14 KiB
# Отчёт по Теме 9
Соловьёва Екатерина. А-01-23
## 1. Запуск интерактивной оболочки IDLE.
## 2. Создание классов и их наследников
## 2.1. Создание автономного класса
Класс с именем Class1, содержащий 2 функции:
class Class1: #Объявление класса
def zad\_zn(self,znach): #Метод 1 класса1 – задание значения data
self.data=znach # self - ссылка на экземпляр класса
def otobrazh(self): # Метод 2 класса1
print(self.data)#Отображение данных экземпляра класса
z1=Class1() #Создаём 1-й экземпляр класса
z2=Class1() #Создаём 2-й экземпляр класса
z1.zad\_zn('экз.класса 1') #Обращение к методу класса у 1-го экз.
z1
<\_\_main\_\_.Class1 object at 0x00000244872A6660>
z2.zad\_zn(-632.453) #Обращение к методу класса у 2-го экз.
z2
<\_\_main\_\_.Class1 object at 0x0000024487293C50>
z1.otobrazh()
экз.класса 1
z2.otobrazh()
-632.453
z1.data='Новое значение атрибута у экз.1' # Измените значение атрибута у первого экземпляра
z1.otobrazh()
Новое значение атрибута у экз.1
## 2.2. Создание класса-наследника
В объявлении класса после его имени в скобках перечисляются его «родительские классы»
class Class2(Class1): #Class2 - наследник класса Class1
def otobrazh(self): # Метод класса Class2 – переопределяет метод родителя
print('значение=',self.data)#Отображение данных экземпляра
z3=Class2()
dir(z3)
\['\_\_class\_\_', '\_\_delattr\_\_', '\_\_dict\_\_', '\_\_dir\_\_', '\_\_doc\_\_', '\_\_eq\_\_', '\_\_firstlineno\_\_', '\_\_format\_\_', '\_\_ge\_\_', '\_\_getattribute\_\_', '\_\_getstate\_\_', '\_\_gt\_\_', '\_\_hash\_\_', '\_\_init\_\_', '\_\_init\_subclass\_\_', '\_\_le\_\_', '\_\_lt\_\_', '\_\_module\_\_', '\_\_ne\_\_', '\_\_new\_\_', '\_\_reduce\_\_', '\_\_reduce\_ex\_\_', '\_\_repr\_\_', '\_\_setattr\_\_', '\_\_sizeof\_\_', '\_\_static\_attributes\_\_', '\_\_str\_\_', '\_\_subclasshook\_\_', '\_\_weakref\_\_', 'otobrazh', 'zad\_zn']
z3.zad\_zn('Совсем новое')
z3.otobrazh()
значение= Совсем новое
z1.otobrazh()
Новое значение атрибута у экз.1
del z1,z2,z3
Объекты класса Class2 всегда используют переопределенные методы из Class2, даже если идентичные методы существуют в родительском классе Class1
## 3. Использование классов, содержащихся в модулях
Модуль с именем Mod3:
class Class1: #Объявление класса Class1 в модуле
def zad\_zn(self,znach): # 1 Метод класса
self.data=znach # self - ссылка на экземпляр класса Class1
def otobrazh(self): # 2 Метод класса
print(self.data)#Отображение данных экземпляра
class Class2(Class1): #Class2 - наследник класса Class1
def otobrazh(self): # Метод класса Class2
print('значение=',self.data)#Отображение данных экземпляра
def otobrazh(objekt): #Объявление самостоятельной функции
print('значение объекта=',objekt)
from Mod3 import Class1
z4=Class1()
z4.otobrazh()
Traceback (most recent call last):
File "<pyshell#31>", line 1, in <module>
z4.otobrazh()
File "C:\\Users/Ekaterina/OneDrive/Desktop/Solovyova/python-labs/TEMA9\\Mod3.py", line 5, in otobrazh
print(self.data)#Отображение данных экземпляра
AttributeError: 'Class1' object has no attribute 'data'
Ошибка возникла потому, что метод otobrazh() был вызван до того, как был вызван метод zad_zn(), который создает атрибут data.
from Mod3 import Class1
z4=Class1()
z4.data='значение данного data у экз.4'
z4.otobrazh()
значение данного data у экз.4
del z4
import Mod3
z4=Mod3.Class2()
z4.zad\_zn('Класс из модуля')
z4.otobrazh()
значение= Класс из модуля
Mod3.otobrazh('Объект')
значение объекта= Объект
Результаты различаются потому, что в первом случае использовался метод из Class1, а во втором - переопределенный метод из Class2 плюс самостоятельная функция с таким же именем
## 4. Использование специальных методов
Имена специальных методов предваряются одним или двумя подчерками и имеют вид: __<имя специального метода>__
Для примера создам класс, содержащий два специальных метода
class Class3(Class2): #Наследник класса Class2, а через него – и класса Class1
def __init__(self,znach): #Конструктор-вызывается при создании нового экземпляра клас-са
self.data=znach
def __add__(self,drug_zn): #Вызывается, когда экземпляр участвует в операции «+»
return Class3(self.data+drug_zn)
def zad_dr_zn(self,povtor): #А это - обычный метод
self.data*=povtor
Метод __add__ - это один из методов, осуществляющих так называемую «перегрузку» операторов.
Для иллюстрации работы этих методов создам экземпляр класса Class3
z5=Class3('abc')
z5.otobrazh()
значение= abc
z6=z5+'def'
z6.otobrazh()
значение= abcdef
z6.zad\_dr\_zn(3)
z6.otobrazh()
значение= abcdefabcdefabcdef
## 5. Присоединение атрибутов к классу.
dir(Class3)
\['\_\_add\_\_', '\_\_class\_\_', '\_\_delattr\_\_', '\_\_dict\_\_', '\_\_dir\_\_', '\_\_doc\_\_', '\_\_eq\_\_', '\_\_firstlineno\_\_', '\_\_format\_\_', '\_\_ge\_\_', '\_\_getattribute\_\_', '\_\_getstate\_\_', '\_\_gt\_\_', '\_\_hash\_\_', '\_\_init\_\_', '\_\_init\_subclass\_\_', '\_\_le\_\_', '\_\_lt\_\_', '\_\_module\_\_', '\_\_ne\_\_', '\_\_new\_\_', '\_\_reduce\_\_', '\_\_reduce\_ex\_\_', '\_\_repr\_\_', '\_\_setattr\_\_', '\_\_sizeof\_\_', '\_\_static\_attributes\_\_', '\_\_str\_\_', '\_\_subclasshook\_\_', '\_\_weakref\_\_', 'otobrazh', 'zad\_dr\_zn', 'zad\_zn']
Class3.fio='Иванов И.И.'
dir(Class3)
\['\_\_add\_\_', '\_\_class\_\_', '\_\_delattr\_\_', '\_\_dict\_\_', '\_\_dir\_\_', '\_\_doc\_\_', '\_\_eq\_\_', '\_\_firstlineno\_\_', '\_\_format\_\_', '\_\_ge\_\_', '\_\_getattribute\_\_', '\_\_getstate\_\_', '\_\_gt\_\_', '\_\_hash\_\_', '\_\_init\_\_', '\_\_init\_subclass\_\_', '\_\_le\_\_', '\_\_lt\_\_', '\_\_module\_\_', '\_\_ne\_\_', '\_\_new\_\_', '\_\_reduce\_\_', '\_\_reduce\_ex\_\_', '\_\_repr\_\_', '\_\_setattr\_\_', '\_\_sizeof\_\_', '\_\_static\_attributes\_\_', '\_\_str\_\_', '\_\_subclasshook\_\_', '\_\_weakref\_\_', 'fio', 'otobrazh', 'zad\_dr\_zn', 'zad\_zn']
z7=Class3(123)
dir(z7)==dir(Class3)
False
dir(z7)
\['\_\_add\_\_', '\_\_class\_\_', '\_\_delattr\_\_', '\_\_dict\_\_', '\_\_dir\_\_', '\_\_doc\_\_', '\_\_eq\_\_', '\_\_firstlineno\_\_', '\_\_format\_\_', '\_\_ge\_\_', '\_\_getattribute\_\_', '\_\_getstate\_\_', '\_\_gt\_\_', '\_\_hash\_\_', '\_\_init\_\_', '\_\_init\_subclass\_\_', '\_\_le\_\_', '\_\_lt\_\_', '\_\_module\_\_', '\_\_ne\_\_', '\_\_new\_\_', '\_\_reduce\_\_', '\_\_reduce\_ex\_\_', '\_\_repr\_\_', '\_\_setattr\_\_', '\_\_sizeof\_\_', '\_\_static\_attributes\_\_', '\_\_str\_\_', '\_\_subclasshook\_\_', '\_\_weakref\_\_', 'data', 'fio', 'otobrazh', 'zad\_dr\_zn', 'zad\_zn']
dir(Class3)
