Вы не можете выбрать более 25 тем
Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
419 строки
12 KiB
Plaintext
419 строки
12 KiB
Plaintext
{
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"provenance": [],
|
|
"gpuType": "T4"
|
|
},
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"display_name": "Python 3"
|
|
},
|
|
"language_info": {
|
|
"name": "python"
|
|
},
|
|
"accelerator": "GPU"
|
|
},
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 1**"
|
|
],
|
|
"metadata": {
|
|
"id": "02oT0d1nrHsn"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"import os\n",
|
|
"os.chdir('/content/drive/MyDrive/Colab Notebooks/IS_LR3')"
|
|
],
|
|
"metadata": {
|
|
"id": "tRydpSDQWJiB"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# импорт модулей\n",
|
|
"from tensorflow import keras\n",
|
|
"from tensorflow.keras import layers\n",
|
|
"from tensorflow.keras.models import Sequential\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"from sklearn.metrics import classification_report, confusion_matrix\n",
|
|
"from sklearn.metrics import ConfusionMatrixDisplay"
|
|
],
|
|
"metadata": {
|
|
"id": "lR2eVWcXa3G3"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт** 2"
|
|
],
|
|
"metadata": {
|
|
"id": "FUlWVQ9WrUIG"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# загрузка датасета\n",
|
|
"from keras.datasets import mnist\n",
|
|
"(X_train, y_train), (X_test, y_test) = mnist.load_data()"
|
|
],
|
|
"metadata": {
|
|
"id": "4HaBhEvAqcIk"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 3**"
|
|
],
|
|
"metadata": {
|
|
"id": "OXQ1zw59rZC9"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# создание своего разбиения датасета\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"\n",
|
|
"# объединяем в один набор\n",
|
|
"X = np.concatenate((X_train, X_test))\n",
|
|
"y = np.concatenate((y_train, y_test))\n",
|
|
"\n",
|
|
"# разбиваем по вариантам\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(X, y,\n",
|
|
" test_size = 10000,\n",
|
|
" train_size = 60000,\n",
|
|
" random_state = 15)"
|
|
],
|
|
"metadata": {
|
|
"id": "IpFTFYx3bH2n"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# вывод размерностей\n",
|
|
"print('Shape of X train:', X_train.shape)\n",
|
|
"print('Shape of y train:', y_train.shape)\n",
|
|
"\n",
|
|
"print('Shape of X test:', X_test.shape)\n",
|
|
"print('Shape of y test:', y_test.shape)"
|
|
],
|
|
"metadata": {
|
|
"id": "QVquJXQgqfLF"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 4**"
|
|
],
|
|
"metadata": {
|
|
"id": "FSolDisjriNY"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# Зададим параметры данных и модели\n",
|
|
"num_classes = 10\n",
|
|
"input_shape = (28, 28, 1)\n",
|
|
"\n",
|
|
"# Приведение входных данных к диапазону [0, 1]\n",
|
|
"X_train = X_train / 255\n",
|
|
"X_test = X_test / 255\n",
|
|
"\n",
|
|
"# Расширяем размерность входных данных, чтобы каждое изображение имело\n",
|
|
"# размерность (высота, ширина, количество каналов)\n",
|
|
"\n",
|
|
"\n",
|
|
"X_train = np.expand_dims(X_train, -1)\n",
|
|
"X_test = np.expand_dims(X_test, -1)\n",
|
|
"print('Shape of transformed X train:', X_train.shape)\n",
|
|
"print('Shape of transformed X test:', X_test.shape)\n",
|
|
"\n",
|
|
"# переведем метки в one-hot\n",
|
|
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
|
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
|
|
"print('Shape of transformed y train:', y_train.shape)\n",
|
|
"print('Shape of transformed y test:', y_test.shape)"
|
|
],
|
|
"metadata": {
|
|
"id": "tYOmNY6HqhgT"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 5**"
|
|
],
|
|
"metadata": {
|
|
"id": "J22FRrP6rp6H"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# создаем модель\n",
|
|
"model = Sequential()\n",
|
|
"model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n",
|
|
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
|
"model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n",
|
|
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
|
"model.add(layers.Dropout(0.5))\n",
|
|
"model.add(layers.Flatten())\n",
|
|
"model.add(layers.Dense(num_classes, activation=\"softmax\"))\n",
|
|
"\n",
|
|
"model.summary()"
|
|
],
|
|
"metadata": {
|
|
"id": "CfKD5iNhqka1"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# компилируем и обучаем модель\n",
|
|
"batch_size = 512\n",
|
|
"epochs = 15\n",
|
|
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
|
|
"model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
|
|
],
|
|
"metadata": {
|
|
"id": "XTdrbt_Vqmzn"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 6**"
|
|
],
|
|
"metadata": {
