Загрузил(а) файлы в 'labworks/LW1'

main
ChaginSA 1 месяц назад
Родитель a1c364b1d3
Сommit 9ee4fbdc33

Двоичные данные
labworks/LW1/11.png

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 6.3 KiB

Двоичные данные
labworks/LW1/12.png

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 6.3 KiB

Двоичные данные
labworks/LW1/13.png

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 6.3 KiB

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

@ -0,0 +1,576 @@
# Отчет по лабораторной работе №1
Аникеев Андрей, Чагин Сергей, А-02-22
## 1. В среде Google Colab создание нового блокнота.
```
import os
os.chdir('/content/drive/MyDrive/Colab Notebooks')
```
* 1.1 Импорт необходимых модулей.
```
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
import sklearn
```
## 2. Загрузка датасета.
```
from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
```
## 3. Разбиение набора данных на обучающий и тестовый.
```
from sklearn.model_selection import train_test_split
```
* 3.1 Объединение в один набор.
```
X = np.concatenate((X_train, X_test))
y = np.concatenate((y_train, y_test))
```
* 3.2 Разбиение по вариантам. (5 бригада -> k=4*5-1)
```
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 10000,train_size = 60000, random_state = 19)
```
* 3.3 Вывод размерностей.
```
print('Shape of X train:', X_train.shape)
print('Shape of y train:', y_train.shape)
```
> Shape of X train: (60000, 28, 28)
> Shape of y train: (60000,)
## 4. Вывод обучающих данных.
* 4.1 Выведем первые четыре элемента обучающих данных.
```
plt.figure(figsize=(10, 3))
for i in range(4):
plt.subplot(1, 4, i + 1)
plt.imshow(X_train[i], cmap='gray')
plt.title(f'Label: {y_train[i]}')
plt.axis('off')
plt.tight_layout()
plt.show()
```
![отображение элементов](1.png)
## 5. Предобработка данных.
* 5.1 Развернем каждое изображение в вектор.
```
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255
X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255
print('Shape of transformed X train:', X_train.shape)
```
> Shape of transformed X train: (60000, 784)
* 5.2 Переведем метки в one-hot.
```
from keras.utils import to_categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('Shape of transformed y train:', y_train.shape)
num_classes = y_train.shape[1]
```
> Shape of transformed y train: (60000, 10)
## 6. Реализация и обучение однослойной нейронной сети.
```
from keras.models import Sequential
from keras.layers import Dense
```
* 6.1. Создаем модель - объявляем ее объектом класса Sequential, добавляем выходной слой.
```
model = Sequential()
model.add(Dense(units=num_classes, activation='softmax'))
```
* 6.2. Компилируем модель.
```
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
print(model.summary())
```
>Model: "sequential_6"
>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
>┃ Layer (type) ┃ Output Shape ┃ Param # ┃
>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
>│ dense_18 (Dense) │ ? │ 0 (unbuilt) │
>└─────────────────────────────────┴────────────────────────┴───────────────┘
>Total params: 0 (0.00 B)
>Trainable params: 0 (0.00 B)
>Non-trainable params: 0 (0.00 B)
* 6.3 Обучаем модель.
```
H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)
```
* 6.4 Выводим график функции ошибки
```
plt.plot(H.history['loss'])
plt.plot(H.history['val_loss'])
plt.grid()
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend(['train_loss', 'val_loss'])
plt.title('Loss by epochs')
plt.show()
```
![график функции ошибки](2.png)
## 7. Применение модели к тестовым данным.
```
scores = model.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
>accuracy: 0.9213 - loss: 0.2825
>Loss on test data: 0.28365787863731384
>Accuracy on test data: 0.9225000143051147
## 8. Добавление одного скрытого слоя.
* 8.1 При 100 нейронах в скрытом слое.
```
model100 = Sequential()
model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
model100.add(Dense(units=num_classes, activation='softmax'))
model100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']
print(model100.summary())
```
>Model: "sequential_10"
>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
>┃ Layer (type) ┃ Output Shape ┃ Param # ┃
>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
>│ dense_19 (Dense) │ (None, 100) │ 78,500 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_20 (Dense) │ (None, 10) │ 1,010 │
>└─────────────────────────────────┴────────────────────────┴───────────────┘
>Total params: 79,510 (310.59 KB)
>Trainable params: 79,510 (310.59 KB)
>Non-trainable params: 0 (0.00 B)
* 8.2 Обучение модели.
```
H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50)
```
* 8.3 График функции ошибки.
```
plt.plot(H.history['loss'])
plt.plot(H.history['val_loss'])
plt.grid()
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend(['train_loss', 'val_loss'])
plt.title('Loss by epochs')
plt.show()
```
![график функции ошибки](3.png)
```
scores = model100.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
>accuracy: 0.9465 - loss: 0.1946
>Loss on test data: 0.19745595753192902
>Accuracy on test data: 0.9442999958992004
* 8.4 При 300 нейронах в скрытом слое.
```
model300 = Sequential()
