'Модель устройства с памятью:\nx- текущее значение вх.сигнала,\n T -постоянная времени,\n ypred - предыдущее значение выхода устройства'
help(inerz)
Help on function inerz in module __main__:
inerz(x, T, ypred)
Модель устройства с памятью:
x- текущее значение вх.сигнала,
T -постоянная времени,
ypred - предыдущее значение выхода устройства
```
### 3.2. Сохранение ссылки на объект-функцию в другой переменной.
```py
fnkt=sravnenie
v=16
fnkt(v,23)
16 меньше 23
```
### 3.3. Возможность альтернативного определения функции в программе.
```py
typ_fun=8
if typ_fun==1:
def func():
print('Функция 1')
else:
def func():
print('Функция 2')
func()
Функция 2
```
## 4. Аргументы функции.
### 4.1. Изучите возможность использования функции в качестве аргумента другой функции
```py
def fun_arg(fff,a,b,c):
"""fff-имя функции, используемой
в качестве аргумента функции fun_arg"""
return a+fff(c,b)
zz=fun_arg(logistfun,-3,1,0.7)
zz
-2.3318122278318336
```
### 4.2. Обязательные и необязательные аргументы.
```py
def logistfun(a,b=1): #Аргумент b – необязательный; значение по умолчанию=1
"""Вычисление логистической функции"""
import math
return b/(1+math.exp(-a))
logistfun(0.7) #Вычисление со значением b по умолчанию
0.6681877721681662
logistfun(0.7,2) #Вычисление с заданным значением b
1.3363755443363323
```
### 4.3. Изучите возможность обращения к функции с произвольным (непозиционным) расположением аргументов. При этом надо в обращении к функции указывать имена аргументов:
```py
logistfun(b=0.5,a=0.8) # Ссылки на аргументы поменялись местами
0.34498724056380625
```
### 4.4. Пример со значениями аргументов функции, содержащимися в списке или кортеже.
```py
b1234=[b1,b2,b3,b4] # Список списков из п.2.4
b1234
[[1, 2], [-1, -2], [0, 2], [-1, -1]]
qq=slozh(*b1234) #Перед ссылкой на список или кортеж надо ставить звездочку
qq
[1, 2, -1, -2, 0, 2, -1, -1]
```
### 4.5. Пример со значениями аргументов функции, содержащимися в словаре
```py
dic4={"a1":1,"a2":2,"a3":3,"a4":4}
qqq=slozh(**dic4) #Перед ссылкой на словарь надо ставить две звездочки
qqq
10
```
### 4.6. Смешанные ссылки
```py
e1=(-1,6);dd2={'a3':3,'a4':9}
qqqq=slozh(*e1,**dd2)
qqqq
17
```
### 4.7. Переменное число аргументов у функции.
```py
def func4(*kort7):
"""Произвольное число аргументов в составе кортежа"""
smm=0
for elt in kort7:
smm+=elt
return smm
func4(-1,2) #Обращение к функции с 2 аргументами
1
func4(-1,2,0,3,6) #Обращение к функции с 5 аргументами
10
```
### 4.8. Комбинация аргументов
```py
def func4(a,b=7,*kort7): #Аргументы: a-позиционный, b- по умолчанию + кортеж
"""Кортеж - сборка аргументов - должен быть последним!"""
smm=0
for elt in kort7:
smm+=elt
return a*smm+b
func4(-1,2,0,3,6)
-7
```
### 4.9. Изменение значений объектов, используемых в качестве аргументов функции.
```py
a=90 # Числовой объект – не изменяемый тип
def func3(b):
b=5*b+67
func3(a)
a
90
sps1=[1,2,3,4] #Список – изменяемый тип объекта
def func2(sps):
sps[1]=99
func2(sps1)
print(sps1)
[1, 99, 3, 4]
kort=(1,2,3,4) #Кортеж – неизменяемый тип объекта
func2(kort)
Traceback (most recent call last):
File "<pyshell#75>", line 1, in <module>
func2(kort)
File "<pyshell#71>", line 2, in func2
sps[1]=99
TypeError: 'tuple' object does not support item assignment
```
## 5. Специальные типы пользовательских функций
### 5.1. Анонимные функции.
```py
import math
anfun1=lambda: 1.5+math.log10(17.23) #Анонимная функция без аргументов
anfun1() # Обращение к объекту-функции
2.7362852774480286
anfun2=lambda a,b : a+math.log10(b) #Анонимная функция с 2 аргументами
anfun2(17,234)
19.369215857410143
anfun3=lambda a,b=234: a+math.log10(b) #Функция с необязательным вторым аргументом
anfun3(100)
102.36921585741014
```
### 5.2. Функции-генераторы.
```py
def func5(diap,shag):
""" Итератор, возвращающий значения
из диапазона от 1 до diap с шагом shag"""
for j in range(1,diap+1,shag):
yield j
for mm in func5(7,3):
print(mm)
1
4
7
alp=func5(7,3)
print(alp.__next__())
1
print(alp.__next__())
4
print(alp.__next__())
7
print(alp.__next__())
Traceback (most recent call last):
File "<pyshell#92>", line 1, in <module>
print(alp.__next__())
StopIteration
```
## 6. Локализация объектов в функциях.
### 6.1. Примеры на локализацию объектов.
```py
glb=10
def func7(arg):
loc1=15
glb=8
return loc1*arg
res=func7(glb)
res
150
def func8(arg):
loc1=15
print(glb)
glb=8
return loc1*arg
res=func8(glb)
Traceback (most recent call last):
File "<pyshell#98>", line 1, in <module>
res=func8(glb)
File "<pyshell#97>", line 3, in func8
print(glb)
UnboundLocalError: cannot access local variable 'glb' where it is not associated with a value
glb=11
def func7(arg):
loc1=15
global glb
print(glb)
glb=8
return loc1*arg
res=func7(glb)
11
res
165
glb
8
```
### 6.2. Выявление локализации объекта с помощью функций locals() и globals() из builtins.
```py
def func8(arg):
loc1=15
glb=8
print(globals().keys()) #Перечень глобальных объектов «изнутри» функции
print(locals().keys()) #Перечень локальных объектов «изнутри» функции
### 6.4. Большой пример – моделирование системы, состоящей из последовательного соединения реального двигателя, охваченного отрицательной обратной связью с тахогенератором в ней, и нелинейного звена типа «зона нечувствительности», при подаче на неё синусоидального входного сигнала.