Сравнить коммиты
5 Коммитов
7bb2455d4c
...
cddf0e0b65
| Автор | SHA1 | Дата |
|---|---|---|
|
|
cddf0e0b65 | 2 месяцев назад |
|
|
d417fa1d5d | 2 месяцев назад |
|
|
8d7d2d5d7a | 2 месяцев назад |
|
|
00f85d5d3c | 2 месяцев назад |
|
|
cbed2cf894 | 2 месяцев назад |
@ -0,0 +1,71 @@
|
|||||||
|
# Сервис предсказания цен
|
||||||
|
|
||||||
|
Веб-сервис предсказания цен на подержанные автомобили; только stateless API. Об используемой предсказательной модели см. `research/README.md`.
|
||||||
|
|
||||||
|
## API
|
||||||
|
|
||||||
|
**Базовый URL**: `/api`. Все указанные далее URL записаны **относительно базового URL**, если не указано иное.
|
||||||
|
|
||||||
|
* Полная интерактивная документация (Swagger UI): `/docs`.
|
||||||
|
|
||||||
|
* Предсказать цену подержанного автомобиля: `/predict`.
|
||||||
|
|
||||||
|
Пример запроса:
|
||||||
|
|
||||||
|
* requst query: `item_id=16` (параметр `item_id` необходим!);
|
||||||
|
|
||||||
|
* request body:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"selling_price": 5.59,
|
||||||
|
"driven_kms": 27000.0,
|
||||||
|
"age": 5.0,
|
||||||
|
"fuel_type": "petrol",
|
||||||
|
"selling_type": "dealer",
|
||||||
|
"transmission_type": "manual"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
* response body:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"item_id": 16,
|
||||||
|
"price": 3.743508852258851
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
* Тестовый эндпоинт: `/`
|
||||||
|
|
||||||
|
Возвращает простой демонстрационный объект JSON.
|
||||||
|
|
||||||
|
Может использоваться для проверки состояния сервиса.
|
||||||
|
|
||||||
|
## Развёртывание
|
||||||
|
|
||||||
|
### Файл модели
|
||||||
|
|
||||||
|
Файл используемой предсказательной модели `model.pkl` можно извлечь из MLFlow скриптом `services/models/fetch_model_as_pickle_from_mlflow.py`. Файл модели можно разместить в директории проекта, а именно в `services/models/`.
|
||||||
|
|
||||||
|
Например, извлечь модель по имени (`<model-name>`) и версии (`<model-version>`) (например, `UsedCardPricePredictionFinal/1`) (команда запускается из корневой директории проекта — от этого зависит путь к создаваемому файлу):
|
||||||
|
|
||||||
|
python services/models/fetch_model_as_pickle_from_mlflow.py --model "models:/<model-name>/<model-version>" services/models/model.pkl
|
||||||
|
|
||||||
|
Можно указать адрес tracking сервера MLFlow, например: `--tracking-uri "http://localhost:5000"`.
|
||||||
|
|
||||||
|
Информация о других опциях доступна:
|
||||||
|
|
||||||
|
python services/models/fetch_model_as_pickle_from_mlflow.py --help
|
||||||
|
|
||||||
|
### Образ Docker
|
||||||
|
|
||||||
|
Сборка образа (замените `<version>` на номер версии) (команда запускается из корневой директории проекта — от этого зависит путь к директории):
|
||||||
|
|
||||||
|
docker build -t ml_service:<version> services/ml_service/
|
||||||
|
|
||||||
|
Запуск образа (замените `<version>` на номер версии образа, `<models-dir>` на **абсолютный** путь к директории, где размещён файл предсказательной модели `model.pkl`, `<port>` на порт для запуска веб-сервиса (например, `8000`)):
|
||||||
|
|
||||||
|
docker run -v "<models-dir>:/models" -p <port>:8000 ml_service:<version>
|
||||||
|
|
||||||
|
Модель может быть размещена в директории проекта; тогда, например, при запуске команды из корна проекта: `$(pwd)/services/models` (здесь `$(pwd)` используется потому, что необходим абсолютный путь).
|
||||||
Загрузка…
Ссылка в новой задаче