Вы не можете выбрать более 25 тем
Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
800 строки
25 KiB
Python
800 строки
25 KiB
Python
# ---
|
|
# jupyter:
|
|
# jupytext:
|
|
# formats: py:percent,ipynb
|
|
# text_representation:
|
|
# extension: .py
|
|
# format_name: percent
|
|
# format_version: '1.3'
|
|
# jupytext_version: 1.17.3
|
|
# kernelspec:
|
|
# display_name: python3_venv
|
|
# language: python
|
|
# name: python3_venv
|
|
# ---
|
|
|
|
# %% [markdown]
|
|
# # Исследование и настройка предсказательной модели для цен подержанных автомобилях
|
|
|
|
# %% [markdown]
|
|
# Блокнот использует файл аугментированных данных датасета о подержанных автомобилях, создаваемый блокнотом `eda/cars_eda.py`. См. ниже параметры блокнота для papermill.
|
|
|
|
# %%
|
|
from typing import Optional
|
|
|
|
# %% tags=["parameters"]
|
|
data_aug_pickle_path: Optional[str] = None
|
|
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
|
|
data_aug_pickle_relpath: str = 'cars.aug.pickle'
|
|
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
|
|
|
|
model_comment_path: Optional[str] = None
|
|
# Полный путь к текстовому файлу с произвольным комментарием для сохранения в MLFlow как артефакт вместе с моделью. Если не установлен, используется `research/<comment_relpath>`.
|
|
model_comment_relpath: str = 'comment.txt'
|
|
# Путь к текстовому файлу с произвольным комментарием для сохранения в MLFlow как артефакт вместе с моделью относительно директории `research`. Игнорируется, если установлен comment_path.
|
|
|
|
mlflow_tracking_server_uri: str = 'http://localhost:5000'
|
|
# URL tracking-сервера MLFlow.
|
|
mlflow_registry_uri: Optional[str] = None
|
|
# URL сервера registry MLFlow (если не указан, используется `mlflow_tracking_server_uri`).
|
|
|
|
mlflow_do_log: bool = False
|
|
# Записывать ли прогоны (runs) в MLFlow.
|
|
mlflow_experiment_id: Optional[str] = None
|
|
# ID эксперимента MLFlow, имеет приоритет над `mlflow_experiment_name`.
|
|
mlflow_experiment_name: Optional[str] = 'Current price predicion for used cars'
|
|
# Имя эксперимента MLFlow (ниже приоритетом, чем `mlflow_experiment_id`).
|
|
mlflow_baseline_run_name: str = 'Baseline model'
|
|
# Имя ноговго прогона MLFlow для baseline модели.
|
|
mlflow_feateng_run_name: str = 'Model with engineered features'
|
|
# Имя ноговго прогона MLFlow для модели, использующей дополнительные признаки
|
|
mlflow_feateng_filtered_run_name: str = 'Model with filtered engineered features'
|
|
# Имя ноговго прогона MLFlow для модели, использующей дополнительные признаки и фильтрацию признаков
|
|
mlflow_optimized_feateng_filtered_run_name: str = 'Optimized model with filtered engineered features'
|
|
# Имя ноговго прогона MLFlow для модели с оптимизированными гиперпараметрами, использующей дополнительные признаки и фильтрацию признаков
|
|
|
|
# %%
|
|
from collections.abc import Sequence
|
|
import os
|
|
import pathlib
|
|
import pickle
|
|
import sys
|
|
|
|
# %%
|
|
import matplotlib
|
|
import mlflow
|
|
import mlflow.models
|
|
import mlflow.sklearn
|
|
import mlxtend.feature_selection
|
|
import mlxtend.plotting
|
|
import optuna
|
|
import optuna.samplers
|
|
import sklearn.compose
|
|
import sklearn.ensemble
|
|
import sklearn.metrics
|
|
import sklearn.model_selection
|
|
import sklearn.pipeline
|
|
import sklearn.preprocessing
|
|
|
|
# %%
|
|
BASE_PATH = pathlib.Path('..')
