форкнуто от main/is_dnn
Родитель
2388076bb3
Сommit
2af590add9
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
@ -0,0 +1,554 @@
|
|||||||
|
# Отчёт по лабораторной работе №3
|
||||||
|
|
||||||
|
**Ли Тэ Хо, Синявский Степан — А-02-22**
|
||||||
|
***Бригада 3***
|
||||||
|
---
|
||||||
|
## Задание 1
|
||||||
|
|
||||||
|
### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# импорт модулей
|
||||||
|
import os
|
||||||
|
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')
|
||||||
|
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.metrics import classification_report, confusion_matrix
|
||||||
|
from sklearn.metrics import ConfusionMatrixDisplay
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# загрузка датасета
|
||||||
|
from keras.datasets import mnist
|
||||||
|
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=11, где k=3 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# создание своего разбиения датасета
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
# объединяем в один набор
|
||||||
|
X = np.concatenate((X_train, X_test))
|
||||||
|
y = np.concatenate((y_train, y_test))
|
||||||
|
|
||||||
|
# разбиваем по вариантам
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
||||||
|
test_size = 10000,
|
||||||
|
train_size = 60000,
|
||||||
|
random_state = 11)
|
||||||
|
# вывод размерностей
|
||||||
|
print('Shape of X train:', X_train.shape)
|
||||||
|
print('Shape of y train:', y_train.shape)
|
||||||
|
print('Shape of X test:', X_test.shape)
|
||||||
|
print('Shape of y test:', y_test.shape)
|
||||||
|
```
|
||||||
|
```
|
||||||
|
Shape of X train: (60000, 28, 28)
|
||||||
|
Shape of y train: (60000,)
|
||||||
|
Shape of X test: (10000, 28, 28)
|
||||||
|
Shape of y test: (10000,)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Зададим параметры данных и модели
|
||||||
|
num_classes = 10
|
||||||
|
input_shape = (28, 28, 1)
|
||||||
|
|
||||||
|
# Приведение входных данных к диапазону [0, 1]
|
||||||
|
X_train = X_train / 255
|
||||||
|
X_test = X_test / 255
|
||||||
|
|
||||||
|
# Расширяем размерность входных данных, чтобы каждое изображение имело
|
||||||
|
# размерность (высота, ширина, количество каналов)
|
||||||
|
|
||||||
|
X_train = np.expand_dims(X_train, -1)
|
||||||
|
X_test = np.expand_dims(X_test, -1)
|
||||||
|
print('Shape of transformed X train:', X_train.shape)
|
||||||
|
print('Shape of transformed X test:', X_test.shape)
|
||||||
|
|
||||||
|
# переведем метки в one-hot
|
||||||
|
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||||
|
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||||
|
print('Shape of transformed y train:', y_train.shape)
|
||||||
|
print('Shape of transformed y test:', y_test.shape)
|
||||||
|
```
|
||||||
|
```
|
||||||
|
Shape of transformed X train: (60000, 28, 28, 1)
|
||||||
|
Shape of transformed X test: (10000, 28, 28, 1)
|
||||||
|
Shape of transformed y train: (60000, 10)
|
||||||
|
Shape of transformed y test: (10000, 10)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# создаем модель
|
||||||
|
model = Sequential()
|
||||||
|
model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
|
||||||
|
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
|
||||||
|
model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||||
|
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
|
||||||
|
model.add(layers.Dropout(0.5))
|
||||||
|
model.add(layers.Flatten())
|
||||||
|
model.add(layers.Dense(num_classes, activation="softmax"))
|
||||||
|
|
||||||
|
model.summary()
|
||||||
|
```
|
||||||
|
**Model: "sequential"**
|
||||||
|
| Layer (type) | Output Shape | Param # |
|
||||||
|
|--------------------------------|---------------------|--------:|
|
||||||
|
| conv2d (Conv2D) | (None, 26, 26, 32) | 320 |
|
||||||
|
| max_pooling2d (MaxPooling2D) | (None, 13, 13, 32) | 0 |
|
||||||
|
| conv2d_1 (Conv2D) | (None, 11, 11, 64) | 18,496 |
|
||||||
|
| max_pooling2d_1 (MaxPooling2D) | (None, 5, 5, 64) | 0 |
|
||||||
|
| dropout (Dropout) | (None, 5, 5, 64) | 0 |
|
||||||
|
| flatten (Flatten) | (None, 1600) | 0 |
|
||||||
|
| dense (Dense) | (None, 10) | 16,010 |
|
||||||
|
