|
|
|
@ -7,7 +7,7 @@ import os
|
|
|
|
os.chdir('/content/drive/MyDrive/Colab Notebooks')
|
|
|
|
os.chdir('/content/drive/MyDrive/Colab Notebooks')
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 1.1 Импорт необходимых модулей.
|
|
|
|
1.1 Импорт необходимых модулей.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
from tensorflow import keras
|
|
|
|
from tensorflow import keras
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
@ -25,17 +25,17 @@ from keras.datasets import mnist
|
|
|
|
```
|
|
|
|
```
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
```
|
|
|
|
```
|
|
|
|
* 3.1 Объединение в один набор.
|
|
|
|
3.1 Объединение в один набор.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
X = np.concatenate((X_train, X_test))
|
|
|
|
X = np.concatenate((X_train, X_test))
|
|
|
|
y = np.concatenate((y_train, y_test))
|
|
|
|
y = np.concatenate((y_train, y_test))
|
|
|
|
```
|
|
|
|
```
|
|
|
|
* 3.2 Разбиение по вариантам. (5 бригада -> k=4*5-1)
|
|
|
|
3.2 Разбиение по вариантам. (5 бригада -> k=4*5-1)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 10000,train_size = 60000, random_state = 19)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 10000,train_size = 60000, random_state = 19)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 3.3 Вывод размерностей.
|
|
|
|
3.3 Вывод размерностей.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
print('Shape of X train:', X_train.shape)
|
|
|
|
print('Shape of X train:', X_train.shape)
|
|
|
|
print('Shape of y train:', y_train.shape)
|
|
|
|
print('Shape of y train:', y_train.shape)
|
|
|
|
@ -45,7 +45,7 @@ print('Shape of y train:', y_train.shape)
|
|
|
|
> Shape of y train: (60000,)
|
|
|
|
> Shape of y train: (60000,)
|
|
|
|
|
|
|
|
|
|
|
|
## 4. Вывод обучающих данных.
|
|
|
|
## 4. Вывод обучающих данных.
|
|
|
|
* 4.1 Выведем первые четыре элемента обучающих данных.
|
|
|
|
4.1 Выведем первые четыре элемента обучающих данных.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.figure(figsize=(10, 3))
|
|
|
|
plt.figure(figsize=(10, 3))
|
|
|
|
for i in range(4):
|
|
|
|
for i in range(4):
|
|
|
|
@ -60,7 +60,7 @@ plt.show()
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
## 5. Предобработка данных.
|
|
|
|
## 5. Предобработка данных.
|
|
|
|
* 5.1 Развернем каждое изображение в вектор.
|
|
|
|
5.1 Развернем каждое изображение в вектор.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
num_pixels = X_train.shape[1] * X_train.shape[2]
|
|
|
|
num_pixels = X_train.shape[1] * X_train.shape[2]
|
|
|
|
X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255
|
|
|
|
X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255
|
|
|
|
@ -70,7 +70,7 @@ print('Shape of transformed X train:', X_train.shape)
|
|
|
|
|
|
|
|
|
|
|
|
> Shape of transformed X train: (60000, 784)
|
|
|
|
> Shape of transformed X train: (60000, 784)
|
|
|
|
|
|
|
|
|
|
|
|
* 5.2 Переведем метки в one-hot.
|
|
|
|
5.2 Переведем метки в one-hot.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
from keras.utils import to_categorical
|
|
|
|
from keras.utils import to_categorical
|
|
|
|
|
|
|
|
|
|
|
|
@ -89,12 +89,12 @@ from keras.models import Sequential
|
|
|
|
from keras.layers import Dense
|
|
|
|
from keras.layers import Dense
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 6.1. Создаем модель - объявляем ее объектом класса Sequential, добавляем выходной слой.
|
|
|
|
6.1. Создаем модель - объявляем ее объектом класса Sequential, добавляем выходной слой.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model = Sequential()
|
|
|
|
model = Sequential()
|
|
|
|
model.add(Dense(units=num_classes, activation='softmax'))
|
|
|
|
model.add(Dense(units=num_classes, activation='softmax'))
|
|
|
|
```
|
|
|
|
```
|
|
|
|
* 6.2. Компилируем модель.
|
|
|
|
6.2. Компилируем модель.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
|
|
|
|
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
|
|
|
|
print(model.summary())
|
|
|
|
print(model.summary())
|
|
|
|
@ -110,12 +110,12 @@ print(model.summary())
|
|
|
|
>Trainable params: 0 (0.00 B)
|
|
|
|
>Trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
|
|
|
|
|
|
|
|
* 6.3 Обучаем модель.