|
|
|
|
# %%
|
|
CODE_PATH = BASE_PATH
|
|
sys.path.insert(0, str(CODE_PATH.resolve()))
|
|
|
|
# %%
|
|
from iis_project.mlxtend_utils.feature_selection import SEQUENTIAL_FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE
|
|
from iis_project.sklearn_utils import filter_params
|
|
from iis_project.sklearn_utils.compose import COLUMN_TRANSFORMER_PARAMS_COMMON_INCLUDE
|
|
from iis_project.sklearn_utils.ensemble import RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE
|
|
from iis_project.sklearn_utils.pandas import pandas_dataframe_from_transformed_artifacts
|
|
from iis_project.sklearn_utils.preprocessing import STANDARD_SCALER_PARAMS_COMMON_EXCLUDE
|
|
|
|
# %%
|
|
MODEL_INOUT_EXAMPLE_SIZE = 0x10
|
|
|
|
# %%
|
|
mlflow.set_tracking_uri(mlflow_tracking_server_uri)
|
|
if mlflow_registry_uri is not None:
|
|
mlflow.set_registry_uri(mlflow_registry_uri)
|
|
|
|
# %%
|
|
if mlflow_do_log:
|
|
mlflow_experiment = mlflow.set_experiment(experiment_name=mlflow_experiment_name, experiment_id=mlflow_experiment_id)
|
|
|
|
# %%
|
|
DATA_PATH = (
|
|
pathlib.Path(os.path.dirname(data_aug_pickle_path))
|
|
if data_aug_pickle_path is not None
|
|
else (BASE_PATH / 'data')
|
|
)
|
|
|
|
|
|
# %%
|
|
def build_sequential_feature_selector(*args, **kwargs):
|
|
return mlxtend.feature_selection.SequentialFeatureSelector(*args, **kwargs)
|
|
|
|
def plot_sequential_feature_selection(feature_selector, *args_rest, **kwargs):
|
|
metric_dict = feature_selector.get_metric_dict()
|
|
return mlxtend.plotting.plot_sequential_feature_selection(metric_dict, *args_rest, **kwargs)
|
|
|
|
|
|
# %% [markdown]
|
|
# ## Загрузка и обзор данных
|
|
|
|
# %%
|
|
with open(
|
|
(
|
|
data_aug_pickle_path
|
|
if data_aug_pickle_path is not None
|
|
else (DATA_PATH / data_aug_pickle_relpath)
|
|
),
|
|
'rb',
|
|
) as input_file:
|
|
df_orig = pickle.load(input_file)
|
|
|
|
# %% [markdown]
|
|
# Обзор датасета:
|
|
|
|
# %%
|
|
len(df_orig)
|
|
|
|
# %%
|
|
df_orig.info()
|
|
|
|
# %%
|
|
df_orig.head(0x10)
|
|
|
|
# %% [markdown]
|
|
# ## Разделение датасета на выборки
|
|
|
|
# %% [markdown]
|
|
# Выделение признаков и целевых переменных:
|
|
|
|
# %%
|
|
feature_columns = (
|
|
'selling_price',
|
|
'driven_kms',
|
|
'fuel_type',
|
|
'selling_type',
|
|
'transmission',
|
|
#'owner',
|
|
'age',
|
|
)
|
|
|
|
target_columns = (
|
|
'present_price',
|
|
)
|
|
|
|
# %%
|
|
features_to_scale_to_standard_columns = (
|
|
'selling_price',
|
|
'driven_kms',
|
|
'age',
|
|
)
|
|
assert all(
|
|
(col in df_orig.select_dtypes(('number',)).columns)
|
|
for col in features_to_scale_to_standard_columns
|
|
)
|
|
|
|
features_to_encode_wrt_target_columns = (
|
|
'fuel_type',
|
|
'selling_type',
|
|
'transmission',
|
|
#'owner',
|
|
)
|
|
assert all(
|
|
(col in df_orig.select_dtypes(('category', 'object')).columns)
|
|
for col in features_to_encode_wrt_target_columns
|
|
)
|
|
|
|
# %%
|
|
df_orig_features = df_orig[list(feature_columns)]
|
|
df_target = df_orig[list(target_columns)]
|
|
|
|
# %% [markdown]
|
|
# Разделение на обучающую и тестовую выборки:
|
|
|
|
# %%
|
|
DF_TEST_PORTION = 0.25
|
|
|
|
# %%
|
|
df_orig_features_train, df_orig_features_test, df_target_train, df_target_test = (
|
|
sklearn.model_selection.train_test_split(
|
|
df_orig_features, df_target, test_size=DF_TEST_PORTION, random_state=0x7AE6,
|
|
)
|
|
)
|
|
|
|
# %% [markdown]
|
|
# Размеры обучающей и тестовой выборки соответственно:
|
|
|
|
# %%
|
|
tuple(map(len, (df_target_train, df_target_test)))
|
|
|
|
# %% [markdown]
|
|
# ## Модели
|
|
|
|
# %%
|
|
#MODEL_PIP_REQUIREMENTS_PATH = BASE_PATH / 'requirements' / 'requirements-isolated-research-model.txt'
