Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
iis-project/research/research.py

808 строки
25 KiB
Python

# ---
# jupyter:
# jupytext:
# formats: py:percent,ipynb
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.17.3
# kernelspec:
# display_name: python3_venv
# language: python
# name: python3_venv
# ---
# %% [markdown]
# # Исследование и настройка предсказательной модели для цен подержанных автомобилях
# %% [markdown]
# Блокнот использует файл аугментированных данных датасета о подержанных автомобилях, создаваемый блокнотом `eda/cars_eda.py`. См. ниже параметры блокнота для papermill.
# %%
from typing import Optional
# %% tags=["parameters"]
data_aug_pickle_path: Optional[str] = None
# Полный путь к файлу (pickle) для сохранения очищенного датасета. Если не установлен, используется `data/<data_aug_pickle_relpath>`.
data_aug_pickle_relpath: str = 'cars.aug.pickle'
# Путь к файлу (pickle) для сохранения очищенного датасета относительно директории данных `data`. Игнорируется, если установлен data_aug_pickle_path.
model_comment_path: Optional[str] = None
# Полный путь к текстовому файлу с произвольным комментарием для сохранения в MLFlow как артефакт вместе с моделью. Если не установлен, используется `research/<comment_relpath>`.
model_comment_relpath: str = 'comment.txt'
# Путь к текстовому файлу с произвольным комментарием для сохранения в MLFlow как артефакт вместе с моделью относительно директории `research`. Игнорируется, если установлен comment_path.
mlflow_tracking_server_uri: str = 'http://localhost:5000'
# URL tracking-сервера MLFlow.
mlflow_registry_uri: Optional[str] = None
# URL сервера registry MLFlow (если не указан, используется `mlflow_tracking_server_uri`).
mlflow_do_log: bool = False
# Записывать ли прогоны (runs) в MLFlow.
mlflow_experiment_id: Optional[str] = None
# ID эксперимента MLFlow, имеет приоритет над `mlflow_experiment_name`.
mlflow_experiment_name: Optional[str] = 'Current price predicion for used cars'
# Имя эксперимента MLFlow (ниже приоритетом, чем `mlflow_experiment_id`).
mlflow_root_run_name: str = 'Models'
# Имя корневого прогона MLFlow (остальные прогоны будут созданы блокнотом внутри этого, как nested)
# %%
from collections.abc import Sequence
import os
import pathlib
import pickle
import sys
# %%
import matplotlib
import mlflow
import mlflow.models
import mlflow.sklearn
import mlxtend.feature_selection
import mlxtend.plotting
import optuna
import optuna.samplers
import sklearn.compose
import sklearn.ensemble
import sklearn.metrics
import sklearn.model_selection
import sklearn.pipeline
import sklearn.preprocessing
# %%
BASE_PATH = pathlib.Path('..')