**Total params:** 34,826 (136.04 KB)
|
||||||
|
**Trainable params:** 34,826 (136.04 KB)
|
||||||
|
**Non-trainable params:** 0 (0.00 B)
|
||||||
|
|
||||||
|
```python
|
||||||
|
# компилируем и обучаем модель
|
||||||
|
batch_size = 512
|
||||||
|
epochs = 15
|
||||||
|
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
||||||
|
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 6) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Оценка качества работы модели на тестовых данных
|
||||||
|
scores = model.evaluate(X_test, y_test)
|
||||||
|
print('Loss on test data:', scores[0])
|
||||||
|
print('Accuracy on test data:', scores[1])
|
||||||
|
```
|
||||||
|
```
|
||||||
|
313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 4ms/step - accuracy: 0.9909 - loss: 0.0413
|
||||||
|
Loss on test data: 0.041157860308885574
|
||||||
|
Accuracy on test data: 0.9873999953269958
|
||||||
|
```
|
||||||
|
|
||||||
|
### 7) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# вывод двух тестовых изображений и результатов распознавания
|
||||||
|
|
||||||
|
for n in [3,26]:
|
||||||
|
result = model.predict(X_test[n:n+1])
|
||||||
|
print('NN output:', result)
|
||||||
|
|
||||||
|
plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))
|
||||||
|
plt.show()
|
||||||
|
print('Real mark: ', np.argmax(y_test[n]))
|
||||||
|
print('NN answer: ', np.argmax(result))
|
||||||
|
```
|
||||||
|

|
||||||
|
```
|
||||||
|
Real mark: 2
|
||||||
|
NN answer: 2
|
||||||
|
```
|
||||||
|

|
||||||
|
```
|
||||||
|
Real mark: 9
|
||||||
|
NN answer: 9
|
||||||
|
```
|
||||||
|
|
||||||
|
### 8) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# истинные метки классов
|
||||||
|
true_labels = np.argmax(y_test, axis=1)
|
||||||
|
# предсказанные метки классов
|
||||||
|
predicted_labels = np.argmax(model.predict(X_test), axis=1)
|
||||||
|
|
||||||
|
# отчет о качестве классификации
|
||||||
|
print(classification_report(true_labels, predicted_labels))
|
||||||
|
# вычисление матрицы ошибок
|
||||||
|
conf_matrix = confusion_matrix(true_labels, predicted_labels)
|
||||||
|
# отрисовка матрицы ошибок в виде "тепловой карты"
|
||||||
|
display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)
|
||||||
|
display.plot()
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
```
|
||||||
|
313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 4ms/step
|
||||||
|
precision recall f1-score support
|
||||||
|
|
||||||
|
0 0.99 1.00 0.99 1018
|
||||||
|
1 0.99 0.99 0.99 1098
|
||||||
|
2 0.99 0.98 0.98 1010
|
||||||
|
3 0.99 0.98 0.98 992
|
||||||
|
4 0.99 0.98 0.99 998
|
||||||
|
5 0.99 0.99 0.99 951
|
||||||
|
6 0.99 0.99 0.99 933
|
||||||
|
7 0.98 0.99 0.98 1010
|
||||||
|
8 0.99 0.99 0.99 960
|
||||||
|
9 0.98 0.99 0.98 1030
|
||||||
|
|
||||||
|
accuracy 0.99 10000
|
||||||
|
macro avg 0.99 0.99 0.99 10000
|
||||||
|
weighted avg 0.99 0.99 0.99 10000
|
||||||
|
```
|
||||||
|

|
||||||
|
|
||||||
|
### 9) Загрузили, предобработали и подали на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывели изображение и результат распознавания.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# загрузка собственного изображения
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
for name_image in ['2.png', '5.png']:
|
||||||
|
file_data = Image.open(name_image)
|
||||||
|
file_data = file_data.convert('L') # перевод в градации серого
|
||||||
|
test_img = np.array(file_data)
|
||||||
|
|
||||||
|
# вывод собственного изображения
|
||||||
|
plt.imshow(test_img, cmap=plt.get_cmap('gray'))
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# предобработка
|
||||||
|
test_img = test_img / 255
|
||||||
|
test_img = np.reshape(test_img, (1,28,28,1))
|
||||||
|
|
||||||
|
# распознавание
|
||||||
|
result = model.predict(test_img)
|
||||||
|
print('I think it\'s', np.argmax(result))
|
||||||
|
```
|
||||||
|

|
||||||
|
```
|
||||||
|
I think it's 2
|
||||||
|
```
|
||||||
|

|
||||||
|
```
|
||||||
|
I think it's 5
|
||||||
|
```
|
||||||
|
|
||||||
|
### 10) Загрузили с диска модель, сохраненную при выполнении лабораторной работы №1. Вывели информацию об архитектуре модели. Повторили для этой модели п. 6.