|
|
|
|
# %% [markdown]
|
|
# Сигнатура модели для MLFlow:
|
|
|
|
# %%
|
|
mlflow_model_signature = mlflow.models.infer_signature(model_input=df_orig_features, model_output=df_target)
|
|
mlflow_model_signature
|
|
|
|
|
|
# %% [raw] vscode={"languageId": "raw"}
|
|
# input_schema = mlflow.types.schema.Schema([
|
|
# mlflow.types.schema.ColSpec("double", "selling_price"),
|
|
# mlflow.types.schema.ColSpec("double", "driven_kms"),
|
|
# mlflow.types.schema.ColSpec("string", "fuel_type"),
|
|
# mlflow.types.schema.ColSpec("string", "selling_type"),
|
|
# mlflow.types.schema.ColSpec("string", "transmission"),
|
|
# mlflow.types.schema.ColSpec("double", "age"),
|
|
# ])
|
|
#
|
|
# output_schema = mlflow.types.schema.Schema([
|
|
# mlflow.types.schema.ColSpec("double", "present_price"),
|
|
# ])
|
|
#
|
|
# mlflow_model_signature = mlflow.models.ModelSignature(inputs=input_schema, outputs=output_schema)
|
|
|
|
# %%
|
|
def build_features_scaler_standard():
|
|
return sklearn.preprocessing.StandardScaler()
|
|
|
|
|
|
# %%
|
|
#def build_categorical_features_encoder_onehot():
|
|
# return sklearn.preprocessing.OneHotEncoder()
|
|
|
|
def build_categorical_features_encoder_target(*, random_state=None):
|
|
return sklearn.preprocessing.TargetEncoder(
|
|
target_type='continuous', smooth='auto', shuffle=True, random_state=random_state,
|
|
)
|
|
|
|
|
|
# %% [markdown]
|
|
# Регрессор — небольшой случайный лес, цель — минимизация квадрата ошибки предсказания:
|
|
|
|
# %%
|
|
def build_regressor(n_estimators, *, max_depth=None, max_features='sqrt', random_state=None):
|
|
return sklearn.ensemble.RandomForestRegressor(
|
|
n_estimators, criterion='squared_error',
|
|
max_depth=max_depth, max_features=max_features,
|
|
random_state=random_state,
|
|
)
|
|
|
|
def build_regressor_baseline(*, random_state=None):
|
|
return build_regressor(16, max_depth=8, max_features='sqrt')
|
|
|
|
|
|
# %%
|
|
def score_predictions(target_test, target_test_predicted):
|
|
return {
|
|
'mse': sklearn.metrics.mean_squared_error(target_test, target_test_predicted),
|
|
'mae': sklearn.metrics.mean_absolute_error(target_test, target_test_predicted),
|
|
'mape': sklearn.metrics.mean_absolute_percentage_error(target_test, target_test_predicted),
|
|
}
|
|
|
|
|
|
# %%
|
|
# использует глобальные переменные mlflow_do_log, mlflow_experiment
|
|
def mlflow_log_model(
|
|
model,
|
|
model_params,
|
|
metrics,
|
|
*,
|
|
run_name,
|
|
model_signature=None,
|
|
input_example=None,
|
|
#pip_requirements=None,
|
|
comment_file_path=None,
|
|
):
|
|
if not mlflow_do_log:
|
|
return
|
|
with mlflow.start_run(experiment_id=mlflow_experiment.experiment_id, run_name=run_name):
|
|
_ = mlflow.sklearn.log_model(
|
|
model,
|
|
'model',
|
|
signature=model_signature,
|
|
input_example=input_example,
|
|
#pip_requirements=pip_requirements,
|
|
)
|
|
if model_params is not None:
|
|
_ = mlflow.log_params(model_params)
|
|
if metrics is not None:
|
|
_ = mlflow.log_metrics(metrics)
|
|
if (comment_file_path is not None) and comment_file_path.exists():
|
|
mlflow.log_artifact(str(comment_file_path))
|
|
|
|
|
|
# %% [markdown]
|
|
# ### Baseline модель
|
|
|
|
# %% [markdown]
|
|
# Пайплайн предобработки признаков:
|
|
|
|
# %%
|
|
preprocess_transformer = sklearn.compose.ColumnTransformer(
|
|
[
|
|
('scale_to_standard', build_features_scaler_standard(), features_to_scale_to_standard_columns),
|
|
(
|
|
#'encode_categoricals_one_hot',
|
|
'encode_categoricals_wrt_target',
|
|
#build_categorical_features_encoder_onehot(),
|
|
build_categorical_features_encoder_target(random_state=0x2ED6),
