diff --git a/labworks/LW3/is_lab31.ipynb b/labworks/LW3/is_lab31.ipynb
new file mode 100644
index 0000000..eda3344
--- /dev/null
+++ b/labworks/LW3/is_lab31.ipynb
@@ -0,0 +1 @@
+{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"gpuType":"T4","mount_file_id":"1Qit7s0DtVE6qXrX79Nf8psToWsqq0tFe","authorship_tag":"ABX9TyO9d6m/ZkgFXgt0zRo7yjAb"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"},"accelerator":"GPU"},"cells":[{"cell_type":"code","execution_count":3,"metadata":{"id":"97A5G_aj6Zgi","executionInfo":{"status":"ok","timestamp":1764508916093,"user_tz":-180,"elapsed":9137,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}}},"outputs":[],"source":["# импорт модулей\n","import os\n","os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')\n","from tensorflow import keras\n","from tensorflow.keras import layers\n","from tensorflow.keras.models import Sequential\n","import matplotlib.pyplot as plt\n","import numpy as np\n","from sklearn.metrics import classification_report, confusion_matrix\n","from sklearn.metrics import ConfusionMatrixDisplay"]},{"cell_type":"code","source":["# загрузка датасета\n","from keras.datasets import mnist\n","(X_train, y_train), (X_test, y_test) = mnist.load_data()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"5XTzaNUF6w3s","executionInfo":{"status":"ok","timestamp":1764508928465,"user_tz":-180,"elapsed":873,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"a0fd6508-8698-4e68-ee6e-d551646ec72e"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n","\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n"]}]},{"cell_type":"code","source":["# создание своего разбиения датасета\n","from sklearn.model_selection import train_test_split\n","\n","# объединяем в один набор\n","X = np.concatenate((X_train, X_test))\n","y = np.concatenate((y_train, y_test))\n","\n","# разбиваем по вариантам\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 60000,\n"," random_state = 11)\n","# вывод размерностей\n","print('Shape of X train:', X_train.shape)\n","print('Shape of y train:', y_train.shape)\n","print('Shape of X test:', X_test.shape)\n","print('Shape of y test:', y_test.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"2MhtGyzX7YWB","executionInfo":{"status":"ok","timestamp":1764509010351,"user_tz":-180,"elapsed":136,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"63e07f95-7321-4065-e3cb-665840ba7304"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of X train: (60000, 28, 28)\n","Shape of y train: (60000,)\n","Shape of X test: (10000, 28, 28)\n","Shape of y test: (10000,)\n"]}]},{"cell_type":"code","source":["# Зададим параметры данных и модели\n","num_classes = 10\n","input_shape = (28, 28, 1)\n","\n","# Приведение входных данных к диапазону [0, 1]\n","X_train = X_train / 255\n","X_test = X_test / 255\n","\n","# Расширяем размерность входных данных, чтобы каждое изображение имело\n","# размерность (высота, ширина, количество каналов)\n","\n","X_train = np.expand_dims(X_train, -1)\n","X_test = np.expand_dims(X_test, -1)\n","print('Shape of transformed X train:', X_train.shape)\n","print('Shape of transformed X test:', X_test.shape)\n","\n","# переведем метки в one-hot\n","y_train = keras.utils.to_categorical(y_train, num_classes)\n","y_test = keras.utils.to_categorical(y_test, num_classes)\n","print('Shape of transformed y train:', y_train.shape)\n","print('Shape of transformed y test:', y_test.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"uwDJet7y7tiu","executionInfo":{"status":"ok","timestamp":1764509035879,"user_tz":-180,"elapsed":138,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"d50d4c68-724f-4679-e1d3-16e006feb377"},"execution_count":7,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (60000, 28, 28, 1)\n","Shape of transformed X test: (10000, 28, 28, 1)\n","Shape of transformed y train: (60000, 10)\n","Shape of transformed y test: (10000, 10)\n"]}]},{"cell_type":"code","source":["# создаем модель\n","model = Sequential()\n","model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n","model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n","model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n","model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n","model.add(layers.Dropout(0.5))\n","model.add(layers.Flatten())\n","model.add(layers.Dense(num_classes, activation=\"softmax\"))\n","\n","model.summary()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":408},"id":"x5Zk_KnO7yv0","executionInfo":{"status":"ok","timestamp":1764509053763,"user_tz":-180,"elapsed":2442,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"d830d6cf-6654-4e24-a49e-1c8ca89a49ed"},"execution_count":8,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential\"\u001b[0m\n"],"text/html":["
\n"]},"metadata":{}}]},{"cell_type":"code","source":["# развернем каждое изображение 28*28 в вектор 784\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 60000,\n"," random_state = 11)\n","num_pixels = X_train.shape[1] * X_train.shape[2]\n","X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n","X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n","print('Shape of transformed X train:', X_train.shape)\n","print('Shape of transformed X train:', X_test.shape)\n","\n","# переведем метки в one-hot\n","y_train = keras.utils.to_categorical(y_train, num_classes)\n","y_test = keras.utils.to_categorical(y_test, num_classes)\n","print('Shape of transformed y train:', y_train.shape)\n","print('Shape of transformed y test:', y_test.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"9D9DEhtk-C5F","executionInfo":{"status":"ok","timestamp":1764509717178,"user_tz":-180,"elapsed":165,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"832e262f-b99b-4112-c08d-e9687b5dfc90"},"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (60000, 784)\n","Shape of transformed X train: (10000, 784)\n","Shape of transformed y train: (60000, 10)\n","Shape of transformed y test: (10000, 10)\n"]}]},{"cell_type":"code","source":["# Оценка качества работы модели на тестовых данных\n","scores = model_lr1.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Sfm0Dkdx-ZEo","executionInfo":{"status":"ok","timestamp":1764509730383,"user_tz":-180,"elapsed":2959,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"7a41ced0-658d-4086-e940-847fe75b4d8d"},"execution_count":18,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 5ms/step - accuracy: 0.9406 - loss: 0.2055\n","Loss on test data: 0.1955890655517578\n","Accuracy on test data: 0.9426000118255615\n"]}]},{"cell_type":"code","source":["# загрузка датасета\n","from keras.datasets import cifar10\n","\n","(X_train, y_train), (X_test, y_test) = cifar10.load_data()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"JNDIKQbd-bnZ","executionInfo":{"status":"ok","timestamp":1764510002560,"user_tz":-180,"elapsed":7509,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"7f10e9b2-d8d9-4f8a-f9c1-583276aad9c4"},"execution_count":19,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n","\u001b[1m170498071/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 0us/step\n"]}]},{"cell_type":"code","source":["# создание своего разбиения датасета\n","\n","# объединяем в один набор\n","X = np.concatenate((X_train, X_test))\n","y = np.concatenate((y_train, y_test))\n","\n","# разбиваем по вариантам\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 50000,\n"," random_state = 11)\n","# вывод размерностей\n","print('Shape of X train:', X_train.shape)\n","print('Shape of y train:', y_train.shape)\n","print('Shape of X test:', X_test.shape)\n","print('Shape of y test:', y_test.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"YHdFlDTs_c8h","executionInfo":{"status":"ok","timestamp":1764510026923,"user_tz":-180,"elapsed":129,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"e186bd15-09ae-44af-cec4-09950cca01e4"},"execution_count":20,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of X train: (50000, 32, 32, 3)\n","Shape of y train: (50000, 1)\n","Shape of X test: (10000, 32, 32, 3)\n","Shape of y test: (10000, 1)\n"]}]},{"cell_type":"code","source":["class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n"," 'dog', 'frog', 'horse', 'ship', 'truck']\n","\n","plt.figure(figsize=(10,10))\n","for i in range(25):\n"," plt.subplot(5,5,i+1)\n"," plt.xticks([])\n"," plt.yticks([])\n"," plt.grid(False)\n"," plt.imshow(X_train[i])\n"," plt.xlabel(class_names[y_train[i][0]])\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":826},"id":"YwHDcPGv_ks8","executionInfo":{"status":"ok","timestamp":1764510041044,"user_tz":-180,"elapsed":846,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"acd6b3b4-5d3f-4e32-b9fc-a7c67770afef"},"execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/plain":[""],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XeUbOlZ3g3fe+/KuXM4nU4OE86ZqIkahUEZhMBINuKT8SsZjJZAvGCBbdkWyWvxviCkb2HsbxkWxrawTTLJYKGEpJEmpzMzJ+fUOVR15aodvj+6T3df11NzuntUp3ukuX+zZq1zd1XtZ+8n7l11Xc9tBUEQiKIoiqIoiqIoShuxt/sEFEVRFEVRFEX53kMfNBRFURRFURRFaTv6oKEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0ndBG3uT7voyPj0s6nRbLsm72OSnfBQRBIMViUQYHB8W2b+7zqvY/hdnK/ieifVBBtP8p242uwcp2spn+t6EHjfHxcRkeHm7LySnfW1y5ckWGhoZuahna/5RXYyv6n4j2QaU12v+U7UbXYGU72Uj/29CDRjqdFhGR/8+HPyCRSFhExHiCsR0HYrfRNI7T9D38TBiTkkcieIxmE1+fnlyEOL/QMMooVasQ+6EIxMUavm5beE63HtgJ8UBnEgsIzDIDC+ui7uIx6x7GzboLcdSJQuw2zTJiCWyqCF6WROP0RIlVKZEoluHRObYinkjgOcRWD1qvNeTX/+1/XukbN5PrZezc0y+2s3Sd9Tp+q5KI4bnanm8cp9HEPhlxsM5CFva3ho/H8Gi42FHzm51YDI/pNbGeS4vY/9wGlumE8P0OD1G3xbdJAfanCJ1XLIJlhOi6LYvHsvnthOfjMWouvidfLONp+nRMm/pfgMdbOi8872gsBnEzWK0b3/dl4tKVLel/Iqt98P/3W/9U4vGlwVer1uA9VWprX8y2qtGws5p4jEYN40DCdB4piF3BthcRSVG9hUM4GVSb2K8rNB9FwlhmmMbFQiFvlFml0wiF8Bg2nadF3dp26A8WTWAi0mzQecbiEHOPajZwHnVozcom8fMiIjaNeSeEn6k26iIiUqs15N/+2y9sef+7cuWKZDKZDX3G9805kCmXSxA7IWyHRBznVSZoMY6NXk/fgLf6DL5dvzHfCIuLizI8PLyla7AdffX22Ui7cduv1xfW+6a81avWjQ+5PfAYsG9GH7/xMV/LuLpR/QdBILVifUP9b0MPGtdPMBIJr3nQwIXAoQeNlh2Abz74QSOKx7Cox4RpAQyFzInUoQXLoomTFzRu73AEy4hE6Y6+RSfmB43AxgUx8Kg2Aiw04tCi3GKkRCL0oIH3bRKlujMeNGJ4HRt50IjSZ2Jxs7tsxaJwvQzbscVZvgm2qeHM/meel00PfA7dUDtU78atjnFDbpbB5yF0g248oNv8OsU8klpNUAFdh1E3dF3rPGjw60tvomMEfB0Uy41fb7XAcJvyA4/tt7ip2aKbkuvlxOMRScSXBp8lNP849KDR6tzohtxy8Bi24DECwTEYpzHptphprz8IXSdMc6DQvOlT+0fpW4ywhe+v1mlOFONZt8WDBvW51/CgwQ8KPKdx7+BuzJ+Px2kSlfUfNITG0lb3v0wm09YHDWMO1AeN7zq2cg22LOs7etB4reW+6usb/Nu2w9dxU9qs/Q8aG/nMRt6jZnBFURRFURRFUdrOhn7RuM701JyEw0sfCdHP8ckk/qTv+eY35k0PpSupLMqSGnX6Sb9cx5Olb8miUbOMYhWfrjyS0EQj+HO57+PP64sFlLak6FeUWgXlWyIiUfpmLJXFurAj+HVfiL8lc+lbyroph6iTmsqjL4UcOs+AvmIMBdheraQrlWoFYp++06+vkR7Va6a862bT2ZFb6XdJF7tuiWQs816L8wvTN7dp/GawXEIZQd3DOvQ8LCNcN5/kmwWSX7nY5y36xcOib/EDj9rRx893p/F1EZGh3i6I+zqxj/dksa5o6EoqhT99uq4pe6zU8G95HCYyOZOH+NLEAsTjBRzLnmV+K+7S/GCRrCyaXP121ffW/0XuZtAIbAkt/5oToW97A5uuscU3yotVfA/9CCKHDhyA+MkXT0J8YfoyxD2dWaMMh34uqDSxsZwo9o8Izavh0I1/6evq6jDKLNVwrDSaNIfRL2AeHdOneZrnZRERnrLyJRyPqQz240JxHuLuzhyeYw3nOxGRJP2S0izjdZSCpT5a24b5j1nvF4tWr/Ovl1cvTUC8OI/r2/DwIMSxLPadVAvZBJfKsyT/4srnZOkvHhtivV+Gbga2ba/UfzvK/47bckuqgPtri9NYRxLmc+zz+40Dbva0jHHEsKqgVd0biow2ob9oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ1NeTQcJyTO8g5JrOsO0W4VsRZar1oDtcJdnT0QN2j7wmJhCmLDdxA2NWYdHXhe8+TzsC3UI2cznfQ6auPmZgoQT05cMcqMJVBvvvfgbogt2l40IG2cS4aLetPUn/N2aC5J+ELkF3BoF6qGy5pA8xnTpm12A9J6e2t2DWulP7/ZeDV3ZdeXKm0LWiigttgLmx4A7qMl0niXae9Rn+rMJr9E0GKXh3AI6zAU5jokHb+LcUxwa9KRAdTD33sHaqZFREYHUTftBHhdtRKOu2iEtj+NcF8wd+OpkfdpxMb6vXdPL8QXrs1B/MTJSYjPTKEfRkSkQlv3spcpHF7t07yR21YRiC3+9e9nAtqhyNDAmjpbz8NrXJjHbYHfdBf6bXr7d0A8UTiLZYSxLUVE6rR9bWke57BQFPtxnHX2VLfJOM6Z1bp5XQXylbk+7ZJH48CmuTxOc2StYvYPi3Y6dEnHXChhXfL23JEo7YQVmPMs74rt0zrmL+/S5Afb7xNgHThrrltuekZry9Gnn4X4wvGXIO7NYh0O3boP4h3D5v75XQPYZ9O5Poht2n45oHEUsm+sE1ePxhLbUQ838mhsh2fk5oD1yl6nZnP9ex9O1ZCI4xodjeMY4Lbkrd1FRDzyjDYohcR6/aFGW6dXKRWEiIjb5Hts2sX1NW7Lq79oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ1NeTQCf60sGZ9RCvkivrmVPtSnvAQBejCiEcyrEY1m6HX8fDZnagLrLurnZk6dh3hyFvXKros+kb4O3Jc+Tl6Hvn7Um4qI5At5iBcW0C8QS6KePUp6vRDp+eIpfF1EpFJF/bFHmuiGi7EVxjjRQN19JGJ6GOp19AsUy6jpS6dX66ZR3/o8BsX5yooO3hXcx96n/hi1TY2j38BzrpHPI6BjOJRHJGxTPgozpYWxR3xAvqMwpYbu68OcK0f29kO8Z1c3xJ1Zs9AIeQG8Jvafjh2o+09TZmGLBmsr7Wa1jOO7OjeDbyhi3oz+OB7zrt3ohYqlcKyLiDx9ehziRgPbOKiutg/nXdg6/JWM4DVKbhN1eD4yteaLFWz/546egrivG+sp04Xz084d6NFhT5qISKNE808c63qaPBtSwXGfoPnHpszggW1mi872oVbfieB7Gg0sQ+rYn0I+5rQI2WYf9Em7H6b65vwvqSzWjUW+ioCzkYtInXwbAeXeuZ5jxONERq9Dghb76rtVrPfLZ09AvLh4EeKBNM4d9Slsg8kyeq9ERMoLlyCOdqGvY+eu/RCn0zgHruc92YgXQH0cNwdLVm/tXg8joNU5bLbl2YPB+dq6u3EM7Nq1yzhGTw/O052dOI93UByO4f0X59XIZs38SHyei4s4z/Ow8CjXlEf3iMUi3bOLyAsvvgjx6VO4PrlrjrkZT47+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2sykz+OzswkrSs8nJaXgtnUaDaYEM0iIiDQ/Nk0kygYUdNC2GQmiYCVMesZjpmRYnhkae3n48r1IdTYZNF+N6g6okhqbGHTtMM3iTkq755JOOhPEcbIuSuaTRuJzrxveLiMzOYry4iEYem5KbeQGW0WyiRSrZwowbCuG1zs5hoZa1ap5ukBF2K/AlJNbys7FFfcOxbnz9IiJ2mOqd6owTRnouJfAj61k0YpaRieExE2QI3r1jBOJDuwcg3rszB3GhiG1gO+Z3AyFK2pal/hQh41m+iMnQSkU04voNs20dMgT37kDTukPnZYexf82fvAzx/gwa7ERELlByzCtT2Me9NUZ7398es6ftN8VeTlzJuYuiEZyg8iXT0Hx5HE30TgxNf5eu4bzaW8UNCyzqkzNVMnaLSIT6uU3JOQMyVTvUfy5cQYNvghLdDe8w56fuHLZnuYH9xaWNGKwQlunXyAzeIuGrT+btLBm1HeMzOF6bTTSLR8XcEMPYY4CSMKaWjaJOaLs2I1jFGAFkzjTrQ+TUS89DfOHcSTwmJfS74uMYLBcvQnzrkcNGGVGa8+rFeYi/8fWvQPzQg2+GuIPMt+1IBKfm8PZgB9bK5iG8Evk2tpMfmGOEE76Zb6G5ymh6fN23XH6DBLRWWTz/0SDPZXIQP/Tw/RAfOIAJmPv7cc0WEXFC2Oe5tyWSuB7yRg1s3I5GzaS54TDOw+VSDo9B81uNNnXhhMWtyti3exTi8xdw3X7m2efgnF987mXjGK3QXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazqY8GvF0XMLLOq9ZMg2kbNK9deWMz0/P4GeqdRTgzZRQD9qk5HsdOdSUpc1cVbL3lp0QZ/ookcoAJry6dukqllnAJCiNJD6LzVJiMhGRa1Ooq04lUXddLqOOMJ7A63DHUUvX8EzdYZQMKSHSDsdIbxdNoP44TXWXSJi612oNNX5J0vbbzmrcQv5702lalnjLWlvOjWZT/wtFWngZSEMa5jokbfviIurjE+S/2EXJ9kRE9gz1QjzSg3r23iy2Y4Q0phYl5enuQS9EjfxAIiIp6k9hSv4zNXENP2BjuwZUZpjNByJCcngJAkoImcVxNlPAvrRIHqF6C9317iE8xtwcekkaa7W1/vZo5CPRmERiS/XdqOM1Ui4+ee4Y6ltFRObm8hBns9g/JuiaE+Sn2L8T568pSs4nIlKmcRwO0HPTTUkBoxn0nfXyOV29ArHXYg6cvHAO4gTpnn0X2ztO80cihWPJdc0+WHfxOmz6nsymumqQZpk/32ia86xNyboiUU78ef06XgeafxpCXGX1EnojRESuHH0R4sIMrl25JCYILRbIp+bmIT59FhN6iYg8OIQ6785+POb4DM5Hzz2DvpG3vePtEPNM8d3qt/huPe+12Ja9ch1NGk9N8o+1yBcpNi8kDo63gLx3fsAHwdcty1xHLMHzcOm8do3tgPjd73grxL29uA7ZdLNTr5mJ7uKUhDkSpSTN5Oe0bL71xnpo1Vdi5JUL2ej7aJKfL50gHxytmY26eS+RSaFP944jRyDetXM1WWGtVlOPhqIoiqIoiqIo24c+aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLazKY9G33CPRCJLOrGugRy8xpqyVnt4x9Ko/5rPo0a2QXq7qIM6t1Qan4silqmVi0ZQl1ZzKH9EDrV08RnUvYWLeN6FQhnily+auutKAT0WQ1E0j+TiWEbDRS1dZQF11uGkqf33SOPnN1EfGY6jHnnvAOpiO3tZZG/u8V8ooZZxfhqvvVJdPUazgeVtBaGQvaKXDNM+9uEQ9p1YlJKZiEiSNI6pJLbT7PQcxNEM1tldt6L/5859qJcXEelIoV+inMdjxh2s92gEh6BN+3FH4zhm4iEzeYxN+WnKC3mIUynU3DdIzF1YRO9ULmnurx0nzWmITDJz06j1vjSF1zk5i32pUEcvgohIdwf2+33D2Icvj+dX/u1ZvkwZR7j5eMHS/yLmXugLRdS8nrtmauR3DmGficWwrs9eGIe47pIuN4TvDxkeApEmjePZcfSh7RjDPjZ39TzEKcqr8eh9b4L42ElTl3v14mmIYzHKDdSP+WNSfZgrIUbz29ycmR9EyLOXIj1xnfLgRMlvkYzhWCuWsE+KmPvhs/etUFnqt7UW/o6txqP10qdcJZeffNL4zPT5MxD3RHFuCGiNbZLfJ/ApP07e9AhNTGGumIMDYxAfGkMPx2Qe23VqBj/f24Oa+VbYdnu/M22Vu4Pvcfg963kwNpIP5PXu43DCkZVcGHv2YX6JZBzHytwstqOISL5CecvIu1Wp4L2R3zAS20AUauGVsgL82/AQzjXvfeeDEGfTlG+nhh60RBI9bZGQ2dd6OjvwmORzi0Rx3a7S/RPn0Wh1/8x/sygJSTiB86FwX6L+V22Vq4jap0k5R9bm3gj89fvzdfQXDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLazKY9GR2dKosta7WyWckVUUO/KeTZERHbtwf3ah1FaLtem0HPR0YnazGSY9q0vmDr8KHkybNLYBrS3em8X6u/EQS3d2fOTEJfmTW1u4OCFpAewzI7RHMTTV/GYMTrnSMRslo5BzM8gFl5HNoUa+mwn+g8iglraQMzr6M7hZ4IG6u4XF1fLbDa33qORSYVWdIqdWdTzR6nKEvwHEYnYeM2lKrab5aE+9PA+1JXfuQdzWvSkTI1irUr5ZVJ4Hv192I5zs6jjb5DO3GliH88kTE1+aQ41pc0a+W9s1G52dOM4rDewHpIx8/sHR+g9lCdhYRLPIUQ6/9lZ3Ds/nEX/hYjIwA70L1CqDlk7MpuuJ2evbL1Lw280xF8er9SdpFbDOurqRJ2uiMitB3dBPD6FHp6JSZo36ZiDQ6gFXqxWjDLipAcO9wxAnKB95jszOF89cYLyZng41tMp00M2OEB5MCo438xdxTwbs3PoG+nsQO1/Ioz+ChGReJj2jacpyKE8GpwnJ6CcNdlMi0RMFo5X18XPNJfnDPYubAe8+s1euAjxmb/5O+Mzp18+CfEiJX+pNqjdSjgn9g7h3DHWadZhqUl9kuq9STr8kI19/MzJoxDHnLshzvWg5l5ExKN2Yn06ex84/YJPfYXzVLWCj+nxhOVRIeTpauUrWc/Hsd0ejqZ4Kx4Ix8GxcnD/foh3ft+jxufDcVwXCuSTWizgPeAlynM2OYn3JG7d9Fml4nhee3YPQxylKmSP7MAOfL/Q/dlQP92LiUgmg/Mfz5nNGuX5orpLJXHObtU3iiX0NYadG+ck4Xs0ziuUYE+HiNh0XqUy3SOt6cOcl+NG6C8aiqIoiqIoiqK0HX3QUBRFURRFURSl7eiDhqIoiqIoiqIobWdTHo1w2JZwZOnZpFjKw2usLQyHzT16JydR+zvQix4Mr4reheIU6tdjOdT3hT1zL/5GCfdf990UxaijzCRRp+YHWCWBhdpzv2lqJBNJ1KqNDqKWuEr6dPca6gyTpN8bH8f3i4g0LNTK7Ty0B2Irgs+MZ89dgLibZNU9Paa2tlJCbW2Y9otOJFbrptnY+B7K7SIRDiR0PV9GHc/Vq2G7