форкнуто от main/is_dnn
Вы не можете выбрать более 25 тем
Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
15 KiB
15 KiB
1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули. Настроили блокнот для работы с аппаратным ускорителем GPU.
# импорт модулей
import os
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab4')
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import matplotlib.pyplot as plt
import numpy as npimport tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))2) Загрузили набор данных IMDb, содержащий оцифрованные отзывы на фильмы, размеченные на два класса: позитивные и негативные. При загрузке набора данных параметр seed выбрали равным значению (4k – 1)=23, где k=6 – номер бригады. Вывели размеры полученных обучающих и тестовых массивов данных.
# загрузка датасета
from keras.datasets import imdb
vocabulary_size = 5000
index_from = 3
(X_train, y_train), (X_test, y_test) = imdb.load_data(
path="imdb.npz",
num_words=vocabulary_size,
skip_top=0,
maxlen=None,
seed=26,
start_char=1,
oov_char=2,
index_from=index_from
)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of y train:', y_train.shape)
print('Shape of X test:', X_test.shape)
print('Shape of y test:', y_test.shape)3) Вывели один отзыв из обучающего множества в виде списка индексов слов. Преобразовали список индексов в текст и вывели отзыв в виде текста. Вывели длину отзыва. Вывели метку класса данного отзыва и название класса (1 – Positive, 0 – Negative).
# создание словаря для перевода индексов в слова
# заргузка словаря "слово:индекс"
word_to_id = imdb.get_word_index()
# уточнение словаря
word_to_id = {key:(value + index_from) for key,value in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2
word_to_id["<UNUSED>"] = 3
# создание обратного словаря "индекс:слово"
id_to_word = {value:key for key,value in word_to_id.items()}review_as_text = ' '.join(id_to_word[id] for id in X_train[26])
print(review_as_text)4) Вывели максимальную и минимальную длину отзыва в обучающем множестве.
print('MAX Len: ',len(max(X_train, key=len)))
print('MIN Len: ',len(min(X_train, key=len)))5) Провели предобработку данных. Выбрали единую длину, к которой будут приведены все отзывы. Короткие отзывы дополнили спецсимволами, а длинные обрезали до выбранной длины.
# предобработка данных
from tensorflow.keras.utils import pad_sequences
max_words = 500
X_train = pad_sequences(X_train, maxlen=max_words, value=0, padding='pre', truncating='post')
X_test = pad_sequences(X_test, maxlen=max_words, value=0, padding='pre', truncating='post')6) Повторили пункт 4.
print('MAX Len: ',len(max(X_train, key=len)))
print('MIN Len: ',len(min(X_train, key=len)))7) Повторили пункт 3. Сделали вывод о том, как отзыв преобразовался после предобработки.
review_as_text = ' '.join(id_to_word[id] for id in X_train[26])
print(review_as_text)После обработки в начало отзыва добавилось необходимое количество токенов , чтобы отзыв был длинной в 500 индексов.
8) Вывели предобработанные массивы обучающих и тестовых данных и их размерности.
# вывод данных
print('X train: \n',X_train)
print('X train: \n',X_test)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of X test:', X_test.shape)9) Реализовали модель рекуррентной нейронной сети, состоящей из слоев Embedding, LSTM, Dropout, Dense, и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети. Добились качества обучения по метрике accuracy не менее 0.8.
embed_dim = 32
lstm_units = 64
model = Sequential()
model.add(layers.Embedding(input_dim=vocabulary_size, output_dim=embed_dim, input_length=max_words, input_shape=(max_words,)))
model.add(layers.LSTM(lstm_units))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()# компилируем и обучаем модель
batch_size = 64
epochs = 3
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.2)test_loss, test_acc = model.evaluate(X_test, y_test)
print(f"\nTest accuracy: {test_acc}")10) Оценили качество обучения на тестовых данных:
- вывели значение метрики качества классификации на тестовых данных
- вывели отчет о качестве классификации тестовой выборки
- построили ROC-кривую по результату обработки тестовой выборки и вычислили площадь под ROC-кривой (AUC ROC)
#значение метрики качества классификации на тестовых данных
print(f"\nTest accuracy: {test_acc}")#отчет о качестве классификации тестовой выборки
y_score = model.predict(X_test)
y_pred = [1 if y_score[i,0]>=0.5 else 0 for i in range(len(y_score))]
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive']))#построение ROC-кривой и AUC ROC
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_score)
plt.plot(fpr, tpr)
plt.grid()
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.show()
print('AUC ROC:', auc(fpr, tpr))11) Сделали выводы по результатам применения рекуррентной нейронной сети для решения задачи определения тональности текста.
Таблица1:
| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |
|---|---|---|---|
| Рекуррентная | 184 897 | 3 | accuracy:0.8556 ; loss:0.5214 ; AUC ROC:0.9165 |