model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))
model300.add(Dense(units=num_classes, activation='softmax'))
model300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
print(model300.summary())
```
>Model: "sequential_14"
>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
>┃ Layer (type) ┃ Output Shape ┃ Param # ┃
>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
>│ dense_27 (Dense) │ (None, 300) │ 235,500 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_28 (Dense) │ (None, 10) │ 3,010 │
>└─────────────────────────────────┴────────────────────────┴───────────────┘
>Total params: 238,510 (931.68 KB)
>Trainable params: 238,510 (931.68 KB)
>Non-trainable params: 0 (0.00 B)
* 8.5 Обучение модели.
```
H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50)
```
* 8.6 Вывод графиков функции ошибки.
```
plt.plot(H.history['loss'])
plt.plot(H.history['val_loss'])
plt.grid()
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend(['train_loss', 'val_loss'])
plt.title('Loss by epochs')
plt.show()
```
![график функции ошибки](4.png)
```
scores = model300.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
>accuracy: 0.9361 - loss: 0.2237
>Loss on test data: 0.22660093009471893
>Accuracy on test data: 0.9348000288009644
* 8.7 При 500 нейронах в скрытом слое.
```
model500 = Sequential()
model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))
model500.add(Dense(units=num_classes, activation='softmax'))
model500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
print(model500.summary())
```
>Model: "sequential_16"
>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
>┃ Layer (type) ┃ Output Shape ┃ Param # ┃
>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
>│ dense_31 (Dense) │ (None, 500) │ 392,500 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_32 (Dense) │ (None, 10) │ 5,010 │
>└─────────────────────────────────┴────────────────────────┴───────────────┘
>Total params: 397,510 (1.52 MB)
>Trainable params: 397,510 (1.52 MB)
>Non-trainable params: 0 (0.00 B)
* 8.8 Обучение модели.
```
H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50)
```
* 8.9 Вывод графиков функции ошибки.
```
plt.plot(H.history['loss'])
plt.plot(H.history['val_loss'])
plt.grid()
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend(['train_loss', 'val_loss'])
plt.title('Loss by epochs')
plt.show()
```
![график функции ошибки](5.png)
```
scores = model500.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
>accuracy: 0.9306 - loss: 0.2398
>Loss on test data: 0.24357788264751434
>Accuracy on test data: 0.9304999709129333
Как мы видим, лучшая метрика получилась при архитектуре со 100 нейронами в скрытом слое:
Ошибка на тестовых данных: 0.19745595753192902
Точность тестовых данных: 0.9442999958992004
## 9. Добавление второго скрытого слоя.
* 9.1 При 50 нейронах во втором скрытом слое.
```
model10050 = Sequential()
model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
model10050.add(Dense(units=50,activation='sigmoid'))
model10050.add(Dense(units=num_classes, activation='softmax'))
model10050.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
print(model10050.summary())
```
>Model: "sequential_17"
>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
>┃ Layer (type) ┃ Output Shape ┃ Param # ┃
>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
>│ dense_33 (Dense) │ (None, 100) │ 78,500 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_34 (Dense) │ (None, 50) │ 5,050 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_35 (Dense) │ (None, 10) │ 510 │
>└─────────────────────────────────┴────────────────────────┴───────────────┘
>Total params: 84,060 (328.36 KB)
>Trainable params: 84,060 (328.36 KB)
>Non-trainable params: 0 (0.00 B)
* 9.2 Обучаем модель.
```
H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50)
```
* 9.3 Выводим график функции ошибки.
```
plt.plot(H.history['loss'])
plt.plot(H.history['val_loss'])
plt.grid()
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend(['train_loss', 'val_loss'])
plt.title('Loss by epochs')
plt.show()
```
![график функции ошибки](6.png)
```
scores = model10050.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
>accuracy: 0.9439 - loss: 0.1962
>Loss on test data: 0.1993969976902008
>Accuracy on test data: 0.9438999891281128
* 9.4 При 100 нейронах во втором скрытом слое.
```
model100100 = Sequential()
model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
model100100.add(Dense(units=100,activation='sigmoid'))
model100100.add(Dense(units=num_classes, activation='softmax'))
model100100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
print(model100100.summary())
```
>Model: "sequential_18"
>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
>┃ Layer (type) ┃ Output Shape ┃ Param # ┃
>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
>│ dense_36 (Dense) │ (None, 100) │ 78,500 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_37 (Dense) │ (None, 100) │ 10,100 │
>├─────────────────────────────────┼────────────────────────┼───────────────┤
>│ dense_38 (Dense) │ (None, 10) │ 1,010 │