uHVT4+1Z+JlIDCslk8B2G+xGLbBfw/4W6yN/j4h096Gvw6V9qG3K3ZGw0VtjW6iX93xs9wXKkSEiYtMe3JzDoNrEPj01hT4Ah/TwCfL7iIgszOK4WpjG6yqUcVxNkt+qXMDPW675HUfTwn3ZWYNq1Va1tJa3cX1oO4mEIxIJL9VPvY6a14U89o+hIfRGiIgkE9gWPE82yZNzdQbbaraM/hvO8yAikp/NQ7y7D/0wXg19IaODqLsfn8dxcvQk+iv6+tCrJCLS0ZWDuIv0v04E41ITc44UF3CerUfNfDFTPn6mM8e+Dny/Tfu8h2P4hkjM7OcS8DyCbRxd9oEEtrm+bTWei33lxaPPQTxFc4eISLOO5233oo/ovruOQHz5CuZ1uXgF+0JPFtchEZFcDNv63LEXIZ6mY8ZI324ncI58/lmcW26/6w6jzESK8xbgHGhRX/A8PGaFvE6L1B9FRALBOccJkS8yjetBKovXYdOtQyuN+3oejO32aLi+t3IOrxx7BV67cAr9P6M7zPlv1y70P+zdh5612/ftg/juW9H3UVxET8aTTz1ulFEq5iG+dhF9HuPnsd737MT8WCdeOQtxJIHtXC6aOX66u3COHRjAOTJOudGaNfbzYFwum96T6WnMS9KgXD7lKsa1GnmhQrj29PXhvC8ikk7jOEqSH2/tbX443GL+fBX0Fw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2symPhiW2WMvPJr6P+tB4HHWZkYi533+9ihrbep2ec1BSJufPn4a43IWax1jMPH07igfxIqgjy3SjL6Tool7v2MvHIZ7Ko841kjW9Cb10XocoT0F5ZgLiQh111cUy6tkDMf0FQR41pLVp1JBGM7QPs4dazgXypiSSpsZ4ah6Pmczm8A2p1fNq1E39780mEYtKOLR03h7lF1ik/d4XWkj4uzqxv/WRFyFiY9tmqE57B7GdO3owl4yIiFvHtoxHb7yXfzSNZcSiqIkcv4K+pliLva/TA0P4B8ph4ZawL1w+i/6dLOUcsVKm7t9azENcX8TrWCjhfDBfw7oc2oU62AtXcUyIiLz00gmIUxaOA9cPr/n39ng0itX6SgaahRLq9185hvr1kV1jxueblLMkk8b23rMbPT6ei+9n/002jT4FEZHL51GTnBwlvXAO4/kizi1H9mA+k6MnL0J88YrZdpEE9pmuJGp956bRbxelXEGDfTgvH790ySjjPPl+bt2P+u5hysXhkHcpFMH+VKvgeiQiEnZwXvSaWP/x656aFh6jrQfHWJpyW43XzVxJiYN7If7H//SfQHz7HXdCfO7kKYj/v7/56xA7vjlXlCcop04Mx0kshnU8P4Wa93CK8rYsoPfp6y88ZZSZvfUQxLe/6c0QWwG2l1vBY7701NMQL+bzRhldA9hHp/J43ukk1v/YTuyfUdK7j4yOGmXEYpT3i7yva+P1cm7cDGwRub6asLevQXPy6YuXjc+fv4x/e+LpZyHO5TBP0MGD2K5vfevbIP7AD/2AUUZ+Hueno889j+dJKXCmCjj/vfACvt+h68plzTwuu8nnsWc3tm2pjt66cc4zF2AZ+QLm9hARKdJ8VaQcJI0KXkcml4M4QWsNrz0iInv3oudq3wGs/3RmzbxumfPLq/F6mC0VRVEURVEURfkeQx80FEVRFEVRFEVpO/qgoSiKoiiKoihK29EHDUVRFEVRFEVR2s6mzOD5fFki0SUnTa2K5tsMev/EdsxnmEgsB/HCIrm/fUqWR0nh6mU0zIRt8/R9D817zTKWUSDzt0tJTNIdZDjvRgPO0E40SoqILFzDRConj6LZNnqZTGNlNClmKcERe+RFRMbJDH7hFJolx8bQEJzNodFngYxCwZRphKw00aQXJNB4Go2vGpet0NabwWO2I+HlRFku9S/K1ydJMkKJiNgOGa7m0FzamcHrTacx7ujBhEyumGYon7IypXI4MBxq6ziZ39wG9td6E19fKJplFgTbutZEk/v4DPbP0+N5iHePoDl4V9ZMyBavonlysYAm9UQcy+wdQGPurXfdB/GVcUzaJSJy5gKOm4mLmNiyuiaZmhtsT+IqPxoXfzlJ3qKPbXH+PJoQyzXTsL5zENszlclB/I5H0cT6EhkTgyb2j95uTIAlIpKmTRwWKRnZoUMHIX7+KG6A0ZHqhfgtRzBp1kKlhck4jSbW4X5MYHX2HCYhfYkM5vffeyvEfd14DiIiM4u4HhQKOH5HaFOOLG2cUKMNMfwWfahWx3kxsLANU8sbJdjB9mxGsJYIfU+4/9bDEM/kzcRitxzBZHf7D2DbssF47AAmUHvg4bdCfOnlZ4wynB24GUqakuLmG2iMzQ2jydr3sV3SF6foHM1EYSH6zMSFMxB7DdoYgPpCeR6TBXdSAjYREaEkkykbj1klE/IXn8e6OUXz7gc++EGjiPe8C+tXtjlBH2MFwYoZ3BgBfK4tEro1aBOheokS0pZxzr84jqbpbz/zAsQfeN8jRhk/+sPvhPiWvXhvFKGEkF4Y1+g/+9O/gvj4C8cgvnTeTKj88su4aUJ+DtfcUh2N21cp+R5Ta5hzbLWJNT5ISQGPHLkN4qER3FikQObxay0SQ586jRsw0bCSQ4dWzeFVega4EfqLhqIoiqIoiqIobUcfNBRFURRFURRFaTv6oKEoiqIoiqIoStvZnEdjviLhyJJHwyGNfCGPusuQYyaEK1PyqSbFboCx56Mm0qXkQF4LnWyE/mR7lFhsCjWAkY4cxL39qA3eexD17/sPUnI0Efnrv3oJ4pdfRP35rhhqAptCfgnSxdZaaBuFkuOEKNlKlZoy7OH7iyUsYzaPCbREROJZSngVws/47mp7bEfCvlphTrzlfhcL4fV1kEegWsP+KCJSrKDgMGhgOwx3oVbT8jGzT4SS78WSZvI838fz8CLYZ12hc6jhOYiHXgjfxg5daZEozKPkefkyXvvpk6hXPn0KE8sV85gcKN0iEWactLUSxvOwyDvgNVA/79awv+3aiTpuEZF0DueMl0jzW15crRvbpfPZIi5cHpdobKmNnz92EV4rFLDeA9/U4V4bx3roqmHb3Xor6m7fcj9q6l8i3Xc8bCb3zGZwvjlzFeej4WHUn/sWtuULZ1Frfv9e0vpWzbE/XcZ+XK9iXewZQ29bvon9vEpzeUCeMhGRHd143lPTeJ71Ug7iZhjHnm3zvGomPPM8/Bsn8LNWPrP1ydIMaHz0kGb7Ax/6kPERn5KPueRVsG3sC5EwzgW33o4+kIVLJ80y6N6g2MR50iNvZZISLcaLOLabDiV3vAvHhIhINId9PkXr49QEejBOHHsZ4tIiegGcFCZSFRHxfGxzTqZZXEQNvNB1lhaxz//Jn/6RUcadd2CCtP5+bNPtTti3Oczzs2musRwyAVCf5kvMk+/of/3p/zLKGOlCb+VHfvRHIJ5bwDk4Rz7Kn/+5n4S4SIlZn37C9CVdOIPehlgM+7DfxPnwm19/EuLdlBjPbfEbwOlTWMYP/9D7IT58BL13IRo38+RpO3sJx4SIyPHT5yFOJnFsrk0Y6/sb73/6i4aiKIqiKIqiKG1HHzQURVEURVEURWk7+qChKIqiKIqiKErb2ZRHo1QsS3hZExwKoXa10chDbIm5/7NnoaYrQsfwSHZtkca2Usc3ODVzr2HPJv0waX9Z27+wkIf4zATqfncfQE1qRweek4hIg7Rq1+ZQX5zrR71oMouaVb9O1xEymyWVRg2qSz6OJsoIpVhCfwvLql3PbJ+ggX8LVUnPG6yeZ7NBBW4BQwPdEgkv9Rlux4uXcU/oes3U8Hs26g0jFr5nqBdzHETJo+KwL6HFOcZpj26LPBoN2ou9WiZdr0/7iufR+5AvmN8NTM2h52JmBn1IiwsLECd4DMyh7vXbT+Be5SIi+3fiXvcj/ai570yiBtUV9CdcPI75IIZ27jTK4CsLXKyrUnXVS+J625PHYGZyTiKRpfp74SnUefuUzKXsoiZbROS5Z3C/9bvuwjwGsxOYS2RscABij/I8TLbIRzLQh/leyuR3uDCNWt1cRxfER59+GuJ9w+hbC7fIkXTs1EWIk+RfOrwf2/u+GF73tbk8xOwBFBFxaP3YNTqK50X67mePoaZ51649EHdR3hwRkYBGtU1lNpa9QU13+/No2CH2j2zgM4bnhAluGHb3Yl/ZscPM41KmnBVegHNDV3cO4wz216mTOK5qaZyvOinXlYiIkGerSuNknMbJ7Bx6MqpljBeqZp6pdBbP0yP/p0t5v4R8bbsHcA59/CW8ThGRp2nsvf/97zfe8z2F4ckIbhjzvFBvmj34+Zdwjn30rbge9tH8WK2hR9Fr4NzVR96wt731HqPMwmEcB+Uy5n4pzqIf4r5bd0M8tA/vM6NpvBcREblCuWGGB/A9lo3jrFnF6+qJ4zjq68YcOSIi/bTeLC7i2pFOrd7LOvbGf6fQXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazqY8GvFoZMWjwdo5i3wFTdf0T4R90r826TnHRm1cIo3a4Crt1V6tm/v4huP4t1QCdbhNuuR6CY/pkfa2owu16FenUM8uInLqFOqqS0U85pyD+s+du/C6QknyfbTIQeIl0JPRsPA6QqR1tChuNlH7X2/RPqEmXnud9Hlr9b3b4dHYf3CPxKJL/W+R9tOeXcxDHEqZdZgvo+42TRrDjixqGONRPMbRo5gvZWQH7nEuItLdj3lWarQHtxVgHLYwZi/NhQtzeA6vXDLKDEgrnCEt5mAuC/GVKno2CmX0gSwGGIuIHK+jrn9qBvWhY/05iEf6UetZLqFedOb8WaOMXD9q7nd04zg5Flrds9/diCD9ZlDxVgoPypT/huYnr4XX6uRx9NPEwnghQ324p/u4jV6Xpo99tlYzteT9Hdg2e3ZhvdbKOHZGB1BfbFnPQvz4K8chfuRO1BOLiHRmcO5u0vowtYBlDg3gvDo7i16lkSFzbJ2/ij4s38J+P1fFfjtPuTx2JSn3kGfOYTadd6mCPptUeuk62cuxHdjrzPmvBc6z4VF9NJuk++5Hz4aISCaL43ZyFv0RqTR65UoLOLeUithujU7sW7UynoOIiEv5TyzyaFRL2L+aNZxo+ztw3NkJUyOfX8T+UqzgMT2b6p98I5UijoFW90jj4+gR5fustXlO2tHerzf4mtbzbDQtM4/Q88fwfux//c2XIf7Ij/0QxEnKH1ZYwDm3NI9rcLFg9r9knO5tXVxj+3I4b3cncYw4Gby/i6RNL3DnQfS5eWXsK80GxikL58Omi+uRZ6P3RERkN/nx5hZxPqityZ/GeWVuhP6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nY25dGo1ariLetaIxHUlNkO6UW9Dei36DGnUkU9bKmC2s00aWxjEVOHn6C/hUNYiE8a54CSd6QSqAf1fCzzsW8dNcqcmETtZTiGvpBQHM+p4qIGNR3FunQcs+7qDayLIIJleIJaugjtNx0EqAdt1PAcRESKQnuRN0j/ba9eh9c09aU3m8sTMxKNLHXZiUn0vUwvYN+pu1inIiK07bzsGMxB3N1JfTqGH5ibwWsuXME2ERHJluYhrlZRtz/QiZrS3SPon2hSrpgzp1F3OX0Vjy8i0pnDvlCgMgt5bMdyGbXGLpVZa2G/SYVxHJSnUad6qoB60OTduEf3yAj6AObmcK9zEZHpSWzDXA9qSHOp1f3zm66ZJ2UrKC4UJLycy8UKSCNNcyDv5S8i4ldwbJ84fh7i/XvJT1HHcZ3tQg1tYJnfFZUWcT5KJOJ4DjXSPZNefaAX9/u/lkeN/VyBcr+IyOEDqB9eqOD8cvIq6p7FQg1yqYT9p14xfUJjA30Qv3we95Xv6sfz3rsP/QN79h2A+PKZE0YZQQPPm2XwzeX1oslJn7aBdij0WfNulEF5RKrkaWxSjhYRkZqPc1RPJ/odpvOoX/fJC1iawLndyu2AuDCFr4uIWJQbqOHdOH9WbRHnmt5RLKMZNbX/M/M430cpl9XZK+ifWyzh+xtlyts0hH4+EZH7778fYu5/a9trvba7GViWteKjeC3l85Rp9mI6JvtejI+bt7DT89i2f/OVb0G8c+8uiN/xrrdBHE/gMWeuXcEifXNedwK8V0izZ5nmt0Itj2WG0SPkuub8FwnwuvwSzst2A8eFTx61ZhPn3GbMzCNUEPyb69Nn1uS2cl2zHl4N/UVDURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7WzKo9E/0LPizfBJo+pS7PuoC176G8ZuEz9jW6hTi0ZQJxmLoF7M8k0xeZj2+SbZtIRI08w6y3naI/nLX3oK4qtT00aZnov6vCTlX0hlUPcWhGivcsql4Pkt/A8+53hAL0kQxuuqN1BHHaGWjsdMDapQXonMGk28iIjlrH7GbW59Ho1ivij1ZX38Yh71r8VFjF3X1B92Z9FnsHsUfQMZ2t8910/5Trrw/acvm1rhQhnbdmYC9co+WWN29GI7VCjXR9jCvpRLoqdDRMQhXasX4DHrDTynkIPjKBrCcei1GFduA98TJe/TOOVJGMyjxvTAwT0QTy08b5RRodwsg6OoYfbX7Dvvb5NHo3+0b2VeitF+7X4U57xGxazHJv2tXsOx/vIxzLNRKKEud99e2kudtOgiIg7pg289sB/iCuWGmKc+2p3DcT9Tw3Fx7vKUUebovYcgHp8lnT3Nu1Uf22+6iOM3NGVqs+++41aI9wvVBe2pbznYHnMTOHfH47jeiIhUKF9MOoXX3rjeB18HKQxYIf9aTmm9vAU2tVuD8vycP4s+GRGRsTH0GZWKeMwK5Ts5sIvmBnkZ4iRdWdwxvx9dmEXfxzyNmyi1Y9PBvlIWvLCeXM4oY98ePM9rV3EcZGPY32bm8xC7ZBIca5ErZufOMfrL66CjvQrtyONhujzomOuV0SKXg09GkMmZPMT/7X/+FcRpyjv06FsegLi7B1+fn0JfnYiITznd6pS3xavRPJ3EvhLkcW6yF821Ix3Gmwe/jL63Kt0D0S2SFDzsf9WMWcaiQx8KsMy1uXuaLk0GN0B/0VAURVEURVEUpe3og4aiKIqiKIqiKG1HHzQURVEURVEURWk7m/Jo9HR3SjS6pO+u0R7x4XALzT/hk56uybk2SG/ssQ+A3l8rmXkMatOojbPJOxJ28JLTCdRuXpqdg/jYS6iZlpCp/Q+T/C4qeN4OxZaDvhDagln8FjkqbNovOuxQvpA0+g9qc3gdvodau1jEzDMhdphCytWxtv4tUxt+s3FcV5zlfd2HelBfvXcU99C/fAk1uyIiYdIbD/TgZ4Q03uUyaokX5rBvlefNnBYjI6iHn7qIe6unE50QJ0knfuki6j8ri+Q5ss3cMQ7pjUtF3Jc+COG4YVlrQF83eK7Ztnkaa1Gqu0QGfR+LRayrcDwHcbFmamtLJWyzep367Jp9v51t8mgcODgq8fjStV4cR432cy9g27k18xyTSfRWuZSrZnIK62BgB9bz9DRqeQcH0EckIuJSA58/j+flkT/CEuw/rB0/fe0qnuOCmUfj/BU8r7CN/SGHoZEDqVDGYybi5npydQJzytQq+JkL13DO27NzN8SULkamWozfXITnbjzP2PJ64XBSnu8R1tPdd/Rhf6t5pk7b5rsK8q3NUh6MUu8gxBXKObB46RrExSLOiSIitQqOowLlYfGjeFKhBPqQAlrXk5RPS0SksEC+omnUyLM3yqF1vkjeFCdkfs8bo9wG63lo3vC0+KrcIp9Hjbx/Lx87CfHv/Mffh3iIPBl37sf+6RfM2+ZmifpCk/JKZfD+zElhO6bi5Hkumve2VZr/FmcnIZ6lcXbNx/OeDWNeqrBv3gNGQziew+TfjK8ZFwHfONwA/UVDURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7eiDhqIoiqIoiqIobWdTZnA/CMQPlgwnDiXNCQIykLbwlAW2deO3kPHJpsQrNpunKi2MUWyWMhK6YByPovkqRebweUq0kqCkgSIinVk8rw56S4KzBlJVBfS8F3imidQnA6dNJsUQJzO0KfGS4Of7+tAYtPQmrAufXOprPcINzty0BXi+u2JI39Gfg9dGhtHAmomZybjm59BoG4ph9y/U0MDVJKPuQhHNydGIaQit19CIvVDIQxxLYTKrdA7bwW1exnOg/RCqTcr4JyIll/o4mfhjCTTWBj72N482WejLmQbjZhONt00yY1/fJGLlmE2su3wBzW2NFjkpQ2EcJ+UyJt1qrDH1cflbRWc2IYnE0rU++vBd8BrlCpWnXzhmfD4UwmusFrEiCmSiP3z4CMS9XTg/TU2hIVBEZHqGTM4ulmFTv335xFGI77/1MMT92RzEV2exXUREXjmLhvG7b8HkZoNhTFBVpXPaObgD4lTK3HSDzYexJBp6Kw0055+ljRXi3Wis580uRERCtKlJiBKhWstJTS37jfEdHW/g0tHTB/GBg9hXREROP4dJbq/RJhoXp9C0P0+vL9I83ZVBY3aoYSYaCyWwLfPzWMbl82goz8Zw3rVcHFcdKdMMPjmJSUnjCezTs+NYZoMmbzZyHzp00CgjHsdj+pTleK05vB0J8zaLZVmvWu5GjOr82fXM7usdM2h1n0n3eIFwGRgfO47zxNe+8k2ID/S/F+K+7i6jzGYM57N6HufgwMZ2dBvYl4Imvt6cQ3O5iEiVNirya3gP5lGSbD+OyX0bIbwnCmxz/uuIo0E8mcR13V4z7/mbWILfGLOloiiKoiiKoihbij5oKIqiKIqiKIrSdvRBQ1EURVEURVGUtrM5j4bvir+s72ZPhkXJ0ALDG2HaJThfn5Ae0bbX0e9ZZhl1SiTIIveGj683KIGfQ2U6dJ2hwBSm9XehVjgTpgRplFjKI39L00LNdL1Foi8h7bBNSbaaDfZw0HVQXVnsqRERi7SNFtVNaE1CInsTyVraRUd3h0TDoeV/ox4xmcFzjUbNvpHJou42IP11nXTXXYPo+5AMJZJqkbisSkmZphdQq1mjPu5Rsr3xKdS/V11sx1wrb00Er7XexM94pOUslvC8OzrwmBHSCYuIND30nsQTqN1s0rgLkb/HI0+P28JjkUmjTtohb1NkzRjg+WarOHd5UmKxJR3rQA/2jx943/0QJ5NmH3ziCUwWFdDYL1PisatXUFt+++G3Q3xt0vRoxKkfxxOYLGpkbCfEx06gRrlIyfPuPXIA4slvPGOUOU/JLcNhvK4oJRSdOoWJUO/atwtiJ2Em7CuS7ycaw356//05iGfnUev/wkm8zq4OfL+ISH8KE2qGIuQtWe7H1RY+ge9NsA/HyIs1evBW4xPnTh+H+NhTL0BcKOLYL5axXV2q267LOGd2F8z5KUx3MjVKkss5cI+fOg3x7EIOj2eb81PdxWtnX8hiCedI28L3czK+AwdwXG2E7fZo3GzW83Cws9dvcQ8ofC9K942c0M8ls8HffvEbED90ZC/E99w5ZhTpkNc3ksI+6lWxP9bn8hCXa+jZcFzTA5uK4fqYTKPnLPBwzvUtuie00ETohsyEfXwdAXmB62vW8UaLxNKvhv6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nY25dFwfEscf1nfRnv3c94GM39FCw8AJZRgX0eLQwCRmKkxC2gv/kKR9nwPoQat0iBtMZ1TjnItNBvmHvLNBr6nyvp0nzSBNdTrheuodXNb5NGIxNFfYEWxTM6zkQzh66ytDbWoXI9ybQjt/eyt8ad4LbwqN5tavbGyr7htd8BrCcp/Elimdj2Vwv7iBagNTlJOC8/GY87lcZ/+MJUpIuJQPpNMH+47z3v3VyvY9mev4P7Z04uo+3VyeN0iIklu2xAec2EBtZkTM6hdnyuQ9j1qfv+QSGGfTqfQl+SRNSrdxGPUqI97LfpfpYbviZKGdM/w6v7l9VaJOLaAxVJJ6s0l/4BjU84F0gs/+PA9xuftEHoV/uaLj0FcpXp66snnId65dwTirh5zT/fb9mCuljPn0Q9x4TLmahkexmNGk9ivOztxP/Zb9gwZZR57Bb0nIQvnjmIF500nhn22VMU8K4U89nsRkSLZyiLUP3gxC7FXhbxx0RY+tYD6YMPB9cFfniODN4pHg4apTZr5UNrMN7H7DsrDcvwKxPPHzkBcKdMcR4aL8UmcdxeL5v7/nR04H4VSODa7d2CfffSd3w/xrbfegmVMXTLK+D9f/hrE/iL26VIV+1PNw+vo7EFN/Y7BYaMM5vXmw1ibo4K9Dm2BvaTcAalIu9Up0N+sgL2++LoTwr5y7vIExH/z1Scg3r9/0CgyFcK2d0I4vwUBzis++eC8Co6BEOeMExE7Rnnl4njeuRCu0QHd20YE59h6GMeMiIhPfk+XvJWl0mqfr1XMnF6vhv6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nY259EILHGW9W6UDkB8DzVoLbWFxocoZs2sYfvAPzQoZ4GISJO136T3jCVRU1ovo84sl0bdWpP0fcWKqR1OZzIQZxJYRpjyASxSboX6ImroPb7wFsdgLWPgY/2HHdTrRWg/+BDp+UREAhI3NqlNBXw4W6+R7+zukGhkWZdoYbsG5IuJhMyuHYnQZ9hXFEFt+omzqA1mD8Fg1tQ4NinvRWcv6nDrDXy2L/Ge8nWMObfHbIvcHZUGjhv2okTC2B8z6RzEDfp8kvIuiIhYFmo1KzUce40qnnczwDLKdF1WGDWsIiKdvahhLlVQB1+trY69+ib28G4no0N9Eo8v1W+zgW196eo4xNksXo+IyN0PoH59sY4672efOQHxhQuYR+PFF9ALcfvtY0YZTTLM3HYH5jq4cAn7dayObdnZ1wtx1cN2uOO2g0aZCRJLRyjHxYVLqNMPqF/XyJe2WDH3kb8yPYdlxnG8xkN4Dnt3ovdksAPfz+NARETIT9ekvCayPA8H9a33qG0HvBJxToLOTrOPn6Y50M6gp6Lg4pp7361HIH7He94F8bFjxyBOxk1fyMGD+yHOdOKa3EMejbGRMYhDtF56NWp3EZEEepXys7huX6Sx+vfffhLibAb7XzRq5orh+n3dEaz9ZxvO1ciDgeMqsNhHRfnbWvhELP7+/MapOIRu8aRK96XPH0OP2/w85rwQEensJ78w5bTw2C+WwT7s0nWGWphPYinKcREhDy3lfknR7X1Aa2a1jvOpiIhN59H0yUtXW/V5OHXz/vvV0F80FEVRFEVRFEVpO/qgoSiKoiiKoihK29EHDUVRFEVRFEVR2s6mPBqNZkOs5UcTj3RsPmlsvRa5IFiOxyq0gI7JesUG6SbnZjDngIiIL6iN6xtEnW5g4bNV3UOdWpz06RGKS1VTu9ndgdrNCPkfHLoOi3JQzJLvo9k09clN2rfdJb2dRU1pWXgOtOW/4ccQMfdIF27TNeflNcxzvNlku9ISW9a1XrxwAV5z66ibjDotckEkUOM4NIp94+wk6uVPnEbNfW8/5ixo1Mzhc/okntf586jbReW6yM4duCd3xcUxEE3gJ6JRs8xqEffHDurk0aA9uXs6cxDXaFzV6+b+2ENDqNvPZPA85mbwHGzS787lsX2uTZljd2znGMQzefSjTMyvltFwt0cjv3t0UJLJpX40Tdc8T/vqDw71G5+PxXBcfvRjH4Q48P4M4r//8jMQf/XL34a4nJ82ykiRzjY7gDr6kV17Id6zZw/ER48ehfj4MfSN3Hf33UaZBw8egvjyOPpAzo+jL233EJ7TEGnoB4dND4/bfAniUpX8dRmch2NhrOsjt6C3pOabPrVCIQ9xvYZtej3nQ73+xsijYVgtOY9GyMxpkY3jmulYWIcNwbrr24V5X977gfdD/PZ3vWPd84zHcZ50yHPBTgCf7jVcF9fTUNTsf2+67wGIz548BfEceTZSYZqHA7zuSgnnDxERyxqg86R7h9dZXo3NY9z1bctZ3BA6xWIJ16Fyi3tALyCPBt3zOezbtTohjiZxzIRb1ItL/celW5w4+eLiFp5Tim7ZFhbM/rc4i+uy7VFOJX913Y/6LXxMr4L+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2NuXRaLpNsZf392UPRsXwGZga1ngEdY8B6dFZN8kejcVF1HmXFk2NWWcPat/ipNv1SNsdjqB+NER69lwWP59Im9o5yye9eMAh/iFGWroIeQeqRbPuqqRHLhZQD5rO5SD2Scvp0XbUXsPMQxAm/X+IH0PX5NVwZOs18pWayHXJapVyGExPz0I8nEU/hYhIaWEBYofaKWSjrrdBPpiJKSyjp6PbKGNqArXoZ89h/oAdvdifJIx9IUX9NdeB15mJmt8NOC6Oq0YZ97cOLDTo1BrYl4Z2ov+iUjH3x7bIYJVN4z71fT2osfd8yjfjokA0HTP3kD95/DjEHZ0dEA+P7V75d73RFBHUSG8Fxbl58apL9d0sYT0OdGOdZJNmW8VojHEfG+zHa04lsZ4cyl/T10n9SUS6sniMuQWc46Ym0T+RTaE+eH4Ox8l8EfvDt59+wSjzfY88CHG+jO3N3rax0TGIOzpw3q43zXn2yCHMlXDi7Gn8TBXXh4kJPO/efvRDFVqlYonhWEokUedcm1vy9Bl79b9RoDU5FDG9DB2dOPf6Rcr942PdeQE2hE/raSyG6yP7KZZOK7hhzN4Gx75x+3mc00tEEmkcJ+cvX4T4209h3gyLFtDpWVw/Tpwy569de/fd8Ly+m2jlJzH+xMOc04UZH7Dp9dd0ajeE/a0Nuk+ttrh38sgbbFOeL6E8aD7lggno/eEWHlPfxzm13sQ5lZZY4TQt6QTOZbEW93BpypdVr2MZ1TWXUQptPJfVG3S2VBRFURRFURTlZqIPGoqiKIqiKIqitB190FAURVEURVEUpe3og4aiKIqiKIqiKG1nU2Zwz/NWTOBsTm5l/mbyZOauVfAYnHSHjUAND80n0SQaakREfAcdMNUGGnkcG48ZiaBBpkHmF9fF6wrETPLEyQqN1ylBn8MJ/SLk2rFNh1MojE21MIeJBqNRNMxFonhdbAa3fNPIYzk3NvfYawx2drD1iXYCPyGBv3RdPb2Y5MmpXoU4HacEOiJih9IQW01sl54cGmvjZLxO5zB5Tb1mJrabnsEEah3daHLNdZFJnUxfvfT+ziyaLZMOmaxFpDeF11op4HuOnpyEeGgQyzh8GBOZnTt3yShjegYNwg1q/hIZiHfvwoRs3R1opDxycLcwVUocWKH2WZvgqt7cuBGtnZQLJQmWk1XyhgjdZGj2GzjfiYjYDvbB2Ql8z4H9uyAuvAVf7+rCerz/Tmw7EZHODM6j/V1jEE/NY1t96xvfhDhNZnInhP3LapFMKkem6cE+3ChhdhA3HOjqx9c7e/sgPnbipFFGYONcvGsUP3P8+DGI7QyO1yCK9VIqme0TjeA8G6cNInKZnIiI1MIbT1b13cx6CeLsFqbq+QXcqGRiGucjj9aOeh1N+xYl1Q2FQjeMN3Ke67FesmARkRglXesbwM0FPNowo0nOZtqjQ555FhNQioi89W1vhzhBZa49r1bnuJ2sZ8DfGNYNIjGzPr+WEtbr03SvtVjGzQzylJhVRCSwcX7z6Tt86l7ScOk+lDZsKZXNdd6zqY/SvWilgnNSw8H5sh5Bo3fIMe9lozRnRunE05HV/hgrb/x3Cv1FQ1EURVEURVGUtqMPGoqiKIqiKIqitB190FAURVEURVEUpe1syqPhNl2xrdYJ+1j3VquZSb8qpMXkRHVC2jhOmROQftb2W/glbHxPnZKthEjjZ5MG1yWvCXs2AsfU/vvk4+DzdqhMjzwbDfp8Jmcm4YolSNs9l4fYbaD+LhxFbb/HSQS9Fhp3ajP2s6w9hNfq8zeZXGdW4ssJtU6cnIHX0h62Y2EedcIiIneT/rVnFJPMzV1E7XqMkunt6Md2mZ3JG2VEwljvYfKKzJI+PkTvr1KiszNzqAdN0pAREbnmXYP4IdLt9xewD9d91INevIqJpOyQmYSrswuT0Vlh/I6iQnr3wR234zFpXM3NYGJDERGXPDTT83ks01+9jqa79QkjRUQkbC/9LyJx8kGVC+RBa1IGJRHJDmMf6kyiJtZ3UZv77nffDfHENez3R186YZQRuec2LDOG9eo3KZknJcdLJ/H9SfKQ7dmJ/igRkZeO4Xl09g1DvHN0BOJYAscWSZaNRKsiIn4d66a/B70kTz/3HMQRWh8G0jmIgzkz4WuT5vu5AuqzI8u65lrNbNvvBXgdX88HELRIbCc2fiaZIm+cPY7HoDW6hQXohufYDtbJG7f0HtKr33n3XRDfcScmsjxx7BzEIZozZ6ZxLIuIlMkPsJ5vdauxlv9b4sYNZRl3QrLms9fhY5DPw8h+TP2zDZ4NA/IIcbLR8QlcL0VEfG8vnhf5C326Dq+JdRMmj61hqhWReh3vBcJ0P5zO4jiLUGJoK0xeu5CZNNchz6jVxP4YrLlf9sIbf3zQXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazuY8GrWK2N6SrovdEQHnkmiRVyMRJk0Y6Q098hn4rA/1sYxw2PRLhEhfJz5p/kg/Gg2jNq5uoQ6YNbvhuOkL4fNi1aBLrxcKqNO3LTxmpoU+mfeyj8dRR98kPThL+X3SRhp1KyJCunfWTa9tr+3QyL/wykmJLPehYglzWCS7Mb9ATcx9qI9dvAxxmPSwF69gXKpgBYTC6FO4ePWCUUYihedRyOchrhZQe2kH5M+hPAlXz2EOjJlyixwGlO9jhjT3I3tRH//kM5ij4Nw19Eu8+aEHjTKaVfQfXL1yHuJYHMd2grwHs1dRl717N56TiEiJxkmShkFHdlVzWqs35c++9opxjJtNPfDEXvZYpSLYVnEadXYLG9P8IuXl8bCPzUxhex+8Db0Obn0A4m98/WWjjJ0HUC98Zfo0xDXKLeTT/DM8gmUOj+6A+OKFi0aZX3v8SYgffhjrIhRBvfBiHvXGVg3bvl43NcqXzmB+l3tu2w/xjiHMzVIPYw6CahUbJEEaZhGRPHnfpIZzwnxp6bzrjfXzRn03wp6M9eJWZoY6jeNIDsfJTvLG5WjvftaJbwWcD6SVN8Unj0Yyidd18CB64yauYa6rNF3ntfGLRhmVCq5bGzmvrcQObuDRsNhr08KjQf3F7D74Fzu4sSeF72tEDBvHpgkc8htT0qgXXjhrfOZHHn0Y4lDA96E498RpPmySb9cLm2PApfOIkncuSl6oBt2jBeS55RwtIiIue0NoLDtrcm8EoY33Rf1FQ1EURVEURVGUtqMPGoqiKIqiKIqitB190FAURVEURVEUpe1syqPhV8riL++du1arJSJiuahBs5tmHg2bnB2sB2MNpE9auxBpN+0WekWbJGbGvs3GMfGcwg7q3jzyaETDLXJ3cE4JKqNB3pMm+VeyWRSjhyyzDN6vPBrFpvM83tcd3885MewWTW/ocW+wT/Z2KEXnF1dTrTSpc0yXUds6emDQ+HwoibpIhzwXZy+g9nKxiO303IsXscwF1G+LiEQjqE3fNdKP8Q5s6yTZjIb6UGdZp/43M4deCRGRvi4so3sQNdD95F8pkB7+sSeOQXxpYtoow2Z/VByPGSPP0NQU7jU+fhk9HdkWXqeeTtSMFjIY9/f2rPy7Ut2ePAaVYnVlj/RrBayTHcPoZchXTZ9QtYb99omnnoe4I44ja7+/E+LFEh4zTvl1lsA+ODmNeVbKVZybB3f0QjxBPpGOTuyz5Zp5XT19fRBbDs4vE9QfEpTnZ3Qvfn66RT93yQdYq+H4vPuueyF+9gSO5zPHMd41hu0lIuJSbpRIDK9jqrk0Hrcpi8vrDvYXioj4gmtoPIX956E70Z/Vl81BzPcWfF+wFbkkWpXBf3NCGMeMnEmYJ+P+ezG3UGUBx5mIeW/w3cWNc2Is/Wkdk4bhAbpxW7fMd3LDT2wA7m/k2Xj2KHocRUReOIbr2/13Yq4ht5aH2KP7uXoD13nHMa8sSmtunW47A7StSphzdOVxTg0q5j06V7cfxTU4bK8es94qh86roL9oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ1NeTQcaYizrP23SGvnkGo11mKPXZtyWDRpP3dbSHRGngyX9iL2mq00Yvge3+d9wMkHQvtUWz75KWr4+ZplqnNZV+lTGewTiYVQgxpQDoyGb27Az3sg21RGk3witUXMjcB5MyzON7J0olim/+p6yWazRZKAm0w6l5Hwch6NQFB/6IRQoJjqQ925iMgttx6A+Ohx1MhGIjgcSDosc7OoM8/xG0Sktwt9H70p1Mvv6EdNfTSG19FNPpJL5TzEA1FTE314DPWgVhHr4uz0VYjnZ3F/93AYG/7ESVODmiYvwI4BvM5LlycgnhnHut07xD4ks/80S/i3ehHjILfaZ4PG9nxH0t83KInEUpudeBk1/w0aL/Nl00fix9CLkOnFnBUpaxFit3ljzfIttx4yypidRS3uiRNnIM4X0WMxPYP9YXIaY9YLJxNm/olUsgPiM6cxZ81LL5+COPpm9FP09mO9pOJmGcMj2M8XKtjPp66htyiZwT7KqZ7OnTb7eX8X5jro6MRjdHQtXWe1iprqNyp2i2HY34+5XrJpnIsP7kPfUYj8huzJYFrlktgK34ZRJsV9Pd0Q93R2Qrx7J+n2y0XjmDaty9vhT9koxrm0uqcwPrO9eUBEzP5j1ijljqB7r8uTeB8gIvLFbz4D8S23oA8pZGEfd130R9h0TxgKmTnibPIuNRp4niVaP9NJLDMRQb+FXzM9pnweQQz9VqE1uaNCLXJ9vBr6i4aiKIqiKIqiKG1HHzQURVEURVEURWk7+qChKIqiKIqiKErb2ZRHIx61JLqi50bdmh8ir0OrZxjyddQFvQ2sSnPomKUa6mJbqf3CIdSteSTMdV2KyWvgkO4wQvuqNxu0WbGIWD57TRCXPByhEOreAhe13L7b4srIrxIOk66VrtOvl+h1yqsRMrX+vH8572m9NvLdrfdoJFOBRCJLZ9HfhzrgIu1JXnPN/cjzC7iv+YUz5yDePYo6cd9GDePlC3jMZAb13CIih/ahDrdMe6nHE/iZyTzqdOdr2L/iWdSq7xww9/7PpLHdyosLEOdJs5+N4X7cO/qwz8/Om/rzSAi9JvlF6l8BaTup72TSlBMjZ2rwZ+ewfsMh8uFEVstwPLP/bgV+4IrvL5Xd24ca7GIJ+0ujau5TXiyil6WnB/txbwrricdgyMZx12ya+SZmZrFPDe/AnDKZMrbvmbPoNanTBu3JBJ6TLejhEDF9ZpMTqGNeWMS6OXcWPRuhKM5PsRb+p8kZ9J119/RAnCRNfJHWi6ExzDfjuGbdpeM4N9uUjygWWx4HnA/gDQqvryIindQOd9x5G8SDOfRr5Qs4X3m0RodCuNa18mjw3YDpZVivvfiY67cv2w1ipKvvo/6ZJs9QIo5zqoiIS+vW68mTwZhV/Po91xthtLzhEcLrcvk+SUSefOk0xGcuT0E83IOfcWxs53gC1+Rw1Ly3qJTo3jPAe8Is5Z3i5nBsWnMd8/afvbwO3c2G1niDQ5pHQ1EURVEURVGU7UQfNBRFURRFURRFaTv6oKEoiqIoiqIoStvRBw1FURRFURRFUdrOpszg6WhMopHWH2HTkuuZZmGPDMSOoEHGp+ceiwzL4TCaWdwWiX0sPqZPCXA8jJtNPG82ntlk3C5XTIOn46AJjM1FDfLWhsjILZToq9nCaG1ZeF1su3IieF02JZmxyEweamEG5zbk6l37quNvvfErFXckupywLkJJxBp1rMMXXrpgfH6aTNHd3Wi4uv22MYirNXx/YXwc4l29ZNwVkdFeNDqeqeAxSg00gZWvoYldHDRCjpFBvSeLpjERkSQZrRuCfTQXoDkzX8VzcH0sc6AvZ5TR3YEJ2TpyWHenTx2HeH4KjbuuSybbsGkGrzfwM7EomiXtNT3Q3oBZ82ZQrhTED5bGeyaL47izA436veZ+BDIzn8c/BJigryvbhS/7ZBqMoOm6txsN8yIiQ4OYOCydw7Zzqe6yGbyO8+evQVwu4DnGImbd7x7Ba/++tz0Icd8gvl7KY7/3KUlW7zAmMhQRaXiU+DSCfTAVx6SSV69egXjhCiYuHOk3k3paLk7W83Noao8tG/yrNTMZ43cDrY3Ur/66GdO82zTXw6aFfbafkpQ6HiW2nMNxX2/gxgFOCNvZb2HE57WLjdoWXYdPqzQf0t6A2d+neTNFGzns3j0EcbOJfaveMPvQ9BSOi917duN52avr9npteTOwrBt5vjdyPvzhzZrw1/v8d46RVJCTU4dNE/8FShb63//sixD/wPcdhnhHD/YVt4Fl2llcL0VEYpQ016d77JCF/YmGmbgObUIUMe9fuD6jVBfOmvXICTa+IZD+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2NuXRcMSW0PKzCcsDOclOK42jY2Nx4TC+p8nJ9SjJXCyMXohW6UIsSmLis9GApG8BSZxZf+hxwqyUqS1nHBv9D80oJRwiTwbXlOu3SEZGHovAZlEpvu66eN2sZIxEOD2iiE3H4DbF4229Rr5erUmw3EcuLaD+ulisQJxImF6G85cx0djhQ9iWjoUa2ijVxwHS3CZD5vCZHsfzKpVRbzw1j8mpRoYxiVhPGpM6xaia/aapi6yQb6ijG7XneQs10HM1PIcMJUdbXMgbZUxWMUFfrYT120WejdE+TBI3N4delXjU/I4j24HXXm/Q+I+samM9b3s8GslcRhKJpUnDr6B3IRmjpIW+2VZ7dqBfxiUDlx2icWvhOI305iDu6jHrsdHA8/BIM29RoqWREfRw3HH4IMRz09h/BvvRNyQi0t2B3iSer+p18qJ0ot44nctBfHEcyxQRKcxjH7owcwniCiW7tEJY/3cc2gmx1zD9BaUSJjtkr9t1XXTQwoP43QmvEzjnG+s8LQnFKfStiYiceeFbEFdo9emI5iBORLEu8wvYrnYYfQqRqDm38wpn2BdoumAZvk9rXWCba7DrYf9yG/iZRBI179ksxnOUvLVSNvufWOylZK3+al3Z9sYTprULxwlWTtH07/C7N/I99nqJFukYxrTfqg6+M98G+3xtOiceIyIiDeo//+srT0N8hTyL/9cPvR3iAzuwrzh1c/7zE9j/opQwmO8rbQe9JE4Ix02ljvdMIrLigb2ORwPFXZOwutoiefWrob9oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ1NeTTEs0SW81AE5H3wXdbatXiGsVhPh+9xSIDnB6SF8268V7ZIC53gOvkewqSzDwx9H3lPWtgnTF0hYodYu31jDWG4xfOfyxpUfgvnzbBI20n+GNYet4SuFfIYbL08VEaGd0kstqSPn51Fv0W1inv/d3TmjM9bNulwqY4WK6gVrlVQw8iaVCtsdoZ6hZKmkHazpxM1+rksatsTIdJE1lHH67rm3utXr+De66kUajF7ujGvwp5deA6BjUals+fMHCTXrkxAvFhE3f/YjhzE3WksozyP2vcLl68aZezdNwpx3xDmlIinVjWnfmh7viOxQgmxQkv1FU/Q/uo29p9YpNUERTlMPOwvjUXKIUB69BrlLeC5RUTE99HX4VBdRaPoTUqkcBx0duDnrQbGjRq2pYjI40+egvjqBOafmM+jL+idb7kH4ibN008/f8Ioo1rF+k0kUaPMdeGEcOxFaLy6rtk+Hd09eF5U39HlY9ivkk/q9Q6vVbU653bA6/Vc7K81mo/sFvNRfyd6xMK9GDcb2I6d/TjOxy/hfOZR/+vuwflMRCRC67hHZpIqeaFC5FGcGsf5rZUXLhzGvxXyeEzXxXOoVLBusln0QiVSZg6cuI19cvLyWYiD8OrrxSL65rYEK1jjk+B8E6/pgHgI4xg3LsO4D2oHfD/HOVlaXGjAn6H736dfOg9xsYR956MfQM/G7XtMH5w08xDW53GcZOM4r2dzeIxsDO814jEzH4jn0/0GedG85mqfbjZaJIp6FfQXDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nY29PvvdclIfc3PiT79xuW5+BNLK+mUZfFWeiS/omM2fZJO+bTFa0vpFP0Ut45MidO0s3TKC1huY2qG1pNO8Ra7652TKd8S8daVTtH2tlRX/EjJW7a1wqNtMNdKpxrLfYHlRDeD62Ws/Zm/XsefpRv0Uze/LmJKp2o1fA9vE1ur4s+bVXq/Y5nDp1oj+RWdh13DY3KZwtIp+sm/2eK6jPMK8XXhMXzqDAH9XM/1IiJSp59JfdLO8TlUwlhmrY6fr7sttumlY8So/tdu6Vxevqat6H9ry6muOSfXxfPzSI7YqK+v7eR6a1C9OD5JW5rUn1pIyHyaX1g6RQovcxys0+9bbSnJ/aNJ47Hp3njssXSKP790DPeG77Gpbll6W62y1MUsw6JtwZtU3767VJfX62Sr+9/i4qLxt+ustw61okZbXJrSKfeGr9slU75TKuMxQyWUA7oknbI8rONSFeMESYQiUVNyFCHZnEdb41ebJJ2irfKLdB1Bi/4XIulUqYznaUqnsB7KtNV5pWpuD8rboReLKFMM1qgcS8vnvJVr8Np7F3N725twHuscstW9UtBKU/8dFLnO7dryh6gueCjSQTh1A8+xJZZgL30IwgbJbh26KbTDOFatMPZHt8U2vT5Jpxzaot1vrs7zxeXtmTfS7lawgXddvXpVhoeH1z2Y8sbjypUrMjQ0tP4bvwO0/ymvxlb0PxHtg0prtP8p242uwcp2spH+t6EHDd/3ZXx8XNLp9Gv61kT53iMIAikWizI4OGgk+ms32v8UZiv7n4j2QQXR/qdsN7oGK9vJZvrfhh40FEVRFEVRFEVRNoOawRVFURRFURRFaTv6oKEoiqIoiqIoStvRBw1FURRFURRFUdrOG+ZB4y1veYv87M/+7HafhqLcEO2nylYTBIH8xE/8hHR2doplWfLiiy9u9ykp34Po3Ka8HlmvX46NjcnnP//5TR/3l37pl+TIkSOv+by+l9hQHg1FURTle5MvfvGL8gd/8Afy9a9/XXbt2iXd3d3bfUqKoiivC5555hlJJpPbfRrf1eiDxmuk0WhIJBJZ/42K8jpC+63CnDt3TgYGBuSBBx5o+br2GeX1iPZLZSvo6em54evNZlPC4fAN3/NG5w0jnRJZ2gv6F37hF6Szs1P6+/vll37pl1Zeu3z5srz//e+XVColmUxGPvjBD8rU1NTK69d/Bvu93/s92blzp8RiMRER+dM//VO57bbbJB6PS1dXlzz66KOQAfT3fu/35ODBgxKLxeTAgQPyH/7Df9iy61Ve35TLZfnIRz4iqVRKBgYG5LOf/Sy8Xq/X5Z//838uO3bskGQyKW9605vk61//OrznW9/6ljz88MMSj8dleHhYfuZnfgb639jYmPzqr/6qfOQjH5FMJiM/8RM/sRWXpnyX8OM//uPy0z/903L58mWxLEvGxsbkLW95i3ziE5+Qn/3Zn5Xu7m555zvfKSIi3/jGN+Tee++VaDQqAwMD8i/+xb+A7NrFYlE+/OEPSzKZlIGBAfnc5z6nchkF0DVYeT3iuq584hOfkGw2K93d3fJv/s2/Wcl4zdIpy7LkP/7H/yg/8AM/IMlkUv7dv/t3IiLy67/+69LX1yfpdFo++tGPSq1Wa1XUG5PgDcIjjzwSZDKZ4Jd+6ZeC06dPB//lv/yXwLKs4Etf+lLgeV5w5MiR4KGHHgqeffbZ4Mknnwzuuuuu4JFHHln5/Gc+85kgmUwG73rXu4Lnn38+OHr0aDA+Ph6EQqHgt37rt4ILFy4EL730UvA7v/M7QbFYDIIgCL7whS8EAwMDwZ/92Z8F58+fD/7sz/4s6OzsDP7gD/5gm2pBeT3xUz/1U8HIyEjwla98JXjppZeC973vfUE6nQ4++clPBkEQBB/72MeCBx54IPjmN78ZnD17NviN3/iNIBqNBqdPnw6CIAjOnj0bJJPJ4HOf+1xw+vTp4Nvf/nZwxx13BD/+4z++Usbo6GiQyWSC3/zN3wzOnj0bnD17djsuVXmdks/ng1/5lV8JhoaGgomJiWB6ejp45JFHglQqFXzqU58KTp48GZw8eTK4evVqkEgkgo9//OPBiRMngj//8z8Puru7g8985jMrx/rYxz4WjI6OBl/5yleCl19+OfjABz4A/Vl5Y6NrsPJ65Pp898lPfjI4efJk8IUvfCFIJBLBf/pP/ykIgqU19HOf+9zK+0Uk6O3tDX7/938/OHfuXHDp0qXgj/7oj4JoNBr83u/9XnDy5Mng05/+dJBOp4PDhw9vz0W9znhDPWg89NBD8Ld77rkn+MVf/MXgS1/6UuA4TnD58uWV144dOxaISPD0008HQbA0yYXD4WB6enrlPc8991wgIsHFixdblrl79+7gv//3/w5/+9Vf/dXg/vvvb9dlKd+lFIvFIBKJBH/8x3+88re5ubkgHo8Hn/zkJ4NLly4FjuME165dg8+9/e1vD/7lv/yXQRAEwUc/+tHgJ37iJ+D1xx57LLBtO6hWq0EQLE2SP/iDP3iTr0b5buZzn/tcMDo6uhI/8sgjwR133AHv+Vf/6l8F+/fvD3zfX/nb7/zO7wSpVCrwPC9YXFwMwuFw8Cd/8icrr+fz+SCRSOiDhhIEga7ByuuTRx55JDh48CDMbb/4i78YHDx4MAiC1g8aP/uzPwvHuP/++4OPf/zj8Lc3velN+qCxzBtKOnX77bdDPDAwINPT03LixAkZHh6W4eHhldcOHTokuVxOTpw4sfK30dFR0OsdPnxY3v72t8ttt90mP/IjPyK/+7u/KwsLCyKyJIs5d+6cfPSjH5VUKrXy/6/92q/JuXPnbvKVKq93zp07J41GQ970pjet/K2zs1P2798vIiIvv/yyeJ4n+/btg/7zjW98Y6X/HD16VP7gD/4AXn/nO98pvu/LhQsXVo579913b+3FKd/13HXXXRCfOHFC7r//frEsa+VvDz74oJRKJbl69aqcP39ems2m3HvvvSuvZ7PZlf6sKCK6BiuvT+677z6Y2+6//345c+aMeJ7X8v28pp44cQLW8uvHUJZ4Q5nB2bBjWZb4vr/hz/POA47jyJe//GV5/PHH5Utf+pL89m//tnz605+Wp556ShKJhIiI/O7v/q7RAR3HeY1XoLxRKJVK4jiOPPfcc0Z/SaVSK+/5yZ/8SfmZn/kZ4/MjIyMr/9YdM5TNon1GuRnoGqx8L6Dz4+Z4Q/2i8WocPHhQrly5IleuXFn52/HjxyWfz8uhQ4du+FnLsuTBBx+UX/7lX5YXXnhBIpGI/Pmf/7n09fXJ4OCgnD9/Xvbs2QP/79y582ZfkvI6Z/fu3RIOh+Wpp55a+dvCwoKcPn1aRETuuOMO8TxPpqenjf7T398vIiJ33nmnHD9+3Hh9z549uhuL0lYOHjwoTzzxxIpBUkTk29/+tqTTaRkaGpJdu3ZJOByWZ555ZuX1QqGw0p8V5UboGqxsJ2vXYRGRJ598Uvbu3bvhB9KDBw+2PIayxBvqF41X49FHH5XbbrtNPvzhD8vnP/95cV1XPv7xj8sjjzxyQ9nJU089JV/96lflHe94h/T29spTTz0lMzMzcvDgQRER+eVf/mX5mZ/5Gclms/Kud71L6vW6PPvss7KwsCA/93M/t1WXp7wOSaVS8tGPflQ+9alPSVdXl/T29sqnP/1pse2lZ/99+/bJhz/8YfnIRz4in/3sZ+WOO+6QmZkZ+epXvyq33367vPe975Vf/MVflPvuu08+8YlPyMc+9jFJJpNy/Phx+fKXvyz//t//+22+QuV7iY9//OPy+c9/Xn76p39aPvGJT8ipU6fkM5/5jPzcz/2c2LYt6XRa/vE//sfyqU99Sjo7O6W3t1c+85nPiG3bIElQlFboGqxsJ5cvX5af+7mfk5/8yZ+U559/Xn77t3/b2AXyRnzyk5+UH//xH5e7775bHnzwQfnDP/xDOXbsmOzatesmnvV3D/qgIUvfiPzlX/6l/PRP/7S8+c1vFtu25V3vepf89m//9g0/l8lk5Jvf/KZ8/vOfl8XFRRkdHZXPfvaz8u53v1tERD72sY9JIpGQ3/iN35BPfepTkkwm5bbbbtPtHhUREfmN3/gNKZVK8v3f//2STqfl53/+56VQKKy8/p//83+WX/u1X5Of//mfl2vXrkl3d7fcd9998r73vU9ElvTO3/jGN+TTn/60PPzwwxIEgezevVs+9KEPbdclKd+j7NixQ/72b/9WPvWpT8nhw4els7NTPvrRj8q//tf/euU9v/VbvyX/7J/9M3nf+94nmUxGfuEXfkGuXLmysg2porwaugYr28lHPvIRqVarcu+994rjOPLJT35yU1vBf+hDH5Jz587JL/zCL0itVpMf/uEflp/6qZ+Sv/u7v7uJZ/3dgxWs/S1cURRFUdpAuVyWHTt2yGc/+1n56Ec/ut2noyiKomwD+ouGoiiK8h3zwgsvyMmTJ+Xee++VQqEgv/IrvyIiIu9///u3+cwURVGU7UIfNBRFUZS28Ju/+Zty6tQpiUQictddd8ljjz0m3d3d231aiqIoyjah0ilFURRFURRFUdqObm+rKIqiKIqiKErb0QcNRVEURVEURVHajj5oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ0NbW/r+76Mj49LOp0Wy7Ju9jkp3wUEQSDFYlEGBwfFtm/u86r2P4XZyv4non1QQbT/KduNrsHKdrKZ/rehB43x8XEZHh5uy8kp31tcuXJFhoaGbmoZ2v+UV2Mr+p+I9kGlNdr/lO1G12BlO9lI/9vQg0Y6nRYRke9/cL+EQ46IiOSyaXhPqVyFuNbwjeOUqw2IFytlfIPnQpiMRiEOhyMQ1xv4fhGRBTqPchNfDzt4jFgsDrErmFZkxxgOrrc8+pBRZk9fJ8SpeALi/r4BiLPpLMQWKdgC30xtUvfwb5EInnejVoH4/PGjEF84gXFPB56jiEjfIF6rF8lA3D+ye+Xf5XJZ3vGOH1zpGzeT62U8+djXJJVKiYjIyy8+Be8p5uchtlyzDstF7H+RRAri7kFsp1uOHIG4s5MSjwXmU3ywzpc9nLbGTGODsUVFtPrmgL9hWi/2PA9i38f4tWTWWa/MjeA4zg1fX1tXxWJR9u47sCX9T2S1D144f3bl39Y63+K0qgOjvek9AbW/Y+MUbcnWf5u4kbZcr19/r30Luri4KCMjI1ve//7q6/9OkqmYiIhk4oPwnngC57czxy8axylPhyG+VroA8S23PAzxrp04Jz559GsQX5qdNcoonsV4oD8HcUdXH8QXJ56BONmFfWfX/oMQT03WjTJ55ogncT1wS7henroyBXE9tAfiXBrXdBGRf/Tmt0EcCmFdnj2PdZML1SCOhHHNzV+bNsro6toFseXi3GzFelf+XSpX5KF3fnBL1+BHH75FQsv3gIV5rONoGOsjGzbn83KxCPGugwcg7h3dCfFCEe8RCwuLENdrdIMnIsPDoxAn03gf0zeA4yZM5zk9OQ5xfh77eFdXj1Gm7eD8NjtHbWvh/XC1XILYb2BfsXzz3paKkFJhAeId/Xhe6WwO4rqL53Di1HmjjImpAsTRGN4v9w2s3gM1mq78z7/49ob634YeNK4vEuGQs/KgEQnjRyMhbCzPNxeWEL0n5PBCbd/w9TCX4ZkPMw4t/lyE8Trd3PBCH6brjMVjRpmJRJxinFBSqSTE6TTe4PKDht/iQSNMN86RKD1ohPAYfE6xKHaYeAwf4kREkvQZjx5m+DpEtuYG4noZqVRqpe74+rw6tkurBw2/iXUUieFnuN14AGUyOGHpg8bGy9wIm3nQ+E7KeS1cLyedTq/0A33QWOWN9qBxna3uf8lUTJKppbkvRfNVIol9JZk016oggTeDcQ/XhWSK50Cc8xN0zFgFPy8i0qClJR7HPxhrU5y+/Etg30mksMy4uQyJQ8MqkcRjuj6eQ5TKlBBdF52jiLkehOjG+nq7XCcVwr4RCePrzRbtk6b6t5r0oNHi4rdyDQ6tuQfk+7NQ6Mb3ayIiYfoM30fyfUq0Tl8ORrDOfc9cE6J0jBh9YR2PYzvwg0aM7o2M47W4d+IHDf4MP2j4TboOoXZucf/sWHitDT7vaJhiPAfLwXPguhcx79G5DVt9ZiP9T83giqIoiqIoiqK0nQ39onGdSCK98kQztms3vNZs4k9YTsj8puPqJP6cdOr8JXwDSacs+ubVoSe4RIsn5vkK/gTlWvxNGx7TreBPWNkc/mT6Dz/4YxC/+33vNcrk57lohL6BIXmWzU+A/FBum7/U8HmPX8Of957+e/zZ9sRzj0OcsrFeop3487WISDxEP+9hkdKT61/5d8zBn0C3gqnpCSmVl77ReenEC/BaXwZ/JYp7Zt8ozGBbF6r0E+kC/kQapna69ci9ECfpp0kRES+gPsxNTW29nonKog/wrxEtP7PONwytfhnAz7f61eTGx1jvG+yN/OLh+2a/f7Uy1nvvzaJUL4tdX6qfGP0ixm1pt6hHMeYjfJlbhr/Z4l84lDcW8WhaEsvrSYy+HY47OKffcqf5zWsdlRFySxM/09GxH+JkfAfEj9zRC/HY3CtGGRcyxyEe6tgLcTOEJzFp4bfWDW8C4lOn8T7BDfAcRURCIfy1OZrrgHhBcK7fv+sWiOuC9yaOjecgIuJGxiDuzeJ6MLLzHoi/8vTvQDxA53jbXvNeQsI5CLsyKIdZO/6Ti1u/Bocde+VXiYFevFfK0a8xldmrxucTnThn8g8S9Sau21H6BWN26jTEzYa5lnVlsQy3gbJyK0Lf0tOvEX4d5VqOi/dOxYJZ7739KMfq6cax2WziMWJ0DvEonkPIaqHIcHGcpPdgmQmaD8o1lBgGdG+SSZn36M4oyuebLn5mYs09fNNd/17kOvqLhqIoiqIoiqIobUcfNBRFURRFURRFaTv6oKEoiqIoiqIoStvZlOA3m+tccf3v3YfbkoVoh4UrV68Yn0+VUDM6PIh6z/w8btflNVCTZtMuD17QwgEfQn1dlNz8CXLiZ5O4k8Q99z4A8Z233obn0GJLXbeJ59mkbcQC0rlZDu3YRbsieK65Zdsr5Lm4dAo9Cs151KB257CuxEJNYDdt8SYiYpO3pFkl3eCaXahCEbMebjbZnlFJpZbaa24R261RQj3i3l5Tf2jbWK+D/V0Q79+H+sRqaQbiiau4Hdzu9GHzJNfxR/DLpneBP3DDw4nIRnayWq9MjDeS/KndZW7kM5v9/M3g61/7u5Vdcx56ELe67uikLTFbeDR88tg0aFeVmRnsc2O7cJ5V3tgkrKwkrSUtfMhC7XmDBO++bXo0gvQcxBEHteOBhdvD24L9M5sm/2Hd1KsfOIK+gt7cCMRPnXgM4olxXPct8l8lYrRTVsaca2za1UfI21Qnw+HIbtxifjHA9TMbyhllVOyvQjxRQl9HrYm+kHgSPRnjBRrbXt4ow6/htSWTOKdk1qzBTmjr/Vq5TGrFp5ugrb7mp69B3JM1d9VqCLYlWyzqdVzHM0lsx1v24XbLXovbkFwW+322E9u64WBfmB7HtpcGnkOU/MatfXJ4f9XTTVs4X8J7h3PnsK7278XtlZ2wuXbEY3gdMdpBrtrAe98SbYE5U8Kx7kdpF00RiVK5VgPvmYZGxlb+3Wg0RQT9WK+G/qKhKIqiKIqiKErb0QcNRVEURVEURVHajj5oKIqiKIqiKIrSdjYl8lso5Ff0eVcuX4TXOPvnqbNmevPL41MQd9Je17ffgn6IRBRPb5rSul+dzhtlpEgXKZTyfvcA6kdv34cp73s78dnr8b/5rxA3W/gn8vN4HpEYnkM8g9q6hTJqaw/dfhfE/d1YLyIik9dOQTyyA98z6aA+79IV3Hv8yBHc43tgYMgo49ylSYg7BtGzkFmbN6JVjoCbTFdnn6SXszKP7TkCrz3zTcwjkrBNDX+CvDC5DMZzU3j9YfLvNOu0H3dgCkQtm/J3rJspnPw8fLwbf/ymsJ7fQsTMY7HeZ/j1VlnAvxuyR8+PT0h1OX/Gs499G15793veA7HdYi/0hWmcwx77+7+HmNODDPTiGIymTF0t891Qj8prI+JHJLKc5dpxUKNtuzifxSLkGRKRy3Poh5haQM/G4V2oR5+Yx3XcCpGGPmZ64URwvbMEO/VCHvMV1WqY36g3hWvT6A7MeTE0esgo8dkTL0L8tcefw2OkMB9Ix62ooc9GcKymwub8JMEZCL0GrrFRH3M5vf3IhyC+cg317IkQvl9EJNeJWv0wtbHXLK/5N65HW0FPZ8dKbovKPOYa8WuLEKf6zHuMoo/9pUHrgNvAHCvJLL7/tjux7QsFSgwjIhcuXIB4dgLn3EaA2dXLi+hdSND9mxXF/CBd3ejtFBFJpTFXmmXz3I/3Cn19OK/392NeumtXLhplzJepbjJ4XnUfywgcPKd4Zw7iziF8XUSkkkcf0fQU1l04vDrH2CHzXvjV0F80FEVRFEVRFEVpO/qgoSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nY2ZQa3raX/RUQWFtBUtriIpp7FApqTRUTEwuKuTaD5tllGo9kj9x2B+NBeTJB29ryZFPCb33oW4oiDhqkuBxMSZQQNTO4CxeTp8Qy7rkhhCg11s1N4jFAUDV0lSkpz6ZVnIH74zQ8bZRw+gkb5qVk01D32jach7u6gRD9krH/maawnEZGaoJnwyENolI/EVl+PNMxkUDcb3/dWEp41XDJmk5nPa+WH5ew+lJinoxcTSNoJNI1ZDj6Xuy3M4PY6JnnTqLue8br9xt6NmL2/02OuZ0hmM7nIxhIFbjeL+YI0osvmQUrMefEUmkUNP6CI/I8//EOIiwXcrOK+++6DOBrBcbbZela+t0jF+iUdWzIR2yGcn8RDc2azZHbAyatoKP27J/4SX9+H/TFJG2LcduBuiEOCc6aISE1wXQ9CaBrOJvA89wzh2tasozm3v2cXxFHbTARnB3j/Yfto6K2XMUnb1ctocu3qykEcy5pG2V7rCMTk0xbHwTU3HMINW7KjeB2t5v4QJYcLPNp0w1qdD6yIOYfebC5dvCjh0FJdh5t4n9OZwjrzfPP2supj2xWqeJ/Ym8M1IOzh/VpYyKjtmYb4XBrbulbDe9XSLN6v9XaNQuzEclhGCDc3mJzG/iwi0uHieY6P472pTckNMzk0lDc8rIdEmjqXiOToM7xaNupY36EoGdRDuJbEk2gmFxHJJPAYuU4sczG/ep41uo+9Ea//lV1RFEVRFEVRlO869EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nU15NCKR2ErCvnIVdZbJJGoLW0iwZWEWk4FYlFRtuoaaryefxIRY3/cI6kP3DeWMMpqHMDFPNDqCZfp43m4tD3HFRd19hJK11FxTlx8l/0Mygfq6ENXyQF83xLNzqIt9+cUnjDKq1XmI52byEHeSn8AJsC7/6q//DOJ0L+tFRX7wH/5fEA+OYBKZtfLwmyDzX5eTZ85LMrmkTz55+iS81tODyY92jppJdXooYd/CDNbp9OQ1iJNdmNzRpmSQzaapUYxHUYPqeZ7xnhvxWjT3/Jnv1IPR6hza7etoVQb/rd3X1Q6cWFyc5YR9R09iH3zh5VcgvvN29JSJiMTTqPe9RsmkjrzpfogtSmi1/TWgbCfxbK/EM0u+CcsyfQRr+crXf9/42zefRk/G9Gwe4smpP4H4n3zoUxB3ZHB9PXkWE+OJiGT7cNyGXVwAd/fthzhSRQ39+Wlc96emX4K4ccVMaBsT1MjvG8P1oFnAeThK6/rCAs7lzbqZsG8wi36UcJjqnzwTno/nFDTxdd8yb7+sAOvO9/G8QpHVdd6yWiQVvNnUiiKhpe+n7TCef6mO11fJm+ujH8f1MUP3SpkkXn8ijjPe3OxViO2wub5msrjODw1ju6WS6FMqVchP7JO3IcDrtFusXfPz6EsqlfDeIpOl+8gqnsPCAl7n4GC/UQYntlwkP3GS+nRfP95nZihxdLls+qjPX0b/ydQsnmdX95rzskwfyauhv2goiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nU15NOLRmEQiS7qsOiWYCCqox9u1E/X9IiKjo7hfcb2JeyD3d/dBXF6YgvjUmdMQD9De1yIifeR/yBdRx1asYJku6SabdfRgRF3c07vewnxSIW2iT/koPBJWl2r4h6qHWrdzJy8bZRw7cwHiN917J8RvffRRiBs+HvOeBO7xPbb/iFFG/w7Mm+HR3uRrlYn+NojFv/6NxyS6rI8vlVD/etuuvRA3Kqj7FREpB6Qh5batYt+IxtH3kr82DvEpGzX5IiJ7Dx+BOJ5A3aRPno31fAmMtYG8Goa3gfvsJsvcCOtdx0ZyZHw35IiIdnVKLL6k4Z164QV4rb8HPT3VFud/y73oMzt835sg3rEHvVMBH+P1VyXKFuJ7vvjLuRUKedyrv1DG+evYiePG53sywxB3x4YgrgWXIB4bzkGcn0cfWySEc6iISDo8AHEQ4LqeTuA4P3wLrtnFEF7H6bPoheruNLXlmU7U4Q8m8bqaM+TBKGD8xPHHIL6UN+f2D7z1n0D86AMfhDjUaEDMeQskgdp/3zXvJZwQDvCQhb7AtUuYFWy9R+P2Q7slFlm6bXz5JPa/SfJkdPSYt5fRJq7bzRq2daULfQTTlBsmHsH6icTNCTEUwXsf9sI0AyqT1v1Uku4Jy3gvEU9hfxYR8cgv09eN6/7MDHrxkkns8/t274M4mzN9SFMzeO/Q0Yc+pEYVx+K5KxchftPdeM+YSGDfEhEJO3iP3vSwjc+dP79aXgPb5kboLxqKoiiKoiiKorQdfdBQFEVRFEVRFKXt6IOGoiiKoiiKoihtZ3MejXhMosv6N5e0c5UK7vFbJr2oiEgmg5qwjk7UNDsx1Jz1jOYgHr+Mz0VHz6J+TERk3070GVQbqJ1zA9zHWWzUi3qk5ytUUBfXbLF3cLGK2kzeL9v2UUfYbOAxZ4sY5+tms8TjqO/sHr4F4pEDuP9+Vz/WA/tGjr9y1ChjejoP8dAoHiOdWdUN1hstEqXcZE6ePSfhyFK+lkYDvTSTE7MQBxFTP1hZRA3jyAjuVd2gPtus4zEiIdSgXj3+slFGvYT64V23HoK4ox/LtEl0b1G1sgw3aJVJYR2/DL9skRdiI/kp1nvPen6K1+K/4M+sjbcrp8aeoZ2STC7pb6+OoJ717jvvgLivF+c3EZFu+tvYGHrZnBiOU9pW34hbtv2676E/GAfdSCE35vXor/leoFGvS6O+NAceP/oMvDY5i/6JVM3U8B/adxDiS5dPQdw5/CDENfJenn3lryDOREwt+bln/yfE2V3olzhw+z/C1xNpiPf3o5b88pnzEE9fNNeuqxW8d/A8vFeokZXEJl9k08V4kfJyiIg8fvJxiC9expwOH3z3hyFORNFvULiK3st4Bj2AIiJWgOtakvKWOJHVfGUBLxZbQNVzxPeW7k8iacxVtXgN/bBdEcytJiJSb2C95jLYbiOj6FE7f/YYxP078fVE2pybJqawXZoNvDew6B4vkcQ5t6cX28Ulk+3ZC3hOIiKWjcfo68V2yw7hvJ/IYN31UZmeMSeLBJQyhNfA0yfxvOamMSdGk3J73HXkdqOM7g4cz/e/6QjEAwOr3pJqtSa//1/+2DhGK/QXDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLazKY9Gs1EVW5Y0hLz3cKWKWk7fN/WhlTK+Z3J6DuI0eTZ++IOo5Tx8z5sh/uMv/IFRxomLmHvj9oN7IHYbeA4LCwWIF0uokZyYLULsRMjjISIe5UYQFz0buSxqNRuUg2S6gPUQjZtlPPzo90H8nh/+MYh3jKB20QuwaSeuon736a/9tVHGzATuod7VOwjxwNhqropK1dSw3mwqi1UJhZfqOhJFTe3lq6jLTO9EjaSIiBOgZjTwSUNqo+Y1nsTncMdB3WS0hn1FRKQ2judxrIC6yF23oS5yjPbPDmwcNx57EVpI3631PBrr+Bna4XfYrCb/tXg0Xg88eO+9K16zdAjHWL2GPrVYyJwDE6RbjkT4PZRnhT085JdoIeVtUW90jPU8G5qs43VLLJ6TWHyp/9395vfBa40S7tVfyJu5hKo2ejL23IMeskwEfXkvPvstiBMOeormr5k5n/LzuN7FE+hLm0vPQHw+/yTE33riyxB7Do6za2dM/50bTEKc60TNe51yXDzwKN5bjA3vh/iZM181yph4BctoCHoSAge9Jk+ffwriOOWZ2LkLfZYiIvUyrhcz41i/2a7VHCXFIs43W8G3nz0lIWdpXXzwkbfCa/OcH6xh5liJUD6lhTxeg+vhfBgOo5fh5WPYx+++Z8w8Sbr3sSnHRW8P5rAI0xw8v4D907JxTh7sN2+biwX0ZuZnzkGcSKD3wfPx/RfOUV1ZOIZERDKUA8en/FipGJ5XdgTvgcLkRw5cs30m6R7QSWH+taEdq/fo5fLG7wH1Fw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2symPxtzsjETCS3q2YhH1WTXKaxCKYN4HEZFoDP8Wj6GO8o477oX47nsegjhNey4nk+Y+1N/4uz+H2PHRYzE9jfq7xSJ6TWp11FE2PNTBWU1z72q+9lqFjkl+FZ80g8kUajvf/Ja3GWX8k3/6kxCPjqGWNqCECw49Q/b2of+ldwhzAIiInHgF92WP+uhfKfir/pdqHTWvW4HVDMRe1p83yGsjXdg3XjqHWkMRkZ4E1VEY976OR3A4hEjM3t+NOss5D+tHRKTuo54zSn3h5Fe/CXFA9Th8G+p2Q4JelMA3fQsW6V79dfIe2OSPYL+EbZvfP6yXB2M9z8VG3s+aU37P68GzEQpHJBRe8llEo9h/ykXUV9daSFhrFdTmFhbwM7EkzgXRBM5xNu0B36rWfaOeuD1N7wgdgWL1bLxe8PyGeP7S3BeLYP9zogmIY33m+liukvabcjEUC5hzICqo475wDj0D43PoWxARGR4aovhWiCO0/p2l/f4vXsL40D78/N333maU+eLRb0C8exS9mfWr6AWw53H9+Pox9KKMj6MXQERk9gpe+7s//n6Ii5TooCzoxyoIjn33iulvGR1AP0syhG1cK6/ez/BcshXYkbjYy96z2XweXrvtdmyXacpnISIyM4X9ZWIC78fGJ9CvGonlIH75SfS9dHSbftYdA+gr6CNPRoR8tokkrrGVCq7r9Qb2nWjYXIcinTj25mdx3Wfvzfw01k1HFe9TqzVsdxGRO+7og/jq1XGIBwbQU3v+zGmIE5SjqbCIZYqIxGi9WSzhItbwV9efSkU9GoqiKIqiKIqibCP6oKEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2NmUGF6+5ktSsWCQjiY1GEytkGmbKNTSW7dx3EOJHHn0HxOmO3A1PZ8/+PcbfLp5AM9XMpTzEIfI1NhuY/KdaxbjewOuotUhUV/fwM24TC1mcRXNRLpeDOJvFeGgUk++JiPQNjEDsk/nbNNfieSeSaMS/+63vNcpYrOF1NObQUN2RXi0jWiMz9hZgWZ5Y1pLx3qUEkW4DjXfRNJqzRETqVCdHT+D17R7FBDe9HWgwzxfQ4JVKtCijhEmcKnnsLyEHjWivPIXJqopVNPjdevgeiMNRSjIoIh6ZqIUSC7JZ3LD20lBtZbpezwy+3uvrHW8jn3k94LquuO5SHwyH0UToubgpRD0wEzo2G9gfFvNoEizRvJpIozk8FsM+F4+bfdAJUWJKY3MA6i8B9o9WSQCV1weWrI7fRgmNs56PDed75oYd1y5hIrEImY0L81cgblQ4MS8aUPP5s0YZuS7sT6UmmrsnT6IR9vzlMxD39mCfzy4nKLzOnYfvNsqsLeIxavNYxuULWBfTc1+H+PhVrMtXzuJ1ioi89z24OU1kB24OcvQUzuVjg7jhyuMnX4H44sxxo4zKyF6I9+8egzjbt2q0t8Jbn7Cvp3dAwuGl28aZaUyO3JFDI3Fnp5l0rlSipKYJbOvpGVw/R8fwGB/4EBrwow6+X0SkO4vz8rkz5yEOaAOE7h5sx+Ii3qd2daOZ3GmVIZfmUN/F/uTT2JwrYjJNO8B7L79prh2vHH0C3+NgfSeyYxAvlPA6CkUc25GouWFTdz/e88QpiXY0tdoeno1zw43QXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazuY8GhKILGurwxHUATc8fGbxzLx2EiU98d0PvhXikV37Ia6RZ8DyUBO2MGUmvHHr5KEgHZsbQr3nbA018TPk0ah4eJ0u+TFERBoNvNgIJSZMxVCXH6fEKYk4xpcuoqZQRGRiAnWuw8Pk2fBR0xcOkWaQEr2NDmFyFxGRD//jj0HskZ58fmpV41cslUTkt41j3FQcd8VkY9uYHMml7Gg+JZoSEenox2t2bWzb85dRl9usY+KfdBR9MakWPqSoYP+IprAvREljH4qinnTmDGqoj1axjFvvussoM5LGPh6QZ8PmUd5ibK6llVdivYR77LnYrGdjI6w95nYl73NCYXFCS23mepSk1MH+EW4xuwY0f/gN7KcNnxKhVtCzEaYkbUlK8Lf0HppvkjjncR8M6Psmi5IC3oy2VF4bzXpRmstdpppHjXzgkOa6ReLNaATnm0Qa9ekhC/t0hZKYdsxjgrVsGvXrIiIWzZNPfPur+LqLfTxN9wVje3COS8VIN26b/sCxAUxmtjiPGvhTHq6pxQVc90MhWsMj5vySIy/lufPHIJ6ZvAhxr4/nuZe8mYP7Dhtl1BcxUWC9huM/smbshpu4Bm4Ft956i8SWE5WeOHEUXisV0G9WrJoa/o5OXFOvXb4GcblC91+UQPk9D98H8YtPY98SMZMwJ+LYf/oHeyGemcM+XVxEP09XJ46rRBqPJyLS0YFekgL5PObmMBFmMoHHbJB/2bHNRIRuE/vCfJ6SUS/iuMp04tiskn+0UDV9IJMn8Z563+1YV669Ok4q1XVuJNagv2goiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nU15NILAkWA5f0M2i1q7YgU1ZlHSaYqIDA50QRwP43POS89+G+LL509DXCqgfjHqmPuEuzXcp5lTDFwcR63cxak8nhNpVsMO+UTqpj55Po95MmoN1L6lUqiRTqdQU5+MoW72/NmTRhlPPIF1kya9aCKJusEICfP5rO0WEvdQHHWDFukIM9nVullcNPevvtl0ZjMSWfYG5QNs53AUNY2VirnH+NwcakhT5J+ouqSft7EPN+m5/OoUajtFRCIB6mazGdTQp12s+AhpM0Nh9I2ce+k5iGdnsf+KiNz9trdhGbR/udfE63Ic7Bu2RXkUXoP/od15NpY/RbH/Kv/eOgLPl2DZgBYmE0Y4jP3FbpVHg9q7StVgc9s42DYNF+c8yzPLsCk3QrWC2t2ObtSz8172not92GllNlG2Ba/hibe8vtRq2BfOncN1YypvzoF93bgWlS9gvol6Def1GHkxSw2cM5NxXNNFRMIxHAe7dqJWfOfQMH6AfAjpLvTSxcjD6DXQXyEiMtiL+/3bcezj4ST67xrkBQiTF2V0wMwBMTuFfoJbLcyTce0C3q988zLmaXrTHfdDnE7idYmINEs4nn2aQ/KF1XuNYnHr82jc+6YHJJlc8omEItjO09NYx2cvYn2JiNg2+XF27Ya4Sp600iLO8//nL9GTkcuY95mdmRzEHlmXkhls24Dmy+GxAxCH6TrLi+a6XyrjeY+OYd/gulosUh+m5EXRsOnR2H/LIYgfexzvDWIO3gOODaGPt9kk76ZjrsERyhv3+NexvrNrfEb1unn//WroLxqKoiiKoiiKorQdfdBQFEVRFEVRFKXt6IOGoiiKoiiKoihtZ1PiWyscE2tZr5tyUEO2byfqLnfvNPfXzmZQCxcvn4F46jhqTGfGUeM3u4h7Y8dz6HUQEfFpa+nCLO6pHFioQevtQa9JnfKBzJVQB9lsmLo0i/Ym90iP3iCNfDSKulefjCSlPF6niMiX/vdfQDwziXXTTzkihoaGII5RLo9amfKNiEipiPpcj/TgtTU5RyoV8/M3mwceuE/iyz6Sr3z5G/CaQ36KdIu9rptN1Me7DdQoxuNYR1PTqMUcGeiHeHBkzCgjQb6jcgm1m4t1PIcU7X0fJ01uTwrHTLmAOlgRkRe+hTrKO9/8CMTJLHk2OMkNfd3A/VFExKY9+Tlm1vNktCqjxVFe9RjblcvBDjlih5b6Gvc5Pie7xTn67ANqYj2GyZNhUf4b9lvw8UREYokM/QWPuTA/B3EPaZQd8gkprx/KpXmxZSm3QCyNa1c0gnvgN8roHRQReeoS5pPwPJzjk5QbaJ48A5wLy2vkjTL6+tAf8dBDb8fX+3Ee9SiXTDSN/TdCeWGmr5l5pq5MvQLxt49ijouFApYRDnD+qdTIVxkzx4DfxLG3pxf9KekH3gLx/AzeO8wu4lqQncE8KCIiPYOYSywWR/9UY01dea6ZK+pmE4lGJLKcR+OOu+6B144eRc/AM8+9YHz+5MlTEN91150Qd/fgfeP5s5hX6sxpjA/uQx+CiEjXPehlSEbJs0b3eBPT6N08fDveS83NTELcbFHvVbq3CIfxnrC7G/vK+BVcx13yT7gN7CsiIosL6M/szpG3TrDPzk6hp9kJ49g9cMteo4yrV/G+Mmzj/LA4v5rPrdEw155XQ3/RUBRFURRFURSl7eiDhqIoiqIoiqIobUcfNBRFURRFURRFaTub8mh0dGQkuuxHuGUPauMOH9oFcSpm7m8sAWq6IqRj80mPnHRQE2lfxXiqbOrYagE+OxU91M71D6Ku9baOXojzi7i/8fQCav0939RdVyp1iOfm8xAHtEeykH69Qnvru3VTA3jpFGpQ566g1lF81JhaNpYZJp1iYGTWEKGPSDxG+5d7q+3XbJIZZgt4y1veLOn0ki5xYhz1hydOoL8nEjGfoaOkYWxUsa2tEPbH6/uFX6dSw/6bTptlJLtQizm0C8dFQO2UJ718YR51mNUi6qyTadRliohU8+glOfkiamNvuxf3b49Qu7KfgnM3LL2JQvrMZvNktHp9/Vwc/qu+d6uwLEcsa2lu6+nFuaO8iG1XK6L2V0SkSR6cgGK3iZrYUAjnUc/F90cCcy/+GvXrCM2JHsUF8oR1dGNOAsvIZ7I9/hhFZGp8QsrL89LuW++G1w5RnobeoZ3G57/+jS9D3Gzg2tWo4RpbprxULx9DjfzUrJlPKUQ5Kb702MsQDw2iDj9B3rg05ehyaD66cumiUeaZUycgLlWwT/dksc/m0jjX1yl3TD6fN8q4/dAeiFMhHP9d+w7j63djTq6JCfSWjF9Cj6qIyPw85QFzcHxnEqt1W27hs7zZvHLslRUv4/79WB/si3Sbpoa/hzwYMzO4dh04gDksdu5BH8HEBPolzl3B+wARkb4h9Fi8+c33Quzb2OfFwb4wQ56MOq3BoajpLyxR3q4C5Rmr17HMKOXVGOjGPn/5munfqeRxPRnoRS/Uk8+fhdj18P0jY5iz5NRJM1/b9DR6NDJp8kGvGUb1uno0FEVRFEVRFEXZRvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ1NeTQeeeCwJOJLmsHRftRuxUKocQw7pnY4GkUdmie0R28hDzHJkcUS1NJFHTOPRjyFOsFUDs8rSs9Wo6SzrpQw70bnHFaRbZv7a/NW9pfIPzAxjTr8ZhP1ek0Pz9FtUXeLTTwvm8rsSmM+BkvwmBbpXB2qSxGRrlwO4nicPA211XOoN6lxtoC+vm7JZJb2WP+RH/kheO0v/vIvIT53ztS/RrkOSCdZr2K7uKTbdckzsFDGNhERaU5in24EeIxUEtspksI+3EPxInmGrl67YpTJeVkaFu6nH4rhMW+54w58nbxSdgv7g0V5M26GR8L0bWyPD+NGWI4nlrPUprku9DIkp3F+K+RN/XDYpzwaHvbBWgn9WU0P3x9LoJ49HMH+JCIS2Kghthw8ZojMWKVyHuJIDOe8VDaHBVim/84jH5pl83sox0jAr5I/J2iRZ8Wi78W2IZfKdnmDrvO3/+dvV8b7exwc9720V3+5hYfxrY9gToupi+htqFrYv47/6f+G+MTJ0xDbIbMvcI6c8auXID55HM+bqzSRQG9cKIxlNDkPkIhhG2KbWb6I42igB9f9Pf2Yu+PKOPqtRER6etHz0jeKOSCmpjE3QnHiIsS1Kq4NgW/eS1wZx7qyBK/VX3PelcrW59F49tmnJbLs043HyWcwiJ6BXbtMjxCnT+rsRB/LJfLf7NpzEOIw5RV5/LG/N8o4cx59Bo++E+dl38Z1O5nNQ7wwjvdr8RjOscM7B4wyT5zCvC35Ano2SiX004To3iLWg2M3FjXntrkZPK/qBF5HkfKg9fSiH6avD/PXLJZaeAgbeMxoJ95Pz6zJLdZobPweUH/RUBRFURRFURSl7eiDhqIoiqIoiqIobUcfNBRFURRFURRFaTub8mj0xn1JJZZEdpVZ1B/HOlAHJ3Ezz0JAngyftJauRfv7J1G/F87i8Q50o85SxJTxnj2PewtXaG/nc+SfGL+C+xeX86hZy8ZNX0iSdPWsm87mUH8XCmO1+x7trW/jvs0iIi7tfZ9KoZZ2ZDAHMcmspSmop3RaSI27O1Cnms3idczPrurzapvYQ7ldeG5TvGVDzPAw6kE//KM/AvHXvvZV4/MvPvUkxCHKadFJ11slHeV0AfuKLJo6ysFu7KTsv+nqyEGcjGOfj0ZQt+tQzotEB/oCRETm51BrWZc8vuEC6qp5v/Pd+26B2HLMaSFgcS37AIRzXuDbWbfdKo/Gerk30LOxPVp5PwjEX744i/xaXd2ogb180dynfG4O92jPpnDMFXm+yWF/4hrivBsiIoGDY92n7fZter1Gc+Ksi14lO4SlJlI0EYtIwN9ZBaTd51RCFJu+oNefP+f1wLve/Y6V/D7VAnoCzsxcgHh4J+rbRURcGsYLFew/c+STnJzG/hqNoZ+r0SLnU5O122SY8MjUGKG8G14TjxmOoGcjl8V4CcpNVUG9ukfdaWoOX+f+29ltzrPZDrwfccJ40J4c5fBawOtym7hmj+27zSijozsHcWkB80wU13hIXc8c+zebSMSRyLK3cYbuAfsH0BNwz72Y50VE5NrVCToezqHhENbZxAT6LXYMj0H8wAOYO0ZEZPIqehTPnML8JXsO4DzdP4D3kUEDvU2nX8Z7SL+FL6mzG3N3NF18z8QkrtE2+dxmKJ9WuWb6P2sNvM/sHRjCeGQfxPEkXldHJ96HpjKmF7i8iG1aJW/JWutcKxvdq6G/aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLajDxqKoiiKoiiKorQdfdBQFEVRFEVRFKXtbMoMnohHJRFfMjRFsmgIzOTQKGU5ZkK4MiWs8X0svlTB5GTHT6AJhxOk8fFERLwGGslmrqKZKF9Fc0uFDL/5PJrE+jrR4HRlwkyYdu4SmvKsEJpsLDL+RClBWpTMRYstEsGVa3itvdlRiHcPofHHq+J1zBexbgsVcoiKyPQ8JpkRB689mlw14QWhrTeiBUGwkjDLIwN9Rwf2x+///vcZnx/asQPib375yxAXyfgYj2A7sQW20iphTRM/U1nE94R8bNtIFyVgI5NsNISGw1zKTNCWipMRjcyU+Vk04L3y0nP4OvX5Q7fcbpSR7cxB7Aa0gQG5v7nP8+utEp/ZNn/vwZ9p/e+tJPBDEizPWxZtsNBJc0UiaW4ccfUKjsMazUe+i3XQRYmcuE4adXMc22Tmt6L0GTLKhsNoyGxW0Ayen6H5Kmr2QTtESdiENwvAurJeU/u9en/YKq732+1K3HdhoiCJ+PLc62FfcpsYzxefNz4/PY2J6MoVNL6ePYNG2olJXNs6u3IQF0vmWtVYQGOrR5tuuDVKWhlg/wrTvGtTglunam404xh7D2D7hMM4rgr5BYhrZay7wUHTDB6lW5qpKawrt4Hr50AHzsvzeTQlT0/ixjMiIjVal8tlXGfja5IZ+tvwPXFXV+dKwsgXXngBXhsaQpP1jh14/SIijTr2hWgU75UqlHC5Vsfrj9ECmRswk+e5ZWyHJx/7FsSOfSvEu/fjRkazedyMx49gksAzZ3FMiIiMjeG1DgxgssJmE+fkGbqPTGTx9VwI7wtERJrT+J5QFNeXrj68ByxXaBMGumdqNs0NfXb0o8F8bhbHctheba96Y+MbAukvGoqiKIqiKIqitB190FAURVEURVEUpe3og4aiKIqiKIqiKG1nUx6NVDoj6eSSdizbhRrGCCWyq9RQVykiEpA+b2IS9V8vvHIK4pNnL0Ls0XNRvWHqZNMx1A+Xiqgjm5rJQ1wl3VoygZrBbBK1x/Wa6T0plFDfWXcxdhzSL1OZlA/LSC4kItKgTEvTpJ2bmkHtbSqCBy2R7rpYMnWuno91NTePOsJoZLVuGs0W/oSbjGVZK0ndWM/PCeFCYbOd7n3oQYhjKdRePvZ//g7i/DhqMcMe1mHSzDImERvrMJXA/tio5iF2a3gdVhTPabGEetNw2NRudmRyEHd2DUM8t4BJeI6fwcReFy5ehfjYyyeMMr7vXe+EeHTnCMQ+1YXHCf6I9ZPzmazVxW+XR8O2QmJbS9OmTVnofBv7nEXjXkSkSprjYh371I5+bLuA6snnRIgtdLbc89fqakVEAvLw+DTuwzR2FhdwbmmVzCwSJw8GiebZs8Nwc3ICSBGzzYNtSOq33R6Nv/6b/73SPvEELt+DpNHuzuWMz5eK6E1gf+DsPLZ1s4H903KwXWJJnK9ERKSAHiAJcK2x6Rhck03yTTaKOAd6rjkHsicooIESxHCe7cjiMeLsFWhhQfz6Y49DPLOI15nrQp1+cRd+fqGA/ot80fRXZTJYn3Ub19liaTWuVjeRMa1N2PbS/yIiefK5VMlvNjKEPlIRkdMnzkCcTFASuj70XBgejjJ6ih77xteNMkqL6LEYGcZ2CXzsC7UqJ4jEcdVN810pbM5lFy5dhHjnzjGIx3ZiZ7AE27VUwsSMbtAiaS6tsQsL6PG5QskNS1U8xr4DmJjXsc17uIUZSthHdROJrhk39sb7n/6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nY25dEIlv8TEQmRF8IKo5bOq5va4fFp1H89++LLEF8eR51aLJ6AOLBRV1kqmhqzwEN9ZzOEGkCSwEtAGulYFJ+9EjE8h2jY9J7w3tDlKl67HUEtWziM1d4kva/rmto3P0Bd65mL6B9YnMO67e3CrA+RRAbiZAL3qxYRSZEfJUx7Vtv2amwHm9fYf6es9WisSwsNte/inu+HDx+EeNco7n195iR6hs6cOg7x9OWLRhmlGezDHu2Lzv6cCuU8GB3CfawD2lN+YQE1qiIi5TpqZUsNFBgPD6Pu9YCNffqJJ16E+IXzrxhlPPE4vudtj74N4nf9wKMQZztaaLfX0Erjbv5tm4wYN8C2rdVxQDYny8a2bLXPeH4R/VthB+ebkV17sTwaZ+USt38rnxAe021ifyCJvFQpl0KDzqlCrg+3geNERCQUwbn5uo9lBYs09Pwd10aa2uJwc3PQRnK5rDe/XPeCsSdsq7jt0CGJxZbWWs/FuSVNXi2b1mQREa9JfYPaOpzAdSMaw7klHMM1Ipsz8xh0kM/IJZ8H534JfMoVQXMe5+ooks9ERKS0iD4Ot4GD0/PwmIGN5xBvYnsmAzNXzOQcrrknL6KHcWzXHohfOY7rRUcP5nHyDTeVSOEM+uXicRxXoTU5umq1jecxaBcdudxK/9u3B+eq2el5iB+4B/NTiIiI71GI9T48MgbxmTPo6Th9Auv0yjX0JYiIOA6Nc/IhVcgXOU3nXS6ixyNEczB7NkREFouYg+v0OfQ5Htx/BI9J3pOJ8+i5bdTNuWmA/XuUhy7h4tgNFvAYBbqubNL0msxRDpwarWE7hlfPwdlEMiT9RUNRFEVRFEVRlLajDxqKoiiKoiiKorQdfdBQFEVRFEVRFKXtbMqjIU5UxFnSDHq0T3WtgjrKk6fPGR//5uPPQTyfx32oIxHUjIUjqAedLqDWs940n5PKddRqzhZQl9akfec9F49Zq+J1RaOokZycMTXynKOCc0xwugWP9gkPhbAZ7BY6YZ+0jTXycUwU8PXFGupYs2nSwSbNPbyjpL9NJvDaM6lVbX9zG/JoSOAv/S8iQcACedqbvZVHw6P3UB+OpdG3cuT+eyG+4/4jEOcpl4mIyNVzlyE+eww1pedewXhhFvepnp/A/tugLeNdz+zzDRf7dGGS9uSmHAY7R1Bj//DDqO38+8eeNMrIduEe/VeojK989esQv+e96NmIs6fL3oi+Ht9jWfaaf2+9R0hk6YystcEaAvrDYhHnRBGRAu2dv2/vfogPHcY+V6O96V956QWIGzVzHEdoaERC2GfIwiFWgHNJmfIW1EhLXiqYGvlUrgvigAwsFh1j3TQUG/GAbbILvJY+47o4z12fV7bLo/Hud/+ApFJLvsNKGdspS3kzFstm33jiFdS8z85jW3YNoc+A87jkF3HOS1hmPey//U6IwyHKRVXBdd9zcW1Kx1G/XqB8FVevXjTKnJlEjXyJPsOGKo/HrtE3TC9mb18O4mIFB9Lps5if6NKlSxDfchjf392Lng0RkRrl2SlVKY/Jmn836uY53mzS6cyKb6S3tw9em5jANohETI/QyDD6DKIJ9PJduHAe4ldeQb/gwix6URsNsw527sQyJibwMyHBMbDvEK5NTbqHHOzph7hUNHOQjQwfgvgMeTSiUfLMduLCnk6h18RPmGXMkEcom+6G2HHQj1wjLxR7nqMxfL+IyO596FstFPF+F+6r1smNtBb9RUNRFEVRFEVRlLajDxqKoiiKoiiKorQdfdBQFEVRFEVRFKXtbMqjEY4mJBxd0rM1XRTZTkziXsRPfPtF4/Mnj6NmMUN77SfTtGf0OpLaOu0PLyKSn0Vt5hxpzOqkWwuTfjmVQh3bmcuonRsfRx2iiIhFoudINMJvgNClXAoexSHH1L455OPwSMPM+9JblJ/Bo/wi1RZ5ThoBHqPaQI15vriqh3RdU0N4s/F9b8Wrwp4VxmlZh6RVt0i328AcB8XZWYjdGmo3bYsMFCIy0I1addmJfgiL/DyL06h5np3DcVSP4Dn7nARBRIolPK+mj/3Jof30WTPd24ca1HvvR421iMj0Anqd/uG734vHDON8wL4j9mTYbBTYAKjr3x6PhljB0v9iejJ88jpU66aPKV/A+WdwaBfE8STqbmNJ7KO3HEGvw7NPPWGUUaxR3gzKlcD+qjjt6V6v4bindDoyNzVhlNndi33IiqDfybFJy8/Nt4Et2Y23rGv0uDGtPBv8N+6nhWXPX7mMc8VWkesZkHR6ad2cOYt+r5GODoj7BjAnj4jItdk8xDXS+dvDoxAnqPELL6DefeoaaupFRAaGUCM/MDAGcczBvmHkeaH+ms7mIO73R4wyU2nUwFfKeB9Qb1DujgDHgEVrcNnweIhICN8ztAv17B2lQXw7fdyn9XU2XxDGp3sFo4/CHLP1eYZK5ap4y7kvurown0RnJ85dV69iThARkd4+9HWcOoO+lrMX8R5xntbD0VHsn8WSWYfDI9g/JuiebZFyrnR3jUFcmMd7ozOnL0J87ZrZNw4eQq9dNIJ1k0pjPDuNdTM2gjlJanXTC3z5Kvl1KI/F7BzeS1y8iGP1llvwfntmBu9vRES6unEe37sbz+vs6ZMr/7Y34VPTXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazqY8GtFEUqLJJQ9DKIL6dNdHLeH0dN74fDKegTibwH1842F87glRDovARy1nuWLuU1+poHa2WiaPBu+7nMA9lHmv4Tzl4XBb6NLSKbwO9o7UG7QXu+AxOOdDs2n6D/yANfCo1WYt8Xr7vLf0MJA+1HGojDW+DzvY+jwangTivYouleSKcvbUGeM9s/N5iNNJbPtEgO126STuhS0eFtI3gHpRERFb0P8QIb3xwVtwv+2ZbtRRcpqMQ/fejceLmb6Q8+cwZ805iifG0Wd05vxZiKfnMSdGB2lvRUR27hyAOErJGrJZ1Eiz74jZSE6DVrlQth9PVvbkt3D65DFXrWKOFBERlzbw7+7BvfRtB/0SPu3/n+nEttl78FajjDMnXoZ4eo5y6sRxXDvUZ20br6vRwHHxrW990yhzZh7n2TvuexjL7MB+a7Y/dvyAB7S0vz+0Oh6fF+fR+OY3l6690mLt2QqmJselXFpab8I2zuGpFI5B3zfH4P13HIZ4eBDHdbmK62c2/maI/wf59r7y+GNGGRfJO9KZQk9GNtsJ8QzVpU2TYEDjKhLBeVtEJJXGukgkUY/eaOBYDKhuGrRmJzKYN0hEJET17QvVP82BvTmM2UtXaOEv4HxQmTiOm5HBVQ19rWbOLzebZDy1kkejsxPb0ab6uXzpivH5hXn0BTz57IsQ79l/AOIL59HDUadr3r9/n1HG4CB6ZSoV9Of0d6OX5NAt6K+YuILz4VPf+juIz5zF9VJE5Dz5ITo6sc/f/xDOh+cv4HUN9KC/qlIx84MU8jjH9vdnKaa8JvM4v3X34HVnE7gOiIhEyM/p0Xxg11djq4XP99XQXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHajj5oKIqiKIqiKIrSdjZlBhcnIpazZJSJk2mak4ckkpS0TsxEdskYmlGSZFKsUMKrhQU0NZaKphnKIoNfmMzDTUpcF6LEd+xBbFTRlMOGMJEWxkXyyLDvcT0frGWZz3/Xk+RcxydjvE1JtwIfz6lOiZnCYdMIFCLjcijAa7XWJAuyg40na2kXvsiKGTxMCeEmr6Dh+a///C+Nz5+/iglt+rrQHNWHXVoOHUCj2a79t0BsOWYd1mjzASdMxloySQ907oa4sxdNiNleNHg5ltn/7urBz9x+Bybcm56cgviJp74F8cuvvARxfMo0u8XIhO5QJ773vvsg5iSWzGsx9q416m7ETH4z8L2m+N71Ac5jEsdYsYjmTxER28Y+Ew7jnHjlMiZAq7l4zEQSx3ko0mKuoLF57MRJiHs7cxCPDaEhnROmCZlvQzHTjPtHf/I/If77x7CPPfTgWyEeGcFElskEmnetFv1cImT4peSqUZoDecOMcJjN+2YfZOP7Cy88D/GZM0ubTGyHEVdElnK0LZ/2yAgme4zG0IDqeaah1Alj2x3uwfmFR1WYzKGXTp+C+KVXXjDKmL2GJuALtK4/+MAjEE83sS6LVLe+i23SqLfYZIHM3T4llA1RwtAuMmrPFnDRrjZMo2s0juOitojJ5HhzmtI8bexApvZKzWwflzarCfWg4To9ujrXh9ytX4PjiaQk4kt9KJfDc+Mklteu4ZosIpJfwDU4RveEg7Q5wbWreAxeN8bGcB4REamRgdmlOTRfxKSAx0/gvBA0sK9UytS3AnNuOn8eE/DtDY/hMShRdDRG91Y2XldPj7kZwcWLlyH2mnieJ0/jJgzRKNYl11VQMzcjaNCGBaUFvBeIeqvXEfhqBlcURVEURVEUZRvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2NuXRePnoK5JcTtby4D2Y+MfxUROZTmISOxGRKvkd4nHU51nkG6iS5q9MCW6qZdRuiog45KGIUmK6JmnHI1wmJdmqNVGHZjlmlTkk9XVs1PQ5Fmm5ydPhkXaTE/otQUmM6NUG6VhDpAWPkl7Z99ZPCtjw6NrXaL9d1/z8zaZer0mktnQdEzOoj33lRUxSduo0Jq0TEXngkbdD/H3f9zaIzx5HPXZ+EftbcgCTpaWzOaMMK8B6YU1pQC1nsR6e2tnoGy0SmQlpzR3yrwyPYmLBjh68jkQKkwX9/de+ZhTRbGB9F/JfhZjH9gMPPQgx+7NaJpSksck+EPsGr20HtRrOT+OkSb52DXW7IiJ3330PxMMjwxD/1V+it+iVk6i7DYWwjqYnJ4wy8nOYFKtWRt1tivw2h29D71E0Qpr6t+I4+cF/gG0rIjK2GxNR/sVf/BXEX/jCFyCOhPEcPEqGybGIiBXFfh1Pokcjk8GEsElag7q6uoxjMuwD5IR9P/qjPyYiIqVSST7zmc+se7x2U23Uxa4v1cPLx1+B105TEjC7xVp1mfwTY9T/dg9hPHHtIsSl6iLEQ/39wjizk3iMcSzzHCX0C0ewnZol9Lk1XFyHmq08GuR943m1swP7RjyG80dzGo9Zp3sPEZEa3X9EyWPK/tDCIiV1pC7dlzGTr842cR71a3iM6enVuq3Vzfufm41l2Sse0sVFbKcTx7FdOyiBoYjp/9pBXq0w3aek0+jdchvodWjl9eO1ppeS4c3lj0F8+gy2da2I4+buu9F/mDo7bpR58e++BDH3vxdexHsLmzy2JZqjr17BMSQi0tWJfqpYFP1WtRquP2Oj6PPo6iJPzXwLj0UZx/cAjZtY56rvqFLbeP/TXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazqY8Gn/zN1+U6PJe5E4TtYORJOrx0gnTo1HO5yG2Elh8NJahGHXcmRTq9Sqt9gFuuvQX0nmTh6NO+1bXybtQIc9GuEUeDdvIe4Flhijfgk+v+7QHeOC38D8Y2nw8BksVG+QtqdHno1Ezzwkn+HBbnccyXrD1Hg1xl/8XEZv22b/18B0QT06j1lpEZGQE8wV096Bmu+ct3wfxuXOY06BSxTpNplp5aehv61kJKD8KWw9CFAdBqwNi2/JZ1clPE4vj/u7vfNc7IU6ncRyKiPz5n/8FxGdp3/CJiT+HeGEex+Y73vUOiFNZHMsiIoF1433h12qgrW3I4yIi0nQ9aS7X59TUNLz2X/7rf4M4HDU12O/9/u+HmHX073jXuyF++G2YfyK/iBra3/x//x+jjEwHenA6OzHu7cZ+H0lge4/Sfut9g5SvIY6aZxGRhx7BsXP4zvshrlZwHuX5yffYp2ZSqlKeAtrznXMFca4L9gW10nfffz+e9yj5mzKZpXVukdphy6gXREJLdRfU8/DSt5/D3CVe09RQ8973F17+JsTfcnBdYB9S2Ma5JJMx18NKBbXjnfR95pVL6Nno2YF13CS/BXsWU2lz7nCp/9Qb5OOgdZvnp8V59KBx3ioRkVgYr2P3AI4DK8DXXzmL+RqyCbwPODCCmnkRkVINr60zizr72cXVPt/YBo+GE4mIs3zvcPSlo/Aa37eUq+btZcPD9SuXwNwvTz31FMSc66a/H30KTeN+T6RRw3nhtkN7IU6l8BjXrqEf4lqV8h+RLy6TwXMWEenpxpxc6SS+J0VzbAfN0S+/gPloLpw3c5A8dN/dELs+nhfP29kUvu5TPpFcJ+bZEBEpz6O/r9FET4wTrPa5pqseDUVRFEVRFEVRthF90FAURVEURVEUpe3og4aiKIqiKIqiKG1nUx6NUqksjdCS1vHJZ5+D13oHUWdZq6G2S0QkEkKdpPGUQ5rZCOUDiEdRWx5usU+466K2skZ6T5c0f24dNas2HdKhs6zXUOcmIuKSR8MmoT1JN8VvoJaRdflWqxwBfEz2aBiqZnzdI/1krcV1xJL4nijtt+/BMbc+j0EymZRUKrX8b9RAst76H/6jHzY+PzMzA3GhgD6OLO37vW/fHogNjXerfCfreGmMWjMaH0OWkbfqGq307Dc6J8/Hscm+pQcfQp26iEhnJ2pQ//ALfwTxK6TX/ZM//guIJyex7n/kgx8wyugfQD1yQN6ltakVWmmot4JQOCyh5dw7OygHwSf/7/8bYts2v8dJUu4HbvAk6c+b1Oe6+3CM/j//728ZZTjUR1IJLDNEe9WHKddQhOZZizxmrXJc2DYW2hHF6+jikyJ89oO18E+0qs+1tJw3oYz1+4zn8dzMfrpg+fTWHXU3hWef+qbEYkvt06Rz8CqY1yBgn4KINBuoq27U0fcSWLgAcs6nCPWdubypkZ/O43ncfWgMXy9hO8zn0S9RJy9OQO1WiZj+wkYT261J116mnA/lMuVjoFwdXS1yXOzfhd6m3m7U3U/NYJljHXiMVArH4WLJzGMQjeJ7apQzZGFN/qhGo0UehJtMqVJe8WfuGELPoxVgX3j5FcyrISISi9P8R2OavVq79uyGmP053R2mXyISolxVAfanhVnsC45F9xI0Fy2WsQ3yi3NGmZkM+pI6cnieIZpjL126DHFPH/pGcpmcUcaFi5i/w7Kxf3UP4Hq0cw96NurkXXE5AZyI+JTfqLODrqO5WndB1byHfDX0Fw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2symPxi17dkosuqTRLCyivv2VE6ch5pwYIiIdlFsjnUJtXIX2PfeaqNeLkWcg1kKrydLtKu2z7JDGlPNkhHzU5EbDqFeWFvpkQxpMf2iSH8KU95KOfwMeDfMInFcjoBjf73tmHowG7UPvUP3G1mi9XdfU5t5sfD9Yo5G+8V7r0Zj5DD06hppS3qOb9dkeaYO5jtdpkg1yY0+H8e7XoA3nI/IRgoDzC5hte+tthyD+2D/9cYj/8L+hZ+Po8y9C/LUv/z3ElcW8UcYHP4S+Ddbnrs3rshG9/c3AtkNiLxu52NvCPpZW8Njm9uTXHWq9KDVmOmXmFDDKZJ9Py1wsa8+B/0IetBbaXuO8afgZ3ZZOykxPZJ7jd5o7ZT2PR6v3cPuEln2GkQitC1vE7Ny0RCNLa1jEpvmJ9rVvtJijffJg1MnbIOS1cSh3RIl02XMlcy/9rhyuG1YEy7SojjtSlD+rA+N6HXN5XBnHvf6X3oOeixR5oZqUL8v38LzjDtbVnTvNcfXgPZh3oOLj/culq3gPVKE8F3UPrzscNn0gfQM4h0zMon9lZnFNHoMWOSRuNvF4QhKJJT/CxbNn4LWXXkDf7uhOzL8jIjIwgHUYDuP92DveifmWBgYHIb54CXOTzMygb0FEJEX52fbuRu/CiVfwGJcuT0EcjaNXMEZ+s1gcz1lEZN9+9Cj39mGOlEYT7zMjEewLkTCec3HB9DhPTOE4GBzE8zyw7zaI41kchy++9DJ+fgeuryIineTziDrkEUwOrfy7VDbP8dXQXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazqY8Gku62SUNZ7mMeziXPRTZBra5x66XRG1bNI461yZp5oMKatKSUfx8Jm3uoewJfqZE+TxY1ch65BBp5XzSBdshQ0xsHKRKvo8maWUt0sEaGvqWGmrOm8GncGPtPqUXEbdFDgifj8ra/TUGmGAb8hhY1mpVm84G/ot5fub+//icHQqxPpvL5yQXrc5ynWf3dXKmsA9ErBtrxkXW156bfp113t/iwhoN3IN7527Uzv6zj/8ExH/0P/4U4m9/Ez0aTz/5jFHG7CTqbX/0x/4RxHfdf+/Kv8PhFuNwCwgsWwLrVepvA56ddexZxuu24Z/ZSJH8V/vGLxPm3LKpj28MY47j9mw1uNZzG92Y9fJsbOwz1ms+VjuIiCuR5bLDAforHPJCVH3zHAMb19C6hWtTo4F1GqMqdpvoO9i5w/QlpUPoPZiczkNcrOJB93ahdzNDOQQy3TjXhMNmuxdnUWefy6Kuvkz+z1SC8tXMTEBcmZs2yhi/grr7cBzrt17BfA35CpY50I++kVjCbJ+whePAIt9gfnE1j4brmj7Lm83FixdX8rh86YtfhNcSUfQEvGUn5nEQETlyx10QLyzMQxwhX+iZM+gDefrppyGOmnYJI7fGc888AXE2hf3NF+yvNbId5bqwrwyPotdTROTq5YsQJ5KYV6NaxfvQeg3vU8NpvO5SxfTfpHM4Dvbuvx3i0TH0xJw8i7mt2HvJ998iIplO9H3YPt7nu2tylLjNjf9Oob9oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitB190FAURVEURVEUpe1sygw+vVCW6LLhLF9Fk2IknYO4fwcaV0REDuzsg5j9y+EImqkCeg6q1tH8lE6Zhpk6Ga/jVTTZcKKvkIPmK5uM2k1yUdcaaI4RaZHojZPhGYZfhM26diuzKVfWOkZltsu5VIbXwsxt0XscyqK11nC9LVZIy1/6X1qYpqkrG20gYlQKJ+ybm8NEUPE4GrqKpSKW6JjDJxZHY1mYEkQ2Gug0azaxP6UoiSUbvVuZUOfm0VDn0GeSSTS/cZlswOP3L5eMx2jgOOvsxvP+0I9h8r1EFuvh8b9/zCjh4rlJiH/vP/1XiBfKqwa6Chkvt4pANmtB/s6waFMDm439LUfieqOTs+mtcw5kGDbmolbQhgNGQtF1z2EjSUu3siVeH/jNhvjL9W/R/BSmhLiVEibVFRFpeDj2PZo3a3UcV/Ua9j9H8PPDPWbS3GgEDeLWIhqro2E0SU9fuwjx3Bwm7Ouvo0E1GzLX4OyOfjxPC+ebcAT7cDaJ/W9vPyUHDZsbzZy4ModlRPC6wmTGHyWjfGcW28dtmmvwHJnSEw6uYwPdq23e2IaEfel0SuLLa9zb3v42eG3vzjGIM7mc8fkSraEvv4xJ5OZpLXv8cTRyV6rYPz/0Iz9olFEr5yHmzXkkoESr3R0QO5RIcf/BA3i8spmMemYK166uTrzXvXrtHMTXruLmBbcc7IE4HDH738gu7ON9g2hKn5i8BvHcHPbXSJjmi5CZMNKn9SUWww0MKuXFlX/z/fiN0F80FEVRFEVRFEVpO/qgoSiKoiiKoihK29EHDUVRFEVRFEVR2s6mPBqTi1WJLCe02zGyH177vve9H+LBvqzx+csnMElXcQE1pCHSszsOPgelM6hxrBkJ2EQqpB2PllGfV2ugriwSIe+Cz14GjOt1MxEhEwphtbru5rSUdgsdvuHB2GQSLfYjtHq/TX8NkdbffpV/bxW2ba94Fthrw7TyMtjkOSkWCxBfvXoV4kwGtZgzMzMQtzqHWMzUPa6F/RGb/XxHR4fxtyoloyrk8xA75EPieHh4GOJ0GhMUiZj9h3MEei5eV0cH1t0/+Ac/BHE2YWpQ//Z//TXEs7Oo5/3SF7+98u9GY/1xeDMIxHoVX0R74MSTZuxT3Hokr6VFjscbYibDZC1uK/8Tzwg3To5p8fs3cI4t8s+94UglMxJbzlK2yGtbE5OANRot5kgb16Z4iNaVCCXepfmqSbrs8xdQey4iEo7hOr1r/16IE1FMFHbpPB6jXsPkoIVZ1L/bQhnVRCSTwWv1qI9SHjxxaJ6ND2Oys0qJdP0i4jvoH/BIy1/luiVPxu79mPDPq5lz2KUreO3D/UMQj+w5snqO1Zr89z/9tmwld9xxx4qHr1TA+7fzp09B/NTTZlLWbAfWgU9eyp4e9CocuuUQxC69f3R01Chjdgobu9nA9a1cxnrv7UfvQ1cPJYgk743bMH1JoyPo8QmHse2vXkH/Z1/PCMRXLqPfZ3gn+kJERA7eejfEDRon586egPjClQsQR6I5iPfuM+81aqVFiKM23gvU1txr1DZwL3wd/UVDURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7WzKo/HQ29+zsofy973nB+G1HaOocZy8gno9EZFF0j1yvoimi5ov1oGn07inb9U1tcKhRdSp+h5rnPGgDukqG03Uf4ZDqMezSd++VAaex3q5DzhvhqGhb+XRoM/wfsetlNVrCVMZEfLDiJg5RUKcR2PNednbrJfmOuQ65jpd+hC+hz0Yhw8fvmEZQ0Ool23l0WjlDbnRMRnuOxvJo8HXWiqVjPeshX0gnEejFetclpDUWwIPfUmJBOqy3/sD7zGOkf7/s/fn4ZFd9Z0//rlb7aVd3VLvdne73cbYGBtjYxOTh0nIQlgmmWES8hhmzEBCHCAEMAnDQELIRghMkplMlmcgzOQ3QCZfkkzgyzfBwSzGGLwv3XYv7l3qllpSSbXXXc7vD6nVer/PballqiWMPy8eP/RRVd177rnnnHtv1ft93pQL8OgjT0D5x1/96sV/1+s1+bNP/9flK3UJcI2xsiy6ScrZpTek9GvCjqRYXf6EVQeHLxMXUQdrFzSZcxbHSh1M0vr+9/o92XPP9HHFtk1SyM+PpbPTqJF3XLwO7Ri1vVbTNby+1Rp4zTWUmzHTbEK5E+J5a3Zsv8SAh/NLuYT1KJA/a9sO3Obp46g1d4p4rTKu7f+sxljPmLTlnj8I5dk27vO+I+jX63TsvtU/tBfKL7z6BVDe98wYlMdOUyZGD14/rr3phdY+dk/h+SgW8J6ns2RerdfxXmctePLxxxfvAR/4znfgtepsBcppORrX78T7xCr5Cefq6BF43etfA+V6FY/ZdOxrXX8v9q9WE32NwxvI69tGH1Kb+nRlDuuUdGzPreNhH52m4yr3ojelpxfr1GmjR2PzJuwrIiJisJ5nJtC7dOr0FL2O5atfuAPKxSL2LRGRuSrOKbVqBcqTk+fr2eB8kmXQXzQURVEURVEURek6+qChKIqiKIqiKErXuSjp1Dm5x9JlNKtV/Mlqjn5e4tdF7J9a3Ah/ouIlK5stfD2in+xbbftn206IP2tFJK/i5dFiLrMchuQ2aXIZXvqT32O/vrzsKU1FsHrpFG8Ai9Zxikgc49+47RyTWK+tJAXqBuf2Ua2eX+6U63oRygvrXPJSxiyB42PjZYqfq9IpXmI3IOkUS+hELqLeBtvC6p20zTi0ZY+NRgPK7TbOF/X6+eOqN+oXVa9ucW4/PM91G/vs8nK2K2O3yPf2fZLjcD9PaXP604rSKetILuLIWG51MWviLr/BZ/3Jc/1grftfc8mSqHx9ZOlU2nLAfM1sk2ykQ7KQkMZpGPGcaI/jkK7BLVrG1SEpXouOo011cHyso3FTlghP8G+xi9u0pjRe7p0k1mnSKT6ORqNJr+N8xUvh8/trNVv6xEuvGqpnmCyVTs3Pl2t5DV56jJ0OLX1M551fFxFp0j1gk9qU27hO1wRuQxPa8p2wQ8s+831kgv2vHeL8xnUMsrjPpINlEfs44hgHX5vGHR8nj0M+ThERL0NtQfXksc33wlbb1nF7IiJ12i9HTCzd57l2upj+55iLeNfJkyettfYVRUTkxIkTlneh22j/Uy7EWvQ/Ee2DSjra/5T1Rq/BynpyMf3voh40kiSRsbExKZfLK35jqzw/MMZItVqVTZs2Wd+6dxvtfwqzlv1PRPuggmj/U9YbvQYr68lq+t9FPWgoiqIoiqIoiqKsBjWDK4qiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FjCK17xCnnXu9613tVQnkes1Od27Nghn/zkJ1e93Q9/+MPyohe96FnXS1EURVF+0DHGyFvf+lYZGBgQx3HkkUceWe8q/cChDxqK8n3Md7/7XXnrW9+63tVQlBXRh1tlPdH+pzwbvvzlL8unP/1p+cd//EcZHx+Xq6++er2r9APHRQX2Kd2h0+lIhsLRFGU5hoeHl309DEMJgmCNaqMoiqIoPzgcPnxYRkdH5WUve1nq63rf9r3zvP1Fo16vy+233y6lUklGR0fl4x//OLzebrflPe95j2zevFmKxaK89KUvlXvuuQfe881vflNe/vKXSz6fl61bt8o73vEOqdfPp33u2LFDPvKRj8jtt98uPT09+s20kkoURXLnnXdKb2+vDA0NyQc/+MHFtE2WTjmOI3/6p38qr3nNa6RYLMpHP/pRERH53d/9Xdm4caOUy2W54447rJRaRbkYkiSR3//935ddu3ZJNpuVbdu2Lfaxu+66S6644gopFApy+eWXywc/+MHFlPlPf/rT8hu/8Rvy6KOPiuM44jiOfPrTn17HI1Gei2j/U9aSN7/5zfLLv/zLcvz4cXEcR3bs2CGveMUr5M4775R3vetdMjQ0JK961atERORrX/ua3HjjjZLNZmV0dFTe//73SxSdT9+uVqvyxje+UYrFooyOjsonPvEJleOfwzxP+cVf/EWzbds285WvfMU89thj5tWvfrUpl8vmne98pzHGmLe85S3mZS97mfn6179uDh06ZD72sY+ZbDZrDhw4YIwx5tChQ6ZYLJpPfOIT5sCBA+bee+811113nXnzm9+8uI/t27ebnp4e8wd/8Afm0KFD5tChQ+txqMr3MbfddpsplUrmne98p3nqqafM//pf/8sUCgXz53/+58aY+T70iU98YvH9ImI2bNhg/sf/+B/m8OHD5tixY+Zzn/ucyWaz5i//8i/NU089ZT7wgQ+Ycrlsrr322vU5KOU5y/ve9z7T399vPv3pT5tDhw6Zb3zjG+Yv/uIvjDHGfOQjHzH33nuvOXLkiPmHf/gHs3HjRvN7v/d7xhhjGo2G+dVf/VXzghe8wIyPj5vx8XHTaDTW81CU5yDa/5S1pFKpmN/8zd80W7ZsMePj42ZiYmLxmvze977XPPXUU+app54yJ0+eNIVCwbz97W83+/fvN1/4whfM0NCQ+dCHPrS4rbe85S1m+/bt5itf+Yp5/PHHzetf/3q4p3w+87x80KhWqyaTyZjPf/7zi3+bmpoy+XzevPOd7zTHjh0znueZU6dOwede+cpXml/7tV8zxhhzxx13mLe+9a3w+je+8Q3juq5pNpvGmPmbxNe97nWX+GiU5zK33Xab2bt3r0mSZPFvd911l9m7d68xJv1B413vehds4+abbzZvf/vb4W8vfelL9UFDWRVzc3Mmm80u3titxMc+9jFz/fXXL5Y/9KEPaZ9TnjXa/5T14BOf+ITZvn37Yvm2224z1113Hbzn13/9182ePXvgOv1f/+t/NaVSycRxbObm5kwQBOZv/uZvFl+vVCqmUCjog4Yx5nnp0Th8+LB0Oh156Utfuvi3gYEB2bNnj4iIPP744xLHsVxxxRXwuXa7LYODgyIi8uijj8pjjz0mf/3Xf734ujFGkiSRI0eOyN69e0VE5IYbbrjUh6M8x7npppvEcZzF8s033ywf//jHJY7j1Pdzn9q/f7/8wi/8Avzt5ptvlq9+9avdr6zyA8v+/ful3W7LK1/5ytTXP/e5z8kf/dEfyeHDh6VWq0kURdLT07PGtVR+UNH+p3y/cP3110N5//79cvPNN8N1+pZbbpFarSYnT56UmZkZCcNQbrzxxsXXe3t7F+8pn+88Lx80VqJWq4nnefLggw+K53nwWqlUWnzP2972NnnHO95hfX7btm2L/y4Wi5e2ssrzDu1TyqUgn89f8LX77rtP3vjGN8pv/MZvyKte9Srp7e2Vz372s5a3TVGeLdr/lO8X9BrbXZ6XZvCdO3dKEARy//33L/5tZmZGDhw4ICIi1113ncRxLBMTE7Jr1y74b2RkREREXvziF8u+ffus13ft2qUrFCirYmk/FBH59re/Lbt377Yeci/E3r17U7ehKKth9+7dks/n5e6777Ze+9a3viXbt2+XD3zgA3LDDTfI7t275dixY/CeTCZzwV/hFGUltP8p36/s3btX7rvvvsVFWkRE7r33XimXy7Jlyxa5/PLLJQgC+e53v7v4+uzs7OI95fOd5+UvGqVSSe644w5573vfK4ODg7Jhwwb5wAc+IK47/9x1xRVXyBvf+Ea5/fbb5eMf/7hcd911Mjk5KXfffbdcc8018pM/+ZNy1113yU033SR33nmnvOUtb5FisSj79u2Tf/7nf5Y/+ZM/WecjVJ5LHD9+XN797nfL2972NnnooYfkj//4j1f1Td073/lOefOb3yw33HCD3HLLLfLXf/3X8uSTT8rll19+CWut/KCRy+Xkrrvukve9732SyWTklltukcnJSXnyySdl9+7dcvz4cfnsZz8rL3nJS+SLX/yifOELX4DP79ixQ44cOSKPPPKIbNmyRcrlsmSz2XU6GuW5hvY/5fuVt7/97fLJT35SfvmXf1nuvPNOefrpp+VDH/qQvPvd7xbXdaVcLsub3vQmee973ysDAwOyYcMG+dCHPiSu64Lc6nnLeptE1otqtWp+/ud/3hQKBbNx40bz+7//++a2225bNO50Oh3zn//zfzY7duwwQRCY0dFR8/rXv9489thji9v4zne+Y37kR37ElEolUywWzTXXXGM++tGPLr7ORl5FYW677Tbz9re/3fzCL/yC6enpMf39/ebXf/3XF01naWbwL3zhC9Z2PvrRj5qhoSFTKpXMm970JvO+971PjZHKqonj2PzWb/2W2b59uwmCwGzbts389m//tjHGmPe+971mcHDQlEol84Y3vMF84hOfML29vYufbbVa5qd/+qdNX1+fERHzqU99an0OQnnOov1PWWvSzOBpBu577rnHvOQlLzGZTMaMjIyYu+66y4RhuPj63Nyc+bmf+zlTKBTMyMiI+cM//ENz4403mve///1rcBTf3zjGLPktSFEURVEURVGUZ029XpfNmzfLxz/+cbnjjjvWuzrryvNSOqUoiqIoiqIo3eDhhx+Wp556Sm688UaZnZ2V3/zN3xQRkde+9rXrXLP1Rx80FEVRFEVRFOV74A/+4A/k6aeflkwmI9dff7184xvfkKGhofWu1rqj0ilFURRFURRFUbrO83J5W0VRFEVRFEVRLi36oKEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1LmrVqSRJZGxsTMrlsqYcKiIiYoyRarUqmzZtWkxUv1Ro/1OYtex/ItoHFUT7n7Le6DVYWU9W0/8u6kFjbGxMtm7d2pXKKT9YnDhxQrZs2XJJ96H9T7kQa9H/RLQPKulo/1PWG70GK+vJxfS/i3rQKJfLIiLyk6//dxIEmdT38FNu2qq5jutQGV/3PI9eX/4pKe0pyvNpH6t8+Ob3JwmVY/szfKxWmTYSRRGU4xhfTy5ixWHPxbbyfTyVro+vhx6dH9feBzen3ZbnPxN2OvKFP//0Yt+4lJzbx+v/7a9IEGRFxD73ruDxGrFPVCaDn/GoTRI6T9wfXeqwaX2c98vdrxPiNiLr3IdYjlpQLhQK1j4zmQDKcUzHFWPfiE1r2bJJ8LhFRBwHt8H9zR43+Id2B4/TxB1rH763/GBNkqX9ry1/+/lPrkn/EznfB0888HPSU1qYAyOeHGgApbSjJNRnrD7EryfLviwmpc3ofFtDgSe1mI+DdtKi16fb9j4b2G+FzrdVblGleB9cp5S/JQMb8fWtl0OxcuYslDMxzYkduw/m+3qhnM3l8A1mvt5zzbZsu/MP17z/3fzDPy2+vzDeMzgX7Np7NZRHt2y3thN18NydPnUYyq06tpmf4LWqU8e5otOpWvtwTJPqjvcMjovnfnxsBuvQxP7XaWOdHaG+JiJDfSUobxoewG00sZ5JG8uFIu5zYMOgtY/ZFvaXM5NzUPa8PNUT++u2LSNQHh7ss/bhuti+3/r2g1D2c5sX/x2GkXzh/35tTa/BR585Jj3lnvk/0vRmT0X23OTKhe8pRESM4ckKy0b4mm3fA/L9lEn4M/h+jzfB1zI6sDjtMsX3vzSHetYkTH2c7y345lhE/BXuC12+v6ZtOA7d31gXExGPjsNz6J58SePMzc3J1u1bL6r/XdSDxrmHiCDISJC5yAcNvliJiON9bw8afH4vzYMGd0o8jmfzoME3sHxcLl9AU9qO4bZa6UFDns2DRrD8pDD/t0v/M+r5/peVTObcgwY9BKzFg4Z7EQ8aNFFazeOscO4Nvh7Tecpk6MZHRDLZFR40In7QECrzg3HagwbuY7UPGoYuuknKbB1YDxrLn5/5/a7Nz/jn9tNTykhPuYsPGtZY/z540OAO4vFDQspDANeLP8Nlyx54EQ8aER5IkqdrUSFHr2ehbD1opHyPlafPZPPpDxrnWOv+5/uB+Oe+7KMv/TJZvNHN5YvWdkKa0zJZarMQj9+nPmxCuokz9v2AY/DhhL8I4etfEGB/jUK+5vKXN3bf4G3wPoXmwCTBcjbAfeZoThURadG44X36Hs2JVM8sbTOfs9vOdXkfHpXtW7a1vAb3lHukp0cfNCyehw8a57e7cv9TM7iiKIqiKIqiKF3non7ROEfsRIvyEX6KsZ5qUr4x5ycs18Xdr/QNMu/Dsx5FRcR6QuZvYJZ/KrRlT/zrhP0Z/qZ1pXJM39Ak9DMJ11lExKVjdT1uC3qCpjPr8hc0Qcq3DQG1J/06tPRXkJjfuwY4zvkvDhz65ieJVv4VyJGIytQG/PROvy4I7cNJ6eP8Tb5Y3zKsIJ2JUSbQakxDOevbQzbgk804JNWLalDudOpQjiL727xsFiUl/OsDD3/+5klIEmZMxdpHq4Ntkc/202c6qf9eS0w9FLNwsAn9ouHQN19Oyrdt/CWSY8039PaYX6c38K8qIuKQssTwe2j+sfogTw38FR59Yy0i4nC9QnyPadJnmlgHt219jZiyD2qL06ehHNVx7OR9lBY5Ef8KamMmp6BcC7Gfmdb8WKm2bfnOWuAs/E9ErF99xo8fh3KzPmt93uNvzGkOy/v4i0ZCh5mjX3xEbBlds47zS63WgHI2j+c6oF+a63V8f0L7GCrjLzciIju3oIwuR9euZoTliOb60RGUWg1s6LP2kaN61asoEavXsU+XS/iL0sjgEJSLuZS5PIefKeaxXkH2/OuBu/Z9cGLyrDRb8+ej2UaZV5CjXwNZdigiAbU7qwr4F504xmNstnEemZ3DcyIiMjeL17Mw5Psx7PNBhuZtuteKDf0a5ti/VPMUGyY4b3gG+zArLjpuhl63+0aW522aMjP0C2c+j+MkS2qkjG/PgFm6r9tA8r5c5ny9khSFy4XQXzQURVEURVEURek6+qChKIqiKIqiKErX0QcNRVEURVEURVG6zqo8Gpl8IMHCag68VO3FBMa49FzjC69cs7wng/fBno75erGnAjV9Ea1cYi09Szo4XsFAWLefUk+ul+fxihi0SV4S1UnRXaesQrAUq23ozDpZ0iFm7O0Z8m1EPmkCl+heV6jOJcEYs+ihcUjsziteBIHtM+B2Z009r2DBsnM+5LQm4NWwLPMCnds4Qe1mTMvZuk687OsiIo5BLbpLXhRegrJRR217YqitnB5rH7yihbX6CflAOm3yUJBxIElsbW1EHhhDGtNOeH45yTBcH4+GM94Wpzh/Dh32IfAKYikrdLCYlz0akuC5cElb7nRon6Htl+CxYHmREl6VZfmVsNgb4fCqVCJiWKpveTBojqPjsuqQsupUQnO3E9NYaaA2m1cBY0m7m+IDiXl1NOpntQVvRi1MWX5wDchm/MWxF8Z47sN6Bcp+nz0H9hRxTIW0ZGsYs8GHVk7K0LhPWXUqauN+G+QVaVMfdslAmCOtfxjSXJGyxP5UHbd55a4duM0iLsE5MXYUyn6Ac2iUcnpLBVxC94UveAGUn3jiAJQLBezjg4N4XE6Kv6VFy0DncrSc+ZL7G/ZlrgWzc3MSL8wf03N4XgNaETGX4tHIkQfIJy8NXz75Fi+iMd1q2/NEi+aaNvk6eMrt0Jh36OapQ50hTunzrkfeJvpMwPd05G8I6R4wSlkRqp0y10MdaIILWljOZdD/k8+y30okn8X91psnoTw8eH4cVefspa0vWLeLfqeiKIqiKIqiKMpFog8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zKo1EayEgme06fxrGQtPZwSt4Er2PucYKtBerFWCeemqPB1aJcA5fMBVFEGQOcKknyZg7cFrFl+CvlgXgkRPTJV8IJoyIiCbVFxGvKczIlaQAT0tCblIhza5lmWuM6s8T34KSd4EuMHzjiB+dyXDjlEsuFnK2P5zW7Q0qgdamNfc7qoLWxHSdFq2lJK2nNbuoLLcujMUNl1CeHsa17tRJZY9Sqd5oT9Dr7lGgcubYWlL1OQvp4zlbwOFOC2jJM0aCyl4D18XF0vq3ieJ1yNKZmxTTnxwHPLWIohyXFA2DlQ1hvwf7AOQYuZ7mkzbM0rSecOcKLvkfkjQs5D4QmBjfFP0Hzv8vbTLhOlKvCc2g2ZW73aU7r0LxK49mnPsttxWn185/BY83ThD+70JTxOn1HV69Oie/P978wxDYcoJwG07LnikqjAmUe13wtazZx/slQjoab0oYh+Vd8zubg1GQf59EhWrt/ZASPqzyAmRnz9cTj6Nt0GZSnTp+C8mznBJRPnME5s9yy55dWC3MzenuxXrkiauDDhHMmcAzkUvq438ETsHnLMJTn5s5nlLTba+/RqNari/ci1Sr2jVjoeAPbA1Agf02hiH20RBkpedqG75Gfp2DfKxkhn1sd6xXT/Be5eO45lfvYCew7hw6PWfvs6cHMpy29eBztGubz9PWjD3L0sl1QbqXMLxGNI8v+ycZZMqN0Ykofb9r3gJ0Q2+rwoUegfMWurYv/rtfIE7cM+ouGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK19EHDUVRFEVRFEVRus6qzOC5oieZBUNTQsYShww4UWSbcWMOVzHLG4pdhw2l9PEUI5oVNkX7YMMv+YMlR0FkrkvlFBNrhsLh0oIEl3s9IPO3m2Jyj2m/oUEjT4fM2VHM5lwKo0upl+EkG3JoekueS711eEb1vUh8b94AaRleua9ISuISm90puKzTwgAaQ50jovdnvUFrF8YyjFP/IwN5PovljIeGwioZotmQKCLSpEC+gAzmVpYmjQkOnLTM5SJirLFKIVp03IGDZjjjUohSilHaIye9a9CYlvXPH4jLBvY1wpmOxWnONxAdkiTUwQyFFIqIOC4vFIHn35BJWshE7VgnM8UUT+fCmo0MbtMKy+OxxJNkymIBDgUNtil4jAP9AjKU8+IBSZQWTsV9cPkwTGvAu3y5szu6y/2c6mXi+fIKl65LRuAn4vvzO6/XMDBNaKGIsGEvVlGZwc/09mEIXbGM25ibQ8Onn8HelM3bhvOQgsUyPvc37CsdMjXnsvj+rVs2Q9nL4twiIjLWPAPlb3/rW1A+uO8xKJcKuI2zZDLu6bXbrtnAebbTxn0GOdxmEGAn+fYD+6G8a+eItY9MFusxMIzXg1z+fJ9utVZ1+9YVWp2OeMH8YG5SKGsiHBBpz/GhdQ/HAbccHksLbFBfClIM9REFihboXqVWw2uXtc4J3TtNTaGR+6v33G3t06WFQC7vxXE1ffo4lHftxsUK/u3tW6Bc7O2z9tHx6Z7bTblQLyHhBXsSauuUBX1imncbjcYFX+f3Lof+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1ViXy84NAggU/QmTJ7ziULsVnQKFxMWmYHdLjGdpmHHKAWkodKajOt7T7SMD7ZJ04+Sl8326yTAZ1haxRTbiiHBrIlUoRADtcLw4v5KQ48ls4rIV0bR9JzIFYLoeDmdR/rxXN6mmJFgJ/ikUMbSLLCmeQiYiIR30hCmtQ7rQxLC9yWBNJGlyfQutEJCJ9vJDmnjXOrk9BiqQPDQLqnywoFZEkQt01a+rzGQr6IT3pXA3r6KYF9nXQG9J05qDsk5Y9m6G2jmkfKd9xJBSWFpM/JVkSBJau4V8DKolIa358cmCf59GYSJldq3XUvM5U8dxt3TQA5bCFc8GpyQqU3ZRgSpLdS9xCvXkxTzr7ANuyHZI+PcLzkkmxoD19DOv14GEMiUwoTO+Fw71QfvFOCmELUzxWxhJ4IzG1BQXENsn+0uHARRGJWUROU/Hk3Lw+vZZWvzWgf6BPgoU5MJfH89RTxhPPHkcRkXwOPRU5KnvkYykWy1D2C1iOOOVVRFp0rmO6/sUxX5uwXK3hXDN+ZhrKpTL2HRF7/h8fR/9EkwL4hocxCO/MxGkoJ47tA2mRXp2nID+koDiH5rNkEsozFTvwrF7Hv7l0nV46r3bCtZ8DM5mMZLLz1xPXwzY1Bo/fcdmzIZZPKuF7PM4SJS+eQ/0tMinXKvbKccCoy75JbOOI2nX7VvRPXLFrm7VPuu2UInWOQm4TlHsHMbAvoOBBP2tPsuzPY08tB0MLezrYo5Ey/wn5bLgW7pI7aDfF43Yh9BcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrMqj4brOoveACvTgmRwcYp2MyFdf2ytnY6vZwLSCpOW7pxWELYZ4YLtLNtNrAwB8pZQhoWfR61mb1+/tc+I9HhxG+uQ9VH3lqO1xzO5ApYz9mlpNXEN75kp1ECHbXzdo7bySWzn8R9EJKJggIi0jt6Stkq4A6wBc7NnFz1CLvklCjnU7ZrY9pDEpJlNKKfBCJabtL57htos9LDNRUQMiTXDCDW3bZKUZgNcJ91a+5r0yw6LkUUkbKLXJKB16DM+Z3VQmbw54tr5D4FD6+m7NM5In2zl17BXKkU/btl+WFq7xC/lst50rcgu/CciURPPRa2K7Ran+LlOnsZ2PHwUteFBEfvD2En0DT2yD9d0Nz6+X0RkqA/nxcmzuIb7TddjLsHoIM5H33jwIG6QfEEvuGyrtc+vPY7682dojf+I+q1LvpDLWlh2UvS/c3OokZ+qo5Y/ibDDFDI4RzxNWv8zLdtj1aELhk8evXpn/jhaKWvQrwW5fFEymfnxm8nieStS30nTyCc+tplfRF+HR302I7iPDnnIQp7QRCSh63qHPD5JxHMYl/HzBw88A+V8AfXtaZ+ZmsI5USifaIb6UqeNfaFeTfOQ4d9KZfSrOC7dj1Cuy+gm1Po3muhzExE5fmQMyrMzeI0plc6f02gd+mBPb6+USvPH3exgm7coK8fz7CwSQ+ep3aG8L/LSCHlRHfLBhbGdIxTSPFBv4rntRDhPnziC82OdvDgvuOYFUL71ZTdY+9wwsgHKo8NDUB4/jn148ix6iCabOM/PTeHrIiI9ORyrPT04Dvi+MqD7zkyWfdT2NdQnn0eOMt6W5rGtJktNf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOqvyaHQ6kTgLui6SuUlMesEwtPWDrMF2PNQ09pTR/7Blyy4o9/WiDs73bY9GIyQ9Hmn4KpUKlA1VqlhAv0SJdXBFWxMdkAbe90gbRzkbPvlACgXcJvtERETaddRzHj28D8onj+2Hcr16Fsoxm2jS1lC2sjnY53G+u8Te2q8jn8SJJAtrYHc6qHXPZ/C8RYndtT2qs8Pra1OTsI8gMbwueso65g72tyhCjW2zhRrpTB/mB+Rz2Jdiyp9okwdJRCSkwZgEWG9ei51k55Il7WazQ/pmEWmTHtf3SZ/bwbYJXGwHzn1JW4HbZT9KyjuW38Kl55mxSMoL085TJ1BXe2SMNNd+yjry5J2q11FXO/4vR6DMPqF6Bz+fuLZG+SjlooSUm9J8ArM7cga9C89MYx8N6NyNV8atfU5T3odHHq52B+flg9M4fv/6uxUoR8Yev2dm8TOljZg54lNmTVRFP8s0hes0U07PTIOuHy3cZs+Cf66zTh6NTru9uH4+r5sfhlhXL2tr5OMAD7pJGRdt8k80yW/oJdS3mrZPjT1jLocM0LWIrzMJzQMuzbueFaBiey8T8pIklHtSmcK+1Gphu5waw+uniIhLfXoQZfjS04Ntc/nlO6B8/fU34fZcew677gU4p8xOYx9utc+3bbvdkQf3/U9rG5eSjO9JZiHbqZhjXx5dhxLb6yd0XQ6pfzXoXPN5NOSztHKrRCQij0arifuYnMQ2rTewL7zoRS+CcjaPx9lp2tfHZw5gf2k3MTfjjz/5cSjzfcBbfvGXoDw2hp43EZHRwVEob9hAvpARfD1TwrZ2Bdsyyx5oEcnQPXng8jY0R0NRFEVRFEVRlO8T9EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVV5NKqNlrQXtKkx5RR4vGa3m/IM4+DuhvpRU7Z3L65PvHEEPRpegDr8ZtteB71IOlWHBOlDTV57nXT7pDujZYTFeLY+tJBDH0fWR921S4EASYTrNJ+dxEyMeg3rKCKSC7Aiw0Oo7W82cN3l2Tqux83+GF4vWUQkoPwON8D3mCWaUrMOORqu5y1mKbDmu05rkucpV0NExHfZY4H6Tj73DmloI8qGyaZJFB3SicekcSaNvpeQ5rRJOS+sR07ZJ0dSZKivJKTDjknDGlCfrqesTd6OyPdBWk7X4ewOLBvS3mYztkDe87BezQa2nbPEa2DCFH/MGvDl/RXJLeSpNDrYbpGDfc6P7HXKOV+I57RZep3jQnyKEIiNfa6EcgycBNt6soH1DgR30j+I2l