|
|
features_to_encode_wrt_target_columns,
|
|
),
|
|
],
|
|
remainder='drop',
|
|
)
|
|
|
|
# %%
|
|
regressor = build_regressor_baseline(random_state=0x016B)
|
|
regressor
|
|
|
|
# %% [markdown]
|
|
# Составной пайплайн:
|
|
|
|
# %%
|
|
pipeline = sklearn.pipeline.Pipeline([
|
|
('preprocess', preprocess_transformer),
|
|
('regress', regressor),
|
|
])
|
|
pipeline
|
|
|
|
# %%
|
|
model_params = filter_params(
|
|
pipeline.get_params(),
|
|
include={
|
|
'preprocess': (
|
|
False,
|
|
{
|
|
**{k: True for k in COLUMN_TRANSFORMER_PARAMS_COMMON_INCLUDE},
|
|
'scale_to_standard': True,
|
|
'encode_categorical_wrt_target': True,
|
|
},
|
|
),
|
|
'regress': (False, True),
|
|
},
|
|
exclude={
|
|
'preprocess': {'scale_to_standard': STANDARD_SCALER_PARAMS_COMMON_EXCLUDE},
|
|
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
|
|
},
|
|
)
|
|
model_params
|
|
|
|
# %% [markdown]
|
|
# Обучение модели:
|
|
|
|
# %%
|
|
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
|
|
# %% [markdown]
|
|
# Оценка качества:
|
|
|
|
# %%
|
|
target_test_predicted = pipeline.predict(df_orig_features_test)
|
|
|
|
# %% [markdown]
|
|
# Метрики качества (MAPE, а также MSE, MAE):
|
|
|
|
# %%
|
|
metrics = score_predictions(df_target_test, target_test_predicted)
|
|
metrics
|
|
|
|
# %%
|
|
mlflow_log_model(
|
|
pipeline,
|
|
model_params=model_params,
|
|
metrics={k: float(v) for k, v in metrics.items()},
|
|
run_name=mlflow_baseline_run_name,
|
|
model_signature=mlflow_model_signature,
|
|
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
|
|
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
|
|
comment_file_path=(
|
|
model_comment_path
|
|
if model_comment_path is not None
|
|
else (BASE_PATH / 'research' / model_comment_relpath)
|
|
),
|
|
)
|
|
|
|
# %% [markdown]
|
|
# ### Модель с дополнительными признаками
|
|
|
|
# %% [markdown]
|
|
# Пайплайн предобработки признаков:
|
|
|
|
# %%
|
|
features_to_extend_as_polynomial = ('selling_price', 'driven_kms')
|
|
features_to_extend_as_spline = ('age',)
|
|
|
|
|
|
# %%
|
|
def build_preprocess_augmenting_transformer():
|
|
assert set(features_to_extend_as_polynomial) <= {*features_to_scale_to_standard_columns}
|
|
assert set(features_to_extend_as_spline) <= {*features_to_scale_to_standard_columns}
|
|
return sklearn.compose.ColumnTransformer(
|
|
[
|
|
(
|
|
'extend_features_as_polynomial',
|
|
sklearn.pipeline.Pipeline([
|
|
(
|
|
'extend_features',
|
|
sklearn.preprocessing.PolynomialFeatures(2, include_bias=False),
|
|
),
|
|
('scale_to_standard', build_features_scaler_standard()),
|
|
]),
|
|
features_to_extend_as_polynomial,
|
|
),
|
|
(
|
|
'extend_features_as_spline',
|
|
sklearn.preprocessing.SplineTransformer(
|
|
4, knots='quantile', extrapolation='constant', include_bias=False,
|
|
),
|
|
features_to_extend_as_spline,
|
|
),
|
|
(
|
|
'scale_to_standard',
|
|
build_features_scaler_standard(),
|
|
tuple(filter(lambda f: f not in features_to_extend_as_polynomial, features_to_scale_to_standard_columns)),
|
|
),
|
|
(
|
|
'encode_categoricals_wrt_target',
|
|
build_categorical_features_encoder_target(random_state=0x2ED6),
|
|
features_to_encode_wrt_target_columns,
|
|
),
|
|
],
|
|
remainder='drop',
|
|
)
|
|
|
|
|
|
# %%
|
|
PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE = {
|
|
**{k: True for k in COLUMN_TRANSFORMER_PARAMS_COMMON_INCLUDE},
|
|
'extend_features_as_polynomial': {
|
|
'extend_features': True,
|
|
'scale_to_standard': True,
|
|
},
|
|
'extend_features_as_spline': True,
|
|
'scale_to_standard': True,
|
|
'encode_categorical_wrt_target': True,
|
|
}
|
|
PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE = {
|
|
'extend_features_as_polynomial': {
|
|
'scale_to_standard': STANDARD_SCALER_PARAMS_COMMON_EXCLUDE,
|
|
},
|
|
'scale_to_standard': STANDARD_SCALER_PARAMS_COMMON_EXCLUDE,
|
|
}
|
|
|
|
# %%
|
|
preprocess_transformer = build_preprocess_augmenting_transformer()
|
|
preprocess_transformer
|
|
|
|
# %% [markdown]
|
|
# Демонстрация предобработки данных:
|
|
|
|
# %%
|
|
preprocess_transformer_tmp = build_preprocess_augmenting_transformer()
|
|
df_augd_features_matrix_train = preprocess_transformer_tmp.fit_transform(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
df_augd_features_train = pandas_dataframe_from_transformed_artifacts(df_augd_features_matrix_train, preprocess_transformer_tmp)
|
|
del preprocess_transformer_tmp
|
|
|
|
# %% [markdown]
|
|
# Обзор предобработанного датасета:
|
|
|
|
# %%
|
|
df_augd_features_train.info()
|
|
|
|
# %%
|
|
df_augd_features_train.head(0x8)
|
|
|
|
# %%
|
|
regressor = build_regressor_baseline(random_state=0x3AEF)
|
|
regressor
|
|
|
|
# %% [markdown]
|
|
# Составной пайплайн:
|
|
|
|
# %%
|
|
pipeline = sklearn.pipeline.Pipeline([
|
|
('preprocess', preprocess_transformer),
|
|
('regress', regressor),
|
|
])
|
|
pipeline
|
|
|
|
# %%
|
|
model_params = filter_params(
|
|
pipeline.get_params(),
|
|
include={
|
|
'preprocess': (False, PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE.copy()),
|
|
'regress': (False, True),
|
|
},
|
|
exclude={
|
|
'preprocess': PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE.copy(),
|
|
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
|
|
},
|
|
)
|
|
model_params
|
|
|
|
# %% [markdown]
|
|
# Обучение модели:
|
|
|
|
# %%
|
|
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
|
|
# %% [markdown]
|
|
# Оценка качества:
|
|
|
|
# %%
|
|
target_test_predicted = pipeline.predict(df_orig_features_test)
|
|
|
|
# %% [markdown]
|
|
# Метрики качества (MAPE, а также MSE, MAE):
|
|
|
|
# %%
|
|
metrics = score_predictions(df_target_test, target_test_predicted)
|
|
metrics
|
|
|
|
# %%
|
|
mlflow_log_model(
|
|
pipeline,
|
|
model_params=model_params,
|
|
metrics={k: float(v) for k, v in metrics.items()},
|
|
run_name=mlflow_feateng_run_name,
|
|
model_signature=mlflow_model_signature,
|
|
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
|
|
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
|
|
comment_file_path=(
|
|
model_comment_path
|
|
if model_comment_path is not None
|
|
else (BASE_PATH / 'research' / model_comment_relpath)
|
|
),
|
|
)
|
|
|
|
# %% [markdown]
|
|
# ### Модель с дополнительными и отфильтрованными признаками
|
|
|
|
# %%
|
|
regressor = build_regressor_baseline(random_state=0x8EDD)
|
|
regressor
|
|
|
|
# %% [markdown]
|
|
# Выбор признаков среди дополненного набора по минимизации MAPE:
|
|
|
|
# %%
|
|
len(df_augd_features_train.columns)
|
|
|
|
# %%
|
|
FILTERED_FEATURES_NUM = (4, 8)
|
|
|
|
|
|
# %%
|
|
def build_feature_selector(*, verbose=0):
|
|
return build_sequential_feature_selector(
|
|
regressor, k_features=FILTERED_FEATURES_NUM, forward=True, floating=True, cv=4, scoring='neg_mean_absolute_percentage_error',
|
|
verbose=verbose,
|
|
)
|
|
|
|
|
|
# %%
|
|
FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE = {
|
|
**{k: True for k in SEQUENTIAL_FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE},
|
|
'estimator': False,
|
|
}
|
|
FEATURE_SELECTOR_PARAMS_COMMON_EXCLUDE = () # TODO: ай-яй-яй
|
|
|
|
# %%
|
|
feature_selector = build_feature_selector(verbose=1)
|
|
feature_selector
|
|
|
|
# %%
|
|
_ = feature_selector.fit(df_augd_features_train, df_target_train.iloc[:, 0])
