@ -0,0 +1,4 @@
|
||||
10.5 9.5
|
||||
9.0 10.2
|
||||
9.6 10.5
|
||||
9.0 9.0
|
||||
|
После Ширина: | Высота: | Размер: 43 KiB |
|
После Ширина: | Высота: | Размер: 21 KiB |
|
После Ширина: | Высота: | Размер: 29 KiB |
|
После Ширина: | Высота: | Размер: 40 KiB |
|
После Ширина: | Высота: | Размер: 22 KiB |
|
После Ширина: | Высота: | Размер: 86 KiB |
|
После Ширина: | Высота: | Размер: 89 KiB |
|
После Ширина: | Высота: | Размер: 70 KiB |
|
После Ширина: | Высота: | Размер: 43 KiB |
|
После Ширина: | Высота: | Размер: 108 KiB |
|
После Ширина: | Высота: | Размер: 34 KiB |
|
После Ширина: | Высота: | Размер: 90 KiB |
|
После Ширина: | Высота: | Размер: 104 KiB |
|
После Ширина: | Высота: | Размер: 32 KiB |
|
После Ширина: | Высота: | Размер: 66 KiB |
|
После Ширина: | Высота: | Размер: 78 KiB |
@ -0,0 +1,100 @@
|
||||
8.0000000e+00 1.1000000e+01 8.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 1.1000000e+01 2.0000000e+00 8.0000000e+00 1.1000000e+01 9.0000000e+00 5.0000000e+00 4.0000000e+00 1.0000000e+01 4.0000000e+00 4.0000000e+00 3.0000000e+00 6.0000000e+00 5.0000000e+00 4.0000000e+00 1.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01 7.0000000e+00 7.0000000e+00 1.2000000e+01 1.0000000e+00 7.0000000e+00 4.0000000e+00 9.0000000e+00
|
||||
4.0000000e+00 5.0000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 5.0000000e+00 1.1000000e+01 2.0000000e+00 8.0000000e+00 1.1000000e+01 9.0000000e+00 4.0000000e+00 1.0000000e+00 1.1000000e+01 2.0000000e+00 4.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 9.0000000e+00 9.0000000e+00 8.0000000e+00 1.0000000e+01 4.0000000e+00 3.0000000e+00 6.0000000e+00 8.0000000e+00 9.0000000e+00 5.0000000e+00 1.3000000e+01 8.0000000e+00 8.0000000e+00
|
||||
3.0000000e+00 3.0000000e+00 5.0000000e+00 2.0000000e+00 3.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 5.0000000e+00 2.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 6.0000000e+00 4.0000000e+00 3.0000000e+00 9.0000000e+00 7.0000000e+00 1.0000000e+00 9.0000000e+00 1.0000000e+01 4.0000000e+00 7.0000000e+00 2.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 7.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 6.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 1.0000000e+01 7.0000000e+00 6.0000000e+00 5.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 1.0000000e+01 8.0000000e+00 9.0000000e+00
|
||||
3.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 6.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 5.0000000e+00 2.0000000e+00 7.0000000e+00 9.0000000e+00 1.4000000e+01 9.0000000e+00 8.0000000e+00 6.0000000e+00 3.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 1.0000000e+01 1.1000000e+01 1.2000000e+01 5.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00
|
||||
4.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 4.0000000e+00 9.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 2.0000000e+00 7.0000000e+00 8.0000000e+00 1.1000000e+01 8.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 1.1000000e+01 2.0000000e+00 8.0000000e+00 1.1000000e+01 9.0000000e+00 5.0000000e+00 4.0000000e+00 1.0000000e+01 4.0000000e+00 4.0000000e+00
|
||||
2.0000000e+00 3.0000000e+00 3.0000000e+00 2.0000000e+00 1.0000000e+00 6.0000000e+00 1.1000000e+01 2.0000000e+00 7.0000000e+00 1.0000000e+01 9.0000000e+00 5.0000000e+00 1.0000000e+00 1.0000000e+01 2.0000000e+00 5.0000000e+00 6.0000000e+00 1.1000000e+01 6.0000000e+00 6.0000000e+00 3.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 3.0000000e+00 1.3000000e+01 9.0000000e+00 8.0000000e+00 3.0000000e+00 1.0000000e+01 3.0000000e+00 8.0000000e+00
|
||||
6.0000000e+00 1.0000000e+01 8.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 7.0000000e+00 7.0000000e+00 7.0000000e+00 9.0000000e+00 9.0000000e+00 4.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 5.0000000e+00 1.0000000e+01 4.0000000e+00 5.0000000e+00 3.0000000e+00 9.0000000e+00 5.0000000e+00 4.0000000e+00 3.0000000e+00 9.0000000e+00 4.0000000e+00 5.0000000e+00 4.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00
|
||||
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 7.0000000e+00 1.0000000e+01 7.0000000e+00 8.0000000e+00 5.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01 5.0000000e+00 9.0000000e+00 5.0000000e+00 9.0000000e+00 6.0000000e+00 5.0000000e+00
|
||||
3.0000000e+00 1.0000000e+01 4.0000000e+00 8.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 2.0000000e+00 2.0000000e+00 4.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 1.0000000e+01 1.0000000e+00 7.0000000e+00 7.0000000e+00 1.1000000e+01 8.0000000e+00 1.0000000e+00 1.1000000e+01 2.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 3.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 7.0000000e+00 8.0000000e+00 6.0000000e+00 4.0000000e+00 1.0000000e+01 7.0000000e+00 6.0000000e+00 3.0000000e+00 9.0000000e+00 3.0000000e+00 8.0000000e+00
|
||||
3.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 2.0000000e+00 8.0000000e+00 6.0000000e+00 1.1000000e+01 1.0000000e+00 6.0000000e+00 9.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 1.0000000e+00 4.0000000e+00 1.1000000e+01 2.0000000e+00 6.0000000e+00 1.1000000e+01 1.0000000e+01 5.0000000e+00 1.0000000e+00 1.1000000e+01 2.0000000e+00 5.0000000e+00
|
||||
6.0000000e+00 7.0000000e+00 9.0000000e+00 5.0000000e+00 7.0000000e+00 4.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 1.0000000e+01 1.0000000e+01 1.1000000e+01 8.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 4.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 1.0000000e+01 6.0000000e+00 5.0000000e+00 3.0000000e+00 8.0000000e+00 4.0000000e+00 8.0000000e+00
|
||||
7.0000000e+00 1.5000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 9.0000000e+00 7.0000000e+00 3.0000000e+00 6.0000000e+00 1.3000000e+01 3.0000000e+00 5.0000000e+00 3.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01 5.0000000e+00 6.0000000e+00 6.0000000e+00 8.0000000e+00 9.0000000e+00 9.0000000e+00 8.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01 7.0000000e+00 4.0000000e+00
|
||||
5.0000000e+00 1.1000000e+01 7.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 9.0000000e+00 9.0000000e+00 5.0000000e+00 4.0000000e+00 6.0000000e+00 6.0000000e+00 9.0000000e+00 3.0000000e+00 7.0000000e+00 8.0000000e+00 6.0000000e+00
|
||||