# %%
CODE_PATH = BASE_PATH
sys.path.insert(0, str(CODE_PATH.resolve()))
# %%
from iis_project.mlxtend_utils.feature_selection import SEQUENTIAL_FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE
from iis_project.sklearn_utils import filter_params
from iis_project.sklearn_utils.compose import COLUMN_TRANSFORMER_PARAMS_COMMON_INCLUDE
from iis_project.sklearn_utils.ensemble import RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE
from iis_project.sklearn_utils.pandas import pandas_dataframe_from_transformed_artifacts
from iis_project.sklearn_utils.preprocessing import STANDARD_SCALER_PARAMS_COMMON_EXCLUDE
# %%
MODEL_INOUT_EXAMPLE_SIZE = 0x10
# %%
mlflow.set_tracking_uri(mlflow_tracking_server_uri)
if mlflow_registry_uri is not None:
mlflow.set_registry_uri(mlflow_registry_uri)
# %%
if mlflow_do_log:
mlflow_experiment = mlflow.set_experiment(experiment_name=mlflow_experiment_name, experiment_id=mlflow_experiment_id)
mlflow_root_run_id = None # изменяется позже
# %%
DATA_PATH = (
pathlib.Path(os.path.dirname(data_aug_pickle_path))
if data_aug_pickle_path is not None
else (BASE_PATH / 'data')
)
# %%
def build_sequential_feature_selector(*args, **kwargs):
return mlxtend.feature_selection.SequentialFeatureSelector(*args, **kwargs)
def plot_sequential_feature_selection(feature_selector, *args_rest, **kwargs):
metric_dict = feature_selector.get_metric_dict()
return mlxtend.plotting.plot_sequential_feature_selection(metric_dict, *args_rest, **kwargs)
# %% [markdown]
# ## Загрузка и обзор данных
# %%
with open(
(
data_aug_pickle_path
if data_aug_pickle_path is not None
else (DATA_PATH / data_aug_pickle_relpath)
),
'rb',
) as input_file:
df_orig = pickle.load(input_file)
# %% [markdown]
# Обзор датасета:
# %%
len(df_orig)
# %%
df_orig.info()
# %%
df_orig.head(0x10)
# %% [markdown]
# ## Разделение датасета на выборки
# %% [markdown]
# Выделение признаков и целевых переменных:
# %%
feature_columns = (
'selling_price',
'driven_kms',
'fuel_type',
'selling_type',
'transmission',
#'owner',
'age',
)
target_columns = (
'present_price',
)
# %%
features_to_scale_to_standard_columns = (
'selling_price',
'driven_kms',
'age',
)
assert all(
(col in df_orig.select_dtypes(('number',)).columns)
for col in features_to_scale_to_standard_columns
)
features_to_encode_wrt_target_columns = (
'fuel_type',
'selling_type',
'transmission',
#'owner',
)
assert all(
(col in df_orig.select_dtypes(('category', 'object')).columns)
for col in features_to_encode_wrt_target_columns
)
# %%
df_orig_features = df_orig[list(feature_columns)]
df_target = df_orig[list(target_columns)]
# %% [markdown]
# Разделение на обучающую и тестовую выборки:
# %%
DF_TEST_PORTION = 0.25
# %%
df_orig_features_train, df_orig_features_test, df_target_train, df_target_test = (
sklearn.model_selection.train_test_split(
df_orig_features, df_target, test_size=DF_TEST_PORTION, random_state=0x7AE6,
)
)
# %% [markdown]
# Размеры обучающей и тестовой выборки соответственно:
# %%
tuple(map(len, (df_target_train, df_target_test)))
# %% [markdown]
# ## Модели
# %%
#MODEL_PIP_REQUIREMENTS_PATH = BASE_PATH / 'requirements' / 'requirements-isolated-research-model.txt'
# %% [markdown]
# Сигнатура модели для MLFlow:
# %%
mlflow_model_signature = mlflow.models.infer_signature(model_input=df_orig_features, model_output=df_target)
mlflow_model_signature
