Сравнить коммиты
	
		
			6 Коммитов 
		
	
	
	| Автор | SHA1 | Дата | 
|---|---|---|
|  | ad93d23fc9 | 1 месяц назад | 
|  | 6e3643d715 | 1 месяц назад | 
|  | 5f3950f2dd | 1 месяц назад | 
|  | 9ee4fbdc33 | 1 месяц назад | 
|  | a1c364b1d3 | 1 месяц назад | 
|  | 2372bfcea5 | 1 месяц назад | 
| После Ширина: | Высота: | Размер: 7.9 KiB | 
| После Ширина: | Высота: | Размер: 6.5 KiB | 
| После Ширина: | Высота: | Размер: 6.3 KiB | 
| После Ширина: | Высота: | Размер: 6.3 KiB | 
| После Ширина: | Высота: | Размер: 6.3 KiB | 
| После Ширина: | Высота: | Размер: 25 KiB | 
| После Ширина: | Высота: | Размер: 25 KiB | 
| После Ширина: | Высота: | Размер: 25 KiB | 
| После Ширина: | Высота: | Размер: 24 KiB | 
| После Ширина: | Высота: | Размер: 29 KiB | 
| После Ширина: | Высота: | Размер: 29 KiB | 
| После Ширина: | Высота: | Размер: 7.0 KiB | 
| После Ширина: | Высота: | Размер: 6.8 KiB | 
| @ -0,0 +1,879 @@ | ||||
| { | ||||
|   "nbformat": 4, | ||||
|   "nbformat_minor": 0, | ||||
|   "metadata": { | ||||
|     "colab": { | ||||
|       "provenance": [] | ||||
|     }, | ||||
|     "kernelspec": { | ||||
|       "name": "python3", | ||||
|       "display_name": "Python 3" | ||||
|     }, | ||||
|     "language_info": { | ||||
|       "name": "python" | ||||
|     } | ||||
|   }, | ||||
|   "cells": [ | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "execution_count": null, | ||||
|       "metadata": { | ||||
|         "id": "HUUZx52sc1LD" | ||||
|       }, | ||||
|       "outputs": [], | ||||
|       "source": [ | ||||
|         "import os\n", | ||||
|         "os.chdir('/content/drive/MyDrive/Colab Notebooks')" | ||||
|       ] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# импорт модулей\n", | ||||
|         "from tensorflow import keras\n", | ||||
|         "import matplotlib.pyplot as plt\n", | ||||
|         "import numpy as np\n", | ||||
|         "import sklearn" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "3Y-Ux1dadqdA" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка датасета\n", | ||||
|         "from keras.datasets import mnist\n", | ||||
|         "(X_train, y_train), (X_test, y_test) = mnist.load_data()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "w25XE8ADdqP5" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# создание своего разбиения датасета\n", | ||||
|         "from sklearn.model_selection import train_test_split\n", | ||||
|         "# объединяем в один набор\n", | ||||
|         "X = np.concatenate((X_train, X_test))\n", | ||||
|         "y = np.concatenate((y_train, y_test))\n", | ||||
|         "# разбиваем по вариантам\n", | ||||
|         "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", | ||||
|         "test_size = 10000,\n", | ||||
|         "train_size = 60000,\n", | ||||
|         "random_state = 19) #(5*4-1)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "QcXt9zqCdqDH" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод размерностей\n", | ||||
|         "print('Shape of X train:', X_train.shape)\n", | ||||
|         "print('Shape of y train:', y_train.shape)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "9Cd705vod51B", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Выводим 4 изображения\n", | ||||
|         "plt.figure(figsize=(10, 3))\n", | ||||
|         "for i in range(4):\n", | ||||
|         "    plt.subplot(1, 4, i + 1)\n", | ||||
|         "    plt.imshow(X_train[i], cmap='gray')\n", | ||||
|         "    plt.title(f'Label: {y_train[i]}')\n", | ||||
|         "    plt.axis('off')\n", | ||||
|         "plt.tight_layout()\n", | ||||
|         "plt.show()\n", | ||||
|         "\n" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "vLYfI---d5rm", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# развернем каждое изображение 28*28 в вектор 784\n", | ||||
|         "num_pixels = X_train.shape[1] * X_train.shape[2]\n", | ||||
|         "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", | ||||
|         "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", | ||||
|         "print('Shape of transformed X train:', X_train.shape)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "d0oyu59gd5fz", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# переведем метки в one-hot\n", | ||||
|         "from keras.utils import to_categorical\n", | ||||
|         "\n", | ||||
|         "y_train = to_categorical(y_train)\n", | ||||
|         "y_test = to_categorical(y_test)\n", | ||||
|         "\n", | ||||