5.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 3.0000000e+00 3.0000000e+00 4.0000000e+00 2.0000000e+00 1.0000000e+00 4.0000000e+00 1.3000000e+01 3.0000000e+00 2.0000000e+00 1.0000000e+01 1.1000000e+01 7.0000000e+00 2.0000000e+00 1.1000000e+01 1.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 4.0000000e+00 2.0000000e+00 3.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 7.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 5.0000000e+00 1.1000000e+01 6.0000000e+00 3.0000000e+00 4.0000000e+00 9.0000000e+00 3.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 4.0000000e+00 5.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 1.2000000e+01 1.0000000e+00 7.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 6.0000000e+00 8.0000000e+00 2.0000000e+00 8.0000000e+00 1.1000000e+01 7.0000000e+00 9.0000000e+00 2.0000000e+00 9.0000000e+00 4.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 6.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 2.0000000e+00 5.0000000e+00 4.0000000e+00 3.0000000e+00 3.0000000e+00 9.0000000e+00 6.0000000e+00 3.0000000e+00 5.0000000e+00 1.0000000e+01 4.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 3.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 3.0000000e+00 3.0000000e+00 4.0000000e+00 1.0000000e+00 8.0000000e+00 1.4000000e+01 0.0000000e+00 6.0000000e+00 6.0000000e+00 1.1000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 4.0000000e+00 1.1000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 1.0000000e+01 5.0000000e+00 4.0000000e+00 5.0000000e+00 1.4000000e+01 4.0000000e+00 1.0000000e+01 0.0000000e+00 7.0000000e+00 1.0000000e+00 6.0000000e+00
|
||||
4.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 5.0000000e+00 1.0000000e+01 1.1000000e+01 2.0000000e+00 7.0000000e+00 5.0000000e+00 1.1000000e+01 7.0000000e+00 1.0000000e+00 1.1000000e+01 1.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01 6.0000000e+00 5.0000000e+00 4.0000000e+00 9.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 1.0000000e+01 4.0000000e+00 7.0000000e+00 5.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00
|
||||
4.0000000e+00 6.0000000e+00 5.0000000e+00 4.0000000e+00 3.0000000e+00 8.0000000e+00 7.0000000e+00 1.2000000e+01 1.0000000e+00 6.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 7.0000000e+00 1.0000000e+01 9.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00 6.0000000e+00 7.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 3.0000000e+00
|
||||
4.0000000e+00 5.0000000e+00 5.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 1.0000000e+01 4.0000000e+00 5.0000000e+00 8.0000000e+00 7.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 1.1000000e+01 5.0000000e+00 6.0000000e+00 4.0000000e+00 8.0000000e+00 6.0000000e+00 3.0000000e+00 5.0000000e+00 9.0000000e+00 5.0000000e+00 7.0000000e+00 5.0000000e+00 9.0000000e+00 5.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 7.0000000e+00 0.0000000e+00 4.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 3.0000000e+00 2.0000000e+00 1.0000000e+00 1.0000000e+00 7.0000000e+00 8.0000000e+00 6.0000000e+00 7.0000000e+00 8.0000000e+00 9.0000000e+00 7.0000000e+00 3.0000000e+00 1.0000000e+01 1.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 1.0000000e+00 7.0000000e+00 1.2000000e+01 0.0000000e+00 5.0000000e+00 7.0000000e+00 1.0000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 5.0000000e+00 1.0000000e+01 6.0000000e+00 7.0000000e+00 5.0000000e+00 9.0000000e+00 8.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 5.0000000e+00 4.0000000e+00 6.0000000e+00 1.0000000e+01 3.0000000e+00 5.0000000e+00
|
||||
2.0000000e+00 1.0000000e+01 2.0000000e+00 8.0000000e+00 2.0000000e+00 8.0000000e+00 7.0000000e+00 0.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 3.0000000e+00 7.0000000e+00 3.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 2.0000000e+00 8.0000000e+00 7.0000000e+00 8.0000000e+00
|
||||
7.0000000e+00 1.1000000e+01 1.1000000e+01 8.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 3.0000000e+00 5.0000000e+00 9.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 3.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 3.0000000e+00 6.0000000e+00 9.0000000e+00 7.0000000e+00 3.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00 2.0000000e+00 7.0000000e+00 5.0000000e+00 1.1000000e+01
|
||||
9.0000000e+00 1.1000000e+01 7.0000000e+00 6.0000000e+00 3.0000000e+00 5.0000000e+00 9.0000000e+00 3.0000000e+00 9.0000000e+00 1.3000000e+01 7.0000000e+00 5.0000000e+00 2.0000000e+00 1.0000000e+01 3.0000000e+00 5.0000000e+00 3.0000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 1.0000000e+00 5.0000000e+00 1.2000000e+01 3.0000000e+00 3.0000000e+00 9.0000000e+00 1.1000000e+01 7.0000000e+00 2.0000000e+00 1.0000000e+01 1.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 4.0000000e+00 2.0000000e+00 3.0000000e+00 1.0000000e+00 7.0000000e+00 8.0000000e+00 0.0000000e+00 7.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 9.0000000e+00 7.0000000e+00 5.0000000e+00 3.0000000e+00 9.0000000e+00 3.0000000e+00 7.0000000e+00 1.1000000e+01 1.2000000e+01 1.2000000e+01 4.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00
|
||||
6.0000000e+00 1.0000000e+01 8.0000000e+00 8.0000000e+00 7.0000000e+00 9.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 6.0000000e+00 6.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 5.0000000e+00 1.2000000e+01 4.0000000e+00 6.0000000e+00 1.2000000e+01 9.0000000e+00 4.0000000e+00 2.0000000e+00 1.2000000e+01 2.0000000e+00 4.0000000e+00
|
||||
1.0000000e+00 0.0000000e+00 2.0000000e+00 0.0000000e+00 0.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 0.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 5.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 3.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 1.0000000e+01 2.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 1.1000000e+01 0.0000000e+00 8.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 4.0000000e+00 1.0000000e+01 5.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 2.0000000e+00 2.0000000e+00 4.0000000e+00 1.0000000e+00 6.0000000e+00 1.0000000e+00 5.0000000e+00
|
||||
5.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 7.0000000e+00 3.0000000e+00 4.0000000e+00 1.0000000e+01 1.0000000e+01 1.0000000e+01 5.0000000e+00 6.0000000e+00 2.0000000e+00 6.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 4.0000000e+00 3.0000000e+00 9.0000000e+00 5.0000000e+00 8.0000000e+00 5.0000000e+00 9.0000000e+00 1.1000000e+01 1.0000000e+01
|
||||
4.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 5.0000000e+00 8.0000000e+00 4.0000000e+00 8.0000000e+00 8.0000000e+00 8.0000000e+00 9.0000000e+00 3.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 3.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 1.1000000e+01 1.0000000e+00 8.0000000e+00 5.0000000e+00 1.1000000e+01
|
||||
3.0000000e+00 5.0000000e+00 5.0000000e+00 6.0000000e+00 1.0000000e+00 8.0000000e+00 1.5000000e+01 1.0000000e+00 5.0000000e+00 7.0000000e+00 1.1000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 6.0000000e+00 2.0000000e+00 4.0000000e+00 2.0000000e+00 3.0000000e+00 8.0000000e+00 5.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 1.3000000e+01 0.0000000e+00 8.0000000e+00 6.0000000e+00 9.0000000e+00
|
||||
1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 8.0000000e+00 3.0000000e+00 3.0000000e+00 3.0000000e+00 5.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 6.0000000e+00 6.0000000e+00 0.0000000e+00 1.0000000e+00 5.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