# %% [raw] vscode={"languageId": "raw"}
# input_schema = mlflow.types.schema.Schema([
# mlflow.types.schema.ColSpec("double", "selling_price"),
# mlflow.types.schema.ColSpec("double", "driven_kms"),
# mlflow.types.schema.ColSpec("string", "fuel_type"),
# mlflow.types.schema.ColSpec("string", "selling_type"),
# mlflow.types.schema.ColSpec("string", "transmission"),
# mlflow.types.schema.ColSpec("double", "age"),
# ])
#
# output_schema = mlflow.types.schema.Schema([
# mlflow.types.schema.ColSpec("double", "present_price"),
# ])
#
# mlflow_model_signature = mlflow.models.ModelSignature(inputs=input_schema, outputs=output_schema)
# %%
def build_features_scaler_standard():
return sklearn.preprocessing.StandardScaler()
# %%
#def build_categorical_features_encoder_onehot():
# return sklearn.preprocessing.OneHotEncoder()
def build_categorical_features_encoder_target(*, random_state=None):
return sklearn.preprocessing.TargetEncoder(
target_type='continuous', smooth='auto', shuffle=True, random_state=random_state,
)
# %% [markdown]
# Регрессор &mdash; небольшой случайный лес, цель &mdash; минимизация квадрата ошибки предсказания:
# %%
def build_regressor(n_estimators, *, max_depth=None, max_features='sqrt', random_state=None):
return sklearn.ensemble.RandomForestRegressor(
n_estimators, criterion='squared_error',
max_depth=max_depth, max_features=max_features,
random_state=random_state,
)
def build_regressor_baseline(*, random_state=None):
return build_regressor(16, max_depth=8, max_features='sqrt')
# %%
def score_predictions(target_test, target_test_predicted):
return {
'mse': sklearn.metrics.mean_squared_error(target_test, target_test_predicted),
'mae': sklearn.metrics.mean_absolute_error(target_test, target_test_predicted),
'mape': sklearn.metrics.mean_absolute_percentage_error(target_test, target_test_predicted),
}
# %%
# использует глобальные переменные mlflow_do_log, mlflow_experiment, mlflow_root_run_name
def mlflow_log_model(
model,
model_params,
metrics,
*,
nested_run_name,
model_signature=None,
input_example=None,
#pip_requirements=None,
comment_file_path=None,
):
global mlflow_root_run_id
if not mlflow_do_log:
return
experiment_id = mlflow_experiment.experiment_id
start_run_root_kwargs_extra = {}
if mlflow_root_run_id is not None:
start_run_root_kwargs_extra['run_id'] = mlflow_root_run_id
else:
start_run_root_kwargs_extra['run_name'] = mlflow_root_run_name
with mlflow.start_run(experiment_id=experiment_id, **start_run_root_kwargs_extra) as root_run:
if root_run.info.status not in ('RUNNING',):
raise RuntimeError('Cannot get the root run to run')
if mlflow_root_run_id is None:
mlflow_root_run_id = root_run.info.run_id
# важно одновременно использовать nested=True и parent_run_id=...:
with mlflow.start_run(experiment_id=experiment_id, run_name=nested_run_name, nested=True, parent_run_id=mlflow_root_run_id):
_ = mlflow.sklearn.log_model(
model,
'model',
signature=model_signature,
input_example=input_example,
#pip_requirements=pip_requirements,
)
if model_params is not None:
_ = mlflow.log_params(model_params)
if metrics is not None:
_ = mlflow.log_metrics(metrics)
if (comment_file_path is not None) and comment_file_path.exists():
mlflow.log_artifact(str(comment_file_path))
# %% [markdown]
# ### Baseline модель
# %% [markdown]
# Пайплайн предобработки признаков:
# %%
preprocess_transformer = sklearn.compose.ColumnTransformer(
[
('scale_to_standard', build_features_scaler_standard(), features_to_scale_to_standard_columns),
(
#'encode_categoricals_one_hot',
'encode_categoricals_wrt_target',
#build_categorical_features_encoder_onehot(),
build_categorical_features_encoder_target(random_state=0x2ED6),
features_to_encode_wrt_target_columns,
),
],
remainder='drop',
)
# %%
regressor = build_regressor_baseline(random_state=0x016B)
regressor
# %% [markdown]
# Составной пайплайн:
# %%
pipeline = sklearn.pipeline.Pipeline([
('preprocess', preprocess_transformer),
('regress', regressor),