|
|
"id": "g0NNH4Tfrvap"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# Оценка качества работы модели на тестовых данных\n",
|
|
"scores = model.evaluate(X_test, y_test)\n",
|
|
"print('Loss on test data:', scores[0])\n",
|
|
"print('Accuracy on test data:', scores[1])"
|
|
],
|
|
"metadata": {
|
|
"id": "knUHNHoVqpLs"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 7**"
|
|
],
|
|
"metadata": {
|
|
"id": "yNmb5Ot3sKBx"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# вывод первого тестового изображения и результата распознавания\n",
|
|
"n = 123\n",
|
|
"result = model.predict(X_test[n:n+1])\n",
|
|
"print('NN output:', result)\n",
|
|
"plt.show()\n",
|
|
"plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n",
|
|
"print('Real mark: ', np.argmax(y_test[n]))\n",
|
|
"print('NN answer: ', np.argmax(result))"
|
|
],
|
|
"metadata": {
|
|
"id": "ONaoSInWqtAV"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# вывод первого тестового изображения и результата распознавания\n",
|
|
"n = 110\n",
|
|
"result = model.predict(X_test[n:n+1])\n",
|
|
"print('NN output:', result)\n",
|
|
"plt.show()\n",
|
|
"plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n",
|
|
"print('Real mark: ', np.argmax(y_test[n]))\n",
|
|
"print('NN answer: ', np.argmax(result))"
|
|
],
|
|
"metadata": {
|
|
"id": "Xem4kHY3qvnH"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 8**"
|
|
],
|
|
"metadata": {
|
|
"id": "ciRgy9visOnv"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# истинные метки классов\n",
|
|
"true_labels = np.argmax(y_test, axis=1)\n",
|
|
"# предсказанные метки классов\n",
|
|
"predicted_labels = np.argmax(model.predict(X_test), axis=1)\n",
|
|
"\n",
|
|
"# отчет о качестве классификации\n",
|
|
"print(classification_report(true_labels, predicted_labels))\n",
|
|
"# вычисление матрицы ошибок\n",
|
|
"conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
|
|
"# отрисовка матрицы ошибок в виде \"тепловой карты\"\n",
|
|
"display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n",
|
|
"display.plot()\n",
|
|
"plt.show()"
|
|
],
|
|
"metadata": {
|
|
"id": "LMippjEhqyAQ"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 9**"
|
|
],
|
|
"metadata": {
|
|
"id": "Sb3HfMLpsUsT"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# загрузка собственного изображения 1\n",
|
|
"from PIL import Image\n",
|
|
"file_data = Image.open('test.png')\n",
|
|
"file_data = file_data.convert('L') # перевод в градации серого\n",
|
|
"test_img = np.array(file_data)\n",
|
|
"\n",
|
|
"# вывод собственного изображения\n",
|
|
"plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"# предобработка\n",
|
|
"test_img = test_img / 255\n",
|
|
"test_img = np.reshape(test_img, (1,28,28,1))\n",
|
|
"\n",
|
|
"# распознавание\n",
|
|
"result = model.predict(test_img)\n",
|
|
"print('I think it\\'s ', np.argmax(result))"
|
|
],
|
|
"metadata": {
|
|
"id": "EWSA9wnQq0oH"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# загрузка собственного изображения 2\n",
|
|
"from PIL import Image\n",
|
|
"file_data = Image.open('test2.png')\n",
|
|
"file_data = file_data.convert('L') # перевод в градации серого\n",
|
|
"test_img = np.array(file_data)\n",
|
|
"\n",
|
|
"# вывод собственного изображения\n",
|
|
"plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"# предобработка\n",
|
|
"test_img = test_img / 255\n",
|
|
"test_img = np.reshape(test_img, (1,28,28,1))\n",
|
|
"\n",
|
|
"# распознавание\n",
|
|
"result = model.predict(test_img)\n",
|
|
"print('I think it\\'s ', np.argmax(result))"
|
|
],
|
|
"metadata": {
|
|
"id": "HV_2ipNkq4PI"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"**Пункт 10**"
|
|
],
|
|
"metadata": {
|
|
"id": "OsnJR4STsaCl"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# путь к сохранённой модели из ЛР1\n",
|
|
"model_fc = keras.models.load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')\n",
|
|
"\n",
|
|
"# архитектура модели\n",
|
|
"model_fc.summary()"
|
|
],
|
|
"metadata": {
|
|
"id": "w575Bu7Yq7W1"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# подготовка тестовых данных для полносвязной модели\n",
|
|
"X_test_fc = X_test.reshape(X_test.shape[0], 28*28) # (10000, 784)\n",
|
|
"y_test_fc = y_test # если в ЛР3 ты уже перевёл метки в one-hot\n",
|
|
"\n",
|
|
"# оценка качества, как в п. 6\n",
|
|
"scores = model_fc.evaluate(X_test_fc, y_test_fc, verbose=0)\n",
|
|
"print('Loss on test data (FC model):', scores[0])\n",
|
|
"print('Accuracy on test data (FC model):', scores[1])"
|
|
],
|
|
"metadata": {
|
|
"id": "83S9Lr-Bq9gD"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
}
|
|
]
|
|
} |