|
|
|
|
6.3 Обучаем модель.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 6.4 Выводим график функции ошибки
|
|
|
|
6.4 Выводим график функции ошибки
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
@ -141,7 +141,7 @@ print('Accuracy on test data:', scores[1])
|
|
|
|
>Accuracy on test data: 0.9225000143051147
|
|
|
|
>Accuracy on test data: 0.9225000143051147
|
|
|
|
|
|
|
|
|
|
|
|
## 8. Добавление одного скрытого слоя.
|
|
|
|
## 8. Добавление одного скрытого слоя.
|
|
|
|
* 8.1 При 100 нейронах в скрытом слое.
|
|
|
|
8.1 При 100 нейронах в скрытом слое.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model100 = Sequential()
|
|
|
|
model100 = Sequential()
|
|
|
|
model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
@ -164,12 +164,12 @@ print(model100.summary())
|
|
|
|
>Trainable params: 79,510 (310.59 KB)
|
|
|
|
>Trainable params: 79,510 (310.59 KB)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
|
|
|
|
|
|
|
|
* 8.2 Обучение модели.
|
|
|
|
8.2 Обучение модели.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 8.3 График функции ошибки.
|
|
|
|
8.3 График функции ошибки.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
@ -193,7 +193,7 @@ print('Accuracy on test data:', scores[1])
|
|
|
|
>Loss on test data: 0.19745595753192902
|
|
|
|
>Loss on test data: 0.19745595753192902
|
|
|
|
>Accuracy on test data: 0.9442999958992004
|
|
|
|
>Accuracy on test data: 0.9442999958992004
|
|
|
|
|
|
|
|
|
|
|
|
* 8.4 При 300 нейронах в скрытом слое.
|
|
|
|
8.4 При 300 нейронах в скрытом слое.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model300 = Sequential()
|
|
|
|
model300 = Sequential()
|
|
|
|
model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
@ -216,12 +216,12 @@ print(model300.summary())
|
|
|
|
>Trainable params: 238,510 (931.68 KB)
|
|
|
|
>Trainable params: 238,510 (931.68 KB)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
|
|
|
|
|
|
|
|
* 8.5 Обучение модели.
|
|
|
|
8.5 Обучение модели.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 8.6 Вывод графиков функции ошибки.
|
|
|
|
8.6 Вывод графиков функции ошибки.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
@ -245,7 +245,7 @@ print('Accuracy on test data:', scores[1])
|
|
|
|
>Loss on test data: 0.22660093009471893
|
|
|
|
>Loss on test data: 0.22660093009471893
|
|
|
|
>Accuracy on test data: 0.9348000288009644
|
|
|
|
>Accuracy on test data: 0.9348000288009644
|
|
|
|
|
|
|
|
|
|
|
|
* 8.7 При 500 нейронах в скрытом слое.
|
|
|
|
8.7 При 500 нейронах в скрытом слое.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model500 = Sequential()
|
|
|
|
model500 = Sequential()
|
|
|
|
model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
@ -268,12 +268,12 @@ print(model500.summary())
|
|
|
|
>Trainable params: 397,510 (1.52 MB)
|
|
|
|
>Trainable params: 397,510 (1.52 MB)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
|
|
|
|
|
|
|
|
* 8.8 Обучение модели.
|
|
|
|
8.8 Обучение модели.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 8.9 Вывод графиков функции ошибки.
|
|
|
|
8.9 Вывод графиков функции ошибки.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
@ -302,7 +302,7 @@ print('Accuracy on test data:', scores[1])
|
|
|
|
Точность тестовых данных: 0.9442999958992004
|
|
|
|
Точность тестовых данных: 0.9442999958992004
|
|
|
|
|
|
|
|
|
|
|
|
## 9. Добавление второго скрытого слоя.
|
|
|
|
## 9. Добавление второго скрытого слоя.
|
|
|
|
* 9.1 При 50 нейронах во втором скрытом слое.
|
|
|
|
9.1 При 50 нейронах во втором скрытом слое.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model10050 = Sequential()
|
|
|
|
model10050 = Sequential()
|
|
|
|
model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
@ -328,12 +328,12 @@ print(model10050.summary())
|
|
|
|
>Trainable params: 84,060 (328.36 KB)
|
|
|
|
>Trainable params: 84,060 (328.36 KB)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
|
|
|
|
|
|
|
|
* 9.2 Обучаем модель.