|
|
|
|
# %% [markdown]
|
|
# Имена выбранных признаков:
|
|
|
|
# %%
|
|
feature_selector.k_feature_names_
|
|
|
|
# %% [markdown]
|
|
# MAPE в зависимости от количества выбранных признаков (указан регион выбора, ограниченный `FILTERED_FEATURES_NUM`):
|
|
|
|
# %%
|
|
fig, ax = plot_sequential_feature_selection(feature_selector, kind='std_dev')
|
|
ax.grid(True)
|
|
if isinstance(FILTERED_FEATURES_NUM, Sequence):
|
|
_ = ax.axvspan(min(FILTERED_FEATURES_NUM), max(FILTERED_FEATURES_NUM), color=matplotlib.colormaps.get_cmap('tab10')(6), alpha=0.15)
|
|
# хотелось бы поставить верхнюю границу `len(df_augd_features_train.columns)`, но SequentialFeatureSelector до неё не досчитывает-то
|
|
_ = ax.set_xlim((1, (max(FILTERED_FEATURES_NUM) if isinstance(FILTERED_FEATURES_NUM, Sequence) else FILTERED_FEATURES_NUM)))
|
|
_ = ax.set_ylim((None, 0.))
|
|
|
|
# %% [markdown]
|
|
# Составной пайплайн:
|
|
|
|
# %%
|
|
pipeline = sklearn.pipeline.Pipeline([
|
|
('preprocess', build_preprocess_augmenting_transformer()),
|
|
('select_features', feature_selector),
|
|
('regress', regressor),
|
|
])
|
|
pipeline
|
|
|
|
# %%
|
|
model_params = filter_params(
|
|
pipeline.get_params(),
|
|
include={
|
|
'preprocess': (False, PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE.copy()),
|
|
'select_features': (False, FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE.copy()),
|
|
'regress': (False, True),
|
|
},
|
|
exclude={
|
|
'preprocess': PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE.copy(),
|
|
'select_features': FEATURE_SELECTOR_PARAMS_COMMON_EXCLUDE,
|
|
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
|
|
},
|
|
)
|
|
model_params
|
|
|
|
# %% [markdown]
|
|
# Обучение модели:
|
|
|
|
# %%
|
|
# XXX: SequentialFeatureSelector обучается опять!?
|
|
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
|
|
# %% [markdown]
|
|
# Оценка качества:
|
|
|
|
# %%
|
|
target_test_predicted = pipeline.predict(df_orig_features_test)
|
|
|
|
# %% [markdown]
|
|
# Метрики качества (MAPE, а также MSE, MAE):
|
|
|
|
# %%
|
|
metrics = score_predictions(df_target_test, target_test_predicted)
|
|
metrics
|
|
|
|
# %%
|
|
mlflow_log_model(
|
|
pipeline,
|
|
model_params=model_params,
|
|
metrics={k: float(v) for k, v in metrics.items()},
|
|
run_name=mlflow_feateng_filtered_run_name,
|
|
model_signature=mlflow_model_signature,
|
|
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
|
|
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
|
|
comment_file_path=(
|
|
model_comment_path
|
|
if model_comment_path is not None
|
|
else (BASE_PATH / 'research' / model_comment_relpath)
|
|
),
|
|
)
|
|
|
|
|
|
# %% [markdown]
|
|
# ### Автоматический подбор гиперпараметров модели
|
|
|
|
# %% [markdown]
|
|
# Составной пайплайн:
|
|
|
|
# %%
|
|
def build_pipeline(regressor_n_estimators, regressor_max_depth=None, regressor_max_features='sqrt'):
|
|
return sklearn.pipeline.Pipeline([
|
|
('preprocess', build_preprocess_augmenting_transformer()),
|
|
('select_features', build_feature_selector()),
|
|
('regress', build_regressor(regressor_n_estimators, max_depth=regressor_max_depth, max_features=regressor_max_features)),
|
|
])
|
|
|
|
|
|
# %% [markdown]
|
|
# Целевая функция для оптимизатора гиперпараметров (подбирает параметры `RandomForestRegressor`: `n_estimators`, `max_depth`, `max_features`):
|
|
|
|
# %%
|
|
def regressor_hyperparams_objective(trial):
|
|
n_estimators = trial.suggest_int('n_estimators', 1, 256, log=True)
|
|
max_depth = trial.suggest_int('max_depth', 1, 16, log=True)
|
|
max_features = trial.suggest_float('max_features', 0.1, 1.)
