11 KiB
Отчет по теме 1
Комаров Егор, А-03-24
1 Изучение среды GNU Octave
GUI GNU Octave запущен, произведено общее ознакомление с интерфейсом программы.
2 Настройка текущего каталога
С помощью Set path... установил путь к папке ТЕМА1:
3 Настройка рабочего пространства
Во вкладке Window активируем показ командного окна, журнала выполненных команд, диспетчера файлов, области переменных и редактора. После этого в интерфейсе среды появляются соответствующие окна.
4 Устанавливаем путь к рабочим репозиториям
С помощью Set path... установливаем путь к папкам ТЕМА1 и ТЕМА2. Включаем отображение списка файлов в текущей папке.
5 Изучаем работу с системой помощи
Просматриваем документацию по программе (GNU Octave Manual).
Просматриваем список встроенных функций Function Index.
Используем команду help для получения информации по функции randn.
help randn
'randn' is a built-in function from the file libinterp/corefcn/rand.cc
-- X = randn (N)
-- X = randn (M, N, ...)
-- X = randn ([M N ...])
-- X = randn (..., "single")
-- X = randn (..., "double")
-- V = randn ("state")
-- randn ("state", V)
-- randn ("state", "reset")
-- V = randn ("seed")
-- randn ("seed", V)
-- randn ("seed", "reset")
Return a matrix with normally distributed random elements having
zero mean and variance one.
The arguments are handled the same as the arguments for ‘rand’.
By default, ‘randn’ uses the Marsaglia and Tsang "Ziggurat
technique" to transform from a uniform to a normal distribution.
The class of the value returned can be controlled by a trailing
"double" or "single" argument. These are the only valid classes.
Reference: G. Marsaglia and W.W. Tsang, ‘Ziggurat Method for
Generating Random Variables’, J. Statistical Software, vol 5, 2000,
<https://www.jstatsoft.org/v05/i08/>
See also: rand, rande, randg, randp.
Additional help for built-in functions and operators is
available in the online version of the manual. Use the command
'doc <topic>' to search the manual index.
Help and information about Octave is also available on the WWW
at https://www.octave.org and https://octave.discourse.group/c/help/
6 Изучаем способы задания матриц и векторов
>> A=randn(4,6)
A =
-0.487249 1.500163 -0.058514 0.447870 -0.831425 0.230160
0.042227 0.690096 -0.052365 1.305950 -0.379213 -0.269474
0.654921 0.941014 0.093497 0.561096 0.212812 -0.410104
-0.148194 -0.678435 -1.008628 1.425202 0.760093 -2.166047
>> B=rand(4,7)
B =
0.345536 0.704204 0.316431 0.818448 0.340374 0.749643 0.774945
0.126996 0.730145 0.664247 0.153328 0.237525 0.663924 0.288564
0.019296 0.989218 0.222881 0.216879 0.223590 0.603890 0.498865
0.719244 0.753689 0.380854 0.641714 0.662913 0.353391 0.594957
>>C=4:27
C =
Columns 1 through 19:
