs%{(n>$TPmGUuiUMNUk$z$XR0AQXsZG$*8!~*R z9?B}Xf@^$phmrO*>65R`i>xHd&Wk==Rhl~*dM*a~nJ0IL6fEUuuJ=3F0S;ub(`TY3 zm}J8&`+O__jqN(FOAr+1I>M#JD)@BuV%r^cq(!;3i4Bvn^}WqGiN94>nO#p0=GJE5 z%|)iAhZPlV_E9-fMZ|G5YFpVTEa5kIF;96Hp$xr<-oVDYk*}pR8gX~cYd_gX>S*@) zW73LyN3f6E`r_;vG-c1Wu*&q$8BM~%G9?3O{~L1ox=gbB`qtJ%r=>L+>At7zU&-{I z+!N^WlHmBfs}-pE@DP4aY*~PC87h1_7zYr5Uyeq`B zU_yLNnUj3d!ALF6@EM|jtMSV$4?w+?n^-xeK%POyN=Y}0UHZjz&o-v6d+9>Fi(}l8 zl;Gy>&?xLfvzz3rA zj4+}{c}*HF{p@wmd3*+}9OZMni9#Jg7i6pwg!%$2rcm%F?nBx0f!!W*YwQ|Ky7y)L zhIN*J;Hfi^851=j35_S^4KD_^nvJ1*L4Ecy&YK zOL=3YIB#dVb1}ezY1vgl?{_aI7GL+oM;To;4aWI9h3H^TQt1x5g3u>Sl2{*?i{J|4 zIHuc2h-I{DzgH{%H*R~0 z{qGv;?Z|4!_lk32j6Rph$8s_o3Z4qNLz!cbo5P;-)Saus{lHVZcv-!@Sg@s; zN&1VgORPEYJyy=#3vhtJn-LZk7QWL?Y2}55cW&Lf#cIdLCnsfJF9UaEd`_c7qG{H< z|G$#uD9!#kkS6_43(cUB1wLv3->5eB%VnU&d>tuXEYK^Oh(alq}PP6iU!9o=6?d@X+z5hhZ5@$ln604?vk8Nn)cpf;&&cm7iG>eT~~MG6Wh^*tUf zhO&TiqsMe1mRgA&t#=(`T^=E5CC8%H@daoTZiw(fAQ$p<*dH%;$03QKb!&O}de@gpjy> zc%gPVTgLevkMtFXC;0syLs(0g=+dr@pCe!-U)OZYFAlTw!g_2&bYJ{s+omDCCGcmW z*35#LeIh~!daiD8_b)pFbT~|E9RG$(-7sFzvOZpL|IFt$_md~+S6l?4k&6z|o{677 z3%D8~Nr(3vr+7?vVq_DG-?3SWJy5iEe%06|Yi=KI2(={JzeD78#^UmNFZ^&`F57bG zg3HZx3YH;gpXwm2k&2g7|LeiP`Q!CAB@j+M{VLA$k1m_big`P4A=ljXMLJ^02zx?j z<2eWBiuzWHp!q^65{fU-O0O;VP%ytn^DuW{S73(a-lwiqLk%yJYz5>T(a_P`L(IU^ z{<6$q?r2OYbqDH7o=KNV^UR-4g@lMfrB<5Mnos_h8T`LX=U;?+_lC2hyN*|0iB9jlJ-4f$?cM#lCU92m zP|R7Y9k~$6p`_6m+6ML*a(oPwFudG|%euAAR$k&m*&t+jfc4-_@{I9i_&O;T*On_+ zOKj+|RdQX=X%ZvIENC2OR{L&o z(6Z*`E-Fqda#mwF_TJxh=Emv#I6gVIcTc|qJ-@M&Q%PoK=3bEi{qgDwJ3G6Zr{^S) z3S%1^)GhbPS0GvMJdn{!Zl|$)F^PaSHMRCjd01^zWy_@Eki|;mHY0u2 zqvA^;n^Fypjq9r)i&_t6+%=u%ff*g#yS)OixXR{6br{Kgruj(`%R6VtxUA1d2~2{? z0N)7{Qz%jvHdD+QwyHjZ329Q@Nlb{Htzd&J5_!~48jEr5gLJ8)smT<$&Y327-p)}Q z_&r%;83ZGAF!Po++MlEd%L8W7Lsn_?8%X-$0Q>4QZkq=|K`p@EdbTWa!3eD;+}6H{ zii(QKS|!FNCbwR<|Ic}YG7@fdv{2`&j4zP1oA7TTkB+4{^MiJmU6~B}Or1-DCuaX4 zYeGO0vp32k`G`*42UX`%>qQ0c&#@su)j4-*5r*Z-63w5!fsPhx#O%e`9^aWeUY7F% zLj(WLaBuBZCj#E0RYso!<0k1BhNxk;OAMhcR(dg9;)c>0;|C;sRQTlNWNAkfXJvW$ zng`-E#t{7KvA3Y@&oF|drXWx|uTktt;j!itpi-Iq{ghNbKA2{g!c zHVHa7HBKfX$UA+F#F}3JoZfw!=KU5VN%`WyQFV#55g?i~?u=^1p_SvN8nZ7-vZZxv zV8?{x^3qaLTstC9&%CkwvqT*7DeSqJ{8x-VEZ^MxxXh4KFMa%6_eEhL0^xox;kU7? z(L5_Hzxj3Zc3tW4=h9}-^pVjTcnh(fTE|#nVJFNufXQaOHNn@hBKNGBGeHSRH2A5B}{R#zEF% zZ0>q$mQR0b=*1%aP2A6Tg^#hF{)+#5V2QYtSRfU^$y!SAtd`M(oSc^aQayy*DP4=F zbjWIXtlaf!#2F}cv0ze`iW%J>c{l7U~qRD3f^F15n3*&|- zOFgb~{hz7s^CvP9vK~|UyF*I)PEJl1ZGklm!1a{&koU$-u~ZWcgPWVu2*&Y9zoO{B z9FBE}9f-Bz{E1#2r^)h-qNXU0x+$4)@QC(HpmollKVMN^{_z&hs;IHC(eBp&OS5D~ zqK9LL{XtWiLYB`3HdH(Rd|t*sR8Ji)3v+WDO$gsBD#**LbWo5uF+#yI!+_1w3z!RQ z3I}y`C|7|F>Rhn`3YmhDrQTzkEDaKJhT?7t3SL^zX9*|40W zrd|qO{f!lC8I|gMj6N@V^TrLYc++5iqPvoiE8xT(@uVvW%HC&80}lXwm;g?afDYKm zaLF|Qs9dE*WVDy5T?5BXJsjd3<1u(u}oBabpc0x-)R@hf!7 zoWSEQ7w7*>lZWPOd>7v?rP*!)ix|}|!4-olD0l|~y>G21dRu8*Xu|tvr_?1K#_xLr zJj_pRH5O@UZB?Y~S0ln!LjWTH0UlcOQjp-=A2qx2O=AixlPK#AAo=``Dn(0&+lzWg zcNolX2otmk&_Kv$O;4m-_-@vmJk%4Qj)K&nNn(4>kOE~p0WnJ_%+alzHR6!vMrExC zIu4;y*5f@e$Ig54;y4)0s`r?#Eg*NPfglbAh$B^ygm2P63Jssy&Q?RT zI|H3VC9L3^cE#stM9NKo!L7afgjn)QrBd&R!S9}n(NLkT7Oj&=p!XP4P)T)=h}|RE zAn1PQV>BivCqcvsgH?so@N*|DCVDNwrk8~iUxR|NHdW)mg5rBM31K>t?T3W`UEPs{ zcLI)ce^fYO!%{8lI*abRS7ROmAoH<6J!&t3d6>YW`~IYvl0fB4!9mWT90bfhi9$6m z{K)#lkVNI&a$_wM6O#_Np51Nb34g6o7u8*!!CVzf5Q8dueTry5?2@dgs?t?Ep66so zO>VI&pOH}#0A;K~4tDl>VT{Bm$W(`?YcB4xuhQ)&DooUwHg6vN!6j+)db-YKLyfVh z=DQdtcfyKiXmTHCtF}khmc$sJ;u0GH{Y*8#lK;PF5}p>_P6>t=OZePo?^Ks6b^#yy+v~zgd*TNX0!{ z6O$BGaOV1_cYhY7NsAB_{mD&WiCNoVZ*8n+sRl!8#P5w8>91W=JL-Frpj%#9IriyO zK8O+`ClYXrL9Ha^6jnzy+N{L7Z`@X1e{hLg6sM+giCZ;4V3pQ|W? zvZXKxe9hD_H~2(HX@$+e#)gJ9Fypki9@via&;0<_K*-gKf7nPkMGF+$l>@W*Rc+pT zeSqVw1EYcm>@j4mByDz3Zf>)pqQXj3Q**T>E*;CHVFSP}_X0`&7I+#mK=seaQVnZW z3O^29Ey=0L&Ami9-W^7-a#f00p#w`O1jO#*k_fh?nxwAj~EZ zF(KCA$qiX}acvf4PXwfp_BYkD%i6ZozeR*~S#SSf-(tOvDeR>m_Ne&}<)B&O{L*JA z3_NN6b_Jw35Up`fvJJl4;sOwSKwVg7m4@v>P^6W)tcIY66xbTociHL)Me^3p*yQn*lp8gLfe81WN literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/8.png b/labworks/LW3/images/8.png new file mode 100644 index 0000000000000000000000000000000000000000..fbc3877546d23075ea48232a8371c1f4cb4847c4 GIT binary patch literal 11289 zcmbW73pmq%|No~_eaoSPl!OjS5-K9+ltK}iQ;wAoGsB$a5XHABMM%sD(;Vj1mSGO5 zR8BdLjZMTDw!$oi{ocCo>;B%~`}e!=|Nnctu3fInwU5vH_ zAP`|=BLfQvL?9b{P@6Y`zgTt^90R{J{V&-1LlJKNK{xzdA*MI{eY_C*0y{^+Z1#bP%fT0FDNW>j4*H>74&mQ(W$ zB^|8-gX|YP@f4EvV6`=j>iQ#b=u+5~PNwdKqM8xw<2kH#ibvnWw(Jp<{msw#h{VT$ z2!<$(V)=x<{x`a8tuw66?o(^B9G$*=WbP9}spDSs{>>X84IbhPBnYG-{Q+bhBv>CJ z0IA&{1%WtiI}3p*Z{81y+Pz^Lq+#p2&5+>>FW7?1C6>qX!+8tx>gqN*<{!CWf*19- zy&{nuU0q$b#3e>%s!XrDO|J_-rmV~*2|*go7>H61@kdQ0&MQ=)*Lmc(Lj5#P6^XT*`2Wr)vD2B$a zo3rPRe7p)}FGtUzV0tI#*e0a-EgfpTaTX^p`Y*F%Eu8O7qD6&;mqc}cW{WF1yo!z8xNFz0@ac|-pJnz= zPPDSk*|{iew907REiC63>%o`3Vm{J z465fj4*7SRE_J2V<;`{IIg9EomsM0$%qOFlZyk-0f?VIQcOJrIvHJQ-?5&{Cxise; zB1IU?MM-t3b$I3O#4ZKvS0yDS{MYUs()7#gAekFuRuA6u9sMA`pdu<*#r9$c{l+BJtX8 zr{J7EoFnh)?jsOLyFfWzVKh+v^;Z^kN5wARJ0qY@U$bfA9! zVCd|&>Kj@!=qu6YD#jM z1Oxl(PkkoZZ^6+MGZT_#f{~x#OkFT9P=GJJ; zQmLz`M4F&Pr8U1fgtfmuiJ_GkhGxR(cXB`V@G8s_gK#L-1Kv#1TuGV@Mzm1LD1=YW9AD^SUucEDc>pHFmGWO}? zNZgy{hA-{Sl@4+4>&R0vhyHZw{}|T4(}wt~Cm%MS5_Gw_C<|p<9_uD9Jkpyv!NFyQ zc&H3c14rcT|v70su4tZy~#_^_a=Qv0OGLd=t99_8W#9vuC0mZKJf96k^_oe?tK?{ z{1^89kCkr<6nAh&pqD~b}7&^9fQ zCLJXG2^paU_q}2&{7$K4!l=ocOi8(4MYxpxp3I@|pSOb3@cWDzcJa$qX!r_(KkT68 z(WQZ*p|kYB#P-wG=5Tl3S~4gjm4ohwE?Jym)}_`tL1FpV;%X#TkDTk%N2W@IG<|z= z@LTYTaPrtXNV{r`^jZ4q!kb-N?r+S*m}aQ;*KdTJcq{zryw7e2pSw=MUzJ6j^YVqM zhD#7gmXPtOy!?D@Uf!*vcIzP*9~=k~x!wF&>X?E;cb;+b{Cnkyt2IGvU2piGwWhGJ zu&dCj=yl+XU5NwH;?bi=)$?7Kdub8VHg>(ez4FqDT=eIbmQ7*Ckf@b_R(4D2^w9B?9j2% z3Sw!GkCoe+l-qi}N)v$Waf@9JKPx3AMZv?;E?vGHw`3y#x%fn1G`lo{Q&d=5O4ef6 z=F(SKLDfslqFoOR<`+96Bg!Io0V$Q7j~iZK4Hb1nuFh!&f6v~sb!)(F{a0k zA6MlJkQl-sqMYfKj;L=WvWp_`w7-75o<|G7NjaYw=;2-Oj$lxV=e?oqa>0RiJdZoz z6!Lt_KwlDyL6A9YJW1Gol;nplPolZo2NkMJI@FBiJEw=%NA{~dELcRX2d9@7DAOcs z{HgCvCal1OKr*^*M&#LMC(X{8k~+|f@(jvJmxRQIJTI4wXAi5$B43}&eCnrGg2^>Y zhk2FRuY+7X;MVvbg6;ox?}QecPi7X+8>Mv}@@|27uO=huhdzmSYg*jpncy|7Y%)US zw1(UpNsHt07#ivZSHtar8rRNvueuW15{(*-P-$svJH=^#P|ZfyKACaRvlwEZA+tgY zKJ{qr?O&buQyJvjXb;j{m?Xv!HxmX8M*&%ES7K1!tj@<`xnW^WNF3=W6io5*<$?^R zi^O4|%>8QaN}D+vo8~(S{{&D60VI}^U-AOOQANQI(w#0Q0d7k$UNb;Y^ zhEKQ7OQfA4M})2d*^NN3!3fm(KdZ4p?qppC<<*VBC$a%@P|VWA9`5!t5)vRrdmL!u zo9ln<(c0lhZ#NH$!v?+5YO+Kpvz+MS{u!Zh=LNx*(JLQ~3@k2)gS}ZKP;ZQU*Jn@` z`qpD;_Yar8U@{zP-w_F3Z;2Qhwjo^1%!oh@{y583*>Gmv|H~NtF`GX$QiyuZ=f}y> zl(e)dOMBfLu}C@!LF{l&&I?I%9CMItQBvbbt9%IWvz_8$`ZT*JOrY82Z6_}i2FCC1 z+MVEwYx~@;&S6bW`Qdc#d<+kKE{m7j(T=}1xgE-`bE38?Nqk@n`k_g3#x{;ChZz*? z?o4+kX_2d}L3Zm;EqVJ^n?X?;Ev}>2eXH{}*6d;Gmd->DeRqYjjb8BX7>rh(zn{Q~ zdGuGs{+AJaUxpG)dx|PanBG@FnXWy@sGC!=ziDR}p-)7@5uZ<#UAC~k(nAbn<#(Hq z=yYU1X+eh@;+fP#>+~*Udj+8z`%o#~OjPQ)ZtJm$snZzj1dTB zd+crvz@4TEhBR+q^Q=e+yuVD}#wjHK^XJcETkg+)OEwd!(%!so2soBwii%clZWvEb z&(|)^j~nfjA=jUs*kpbxy=TpremO5HH8;y+*E{R|Y!sabb`dr=4tAuy@9q7qy#pSS zUqvB%hFUuW6rE~q<993Tj=Sn_n`qo5)1zL$XsUQ^wh^hQ#~bJX4z5@ZeaC|A9Jzum z5r>@c6k;OJ0*wU**xIzsIjbk3d2~&IKRl95TvTy%bOeTV{S`=5C&GOFE8wY;EFHAJ zC+o+@$MckV_5lF_51U6<3TFMdHYgyLO6<~T`|_LjDHO_*S=hq#50We}^e0{kSXx*d zH1_oHknoAPeEBlpHBv!5US3%l(eNAO#FDTl#LCk0RbHOKRA0%Ip7K+p+hB5qIGl8= zvmj*8*VfYLsfmd%?Io`deoYL3dZb?k|7IvL)Q52py7iA2^THfHfD<- z?opuoi%|At;E;;UL@>W!`K(52t_NX8sCm$ESXP93QRLeAi+kq@SG8TXjAEABU-9fH zOJ0$EKh|;MNKkodUE({THziNtk4?5!kr{jVtRiJ!88ca9ln#rHytC3qHYF9HY{2E* zBEc%1Z?tzG43lIJ?|Z)f_UiJYOwEM((Y!D=$%ab{W6LWFK~7YMMDE%Lthm8{N}B#f z8%`vSXgGF>L0{awf){jY_hV&T;=JhFZXCa-u%t3+a4PI^|M+vMi2AX27a|G#l@$za ziv&WAb%@;)*s$=R>MNL2_2Uv4~kpz=<#@WO`_GPuNr{U5gyy z_G17;OTFfD_eY0ZrXT-q*$wYZS^1Gb`dp4#YjqECVa&$qB)13f@jNl-6_RWe8tbu3UgDzFJ+DfG$AL$NV2QvkarcbV#h#(z zOdap(5X=&ZUCVHw)`k^egVe?UGOwOt*x zNz@{@XU*vPT}-O*Yt|%V4iflrxi?yd(%@o=0q0C32E+L_ZFTQ@v^=XiW_9eEAO3f8 zb|OnKEs3{`abn=~ueS_Z4(sY2SMxvHIx(hL)nT+HP5o z=l}*{2!T-Nc% zP6(#s>7X1WytK=d)O3wixzu%#P;V-MQ26?U=jh>m1p`++g$uX!4{Z7+VQXpkf8K+C zgw*$CQt!LTVFuwO;0?5Tye0Bm`h(v5q#f%h#f>W|bTo^QLGRaz?o0O=` zf*`KoH^lGI2xGp-&>VH{hWYlZIUU~dNR#Y#t13}9DKCf)JK0+g{8u~PJ%yO~>S><2 za}9E40j``LYU6Z<8ZI^I3uUuZxhoQnC7PEFyx#0;;m;nJTb68s5AuAZB>(W{tpcxa zG;MSY8A}0{6na#wE7?p}V|Z55yGlRD{C0y!=RxXgS4hKzyGZt}Q`mGBcVb__;rwki1V}izASO3fV|~l zp#{u7dqi(z%%((pYHx48!NHTm8z6gDHtIx)E869uSEk+V-gu){InI154u@k`8(a=@ z?#I`hZEOmHwP}%nV8~1#7J$U&=ts(Y;gFr_d`^OdisiLy*iXrFu$3i_UD@?UL#9o! zZO&Lr8aEPcB)jIY&H2Y5 z4V!O9Y{up0x-@i}xVYp3wZ%k7uiGUiHjx#^>g>wDY-M5b(y=CR66VZ%fiX#cd4KC} z5$0O~$e|34D1z6(%NC`YVm?n4U4M<>m2Qo5z|K(LOcm&@VD0Sft*osv3b?9s^u_id zvG@TuSE<2z`yoSQrYHaBtR|xlOB<~}$hQ4_X$YOD=^tE=4dQ(bZ^vs45aNy?KV(ih zWTYbrSZ?Dz-t-A$rbN;GF#KcvZ5CNcQ3!L*eIh(%c}j z1JxA`fw*t{>$Z4_At0RkhCYzv)x2n@MH^%ea*d`$x;35Bc*|wEhBc<78s5Qnyz5R( zMkrcu3S5cDkCmY8$GAh7&~97B7B6+=4Et1W*E}Ua2m@QCnP0J_WW0oEw-OrGv zwb#t=^AQIwjR!~DW*Vt#kRK~nILf8s-bgd)!#Xo4?v z=$+hOzGb8&jG?x2Q9+?SqZ(U+z zXd$CVw8%#&@Z5k<-eB`iV~hS%>*b8nL+!_7@)DX1mW0NJbby5~e-2k|osS>aBM)Uzr8ZFg=npwPm%t>ZXX>#rmAtbch zy*&^&w77I1LyHrgLE_p>Djnn4tCOw_O1VqC2`OVi$_Ez?BZCbu4o=0^edSEH<9A2A z4acEn+m^q%w&Q<9%VTKg#RVR#@BBlp{)|5Vtp>-=9L*9<9j~hWXv@H%pNExr>>4e& z^O>lovqOa=avxv!Ky^#(-+0n$Lp))y?!?Gtml7wE zU7B+QQFijFp>$^m162Sh#^gx6vUF_FaqR0I%A(sLPs}R^4kA5wRLY z`5P^jsWb!2F!CdqkFBj;zLf@aU;m0`6c`qV0xO*?Z#;^D)G0k;LFbt)=1J2h22<=L}+l{UYKY8YP# za{Zf%lz^aqHr2bv6xLVV8LwRT>fytO0%;vDPG6p!oCHC}ksl%~EKDJVy(ugz+T{Ko z5_PrFe}kpHeNk_b%@npE%fj2+n?I)sIB9x%IG)bzFtIGlmz1fe4s=vlc${N#oG_IIP9NvG@0;CBZU*Fze>P(DKJsK|v zNs!KI(A*FE{qT<8-jDj?@pzC5bWFN0S;RVTtAKku7lL%lr~**J&hgcxxh$3wlx_ZT zrPFFkaeqpM!&gEmjGdDy=zfD(cNp7Yi`>eT(-t1|D zsmY`%u>+=XTY?cphWstx85X&7%cGn_ryvzG>>EKiI zh{gx(=5)bL|BKT8M|9w8A=7+f`kv6J{kd>VA1R#0ArU+@9_A4fcRa|uU_#2BWXbq$ z7a8#07#=%ikOYoaY@T&esIX0Sz!0JQEMfa;j|#Z^v9UV7$|$fu4CmknNcgCI{b`O! z!R|BUEGysXL@$l3pZ%v86bTgoq|J0XtkKCf6Aoe7i*P8rfV|vKTqsd@R^w!y@Qp>n z&nPw%)xMq4_%ChftLK8dlX$JTCtmBR2mSVW%F63Z>qeR;i3N1`-d4?^hF@hTR}n_<^7SS8vw;zXx*yE2EU-5y2i4r3&FD%^GC8Bn^J2Qi?8aqTLD zvh|pr2NR|KAw1AQJF*xXbSBfakUfb+Pn{v;z3t&;&MEujhH3yi;dUN^gW3mifc0qo zn}Of=3H(J&m5_8*J9eM&pka)Wh3vHM`onvXGSoxHlXq{3nY~j}l2dF8C&xAs_~+L( zpOln4v=={vPDl`9Q0nS*p@^0V=@z5?#!T(dcb0V53HlIR(*0T1_8=VT`^W_XZIbn- zsnvw~Q?lh_PE1@9hW7OL8O_(lIskI^gfZud?Rc%dbX877L3tx_A^P*V^X_k^692nk z1-3)(np@exIR1VUi_`fd?)pt}~ z(;h+d@Ng0kHoQmo5gq>W9CLEAbC-=n&Mm*;S92NO)yAf#rYi*iWkj0q7KZFuG!cDR z3fyD^x5&E0;_B6>1n;53khyUV8l94opOlo;cx}|15BMMLjSz|##!S(HYKwfcc zc6Mog(ysjG`(|Bv%0D^kD@#^BSj$U6gT8U&?Wm&3?gB2Fe_#2I{!Y0oz%Hi~5OiE= zMM0F1zNpxwH4TIS>yct zd^!AC5M^#{$)-^3)}oi04(FL464^UAc-$BW^XJyq9-L#%>rjqo_(CPRx4+y4AI=LL z0-^1NIwA{XHgUJsLm-Ee<)eTTm!FJL&sfD9N{1Mz5BkKs?0f~7z2M)AX&}EKgD}i# zLqs6IhzmjXNVSSKhG)*s`t_2@=&tBk$tfZ1*AW9A(|_-0ywF&t#%08mm-^Jqu^kVD zj6qHs6r@GQcpd7>Yp6gGs1L?86AZk_LHnr=)gWFnC ztFHMp7~M)gE&jkDwwUX4>h+vRH@tU}#ktWWq-A_bmV$yMdmrjwN=dNkM?IZSR*9dpJimgm{MD660I-E+L@A& z$aqkiqYixoP-Z4@#rLmL@L$~cy7<1~y8%vA^SuCMfh$wu$O2^q3utH?ijC+Y8Ttf>Q3GNz1=+&c7Lgl#~?UtD#O#S->f9rYk!ZoM{6CSa6IVNoiSY zXlU3~`(y3w>^6pXg2GIP*xAwML~=NHs9?>qts%SR*%th*PdiAfOH)aCp!5PY(_49+ z6+H4AIF2w-(XSqV0gJu$6+Emcwjp+tKw?gI_E}Nw?@>6?g5550aZe7jw|apBJ8X;~ zaZ=m0*xK;Hs;j%5@03I94G!i6YvTw6wXv}=jglT;1S&ha5dZ$>!}m8A{$_(CWXzAHSb)OZ+Jp1+{$NjV{0h*PFhe8RgDPCX z5)8~HVRG~B_YZfik%}WG&$Aa60@oC3id;$t^)))N7o%QF8162UcC(znmqEO3Wya4q}`J$=*0xt$uK%E>+RRFR3%41f|b@P zdwRe?u5I|8VYpDi=cOy#TI>z|Dk>ip8Ee?Mxz*@db7fb4)2K5jLpfe=-Si4j;7q|$YWB;F7Rcm)y93>7ad|bw)S#|^DQ1i#k zdtcI+KtK@eC;lV6@f*9(%Cv7AiJ634zXd}eY_z5ISYu7z;tt1By6VDt;C5;a-#+{+ zL^uF0?whq;eMdPew>iD+(GIExMd(A|M*X$*1D8gApYE!PP7`bM(S0JY<)1&AN!kFE zTe6o$|LK8DW?;nN(~h{{?d$&D4DHJl0U7G5vx|JD(g4h<} zGaylF<5pbx6e}$0KbB%s2q=4wxsjRf;!CSkN<4>E2=O?TrIr&cD~n2Ah*}djYTvrvs;L!PU4u z*_97!1wUSoB#&00<`^CPkE^v~srK3>Kfe`&R0Ay13PP;}hwH2C(4|H$PEyhi9gK?j z5$}9^adxbl$ExAXwkX5KThr~Td~(1cV~2UfFr&9BnM0va{$zfd(<~_unq+e1G;-WT zXa39i=Gx^|9-Ay0@qN9{^7kf6ZAfKBWhLI{>$!lyYEhkiB3E9cl3w5Ld?~=SNl7oLg3m9{brcm87}_}a-cR~;E3yq0M8g)KBkatyf81kEP2mxAT}Ncw zX=xicqXLx#dUDi-`_Wu_WPQOdbmouI=BYX!s~fbu;9Xn99U~UU>?&?OaEe?BFfQReXMmP6VY(n1kwil;Y=mi$o?7TeL z;NiQQmO5Z?xbV$#+wT*(iJ`V%hksIMgrfJ`61=XJ0aaC=k~qfWvPESD!9?`8-6>;t zb$7?eWd*;iA8%8q3&{$COm`mN3SD?ZmDr&FebOva^XF%qx)H?H^S4@`pKPpOq1L1N z!ZoH7qpE9a@BvfSy*)ki=-nc5pqVK5k)(R4!@w}L+$9dwx>P;7WW&Ms^st6%!j(Nf zs;a3K5{V%V5s!WqoAw6qtdiE8&&!twO;MUwZ)l-KBGTFuVa5e{|C)?%obK@G#(2EF z_uHY+$kmy^hzW)sp9rc|1;FLOfEa1|efvFeO!y%%?>YY0=sU0CEBiXA))3J0IKwK~uYsTO|8;-o5WC zPYpQlKq`FAc{|jJDMAhS(cRYiBQgXVtJb z>Tlb?9SU*=O)E0moE~W7!VER$@a5DEU}BA(xrREWgX5!wN)k!uC)1{Wuh(GJ$=hCD zLcrGFAAT9Hw545xk(pgt+0E@j4TVmX=xa-hf}19zdipd6{dk{7mou_O@y&*vM@%+@ z1$ciQ_z8VLYXGyG@$C(iqkx)g&_+;TM3lL$cxJmou!#pVN!keXiFBN|^ij^iU&6Gq;P0i*E#ws}bCZ7?5px zyjz*`FP=#j(*|H_<+NdV=nG`gs?PV=^>=j@w_WDu+dNnt@J5VYFt z?Ckw(Tl!2M8XdV*5V-~D@3PY1gv{z!ndk>Q<<>@f^!RZh@#D5%WOVg?mKF}nG(#ZY sZ}#hL0?`%q=ji%xVeOy4_MX2-P2~|67Z+7kXHJVI*TgBEo8)-U+_ddMhiN5I9}dSn>f==AF+7G4U_t9pWa+ zhP#I{;##s#FXAoqhCDUh+lB^)k_Ie3+Hbn1$l@Tu!hC*B{Qd2Vsydjr&+qaW$Uvyi zZ$3~4gg<}s<)diu_vbf#qIzV{Z)BxVNr5vy|Fnz1hJSt&Rl(>C_2*o5K|#T&sHhLk z1T-`>78VxhOH!5*og%>1OuhsL2Aa&Yr>rX^ug;yGo{~^dxEyBn=+AdWf8y9LZldvCHlbhjEEa-8ESvT<1t5imQ$I=a(Y`pYL(>^$wDo z1Hz(^mhlKpjomBJuIHb8n~|jOeCI!fM8cqX`l5rQG-@KU{{0NpLeI}enk5_-QT#PZ zv%&5k-!Nm3;6$0jWv$molVSYpiRJ#-2A6mzT8TCPUr+y^djO?H2FjBEb;$oRUtJUh za2G6}$FA$m{`2LZ3ue5FfF>-Y`1{2@Zv=WT*uVV!*fA>Z*35`KrHDUI^*kPb9@FHz z1MJ#=Jt0ENRPnEy0|xQ0yAAn8h{3542yP*c_+z>M^~Iu&$A`K{e~~|i`Tlm}FMF_j z=JcDxrmC|d|A$ejh5mW<#k9}XGB)_6ucnI0{%#*pyv%}sT;vCC^0$k3$$I8WF@Jw7 zB!nw5W|0z>KXc7r@?Qf+)-+b|4~r%9hYY3Zl(6{f6)Hvj{W|A)BQz>RqvMR?LVq{u zf3?tQ(^yu>UsK=ruV2b|$8;$s4<`8a->iS0H`>b~6fN@iIp>zG_}4xEFI&3(wkxTm z{>P!lGU?18TuNB}o7HyE3A;roE&p1AxNQF(#>F(Dl4TAdH=ORjrn>IGXW@Ufa#*?k zn;i`Git>L<^82PST%&_*T_HMPj=oNZ%Ex{{+_`W=MMJZ-vH6s37I#(f?(x^?3q3`i%ubj|-k`Y_pj z#etys$x4)`5FCpmcGI*R6nJDW>-_vv^&U3^lUlx$>5pVWnAGCWS5h-HJbX(H%Ig~- z_)HF~_;A-&lA7$Zx8zk2c4Vs%fvp%DF-Qzdg3SF}ybQPNL-c1?#fb86OR_YB)jERJ zo*l+#=)WciF7bvn$sD6O!y9I^=Z{~%`fJEczMsQlxRG0v6fXbAC&Wcdr- zq|g52u0bC^exw*KE-o&sW+MoHC~0}r>-j~DgwOF7ijR+v_huapnSk>pcA=p86xeX3 z-46+e>E+jhxtg_|onEkJ12(6_hn1C;{l%uljvpxF#p>)(lO@{20w_G41&W2oCnxzz zjsG@d6MykFOzYGX7A0kFV0Rz}4RzO8p)!Nl%?8#`G8bHH02<}>*)X5$aT^@;&wv2p zk00aj4jW2VS*4_;&bLQ>Vc?LVY?fQ00YlM5kbDKcL#a|5Z1aUHY|_Tn?E1jQ7866K zZnr-T`sV9vZK|0m6hcBn6QtSTG$Cf;$Y0_+;s{QG4yAP zwJch@6X)n&HVbFi5ST?<8A+RWr9Zo3lKV!I`|v;vJ)l7#j5{SMO6XJfi}}XB*RDfh zFb&D*GfIjn3308-FifVK+9IOi38k6H7G4Xn-?7yrH@?-cGudqle*1PdviF{PKGcuY z_XCyECVrN{l}1Y3FTHt&lx$khW(+tlJJ?V9x;pFoFRfa*@Qyag*SE|#E^}cLwavwZ z#1+9=p z(b2yPW%B2amwDXS`M<$~{bXmy1eKDKLQ!&deqIz8o0Js%J#+9dJz(uD?7P2>03I z?Q@rS9)V$K7Rt_O*Tz&0trbi&C(t}0{zQDXhP|6Af;EcKp$qmmhXT?=$&~_`AV#xG z!5C}4{_Dr&5A-aHVf1<8^d%M{%i|%u78DW*H}lSN7Liu5q)4RkVMTpefV zy~dj*i_6**1awsQNq<)Xbw%!}==d5qNwo;_MC}U-VhCftFCT`}wlk#Eg?#a>71J~BbbndQl^-z4!4VDen0*yv z4X=N`pgFp?r_4Y{K<$8#lBA(klbM+*s;3Y=%zGCc#`hRUz~wa3?CBm##5Z)lGk$V% zqPyM`9@wQ44UCg13vOd$BlzQz4rAK*PHE}2^I<|%CfoHwqI6ILB9x7V66EFxQG~}7 zMng3CG=lZMt_a?@n(VZtY*7(RW0e|%=xv5`tb}@Uw~rpeb1j%NXUS7+y*` z7#O3 zFdkAR3^#(Ir0y-}ovnu~2Xj(Gfp7X}*81k7o8=_T)fkUw(7%1N4+#5x+L5d5r7ef1 zGncSwasT)-WiU`QQ2CLAO`*bg*a%oANCcedUqcDFP_eL{eI)irJAkfk{bw1KkpvK_4KZXIEV%O|!0^iepl$U&|0p_13Vj&1)to!QAZB2!8rKQE*&gjYs zll*X>tg1miPIffpdE&e?v9ziWH#koCob7$m?IuffQ%Sl?dRut{B|q-*2Sc#Hq+}Cf@FZKfDVY#M2c`XUo462uoF5lrV0B!!iTHm|}gb{naefj($lL zRk^hbMDy&_#uP5CK~1u8Zh}J$I#BtT#`g~GXrqoIeRifzE|PdQKYjY)L0gQ3Kj*#S z=>VFIiF!%%t^W7m)}fe0JvAE0T%F*7NSb`-8>^|PV?#?pCU_QGQJ9|}+N^5l6gLF6 zNeksue+=Ep>FH{$wpV^!YGh;w5TtfyDk!0N+%L(1kVGmRsz7_TSJIL(wYM{xDO{z0 zqZ}i6dUh5M(uYmvbR=P52kjAyqdEL19PUs@udTo5-fAWQYU z#98vZA^_rdFb=c7Xe7nSNjK4yOT!cQG9o6e&P0LY%a<=pb=qE}xNhQ*kdl^_mcFN^ z4um6g`Kqkt>Nl9k9vKq@iK3E^V=_cgueQjyYv}6gLdU{V=5DEnYvo&DY+u1nVOJ4nDKl=fV1oyUkI)OE#kOReQ^A@#>Y`zwL?$ZWDFvI=9M-nGDyOc#ORpXu>Bd@^j!$e zD_6%@Y|r{Ov|``Tt1G|sDIYZ$b?vK_nv!VKSUCdYu$i)5L3Mf|)wNyOzGIx;qQ_hA zwIlcp#+Jj&!HN5C2 QWJ;562xk+tcx%GWqXg+npAIo)8fUQD_?n6n4+jzy0%$rSg)k5IrW8_$*A zidNPle*gX}kd>61jFNbGc(|;G3qzUARnwtxA4BPPhi(8VTY6?swGM6&5p0hb>QDk*2`D+G43WIY%<_1;ol5NQ(?E zb|(~LHo!Ft$OK@GvlLcyCBfLvZ1LDJz*hr9508ML*A<8XB$~lHQ6go~x$#Z|0xicUC6%wGTrlGlSE*?L@gO z2YW50xa;;lM~9R_OIbQ+uxLxh!pBd{Zng}r8<=HhEabBH#j$X{MVMsp*-$?T2M@qvm(LNyc+irbvq2zj3(W z2%3m$I|rh-;+cyC1nth}Y9u+TmvEHBPzi}5d+wjUFrMv%M#cOtSr>srr~wr;U+hg) z0HaAEnefHTjGC91H<*Yo1z4@hw9Ljs_`o8@VYk9pRaHGdTu1~Qa^gL`*ZoPiL_Cw9 z`%x1Xkg=|X@eKjyH$%T_VFGb_KXM0QF>C^Pdsc3)a@6YT+M4MUSTnlh#`vnaKY`s^ zD;(XYOd@w`FW~3TJSI^6qSI46w&U*a{MDz}lIWbA98`4lP9S&Ya6QcuRqO+TFK}o; zK)U5zUx?AxaOyDN9;j2c*4LN!_SAt@!vU{)3ax4Q^Ni9zp&&Y8@{Cr{;Lm`=_@b*7oCryE5aKHT} z@4|9dvvr7~|8zyQ3k#j@c9cN{xsY=Ia2b$3vhsR$v1_UD8)loK>W3T^_Q$Sa2)s6PqCG!r@a6H{OTe zj~o6KE_(l{?F@MI>5ozI3L!}g;=Llu)dwo7`3YIq-jJwn;D{n^gL^63o{F^h!{0hN zfT`xZd^RF*zUv*}xx_BZ0`?zhYxAixpDK4cm^G)*l*?DCw!i_re8VOa7!2N@E?bMy zyHTbP0(?S_U=XIoY$ZGq5z)CD4*{n`TGsk3pNx}JjTb>n{ajUL<7v8LbgUsgr7W=5 zd!9U|<2j0I-e;SNsXNN7Dw9=F82S8$vlJrPplX^ICTAk_gNL*%@lQ)z9zk>6&1!rROXS3;;8ZO_Pa*2s6 zyu9i&dJ2QQY%uNr%$*oxa~a3vY_WQD=8|WL%tzt>x)a%ac&C5|Cctbyd61S=PM6#1sOyxz^O1cqa{9 zshN11w#QT*tm3PhA)s4`0 zXL9>Z=5pM{ym-aPsWHl{r>AsnEuO@6s<>mQQP#gXTvcfw2%9_0ZGF%;^KEU}ArYzO zvb;j!feh@f%pPtpK*m*H{AO&I^i5gJ6?;y5p#!@NGbiE|J~ny;omeY>vWj_ylOIFt zK^ZtnfS|%%&uaFjmIXxEF;6R*T;+Q09)>26OCFh^BM4;mYK|Y)%WU)S&+~5z1og4V zkFN+R62{3}B9L--zNrPWV*5q_H?~oPRLEOm^ESTULGIoOujc zT#MgPQe>-@60aa_RD9i8N$?*vuKMZ&nPdGWU29}gwWGO9p1Z5tq-DP)Evl0&x-$(i1qk;%FN4ay+t z5b3lmk-?Rwp};OOv#Az(ke#h<+u&fx)uKC!wY4?iv49L^QL?xn0`U(g6)rcMptiHK zi(|9ImFBrnh>jgKGjFip8rlfuI@IZlqT+tKKLZ#AFr1JS9(R|$;u@>nqwCzopmC1M z$&e+11R0lJj#mAK^cjc52-`KRL|L7!&x_ZmVkj-};%Ly=ZqY*OXZZ3R7`aNS&0xo*gwt&50iUucywuRlS6Tf zM{6o+K`j14hzv{!ffmyrnk}<&P!BzDhFxCR@Y;S;dR+V(@Jtvm+|-2QeT8~%U`@fq z4CDnn7Xt;<%TPlD&GPkgU11~ch4B60+bJ4JW0_3((t=C?L!Xz32mdx><#IkWn5{Gg zvIieF%h^(^1x|noDX%$JSuG@V6S@cgAawf~9E=3}2Dfw0x}|vAiOX@fv)S`brBnyn z^Y*+=hjFApktW6Kb_cgx8-vCjrU@%&++EkLN}Jikdfsu1i;YHq^`=Mt%|X2sVX5&~ zX=A|}TOO2K<&wg!t)uI>VEwGhNN=v=PiNq%B=06y$81LJ4ld&6Ml?C+0|P6AE;2rV z%k?J2Z!Yjnc!n+Qnw#kz-0vw5iHrYkBv>7uBX*Qmgi*O0tJ3cisnR=9F`QKksLy1= zj>3eRP7#{U zYXI=@n$^~^Bl|Xu&@1^F9`3rSh}J5xYcNwWM;)6#QW_W=FWLOwPN=`f10A*cs?5<$ zfx#RlQB!V@X+2A6S^t58VcrYbe|YnJTqURgz=HM2-@kun>FGClW`?z{|HHNX7SlB5 zsLB5e=H7W8F5V1axPCKcVm_ZI^Y!0#2w>arUzqSVMp4)YfUvU;3t~a65pKH1EAE5@;q-o z9y4P~`yV==vy}y!%jZUL6t>YV{%-~2g258&`KDI0l+`Bwj)M&t^G5Na3d69`fl>*s z(eLL2-y;0_cacRVU7$_N6alO*`gf2%h8K14F~>TsBlRDIzr?151+Y_=KTg&2!+n48 z@4|wc!ZybK$DIFLUMUb%udy<`J>M}fG}N?@2X?AJ`0YAb>xRZ=HA4q-to_-lLMgqX z&=uy0>y~&bigEfcYG)ox)qxh$CBB|dC!4?Nl~2cLZI5ZQ&(>nMnaS%`h0gl#tqV`9 zt_B-KN^J9??sKKx%h8G?H$0 zK%dcataFWK+{`AkYN3QP$Kweon=DEhO**5jG78A$JOo2q?d zTk5vUl*Uj%mMko|2 zEs~-nV1BQs=1gtm(uX#3=Rr$iy*hmdW4L(#Jg{pa-Av5`uj8S&-hh8Rrfc0W@d&XFFkU5@I9toE)U$yp|qSGk}QSE8(Op6i@g@NGtf)k6;-Vy(%4!3z`UpFRhx1+3LbTpu0s$x7g54FuqSvdAJpgup6uPwjv` z_+TCTHa9}LZ}xpLEi~T!l*(=AV?=3c)}??Ck@b}d#wBrgci%ra7$kta*>U(4Z=^~& zSMTyWh3(4lor^Rw)X<<9$3rq=0OdZEzMjES*1$UJJ3g*8XJLB!L2-#3^_d-Ny27Ye z9ruzcB`J$Z!&0flY4XImC<$BGe5_Q_=U-@)hE23UbQ|9;9JSILZ);PL4{e!ToBxBN zJb={rpnl_dP9Q&+1=DS0usWmkW=YyKtFHRo+U|e8;(S*>mEY(3st#8R7t@64;6QLt z_3A-2;X3M9OrFGqh;k0encPHbp{@PU*#WXP@6x_9h>mztDxAYA`dq9qK{a!+$(_B) z{R%QOgTv0w4n&JD3JT~@?pKF`*>dp;z5wtG70V_85Ib-XliRsTc}0b6zCxY?_2** zcGl6=Ek=pTF#jlTGi%L^eTVyPg{3DlSmjXH3F|?n}W50E-bDEzZTu{ zK0_3_X5(`nPw}0Ra-D}(!mBNB`;311Sn9#Kr%){G`N@DQ*jFc0?u6TW6v8iBheofp zdIy=b9XCTCXOg(`4ci((9&W2FcwWKFZN@Z5l=cNEcRQ)S&0su#80ZyGpb?ri6P1?A zxPLnu$TsaKfx4f=9C^ItMt)Lql+!`JIG9%K8j}5?g>v(;uWPze5Sr-mo|5SPh{33Y zLja9o4PdO@N8@N?4V|8b$h#KzRuotJN?IN zM8uAFH6}!GQ%Jyd2Jpu9VVz4-O%d z4FIICwq6R2j>d?jkks2AN#9>;X;Hf~08oO*`KWN?*$@|in2zs`T9`eqZ4y{aKQA?V z7J5k9+JXR*gfVPyXID^FZ2r-GAXJfI)(+H%s~jfhKP+N&F|~!`E&bN-rs~OX++7c$ z%N3VxehIk>GQGK-5+C5;K~~YXA?>l@ADs*yGpsx$9X~#l`C1$qiYR<=ees6KPM!{@ zlreo$zd1q7P^W$Dr4-Q^Dwb~H^(DBg!4=;3ks-N+ja7GxQ~HH3VqEP$Np?21*W>(z zg{`KN_9fa^Z5d+omY~i)HEG@E1VjD%pM2KMPSUAX$6xl+)*d`{w;j_aTPLSHuMf=6 zh}iSAyARc9i!Zp@`Fxs|YUO_AO6Z~6_64wGRj=t4VNOwWadQ#-vsV-9uIlp~n<>3+ zEe!y9l-9G#zC)hp;)usc3cfP90$mqKzgyw*g|u?%M2nX7p@4 z6_x2X+UACaevy%A)X@kG3?+d(v1qXmcUR8?4aNI-t?%LKIa6hhCCz(729=$i{ag@K zDh@s{NpV?)=e<7`0Pt{WO-(L9cb}2%{pFlB_rv)(tJ;yeb(3HiArI7awI!bAT=m9C zx`4yc;zPZ+JTO=#&9~G5(`5$e3lu1?5&}m5jfJjM9Um&7%_M5+jKfTC zj&-n|-wdsGCtFojC-)ECPx*~6)t^q!swBKbk3a=)bjKz}v$qfBRoo{MJ=}BVAdVXDChPz^M^#$rvT$i{o=tG`~_ByNO!`)Z<>ckfE46?UmsQKdW#AS+KR*W-S0b%FU3hpnIy$-yP^VR{6fCc)F}}Mzz=*{z zWCFY?;BRRNpBf#M@lNe&Yq2du!n999u$tldS|+2ox+%wXZ75Rs1s&X2dCg5?qFw&`2>HvHG>+5TPW9^Kj!;q7cW55Tt*=$I( zR90R#&ogM>)=Ol|DSnhJQ3flIPXO{EsOux|Cvo5`$xT&t?FQ)Ls;UdettIN`Z9XRX z{b@E+NSQd|L>^ddbixeApW5jGn3pGqzrvK~+VQ~b( z;fr|%yB+LnE{h-5G~+L;^Swd&@Q&lZn$0e(`4k1SUx?G3EnJMvDrxWVluYGQd$R2+ zJ@7gGAFgs&VWh9_Ut>+&;$Z{Q60z591h?rP=SJ$gFxj9lmK@|xZg#wmtc2Q9aafT2&P%Jv|*Gb`ZcRJ$-!{mUDQ{1eQ}^g2~BAV0vnwm8)uEH+=AEx#9?S8%1R= zVS2PSLgnPyU)ad#xqNXnxEWT{WOGi{Mq2uFow@qHX~uV%Qljv4SDjh=!hf%>CG%7u#OMCSR#Lo(oqe_uZ?xa)oyK> zeV}3*E}2nIE7PODCU>(VfA)|z`9t6M8NU=Z{r}<@ z4A7>L=?9wP2khTTkN&%y?qdv)Mn)Lqs5;0vw?70<3G7qo%9l%S#Gg-V|2=*bP`O)U!4>Hv{{^ zQXpCaGKTKmi9*TAm8~sdEiJ;9`%}bZE@z>_2~+^N{~{K^=5nGvYQCdKMn)b;WDf%f zK9fPuuf))r`n{^kN&^7u7OB@D1Fj)QBEFr#dEU0;QV{C--~`qnENzc>Ol zLq<=J4;-AFOm^!%iJ>hN^G)LMEyS2`SOhaTm`NWEy3gBu42(aVIl1cezPfDQ=|Bnc z>}@f?Up}ce9^2uXI7e;YInrdrR&c=9s9Om4i%wx)YA8SATih1=&2fim-@UDHh#jd0 zcxNV;D3GoCMf8s0km9)K%vrqa>{$|5y5Ym(uJ3=zX>@}&c3y)Dd%EjM4x3VH&eBi@ z@^{32h1R~|Aw_PYmUR*+cV6eUOxDHoee3BMQ7^}8Iw*5@ z9vDn*gVxocDNXPmbL{r5#Drx~BNsZ;X5nk{_J$m2-sC+8_X)>iV@l*l4exrFsqTkL zqnwgDfxN8$a2IdALX_^q^(AEPk;XmNEp6)*RIOC^wZ7r4#0LprE|(bKXBOlmJy~>; zK4Ji*&c@CzBX##3t-_{-x}KTs?|09@rpk&{PpQC7#Ve*HU{`jk>u(Uo4B4) zMmmS7zCxA1>ee4csmxchXVE2~hg+9R0KOf4tx5P(_P)ky)7`^^@pNHAX(=(% zG<|3*EyM5JTirejQh}D%+TQMgs5GhU*T{6~3+*HbtBPNW%8Ae7U_Ap6t`-d|leNEB zxoPXP3@H`K_Njc$JBuXaaxPH9S0Wj})u3+;(9_#LJWyv%tdkzrx z%0yw1m86)9x1;%L=Kk?Hm0n-Q>-mJJ74g_gdG)mG0J9f%~5#j-r;tw zzS;iO?<-CI&hxU*eV|x0;AFaKMcN~3(q%v93vSp#&;fc-c5_!$ir!$%1f6Jbg3N#AM|IkF4qmzMyzFU&nCa0wWDeNM6OY$$T6U)E;8f) zT=WJYH&-UqLF_4peZPkC6ks)Y#9f{o`G7jR%QZT)p(?r+AvtX-Zk7l)6hXt*>B5hc zBrek*Li#$t_k(DcykbrsxMVdkPV9YZCwqIK;&e@i`jz-i=0Y0>H$NICEU( zLJu*5K?P)|gj(W--aG9+E32l#jwSg2phU8ipr5m(0kQ<9V_Ch9Td^@QdZwnT!lMc~ zZjbKmZU#}FvkL2 zrgc&|tp9+M{vkV^QC6^o0io=})53mf<1cOZkH2hXeAT5jyY|K&OP9yAF<+L@kv*Uo zhL(gVbtgp|tJaYHN?%)}$>|oHE%UgIHXyzEMmP7k*1bP9oH2<#vKPgbSSSr5xE&l^ zzqzdPLc&k@BD1BjN_t>|m(<~(UHs9x5Bh8J5zAJ%Ed0yLVR>2*=XIf}pW$2rCa^mE z(v~&6ZrdX_!qHFQ9N6U1;zi z-(cm6f884|(1N=rQD-u^Ai!jbmZVKN*P=Q`Q*1T{$-|6}js_X_p(iCJ**H5J1G-pj zBnXiTpev2+w*WLrA$aVk#~mp8#>U;J8~xBO2USzY=jWY3r4^(Pkx@`kpe$pz)N1|F zvcKg^gv@wX#hBot>E7UUX^6hA`dd}b!0J{`Uv^90NJVJ5MnIHUA_*NL=Vs=OA!p=zG|mNgvQYiJ7O~9Uz}FOWH9CFeHNBH> z!u^ybhlAbnA(T1&vNO2>b-dQ^f8?80@6jpfjAH#q=5aSol5n7yzy7e1b}3z!_HV@DA)NgO)Re7@C=%5UwAPe zVcPIl1+Uv%u@?sB%8;=)lmTJYYil81>`hJno2$x7wO8~VkPelLGCS50S4U`FhB?%y zG7M@~7ao;BeJ+B6(<7hju;LH>a8Fy}=t2Dpg+EWuGF6T}gvG?c+D#QzH2OPSxdCBg zrzifHA=DIKgFw|1uIFs~_N}8xo>Mtk?d~BY$(&s8I+k`Yi>hv#huV*E`R@%%UHbd@)f|@d$Q5R zy&l^SAT)0;0?CA`wt>R$r|kL&;;a3c$caMb%<-K9jb@;eF;%=wWPCwe3?2fIp2C%vX zBxAIXFI|W5opcT>`q;Ny)PxesBmLZ~DJNPOKCg%J{ zMzijgjQywUL(f2{YC?Q)7RUki`rhPP$AnnoEH?Yy-zJ}&`WI{Blr*}38$)I7&vDAC z{8G25cp=$7rKD1aYtvF#)OVvq51}5*_Qe%rQgE5K)Sx%3ik<) zA0DP!o*P}|<|KaQX(#QyZ|;j&E3S>w*6}R>n{J45=8FQ19okA`-KS>GF5-`_>oYLt+ zJXvT;r7quLGo)U)U!(RzUdhGfLb?{NUHgZt(y~+}jp`Mn-+;$ai>b+Ft9k*gQ1_7- zo*2WD-u)cLuS7$BwG4~~-s9zX(_XSpl}L}agzyT~x+uL~Z3=w?s=Xr~DWv2W3A1k) zwp$h^6Y0OYA=#(nxfeBRFUKI;YR~={kd*`8))%Pr+MjRBKKGLVP^IwU7E8;;M>bPv z6zDQJY&?^C2I50WAMHCJQ#E}H6>)VXKUTIi#GG<4j6*q3R!hM^qB>fpPQjlX5>m(h zq?3>pf@=epAK)ktM&8%x!P6E}+th6H?x>sS{ znpBfdC~mLLCw#Icuf$H*aL-5_t=A;vPqv4izF*Ugbj>{6lQPp=c=OeGC@x7uJpRV* zC0J6dXSnJ;MSG~=u=Db?HiXb#9OA5VK7bu#!R=eDB&^p+XFY^ScJ91^JH*)#&17x} zh(n&cK7M{Q?{43kwY6wr28Iz(ki)fZYKJB?S{by=iAc(9*1o|_L1^tuUZEIQ9=_b# zVkqI8{~7Uu3+ouNwMCO6{aO@iId@n?m8TK&-lH_^p-G5T$$gmKw*V-iYUVw|%&24;*gkn^WSgt?6%GNy$>^h8@|Q zb?6q%s$l3Zce&d_!o`Ir+&xRsad2wgX{kN%NnhE0kP)2I&#<|TW=(y{{y`Kq)0-F& z=}V(#!b+fK?&kjhiRwA%M_|W?X^5c#Yyp=T1_GLj((o1_v)ue6rua{n49m`g@prWE;^LlVtSy@fb&W@Go3x5_6czRdj1ISj_ z4h}+!i|GLQKM^1nWmgpz5`yjUf73BK`p($+IS>nIX=#P5{`%9n`_?ErKE4+aEeB+0 zlRx(n=<4bgX*JlF1WM>YS~sWd3xkpgM<{y(vCs?^aFq2HN($LO2Uua0eH2Fx_Y97`@_W)(2rmUXe=?t)v7IS z!W?l_8l32Wt|EY#5<>w3Xab;?@~j5|YFY3oD8^TZ3;4VqaaIfU(4}4vZiH^z#7f0# zeqmwKRjV<7^|zw0?d=6cM#^{T0~9Vg<_4&b?MxQqJ(tr62?>Ez&JR!`Dh`DGPxF~x z0#J@w@-Bd7v#&ng!`dr$R0~OcrK=FUm-S(L-ox^0t<8LJo0s)(jS6owmiR za|G8GOfadUkP1~0lQGSPE)!hy{prV@mE%o-(kIQ`S6Blgg zVrE-=8iSpFPmbdn>*#)|WRIUdD1xU$?lon5iD`j5mzP}<32(*12;s5MsV|>4`XSB@ zata2n{UjObAUu~sN>CP)ZH}ruY z>}Pi&1_nAao3E{oVh77lpz){I)Vi4Zp2^TtqUr6L3-MUO)?IaR1vXfTNZ-ulIdlP4 z8i^dBG7ySMrv?S_p9YrL{b@hLOE@?fh|mHY3ZVhubD_?Gbh)UAHWdHkXFvl7eSI;d zJ-T-Rv_fXimWk*og!utg2S76cXfw2O=aMgF@O~%ID5pGp3v{tGM)&qOQpmN{C_d_l z4_1%pxpf`na98Nh)E`%ACQSf&&i?Y;ne;9KQ}WCN(iN)x`d2$yLf>kLaXeEN^GUc` zk>$m+G<5rDh?|{DD;#^)<0b4v^p;@wTh@0;hwQw=e9*G;t@bP|$%xb;AoyEj&FM#{ zV|oiJIuwEmGQSvmMhCR*Cc(3fL^@t-L zwSCSshMc#!>h2P2d9MwrhnDDHX*A!BMA}mxjF=z=CwPW$%ndU&ds7A?hQRB|#A;~G z;I`%Bc}~|>zN%-!02+tT@g!?GL7JC6_7m16>EEX-*aq-s3s&pE1NT?!1!15C8BJEE z0)L?J60X(ccCuSo^4uF`yFEg@=zhfW{Q7@4dg%M@_`nhB0P67Pbs7~D!vw$(e`Er+ z147gH0pWR{o&0y^R(GhV$RH}Vr(c`mNtoO$G&mcaYk`CaQZepmpE&xkh!4vh*=B6* zy0|=1v$8z(+d3NPnWHM4OmU_h5j;g@5Wtk=*gM>^`-z3 z?~+5dTjX2$JB*eQQr_=`b&pu-iR#d3l;6v3Mi*!iXN;MKr`Qwc8puHxe$Yu_ERT}b zEps8U0+;1GzVrqL^J)V@LU8fi-uBgeTmoUJBgCoWKSC@)5QgBj#Nrf>$D!z!%-vnd zgFGn-sK3#tE_)tM0)reXcP0h-3s8>#I^dzVfIcas$NL*v_3Gf~P8z2JH6WZQl??!? zU(fKc@qDc zk?5L|#cU&2=`3qroSQ!*&Efgm>I}5Y4K64tr^}w+)9`VN-hunbBd0RtaN>B*ptL<^ zVrpHs#Lnhmvm+CYRm0Jt@wqnr+R{k!2D8<|g!j^5-m}lS$gQp`iOIxztTo@>BLS_9 zx*L?bl}9n^dvjnbiT~3NSG-FbQ^;zm+8#=pJ9DdyZ9mmL+L_yFQTBT)4mW|{7uI(7 zHx4ZK;xsAHuni=FUXM4%FJNFKV{9EA4ZA}L);BjJl9LAkOPAG@ z%!oEA1f#P7f(AgW+?l{?{!Fe!MMaZ%+%cix;NYGmW5E9_kSmp}2V9whgM$(1sR6{v zrc$ZAgNF+ZH#b|U&}(sT6si6NxNatVO&0>SPz>~s^44;PcfoJ?74bD4O=#cK44%^^ z##{MV@2#3Q7B~S2>I^_irR9_IDrqYlqWqo0)Jx6z)H5wU^jI2jc&V`(ERR65&UNGK zYRmU$?mux+_)~oygJ?=5?@_XjUV6SW;rix1D3xQ?!@!uz?wnFvo=QPgsUH7kf2pU z!9In66`Mh=ZC{~44YP*TWlQlprPdyD6LEv_nm zLiwr>+^wWyV0HcoY^o3J?6FVxTYQZdlj;}?Z`7;I1c90|v`VdwZdW-VXL+tQ1EGlt zFgzf&E32vLZf{@pFWyluQfV8@7RR{3gGCx#KDG`u$Px*-)(fVKBsvUE_6=P`(a_uM zI~%~6Y@_X!h0xnHo)LxQ^v@C2@mLj+K%4l!zj~{23z=@cWeR(@eEYME*!i^KZOdyl zFtbvMSw|PPItAZYS8Xb67W3JK{Q%A)yrQe;t#_(h*%r-O_Hdq!`!{!^(Wevi>gF9~ zF6jABdy_awIH+w=rYJf?)Z2#tL#fVt@~4$kT}rotD4>9Tjd$}jiI37blXJeQQnNZ%6c2_74>cA(u!^LG98^o-8Bv9#TeiDkR5 zwN5m?*8%H_iD`Uy(^5mJfP!jKW#T8dzO+s^w|}sN-b02GyNlrgwdnVG-x0fsXj4qc zl9a{0WNeiwe715`WR(qw*Fx>9qxkFpkF&Rcs&ehtzfo)i6r}}31nKTnK{}+nOB$rx zMp{6+lzs%3_U&T9U`szQ^OdTn|{N*^8`&jMZ`hPTd~ ztzc_sQGMHwBIYEe6&q_xQkKH~47PuZakYPQ#7{@u3xXJzV$q?fI`91&A=~VTcdqk4 zC#xbD0=%MVYk#io#BiU0&z2BZHMY0}r?ufY^8>=6Bz~ z%ymryQi>0BM)P!OH7mYeLcNAG@`GDKwc5qrzf^w6-Ply{B9$R1)DpxU)3~gmk^(ul zMH$njex7jDO8@Ztiqxp})jNj{nao@DjoFhX66!eql@jVG$eWEmz(ob zI&fOvHtuoDhI-}Z@^TAi%cj@&i_5gXFzc7kdNo|oYv93B`yAt9{k6aHNR76KMO*%C zisI;ehsSLAv|532AXDLOft7&w?o`?8#&_^ds?6_Ca9xE&>yOW4p!7xHVTt6P<9E83 z5K-Yug=9mJJn4ygf9FMp`_P|gm6`4dTi{Zm|J3Svk#}2>qeJ{mwX&M^CT_A`1=D}I zkqpn$O-EWHg!aVrlD@rpg94wjqxo=cr}LvlsRbx|w2NN#y}OErqaf+)>&v2wXm7t2 zE3Nz_UrQ>Px%Xn}HaHovtGiFb2~lcXdSX@07_8SngniaWtRJ(h@d>Oc)KoYABh|x( zOaj4aJY56>EuJNgys|9(XMfWDcpL=vd+q4Uw|3Z)DAa<&HC?p>uJIYTq2|1Qx)&&u zD}Gf<`1v*uBH!11{3*im<$W{{E4=VFfvZ=I>vGUkIG=945cL=zE$qsXUu)tp6{h`O zTlpnQp(g%Xa$mYDJ6cQ8bp^MhXY!w9{GTjj5y}2?Kz0S81*^(W_xsaI&P~E-IXAa$ z>Nr>D`Pq$lG0Plm6BCEIg{U~u-*%?VEEZ)EI=nZ_tn0lSzfVcVyL_=Hv}}2upW>g5c|EG=cqhMK7vk~vYeI~-OA1i zOF%2+n#ye#kt=uG+T84@hcODV3q|Cw0eU6c+U1Y|l&rY%sQB89W|s3GR$H&(|?^iB-I;M9)PatBdCe7b6k@q@|TS_d#h1g?@Z3+cB% zeR9Fh)9qc^%TmdI2NilyM8s#{=-i`_)PZv$yboRwW|!B{=!7D@d^UjR#?70gG&E?8 z`|N~(zd@R?ASz=1qu?Wmhm+RPkeKJ>;_8#xyMZIV+gPKzx0#(%Qpoa`G&B8|G_!MC z!kX{Xa69|c8vKk+N?WhqhrfMS9LJ-NzjeNB*J`8(&x=*Y+R`3aUN%p3?wV%59^!X@ zb~j&NOKHyPCA9o6o&#(s{;}{7^qlvgTH_1Gn~ZoYyg+8p52hD@eIa>VLAn1XOZhGL zNg1r%`|qqQAWHoY1B@c7#r35B7pm4D_ZmE(1e;7R{o#?8lVCoVwDU>S)fM_=$PqEy z^U*e}>@5U*D{wh1&vg8!^pu!H?TKW7r4q+YA$>Z}BfS1fE+It0>>~Ex$Y4Oz%8)C@ zO0=pyD;cA4JN)Hk#f^vjsT;N#N_xAkWPu81hTv+Bm3E}rLOxsqJ)Q!>D|p4~O-3l* z(#k9+-XAwm@oLx@9yT_%uD-s!dj6kp48XhH9zgcvWlLI?O)hJ!bPFJrB*Dc6N0TSq z+yrkRZ@UE^t3j7He;&a;8R6Xr{p24N_B1rgIZf^D8G0^W7(`Cst2JZeL_R0VrkB?P zucg8FL2%z0EPZ%zpAh(`=(#L*$8x#un`d8pf_&<-;ieM^O0aQ3A)p+UGqOTOm+i%2 zk7Py(8A6j=oK4zqtk|pt>Wycpxar+SuqjmKMW2`Javbf$**Su6;wDQb;iMXhmu%vQoffy z^W++~jMqTzeyeU}T&6!=B%sagymG*|G)#fNyd3`;(T8e7kyA(Z`^lO4d%XiQLC@b& z;C!RLkd{1bi~22N(Z;R+OspizwHA&n7Ljc(`~KDxXL+G*MPV|yuhm7@=~@m4o35-s z_+rBA@M6AY-CjFH|N5Ol^6(%Q2CVxrURu{-!KZzIFC=EOHvJGv)i$stTnxivCLv z!S(uw9%40x=`!ubf?xVLXm2OVWaVR>=?s+&Ef;pne6+}g!RZWuj`Jh;6qbPaY=fMNi_Euht zwxI9_d3KDw#}~IQQPL><@=(9oMNB#KTd&0|r(>h-`It;su2W8acI>rV|Fp~)^EwnV z6u6zJA`UhbY*v9bwcS2^gMadOBO;luH#B|IO8uKkZqzOqbE^7cKBy4R+PKpCH*W|r z8j3!d=`q8veHb>r(LFbm{uVk95%;kg8%leaR+cc@uLzw@$SCGRoQhw+F)+TYz`)jg z(&CVNSzmJKJ2M`MIPd~9Z1h+STJL}g$^#|&r`T8`B*UO&+;X;Zqh=N$W6F<&Wpk2} znv&`(u%DL@fEKjf`py(`)cRAVFVP*5oQH9|Vopu!w6kBAI zfL2IB$yxe{iJHFuOJq*x$wEJqgxfk5qEh=Nii4DI`KGoRv$X1EL{nPxmq#eu_j2OD zsE*?0naG{!r_d1)8El_+{WxE}&1d?0^&etIfK2miWo2>GfqHFCsW>a}(xAq(5tr^h zra2afY;VWE6mvN4#Js&QF>HRk#0iyp4Bz@UQOP|U0Y&mZuAxeYcNQ3XOcXXdmdk_r zGV%PYKMK7D2NiDJx`m{jElt;YTC^zT&Mz*qKpzrfW?TFFM!@r+*n!huB%2uyYL>MM>K6f)6w-6_%k$Qe22JL~o7tEVSc>>iF^Wm)v{OVX?RmL@B{ z1|OGVm&5z~d{`BYo~XDXQ^v-B1pA^IeR|K%xJO4>y4FNQRX6*i$@3MR(-Yf5|Ca8y z?62SGkNyZ8i^iiizi-e8+)Q*YRj>6^CNeGFs@6*!vfYnBy+pK~U&L%}ei3?Wt@)L@ z99GtiWjPL}XJ_Lw&o3d@Vh+AK{a3G$G`ctWld>R~n$e|w(%E1Au{vHFXjOA`4HFX+ zDZ;~*6o+*g1q32stN1~w3jy{d>oh_t<}t$d+?ZD{4K`6`k9>2BnTKd#c3#7qqTs|LxDHHIt$bek5MJ0!oHFq_SY=IhpCt=#o9XjR_nZPLyO}YE~7KZ zSW38kWy-0ZcKs6kN=i5bn{Iq=XCg}_s+e{zG~L3?aNGic^D-)RCiQJj8Y_ZbWG!`Z zz|FcVzI3GlB$fXK>#-qmJ|Un{`(K0yrO0RI zXP0-JcXkGp1IC-!n?y{vtfGZYynRkJ1`b^QkaO$@>XZ4`o{%o9`QJ-~6=554GI^dC z9uP6RgiIwU=V~FtXGUF}f+naqNBsQ=IU(SPcgHJ6VSnKK3OW<4`7#Ns8 z$7?oB3%XtxEHh3(qEgM*y9(VYr0o?2i8n&V-S^iz;C81GzF)f-=NbVhTl-n$w@HN4 zE6!OFF|xjItmO(0N-!sk`(*H1^tQ*_kDUZ#QwGPMaT#^wIY#~l|_l+w0Q>- zX;dc(qYer@LPSJ_&z{4|@Y<)X&Uk_N)zwv>7HD*t&Ts6#QhOfGU%oo^T_ZPRxxKCT z8x86rMM`y~#zaS}WMwkX_+V=jd7oYFlaTVpaiG^}GEG)G-^C0RHR?K5dLZyqs8f~4 zA?slNl*;uQx{NGq3Y7k0TO~qq`Nk{J9>^l3^>Y(-IG<~S6IFlZi@lJr6|Um;IQAag zpFDYZa8>C(-S2ZTxMVzCSseE+C)O`CsLH7eJuIunn>639mdCfer-Y5m0ThiSf%7Vp z1UwQGUoRQ4Y>Nw10L%o>vvTRE7r!<(%FWcZUUL zu$bT?0lALUo*!pEx`~2}cdd-%rowVwOrRkc8XoQ?ocOCXh>YUB&gIeZabN*?oH{|g zLuqNRD_WatrvPXY$@NGxj@b$!y|VmSe2tJ&1@KdtJQExKp>>od5N3%RJ}h%2p0>>P zZR)B6P{(eC!29yXv5?n&y9M?04m_VS$1qm*5bTfb#gf?_4sygZOAzel_$I{zcT>}T7VlqPlz!#SX|$SSl{mCBAU!`WAf-hhSX;kD8{PYz_9#>D~2Gp z!nn{{(zVJRZHa@^zwtz)t*zjjVYC~fC-B!GsfZq#>0*D}!DO>gRpyJ8Y!)qXw8EdK zN^~B9nnzo-ZE~_-lD;zzMLg5AOtYBHX-V;pt8zlettmxhTHRFYb}1mE!#bsSS?i-l$J`C<=G^ zklDqfrF$zOX7{bRV_oL*026X+oAz+Y786l(U&6BFD&%P>=)Fl-)2j9O`oDRsr)G@4 zvOg@UlKcK|7@Lja@t1lK@Pguo(5k9_FkSvfo~~fCVO($TOD(5gSD`1axN>P&WPg7j z$&LF_Xgs^H@X5>TIzZ!|X0v;2UB7mX*?g2y*blEBY&THMpqZGMAiI-x%Y)u;QLi%t z1#rD=76Tbkg7qd44u9YRK%Q!VP217wNouzg;%i(e=W#k%<)3q5GF?i~S-ynF#DgDB z0h&U-VSQeh!BGAD$7hXx;f+e`H&_7QB2D9Q-j1pn8P%-+4v&u~?#scWyrE@Lze3%; znBfOgiwPP+a5N8+^X$c^3acIh1;&eM? zgm)b2YrwmG4GAh9kP+yDIMNlo$`x4FsuSKi*#AXb5fT_8Q%PHvOs-iP6Weg{?ia8)l^gg@^Ie|rJJBf=+R+_LUWxWK=;8hVM zoT!J&)}!O&djPJtxw%=_-Hibez7Q|?8B!rZMW`UbJ9c`!k_#c~yJlu)Q=S*@aB+~` zC%9rzzaWKzLFUkBMvl1pq)*^f%RlC;1kC-nCf?d7P4OA<7RS)HVXP$23*U$2Q zWD*;;96Un<1IPzs;*Hirzw&tKPEm9*%BcldF%P^w| zQ-+aV5wu24bFJYpz(M4PygDDa6ls{$3XPFa`U_hW3R5hB<7gB(x0 z$430q26(SvvxDA}7L;>UB_&3~S*nt;+=||KNNrHI|?`KJFTj`cG8 zr}c7PCjK_O_r_EbEhP(eGV~N3hb8m|omIYet3keqhNq{_gj#XEQAI*4W8UBO2?7P& z1BNd}mX+gfZO_C#7@aQC^T?gL$;-;=GyGPSlRJ#jaKc?kgey8rzui~l_iJ_P9LtaQ zvDNN4ApGf~xnFNJWRpy%QarXczK~$uVMqd3>8R{=_FVI4&;2Z#ng7JUa7Ds-3j4;E z%JB3%x=W)AE<{Szr}*oFuG3LTXSpd`<)+#n`VHFbe$UuoCpi?RT0irjo-0pPY`PE; z)GD*#!yvj{|A1JLfk!24JWBIs;WFrRJtU@!hl(RVWtVuFn6O7+AM^ULz2A@` z^k8Jz)+iI`rnDpg-r(k#-nCw{zgWj(IFGhrn}`D zI{w3%gF$Z(_t)v6$vu9JSwWzR;k-qVM5_7Lm-t0cKJhrN4}8&qp%7;!kBA&tKh5t6 z$2B5Oe@zs$s4;qCYbz&T%*h$XXfA}8TXlZD2i@~Vbz|_5-^VpYi72MV;_+e*3$PNDP9cYu5epPUT24jxWOW@%i`?HxlZ5N_YCCJ) zNq=NsMQ(YplE44Xvi55PZT$Afs1Ftd8ZLw(#G02r$Q0Bi=f+8+wKINA|2&;WYMyXa z)06gvg;;jp|0|$pu*BhVS-XFLrb{qe&s5*g92+Kv)UU0@dp9Q+vqU9F`VW3dBIv{n z&Z>-J_%i1E@=a)`?{-D-TeQ|FNL)|5w%m9yAjOpCheu+gl!XE)oqH7{M^QT>0AAX(>UPU(DAiMw zb6Z=_?G>E*K)hYEaH{QTdFhRp@i|-gkF#l-*vE46tD`l^d{$P+_?SIz!6BB}+m*k$ z211fK7E6p4zrVc9J!gBIw{=*&7TlpOamwY`59uu{j@iCGv7+@a$~4|V$(c(#AG%D< z-OxE5SRl$2TDf%Ur#)15Fp@~czO6zKL1AN0RMH6Wadtz_md1bH47;{tX9WF2tCo?(S;5 z$$D>2$5@Kr$@Qk-udhU0)Yh~=^>Tl`^d;JU{sHZ21gaz7*MMqyD(cX;HK+sm1;e)6 zI%^ksV7XbVHRUDllN~zJ(2DRmy}?Ets71x};}}2Bn*Gam@ilj<-#!ob%-BlKubI1< z@->+j+75mn5%iFrd`zlHROx9t$see+cI$AfutG|RmUi!o9re%OBpBEOx36KhoLhg> z9C^p>pIjdT-JA@Y=2y_}Q00 z(?LqOI6bA)9=^a4L1xCkdl5eZ+OLF!#Qw%~&xf1$oS+-*46PKT>qQl|aQjkK4Gj&Z z%Un;TrMu}ah&-Ns%sQjTqA}z9cw`#pzeRRl<(%;X{Vf0q)m-^xq$KsmGg90(qZlTS zjS7EHiY{PSG*Vsl*tKe|^GbBGoDeg&u-EwPs8b)q|21@IJ^LQC*=KQ^UQ-OdE!$BJ z&QVUi#th2Lr7Y1KQ{TRQD;dS= zeH|X8Vq6ncBG}xqF}1a)SLn5ga1*m4?K~e2T)Vb;=HO^__9SlM(u>lnDNh5`+xi5I2 z?l@bxylLCL%b-=){jBBm!mOo8glBum$Z8>%$4mQXF~h}V)?n^X*@Q`5d*U{)=G~+V zoh%AXK0a!p_kwwG0VH94HtP5#+2|i+@}C-i3VefTsC!qMD69K3`)aWr(Z;nL`&IhF zg5f?ZYiyr1^iLBIzbpn}9PG-3(Fjf1&ptj0Nl70-K~|8owYN_OMH%ITmzO@2 zZOqfa@dPW@9b#e(JP{l)0#&xT^gW}Eh=1n&2xCOHg z%$?_sjt@|^wIO2hQYqsR=qf{G{QaLOq$F~-sCTGZOCK}Uza2=8+Fb6BJ3LqbnP5DZ$@uyS-8HfDS1ttx7W$HMx0Nl#b2&19T z?q9t30#642qK`r>nVFws@R!KX*K&jK*tYQ)RYvOZW434d2QsK}lJh@v=?#nr-7)k2 zMKzMB`iE*XPKrvvn>>DrtvB9}z_ULlM$%O_ZO9Z(_l*UH9lxR5kbQOdPO<6GEm&sY zfGWDPfCzT{r)Y!BM8Q-6TJA4l zIv=yE11d?n66AAvad^#Y)NB40C7ieZ$<|$_+=9)2bE~rdQ+-D%-i5OkAG03~(YjLey}V*jM= zou7gPPR+d+D;QU4i6;q)uW3Ymz5FFQ`FmE;K8-SL!{N@Qlu37S5y7w$vX2lsw5}XKx zA_hW&tq3u~f$uVi4b~W8sl`XZj>2fCGN!>ndbS1{@D-_(<{Cs zFf|+&2$sX4>@RSn{cf*AvA<7lU^r%doW#S!Z!Xf%Y(}CjsIf<1cy>qC*_`~%kgeL* zjxu7OlArDtJ_twqldtpt2uHs@mTO zZgQbGu;(SGpg4!8dR;-oNks73*IS{tR^Q!bjn8QOKCo9yk7<|f(NiPsI9IS;Xd9Zc z@fSF_a4mO0vBt7n{%y=@<#GIrP{qBe*&!|m6f$FkZO<20;k|0~MyUY#M251xDSga9 zc8ty6{YiemSxTy^TfIK(FD!9oHXX=Ee*aqSCg|Y69uQDG?mW9~_2D8xxsP)6im&frBYSqBsceY+OvwfS;}A>+pBM>j{a8_&D*I6*2EdKAz1XmYC>ATxFd zU1BkD@kdXdw9JuOPC`eG6Vwj4SF^NheCg)N%tqZYZ7^Bt zN?jwSfca~)JMZh?h$lZ!&791CNq|K931hG^WMDTJr$gOp4JFcyoL_%(+i z^1=T)96At^nP?+NCVuv;Bsln!PZMf<0`u#X)|y0fbE_-G|NQu%2wRPE)SU|oYAOE> zpTw#;J6jP5i4}GJ5m}CJ1FR;khv1c>h}hny@-yV~Zs7e(Ltzz0 z_C)_d=KV7`5fD4;p(%5-M%DXcW`OQYk%`x0%1%rB+!pc#DFRnl^C1b4R8&+HxiH<$ z7{oz1#q;v=M)0|^8yd2ikx~6UfYBdzf}QosjsA4`Cm~A=HHVLo@))QxT!5@21Hl7! z(k#6i7={Lq0XO3&v{&;j#@WH%-43)$vm*CDV=Znbr*PIoIR!A&hmRk(po4h#!Gq5CnEb8a z4eEq=03{Vw`o3k*U!gT02$D6owWZJG!xRiNdLHL(gKHQMT7i&g%zOq-8%SnENn+l* zl>kUDWX9_am{ofrBnNRunlOB5fPrHS!Uid0TjGBP5GLHs$PCJ5&?tM8n5f@u2Q3}y z@M$1RL1{D(oR`oA@+VL9f#XvtL^LghX^1rU({n_8YUxB9GG`CNd>1!$}cq?D|EvNa*+CSiW{Q>L(mX&Mlw6wI)LeYVn^lwTS zJVAJ~!0XmAXAggXu|Su8&d)2RhmXxKhKHwP{57jnR|!Dv3?K>49B$2G2f`(Q~8_Hgg2BJluPvB z0nk9-x3Ti@@BkEzIwcS`9~fTub9vbZY8fDvCL8y}P1v*$q3mu<$HO6f%k$#EGfSg9 zcy7)BhhC#~t}P_@M@~BRUqQu$DfL1lbkpJ}kW!Im>ub01>X0x1Chf$&O?abOKsSSD z=MAj}7@cGAqri}DEC3?iO*)K>&}XYToIzt|Vc~LE#RFLE0>(3!_K_;v6f}pDBDNwI1I*h<#H_Q6+scC;Tq@0AJE5u$XjVlsX9^VJ3R*CNDpABd(I;{E4~InQrfD-X}dO% z54iv9W$o2EC{v!r_}Wz~nlw!J=S>bR?QNw`e+yeykavwO?ih%&dc^LaFyj3@;fOB0 zxW{nImi5rFV?J^|$f=0-^3RD&PlhqpROTxd-CV2m_{5z}U*FQ#5}#Q)m~=K4V|h_( z&$oT1;JTclJk~W<>6qJQOGpTQ$cUNX~ zsTS`$1odR|XNZ`P$Y`Ww{L!-N>Vpmy_GGd@7OaSdsv%>iU+FnQ@%AqtJhQor`GM^k@`_NuS*Rdoh{?UOm0Z}O1D$IcpHm`$9am?r@OF5cV+wR@mFYT z(0Tj#G>nf&L!wNPt2Qa=3Jpyrcfj((g9&|?l)`^uKD%$h)V^24EDbLb-y`i%|AOs7 zlzEIgC(i^$>2#HFxc@k;m3LyNp`g+#KQl_C)9+sSm8Fi=+Ph^#u`}k-X4F{lv^$m= zQMRKgK#Xq_^k%=@hg|r(YwXR*6}PUVwTgwUo$z%y$+*?J&(sSx_P@FpldGawwYfCKBi>;8uezITIZ)Jc*eRanY-mh}2=6r_$ zh91exa}`GMpp8^Dg}^bqp(n6;;UHng;7-5-Cy01*Lr+hj$JsFwCj{G8KxHKl>b2V_ z$h8nSwnWgssj9AqDHL&S=<9FgE28(%O}CJkcR8To!*tiqRmt3 z_aO+NiJ78fn7lZrYy3jLA})_?ABq+V%Q*5kZ>9Ncp=17;tac<&0<(KP85|GMBm&vh z9sbA6*e}UvyWWP&mROm=aM`1s!E~H-g!M(hR)=hr=YDl2$$w66gyop#( zs$52lwmN_kgFt3@y^3jwwWLluE%W>)m~5|J9QAm<8p^;1%M39{Bf_vm&V|Sn!0w7X z7M`D-ToM%({Rvu<-e8(6(h&(~GiK;WzyxM6Mqko_NH=htq<{Kj;>-C>{p6rW$oQx$W&!V1Rm}zFeHv#2YqeJcZTzxsmugdc3aik zMtM9I4q|m4KHLOz6~;%O3*_dz1=d{{KMq^$IQ?20&xonjGvZmu#+WUv-IxE{+{9q_ zkV;E^e%oGmHh4i&{ccB#mo%sd&vU&lI(KGwzaMWkx=zn7!EgRiTe+X1%)Za9HWk*0 zxe`5#edleW>rJm(ljpm#B2kCf!Lg>2aYU0+8;f(lwVrn?4rO(m9}k8&I2z8(Xr8$~ z9Z~?tr^)2^FX^bL*yD(R z9*<#&7qEFBQ&1o~-f*2H0mKbmO3<8$CSa5k3OLHIl90r&Sb9R59C9s1N*5`z!7K;`psens}$Q8=hO4((VI$$TNq9OEqk_>PhTTW)GvW5UyU&_=t<- z(AH+!efWqQx7l7wqEP7rd|ik(dkGVF$@HmWBFJkyEA$-VzGepz{%WoPn8w#P{(iX%Fefrix3zhLnxx^#^Y0X&z3SxA z4j9XXAZT&_%$uAnWqm1-Hy%+@URpBs$x=_0c54`EiZsNm{ckeXNu=FiB zT_@st0*Stlyt%#au6*LZg*pc9aIN;^9zmKE6WVWrrRLWJLh44J@i{rET)szK6MING zYxpVRhU=JPmtHT+&8p(n;|&^e;7;MQ@w^RhDP8Ez?M6g&o0<&eylH76kLF`C^>n2N zwb995JX1~EF$CvD=i%!8=BuVYuh}@A!?w@o*vmK=8rlHY)FxKi(6%GalMrJ^6II-i zTa<$u@2s~d2a}jsO!>My)EsH+lEv@|9Yho)2UMQ6@N7FfDR946b5N?1uP<&rkY7vN zsP6BC*}hkQ{21zDvx0*o0lJnwivo3Ck?FUMZ8cpTJ<$i%$Ht5YKOB-Ys3QB3PpK*`Hvg%M0ot;PngRd>5FoeiMM zq}r?}g+*A;)3d3W?WvgUK@RK2#pFkk#g?B7>VEnmSdaF3X2+)@ZeTB%e&$=R(`*cp z)Usl%d)vdew538#ATiG$(sE&^Gr^bAw$sTmTYkr|(U_38GwiL80DUZfrJYH z*c9u1{YzQ4F_0;MRm*BNd>cCLv~+Y_;4y$?#`TAQw+4ON21uzxsxgU+PizjAulHkR z*iT`Du{B@a0NB?-ZibuDsUHqszS?R(`85H2g-|3lJo!B0thDkWWFQ-OFc^E`%5 zK0IdjOfj39KG}XLQmi#8qopw&9Zq8W9?D}?&PO=2(>ZlcSypKyxHiY&8vnp0|y4jO!c30vd(;T<0Aw& zAJl0o1qL@wi^t}+qx)kfJ0hy-iIoGHp)u6-VLb1rs%OBtWep-94kgaB9cey`_rfSH zZ~k$e$d;1~c3eZ}m~u6q@3szE$}~RN*$J0|dBp?2_BDv{WBsZV1G4NSq)8lf5ck%g z&juFD>R{Z7 z3SUP&w!Au%OZSU~()MyGSI8*Ih+lP8Z~YJAgeIUT+~r_!6Djv-$XkLXA2j?CxE@NI2G zy;oj&{$eI;W9~$ZQp%7~L-Q3b2NIZfw$b|?j% z=R=kA@)#G=%FD}J8l|i>CEC9;M1iC#X`MTX6ED*&mbLYz zLbH#$5xFnomCIv&)650u{#m9!Hv|Dm5J|S#M*s2S2PgONI-Xd#C)t>^Gq!*6>*==@ zGmjdkUBrTFpTRht404zr$$@Y7d-;1O!wQUPg!oFuf(z(*hmd8biCbJ;EVNsaLz=wR zzay;;GX!AMFovnI2rvgMO;z*2@4)7$C1f`E97zT!oUL4lzGpo4mgOsg;aotU00c<_ z^r>MmAqo2Nlo>c1gak?9%LB<0xWJpxTW3THFXKR_72ngDyMt6ZJ|92(llc)MQ{car zov>o{`G2@I{;P0J+Oq$rmE-RpO8PrG5d0U4MTiTA%SWdxAVl0{F|8h?GteX1IB7$B zn{F>O1E)mh6_k|zh#Yh-(cm_rh!d~^e9#ZPUgV&7rT7|}OE0OWg+(BVluqn{`bRqX zM?NXzt&;uM$A4@k&p*HZuQ5$ap-TUqyo-nQ&HfK^&woJq3IomZpJK}2yq941e~V>l ziu{w!yMWQ06&DrL5D^}HcDyn+_jk!Wu8y^?-r7rf2p$|zQ(fdOn zsVcY%1QP6yva)bSBdrIT>z%@8sk4y1=9#u^KPQ>I?+pV6yeGIGh8Shv`U`UlW$MXm zrZK#bYI*#NgP9i<`)%L7Wtd>PE>~X5M++f>u>K#X|j(}44 zn`e`I8RY1+zHTK^gO1+Qu3SbYM@3ntz6v`1bU7B`NmnZi3o*Y4}h;ekM?}?PeZ}l7vpSqGK{#;-@ObG&OXjhQXQ9<400&92JQ1qMjz9|gQZ?3xJflXq|j8jlHDyfn*k+x|!R zN1H>t|NpQ5p_oKI5Q!Ff4``8>>UFDCY8N>A8mZok~rDiWhne`r{rRK zN>fC{rufo>bBhV|=N~>itS6kfe4k-m&4+`tesWFFr&9hM&xaYUm~Zv5ci!H?`g~%v zctU3Iki56o$WgGohszZsGB(!P(ILY9VCrCsRC)dJvCK{*g5KN29nHv@7ezN0U4`Qb z1H+lWEaf-pojVk??r)5J<*x9aS>KLwbWR>ZbG~_?vhO-Sm!EsH!UaoHe2$W*}6q>(y$e&3a;d%-2l>5k#Sv}oCKlpUGJV9{ge-f1iGfFrv^Md0THi_ zH0Y@@oFyy|oD{^J4w@J{W~KBE5@wG0$O0^jb!Rph220{SAMt21eDsvIOE!5aCl_2I zct|ZwLFK10)AR0bw~&az*~cTZ;#GV^5FPu2aZACvdt^BNc8{2}o>lK}6k*BC@$fYW z?#+uda|cyzv;5pAXYpV4Jk4$9%zuJ=Nk($h^;LUSP|oPQbiz-}{B7TRMi((qu~!uR6dy;I@{Mn|Xf!H5Yt{cTV4hKpmIro|+- z`b)wS6$bUkT-^#;*g^Ddo#Ondw$^)D=((r<&PNRqduZFicTy#Srtvy>r?1uvEGe_?F3mEP1W96BzN;G8}dXjSZwW{;rgh$z^fNt9R5GR$| zrm8&lT!L?*n0_&JRL)rI2Di(S09hy&{b>)*L6GkK3-Vi;Zf&FYB@xBnUAh_Gn5ELG z2z0#l{gD=WqhNZES^hCPZ_TquOvi-Op+0xXgmv`w--9v>10jOr(Qe%M20pTg$Vlkj zK7(T9=FOWy@$sxCSjpm{dSE`7>j=jrOB_V&&e5#2wzX{>9gP41@nxzsk)FPQTVytp z)%L2s~bd{qg(#-IJWMDv9Hc#jQ2fxpY;QJH2#?tu( zHfnyfp>Z`nYIKcU6@1sfJQMhEEg~ZIJSs5Yu=mdC&lIj9f={|ek$%rfWvgZJu6?4m zJW+W?netUe@0dp3mfVJ^B28}4bHdKC0~pkT`rl zxb2PJC;0tMtW>P3HW$Nn-Um)6oF@-Nq}rrMBz{fb)im+c2b$e&eC8`Kjg?-rLI`3( z>2k@ppiveUk^sGvZwk~)Be^7SKA7zhxcI7lvAZOXjGKVjuy<&P9K0`(5M_Z33K%_~ z0fq~#?SjE_@+)wxWzlW8f}98dO@(sj9SVSi)eR1Qg|_jys^C3Sw{BR7kEVe|=+|&b0Snt>r8lM`PGpsxKV* zd!E$Jtz+LiB}rc_q#mG&nZqM08SZ!=U}@SV+f2GaIk+ll*3+dp{QLL2aqWuXexa)= z6pG5Y<1d}<@NlHX-A2^5L|P__1Qr5=LdEIwjX8d-xkRe!DX1ZY^maMKzf#u2aN1bsYlo$WRafAy9!qw+Ke_uMFD6qHFx)@PA55(s9pWGBvz8Fnfj^ z%tR<<<>hTB(VRAqppF0!LKq6%=z%8(8-=gu+j}U4fxe-$J=dnXA7?=n@|$IzJaHWN zA(t#GwUKaj{Itzp(bbLTtlBGAdaZ&|vF6r+!N#Rjers zR0`R+h~8;pmIVEq4>V?|RH-ia;3N-KT;$GkosrYOz``4wP_#I4a%uHz@r;m#^??0q z$PHJW){iD!Ol`?YqA*T!gW$DmHMvC;`$v>%v- z=8|rFGiVDQ%+Vx-xo&WsMW8ii0#i$ngJBSe?bRPFP&j}m$?KFLS ztYoe>F(IM9d9PSwawe}tu>eBc&XGC9Wr{w@CL@dli!|Qi$v@T;(i|(2DC^tV-M3Qh zrOAJNALH}4h4p$juupO=PKM@WgJp{g+w>z#mAg%YmM5i)eQU_mf$rR;p>K~bZKwyG z5=U(dmcJr!ysg{z;ndVOePa$67U=pshZi?p&rC{v@=b1C?6?TI`O(X}U_XA5KE-g~ zumGd}QaT-j%toYaD_xXPtai}XwD*E>R~$5}zgnK<`;u61L|rB032%L6YdU15b_d(j zNAH#IHA?YTj6 z_cfv-LwHuQe;=j_q?F55o@8kX*cC1jy!&X&%v3+!G9uwnrDYU_7aI0`W47}QcXw}~ z6ovBsErpCu4$SDNlnce2%*+m;n3g+jJp$249~oID;=zHXNK#U+wn`~iOA3@D0q4m@ zJOTo}R}uD!Pu+T=2MU#b*>!yCMtis!d6y?_p}*bpHN0RM%jlOCrbWE0%HO|GDzbeN zs45!2DpxwG{-|MhlPf*4A{O)UvE**zw#)|JkMEqM&z5|R(Ea6Vi;`+%a;Ozev;8ad zmU(`}x7#=3_tj96K8ueFr!bwro_Y-%bTa%cJ62BJuI2FaT58XGF zMQ*YArdVeVhCLjgx%rzQ?epe9%Xf{-C{%5C&g3v{TVzD?&TtJ|R+2Y2J~#a)p;jxR zgtjU~(Au+E4mPHrKs!pWnR%UCH1Q>68m!ie849`$A8rEA9GQUqbQ}L2G?{wh1yZ5s z8|6fZ?-Mw5mXt$ED(&@qQzqQ3KTeSgzvSVUmQqP4I~M!0njmi<{qZ9C5!CcH)k%j9 z&inykvgSsT6^6Lu1XB2R3qHKe5;r3s=dgGnu|Y9E8_kKdUQ z@!gz_5zpF5MHuPO%VxRXSH@ka>(ugAwIr`G%R-^-eac5R;3p|(-FZMt@4EPS8#nL? z_w(@H@F<4k?wpa1&X=NCx5V7LxR)nNxV_;G$&gRQ08}V)q%dG;kXs~_pup`;)hK@* z?;Z;Yi6=5~Nzg}}YY#<(yBT1jRPY|6gglWks(W)uMNLhv*25j^-o0{%H3D!hELC*W zh!~&eA(%yO#d_5u#+2H2ToHb2Ujjcft_|*?d_89(;7K(IupDuFJzOTZe4|xWeLYp3 z-%;q2^lIA+A33j^#4moc^S%+wB-S+#ZlLibTL`e8U&c2pZW>G)AVe{;a*g0m(LLg< z8OIr!$-hq*tL9s<-nnMCVwbKK{3TpOm0j#d}L*V9iI&(az>Yf8DC%T4-~2JN-ALonTzmHZPY+I`!{^Srf|$7pbZ`~6!i z=7FUb^Rw%f!8cha4{r%d?A_PGrN-}Bog@j6-Dt~2;VhYqDu2I|W*Faa@Pbrq`jvR< zCHyY8$tq`CAjoWPZ$EnY@C``yw%c=Jc6N4Y+O_-;mqm2b7n^wWCy7Dd0!XDawdeKk zuiqx-jex!I4mS2juvfq^z?Ojlc`ajTgCms-*aG!UO?{%H3Ey8shm##nqz?}@HPYK< zN*R@y+N;&S>AmWd;hvMB;A`hsIGrm=MgC%()a|+Mm$OeFG7}OnJjl^kcIMLI;NGyzL{kzP{2Bh)@Wvr~ zcIV2oLt<}dKjz13epirxyEAoj#AP}l6L*#xBYp%`qFmPS7Sm@Ha!iR z7LFV=cr3n$I`z-x$u#IoGR~X5(0!FOGlV9%fYH_%GESl9{e*`&)gg{l!358{(Cm@e zP40Vk3C$AU?Xh<|)&ePAi zhkMc5Hm-c_H@@hcqwlZ9yKnE)-b1ac_QjF3ROfB9kP)y}p9-ij2=9?TTolqvGK5HZ zGuR_CnLbpr>rBQ}Rqb*Je}BW>B^Z&ndnt}i{O<0=2ki_6(Nd514!I`tTfwjv7h_p{ z54K@lJ`7ttC_W*_A;{|47$9<5GXDJhl0dO@OOidqZ{`25t~UY4y6x7+HJ4_Tp`pt7=an9dA zmKR=r3_PlJd&|1h(!Yzg$mzK(aqN@~q7$I6dA@7Nz1r&WNOkAN5IU~pu6QnKSI6-E zqroBjG)?0#WM^lGg_#eAx-dmIO1`=N`QGWJvbQehs^``?Qyw%XC?=ch@T}=Mw{~bx z@Q=3x9X*k3B^FB?OHhA3QeMy#Dh~g?e#Gt8?CzZYVeXBFvy5Y7x%&)@B>lIg9DkHC zTrlHCX)m-{f8)Ztj(yJ8`Y$OdKHVq&Nq^fJ8GW`)?fYcPoxXfs{_{7(;e zH8y!YW0Y~I2+m!;tOBy~8Pe6OS1ba%?Y~t+|8WZiZymO}L3J}QIQFgPBb1K)MLVe1 zd<+##f_Wvwu3dpL?rspJB)poAjbqg;IL8Ib;?Ub!3;Wzle;BCg9u9mLkoGB^5Uw3M zW*}+tzQ+EWe(Un!_wR~2HamS|JiXSnylz>kn{3VIXY*LdF@dGsrt`v3y@Ke>KuG#i}*C z!dEt-7aP|f^q*hD>DXq@pZ3!+@<^hF;zZO!K>leJ#FQ6V5*dB7ncC)u{n$*NWvTUV4jDvZ@ZO@FFo{Ou#@;E7HAXaB` zy`2O{GW*4f!ssWzYai^4bLWKN>~rsL6h0JVWunt>#Gy$h|AX4PT0uw!@OilgJw@bvb6GnJxm z35-qIbn9}YgeG#z`?>v>=)-QEBbd%IA*#ftq-*c0`?IYn_!!(5x)3a}kiY6=#NC*<@tE0|YXe*tSqf@& ze&q)}-~N8#$lV8<<|mw%5JG37Ud4W^wQ1UENL^-hpY%!b?$ojYb zDhi425{dIaBU&R>Wb)_4Y3C=;C%a9M65?~d(XyV-k$7Ph%y)Q9(J(P(oprE@MVpv+ z*{o8mR`RQxUqyl{r66z6FB+fl-EddAwEpc4u7~n&u67YSx(e#&IbrP2F223_^-cxH!$rr&qo25To#6OYs304;+`Y2M~qfZ%|6v=Wmv1jUz%){Yu+=<)0wUI>t$(&J|#D=$I^30#_v*`~^_o7mh?u9x0?$wjSo8)MpX z_~~T7U(WW|Kl4Odx7InYSbapqq`bkP^;>bA#?8W8Q)z3b(<6Ef_6m1qbj;E^k86!b zw}zU}OWgWDN~dI&rGVbR&rFotGEV)m z`ad)#CYtGg*2M`bv~Z-#;Sg_ZWY6D9IL0)n2-j{5(+hU9!ix?6_-nATU_y-_WK-d|>9=PZkO>KV5+Bf2AG8JD(*KF)s&7hg@`k>9^?$7yF zbpO8!n*#ZTy12MVIFGSm$0z&gGz07t-p0hFgdJqL*li)xMj|2i>9pM^Q%+sLgf%Lg zyC4NG+V->P4k%vyV&nI!GWf*h*L&RjR2T*|BOlYtRBP+xoLmq7J=eBN$;#H{(hEBt z#zHQt#|BEhu?~N37?*r88nf?vF(sdHsPIB@(CF;Zd5Pp^#d}{^~!>ZPKS&eGVSUe`9_)`&0FYcH>pmFM@O~|Ms0?T~*f@ zs*&(6C8?~sGyLKAD~GF7gXy>!KlFDx*$PCuJ-@4cW`xT?z^fyzH7-PT#u4?jQO3)c zUm@KjqrxzJ0S6Q&?If_7Nz@qH+-38}q)G#GOv2({!(}DNVlyPhw(j)ipUL_0B04&B za(w(b|2=n;6OW7h&OG_Hwb|OWdT=K4WyzpNLiPv$3*~(}wXfn)GMs5UQglo@`s@IQ zO>zfYA2-J)Z?=1>&XLI@n+)dIct6bXwDx3vq!WH`dJk-%;0}KMAR^$Li3|;G;rw_c zDs%l;(0|b{poOh?Wm=xGSL&ZypzxmJKUG1GG=aVx9A^opUw!PF`fG*@A`RkgoV*13 zn-YLc^S5gFABDmePo_BU|GQA|)6p6}{-k|*?f>$hN}j#`-%1O*XU;kia|csTkwPM{ zm)4(-yKT$yL?NL%6cYY4v{}r>Np!6*_nodfGWh6sFkS1fAIWD6he-vYU}T7DW9Woj z%1eRx5w1c|z0`c9`nlak37BIE7sW=1s!&0{++4|Ay8$9RK6HJ8t5XVm{=|Y-nHqAm2(~_p&t+KT z#-BcJs}(fm(qQ=?%h$Stow^LZ{A$=#tjYKH#epQuovaDlQ~kvza=MK zfJZN{yzgS*$SSPii&yq8ENN^EglPQA)K5LA%K8UjuENI74zb3gv}P_gw$+%GaDKvj zxl|mkHx?J32h#H zuD*_rZn+7~qtj?d59r=8DL^~ea)T!Gx*)Z){y$HldH%jsPBaB?(-imzenngD?d@|p zDjFJSOifLp$RYDW*q#C}31jq+mX{W7ot%=i5|pT#QqP3qht)&Rf3YT_6y8RR;?}$I zgXY`eEa6%5PgT7-6;d`yDly9@#T*wLu&X0&J8oi7FfK0cIF72Kib_0Gt?=nrF@zo^ zl&I*F)LA+@JB7u>@EQeF!Ve6jm~8*gV-!7U8pNo@@mcJ^0TVP)prD(``~i~h3bf@a zzrp2Pq7f^mM|n6%obiqIXax@h?J+A%z@H|V{f`PEQy#QoVe)gN8^=&n9w zy?^#VU_SlV2H})VEh93W(elh6bcI_t{K|4#!k=;ptStInf%fpPP(kd&xJk{KnZ}W{EziX~PO}%u*b-1T0 z!SwUkI4YV2DW3Jyc|E$iyw1$#6@?CtyW1jpKbkyvSbuJjZ=JxNY_{IiJ!`zm8_g`Y zAzgp`vHFnk`H|(_xvs6=bnI{Fl+G_$%GgP=uX=gKgBH!f@q;H=Olfz>eJt%2p4#C| zy|l4czpuNr|J|mOA9p(`4`i{^O_k=sd&sCZo z$t(YR;aBMPL^E3TW) zou_$2Z3e@)tq$MH^hD(Orp!t!?+2yssd?s@=CLNpaHCOykg?+UZHasip&KpQry^ZS z1n(G{8c)Pj#v6NHyZ33U@nraYmG-esYz&QsRNQUS14jdzmS>Qr;`sJcXfW3CeaQ93 z{fV~d5QF*gkNnJ%KLb!!`P)9BK5(H^JF842?NZNG_gdzt=#ds1tvddY{L@;T8^#So zrSwjFdTCnv3@E2P$^P0lRIRF?SjfPa>o{j0{p5tbpZMjo=LK`9J~0J_j)>c6=NhgC zM_aEO$$#UX?fHkB%d?Y4?duged76A<4dc&QelnXMp?{m*98r)L#!8d=JOLu=% z{*jAJe(RoEb&Gox955dBKQxx%|E_wg@F{xMKstGWKW6XOo3(ANSg_iWQI#c=`erJr z*(_S{)WLhS`Sy16cEii1AI{jIf|W`!p?1Z=p|q~f|B&;T5NgCt(@z2diZMB(ruOSDgDEqxYJ@VY)apZr`f0fj}>iM+JxzRYChlLxd&^D-Y(A5KMxKJfz@DXrCEDJr;HlTnAM*SnWtr4WcXVI!GT4T0(eRg7 zdSv&=xK(4ybZ_l_f5)UQIA;sP{(Nk()-TK9o7)p&frO5L2o`xfKb1=SG`F%GSvX%% zQgWg#$EFr!wuIB@Ztzo#)`G&q!kwL7aj_ZMI})tATjJy26?SK))gH;DqxS6TTg-K8 z-n3lamYz8SeO{vB71rVgCs%oo;mTTz+jmu|^R6e)FX~NGymcVC%h@we}6)qJM2+ck0ZqsSLuOVnzzMqOY0H))~Y>VAE~7Vo0%lWnz!m^^S$I$e^0O5$}`*89p&6jkczSdNo@9h| zL0A|AL1vH;z{{YlVQjqU$i?cg_voA#O<7&=N;$(#JH_ybFh%P41jSHNJeoUW{*lb>6;{I)O zUUC*loUHn|;Huuxyx$@y@5jv(KK0Ydz_CVIOW3|iPy;9lBZG9*W$kgBbRmtc35~RltoIU(qSm43VqQV&E9XWih>hg1HZpTXXw{N<1 zI_PD~TFdrY_vZY%rjY$9k(F<6jK?%rRGq5Kyb*DU(erweveyBJB9_cg$!v#o@9WsUFC2xy+Ws@Q3qYGbwnZ<50Wr$tQ&bYp$F^Om z$G1qcH(t;E`ZZvtP)?^fK|?mLMS@=CYuAp(s~=VPb;9)79!a~?$W^_4da|D7&6O`` z3+~TgQ`>imly(QiRNZ@jeE;rp;EtKy*nR7VMap&!qL;t;!_vWasDa(G`T1n20|BqY zM}&;}`bT$n911ObcdadvGqS_I#ef(rSkXZ zwAR>)*`<@(ksITG=~q9Ic_c2_EKNOO|F@w%cWc}6!8O}vsvj^b+glvwUWu}{PTXH( z@q&K>kK8TU%{~V596a7CIwxQjwdlR3v%EmI`)I62rNr&11eyDWN5q5f51X9`prRbJ z3z*XHqkG;2q`S;dPW? zi8Tm@mA8sowFTkeX%$?bbe~>Z_^yI&P5E0Efr_b5p8bM56|Q>hiAmpdg!{T0<yX-~Wf7c2B2hjGUha9?b6c#3yZxwL^l*t@|S>onr}6roS$wnZ!9z zl?o|v^a z2(3GPucPq1+O+U7Humq^#v1%-cElxj@_3)r9(OsHVl>zm{Y{ZZf?lydA$rB7#BXJ- zVz=@}v>x`gPq==V=n`1a;Jz0SZ2HEr?e@oV{_p}`ht)POi&g+W#9p2>=d%j(So z)RTE_84pj>=dKF)t6RTw;2O$xWqbsdIUrNJu2eR(N9KECdattoaYE>M`Y zPI2q(_tlf$^U-}ef?@T$KTjmXq(#&9r)Jqzr3zLUPi0T68M41W&^I&Mv~oh8xvS2$ zE@f-&$hF^vcOGYqN^RSf@G*~Zi^rND zrq;o-!S}Xb-L=EJYrZi@>5k&s>P;r?G}0k{PQ~2r!~MQ8Ix4Ax2ZVHNTgtr)QmoLz zD&%cXg;37QhcM2u^CfAD?}G|Gt9m zbwjE&#&NOilOij-5`MV6SX>E7*L|7g1zJVsG#M}(P`1>hoKDAd)lw|euFSYAJT?E_M_(VhA3A(n~-b(+pDbDBfyxf}eaj{2Y0vCO0d8|Ik zPH)yUFS;>w=4stW`Idxf-x;I-B333MD=HNE_%a*|U%&qKfN4irY*JDoMLM`@_0rn| zs{Fr>Jpt*&f-ZG6E#ib{377o|lOS%8IX9Rn-c^_O3g^v@u*DX^*F-#s9)P?V;S1GD})IxXb%L?Pyu1{}itKgn9T)|3iHI zcRkCxLCjA{yF0O&f_)*!ES#J*l`8dp`vut?PR%ZgXgNyD`}6zJ2E1Wc{Py6??eq8c z?{YgQFK3p%?4&82{O3WwqeYaW_tG60GOUmY9lIaGI=hj->%`pSfP%Ez;+AdQ=fVRw zyZh19-!WYy|mBwd>#ESAXwa?G{WV=1o{L6RzclUn_>Hc%*dwbL#5EUisE}?<4l%@-R zz-@oxzkd1o@-UC|B>xiKqyH!dtWU_vowKl@jP!n}Z#-#4lcYlF?=NUQAuoS1U+Sgc z_W$Mr|0OJX4r{vb|7D2&;UNEt2L2D7Kq=R8@?x4!Y?`5iC}HXW{%Xb-xWZE{HM5GA>fSC zo+B<581TF{*6$e-H<$5x<6xYEp9CiO=>-h-3JLvYvHDnF{|KhP!Wd%28k5lAb8f-l z&#q5=KZa(ZZjLoGSupVB3&Y`ppC?a+IsS}3)V{H%gjcPO0fXNFaYVDuQ@)+7R{SdH*b& zY~w%HG&{5NLV8O4Z`D9H%8~<#BaqiBxVRj`%5NfcfjP<3l$4YKuEs#zK-u?@;W9{E z*^AFnQc_}UW>yZnT8sMF($iM8@U42ps(>v^#o#rC4jhODe6;jh8dp(O9coUY2hAK0 zvXj7TeCs$Jp3IYW@fuve|NQ9zABoy8#K>({Zb?OSpl{p}h60CNX11}ivd&HaQU@mr zG9#eKKx{`#xo{2E3*n2QU-|)~Lz-N4o0z47R<5BoXA3C`bTohpsuW;?h=tvk7VvXV znF_}~x)*sGk{JM@p-y(aw)u1vg%0XRp=D&%(;e%3xl4 z6#A{$ybzCgBO5}=|4tS=fHcc6e!r5Gs86IE7+@;m$0GCD&Vwa>k?AxS9q3+0EH#ja zTobie_z_nrFqO;0*BULaVe7Jxm>9d1RK&jH_gfWehTIhj8RV zS{ii>EQD(!B?Gy&6E*T3tuTVkh|h?1nZ~H554kTHu)bPg#%shWPd=T#2Tdq5lsquV z^hMhx*|nP`=Xt7rmKV5L5xBh|rFi=KZn^aN#W@hac99V}2}(OKqU8f~YWNPU+I!#t z&8k(a@PacHw1N)us6O$t@mKWr;0yNme}|N!i&dTACcnZ^gA9JdFb1?V5B|o* z9Qm(;kHDm*nZB)Cn5E*gb&n7kU*r+j2&~d3PC&Rq7#OeE>2Rqy6hv=@)~i>q4BlM1 z1>S?G3Zxu{OQ10zUkFbG_3Ii0gVYj7Y{8Yf`u!a=XH@+H?2ry;W{Th&Cqj@-D0&>- zmC2<|2r>IPIKJ8Bu*2!>AY2F! z{X$O!D;|!+gBKHc10;YB4`-aOq;VYWNUnc)wXM*w(4`XRDc9-O9{;wx&G8i4Q`k=l zwx_>WN3}E&om{}o^&2+^hGJ9?LHk%`06U|^m8ULU=KC$Qx#&nU0NX-X9=<-|hArNr z=5;q=u|;lYYRm4!*M8qbtZM*!4R_z6FRxf3s4)Ik9Zq%V#uT6O^k7fVdzjs9h|gxg ze|UiPPmhKglW3Wkc+v;Ie!ZEL#EH=jvZ>r+Q~1e@^Aw0wit#|cBQ7B_LV%L#I`2r9 zf#YCG;wQp1sYNXy1WQrD?#6a<_~d9;LCTQE zii&6%8Jzr!Xu2TMoiMbvvhu-ZZ_?(6NFM9bWJf=>W?iDsvFTpAoaxj??}S#%#fuk# zrA^FddaRqloX6sL;b{nA`wRw6Q$nUgPRZCJc9A`Hn6A4t%u^MQB>Czli{M`_3JU_H6#q(b3(9uK6QZ z^ZESfTUN%O>P3R@D0JO*6Mf#k{{9mvx`9}^Txkc+dn z_%)A?l3hRu`i*2@2L}|#|CK@as+XqaTYv{bM$3z3(A`5-Xbkl{fK?_oLgQP@qa49U zGKE9IZW*^oj7V2Z-okb3c=3TYG_H(fH zxkvHGu8)87X?l8WRV9RsJX-M&bh0c@R<^e4>l; z-emH_k@S_(Hf=x*j>mR~Suq^w5V!deac(|775-o2_67yjH3-jo*hDkcD;;44;^>jbbR!_KJzGs&5k zi+F;0I;S{Q!uAGpY075gy2} z-kyhA$w6qi3*x3~wH4gRaXEsXtTOdoSvv=Z;I?clUa?D`Rd}=$y@RmoWng9 z^;d@nf+p$t`IFCvmy2sX&iw3Rw3Gui^0nK-ABEfBxv)nL!2s5V&6|m( zlR?4tU`P(mx84ZsT9#5(QYtPhTZ@GecrMBs8rvX@Nj&%A9ziQWa^u*?9;?GMAd%Ti zztEyYq4Z$cB5?;rRq!su2uMnmYz*P~SAS{D=)xTrnX)))T{kBVX#-pFG@a$p8d zXiB=e3{g>0NPAy)TNvj zBr`_0R<1!a#vspg1L~MssKCf`#tWzhaz`S$Fna@q*lLmjFuZ|N1gVleTtZchjrSTF z8e-P89zO^*%fnZ%P(*gT@8~eNl*1biPeA0wK7cxs^buoXG`I+vkBR~`zA*9)az!Rv z8G_h3GcyH<4OU#6pW??&O$0n0DttpW%mA=`d1K28nFb}t2b(ak=Bo_HNz#4k5W>)M zi|yj%!$LqnIzC;0n31`UWq?=G0$f1#2`q9wuSLdvDH7i)1O7*3Gal^dmK;=!&^g7G zfO&=ohiU||+6EqY@bFPHM3MxjKoA88X?xpE~uAJ*Na-ckJieUH(v`92mcRIOMU zN{#CUcug@d*o`C1e&9d=icL&r&~DniS@PQNy{ZwS@1gm?P5L;#KKZdyLM%YFsC7pe zN+Fjq7e&SOc))ly>(F7O-oX?9=*<$(-?@z8ewLe2zH@GD+$TLFuN6M{hr;5+B=rjp zOK*?#ox69d^p*MinV1MtxTP52fftRUjuVUO;O;PnwxzmZN@cF}ktLI?%*;6CFodhR zTzfO%VeXvWaIJWS>wpSpvel|NS^GYYmMMmPf%^R0iiNLFnB)4C;s5X~0$YAzw-0n1 zy?Eewi=4`Vv9G7I&1&~V9JKO+=O|ueX-7vS1UW9QuC{h|#nsiD6jP%~or#-SQd}$> zm&Fwm6GISCc_L6d9>E&;1v>YZysq~`o=d`e#uYnH@rDwHloWW8m6`tV9R$?j=47`J zp{xqfZ37Eda>V%jg77DnIzbiE}g1z4==><+l*L`plM(zYfAh)>z%AGzVadv&kfoiKuhU=k1(rij4U-){~% zR{y6b#IWT2HCk;-z!m6sbYGb)z#yI=PSiXrlLPgph8pi9F=XIf($LT}6nw6$+eS+p z$mgC8{@@~pZmXY2hXOilqg%CCYy%GvI?;$BZfs%@x_S7<6anP$3(Gj<>m8qU(fP&= z?Huc~XfDZtuV)mqq`OcR)Z@N9&w~7S?b@}v*B08&2i^fW_6!e4ToBgP(|d&i2hX__ z#{atcj{MiJU+=Gtj>cX;s^n<(HUl+OLm~P44KxsDi;zW9ARd++>>i);j}DS=_B$#s95oU{vG!$KNJt1^GDu#|qEA@K4Tr)js8f_e_-4~h=A?mtL04moojQU$ zvUxldM|4~oH*rcD(#}fbLA=b#F+&*A%kD-+08-=>K3y4{OmW;qVL57o`Ap2sJn;A5 zM*M40VE6Y|w6#TG2+JP5HQ0fXYzDC?gjMQR;=QVma|>|7iIcji>2dG~gn)o@N`3nH z6+EZNL(W>(wmUNfHBH%E>Wv;RG-4CcJybP~fO^*_hf4t?U%h@E6v&Fw1H8H@(+_C( zxDDP2{XVz42_fCn&o2qL3T@Ck;O}Bk(juS$j%V{6Sc}g66vgPK96p^*fl~q-L!G!UAMZz{J$>1RLf0EO<;33= z{}Al%GCP*cAL5trL=ZI2Q&b07MH7s)B#bM$lTY_3&d5+*%qmH{{;&9mM6id~EDX+u zZ*fhkRx;tiptglr+yj*qrn8ms&BBnE@Clyc`ooXz?9y1C!;g?imkU z-)JD$wLzZM+1VM%q8#OA1rD$-E*V%(przlVoziO2M@TLM@K?+^tgYSX&fFLp|3n#1 z2zb;1$N?z9)X07-)EF8(!N^JmX(xH{JOQ!heoppYI+?6>7wW*5*C#DumG=OI1@P2U zxC%C<8$|=EX24S?cPRxzJcPsh_>&r``eGQ*(@56AlB5VyWTqw!UqQ403?ft{K{AA& z05e1SBP3*CB<1pDJ}hbK!Q=&!skYTC7qMUu{U0|A>z%z%_&oZp=g$9H?J<=N>Mi8S z70L87uW!)6m_c66w;^DIYBL=(;sVYG@yi7O`-tO5DlR~m`3xb6O-f2Xtrb?yu}BEeI|>1af!;fg zA7=68-wD=UY;urZ8Ap z;j@1OT>t+4JAuNV(~Z=Tr4WWfWunot%|IXo@Vy-z92|MoAm4E_0F+Pnj~}=+#LnR+ z0=zc(G4-kCZ#BCxuu&bru1t~vFxz6w{NfwM>i{P(oTUN!y@v%7C}sO6@n%a&SO)4X zd9WSnTGwr~Z(O;vTs2uI14fZ>KRt@dM=$#__N?tBoEstvaup@&kTZOVbwjR}UR;w~ zR#B?GC?>z8Ox|YqqYyesbG-ly0dzK7cf7d;ohC?%z1U-l%zp)R9(W055MB>_d{mvb zH|VHp;uL>xOxlWajW9RRcM3sALu@B-rO3?e);))eJKoqrLR$a)ByXPMh*v?uB4-Y_ z1`z`T{}ZMfk(9VSpvn#gpkPeQR62h?zGKHh ziv~6lZ($7BSaW(c$uJ1uCE!m9wSrVSfcu5e1gc)lP-yw<`>Yy>A?T>`Y8dAcK;9-i8wxZiZrQLgzWN~Yb%4^MpUtDSiL192 z9KpXj}RP>_ifJS3*DfLo?@IVU!(9dWI# zBmf#ccNIw4K+B;>0J``u9b@CCI)yIIga~QF>E%q=71-6hFJDupchc;)Iv6-`5@39E-$9TCC=_Jiotl)S0JfeB60W>6 zw-=gG;Si=5Nf?EM7Zh=`TYkU@2AWU2uvzt;j0Ltc=r zZLh~c-?%TI- z6BZOz-RHI@2BZB>36j&A?x*#?+TkU+JVpb}7k&dp%S+M_zpvI(D1np7V;q2SC=}2^ z`2gTg;sjB%15L|im7I|BI&}4Dfs+c>C?{^N| z1R*~F?6$M82+Ej26^}Rv0s1OHn)gV9=Y3xYj&YG74897{B@PTk;Rq|7&TqgUlH z+!TWxuk%9p5lRIb1_nh$Uym1oNL=u3zxF36=Nd%D? z5ESH*lr+dGo^*21K_N!tH^xM@fO}9dhY6iq2_W5%oZ=0BZBGab`i8&`pjJ155vdBH zJo-Id@=SDvV!``iz#T#fpaPLk(5eUE&V4xp821iLqresLmr#K)ty*1C`Z;wMK2RbK9r{O5fjJ$t=~BV1 zCJk~-NU$C{6p4r{Z2wIKSNhqb883RlPw>b=EaC)nj9oZ8;fYQlr6&!080fpFOFPx@ zZ&3f?H0%QzLOdAINWP28<~O|bF@DE@G7_1EOjTGu?6U_&PpBjS>FUSge*5LTDy9#* zEY69MkA>3&h)%+LJy>?^MtB}#nyA6`#(nt+5Wqh(TxYU3!72%*2M~pERS-Anogzh< zUyf&w&pvVg{(TY1Z7e^(*bx8OaOG}kM{hv&dh8nokSNEE4-+xl0%n`(;V%~2xP}94 zc?}*{2}*#vdHt3xWpI+%b2iIm)-IQw>_>$iG~NWK`h%p(b{Ch+08k_#fk#|eSh#Za z>UmrXvI7`(I!KigT*6nGnWhUff52}|rC3K^AN<6Omf%rxLO>@UvQa^{zP7X=+11r$ z$s+aS3F-9$V3KlsRz4rSlZA!xS`QBop}+oGG0hC%GgL_q3Xuf^i~+va2O4+}9wb+n z{26@z4?v8!nlytEJsZBSe#Wv(+K~?NYTFtm%)NDOU3B<7l#gT?Zf)0=tJ2kk{|}LvTjZ z-R?vI1?H6aYCyuV-|6AS({`uzN4ti9Dc#8Jef&d-*0bJ8VB}#>Ur#E^pL3vVvE!`~ zQ|QRa>y9G6=3&EwA9eEB9p#}Ct;%h{Q_V0MkSI{4%JB{~PnWH8F zs)_XO6qY4H7*LRDJs&=dLpXt0CIi4jEmGpqfQY{PrH0X9oJL8Ih67Sjh?E-W4k6St z9C492n|HNdX+$Lgx&IIPX^@c2!u7Mhxw%>Y0L!jjACX^?=(hmGfdW3^rWTk}O<|?b z!0h?0%WMGDB(Yk_D5pT=yhNHt8G+W>=_|Ij^|~r3CSi|VmHH6vPSkW-F|v2nt^ER; zAtC|@jUkN|Y-b}S3j#`+AB#FFGeYKO7N}T^4JUYg}HOSGKXanP}P{(hng`bKDuCcPXx9%C7(U-4Y z#h{wgJ#!{5Dd|4?pg3&Efs(+{k1+91T4H{FwK7Y7dH}XWii64+PBv_Kv?yd3^VPkm zAVMVTW55KwyDt?LAJ0~WACJpV6dX@y+rs@2UbKLK0HAK6&<35aPx0F8U{?krnhZOE zG-*&h^K>*GEsNYe-vHsTwF$(ic|-gL#DN}oq2YX0l$TXkgJiNZwzf|D3~CTuE@3!v zvj~C)*>r9Eo9ex3mXAsh*LgDt-$q0cIbX5OZFYd(ZElDY%P=azXP4oclR2%Mk#s}f zzhk&f4j;A9GhT7#22^go31W=ukrJAPR>#3h=VFiz+0L{&Oc;IvFLCK5CDF>*3^?C3 z9IC9(YNn#H3DnsbUnAZfY^-txdQjq0VIT{_o9Xnap>N;H&}QS(ieHbj!L&FT`6M?l zF9XFi!5P^010=TwL?74@KWKh30F%&R$YTD+`MUW+a9L9m9Y`I-U%uLg7i#WL9$!L! zB2rugO0pLh+!@grkVFo;XDsV|dHFhsZc^E@0@!R3F-Ttv_%RpUHQ1z~QJIit@XLA_ zNW)7Yv#x0KG@^}!fD0v}2$KIGRx6V5bklKN#Q6;y#JYJ^+iiYF!xgYQ#&5p9;O$$I zCGoKLb8~O7v9SRcT?SNWfo?mw!zcvF4FwHN3hvaBNKNr-u#4RI{z%nkxYJ`}IKIOz z>9x2KPyKu?G^ zEQVv^6Ijj}X&&JoowK{pdQc_D>E~Q-l?CNRo-Bwf?Mr;a1Yu3cst0Vw^z?TAmCCcg4xUflAQdB|(OAJylipKamnW}t zb4eF8Co0il!w6Oq;0K+vvQkA!3|_1sfOM?JQcTS2_b+ohx7WbY#UDNp8W-d*S$KB! z=NC;kH@u~VsdgJcl)=Y8j|9@P&PNTadmE->SkvFt)!>UWqOFwEXf^V!ZkFW^6mEFi zls&oH2m!dn?@>d^>;0S@aY(m7aTr@#DnS|sbh0CL z$L-&bK#hAV7o(f@&;j2uPG`RmHzJNc$ z45qnsiTepQd7~*GCx2=qR{j{uuKgY8wU8*TxpVE>wOqmYjapai?65=nPiA`^-O!?s z0g8ZHLUy1uCfFPGlsAh^6hJ{8+@5`(z zI~3N0sKTcOmE1cpAcvIHKe%K}^U>)geW8fulMmk)`*slru%~GI^o)#V7Cy7rFQbBbRNrI zK&C_*2ej~-*=z6lU2VL3w>JquqXXuxr@z01G-{x3FnE2)ylyX|B6vu6;Hn8-uW zNGLg|0{ZAxkX49>U`)(D5Gm-ps71xULT>{p551x)+)xZfm!mC5=Sf{$w3mZ#(Knf` zN$POcFnYE$r7g?*7*%iXM45$}U+Cb$i%4VOaUVg0h|54qBk=GSnx1LCyYESdYD-Z~ zt*ot0e?&NG1iMujgO%9*JjTbzP4OqljJ%D_ud5=u;9eLZz80QS*|xfe#s6WtRbFz@ z%v@)lP1=k;wA$NQIOV{{gPB>&%*>4boD$mdsCU&vce7(Z2?}aLZQ?5RpQ2aoT5;IQ z2%BM0D~XYIKboCHR{&_UVbiAb_`Re~z>&~|ywazH9hPfGAt4OS*`u*jCEw4_%>Bh* z%PXM$pwxqm8EVVo)lO82L4f~f;u}>cEene}fEVd+L9mBT(npG>zT1mRYi@AJAmq%u z-b$jWMR;`_Mj^Zr@VkB>-0^G@@WK`#a)NqQ&-4|s8tCT4hQW35>>|j;CP-t1eJ6kI z#?)o9j|wORvRj}f599!%Fo14vZf?#_D}G3dnG!(k2&R6vk`f>Nb|F9sV+2r)uXKO^9Po2pEQ8sYS%Nb*pbDK&8o z7)5xhDlab&uA70EmlyTIF<{$&NUw-1qy$2L8hvi=B6(VSI#5Q%#l^%w3QxZuh)yTv zln)RM6e*;Ib0+)pIfydtUQoeh>q}dk*DgJ3{30fHeeb2?4WpN)K*@mO$GbwpBVt!6 z$Dds4ZDI8<-5j)df=SLMd@DdT=KV_5WfncqHb*T}9U=A*eQNvpDJz4sXF<-BC3*<& z=AvrHwt4*WQd&bDJeMt)Y};;0;*I}n{TM`X!cmaJfH_HgKdd!SGE{G@Bs&a)c}_xe zx)#p{gAoG~{{l;}kwj9Bb|S0~-XorI8NPiZ-v`bAHh32c$#}l9tyy_k}Krmo) zg3IwQuTQb7DyD43r-xq_3ClR8~cmIp3oh$-1r&g2vM_xe~85kC*43O1W}oyF5Ch_=BR?geZ+X;g#zM) ztJdwG$%P0Gnz&yciGi`AP!tfp1k@4P&Wlt>Y&p^QLxZSqa8Lo|Ex`kT!8b2*hLc$a zLkiE10H#acZ0JC)AEE?!;8GChPPmN_i7qZg0J=0p@(zJ2y2xutR}aww?HZ%@eZ;P@ zThcaNbl=C$H@3$|%al_@uFp+ylU^b&J;aa|jcZRRC?H~;xUaHv;R=_N1n1a#S2R2iIT7v4^w{QEoY49>K zHpA6KuL{g5p2avo3X`ZgmCG|m=(G}Gc}&6pbf}npZvW{{extg^pld_Jo^BXXZdg{* zSO1Bx_2&8{4-pbUTSyucAf&4*x5t0_boPa=FoZ#$kP=GzeenHcvsnwnJ>2cPKJG?-lzeI}*m9r8KAWo|>cp4Mm{W$(TkN48B_OO8FeTs7l>Ch__ z`uGW9@Rj#(t2tG0-2u4rS(aYT8eB+0f1R653hUhCM2sFXvGy2I@>^4)qghB4jEGoC z=ubj-f_$n7Kv| zPoO=PdG?=&dXeluBNGsKd(bjhzzXmg1`+Uf_oKvPdUzaWn|eyntgy-9H*~MeQX73X zH{AOJHv}(mD}fH6`^nYd;NT#FHA^X~|9F%BX4VSWWEp9xNIBpyHP~4WWstC_s7ekW zKri602*ftd;keo0XM6COhc_Nrg|Qv-G=4p}b!!D?S|Z(D6-VX|h=_b>ZI$fI0ApOG zogcqp<3?6?_BGPd`By)V{QQXqTTI>u75J*+6T%%;_`m_O3lC8=>lg1xR0PZXrAwNQ ztTcZo*FNFxRgTwPSSM-!?F68pzrX+0kH=+YA$@2u=Zl@u|Hnxw^#EQqZbl>|3WkYV z$r5OMp#o*{k^9$t^r^$~dz)gAK!bQs`vQ->#1smE`OxRo$MSvux}vVv2SF$e@859H z#63}Df#U#3h0UQ)T&q; z8{b4s12{RBtn=Kp8*TS0Cq#Y z)i0n((}IRpMMZ^-0f1iMl$4weoFvLiAT1nN@Yf*~6%|)&)Bpc#A6ieB?_Uq^7R_bw34p0*!=2-{a+fs~fbh|GTG1`&a>jE$KY zC*D(4dg~k8I32uYsFEu`qC>+Du6PJwn6z;3+_{4#XMD4>cu3&qC|#j!6fN*U2|&K2 zrHaQGKsAI1$ynx$37QT5AT9IQV1YlywH^;}G;~(w%Ogbn%#qp)W*VittAGU;Pe2 zO6+Lr7%}_pT^~V08t(23y+H6xrnu>#p+Nizu7V(7Xvx>pGX@b1Ezj9NtJb!*r8ouv zy`niW^lhjhWD+_nyHfAQFMKM2dh9GGN^4a5m^VI;mMP?K(TbUU>XL5Mks{w;?l%U;|V96@i~#U4lv z0f;K0G{CIsN@J8O5cbl7NkPt5#HA>bSf>fTiC}(0+MpRTcF^hPmlZcL^?;CrV?m4& zLH+`QZQ6Cv8}BgFZSgwb2gp!yFfOkQ>N?O;f(E7-z}$J_`*s|-_a8t0Na?ZxQ@LUN zdSg6Oa%k|vFX$>-LvRZ8MF=Xy4pR_d2t=m}dj`Y07j!{qp zWTOR2+62W%`-xtTEPAsW{8aO|M^6Xj3^m9~A%|fdbRlZJ8AZq#4x+*!PAplOqnJ8R zkR6^)5Tr7=jY8o3(ytd0!5^l>@Rv!i8VpkfZncbFErK@*R#4Fq4^@!v4V%ls14xtE zMcgLhuL{ug_U+q#-8IK5qUah1pR)oxA^8`I{P!66zxI85-*W!V-o!loua(>F-x%yB zxQO_o|Mg45(DGmSKztDYf&pTB_+Nw0|H}_s+8UqJ;&Ehn^Ij_aLy=QEktS<=`~L$G CLol}h literal 0 HcmV?d00001 diff --git a/labworks/LW3/lab3.ipynb b/labworks/LW3/lab3.ipynb new file mode 100644 index 0000000..616afe9 --- /dev/null +++ b/labworks/LW3/lab3.ipynb @@ -0,0 +1,739 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Задание 1" + ], + "metadata": { + "id": "oZs0KGcz01BY" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули." + ], + "metadata": { + "id": "gz18QPRz03Ec" + } + }, + { + "cell_type": "code", + "source": [ + "# импорт модулей\n", + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')\n", + "\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.models import Sequential\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "from sklearn.metrics import ConfusionMatrixDisplay" + ], + "metadata": { + "id": "mr9IszuQ1ANG" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр. " + ], + "metadata": { + "id": "FFRtE0TN1AiA" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка датасета\n", + "from keras.datasets import mnist\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ], + "metadata": { + "id": "Ixw5Sp0_1A-w" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "aCo_lUXl1BPV" + } + }, + { + "cell_type": "code", + "source": [ + "# создание своего разбиения датасета\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 23)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ], + "metadata": { + "id": "BrSjcpEe1BeV" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "4hclnNaD1BuB" + } + }, + { + "cell_type": "code", + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (28, 28, 1)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", + "# размерность (высота, ширина, количество каналов)\n", + "\n", + "X_train = np.expand_dims(X_train, -1)\n", + "X_test = np.expand_dims(X_test, -1)\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "id": "xJH87ISq1B9h" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети." + ], + "metadata": { + "id": "7x99O8ig1CLh" + } + }, + { + "cell_type": "code", + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", + "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", + "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "model.summary()" + ], + "metadata": { + "id": "Un561zSH1Cmv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 512\n", + "epochs = 15\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ], + "metadata": { + "id": "q_h8PxkN9m0v" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных." + ], + "metadata": { + "id": "HL2_LVga1C3l" + } + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "id": "81Cgq8dn9uL6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания." + ], + "metadata": { + "id": "KzrVY1SR1DZh" + } + }, + { + "cell_type": "code", + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [3,26]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ], + "metadata": { + "id": "dbfkWjDI1Dp7" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки." + ], + "metadata": { + "id": "YgiVGr5_1D3u" + } + }, + { + "cell_type": "code", + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n", + "display.plot()\n", + "plt.show()" + ], + "metadata": { + "id": "7MqcG_wl1EHI" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания." + ], + "metadata": { + "id": "amaspXGW1EVy" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка собственного изображения\n", + "from PIL import Image\n", + "\n", + "for name_image in ['цифра 3.png', 'цифра 6.png']:\n", + " file_data = Image.open(name_image)\n", + " file_data = file_data.convert('L') # перевод в градации серого\n", + " test_img = np.array(file_data)\n", + "\n", + " # вывод собственного изображения\n", + " plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + "\n", + " # предобработка\n", + " test_img = test_img / 255\n", + " test_img = np.reshape(test_img, (1,28,28,1))\n", + "\n", + " # распознавание\n", + " result = model.predict(test_img)\n", + " print('I think it\\'s', np.argmax(result))" + ], + "metadata": { + "id": "ktWEeqWd1EyF" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6." + ], + "metadata": { + "id": "mgrihPd61E8w" + } + }, + { + "cell_type": "code", + "source": [ + "model_lr1 = keras.models.load_model(\"model_1h100_2h50.keras\")\n", + "\n", + "model_lr1.summary()" + ], + "metadata": { + "id": "DblXqn3l1FL2" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 23)\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X train:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "id": "0ki8fhJrEyEt" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_lr1.