Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
iis-project/research/research.py

174 строки
4.3 KiB
Python

# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.17.3
# kernelspec:
# display_name: .venv
# language: python
# name: python3
# ---
# %%
from typing import Optional
# %%
import os
import pathlib
import pickle
# %%
import sklearn.compose
import sklearn.ensemble
import sklearn.metrics
import sklearn.model_selection
import sklearn.pipeline
import sklearn.preprocessing
# %%
# %% tags=["parameters"]
data_path: Optional[str] = None
# Полный путь к файлу (CSV) с исходным датасетом. Если не установлен, ищется файл в `data/<data_relpath>`.
data_relpath: str = 'cars.csv'
# Путь к файлу (CSV) с исходным датасетом относительно директории данных `data`. Игнорируется, если установлен data_path.
data_aug_pickle_path: Optional[str] = None
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
data_aug_pickle_relpath: str = 'cars.aug.pickle'
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
# %%
BASE_PATH = pathlib.Path('..')
# %%
DATA_PATH = (
pathlib.Path(os.path.dirname(data_path))
if data_path is not None
else (BASE_PATH / 'data')
)
# %%
with open(
(
data_aug_pickle_path
if data_aug_pickle_path is not None
else (DATA_PATH / data_aug_pickle_relpath)
),
'rb',
) as input_file:
df_orig = pickle.load(input_file)
# %%
df_orig.head(0x10)
# %%
len(df_orig)
# %%
df_orig.info()
# %%
feature_columns = (
'selling_price',
'driven_kms',
'fuel_type',
'selling_type',
'transmission',
#'owner',
'age',
)
target_columns = (
'present_price',
)
# %%
features_to_scale_to_standard_columns = (
'selling_price',
'driven_kms',
'age',
)
assert all(
(col in df_orig.select_dtypes(('number',)).columns)
for col in features_to_scale_to_standard_columns
)
features_to_encode_one_hot_columns = (
'fuel_type',
'selling_type',
'transmission',
#'owner',
)
assert all(
(col in df_orig.select_dtypes(('category', 'object')).columns)
for col in features_to_encode_one_hot_columns
)
# %%
df_orig_features = df_orig[list(feature_columns)]
df_target = df_orig[list(target_columns)]
# %%
DF_TEST_PORTION = 0.25
# %%
df_orig_features_train, df_orig_features_test, df_target_train, df_target_test = (
sklearn.model_selection.train_test_split(
df_orig_features, df_target, test_size=DF_TEST_PORTION, random_state=0x7AE6,
)
)
# %%
tuple(map(len, (df_target_train, df_target_test)))
# %%
preprocess_transformer = sklearn.compose.ColumnTransformer(
[
('scale_to_standard', sklearn.preprocessing.StandardScaler(), features_to_scale_to_standard_columns),
(
#'encode_categoricals_one_hot',
'encode_categoricals_wrt_target',
#sklearn.preprocessing.OneHotEncoder(),
sklearn.preprocessing.TargetEncoder(
target_type='continuous', smooth='auto', cv=3, shuffle=True, random_state=0x2ED6,
),
features_to_encode_one_hot_columns,
),
],
remainder='drop',
)
# %%
regressor = sklearn.ensemble.RandomForestRegressor(
10, criterion='squared_error', max_features='sqrt', random_state=0x016B,
)
# %%
pipeline = sklearn.pipeline.Pipeline([
('preprocess', preprocess_transformer),
('regress', regressor),
])
# %%
pipeline
# %%
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
# %%
target_test_predicted = pipeline.predict(df_orig_features_test)
# %%
metrics = {
'mse': sklearn.metrics.mean_squared_error(df_target_test, target_test_predicted),
'mae': sklearn.metrics.mean_absolute_error(df_target_test, target_test_predicted),
'mape': sklearn.metrics.mean_absolute_percentage_error(df_target_test, target_test_predicted),
}
# %%
metrics