|
|
|
|
9.2 Обучаем модель.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 9.3 Выводим график функции ошибки.
|
|
|
|
9.3 Выводим график функции ошибки.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
@ -357,7 +357,7 @@ print('Accuracy on test data:', scores[1])
|
|
|
|
>Loss on test data: 0.1993969976902008
|
|
|
|
>Loss on test data: 0.1993969976902008
|
|
|
|
>Accuracy on test data: 0.9438999891281128
|
|
|
|
>Accuracy on test data: 0.9438999891281128
|
|
|
|
|
|
|
|
|
|
|
|
* 9.4 При 100 нейронах во втором скрытом слое.
|
|
|
|
9.4 При 100 нейронах во втором скрытом слое.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
model100100 = Sequential()
|
|
|
|
model100100 = Sequential()
|
|
|
|
model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))
|
|
|
|
@ -383,12 +383,12 @@ print(model100100.summary())
|
|
|
|
>Trainable params: 89,610 (350.04 KB)
|
|
|
|
>Trainable params: 89,610 (350.04 KB)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
>Non-trainable params: 0 (0.00 B)
|
|
|
|
|
|
|
|
|
|
|
|
* 9.5 Обучаем модель.
|
|
|
|
9.5 Обучаем модель.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 9.6 Выводим график функции ошибки.
|
|
|
|
9.6 Выводим график функции ошибки.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
plt.plot(H.history['val_loss'])
|
|
|
|
@ -430,7 +430,7 @@ print('Accuracy on test data:', scores[1])
|
|
|
|
model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')
|
|
|
|
model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 11.1 Загрузка лучшей модели с диска.
|
|
|
|
11.1 Загрузка лучшей модели с диска.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
from keras.models import load_model
|
|
|
|
from keras.models import load_model
|
|
|
|
model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')
|
|
|
|
model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')
|
|
|
|
@ -470,7 +470,8 @@ print('NN answer: ', str(np.argmax(result)))
|
|
|
|
>NN answer: 9
|
|
|
|
>NN answer: 9
|
|
|
|
|
|
|
|
|
|
|
|
## 13. Тестирование на собственных изображениях.
|
|
|
|
## 13. Тестирование на собственных изображениях.
|
|
|
|
* 13.1 Загрузка 1 собственного изображения.
|
|
|
|
|
|
|
|
|
|
|
|
13.1 Загрузка 1 собственного изображения.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
from PIL import Image
|
|
|
|
from PIL import Image
|
|
|
|
file_data = Image.open('test.png')
|
|
|
|
file_data = Image.open('test.png')
|
|
|
|
@ -478,7 +479,7 @@ file_data = file_data.convert('L') # перевод в градации серо
|
|
|
|
test_img = np.array(file_data)
|
|
|
|
test_img = np.array(file_data)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 13.2 Вывод собственного изображения.
|
|
|
|
13.2 Вывод собственного изображения.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
plt.imshow(test_img, cmap=plt.get_cmap('gray'))
|
|
|
|
plt.imshow(test_img, cmap=plt.get_cmap('gray'))
|
|
|
|
plt.show()
|
|
|
|
plt.show()
|
|
|
|
@ -486,20 +487,20 @@ plt.show()
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
* 13.3 Предобработка.
|
|
|
|
13.3 Предобработка.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
test_img = test_img / 255
|
|
|
|
test_img = test_img / 255
|
|
|
|
test_img = test_img.reshape(1, num_pixels)
|
|
|
|
test_img = test_img.reshape(1, num_pixels)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
* 13.4 Распознавание.
|
|
|
|
13.4 Распознавание.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
result = model.predict(test_img)
|
|
|
|
result = model.predict(test_img)
|
|
|
|
print('I think it\'s ', np.argmax(result))
|
|
|
|
print('I think it\'s ', np.argmax(result))
|
|
|
|
```
|
|
|
|
```
|
|
|
|
>I think it's 5
|
|
|
|
>I think it's 5
|
|
|
|
|
|
|
|
|
|
|
|
* 13.5 Тест 2 изображения.
|
|
|
|
13.5 Тест 2 изображения.
|
|
|
|
```
|
|
|
|
```
|
|
|
|
from PIL import Image
|
|
|
|
from PIL import Image
|
|
|
|
file2_data = Image.open('test_2.png')
|
|
|
|
file2_data = Image.open('test_2.png')
|
|
|
|
|