|         "print('Shape of transformed y train:', y_train.shape)\n", | ||||
|         "num_classes = y_train.shape[1]" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Q227fINPeD1A", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "from keras.models import Sequential\n", | ||||
|         "from keras.layers import Dense" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "TzaA61smeDoO" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# 1. создаем модель - объявляем ее объектом класса Sequential\n", | ||||
|         "model = Sequential()\n", | ||||
|         "# 2. добавляем выходной слой(скрытые слои отсутствуют)\n", | ||||
|         "model.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "# 3. компилируем модель\n", | ||||
|         "model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Liq39zruhz0d" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "jMGGsq7piZOu", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "n_pCdxphiedM", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Sz_YOlsVivoR", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "hpJALaZGnyWF", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model.save('/content/drive/MyDrive/Colab Notebooks/models/model_zero_hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Z6eSmpwXn1zM" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model100 = Sequential()\n", | ||||
|         "model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model100.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "G1qGmPNF9afO" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model100.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "2WtfjJKY9abn", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "rPuWd80o9aYD", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "JLrW7S1g9aUe", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model100.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "8jdS02JZ9aRc", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model100.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "_bR3qoBy9aNy" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model300 = Sequential()\n", | ||||
|         "model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model300.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "V4m3nGORGnPC" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model300.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "yETaYKzdA9fp", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "SFPh0Lw-A9Zq", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "6mvOMGiLA9QE", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model300.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "WOJyUHP79Z86" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model300.save('/content/drive/MyDrive/Colab Notebooks/models/model300in_1hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "XsWc7S4aCyiE" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model500 = Sequential()\n", | ||||
|         "model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model500.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "QSL-6YbkJxm0" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model500.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Vs1x3ooKCybg" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "x3kzDT5qCyYY" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "FwSLP5I8CyU0" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model500.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "5mDveUNPCyRH" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model500.save('/content/drive/MyDrive/Colab Notebooks/models/model500in_1hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "4IEeNu1rCyNj" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model10050 = Sequential()\n", | ||||
|         "model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model10050.add(Dense(units=50,activation='sigmoid'))\n", | ||||
|         "model10050.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model10050.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Ld4hMck_CyKT" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model10050.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "GVZLuKvqNZEK" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "UP0suqUbNY9R" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "k-DhnF0SNY3K" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model10050.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "-7E0BUrMNYx9" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model10050.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide_50in_2hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "yu11cXisCyCh" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model100100 = Sequential()\n", | ||||
