форкнуто от main/is_dnn
				
			
							Родитель
							
								
									5f3950f2dd
								
							
						
					
					
						Сommit
						6e3643d715
					
				| @ -0,0 +1,879 @@ | ||||
| { | ||||
|   "nbformat": 4, | ||||
|   "nbformat_minor": 0, | ||||
|   "metadata": { | ||||
|     "colab": { | ||||
|       "provenance": [] | ||||
|     }, | ||||
|     "kernelspec": { | ||||
|       "name": "python3", | ||||
|       "display_name": "Python 3" | ||||
|     }, | ||||
|     "language_info": { | ||||
|       "name": "python" | ||||
|     } | ||||
|   }, | ||||
|   "cells": [ | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "execution_count": null, | ||||
|       "metadata": { | ||||
|         "id": "HUUZx52sc1LD" | ||||
|       }, | ||||
|       "outputs": [], | ||||
|       "source": [ | ||||
|         "import os\n", | ||||
|         "os.chdir('/content/drive/MyDrive/Colab Notebooks')" | ||||
|       ] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# импорт модулей\n", | ||||
|         "from tensorflow import keras\n", | ||||
|         "import matplotlib.pyplot as plt\n", | ||||
|         "import numpy as np\n", | ||||
|         "import sklearn" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "3Y-Ux1dadqdA" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка датасета\n", | ||||
|         "from keras.datasets import mnist\n", | ||||
|         "(X_train, y_train), (X_test, y_test) = mnist.load_data()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "w25XE8ADdqP5" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# создание своего разбиения датасета\n", | ||||
|         "from sklearn.model_selection import train_test_split\n", | ||||
|         "# объединяем в один набор\n", | ||||
|         "X = np.concatenate((X_train, X_test))\n", | ||||
|         "y = np.concatenate((y_train, y_test))\n", | ||||
|         "# разбиваем по вариантам\n", | ||||
|         "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", | ||||
|         "test_size = 10000,\n", | ||||
|         "train_size = 60000,\n", | ||||
|         "random_state = 19) #(5*4-1)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "QcXt9zqCdqDH" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод размерностей\n", | ||||
|         "print('Shape of X train:', X_train.shape)\n", | ||||
|         "print('Shape of y train:', y_train.shape)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "9Cd705vod51B", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Выводим 4 изображения\n", | ||||
|         "plt.figure(figsize=(10, 3))\n", | ||||
|         "for i in range(4):\n", | ||||
|         "    plt.subplot(1, 4, i + 1)\n", | ||||
|         "    plt.imshow(X_train[i], cmap='gray')\n", | ||||
|         "    plt.title(f'Label: {y_train[i]}')\n", | ||||
|         "    plt.axis('off')\n", | ||||
|         "plt.tight_layout()\n", | ||||
|         "plt.show()\n", | ||||
|         "\n" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "vLYfI---d5rm", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# развернем каждое изображение 28*28 в вектор 784\n", | ||||
|         "num_pixels = X_train.shape[1] * X_train.shape[2]\n", | ||||
|         "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", | ||||
|         "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", | ||||
|         "print('Shape of transformed X train:', X_train.shape)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "d0oyu59gd5fz", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# переведем метки в one-hot\n", | ||||
|         "from keras.utils import to_categorical\n", | ||||
|         "\n", | ||||
|         "y_train = to_categorical(y_train)\n", | ||||
|         "y_test = to_categorical(y_test)\n", | ||||
|         "\n", | ||||
|         "print('Shape of transformed y train:', y_train.shape)\n", | ||||
|         "num_classes = y_train.shape[1]" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Q227fINPeD1A", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "from keras.models import Sequential\n", | ||||
|         "from keras.layers import Dense" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "TzaA61smeDoO" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# 1. создаем модель - объявляем ее объектом класса Sequential\n", | ||||
|         "model = Sequential()\n", | ||||
|         "# 2. добавляем выходной слой(скрытые слои отсутствуют)\n", | ||||
|         "model.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "# 3. компилируем модель\n", | ||||
|         "model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Liq39zruhz0d" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "jMGGsq7piZOu", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "n_pCdxphiedM", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Sz_YOlsVivoR", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "hpJALaZGnyWF", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model.save('/content/drive/MyDrive/Colab Notebooks/models/model_zero_hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Z6eSmpwXn1zM" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model100 = Sequential()\n", | ||||
|         "model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model100.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "G1qGmPNF9afO" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model100.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "2WtfjJKY9abn", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "rPuWd80o9aYD", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "JLrW7S1g9aUe", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model100.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "8jdS02JZ9aRc", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model100.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "_bR3qoBy9aNy" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model300 = Sequential()\n", | ||||
|         "model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model300.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "V4m3nGORGnPC" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model300.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "yETaYKzdA9fp", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "SFPh0Lw-A9Zq", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "6mvOMGiLA9QE", | ||||
|         "collapsed": true | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model300.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "WOJyUHP79Z86" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model300.save('/content/drive/MyDrive/Colab Notebooks/models/model300in_1hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "XsWc7S4aCyiE" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model500 = Sequential()\n", | ||||
|         "model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model500.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "QSL-6YbkJxm0" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model500.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Vs1x3ooKCybg" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "x3kzDT5qCyYY" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "FwSLP5I8CyU0" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model500.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "5mDveUNPCyRH" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model500.save('/content/drive/MyDrive/Colab Notebooks/models/model500in_1hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "4IEeNu1rCyNj" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model10050 = Sequential()\n", | ||||
|         "model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model10050.add(Dense(units=50,activation='sigmoid'))\n", | ||||
