@ -294,6 +294,237 @@ Accuracy on test data: 0.914900004863739
## Задание 2
### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов.
### При этом:
* в п.3 разбиение данных на обучающие и тестовые произвести в соотношении 50000:10000
* после разбиения данных(между п. 3 и 4)вывести 25 изображений из обучающей выборки с подписями классов
* в п.7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно.
### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик.
### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=7, где k=2 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.
```python
# создание своего разбиения датасета
from sklearn.model_selection import train_test_split
### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.
```python
# Зададим параметры данных и модели
num_classes = 10
input_shape = (32, 32, 3)
# Приведение входных данных к диапазону [0, 1]
X_train = X_train / 255
X_test = X_test / 255
print('Shape of transformed X train:', X_train.shape)
print('Shape of transformed X test:', X_test.shape)
print('Shape of transformed y train:', y_train.shape)
print('Shape of transformed y test:', y_test.shape)
```
**Результат выполнения:**
```
Shape of transformed X train: (50000, 32, 32, 3)
Shape of transformed X test: (10000, 32, 32, 3)
Shape of transformed y train: (50000, 10)
Shape of transformed y test: (10000, 10)
```
### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.