|         "model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model100100.add(Dense(units=100,activation='sigmoid'))\n", | ||||
|         "model100100.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model100100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "pTTia0gmRFaV" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model100100.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "XQHhKm8YRFW6" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "oCgqwCmPRFTT" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "ke" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "YDdSpQO5RFPn" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model100100.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "D_WHUHCwRFMS" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model100100.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide_100in_2hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "fkBAnNf2RFDL" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение лучшей модели в папку best_model\n", | ||||
|         "model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "mXGyPCNdS91i" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Загрузка модели с диска\n", | ||||
|         "from keras.models import load_model\n", | ||||
|         "model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "ILyFn-CJp1k8" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод тестового изображения и результата распознавания\n", | ||||
|         "n = 111\n", | ||||
|         "result = model.predict(X_test[n:n+1])\n", | ||||
|         "print('NN output:', result)\n", | ||||
|         "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "print('Real mark: ', str(np.argmax(y_test[n])))\n", | ||||
|         "print('NN answer: ', str(np.argmax(result)))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "cCk7Do1mp-xb" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод тестового изображения и результата распознавания\n", | ||||
|         "n = 222\n", | ||||
|         "result = model.predict(X_test[n:n+1])\n", | ||||
|         "print('NN output:', result)\n", | ||||
|         "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "print('Real mark: ', str(np.argmax(y_test[n])))\n", | ||||
|         "print('NN answer: ', str(np.argmax(result)))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "HrL0sv-1YosF" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file_data = Image.open('test.png')\n", | ||||
|         "file_data = file_data.convert('L') # перевод в градации серого\n", | ||||
|         "test_img = np.array(file_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "tfARmJMip_D8" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test_img = test_img / 255\n", | ||||
|         "test_img = test_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result = model.predict(test_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "60zdtlMduHhT" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file2_data = Image.open('test_2.png')\n", | ||||
|         "file2_data = file2_data.convert('L') # перевод в градации серого\n", | ||||
|         "test2_img = np.array(file2_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "JcO7pbCSuvrv" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test2_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test2_img = test2_img / 255\n", | ||||
|         "test2_img = test2_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result_2 = model.predict(test2_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result_2))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "2E0evx2su4y1" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения, повернутого на 90 градусов\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file90_data = Image.open('test90.png')\n", | ||||
|         "file90_data = file90_data.convert('L') # перевод в градации серого\n", | ||||
|         "test90_img = np.array(file90_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "ZsRQAhIIa_vD" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test90_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test90_img = test90_img / 255\n", | ||||