])
pipeline
# %%
model_params = filter_params(
pipeline.get_params(),
include={
'preprocess': (
False,
{
**{k: True for k in COLUMN_TRANSFORMER_PARAMS_COMMON_INCLUDE},
'scale_to_standard': True,
'encode_categorical_wrt_target': True,
},
),
'regress': (False, True),
},
exclude={
'preprocess': {'scale_to_standard': STANDARD_SCALER_PARAMS_COMMON_EXCLUDE},
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
},
)
model_params
# %% [markdown]
# Обучение модели:
# %%
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
# %% [markdown]
# Оценка качества:
# %%
target_test_predicted = pipeline.predict(df_orig_features_test)
# %% [markdown]
# Метрики качества (MAPE, а также MSE, MAE):
# %%
metrics = score_predictions(df_target_test, target_test_predicted)
metrics
# %%
mlflow_log_model(
pipeline,
model_params=model_params,
metrics={k: float(v) for k, v in metrics.items()},
nested_run_name='Baseline model',
model_signature=mlflow_model_signature,
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
comment_file_path=(
model_comment_path
if model_comment_path is not None
else (BASE_PATH / 'research' / model_comment_relpath)
),
)
# %% [markdown]
# ### Модель с дополнительными признаками
# %% [markdown]
# Пайплайн предобработки признаков:
# %%
features_to_extend_as_polynomial = ('selling_price', 'driven_kms')
features_to_extend_as_spline = ('age',)
# %%
def build_preprocess_augmenting_transformer():
assert set(features_to_extend_as_polynomial) <= {*features_to_scale_to_standard_columns}
assert set(features_to_extend_as_spline) <= {*features_to_scale_to_standard_columns}
return sklearn.compose.ColumnTransformer(
[
(
'extend_features_as_polynomial',
sklearn.pipeline.Pipeline([
(
'extend_features',
sklearn.preprocessing.PolynomialFeatures(2, include_bias=False),
),
('scale_to_standard', build_features_scaler_standard()),
]),
features_to_extend_as_polynomial,
),
(
'extend_features_as_spline',
sklearn.preprocessing.SplineTransformer(
4, knots='quantile', extrapolation='constant', include_bias=False,
),
features_to_extend_as_spline,
),
(
'scale_to_standard',
build_features_scaler_standard(),
tuple(filter(lambda f: f not in features_to_extend_as_polynomial, features_to_scale_to_standard_columns)),
),
(
'encode_categoricals_wrt_target',
build_categorical_features_encoder_target(random_state=0x2ED6),
features_to_encode_wrt_target_columns,
),
],
remainder='drop',
)
# %%
PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE = {
**{k: True for k in COLUMN_TRANSFORMER_PARAMS_COMMON_INCLUDE},
'extend_features_as_polynomial': {
'extend_features': True,
'scale_to_standard': True,
},
'extend_features_as_spline': True,
'scale_to_standard': True,
'encode_categorical_wrt_target': True,
}
PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE = {
'extend_features_as_polynomial': {
'scale_to_standard': STANDARD_SCALER_PARAMS_COMMON_EXCLUDE,
},
'scale_to_standard': STANDARD_SCALER_PARAMS_COMMON_EXCLUDE,
}
# %%
preprocess_transformer = build_preprocess_augmenting_transformer()
preprocess_transformer
# %% [markdown]
# Демонстрация предобработки данных:
# %%
preprocess_transformer_tmp = build_preprocess_augmenting_transformer()
df_augd_features_matrix_train = preprocess_transformer_tmp.fit_transform(df_orig_features_train, df_target_train.iloc[:, 0])
df_augd_features_train = pandas_dataframe_from_transformed_artifacts(df_augd_features_matrix_train, preprocess_transformer_tmp)
del preprocess_transformer_tmp
# %% [markdown]
# Обзор предобработанного датасета:
# %%
df_augd_features_train.info()
# %%
df_augd_features_train.head(0x8)
# %%
regressor = build_regressor_baseline(random_state=0x3AEF)
regressor