+H+k89tLXX5QFc490h7XWhgJkWicE6nKVOzGvhi4hE5J8TGuPVBvoFIupPPvkTMmIfx3AZj8PkaawsTHvtOBYR1NOvBflCYTFHY24O57xaFbXjxR7bz1Wn6x/PHXxe2g18v5vwtcxuwxadh4yP1wrH4VCn5ee8iPob+zFERDzySRYKmHERtXGcNClbwZAv0vXtceW4WK8KtXe9hecjoJyTr3/9figPDeE4ExEZHsa/FQcxe2OocP44+RjWAlcS8RbuZwoZugek89IJU7KsDF+b6HWa1xucwWLIe5PiA2lSH6/Mzi77+g033QjlgK5dhw4+DeWjBw9b+7z+xddA+Z7/74tQfuyhh6BcpCyY6hn0jdx3979Y+9g4ivlH/f1oEnrVj/44lMulPiizJSiO7GtoRDlCxg6iS//3CugvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1nVR6NOAklXshfYG2dR2YGz7PF5E6M76GIAAlpzfjJCdSttRMsBxlbA10gr4gTkf58Ctc7Zk0q63gD0rvnAltb3ppCj0VMbZH1sbHGxw9B+eCTT0K507T1oVnSJw+ODOJnyG9gQszmiH1cK9px7BwMXvuebRhL1zePZX008ueISBvcpPXcfd9eI9r38VzH5J8wQnpQ0iCGMfsl7L4Qhaj/DDucL4Ba9Zh0/J7lncE6tVspviTqGzzyuK0S41KZdNc8uEWk2cJ6uKSz7iVtO9eC29KkyDvJrmKtW4/a2fXJMXjJNTdLcSGfwKH+4LrcP+w6skeDs1qE9Omc3eJT5kAc2uNYQvbk0Hs4L4bzcwLaB2VGmBSfkCEzCY8Vh+bEkNuB2s7lsBcRiWhNfW5uzpPpkPfIkhvX7E6Yo1OWIw+M68zXod4J5b89/Iz1+UuNMWYxR6NRxzl9aho9I8U5zEcREem0G9bfliOi82gcnFezgX0LkSFvgkf9y9D3mznKkcrn8fM9NEaypD0XEckXUfPu+DgnlvM4P+Wy6DGbmcW2mp7Ga7qIyMlTR7FevbjN+ixeg6Yr2NZhdBLKh4+esvaxcdN2KHOuSbDk/iMMU/xZl5hyuSzl8rz/5ZxX6Hx96Jrcsu8Ras3lrzU8P/I2+fIYBHaWGmelnTx+Asojm9Ab/K1v3gflHPW/HM2HPWXb/5mhevy/X/oyvk6Zb2wzapAvN0djSETk2LGjUC4Wsf9Nktd3aGiYtoljpNO2PVzxCvdA5gL/Xgn9RUNRFEVRFEVRlK6jDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdZ1VmcHHi+f8kxUDosanadgy6Pppq2Hx7/JmDUK7OoJmqVUfDTF8PmshERF54+dVQLmbRMNNDRsm+ITRVe1kykyd0nA3b4Dk1gSYcY9BkE3l4HN40mpOGIzyuqbmKtY/xU/uhPDvXD+WQzG0xhe15PhmzTIqJlIxZbnxhQ28nto1El5pMkFk0w8X0jBxTcE+a6ZGN1oaNt+xdo3PPZz6Mq8JEIbZLEmJ/Mg6HBmK9ixQ0FXfYDGcb0BMy4iZkoGPjmeehIZ2d2T6nVIpY/SXkICUy6kZRh8pYidBqbBFDLuN8BuvpLzGHu+vjBRdHLvztjLH6i/1Oh/7GZjuHAqkcapOEghM9xzZDCvkIfTLT8gIYHH5oyGDO2Xkhu/ZFJLRMg7hPn8LxApqvOgm2S5hi9jd0TYkM9XsX+4tLY8uPcGz6WTvsK+9iW5RdXmRj/jOOu06LYTjOYspesYRzRf8AXsvY8CwiEtK5Dml+ienc9vbhdcbQYgRuiiXUkCnfoXMZU58u96C5tt5Ak3vYobkkZRGOOo2Ls3N0fXIp6dLHvjJ5FuvcP7jN2kd/G4+jvw/bv107DuUOLaARDODAzKQsZuPT9YHvkUx7yflLCc681OTzeSksLD7CZvAOnSc/sOvnZmhuCbn/0cITCfZha7GelEVf2EC+eQsG3Z05g/drEYUIhm0a20U8b6+47RXWPv/ub/8Gyp0WGfVpOus0sX/WZzH8sadE/VVEanW837h67x4oD/bTOKpiUGEY4j2RSVn0JaGQRZ4PzJJrh0lb0eUC6C8aiqIoiqIoiqJ0HX3QUBRFURRFURSl6+iDhqIoiqIoiqIoXWdVHo0gcCVY0P479NFsBrVz2RR9KH/GSVCnNlvBQJtTTx2Dcg9pM4ujGLwiIiITZ6Do9eHLgyX0dWzdgKEmxUH8QG0G/ROzdTsEKWhRsFsb9XZeBsuDPgUQ9aLWs3p20tqHSeagPLwVdYezDtahLRwmRnpQx9bXcVhLZAV1nf9MyGmLa0Cz1ZJoIdDH9VinS/rt2NZQJwl+htvEddh3xGF7uM0kxWcQkXeBgwNzOSxnMvisHyUYyBdGuA/ftTWpOWqLgk/nkUwaIfkAGjXsWyYlyIcsP1LI0VjMsXYb98nBdKwVF7E9M1nax1I9OYezrRVu4It7TidMvjSHfAr+RUhYuc8FdH4dGqcd0hPXmva5qkyhNrdaQ21vo4FzWos0zdU29kH2kQRZuw9GZJphD59L/pVtIyNQ3tqH83I2xYTjsX+FQkppWpUM14G22WLzkoi0abx1KBRtbmH+qXfWx6PRUyouXlt7ithmGboGG/ZiichsHc9tQBrsfA63aQXbVVDf3mhhXxIRaTfp+kfeuGIZfR8xnYd8AevtUXhZfmCDtc+ePuxPV1x5PZSPP4O+yCcfQ8/j9AT6QpKUVMoG+TPzZWyb3k2XQzlsoiY+V8TrfLlkezTydEeWpbHnLpmIO1a466XH933xF4JTWaPvuhz4mxLa7PA8gdvIkI+Xt+nRta7VtK8DPT3ob9izB70Mu3fvhnKtgWP5ySf2QXnizGn8/GUYqigi8vjjj0O5mMfAyB461yMbt0B5166dUH7JjTdY+zAejtUNw9jnjx3DPh7R3NVs41g9eWrc2kc/jc18JiWd9Vmgv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVV5NHK5omQWNOZZH3WThRzqKjOe7dHwPNLAs0aevAoerfFdH5vBfWRsrTBr/FjLHfik+w7wOE7Noa5tco6yPBx7DflajtYFz6E+r+BRnWgf7QA1goMD6BsREfEG8W+mgFq6wEFddibGerOGOkpZpz6hdZV5ufylkkyzHhJ5syQTgrSevP522EEtsoiI5Fn/ThpuksyyTjfw8Dw167Y+ntssl8U/ZMmT4QrWqUVrkQtpWIMUb01WSFfeJo8GeW9yJcyWCTxcf39sfMzaRyfC9iy7fVhN0uDH5L9yPBxnKUt4WzkaQp6NcEk2R0g5HWvFQDYn5dzC3Eb15W9tnJSsmjbnvUScb4PtFlCmSULegMeeQj2xiMgYeWx8qtgAn/8Szt2Vk+hD80gnftVltjeuXKCMmgg/M1fF4x5/5giUd+5EvfEm8sqJiAiNjSZlIs1Rc8/S9YOnrBa3vYjUY6x3LcbjmlnQhLfClA68BkxPTC5e95pN1FzHdK3z83g9FRGpkW8gpNyfkQ2oHc/n0bNx8vghKM/OVqx9BGzoomGdK+JnXnLdC6F86623QLm0Ef2ILc/OGJipYN94+P7HoDw2ifcOSRb7fHkT9umjx5+w9hHGOAcWt18G5Z5hrOfc2BSUPbpHyuJtgoiIOA6Nf8qdyC3J3gg6a59lZYxZ9GZwXkVE44kzMuY/g++JyUvpOOzJoHnFYDmXo9AgESnR/MZwPUuUm1GdxbnIiXGcVaZtD61H9yNXXrkLyj/6oz8K5d279kL5xEm85pbLtr/KIc/oqZNHofzd+++HcqeDfefEOHoyqjXbX/Wvf+pfQzlD3rml90x8/7Qc+ouGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK11mVR6OYz0s2P69PzmdRu1UgzWPgcM6BiEdiYUMaL9NGvfrWTagXDV3UZm4pok9BRKR/A66xHZJO1dDa4/tPHYfyQwdQgxqRhrVXbO3/QBbF/VtHh/AzpDsUH8WZvkN68zZ+XkRktBc9GtE2fM94BzV+M2ePQrke4drmJkUkH5N+skOa6HhJRkTYXh+N/DnapE9lvw/rMOf/hppFj7wzcYyvG2HPCuVoxLZG0fc4L4KySKivdMhrEJHfIsiSRj9rj6s4wHFTNbhNJ8Q14p059PMIfd7N2/rQYoztXSCTTjuibJgMerQi9v8Y22vCHiHuf89WH9pNenyR8sIpabNngPwTncjWUEc01nmt+ZD6aK2B7cya+LEKZqCIiOQ2oMY4T+uvuw6Pa6xnXwnPXVjFuaM+hflGIiLbBrdBuUH64Ii8caaBfexv9+O8y2v0i4j09vZQGb1FzSa2f0jnh7cZJ7aGvE0+h5BMV+e8YO3I9t+sBU/t3784b7FG3qf5LJuzPRrcJxPyUjVncW7wyVvFuRmtpn095HmVx+pVV14J5Te+8Q1Q3r4Lcw7qLs6BTzyNWR4iIvf8y91Q/ubXvwvlnh7U7WcH8N6hHeI1OlPbZO1jqK8XyvkBzM0oUZaHF/ZBeXYavU/NlKyn4UEce6Uc9tnN287f37RSMkwuNUmSLM7TPF/zNbfVsue/Jude0DAvlyl/gjIxfJpH4jjlPoau423yrPHrAd0FX3klntetm3CemZ0+a+3z9tuxD/tZPLARyg2am8Nr8jOHMdfl9PhRax9nab8H6V716FG8l52exrHcSz7fn/m3P2ftY9Nm7Pf1qp0b92zQXzQURVEURVEURek6+qChKIqiKIqiKErX0QcNRVEURVEURVG6zupyNIKMZBf03Dkfdd1ZWu8946Rs2kN9XZs07mXyXPSXUJ/XSM5AeTDNB9LBNY47Ceo5pydQb3xkAtcWnhxDrwPnMfRusteQ37YXNadjx3AN7320fvH2UdTrlYqo/ZxK0QD6JMfcfhWu0zywHT0b+0mnXxt7GspJisY4onXn2w3caWeJJjhsr32QhucFixpNQ9kQnMEQJ7bGuxOSr8RhTwAeE6/pHVCf9wu2PjSMyJMR4zjokAa8QF6GrEveBsojCFN0vTElBPB621kf65Dz8f3slygXbY9GKNh2rTZqTEt0HL6gtrsTo27bY2GsiERtXOO/Q76PpZ9IkfCvCYX+phTz8+1boEyTfsoPcI09P7Xr2G+fPngayv/fAwehfHAa27mPfG5uy84r2ncKszWcAPuDR3kwgYvbLAeoZ7dygBK7D5qj6BVxqc9FLn7GpRCBbA/qoGdmMPdARMQ0yffhYtvEIfdrHp+ce2J3ItfjMY/HvnhU6+TRmJ2dEXfhfAXkreqQbSnq2MfHHjJxKdeljdfHxGdfGvlCUi7zDrXzVVddBeW33vEmKO+6Yg+UZyjL5OljeE3+28//g7XPh+9/Eso58pnlyN9Tb+N1vYcyLpxhvEaLiGzYiPp1N4/XbaH+F1AuU408f4Mb7H1svRyv45uHsF4bes7PKY0GzpdrQRRFi14M9jzNkb9ntmp7SPwsnodMFvtwnjy1SYLjsVbDY3bdlb16ljeLPBqdDvb5Rh2Po93AeaZes30LDvneDh86AOUTx3BeHx/H+9LZ2SqUp2fIRykiMR3H0PAA1oHaolLB+9AB8iVdc8011j42DmKfPEHX+WeL/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdVbl0XASEXdBZuiyBp616a6tX+fsBt/FTIudO/dCuV1Bjd/j33kYPz+60dpH6/gRKD91ALWbW3ftgPLmPtQENvKo3Zyoox4v59n7PDuJeru5OdQR7jt0AspnpvH1W3/0h6BcL9jPfy1aP3+0hTrD/hyukTzYg3kiJ8ZQMxh37ByMmDwKQmtUmyXrZJsUr8ClJoo6cm7h7WwOtelGUBCbJCSQFRGOM+mQqJmbxCUNvkf65iCT4gPpYJvFtLZ4RBrwhPMFyJPRIb0yryMuYud9CO3TIf/UyXH0OsUN1Idu2WT38YDWc99/Zorqie1dLtNa+h75W4ytcW+TBpW1tUuzOFhnu1bkRozkFrw5CefOcP07dh/sxOhd2VfDPvUoeTIOnkG/1uYCapyHU0Tyc5SNMFrog/K2XtTqDpdwHqboFinmsM+VC3Y+g+/xeET4fCV0/di6BftcstnahXX9iA2t2x/h9WKmhv26Qbr8JG0Nfj6HnKWzmCGwPv1veEO/+AvnnP0knF9RyqDXRkSEJe0JeWfK/eiVKZb7oFyZxXHPWTIiIkND6DP42Tf8DJRfeC1qw+fo3uGZs6hP//q3HoDy1+7GzAwRkb481vuyyzGLY66D19w8eQPCGTyu2Sp6p0REkgI2Xn8R27tvEDXzQztR7z7Yh17OnVddYe2jp4DepQyN5dkzRxf/nc2s/ffEcRwvjmU+9//0z/8M5atecK31+ZEebBPOfgkpf0cyy/sk2aspItJq4ThvNnFemKMcqbk5vB42ahUoV2ZwDn7iUbwPna8IzUUhzj0PPfgIlPv7sL/u3In99SUvuc7axabNmFVUIg/zP/7fL0H5x3/sR6F8bAzvUzMZbEsRkSLlzBmeyZfOj6swSuovGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1nVR6NuJNItOC9CIXWRTeotTO+vb4xa2IzAep6E16HmnSUA1sxwyIs2GvIt2Jc23rOR83ZdEh5HzWqUx69DcUe1FRPV1O05TGtdV9GreaWK16I72+h7nKO1tvPb8H1ukVEhrahdrN/AI89iFGX2EdauwzlM3QatsciorXhebn8pbkA7jrkGLTaDfEXcikcB48vIO9CwIuYi0iJ8gTE4HN2lXwdkcHzxIdcq9ttWK1xRgGOg0KWvAu8UdZQ0xviEOskYudgZGl9fY+03IUyavTzBvvvmVOHrH2cmkKda5M8GSNF9AgVfM7VIL+LtQeRhLTaDTrW7JJTHJm19wiJiBw/IVJeWNp+ago1ytOzuB57f8pBXkFj+ydvfAm+vnUnlJ86iBkChx97HMpxZOfZbB3aDuUtwzinbSjjHJkhnXRCc4kkeJxhy97nHGmSQ/JDRE08X3GI59o6mynzC/djlyahfB7nyAHyrxia3xopGuOYfCCJpPuGTEpOz1pw1dWXSyYzPxAyNM45NyTj2hpsjzJTQppfHMpQMeSjjHzKp4jt+eiWV7wMyi+68XootyKsw0Qb6z0+R9fHWcpOiOx9zp7FcXKczpubx7Yo5rFv9GRw4t3zshdb+9ixYyuUt19+GZSHRtB/4CU4Z9ZnMeNrpD8ly6pNviLyEyw9zvXI0ejEbWlH82N7jjxQ//CPX4TymUk7C+K1r8F7uFwR768KZexfLt2htslPWKvYeTt1apcKZfIcO3YMyidP4vXuyJHDUN6/H3OJjtPnRUSuvx49Fbt2Y9948Q04Jq677gYoD/SjrykK7b4R0pzZbmK51cJZdPs2NLoFObzuDwzaXkyvgO0f0jTnOE7qv1dCf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK11mVGbzTjsRxFoyDhgyCZORk456IiMRoHmk7aHg5M47BdhsH0cwytBFDTmpzGKYnIuKX0bw2ehmacvI5NB+5ZI5zyFCTz2MoiuvbBnTjoRE5IXPlxk1ogGpRgEy9SmFCJTtoqaeIRsd2Bw1OThsNcs0mmqY6bTZjWrsQk9A5I3O0kywxAiV22NWlxvXcxZAqOo3ygh0YInbD5WiuEhHJkoH43geehnKriQZWl8yWfkjtE9lmqFKA7+EAMHGw3XIU+hd3KASOQsgCzzZ4Jh71aeqPjo91Gu7DPpxN8P2PHEdzuIjI6Tkcq6Uc9o2TR5+B8hwZowcH0JDcl9LHObyp1VnO8L0+Ztx/uf+k5IP59uJwxpBCLPeU7el1W/sklGszaO7e0Yum+quv2gHlYx4ZAlNC56QftzFRwXNRmyNDZQf7WNTE+chpY38IY7vtTYyfiTs4lmLchcySAbgV4/UkSjm/BUoS3LYHzblTJzFYa3gXmh03bsJrw8kTtlm1Q6meHgVLhguXzPXpfSK5nCOZ7Py841qhuA6VbEMpT/EhGbPrdTwPzTZu0wiO22Kpz9pHLaS5YQrbuSeP89VT4xiW961HH4Pyo/c/BOWkY5vBm1Xso4ODeK9wwwsxJPDaF+ECLeUSXj86KYbzwUFagMTDXjA1jmPbaeFx79yG16TDj3zb2sc//N9/gvL1L0KTcRSeH2ccTLcWtMO2ZML5a9AZCiqeruDx/uMX0RwuInLllXgerroKQwzrVWzTCt3jnaDrzPhJbHMRkYMHD0L58GE0d586dQr3QSZ9Ht09PXgPeNsrftja5zXXYH/q6++D8ugI3ss2GjghztKCB75nB/Nms2jU5sUAWi2aQ2nBipERXIiE7xNERBq0UJF1dXEu8O8V0F80FEVRFEVRFEXpOvqgoSiKoiiKoihK19EHDUVRFEVRFEVRus6qPBphGC5q5BPS6Fteh5QwD4dEXS75PGbn0Hcw1Ida4yKFu7Qa9nNSSKF/gwMYnhdFpIHvYB18CnlyaXuOlbAm4pDu3pAXIMhQKE0eA7M4/DDw7KSvYgHr1aRgn2cOkXZxBvXKbfKFBK69D0Pnx5BeOY7Pa35db+09Grs35CSzoI+/eS/2jR96yR4oz5y1NbZf+Q56Mh44QHr5FmqaM6SJzAaoaczmbI2jT+/JU1DioKBevpfC0aZrqDUuUMiYn0OvjohItUP6eAoJbITYxxvtOSiPTWJfGZu1+3gYYz0MeYKEtJ2np1BbWyigLvay7Zdb+xgeorDMAo6bODzfVmbtu5+IiExXa5ILzun0KRSMmu3ojG2E6qniuMudRV1zq4k+tXzPfnx/HnXifX04v4mIVOh8VqdQgxxQyJrbxtcN+SXiCs5PJmN7Z8ovvArK7Qx6ib71lXuhPMljrYga+SnymImIbN6Ex/qW3/sQlL/x//xvKI+MoIdj21XY5/7mt/7E2kcmwvHFAX7xgm+NwwLXinans9jvEgf7UkweyEjs+anWwvfEBo93eAjbbNcu1Jbv3Inl0W126JdP16rpBvanJ/fhPPz4kxiYdvAA9vnhgPx3P/5aa5+jI+h/uO7F6AUYGcWwshZ5Sp86PA7lsXEMABQR8Qxuw6FxcvwoznEe3QfEbZyn/+pTn7H28Z37H8Zt0C3arS8/H37YpGv6WtBudSQI5ucPDpXLZPBad+IMtoeIyFf+5ctQfmr/I1C+bCv2r6PPYN946BF8/2NPPmHtg70LbbpWGfJN0i2fvOKHfwjKr3rVq6Cczdo+3eFhvB8xdIFqNPA6n5B/olAg71PB9jDy/dkDDz4I5RMnsb1dSjt8yU04tjnIUEQkQ4F9MfkO4ZK3iilQf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOqvyaCRJsujNYA8G695Sofc4pGGcIV/BeAb1o5tHRqAceKiLExGZnUL9eUJr3TdojXgmCrFOjovaOj9je0/8gNuCdG2UF+L5qK3lyJFyyc5K6OtF7dzZGmrgT545BuXxaVobOsQ6emmnizwZDmn946UaQWsN90vP1t685DLzuuPmBJ7n++4/CuXv7LfX1/72PlxfOyH/g+Nju0ecTdJGzb3btJ/TAx910bkc9oVaB/WdPnmbYhqSHFngtGzdv7VefoLa3co09pXKLOUikNjSce3196M2/i2KSGNaxOMuU39lT1e1iedPRMSbw234lGPiLZk/wiglCGYNiON40QMTkW/FT3C8HKrbPoOpScwMeJHgMZ6hdeML5PkZovX+53K8BrzIgTrOWVeQ12XjZtxG9tU/DuWA9OxP/+P/D8pjB85Y+3zJa38ayj27dkL5899G7fnxBh7nJjrXnZbtIQurOB73f/0bUG4+jRrl+OQRKI8d3QdlQ1kvIiJOiTxQNCe6C2PFXackjThOJF7ITvHp+hjRZOG5uP6/iEh/D57bLVswZ+qWl90A5RHyxeQpp2qmZo/DR/fhtehR8mCMj5+G8lAvHse/fs2/gvJO8oH0F+2+kfHx2I1gvaIO9tmnnz4K5aeeQb26l9jH9dQU+qfaNL6bTeyf2QyO3f1PPgLlck+ftY9X/ij6ASamcL5YmlWxHjkarXZH/GDem8K+g1e+Es/bV//lq9bnZ2Ywe+P4IRyTj9DNUKeGY9TQPFEo2J7FuTm8trCnor8fx8Aczbkdym8aHcX8ibR29zy8bvP9cBDg9S/w2QuB2zt+3L5/eXIfepceeOABKD/zzFEoJ7TNH/ph7FvNpn0chtqfr3HP1qShv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVV5NALfk2DBX+CSlsujXIa0HA1Dawe7CW6jXsM15U90MBsioOyGTaP2Gt6BR/q7GdT4hQmufe3SuuIZ0lX2Oqhndmx5qKXHizqofWvUad1mB9dILvWh7jWbt9dprlNuxtkZ1GbbmnXyjZBGPuH1kcWy0Ng+nCWaPCNr79GIsj0SZec1mts24nn66pPHoXzvE+jHEBHptPG85DmTwuGi3YeXkvFTcjRoLXGhNmxTLkuL/Dsu+WIc9jWJfd4c8nkYDzX5mSLmtmTblJNA3hMndVrAevC64ZftRB2r0DipVnlM2BroCVrXO1/E89O3JNcktrSja0On3RInnm+fmNZKj2g+CyN7jMxQlzpRR7+MQ9/9nKV2q1Wx3U7k7D465uJ7tjo4v0xRvsfl23Dt+t03YiZG48l/gfLJJ1FjLyJy4JvfhHLfscNQ3kB9LiQ/SzyBGvr+lLHXN4Hn/MCnMDejM4HXj+MOauaHtw9inYr2WvVHKHMmovGXLJTZc7RWxLGzmJfRX+6D167diVlCG0fRJyMi0t+PPsd8FjXvQxvQ1zHTwOvnPV9Br83+A3beRKWK567Ui/k4L7ga+9eVu3AuuW4vrvfvhqihTxro5RQRaTfwXFfncFxVZipQPnIAfSTPHMbrqZeSl1XK4byYpXsg9gI4Bvvr0WN4P3PZju3WPnI57JNHj6Hfrm/wfF7IeuRoRGEiUbjgEfLw+rfz8l1Qvv7664WJIzwvTzyEWRDVM+jhCGic9W7E68w95FMQERkfx0yUwUEc969+9auh/PDDuI2zZ9EXE0d872T3jRblSLXpXqNF3sqTJ7CO+ylb5jD5LUREqnUciwH5VQaGcBztvfpqKOfy5AthE4eIfRNoea+dC/x7efQXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKo9GTy4nudy8DtElXbjnoSibteYiIklMmv8It5GQh8MY1L2dOIG63zix1wHeunkblDNtrFfzLHk2ItyHS5r6DJsyYlub6/nYjAnp6AN6nHMcfD2hfbqkpRMRmZpD7eKJ06jxa86htjgIUS/aMaTLT9I8GqzH4/Ox5PP2xy85R8fPSGYhV2B7AbXEY7Q2++Q06rVFRPoK2CYNWg/boz4thrJHaK1sP8WvE3AoCukgE/Zc+OSvoDESpekoCcsPRdpZHoo+VTxuYLZMp4N9RUQkT31y2w7U9ZfK6AupUV6NoTqmWSxalFsSUh/Nm/P1jqJ16IAiEsWJeAu+Gh4vMZUzKd/jRDk8N7N0HNdvRX36XAPXhOf5y3RsnfbwyBCUJ2mOmzuJGuTGpz6Nr9+Dnz9zP+rZc1O2RvnsP38JyrUs9ocXVrGel0fkRSLLTpKyRHuWslw6T+Ac2CYt9bih64vBtpvpszthSBlGCV3Xznnd1sujMTdblyCYn4duuhk9GT/xE6+Fskm5jpw5iz4oh/KVHqX8oa9967v4fppbbrnlJmsfDs2BzSbq8g88ij6Pz9/9eSgfvXYHlH/8hzHb4+yUnR0zfgb79PGj6B05dRKvD+xjGxhEH0k2sG+NTEydlDxatdkK1nMSvSSnxrC/bt6CY11ExKUcr1On8DP/9E/3LP47DNc+SyiOEokWxlmWxjgPiUbdnpu2bkYfwQ/d+nIoN8mnF5DPJaHsmL+/+25rHzwvc27GCOWx9VCeSaWCc24YkkcjZejP0P3GM0fwXvXhhx6F8oED6Ndpk4ejfwB9JSIig8OUJ9OHx8WZIlu2ogfIkKfiYhwW1r3Fs7No6C8aiqIoiqIoiqJ0H33QUBRFURRFURSl6+iDhqIoiqIoiqIoXWdVHo2+oCD5zLwuj3MzPH/lHI2ENO8xLbZvaZ5JyM267OlJW6uZz6Auta9nAMq9vZgpkISUgdHGfbQjWle9Y2vDWfOezWKzei7qWh0Hy4UCZnXw+0VE6qR3bNC64RHpCMVgHdwYnyndxDYYcPvzGVz6amxW1XW6womJhvgLfph/qaOOslLF9uA1zkVsXxHrrBst8rGQEaWQQ49HNmPvIyHtOWvNDUsek+V9IZzVwOX5jXDeCY1FqkOL+vBclfwUnn1uN4yghjlDXoMmrRs+U8Hcl1oNx3IcpcwP7Ami8R87Seq/15IojsVbqDpnnBg6d+zNEhHpHUJd7fGJCpT9p49CuW8Q57OBApZ7cva5Okbt6JPuewN5HY4/eATKBx/EDJpsglrsTmh7eEyV/A4R+iEi8uNFlKPBbrt2ikmjTe1doVylOQ+3Wabxu/FEBcr1in0cfXvQn2JII+4ujK0wzUSyBmSzBQkWfGrtFh7f7Cx6IfY/8aT1+UIRM1WmT6Am/r4HcD3/l7zsZVB+2UuvgfLAEGURichjj6Gv43f/+CNQfuJbWK92FfvK4/fg3FI9/hNQjlPm9tk6nssiZQcND+2AsqH7l9DQnDhVsfZRqWBb1WvY3lV6fYI8Gqcn0UdyagzLIiJJgp85O4XzaBSdWvw3X5/WgjhOJF7wqUbkieopY5vPTNt5Jw9+5yiUs+RR9MiTyK/n+3Dczc3hfYCIfZ3v6UE/Z6vFsw35IiOswxnK9njmGfRXiIh85zvfgfKxY0dpn9g/Bwfwenr55ZdDuX8QvSwiIgMb0KPB97Ls2SiVMZPFD+i+Mi3rzvrLMm9YxRSov2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zK0etJIJ7MG0oyPgYb+RRax8F3IiLGITMuldmMHEYYYhJReF6UYoaaOHMGyrksmtU4vGV2Gs1EbEB3HH4Ws03UDv0tIaNjs0lhehkyFQdotkzbBxv/fA/bP5PhOlC4nOBxBY5tOHco2Y0N/UtNVh0KV1sLchlfgoV+Nt3AvjFRQWNeKWt3bYeMnRwa1+7gH9g0zX0hG9iBRLwPNncbcmbHZKjqUN8JaQEEK1RwvmL4GTqOgPpXmxZAyJfQANs3aIcFFYpoLOu0cZ8daqtWE42CnZCCl9JyCFeaD5YEVK1XYF8cRRIvuOD4TPD48T3bLTfSh4a+x4ITUG7P4nx0xSQeZ406zNwQnhcRkf4cnm8/wHPRIjN3YxL7cYuq3Ujw/TXu4yIy5uKHOtQnI+r3Lbo8VKncTnEaRrw8BY0FV/A4B+n9HLjZ8O05gg5DPMpEcxYWY+ikBLeuBUsD++77NpquvQD7wtETp4TJ82IUZIzNtvGAr9mNi6kMFLAvVE/bht///Rd/AeWHv/5tKPeX+qBcyqCp9ewUmqTvexjDz26+1Q4J3NBD9wZk6K228PpQIwP67AwGrk3PVKx9VGbxPXNzaNRu1nCbrTa2FU3L8uQ+PC4R27i8YSMGEOfz51+PonUI7EvixXskDnZtNLEvhSkL51yxE0MmPY87JDUSLfpRmcM2ZkO0iMj4OIYc1ut47nkRmEqlAuXp6Wko/9mf/RmUp6ZsEz/fK/F53L4Nzd1DQ2gGH6YwvsFhDBUUESnTdTkgc3eeAvsKFNiZo+tC4Nv3gBy8baGBfYqiKIqiKIqifL+gDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXrrMqj0RFH3EXNOempSV/NoSkiIg6JulaSeLm0D5c13GmhThSMEpE2vEjaOdfFJohJ28kiesOiehFpk1bSUJhdLod+isBHj4ZHfos4sfW/noPbLJfwOIoFDj+ktoqxjgkbFMTWGVrlJefUDr259LzhupwUsvO6wnoL2+z/zKJWeHzWPk8h+UqaFHLIPoMa6ZU75AtosehWRIoZ3IflVeJQStKuN6h/NVq4vcCzdZWZAPtTgfw6N74A9aAbSf+ZkOa+k+J9svok+RFaHeyfnX4MoazVsC1jTi4UkQaFZYYhvqevdP7Yw5TAv7XALPxPxA5jdPncpngZzk5jqNcUmVWecbCdinnU3Q9wLmeW/V0iG3egrnv2LGqWz5zAACrqslKjA3NY08y6ahE541N/oP6RuKzFxmJAnowyh0uJPU/WKYiwTW056eLrZ+k4+nz7GpUPsf0Dw3Pi/Gc6KfPnWnD69MSijrpaxeMbO46ejN3bsR+IiEydOQ3lU2P4mZ6BPigfPfA4lJ94EPvvk088Ze3jq//0L1iPnVdCeceOLVDudLDNv3nv/VCu0zzdiuzrY3UWdfO1KuryKxX0V8ySB6NaoQDYih0Ex54Ll4J18zkaqyXU5Tukic/mUEMvItJHHlJ+j7P0PiDNr3eJSSKRJJofq00KET529CiUjxzC4E8Rker0DijvuGwrbp+8pJVqBcr792N/O3vW9gixf+/48eNQfvDBB7GeR/B1vvzNVtAX0t+Pnsb5v+F5Gxgkb9MAfmaQyvx636C9j1yJgp099uXiHMoejiCLfckK8BPbA2rN9BrYpyiKoiiKoijK9wv6oKEoiqIoiqIoStfRBw1FURRFURRFUbrOqjwajdBIsrA2fETrGwekf7XWRxYRd4WcBlaEGSonHj0XBSk+EPJYNCl/orcPdWpBgLo3N6a1sKuo1ey0bX1owm3hFXGbVj4AfZ42maOcDRGRkWFcQ3m4H4/Do4wRzvaIaH3qxNjHYehvrPlbqslrNOwMiUuN154Rb6HLurSEuEvaznZoe0jCDh7fZRvw3O8eRb3715/CTJZKk30GqNkVEZlrYD1YRstdPoqwjSPS9WcDHqJ2n6+1sF437kFt8Ft+BLXaAYUF+JSJkwbny7BeuR1hPVk/GsdYbz9jr9fdavM67JSD4J8/f41WKP949wqVvgTESSJxPF8vhwayoT4Z8prwItJoVaDcbuI4wldFnqI+FiRoqCg37HHc38F69RZx7ngyeho/QF6FJk1IAZ272ZSl1slOIxwhwhaNhLpxRHO5k+rRwL81HZzbZ2gcOMKaZax4b2Bfo+p1nO999h4ujMdwnXI0XvziayWTmR+vjz+KGvgDT6N+va/f9gA4ORynSR7nwDOUR3T3v3wNygN9mFtw+syktY96E7exeesolK+8ai+UZ2cxj+LwM8fw9Qr6L5555pC1z6lpfM9spUplvK7X6/h6YpbPqRIRKff0QbmPtPo9vTjvsv+Tr6+soRcRCchzFRueq89v0zhr3wddI4s+XUNmhsnTY1A+dszOCdm37yEo53J4r1NvYN/hTAv2hnLWkojtD65W8Vx//etfh3Ihj316mDyM5TKOEfZjiIgMb0AfZKEPPbSc91Eur/R6n7WPXB7vK+IxYTwAANT4SURBVNmjzNdobgeHPBqScp8Z0H27b3lM3fR/r4D+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1VuXRaHdiEXdeBxaTprFDWnPPS8mCIN2266WIfZe+Tvow1jw6gf15z0WdWkR644S8DH4GNZEJaf4i8nykLI0vHq2PHYe4jTZph6OI8xtQh130bG3t4ACuy+y7qBsM6LjYFyIuezTsA2G9Y0Jtt1QDWK83rM9fag6dqklu4ZxX21jXUgH7xs6RgvX5mHI0bnkBai03lXCbW3s3Q7lB672n2JDE0JCiriHGxfP0f7+DGQc+adV//od3QPnQKdt78nffQW1sPkP9q4r6ZbYZZUi3naY/D8gfxRNHbH0G35+jscueLhGRXAb7pJ8nPfmSz9RS/A9rQRxHEi1o/w0dA0umLQua2PPJdtLmDpV5vqEsF+pQ9cj2CU2ewD7VS3rgCQ/nvLEEfQkZ8mwEZLgIU/xdHRoMLJ02lBfDyuqE1q53IzvLxXfQz8JzdZk6Ja8TnyFNcsax9d1OiO3pk0cqs6