|         "test90_img = test90_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result_3 = model.predict(test90_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result_3))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "nQnk_zZMbM01" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения, повернутого на 90 градусов\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file902_data = Image.open('test90_2.png')\n", | ||||
|         "file902_data = file902_data.convert('L') # перевод в градации серого\n", | ||||
|         "test902_img = np.array(file902_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "IXK_VfJqbhJ3" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test902_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test902_img = test902_img / 255\n", | ||||
|         "test902_img = test902_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result_4 = model.predict(test902_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result_4))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "S5WcjVtMb-bp" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "from google.colab import drive\n", | ||||
|         "drive.mount('/content/drive')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "n4-_iFTWXNTJ" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     } | ||||
|   ] | ||||
| } | ||||
| @ -0,0 +1,577 @@ | ||||
| # Отчет по лабораторной работе №1 | ||||
| Аникеев Андрей, Чагин Сергей, А-02-22 | ||||
| 
 | ||||
| ## 1. В среде Google Colab создание нового блокнота. | ||||
| ``` | ||||
| import os | ||||
| os.chdir('/content/drive/MyDrive/Colab Notebooks') | ||||
| ``` | ||||
| 
 | ||||
| 1.1 Импорт необходимых модулей. | ||||
| ``` | ||||
| from tensorflow import keras | ||||
| import matplotlib.pyplot as plt | ||||
| import numpy as np | ||||
| import sklearn | ||||
| ``` | ||||
| 
 | ||||
| ## 2. Загрузка датасета. | ||||
| ``` | ||||
| from keras.datasets import mnist | ||||
| (X_train, y_train), (X_test, y_test) = mnist.load_data() | ||||
| ``` | ||||
| 
 | ||||
| ## 3. Разбиение набора данных на обучающий и тестовый. | ||||
| ``` | ||||
| from sklearn.model_selection import train_test_split | ||||
| ``` | ||||
| 3.1 Объединение в один набор. | ||||
| ``` | ||||
| X = np.concatenate((X_train, X_test)) | ||||
| y = np.concatenate((y_train, y_test)) | ||||
| ``` | ||||
| 3.2 Разбиение по вариантам. (5 бригада -> k=4*5-1) | ||||
| ``` | ||||
| X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 10000,train_size = 60000, random_state = 19) | ||||
| ``` | ||||
| 
 | ||||
| 3.3 Вывод размерностей. | ||||
| ``` | ||||
| print('Shape of X train:', X_train.shape) | ||||
| print('Shape of y train:', y_train.shape) | ||||
| ``` | ||||
| 
 | ||||
| > Shape of X train: (60000, 28, 28) | ||||
| > Shape of y train: (60000,)  | ||||
| 
 | ||||
| ## 4. Вывод обучающих данных. | ||||
| 4.1 Выведем первые четыре элемента обучающих данных. | ||||
| ``` | ||||
| plt.figure(figsize=(10, 3)) | ||||
| for i in range(4): | ||||
|     plt.subplot(1, 4, i + 1) | ||||
|     plt.imshow(X_train[i], cmap='gray') | ||||
|     plt.title(f'Label: {y_train[i]}') | ||||
|     plt.axis('off') | ||||
| plt.tight_layout() | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ## 5. Предобработка данных. | ||||
| 5.1 Развернем каждое изображение в вектор. | ||||
| ``` | ||||
| num_pixels = X_train.shape[1] * X_train.shape[2] | ||||
| X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 | ||||
| X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 | ||||
| print('Shape of transformed X train:', X_train.shape) | ||||
| ``` | ||||
| 
 | ||||
| > Shape of transformed X train: (60000, 784)  | ||||
| 
 | ||||
| 5.2 Переведем метки в one-hot. | ||||
| ``` | ||||
| from keras.utils import to_categorical | ||||
| 
 | ||||
| y_train = to_categorical(y_train) | ||||
| y_test = to_categorical(y_test) | ||||
| 
 | ||||
| print('Shape of transformed y train:', y_train.shape) | ||||
| num_classes = y_train.shape[1] | ||||
| ``` | ||||
| 
 | ||||
| > Shape of transformed y train: (60000, 10)  | ||||
| 
 | ||||
| ## 6. Реализация и обучение однослойной нейронной сети. | ||||
| ``` | ||||
| from keras.models import Sequential | ||||
| from keras.layers import Dense | ||||
| ``` | ||||
| 
 | ||||
| 6.1. Создаем модель - объявляем ее объектом класса Sequential, добавляем выходной слой. | ||||
| ``` | ||||
| model = Sequential() | ||||
| model.add(Dense(units=num_classes, activation='softmax')) | ||||
| ``` | ||||
| 6.2. Компилируем модель. | ||||
| ``` | ||||
| model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) | ||||
| print(model.summary()) | ||||