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "id": "0Yj0fzLNE12k" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:\n", + "### - количество настраиваемых параметров в сети\n", + "### - количество эпох обучения\n", + "### - качество классификации тестовой выборки.\n", + "### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений. " + ], + "metadata": { + "id": "MsM3ew3d1FYq" + } + }, + { + "cell_type": "markdown", + "source": [ + "Таблица1:" + ], + "metadata": { + "id": "xxFO4CXbIG88" + } + }, + { + "cell_type": "markdown", + "source": [ + "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", + "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", + "| Сверточная | 34 826 | 15 | accuracy:0.990 ; loss:0.029 |\n", + "| Полносвязная | 84 062 | 50 | accuracy:0.942 ; loss:0.198 |\n" + ], + "metadata": { + "id": "xvoivjuNFlEf" + } + }, + { + "cell_type": "markdown", + "source": [ + "#####По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС намного лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества." + ], + "metadata": { + "id": "YctF8h_sIB-P" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Задание 2" + ], + "metadata": { + "id": "wCLHZPGB1F1y" + } + }, + { + "cell_type": "markdown", + "source": [ + "### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. \n", + "### При этом:\n", + "### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000\n", + "### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов\n", + "### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно. " + ], + "metadata": { + "id": "DUOYls124TT8" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик." + ], + "metadata": { + "id": "XDStuSpEJa8o" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка датасета\n", + "from keras.datasets import cifar10\n", + "\n", + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" + ], + "metadata": { + "id": "y0qK7eKL4Tjy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "wTHiBy-ZJ5oh" + } + }, + { + "cell_type": "code", + "source": [ + "# создание своего разбиения датасета\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 50000,\n", + " random_state = 23)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ], + "metadata": { + "id": "DlnFbQogKD2v" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Вывели 25 изображений из обучающей выборки с подписью классов." + ], + "metadata": { + "id": "pj3bMaz1KZ3a" + } + }, + { + "cell_type": "code", + "source": [ + "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", + " 'dog', 'frog', 'horse', 'ship', 'truck']\n", + "\n", + "plt.figure(figsize=(10,10))\n", + "for i in range(25):\n", + " plt.subplot(5,5,i+1)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " plt.grid(False)\n", + " plt.imshow(X_train[i])\n", + " plt.xlabel(class_names[y_train[i][0]])\n", + "plt.show()" + ], + "metadata": { + "id": "TW8D67KEKhVE" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "d3TPr2w1KQTK" + } + }, + { + "cell_type": "code", + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (32, 32, 3)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "id": "iFDpxEauLZ8j" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети." + ], + "metadata": { + "id": "ydNITXptLeGT" + } + }, + { + "cell_type": "code", + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "\n", + "# Блок 1\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n", + " activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 2\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 3\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.4))\n", + "\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(128, activation='relu'))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "\n", + "model.summary()" + ], + "metadata": { + "id": "YhAD5CllLlv7" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 64\n", + "epochs = 50\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ], + "metadata": { + "id": "3otvqMjjOdq5" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных." + ], + "metadata": { + "id": "Vv1kUHWTLl9B" + } + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "id": "SaDxydiyLmRX" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания." + ], + "metadata": { + "id": "OdgEiyUGLmhP" + } + }, + { + "cell_type": "code", + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [3,15]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ], + "metadata": { + "id": "t3yGj1MlLm9H" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки." + ], + "metadata": { + "id": "3h6VGDRrLnNC" + } + }, + { + "cell_type": "code", + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels, target_names=class_names))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "fig, ax = plt.subplots(figsize=(6, 6))\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)\n", + "disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра\n", + "plt.tight_layout() # чтобы всё влезло\n", + "plt.show()" + ], + "metadata": { + "id": "od56oyyzM0nw" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "#### По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85." + ], + "metadata": { + "id": "RF4xK1cxamBc" + } + } + ] +} \ No newline at end of file diff --git a/labworks/LW3/notebook с полными выводами/lab3_full.ipynb b/labworks/LW3/notebook с полными выводами/lab3_full.ipynb new file mode 100644 index 0000000..6f7511b --- /dev/null +++ b/labworks/LW3/notebook с полными выводами/lab3_full.ipynb @@ -0,0 +1,1661 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Задание 1" + ], + "metadata": { + "id": "oZs0KGcz01BY" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули." + ], + "metadata": { + "id": "gz18QPRz03Ec" + } + }, + { + "cell_type": "code", + "source": [ + "# импорт модулей\n", + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')\n", + "\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.models import Sequential\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "from sklearn.metrics import ConfusionMatrixDisplay" + ], + "metadata": { + "id": "mr9IszuQ1ANG" + }, + "execution_count": 40, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр. " + ], + "metadata": { + "id": "FFRtE0TN1AiA" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка датасета\n", + "from keras.datasets import mnist\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ], + "metadata": { + "id": "Ixw5Sp0_1A-w" + }, + "execution_count": 41, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "aCo_lUXl1BPV" + } + }, + { + "cell_type": "code", + "source": [ + "# создание своего разбиения датасета\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 23)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BrSjcpEe1BeV", + "outputId": "7952fd1d-10e4-453b-c687-49a858e48d78" + }, + "execution_count": 42, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of X train: (60000, 28, 28)\n", + "Shape of y train: (60000,)\n", + "Shape of X test: (10000, 28, 28)\n", + "Shape of y test: (10000,)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "4hclnNaD1BuB" + } + }, + { + "cell_type": "code", + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (28, 28, 1)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", + "# размерность (высота, ширина, количество каналов)\n", + "\n", + "X_train = np.expand_dims(X_train, -1)\n", + "X_test = np.expand_dims(X_test, -1)\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xJH87ISq1B9h", + "outputId": "c3cec4ef-3b57-4d93-9412-58c1231708b5" + }, + "execution_count": 39, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (50000, 32, 32, 3, 1, 1, 1, 1)\n", + "Shape of transformed X test: (10000, 32, 32, 3, 1, 1, 1, 1)\n", + "Shape of transformed y train: (50000, 10, 10, 10, 10)\n", + "Shape of transformed y test: (10000, 10, 10, 10, 10)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети." + ], + "metadata": { + "id": "7x99O8ig1CLh" + } + }, + { + "cell_type": "code", + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", + "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", + "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "model.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 416 + }, + "id": "Un561zSH1Cmv", + "outputId": "131f4e97-7b44-45ea-f266-36366c063fcb" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential\"\u001b[0m\n" + ], + "text/html": [ + "

Model: \"sequential\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m320\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1600\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ conv2d (Conv2D)                 │ (None, 26, 26, 32)     │           320 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d (MaxPooling2D)    │ (None, 13, 13, 32)     │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_1 (Conv2D)               │ (None, 11, 11, 64)     │        18,496 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_1 (MaxPooling2D)  │ (None, 5, 5, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout (Dropout)               │ (None, 5, 5, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ flatten (Flatten)               │ (None, 1600)           │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense (Dense)                   │ (None, 10)             │        16,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" + ], + "text/html": [ + "
 Total params: 34,826 (136.04 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" + ], + "text/html": [ + "
 Trainable params: 34,826 (136.04 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 512\n", + "epochs = 15\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "q_h8PxkN9m0v", + "outputId": "a855528a-f08e-47b9-c1c9-5db7fcae47af" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 36ms/step - accuracy: 0.9800 - loss: 0.0627 - val_accuracy: 0.9838 - val_loss: 0.0546\n", + "Epoch 2/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9814 - loss: 0.0590 - val_accuracy: 0.9840 - val_loss: 0.0505\n", + "Epoch 3/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9839 - loss: 0.0532 - val_accuracy: 0.9845 - val_loss: 0.0486\n", + "Epoch 4/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - accuracy: 0.9839 - loss: 0.0511 - val_accuracy: 0.9845 - val_loss: 0.0466\n", + "Epoch 5/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9870 - loss: 0.0437 - val_accuracy: 0.9857 - val_loss: 0.0464\n", + "Epoch 6/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9866 - loss: 0.0440 - val_accuracy: 0.9865 - val_loss: 0.0443\n", + "Epoch 7/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - accuracy: 0.9872 - loss: 0.0434 - val_accuracy: 0.9855 - val_loss: 0.0455\n", + "Epoch 8/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9871 - loss: 0.0395 - val_accuracy: 0.9865 - val_loss: 0.0451\n", + "Epoch 9/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9878 - loss: 0.0373 - val_accuracy: 0.9882 - val_loss: 0.0422\n", + "Epoch 10/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9897 - loss: 0.0331 - val_accuracy: 0.9872 - val_loss: 0.0435\n", + "Epoch 11/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9894 - loss: 0.0339 - val_accuracy: 0.9880 - val_loss: 0.0424\n", + "Epoch 12/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9898 - loss: 0.0334 - val_accuracy: 0.9875 - val_loss: 0.0419\n", + "Epoch 13/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9900 - loss: 0.0330 - val_accuracy: 0.9873 - val_loss: 0.0415\n", + "Epoch 14/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9905 - loss: 0.0315 - val_accuracy: 0.9885 - val_loss: 0.0396\n", + "Epoch 15/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9892 - loss: 0.0328 - val_accuracy: 0.9877 - val_loss: 0.0408\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных." + ], + "metadata": { + "id": "HL2_LVga1C3l" + } + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "81Cgq8dn9uL6", + "outputId": "7cfa29b8-51ed-4d74-c7ba-4e67d519790b" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 4ms/step - accuracy: 0.9909 - loss: 0.0257\n", + "Loss on test data: 0.02905484288930893\n", + "Accuracy on test data: 0.9904999732971191\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания." + ], + "metadata": { + "id": "KzrVY1SR1DZh" + } + }, + { + "cell_type": "code", + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [3,26]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "dbfkWjDI1Dp7", + "outputId": "13925d9d-998b-415a-ff89-eed93e54c22c" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "NN output: [[6.8512822e-09 1.5158575e-15 1.0000000e+00 9.0422042e-10 5.9816353e-12\n", + " 5.8040170e-12 1.7400075e-13 1.9021928e-11 4.2980776e-08 6.8364819e-12]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHHlJREFUeJzt3XtwVPX9xvEnCWRFTTaNMTe5GECkIxCnKGlGpSgZQmodbm3ROhY6jg402AreJh25qJ2m0ptjh2pnaom2gpdpAS8tMxhNaG2CBaEpbcmQNC1hSIIyZTcEEtLk+/sjP7euJOBZdvPZhPdr5jtDds+T8/F4zMPZXU8SnHNOAAAMskTrAQAAFyYKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACZGWA/wSb29vTpy5IhSUlKUkJBgPQ4AwCPnnNrb25Wbm6vExIGvc+KugI4cOaIxY8ZYjwEAOE/Nzc0aPXr0gM/H3UtwKSkp1iMAAKLgXD/PY1ZAGzZs0JVXXqmLLrpIBQUFeu+99z5VjpfdAGB4ONfP85gU0Msvv6xVq1Zp7dq1ev/995Wfn6/i4mIdPXo0FrsDAAxFLgZmzJjhSktLQ1/39PS43NxcV15efs5sIBBwklgsFos1xFcgEDjrz/uoXwGdPn1ae/bsUVFRUeixxMREFRUVqaam5oztu7q6FAwGwxYAYPiLegF9+OGH6unpUVZWVtjjWVlZam1tPWP78vJy+f3+0OITcABwYTD/FFxZWZkCgUBoNTc3W48EABgEUf//gDIyMpSUlKS2trawx9va2pSdnX3G9j6fTz6fL9pjAADiXNSvgJKTkzV9+nRVVlaGHuvt7VVlZaUKCwujvTsAwBAVkzshrFq1SkuWLNF1112nGTNm6KmnnlJHR4e+8Y1vxGJ3AIAhKCYFtHjxYn3wwQdas2aNWltbde2112r79u1nfDABAHDhSnDOOeshPi4YDMrv91uPAQA4T4FAQKmpqQM+b/4pOADAhYkCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACZGWA8AIP5ccsklnjPr1q3znOns7PSceeKJJzxnTp8+7TmD2OMKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIkE55yzHuLjgsGg/H6/9RhA3ElM9P73xcLCwoj29eijj3rOFBcXR7Qvr3Jzcz1nWltbYzAJziUQCCg1NXXA57kCAgCYoIAAACaiXkDr1q1TQkJC2Jo8eXK0dwMAGOJi8gvprrnmGr311lv/28kIfu8dACBcTJphxIgRys7OjsW3BgAMEzF5D+jgwYPKzc3V+PHjdeedd+rQoUMDbtvV1aVgMBi2AADDX9QLqKCgQBUVFdq+fbueeeYZNTU16aabblJ7e3u/25eXl8vv94fWmDFjoj0SACAORb2ASkpK9JWvfEXTpk1TcXGxfve73+n48eN65ZVX+t2+rKxMgUAgtJqbm6M9EgAgDsX80wFpaWmaNGmSGhoa+n3e5/PJ5/PFegwAQJyJ+f8HdOLECTU2NionJyfWuwIADCFRL6AHH3xQ1dXV+te//qU//elPWrBggZKSknTHHXdEe1cAgCEs6i/BHT58WHfccYeOHTumyy+/XDfeeKNqa2t1+eWXR3tXAIAhjJuRAgauu+46z5mysjLPmQULFnjOxLs//OEPnjM//OEPI9rX66+/HlEOfbgZKQAgLlFAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDBzUgR9zIyMjxnHn/88Yj29eUvf9lzJi0tzXMmMdH73/0iyaBPb29vRLm77rrLc2bz5s0R7Ws44makAIC4RAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwd2wMajGjh3rOVNTU+M5k5OT4zmD//nggw88Z37xi1/EYJIzTZ8+3XNm1qxZEe1r//79njO33HKL50wwGPScGQq4GzYAIC5RQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwMcJ6AFxY7rzzTs+Z4Xhj0ffff99zJi8vz3Pm5MmTnjOS9PWvf91z5p133oloX4Ph3XffjShXWFjoOXO2m28OZLjejPRcuAICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABggpuRYlC1tLR4zvz5z3+OwST927p1q+fMb37zG8+Zf/7zn54zGzdu9Jx5/vnnPWek+L6x6KRJkzxnCgoKYjAJzhdXQAAAExQQAMCE5wLauXOnbrvtNuXm5iohIeGMlyycc1qzZo1ycnI0atQoFRUV6eDBg9GaFwAwTHguoI6ODuXn52vDhg39Pr9+/Xo9/fTTevbZZ7Vr1y5dcsklKi4uVmdn53kPCwAYPjx/CKGkpEQlJSX9Puec01NPPaVHH31U8+bNkyS98MILysrK0tatW3X77bef37QAgGEjqu8BNTU1qbW1VUVFRaHH/H6/CgoKVFNT02+mq6tLwWAwbAEAhr+oFlBra6skKSsrK+zxrKys0HOfVF5eLr/fH1pjxoyJ5kgAgDhl/im4srIyBQKB0GpubrYeCQAwCKJaQNnZ2ZKktra2sMfb2tpCz32Sz+dTampq2AIADH9RLaC8vDxlZ2ersrIy9FgwGNSuXbtUWFgYzV0BAIY4z5+CO3HihBoaGkJfNzU1ad++fUpPT9fYsWN1//3367vf/a6uuuoq5eXlafXq1crNzdX8+fOjOTcAYIjzXEC7d+/WzTffHPp61apVkqQlS5aooqJCDz/8sDo6OnTvvffq+PHjuvHGG7V9+3ZddNFF0ZsaADDkJTjnnPUQHxcMBuX3+63HABCn1qxZ4zmzbt26iPZVVVXlOVNcXOw5093d7TkzFAQCgbO+r2/+KTgAwIWJAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGDC869jAABLy5YtG7R9Pffcc54zw/XO1rHAFRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3IwUQFQkJnr/++yTTz7pOZOZmek509bW5jkjSa+88kpEOXw6XAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwc1IEbGJEyd6ztx6662eM0VFRZ4zV1xxheeMJHV1dXnOvPTSS54zL774oudMR0eH58ypU6c8ZyQpKSnJc2bdunWeMw888IDnTCQiuempJHV3d0d5EnwcV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMJDjnnPUQHxcMBuX3+63HGLKuvfZaz5nVq1dHtK958+Z5ziQm8neeSL322mueM8uXL49oXytXrvScefDBByPal1cnTpzwnJkxY0ZE+zpw4EBEOfQJBAJKTU0d8Hl+GgAATFBAAAATngto586duu2225Sbm6uEhARt3bo17PmlS5cqISEhbM2dOzda8wIAhgnPBdTR0aH8/Hxt2LBhwG3mzp2rlpaW0Nq8efN5DQkAGH48/0bUkpISlZSUnHUbn8+n7OzsiIcCAAx/MXkPqKqqSpmZmbr66qu1fPlyHTt2bMBtu7q6FAwGwxYAYPiLegHNnTtXL7zwgiorK/Xkk0+qurpaJSUl6unp6Xf78vJy+f3+0BozZky0RwIAxCHPL8Gdy+233x7689SpUzVt2jRNmDBBVVVVmj179hnbl5WVadWqVaGvg8EgJQQAF4CYfwx7/PjxysjIUENDQ7/P+3w+paamhi0AwPAX8wI6fPiwjh07ppycnFjvCgAwhHh+Ce7EiRNhVzNNTU3at2+f0tPTlZ6erscee0yLFi1Sdna2Ghsb9fDDD2vixIkqLi6O6uAAgKHNcwHt3r1bN998c+jrj96/WbJkiZ555hnV1dXp+eef1/Hjx5Wbm6s5c+boiSeekM/ni97UAIAhj5uRxrHp06d7zrz55pueM5mZmZ4zkaqrq/Oc+dWvfhWDSaLnlltu8ZyZM2eO50xSUpLnzN69ez1nJCk/P99zZrBuNHvrrbd6zvz+97+PwSQ4F25GCgCISxQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAE9wNO4798pe/9JxZunSp58zf/vY3zxlJ+t73vuc5s2XLFs+Zzs5Oz5l4t3nzZs+ZxYsXx2ASW4cPH/acmTp1qudMIBDwnMH5427YAIC4RAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwMQI6wEwsNGjR3vOnDp1ynPmrrvu8pyRpH379kWUG24WLFjgObNw4cIYTDL0RHKOP//8854zkd7Q9siRI54zO3bs8Jxpbm72nNm/f7/nTLzhCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJBOecsx7i44LBoPx+v/UYcSGSfzX//e9/PWfmz5/vOSNJb775ZkQ5r1JTUz1nIrlBqCQ98sgjnjN5eXmeMz6fz3PmP//5j+fMnj17PGcizUV6HnmVnJzsOZOUlBTRviK5uW8k/vrXv3rOfPWrX43BJNEVCATO+t8vV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDPSOPbaa695znzpS1/ynKmtrfWckaSKigrPmVGjRnnOLF++3HNm0qRJnjODqaenx3PmW9/6lufMM8884zkT7yI5h0aMGBHRvtrb2yPKoQ83IwUAxCUKCABgwlMBlZeX6/rrr1dKSooyMzM1f/581dfXh23T2dmp0tJSXXbZZbr00ku1aNEitbW1RXVoAMDQ56mAqqurVVpaqtraWu3YsUPd3d2aM2eOOjo6QtusXLlSr7/+ul599VVVV1fryJEjWrhwYdQHBwAMbZ7emdu+fXvY1xUVFcrMzNSePXs0c+ZMBQIBPffcc9q0aZNuueUWSdLGjRv12c9+VrW1tfr85z8fvckBAEPaeb0HFAgEJEnp6emS+n6Nb3d3t4qKikLbTJ48WWPHjlVNTU2/36Orq0vBYDBsAQCGv4gLqLe3V/fff79uuOEGTZkyRZLU2tqq5ORkpaWlhW2blZWl1tbWfr9PeXm5/H5/aI0ZMybSkQAAQ0jEBVRaWqr9+/frpZdeOq8BysrKFAgEQqu5ufm8vh8AYGiI6P/OWrFihd544w3t3LlTo0ePDj2enZ2t06dP6/jx42FXQW1tbcrOzu73e/l8Pvl8vkjGAAAMYZ6ugJxzWrFihbZs2aK3335beXl5Yc9Pnz5dI0eOVGVlZeix+vp6HTp0SIWFhdGZGAAwLHi6AiotLdWmTZu0bds2paSkhN7X8fv9GjVqlPx+v+6++26tWrVK6enpSk1N1X333afCwkI+AQcACOOpgD66r9SsWbPCHt+4caOWLl0qSfrJT36ixMRELVq0SF1dXSouLtbPfvazqAwLABg+uBlpHMvKyvKc+ctf/uI5k5mZ6TmD//nRj37kOfPcc895zhw4cMBzBrDEzUgBAHGJAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGAiot+IisHR1tbmOfPUU095zqxevdpzRpJGjRoVUc6rEydOeM5s27Yton09+eSTnjONjY2eM6dOnfKcAYYbroAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYSHDOOeshPi4YDMrv91uPcUGZNm1aRLm0tLToDjKAo0ePes4cOHAgBpMA8CIQCCg1NXXA57kCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYGKE9QCwV1dXZz0CgAsQV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDhqYDKy8t1/fXXKyUlRZmZmZo/f77q6+vDtpk1a5YSEhLC1rJly6I6NABg6PNUQNXV1SotLVVtba127Nih7u5uzZkzRx0dHWHb3XPPPWppaQmt9evXR3VoAMDQ5+k3om7fvj3s64qKCmVmZmrPnj2aOXNm6PGLL75Y2dnZ0ZkQADAsndd7QIFAQJKUnp4e9viLL76ojIwMTZkyRWVlZTp58uSA36Orq0vBYDBsAQAuAC5CPT097tZbb3U33HBD2OM///nP3fbt211dXZ379a9/7a644gq3YMGCAb/P2rVrnSQWi8ViDbMVCATO2iMRF9CyZcvcuHHjXHNz81m3q6ysdJJcQ0NDv893dna6QCAQWs3NzeYHjcVisVjnv85VQJ7eA/rIihUr9MYbb2jnzp0aPXr0WbctKCiQJDU0NGjChAlnPO/z+eTz+SIZAwAwhHkqIOec7rvvPm3ZskVVVVXKy8s7Z2bfvn2SpJycnIgGBAAMT54KqLS0VJs2bdK2bduUkpKi1tZWSZLf79eoUaPU2NioTZs26Ytf/KIuu+wy1dXVaeXKlZo5c6amTZsWk38AAMAQ5eV9Hw3wOt/GjRudc84dOnTIzZw506Wnpzufz+cmTpzoHnrooXO+DvhxgUDA/HVLFovFYp3/OtfP/oT/L5a4EQwG5ff7rccAAJynQCCg1NTUAZ/nXnAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABNxV0DOOesRAABRcK6f53FXQO3t7dYjAACi4Fw/zxNcnF1y9Pb26siRI0pJSVFCQkLYc8FgUGPGjFFzc7NSU1ONJrTHcejDcejDcejDcegTD8fBOaf29nbl5uYqMXHg65wRgzjTp5KYmKjRo0efdZvU1NQL+gT7CMehD8ehD8ehD8ehj/Vx8Pv959wm7l6CAwBcGCggAICJIVVAPp9Pa9eulc/nsx7FFMehD8ehD8ehD8ehz1A6DnH3IQQAwIVhSF0BAQCGDwoIAGCCAgIAmKCAAAAmhkwBbdiwQVdeeaUuuugiFRQU6L333rMeadCtW7dOCQkJYWvy5MnWY8Xczp07ddtttyk3N1cJCQnaunVr2PPOOa1Zs0Y5OTkaNWqUioqKdPDgQZthY+hcx2Hp0qVnnB9z5861GTZGysvLdf311yslJUWZmZmaP3++6uvrw7bp7OxUaWmpLrvsMl166aVatGiR2trajCaOjU9zHGbNmnXG+bBs2TKjifs3JAro5Zdf1qpVq7R27Vq9//77ys/PV3FxsY4ePWo92qC75ppr1NLSElp//OMfrUeKuY6ODuXn52vDhg39Pr9+/Xo9/fTTevbZZ7Vr1y5dcsklKi4uVmdn5yBPGlvnOg6SNHfu3LDzY/PmzYM4YexVV1ertLRUtbW12rFjh7q7uzVnzhx1dHSEtlm5cqVef/11vfrqq6qurtaRI0e0cOFCw6mj79McB0m65557ws6H9evXG008ADcEzJgxw5WWloa+7unpcbm5ua68vNxwqsG3du1al5+fbz2GKUluy5Ytoa97e3tddna2+8EPfhB67Pjx487n87nNmzcbTDg4PnkcnHNuyZIlbt68eSbzWDl69KiT5Kqrq51zff/uR44c6V599dXQNv/4xz+cJFdTU2M1Zsx98jg459wXvvAF9+1vf9tuqE8h7q+ATp8+rT179qioqCj0WGJiooqKilRTU2M4mY2DBw8qNzdX48eP15133qlDhw5Zj2SqqalJra2tYeeH3+9XQUHBBXl+VFVVKTMzU1dffbWWL1+uY8eOWY8UU4FAQJKUnp4uSdqzZ4+6u7vDzofJkydr7Nixw/p8+ORx+MiLL76ojIwMTZkyRWVlZTp58qTFeAOKu5uRftKHH36onp4eZWVlhT2elZWlAwcOGE1lo6CgQBUVFbr66qvV0tKixx57TDfddJP279+vlJQU6/FMtLa2SlK/58dHz10o5s6dq4ULFyovL0+NjY36zne+o5KSEtXU1CgpKcl6vKjr7e3V/fffrxtuuEFTpkyR1Hc+JCcnKy0tLWzb4Xw+9HccJOlrX/uaxo0bp9zcXNXV1emRRx5RfX29fvvb3xpOGy7uCwj/U1JSEvrztGnTVFBQoHHjxumVV17R3XffbTgZ4sHtt98e+vPUqVM1bdo0TZgwQVVVVZo9e7bhZLFRWlqq/fv3XxDvg57NQMfh3nvvDf156tSpysnJ0ezZs9XY2KgJEyYM9pj9ivuX4DIyMpSUlHTGp1ja2tqUnZ1tNFV8SEtL06RJk9TQ0GA9ipmPzgHOjzONHz9eGRkZw/L8WLFihd544w298847Yb++JTs7W6dPn9bx48fDth+u58NAx6E/BQUFkhRX50PcF1BycrKmT5+uysrK0GO9vb2qrKxUYWGh4WT2Tpw4ocbGRuXk5FiPYiYvL0/Z2dlh50cwGNSuXbsu+PPj8OHDOnbs2LA6P5xzWrFihbZs2aK3335beXl5Yc9Pnz5dI0eODDsf6uvrdejQoWF1PpzrOPRn3759khRf54P1pyA+jZdeesn5fD5XUVHh/v73v7t7773XpaWludbWVuvRBtUDDzzgqqqqXFNTk3v33XddUVGRy8jIcEePHrUeLaba29vd3r173d69e50k9+Mf/9jt3bvX/fvf/3bOOff973/fpaWluW3btrm6ujo3b948l5eX506dOmU8eXSd7Ti0t7e7Bx980NXU1Limpib31ltvuc997nPuqquucp2dndajR83y5cud3+93VVVVrqWlJbROnjwZ2mbZsmVu7Nix7u2333a7d+92hYWFrrCw0HDq6DvXcWhoaHCPP/642717t2tqanLbtm1z48ePdzNnzjSePNyQKCDnnPvpT3/qxo4d65KTk92MGTNcbW2t9UiDbvHixS4nJ8clJye7K664wi1evNg1NDRYjxVz77zzjpN0xlqyZIlzru+j2KtXr3ZZWVnO5/O52bNnu/r6etuhY+Bsx+HkyZNuzpw57vLLL3cjR45048aNc/fcc8+w+0taf//8ktzGjRtD25w6dcp985vfdJ/5zGfcxRdf7BYsWOBaWlrsho6Bcx2HQ4cOuZkzZ7r09HTn8/ncxIkT3UMPPeQCgYDt4J/Ar2MAAJiI+/eAAADDEwUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABP/B+w7LUIa5l2bAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 2\n", + "NN answer: 2\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n", + "NN output: [[7.5003503e-11 1.8689699e-14 1.8644093e-10 2.7299168e-06 3.8650401e-06\n", + " 7.5222495e-09 4.5316078e-13 3.9882584e-06 6.8186014e-06 9.9998260e-01]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG2xJREFUeJzt3X9sVfX9x/HXLdALaHtZKe3tlYIFBRZB3BC6RkQdDaXbjPz4Q8UlwAhELGbQOU2Nij+WVFniDAuDP7bATEQdCT8i2VikSJmzhYCwhmyrtHYCoS2ThHtLgULo5/tHs/v1ShHP5d6+ey/PR/JJuOec9z1vPh768vSefupzzjkBANDHMqwbAADcnAggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmBho3cDXdXd369SpU8rKypLP57NuBwDgkXNOHR0dCoVCysi49n1OvwugU6dOqbCw0LoNAMANOnHihEaOHHnN/f3uW3BZWVnWLQAAEuB6X8+TFkDr1q3T7bffrsGDB6u4uFgHDhz4VnV82w0A0sP1vp4nJYDef/99VVZWavXq1fr00081efJklZWV6fTp08k4HQAgFbkkmDZtmquoqIi+vnLliguFQq66uvq6teFw2EliMBgMRoqPcDj8jV/vE34HdOnSJR06dEilpaXRbRkZGSotLVVdXd1Vx3d1dSkSicQMAED6S3gAffnll7py5Yry8/Njtufn56utre2q46urqxUIBKKDJ+AA4OZg/hRcVVWVwuFwdJw4ccK6JQBAH0j4zwHl5uZqwIABam9vj9ne3t6uYDB41fF+v19+vz/RbQAA+rmE3wFlZmZqypQpqqmpiW7r7u5WTU2NSkpKEn06AECKSspKCJWVlVq4cKHuvfdeTZs2TW+99ZY6Ozu1ePHiZJwOAJCCkhJAjz76qP773//qpZdeUltbm+655x7t2rXrqgcTAAA3L59zzlk38VWRSESBQMC6DQDADQqHw8rOzr7mfvOn4AAANycCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYSHgAvfzyy/L5fDFjwoQJiT4NACDFDUzGm951113avXv3/59kYFJOAwBIYUlJhoEDByoYDCbjrQEAaSIpnwEdO3ZMoVBIY8aM0RNPPKHjx49f89iuri5FIpGYAQBIfwkPoOLiYm3atEm7du3S+vXr1dLSovvvv18dHR29Hl9dXa1AIBAdhYWFiW4JANAP+ZxzLpknOHv2rEaPHq0333xTS5YsuWp/V1eXurq6oq8jkQghBABpIBwOKzs7+5r7k/50wLBhwzRu3Dg1NTX1ut/v98vv9ye7DQBAP5P0nwM6d+6cmpubVVBQkOxTAQBSSMID6JlnnlFtba3+85//6JNPPtHcuXM1YMAAPf7444k+FQAghSX8W3AnT57U448/rjNnzmjEiBGaPn266uvrNWLEiESfCgCQwpL+EIJXkUhEgUDAug3gW8vPz/dcs3jxYs81c+fO9VyTl5fnuUaK7+80ePBgzzWvv/6655rXXnvNc82FCxc81+DGXe8hBNaCAwCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILFSNGnBg0a5Llm+vTpnmumTp3quUZSXL82JJ4FP+P5/Vj97J9qQvh8Ps817733nueaBQsWeK7BjWMxUgBAv0QAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFq2OhTv//97z3XLF68OAmd2IpnFeh+9k81IeKZh66uLs81DzzwgOcaSTpw4EBcdejBatgAgH6JAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiYHWDcBeXl5eXHWvvvqq55qf/exnnmv6chHOS5cuea75/PPPPdc8//zznmvGjRvnueazzz7zXCNJ+fn5nmsaGho813zyySeeazIzMz3XBINBzzVIPu6AAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUmjDhg1x1T3yyCMJ7iRxdu/eHVfd6tWrPdfU19fHda50s2rVKusWkGK4AwIAmCCAAAAmPAfQvn379PDDDysUCsnn82n79u0x+51zeumll1RQUKAhQ4aotLRUx44dS1S/AIA04TmAOjs7NXnyZK1bt67X/WvWrNHatWu1YcMG7d+/X7fccovKysp08eLFG24WAJA+PD+EUF5ervLy8l73Oef01ltv6YUXXoh+QP32228rPz9f27dv12OPPXZj3QIA0kZCPwNqaWlRW1ubSktLo9sCgYCKi4tVV1fXa01XV5cikUjMAACkv4QGUFtbm6Srf598fn5+dN/XVVdXKxAIREdhYWEiWwIA9FPmT8FVVVUpHA5Hx4kTJ6xbAgD0gYQGUDAYlCS1t7fHbG9vb4/u+zq/36/s7OyYAQBIfwkNoKKiIgWDQdXU1ES3RSIR7d+/XyUlJYk8FQAgxXl+Cu7cuXNqamqKvm5padGRI0eUk5OjUaNGaeXKlfrVr36lO++8U0VFRXrxxRcVCoU0Z86cRPYNAEhxngPo4MGDeuihh6KvKysrJUkLFy7Upk2b9Oyzz6qzs1PLli3T2bNnNX36dO3atUuDBw9OXNcAgJTnc8456ya+KhKJKBAIWLeRstasWeO55plnnklCJ73r6OjwXPPOO+94rnn99dc910jS8ePH46rrr4YPHx5X3Z///GfPNVOnTvVc4/P5PNfE86DSggULPNdI0scffxxXHXqEw+Fv/Fzf/Ck4AMDNiQACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgwvOvY0D/duedd3quiXdB9M8++8xzTVlZmeeadFuhOl4rVqzwXPPss8/Gda7bbrvNc01fLaxfVVXluYZVrfsn7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYYDFSxG3cuHGea0aNGuW5hsVIezz11FOea+JZVLQv/fWvf/Vcs2PHjiR0AgvcAQEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDBYqToUzU1NZ5r2tvbPdds3rzZc40U3wKr8bj//vs91wQCgSR0Ymvu3Lmeay5evJiETmCBOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmfM45Z93EV0UikbRcdLGvlJWVea7ZunVrXOcaPHiw5xqfz+e5pp9dognBPPQYMGCAdQtIonA4rOzs7Gvu5w4IAGCCAAIAmPAcQPv27dPDDz+sUCgkn8+n7du3x+xftGiRfD5fzJg9e3ai+gUApAnPAdTZ2anJkydr3bp11zxm9uzZam1tjY533333hpoEAKQfz78Rtby8XOXl5d94jN/vVzAYjLspAED6S8pnQHv37lVeXp7Gjx+v5cuX68yZM9c8tqurS5FIJGYAANJfwgNo9uzZevvtt1VTU6M33nhDtbW1Ki8v15UrV3o9vrq6WoFAIDoKCwsT3RIAoB+6oZ8D8vl82rZtm+bMmXPNYz7//HONHTtWu3fv1syZM6/a39XVpa6urujrSCRCCN0Afg4oNTAPPfg5oPRm/nNAY8aMUW5urpqamnrd7/f7lZ2dHTMAAOkv6QF08uRJnTlzRgUFBck+FQAghXh+Cu7cuXMxdzMtLS06cuSIcnJylJOTo1deeUXz589XMBhUc3Oznn32Wd1xxx1xfWsIAJC+PAfQwYMH9dBDD0VfV1ZWSpIWLlyo9evXq6GhQX/84x919uxZhUIhzZo1S6+99pr8fn/iugYApDwWI4U2bNgQV92yZcs81/Dhew/moUdGBquBpTPzhxAAAOgNAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEq2FDmZmZcdXNmjXLc82kSZM816xcudJzTbyam5s914wfP95zzYkTJzzXxDN3famhocFzzfe+970kdIL+gtWwAQD9EgEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMDrRuAvUuXLsVVt3Pnzj6pqa6u9lwTr1tvvdVzTTyLuS5dutRzTX9fjHTbtm3WLSDFcAcEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABIuRAl9x7ty5PjnPvffe2yfnidfmzZs91/TlorFID9wBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFipMAN+slPfuK5Zv78+Z5rnHOea7744gvPNZK0evVqzzWXL1+O61y4eXEHBAAwQQABAEx4CqDq6mpNnTpVWVlZysvL05w5c9TY2BhzzMWLF1VRUaHhw4fr1ltv1fz589Xe3p7QpgEAqc9TANXW1qqiokL19fX68MMPdfnyZc2aNUudnZ3RY1atWqUPPvhAW7ZsUW1trU6dOqV58+YlvHEAQGrz9BDCrl27Yl5v2rRJeXl5OnTokGbMmKFwOKw//OEP2rx5s374wx9KkjZu3Kjvfve7qq+v1w9+8IPEdQ4ASGk39BlQOByWJOXk5EiSDh06pMuXL6u0tDR6zIQJEzRq1CjV1dX1+h5dXV2KRCIxAwCQ/uIOoO7ubq1cuVL33XefJk6cKElqa2tTZmamhg0bFnNsfn6+2traen2f6upqBQKB6CgsLIy3JQBACok7gCoqKnT06FG99957N9RAVVWVwuFwdJw4ceKG3g8AkBri+kHUFStWaOfOndq3b59GjhwZ3R4MBnXp0iWdPXs25i6ovb1dwWCw1/fy+/3y+/3xtAEASGGe7oCcc1qxYoW2bdumPXv2qKioKGb/lClTNGjQINXU1ES3NTY26vjx4yopKUlMxwCAtODpDqiiokKbN2/Wjh07lJWVFf1cJxAIaMiQIQoEAlqyZIkqKyuVk5Oj7OxsPf300yopKeEJOABADE8BtH79eknSgw8+GLN948aNWrRokSTpN7/5jTIyMjR//nx1dXWprKxMv/vd7xLSLAAgffhcPCscJlEkElEgELBuA/jW/va3v3mumT59uueaeP6p7tixw3ONJM2dOzeuOuCrwuGwsrOzr7mfteAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACbi+o2oQLqaMGGC55p77rnHc008K1vX19d7rnnjjTc81wB9hTsgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJliMFPiKRYsWea4ZOnRo4hvpRW1treeaeBYwBfoKd0AAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBgp8BU//vGP++Q8//jHPzzXrF27NgmdAHa4AwIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCxUiBr/jpT3/queYvf/mL55p4FhZtbW31XAP0Z9wBAQBMEEAAABOeAqi6ulpTp05VVlaW8vLyNGfOHDU2NsYc8+CDD8rn88WMJ598MqFNAwBSn6cAqq2tVUVFherr6/Xhhx/q8uXLmjVrljo7O2OOW7p0qVpbW6NjzZo1CW0aAJD6PD2EsGvXrpjXmzZtUl5eng4dOqQZM2ZEtw8dOlTBYDAxHQIA0tINfQYUDoclSTk5OTHb33nnHeXm5mrixImqqqrS+fPnr/keXV1dikQiMQMAkP7ifgy7u7tbK1eu1H333aeJEydGty9YsECjR49WKBRSQ0ODnnvuOTU2Nmrr1q29vk91dbVeeeWVeNsAAKSouAOooqJCR48e1ccffxyzfdmyZdE/T5o0SQUFBZo5c6aam5s1duzYq96nqqpKlZWV0deRSESFhYXxtgUASBFxBdCKFSu0c+dO7du3TyNHjvzGY4uLiyVJTU1NvQaQ3++X3++Ppw0AQArzFEDOOT399NPatm2b9u7dq6KiouvWHDlyRJJUUFAQV4MAgPTkKYAqKiq0efNm7dixQ1lZWWpra5MkBQIBDRkyRM3Nzdq8ebN+9KMfafjw4WpoaNCqVas0Y8YM3X333Un5CwAAUpOnAFq/fr2knh82/aqNGzdq0aJFyszM1O7du/XWW2+ps7NThYWFmj9/vl544YWENQwASA+evwX3TQoLC1VbW3tDDQEAbg4+d71U6WORSESBQMC6DQDADQqHw8rOzr7mfhYjBQCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYKLfBZBzzroFAEACXO/reb8LoI6ODusWAAAJcL2v5z7Xz245uru7derUKWVlZcnn88Xsi0QiKiws1IkTJ5SdnW3UoT3moQfz0IN56ME89OgP8+CcU0dHh0KhkDIyrn2fM7APe/pWMjIyNHLkyG88Jjs7+6a+wP6HeejBPPRgHnowDz2s5yEQCFz3mH73LTgAwM2BAAIAmEipAPL7/Vq9erX8fr91K6aYhx7MQw/moQfz0COV5qHfPYQAALg5pNQdEAAgfRBAAAATBBAAwAQBBAAwkTIBtG7dOt1+++0aPHiwiouLdeDAAeuW+tzLL78sn88XMyZMmGDdVtLt27dPDz/8sEKhkHw+n7Zv3x6z3zmnl156SQUFBRoyZIhKS0t17Ngxm2aT6HrzsGjRoquuj9mzZ9s0myTV1dWaOnWqsrKylJeXpzlz5qixsTHmmIsXL6qiokLDhw/Xrbfeqvnz56u9vd2o4+T4NvPw4IMPXnU9PPnkk0Yd9y4lAuj9999XZWWlVq9erU8//VSTJ09WWVmZTp8+bd1an7vrrrvU2toaHR9//LF1S0nX2dmpyZMna926db3uX7NmjdauXasNGzZo//79uuWWW1RWVqaLFy/2cafJdb15kKTZs2fHXB/vvvtuH3aYfLW1taqoqFB9fb0+/PBDXb58WbNmzVJnZ2f0mFWrVumDDz7Qli1bVFtbq1OnTmnevHmGXSfet5kHSVq6dGnM9bBmzRqjjq/BpYBp06a5ioqK6OsrV664UCjkqqurDbvqe6tXr3aTJ0+2bsOUJLdt27bo6+7ubhcMBt2vf/3r6LazZ886v9/v3n33XYMO+8bX58E55xYuXOgeeeQRk36snD592klytbW1zrme//aDBg1yW7ZsiR7zr3/9y0lydXV1Vm0m3dfnwTnnHnjgAffzn//crqlvod/fAV26dEmHDh1SaWlpdFtGRoZKS0tVV1dn2JmNY8eOKRQKacyYMXriiSd0/Phx65ZMtbS0qK2tLeb6CAQCKi4uvimvj7179yovL0/jx4/X8uXLdebMGeuWkiocDkuScnJyJEmHDh3S5cuXY66HCRMmaNSoUWl9PXx9Hv7nnXfeUW5uriZOnKiqqiqdP3/eor1r6neLkX7dl19+qStXrig/Pz9me35+vv79738bdWWjuLhYmzZt0vjx49Xa2qpXXnlF999/v44ePaqsrCzr9ky0tbVJUq/Xx//23Sxmz56tefPmqaioSM3NzXr++edVXl6uuro6DRgwwLq9hOvu7tbKlSt13333aeLEiZJ6rofMzEwNGzYs5th0vh56mwdJWrBggUaPHq1QKKSGhgY999xzamxs1NatWw27jdXvAwj/r7y8PPrnu+++W8XFxRo9erT+9Kc/acmSJYadoT947LHHon+eNGmS7r77bo0dO1Z79+7VzJkzDTtLjoqKCh09evSm+Bz0m1xrHpYtWxb986RJk1RQUKCZM2equblZY8eO7es2e9XvvwWXm5urAQMGXPUUS3t7u4LBoFFX/cOwYcM0btw4NTU1Wbdi5n/XANfH1caMGaPc3Ny0vD5WrFihnTt36qOPPor59S3BYFCXLl3S2bNnY45P1+vhWvPQm+LiYknqV9dDvw+gzMxMTZkyRTU1NdFt3d3dqqmpUUlJiWFn9s6dO6fm5mYVFBRYt2KmqKhIwWAw5vqIRCLav3//TX99nDx5UmfOnEmr68M5pxUrVmjbtm3as2ePioqKYvZPmTJFgwYNirkeGhsbdfz48bS6Hq43D705cuSIJPWv68H6KYhv47333nN+v99t2rTJ/fOf/3TLli1zw4YNc21tbdat9alf/OIXbu/eva6lpcX9/e9/d6WlpS43N9edPn3aurWk6ujocIcPH3aHDx92ktybb77pDh8+7L744gvnnHOvv/66GzZsmNuxY4draGhwjzzyiCsqKnIXLlww7jyxvmkeOjo63DPPPOPq6upcS0uL2717t/v+97/v7rzzTnfx4kXr1hNm+fLlLhAIuL1797rW1tboOH/+fPSYJ5980o0aNcrt2bPHHTx40JWUlLiSkhLDrhPvevPQ1NTkXn31VXfw4EHX0tLiduzY4caMGeNmzJhh3HmslAgg55z77W9/60aNGuUyMzPdtGnTXH19vXVLfe7RRx91BQUFLjMz0912223u0UcfdU1NTdZtJd1HH33kJF01Fi5c6JzreRT7xRdfdPn5+c7v97uZM2e6xsZG26aT4Jvm4fz5827WrFluxIgRbtCgQW706NFu6dKlafc/ab39/SW5jRs3Ro+5cOGCe+qpp9x3vvMdN3ToUDd37lzX2tpq13QSXG8ejh8/7mbMmOFycnKc3+93d9xxh/vlL3/pwuGwbeNfw69jAACY6PefAQEA0hMBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAAT/wc5Hussv8h9zQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 9\n", + "NN answer: 9\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки." + ], + "metadata": { + "id": "YgiVGr5_1D3u" + } + }, + { + "cell_type": "code", + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n", + "display.plot()\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 778 + }, + "id": "7MqcG_wl1EHI", + "outputId": "00a4491e-92e1-445d-c3eb-f450f5ccc537" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step\n", + " precision recall f1-score support\n", + "\n", + " 0 0.99 0.99 0.99 997\n", + " 1 1.00 1.00 1.00 1164\n", + " 2 0.99 0.98 0.99 1030\n", + " 3 1.00 0.99 0.99 1031\n", + " 4 0.99 1.00 0.99 967\n", + " 5 0.98 1.00 0.99 860\n", + " 6 0.99 1.00 1.00 977\n", + " 7 0.99 0.99 0.99 1072\n", + " 8 0.99 0.98 0.99 939\n", + " 9 0.99 0.98 0.99 963\n", + "\n", + " accuracy 0.99 10000\n", + " macro avg 0.99 0.99 0.99 10000\n", + "weighted avg 0.99 0.99 0.99 10000\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGwCAYAAAA0bWYRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdzFJREFUeJzt3Xd4FNX6wPHv7ibZTd0USIMEEnoHQbkBFFEEERHLVfGigij81KACgohIUyGKDVEEK1hA4F6VC1yliIooRbpAMCBBCISExPS+ZX5/RBZWiCRsNjNk38/zzKM79c2ZYfedc87M0SmKoiCEEEIIj6VXOwAhhBBCqEuSASGEEMLDSTIghBBCeDhJBoQQQggPJ8mAEEII4eEkGRBCCCE8nCQDQgghhIfzUjsAV9jtdtLT0wkMDESn06kdjhBCiBpSFIXCwkKio6PR6913f1pWVkZFRYXL+/Hx8cFkMtVCRNpyWScD6enpxMTEqB2GEEIIF6WlpdG4cWO37LusrIy4JgFknLa5vK/IyEiOHj1a7xKCyzoZCAwMBODVjV3wDTCoHM1Zy7s2UjsEIYS4LFix8CNfOb7P3aGiooKM0zaO7WxKUOCl1z4UFNpp0vV3KioqJBnQkjNNA74BBnwDtPOneOm81Q5BCCEuD3++EL8umnoDAnUEBF76cezU3+Zo7fyCCiGEEG5kU+zYXBiNx6bYay8YjZFkQAghhEewo2Dn0rMBV7bVOnm0UAghhPBwUjMghBDCI9ix40pFv2tba5skA0IIITyCTVGwKZde1e/KtlonzQRCCCGEh5OaASGEEB5BOhBWTZIBIYQQHsGOgk2SgQuSZgIhhBDCw0nNgBBCCI8gzQRVq9fJgKVIx965QaR940v5HwZC2lTQbXIeYR0sAJRm69nziplTP5moKNQR3q2Cbs/mEdTUCkB5no5f3jRz6icjJae8MIbaiLm+lI5PFOAT6N6LYtDwbP75yGlCG1pJTfbl7WcbkbLHz63H/Dvtuxdx56NZtOhQQliklekjmrJljVm1eM7QWjlJTBd39+hMet6UT0zzcirK9CTv8OODmVGcOKL+u961VE5a/DenxZhqQp4mqFq9bibYOiWEjM0meryUw8CVGUT1LGfDAw0pydSjKPBDYhiFJ7zo/XY2N31xGv9oKxtGNMBaUvn+6dLTBkpP67niqXwGrsogISmX9E0mtk4OcWvcvW/JZdS0dBa/Fkli/5akJpuYuSQVc5jFrcf9OyY/O6kHTLz1jHtGFbsUWiwnieniOiYUs2pRA8bc3IJJQ+IxeCnM+iwVo6/rI8q5QmvlpMV/c1qMSdQOTSQD8+bNo2nTpphMJrp3787PP//s8j6tZZC2zpcu4/OJuLKCwCY2Oj5WQGCslUOfBVD4uxfZe41cNS2XsA4WguKtXDU9D1uZjt//5wtAcEsr17yZQ+PrygiMtRH5j3I6jS3g5He+2K0uh1il20dls2ZJKOuWhXL8sIm5ExtTXqqj/z057jvoRez4LoiPZkexWUN3AVosJ4np4iYPjWf98lCOHTKRmuzLq2NiiWhsoUXHUlXiOUNr5aTFf3NajKkm7LUw1VeqJwPLli1j3LhxTJs2jV27dtGpUyf69+/P6dOnXdqvYtWh2HQYjM7VOgaTQtZOI7aKPz+fs1ynB4NP5fKqWAp1eAfY0bupgcXL206LjiXs2nR2OE9F0bF7UyBtu5a456CXIS2Wk8R0afyDKmsECvPUG4b8cign4Trbn08TuDLVV6onA6+99hojR47kgQceoG3btixYsAA/Pz8+/PBDl/brHaDQoHM5+94OoiRTj90GR1f6kb3Hh9IsPeZ4K37RVva8ZqY8X4etAg68F0hJhhelWRf+UirL1bNvfhDN7yp2Kba/ExRqw+AFeVnO2UZuthchDd1YHXGZ0WI5SUw1p9MpPDzjJPt/9uNYiq9qcWi9nETtsCmuT/WVqslARUUFO3fupG/fvo55er2evn37smXLlvPWLy8vp6CgwGn6Oz1m54ACX/aOZmnHRqR8EkCTgSXo9KD3hmvm/kHh7178p3sjlnVpROY2I9HXlF6wVCxFOr7/vwaYm1npOPrvjyuEqJ7Rs07SpHUZSY80UTsUITyaqk8TZGdnY7PZiIiIcJofERHBr7/+et76SUlJzJgxo9r7D4y1ccOnWVhLdFiKdPiG29k0NpSAmMpMP6y9hZtWnKaiUIfdosMUamfNXeGEtq9w2o+lSMe3DzXA299O77ey0Xtfwh9bTQU5BmxWCP7L3UhIAyu5WfX64Y8a0WI5SUw1kzjzBN1vKODJ25qRfcpH1Vi0XE6i9rja7i99BjRi0qRJ5OfnO6a0tLRqbeflp+Abbqc8X8epH000vq7MablPoIIp1E7B717k7Pcm5rqzHZksRTq+fbABem/o/fYfGKruTlArrBY9h3/xo0uvQsc8nU6hc68ikneq+3ialmixnCSm6lJInHmCHjfm89SdzchMc/M/qmrQZjmJ2mZHh82FyY5O7T/BbVRNeRs0aIDBYCAzM9NpfmZmJpGRkeetbzQaMRqr/8WRvqly3aA4K4XHvNj9spmgeAvNbq9s8z+2xhdTiB2/aCt5h7zZOTOYxteXEtWrHKhMBDY82ABbqY5rXv4DS1FlDQOAMdSO3k39nb54twHj56RxaK8fKbv9uG1kFiY/O+uWhrrngNVg8rMRHXe2xiQypoL4dqUU5hnIOqnOXZ0Wy0liurjRs07S57Zcpj8QR2mRnpCGlY/uFRcaqChT7/5Ea+WkxX9zWoxJ1A5VkwEfHx+6du3Khg0buPXWWwGw2+1s2LCB0aNHu7x/S5GePa+ZKckw4BNsJ/aGUjqNzXdU85eeNrDrRTNlfxgwNbQRP7iE9o+c7Q+Qc8CHP/ZWJhQr+0U57XvwN6cIaOye56I3rgzBHGbj/gkZhDS0knrAl8lD48jLdmP7xEW07FTKy58fcXx+eEY6AOuWhfDq2FhVYtJiOUlMFzdo+B8AvPLFEaf5r4yJYf1y9ZImrZWTFv/NaTGmmrArlZMr29dXOkVR95VKy5YtY9iwYbzzzjtcddVVzJkzh+XLl/Prr7+e15fgrwoKCjCbzby9sxu+Adpp11vcWl7IIYQQ1WFVLHzPf8nPzycoKMgtxzjzW7HtQCQBgZde+1RUaKd7uwy3xqoW1X9B7777brKyspg6dSoZGRl07tyZNWvWXDQREEIIIUTtUD0ZABg9enStNAsIIYQQVTnTEdCV7esrTSQDQgghhLvZFR125dJ/0F3ZVusuq0cLhRBCCFH7pGZACCGER5BmgqpJMiCEEMIj2NBjc6FCXN1Btt1LkgEhhBAeQXGxz4AifQaEEEIIUV9JzYAQQgiPIH0GqibJgBBCCI9gU/TYFBf6DNTj1xFLM4EQQgjh4aRmQAghhEewo8Puwj2wnfpbNSDJgBBCCI8gfQaqVi+SgeVdG+GlU2+I2L9am75H7RDO0z+6s9ohCCGE0Kh6kQwIIYQQF+N6B0JpJhBCCCEua5V9BlwYqKgeNxPI0wRCCCGEh5OaASGEEB7B7uLYBPI0gRBCCHGZkz4DVZNkQAghhEewo5f3DFRB+gwIIYQQHk5qBoQQQngEm6LD5sIwxK5sq3WSDAghhPAINhc7ENqkmUAIIYQQNfHDDz8waNAgoqOj0el0rFixwmm5oihMnTqVqKgofH196du3L4cPH3ZaJycnh6FDhxIUFERwcDAPPvggRUVFTuv88ssvXH311ZhMJmJiYpg9e3aNY5VkQAghhEewK3qXp5ooLi6mU6dOzJs374LLZ8+ezdy5c1mwYAHbtm3D39+f/v37U1ZW5lhn6NChHDhwgPXr17N69Wp++OEHRo0a5VheUFBAv379aNKkCTt37uTll19m+vTpvPvuuzWKVZoJhBBCeIS6biYYMGAAAwYMuOAyRVGYM2cOzz77LIMHDwbg448/JiIighUrVjBkyBAOHjzImjVr2L59O926dQPgzTff5KabbuKVV14hOjqaxYsXU1FRwYcffoiPjw/t2rVjz549vPbaa05Jw8VIzQAwaHg2H21LZlXqL7yx+jCtOpfUyn73bfVn6v1x3NOlHf2jO7P5a7PT8h+/MjNpSDz/bNee/tGdObLf97x9TLijOf2jOztNb0xs7LTO7k0BjBnUgltbdGBIp3a8/0IUNmut/AkA3Hx/NvO/SeGLlH18kbKP11ceplufgto7gAvcde4kJs+K6e7Rmcz96hBfHtrHsl8OMO3DozRuVnbxDeuAlspJyzHVpYKCAqepvLy8xvs4evQoGRkZ9O3b1zHPbDbTvXt3tmzZAsCWLVsIDg52JAIAffv2Ra/Xs23bNsc611xzDT4+Po51+vfvT0pKCrm5udWOx+OTgd635DJqWjqLX4sksX9LUpNNzFySijnM4vK+y0r0xLcrZfSsE1Uub3dVMQ8+k/63+xkwNJvP9ux3TA89e3b9IwdMTLkvnm59Cpi3LoVnFvzO1nVmPpgZ7XL8Z2Sd8ubDWVGMvrEljw1oyd6fApi+8HeatFT3y9Kd505i8qyYOiYUs2pRA8bc3IJJQ+IxeCnM+iwVo69NlXjO0Fo5aTWm6rJz9omCS5nsf+4nJiYGs9nsmJKSkmocS0ZGBgARERFO8yMiIhzLMjIyCA8Pd1ru5eVFaGio0zoX2se5x6gOVZOBi3WuqAu3j8pmzZJQ1i0L5fhhE3MnNqa8VEf/e3Jc3veV1xUyfGIGPQfkX3B533/mcu+4TLpcU3TB5WcYfRVCw62OyT/Q7li2cWUIcW3KuHdcJo3iKuiYUMxDz6az6qMGlBTVzundtt7M9m+DSD9q5GSqkUUvRVFWrKd11+Ja2f+lcue5k5g8K6bJQ+NZvzyUY4dMpCb78uqYWCIaW2jRsVSVeM7QWjlpNabqOvPSIVcmgLS0NPLz8x3TpEmTVP7LXKdqMnCxzhXu5uVtp0XHEnZtCnTMUxQduzcF0rardqq9vvsihDvbtWdUn1Z8OCuKspKzz7paKnR4G+1O6/uY7FSU6Tn8i1+tx6LXK/QenIvRz87BHf61vv/q0uK5k5gu35j+yj+oskagMM+gWgxaLCctxqSGoKAgp8loNNZ4H5GRkQBkZmY6zc/MzHQsi4yM5PTp007LrVYrOTk5TutcaB/nHqM6VO1A+HedK+pCUKgNgxfkZTkXQ262FzHNa94G5A59bsslvHEFYREWjh705YOZUZw4YmTqB78D0K13ISvea8h3XwZzzS155J72ZvHrlRdATmbtnd6mrUuZs+o3fIx2Sov1PPdgU44fNtXa/mtKi+dOYrp8YzqXTqfw8IyT7P/Zj2Mp5/fjqStaLCctxlQTro9NUHv3z3FxcURGRrJhwwY6d+4MVPZF2LZtG4888ggACQkJ5OXlsXPnTrp27QrAt99+i91up3v37o51Jk+ejMViwdvbG4D169fTqlUrQkJCqh3PZfU0QXl5uVNHjYICbXRic6eb7v3D8f9xbcoIDbcw8a7mpP/uQ3TTCrpeW8hDU9KZ+3QMsx9vgrePnaFjMtm/LQBdLdb7nDhi5NEbWuIXaOPqm/MZ/8ZxJtzeXNWEQAh3GD3rJE1al/Hkrc3VDkXUMjs67Fz6WwRrum1RURG//fab4/PRo0fZs2cPoaGhxMbGMmbMGF544QVatGhBXFwcU6ZMITo6mltvvRWANm3acOONNzJy5EgWLFiAxWJh9OjRDBkyhOjoyn5h//rXv5gxYwYPPvggEydOZP/+/bzxxhu8/vrrNYr1skoGkpKSmDFjRq3tryDHgM0KwQ2du96HNLCSm6XNoml9RWVVXPrvRqKbVgBwx/9lcfuoLHIyvQgw28g84cOHSdFENam9TN1q0ZP+e2VV2G/7/GjVuYRbH8pi7sSYWjtGTWjx3ElMl29MZyTOPEH3Gwp48rZmZJ/yufgGbqTFctJiTDVR1zUDO3bsoE+fPo7P48aNA2DYsGEsWrSIp556iuLiYkaNGkVeXh69evVizZo1mExnb7IWL17M6NGjuf7669Hr9dxxxx3MnTvXsdxsNrNu3ToSExPp2rUrDRo0YOrUqTV6rBAus6cJJk2a5NRpIy0tzaX9WS2V7epdehU65ul0Cp17FZG8s/bb22vDmccPQ8Ode+7qdBAWacXoq/DdlyE0jK6geQf3dX7S6cDbR71Xc2rx3ElMl29MoJA48wQ9bsznqTubkZlW8zbg2qbFctJiTFp27bXXoijKedOiRYsA0Ol0PPfcc2RkZFBWVsY333xDy5YtnfYRGhrKkiVLKCwsJD8/nw8//JCAgACndTp27MimTZsoKyvjxIkTTJw4scaxaj+VO4fRaLykjhp/54t3GzB+ThqH9vqRstuP20ZmYfKzs25pqMv7Li3Wk370bLwZaT4c2e9LYLCV8MYWCnINZJ304Y8/2/bTjlSuGxJuITTcSvrvPnz3ZQhXXV9AYIiNo8km3pneiA7/KCK+7dnH+v79dkO69SlEp4efvjKzfF44kxccw1BLfZ8emHSK7d8GknXSB98AG31uy6NjjyIm/yu+dg5widx57iQmz4pp9KyT9Lktl+kPxFFapCekYWWyXVxooKJMvXsmrZWTVmOqLtdfOnRZ3T/XyGWVDLjDxpUhmMNs3D8hg5CGVlIP+DJ5aBx52d4u7/vQXj+e+ufZdsd3pjcC4Ia7chg/5zhb15l5dWysY3nSI00BuHdcBveNz8DLW2H3pkC+fL8hZSV6GkZb6HVTHveMce45uv27ID6bG4mlQkd821KmLzzKldcVUluCG1iZMPc4oeFWSgoNHD1oYvK/4tn1Q+DFN3Yjd547icmzYho0vLJvzitfHHGa/8qYGNYvV+9HTmvlpNWYqsuu6LC7MPKgK9tqnU5RFNXqes/tXNGlSxdee+01+vTp4+hccTEFBQWYzWauZTBeOu1ciGvT96gdwnn6R3dWOwQhhDiPVbHwPf8lPz+foKAgtxzjzG/F7O1X4xtw6ffApUVWnrpyk1tjVYuqNQMX61whhBBC1Ba7i80EdmkmcI8znSuEEEIId7uUkQf/un19VX//MiGEEEJUi8d3IBRCCOEZbOiwufDSIVe21TpJBoQQQngEaSaoWv39y4QQQghRLVIzIIQQwiPYcK2q31Z7oWiOJANCCCE8gjQTVE2SASGEEB5BS0MYa039/cuEEEIIUS1SMyCEEMIjKOiwu9BnQJFHC4UQQojLmzQTVK3+/mVCCCGEqBapGXADLY4QOOpQqtohnOfdlvFqhyDqE71B7QjOZ6/PD6NdfmQI46pJMiCEEMIj2FwctdCVbbWu/v5lQgghhKgWqRkQQgjhEaSZoGqSDAghhPAIdvTYXagQd2Vbrau/f5kQQgghqkVqBoQQQngEm6LD5kJVvyvbap0kA0IIITyC9BmomiQDQgghPILi4qiFiryBUAghhBD1ldQMCCGE8Ag2dNhcGGzIlW21TpIBIYQQHsGuuNbub1dqMRiNkWYCIYQQwsN5fM1A++5F3PloFi06lBAWaWX6iKZsWWNWOywGDc/mn4+cJrShldRkX95+thEpe/xc3u+p7Sb2vm8m+4CRktNe9JuXQdMbShzLFQV2zg3h4PJAKgr0RF5RRq8Z2ZibWh3r7JofTNr3fmQf9MHgrTB857Eqj1eWq+fzWxpTnOnFsB2/Ywyyu/w3nMtd5XSpPO16ulRql1P77oXc+XAmLTqUEhZpYfqD8WxZG3zOGgr3jz/FjfdkE2C2kbw9gLnPxJB+1FRnMd49OpOeN+UT07ycijI9yTv8+GBmFCeO1F0Mf6X2eXOV3cUOhK5sq3X19y+rJpOfndQDJt56prHaoTj0viWXUdPSWfxaJIn9W5KabGLmklTMYRaX920p0RHWuoKeU7MvuHzve2b2fxzE1TOyufXf6Xj5KXw1Igpr+dmqNXuFjrgbi2l7T8FFj7fxmYaEtqpwOe4LcWc5XSpPu54uldrlZPKzk5rsx1vPxlxw+V2PZjL4gSzenBTLE4NaUVaiZ9anv+FtrN1k9u90TChm1aIGjLm5BZOGxGPwUpj1WSpGX/VGQlT7vLnKjs7lqb5SNRlISkriyiuvJDAwkPDwcG699VZSUlLqNIYd3wXx0ewoNmsou719VDZrloSyblkoxw+bmDuxMeWlOvrfk+PyvmN7l3Ll2Fzi+pWct0xRYN9HZro8mkfTviWEta6gz+zTlJw28Pv6s3eR3Z7IpeMD+Rf9kU9eEkhFoZ6OD+a5HPeFuLOcLpWnXU+XSu1y2vGdmY9ejmbzmuALLFW49cHTfDY3ki3rgjl60I/ZY5oSFmGhR/+8Ootx8tB41i8P5dghE6nJvrw6JpaIxhZadCytsxj+Su3zJtxH1WRg48aNJCYmsnXrVtavX4/FYqFfv34UFxerGZaqvLzttOhYwq5NgY55iqJj96ZA2nY9/we8NhWmeVGa5UWjhLNfNj6BCuGdyjm9p2ZVk7m/ebNzXgh9Zp9G54arTM1yupxIOdVcZGwFYRFWpzIrKTTw6x5/2nRV77vJP6iyRqAwz6BaDJe7M28gdGWqr1TtM7BmzRqnz4sWLSI8PJydO3dyzTXXqBSVuoJCbRi8IC/L+dTkZnsR07zcrccuya78kvFr4FwN6dvARklW9b+AbBWwYWw4/3gqh4BoGwVp3rUaJ6hbTpcTKaeaC21Y2XySl+183eZleTmW1TWdTuHhGSfZ/7Mfx1J8VYmhPpA+A1XTVAfC/Px8AEJDQy+4vLy8nPLys19gBQUXb7MWde/nV0IJbmahxeAitUMRol4YPeskTVqX8eStzdUORdRTmkkG7HY7Y8aMoWfPnrRv3/6C6yQlJTFjxow6jqxuFeQYsFkhuKHVaX5IAyu5We49XWdqBEqyDfiFn60dKM02ENam+p0A07f6knPIh/faxFXO+PPZ3I+7N6HLw3l0eyLX5VjVLKfLiZRTzeVkVdYIBDewkHP6bO1AcEMrRw7U/V154swTdL+hgCdva0b2KZ86P359YsfFsQmkA6H7JSYmsn//fpYuXVrlOpMmTSI/P98xpaWl1WGEdcNq0XP4Fz+69Cp0zNPpFDr3KiJ5p3sfBQuMseLb0Er6lrNfeBVFOk7vNRLeuaza+7nhrUzuWHmCO/5bOV0zMwuAW5ak0+7e/FqJVc1yupxIOdVcxnEf/sj0ciozvwAbrTsXc3Cnfx1GopA48wQ9bsznqTubkZlmrMNj10+Ki08SKPU4GdDErcHo0aNZvXo1P/zwA40bV/3IitFoxGis3X8QJj8b0XFn73ojYyqIb1dKYZ6BrJPqZOFfvNuA8XPSOLTXj5Tdftw2MguTn511Sy/cfFITlmId+cfO3u0UnPAmO9kHU7CNgGgbHYbls2t+MEFNLQQ1trB9Tih+4TandxEUpRsoyzNQlO6FYteRnVxZTuYmFrz9FYJine9Cy3Ir+xsEN7PU6nsG3FlOl8rTrqdLpXY5mfxsRDc92+QYGVNOfNsSCvO8yEr3YcUH4dzzeAYnjxrJSDMybHw6f2R6s9npXQTuNXrWSfrclsv0B+IoLdIT8md/heJCAxVl6tzHqX3eXCWjFlZN1WRAURQee+wxvvzyS77//nvi4uLqPIaWnUp5+fMjjs8Pz0gHYN2yEF4dG1vn8QBsXBmCOczG/RMyCGloJfWAL5OHxp3XoelSZO03svq+aMfnrUlhALS8rZBrX8qi08h8rKV6Nk1pUPnSoa5lDPggAy/j2fdw7ngjlENfnu1p/cWtlQnczZ+kE929+jUIrnJnOV0qT7ueLpXa5dSyUwkv//vw2eNPP1l5/OWhvDquKcvfjsDkZ+eJl44TEGTjwPYAJt/bHEt53f0IDxr+BwCvfHHEaf4rY2JYv1ydRE7t8ybcR6coimpvW3700UdZsmQJ//3vf2nVqpVjvtlsxtf34m1zBQUFmM1mrmUwXjr1vtguB6MOpaodwnnebRmvdgiiPtFr8JE7u3ovCLpcWBUL3/Nf8vPzCQoKcssxzvxW3Lb+Abz9L70Gw1JcwZc3LHRrrGpRtWZg/vz5AFx77bVO8xcuXMjw4cPrPiAhhBD1ljQTVE31ZgIhhBBCqEsTHQiFEEIId3N1fIH6/GihJANCCCE8gjQTVE0z7xkQQgghhDqkZkAIIYRHkJqBqkkyIIQQwiNIMlA1aSYQQgghPJzUDAghhPAIUjNQNUkGhBBCeAQF1x4PrM9vxpFkQAghhEeQmoGqSZ8BIYQQwsNJzYAQQgiPIDUDVZNkwENocYTAxMOH1A7hPPNatFQ7hPPpNPgFpMVxRWSEQHERdZ0M2Gw2pk+fzqeffkpGRgbR0dEMHz6cZ599Ft2f/64VRWHatGm899575OXl0bNnT+bPn0+LFi0c+8nJyeGxxx5j1apV6PV67rjjDt544w0CAgIu+W/5K2kmEEIIIdzgpZdeYv78+bz11lscPHiQl156idmzZ/Pmm2861pk9ezZz585lwYIFbNu2DX9/f/r3709ZWZljnaFDh3LgwAHWr1/P6tWr+eGHHxg1alStxio1A0IIITxCXdcMbN68mcGDBzNw4EAAmjZtymeffcbPP/8MVNYKzJkzh2effZbBgwcD8PHHHxMREcGKFSsYMmQIBw8eZM2aNWzfvp1u3boB8Oabb3LTTTfxyiuvEB0dfcl/z7mkZkAIIYRHUBSdyxNAQUGB01ReXn7B4/Xo0YMNGzZw6FBlk+jevXv58ccfGTBgAABHjx4lIyODvn37OrYxm810796dLVu2ALBlyxaCg4MdiQBA37590ev1bNu2rdbKRmoGhBBCiBqIiYlx+jxt2jSmT59+3npPP/00BQUFtG7dGoPBgM1mY+bMmQwdOhSAjIwMACIiIpy2i4iIcCzLyMggPDzcabmXlxehoaGOdWqDJANCCCE8gh2dSy8dOrNtWloaQUFBjvlGo/GC6y9fvpzFixezZMkS2rVrx549exgzZgzR0dEMGzbskuNwB0kGhBBCeITa6jMQFBTklAxUZcKECTz99NMMGTIEgA4dOnDs2DGSkpIYNmwYkZGRAGRmZhIVFeXYLjMzk86dOwMQGRnJ6dOnnfZrtVrJyclxbF8bpM+AEEII4QYlJSXo9c4/swaDAbvdDkBcXByRkZFs2LDBsbygoIBt27aRkJAAQEJCAnl5eezcudOxzrfffovdbqd79+61FqvUDAghhPAI53YCvNTta2LQoEHMnDmT2NhY2rVrx+7du3nttdcYMWIEADqdjjFjxvDCCy/QokUL4uLimDJlCtHR0dx6660AtGnThhtvvJGRI0eyYMECLBYLo0ePZsiQIbX2JAFIMiCEEMJD1PWjhW+++SZTpkzh0Ucf5fTp00RHR/N///d/TJ061bHOU089RXFxMaNGjSIvL49evXqxZs0aTCaTY53FixczevRorr/+esdLh+bOnXvJf8eF6BRFi68Sq56CggLMZjPXMhgvnbfa4YgakjcQVpO8gVDUY1bFwvf8l/z8/Gq1w1+KM78VXT8fi5f/hTv7VYe1uJydd7zu1ljVIn0GhBBCCA8nzQRCCCE8guJiM4Er/Q20TpIBYNDwbP75yGlCG1pJTfbl7WcbkbLHT2L60833ZzPw/j+IiKkA4FiKicWvR7Dju9qrJkv/2Zfd74dw+oCJktNeDHj7JPE3FDuWKwr8/EYYycvNlBfoiepaSu8ZpwluagGg4IQXO+aFcWKrHyVZBvzDrbQcXEi3R/7A4HP2ONm/+vDDjHBO/2LCN9RGh/vyuGJUbq39HaCtc3fvuFPc92Sm07y034w81LuNKvGcS0vl1L57EXc+mkWLDiWERVqZPqIpW9aYVYlFYnIfBddauOpz45jHNxP0viWXUdPSWfxaJIn9W5KabGLmklTMYRaJ6U9Zp7z5cFYUo29syWMDWrL3pwCmL/ydJi3LLr5xNVlKdYS1Lqf3tNMXXL773RB++TiY3s9l8s//HMfLV2HVA42wlldm6rmpPih2uPa5TO756hi9Jmdx4DMzW19r4NhHRaGelQ80JjDayp0rjtNjYjbb3wzjwNLa+zLT2rkD+P1XE0M6t3NM425tcfGN3Exr5WTys5N6wMRbzzRW5fgXIjGJuqRqMjB//nw6duzoeIFDQkICX3/9dZ3GcPuobNYsCWXdslCOHzYxd2Jjykt19L8np07j0HJM29ab2f5tEOlHjZxMNbLopSjKivW07lp88Y2rqUnvEv4x7g/i+xWdt0xRYO9HIXR7NIf4vsU0aF1B35czKD7txdH1lUN4NrmmhOtfyiT26hLMsRbiri+m84O5pK49O8TnoZWB2C06rkvKIKxFBS1uLqTj/XnsWRhSa3+H1s4dgM0GuVnejqkgV/0KQa2V047vgvhodhSbNXSXKzHVvjNvIHRlqq9UTQYaN27Miy++yM6dO9mxYwfXXXcdgwcP5sCBA3VyfC9vOy06lrBrU6BjnqLo2L0pkLZdS+okhsshpnPp9Qq9B+di9LNzcId/nRyzIM2bkiwvGvc4+/cbA+1EdCojY7epyu0qCvUYg+2Ozxl7fIm+stSp2SDm6mLyUn0oy3f9n4JWz12juAqW7NzPos3JTHzzGA2jK1SLBbRbTqL+q62BiuojVW8RBg0a5PR55syZzJ8/n61bt9KuXbvz1i8vL3caHaqgoMCl4weF2jB4QV6WczHkZnsR0/zCo1C5mxZjAmjaupQ5q37Dx2intFjPcw825fjhqn+Ia1NJtgEAvwZWp/m+DWyUZF/4Es475s2+T4Lp8XT22f1kGQhs7FwN7Rdm+3OZFyazaz+SWjx3v+7255Wxvpw4YiQ03MK94zJ49cvD/N91rSktNqgSkxbLSQhPp5k+AzabjaVLl1JcXOx4DeNfJSUlYTabHdNfR44S7nPiiJFHb2jJ4wNbsPrjBox/4zixLWqvz0BtKsrwYtWIRjQbUES7u/PVDkdVO74LYtPqYI4e9GXnxiCevS+egCAb1wzKUzs0IercmZcOuTLVV6onA/v27SMgIACj0cjDDz/Ml19+Sdu2bS+47qRJk8jPz3dMaWlpLh27IMeAzQrBDZ3vOEMaWMnNUqfSRIsxAVgtetJ/N/LbPj8WJkVxNNmXWx/KqpNj+zX48+79L7UApdmG82oLijMNrLivMVFXlNHnBede9H4NbZT+4byPkj/+rHX4S3lfCq2eu3MVF3hxItVIdFP17sAvh3IS9ZOiuD7VV6onA61atWLPnj1s27aNRx55hGHDhpGcnHzBdY1Go6OzYXVHjfo7Vouew7/40aVXoWOeTqfQuVcRyTvVecRJizFdiE4H3j518y8jKMaCX0MrJ7ac/fsrCvVk7jUR2eVs7URRhhdf3htDeLsyrnsxA91fru7IzqWkb/fFdk5LQdpPfgTHV2Ay23HV5XDuTH42optUkHNavTd2Xg7lJISnUT0N9/HxoXnz5gB07dqV7du388Ybb/DOO+/UyfG/eLcB4+ekcWivHym7/bhtZBYmPzvrlobWyfEvh5gemHSK7d8GknXSB98AG31uy6NjjyIm/yu+1o5RUawj/9jZnn0FJ7zJSjZiCrYRGG2l07Bcdr4dSnDTCoIaW9g2pwH+4Vbibqh8+qAow4sV9zYmsJGFHk9nU5pztj3cv2FlzUKLWwr5+a0wvnsmki6jcsg55MMvH4XQ65naq+HQ2rkbOeUkW9ebOX3Cm7BIK/c9eQqbHb5fUXtPUFwKrZWTyc9GdNzZPiORMRXEtyulMM9A1kmfv9lSYlI7ppqo64GKLieqJwN/ZbfbnToJutvGlSGYw2zcPyGDkIZWUg/4MnloHHnZ6t05aS2m4AZWJsw9Tmi4lZJCA0cPmpj8r3h2/RB48Y2rKWu/iRX3nu0D8tOscABa35bP9bMz6TIqF0upnu+ejaCiQE9Ut1IGfXgSL2Nl7UTaT37kH/Mh/5gPH13tnKScGQPBGGjnloUn+GFGOP++NRZTiI0rE/+g3ZDa61egtXPXIMrCpHm/ExhiIz/HiwM/+zNmUEvyc9T9p6+1cmrZqZSXPz/i+PzwjHQA1i0L4dWxsRKThmOqCUkGqqbqQEWTJk1iwIABxMbGUlhYyJIlS3jppZdYu3YtN9xww0W3l4GKLm8yUFE1yUBFoh6ry4GKWi15GoPfpQ9UZCspJ+VfL9bLgYpUvT04ffo0999/P6dOncJsNtOxY8dqJwJCCCGEqB2qJgMffPCBmocXQgjhQVx9IqA+V4hprs+AEEII4Q6VyYArfQZqMRiNUf3RQiGEEEKoS2oGhBBCeAR5mqBqkgwIIYTwCMqfkyvb11fSTCCEEEJ4OKkZEEII4RGkmaBqkgwIIYTwDNJOUCVJBoQQQngGF2sGqMc1A9JnQAghhPBwUjMghBDCI8gbCKsmyYAQQgiPIB0IqybJgFCNFkcIHHAgT+0QzvN1u2C1QxBC1HOSDAghhPAMis61ToBSMyCEEEJc3qTPQNXkaQIhhBDCw0nNgBBCCM8gLx2qkiQDQgghPII8TVC1aiUDK1eurPYOb7nllksORgghhBB1r1rJwK233lqtnel0Omw2myvxCCGEEO5Tj6v6XVGtZMBut7s7DiGEEMKtpJmgai49TVBWVlZbcQghhBDupdTCVE/VOBmw2Ww8//zzNGrUiICAAFJTUwGYMmUKH3zwQa0HKIQQQgj3qnEyMHPmTBYtWsTs2bPx8fFxzG/fvj3vv/9+rQYnhBBC1B5dLUz1U42TgY8//ph3332XoUOHYjAYHPM7derEr7/+WqvBCSGEELVGmgmqVOP3DJw8eZLmzZufN99ut2OxWGolqLo2aHg2/3zkNKENraQm+/L2s41I2eOnWjztuxdx56NZtOhQQliklekjmrJljVm1eM7QWjnVdUzWYjg015fMDd5U5OgIamOjzdOlBHc4+wRN0RE9Ka/5krPDC8UGAfE2uswpxje68ltk/3Rfsrd6UX5aj8FPIaSzjVbjSgmId28nXa2dO61d41qL51xaOndaLifhmhrXDLRt25ZNmzadN/8///kPXbp0qZWg6lLvW3IZNS2dxa9Fkti/JanJJmYuScUcpl5iY/Kzk3rAxFvPNFYthr/SYjnVdUz7pvrxxxYvOr1YTK8vC2nQw8r2hwIoy6ysOiw+rmfrfQH4x9m4alERPb8opNnDZeiNZ/cR1NZGxxdKuHpVIVe+WwwKbB8ZgOLGJ3K1eO60do1rLZ4ztHbutFpO1SY1A1WqcTIwdepURo8ezUsvvYTdbueLL75g5MiRzJw5k6lTp15yIC+++CI6nY4xY8Zc8j4uxe2jslmzJJR1y0I5ftjE3ImNKS/V0f+enDqN41w7vgvio9lRbNZQxq3FcqrLmGxlkLnem1ZPlhLazYZ/EzstEsvwi7VxfGnlr/3huSYaXmOl9fgyzG1s+MfaibjOijHs7DdI7F0VhHaz4dfIjrmtjRaPl1KWoafkpPuGCdHiudPaNa61eM7Q2rnTajlV25lRC12Z6qkafwMNHjyYVatW8c033+Dv78/UqVM5ePAgq1at4oYbbrikILZv384777xDx44dL2n7S+XlbadFxxJ2bQp0zFMUHbs3BdK2a0mdxqJlWiynuo5JsYFi0znd5QMYjJC72wvFDqc3euPfxMb2kf5suDqIzUMCyNzgXeU+rSVw8ksffBvb8I10TzOBFs+dqB45d6IuXdLYBFdffTXr16+vlQCKiooYOnQo7733Hi+88MLfrlteXk55ebnjc0FBgUvHDgq1YfCCvCznYsjN9iKmeXkVW3keLZZTXcfk5Q/Bna0cWWAiIL4YY5hC+lfe5O414B9rp+IPHbYSHakfmGjxWBmtxpWR9aMXu57w46qFRYRdebYd4NhnPqS86outVId/nI0r3ytG7/M3B3eBFs+dqB45d7VPhjCu2iXXTe7YsYNPPvmETz75hJ07d15yAImJiQwcOJC+fftedN2kpCTMZrNjiomJueTjClFTHZNKUBT4ro+ZtV3MHPvUSPRNFtCf/ZII72Mhblg5QW1sNBtZTnhvK2nLnKsTom+uoOfnhXT/qBD/Jnb2POmHTb7bhXA/6TNQpRrXDJw4cYJ77rmHn376ieDgYADy8vLo0aMHS5cupXHj6ncsWbp0Kbt27WL79u3VWn/SpEmMGzfO8bmgoMClhKAgx4DNCsENrU7zQxpYyc2SAR3P0GI5qRGTf6ydf3xUhLUErMU6TA0Vdj/ph19jOz7BCjovhYBmzj0B/eNt5O5yjsc7ELwD7fg3geCOxXzTw0zmN95ED6z9TmFaPHeieuTcibpU45qBhx56CIvFwsGDB8nJySEnJ4eDBw9it9t56KGHqr2ftLQ0nnjiCRYvXozJZKrWNkajkaCgIKfJFVaLnsO/+NGlV6Fjnk6n0LlXEck71X1kTku0WE5qxuTlB6aGCpZ8Hdk/eRPex4LeB8ztbRT/bnBat+SYHt/oqvsDKFTWKtgr3NMxSYvnTlSPnDs3kA6EVapxerlx40Y2b95Mq1atHPNatWrFm2++ydVXX13t/ezcuZPTp09zxRVXOObZbDZ++OEH3nrrLcrLy51eauQuX7zbgPFz0ji014+U3X7cNjILk5+ddUtD3X7sqpj8bETHVTg+R8ZUEN+ulMI8A1kn3dS4fBFaLKe6jinrRy9QwD/OTslxPb++4ot/nI3Gt1Weq7gHytnzpB+hXX0IvcpK9o9enP7em6sWFgFQkqbn1BpvGvSw4hNipyxTT+r7JgxGhYbXuO9RMS2eO61d41qL5wytnTutllN16ZTKyZXt66saJwMxMTEXfLmQzWYjOjq62vu5/vrr2bdvn9O8Bx54gNatWzNx4sQ6SQQANq4MwRxm4/4JGYQ0tJJ6wJfJQ+PIy666F7i7texUysufH3F8fnhGOgDrloXw6thYVWLSYjnVdUzWIh0pc0yUZejxMStE3GCh5ROl6P88XGRfC+2mlZL6npHkJF/8m9rpMqeY0K6VTQd6o0LuTi9+/8SIJV+HsYFCSFcr/1hc5PT4YW3T4rnT2jWutXjO0Nq502o5VZur7f71OBnQKUrN+kf+97//ZdasWcybN49u3boBlZ0JH3vsMSZOnMitt956ycFce+21dO7cmTlz5lRr/YKCAsxmM9cyGC+del9sov4YcCBP7RDO83W7YLVDEMJtrIqF7/kv+fn5Ljf9VuXMb0XMnOfQ+1avWfpC7KVlpI2Z6tZY1VKtmoGQkBB0urNtJcXFxXTv3h0vr8rNrVYrXl5ejBgxwqVkQAghhHAbV9v9Pb3PQHXv1F31/fff18lxhBBCeCBpJqhStZKBYcOGuTsOIYQQQqjEpReil5WVUVBQ4DQJIYQQmqTCS4dOnjzJvffeS1hYGL6+vnTo0IEdO3acDUlRmDp1KlFRUfj6+tK3b18OHz7stI+cnByGDh1KUFAQwcHBPPjggxQVFdU8mL9R42SguLiY0aNHEx4ejr+/PyEhIU6TEEIIoUl1nAzk5ubSs2dPvL29+frrr0lOTubVV191+q2cPXs2c+fOZcGCBWzbtg1/f3/69+9PWVmZY52hQ4dy4MAB1q9fz+rVq/nhhx8YNWrUpZbCBdX40cKnnnqK7777jvnz53Pfffcxb948Tp48yTvvvMOLL75Yq8EJIYQQWvPXWnCj0YjRaDxvvZdeeomYmBgWLlzomBcXF+f4f0VRmDNnDs8++yyDBw8G4OOPPyYiIoIVK1YwZMgQDh48yJo1a9i+fbvjCb4333yTm266iVdeeaVGj/T/nRrXDKxatYq3336bO+64Ay8vL66++mqeffZZZs2axeLFi2slKCGEEKLW1dIbCGNiYpzGyUlKSrrg4VauXEm3bt248847CQ8Pp0uXLrz33nuO5UePHiUjI8NpbB6z2Uz37t3ZsmULAFu2bCE4ONiRCAD07dsXvV7Ptm3baq1oalwzkJOTQ3x8PABBQUHk5FSOq92rVy8eeeSRWgtMCCGEqE219QbCtLQ0p/cMXKhWACA1NZX58+czbtw4nnnmGbZv387jjz+Oj48Pw4YNIyMjA4CIiAin7SIiIhzLMjIyCA8Pd1ru5eVFaGioY53aUONkID4+nqNHjxIbG0vr1q1Zvnw5V111FatWrXIMXCSEEELUV9UdG8dut9OtWzdmzZoFQJcuXdi/fz8LFizQ3FN6NW4meOCBB9i7dy8ATz/9NPPmzcNkMjF27FgmTJhQ6wEKIYQQtaKOOxBGRUXRtm1bp3lt2rTh+PHjAERGRgKQmZnptE5mZqZjWWRkJKdPn3ZabrVaycnJcaxTG2pcMzB27FjH//ft25dff/2VnTt30rx5czp27FhrgQkhhBCXs549e5KSkuI079ChQzRp0gSo7EwYGRnJhg0b6Ny5M1DZOXHbtm2OZveEhATy8vLYuXMnXbt2BeDbb7/FbrfTvXv3WovV5UGxmzRp4vjDhBBCCK3S4WKfgRquP3bsWHr06MGsWbO46667+Pnnn3n33Xd59913K/en0zFmzBheeOEFWrRoQVxcHFOmTCE6Otrxav82bdpw4403MnLkSBYsWIDFYmH06NEMGTKk1p4kgGomA3Pnzq32Dh9//PFLDkYIIYSoL6688kq+/PJLJk2axHPPPUdcXBxz5sxh6NChjnWeeuopiouLGTVqFHl5efTq1Ys1a9ZgMp0dUGnx4sWMHj2a66+/Hr1ezx133FGj3+XqqNaohec+F/m3O9PpSE1NdTmo6pJRC4UnCPtJey/z+qNnrtohiHqiLkctbPLiTPQmF0YtLCvj2NOTPXfUwqNHj7o7DiGEEMK9ZKCiKrk0NoEQQgghLn8udyAUQgghLgtSM1AlSQaEEEJ4hNp6A2F9JM0EQgghhIeTmgEhhBCeQZoJqnRJNQObNm3i3nvvJSEhgZMnTwLwySef8OOPP9ZqcEIIIUStqePXEV9OapwMfP755/Tv3x9fX192795NeXk5APn5+Y7BGIQQQghx+ahxMvDCCy+wYMEC3nvvPby9z77op2fPnuzatatWgxNCCCFqy5kOhK5M9VWN+wykpKRwzTXXnDffbDaTl5dXGzEJIYQQtU/RVU6ubF9P1bhmIDIykt9+++28+T/++CPx8fG1EpQQQghR66TPQJVqnAyMHDmSJ554gm3btqHT6UhPT2fx4sWMHz/eMeSiEEIIIS4fNW4mePrpp7Hb7Vx//fWUlJRwzTXXYDQaGT9+PI899pg7YnS7QcOz+ecjpwltaCU12Ze3n21Eyh4/iUnDMd09OpOeN+UT07ycijI9yTv8+GBmFCeOXPogJLWlrspJsSmUflBG+boK7H/Y0TfQY7zJB9/hJnS6yurMoheKKf+6wmk77+5eBL0WCIBll4WCx4ouuH/z+4F4tXHf08daup60GFP77kXc+WgWLTqUEBZpZfqIpmxZY1Yllr/SUjnVhLx0qGo1rhnQ6XRMnjyZnJwc9u/fz9atW8nKyuL55593R3xu1/uWXEZNS2fxa5Ek9m9JarKJmUtSMYdZJCYNx9QxoZhVixow5uYWTBoSj8FLYdZnqRh9barEc0ZdllPpp2WUrSjHf5wfwUuC8HvUl9LFZZT9p9xpPe9/eBGy0uyYAqb7O5Z5dXBeFrLSjHGQD/poPYbWhlqP+QytXU9ajMnkZyf1gIm3nmmsyvGrorVyqhFpJqjSJb+B0MfHh7Zt23LVVVcREBBwSfuYPn06Op3OaWrduvWlhnRJbh+VzZoloaxbFsrxwybmTmxMeamO/vfk1GkcElPNTB4az/rloRw7ZCI12ZdXx8QS0dhCi46lqsRzRl2Wk3W/DZ+rvfHp4Y0hyoCxjw8+V3ljTf5LQuStQx+mPzsFnf1nr/vLMp1ZR8UmC8abfBy1C+6gtetJizHt+C6Ij2ZHsVkjtQFnaK2cRO2ocR1gnz59/vZL4ttvv63R/tq1a8c333xzNiCvunspope3nRYdS1j6VrhjnqLo2L0pkLZdS+osDonJdf5BlT+AhXnuu5u9mLouJ6/2BspXVmA7bsMQa8B62IrlFyv+j/k6rWfdbSVnYB66QB3eXb3wG+WL3nzh+4CKTRaUAgXjQGOtx+uIW4PXkxZj0qLLvpxcfTywHtcM1PiXt3Pnzk6fLRYLe/bsYf/+/QwbNqzmAXh5ERkZWa11y8vLHS85AigoKKjx8c4VFGrD4AV5Wc7FkJvtRUzz8iq2ci+JqeZ0OoWHZ5xk/89+HEvxvfgGblLX5eR7nwmlRCHvXwWVdXx28Btlwtj/7A+59z+88entjT7agP2kjZJ3Sil4sgjzO4HoDOcn9eWry/G+ygtDuPuGLdHi9aTFmLTosi8neR1xlWqcDLz++usXnD99+nSKii7cEenvHD58mOjoaEwmEwkJCSQlJREbG3vBdZOSkpgxY0aNjyHqt9GzTtKkdRlP3tpc7VDqVMW3FirWVRAw3R9DnAHbYSvFb5Sia6DHdFNlQmDs63N2g2YGDM0M5N1VgHW3Fe9u3k77s522Y/nZSsBz/gghPEutpf/33nsvH374YY226d69O4sWLWLNmjXMnz+fo0ePcvXVV1NYWHjB9SdNmkR+fr5jSktLcynmghwDNisEN7Q6zQ9pYCU3S50xnCSmmkmceYLuNxTw1D+bkX3K5+IbuFFdl1PJvBJ87zVh7OuDVzMDxhuNmO42UvpJWZXbGBoZ0AXrsJ2wn7es/H/l6IJ0+FztfYEta48WryctxqRFl305SQfCKtVaMrBlyxZMppo91jVgwADuvPNOOnbsSP/+/fnqq6/Iy8tj+fLlF1zfaDQSFBTkNLnCatFz+Bc/uvQ6m3zodAqdexWRvFOdx2QkpupSSJx5gh435vPUnc3ITHNfG3d11XU5KWWA3rmqX6fnb7+wbKftKPkK+jDn7RRFofyrCowDfNB5ufcta1q8nrQYkxZd7uUkryOuWo1Tudtvv93ps6IonDp1ih07djBlyhSXggkODqZly5YXfMOhu3zxbgPGz0nj0F4/Unb7cdvILEx+dtYtDa2zGCSmmhs96yR9bstl+gNxlBbpCWlY+VhTcaGBijL3tXdfTF2Wk09Pb0o/KkUfoccQp8d6yEbpsnKMAytrSJQShZIPS/G51gd9mA77STvFb5eib6zHu7vz3b91pxV7uh3ToLpJqrR2PWkxJpOfjei4s++IiIypIL5dKYV5BrJOqlcLprVyErWjxsmA2ez8mIter6dVq1Y899xz9OvXz6VgioqKOHLkCPfdd59L+6mJjStDMIfZuH9CBiENraQe8GXy0Djyst1bVSoxuWbQ8D8AeOWLI07zXxkTw/rl6n0p1WU5+Y/1o+S9UopfKcGeW/nSIdNgI74P/FlDZwDbERuFXxehFCnoG+jxvsoLv5G+6Hyc7/7LVpfj1cGAoUndPI2htetJizG17FTKy5+fvb4fnpEOwLplIbw69sL9quqC1spJ1A6doijVrviw2Wz89NNPdOjQgZCQEJcPPn78eAYNGkSTJk1IT09n2rRp7Nmzh+TkZBo2bHjR7QsKCjCbzVzLYLx0ciGK+insJ9f/rdW2P3rmqh2CqCesioXv+S/5+fkuN/1W5cxvRbNJszDUsDn7XLayMo4kPePWWNVSo5oBg8FAv379OHjwYK0kAydOnOCee+7hjz/+oGHDhvTq1YutW7dWKxEQQgghakJeR1y1GjcTtG/fntTUVOLi4lw++NKlS13ehxBCCCFcU+OeVi+88ALjx49n9erVnDp1ioKCAqdJCCGE0Cx5rPCCql0z8Nxzz/Hkk09y0003AXDLLbc4vZZYURR0Oh02m7oDxQghhBAXJG8grFK1k4EZM2bw8MMP891337kzHiGEEELUsWonA2ceOujdu7fbghFCCCHcRToQVq1GHQjdOaSpEEII4VbSTFClGiUDLVu2vGhCkJMjY1oLIYQQl5MaJQMzZsw47w2EQgghxOVAmgmqVqNkYMiQIYSHh7srFiGEEMJ9pJmgStV+z4D0FxBCCCHqpxo/TSCEEEJclqRmoErVTgbsdrs74xBCCCHcSvoMVK3GYxMIIeqWFkcIvCX5D7VDOM/KtmFqhyC0TmoGqlTjsQmEEEIIUb9IzYAQQgjPIDUDVZJkQAghhEeQPgNVk2YCIYQQwsNJzYAQQgjPIM0EVZJkQAghhEeQZoKqSTOBEEII4eGkZkAIIYRnkGaCKkkyIIQQwjNIMlAlaSYQQgghPJzUDAghhPAIuj8nV7avryQZEEII4RmkmaBKkgwAg4Zn889HThPa0Epqsi9vP9uIlD1+EpPEVGPtuxdx56NZtOhQQliklekjmrJljVm1eG6+P5uB9/9BREwFAMdSTCx+PYId3wW57ZjWYvh1rh+nvvGhPEePuY2V9pOKCelgA6oeUKjtk8U0f7AMgG2JgRQcNFCeo8c7SKFhgoW2TxZjCnfvt7HWrieJqXbJo4VV8/g+A71vyWXUtHQWvxZJYv+WpCabmLkkFXOYRWKSmGrM5Gcn9YCJt55prFoM58o65c2Hs6IYfWNLHhvQkr0/BTB94e80aVnmtmPumRJA1mZvrnipiGtX5NGwh4UtDwZRmln5ddNvY47T1PmFItApRPWrcOyjwVUWur5exHX/y+PKNwopTtOzfUyg22IGbV5PEpOoK6onAydPnuTee+8lLCwMX19fOnTowI4dO+rs+LePymbNklDWLQvl+GETcyc2prxUR/97cuosBomp/sS047sgPpodxWYVawPOtW29me3fBpF+1MjJVCOLXoqirFhP667FbjmerQxOrfeh7fgSwrpZCWhip/XoUvxj7fy+1AiAqaHiNGV860ODq6z4x9gd+2k2rIzQTlb8GtkJ7WKlxUOl5O71wu7G3xstXk8SUy1TamGqp1RNBnJzc+nZsyfe3t58/fXXJCcn8+qrrxISElInx/fyttOiYwm7Np2941AUHbs3BdK2a0mdxCAx1Z+YtE6vV+g9OBejn52DO/zdcgzFBopNh97H+VvTYFLI2eV93vpl2Toyf/Am9o6qayoq8nScWG0ktIsV/fm7qBVavJ4kJjeRROCCVE0GXnrpJWJiYli4cCFXXXUVcXFx9OvXj2bNml1w/fLycgoKCpwmVwSF2jB4QV6Wc9eJ3GwvQhpaXdq3xOR5MWlV09alrDi8j9W//8LjL57guQebcvywyS3H8vKHkM4WDi3wo+y0DsUGaSt9yNnjRVnW+V83af814uWnEHVDxXnLkl/1439dQ1nTI5TSU3queqvQLTGDNq8nial+efHFF9HpdIwZM8Yxr6ysjMTERMLCwggICOCOO+4gMzPTabvjx48zcOBA/Pz8CA8PZ8KECVittV/WqiYDK1eupFu3btx5552Eh4fTpUsX3nvvvSrXT0pKwmw2O6aYmJg6jFaIy9OJI0YevaEljw9sweqPGzD+jePEtnBfn4ErXiwCBdZdG8rqzqEcXexLo5sq0OnPv7VK+8JE45vLMRjP30+zEaX0/jyPf7xfgM4Au54OQKnnd2fCvc50IHRluhTbt2/nnXfeoWPHjk7zx44dy6pVq/j3v//Nxo0bSU9P5/bbb3cst9lsDBw4kIqKCjZv3sxHH33EokWLmDp1qivFcEGqJgOpqanMnz+fFi1asHbtWh555BEef/xxPvroowuuP2nSJPLz8x1TWlqaS8cvyDFgs0LwXzLakAZWcrPUedBCYrp8Y9Iqq0VP+u9Gftvnx8KkKI4m+3LrQ1luO55/rJ2eHxdw044/uOHbXK5Zlo9iBb/Gdqf1/tjhRdFRA7H/LL/gfowhCgFN7YT3sND1lSJO/+BD7l73nFstXk8SkxvUUp+Bv9ZQl5df+BoGKCoqYujQobz33ntOTeD5+fl88MEHvPbaa1x33XV07dqVhQsXsnnzZrZu3QrAunXrSE5O5tNPP6Vz584MGDCA559/nnnz5lFRcX5tmitUTQbsdjtXXHEFs2bNokuXLowaNYqRI0eyYMGCC65vNBoJCgpymlxhteg5/IsfXXqdrX7U6RQ69yoieac6j8lITJdvTJcLnQ68fS7xFqcGvPwqOwtW5Os4/ZM3kdc5f3kd/8KIuZ0Vc2vbRfel/JlH2Gv3+89Bi9eTxKRdMTExTrXUSUlJVa6bmJjIwIED6du3r9P8nTt3YrFYnOa3bt2a2NhYtmzZAsCWLVvo0KEDERERjnX69+9PQUEBBw4cqNW/SdVULioqirZt2zrNa9OmDZ9//nmdxfDFuw0YPyeNQ3v9SNntx20jszD52Vm3NLTOYpCY6k9MJj8b0XFnf7EiYyqIb1dKYZ6BrJM+dR7PA5NOsf3bQLJO+uAbYKPPbXl07FHE5H/Fu+2Yp3/0BgX842wUHzeQ/LIfgXE2Ym87e/dkKdKRvtZIuwnnP9WQu9eLvP1ehF5hwTtIoThNz69v+uEXYyOks/vapbV4PUlMtau23jOQlpbmdDNqNF6gnQtYunQpu3btYvv27ecty8jIwMfHh+DgYKf5ERERZGRkONY5NxE4s/zMstqkajLQs2dPUlJSnOYdOnSIJk2a1FkMG1eGYA6zcf+EDEIaWkk94MvkoXHkZbup27LEVK9jatmplJc/P+L4/PCMdADWLQvh1bGxdR5PcAMrE+YeJzTcSkmhgaMHTUz+Vzy7fnDfM/uWQh0H5/hRlqHH21z5/oA2T5Q4PQlw8isfUKDRwPNv9Q2+Cqe+8eHXt3yxleowNbTTsJeFlq8VYXBjPqXF60liqmW19AbC6tRMp6Wl8cQTT7B+/XpMJvd02K1NOkVRr0vO9u3b6dGjBzNmzOCuu+7i559/ZuTIkbz77rsMHTr0otsXFBRgNpu5lsF46S6DC1GIeuKW5D/UDuE8Vb3ZUGibVbHwPf8lPz/f5abfqpz5rejw4CwMPpf+w2yrKGPfB89UK9YVK1Zw2223YTAYzm5vs6HT6dDr9axdu5a+ffuSm5vrVDvQpEkTxowZw9ixY5k6dSorV65kz549juVHjx4lPj6eXbt20aVLl0v+W/5K1T4DV155JV9++SWfffYZ7du35/nnn2fOnDnVSgSEEEKImqjLpwmuv/569u3bx549exxTt27dGDp0qOP/vb292bBhg2OblJQUjh8/TkJCAgAJCQns27eP06dPO9ZZv349QUFB5zWxu0r17p8333wzN998s9phCCGEqO/qcKCiwMBA2rdv7zTP39+fsLAwx/wHH3yQcePGERoaSlBQEI899hgJCQn84x//AKBfv360bduW++67j9mzZ5ORkcGzzz5LYmJilf0ULpXqyYAQQghRJzQ2auHrr7+OXq/njjvuoLy8nP79+/P22287lhsMBlavXs0jjzxCQkIC/v7+DBs2jOeee652A0GSASGEEKJOfP/9906fTSYT8+bNY968eVVu06RJE7766is3RybJgBBCCA8hQxhXTZIBIYQQnkFjzQRaovoQxkIIIYRQl9QMCCGE8Ag6RUHnwqt1XNlW6yQZEEII4RmkmaBK0kwghBBCeDipGRBCCOER5GmCqkkyIIQQwjNIM0GVpJlACCGE8HBSMyCEqDEtjhD4/NHzx4xX25S4K9UOQZxDmgmqJsmAEEIIzyDNBFWSZEAIIYRHkJqBqkmfASGEEMLDSc2AEEIIzyDNBFWSZEAIIYTHqM9V/a6QZgIhhBDCw0nNgBBCCM+gKJWTK9vXU5IMCCGE8AjyNEHVpJlACCGE8HBSMyCEEMIzyNMEVZJkQAghhEfQ2SsnV7avr6SZQAghhPBwUjMADBqezT8fOU1oQyupyb68/WwjUvb4qRZP++5F3PloFi06lBAWaWX6iKZsWWNWLZ6b789m4P1/EBFTAcCxFBOLX49gx3dBqsV09+hMet6UT0zzcirK9CTv8OODmVGcOGKSmC5Aa9e4O2P6fVsAP74bRfp+PwpP+3DPO4dp2y/PsVxR4NvXo9mxtCFlBV7EdivkluePERZX7rSflG/NfD83moxf/fAy2mnavZCh7/7mWP6/6bEc3xlA5iFfGjYrI/GrAy7Hfi6tfQ+Atq/xapFmgip5fM1A71tyGTUtncWvRZLYvyWpySZmLknFHGZRLSaTn53UAybeeqaxajGcK+uUNx/OimL0jS15bEBL9v4UwPSFv9OkZZlqMXVMKGbVogaMubkFk4bEY/BSmPVZKkZfm8T0F1q8xt0ZU0Wpgcg2Jdz83LELLt/0TiRbF0VwywvH+L8vk/HxtfPRsJZYynWOdQ58HcLn4+Lpcmc2iV/tZ+R/DtLxlj/O29cVd2bTfmCOyzFfiNa+B0C713h1nXmawJWpvlI1GWjatCk6ne68KTExsc5iuH1UNmuWhLJuWSjHD5uYO7Ex5aU6+t/jnn/g1bHjuyA+mh3FZpXvAs7Ytt7M9m+DSD9q5GSqkUUvRVFWrKd112LVYpo8NJ71y0M5dshEarIvr46JJaKxhRYdSyWmv9DiNe7OmFpem0/f8Sdp2z/vvGWKAls+jKD36FO06ZdHZJtS7nj1KIWZPhxcFwKAzQpfPRdL/0lpXDU0iwbx5YS3KKPDzblO+xo4/Tjd7z9NaGz5ecepDVr7HgDtXuPVduY9A65M9ZSqycD27ds5deqUY1q/fj0Ad955Z50c38vbTouOJezaFOiYpyg6dm8KpG3XkjqJ4XKj1yv0HpyL0c/OwR3+aofj4B9UeWdSmGdQOZKztBCTFq9xNWPKTTNSlOVDs175jnmmIBuNOxeRtisAgFP7/SnI8EGnh3kD2/LSVZ34eHgLMlN83Rrb5UgL17ioHar2GWjYsKHT5xdffJFmzZrRu3fvC65fXl5OefnZLLygoMCl4weF2jB4QV6WczHkZnsR09w92f7lqmnrUuas+g0fo53SYj3PPdiU44e10U6o0yk8POMk+3/245hGvrC1EpMWr3E1YyrK8gYgoIHVab5/A6tjWU6aEYBv50Qz4Nk0ghuX89P7kXx4Tyue+HYffsGXR5W4u2nlGq8JeelQ1TTTZ6CiooJPP/2UESNGoNPpLrhOUlISZrPZMcXExNRxlJ7rxBEjj97QkscHtmD1xw0Y/8ZxYluo12fgXKNnnaRJ6zKSHmmidigOWoxJVI/y5+NjvRNP0W5ALo06lHD77KOggwNfhaobnIZclte4UgtTPaWZZGDFihXk5eUxfPjwKteZNGkS+fn5jiktLc2lYxbkGLBZIbih811CSAMruVnyoMW5rBY96b8b+W2fHwuTojia7MutD2WpHRaJM0/Q/YYCnvpnM7JP+agdDqCtmLR4jasZU0DDyg6KRdnOxynO9nIsCwyv/G94i7Pt4F5GhdCYcvJOauMaU5uWrnFROzSTDHzwwQcMGDCA6OjoKtcxGo0EBQU5Ta6wWvQc/sWPLr0KHfN0OoXOvYpI3qnuY1dap9OBt4+aabJC4swT9Lgxn6fubEbmn1W76tJeTFq8xtWMKSSmnICGFaT+dPa7o6xQz4k9AcRcUQRAdPtivHzsZKeebQazWXTknjAS3KjCrfFpn/au8ZqQpwmqponb32PHjvHNN9/wxRdf1Pmxv3i3AePnpHForx8pu/24bWQWJj8765aqVx1o8rMRHXf2SycypoL4dqUU5hnIUuHO5IFJp9j+bSBZJ33wDbDR57Y8OvYoYvK/4us8ljNGzzpJn9tymf5AHKVFekL+vKsrLjRQUaZOjqvFmECb17g7Yyov1pNz7OyPVF6akVPJvviabQQ3qiBhRCbfvxVNaNNyQmLK2fBaIwIjKmjTr/JpAVOgnSuHnubbOY0wR1VgblTBT+9GAjg9RvjH70YqSvQUZXljKdNxKrmy3bxh8zK8aiFR1tr3AGj3Gq82GbWwSppIBhYuXEh4eDgDBw6s82NvXBmCOczG/RMyCGloJfWAL5OHxpGX7V3nsZzRslMpL39+xPH54RnpAKxbFsKrY2PrPJ7gBlYmzD1OaLiVkkIDRw+amPyveHb9EHjxjd1k0PDKZ75f+eKI0/xXxsSwfrk6P3JajAm0eY27M6b0ff58eE9rx+evX6j8N9Pljmxuf+UoV/9fBpYSPSufaUpZgYHYKwu5f9EhvI1nv+j7TzqB3gD/GRePtVxP405FPLDkV3zNZzsPrni6Kb9vO1vD8PbA9gCM27SXkMau1yBo7XsAtHuNC9fpFEXdVMdutxMXF8c999zDiy++WKNtCwoKMJvNXMtgvHTqfbEJIdT3/NHtaodwnilxV6odguZZFQvf81/y8/NdbvqtypnfioQBz+HlfelPQVktZWz5eqpbY1WL6jUD33zzDcePH2fEiBFqhyKEEKI+k9cRV0n1ZKBfv36oXDkhhBBCeDTVkwEhhBCiLshLh6omyYAQQgjPYFcqJ1e2r6ckGRBCCOEZpM9AlS6DB0OFEEII4U5SMyCEEMIj6HCxz0CtRaI9kgwIIYTwDPIGwipJM4EQQgjh4aRmQAghhEeQRwurJsmAEEIIzyBPE1RJmgmEEEIIDyc1A0IIITyCTlHQudAJ0JVttU6SASFEvaDFEQK77rarHcJ5dnbx4Aph+5+TK9vXUx58VQghhBACpGZACCGEh5BmgqpJMiCEEMIzyNMEVZJkQAghhGeQNxBWSfoMCCGEEB5OkgEhhBAe4cwbCF2ZaiIpKYkrr7ySwMBAwsPDufXWW0lJSXFap6ysjMTERMLCwggICOCOO+4gMzPTaZ3jx48zcOBA/Pz8CA8PZ8KECVitVleLw4kkA0IIITzDmWYCV6Ya2LhxI4mJiWzdupX169djsVjo168fxcXFjnXGjh3LqlWr+Pe//83GjRtJT0/n9ttvdyy32WwMHDiQiooKNm/ezEcffcSiRYuYOnVqrRULSJ8BIYQQwi3WrFnj9HnRokWEh4ezc+dOrrnmGvLz8/nggw9YsmQJ1113HQALFy6kTZs2bN26lX/84x+sW7eO5ORkvvnmGyIiIujcuTPPP/88EydOZPr06fj4+NRKrFIzIIQQwiPo7K5PAAUFBU5TeXl5tY6fn58PQGhoKAA7d+7EYrHQt29fxzqtW7cmNjaWLVu2ALBlyxY6dOhARESEY53+/ftTUFDAgQMHaqNYAEkGhBBCeIpaaiaIiYnBbDY7pqSkpIse2m63M2bMGHr27En79u0ByMjIwMfHh+DgYKd1IyIiyMjIcKxzbiJwZvmZZbVFmgmEEEKIGkhLSyMoKMjx2Wg0XnSbxMRE9u/fz48//ujO0C6Z1AwIIYTwDEotTEBQUJDTdLFkYPTo0axevZrvvvuOxo0bO+ZHRkZSUVFBXl6e0/qZmZlERkY61vnr0wVnPp9ZpzZ4dDJw8/3ZzP8mhS9S9vFFyj5eX3mYbn0K1A4LgEHDs/loWzKrUn/hjdWHadW5RLVYpJyqR8vldMZdozNZm76Xh2ecVDWO9t2LmPHRUZbsOsDa9L0k3Jivajxn1OX1ZCuGtJd17BugY9c/dPw6TEfxn03AigVOvKHjwJ06difo+OUGHUef1VFx2nkfp96HX4fp2JWgY8/VOrfFWhWtXE/VdeZ1xK5MNaEoCqNHj+bLL7/k22+/JS4uzml5165d8fb2ZsOGDY55KSkpHD9+nISEBAASEhLYt28fp0+fPfnr168nKCiItm3bulAazjw6Gcg65c2Hs6IYfWNLHhvQkr0/BTB94e80aVmmaly9b8ll1LR0Fr8WSWL/lqQmm5i5JBVzmEWVeKScqker5XRGy04lDLw3h9QDJrVDweRnJ/WAibeeaXzxletIXV9Px57TUbAVmr6g0Ha5QlACHHq48gffXgYlByFqpEKbzxTiX1UoOwZHxjj/4CsWHSE3KDT8p1tC/Ftaup60KjExkU8//ZQlS5YQGBhIRkYGGRkZlJaWAmA2m3nwwQcZN24c3333HTt37uSBBx4gISGBf/zjHwD069ePtm3bct9997F3717Wrl3Ls88+S2JiYrWaJ6pL1WTAZrMxZcoU4uLi8PX1pVmzZjz//PModfTKx23rzWz/Noj0o0ZOphpZ9FIUZcV6WnctvvjGbnT7qGzWLAll3bJQjh82MXdiY8pLdfS/J0eVeKScqker5QRg8rMx8a1jzJnQmMJ8g9rhsOO7ID6aHcXmNWa1Q3Goy+vJXga5G6DxGIXArmCKheiHFUwxkPVvHYZAaLlAIbQfmJpCQEeIfVqh5KCOilNn9xP9iELEveDbom5fk6u166na6vg9A/Pnzyc/P59rr72WqKgox7Rs2TLHOq+//jo333wzd9xxB9dccw2RkZF88cUXjuUGg4HVq1djMBhISEjg3nvv5f777+e5556rtWIBlTsQvvTSS8yfP5+PPvqIdu3asWPHDh544AHMZjOPP/54ncai1ytcPSgPo5+dgzv86/TY5/LyttOiYwlL3wp3zFMUHbs3BdK2q3pV4GdIOVWPVsrpjNGzTvLzhiB2bwrknicyL76Bh6nr60mxATYdOh/nHxedEYp2X3gbWyGgUzAE1no4NXbZXk8KYHdx+5qsXo3kwWQyMW/ePObNm1flOk2aNOGrr76q2cFrSNVkYPPmzQwePJiBAwcC0LRpUz777DN+/vnnC65fXl7u9DxnQYHr7bFNW5cyZ9Vv+BjtlBbree7Bphw/rF61V1CoDYMX5GU5n5rcbC9imlfvWVZ3kHKqHq2VE0Dvwbk071DKYze1UDUOLavr68ngD/4dFU69p8MUp+AdBjlroPgXMMacv769HE7O1RF6IxgCaj2cGrmcrycZwrhqqjYT9OjRgw0bNnDo0CEA9u7dy48//siAAQMuuH5SUpLTs50xMRf4V1NDJ44YefSGljw+sAWrP27A+DeOE9tCG228WiLlVD1aK6eG0RU88lw6L42OxVLu0V2ENCfuBQUU2Ndfz67uOk5/Vvljr/vLaVIskPqUDkWB2GfU/TGS66n+UrVm4Omnn6agoIDWrVtjMBiw2WzMnDmToUOHXnD9SZMmMW7cOMfngoIClxMCq0VP+u+VnTB+2+dHq84l3PpQFnMnup5oXIqCHAM2KwQ3dB6EIqSBldws9U6XlFP1aK2cmncsJaShlXlrDznmGbygwz+KueWBbG5u2hG7ve57oWuNGteTMQZafaBgK1WwF4F3Q0idqMOn0dl1FEvlvIpT0PJdRfVagcv+elJwcQjjWotEc1RNBpYvX87ixYtZsmQJ7dq1Y8+ePYwZM4bo6GiGDRt23vpGo7FWe09eiE4H3j7qnXGrRc/hX/zo0quQLX92rtLpFDr3KmLlojDV4vorKafqUbuc9mwKYFSflk7znnw9jbTfTCyf11DbX9x1SM3ryeBbOVkLoGAzNBpTeb2cSQTKjlcmAl7Bbg2jWi776+kSOgGet309pWoyMGHCBJ5++mmGDBkCQIcOHTh27BhJSUkXTAZq2wOTTrH920CyTvrgG2Cjz215dOxRxOR/xbv92H/ni3cbMH5OGof2+pGy24/bRmZh8rOzbmmoKvFIOVWPFsuptNjAsRRfp3llJXoKc8+fX5dMfjai4yocnyNjKohvV0phnoGsk7Uz8EpN1fX1lL8ZUCqfFihPgxOv6zDFQYNbKhOBIxN0lPwKzd9QwA6W7MrtDGbQe1f+f8WpyiSi4hQodij5c3RcYwwY/Go/Zq1eT8J1qiYDJSUl6PXO7U4GgwG73ZXuntUX3MDKhLnHCQ23UlJo4OhBE5P/Fc+uH9TtrrtxZQjmMBv3T8ggpKGV1AO+TB4aR162tyrxSDlVj1bLSYtadirl5c+POD4/PCMdgHXLQnh1bKwqMdX19WQrgpNv6rBkVv7Ah1wPjRIVdN5Qng75Gyvvsg8Ocb7bbvmencBulf+fPl/HH6vOLj+z7rnriHPYAVcqL+rmp0kVOqWuHuq/gOHDh/PNN9/wzjvv0K5dO3bv3s2oUaMYMWIEL7300kW3LygowGw2cy2D8dKp8wMghBBV6bpbe78eO7toq+OfVbHwPf8lPz/f6X3/tenMb8X17Z/Cy3DpTc1WWzkb9s92a6xqUbVm4M0332TKlCk8+uijnD59mujoaP7v//6PqVOnqhmWEEII4VFUTQYCAwOZM2cOc+bMUTMMIYQQnkA6EFZJhjAWQgjhGSQZqJK2Go+EEEIIUeekZkAIIYRnkJqBKkkyIIQQwjPIo4VVkmRACCGER5CBiqomfQaEEEIIDyc1A0IIITyD9BmokiQDQgghPINdAZ0LP+j2+psMSDOBEEII4eGkZkAIIYRnkGaCKkkyIIQQwkO4mAwgyYAQnkHnykPIHqQe3yHVJq2NEAjQ+5dStUNwUlZk4fsEtaMQkgwIIYTwDNJMUCVJBoQQQngGu4JLVf3yNIEQQggh6iupGRBCCOEZFHvl5Mr29ZQkA0IIITyD9BmokiQDQgghPIP0GaiS9BkQQgghPJzUDAghhPAM0kxQJUkGhBBCeAYFF5OBWotEc6SZQAghhPBwUjMghBDCM0gzQZUkGRBCCOEZ7HbAhXcF2OU9A/VW++5F3PloFi06lBAWaWX6iKZsWWOWmC5g0PBs/vnIaUIbWklN9uXtZxuRssdPYvrTR1sPEBljOW/+ykUNmDe5sQoRaTOmM7R07u4enUnPm/KJaV5ORZme5B1+fDAzihNHTKrEc666LCdrMfz+ljfZ3+qx5OgIaG2n2UQLQe3PvyM+9Lw3p/7tRbMJFTS+z+aYv/VGI+Xpzi3QcU9YiH3Q6paYRe3w+D4DJj87qQdMvPWMul+M59JiTL1vyWXUtHQWvxZJYv+WpCabmLkkFXPY+T80nhrT4ze1Ykjndo7p6SHNANi0Wr1ETosxgfbOXceEYlYtasCYm1swaUg8Bi+FWZ+lYvS1XXxjN6rrcjo03ZvcrXpaz7TQ7fNyQhLs/DLKSHmm83rZG/QU/KLHJ/zC1eZNEy0kfFvqmBrdo5FE4EwzgStTPaVqMlBYWMiYMWNo0qQJvr6+9OjRg+3bt9dpDDu+C+Kj2VFs1sCd9xlajOn2UdmsWRLKumWhHD9sYu7ExpSX6uh/T47E9Kf8HC9ys7wdU/e++aQf9eGXLQGqxKPVmEB7527y0HjWLw/l2CETqcm+vDomlojGFlp0VHe437osJ1sZZH1jIH6sheBudnxjFZo+asU3RiF9+dlK5PJMOJzkQ5ukCnReF/5xNPgp+DTAMRnUrUA8S5KBKqmaDDz00EOsX7+eTz75hH379tGvXz/69u3LyZMn1QxL/IWXt50WHUvYtSnQMU9RdOzeFEjbriUS0wV4edu57vZc1i4LA3RqhwNoJyatnzsA/6DKGoHCPINqMdR1OSk2wKZD7+M8X29SyN9d+VOh2OHXZ3yIGW7Bv3nVP4zHP/Tmp6tN7LzLSNpCLxSNVAyIqqmWDJSWlvL5558ze/ZsrrnmGpo3b8706dNp3rw58+fPv+A25eXlFBQUOE3C/YJCbRi8IC/LuYtJbrYXIQ3V+VeuxZjO1ePGfAKCbKxbHqp2KA5aiUnr506nU3h4xkn2/+zHsRRf1eKo63Ly8oegTjaOvetF+enK5CBztYGCvXoqsiqTx7QPvdB5QaOhVTefNPqXjbazK+j0QTlR/7Ry/H0vjrzuXevxXhK74vpUT6nWgdBqtWKz2TCZnDvo+Pr68uOPP15wm6SkJGbMmFEX4Qnhkv5Dctj+XRA5mRr5EkSbMWnR6FknadK6jCdvba52KHWu9SwLKVO92drXFwwKgW0UwgfYKErWU5is48RiL7ouK0P3NxVLMfefTVQCWtrQecPh572Jf8JyXq1DXVMUO4oLIw+6sq3WqVYzEBgYSEJCAs8//zzp6enYbDY+/fRTtmzZwqlTpy64zaRJk8jPz3dMaWlpdRy1ZyrIMWCzQvBf7kZCGljJzVInn9RiTGeEN6qgy9WFrFkSpmoc59JSTFo+d4kzT9D9hgKe+mczsk+p+8ulRjn5xih0XlhBr62l/GNdGVcsKUexgqmxQv5OPZYc2NrfxMYulVN5up4jr3qz9UZjlfsM6mBHseooO6mB5jLFxVoB6TPgHp988gmKotCoUSOMRiNz587lnnvuQa+/cFhGo5GgoCCnSbif1aLn8C9+dOlV6Jin0yl07lVE8k51egZpMaYz+t39B3nZXmzboJ3rU0sxafPcKSTOPEGPG/N56s5mZKZV/eNWV9QsJ4MfGBuCpQByNhsI62MjYpCNbv8pp9vys5NPuELMcCsd51dUua+iFD3oFbzD6u8PaX2gahrerFkzNm7cSHFxMQUFBURFRXH33XcTHx9fZzGY/GxEx529kCNjKohvV0phnoGsk+rcGWgxpi/ebcD4OWkc2utHym4/bhuZhcnPzrql6rU/azEmnU6h3905fPPvUOw2DdwJoc2YtHbuRs86SZ/bcpn+QBylRXpCGlY+uldcaKCiTL17proup5yf9KCAb1OF0jQdqa9549dUIXKwDb03eAc7/6DrvBR8whT84irn5+/VU/iLjuCr7Bj8oWCvniOzvYkYaMNb/Tz0zzt7eQPhhWjipUP+/v74+/uTm5vL2rVrmT17dp0du2WnUl7+/Ijj88Mz0gFYtyyEV8fG1lkcWo9p48oQzGE27p+QQUhDK6kHfJk8NI68bPXan7UYU5erC4lobGHtMu10HNRiTFo7d4OG/wHAK18ccZr/ypgY1qvY4bKuy8lapOPoG16UZ+rwNkODvjbiHrOgr+bh9N4Kp9d48/sCHUoFmBopNL7PSuP71e8YClS+QVDnQrt/Pe4zoFMU9VKdtWvXoigKrVq14rfffmPChAmYTCY2bdqEt/fFr76CggLMZjPXMhgvnXSKErXg73pGibPq8R1Sfdf7F3XfnfBXZUUWZiasIz8/321Nv2d+K64PHIqX7tJrV61KBRsKF7s1VrWoWjOQn5/PpEmTOHHiBKGhodxxxx3MnDmzWomAEEIIUSPSTFAlVZOBu+66i7vuukvNEIQQQngIxW5HcaGZQB4tFEIIIUS9pYkOhEIIIYTbSTNBlSQZEEII4RnsCugkGbgQaSYQQgghPJzUDAghhPAMigK48p6B+lszIMmAEEIIj6DYFRQXmglUfC2P20kyIIQQwjModlyrGZBHC4UQQghxCebNm0fTpk0xmUx0796dn3/+We2QziPJgBBCCI+g2BWXp5patmwZ48aNY9q0aezatYtOnTrRv39/Tp8+7Ya/8NJJMiCEEMIzKHbXpxp67bXXGDlyJA888ABt27ZlwYIF+Pn58eGHH7rhD7x0l3WfgTOdOaxYXHqPhBBnyUBF1VKPO1LVd2VFFrVDcFJeXDmiYV10znP1t8JKZdkVFBQ4zTcajRiNxvPWr6ioYOfOnUyaNMkxT6/X07dvX7Zs2XLpgbjBZZ0MFBYWAvAjX6kciag35DdO1HPfJ6gdwYUVFhZiNpvdsm8fHx8iIyP5McP134qAgABiYmKc5k2bNo3p06eft252djY2m42IiAin+REREfz6668ux1KbLutkIDo6mrS0NAIDA9G5OPRsQUEBMTExpKWlaWZoSomperQWk9biAYmpuiSm6qnNmBRFobCwkOjo6FqK7nwmk4mjR49SUVHh8r4URTnv9+ZCtQKXm8s6GdDr9TRu3LhW9xkUFKSZf3BnSEzVo7WYtBYPSEzVJTFVT23F5K4agXOZTCZMJpPbj3OuBg0aYDAYyMzMdJqfmZlJZGRkncZyMdKBUAghhHADHx8funbtyoYNGxzz7HY7GzZsICFBW+01l3XNgBBCCKFl48aNY9iwYXTr1o2rrrqKOXPmUFxczAMPPKB2aE4kGfiT0Whk2rRpmmr7kZiqR2sxaS0ekJiqS2KqHi3GpFV33303WVlZTJ06lYyMDDp37syaNWvO61SoNp1Sn1+2LIQQQoiLkj4DQgghhIeTZEAIIYTwcJIMCCGEEB5OkgEhhBDCw0kygPaGl/zhhx8YNGgQ0dHR6HQ6VqxYoWo8SUlJXHnllQQGBhIeHs6tt95KSkqKqjHNnz+fjh07Ol56kpCQwNdff61qTH/14osvotPpGDNmjGoxTJ8+HZ1O5zS1bt1atXjOOHnyJPfeey9hYWH4+vrSoUMHduzYoVo8TZs2Pa+cdDodiYmJqsVks9mYMmUKcXFx+Pr60qxZM55//vk6eYf/3yksLGTMmDE0adIEX19fevTowfbt21WNSbjO45MBLQ4vWVxcTKdOnZg3b55qMZxr48aNJCYmsnXrVtavX4/FYqFfv34UFxerFlPjxo158cUX2blzJzt27OC6665j8ODBHDhwQLWYzrV9+3beeecdOnbsqHYotGvXjlOnTjmmH3/8UdV4cnNz6dmzJ97e3nz99dckJyfz6quvEhISolpM27dvdyqj9evXA3DnnXeqFtNLL73E/Pnzeeuttzh48CAvvfQSs2fP5s0331QtJoCHHnqI9evX88knn7Bv3z769etH3759OXnypKpxCRcpHu6qq65SEhMTHZ9tNpsSHR2tJCUlqRjVWYDy5Zdfqh2Gk9OnTyuAsnHjRrVDcRISEqK8//77aoehFBYWKi1atFDWr1+v9O7dW3niiSdUi2XatGlKp06dVDv+hUycOFHp1auX2mH8rSeeeEJp1qyZYrfbVYth4MCByogRI5zm3X777crQoUNVikhRSkpKFIPBoKxevdpp/hVXXKFMnjxZpahEbfDomoEzw0v27dvXMU+rw0tqSX5+PgChoaEqR1LJZrOxdOlSiouLNfGKz8TERAYOHOh0Xanp8OHDREdHEx8fz9ChQzl+/Liq8axcuZJu3bpx5513Eh4eTpcuXXjvvfdUjelcFRUVfPrpp4wYMcLlAdBc0aNHDzZs2MChQ4cA2Lt3Lz/++CMDBgxQLSar1YrNZjvvHf++vr6q1zgJ13j0Gwgvp+EltcJutzNmzBh69uxJ+/btVY1l3759JCQkUFZWRkBAAF9++SVt27ZVNaalS5eya9cuzbShdu/enUWLFtGqVStOnTrFjBkzuPrqq9m/fz+BgYGqxJSamsr8+fMZN24czzzzDNu3b+fxxx/Hx8eHYcOGqRLTuVasWEFeXh7Dhw9XNY6nn36agoICWrdujcFgwGazMXPmTIYOHapaTIGBgSQkJPD888/Tpk0bIiIi+Oyzz9iyZQvNmzdXLS7hOo9OBkTNJSYmsn//fk3cBbRq1Yo9e/aQn5/Pf/7zH4YNG8bGjRtVSwjS0tJ44oknWL9+fZ2PjlaVc+8iO3bsSPfu3WnSpAnLly/nwQcfVCUmu91Ot27dmDVrFgBdunRh//79LFiwQBPJwAcffMCAAQPcOqRudSxfvpzFixezZMkS2rVrx549exgzZgzR0dGqltMnn3zCiBEjaNSoEQaDgSuuuIJ77rmHnTt3qhaTcJ1HJwOX0/CSWjB69GhWr17NDz/8UOtDR18KHx8fx91I165d2b59O2+88QbvvPOOKvHs3LmT06dPc8UVVzjm2Ww2fvjhB9566y3Ky8sxGAyqxHZGcHAwLVu25LffflMthqioqPMStjZt2vD555+rFNFZx44d45tvvuGLL75QOxQmTJjA008/zZAhQwDo0KEDx44dIykpSdVkoFmzZmzcuJHi4mIKCgqIiori7rvvJj4+XrWYhOs8us/A5TS8pJoURWH06NF8+eWXfPvtt8TFxakd0gXZ7XbKy8tVO/7111/Pvn372LNnj2Pq1q0bQ4cOZc+ePaonAgBFRUUcOXKEqKgo1WLo2bPneY+mHjp0iCZNmqgU0VkLFy4kPDycgQMHqh0KJSUl6PXOX9EGgwG73a5SRM78/f2JiooiNzeXtWvXMnjwYLVDEi7w6JoB0ObwkkVFRU53bkePHmXPnj2EhoYSGxtb5/EkJiayZMkS/vvf/xIYGEhGRgYAZrMZX1/fOo8HYNKkSQwYMIDY2FgKCwtZsmQJ33//PWvXrlUlHqhsT/1rPwp/f3/CwsJU618xfvx4Bg0aRJMmTUhPT2fatGkYDAbuueceVeIBGDt2LD169GDWrFncdddd/Pzzz7z77ru8++67qsUElcnkwoULGTZsGF5e6n81Dho0iJkzZxIbG0u7du3YvXs3r732GiNGjFA1rrVr16IoCq1ateK3335jwoQJtG7dWnND8ooaUvtxBi148803ldjYWMXHx0e56qqrlK1bt6oaz3fffacA503Dhg1TJZ4LxQIoCxcuVCUeRVGUESNGKE2aNFF8fHyUhg0bKtdff72ybt061eKpitqPFt59991KVFSU4uPjozRq1Ei5++67ld9++021eM5YtWqV0r59e8VoNCqtW7dW3n33XbVDUtauXasASkpKitqhKIqiKAUFBcoTTzyhxMbGKiaTSYmPj1cmT56slJeXqxrXsmXLlPj4eMXHx0eJjIxUEhMTlby8PFVjEq6TIYyFEEIID+fRfQaEEEIIIcmAEEII4fEkGRBCCCE8nCQDQgghhIeTZEAIIYTwcJIMCCGEEB5OkgEhhBDCw0kyIIQQQng4SQaEcNHw4cO59dZbHZ+vvfZaxowZU+dxfP/99+h0OvLy8qpcR6fTsWLFimrvc/r06XTu3NmluH7//Xd0Oh179uxxaT9CCPeRZEDUS8OHD0en06HT6RyjGz733HNYrVa3H/uLL77g+eefr9a61fkBF0IId1N/NA4h3OTGG29k4cKFlJeX89VXX5GYmIi3tzeTJk06b92Kigp8fHxq5bihoaG1sh8hhKgrUjMg6i2j0UhkZCRNmjThkUceoW/fvqxcuRI4W7U/c+ZMoqOjadWqFQBpaWncddddBAcHExoayuDBg/n9998d+7TZbIwbN47g4GDCwsJ46qmn+OvwHn9tJigvL2fixInExMRgNBpp3rw5H3zwAb///jt9+vQBICQkBJ1Ox/Dhw4HKEfSSkpKIi4vD19eXTp068Z///MfpOF999RUtW7bE19eXPn36OMVZXRMnTqRly5b4+fkRHx/PlClTsFgs5633zjvvEBMTg5+fH3fddRf5+flOy99//33atGmDyWSidevWvP322zWORQihHkkGhMfw9fWloqLC8XnDhg2kpKSwfv16Vq9ejcVioX///gQGBrJp0yZ++uknAgICuPHGGx3bvfrqqyxatIgPP/yQH3/8kZycHL788su/Pe7999/PZ599xty5czl48CDvvPMOAQEBxMTE8PnnnwOQkpLCqVOneOONNwBISkri448/ZsGCBRw4cICxY8dy7733snHjRqAyabn99tsZNGgQe/bs4aGHHuLpp5+ucZkEBgayaNEikpOTeeONN3jvvfd4/fXXndb57bffWL58OatWrWLNmjXs3r2bRx991LF88eLFTJ06lZkzZ3Lw4EFmzZrFlClT+Oijj2ocjxBCJSqPmiiEWwwbNkwZPHiwoiiKYrfblfXr1ytGo1EZP368Y3lERITTcLCffPKJ0qpVK8VutzvmlZeXK76+vsratWsVRVGUqKgoZfbs2Y7lFotFady4seNYiuI8bHFKSooCKOvXr79gnGeGq87NzXXMKysrU/z8/JTNmzc7rfvggw8q99xzj6IoijJp0iSlbdu2TssnTpx43r7+ClC+/PLLKpe//PLLSteuXR2fp02bphgMBuXEiROOeV9//bWi1+uVU6dOKYqiKM2aNVOWLFnitJ/nn39eSUhIUBRFUY4ePaoAyu7du6s8rhBCXdJnQNRbq1evJiAgAIvFgt1u51//+hfTp093LO/QoYNTP4G9e/fy22+/ERgY6LSfsrIyjhw5Qn5+PqdOnaJ79+6OZV5eXnTr1u28poIz9uzZg8FgoHfv3tWO+7fffqOkpIQbbrjBaX5FRQVdunQB4ODBg05xACQkJFT7GGcsW7aMuXPncuTIEYqKirBarQQFBTmtExsbS6NGjZyOY7fbSUlJITAwkCNHjvDggw8ycuRIxzpWqxWz2VzjeIQQ6pBkQNRbffr0Yf78+fj4+BAdHY2Xl/Pl7u/v7/S5qKiIrl27snjx4vP21bBhw0uKwdfXt8bbFBUVAfC///3P6UcYKvtB1JYtW7YwdOhQZsyYQf/+/TGbzSxdupRXX321xrG+99575yUnBoOh1mIVQriXJAOi3vL396d58+bVXv+KK65g2bJlhIeHn3d3fEZUVBTbtm3jmmuuASrvgHfu3MkVV1xxwfU7dOiA3W5n48aN9O3b97zlZ2ombDabY17btm0xGo0cP368yhqFNm3aODpDnrF169aL/5Hn2Lx5M02aNGHy5MmOeceOHTtvvePHj5Oenk50dLTjOHq9nlatWhEREUF0dDSpqakMHTq0RscXQmiHdCAU4k9Dhw6lQYMGDB48mE2bNnH06FG+//57Hn/8cU6cOAHAE088wYsvvsiKFSv49ddfefTRR//2HQFNmzZl2LBhjBgxghUrVjj2uXz5cgCaNGmCTqdj9erVZGVlUVRURGBgIOPHj2fs2LF89NFHHDlyhF27dvHmm286OuU9/PDDHD58mAkTJpCSksKSJUtYtGhRjf7eFi1acPz4cZYuXcqRI0eYO3fuBTtDmkwmhg0bxt69e9m0aROPP/44d911F5GRkQDMmDGDpKQk5s6dy6FDh9i3bx8LFy7ktddeq1E8Qgj1SDIgxJ/8/Pz44YcfiI2N5fbbb6dNmzY8+OCDlJWVOWoKnnzySe677z6GDRtGQkICgYGB3HbbbX+73/nz5/PPf/6TRx99lNatWzNy5EiKi4sBaNSoETNmzODpp58mIiKC0aNHA/D8888zZcoUkpKSaNOmDTfeeCP/+9//iIuLAyrb8T///HNWrFhBp06dWLBgAbNmzarR33vLLbcwduxYRo8eTefOndm8eTNTpkw5b73mzZtz++23c9NNN9GvXz86duzo9OjgQw89xPvvv8/ChQvp0KEDvXv3ZtGiRY5YhRDap1Oq6vkkhBBCCI8gNQNCCCGEh5NkQAghhPBwkgwIIYQQHk6SASGEEMLDSTIghBBCeDhJBoQQQggPJ8mAEEII4eEkGRBCCCE8nCQDQgghhIeTZEAIIYTwcJIMCCGEEB7u/wGysGwVMTliqAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания." + ], + "metadata": { + "id": "amaspXGW1EVy" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка собственного изображения\n", + "from PIL import Image\n", + "\n", + "for name_image in ['цифра 3.png', 'цифра 6.png']:\n", + " file_data = Image.open(name_image)\n", + " file_data = file_data.convert('L') # перевод в градации серого\n", + " test_img = np.array(file_data)\n", + "\n", + " # вывод собственного изображения\n", + " plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + "\n", + " # предобработка\n", + " test_img = test_img / 255\n", + " test_img = np.reshape(test_img, (1,28,28,1))\n", + "\n", + " # распознавание\n", + " result = model.predict(test_img)\n", + " print('I think it\\'s', np.argmax(result))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 916 + }, + "id": "ktWEeqWd1EyF", + "outputId": "533c0d70-1a20-42b9-f8eb-2aeaff515439" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHYxJREFUeJzt3X9s1PUdx/HXFeiB0l4ppb+kQMEfKL+WIXQV7VQ6SrcQQbLgjz9gMRJZMSLzx7pMkW1JN+Y2w8I0SxaYiYg/IjDNxoIgJWpBQRkzakObImBpEbLelQKltJ/9QbztpIif4453W56P5JvQu++r9+bbb/rqt3f9XMA55wQAwCWWYj0AAODyRAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADARH/rAb6qq6tLjY2NSktLUyAQsB4HAODJOafW1lbl5+crJeX81zk9roAaGxtVUFBgPQYA4CIdPHhQw4cPP+/9Pe5XcGlpadYjAAAS4ELfz5NWQKtWrdKoUaM0cOBAFRUV6b333vtGOX7tBgB9w4W+nyelgF566SUtXbpUy5Yt0wcffKBJkyaprKxMR44cScbDAQB6I5cEU6dOdRUVFdGPOzs7XX5+vquqqrpgNhwOO0lsbGxsbL18C4fDX/v9PuFXQKdPn9bu3btVWloavS0lJUWlpaWqqak5Z//29nZFIpGYDQDQ9yW8gI4eParOzk7l5OTE3J6Tk6OmpqZz9q+qqlIoFIpuvAIOAC4P5q+Cq6ysVDgcjm4HDx60HgkAcAkk/O+AsrKy1K9fPzU3N8fc3tzcrNzc3HP2DwaDCgaDiR4DANDDJfwKKDU1VZMnT9aWLVuit3V1dWnLli0qLi5O9MMBAHqppKyEsHTpUs2fP1833nijpk6dqmeeeUZtbW360Y9+lIyHAwD0QkkpoHnz5umLL77Qk08+qaamJn3rW9/Spk2bznlhAgDg8hVwzjnrIf5fJBJRKBSyHgMAcJHC4bDS09PPe7/5q+AAAJcnCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJpKyGjbQW/Xr1887E88bKsaT6ezs9M6cOnXKOyNJHR0d3pketq4xegGugAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJlgNGz3egAEDvDN5eXlxPdbkyZO9MzfccIN3Jicnxztz+vRp70x9fb13RpLeffdd78ynn37qnWlvb/fOoO/gCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJFiNF3AKBgHdm2LBh3pmSkhLvTFlZmXdGkoqKirwzubm53pl+/fp5Z+I53m1tbd4ZSdq5c6d35umnn/bOvPfee96Zrq4u7wx6Jq6AAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmGAxUsRtyJAh3pl58+Z5ZxYuXOidueqqq7wzktTc3Oyd2bx5s3fms88+886kpaV5Z+JZXFWSZsyY4Z35/PPPvTP79+/3zjQ1NXln0DNxBQQAMEEBAQBMJLyAnnrqKQUCgZht7NixiX4YAEAvl5TngMaNG6c333zzfw/Sn6eaAACxktIM/fv3j+tdIgEAl4+kPAe0b98+5efna/To0br33nt14MCB8+7b3t6uSCQSswEA+r6EF1BRUZHWrFmjTZs26dlnn1VDQ4NuueUWtba2drt/VVWVQqFQdCsoKEj0SACAHijhBVReXq4f/vCHmjhxosrKyvT3v/9dLS0tevnll7vdv7KyUuFwOLodPHgw0SMBAHqgpL86ICMjQ9dee63q6uq6vT8YDCoYDCZ7DABAD5P0vwM6fvy46uvrlZeXl+yHAgD0IgkvoEceeUTV1dXav3+/3n33Xc2ZM0f9+vXT3XffneiHAgD0Ygn/FdyhQ4d0991369ixYxo2bJhuvvlm7dixQ8OGDUv0QwEAerGEF9C6desS/SmRZIFAIK7cqFGjvDM/+MEPvDNZWVnembfeess7I0nr16/3zuzYscM709jY6J254oorvDPz58/3zkjSQw895J25/fbbvTObNm3yzvzzn//0znR1dXlnkHysBQcAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMBE0t+QDn1XOBz2zrz//vvemb1793pnXn31Ve+MJO3Zs8c7c/r06bgey9fJkye9M5s3b47rsb73ve95Z6ZNm+adGTdunHcmnv8Ti5H2TFwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMsBo25JyLK/f55597Z/785z97Z86cOeOdOXr0qHdGkjo6OuLKXQrxfJ0OHToU12N99tln3pnS0lLvTCgU8s6kpPBzc1/BVxIAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJFiNF3E6dOuWdiXdxTF/xLrDa16Snp8eVi2eR0HiOef/+/t+CWIy07+ArCQAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwASLkeKSYpHQs1JTU70zeXl53pm7777bOyNJN954o3cmnoVm//Wvf3lnzpw5451Bz8QVEADABAUEADDhXUDbt2/XrFmzlJ+fr0AgoA0bNsTc75zTk08+qby8PA0aNEilpaXat29fouYFAPQR3gXU1tamSZMmadWqVd3ev2LFCq1cuVLPPfecdu7cqSuvvFJlZWVxvXkZAKDv8n4RQnl5ucrLy7u9zzmnZ555Rj//+c91xx13SJKef/555eTkaMOGDbrrrrsubloAQJ+R0OeAGhoa1NTUpNLS0uhtoVBIRUVFqqmp6TbT3t6uSCQSswEA+r6EFlBTU5MkKScnJ+b2nJyc6H1fVVVVpVAoFN0KCgoSORIAoIcyfxVcZWWlwuFwdDt48KD1SACASyChBZSbmytJam5ujrm9ubk5et9XBYNBpaenx2wAgL4voQVUWFio3NxcbdmyJXpbJBLRzp07VVxcnMiHAgD0ct6vgjt+/Ljq6uqiHzc0NGjPnj3KzMzUiBEjtGTJEv3qV7/SNddco8LCQj3xxBPKz8/X7NmzEzk3AKCX8y6gXbt26bbbbot+vHTpUknS/PnztWbNGj322GNqa2vTwoUL1dLSoptvvlmbNm3SwIEDEzc1AKDXC7getjpkJBJRKBSyHgO9XEpKfL9dzsrK8s6MGzfukmSmTJninbnpppu8M5I0ePBg78y6deu8M08//bR35vPPP/fOwEY4HP7a5/XNXwUHALg8UUAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMeL8dA9AbDBs2LK7c4sWLvTPz5s3zzsQz36BBg7wzJ0+e9M5I0ieffOKd2b17t3empaXFO4O+gysgAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJliMFH1SXl5eXLny8nLvzDXXXOOdcc55Z86cOeOdGThwoHdGksaNG+ediWdR1v3793tnampqvDOdnZ3eGSQfV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMsBgp+qR4FrmUpN/97nfembKyMu9MIBDwznzxxRfemQEDBnhnJGnKlCmXJDN//nzvTFNTk3emrq7OO4Pk4woIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACAiYBzzlkP8f8ikYhCoZD1GLhMpaT4/0yWmprqnenq6rokmcGDB3tnJGnOnDnemccee8w7k5GR4Z1Zvny5d2b16tXeGUlqb2+PK4ezwuGw0tPTz3s/V0AAABMUEADAhHcBbd++XbNmzVJ+fr4CgYA2bNgQc/+CBQsUCARitpkzZyZqXgBAH+FdQG1tbZo0aZJWrVp13n1mzpypw4cPR7cXX3zxooYEAPQ93u+IWl5ervLy8q/dJxgMKjc3N+6hAAB9X1KeA9q2bZuys7N13XXXadGiRTp27Nh5921vb1ckEonZAAB9X8ILaObMmXr++ee1ZcsW/eY3v1F1dbXKy8vV2dnZ7f5VVVUKhULRraCgINEjAQB6IO9fwV3IXXfdFf33hAkTNHHiRI0ZM0bbtm3T9OnTz9m/srJSS5cujX4ciUQoIQC4DCT9ZdijR49WVlaW6urqur0/GAwqPT09ZgMA9H1JL6BDhw7p2LFjysvLS/ZDAQB6Ee9fwR0/fjzmaqahoUF79uxRZmamMjMztXz5cs2dO1e5ubmqr6/XY489pquvvlplZWUJHRwA0Lt5F9CuXbt02223RT/+8vmb+fPn69lnn9XevXv117/+VS0tLcrPz9eMGTP0y1/+UsFgMHFTAwB6PRYjBXCOeP6O76mnnvLOLFiwwDvz8ssve2d++tOfemckqbGxMa4czmIxUgBAj0QBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMJHwt+QG0Ps1Nzd7Zz7++GPvTCQS8c5kZ2d7Z7KysrwzEqthJxtXQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAEywGCmAhOjo6PDOnDlzxjszcOBA70xqaqp3BsnHFRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATLEaKuAUCAe9M//7+p1xXV5d3prOz0zvTF8XzNZKkgoIC78z48eO9M4MGDfLOHD582Dvzn//8xzuD5OMKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkWI0XcrrrqKu/Mbbfd5p05evSod2bXrl3eGUk6duxYXDlfKSn+P/ulpaV5Z66//nrvjCTNmTPHO1NaWuqdaW1t9c5s377dOxPPAqZIPq6AAAAmKCAAgAmvAqqqqtKUKVOUlpam7OxszZ49W7W1tTH7nDp1ShUVFRo6dKgGDx6suXPnqrm5OaFDAwB6P68Cqq6uVkVFhXbs2KHNmzero6NDM2bMUFtbW3Sfhx9+WK+//rpeeeUVVVdXq7GxUXfeeWfCBwcA9G5eL0LYtGlTzMdr1qxRdna2du/erZKSEoXDYf3lL3/R2rVrdfvtt0uSVq9ereuvv147duzQd77zncRNDgDo1S7qOaBwOCxJyszMlCTt3r1bHR0dMa+GGTt2rEaMGKGamppuP0d7e7sikUjMBgDo++IuoK6uLi1ZskTTpk2Lvhd8U1OTUlNTlZGREbNvTk6Ompqauv08VVVVCoVC0S2e96IHAPQ+cRdQRUWFPvroI61bt+6iBqisrFQ4HI5uBw8evKjPBwDoHeL6Q9TFixfrjTfe0Pbt2zV8+PDo7bm5uTp9+rRaWlpiroKam5uVm5vb7ecKBoMKBoPxjAEA6MW8roCcc1q8eLHWr1+vrVu3qrCwMOb+yZMna8CAAdqyZUv0ttraWh04cEDFxcWJmRgA0Cd4XQFVVFRo7dq12rhxo9LS0qLP64RCIQ0aNEihUEj33Xefli5dqszMTKWnp+vBBx9UcXExr4ADAMTwKqBnn31WknTrrbfG3L569WotWLBAkvSHP/xBKSkpmjt3rtrb21VWVqY//elPCRkWANB3BJxzznqI/xeJRBQKhazHuKzEszCmJM2aNcs78+UPMT6++OIL78zf/vY374wU3yKm7e3t3pkhQ4Z4Z2644QbvzE033eSdkaQJEyZ4Z06dOuWdefXVV70zK1eu9M7s37/fO4OLFw6HlZ6eft77WQsOAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCC1bARtzFjxnhnHn30Ue/MnDlzvDOnT5/2zkjxrbx95swZ78yVV17pnRk6dKh3pqOjwzsjSZ9++ql3ZvPmzd6ZDRs2eGfq6+u9M52dnd4ZXDxWwwYA9EgUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBM9LceAL1XQ0ODd2blypXemSNHjnhnioqKvDOSNGzYMO9MMBj0zhw/ftw78+9//9s78/7773tnJOmdd97xznzyySfemUgk4p3pYesn4yJwBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMBEwPWwlf0ikYhCoZD1GEiSfv36eWeGDBninRk1apR3RpJyc3O9M/37+6/pG89ipPv37/fONDY2emck6eTJk96ZHvatBD1AOBxWenr6ee/nCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJ/1UUgYvQ2dnpnTl69Kh35tixY94ZSQoEAnHlfMWzcCeLfaKv4QoIAGCCAgIAmPAqoKqqKk2ZMkVpaWnKzs7W7NmzVVtbG7PPrbfeqkAgELM98MADCR0aAND7eRVQdXW1KioqtGPHDm3evFkdHR2aMWOG2traYva7//77dfjw4ei2YsWKhA4NAOj9vF6EsGnTppiP16xZo+zsbO3evVslJSXR26+44oq43lkSAHD5uKjngMLhsCQpMzMz5vYXXnhBWVlZGj9+vCorK3XixInzfo729nZFIpGYDQDQ98X9Muyuri4tWbJE06ZN0/jx46O333PPPRo5cqTy8/O1d+9ePf7446qtrdVrr73W7eepqqrS8uXL4x0DANBLBVycf1ywaNEi/eMf/9Dbb7+t4cOHn3e/rVu3avr06aqrq9OYMWPOub+9vV3t7e3RjyORiAoKCuIZCYiK9+95+DsgIHHC4bDS09PPe39cV0CLFy/WG2+8oe3bt39t+UhSUVGRJJ23gILBoILBYDxjAAB6Ma8Ccs7pwQcf1Pr167Vt2zYVFhZeMLNnzx5JUl5eXlwDAgD6Jq8Cqqio0Nq1a7Vx40alpaWpqalJkhQKhTRo0CDV19dr7dq1+v73v6+hQ4dq7969evjhh1VSUqKJEycm5T8AAOilnAdJ3W6rV692zjl34MABV1JS4jIzM10wGHRXX321e/TRR104HP7GjxEOh8/7OGxs33QLBAJxbSkpKZdki2c262PKxua7Xeh7f9wvQkiWSCSiUChkPQZ6OV6EANhLyosQgJ4u3m/WfJMHLh0WIwUAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCixxWQc856BABAAlzo+3mPK6DW1lbrEQAACXCh7+cB18MuObq6utTY2Ki0tDQFAoGY+yKRiAoKCnTw4EGlp6cbTWiP43AWx+EsjsNZHIezesJxcM6ptbVV+fn5Skk5/3VO/0s40zeSkpKi4cOHf+0+6enpl/UJ9iWOw1kch7M4DmdxHM6yPg6hUOiC+/S4X8EBAC4PFBAAwESvKqBgMKhly5YpGAxaj2KK43AWx+EsjsNZHIezetNx6HEvQgAAXB561RUQAKDvoIAAACYoIACACQoIAGCi1xTQqlWrNGrUKA0cOFBFRUV67733rEe65J566ikFAoGYbezYsdZjJd327ds1a9Ys5efnKxAIaMOGDTH3O+f05JNPKi8vT4MGDVJpaan27dtnM2wSXeg4LFiw4JzzY+bMmTbDJklVVZWmTJmitLQ0ZWdna/bs2aqtrY3Z59SpU6qoqNDQoUM1ePBgzZ07V83NzUYTJ8c3OQ633nrrOefDAw88YDRx93pFAb300ktaunSpli1bpg8++ECTJk1SWVmZjhw5Yj3aJTdu3DgdPnw4ur399tvWIyVdW1ubJk2apFWrVnV7/4oVK7Ry5Uo999xz2rlzp6688kqVlZXp1KlTl3jS5LrQcZCkmTNnxpwfL7744iWcMPmqq6tVUVGhHTt2aPPmzero6NCMGTPU1tYW3efhhx/W66+/rldeeUXV1dVqbGzUnXfeaTh14n2T4yBJ999/f8z5sGLFCqOJz8P1AlOnTnUVFRXRjzs7O11+fr6rqqoynOrSW7ZsmZs0aZL1GKYkufXr10c/7urqcrm5ue63v/1t9LaWlhYXDAbdiy++aDDhpfHV4+Ccc/Pnz3d33HGHyTxWjhw54iS56upq59zZr/2AAQPcK6+8Et3nk08+cZJcTU2N1ZhJ99Xj4Jxz3/3ud91DDz1kN9Q30OOvgE6fPq3du3ertLQ0eltKSopKS0tVU1NjOJmNffv2KT8/X6NHj9a9996rAwcOWI9kqqGhQU1NTTHnRygUUlFR0WV5fmzbtk3Z2dm67rrrtGjRIh07dsx6pKQKh8OSpMzMTEnS7t271dHREXM+jB07ViNGjOjT58NXj8OXXnjhBWVlZWn8+PGqrKzUiRMnLMY7rx63GOlXHT16VJ2dncrJyYm5PScnR59++qnRVDaKioq0Zs0aXXfddTp8+LCWL1+uW265RR999JHS0tKsxzPR1NQkSd2eH1/ed7mYOXOm7rzzThUWFqq+vl4/+9nPVF5erpqaGvXr1896vITr6urSkiVLNG3aNI0fP17S2fMhNTVVGRkZMfv25fOhu+MgSffcc49Gjhyp/Px87d27V48//rhqa2v12muvGU4bq8cXEP6nvLw8+u+JEyeqqKhII0eO1Msvv6z77rvPcDL0BHfddVf03xMmTNDEiRM1ZswYbdu2TdOnTzecLDkqKir00UcfXRbPg36d8x2HhQsXRv89YcIE5eXlafr06aqvr9eYMWMu9Zjd6vG/gsvKylK/fv3OeRVLc3OzcnNzjabqGTIyMnTttdeqrq7OehQzX54DnB/nGj16tLKysvrk+bF48WK98cYbeuutt2LeviU3N1enT59WS0tLzP599Xw433HoTlFRkST1qPOhxxdQamqqJk+erC1btkRv6+rq0pYtW1RcXGw4mb3jx4+rvr5eeXl51qOYKSwsVG5ubsz5EYlEtHPnzsv+/Dh06JCOHTvWp84P55wWL16s9evXa+vWrSosLIy5f/LkyRowYEDM+VBbW6sDBw70qfPhQsehO3v27JGknnU+WL8K4ptYt26dCwaDbs2aNe7jjz92CxcudBkZGa6pqcl6tEvqJz/5idu2bZtraGhw77zzjistLXVZWVnuyJEj1qMlVWtrq/vwww/dhx9+6CS53//+9+7DDz90n332mXPOuV//+tcuIyPDbdy40e3du9fdcccdrrCw0J08edJ48sT6uuPQ2trqHnnkEVdTU+MaGhrcm2++6b797W+7a665xp06dcp69IRZtGiRC4VCbtu2be7w4cPR7cSJE9F9HnjgATdixAi3detWt2vXLldcXOyKi4sNp068Cx2Huro694tf/MLt2rXLNTQ0uI0bN7rRo0e7kpIS48lj9YoCcs65P/7xj27EiBEuNTXVTZ061e3YscN6pEtu3rx5Li8vz6WmprqrrrrKzZs3z9XV1VmPlXRvvfWWk3TONn/+fOfc2ZdiP/HEEy4nJ8cFg0E3ffp0V1tbazt0EnzdcThx4oSbMWOGGzZsmBswYIAbOXKku//++/vcD2nd/f8ludWrV0f3OXnypPvxj3/shgwZ4q644go3Z84cd/jwYbuhk+BCx+HAgQOupKTEZWZmumAw6K6++mr36KOPunA4bDv4V/B2DAAAEz3+OSAAQN9EAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADAxH8BHkyBMgyZJIkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n", + "I think it's 3\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHQBJREFUeJzt3X1slfX9//HXKbanqO2pFeiNFCyooHLjROkY2sHoaLvFiBLj3RJcjA5WjMrUpXOKumXdcNmMjql/LDCj4E0iENnG1GJLNgpKBYmbdLR2UkdbhNhzoECp7ef3Bz/O1yMU/BxO+27L85F8EnrO9ep5c3nZF1fP1asB55wTAAB9LMl6AADAmYkCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImzrAf4qu7ubu3evVtpaWkKBALW4wAAPDnntH//fuXm5iopqefznH5XQLt371ZeXp71GACA09TU1KSRI0f2+Hy/+xZcWlqa9QgAgAQ41dfzXiugpUuX6sILL1RqaqoKCgr07rvvfq0c33YDgMHhVF/Pe6WAXnnlFS1atEiLFy/W+++/r8mTJ6u4uFh79uzpjZcDAAxErhdMnTrVlZWVRT/u6upyubm5rqKi4pTZcDjsJLFYLBZrgK9wOHzSr/cJPwM6cuSIamtrVVRUFH0sKSlJRUVFqqmpOW77jo4ORSKRmAUAGPwSXkB79+5VV1eXsrKyYh7PyspSS0vLcdtXVFQoFApFF1fAAcCZwfwquPLycoXD4ehqamqyHgkA0AcS/nNAw4YN05AhQ9Ta2hrzeGtrq7Kzs4/bPhgMKhgMJnoMAEA/l/AzoJSUFE2ZMkWVlZXRx7q7u1VZWalp06Yl+uUAAANUr9wJYdGiRZo3b56uuuoqTZ06VU899ZTa29v1wx/+sDdeDgAwAPVKAd1888367LPP9Oijj6qlpUVXXHGF1q1bd9yFCQCAM1fAOeesh/iySCSiUChkPQYA4DSFw2Glp6f3+Lz5VXAAgDMTBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAE71yN2wAiZeU5P/vxaFDh8b1WsnJyd6Z9vZ270xnZ6d3BoMHZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABPcDRswEM/dpidOnOidue2227wzkpSVleWdqaqq8s787W9/8860tLR4Z7q7u70z6H2cAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDBzUiB03T22Wd7Z6655hrvzL333uudmTFjhndGklJSUrwz3/rWt7wzaWlp3pkXX3zRO7N3717vDHofZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDNS4EvOO+8878x3v/td78yPfvQj78zMmTO9M5988ol3RpI+//xz70xqaqp35rLLLvPOhEIh7ww3I+2fOAMCAJiggAAAJhJeQI899pgCgUDMGj9+fKJfBgAwwPXKe0CXX3653n777f97kbN4qwkAEKtXmuGss85SdnZ2b3xqAMAg0SvvAe3cuVO5ubkaM2aMbr/9du3atavHbTs6OhSJRGIWAGDwS3gBFRQUaPny5Vq3bp2effZZNTY26tprr9X+/ftPuH1FRYVCoVB05eXlJXokAEA/lPACKi0t1U033aRJkyapuLhYf/3rX9XW1qZXX331hNuXl5crHA5HV1NTU6JHAgD0Q71+dUBGRoYuueQS1dfXn/D5YDCoYDDY22MAAPqZXv85oAMHDqihoUE5OTm9/VIAgAEk4QX0wAMPqLq6Wv/973+1ceNG3XDDDRoyZIhuvfXWRL8UAGAAS/i34D799FPdeuut2rdvn4YPH65rrrlGmzZt0vDhwxP9UgCAASzgnHPWQ3xZJBKJ62aDwJdlZGTElZs7d653Zv78+d6ZeH5O7l//+pd3ZuXKld4ZST2+Z3symZmZ3pnm5mbvzEcffeSdaW9v987g9IXDYaWnp/f4PPeCAwCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYKLXfyEdcLpSUlK8M4WFhXG91oIFC7wz48aN886sXbvWO/P88897Z9577z3vjBTfzTuTkvrm37Pd3d198jrofZwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDds9HsXXnihd+amm26K67Xy8vK8M2+++aZ35plnnvHObNmyxTtz5MgR70y8uEs1fHEGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQ3I0WfCgaD3plrr73WOzN16lTvjCTt3r3bO/PKK694Z2pra70zfXljUaAvcAYEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABDcjRZ/Kzs72zkyfPt07EwqFvDOS9M4773hnampqvDMdHR3eGWCw4QwIAGCCAgIAmPAuoA0bNui6665Tbm6uAoGAVq9eHfO8c06PPvqocnJyNHToUBUVFWnnzp2JmhcAMEh4F1B7e7smT56spUuXnvD5JUuW6Omnn9Zzzz2nzZs365xzzlFxcbEOHz582sMCAAYP74sQSktLVVpaesLnnHN66qmn9POf/1zXX3+9JOmFF15QVlaWVq9erVtuueX0pgUADBoJfQ+osbFRLS0tKioqij4WCoVUUFDQ45VCHR0dikQiMQsAMPgltIBaWlokSVlZWTGPZ2VlRZ/7qoqKCoVCoejKy8tL5EgAgH7K/Cq48vJyhcPh6GpqarIeCQDQBxJaQMd+yLC1tTXm8dbW1h5/ADEYDCo9PT1mAQAGv4QWUH5+vrKzs1VZWRl9LBKJaPPmzZo2bVoiXwoAMMB5XwV34MAB1dfXRz9ubGzUtm3blJmZqVGjRum+++7TL3/5S1188cXKz8/XI488otzcXM2ZMyeRcwMABjjvAtqyZYtmzpwZ/XjRokWSpHnz5mn58uV66KGH1N7errvvvlttbW265pprtG7dOqWmpiZuagDAgBdwzjnrIb4sEonEfSNJ9K1AIOCdKSkp8c786le/8s4Eg0HvjCQ9+eST3pnXX3/dO/PFF194Z7q6urwznZ2d3pl4Xwv4qnA4fNL39c2vggMAnJkoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa8fx0DcExycrJ35rLLLvPO5OXleWe+/DurfFx66aXemYcfftg7M2TIEO/MkSNHvDP/+c9/vDOStHHjRu9MQ0ODdyaeu4Jj8OAMCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAluRoq4paene2cuv/zyPnmdsWPHemck6eKLL/bOpKSkxPVafeHzzz+PK/fmm296Z3772996Z3bs2OGdweDBGRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3IwUcRs5cqR35oorrvDOnHWW/2GamprqnZGkjRs3eme2b9/unTl8+LB3Jp79PXXqVO+MJJWWlnpntm7d6p1paGjwznR2dnpn0D9xBgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAENyOFAoFAXLmsrCzvzPDhw70z8cwXzw1CJemJJ57wznzwwQfemY6ODu9MPPuuvLzcOyNJP/jBD7wzEyZM8M6cd9553pk9e/Z4Z9A/cQYEADBBAQEATHgX0IYNG3TdddcpNzdXgUBAq1evjnn+jjvuUCAQiFklJSWJmhcAMEh4F1B7e7smT56spUuX9rhNSUmJmpubo2vlypWnNSQAYPDxvgihtLT0lL8tMRgMKjs7O+6hAACDX6+8B1RVVaURI0Zo3LhxWrBggfbt29fjth0dHYpEIjELADD4JbyASkpK9MILL6iyslK/+c1vVF1drdLSUnV1dZ1w+4qKCoVCoejKy8tL9EgAgH4o4T8HdMstt0T/PHHiRE2aNEljx45VVVWVZs2addz25eXlWrRoUfTjSCRCCQHAGaDXL8MeM2aMhg0bpvr6+hM+HwwGlZ6eHrMAAINfrxfQp59+qn379iknJ6e3XwoAMIB4fwvuwIEDMWczjY2N2rZtmzIzM5WZmanHH39cc+fOVXZ2thoaGvTQQw/poosuUnFxcUIHBwAMbN4FtGXLFs2cOTP68bH3b+bNm6dnn31W27dv15///Ge1tbUpNzdXs2fP1i9+8QsFg8HETQ0AGPC8C2jGjBlyzvX4/N///vfTGggDR2pqqncmnptwnuwy/p6sXbvWOyNJ7733nnfmyJEjcb2Wr5aWFu9MT++9nsqBAwe8M/HcWDQtLc07w81IBw/uBQcAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMJHwX8mNM8cXX3zhnTl06JB3Jp47aO/YscM7I0mdnZ1x5fqrk925PtG6u7v77LUwOHAGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQ3I0XcN6zct2+fd6atrc07M2rUKO9MRkaGd0aSAoGAd6avbviZmprqnRk+fHhcrzV06FDvzP79+70z7e3t3hkMHpwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMMHNSBG3//3vf96ZhoYG70xBQYF35hvf+IZ3RpL+8pe/eGc+++wz70xycrJ35qqrrvLOxLPvJKmrq8s7s3PnTu9MOBz2zmDw4AwIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACW5Giri1trZ6Z9577z3vTGlpqXdm5syZ3hlJ+vjjj70zO3bs8M7k5+d7Z4qLi70zU6dO9c5I0vbt270z7777rnemo6PDO4PBgzMgAIAJCggAYMKrgCoqKnT11VcrLS1NI0aM0Jw5c1RXVxezzeHDh1VWVqbzzz9f5557rubOnRvXt2oAAIObVwFVV1errKxMmzZt0ltvvaXOzk7Nnj1b7e3t0W3uv/9+vfHGG3rttddUXV2t3bt368Ybb0z44ACAgc3rIoR169bFfLx8+XKNGDFCtbW1KiwsVDgc1p/+9CetWLFC3/nOdyRJy5Yt06WXXqpNmzbpm9/8ZuImBwAMaKf1HtCxX6ebmZkpSaqtrVVnZ6eKioqi24wfP16jRo1STU3NCT9HR0eHIpFIzAIADH5xF1B3d7fuu+8+TZ8+XRMmTJAktbS0KCUlRRkZGTHbZmVlqaWl5YSfp6KiQqFQKLry8vLiHQkAMIDEXUBlZWX68MMP9fLLL5/WAOXl5QqHw9HV1NR0Wp8PADAwxPWDqAsXLtTatWu1YcMGjRw5Mvp4dna2jhw5ora2tpizoNbWVmVnZ5/wcwWDQQWDwXjGAAAMYF5nQM45LVy4UKtWrdL69euP+2nuKVOmKDk5WZWVldHH6urqtGvXLk2bNi0xEwMABgWvM6CysjKtWLFCa9asUVpaWvR9nVAopKFDhyoUCunOO+/UokWLlJmZqfT0dN1zzz2aNm0aV8ABAGJ4FdCzzz4rSZoxY0bM48uWLdMdd9whSfr973+vpKQkzZ07Vx0dHSouLtYf//jHhAwLABg8As45Zz3El0UiEYVCIesx0EvGjx/vnXn44Ye9MyUlJd4ZST1erXkyhw4d8s4MHz7cO3POOed4Z+K9qOcPf/iDd+b111/3zhz7UQ4MTuFwWOnp6T0+z73gAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm4vqNqEC86uvrvTPHfg1IX7jyyiu9Mye7229PGhsbvTMffPCBd2b9+vXeGUnauHGjd4Y7W8MXZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMBJxzznqIL4tEIgqFQtZjoB8JBoPemfz8/Lhe69JLL/XOpKamemc++eQT78zHH3/sndm7d693RpK++OKLuHLAl4XD4ZPerJczIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa4GSkGpUAgEFcuKalv/k3W3d3tneln/6sCp8TNSAEA/RIFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATZ1kPAPSGeG/c2dXVleBJAPSEMyAAgAkKCABgwquAKioqdPXVVystLU0jRozQnDlzVFdXF7PNjBkzFAgEYtb8+fMTOjQAYODzKqDq6mqVlZVp06ZNeuutt9TZ2anZs2ervb09Zru77rpLzc3N0bVkyZKEDg0AGPi8LkJYt25dzMfLly/XiBEjVFtbq8LCwujjZ599trKzsxMzIQBgUDqt94DC4bAkKTMzM+bxl156ScOGDdOECRNUXl6ugwcP9vg5Ojo6FIlEYhYA4Azg4tTV1eW+//3vu+nTp8c8/vzzz7t169a57du3uxdffNFdcMEF7oYbbujx8yxevNhJYrFYLNYgW+Fw+KQ9EncBzZ8/340ePdo1NTWddLvKykonydXX15/w+cOHD7twOBxdTU1N5juNxWKxWKe/TlVAcf0g6sKFC7V27Vpt2LBBI0eOPOm2BQUFkqT6+nqNHTv2uOeDwaCCwWA8YwAABjCvAnLO6Z577tGqVatUVVWl/Pz8U2a2bdsmScrJyYlrQADA4ORVQGVlZVqxYoXWrFmjtLQ0tbS0SJJCoZCGDh2qhoYGrVixQt/73vd0/vnna/v27br//vtVWFioSZMm9cpfAAAwQPm876Mevs+3bNky55xzu3btcoWFhS4zM9MFg0F30UUXuQcffPCU3wf8snA4bP59SxaLxWKd/jrV1/7A/y+WfiMSiSgUClmPAQA4TeFwWOnp6T0+z73gAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm+l0BOeesRwAAJMCpvp73uwLav3+/9QgAgAQ41dfzgOtnpxzd3d3avXu30tLSFAgEYp6LRCLKy8tTU1OT0tPTjSa0x344iv1wFPvhKPbDUf1hPzjntH//fuXm5iopqefznLP6cKavJSkpSSNHjjzpNunp6Wf0AXYM++Eo9sNR7Iej2A9HWe+HUCh0ym363bfgAABnBgoIAGBiQBVQMBjU4sWLFQwGrUcxxX44iv1wFPvhKPbDUQNpP/S7ixAAAGeGAXUGBAAYPCggAIAJCggAYIICAgCYGDAFtHTpUl144YVKTU1VQUGB3n33XeuR+txjjz2mQCAQs8aPH289Vq/bsGGDrrvuOuXm5ioQCGj16tUxzzvn9OijjyonJ0dDhw5VUVGRdu7caTNsLzrVfrjjjjuOOz5KSkpshu0lFRUVuvrqq5WWlqYRI0Zozpw5qquri9nm8OHDKisr0/nnn69zzz1Xc+fOVWtrq9HEvePr7IcZM2YcdzzMnz/faOITGxAF9Morr2jRokVavHix3n//fU2ePFnFxcXas2eP9Wh97vLLL1dzc3N0/eMf/7Aeqde1t7dr8uTJWrp06QmfX7JkiZ5++mk999xz2rx5s8455xwVFxfr8OHDfTxp7zrVfpCkkpKSmONj5cqVfThh76uurlZZWZk2bdqkt956S52dnZo9e7ba29uj29x///1644039Nprr6m6ulq7d+/WjTfeaDh14n2d/SBJd911V8zxsGTJEqOJe+AGgKlTp7qysrLox11dXS43N9dVVFQYTtX3Fi9e7CZPnmw9hilJbtWqVdGPu7u7XXZ2tnvyySejj7W1tblgMOhWrlxpMGHf+Op+cM65efPmueuvv95kHit79uxxklx1dbVz7uh/++TkZPfaa69Ft/noo4+cJFdTU2M1Zq/76n5wzrlvf/vb7t5777Ub6mvo92dAR44cUW1trYqKiqKPJSUlqaioSDU1NYaT2di5c6dyc3M1ZswY3X777dq1a5f1SKYaGxvV0tISc3yEQiEVFBSckcdHVVWVRowYoXHjxmnBggXat2+f9Ui9KhwOS5IyMzMlSbW1ters7Iw5HsaPH69Ro0YN6uPhq/vhmJdeeknDhg3ThAkTVF5eroMHD1qM16N+dzPSr9q7d6+6urqUlZUV83hWVpZ27NhhNJWNgoICLV++XOPGjVNzc7Mef/xxXXvttfrwww+VlpZmPZ6JlpYWSTrh8XHsuTNFSUmJbrzxRuXn56uhoUE/+9nPVFpaqpqaGg0ZMsR6vITr7u7Wfffdp+nTp2vChAmSjh4PKSkpysjIiNl2MB8PJ9oPknTbbbdp9OjRys3N1fbt2/XTn/5UdXV1ev311w2njdXvCwj/p7S0NPrnSZMmqaCgQKNHj9arr76qO++803Ay9Ae33HJL9M8TJ07UpEmTNHbsWFVVVWnWrFmGk/WOsrIyffjhh2fE+6An09N+uPvuu6N/njhxonJycjRr1iw1NDRo7NixfT3mCfX7b8ENGzZMQ4YMOe4qltbWVmVnZxtN1T9kZGTokksuUX19vfUoZo4dAxwfxxszZoyGDRs2KI+PhQsXau3atXrnnXdifn1Ldna2jhw5ora2tpjtB+vx0NN+OJGCggJJ6lfHQ78voJSUFE2ZMkWVlZXRx7q7u1VZWalp06YZTmbvwIEDamhoUE5OjvUoZvLz85WdnR1zfEQiEW3evPmMPz4+/fRT7du3b1AdH845LVy4UKtWrdL69euVn58f8/yUKVOUnJwcczzU1dVp165dg+p4ONV+OJFt27ZJUv86Hqyvgvg6Xn75ZRcMBt3y5cvdv//9b3f33Xe7jIwM19LSYj1an/rJT37iqqqqXGNjo/vnP//pioqK3LBhw9yePXusR+tV+/fvd1u3bnVbt251ktzvfvc7t3XrVvfJJ58455z79a9/7TIyMtyaNWvc9u3b3fXXX+/y8/PdoUOHjCdPrJPth/3797sHHnjA1dTUuMbGRvf222+7K6+80l188cXu8OHD1qMnzIIFC1woFHJVVVWuubk5ug4ePBjdZv78+W7UqFFu/fr1bsuWLW7atGlu2rRphlMn3qn2Q319vXviiSfcli1bXGNjo1uzZo0bM2aMKywsNJ481oAoIOece+aZZ9yoUaNcSkqKmzp1qtu0aZP1SH3u5ptvdjk5OS4lJcVdcMEF7uabb3b19fXWY/W6d955x0k6bs2bN885d/RS7EceecRlZWW5YDDoZs2a5erq6myH7gUn2w8HDx50s2fPdsOHD3fJyclu9OjR7q677hp0/0g70d9fklu2bFl0m0OHDrkf//jH7rzzznNnn322u+GGG1xzc7Pd0L3gVPth165drrCw0GVmZrpgMOguuugi9+CDD7pwOGw7+Ffw6xgAACb6/XtAAIDBiQICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIn/B4TEMwmYl70kAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n", + "I think it's 6\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6." + ], + "metadata": { + "id": "mgrihPd61E8w" + } + }, + { + "cell_type": "code", + "source": [ + "model_lr1 = keras.models.load_model(\"model_1h100_2h50.keras\")\n", + "\n", + "model_lr1.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 245 + }, + "id": "DblXqn3l1FL2", + "outputId": "f7cee769-5093-4f81-95e8-5845cd5255ee" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_10\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_10\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_22 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_23 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m5,050\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_24 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m510\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_22 (Dense)                │ (None, 100)            │        78,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_23 (Dense)                │ (None, 50)             │         5,050 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_24 (Dense)                │ (None, 10)             │           510 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m84,062\u001b[0m (328.37 KB)\n" + ], + "text/html": [ + "
 Total params: 84,062 (328.37 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
 Trainable params: 84,060 (328.36 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m2\u001b[0m (12.00 B)\n" + ], + "text/html": [ + "
 Optimizer params: 2 (12.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 23)\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X train:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0ki8fhJrEyEt", + "outputId": "3d6e1e24-242c-4683-9491-980302ee1557" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (60000, 784)\n", + "Shape of transformed X train: (10000, 784)\n", + "Shape of transformed y train: (60000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_lr1.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0Yj0fzLNE12k", + "outputId": "889a4241-e4c2-4af6-9472-eca25d3a2f96" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 8ms/step - accuracy: 0.9453 - loss: 0.1872\n", + "Loss on test data: 0.19880765676498413\n", + "Accuracy on test data: 0.9416000247001648\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:\n", + "### - количество настраиваемых параметров в сети\n", + "### - количество эпох обучения\n", + "### - качество классификации тестовой выборки.\n", + "### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений. " + ], + "metadata": { + "id": "MsM3ew3d1FYq" + } + }, + { + "cell_type": "markdown", + "source": [ + "Таблица1:" + ], + "metadata": { + "id": "xxFO4CXbIG88" + } + }, + { + "cell_type": "markdown", + "source": [ + "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", + "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", + "| Сверточная | 34 826 | 15 | accuracy:0.990 ; loss:0.029 |\n", + "| Полносвязная | 84 062 | 50 | accuracy:0.942 ; loss:0.198 |\n" + ], + "metadata": { + "id": "xvoivjuNFlEf" + } + }, + { + "cell_type": "markdown", + "source": [ + "По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС намного лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества." + ], + "metadata": { + "id": "YctF8h_sIB-P" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Задание 2" + ], + "metadata": { + "id": "wCLHZPGB1F1y" + } + }, + { + "cell_type": "markdown", + "source": [ + "### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. \n", + "### При этом:\n", + "### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000\n", + "### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов\n", + "### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно. " + ], + "metadata": { + "id": "DUOYls124TT8" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик." + ], + "metadata": { + "id": "XDStuSpEJa8o" + } + }, + { + "cell_type": "code", + "source": [ + "# загрузка датасета\n", + "from keras.datasets import cifar10\n", + "\n", + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" + ], + "metadata": { + "id": "y0qK7eKL4Tjy" + }, + "execution_count": 61, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "wTHiBy-ZJ5oh" + } + }, + { + "cell_type": "code", + "source": [ + "# создание своего разбиения датасета\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 50000,\n", + " random_state = 23)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DlnFbQogKD2v", + "outputId": "8a448d6d-21c3-4742-88a6-c3ca7b7f6acf" + }, + "execution_count": 62, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of X train: (50000, 32, 32, 3)\n", + "Shape of y train: (50000, 1)\n", + "Shape of X test: (10000, 32, 32, 3)\n", + "Shape of y test: (10000, 1)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Вывели 25 изображений из обучающей выборки с подписью классов." + ], + "metadata": { + "id": "pj3bMaz1KZ3a" + } + }, + { + "cell_type": "code", + "source": [ + "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", + " 'dog', 'frog', 'horse', 'ship', 'truck']\n", + "\n", + "plt.figure(figsize=(10,10))\n", + "for i in range(25):\n", + " plt.subplot(5,5,i+1)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " plt.grid(False)\n", + " plt.imshow(X_train[i])\n", + " plt.xlabel(class_names[y_train[i][0]])\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 826 + }, + "id": "TW8D67KEKhVE", + "outputId": "c61586aa-a116-4331-874a-8e93b811aa6e" + }, + "execution_count": 63, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmUbNdZ3w8/Z6q5uqun2/OdpTtIV7MlNFlyLGMZDMbwAr/1c2J4XwOLMUzB8AYT25D81gp4WkmAJHYWIm8SIJjlEAh2wHYA40GSLWu+kq7uPPdYXXPVmd4/um/f+n73uT3Idbtl+/mspaX7dFWdvc8+ezin6vvdjxXHcSyKoiiKoiiKoig9xN7uCiiKoiiKoiiK8q2HPmgoiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6TnuRt4URZFcuHBBisWiWJZ1veukfBMQx7FUq1WZmJgQ276+z6va/xRmK/ufiPZBBdH+p2w3ugYr28lm+t+GHjQuXLgg09PTPamc8q3F2bNnZWpq6rqWof1PuRZb0f9EtA8qyWj/U7YbXYOV7WQj/W9DDxrFYlFERB5+7wPippc/0go78J5sKQNxFPjGcWw7BXEc45NxUGnhMeIAyxgo0BHNJ+vKUh3LdPA92QKdMp6G1Mtt/LybhdivmonUwyWsZ2oYn+5iG1+3ag4ec74B8Q/ccsgo4y3fcRvWKzsEsSdYRrvyCsTPncP406dqRhkzLTy3MMC2C7teDjqBPPGJv1vtG9eT7jI2/mXK9nzrEsdm/+glG/k26XrX4fXEVvS/7nK+++33iOctzyFRgO1ca+Nk4qZx7hARyWfSEPvtJsSZlAex7eF8VatjGc1WZJTRpHqkPZyP+os4jxZyBXq9H+J6C+en0iDWUUQkinG+53k46GAdbCsHcauFc386Yy5NldoSxNzPPWqrahXnuHYb65hO8Xoi4np4zEIR16wr18Pv+PKpP/6bLe9/H/3oRyWbXe5X/+7f/Tt4TzqdNj73jbIdc8n6c1xSnfhvtAbHOE4OH94J8T3374W4E4RGCe0OHsMP8F5BYlzXoxDrFIR0H5CwRrkOHuOFZ49DvGP48NU6dtry8Y//hy1dg5/40uekUMiLyPKvHN3YNp/PRtZgbKPr0934oFyvtevA/fHS5ctGCTOXZyAeHRuDeGR4hMrY/IlyPcxxst55MubawXA9u+NarS73vfGtG+p/G3rQuHJCbtoVd2UBcEOspJfFQ4W+2ZCOje/hBw3p4OvUj8UzFh/z5xq3je/hBw2XjmHRIdw0TjC2S3XuJHQQXIvETfODBr5udXAyiWmBzGTogCJSyONNi5PDhZofNLwQF51cFm8OvLR56V3qVBa1nZVw6lvxM+qVMixrrQeN1zLJffOhP1svc2XC26r2uFKO57lXHzRoQLg0YfGNb+LfInfN150Uvc43O6G5WPDc7Lo4AXkezgUperhJp3H+8SN/zddFRCKaG/iYtvCDBr4ehjjvplLrt535oEFzHL0/DNd+MBExHzS8dR78trr/ZbPZ1QcNh25KOe4F36wPGhYt7FGEx+T+mc3ieukkPGhYTkTvoXrQWI5oHAYh1mkjDxrc/5IeJrdyDS4U8lJc+aLi2/VBo1Yzv6St0f1YIZ+HuEhf7nwrPGhcux4magZXFEVRFEVRFKXnbOgXjStYViz2yrd4fgN/Tm+l8OeTeh1/ChcRyWTxm7FOQE9U9CVCPovf4ncClAQECd862C4+XTkWnmKzip8p5FHy5WWxTvVFOo9mgmyAfkFtVklWlqef39tYx110nrceus0oI3Txp7dGFX/BkICkU2V88owqeF6Ftvk0e7FJv+ak6Kdg++rrlkPlbzm9/xbn9SA5ei3fTn3j32ht/rzX+9bn9dCW1wPbscV2lr+f4W8s0/StqJvwjXmng1KpmH4tCOhbUp++6WcJSIuOt1IyRPztruPg6y7Fvo914l9YWeYkIpLN0S8x9OV6g46Zz+IbbBvjdpsmVRHJ07eE/B6uV0jXh39F4fMWERkYxG8m80W8ps328vWI497/erARzpw5I5nM8pr1zDPPbEsdvhVYKL8K8cQe/JY6tMz1rdnCsdju0HvCtX+l43EVJ3yhzL9oHDuB9SzPX50ffH/r12A/8FfPg3/RYJLWpc2a1jfyjfpmj8Gs90sBX7fZ2VnjGBcvXoS4XC5DzHMX/zIV0P1bUp3XOw9+ndvadXmONq/PevcS3dc8SurA10B/0VAURVEURVEUpefog4aiKIqiKIqiKD1HHzQURVEURVEURek5m/Jo7OrLSGpl96J0CvVg5UXUCtc65s4ks4sVLDyH/ojYo8/QLg1RC7VyoW9qxHgnqwbpeGPS9jspn2JsklwW69SsmdrhOMRjFLJ4XrZH28S2UY/3yBvugHh6dJdRRtNG7bB42JZLLWz/RhPbJmyjfjRgj4eIRGn8TDZPW2vOXdWxBh3TH3P9seSqN2O93Sq2xyOwnsZxsxrTjbx/8x4NPuZraaut92S8HnwgocRir7RXRO0WkGY5laBHbpEWN0U7QrGuu03jzEnzDnWmZywkrThrc3n3Jd6Rp9nAuSQQmt/6cH4TEXFo63LW73Y6OG8ODvAxsA6LZXNnl0JmbY8Gx+zhs8mr4idswc4aed8nnf3K9die+W95Zy3eXesKfJ3X09BfL3q9C9LGDse7TuGHItoWrdUgLxRtv5zrM7emDiP2S1FMflCPbDwObXMfBuYa7Hl4zNEx3Gq6kLpaL/YObAVhGK7OUTz/OjTfdTqUO0DMPplO0T3fOn4J3qkrySewWU8Gv9/cTQvPq1Awt8UeGsJ0A1ny3TabOKdWq9U146SdrZpN8kW36N6WzuOKl+sKOd4Zq0D3lCIyMDCwZtw9xyR53K6F/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0cgstSW9so/4gxOoU0sND0Js5aeNzx87fx7iJ149DvHlCDV9lpCHI0P7BIupVY1blH2zgl4GL0u6NJLa1juog3MC1NpZYu6fniniQTKkBc62MR4dwGY/sGsC4iA2tZeehXvER+ESxPUa7uPcqOF5t2m//XTG1Ic6KaxnQJmPg659u0N/6zXKr7fcDEnaYc6OyjHv7d+Lc+q1L+R6sBHdtqH55Sy5XXkp4jg2NKpbQXlpSdwV8XXKxfmJc0XUa2a+CZc0xnaWfWmU+dvHMRnblKMna/olFheoXWioepQjIOYpkfIbLVRwrkmnTf36/Bxqims1nEdZSt2mnBfcRTkjsojpwWANMhMErHPGhkjqkgsLtF6ksQ+G8XIf3A59vMhyv7/WeGZtOfsSVo5A8WvJwr051h/7m6tD8uHW9mgw1SXsn0uULytbxLxgImYfNuP15mGM2RslIhKF7MHCfAvpLg+pZW/9vP5Xn/7M6ribnt4Jr01MTEL8ta89ZXye5/S3vOUf0TuwUdmTwba3ZI8G/S2ie0KLj8nft9OcSxcuxb4SETl37hzEExN4T7e0hHPomTNn1ny93Tb9LcbfOMcIvZ9zdaTI2+UlZJnPF9AHNzCIHqGpqavXuFarG5+/FvqLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpszgYT2WMFi2nAyTqWd8bAxie2C/8fk9k/i3g/tvgfj/PPcsxF89fQzLJ39WbJuGwaiNpzSYRTNLtYymaCtLiXoKaHRs1dH0F1umAcvNo8mwP4PuSncGTYz7Bun5rrUAod8yjWjpFBp3apfQ/H35pdMQ16toLrJTlPgrIdmKRWbJVgdNVbkuo1DQNs3kW8lrSQq1WVP0a8k7xfXqNjCLiDgumX07ZMyN105YlHQObGYLEhJB4THWfDnxvDf7Gcta21CXVAYnIuMEZN2f2S6Du+04Yq/MfZaD5+jZaE5u18wNE/pLmAAp5WJDLMzNQ+x6eMwoQgNeo2kmdup0sG06EfaHLM0lrRaaDJt1LKPZwM/PXELDtIhIroDXyqekgI6L17ZcLkPsumiwtF3zO7AwWq9fY5l9fWhs5D7XbpmdsNPG8ckJEzvBsmm4e2OM1wtGcrOEtWp94/U3+v4NHPEbPGTy59c+KLdNi9av+XlcL8d3mcnMbAv7hkNm7MBau09YFiX4E9PIHJJx2aOxOjB49d4gyTB8vXn1xIlVM/Sx4yfhtd279kL84otHjc9P78RNgi7P4nw3NMQJ4iihKRm9k9rQ2O5gnaWClxI2k/MmFOUy9hURkf5+vM/M53HuYRM8J8/jhH2cXFREJJPmtQDryes+J9RLkfnbTZmbaQQ0b1equBacOXvV9N6gxK5rob9oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNeTSilsgVCVfEiexs1Jw12qZ/wvVQt7ZzFHVt35MvYXl11CAem7sAcZiQ1GmxSZr3PtJ5d/DZqjOPZWRIZ80J17JYRRERyZN2LuWTXpQSd3lFbKvaDPotBgqmPtT3se0ac+jraJLWMSIvQKaEGuhS0UzWkiG9d72J2kS7SxPI+sCt5vpo9CkBTg+KYK2ml0KtZrlMiRVJL2/blDAsNNvdTDiEmP4I1jOvf6KmLpqSZ65TB9O7Yo5dHmusz+0ucbs8GsMDw6vJ5JYoGWhASdwcyzzHXBb9V5kUzk8Ls3hMbrd0FvtTuWr6JTwHyw0pcZtP/oIyJYvqkPa71cbzSqfNPpjP4VzOGvhWE7W+nofrRxBgmXFo6t2jiH1m5K8j3bMfUlJA1nPbZvLVZp0So5JvLZtbbn9OJPZ6wPRoJL3rGxs37CF7jUdZJ16PzdeB2yageXR+jpKPJSQ7dGz8jG3cPnESR/apORSbZQTk43DTOJYHh68mSt6OhKX79+9fTdh3+fIMvNaiJJxJPsryYhnil46+AvGBAzdAPLJjGGJeZuKk78q5XQ3/IP6B72VmZ2chPk+JptmzIWImD62Tz43vAziZHif4u3Ae7wlFRCoV9HHwGsqJBPl19vnanjn/se/QpbUk7vIQrZegEsra8DsVRVEURVEURVE2iD5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj0ajFUmwomdr+agHq5L3oRqQ5lFEcjl8T6G/APHE0CjEP/DgGyF+6rmvQPz8afRsiIj4AertSqU+iFtN1FH6PmqDq7OovwtIP9o3jHUWEfFD1FXWZvHcx0nLVi1jHU6fRU3gwADq+URE0pkSxE3ad7lNOuoO7fHN3pMwYD2pSC5PPht+Do2vto0Tfys+o67jXdiAtYH3y2btZoH8Ofz+RdKwdijPhpegK2etOscR7z0erefZWB/+DOdlYb+F51GehARPRzaLGtJ0Gj/TvW98FEVSrZhzzPVmdHBitV4dyjNTqaJm2UnQs7t03rto7/lKGc+pUl/EA9g4N2Qz5hQeUL6JgPf7pznSj2l/f9I4Oy72uUIR/RUiIp0Ozptpyv+R97AtQgtfP3cZ58A4TshBQh6MFGmOOyHOaW0fj8G5PVizLCLi13FeDQI8r/yKF9Gyt8cjpPQIGpuzs+hT8v2EfEVGTiPsX5Exr1KRCb6PhIphSMewHSvx31tFs9lanR947ao3cO5qt9GzISJy6dIliDmfToV8b/fdfy/Ew8ODEPu+6ZfgVjGWbZrfmk3MB3H6NOYke+KJJyAuFMx7wIMHD0LMOaB88u/x63yfsGPHDqOMTgePwd4S9mhks9k1X7dT5trhkq/j+KsnID527Pg167MW34p3i4qiKIqiKIqibDP6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwas7WWeCu6rudOzcFrqcFpiO0M5mQQEYlCVMuRrFcsFzWzw/2oKbttF+rz4hrqKkVEQvKGtEmP10mjriywsAyH9rpORxg7vumfyJAY022UIR6nPZQbbdQEvnwa90yemjA1gCRNlHIF2/fsPJ5XTbBx++pY5nzafMasDuHf2pTHJO7K8RB0zH3urzeWZXV5A1jL+hp8BvwH45DURhsogvf6X1igfCfNBsQDgwMQ96OlSGbncJyxtlPE1NA7Lva3YhEPmicvzsIC5mCpVMpGGUbegHXyYnAcBtgu7OEQEXFd+gztde93+YpYD71VNJu+hFfmMZob2FbgJ/igeI/3N9x1N8Tnz6GGea6CHo1CCueGoT5zrrh46hzEDvsJqOm5nS3ykWQ87HN8LUVEFhZwPhobxQnrnnvvgfjxr74AsU9t6XpmP48F35PLYb+uLWI/rtZw/soX8P3pjJmvyPNwDWIdfntFlxz4Wz//ifAceP3ZpnQ13zDrNRF7xMqL2H+bDfP65gucF2ftPrB+/qKkz0Rrxt3zv+ua4/B6Y9v2atulKX/YpYtnIWa/oQj67EREjr96EuKFefzM/DzOfw8+eD/Ee/buMsowmpm8DNylHVpTxycnscyHHoL40kWco0VEykvoLWleugxxvfEixKPkwdi7bx/EA4N0wydm3hTO1WH4QclLwp4aO5Xg96Q1mMt44fmr5xGGG+9/+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUR6NupcW1lj/y+CuoPR8ZQN1asYB6WRGRORv1X8NDqEPLF0gzZqGez6V9o3d4poD0xhwe4/Qiaszu3X0TxLkR1MYVSfM8khmCeKjf3N84RfvSP/VXfw5xqXke4naEz3f1OplVEvShURr/5pCGuRnhMTIpLKO/iPq9ZhrrLCKSp95gp3Af5tnK1TLCztaLd9Pp1KrONSJdOe8pzbkjkmANralHpj9wXoSEJjD2UrcpD0aIcWWJ9+1H3WOK8k8k6XxLpRLEBw4ehvjuN3wHxLt3o671+eeeg/hv/uZvjDJmZ1Fzyu3Lmnqf9tgOSc8cBGYf5z3U+VzDrrbja7dV9JWGJZ1e1vG/8PLL8FpMPgPed1/EkAsbnoCQcj3E5CEr9I9AbCVM4e2A/DOGvQb/wH3OJm9SQE3dbpvaXM73EpHXbWiEPHzeGYgnd94IcSZr6oeDGvaPwR1jEC82sM+NjvVDzHkMJiamjDLSGZzzjr7wPL4hWvFoJPTfrWAtjwb/Pel9642bb1ZPhsnabcE+pFqV9O81019VKHIuoLU9GNyWG7o+HNMfur0lSbmIrjfLHovleqdo7mo2sQ05z42ISKvFuSDw9QYd4/GvPA7xmTOY4+K+++4zyjhyBO/xsjm696G8GfPzeK/66quvQux38D40SPAm8LVYWkL/MHsdsnm8z7RsnMfTtO6LiPQVi/gZ6j958gJzHg1eox2PPUciQt7Jvj70tRWKV+u9mTlQf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaLSbloQr+t9KC187+iru3b5356jx+fIi6taOPY/61wP7hiFOZ7B69QrpvlumjnIwhaLGrId7pd904I0Qv+Hh74U4ItmaE2MdbMfUtXVob+ihGLVrsye+AnFzAduqNYdlVOdRzyciUlmkXAl96B3ZtwvjsX58hty1EzV/5YKpATxL+rwvHEcddTW++pmgvfXPqHfeMiquu1wuyySDgHMumB4N1pG329h//A4elI/h0yG5TBGRjs9eBDwme0k41wJ7PPr6UJfpJ+zfXyQd5T/+x/83xPdSDoN8HrWbb3oT7k1+5513GGX8j0/9D4j/4ctfgPiKb2EV1vW3cMLwfXPsmppmfsfVP2yXRyOI3a45AcdQFPCe96bPgHOzROzJiPF1x0F9cS6HvoPKkpmvKCSPhinlxjJt8oGwt4T9UJ0kjwYNjgb5zgIfKzEyjP6I2eMnIO4n35GISCGN/TaVxba4+zveBPGNN6Lv49TxYxBfmUu6iUnbX55HD5VtLbddUv/dbjbiAVg/GRCPK37/N57Dw6zX1o9lrkO7hWv44qI5rsYncS62nbXbwpyjenF9tpeFhQVJpZbnC9vC+W1xEXNeJM3R9Tq2K1kWxSL/xI5RvCdkX8CXvvRFo4xTp3AuGRzCXFWcX+LMGbzPqdWwjuwDGRjA4yUdk3NWNBqYP+vkScwf0mzhefcVzPxI+QL7OnD+4jWY4yvXbfXzCeuTzx7SatV4z2tBf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUGdy2U2KvJBaxc/jRxSaaPesN0yxX6sMES+dPoQHmyccxGcvenfj+agXN5HYKjZIiItks/m14AE3ppeFJ/ECM5m7H4oRZ+CxmhaYBOOPiMQ7f+gaIL/aj6ebsMUxC0y6iyXHhMpqqREReOo3nfuEMGhvTNprZJgfxvHNZNAKdWMLkVyIi5zp4DeMUHrMwcvUYfmvrTWspz141cNppSo5Ez8xJtYtjbAPDqkfmtYhivvRJOQF9ym52aRZNYHOL2OcDNoOTObjjcBJL88xuvvkIxLfdfivEff1oIvPomF4K++/0tLmRQ6GAmyo06ngenRYnNUJTGZtnk7zcbJSPY467/709ZvB0piDpzPIcM0BjbIGSGiaZjW1KzLRIG2SEZCiPeTMB2gzACs12cMikaVFPD6kjs3FROGGfj8Zuv4PXfvkjMb0Hy6hV0GA5OoSJB1+hjSeOH0OzpIjI1CS2t5fFsTBByVQLRYxv2I/9vN4oG2Xksmj4/Z63fz/EiwszIiLSarXk03+OiVm3AstKnAJERMSmzTwSh8g6Pmwj6Rx/fgPjjuvHBntzro4oXjtRamyZJlaHNzgQ2rCANtmIHdqUw8fX52fM9TGKJrCeNo+btec43ughqSn5PRJzW1mJ/94qSqXSqsmYN1eZmBiH+MKFi8bnl+i+I6LL5FFSub37dkN8882YjPbixQtGGTMzMxDPzc9CPDqK8wibu2+77TaId+3CBLdJ8NrVblPiwcfxnu/YMbx/e/TRRyGuJtzbVsmYzUkBuUxO2Dc8gnNuvogJ/kRELFoLOBFh9xzD881a6C8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHo0oDlaljlYONWReEeM85hBb/lsaNX2FAUy4dKaCGrPjZ1DPR/I9mWuj/n25XNSYvelW1NcNkM6XJZGs9RTWj9pJwkrWvKOevTS0G+KgXoZ4iTSnlbLpb7FSqIuuUnK5GUqQVTgxh+8X1NA/XjE1qDN5SgDTRw1ud9XBNhPHXW+arUjclSqtlcxtmSQtMf+Nk6WtnWBpvddFRNo+/s0PWeOIcbOBvpi+fvSR3HIn6l5PHkddpojI4CiOPYcGiuvi676PfeGlF1+E+Itf/JJRRoc8F5aFZTSbqMEv9GGyoA52z0SdOXsaOCljd/vHsUiY4E+43hw/eUa8lcRHnTa2ScajhHKuWb+AkkSeOoW+tHodk3XGlKBKyOviJbSjTXphy6Wko6StZc+GmVgMP8965OVPcJI/8oWQh6dRxTjnYb8/Xzb7eYMSb+XJDzW3gBrm7DnUarsxedDEnGf9DvZj181SnFr5v5m0cGuI5VoJ7nhMWUlfI7Inw3jP2nPeRubAa3lIrh5jnSSAbH7jAyYkyjPqSccM2WtJXky2dCwleDRimje5GpbFnjJuq/U9GhH7UdZq7m3I7RcEoTjOcmOxZ2BsDNeqfN5MOnf2LCYrbvg4JosZ9A3Mz+N9DCe6KxRMnwEntc2n8X4sk8b1cGpqes242cB7r0bTvO9cWFhYs56XLl2CeIT8Ehcvop/l5KvHjTLOnD5Nf8EOMD2N9eaEfQ1KhphL8Gjkcvi3iXH0JU1NXU202ulsPGmp/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbn0bB8iVa0jTXKP1Hx0GcQiKnjbVVRx5bBQ8jYaAnic5fKEJ+/jPrliDTRIiLTWSzXdVB86UWoCbRYpxuT3p21nEn6WNJ/xqTVdItoWMmPoZZunvaCXlpAnbCISCbGeg4WsPFO00eOX0SNaWoM9c0NC/eLFxG5eGEe4t051PgNDV3VUXcScgRcb8qVtjjOSh4N3sN5A3J91uWyJ8ChU2I/RUybfods8BGRchXLaLUpNwft525R37mi/1+tk4t9aXq32eejGPWflTJexz1TeyCeXcQ8LZdOo550YQbzQYiInDp9AuK9N5YgrtewP5ItQFpNyqvRMTXu3DZr6cO3K49GHFkSR8t9Lys45x2Z2AvxyCBqg0VEvALqlqcPHYL46AnU5i6Wcc5skS46nTbLcGkv9JA07hFp4KMI55YwQEONS30yCZ88PAEZbPwY4xrlsAhpXk7SXpcp58jIMOZZOkV70595Ffu1FeN52Y7Zh654MK7AHqp0ZrltO7Rn/esBzoHB89fKu76hMjYy7vg9Zr6HtX0eNufZIE9QMaE79lMuqrkyLog1zh1j8dxP9zNlM1dMp4XX3Mun6R1rjzPO08TXa+VDEG7XPHctpqd2reYq8zxss4By/gTsLxORZ599BuLLl3GtOXjoBoiHhoYg5lwRtRreE4qYXpFWC8dwQN6u/r4SxJcuUh6OOfSJVCplo8xaHedl9q9MTKDXIZfDeZvzTKVz5jofUnc5cfxViAd3DEOcIh/1q6dwDe8rlowy2J8yMYF55x5++OHVfzebTfnjP/mkcYwk9BcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj0amPyVuavkjUYc0ufTeypKpwd43WIK4L4eiMyeNWrolwTwbzQoes9nAfa1FRHZaqO3tNNCrUCuXIc71Y81jl/axZr+FsQe4iNDfbNJeciNbIerxGh0878WWeV4XKMdIx0Z9aGkQPRhejBrT/tIgxA/ccNgoo/7E30Pst1Gb6DpX9eURGxq2gJNn51d1rYYe2dAno05dRFb9HVfo70e9fIE0t0MD2KZ9fairXFg0vTSNGdwPOyZ9seeirjWbRS3m5NQ+iA/ufwPEhw7uNMocH5+CeGIUc8dIiH2nVUEPR5o0/ekE7XCB8hxMTh+A+JVXUB9//gzqXDnnRVIuhqS/dcN5NLaDXNaRVGq5vTIxXrv79qFHY2oM90oXEanTXFGltg/oxAJqk4D2Lk95ZptlSN/bIK10m3KeuJQbiIcOexksxxxbdoTnlcqiPrhBiVSGR1F7vXM/tt35i6ZP6PEvPQ5x3EZ9dn2hDHEQYJ3SedaUmxpyl8xFM7OzEJcGl+dRv2PO0a83Ej0A2wH1ac4/wTkvrAD7dJ7G+jvvRB2/iMiR/ajL/+Ljz0L8KnkWT1dxzW2EOL/Va2aOgKUGVmSgSB4Ni/2ea09SpndFjJwh7NHoniPXmy+vB8W+ouRW1qwbbsDrcOrUKYjZTyEi8tZH3wrxlyhnE+eXYO8Cj1l+XURkcBDvdbid+TN8mZaW0At2jLxfmQzObSLLOea6cRy666N5n/MMBT7e2ya13ciOHfgZaosm5cng/nHhAnqBjzfQwyYicubMWYgPHMB1PtXl12Pvy1roLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MejdiLJF7RBEdt1IfZKdTtZobNfYB37sc9ehcu4V7DTz6P+/ufmGlA7Aeoi40SNI4LZdTtNluofevUsYygjdpNN4P13pAUnDWnAekKy6iNkyrq1zmfiGRNDeDJ2TN4iCbq7/oKqBc9vBc10Ht3owb6hvseNcqwqNwvHv1fEC8sXm0rv2Xqm6837a4yzT3jKXZM/arjUh/18ermbbz245Pol3jzm98E8de+jnuCi4g02k9SvfBZnjXgO3fuhvgd73wnxI8++p0QF3Nm/hOXzitu4RhYvHQa6ziL+vcG+ZZKCTkMvvPND0E8SL6QPdOY/+H/fP7zELPOlfdcF1lfU45a2u0xadhOe9WzEDuoo33ipacg/torSXuh42B/eh7nArsfr+89934HxAXKyVOrmPvIT+/dD3GljvWsVlCDPEe+otlLGHfaqMXlPixi9nPOM1Gr4FwfWzi3t30cr4cP3GiU0aG96Tsd0iR32DNFOWnI18Z+GBERh/pgNoOfsSSE/28nPFx4/LzOUjCsYtSbtOR3HUIf2r37UZu+dxi9myIio0Vcu37gPuw/lSqOk6+dxXH3zAnsO7M1M49GbR6PMTSKXgCbcnNYnMeEl6QNWGiMXEJdeTbiaOsvcCbtSWblhiUg79/IDmyPJA0/+7/mZtHnwetCh7xQ7F3I59FnuXwMvDc5dfoUxJOTmBsin8+vGbPXod02/VlcZkh5hBZDvM9sNnENZo9pLm/eA9pkbhobwzxCBcrRlE24j+zmxInTxt84/8fzzz8PcbdHg6/NWugvGoqiKIqiKIqi9Bx90FAURVEURVEUpefog4aiKIqiKIqiKD1nUx6NMIjFurLnOu0T3CKd+MuL6IUQEQlfegHi/UO49/XoFPoKmi7qY3N11JydvmTmMThPOsovP4Uas/EJ1DiXBochzmZRI+2mUa9nJTybRfSnMESdW33hOYjjBr5+5OaD+HoG8zWIiHz1xRMQX57F9k2nsf1zOdSCT5MucaSIsYjId9z8AMTH57HtXrl8dW/yYBv0oSLSlUcj+e+rcYKGnyWxnOOC48nJCYgnJrG/XrqMe+yLiHz/938/xCmP/BMk1B2kXB23UF/IZ1kjbu4bznv6n33xaYhPPv0ExIvzmB/lpeOvYhn9OCZERAb7SxDXywsQjw7jeezfj/6W2TlsK9czczEYetwW6nEtqzuPRixBsPX7yPcXSpJOL1+T4gC204Ex1JZHsTm9XjhzCeKFE+hteeTBN0L8zh/6XoiPvvwSxCdOoHdLROQf/aO3YD0E54LyIuZReeXFFyH+8hcxn07QRj9FXz/OoSKo3RUxfR058r6FNBptip0EAfv996Ff5dirWO+L589hGTRHeZRHx0+YIxYXsG0i4Tw4y3NzzJP+FmFZ1jW9TMafXzceDTYxYts5lIXrzoPo5bz/IN4X/Pnfmt64FOWCefv9N0O8cxf6PI4cwbF77Dj6lr52DOdIEZGwhe9JdzDnQ4PugSwb+05E/THp8vAaxP4AzCW09Rc4l0tLLrd8Hxb4OF/HEfoSUilz/hsfG4V4eBjb8Otf/zrEi3Qfyf6wHZRbQsTMg8G+g74+nL/YTzEzg/6d+XmcE4aGzPXR97EPz82Z/acbh3IR1WpYx6Eh9LuIiJQGsN62hWXmcnjfyOvjrl27Ie4rlowyLl/Gcz97FvNqdOf9Ssphci30Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPhp2yxE4t6y190lXOtNEvcbli6kjPnULd7osWampnL6PuO53FfYFTpEFrdcwyvBC1woN9eIr+EmqkL73yd/j+IdSDRlncjzuKzDId0l46FsanT6G/Iqzjee6hHBC5EDWGIiL/16NvgPiJr70C8aUytn9+EM+jNIx762dT5v7TeWrfTBb9Kbab7fr31ufRWEufzHJVxzG7NusiWdTMetE3PvQgxKOj2KZ9fWa+iXHa23pkuARx4OP+7LzXei6D9a5VsS806mbeBNZAzyyWIT7xCnowFskvkR5B3WxmBM9BRKTto461TMdYrGCZ7RZqTvfsRf9Cu23qO8+dPQ/xPOlcu6/xskcDPRxbQdopSNpZ9mjs3Y9janoP+lJcjxPkiEzswXbJ7kE9+vg0eqfKlOPkxHGcSxzbLKNCn8nm0XeW8bCPHbgB671zAjXIJD1f9ahAPUg7XV3COrQa6PM4fwHn4R2j2AdrNdN/F6bwXB0aO6UBPM/BQfRYsafm4kXMFyIiMj+PJzswWII4nV1eX9ptM0fA1mDJlfFuTIW07iTNlHFsmNvoDfx+8hXw64lOA/LL0VvYj0PSfinXsK8MjB2C+I67DhslXjx9EuKzlAvGzWG+hj1TuK7fW0K/wfQOyn0lIqcuY96B2Tl8T429bZxbxiK/RUIuFrY+GtcL2m4DiTh6TLvZWs01E4fsyaB5IcFDYlEuiIFSCWLOR8HjzPNwjC+S30zE9Evs3Yvz2yD5cufm8H7smWfQU7uwUKbjm9eN83vUaZ3mOZPvY2o1fH+5bM5/JWqrQgHv15aW8BgDA5hvZnAAfR+ZBC/w4iLeb0QhedS61o7NeIT0Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE2ZwTP9KXHTy4Y8q4pmFo/MgFa/mZCrFaOJ5sISGmicDBqUZypobqnNogG1k5AvZP8oJg57+MEjEI/n0JTzxONPYh1SaAg+/EaMYxfNSCIiFiXEWiqjgemvP0sJ+1w02AyfrEB8cBpNPCIiD91zAOKpEWzvf3gOjWq33/NmiHdMo4Gu3EIzpojIEy/9LcRnZk5B3A6vmn+CcOuTBXWbwdnYbZOh3rbNZ+hMBhM+cpKxrGGGxyRjg4OYMOfADXuMMmpVMmuH2BdcC02HtoXn0ahigqJaFU1hS5QoT0SkTubJxVk0US+RaS/K43n0D6Nptp3w/UOLNntoNtDUXqtgvRt1NJXV6/j+hQVzw4NKBccBm826E15tR7IqEZH5+dnVfvO1BrbJl7/+NYgtw8gpUnKxD0ofxicuoKl1npJHseGyUDDnirMnMcnS0DCaAG0y8GYoeSJvZuEHPsXmRhCFAs7dASVzOkUm9g7NHy+8+DLEjRaOExGRiK75xCSeV5kM5K0OGoLTi9i/khJO5TLYvp6LY6HdWh5rbP7cFtbxdW/ILLyu+Xtz8XI9OHkqvc7jmubqLz+LSSxHSzgvP3S3aQY/MoV9Yf4s9rfmEs6bi0XsryNFLIPnehER28YNC2JKfFqhBK7pIm4e0qFEhVZozrOhrNfeVuK/t4pXXn5FMitjhA3Ohw/jdfESNsOIY7z3maLNLw7fhMb/UyfxunCyPU6uJyIyNoaJdfN5vNY87ptNXD95HeI46bwi2tEgS/cOLu2oYSYexPvMgQHsOyIiGUp62m7hmjo7i21x/jxuVpDP4+Y1MzNmUsFLl/C+MEPzodN1Hk608YS5+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUR8MPfImdZc2g30Cdrl9H3Vsmh3oyEZHIRt1tdhDfY1fxuac5j3r3MEa9WNYzdbJZD3Vrjz/xPMRDlPTkuZcxgdZTZz4L8U/vuR3inXtvNsrk9C2diBJLpVGHODGM3oA906jTHh9N0DZ6WErfCH7mwTdhQr/pQ3dD3CCd9VdP/K1Rxuee/jTEc3VKmNalK0xO1HR9WSthn2Vh37Ed8xnaIZ3kECVnPHjwIMT5PPU3SqZ3+JDp0ZibRS1wq479q9XCcROEOCaWFlBXaTs4Rspz6IUQETl/Bv05LUr+Y3l4jCDEcXP+9BmIQ8dsY4va06fEg1GM55HLYh8PIvz82dOYrFPE9H2w7+Yal35LefOb75HcipenUkdtb5XGmB2a0+u5l1B//tWvfQXipQp6V+IGHvOO2++CeH4GdeEiIsdfRX16fwk1yv2U6Cnt4bXp70Mf2sAwJrgqUzI+EZFWA/scezSGhlBD/wrV0XKxv3CyVhGRNiWPOkEJHnfuxHm2kEU99+XzqD+emEBvkoiIS96vMMbx2gmW62AnJFv7ZuQb9WRsxKNhlCmk7baxzc/Oo9fmP33qixB/9etHjWM+etcuiCeL1Kc98t9R8ry5Wewbp0/hOBUR2bt/N8bkr5t5AT9TcUjfnilBHMfmGmVx2xjNG6/14nWnVCpJNrt878E+A/ZNJvUD9k4WCngf8/DDmCT3pVFMHvv88y9CXKngHCwiEgQ4L0xP4zjP5nCuaZDXbnISyxwbR//ECCX2TYL9K+wt4XuP/hJ67TJp8vKJ6QPhZL+XL12G+C//8i8h/trXnoI4lzPnWL4+nEAx6vJ7RuHG50D9RUNRFEVRFEVRlJ6jDxqKoiiKoiiKovQcfdBQFEVRFEVRFKXnbMqjIR1rVSgd0z7oJFeU0DL1W04en2tqtH+x38Bjtmm7difC6h7cXzLKuP0G3Cv4+LOoXz/mlbEOPla8Vcc9ky8toJ59ai/q+0REQsoPUhhAjfMP/uMfgdiqoiZeWq9AmE5hHURE2jXU5rdqqIkfmEJ9cpr2jj51Ccv86tHHjTJmuIwmXoBM9qp3xPa3XjAfRdE19b9OgieD4f2zI9oHenR0B8QDA6ibjCLOH2Du9Z/ysIx6gB6NmPwRjoP9KQzRp9Ch/BU2a3hFZIj24JYRPI8WjbMq7Qu+tIRllMtmjgu/jecRBfgZ18GxmyaNqdfGtvI8cxyxJ2OtXBnblUfj7KtX95HfuXsaXuM+mEqZOtvFPvRfLdBe57FQTgvqH+Uy+dYCMxfE+Qs45y2UUZ+epXwynAPp0CH0Ko1m8PNjWZxjRUTSHh4jCHGslEawjzZo7D34xjdCfPI05gIREYksbItLl7HtKlXsoxOTOyGuUR6N4UH0jYiILC6iLy2fxesVN5f7XWRvT/9bi434J/hPPAe+Fk/GuvXgcc3vp5j9Ok1aX585a85P9Spq9x88gDkvHrwbdfoO+SfOnz8G8VwZ+5KIyAj5UKM21rxAc1q0hPWMyG8XOKaPNebp/XXgS+tmYmJ81aPG15