Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

30 KiB

Задание 1

1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули.

# импорт модулей
import os
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay

2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр.

# загрузка датасета
from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()

3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.

# создание своего разбиения датасета
from sklearn.model_selection import train_test_split

# объединяем в один набор
X = np.concatenate((X_train, X_test))
y = np.concatenate((y_train, y_test))

# разбиваем по вариантам
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size = 10000,
                                                    train_size = 60000,
                                                    random_state = 23)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of y train:', y_train.shape)
print('Shape of X test:', X_test.shape)
print('Shape of y test:', y_test.shape)

4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.

# Зададим параметры данных и модели
num_classes = 10
input_shape = (28, 28, 1)

# Приведение входных данных к диапазону [0, 1]
X_train = X_train / 255
X_test = X_test / 255

# Расширяем размерность входных данных, чтобы каждое изображение имело
# размерность (высота, ширина, количество каналов)

X_train = np.expand_dims(X_train, -1)
X_test = np.expand_dims(X_test, -1)
print('Shape of transformed X train:', X_train.shape)
print('Shape of transformed X test:', X_test.shape)

# переведем метки в one-hot
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('Shape of transformed y train:', y_train.shape)
print('Shape of transformed y test:', y_test.shape)

5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.

# создаем модель
model = Sequential()
model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Dropout(0.5))
model.add(layers.Flatten())
model.add(layers.Dense(num_classes, activation="softmax"))

model.summary()
# компилируем и обучаем модель
batch_size = 512
epochs = 15
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.

# Оценка качества работы модели на тестовых данных
scores = model.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])

7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.

# вывод двух тестовых изображений и результатов распознавания

for n in [3,26]:
  result = model.predict(X_test[n:n+1])
  print('NN output:', result)

  plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))
  plt.show()
  print('Real mark: ', np.argmax(y_test[n]))
  print('NN answer: ', np.argmax(result))

8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.

# истинные метки классов
true_labels = np.argmax(y_test, axis=1)
# предсказанные метки классов
predicted_labels = np.argmax(model.predict(X_test), axis=1)

# отчет о качестве классификации
print(classification_report(true_labels, predicted_labels))
# вычисление матрицы ошибок
conf_matrix = confusion_matrix(true_labels, predicted_labels)
# отрисовка матрицы ошибок в виде "тепловой карты"
display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)
display.plot()
plt.show()

9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания.

# загрузка собственного изображения
from PIL import Image

for name_image in ['цифра 3.png', 'цифра 6.png']:
  file_data = Image.open(name_image)
  file_data = file_data.convert('L') # перевод в градации серого
  test_img = np.array(file_data)

  # вывод собственного изображения
  plt.imshow(test_img, cmap=plt.get_cmap('gray'))
  plt.show()

  # предобработка
  test_img = test_img / 255
  test_img = np.reshape(test_img, (1,28,28,1))

  # распознавание
  result = model.predict(test_img)
  print('I think it\'s', np.argmax(result))

10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6.

model_lr1 = keras.models.load_model("model_1h100_2h50.keras")

model_lr1.summary()
# развернем каждое изображение 28*28 в вектор 784
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size = 10000,
                                                    train_size = 60000,
                                                    random_state = 23)
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255
X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255
print('Shape of transformed X train:', X_train.shape)
print('Shape of transformed X train:', X_test.shape)

# переведем метки в one-hot
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('Shape of transformed y train:', y_train.shape)
print('Shape of transformed y test:', y_test.shape)
# Оценка качества работы модели на тестовых данных
scores = model_lr1.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])

11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:

- количество настраиваемых параметров в сети

- количество эпох обучения

- качество классификации тестовой выборки.

Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений.

Таблица1:

Модель Количество настраиваемых параметров Количество эпох обучения Качество классификации тестовой выборки
Сверточная 34 826 15 accuracy:0.990 ; loss:0.029
Полносвязная 84 062 50 accuracy:0.942 ; loss:0.198

#####По результатам применения сверточной НС, а также по результатам таблицы 1 делаем выводы, что сверточная НС намного лучше справляется с задачами распознования изображений, чем полносвязная - имеет меньше настраиваемых параметров, быстрее обучается, имеет лучшие показатели качества.

Задание 2

В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов.

При этом:

- в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000

- после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов

- в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно.

1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик.

# загрузка датасета
from keras.datasets import cifar10

(X_train, y_train), (X_test, y_test) = cifar10.load_data()

2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.

# создание своего разбиения датасета

# объединяем в один набор
X = np.concatenate((X_train, X_test))
y = np.concatenate((y_train, y_test))

# разбиваем по вариантам
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size = 10000,
                                                    train_size = 50000,
                                                    random_state = 23)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of y train:', y_train.shape)
print('Shape of X test:', X_test.shape)
print('Shape of y test:', y_test.shape)

Вывели 25 изображений из обучающей выборки с подписью классов.

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i])
    plt.xlabel(class_names[y_train[i][0]])
plt.show()

3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.

# Зададим параметры данных и модели
num_classes = 10
input_shape = (32, 32, 3)

# Приведение входных данных к диапазону [0, 1]
X_train = X_train / 255
X_test = X_test / 255

print('Shape of transformed X train:', X_train.shape)
print('Shape of transformed X test:', X_test.shape)

# переведем метки в one-hot
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('Shape of transformed y train:', y_train.shape)
print('Shape of transformed y test:', y_test.shape)

4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.

# создаем модель
model = Sequential()

# Блок 1
model.add(layers.Conv2D(32, (3, 3), padding="same",
                        activation="relu", input_shape=input_shape))
model.add(layers.BatchNormalization())
model.add(layers.Conv2D(32, (3, 3), padding="same", activation="relu"))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.25))

# Блок 2
model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu"))
model.add(layers.BatchNormalization())
model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu"))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.25))

# Блок 3
model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu"))
model.add(layers.BatchNormalization())
model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu"))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.4))

model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(num_classes, activation="softmax"))


model.summary()
# компилируем и обучаем модель
batch_size = 64
epochs = 50
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.

# Оценка качества работы модели на тестовых данных
scores = model.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])

6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.

# вывод двух тестовых изображений и результатов распознавания

for n in [3,15]:
  result = model.predict(X_test[n:n+1])
  print('NN output:', result)

  plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))
  plt.show()
  print('Real mark: ', np.argmax(y_test[n]))
  print('NN answer: ', np.argmax(result))

7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.

# истинные метки классов
true_labels = np.argmax(y_test, axis=1)
# предсказанные метки классов
predicted_labels = np.argmax(model.predict(X_test), axis=1)

# отчет о качестве классификации
print(classification_report(true_labels, predicted_labels, target_names=class_names))
# вычисление матрицы ошибок
conf_matrix = confusion_matrix(true_labels, predicted_labels)
# отрисовка матрицы ошибок в виде "тепловой карты"
fig, ax = plt.subplots(figsize=(6, 6))
disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)
disp.plot(ax=ax, xticks_rotation=45)  # поворот подписей по X и приятная палитра
plt.tight_layout()  # чтобы всё влезло
plt.show()

По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85.