| ``` | ||||
| 
 | ||||
| >Model: "sequential_6" | ||||
| >┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ | ||||
| >┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃ | ||||
| >┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ | ||||
| >│ dense_18 (Dense)                │ ?                      │   0 (unbuilt) │ | ||||
| >└─────────────────────────────────┴────────────────────────┴───────────────┘ | ||||
| >Total params: 0 (0.00 B) | ||||
| >Trainable params: 0 (0.00 B) | ||||
| >Non-trainable params: 0 (0.00 B) | ||||
| 
 | ||||
| 6.3 Обучаем модель. | ||||
| ``` | ||||
| H = model.fit(X_train, y_train, validation_split=0.1, epochs=50) | ||||
| ``` | ||||
| 
 | ||||
| 6.4 Выводим график функции ошибки | ||||
| ``` | ||||
| plt.plot(H.history['loss']) | ||||
| plt.plot(H.history['val_loss']) | ||||
| plt.grid() | ||||
| plt.xlabel('Epochs') | ||||
| plt.ylabel('loss') | ||||
| plt.legend(['train_loss', 'val_loss']) | ||||
| plt.title('Loss by epochs') | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ## 7. Применение модели к тестовым данным. | ||||
| ``` | ||||
| scores = model.evaluate(X_test, y_test) | ||||
| print('Loss on test data:', scores[0]) | ||||
| print('Accuracy on test data:', scores[1]) | ||||
| ``` | ||||
| 
 | ||||
| >accuracy: 0.9213 - loss: 0.2825 | ||||
| >Loss on test data: 0.28365787863731384 | ||||
| >Accuracy on test data: 0.9225000143051147  | ||||
| 
 | ||||
| ## 8. Добавление одного скрытого слоя. | ||||
| 8.1 При 100 нейронах в скрытом слое. | ||||
| ``` | ||||
| model100 = Sequential() | ||||
| model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) | ||||
| model100.add(Dense(units=num_classes, activation='softmax')) | ||||
| 
 | ||||
| model100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'] | ||||
| 
 | ||||
| print(model100.summary()) | ||||
| ``` | ||||
| 
 | ||||
| >Model: "sequential_10" | ||||
| >┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ | ||||
| >┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃ | ||||
| >┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ | ||||
| >│ dense_19 (Dense)                │ (None, 100)            │        78,500 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_20 (Dense)                │ (None, 10)             │         1,010 │ | ||||
| >└─────────────────────────────────┴────────────────────────┴───────────────┘ | ||||
| >Total params: 79,510 (310.59 KB) | ||||
| >Trainable params: 79,510 (310.59 KB) | ||||
| >Non-trainable params: 0 (0.00 B) | ||||
| 
 | ||||
| 8.2 Обучение модели. | ||||
| ``` | ||||
| H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50) | ||||
| ``` | ||||
| 
 | ||||
| 8.3 График функции ошибки. | ||||
| ``` | ||||
| plt.plot(H.history['loss']) | ||||
| plt.plot(H.history['val_loss']) | ||||
| plt.grid() | ||||
| plt.xlabel('Epochs') | ||||
| plt.ylabel('loss') | ||||
| plt.legend(['train_loss', 'val_loss']) | ||||
| plt.title('Loss by epochs') | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| scores = model100.evaluate(X_test, y_test) | ||||
| print('Loss on test data:', scores[0]) | ||||
| print('Accuracy on test data:', scores[1]) | ||||
| ``` | ||||
| 
 | ||||
| >accuracy: 0.9465 - loss: 0.1946 | ||||
| >Loss on test data: 0.19745595753192902 | ||||
| >Accuracy on test data: 0.9442999958992004 | ||||
| 
 | ||||
| 8.4 При 300 нейронах в скрытом слое. | ||||
| ``` | ||||
| model300 = Sequential() | ||||
| model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid')) | ||||
| model300.add(Dense(units=num_classes, activation='softmax')) | ||||
| 
 | ||||
| model300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) | ||||
| 
 | ||||
| print(model300.summary()) | ||||
| ``` | ||||
| 
 | ||||
| >Model: "sequential_14" | ||||
| >┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ | ||||
| >┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃ | ||||
| >┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ | ||||
| >│ dense_27 (Dense)                │ (None, 300)            │       235,500 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_28 (Dense)                │ (None, 10)             │         3,010 │ | ||||
| >└─────────────────────────────────┴────────────────────────┴───────────────┘ | ||||
| >Total params: 238,510 (931.68 KB) | ||||
| >Trainable params: 238,510 (931.68 KB) | ||||
| >Non-trainable params: 0 (0.00 B) | ||||
| 
 | ||||
| 8.5 Обучение модели. | ||||
| ``` | ||||
| H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50) | ||||
