Загрузил(а) файлы в 'labworks/LW3'

Пивоваров Ярослав 3 недель назад
Родитель d81e3851d1
Сommit 3289b87a5d

@ -0,0 +1,346 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"**Пункт 1**"
],
"metadata": {
"id": "KR8uP1u_tFii"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "v8fjN3CMpmzp"
},
"outputs": [],
"source": [
"import os\n",
"os.chdir('/content/drive/MyDrive/Colab Notebooks/IS_LR3')"
]
},
{
"cell_type": "code",
"source": [
"# импорт модулей\n",
"from tensorflow import keras\n",
"from tensorflow.keras import layers\n",
"from tensorflow.keras.models import Sequential\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from sklearn.metrics import classification_report, confusion_matrix\n",
"from sklearn.metrics import ConfusionMatrixDisplay"
],
"metadata": {
"id": "VMuk53SHqFE6"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 2**"
],
"metadata": {
"id": "bie8IdvhtMwI"
}
},
{
"cell_type": "code",
"source": [
"# загрузка датасета\n",
"from keras.datasets import cifar10\n",
"\n",
"(X_train, y_train), (X_test, y_test) = cifar10.load_data()"
],
"metadata": {
"id": "zU_qTq3QpSaj"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 3**"
],
"metadata": {
"id": "EKz2pMH5tPgM"
}
},
{
"cell_type": "code",
"source": [
"# создание своего разбиения датасета\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"# объединяем в один набор\n",
"X = np.concatenate((X_train, X_test))\n",
"y = np.concatenate((y_train, y_test))\n",
"\n",
"# разбиваем по вариантам\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y,\n",
" test_size = 10000,\n",
" train_size = 50000,\n",
" random_state = 15)"
],
"metadata": {
"id": "Tj2SdIX6qjyS"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# вывод размерностей\n",
"print('Shape of X train:', X_train.shape)\n",
"print('Shape of y train:', y_train.shape)\n",
"\n",
"print('Shape of X test:', X_test.shape)\n",
"print('Shape of y test:', y_test.shape)"
],
"metadata": {
"id": "rxfIoGknpVr2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# вывод 25 изображений из обучающей выборки с подписями классов\n",
"class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n",
" 'dog', 'frog', 'horse', 'ship', 'truck']\n",
"\n",
"plt.figure(figsize=(10,10))\n",
"for i in range(25):\n",
" plt.subplot(5,5,i+1)\n",
" plt.xticks([])\n",
" plt.yticks([])\n",
" plt.grid(False)\n",
" plt.imshow(X_train[i])\n",
" plt.xlabel(class_names[y_train[i][0]])\n",
"plt.show()"
],
"metadata": {
"id": "ELkzGpxQpYss"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 4**"
],
"metadata": {
"id": "R8UnsPwFtcT6"
}
},
{
"cell_type": "code",
"source": [
"# Зададим параметры данных и модели\n",
"num_classes = 10\n",
"input_shape = (32, 32, 3)\n",
"\n",
"# Приведение входных данных к диапазону [0, 1]\n",
"X_train = X_train / 255\n",
"X_test = X_test / 255\n",
"\n",
"# Расширяем размерность входных данных, чтобы каждое изображение имело\n",
"# размерность (высота, ширина, количество каналов)\n",
"\n",
"\n",
"print('Shape of transformed X train:', X_train.shape)\n",
"print('Shape of transformed X test:', X_test.shape)\n",
"\n",
"# переведем метки в one-hot\n",
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
"print('Shape of transformed y train:', y_train.shape)\n",
"print('Shape of transformed y test:', y_test.shape)"
],
"metadata": {
"id": "tLtI_dWgpb5Q"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 5**"
],
"metadata": {
"id": "OQTGDyuytpyz"
}
},
{
"cell_type": "code",
"source": [
"# создаем модель\n",
"model = Sequential()\n",
"model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n",
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n",
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(layers.Conv2D(128, kernel_size=(3, 3), activation=\"relu\"))\n",
"model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(layers.Flatten())\n",
"model.add(layers.Dense(128, activation='relu'))\n",
"model.add(layers.Dropout(0.5))\n",
"model.add(layers.Dense(num_classes, activation=\"softmax\"))\n",
"\n",
"model.summary()"
],
"metadata": {
"id": "fchBhH0mpffb"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"batch_size = 512\n",
"epochs = 15\n",
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
"model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
],
"metadata": {
"id": "pt4hPpfLpiAR"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 6**"
],
"metadata": {
"id": "CyI5uGgetwim"
}
},
{
"cell_type": "code",
"source": [
"# Оценка качества работы модели на тестовых данных\n",
"scores = model.evaluate(X_test, y_test)\n",
"print('Loss on test data:', scores[0])\n",
"print('Accuracy on test data:', scores[1])"
],
"metadata": {
"id": "niQVFBRnpklL"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 7**"
],
"metadata": {
"id": "-Os4bCnAtzCP"
}
},
{
"cell_type": "code",
"source": [
"# ПРАВИЛЬНО распознанное изображение\n",
"n = 10\n",
"result = model.predict(X_test[n:n+1])\n",
"print('NN output:', result)\n",
"\n",
"plt.imshow(X_test[n])\n",
"plt.show()\n",
"\n",
"print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n",
"print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])"
],
"metadata": {
"id": "oLC2nN-MpnVD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# НЕВЕРНО распознанное изображение\n",
"n = 0\n",
"result = model.predict(X_test[n:n+1])\n",
"print('NN output:', result)\n",
"\n",
"plt.imshow(X_test[n])\n",
"plt.show()\n",
"\n",
"print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n",
"print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])"
],
"metadata": {
"id": "qMkBgHiqppyZ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Пункт 8**"
],
"metadata": {
"id": "RVk_bSDct3Km"
}
},
{
"cell_type": "code",
"source": [
"# истинные метки классов\n",
"true_labels = np.argmax(y_test, axis=1)\n",
"\n",
"# предсказанные метки классов\n",
"predicted_labels = np.argmax(model.predict(X_test), axis=1)\n",
"\n",
"# отчет о качестве классификации\n",
"print(classification_report(true_labels, predicted_labels, target_names=class_names))\n",
"\n",
"# вычисление матрицы ошибок\n",
"conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
"\n",
"# отрисовка матрицы ошибок в виде \"тепловой карты\"\n",
"display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,\n",
" display_labels=class_names)\n",
"display.plot(xticks_rotation=45)\n",
"plt.show()"
],
"metadata": {
"id": "isaoRHSXpLSA"
},
"execution_count": null,
"outputs": []
}
]
}
Загрузка…
Отмена
Сохранить