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Columns 20 through 24:
23 24 25 26 27
>> H='This is a symbols vector'
H = This is a symbols vector
>> L=[-2+23.1j, 3-5.6j]
L =
-2.0000 + 23.1000i 3.0000 - 5.6000i
NOMER 7
D=reshape(C,[],6) D =
4 8 12 16 20 24
5 9 13 17 21 25
6 10 14 18 22 26
7 11 15 19 23 27
E=B'*A E =
0.488550 0.011549 1.000897 2.699564 -0.504726 1.819611 -0.151361 0.254209 0.624697 1.512441 0.183915 0.725667 0.072425 0.313477 1.110223 2.959277 0.309335 1.753866 0.333663 0.135882 1.735861 4.354475 -0.273429 1.707147 0.038203 0.340325 1.835803 4.116933 -1.331504 2.154751 -0.258805 0.328323 0.793725 1.274550 -1.792678 1.396500 -0.015348 0.371355 1.553848 3.350191 -1.666793 2.328455
F=[A,B] F =
Columns 1 through 8:
1.148943 -0.660449 0.505361 2.144800 0.874353 -0.061676 0.831759 0.168296 0.073393 -0.083308 1.300502 1.839412 -3.915271 0.771531 0.413143 0.094149 -0.439376 0.422486 0.877189 2.021633 0.628780 0.429597 0.288750 0.547413 -0.485810 0.620539 -0.275356 -0.561242 0.267499 1.872348 0.762738 0.228719
Columns 9 through 13:
0.632518 0.858376 0.634046 0.031583 0.540918 0.232844 0.454478 0.678126 0.535694 0.709084 0.770984 0.976534 0.934923 0.240303 0.664854 0.684711 0.528709 0.677770 0.471018 0.816684
G=A.*D G =
4.5958 -5.2836 6.0643 34.3168 17.4871 -1.4802
0.3670 -0.7498 16.9065 31.2700 -82.2207 19.2883
-2.6363 4.2249 12.2806 36.3894 13.8332 11.1695 -3.4007 6.8259 -4.1303 -10.6636 6.1525 50.5534
M=G./4.5 M =
1.0213e+00 -1.1741e+00 1.3476e+00 7.6260e+00 3.8860e+00 -3.2894e-01 8.1547e-02 -1.6662e-01 3.7570e+00 6.9489e+00 -1.8271e+01 4.2863e+00 -5.8583e-01 9.3886e-01 2.7290e+00 8.0865e+00 3.0740e+00 2.4821e+00 -7.5570e-01 1.5169e+00 -9.1785e-01 -2.3697e+00 1.3672e+00 1.1234e+01
M=G./4.5 M =
1.0213e+00 -1.1741e+00 1.3476e+00 7.6260e+00 3.8860e+00 -3.2894e-01 8.1547e-02 -1.6662e-01 3.7570e+00 6.9489e+00 -1.8271e+01 4.2863e+00 -5.8583e-01 9.3886e-01 2.7290e+00 8.0865e+00 3.0740e+00 2.4821e+00 -7.5570e-01 1.5169e+00 -9.1785e-01 -2.3697e+00 1.3672e+00 1.1234e+01
DDD=D.^3 DDD =
64 512 1728 4096 8000 13824
125 729 2197 4913 9261 15625
216 1000 2744 5832 10648 17576
343 1331 3375 6859 12167 19683
DL=D>=20 DL =
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
Dstolb=D(:) Dstolb =
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
NOMER 8
B1=sqrt(B) B1 =
Columns 1 through 5:
0.9120 0.4102 0.7953 0.9265 0.7963 0.6428 0.3068 0.4825 0.6742 0.8235 0.5374 0.7399 0.8781 0.9882 0.9669 0.8733 0.4782 0.8275 0.7271 0.8233
Columns 6 and 7:
0.1777 0.7355 0.7319 0.8421 0.4902 0.8154 0.6863 0.9037
B2=log(B) B2 =
Columns 1 through 4:
-0.184212 -1.782031 -0.458047 -0.152714 -0.883960 -2.362875 -1.457387 -0.788605 -1.242194 -0.602552 -0.260088 -0.023746 -0.270841 -1.475262 -0.378758 -0.637316
Columns 5 through 7:
