|
|
|
|
@ -209,7 +209,7 @@ X train: <br>
|
|
|
|
|
[ 0 0 0 ... 2 27 375] <br>
|
|
|
|
|
[ 0 0 0 ... 11 111 531] <br>
|
|
|
|
|
[ 0 0 0 ... 152 1833 12]] <br> <br>
|
|
|
|
|
X train: <br>
|
|
|
|
|
X test: <br>
|
|
|
|
|
[[ 0 0 0 ... 2 126 3849] <br>
|
|
|
|
|
[ 0 0 0 ... 25 1833 12] <br>
|
|
|
|
|
[ 0 0 0 ... 129 249 4262] <br>
|
|
|
|
|
@ -276,8 +276,10 @@ model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_spl
|
|
|
|
|
```python
|
|
|
|
|
test_loss, test_acc = model.evaluate(X_test, y_test)
|
|
|
|
|
print(f"\nTest accuracy: {test_acc}")
|
|
|
|
|
print(f"\nTest loss: {test_loss}")
|
|
|
|
|
```
|
|
|
|
|
Test accuracy: 0.8670799732208252
|
|
|
|
|
Test accuracy: 0.8670799732208252 <br>
|
|
|
|
|
Test loss: 0.3307616412639618
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
### 9. Оценить качество обучения на тестовых данных.
|
|
|
|
|
|