Изменил(а) на 'labworks/LW4/readme.md'

ZheleznovAO 4 недель назад
Родитель 7ec90ec522
Сommit 726e16279d

@ -184,6 +184,7 @@ model.add(layers.Dense(1, activation='sigmoid'))
model.summary() model.summary()
``` ```
```
/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:97: UserWarning: Argument `input_length` is deprecated. Just remove it. /usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:97: UserWarning: Argument `input_length` is deprecated. Just remove it.
warnings.warn( warnings.warn(
/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:100: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. /usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:100: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
@ -203,6 +204,7 @@ Model: "sequential"
Total params: 184,897 (722.25 KB) Total params: 184,897 (722.25 KB)
Trainable params: 184,897 (722.25 KB) Trainable params: 184,897 (722.25 KB)
Non-trainable params: 0 (0.00 B) Non-trainable params: 0 (0.00 B)
```
```python ```python
# компилируем и обучаем модель # компилируем и обучаем модель
batch_size = 64 batch_size = 64
@ -242,6 +244,7 @@ y_pred = [1 if y_score[i,0]>=0.5 else 0 for i in range(len(y_score))]
from sklearn.metrics import classification_report from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive'])) print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive']))
``` ```
```
782/782 ━━━━━━━━━━━━━━━━━━━━ 8s 10ms/step 782/782 ━━━━━━━━━━━━━━━━━━━━ 8s 10ms/step
precision recall f1-score support precision recall f1-score support
@ -251,6 +254,7 @@ print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Nega
accuracy 0.86 25000 accuracy 0.86 25000
macro avg 0.86 0.86 0.86 25000 macro avg 0.86 0.86 0.86 25000
weighted avg 0.86 0.86 0.86 25000 weighted avg 0.86 0.86 0.86 25000
```
```python ```python
#построение ROC-кривой и AUC ROC #построение ROC-кривой и AUC ROC
from sklearn.metrics import roc_curve, auc from sklearn.metrics import roc_curve, auc

Загрузка…
Отмена
Сохранить