nX5sS+Qj4DvndyHJxHhofRy1Cp4HU5eRznOhGRB954H8SPvu2tXAmIauRpHBvH9bO/H+8DkvJosLdhvdjINUPX2bzXEGnTDTHnUeGcJG9605sg/tSn/pzKMO8l7rjjDoirVezDla6Y8xqthf6ioSiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nM25dGImlcldo6FH7U81Gslacy8NGoYC3lTw9zNYB7L6FTKEI/3mRqzvSOovfR2o1bz2Bna75009bfQPvVTE6jzTZalYT28NOqs9990AOJOsBfi6jxqhRdOfM4oYeb0SYhTOdw3vDR4COIwwopenLsI8exC2SjDibDedkTCQT9K/vcW0a355D2labtn8Tyza3suaitD2gd6hnISzMygXjubxnwCrm0KaB2XdPppfI/vkw+pg56MmES6QRv7p98xx5VNY9GntwQR+kIi8pZYFno48lkzP02bPBahj+9Jp7Dv5HPYVqFgGQ7tnS9iakZt1vxu8x7yIiJ//w//sOppeOtbUfu75/AtEB8/jfu5i4i8cgrzh7Ra2I4Z0nlXKbfI3Dz2yVRCPw9C0pLTpLVn3z6I774bc+5MTqLWd2CgBLGXwjlWROTMOTyvi5dwLNUj1KNP7LkJ4stl7F/t2FwbXMoHMzS6G+LInoe4fxh1+fc9hHrvQs4sY34W97s/fw69bVdylHQ6pjdmK4jlas/ntYg18Uka7CjavOfiGwfHMS8rvH4aoU19PGP2P7YMWjaOo3q5DPGL85jv6JkXXoB41437jTJqLSxkcYZ8a2TZy9XRxxYI1iEcSMiXtY4no/uaJl3f601fqST5vOnRElnf77P8t3WuNcUpykeRIn9EKm3Of6Oj6Afj+nY6OOcOD+O80mq11oz5vkFk/Rwi7NFgnwfHSV5ULoPHsk9r8m7yEB6+Cb13X33iGaOMs2fxPtGj+5l67ep6xJ7XtdBfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwabb+9mh+DZMBiU14NO23qB8MA/1YYQh3avsNjEO/agd6G8hnUPC8896xRxunjuFd6h7T8bcF4fBK9Dvfedz/Ejoe6uGYTdZciIj5p/lIp1Ic6WdQAuinUDKYzAxA3fHN/bbt0I8QTBx+GuJ/aqhVi2w4O4d7QE8Oo3xMRiQTP7bKFotNOtyZwG/aRd11nVbto6j8xTtJQOy6eD+smz1/Affmfe/YoxGGbfDElUyvskVfJ8dIUY19pNLC/NhvkIfJZD5rkbcBr3SZfR7PO+WqwDJeuc+iY+UHS5K8Su4RhB8+7OIj9LZvG834pj7kZREQsm/cWJ49GtD2+jG4uzMxf1cqmUc8/vvsIxGcr5vS66yC27ejoOMSDRfQNRDH20TBCLa/rmjrvu+9Dn1lfCeeXG2/EuWTXLuzXrBdOUx6NywtmHoPy6csQNz1sm1YN+zHre+0q5vAJI1MH3WzhWGGtdEBGraeOvgzxjkGaV8MEvxN5C09fwPM6cfJiYllbhSVXHQ9mToyNeDT4L9d/TMVcBsnPbTImxJxjgCqds8zz+u43fwfEt+zAcRPX0JPB7dBfxFwJM7Po91n+EIYZi/x45Dsbo9urFOVrqBewTBGReTpmi+b27ku8HdNhvdkUWZmneQzzmpw0hsMA/8bXwaWcPnwvtWs3zlWXLuP4FBEpFHC+2myuGPZCGPdzjrkGM2aeDLqOVCfT75B0cdfOvcHnYTv4hvvuuwfixXkzX9uxYycgdugYO0bRe7lR9BcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj0a+lBV3Zd/igDauDkPUHrueqWNrNFDXWq7hHvGVEurU0uRtOHAQc0Ucr5v7/b9w/FU8ZhX3ui4VShAfueN2iHN9qC1uk9a/Xsf94UVEnnn6aYh5b/y3vvU7IR4cwP3cRVBDXRq/1yhjx8RuiLNF9LNElAMjCrEONdpH3InMZ8wm6aitkHMjXNWP+9bW7yNv29aq1pG1nawDjni/bhGJ6UPzc6jDfYE8P2nSi9oxnvPkhKmxHRkqQux52M6szeQcB4bXxMc9vB2HvBIiwsM4jnEsOg6Wmc6hhtVxSxBnE8S/MXkFqlXUG/tL6O8ZGMDcMLGPbe05Cd9xcF4AYyvxdTaZ3wKW6o1Vb09oo5/i1TM4N7x0HD0/IiKTOzC3w5vuR93sDbtxXNcpj8b5i+hlaHZMHbTQ9XbJJ9QhPfBzx45DzHrhNiVmuThnejSW2njxGpTvxYqwH/PFtsgvVaua+uHz5zGnRb6AXjfOuyIksz9JaU0yttkH7QDP/ZUX0KfVbC6fV5jg79gK4ji6mouAPRohezSSPs9/2dyYsqz1jQHraeC51S3BOS0iDXyaPJC37UL/l4jIm+69GeLRApbSWMLOMHcR89G4M2WIqwm5EubK2CcH6EQCugfyA4xTZGzNNdE7JyJSdXFutmhdD7s8elGCX+96UyjkV/NSsE+J407H9Pq1aW3i+0aeexyH8maQX2JsDOdLEZFMBufldhv7zzzlImo2cY5lsnQfyscXMX1t7DVhXwf7Q10XX0/ygfBnmPW8Izt24Li5465bjfcs0jjx6Dx2d3lkuF3XQn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/ZlBncsW1xriSlIWNKo46m67BtHjplU8KkiBKLtTipE5YxtmsfxDseMZPO7TpwDuJTJ9AcvjSPBs0zlzEe3Y/GoPp5dBB+6pOfMsp8+ehLELPBt1HHY/7Ye/4/EKdyaJwd3VUyynDTaOj0ySlLuc7EIadgIVWAuD9lGurGhnZD3JrFtuu0rp6H39p6M2QYhqtmcCMhDpkak4xTnOBriQzy9ToamjudxyHOZdHw1V+8xSgj7WAZmQwlfGyhAZA3DvB9Tm6F5jcvjQZYERGLEkUJxU6KkiRR32m3cBwGgWn0b9TRCHnhIo6bQt8IxFkyzKU9TsRkzg98TU03+PYn7HPdlDgrRvYUmQQpR6YMDpqbBRSKOA5n5tHcfeMNeyB+8tknIf7U//wbiPuHR40yBnaQEZ/GxnrGRLPVKdlUwoYEsYd/S/FGChZvgkBJtDgpm2MaLndmp6hQMh0blaI5IcY6ZRJ80JdOnYJ4qYJzwpW242u9VcRxnJCsdBlO2Jf8vu2oOCXkIxOzTYndLNoA456bcUz8k//rLUYJ42O4oUp15hLE84u4BlsFfL/04Xp49IVjRhlLVZy7D5Vw44+RPCXbo7k8zuIYaZdxQw0RkaCfxtb2T3mA53mrxmfT0OyuGYuYRmresIANxrGRjBZfX1jARIwismpWv1Y9+vtxw58cbY7CJnZjXUqATex8jPU2SEjT/Z2TsFmKR2sotz+b8fl1m24SR0ZKRhnT07ieeLSRyNTU1c1Mmi3e4OPa6C8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHo2luaq4qSsJ+1Bjls2i9s6zzOQhzRrq1tKkFR7uH4Z4ZGAc4lwe9WPZkln94UH8zMEbDkB8afYUxJUaaXBJB7ewiBrqZ5593ihzaaEMsUdJZRYWUd/OyeU6EeoOXRd1cSIiVsS6eUrOZJHO2kbx4/TYbojtjKn1l5fwM2dmT2IZXR6HKCGh0fUmimK5IpdkvSHHToJHg3WRrL10XfRgLJZR//mVr6BefmwYNboiIplDkxBfSfB1hYj0yJ02JzCiOtIQ9RMShUWkB2UPhkWaes/GY0akXW8lJIFrtVDjzPLvwSEcmynSdhaLpIvNJvQ/1o+vmcxwe8TLmVRqVaf/6quvwGvjlHhsaQH9YiIiVhs9GudI913qR+34yOQuiPPDmKAqO2wmrMoOo0cjDHFcWzRX8HzE7c5+L/68iIhHhwjJgxGF6Gdhjwb7p5KWJtfGPsWf8SmxYBjxeWP/qlXMpIBnTp7FetIx4hWvSRhtT8K+KIqMOl3B1IEnvgsiU36+OV/Uhsqg7zNt+sxQFu8Dbj68E+Lvf+QuiN9w50GjRJeS4bUWcC63Xex/Xhb70q13oN/ucsfU5T/xNCZvPL2AY7dcxc90aE3yUnmK0RsgIhI75GfhNWubp8A4vnrN1/cEJXkb+PzWHqMueflKJVxHooRxmEqtnTwvk8G+kM9j/1vPk5H0+rXG5LU+s969yAZsIQacNJDnfa5jUoK//n70Fbourmk7Rq96mRqNtRMddqO/aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTXk0soXUqmbOtVG7xfpYv2Vq1mLBv/XTXtZDpOO2BTVgfgf3nc6lUIssIpJKowaatW8jNmmei3jMdhPLzFMehDfcc4dR5t9/4UsQs1Zuz417Ia7UyhDH6/gvREQC1jvSeRm6fPIoFPuwrfMtzHsiIlKroR+Ft8uP2lfrFVnbo5G/CpbPHo2N7CHPWk7WRWYpT0Iuhz6ket1sw3oDPT8pEq/ztWb9spBmtdPBvapdMXW9PNIsC4c1yz1b5AsJfNa5mgLRVBbHZnGQ8mRQW+UL6F/pLwxBPDho5nGx6QIEpMHv9hJcK5fA9aavOLCq+X356MvwWqoPPWZnT54yPu+PoqfC7+B5vPDKCYjvuhfnm5tvw7gZJeSLEfI7uOtoqSlm/1VAvqI4SvBncV4MOmYYOfQ6j1ceB+Z5WeQlcrmb2tiPLfK+RR0cmxdOnzbKqC2hb8N1aCx5K3l8OHHRtwkbG3fstcK+kab++UPf/QjEb3sL9vFMhGty2ERvhIjI3NwsxHnK17BzN65/bhrrVJlBP96NU5gXSETEo2seVLFe7QDn1QrlVniVcj6MjeJ8ISJSJH9n2DHPdTuxLHvVo2V4vcxENsbn2TfA+SbYd8W5IQpFXP/2U94hERE/wHHfbuMaysdkr8J6OS+ScnQl/a0bvg9N8kfg+9cvg+vl0FzleXy/g33L5vxbIjI8jOvyjh3ovZycvJpHo14388BcC/1FQ1EURVEURVGUnqMPGoqiKIqiKIqi9Bx90FAURVEURVEUpedsyqMh4oms6L9bbcoHwHvvs+1ARNIZ0h+ShO/suQsQF2zcd3ogi/qxgT5T4+g4qLv3SA+ajlDjF0WoY/NJM9ghneVdb8D9tkVEBkdKVAfUvu3ZNwVxu4PazhS9PwzNxovomdAPSEdIr6czuE8460t3DJga1DsP3wvxXG0O4vKZ8tVge7aRX8Xcy5o13wmfoQ3cg4D8EhZrHtF3MDaOPoPdu0yfgUP9LaIy/DbpjclgwecVBbQXto39W0TEp2NErCmlvdl5y+8gwDqzjlZEZGYO9e21Jo6TqUkc24ViCeKBfvQmDI9MCMMa047hHbnKNlk0pNEK5MpwtcrYJs0a6qn9wJxez16Yx/fQWK808ZhDNLewh6yR1EYxeSos3k99ndwIHBt+CvPzvB8+HyQy9nQnXwh3Sj6eiEQ+nleL2qJO+7oHbbwerQrq+C+dMz0aEfvl3GRdc7xOG24Pm68TX8rN7t+fnHOAcxphfPNenAve9iCuqVOUn6i+iJW8fB6vo4hIg3yPdZrLG3S/MjKNc3eH+ufiHI5TEZFhyuHg5dEPWiV/zwit65xD6dLZi0YZlodtw17L7tPaDpukZdmrXgG+9ut5CDbCen4Jn+7HxsbMPEJ8jBrlSmM4zwZ/fr28GiLr59Fg1vN9JLWdkdNnnfZdr97NppkHo1QaoLh0zWNupF2uoL9oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNeTQ6nUiilV37ffJkpDzUswcdU//F+7MvLmEegrCDeuOJIdz/2Kf9j9sd3C9ZRMTmM+K9hukNLnk60gU8D8/D94/sMJ/NDh64EeJCobBmLKS7532drdjUvvGfWrz/NOli2aNhkaa4P0N1EpG7D9wP8bnL5yGeXby8+u+Ol2DC2RKWz4P1ihbp0Fl3KWJqL22LtJi0r3REJqL+PPp7vASRbOBjv+e8GSF5NjodakfWPVqoEbeM5AFJGnqqE427VhvLbLSwL52/hPlURESeeuYoxBMTqI31SMuezaK/qo/yuBQK/UYZhj6XNedduv3tyqPhpB1x3OV6Zgu4V/+5S2cgXqyY+4yzH6YTYH+ZncXXHcE57szlMsTVtjkHOjQW7Ghtj4WxBzz1Qc7LkpBmxcBwUK1zuczLmZCHKcR5cr09+B0eKxG+P2kspfN4Tdk3ZF9ZD5zt+o7OkmtdAJ4HkjwbfO03o7O+Wv7a0Pb9cusBzHXwf7/jHoh370EPo03Xea6K12121vRoLC6in7C/H9c3N43r4fxlzGlx6uRljC+bc2CphH1yKI1zXkD5GpqUr6jI+RksM49BYx7nDKsf+6NYYfK/twjbvrZHYz3PhkhS7oe180m0aX7jdT1pHcjlcJ1O07VnuA4cc5lJY2azfonNxhs55np14rbk+VLEbKtWC/t0d+6MRmPjOV70Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPRirliJta0a+x3pASKyTlgnA91H9xbggng7puL4NaO9aU1eumRszLo74uncZTDEP0ZORyGLOuMOXR666ZxyCTQV9HKkW6epLvNUnLyXtDp7J43ssHQX1o20f9Z531oDlsSyEvSlIigoKN53HLDbdC/PyrT18t3zG14dcbz/NWdYkeXZcMeVKyOdK2ikjG0B/iOTiUb2LPLvQhDPThdfWDBI8QySbDgD1CeIx8Hq9TQF6aMMb+7Aemdj0kDX6TtJMRHWOpivVeamCZJ8+Z/qrz58sQ7969C2I3he2dTmMfTqX5dfP6sB5+25JlrMHA6IC4K33v8E2H4TWLxpyVmzE+n8/iGLNpXI+NYG6gAfJ31cMXIM6F5lzhUL4YTg3BKSos7rRE/BpMGfwJm+Z6m8o0c3eY/dyy8ESM3rHJpBCdZsv4W0DzqMU5IdLL1z4gf8hWYVm2WFby94P8d/atJX9m7TYyX+cyzM/YlEuoMYfjYN8w5qNI0b3DS889jwekHBcDRdNfGNB6mCaP2PQ+9IkEDZwDv/KVlyGeXTRzL7BHKDOI+T5a1CPrPpbRpnXfixOu4zy+x6b7F7vrZsLehkQajuOsehh4DTZyQCXklmDfAPsf2K/KnoF9+/ZBPD4+bpTBa2qW5tz14DqaftDNezT4vvK1eDLWK5OPsZ4Xb2AAfZMbOWa1etVXzdd/LfQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTZnBIz+WaMWAZNNHfR9NTG4qIWFaBg2gk5PTEB/efRDimynuI4OXk5AQhg2BASUWNBO5kUmHjsmG9dA3k5x4HpqFOmQoZGdkTMmefJ9MO03TiBZYaIp66dRFPAYZzaaG0chscwKsBCOZRdd0/zgmIjyw88jqv5t10zB8vbFtZ9WclMlie4yOool2z65J4/PTkyMQWzGaSxfKSxBPjg3i5yewjEwGjd0iZp/sdNCYzcnybBf7dBRj/+L+5mYSNgoI2QSLhrqlCl6r0xfRpDhbwXEZBKZRO6a2SqfRYJemBJAOJfBjU5mXMtvOS5G5jPvo68AbbmVSYq2Y4ErU5wIyxw1EeB1ERDL8ngJe/yOHDkDs0gYFs5RAyU8wEdpkBg95mifTMBuvI9qQgL+OihKM2gnObIy4jxJsuIxjc54N4za9Z50OwVMeJy4MEhKe0WYLRtLIFRN7p7X1m2GILG+IkpRoS8Q00m6EzSe+5GufYIylNkvTWE+3cE4899KLENermHyPu2MuZSZg27FzJ8TDY6MQ9w0PYZknMRntsVMXIG42zY1mWpSktrKEbeF4RYrJhNzG69Osm32oTkmL25exjLBjJf57qwiCYLWfcTI3NmEnJXTjvmtsnEPzGZvBub9ycj4RkWIRr8N6ZfJ5cCJQPl7SmOEy1jPK8/v59aREhuuZ0teLeX6IEtan9epdKFxt71rNTEh7LfQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKY+GX40l9pb1ab6P+i5OXlYYMJPq7N69F+ID+w5BfHgaPQGDGUzsE5F2rtEyNYDNKurGhodQZ+8ayY5IW0faOE6yk2IduZhatzheR4/nYbM7pItr+aYG+nwF/zbXxPM4sgs1qjlKiBaTtjZMSOZkUWK3jIOay9sO3b7673rV9JFcbyYmRsVZ8bfs24sJ447chH1n327To5FJ4zk3a6gFbtT6IbZt0knSdfbbpsbWyXKyoBK+7qDOt9WhBEY29oVaDf0Vbsfs82LjtW60sW9cWMD+d24Gy6yQ36ZZQ/2yiJmQM5/HtuIEfQ6dB4+JVILO2iNfx+vBk8EUBoZW/SWRg/UNqb94CYmi2HPBvhTWhjdpXg09mlsSviuKeWzTW4wpkK6Nw7p7GgZ2Uh449orwtUtI3gVvp+RlUWzqz416rQMn27OoDJvF/yJi0d9Yjn2lWl5Csr+tIJ/PS2bF68ia+Ax5IDfvv0jQeRsXkj2M5jVJufieg0duhvgiWuFkcBjnkpEDmFyv1sb5yXZMf5dbQB19h+4dvvbCcYiPHzsDcTnA8xgaQ4+jiMj4CK0P1EdbPo7l0Mb7lTjiZMJGEeLV8DOLdbyfcSTT9e+t92hYlrXaR9jrwHB/FDGTE7NvgP0RnGSOvQtJdeBjcBns6+BjsheiTet8UiLCWg3vhzhJIHuDuY4FSsya5MNiLwm/h9ubj8llNhqmx4ITH6/VNnxvvBb6i4aiKIqiKIqiKD1HHzQURVEURVEURek5+qChKIqiKIqiKErP2ZRHQ1qyammIG7S/P2nlBkoDxsfHKbfD/vF9EA8X0U9hk7aOc1zYaVOfd+nSJYznZyE+fAPuUz84WIK4Wi1jGbQnveeZTca6VoY1gtxWuQzq4M4E5nl9+Sz6CSb7cV/wG/ehrtUl/aZNOQki29TvOpxThF4f6ruaNyAlCQLT68wHfuNXJJdb1j5OTeyA1wp50idHlMtERMpl7AszmIpEZukzS5UqxK6H5xwmbFtvka+F+4Yf4LWuLS1CzHpQn7TDjmkRkgp5lc5cQL3opXnav91H/ahDmme/Y3pPCoUSxMUC6pU9l7SdNvstyP+TMv0LKY/7/Xoa5K03ceSKJUmtiKsD9mKRmcFN8KG4Nu91jp+p1PBa1kLS5ZJmNjQMF2L4IdKk1bcizpuBsW2z34LyT2xA+89XzqZxwLkWIjpmkvY/tjgfyNr9g20eIa0f7MdYLpj019x2K8ewos0tnb3i0UcfXd3Xf3x8/Bs+3nprl8U5U3hv/oRbCF5rSrS+9ZFPKUX5iGLq4yXqK1bCxOvQMflaD+zGe4sjY+gbOXjPd0LM/VVEJE25wSz2q1CeFu7T5rgxy6CUWtKh/DM79171udZqNflX/89HjGNcT+I4Xj0P9giwByDJo2HmcsD+ZeY5Q9gzwB4OETMXRJ18LtUqruvrHZOPlwR7RTj/B7Ne3oykOZaPyfcK67Ud+0aS/cZ4Tdea65Pa/prv3fA7FUVRFEVRFEVRNog+aCiKoiiKoiiK0nM29Pvv6k9lXVvahvQTmNDPpX4btzETEWnTloAN+kmr7uFPOyydiv31f9bhtPcBbcPL25B5nrPm6xadVxCYZa73k1W7jT8puvSTo+9SHeqmdKpVx3o1qcxKpQJx5zVIp1ySfvA7ql1SotrK9ravZQvFzXKljGbz6jaH9Tpt8xpT34jM/lenbVwbTfzpsdnC69SiPuyGLClJOHcXj2nRVqN+G+vZor7RodinMp3I/G6g3aEy1tlCMCT5Fl/oKEGaYFlYb/7ZlscdjyOWTrVaeC1EzJ/R1+pbV17biv7XXU73lsbtJp4Dt3O7bZ6jkCypRefcJAlIK8R2NspMkE45EV8/lmuRxIMkRMYv4lSnOElyZK0ZCk835u63JOdKuK7GjreblE5FfGKvQTp1pXE6K1tNbnX/6x5XPOZeC1shnfJoW1eWOXVovokd3kKXpVPm1p98TO7EDdo2mtfkoENb0Ce0S0Dz5vWQTvHtBUunuq//FUnQVq7B3TKkIMB1hqVUQWBeJ96+O2mr2LXYiHTKdVESxOPEcdbeMrfVMqXD68HXgNM/MKZ0CuuUdElNqRrW03FwLLLkiz8fJqzzMd9HsaS163pduQfbkJQ23sC7zp07J9PT0+seTPn24+zZszI1NXVdy9D+p1yLreh/ItoHlWS0/ynbja7Bynaykf63oQeNKIrkwoULUiwW1/0GRPn2II5jqVarMjExsSlT0GtB+5/CbGX/E9E+qCDa/5TtRtdgZTvZTP/b0IOGoiiKoiiKoijKZlAzuKIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RB41r8PDDD8sv/MIvbHc1FEVRtpwf/dEfle/7vu9b8z27d++Wj33sY1tSH+VblziO5Sd+4idkcHBQLMuSp59+erurpHyLovd128OG8mgoivL65wMf+ID8j//xP3ShVraEJ598UvL5/HZXQ/km5zOf+Yw89thj8rd/+7eyd+9eGR4e3u4qKYrSQ/RBQ1EURdk0IyMj210F5VuA48ePy/j4uNx3332Jr3c6HUmlzCS2irLdaN/cGCqdkuVsl+9+97ulUCjI+Pi4fPjDH4bXFxcX5d3vfrcMDAxILpeTt73tbXLs2DF4z8c//nGZnp6WXC4n73znO+UjH/mIlEqlLTwL5VuBKIrkt3/7t2X//v2STqdl586d8q/+1b8SEZFf/dVflRtvvFFyuZzs3btXfuM3fmM1C/hjjz0mH/zgB+WZZ54Ry7LEsix57LHHtvFMlG8GPvnJT8qRI0ckm83K0NCQPPLII5D990Mf+pCMj4/L0NCQ/MzP/AxknWfplGVZ8vu///vytre9TbLZrOzdu1c++clPbuXpKN9k/OiP/qj83M/9nJw5c0Ysy5Ldu3fLww8/LD/7sz8rv/ALvyDDw8Py1re+VURE/u7v/k7uvvtuSafTMj4+Lr/2a78mQXA1u3G1WpV3vetdks/nZXx8XD760Y+qVEYxiKJI3vve98rg4KCMjY3JBz7wgdXXzpw5I+94xzukUChIX1+f/NAP/ZBcvnx59fUPfOADctttt8knPvEJ2bNnj2QyGRFZfx79xCc+IYcOHZJMJiMHDx6U3/u939uy831dECvxT/3UT8U7d+6MP/vZz8bPPvts/Pa3vz0uFovxz//8z8dxHMff+73fGx86dCj++7//+/jpp5+O3/rWt8b79++PO51OHMdx/A//8A+xbdvx7/zO78Qvv/xy/Lu/+7vx4OBg3N/fv30npXxT8t73vjceGBiIH3vssfjVV1+Nv/CFL8Qf//jH4ziO49/6rd+Kv/jFL8YnT56M/+f//J/x6Oho/K//9b+O4ziOG41G/Mu//MvxTTfdFF+8eDG+ePFi3Gg0tvNUlNc5Fy5ciF3XjT/ykY/EJ0+ejJ999tn4d3/3d+NqtRr/yI/8SNzX1xf/5E/+ZHz06NH4L/7iL+JcLhf/x//4H1c/v2vXrvijH/3oaiwi8dDQUPzxj388fvnll+P3ve99seM48YsvvrgNZ6d8M1Aul+Pf/M3fjKempuKLFy/GMzMz8UMPPRQXCoX4V37lV+KXXnopfumll+Jz587FuVwu/umf/un46NGj8ac+9al4eHg4fv/73796rB/7sR+Ld+3aFX/2s5+Nn3vuufid73wnrOOK8tBDD8V9fX3xBz7wgfiVV16J//AP/zC2LCv+67/+6zgMw/i2226LH3jggfirX/1q/JWvfCW+884744ceemj18+9///vjfD4fP/roo/FTTz0VP/PMM2vOo3Ecx//lv/yXeHx8PP6zP/uz+MSJE/Gf/dmfxYODg/Fjjz22Ta2w9XzbP2hUq9U4lUrF//2///fVv83Pz8fZbDb++Z//+fiVV16JRST+4he/uPr63NxcnM1mVz/zwz/8w/F3f/d3w3Hf9a536YOGsikqlUqcTqdXHyzW43d+53fiO++8czV+//vfH996663XqXbKtxpf+9rXYhGJT506Zbz2Iz/yI/GuXbviIAhW//aDP/iD8Q//8A+vxkkPGj/5kz8Jx7nnnnvin/qpn+p95ZVvGT760Y/Gu3btWo0feuih+Pbbb4f3/PN//s/jAwcOxFEUrf7td3/3d+NCoRCHYRhXKpXY87z4T//0T1dfL5fLcS6X0wcNZZWHHnoofuCBB+Bvb3jDG+Jf/dVfjf/6r/86dhwnPnPmzOprL7zwQiwi8RNPPBHH8fIa63lePDMzs/qetebROI7jffv2xf/tv/03+Ntv/dZvxffee2+vTut1z7e9dOr48ePS6XTknnvuWf3b4OCgHDhwQEREjh49Kq7rwutDQ0Ny4MABOXr0qIiIvPzyy3L33XfDcTlWlPU4evSotNttefOb35z4+p/8yZ/I/fffL2NjY1IoFOR973ufnDlzZotrqXyrcOutt8qb3/xmOXLkiPzgD/6gfPzjH5fFxcXV12+66SZxHGc1Hh8fl5mZmTWPee+99xrxlXlSUTbKnXfeCfHRo0fl3nvvFcuyVv92//33S61Wk3PnzsmJEyfE931Yd/v7+1fXcUW5wi233ALxlXnt6NGjMj09LdPT06uvHT58WEqlEsxhu3btAn/aWvNovV6X48ePy3ve8x4pFAqr//3Lf/kv5fjx49f5TF8/fNs/aCjK64VsNnvN17785S/Lu971Lvmu7/ou+cu//Ev5+te/Lr/+678unU5nC2uofCvhOI78zd/8jXz605+Ww4cPy7/9t/9WDhw4ICdPnhQREc/z4P2WZUkURdtRVeXbDN3NTLlefKPzGvfNtebRWq0mIsse3qeffnr1v+eff16+8pWvfOMn803Ct/2Dxr59+8TzPHn88cdX/7a4uCivvPKKiIgcOnRIgiCA1+fn5+Xll1+Ww4cPi4jIgQMH5Mknn4Tjcqwo63HDDTdINpuVz33uc8ZrX/rSl2TXrl3y67/+63LXXXfJDTfcIKdPn4b3pFIpCcNwq6qrfAtgWZbcf//98sEPflC+/vWvSyqVkk996lOv+Xi8eH7lK1+RQ4cOfaPVVL7NOXTokHz5y1+WOI5X//bFL35RisWiTE1Nyd69e8XzPFh3l5aWVtdxRVmPQ4cOydmzZ+Xs2bOrf3vxxRelXC6v3utdi2vNo6OjozIxMSEnTpyQ/fv3w3979uy53qf0uuHbfnvbQqEg73nPe+RXfuVXZGhoSHbs2CG//uu/Lra9/Ax2ww03yDve8Q758R//cfkP/+E/SLFYlF/7tV+TyclJecc73iEiIj/3cz8nb3zjG+UjH/mIfM/3fI98/vOfl09/+tPwM6+irEcmk5Ff/dVflfe+972SSqXk/vvvl9nZWXnhhRfkhhtukDNnzsgf//Efyxve8Ab5X//rfxk3hLt375aTJ0/K008/LVNTU1IsFiWdTm/T2Sivdx5//HH53Oc+J9/5nd8pO3bskMcff1xmZ2fl0KFD8uyzz76mY/7pn/6p3HXXXfLAAw/If/2v/1WeeOIJ+U//6T/1uObKtxs//dM/LR/72Mfk537u5+Rnf/Zn5eWXX5b3v//98ku/9Eti27YUi0X5kR/5EfmVX/kVGRwclB07dsj73/9+sW1b12FlQzzyyCNy5MgRede73iUf+9jHJAgC+emf/ml56KGH5K677rrm59aaR0VEPvjBD8o//af/VPr7++XRRx+VdrstX/3qV2VxcVF+6Zd+aatOb1v5tv9FQ0Tkd37nd+TBBx+U7/me75FHHnlEHnjgAdCI/sEf/IHceeed8va3v13uvfdeieNY/uqv/mr1J7j7779f/v2///fykY98RG699Vb5zGc+I7/4i7+4uvWZomyU3/iN35Bf/uVfln/xL/6FHDp0SH74h39YZmZm5Hu/93vlF3/xF+Vnf/Zn5bbbbpMvfelL8hu/8Rvw2R/4gR+QRx99VN70pjfJyMiI/NEf/dE2nYXyzUBfX5/8/d//vXzXd32X3HjjjfK+971PPvzhD8vb3va213zMD37wg/LHf/zHcsstt8h//s//Wf7oj/5o3W8DFWU9Jicn5a/+6q/kiSeekFtvvVV+8id/Ut7znvfI+973vtX3fOQjH5F7771X3v72t8sjjzwi999//+qWooqyHpZlyZ//+Z/LwMCAvPGNb5RHHnlE9u7dK3/yJ3+y5ufWm0d/7Md+TD7xiU/IH/zBH8iRI0fkoYcekscee+zb6hcNK+7+LVLpGT/+4z8uL730knzhC1/Y7qooiqJcdyzLkk996lPyfd/3fdtdFUWRer0uk5OT8uEPf1je8573bHd1FOXblm976VSv+NCHPiRvectbJJ/Py6c//Wn5wz/8w2+/pCyKoiiKsg18/etfl5deeknuvvtuWVpakt/8zd8UEVmVOCuKsj3og0aPeOKJJ+S3f/u3pVqtyt69e+Xf/Jt/Iz/2Yz+23dVSFEVRlG8LPvShD8nLL78sqVRK7rzzTvnCF74gw8PD210tRfm2RqVTiqIoiqIoiqL0HDWDK4qiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9Bx90FAURVEURVEUpefog4aiKIqiKIqiKD1nQ9vbRlEkFy5ckGKxKJZlXe86Kd8ExHEs1WpVJiYmxLav7/Oq9j+F2cr+J6J9UEG0/ynbja7Bynaymf63oQeNCxcuyPT0dE8qp3xrcfbsWZmamrquZWj/U67FVvQ/Ee2DSjLa/5TtRtdgZTvZSP/b0INGsVgUEZHb3vGj4ngpERGJowje46VSEIf0uohIJp3Fwl0sPgxDiAPfh7gTdCB2bLP6to1P25wmJIywjE4bj8nP6nxe6VTeKDOKsJ5RHOAbYmwLI3OJ42BsmalN3JjOiyrqU9vxefO3EHZsXh9L8DM2tUb3q4Hfka9+6rHVvnE9uVLGO3/wTvG8lWuewmsfp6gNPYpFRBzus9R/LIyXKm0sg4bL8PAOo4iMi20WBXhdFhYq+P5MAevkpSEO6Zq49LqIiBNjvZwI++zYME4CA/0DEAcx1jFK6BudThPiubkZiLM5HNv9g4P4/sVZiC/PXjDKuHAe/9ZqYT2OHLjjan3abfmDj3x0S/qfyNU++PCBAXGd5Ws82JeB90Q07IMA5wURkVoT/3a53MJjRHi9x+j0bj1Qgnj/nj6jjEKR5igLr83CEpY5svceiPM7DkIc+Pht1f4b8XURkf4S1iObxX7q0VzPcw3HIub4bbex3n6IDe5l8Hp4NFfzd25R1BGG15yLJ1+C+KuffUxERJrtQH7uY5/d8v73bz/8W5LNXjlPnGscB+OkL575m0dznRB6HeOI5go3aQ2m9cynNrXoSth0DPMbc6xEUuYvh8qMaJ2PorXX4Njof+vD90AWta1tcVvzvGpeIK5FHF17DW42m/Izv/irW7oGf+m/f1gKK3M9ny9fN8s2zy+0cE11Q5oj67jOtKpl/Dzda4X8eTHvI4uDo1hmFtvLSeManKJ5w4rpOiacl9DfQrrWYUB9OFj7FwCzr2wE/Az3eSNOKCMMqN4hxnbXNa41mvLQP/mFDfW/DT1oXOlAjpe65oOGm8KFxQrNk+D38IOGRR1EaKBGFk+sm3/Q4DK4mtyF+MaOz0FEJIqonjEtkvygwU3jfuMPGvFmHzRoIhZJeNCwrj3JXeu414MrZXiee/XhYL0HDY5FjAeNlPGg4UHopalNabikMnhDv1yttR80vDSWkaLY8+iBnR80UmaZTozH4AeNTBZvwLK5HMQBPRjzhCQiYlNzpjM4DriMDD14pFv4eiptnoebwvNwaXCmMubY26qf8a+U4zqWuM7yeE+5OO55RPECdeXz3Tg0XxnzDx0i7eEfsmmzn+f4b3Qj12zh6zl6KMjTtfPpQaNYML9s6SviYp2l/rD6BcEKFs9PPLtYCQ8aLTyG+aCB9fbSr+FBo4M3LrU8jpUcjdet7n/ZbEZy2Svnuc6DRsK9zDf8oEHrhpu0BhsPGvyQ+Tp80HgNeYvXfdAw2noDDxpcrzUeNFaPsoVrcCGXlWL+G3nQwM+4IfcfWu9C+uKN7rXC0OzkIa25xRzORS7Nbw59AZ5O45h/LQ8awXoPGv7r80EjoLZb60HjChvpf2oGVxRFURRFURSl52zoF40rxPHVJ26WRgVBsGYskvRTLkkPIv61gcrwSQaVIE1IpfEJ2OGnbndzT/8OfZUbi/kU6NDXjvTrnuTy+MScT+F5LzXqEHf4lx0RsfibAId/RcF6deibOZaAWQnSBJt+JuEnVfwGZ+ufUQ8dvEcyK99qN/wGvHa5fBnidoQyCxGzzdIOfjvJv5jl6RcNP+T+uGSUUac+yb+w5fsx7nQWMcZflsWiOraNb4BE8vRTsE/fgl2Yx7boCJYZ29SnE77dC+gbmcjF8wyoP12aO4d1uIyyqPkFlF6JiCxWFqgeOJa7uyf/ordVROJKtNL3W/SFuEVjkH8FEhEZ6sex3/Zp3Pp40Bv34i8FN96IkrT+XMJ85LAcC485VMA+xPraXTffDXGxhFI7N43nICJi8TfGxjfIXE/6FY2+Sbt46hmjjOef+N8QL83PQ9w3MgHx1L7bIJ7ccwTfnyB95F/Vpm7Az3Q67xIRkVq9IfKvP2N8/nrTaXdW1zSbOphPY9Tln8PE/Jadv+XkXwbM92MZPsuERcQ2rj3/WkVzyXrv3wBJv8KudczXUiZ/xvgmd51j8vtZ0SFifoNsnpbV9V7zPuF6U282xFq5fhn+BZqua8xaUhFpdVA6XJnBdaF26SLEzTKO8SDEBdLimy0RSblYr7liCT+TxTm1NIbzxtAQzofpVD/Edtr8ZZ1/qQlpbEb86zat0QErUtbpz8uQSmWdsc0SxqQxY46La98Tslx/LfQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKY9GFEerOuR2G7VyrBdkraeISL2OXoRWC7XE2SztBkD69MEh2pYsoQyWboe0M0mrjdun8c4JrE9P85aJHtZJRKTTIT+ARVptKmJ4ALeCrDZQtxgn7Ajlk4a5Q9rYkPSQgY+xFbMGMGH3ANIR8rl2t7edsCvM9WZ68ibJrewY0fKr8FppEPXWS3XUdoqYnh6W5bZ87BuSWvt1z9hnSMSm7hGTFt0i3bQh0yUdL1/HTsfcKSflYR8NSStbqaGXJHaw7TJZ2sErQa7Mu3tY1DiVeo3KxLE+M3Me4oVF8/rUajiO8tkhiFNdOxfFoan/3Qo6QSzRSgN1qAq80VnS/JSmnc52jqP+d3gQ2/XwfuzXO8bw/W6M7SwiEtPckO3bhcfY/0aIJw5gnOsfxuPxTkQJ2msxtjANKV57d63zJ78O8d/8yb8xinj1hRchbvs0J0bYtnb2LyDee/AOiB9883cZZew9gJ4MIV9X38Dy9bA8s923gjCMVnX87NHg/pa0vfJ6u07xOs7vX+/zIgnePnoP18um+YrL4PNKKnM9/wR/Zj3/xEZ2/VmvDHM3HtoCNdGL6VCMr3d/ZmM6/t4SBOGq/zZibx/d9zRpa1oRkfOnj0F86eRJiP0qriOtBq65lSZ6MyWhj5cKtFNcEeuR70ePRlhHb2CwiPHgjj0QD4yip0NEJHY5vcPa23Xz68a9iVFC0h5l3P9w/mM/1Xq7UCX9jT0a3WzGI6S/aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTXk0PNcV94puf519qdmXICKSzqCA3aa9h/0AfR9t8lOEtB98jjIcL5dLBZPEjH0HrKPk/B/tNurGfd/UyEfGXuLUNqQnj308Zi6Nl6HBG/SLCGv8OD+IS36WTJrzZvCey+alN/R4dI1TXbk4Anvze51/o0yM7ZR8fjnbbxBh35iypiGuN80cF5Ul/Fu7hf2t3kKvTLWB72900NtQb2EsIuLTteX8Jpytl5OMcnbfLO3Z7VumrtKlMqKQcqg4pKWktgv9tbXEIiJsibAoi3rMRQSoYQ9a2JZhQtvZtIe8RfNByrna52Jn6/ufiEjQlUzIpZw8POX5HbOOrQZpjEl/vmsKPRj5PPpv2DNWLGCOCxERJ4Vet1xxEuKJvbdhGYPjEHOuIIv6U5KJx8hCTR4wn6734sUTEP/dX/xXiL/6OHo2RESqNSzkXIV8abQGhRHmavnic38F8ZNPPW2U8X3f//+CeGwMPTK1mWWfSKOZNEdff1zHXs0HFBkaadJXJyq96XhsEjM+Qr4DTomRsNAb7+H5ZJ01mvNSGXnCE3TjfC9hTmG8/q2dM4rzBokk5cUx0ovjMXlyN/KJGEWIsLeJ84B19/GEteB6E4bhqjY/DLD8ehPXz7MnXjI+f+EkejTq8+jJqFfx/M9cwpxPlTa+7iVYRUdLeO+zg6av0Mcy3QDX7LCJH2jWKWdUYI790sRO/INLOeLo/ewBingBTYB7JI8rHheml2n9+YCPyfcv3YdcL3dNN/qLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpszgqVRK3BVD8HomatMgbRqp10sWxEnoGmQ2qtXM5Hlsbstk8hA7Nppr10s6wsmCQjZGipkEkE3tfXk0FLZbaJStLKLhKYjM5z/D+EfG+DDieq2dIMswzYuIbbFBDt/T7lxtiyDBFH+9SWdTksktXz/qbhKGeJ1yJbzuIiLDxVH8DCUZ86lNG228TvU2msgWy5jYR0SkRobyVpuTVKIZuLyEieu8NPbpUhGTO8ZJeRIpqZhvY+MstMsQR5RpLiATdoeScYqYNjLefMDzcNzlXeyvA3l8f84pGWVEIW1okKKEfV1GSTYsbxWWdTWJlk/JFJfIRDhfoUSeIhLTSBwsYPKop5+fg7hZw/70jx7cD3FqgLJKiohF139p9lX8zOlnIc4OTOHnPfOY3SQlFG0tXYK4fOF5iBcuYpmvPvtViL/2lZchnq+YxkWXNkoI6HuyFGXL3E3JDU8v4fg9P08JOkXkqa8+CfHevZisy20tm9ib7e1JGOnYlrgrJuN1k9QZDn1zPePYpTY112QsM+0mJLCleZUTy7kp+ozNJlZKLkvHt6yE25Z1kufxfUFEfZjf76XMMiwyX3PbRFRTNpybG+Ykfc9LiQVpXbe6kuRZnDBvK7CiVRN6h6aBhUuYlHX2DBq/RURqtGYu1LGNTpzDMVptYP/MptFkXQtocw0Rac1hmy0s4bo+OcqJBvGesF9wXgjCCxDHoTlvRCGW0Te5D2I3i8mmfd5Mh5LrJXnDLRqbptUbzzviDZvoE2ZSQZEopM/wZjbd5W3AwH4F/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKo+G4KXHcZf0uJwfhBHDNtqlj40Q8adLbBZQVjLXi7NnodEy/RJv+1miUIfYo645NGlX2JbC200nQhnPeHJuSVRWM80Rt22IddYYpFxNuiYg4pOkLHLp0pFtlvS7rQd0EfafD2lhqC6ur7Swze9F1x7IisazlOrouXbcIdb9ugo7XTVMb5Dh7HoadgBL1UPv4o2b/a5IHo9nERGVRjJ8JQ0pKR0ktHdJZdprmuOrwuCBd72IVk+V1KOFQo46vnz9/xiiDRaPZIur4c+QtsbOYTHMgj3GUoA+1Bft9FGDc6Uqg2GmZPpKtwJar3aTj4xiarVJyz4TvcW7dPQHxnuFhiM9fvAgxz4k8JisVU6PcJp+Ql0NvkpNF70vQoARW5NHgvGNRYGpzZ868APGpp/8c4uo8+kSqC9jn0uTpmW2a/WNHP9br0DT2uTPnsf1jMnIdGEM/THYY20VE5KabD0L88gt4XiPF5fHX6myPR8OyrNW5nZPPGheKYzE9GSz03piP4CrszRQRiWl981J43TiPWNIxujHXMvP9/B6L+yzNu2xa5ARqccL8xO/htuHY8HBQ2yYlPOPz6HRwru7+TJKX7noThcFqAuImrUUXz6FHo1U11yppkcdiHsdseQHnov03YiK8sR2UcDmNyUhFRI4e5cSBOKdOTuC49zK4ztjkO4rJb1xfMr2Z8x6eV2FwDOJUDr2W7Rj7SmThuIwThl1M3l3uP7GQT5q6V0j+C9835/GA/ubRfaLbNX+oR0NRFEVRFEVRlG1FHzQURVEURVEURek5+qChKIqiKIqiKErP2ZRHw3NdcVf0ay55BFi/yDpfEZGYBKGmRpE0jxksgzWQSRpH3g878FHHaNH+2Y7LXgd69trAvuESYJmZFO7LnE+jPj2gXBxeDrXDdpCw/zl5NGzyu0Qh76lOey4b+yGb+t2YfDY2XWPXu3pelrX1Hg2/05JOe7lc7n8RadlDFgKLSEQax3ZA+5yTptmn/eAdajNX8DqLiFw+P4NlNFAvOjyAetChEmr0vTz2hXyW8sAYJYrY5FdZIs8F6z1tykdQW0DNaXkaczmIiDQphwjnXCmyBpXGWaWBXpVqrWyUYVl4zebmsB7l8tW27bRNf8xWUMo74q3kLZmvsu4b2+TQOLaJiMh4EeePxiKe43AJX7/jdsybEVn4enkpQQcd49iYOHAnxCPjN+AxfdRJt5vUf2godRLy/HQi7NeNNtaz7WNcHMTcQjffisfzs1gHEZHKAnmLWtjHWgHOcZU6tk33/CUisnTO9CLFt2NFdpOn5uUXlvN/tBP0zVtBKuVJKpWc5yRm34E5xRt77zvs4zCnTcDjHBhJ72eDBMEexc1+3RkZOaM24tGI6fW1824knRZr3DcL+2O4zGv97Vqvr/fe64EdxWKv+FcWZ3GtW7yIc1mnZo6RNs1NS5xjpQ/9Y6cuYx6q4+dxPc3l0BshItIo47Xt78c1tFCg+7M8zl3ZHL7fEvJmdsz8SNUy5sMqz6IvZJDyaIiF9WbLLHs2RESCdfLOCXlJuHtEbG1KuH+mlFxi0X2n48SJ/14P/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKo9HxOxJd0Tay5p88Aem06WVgzXtI+7GzPiybMfV33SR5NGzK7+CTNph9Hp6HTRD6pHMjYVs6ZeryLdKLT42j/nhkAPV5jRZqh4tF1L9LJ0HjavEe3LyHNtaT9aDtNr7eTNpDmZSptqAmOparesnQx9e2gvmZWWnmluuQzaKuMkN9JUkmbJPHgqw1YpNfp7yI3oX6/CLEjTJdNxGpNbAvZEjH2IgpNwztRW5lUJM6vAM14v2FfqPMFO0Dns/iebQpb0aK9t/PUf8cGcQyRUyPRky5YlwL61ClPd4dD7W12Qx6NkRELAvrOTCAe5FXq1eP0Wy2RQRzNWwFnh2Lt6JbLTewvvkUtns2QcNaX0LvQUj75N90EPeN7y9hu7aalHMnQ9pfEZk+8BDEOw8/AHE6Q3MYzRVRC+fIgPLJ2J0Eb5yNfSp0sAyX+mgmi+O1bweexyNj40YZzz2D+/SfOINtuW8S6+3XsG1HhgcgzubM84gC7Oc79+A+/S+/8LWVf63tQ7hedOfR4DU3ohxPVkIeDSMvBnXR2MJ1gSTaEjZp/mKdeEIZDvk6XFpzI/KM8Rou5N0KQjN/RESeMPZksD+Ubl/MnBjs1RQRKsI4d15zjZwlRBia+UBsumacK6X79SDY1O1bTwg7HQlX/KH1efQl1ObJ22UOL+l42GYhxQFd+9HRXRBzXofTJ44bZdQWcQ0d2ok+yIjW4EYT2zxHntl6A+dcR8w+77g4R9bK6F/J0rrtUi6jlMtjwry2hiUnpvuzDq2pfH9D3jo3IVkHp48x8qV1j0VLPRqKoiiKoiiKomwj+qChKIqiKIqiKErP0QcNRVEURVEURVF6zuY8Gu32qoaL8zIYWs2aqd/i/b95L37WlPmk82ZPBusXRUTSVIap1afcCQHqJP026vHSpCflWMTUd44Ooh7vwXtug/jVk7h/+/HLuP90nLCHcsx6OAdzc1gkrovo+kQu6vmc2NQZ8v7kQRv9A3aXBjjYJo3yFZZI687xwADqsUVEsjlsM4dzvfBe6xR/9ckn8XiW2RfS1CdfvXAa4rCNOspCH+pBJ/fsg7hDHg5n516jTD/AcdLqYNwhn1GD+ldI+QeaTfRTiIhw+pgc5fdI51CD74RYBvuUkjw0jSZqaz3OcTN29XrU6/jerWKuFoi7YiZrkclnpA/PeahkjuN2Bcddrh/fs2MU2zUmPXqW94138f0iIj7l4anR2IjIs5Mr4lixKFcHz+SRmP6sdL6P4hGIKxUcB5zTIqC2zOXN87rxIPol+iknzezFyxCfPYVjp91Bz9XkhDlHDAzieXgWjp1779otIiKNViDyF68an7/exJazuj5YZGq0yTdlJYjkea3yaU018mxcwDY79nf/AHFl0cy545FHLE3zbq4f18f0QIlinCuyg/h6huZMERE3i3N5RH6pmPqX79P9C33n6oXmd7ApD/8WctsZvhAc65wnSKyEXCw0MbJEfqOvXTfiWOKVe41WFf1MzRrnlzD9rC7l/+rvUDs72Cb3HUF/xcgwzk1f8Eyf5IlX8W+OS74jB68be2bPnL0AcRjifDfYZ3qH2SO6NDcL8cXzOE6yOZx7ioODEI/tQm+KiHn/vHgJ69mq4Vj1yTvsOvj5Ur85/7Ffz+mj93R78ZJMONdAf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaNhOLPbK3vBhiHpDl/SLSVvscp4MVoQGlFeD95lmDWSzYerzqhUWf3OMx0i7+PrUKO25THXwk/bwbuHf4hZqou+66QaIWb/n11AT79qoaRURCencbdIE8vVgsa3rol6y08Q6iojYPvpTdu/AvZ6/467bV//dajbkyT/7/xnHuJ7kcnnJ55fbhjWRDOsZRUzNf8g+FfK5DA6glrhZx/524sRJo4xDe6fwDx28tuU51JG36qgzbzfQe2CR7jpO2Pt6xyjmm2DxLiuBO5QXoUPjzkrIT+O3UKdar6Iet13Ctm118PVsmq+HKTD2W1iPFuV6cTNXj9HCrrplXKr44qzsZZ+i/f89l3PXmHNFSPlvRkZRA+uRftiK8VqlU+hd6Bibq4vUlzDfxOVzqGkf3oE5KjzyS/iUS8jvcH8x9//v1MoQu4Kf4bQ9to39xSJtequFnxcR6S/hvOi3cWy1q7wfPtazUiMPUOkWs4xh9IGIj7kCsrlljXK0TV/RRXF8NUcEzVce770fmdcppgvhUd4Gl+aGY1/+EsSXvvw4HtBPWA/pmD61FaWEkpSQJ4j8FnYfXvf0CK7RIiLDO/G6De/GebhvDHMDpQdx3LUjvhcx50C2TiblKemGfZJCeU4cx/w8D2f2pcZdx4hl4xr5XuE6nngrhr065YxqtNb2PoiIpMnsV6NcRC3KXzJPXrxL5TLEds706ebIK5eycRyEdK1nad44fQznz71TJYjTaXPtiip4P2VRXrP5Obx3CKNzELvkeTx/9pRRxvgo1mPmMh7j0ix5fQOsZ4lyeQRDZk6uTAbbMzOI4yg3cnWc2U1z7F8L/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTZvBGoy6Ov2wA8n008bA5N83J0EQkCimJHCeZixIS2HTB3is7wXHOiQQ5QVFE5rX+IiYHevTheyFemEczYL1tGrBcSnJyaA8az4oe1nP/9CjFaOa9eME0arORPktJaHbvwjIDautLFy9CbKVMw/lgEU123/u2RyC+48jh1X9XKxX5/xpHuL6k0ylJp5eNq75vmkW7SUrmyE67iBLxuC724UIBDVo33oDJ9C4dNxN21cpo9naoj9ZraArLZtAMLjSu5i6iMS2Vw/4qIuJQH0/Te3KUTM2m7xdiMsW7CckYbfpbJ+Qkf+jObvlo1G2RmZyTwomIRJTkzxacQ1pdpr1GY3vc4HFsSRwv18P1sL4zFTJAm3ntZA/uryAlMjjzhhcLZTTVnzuJ/SuXMZNi3XkHFhLRtWg30QTYoU01eOOJkJzPtao5P5185asQ1+cxKWk2i4b0gI6Zz+PY6/jmPMubgxT6cOzkCxiX+nB523v4IMQ33vkmo4xUGo9Rq9PGHStJsIK2abTeClzHEXdl0wHDOExrX9KmDhEl8aotYJKvDF3bhePHIc7SXGEnbOoQ0gYW4dp5ecWm6xo1yLxLSUuDC4tGmXPH0Bg7k3kK3zCOa+7kG3GdHz28H+uQYNS2qeYhbaLBY/fKxjlXXzcOacCbIhhJALvjjRywxzieK85K0uIUrY812vyiUjEnQMfDcd7m5LFpnCcefxqv68LcJYjHx3cYZVy4iGP2wBRe+1od+9fsHM2PdI83MIDrZypjtnutgceIQpy3OZ91o0nrId+vzc0YZVTncQODkWFsq5EhrOfSAq6Rs5cpESFtpiEiUijg9XGaeK67Slfb2w/WvgfrRn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6TmbS9gnzqom0yWNtU+a1chP0LDGqD+0bDxGRKnFXJsS3JAW3U2ZSdvYtlHIYhkH96FO9/5bboK4mEFdeNjEhDG3HMHkeyIilSXUtaZIm3l5BjWDhSzqqt/68AMQf+GLXzPLoGRxt5Om9P6774I4ncLzvnwZtY2ptNl2feRX2TFYwmN2NW47KSPjdcbzvFXvRauFGkjXXb8rN0iL7geoKS2mUC/KnoFMGtu0XjO16jM+Js0ZGByEOKBn+/OXSE+6ZxfWuVaFuJWQpNLvoHYzFmwbickPQW3lWCQgpWR7IiIRJV9if1WL9MrFQdS6ew7WISkhW6uD1yOgZHVhl9g78M1kUFuBH4pcyY3ZbuIcZ1mcmczUr0/QtcjmUOccRviZZ49hf/rsk+jRuHE36nJFRPZMoXbXtnG+KfSjJ6xJc1xMfpzIxrni0gXUTYuI/MX//grElXnUAx/eNwLx5AT22XFv7bEmItJq4FhwqE9lsljPbAaPOTCMZRb6zIRVRiJJWnOCTmfl/9vj0bAse7WfsacxIE+GzcJwEbEpEZ1NSTIvvYrXrc/D/lWO0bPo2GYZFiWSC6leEWXsCxw6BnsdaM502fQhItLGz1g2ruPNyziOvvKZz0N8Tz/OV8PT6HkUEbHW+V7WJn+FbbEXjpLvbcBjYdvs2eiKrbUTBl4PbM8Ve8Wjsfsg3gu9+NzLEM/Pm/NEm9qgTH6IeliGuFDE/pfPoP/slZfPGmXQrYF4FiXqpKSntTKO5V0T6FXNF7EvOY7pPWEvcKeN65NNSVGDJo1DOl6zY46r+SU8Zi6HxxwYxvNyLJwPz57FtWN41PS3CHlGffIqhV1xuE7Cym70Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPhhVZYq3skZ1NoZbLIr2W45n6rYj0r5aQbruD+/6mPdqnmvYatjxzD/kM5U/IZ7AeQQN19ZVLuN97ijT1aRfr/PwztD+3iJw+cQLi8jzuTS6kUb3p8AGIH37L2yB+8J7bjDIGS6hVHB8uQTzMfgryYNy4ZwridmBqjNsd1B76rTa9fvV6dJI8ONcZy7bFWtFCcp4M1rtGCXvIG5pZ0jBHtJ97m3wJvLW63za9DC1BX8HNt90O8dA06kU/+7//BuKZWew70wXS4MfmeQWUsCEgDTNvd53OkX8iTZrqpukDOf/qMYgbpFFfJM/GLXfeCfG+vXshrliotxcRcS1szw6V0Ymu9sekXB9bQbXtr2qxec4bKWL/2rXDzFVTGsY5a47yZNQuYPz8CWynOml3T10w90I/ehTno4Mh6dcz6NHo0FyQzqDWt1rHPvnZz6O+XUTkr7/8IsQ8l1ycx7l95w485s5JnHf37iwZZaQF2yJD+9mXBtFzEfrjEOdpLGUy6GURMXM9CfWzK00VrJ3y6bphWdZqrgUj54KNa5WXMFccf+Y5iPPkv5EYr32URl+LPYjX0U7IfRXSvBg3aZ6McF1xbXzdprnbFcqr4ZjeJ/arWDRZx+T/jEnIf/YU+gk8yhEhIjKQx7+5adTuc+4N36I1kuYLKzLnMMeY18gj1DVWw8C8vtebbo/G4ATmpxjdOQnx+ZPoPxQRaXbw2jUpR0qDfHq7KefYG25Dj+3fP47vFxF57iXMQXF2Du/5clmcm7I+eYNpXHku+ZETcvxEIfs46DqSXy9fxLWhQzmjcrzui4hPc9PcPM6HnA8roDrNL+CNQN+86TXpp3oMDdIalup6ZAg2/vigv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE15NFzPFXdFn8d7QgekW2t2zH3yHRf1yRbpJvO0L/DYMOZ1YN19uWrq8zzS4TukW+s0UWP60suv4AFI69k3jPu/v3LsVaPM2hLqpPO0F3Ehhzo3m7R2Q5S/IoNSRxERKWbwUsWC+roG7YU/XyVtd4v2/I9NbW3awbbjehe79vxnj8RWYDuuOCs5INJZ8hlQfYIEETU/VcekR26xVp0+4FDukFSCT6BvGL0wt9//JognF1Av+uTXn4F4Zn4R4uld6G3IuqihFBEJqE/7MfaFdgf3zy6Q/jjjYn9szOH7RUQunj0OcYv0xecrWId8H2q7R8ewXSzHPI9MjvJ7eDiHZLv6o5s2/VlbQScMV7XxORovE0PYrrt24n7sIiKFAp7js8cxv80rZ1GzvOTj+7ndWm1znj15BnMdZCivT5TBXC0dymlSLOFe9RdnyhA/8fUXjDJrdcprQ+Px5ByWMV/HOfOlMzguho6a/eOufXjMW24sQTw4OQ1xJk85bGzS3dvm92wR+VmalCun1Vju5+329uTRsG17dc/+iPNNkEcjmCOvoIiEFzFPhl/Ea92hcWXvxT48uBvXKvHN62S3ydeyiGtRo4z1arZwzovIIxa08PNR25zb3RCvpRXhebR87J+pQdTAV5dw/jrx1PNGGaOk1d+xG+e07A7sb6k+8hGStyRO8GhEAeXWoPsZ17l6Xo6z9bmsYkskXpn/Ipr/7rznDRA350wP41NfQ69fljyw6RTl/EnhPZ7l43w5NmT64M724zhv1PEYi2Xsb8PD6O1Kkfd3kXx0ftu870zTuOG8USHljskV0Bu1NIdrdhiZ91cezf2chqVR43GBZXppbJe5iunRmNiP+WPGpnGt8Lvuj4MEf9a10F80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVRes6mPBph5K/u/Wzs9kz7BmcSNNgx7bWf8fA5Z4B0axOknWs0UEe5tFA2yujrx8/ceghzVrzpPtzfv5TCetbrpAelR7HMX5tNNlhCPfru6Z1YpwLu154jf4FQHoR62dTWpvNY7ouU16AwgnvjX1rA85ivos7QiUxt94P3YNvkR9Cfkupqq1TavL7Xm+48GuzR4P24k/JoZFPYv7JZ1Hf6Keyfjot92iVNato1dZT7DmHejP4x1I03aD/twR2ogT49w3uPY5nsQRIRiTp47s0mXvvLs6hr9ei8srRveLNSNssgPaaXRq12o4Ya0wsXz0McW/h5O0Efz3uNeynyJ3TvQ29upb8lpBxrNY/Grh3YBvt34Rgs9Jl5GgqU+6GP9lNP0ZyYomuTIh1+KsJ2FxFZWsL+cGkG46lDeIxOG4+xeBnn2cUFjCt1PJ6ISM7DY37HTTdB/OoCejIWF3Gv+2IRx2a7Zep/Mxmcc4r92L4pyu3E29375HdpJ2itW3X0ByzMYD8OV/IvdDrblEijCx5DKdL3v/o85jYREYk9fE9nAOewmoVr0cxlvE5pF8sslUwfkhNiX8hOoA9kMEYTot3AOoU+ec5aWKfWHHqQRETqc3MQV8gD5JMnMb8D17ZsEfXr8YWLRhlnjp6E+EIWdfl9O+g8aT4Y2YlrQWHSNGOGNB+0qd7duVM4j8pW4Eci/sp9XBxTHqFJzHlx8Pb9xudfOYltGJbJZ2Rhf1y6hH6K4yHetywummN4NI3jfGAM54XhAZxrLMoJdmEJ58M5ygszUjDvAQeKJYhr5JG1qE65PupvMZ7XxYt43iIiGVrzpiexD/OSmqFcVfe+8Q6IS/sOGWX00ZrFPpCwayiG5i3kNdFfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwagd+WWJZFW57LHyW9YGDuM54iDbZFuTZumERvwz13HIb47FnUyy5eRu25iMiBnagTfOT+uyGeHtsBcamI+2nHgvX2Q9Tn1ZdQ9yYiMjqCx0x7qCXutPAYGfI3xPS4Vy6XjTJKBSxjqYJa4pOXUI97/jL6PGYWUbP64H3YLiIikxOoGc1kUMtod+n17ASvwPVmdm5W6o1l/aRDe5KnyGuTYR9Mwns8j3KTWHjtberi2RzqF0uUY0VEZHwKdbi5PH6mXq1RjHrQXB61m+ks1rndMTX5nTZq5qvVMsazmBeDc+C4Dp1oaI7dIo2TJuUpabZRR3327FmqE46bsTHUL4uYvhrf34QIdIsYL2XEWfGKHNqN++YPD2EbeSnTw5NJ4zlOks+jWsZ+G7ZJE5/FMXm5jHOiiEiTNMW5wd0QT+w6iK9TH2vVyhCPxPj6nmnca11EpLOI+SbuncT37Bkfh/gFTMti1KGUM+fZ6Wkcb8UB1MS3fBQU11skMCYfYatmlrE0h/22toTa/+yV3E8JeYi2mpgE1Cdeehnic8fRxyciki/gvBm2sQ1qgh6Bi2Xe/x/ns6ZnzhWL89gn85SPySXzzL6xEsSZPN1LhPj62I24t7+ISNDA8/j6338e4qiBc0lE58FrQdvwyokM0brtkUdv8dQZiOdPnYL4QvEliDNT5jgavx99kn07aZ7sapor92JbSRjFEq54NGzyiPAtgZWQ52NsDOe7fkrLMjeD/pw25fi5cJ5ysgTmfYhF61mL1ibbK0HcpDW1QnmpBqn/5geo0iLSJo/FIvXHYgbXinZAfWcJ6zg7Z85NwyX0BDXJY+Y3MY48jMeKuLaUhnH+FBEJKN9MFLIP6GrMHp210F80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVRes6mPBqWfVWH1+6glov3JB/Im/rkXVNTEOdJF9nnos7N81GnNk4atXtuNvdp3j2NPoP6/AWIX5zB/bEP33wrxJksaljbPmrqbzx8o1HmAu3rfXkOvSOlPtRu+wG21clz+P6nXjxqlPEPj38Z4jOnz0F84SLud16lvAZvfPhhiB+67z6jjFQa27fTQd1gqkv7mJSn4npj286qNyMgD5BLniF+XUSEd9y2KS9GKo19tkXemomdeyD+wX/8T4wyBmlvdJ/asEHemoDbmK5By0f/xdwC+i1ERDLkPaktoV6+Sb4Qi8S0SyHqzYOOuTd5QIkrKm28/mfO4bgqtnEsv/rqqxDz9VquF2o+PQ+vR7cmvdnEa7NVTA244q30m0KaNch4zq6dFsaizc6zlBui0kRvVSZCLXkQ4bUtFBO8cOkSxPkB1HnXKEdFOoPXYnQK+/noNNb5/10wtb1PPfl1iOeOo9ehWEBd8+QoeunmKqjrL2bM+YW9RJ0OvqfWwn4euSWIU+SdazWwLUVEyjO4z3/axrHgOcvtHUTb79GIeNySt4rzjIiI7N2LfSEYwhxQlSb5tyjfUuSiRyhxHEbkQbRQG35+Fr0Mw0PYv05cwLVsdg6PN1wwc3cMD+BY69+L51U/SedBc2ZMnptOgk+ylcdzzw1h+w4WKQdEBdfgqIpz+dln0bMhItIcQI/ezeN4ri74vrY+j0Y3EXv9XLwGWfKTiYgU6b4wpDU2pHsjoTm0UsXXm6HpAwkFj9kJ6D6zgmtukXKXtMroy0qlsf/2DZr+z4juh4XuI0PK8fPiSZznXzyO94DplJmnLJPDvrFIfbRAt9wjlBsmojx2ccI9HHtf7TV+i3DpvWuhv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKDN5ptcRZMaD15dHccvMeNHrvHCoZnx8bw4RLnofPOf0umlWCMpr1bEr4Nz5ollGroMnm/Gk0obaaaJibmcP3p9NYxsLiZYrNRCqXL+F7CmTaufc77oF4bAcm3zt55jTEX3n8CaOMChl8O5ScpU7m75CMgmMjaCrLeKZZv1nHRDUOGVedrufSMNx6M7jnuasG4Rwl0eHkgkm0m2jGa5PpOZXDPm2zcbfQj/EevM4iInEK+49PSSlt8q5lyKDaoE0VLl5Ck3WnbSYL6u8rQTy3sAhxs4N9wXXxvC7O4BiIAjNRnpvFci+Xqb9RdkMvjdeDzd+cbEzENN/XamjuTXcZ5VstvJZbRTFti7fSfraFYyAOyBAYm6bBMMJ2SNOGGPkMzk8nLuFmFgcK2K6phHHcCNBA2SB/5aUL2KeqC2h+bA5jcqkdY2jcvv2WW4wybzmCm2r80R/9d4g/9ed/CXHKwfPcg0VIHKBhU0Tk6FEaC5T4jY2khQEsI53B69Fp43wnIhK2cOxkUjQHrmxY4BiJrLaGOI5Xxw5vLNDfjwbo2dico1u0mUCRDKKlYdy4ZDclWozIgFyvmddpbh5N0tU2zokZ2mAlZWEdWjWM25Qc9HFKTCgi0iZj/6178X6kbwjn7pKFx7RpXY/a5iYLoYvt2VjAz2RcnMuHCiWIY9obIogSNnLo4/kdrzF41rdhP4IoDFfvLSy6brwhECdpFRFZoLVm5hImEm5QPlo/xjbqkGnf88xxmKVNI3jN9ek+wM7jdT2wF+/Ppiaw73ix2ee9HG000cH7EyuDY+KFY7jpxPk5PPE90zgORUTSlDA4bGF78+Y9zSb2Hd4gx0/YMMcjfzev092Jmq1NbEagv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE15NBznasK0tKCurUSaW0lIhvTKUUzEUyONbIaSILE+rO5T0p22qZWLSRPvkw6f9Z72F78EMWu/l8gbkeRNSJMe/fY7boe4XkfttuWgnu8Nd9wJ8fgoJlUSEZmbQx11RPq6mVl8vVLH89i9bx/ErOcTEcllUETKng2rS3aY9Pnrje8H4q/0gTIlqxkeRg9KoWAmq+qQ7tuxUWM4PzsLcR95H1IeXud2gsY2onYJye/AyfM6lPCqQf1vdhb7Lx9fRMSipEaTezGp5DD1pyrV4dxnPwux55nJgsYmd0Icpskz5KGOdXwKtd0jI+jPSqfNZHbN5tq+C79r/Pu+6SPZChzPXfW4uC4KWuOY5h7f9AB4LvoEPME5bnKQvCy+IZqF8PSc2R8GRtDwMLuI+t/5xecgDmhcDJfwWh46gHPHvhuw/4iI7KE+99BDD0D8xFf+AeLO0imId2TRa5LNmMmgFsmzM7+IevbpKfSWtJt43rQ0SLOBc6aIiEQ4Hm2aIyS+8t2c6THaCmzbXvWOsc3p4nn0+nkpM/Fmq41tuHT8GMSR4Lh0yFtVyOO8WhpEX4iIyI1TqHFPZXHsB4fwOlXr6IuZ3oMJI1s2zrvPvvSKUeaZk5gEsENtkyuRvn0R5/rWDPl7YvPWiKT8Yjco2VyI471NX+M65DEtFM01Kqpjn23TPU63F5ETsG0FURheTRRJHqCAxorfMddHR3BtSTvkZaC0upaLxxzdget8yjO/K3dj/Fub7mOKlJh3kBL2jY5iPNBPyYAbZaNM28E+OjyIffz5U5jU+fwMHiMSrFOlYq4d7TbWa5K8vqkI2y6bIj8LrVdhgkcjjmnepXucbl+GH258DdZfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwa+WJJ3NSyxq5eQV3lX/315yCu18vG523a9zxuo8Zr4uANEO/eNQ3x5eO49/DCLOreRERKRdTteinUvgW0fzbrwln7XaTjPfzwm4wy77vvPohHR1EjvYO0dOwfSKVQt7iP/BQiIgFp/XlP5A4JkGMbzzudJW14wiMm76HM+2R35z3hHChbgWVZYq3sY+9R/gBuj0oF9+cWEVmiv7kO6j8dC49pCzaIQx4NJzbbIKA94hcWcN/wM6dQR807UQ8Po555II+5OvoyqNMUESn0DUH80Fu+C+Idu3ZBzHlaws//H4izadOjsXc/+T6mcSy3nsW97SencOyyR2NgwNR2c94SzgXTPVb5+m8VruesejQcykcSkWje903PSYe6jOuiJn6C8hbUGucgfv4M7k3fDM12CATnxdPnMM9PO8BrZ9M4Hy/hnNeooB/Hb9Nm9yISdfBchyZQZ//IQzhHnj2K+vapCWwH1zbH1i4Px0K+D+dRm9pSPHzdctF7Ipbp0ei0sV5OiLpnb0UzHm+DPl4E50DbwTayKc+DmzYTLYSUfKE0gJr32Mf+5Ps4r4YtLOPyeexbIiJnz2Duqiu+zisUi+gZG5xA/1eR1pbhAtZp94MHjTLj+w5B7Hfw1sal9eHkc8chPnbiJYhTlnlr1KQ+bnGOgRDjkPIteCRpbyya9y9VF+s5fjvmrOm+V4iirc9lZcWhWCu5LGyaR1yH5qLIzLMws4DrY6OBx2j62D9T7BckH1wrMMuIqc/myaswRH7OgHIbVZrUd1z8fNShfEkiMlLC9WypifdbR19GL9QA+ULaNexbmQT/p1/DcjtZuj+xyR/K9760HlkJuYraMfmGYvKsdeWO6kQb9+nqLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MejXqrI86KXC2bQb3s8ATqwMvPmfrXuIV7Azsx6usunkQ9cmsOfSA5qm22aOrVpYDaOJv26y/RXsJ33303xHv37oWY/RI33XTEKJJ9HAx7MK5obK/A/gLOH7L8N4x5D+Tu/bVFRIT0kqzmtB1zn3o35fCbIPS69lRP86b0W4DrOuKu1IE1+nz+i4tl4/NRiG3WZi1nlvMioDaTLB1X9xPvhvK0LFD+kzPnsI8fPoIa3NFJ1Oi3KXeAF5ua1JFp1DjnB9Cz4VvY/6od7A3FQfRPFDKmR6NvBH1GY/24T/iFMnoHirRHfDaH80Wjae7xH5Lu3aY+7HpR178T2n4LyKRTq3u3Oy6bmjjnhXmtfBo3tTadY4ifqTXwPFlPnEkYxyH5zBaq6Kmo+5yviHILCenEF/Baths414uIuDSnhaRj3nPgZojPnnoe4lQe+5znmUuTRY4mxyWdc0DHKGKfFQfXhnzB9AnVeN4kX2G0osOPk8b+FhBF0ao2nz1Bo1O7IX5pBv1gIiKNCo7TYAZ120ePYo4K9ozt3o1luGJqyUdH8Lr4LVzHOzT2y/OY06JWxzkvJi9C1jb7PHsQ3SzWIZ/D9WHXJOr067snsc5Lpr+qRfcvEY3lgM7Lb6AnsOPj64vm9CD9Y+jv5Gvc7VtjD9tWYMXL/4lcHQtX6NA8MjyGa5mISKa/BHErwDYpZfogTqXJL0F+i0zW9KjZMfbJqI3XslzF6zJXwzqkL1JeqiHsOzuGcS0TEbHm8Tv7r7+AY69RxT68exJ9SrMXMMecnXBtqXmlWqW8LYKxm8Z5u7aE47DUxLlARESovX3yYXT7dnktWwv9RUNRFEVRFEVRlJ6jDxqKoiiKoiiKovQcfdBQFEVRFEVRFKXnbMqjEQSBxNbys0lMWtYbDh6GeGLQ9C383ef/Ev9AWjqPcm+kac/vvkHUnOVypkdj1270VOw/jPWa2ov7+991110QDw+jvt2ybIpNfSh7LBjeR5w9GhuDtZp46RwH45D0zJ0Oau1qDVNf55Iumn0h1epVTV+tmqDvu874frCa58R1sa7tNmv+E/a5pxPqtFC72VfoW/P1Shm1nR7v8S0ibdI9vvDccxAPj6M288CNmJ9ibh49HRZ5UfpKJaPMVAE1o4sV1Dg7PvaFiQkcA4duuRXi+TnUi4qI1Ml7MlrCtrr1FtzHnrZYl4i+06jWzP4T0zXLZikvgnT32e35jiSXz0p6JeGMMa5t0hOzqUdEHMoP0aphn6qT12WRximXMTqckI/EwXar0FAP65wHg7xYlC9mYAi9DqPjU0aZfQP4HotyPHgZ7MczDYxf+TvMw3Jo34RRhm3jPDsxie/pH8I4pPNyeUJLyEPg2HjNLItyP0Xhyv+3PoeByPIUduU0QhqTzRDPt5Mmj4qIXDyH/W3mMuq2L1Xwuk3diXPD8GH0KD7++c8bZZy+fAGPMYxt6tG6PpjGMl3KXcLDyPHRjyEi0upQfoZFzO8RUF6CdIQesxMXzmIZYmr/B3P4mVIJ512X7hVq85cgXpzBebWTMctITaCvgT0a3et4x994HoPe4Yq1ctsY04XxaXgNjOJaJyJy023Yf5744tMQL5bJx5vG+8iUg2vuQJ95n2mTr6BF9ay1sP+5GTxGNo3jaHwCr/uOiZJR5rmL6DNarGDskMGiXcXcREXyGJXnMf+WiMj8PH6m3cL+Nr4D7495zbVpDMQtM9eYa2P7tilXWPes5/sbnwP1Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPRtoVuWIFYN3kKOnxHn7Tg8bnb7iAusnBCxchzpBG3sgPMNiP8b49ZhlvfgjisUMHIHZoP22f9pznOAwx9jzWjYvYNvs47DVfX+/zSXk02IPhuaj5433nXdJyP/f8CxB/+vP/xygjsNb2kiwsXNUNdgxPxPWnWq1IuJILgz0ZXNds1tTxcjtzLpJLF1FbzNabTAY9QUOD6OcREXnuWfRkLJZRV/nwww9DfOzYMYgvX8Yxct896CHqp/wUIiKLVfSSzFHujqk9JYiP3HQTxC8+8yTEYYL+vEON0WhimROkLe6QScN1UY88PmFq8CsV1IzyPvFOly8nKQ/MVpDNZiS9km/G5kmQQs8xp1eXPDfpNPapch3bucw6Wjrm5DT6bUREOi0cG6cvY39IUb1T5Hcq5XDsFIo4Lw9QbgURkVZnbZ9aTPvlS4j9Y24e8248XTtpHGN0Cj0Hk9Svy1XKOUN77rsenldAnkARkaBD/hXSNae8K9fe+OiWEMe2xCu6acvC65bvQ8/A9D7MCSUi4uWxv3klnG/shTLE6UH0APWRP2f6NpyfREQ+/WfPQpzNY86KvjTq8FMNXFPnLp2HOOrgXOOlTV2+l0pTjG2TymPbtCnHTXkJvVGdJXN9mxXyrtGak6PcHWmL7iVoXA7sNr1OEc1rLZpn3a7X1/OGXg8CPxTfT87fEZG/yZgfRWSwRLlubOwL1RqulxcX8bqkyY945jK+X0Qk5eNcUsxgXygUsP8EdI+XyeE18EOsw1LHnNcP3YF5goIYz/OFpzA/TYNyYLiU46eQNf3HsWA9IxvXkmxfCY/pUZ6XDpZZvmTm2SngUJUgTTm5um5N252N53HRXzQURVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczZlBk+5jrjuslHmSuKiKzzzLBrAWpSsRkTk1sldEN/eIQPXNJlr70ODTf+NmIyvsNM0QrpjoxC3U2isTrGBiozXnAguJNNiGJkGGJvM357H5nD+BJmmyKQcRQnJ5jhhH/l1F+cx8dLRl9Fk/Jd/9WmInzt2wiwijYakVgtNVd0JgsLATPi3lbBxmJM3ep6ZDOmKifcKIzvQ1Folg1anjX2F2+PkSdOweuIUGqymprCPOi6axJbIwNomU21fCZMFddpYBxHTYOyT0TGfxQ0Qzp45BXGVki9OJRiM+/txIwY22/MxvBS+zuZ9M8GiuQkCb8zQPU7W22DheuF6tngrhmCL62B4w00zZExj23IwzpHZP5tBs6PjUjK9QTNhX2OpjMck4zLaS0UcSqAWBfiOTBr7LPc3ERHqcmLTZhS5Is7t2RyeZ4rGr502225qCjccaDSwnmxSHdqBxwwCTOTVbOCcKSISBTi+bIuv18q13yYzuG1b1+z7fX1o2jcTXooMDeF12L0XN1SZXcQ2uUiJyE6fwHXl+FmMRUSqEV67V87jOB7ux7nBps0sihlcwwsFSigppgk6ouR11ToZYSmBWi6HfXj4hoMQnz5rJi29sITH4PY+vYRjtZ/mrxwNkuGEPuTQefCmF92bnry2xL/fGI7tirMytmMqn5MLRgnVK+ax3ftpcuov4phtVPBGZ7aC45OTJIqIHJrATSM8C9t0YaYMcUym6oqF9wF1us7thJ0gJndivQ8euh3iRhn7wux57F/VKiXTEzMZcJruz/wA63n5Eo5daxjPq93E12s1vPcQERnoYHvbw/SIkLp6nmFn4/eA+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mURyMKRaKVRxPWBzZ81HZ9/fhZ4/MnOqgJu2ijTjszew7i+iuo+TtUQh3czoKZ1CQXoE53eAj1eiVKasJa8Spp5lkPmya9u4hIOoN/a9RQr86JdVwjkRcl7EsQNwaUAO35l1+G+KnnMFHcy68ch3ieEse5WTPxm0+J2tiNEnXVm/WYW8H09E4prCTscUi7ysndGg3UL4qIWJREJ5PC68Zem0IB28j30RfSapk+gzvuekNS1a/Wq4160d1790P81FNPQTxLCbSKObPP1+lcOXHZAOmy2Uywfx96n9IZUx9aLGKSowz1eR5HWUoMxtdnaclMtMTjhNs/03Xu7N/YKqIgktBePpeIRohts1HBHMc2J0MMsM+5KYxZZ98JeK5ISO5JY3OsD68Fj92Ui8cczOH1HyyiNti1zYSOUYjXP/JxfLap33NbNSj50223YKJVEZHhEfRUtZpYZpqTtnl4HiEl42uQbl/E9MdxMkO54j1JuLZbDXuaOE7S8LO3KkX+m/4SjvPxEfRLLMzjHDg+aiYtffv3fC/EYRV19eUl1IovNhcgnlvA6+TGeJ37TYuQZMg35KUwsVs2h21xmTTxL1yYh3ghwUN26N7vgPimm9FD+uSTmPj03FPPQNzn4DgrFcx7if5+9AO4a6xzERs1t4A4siVevQnE1yzyoCRaSChppuXimB3Ikb9V8BydGvY/PzTXgaEhPEaOfFZOgGVaLtapmMO5KGNT0k4rIVEdVWNochLiG+84DPHFyzj3zNRxPeyj+1QRkWI/JZ1kX0cTz3NuBl/3IxyHAwNmH1+q4b1EXx0v4viNV5P9etbG+5/+oqEoiqIoiqIoSs/RBw1FURRFURRFUXqOPmgoiqIoiqIoitJzNuXRSKdS4qaWNZ2dDmpuhbwMLmnxRESqDmrCnp1FL4NF3obwDGrhFiIs48Vjp4wy+kq4r/zUNObuSJGOl7X8C/Oo1QxJU53rQw2riEh/CXMMXL58GY+5gBpUroProE7WEnOf5g7lVzh+7jzE56nMVBZ12T75D6KEZ0zOGeJ5qCHt1ouGtN/3VtBut1bzuHC+E9Yn8/7jIiILi3gdGnXyZOTxOlrUZhMTExA/+MAbjTJmqP9wfhk/xHoODqHu/P4H8ZhHjqAOePaymZ+GFaMO6ZWnxlFnXV7i3Ax4nuzHEBFJp7HPNpvNNV8vL5YhdqnPs8dDxLym5TIeI+rSJyd5cLaCZrslUbTctwLygzlUf9a/i4hY5G+IYmx726J95innwOw8zqGdtjkOeX/0Fs3V7ENguxVLbxtV1EVXK2WjzDTNN1YaD7JI17JanoN4bAD73MTElFGGm8K2yQjF5J+7slZdIQpojnBNsX9Ac29A8/+KPUeCBJn2VhBFsUQrdWLfk7CePWEOjOh84hjjDLVxIYPXdXIU58Ab+D5ARALKsRSQl6ZG+YjmGrjuNyo4T1dp3q5UzLG/WKfcB2X0ecQh5Uhq4nraoE5v50yDwf4ufbqIyPAO7KN33Y1z3PlXz0A8eeNuiEd24rwsIlKifEU8J243nSgQL1xuO8MDRHHSt9jZPPoMBofR4zN7EdvMpclpMEf5ebKmZ3GkSN4s6hvFNH6GUkdIjd5faWGdJ6dKRpmRi8dcbOIY6BvH+9CpA3dA/OyZz0GcT/BiBlnKJ2PjfBeQFyqKcSzHIc6x1arpb7GobUb6B+j1q21rbcKnq79oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNCQAXFxcM/fcVPA8PFToJmyh3UNc90yYdJekk26Tznim/gMezzer3lQYhnpxCzZ+QrKzZwjrxXv6877idNs+fcwJUKpRvgfbkZmmb69H+766p7XZsLLdFWtuANrVu1LFtxcK2siXhOlK9WM/rOFc/E/Gbt4BKpbJ6fUZoT332DCTtIW/FeG0HaF9qljx7lO+EfQheyrxO1Rq2e76AusgU7e0/TBpVIzeHjbrMiDcvF5FcHvNN7BgdgzikPn3xAvp7BkoliEsUL9cL9Z/skTDbBvuXT3Xg6yUiMkl7j/NYzHSVwZ6craLdCVYHcEyaeN5H3tTQy9VERCs45BNwqM+NDGMfDQLsD1bCOOS/NBvYp7w2+c5iLNNq4xHadK3m59FfISJSHMB+HFD/OHPqJMRl8q1NjGOfLRYwn4CIiJCfwKV8L56xNpFvMI3jZGDyFqOIVh41ya0aeqI6neW5vhNvTx4Ny7JW5zbO8bSe92YZ6n9O8np+rWN0fNKBJ/Rxj9Z+J4dl2GmsQ4bytMgIruERGWLagXliDeqjnNenVsU1ukXv98nrNEf9U0Tk0oWLEO+c2ollLOG6H1L+hb4d6L8YmTA9Gi6tDw75BLvnve3ogYuVirT9tlEXEXPN9ZI8Qh3sP26KPFEBvl6iXEqjfdiGuay5Bo+WcM6cb9Qopr5BftOOhe/PNrCMHbZZ5oU56l8W3X852FYnZjCXzLkl9Cm1Eu7Mp/aiXzMTo5/i+LOvQGzTmp2j3DLiJfiNxzCn1ui+GyEOu1YXK9A8GoqiKIqiKIqibCP6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwaYezzVt2reBZq7WzSV4uIOE3UwoX0nBPQHvK+j5q/doz7/kaxWUY9RO1bpU37GRdR82eTBpJ19x69nkrwhWTzqHULSb+bK6A+z6McAiQ9ljghj0ZE+ReiDrWFjzpWn3JiGHklEjTGedrjWmx8j9+lyXScrX9GXVqqSGf1vLFu7LVJ0sfncnjtQ8ph0OqgdjOgU8ySF+JSQk6LmUv4N5/0n2xdapOOcpbyoQQ+1qlSQS2oiEgc4bnOzc1CnKK92CPS1g5QHhjOByFi6m+ztM934GN/rJNHKJvDvrVYRU2qiMjxY69CXChgGfWl8uq/tyuPRhTFEq5o4WlqEIs08zG/QURs8txwzMfIZfFa7N6JHgI7Ik+PiGToWtw5jlryrIua+DTlOIkj7LPWAl6rmZOnjTLn51DTvkS5PI6/ivrhoQEcSzcdOQhxkbTYIqZXJKA5MCTNsDH2yJfmpkyNcmEUcyWkitMQVy89s/xZMdeerSAMw2Tvj5j+niRMb9PaccSLE71uJ3gxfaqfQ32aV7c0eTMj8hOyJSNrmx6NNOUxsPtprh8qQbxeO3R8s43PX8IcSa8efw7iRgPnvO/67jdDXKI6ZRNyCXmcH4rX8a552E7wIV5vgiiQIFy+gpxjjFs0CM36BS2ct6s1XM/yNN/15XHMBhF+3rbMXBAtGppNyutSIf9Oy8ZrPbKjBPH46DDErmX2P7+F175Nt9atEOfDyMH4znuOQLxjBD1vIiL7bsB53Alwfqss4PxYOYtzsk/3wnZsrk+5YfTGtcn35XbfhyZ4pa6F/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0cik06t5NHiP+w7p26PI1M5l6D0h+QYCa509vkmbGYamRqxDf7J92ouftJkuaUxrNdQjl0lrPD0+YZQ5NID7fg/0lyC26LxC0lb6hrbY1Ie2aO/n2CL9sYPHaNC+4JxzhLWfy8fAtglirEenaw/sgPTPW0EQhBKs7Kl+/vwFeI3znTgJe3gL7bvfpv5TLKEWM59F7Xp5Af0/F85jPgoRkVq5jEWSDrddw3ZbIp1lkfYFT7vkU2rS/txinitronnDdfZgsJ8iiMy+0SFdq0/jIqbPhDTufOrzxRztnS/mnv0xeQ2aXfuh8z74W4VlLf8nIuJSDgyb5qs4Yaf79VStnBuBvVA2jXurYc6zh3dMQTwyMA5xhy5vmnxpjuAxq0uoTX/2RfTSiIjMNnDe5HMvDqJH5+DNN0CcLeBYc1xz/KYz2Gcs6jCdNuVGaFBbZVHH77vm1bBpbDhp9HGks8tzfZigDd8KuvNosM+A54GkXEI+jUszFwK+n/sjw/cBIiJu0ty7BpyvievNcVKd+D1mDqi168Sfz2TN9/f1Yf9hr0wYctviMTukkU/M9URxbF87V4Gb4KW73oRRtOrN4DbmvhRE5vm5nJuK5p6+AfRmRR1s45juSZyEnGOdEMd9QMbikNo0ojU2nSKPLd0jpj3TWxNm0vQXyiVDhs8b9mIOlXZA/Tfh3nbmAt7z5NJ47tN7d0N8iXI21Rfx/mXXQVwnREQGRtCjEdB9ZKorn9saXdNAf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUmyiO41XDT4bML2xsajbNxGKLLUpaEpKhjow9LpuiybQTJzwnsce5SQasiMy6+QIm0WFTK9uZ6jUzUVhEZu7+fjLU0HlGlAgvlUaTY6OOSdxEEhJ5ZdCYFtXRCGmTEW1xsYwHNBIxiSxRAkSfEsG1u8y5UYIJ8HqTSqUkvWKASqU847Vu2IQtImKREa28hP0x5aHxaYiMaekUfv7CEpqrREQ4l0+OkzPS+zlBU54S4XF/7Oszk4yx0ZFNgmzS8+naGT3BSGZlmj6XlnB8Z9I4H9g0cqKAkyLtMMqoUxI+cyzmINoOLNtZTbLnUaI7Tr4XReamDhFNUJGzduIwmiqEcyxl8qap3hMyVtNGEXmPzN8uHtRv47U+PTcD8Uy1YpTpZHA8DgxiYsHpfWg8zObJmE2bDYRp02zNm2pwsjj2CBvGZ0rcleRlDOma8TzqB8vzLM/pW4Vt26tm6PVM0kmJ/dh/bB6Dy8PXAxrHG8kZx8eIorWN21wnns+SksVGlFgsyaTeTRyzkZleT9gsxaY3eTTeXapXh+rA87SdcB68fkSSnJwx6XhbgRXGYq0YlXkzBp7zk9YRz8a5hzdguXQZ72NadB1Kg/j+bJ+5zvuUFNCieo0M41zVoXllpA/n1DytbZcWzI1wFiNM1BtSItWI7n1rS7h5RqOJ93zpNJvLRQqUUDmihLa8WUFhEmN3ENuhb9xMCligpMYZus90usfyJrqf/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0fDDWKKVpHmcKyYk/avfNL0M4uGHkhLWdBOTBtJxUN9nJ2gUbdL0WaQPZdlqu4X1Zp0raz/PzswaZXLSmUwZNczsJzDqTRrBZidB/2txwj18uU3JzSxKeJUuoO6w0zZ9IKzNZpkqJFBcL/PYdaBeq6z6egYHB+lVSjyVUMEK+XM80qrH1DnqFbyOWfIlDZKHY/kzpA/l5FP0ftYns7aYryMnJtwIrRZea9aue+QjSdJ2D5LmvkDepvl5TOpmWeRXIL1uo44aVRERj8aFRwnWWp2r2thomzwajmMnasSXoSRhScnOOCGatXa/9ags9qUlJbarWliP+iLqh9Mh+elo7n7pIiaGulDGazs+PmKUOTWNiUz7h7G/ZHM41jjBq+NinVttc/3wXO6npLOn97vUNsbYC00df0C+wLBVhrhdX27Ldvva2vnrSb1RX/UX8Dhlzb7vm+uI51FSSdbZ07rOcweXEQYJPhBat5vkvfJoPeTbAGNOpPkqlzAHcluwh7TeIO0/nRffJ+Ro7hERyblYrk1j0SffDifw4/UmKfEg+9IkuvZCa1tb/z2xY9tX5zWq6nr3cyIiS5SwdqGFbbTo40GzBfQk2kVcc8M8JXUWEY98jqmA2tBDv0R/Go8xMobehfwwzneVlnnbXHKxTEsouWiI/oqxkTGsEo3LJI9pnjwauRy+x7gnN+4tsH9ymSIimTSeB/exbp8ce+bWQn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6Tmb8mik0xlxVnSGvo8a20YVNddBCzWRIiIeafgcl7wL9H7LxtcjYx91s/quy5pm1Km5lAuBdWqcj6HTQU0hSyhFRBzaT98isVyjhW0VkHazQxrUMOH5zw9Jyx1zW2KZfpP0u6SLTdoAnbW1rnft51De338rsOJIrBVzytLiArzWpn34+TqKiMSk0h4k7WWd8gMszV3GY3rYPp2W6XNxqE9Wa6gH5WbjerNut1hCTaqV4EtiDxDDfZi1mxZpN5N0/5wjwnWxP2bSqBdNZ9DDkaZjzl44bZRR6sdzjWgcdKerCZKSIGwBtmOt5m+IySjFaTN4/38Rs3+YumbSE/PrnBOF9msXEWm6qInveDi/NCpliCu073yN3r9//yTEu3ZOG2V6RdQPC3lL2m1cD0LSs7vUJzu+eV4OrQec9MGhuZyvR5P2qm/6CR4N+kzUwTkhfaX9E3IEbAVzs7Or+u2LFy/Ca6zrZv+FiEizideBvVNpysvSJG8Dr10Sm3NFgXT1iws4V/sBzkfpDM7VpVIJ4tlZzOOScc35rtPGY+7ZswfikMbVydOnsA6Ut+Dmm242ykh5tAaTF8qnew3b4XpyfhDzPALDV4Nx9zVNur7XmzAKV3PNcE4Vrk+SZ6NK3iyfxuzkvn0QF4uYk2x0DPNoZIrmOh/SXHOc8pI16V41jLBPV+k88h72jVHK5SEi4tB6x/mxHL73tddeBzbidzGhez7y92SpjsllsEeZXu32XiaM/Wuhv2goiqIoiqIoitJz9EFDURRFURRFUZSesyHp1JWfxMKun/VC+omPt7eNAvNn6dDi7QgtihHeci6irSDthJ9+YouPyT/n8XaSCB+Tf8pMlE7RT/gsK+Jj8M/P4QakU2G0tnSKf8oPWTdg7O1oFGFcw7V+mr3y3q34+fZKGd1bErLEqE0/nSdt0cr9rUHbLrZIVsA/wQYBbR/ZMuUdluB7At5umd7fJlkTn5fTxJ+GWd62XK+E7ZC7aJLEi7eP9KmOLK1arhdva0lyHJJYhBGeR0jSKZZwiIikaPtHl36a7b5eVz6/VfKBK+V0urY/XW8uCSNzflpnZ2sJ6DM2TSaGPCFBwxiRLKnTwWvV9lm6iWOlQ5IIfn+zbfa3IIX9mGVNUcDjE4/p0vzmeHQ8EYlJJsb9OI5orqYyfKp3M2GNMqVTvK4tv6HVWf7/Vve/Vtecw3MeSyGS6sbzDUunhKTH/H6+bknyCZaDsnTTp/mKx4D5edqCPmHLV35Pi+Zmlk7x+7ntWGYnIuLyCF/nXoGblm9XDBmamPdVAUmNuq/plXl9K9fgZuvqtWTp1LonLCJN6rNtmpsCn7b3puvEn48989xDLsOY32jeoC7covfzfBckzE224HXyXJIxGdIpfN2S3kuneGw7tIYnlZG0nnTjdi1gVywBG+l/VryBd507d06mp01drqKcPXtWpqamrmsZ2v+Ua7EV/U9E+6CSjPY/ZbvRNVjZTjbS/zb0oBFFkVy4cEGKxeJrfNJSvtWI41iq1apMTEwkJh7qJdr/FGYr+5+I9kEF0f6nbDe6BivbyWb634YeNBRFURRFURRFUTaDmsEVRVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6jj5oXIMf/dEfle/7vu9b8z27d++Wj33sY1tSH+Wbn4cfflh+4Rd+YburoSgbQvur8q3GY489ZmQeZz7wgQ/Ibbfdthpv5F5A+dZD57/eoQ8a3wBPPvmk/MRP/MR2V0NRFEVRXnds5Mb+9cY/+2f/TD73uc9tdzUU5VuGDSXsU5IZGRnZ7ioo38Z0Oh1JpVLrv1FRFEXZEIVCQQqFwnZXQ1G+Zfi2/0Xjk5/8pBw5ckSy2awMDQ3JI488IvV6ffX1D33oQzI+Pi5DQ0PyMz/zM+J3Ze5k6ZRlWfL7v//78ra3vU2y2azs3btXPvnJT27l6Sivc6Iokve+970yODgoY2Nj8oEPfGD1tTNnzsg73vEOKRQK0tfXJz/0Qz8kly9fXn39yk/6n/jEJ2TPnj2SyWREZP0+/IlPfEIOHTokmUxGDh48KL/3e7+3ZeerfHNQr9fl3e9+txQKBRkfH5cPf/jD8Pri4qK8+93vloGBAcnlcvK2t71Njh07Bu/5+Mc/LtPT05LL5eSd73ynfOQjH/mm+zZbQT7zmc/IAw88IKVSSYaGhuTtb3+7/P/Ze+8wSc7y3Pup0LlnpifvbJzN2tUqoZwQIMnIAixkw4cx/gBbxmBfJGEw+DMiGDjYgLGNr3MOmMMBycbGxgFxQOgAAsnKOa425zC7E3umezpW+P6Y2Zm577c0QeqdMej56dJ17TNdVe9bVW+o6r7v99m3b5+IiNx9991iWZbk8/mp7Z966imxLEsOHjwod999t/zO7/yOjI6OimVZYlnW1Hg3V3s69UvID37wA9m8ebOk02l505veJKVSSW699Vbp7e2V1tZWef/73y++P50ReT7tVETke9/7nmzcuFGSyaS89rWvlSNHjkx9xtIpJggC+fznPy9r166VVCol55xzjs7zv+Do+Hd6eVm/aPT19clb3/pW+d3f/V3ZsWOH3H333fLrv/7rUynVf/7zn8u+ffvk5z//udx6663yrW99S771rW/NesxbbrlFfuM3fkOefvppedvb3ia/+Zu/KTt27FiEs1F+Ebj11lslk8nIww8/LF/4whfkz/7sz+QnP/mJBEEgN9xwgwwPD8s999wjP/nJT2T//v3ylre8Bfbfu3ev/Nu//Zv8+7//uzz11FNztuFvf/vb8olPfEI+97nPyY4dO+S//bf/JrfccovceuutS3H6yn9RPvKRj8g999wjt99+u/z4xz+Wu+++W5544ompz9/5znfKY489Jt///vflwQcflDAM5frrr5/64uX++++X97znPfKBD3xAnnrqKbn22mvlc5/73FKdjtIgxsfH5UMf+pA89thjctddd4lt23LjjTdKEARz7nvZZZfJX//1X0tzc7P09fVJX1+ffPjDHxaRuduTiEipVJKvfOUr8p3vfEfuvPNOufvuu+XGG2+UO+64Q+644w75+7//e/na174GD/nzPe7nPvc5ue222+T++++XfD4vv/mbvznva/L5z39ebrvtNvnqV78q27dvl5tvvll++7d/W+655555H0P5r4WOf6eZ8GXM448/HopIePDgQeOzd7zjHeGaNWtCz/Om/vbmN785fMtb3jIVr1mzJvyrv/qrqVhEwve85z1wnIsvvjj8gz/4g8ZXXvmF46qrrgqvuOIK+NuFF14YfvSjHw1//OMfh47jhIcPH576bPv27aGIhI888kgYhmH4yU9+MozFYmF/f//UNrO14TAMw/Xr14f/+I//CH/7zGc+E1566aWNOi3lF5xCoRDG4/HwX/7lX6b+NjQ0FKZSqfADH/hAuHv37lBEwvvvv3/q88HBwTCVSk3t85a3vCV83eteB8d929veFra0tCzKOSiLw8DAQCgi4bPPPhv+/Oc/D0UkHBkZmfr8ySefDEUkPHDgQBiGYfjNb37TaAPzaU/f/OY3QxEJ9+7dO7XNu9/97jCdToeFQmHqb6997WvDd7/73Qs+7kMPPTS1zY4dO0IRCR9++OEwDCfG2XPOOWfq83e84x3hDTfcEIZhGFYqlTCdTocPPPAAnNNNN90UvvWtb53PJVT+i6Hj3+nnZf2LxjnnnCNXX321nHXWWfLmN79Zvv71r8vIyMjU52eeeaY4jjMV9/T0SH9//6zHvPTSS41Yf9FQTnH22WdDfKpN7dixQ1atWiWrVq2a+mzr1q2Sy+Wg/axZswa8QbO14fHxcdm3b5/cdNNNU7rjbDYrn/3sZ6fkD4qyb98+qdVqcvHFF0/9ra2tTTZv3iwiIjt27BDXdeHz9vZ22bx581Tb3LVrl1x00UVwXI6VXzz27Nkjb33rW2XdunXS3Nwsvb29IjIh83yxzKc9iYik02lZv379VNzd3S29vb3gn+ju7p6ak+d7XNd15cILL5yKzzjjDGOcfSH27t0rpVJJrr32WhhTb7vtNh1Tf0HR8e/087I2gzuOIz/5yU/kgQcekB//+Mfyt3/7t/Knf/qn8vDDD4uISCwWg+0ty5rXT8aK8kK81DaVyWQgnq0Np9NpEZnQjs4cJE/tpyiKMhtveMMbZM2aNfL1r39dli9fLkEQyLZt26RWq0098IeTMk0RAYnSSyVqrFzqOblYLIqIyA9/+ENZsWIFfJZIJBatHoryi8TL+hcNkYmB6vLLL5dPf/rT8uSTT0o8Hpf/+I//eNHHe+ihh4x4y5YtL7Wayi85W7ZskSNHjoAp8fnnn5d8Pi9bt26ddd8XasPd3d2yfPly2b9/v2zYsAH+X7t27ek+JeUXhPXr10ssFpv6gkVkwvy4e/duEZlom57nwedDQ0Oya9euqba5efNmefTRR+G4HCu/WJy6xx//+Mfl6quvli1btsAv/qd+We3r65v621NPPQXHiMfjYNYWmV97ejHM97ie58ljjz02Fe/atUvy+fy85umtW7dKIpGQw4cPG2PqzF+jlV8cdPw7/bysf9F4+OGH5a677pJf+ZVfka6uLnn44YdlYGBAtmzZIs8888yLOuZ3v/tdueCCC+SKK66Qb3/72/LII4/IN77xjQbXXPll45prrpGzzjpL3va2t8lf//Vfi+d58od/+Idy1VVXyQUXXPCC+83WhkVEPv3pT8v73/9+aWlpkeuuu06q1ao89thjMjIyIh/60IcW6/SU/8Jks1m56aab5CMf+Yi0t7dLV1eX/Omf/qnY9sT3UBs3bpQbbrhB3vWud8nXvvY1aWpqko997GOyYsUKueGGG0RE5H3ve5+88pWvlC9/+cvyhje8QX72s5/Jj370I7EsaylPTXkJtLa2Snt7u/zd3/2d9PT0yOHDh+VjH/vY1OenHq4/9alPyec+9znZvXu3sVpPb2+vFItFueuuu+Scc86RdDo9r/b0YpjvcWOxmLzvfe+Tr3zlK+K6rrz3ve+VSy65ZF5Sl6amJvnwhz8sN998swRBIFdccYWMjo7K/fffL83NzfKOd7zjRddfWRp0/Dv9vKx/0Whubpb//M//lOuvv142bdokH//4x+Uv//Iv5Vd/9Vdf9DE//elPy3e+8x05++yz5bbbbpN/+qd/eknf0igvDyzLkttvv11aW1vlla98pVxzzTWybt06+ed//udZ95urDf/e7/2e/K//9b/km9/8ppx11lly1VVXybe+9S39RUMBvvjFL8qVV14pb3jDG+Saa66RK664Qs4///ypz7/5zW/K+eefL69//evl0ksvlTAM5Y477piSslx++eXy1a9+Vb785S/LOeecI3feeafcfPPNU0swK7942LYt3/nOd+Txxx+Xbdu2yc033yxf/OIXpz6PxWLyT//0T7Jz5045++yz5S/+4i/ks5/9LBzjsssuk/e85z3ylre8RTo7O+ULX/iCiMzdnl4s8zluOp2Wj370o/Jbv/Vbcvnll0s2m51znJ3JZz7zGbnlllvk85//vGzZskWuu+46+eEPf6hj6i8wOv6dXqxwpsBSeUlYliX/8R//IW984xuXuiqKoihLyrve9S7ZuXOn3HvvvUtdFUVRlEVFx79pXtbSKUVRFKUxfOlLX5Jrr71WMpmM/OhHP5Jbb71Vk0MqivKyQMe/F0ZfNBRFUZSXzCOPPCJf+MIXpFAoyLp16+QrX/mK/N7v/d5SV0tRFOW0o+PfC6PSKUVRFEVRFEVRGs7L2gyuKIqiKIqiKMrpQV80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs68Vp0KgkCOHz8uTU1NmulQERGRMAylUCjI8uXLpzJoni60/SnMYrY/EW2DCqLtT1lqdA5WlpKFtL95vWgcP35cVq1a1ZDKKb9cHDlyRFauXHlay9D2p7wQi9H+RLQNKtFo+1OWGp2DlaVkPu1vXi8aTU1NIiKy/pq/E8dNi4iI44zCNgEtklv3W4zjxK0yxR5uYPsQlsIUxDGqritVowxPKhBXgiY6Rh3ilIux4+LbetlzIK4GcaNMRwKIsw6eVy3Et71iFctwbTyvlFszyqBNpFzHY1iC1y4ewzI9Og8rYlVjh76pKNXwvCw3OfXvoF6WAz/9/am2cTqZan8b3iSOExMRkXiyE7bx6niBRofGjePE3ATEAd1rz8bzbaZz62hphrg0PGyUMTqG/SKWzUCca2qDuIk+r1awj4yO5iG2HTwHEZFCidp8BWO+r2GI5xl62F6DENuSiEgqi+cez3VA7Lp4/RNJLDMoYz8b6hswyvAs7M+Wjefh2mPTxwvqcuTg9xal/YlMt8HLfuP/ETc2MQZsu+StsE1L20aI4zHscyIiQX0M4ice/AnEw0f3QZzuXA3xmee/FuLOrrVGGSF/48gh3n4JfPyD6+LYEdCXVRUxxw7bpvtNZfAudkDjl/EtqVmGxX8KcJy0HGyDVR93sOh+eD5XUsSv0z0Lqe9MjrPV0pj893f1Lnr7y+SyU9fKkjmuYcQYH6N+2tnZTsfAfcbGCrh9F467vWvWGGWcdeY5EL/61dfiPr24j+viNefxKRaLGWUwpVIJ4nIZx//xEsY8Rpbo83vvM7M5b9/xDMQDA/0Q1+s4xgV0HtUAx1U+bxGRdCoNcSaTpi2mx2qv7snddz66qHPwI/d9W7LZiTr51MnnbI8vAj7GfI5pzG889tgLrdfcdTCzRISzfh7QA7MxZFsv/RequTJXRH1u/jLB5zH972KxJBdf+bZ5tb95vWicurCOmxYndupFgwZ5qrNvcwcxH3gcCzsmv2g4IR7Doeo6YnbUkBqFHfAx+MWiRjHXEcuwA/NBj180HIfKCPkYVAa9RTgRA5DN9eLGL/iw6NCLRmhhGfN50XDCF37RmPrbIvyMOtX+nJg4Tnzy33gfwgDPz7bpJVZEbJvuHQ04ts33Ec/XpfPnOkwcIz7rNnwM18WXad/F+8L72455D2wH97Ftiud60bD54Sri2lE9HL4Wboxiap/Upo17IcbtEIvuh+2YDxyL9TP+qXLcWFzc+MQ9TqTwJTGZxgE3+kUD700sgff/1EvMVBzH65xIZalMfAEUEQmNC0khvUfO+aJhnEYDXjT80/+iYfGLRhxPpO69+BeNqWMucvuzLAv+PWtdzNMzHiQch76AsngsmX37qJeAZBLbbDaLbZYfTGIxvG8v5kWD68Vt2KL2yQ/5fOmSSXN84nrM9YLkU9tx6H5EzfN8TOPaGHss7hyczaalqWli3PNp3HgxLwXzLXchx9QXjReq09yfL+RF4xTzuSdqBlcURVEURVEUpeHM6xeNU3heXcLJXwR+7aIifBbQ2/utPzblF+96HW7T5ByBOE0/E37jx/jNx6Ye3P/8HtxfRCTWsgLiv/k+SlG2rMOfTP/f6/AbhP17j0J8/w78xvGZEz1GmddfgpKPy84gmUgxD/Gjz+N5Fkt4G978KvPXoH17jkF8YBiv7yvOXQ7x6AmUphw4gZKe889ZZ5Th1fGYh/vxm4HvPTQthwsDvK6LwbVvOFcSk98Ar1qNP/kP9OchPrhnl7F/VzfuU7fwGypuf+vXrYd4dQ/e+8M7njPK6Du0B4+xbSvEy1b1QtzRiRKkShnb58mjhyAeHTMlYT+6C3/mD2L0LayP7bHu4/cLAyRjSsVNeWBHTzfEr/i1ayBOtKAkLJuibxhLKDP7v//0D0YZoyMof4jRLwJxZ/pa1etVObTfOMRpJ/DrEngT1/fkse3wWa2MMpNMc87YP5vGNlco9kE8XsPrlA7xuhby2B56uruMMsKQv4HDz22LpVH0LT1JPR369SHmRHyjF8z+TbhH8jyffxmgMisV81e1mIvtMiZ4LctVHIfr/Msxfa/miDlH2fyVHf1SGkz+Cu+H9Gv8IlGr1aZ/XXP5V1z6FTtCGlaj8xsdxTZrfkuP+2foV7tzz73QKOPNv/EmiFeuZHkVf0uK96Faw3Eg5PvGOmIxf21wXKxnM8le+wew3wkpHc488yyjjCGSyhaLKINk+ZZfw1/c6jS/el5E+6NfZsIyteEZv17zfL0YhOF0m5jr14a5vlGfX3n8zb/x1b+5D+v4CePX1rlrsdAdIq7FXJ/jBr4fpcigX+nm+CXhxfyixPWY7R4u5P7qLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ0EejUACObWURXMMhW7nnoPL2d5+325j/2svvwTig7twebhMiqrjoR49QyuwtGVMn0C2HTWONQ81qKk4riaxuhvjPc+hFyKsoQbaCkyPRnczXosTJ1Fn/+OHsA43vxN9JI88tAPr1IXeABGR5586DHFKUHO6qQev/317UT8eC/FadkWUcecdeO5vunEbxHc/fWLq356L57gYVCtjEoYTutc6aaebmlEv+MpXnWvsn+vAe8fLDjvkCfA91DgOFFGj27rB9Lm0b8LlRltb8b7EaTWTMmmLPVqCt+uMLVinYweNMnOd6CNq7WiF+MSx47gDrRA1lkdte64VjyciUiwegLhWQX9U1zr0cDi0AlBbB3qILrgUvSsiIgcefxBi28P+XZmxpHNNzCWgFwOvVBaJTehnB46SR6OI/i4ngfdBRGTFCuz7gZeHOJHEsSSoj0A8OoAeoGANHk9EJCBtLut9HfJwsH/C81H7zd9GWRHa8kqVxgOS71Zq+PloBcejahXrYIXmqj/LunGt9qCKno0S2SaaurDNJdPUrgNTB82rTLG4+pRHMVgij4bv+1Pa67k021Eaal5hrFbBvu/QilHJBN6HdetwzPuVa3C5ZRGR3l5ckrlWm/1aBSSa5/ZorELlmudVq5tL3c+kTp/n8ziWl8voOe3uRm+UiMiWrWdA3D90EusQnICY205AviPfi2h/5Osgm5HEEtNt3vNfugdioYRh+ILa/NOxyhSXZbYNsy7sXVpovRrhbXipx5zPylYL9Wy8mDJm22chSSL1Fw1FURRFURRFURqOvmgoiqIoiqIoitJw9EVDURRFURRFUZSGsyCPhm1bYk+uoX7sEGq0z9+Ah3rdWaaGujyAWvH8EG7jkdfBq6GmlpZJl4Giqf0MmvBvPmn5OYP0kYOozfzxE6gvHZZlEDenzEWYB47igv59Hr6/7T+AFS+Po0Y+Rxlrd+9HXbaIyJ3Poz55TRdqSPuO5CG+b3snxOkk5msYOszriIu8+kos40d37IW4ODatOY/Ul55mnn9qp7iT/gLLQv11Tw9qh/cfRr+JiIhzfAjiDOV+OHocNbfFIt63pibU3Ld3oS9BRCTOmZv7cK31NGXJ9ShrfDXAthFPo2Y602x6hK58w69DfPIA5vc4sAfvo1iYL8SJYZ3KdVO7WaP8HvseeRzidAbrZVObrlKm+mQKvSsiIhu2nQlxWMJ+MNI/reuv8mCwSHTlWiU2mWcknsXr1N6E18hOmF6GljiOeWefgTkGAvKAcWb4dBqzkcdDc6yok+bdCoxU4Pg5eThs8mBYfLyyee1d0uFXybPh13CfwMfPx/OYg2Bk2PTfVUdQA18epbE9RnlwqO+0dmL/jVpv36K06aHNHo2Ja+Vbiz/+iYjYrjulk3aMjNq0sWN+j2ixrpt8aS55yHKUf2Ljhg0Qr13LOTJMTwZ7MFgHXqW2USOfAmvuOSO1iNnebBvPq1hAn+R4Eed9TjtfrZrtr7kJx8lYivJdUczZnSldjdQiyqhQm6zXsJ3FZpyXH+GVOt2EMu3ReDG+hLnyNMzlOzByxUT5kKi9ccztaa5cHQvxIjQKJ6Lv8njF5zVXPeeT9+J0ZHcX0V80FEVRFEVRFEU5DeiLhqIoiqIoiqIoDUdfNBRFURRFURRFaTj6oqEoiqIoiqIoSsNZkBncsu0pw0m+gEaUx5/cB/G2jWjWFRHZuRfNfIVRNHAlyCC6gozdiQANXMWCaUpcsRrfnbrSgxDHfTS3SY2SVwWYBMonM2bWMo1onTms9/M70Hy7qQtNW0PDaEzbfQyvwzkZNHKLiIxW0SQc2GiUr9XRWHayiGa4ZWms4/bH7jXKKNiYcMx2sIwVLdP18uquYJrB049tV8W2J69/LQ+fDdNCA/2DaPwWEUnG0Eh7+CCe72Aejdv1OpmtrEMQHz+E5kARkfZ2XDwgTYbzeA4NqSn6PEaG89DF9pxINRllplvRlL4xh/UaHchDvP3Jp7FOlHyzUjP7Va4Z+015EBcT2Ps4tqe2TmzDqWWU0E+wn4mIZJZjEr8EJQ/rKE/3o3JpXET+0jjG6ea1r75aUukJ02dTKw6fXTm8V75tJuyzLEpEZ6EB3rPZ4If92LHRcBraZnJFi8yOrksGPzIF+pSgj02DMTIEJr0oEzVuU6/j2F2hhGkjFexrJ0+OQvzznz5slHF0Ny5yIHUaA21sUyvW4+IWlo+xY0ech/EnMmBOhu4SfUWXbWmemoPj8dis20ZZP11KEJrO4pjYQePT2ZuwT15++RW4f9pMrFitzm4GN7anpIF1D83gId+DCDN4pYJzqGVhvxkaxgR9VTJZx+PYdsolMotPHBRCN4b71DysV5XM2j4lHvQjrotfY4M3Xkt7Rr0Df/HN4K7jTpmp2bTP4wibrkXmNoPPhWF4jvAqh9SJfZrHA8OAjvU0FiOI0X23zUItSvRprKdic0j33sb26EbkuLRp4ZiAxnUJcKcYPd5bVAk/NNsP341QHIpnlEn1mQ39RUNRFEVRFEVRlIajLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXhLMyjYVlTWtyTBdTH5p9HzW3iEGoiRUSS9FpTLKMirKUPdZabe/AYJwZx+2cGzKRfoX0Y4vO60aNRHcR6P7ETNarrW1Hbv28EvQ+DASaGExHZeRDrWanxuaOW87Y7MMlW3MHzaM6hl0VE5JLVeH0LedTn7TuCWv/L1mMCrP5hvC4l29TXHe1HbeIF5+G16R+bvjb1EO/VYnDmmVslnpjQBMeSqOmulFFT293ZbuxfGkdd5PGTmNTPtrA7xBy8RjUPtcRjedMHwvpNN4ueimQS25+dQB+CTRpqm8Tgvm8mChss4H1ry6AW/aLrXgdxXLBtHN+7E+Ja3by3tRr2A28cPx/dh/VyiisgzpAevrVjlVFGQP4DixKwNWem26M7jj6nxWLbGVskO5l0sSmL9ybr4jWybNPDE1JCRvZTeHGMAzYNkPbcD02dPlsoWNbM+mBDQ0/S3xgdwK1HCIipTD5m3cN23ubhmNgSx36xs9X0Iu16YjvEXo2Sm9G1TNqXQxy38f4EMrvHQUSMLHj25HdzdkRCrcVgxfpV4rgTbcChhHCOg+dvx8wxPp7C+9DUkoN4TTf22zdefR3E5557DsTspxARKVdwcOBEY5w0sE7jTa2OxwwCHFvKJTPRnUfjYr2O+vPhYRyrq1Wso0fj8Oio+fziUPta04PJffcfwPmkQD62SgXrXa+Z/Sj02C9FG8zom3N5X04Hnu+J9wLJetlvEbVdLDaPPrcQIiweFvlo4zSHhpyAVMgfQV2bE0pKHNuKiEiMvrM3RgcjiSp+XCfvXsw2r5PvYr84Noqe0fwotr9MBS9Oewp9kl3L1hpleJTQ2idfUjij4iH7TGZBf9FQFEVRFEVRFKXh6IuGoiiKoiiKoigNR180FEVRFEVRFEVpOAvyaISWLeGkLnQ4eS581pJCLddI1dRu2gFp5RKo8TpRRn1irIrauMBCbVyYMXVsdx9Brb5lr8c6pFD3feQg6ibHx1G3VgtRZ2055rrhj+7AMrtaMOfAoL8Jj5nCMhwftZqHnkQ/hoiIw0JrH/W3u57Ea2WTv8ClW33Omt1GGc+MoVfkyR0DEPd708fw6wtqOg0hmWiXRGJCy51oQw9GoortL6iih0NEpP8E5nqxQ7ymAemuPVr73yL/ReCbAtHCWB7iTBnrkaW1rus+rRlfwbbEHg3Wl4qI+AnsNx6tG768E3PaXPy6GyG+77vfxP37zbZhUf/2SAOdzmKbjVE+iMqBfoif3W7m0bCbMAdJ+0rsJ+0d05roiTwai08qHpdUfGIMyMYoh0UR7+WRw9jeRESG+tGftXnrNoizy3sgDniIY82sY67pXqdx1hLWJNNa9havK09jh8P646j18SlHgLFEOx6jiXJe+BmsQ9ox/QUe3fPQx7G7qQnHXVdQl+9IHuJAckYZQmvq83mdWsd/qTwam87aKLHExLUL2IxDYVQeg5YWHOOzTRivJd/B2rVrIHbovMcjvFKlqBwUs9TLozEwoPmwVMX7PDaSN45ZowZXGEcfWn4EPRdBgGN7oYDHHKNxXEQk5lIOEsq9Ead+URjCMbFK58F5J0REQsoRwr6Hmb6MheagaARBEE7VwaE+yrl0ojwk/DcjL8YCsSISaTge1ovTXvjk+QnJMEG3WSyXvCcWti0REQnwXtYGcd73CuhDilGl8lXye3aY8+NYDI+5+/jjEPtOHmLrCNazdhh9b697/R8aZbR19ELsBXSu9ox+Y5vP+C+E/qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBaYR2NaIlwiTXy1hrq40DLXGmYdWxiyljhFMWrKQqH9eTFiEbFJd8sqxoA0fXZIvg/SPLMGMHRMXaSbQW15Jf8oHqMDfR4urXceBnjtAsofICISGgJcPHeHdNkeXVuJ4fZH86YGMEuaU7+GYsUxZ3qNdT8w1zI/3dSHjoo9qY/PxPGaDZfxPo6NRXg0htBzkslg+3JdzBviUlvwKX8A67dFRKoV1P6ODp7EMjtxLetMDusQ+Lh/tYIayXrE0tVODH1DWbq1J8fxmBu7eiG+5Mbfhvj7X//fRhmdOWyT9fxRiE/0o8a0OYvtI5Wi/CAlsx9VC7gO+PH+ZyE+mZr2L9R4bfNFwrVtcU/pismntO/54xB/77vfMfYvjqCm/U2/iTfrkmWoia8aOQgw9kNTo8w+DktIS81jiZGPgbYnPbEfoQ0PqR4hjZsW9ZU4HTOTwDrkmsw8GiH1vyBADXxLE46z1TLej6CGOZViKbOMgL57C0Kcc05NYUEYkUtkEcgm4hKf9GhUPNR9V8nTWB+PuE8OtrdO8m/1dnRCHGdrII1PlYqpV6/VULvN2n32JlQqlLeHfAqVMo4lo/m8UWbFw/tRJo8oX5vhERyXA6pTVL6iWJyfVygXTJZyIlGf8CpcRpRHg9s4ezaW1qMRj7kSj0+M5UEwe/lR/ovZPCciZlsxoI85R8tEGTjX+DT2BPQMF9h4zcc9bNOFCuZDGa5j2xERqRXIq7QHPYmVw9j+9u3C+bN3HbaF0jrTC1xsw+fjdBPOP24Wx79kL7bPvjHsZ8NlHA9FRJoszMHlU44RmXEtg4jnnxdCf9FQFEVRFEVRFKXh6IuGoiiKoiiKoigNR180FEVRFEVRFEVpOAvzaEz+JyIi4ex+CTs010FnT4awxouPyeWzfC9Kn8y6xTkkfwGVYhtrziNeRJlBeiPEA8cew88DXE8/tRq3d3mtYidCu8laRrp0tqHdxs/TCdQh2jFT497soKb5kLcVy4xNr1Nv2YufR+NQ37GptczXebhWey7bBrFjo15RRKTeuQLi0RL6OOq0zrkTQ62n42KbNlW8IrUAtcHjw6iDdOqYCyDm4lHGyxgn2H/RRLkbRKSpGf0TAWljwxC1mieHyUdyCDWnrT2o0xQR2XDWRRCTRUieeOhuiHftegbiyijmjwgi8iRk6TxSLtbTmbEWea2+NBp5y7bEnvTuWILt4+EH8Zy3P2fmI3Eo/8hj9z8C8aVXX4vbx7GMgHxqkcvQh9g3edzkXVg37ZBngz0cvjuPcdfQn+M+DmmrEwlso22UJ0dExKImE/o4bnp17M9HDj4HcbKlC+LVm9FbJyLiB6hjtijHyKncOYE/e66I08Wh7bvFjU3c31qF9Pz+7B5IEZGQxpcLzzwX4jXL0bPRTH2yRp6MWpX8FRLlb5jdo1EcQ69Nvcz5JnCwKbGnQ0RqHh6Tc3XUPaxTqUj3mebPeMwcn6p0rg5p+5d1Y5ttzuAcVMijjt+OsDj4PM9zvwpf4N+LRfjC5TbCMzLXMWzym3GeKRERz8Y2Wgnwuo+U0D8xMIbPPSeH0T8xksfPK3Hz2SmgHErNz5FnYx/2gYf/cy/E7sXY70Ytc/wr11sh3mivoi2wjFIcx8PMeuxXJ+voiRQR6bYxd5Ud4LhsS2LGv6OegKLRXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEazgI9GjNUYDZp5Yy12yPeYQxpL+3DayTPtXsU1qyh2HPUQUg7zPkrnCCiFg7qWHvWvwJi78Q9ECfr6CfwkhvwcGKuTzxcxzXf0xnUh7q0rnu5gvq59U2oM/Q98zz2l7ZAXI110Bb1F/j34lD1A/EnzSl7T+Ths85m1Ei2NZl5XJalMU9GNo7NP1/BazJeZQ00XXPycIiIOElsCz7pekf7UReZXYZtQSzU9cYC9GRkAlMbnqHkGpaD9bK8PMR9z2yHeP/OPRBv3oTtQESke8VqiMfywxBfcs31EG89/3KIn3jgPyHeueMpo4xjfVhPiwwIcXf6nnre0ng0bGfao+HydaYx8Q2//hvG/kER9cNjY3g/6wH2W9tBj05IngHLNscKHnst8lhYPLCSLtpmj4bNx5vbo8HHMOpAunuXcr8kUmaeH8ulsbmGx2iiPr+sqwXiw/ueh3jV2vONMuIxLDcgz9Wp7+ZcGZelYPDE8FSek/I4ecrIlxCPm2vx+23YvtpyOP6k0ngNKxU8T6+C1yOom37CGnko2NtWGkdPxsBxzFNQGEV9e64D56FEEsdxERGbPBqJJJ7HeBGvVUc7auIHh3BcrlTNPFHsPYnH8HrnWnDszmZxLuAcGVF+hLk8CnPmmTjdzHwIZDvsPOrG58fjgmGxpSfUWohtY4j8FSIix0rof+gfw/Z1cgj3KZTRP1jxsM075Df23Aj/cRkrfuwozo+ZIXx+6+7F+bTPJ3+Fbz6/xFP4t7yNXpEkjV2pGLbHkyNYp6GTO4wy1vRshrgthfUUf8acF6hHQ1EURVEURVGUJURfNBRFURRFURRFaTj6oqEoiqIoiqIoSsPRFw1FURRFURRFURrOgszgtuOIfSrRVlSyvBlEWZrYyMjbBIa5SOb4w8Jh0zoTkBGbzUlOxP5scCLPsbzm6m0Qj1TRlOOHT0J8ctg08Y2UMXlexhqCuDb4LMTrW9AcFy+jcbU/RNOPiEjZxoQwFiVQtGY46ZfCk9aSTkps0vA0WsZ35D19aDDsGKUkiCKSjOE23e1oFm3OoJlqiE5ypEyGrappxE0k0bxtJ7BtDPcPQOzuPwhxU1MOYm8IjWyVo+aFHyJvWiqLDdC38LyGh9Ds1r0Kzd9ujgxgItI/hkbGDCVYyySwzcZTaES75o1vgnjN5k1GGY/dexfEBw+gqa9UmjZomknBFgk7mPhfRAJK2PXKay6FeNlqTBApIuLWsN5HDh7EDSgfY536IPnNI83gIf+Nk6eGbMCkcZnN37SCRvS3U3OswuFQ0j9edMOhxHicEVJEqj4adGt13OeVV14F8YoN6yDevhuTZ+aSZhlj45i8sjiG+9SqEydWKZvjy2IwPDQq9uT9qdFiFWystc2VT8SiKT8Rx36cTuA8MV7M0/7UFiLKGC2guZZuvQyfwDHt+eexnwd1PGYsiWNJz6oeo0xeiMGmNuzaeJ5HjhyBeHAwTwc0kwLGafEQO0NmbzY28wMNdwpOWBy1zZJk5XtxzMcMbtPoEXIcw2syUEGT/tP774b4cB4XNhERGarjPF/18BpWizgGc3uTAO9zjMampjbTDN7Sjc8SJ8/EtrGnhM9rksXzbNuG+y/fjPuLiDTRMx0vSGGPoDl86BiOZSMHcCxb1n6GUYZdxH7ipmjxB3e6X1ju/MdA/UVDURRFURRFUZSGoy8aiqIoiqIoiqI0HH3RUBRFURRFURSl4SzIowEYmVVYf2hqC1nPGYYcU+IxI+nTHBn9RCIkjrP7Qow6crIqlh5HnZeDl/HoGGpIH9iBiaKuu7QX4n37MYFM1jaTBbWOPA5x/17U23V1YeKlKy7ChGlODXWzD+/nRFQidoA6e4u0iaE1rRFcisRBqXRyKqHWiRFK2Ea681LNrN9YmfaxMPlPJo7HyMZQi5lK4/U5MGgmjatVSR/qk8+FkmjZB49CHHSgNjjZksPjx03t5ji12bSP980nL4FHn1dJU52PSvQVdEJsNcXpc9S9uuQtSGcwYdG6My80ykilcZvkvf8X4l3bpxMLhvNL39lwAsuXYLIfeIIa1Q1b0ZNRjZPhQkQy5JfZ2tkMcSVJ984YE9lPYXpVQos1xDymkQ+NtOQBlWGzLj9iFOXEpsY3WDT2+1RFn48ZM/XrJY8SuTXjmHfVVddA3NSBuuc1vVjoyIipMS6PoJb68I5HIO4/OdG/6zVz/FwMRvNj02NvyPd19gS4IiLJBF7DwiiOVxZ5FB3yOozmRyH2fPM+sa9jeAiv6VOPPw3xwBDOd1s3oXY8oOcEl7M7ikgqlaFtcE5OUpK/chn17Fu3ngVxf/9ho4yRPM65YwXUyLsxHGd7lnVDfGD/AYjr9YinEe6b5hbTn/3i2Dem4UZp4zxxoojJY//zOZwDDg3vh7jmmONfidqkTx4NO6BEux75x8ieUw/weHbEdbdLuFMuh2NPijwbEmCbz67GsSkjpkcoO4rbOGM4Bg3s6Yc4fxQ9Glu2boT4kgvONMroyWK5tXH0T4kzI2lgxXxOfSH0Fw1FURRFURRFURqOvmgoiqIoiqIoitJw9EVDURRFURRFUZSGsyCPhiXTlgVee511aywfndiHjsdrcLMeOeAyeBH5iEpyPYw64F/YaxCxLDiVGbE2OenR4+nlEB+sXAvx/Xswl8K5q/G8mzu7jDJq4TMQP/vsY1gHQc3pzudRD7rzKOruB5MrjTKcBN00uh+BNd1cLOvF23teLN1dbZKYzNdw6DjWNZZADaQXon5WRMQiaebJMdQjsicol8J7vboD4zNRgisiIvkCHrNQwzZbrBcxPokaU7+K9zFHa3p3LkdduohINtcOsRtPQlylXACOkJ+CvCmWYHsWEamQHnMoQH1ognxKvB6/i1WK9Fh0r9wA8WVXkw8knM6zUatV5bHHfmYc47RjhRP/i0jo4r0KBK9JMUokT10sRXaYuov3xhZqtNQnZ/qmpusxe34F9pkF7K8gTTznTrCi1v835gPahr1v7hz5AmLmefkWnldzC7b75uYOiMtlbLM7ntsN8dOPP2qU0dSE9dj33MMQF0Yn7rHnLVEeF7Hl1MRn+GLYo2Gbk7DrUL/kJBd0G1zquNUa5oDqP3nCKGNkBOe3vuOYC+G5Z3ZC3LMKteNnveJ8iDs68L6e8ulBPR0890QSt0lQnp9163shbm1Df9jOXWauhGod73mlgnNMqYRxtYoeIDMHiXl/+J4ZzyszjhGGodRksdshPAXOse3cHpRCHX0Fj+3+OcT7hzE/WI2eO6pVmlhEpFrHbeo0p7L9y61hnxjrx3Fj7CjGsZrpzYwLbtNkY+6XZEj9LsBj1HeThyhjejGP1bBfjQ6i92llB3nWtqyF+BUX5SD2Uzi2iYgcPXofxPkRzK2WSk/n3Bov4XWdDf1FQ1EURVEURVGUhqMvGoqiKIqiKIqiNBx90VAURVEURVEUpeEsTGg/Q57H+sJQODY1tg5pSL0aasxsF3WSdgx1a6xPjtQAziEbNHwhxv4LX58/YG8JrUUuWdTK7T6BOtfLN5MOP2PW4entOyCOxXCfYuIciO8ffhUeoAnXdbZdU4MqlPNhqXIVvBCbt66TdGoiN8HJftRuDhVRq5nPm+vce1X8m2vzNcD7NlzE8w981Nx2NZF+XkSW57AeCdIOj3js2cB+c3IM28bwIdR+1kro8RAR6ehZBXF71zKI45RvoCm5GuJkEvXLtbqp+/VJk+6xV4DWQ6/UcPvxKmpSU3Gz/cWpTbb2rIH4FZdPe50q5XH5l3/4inGM004YTvkROO+PR2OLE9HF2MzmCXvGaPuA+qRhOovQeRsxjU+s+2ZfG+c34iIDc2xnLTnHPPbHOD8RHS8WMY4n6VRj5C2qcxulag4Po1dpdAjXmRcRWbsCx2rWUsetiTHEjvDGLAau6075Cg2fJF3jCCeNXHTRKyDevHk9HoPGxJDOv0i5I0aGMQdP1DZkYZTeNb0QbzsXPRlrevHzWAzHWfZGiIh4lPwgRrkR4jEc40oeaeRpzEunUWMvIpJJ4/NIQLmDjh/vg/jYUcyPxdfWifQwsD+KP5/+50T+m/nr5BtBGIZT7W42/4iI6Q0TESnV8xA/sw99AocHj+AOdO9DPt2yOVfVyzQu01xUL9KYOobxyDGMC4fxvJp8c97PNuG9TdCzK08FJQ/n9QHBeT8ew3w1IiKtMbye65qwjPNX5CDujuHzztP374N4x7CZqyPWgXNuayd6NLpXTPej8dL8E7noLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ2F5NKxArMl1kH3SqFo+asyCwSeM/YeOos/Aq5AurbkH4lgrrq8dT6HW3HHNtYYtB/9m0zY+6ey9CmreWUtsrGttm5fMdVH/GVC+j1SA6x+ny7dDPDSAeTfasqibFRFpacYyDlkpiLNdl0JsJ/GYAWlYJTD9FxF/+i/F2pXLJHNqfekrUdf7k/sOQVyN0PEOFEnH66DG0CWxekia2sEi6nrzJVOnfWIUt1ndjnrOtd3kQ6L8E2va0eNBS3rLYBF1wCIig8dQuBrWcafW5ZifIk15NgLBthSLU3IHEbEN/w7ikebZD7BO5TLuMR4z+1GS1rpn70iiaTpvQuCYdVwMZqTRYEuT+DbWKRaZTIhy05Cvg6wuRl4fQwcdmNfR87AMx+W7RWUaSnCqN4n9q1VzHXnOR+SQQcWiY7p1PKhfwRNPR5xXzsV22tqGsUdmAPYatXWgT+3MMzcbZWxYixrl57pXQHwinMgJwZr+xcJxnBlz0uwa6YBNKiLixtjXUqUYz2toCH2UJ/vR12K7pl49kUR/QxNNLFu2ou571Wr0mLku3nv2h9Wqprac8/wMnsT8DC61x3IN9euVGuVaiPAwZpvwvKpVLLMwis8WPvlbupY1QxyVZsfi5yrD9zVdL98PZHTE9OydTmZY1MzPKEdGzTN9krv2Pw3x8SHM95XO5HCHAJ/fWsgD6Y2Z8/zhfvRi+Q7uMzKM12zPdswFUx3CcSIW4H0vScEos+bjRanZlHOFBtHQxX5oV/Dz8rjZd5tasd+MjGPfu/dJfM5c1U5jaAqvg9+MY5uISCyLfwtz+LzitE4fwzHT2bwg+ouGoiiKoiiKoigNR180FEVRFEVRFEVpOPqioSiKoiiKoihKw1mQR8MPQpFgQovWkkLt4P/7KtSxreu6yNj/f39zL8Q/+Snq6kslXEO5cuheiC0bRWG2beq0Y7RetkN684CE1X4NNX7xBF6SWBx1cJ5vrk6ezpBWmDSlgYvXKtsOoZRK5KeIEEGytv/AYSzDiqP+UwJTRz2T+a+A/F+Hhx98XJLJUxpB1CP6Ad4XN2Zqhzn3C+/j87rgpJc19o+4T/0F1A8Pl/A+HBlCXe+2FdhvVixDfWiOdMGrckaRsj+PmtPRftS9FgtYh9LqlVjmKswdkEpjWxMRSSVR31mpoqbZo2tp5LyhNefLJXP99/ESXrtEEvu760/3zUrV1P8uBoEXTGnfLco34bPHJ4jQ8ScoT4Hhl6DvfqiNBQG1uYhkCcUCaoibmnBscMgXFNKYFpLXwSG9OucDmPgbedk4rwbXk+LREVw3PqiZGuXO1k6IV67EcbO/H3X5hTK2sRRplDdtNj0ane3Y/2644UaIDx7cIyIi5UpFfvxTzAGwGMTiztS1Zh8M3ycnwgPw7NOokX9u+x6I01ns+wePHIS4WEIfwvIVvUYZ1BTEZ68I5Vdoa+uCmPNTjFKujuFBvM8iIoeP4bPD4BDuUypivS26OKvWYFty3YjvYKnvhfQsceZW9FauWdeNu3PfjZiFPZ/mbZ6TZtzzWq0u25/Gsf5044e2+JPeM4/Ox03gfTs5hs97IiJ9Q8cgHh/APpluxhxQYyfyELeuQp/CCrzEIiISHyJ/hINzbpWu+9re8yBedfGVuP04+pSGj5v+Y2+YPKJVfK4sk6erWKGcP1V+NjHbRpFybzguzpcB+SLvO4TPBVu2oP9sSy89iIpIOotzg0u5ihIzng28cP6vD/qLhqIoiqIoiqIoDUdfNBRFURRFURRFaTj6oqEoiqIoiqIoSsNZkEcjqE+vwH7GZtT9vuoV+M7S3JYz9n/rW14P8RNP7YR4jPIUBCTsLZPmNgzNNZRrNdS2xevo0bBt0u4b4mH8PJPGS2RHrU1uof4zlsZrUSzQ5zHUIRbGaT3ukqnPi9Ha5Kk2jJ0UxpwTw/L5Dy8taQavm78Y3PvYHolNrtvuxnA996YO1Fu7cXOtdUM3Thp7oynw/uzPibgEvP66TetrnxzD9jNIXoP0IdQfr2jDXDMbV5i6ym3d2BdZZ73nBOpHj+zHMiwf+9WWs01/VS6Xg/j4CVx7nD0arF8O6ti363XTY8GeGdatujPyfVTKZt9fDCyxp3JCcG4Ibk8SlUfD+G4HY69O1y0gvwTp8rlNi4iUyzjepFIZOiZV02j4dEyfyozoJx5737jelH+IPR018rWNV8z+a1HfSiRm99+lU+idq3vYZjJp/FxEpEpa6vUbNkG8bPnE2F0sLk37u+D8bRKbzEETIx8at4SYY3pplvegP2vlKsxhURxHXffgIOYksC30TUX5uTj/Dccu3cd4HO9DiebD4SGsw9Ej6McQEXn40UcgPnzsOMT9lFthxXIU93d2ofY/FjevHecY4Su+ajUeM57Ga12tUj6QmumjrFWpH3H+ohlDTLVi+txON9VSVWKTHq1R8iP6FvkT6blHRGT4CI4DD/2M5qLYGMQlehbam8X5sK3VHCe8Ct67tVvRg3H2Jswr5dpbID5JeamqRfT7cPsVERkcw3MdHcLzqga4T0WwH/nUlqLyuNTIv+PS2O845PNIkd9qFOfcbB/64kREzl+B40FPK/qnWmc8W8TErOMLob9oKIqiKIqiKIrScPRFQ1EURVEURVGUhqMvGoqiKIqiKIqiNBx90VAURVEURVEUpeEsyAxuT/4nItLeikaQp5/dDvGqXkxeIyLS3oTmlJAMMKGFZpeWZkzmwmYqnx3PEpGEjcxU8TiacNrbMQlUPo/JrtiA3tNOifFEZNwwe3MiJbzMqTjGbPj8l9sxUaGIyJ6DaL5N9f46xBkHr1XNMJEtvnm78SREJs2IATXdQh6T6pTHTbNmQG2DzbzGezclYLO4vUbUsE6G8YCSUzkOtr+gju1rpI73KX8EzW6D42YSuDNW4r1eQUkot3RjErLWETzm0f4dEBf7O4wy1q7EflJuxr58sh8NnOUqlhHSIgp+3TRC+pSoi/3i+RmmvFoFy1ssRkfHxJ+8x5kMmqybm2ls4MxlIhJ6lIDPpvHK4+R5tD2brv2IxSnIBMzXuh7QhaXElEGI27ORO/DMZJjsSefFImo0tnNyuQQZ1msRiVGP9eEYGNuF9fi1GzG5XjKL94ONy/mTeDwRkWxnGx6D9jmVpNPjxTUWiV997VVTiQd9ukbjJez3doQZfG0vGmF7erBf9/fjIhslSqKZImN3sWiacWtVTjqHYUsOr2mCkuryggg8Z/NCAiIiVUoguv/gQYjHCnhtlvVQkkBa4aBSiTJqk/mazou94hk3TdvTBqG5IEZIzwKWRfvMaHa+u/htcHxsVKxJU3LfYTRmHzncB/FARGLFnTtwAaATB/dBXKKLaMdxkZtjNo77516M5mURkVf/xqUQr16HZu9jh/AY/3LrNyA+uvsoxF4VzeDVEj5riIhYPt7LOo3LNYsWbjCSa2J7C8Uc10fpWdSh55VEDPsJe7XHuV9GJF6Nu1jPlIvHjM1ogLGo1XBeAP1FQ1EURVEURVGUhqMvGoqiKIqiKIqiNBx90VAURVEURVEUpeEszKMRd8WeTBZ0oh/1d48feRziZAp1lyIiadIbskY+TQmUEqRBzGTQh+D7pla4QFpMnxKmeV6NPsc6JZNYRrGACWRiPZjYR0QkTp6LKiXiCUmnb1mUsCiB+uTRgpmQqCKYDKij8wIsg5KFOaSfCy1ONmdq/V3yktRILz4z05clpob1dOOHIqck7baN2sFiAb01nHhKRMRiTSJdM1NxyMJzCiOSpfGfgpC8MqQFZj09Z0OrB3jAE0NmkqZ8AbWxq5ehNn3jMjxmTytqhze46DEq7H/AKGO4BetZdzDppJC2OKxhPT3qZ15E4ss6JUurlPCe1urT51GrLo1H42tf+7spzbhF/TpJCeTaO02vi+NgH0sksB3HSa/ukt+Lk5+lUmbSOU5kZ5FYN0aa90wGx9FkCrd3XTyeX8MxUsRs97UajrMV0rfHUngMl3T3QyOoixYRKVObOnkS/QScsMqx2R+F5xVE9PhYHOvVtWw5xKXSRN9K03izWCSSKUlMeTTworsxrLvjmOdXJ09YoYBJu7hNx+M852K/zedRpy8iRmNg/0RTE3rGQkpsyd4THkPjCbP99a7uhfhI3wDEx/vRj9PVhX2zRm1LAnN+rJVxzPFpDKvW8HqXK5SMk5IJc3LhiWPUaBueZ6fLqFZNj8fpxnZssZ1TCUspoXIR55HDe48Z+/cdxvuQTePYY1fwug+M4HNmkMRrPFYyk84NBM9C7FawrzqUfLZm78Y6ntgLcdrGMdZxI+Z9B8/DF47J58YDJs37lhPxG0DAHmXy9wXYVmIJvFatrfjs2tGB/VBEJJEkTwbNRzNjN27O4S+E/qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBbk0ZDQn/hfRKoBatBuvB49AytWrTB2/96/3g5xvY5rcDflcA3z8jhq/tIZ1MqZ+kVT5x2PYz0zWdR3Dg6ilrO9Hb0QrPttaUE/hYhIyLrVUfSJlMaxnoeOo/543MPPj55EX4iISPfW38Y/ZFBjGtA6zjbVmyWBEUuRSzKJzSGs0Zr9M+LQjsoicXoJrZgEdmyyfGwL8RTqFTMRJ1ijtuGTHpbzDfgBn6ORLCCikrNfF/ZocC4YI9cHFeG4pi+pRl6TPcew/YyVUH980XpcO781i7rMXDholNH3JOZ2qWR7IC4lKC7WKEYtd6mEfVtExKf8DYk0ek0Ce7rvehH5IxaDJx9/ekrrX6NEH+OUu6WlJWfs78Yo/8sY3ivW7oZ0TbJZ9Nd0dJg+kEwW156vVfFadXXhGLesB+uZzqKXIT+CGufnnzXzT7AnI03ekZEx1FLXSN/dlMXcCl1t7UYZTS2oMXZoDGLNPPsJRoawDbIfRkTEIq11qYznFU6uhx8ucOpsFOVqfWr9+5DGDvagWBatqy8iEuI5swcjm81BvGI5zuP95M08edLU4XMejPES+uW6u3GsYM/iaB7bijlWmGPssmXYpjdtwHwhNuWrcShH0sgQPge4Uf6WGuefoVwx5H8ZGMBx1GPfGifeEJEqPRNxvwpmzEn82WIQus5UDojApbo5OP5ZMXOMz3ViP2fvVpy8fGuWY56MsRpenwN7zLGo5Xnsm2NVvE9nrMf4yl9ZC/HAfhwnxo7TnGybOX5C4ectmp/ovFyL+y75RdkfKyI2jXfJJPabXDPODWvXoY/y7G3rIN603sxBkmvD++OQ1zqc4TEMnfmPgfqLhqIoiqIoiqIoDUdfNBRFURRFURRFaTj6oqEoiqIoiqIoSsNZkNA04VriTOa26DtJ6/sfzUPcmd5n7F8dQ81iM+mNY7T++/AQehkSSdT91uumRnH1Glz3fMUK1IMeOXocyxgmvwTnX6D8E15g+kISKcqjMYL6vBrp7k+MoJax7OH73nL2Y4hIYvW5WAbpM2PkyYjR+vy1KtY7FbEWOeeViLu0vrmdmPHvJdDI2/GJ/0XEopwfvMZ0Immen5sgTXcN9dj1CutjUT/qk6Y2CE0d5UJhzwbDuU2aWtLGNiF5SQpFbMPHh3H99/+soR550wrUZa5rR2+EiEhTHHWrwXAe4qPj2K/6htB7MDqKOQ/KdK1FRCwbz7V9FeqsU5lpzWm9Zu6/GIRhKOGkj6JOHjGXNKuxmOmn4RwXfUXMgZLP43gUhNjm2Hp05IiZc4dzATmUcyZ1IY6jHZ3oOytS++nvx3t37Kipy2c9+vr16yHOkxfl0ImjECfIL5FNme28g9aBr1Eb+NfvfhdiN8E+LvSudLShJ1BE5OCB/RDf8aM7IP7Yx/5ERCLmiUWiXvPFdaLHXh5L2MMhIpKIY3tin2OC5oW2thxuTx6Cct2cD4cGsQ0fPXoY4lwLXveeHvSB+ORZrNI4PF4yc5gMD+OYViqiz4OfNcTHMgZP4vgVi1N+IzH9cU1N2J6qVfQkjBYwrpBXzsjdISI1j7chj9CMfEXsR10M/NAXf9J/YLvY3to6sb+tWWf6rFatRU+ZzdN4HftVzMGxa2QMPx8ZN3NBuAVs9ycPoo+jHOQh3rIFPRoXvhLb4zN3HYS4PWLcCKmeJ0+y35PyTAmOh1nKK2S0VxGx6NlzWTfWo5P6alsXjuurVuP2Ta1mGYkm/FuS/H7WjDnO4hxgs6C/aCiKoiiKoiiK0nD0RUNRFEVRFEVRlIajLxqKoiiKoiiKojScBXk03IQj7qR2sVhETe3tP0at8cHnfmrsn0ygxjZHejCPNM6ZDK0HT3pQXqtdRKS9MwcxpzU40YfrgLNmOpPBOo3R+u/HjqH+VESkvRU17bzGukO6WK+CcefmGyFuXvEao4xx0sayuNGN4YnGYrTGdw0/d+wIfR2t3RwaEt/p91JeN3oxsCQU69Qa6haWb9P1MNaxFhHXprWrbT4Gfm6TBrFOa37XI/TJAfklTB8HaTXnSEfCHg1ec36inhinUqjNLBRR01wsY1t67jDWcWjUPK+zyMfB6uADB1AjPVxALa3vo0/EiZt916FzGxlAL4Bfm/48yp+1GFTLJbEn202CcmJUKnzdzDbI98on3W1gtFvyFVH7Gi/hdRURKZXxb7aF9TxAPoRiCcfEWBzr0NqKuuqNm9A7M1FLbEPnnnc2xHv3Y5ljVWyTmTS22XrVvL8nT+Ic49jYCv/tX/8V4gsuuQziDRu3QBxE5GI5eBzb3FNPPQ3xQw8+JCIilYp53ReDWq06Y5yi8ZraStQInc2gzyAkDxDn8YnFUHuepfvU2hQxBtI8Mjqah/joYfTnjFKelibKBzBI/p/+4+inEBEZGhyCOEbj5rJlmFMgQfYpr45+Cs8zz8uycCe6VBKS34XzgfB5VCJ8anUP2z3XY+a8xnljFgPXCsWdzEESd3Ewy1Kes+Zmc4zPuDjHpl3ys3r4PMbjYXsajzk8bPolDvXjM9rYKN7bAo25XvkQxGu2YZ6pDavQw9HW3GWU6XN+j2dxTI3zeBHg59U4PkPGk/jsKyJSq6K3t6uzjT7HMsIA43gS+3I1qv1QHiGHYntG/g87Ko/YC6C/aCiKoiiKoiiK0nD0RUNRFEVRFEVRlIajLxqKoiiKoiiKojSchXk0QkvcSeG+baNAcdxGvdjBw+Za182tqPfidX9TGXzvCeuoSTsxiBr5jk7U0k0cE+vx9DO7IS6RpjmVRk1guczaW9QhBoH5bjZO62OzuSGTQY1z1xb0YKzY/FqIq56pT26yMI/BYIiavsDF84jTna2Qni4dM88jIM9ClTTMiRn7eBFegdPN8p42iU+ut18YR91lycf2aEXo44UkhezrcMj3EaNrWqV11K0ojS35OEKfTRhYiZBMGhbdJ87FwJ4NEZFMBnXT4+PYb1hPzvlAOA/HkWGz7xbKeD1jcdJh4+0QsbHeLU3o8WjrxrXKRUQyWey7IyOouy4WpjXP3hJ5NF7z6ldKPD6hdT1GWvF8Pg+xL6YBp6kZ+20qhW2sWCSfEJk6WLMc5fFhr5FFbe7oEcxrMDSM7T7XhjroahXLLI1hnUVEfMpLMDSEevRqBRtIlnIQsKY+nTDLODSIPqB6Ddt571rUUp979jkQF8axHwwMoE56op7Yp6+84kqIb7v170VExI/wdywGBw8clPhkjqQgZP0+9kmHkxSISJnmvxUr1kBMy+YbPgTHoXwnWTPnDnsUebxhb1t+FOe2sQLGpRL5J3ggF5EmyrGSbsGK+3StxMfxw/exn0VZGLkvVik3VSmPuREOHkDt/8gInle0x489M9zfgxmfzWHwOw3UvfqUj8SjPu+Q/8J1zYtYGEKflRVif6uQb6BObalAz1oHjuKYICKy4zi2l7KD93qd4PPYYBnr5K/ANr5t43kQB0PovRERkRLmGrpwA557j0/PVuPYb/b72H7rcTMPmOXgHFoiT4a42B5S5HEujeO1S6TMfhSP4bmHAT9XhZH/ngv9RUNRFEVRFEVRlIajLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ0Fm8PaWhMQmTSqjNhpBymNoID1aNI1AHpn5YpQcL9d5FsSdFTTrjXv7IF61MmeUEVBiu1IBDTOxOCYtIa+VVGtoHIqTSXFFJxpyRERGyaCUakFT4vItb4B4Yy8mjkqn0Th7YNA0GbtJNMqmyWzrxCh5TgJji4xjPU2mEehkiZI1kTl6pvmnbi2+EW3T+lWSTE4YVWs+3pennsckUKWyaRa2ybzE5knbZuM1vYeTuZLN5CIiLhvqq3gvPTKH+2RiZ3Mvm78TCdMk1kwGYzaYj5BJmZMIemRstdgBKiIDRTTYBWSMdGmRhIDqYMfRmFb3ze84jhzBpG6VMTRP+v70/fE8Thm4OHR2tE0l+STPtWF4HhvHpIUiIoWxPMQ29aNUEs147P3nhGr1iOvA5luh+12j5FLUBKVYxHr392ECrJhjJsmqVHAMfOD+eyHesHEjHoOuXZIXPYhIBtWcxUUPLMFr1U4LgWTJDLmsBxcgcGxzDHviiScg3rBuHcQP3f+wiJgm3cXiue3bZ5hsqd/S+diUYE5EpFLCcfGVr+SEoLg9r2URS+KcnXFM034YYrkjeezH5Uoe4sDnBTJobKHEqamUOQZWKAkpJ5DkxJd1Mh1z8sZkxGIEPCx6ZOYu00ICw8O4mMXYGJrFoxYUsOaYV2fWYSnM4BL6U0kD6x4tgmNcc3MeYbO3BNj+BvJ4zICSOEuMDNEWr0Ii4tOCGdY4tq+B7TiedW3F9lRuxTr4AT5bdCfM+5aJ4/NvJ43jJ47gPs/uwTokVuJzKT8TiojUqL2kKEGiQwn56FFWSuPYXpctx74sYiYEtniSW4ABfCb6i4aiKIqiKIqiKA1HXzQURVEURVEURWk4+qKhKIqiKIqiKErDWZBH48wVaUkkJ3SyJ06if2LfrocgPk7Ja0REci1YXG/vhRB3rkEvw/K1qJVrO3oM4lWdpgbwwFEs9xVXYTK847vvhng0j5rcpu5zIV636VKIVyfRJyIicv/DD0J8xrk3QJxdjglfujKoWV3WgRrBwrj5/heLoT456aFWjhNeJcmzUackgJ0ZU2dY93CfJGX9q804Ri0iadLpJpmIS2pSh7i1dy19hnrFR5/aa+xfJt+GZeH5eQG2N058liLdbsw271OFk6WRxrRawSRjIqibDDhhURX19qwDFhEZGUW9Z0hJJsNw9nsVku7Sj/j+IQyxHqyhTzqz+z4KQ5jcboQSN03sg36qBGmz/XD6Hvv+0ng02jtaJZWc6K/dyzDx05at6EOI8miUSUs+OIiJ7dgfUSpx8kVso7WIxIWc4KxaoTYWsC+I2xjWYZwS3QURl96hBK5BgGWmUqQ5HsX2kaXEqU7E+LJl8waIW1pQr93UkoN4z65dEKebWqhMUwftkX/lZB+22+Skx2+pEvad6OsT25non2ShM7wMiTiOiSIi66/ZDHF7O7Zhx8GDplJ4jCDAMritiYiEgnOwbfMxab4roL6d8sAZc1tp1EyYVijQ38gi6sRpPiTvHCdGjUf4QLw6JQH0sKKdlEC4owPjfB7ryF66+bH48+5M3JgjsclraVmzezKW0fgoYiYSLuRxfIsF2N7iCfRZJajPdizvMspoasaEpM88ic8CYwN437ydGG9uoUTQ6/G8uldQVksRWe1QotWRPMQ/PYgJ/XYGeG2aqf2m6+Y837NsOcRBgGXG4/iM6NVxoLYFPRyckFhEJBGnxM/UL2YmFF5IS9RfNBRFURRFURRFaTj6oqEoiqIoiqIoSsPRFw1FURRFURRFURrOgjwaZ60KJZ2e0KvtpbXZRzOo2BoeNf0Tl1x2HcTbzv81iIslXNc3mySdL62L3tPK6ziLZLJYD09wnx/1PQ5xdw51b2dc8CaIW1ecC3Fi5EdGmbnM0xCv7kHtcDKH73Mbl6H+M5XGOm+qmTlI4oI66Vqd1kyu462MUx6NTtxcervNMla0oma0UCMddWL6/pTLoXzbOMLpxbJtsSbzN9i0ZvzGdasgTifNNaIfe3onxCMFbF8xygXhka+FRYluxFrrcYHaxTUAAOVLSURBVF5nmrwMrKt2aliHShnvs0drpbsu3UgRsej7glQatZpNlGdjqB91sRZpqB1j7WyRgPXJNfJPNWF7aqZqjnPuBss8j7KNGvoKXcrRwnR7XIIV5CcL9ib+FxGbhs9kCs8plW4396f2sGF9L8Ss/ec8Kuy3ifKq1Iw2hde+UqlRjG2uVMb2USxiPDSIniARkXHDF4JlsmcjGae+VqP96RxERJpp/K9VsQ2WS3ge23fsxu09bMNdHWZOpHQSx+bxcSyjvS03Ud8lyuPiB/6Up8oijTaPAx0d3cb+l1yCnsOmJhwbuD3Va3jNikW8r7WqqSUPQrx3Do0vnCeD/RF18giNjaOHI8oXUvewHhb1k2qVciiRvyDXgmOPGzfHdk7pUKL5I0HzwbJlyyDevx/zBEWNYi/Ot7F4xFxnyjNTr5EHgPJKdXaa/onBQfSn1snw1dmZgzgRw/7oODg+NjebPiS3jtd9+AT6iXfvx/YzegLrcPixPNZpNR5vc7d5XmOD+GyRHcU2vG0NjjX1Kj6fDFD7HCqb/r5a/wmIi8M4Li9rQ29JW3sPxHF6JmKPqoiIb+RmwX7kzPCBOY75DPlC6C8aiqIoiqIoiqI0HH3RUBRFURRFURSl4eiLhqIoiqIoiqIoDWdBHo0Vy0Ykm5nQrDbTutTeMdStrdy42tj/hte9Egt3UeM4SvpPl7Se7WnUy6aT5hrybbT8dSyOWsxHcvS5jTq2i85eD3GJNKjdHZi/QUTk+OEVEK9uRw3zGZvxfS6XIh12DLXFHRlT/+uRBrVGa3gPFfBaZBKo08+mscxU3NTW+t2o4SuSTjCVmD6P8ZKpoT7dWJP/iYj4pMENKTfAulW0FraIJGkt/8eexZwofSfyELNXwQrJExSaGkVeh95xaRubdJLUBwLS7bIWPEpXmUqRdp1zcdSwbbAKk3XBUTphi7wFfoj16BvDMkrUD+OU58Tjhe4nCuZSIYrN0Ota1tJo5B1n4v+JOlD+EUoAYMfMe8V+GN/H68aeDM5BwJfIts1cEKwVz2RwLAhZ20/3NiCdrsc+kND035l5JfAYo2OYW2FkDNeNr5C/ojSGunwREYcMTn6IsR1DjwzngxkroDY7ETdzYYSkGQ/pvLom807U64s//olMWHxO3S6+b3zNzzzzTGP/7m7Um3NfT5JHpVzGMW90DOc29smImNcmQceMU36P8XEcC8h+J46NbUPM5ich5SOKJ7EtcL9JUH4QJ479yI7Qn/t0XqxRr9U4TxPnOcAyKpWF52KZeUjj9i8C46NlkckuUi1hX+GcQIMDZi61Iu3T0ob5JLwqXuOqh+0rRbkfxovmNWxO5SB+zZXoS8qk0VO7Yy/m3eg7hHV46MdHIN6cbTPKdEawHn3H8TzTafRoXLcKj3GQch09eRDLFBEZo2vXs3wlxPUC1mFoGP0wOfIMSYQXk+dcn3xtMx9nIqaBF0R/0VAURVEURVEUpeHoi4aiKIqiKIqiKA1HXzQURVEURVEURWk4C/JotMTHJBuf0Imlc6gX68ihBm1la6+xf1sKNbK+YJxtRy1npYI63eY0lplwSQguIkEKNWbjPr5LNWdRWNa7Ej0Zq5ehVi4U1F22ps0yr7x0G8TFSh7i9cuHIK7SuuCxOApIY4GpP7dJMuqQHtm1UfOczuD9aEqQp6FuamuFvCKdbagp9f1pzV8qbq5lfrrxg0D8SS9GSBp/m/SGgZjazVXLURfJeQ8efGwXxCdP9GEZpElkL4SISJ3l7FxP8nDESIPPuTo4N0ChYK6vzV6SIuVBKFFuDsvifCF4HjY3NjG9Ba6F29TJrzJM2s4knVgYoQ+1HPob+XDsGdfSjhJqLwJ+4IsfTFwvyzgH9l9E+EiC2YXVIensbYt9K+RL4PYTAd9vMY5JJdD2LiUQYD18VD3Ym+S4mKegrT2Hx/TxfjrcEcTMjVCn7ufR52dQEymR38Cvmz6QkO5ZpYxxMDmfVKtV+eGPjd1POxP+mYn7Zzt4gvEE+r96e00/IV/WCnkQeRzNZvGYtuD1GC+a41HgY/vKpslDxvkXnBzEDuVjSLO/MIXjm4hIMoXzsu3wfED5iMjHZFMbN3IoiUhAfh2HchqxR4s9FPPpq3yDInrBjH8tfs4Ny7KnxpPWVpxP6zT5RXn9OtrRO5kl/06J2hN7t7JJfK6JcXITERkPKYcPtemt2zZB7KbQw7Zr7zGIy0M4Tjz00weMMqsZ9Px0ZzGv184D6F9J96EvZNsK7GfnZbHPiIg8lyePkODzWS2B+9jUxtl/lUyZOUjY38f3MJjhhQ0WYNLQXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEazoI8GoFXkcCb0LuFIemPXdR7JdPmob0q6u8sWjDbjaHuP0UaVCN3xMmTRhkJ0tv5Fq7lnCYfwtlbMP+HVA5AmM3gefgR3oaVPe0Q796HGr96fQDiVAb1y34Vr6VjR3g0eM140hIvb0dt3WgR1zsvk77U8k39pBvi9XdiqOmzZryXWkJrmy8Kgcik98LmvA60pR8hH7RY1E3XIEn6xIC6B9kOIpTqIqFDOl3SMToh1oG1wyHlXkhnsV/ViqY+eXgI74VPZfi0FjlLhTkHCddJRAyxsEVabdb1s3+hxnrdwPS32LQNe0/cme1xKRaRF5HQsiWcPNeA1xwnjbLlmN/jGF4XWoufZa++0bJfWDM7VYbF3haErzNfS9bIM2GUx4P+ZlF+EIs07wH5KRzKHxIh7zZapeFbo/wfvH02TbkSrJxRBuvwpYV8IZNjSKVi5iFaHKY9GtwDUknUeWfIpydiaq7LZfJN+jhWZJKUb4I8HbVR0+fSthLX9/co/0S1jH7CWAzH3eZWnHfYI9Tff8Io03Hx3lbHcZwslLCeIXnMsk2kV4/KJZSktkA5H4qjOOf6Hvs958ai3mrmSpnh0bAW36eWzWanfDvsOWF9fzUixwqP+xb5A5upzfI8X6b5r14zZ+HQpftEZTS1opdhy5no0+V8PCOF4xCvX2nm0RgbyEP87PZ+iAdq2D7r1D4PHcF+uGbjGqOMoyfwmM445slobkP/S1s71jOdxvGBPRsiIrEY1pPzOs1sj1aEg+iF0F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGo6+aCiKoiiKoiiK0nAWZAYfLVTEm0w4NV5CM8tgEc1WXSvRVCIiImTujDloj6pX0dQai6MpR8gkPV7OG0VUyfAbz6AB5hVnboB4wxpMJOXV8DzY8OVYVCcRyTXjMXqW4zHGxtCQ3pbLYRkBGYht0zYWkME3JDNlrYbGMDZRVckdPR6R+C1nNUNcqmC9nRlG5fHS4pshLScUa7LNuDa2LyN5WkQyGZuuWaWEZrVUHI/ZuwpNjYODaPYbLZpJC0PDNE1JtWgRhVoN3/UDygqYSKBhKx1Hw52ISLFAbZYSQrrsmuWYjNx2hG0xoMUH2IRssUGY/cbcpqN8ZDFKVhfnpG/T7c+qL36yKhGRMLAkmBwD2Qxpu3Mn02OPKfdjjk0z6MLP20wcSNeZ+o5PCUN9NllzYkURsak9hGQGD8kYKxb2tYAXAnDN+YNN6IFH5nvanpP+cZtlQ3AUPi9acMqAuwRGXBFMmMaJGM/YfCbEF154kbE/G0BL43hfONmezwtm0AIH4bhpBmcTcKmC83oxT2bwNBqxM004DyWTOOZ5VTOZXqWAzyN+HbeJk6E8TsZlNsFGLVZRo8SnVTIm1wo4X1ZLsy+YEpUYNU7G+DoZ6WfuE7UQxOkmM8MMHqfnMzYbR5nBeUzkPluv4X3z6PnLjWP7rUW0hRQ9V1Y9fFbhuSqfx2chj56VKlV8vluzyjSDD9mY3DcYx2eF1lQO4nQK7/NAP7adQ8cini1CNMp3WbjwkR3gteWFHFKUoM9o8xIxp/H9mjEfzS8B5eS2895SURRFURRFURRlnuiLhqIoiqIoiqIoDUdfNBRFURRFURRFaTgL8mjk84WpBCkn+wfhs6ZmTIIST5j6w2oNNXuekI43mF3HXauQJjcwE45UyDvASsu2FkrCVkUtXLnCCYzwXaweoQ2v1PBcmzN4LVyL/BWke61WKWFahL+gTAmifNInt5Cu1SEdokO6w+YM6vtEzORNLmv4/Okb4nNiq0Xg5MmCJBIT5x1z8XxYS2xbZv0oN5r4Ht7bzpYcxF4WjxkjX0hh/KhRRnGMNLWkoy7Ru71vZBbEz6lpScw2PRrxBPuG8N6WOCmXIdmnOoUR+mTuuz4nSuLrP3sCP9aXi4i4AZ5HEOK52t50f/e8ufX1pwPP98WbbPs2Nygav6JyCnLCNPZkmP6J2RN4mR4Ocx8jASPpz8M5kh+GnFQyQhoecCKucPbzYDMT+0g8TggrYswHnGgypA3CAO+PYavg+xdJdILEpdDHi0z0q+lrSZ7HGCXNTaBmXkQkCPi+UB8j34rt4OctHahPj9t7jTKGDh6GuEL3Nkb+G259Hs0t7BuJueZjC98Ph8ZETnzKCSL5ulSrZiK4Ks3B7Fvj1uTRs0SMvE0e+wplIiHeTHi8mHktJuYOTAZ8uom57pS2n8c/9r2kPbMPhzbPNezTxWdCn5LtpZrxOYd9WiIibgrblx+SZ4h8RbnWVoh7elZAnB+jZI9V05fU1Yt97cw2rFelzol7sU5Nbdg+R/JmGUnqi6k4ltnZicmnV/X2QNzR0QFxJuIZkOcTbn9R88180F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CPBr1elVqtQmNlkNrQHe1t9PWpnbOJ113Iob6u+FhXM/YcrGMkRFct7peNf0SmTRqMytjwxCn4qwlJ60/aekGhlBn6UmEf4J8Hss6UGdpkwa+TOtvn8pNcgojJ4GI8J9YY+qS7rUe0jriSfzcccxbX/dQNxijvAAzq7AUb6j/8e8PieNMnEc8jnrDMESNoyXmGtGmupBF39Zsn7IEX8bLET6XCueoIM2jcBncnig/hbH93Jp8bj0emzKMJjy7LlPEzCdgbEMNNKqe8HnEx+yrsSzycNnTa40HgamhXgzCMJw6d3ONe/bfzO1j4rXMWQPrca6IeWhknbm8B9T3zbXTSadv03lEeHjYghF36Lyovfg1aj+UP8YPzftrOew1wbhSpfwf5H8KAz5vs53PlaXk1OV/kVLll4xlOzPuF/t9cNt63Zyr2BPkkQa+RnO0RfOjm8AxL5s2fZIn9x+EuJ/05t3rMJdVWMM523ZpvEpjnTPkYxARCaiv8bODQ3GphHO2RX0mljL9LVkey6nMSgHzg+Sa8RiX914A8b79R4wyRkYovxV52Rx3Rh0ifIinm0Cmpw+2l/E1tqLyLNA1dIX9NzR2cZfn/E1RlaRigwDvQzKeoc9n90l2UT6QIuVLERGpUHtq4VtDFfXreMxyBee68fGIPGV0wdMZzKvR0oJek47OHMTNzeThSpp9l+csM1/WdB2inhNeCP1FQ1EURVEURVGUhqMvGoqiKIqiKIqiNJx5SadO/URSKk//3FMu408/dfq103FN6UqR5DtBDHcap6Vp+efPEpcZIZ1iCUeVfvbin9+LVOZ4iZZCK/OSvObP0Ra9r42XSNYU45+f8Lzr85BO8Xnwz5aujT8/1+skO6F6s/RNxLz+Hi0rGM44z1PbLuTnsxfLqTJmymV8n86P5GmmJKnx0qkgqAoTBFgvUzrFNeC/LFw6ZUifjDrR77gvQjrFx+AlT1m38WKkUywFMKRTMn3/T7WFxWh/M8upVKbvuSk5mj2OgqUrc0mjGiGd4mrNJZ1iWUrU+rY2yak8WspzodKpYF7SKdynUsM61GkJZJ+lUxHSNkPISNuckhacageL3f5QyoBl12rYX4pFkuGIiOvifeF5IiC5WUBLTlvVMsSlsinxqNBcVaV68VLtnoX3JSS5kBvH54ZyGesgIlKpzP7swEuxGtvT53VjDXARr0LnRUux1khKWaeHIqeGn3PfFzGlKyy1nTlWn5IGLuYcXCxOS4R4GX6bxqYgsl48V9HyvTy2GF2e55kIDOkUjU3UHueSTnFahvHxiPZX5mcn2mAu6RS1JX6+FhHzoY+W24/FsF7FcZIkklSUUwKImBJpZuZz46m2MJ/2Z4Xz2Oro0aOyatWqOQ+mvPw4cuSIrFy58rSWoe1PeSEWo/2JaBtUotH2pyw1OgcrS8l82t+8XjSCIJDjx49LU1PTi07YofxyEYahFAoFWb58+by+uX0paPtTmMVsfyLaBhVE25+y1OgcrCwlC2l/83rRUBRFURRFURRFWQhqBlcURVEURVEUpeHoi4aiKIqiKIqiKA1HXzQURVEURVEURWk4+qIxg1e96lXywQ9+cKmroSinhW9961uSy+Vm3eZTn/qUnHvuuVPxO9/5TnnjG994Wuul/HJy8OBBsSxLnnrqqaWuivILiM7HymIQhqH8/u//vrS1tel4dZrQFw1FOU3M58H+vxof/vCH5a677lrqaiinEX2AUxRFmeDOO++Ub33rW/KDH/xA+vr6ZNu2bUtdpV865pWwT2kMtVpN4vH43BsqyhKRzWYlm80udTWUJSQMQ/F9X1xXpwdFUX652bdvn/T09Mhll10W+bk+t710Xra/aIyPj8vb3/52yWaz0tPTI3/5l38Jn1erVfnwhz8sK1askEwmIxdffLHcfffdsM19990nV155paRSKVm1apW8//3vl/Hx8anPe3t75TOf+Yy8/e1vl+bmZvn93//9xTg1pUHceeedcsUVV0gul5P29nZ5/etfL/v27RMRkbvvvlssy5J8Pj+1/VNPPSWWZcnBgwfl7rvvlt/5nd+R0dFRsSxLLMuST33qUyIiMjIyIm9/+9ultbVV0um0/Oqv/qrs2bNn6jinfgn5wQ9+IJs3b5Z0Oi1vetObpFQqya233iq9vb3S2toq73//+yGT7FzHPcX3vvc92bhxoySTSXnta18rR44cmfqMpVNMEATy+c9/XtauXSupVErOOecc+dd//dcXeYWVxead73yn3HPPPfI3f/M3U+3yW9/6lliWJT/60Y/k/PPPl0QiIffdd1+kbO6DH/ygvOpVr5qKgyCQL3zhC7JhwwZJJBKyevVq+dznPhdZtu/78ru/+7tyxhlnyOHDh0/jWSq/aMw1H89nbPv6178uq1atknQ6LTfeeKN8+ctf/oX7RVlZXN75znfK+973Pjl8+LBYliW9vb3yqle9St773vfKBz/4Qeno6JDXvva1IiJyzz33yEUXXSSJREJ6enrkYx/7mHjedPb3QqEgb3vb2ySTyUhPT4/81V/9lf56PMnL9kXjIx/5iNxzzz1y++23y49//GO5++675Yknnpj6/L3vfa88+OCD8p3vfEeeeeYZefOb3yzXXXfd1OC2b98+ue666+Q3fuM35JlnnpF//ud/lvvuu0/e+973Qjlf+tKX5JxzzpEnn3xSbrnllkU9R+WlMT4+Lh/60Ifksccek7vuukts25Ybb7xRgiCYc9/LLrtM/vqv/1qam5ulr69P+vr65MMf/rCITAxujz32mHz/+9+XBx98UMIwlOuvv17q9frU/qVSSb7yla/Id77zHbnzzjvl7rvvlhtvvFHuuOMOueOOO+Tv//7v5Wtf+xo85M/3uJ/73Ofktttuk/vvv1/y+bz85m/+5ryvyec//3m57bbb5Ktf/aps375dbr75Zvnt3/5tueeee+Z9DGXp+Ju/+Ru59NJL5V3vetdUuzyV8fdjH/uY/Pmf/7ns2LFDzj777Hkd70/+5E/kz//8z+WWW26R559/Xv7xH/9Ruru7je2q1aq8+c1vlqeeekruvfdeWb16dUPPS/nFZq75eK6x7f7775f3vOc98oEPfECeeuopufbaa1/whVdRTvE3f/M38md/9meycuVK6evrk0cffVRERG699VaJx+Ny//33y1e/+lU5duyYXH/99XLhhRfK008/Lf/zf/5P+cY3viGf/exnp471oQ99SO6//375/ve/Lz/5yU/k3nvvhTb8siZ8GVIoFMJ4PB7+y7/8y9TfhoaGwlQqFX7gAx8IDx06FDqOEx47dgz2u/rqq8M/+ZM/CcMwDG+66abw93//9+Hze++9N7RtOyyXy2EYhuGaNWvCN77xjaf5bJTFYmBgIBSR8Nlnnw1//vOfhyISjoyMTH3+5JNPhiISHjhwIAzDMPzmN78ZtrS0wDF2794dikh4//33T/1tcHAwTKVSU+3xm9/8Zigi4d69e6e2efe73x2m0+mwUChM/e21r31t+O53v3vBx33ooYemttmxY0coIuHDDz8chmEYfvKTnwzPOeecqc/f8Y53hDfccEMYhmFYqVTCdDodPvDAA3BON910U/jWt751PpdQ+S/AVVddFX7gAx+Yik+15e9973uw3cx7f4oPfOAD4VVXXRWGYRiOjY2FiUQi/PrXvx5ZzoEDB0IRCe+9997w6quvDq+44oown8838lSUXwLmmo/nM7a95S1vCV/3utfBcd/2trcZ46+iMH/1V38VrlmzZiq+6qqrwvPOOw+2+f/+v/8v3Lx5cxgEwdTf/vt//+9hNpsNfd8Px8bGwlgsFn73u9+d+jyfz4fpdBrG2pcrL0sR7r59+6RWq8nFF1889be2tjbZvHmziIg8++yz4vu+bNq0CfarVqvS3t4uIiJPP/20PPPMM/Ltb3976vMwDCUIAjlw4IBs2bJFREQuuOCC0306ymliz5498olPfEIefvhhGRwcnPol4/Dhw5JOp1/UMXfs2CGu60Lba29vl82bN8uOHTum/pZOp2X9+vVTcXd3t/T29oJ/oru7W/r7+xd0XNd15cILL5yKzzjjDMnlcrJjxw656KKLZq373r17pVQqybXXXgt/r9Vqct555833Eij/RVnoWLVjxw6pVqty9dVXz7rdW9/6Vlm5cqX87Gc/k1Qq9VKqqPwSMtd8PJ+xbdeuXXLjjTfCcS+66CL5wQ9+sAhnoPyycf7550O8Y8cOufTSS8WyrKm/XX755VIsFuXo0aMyMjIi9Xod5tCWlpapNvxy52X5ojEXxWJRHMeRxx9/XBzHgc9OPegVi0V597vfLe9///uN/WfKAjKZzOmtrHLaeMMb3iBr1qyRr3/967J8+XIJgkC2bdsmtVptqh2EYTi1/UyJ0kslFotBbFlW5N/mI+NqFMViUUREfvjDH8qKFSvgs0QisWj1UE4PPFbZtg3tWwTb+HxfGq6//nr5h3/4B3nwwQflNa95zUuvqKIoymlEn9say8vSo7F+/XqJxWLy8MMPT/1tZGREdu/eLSIi5513nvi+L/39/bJhwwb4f9myZSIi8opXvEKef/554/MNGzboCgW/BAwNDcmuXbvk4x//uFx99dWyZcsWGRkZmfq8s7NTRET6+vqm/sbrb8fjcTBri4hs2bJFPM+DtneqrK1bt77o+s73uJ7nyWOPPTYV79q1S/L5/NQvcLOxdetWSSQScvjwYaPNn9L5K//1iWqXUXR2dkL7FsE2vnHjRkmlUnMuh/wHf/AH8ud//ufya7/2a+rlUQzmmo/nM7Zt3rx5Sl9/Co4V5cWyZcuWKW/QKe6//35pamqSlStXyrp16yQWi0GbGx0dnWrDL3deli8a2WxWbrrpJvnIRz4iP/vZz+S5556Td77znWLbE5dj06ZN8ra3vU3e/va3y7//+7/LgQMH5JFHHpHPf/7z8sMf/lBERD760Y/KAw88IO9973vlqaeekj179sjtt99umMGVX0xaW1ulvb1d/u7v/k727t0rP/vZz+RDH/rQ1OenHq4/9alPyZ49e+SHP/yhsVJKb2+vFItFueuuu2RwcFBKpZJs3LhRbrjhBnnXu94l9913nzz99NPy27/927JixQq54YYbXnR953vcWCwm73vf++Thhx+Wxx9/XN75znfKJZdcMqdsSkSkqalJPvzhD8vNN98st956q+zbt0+eeOIJ+du//Vu59dZbX3TdlcWlt7dXHn74YTl48CBIApnXvOY18thjj8ltt90me/bskU9+8pPy3HPPTX2eTCblox/9qPzxH/+x3HbbbbJv3z556KGH5Bvf+IZxrPe9733y2c9+Vl7/+tfLfffdd9rOTfnFY675eD5j2/ve9z6544475Mtf/rLs2bNHvva1r8mPfvQjkLooyovlD//wD+XIkSPyvve9T3bu3Cm33367fPKTn5QPfehDYtu2NDU1yTve8Q75yEc+Ij//+c9l+/btctNNN4lt29oG5WX6oiEi8sUvflGuvPJKecMb3iDXXHONXHHFFaDL++Y3vylvf/vb5Y/+6I9k8+bN8sY3vlEeffTRKVnU2WefLffcc4/s3r1brrzySjnvvPPkE5/4hCxfvnypTklpILZty3e+8x15/PHHZdu2bXLzzTfLF7/4xanPY7GY/NM//ZPs3LlTzj77bPmLv/gLWIFCZGLlqfe85z3ylre8RTo7O+ULX/iCiEy0rfPPP19e//rXy6WXXiphGModd9xhSKMWynyOm06n5aMf/aj81m/9llx++eWSzWbln//5n+ddxmc+8xm55ZZb5POf/7xs2bJFrrvuOvnhD38oa9eufUl1VxaPD3/4w+I4jmzdulU6OztfcKnZ1772tXLLLbfIH//xH8uFF14ohUJB3v72t8M2t9xyi/zRH/2RfOITn5AtW7bIW97ylinfEPPBD35QPv3pT8v1118vDzzwQMPPS/nFZT7z8Wxj2+WXXy5f/epX5ctf/rKcc845cuedd8rNN98syWRyqU5J+SVixYoVcscdd8gjjzwi55xzjrznPe+Rm266ST7+8Y9PbfPlL39ZLr30Unn9618v11xzjVx++eWyZcsWbYMiYoUswlUURVEURfkF5l3vepfs3LlT7r333qWuivIyZHx8XFasWCF/+Zd/KTfddNNSV2dJUTO4oiiKoii/0HzpS1+Sa6+9VjKZjPzoRz+SW2+9Vf7H//gfS10t5WXCk08+KTt37pSLLrpIRkdH5c/+7M9ERF6SJPqXBX3RUBRFURTlF5pHHnlEvvCFL0ihUJB169bJV77yFfm93/u9pa6W8jLiS1/6kuzatUvi8bicf/75cu+990pHR8dSV2vJUemUoiiKoiiKoigN52VrBlcURVEURVEU5fShLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ16rTgVBIMePH5empibNcqiIiEgYhlIoFGT58uVTGVxPF9r+FGYx25+ItkEF0fanLDU6BytLyULa37xeNI4fPy6rVq1qSOWUXy6OHDkiK1euPK1laPtTXojFaH8i2gaVaLT9KUuNzsHKUjKf9jevF42mpiYREfnd3/1NicfjEzu6+Fbb1twCcUu2yTiO42BsiQ9xIp6AOJtOQ5x0Y3g811yZ13Vmf9sOQyzToUq5NlXyRcArBnMchAHElUoR41rFOGYijtfTdeMQe54Hcb1eozJD+hy3FxGp1rBeVdqmXJs+ZqVSlU9+/n9MtY3TyakyHrjjnyWbmWgTlpuEbXxSAdbLeE1FRJwk7nNoaAji//W/bsNj0vVobmmGOPCxLYmIePU6xCHda/HxmtZqeJ/4PoYB7u9V8fiTG2G9AnOTmVghluH7XOeIFa/pT16A516h8/CpEjZ9C8b9bqII/NtsK2/7fiDP7d2/KO1PZLoNfuaLX5JkKiUiIuNjedimJYntw42Z7WOoVoWYu2Esi2OeZ+G9KdbHIa7VzPEuaeM4uXrNGohLYzTeFDFeu6IH4lwH1imommUWCjhmZeLY144cPQpxldpPSzfOHyMls//Wq9jG2nI5iP0Ax4Dh0QLEPPYHNbMvNeewHtzum9NZEREpl0ryR29/56K3v1f8wf8WJzFxP8KA2xfNO1x5ERGjT9FgYewy1+dRZcw+ABn1mj2cH3PuxNdm4Vi0E3+HO9cxLZnHLwG8CR90xud+rSxP/e8PLOoc/MwzB6bLC3DwsqnuYWieLz+X7Nj5HMS1egni3t5eiFspJ0UY0Ye9cTxGlcaSgf7jEBdHR/GYHvYrn+b0aohjuIhIUw7H/piLj9b8jb8bS0GcbeqEuG0ZjtkiIm4Gx2Huy9y+eP60LXpGquJ1EhH5yR3/AfFjTzwJceey5VP/rlar8ld/+1fzan/zetE49VNZPB6XRCL6RSOZxJeEFD3UiYg4VNpcLxrpFN6MVOyX80XDsanDRlQhmcDr6bp4rTwPO0Otho3KeNFwzRcN26GHQ4c6MY8kIovyM+qpMrKZtDRlMxN/m+NFo2abbcNJ4T6ZShniGLUvm+5TnD73I34uNOYJnnRtHgzwc94/4LcGf+6JPQhmn/KsgAco3H8+LxpcUcexZ/280S8aU8Us0s/4p8pJplKSmhyXfPpCIEXjVdSLRpLGJ+5iMTqGZ+GgWXfxmFbEeJegF40UfWETeNym8JhpmtAyk31uan/XLNMP8N6l6UWDr41FD8kpKrMs5rXjNsPnxS8ayTq/tNOLBk9IIpJM82SOIddzsdufk0iL+1/oRSO6jJf6ovEiXgNehi8aU39axDm4qalJmpsmH6pfxItGjV40MhkcW2L0xUk2m4W4qQkf6EP6gktExKMHqDjdqNI49uGQvxykFw2PynBCc97P0Lgx54tGnF40jPM0H95jNA4bLxL8okHzPNehVjHHPx6nT/2wcIpEwnyun0/7UzO4oiiKoiiKoigNZ16/aJzCtu2ptyKbvsG06dsmK+Lb3iDgb5gwdukt0PhlgL+ViNCI8Hc8jkv1srhe+DYW0Fs4f9s7H+b6RYNjfiOMx/AtUsT82Yu/HXHmMOMY3w7P4y2Ut7Bm+WwxGK8FYlUn7odFEiSP7ptXMn8WtKr4C0atQr/q0LfHHv2MG9CvRlFXPB7DY7jUTxIuxiWqZ7WKP8vytxKliDZfq+J5BCSF8vgbGvpWieOobygMsxd9fWV8Y0N9mb+NjvpFIwjxbz590z6zRG8RDLhRPHt4r8QTE78mPvrc4/DZsmwXxMtb8RsoEZG6T/eXPj9Ww3s5TBscH8Kf/et5U2bJ92LdurUQb1iDetoUfVU7XB+A2OrD43W3mlrtIMRfUfp24LXZ89QzEGcT7RC7XfgNnp80pya7jv2XL15/Cdv9wWPHcAM6ZK1ojhG59jbchvpGT8fEPfaq5jepi4HtOFNzbWj000b8osGfUz+bh3QqnOOY5iFe+q8N85J0vfjNRcSc817yCDSfXyJm+UUjiBhDTzeJmCWJ+EQl+FfMkK5QhABCnn8Wx4FvfeOrEA8cPwzxJVdcDPGrXnstxMUhlD2JiAwd74f4+OEjEJfKKKmslnEc8CrYt5P06+xA3pR1sgyF1REu3atWmhvO2HYGxGvGR4wi1m85B+JUGmWelszeHnheOHRgr7HNof34t672Voh379g+9e96PULG/UJlz3tLRVEURVEURVGUeaIvGoqiKIqiKIqiNBx90VAURVEURVEUpeEsyKMRdxyJT2rN4rTUrEtxpBPdkH+yz4A0fnMcIAjNlUks0uqzfp1XZ8omcbUAJ46XhFdrijYnsK9jdu2lTRLWOK1+4kZp5OlPFumqfdqAvQG80pUVuaKPUQiFVuS/F4vi2KiEk/4Di1bdqtaxLdRKpnbTo+Y+yitz0ao11Srp3wNckSFqBYYErbYWJ4+QTfrlVAL9OLzKVJ1WvCjw6k4iUhjDezkwiOdeKKAmtU5L6PJStDHqyyKm14k9GNxWWKNq+q1M5mpT4Qv8ezGJN2UlPnmPU8txqcUxG9tkiZa/FRFJ00p59TJ6NvqK+PngGC5n66bIz5XBMkVERgZQ37tn+/N4jDIec+UyXFpxeGwQy6AmN5hBD4eIyDC1IZdG77AdPRirl6NHY5TGs0LV1BvHaOnZw4exHid4FbkEXhsrwL5k9G8RKQ6PQcxLj8cm26gfsazmYmDJjFF6riE4aoznpZM4nGPVI+6ikUXw6jfG53MdlI84HwMF+yBn39xYMepFLAi10EHILCLK38Jz8AuHS+GTrA3tklptYoUkK4X6fUlhnx7O4/LxIiL/987vQdx3+CDEAfXJe3/yE4hPkIejrcNcBnZ4AMe3kJapT9GY6fm8eh2tGBXinN7Rg148EZEY+TjKJTyPJkr/YFk47g+R1ySW3G+UcZjO/eLLroa4vX0FxIFPS+OT3+zQQdOjsW/PLoibWrDe6cT0uFzjB9lZ0F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CPBox153KeJikLN7sM4jUW3MuCGv2HBfsQ7Asf9bPRUTGS6jPGxpCvXHfMK6ZnM1ipslta3GN+XQateZehC7TNvShs6eC52vD2ciDKHvLHCJSPibHNVr3nXMrTDC7z2apPRrjpWkNtkUZkkdpTfzRIrYDEZECeTIKFbwvxXHOYYFeBvZbpJNmvpN0GrWanCHUr6N2M6CbHaeMoZUK5Z+I0PUmYrhNrYZa9fwIamUrtE44r8cfpbx0KAsx+zqMPBsGc2uoLfIZeeQlmdnmAj+q/Z5++kbHJFaZaCd9/Xn47Mz1qN0dHaM8LSLS338C47FhiMfQTiN+Ee9ltgXXX29fvcwoI7eWNMfcPmgQ238C65Ruo5wWNHasHjf7/uptGyCukodq5/g+iEdy1E8o/8y+p1ErLCKSH8axfJjG8nQLemY2dKNm+WQfapzPOPtso4w0+UBODpAfZXyi/3r2EuXRsK2pvmbmZ8Jto8Zo9gAYc5ORA2N2/0T0NMDGD+7ss/tEzGPOsb9EzbFR9Zrx+VzelCgMs8nsJg32qsxrxpxzoxkbLEEuoaOP/71k0xN9u6kd/RHZZVsgrpbN+i3P4pw5tgLHr5ECztuFYh7iShHH/WWXnGuU0bEc2/DR53dAnOlAL0lLF3pNavQM6dA8tPnMzUaZCRrvnn4C84UsW90LcVXITxbSOJ/G51IRkTvuvB23oSzpF12K2cVtykvVd/QgxM8/+7BRRqYJ55e6R5nc09PPJ25t/s+A+ouGoiiKoiiKoigNR180FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CzOCu60yZW9kY65AvJCKvmDhsGCczU8zlBGpo/AnIjeV75JwUkUoJzXs1HxMrrVuHyamO9aPx55lDJyE+Z30PxAnXTCQVBpRI0DC+YmyzOW4++Yi4zDkSCbI5l5NTDefNhHbZJjRJ8TGW2gz+6O5jkpxMllakRGdDeUy0NVxAo6iISKGMda6W0Oh0/PAxiDeuRLNVkky1cdds5AlK+Og6uE+V8nyVSljPahlNYQ7tn4ybBvQEGc45GWNxDK9N8XgfxHXa3q+bdnBeqCFGfTMRw3qZCwnwEc0yaE2EWc3g/hKZwceGRsWdvAf9B/E6ru1EM3iMktSJiIxQMrzm1esg9k6gcT+2sg3itIMm6raUWUZHDk2BJwPsK61pXHBgvJKHuE5j3HAdF4no4+yhInLtOjSC2jHc5uCuZyF++GdoRBwfRVN8opuSgYmIU8A2Zg9iuy5Qsr2mDRshLo2j0Xv3sQNGGfGT2Bdam7uxzMLkmFFfooR9ljWjH8w1Bs89Rpv5+exZP+c/GPPQvJh9bHgxx+TxxjS5z1aD6AVYzELm/ANgzA7zOS2joi9sKLcj+uHp5gc/f3ZqjmuPPwSfve7V2yBuyuCiFCIirzsXx54zOnHBhn/76XaIBwZwfqzTQhaxJJqXRUSEkjLbNIdm2nGc7liFCwBVijiO+OP4jLhq8yajyHZKyHfoyBH8nMaz4/10XjTnNufM8W+orx/iO/7tuxAfPowLbrS34eIYgY/z6a49mMhVRKSrYznEA/04X1VmJP+tLWAM1F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CPBqOHYpjT2jkOHmeUMxJ7EREXBc1hex2iFmoU/NJU1atYXU7u81kVa0tqJVLDKDmuWdZjuqJut8dh9G78NDzqLV7xTqzzOYUJ/UjjwZtb4UBxbP7LSaOgfsElGGIFe/skYmR7po9GyIi6QxpG228NuGMMwnnJThtLP/00yfFdieudd2n8sn/E0TofD0PL4pTRe16Tyvq4VetJM09XVT2T4iIuLRNja7z2Bi2r2IBfUblCm7vkE+mOYv6exGRZAJ1+xnS4K9cjrrLk8Ooh2cPR9R5zZWQz54jERj3ZdfFPiMiEnjYir067hOLTe/DCQMXi5aWjMQSE8mZulejvngkQM9PYJk+qLXnnAlxjK5rrjsH8QqKR0/iMU8exmR7IiJdKfQWNdEwH9p47RKUZLJOY8tyqkOTbfqEghq2W9fG+98cw3t5uIDa3xFKkpUYMYqQCxPnQrymC8f6p0tHId67+xDEdcGDjgdmIYUhvIfLMujR6Fg30ZfqNHYsFrN5NAyfQtT+PDcZHgBO2CezxtFevdk9ipHZOmc5Js998/I0zuEh5McTm+s8dxELLmM+tsY5vSJg0lh8j8Z9231xJw25rXX0OF1/KfoKnBCfvURE0nH0lG1ehR61pOD4dvQgltG9Yj3EQcQ8ME6+x3QSx7c47VOnOdip0zhOff3IHtPbNUhz5oGnMWGfFPG8TvSj36Iph9cle8E5RhlCz3CPPPgAxNuffwLizh70I//KdW+AeNXKXqOIXc9gvfv70bNcqUxfC8+f/xysv2goiqIoiqIoitJw9EVDURRFURRFUZSGoy8aiqIoiqIoiqI0nAV5NBZEpHzwhdeEFhFDu8l5NRxaaL+peZVRwpr1vRAf2v4ziPuH8hAXirQWMPkn9vahfr1WRa2xiMirzlqDhyANdEDiTJs0gixZDawo7RvrVmfX47IuNkU6xbZ2zJkhIuI4pm7+her5opZPf4kMjTtiTWohHScBn5FFw/CwiIjUaD3sziRe54tegeuAt6Xx8+JYEeJkCr0QIiKVGuo5h4cwr0uJPBpeDfWgQm2jXMbP/ZqpDY/H8L5lyceRa0H9Z1cXajcHRrGN1+tmGzf1yBjXPfRoZZKo49+wFvuIHSFY3nXwOMSUnkb8GaLnKG3uYtCUTUo8OdH2epah96WWptxCCbyuIiJbN62GeO++XRBnM9iQR/PoI7Cb8Lq63ejHEBHJrMW+3UFjWpx8CM/tPQhxd28vxBvOxHF2eAD9FSIi//Kj2yHOdWL/fOWFF0NsZ3D9+/07MIfN6BDmkxERCcuHIX7jlZdBXH0e+6fTjNcm3oXxsbw53jVT7pzONNbzFWduFhGRSqks/8fYexGwremkVXMJ+sOI7xHJOMA5nTiPRkQCp1k/jtgkog5z1ZsPwHWKKmBhuam4CpbhMZt9/8mdXtrnL2YXyGW1+N8T172ahJPjyfgY9VEf/WKuZc5VD+3G3BrFBJ5DtgXHVMc/CHE6iz5K3zPzKfl19pqSb3I8j/VsxmcjzpVWpHxOQ3uwTiIiIyfx3Hc88gjEheM4dlUoD1jvNsxDFE+YPriulZjTbcd29FNwHiGvjl6Vpx9/FOKEmzPKOLJ7Nx5zHMdUL5y+3j5P0LOgv2goiqIoiqIoitJw9EVDURRFURRFUZSGoy8aiqIoiqIoiqI0nAV5NCwJxTolfjQNFhRGaKhZ02V4EfC9h5eJ5jwbo4Oo6RYR2VPFtZt37kGNfKGEertSjeuAdWyiHBn7+sy18dubUbO8jTTSPq03zLpYMwtGlPZtrndC0trStXbIxNCcQV2iiMjYOOXWoBwjcE+j7u9pxpWY2DKZR6OIdS1XcS3sao28NyJieaiL3PbqsyBevxbzIhSHcA1pN4a681jM1FEWx1EnOU75ASqkeYyRv6KlBTXi5TLqYFlLLCLiB6hTHR3LQxyPYz2XLcNcMHsPY66YYtHUxxt6YAv7UY7y11x4wXkQX3HxBRBvf+5Zo4zn9mLeA/YheTNycSyVRyMRE4lP3rJsFb0OXhzvZdBs9rHdh1BX29ONuVrWdeK68o8/9hjErUn031z96lcYZezr2wvxGevPhXjZRtQg+3W8ls+fxHZ/9wDeF7HMHDxNDt7/M9fiOvBdzehN2bIS2+yhO7E9nOnimvwiIm9+9UaIs9U+iNefxDFgy6XXQNzXjm125FHcXkRk4xr0o3Q35yBuy0ycZ9ma3c92urBtR+xJr2IwlxEhymhgeCzmmosIzrsRUYaRB2MOw4PxueHhmE9fp32M3B3zOMRsVVgkorxryPTn9hJ4NNy4I+6khyGoYx8OfZw3Qs61JiJD4VaI+2o4frktD0OcyWI/S9BcFpRxPhURqY+jr61WzmMZKapXgHOuKzhu+x56HfID+EwpIjJCXsyKj/UaLuIzYpLybiTT+HyWSKCXRUSkicZ+h57xPMpDVRnH8W7wBD67rl7ZYZSRzeUgHqXnldCbkUttAUZd/UVDURRFURRFUZSGoy8aiqIoiqIoiqI0HH3RUBRFURRFURSl4SzMo2FNaxdNbSdpPyM9GhySxs9C3VoQoMYsoDwadc9c77/vAGrlxqr4LhU4qL9zY3iMLK2FX/NQYz+QN9eGfno/+kJW03rtqSTVwadrZdPa5hGC0rnUcPYcFhnWfjbF8TxFRIaGUbMcOnge4YwbGIqpvzzdDB85IpY90WRDWj/bJt24JZSfQkS62/F8Nq5Gr4JD621bFDc34f6xuPmeblMb5ZwWCfo8l0Ntu0temiR5NKLaQY1ya5RKqCmNUQ6VrhzmBli7BnNc7N27zyjDo+vd0YYa+tdd/6sQX3rxhRCPU/6Q/kHsMyIiNcopwh6NmQRLkchFRLwZPqFCDDtZnjw9oyfMPBpuBvdpz+C68OEu9EO0PoH3ot6fxzJWox9DRERyeP99GgOLWdT/jod4b4YG0PtWprFk01ozB8+brn8VxIVxbMd7j+6HeFkH9iWvhfKH9KPOWkQkGME2s+cQejRaqL2cePgpiEvnUr4jx2xDtTq2wXZat79jcgwo2eb4uRhYlj3ll+KxxrBJRmjkeRuL8g3N2atOQ7+by9Nh5ouImB8N74mRKGNWjLEm8jRnf+aZC6MKEX4M/tNsl3spfCSxeFxcd6Kv8pzAXlSxzfbX3NYNsZfcBPFA8TmIs204Lqxehf2xNWVehI5e9L1lN2NujqYOnLuScfReWvR8tqwb5+hKBfNZTPwNx9z1526AuDSOn3tVfK48/7IrIM7l8BxERDqbsN4ZeugrUX4Zx8ZnjwsvfjXEl1yOeYhERA4cfh7i4ycwv5HrT98PS/NoKIqiKIqiKIqylOiLhqIoiqIoiqIoDUdfNBRFURRFURRFaTgL8mjMhD0BDsnzWPs5AeV6IAGi75Omj0SIDuUtGCUtuojI4DDqjbOkq69QfgWfXrVCl9Y3Jn17c8bU/o8UsN4nC7jNhgRqAIOQvCnGkt+mtpHXTA/o1hlaW8OkQZ6GiDwEQZ1yjHjoD3BnrP3sRfhjTjueNyV0tSknhh2iHr45Y+oHV+RQ45iw8D5Vy9SeSBucTOJ9HC+ZGvxYDO9LC+WXiLfi2tXtbag5rVTxvJqpT9iuqQ33uN9QW1m5ciXEvEZ3cwtpP5PmGt5jBfTvnHfeuRBfeD6uhx6nvnq8gOtxHzyM2k8RkUqF/E/U/+0ZnpmFrOHdSDzbEXvSJ7T92e3wmUtVal5hehm848MQ79p9F8T7nz8IsZXH676C1lLv7zthlFG3sW8eemAXxB3d2AbXtuH9XpNKQWz3Yn6ZeKe5/ro3iJrjI0O4bvyabtRm7z+yG+LNl2yDeO/P8dqKiNz+n49DnEthf9wzgOe9rIR9sTOHfa25CfcXEalX0OuVjOFN7T95WEREyiUz18xiYFuO2JNeRsMxYM3tITDyXszRjcx0Wbz/3H5CLtPYw/BksG9kHufF575gOwV7OqJ2oBwicxx0riKjnpD43Hmbmcc0vSunn1g8LrFJj0aVniF8H/tfWDNzzbAtyo3hHJqK45y8dduZEP/a//MbEK/owbxDIqYHVlzykpC3idO5uXRdHbonnm/2fc5pEgQYhwEeI6Dnl8DGsSiZwHFeRGQd5b3YTF6UHQf68ZiUq6Mph+PhszvuNcqojuH8tL63F+LyDMOe5/uyc9gcp6PQXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBZkBrdFxJ70tDhkUzIsqmFEsqCAzeBkJjISDpEpjEw7XmgakmtkSKpW0KTI3rWAks7EHExmlkZfpLRk0RwuIjIyjmWcGMZ4YyeaotjszcnHIhPxsGOJzp1zp4SUHTEkw/B42TS1e1SPMl27mDttWKpUzf1PN3YQiDWZhMry0LidcNGgleDskCKSjpPZvYDGJ8fCe++SaaxKRu0oQzwvHlCtorm0uRnN4U3NlNyR7lM8jqbqdLNpEoslcBs2Ca5evQrioX487842NC1ffOFFRhlsUly5EpMWJWJ8rfC8B4ewzJExNIeLiLgx0zw4kyBiAYPFZqz/xNT19qvYBpf1rIZ4BcUiIrt/iCbogQOYHK+bOnImgdcknsP2FW+hAUpE6kXstyOULGp872GIc0ksY0U3tofwBCbKqznY3kREjtMCAzbFO2rPQtx84RkQdzVj8sy79txhlDFcwvM6ey3u84q1aJbsbMVFDo4ePApx28omoww3gf2vpRnP9WRx4lpWvcUf/0QmFkQ4tShCEPC8MftiKxMb8Tb88VyG53m4rOdIJGca0mevNyffM83hZjWMOTTS3D3bMSNOwjjE7N/TWsacPbvRe3KnWasxM7Ttxf+e2Ik3izM5Ttc9esag6TDl4sI7IiLNKZwXqg72ycwKTHp6yUVvg3j1ZjSHW4G5OIodUuJnH+thrJNDyYsDi5+tcH/HN8fcUwuETJeBhcRtXrwHx546PWvl6dlERKS1GxOOrlyG88uhEzgmZZbhvO+U9kC8dbmZFLV6MZbhdmBSv5MD04stVatV+fkzagZXFEVRFEVRFGWJ0BcNRVEURVEURVEajr5oKIqiKIqiKIrScBbk0XAkFGdSqGjbrKOkOMI/wVpLE9ZukpiONKm51pxxhLKHerrhfkxoVa/i55xYJZnGuKUZdfueZ+rI+8dQ43foRB7ic9egrjoTo+QtpOdjvZ+Iee0sYX8L+T7oWgV13L7mmZrVWBzr6dZRTzk+Q+tdXQKPRhB6U+3MDtCTEXio+S+VTX3ocB51j/3UNrJp1CcG1MbLdM5t7ei3EBERC+9Difw76Sx6LNwEXvOWDLa3pibUcja1o+5cRCTbZPo2ZlKv47XYvv15iAtjmDSpLZczjpGhemXJvFQYzUM8XkY/y/ETeK05caaISIISWxqJu2Zot4MglNEiJfhbBBJxV2Lxif7ZtLwTPuugxHaFo5i0TkSkeAj9Dl2kMc4kse+v6cD73dmZg3g4wutyOI9tjscCl3xsy1rIq1DAvhUvYtLAtGOOT2GA42JgYd8YrGL7eXjHf0J8tI7JpkaPm4kIJY1+iXJA/jrqji2teN67j2OSyMNPmv3m/BvRnxTUcNzsmEy4WY6byWIXA8uypzxYPAezz8BIYicR/gdrjs9pnjHz4kV5GebKAkhz2Rwejbk8G5N/nLUOXE/DwhHh6TPLYK/I/JPrRez+Agn9ZvfIhODzmOt5qvHEQ1ti4UT7q1G242Id+1O+jOOGiEii+lOIO4o5iNuX4Ry8fhv2x7BIz06+WUathuOfT8+E4mC9YwnyXNgYc3JkxzGvO5fh0bNCLIuetZpP50HPb7sO7jfK2LEL/1av4j7nb1gO8cWXnw1xuvAoxO19ZsLhnp7rIH7uOM4VLekZPl3THvOC6C8aiqIoiqIoiqI0HH3RUBRFURRFURSl4eiLhqIoiqIoiqIoDWdBHg3XCsSd1KDbQh4MiwRbVoTPgLbhZaA5rwZrMz0fNdndLW1GGekW1AInY3jMnc/jWsKOhXq8agl1a80tqD1uz5rek1wS9zncj3q9vcfwGOetw/XefUogwnk1RERsw78yuw6WfR8e5WeIUncmXaxniq7d2Ni0dturm9fhdBOG/tRVcBw8H99DP0k5Io9L3wBq5rsGUBe+vhfXpQ5Iy+7GsE2zf0JEpFxBzXxbO+YkyLViHKPcET3LUeff1d0FcabV9IVYzuz5PnbsQE9GPp+H2Kd8IK5jii9ZFx1zcZtaFY8xQNd2aBjX7B4v4/0SEXHs2UWf9ozPo/rIYrB581pJpCZ8NfUc1red/DdP7zlk7F8NcGwoUUeskv63ezm2lw1rUIc7VDA1yhUaevuOozcpRnkzYkn0PjiUuyOT5Htt+rMCqndzEw7uTh7j55/YB3EpwH7TnjTXql9NfaF5w3qIKyux73g9mGdDBP1Q49vN+1MYHYV4525s18vbJupQLqGPZbGwbEvsyWRWYYjXNOQxzzK/RzRTWJAHw9iDjkEmDSMnhpjeqjkrMQdzHi+yCPZ1GFtQyNcqqo6ms2P2Tx2K8ZgJ2/SptaewvaUt7Gt2anrOqZVDQafT6ccJA3Emny0C8hmMkS9yz/Nm+/vpAzg3NcdwTr7sjVdB3GVjnqlEsQ/ifXsfNMo4fnQvxMUx9FNZMaxXexc+j61ctRXiVavOhdiNm/P+6GAe4koBfSLZjWsh9mzyzNZwHK+UcBwSERkawJxLhQKWSY8WsvfADyBensYxa2AIn5VFRH42sAviY0PURr3pvCd1LyJX3gugv2goiqIoiqIoitJw9EVDURRFURRFUZSGoy8aiqIoiqIoiqI0nAV5NKwwnNJkGnkzhPRahubR9BlEKEi5RIhYMx+LeE1as+EsiLOkPz52BLXiFulaq5RnY3SYdPyrzLX7h5oGID4xhPq7A8dQq3nOWtQEzrEEuIiI+Oxfoc/Zk+GzR4P296M0qKSFden6phPTf7CXYA3vdCI25fPZsmkTfFYqoP76wH5Tf805LeLkSbFJf8zXNJ1B3XgsZnoK6h52qc5OzLWQyeB62u3k4VizBn0iLTn0ZLgZU1dZKqP2skS6/dFBzN3Q3YV1yg+jhr/mmfrzoIL9pHICr6XLa4tT/6977OkyiuARRHzSgIYztmAN9mJh+4E4/kS7WJVD/fAW8vhUNuPYISKy4+7HIC5U8DoeqeF5jdMo2bUM20uq2czrE7rYbh26Vj7l1OF+79E685kctrlEaGrLHQfrUacyutvw842rsA2ePIF1yEXkhnnlxRdAnN7WC/Hukzi2JwPsi61nrIP4ig3o6RARWb0MPTClMuq7g0k/XeAvUfuzLbEnzY1GvgnyBIRBhI+OPRbW7D6CkPNLUBhaUfkn2P9AnZ33CWf3Osyvr7N35IVz8EQWwn6LiDKNv/C1oznWDtCHlvRwHF6WNcfZ5SnqexY+bySap9tjObb4PqFMa0bisYlnKj/AuiVjOC5sXGWOEwdX4jXZeDb6HV5xKfqqkjblMQuwP+7evdsoY+AkehnG8lgP30ffS3s/3pexEew3HW3oBYulzbHJobbgUi40o/nRHBuOo883ZZkejXiI9fQd3KfanIO4r4p5qZ6t4jzf1GJ67QbsByC2O/C5yp/hpQt5HpkF/UVDURRFURRFUZSGoy8aiqIoiqIoiqI0HH3RUBRFURRFURSl4SzIoxGGoYRBOPlv9gSgntoJIt5hQizOJm2wzbpJm3WTlNdhCNdgFhFZv+0yiNdtRo1fkdbvf+Teh7EMh+oYoiawM4V+DBGRc1ejJr7vJPpC8kXUYRfLqI3LxFnPN7c+lLdhP4ERs047MPV1/LeQ76kV/e/FYvXyjikt+KWXngGfefVVELMPQUQkYeN9OWPTBtyAzt+hkwxIm14q430VEcmQh2L5ctR8p1Po0eihz9vaWyF2Kc+GROW4YK02r29dw3qf0tieor0T89HU6uZ5Fcaw33hVaitUZt0nfwvlRXAcc3zwacyw2SQ0s7wwFBFTA3y6OTgwKPHkhPZ15zHMyTNC/TxoNrW8HWvWQHxy1w48BnlZdhzD8Wb9CdTpWrEI/XocdbUtHejrKIxiPat1vI4h+drqCTxeZ7OZy8WmcfPIScyLYZG/7tXnocdqYAS12aO+mWelYyXm0cjTfHCyhB6Nk4dxXO5didehNYkeGxGRviHSaxfxGOOxif5drZj1Wwws2xLrVB4N6mOcb8JKmLlI+D74PnsrZ8+rwXN0GJWrgy1AlHPL8BdSQi0ez8w8GlHzI1eM6zBHJdl8EpXTh70kAc7jTukkbl44BnHdy0M8XjGv3cF+9D2EZWzTTkvv1L9rVdMverqx47bY8Yl6B2y9obFrfZd5n5a/Cq9ZLY3bdLbjXHRqrD1FoY5xPGaORdkE3Zcc1mu8jN4G18JxujSO4+FYBbdvEs7PI5KheqdbcxB7dClqlE+pSnnJ0m7eKKOtBcft/gTWe+uZl+LnFvpU9wxjDpK6mO2nI4lt0qvjOB7MOI/aApqf/qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBbu0ZjUT3qkx2NPgBOl3WTtJWszaS1izmsQI818dcz0S/Tt3wXxhnPRs3HBRVdDnCIx550/vhvifcdRi9tkLlsvrzwXL+O+Iyhe+/mzeYhPDKLubf0K1BkGhn5UxMgpMocng/0Wxud+hEeD9LrGOu0z6rUUeQw2buqR2KS/oL0D1992LdSRn3vmucb+LRnUZA/1n4D48IG9EGebsAyb2mutZq5DvYnye7S1oXaziY6ZSmG9WY7MXoZa3fQl1KkemTT6RFrbUJs+OJiHuKMbfSFHjuJ62yIiVSrDoqGjTJp1ztOSiKPuP5VAra2ISKFEZdD1nnn9lyqPhudZYnkTN2ngBOUfKZFvpWr2MbcH20PiEOroqyX0hA2XsE/uJM9GqtXMq9JGuVq6l6G3IZZA38HQKOrAKzFshGMuecjqnPFExKpguxws4fxgxfF+berthviMLWshPjyCencRkZWbcT37yjiuNZ8mf9QIXcsDxzGvyWjCzEPQlMH+OTBC93jy46XQx4uIWG5crMkxMCzgNfJPot/H6ew19neaeiC2qR8GAY35nPKCfGoW+8FExHY4F4fZ12fiCs87lAPDSN5h9n3O/xGwR8MwjrAHY3afiIiIlLH9hKM4X1gBzut+FcfEUgE9pf2HTY+pReN7qhW9h8m2M6f+7TnYvheDRCIp8cmxnC+pV2dPp/kMWB/EPndkEA/SdQn6H3y+9zTPtAeml6Y1huNfSOPZqJFzBY/hkYe2OoK+LVluzsFhyPWg9kN5d+wKtpWRJx+B2Eng5yIi3T29EB/N4jjuOuhLPXpkO8RFm/K8RPj7arRN3cZ7alvTD8AR08ALor9oKIqiKIqiKIrScPRFQ1EURVEURVGUhqMvGoqiKIqiKIqiNJyFeTQCfyq3AqVYMGLPNQ8dRqx/jcenNbzJk+HSuvqubR7vxMGnIG7tWgFx53LU+Z57Ca49nGpCbdw9d+Hxnj+M2mMRkbYmXN948xq8GI/tRk3fyeE8xL3LcT3kuqH3ExGLNagYe6yX5M/Jf8F5T0Tmzs0x8+OlkMi35ByJxyeuTTKObaGtBTXfq1esNvaPkd8hpLX6jx4mD1AV9aQ5ykewahXqZ0VMT0acvAnsuShTLo6WHK3tT/e9WjF1uTXSAsccNBL1rMB6Wg5qpkfyqD22bdOIlGvDNjoyiPr4qodtnD1CnEejpwvvl4iINYR6eEMvPqPR8WeLRTKWknhswldTLtL67EePQuzb5lixrBnb0LLVmFfj2B7UffucO6hKGnnLvFclC8fe5hSOJ03kA6rHsIwy5Qc4UUI/wv4irisvItJGmvdCCevVjrJpsWO4fVs7tvugyzyvMy7YCvGl3diuNz3zGMTDlPvl/95/L8RH+o4bZbzynFdAXC/gfJAfyE/8PcKftRhYEog1qVt3c6jJrgzjuvn9j3zH2D8ew/En1425hBLLzoTYaSLNvI1jRxiPmOdpLEiMo8a9lsAxMXCwcVghzk1mHg2TkLbhPE+hYHuyAuqbNdS7hyPYD0VEpIyePn5eKRfRc1HMo4emNo79pl43z6tjGXqVmrdeB3GQnX6eCStmvqPTTSwWm5rTOBVXrYbXtBbh36llcfxLNl8IsW+jXzUcx3Os1XD+6yL/mYhIvD2HxxAca8rkg+FHoSLV26G2I545rtvsJSFCysvi1HFMzT+JY1frWecYx8guPxePmdgH8eNPPgnxzsJ+iJPruI4R/ir67aHGudRm5PGqz/E8j8dVFEVRFEVRFEVpMPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGo6+aCiKoiiKoiiK0nAWmLAvmEraxkl12LAVRiSdYzP43Em3+JhkVo54TwqraB46+MxPIa4U0dCVa0OjT5ONJp2Ny7EO8ZhpAN57ApOubVyOZfR2Y518C8uoUvK8MML7ZiTHIfe3TwlhPDI0eb5HsWkE4oR9HAczjEFBhJn8dFMaH5J6beJ+VStoGutatxFiNrKLiNhkIE8m0dgYJ2NjIon3tasLjWednWjGFJkwy80WByHeB05qFNLnAd1Xv44GVxGROpnBJY4NaPnqXojXbdoC8U9+8kOIvYhu2d3eAXEnLbJQpKRvJ05gH6gdwzbf2kSmdxEZI+OfaaSfNqL5fiD9A1jmYlC3PLGsCTPh2jPQnDxyFM+5UqJETyKSP9IHcVsC23GiOYfHKKMZmRMjOhGGPL+M17pGxuuEje3DpqSRUsXtD5zIQzw2bCZ0bHGw7xQoF975OTxmlu7/aB13iK1G06iISB9dz9YAk8+dv4UWPSADZncG42d37jTK6G7HxRxsMrju6j888Y8lMoPbli32qTGDFm1o3nA5xOmeM4z98wcehvjYwUfx+DsfgDiZwkUgmpfjONvUhYuriIj4zz4HsTNCiQQv/lWIY2tfBXHA8w4/W7CRW0RsMvjyHBrW0IhtFXDhBrtKxu2KueBBuUiJLUcxeWatiIbygJLJxTs2Q9x1xmuMMkJa7KHi4TFSM56JApnbJN9oEvG0JOKT8yYtOlKki37nfTh+i4jEW3Dxi5VNOG4884//AHGVjNg1Wqji5Ig5B5RqeA1dnufTWK8cJemMp3BxAqefnhvSZvtLpTDprR3H8S2WxmPWqYzExbgoUdcm0wy+/TE0e+/dj3PJ8WFc1MVfjQu2uNbszxYiIjQTiFfjRYSmj1GvqRlcURRFURRFUZQlRF80FEVRFEVRFEVpOPqioSiKoiiKoihKw1mgRyOc8kmwvWJeSXWMBHCUoI+2n+uQQYQPxKVkVSVKorPn8Z9jHRzUQFohaqDHa6jfW5Yzk+n1dGCSnbYcKt3WDB2D+IkjmHSmVEHtXDJhahs9unZ1ShrjG56N2f0WHItEJPUzkvxNlxHlgTjdVEol8WMT93dsJA+fOZQwjJPYiYhY9F7d1JyBeP16vI+Oi/eBk/E5jtkW+Lqwl8WhVp4g/ahHya5CSl4VeKY2vF7Dc00kUVeda0W9uxPD80qTRrW7B/0XIiIXX4z6b9fGYwwOYPKzkZ/+DGLu+10dpga/RP6TUgn7iedPX5vAX/z2JyIyVspLLJi4Z1UHPSUrN6P++PB92O9FRAZ3H4a4llwOcYn6cSqNiQ4z286C+KCPHg4REa8fvQwdlNwwTomaiiU8RqWEY8vRYbwvQ0OoTRcxEyi6LmqrX/PKCyCuxknfjU1Qyi5qnkVEjh3BsTzdhHF7Evu37eH9+ZWLMTnYylb0x4iIPLlrD8RH+1AHnc5M3Pt6bPH18SIijm2LY0+cZ0hjC3sgE02mh6zrbEwAl1uP2vDiEdSBj+xBz8aB5+6DOF272yjDPYRacSeHY0XLkWcgTtk4Z9upHMRWHMdp+xh6oURE4lXyDa3GMcyiz8fy5KeqoL+imjf9VaUCat5DqneyEz0xTb3nQ5zu2IT7x3HsFxEJauhVMnISz5wPwsX3ScbchMTciecbizxCx0ewT/zkQTO57PrV5J/oxLGk5VFsb7bg9i10PapFc55nv05AfbVMY1OF5vE6TetDKzG5bLDZ9OlWm/Fe2hlss6uT+OzQ1I3eppXn4LhudZjj39NPYFK/Z57DpJLlAK9F9wr2NrGPyXx+qdEztW/4o6Y/9xaQNFd/0VAURVEURVEUpeHoi4aiKIqiKIqiKA1HXzQURVEURVEURWk4C/Jo+GEg/qSGy6FdWa9uRxgsOA9GSBovy5pLd00a3IgyLItzdWC9BodQq5kfRx1hZytq69JZ1Lu7gak7rJM2bqyYg3jlOqzDkwcOQrx9L+pFz9qIum0RES+cPQ8Gr4lcr8/ut/AiNO512qZOuvqZ+7BnZDGIuwmJTeory+OoZR0bzUOcSJo+F59yieSa8N6uXYceDYs0jIkUCslTtDa2iKlVt21qszZr2bkLUt4Mn9e+Ntfw9uro2zD6IuU4YH9VthnX/O5NrTPKWLUa/QecR+fQIdSLDg2jxtmhnAbLulD3KiLSuxHLLRRQNz0wOK3Jr9c92bHniHGM003p6LC4k/k99h9+Hj4b7VkN8cln9xn7c5sKV+J4Uz+IXpeWVZSrI4P3aveBQ0YZy7tR32u1YBkhJUppor7sj+Uhruwlr4lFhgoRKZ3AcbW3E6/FyrPR49OXxTHzcBnXww8o74qISM3DsdcNnoZ4fRdem7Y49m+PxNe7Du03ynj+EF1P8mk15yauZa1q1m8xsGxbrKkxhTTW3LHDiHwTlLcnkc1hvPXVEGcoT8aJZ++EuNxntvFSG/ZbSaBncWj3sxC7+7dDnGrCOmUs3N/dZbb5OHkne1LY3hLNqJHvH0bvTX4IfSWWa47tqW7si5mVZ+PnnejBcNiDQVNmGOGTZF9gSM884MOxF98nlE67kkxOzCeZDM4rxwbxHpQtM1eSX0N/RH75BoirVcy5cnIY85t4bTmsj2kzEMvDa9ZCfsL2ccqpQnk34jS35QbR65Xdi2O0iIi4OAfXM9h+dpxzLsTN3gGIN7XhiRzxzfwgxwex3KHhPMRhiuYWyophcXMLzPZTpm3Yx2E50/uEjno0FEVRFEVRFEVZQvRFQ1EURVEURVGUhqMvGoqiKIqiKIqiNJwFeTQCP5hevz42hxbdmcc7TMgeDYr5c949wicQkCzVozWV+4dJ++bgUcfKqKtMxFG0lo7juvYiInXSvY4FeFlbaD3zS87D/f/9p6gV7lrWa5TR0ozaRr9GmmYPz8PMmzF7Ho6ov80WR+1/ulnes1wSkzlGetegjyXbjHrsVBKvl4hIPIF6Q5eaaCKG9y2TRS26ZXN3MTWOdogHdVwsk1NvxGKxWWOPr7Nl9qtajXNvYL/hXB6H9++GOE6+kHjSbOPFAupU47QW+YF92Ia9Gtabc+bweYqIdJNvY/NmXJe+PqMNl8sV+bf/81PjGKcbb2BcJDahxy3uxjwOpZOU0yJijffEcswfErLdga5bwUcvQN8oapbbM+Za/KkYXuv1W3Dd941reml7upcnsIz+u3Bt+9oOc9y1+1H3vHn1ZjxGCXX7zxTQw3O47yjEsSbz2jU3k/fER8/G7t1PQZyxUCfd3orty3VNjXxb9zKI0zn8PDF5rapls36LgW1bYk9q80P2aDAReaZ4bOAhjOfcVGsPxKsu/HWIS0OYF0ZEpNi3C+IKbVPoPwhxbRzHltIA+iVGy9gHYnXcXkTEDTEninUcy3QG0ZNRGMpDHKccGC3rLjbKSLb14jEpvwc/z4RkyjCHbvP+GbnEhI85vYW9BB6NpkRZUomJ8zrzLBxXdg7gGNCzEX0yIiJpesZLxfEa7KDcN+ky+Sp5fs2a13C0Ff/md2FOlX7KzzQwhON4nL5/bxH0eBQreJ4iImeO4Ni/bRz3SV34SojHduJ8eXAXep0O9Jk5mErkQ6XHTKnRM1+1itehMET5QjzzWcKl/Eacx6s+Y9zz6urRUBRFURRFURRlCdEXDUVRFEVRFEVRGo6+aCiKoiiKoiiK0nAW5tEIAgkmfRE++SMCIzb3N3wDlAeD7BK87LT49Hkm2yYML00dI71yrg3XO3YpB0E5wHcvznHRmUMtqIhIrBV1vaOUw+Lg0VEsk97vuttQS/zkbnMN5d6tGyFuCVGXn/CxDC+YPc+Gof2P+Jvp0fAj/71YXHjheZJOT/gH1vb2wmdx0pmHAd5XEZFEHJs7p2Fh/XKc9IqUCkIq5Yi19C3KL0N5MmLk2eB+Ylns8SAvg+ETERFe65p0vcMDqLl/6N6fQdyWQ6OAkyDtsYisXEk5VQJsf7aHn/M3GPE4alajPFy1KureOR9Ipjk3fbwE5lFZLKxg4n8REeqCYhWxPfAa5CIiPp138Rhqx5Muei5aV6OnI9eN/pmuHPq/RER6V6IXYe3yLoh5nXiXtN5jefRTxGi99eYus8xaM+qWywUcw57e+QzE/3lsD8R18rMs32IUIbEYtqER0k7HHFw3XmzsO4V+9IV05Mx2vnplB+5TRD33eGViTKxH+B8WA9tyxJ5sV6Exfvm8sbG/X8V+E+x6BOLkKvTW1Glui1ObdlLmfJjtxrmqPHIQ4sx+LPPk3iexTpTHJUjimBdksU+IiAjlTeofQN19rYLnbcWx3mvbMAdGNiLHQJ3Gbp5AjPlEeFyem7lU7zOPYfOEtAh8+x+/K87kGNZ/AvM6BDb2v2vXm/3r+d2YJyN/BO/92k04tqxctRJiux/z9QztxXwUIiJN9OTo9+G4nKzmIV4n2DYcmoNjKXw+a0ub/kI7xPHryXEaa+jup9ai9ylPHrZsjznPV6rYv0Py3bIPsjxAczSlFnOz5jNcNoX3sEhzWrU8fUxfPRqKoiiKoiiKoiwl+qKhKIqiKIqiKErD0RcNRVEURVEURVEazoI8Gn4QiD+p/Q88WqvYIV2ca3oAWMMYo9wbXow8HIK6t3IdY99YhF6m6jdVhoua5sDGeg6UcN3mSkjr2Huo3xsdMP0T/hCuAd8/gH6JsXFad9lFsdz6HtTrHdy11yhjjDR+61bhua9I4LUMfbpWnF8kwmNRI81flbapzvict10Mlvcsk0xmQveZTKKWkD0AoW82bfYAWZz7xYh5zXnSSEbU0avjheb8JRJjjwZ7m/CoLnk8DGG2mPXmLXZs3w7xkcO4xnxTBnXZ7ctyRhncd4cGByCu19ATk0yg18DNsF7XvHr1Cq5FXiKdvz2jErXy0ng0fL8+dS0C0n2HAXt6zDYYOngdQsGxoXMZauI7e9Bv0VdAjXJ7qzkG2qQlf/DJnRC/YtN6iFty2HfqZHQ7c/M6iI8dRs+PiMgJDz0XJ4YxF0JhN+qFi8ex/VRrpJN2zfwMTjIHcd4iX0c7XouWJjwvWsJfYo6Zg+TkKI3deYxta+KYtcpS5dGwp/s7ewIs8qnxCYuIVcY+VnzkLohbSuhJdK98K8T1kNp0lBezQp7ECvbjWAZzHjUv74U46eC9L43j/qFH5igR8dh7EuC9L5XwfgV5jI//5B8g7l6B/U5EJPurfwix1dyM9aIkXi8my4WRR4MG3pk+Qjsip9LpZteeQ1N1YvtgNovt7cHH/tnYv6UH80n4HVdD3LYuB3FzJz6/PX8Q28aP/uX7RhmxCl4zO9ULcVh4DOJuejjqpPGvvYrt7awus20k2nJYJs1347vQi7LzMD7jnX3lZVhmB/nNRMSjuZ+f4MjCJjXK9ROj9DN+ROcdob7FvpCZc8uE73d+z4H6i4aiKIqiKIqiKA1HXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEazsIS9vm++P7Eu4lHBhqXzLe+bxq22BvpJiiBWgL3CR021qLZaHBon1FGSAn36jWMC2NovqxScr2QHMNNZJSsVE0TaqmOf0um0BjrkYHuVNKnU5wwDIdmsrkje5+GuFZZDnGwDJ1Z3Sm8VnSaUo24P6UaJmcpUwK1SnW63rW6afY/3cTi8SnTN5uk2Qzu1UwrnkeGZcMdSgsBeGSot2y8iLWqeQ0Can8eXfiA2zy7rAk2rLuxubtsvY739uABTGqUL6AhNEHmTCeijP/z/e9BnIqjkTaVQtNeZycmXuJkiHaEUbU5iyZmNlcO9R+b+ne5EpEscRGwxJq6Z2ENr7NPpkGvatbR6kMTtEf9sNKM7fjAc/sh7ithIrLKEI4dIiK7dhyEuH8YXYDZLJqmk8fQAHxgPy5usawNF6tY1Wkm7Nu7ApOolQaxrzljmJCqmcbEwTyOy+EILaAhItQ8pFjBZHqJgBbI6MBEhQcPHYN45x68tiIimVZMzhUje25reqISdn1pEvZZjjWV7DLk7LQBtbcIs3CM7r27aRvE1f5dEHfeg4beExsvhLg4jgknRURqY0cgLg1ie6rkcaEAn+YSr0ILtIzjOOw25YwybQ+3GS/gMSifqDhVbJ/FAvar5rVrjTJa0q0Qh2SE5bG6EcxqBo9IyHi6SaTiU4typFJ4vukMJbrj1VdE5OgAXrM945g48emTeIwcPcf4ia0QN1+Bz0EiIhu7yPifwIFj6CQe48RJ7Dfb8zg/2iGOXd5Za4wyX3kxZhjNZMm4TYunjIxi+3u0D/vAlm5z0SHHwWe8ZA4N404Sz8Ol8w7p8SewzHm+RENIEOIxEsnp+2PVQxExnyOj0F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs7CPBpBIMFkAjKfkrn55Keo181D51pJY4bScAkpkV0YoAatTkm+3IikX2MF9EuUxzGu+ShUq5AvgROmlUiXz/p3EZEyafWrNdzH81GvF3PwPAeHUWediKPeXUTEL6NO8ND+HRDXRnEfdyPqqmOkx6tUTR9Imf7G29Rn+A04Md1i4NiOOM6EZpA9GlXSwx/ch74EEZGRYUx2lsvl8PhkIgpJf5hKYfut18ykhyFpGmMuehkyGTwGJ+xjL4NQHOesPBHH8Em7fcEFqKte3bsa4jPPPhPLiJtl3P/A/RA//wx6hlYvXwlxqYT6+a4u1MuzH0ZEpKc7B3GV2lh9YGjq355Dgv1FwnZiYk9qZcOQEiXS2GHxvRSRkBINOim81kXyezkD2O/ro6gfPlQyx6NYGn0G7B25/Qf/CXFzCyaXWtGJSQMrRdx/vGz6Qno29UIcxvK4TwU9FwXSxP//7f17lF1Vne6Nf9da+36re6WqcquEJBAIgRgQItBR8W1oVMT2KMeX80aG2Ppq04Ci0A5E4efpHp5GWx326X5PwzjSfVDRt221++dRUVoQBCK3cEsg5FpJqpKqVGpX7ftlrfX+UZVd9TxzJZXoThWX72cMBpm1915rrrnmnGutvZ9nPj55IdLtqN0WEakVcfxWyC83MoyvT3ThHJhJYsDac1tfMPaxuB/11xkav9XKpPa/FuC/mQscZ3oOLJdG4bWJnY/je2vYd0REEj0roZw5rR/KhV88CeX8Q9+D8sFzXoSytQR9CyIitSPohSlTyKRN16LM4rVQjq28GN+/C+eaWJupy4+WMURy7zYMZavSHBmiuSURwnuNli4zlM2hkFi2yMzmtzMJinw9/ne/M/fBQa1zgWO708GpNN+5NTx+b8Jsj0R9O25vAq8TpTCO2YP2QihbFHh6Wp95n7l+DZ673j70JY0uxf7zv59GP88wnRc3gft4IGfOuU8/hfWKx8hD6uOcXPbw5rf1II7lwnOm9ykSxv6XasFtViwOPcXPuzU8Li8g/DeUwnGRTNE9uT89joKub8dCf9FQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOifl0ai7dXGm/AYOPaJUKa8iHEc9mYhIPIm78ygXwxfOwEC9WJkWw/ZrpkbMIt2ZRWtd+6TVjFKuQaWMvgTXQi24ZZna8DD5OHj5co/06L6HdaxQroYXMjWAyQR6MA4dQY3zWATrMFHEtaST5H8pl02PRo28JuxBmHk+avPg0SiXS+JMdbyxMVxnenQUNY6HBgeNz9uGhhb7Qow0uL6Px0/yeolGUSMpIpLPoS66WCTdpI0a1ESS9PQk/E2nUV/q+eb6/Ratp36EvCgtmXYo969AnXYijXr4WNScFladjp+ZoH2UqHHY5xGJotY9ZGNZRMQi/wk1vziR6fPjzE+MgfjJmPjhKY8GiWBt9pClTZ9BuchrtOM4iq/sh3IyipkViR3YKAUxx6FbQ/+ATXPikf3oschlaS7wcRxMRHAuOXQAcxBERIo1fM/qNjz2ykHOQsB+vWAl6qr7151j7OOtl7wVygdHUMdsZXEfBw+hbn/DW94C5XjE7ESRLswD6WvF8vihyX5fLuG+5oqZOS7xJNYtetZlUC5SnoWISHb301Au7NkC5bqLmvkj3XjdCTs47mNZM1fKIp9a+2kXQLnzrEuhnOpebmxjJn3nvxfKhSEzPyu7YzOUV78b91mawL5SOoS5BuEIauxD6/7YrIiF/jrbphyNk/RoBEnczW0ce5vz4dFoiUXFmbreRKlqnDMVdkwfU0sK546Kj/1pNPcKlfE64Vs4N+3Pm9fgh+zToNzbg9c/O4LbOLgH6105xNcu9FMUbNNDmxM8DrrFE49uG+ulLJSXZdDX5AfcvxTomlsnj4yTxOOyI1gJzr7za2bfqhXoMzaew/iMjC2+fz8e+ouGoiiKoiiKoihNRx80FEVRFEVRFEVpOvqgoSiKoiiKoihK0zk5j0atLs5RDSFr0Ehb2NNq6tgipP2uV1HjWC2hHqxSY706bnOAfAoiIt1tqP0tlnEfEZuyEkjnZsjWyIzi1k1db4i02hblLzikoS+U8fU6rcefL6COW0QkFkKRX4i8ItUKtlWZ9sGS+HLN1E/Wa5THQFkp1eq0lrtWMzMkTjUHDgxKYsqrkiMvBGtbu7pRvywiUquirtrzOTcENYwWmW2sGpZDAUaBVCpDf8H+lS/gmt3VGtahStklnEdRD9BF8mfqdcqCKR6EcnsP6uH5TFYqpv7coXGwZMliKI8eorXybfZbYR2jKdREi4hMFLBPFum47BmeGNubn+9IOrvaJByd1PB2LkL/RGkMz5UfNX0ooTTqaNOLWqGcXIwZFm4V55ZoN/avehX3KSLikVa6ewGebz+P7Zwjr9vAftSvOyHq93nTQzZ+EP0Q+zvx9RTpnHtWooejfTlmu+wYMHX4bbtboZxpxT60Zs0KKFsTWSjHHaz3pRdhXoOISE8/+gVyZVrnf2reKeRxHM8VlmOJ5UzOdR55BhzyOKUi2B4iIvE2bOd8Jx5vcTHmDyUnsBzOYP+Md51h7CPSguMinMHOYFO9OTuIs6wsysyJd+HcM7lPzOkJJXCc2LRNY+Y+EXsF1dP+A7N8TsyjcWxs+2RzO/5wIrbVuJ9JxeleKkL3SqmAHKEEtplfIJ+Bi3NTguY3nvUrBfM+5MmDr2Kdw9hOyTTWe7yI48au4bztOeTNCaPnQ0TEEtyGw3499tPU8do2MZ6F8g7XnF/icfJrUr28GmeLYS+v16m/BORoWOQBjdHtjG1Nv+5Z6tFQFEVRFEVRFGUe0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7Ko1Gruw1dIC2VLRZpuEkuKiIi8RjuruTReu+kOQyH8P2dSdTOTSRMDfRYNovboEcpP8yeC9LSke6yUCE/Rd3UBPJ6/7aQDpF9IOTzcOn1ctXUQNcqlMcQwraq0mfyRWxbh54pyxVzHz4dW63OHoZp7X5QO5xqCqVSQ1vrk6jWprLnmfVj+avrsieDchFsPI82+WKC2wD/FothH62Q7yBL/TUUxjqw/yccMb1PFvW3TKYVypyHwt6bIyOYQZLLYllEZN9eXJP/wMB+3Af5W/KkYef8mnPXnWvsIxbHY0vFUNcfmeHRYO/KXJFpSzcyQdKnoV7dOYjHnBtDH5GISHQp5qhYaZwocwfQ61AhHW04g7rcjrTpRXKp3/rkNUp1otb3LcvPgvKRUfTbbNv8PJRLWdMbJ5T/UqWF409fgfv4zUuYezC0/0ncnGPOT7/10LvWc9pCKL/tdPQLrFiyCMqRKs6JSxfjuRARCVFbFUjnHJ668IX5AjhHWPZ0TpNNc43pQzA11CHKt2lbfh6UW5eth7Jfwr7g0hzpRM2sGN/Dc8d5RMYFk+ppWA9IN+5EzIyuMP3NYxcGnVf+htUy6hQAB2T9wQRp3E/cd8H5SXOBG/IaJ6gcogyfOLZPybSBil2i7LQq3X8JXi9jNmcV4T6iAfeZ3Col8nnUyV+acShHKI/zG8e1ub6ZT+Oz34E+Y3P/o66UK+CYKTlmPojlY9vYCao3zZmRKHlMOffFdCqJHcFtxMI4z3kz2s6vq0dDURRFURRFUZR5RB80FEVRFEVRFEVpOvqgoSiKoiiKoihK0zkpj4brelJ3J3VdFum86xbq9WpVU6Dn1UhHSTr6MOnRfdL91snbkEmYWs1x0oZHSGNWKaLXwaP1+NlPIax7JV2/iEiN8ifqJOpzPfZk4HH5pEE16iAiJdLAc9uxHrdYptwCWnO5UjE1qV69Ru+hXIPy/Ho0ShVPZCojwHexrmHyCAVYNCQapvWwWeNKeSaWzOLZYKGliHikTy4WsWxRxsE4rZ+dSePC1ek06ukdDkQR81jZkxGN0rgjP8/eV3dAefduXDtfRGRsFP0GR8h/wP4VHoeJOGpOQzHTaxKjDBKH9LmWN32+QvZJTV1No1qqikzVY2wMvSwVqlKoy5yfapTLUNixF8p+DuenUBqzItrWoA8hlDTboZidwDpT/2jtxHXgFy7FDIJIG46TfTvaoJyImPtM5HGfoTBprXtwG9ExLI/uOwBlu2BmueT3DGE9+9GjUaGslmWnrcQ6ka/HqZl5RSN5/NuOIazXwgWT+3TDJ65Pbia27TTmIZ/mfMumTIKAoAa+1jBGjEMcz5PN4nPfvB76Fl3PSJ9u+ut4m6TjJz9M4BH4fOw8N1OduG14bg/8DtY/TmnuCbr+nGpqjsjRWyaXE5j4vsY2fUw1usdwOHuDsq3y5OP1y3SeA7JMHGqXKnlNo3QfGqd7RJv8Fhb3x4AeyH2BxyZ/p29sg+5tvYD7q3oZrw3RBG0jSn4y8q9wFla5SB4PEbFcek8Wt2nPuCdif/Px0F80FEVRFEVRFEVpOvqgoSiKoiiKoihK09EHDUVRFEVRFEVRmo4+aCiKoiiKoiiK0nROylFZKpfEdSc/Unc5vIxNsKaZr1jgUB0yyJD5u0LBKmE2nwQE6NhksqHcOqnV2NyN7+fgu2rt+IZ0ERE6dCOUrUJGbpfDrcjEyGURkRr9jbfBAUWFEhqHwg4anEr0uohIvYr1LJFxvlCYLrvu8U2Fp4JwJNoIZirlsT34vItrGpUs+lMiiUZbM/4I/8LHnM+PGZ+o17ENEwkyQYd5L9iHI2TcjrJpmoOBRMQiByf3P64317GQQwNspWSOXVrPQFpayCBMx7ls+XIod3Z2Qrm1HT8vIlITrBeHMNrH+Pdckh2ZkPBU6FnYRcNzmYIOy+Om2diiySLR0gplJ4XlKhm7s4MjUG6LYWigiEjEIRM6ucGLQ2jkf+xJDMuLxCkUcHkXlFszpxn7HH5lD5QLtBjI7tJBKEe7MYyxrYjBb7WI2c9TFH5ZPozHsfmFLVAO29jWS7rQ9L6mb6mxj8MFnPMeeWUblN82tQBJqTA/gZG2NR1o59O4t9iAaji7RXw2SRvGa94GFXn+CciM8zmw1nDK8h/YPG5sELADTO58rDzX80IfszN7GN7s7zi+WTbw1YD5/Vg7nY/AvnK51lhEhW3YUVokIhQ127xcx3mB751CNl3vKGSu4lLIsxfUx4/f7rkczYcWBfqxqZ03ENjnjx+WaZrFaZN0HL6YgaUlWryiWsTrZcjBevN9AV/DS8WA+2dayCESxW3EY9Of8QLusY6F/qKhKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7Ko+FE4uKEJz8SjqBCj2Vrnh8Wpubi7sKkR3e4NjUM/eLgKTtiBmJZtJEyeREqpE936+RdIH17tUZBhAEhJTUXt1EnMVxbK+rRQ3nyR1iYrBIKm2FmlTLq5tnHESZ9pGVj+6cyGIbmBzxjFj2sVyKF24glpnXUk4F9g8Y2TiU9Cxc1vAATRw7Da5Ui6he9mukzYDjYJxTCNjx06BCUixT4FeSliVGfjkTw3DrUPyMR1J17FNbI+Vq+IT4W4dEXFGI0E/b3xGJY57Y20z8RprBD9lxkqH+1tKDmntvWCwgOs0hHzT10cHA63C7IYzQX1F1XrKn2q5VRRxtJoO+gNhHgg6J5M7kEQ+c6+xdBuVjAfn14934ol8fQwyEiUqJQ0doozqNda/ugXKiSx6eKYydMwVATAWGfrSvQK3JkF4Y+7tiLoZBR6nPt5NnpXne6sY8OmkdfePFFKD/xxBNQ3rLtKSivP/dcKO87c72xj/EatYWF9dwxMBkayMGvc4UTcsQJTQX20RDikLkgqboRJDabR2O29wc5DfgjxuuzeDSMz/MkGBRESOGFs+4TmcUWEvi3k/VozN4OJ7LV6ddnm+dPBbZliz2l/bcopNWtYf+r1c0wR/YNRGk+FPLQhkPkM6DrkMfGAzGvbwzXi2vJdQzyOjGzWJvMMUHXefY++Y55XF4Ea0q3jUYIru8c37MVT5n36NU8zv0enQ8/PH0d99WjoSiKoiiKoijKfKIPGoqiKIqiKIqiNB190FAURVEURVEUpemclEdj+YqzJDa1ljmvtZ7Po1a4e9EK4/Ntraghc8K03jZpMS0ni+839O6mxqyF1hbOTuyEcs1FXbXnka6Q9H01Wui5XjN1aRXWsdEK04sWLoZyLoea6V7yUwTYQMQmP8HoKK7ZPzKCfoIINc2ihcuwjijTFhGRI6OYC8EZI/H4dO5EtVqVRx5+1tzIKSQcns7R6O7FAyhOZKE8fGCf8XmbskQ4T8LQ+VqsecbXOYdDRMQnzWiZvDXpNHobuA51I7eFsmQCRyzWq1bDPmuTlpc1qNy3gtYhj8dx7LJHg3M0WDvLutkgdWfIxoN79eWtUH7oP37Z+HetZup/54KellTDV7PhtFXwmk16Y3up6eHxEqj5txPYrvFO9La0LFoA5ep69GyU8maeQ6WEa807Y+gniEex39bI9xPuQb+NOJT9kcRzLSISI79cdzSN9TyC14ewhRPUwgWYccFRICJmnwqvWANlO04ewCTuoz3UCuVX9wwZ+7DoONb04byZz056w5wAn8pcYIvXyAwyvAuz5DaIiFizeDJMbTn5J/gafUIy7dnedPxMJqPOAe+fVUXPFZ2lSsHb47Y6cY168D5/HyeINeNfc98HXc8Tf6oOfh3nO84ccy3zPGVa8B4uEqH7Lw/n9QhlcVSL7Ncx68jXs4AgFyjx9dDwvtApqAf5C+k9tj2Lf8Y7/rnzbPP1UBr9nLEO3AfZQ8WmXA3X5QMxjyMaw20a3uAZlwJXPRqKoiiKoiiKoswn+qChKIqiKIqiKErTOSHp1NGfV8szln716GexMi0LWyyZy4sWaDmu2aRTpSJuw6afehzHlE+USDZQruDP/pUqSadc+mmOXq9WWdoSsLwtaZ1q9NNcpVKhMraVZ+P7T0Q6VauypAvryU+QvM+glfX42Fk65TjVGe+tTm3nJH8+/j04uo+Zy8vaFvcVlJCUAvpfnaRTrsfHh/2xRD8blst4HvnzIqZ0in9CLdKymIZ0iqRSoRDKP8KhIJnB8YUDLJ3ySMbE570YsHQsy1YK1N7cD0zpFEswgipKS01T+8+USx3991z0v5n7mbmksSFRoz5p0+siIl6VlvAN4bkJ0VxRpX5c5TahPikiUqNteLQMc8jCaZ/nK+FtknSqytIEEeFf+rkONV4KmqQsVdpn0DdgPLZqNKfZVAleIrISoeuJa17+LDqOMvXzytTYqEydlznvfzOW8fYN+QXLogI3FLjdY+/4+NKpE1EPza4YOv7ytuaSugFz4Kz1ODnpVPAW/jDpVMCivCfwrmNLp6qlSQn2XF6DYfl1WqLV42tAgK6O5TazlXm5d95H0LEbf5utTPA+Zt1+wN9mOydmHfn1gHpxW3Db0e0w78NY9TfgRpOXrDX2MaN89N8n0v8s/wTetX//flm8ePFsb1PehOzbt08WLVo0+xv/ALT/KcdiLvqfiPZBJRjtf8p8o9dgZT45kf53Qg8anufJ4OCgpNNpM8xEeVPi+77kcjnp6+szzVdNRvufwsxl/xPRPqgg2v+U+Uavwcp8cjL974QeNBRFURRFURRFUU4GNYMriqIoiqIoitJ09EFDURRFURRFUZSmow8aiqIoiqIoiqI0nTf9g8bb3/52uemmm475en9/v3zjG9846e3ecccdcu655/7e9VIURZlrZpsPFeX3Yc+ePWJZlmzZsuUP3ta1114rV1111R+8HUU5lTSzz7/eedM/aMzGk08+KR//+MfnuxqKMiv6cKsoymuRxYsXy9DQkKxZs2a+q6K8ydEvU+YefdCYha6uLkkkEsd8nUO7FEVRlGCqHNynvClwHEd6enokFArOCPZ93wgvVZT5QPti89EHDZlMZ77++uulpaVFOjs75fbbb2+kHbJ0yrIs+Yd/+Ae58sorJZlMyl/91V+JiMhXvvIVWbBggaTTabnuuuukXDaTqRVlNjzPk7/5m7+RFStWSDQalSVLljT62K233iqrVq2SRCIhy5cvl9tvv73xoHvvvffKnXfeKc8995xYliWWZcm99947j0eivNYpFAqyadMmSaVS0tvbK1/72tfg9UqlIp/97Gdl4cKFkkwm5YILLpCHHnoI3vPoo4/KJZdcIvF4XBYvXiw33HCDFAqFxuv9/f3y5S9/WTZt2iSZTEZ/HX4D8/Of/1wuvvhiaW1tlY6ODnnPe94jO3fuFBFTRvLQQw+JZVnys5/9TNavXy/RaFQeffTRxq+y/+N//A9ZvHixJBIJ+dCHPiTj4+O/135n7vtf//Vf5R3veIckEgk555xz5PHHH4ftzNaXldc/1157rTz88MPyzW9+E66TQX0xSKJ30003ydvf/vZG+XjXa8Z1XfnoRz8qZ5xxhgwMDJzCo3ztoQ8aIvJP//RPEgqF5He/+51885vflL/927+Ve+6555jvv+OOO+T973+/vPDCC/LRj35UfvCDH8gdd9whf/3Xfy1PPfWU9Pb2yt///d/P4REobxQ+//nPy1e+8hW5/fbbZevWrfLd735XFixYICIi6XRa7r33Xtm6dat885vflLvvvlu+/vWvi4jI1VdfLTfffLOcddZZMjQ0JENDQ3L11VfP56Eor3E+97nPycMPPyw/+clP5IEHHpCHHnpInnnmmcbr119/vTz++ONy//33y/PPPy8f/OAH5fLLL5dXX31VRER27twpl19+uXzgAx+Q559/Xr7//e/Lo48+Ktdffz3s56tf/aqcc8458uyzz8rtt98+p8eozB2FQkE+85nPyFNPPSUPPvig2LYt73//+8XzvGN+5i//8i/lK1/5imzbtk3Wrl0rIiI7duyQH/zgB/Lv//7v8vOf/1yeffZZ+dSnPvUH7/e2226Tz372s7JlyxZZtWqVfPjDH258c32ifVl5ffPNb35TNmzYIH/2Z3/WuE4eTTwP6ouzcbzr9UwqlYp88IMflC1btsgjjzwiS5Ysaepxvebx3+Rs3LjRX716te95XuNvt956q7969Wrf931/6dKl/te//vXGayLi33TTTbCNDRs2+J/61KfgbxdccIF/zjnnnLJ6K288JiYm/Gg06t99990n9P677rrLX79+faP8pS99SfucckLkcjk/Eon4P/jBDxp/Gx0d9ePxuH/jjTf6e/fu9R3H8Q8cOACfu/TSS/3Pf/7zvu/7/nXXXed//OMfh9cfeeQR37Ztv1Qq+b4/OX9eddVVp/holNciIyMjvoj4L7zwgr97925fRPxnn33W933f//Wvf+2LiP/jH/8YPvOlL33JdxzH379/f+NvP/vZz3zbtv2hoSHf933/Ix/5iP++973vhPbr+35j3/fcc0/jPS+99JIvIv62bdt83z+xvqy8Mdi4caN/4403NsrH6otB/ezGG2/0N27c6Pv+7Nfro/3ukUce8S+99FL/4osv9rPZbDMP5XWD/qIhIhdeeKFYltUob9iwQV599VVxXTfw/eeddx6Ut23bJhdccAH8bcOGDc2vqPKGZtu2bVKpVOTSSy8NfP373/++XHTRRdLT0yOpVEq+8IUvvOl+glWaw86dO6VarcK81d7eLqeffrqIiLzwwgviuq6sWrVKUqlU47+HH364IUt57rnn5N5774XXL7vsMvE8T3bv3t3YLs+XyhuTV199VT784Q/L8uXLJZPJSH9/v4jIceeooL6xZMkSWbhwYaO8YcMG8TxPXnnllT9ovzO/pe7t7RURkeHhYRE58b6svHE52Xlqtuv1UT784Q9LoVCQBx54QFpaWv6QKr5uCXZmKcclmUzOdxWUNyDxePyYrz3++ONyzTXXyJ133imXXXaZtLS0yP3332/o6hWlGeTzeXEcR55++mlxHAdeS6VSjfd84hOfkBtuuMH4/ExpgM6Xbw7e+973ytKlS+Xuu++Wvr4+8TxP1qxZc9wFAJrRN050v+FwuPHvo18sHpVXnWhfVt64cF+0bbvh1T3KzMV/jne9nskVV1wh9913nzz++OPyzne+8w+v6OsQfdAQkc2bN0P5iSeekJUrVxoX2GOxevVq2bx5s2zatAm2oSgnw8qVKyUej8uDDz4oH/vYx+C1xx57TJYuXSq33XZb42979+6F90QikWP+CqcoMznttNMkHA7L5s2bGzdSY2Njsn37dtm4caOsW7dOXNeV4eFhueSSSwK38Za3vEW2bt0qK1asmMuqK69BRkdH5ZVXXpG777670V8effTR32tbAwMDMjg4KH19fSIyeS21bbvxa9up2K/25TcPJ3qd7OrqkhdffBH+tmXLlsYD6/Gu1zP55Cc/KWvWrJErr7xSfvrTn8rGjRv/sAN4HaIPGjI5sX3mM5+RT3ziE/LMM8/It771rZP6pvjGG2+Ua6+9Vs477zy56KKL5Dvf+Y689NJLsnz58lNYa+WNRiwWk1tvvVVuueUWiUQictFFF8nIyIi89NJLsnLlShkYGJD7779fzj//fPnpT38qP/rRj+Dz/f39snv3btmyZYssWrRI0um0RKPReToa5bVMKpWS6667Tj73uc9JR0eHdHd3y2233Sa2PammXbVqlVxzzTWyadMm+drXvibr1q2TkZERefDBB2Xt2rXy7ne/W2699Va58MIL5frrr5ePfexjkkwmZevWrfLLX/5S/u7v/m6ej1CZS9ra2qSjo0P+8R//UXp7e2VgYED+8i//8vfaViwWk4985CPy1a9+VSYmJuSGG26QD33oQ9LT03PK9qt9+c1Df3+/bN68Wfbs2SOpVOqYixW8853vlLvuukv++Z//WTZs2CD33XefvPjii7Ju3ToROf71+rrrroNt/cVf/IW4rivvec975Gc/+5lcfPHFp/w4X0uoR0NENm3aJKVSSd761rfKn//5n8uNN954UsswXn311XL77bfLLbfcIuvXr5e9e/fKJz/5yVNYY+WNyu233y4333yzfPGLX5TVq1fL1VdfLcPDw3LllVfKpz/9abn++uvl3HPPlccee8xYwecDH/iAXH755fKOd7xDurq65Hvf+948HYXyeuCuu+6SSy65RN773vfKu971Lrn44otl/fr1jde//e1vy6ZNm+Tmm2+W008/Xa666ip58sknG7+ArF27Vh5++GHZvn27XHLJJbJu3Tr54he/2PgmWnnzYNu23H///fL000/LmjVr5NOf/rTcddddv9e2VqxYIX/6p38qV1xxhfzxH/+xrF279pirODZrv9qX3zx89rOfFcdx5Mwzz5Surq5jeoguu+yyxn3d+eefL7lcDlQrIse+Xgdx0003yZ133ilXXHGFPPbYY00/rtcyls8iNEVRFEVRlDnmjjvukB//+MeNvA1FUV7/6C8aiqIoiqIoiqI0HX3QUBRFURRFURSl6ah0SlEURVEURVGUpqO/aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXp6IOGoiiKoiiKoihNJ3Qib/I8TwYHByWdTotlWae6TsrrAN/3JZfLSV9fn9j2qX1e1f6nMHPZ/0S0DyqI9j9lvtFrsDKfnEz/O6EHjcHBQVm8eHFTKqe8sdi3b58sWrTolO5D+59yLOai/4loH1SC0f6nzDd6DVbmkxPpfyf0oJFOp0VEpLUt03iabWtLw3ssG59ywyHzCadQKEG5XK5DuVKuQjkei0LZDlN1Lc/Yh+fh30IhPkSbSljvWq1Mda5BuV439+n6+DeLD91z8f01jC45/7yzoPzBD/0fxj5+/fATUK7UsN6lagHKvS103LYDxa72jLGPvfsPQ/mJ3+2E8ujh8ca/J+NX/EbfOJUc3cc3brtW4rGIiIi4Ph7/RL4IZT/gWxfPxXYvFfFcuy6ea4vOa09XF5RDAU/x+QLWgztDOpmEcjQex8/n8lhn6s+d3VgHEZFCEc99tYbH4UTDUHZd7I98FAmqk4hIrVqBcr1K+6BxlM1moezR/JCIJwL2geM/Re/x3em2KFWq8pmv/tOc9D+R6T543fWflkh0cl4q5ifgPakMjqlaLWdsZ+TwIJQtD4+5UsJyuYR91nLwXEpACtLac9ZD+dUd23Gb5XEoc7t7FK0UiUbw/TV8v4jZT8XD821R/xAaO6UyXhtq1L9ERMIRvB5wBFQ8hv125PAhKIdCWEfHuDbMfuzt7b0iIlKv1eTX//9fzHn/u/euv5ZEPCYiIqkM7jtOdbEcc35yaD6KUH9y6TQODg1DuVzDa3Y602Lsw6dmLc4yP/E35PU67sOzsBxPmfNTio6d57w0jU2PjjvT3QvlRCJl7MOrYj3C9vHvJaww7qPk4ufrrjl4x8dx/v/+//tDKD/0H79u/Nut12X744/M6TX4PdefK+Ho5L1Eor0N3rN/zxCUB7eNGds5/ewVUPZtbOdDO0ag3N6F14Dr/s+PQnnPyweMfTzyzG+hHKXryNvedj6Un9r+ayiPZ3GOrhTwvG75xV5jn/USnttEO+6zWMMxUK/iQFu0Bu8LOpeY42pw5yiUownsf8kM7vPwEexLoSi+f8GimLGP3hZ8mNy3Da9hqeT0Z+o1V37zoy0n1P9O6EHj6ERgWZbYUzcMDk1i/KDBr4uI8fMKl3nCme39fO0KwvxJ5/iTw2x1CvrZkC+ixluMbeDLoRA+BMTjeEEVEQnTQ5bHD0gevs7vt+hBI0oTcdBnZmsL3/fn5GfUo/uIxyLHfNCo0gXwRB40fLrhpuuA8aBxdN9HCXrQcOu8EXwPPzzHqOzSTRzfwCUC+obn4T557J38g4a5jyq9qU7Hzg8aZbpB4wcNbksRkRCdMm4rPl8iwePxVHB0P5FoVKJTDxr1Gtbv6N8bn7HNG/JwBM+F5WGf9OpY5i82bLpBCopbjcbwAhIO8/nnbeA++GY