@ -149,7 +149,7 @@ print('Accuracy on test data:', scores[1])
**Результат выполнения:**
**Результат выполнения:**
```
```
313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 7ms/step - accuracy: 0.9869 - loss: 0.0416
accuracy: 0.9869 - loss: 0.0416
Loss on test data: 0.03736430034041405
Loss on test data: 0.03736430034041405
Accuracy on test data: 0.987500011920929
Accuracy on test data: 0.987500011920929
```
```
@ -272,7 +272,7 @@ print('Accuracy on test data:', scores[1])
**Результат выполнения:**
**Результат выполнения:**
```
```
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9163 - loss: 0.2937
accuracy: 0.9163 - loss: 0.2937
Loss on test data: 0.2963277995586395
Loss on test data: 0.2963277995586395
Accuracy on test data: 0.914900004863739
Accuracy on test data: 0.914900004863739
```
```
@ -294,6 +294,237 @@ Accuracy on test data: 0.914900004863739
## Задание 2
## Задание 2
### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов.
### При этом:
* в п.3 разбиение данных на обучающие и тестовые произвести в соотношении 50000:10000
* после разбиения данных(между п. 3 и 4)вывести 25 изображений из обучающей выборки с подписями классов
* в п.7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно.
### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик.
```python
# загрузка датасета
from keras.datasets import cifar10
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
```
### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=7, где k=2 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.
```python
# создание своего разбиения датасета
from sklearn.model_selection import train_test_split
# объединяем в один набор
X = np.concatenate((X_train, X_test))
y = np.concatenate((y_train, y_test))
# разбиваем по вариантам
X_train, X_test, y_train, y_test = train_test_split(
X, y,test_size = 10000,train_size = 50000,random_state = 7
)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of y train:', y_train.shape)
print('Shape of X test:', X_test.shape)
print('Shape of y test:', y_test.shape)
```
**Результат выполнения:**
```
Shape of X train: (50000, 32, 32, 3)
Shape of y train: (50000, 1)
Shape of X test: (10000, 32, 32, 3)
Shape of y test: (10000, 1)
```
### Вывели 25 изображений из обучающей выборки с подписью классов.
```python
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(X_train[i])
plt.xlabel(class_names[y_train[i][0]])
plt.show()
```
**Результат выполнения:**

### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.
```python
# Зададим параметры данных и модели
num_classes = 10
input_shape = (32, 32, 3)
# Приведение входных данных к диапазону [0, 1]
X_train = X_train / 255
X_test = X_test / 255
print('Shape of transformed X train:', X_train.shape)
print('Shape of transformed X test:', X_test.shape)
# переведем метки в one-hot
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('Shape of transformed y train:', y_train.shape)
print('Shape of transformed y test:', y_test.shape)
```
**Результат выполнения:**
```
Shape of transformed X train: (50000, 32, 32, 3)
Shape of transformed X test: (10000, 32, 32, 3)
Shape of transformed y train: (50000, 10)
Shape of transformed y test: (10000, 10)
```
### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.
```python
model = Sequential()
model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Conv2D(128, kernel_size=(3, 3), activation="relu"))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(num_classes, activation="softmax"))
model.summary()
```
**Результат выполнения:**
```
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ conv2d (Conv2D) │ (None, 30, 30, 32) │ 896 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d (MaxPooling2D) │ (None, 15, 15, 32) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_1 (Conv2D) │ (None, 13, 13, 64) │ 18,496 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_1 (MaxPooling2D) │ (None, 6, 6, 64) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_2 (Conv2D) │ (None, 4, 4, 128) │ 73,856 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_2 (MaxPooling2D) │ (None, 2, 2, 128) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten (Flatten) │ (None, 512) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense) │ (None, 128) │ 65,664 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout (Dropout) │ (None, 128) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense) │ (None, 10) │ 1,290 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 160,202 (625.79 KB)
Trainable params: 160,202 (625.79 KB)
Non-trainable params: 0 (0.00 B)
```
```python
# компилируем и обучаем модель
batch_size = 64
epochs = 50
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
```
### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.
```python
# Оценка качества работы модели на тестовых данных
scores = model.evaluate(X_test, y_test)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
```
**Результат выполнения:**
```
accuracy: 0.7221 - loss: 1.3448
Loss on test data: 1.3755847215652466
Accuracy on test data: 0.7161999940872192
```
### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.
```python
# вывод двух тестовых изображений и результатов распознавания
for n in [3,15]:
result = model.predict(X_test[n:n+1])
print('NN output:', result)
plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))
plt.show()
print('Real mark: ', np.argmax(y_test[n]))
print('NN answer: ', np.argmax(result))
```
**Результат выполнения:**
```
NN output: [[6.5008247e-14 2.3088744e-24 9.9999559e-01 1.2591926e-10 4.3790410e-06
3.5441555e-08 3.6621060e-14 1.2152020e-17 3.1557848e-24 7.1617705e-22]]
```

```
Real mark: 2
NN answer: 2
NN output: [[3.0706801e-02 1.1524949e-06 9.5588940e-01 1.4628977e-06 1.8517934e-05
2.2070046e-09 1.3382627e-02 7.1595925e-13 1.4458233e-07 3.5801229e-09]]
```

```
Real mark: 2
NN answer: 2
```
### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.
```python
# истинные метки классов
true_labels = np.argmax(y_test, axis=1)
# предсказанные метки классов
predicted_labels = np.argmax(model.predict(X_test), axis=1)
# отчет о качестве классификации
print(classification_report(true_labels, predicted_labels, target_names=class_names))
# вычисление матрицы ошибок
conf_matrix = confusion_matrix(true_labels, predicted_labels)
# отрисовка матрицы ошибок в виде "тепловой карты"
fig, ax = plt.subplots(figsize=(6, 6))
disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)
disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра
plt.tight_layout() # чтобы всё влезло
plt.show()
```
**Результат выполнения:**