| ``` | ||||
| 
 | ||||
| 8.6 Вывод графиков функции ошибки. | ||||
| ``` | ||||
| plt.plot(H.history['loss']) | ||||
| plt.plot(H.history['val_loss']) | ||||
| plt.grid() | ||||
| plt.xlabel('Epochs') | ||||
| plt.ylabel('loss') | ||||
| plt.legend(['train_loss', 'val_loss']) | ||||
| plt.title('Loss by epochs') | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| scores = model300.evaluate(X_test, y_test) | ||||
| print('Loss on test data:', scores[0]) | ||||
| print('Accuracy on test data:', scores[1]) | ||||
| ``` | ||||
| 
 | ||||
| >accuracy: 0.9361 - loss: 0.2237 | ||||
| >Loss on test data: 0.22660093009471893 | ||||
| >Accuracy on test data: 0.9348000288009644 | ||||
| 
 | ||||
| 8.7 При 500 нейронах в скрытом слое. | ||||
| ``` | ||||
| model500 = Sequential() | ||||
| model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid')) | ||||
| model500.add(Dense(units=num_classes, activation='softmax')) | ||||
| 
 | ||||
| model500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) | ||||
| 
 | ||||
| print(model500.summary()) | ||||
| ``` | ||||
| 
 | ||||
| >Model: "sequential_16" | ||||
| >┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ | ||||
| >┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃ | ||||
| >┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ | ||||
| >│ dense_31 (Dense)                │ (None, 500)            │       392,500 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_32 (Dense)                │ (None, 10)             │         5,010 │ | ||||
| >└─────────────────────────────────┴────────────────────────┴───────────────┘ | ||||
| >Total params: 397,510 (1.52 MB) | ||||
| >Trainable params: 397,510 (1.52 MB) | ||||
| >Non-trainable params: 0 (0.00 B) | ||||
| 
 | ||||
| 8.8 Обучение модели. | ||||
| ``` | ||||
| H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50) | ||||
| ``` | ||||
| 
 | ||||
| 8.9 Вывод графиков функции ошибки. | ||||
| ``` | ||||
| plt.plot(H.history['loss']) | ||||
| plt.plot(H.history['val_loss']) | ||||
| plt.grid() | ||||
| plt.xlabel('Epochs') | ||||
| plt.ylabel('loss') | ||||
| plt.legend(['train_loss', 'val_loss']) | ||||
| plt.title('Loss by epochs') | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| scores = model500.evaluate(X_test, y_test) | ||||
| print('Loss on test data:', scores[0]) | ||||
| print('Accuracy on test data:', scores[1]) | ||||
| ``` | ||||
| 
 | ||||
| >accuracy: 0.9306 - loss: 0.2398 | ||||
| >Loss on test data: 0.24357788264751434 | ||||
| >Accuracy on test data: 0.9304999709129333 | ||||
| 
 | ||||
| Как мы видим, лучшая метрика получилась при архитектуре со 100 нейронами в скрытом слое: | ||||
| Ошибка на тестовых данных: 0.19745595753192902 | ||||
| Точность тестовых данных: 0.9442999958992004 | ||||
| 
 | ||||
| ## 9. Добавление второго скрытого слоя. | ||||
| 9.1 При 50 нейронах во втором скрытом слое. | ||||
| ``` | ||||
| model10050 = Sequential() | ||||
| model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) | ||||
| model10050.add(Dense(units=50,activation='sigmoid')) | ||||
| model10050.add(Dense(units=num_classes, activation='softmax')) | ||||
| 
 | ||||
| model10050.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) | ||||
| 
 | ||||
| print(model10050.summary()) | ||||
| ``` | ||||
| 
 | ||||
| >Model: "sequential_17" | ||||
| >┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ | ||||
| >┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃ | ||||
| >┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ | ||||
| >│ dense_33 (Dense)                │ (None, 100)            │        78,500 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_34 (Dense)                │ (None, 50)             │         5,050 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_35 (Dense)                │ (None, 10)             │           510 │ | ||||
| >└─────────────────────────────────┴────────────────────────┴───────────────┘ | ||||
| >Total params: 84,060 (328.36 KB) | ||||
| >Trainable params: 84,060 (328.36 KB) | ||||
| >Non-trainable params: 0 (0.00 B)  | ||||
| 
 | ||||
| 9.2 Обучаем модель. | ||||
| ``` | ||||
| H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50) | ||||
| ``` | ||||
| 
 | ||||
| 9.3 Выводим график функции ошибки. | ||||
| ``` | ||||
| plt.plot(H.history['loss']) | ||||
| plt.plot(H.history['val_loss']) | ||||
| plt.grid() | ||||
| plt.xlabel('Epochs') | ||||
| plt.ylabel('loss') | ||||
| plt.legend(['train_loss', 'val_loss']) | ||||