7RJ/3ZfYveE72QSNUp/nNMw+MvzTiB40QzV+Og3OeQx3MoXlXRMTibYZ4XqXzN8f9LxGPNb4ISCbwxiKRxPKJPWjgOOQHDd6HTQ+A/LqI+aDBT8MherA96QeNhPmgkaRj5zkvlcIbOX7Q4AeVZNK8efLo2MN0TZ3tQSN0Ag8aLo0bHstBD8dzeQ0OR53Gg0YkRscX4fFm9r9wlMawTdugMRyOYJn7eCxu3izzHMtl7j98HEeP7yhuje8RA+4BZ7l35ftj436Z2orbUkTEpvc4YfoMlWd9f2T28xMKYz1Ckd+v/53Qg0bjzSGn0YC1Ot/c0E2oeS0yfoFo78DBb1lYdut4YzFBvy7EwubJ8Dz8W4wGKneAeBw7WWumB8rZLD4VVgK+aQtxR6abqHAY61Ckb9KrNN88v3W3sY9wFCe+uouTdUsS65Cv4D5qFt4Eje7BbzVFRNwKnsO+hX1Qzmann25935daNegknzpcty6uO3X+LOy6FTregDlcYlE8D/xQUK9gm6ZTOKnV6QIZDbjIpugXC37QaG2hbyp4kNINW5x+XYhEzYcAnz7j0S9o/EDUQt/uWXQjUC7SrzJi3tRx24VCNAao3jWf6hRwwfTr/CBB3+Yf499zyZ4922fcbGK7HxjENomFzVrG6fmq7uF8Egrj+W0N4zd+xRx+8z+WNb81rNCve70LcE577oUBKIdpHq3W8DxUqjRf1fDXLRGRSgX/FnbwOCIheqDmX6Ppwuv59MAuIiWa/316kGht7YBydy8e99gEfvvpW+aDK08cdgjLsczkHOJUzWvPXBCJRCU69cuORXOLT08JlmPW0XGO/2USX9f5RtemX5UOHzli7GNoBL8RLtJ8wl908EMqvy42noNE2px30y04py0kmc8C+sUi09EJ5XoIB2alhH1eRCQepi9PuN4e/2KG7W9RW0cDzs+hgweh/OKW57GeM1Qfxpdac0A80iuRqYe4kUEc8xM5qk/A3WXBw1+B/Rye2/YOHLOdrXgd6e7Ae5LKUnOOTTyD5+n5F7dA+by3ng3lyDhek7c8+CiUl7xtAZR7z2419pkbxnm4IjhPrzwD+2My1Y51TmGf711I9xEi0tWLbbFnL87jy8/EbcZ249jdv38/lNPdpqrF9bDft3TQPdPM65UfMH8eA111SlEURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEejVnXFmtLWuqwHNQzPpkieVwUplVBzm0hgdVjz+P73Xwnl6//v/8vYB+vo2bjokAkskUSdmiOsD6XVtMKmiZpXfjEMmmS4++VDv4Hyd374Syi/vMfUXZcrqHOt5HEVgz2v7IAym0rZKNTZY65elCf9d3s7av5mHvukR8P0q5xKPM9vmERZ214nfX85YGWcWoVWSuLlwUi/zCsrCUmDowF9oUQrV7FvtlJGXathNiWvQ6mI58QLMD+FyB/FXrU6tYVjLNyAdcgFaH+N8U164wLpsD2aH8JkMDfMw2Jqs6vU/vHI9DiyA4yuc8GOnc83TMYJMiLyufG5L4hIJont0NneCuW6S/4uQR13nbTjFVqlRkRk9wvb8A+0T9fHtnOpnV0yrfrCJlZTm2ucD+ovDpk82Sdqk569XjY18rxYRaIFV73p7EItdTKFbfnEZtQos0lURAwfYSZBJuEpA3DVPnF9cjOp193GXOeXcC6p0nkJWhAjwis3sunexter5PfyqO+M51BzLyIyOIirD3F/4kUTarQKFXs6qrTinTHBiUicTMLDw7hCj03HdcYaMpRH2G8RYPKLkC+VzODc3HlqmxrdGCRi5spWu7bjdXz4ALalP8M/FbQ4xqmmWo6K70+Om9EDuKqbE6EV2haiZ0pEJN2yBModnW/B11N4P9aRxGN0qP/t2ktznYgsIB/Hkk70o+7ZtgvKPZl+3EcZ67DjKTzOM95iLuUaSmGfPXwQy51Lsc+fdhZuI0nzZ7lq3gOmupZD2eXFSGgOjdAqe7XDZJzPmbf/Tjf20eVruqG8d2Daf2WZVr1jor9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T82i4bkOrzaE6HAgXDpvPMEZ6s/Da/Kgh433ksqhX373HXMM7SmvCe3X8DMvPSzVMPi2VMAkxX6AcjbKpux4exm0cGMK1sBPxViifcRZp7ahSHB4kIhKPU8ZIGrcplAzOuRI2+REqdfM4OBV97x7M8yjP0ARzrsJc4LpuQ8dfoCwSDh3jDBYRM304Q22aTqFmlgP7PPYQVEyRYjzCPiTKMyGPRtkjX0wb6s5L1P+ckNnuDiVkWWQMCZH+s07nOR7DdcRZQz35GewvUdLjFiZw3ITI98GhlEH+HvaBOOQDmenhYA/IXJFMRhvr4zsOnosk+VCOapkB6pf8nqhNGScUZOdSMGUiYC3+SB7P7/YBTLKNdVGCOc0FFml7ObQpaOiz5YbzGUolnPu5P4Q4FMsL8IGwBpkCp8aymCrse9iv6xUKRwzKROKgLUqqdHOTbevV5tafdpRSsSLWlE7dcqgO1D5ugJ8rSkGamQzOeWF63aXrysFDeK0bOoTXOhGResC1ZSZl8t9wmb1aderz7A8VEalRajfnXb2ybTuUffI+ZTrQsxjkQ+KwvAWU08JJ7TwmOBG9XjazrF58HnMzckeyVIfpevP1aC6wpN4I3+zuwvG0by+ex9NWof9CRGT1yvVQXtR9HpTZ99KZxDZPZ/D6ODaK1x0RkSLdZ2648G1Q3vL0FihH+nE+XL7iNCi/vPMVKPd2m/7W09+KnovND22Fsh3Fcz9CPqZXB7NQTreZfdxxyN/SugrKL/5uM5T3HcD74yjdJ+THzHGabKNrFlmZMi2tjX/Xyiee46K/aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXpnJQZPJWKN0x+NQ5E89HMV6uZRiWPXYRk/syTiXFBXy+Uf/Jv/xvK//qv/2bsIxZDM4tj4SFyDg8Hu9UraHDh0DDPCzC6UVBPugXNRcuWLYPy8pVL8QNk6jpyEE2NIiLhBBpNOdSIm7tawwMtV8nUXjEdnfkCmfIo4G5m282DF1wq1YrYU0GQbBjkModAiYgUC2hsDFP4TyaJxkg2RYfoPOfGzbCq7m40mHMA3wSFOFXIUN5BZnA2/HEg5dS7oMTZaRxaWSpiO3CIZVDbhQzTMQd0miFaM+FARV7oQcQMEuT5YWbIX1Dg31xQr4o0PLaUOhemgDjPMxcLsMO44EU8hH3Or1N/oXE+kUfzYyag3TkMj4MEqwUKVxSsZ4LGAZvFawHnzvNosQlacIDN4S59xxVNUfhhwRxb8RSau2Nkvq/Q3J3OtEI5FMbzU63iQgwiIuEQbrNthvlRRKRnQd/Uvk4iraqJVCt1CVmT5yOSwDazaD6LRMxFHaIxbIMkLTxSpuvdqzt3QnnXblxYoBgQrCgez8U4Z1VoDuOFJowQU5qfghaCqHNAKB07G4RHjGss7jPouLI5NG9zCGUyjePGpoEYtbBOL2150djH889ugbJbofnend7nvJjBw4fEmjruqmCbZtrxvicaxvEqItLXfgaU21r5vgaPlwMmvRD23xQviiMiAzsOQNkmg3kqg/Uq1vE4epehyX/cxvDHpWvRlC0i0n0mhf1G6BpawXrnaA2FGo2Z3z6AixeIiHQsxm1e9p8xoLT2BM5n44ezUF60rBPKI7vxPkBEZPnpOKcMjaJpPRmdvj/h4Nfjob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T8mhUypWGFjueRG1drcqaeVPE73qooXVs1F7aFAzVksK0kBzts1gICHWy8G+JJOlYLdRydsc6oByNYpPEYlh2HLPJLAuPY/deFOCxb6RAXoHiBGo/IyFzHzUKbmtJohdg4FUKLyQdddVDLXedtZ8i0hrHerb3oOZ0x97psCbfF5lrmXK5VGmkIPkUQMga8Lpr6sg5kC8VxzIbT+qkV47GsS8VAwK/stkslCvUzkdGUe+5aPFiKLM+mUPr/ABvQpj7JMn2WVPPQZnsXQkKY2SvST3IqzSDKumyqz6djwCPj00aetZuzzysekCg21xQnCiJPWWCaWtHzWsmiZrZQhHPtYiIZeEc1xZBjXyljO02SiGTNs2rndyHRWSCwvEs6rfsb0lRaJtFJh+f/HdOQKBjqYLnw4kcX2efaUOd9LLl/VAe2IGBV5OfaYVyexeOnT279kHZpzmgrQXbulgy58BUIgHleh3f4/vu1P/nxyMUjcUkGp+8LrKXJprE6yWH74mIUPczQv32DmAbbt2G52FsHD1CHpsexWx3thGxB4zDVRNJPAfJGF7rQjEzCJP7bFsnXtcTtA2bJskazdOOZX4Hy1r/KnlNihTOWnVo3NA8/eILLxj7GBocxD/QXDwzKNKbjzkwKSJT00nUx/ZIp/qgvPyMtxofz7QshDJfV1KJKpWxL+Qr9P4O9DSKiNQcnDN3vPwqlCPk7SqTf6dWwv65YCHOM7mC6e1yt+M22h305R6m+4KxYfSgtZA3s7sH+6+IGQz94//5CyhP7MF7xIwxl5GX0zPvMw8ewGtWnv178fbGv/3K8X2ZM9FfNBRFURRFURRFaTr6oKEoiqIoiqIoStPRBw1FURRFURRFUZrOSXk0yuVqw6PhWagd9Ek7bGRmiBja8Tqtz37Gaahr+8//5wehnCJNancPaqJFRGo11M+9un0AyitXLIfyi8+/ghsgn0iINK2Wb+oi22j96O/e9wMoDw4dhvIvH/g5lEcOofYumUJtnYipJ77wwnVQTq9FTZ9HbTt4GMvLl5oawNUruqBsW6i1/ebd014Sz/elUkFd4qnGFUvcqU7k0rrpddIKJxKoyRURiTioWa6V8VyWDT0iajk9EjhXfc6WEBncsQfKMepP3V3Y7ot6sQ9X6Lyx9tgNyGYQGosR8jrUangeI7QWOfsGomHzuBzOtKCyQwOlxN4Cylmw7IDvOKjeFV5f356eruoBHrC54H2XXyjRKe17gvwRcWqDcgU1yyIi+w+hjnbPPlzP36FxHifdd6ZO5zrA7JIl7Xg4ih6NEvm9QnQZ2LBmJZSTUTxXtYAMnprHGQ7kNSKPjiWUdxTCOnYvN9eqt2n8tndg+5/VeTqUYxHc5vLW9VAuVbAdRERicfQ5WHTRaolPziul8vzkaNjRuNjRyTra1P866XpoS0BWTRjPUzaPbfDyK6hnz02gJyNEWTd+QI6LT55FfotDXgchy088hucgEsM3pCn7Q0QkHMZ9RiJYTlC5p6sbyu2LsL9Fk+b1o+LS3EzjfSyHXrcYeU1qJfIObKN7j4D32DQ3uzPa0rPm3qORCvdKZKqtHQfngTx5F+IJ8zyFwtgmHs8DETz3IfIZTOTR2xAjX5KISC6HfdalObJ6BMdFRfD9i09bBOUlqzD3zEub9z0hBz0WxRLWq1BG71Mog9soTmDbLV1m+pCGR3Hslij3LNKC892ildh3wg6Oo/we06M2sOcQlM84A8dF/7Lpc1opHd+nORP9RUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXpnJRHY9JkMSkS9F0UXrrG+v6mjtfUG5LPg9b5/d53fwzlTBd6CDa87QJjHwcPoub55z/5GZTf//53Q/l/fe+HUOZ8EBGscyUgO2H1SvSWcA5Bawt6ON5z5RVYx//4LZQXdLQLs2P7DijbpJVdvgg/kxvPQvmsVagXZ1+JiFnvukttMfP8BXlwTjHlmtvIz+BsiFQK9aAhMde5r5VJm0mZBS5p2w0bAXkIqrwovYiM51Fr2dqDWuCuDvRoVMjLwNkcHo2jOudRiEilSt6SBGq3HRuHuUfjLEQ+EEtM7W+liPvgHAufxnKF8gdiNrZd2DHX+I8Y6/5jvbwZvgyPDV9zhFcuiTeVB5SntfcTtKZ7zDLHyJFh9GvlSpQtRHlEYdI9j5RQU18uomZZRMTJ0Fgg/1IohG2Xz+E+9u7CHKCqj1rgoPyYCPWhGGnmfZpHOzp7cB+VLJSzWfStiYjYLrbNWztaoVxPYa7Jq5QJEaHjGBmm7CERcanfOg7Wu6tjch+cjzNXRGJxicSndOthygMgL1YqZo4RzunZv38IyoODWGa/hEPnOShHg/MmOLfFrBVlWtSPn1/U1Wt6MzkXI0Uei852nHcL5FNqp+tp7yLMexARKdM8W2ftP9WbM0oGh7A/Dh+gzAwREc5ncY7tiQnKOzrVJMJ1iUYm67Afh5MM7cW57awzTS9DrgP7aHs3eUspg6VQxHGWJ89QvUKVEJGIjeMiFMJyqhPLg8W9UPajvVCOhnHM7CQfg4iIkF8lO4L3oXZ4jOqAc/TuPfj+/hWmv6WlC/0qRbomeza2XcnFsRqO4PxZC8gaW9HTD+UlSzDvaE9pW+Pf1fKJe4T0Fw1FURRFURRFUZqOPmgoiqIoiqIoitJ09EFDURRFURRFUZSmc1IeDdu2GjkaLullWYcZhGWTpovEmjUXq1MjDeLQ9l1Q3rMHtXUiIqOHUXu5uAv16iFaWzyeRi1njNYmj4RYe27q0kKkLa9UeB1x3IZDOQZ10n6Wi6iZFhHxqX3LtI77hIfaxVwe9ZH5PGoZ6655HPU6rw1PaznD+Zh7fWipVBZvqt42aY3jtP79yGHUPIqIVGndZ7+GbRpL4HnhLIgcrXHuh1E7LGKuK5/OoBemUMC11kkCLtUq9k+PNLrGGvRijsUi9R/2r7A3JUK5GeWy2f9cD9vOJgOLx94Ri3N1sK2jUfZCmTh0jusz9POBOT1zwCNbdjQyQzpaUb+6PoZzSSTAo5Evo6fCp1yMhIPHHG7Ffn3Iw3FdD5jCk9RHXDo3DmmOq5RXso08GqE0ZbkE5DPUyLMQi6GeOBKlfAqyoXEuy+GCmVMRJQ18rkLjM4J1GLewz5UOoiY+MAuDTlmB5k13ai36aoBPZS5wwmEJhc019kVM31q1GpB3UsM2Gh0dhTJ7OGYbp0HXfYf6cI36V53qyfMX1+G05Zh99dYNFxr7HBtDDXydM3homwP790M5MYJ9Y8lS1OlPbhTrbVNniZF/JV/BOoyQbn9iwvRX+eR5MdoX9jH3c2A17DSyxiIZvNdKt+AYLtA5EREJRbA/ZVJYHh3DvlChNq+zR23MzMKJ0vhIt+FctHQNntvRZ9A7s+8V7AudGcySGNtrjv0jE+htKpTQr+LWsJ4JB+fxQgXnooPj5hy7+HT0DeVz+Jn9L2Nm3MgAvj4ew332LW819hFN4PnYvhu9cl58ev6oVWa/5z+K/qKhKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE4uR8OyJv+T2ddwDofMTbsufoa9C+kO0pJPoJ49RGsmt2dwDWYRkfYu1Pi1LFkK5Uw36vNWrVkD5Z3PPgPlZBq1xROksRcR6WxdCeW8jdq4Lc+il+SBXzwM5UQKtd0TJXP9aZe0m6NHUP/YuwD9BbUIPkOSvFl819QZOnQ+2OfgzvjMfKzhHYnGJBKZ1F/WaM34sbEslLNHxo3PJ0g3nkiix4LzBXhNb580sY4TsE496d87u3Bt/wSfF/LFREhfWvVIF+wE6bMtKvG5Zz8VfprPZShkfv9QKPMa8bjNag2Po1rFsRoJYb09z/QIlUr4t3gcx0UoNO09CLmmV2Uu6Opol/DUOY7FuP+Qvt0xNaztLdgH0xkct1HqU2zzSLmosc/lzHHMQ7PuskcDz2+EdPgZymFZ0NcKZc8z167nvIlUCr1JiTj6WewIzqsujYP2ML4uIhKiPiZ1ynIizXsqisfpx7GtnYB+3p7GelYoeycenTznler89L9yqdTIjAgluP7YHy3LnJ84c6dcJu8eaeJ5buDzzF6tyc9gv69UArwwM2AfSCKBY6S9DfNperrNHI2ubswreurpp6BcGsfjtMiXFqHblbBtjt1I/Phzc5lymNgPc/gw6vaLxaDrPOUT0dxtzcijORFfbLPZtf+QhKOTjbXzKfQlLFmEY2dkFO+lRES80lugvOM/nodyoQXzdXp78FwXsnhdDwf4lUJ0rQnjZUQmDmO7O+M4VxXH0bc0fgT9r7Vxs93Hx/DcZinHLH8I7xtbMjhv978d72VzR8z7zOwQeufaenFctC/E+2ef5zcfPW0LVplZHfU67ndkBx5XzJ++NtSrmqOhKIqiKIqiKMo8og8aiqIoiqIoiqI0HX3QUBRFURRFURSl6eiDhqIoiqIoiqIoTeekzOAhJ9QwmLFpzHPRIOMFhFVxiE4yhaavt214K5Q/eOU7oFwqoKHLsczqp5JoIkx3ovm7hQzk1/znLJQL40doH2Q2CjC/JWJoZvu///xTUO7twX3u3b0Dym3daIDyA57/JrJodOzsQuNVIoHH7ZNhs7sL6xCNmWFzlrAZF7cZi0wH2XieLyLHN/k1G1dscRttg22Uo4UDoiEzaCoWIfMumSUjETQI1siIF6VAtopnmi3HxtGkP0qhRZHOVijnxvG8xpJoxK2RCZsN7SIicTJP1usUVFZiozZuM0vGs2TK7Bs1+kzVWF0A28IINEuQyTnAqDozkE9EpJDHkKNicbpPlyvzE5iWjIUaZnCLFgdwqf5uwIIJMTJ7Z2gOHD2C5juf2jXMCY++OQbZUMqBaNz2IVqggM/dkWHso5n2VmOfySQaC90qbvNIHo2IhSIaLs22CwiCo7IVwX3GF+A+OzNYz0IN58R83gz7yiTxfIRaKEBxKgyxTAGFc4Xnecc0AfN5NltMpEQG5GEKkeM24b4SiaChPsiMy6FzZTKD82fY/M2G8xIFkA4fOmTss7sPr/P9FPJnk9vbout4Wyv2pXDYbLu6sWgGBWPSwgHclmz+DlpQhWdFDtaduYDOfJjBpVQW35s87nCU+lsI65P3MBRRRGTfKy9BedfT+J7VV1yJm3RwLioXMFyvUjLH8GJaAGjnod1QLlEI59gw3vMdOpLF1x99BMoc9Csisv/IASjz7W89h23VdiYZt8t4v1IawTqJiBTzWK/dT6A5vO8MXHhm5SXYDoeHcKy/8jhea0REanSPHevEPt63+Izp91bqIoL3ssdCf9FQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOifl0UgkI42AHt9DTVmNgn9q9QD9YJj0yRSGd/oq1FWuPRvDXVjzXKfQNhER4TAyCgl0XdSLdmQoHCiNOnyfNJJOyNRu5ooYIhOLY9u0tZDuvoK6Qr+UhXImY+rwk4vb8TM+HrtLHpkwBcflKGgwlsCQGhGR0RHUGToUfGPP1JebEvtTzvj4hESmtLaxMLZxNIJlK6D/8Znz/OMH2bHvxaL2KBdNfTzrkQ8dHobygg5sd0MDTYF8IQp0K3FomYiEyEti+iWwrxgejnKVymYgW5hCteJxCvuxsd7JBNbTIU10UIiXZeEZKpCmuTTDo1FhD8gcsWrpQolGJ89JyMb6tpA/zKugtlxE5Ixli6GcakGvlfgLsUxi34cffQHKwyMYJiUiIg6FPLKvjPqcR5r6KgWNhas4l4Q8cw6s5fEzZdoGjwsO3OT+UHPNuT3sYD2qr+yB8tIqhnstOr0PN0BeACvAY5WM4PlgP0GqdfLcs+9projH4415yaPzWiMPJI9rEdOTcWA/auT5PLCPgF8P8mjYNC54juNtBgXXzWR4GOfQHTtMXbgTpeBLmrvjGbwGt7S14gboWlALyKOtUPtWqY+WyLfD/gqPfEdBYYemd41CKWds058Hj4bt1MSZCiJdsfo0eK2Wx74VC5mBcEMH0HuwN4vnNrQd/RSLll4A5WSqC8pWQGZcNIT9yfNwHnbpOu5EyZspOKcWJ7DOfshsd8uj6zaNC8/GOg08h/6I+G70wdXEvHa0dGEfDyWxvw3vx3q278F72dwhvO+cGDb3USWvXF8fXo/+5J0XNf5dKlTkp9/E8Oljob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T8miI64pM6SsdGz/qR1jPb2psnTBqzKol1IL//IH/gHKYcguiFmrjklFTH8rLzBt6Uap3lfTtDq1zHyWtXTjAo1Grodbt05/+Myin6DhaWlEHnEqjfjQRNzMgnn1+K5Tvvvc7UPYF11TuWdAN5SLp7odHUBspIhIlzajroibVOsa/54pipSL1qYyALK11vXwRrhnd0UHadxEZH8fPOCHyDVSxjSzKaYlw5wrIikm3oC7VsnAfYRonrKvOT6BWM0Ea/lrVHFf5POo9w+RfGRvLQvnQQTz35RJrNU0NaiKFfbSjC7WyoQiPRWyrCumXeVyKmOvpz/RkiOC69fX5WENeRPYNDkpk6lg9yhJa3LsIyima70REXn6F1oG3BqDsh3E+CpGv7dAE5rJYttkHeX3/eCxO72CPBq3VT/kglSrq8g8fwQwMETNfwaXzY+yDzr9tY53qAf4C/lZsgsbCK7sHoVy2cBvVehbKI8PmOvLt6TYoR8jrlpzS/hs5MXOEbTuNsVMjD4DvYwsFeRgPH8ZjzuVQj85ZHFxmf0VQFoRDXhqHzjXnZHDeBO8zm81Cee/uPeY+yaOxYAlqy33KSEr65JWj3sU5YSIiVfJ7luneoVyntiPvE7dDsL8F6xGiC2115j4C2v5Uk4gkJDzlk2xJo98ssQRzHGoj5vy364XHocyJTdUJ7J8HxrDN2jrPhXKqxRzD+RpeR3oph2XsCHlJIvj+VauXQXm8jHPuQfI5iYh4o3ju63TerDiOidIEzk0VytloWWzemrtFPN+dvZT5k8GdjlOGV89K7PML1/B1QaSzHb3AF56G2Xb1+nRb1t0T96npLxqKoiiKoiiKojQdfdBQFEVRFEVRFKXp6IOGoiiKoiiKoihN56Q8Gq0tUXGcyWcT1k8n4qilayWtq4hI3UNdq1tBHeSuV9CH8NLOs6D8ny7bCOW2pJk34ZO+2CLNYz6PeRLlEmrlQiSKZA19sYB6UhGRCmncF/Xj+u29C3qgXKf1ty1BfV6lHJQxgOV0Co+9jzTz9Squ25xMUB5DCdtBRBoZFUcpV1BnHZqhvfUC/AmnGs+tizt1OuOk57cdPM+cqyEiEo9R9gutrx0J0TrV1B68Djq3l4hIdzd6Y3jt9ew4ejDKdK6P5HEt7DD5SkquqV3nTAn2aFRIyz4+jrkvhw/jPltbWwP2gfUez2L/scgXEEuh+jZC4yqZNNdYZz8LS5Bn6qbdAA31XGDFXLEik8dSy+McWHGxHI+YPpKqTzkFIeqnYdyGRzpui3JWwlFzHCZpXoyQV4TbtVrhPoX1Zs18Lm/OgYZHgzMEvONnCMTjpBcO8OBMTGRpGzj+CmXsYx15rFPnQiwXHXP85gs4NqIhmhO9yXFQ8+an//n+9PnjrIcY+14CvFblPF4XOBeD85g470To+hroMyBvn2dTX6C5mv07pQqOgewEnpNa1ZwDOd8qRnN9azvej3guBzBQXgVnE4nZVnxN9qvkQ6J5t5XmvGQCvZsiImPU33gczLx3CIiBOeUMDxQlFJ5s6+jpWXjNFvTxbd++y/h8he633nvpe6Gc89GTuGvry1BevqIfyi0ZLIuI9KxF70h6yRoo73kMvcCFg1l8/wI8B7UJyuEYMv2FoQjdf7TguHCLeB59GrxeHcv5QdMDFuqlrA4a3skF2Of7zsT+1tGBY8ApmcfRv6AfynEHt/HI9kcb/66WT3wO1F80FEVRFEVRFEVpOvqgoSiKoiiKoihK09EHDUVRFEVRFEVRms5JeTQS6UjDo9HaSisg03ruLW1mjkExj2t2HxlD7aUvqN/LHsb1/vu6cJu8xvnURgCH1mcPkyxtB+nTJ0qoYS2SpjBi5AWIVKsoluugcoXW166Tti4Wwm2WA9Zor9bxbzHKEPF82kcd9aRR0qx2tJvnp1RALWKF9Ln1Gfpdz5t7j0YsEWmcc5uekUfHcG3/toTpAYiQntijdaAtylCJJ1FDWyZtsOOaGuiWNO53/x7MTRgdQ69DmLTqPI6EfE2eoacX8UgL7PP3B9ThUuRvGQvTWvq+Kf6NWdh2Ph17NodjOVFn3xH2LUvMcbR4Eer0w+QtyOWm265en58cg0wiKtGpsZdwcTLJhHFOtC3zexyL5qwweVfilKFTpXZ2aYH2VBLXRhcx9ensyagUsd+XaM7zfc7AOH5ZxNTqsweD8xZm83BwDoeISJHWww/RZO6Tb2xoELexctmZUO5dYnr8SnnsV5yrdPQCwrkwc4UvlvhTfoJwDPsbxTxImbKTREQmyCPGHowQeQQ486JKc2A+Z/p14uR9SZD/xqN9coZKG3nE2BthB1x76uQZnRjB60F5Efom65zrQ2M16BvYOF2ni0UcN0LXbZt8HnHyAPL1SMT0lDpkBAlZ0+fDY5PIHNDSnpBwdPL89i7B6+N45RCUR8b3G5/vo+yNLvLOODXc5u4BzKyo9C3AciTALxHFbbh17H/pAvbPZRHM4MpH6RyswM8XJkwP7SCd63ASz3W5jH0lnMLXKw72nYBLsORzOJ8NvYg5GUlq277lmGvSkUAfbyJnXjtGd+G9wEj6RSgfnHG/XK+YPqZjob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T8miUXU+OKuImSMvKGtsjOVND3dbaAeX169dCee3ZmJvR24cas3wWNYBhXntdRCyS9pLEVEpl0tkL6n5LE6jtfPDXj0D5kc3bjH1296Nu8K//8kYoh0jnyzpMnzSqkZiZAZFK4RrVdVqrvFBg7T8eeI00hJGI2XY1F/W2lSrqXmdKQudBHirRWKSRXTGeRS1h1EbN4xitvS4iYvmoDW7vQj9FoYjHbxnr7GPfCYoSsWWWHBbKXGnPoJ7UojXmWW8fZI1xyYPBuQh1+hBnjHRSBkupZGpQS6T3NvTFtA/WVfM2hwYPGvvo7MDxzmvjz8xOsULz49FYlOyUWHSyr5VsPKZYmPxgATkrpy9FrXg8ieO6vR37w449g1AeDGG7BeUYsP+BPRgFysHgPsoCYd4e552ImB4M1vpzTkGdclAmJmj+CjgupkaaeIv8TQdpffz9AzhnnL7YzHrKhPF8sE/o6FGUbXOMzAW+7zfaulrBuYSzjUIBc7RL49TwxtC5Zk8G+xL4dRGRMmWqVCknwy5ixbpp/ll31tlQLlD/3bff1P6XaV7lPs25O9z/OGuGvSkiItEozps56rN12medvCg+tXWMPDYiZr25HjPHRZBX6lTTs2y5RGKTbVWZwPO4cwfmZkQDOmBHG57rFStXQnnbHmyzShF9uvkJ9CWEHHMuqtFcVKH+kiNfrlfAa1thF16HIivPh/K6i/E+VkTEcx6F8sEdQ1jPFN8XYL0zGbwf61uB85CIyMCz2N8mdmKfr1NWx5Ht2JaHS+gXXbgSj1NEZNuBASgPDWB729b0OHFrJ97/9BcNRVEURVEURVGajj5oKIqiKIqiKIrSdPRBQ1EURVEURVGUpnNSHo3sUL6xPvpZZ6LW7py1i6B8aBC9DiIiJUFN2P/vy1+GcoJkuc+++BKUv/w3/wvKh7OmDr9S5WwEfJa69NJLoPyR//QeKJ+/AY/r/Leij2Tn9XcY+7R5/XzS9pMFQ1zOAPCxjlHSuIqI7B04AOViGfV3cdL4sR+BtbSloqmvi9Ia/hlBD4PlTOsO58OjYTu22FOaVbYquLT2fzY/IYxFvpZInNbLJk9Aucw+A/asmDpe1uFapJueyGG9FnS34/tL2Hd80sMn02Y+COe05DifhraRbmmFclsU+28uZ2qgCxOo64+RXpl9RnWqUzjCuS/GLmR0DLWz6TTmHERnaJr5mOaKbTuPNPwpPI4X9uG5TKfMMbZvAH1mYqNvIEw+j2y+RK/T2vX5gDmQPDqFAp67eg23yTkbItivWQseIF8X1yU9us/jgHxpNILZb8Een6B6sEnKom1WK7jN321Bf93ggVZjHyEa0+kMaqUjUzkaVfa1zBGVSkWcKf9dKIHXiWQCx6QdEPXB44bblLM3+DywtyHoQlCnoVmqY0VSMbxWtWYw06mDyknK/TkyhrpxEZEcZXRls1msk5Hrg8fp2Mfv8yIiJfKBMJwdw34LLrPvUiTYGzITa0Z7z8c1eGDwgISmcjTKlF1yZA+2cWvI9DK0tmN2Q80n/xj5XopHMEcjdwS3GYmYflaXPD35XTtwGwWcM3OH0U9RG9wL5WrpDCgn159n7PMtq/He9je7/w3KBQ+PY8n5rbgBGlaje7A/i4jkDuBx2XT7PvAyXj8P7aW2pPyPlRf0GvsoC+7j4I4slM8/5/TpKluuiOB96bHQXzQURVEURVEURWk6+qChKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7KDP72t69oBKaduaobXiuX0ejUceZi4/OdfRjEUyqgqWtgHE2LTz79LJR/8eCDUD5yxDScWx46pGwyV7W0orFsw1uxTulRNO0s7UPzUSplGrUTaTS6OmQGT2ewrapVNNxEwvj+/YMY0iUi8ssHMDjw0MhhKJ+1AOsVCeMzZJ2Mq/kc1kFEpO5jW7kuh8xMG+S8IDfvKaZerTeejNlIVyLTbCnATBo2jNlouOLgKNflIDwOUzLbIBFDs25HB4aC5cazuA9y4tohPI8cPpQIm0OWAyBrbMwlA2i1huZMj8y/VoDLsEThjVzuorZzKHCtUCpAORIQtFQnA6ZxDmfss1KdHzNuseJKzZuse9ihMDcb5xYr4Hucau3454ozIoslCl06jHPeeB7bVUSEfNhGkJjNAaJ0unnhCH7dMt3j4tNYcWb5DssXfL9H2+SA0cnPIA4tQMB79MgAzHOES4siiIi0JPGcumQArtcnX3cpjG2usCyrMT5jtHiFzSdezHHshGhRBhpzbFhmg3OEFirhgL/Jz+B+E0kcFz2dGHDLC2hspUVg2Fxerplzu01m7gKNi5HDeF1PdrRCOZ1Gk3LQYgR5CrpkZrsmstG7paXFeA+HAnJA4sy5OWAYnnIK+SEJVSePo3QY26jVwuNpTZjHt2LZKii3ZNBEfWAA7/k8mgc8Wljg8EHTjOzRdb1AZvDiAQyu83jBgzIFFw/i5902XPRDRGTxmedCef15eB5feurfoZz0cP4Yr6BxOz8R0McjFObbSvdrBewQ4zm8RvME+urjtDCJiFhRbO+F/a1Q3rBxTePflXJNfvNTM8A6CP1FQ1EURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEcjEg81PBp7B7PwGgfgRKJmkEqoBXVnu3e9AuXtu1ELF+KAtRBVt27uwyMhWpg+09HWCuUXXtoM5QXtqBlc1vdOKHf34OsiIv/lP30Iyt/5X/8C5X+JPgDlZAZ1/JwNtHMPBsaIiGx/CbVwvQvw2LPj2LZVCptrbUVPQyxphgXVSWfNYTjhyHRbzodHI+RbEvanNKqkNXZDFFBYIH2iiCRTHL6FQXV0+BIiH0E8zm1mtkGYdNPs0SiXKaCIQgDZTxGN4TmocWCWBPT5KOqox8ZRs+qT7jrBWtqgIKgQ+zxwbPr0GdbPc70dzzyOSBzPR5IC+7LZaU9XLUAbPhe0pqKNwD6Lpk+b6hRx8HhERFoyeEw+BcQ5ZIhopbni8Ch6NEoUADlZETz/odDxv08ywvRmC9sL8mj4LpXJg0GTHHVB8H+JmJ4/ETP0MUT1sl3yO1E96+z78Mw+tHwR6q+TKTyHR09PuRqQhjcH2JbV8EA45HPhviPkkxIRSaQy9BZ8D3sT2K/F7w/qC2HykS3q6YNyMo6BfYeH0T/BbRtN4PvtAH9XPIzzJAf3DpHvMdGGc14kzGPGvDVif8r4OAa/cZhhnI4zk8G2Z19b0D44JHDmOAoKFTzV5Icq4kz5PztDdC9k41jpXmgG9qUpcDZB4Y3xOB5/awffK+Ex5wPCGw/RfeQE3WdmyjhnRikjsaMHz4tH53H3/p3GPoXud0M0B1s+HsfeF7ZDuUQhqoURc35pXYLXjkIE7x3Kw9j/wlUK0a1i29UDfGZ+FcfzYvJTLeqfbptS8cTnQP1FQ1EURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEcjf2RcwuFJQVtrivT7gnpXu2RqN8fHcW3rlWedB+WlK9ZAOTtO+kTSh/7qf2OuhohIpYL1YL3d//HOy6C8+gzM+0iSTrxImrW1azF3Q0RkQRdqEf/jF7+C8sFRPI4EaTXbOlEvGoqY2u5KEfWgYcH3VMtYtskrkKf1uN26eX5iMdQAsg1j5vr5QWvpn2rCMzwa5TLqAyMUQJBIm2t4J2Okw6V1zaukT3bp9WgU2zhorXXW6UbJL5HJoEa1RN6mOun82aPhBXg0OCsmRDrfupHVgG0Vi+FxxUiTKiLS2oF9/AhpYyukq/ap83BOQhCFAs4PqTT3Ry/w33PJyv4+iU3pcTlzgGXd4ZB5rtasXgjlZAL7g0WZJnYEz4VF/Xzk8G+NfYQT6CVinX2phHNBvYr19KgPeux9sMy2D9E+LNLRn7YEdfrVGvb7F3fsh/KSbtMLVyzR+PSx3ksX9kJ5994hKOcp+6VYxXlZRKSrG68XCxegx+poeEGxbI79uaBWq0ltKkPGjeB54FyXmhvwPSKbY4yXKeeF+nhHJ56X01euNLZRJ9/ZBHkZxkaPQLlC+4iTp8ghb06QhYznwNwE6vDL5HvM0DW7lTJV0inTw8hzGOdqRMnTyNke7PtoacH7ABHTw1AsYh8tV6bbdh5iNKSvbUnDq2n7eDz5Cl1nkuZ1JM3zHc2Z3QvRI7W/jGebc1v4Gi5i+nOKNF051N+Wnb4Myu/+zx+A8pEs9t/vfPffjH0e2vkilGPt6G2Id+A1NtyGno1Snvq4ZXpPWrqwPZeegXPVxATO65VxHIfjB7A8ut30WEQi2N5nrlmOb5iZrXYSNkn9RUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXpnJRHo6MjKdEpfV46RmuYh7F88BDqxUREfvrA76D869++CmXHQY2jS2LMkF+j100dpZPCD43lUDf4//w/90A5Ecd9OjY1iU165ZCpjFzd3w/lvsWo6y15qIULk1cgSmtJ1+qm+C1E6zRX8qjdHM/SGv5JaktaQ75WNfXjpTKuZx6P8drk08cxHzkajjf5n4gIn4YqrQnN3gYREbeOYs3hcdRBdpAPwbKwzer0+WLR7OOdregNqZBudWICMy3sEG6Dj4PXYo8HrCFfoHqwT8Qi3bVLa5FXa7Rufdz0CJUpJyFJWmLOWmBtdzKBfotSxcw5yRdQ89xn90C5PmNc8LmYK1KRhMSnxqJFEmSyT4hbNz0A0TBqc2Mu9lPfQa3uK7uHobxrP5bZ7yVi6tXzeewf7PPpIY9YNIRzaJXWX49FzLHV1Y5z8ZIleO6W0hz5g3//BZT7SZv9X95/hbGPn//ycSjvOIC6+7XnroIyezBye/ZBeTyHniAREcN25eNJDk/p7sO2mVExFzi2L449Ofn5pFfndfE9z5wr+NyFQhF6B7YZezYyaTzPK1auMPZxZPAglA/sw3avUX6JRf01QXMe5x/VKqa2PEZZG7lRPLdHBtGv0zt0CMqL+xZBORIKyCBJJo5b5nm2Tn5Rj+4DEokAL1wb3jsMHsTx7sw4X1ZADsypJhOLNTwah7N4v9CxGP1n3Yv6jc9zThQ7TWIJnHuiEewbnNtSq+A1Q8T0ueQyOL/ZcTy3+/djf/35D38M5cPk9ylms8Y+y2nyzg0/B+W+ldgfF5yB14FEC7bd2D5zjj18EPvPivOXQvnIGGbFuFXK4KriOHrpV3j+RERa/VYoxxK4jVdfnG6rSkDW0bHQXzQURVEURVEURWk6+qChKIqiKIqiKErT0QcNRVEURVEURVGazkl5NKo1T2RqDfWQg1o6j/SIB4ZNffLz2w5D2bZ34xt4LXbyS/DS+QuXoKZeRKQtgzq0F15EHa8Two2cfTZqTMNhrEMmjVq6I8OosRcROXAAdZTxFGov159/FpT37clCecfWbVD2bXNt6Aj5OnpS9J4o1jObQz2fQ7kaboDHItGCOukIr18emtbnWZ4vrOc91fi+J/5UJ7B5FXHSq1Zq5jr3Fj1XF8uoae6Noua2Wsbji1G+SSJq6ignJnDN7USKzgt5NMzzgHU8HMtCuSVm+icKE+h3qLnYx2tVbJtciXTYUTzP0Zg5LYQr5CtycB+JOL7u1rH/1dg34pur4be34nhuo3JuYlqPG3JOXB/aTFLxlCSmzoFl4zHYNrU7+71EJMIeDcpmGc6iHviRzaj1rVF/sQJW08/lMafgLFonPhXFeq1/K85P7S04DgrkcwtF8BhEzIyabBY1yT/5xSNYR9LZf+hP/wTK/UtwHXoRkaXk+3h59w4oR2hR/jNOwzXgdw+ghrlWM/ugTzkmyRheT+pTfibbMufouSDsWBKZ8tDw9dCt4R88z/ThJch/1ZIhP2ER55JwmPsw9rdKgNeqSH+LkT8rRtd53kc7ZVpwLpDnmv4sn7YZT2AfrU7gHDi4E+8L+nowg4V9IiIiFs3lbW14vSxSPk0pn4WyTcEDLa2mv6qjC7MR/Jd3Yh2cGVlW8/A9cWdrXyMbKlbFMV4WvOYeHBowPr/j2eehbJNng6LSpJRHH4Hr4jVhPDtq7MOjsVmv4XnJkVemUsLzsuc/MJuonsHz7KdajX0maVyk29AnEu0mL0kE3394AO8h21qxH4iIhFrw3mHrFrxvzLTg/ciys3EOffHBPfj+toDrPNlOn3sG79FXrpu+llTdE/fp6i8aiqIoiqIoiqI0HX3QUBRFURRFURSl6eiDhqIoiqIoiqIoTeekPBo11xdrSh/p+aiDi5PWuK/T1Dh2xXF3EyXSWrKmlHT3vo+vZ0Ko2RURSYdQpxaukR69jvXe9tTL+Dp5GcK0jvOCTtRyioiIg1q1cdLM738R1xEfOoBeFaH1z8NJMx8kEkN96NZXUa9XKOEz4+rlrVAuFrAd3LqpryuSv4CzCiql6XryetZzQSqTlNiUbyQ7Tl4ZemQuVU3tsOOg1tehtdJrtC69Q9rhOOmbbVPiLeM51NgnU6jV7F2I67VvIc1qPI7nuVxCPWm9aB5XhPr8+ATmgwwdRJ1re18nlH3yW3hVUwPtOFgvHu/cFk4U2zqXR41qhMW4IhKnPJmZngwREWdGdoE9T1+ReJYn3pRPzffooGn+sgO8VuzrqNTRa1KpoEi2UsQx+Y6N74Dy8y9i/xERGdiP2/zApfiZMAV+8NL2Xo09GfgGzzLHfimH9f7VfzwK5cEhXKv+mivfDeXlLd1QdnOmB6e3Hf0ELVHsL1YN65mg8R4J8eXOzCEIU05NtY6683JpcvyVyuY4nAscxxZnqo4W+RIcyqPwPXMcR8nv0EPehLEszh31Oh6nR8aQA4P7jX1MHME+GyKvX5S8bS0tmHPA2UHsv2hvR828iEiJfGcx8rJxHsgEZSNseXYLlL2A61vfYpy701Rvtkuxf8q2+XyZk1g/5c3s2nMAyvshkyTgAnSKaU+2SWwqoyo/in6J0f14X7PP2mp8Pk3emR1H0IOSpliXWmEXlHe9SnlhxpgWqZL/y3dxPhsfxbkoTT5cj/K0Ykm8hidbTW9wqhXnrxDakmT/NrrPHMpimebYQ7vNjK6l5+B+84ewD59xNnrSUpQnUipiuwy/bM5h/gT22dXvXw3lAwem82iCstiOhf6ioSiKoiiKoihK09EHDUVRFEVRFEVRmo4+aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKZzUmZwx7LEmTJmxSigi/L7ZHm/aZj5L3+KJtQXX8GwlWdeQNN0IYdm0Br5A1/c8oqxD4sMUhySEwlhvWsuGmQsC41rmUVoOG8JMAL96McPQnl8Ais6dhiNauEQGtVqPhoOfcs08XmCfxs5gm3T047bXLkcjWr1KhqDimU8bhERz+PAJzQGbZkRuOh5voxljU2cUlLJpMSmTMbkUxeLzJmVAKNSgQzxra1oLmWzns2ZgLQ4gcuJWSJih/DZvUAhTukMnoc2Mrju2z8E5RZ6f8II0BJpzWDwU5uP9RzOYt9gI6QnHKZnfv9QLKD5PhpBw2ZXN46LQhGPO0wGUDbWi5hm/GKZgwinX6+7ppF3Ljh0aERiU8fCCyLEaU5kE6KIiO2jUTZKiwWUKCSSgzZffBVD6iaKZmgm94d6jdp1HIO2HA/nPO7nEmD+Zko1PFfDhzE0MBnBfst5o9lRvBbYTsCliUzBbRSK1ZqmBUhoIZCeBPXZTjMUK0qDvljGtpKpc+7589P/yuWy2FPtwGZwNlmXAwzrPMcvXrwYyocPY3DYwUMYcshG25ERXGhCRKRUwP2yAT1CRu0am3VpQY3uBRg8FgqTY1hEhoex3hHaJ5vBeeGJIyNoZN4/gPciIobXWxbTYg8JMhUnk1jmkNJckRaFEZHubjQVr1mzBj8zY+523bqgVfzU88rQ0xKeGsvbd+2B1xLdeC1L9Zmhmw6FZO4ZwPmsrxfvERf3YxuO7MXzcugAzqci5oIFLvV5i+6lxrI4V3GGrk1zQNDInxjH+atr6elQ7lyMwdCHc09BecEybCsrIJRyYAv2l3IJ58jBXbRA0Djeh1oU6Nm/Ds+XiEg8gWOz2oOLQ1jF6X1aFTWDK4qiKIqiKIoyj+iDhqIoiqIoiqIoTUcfNBRFURRFURRFaTon6dGQhkejShp/l/SKdkDgTVsad7ekD3WSE/V+KB86cAjKA7tQkZiMmIE1NRf1xj7p7usU+ueQFpj1yYcP4D4Pk4ZeRGTpaahzdUmLWaPQJ5LWBgRmmSrAco58HhbW+8wzUG9cJ519nXTWdtQMTBPaL4dXzQwxCgo0OtXk8nmpVSfrzaFNoQJ6AvIBwXbsOYnHUdNcr2OfjpDfolrF8+iwMUlM3X4uj7rJTLoVyt096AEaHUPNaXYc9cqhFtTfi4hk2vBv3X3YFzILUIv5yp49UE6RttgP0IfmC6jVLlWxvWsueoI4DDGRwBDKZJISjcQM9orTe4oz/Av+3GdViYhIW7pN4kc15sZcgv3FDfCRsEY+RlpyIc9GPIKa2SeNgEdzHJ9/1hlQTkewHUuk1eXw1XDYDFudSbVuanNjCRxLvV2oOR6keTTOoW3kRXICwg4nKqg57mpHX1A7bSNO8+qlF10I5dNOw4ArEZE0aZTDFCx5tFqR0vwE9tm23fAbcP/ivhUE+zo6O7EN+5ctg3J2HPXrhQLq1WM0h4qI2BQc6Prse8FrWSKB/bO9tRXKE+TVDBpXNTJw8ntc6rMOzTVCdexsN72YbhX38cq2bVDu6MZ5t4P8dzbND9Go6VOLRrHevb0YqNjZOe1hqLNpdQ7YemCHOOHJ40j04DzRuQyvZXXLvL10c3gNfeGpF6BsnXEulFcsWwrlRQuxPwpdk0VEslm6FyBPmk3+qgh5YqMpPK4IzW37dr5o7HMim8VqUejt+e8/H8oJ2Yv7bMVxGY+aoc0jr+I+ktR/omGsZ6YDX1+2Gv0/iaQ5z7evwjl0aB96T5zc9Ge88uzzzVH0Fw1FURRFURRFUZqOPmgoiqIoiqIoitJ09EFDURRFURRFUZSmc1IejWqtLkdXkw6FSO8eRV1mPUDHW63ic00oSmtdh1A7F4/h+9/3nlVQbs+YGrNf/3Y/lAcPoV7P5SwE9/g6R9ZQH9UnziRMfod6iXIxSC/q0/OdQ/rQSNjUoDqCx3H6OaghXdqPOn3XJb04yen8AD2vEyK/Cq1HDdrbE1hbv9n4ntfQIVtkbOE1y2sctCEiBdInu7R+e72GHo1oGnWS9Tr2laB9UIyLlMrYF9IZ0mKSD6GlrRXK7NfhcyQiEo1h/6vUKLujFdumowu1xIUCaqDTAdrNhZQns28/ejbGxlA7a9tYz3Qvaj87u8wMA8c5/hwyMyfA54aeI9rb2yURP9o+5GmizItq1ZxbeEx55JdIpVBX+47z1uM+KA9g1xD62EREuklfnophHwvRNizSUnPmAK9DHw+YO9jP9UfnrYPyHsoHSMZxbHG+kWWb57dQQm1/PIaa5BT5BVoo16SnG30jdoAPxPDs0cRZmxqPlcr85Gg4jt0YJ/E4jlM+bzabAUWkTuPGo3E60wMwuQ/sj6x/D7rOWxa2a5z6Xyt5F9rasMx+i2oV5+VSycyOGR9Hbxv7VYxMC5prapQPMkA+NhGRvkWLoOzSNfCZJzEboYP8Lz096LeoBnQhzj5JJXGcLF8+7SuqVivyqLmJU0q6LSOhyGTbLVrZB6+Vs9im2aw5NxWzeO62P7cLyl0x3ObK3pVQbm3D9giz10ZEdr2yB8qdHdinY3R9GxnBbI6VZ+N9Zu/ihVD+l382j6uQRR/I4C700hUOrsY6rUHvyf4Dr0K5njTvMwsT2EeLo9hXYnQ/HWnF89F/LvmOAn5mKNexT1eLeP+ScqbvM0MBHtVjob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T82i4buPRJOHQGtA2az9NDb9P686HSOLleajNbG0j3b2Hz0W/+d1BYx9Dw6g3r9V5rXHcqU/b5FrnSlinftJZiog4EdLG0tLOZF+RVbRW8YIO1AzGk+b62skEad5Juzl8CPMWovT+kIP6vZAdtAbyLM+dM7W31omvodwsnFBIQlMehezYGLyWasEch1CAl8HmTBXKzbBJcxiJ4DYc6h31gLyJBHkuCqT9HRkdwX2E8VyHwrhPlzTViZS5vnaxgrrpchXHgF9DHWuNdNUFygRIp82MiyXLUJ+cK2B/Gxo6DOXWFtTFFkl7zPOFiIhPmvLxHO5jZgZAzTW14XOBL774Mnne2ePDOSvhcEDGAHmLQjROHcptOHsNantZ533P//svxj5a05RJQZkmcfIhVCpY7wp5lThLIhQyddHcp/p7UWt92iLMGipxzg3Nwzbni4jIHsowipI+u7UVs3XK1K/rlMPhueY1yvPwODiP4ei8Ys3Td3TlcsXoQ0eJUjYJ51kEwZ5FzrTooZyfiYks1cfME3HCeO4SNNbL1L+GDuF1PE9ZHRblHzlWkLeGsjuOcd6O0k6+kJ5ePM5w1By7+RxmIqUCMo1msm3rViiXaZwtXYZeABGRtjbcb7GEx9Hf3z+9vbLpVTnVVAtlcae8tnu2DsBrqTTOTX6Aj3NiFNuwTt3n8Ah6/eJRyuqg60q9njX2wT6jRBLbtKMLX3fDWKflZ+JcVfexP3b0mX3j8D68jhepD+96+iUon7NoLZQHXnoSyotWmte3xUvxfvjxF7JQLpTRO9KzFu+JvAjnJZkewso+/Nv4ML6eaJ/ehlc/cZ+u/qKhKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7KoyG2M/mfiAjpqT0qs9ZcxPQy+EXUGLq0pvy+A1koP/M71IEnk6ZWOJNg/TFuk9catshr4JMe1PNJ119CPbyIiFtFTfTEBB7XW87BdZjPPQe1xKy5zeVNfV6Z8hhq5C/gXIHDw6gRDIXw89Go2XZ2CPcbiaBe15+R9+HPfYyG2LbdWCu+RFklMdKIc3uJiPicYUBrrbMWvUa5GRFat98K8CFFU9gXfFqnfudOXDe8tRVfj9G69eNlXB8+KEejxpr6KL4nm8c+Wyxxtgy1S8Dy2CyL7u5FnevB4VEo10kjffgIam+DYjB6+1DXXyL9d2WGByIoo2IuSGfikkxM6obL1Afr1Tq9N8BPU6S29zmnAY/LIQ+PY2MfdD1Tr55Ik3bcoX5K0wvr28N0bljv7gcNfpr/OaOCtxE2xhJ+/uXduLa9iMjuAcxuWbUUdfVchxrtU8J0nI45ljhfyKZ8kKP5PSfifzgVWL4n1lSfcWnO88kb4QTkhETI++JSRgXnofQswDYePYwes2IJrzMi0vAwTb8HPWOlMo6BXA5f57GdoTk1GjavXfyZKB0nZ4zwXJ8hv0VbB2UOiEid/Cz5Cs5PfH3guJmxIziXL15mXufjdKxi4z7batO6+1LJ9DGdas5ccJ5Epu4dcjH00GW6MRtp+0vbjc+H0zjm/AzOoeMVvE7EyC84fgD7Slt7q7GPIyN4LTo4iPeN3V3oJSmS16WSxb7y2BPPYZ1987y1LUAviTuIc+SBnZiTsXjXMij3L8OMn9o41llEZMFyfE/HauzD+QHcZ0sM6/TKZpw/2fcrIjL8Cp4PK4bvOWxPt1X9JLKE9BcNRVEURVEURVGajj5oKIqiKIqiKIrSdPRBQ1EURVEURVGUpnNSHo16pSrWlCbY9lE7zLEKjhXgAXDwby0JfM5J21koL+lADeIl554B5e4Os/qcbVAuowY1QRp4Xgu/TrrXGGnU8kVT97r/IGr8FrXieserV6F2MZYgbSXptNvCqK0TESmVUKvI/oCIT3khJJ+rkf/FdU2RvBNBjen4BK2vP6MtPW/uTRrxWLzhsanW8ACr5FNwPVPDXyU9ciyOx5tI4nkr0FrYLE3nnA0RkRR5KFrSuM0UaU5rdew7CeobtTKW6wHHNVHGtkjHKX+G8j9Yn+zUsM8H+UCMHAz6jqK1pRXKlQrus1DA46xVzQycNiMLBcdaYUYmTlCGyVzgeX4jf6FQwDZxLGy3ag01zCIi4SSu2V4skJfBx20cIH3xU8+/gu8Xsz8k49hn8kXUNVdK7MUi3T6Jy+vkGwnyJ1jkMyuSR4ozBJIp7KN1mocH9uMa/SIiLSmcuzPUX8byeJz5Io7fJI3vYgHfLyJSpXo71AePav9LVTM/Yi6wPV/so3OvcZ6wDb0AIxT7cRIxPPe+i+e6mzIJ3FWnQ3nv3r3GPiYq6EWou+QnJBOYR2PZsXF+ilKWQiggg4c9YRHyYkbpum+FsL9yfo0TMLe3tKJvI0M5EeEjOLfbFl5fIrQPi81QIhKJU54Mefwqxenj8uYhS+jWa26U9FSWUz2M540zo4bPNuf4PaM4rl98FX0cPvWFNI35lnbMPxkapqAHEXnlZcysOGMJ3jdGEjjGW/vQn2PL8c9BrWD2jZBgPWMR7BtVmi+2b94G5Qv/E+YlPf7oL419DGzHsbbiHPQ0vjSEHowdlDPn0f3PKyM4TkVEPB/7aLWK56Nn4XTbuDX1aCiKoiiKoiiKMo/og4aiKIqiKIqiKE1HHzQURVEURVEURWk6+qChKIqiKIqiKErTOSkzuG05Yk8ld/kuml2sEJbrZMIWESmQ0SdMhubzzsVAEpvD9Az/cUDqF70nESeDHJmY7RAaBB0KtyK/l7S2ms9mS5e04h88NgKhwc4ic5HrYR3DsYCgpTDul4+jUsfPJDPYNtUaB9qZJlION6xW8DPWjAAoixt6DrAsS6ypUK4wBUL6Rn1Mo1I8QSFhZGCtkbmJwxqPjKORN5OmcCURieTQgBpPoJGxtwcDsI5kx6BcKWCYVYrqbB6nSJX+dJjqUOBwQwrycWlg+bbZxycoVMul/pShkLihHIYmWWSU7u3CsS4ikoqhoa5CBn9vhuHT4zC2OSKXyzeC0ioVXiwB22giYA5Md2Ofmqig+S4UwvKOITRPbtu7E8rtSWwzERGrSiFYEzSP0vurZCrltmWTca1mmlDZZMxBhGzWLVNIFhuCF3Sg6VNEpLsTg0453PLIGI4lpk5mVSdgPQEOmuVMTm9qQQK/Pj/9z/O8RtCoR+fBt3BOLwb0vyQtTuFbeBwxCp3jeZavuJ5vNuLgCM4f4xNoOq3Qgis2BS26xvUT+7PnmPMTh0h6fLPAC3lQuGGC5ulwxAzDc6gtErSgQYgWF2lLoHncJhN7rMUcuxwKaHF5RhiiJXO/IMbPf/LvEotOHueCdhyPXQu6qGzO8f2nXQjlS8/6IyhX68e+5xAR6Uth+PGLL2wx9hE6C+fhNavQDJ5qwTl2Ze8iKI+MUthxHMdV11JchEJEJNqGn6k4tDjNIewbhw9gIOmRnf1Q7u1bYexjwkczeIqM8nxPuPMpNMpbNHpLFXNBi3AKj3ViFMdef/d0W9VPIjNXf9FQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOifl0ajWRY7K1lmhapGfwgmZzzCscTzq9zhKOMRaYdYgogbNcczq26S7LxdRC1wivWeU9J4hCitjbXmxihp6ERGbtP22g1q4aBS1dPEo1Zv2YQdo5IV8HaUyBQ1SWJVFZ4i9JuEQagZFzHr7PntkrBn/Nqt4qskXClKf0u2nKaxrPI/+CQ5eFBGJkgfAov7HOnI+xBy1seeZGlmXQnFa6C2hKIc4UYCkQ3p40lBzmNrkH8m/Q9rd2bIVOcgsny8Y76lWcBy1pbH9/Ti2peOgLjsUwuPs6kI97+RGyCtC5yM2o+14nM8Vbt0Xtz5ZT3eW+Wmc9K0iIuNjOI7D5L0qVLJQbrdQO37JWRiYFo+a47hE569GQWEeBzjSnMcBfewxYz+GiBn6Z5HuPkxjjee4Ygn1wu0Z9PyIiEQCjnUmFZrbuY/wcVkBwZQ0BYpH80hlahvsz5kranVXalP+EA6dM4LGHNNn4LK3kjyJHObp0hiMx7E/dnWa49ila0+IrtNHjmShXKpjW/qCbV6lsFAvbJ439mhwvUvsCaJ5NEZ9K2SbfdyhPh2h/uNZOMeFyQvA87ATDgi+NHxpWG97RsCrXZ/70Mhnnt/WCB6MRbC/pcjfkyE/kIhIWyuO60QCQw5T5PWzYiko2zF8fx+9LiKy8uK3QTlN+2xpxWtXkvw5h3IYtLpgMb6/wmnIIrJvGL10jz/8HJQHfLweHjmCfrLBV/ZjnXvwOEVEygXc786tI1B2Wql/xrD/1erYAVsiAcHQwzhHxj0KNY5Oj5u6feIeIf1FQ1EURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEdjy/MHGmtBd3ZhhkA6gXrQIJsBL8Lt0lrkvGayTzkGHmnjgrwMvCa3T8LIiQn0WLCWmLfphEhHyQurS4CXhLXmpIkOkbaWtZ5B+vMy6aQrVdxnNIJ6vDotcsza3ErVXAS5VqP1yylHY3R0WrvImti5YOYa8oUC6tBn0xJPgufaCR1fV846bN4mezpERKrUzqNj6B2JJnEbvs/r1ON5jGJR7ABdr0v+KJt8Rzb5PDyqI2uo6wEZAVHWMFPeg/jYVxZ04xrq0QhlZJQD1vC28Xy0tWGWgp2f1idXQiexiHcTKRSKjfHuk86b5w5uVxERoT4Wj1CmDq21Hw6hPrizrZX2aWYJzZYhUOfcjDoeB3tPWLfPfUFEpFQiLTmNNR47FRfPX2sXrskf5L/jw2LtvpGTQV4Sm+bIYkAfrJCPw8itmTrHpZNZRL6J+LbdyLlhu9ZEHq9t4ag5B9qGBxGPr1Y7/nGFKX8iGjH7QiaFmnj2KFJslJSLB6HsUtvyPJwK8O+w52JiYuK4r5eNvoP79KKmx69MPiKHfEl18saVqS35NiEU8D2vTx6NegGvH7Xx6WyEWkD/PdXYTkjsqbFZozbNlvC6MV40c20OHMJ8JZ5D4+TZqPvHv2bH2O8qIqkk9skOyuTpXYD5Jr1drVBu68Wsjrf3XAzlas08b+NL8H7kkmXvhPLIBPo79+4fhPLOvbvx9UOvGvtwXPSjVD3c58Jz8J68MIr9b2wvjqO6a147otT+dFsve3Ydavyb7yOOh/6ioSiKoiiKoihK09EHDUVRFEVRFEVRms4JSaeOymRmRpzzz+sstzgx6RRugxVDpnSKpQrmTzezSae43iyXMVQHFq93GCCd4t+wDVnR8X9isukn1wA1hNRnkTfM9jpLp8ylOc33cKT9TLnU0X/PhYTq6D5myr1C1DeqJMVw/aCl1+hnWPrp0JBOkbysViXJScA+Qg5+xuijJF1gyRfv063hPu2AffKSt4bEhOrtUNu59H1DtWbKBnyP2oakS/wZLlsWllmRKCISDuE+QiSFmdk2R/89VxK+o/spzZBx8M/+3H9KQUugWsfvczwn1niZZkPq+YdLpywaF7U692FePtmEj5WlU3xBYOkUSwLtINmZIZ3CfXIdWDpl0fmqBpwflq0eSzpVnvrsnPe/GXIZX2h5bjoxtcApkOTKFkmGZlkmlq8bpQD5TpnOS6WO47hKS4BzH+cy77MWMD/xXMyjokoypjKd+yJJ/yRoeX6fJKU0idVoZFRKdBx8KQiQ4LB0qsbL889o76PtPJfX4JlzA0casAzP4vYS816H51CHzpMhnaJD5TqIiITDx5+HeSntArVxmGTZvsXXR/O85Yv4mUIRZYzcv1i6x2OiHtDH+drg0QB3SU7v0ussdeJb28kP0XvoFHozDv3o9k6k/1n+Cbxr//79snjx4lk3prz52LdvnyxatOiU7kP7n3Is5qL/iWgfVILR/qfMN3oNVuaTE+l/J/Sg4XmeDA4OSjqdNr6BU96c+L4vuVxO+vr6ggMGm4j2P4WZy/4non1QQbT/KfONXoOV+eRk+t8JPWgoiqIoiqIoiqKcDGoGVxRFURRFURSl6eiDhqIoiqIoiqIoTUcfNBRFURRFURRFaTr6oKEoiqIoiqIoStPRB41TxJ49e8SyLNmyZct8V0V5HfH2t79dbrrppvmuhvIGRPuWoigKMtu82N/fL9/4xjdOert33HGHnHvuub93vd5IvOkeNPRiqyiKoihvLPTGTjkVPPnkk/Lxj398vqvxuuZN96AxG77vS53TeBXlDQInkCrK74v2JUVR3uh0dXVJIpE45us1SjNXTN5UDxrXXnutPPzww/LNb35TLMsSy7Lk3nvvFcuy5Gc/+5msX79eotGoPProo3LttdfKVVddBZ+/6aab5O1vf3uj7Hme/M3f/I2sWLFCotGoLFmyRP7qr/4qcN+u68pHP/pROeOMM2RgYOAUHqXyeqFQKMimTZsklUpJb2+vfO1rX4PXK5WKfPazn5WFCxdKMpmUCy64QB566CF4z6OPPiqXXHKJxONxWbx4sdxwww1SKBQar/f398uXv/xl2bRpk2QyGf1m5k2O53lyyy23SHt7u/T09Mgdd9zReG1gYEDe9773SSqVkkwmIx/60Ifk0KFDjdePfmN8zz33yLJlyyQWi4mIyL/8y7/I2WefLfF4XDo6OuRd73oX9MF77rlHVq9eLbFYTM444wz5+7//+zk7XuX1xfGuqbfeequsWrVKEomELF++XG6//fbGTd69994rd955pzz33HNwbVeUE6Fer8v1118vLS0t0tnZKbfffrscjZhj6ZRlWfIP//APcuWVV0oymWz0z6985SuyYMECSafTct1110m5XJ6PQ3lt4r+JyGaz/oYNG/w/+7M/84eGhvyhoSH/V7/6lS8i/tq1a/0HHnjA37Fjhz86Oup/5CMf8d/3vvfB52+88UZ/48aNjfItt9zit7W1+ffee6+/Y8cO/5FHHvHvvvtu3/d9f/fu3b6I+M8++6xfLpf997///f66dev84eHhOTxi5bXMJz/5SX/JkiX+r371K//555/33/Oe9/jpdNq/8cYbfd/3/Y997GP+2972Nv83v/mNv2PHDv+uu+7yo9Gov337dt/3fX/Hjh1+Mpn0v/71r/vbt2/3f/vb3/rr1q3zr7322sY+li5d6mcyGf+rX/2qv2PHDn/Hjh3zcajKa4CNGzf6mUzGv+OOO/zt27f7//RP/+RbluU/8MADvuu6/rnnnutffPHF/lNPPeU/8cQT/vr162G++9KXvuQnk0n/8ssv95955hn/ueee8wcHB/1QKOT/7d/+rb97927/+eef9//7f//vfi6X833f9++77z6/t7fX/+EPf+jv2rXL/+EPf+i3t7f799577zy1gvJa5njX1C9/+cv+b3/7W3/37t3+v/3bv/kLFizw/9t/+2++7/t+sVj0b775Zv+ss85qXNuLxeJ8HoryOmHjxo1+KpXyb7zxRv/ll1/277vvPj+RSPj/+I//6Pv+5DX061//euP9IuJ3d3f7//N//k9/586d/t69e/3vf//7fjQa9e+55x7/5Zdf9m+77TY/nU7755xzzvwc1GuMN9WDhu9PdqqjN3K+7/u//vWvfRHxf/zjH8P7ZnvQmJiY8KPRaGMSZI4+aDzyyCP+pZde6l988cV+Nptt5qEor2NyuZwfiUT8H/zgB42/jY6O+vF43L/xxhv9vXv3+o7j+AcOHIDPXXrppf7nP/953/d9/7rrrvM//vGPw+uPPPKIb9u2XyqVfN+fnCSvuuqqU3w0yuuBjRs3+hdffDH87fzzz/dvvfVW/4EHHvAdx/EHBgYar7300ku+iPi/+93vfN+ffNAIh8PwZcnTTz/ti4i/Z8+ewH2edtpp/ne/+13425e//GV/w4YNzTos5Q3CbNdU5q677vLXr1/fKH/pS1/SGzvlpNm4caO/evVq3/O8xt9uvfVWf/Xq1b7vBz9o3HTTTbCNDRs2+J/61KfgbxdccIH2xyneVNKp43Heeeed1Pu3bdsmlUpFLr300uO+78Mf/rAUCgV54IEHpKWl5Q+povIGYufOnVKtVuWCCy5o/K29vV1OP/10ERF54YUXxHVdWbVqlaRSqcZ/Dz/8sOzcuVNERJ577jm599574fXLLrtMPM+T3bt3N7Z7sn1beeOydu1aKPf29srw8LBs27ZNFi9eLIsXL268duaZZ0pra6ts27at8belS5dKV1dXo3zOOefIpZdeKmeffbZ88IMflLvvvlvGxsZEZFIauHPnTrnuuuugj/7X//pfG31YUY4y2zX1+9//vlx00UXS09MjqVRKvvCFL6gMWWkKF154oViW1Shv2LBBXn31VXFdN/D9fE3dtm0bXMuPbkOZJDTfFXitkEwmoWzbdkOjd5SZpp94PH5C273iiivkvvvuk8cff1ze+c53/uEVVd4U5PN5cRxHnn76aXEcB15LpVKN93ziE5+QG264wfj8kiVLGv/mvq28eQmHw1C2LEs8zzvhz3NfchxHfvnLX8pjjz0mDzzwgHzrW9+S2267TTZv3twwUN59993GRZj7tKIc75r6+OOPyzXXXCN33nmnXHbZZdLS0iL333+/4WtTlLlAr6knx5vuF41IJHLMp9SZdHV1ydDQEPxtZibGypUrJR6Py4MPPnjc7Xzyk5+Ur3zlK3LllVfKww8//HvVWXnjcdppp0k4HJbNmzc3/jY2Nibbt28XEZF169aJ67oyPDwsK1asgP96enpEROQtb3mLbN261Xh9xYoVEolE5uW4lNcnq1evln379sm+ffsaf9u6datks1k588wzj/tZy7LkoosukjvvvFOeffZZiUQi8qMf/UgWLFggfX19smvXLqN/Llu27FQfkvI643jX1Mcee0yWLl0qt912m5x33nmycuVK2bt3L7znRK/tisLMvA6LiDzxxBOycuXKE/5CZPXq1YHbUCZ50/2i0d/fL5s3b5Y9e/ZIKpU65rd573znO+Wuu+6Sf/7nf5YNGzbIfffdJy+++KKsW7dORERisZjceuutcsstt0gkEpGLLrpIRkZG5KWXXpLrrrsOtvUXf/EX4rquvOc975Gf/exncvHFF5/y41Re26RSKbnuuuvkc5/7nHR0dEh3d7fcdtttYtuTz/6rVq2Sa665RjZt2iRf+9rXZN26dTIyMiIPPvigrF27Vt797nfLrbfeKhdeeKFcf/318rGPfUySyaRs3bpVfvnLX8rf/d3fzfMRKq8n3vWud8nZZ58t11xzjXzjG9+Qer0un/rUp2Tjxo3Hld5t3rxZHnzwQfnjP/5j6e7uls2bN8vIyIisXr1aRETuvPNOueGGG6SlpUUuv/xyqVQq8tRTT8nY2Jh85jOfmavDU14HHO+aunLlShkYGJD7779fzj//fPnpT38qP/rRj+Dz/f39snv3btmyZYssWrRI0um0RKPReToa5fXEwMCAfOYzn5FPfOIT8swzz8i3vvWtk/q17MYbb5Rrr71WzjvvPLnooovkO9/5jrz00kuyfPnyU1jr1w9vul80PvvZz4rjOHLmmWdKV1fXMTWel112mdx+++1yyy23yPnnny+5XE42bdoE77n99tvl5ptvli9+8YuyevVqufrqq2V4eDhwezfddJPceeedcsUVV8hjjz3W9ONSXn/cddddcskll8h73/teede73iUXX3yxrF+/vvH6t7/9bdm0aZPcfPPNcvrpp8tVV10lTz75ZEMWtXbtWnn44Ydl+/btcskll8i6devki1/8ovT19c3XISmvUyzLkp/85CfS1tYmf/RHfyTvete7ZPny5fL973//uJ/LZDLym9/8Rq644gpZtWqVfOELX5Cvfe1r8id/8iciIvKxj31M7rnnHvn2t78tZ599tmzcuFHuvfde/UVDCeRY19Qrr7xSPv3pT8v1118v5557rjz22GNy++23w2c/8IEPyOWXXy7veMc7pKurS773ve/N01Eorzc2bdokpVJJ3vrWt8qf//mfy4033nhSS8FfffXVjfvF9evXy969e+WTn/zkKazx6wvLZyOCoiiKoiiKoijKH8ib7hcNRVEURVEURVFOPfqgoSiKoiiKoihK09EHDUVRFEVRFEVRmo4+aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOvqgoSiKoiiKoihK09EHDUVRFEVRFEVRms7/B3X8dIxDWWloAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных." + ], + "metadata": { + "id": "d3TPr2w1KQTK" + } + }, + { + "cell_type": "code", + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (32, 32, 3)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iFDpxEauLZ8j", + "outputId": "4768e1f5-2802-4584-8744-96004f6ba588" + }, + "execution_count": 64, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (50000, 32, 32, 3)\n", + "Shape of transformed X test: (10000, 32, 32, 3)\n", + "Shape of transformed y train: (50000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети." + ], + "metadata": { + "id": "ydNITXptLeGT" + } + }, + { + "cell_type": "code", + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "\n", + "# Блок 1\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n", + " activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 2\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 3\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.4))\n", + "\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(128, activation='relu'))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "\n", + "model.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 946 + }, + "id": "YhAD5CllLlv7", + "outputId": "5b156a43-7ba0-477a-9040-c966d9eca4c2" + }, + "execution_count": 77, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_9\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_9\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ conv2d_41 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_6 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_42 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_7 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_26 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_24 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_43 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_8 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_44 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_9 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_27 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_25 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_45 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_10 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_46 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_11 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_28 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_26 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten_9 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_17 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_27 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_18 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ conv2d_41 (Conv2D)              │ (None, 32, 32, 32)     │           896 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_6           │ (None, 32, 32, 32)     │           128 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_42 (Conv2D)              │ (None, 32, 32, 32)     │         9,248 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_7           │ (None, 32, 32, 32)     │           128 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_26 (MaxPooling2D) │ (None, 16, 16, 32)     │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_24 (Dropout)            │ (None, 16, 16, 32)     │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_43 (Conv2D)              │ (None, 16, 16, 64)     │        18,496 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_8           │ (None, 16, 16, 64)     │           256 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_44 (Conv2D)              │ (None, 16, 16, 64)     │        36,928 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_9           │ (None, 16, 16, 64)     │           256 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_27 (MaxPooling2D) │ (None, 8, 8, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_25 (Dropout)            │ (None, 8, 8, 64)       │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_45 (Conv2D)              │ (None, 8, 8, 128)      │        73,856 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_10          │ (None, 8, 8, 128)      │           512 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ conv2d_46 (Conv2D)              │ (None, 8, 8, 128)      │       147,584 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ batch_normalization_11          │ (None, 8, 8, 128)      │           512 │\n",
+              "│ (BatchNormalization)            │                        │               │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ max_pooling2d_28 (MaxPooling2D) │ (None, 4, 4, 128)      │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_26 (Dropout)            │ (None, 4, 4, 128)      │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ flatten_9 (Flatten)             │ (None, 2048)           │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_17 (Dense)                │ (None, 128)            │       262,272 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dropout_27 (Dropout)            │ (None, 128)            │             0 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_18 (Dense)                │ (None, 10)             │         1,290 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m552,362\u001b[0m (2.11 MB)\n" + ], + "text/html": [ + "
 Total params: 552,362 (2.11 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n" + ], + "text/html": [ + "
 Trainable params: 551,466 (2.10 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m896\u001b[0m (3.50 KB)\n" + ], + "text/html": [ + "
 Non-trainable params: 896 (3.50 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 64\n", + "epochs = 50\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3otvqMjjOdq5", + "outputId": "d4f520c7-ad85-4030-fda8-0c3b40e38474" + }, + "execution_count": 78, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m27s\u001b[0m 22ms/step - accuracy: 0.2561 - loss: 2.1138 - val_accuracy: 0.3748 - val_loss: 1.7757\n", + "Epoch 2/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.4652 - loss: 1.4737 - val_accuracy: 0.5676 - val_loss: 1.2540\n", + "Epoch 3/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.5844 - loss: 1.1821 - val_accuracy: 0.6148 - val_loss: 1.1905\n", + "Epoch 4/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.6486 - loss: 1.0157 - val_accuracy: 0.6302 - val_loss: 1.0861\n", + "Epoch 5/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.6782 - loss: 0.9326 - val_accuracy: 0.7200 - val_loss: 0.8344\n", + "Epoch 6/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.7147 - loss: 0.8370 - val_accuracy: 0.7302 - val_loss: 0.7885\n", + "Epoch 7/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7334 - loss: 0.8017 - val_accuracy: 0.7486 - val_loss: 0.7221\n", + "Epoch 8/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7546 - loss: 0.7279 - val_accuracy: 0.6798 - val_loss: 1.0590\n", + "Epoch 9/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7678 - loss: 0.6993 - val_accuracy: 0.7798 - val_loss: 0.6510\n", + "Epoch 10/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.7798 - loss: 0.6633 - val_accuracy: 0.7786 - val_loss: 0.6803\n", + "Epoch 11/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7920 - loss: 0.6171 - val_accuracy: 0.8112 - val_loss: 0.5666\n", + "Epoch 12/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8066 - loss: 0.5883 - val_accuracy: 0.7916 - val_loss: 0.6229\n", + "Epoch 13/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8152 - loss: 0.5569 - val_accuracy: 0.8032 - val_loss: 0.6079\n", + "Epoch 14/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8176 - loss: 0.5424 - val_accuracy: 0.8144 - val_loss: 0.5756\n", + "Epoch 15/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8259 - loss: 0.5199 - val_accuracy: 0.8148 - val_loss: 0.5837\n", + "Epoch 16/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8344 - loss: 0.4949 - val_accuracy: 0.8312 - val_loss: 0.5084\n", + "Epoch 17/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8395 - loss: 0.4730 - val_accuracy: 0.8164 - val_loss: 0.5550\n", + "Epoch 18/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8409 - loss: 0.4684 - val_accuracy: 0.8322 - val_loss: 0.5004\n", + "Epoch 19/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8487 - loss: 0.4503 - val_accuracy: 0.8304 - val_loss: 0.5245\n", + "Epoch 20/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8503 - loss: 0.4443 - val_accuracy: 0.8232 - val_loss: 0.5722\n", + "Epoch 21/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8528 - loss: 0.4330 - val_accuracy: 0.8050 - val_loss: 0.6315\n", + "Epoch 22/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8594 - loss: 0.4132 - val_accuracy: 0.8416 - val_loss: 0.5008\n", + "Epoch 23/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8703 - loss: 0.3894 - val_accuracy: 0.8388 - val_loss: 0.5021\n", + "Epoch 24/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8679 - loss: 0.3885 - val_accuracy: 0.8314 - val_loss: 0.5092\n", + "Epoch 25/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8706 - loss: 0.3783 - val_accuracy: 0.8468 - val_loss: 0.4800\n", + "Epoch 26/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8762 - loss: 0.3613 - val_accuracy: 0.8486 - val_loss: 0.4745\n", + "Epoch 27/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8817 - loss: 0.3467 - val_accuracy: 0.8500 - val_loss: 0.4696\n", + "Epoch 28/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8782 - loss: 0.3548 - val_accuracy: 0.8456 - val_loss: 0.4820\n", + "Epoch 29/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 11ms/step - accuracy: 0.8816 - loss: 0.3472 - val_accuracy: 0.8528 - val_loss: 0.4728\n", + "Epoch 30/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8882 - loss: 0.3312 - val_accuracy: 0.8464 - val_loss: 0.4996\n", + "Epoch 31/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8887 - loss: 0.3213 - val_accuracy: 0.8516 - val_loss: 0.4806\n", + "Epoch 32/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8909 - loss: 0.3191 - val_accuracy: 0.8484 - val_loss: 0.4971\n", + "Epoch 33/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8934 - loss: 0.3152 - val_accuracy: 0.8400 - val_loss: 0.5208\n", + "Epoch 34/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8958 - loss: 0.3092 - val_accuracy: 0.8480 - val_loss: 0.5120\n", + "Epoch 35/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8972 - loss: 0.3051 - val_accuracy: 0.8590 - val_loss: 0.4839\n", + "Epoch 36/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 9ms/step - accuracy: 0.8967 - loss: 0.3109 - val_accuracy: 0.8480 - val_loss: 0.5045\n", + "Epoch 37/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9008 - loss: 0.2958 - val_accuracy: 0.8440 - val_loss: 0.5190\n", + "Epoch 38/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9013 - loss: 0.2885 - val_accuracy: 0.8588 - val_loss: 0.4711\n", + "Epoch 39/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9043 - loss: 0.2812 - val_accuracy: 0.8484 - val_loss: 0.5248\n", + "Epoch 40/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9088 - loss: 0.2686 - val_accuracy: 0.8580 - val_loss: 0.4680\n", + "Epoch 41/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9083 - loss: 0.2720 - val_accuracy: 0.8448 - val_loss: 0.5072\n", + "Epoch 42/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9085 - loss: 0.2663 - val_accuracy: 0.8558 - val_loss: 0.4776\n", + "Epoch 43/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9103 - loss: 0.2620 - val_accuracy: 0.8618 - val_loss: 0.4663\n", + "Epoch 44/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9111 - loss: 0.2565 - val_accuracy: 0.8626 - val_loss: 0.4854\n", + "Epoch 45/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9125 - loss: 0.2573 - val_accuracy: 0.8650 - val_loss: 0.4487\n", + "Epoch 46/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 10ms/step - accuracy: 0.9145 - loss: 0.2525 - val_accuracy: 0.8532 - val_loss: 0.5370\n", + "Epoch 47/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9128 - loss: 0.2532 - val_accuracy: 0.8520 - val_loss: 0.5219\n", + "Epoch 48/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9130 - loss: 0.2532 - val_accuracy: 0.8656 - val_loss: 0.4698\n", + "Epoch 49/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9120 - loss: 0.2552 - val_accuracy: 0.8544 - val_loss: 0.4921\n", + "Epoch 50/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 9ms/step - accuracy: 0.9181 - loss: 0.2383 - val_accuracy: 0.8582 - val_loss: 0.4826\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 78 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных." + ], + "metadata": { + "id": "Vv1kUHWTLl9B" + } + }, + { + "cell_type": "code", + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SaDxydiyLmRX", + "outputId": "0b0a8fa6-afa1-4c56-c529-2057e1a1807b" + }, + "execution_count": 79, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 5ms/step - accuracy: 0.8507 - loss: 0.5097\n", + "Loss on test data: 0.4886781871318817\n", + "Accuracy on test data: 0.8521999716758728\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания." + ], + "metadata": { + "id": "OdgEiyUGLmhP" + } + }, + { + "cell_type": "code", + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [3,15]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "t3yGj1MlLm9H", + "outputId": "148fbb58-9f43-4540-a76a-4bfa98dbc9db" + }, + "execution_count": 89, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step\n", + "NN output: [[9.99798894e-01 2.48007268e-08 8.06010303e-06 1.16862842e-09\n", + " 4.74675188e-10 1.10334505e-10 8.96490215e-10 5.45068835e-09\n", + " 1.92513107e-04 4.99970611e-07]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALYNJREFUeJzt3X1w1eWZ//HP9zwGSHJCgDyVgKAW6gPsr6zSjC21QnnY+TlY+UPbzix2HR3d6Kyy3bbstFrd7cS187O2HYp/rAvbmaJdO0VXZ4pVLGHbAluoFK1tVmgqWEhQanJCHk7Ow/37wzVtFPS+IOFO4vs1c2ZIcnHl/j6cc+U8fU7knHMCAOAci4VeAADg/YkBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIIhF6AW9XKpV09OhRVVRUKIqi0MsBABg559TT06OGhgbFYqe/nzPmBtDRo0fV2NgYehkAgLN05MgRzZw587Q/H7UBtGHDBn39619XR0eHFi5cqG9/+9u6/PLL3/P/VVRUSJIe/vEeTZ5S7vW74pF/mlA8brtXFX+X6f12scj2iGbCUJ+IxU29YzH/7YwM2/hmb+Mjt5Z683b697YcS2vvSMbzKm5di3+t8TQ01VsPfdJQnzb2ttx4JY0PpiRkSyiz3AZFY6i3TOet/wHKZrNqbJw9dHt+OqMygL7//e9r3bp1euihh7R48WI9+OCDWrFihdra2lRTU/Ou//eth90mTynX5PJ3X/xbLAcoMV4HUHz0bpitA4UB9E7Wh4vH0gAyHZ4xNICSlloG0Gn/hz/7Swbe63oxKi9CeOCBB3TTTTfpc5/7nC666CI99NBDmjx5sv7t3/5tNH4dAGAcGvEBNDg4qH379mnZsmV/+iWxmJYtW6Zdu3a9oz6XyymbzQ67AAAmvhEfQK+//rqKxaJqa2uHfb+2tlYdHR3vqG9paVEmkxm68AIEAHh/CP4+oPXr16u7u3vocuTIkdBLAgCcAyP+IoTp06crHo+rs7Nz2Pc7OztVV1f3jvp0Oq10Oj3SywAAjHEjfg8olUpp0aJF2r59+9D3SqWStm/frqamppH+dQCAcWpUXoa9bt06rV27Vn/5l3+pyy+/XA8++KB6e3v1uc99bjR+HQBgHBqVAXTdddfptdde01133aWOjg79xV/8hbZt2/aOFyYAAN6/Iuec9Z1LoyqbzSqTyeh7O3/l/0ZUlbz7J4xvALS8YTBufSOq6U2Uo5eEEBvFN39KUjSKqQyW/TKab7i17O8360cz2cK6FkOtbdlKGt7oaH0jasrwpkvrG0sTUcFUH4/8b4OMh8f0VlHrsTetw3Dw37wdn67u7m5VVlaeti74q+AAAO9PDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQo5IFNxJiKinmGbFjSZ+wJlXEDfWWWutaYsYokff6LPbhtdbe1s+0919L3Ng7ZqiPGeJSJFsESsz4t5zvuX0m/a1hLJaVx4zBXYZDL/PKLeeKs+1vGa9v5p1uaW3obb1u2g6QpbdfLfeAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEGM3Sy4yD8rzZaVZFuHpdza2zL9R7N33Nba/FeLJffMmqkWuaKh1pjXZsrqszFn+xnKY8btNPU2h575Ny8ZW1vS3ay9i9btdJYbIVtryz60XB+sS7HdBnnmeFpaAgAwUhhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIMZuFI9zijm/CIq4ISPCGoESc4YYGVtrUwyGtXfMEA0SK9max60xMqZiY5RI5B8kFI2lY2+Ny4kswTPGxdjORFNnU9yU5/X9LSXD9b4QM/6tbb4uW+KmjAxrcfacH2/WODAf3AMCAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABDFms+AiJ+8sOBkypCJDRpokxQwz2pqpFjPkezljOFXRUB8Zc7Lizj9/TTLmUxmPjwx5bfaINMN+MeaYWXPPItN2Wvehf33JFtWnmOFUsWyiJJUM560rGa/3xl1YNJ3j1hPRvz5uzIKz3a5YDpBfLfeAAABBjPgA+upXv6ooioZd5s+fP9K/BgAwzo3KQ3AXX3yxnn322T/9ksSYfaQPABDIqEyGRCKhurq60WgNAJggRuU5oJdfflkNDQ2aO3euPvvZz+rw4cOnrc3lcspms8MuAICJb8QH0OLFi7V582Zt27ZNGzduVHt7uz72sY+pp6fnlPUtLS3KZDJDl8bGxpFeEgBgDIqcM78m0KSrq0uzZ8/WAw88oBtvvPEdP8/lcsrlckNfZ7NZNTY26getv9SU8nKv32F5tWwibnuZYtLQPG5ZiGwfJW5+XajhJaoJ48uwk5bX1kqSYZ9Hxu2MG9Yes77c3NLbeOytazHtF+M+tPSOjNuZMJwqxqumaR9Gxs+TTpo+At32MfXWj7RPGF7+bN2HigzrNhzLbDarTKZe3d3dqqysPG3dqL86oKqqSh/84Ad18ODBU/48nU4rnU6P9jIAAGPMqL8P6OTJkzp06JDq6+tH+1cBAMaRER9An//859Xa2qrf//73+vnPf65PfepTisfj+vSnPz3SvwoAMI6N+ENwr776qj796U/rxIkTmjFjhj760Y9q9+7dmjFjhrGTk3cEhSmmxPhY/SjVvlnv/4BtLGY7VFHC8vyF7YHjojEzJWZ4yDtmPD6mh9ONz3Zanh21PpFaMj71atovxiieyBJTYz08hlPFmJZjYn0OqGi9Mhv6GxOH5Cw73dmykiLDmWuJJfON3xrxAfToo4+OdEsAwAREFhwAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIhR/ziGMxW5kiLPIKnIkK5k+PgLSbbcJmPclFzJfzG/e6nN1Lu/r9e7dvac80y96xsaTPWlkv9edEXbAbJ8nFXJmGFn+vvM+vk+JevffpbMLtuJ6AwnruW6JvlngklSyXgFshx7axacM+bpWdZu/EglU29nzFK0bGXJENY36Hl+cw8IABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEmI3ikSu9efEpNUSsFK1xOTH/uI+iIRpEskWm/PxnPzX13vaf/+ldW1dfZ+rd9NErTPWrr13jXZupmmrqXSwWvWtjxpgSZ4i/scTCSFIU2SJtLDEosZjtJI8M9THDOt7s7b/PY8aMGst2WqN4SqW4rd6ydOvthGHtJdnWbdktBUPxgOf+4x4QACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIgxmwXXO5iXy+U9qy3ZSrZMqJglyypmy2FKJPx3/wcXfNjUe9d/7fSu7Tz8O1PvJ3/YYaqfOqPWu3bpyv9r6l0y/A0Vk39unCTFDHltznheWc/DpOFcieKjlwVn/pM18r9OJIx5bZYbLxfZburiMd/bnjdZbics+8Rabs4BNJQn4v4L6Rn0u65xDwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxJjNgnu9+6Qm5S0Zb35MmU2SYoYMqciYZRU3ZCtl6hpMvRd85DLv2kP795h6u0TSVL/nF7u9awvxMlPvafWzvGtrampMvadMKfeuzRds2WGFQsFUP3nSZO9a61+VznLemrPG/K/DCfln70lSwrChLm47Z2OGdUtSwtLfeDsRRf4ZhnHjwY8MmYRxQx7hyZ6TXnXcAwIABGEeQDt37tTVV1+thoYGRVGkxx9/fNjPnXO66667VF9fr0mTJmnZsmV6+eWXR2q9AIAJwjyAent7tXDhQm3YsOGUP7///vv1rW99Sw899JD27NmjKVOmaMWKFRoYGDjrxQIAJg7zc0CrVq3SqlWrTvkz55wefPBBffnLX9bq1aslSd/97ndVW1urxx9/XNdff/3ZrRYAMGGM6HNA7e3t6ujo0LJly4a+l8lktHjxYu3ateuU/yeXyymbzQ67AAAmvhEdQB0db35SZm3t8E/ArK2tHfrZ27W0tCiTyQxdGhsbR3JJAIAxKvir4NavX6/u7u6hy5EjR0IvCQBwDozoAKqrq5MkdXZ2Dvt+Z2fn0M/eLp1Oq7KyctgFADDxjegAmjNnjurq6rR9+/ah72WzWe3Zs0dNTU0j+asAAOOc+VVwJ0+e1MGDB4e+bm9v1/79+1VdXa1Zs2bpjjvu0D//8z/rwgsv1Jw5c/SVr3xFDQ0Nuuaaa0Zy3QCAcc48gPbu3atPfOITQ1+vW7dOkrR27Vpt3rxZX/jCF9Tb26ubb75ZXV1d+uhHP6pt27aprMwWsdKd7VGu4BdBEY/5R9pYo3hG82kyy1rixoyND8y5yLv293/2B4WPgmwxMm+8ccK79r9at7930Z+pmX2hd218su3h3XTc/+pRN32aqfecueeZ6p0ldqZki3opWVJnDNc1SYrJEMVjjL8pOv/zcNAYlTSYt53jlvIpU/xjlSQpMyXlXWu+dTPddvrX9p7s86ozD6Arr7xSzp3+RImiSPfee6/uvfdea2sAwPtI8FfBAQDenxhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIMxRPOdK/8msSkW/gKUo5p99ZcmNkyTnbLlaFomEYS1R0tR7SvkM79qaugtMvU+cOPWHC55OLPLP4UrE/PL/3jJn9qk/5uNUCslJpt4v/GK3d+1z//krU+/ly1ea6i//+Me8a6O0f3aYJEUx/3PLyXb9kSGXLpmwneN/OPqqd+3vD/7W1LsslTbVl5L+WZcXzJtn6p2MV3nXFou2608U+R+fRMJ/XPT1DXjVcQ8IABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEmI3iKeT6FI+cV60lTkKGOAlJisnQ27IOScWC//yPG9dd6O/3rn3ldy+ber/W8QdTfaZqindtKm2Leuk8csi79v98dImp97Sl/vE3yuVMvftztsiUE2+c9K5NldkibSw3A/mi7Rx38rsOSzL/OXzk8CvetX9oP2jqXRzoNdXXnu8fZ1UsnGfq/cc//tG71hliySQpZogmi8f9a/t7/c5X7gEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAghizWXCxUk6xkt98jCLDZhQM2VSSEjH/+pJsGVwF558HNjDon+0mSZ1Hj3jXvvK735p6Z4/ZsuD6q6u8a2fOnmnq/fv/8V974/yLTL3LplR6186/7ApT73SZf29JOpE1ZM1lB029XeT/d6izZCMa9ffb8te6s/75eGVTKky9s8YsuJ43urxr+3v81y1J+WSZf7Hh9kqSZDj2Udz/9m2gz+/2intAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgxmwUTz5RoVhykldtzBQPYosSGUj4x0+k4ilT78Gcf9zHofZ2U++e7h7v2vTUWlPvyf4JQpKkZKLgX1zoM/Ue6Orwrj32Py+Zetecd7F3bVe3bd3RSdtOTCQMV1VDvIokRYarRCxm650v+G9nf59tHxaLhoWnbdFHhVjWVN/XX/KufaPL/7opSfGUf7TSlEnG26B83ru2ZIg8y/X7HUvuAQEAgmAAAQCCMA+gnTt36uqrr1ZDQ4OiKNLjjz8+7Oc33HCDoigadlm5cuVIrRcAMEGYB1Bvb68WLlyoDRs2nLZm5cqVOnbs2NDlkUceOatFAgAmHvOLEFatWqVVq1a9a006nVZdXd0ZLwoAMPGNynNAO3bsUE1NjebNm6dbb71VJ06cOG1tLpdTNpsddgEATHwjPoBWrlyp7373u9q+fbv+5V/+Ra2trVq1apWKxVO/HLOlpUWZTGbo0tjYONJLAgCMQSP+PqDrr79+6N+XXnqpFixYoPPPP187duzQ0qVL31G/fv16rVu3bujrbDbLEAKA94FRfxn23LlzNX36dB08ePCUP0+n06qsrBx2AQBMfKM+gF599VWdOHFC9fX1o/2rAADjiPkhuJMnTw67N9Pe3q79+/erurpa1dXVuueee7RmzRrV1dXp0KFD+sIXvqALLrhAK1asGNGFAwDGN/MA2rt3rz7xiU8Mff3W8zdr167Vxo0bdeDAAf37v/+7urq61NDQoOXLl+uf/umflE6nTb/HJcvlkpO9anu7/+jd96VfPW9ahwz5R+kyv+y6t8Tj/ndA+wf986AkKTLk0s2cv9DUO2lYtyT1dLzsXZs9bsu8m3LSP0/vdy/+ytT7vPMv8q79QG21qfdrf+w21ecHc961Lma7WluyFAuG7DBJyhf8cwBLztRakWE78yVDHqGkEyf8zytJmnuh/9tO+vO2tcQNOyYu6070L80X+v1rB/xqzQPoyiuvlHOn38inn37a2hIA8D5EFhwAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIgR/zygkVLMDagY+c1Hl/fPSTv6G1seWNfhQ961iUlTTL1jZRnv2ijtl4s3JBX3Lk0a152cVG6qj8s/l86lppp6d/X7Z3YVjneZer96xD+X7uLLrjD1rqqxZcf1D/hnsJ14o8/Uu+MPR71r2w/6Xx8kKWHIDZwyxXaOl5X515844Z8XKUndb7xhqo8n/K9vvX3+mWqSlIj8e+eMvdNJ/xFQVuaf5xmVSl513AMCAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAAQxZqN4BvMlKe4X55Aqq/Duu2TpCtM6Xtj1nHftK+2/NfXuO97pXVvM++2Lt+Sdf+1gyXYaRClbdE9ZmX//WMywcNkiUKz78Llnf+5d+5vfd5l6T66abqrPTPOP7klNskXaDBb890vKGAk10Jf1ru3t6TL1jpX8z5WBXv/IJkkqT9n+Nk/6n4bmtcSd4fpjvEXPGTazMOgfxTM44BcJxD0gAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBBjNguu72SXCvmcV233Sf+8qXRUNK1j1iWX+PeusmWk9bx+3Lu26/U/mnq/8UaXd22+p8fUe9BYX+ix5btZWDp3J5Om3omjx7xrf/eb35h6xyf55xdKUmpyuXftlKqppt4V5f5riZztWFry3Xqzb5h6q+SfYZeMG8LaJM2df7GpvpAveNe6gl9O2lB9zH/tsaLt+BSjyLs2nxsY8VruAQEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAghizUTwdbb9UIpnyKy7kvfvGTOEtkov5z+jUpEpT7+oP+EegVNbMMvWe0dfrXdvfe9LUu9cQfSRJfYbont6TtrXIECXiX/mm7q4T3rVTKyebelfN8I/WkaR8yT+OJSr4R6ZIUqHXFk9lkYr5X9/SU6tMveOGeJ3yClv0UfWMGab6XL//PnfGEzEW978Niht7JxL++zCd9B8XUdEvRo17QACAIEwDqKWlRZdddpkqKipUU1Oja665Rm1tbcNqBgYG1NzcrGnTpqm8vFxr1qxRZ2fniC4aADD+mQZQa2urmpubtXv3bj3zzDPK5/Navny5env/9HDPnXfeqSeffFKPPfaYWltbdfToUV177bUjvnAAwPhmeg5o27Ztw77evHmzampqtG/fPi1ZskTd3d16+OGHtWXLFl111VWSpE2bNulDH/qQdu/erY985CMjt3IAwLh2Vs8BdXd3S5Kqq6slSfv27VM+n9eyZcuGaubPn69Zs2Zp165dp+yRy+WUzWaHXQAAE98ZD6BSqaQ77rhDV1xxhS753w9t6+joUCqVUlVV1bDa2tpadXR0nLJPS0uLMpnM0KWxsfFMlwQAGEfOeAA1NzfrxRdf1KOPPnpWC1i/fr26u7uHLkeOHDmrfgCA8eGM3gd022236amnntLOnTs1c+bMoe/X1dVpcHBQXV1dw+4FdXZ2qq6u7pS90um00un0mSwDADCOme4BOed02223aevWrXruuec0Z86cYT9ftGiRksmktm/fPvS9trY2HT58WE1NTSOzYgDAhGC6B9Tc3KwtW7boiSeeUEVFxdDzOplMRpMmTVImk9GNN96odevWqbq6WpWVlbr99tvV1NTEK+AAAMOYBtDGjRslSVdeeeWw72/atEk33HCDJOkb3/iGYrGY1qxZo1wupxUrVug73/nOiCwWADBxRM45WzjaKMtms8pkMlryyVVKJJNe/6fk/B9JjMX8s48kKRb515eMOXPFyL++ZEwyKxZL3rXWjLTIuJ2RIa+tWCiYehdL/ttZKtkyzzo6XvWunTGj3tS7rvE8U32PIWssbjhnJZlOgMh4tkSGrDFFttdEWbLgYoZMR8l2vZekyNC/aLzJjWL++zxuvH2rmOSZtykpM6XMu3YwN6BN/+9r6u7uVmXl6TMyyYIDAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAARxRh/HcC4M5PNKeEdW+G9GLOYf3SJJKQ1611qjeGSI2EjEbYfKEpgyWLBF1JRK1u00RCUZ4lXerPffL3HD/pakmXPO966dMXWaqXeukDfV5ws579qSjDEytiweE1f0X4uzxuUYjmdkjfkxbqhlLZbrg7XeGsN00nBepWL+1/vBnF9f7gEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAghizWXBlUVGJyC9fKXL+WWalgi0LLor7z+iUMW8qZpj/MWPOXMFz30mSXMHUu2jpLalU8j8+zriWyJCT5Yq2fZhIJb1rK9JpU++erk5TvSv5n7dFZ8sDs4gZc8xcZDiext4lw3kYM1yPJcl4qtiub3FrzpzheMZsN+kDRf/9ciLb612bHyQLDgAwhjGAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQYzZKJ76aRVKJf2iUEoFQ9yHs2VsWCI8EnHb7owb4jucJY5DUt6QOFSSLRrEmGakkmGfl5ytecLzHJGkKG7bh1MmV3rXdmV7TL0H+v1jTSRJcf/tLMkWZyTnf/yLxnMlFvOvj4xRVpZrsjPGR1kiniRJlu0sGbfTcN4WYsaoMcN+KRoitQr5Qa867gEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAghizWXClYkFFQ76Sr2TCtsllSf96S66SJJVK/rlN8bitdzpl2E5jBldu0JY1li/6Z0g541pSZf7bmU6nbb0Nx77ttU5T7wHjPoxF/slnhmg3M+s5bjmezprTaLh9iBmzFK3XCRmy4yJDvqQkubj/7YQbxSy4eMK/N1lwAIAxzTSAWlpadNlll6miokI1NTW65ppr1NbWNqzmyiuvVBRFwy633HLLiC4aADD+mQZQa2urmpubtXv3bj3zzDPK5/Navny5enuHR8vfdNNNOnbs2NDl/vvvH9FFAwDGP9MTItu2bRv29ebNm1VTU6N9+/ZpyZIlQ9+fPHmy6urqRmaFAIAJ6ayeA+ru7pYkVVdXD/v+9773PU2fPl2XXHKJ1q9fr76+vtP2yOVyymazwy4AgInvjF8FVyqVdMcdd+iKK67QJZdcMvT9z3zmM5o9e7YaGhp04MABffGLX1RbW5t++MMfnrJPS0uL7rnnnjNdBgBgnDrjAdTc3KwXX3xRP/3pT4d9/+abbx7696WXXqr6+notXbpUhw4d0vnnn/+OPuvXr9e6deuGvs5ms2psbDzTZQEAxokzGkC33XabnnrqKe3cuVMzZ85819rFixdLkg4ePHjKAZROp83vzwAAjH+mAeSc0+23366tW7dqx44dmjNnznv+n/3790uS6uvrz2iBAICJyTSAmpubtWXLFj3xxBOqqKhQR0eHJCmTyWjSpEk6dOiQtmzZor/6q7/StGnTdODAAd15551asmSJFixYMCobAAAYn0wDaOPGjZLefLPpn9u0aZNuuOEGpVIpPfvss3rwwQfV29urxsZGrVmzRl/+8pdHbMEAgInB/BDcu2lsbFRra+tZLegt/YODKji/7KG44dXkCWMWXMGQT1UyZJ69ydA7b8vJSjj/tRSN4WGFvG078yX/tRcN+0SSsr0nvWuTqZSpdyLp/9xkb1+/qXehZMsmi+SXrSVJyWTS1NuSqabIeo4bzsOCLcdMlky1knHdkfH4GLLmnDNmwRkyI2Nx2/XHUm25fSvl8151ZMEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAII4488DGm3HX3tNiYRfvEUy7h+DkUra4lhikX9MSRSzzfOEYd1Jz30x1NuwFkNSjiRbtI4k9Q7kvGsHBv0jZyRJhuNjim6R5OQfaVOS7fhIttgZV/KLNpGkwQFbLFA6XWaotsU2WWJ+Uklb72LBf5/EjNefyBgJFTecW84YZzSY97/+JGKWYylFlts3Q4RQzBX86rw7AgAwghhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgxmwWXP9An+KeWWmJmH/OU78GTOuIDL0jQ+6VJFnippJJ26FKmLKpbDlZJ/tsWWMDOf99nkj6569JUiLtXx83ZLtJ0kDO/3imy6eaeheKvab68klp79qYMZduoN8vt0uS8v7xa5Ik5/wz72IxY/6a4c/neGTNdjPWJ/zz3SZNnmLqPWjIvMsbD1DMkBnpe3ssSTHntz+4BwQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACGLMRvG4kpPzjM8oyT/uQ8a4nJghSiRytnleKvn3zg8atlFSlLTEsdh6DwwMmurzRf99bkwFkvL+MTKFon9ciiQV4v7xOrU1M029B3oOm+pn1/pH8fT12mJkXu153bu2WLCdKy5hWEvBtm5L9aDtlNXUqnJT/ZQpKe/ayeVltsXIP7qno/OErbXhOpFM+N++RZ633dwDAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAAQxZrPgVPTPnIrF/OeoK9nywBTzT5xyxqyxeNw/+CxmSr6S4oYMO0W2fLyEYd2S1NPb613bN9Bn6l1e7p+RVjZ5kql3Xc0079pUIm/q7YzXvJ43st61x187aeqdtyzdM+PrT739m0eynVfJpP9OrMxkTL2nTLYdoMaZdd61R4/Z8tq6uvyvPwXjzVuxkPOujUqG3EXPjEbuAQEAgjANoI0bN2rBggWqrKxUZWWlmpqa9KMf/Wjo5wMDA2pubta0adNUXl6uNWvWqLOzc8QXDQAY/0wDaObMmbrvvvu0b98+7d27V1dddZVWr16tX//615KkO++8U08++aQee+wxtba26ujRo7r22mtHZeEAgPHN9EDn1VdfPezrr33ta9q4caN2796tmTNn6uGHH9aWLVt01VVXSZI2bdqkD33oQ9q9e7c+8pGPjNyqAQDj3hk/B1QsFvXoo4+qt7dXTU1N2rdvn/L5vJYtWzZUM3/+fM2aNUu7du06bZ9cLqdsNjvsAgCY+MwD6IUXXlB5ebnS6bRuueUWbd26VRdddJE6OjqUSqVUVVU1rL62tlYdHR2n7dfS0qJMJjN0aWxsNG8EAGD8MQ+gefPmaf/+/dqzZ49uvfVWrV27Vi+99NIZL2D9+vXq7u4euhw5cuSMewEAxg/z+4BSqZQuuOACSdKiRYv0i1/8Qt/85jd13XXXaXBwUF1dXcPuBXV2dqqu7vSvkU+n00qn/d/LAQCYGM76fUClUkm5XE6LFi1SMpnU9u3bh37W1tamw4cPq6mp6Wx/DQBggjHdA1q/fr1WrVqlWbNmqaenR1u2bNGOHTv09NNPK5PJ6MYbb9S6detUXV2tyspK3X777WpqauIVcACAdzANoOPHj+uv//qvdezYMWUyGS1YsEBPP/20PvnJT0qSvvGNbygWi2nNmjXK5XJasWKFvvOd75zRwkqloiLP2I9i0T9KJmaMnXGGCJxEMmnqnYj73wEtlWwRKM5QXiwMmnrHjbFAqaT/Ps8XbL0tsUCRId5Jkgo9r3vXdr7xiql3IrI9+HDScIhe6+o29S46/32YThsftTfEtyRjZbbWkX/v8sm23rHIdp3I9ftHSLmS7TwczPmvpTJTaer92mv+rzrO5/y3sVjwOzams+nhhx9+15+XlZVpw4YN2rBhg6UtAOB9iCw4AEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEOY07NHm/jdDpmiITYmion9/axSPIdMmihnnuSF1xhrFI8N2Fkv++0+SikXbWizHsmSMKSkW/ddujWEqeMaJSFKxYNuHimzbKf+lqGTYJ5JkObUssVf/uxj/3sZ9GBmuQPl83tQ7FrPVDw76x+VY12I5DwvG3r6ROZIkZz+W73X7OeYGUE9PjySp7SCfCwQA41lPT48ymcxpfx45y5/450CpVNLRo0dVUVGh6M/+Ys1ms2psbNSRI0dUWWkL3BtP2M6J4/2wjRLbOdGMxHY659TT06OGhgbF3uWRoTF3DygWi2nmzJmn/XllZeWEPvhvYTsnjvfDNkps50Rzttv5bvd83sKLEAAAQTCAAABBjJsBlE6ndffddyudTodeyqhiOyeO98M2SmznRHMut3PMvQgBAPD+MG7uAQEAJhYGEAAgCAYQACAIBhAAIIhxM4A2bNig8847T2VlZVq8eLH++7//O/SSRtRXv/pVRVE07DJ//vzQyzorO3fu1NVXX62GhgZFUaTHH3982M+dc7rrrrtUX1+vSZMmadmyZXr55ZfDLPYsvNd23nDDDe84titXrgyz2DPU0tKiyy67TBUVFaqpqdE111yjtra2YTUDAwNqbm7WtGnTVF5erjVr1qizszPQis+Mz3ZeeeWV7ziet9xyS6AVn5mNGzdqwYIFQ282bWpq0o9+9KOhn5+rYzkuBtD3v/99rVu3Tnfffbd++ctfauHChVqxYoWOHz8eemkj6uKLL9axY8eGLj/96U9DL+ms9Pb2auHChdqwYcMpf37//ffrW9/6lh566CHt2bNHU6ZM0YoVKzQwMHCOV3p23ms7JWnlypXDju0jjzxyDld49lpbW9Xc3Kzdu3frmWeeUT6f1/Lly9Xb2ztUc+edd+rJJ5/UY489ptbWVh09elTXXnttwFXb+WynJN10003Djuf9998faMVnZubMmbrvvvu0b98+7d27V1dddZVWr16tX//615LO4bF048Dll1/umpubh74uFouuoaHBtbS0BFzVyLr77rvdwoULQy9j1EhyW7duHfq6VCq5uro69/Wvf33oe11dXS6dTrtHHnkkwApHxtu30znn1q5d61avXh1kPaPl+PHjTpJrbW11zr157JLJpHvssceGan7zm984SW7Xrl2hlnnW3r6dzjn38Y9/3P3d3/1duEWNkqlTp7p//dd/PafHcszfAxocHNS+ffu0bNmyoe/FYjEtW7ZMu3btCriykffyyy+roaFBc+fO1Wc/+1kdPnw49JJGTXt7uzo6OoYd10wmo8WLF0+44ypJO3bsUE1NjebNm6dbb71VJ06cCL2ks9Ld3S1Jqq6uliTt27dP+Xx+2PGcP3++Zs2aNa6P59u38y3f+973NH36dF1yySVav369+vr6QixvRBSLRT366KPq7e1VU1PTOT2WYy6M9O1ef/11FYtF1dbWDvt+bW2tfvvb3wZa1chbvHixNm/erHnz5unYsWO655579LGPfUwvvviiKioqQi9vxHV0dEjSKY/rWz+bKFauXKlrr71Wc+bM0aFDh/SP//iPWrVqlXbt2qV4PB56eWalUkl33HGHrrjiCl1yySWS3jyeqVRKVVVVw2rH8/E81XZK0mc+8xnNnj1bDQ0NOnDggL74xS+qra1NP/zhDwOu1u6FF15QU1OTBgYGVF5erq1bt+qiiy7S/v37z9mxHPMD6P1i1apVQ/9esGCBFi9erNmzZ+s//uM/dOONNwZcGc7W9ddfP/TvSy+9VAsWLND555+vHTt2aOnSpQFXdmaam5v14osvjvvnKN/L6bbz5ptvHvr3pZdeqvr6ei1dulSHDh3S+eeff66XecbmzZun/fv3q7u7Wz/4wQ+0du1atba2ntM1jPmH4KZPn654PP6OV2B0dnaqrq4u0KpGX1VVlT74wQ/q4MGDoZcyKt46du+34ypJc+fO1fTp08flsb3tttv01FNP6Sc/+cmwj02pq6vT4OCgurq6htWP1+N5uu08lcWLF0vSuDueqVRKF1xwgRYtWqSWlhYtXLhQ3/zmN8/psRzzAyiVSmnRokXavn370PdKpZK2b9+upqamgCsbXSdPntShQ4dUX18feimjYs6cOaqrqxt2XLPZrPbs2TOhj6skvfrqqzpx4sS4OrbOOd12223aunWrnnvuOc2ZM2fYzxctWqRkMjnseLa1tenw4cPj6ni+13aeyv79+yVpXB3PUymVSsrlcuf2WI7oSxpGyaOPPurS6bTbvHmze+mll9zNN9/sqqqqXEdHR+iljZi///u/dzt27HDt7e3uZz/7mVu2bJmbPn26O378eOilnbGenh73/PPPu+eff95Jcg888IB7/vnn3SuvvOKcc+6+++5zVVVV7oknnnAHDhxwq1evdnPmzHH9/f2BV27zbtvZ09PjPv/5z7tdu3a59vZ29+yzz7oPf/jD7sILL3QDAwOhl+7t1ltvdZlMxu3YscMdO3Zs6NLX1zdUc8stt7hZs2a55557zu3du9c1NTW5pqamgKu2e6/tPHjwoLv33nvd3r17XXt7u3viiSfc3Llz3ZIlSwKv3OZLX/qSa21tde3t7e7AgQPuS1/6kouiyP34xz92zp27YzkuBpBzzn372992s2bNcqlUyl1++eVu9+7doZc0oq677jpXX1/vUqmU+8AHPuCuu+46d/DgwdDLOis/+clPnKR3XNauXeuce/Ol2F/5yldcbW2tS6fTbunSpa6trS3sos/Au21nX1+fW758uZsxY4ZLJpNu9uzZ7qabbhp3fzydavskuU2bNg3V9Pf3u7/92791U6dOdZMnT3af+tSn3LFjx8It+gy813YePnzYLVmyxFVXV7t0Ou0uuOAC9w//8A+uu7s77MKN/uZv/sbNnj3bpVIpN2PGDLd06dKh4ePcuTuWfBwDACCIMf8cEABgYmIAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIL4/+344lb+94CNAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 