CL9lL671pw68teLIX8/PVh35PstcHi0WOYDyAiMjy4EcrXvOAFUC6W0Jvg0HXDpYyoM6cxk0VEpFjEa1NPGft4lTIuXJoT+/twXj51aj+Un3j0SWufjTpuM6Y8IpdyqIp5HBO5EurfSyWsc9rfigXMzWBDXsvKQKI8rUyKD8mnexzq40t192lZZZcaz/MW7+PyebxPyWYptyHl+NoVbJMTJ7GP1mropWGyWRzDqT4X+lubrvuFAp7rbdvQw7hxI3qK2D/R19dn7bO3H/+Wpf5UKOL9SG9vH5VxHzwm5v9Gnh+ag1yagwO6Vjg5nPeDjO1D4rleaK5fek9ue6wvjP6ioSiKoiiKoihK19EHDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nVW5dFIXF+SBZ0Yex0c0o8JewRExBjK0WAdJWkODe1DqJyW1RGQ7MzNkK6NdWx5WreaNul4vM8UXwkda5LQcVIzczkMUY+clnGRI22iT/XIUPu7fH6sHI0Uj0bC/hSsV7Rk3frQtzXUlxrHixe7QEhreA8VsM2399o+lyKd654s6t+nqpQFQ6L7cp7W4c/bwydHa/N75G2oNnCf2wexw/aVsY4jRTzO0F7CWy7fQPXooJb9+HHUUReK2JeyNEam53Dd8XnI20T9j70HnQiPM0MDM+fbbWdIuc9r2Vdb5/Xzzc7a9z+RhRyNC2hT+c+ubQGwsoT6SLvbI+SLSnjc0hgNKbxDRCqUBTFDmTfTc6iDjmhKy9AcSdO0+MY+fs86+OUzkxx+nS4X1vZEJHB5LnaXLedIqx142OdyXsr4pX5d8KnfL+yis045GjlP5Jyl6od/+FZ47UwFz3uT8ixERHpIO95TxnIY4mcqs5hj0Khjfzt+/IS1D8sfSHlYrWZ7+dfbuI8mvd9N+X40E+Cc1lNG/0SpgL6RfAk9Gj6Nw1wO20XEno8cOs5WB32LDnudSCPvpXgsHJe9cOx9Oj8YV6OR7xaOY8RZ8DYF5F/atm0rlE+etD1CUUQ+K8p+YA8Gw/4LP+U6wu3C92yjo5ugvHkTejTK5Ckq0ZjhXA0RkV7ybRR6sX/Z9cY6cX4FZ66IiLh0beBhwPNbQNd1l7KrPN/ufwF5q3lOxWt0ygXuAugvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1nVR4N18+I6y9o6EhLaHk00tZ4tnS6+B6XNGaev7w/wvfsfXCOBtcjIk0gezYMbbNFGmjTSskHIZ2gS/Xm9Y85R6PZwGwE9kqk7SOh9fUT8hM4tG54aFBfmqTo69i30SGvSbSk3Ers9asvOUkislCHcg7rv428DpwFICLSoLySRgO1v+ydaYbYpiGtW83rpIuIZOk8Gerz3P+uHEX9pyPoPTh0EnXXYWIf164R1P46pOU8eAY9F76LGv1yAXWx7cju43GMbedS/7H8Pbz+tmBb5VO0uCQhldjBz8wsWQ+9Ha5PjobjOBfURvOfU2IaRMzy3+14pPv2aBxz1k0mZS109sfUatiHRgb7oBy5eK58Xp+djoPzjUSEZfbi0jzKenb2qvBwZT/G/Ht4Xl1e1+zT92gZzsRI2Qdrpe1pJLnA39eGkyfGJJebHzu9JfQhBDkcU2kejXq9AuWxU9hm1eoslCen0N9FMSMyO2v7udhTUa+jLp/zTPj6OHHmLJTL5KcYGBi09lkoYlsU8lQucFvhnGlIQ891ErG9lwmZl3iuz1HOBOcapHkxGb7nWZoltB45Gtu2bV30KNxzz9fgtYT8ZDt2bLc+v3EEz12rhfc+nCnGWV7syUhrA35PjsZFLod+nJW8N9xf2bcgIhLSwKjN4Tji+THhezzL4mbPsZbHmT7EbcFzcELXkrSgJ5/uI2fJo7V0jk3zkVwI/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl6+iDhqIoiqIoiqIoXWdVZvBcrmAZnBY3RAactGA7K0TOMvexYZADmcgM7qcYBsnfYsjUxYF8timaAkrIfBkntgGYzbeWMZ72EZLBvE0GqHaKzzVu4TZaZIYNyETsCG4zojolKaFb5FOWiMzQyRIjcqO+9s+ozbazaMhLKEButobHW8zZ9cvn0dQVUehfrcmBONxfsYEiDpQUsRc8oJf51GbJy8sm/nZIIXYpPtwNJTS3tSg8r8m1aONxRgb7Iwf9iNgLGHjkdGaDdEKm55j6W9K2A/fmDJ5DDopLlpyPMMWwvha4jrNo1DPUruytu5g4Izb0OdSubArk+YjNkiIieZqL8zmcs4e4XQ2dC8PnmkJOU/q9IRMhG7Ut6GXOXg3Srh/W3Iz93Go7DhrkwL8UIyn7w106rnMnmcfYWvHIo08thn9lsjjuN46i0XbXLgxQExE5efIMlL/wt/8EZcdg3+lEZHKlhUuqVdsMXq1icN3Jk2NQZnPtk0/ug3K7jdfYTaNboFykMDQRkXwJQ9SyGezznkuLl9irD0DRpH0HG9F1nBZdYPMth7RZdxop/Y8Xfwi85Qzkaz8H9vSWpKdnvq3bFAwbUl/ZsHHY+rzjDFF5+WBPnu+YlV6/GNjTvOK8nrLPdhvbwlDbrJbUBUdWOtQVply+Bqdtju9lPSoH2fP90Q8v/vFBf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOqvyaPT19Eq+MK8LZX2Xx/rXlEQj1p8nsrwnw9K7Uzkt1IT/YkgrzNJa1kiHpB23y6hRFRFhyTIH17TpM5zZFc/hH2q1lH1QQF61ifpQSUhnTYYLerfEid12HAgjhjwKS3wRzYbtVbnUeL672K8yFKoTUqDcTNX2ADTaeHwx9bcW9Y1WizS4HFKZookMfNyIR/0vZuMB9QXXvXBAk4hIPkjR9VL/y/K4IQF8xkdjCPs+nBQNakz1MC57NKhetImYxkQY2fvgLMJsgAcWLK3nOn1F4rjuYtBoygha+fOWBnn591tzHPvWUkLnrCAn9kNYAXzsRaL30z79FG25Q+4jw/px2ieHsVrjIGVwsedCSHe/kkeDWypV0uyy347bZuFTPKGuES+/7Yclv+CT7CljCJ3j4ByYLdhHOFfDsM7KXAXKTfKpRTxfcd/y7ODWYhH9EkeOnoDy+OlJKPsUZLdl+04o9/T0QdnL2T5RP7d8CKDlveRLHQfepgxMDijj/palevE44gDPVB8r1ZPnzaVe2CRJ8QheYoLAl2Ah+PJVr/pReC2KVh4U3fBUfK9cKHD1Eu91le9PTXv9nmrAgZJp8Du4XCqdDxiem5uTi0V/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6q/Jo9Pb3SaEwr9Fird1KmRciIoZEixE/56yQQcD7TNX78VrB9BbHo+AC0jn6tI54zkfdpZuxn80M+R2SmLwnDu7T0Otxh/TrHXuNdj+fg3Irom1QmSXSvOJ2+hrKVKY/+EtF8sHa6xxbndDSyZ7D0BEFlkZXpBVhnZsRemEi8qTUKavEYx16iubRj3EbuQDrwWt0R232dJBHg463TWuVi9ia0wztM6D+GXH+gM+a/pSMFbO8d8mn8c4xF3XK7sgG9vkJyMPFPo6lmQbrlaNhHHdxHrPWHHd43KeMEWuOW77t7TG58rlyrdFNfhprnz6VV8pIsWcPh+Zyax8e+5v4OGmbKfuwzjh/hN9A+naH+n02xUfosW+Qr1Hm3LbWQ+ctUuwpSaEwf01KKDvJJX+Jm8FrhojIwIaNUN60YweUT5+p0CdwXGdcvJalZUEw/B4/wG3kydORzRWh7NNxOCn5Wc4K/culsZlQX+D5Le06k0T4nizl1WR89qus5G9JaTu+x4kvPBZ5jK0Fnuct3tuNjo6s+f6f33T7mrd6zwfM/avofvqLhqIoiqIoiqIoXUcfNBRFURRFURRF6ToXJZ06J1FqNhrW385hSadSll38fpBOca0ajTqUWxQl3+6gvKbTsaUrvH6k18Fm9dq09G9Crzv4kyzXSUSEfqWVJr0n5nV7aTnSZyed4p+8ly5vO98X1mK5unP7aC8jl2HpFC+Veu5dS+Ht8UqOHXqd+06aeoJryJISlk7xeeNf0/knftexZXU8bngfCUlheHnTmA7E5fVQRaQd8vK01HZ04HyqOtZytvZxJFQPx72wdOpcfdZqucRz++ksWTaapVPuCjKo+Q99P0qnuLy8dCqtzbkteJ8un0vqY7xU6EX9rL9SvVaQTvGcISLi8XWN67Wwy1a0Pv2v2Vx6fWLpFC3pzQPd+ry9JGkc87LguI2Y1mY3vFZ7CtZ76LxxHdwQr7F83+Ck7NNJVpDurSSdoraUxG67iOvFSx+vUtripl2kqD8lfFFaIukKF+qzltfgpUuaXoxsTukm31/SqXN94WL630U9aFSrVRER+aU3vWHVFVN+sKlWq9Lb23vJ9yEi8t+/8swl3Y/y3GMt+t+5/YiIfOaRg5d8X8pzh7Xuf79057su+b6U5xZreQ3evn37Jd2P8tzjYvqfYy7icSRJEhkbG5NyubxOYSfK9xvGGKlWq7Jp06ZL/s2G9j+FWcv+J6J9UEG0/ynrjV6DlfVkNf3voh40FEVRFEVRFEVRVoOK7BRFURRFURRF6Tr6oKEoiqIoiqIoStfRBw1FURRFURRFUbrO8/5B4xWveIW8613vuuDrO3bskE9+8pOr3u6HP/xhedGLXvSs66U8P1mpPyrKc5lPf/rT0tfXt+x7eO5885vfLK973esuab2U5wfa/5T15Pna/573Dxor8d3vflfe+ta3rnc1FEVRVs3FXNi+33jPe94jd99993pXQ+kC2v+U9UT73/cHF5Wj8XxmeHh42dfDMJQgCNaoNoryvdHpdCSTyax3NRTlgpRKJSmVSutdDeV5ivY/ZT35Qex/+ouGiERRJHfeeaf09vbK0NCQfPCDH1xMO2TplOM48qd/+qfymte8RorFonz0ox8VEZHf/d3flY0bN0q5XJY77rhDWq1W2q4UZZF6vS633367lEolGR0dlY9//OPwervdlve85z2yefNmKRaL8tKXvlTuueceeM83v/lNefnLXy75fF62bt0q73jHO6ReP58av2PHDvnIRz4it99+u/T09Oivc88xvvzlL8utt94qfX19Mjg4KK9+9avl8OHDIiJyzz33iOM4UqlUFt//yCOPiOM4cvToUbnnnnvk3//7fy+zs7PiOI44jiMf/vCHRURkZmZGbr/9dunv75dCoSA//uM/LgcPng8jPPdN4D/+4z/Knj17pFAoyM/8zM9Io9GQv/qrv5IdO3ZIf3+/vOMd75B4SVr6Sts9x9/93d/J7t27JZfLyate9So5ceLE4msryU6TJJHf+Z3fkcsuu0zy+bxce+218n/+z/95li2sLIf2Pxvtf2uH9j+b52L/0wcNEfmrv/or8X1fvvOd78h/+S//Rf7wD/9Q/vIv//KC7//whz8sr3/96+Xxxx+X//Af/oN8/vOflw9/+MPy27/92/LAAw/I6Oio/Lf/9t/W8AiU5yLvfe975Wtf+5r8/d//vfzTP/2T3HPPPfLQQw8tvn7nnXfKfffdJ5/97Gflsccek3/zb/6N/NiP/djixHX48GH5sR/7Mfnpn/5peeyxx+Rzn/ucfPOb35Q777wT9vMHf/AHcu2118rDDz8sH/zgB9f0GJXvjXq9Lu9+97vlgQcekLvvvltc15XXv/71kiTJip992cteJp/85Celp6dHxsfHZXx8XN7znveIyLzu94EHHpB/+Id/kPvuu0+MMfITP/ETEobh4ucbjYb80R/9kXz2s5+VL3/5y3LPPffI61//evnSl74kX/rSl+R//s//KX/2Z38GF7mL3e5HP/pR+cxnPiP33nuvVCoV+Xf/7t9ddJv8zu/8jnzmM5+R//7f/7s8+eST8iu/8ivy8z//8/K1r33torehXBza/2y0/60d2v9snpP9zzzPue2228zevXtNkiSLf7vrrrvM3r17jTHGbN++3XziE59YfE1EzLve9S7Yxs0332ze/va3w99e+tKXmmuvvfaS1Vt5blOtVk0mkzGf//znF/82NTVl8vm8eec732mOHTtmPM8zp06dgs+98pWvNL/2a79mjDHmjjvuMG9961vh9W984xvGdV3TbDaNMfP993Wve90lPhplrZicnDQiYh5//HHz1a9+1YiImZmZWXz94YcfNiJijhw5Yowx5lOf+pTp7e2FbRw4cMCIiLn33nsX/3b27FmTz+cX++OnPvUpIyLm0KFDi+9529veZgqFgqlWq4t/e9WrXmXe9ra3rXq73/72txffs3//fiMi5v777zfGGPOhD30I5s43velN5rWvfa0xxphWq2UKhYL51re+Bcd0xx13mJ/92Z+9mCZUvge0/2n/W0+0/z03+5/+oiEiN910kziOs1i++eab5eDBg/CT2FJuuOEGKO/fv19e+tKXwt9uvvnm7ldU+YHh8OHD0ul0oN8MDAzInj17RETk8ccflziO5YorrljUbJZKJfna1762+NPxo48+Kp/+9Kfh9Ve96lWSJIkcOXJkcbvcX5XnDgcPHpSf/dmflcsvv1x6enpkx44dIiJy/PjxZ73N/fv3i+/70PcGBwdlz549sn///sW/FQoF2blz52J548aNsmPHDtAPb9y4USYmJla1Xd/35SUvecli+corr5S+vj54z4U4dOiQNBoN+ZEf+RHo95/5zGcWx4XSPbT/Idr/1hbtf8hztf+pGfxZUCwW17sKyg84tVpNPM+TBx98UDzPg9fOTXS1Wk3e9ra3yTve8Q7r89u2bVv8t/bX5y4/9VM/Jdu3b5e/+Iu/kE2bNkmSJHL11VdLp9NZ7AdmwU8mIvAT/fcKL3LhOE7q3y5GxtAtarWaiIh88YtflM2bN8Nr2Wx2zerxfEH7H6L9b23R/oc8V/uf/qIhIvfffz+Uv/3tb8vu3butG7wLsXfv3tRtKMqF2LlzpwRBAP1mZmZGDhw4ICIi1113ncRxLBMTE7Jr1y74b2RkREREXvziF8u+ffus13ft2qUrS/0AMDU1JU8//bT8p//0n+SVr3yl7N27V2ZmZhZfP7ci3vj4+OLfHnnkEdhGJpOxfpndu3evRFEEfe/cvq666qpnXd+L3W4URfLAAw8slp9++mmpVCqyd+/eFfdx1VVXSTablePHj1t9fuvWrc+67oqN9j8b7X9rh/Y/m+dq/9NfNGT+Z7h3v/vd8ra3vU0eeugh+eM//mNrBaDleOc73ylvfvOb5YYbbpBbbrlF/vqv/1qefPJJufzyyy9hrZXnMqVSSe644w5573vfK4ODg7Jhwwb5wAc+IK47/+x/xRVXyBvf+Ea5/fbb5eMf/7hcd911Mjk5KXfffbdcc8018pM/+ZNy1113yU033SR33nmnvOUtb5FisSj79u2Tf/7nf5Y/+ZM/WecjVL5X+vv7ZXBwUP78z/9cRkdH5fjx4/L+979/8fVzF5cPf/jD8tGPflQOHDhgzVs7duyQWq0md999t1x77bVSKBRk9+7d8trXvlb+43/8j/Jnf/ZnUi6X5f3vf79s3rxZXvva1z7r+l7sdoMgkF/+5V+WP/qjPxLf9+XOO++Um266SW688cYV91Eul+U973mP/Mqv/IokSSK33nqrzM7Oyr333is9PT3ypje96VnXX0G0/9lo/1s7tP/ZPFf7n/6iISK33367NJtNufHGG+WXfumX5J3vfOeqlgF9wxveIB/84Aflfe97n1x//fVy7Ngx+cVf/MVLWGPlB4GPfexj8vKXv1x+6qd+Sv7Vv/pXcuutt8r111+/+PqnPvUpuf322+VXf/VXZc+ePfK6171Ovvvd7y7Koq655hr52te+JgcOHJCXv/zlct1118l//s//WTZt2rReh6R0Edd15bOf/aw8+OCDcvXVV8uv/MqvyMc+9rHF14MgkP/9v/+3PPXUU3LNNdfI7/3e78lv/dZvwTZe9rKXyS/8wi/IG97wBhkeHpbf//3fF5H5vnX99dfLq1/9arn55pvFGCNf+tKXvudMoIvZbqFQkLvuukt+7ud+Tm655RYplUryuc997qL38ZGPfEQ++MEPyu/8zu/I3r175cd+7Mfki1/8olx22WXfU90VRPtfOtr/1gbtf+k8F/ufY5YK3BRFURRFURRFUbqA/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF3nopLBkySRsbExKZfL4jjOpa6T8hzAGCPValU2bdq0mGZ9qdD+pzBr2f9EtA8qiPY/Zb3Ra7Cynqym/13Ug8bY2Jhs3bq1K5VTfrA4ceKEbNmy5ZLuQ/ufciHWov+JaB9U0tH+p6w3eg1W1pOL6X8X9aBRLpdFROTygoh3gYfZZxMvzp8xtG3OLB8cGoLyy255sbXN3gJ+6L5v7YdyRE/js9UGlOutDr6/HWE5xLKISOIkUDaOS6/j+4t9g1DevWcvlDf12Y28e7gH37PrKii7mRKUPWq8oDUO5b/5+hPWPsYnzlp/W4oj5+sVxbHc++C+xb5xKTm3jxMnTkhPz3w7xHGMdXuufstC9TbPYiRZR/5sBuNzgKXfmszNzcnWrVvXpP+JnO+Df/+pT0qxkBcRkdGhAN7z9H3/DOUTY1VrO7uuegGUN/Rl8Q1eDoqZAh6fk+D8JLE9H8X8ngC3YfIjUK5FOF9FNLZMEuLmUr69yhew3nGEdTDNWSjPThzF97cqUM4ttPFSnKCI2wxwzuN5N4pxIPgZvNwZvsCISBRhe4Yxjq5GvTb//822/If3fGzN+9+en/lz8YL5tskbvO4EBuue9T1rO4GHbeT6y98C+A62kUP7TFLa0BV8j08X9ohelwS34dEmfepvaXMkn0uHZkXs0fYUeXFzqFn2LXYdkIg+EDop3wK7dD2g9o6XtGXUaco3P//2Nb0Ge16weK3NZrF/uR6Wo4hb3W4zl65/AfVZz+d94PvTei/3e+6zxSxu44dv3Q3lB+4/BuXpahPKmVzKuKLzNtKPrx8dx/nQa9H9GQ0Jx7E7oEftmR3AObJQwnqNncZ6zyU09q09iAwXcb9XXobz+lj1/BwTxUa+9njlovrfRT1onOtYniPiXeCG7lI8aCT0Dp5wshm80IuI5DJ0Amli5Rs7j7bpUYdJ6P08MNK2afg9VOR9BgGehkxg7yOXxWMt5LEDuBksWw8aDt7QZAL71PspF6al8OQtsjY3+Of20dPTow8aaZvgPzwPHjTOsVbn/dx+ioX84oNGuZiB9xRzWM5n7fmpmMdxWKIbdH7QyBbxYuIkNEZjfAgQEYljaqcMbiPJF/D1rjxo4D7iiG7qXfoCh9ohpvkpV6AHMBFxA2wbQ+XEoRudmG546XqR/qCBx8oPGpLgzfxa9z8vyIuXmT9/vuEbeqxb2nzu0/XQW4cHDWcdHjS4x67Hg4Z175jyoGFWeNBw+CZJ1vYa7DgO/Hu5elxMvVb6jOuuUE65J+HrBLc73+Nl6QsIa4zQ+/n+TUTEoweggIaevQ16neqY1nQ+/ZHHBd/r8j5ds/yYmN8mljP0Bz/ll4aLOc9qBlcURVEURVEUpetc1C8aafDTe1d+0bDegI+FrUYbyk6xz9rm4I6NUL5yCn+y3//kQShftWcTlL0c/jw/Q9KqU6dseVFltm79bSkB/fpQLuM3ijmDP3FtLPZa23CzWK8gjz9XZXMorTKtGpT5qTNObMnFSt8uwDlf5x8Q+BeNtTBkXgqsb1WtH8NWbugf0B8wliVJkpXfdAkYGuqXcml+/LZnD8NrRw4/A+WaixIlEZGBwQ1QLhTp2zcX5zwT4dwQhy0sx3Y7dFo4ZzUmTkM5DHAOq7r4O3/o4C8zmSz/cmP/2pChXwvqNaxDGGIvrbbx0tOcwfeX2nicIiKFHvrmm74JT/gbOx/rHTfxV5VOx94H/6KReHSs5+bEdfoF1Xdc8Ra+CbeuwS79YuPadeRf6O3ph7555WuCtUV79uE+bL3Of+Cvc6lLW1/iG7vPG2s+IPnMCioD69eGlF9qrIqv8Bmri1jbXFk6xce69Pw43rO+fXvWLD0C+xccLLtpVyY6PP6Fgs8jn1arb6X0ceuaSmXe5mwV798KfXj/NV3HeWOubs8bcYjvGS6hrJN/GMU7WZEM1TGTMr9ENJ/V2/yLLf36QNv0aGDxXCAikvAvFtRFc0sGY5g2Ri7Ac/PuTFEURVEURVGU72v0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonSd1Yn8HFmisVthLdoUWEVpLWfLr9NfGqRPnpupWPuo0hK4l+3ZA+WxU7jMa5vEc4Pkj2i0sQ6jo+gBERHZMIJ+gVYHyx5p64Z60aNxNflExp46Yu2jdwPuN8jiKi9Z8mz4DmqNJyq4vVrD1hmutHqAWXLOzTqbNHxaLaUbK2+w74N9AEFgryL0vdJqogY/CEhXnqy8utalqNf3I0uPfb08OYHvSODP12NiGr0OZ6bRZzB8eZ/1+XIPjVMP+1jYmoNyq4H64SjBc93s2O3QaqCOOcQuJu1oAspnQ1yGt5PB5beHaO4p0GpbIiLtDmqUG1TvFi0TPtPAft3u4DYTsT1k7WgGyn6APjRx0U/hkm8tpOUdGzXbWxd28BxmaFWwc9vspCzduRaYOBazME/x9dFaVj3lkpxYqzHxqoz8CfZosI/vIrwM9Ad7GXv2e7JJA4t+igfE5WO3fB6WOcDaxlLSriZcz4T9USvdEjnsx7LrwKt4xdRYS+uQpJ3gS0zOTc7Pw7TKm+X3SWvilfwTfJ6iZNmyn7XnImMtMUZeEuo/xT70UzSO0HxIK/uZlP6XyeE9nbWaKR+Wj3Vqk2c2Sukbc7Rcd6uBn/EoZiFHHTJL/SVM8bewJ8tz8TPlJSsrdvjcLIP+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1nv1CzCus95+uHlx+nWkrM4CEbWEHtXKHnzpg7WHrFvRodCLUsW3deTmUD51CnS9rb3t6UL9XzNva4c3bRqF8ahw10HXK4rhsFDMxajNYh0qKdtjlFFiX9Hg5Sk9to5a7Mo3a76hjHweLKhPSDU5Uzou92c/wXIA1tqzzn6tiG/k+tmEmg3rQtGThlWCPRYf6NI8BK3k3ZZ8Z8nU8m3Rx5eIwUV3MQibEscOH4LV6B7W7N162w/p8oYhaXhOht6EV4riq01RwahpzgSZTMnxaLRy3/aXlE8wlxve3KYdDaL3+bJbSzEWkXUf/RIv6davVXv51Sic3kqLDr5MnQ6ieWfRk+Hk8zlBwPLdsm5ok1HYFwTdlFi6ZfDxrhuOcv3Cy2YE9ACkf95zl8yU4+8DKUmLhfUqeDftA2A/B866Vfk2+D/bKRY69T05aZok7fyKxErj5O9eL8PyRft2wZ4Kun+yH8VNMDLHh6zKf4yXlVBPEpWV0ZGjRfzA5h14Gj86TnzKG6+Rf5bsIz8Xj3+Hi3DNI561mnVmRGZpD+dT69HrQwrmoU8f7gDbNCV6KLySfw/fUOuyfovRx3kRAYyQlAX4gwW20qNPH5MuN6O7e4fu7lFs4n/o0p4vPheePM0zJcLoQ+ouGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK19EHDUVRFEVRFEVRus6qzOC1UOScN+TZBKRZ3jVneXO4T9VzMlg+xSl0IlKponmvr4Sfma6weRINLfksvr9voB/K/RTuIiJy6uQ0lEc3jED5wCya1sfH0TgZkzHbSXPphGgarU6fgfLMGAYRDpWpnhkMs5LUoCU8ATEFxJyeOG9EZYPeesMm6laK0zMm06tLwTsNMu0PDg7gBi6BxzogQ1eL3L/ZPAYzhqFt4mczZeq5xTd8j6+vEVYC1PrXa/bMSYkXQtyOHzkGrzkemo03bNhgfd4n4367jQbnWg377X1PnoTydw/iuJ+cRXO4iEinjn/bNIQhpHt3boXydgohLbgUXBniuAhbdkDk3FwFyo0GfqZFAaF1WnihVkNjadO3L00umUsjClslH6n4IZojQwoB5JBBEZGADa28zQXD77NZCKI7GDk3EXENeGbg8C0REY++W/RWGmL0B2vRl5RgsZUWo+B7B4cMvy7NX5FD/TFlfnLZIE4OYMtbax3oykZ6K3iQzd8OG4B5YQ/cR5QWqGj5+y8cCuh4ttn6UpPxzxvvN7ChntpwskVJoSKSoQV+ShmaM+lwb6DyKAWcno7t6+Epun3iRV2yHOD34DNQ3jqFc9UkXaMDz543Rkp4XPWQF7cgyLi9ZRAX2MjyNV1E3Aye79k6LkgxMUvhvnmsU4ZqEaUshhHS+Un4fC25HUm5Fbkg+ouGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK11mVR6NhnPMaTZYnrhD0I3IxoThYJjmeFHIYdtVyyHcgIkdPnIby3p2oP944ugXKO0qoX85ScArn0rVatn9iYBD9EBxm19uLAX3Tp6egnCN9aS7l8S+hYK9OHTXNZ8fQJ9Isoxbc72W/gS0QtQIT6Tk0WaJJtfSpa4y1fwqaYa+DiEirgZrRs2fRK1Ms4nnKBdi/DJ3XlEwdqw2tcUDtng1QP9quUbBiizW69pA1pCt3XT43VAfr3FGHSxMof8/+iJX7C+veVziKdeH0icOLgXdTM+hDSIJhfLNnnyuHQo5C8lOMnUHPxj2PHIHyWYOhdPWWHZ43duhxLE+UoVyjPtVfwnl1wzD60pwazqn12PaF1NmDQSFY9Tns1zNTk1BuUgBePo9jUUTEJa01e8hyAZYD0pBzYFqaz4yDBIsxtu+5IMG0QMG1wJjzU4ixAm6xv7HeXyTN30BttILPwFCbOimToHUVsZJ5OdBv+dcd9gKkeNAMB7cZ/oyVDoxVuKjZhd7DNwd8SbLGP82zKSaNOKFQP/JL+UtfTp593vKzZWB2VvyF8xFS+OM0jZ2RlEDBXTn8zAhF9uW408Y4L4w3cB/WGBCRreSVs7sb9pXmHO4jyeCY3zCI79+0yW73jT19UD52Gu8tChkKAqXg1p2jOOdWzoxZ+yj34nH178B71y99F+8re3vx/mUDhQqemLHnvzMdPGenZrBtrh49v812ePFXZP1FQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpeusSuRXdh1bb7mArae238fyOztXg96foKYsaaLuPl/AjAERkRJp37Kksy8W8JBZ4+fTusHj46hPzuZtTXSB/jYzizrr/j5cT9+QftlLUAd3+ZZN1j4c0kPyevw7rnwBlNst1ESfJY10lKIPNbSoOq/hvXRp+3WP0eAKUOdp1+1FoucmK1A+dfQolF9w7TW4ScrZiA2tU51aseV9Bowb0BryJP1uV1F3GeTtPu/E+DeTYN9wLK3s8tpKw2vSz2902c+szMp6TiubgMtLtdrrlGMwfmJc8tl5rWxD0Ptw4yteB+Xtu6+2Ph/NnYJyu43nf/8Yeq/ONPHc7blmD5QfeOg7diVd1PKyN2FsGufRyWmcG0YHcA5Navj+2Yq9gHotxLFRb+F7pqfQQzYzjf06YuubY3sgXPZg0NUrl8N+z9eCFs15jTrO0yIinYj025RxFCx4UVrkKVkrXNcVdyG7gv0RLrUZZ/SIiHiUe2Hp1+n65/BcwP6IlGHN+R2cV2Rd97lOnHPAvreUr0cdnp9WnHg5H2RlLL8de0eo3m6y/LXApBxIjoyphm6a4iVl9susBZvaIpmF3dbIX9FHx19KuVcM6njv06CBX6cz0aFyLDy32delWeqjMxl6A+0zR1keSS++vn0D+cVSfJIHj+Fckji4zR2DWKftlw1B+enjZ6Hcjux95Ft4IM0E73EylLPR6qAntUHdLXG5YUQabWzvgyfwfLlLimF88ddg/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zKo2GcZMl61KzVXFkv6FmejOU1Xq5HOl3SYTYrqPsVEfFIs5cvon69WMDMixz5K86cxvXdN40MQvnEmL3P6WnUVZdoXfqZKdQj83rn7Bsp0OdFRGI6VZ0QtcNRhPVKIqzTwYMHoNxsoX5PRCRXwrbxqP1zmfN1SFuDfk2xBa9QPH7kuPWRsWfwb5u3YO5BqYC6Siurg7u8lVeRUq8V1qVPSGfr0TY7IZ5HEEmeI8LzxvJ24144D0XE9qKkB4TQcazgkWBfCDdV2sc5i8fCXODfa0jD6RfjzGtbX/Xzb4PXXnLrzVDOJOh9EBHpGDx/vdtQq+vsZ2/RSShxXoDn2zrbUg7nNPadeTnsL80EfWxTkzhfeQl5NKZRTywiMtvATJFKFT0MlTl8vU2ZSkEO/S5+DvNCREQKdKyck1GmHJx8AefRkHJ00q5ZCfXbRofNIwsejXZH1gXPm/9PROwwiOXzJ0REaCqwfAcOzfnWOBb2qaXkMdF8YnkwrJwMqhR7HS7C9+a4y9/KeDzhcB2smI2UfBDLz0LzKtebcjaSGDewOWv3oSs24Tg5OoPX+SPT58fF9xxt9Cw4YkLxF9qmxLlHVKFWyony2JPYg2O0GeL8mCE/azbm+w67ESayuI/eK3dD+ewZvMeboXuhq2nqyZBvZmyKrsli94UNveShJZ9HMYuNU6Z8kb68fQ/I19xTVZyXq22sQyaH8/qJOt0/x/a1wzV4/anQSbz3yPk+y/cRy6G/aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonSdVXk0HFmqiONQDPu9qRuAjywvMowsLSeWh4Z6rc8MD6DWN6R10EsjqIk+eQx1+9u34OvHDh+mSqGGUkSkXce/9eSwWYf6sU5N0vd6pHs9ffqMtY/Nm7dBuTaDngwT4XGGMeoIp8/iNnMpZ97SoJJ2Nhec9zDE6+DRaNdDaXvzms3K9Ay8Nk0+mOmpivX5gf4+KMdt1NC7MWm4Y2pTygrIZOzndGut9eVtHsKDwolRkxrQOvbthr32/xz1hWyB/Du8njud10IJRanGpHQO9m2Y5TXO9rL2F+HxsMN4sLjU6LFOORpbr75NCgtZJje84pXwWj6DB92Zsz0aXkAZFTFqYof7cP7ZuGEHlOMmzjVDBXsOjRzsp2Gb8ojqOHZmJvB8n5pFf4UfoxZ4YmLC2udUBftltYHbSDzUA7sFnBOLHnrp4hT9b0JznATkHyCdNPtZXPIZeb6d1cG5GV4O6xUteEsisz7f0eGZpeOh97JmXkRSJnks8qweWwOb/D5pjgn2hnjLezTsyUOWL6fskzMl7Hl4BU8Z+0QuAvacsg+tTXk2/QnO0/+qH70CIiL5jeivOjFDWVZLrgdmBY/rpWAuyCzmpHgJXaso82M6JW+itAHv2QpFbKOZcZybhlwcj03O1Ui5DXHJm1DycR9nKeNCHJxTgx48B/U2zmWOb/eVbAbPRU8e613oxeNuGaxjU/AaPHbavs+cqGDbbBwkDxrdk3GeTZRQzkaK3ZOjMVohZQ+1l/S/VVyD9RcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrM6j4bj2NrHBSy9VsrbbKklredP23YtnS5q0HZfvsXaR28ZNbU+ra+dp6yIy3biNnK0ZjznRUyeRZ2ciEhAGkDTwW041My1WdRuF0mvHEX2+toTE+SxoLWiM3ScjQ7uo6eIer4BlB2KiMgsa/lZj7tUm8jLy68BB586IqWF83d2AvWt02dxbf9tW7dany9h15CpU49DuTp1CspxQutMZ0hfn2Z0IQybFXi9d3rU79Sx70S09v+ZGXxdRKQvpv4ziVpgJ8D+Werrh3KckIZfSAsvIq7D30lgX+E1tUmWbXlNktjuQKyT9nj9/SWa+jZnIqwRV73kh6Rcnm/vXBY1r4b8Na5jC4gTD9vJD1CrO0Iesxuv2gvlbz/wDSgf37fP2keevAdl3IVcuRH/sKMP29nv4OQQJ3iu3MBef72dUP5ESHkxER534GFb5agPtlp2P3cimldbWK9qH7ZdroO653YH91mv2R6auSp627I5PNZw4ZSG65