|
||||||
|
|
||||||
|
```python
|
||||||
|
model_lr1 = keras.models.load_model("best_model.keras")
|
||||||
|
|
||||||
|
model_lr1.summary()
|
||||||
|
```
|
||||||
|
**Model: "sequential_10"**
|
||||||
|
| Layer (type) | Output Shape | Param # |
|
||||||
|
|------------------|-------------:|--------:|
|
||||||
|
| dense_14 (Dense) | (None, 100) | 78,500 |
|
||||||
|
| dense_15 (Dense) | (None, 50) | 10,100 |
|
||||||
|
| dense_16 (Dense) | (None, 10) | 1,010 |
|
||||||
|
**Total params:** 89,612 (350.05 KB)
|
||||||
|
**Trainable params:** 89,610 (350.04 KB)
|
||||||
|
**Non-trainable params:** 0 (0.00 B)
|
||||||
|
**Optimizer params:** 2 (12.00 B)
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
# развернем каждое изображение 28*28 в вектор 784
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
||||||
|
test_size = 10000,
|
||||||
|
train_size = 60000,
|
||||||
|
random_state = 11)
|
||||||
|
num_pixels = X_train.shape[1] * X_train.shape[2]
|
||||||
|
X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255
|
||||||
|
X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255
|
||||||
|
print('Shape of transformed X train:', X_train.shape)
|
||||||
|
print('Shape of transformed X train:', X_test.shape)
|
||||||
|
|
||||||
|
# переведем метки в one-hot
|
||||||
|
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||||
|
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||||
|
print('Shape of transformed y train:', y_train.shape)
|
||||||
|
print('Shape of transformed y test:', y_test.shape)
|
||||||
|
```
|
||||||
|
```
|
||||||
|
Shape of transformed X train: (60000, 784)
|
||||||
|
Shape of transformed X train: (10000, 784)
|
||||||
|
Shape of transformed y train: (60000, 10)
|
||||||
|
Shape of transformed y test: (10000, 10)
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Оценка качества работы модели на тестовых данных
|
||||||
|
scores = model_lr1.evaluate(X_test, y_test)
|
||||||
|
print('Loss on test data:', scores[0])
|
||||||
|
print('Accuracy on test data:', scores[1])
|
||||||
|
```
|
||||||
|
```
|
||||||
|
313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 5ms/step - accuracy: 0.9406 - loss: 0.2055
|
||||||
|
Loss on test data: 0.1955890655517578
|
||||||
|
Accuracy on test data: 0.9426000118255615
|
||||||
|
```
|
||||||
|
|
||||||
|
### 11) Сравнили обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям:
|
||||||
|
### - количество настраиваемых параметров в сети
|
||||||
|
### - количество эпох обучения
|
||||||
|
### - качество классификации тестовой выборки.
|
||||||
|
### Сделали выводы по результатам применения сверточной нейронной сети для распознавания изображений.
|
||||||
|
|
||||||
|
Таблица1:
|
||||||
|
|
||||||
|
| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |
|
||||||
|
|----------|-------------------------------------|---------------------------|-----------------------------------------|
|
||||||
|
| Сверточная | 34 826 | 15 | accuracy:0.987 ; loss:0.0413 |
|
||||||
|
| Полносвязная | 89 612 | 50 | accuracy:0.943 ; loss:0.2055 |
|
||||||
|
|
||||||
|
|
||||||
|
##### По полученной таблице можно сделать выводы о том, что сверточная модель лучше по всем показателям, она имеет более высокое качество классификации, мненьшее время обученя, а также вдвое меньше параметров.