| plt.title('Loss by epochs') | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| scores = model10050.evaluate(X_test, y_test) | ||||
| print('Loss on test data:', scores[0]) | ||||
| print('Accuracy on test data:', scores[1]) | ||||
| ``` | ||||
| 
 | ||||
| >accuracy: 0.9439 - loss: 0.1962 | ||||
| >Loss on test data: 0.1993969976902008 | ||||
| >Accuracy on test data: 0.9438999891281128 | ||||
| 
 | ||||
| 9.4 При 100 нейронах во втором скрытом слое. | ||||
| ``` | ||||
| model100100 = Sequential() | ||||
| model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) | ||||
| model100100.add(Dense(units=100,activation='sigmoid')) | ||||
| model100100.add(Dense(units=num_classes, activation='softmax')) | ||||
| 
 | ||||
| model100100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) | ||||
| 
 | ||||
| print(model100100.summary()) | ||||
| ``` | ||||
| 
 | ||||
| >Model: "sequential_18" | ||||
| >┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ | ||||
| >┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃ | ||||
| >┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ | ||||
| >│ dense_36 (Dense)                │ (None, 100)            │        78,500 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_37 (Dense)                │ (None, 100)            │        10,100 │ | ||||
| >├─────────────────────────────────┼────────────────────────┼───────────────┤ | ||||
| >│ dense_38 (Dense)                │ (None, 10)             │         1,010 │ | ||||
| >└─────────────────────────────────┴────────────────────────┴───────────────┘ | ||||
| >Total params: 89,610 (350.04 KB) | ||||
| >Trainable params: 89,610 (350.04 KB) | ||||
| >Non-trainable params: 0 (0.00 B) | ||||
| 
 | ||||
| 9.5 Обучаем модель. | ||||
| ``` | ||||
| H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50) | ||||
| ``` | ||||
| 
 | ||||
| 9.6 Выводим график функции ошибки. | ||||
| ``` | ||||
| plt.plot(H.history['loss']) | ||||
| plt.plot(H.history['val_loss']) | ||||
| plt.grid() | ||||
| plt.xlabel('Epochs') | ||||
| plt.ylabel('loss') | ||||
| plt.legend(['train_loss', 'val_loss']) | ||||
| plt.title('Loss by epochs') | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| scores = model100100.evaluate(X_test, y_test) | ||||
| print('Loss on test data:', scores[0]) | ||||
| print('Accuracy on test data:', scores[1]) | ||||
| ``` | ||||
| 
 | ||||
| >accuracy: 0.9449 - loss: 0.1931 | ||||
| >Loss on test data: 0.19571688771247864 | ||||
| >Accuracy on test data: 0.9435999989509583  | ||||
| 
 | ||||
| ## 10. Результаты исследования архитектур нейронной сети. | ||||
| 
 | ||||
| | Количество скрытых слоев | Количество нейронов в первом скрытом слое | Количество нейронов во втором скрытом слое | Значение метрики качества классификации | | ||||
| |--------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------| | ||||
| | 0                        | -                                         | -                                          | 0.9225000143051147                       | | ||||
| | 1                        | 100                                       | -                                          | 0.9442999958992004                       | | ||||
| | 1                        | 300                                       | -                                          | 0.9348000288009644                       | | ||||
| | 1                        | 500                                       | -                                          | 0.9304999709129333                       | | ||||
| | 2                        | 100                                       | 50                                         | 0.9438999891281128                       | | ||||
| | 2                        | 100                                       | 100                                        | 0.9435999989509583                       | | ||||
| 
 | ||||
| Анализ результатов показал, что наивысшую точность (около 94.5%) демонстрируют модели со сравнительно простой архитектурой: однослойная сеть со 100 нейронами и двухслойная конфигурация (100 и 50 нейронов). Усложнение модели за счет увеличения количества слоев или нейронов не привело к улучшению качества, а в некоторых случаях даже вызвало его снижение. Это свидетельствует о том, что для относительно простого набора данных MNIST более сложные архитектуры склонны к переобучению, в то время как простые модели лучше обобщают закономерности. | ||||
| 
 | ||||
| ## 11. Сохранение наилучшей модели на диск. | ||||