# %% [markdown]
# Составной пайплайн:
# %%
pipeline = sklearn.pipeline.Pipeline([
('preprocess', preprocess_transformer),
('regress', regressor),
])
pipeline
# %%
model_params = filter_params(
pipeline.get_params(),
include={
'preprocess': (False, PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE.copy()),
'regress': (False, True),
},
exclude={
'preprocess': PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE.copy(),
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
},
)
model_params
# %% [markdown]
# Обучение модели:
# %%
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
# %% [markdown]
# Оценка качества:
# %%
target_test_predicted = pipeline.predict(df_orig_features_test)
# %% [markdown]
# Метрики качества (MAPE, а также MSE, MAE):
# %%
metrics = score_predictions(df_target_test, target_test_predicted)
metrics
# %%
mlflow_log_model(
pipeline,
model_params=model_params,
metrics={k: float(v) for k, v in metrics.items()},
nested_run_name='Model with engineered features',
model_signature=mlflow_model_signature,
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
comment_file_path=(
model_comment_path
if model_comment_path is not None
else (BASE_PATH / 'research' / model_comment_relpath)
),
)
# %% [markdown]
# ### Модель с дополнительными и отфильтрованными признаками
# %%
regressor = build_regressor_baseline(random_state=0x8EDD)
regressor
# %% [markdown]
# Выбор признаков среди дополненного набора по минимизации MAPE:
# %%
len(df_augd_features_train.columns)
# %%
FILTERED_FEATURES_NUM = (4, 8)
# %%
def build_feature_selector(*, verbose=0):
return build_sequential_feature_selector(
regressor, k_features=FILTERED_FEATURES_NUM, forward=True, floating=True, cv=4, scoring='neg_mean_absolute_percentage_error',
verbose=verbose,
)
# %%
FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE = {
**{k: True for k in SEQUENTIAL_FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE},
'estimator': False,
}
FEATURE_SELECTOR_PARAMS_COMMON_EXCLUDE = () # TODO: ай-яй-яй
# %%
feature_selector = build_feature_selector(verbose=1)
feature_selector
# %%
_ = feature_selector.fit(df_augd_features_train, df_target_train.iloc[:, 0])
# %% [markdown]
# Имена выбранных признаков:
# %%
feature_selector.k_feature_names_
# %% [markdown]
# MAPE в зависимости от количества выбранных признаков (указан регион выбора, ограниченный `FILTERED_FEATURES_NUM`):
# %%
fig, ax = plot_sequential_feature_selection(feature_selector, kind='std_dev')
ax.grid(True)
if isinstance(FILTERED_FEATURES_NUM, Sequence):
_ = ax.axvspan(min(FILTERED_FEATURES_NUM), max(FILTERED_FEATURES_NUM), color=matplotlib.colormaps.get_cmap('tab10')(6), alpha=0.15)
# хотелось бы поставить верхнюю границу `len(df_augd_features_train.columns)`, но SequentialFeatureSelector до неё не досчитывает-то
_ = ax.set_xlim((1, (max(FILTERED_FEATURES_NUM) if isinstance(FILTERED_FEATURES_NUM, Sequence) else FILTERED_FEATURES_NUM)))
_ = ax.set_ylim((None, 0.))
# %% [markdown]
# Составной пайплайн:
# %%
pipeline = sklearn.pipeline.Pipeline([
('preprocess', build_preprocess_augmenting_transformer()),
('select_features', feature_selector),
('regress', regressor),
])
pipeline
# %%
model_params = filter_params(
pipeline.get_params(),
include={
'preprocess': (False, PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE.copy()),
'select_features': (False, FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE.copy()),
'regress': (False, True),
},
exclude={
'preprocess': PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE.copy(),
'select_features': FEATURE_SELECTOR_PARAMS_COMMON_EXCLUDE,
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
},
)