7.0000000e+00 8.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00 7.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 4.0000000e+00 9.0000000e+00 1.0000000e+01 9.0000000e+00 7.0000000e+00 9.0000000e+00 1.0000000e+01 8.0000000e+00 1.1000000e+01 7.0000000e+00 6.0000000e+00 5.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 1.0000000e+01 8.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 5.0000000e+00 1.1000000e+01 1.0000000e+00 9.0000000e+00 8.0000000e+00 1.1000000e+01 9.0000000e+00 1.0000000e+00 1.0000000e+01 1.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 5.0000000e+00 2.0000000e+00 3.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 6.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00
|
||||
5.0000000e+00 6.0000000e+00 8.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 2.0000000e+00 5.0000000e+00 9.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 5.0000000e+00 2.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 6.0000000e+00 9.0000000e+00
|
||||
3.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 4.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 5.0000000e+00 2.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 8.0000000e+00 1.0000000e+01 5.0000000e+00 4.0000000e+00 1.1000000e+01 4.0000000e+00 3.0000000e+00 1.0000000e+00 1.0000000e+01 3.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 9.0000000e+00 5.0000000e+00 6.0000000e+00 4.0000000e+00 5.0000000e+00 1.2000000e+01 4.0000000e+00 6.0000000e+00 1.1000000e+01 9.0000000e+00 4.0000000e+00 2.0000000e+00 1.2000000e+01 2.0000000e+00 4.0000000e+00 1.2000000e+01 1.3000000e+01 9.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 9.0000000e+00 6.0000000e+00 4.0000000e+00 1.1000000e+01 4.0000000e+00 5.0000000e+00 5.0000000e+00 9.0000000e+00 5.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 9.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 4.0000000e+00 6.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00 2.0000000e+00 1.0000000e+00 2.0000000e+00 3.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 2.0000000e+00 8.0000000e+00 5.0000000e+00 1.0000000e+01
|
||||
1.0000000e+00 4.0000000e+00 0.0000000e+00 6.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 1.1000000e+01 1.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
8.0000000e+00 1.3000000e+01 7.0000000e+00 7.0000000e+00 3.0000000e+00 6.0000000e+00 9.0000000e+00 3.0000000e+00 8.0000000e+00 1.3000000e+01 6.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 5.0000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 5.0000000e+00 5.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 1.2000000e+01 1.0000000e+00 7.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 1.0000000e+00 9.0000000e+00 1.5000000e+01 1.0000000e+00 5.0000000e+00 6.0000000e+00 1.1000000e+01 9.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 3.0000000e+00 1.0000000e+00 4.0000000e+00 2.0000000e+00 2.0000000e+00 6.0000000e+00 7.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 1.0000000e+01 3.0000000e+00 8.0000000e+00 4.0000000e+00 9.0000000e+00
|
||||
2.0000000e+00 1.0000000e+01 4.0000000e+00 7.0000000e+00 1.0000000e+00 7.0000000e+00 1.4000000e+01 0.0000000e+00 6.0000000e+00 7.0000000e+00 1.1000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 3.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 4.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 6.0000000e+00 9.0000000e+00
|
||||
5.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 7.0000000e+00 1.1000000e+01 1.0000000e+01 6.0000000e+00 2.0000000e+00 9.0000000e+00 4.0000000e+00 1.0000000e+01 4.0000000e+00 8.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 1.4000000e+01 2.0000000e+00 5.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
7.0000000e+00 1.0000000e+01 6.0000000e+00 5.0000000e+00 3.0000000e+00 8.0000000e+00 9.0000000e+00 2.0000000e+00 7.0000000e+00 1.1000000e+01 7.0000000e+00 7.0000000e+00 2.0000000e+00 9.0000000e+00 4.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 4.0000000e+00 5.0000000e+00 8.0000000e+00 5.0000000e+00 1.0000000e+00 8.0000000e+00 1.0000000e+01 9.0000000e+00 8.0000000e+00 1.1000000e+01 0.0000000e+00 8.0000000e+00
|
||||
0.0000000e+00 3.0000000e+00 0.0000000e+00 4.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 2.0000000e+00 2.0000000e+00 2.0000000e+00 1.0000000e+00 7.0000000e+00 8.0000000e+00 5.0000000e+00 2.0000000e+00 7.0000000e+00 8.0000000e+00 1.0000000e+01 2.0000000e+00 9.0000000e+00 4.0000000e+00 8.0000000e+00
|
||||
0.0000000e+00 3.0000000e+00 0.0000000e+00 2.0000000e+00 0.0000000e+00 9.0000000e+00 7.0000000e+00 2.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 7.0000000e+00 3.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 6.0000000e+00 6.0000000e+00 0.0000000e+00 0.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 5.0000000e+00 1.1000000e+01 1.0000000e+00 9.0000000e+00 8.0000000e+00 1.1000000e+01 9.0000000e+00 1.0000000e+00 1.0000000e+01 1.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 4.0000000e+00 7.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 1.4000000e+01 2.0000000e+00 5.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 1.2000000e+01 2.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 4.0000000e+00 7.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 8.0000000e+00 3.0000000e+00 6.0000000e+00 6.0000000e+00 9.0000000e+00
|
||||
6.0000000e+00 9.0000000e+00 6.0000000e+00 7.0000000e+00 5.0000000e+00 6.0000000e+00 1.1000000e+01 3.0000000e+00 7.0000000e+00 1.1000000e+01 9.0000000e+00 5.0000000e+00 2.0000000e+00 1.2000000e+01 2.0000000e+00 4.0000000e+00 3.0000000e+00 4.0000000e+00 5.0000000e+00 3.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 3.0000000e+00 6.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00
|
||||
6.0000000e+00 9.0000000e+00 9.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 2.0000000e+00 4.0000000e+00 9.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 7.0000000e+00 2.0000000e+00 8.0000000e+00 2.0000000e+00 3.0000000e+00 4.0000000e+00 2.0000000e+00 2.0000000e+00 7.0000000e+00 2.0000000e+00 1.0000000e+00 2.0000000e+00 7.0000000e+00 2.0000000e+00 8.0000000e+00 2.0000000e+00 7.0000000e+00 2.0000000e+00 7.0000000e+00
|
||||
3.0000000e+00 3.0000000e+00 4.0000000e+00 2.0000000e+00 2.0000000e+00 9.0000000e+00 6.0000000e+00 7.0000000e+00 3.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 1.0000000e+00 5.0000000e+00 7.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 6.0000000e+00 1.0000000e+01 4.0000000e+00 3.0000000e+00 8.0000000e+00 7.0000000e+00 7.0000000e+00 9.0000000e+00 1.3000000e+01 3.0000000e+00 4.0000000e+00
|
||||
4.0000000e+00 4.0000000e+00 6.0000000e+00 3.0000000e+00 3.0000000e+00 1.0000000e+01 6.0000000e+00 3.0000000e+00 4.0000000e+00 9.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 5.0000000e+00 7.0000000e+00 8.0000000e+00 5.0000000e+00 5.0000000e+00 9.0000000e+00 5.0000000e+00 1.0000000e+00 6.0000000e+00 9.0000000e+00 3.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 4.0000000e+00 1.0000000e+01
|
||||