>└─────────────────────────────────┴────────────────────────┴───────────────┘
>Total params: 89,610 (350.04 KB)
>Trainable params: 89,610 (350.04 KB)
>Non-trainable params: 0 (0.00 B)
* 9.5 Обучаем модель.
```
H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50)
```
* 9.6 Выводим график функции ошибки.
```
plt.plot(H.history['loss'])
plt.plot(H.history['val_loss'])
plt.grid()
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend(['train_loss', 'val_loss'])
plt.title('Loss by epochs')
plt.show()
```
![график функции ошибки](7.png)
```
scores = model100100.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
>accuracy: 0.9449 - loss: 0.1931
>Loss on test data: 0.19571688771247864
>Accuracy on test data: 0.9435999989509583
## 10. Результаты исследования архитектур нейронной сети.
| Количество скрытых слоев | Количество нейронов в первом скрытом слое | Количество нейронов во втором скрытом слое | Значение метрики качества классификации |
|--------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|
| 0 | - | - | 0.9225000143051147 |
| 1 | 100 | - | 0.9442999958992004 |
| 1 | 300 | - | 0.9348000288009644 |
| 1 | 500 | - | 0.9304999709129333 |
| 2 | 100 | 50 | 0.9438999891281128 |
| 2 | 100 | 100 | 0.9435999989509583 |
Анализ результатов показал, что наивысшую точность (около 94.5%) демонстрируют модели со сравнительно простой архитектурой: однослойная сеть со 100 нейронами и двухслойная конфигурация (100 и 50 нейронов). Усложнение модели за счет увеличения количества слоев или нейронов не привело к улучшению качества, а в некоторых случаях даже вызвало его снижение. Это свидетельствует о том, что для относительно простого набора данных MNIST более сложные архитектуры склонны к переобучению, в то время как простые модели лучше обобщают закономерности.
## 11. Сохранение наилучшей модели на диск.
```
model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')
```
* 11.1 Загрузка лучшей модели с диска.
```
from keras.models import load_model
model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')
```
## 12. Вывод тестовых изображений и результатов распознаваний.
```
n = 111
result = model.predict(X_test[n:n+1])
print('NN output:', result)
plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))
plt.show()
print('Real mark: ', str(np.argmax(y_test[n])))
print('NN answer: ', str(np.argmax(result)))
```
>NN output: [[1.1728607e-03 5.4896927e-06 3.3185919e-05 2.6362878e-04 4.8558863e-06
>9.9795568e-01 1.9454242e-07 1.6833146e-05 4.9621973e-04 5.1067746e-05]]
![alt text](8.png)
>Real mark: 5
>NN answer: 5
```
n = 222
result = model.predict(X_test[n:n+1])
print('NN output:', result)
plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))
plt.show()
print('Real mark: ', str(np.argmax(y_test[n])))
print('NN answer: ', str(np.argmax(result)))
```
>NN output: [[1.02687673e-05 2.02151591e-06 2.86183599e-03 8.74871985e-05
>1.51387369e-02 6.32769879e-05 3.97122385e-05 4.11829986e-02 1.06158564e-04 9.40507472e-01]]
![alt text](9.png)
>Real mark: 9
>NN answer: 9
## 13. Тестирование на собственных изображениях.
* 13.1 Загрузка 1 собственного изображения.
```
from PIL import Image
file_data = Image.open('test.png')
file_data = file_data.convert('L') # перевод в градации серого
test_img = np.array(file_data)
```
* 13.2 Вывод собственного изображения.
```
plt.imshow(test_img, cmap=plt.get_cmap('gray'))
plt.show()
```
![1 изображение](10.png)
* 13.3 Предобработка.
```
test_img = test_img / 255
test_img = test_img.reshape(1, num_pixels)
```
* 13.4 Распознавание.
```
result = model.predict(test_img)
print('I think it\'s ', np.argmax(result))
```
>I think it's 5
* 13.5 Тест 2 изображения.
```
from PIL import Image
file2_data = Image.open('test_2.png')
file2_data = file2_data.convert('L') # перевод в градации серого
test2_img = np.array(file2_data)
```
```
plt.imshow(test2_img, cmap=plt.get_cmap('gray'))
plt.show()
```
![2 изображение](11.png)
```
test2_img = test2_img / 255
test2_img = test2_img.reshape(1, num_pixels)
```
```
result_2 = model.predict(test2_img)
print('I think it\'s ', np.argmax(result_2))
```
>I think it's 2
Сеть корректно распознала цифры на изображениях.
## 14. Тестирование на повернутых изображениях.
```
from PIL import Image
file90_data = Image.open('test90.png')
file90_data = file90_data.convert('L') # перевод в градации серого
test90_img = np.array(file90_data)
plt.imshow(test90_img, cmap=plt.get_cmap('gray'))
plt.show()
```
![alt text](12.png)
```
test90_img = test90_img / 255
test90_img = test90_img.reshape(1, num_pixels)
result_3 = model.predict(test90_img)
print('I think it\'s ', np.argmax(result_3))
```
>I think it's 7
```
from PIL import Image
file902_data = Image.open('test90_2.png')
file902_data = file902_data.convert('L') # перевод в градации серого
test902_img = np.array(file902_data)
plt.imshow(test902_img, cmap=plt.get_cmap('gray'))
plt.show()
```
![alt text](13.png)
```
test902_img = test902_img / 255
test902_img = test902_img.reshape(1, num_pixels)
result_4 = model.predict(test902_img)
print('I think it\'s ', np.argmax(result_4))
```
>I think it's 7
Сеть не распознала цифры на изображениях корректно.
Загрузка…
Отмена
Сохранить