|
||||||
|
|
||||||
|
## Задание 2
|
||||||
|
|
||||||
|
### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов.
|
||||||
|
### При этом:
|
||||||
|
### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000
|
||||||
|
### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов
|
||||||
|
### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно.
|
||||||
|
|
||||||
|
### 1) Загрузили набор данных CIFAR-10, содержащий цветные изображения размеченные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# загрузка датасета
|
||||||
|
from keras.datasets import cifar10
|
||||||
|
|
||||||
|
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2) Разбили набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. Параметр random_state выбрали равным (4k – 1)=23, где k=6 –номер бригады. Вывели размерности полученных обучающих и тестовых массивов данных.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# создание своего разбиения датасета
|
||||||
|
|
||||||
|
# объединяем в один набор
|
||||||
|
X = np.concatenate((X_train, X_test))
|
||||||
|
y = np.concatenate((y_train, y_test))
|
||||||
|
|
||||||
|
# разбиваем по вариантам
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
||||||
|
test_size = 10000,
|
||||||
|
train_size = 50000,
|
||||||
|
random_state = 11)
|
||||||
|
# вывод размерностей
|
||||||
|
print('Shape of X train:', X_train.shape)
|
||||||
|
print('Shape of y train:', y_train.shape)
|
||||||
|
print('Shape of X test:', X_test.shape)
|
||||||
|
print('Shape of y test:', y_test.shape)
|
||||||
|
```
|
||||||
|
```
|
||||||
|
Shape of X train: (50000, 32, 32, 3)
|
||||||
|
Shape of y train: (50000, 1)
|
||||||
|
Shape of X test: (10000, 32, 32, 3)
|
||||||
|
Shape of y test: (10000, 1)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Вывели 25 изображений из обучающей выборки с подписью классов.
|
||||||
|
|
||||||
|
```python
|
||||||
|
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
||||||
|
'dog', 'frog', 'horse', 'ship', 'truck']
|
||||||
|
|
||||||
|
plt.figure(figsize=(10,10))
|
||||||
|
for i in range(25):
|
||||||
|
plt.subplot(5,5,i+1)
|
||||||
|
plt.xticks([])
|
||||||
|
plt.yticks([])
|
||||||
|
plt.grid(False)
|
||||||
|
plt.imshow(X_train[i])
|
||||||
|
plt.xlabel(class_names[y_train[i][0]])
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|

|
||||||
|
|
||||||
|
### 3) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Зададим параметры данных и модели
|
||||||
|
num_classes = 10
|
||||||
|
input_shape = (32, 32, 3)
|
||||||
|
|
||||||
|
# Приведение входных данных к диапазону [0, 1]
|
||||||
|
X_train = X_train / 255
|
||||||
|
X_test = X_test / 255
|
||||||
|
|
||||||
|
print('Shape of transformed X train:', X_train.shape)
|
||||||
|
print('Shape of transformed X test:', X_test.shape)
|
||||||
|
|
||||||
|
# переведем метки в one-hot
|
||||||
|
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||||
|
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||||
|
print('Shape of transformed y train:', y_train.shape)
|
||||||
|
print('Shape of transformed y test:', y_test.shape)
|
||||||
|
```
|
||||||
|
```
|
||||||
|
Shape of transformed X train: (50000, 32, 32, 3)
|
||||||
|
Shape of transformed X test: (10000, 32, 32, 3)
|
||||||
|
Shape of transformed y train: (50000, 10)
|
||||||
|
Shape of transformed y test: (10000, 10)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4) Реализовали модель сверточной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# создаем модель