model_params
# %% [markdown]
# Обучение модели:
# %%
# XXX: SequentialFeatureSelector обучается опять!?
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
# %% [markdown]
# Оценка качества:
# %%
target_test_predicted = pipeline.predict(df_orig_features_test)
# %% [markdown]
# Метрики качества (MAPE, а также MSE, MAE):
# %%
metrics = score_predictions(df_target_test, target_test_predicted)
metrics
# %%
mlflow_log_model(
pipeline,
model_params=model_params,
metrics={k: float(v) for k, v in metrics.items()},
nested_run_name='Model with filtered engineered features',
model_signature=mlflow_model_signature,
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
comment_file_path=(
model_comment_path
if model_comment_path is not None
else (BASE_PATH / 'research' / model_comment_relpath)
),
)
# %% [markdown]
# ### Автоматический подбор гиперпараметров модели
# %% [markdown]
# Составной пайплайн:
# %%
def build_pipeline(regressor_n_estimators, regressor_max_depth=None, regressor_max_features='sqrt'):
return sklearn.pipeline.Pipeline([
('preprocess', build_preprocess_augmenting_transformer()),
('select_features', build_feature_selector()),
('regress', build_regressor(regressor_n_estimators, max_depth=regressor_max_depth, max_features=regressor_max_features)),
])
# %% [markdown]
# Целевая функция для оптимизатора гиперпараметров (подбирает параметры `RandomForestRegressor`: `n_estimators`, `max_depth`, `max_features`):
# %%
def regressor_hyperparams_objective(trial):
n_estimators = trial.suggest_int('n_estimators', 1, 256, log=True)
max_depth = trial.suggest_int('max_depth', 1, 16, log=True)
max_features = trial.suggest_float('max_features', 0.1, 1.)
# составной пайплайн:
pipeline = build_pipeline(n_estimators, regressor_max_depth=max_depth, regressor_max_features=max_features)
# обучение модели:
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
# оценка качества:
target_test_predicted = pipeline.predict(df_orig_features_test)
# метрика качества (MAPE):
mape = sklearn.metrics.mean_absolute_percentage_error(df_target_test, target_test_predicted)
return mape
# %% [markdown]
# optuna study:
# %%
optuna_sampler = optuna.samplers.TPESampler(seed=0x0A1C)
optuna_study = optuna.create_study(sampler=optuna_sampler, direction='minimize')
optuna_study.optimize(regressor_hyperparams_objective, n_trials=24)
# %% [markdown]
# Количество выполненных trials:
# %%
len(optuna_study.trials)
# %% [markdown]
# Лучшие найдённые гиперпараметры:
# %%
repr(optuna_study.best_params)
# %%
regressor_best_params = dict(optuna_study.best_params.items())
# %% [markdown]
# Составной пайплайн:
# %%
pipeline = build_pipeline(
regressor_best_params['n_estimators'],
regressor_max_depth=regressor_best_params['max_depth'],
regressor_max_features=regressor_best_params['max_features'],
)
pipeline
# %%
model_params = filter_params(
pipeline.get_params(),
include={
'preprocess': (False, PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_INCLUDE.copy()),
'select_features': (False, FEATURE_SELECTOR_PARAMS_COMMON_INCLUDE.copy()),
'regress': (False, True),
},
exclude={
'preprocess': PREPROCESS_AUGMENTING_TRANSFORMER_PARAMS_COMMON_EXCLUDE.copy(),
'select_features': FEATURE_SELECTOR_PARAMS_COMMON_EXCLUDE,
'regress': RANDOM_FOREST_REGRESSOR_PARAMS_COMMON_EXCLUDE,
},
)
model_params
# %% [markdown]
# Обучение модели:
# %%
_ = pipeline.fit(df_orig_features_train, df_target_train.iloc[:, 0])
# %% [markdown]
# Оценка качества:
# %%
target_test_predicted = pipeline.predict(df_orig_features_test)
# %% [markdown]
# Метрики качества (MAPE, а также MSE, MAE):
# %%
metrics = score_predictions(df_target_test, target_test_predicted)
metrics
# %%
mlflow_log_model(
pipeline,
model_params=model_params,
metrics={k: float(v) for k, v in metrics.items()},
nested_run_name='Optimized model with filtered engineered features',
model_signature=mlflow_model_signature,
input_example=df_orig_features.head(MODEL_INOUT_EXAMPLE_SIZE),
#pip_requirements=str(MODEL_PIP_REQUIREMENTS_PATH),
comment_file_path=(
model_comment_path
if model_comment_path is not None
else (BASE_PATH / 'research' / model_comment_relpath)
),
)
# %%