6.0000000e+00 1.2000000e+01 7.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 3.0000000e+00 2.0000000e+00 2.0000000e+00 8.0000000e+00 4.0000000e+00 1.0000000e+01 8.0000000e+00 1.0000000e+00 2.0000000e+00 8.0000000e+00 8.0000000e+00 1.5000000e+01 1.0000000e+01 8.0000000e+00 5.0000000e+00 1.2000000e+01 5.0000000e+00 2.0000000e+00 5.0000000e+00 1.2000000e+01 3.0000000e+00 7.0000000e+00 5.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 3.0000000e+00 4.0000000e+00 1.0000000e+00 2.0000000e+00 5.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 1.0000000e+01 1.0000000e+01 1.0000000e+01 4.0000000e+00 7.0000000e+00 1.0000000e+00 7.0000000e+00 3.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 2.0000000e+00 5.0000000e+00 1.2000000e+01 4.0000000e+00 6.0000000e+00 1.2000000e+01 9.0000000e+00 4.0000000e+00 1.0000000e+00 1.0000000e+01 3.0000000e+00 4.0000000e+00
|
||||
1.0000000e+00 1.0000000e+01 0.0000000e+00 8.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 3.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 3.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00 2.0000000e+00 0.0000000e+00 1.0000000e+00 4.0000000e+00 5.0000000e+00 1.0000000e+00 1.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 5.0000000e+00 8.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 8.0000000e+00 8.0000000e+00 5.0000000e+00 3.0000000e+00 1.0000000e+01 5.0000000e+00 6.0000000e+00 5.0000000e+00 1.0000000e+01 5.0000000e+00 6.0000000e+00
|
||||
6.0000000e+00 7.0000000e+00 8.0000000e+00 5.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 5.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 8.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 2.0000000e+00 4.0000000e+00 3.0000000e+00 3.0000000e+00 2.0000000e+00 5.0000000e+00 1.0000000e+01 3.0000000e+00 5.0000000e+00 1.0000000e+01 9.0000000e+00 5.0000000e+00 1.0000000e+00 1.0000000e+01 3.0000000e+00 6.0000000e+00
|
||||
5.0000000e+00 9.0000000e+00 6.0000000e+00 7.0000000e+00 4.0000000e+00 8.0000000e+00 7.0000000e+00 1.3000000e+01 2.0000000e+00 6.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 3.0000000e+00 5.0000000e+00 4.0000000e+00 5.0000000e+00 3.0000000e+00 8.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 6.0000000e+00 6.0000000e+00 9.0000000e+00 2.0000000e+00 8.0000000e+00 4.0000000e+00 9.0000000e+00
|
||||
6.0000000e+00 1.0000000e+01 8.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00 7.0000000e+00 7.0000000e+00 5.0000000e+00 6.0000000e+00 5.0000000e+00 8.0000000e+00 1.0000000e+01 8.0000000e+00 1.0000000e+01 1.2000000e+01 8.0000000e+00 9.0000000e+00 8.0000000e+00 5.0000000e+00 3.0000000e+00 3.0000000e+00 1.1000000e+01 2.0000000e+00 3.0000000e+00 1.1000000e+01 1.1000000e+01 8.0000000e+00 7.0000000e+00 1.1000000e+01 0.0000000e+00 7.0000000e+00
|
||||
6.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 3.0000000e+00 6.0000000e+00 1.1000000e+01 2.0000000e+00 9.0000000e+00 1.2000000e+01 9.0000000e+00 4.0000000e+00 1.0000000e+00 1.1000000e+01 3.0000000e+00 4.0000000e+00 4.0000000e+00 2.0000000e+00 5.0000000e+00 4.0000000e+00 4.0000000e+00 9.0000000e+00 6.0000000e+00 6.0000000e+00 4.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 6.0000000e+00
|
||||
5.0000000e+00 8.0000000e+00 8.0000000e+00 6.0000000e+00 5.0000000e+00 1.0000000e+01 5.0000000e+00 3.0000000e+00 5.0000000e+00 9.0000000e+00 4.0000000e+00 7.0000000e+00 8.0000000e+00 6.0000000e+00 2.0000000e+00 9.0000000e+00 3.0000000e+00 6.0000000e+00 5.0000000e+00 4.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 5.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 9.0000000e+00 7.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 4.0000000e+00 0.0000000e+00 5.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 7.0000000e+00 3.0000000e+00 4.0000000e+00 0.0000000e+00 7.0000000e+00 1.1000000e+01 1.0000000e+00 3.0000000e+00 8.0000000e+00 1.2000000e+01 8.0000000e+00 1.0000000e+00 1.1000000e+01 0.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 9.0000000e+00 6.0000000e+00 3.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 9.0000000e+00 5.0000000e+00 8.0000000e+00 3.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 1.2000000e+01 2.0000000e+00 3.0000000e+00 3.0000000e+00 1.0000000e+01 2.0000000e+00 9.0000000e+00 2.0000000e+00 6.0000000e+00 4.0000000e+00 8.0000000e+00
|
||||
2.0000000e+00 7.0000000e+00 3.0000000e+00 5.0000000e+00 2.0000000e+00 7.0000000e+00 9.0000000e+00 0.0000000e+00 6.0000000e+00 1.3000000e+01 6.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 7.0000000e+00 1.0000000e+00 3.0000000e+00 2.0000000e+00 2.0000000e+00 1.0000000e+00 5.0000000e+00 8.0000000e+00 4.0000000e+00 5.0000000e+00 1.2000000e+01 8.0000000e+00 1.0000000e+01 1.0000000e+00 1.0000000e+01 2.0000000e+00 8.0000000e+00
|
||||
8.0000000e+00 1.0000000e+01 8.0000000e+00 8.0000000e+00 6.0000000e+00 7.0000000e+00 1.0000000e+01 2.0000000e+00 8.0000000e+00 1.1000000e+01 9.0000000e+00 5.0000000e+00 3.0000000e+00 1.0000000e+01 5.0000000e+00 4.0000000e+00 2.0000000e+00 3.0000000e+00 3.0000000e+00 5.0000000e+00 0.0000000e+00 7.0000000e+00 1.0000000e+01 1.0000000e+00 3.0000000e+00 7.0000000e+00 1.2000000e+01 8.0000000e+00 1.0000000e+00 1.1000000e+01 0.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 1.0000000e+01 8.0000000e+00 7.0000000e+00 7.0000000e+00 9.0000000e+00 6.0000000e+00 2.0000000e+00 4.0000000e+00 8.0000000e+00 5.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 1.0000000e+00 2.0000000e+00 2.0000000e+00 3.0000000e+00 1.0000000e+00 8.0000000e+00 7.0000000e+00 4.0000000e+00 1.0000000e+00 7.0000000e+00 8.0000000e+00 1.0000000e+01 2.0000000e+00 9.0000000e+00 3.0000000e+00 9.0000000e+00
|
||||
4.0000000e+00 4.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 6.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 1.0000000e+01 9.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 2.0000000e+00 9.0000000e+00 2.0000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 7.0000000e+00 8.0000000e+00 2.0000000e+00 9.0000000e+00 1.1000000e+01 6.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 5.0000000e+00 7.0000000e+00
|
||||
3.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.4000000e+01 6.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 9.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 1.3000000e+01 7.0000000e+00 2.0000000e+00 1.2000000e+01 5.0000000e+00 2.0000000e+00 1.0000000e+00 1.1000000e+01 4.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 6.0000000e+00 5.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00 9.0000000e+00 4.0000000e+00 5.0000000e+00 8.0000000e+00 7.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 3.0000000e+00 6.0000000e+00 4.0000000e+00 4.0000000e+00 4.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 2.0000000e+00 7.0000000e+00 5.0000000e+00 1.1000000e+01
|
||||
4.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 8.0000000e+00 1.1000000e+01 7.0000000e+00 3.0000000e+00 4.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 2.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 6.0000000e+00 9.0000000e+00 2.0000000e+00 9.0000000e+00 4.0000000e+00 9.0000000e+00
|
||||