\['\_\_add\_\_', '\_\_class\_\_', '\_\_delattr\_\_', '\_\_dict\_\_', '\_\_dir\_\_', '\_\_doc\_\_', '\_\_eq\_\_', '\_\_firstlineno\_\_', '\_\_format\_\_', '\_\_ge\_\_', '\_\_getattribute\_\_', '\_\_getstate\_\_', '\_\_gt\_\_', '\_\_hash\_\_', '\_\_init\_\_', '\_\_init\_subclass\_\_', '\_\_le\_\_', '\_\_lt\_\_', '\_\_module\_\_', '\_\_ne\_\_', '\_\_new\_\_', '\_\_reduce\_\_', '\_\_reduce\_ex\_\_', '\_\_repr\_\_', '\_\_setattr\_\_', '\_\_sizeof\_\_', '\_\_static\_attributes\_\_', '\_\_str\_\_', '\_\_subclasshook\_\_', '\_\_weakref\_\_', 'fio', 'otobrazh', 'zad\_dr\_zn', 'zad\_zn']
## 6. Выявление родительских классов
Такое выявление делается с помощью специального атрибута __bases__, например, выведите родительский класс для созданного класса Class3:
Class3.__bases__
Или для класса Class2:
Class2.__bases__
Самостоятельно проверьте, какой родительский класс у класса Class1.
Для получения всей цепочки наследования используйте атрибут __mro__:
Class3.__mro__
Например, получите всю цепочку наследования для встроенного класса ошибок «деление на ноль»:
ZeroDivisionError.__mro__
## 7. Создание свойства класса.
Свойство (property) класса – это особый атрибут класса, с которым можно производить операции чтения или задания его значения, а также удаление значения этого атрибута.
Создайте, например, новый класс с определенным в нем свойством
class Class4:
def __init__(sam,znach):
sam.__prm=znach
def chten(sam):
return sam.__prm
def zapis(sam,znch):
sam.__prm=znch
def stiran(sam):
del sam.__prm
svojstvo=property(chten,zapis,stiran)
Обратите внимание на то, что здесь имеется 3 метода: chten, zapis, stiran, которые обслуживают созданное свойство, реализуя операции, соответственно, чтения, записи или удаления значений свойства. Теперь попробуйте некоторые операции с этим свойством
exempl=Class4(12)
exempl.svojstvo
exempl.svojstvo=45
print(exempl.svojstvo)
del exempl.svojstvo
После этого попробуйте еще раз отобразить значение свойства.
exempl.svojstvo
Объясните полученный результат.
## 8. Рассмотрите пример представления в виде класса модели системы автоматического регулиро-вания (САР), состоящей из последовательного соединения усилителя и двух инерционных звень-ев, охваченных отрицательной обратной связью с усилителем.
Создайте модуль SAU.py с классом:
class SAU:
def __init__(self,zn_param):
self.param=zn_param
self.ypr=[0,0]
def zdn_zn(self,upr):
self.x=upr
def model(self):
def inerz(x,T,yy):
return (x+T*yy)/(T+1)
y0=self.x-self.ypr[1]*self.param[3] #Обр.связь с усилителем 2
y1=self.param[0]*y0 #Усилитель1
y2=inerz(y1,self.param[1],self.ypr[0]) #Инерционное звено1
y3=inerz(y2,self.param[2],self.ypr[1]) #Инерционное звено2
self.ypr[0]=y2
self.ypr[1]=y3
def otobraz(self):
print('y=',self.ypr[1])
Тестирование класса произведите с помощью следующей программы:
###main_SAU
prm=[2.5,4,1.3,0.8] #Параметры модели: коэф.усиления, 2 пост.времени, обратная связь
from SAU import *
xx=[0]+[1]*20 #Входной сигнал – «ступенька»
SAUe=SAU(prm) # Создаём экземпляр класса
yt=[]
for xt in xx: # Прохождение входного сигнала
SAUe.zdn_zn(xt)
SAUe.model()
SAUe.otobraz()
yt.append(SAUe.ypr[1])
import pylab
pylab.plot(yt)
pylab.show()
Запустите программу на выполнение и изучите вид выходного сигнала при разных значениях параметров САР.
## 9. Сохраните созданный текстовый файл протокола в своем рабочем каталоге. Закончите се-анс работы с IDLE.