0\n", + "NN answer: 0\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step\n", + "NN output: [[0.15776254 0.00173936 0.4906533 0.03821344 0.08128565 0.02635591\n", + " 0.00488075 0.19360931 0.00255206 0.00294772]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAK4VJREFUeJzt3Xt01PW57/HPzCQzuU8I5CoBAyioEKwUYopSlFSg57hRsUfbnrOx26VHG11Vdndb9mq12r1W3LpWa9tl8Y/dSntO0eo+Rau74lYsoe4CLSjFawoYBSQJckkmGch1fucPa9pUkO8DCd8kvF9rzVrJzJMn39/8JvPJby7PhIIgCAQAwGkW9r0AAMCZiQACAHhBAAEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4EWa7wX8rVQqpX379ik3N1ehUMj3cgAARkEQqL29XWVlZQqHj3+cM+wCaN++fSovL/e9DADAKdqzZ4/Gjx9/3MuHLIAeeughPfDAA2pubtbMmTP1wx/+UHPmzDnhz+Xm5kr6YOF5eXlOv6u3r8d5XUHQ5VwrSfvf3+tc27jzD6be777zW/fiyFFT7/yC851rPzHz70y9iwrPNtWHUjFLtal3EHav7zM+4GwpjwQpW/MQj35j9EokEpo4cWL//fnxDEkA/eIXv9Dy5cv18MMPq6qqSg8++KAWLlyohoYGFRUVfezPfviwW15e3rAIoKOdOc612dmZpt6ZmVH34kivqXdWlvudfm6u+zZKct4vHyKAjoEAwhngRE+jDMlfwXe/+13ddNNN+tKXvqTzzz9fDz/8sLKysvSTn/xkKH4dAGAEGvQA6u7u1tatW1VTU/OXXxIOq6amRhs3bvxIfVdXlxKJxIATAGD0G/QAOnDggPr6+lRcXDzg/OLiYjU3N3+kvq6uTvF4vP/ECxAA4Mzg/YHoFStWqK2trf+0Z88e30sCAJwGg/4ihHHjxikSiailpWXA+S0tLSopKflIfSwWUyxmeZIaADAaDPoRUDQa1axZs7Ru3br+81KplNatW6fq6urB/nUAgBFqSF6GvXz5ci1btkyf/OQnNWfOHD344INKJpP60pe+NBS/DgAwAg1JAF133XV6//33ddddd6m5uVkXXnih1q5d+5EXJgAAzlyhIAgC34v4a4lEQvF4XG1tbc5veAyCbuf++w+8Y1rPs2t/6lzb8MZHX2b+cXq73F9yPmas7dHS1nb3yQnjCmaZel9/Xa2pfsLEmc61QRAx9Q4CwxtRQ8Y3ixoeoQ4b31hqfeybqYgYSVzvx72/Cg4AcGYigAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXgzJLLjT7USfO/7X3nn3T6beyaO7nWsrzsk39X7pNy0nLvqzRJttV2XnuI8n2vL7/zD17kwmTfVLr73JuXbi2VNNvWPpmc614XTbmB9F3Hv3BRmm1iHj/35B4D5GKBy2Du5h0A/84AgIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4MSpmwUnuM76ys3NMnQ8eOuRce860MaberUd6nGvffKPJ1PuyT493rp00IW7qvfOtl0z1//cn+51rKysvMvUuGlPoXJseyzL1Pnf6p5xrx501w9Q7CNn+9MKGfxVTQWBbi6E+HLLN0wsC9zlzhpGOf663/MDQzsezXIdnAtfrgyMgAIAXBBAAwAsCCADgBQEEAPCCAAIAeEEAAQC8IIAAAF4QQAAALwggAIAXBBAAwItRMYrHMgVjYvkkU+9UKtO59o0/7TD1rpx9rnNtdpZtjEwqdMS5Nis9Zeo9vsT9OpGk7uS7zrV7d7ivW5KO5rmPEeruto1Xadq7x7m25u9s44z6wjFT/Z497mspLS019S4cN865NmW8y4hE0p1rg8D2/7BlzI9Cxv+1jZN1rGOE8AGOgAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvCCAAgBfDdhZcX2+f+nr7nGpTvW3OfVsPvG1ax9gs9yFPr+/cZ+pdMaXAuXbBgumm3gf2velcG3S2m3qnhWyDsnIyM5xr25MHTb2j4Q732iBq6t3wygvOteGI7U+p+dBRU339b//gXDtp0jmm3p+eP8e5tiDfNvOufMJU59ris9xnI0pSOOq+lr5eU2ulWYe7Gf4mQtZBc5YZecPkkCLkeP0Nk+UCAM40gx5A3/72txUKhQacpk2bNti/BgAwwg3JQ3AXXHCBXnjhLw9fpKUN20f6AACeDEkypKWlqaSkZChaAwBGiSF5DmjHjh0qKyvTpEmT9MUvflG7d+8+bm1XV5cSicSAEwBg9Bv0AKqqqtKqVau0du1arVy5Uo2Njbr00kvV3n7sV1rV1dUpHo/3n8rLywd7SQCAYWjQA2jx4sX63Oc+p8rKSi1cuFC//vWv1draqscff/yY9StWrFBbW1v/yfLRwwCAkWvIXx2Qn5+vc889Vzt37jzm5bFYTLFYbKiXAQAYZob8fUAdHR3atWuXSktLh/pXAQBGkEEPoK9+9auqr6/XO++8o9/97ne6+uqrFYlE9PnPf36wfxUAYAQb9Ifg9u7dq89//vM6ePCgCgsLdckll2jTpk0qLCw09dm95w3l5uY41R5+v8G576t/fM60jgP73nWuHV8w2dT7YNN+59qs9G5T77EF2c61+/fZXnmYCtnWkp3nth8lSem2ESi9cp+xkt5nW3eqM+lcu+WlX5l6v3/YNoqn+Z0DzrV73nYfwyRJyda3nGunTLa9SGhPuftYoJLy8029z5/5KefaMWOMj8CkbGOblIq41w7hmB/J2NuzQQ+gxx57bLBbAgBGIWbBAQC8IIAAAF4QQAAALwggAIAXBBAAwAsCCADgBQEEAPCCAAIAeEEAAQC8IIAAAF4M+ccxnKz0SJfSI27La27+k3PfI8kW0zpSgftMtTlVV5t6JzvdZ8G9+eaLpt6dYfc5Zok291pJGjcu11SfneN+M8vNzTL1zom675+8kO1jP1Ld7zjX7nqnydQ7Gtj+9HIz3P9XPNzeY+q95933nGtTfZ2m3snOLufat/70hqn3e3tec669+FPzTb1LS6eb6mMZJc61Qdg2Zy4I9TnXhmWYSTcMcAQEAPCCAAIAeEEAAQC8IIAAAF4QQAAALwggAIAXBBAAwAsCCADgBQEEAPCCAAIAeDFsR/GEw2kKh9PdakNudZJ06KBt7Mz0GZc41356/v8w9X5v7y7n2jf/+Lqpd2fXPufaqGHckCR1J1Om+ugY9xE4GRmZpt5pIcP/UEHI1DsSct/OUHeHqXeoO8NUn5PuXt8WdJt6h0MFzrV737ON4tn59hbn2jH5ttth4vBB59r21gOm3oUlr5rq51y8xLm2bMK5pt6pwH0UT0i223jI8vczBDgCAgB4QQABALwggAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXgzbWXDxMeOVl5frVFs+YYZz351vuc9fk6R5l13lXBvLLjb1HjPGfdZY6/um1jrS2upcmx6xzTFLttnmgRUXjHGuzcrON/Xu6+tyrj18yH12mCS1JxLOtVnpEVPvvl7bzC4Zxu8Fcp+9J0lXXf0l59qpF5xn6r359y8512bYlq3Cwjzn2i7jrL7fvuS+bkk61Oo+r+1/3fBlU+9Imvt8ROO4Q4WM9YONIyAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvCCAAgBcEEADACwIIAODFsJ0Fl5GdrYzsHKfa7LxC577zLltiWkd+QblzbW/KMLBLUlZO1Ll27qXTTL3f33PYvfY993lqktTe0W6q72x3n8HWnZVu6p2W5j7MKujrNfXu7XWf75Ueta27ICvbVH+4t9u59tySyaben/5MjXNtxbkXmHpfVHWJe3HI/fqWpMBQ39VpmwU3YdJmU/3mzb91rn1753ZT72kXzHWuNd4FeccREADAC3MAbdiwQVdeeaXKysoUCoX05JNPDrg8CALdddddKi0tVWZmpmpqarRjx47BWi8AYJQwB1AymdTMmTP10EMPHfPy+++/Xz/4wQ/08MMPa/PmzcrOztbChQvV2Wkb4Q8AGN3MzwEtXrxYixcvPuZlQRDowQcf1De/+U0tWfLBcy0/+9nPVFxcrCeffFLXX3/9qa0WADBqDOpzQI2NjWpublZNzV+e1IzH46qqqtLGjRuP+TNdXV1KJBIDTgCA0W9QA6i5uVmSVFw88JNBi4uL+y/7W3V1dYrH4/2n8nL3V50BAEYu76+CW7Fihdra2vpPe/bs8b0kAMBpMKgBVFJSIklqaWkZcH5LS0v/ZX8rFospLy9vwAkAMPoNagBVVFSopKRE69at6z8vkUho8+bNqq6uHsxfBQAY4cyvguvo6NDOnTv7v29sbNS2bdtUUFCgCRMm6I477tC//Mu/6JxzzlFFRYW+9a1vqaysTFddddVgrhsAMMKZA2jLli267LLL+r9fvny5JGnZsmVatWqVvva1rymZTOrmm29Wa2urLrnkEq1du1YZGRmm3xP8+eQiO6fAuW9m1DYCJZLuPi5H7lNhJEmB3EeJjBljO1jN6styro12Z5p67+l23TMf6Hj/2C9AOZajabbtDMfcR+AkDttGDlnmmoRDtlE8YwrjpvrOqPta2vpsf9bxAveHvVMp276PxAy3rZBtjkwQuNfnGP/uqy9xH08kSZ097u9zfP3N1029p51X5VwbChnur/TBW2fcexvv4ByYA2j+/Pkfu+hQKKR7771X99577yktDAAwunl/FRwA4MxEAAEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4AUBBADwggACAHhBAAEAvDCP4jld0hRTmmJOtQVjznLum0r1mtYRSYsYqq2zktzre47Y5pgdfr/lxEV/tv/9/abeChlvNu4j79R2wPaJuOGo+1q6jppaqyvZ7Vzb22O5nUjZOfmm+oyuDufa1996x9R765bfO9d+ZvHZpt6WWWOB8c8nnHL/gbBhbpwkKeJ23/OhT8y61Ln25VdeMfVOdh5xrs3Osq3bsn+GAkdAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvCCAAgBfDdhTPB9nomI+hqHPXSHqGaRUpGUZVhGyzRI52Jt1rj7abevcY5t8UlJ9t6j1u7Hmm+r3vvOdc27x7p6l371H3cTnd3bb909eX7Vwbzy809d61+7CpPoi638ZzjeNY/uNXjzvXzp7tPnJGkrJyxzrXpiK2/4ejYcvdl20Uj3VCTX7cff9Xzb7E1DtquM/yPVrHiiMgAIAXBBAAwAsCCADgBQEEAPCCAAIAeEEAAQC8IIAAAF4QQAAALwggAIAXBBAAwAsCCADgxTCeBZeS+/ymXueuQWDL3FTgPj8sLWycBZc84Fx76JB7rSR19brPA5v+yUWm3pUz/s5Uv2/Pfufa3W9vN/VuP5hwru0NIqbeY4vPcq4tKXOvlaRfP/V/TPXv7Wlwri0cm2/qvePNl51rt2xeb+pdNXehc22v0k29w1nus/rSIra/TRlvK+GQ+11pbk6mbS0yrn1YdHbDERAAwAsCCADgBQEEAPCCAAIAeEEAAQC8IIAAAF4QQAAALwggAIAXBBAAwAsCCADgxbAdxdPXe0R9vW7LazvUbOjcbVpH/pgi59pQb4+pd7LtHefari5bb0XcR8NMnvbfTK0z8qeb6ity3f/POXvqxabeXT2Be3HYNl4lEo0612ZkuI8+kqR332sx1b/66qvOtWeVuY+okaRQX7tz7fZtL5l6V144230d6XFT7+409/0ZjhnH/ERstxXL//Ih8/wbw23c+3AdG46AAABeEEAAAC/MAbRhwwZdeeWVKisrUygU0pNPPjng8htuuEGhUGjAadEi27RlAMDoZw6gZDKpmTNn6qGHHjpuzaJFi9TU1NR/evTRR09pkQCA0cf8IoTFixdr8eLFH1sTi8VUUlJy0osCAIx+Q/Ic0Pr161VUVKSpU6fq1ltv1cGDB49b29XVpUQiMeAEABj9Bj2AFi1apJ/97Gdat26d/vVf/1X19fVavHix+vr6jllfV1eneDzefyovLx/sJQEAhqFBfx/Q9ddf3//1jBkzVFlZqcmTJ2v9+vVasGDBR+pXrFih5cuX93+fSCQIIQA4Awz5y7AnTZqkcePGaefOnce8PBaLKS8vb8AJADD6DXkA7d27VwcPHlRpaelQ/yoAwAhifgiuo6NjwNFMY2Ojtm3bpoKCAhUUFOiee+7R0qVLVVJSol27dulrX/uapkyZooULFw7qwgEAI5s5gLZs2aLLLrus//sPn79ZtmyZVq5cqe3bt+unP/2pWltbVVZWpiuuuELf+c53FIvZZmUd3L9b3UdznGr/+PI6576p3uO/Iu9Yykrdn486dHi/qXf74X3OtTnZtocmc8ac61ybmXO2qffBhPvsMEnqM4yyCo7zYpXjSQWGg/ig19Q7lDzqXJuTnWXqXVo+1VTf1eW+nRnptgc2pp830bn27Z1/NPVOdrzvXFt0VqGpd8SwnaFwytQ7sIxfk8QsuJNjDqD58+cr+Ji989xzz53SggAAZwZmwQEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4AUBBADwggACAHhBAAEAvCCAAABeDPrnAQ2Wt9/ZoWzH+Vo73tzq3PdI6w7TOl6X+/ywo0e7Tb27+yLOtWUTppt6nz/rIufajo4uU++OriOmetNYLctsN0lKuc++ChvHZEVC7itP9tquw/wxxab6inNnONcePPSGqfeY4lz33vttn1icSDQ5144tsl0nlrXEMjNNvfPyi0z1GTG3uZUfsN3tpgx/QCHDbfbPPzEEle44AgIAeEEAAQC8IIAAAF4QQAAALwggAIAXBBAAwAsCCADgBQEEAPCCAAIAeEEAAQC8GLajeErLypWb6zbeovcC97Ezm9fbRvEceN99lEhbe5+p9/gpc5xrZ8z676beeeMmO9cm2m2jdXr73McTSVLYMgMnSJl6W+aDpIzDRPoM5d09nabesZhtNMz0i+Y61z7zxCum3mefW+5cu7upxdT7zdd+51z71mu/N/XuSCSda0Nptuu7eHyFqb5yxoXOtYXF7n+bkpSWWeBcGwS2UTyRkHsEhEKDP4yHIyAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvCCAAgBcEEADACwIIAODFsJ0FN/Hs6crLy3OrPavMuW9Wltt8uQ/96v897lw7sbTQ1Hvp9f/buTZumO0mSYcS7vPd+oIeU++QcaaagsGfIfWX3pZS25ysIOVeHxivk6Pdtnl602fOdq7d+fqFpt6HD+1zrs1Ms12H7/7pZefasWOLTL2b9h1wrn1r1y5T76x4lqm+4fXpzrUXfsJ9rp8kzfzkZc618YIppt5DFgGONxOOgAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvhu0ong+W5ri8yFjnrp+Ye61pFeOnfMq5Nj0SM/UOhTOca1vbuky9ZR2XM0IFgWFcjqFWkkKhobsOu3v7TPWZOXHn2pkXud9mJWndsz9zrp1y9gRT77R09+uw7fD7pt6Nb7/tXBs13tPlZKab6jvaDjvXvrJlg6l3a6v7yKHPLqk19c7IcL8PMk2yYhQPAGA4MwVQXV2dZs+erdzcXBUVFemqq65SQ0PDgJrOzk7V1tZq7NixysnJ0dKlS9XS0jKoiwYAjHymAKqvr1dtba02bdqk559/Xj09PbriiiuUTCb7a+688049/fTTeuKJJ1RfX699+/bpmmuuGfSFAwBGNtMjo2vXrh3w/apVq1RUVKStW7dq3rx5amtr049//GOtXr1al19+uSTpkUce0XnnnadNmzbp4osvHryVAwBGtFN6DqitrU2SVFBQIEnaunWrenp6VFNT018zbdo0TZgwQRs3bjxmj66uLiUSiQEnAMDod9IBlEqldMcdd2ju3LmaPv2DD2Nqbm5WNBpVfn7+gNri4mI1Nzcfs09dXZ3i8Xj/qby8/GSXBAAYQU46gGpra/Xaa6/pscceO6UFrFixQm1tbf2nPXv2nFI/AMDIcFLvA7rtttv0zDPPaMOGDRo/fnz/+SUlJeru7lZra+uAo6CWlhaVlJQcs1csFlMsZnv/DABg5DMdAQVBoNtuu01r1qzRiy++qIqKigGXz5o1S+np6Vq3bl3/eQ0NDdq9e7eqq6sHZ8UAgFHBdARUW1ur1atX66mnnlJubm7/8zrxeFyZmZmKx+O68cYbtXz5chUUFCgvL0+33367qqureQUcAGAAUwCtXLlSkjR//vwB5z/yyCO64YYbJEnf+973FA6HtXTpUnV1dWnhwoX60Y9+NCiLBQCMHqHAOiBriCUSCcXjcbW1tSkvL8/pZ/pShl8Qsm1uX6rbufZIssPUO9Hm/pLznu5eU+9QyP3RVestIJWyXOG2emvvoZwFZ2G5viWpz1ifHnafqdbT3mTq/dyvVjnXlhXarsPWVvf5bu/stk1M6U25z2srLC419Z50znmm+vIJ5zjX7n13l6n3u+/ucK793P/8iqn32ZNnO9cGgfvxSiKRUH7Bie/HmQUHAPCCAAIAeEEAAQC8IIAAAF4QQAAALwggAIAXBBAAwAsCCADgBQEEAPCCAAIAeHFSH8cw7IQM41tCfabWvX3u9b22aTmKpLmPEomkRUy9o+nuH3ERDtluBn2G60SSenp6hqRWknoNV7p13baxQLYRNWmybWcq5b7/M+PFpt7nX3iJc23jW7819Q6nFzjXnlVx7I9sOZ742DLn2hkzZpl6Tz3PVp+TV+hce6D5bVPvp9f82Ln2rTdfNvWeMHGGc204Lce5NuQ4OYojIACAFwQQAMALAggA4AUBBADwggACAHhBAAEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4MWomAUXkvvMrpBsA9sichxqJCk97D5/TZIUdc//SJrtf4XMDPe1RMK2OXO2GWm2eussuO7ubuday9y4D9biXt/b02Xq3dvTaas3XOW9KdttZeKU6c617YmDpt6ZWVHn2gsqP2nqnTfGfXZcPH+sqXc4nGWq7+lzn+s4tqTC1Puc8y90rt27d4ep99Ejbc612bnZ7o0Dt9mIHAEBALwggAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXoySUTyGHA3cR4NIUiTsPgMlGnMf2yNJ6YFhFE/ENi4nLc1914bDtv9DAscxGycjGrXtn4yMDOfavr4+U2/L6B7LSCBJ6jx6xFTfZejf3W0bZ5SeEXeuvfDiRbbe6e63w8xM2/gby8ihg4eSpt6RiO06tKw9KyvT1Hvq9LnOtTsa3zT1fqexwbn2gspCQ2e3648jIACAFwQQAMALAggA4AUBBADwggACAHhBAAEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4MWomAUnWWaw2ea1hcPu9dHo0OV5KGRb91CyrmUo126ZY2eZjyfZ5tJZZ9ilp6fb6js7nWuPHLHNmbPMvFPEtu7AsO+PHLXN6guF3Oc0Wucdhg0zICWpp8c2O86iYGyZc21p2WRT773vNTrXTj1vpnNtb0+HUx1HQAAAL0wBVFdXp9mzZys3N1dFRUW66qqr1NAwcJrq/PnzFQqFBpxuueWWQV00AGDkMwVQfX29amtrtWnTJj3//PPq6enRFVdcoWRy4Kjzm266SU1NTf2n+++/f1AXDQAY+UwPiq9du3bA96tWrVJRUZG2bt2qefPm9Z+flZWlkpKSwVkhAGBUOqXngNra2iRJBQUFA87/+c9/rnHjxmn69OlasWLFxz4p2tXVpUQiMeAEABj9TvpVcKlUSnfccYfmzp2r6dOn95//hS98QRMnTlRZWZm2b9+ur3/962poaNAvf/nLY/apq6vTPffcc7LLAACMUCcdQLW1tXrttdf00ksvDTj/5ptv7v96xowZKi0t1YIFC7Rr1y5NnvzRlwiuWLFCy5cv7/8+kUiovLz8ZJcFABghTiqAbrvtNj3zzDPasGGDxo8f/7G1VVVVkqSdO3ceM4BisZhisdjJLAMAMIKZAigIAt1+++1as2aN1q9fr4qKihP+zLZt2yRJpaWlJ7VAAMDoZAqg2tparV69Wk899ZRyc3PV3NwsSYrH48rMzNSuXbu0evVqffazn9XYsWO1fft23XnnnZo3b54qKyuHZAMAACOTKYBWrlwp6YM3m/61Rx55RDfccIOi0aheeOEFPfjgg0omkyovL9fSpUv1zW9+c9AWDAAYHcwPwX2c8vJy1dfXn9KChhvrDKnh4kT76nQayrUM5Zw5S2/rbDfr7SoSiQxJrSR1d3c716ZsI9KkwLKdttuJ5TqMRGzXdyDbXLquri7n2kSizdQ7LW2Mc+2sWfNNvTf97tfOtQcP73OubW9nFhwAYBgjgAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXpz05wGNVEM5umU4OVO202K4jO0Z6vq0NNufdW9vr3OtfRTPEF7nllE8Yds6rKN4LNd5Mpk09T50qNW5NicnbuqdHs10rm1u2utc29Fx/E/B/mscAQEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4AUBBADwggACAHhBAAEAvCCAAABeEEAAAC/OuFlwwEhkmTUWiUSGrPdwMrTzDtNt1enu9WHDDDtJSiTanWuTbiPY+pWVVDjX7m/eZ1jHUac6joAAAF4QQAAALwggAIAXBBAAwAsCCADgBQEEAPCCAAIAeEEAAQC8IIAAAF4QQAAAL0bmDA4Ax2UdUWMZDRMKBcbVWOuHpncg49iewFZvGWeUm5tr6h0Ku49WSiRaTb1zc4uca9/b3eRc29vtdv1xBAQA8IIAAgB4QQABALwggAAAXhBAAAAvCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALxgFhzggXVe21Aa2rUMj+00r2IIr5NIxH22myTl5uS4Fxtn2LUH7vP0zqo4x7m2oyPpVMcREADAC1MArVy5UpWVlcrLy1NeXp6qq6v17LPP9l/e2dmp2tpajR07Vjk5OVq6dKlaWloGfdEAgJHPFEDjx4/Xfffdp61bt2rLli26/PLLtWTJEr3++uuSpDvvvFNPP/20nnjiCdXX12vfvn265pprhmThAICRLRQEhgcBj6GgoEAPPPCArr32WhUWFmr16tW69tprJUlvvfWWzjvvPG3cuFEXX3yxU79EIqF4PK62tjbl5eU5/YxlE4bTY+/AyDOUn+8znAzd/YT1LjeVcq9vb3d77qW/PnHIufbw4Wbn2o6OpOZesuCE9+Mn/RxQX1+fHnvsMSWTSVVXV2vr1q3q6elRTU1Nf820adM0YcIEbdy48bh9urq6lEgkBpwAAKOfOYBeffVV5eTkKBaL6ZZbbtGaNWt0/vnnq7m5WdFoVPn5+QPqi4uL1dx8/OSsq6tTPB7vP5WXl5s3AgAw8pgDaOrUqdq2bZs2b96sW2+9VcuWLdMbb7xx0gtYsWKF2tra+k979uw56V4AgJHD/D6gaDSqKVOmSJJmzZqlP/zhD/r+97+v6667Tt3d3WptbR1wFNTS0qKSkpLj9ovFYorFYvaVAwBGtFN+H1AqlVJXV5dmzZql9PR0rVu3rv+yhoYG7d69W9XV1af6awAAo4zpCGjFihVavHixJkyYoPb2dq1evVrr16/Xc889p3g8rhtvvFHLly9XQUGB8vLydPvtt6u6utr5FXAAgDOHKYD279+vv//7v1dTU5Pi8bgqKyv13HPP6TOf+Ywk6Xvf+57C4bCWLl2qrq4uLVy4UD/60Y+GZOEAfOBtDKfK+k4Qy1tHcrKzjatJOVdmZrs/VdLe3u5Ud8rvAxpsvA8IwOhmfR+QobbP1rsj6RYUktTbd9S5tr29XZMqzh269wEBAHAqCCAAgBcEEADACwIIAOAFAQQA8IIAAgB4QQABALwggAAAXhBAAAAvzNOwh9qHUw0sH0zHJAQAI8fInITQl+p0rm1v75B04vvmYRdAH84Q4oPpAGBka29vVzweP+7lw24WXCqV0r59+5SbmzvgaCWRSKi8vFx79uxxnhE3ErGdo8eZsI0S2znaDMZ2BkGg9vZ2lZWVKRw+/jM9w+4IKBwOa/z48ce9PC8vb1Tv/A+xnaPHmbCNEts52pzqdn7ckc+HeBECAMALAggA4MWICaBYLKa7775bsZj7hyKNRGzn6HEmbKPEdo42p3M7h92LEAAAZ4YRcwQEABhdCCAAgBcEEADACwIIAODFiAmghx56SGeffbYyMjJUVVWl3//+976XNKi+/e1vKxQKDThNmzbN97JOyYYNG3TllVeqrKxMoVBITz755IDLgyDQXXfdpdLSUmVmZqqmpkY7duzws9hTcKLtvOGGGz6ybxctWuRnsSeprq5Os2fPVm5uroqKinTVVVepoaFhQE1nZ6dqa2s1duxY5eTkaOnSpWppafG04pPjsp3z58//yP685ZZbPK345KxcuVKVlZX9bzatrq7Ws88+23/56dqXIyKAfvGLX2j58uW6++679fLLL2vmzJlauHCh9u/f73tpg+qCCy5QU1NT/+mll17yvaRTkkwmNXPmTD300EPHvPz+++/XD37wAz388MPavHmzsrOztXDhQnV2ug89HA5OtJ2StGjRogH79tFHHz2NKzx19fX1qq2t1aZNm/T888+rp6dHV1xxhZLJZH/NnXfeqaefflpPPPGE6uvrtW/fPl1zzTUeV23nsp2SdNNNNw3Yn/fff7+nFZ+c8ePH67777tPWrVu1ZcsWXX755VqyZIlef/11SadxXwYjwJw5c4La2tr+7/v6+oKysrKgrq7O46oG19133x3MnDnT9zKGjKRgzZo1/d+nUqmgpKQkeOCBB/rPa21tDWKxWPDoo496WOHg+NvtDIIgWLZsWbBkyRIv6xkq+/fvDyQF9fX1QRB8sO/S09ODJ554or/mzTffDCQFGzdu9LXMU/a32xkEQfDpT386+MpXvuJvUUNkzJgxwb/927+d1n057I+Auru7tXXrVtXU1PSfFw6HVVNTo40bN3pc2eDbsWOHysrKNGnSJH3xi1/U7t27fS9pyDQ2Nqq5uXnAfo3H46qqqhp1+1WS1q9fr6KiIk2dOlW33nqrDh486HtJp6StrU2SVFBQIEnaunWrenp6BuzPadOmacKECSN6f/7tdn7o5z//ucaNG6fp06drxYoVOnLkiI/lDYq+vj499thjSiaTqq6uPq37ctgNI/1bBw4cUF9fn4qLiwecX1xcrLfeesvTqgZfVVWVVq1apalTp6qpqUn33HOPLr30Ur322mvKzc31vbxB19zcLEnH3K8fXjZaLFq0SNdcc40qKiq0a9cu/fM//7MWL16sjRs3KhKJ+F6eWSqV0h133KG5c+dq+vTpkj7Yn9FoVPn5+QNqR/L+PNZ2StIXvvAFTZw4UWVlZdq+fbu+/vWvq6GhQb/85S89rtbu1VdfVXV1tTo7O5WTk6M1a9bo/PPP17Zt207bvhz2AXSmWLx4cf/XlZWVqqqq0sSJE/X444/rxhtv9LgynKrrr7++/+sZM2aosrJSkydP1vr167VgwQKPKzs5tbW1eu2110b8c5QncrztvPnmm/u/njFjhkpLS7VgwQLt2rVLkydPPt3LPGlTp07Vtm3b1NbWpn//93/XsmXLVF9ff1rXMOwfghs3bpwikchHXoHR0tKikpIST6saevn5+Tr33HO1c+dO30sZEh/uuzNtv0rSpEmTNG7cuBG5b2+77TY988wz+s1vfjPgY1NKSkrU3d2t1tbWAfUjdX8ebzuPpaqqSpJG3P6MRqOaMmWKZs2apbq6Os2cOVPf//73T+u+HPYBFI1GNWvWLK1bt67/vFQqpXXr1qm6utrjyoZWR0eHdu3apdLSUt9LGRIVFRUqKSkZsF8TiYQ2b948qverJO3du1cHDx4cUfs2CALddtttWrNmjV588UVVVFQMuHzWrFlKT08fsD8bGhq0e/fuEbU/T7Sdx7Jt2zZJGlH781hSqZS6urpO774c1Jc0DJHHHnssiMViwapVq4I33ngjuPnmm4P8/PygubnZ99IGzT/+4z8G69evDxobG4P/+q//CmpqaoJx48YF+/fv9720k9be3h688sorwSuvvBJICr773e8Gr7zySvDuu+8GQRAE9913X5Cfnx889dRTwfbt24MlS5YEFRUVwdGjRz2v3ObjtrO9vT346le/GmzcuDFobGwMXnjhheCiiy4KzjnnnKCzs9P30p3deuutQTweD9avXx80NTX1n44cOdJfc8sttwQTJkwIXnzxxWDLli1BdXV1UF1d7XHVdifazp07dwb33ntvsGXLlqCxsTF46qmngkmTJgXz5s3zvHKbb3zjG0F9fX3Q2NgYbN++PfjGN74RhEKh4D//8z+DIDh9+3JEBFAQBMEPf/jDYMKECUE0Gg3mzJkTbNq0yfeSBtV1110XlJaWBtFoNDjrrLOC6667Lti5c6fvZZ2S3/zmN4Gkj5yWLVsWBMEHL8X+1re+FRQXFwexWCxYsGBB0NDQ4HfRJ+HjtvPIkSPBFVdcERQWFgbp6enBxIkTg5tuumnE/fN0rO2TFDzyyCP9NUePHg2+/OUvB2PGjAmysrKCq6++OmhqavK36JNwou3cvXt3MG/evKCgoCCIxWLBlClTgn/6p38K2tra/C7c6B/+4R+CiRMnBtFoNCgsLAwWLFjQHz5BcPr2JR/HAADwYtg/BwQAGJ0IIACAFwQQAMALAggA4AUBBADwggACAHhBAAEAvCCAAABeEEAAAC8IIACAFwQQAMALAggA4MX/BymkS2UB3yfCAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 6\n", + "NN answer: 2\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки." + ], + "metadata": { + "id": "3h6VGDRrLnNC" + } + }, + { + "cell_type": "code", + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels, target_names=class_names))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "fig, ax = plt.subplots(figsize=(6, 6))\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)\n", + "disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра\n", + "plt.tight_layout() # чтобы всё влезло\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 905 + }, + "id": "od56oyyzM0nw", + "outputId": "e64128dd-7ee0-45d5-8ae9-5bb858e8c807" + }, + "execution_count": 95, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step\n", + " precision recall f1-score support\n", + "\n", + " airplane 0.86 0.86 0.86 986\n", + " automobile 0.97 0.90 0.93 971\n", + " bird 0.85 0.76 0.80 1043\n", + " cat 0.72 0.74 0.73 1037\n", + " deer 0.84 0.84 0.84 969\n", + " dog 0.74 0.79 0.77 979\n", + " frog 0.88 0.88 0.88 1025\n", + " horse 0.86 0.89 0.88 948\n", + " ship 0.92 0.93 0.93 1003\n", + " truck 0.89 0.93 0.91 1039\n", + "\n", + " accuracy 0.85 10000\n", + " macro avg 0.85 0.85 0.85 10000\n", + "weighted avg 0.85 0.85 0.85 10000\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAIvCAYAAACRJhT+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8DdJREFUeJzs3Xd4FGXXwOHf7qZueiENAiGQEHoQBEEQbKACYheFjyLSi0hHWkARRRBeEFFRmorYsbyvKBZQEYHQISGQDukhvSe7+/2xIbgkQAKZbGLOfV17wc7MzpzMbDlz5nmeURkMBgNCCCGEEAK1uQMQQgghhKgvJDESQgghhCgniZEQQgghRDlJjIQQQgghykliJIQQQghRThIjIYQQQohykhgJIYQQQpSzMHcAQgghhKhbRUVFlJSUKL4dKysrbGxsFN9ObZLESAghhGhEioqKaNnCnuRUneLb8vLyIiYmpkElR5IYCSGEEI1ISUkJyak64o744eigXIuanFw9LbrGUlJSIomREEIIIeo3ewcV9g4qxdavR7l1K0kaXwshhBBClJOKkRBCCNEI6Qx6dAreRl5n0Cu3cgVJxUgIIYQQopxUjIQQQohGSI8BPcqVjJRct5KkYiSEEEIIUU4qRkIIIUQjpEePkq2AlF27cqRiJIQQQghRTipGQgghRCOkMxjQGZRrB6TkupUkFSMhhBBCiHJSMRJCCCEaIemVVjWpGAkhhBBClJOKkRBCCNEI6TGgk4pRJVIxEkIIIYQoJ4mREEIIIUQ5uZQmhBBCNELS+LpqUjESQgghhCgnFSMhhBCiEZIBHqsmFSMhhBBCiHJSMRJCCCEaIX35Q8n1N0RSMRJCCCGEKCcVIyGEEKIR0ik8wKOS61aSVIyEEEIIIcpJxUgIIYRohHQG40PJ9TdEUjESQgghhCgnFSMhhBCiEZJeaVWTipEQQgghRDmpGAkhhBCNkB4VOlSKrr8hkoqREEIIIUQ5qRgJIYQQjZDeYHwouf6GSCpGQgghhBDlpGIkhBBCNEI6hdsYKbluJUnFSAghhBCinFSMhBBCiEZIKkZVk4qREEIIIUQ5qRgJIYQQjZDeoEJvUHAcIwXXrSSpGAkhhBBClJOKkRBCCNEISRujqknFSAghhBCinFSMhBBCiEZIhxqdgvURnWJrVpZUjIQQQgghyknFSAghhGiEDAr3SjNIrzQhhBBCiIZNKkZCCCFEIyS90qomFSMhhBBCiHJSMRJCCCEaIZ1Bjc6gYK80g2KrVpRUjIQQQgghyknFSAghhGiE9KjQK1gf0dMwS0ZSMRJCCCGEKCcVIyGEEKIRkl5pVZOKkRBCCCFEOakYCSGEEI2Q8r3SpI2REEIIIUSDJhUjIYQQohEy9kpTrh2QkutWklSMhBBCCCHKScVICCGEaIT0qNHJOEaVSMVICCGEEKKcVIyEEEKIRkh6pVVNKkZCCCGEEOWkYiSEEEI0QnrUcq+0KkjFSAghhBCinFSMhBBCiEZIZ1ChMyh4rzQF160kqRgJIYQQQpSTipEQQgjRCOkUHsdIJ22MhBBCCCEaNqkYCSGEEI2Q3qBGr+A4RnoZx0gIIYQQomGTipEQQgjRCEkbo6pJxUgIIYQQopxUjIQQQohGSI+yYw3pFVuzsqRiJIQQQghRTipGQgghRCOk/L3SGmbtpWFGLYQQQgihAKkY/Qvp9XoSExNxcHBApWqY96oRQojGzGAwkJubi4+PD2q1MjUMnUGNTsFxjJRct5IkMfoXSkxMxNfX19xhCCGEuEUXLlygWbNm5g6jUZHE6F/IwcEBgPf+aIetvcbM0VzxQRd/c4dQidrG2twhVGIo05k7hEoM+no4HomhHvZ5qYcj/dbH9zgKVUBuST2rrpcZSvm94IuK73NRdyQx+he6fPnM1l6D1qH+JEYWKktzh1CJWmVl7hAqMajKzB1CJQZV/fvBr5+dgevffqqP73FUkhhVl5LNIfSo0KPs+huievjuFEIIIYQwD6kYCSGEEI2QNL6uWsOMWgghhBBCAVIxEkIIIRoh5W8i2zBrLw0zaiGEEEIIBUjFSAghhGiE9AYVeiVvIqvgupUkFSMhhBBCmJVOp2PRokW0bNkSW1tbWrVqxcsvv4zhH2ODGQwGFi9ejLe3N7a2ttx3332cP3/eZD0ZGRkMGzYMR0dHnJ2dGTNmDHl5eTWKRRIjIYQQohHSl7cxUupRk5vIvv7662zcuJG33nqL8PBwXn/9dVauXMn69esrllm5ciXr1q3jnXfe4eDBg9jZ2TFgwACKiooqlhk2bBhnzpxhz549fP/99/z++++MGzeuRvtFLqUJIYQQQjE5OTkmz62trbG2Nh2R/a+//mLIkCEMHDgQAD8/Pz755BMOHToEGKtFa9euZeHChQwZMgSA7du34+npya5duxg6dCjh4eHs3r2bw4cP061bNwDWr1/PQw89xKpVq/Dx8alWvFIxEkIIIRohvUGt+APA19cXJyeniseKFSsqxdKrVy9++eUXzp07B8CJEyf4888/efDBBwGIiYkhOTmZ++67r+I1Tk5O9OjRgwMHDgBw4MABnJ2dK5IigPvuuw+1Ws3BgwervV8aXcUoNjaWli1bcuzYMYKDg29pXaNGjSIrK4tdu3bVSmx1Qa+D0HWunPvWgYI0DXYeOto8lkPXyZlVjoi/b1ETwnY60eulNDqPzq40X1cMXz7hy6Wz1jz5TTzu7UoUibtDjzyenJRGQMcC3LzKCHnOjwO7nRTZVlWempjAnQMyaeZfSEmRmrCjDmx+3ZeEGFuT5YK65DJy5kWCgvPQ6yAq3I6FI4MoKVbmHKRD91yemJBi3C+epSx9vhUHfnIGQGNhYOTsBG6/Oxvv5iXk52o49qcDm19rSkZK3d0mQq02MHxGEvc+loGLRymXki3Z87kbO/7jBWa6ZcDwGUn838wUk2kXIq15vm9bs8QDMGhEOgNHXMLT1/gZiouw4eM1noT+5lgn26/ue9zIwLLNEdzeL5tl4wM4sMdVkZgGPpvMwGdT8GxWDEDceVt2rG9G6O8uAFha6Rn7Uix9B17C0krPkT+c2bCkJVmXlHt/D3w2mYHPJJvG9JZvRUxTX46iS68sXD1KKSoo349vtOBitFaxmOq7Cxcu4Oh45X18dbUIYN68eeTk5BAUFIRGo0Gn07F8+XKGDRsGQHJyMgCenp4mr/P09KyYl5ycjIeHh8l8CwsLXF1dK5apjkaXGPn6+pKUlIS7u7u5QzGLY++5cOYTJ+55PQWXgBLSTlnz23xPrBz0dBppmvhE/2RHynEb7Dyvfe+uAyvdsfMs49JZZW9UaaPVE33Ghh8/cWXJ5lhFt1WVjt1z+e5DT86dtEOjMTBq9kWWbz/L+P6dKC403o8uqEsur2yN4NONPmxc2gJdmQr/tgWK3lfURqsnJsyWnz51Y/GmaJN51rZ6WncoYMc6b2LCtNg7lTEh5AIhH0QxbVDdJQBPTUph0Ig0Vk33I+6cDQGdC5i5Oo78XA3fbPa48QoUEnvWhnlDW1U815WZtwdNWpIlm1/1JiHGGpUK7n8yg5AtsUzuH0jcORvFt1+d9/hljzxX/R+ZW5GebMWWN5qTEGuDSgX3PZbG4ncimDKkE/HntYxfEMvtd2fy6tRA8nM1TAqJYeHb55j1dAdlY1rV4kpMj6ayeONZpgzpTHyklsjTdvz2rTupidY4OJUxfNoFlm8JY/TdXdHr61cvLR0qdAqenFxet6Ojo0liVJXPPvuMjz/+mB07dtC+fXuOHz/O9OnT8fHxYeTIkYrFWJVGlxhpNBq8vLyuOd9gMKDT6bCw+HfumpSjNvjdm0+LuwsAcGxWxvnvC0g9aQNcSYzykjX8uawJg7Yk8r+x3lWuK26flgt/ahnwVhLx++wUjTv0N8c6O3OuyqLRQSbP35ztz87QowR0yOf0YWNc4xfG8c1WTz5/58p17KrPtmtP6F4nQvdWXTkryNXw0rBAk2lvL2rOuu/P0sSnhLTEuqkateuWx4GfnDn0qzHOlIvW3D0kkzbB+XWy/WvR6SAzrf7c2PjgHtPjuPV1bwaNuERQ1/w6SYyq8x4H8G+bz+Njkpg2pAM7Dh1TNKaDv5pWora92ZyBzyYTFJxLepIV/Z9MZeWMAE78bdx3b85tzaafjhMUnMvZ48rclb5STGtaMPDZFIKCc4mP1PLDp1d+X1ITYNua5mz8/gSezYpJilf+ODZUs2fPZt68eQwdOhSAjh07EhcXx4oVKxg5cmTF73ZKSgre3ld+k1JSUiqu/nh5eZGammqy3rKyMjIyMq77u3+1f2Ubo927d9O7d2+cnZ1xc3Nj0KBBREVFAcZLaSqViuPHjwOwd+9eVCoVP/zwA127dsXa2po///yTkJAQgoODeffdd/H19UWr1fLUU0+RnV35clJ1tvvPbX/11VfcfffdaLVaOnfuXHF99LI///yTPn36YGtri6+vL9OmTSM/v3Z+RDxvKyLhgC1ZMcYfhPRwK5KP2ND8rivrN+jhl9meBD+fiWtA1ZfGCtI17Fvgwb2rUrCwrX93FFea1kEHQG62MYF2cislqEs+2ZcsWf35GXYcOsLKT8Jo3y3XnGFWYueoQ6+H/BzNjReuJWGh9gTfmUvTlsaeI/5tC2h/ex6Hf6u7S6FVadqyhB1HTrP1rzDmro+jiY8yl4FvhlptoO+QTKy1esJDlT3puJar3+MA1jY65q6NZMMSPzLT6+5yLJTvk4Hp2Gj1nD3mQECHfCytDBzbf+V9dDHalpQEK4K61M3n7kpMuioTMWtbHf0fTyXpgjVpSXW7v6qjrtoYVUdBQQFqtenyGo0GvV4PQMuWLfHy8uKXX36pmJ+Tk8PBgwfp2bMnAD179iQrK4sjR45ULPPrr7+i1+vp0aNHtWP5V5ZF8vPzmTFjBp06dSIvL4/Fixfz6KOPViRDVZk3bx6rVq3C398fFxcX9u7dS2RkJJ999hnfffcdOTk5jBkzhkmTJvHxxx/XeLv/POALFixg1apVBAQEsGDBAp555hkiIyOxsLAgKiqKBx54gFdeeYXNmzeTlpbGlClTmDJlClu2bKlyu8XFxRQXF1c8v7oHwD/dNj6T0jw1nwxojlpjbHPUY0YGgUOujPNw7D0X1BroOLLqJNBggF/netD+mWw8OhaTc/Ff+Ta6JpXKwPhFcZwJtSfunLHdgLev8Ud/2AsJvL+iOdFhWu59LJ0VH4Yz4cFOJMaa/0zR0lrPc/MT2PuNKwV5dZcYfbrBE62Djvf3haHXgVoDW1/34bevlWmXUh1nj9mx6kVbLkZZ4+pRyvAZyaz++jzj7wmiML/u9s3V/IIKWftdJFbWegrz1Swb40f8+bp/71T1HgcYtzCesKMO/P1z3R07v8B83vz8tHGfFGh4eWIb4iO1+LdNo7RERX6u6fdPVrolru6lysf02akrMU0KIj7yyn4a+GwSY+bEYWun50KULQtGtaes9F9Zh6g1gwcPZvny5TRv3pz27dtz7Ngx3nzzTZ577jkAVCoV06dP55VXXiEgIICWLVuyaNEifHx8eOSRRwBo27YtDzzwAGPHjuWdd96htLSUKVOmMHTo0Gr3SIN/aWL0+OOPmzzfvHkzTZo0ISwsDHt7+ypfs2zZMu6//36TaUVFRWzfvp2mTZsCxm5/AwcOZPXq1VWW5a633Q4drlzznjVrVkWXxKVLl9K+fXsiIyMJCgpixYoVDBs2jOnTpwMQEBDAunXr6Nu3Lxs3bsTGpvKX5IoVK1i6dOkN9opR5P/sOfetPfe9mYJrQAnp4dbsX+6O1qOMoMdySTttzcltTjy560KVjbEBTm13ojRfTZcJmdXa5r/N5GWx+AUWMOupdhXTVOXfef/7xIM9XzQBICrMjuBe2fR/MpWtbzQ3R6gVNBYGFrwdjQoDby2o21juGpzJPY9m8NoUP+LO2dKqfQETQi5yKcWSn79wq9NYLvvnZdmYcFvOHtPy4cEw7hqcxY87zRMTwMUoaybdH4jWQUefQdnM+k88sx9rXefJUVXv8R73ZtK5VzZTBnWs01guxtgy+eFO2Nnr6P3gJWa+EcmcZ9vXaQxVx9QZOwcdvR+4xMyV55kzrENFcvTbt004tt8ZV48SHh+TyPz/RDDz6Y6UltSv5EgHCrcxqr7169ezaNEiJk2aRGpqKj4+PowfP57FixdXLDNnzhzy8/MZN24cWVlZ9O7dm927d5v8Ln788cdMmTKFe++9F7VazeOPP866detqFPe/MjE6f/48ixcv5uDBg6Snp1eU4uLj42nXrl2Vr/ln977LmjdvXpEUgbFMp9friYiIqDIxut52/5kYderUqeL/l6+VpqamEhQUxIkTJzh58qRJVcpgMKDX64mJiaFt28qNZufPn8+MGTMqnufk5ODr61vl33ngdTduG59FwCBjhcitTQl5CRYce9eFoMdySTxsQ+ElDR/29buyfZ2KA6+5c2qbM8P3xpHwty0px2x4r30rk3V/8ZgvAQ/ncu9K02u8/yYTQ2LpfncWs4e2JT35SoPzjFTjpcn486ZtiuIjbfEw8yUajYWBl96OxqNpCXOHBtZptQhg7MIEPt3gxb5vjVWG2LO2eDQtYeiUZLMlRlfLz7HgYrQ1Pn7FN15YQWWlahJjje+ryFNa2gQX8MjzaaybW/XnWQnXeo8H98rBu3kxXxwPNVl+wdvnOXPYgbnPVv3deqvKStUkxRk/V5Fn7AnsmM+QkUn8/l93LK0M2DmUmVSNnN1LyUhXtu1YWamapPh/xpTHkJFJrF9k/E4syLOgIM+CxDhbzh534PPQQ/Tqf4l93zdRNK6GzMHBgbVr17J27dprLqNSqVi2bBnLli275jKurq7s2LHjlmL5VyZGgwcPpkWLFmzatAkfHx/0ej0dOnSgpOTaP1B2drd+Hb+627W0vPKhVZWXZS4nUXl5eYwfP55p06ZVWn/z5lWf6Vc1WNa1lBWpQWXaJkilMbYrAmjzSC7N7iw0mf/f53wIHJJLm8eNl+h6L0qn+4sZFfMLUjR8/1xT7l+bjGfnIv6dDEwMiaNX/wzmPtuOlIumZ/ApF61JT7akmb/pvmvWsojD+5zrME5Tl5Oipi2LmPt0ILlZdf+Rt7bVV7y/LtPrVBVVtvrARqvDp0UJv3xZfxpjA6hUYGlVV234rv8e/2yjN7s/Nf1hf2f3Kd57pQUHf3GuoxhBpTZgaWXg/Gk7SktUBPfKZv+PxgS7actCPJuWcPaYMg2vrx+Tvup5KqBOj2P11bQd0M2svyH61yVGly5dIiIigk2bNtGnTx/A2Jj5ZsTHx5OYmFhxbfLvv/9GrVbTpk0bxbZ72223ERYWRuvWrW8q5hvxuzufoxtdcfApwyWghPQwa05sdiboCWPSY+Oix8bFNJFTWxiwdS/Dxd943d7Bx7T7vqW2vAFy81LsvWtSPK0+G60On5ZX4vLyLcG/fSG5WRrSEpRv1Dh5WSz9Hr7EsnGBFOapcXE3xpKfa1E+RpGKLzd5M3x6AjFntUSF2XHfY2k0a1XI8skBisVlo9WZVDm8fIvxb1dAbpYFGamWLHwnitYdClg8ujVqDbg0MR7D3CxNnbV5+HuPE0OnJZOaYEXcORtadSjksXGp/PSp+apFYxcl8PceJ1IvWuLmVcb/zUxCp4e9u1zMFtPo+Ukc/tWBtAQrbO113P1oFp165bHgWf862f6N3uOZ6VZVNrhOS7SqlETVllGz4gjd50JqohVaOx39Hk6nU48cFo5uS0GeBT997sHYl2LJzbagIFfDxCUxhB21V6xHGsComXGE/u5MaqK1MabB5TE91w4v3yLueiido386k51hibtXMU+NT6CkSM3hvc6KxSRq178uMXJxccHNzY333nsPb29v4uPjmTdv3k2ty8bGhpEjR7Jq1SpycnKYNm0aTz31VJWX0Wpru3PnzuWOO+5gypQpPP/889jZ2REWFsaePXt46623burv+Kfei9M4tNaN30OaUHjJOMBju6HZdJuSceMXm1Fg50Le+PJKD78JSxMB+OlTF1a/qHybmUHDjZcHV+4MN5m+erY/P39pPIvetcUbS2sD4xbE4+BcRnS4lgUj2iraRTewUwErPztX8Xz8kosA7PncjY/WeNOzv7EB/cYfTeOe81QgJ/+um7Pqtxf5MnJ2IlNevYCzu3GAx/995M7Ha6vffba2uXuXMn9DLA4uOrIzLDhzyI7pgwPJzjDfV6Kzexmz18Xj6lFGQa6GmHAbFjzrz9Hf6+Y4Vec9Xtec3UqZ9UYkrh7GAUpjztqxcHRbju13BuDd5X7oDbDwrQgsrQwVAzwqHtPKq2J6rl1Fm6IO3XJ4ZFQS9o5lZF2y5PRhR2Y83ZHsjPrXK01nUKNTsKqj5LqV9K9LjNRqNTt37mTatGl06NCBNm3asG7dOvr161fjdbVu3ZrHHnuMhx56iIyMDAYNGsTbb7+t6HY7derEvn37WLBgAX369MFgMNCqVSuefvrpGsdfFSt7A70XptN7YXq1XzN8b9x15zs2K2Pi+chbDe26Th6wZ4BPZ0W3cT0P+levq+fn7/iYjGOktJN/O/BA867XnH+9eXWlMF/DOyG+vBNSd+1kbmTFJD9zh1DJmpnm3T/VfY/f6mtqYu3861fOS0vUvB3iz9shdVNVA1j70rVjyki1YvFYZdpaibqjMhiUHJe34QoJCWHXrl3X7eJfX+Xk5ODk5MSHxzqidTBf1+OrbQxQ5vLgrVBX0cvP3Axl1x5p3FwM+nr4NXF1w6X6oB5+ndbH9zjqelhJuFY3XDMpM5Twa/4nZGdn33DU6Jq6/Bsx78CDWNsr166uOK+U13r+oMjfoKR6+O4UQgghhDCPf92lNCGEEELcmLQxqlrDjLoOhISENMjLaEIIIYS4eVIxEkIIIRohvUGF3qBc2yol160kqRgJIYQQQpSTipEQQgjRCOlQo1OwPqLkupXUMKMWQgghhFCAVIyEEEKIRkjaGFVNKkZCCCGEEOWkYiSEEEI0QnrU6BWsjyi5biU1zKiFEEIIIRQgFaN/sQ9ua4WFSrn74NTU4ugj5g6hkmX+t5k7hMrq2T2bgHp5D7B6SV1/7k14mb6oyNwhVKKyqH8/PWpnJ3OHYEKlV0O+stvQGVToFGwHpOS6lSQVIyGEEEKIcvUvbRdCCCGE4qRXWtWkYiSEEEIIUU4qRkIIIUQjZDCo0RuUq48YFFy3khpm1EIIIYQQCpCKkRBCCNEI6VChQ8FeaQquW0lSMRJCCCGEKCcVIyGEEKIR0huU7Tmmb6DDn0nFSAghhBCinFSMhBBCiEZIr3CvNCXXraSGGbUQQgghhAKkYiSEEEI0QnpU6BXsOabkupUkFSMhhBBCiHJSMapFW7duZfr06WRlZV1zmZCQEHbt2sXx48cBGDVqFFlZWezatatOYqyO4TOS+L+ZKSbTLkRa83zftopsT6+Dff/x5tQuV/LSLHHwLKXz45foMyW54kbzy/xvq/K19827SK9xqQD8p097shOsTebfMzuB3hNTqnrpLXt6Sgp3PpSNb+tiSorUhIVq+WC5NxejbBTZXnW5eZUw5qUkbr8nB2sbPYmx1qye0ZzzJ7Vmiac+7qdBI9IZOOISnr4lAMRF2PDxGk9Cf3M0W0xqtYHhM5K497EMXDxKuZRsyZ7P3djxHy8w05l3fTh2Hbrn8sSEFAI6FuDmWcrS51tx4CdnADQWBkbOTuD2u7Pxbl5Cfq6GY386sPm1pmSkWCkSz7CJ0QybGGsy7UKMlvFD7qh4HtQpm5HTomjTMQe9TkV0hD0LJwRTUqxRJKabpTOo0CnYK03JdSupQSdG1UlE6ptZs2YxdepUc4dxQ7FnbZg3tFXFc12Zcm/w/e94EvpxE4a8EYtHYBGJJ7V8O7cF1g46eoxKA2DGwZMmr4nc68i381rQ9oEsk+n9XkzktqHpFc+t7PSKxd2pZz7fbXXn3HEtGgsDo+Yl8eon0Yzt24biQvN8Ado7lfHmrvOc/MuBhcP9ybpkQdOWxeRlm+8LuT7up7QkSza/6k1CjDUqFdz/ZAYhW2KZ3D+QuHPmSdiempTCoBFprJruR9w5GwI6FzBzdRz5uRq+2exhlpjqw7Gz0eqJCbPlp0/dWLwp2mSeta2e1h0K2LHOm5gwLfZOZUwIuUDIB1FMG6TMiRxAbKQdC8YGVzzX6a58PwZ1yubljcf57IMWbFwRiE6nwj8wD72+YSYJjVGDTowaInt7e+zt7c0dxg3pdJCZZlkn27p41J4292UReE8OAM7NSjj9nQuJJ+wAY2Jk36TM5DURPzvjd0cuLs1LTKZb2ekqLauUBcP8TZ6vnt6cz06fIaBTIacPmucYPzUplfREK1bPaF4xLeWC9XVeobz6uJ8O7nEyeb71dW8GjbhEUNd8syVG7brlceAnZw79aowt5aI1dw/JpE1wvlnigfpx7EL3OhG616nKeQW5Gl4aFmgy7e1FzVn3/Vma+JSQlqhM1UhXpiLzUtWfq3FzzvPtDl8+3+xXMS0h1k6ROG6V9Eqrmlmj3r17N71798bZ2Rk3NzcGDRpEVFQUAHv37kWlUplUg44fP45KpSI2Npa9e/cyevRosrOzUalUqFQqQkJCAMjMzGTEiBG4uLig1Wp58MEHOX/+fMV6tm7dirOzM99//z1t2rRBq9XyxBNPUFBQwLZt2/Dz88PFxYVp06ah0+kqXnej9V62a9cuAgICsLGxYcCAAVy4cKFiXkhICMHBwdfcJ3q9nhUrVtCyZUtsbW3p3LkzX3zxxU3u4ZvXtGUJO46cZutfYcxdH0cTn5Ibv+gmNbstj5i/HLgUbfyiSQ635UKoPa37Zle5fF6aBed/c6LLU5cqzdv/jhdv3NaJ9wYF8dd7HujrJkcCwM7R+F7JzTJfdeaO/tmcO6llwbsxfHriNBt+jODBZyvvJ3OqD/vpn9RqA32HZGKt1RMear4fsLBQe4LvzKVpyyIA/NsW0P72PA7/VnVSYA717dhVxc5Rh14P+TnKxdi0RQEf/vwnH/zvL2avOEMTL+Mxc3ItIahTDlkZlqzaHsrHv/3B65uP0q5LlmKxiNpn1opRfn4+M2bMoFOnTuTl5bF48WIeffTRivY319OrVy/Wrl3L4sWLiYiIAKioxIwaNYrz58/z7bff4ujoyNy5c3nooYcICwvD0tJYBSkoKGDdunXs3LmT3NxcHnvsMR599FGcnZ353//+R3R0NI8//jh33nknTz/9dI3Wu3z5crZv346VlRWTJk1i6NCh7N+/v1r7ZMWKFXz00Ue88847BAQE8PvvvzN8+HCaNGlC3759q3xNcXExxcXFFc9zcnKqta1rOXvMjlUv2nIxyhpXj1KGz0hm9dfnGX9PEIX5tf9l03tiCsV5Gjbc3w61xtjm6J6ZiXR8JLPK5U985YaVna7SZbTuI9Pw7lCArZOOC0ft+PUNH3JTLRmwMKHWY76aSmVgwtIETh/SEhdhq/j2rsW7eQmD/i+drzY1Yec6TwKDC5i47CKlpSp+/tzVbHFdVl/2E4BfUCFrv4vEylpPYb6aZWP8iD9vvnZPn27wROug4/19Yeh1oNbA1td9+O1r8x83qF/H7losrfU8Nz+Bvd+4UpCnTGIUccqJNxe242KsFtcmxTw7IYY3th5h4mM98GpWCMCwiTF8sLo1UREO3Ds4mRWbjjHxsR4kxpunnd+16FEpO/J1A+2VZtbE6PHHHzd5vnnzZpo0aUJYWNgNX2tlZYWTkxMqlQovL6+K6ZcTl/3799OrVy8APv74Y3x9fdm1axdPPvkkAKWlpWzcuJFWrYztaJ544gk+/PBDUlJSsLe3p127dtx999389ttvPP300zVa71tvvUWPHj0A2LZtG23btuXQoUN07979un9TcXExr776Kj///DM9e/YEwN/fnz///JN33333monRihUrWLp06Q33WXX9swFqTLgtZ49p+fBgGHcNzuLHnW61tp3LzvzXhdPfuvLY2liaBBSSEq7lx5eblTfCzqi0/PHP3eg4JAMLa9Px5ns+n1rxf8+2hWgsDfx3YXPunZ1YadnaNuXVBFoEFTHzkdaKbudGVGo4f9KWLa/5ABB1RotfmyIG/l96vUiM6st+ArgYZc2k+wPROujoMyibWf+JZ/Zjrc2WHN01OJN7Hs3gtSl+xJ2zpVX7AiaEXORSiiU/f1H7n7uaqk/HrioaCwML3o5GhYG3FjS/8QtuUuifV45F7Hl7Ik45snX3X/QZkMqFaGPF8YcvmrLnG+NnMPqsA8E9Muj/SBJb17Wqcp2ifjHrpbTz58/zzDPP4O/vj6OjI35+fgDEx8ff9DrDw8OxsLCoSEwA3NzcaNOmDeHh4RXTtFptRVIE4OnpiZ+fn0n7H09PT1JTU2u0XgsLC26//faK50FBQTg7O5sscy2RkZEUFBRw//33V7RFsre3Z/v27RWXGKsyf/58srOzKx7/vHRXG/JzLLgYbY2PX/GNF74JP7/WlDvHJ9NhcCaeQUV0ejSDHs+l8udGr0rLxh2y41K0DV2evvHloabB+ejLVGQlKNPO4LLJyy/S4/4c5jzRivQkZbd1IxmpFpXayFyItMHDp9RMEV1Rn/YTQFmpmsRYayJPadmywpuYMFseeT7NbPGMXZjApxu82PetK7FnbfnlSze+2uTB0CnJZovpsvp27K6msTDw0tvReDQtYf6wQMWqRVXJz7UkIU6Lj28hGenGfRMfZXpJ9kK0HU28i+ospuoylI9jpNTDIBWjmhs8eDAtWrRg06ZN+Pj4oNfr6dChAyUlJRUJisFw5Uy/tLT2vtwvX/q6TKVSVTlNr1euV9PV8vLyAPjvf/9L06ZNTeZZW1+7Aa21tfV1598qG60OnxYl/PKlMo2xSwvVqK5K0dVqA4Yqdv3xz93x7pCPV9vCG643JcwWldqAnZtSDY0MTF6eQK8Hspn9RGuzN3IGCDtsh28r0wS2qX8xqQl105C+avVvP1VFpQJLK/Pd9dLaVl/pPa/XqSp9NupW/T92l5Oipi2LmPt0ILlZdfuzZmNbhrdvIb9+b0VKgg3pKVY08yswWaZpiwJC95u/6ieqx2yJ0aVLl4iIiGDTpk306dMHgD///LNifpMmTQBISkrCxcUFoFLbIysrK5PG0QBt27alrKyMgwcPVlzyurytdu3a3XS81V1vWVkZoaGhFZfNIiIiyMrKom3bG3cdbdeuHdbW1sTHx1/zslldGLsogb/3OJF60RI3rzL+b2YSOj3s3eWiyPYC783mj7e9cPQpwSOwiOQztvy92YPgJ0yrQsW5asL+58z9L1VuM3ThqB0Jx7X49czD2k7HxaN2/Li8GR0fycDWSVdp+dow5dUE7n40k5DRLSnMU+PSxJi45+dqKCkyz6/ZV5s8WPPNOYZOTeH375xpE1zAQ8MusXZOM7PEA/VzP42en8ThXx1IS7DC1l7H3Y9m0alXHgue9b/xixXy9x4nhk5LJjXBirhzNrTqUMhj41L56VPz/aDWh2Nno9WZVKu9fIvxb1dAbpYFGamWLHwnitYdClg8ujVqDRUx5mZpKCut/RjHzDzPwb3upCbZ4NakhOGTotHrVOz9wRNQ8eW2FgyfGE30OXuiz9pz38PJNGtZwPKZHWo9llulNyjcxkjGMaoZFxcX3NzceO+99/D29iY+Pp558+ZVzG/dujW+vr6EhISwfPlyzp07x+rVq03W4efnR15eHr/88gudO3dGq9USEBDAkCFDGDt2LO+++y4ODg7MmzePpk2bMmTIkJuOt7rrtbS0ZOrUqaxbtw4LCwumTJnCHXfcccP2RQAODg7MmjWLF198Eb1eT+/evcnOzmb//v04OjoycuTIm46/Jty9S5m/IRYHFx3ZGRacOWTH9MGBZGco83Z5YMkF9r7pww+Lfcm/ZBzg8bZn0uk71fQSwunvXTAYVHQYXLndkYWVnjPfu7LvP97oStQ4+xZzx+hU7hiTWmnZ2jJ4lDFxW/WV6WXOVdN92fOZedrznDuhZdnzLRk9L4lh05NJvmDFO0uamrUBb33cT87uZcxeF4+rRxkFuRpiwm1Y8Kw/R393MEs8AG8v8mXk7ESmvHoBZ3fjAI//+8idj9dWvqRcV+rDsQvsVMDKz85VPB+/5CIAez5346M13vTsb+y9uvFH0+YKc54K5OTftX883T2Kmfv6GRydS8nOtOLMUSdeHN6VnEzjZbRvPvLFykrHuNnncXAqJTrCngXjg0m+WL8aXotrM1tipFar2blzJ9OmTaNDhw60adOGdevW0a9fP8CYYHzyySdMnDiRTp06cfvtt/PKK69UNHIGY8+0CRMm8PTTT3Pp0iWWLFlCSEgIW7Zs4YUXXmDQoEGUlJRw11138b///a/SpbKaqs56tVotc+fO5dlnnyUhIYE+ffrwwQcfVHsbL7/8Mk2aNGHFihVER0fj7OzMbbfdxksvvXRLsdfEikl+dbYtAGt7PQMWX2TA4ovXXa7rM5fo+kzVbYu8OxQy5qsIJcK7pgE+net0e9V18GcnDv5cf7p418f9tGamr7lDqKQwX8M7Ib68E1J/YqsPx+7k3w480LzrNedfb54SXp9748rP55v9TMYxqq9kHKOqqQz/bMQj/hVycnJwcnKin+oRLFTmbFtianHUEXOHUMm1bjViVqp6WH6Wr4nqUdfD8X30ylxKvhUqi/o3trDauf6cTACU6Uv45dIWsrOzcXSs3VvVXP6NeHTPaCztlGtMX5pfwtf3K/M3KKn+vTuFEEIIoThpY1S1hlnnEkIIIYRQgCRGQgghhBDl5FKaEEII0QhdHohRyfU3RFIxEkIIIYQoJxUjIYQQohGSxtdVk4qREEIIIUQ5qRgJIYQQjZBUjKomFSMhhBBCiHJSMRJCCCEaIakYVU0qRkIIIYQQ5aRi9C+mcXFGo1buPjg1VR/vSzbgdI65Q6jk59715yai9Zq+/t2/zaCrf/clox7GpC8pNXcIlegysswdggmdQfl9JBWjqknFSAghhBCinFSMhBBCiEbIgLKjU9e/mm71SMVICCGEEKKcVIyEEEKIRkjaGFVNKkZCCCGEEOWkYiSEEEI0QlIxqppUjIQQQgghyknFSAghhGiEpGJUNakYCSGEEEKUk4qREEII0QhJxahqUjESQgghhCgnFSMhhBCiETIYVBgUrOoouW4lScVICCGEEKKcVIxqSb9+/QgODmbt2rVVzvfz82P69OlMnz69RusNCQlh165dHD9+/JZjvJZhE2MYNinWZNqFGC3jH+6BvWMpwyfHcFvPDJp4F5OdacmBX9358C1/CvLq7u3ToUceT05KI6BjAW5eZYQ858eB3U6KbW9ff3uKEiufN/gOLaHdwiIK4lVErLIh85gGfYkK995ltJ1fhLV75bsD6Uvg72fsyI3Q0POLPByD9IrE/OTz8YyeEcuu7U1577VW2DuVMnxKHLf1yrxy7H5x48N1fnV27OpDTA8NTWTgM0l4Ni0GIC5SyycbmhP6hysALu4ljJkdQ3CvTLR2Oi7G2PLpu83Z/5O7IvEADHw2mYHPJOPZrDym87bseMuX0N9dsHcq5f+mXeC23lk08SkhO8OCAz+7sn1Nc0WP21MTE7hzQCbN/AspKVITdtSBza/7khBjW8XSBpZtjuD2ftksGx/AgT2uisXVoUcuT05IIaBjIW5epYSM8efAj84msYyYlcQDz6Rj76Qj7LA9617yJTHGRrGYrqZWGxg+I4l7H8vAxaOUS8mW7PncjR3/8QIF70V2q/SoFL1XmpLrVpIkRnXk8OHD2NnZmTuMa4o9b8eCsZ0rnut0xje0m0cxbk1KeH91a+Kj7PD0KWLKogjcmpTw6swOdRafjVZP9BkbfvzElSWbYxXfXs+d+Rj+kb/knVcTOtYOr/6llBVA6Dg7HNrouP2DAgAi37Lm6BQtd+zIR3VVPhWx2hprDz25ERrF4g3okMuDTyURffbKe8ytSYnx2L3hT3yU1njslkQaj92L7RSLpb7FlJ5izZbVLUmMs0WlMnDvI6ks2hDG1Me6EB9px8zXI7BzKGPZpPbkZFrQb1Aa89aE88ITXYgOt1cmpmQrtqxqQUKsDSoV3PdoKos3nmXKkM6oVAZcPUt4/3U/4iO1ePgUM2VZFG4eJSyfGqRIPAAdu+fy3YeenDtph0ZjYNTsiyzffpbx/TtRXGj63n3kuWTF4riajVZPdJiWHz91Z8n70ZXmPzUphSGj01j1YguSL1gxclYSr34Uydh72lFaXDcXRZ6alMKgEWmsmu5H3DkbAjoXMHN1HPm5Gr7Z7FEnMYjaI4lRHWnSpMl155eWlmJpaVlH0VSm06nIvGRdaXpcpD3LZ1xJgJIv2rJtvT+zV4Sh1ujR6+rmiyf0N0dCf3Osk20BWLmaVn6i37fA1lePy+06Lv2loTBRRa8vCrEo/93ssLyQX3s5kHFQg1tPXcXr0v6w4NJfFgSvLST9D2WOr41Wx5yVZ1m3JJCh4+MrpsdF2rF8+pVkI/mCLdv+48fs18+i1hjQ65Q7m6tPMR36zc3k+fa1fgwcmkRQ51ziI+1oG5zDhqWtOXfKAYCd7zTnkVEJBLTPUywxOviraYVl25oWDHw2haDgXH76wpPlU64kQEnxNmx7szlzVp9X9LgtGm2adL0525+doUcJ6JDP6cNXPnv+bfN5fEwS04Z0YMehY4rE8k+hvzkR+tu1qsMGHhmTyifrvDjwkzMAK6f78emxk/QakMW+b5WrZP1Tu255HPjJmUO/GuNMuWjN3UMyaROcXyfbv1nSK61q0saoFpWVlTFlyhScnJxwd3dn0aJFGAzGH1g/Pz+Ty2wqlYqNGzfy8MMPY2dnx/LlywF47bXX8PT0xMHBgTFjxlBUVFQnsTdtXsCHv+zngx8OMPu1MJp4XXu7dvZlFORZ1FlSZG76Ukj63pJmj5agUoG+VIVKBWqrK8torEGlhsyjV841itNVnAmxoeOKQjQ2lS+x1ZZJC89zaJ8rxw+43HDZK8dO2S+s+hgTGC953PVQKjZaHeHHjYlQ+HFH7nooHXunUlQq43wrKz0nDyl3qfbqmPoOTMdGq+NseUxXs3PQUZCnqZN9dJnWwZjg52ZfeU9b2+iYuzaSDUv8yEy3utZL64xX8xLcPMs4+seV/VaQq+HscTvadq27pCQs1J7gO3Np2tL4venftoD2t+dx+JoJnajPpGJUi7Zt28aYMWM4dOgQoaGhjBs3jubNmzN27Ngqlw8JCeG1115j7dq1WFhY8NlnnxESEsKGDRvo3bs3H374IevWrcPf3/+62y0uLqa4uLjieU5OTo3ijjjlyJuL2nIxVourezHPTozljW1HmfhodwoLTN8ijs4lPDM+lh++8KnRNhqy1F8sKMtV4fNIKQDOnXRobCHiTWsCXyjGYIDza20w6FQUpxt/uAwGOL3QFt+nSnDqoKcwQZkftLseTKV1uzxeeOq2Gy7r6FzKMxPj+eFzL0Viqc8x+QXms/qT41hZ6yks0PDylHZciDJe4lsxvS3z1oTz2cG/KStVUVyk5uWp7UiKr6ptTe3G9OZnp67ENCmI+EhtpeUcXUp5ZvIFftjpqWg8/6RSGRi/KI4zofbEnbsS07iF8YQddeDvn+umEnMjrk2Mn8msdNNqbFaaRcW8uvDpBk+0Djre3xeGXgdqDWx93Yffvq4f++lapFda1SQxqkW+vr6sWbMGlUpFmzZtOHXqFGvWrLlmYvTss88yevToiudDhw5lzJgxjBkzBoBXXnmFn3/++YZVoxUrVrB06dKbjjv0zyuXGmLP2RNxypGtPx6gz4BUfvr6SgJka1fG0g0niY+24+ONfje9vYbm4ldWuPcuw8bDWPWxcjXQeXUBYS/bEv+xFSo1eD1YimM7Hary74H4j60oywf/50sUi8vdq4jx86NY8HxHSkuuX72ztStj6TuniY/S8vGGFo0qJoCLMbZMefQ27BzK6D0gnZmvRTDn/zpxIcqO/3shFnsHHfNHdSAn05Ke911i/ppw5gzvTOw55doFXoyxZfLDnbFz0NH7gUvMXHmeOcM6mCRHWvsylm4KJz5Sy0frfRWL5WqTl8XiF1jArKeuXPbscW8mnXtlM2VQxzqLo6G4a3Am9zyawWtT/Ig7Z0ur9gVMCLnIpRRLfv7C7cYrEPWKJEa16I477kClupIh9+zZk9WrV6PT6apcvlu3bibPw8PDmTBhgsm0nj178ttvv113u/Pnz2fGjBkVz3NycvD1vfkv0fxcSxLitPg0L6yYZqst4+V3TlBQYMHLL3RAV9Y4LqMVJqq49LeGLmsLTaa736njrt15lGSqUGkMWDrCb33t8XrA2GI745CGrBMa9txmemnk76ft8B5YSsdXb/0SaUD7PFzcS1n/xdGKaRoL6NAtm8HPJjAkuA96vcp47N47TUG+hpentlf02NXHmADKStUVFaDIMw4EdMhjyIhEvni/GQ8PT2LCoNuIjzQmQTER9rTvmsOgZxN5KySgjmKyJ7BjHkNGJrF+USsAbO10vPxBOIV5xmpSXX3mJobE0v3uLGYPbUt68pV2h8G9cvBuXswXx0NNll/w9nnOHHZg7rPKN+i/WkaasVLk7F5KRuqVqpFzkzKizihb8funsQsT+HSDV0Wbptiztng0LWHolOR6nRhJG6OqSWJkRrXVS83a2hpr68oNp2+WjW0Z3r6F/Pqd8fKGrV0Zr7x7gtISNcumdqS0RLneVfVNwtdWWLkacL+rrMr5Vi7GKtKlgxpKMlR43G1cLmh+Ea2nXvlSKE5VcWS8HZ1WFeLcsepEuaaOH3Bm4sNdTaa9uDyCizFaPn/f15iA2JXxyqZTxmM3uf0Nqzj/xpiqolYbsLTSY2NrTGQNetMvcL2eSr0LlaYqjwmMlaJXNodRWqJm6YSgOtpHBiaGxNGrfwZzn21HykXT7u6fbfRm96emnUje2X2K915pwcFfnOsgvsqS4624lGJBl965RIcZK21aex1Bwfl8v1254RauZm2rN+nFCqDXqer8PSRqhyRGtejgwYMmz//++28CAgLQaKqXSLRt25aDBw8yYsQIk3UobczMSA7ucyM10Qa3JiUMnxyDXqdi7w8e2NqVsfzdE1jb6nhjXju0dmVo7Yw//tmZVuj1dXNGYKPV4dPyymUpL98S/NsXkpulIS1BmUagBj0k7LKk6ZBS1Fd9UhK+tsTOX4+Vi56sExacfc2aFiNKsGtp/Ha09TYAVxpcW2iN+0nrq8fGq3YaYhcWWBAXaRpYUaGGnCxL4iLtjMfu/VNY2+h5Y24QWnsdWntjUpadYanIsauPMY2aEUPo766kJlmjtdPRb1AqHbtns+j5DlyItiUh1oapS8/z/kp/crIs6HnfJbr0yiJkQvtaj6UipplxhP7uTGpieUyD0+nUI4eFz7VDa1/G8i1hxn00K7BO9hEYL5/1e/gSy8YFUpinxsXd+HnLz7WgpFhNZrpVlQ2u0xKtKiVRtclGq8PH70obSi/fYvzbFZCbZUFaohW7PvDgmWnJJMRYk3zBmpGzErmUYslfJmMdKevvPU4MnZZMaoIVcedsaNWhkMfGpfLTp/W3WgTSxuhaJDGqRfHx8cyYMYPx48dz9OhR1q9fz+rVq6v9+hdeeIFRo0bRrVs37rzzTj7++GPOnDlzw8bXt8rds5i5r4fh6FxKdqYVZ4468eKwruRkWtGxWyZBnY2NuTf/YJqkjRpwB6mJdVOuDuxcyBtfRlU8n7A0EYCfPnVh9YvNFdnmpQMaipLUNH20ciPO/Fg159ZaU5qtwrapHv9xJbQYoVx7opvRul0eQZ1zAdj842GTeaPu605qYt0NgGfOmJxcS5n5egSuTUrIz7UgJsKORc934Nhfxh5zS8Z3YPTMGJZsPIOtVkdivC1vzgsk9HflGs46u5Uya2Ukrh4l5OdqiDlrx8Ln2nFsvzMdu2cTFJwHwOZfjpq8bmS/20hNUOa4DRqeCsDKneEm01fP9ufnL68/3IiSAjsX8Mbn5yueTwhJAOCnz1xZPcOPz972xEar54XX47F31HHmsD0LhreuszGMAN5e5MvI2YlMefUCzu7GAR7/95E7H69VtlOBUIbKcLk/ubgl/fr1o3379uj1enbs2IFGo2HixIm88sorqFSqSiNfq1Qqvv76ax555BGT9bz66qusWbOGoqIiHn/8cTw9Pfnxxx9rNPJ1Tk4OTk5O3Os6Cgu1+bvUXqa7lGHuECoZcLpmPfjqws+9666RbYOmr39fXYZrtCc0q3oYk76k7nqMNVRlhlL26r8iOzsbR8faHcPt8m/EbV/MQGNXe80wrqbLL+boE28q8jcoSRKjfyFJjKpPEqMGTBKj6qmHMUlidGOSGJmPXEoTQgghGiEDxjHXlFx/QyRt5oUQQgghyknFSAghhGiE9KhQoeA4RgquW0lSMRJCCCGEKCcVIyGEEKIRknGMqiYVIyGEEEKIclIxEkIIIRohvUGFSu6VVolUjIQQQgghyknFSAghhGiEDAaFxzFqoAMZScVICCGEEKKcVIyEEEKIRkh6pVVNEqN/MV1mFiqVpbnDqNf29PA2dwiVdPoz29whVHLyLgdzh1CJoXVzc4dQiSo8ytwhNAwGvbkjqP9kH5mNJEZCCCFEIyQVo6pJGyMhhBBCiHJSMRJCCCEaIRnHqGpSMRJCCCGEKCcVIyGEEKIRknGMqiYVIyGEEEKIcpIYCSGEEI2QsWKkUvBRs3gSEhIYPnw4bm5u2Nra0rFjR0JDQ/8Rr4HFixfj7e2Nra0t9913H+fPnzdZR0ZGBsOGDcPR0RFnZ2fGjBlDXl5ejeKQxEgIIYQQZpWZmcmdd96JpaUlP/zwA2FhYaxevRoXF5eKZVauXMm6det45513OHjwIHZ2dgwYMICioqKKZYYNG8aZM2fYs2cP33//Pb///jvjxo2rUSzSxkgIIYRohOpqHKOcnByT6dbW1lhbW5tMe/311/H19WXLli0V01q2bPmPdRlYu3YtCxcuZMiQIQBs374dT09Pdu3axdChQwkPD2f37t0cPnyYbt26AbB+/XoeeughVq1ahY+PT7XiloqREEIIIRTj6+uLk5NTxWPFihWVlvn222/p1q0bTz75JB4eHnTp0oVNmzZVzI+JiSE5OZn77ruvYpqTkxM9evTgwIEDABw4cABnZ+eKpAjgvvvuQ61Wc/DgwWrHKxUjIYQQohEylD+UXD/AhQsXcHR0rJh+dbUIIDo6mo0bNzJjxgxeeuklDh8+zLRp07CysmLkyJEkJycD4OnpafI6T0/PinnJycl4eHiYzLewsMDV1bVimeqQxEgIIYQQinF0dDRJjKqi1+vp1q0br776KgBdunTh9OnTvPPOO4wcObIuwqwgl9KEEEKIRkjZHmk1a7/k7e1Nu3btTKa1bduW+Ph4ALy8vABISUkxWSYlJaVinpeXF6mpqSbzy8rKyMjIqFimOqRiJCrZ9vcZvHxLK03/dqs7GxY0M0NEVwwelc4TE1NxbVJGdJgtby9sSsRxreLbHfhsMgOfScazWTEAcedt2fGWL6G/G3tMPPh0Mv0Gp9O6fT5aex1P3Nad/Nza/XideQhKkypPd38Kms03/j//BCRtgIJTgAZsA6HV26C2Mc6PfgEKz0FZBmgcwaEH+EwDS4/K670ZA59JYuAzSXg2vbyftOx425fQ310rlgkKzmHki3EEdcpFr1cRFW7HwjHtKSnW1E4QQIf2qTzxeBgBrTNxcytk6ct9OPC3b5XLTp18iIEPRfLOe7ex65ugiun29sVMmhBKjx4JGPQq9v/ly8Z3u1JUZHnL8T01MYE7B2TSzL+QkiI1YUcd2Py6LwkxtibLBXXJZeTMiwQF56HXYdxXI4MoKa79c9rqxmRkYNnmCG7vl82y8QEc2ONaxTLKGD4jif+bafrjeCHSmuf7tq2zGK5WH2NqaO68804iIiJMpp07d44WLVoAxobYXl5e/PLLLwQHBwPGRt0HDx5k4sSJAPTs2ZOsrCyOHDlC165dAfj111/R6/X06NGj2rFIYlSPhYSEsGvXLo4fP16n2532UBvUmitXnv2CinhtZxR/fO9Up3Fcre/DmYxbksj6ec04e1TLo2PTWL4jmjF92pB96dZ/rK4nPdmKLatakBBrg0oF9z2ayuKNZ5kypDPxkVqsbfWE/u5M6O/OPDc7XpEY2nwEBv2V50WREDURnO43Ps8/AVFTwHM0NJ0LKo0xCfpnXdj+dvAcA5buUJoKCWsgZjYEbqudGI37yY+EOFvjfnokhcUbwpnyaDDxkXYEBefwyvtn+PTdZmx82R+dToV/UD4Gfe32jLGxKSMmxoWf9rRi8cI/rrlcr54XCApKJz298o//3Nl/4epayEsL78FCo2fG9L95YeohXn/jzluOr2P3XL770JNzJ+3QaAyMmn2R5dvPMr5/J4oLjQliUJdcXtkawacbfdi4tAW6MhX+bQsUG024OjFd9shz1W+voYTYszbMG9qq4rmuzPz35KqPMd1QXTUyqoYXX3yRXr168eqrr/LUU09x6NAh3nvvPd577z0AVCoV06dP55VXXiEgIICWLVuyaNEifHx8eOSRRwBjhemBBx5g7NixvPPOO5SWljJlyhSGDh1a7R5pIImRqEJ2hunb4ukpKSTGWHHygL2ZIjJ6bFw6u3e48tOnxrPTdXOb0f3eHAY8k8Fnb3ne4NW35uCvpmfE29a0YOCzKQQF5xIfqWXXVuOHrmP3bMVisLjqpDxlC1j5gr3xxIiE1dBkKHg+d2UZGz/T13gMv/J/Kx9jEhUzAwyloKqF3PLgb24mz7et9WPgM8nl+8mO8fNj+OZDHz7fdKV6kxBT+xW/0CM+hB65/hehm1sBEyeEsnDR3SwL2Wcyz9c3m9u7JTH1hQGcjzT+TW+/242XQ/ay6YMuZGTcWsyLRgeZPH9ztj87Q48S0CGf04eNbTHGL4zjm62efP7Olb+j6upN7ahOTAD+bfN5fEwS04Z0YMehY4rFcz06HWSmKXsyVFP1MaaG5Pbbb+frr79m/vz5LFu2jJYtW7J27VqGDRtWscycOXPIz89n3LhxZGVl0bt3b3bv3o2NjU3FMh9//DFTpkzh3nvvRa1W8/jjj7Nu3boaxSJtjBSm1+tZuXIlrVu3xtramubNm7N8+XIA5s6dS2BgIFqtFn9/fxYtWkRpqfES1tatW1m6dCknTpxApVKhUqnYunVrncdvYannnscy+fFTN8B8Z0AWlnoCOhVw9A+HimkGg4pjfzjQrmtBncaiVhvoOzAdG62Os8cdbvwCBehLIfN/4DYEVCoozTBePrNwhXMj4fS9cH4M5F3nd6ssGzJ/ALvOtZMUXU2tNtD3oTTjfjrmiJNrCUHBuWRfsmT1JyfYsf8gKz88SfuuyiWT16JSGZg98wBffNmWuHjnSvPbBqWTm2dZkRQBHDvmhcGgIqjNpVqPR+ugAyA323hS4uRWSlCXfOO++vwMOw4dYeUnYbTvllvr265uTADWNjrmro1kwxI/MtOt6iyWqzVtWcKOI6fZ+lcYc9fH0cSnxGyx1OeYGppBgwZx6tQpioqKCA8PZ+zYsSbzVSoVy5YtIzk5maKiIn7++WcCAwNNlnF1dWXHjh3k5uaSnZ3N5s2bsbev2Um9VIwUNn/+fDZt2sSaNWvo3bs3SUlJnD17FgAHBwe2bt2Kj48Pp06dYuzYsTg4ODBnzhyefvppTp8+ze7du/n5558B45gNVSkuLqa4uLji+dWDad2KXg9kY++o46fP6q4NQVUcXXVoLCArzfQtm5lugW/r4mu8qnb5Bebz5mensLLWU1ig4eVJQcRHKt++qSrZv4EuF1wHG5+XXDT+m/wu+LwItm0g83uIGg9Bn4N1iyuvTfwPpO8EfRFoO4J/zU6mbsgvMJ83d564sp8mtyU+SktQZ+P7ctiUeN5f2ZLocDvufSSVFVtPM2HQbSTGKVcNudpTT4Sh06n45ts2Vc53cSkiO8vGZJperyY31woXl6IqX3OzVCoD4xfFcSbUnrhzxveTt69xG8NeSOD9Fc2JDtNy72PprPgwnAkPdiIx1uZ6q1QkJoBxC+MJO+rA3z+b7/vg7DE7Vr1oy8Uoa1w9Shk+I5nVX59n/D1BFObXXju1hh5TtSg8wCNKrltBkhgpKDc3l//85z+89dZbFd0NW7VqRe/evQFYuHBhxbJ+fn7MmjWLnTt3MmfOHGxtbbG3t8fCwuKGrelXrFjB0qVLFfkbBgzN4PBvjmSkSIn4Yowtkx/ujJ2Djt4PXGLmyvPMGdbBLMlRxi5wvPMfjabL2x65PW6sIgFogyD3EFz6xtjA+jKPEeD6iLEhd/K7EL8IWq4zVp5qw8UYWyY/0sW4nwakM/P1c8wZ3glVeX36f596secr46XPqHB7gntm0f/xFLa+6Vc7AdxA69YZDBkSwZRpD2DOKuhlk5fF4hdYwKynrvTIqdhXn3iw54smAESF2RHcK5v+T6ay9Y3mdR5Tj3sz6dwrmymDOiq67RsJ/e3KZb2YcFvOHtPy4cEw7hqcxY873a7zysYVk7h5khgpKDw8nOLiYu69994q53/66aesW7eOqKgo8vLyKCsru+FYD1WZP38+M2bMqHiek5ODr2/VPXBqwqNpCV365PLy8y1vvLDCcjI06MrAuUmZyXQX9zIy0+rmbVxWqiYp3ljViDxjT2DHPIaMTGL9olY3eGXtKkmE3IPQctWVaRbG305s/E2XtWkJpVe1k7VwMT5sWoB1Swh7AApOGi+p1YbK+ymXISMS+WyTsUdjfJRpIhkfpcXDp26qfmDssebsVMSHW7+pmKbRGBg75hiPDolg5HNDyMy0wcnZtDKkVutxcCghM7P2qjUTQ2LpfncWs4e2JT35yqB3GanGE5H486ZVtPhIWzwUvkRzrZiCe+Xg3byYL46Hmiy/4O3znDnswNxn2129qjqRn2PBxWhrfPzq7j10I/UxpqoYbyKr7PobIkmMFGRre+1LAwcOHGDYsGEsXbqUAQMG4OTkxM6dO1m9enWNt1PVfWdqQ/+nL5GVbsHBX2qerNW2slI1509q6dI7lwO7jZcUVSoDwb3z+Harec7IVGoDllb6Gy9Yyy59a2xL5NjnyjQrH7BsAsWxpssWx4HD9TpRlYevrzw6Q61RqcHSSk/KRWvSU6xo1rLQZH4zv0IO/+5yjVfXvl9+bcmx46ZV2OXLfuOX31qyZ48xsww/646DfSmtW2cQGWm8bBTcOQWVysDZiNp4vxmYGBJHr/4ZzH22HSkXTZOtlIvWpCdb0sz/qn3VsojD+5xrYfs1j+mzjd7s/rSJybR3dp/ivVdacPAXpWK6MRutDp8WJfzyZf2patfHmET1SWKkoICAAGxtbfnll194/vnnTeb99ddftGjRggULFlRMi4uLM1nGysoKnU5XJ7FeTaUy0P/pDH7+3BW9zvyXGwC+es+dWWsvcO6Elohjxu76Nlo9P+1Uvr3DqJlxhP7uTGqiNVo7Hf0Gp9OpRw4LnzOeJbu4l+DSpBSfFsYqg1+bAgrzNaQmWpGXXXtfjgY9ZHwDroNA9Y9Pr0oFTUZC8jvGsYts20DGd1AUC35vGJfJPwUFZ8CuC1g4QPFFSH7b2LPNrlPtxDdqRiyhv7uQmlS+nwal0al7NgvHtAdUfPlBU4ZPjSfmrB1R4Xbc92gqzfwLWT4t6Ibrrgkbm1J8fPIqnnt55ePvn0lurhVpaXbk5pqeSOh0ajIzbbiYYDwJuHDBicOh3kyfepB1G27HQmNg0sRQ9v3e4pZ7pIHxUlW/hy+xbFwghXlqXNyNVaD8XIvyMYpUfLnJm+HTE4g5qyUqzI77HkujWatClk8OuOXt30xMmelWVTa4Tku0qpREKWnsogT+3uNE6kVL3LzK+L+ZSej0sHdX3SXXDSGm6qirm8g2NJIYKcjGxoa5c+cyZ84crKysuPPOO0lLS+PMmTMEBAQQHx/Pzp07uf322/nvf//L119/bfJ6Pz8/YmJiOH78OM2aNcPBwUGRylBVuvTJxbNZKT9+at5G1/+071sXnNx0jJidjEuTMqLP2LJgWEuy0pU/K3N2K2XWykhcPUrIz9UQc9aOhc+149h+ZwAeeiaZ4dMuViy/6pPTAKye25qfv6ql0RMxXkIrTTa2EbqaxzAwFBu77euywSYQWm0E6/KrqmobyP7VmDzpC41jGTn0ghZjQV1LHYyc3UqZ9fq58v1kQUyEloVj2nPsL+MPxK5tTbG00jNufjQOTmVEn7VjwXPtSbpQuw2vAwMyWPnaLxXPx489CsCen1uyek3Paq3j9Td6MXliKK8t/xWDQcWf+40DPNaGQcONo/Ou3BluMn31bH9+/tJYldm1xRtLawPjFsTj4FxGdLiWBSPakhSvTBJSnZjqA3fvUuZviMXBRUd2hgVnDtkxfXBgpWFGGntM4uapDIaGehWwYdDr9axYsYJNmzaRmJiIt7c3EyZMYP78+cyZM4fNmzdTXFzMwIEDueOOOwgJCSErKwsw9jYbNmwYv/zyC1lZWWzZsoVRo0bdcJs5OTk4OTnRT/UIFkr0w75Z9fCtprazM3cIlXT6M9/cIVRy8i7zDEtwPYbWyjZAvhmq8Chzh9Ag6Ivrd9ub+qDMUMpewy6ys7Nvqu3p9Vz+jfD7YBFqrXLVPn1BEbFjXlbkb1CSJEb/QpIYVZ8kRtUjiVH1SGJUPZIY3ZgkRuYjdT4hhBCiEZJeaVWTka+FEEIIIcpJxUgIIYRojOrRTWTrE6kYCSGEEEKUk4qREEII0QjJOEZVk4qREEIIIUQ5qRgJIYQQjVUDbQekJKkYCSGEEEKUk4qREEII0QhJG6OqScVICCGEEKKcVIyEEEKIxkjGMaqSJEaicauHY9bXx/uSPXqo/t0D7OsupeYOoTJ1PSzC6/XmjqCyevi5q3dkH5mNJEZCCCFEo6Qqfyi5/oanHp7eCCGEEEKYh1SMhBBCiMZI2hhVSSpGQgghhBDlpGIkhBBCNEZSMapStRKjb7/9ttorfPjhh286GCGEEEIIc6pWYvTII49Ua2UqlQqdTncr8QghhBCiLhhUxoeS62+AqpUY6evjOBhCCCGEELXsltoYFRUVYWNjU1uxCCGEEKKOGAzKjiPZUMeorHGvNJ1Ox8svv0zTpk2xt7cnOjoagEWLFvHBBx/UeoBCCCGEEHWlxonR8uXL2bp1KytXrsTKyqpieocOHXj//fdrNTghhBBCKMRQB48GqMaJ0fbt23nvvfcYNmwYGo2mYnrnzp05e/ZsrQYnhBBCCFGXatzGKCEhgdatW1eartfrKS2thzd1FEIIIURl0iutSjVOjNq1a8cff/xBixYtTKZ/8cUXdOnSpdYCa4j69etHcHAwa9euNXcot2Tb32fw8q2c5H671Z0NC5qZIaIrBo9K54mJqbg2KSM6zJa3FzYl4rhW8e0+NSGBO/tfopl/ISXFasKOOrB5ZQsSYmwrlnFxL2HMvDi63JmN1k7HxRhbdr7dlP0/uikW18Bnkhj4TBKeTYsBiDuvZcfbvoT+7grA69tP0qlHjslr/rvTi7eWVD65uRkGHYS9ZUf8dzYUpaux9dDT4pFCgiYWoCr/Tkz4yZroT23JOmNBSbaae7/KwLltmcl69o1wJv2wlcm0lk8XcltI7i3H+NTEBO4ckGk8dkXlx+51X5NjBxDUJZeRMy8SFJyHXgdR4XYsHBlESXHt3yBg4LPJDHw2Bc9ml4+bLTvWNyP0dxcALK30jH0plr4DL2FppefIH85sWNKSrEtW11vtLamP+6kqHXrk8eSkNAI6FuDmVUbIc34c2O1UJ9tuSDGJm1fjxGjx4sWMHDmShIQE9Ho9X331FREREWzfvp3vv/9eiRhFHZv2UBvUmisXh/2CinhtZxR/fG/eD3rfhzMZtySR9fOacfaolkfHprF8RzRj+rQh+5Klotvu2D2b7z7y4twpezQaA6NmxrN8axjjHwimuNB4SXnWqkjsHMpYOr4NOZmW9Buczvx153jh0U5EhdkpEld6shVbVvmREGeLSgX3PZLC4g3hTHk0mPhI4zZ/+NSTD9ddOZEpLqy9H7CI97VE77Sl24ocHAPKyDxtyZGXHLB0MND6/woBKCtU4X5bCc0eKOLoYsdrrsvvyULaT82veK6xrZ0GCh275/Ldh56cO2lnPHazL7J8+1nG9+9UceyCuuTyytYIPt3ow8alLdCVqfBvW6BYr5r0ZCu2vNGchFgb43F7LI3F70QwZUgn4s9rGb8gltvvzuTVqYHk52qYFBLDwrfPMevpDsoERP3cT1Wx0eqJPmPDj5+4smRzbN1t+DrqY0zVoTIYH0quvyGqcWI0ZMgQvvvuO5YtW4adnR2LFy/mtttu47vvvuP+++9XIkZRrqSkxKTBu1KyM0zfFk9PSSExxoqTB+wV3/b1PDYund07XPnpU2M1ZN3cZnS/N4cBz2Tw2Vueim570XPtTJ6/Obc1Ow+FEtAhn9OHjT/2bbvk8tYSf86ddABg59vNeHR0Eq075CmWGB38zbQatW2tHwOfSSYoOLciMSou0pCZrsz75tIxS3zuKca7XwkAdk2LufBfazJOWQLGxKjFkCIA8hOun5BZ2BiwaVL7Y6YtGh1k8vzN2f7sDD1qcuzGL4zjm62efP6OT8VyV1dKatPBX11Nnm97szkDnzUet/QkK/o/mcrKGQGc+Nt4MvLm3NZs+uk4QcG5nD3uoEhM9XE/VSX0N0dCf7t2gm0O9TEmcfNu6tSxT58+7Nmzh9TUVAoKCvjzzz/p379/bcdWr+Xn5zNixAjs7e3x9vZm9erVJvOLi4uZNWsWTZs2xc7Ojh49erB3716TZf7880/69OmDra0tvr6+TJs2jfz8K2fMfn5+vPzyy4wYMQJHR0fGjRtXF3+aCQtLPfc8lsmPn7oB5rtebGGpJ6BTAUf/uPKjYDCoOPaHA+26FtR5PFoH46Wg3KwrSWT4MQfueigde6dSVCoDfQemY2Wt5+TBuvnCVKsN9H0oDRutjrPHrmzz7sGp7Pz7bzZ+d5RRM2Kxtqm90endupSS+rcVuTHGikLWWQsuHbXCq09xjdcV/70N3/V0Z89gV06/aUdZYa2FaULrYPz7c7ONx87JrZSgLvlkX7Jk9edn2HHoCCs/CaN9t1u/jFcdarXxvWKj1XP2mAMBHfKxtDJwbP+VCu3FaFtSEqwI6lI3MUH9209CAdIrrUo3PcBjaGgo4eHhgLHdUdeuXWstqIZg9uzZ7Nu3j2+++QYPDw9eeukljh49SnBwMABTpkwhLCyMnTt34uPjw9dff80DDzzAqVOnCAgIICoqigceeIBXXnmFzZs3k5aWxpQpU5gyZQpbtmyp2M6qVatYvHgxS5YsuWYsxcXFFBdf+SHKycm55rI11euBbOwddfz0meuNF1aQo6sOjQVkpZm+ZTPTLfBtXfMf4VuhUhkYvyCWM6EOxJ2/0r7p1amBzF93js+PhFJWqqK4SM3Lk9qQFKfsGbVfYD5v7jyBlbWewgINL09uS3yUMa6933uQkmhNRqoVLdvk89ysWJq1LOSVqW1rZdttxhZQmqfip4GuqDTGNkftp+fTfHDNjonvoCK0PnpsPXRkR1hwerU9uTEaeq6vvfcylB+7RXGcCbUn7pxxH3n7Gitaw15I4P0VzYkO03LvY+ms+DCcCQ92IjFWmUFs/QLzefPz01eO28Q2xEdq8W+bRmmJivxc0/d6Vrolru5108GlPu0nIepajROjixcv8swzz7B//36cnZ0ByMrKolevXuzcuZNmzczbOLcu5OXl8cEHH/DRRx9x7733ArBt27aKvz0+Pp4tW7YQHx+Pj4+x5Dxr1ix2797Nli1bePXVV1mxYgXDhg1j+vTpAAQEBLBu3Tr69u3Lxo0bK0YUv+eee5g5c+Z141mxYgVLly5V5G8dMDSDw785kpGibBuehmRySAx+gYXMGtreZPqIFy9g56Bj/v+1IzvTgp73ZzB/3TlmD21P7DllLqUBXIyxZfIjXbBz0NF7QDozXz/HnOGdiI/S8sNnXhXLxZ6zIyPNite2ncbbt5CkC7eesF38wZoL39vQ/Q1jG6OscEtOrrAvb4RdVO31+D91ZVmnQB02TfT8MdqFvPh87JvXXoVr8rJY/AILmPXUlUujqvK6+f8+8WDPF00AiAqzI7hXNv2fTGXrG81rbfv/dDHGlskPd8LOXkfvBy8x841I5jzb/sYvrAP1aT8JBUmvtCrV+FLa888/T2lpKeHh4WRkZJCRkUF4eDh6vZ7nn39eiRjrnaioKEpKSujRo0fFNFdXV9q0aQPAqVOn0Ol0BAYGYm9vX/HYt28fUVFRAJw4cYKtW7eazB8wYAB6vZ6YmJiK9Xbr1u2G8cyfP5/s7OyKx4ULF2rl7/RoWkKXPrns3qFcr6rqysnQoCsD5yamvZlc3MvITLulO9vUyMQl0XS/J5O5w9uRnmxdMd27eREPj0hmzfxWHD/gRMxZO3as9+X8KXsGDU9RNKayUjVJ8bZEnrFn65t+RJ+1Y8iIxCqXPXvCeCnSu0X1k5brObXKnjbPF+A7sBinQB0thhTRemQBZ9+7tZ6Crp2MlZG8eM0Nlqy+iSGxdL87i7nPtjU5dhmpxqQ//rxpohgfaYuHT0mtbf9qZaVqkuLKj9uqFkSH2zFkZBKZaVZYWhmwczB9rzu7l5KRrvwJSn3bT0LUtRr/ouzbt4+//vqrIgkAaNOmDevXr6dPnz61GlxDlZeXh0aj4ciRIyaDYALY29tXLDN+/HimTZtW6fXNm18587Kzu3GlwdraGmtr6xsuV1P9n75EVroFB38xf6PCslI1509q6dI7t6IbrEplILh3Ht9urYvEzcDEJTH0uj+DucPak3LR9LLB5XY7hqvaDuv1xjYkdUmlNnb3rkqrtsY2bBlptdMYW1eoqnR6pdIAt9iGOuus8UfYtkltVIsMTAyJo1f/DOY+267SsUu5aE16siXN/E0bNTVrWcThfc61sP3qUakNWFoZOH/ajtISFcG9siuGemjashDPpiWcPaZMw2ujhrGfRC1Suh1QY2lj5OvrW+VAjjqdruKy0b9dq1atsLS05ODBgxVJTGZmJufOnaNv37506dIFnU5HamrqNZPF2267jbCwsCoHy6wPVCoD/Z/O4OfPXdHr6kc59Kv33Jm19gLnTmiJOGbsrm+j1fPTTuXbP01eGkO/weksm9CGwnwNLu7GM+T8XA0lxRouRNuSEGvD1Jejef+1FuRmWdLz/gy63JlNyNigG6z95o2aEUvo7y6kJlmjtdPRb1Aanbpns3BMe7x9C+k3OI3D+1zJybKgZZt8xs+P4dQhR2IjaufSnvfdxUS8q0XrrTNeSguz4PxWLX6PXfnxLMlSUZCkoTDVmEFdbqht467HpomevHgNF763xqtvCVbOerIjLDj5mgPu3UpwanPridHkZbH0e/gSy8YFUpin/sexsygfe0fFl5u8GT49gZizWqLC7LjvsTSatSpk+eSAW95+VUbNiiN0nwupiVbG4/ZwOp165LBwdFsK8iz46XMPxr4US262BQW5GiYuiSHsqL1iPdKgfu6nqthodfi0vFKh8vItwb99IblZGtISlO+121BiEjevxonRG2+8wdSpU9mwYUPFZZ7Q0FBeeOEFVq1aVesB1kf29vaMGTOG2bNn4+bmhoeHBwsWLECtNn7xBwYGMmzYMEaMGMHq1avp0qULaWlp/PLLL3Tq1ImBAwcyd+5c7rjjDqZMmcLzzz+PnZ0dYWFh7Nmzh7feesvMfyF06ZOLZ7NSfvzUvI2u/2nfty44uekYMTsZlyZlRJ+xZcGwlmTVweWFQcOMl8NW7ggzmb56Tit+/soDXZmaxWOCGD07npD3IrDV6kiMs2H1nNYc3ueiWFzObqXMev0crh4l5OdaEBOhZeGY9hz7ywV3r2K69MzikRGJ2Gh1pCVZ8+dPbux827fWtt95YR5h/7Hj+DIHijKMAzz6P1VI20lXelcm/mbNkZeuVB0PzTRW/NpOzqfdlHzUlgZSD1gRuV1LWaEKWy8dTe8vImhi7fQ2HDQ8FYCVO8NNpq+e7c/PXxrbyuza4o2ltYFxC+JxcC4jOlzLghFtSYpXpkGxs1sps96ILD9uGmLO2rFwdFuO7XcG4N3lfugNsPCtCCytDBUDPCqpPu6nqgR2LuSNL6Mqnk9Yarxs/NOnLqx+0TztnOpjTNUiFaMqqQyGGw/N5eLigkp1pWqQn59PWVkZFhbGvOry/+3s7MjIyFAu2nokLy+PiRMn8tVXX+Hg4MDMmTP573//WzHydWlpKa+88grbt28nISEBd3d37rjjDpYuXUrHjh0BOHz4MAsWLODAgQMYDAZatWrF008/zUsvvQQYu+tPnz69ooF2deXk5ODk5EQ/1SNYqOpRo+m6HAWumtRa5UfNrjFN7bWrqS2PHoq68UJ17Osu9fAHR103oz/XiL72x4a6Vfqi2mnj9m9WZihlL9+QnZ2No2PtNme4/Bvhu/pl1LbKJbX6wiIuzFykyN+gpGolRtu2bav2CkeOHHlLAYlbJ4lR9UliVD2SGFWTJEbVIonRjdVJYrSqDhKjWQ0vMarWpTRJdoQQQgjRGNxSP+eioiJKSky7aTakrFAIIYRotGQcoyrVuO6bn5/PlClT8PDwwM7ODhcXF5OHEEIIIURDVePEaM6cOfz6669s3LgRa2tr3n//fZYuXYqPjw/bt29XIkYhhBBC1DKVQflHQ1TjS2nfffcd27dvp1+/fowePZo+ffrQunVrWrRowccff8ywYcOUiFMIIYQQQnE1rhhlZGTg7+8PGNsTXe6e37t3b37//ffajU4IIYQQyjDUwaMBqnFi5O/vX3Evr6CgID777DPAWEm6fFNZIYQQQoiGqMaJ0ejRozlx4gQA8+bNY8OGDdjY2PDiiy8ye/bsWg9QCCGEEKKu1LiN0Ysvvljx//vuu4+zZ89y5MgRWrduTadOnWo1OCGEEEKIunRL4xgBtGjRghYtWtRGLEIIIYSoIyqU7TnWMEcxqmZitG7dumqvcNq0aTcdjBBCCCGEOVUrMVqzZk21VqZSqSQxqk8MDbhbQB0xlJaZO4RK1C2amjuESr7uqjN3CJXccTDL3CFUcqBr/bv3nsrKytwhiPpKRr6uUrUSo8u90IQQQggh/s1uuY2REEIIIRogpS8qNNALFjXuri+EEEII8W8lFSMhhBCiMZKKUZWkYiSEEEIIUU4SIyGEEEKIcjeVGP3xxx8MHz6cnj17kpCQAMCHH37In3/+WavBCSGEEEIZKoPyj4aoxonRl19+yYABA7C1teXYsWMUFxcDkJ2dzauvvlrrAQohhBBC1JUaJ0avvPIK77zzDps2bcLS0rJi+p133snRo0drNTghhBBCKMRQB48GqMaJUUREBHfddVel6U5OTmRlZdVGTEIIIYQQZlHjxMjLy4vIyMhK0//880/8/f1rJSghhBBCKEwqRlWqcWI0duxYXnjhBQ4ePIhKpSIxMZGPP/6YWbNmMXHiRCViFEIIIYSoEzUe4HHevHno9XruvfdeCgoKuOuuu7C2tmbWrFlMnTpViRiFEEIIUcuU7jnWUHul1TgxUqlULFiwgNmzZxMZGUleXh7t2rXD3t5eifj+Ffr160dwcDBr1641dyjVMmhEOgNHXMLTtwSAuAgbPl7jSehvjmaLqUOPPJ6clEZAxwLcvMoIec6PA7ud6jaG7rk8MT7JGINnKUvHtubATy4my/i2LmTMvIt07JGLxsJA/HkbXp7QmrRE69qJoWMajz99jtYBmbi5F/Hy4p4c2N+0Yn6v3gk8NDiK1oFZODqWMGXcfURHOZusY8qLR+hyWyquboUUFVoQdsaNLZs6cvHCrR/fpyYkcGf/SzTzL6SkWE3YUQc2r2xBQoxtxTIu7iWMmRdHlzuz0drpuBhjy863m7L/R7db3j7AkQctKU6sfFdvr6d1+IzUcfShqu82H/hGKe79jd/kuadVxP9HQ164cT0OHQy0eFGHXZva+6bv0D2XJyakXHk/Pd+KAz85A6CxMDBydgK3352Nd/MS8nM1HPvTgc2vNSUjper4b9WNjp1H0yK27TtW5WuXTw3kzx9q5/hV1+BR6TwxMRXXJmVEh9ny9sKmRBzX1mkMl9WH7ydRe276liBWVla0a9euNmMR9URakiWbX/UmIcYalQrufzKDkC2xTO4fSNw5G7PEZKPVE33Ghh8/cWXJ5lgzxaAjJlzLT581YfF7ldvZeTcvYvUX4fz4aRM+XONDQa6GFoHGH5lai8G2jJgoJ376wY9Fyw5Unm9TxpnT7vyxz5cXZh6pch2R51zY+3NzUlO1ODiWMGxEGK+8/gfPDX8Ivb5yQlETHbtn891HXpw7ZY9GY2DUzHiWbw1j/APBFBdqAJi1KhI7hzKWjm9DTqYl/QanM3/dOV54tBNRYXa3tH2ATh+XYtBfeV4QqSJsvCVu9+ux9oJuv5SYLJ/yhZqEbRpcehuTHl0BhE+ywKWvnk4LyjCUqYjfqCFsogVdfyxFbUmtsNHqiQmz5adP3Vi8KdpknrWtntYdCtixzpuYMC32TmVMCLlAyAdRTBvUtnYCuMqNjl16kjXP3tHV5DUPDk3h8ecTCd3nrEhM19L34UzGLUlk/bxmnD2q5dGxaSzfEc2YPm3IvlRLB6gG6sP3000xqIwPJdffANU4Mbr77rtRqa79x/7666+3FJAwv4N7TM90tr7uzaARlwjqmm+2xCj0N0ezVqwAQvc6E7rX+ZrzR85O4PBvznywwrdiWlJ87e6v0EPehB7yvub8X39uAYCHZ/41l9n93yudJFJT7Ni+pT1vb/oZD898kpNurfK76DnTk6U357Zm56FQAjrkc/qw8fi17ZLLW0v8OXfSAYCdbzfj0dFJtO6QVyuJkaWr6fOEzWpsfA04djOgUoGVu+n8jF/VuPfXoykvNhTGqCjLVtF8sg5rLwADvhN0nHjCkuIksG1+yyECELrXidC9VVcVCnI1vDQs0GTa24uas+77szTxKSEtsfarRjc6dnq9isx00+326p/BHz+4UVSgqfV4ruexcens3uHKT58aD/a6uc3ofm8OA57J4LO3POs0Fqgf30+i9tT4VDY4OJjOnTtXPNq1a0dJSQlHjx6lY8eOSsTYoOTn5zNixAjs7e3x9vZm9erVJvMzMzMZMWIELi4uaLVaHnzwQc6fP2+yzKZNm/D19UWr1fLoo4/y5ptv4uzsXId/xRVqtYG+QzKx1uoJD731H61/K5XKQPd7skiIsWH59gh2HjnG2l1h9Oyfae7Qrsvapoz7B8SSlGhHelrtX4bQOpQBkJt15Rws/JgDdz2Ujr1TKSqVgb4D07Gy1nPyYO3/sOhLIe2/ajwe0VHV+VxemIr8CDUej14pMdn6GbBwNpDytQZ9KeiKIPVrNbb+Bmx8aj3EarNz1KHXQ35O3SQhVR27f2rdPo9W7Qr48bO6TUQsLPUEdCrg6B8OFdMMBhXH/nCgXdeCOo2lwZNeaVWqccVozZo1VU4PCQkhLy/vlgNq6GbPns2+ffv45ptv8PDw4KWXXuLo0aMEBwcDMGrUKM6fP8+3336Lo6Mjc+fO5aGHHiIsLAxLS0v279/PhAkTeP3113n44Yf5+eefWbRo0XW3WVxcXDECOUBOTs4t/x1+QYWs/S4SK2s9hflqlo3xI/68eapFDYGzexlaez1PTUxi26qmfPCaL936ZrPo3UjmDm3DKQV+9G/FwIejeG7cSWxtdVyId2DBnD6UldXurRNVKgPjF8RyJtSBuPNXkq5XpwYyf905Pj8SSlmpiuIiNS9PakNSnO111nZzMn5VU5YLHg/rq5yfUp7wOAZf+QbX2EH798uIeNGCi+8Z94ltc2i7sRTVTTc+uDWW1nqem5/A3m9cKchTPjG61rH7pwFPpRIfaUv4MYcq5yvF0VWHxgKy0kwPRma6Bb6ti6/xKiGqr9a+CYcPH87mzZtra3UNUl5eHh988AGrVq3i3nvvpWPHjmzbto2yMuOZ1+WE6P3336dPnz507tyZjz/+mISEBHbt2gXA+vXrefDBB5k1axaBgYFMmjSJBx988LrbXbFiBU5OThUPX1/f6y5fHRejrJl0fyDTBgbw/XZ3Zv0nnuYBRbe83n8rVXn3iwN7nPn6Ay+iw7R8ttGbQ784M3BYmpmjq+y3X5ozdfx9zJnel4SL9sxf/DeWlrpa3cbkkBj8Agt5bXqAyfQRL17AzkHH/P9rx7RHO/LVZm/mrzuHX+C1L//drNSv1bjcacDKo/I8XRGk/2CsJl09PSpEg0Owno4fltFxWxm2rQ2ET7FAZ4aPgMbCwIK3o1Fh4K0FtXQd7waudewus7LW0W9wOj9+XsWOFQ2G3CutarWWGB04cAAbm8ZdUYiKiqKkpIQePXpUTHN1daVNmzYAhIeHY2FhYTLfzc2NNm3aEB4eDhhHFu/evbvJeq9+frX58+eTnZ1d8bhw4cIt/y1lpWoSY62JPKVlywpvYsJseeT5+vcDX1/kZFpQVqoi/rxp1SM+0oYmTUuu8SrzKci3JDHBgdOnmvDq0p74+ubSq3dCra1/4pJout+Tydzh7UhPvtIjz7t5EQ+PSGbN/FYcP+BEzFk7dqz35fwpewYNT6m17QMUJULWQRWej1Wd8F3ao0ZfCB6DTatJ6f9TU5yoovUyHQ4dDDh0MhD4WhnFCSoyf6vdqtqNaCwMvPR2NB5NS5g/LLBOqkXXOnb/1PvBDKxt9PzydRPF47laToYGXRk4Nykzme7iXkZmmplKeuJfpcbvoscee8zkucFgICkpidDQ0Bte8hHKsLa2xtq6drqDX4tKBZZWDTT9rwNlpWrOndTSzN+0pNC0ZRGpCcp0r641KgOowNKq6stNNWNg4pIYet2fwdxh7Um5aHqyZG1jTFIMV21Krze2Z6tNqd9osHQFlz5Vrzd1lxqXfoZKjbX1RRhPGf/RJkmlMj431OFH4HJS1LRlEXOfDrxmW5/ac/1j908Dnkzl4K8uZGfUfQ+wslI1509q6dI7t6JLvEplILh3Ht9urdshAxo8pdsBNdCfjBp/0pycTHtRqNVq2rRpw7Jly+jfv3+tBdYQtWrVCktLSw4ePEjz5saSd2ZmJufOnaNv3760bduWsrIyDh48SK9evQC4dOkSERERFUMftGnThsOHD5us9+rnShs9P4nDvzqQlmCFrb2Oux/NolOvPBY8a75bvthodfi0vFJ58fItwb99IblZGtLqKPGw0erw8bvShsHLtxj/dgXGGBKt+eJdb+a/FcWpgw6cOOBAt37Z3HFfFnOeDqq9GGzK8Gl6pS2fp1c+/q2yyM21Ii1Vi71DCR4eBbi6FQLQzDcXgMwMGzIzbfDyzuOufhc5GupJdrY17u4FPPlMBCUlGg4f9Lrl+CYvjaHf4HSWTWhDYb4GF3fjMcvP1VBSrOFCtC0JsTZMfTma919rQW6WJT3vz6DLndmEjK29/WTQQ+o3ajwG66tsF1QYDzlHVLTdUFZpnlNPPbFrNES/qsH7GR3oVSRsVqOyAKfbayN5NLr2+8mCjFRLFr4TResOBSwe3Rq1BlyalAKQm6WhrLT2K1c3OnaXebcopMPtOSx+vvaOV0199Z47s9Ze4NwJLRHHjN31bbR6ftrpeuMXK6A+fD+J2qMyGKp/DqTT6di/fz8dO3bExcXlxi9ohCZOnMgPP/zA5s2b8fDwYMGCBfz666+MGTOGtWvX8sgjj3D+/HneffddHBwcmDdvHpGRkSaNr++66y7eeOMNBg8ezK+//sqCBQvQ6XRkZlavh1NOTg5OTk70YwgWqpqf0b24+gLBvXNx9SijIFdDTLgNn23w4OjvddvI8p869czjjS+jKk3/6VMXVr948+0uVJbV/9LqdEcOKz+NqDR9z+durJ5lTBr7P5XG05OScPcu4WKUDR+uacrfe2r2WVG3bnHNeR07p/L6m79XjuHHFqxZeTv3DYhlxpzQSvM/3taWj7e3x9WtkBdmHqF1YCb29iVkZdpw+qQ7Oz5sR8LFax9fQ1z1LrP9EFl5bCWA1XNa8fNXxvYoPi0KGT07nvbdcrHV6kiMs+HLD3z4dVfNLsvccSDrmvOy/lIRNtGSLt