4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00 3.0000000e+00 9.0000000e+00 8.0000000e+00 9.0000000e+00 4.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00 5.0000000e+00 8.0000000e+00 1.1000000e+01 5.0000000e+00 1.0000000e+00 5.0000000e+00 8.0000000e+00 1.2000000e+01 2.0000000e+00 1.0000000e+01 5.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 1.0000000e+00 1.0000000e+00 2.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 8.0000000e+00 7.0000000e+00 8.0000000e+00 9.0000000e+00 7.0000000e+00 1.0000000e+01 8.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 1.0000000e+01 9.0000000e+00 4.0000000e+00
|
||||
1.0000000e+00 4.0000000e+00 2.0000000e+00 3.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 7.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 4.0000000e+00 5.0000000e+00 1.1000000e+01 3.0000000e+00 5.0000000e+00 1.3000000e+01 7.0000000e+00 5.0000000e+00 1.0000000e+00 1.0000000e+01 2.0000000e+00 7.0000000e+00
|
||||
2.0000000e+00 5.0000000e+00 3.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 1.2000000e+01 3.0000000e+00 6.0000000e+00 7.0000000e+00 1.1000000e+01 8.0000000e+00 2.0000000e+00 1.1000000e+01 1.0000000e+00 8.0000000e+00 4.0000000e+00 1.0000000e+01 5.0000000e+00 7.0000000e+00 4.0000000e+00 7.0000000e+00 8.0000000e+00 3.0000000e+00 1.2000000e+01 9.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 8.0000000e+00 7.0000000e+00
|
||||
1.0000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 1.0000000e+00 8.0000000e+00 1.4000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 1.0000000e+00 0.0000000e+00 2.0000000e+00 0.0000000e+00 0.0000000e+00 7.0000000e+00 1.4000000e+01 1.0000000e+00 4.0000000e+00 7.0000000e+00 1.0000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
3.0000000e+00 9.0000000e+00 4.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 1.4000000e+01 6.0000000e+00 9.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 5.0000000e+00 6.0000000e+00 1.1000000e+01 4.0000000e+00 2.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 1.2000000e+01 4.0000000e+00 5.0000000e+00
|
||||
1.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 3.0000000e+00 8.0000000e+00 7.0000000e+00 2.0000000e+00 4.0000000e+00 8.0000000e+00 5.0000000e+00 5.0000000e+00 3.0000000e+00 9.0000000e+00 4.0000000e+00 5.0000000e+00 5.0000000e+00 1.0000000e+01 6.0000000e+00 9.0000000e+00 6.0000000e+00 8.0000000e+00 8.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 8.0000000e+00 9.0000000e+00 3.0000000e+00 8.0000000e+00 5.0000000e+00 8.0000000e+00
|
||||
3.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 0.0000000e+00 6.0000000e+00 1.3000000e+01 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 8.0000000e+00 3.0000000e+00 9.0000000e+00 4.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00 1.0000000e+01 1.0000000e+00 7.0000000e+00 1.0000000e+01 9.0000000e+00 7.0000000e+00 1.0000000e+00 1.0000000e+01 3.0000000e+00 6.0000000e+00
|
||||
4.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 7.0000000e+00 9.0000000e+00 3.0000000e+00 1.0000000e+01 6.0000000e+00 7.0000000e+00 3.0000000e+00 9.0000000e+00 4.0000000e+00 7.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 0.0000000e+00 8.0000000e+00 9.0000000e+00 7.0000000e+00
|
||||
3.0000000e+00 3.0000000e+00 3.0000000e+00 2.0000000e+00 1.0000000e+00 5.0000000e+00 1.2000000e+01 3.0000000e+00 5.0000000e+00 1.1000000e+01 9.0000000e+00 4.0000000e+00 2.0000000e+00 1.1000000e+01 1.0000000e+00 5.0000000e+00 5.0000000e+00 6.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 1.0000000e+01 5.0000000e+00 6.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 4.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00
|
||||
5.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 5.0000000e+00 4.0000000e+00 1.2000000e+01 5.0000000e+00 5.0000000e+00 1.2000000e+01 9.0000000e+00 4.0000000e+00 2.0000000e+00 1.2000000e+01 1.0000000e+00 5.0000000e+00 7.0000000e+00 1.1000000e+01 7.0000000e+00 8.0000000e+00 4.0000000e+00 3.0000000e+00 1.0000000e+01 2.0000000e+00 7.0000000e+00 1.0000000e+01 1.2000000e+01 6.0000000e+00 1.0000000e+00 1.1000000e+01 2.0000000e+00 5.0000000e+00
|
||||
3.0000000e+00 1.0000000e+01 4.0000000e+00 8.0000000e+00 3.0000000e+00 7.0000000e+00 9.0000000e+00 0.0000000e+00 7.0000000e+00 1.3000000e+01 6.0000000e+00 7.0000000e+00 0.0000000e+00 9.0000000e+00 2.0000000e+00 7.0000000e+00 3.0000000e+00 3.0000000e+00 4.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 1.4000000e+01 1.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00
|
||||
7.0000000e+00 9.0000000e+00 1.0000000e+01 7.0000000e+00 6.0000000e+00 4.0000000e+00 6.0000000e+00 4.0000000e+00 5.0000000e+00 1.1000000e+01 1.1000000e+01 1.1000000e+01 9.0000000e+00 3.0000000e+00 4.0000000e+00 6.0000000e+00 4.0000000e+00 9.0000000e+00 6.0000000e+00 7.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 2.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01
|
||||
8.0000000e+00 8.0000000e+00 1.1000000e+01 7.0000000e+00 1.2000000e+01 8.0000000e+00 8.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 1.2000000e+01 7.0000000e+00 8.0000000e+00 3.0000000e+00 5.0000000e+00 5.0000000e+00 5.0000000e+00 8.0000000e+00 3.0000000e+00 3.0000000e+00 8.0000000e+00 6.0000000e+00 1.2000000e+01 7.0000000e+00 6.0000000e+00 1.5000000e+01 0.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00
|
||||
5.0000000e+00 9.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 5.0000000e+00 1.1000000e+01 1.0000000e+00 7.0000000e+00 9.0000000e+00 8.0000000e+00 9.0000000e+00 5.0000000e+00 2.0000000e+00 8.0000000e+00 4.0000000e+00 5.0000000e+00 6.0000000e+00 5.0000000e+00 6.0000000e+00 8.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 7.0000000e+00 5.0000000e+00 8.0000000e+00 9.0000000e+00 1.0000000e+01
|
||||
1.0000000e+00 4.0000000e+00 1.0000000e+00 3.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 1.0000000e+00 7.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 2.0000000e+00 8.0000000e+00 2.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 3.0000000e+00 6.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00 7.0000000e+00 2.0000000e+00 9.0000000e+00 6.0000000e+00 1.0000000e+01
|
||||
6.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 7.0000000e+00 7.0000000e+00 1.2000000e+01 2.0000000e+00 7.0000000e+00 9.0000000e+00 8.0000000e+00 9.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 4.0000000e+00 8.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 4.0000000e+00 8.0000000e+00 6.0000000e+00 8.0000000e+00 5.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01
|
||||
5.0000000e+00 9.0000000e+00 4.0000000e+00 5.0000000e+00 2.0000000e+00 8.0000000e+00 8.0000000e+00 3.0000000e+00 6.0000000e+00 1.3000000e+01 4.0000000e+00 6.0000000e+00 1.0000000e+00 7.0000000e+00 4.0000000e+00 9.0000000e+00 3.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00 3.0000000e+00 7.0000000e+00 7.0000000e+00 3.0000000e+00 1.1000000e+01 8.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 7.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 1.1000000e+01 5.0000000e+00 8.0000000e+00 3.0000000e+00 7.0000000e+00 1.4000000e+01 0.0000000e+00 5.0000000e+00 7.0000000e+00 1.0000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 3.0000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 5.0000000e+00 1.2000000e+01 3.0000000e+00 3.0000000e+00 9.0000000e+00 1.1000000e+01 7.0000000e+00 2.0000000e+00 1.1000000e+01 1.0000000e+00 8.0000000e+00