| ``` | ||||
| model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras') | ||||
| ``` | ||||
| 
 | ||||
| 11.1 Загрузка лучшей модели с диска. | ||||
| ``` | ||||
| from keras.models import load_model | ||||
| model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras') | ||||
| ``` | ||||
| 
 | ||||
| ## 12. Вывод тестовых изображений и результатов распознаваний. | ||||
| ``` | ||||
| n = 111 | ||||
| result = model.predict(X_test[n:n+1]) | ||||
| print('NN output:', result) | ||||
| plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) | ||||
| plt.show() | ||||
| print('Real mark: ', str(np.argmax(y_test[n]))) | ||||
| print('NN answer: ', str(np.argmax(result))) | ||||
| ``` | ||||
| 
 | ||||
| >NN output: [[1.1728607e-03 5.4896927e-06 3.3185919e-05 2.6362878e-04 4.8558863e-06 | ||||
| >9.9795568e-01 1.9454242e-07 1.6833146e-05 4.9621973e-04 5.1067746e-05]] | ||||
|  | ||||
| >Real mark:  5 | ||||
| >NN answer:  5 | ||||
| 
 | ||||
| ``` | ||||
| n = 222 | ||||
| result = model.predict(X_test[n:n+1]) | ||||
| print('NN output:', result) | ||||
| plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) | ||||
| plt.show() | ||||
| print('Real mark: ', str(np.argmax(y_test[n]))) | ||||
| print('NN answer: ', str(np.argmax(result))) | ||||
| ``` | ||||
| 
 | ||||
| >NN output: [[1.02687673e-05 2.02151591e-06 2.86183599e-03 8.74871985e-05 | ||||
| >1.51387369e-02 6.32769879e-05 3.97122385e-05 4.11829986e-02 1.06158564e-04 9.40507472e-01]] | ||||
|  | ||||
| >Real mark:  9 | ||||
| >NN answer:  9 | ||||
| 
 | ||||
| ## 13. Тестирование на собственных изображениях. | ||||
| 
 | ||||
| 13.1 Загрузка 1 собственного изображения. | ||||
| ``` | ||||
| from PIL import Image | ||||
| file_data = Image.open('test.png') | ||||
| file_data = file_data.convert('L') # перевод в градации серого | ||||
| test_img = np.array(file_data) | ||||
| ``` | ||||
| 
 | ||||
| 13.2 Вывод собственного изображения. | ||||
| ``` | ||||
| plt.imshow(test_img, cmap=plt.get_cmap('gray')) | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| 13.3 Предобработка. | ||||
| ``` | ||||
| test_img = test_img / 255 | ||||
| test_img = test_img.reshape(1, num_pixels) | ||||
| ``` | ||||
| 
 | ||||
| 13.4 Распознавание. | ||||
| ``` | ||||
| result = model.predict(test_img) | ||||
| print('I think it\'s ', np.argmax(result)) | ||||
| ``` | ||||
| >I think it's  5 | ||||
| 
 | ||||
| 13.5 Тест 2 изображения. | ||||
| ``` | ||||
| from PIL import Image | ||||
| file2_data = Image.open('test_2.png') | ||||
| file2_data = file2_data.convert('L') # перевод в градации серого | ||||
| test2_img = np.array(file2_data) | ||||
| ``` | ||||
| 
 | ||||
| ``` | ||||
| plt.imshow(test2_img, cmap=plt.get_cmap('gray')) | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| test2_img = test2_img / 255 | ||||
| test2_img = test2_img.reshape(1, num_pixels) | ||||
| ``` | ||||
| 
 | ||||
| ``` | ||||
| result_2 = model.predict(test2_img) | ||||
| print('I think it\'s ', np.argmax(result_2)) | ||||
| ``` | ||||
| 
 | ||||
| >I think it's  2 | ||||
| 
 | ||||
| Сеть корректно распознала цифры на изображениях. | ||||
| 
 | ||||
| ## 14. Тестирование на повернутых изображениях. | ||||
| ``` | ||||
| from PIL import Image | ||||
| file90_data = Image.open('test90.png') | ||||
| file90_data = file90_data.convert('L') # перевод в градации серого | ||||
| test90_img = np.array(file90_data) | ||||
| 
 | ||||
| plt.imshow(test90_img, cmap=plt.get_cmap('gray')) | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| test90_img = test90_img / 255 | ||||
| test90_img = test90_img.reshape(1, num_pixels) | ||||
| 
 | ||||
| result_3 = model.predict(test90_img) | ||||
| print('I think it\'s ', np.argmax(result_3)) | ||||
| ``` | ||||
| 
 | ||||
| >I think it's  7 | ||||
| 
 | ||||
| ``` | ||||
| from PIL import Image | ||||
| file902_data = Image.open('test90_2.png') | ||||
| file902_data = file902_data.convert('L') # перевод в градации серого | ||||
| test902_img = np.array(file902_data) | ||||
| 
 | ||||
| plt.imshow(test902_img, cmap=plt.get_cmap('gray')) | ||||
| plt.show() | ||||
| ``` | ||||
| 
 | ||||
|  | ||||
| 
 | ||||
| ``` | ||||
| test902_img = test902_img / 255 | ||||
| test902_img = test902_img.reshape(1, num_pixels) | ||||
| 
 | ||||
| result_4 = model.predict(test902_img) | ||||
| print('I think it\'s ', np.argmax(result_4)) | ||||
| ``` | ||||
| 
 | ||||
| >I think it's  7 | ||||
| 
 | ||||
| Сеть не распознала цифры на изображениях корректно. | ||||