+UYOtXeX7cOg1p/1XT9YdSVFXkGFkHVFx4R0NBlAqVCuyCDDSfqsOh0/W/Lg90rX7Pvk535LLys3OVpu/53I2P1niz7a/TVb5uzlOBnPy7+p9FlVX13uPVOXYAI2fGc8+QNEb1vQ3DTY5Toy+49d5jD482DvDo0qSM6DO2vL3Ih4hj5uk5q8T3U5mhlL18Q3Z2No6Otdt54/JvhP+iV9Eo2ARGV1RE9MsvKfI3KKlGiRGAjY0N4eHhtGzZUqmYGrS8vDwmTpzIV199hYODAzNnzuS///1vxcjXmZmZvPDCC3z77beUlJRw1113sX79egICrjRy3LRpE0uXLiUjI4MBAwbQrVs33nrrLZKSkqoVw60mRo1JTRKjunK9xMhcqpsY1aXrJUbmUpPEqK5UNzGqS7WRGP3bSWJkPjW+lNahQweio6MlMboGe3t7PvzwQz788MOKabNnz674v4uLC9u3b7/uOsaOHcvYsWNNnrdu3br2gxVCCNF4SRujKtX4QvUrr7zCrFmz+P7770lKSiInJ8fkIW7dqlWrOHHiBJGRkaxfv55t27YxcuRIc4clhBBC/OtVu2K0bNkyZs6cyUMPPQTAww8/bHJrEIPBgEqlQqer3bFQGqNDhw6xcuVKcnNz8ff3Z926dTz//PPmDksIIcS/iVSMqlTtxGjp0qVMmDCB3377Tcl4BPDZZ5+ZOwQhhBCiUap2YnS5jXbfvn0VC0YIIYQQdUPp0akbxcjXqqruwiiEEEII8S9Ro15pgYGBN0yOMjIybikgIYQQQghzqVFitHTp0kojXwshhBBC/FvUKDEaOnQoHh5yN2UhhBCiwZNeaVWqdhsjaV8khBBCiH+7GvdKE0IIIUTDJ73SqlbtxEivr727SgshhBBC1Ec1vleaEP8mKk2N74qjvOR0c0dQiaG0zNwhVHKgm725Q6hkQ9Sv5g6hkkl+fcwdgqjPGmhVR0n18FdBCCGEEMI8pGIkhBBCNEbSK61KUjESQgghhCgniZEQQgjRCF3ulabk42a99tprqFQqpk+fXjGtqKiIyZMn4+bmhr29PY8//jgpKSkmr4uPj2fgwIFotVo8PDyYPXs2ZWU1ayMpiZEQQggh6o3Dhw/z7rvv0qlTJ5PpL774It999x2ff/45+/btIzExkccee6xivk6nY+DAgZSUlPDXX3+xbds2tm7dyuLFi2u0fUmMhBBCiMbIUAcPICcnx+RRXFx8zZDy8vIYNmwYmzZtwsXFpWJ6dnY2H3zwAW+++Sb33HMPXbt2ZcuWLfz111/8/fffAPz000+EhYXx0UcfERwczIMPPsjLL7/Mhg0bKCkpqfZukcRICCGEEIrx9fXFycmp4rFixYprLjt58mQGDhzIfffdZzL9yJEjlJaWmkwPCgqiefPmHDhwAIADBw7QsWNHPD09K5YZMGAAOTk5nDlzptrxSq80IYQQohGqq5GvL1y4gKOjY8V0a2vrKpffuXMnR48e5fDhw5XmJScnY2VlhbOzs8l0T09PkpOTK5b5Z1J0ef7ledUliZEQQgghFOPo6GiSGFXlwoULvPDCC+zZswcbG5s6iqxqcilNCCGEaIzqqI1RdRw5coTU1FRuu+02LCwssLCwYN++faxbtw4LCws8PT0pKSkhKyvL5HUpKSl4eXkB4OXlVamX2uXnl5epDkmMhBBCCGFW9957L6dOneL48eMVj27dujFs2LCK/1taWvLLL79UvCYiIoL4+Hh69uwJQM+ePTl16hSpqakVy+zZswdHR0fatWtX7VjkUpoQQgjRGNWjka8dHBzo0KGDyTQ7Ozvc3Nwqpo8ZM4YZM2bg6uqKo6MjU6dOpWfPntxxxx0A9O/fn3bt2vF///d/rFy5kuTkZBYuXMjkyZOv2a6pKpIYCSGEEKLeW7NmDWq1mscff5zi4mIGDBjA22+/XTFfo9Hw/fffM3HiRHr27ImdnR0jR45k2bJlNdqOJEa1xGAwMH78eL744gsyMzM5duwYwcHB5g7rpgwakc7AEZfw9DWO+xAXYcPHazwJ/e36jeeU1KFHHk9OSiOgYwFuXmWEPOfHgd1Odbb9pyYmcOeATJr5F1JSpCbsqAObX/clIca2Ypmpr8TQ5c5sXD1LKMrXEHbUns2vN+ditO111lx7nnw+jtEvxrDrw6a891oAAC7uxYyZGU1wrwy0Wh0XY7V8+l4L9u9polgcHbrn8sT4JOOx8ixl6djWHPjpyngkNlodz827SM/+mTi6lJF8wZpvtnjyv489zBbT7rjKvWAA3n+1GV+8610rMRTlafhudXNO/OhGbrolzdrn82RINH6d8wAwGOD7N5uz/xMvCnM0+HfL5ZnlkXi0LALg3AEn1g7tWOW653x7vGI9SnlqcgpjXkri6/fdeWdJM0W3dT3y/VR76qpX2s3au3evyXMbGxs2bNjAhg0brvmaFi1a8L///e+WtiuJUS3ZvXs3W7duZe/evfj7++Pu7m7ukG5aWpIlm1/1JiHGGpUK7n8yg5AtsUzuH0jcOfP0FrDR6ok+Y8OPn7iyZHNsnW+/Y/dcvvvQk3Mn7dBoDIyafZHl288yvn8nigs1AESetuO3b9xITbTGwbmM4S8Ylxl9VzB6vUrR+AI65PDgk0lER9iZTJ/56lnsHMtYNqUjOZmW9BuYwrzVZ3jhqa5En3VQJBYbrY6YcC0/fdaExe9FVpo/btEFgnvl8MZ0f1IuWnNbn2ymvBJHRoolf//sUsUalY/pmW7BJs+79cvixZWx/Pm/2ovno7mtSYrQMnLNOZw8Szj0tQfrhnVg8c9HcfYqYc87Tdm71YcRq8/h5lvE96tbsP7/OrD45yNY2hjw75rDisMHTdb5/eoWnN3vTItOyiZFgZ0LGDj8EtFh5u0tBPL9JJQniVEtiYqKwtvbm169elU5v6SkBCsrqzqO6uYc3GN6prP1dW8GjbhEUNd8s33xhP7maNYzwkWjg0yevznbn52hRwnokM/pw8a4fth5peKRmmDNtjd92fi/U3g2KyYpXrn9ZqMtY87r4axbEsjQ8XEm89p2yWbDskDOnTLGuPNdPx4ZcZGA9rmKJUahe50J3et8zfntuubx85funPy7fL994sFDw9JoE5yvWGJ0o5gy0yxNnve8P4sTBxxIvlA7x62kSM3xH9wZvymMgB45AAx6MZ5TP7vy+4deDJ4Vz68fNOWBKRfo3D8DgJFvnmNutx6c+MmNbg+nY2FlwMmjtGKdulIVJ/a40m9kEioF824brY65b8Wxdo4vz0yr/lgwSpHvp1pUj9oY1SfSK60WjBo1iqlTpxIfH49KpcLPz49+/foxZcoUpk+fjru7OwMGDABg3759dO/eHWtra7y9vZk3b57JDe5yc3MZNmwYdnZ2eHt7s2bNGvr162dyI726pFYb6DskE2utnvBQuxu/oJHQOugAyM2u+tzC2lZH/yfSSIq3Ji1J2YR40sLzHPrdjeN/u1aaF37MibseSMXeqRSVysBdD6ZgZaXn5GFnRWO6nrAj9txxXyZuniWAgU49c2jasogjv9ePSw/O7qV0vyebHz+tvcuN+jIVep0KS2u9yXQrGx1RoU5cumBNTpoVQb2zKubZOurwC84l+mjVP7gn97iSn2lJz6dSqpxfW6a8epFDvzhy7A9lEulbId9PQglSMaoF//nPf2jVqhXvvfcehw8fRqPR8OSTT7Jt2zYmTpzI/v37AUhISOChhx5i1KhRbN++nbNnzzJ27FhsbGwICQkBYMaMGezfv59vv/0WT09PFi9ezNGjR6/bXqm4uNjk3jM5OTm3/Df5BRWy9rtIrKz1FOarWTbGj/jz5i+j1wcqlYHxi+I4E2pP3DmtybyBw1MYMzceWzs9F6JsWDAiiLJS5c4/7nowhdZt83jh6duqnL9iZjvmrQ7js7/2U1aqorhIzcsvdCApXlvl8nVh45LmTFsRy8eHTlBWqkKvh//M8+P0ofrxw3vf4+kU5qvZv7v2qlc29jpa3pbDD+ub4xUQgaN7CYe/aUL0UUea+BWSnWpMnh3dTe/n5OheQs5V1azL/vrUk3Z3ZeLiXf17QNVU34czad2hkKkDAxXbxs2Q76daIhWjKkliVAucnJxwcHBAo9GYDCIVEBDAypUrK54vWLAAX19f3nrrLVQqFUFBQSQmJjJ37lwWL15Mfn4+27ZtY8eOHdx7770AbNmyBR8fn+tuf8WKFSxdurRW/6aLUdZMuj8QrYOOPoOymfWfeGY/1lq+fIDJy2LxCyxg1lOVx8X47Rs3jv3phGuTEh4fm8T89eeZ+WR7SktqPzly9ypi/LxIFoztTGmJpspl/m9qLPYOZcx/rjM5WZb0vCed+avPMGdEF2LP29d6TNXx8KgU2nbJZ8lzAaQmWNGhRy6TXza2MTq23/xVowFPpfPrLjdKi2v3mI1ae44PZwfwUvfuqDUGfDvk0e3hNOJP1fw4ZCZZEfa7C89vOFurMf5TE58SJi5LYP4zrWp9X9wq+X4SSpLESEFdu3Y1eR4eHk7Pnj1R/aNBwJ133kleXh4XL14kMzOT0tJSunfvXjHfycmJNm3aXHc78+fPZ8aMGRXPc3Jy8PX1vaXYy0rVJMYax32IPKWlTXABjzyfxrq5t7behm5iSCzd785i9tC2pCdXHhejINeCglwLEmNtOHvcns+PHaHXgAz2fVf7jfED2uXi4l7K+s9DK6ZpLKBDt2wGP5PA2EE9eHhYAhMevp34KONlhpgIe9p3zWLQMwm8tez67yslWFnrGTU7gZfHt+bQr87GmM5qadWugMfHJZs9MWp/ey6+rYt4dUqrWl93kxZFzPjsFMUFaopyNTh5lvL+5Da4Ny/CycNY9clJt8LJ80o7opx0K5q1y6+0rgOfeWLnUkqn+zNqPc7LWncswKVJGRt2R1RM01hAxzvyeXhUOoNadla8U8G1yPdT7ajvvdLMRRIjBdnZ1c01b2tr6xoNXnUzVCqwtGqg7/JaYWBiSBy9+mcw99l2pFy88ZmpSgUouN+O/+3CxCHdTKa9uDyCi9FaPv/AFxsbYzsow1Wb1+tVqMxUALCwNGBpZUBv2tQGvc58Mf3TA0+nce6klphw5S41Wmv1WGv1FGRrCP/dhUfnx+DmW4xjkxIi9jvj296YCBXmaog97sBdw5NMXm8wwIHPPenxWCoaS+U+k8f/dGDcPabJ88w347kQZcNnGzzMlhRVRb6fRG2SxKgOtW3bli+//BKDwVBRNdq/fz8ODg40a9YMFxcXLC0tOXz4MM2bNwcgOzubc+fOcdddd9VZnKPnJ3H4VwfSEqywtddx96NZdOqVx4Jn/esshqvZaHX4tLzSlsLLtwT/9oXkZmlIS1C+t9/kZbH0e/gSy8YFUpinxqW8LUh+rgUlxWq8fIu4a9Aljv7hTHaGBe5eJTw1IZGSIjWHr9Mb6lYUFlgQF2l6GaaoQE1OtnG6xkJPQpwtU5ec4/1VrSoupXXpmUnIpKrHw6kNNlodPn5X2rx5+Rbj367AeKwSrTl5wIHnX7pISZGalARrOvXI5d7H03nv5eZmiwlAa6+jz8BM3ntFmapD2D5nDAbw9C8kLc6Wr1/1w7NVAT2fTEWlgnvGJPDDel88Whbi5lvEd6tb4ORRQuf+l0zWE7HfiUsXbLhzqLKNrgvzNcRFmI7BVVSgJjez8vS6JN9PtUjaGFVJEqM6NGnSJNauXcvUqVOZMmUKERERLFmyhBkzZqBWq3FwcGDkyJHMnj0bV1dXPDw8WLJkCWq12uTym9Kc3cuYvS4eV48yCnI1xITbsOBZf47+br7GsYGdC3njy6iK5xOWJgLw06curH5RuR/UywYNN957Z+XOcJPpq2f78/OXTSgpVtPh9lweGZ2MvaOOrHRLTh92YMYT7ci+VHXjWaXpytQsmdCR0TOiWfLWKWy1OhIv2PLmS0GE/uGm2HYDO+Wz8tMrl1/GL74AwJ7P3Vg9y58VU1sxes5F5vwnGgfnMlIvWrPtjWb89yPlBp28UUwAfQdfAhXs/bZy777aUJhrwTevtyAr2RqtUxldHkzn4dlxFVWf+yckUFygYcf81hTkWNCqWw5Ttp/G0sb01+WvTz3x75qDV+tCReKs7+T7SShNZTBcXWgXN2Pt2rWsXbuW2NhYAPr160dwcDBr1641WW7fvn3Mnj2bEydO4OrqysiRI3nllVewsDDmqLm5uUyYMIFdu3bh6OjInDlz2LlzJ/fccw8rVqyoViw5OTk4OTnRjyFYqMzzo9xQqG3qX2NNla35zsavRZ9XuZ2LqGxD5K/mDqGSSX59zB1CZfKzc0NlhlL28g3Z2dk4OtbuGEmXfyPaTnkVjbVy34G64iLC33pJkb9BSVIxqiXTp083GWvo6qHML+vbty+HDh265nocHBz4+OOPK57n5+ezdOlSxo0bV1uhCiGEEOIaJDGqZ44dO8bZs2fp3r072dnZFTe/GzJkiJkjE0II8a8ibYyqJIlRPbRq1SoiIiKwsrKia9eu/PHHHw363mtCCCFEQyGJUT3TpUsXjhw5Yu4whBBC/NtJxahK9WDkECGEEEKI+kEqRkIIIUQjVD4GraLrb4ikYiSEEEIIUU4SIyGEEEKIcnIpTQghhGiMpPF1laRiJIQQQghRTipGQgghRCOkMhgfSq6/IZKKkRBCCCFEOakY/ZupVMZHfVEPbxypLy42dwiVqNX18HxFXY/eR+VUVlbmDqGSSS16mzuESiaeP2/uECrZGNDa3CFUVp++KwFQKd9GR9oYVakefgMLIYQQQpiHVIyEEEKIxqqBVnWUJBUjIYQQQohyUjESQgghGiHplVY1qRgJIYQQQpSTipEQQgjRGEmvtCpJxUgIIYQQopxUjIQQQohGSNoYVU0qRkIIIYQQ5aRiJIQQQjRG0saoSlIxEkIIIYQoJxUjIYQQohGSNkZVk4qREEIIIUQ5qRhdR79+/QgODmbt2rXmDsWsnpqcwpiXkvj6fXfeWdLMrLEMHpXOExNTcW1SRnSYLW8vbErEca1ZYtn29xm8fEsrTf92qzsbFii/n56akMCd/S/RzL+QkmI1YUcd2LyyBQkxthXLuLiXMGZeHF3uzEZrp+NijC07327K/h/dFInp6YmJ3Dkgk2atCikpUhN21J7Nr/tyMdoYk71TGf/34kW69smhiU8x2ZcsObDHhW1vNqUgV5mvo4HPJDHwmSQ8mxYDEHdey463fQn93fWqJQ0s2xTG7XdlsmxSWw78osw+upanp6Rw50PZ+LYuNu67UC0fLPfmYpSNItvT6yB0nSvnvnWgIE2DnYeONo/l0HVyZpU3mt+3qAlhO53o9VIanUdnm8yL+01L6FuuXIqwQmNtwKd7IQ9uTFYk7g498nhyUhoBHQtw8yoj5Dk/Dux2UmRbN6M+fV/ekLQxqpIkRuK6AjsXMHD4JaLDlPlyrom+D2cybkki6+c14+xRLY+OTWP5jmjG9GlD9iXLOo9n2kNtUGuufPL9gop4bWcUf3xfN1/SHbtn891HXpw7ZY9GY2DUzHiWbw1j/APBFBdqAJi1KhI7hzKWjm9DTqYl/QanM3/dOV54tBNRYXa1H1OPXL770INzJ+1QW8DoWRdYvj2Ccfd3pLhQg5tnCW4epWx61Zf487b/395dR0dxtQEc/m3cDUKEhCDBG9wCFC/uWoo3OMHd7UOKu1OCO4TiXpygwZ0QgRASiPtm5/sjZCAl0NBmd0O5zzl7DpmdnXl3dph999733iFX7iT6T/PDxi6JaX0LZnk8AGGvDVg3Jy8v/Y1RKKBO8xAmLH2AZ4tSBDz9cAyad3ml1Qt5CfdY9nvl5LGvCbp6El1HBTN963N6VC8sf55Z6eYqa+5ttaTWbyFYF0wi9I4hp0fbYWCuokSX9InP82OmhPgaYWqn/GQ7z46YcmZcLioOeUtu93hUSnj3xDDL401jZKLi+T0jjm61YeLvL9S2n38iO10vhX9OdKVpUFJSkrZD+CpGJimMXOLPghHOREdk/YX5a7XsGcaRLTYc225DwBMjFo10IjFeQb3277QST+Q7PcJD9eVHxTqRvPIz4PYlM43sf/yvxTixJxcBT0zwe2jKvJGu2OVOouAPsfI6RUtH88dGBx7fNud1oBHbljkRG6WH6w8xaolpXNfCHN9ti/8TE/wemDB3eP7UmNxSY/J/bML/+hbE56Q1wQFG3Lpkwfo5zlSsFZEuycxKPqdzcPWsDa/8jXn5wpj1C/KSEKdLkVLR8jr5i8TQ6teXzB+jnuQsM8Z2yM/xHTb4Pzbi+X1j5g7Kg51TMgVLxKtlfyE3jMhbOxaXmnFYOCkp0CAWpypxvLmd/ks95rUu56fYUmdeCDp66T8jlRIu/M8W95FhFP8lCqt8ydgUTMa1oXrOL4Brpy1YP8uBi9molQiy3/UyUyQNPL5BIjH6GyqVihEjRmBjY4O9vT2TJk2SnwsICKBZs2aYmZlhYWFB27ZtCQkJkZ+fNGkSpUqVYs2aNeTLlw8jo9QLzq5du3Bzc8PY2JgcOXJQp04dYmM/fJmtWbOGokWLYmRkRJEiRVi2bJnG3u/HPKcHceWkBTfPmWtl/x/T01dRsEQcNz6KRZIU3DxnTrGycVqMLJWevopaLcM5uj0HkEE/hAaYmKf+mo+O+NAQ/OCmOdUahmFmmYxCIVG9URgGhipu+1hoKKaUT2L6K1NzJXExuqhS1H/cdHQkqjcMxcgkhYc3U4+BoVEKI+c+YumUAoSHGag9hswytUg7dur5krUrk8DLS8ZE+KW2toY9MOD1dSPyVPtwLZJUcHK4HaW6h2NT8NMfdqH3DIkN0UOhgJ1NnVlfOS8HPBx4+zj7HEdNyU7XS+HfEV1pf2P9+vUMGTIEHx8fLl26RNeuXalSpQq1a9eWk6IzZ86gVCrp168f7dq1488//5Rf//TpU3bv3s2ePXvQ1dUlODiY9u3bM2vWLFq0aEF0dDTnzp1DklJT682bNzNhwgSWLFlC6dKluXnzJj169MDU1JQuXbpkGGNiYiKJiYny31FRUf/6fVdvGo7rD/H0b1ToX28rK1jYpKCrBxGh6U/Z8DA9nF0TP/MqzalcPxIzixSO7fhr3YpmKBQSvca+4N41c/yffKi5mt6/EKMXPWbn9WsokxUkJugwtW9hgv2Nv7C1rIup93h/7l01w/9xxnVgFtbJtO//isPbbNUaS95CsczbdgsDQxXxcbpM7VeUgGepMfUc7cf9mxZc1nBN0ZcoFBK9J7/k7hUT/B+p57Mq0yuc5BgdttbLg45uas1RxSHvKNTsQ2vPzVXW6OiC21+61tJEBaYmVVcX21B5dBgWTkp811rxR8fctD/mj5GVSi2xZzfZ7XqZWWJUWsZEYvQ3SpQowcSJEwEoWLAgS5Ys4eTJkwDcuXMHPz8/nJ2dAdiwYQPFixfn6tWrlC9fHkjtPtuwYQO2tqkX/hs3bqBUKmnZsiUuLi4AuLm5yfubOHEic+fOpWXLlgDky5eP+/fvs3Llys8mRjNmzGDy5MlZ9p5tHZPoM+Ulo9sXIDlRNCpmRr2f33H1tAXvQjRf6wTQb5IfeQvFM+zn4umWdx4ciKl5CqM7FSMyXA/3n94xetFjhv9cnBePs77GKF1MU/zJWzieoW2KZfi8iVkKU35/TMATYzYtyK3WWIL8jOnXvDSm5ilUrRfG0N8eM6JjCRxc4ilZKQLPFqXVuv+v5Tn9JS5FEhja3FVt+3h6yIzHf5hRZ14INgWTCHtgyIVpOTHJpaRIy2hC7xpye70lbbwDMyzGhtQWJYCyfcIpUD+1panWzBA2/JiPZ4fNKN7+3/9Iy+7E9fK/RyRGf6NEiRLp/nZwcODNmzc8ePAAZ2dnOSkCKFasGFZWVjx48EBOjFxcXOSkCKBkyZLUrl0bNzc36tWrR926dWndujXW1tbExsby7NkzPDw86NGjh/wapVKJpeXn+9NHjx7NkCFD5L+joqLSxfW1XN3isLZVsvTII3mZrh64VYqladcwGucriUql2e6iqHe6pCjByjZ98ad1TiXhodo9jXPlTqL0j9FM7Z5PK/vvM/E5FWqFM7x9ccJefyh6dciTQNPOr+nVoCQB71uR/B6a8kO5aBp3DGHJhPxqi6nv5BdUrBXBsHZFCXv9abeKsWkK//N6RHyMLlN6FSRFqd4vFGWyDsEBqS0vT++ZUcgtmmadX5GUqINDngR2Xb2Ubv2xix9w75oFIzuXyGhzatVvWhAVf4piaIsChAWrr0vq0m85KNMrgoKNU1uIchROIualHjdXWlOkZTSvrhoR/1aXjdXzyq+RUhRcmpmTO+ut6PinP6a5Urv7rF0/dLPpGoKFczIxwd/H10t2vF5mmhiVlqHv48z9F/T107cAKBQKVKrMNw+bmqb/Va6rq8vx48e5ePEix44dY/HixYwdOxYfHx9MTFK/vFavXk3FihU/ed3nGBoaYmiYdaNAfM+b07NW4XTLhs4LIPCZETuW5tLKf3Jlsg5PbptQumq0PDRXoZAoVTWGP7y02wVSt91bIsL08DmpmbqdDyT6TPSj8k/vGNmhOCFB6YtmDY1Sv7Skv5yuKlVqrY26Yuo72Z/KdcMZ0b4oIUGfnpcmZilMW/+Q5CQdJvUoSHKS5n9lK3RA30DFpsV5OLLTLt1zKw7cZNWM/Pic1nS3qES/aS+pXD+S4a1dCQlU38guAGWCzid9HQrdD+dL4ebROFVJX/h98FdHCjWLpnCr1JYg2+IJ6BqoiPDTx6FcAgApyRD9Ug9zx09HsP0XZcfrpfDviMToHypatCiBgYEEBgbKrTP3798nIiKCYsUy7jpIo1AoqFKlClWqVGHChAm4uLiwd+9ehgwZgqOjI8+fP6dDhw6aeBsZio/V/aSuISFOh+jwT5dr0p5VORm2IJDHt0x4dDN1uL6RiYpj27RT1wOpyVnddu84sdNGI8XDH+s32Y8aTcKY0rsw8bG6WOdM/dUeG61LUqIugc+NefnCiP5Tn7NmpgvREfq4//SO0lUimdSjiHpimuJPzWZvmdyzIPExOh/FpEdSok5qUrThIUbGKmYNLoCJWQomZqkJXOQ7fbV8iXQd8oJrZ615E2yIiWkKNRqHUqJCJOM8ihMeZpBhwXXoK8NPEk1185z+kpotwpnULV/qsbNNnSMrNlqXpISsTx7z1ozlxnIbzB2VWBdMIuy+Ibd+t6JI69Skx8hahZF1+oJrHT0J45xKrPOnxmZgLlGsfRRXF+bAzF6JWW4lvmusACjQQD0j04xMUnDM9yEue+ck8hePJzpCl9CXmi/6zq7Xy8xQSBIKSX3NOurctjqJxOgfqlOnDm5ubnTo0IEFCxagVCrp27cv1atXp1y5cp99nY+PDydPnqRu3brkypULHx8fQkNDKVq0KACTJ09mwIABWFpaUr9+fRITE7l27Rrh4eHpusu+R2f+sMYyRwqdh7/G2lbJ83vGjO2Qj4gw7dT1AJT+MRo7p2SObtd8cta4Q+oIyFlb7qdbPndEAU7syUWKUocJHkXoNjyASaseYWySwit/I+aOcOXqGWu1xNSk0xsAZm97mD6mYfk4vtsW1+KxFC2dWouy7sztdOt0qVqSkJdZ30pilSOZYb89xiZXErHRevg9MmGcR3FuXlTPMfinmnR9C8CcPc/SLZ8zyJnjaijqrzohlCsLcnB2ki3xb1MneCz2cyTlPL9u+gv3kWHo6EmcHG6HMkEHu5IJNN34CkNL9RReFyoZz+zdH45R78mvADi23Zq5g/OoZZ/C90UhSd9oSqcBGc183bx5c6ysrPDy8iIgIID+/ftz8uRJdHR0qF+/PosXL8bOLrVpftKkSXh7e+Pr6yu//sGDBwwePJgbN24QFRWFi4sL/fv3x9PTU15ny5YtzJ49m/v372NqaoqbmxuDBg2iRYsWmYo7KioKS0tLaiiao6fQXtLwiex4qn2uqlSLdIyz369MKSVF2yF8QmGQ/YaEq6Kj/34lDevz5Km2Q/jE8oLqKyr/x7LZtUApJfOn5E1kZCQWFlnbTZ/2HVGq4zR0DdTXMpqSlIDvprFqeQ/qJBKj/yCRGH2FbHYxBJEYZZZIjDJHJEaZlM2uBSIx0h7RlSYIgiAI3yExj1HGxKQLgiAIgiAI74kWI0EQBEH4Hol5jDIkWowEQRAEQRDeEy1GgiAIgvAdEjVGGRMtRoIgCIIgCO+JFiNBEARB+B6JGqMMiRYjQRAEQRCE90SLkSAIgiB8h0SNUcZEi5EgCIIgCMJ7osVIEARBEL5HosYoQyIx+g/TMTNFR5F97ielionRdgifyob3b1PFx2s7hE9lw+MkJSZqO4RPZbP7bUH2vC/ZjqBL2g7hE22dK2s7BCGbEImRIAiCIHynvtU6IHUSNUaCIAiCIAjviRYjQRAEQfgeSZJ6u8mzYRd8ZogWI0EQBEEQhPdEi5EgCIIgfIfEPEYZEy1GgiAIgiAI74kWI0EQBEH4Hol5jDIkWowEQRAEQRDeEy1GgiAIgvAdUqhSH+rc/rdItBgJgiAIgiC8J1qMBEEQBOF7JGqMMiRajARBEARBEN4TLUaCIAiC8B0S8xhlTCRGatS1a1ciIiLw9vb+7Dp58+Zl0KBBDBo0SGNx/VWj9sE0ah+MXe7Uu5X7PzFhyzJnrp21IVfuBNafupbh66YNLML5Izk1Gaqsbb8QPMYEs3dNTlZMdNJKDI07h9Go81vsnJMA8H9kxOb5dlw7baGVeNLksE/CY0ww5WtFYWik4tULQ+YOycOT2yZaiSc7Hqd2niFUaRiJs2siSQk63L9mwtppDgQ9M9JaTB/LDuc3aOezi4/RYfvsPFw5YkNkmD75foil62Q/XEvFArBjrhMX/8jJ21cG6BlI5HeL4ecRgRQsEwPAvYsWTG5bPMNtTz9wW96OumSXz07450RipGVXr17F1NRUqzGEvTZg3Zy8vPQ3RqGAOs1DmLD0AZ4tShH03IRfqlRIt36Ddq9p5fGSa2ettRJvoZJxNOr4luf3tfslFhqsz+/THXjpZ4hCAT+1ecekdS/oV7cQ/o+1E5uZpZJ53k+4fdGccR3zE/FWj9z5EomJ1NVKPJA9j1MJ91j2e+Xksa8JunoSXUcFM33rc3pUL0xivPaOFWSf8xu089mtGF6AwEcmeC58go1dMmf35GRq+2LMP3ULG4ckHPMn8Ov//LDLk0BSgg4HVzvwvw5FWXz+JhY5lBQuF82qG+l/zG2b7czdC5YUKKnepCg7fXaZIu6VliFRY6Rltra2mJho55d8Gp/TObh61oZX/sa8fGHM+gV5SYjTpUipaFQqBeFhBukeleu85dzhnCTEaf4LxMgkhZFL/FkwwpnoCO1+gfkct+TqKQte+Rny8rkhXr85kBCrQ5Gy6r34fknbvm8Ie2XA3CF5eORrSkigITfOWhDsb6i1mLLjcRrbIT/Hd9jg/9iI5/eNmTsoD3ZOyRQsEa+1mCB7nd+g+c8uKV4Hn0M56DjWn2KVorHPl0DboUHY503g2EY7AKq2CKPEj5HYuSTiXDiezhP9iY/Ww/9B6nVUz0DCKley/DCzVnLtmA012r5BoVBL2ED2++yEf04kRllg165duLm5YWxsTI4cOahTpw6xsR8uHHPmzMHBwYEcOXLQr18/kpOT5efy5s3LggUL5L8VCgXLly+nQYMGGBsbkz9/fnbt2qWx96KjI1G9YShGJik8vPlpc7lr8RgKFIvl6C47jcX0Mc/pQVw5acHNc+Za2f/n6OhIVG8WjqGJigfXtNcCWKluJI9vmzB2pR/bb91l6dFHNPjlrdbi+avscpz+ytQiBUDrX2jZ9fwGzXx2KSmgSlGgb5h+AhwDIxUPr3x6TJRJCk5szoWJhRKXYnEZbvPaMWuiw/Wo2TZULTGnyc6f3eek1Rip8/EtEl1p/1JwcDDt27dn1qxZtGjRgujoaM6dO4f0vgnx9OnTODg4cPr0aZ4+fUq7du0oVaoUPXr0+Ow2x48fz8yZM1m4cCEbN27k559/5s6dOxQtWjTD9RMTE0lMTJT/joqK+ur3kbdQLPO23cLAUEV8nC5T+xUl4NmnLVn1Wr8m4KkxDzJImtStetNwXH+Ip3+jQhrf9+fkLRLPgv1PU49brA5TPPIS8ER7zegOeZJo3CmMPatt2bbIjkKl4ugzJYjkZAUndtpoLa7sdpw+plBI9J78krtXTPB/ZKy1OLLj+Q2a/eyMzVQUKhvN7gVO5HZ9gpVtMue9c/L4ujn2eRPk9a6fsGJB30IkxetglSuZcVvuY2GjzHCbp7flolT1CHI4JqklZsi+n53wz4gWo38pODgYpVJJy5YtyZs3L25ubvTt2xczMzMArK2tWbJkCUWKFKFx48Y0atSIkydPfnGbbdq0oXv37hQqVIipU6dSrlw5Fi9e/Nn1Z8yYgaWlpfxwdnb+6vcR5GdMv+alGdS2FAe3OjD0t8fkKZD+F5iBYQo1GodqpbXI1jGJPlNe8lt/F5ITs89pG/TMkL4/FWJAo4Ic2JCTYQsDyFMw4e9fqCYKHXh615h1Mx15ds+Ew5tzcnhLDhp1CtNaTJD9jtPHPKe/xKVIAjP6uGgthux6foPmPzvPhU+QJAW9y5Xjl/yVOPy7A1WahaGj86H5oXjlKGYfvc1U77uUqhHB/D6FiAz79Hf+21cG+J6xoubPb9QWb3b+7IR/RrQY/UslS5akdu3auLm5Ua9ePerWrUvr1q2xtk4tTC5evDi6uh+a5x0cHLhz584Xt+nu7v7J376+vp9df/To0QwZMkT+Oyoq6quTI2WyDsEBqb+Wn94zo5BbNM06v2LxRFd5nar132JopOKkt+YTI1e3OKxtlSw98khepqsHbpViado1jMb5SqJSqbGA4DOUyTq8epFav/P0jgmFS8XRvHsoi0Z+fXKaFd690fukKDbwqRFVG0ZqJZ402e04pek3LYiKP0UxtEUBwoINtBZHdj2/QfOfnX3eRCbvvkdCnA7x0bpY2yUzv09BcuX50CpuZKLCPl8C9vmgUNkYBlQtxaltuWjh+Srdtk7vsMXcWkm5uuFqiRWy92f3t8QEjxkSidG/pKury/Hjx7l48SLHjh1j8eLFjB07Fh8fHwD09fXTra9QKFCpsvYGMoaGhhgaZm1xrUIH9A3Sx1mv1Wt8TtkQGa7/mVepj+95c3rWKpxu2dB5AQQ+M2LH0lzZ5sKjUIC+gfauBvevmuJcIDHdstz5E3nzUvOf2Zdo+ziBRL9pL6lcP5LhrV0JCdRecTp8O+c3aO6zMzJRYWSiIiZCl1tnrOg4xv+z60qS4pPWGkmCP3fkolrrUPT01Rfvt/TZCZkjEqMsoFAoqFKlClWqVGHChAm4uLiwd+/ef7y9y5cv07lz53R/ly5dOitCzVDXIS+4dtaaN8GGmJimdpeVqBDJOI8Pc4E45Innh/JRTOiZ8fwg6hYfq/tJ/UdCnA7R4Z8u15Ruo4O5esqc0JcGGJulULNFBCUqxzD2l/xaiQdgz+pczN/3mJ/7h3B2vxWFS8XRsMNbFozQ3nwq2fE4eU5/Sc0W4Uzqlo/4GB2sbVMHRMRG65KUoPnukOx4foN2PjvfPy1BUuBYIJ7XL4zY+D8XcheIp0a7UBLidNizKDflfgrH2i6J6Hf6HFlvz7vXBrg3Tj/I4O4FC94EGFG7fYjaYoXs+9llhpjgMWMiMfqXfHx8OHnyJHXr1iVXrlz4+PgQGhpK0aJFuX379j/a5s6dOylXrhxVq1Zl8+bNXLlyhbVr12Zx5B9Y5Uhm2G+PscmVRGy0Hn6PTBjnUZybFz/MU1S3VQhhrw25cd5KbXF8a6xyKhm+KACbXErionXxe2DE2F/yc+Os9kalPL5lwpTu+eg2KpgOg17zOtCAFRNzc3qv9gqvs+NxatI19Ut0zp5n6ZbPGeTM8R3aO1bZjTY+u7hoPbbOzMPbYAPMrJRUbPCO9iMD0NOXUKXAq6fGzN2Zi+hwPcytlRQoGcPk3XdxLpx+qoVTW+0oXC6K3K7Zo5ZN+HaIxOhfsrCw4OzZsyxYsICoqChcXFyYO3cuDRo0YPv27f9om5MnT2bbtm307dsXBwcHtm7dSrFixbI48g8WjC34t+usn5+X9fPzqi2Gf2JEm7+PW53mD9Vufczn+JywxOeEpbbDkGXH41TPsaS2Q/hb2j6/QTufXeUmb6ncJOMpJgyMJIateZyp7Qxc+iQrw/oq2eGzyxQxwWOGRGL0LxUtWpQjR45k+JyXl9cnyz6eswjgxYsXn6zj6OjIsWPHsiA6QRAEQRC+hkiMBEEQBOE7JGqMMiYmXRAEQRAEQXhPtBhlM9I32icrCIIgfGPEPEYZEi1GgiAIgiAI74kWI0EQBEH4Dokao4yJFiNBEARBEIT3RIuRIAiCIHyPVFLqQ53b/waJFiNBEARBEIT3RIuRIAiCIHyPxKi0DIkWI0EQBEEQhPdEi5EgCIIgfIcUqHlUmvo2rVYiMfoPk+ITkBQp2g5DpjAw0HYIn5ASE7UdwqcU2bAhV8o+55HwlRTZ7+upXb7q2g7hE0dfXtF2COlERauwLqTtKL5P2fAKLAiCIAiC2kmS+h+ZNGPGDMqXL4+5uTm5cuWiefPmPHr0KN06CQkJ9OvXjxw5cmBmZkarVq0ICQlJt05AQACNGjXCxMSEXLlyMXz4cJRK5VcdFpEYCYIgCIKgVWfOnKFfv35cvnyZ48ePk5ycTN26dYmNjZXXGTx4MPv372fnzp2cOXOGV69e0bJlS/n5lJQUGjVqRFJSEhcvXmT9+vV4eXkxYcKEr4pFdKUJgiAIwncoO818feTIkXR/e3l5kStXLq5fv061atWIjIxk7dq1bNmyhVq1agGwbt06ihYtyuXLl6lUqRLHjh3j/v37nDhxAjs7O0qVKsXUqVMZOXIkkyZNwiCT5RyixUgQBEEQBLWJiopK90jMRG1nZGQkADY2NgBcv36d5ORk6tSpI69TpEgR8uTJw6VLlwC4dOkSbm5u2NnZyevUq1ePqKgo7t27l+l4RWIkCIIgCN8jSQMPwNnZGUtLS/kxY8aML4alUqkYNGgQVapU4YcffgDg9evXGBgYYGVllW5dOzs7Xr9+La/zcVKU9nzac5klutIEQRAEQVCbwMBALCws5L8NDQ2/uH6/fv24e/cu58+fV3doGRKJkSAIgiB8hxSShOIrRo79k+0DWFhYpEuMvsTT05MDBw5w9uxZnJyc5OX29vYkJSURERGRrtUoJCQEe3t7eZ0rV9JPu5A2ai1tncwQXWmCIAiCIGiVJEl4enqyd+9eTp06Rb58+dI9X7ZsWfT19Tl58qS87NGjRwQEBODu7g6Au7s7d+7c4c2bN/I6x48fx8LCgmLFimU6FtFiJAiCIAjfI9X7hzq3n0n9+vVjy5Yt7Nu3D3Nzc7kmyNLSEmNjYywtLfHw8GDIkCHY2NhgYWFB//79cXd3p1KlSgDUrVuXYsWK0alTJ2bNmsXr168ZN24c/fr1+9vuu4+JxEgQBEEQBK1avnw5ADVq1Ei3fN26dXTt2hWA+fPno6OjQ6tWrUhMTKRevXosW7ZMXldXV5cDBw7Qp08f3N3dMTU1pUuXLkyZMuWrYhGJkSAIgiB8hzRVY5QZUibWNTIyYunSpSxduvSz67i4uHDo0KFM7zcjosZIEARBEAThPdFiJAiCIAjfo4/mGlLb9r9BIjHKZl68eEG+fPm4efMmpUqV0sg+f6gQTeveIRR0iyOHXTKTuxfg0jGrDNftP92fRh3DWDHZCe+1dhmu82+16/OKKvXCcSoQT1KCDvdvmPH7b84EPTeW12nQ/g01m76lQPFYTM1VtCpRhthozZ7OP1SMoU3f0NTjZq9k0q95uXTEUsMxRNOmdwgF3eLJYZ/MJI/8XDpq9dEaEp2HBVO/fRhmlincv2rGojHOvPIz0micAE26htG6zxtsbJU8v2/MsnG5eeRrovE4ANp5hlClYSTOromp59g1E9ZOcyDomeaPy8dy2CfhMSaY8rWiMDRS8eqFIXOH5OHJbe0cp4+17ReCx5hg9q7JyYqJTn//gizyQ4VoWvcK/nB96uHKpWPW8vNGJin8OioI97rhWFgreR1oyL51dhzanCvLYoiL0WH9LAcuHrYk4q0eBYrH02dqEIVLxcvrBDwxZO3/HLl92YwUJbgUSmT8aj9yOSUDsHCEEzfPmfM2RB9jExVFy8XiMfYVeQr+/SzQgmaJrrRMqlGjBoMGDdJ2GGphZKLC774xS8c5f3G9yvXCKVI6lrDX+mqNx61iNPs35mJwy2KM7lwEPT2JaRseYWicIq9jaKTi2hlLti9zVGssX2JkouL5PSOWjNHcl0SGMdw3YclnPru2fUNo1i2UxaPzMLBJYRLidJi+6Sn6huocivKp6k3D6TnxFZvn2dOvXiGe3zdi2pbnWOZI1mgcaUq4x7LfKyeDGhdk9M/50dWTmL71ebpzTNPMLJXM835CilLBuI756VGzCKumOBITqau1mNIUKhlHo45veX5f84mjkUkKfg9MWDreJcPne44PpFz1SGYPyk/P2m54r7Wj3xR/KtUJz7IY5g915sZZM0Ys9mfFyYeUrR7NqHauhAWnXgtfvTBgSPOCOLsmMHvXU1acfMQvg15jYPShyaRgiXiGzg9g9ZmHTNvyDCQY074AKdo75UCS1P/4BokWoywiSRIpKSno6X17h/Tan5Zc+/PLLR057JLoMyWQcZ0KMmXdU7XGM65r4XR/zx2en+3Xb1LQLZa7V1InCfNelzpZV4mKUWqN5Uuunbbg2unMTVqmvhgsuXb6c5+dRHOPN2xdZC+3AM4alJftN29TuV4EZ/6w0VicLXuGcWSLDce2p+5z0UgnKtSOol77d+xYop6Wxy8Z2yF/ur/nDsrDjrv3KFginrs+ZhqPB6Bt3zeEvTJg7pA88rKQwMwPMVYXI5MURi7xZ8EIZ9oPyPxtFbLKtT+tuPan1WefL1Y2hhO7c3L7cur/xcNbc9GwQyiFS8Vy+YT1Z1+XWYnxCs4fsmLSOj/cKqXe6b3TsNdcPm7BgQ056DryNV4zHahQK4ru44Pl1znmTUq3nYYd38r/tneGLiOD6VOnCCGBBp+sK2iXaDHKhK5du3LmzBkWLlyIQqFAoVDg5eWFQqHg8OHDlC1bFkNDQ86fP0/Xrl1p3rx5utcPGjQo3RBElUrFrFmzcHV1xdDQkDx58jBt2rQM952SksKvv/5KkSJFCAgIUOO7/DyFQmL4ghfsWmmH/2Pjv39BFjMxT/1JFR3x7SWd2mSfJ4kcdkpunDOXl8VF6/LQ15SiZWM1FoeevoqCJeLSxSFJCm6eM6dY2TiNxfElphZp55j2Wmcq1Y3k8W0Txq70Y/utuyw9+ogGv7z9+xeqmef0IK6ctODmR59fdnL/uhmV6oSTwy4JkCjhHkXufAlcP5s13dopKQpUKQoM/tLKamik4t4VM1QquHLSgtz5ExnTPj9t3YozoFFBLh7+/P4T4nQ4tt0G+zyJ2Dpqp9UUQCGp//EtEt80mbBw4UIeP37MDz/8IM+HkHan3lGjRjFnzhzy58+PtXXmfp2MHj2a1atXM3/+fKpWrUpwcDAPHz78ZL3ExETat2/PixcvOHfuHLa2thluLzExMd3diqOisrYVpW3f16SkwL7fs67PPrMUCone4/25d9UM/8far7P4ltjYpl5wI8LSd31GhOrJz2mChU0Kunqp+/1YeJgezq7ar69QKCR6T37J3Ssm+D/SfOKfxiFPEo07hbFntS3bFtlRqFQcfaYEkZys4MROzbXufax603Bcf4inf6NCWtl/ZiyfmIcBM16w+cotlMkKVCpYOCovd69kTSJnYqaiaNlYtiywJ0/BF1jZKvnT25oH101xzJtIRJge8bG6bF+Si64jX+MxNphrp82Z0j0vs3Y9pYT7hx8h+71ysOZ/jiTE6eJUIIEZ256hb/CNZg//YSIxygRLS0sMDAwwMTGR77eSlshMmTKFn376KdPbio6OZuHChSxZsoQuXboAUKBAAapWrZpuvZiYGBo1akRiYiKnT5/G0vLzvz5mzJjB5MmTv/ZtZYqrWyzNur3Bs1FRQKGWfXxJvyn+5C0cz9A2mZ/OXRC+huf0l7gUSWBoc1etxqHQgSe3jVk3M7Vu7tk9E/IWTqBRpzCtJEa2jkn0mfKS0e0LkJyYfTsXmnYNoWjpWCb+WpA3Lw34oWI0/ab68y5En5sXsqbVaMRif+YNycMvZX5AR1fC1S2OGs3DeXLbBOl9Q5J7vSha9gwFoMAP8dy/ZsrBDTnTJUa1WoZTplo0797os2t5Lqb1ysv8fU/S1SJplLrrgESN0fepXLlyX7X+gwcPSExMpHbt2l9cr3379jg5OXHq1CmMjb/8K3b06NEMGTJE/jsqKgpn5y8XUmfWDxVisMqpZOOlO/IyXT3oMS6IFr++oUsVtyzZT0b6Tn5BxVoRDGtXlLDXBmrbz3/Vu9DUliKrnMm8e/Oh1cjKVsmze5prGYl6p0uKMnW/H7POqSQ8VLuXoH7Tgqj4UxRDWxQgLFi759i7N3r4P05f3Bz41IiqDSO1Eo+rWxzWtkqWHnkkL9PVA7dKsTTtGkbjfCVRqTT/Y+ljBoYqug5/ydRerlw5ZQWA30MTChSLo1XP11mWGDnmTWLOnqckxOkQG61DDjsl03q54OCS+L5FVMKlUEK61zgXTODeFdN0y0wtVJhaJJE7fxJFyrygVdEfuHDYkpotIrIkTiFriMToXzI1TX/i6+jofDKDZ3Lyh26Lv0ty0jRs2JBNmzZx6dIlatWq9cV1DQ0Nv+o+MF/j5O4c3DyXvsB42qYnnNxjw/EdOdWyT5DoO9mfynXDGdG+KCFB2i9A/Ra9DjDgbYgepatG8/x+ajekiVkKRUrFcmCDuj67TymTdXhy24TSVaPl6QwUColSVWP4wyuHxuJIT6LftJdUrh/J8Nau2aLI+f5VU5wLpO9azJ0/kTcv1TsK9HN8z5vTs1b6gRBD5wUQ+MyIHUtzaT0pAtDTl9A3kFD9ZZClKkWBQg2NXEYmKoxMVERH6HL9jAXdx71C30CiUMk4gp6lP4dePjeUh+pnRJIASUFykvZa4xSq1Ic6t/8tEolRJhkYGJCSiXGVtra23L17N90yX19f9PVTL24FCxbE2NiYkydP0r17989up0+fPvzwww80bdqUgwcPUr169X/3Br7AyCQFx7wfLsj2zonkLxZHdIQeoa8MPil6TklWEB6qT9Bz9Qzd7TfFn5rN3jK5Z0HiY3Swzpk6YiM2Wo+k90361jmTsLZNxjFv6q+0vEXiiY/R4c0rQ2IiNXNaG5mk4Jjvw2gSe+ck8hePJzpCl9CXmml9+LvPznttLtoPeM1LP0NeBxrSZdgr3oboczHdXEfqt2dVToYtCOTxLRMe3TShRY9QjExUHNumndoZz+kvqdkinEnd8qWeY+9rrmKjdUlK0M4X1Z7VuZi/7zE/9w/h7H4rCpeKo2GHtywYoZ3pIOJjdT+puUqI0yE6/NPl6vT5c1yX0FeG3L5kTvcxQSQl6BDy0pASFaOp3SqMVVPzfGGrX+fan+ZIEjgXSOSlnwFrpubG2TWBuu1Si+Pb9H3D9N4u/FAphpKVY7h22oLLxy2ZvSt1BG+wvwFn/rCibPVoLG2UhAbrs2OJHQbGKirU1t7IWiFjIjHKpLx58+Lj48OLFy8wMzND9defKO/VqlWL2bNns2HDBtzd3dm0aRN3796ldOnSQOq9XkaOHMmIESMwMDCgSpUqhIaGcu/ePTw8PNJtq3///qSkpNC4cWMOHz78SR1SVilUIo5ZOx7Lf/eaGATA8Z05mDs0r1r2+SVNOr0BYPa29AXpc4fl4/ju1AL0Rh3e0HHQqw/P7XjwyTrqVqhkPLN3P5P/7j05NZ5j262ZOzjrLspfjiGO2TuffIhh0svUGHbYMHdIXnYss8PIRMXA3wIws0jh3lUzxnZ01XjNyJk/rLHMkULn4a+xtlXy/J4xYzvk+6QwXFOadE39Qpuz51m65XMGOXN8h3aStce3TJjSPR/dRgXTYdBrXgcasGJibk7v1U482UWhErHM2v6hO6/XhEDg/fVpWH5m9C9AtxFBjFj4HHMrJW+CDFk/24mDm7LuOhAbpcu6GQ6EBetjbpVClYYRdBsVjN7707dKg0gGzAxi2xI7lo93wil/6uSOP1RMrS8yMFRx18eMvattiYnUxSqnErdKMczf9wSrnMov7FnNRI1RhhRSZu7cJvD48WO6dOnCrVu3iI+PZ926dXTr1o3w8HCsrKzSrTtx4kRWrlxJQkICv/76K8nJydy5c4c///wTSB2uP2PGDFavXs2rV69wcHCgd+/ejB49OsOZr+fNm8ekSZM4cuQIlStX/ttYo6KisLS0pKZeK/QU2vniyZCu9ieq+yspUfujoj6hk/2OEyptzkL3DVFov3vpW6DQy0bXpfeO+F/RdgjpREWrsC70nMjISCwssna+tLTviBoVxqKnp75JO5XKBP68Mk0t70GdRGL0HyQSo8wTiVEmicQoc0RilCkiMfp7GkmMymsgMbr67SVG2XcMpiAIgiAIgoaJGiNBEARB+A4pJAmFGjuN1LltdRItRoIgCIIgCO+JFiNBEARB+B6JUWkZEi1GgiAIgiAI74kWI0EQBEH4HkmAOmen/jYbjESLkSAIgiAIQhrRYiQIgiAI3yExKi1josVIEARBEAThPdFiJAiCIAjfIwk1j0pT36bVSSRG/0Fpd3lRSslajuQvJHVW+f0zUnY7RpAtjxOSuCVI5ohbgmSGIht+YUZFZ6//d1ExqfGIu3ZpnkiM/oOio6MBOJfyh5Yj+Qst3kT6m5K9rs/C1xDfYZmTDX+PWBfSdgQZi46OxtLSUj0bF/MYZUgkRv9Bjo6OBAYGYm5ujuJf3NQyKioKZ2dnAgMDs80NAEVMmSNiyhwRU+aImDInK2OSJIno6GgcHR2zKDohs0Ri9B+ko6ODk5NTlm3PwsIi21x40oiYMkfElDkipswRMWVOVsWktpaiNCrU2/v7jbZ+i1FpgiAIgiAI74kWI0EQBEH4Dol5jDImWoyEzzI0NGTixIkYGhpqOxSZiClzREyZI2LKHBFT5mTHmISvp5DEWEBBEARB+G5ERUVhaWlJ7eLD0dNVXxKnTEnk5L3ZREZGZrs6sC8RLUaCIAiCIAjvicRIEARBEAThPVF8LQiCIAjfIzHBY4ZEi5EgCIIgCMJ7osVIEARBEL5HosUoQ6LFSBDURAz4FARB+PaIxEgQstidO3cA/tV96rJScnLqHTtTUlK0HMnnpSWR4eHhWo1DpUp/R/PskNymxSQIWU6lgcc3SCRGQpbLDl8m2nL06FFq167N77//ru1QCAoK4t27d+jr63PgwAG2bNmCUqnUdlgZUigU7N27l+7duxMcHKy1OHR0Ui+Jly5dkuPS9vmcFtOxY8d48OCBVmPJzj73OWn78/srX19fYmNjtR2G8AUiMRKylEqlkltKHj58yLNnz3jy5ImWo/qytAvno0ePOHXqFBcuXCAwMPAfbcvR0ZFWrVoxd+5c1q1bl5VhfpWoqCh69OhBu3btWLduHU2bNsXY2Bg9vexVVph27J88ecKECRNo3Lgx9vb2Go/j41YZX19fqlatyrJlywDtJUcfx3T+/Hk8PT1ZtGgRL1680Hgs2d3H153Xr1+n+/+rzeQ2MTEx3d8PHz6kcePGvHnzRivx/FXaLUHU+fgWZa+rpPBNkyRJ/nU7ceJE9u3bR3x8PPHx8QwePJgBAwagq6ur5SjTkyQJhULBnj17GDhwIPb29sTExGBnZ8fAgQNp0aLFV23Pzc2NkSNHYmJiwpw5czAyMqJ9+/Zqiv7zTE1N6dWrFyNHjqRXr14sWbKE1q1bo1Qqs1VypFAo8PHx4dSpU5QtW5ZffvlF/kw05ePzdtmyZTx8+BAjIyP69+9PUlISgwYNkr9cNRXXxzHNmTOH169fExMTw/r161EoFAwdOpQCBQpoJJa/k3Zcbt26xYMHD9DV1SV//vyULVtWYzGkHavRo0dz8OBBnj9/ToMGDahVqxZ9+vTR+OcHsHDhQvbu3cvevXuxtrYGUru1jY2NyZUrFykpKdnueiikEi1GQpZJu+hMmzaNpUuXsmDBAs6fP0+dOnUYOnQojx8/1nKEH6T9GlcoFFy+fBkPDw9Gjx7N1atXmT59OufPn//qeNNqeKKiojA1NSU6OpohQ4awdevWLI//SyRJQldXl+LFixMXF0fu3Lk5duwYb9++RU9PL9vVGi1YsICxY8fi4+NDfHw8Ojo6Gv2Fn3bejhs3jkmTJuHu7s7ixYv55ZdfGD9+PLNnz5bX01RcaTHNnDmTKVOmULt2bby9vRk6dCgnTpxg3rx5PH/+XCOx/B2FQsHu3bupV68ey5cvZ+HChbRr145Vq1apfd8ft6qtWrWK9evXM3LkSFauXImOjg5r1qxh8uTJcpyaVKVKFW7fvo2Hhwfv3r0DIDIyEgMDA0xNTbNHUpQ2Kk2dj2+QSIyELJWQkMCVK1dYunQpNWrU4MKFC3h7e7Ns2TKKFi0qFwJry/Xr14HUX5hp9TaXL1+mZs2a9O3bl4CAAIYMGUKPHj0YOXIkAK9evcrUtnV1ddmzZw8//vgjiYmJNG/eHDs7OyZMmICXl5da3k9G0r4ArK2tOXr0KHPmzCE0NJTOnTvz9u1bdHV15eQoKSlJY3F9ztatW+nduzevX7/Gy8uL6OhojX+JhYSEcPToUWbPnk379u3x8PBgxowZDB06lIkTJ7J48WJAc8mRJEnEx8dz5MgRBg4cSIMGDahQoQJTp06lT58+7Ny5k9mzZ2eL5OjmzZv07t2biRMncubMGWbMmIG/v79aY0s7f9Naii5cuEBAQABTp06lQ4cOdOjQgQULFtC4cWP++OMPDh06pLZYPqdcuXKcPn2aCxcu0K1bN2JiYkhISMgWdWvCl4nESMhSsbGxXLhwgTx58nD69Gk6derE9OnT6d27N4mJiUyZMgVfX1+txHbo0CE6dOjAokWLAOQuJaVSibOzM69fv6Zy5crUq1ePpUuXAqnF1Lt27SImJuZvtx8eHs7s2bMZOnQov/32G4sWLcLLy4tatWrxv//9T+0tRx+P7IqLi8PQ0JBixYrRrFkz+vTpQ0REBF27duXdu3fo6uqyZMkSdu7cqdGLdNq+Xr58ycuXL7l37x6Q2oXVpEkTVqxYwa5du+TiVE3Fpqury4sXLwgLC5OXOTk54eHhQcmSJRk4cKB83mgiaVMoFBgYGGBoaCgfi7REfvDgwTRo0IAdO3awcOFCrdccPXjwgLJly9KnTx/8/f3p2LEjPXr0YObMmQA8e/YsS/fn4eHBn3/+CaS2GD169Igff/yR6dOnExoaKq/n4OCAp6cnKpWKCxcuZGkMmVWyZEmOHDnCpUuX6NWrFzExMRgbG7N9+3YOHz7M9evXOXv2LNu3b9dOkquS1P/4BonESPjHMhpGnCNHDtq0acOcOXNo3LgxCxYsoHfv3gCEhYVx9epV7t69q+lQAcifPz+VK1dmx44dLFmyRF5ubW2Nl5cXJUuWpGXLlqxYsULuztm1axe3b9/+bLN32hd3ZGQkZmZmhIaGYmj44W7VpUqVok+fPhgYGDBixAjWrl2rlveWVj9x8OBBfv75ZypWrIiHhwcHDhxAT0+Pn3/+mT59+hAZGcmPP/5I7969GTBgACVLltRo3YxCoWDfvn00b96cOnXq0KJFCwYMGADAhg0bKF++PLNmzZKTUXXEllGyZWlpSZMmTfDx8Uk3WMDZ2ZkyZcpQu3Zt5syZo7bkNqP/S7q6uhQqVIjt27fz8uVL9PT05PXy5s1LsWLFOHPmDAcOHPjs+9IESZIwNTXl8ePHVK1alfr168v/v86ePcvvv/+eLuH8N5KSktDX16datWryvgsXLszhw4fR09Pj9OnT6RJFW1tbypUrx7179zTWhZz2OTx79gx/f39Kly7N0aNHOXHiBG3atCE6OppJkybh6elJ165d6dy5MyNHjhStSNmISIyEf0SlUsnN2EFBQfj7+8vPlSxZkjNnzlC/fn3atGkDpLZi9OzZk/j4eI0XIy9btozg4GCKFCnChAkTKFq0KJs3b5ZbADw8PGjdujXv3r2jQ4cOxMbGEhkZyZgxY/jjjz8YOnQoxsbGGW47bZh579698ff3p0KFCvj5+fH27Vt5nVKlSlG5cmUUCgVr164lIiIiyy+CCoWCP/74g7Zt21KjRg1GjBiBqakpnTp1Yvfu3XJyNHbsWKpWrUpwcDC3b9/mhx9+yNI4/i7GY8eOyV1VBw8eZPjw4SxZsoR9+/YBsHHjRipUqMCIESPYt29flh+nj0cvhYSEyKOX9PX1adasGbdu3WL16tU8evQIgOjoaIKDg2nbti3u7u4cPHiQxMTELI3r4/9Lt27d4vbt29y+fRuAxYsX4+TkRL169Xjy5AnR0dGkpKRw9+5dRo0aRbVq1Zg5c6bcRaNuae/7+fPncpKWK1cuLl26RKVKlWjcuLFc3wOwY8cOnj17lu7Hwj+lUqkwMDBgxYoV6Ovrs3btWrZt20ZCQgL16tVjz549HD9+nBkzZsj1gTExMdy8eRMnJyeN1PSkJf979+6ldevWbNy4kXfv3lG6dGmOHz+Oi4sLtra2HD16lNu3b3PlyhXu3LnD3bt3tVNML2qMMiYJwr8wZswYydXVVXJwcJDatWsnhYeHS5IkSRMmTJAKFiwolS9fXmrSpIlUqVIlqVSpUlJSUpIkSZKkVCo1Ep+vr69Uv3596cmTJ/Kyx48fS927d5cqVaokLViwQJIkSXrz5o3UoEEDydTUVCpSpIhUtWpVydnZWbpx48Yn20xJSZFUKpUkSZL0/PlzqVChQtKaNWskSZKk1atXSzY2NtKiRYuk0NBQ+TW9e/eWfvvtNyksLEwt7/PJkydSuXLlpGXLlkmSJEkhISGSk5OTVLRoUcnMzEzasWNHuvUTEhLUEsffGTRokDRq1ChJkiTpxYsXUv78+aXevXtLkiTJx1SSJKlnz57S06dPs2y/KpUq3fYnTJgglShRQrK3t5dKlCghbdq0SZIkSdq0aZNUvHhxqWzZslKzZs2ksmXLSiVLlpQkSZKGDRsmVahQIUvP3Y9jGjlypFSoUCEpZ86ckrOzs9S1a1dJpVJJAQEBUuXKlSVbW1updOnSUrFixaQCBQpIkiRJO3bskIoVKyZFR0dnWUx/F+u+ffukAgUKSMuXL5eXjRs3TlIoFNLmzZulwMBAKTg4WBoxYoSUI0cO6d69e1kei1KplMqXLy+VLFlS2r17t3w+e3t7SwqFQnJ1dZXatm0rNWvWTCpTpoyUmJiY5TF8zuHDhyUjIyNp6dKl0suXL9M95+vrK+XMmVNq06aN9PbtW43F9FeRkZESINXJP1CqX3CE2h518g+UACkyMlJr7/WfyD7jdoVvwse/bjdu3MjGjRuZNm0aKSkpTJo0iQYNGrBz504mT55MuXLl8PX1JTQ0lPr169OzZ0/09PQ0OmS8ZMmSbNu2DUtLS65cuULu3LkpWLAgI0aMYNasWWzduhU9PT369evHoUOH2LZtG+Hh4eTMmZNKlSrh7OwsbysoKAgnJyf5/Z86dQpfX19+/PFHuRWse/fuvHr1ismTJ3P16lWcnZ0JDQ1l7969XL16lRw5cmTZe5Pe/zpNSkrCxsYGd3d32rZtS1BQELVr16Zhw4YMHTqU7t278+uvv6JUKuU4s+IX/NdKSUnh8uXLtGnThqioKKpUqUKjRo3k+YJWrlyJo6MjTZs2ZeXKlVm6748LXqdPn87SpUtZuHAhdnZ2/P7770yfPp1Xr14xfPhwXFxcuH79OpcuXaJu3bpMnDgRgDdv3lCsWLEsHWad1sozb948Vq9ezZ49e9DT0+Ply5f069ePNm3asGvXLi5cuMCqVauIiopCoVAwcOBAAI4fP469vb18TqpTWjfoL7/8wm+//UbNmjXl+KdOnUpYWBienp4YGBjg4uLC27dvOX78OMWKFfvX+/74ugOp3YxnzpyhRYsWTJ8+HZVKRZMmTWjWrBkHDx6kUaNGmJubM27cOFq2bAmkDpXX19f/17F8jvS+YH7t2rUMHjyYvn37ys+lnTMlS5bk+PHjlC1bFn19fTZu3KiRz+4LUau5VefbbDFSSNK32tYlaNPhw4fx8/PD2NiYbt26Aamjt3788UdsbW3ZsWMHefLk+eR1mpy7Iy1xgNRuk7R5fHbv3o2joyNPnjxh1qxZ3Llzh/bt28tfNhmZOnUqz58/Z/ny5RgZGQHQq1cvVq9eTYECBTh37ly6iQnXr1/PuXPnuH79OnZ2dsycOZNSpUpl+Xs7ceIEBw8eZMCAAeTMmRNzc3MGDx5MYGAgXl5emJmZ0atXL/bu3YuxsTF37tzB3Nxca7crmT17NteuXePs2bM0b96cZcuWoVAoSExMpG/fvjg5OTF27Fj09fWzJMZx48ZhZ2dH//79AXj79i2NGzemU6dO6b64RowYwa5du9i4cSNVqlRJt42goCCWLVvG8uXLOX/+PMWLF//Xcf31i75du3YULFiQ//3vf/Kyq1evUrt2bTw9PZk+fXq61z9//py5c+eybds2/vzzT9zc3P51TF8iSRLh4eE0adKEJk2aMGrUKJKSkoiLi+PAgQOUL1+ewoULc+3aNQICAsiRIweFChXCwcHhX+/74x9SDx8+xMrKCj09PXLmzElcXBxNmzYlMjKSkSNH0qRJEwwNDTl48CBNmjTB09OTyZMny/MIqZtKpaJcuXI0btyYKVOmfPJ8SEgIdnZ23LlzB0NDQwoVKqSRuP4qKioKS0tL6uQfgJ6O+n4kKVWJnHi+iMjISCwsLNS2n6wmaoyErxYcHEzjxo3x9PSUR4FIkoSjoyPnz58nLCyMjh078vDhw09eq8m5Oz7+YrWzs6N3796YmJjQuXNnXr58Kbccubm5sWvXLmbNmvXZbdWpU4fhw4djZGREZGQkkNrCMXr0aJ49e8aePXuIi4uT1+/SpQurVq3i8uXL7NmzJ0uTorT3tmfPHpo2bYqNjQ1v377F3Nyc5ORkfH19cXJywszMDEitn5k+fTo3b97EwsJCo7UooaGh+Pv7y8emYsWKXLlyBUdHR3nixLTRisePH6dTp04YGBhkSYwRERFcuHCBXbt2ybOQW1paEhkZKSclaTMTz5o1Czs7O7nuLC3+mJgYZsyYwf79+zl9+nSWJ0Vnz54FUhOdoKAgeZ2UlBTKly9Pv379uHbtGnFxcXJNz7t377h48SK3bt3i1KlTak2K0o7D27dvsbGx4dWrVxQqVIjo6GimTp1K06ZN6d69Ow0aNMDb25ty5crRsmVLqlev/q+TopkzZ3Lt2jU5KRo9ejRNmjShTJkyjBw5krNnz2JiYsIff/yBpaUls2bN4uDBgyQkJNCoUSO8vb1ZuXIlQ4cOTTdaLSulHZ+0wu6IiAiMjY3le/59XPDt5+fH0qVLCQoKws3NTWtJUTqixihDIjESvpqDgwNXr14lb968HD9+nLdv38pdFQ4ODpw7d44bN26wcOFCjcb18UXq44bQtH936NCBvn37kpiYSJcuXeTkaOTIkeTOnZsTJ05keBNTSZJwd3enWLFi/Pnnn/Ts2ZOLFy8CqZNZ9unTh6FDh7Jnzx4SEhLSvdbQ0BATE5Msf6+PHz9m2LBhzJ07l/Hjx1OuXDkgNQkqX748+/fvZ/ny5QwYMIA9e/ZQu3ZtbGxssjyOjKS1Znl7e1O3bl1q1apF1apVGTVqFGXKlOF///sfkZGReHh40LRpU3kywH379uHq6pplMVhZWbF9+3Zy5crFpk2bWLt2LXp6euTPn58tW7YAqZ9P2lxOpUuXlrta0hIzMzMzpkyZwrFjx/51cptWkJ+WFE2YMAEPDw9CQkLo2LEjN2/e5Pjx48CHHxCWlpbExsaip6cnv87GxoYWLVpw8OBBSpYs+a9i+jsKhYKtW7dib29PWFgYNWvWpEuXLhQoUIC7d+/Srl07EhISsLe3Z//+/Vm23wsXLrB161amTZvGw4cPOX36NJs2bWLx4sUMGjSIkJAQxo4dy4kTJ+TkyNramsGDB3Pp0iVUKhVNmzZl8+bN7Nu3T2034k2bub1Tp06Eh4djY2NDjx49WLp0KevXr0/3Q3DVqlWcPHlSbnEWsi9RYyR80V+b/NOUKVOG7du306BBA3r16sXatWuxtLSUkyN/f3+srKw0Guvjx48pXLgw8GEE1Pbt24mPj6dixYr06NGDVq1aoaury9y5c+nSpQsbNmzA1dWV6dOnY2xsnGGT+8etFwqFglOnTqGrq4uuri4VK1Zk6dKlqFQqevTogY6ODi1atMDY2FittQMBAQHo6+vTsGFDeVlaQtK+fXtiYmKYPXs2NjY2HDx4kHz58qktlo+lnS8nTpygY8eOTJ06lW7dujF9+nQWLFhA+fLl6dChAzly5OD27dtcv36dcuXKMWvWrCz9Ba1SqdDV1SVXrlwMGTKE0aNHs3LlSqysrJg6dSotWrSgXbt2bN++Xf7yunXrlpxgppEkKUvqwkqUKEHDhg3luX3SRiN5eXlhZ2fHjz/+yKFDh1i5ciVKpZIGDRrw7t07Tp8+TYECBTAwMEi3PVNT038d05eknUthYWGcPHmSuXPnkjNnTpYuXUq9evVQKpU0b95crlUrXLgwuXLl+uz14mtVqVKFMWPGsHr1aiZOnIizszMjRoygfv361K9fn7Jly7J06VK5/qtOnTrs2bOHMWPGUK1aNXR0dFCpVLRu3Zr69evLrafqcO3aNe7du8fAgQNZuHAhXbt25dmzZ3Tr1o2zZ89ibGxMbGwse/bs4cyZM+TMmVNtsXw1lYRa64C+0XmMRI2R8Fl/LbROmwBv+PDhODk5AakX+LR7Eq1Zs0ZOjtKSCU3VFB0/fpx69eqxbds22rZty8GDB2nWrBnNmjVDT0+P/fv3U7t2baZPn46bmxu7d+9m+fLlREREsH///gyb/SVJkr9g3759i76+PhYWFty9e5dmzZpRtmxZhg4dSsWKFQHw9PRk2bJlcgzq5O3tzYABAzh37hwuLi7yMHSFQsGFCxfQ1dXFzc2N5ORktSeoGzduJDo6Wq7ZSUpKom/fvlhYWDBv3jzevHlDxYoVadiwIUuWLEGhUGjsvBg6dCjPnj0jODiYBw8ekDt3bgYNGiQnTIaGhuTPn5/w8HAiIyO5fft2lg8MmDJlCrt37+bmzZvo6Oiwc+dO1q9fT2RkJPv375c/n5MnT7Jw4UKuXLmClZWVnHRcu3YNfX19jd/r69q1awwZMgSA1atXU6hQoU/2/+bNGxYvXsySJUu4ePEiRYsW/df7/bhIeteuXaxcuRJfX1+GDx/OiBEj5PVOnTrF0qVLCQ0NZcSIETRu3Fh+7uPzS93HTalUsmbNGjZs2ED+/PlZtmwZFhYW7Ny5k61btxIZGUmePHkYNmxYlnTFZgW5xsjFU/01Rv5LRI2R8N+RlhSNGjWKUaNGcePGDW7cuIG7uzsHDhwgPj6eChUqcOTIEc6ePUuLFi2IjY1NdxHSVE1RgQIF6NOnD71792bHjh0EBAQwf/58du/ezfbt27l27RoPHjxg3LhxJCUl0apVK7p27Yq9vf0ntyk5dOgQt27dQqFQyLf5aNSoEaVLl6Zp06YEBQVx/Phxrl+/zty5c/Hx8QFgyZIlDB48mBIlSqj9/ZYsWZKwsDD5flQ6Ojrycd+1axcHDx7E2NhY7UlRbGwsGzZsYNOmTfJtTwwMDIiKiqJSpUqEhoZSunRp6taty9KlS+WRTadOnVJb90aaDRs2sG7dOiZMmMChQ4d4+PAhTk5ObNmyhaioKM6fP0+bNm0oWLAgdevWlZOitBmms0pkZKTcFTZp0iSmTZvG8+fP081XBFC7dm0WLVrEzp076dy5M0OHDuX69evo6+ujVCo1XjD/4MED4uLiuHXrFqampigUinT/V86cOUOvXr3YsmULp0+fzpKkSKVSyUnRgQMHqFGjBv3798fFxYXNmzenmzW/Vq1aeHp6yhObwodu84+vO+o4bo8ePZK7YPX09OjRowcdO3bk+fPn9OvXj4iICNq0acPGjRs5efIkK1euzDZJUTqSSv2Pb5EGpgQQvkFp85MsX75ccnJykm7evClJkiSdOnVKUigUkr29vbRr1y4pPj5ekiRJOn/+vNSgQQMpJSVFWyFL/v7+0oABAyRLS0vJ2dlZ8vLykiRJkpKTkyVJkqS7d+9KhoaG0ooVK+TXREVFpdvG69evpXz58kndunWTnj17Jt27d08yNzeX/ve//0kzZ86UevfuLenp6UleXl7Ss2fPpPz580vt27eXzp07p7k3+t7atWslfX19afjw4dKdO3ek+/fvSyNGjJCsrKykBw8eaCyOV69eSW3atJFq1KghrVq1SpIkSerevbtUsWJFKV++fFLfvn3lzyAmJkb6+eefpZkzZ6p9LqsJEyZIVapUSTfvVGBgoFS+fHnJ1dVV2r179yevUcccRefOnZOKFi0qubm5SVZWVtK7d++kQ4cOSW5ublKrVq2ka9euffIadcX0NZKTk6Xt27dLrq6uUtWqVeU5uNLiefHihbRp0ybp2bNnWbK/j9/76NGjJXt7e2np0qWSJEnSzp07pRo1akjNmzeXfH19073u+vXrar/ufBzb48ePpYoVK0qenp7p5kdKTEyUZs+eLdnb20s9evSQ53T76+uzA3keozx9pfp5B6vtUSdP329yHiPRlSbIxo0bR8GCBenSpQuQ+kt36dKl2Nvb8+uvv+Lt7U2XLl1YvHgxhw4d4uzZs3LNwccFxllVZ/BP+Pn5sWLFChYsWMDkyZMZNWqUXIytp6dHgwYNKFCgQLpbgvzVjRs36NWrFxUrVsTKyorExET5DutRUVFs2LCBIUOGcPjwYXLlykW1atVo1aoVS5Ys0WhhpUqlYvfu3fTq1QtTU1OMjIzQ1dVl69atlC5dWu37lyQJpVKJvr4+9+/fZ9iwYURERDBs2DBKly5N27ZtCQ4OTjfaauzYsWzevJkTJ05kWaF1RnEpFApmzpzJ7t275TqPtC6akydP0qxZM1xcXJg+fTrNmjVTe3dL/fr1OXbsGPXq1ePw4cNA6s1z582bR9GiRRk0aBBlypRJF78mpe0zMDBQno+ncOHC8m1x0mqMNm7ciLW1tVpjnDp1KosWLeLQoUMUKlQIS0tLILX7ePny5ZiYmDB58uRPWmbVed1Je7/nz5+XR4ReuXKFSpUqMW3aNLkGTKlUUqpUKYKCgmjdujWrV6/W2tQYXyJ3pTn3UX9XWuBy0ZUmfJueP3+Oj48Pv//+Ozt37gRSR8TUrl2b+vXr8/jxY8aMGcPUqVPp3Lkz/fv35/Xr17Ru3ZqrV6+m25Y2JyzLly8fvXv3pnv37owdO5YdO3agq6sr143Ex8d/Usj6V2XKlGHlypVcvXqVTZs2ER8fLz9nYWFBp06d6NChA2vWrMHNzY2DBw8yatQojY820dHRoU2bNty9e5cdO3awceNGzpw5o5GkKI2+vj47duxg8uTJREREcOvWLUaOHMmJEycYNmwYCoVCTpJatWrFihUr2Lt3r9qSIvjQddKkSRN8fX3laRjSumgSExOpXbs2zZs3p0mTJuleow7v3r1DX1+fyZMnExAQIE+y2b59ewYPHszDhw9ZvHgxly9fVnssGUn70t+zZw916tShZs2aVKxYkb59+xIYGEibNm0YPHgw7969o2vXrvIoVHV49+4dZ8+elQv1Y2JiOH36ND169CAxMZGaNWuSlJSEp6fnJzenVed1R6FQ8Oeff1KtWjWSkpKYMGECNWvW5Ny5c4wbN04elh8XF0fZsmUZM2YMkyZNypZJkfD3xKg0AUi9werMmTOZPXs2ixcvRqVS0a5dO7mw+I8//sDMzEwucFQqlYwePRoDA4NPJsTTlLQLuq+vL4GBgYSFhdGyZUvy5cvH5MmTUalUtG/fnnv37pEzZ05evnzJlStXWL58+d9uu0yZMqxevZpmzZpx8uRJfH195eHalpaWODo6cuDAARISEqhcubKa3+mXOTo64ujoqPH9pg1V7tatG4sXL6ZKlSro6urSvXt3Nm/eTIcOHTh16hTLli0jPDycfPnyMXPmTAoWLKiR+IoXL87q1avp2bMnMTExtG3bFhsbG5YuXUqJEiWYNm0aoP4WThsbG7y9vdHR0SF37tzMnj2bX375hS1btvDLL7+gUCgYPXo0+fPnp1KlSmqL43MUCgVnzpyhY8eOzJs3jyJFisj3Nnz9+jWLFy+mTZs2qFQq/ve//9G3b1+2bt2qlmOmUCi4f/8+Dx484OzZsyxbtgw/Pz9UKhUHDhxgypQptGvXjitXrmhspCWktkSHh4czY8YMatasCaTWXgIcO3aMbt260bt3b/bt28eTJ0+YM2cOtra2GovvHxOj0jIkutKEdK5fv86sWbMIDg7G09NTHl21fPlyuSXAzs4OT09P8uXLJ0+Ip8nbfHxs165d9OrVCycnJ/z8/HB0dGTo0KF06tSJmJgYJk2axPr167Gzs2P8+PGULVv2q26ceufOHTp06EDZsmUZNGiQPG9Mr169eP78Od7e3mofOp2drVq1ioULF3Lt2jX5RrtBQUH8/PPPhISEMGvWLFq0aKHVGHfv3k3fvn3llkJbW1t8fHy0MtIrNjaWHTt2MGvWLMqUKcPmzZuB1FGVtWrV0ugEqB8bO3Ysvr6+chEzgK+vL7Vr16Zz587Mnz8fpVIpT+KYN29etcWydu1ahg8fTkpKCr179+ann36iTp06dOjQAWNjY9asWSOvm9VJbUbb8/f3p1ChQujo6DBu3DjGjh0rj3qLi4vj999/Z926dbx69QpLS0u2bNkid4tmV3JXWu7e6u9Ke7nim+tKE4nRdy7ti+Hj4a1Xrlxh7ty5BAcH069fP9q1awdA9erVuXTpEo6OjlhZWXH16lW13nvo79y6dYuffvqJ2bNn07hxYywtLfHw8OD+/fv07duXbt26ybdOOHjwILdv3/5H/zlv3rxJ586diYuLo1q1ahgaGrJr1y5OnDiR5TNaf2vS7pV37tw5bG1t5TqeO3fuULlyZVxcXBg+fDhdunTRSu1MmlevXvHy5UtiY2P58ccf0dXV1VoyHxsby86dO5kzZw5OTk4cOXJEfk6Tt8xJI0kSHh4evHz5kqNHj6JSqVAqlRgYGLBp0yaGDh3KlStXcHFx0VhMAQEBJCYmyq2LKpWKunXrUqFChU9uj5LVAgMD8fHxoXXr1mzbto39+/dTrVo1xo8fT7169di4cSPw4cegSqUiKiqKgIAAHBwcvomWIjkxcuyl/sTo1cpvLjESNUbfsbS5byB1Vt6oqChUKhUVKlRg+PDh2Nvbs2TJErZu3QqkDs/dvHkzy5YtSzeMWFv8/PywsbGhfv36WFtbo6enh5eXF4ULF2bOnDkkJSWRP39+RowYgY+Pzz/+j1m6dGm2bNmCjo4OJ0+eJG/evFy/fv27T4oA3N3d8ff3Z/HixcCHOp6kpCTKli1LiRIlqFWrFqD52pmPOTo6Ur58eWrUqIGuri4pKSlaSYogdXLGNm3a0KdPH2xsbNJNW6DupEiSJLke5t27d8TFxaFQKGjSpAlnzpzhxIkT6OjoyMfGzMyMHDlyYG5urta4/ipPnjwULFiQmJgYzp8/T7NmzXjz5k2G9x/LSsnJyYwYMYL58+czZMgQfvnlF3766Sd69uzJb7/9xvbt2xk3bhyAnBTp6OhgZWVFiRIlvomkSPh7IjH6jqU1GU+cOFG+bUPt2rW5e/cu5cqVY8yYMTg4OLB8+XI5OWrTpg0NGzbU6pdLWiNnTEwMsbGx8izT8fHxKBQKuS7hwIEDALi4uGBnZ/ev9unm5sa2bdsoUqQIHh4eGv31nJ25urqyevVqZs6cydixY3nx4gURERHs27ePvHnzsmLFCpydnbUd5ie01WWVxtTUFA8PDzZv3izP0qxOf52ba+/evTRt2pRSpUoxceJEjI2N6d27N/379+f48ePytcHHxwcTExOtJLWSJHHt2jV+++03kpOTuX79Onp6eunuP5bV9PX1Wb58OSkpKSxYsIDevXvTtWtXFAoFP//8M8uXL+e3335j/PjxgHYHmmQJCTXfK03bb/CfEV1p36GP+9G9vLwYPHgws2bNIikpCW9vb65du8bGjRtp3LgxV65cYf78+dy6dYvFixdTu3ZtrcScUTfM27dvKVKkCM2bN2f16tXy8oCAAOrXr8/KlSv58ccfszSOhIQEca+jv5AkiW3bttGzZ09sbW3R0dEhPDyc48ePZ/tai+xA3V2MISEhuLu7U6NGDcaOHUtycjLu7u4MHTqUsLAwzp8/T8GCBalQoQKBgYEsWbKEMmXKoK+vz927dzl16pRGRzp+LDExkfv371OyZEl0dHQ00v2ZnJxM/fr1effuHba2tnTp0oUOHToAqaNat2zZQv/+/enduzfz5s1TayzqInelOfRCT+fLo3T/DaUqiRPB315XmkiMvmP79+/n6tWrFChQQJ67CFLvDL9//37u3r2Lo6MjFy9e5MiRI0ycOFErv7TTvjguX77M5cuXKVKkCEWLFsXFxYVdu3bh4eFBq1at+N///kdycjLr1q1j7dq1XLp0Sb51iaB+L1684Pbt2/K96dRZoCt8nbS5uSpVqiS3nqZ1Ce3fv59FixZhbW1Nx44dsbS05PDhw/LNajU1ivDvaHJ+tMTERMLDw+nevTtxcXH8+uuvdOzYUX5+/vz5/Pbbb9y5c+eb7D6TEyP7nupPjF6vEomRkH19XNh59epVOnfuzIsXL1i1ahWdOnUiKSlJHrlTunRpatSowfz58z+7DU3av38/P//8M66urrx+/ZratWszZMgQypUrh7e3N3369EGhUGBqakpSUhJ79+4VrRWC8JEbN27Qp08fQkJC+Pnnn+Ub2kLq/6/58+djbW3N+PHjRf3ce8+fP2fAgAEkJCTQpUsXOnXqxMSJE/H392fevHnY2NhoO8R/RCRGX/aNd5AKXyMtoUkbItyrVy9sbW3lURYGBgYolUpSUlJwcnIiMTHxs9vQFOn9jVz379/PkiVLuHXrFosWLeLt27eMHz+eK1eu0Lx5cx4+fMiqVatYvXo1Fy9eFEmRIPxF2txcOjo6nD9/nnv37snPNWnShGHDhvH8+XPmzJlDXFwc4jdz6vxuixcvxsLCglmzZlG+fHkWLlwoF85/81Qq9T++QSIx+g58XKw4d+5cOnXqhK2tLb/++iujRo3ixYsXcjOxnp4eurq6hISEyHf31oa0i/Lr16+Ji4sjKSmJYsWKAdCuXTs8PT1RqVRMnDiRCxcuYGlpSePGjalRowa5c+fWWtyCkJ2VKFECb29vYmNjWbRoUbrkqGHDhvz2229MmzZNawXX2VG+fPlYvHgxgwcPpkmTJvj4+MgT3wr/TaIr7Tty48YNLl68SO7cueVJ92JiYvDy8mLmzJnY2NhQpEgRdHV15bvRa2tIM8CePXsYOnQourq6xMbG4uXlRb169eTnDxw4wIoVKwgPD5dvISAIwt+7efMm3bt3p0yZMgwePFj+0SF8H+SuNFsP9Xelha4VXWlC9tCjRw9CQkLkvy9fvky5cuUYNmyYPPeQSqXCzMyMbt26MWbMGJKSkrh//z4eHh48efIEPT09jc9TlJanBwYG0qdPHwYMGED37t0pWLAg/fv35+zZs/K6jRs3plu3bjg4OGBvb6/ROAXhW1a6dGnWrFnD7du3mTp1Kg8fPtR2SIKQbYjE6D/ozZs3hIaGpusDL1GiBAsWLEBXV5cbN24AqRPuqVQqTE1N6dy5M3379sXU1JRt27bJr9N0c7pCoeD06dN4e3vj4eHB4MGDGTVqFDNmzKBUqVIMGDCAc+fOyeu3atUKLy+vbDlXjiBkZ6VLl2bJkiUEBwfLd7AXvjNqncPo/eMbJBKj/6BcuXLh7e2Nvr4+v//+O/7+/piYmNC9e3cmT57Mb7/9xqJFi1AoFPLkcmktRx07dsTX11e+DYimi63j4uJYt24dAwcO5Pbt2/LyKlWqMGDAAAoVKsTgwYM5deqU/JyZmZlGYxSE/4ry5ctz5MgRHBwctB2KIGQb2isgEdQuOjqaUaNG4eTkxB9//IGTk5NctDxo0CB0dHTw9PSUkyNzc3O6detGfHw8Bw4cIDg4WOMXTBMTE4YMGYKhoSFeXl6cO3dOnqSxatWqKBQKpk6dysSJE3F3d8fIyEgUiQrCvyAmLP2OqSTUOj216ttsMRLF1/8hGU2AFhgYSIMGDTA2Nmbv3r04OTmRkJDA4sWLGTNmDFOnTmXUqFHAh4kUY2JiSE5OxtraWu0xp+0zOTkZlUolj4Tz8/Nj1KhRnDhxAm9v73QzWF++fBlnZ2cx+kwQBOEfkIuvbbqpv/j63bpvrvhaJEb/ER8nRSdOnCAmJgYdHR2aNm1KUFAQ9evXT5ccJSYmMm3aNE6dOsW5c+fkVhdN3gE9bV+HDx9mzZo1vHr1isKFC9OzZ0/c3d0JDAxk1KhRHDt2jH379lGlShWNxCUIgvBflpYY1bbuovbE6GT4+m8uMRI1Rv8BkiTJSdHo0aPp2rUrU6ZMoV27dnTt2hWAw4cPEx8fT8uWLQkKCsLQ0JDx48fLSVFafqzJbimFQsGBAwdo3rw5Dg4O1K9fnxs3bjBo0CDWr1+Ps7MzU6dOpVGjRvz4449cvnxZY7EJgiAI3yeRGP0HpCUzs2bNYv369ezZs4cbN24we/ZsNmzYwMCBA1EoFBw5coTExESqVKlCaGgo+vr6clKk6TodSZKIjIxk9uzZjB07liVLljBx4kQuX76Mq6srS5cu5ebNmxQoUIBhw4bRo0eP/8ZMs4IgCNmFJKXWAanr8Y12SInE6D/i1atX3L9/n/nz51OhQgX27NnDhAkTGDduHCdPnmTgwIEolUr27dtHtWrV0iUZmkiKJElCkiR5Fm6FQoG5uTnR0dGYm5sDkJSUhImJCb///jvR0dGsWbMGADc3N5YsWUKhQoXUHqcgCILwfROj0v4jbGxsaNasGTVr1uTatWsMHTqUSZMmMWDAAKysrBg2bBjh4eFs27ZNvjeaJm4Im9YaFRkZiZWVFbq6uly4cAGVSoW7uzt6enrysHwDAwOSkpIwMjKibt26+Pn5ya/X19dXa5yCIAjfHUnNo9JEi5GgTUZGRjRu3BgrKytOnDhB8eLF6dKlC5CacHTo0AFDQ0Ny5swpv0YTcxQpFArCwsIoVaoUGzdu5NixY1SrVo2EhAT09PSYOnUqW7ZsYfr06XKsAMHBwdja2oobWQqCIAgaJVqM/kPS7mv2+PFjIiMjUSgUJCQkcPToUTp27ChP2pjRsH51UiqV/Prrr/Tr14+kpCR27drFTz/9hEqlolq1asyaNYvhw4dz+/ZtXF1dCQ0N5fDhw/j4+Gg0TkEQhO+KSgUKlfq2L6lx22okEqP/kLRaoZ49e1KtWjWqVKlCYmIiRkZGtGrVSl5P08mGvb09lSpVIiYmBgMDA6Kjo+U4jI2N6d27N25ubkybNo03b95gYWHBpUuXKF68uEbjFARBEASRGP0HVapUicuXL7Nnzx4sLCwYMmSIfEPYtFYlTUirD1Iqlbi5ubFv3z5u3bqFp6cn8fHx9OrVCwB9fX1q1apFrVq1AEhISBCz8QqCIKibqDHKkEiM/qPKlClDmTJl5L81nRRBagvWhQsXGDhwIIcOHaJJkyaUKVOG+Ph4hg8fjo6ODj169EBHR4ft27fj6OjIjz/+KM9+LQiCIAiaJhKj74Smk6I0dnZ2hIWF0aRJEw4ePEju3Lnp27cvCoWCwYMH4+fnR0pKCosWLeLevXuAZieZFARB+F5JKhWSGmuMJFFjJAjpSZKEq6srJ0+epHnz5tSrV4+jR4+SO3du+vfvT44cOVixYgU5cuTgwoUL5M+fX9shC4IgCN85ca80IcvduHFD7sZLqzN6+vQpLVq0wNDQkCNHjsjTBkRHR5OSkoKVlZUWIxYEQfh+pN0rrZZxO/QUarxXmpTEqfjt4l5pwvctIiKCBg0aUKNGDQD5liOurq5s3bqVoKAgOnfuTEhICADm5uYiKRIEQRCyDZEYCVnKysqK7du38/z5cxo0aAB8qBlydXWlRIkSHDlyhJ9//hmV6tvsfxYEQfhPUOd90tIe3yCRGAn/SlpP7KNHj7h69SqXLl2iRo0abNmyhbt378rJEaTOzl2sWDGOHz/OunXrxOSNgiAIQrYjvpmEfyytfsjb25v69evTpUsXatWqRY8ePXBwcGDLli08ePCAKlWqsGLFCjw9Pdm9ezdFixYlb9682g5fEATh+yZJqbNTq+0hWoyE74xCoeDYsWN069aN0aNH4+vry549e1i7di0TJ07EwcGBo0ePoqenx7Jly7hw4QL79+/H0dFR26ELgiAIQobEcH3hH4uKimL37t0MHjyYnj174ufnR//+/WnZsiUHDhwgJiaGpUuXcubMGSIiItDV1cXc3FzbYQuCIAiApJKQFOpr1flWB72LxEj4x4yMjKhTpw5lypTh3bt3tGrViho1arBmzRq2bt1Khw4dSEhIYNmyZWKOIkEQBOGbIBIj4R8zMDCgSZMmGBkZsWnTJoyMjJg0aRKQ2s1WvXp1Hj58qLVZtwVBEIQvkFSAGkcHf6MzX4saI+FfSbvZq5+fH9HR0ZiamgJw69YtWrVqxZMnT8iTJ482QxQEQRCETBM/5YUs0bhxY6ZNmya3IF29epVz586hr6+v7dAEQRAEIdNEi5GQJUqXLs3p06fJly8fRYoU4eLFi5QoUULbYQmCIAifIakktT++1tKlS8mbNy9GRkZUrFiRK1euqOGdf5loMRKyjLu7OxUrVkShUMizXQuCIAhCZmzfvp0hQ4awYsUKKlasyIIFC6hXrx6PHj0iV65cGotDtBgJWUpHR0ckRYIgCN8CtU7uqPrq4ut58+bRo0cPunXrRrFixVixYgUmJib8/vvvajoAGRMtRoIgCILwHVKSDGqcakhJMpA6593HDA0NMTQ0TLcsKSmJ69evM3r0aHmZjo4OderU4dKlS+oLMgMiMRIEQRCE74iBgQH29vacf31I7fsyMzPD2dk53bKJEyfKU7ukCQsLIyUlBTs7u3TL7ezsePjwobrDTEckRoIgCILwHTEyMsLPz4+kpCS17yvtnpof+2trUXYjEiNBEARB+M4YGRnJ89BlBzlz5kRXV5eQkJB0y0NCQrC3t9doLKL4WhAEQRAErTIwMKBs2bKcPHlSXqZSqTh58iTu7u4ajUW0GAmCIAiCoHVDhgyhS5culCtXjgoVKrBgwQJiY2Pp1q2bRuMQiZEgCIIgCFrXrl07QkNDmTBhAq9fv6ZUqVIcOXLkk4JsdRNdaYIgqEXXrl1p3ry5/HeNGjUYNGiQxuP4888/USgUREREfHYdhUKBt7d3prc5adIkSpUq9a/ievHiBQqFAl9f33+1HUH4L/H09MTf35/ExER8fHyoWLGixmMQiZEgfEe6du0qz0xuYGCAq6srU6ZMQalUqn3fe/bsYerUqZlaNzPJjCAIgjqIrjRB+M7Ur1+fdevWkZiYyKFDh+jXrx/6+vrpJlZLk5SUhIGBQZbs18bGJku2IwiCoE6ixUgQvjOGhobY29vj4uJCnz59qFOnDn/88Qfwoftr2rRpODo6UrhwYQACAwNp27YtVlZW2NjY0KxZM168eCFvMyUlhSFDhmBlZUWOHDkYMWIEkpR+St2/dqUlJiYycuRInJ2dMTQ0xNXVlbVr1/LixQtq1qwJgLW1NQqFgq5duwKpo1RmzJhBvnz5MDY2pmTJkuzatSvdfg4dOkShQoUwNjamZs2a6eLMrJEjR1KoUCFMTEzInz8/48ePJzk5+ZP1Vq5cibOzMyYmJrRt25bIyMh0z69Zs4aiRYtiZGREkSJFWLZs2VfHIgiCZonESBC+c8bGxukmejt58iSPHj3i+PHjHDhwgOTkZOrVq4e5uTnnzp3jwoULmJmZUb9+ffl1c+fOxcvLi99//53z58/z7t079u7d+8X9du7cma1bt7Jo0SIePHjAypUr5Vlyd+/eDcCjR48IDg5m4cKFAMyYMYMNGzawYsUK7t27x+DBg+nYsSNnzpwBUhO4li1b0qRJE3x9fenevTujRo366mNibm6Ol5cX9+/fZ+HChaxevZr58+enW+fp06fs2LGD/fv3c+TIEW7evEnfvn3l5zdv3syECROYNm0aDx48YPr06YwfP57169d/dTyCIGiQJAjCd6NLly5Ss2bNJEmSJJVKJR0/flwyNDSUhg0bJj9vZ2cnJSYmyq/ZuHGjVLhwYUmlUsnLEhMTJWNjY+no0aOSJEmSg4ODNGvWLPn55ORkycnJSd6XJElS9erVpYEDB0qSJEmPHj2SAOn48eMZxnn69GkJkMLDw+VlCQkJkomJiXTx4sV063p4eEjt27eXJEmSRo8eLRUrVizd8yNHjvxkW38FSHv37v3s87Nnz5bKli0r/z1x4kRJV1dXCgoKkpcdPnxY0tHRkYKDgyVJkqQCBQpIW7ZsSbedqVOnSu7u7pIkSZKfn58ESDdv3vzsfgVB0DxRYyQI35kDBw5gZmZGcnIyKpWKX375Jd19i9zc3NLVFd26dYunT59ibm6ebjsJCQk8e/aMyMhIgoOD040e0dPTo1y5cp90p6Xx9fVFV1eX6tWrZzrup0+fEhcXx08//ZRueVJSEqVLlwbgwYMHn4xi+SeTw23fvp1Fixbx7NkzYmJiUCqVWFhYpFsnT5485M6dO91+VCoVjx49wtzcnGfPnuHh4UGPHj3kdZRKJZaWll8djyAImiMSI0H4ztSsWZPly5djYGCAo6MjenrpLwOmpqbp/o6JiaFs2bJs3rz5k23Z2tr+oxiMjY2/+jUxMTEAHDx4MF1CAll776VLly7RoUMHJk+eTL169bC0tGTbtm3MnTv3q2NdvXr1J4marq5ulsUqCELWE4mRIHxnTE1NcXV1zfT6ZcqUYfv27eTKleuTVpM0Dg4O+Pj4UK1aNSC1ZeT69euUKVMmw/Xd3NxQqVScOXOGOnXqfPJ8WotVSkqKvKxYsWIYGhoSEBDw2ZamokWLyoXkaS5fvvz3b/IjFy9exMXFhbFjx8rL/P39P1kvICCAV69e4ejoKO9HR0eHwoULY2dnh6OjI8+fP6dDhw5ftX9BELRLFF8LgvBFHTp0IGfOnDRr1oxz587h5+fHn3/+yYABAwgKCgJg4MCBzJw5E29vbx4+fEjfvn2/OAdR3rx56dKlC7/++ive3t7yNnfs2AGAi4sLCoWCAwcOEBoaSkxMDObm5gwbNozBgwezfv16nj17xo0bN1i8eLFc0Ny7d2+ePHnC8OHDefToEVu2bMHLy+ur3m/BggUJCAhg27ZtPHv2jEWLFmVYSG5kZESXLl24desW586dY8CAAbRt21a+4eXkyZOZMWMGixYt4vHjx9y5c4d169Yxb968r4pHEATNEomRIAhfZGJiwtmzZ8mTJw8tW7akaNGieHh4kJCQILcgDR06lE6dOtGlSxfc3d0xNzenRYsWX9zu8uXLad26NX379qVIkSL06NGD2NhYAHLnzs3kyZMZNWoUdnZ2eHp6AjB16lTGjx/PjBkzKFq0KPXr1+fgwYPky5cPSK372b17N97e3pQsWZIVK1Ywffr0r3q/TZs2ZfDgwXh6elKqVCkuXrzI+PHjP1nP1dWVli1b0rBhQ+rWrUuJEiXSDcfv3r07a9asYd26dbi5uVG9enW8vLzkWAVByJ4U0ueqIwVBEARBEL4zosVIEARBEAThPZEYCYIgCIIgvCcSI0EQBEEQhPdEYiQIgiAIgvCeSIwEQRAEQRDeE4mRIAiCIAjCeyIxEgRBEARBeE8kRoIgCIIgCO+JxEgQBEEQBOE9kRgJgiAIgiC8JxIjQRAEQRCE9/4PpLfXhD7qDSAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85." + ], + "metadata": { + "id": "RF4xK1cxamBc" + } + } + ] +} \ No newline at end of file diff --git a/labworks/LW3/report.md b/labworks/LW3/report.md new file mode 100644 index 0000000..fdc38d0 --- /dev/null +++ b/labworks/LW3/report.md @@ -0,0 +1,554 @@ +# Отчёт по лабораторной работе №2 + +**Кнзев Станислав, Жихарев Данила — А-02-22** + +--- +## Задание 1 + +### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули. + +```python +# импорт модулей +import os +os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3') + +from tensorflow import keras +from tensorflow.keras import layers +from tensorflow.keras.models import Sequential +import matplotlib.pyplot as plt +import numpy as np +from sklearn.metrics import classification_report, confusion_matrix +from sklearn.metrics import ConfusionMatrixDisplay +``` + +### 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр. + +```python +# загрузка датасета +from keras.datasets import mnist +(X_train, y_train), (X_test, y_test) = mnist.load_data() +``` + +### 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных. + +```python +# создание своего разбиения датасета +from sklearn.model_selection import train_test_split + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 23) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` +``` +Shape of X train: (60000, 28, 28) +Shape of y train: (60000,) +Shape of X test: (10000, 28, 28) +Shape of y test: (10000,) +``` + +### 4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных. + +```python +# Зададим параметры данных и модели +num_classes = 10 +input_shape = (28, 28, 1) + +# Приведение входных данных к диапазону [0, 1] +X_train = X_train / 255 +X_test = X_test / 255 + +# Расширяем размерность входных данных, чтобы каждое изображение имело +# размерность (высота, ширина, количество каналов) + +X_train = np.expand_dims(X_train, -1) +X_test = np.expand_dims(X_test, -1) +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X test:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (60000, 28, 28, 1) +Shape of transformed X test: (10000, 28, 28, 1) +Shape of transformed y train: (60000, 10) +Shape of transformed y test: (10000, 10) +``` + +### 5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети. + +```python +# создаем модель +model = Sequential() +model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape)) +model.add(layers.MaxPooling2D(pool_size=(2, 2))) +model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu")) +model.add(layers.MaxPooling2D(pool_size=(2, 2))) +model.add(layers.Dropout(0.5)) +model.add(layers.Flatten()) +model.add(layers.Dense(num_classes, activation="softmax")) + +model.summary() +``` +**Model: "sequential"** +| Layer (type) | Output Shape | Param # | +|--------------------------------|---------------------|--------:| +| conv2d (Conv2D) | (None, 26, 26, 32) | 320 | +| max_pooling2d (MaxPooling2D) | (None, 13, 13, 32) | 0 | +| conv2d_1 (Conv2D) | (None, 11, 11, 64) | 18,496 | +| max_pooling2d_1 (MaxPooling2D) | (None, 5, 5, 64) | 0 | +| dropout (Dropout) | (None, 5, 5, 64) | 0 | +| flatten (Flatten) | (None, 1600) | 0 | +| dense (Dense) | (None, 10) | 16,010 | +**Total params:** 34,826 (136.04 KB) +**Trainable params:** 34,826 (136.04 KB) +**Non-trainable params:** 0 (0.00 B) + +```python +# компилируем и обучаем модель +batch_size = 512 +epochs = 15 +model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) +``` + +### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных. + +```python +# Оценка качества работы модели на тестовых данных +scores = model.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 4ms/step - accuracy: 0.9909 - loss: 0.0257 +Loss on test data: 0.02905484288930893 +Accuracy on test data: 0.9904999732971191 +``` + +### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания. + +```python +# вывод двух тестовых изображений и результатов распознавания + +for n in [3,26]: + result = model.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', np.argmax(y_test[n])) + print('NN answer: ', np.argmax(result)) +``` +![picture](images/1.png) +``` +Real mark: 2 +NN answer: 2 +``` +![picture](images/2.png) +``` +Real mark: 9 +NN answer: 9 +``` + +### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки. + +```python +# истинные метки классов +true_labels = np.argmax(y_test, axis=1) +# предсказанные метки классов +predicted_labels = np.argmax(model.predict(X_test), axis=1) + +# отчет о качестве классификации +print(classification_report(true_labels, predicted_labels)) +# вычисление матрицы ошибок +conf_matrix = confusion_matrix(true_labels, predicted_labels) +# отрисовка матрицы ошибок в виде "тепловой карты" +display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix) +display.plot() +plt.show() +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 5ms/step + precision recall f1-score support + + 0 0.99 0.99 0.99 997 + 1 1.00 1.00 1.00 1164 + 2 0.99 0.98 0.99 1030 + 3 1.00 0.99 0.99 1031 + 4 0.99 1.00 0.99 967 + 5 0.98 1.00 0.99 860 + 6 0.99 1.00 1.00 977 + 7 0.99 0.99 0.99 1072 + 8 0.99 0.98 0.99 939 + 9 0.99 0.98 0.99 963 + + accuracy 0.99 10000 + macro avg 0.99 0.99 0.99 10000 +weighted avg 0.99 0.99 0.99 10000 +``` +![picture](images/3.png) + +### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания. + +```python +# загрузка собственного изображения +from PIL import Image + +for name_image in ['цифра 3.png', 'цифра 6.png']: + file_data = Image.open(name_image) + file_data = file_data.convert('L') # перевод в градации серого + test_img = np.array(file_data) + + # вывод собственного изображения + plt.imshow(test_img, cmap=plt.get_cmap('gray')) + plt.show() + + # предобработка + test_img = test_img / 255 + test_img = np.reshape(test_img, (1,28,28,1)) + + # распознавание + result = model.predict(test_img) + print('I think it\'s', np.argmax(result)) +``` +![picture](images/4.png) +``` +I think it's 3 +``` +![picture](images/5.png) +``` +I think it's 6 +``` + +### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6. + +```python +model_lr1 = keras.models.load_model("model_1h100_2h50.keras") + +model_lr1.summary() +``` +**Model: "sequential_10"** +| Layer (type) | Output Shape | Param # | +|------------------|-------------:|--------:| +| dense_22 (Dense) | (None, 100) | 78,500 | +| dense_23 (Dense) | (None, 50) | 5,050 | +| dense_24 (Dense) | (None, 10) | 510 | +**Total params:** 84,062 (328.37 KB) +**Trainable params:** 84,060 (328.36 KB) +**Non-trainable params:** 0 (0.00 B) +**Optimizer params:** 2 (12.00 B) + + +```python +# развернем каждое изображение 28*28 в вектор 784 +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 23) +num_pixels = X_train.shape[1] * X_train.shape[2] +X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 +X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X train:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (60000, 784) +Shape of transformed X train: (10000, 784) +Shape of transformed y train: (60000, 10) +Shape of transformed y test: (10000, 10) +``` + +```python +# Оценка качества работы модели на тестовых данных +scores = model_lr1.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 8ms/step - accuracy: 0.9453 - loss: 0.1872 +Loss on test data: 0.19880765676498413 +Accuracy on test data: 0.9416000247001648 +``` + +### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям: +### - количество настраиваемых параметров в сети +### - количество эпох обучения +### - качество классификации тестовой выборки. +### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений. + +Таблица1: + +| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки | +|----------|-------------------------------------|---------------------------|-----------------------------------------| +| Сверточная | 34 826 | 15 | accuracy:0.990 ; loss:0.029 | +| Полносвязная | 84 062 | 50 | accuracy:0.942 ; loss:0.198 | + + +##### По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС намного лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества. + +## Задание 2 + +### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. +### При этом: +### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000 +### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов +### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно. + +### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик. + +```python +# загрузка датасета +from keras.datasets import cifar10 + +(X_train, y_train), (X_test, y_test) = cifar10.load_data() +``` + +### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных. + +```python +# создание своего разбиения датасета + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 50000, + random_state = 23) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` +``` +Shape of X train: (50000, 32, 32, 3) +Shape of y train: (50000, 1) +Shape of X test: (10000, 32, 32, 3) +Shape of y test: (10000, 1) +``` + +### Вывели 25 изображений из обучающей выборки с подписью классов. + +```python +class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', + 'dog', 'frog', 'horse', 'ship', 'truck'] + +plt.figure(figsize=(10,10)) +for i in range(25): + plt.subplot(5,5,i+1) + plt.xticks([]) + plt.yticks([]) + plt.grid(False) + plt.imshow(X_train[i]) + plt.xlabel(class_names[y_train[i][0]]) +plt.show() +``` +![picture](images/6.png) + +### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных. + +```python +# Зададим параметры данных и модели +num_classes = 10 +input_shape = (32, 32, 3) + +# Приведение входных данных к диапазону [0, 1] +X_train = X_train / 255 +X_test = X_test / 255 + +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X test:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (50000, 32, 32, 3) +Shape of transformed X test: (10000, 32, 32, 3) +Shape of transformed y train: (50000, 10) +Shape of transformed y test: (10000, 10) +``` + +### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети. + +```python +# создаем модель +model = Sequential() + +# Блок 1 +model.add(layers.Conv2D(32, (3, 3), padding="same", + activation="relu", input_shape=input_shape)) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(32, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.25)) + +# Блок 2 +model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.25)) + +# Блок 3 +model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.4)) + +model.add(layers.Flatten()) +model.add(layers.Dense(128, activation='relu')) +model.add(layers.Dropout(0.5)) +model.add(layers.Dense(num_classes, activation="softmax")) + + +model.summary() +``` +**Model: "sequential_9"** +| Layer (type) | Output Shape | Param # | +|--------------------------------------------|-------------------|---------:| +| conv2d_41 (Conv2D) | (None, 32, 32, 32) | 896 | +| batch_normalization_6 (BatchNormalization) | (None, 32, 32, 32) | 128 | +| conv2d_42 (Conv2D) | (None, 32, 32, 32) | 9,248 | +| batch_normalization_7 (BatchNormalization) | (None, 32, 32, 32) | 128 | +| max_pooling2d_26 (MaxPooling2D) | (None, 16, 16, 32) | 0 | +| dropout_24 (Dropout) | (None, 16, 16, 32) | 0 | +| conv2d_43 (Conv2D) | (None, 16, 16, 64) | 18,496 | +| batch_normalization_8 (BatchNormalization) | (None, 16, 16, 64) | 256 | +| conv2d_44 (Conv2D) | (None, 16, 16, 64) | 36,928 | +| batch_normalization_9 (BatchNormalization) | (None, 16, 16, 64) | 256 | +| max_pooling2d_27 (MaxPooling2D) | (None, 8, 8, 64) | 0 | +| dropout_25 (Dropout) | (None, 8, 8, 64) | 0 | +| conv2d_45 (Conv2D) | (None, 8, 8, 128) | 73,856 | +| batch_normalization_10 (BatchNormalization)| (None, 8, 8, 128) | 512 | +| conv2d_46 (Conv2D) | (None, 8, 8, 128) | 147,584 | +| batch_normalization_11 (BatchNormalization)| (None, 8, 8, 128) | 512 | +| max_pooling2d_28 (MaxPooling2D) | (None, 4, 4, 128) | 0 | +| dropout_26 (Dropout) | (None, 4, 4, 128) | 0 | +| flatten_9 (Flatten) | (None, 2048) | 0 | +| dense_17 (Dense) | (None, 128) | 262,272 | +| dropout_27 (Dropout) | (None, 128) | 0 | +| dense_18 (Dense) | (None, 10) | 1,290 | +**Total params:** 552,362 (2.11 MB) +**Trainable params:** 551,466 (2.10 MB) +**Non-trainable params:** 896 (3.50 KB) + +```python +# компилируем и обучаем модель +batch_size = 64 +epochs = 50 +model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) +``` + +### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных. + +```python +# Оценка качества работы модели на тестовых данных +scores = model.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 5ms/step - accuracy: 0.8507 - loss: 0.5097 +Loss on test data: 0.4886781871318817 +Accuracy on test data: 0.8521999716758728 +``` + +### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания. + +```python +# вывод двух тестовых изображений и результатов распознавания + +for n in [3,15]: + result = model.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', np.argmax(y_test[n])) + print('NN answer: ', np.argmax(result)) +``` +![picture](images/7.png) +``` +Real mark: 0 +NN answer: 0 +``` +![picture](images/8.png) +``` +Real mark: 2 +NN answer: 6 +``` + +### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки. + +```python +# истинные метки классов +true_labels = np.argmax(y_test, axis=1) +# предсказанные метки классов +predicted_labels = np.argmax(model.predict(X_test), axis=1) + +# отчет о качестве классификации +print(classification_report(true_labels, predicted_labels, target_names=class_names)) +# вычисление матрицы ошибок +conf_matrix = confusion_matrix(true_labels, predicted_labels) +# отрисовка матрицы ошибок в виде "тепловой карты" +fig, ax = plt.subplots(figsize=(6, 6)) +disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names) +disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра +plt.tight_layout() # чтобы всё влезло +plt.show() +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step + precision recall f1-score support + + airplane 0.86 0.86 0.86 986 + automobile 0.97 0.90 0.93 971 + bird 0.85 0.76 0.80 1043 + cat 0.72 0.74 0.73 1037 + deer 0.84 0.84 0.84 969 + dog 0.74 0.79 0.77 979 + frog 0.88 0.88 0.88 1025 + horse 0.86 0.89 0.88 948 + ship 0.92 0.93 0.93 1003 + truck 0.89 0.93 0.91 1039 + + accuracy 0.85 10000 + macro avg 0.85 0.85 0.85 10000 +weighted avg 0.85 0.85 0.85 10000 +``` +![picture](images/9.png) + +#### По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85. \ No newline at end of file