|
||||
3.0000000e+00 4.0000000e+00 5.0000000e+00 3.0000000e+00 3.0000000e+00 9.0000000e+00 6.0000000e+00 3.0000000e+00 4.0000000e+00 9.0000000e+00 5.0000000e+00 7.0000000e+00 6.0000000e+00 5.0000000e+00 1.0000000e+00 8.0000000e+00 2.0000000e+00 2.0000000e+00 3.0000000e+00 3.0000000e+00 1.0000000e+00 1.0000000e+01 6.0000000e+00 3.0000000e+00 6.0000000e+00 1.2000000e+01 4.0000000e+00 9.0000000e+00 0.0000000e+00 7.0000000e+00 1.0000000e+00 7.0000000e+00
|
||||
2.0000000e+00 5.0000000e+00 4.0000000e+00 7.0000000e+00 1.0000000e+00 8.0000000e+00 1.4000000e+01 0.0000000e+00 6.0000000e+00 6.0000000e+00 1.1000000e+01 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 5.0000000e+00 6.0000000e+00 6.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 9.0000000e+00 4.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 9.0000000e+00 8.0000000e+00
|
||||
1.0000000e+00 6.0000000e+00 0.0000000e+00 4.0000000e+00 0.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 4.0000000e+00 7.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 1.0000000e+00 0.0000000e+00 2.0000000e+00 0.0000000e+00 0.0000000e+00 7.0000000e+00 6.0000000e+00 1.0000000e+01 4.0000000e+00 7.0000000e+00 1.2000000e+01 8.0000000e+00 2.0000000e+00 1.0000000e+01 0.0000000e+00 8.0000000e+00
|
||||
5.0000000e+00 8.0000000e+00 6.0000000e+00 7.0000000e+00 6.0000000e+00 6.0000000e+00 9.0000000e+00 5.0000000e+00 7.0000000e+00 8.0000000e+00 8.0000000e+00 8.0000000e+00 4.0000000e+00 1.3000000e+01 9.0000000e+00 6.0000000e+00 3.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 2.0000000e+00 7.0000000e+00 7.0000000e+00 4.0000000e+00 1.4000000e+01 9.0000000e+00 6.0000000e+00 8.0000000e+00 0.0000000e+00 8.0000000e+00 8.0000000e+00 8.0000000e+00
|
||||
4.0000000e+00 9.0000000e+00 4.0000000e+00 4.0000000e+00 2.0000000e+00 7.0000000e+00 1.0000000e+01 2.0000000e+00 5.0000000e+00 1.3000000e+01 5.0000000e+00 4.0000000e+00 1.0000000e+00 8.0000000e+00 5.0000000e+00 8.0000000e+00 3.0000000e+00 7.0000000e+00 4.0000000e+00 5.0000000e+00 3.0000000e+00 7.0000000e+00 8.0000000e+00 7.0000000e+00 5.0000000e+00 1.0000000e+01 8.0000000e+00 7.0000000e+00 3.0000000e+00 8.0000000e+00 3.0000000e+00 8.0000000e+00
|
||||
6.0000000e+00 1.0000000e+01 6.0000000e+00 7.0000000e+00 5.0000000e+00 5.0000000e+00 1.1000000e+01 3.0000000e+00 7.0000000e+00 1.1000000e+01 1.0000000e+01 5.0000000e+00 2.0000000e+00 1.2000000e+01 2.0000000e+00 4.0000000e+00 5.0000000e+00 1.1000000e+01 4.0000000e+00 8.0000000e+00 4.0000000e+00 6.0000000e+00 1.1000000e+01 2.0000000e+00 3.0000000e+00 1.2000000e+01 6.0000000e+00 5.0000000e+00 2.0000000e+00 9.0000000e+00 8.0000000e+00 8.0000000e+00
|
||||
3.0000000e+00 1.0000000e+00 3.0000000e+00 1.0000000e+00 1.0000000e+00 8.0000000e+00 6.0000000e+00 1.1000000e+01 0.0000000e+00 7.0000000e+00 9.0000000e+00 8.0000000e+00 7.0000000e+00 6.0000000e+00 0.0000000e+00 8.0000000e+00 6.0000000e+00 1.0000000e+01 6.0000000e+00 8.0000000e+00 4.0000000e+00 3.0000000e+00 9.0000000e+00 5.0000000e+00 6.0000000e+00 1.1000000e+01 1.1000000e+01 9.0000000e+00 3.0000000e+00 9.0000000e+00 1.0000000e+00 7.0000000e+00
|
||||
|
После Ширина: | Высота: | Размер: 21 KiB |
|
После Ширина: | Высота: | Размер: 23 KiB |
@ -0,0 +1 @@
|
||||
10.98
|
||||
|
После Ширина: | Высота: | Размер: 37 KiB |
@ -0,0 +1 @@
|
||||
0.55
|
||||
|
После Ширина: | Высота: | Размер: 34 KiB |
@ -0,0 +1 @@
|
||||
6.75
|
||||
|
После Ширина: | Высота: | Размер: 31 KiB |
|
После Ширина: | Высота: | Размер: 42 KiB |
|
После Ширина: | Высота: | Размер: 73 KiB |
|
После Ширина: | Высота: | Размер: 45 KiB |
|
После Ширина: | Высота: | Размер: 111 KiB |
|
После Ширина: | Высота: | Размер: 92 KiB |
|
После Ширина: | Высота: | Размер: 96 KiB |
|
После Ширина: | Высота: | Размер: 107 KiB |
|
После Ширина: | Высота: | Размер: 69 KiB |
|
После Ширина: | Высота: | Размер: 82 KiB |
@ -0,0 +1,5 @@
|
||||
------------Оценка качества AE2 С ПОМОЩЬЮ НОВЫХ МЕТРИК------------
|
||||
Approx = 0.36
|
||||
Excess = 1.7777777777777777
|
||||
Deficit = 0.0
|
||||
Coating = 1.0
|
||||
|
После Ширина: | Высота: | Размер: 46 KiB |
@ -0,0 +1,471 @@
|
||||
# Отчёт по лабораторной работе №2
|
||||
|
||||
**Кобзев Александр, Кирсанов Егор — А-01-22**
|
||||
|
||||
|
||||
## 1.1. В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули.
|
||||
|
||||
|
||||
```python
|
||||
from google.colab import drive
|
||||
drive.mount('/content/drive')
|
||||
import os
|
||||
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')
|
||||
```
|
||||
|
||||
```
|
||||
!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py
|
||||
!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_train.txt
|
||||
!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/letter_test.txt
|
||||
```
|
||||
|
||||
``` python
|
||||
# импорт модулей
|
||||
import numpy as np
|
||||
import lab02_lib as lib
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 1.2. Сгенерировали индивидуальный набор двумерных данных в пространстве признаков с координатами центра (k, k), где k=10 – номер бригады. Вывели полученные данные на рисунок и в консоль:
|
||||
|
||||
```python
|
||||
k = 10
|
||||
data = lib.datagen(k, k, 1000, 2)
|
||||
print('Размерность данных:', data.shape)
|
||||
print('Пример данных:', data)
|
||||
```
|
||||

|
||||
|
||||
```
|
||||
Размерность данных: (1000, 2)
|
||||
Пример данных: [[ 9.91598657 9.75579359]
|
||||
[ 9.97948747 9.98708802]
|
||||
[ 9.99042489 10.01396366]
|
||||
...
|
||||
[ 9.97013826 9.93047258]
|
||||
[10.00891654 9.94318369]
|
||||
[10.04614761 9.91592173]]
|
||||
```
|
||||
---
|
||||
|
||||
## 1.3. Создали и обучили автокодировщик AE1 простой архитектуры, выбрав небольшое количество эпох обучения.
|
||||
|
||||
```python
|
||||
patience = 300
|
||||
ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(
|
||||
data, 'out/AE1.h5', 'out/AE1_ire_th.txt',
|
||||
1000, False, patience, verbose_every_n_epochs = 100, early_stopping_delta = 0.001
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 1.4. Зафиксировали ошибку MSE, на которой обучение завершилось. Построили график ошибки реконструкции обучающей выборки. Зафиксировали порог ошибки реконструкции – порог обнаружения аномалий.
|
||||
|
||||
MSE = 56.8932
|
||||
|
||||
```python
|
||||
lib.ire_plot('training', IRE1, IREth1, 'AE1')
|
||||
print('AE1 IREth =', IREth1)
|
||||
```
|
||||
|
||||

|
||||
|
||||
```
|
||||
Порог ошибки реконструкции:
|
||||
AE1 IREth = 10.98
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 1.5. Создали и обучили второй автокодировщик AE2 с усложненной архитектурой, задав большее количество эпох обучения.