-0.455633 -3.455126 -0.614488 -0.388422 -0.624192 -0.343782 -0.067292 -1.425857 -0.408188 -0.388948 -0.752859 -0.202503
B3=sin(B) B3 =
Columns 1 through 4:
0.739117 0.167503 0.591177 0.756782 0.401490 0.094010 0.230746 0.438994 0.284754 0.520480 0.696841 0.828562 0.690903 0.226730 0.632450 0.504419
Columns 5 through 7:
0.592410 0.031578 0.514923 0.627335 0.510438 0.651139 0.804553 0.237996 0.616944 0.627057 0.453794 0.728880
k=length(B1) k = 7 nm=size(B1) nm =
4 7
elem=numel(B1) elem = 28 NN=linspace(11.5,34.1,20) NN =
Columns 1 through 8:
11.500 12.689 13.879 15.068 16.258 17.447 18.637 19.826
Columns 9 through 16:
21.016 22.205 23.395 24.584 25.774 26.963 28.153 29.342
Columns 17 through 20:
30.532 31.721 32.911 34.100
FF=ones(2,4) FF =
1 1 1 1 1 1 1 1
GG=zeros(5) GG =
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B1D=diag(B1) B1D =
0.9120 0.3068 0.8781 0.7271
DB=diag(B1D) DB =
Diagonal Matrix
0.9120 0 0 0 0 0.3068 0 0 0 0 0.8781 0 0 0 0 0.7271
BS1=sort(B) BS1 =
0.288750 0.094149 0.232844 0.454478 0.634046 0.031583 0.540918 0.413143 0.168296 0.632518 0.528709 0.677770 0.240303 0.664854 0.762738 0.228719 0.684711 0.858376 0.678126 0.471018 0.709084 0.831759 0.547413 0.770984 0.976534 0.934923 0.535694 0.816684
BS2=sortrows(B,2) BS2 =
0.413143 0.094149 0.232844 0.454478 0.678126 0.535694 0.709084 0.831759 0.168296 0.632518 0.858376 0.634046 0.031583 0.540918 0.762738 0.228719 0.684711 0.528709 0.677770 0.471018 0.816684 0.288750 0.547413 0.770984 0.976534 0.934923 0.240303 0.664854
DS1=sum(D) DS1 =
22 38 54 70 86 102
DS2=sum(D,2) DS2 =
84
90
96
102
DP1=prod(D) DP1 =
840 7920 32760 93024 212520 421200
dt=det(AA') dt = 1388.8 dinv=inv(AA') dinv =
0.374568 0.025819 -0.305610 0.189828 0.025819 0.053005 -0.044695 0.025517 -0.305610 -0.044695 0.432459 -0.163317 0.189828 0.025517 -0.163317 0.317169
NOMER 9
Dsum=0 for i=1:6 Dsum=Dsum+sqrt(D(2,i)) endfor Dsum2=0;i=1 while (D(i)<22) Dsum2=Dsum2+sin(D(i)) i=i+1 endwhile if (D(3,5)>=20) printf('D(3,5)>=20') else printf('D(3,5)<20') endif
Dsum = 0 Dsum = 2.2361 Dsum = 5.2361 Dsum = 8.8416 Dsum = 12.965 Dsum = 17.547 Dsum = 22.547 i = 1 Dsum2 = -0.7568 i = 2 Dsum2 = -1.7157 i = 3 Dsum2 = -1.9951 i = 4 Dsum2 = -1.3382 i = 5 Dsum2 = -0.3488 i = 6 Dsum2 = 0.063321 i = 7 Dsum2 = -0.4807 i = 8 Dsum2 = -1.4807 i = 9 Dsum2 = -2.0173 i = 10 Dsum2 = -1.5971 i = 11 Dsum2 = -0.6065 i = 12 Dsum2 = 0.043799 i = 13 Dsum2 = -0.2441 i = 14 Dsum2 = -1.2055 i = 15 Dsum2 = -1.9565 i = 16 Dsum2 = -1.8066 i = 17 Dsum2 = -0.8937 i = 18 Dsum2 = -0.057011 i = 19 D(3,5)>=20
NOMER10
D1 = 22 D2 =
18 22 26
D3 =
13 17 21 14 18 22
D4 =
19 20 21 22 23
D5 =
6 14 26
7 15 27
D1 = 22 D2 =
18 22 26
D3 =
13 17 21 14 18 22
D4 =
19 20 21 22 23
D5 =
6 14 26
7 15 27