|
|
# составной пайплайн:
|
|
pipeline = build_pipeline(n_estimators, regressor_max_depth=max_depth, regressor_max_features=max_features)
|
|
# обучение модели:
|
|
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
# оценка качества:
|
|
target_test_predicted = pipeline.predict(df_orig_features_test)
|
|
# метрика качества (MAPE):
|
|
mape = sklearn.metrics.mean_absolute_percentage_error(df_target_test, target_test_predicted)
|
|
return mape
|
|
|
|
|
|
# %% [markdown]
|
|
# optuna study:
|
|
|
|
# %%
|
|
optuna_sampler = optuna.samplers.TPESampler(seed=0x0A1C)
|
|
optuna_study = optuna.create_study(sampler=optuna_sampler, direction='minimize')
|
|
optuna_study.optimize(regressor_hyperparams_objective, n_trials=24)
|
|
|
|
# %% [markdown]
|
|
# Количество выполненных trials:
|
|
|
|
# %%
|
|
len(optuna_study.trials)
|
|
|
|
# %% [markdown]
|
|
# Лучшие найдённые гиперпараметры:
|
|
|
|
# %%
|
|
repr(optuna_study.best_params)
|
|
|
|
# %%
|
|
regressor_best_params = dict(optuna_study.best_params.items())
|
|
|
|
# %% [markdown]
|
|
# Составной пайплайн:
|
|
|
|
# %%
|
|
pipeline = build_pipeline(
|
|
regressor_best_params['n_estimators'],
|
|
regressor_max_depth=regressor_best_params['max_depth'],
|
|
regressor_max_features=regressor_best_params['max_features'],
|
|
)
|
|
pipeline
|
|
|
|
# %%
|
|
model_params = filter_params(
|
|
pipeline.get_params(),
|
|
include={
|
|
'preprocess': (False, PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE.copy()),
|
|
'select_features': (False, FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE.copy()),
|
|
'regress': (False, True),
|
|
},
|
|
exclude={
|
|
'preprocess': PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE.copy(),
|
|
'select_features': FEATURE_SELECTOR_PARAMS_COMMON_EXCLUDE,
|
|
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
|
|
},
|
|
)
|
|
model_params
|
|
|
|
# %% [markdown]
|
|
# Обучение модели:
|
|
|
|
# %%
|
|
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
|
|
|
|
# %% [markdown]
|
|
# Оценка качества:
|
|
|
|
# %%
|
|
target_test_predicted = pipeline.predict(df_orig_features_test)
|
|
|
|
# %% [markdown]
|
|
# Метрики качества (MAPE, а также MSE, MAE):
|
|
|
|
# %%
|
|
metrics = score_predictions(df_target_test, target_test_predicted)
|
|
metrics
|
|
|
|
# %%
|
|
mlflow_log_model(
|
|
pipeline,
|
|
model_params=model_params,
|
|
metrics={k: float(v) for k, v in metrics.items()},
|
|
run_name=mlflow_optimized_feateng_filtered_run_name,
|
|
model_signature=mlflow_model_signature,
|
|
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
|
|
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
|
|
comment_file_path=(
|
|
model_comment_path
|
|
if model_comment_path is not None
|
|
else (BASE_PATH / 'research' / model_comment_relpath)
|
|
),
|
|
)
|
|
|
|
# %%
|