|
||||
|
||||
```python
|
||||
ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(
|
||||
data, 'out/AE2.h5', 'out/AE2_ire_th.txt',
|
||||
3000, False, patience, verbose_every_n_epochs = 500, early_stopping_delta = 0.001
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 1.6. Зафиксировали ошибку MSE, на которой обучение завершилось. Построили график ошибки реконструкции обучающей выборки. Зафиксировали порог ошибки реконструкции – порог обнаружения аномалий.
|
||||
|
||||
MSE = 0.0225
|
||||
|
||||
```python
|
||||
lib.ire_plot('training', IRE2, IREth2, 'AE2')
|
||||
print('AE2 IREth =', IREth2)
|
||||
```
|
||||
|
||||

|
||||
|
||||
```
|
||||
Порог ошибки реконструкции:
|
||||
AE2 IREth = 0.55
|
||||
```
|
||||
---
|
||||
|
||||
## 1.7. Рассчитали характеристики качества обучения EDCA для AE1 и AE2. Визуализировали и сравнить области пространства признаков, распознаваемые автокодировщиками AE1 и AE2. Сделать вывод о пригодности AE1 и AE2 для качественного обнаружения аномалий.
|
||||
|
||||
```python
|
||||
# AE1
|
||||
numb_square = 20
|
||||
xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True)
|
||||
```
|
||||
|
||||

|
||||
|
||||
```
|
||||
amount: 18
|
||||
amount_ae: 293
|
||||
```
|
||||
|
||||

|
||||

|
||||
|
||||
```
|
||||
Оценка качества AE1
|
||||
IDEAL = 0. Excess: 15.277777777777779
|
||||
IDEAL = 0. Deficit: 0.0
|
||||
IDEAL = 1. Coating: 1.0
|
||||
summa: 1.0
|
||||
IDEAL = 1. Extrapolation precision (Approx): 0.06143344709897611
|
||||
```
|
||||
|
||||
```python
|
||||
# AE2
|
||||
numb_square = 20
|
||||
xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True)
|
||||
```
|
||||
|
||||

|
||||
|
||||
```
|
||||
amount: 18
|
||||
amount_ae: 50
|
||||
```
|
||||
|
||||

|
||||

|
||||
|
||||
```
|
||||
Оценка качества AE2
|
||||
IDEAL = 0. Excess: 1.7777777777777777
|
||||
IDEAL = 0. Deficit: 0.0
|
||||
IDEAL = 1. Coating: 1.0
|
||||
summa: 1.0
|
||||
IDEAL = 1. Extrapolation precision (Approx): 0.36
|
||||
```
|
||||
|
||||
```python
|
||||
# Сравнение
|
||||
lib.plot2in1(data, xx, yy, Z1, Z2)
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
---
|
||||
|
||||
## 1.8. Если автокодировщик AE2 недостаточно точно аппроксимирует область обучающих данных, то подобрать подходящие параметры автокодировщика и повторить шаги (6) – (8).
|
||||
|
||||
Немного изменили параметры автокодировщика AE2 для более качесвенной аппроксимации(использовались выше)
|
||||
|
||||
---
|
||||
|
||||
## 1.9. Изучили сохраненный набор данных и пространство признаков. Создали тестовую выборку, состоящую, как минимум, из 4ёх элементов, не входящих в обучающую выборку. Элементы должны быть такими, чтобы AE1 распознавал их как норму, а AE2 детектировал как аномалии.
|
||||
|
||||
```python
|
||||
with open('data_test.txt', 'w') as file:
|
||||
file.write("10.5 9.5\n")
|
||||
file.write("9.0 10.2\n")
|
||||
file.write("9.6 10.5\n")
|
||||
file.write("9.0 9.0\n")
|
||||
data_test = np.loadtxt('data_test.txt', dtype=float)
|
||||
print(data_test)
|
||||
```
|
||||
|
||||
```
|
||||
[[10.5 9.5]
|
||||
[ 9. 10.2]
|
||||
[ 9.6 10.5]
|
||||
[ 9. 9. ]]
|
||||
```
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 1.10. Применили обученные автокодировщики AE1 и AE2 к тестовым данным и вывели значения ошибки реконструкции для каждого элемента тестовой выборки относительно порога на график и в консоль.
|
||||
|
||||
```python
|
||||
# AE1
|
||||
predicted_labels1, ire1 = lib.predict_ae(ae1_trained, data_test, IREth1)
|
||||
lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1)
|
||||
lib.ire_plot('test', ire1, IREth1, 'AE1')
|
||||
```
|
||||
|
||||
```
|
||||
Аномалий не обнаружено
|
||||
```
|
||||
|
||||

|
||||
|
||||
```python
|
||||
# AE2
|
||||
predicted_labels2, ire2 = lib.predict_ae(ae2_trained, data_test, IREth2)
|
||||
lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)
|
||||
lib.ire_plot('test', ire2, IREth2, 'AE2')
|
||||
```
|
||||
|
||||
```
|
||||
i Labels IRE IREth
|
||||
0 [1.] [0.62] 0.55
|
||||
1 [1.] [1.05] 0.55
|
||||
2 [1.] [0.77] 0.55
|
||||
3 [1.] [1.29] 0.55
|
||||
Обнаружено 4.0 аномалий
|
||||
```
|
||||
|
||||

|
||||
|
||||
---
|
||||
## 1.11. Визуализирывали элементы обучающей и тестовой выборки в областях пространства признаков, распознаваемых автокодировщиками AE1 и AE2.
|
||||
|
||||
```python
|
||||
lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, data_test)
|
||||
```
|
||||
|
||||

|
||||
|
||||
---
|
||||
|
||||
## 1.12. Результаты исследования занесли в таблицу:
|
||||
<table>
|
||||
<thead>
|
||||
<tr>
|
||||
<th> </th>
|
||||
<th>Количество скрытых слоёв</th>
|
||||
<th>Количество нейронов в скрытых слоях</th>
|
||||
<th>Количество эпох обучения</th>
|
||||
<th>Ошибка MSE_stop</th>
|
||||
<th>Порог ошибки реконструкции</th>
|
||||
<th>Значение показателя Excess</th>
|
||||
<th>Значение показателя Approx</th>
|
||||
<th>Количество обнаруженных аномалий</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td>АЕ1</td>
|
||||
<td align="center">1</td>
|
||||
<td align="center">1</td>
|
||||
<td align="center">1000</td>
|
||||
<td align="center">56.89</td>
|
||||
<td align="center">10.98</td>
|
||||
<td align="center">15.28</td>
|
||||
<td align="center">0.06</td>
|
||||
<td align="center">0</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>АЕ2</td>
|
||||
<td align="center">5</td>
|
||||
<td align="center">5 3 2 3 5</td>
|
||||
<td align="center">3000</td>
|
||||
<td align="center">0.02</td>
|
||||
<td align="center">0.55</td>
|
||||
<td align="center">1.78</td>
|
||||
<td align="center">0.36</td>
|
||||
<td align="center">4</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
---
|
||||
|
||||
## 1.13. Сделали выводы о требованиях к:
|
||||
- данным для обучения,
|
||||
- архитектуре автокодировщика,
|
||||
- количеству эпох обучения,
|
||||
- ошибке MSE_stop, приемлемой для останова обучения,
|
||||
- ошибке реконструкции обучающей выборки (порогу обнаружения аномалий),
|
||||
- характеристикам качества обучения EDCA одноклассового классификатора
|
||||
|
||||
для качественного обнаружения аномалий в данных.
|
||||
|
||||
- Данные для обучения: должны содержать только нормальные примеры без выбросов и полно описывать область нормы.