|
||||||
|
model = Sequential()
|
||||||
|
|
||||||
|
# Блок 1
|
||||||
|
model.add(layers.Conv2D(32, (3, 3), padding="same",
|
||||||
|
activation="relu", input_shape=input_shape))
|
||||||
|
model.add(layers.BatchNormalization())
|
||||||
|
model.add(layers.Conv2D(32, (3, 3), padding="same", activation="relu"))
|
||||||
|
model.add(layers.BatchNormalization())
|
||||||
|
model.add(layers.MaxPooling2D((2, 2)))
|
||||||
|
model.add(layers.Dropout(0.25))
|
||||||
|
|
||||||
|
# Блок 2
|
||||||
|
model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu"))
|
||||||
|
model.add(layers.BatchNormalization())
|
||||||
|
model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu"))
|
||||||
|
model.add(layers.BatchNormalization())
|
||||||
|
model.add(layers.MaxPooling2D((2, 2)))
|
||||||
|
model.add(layers.Dropout(0.25))
|
||||||
|
|
||||||
|
# Блок 3
|
||||||
|
model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu"))
|
||||||
|
model.add(layers.BatchNormalization())
|
||||||
|
model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu"))
|
||||||
|
model.add(layers.BatchNormalization())
|
||||||
|
model.add(layers.MaxPooling2D((2, 2)))
|
||||||
|
model.add(layers.Dropout(0.4))
|
||||||
|
|
||||||
|
model.add(layers.Flatten())
|
||||||
|
model.add(layers.Dense(128, activation='relu'))
|
||||||
|
model.add(layers.Dropout(0.5))
|
||||||
|
model.add(layers.Dense(num_classes, activation="softmax"))
|
||||||
|
|
||||||
|
|
||||||
|
model.summary()
|
||||||
|
```
|
||||||
|
**Model: "sequential_9"**
|
||||||
|
| Layer (type) | Output Shape | Param # |
|
||||||
|
|--------------------------------------------|-------------------|---------:|
|
||||||
|
| conv2d_41 (Conv2D) | (None, 32, 32, 32) | 896 |
|
||||||
|
| batch_normalization_6 (BatchNormalization) | (None, 32, 32, 32) | 128 |
|
||||||
|
| conv2d_42 (Conv2D) | (None, 32, 32, 32) | 9,248 |
|
||||||
|
| batch_normalization_7 (BatchNormalization) | (None, 32, 32, 32) | 128 |
|
||||||
|
| max_pooling2d_26 (MaxPooling2D) | (None, 16, 16, 32) | 0 |
|
||||||
|
| dropout_24 (Dropout) | (None, 16, 16, 32) | 0 |
|
||||||
|
| conv2d_43 (Conv2D) | (None, 16, 16, 64) | 18,496 |
|
||||||
|
| batch_normalization_8 (BatchNormalization) | (None, 16, 16, 64) | 256 |
|
||||||
|
| conv2d_44 (Conv2D) | (None, 16, 16, 64) | 36,928 |
|
||||||
|
| batch_normalization_9 (BatchNormalization) | (None, 16, 16, 64) | 256 |
|
||||||
|
| max_pooling2d_27 (MaxPooling2D) | (None, 8, 8, 64) | 0 |
|
||||||
|
| dropout_25 (Dropout) | (None, 8, 8, 64) | 0 |
|
||||||
|
| conv2d_45 (Conv2D) | (None, 8, 8, 128) | 73,856 |
|
||||||
|
| batch_normalization_10 (BatchNormalization)| (None, 8, 8, 128) | 512 |
|
||||||
|
| conv2d_46 (Conv2D) | (None, 8, 8, 128) | 147,584 |
|
||||||
|
| batch_normalization_11 (BatchNormalization)| (None, 8, 8, 128) | 512 |
|
||||||
|
| max_pooling2d_28 (MaxPooling2D) | (None, 4, 4, 128) | 0 |
|
||||||
|
| dropout_26 (Dropout) | (None, 4, 4, 128) | 0 |
|
||||||
|
| flatten_9 (Flatten) | (None, 2048) | 0 |
|
||||||
|
| dense_17 (Dense) | (None, 128) | 262,272 |
|
||||||
|
| dropout_27 (Dropout) | (None, 128) | 0 |
|
||||||
|
| dense_18 (Dense) | (None, 10) | 1,290 |
|
||||||
|
**Total params:** 552,362 (2.11 MB)
|
||||||
|
**Trainable params:** 551,466 (2.10 MB)
|
||||||
|
**Non-trainable params:** 896 (3.50 KB)
|
