Родитель
d81e3851d1
Сommit
3289b87a5d
@ -0,0 +1,346 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": [],
|
||||
"gpuType": "T4"
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"accelerator": "GPU"
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 1**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "KR8uP1u_tFii"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "v8fjN3CMpmzp"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"os.chdir('/content/drive/MyDrive/Colab Notebooks/IS_LR3')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# импорт модулей\n",
|
||||
"from tensorflow import keras\n",
|
||||
"from tensorflow.keras import layers\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.metrics import classification_report, confusion_matrix\n",
|
||||
"from sklearn.metrics import ConfusionMatrixDisplay"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "VMuk53SHqFE6"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 2**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "bie8IdvhtMwI"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# загрузка датасета\n",
|
||||
"from keras.datasets import cifar10\n",
|
||||
"\n",
|
||||
"(X_train, y_train), (X_test, y_test) = cifar10.load_data()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "zU_qTq3QpSaj"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 3**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "EKz2pMH5tPgM"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# создание своего разбиения датасета\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"# объединяем в один набор\n",
|
||||
"X = np.concatenate((X_train, X_test))\n",
|
||||
"y = np.concatenate((y_train, y_test))\n",
|
||||
"\n",
|
||||
"# разбиваем по вариантам\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y,\n",
|
||||
" test_size = 10000,\n",
|
||||
" train_size = 50000,\n",
|
||||
" random_state = 15)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Tj2SdIX6qjyS"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# вывод размерностей\n",
|
||||
"print('Shape of X train:', X_train.shape)\n",
|
||||
"print('Shape of y train:', y_train.shape)\n",
|
||||
"\n",
|
||||
"print('Shape of X test:', X_test.shape)\n",
|
||||
"print('Shape of y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "rxfIoGknpVr2"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# вывод 25 изображений из обучающей выборки с подписями классов\n",
|
||||
"class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n",
|
||||
" 'dog', 'frog', 'horse', 'ship', 'truck']\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(10,10))\n",
|
||||
"for i in range(25):\n",
|
||||
" plt.subplot(5,5,i+1)\n",
|
||||
" plt.xticks([])\n",
|
||||
" plt.yticks([])\n",
|
||||
" plt.grid(False)\n",
|
||||
" plt.imshow(X_train[i])\n",
|
||||
" plt.xlabel(class_names[y_train[i][0]])\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "ELkzGpxQpYss"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 4**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "R8UnsPwFtcT6"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Зададим параметры данных и модели\n",
|
||||
"num_classes = 10\n",
|
||||
"input_shape = (32, 32, 3)\n",
|
||||
"\n",
|
||||
"# Приведение входных данных к диапазону [0, 1]\n",
|
||||
"X_train = X_train / 255\n",
|
||||
"X_test = X_test / 255\n",
|
||||
"\n",
|
||||
"# Расширяем размерность входных данных, чтобы каждое изображение имело\n",
|
||||
"# размерность (высота, ширина, количество каналов)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print('Shape of transformed X train:', X_train.shape)\n",
|
||||
"print('Shape of transformed X test:', X_test.shape)\n",
|
||||
"\n",
|
||||
"# переведем метки в one-hot\n",
|
||||
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
||||
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
|
||||
"print('Shape of transformed y train:', y_train.shape)\n",
|
||||
"print('Shape of transformed y test:', y_test.shape)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "tLtI_dWgpb5Q"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 5**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "OQTGDyuytpyz"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# создаем модель\n",
|
||||
"model = Sequential()\n",
|
||||
"model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n",
|
||||
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
||||
"model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n",
|
||||
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
||||
"model.add(layers.Conv2D(128, kernel_size=(3, 3), activation=\"relu\"))\n",
|
||||
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
|
||||
"model.add(layers.Flatten())\n",
|
||||
"model.add(layers.Dense(128, activation='relu'))\n",
|
||||
"model.add(layers.Dropout(0.5))\n",
|
||||
"model.add(layers.Dense(num_classes, activation=\"softmax\"))\n",
|
||||
"\n",
|
||||
"model.summary()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "fchBhH0mpffb"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"batch_size = 512\n",
|
||||
"epochs = 15\n",
|
||||
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
|
||||
"model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "pt4hPpfLpiAR"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 6**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "CyI5uGgetwim"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Оценка качества работы модели на тестовых данных\n",
|
||||
"scores = model.evaluate(X_test, y_test)\n",
|
||||
"print('Loss on test data:', scores[0])\n",
|
||||
"print('Accuracy on test data:', scores[1])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "niQVFBRnpklL"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 7**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "-Os4bCnAtzCP"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# ПРАВИЛЬНО распознанное изображение\n",
|
||||
"n = 10\n",
|
||||
"result = model.predict(X_test[n:n+1])\n",
|
||||
"print('NN output:', result)\n",
|
||||
"\n",
|
||||
"plt.imshow(X_test[n])\n",
|
||||
"plt.show()\n",
|
||||
"\n",
|
||||
"print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n",
|
||||
"print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "oLC2nN-MpnVD"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# НЕВЕРНО распознанное изображение\n",
|
||||
"n = 0\n",
|
||||
"result = model.predict(X_test[n:n+1])\n",
|
||||
"print('NN output:', result)\n",
|
||||
"\n",
|
||||
"plt.imshow(X_test[n])\n",
|
||||
"plt.show()\n",
|
||||
"\n",
|
||||
"print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n",
|
||||
"print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "qMkBgHiqppyZ"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"**Пункт 8**"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "RVk_bSDct3Km"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# истинные метки классов\n",
|
||||
"true_labels = np.argmax(y_test, axis=1)\n",
|
||||
"\n",
|
||||
"# предсказанные метки классов\n",
|
||||
"predicted_labels = np.argmax(model.predict(X_test), axis=1)\n",
|
||||
"\n",
|
||||
"# отчет о качестве классификации\n",
|
||||
"print(classification_report(true_labels, predicted_labels, target_names=class_names))\n",
|
||||
"\n",
|
||||
"# вычисление матрицы ошибок\n",
|
||||
"conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
|
||||
"\n",
|
||||
"# отрисовка матрицы ошибок в виде \"тепловой карты\"\n",
|
||||
"display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,\n",
|
||||
" display_labels=class_names)\n",
|
||||
"display.plot(xticks_rotation=45)\n",
|
||||
"plt.show()"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "isaoRHSXpLSA"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
}
|
||||
]
|
||||
}
|
||||
Загрузка…
Ссылка в новой задаче