|         "model10050.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model10050.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "Ld4hMck_CyKT" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model10050.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "GVZLuKvqNZEK" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "UP0suqUbNY9R" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод графика ошибки по эпохам\n", | ||||
|         "plt.plot(H.history['loss'])\n", | ||||
|         "plt.plot(H.history['val_loss'])\n", | ||||
|         "plt.grid()\n", | ||||
|         "plt.xlabel('Epochs')\n", | ||||
|         "plt.ylabel('loss')\n", | ||||
|         "plt.legend(['train_loss', 'val_loss'])\n", | ||||
|         "plt.title('Loss by epochs')\n", | ||||
|         "plt.show()" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "k-DhnF0SNY3K" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model10050.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "-7E0BUrMNYx9" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model10050.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide_50in_2hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "yu11cXisCyCh" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "model100100 = Sequential()\n", | ||||
|         "model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", | ||||
|         "model100100.add(Dense(units=100,activation='sigmoid'))\n", | ||||
|         "model100100.add(Dense(units=num_classes, activation='softmax'))\n", | ||||
|         "\n", | ||||
|         "model100100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "pTTia0gmRFaV" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод информации об архитектуре модели\n", | ||||
|         "print(model100100.summary())" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "XQHhKm8YRFW6" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Обучаем модель\n", | ||||
|         "H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "oCgqwCmPRFTT" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "ke" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "YDdSpQO5RFPn" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Оценка качества работы модели на тестовых данных\n", | ||||
|         "scores = model100100.evaluate(X_test, y_test)\n", | ||||
|         "print('Loss on test data:', scores[0])\n", | ||||
|         "print('Accuracy on test data:', scores[1])" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "D_WHUHCwRFMS" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение модели на диск\n", | ||||
|         "model100100.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide_100in_2hide.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "fkBAnNf2RFDL" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# сохранение лучшей модели в папку best_model\n", | ||||
|         "model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "mXGyPCNdS91i" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# Загрузка модели с диска\n", | ||||
|         "from keras.models import load_model\n", | ||||
|         "model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "ILyFn-CJp1k8" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод тестового изображения и результата распознавания\n", | ||||
|         "n = 111\n", | ||||
|         "result = model.predict(X_test[n:n+1])\n", | ||||
|         "print('NN output:', result)\n", | ||||
|         "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "print('Real mark: ', str(np.argmax(y_test[n])))\n", | ||||
|         "print('NN answer: ', str(np.argmax(result)))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "cCk7Do1mp-xb" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод тестового изображения и результата распознавания\n", | ||||
|         "n = 222\n", | ||||
|         "result = model.predict(X_test[n:n+1])\n", | ||||
|         "print('NN output:', result)\n", | ||||
|         "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "print('Real mark: ', str(np.argmax(y_test[n])))\n", | ||||
|         "print('NN answer: ', str(np.argmax(result)))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "HrL0sv-1YosF" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file_data = Image.open('test.png')\n", | ||||
|         "file_data = file_data.convert('L') # перевод в градации серого\n", | ||||
|         "test_img = np.array(file_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "tfARmJMip_D8" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test_img = test_img / 255\n", | ||||
|         "test_img = test_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result = model.predict(test_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "60zdtlMduHhT" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file2_data = Image.open('test_2.png')\n", | ||||
|         "file2_data = file2_data.convert('L') # перевод в градации серого\n", | ||||
|         "test2_img = np.array(file2_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "JcO7pbCSuvrv" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test2_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test2_img = test2_img / 255\n", | ||||
|         "test2_img = test2_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result_2 = model.predict(test2_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result_2))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "2E0evx2su4y1" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения, повернутого на 90 градусов\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file90_data = Image.open('test90.png')\n", | ||||
|         "file90_data = file90_data.convert('L') # перевод в градации серого\n", | ||||
|         "test90_img = np.array(file90_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "ZsRQAhIIa_vD" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test90_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test90_img = test90_img / 255\n", | ||||
|         "test90_img = test90_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result_3 = model.predict(test90_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result_3))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "nQnk_zZMbM01" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# загрузка собственного изображения, повернутого на 90 градусов\n", | ||||
|         "from PIL import Image\n", | ||||
|         "file902_data = Image.open('test90_2.png')\n", | ||||
|         "file902_data = file902_data.convert('L') # перевод в градации серого\n", | ||||
|         "test902_img = np.array(file902_data)" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "IXK_VfJqbhJ3" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "# вывод собственного изображения\n", | ||||
|         "plt.imshow(test902_img, cmap=plt.get_cmap('gray'))\n", | ||||
|         "plt.show()\n", | ||||
|         "# предобработка\n", | ||||
|         "test902_img = test902_img / 255\n", | ||||
|         "test902_img = test902_img.reshape(1, num_pixels)\n", | ||||
|         "# распознавание\n", | ||||
|         "result_4 = model.predict(test902_img)\n", | ||||
|         "print('I think it\\'s ', np.argmax(result_4))" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "S5WcjVtMb-bp" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     }, | ||||
|     { | ||||
|       "cell_type": "code", | ||||
|       "source": [ | ||||
|         "from google.colab import drive\n", | ||||
|         "drive.mount('/content/drive')" | ||||
|       ], | ||||
|       "metadata": { | ||||
|         "id": "n4-_iFTWXNTJ" | ||||
|       }, | ||||
|       "execution_count": null, | ||||
|       "outputs": [] | ||||
|     } | ||||
|   ] | ||||
| } | ||||
					Загрузка…
					
					
				
		Ссылка в новой задаче