||||||
|
|
||||||
|
```python
|
||||||
|
# компилируем и обучаем модель
|
||||||
|
batch_size = 64
|
||||||
|
epochs = 50
|
||||||
|
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
||||||
|
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5) Оценили качество обучения на тестовых данных. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Оценка качества работы модели на тестовых данных
|
||||||
|
scores = model.evaluate(X_test, y_test)
|
||||||
|
print('Loss on test data:', scores[0])
|
||||||
|
print('Accuracy on test data:', scores[1])
|
||||||
|
```
|
||||||
|
```
|
||||||
|
313/313 ━━━━━━━━━━━━━━━━━━━━ 7s 10ms/step - accuracy: 0.8615 - loss: 0.4696
|
||||||
|
Loss on test data: 0.4909549355506897
|
||||||
|
Accuracy on test data: 0.857200026512146
|
||||||
|
```
|
||||||
|
|
||||||
|
### 6) Подали на вход обученной модели два тестовых изображения. Вывели изображения, истинные метки и результаты распознавания.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# вывод двух тестовых изображений и результатов распознавания
|
||||||
|
|
||||||
|
for n in [3,15]:
|
||||||
|
result = model.predict(X_test[n:n+1])
|
||||||
|
print('NN output:', result)
|
||||||
|
|
||||||
|
plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))
|
||||||
|
plt.show()
|
||||||
|
print('Real mark: ', np.argmax(y_test[n]))
|
||||||
|
print('NN answer: ', np.argmax(result))
|
||||||
|
```
|
||||||
|

|
||||||
|
```
|
||||||
|
Real mark: 4
|
||||||
|
NN answer: 5
|
||||||
|
```
|
||||||
|

|
||||||
|
```
|
||||||
|
Real mark: 2
|
||||||
|
NN answer: 2
|
||||||
|
```
|
||||||
|
|
||||||
|
### 7) Вывели отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# истинные метки классов
|
||||||
|
true_labels = np.argmax(y_test, axis=1)
|
||||||
|
# предсказанные метки классов
|
||||||
|
predicted_labels = np.argmax(model.predict(X_test), axis=1)
|
||||||
|
|
||||||
|
# отчет о качестве классификации
|
||||||
|
print(classification_report(true_labels, predicted_labels, target_names=class_names))
|
||||||
|
# вычисление матрицы ошибок
|
||||||
|
conf_matrix = confusion_matrix(true_labels, predicted_labels)
|
||||||
|
# отрисовка матрицы ошибок в виде "тепловой карты"
|
||||||
|
fig, ax = plt.subplots(figsize=(6, 6))
|
||||||
|
disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)
|
||||||
|
disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра
|
||||||
|
plt.tight_layout() # чтобы всё влезло
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
```
|
||||||
|
313/313 ━━━━━━━━━━━━━━━━━━━━ 4s 10ms/step
|
||||||
|
precision recall f1-score support
|
||||||
|
|
||||||
|
airplane 0.89 0.86 0.87 1000
|
||||||
|
automobile 0.94 0.93 0.93 1019
|
||||||
|
bird 0.80 0.84 0.82 972
|
||||||
|
cat 0.78 0.66 0.72 1014
|
||||||
|
deer 0.84 0.84 0.84 980
|
||||||
|
dog 0.76 0.81 0.79 1051
|
||||||
|
frog 0.90 0.87 0.89 1043
|
||||||
|
horse 0.89 0.89 0.89 1018
|
||||||
|
ship 0.91 0.94 0.92 945
|
||||||
|
truck 0.86 0.94 0.90 958
|
||||||
|
|
||||||
|
accuracy 0.86 10000
|
||||||
|
macro avg 0.86 0.86 0.86 10000
|
||||||
|
weighted avg 0.86 0.86 0.86 10000
|
||||||
|
```
|
||||||
|

|
||||||
|
|
||||||
|
#### По результатам классификации датасета CIFAR-10 созданной сверточной моделью можно сделать вывод, что она довольно неплохо справилась с задачей. Полученные метрики оценки качества имеют показатели в районе 0.85.
|
||||||
Загрузка…
Ссылка в новой задаче