|
||||
- Архитектура автокодировщика: симметричная, с узким «бутылочным горлышком»
|
||||
- Количество эпох: достаточно большое, чтобы сеть обучилась, но без переобучения, в для нашего набора оптимально окло 3000.
|
||||
- Ошибка MSE_stop: должна быть небольшой, но не меньше 0.01 , дабы избежать переобучение.
|
||||
- Порог ошибки реконструкции: выбирается по максимуму IRE обучающей выборки; высокий порог → пропуски аномалий.
|
||||
- Характеристики EDCA: хорошая модель имеет низкий Excess, высокий Approx ≈ 1; такие модели точнее очерчивают область нормы и лучше детектируют аномалии.
|
||||
|
||||
---
|
||||
|
||||
## 2.1. Изучили описание своего набора реальных данных
|
||||
|
||||
Набор Letter Recognition предназначен для распознавания букв английского алфавита по 16 числовым признакам, описывающим изображение буквы.
|
||||
Для задачи обнаружения аномалий из исходных данных выделены три буквы, формирующие нормальный класс, а для аномалий — случайные буквы, не входящие в нормальный класс.
|
||||
Чтобы усложнить задачу, данные объединены попарно, в результате чего размерность увеличена до 32 признаков. Таким образом, каждый аномальный пример частично содержит признаки нормального класса, что делает задачу более сложной для автокодировщика.
|
||||
| Количество признаков | Количество примеров | Количество нормальных примеров | Количество аномальных примеров |
|
||||
| ----- | ----- | ------ | ----- |
|
||||
| **32** | **1600** | **1500** | **100** |
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 2.2. Загрузили многомерную обучающую выборку реальных данных name_train.txt.
|
||||
|
||||
```python
|
||||
train = np.loadtxt('letter_train.txt', dtype=float)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2.3. Вывели полученные данные и их размерность в консоли.
|
||||
|
||||
```python
|
||||
print('train.shape =', train.shape)
|
||||
print('Пример train:', train)
|
||||
```
|
||||
|
||||
```
|
||||
train.shape = (1500, 32)
|
||||
Пример train: [[ 6. 10. 5. ... 10. 2. 7.]
|
||||
[ 0. 6. 0. ... 8. 1. 7.]
|
||||
[ 4. 7. 5. ... 8. 2. 8.]
|
||||
...
|
||||
[ 7. 10. 10. ... 8. 5. 6.]
|
||||
[ 7. 7. 10. ... 6. 0. 8.]
|
||||
[ 3. 4. 5. ... 9. 5. 5.]]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2.4. Cоздали и обучили автокодировщик с подходящей для данных архитектурой.
|
||||
|
||||
```python
|
||||
patience = 5000
|
||||
ae3_trained, IRE3, IREth3 = lib.create_fit_save_ae(
|
||||
train, 'out/AE3.h5', 'out/AE3_ire_th.txt',
|
||||
100000, False, patience, verbose_every_n_epochs = 5000, early_stopping_delta = 0.001
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2.5. Зафиксирывали ошибку MSE, на которой обучение завершилось. Построили график ошибки реконструкции обучающей выборки. Зафиксирывали порог ошибки реконструкции – порог обнаружения аномалий.
|
||||
|
||||
MSE = 0.4862
|
||||
|
||||
```python
|
||||
lib.ire_plot('training', IRE3, IREth3, 'AE3')
|
||||
print('AE3 IREth =', IREth3)
|
||||
```
|
||||
|
||||

|
||||
|
||||
```
|
||||
Порог ошибки реконструкции:
|
||||
AE3 IREth = 10.75
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2.6. Сделать вывод о пригодности обученного автокодировщика для качественного обнаружения аномалий. Если порог ошибки реконструкции слишком велик, то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (6).
|
||||
|
||||
### Очент высокий порог, так что попробуем другю структуру:
|
||||
|
||||
|
||||
MSE = 0.3363
|
||||
|
||||
```python
|
||||
lib.ire_plot('training', IRE3, IREth3, 'AE3')
|
||||
print('AE3 IREth =', IREth3)
|
||||
```
|
||||
|
||||

|
||||
|
||||
```
|
||||
Порог ошибки реконструкции:
|
||||
AE3 IREth = 6.75
|
||||
```
|
||||
|
||||
Отсановимся на этой модели
|
||||
|
||||
---
|
||||
|
||||
## 2.7. Изучили и загрузили тестовую выборку letter_test.txt.
|
||||
|
||||
```python
|
||||
test = np.loadtxt('letter_test.txt', dtype=float)
|
||||
print('test.shape =', test.shape)
|
||||
print('Пример train:', test)
|
||||
```
|
||||
|
||||
```
|
||||
test.shape = (100, 32)
|
||||
Пример train: [[ 8. 11. 8. ... 7. 4. 9.]
|
||||
[ 4. 5. 4. ... 13. 8. 8.]
|
||||
[ 3. 3. 5. ... 8. 3. 8.]
|
||||
...
|
||||
[ 4. 9. 4. ... 8. 3. 8.]
|
||||
[ 6. 10. 6. ... 9. 8. 8.]
|
||||
[ 3. 1. 3. ... 9. 1. 7.]]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2.8. Подали тестовую выборку на вход обученного автокодировщика для обнаружения аномалий. Вывели график ошибки реконструкции элементов тестовой выборки относительно порога.
|
||||
|
||||
```python
|
||||
predicted_labels3_v1, ire3_v1 = lib.predict_ae(ae3_v1_trained, test, IREth3_v1)
|
||||
lib.ire_plot('test', ire3_v1, IREth3_v1, 'AE3_v1')
|
||||
```
|
||||
|
||||
```
|
||||
i Labels IRE IREth
|
||||
0 [1.] [9.78] 6.75
|
||||
1 [1.] [8.92] 6.75
|
||||
2 [1.] [14.27] 6.75
|
||||
...
|
||||
99 [1.] [15.66] 6.75
|
||||
Обнаружено 91.0 аномалий
|
||||
```
|
||||
|
||||

|
||||
|
||||
---
|
||||
|
||||
## 2.9. Если результаты обнаружения аномалий не удовлетворительные (обнаружено менее 70% аномалий), то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (9).
|
||||
|
||||
Результаты приемлемы
|
||||
|
||||
---
|
||||
|
||||
## 2.10. Параметры наилучшего автокодировщика и результаты обнаружения аномалий занести в таблицу:
|
||||
|
||||
| Dataset name | Кол-во скрытых слоёв | Кол-во нейронов в скрытых слоях | Кол-во эпох обучения | Ошибка MSE_stop | Порог ошибки реконструкции |% обнаруженных аномалий |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Letter | 9 | 35 28 21 14 7 14 21 28 35 | 100000 | 0.3363 | 6.75 | 91% |
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 2.11. Сделать выводы о требованиях к:
|
||||
- данным для обучения,
|
||||
- архитектуре автокодировщика,
|
||||
- количеству эпох обучения,
|
||||
- ошибке MSE_stop, приемлемой для останова обучения,
|
||||
- ошибке реконструкции обучающей выборки (порогу обнаруженияаномалий)
|
||||
|
||||
для качественного обнаружения аномалий в случае, когда размерность
|
||||
пространства признаков высока.
|
||||
|
||||
- Данные для обучения: должны содержать только нормальные объекты(отсутсвие аномалий).
|
||||
- Архитектура автокодировщика: симметричная, 9 скрытых слоёв с наличием бутылочного горлышка
|
||||
- Количество эпох: около 100 000 достаточно для стабилизации ошибки и точного восстановления данных.
|
||||
- Ошибка MSE_stop: практика показала, что 0.34 — приемлемое значение для высокоразмерного набора Letter.
|
||||
- Качество обнаружения: 91 % аномалий — модель адекватно аппроксимирует область нормы и надёжно выделяет отклонения.
|
||||
|
||||