aj4SyaAxyzvEfF5xwqEXGtMCvO1CGfC+nRDe3TSfPqsUfDCu+g4go5G3yfwH6vtM9w2cpEIqxMjJTj4kwRPi7O3ii2cBxdl5yA8tBmuiCJyNEG9qtmp4/qECz596pu37pC6PgSL5zfJt0fNKkNayk5Uz10yDXO82ri8bt0GkK6YM7StU1EZIa8lJNPHYJyq4P76C/iOHlqDM9bRF4b9mqKiHg0R47N4Fyzbxw9pJUa3q9UWnhc7KcQEYljrEe1RnMQ17NB/bHQB+VWy/aBVBt4HHGEJ8BZOo7Uo6EoiqIoiqIoynqiDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihd51m7iVYK60h9/QJG8ovdRrGAQSq79+ywPlPuQbN3QAbe0S078QMdNOlMHkNzZb6EQSs95T5rn715bMZNG/Ez05NoXC5S0FREhuE4ttspaWCwl9OkUC4yUZWKaPjshBRcWLBPfWWODXD4HneJyY+N4mvBZ/7+Hslk591kpRyFCZLx9pmTdqhYxkOTV17QDFUM0Exaewq3Yci0X2vbbRB4aMjK5tHsNttCg2rWx21sLaORuzOHdXzipG2SbefwuDodMnCSoSvIoME1oICjZpSyUsAKYY4RGW15rPs+zQeNirWLwVIRygMDG6HcWRIkWG/Y7bAWDI9skJ6e+XPo0jEmtFiFiVIM6xGOY5f63OAQ9o+h3gruv68Pyk9nbUPp1hHcxg+9cATKO4fpMxQaOD1DAaKTOHc07LUCJKQQLIcWq0jIRFxv4UacyiyU2y2sk4hIfw/O5TEZ613/CJRzJWzbRhO3OVm1E6vmajjeBktoymwvFDvc39cI1/XEdecr4ZMZ2PcvPF+fwwrJ5bdwuB5t0zF43twkZR9WYN/ywbsOmdY5aMyna02SElRnBe7xZwxFHVKZ5zPXpRUURMSjIMykjSGVDhnOrzuL9xJ7NmEfn0zssVup4D6agvXwltw7JMnaf09cabcW570WtXFM/bGnzzZq5zycI49RsOcMdZ063fMJLUTR6NjG7A6l+CUcbOlhPZu06Euzhu+PXTKoW3u0jflNCr2N67jNKMI+n89huRTYixFQjqrUmvgZh66xhu75qk1c6GK2Zof/isFj5T69tLXTFmW4EPqLhqIoiqIoiqIoXUcfNBRFURRFURRF6Tr6oKEoiqIoiqIoStdZlUfDyPmYLg6n4eCfNPgzll6UNF9sA9h2OYaw9bN+T0ReuPdKKJ+aQl3a5i2XQ7kxjTrCgSLu9NjhL0M5bNshJ3EWtcOs3+WwMjH4uiGNYLZsazczpP0X0spGMbbdHGkfw4j0pdYeRIp51INWKTxovT0aj58+K35mvo7ZEM9DmQLgCln0yYiIuNTfAsPheE9Beft21Lbvo3C0qbrd/zx6ds8HeF4mq3gehwuo44/2YF84eQrP1MOT9pA97aKvQ1zchkcy1oR01YY00s3Q9mh0OizMXz4gq839jbSfQ2Jr8IeyWG/jPAPlaIleOezYn18LPN9dDK7kMEZrRKSFmVG9E0q+LGVIn56grjvj4udvuOoKaxc3XYHehBdsw7HQruOcOH4G93FiEl8/egpDSqtN26QRlDEEcsMI7jNysI/NVSl8r43joNOwz29UwPnJCXD8nR07je83J3GfHTwfoWfPs4Useawi1DFHC4eeWONhbcj4nngLvomA2jRDGV8DaHkSEZEShUxyIlradWEp7Zh14PZ1n0P9rGA78mywl8Sj47K8UHaWmRh+D815HDjKQb4S4fWkVR+39tGcRa+l4+JOrp3FELZbmriN2q0vhnKlbmvkGzGOo4g8XIEsmZtXOlmXgF2DjvgL5ytLE16lTV7Aoh3sWSWDV40uNYUCemwj2kenjZ8PfHsclmkgNF3qMPSRDPlGesie49D1NLHCa0U6FFDaaOP8laH7AEMeDA5pTthzJCIu+57Jo9ai+86YAmSTBPt4Wvi2R8fGXqZi1l3ympEUm1sq+ouGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK11mVR8Mx53XIvBa2nZuRtob3CmXS/bPu8vSZCpS//s1vW/v47uOHofza17wGyrkyagBNgzVpWL73YdTtP3kC9coiIqM7L4PyyAhu49hpynTIoH552yiWw5S1oVst1PAJ+T4KBdQbt0PUFToRCg8rs/ZxFIu4/n6TNM25JdrH2K7iJSd2Oou6wkIOu262hXXlNc9FRJwA+1NE+sLDY+h18Ho2QPn0LJ6Ds1VbY9tTpDXhoz4o+23UkQ9vQn/P2Sp+/rGTqKs81rF9ITXOBwnw2CMSNVcj0naS/6cV2mO33eGxia+7Pu6DljIX3+A+mn5KjktEWm7S0rpL1gmPUrTha4HjnI8IYc9ZbFUpJQ+HOl3cwj7k09rnfQGe202DOK5v3L3D2sf2fmz8VhP70KHjOB8dPHoKyuNn0bPBa9W7eZwnRETc3lEom/IglB3S3Xv+HJQzgseZSWyPhmfQx1Eo4liYqmO9x85QRhL34YztRbpiG/qyKFZC4gWPjROtj0fD8X1xg/mx45NPb8hD38tte/BaJyKyYzNeJ1ptym1oL+/9q1KTNdPmCvpbJDQ30LjgiB2PPBwJ3Qew30dEJCG/VBTjcbSbWPHpU2NQrk8dgHImxnlaRCSb6YPylo1boPyKaRxHg+SRaTdw7Oci+xpVr2MfD2dwm+4S80nSsf2il5prNopkFqbuTEjXQ8oFeaZuj5HTM3gecgHel5SzeB5nKU+nl3y52cDOO3HIG9emegbkQ+gt0L0S3SfU5shTm+LRCOmGKKDrYYZ9I+SnMJy7EdsZJEJ9OqFyzIYWQ3XgTJyU4wg8rje+Z2lTJUki1Srdl14A/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl66zKoxF5weKa1h3SF7K3weG1i0UkYR9HylrB+DJWb9eOYSi//EbMzBAR+cqDT0P52OkzUC6W0Q/hNXGd6n0HHody36aNUL6yx16c/GwddWqbRgagfOYU7uO+R09AOSTN6rZR9AaIiHgkZI06qHWMOJvDQe2iG6AO0XVxrXwRESdBzZ9JcJ+lJTkbUYq+9FLjxK44Czp+46F2083iOSizQFZEiiXUPdZmSONYxfLDD2GOQ6OD+lleY1pEpIc0jS+6kjXQqJuuuVjP+59CbfBUB/Xwhay9eHqfh+e+j7IA2jQ2T87hcUzRmt81sfMFYtJuSkIGF9LUG9LFsp60JrYGtUXZBAXORlmSmxCF65OjYcz8fyJp65CTtpxNQCKSUEZJi9benx5HX0GLNNtXbEMvxKaS7TOonsX1+49PoB9rihY/d3PYx4ICvl7oxdc7Aa71LyLSzuGc13FQS12n3Iwm6bczpMvPebb2ulewXs0WatSLJfQ7xZShdHqa+nkLPR0iIo0m7qO3gP2+Nzd/8uN18mj0eLH4C8E4ewvoc9lbwGvdy8p91ueLHvanGrVpLcbXs+SFi33ywhVsv05Ifixazl8icmey39PLkJ8rg3UYm7SvXULzDd/YzBk814+NfRPrMIvj7uYfvsXaxcieG6C8wWD/y2/CAz18FOfyg99+EMpHInsOOxXiuEly26Ds9+1Y/Le7DkEa2SCWrD9/vgKa/zptHCuVll2/DvWNvoA8sjSs4hjvW1p0yY05MEVEMtRf+igfzFCO1AQZj2rkn+il/si5LiIifoD7zND1stGgenp4XAUaV0HKnXmLPLMR+fk8uuf2yXuZ0P2dax+G2LYN3Gcpf75/xmzEXAb9RUNRFEVRFEVRlK6jDxqKoiiKoiiKonQdfdBQFEVRFEVRFKXrrMqjERTy4i4Iu0oZWnuY/BbVhq0dTkjzz1K3Eq2RXKZ10vN51JwFvi0yu2Ib6od3bt+Kn8mijtcroUb+O99+GMpxhHr166/DtbNFRE4fR21s4GPbXLETdZb5HtQz3/vAQSifrdja4ZdcsxfKIa31fOY0ar2Nh22dzeNxFHN2HoMhPd70NGq7l/oyVqPP6xZ+pyP+QoBD26C+1aP8iskJO+MiHEOtZkFQ13vzLvTGTJw6iducrkC5bOw2GO1DHeSLNmN/+cYTWK/j0zhOmgbr2CDNdC5lXJWKpGmuo4a5E5POPIN9vt4hfwXtU0REaOz2e3icvSSu9SgXgVfbrqZYLHz62mOI+nAxPv+hMLbbYS1wXVfcC3jLXI/XKbd9ap0Wtu3sFGZajJ9Ef0UuPwTl3hxqfeemJq19JC72oZEt26FcGsX6t8kb88TTmCmw/wxqlr0C+tZERHJl1OqfOob+phNHcI4bGsaxxnEM1RT9eZN7UYD9fHQI/U+jw1inYzU87npi7+PYGZzzDp9Anf2eTfP76ITrECQkItuChpyTjL+yjFkQI0U8TxH1JRGRY4fRH1in3IxmB9vYJW+gE2Gb5cvoPxQRKQ3gNdgnf5bfxno65B+UATyPR05jlsR3H0YfpojIUD/Wo5DDscd69k1F7HAbN+yE8s6C7fGLjjyC9apWoDxNeTVHx45C+bHD2JdqxvYh9W++Cuu1G30h2eL5cdNp2de4S03GTySzcN812cH675vANp5u2/Mfa/7bCfa3FmUphQle23rLeN4GSrbXb7aKc2ynjdeKWLC/BQ728d3DeK/k+XjPWK3b18coJk8ijZMMBfJk8nj/NUuZXHNN29/XojmHs2PYMxiGuA3fyvagcSciPtXTkMEqt8T/GalHQ1EURVEURVGU9UQfNBRFURRFURRF6Tr6oKEoiqIoiqIoStdZlUdj52VbF3VejQaKrKdncU3vYt7W5zm0SO9QP2poS+TJCGgTczXUi01XbZ32aAn1oYMbR5bd5v59+6F89KknoLyhfxDKrVO2uHzXYB+UDz9zDMoO6devfeEeKJd7UJP6z3c/YO1jfBy12NtoPf1yH+r3zkzi+Ygp56CYtfV5LdJ8+nS+WkvWYY5Js78W9Gc7ck7OOzmFmshaguf9eMNe577toIa2n7IgNk1hf5qexDbbT/rmy4q2RnbTlag9f/Rb2Bf2ncZ6lobw/Qnlo1SbmD/gubYmdcJBTenBGn4miajTk/ehRtrPuuWoEHEot6LPx/Yd7KF1xCPUsVZIFzs5g3UUESFZteR68DNedP4zSWjXcb1xfTw3ft7Wrwudv+mpCpRna9iuWwaxDUwD/WBC+mERkdIQznkOZVRkEspVOYXa8aER9BX1ReiFmGrZGuXGBI6tk0cOQfnsBPqdBofQ59Fq4+fn6rZPbYo1x334ejmPY2d0AHX2m2ZRUzzZsPtgYrCtpmZxjFf759uuE629R01EpOP7Iv78WLvvFNa/M4VzTZDY18cWaclDDrkg3XeHxlmWMgp27kb/oYhIOcRzeeQonvuhvj4o9/biOGlNo2/p/37lHig/8TT6f0REdm3fhHWgbXZalHVFnqIZH70539m3z9pHh67jrQj7SraIOV9SQC9m3070gWwbsXPACiP4HieL9wbO0vPlrX0fjJ2MxAtegCcmcP8zLewb2cD20PL9F98lNpp4njzyHcQJfmKiansZZut4fWtT/oTrkl9nAOdQit2Qs3PYnzuhvc8CeWATylRyKEOu3sTraUzf+UcpWR0UhyUBeQU534M9gpz1YedA2flAxqr3+TlFczQURVEURVEURVlX9EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVV5NMYnJsVb0IVNTqEHoKeMetiNw6hFFxHp7UHdZH8ZtXFt0qc3W6gXK+ZQrzw+PmXtY+dluGb8zr0vhrIh7dxUA3VsHuVL7NmGGsknjtr7PDyNWtnhQWyLUhHLZydQZ71xAPWit1y/y9rHIwdwTfQarX9eo3WXm6R1LGQpS2EregNERErk29i6CcWKR8amF/8dx2u/jvymwYxksvN1On4Wj+8M6a9rru0R6vNRa7kxQL38QwdRq+4Z7At10qB2MimZFmVa67qD+zQR7nN2jta2bqMmcouL/bUQ2O0+HeJYNNw3EuzDs3NY74DyH0aKtvbSd1BTGjawv50lvXK/j6+foWrPpUw9Xge1/4dI959bYuKIo7X3CInMa1bP6VYN5TCQpUkcz14n3w9Iy5tgO+SLOBc45Jdpk2Y2T34MEZHTlMOT0GdMBvvD2Qr2n5B0uiMbca6IK3a/f/ppzMmoVlHz7nrY770stsMM6fKnJ7AsIuKRwHuGM5FOYZbQUD/6B7ZvwOvP/jH0noiIOFk8iX3kNWwtZECE6+TROBWXxI/nryfHosvhtZDGoNTsHA1Tx2vPUt/T/EZwzEWUseOTR6Pi2n086RyG8tOH0VPBuVI9lGU1Sx6z02doXvbs70dnqzhOOuQRa0c4AdXYj5gjv8WgPa7KI1jvXBnfUxrAzK5sGTNwMpRfFPh2llVC9ZQIj2up1t81q7p96wonK44EC56v8QZ56MgDYFx7jNRb5G+g+a8/T/kldBmvkIetndg+A9fFbZJ1Tjh+rdnGNp5t4DkIY/xAbxHnLhER4+K5nJ6tQDnIYCX4NMfkDYti22Pq0HFlKHjKpzwQQ+WYrldRZO/DpfuNkDxb03NLfJKr8OnqLxqKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOqtyE1VmG4tmkR4Kmdt7xQ4oD1OInYiIT0YTSdCM4nvo/Ol00KxXLKMJZ9M2DJYSEdl21Y1Q3rgZ62XIwHLFC6+D8uvf/HYo3//1/xfrWLCDwvoLaAQqFtAgNzCEwT15Ml3PTE1Dub/XNtj961ffAuWpaTR8Hh+rQHn/YTQCFikMsW8AgwhFRAp5fM/ZmUegPDFx3gifJGtvhtw3GYu/YIae7mAbhiH2pVyKEa2HvEs+GZ1qAW6zRYE3DQpg8xzbbDkUkCG1B02HYYxBi0en8fUki+feODhEg4w9ZFsUPHhZDrdxiNrqoTF0onUoCagY2oFsZUFT6By9bjrY/gMFcrvV8RMTLXuxiDNZ7H+midvILWmqZO3XIhCR+VCkc8FIVhWofyWOfa5iD+cwN4fjkIMQq3UM6uyQAdQnY7eISI7CE6em0ZhdOYMLWnRirHgoaFyMDY6D/kEM2xMReeGL+6Dc04OmzolJnONqNQrCm8P5LM0M6ZOh0iPjaJOCtE6fxW2WyljHnG9/z0ZTgPSTGTxcCLdcLzO4uP78fyJSHMKFT4LRy/C9EY9SEbdVwTItwGAomNNz8DgTg72+zSsgiEg8hWF3xQL24dkGL06A81XsY3n3DXhc+f7N1j79HF5jOVCWFy/J0WIEuUIf1nkQjdwiIsU+DOTzfDIu0/jncZXwG4zdhzJ0j+T6FLK2ZDEbV+zw1kvNoRmRc178gOoWUxhk2twkdF768zjgKEtUWtREcRv/EKTMsaP9ZLKnoMUKXVfaHVrAhYzZxRy2s+HkPBGp1HEcdWjONBQ0yEZsDsZ07auLZdRmMzYvlsGLK4XJ8mNARMSnbZTpPmo4f36fUZzI+KQdepqG/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdVbl0SiXC4uBfVeSJ2PndtRNttqo9RQRMaSTTEgDPzGJwTyzpOMd6EeN/FUvvMHax66r0HNhqhUoRxTS1t/fB+UbX/FjUJ6eQ5/Ivgf+xdpnp4Fa2L5e1G5Wq6jf2//EU1Bu1TEkaaAXg6hERC7bhcfe24fa7qOnHoKyR1raUh5Pdamn19pHNoeavTIFKS09pxwCthYcavaIG83rLzsZPL44wTbOenaQT409F6TpruSw3SsUChdTm44MkaBbRHJxBfd59hSU8wn2v6RNQT4UylOjcRTZ9gnJZnEbBQo52pZFHaU/iMdR75BPhIWyIuJawVG4jQw19+4+/MN1L8C2/Nsn7bC0/+cs6qybMZ6Pcnxe55/EFPy0RoSdUMLOwr4dPMYM6VudjB3IFVOoWoe8LX4G2z5bwAC/vqFNuL2M7edySZtfb6FvaIoC/WIayzGFsLVJTzwzi5p7EZGZOexDDdIsB+S/Gxs7CeUwwvOZydn6YQ79811sq34KhJ2pYB0KJZzzBsr2PkKfAhJZS71w7qN4fQIjM74nwUI/c8kfkfFxPgrydihrpg/9NQHNkw73adLhey4et5sSnieNPVAcvfyFuI8cnodSD/Zxj/pKQN6aTAnLIiKOQ/NqTN4S1rNT3+G+lIbDHgsuU9t5AW+T2jrN5kM6eof8At6Sc+6atfdoRMYTs1Cnc36lc3DfiTq2n7VI/tTR4T4oP3kE7wFrIbZhQHPA5mG7DfpLFOx8Gr0KhjwZpRLO00mI57WnhNehatP2T3hUL5f8Km0K0Y2of3qUKnjZZpznRUR86m9Hx3AeNjQfGAriZQ9uKWe3XTGg4N0Clgey5+sdRok8YG0hHf1FQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpeusyqOxZ/dli2snc25Gq46a61zW3vRcBbXivLY6KyAdl9ZY9tAzUE5ZT7sxjWvE1ylTwOtDHW9+GLVwGdrnTTffip+P0U8hIlKfGoNydRp1hmPHj0G5XMYMAY/Wc2+k+FsevP+7UJ6eRf3x+Ax+plTA42Bt7cCGEWsfmQDP2SD5V3rK57WKcZLIxIyts7+UhElL3AWtLa/e3CE9YhDY2vWKwXPnCukkE9I4WxpabPNKZZrfIA8fR933sbPopXngIGYaRJQdMbARj6PYj/plk6KJNqT7l5jKLmpUh/KoMR3KkmcjstsuIbltRH2l3UCNfXUONalb9+Lrv3abrfMvPIAN/rcPoYZ0+3Dl/P6jSHCUrQ2dTrio0/fJ78W+JV7LX0Sk3cQ+lCOdbEz+mnwJ+49LWRKNlj1XVCqUk0HrqWdJqztHHrImrek+NYuejrMVe+30dhv7UI1yMRoN+gx1KMfFA+ecJhGRnl6cNzdtwzmsHOF4nDyNOTcheQS3b8CxJSLiB5TvwmvwHz0kIuvn0Qh8VwJ/vq0C9miwt4Fzq0Qk42C9Wfftks4+oDnSth3YeSduL2YFlYe2QtkjLwnHmfi0E4+Ow6RkOBnKpEj4M87yXhS2aPDr8++hbVhtYW0EiytYPETECudxaA5ZmjVmklXdvnWFDUVP/AVfz9kGHi/Pd0nKfUxM94VHT6F/LKQJ0CFfJfeFkm/7DCancK6Jyfe4dQTnlip5SeoReTnpMDhXSMTOaUkoZycmr5fQcWwYxtyWV9x6k7WPygRe8canKrgPGhbFInpLSjmsd2/G7oC9Ofxb0cN654Pzr3PGznLoLxqKoiiKoiiKonQdfdBQFEVRFEVRFKXr6IOGoiiKoiiKoihdZ1Uiv22bRyW7oBFuUvZDHKKWy4ls/dfUDOp22x3UePmkq88XsHot2uapMdTgiogMdVCf19cmTXQefR5BAT0bTh419oMbUQf8ktt+xNrnqUP7oRzOnoHy9s2oWc30ou66Nofa4tqsrf1v1lEoOP3wASizByMgnWuO1qUfGrbXaW6SjprzGUY2nM85iOJYDp+YsLZxKXnx9mEJFjwNUw3sb40OHm+zYWuHG7TuN9k6pEDrnCe09vVUFvdx8oy9TvjfP4z64wfHcJvVWdzpZaO4j75NtG59hrXG9nHZkSZ0HB6+ISI9fIe0viax9xGQvyVKeBv4/vG5NpWx7W7bYn/H8YbLcX7wO3gcbee8v6UTxoKupbWh3elIqz1/3vOkiTdia3cZnzw5+X70BIR0bkoDOFdUm5hXETXtPuhkUJtb4MicFn5mtoHz1cxMBcoTEzgfzVZtnxrrs1stuj5Qn8rmsB0y1HZeYF+afMoMGdq8A8q9Ec7txqAvKEqw3JO3++Cmy3CbLfIrjZ08Mb/tVeiTu0ngGQkWxjNFrkjg4znI+CkeDdKG83WDNfAUoyE+dXHLpyCyqOFf3CaXHZyHAyvTgu4L2GtiH5YkCf4xZo8FezK4vEKeiEiaj8Oux3LwPJ0WReXQTlzyA7hLjB5+WobJJWZDj7PYrw7O4v7bNF8nKV4a18PrY53uG8naYPcdF98/dtb2iyUOdtp8DrdRp7mpEWKd2g7eEwplmcSJ7T1pd/BvIfk+jODcw5kWu8hvtn0U530RkeYMztMZyiRJyCcyRHkiZWqHvpydB5J1sZ4UqyG5zPn+yGNmOfQXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKo9Go1GVKJz/SJY0tKzvnzhbsT4/W0MdW578EKxrS2it8uHBASgXeux10IukqW3M4Hr9pZENuM8Gap6FtMSGFrvOW4JnkdHLr4Ly3DhqpHM5Xrce8yeqs3NQbtVs3eHkBL5nuoLb6O3DerkkpvVZT56in/RoTWrW4c9Wz7dVzIs2rwFvePlNUijM67CrbdKmU/5JyhLeMkd/bDvYhr7BPh1RXzjwMJ7HR/8O81NERB44hudpjHSrAXksqjH5I7KoD42trwJsXSTJk63l2V3Sk/u0oLuhcuLa4uFESEtLY9O4OJYrTXz/ffuxDleO2h6hq3fjmuqtHHo2vvn0eY9G210fjfzU2Rlpt+aPbfO2LfCaQ1ryToh6VxERJ49zQ+8mzALyMtjH3Bz6DtqUE+Q0bJ1tM8Y5ba5JGRd19K1Nz+I4mCKPxhzlaPDnRVL05/Q6a+JZi52lvCOf5kwRkcTD+alDc5CTwT5YLONYSkL0DUWc7SEi2QKusR+HWK/YCRb+f336X8Z3JVgInsiSRj9DvrxsikcjYE8GR+5Yvo/lPRv8fhHbO8BlzqPweR+WD4SPwz4uh65nHr3HZe+D5fvAdklTn9t+lOVNF4a0/Qm9PzFpeSDL78MsyTUxHLqxBgyUXcku9D+XM8UcHH+OZ3vWOuTJsO4jyKPGPsqeMs6H9RaOaRGRDHcg8n85Lt4rZXI45tsd3Gm9jh61KLLnDYc8jLu241zVamG5HeE+CpRpMTeNfgwRkY1bMI8m+wj6dMmSIcN4OqSHPBoZL8VDIzw2caOZpT6wVZiU9BcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrrMqj4Yn59Vu9SrpgMlnMFez11oPfNLhkl40Jp1lX18flEdHca1hJ01JmUffRr6EQrUc5WI0aljvbEQZAqRDs9bnFpGYtJiZImoAcznU57k51Pw1WugdONk4Yu3jxEnU4/X2oq5wYOMQlCsVPK4hOu4gY2ugwwjP6eGjqBM8c+a8Rj5JWwT8ErO5FEixOK8ZnHVRn5ojj4pHeSkiIoaeq2MH9Z0t8nDweb2C2vzxu79s7WP87AyUvSz2P/Z9FPux3tk86UmFfEvGHrIJjwNaa9xSYrKeeQVdsIhIJ8G286gtfSq3yHtycKwC5SdO2vkPP3ILZkrkp7At/cx5bWxkH9Wa8Mz+h6VQWPBZkO5740b0kElo55EUN6A3pdDBz7SpD05Mom/l7Fn0aFTn0F8hIjJHf5uaws/MVsnvRflGVfKIJTy/ZUgMLPaa+TQ8pcP69RDPP2voRzahHllEJOrgeG1Usd6dHsp2ickf5eOc5+fsPtSieo+dwfavL/hd+Fq1VmQCRzILi9vzGvc+aa45n0JEJEvydcuqQCcuoPfbfgt7H5yD4dE2eZ8emR88h+ZAmqDY6yAiwnYAvjfgfVoeDb6epdxapGVrQL0S9mywbwRfT/O3sN+OvSZLN2FZV9aAnkwg2QUv0I5BnAeepFwpziwTEQnI5FOn+0ST8DxBnsYq+sNMyonqsM+WOnG7g6+75F2IwgpuL8LrUBzZ3ruNA3hc//bHt0P5q988BeVDlK+VRNh2jabtAxncinNiTwHvpwdLOM4Gstj/cmzI4s4mIh5lkHAWz9KxbVI+fyH0Fw1FURRFURRFUbqOPmgoiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nVWZwcWIyIIxcI7M4LUGmVbFDmtJyPTVpIC+IEBzUbGARtpyCc24sxU0VYuI9G9Dw8wEB7pMoDEyoHCX2KAZMyLTYpr/ZWLyNNahB01QuRyGdGWLaNrxs/j+yNjPf1t2XAblAu2jQ4bNoVFsh8v2XAPlYi8ZV0Xk8GE0oU+cRgPTyMj5z8RxIhMVCju8xAxftkVKCyFchTkyhWXQGBWxMU9EAgo4clwKACN/fLuD72/6uM/BUeyPIiIHj5NxkTqM5+NnimQwZ693RAbCMLZDmkI2d+NhiceuQxqHVkvFdtsl5H8zlLjWaWDbhBSOFpNR9f77D1n72L4dDXRPn8Z61MLhxX+3w1hEcCyvBWfHDkp+IUwujCjk6/qXQvmyHaPW59tktK620AzJxmuhEE3jYgfhACwREWOWX2QjjLAPtWkbPC6CLJl1ObVN7LDVOMbznyQc1EWGTYN1SlL6uYmxE9ZraHpPyriwghPgnFClPhrkMNBPRCSkRQ/GJ9EIWl9I0FwnL7hkPLMYmuVTm3E+n58SKuiTodn32QRN4Z4eG7vJqJ1mmqYZhY3ZDs0/Dt2GONR/XTKoppmoeRLjarH5294G1SnV+M1mbzL00mc47Jfz+XicLmxl2V26S/7gppjiLzWeH4q/ENh35Va8dtUjnMtOTdmGZr8XF/zIkKE5Q4fPQcO8WEYhZ1+D8wW83zo7SSGnPp7rQlyBcm+Mi2VUadWFmFMExQ75+9zfn4DyTB23EdJ53rgFr325EraLiMiBJx+B8hB57QfLeP+c82gRhoQXZaAbBbEDPXlhB3/JwDGrCC3VXzQURVEURVEURek6+qChKIqiKIqiKErX0QcNRVEURVEURVG6zqo8GtVaTTLB/Edmqqi/mziL5VLZDoTLZlH/Vczie6pV1PiNDPdBuVxCUdpcDQObRETGx0lPF+I+q03U6W4mT4e08PU2vb8TYVlEpBCQhpTknRHpCptNLLeaqGeuTRy399GL+mMOBdwwhHrwkW1XQLnUNwzlmZmKtY9nnvwulLcMoUdmaaBdlKLjv9S0XJFz8sqIwmdYA56mf6X8LnFJ/+mTHv7hJx6F8r7vfBvKw3RORET27MBgxDr1n9kKhf+QRr9dxTFhKHyvY0vypUE+pFIR9Z2Ozxpn1khjw3SatvayTUlmLfJkVWYpTI00+z0kpS1utL/j+OajE1D+4iM4vuvR+c9E8fqI5Fu1ijjhfPuebOyD14Y2b4NyoWBrYF0KBB0cxQA/9jZE5FVwA+w/kWtP4c02eRkaPIfh2MhkUdPst3GfEb2/1bLDWCMKserQPGr4OKjerof64nZKYFWG/HRN6vdUTckXsdO1QvKqpHzPVm/i+Rk/iz6Qmfr8PjlYbK3IZRLJLgjZfRoCAc2JXBYRoUuVZDL8HvJk0Ptdl30KKeF51Kyex/4H9mDwJunAyBDjpJg0EvoMz2lkZ5EUCxDWKWUffE1hH4fDPhC+DzB0jUoz+tBxcAigu3SfScrF4BJj3LyYhbYpZ7Bz7NpM4aOxHSZ6hu47YuobOQoSdqgP5wp4D1gs49wlIrJrF/pZmx30ktZn0IMxSF6FgSx2jskI6zgZ2vN6h87TWIW8mtSfAvKJFNlf5tiBtpPjeF84TAGlPRT2y2GGDnl/2X8hYvu6PCem8vl/J7LCIFqC/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdVbl0ajM1hdzJ6ZIuxoEqFsr5W0dm0caR5/0eQFp/kpl9AiEHdT9bt2yw9rHyWO4Pv9lO3ZCeerUYSjH1ZNQdvOo6+0f2ADlgaFBa5+sQeW1nysTY1CePTuO5TOYX1EeGrL2YVzUMEd11Bn27XohlDds2gHldhs1f089/oi1jyDCbfbkcZ+l7Pnyemjk43YocTCvBXdI656jHI04RWPLGu6INNsx9c/9Tx2F8v3fegLK/dg8IiKyZXQjlIeGUXP6zOGDUJ48hX3BJb9OH62nHabIIqenUbe/cRi1suUy5gU4pMNkmfV0zdbg1yizoFFD3et0DX1HxsHjbnqo4d+8Bce2iMg3n0JPxrcexXoszZ9JUtegv/Q0253F1evrZJh55uknoXz5TtQKi4gMj6BXyqVcgrCD559zMsIQ27GV4mVgvbpPHp0kwX24JMSPOrgPrlM7xaMRU8YF2wPiFUTyhjweSWzrz/08ZeVE5Asiz0YvaZZ5Spiesz1+U3Vsu+kpXIO/UqnM13ed+l8+Y857NKhJAzpA17Pr6Hus26Y30B8400Isb4q9D/YecJ6EuDz/sAeD/BUJac+jtIwLgjMt6DjYY8N15EyM+U1yHgh5MpLl95nQNSttDrP+wm25ZJ/G2Dr+S82xhiOZhcAW9nrN0TwxOmrfK/kZHOcTM5iF1qT5rNXB+0ifPBzxLN6ziIgcOvwMvofOdULz3Wk6bxMN8nKRN4wipUREJCLvrhfT3JPBc++Sf2Lfk49DueTZe+E7msFe9Kd4Dt/PsN9ief/F/D4u7MkQwekhxeJxQfQXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6zKo/G5PTsoh/BpXWAt4z2Qbk2h3o9EZFGG3XdQwPoh9iwETMIemnx/Q5pg7ds3W7tw6d1vjMkMtu2bTOUcwa15xu3boGyk+2B8tSCRhe2kUOtXBjisZ8dOwblYwcfg7Lno+4wn8W1okVEOqTHzBZRh58tYVtFCWrtTp06AeXxU3ZWh+uQ14R8D6UlOSZhdPFrKHeL4489LYWFdbQbVTxvGzZR3xnqtz7vUZ91SRGbpfOwnfw4X6qiDnPGEjiLBKStnCWpeeSj52c2PA3lygn0bPQWsW+lxZdUSac6MYM6195e7MMB5YWwlrPWsLNiWi0cu2GI72mRXtd4OFbrAfaXYp7ya0Qk9vA4Yhe9JUu9BkmSiIitsb/UhHEs3oK/gNfJb8yexXIdfSsiImbA0HuwXdvkMwgjPDcd8jI0mvY+5iiPqEqem5j8VQmXSRfephygOLa14ZxjkwnQwFTuwfE4Tevpd1rYZ8O2vT5+RB6+HF29Wi2sZymH82iQxTq1pmyR8VnK/6iTF8msQ34Q7D8JxSTzfYBtctwfJUVDzbM2+wysDxmeMzmDx4Y3aeViGMpAYl+IcB4A19o+B+w743pbh0V93COvVJJyYGaFporZ52HZknCMxJHtQ+JT5tBOoyX7aHfse6xLzeOVs+IteDQsHwx5HvvSPIybMDdoeAPNCzTeZis4L1Rm8bpfmbPbcGaqAmWHMnuyOfQHNiL2CGHFEzJGRqF9fWQ/VLGA+yiW8V6qTT64Rx5Df9+mfjuH7pYXXwnlPE2RhnxyAfUmlzwZab8ysHeEh5pJzn/K4cCcZdBfNBRFURRFURRF6Tr6oKEoiqIoiqIoStfRBw1FURRFURRFUbrOqjwaseOJLOj4e/t66EUszs3Z6xuXe1F3NjKCmQOspctn8f3Ts7jmchjZaw1v3oa+jeMHMftgYDN6MPJuH5TrtMlWA/eZy9r5IAFpFY8/g3q7M+Poh2CNvENrQ49ehlo8EZEowWfC0gBqHXuHsS3r1QqUKxXUj990663WPg48jDrVVh0/E3rnfSCdTiQi2LaXmr7ZR6XYmW8rl/pX2EI9fzzbZ33eKZBWM0vrULt4XnYHeN5ecwNqvqdnbY9AQnrPTIAa0qiDfWVHYRTKT4+hl+bgqUkol1J0kTs2oqY06+FgdFzSvTZRYz9dx3K9YWvwc9g1pK+Mx1EjcfHpWdznEcrZOHaW5g8RKQZ4fmLBtgv88/tMVrGGdzcxSXRep0oi7Mr0GSiPjWF+jojI8FAvlJtV7MdWSgHpbuOI/TS2Tjsk7Tcv198kX8cs9eO5KpZZTxx2bF20lYVAmvn/f3tnHmdHWaf7p6rO3qe3dGdfyUpYEjBsISAoIIgLMo4yDvMBrrgPCCgKXmXEmfHKVcRl7szoMHMFnBlxueMyCoxOBARkJ2ENCYTsC9l6Pd1nrbp/pNPp53mLdAIn3RB+Xz98zK+rTr21/N63qs75Pe+Tkxr45mY+DzvEr6K/wLXYAJAUvV2umftjJNejLPut8/4Xa25fKhT52Molrsf2BmqYHW+IESLw9s5tL6cUcObNd48voTq8SL1G5LgC6WhyXXV1AAhELOJL7IkmI5LYdzwwRLOh+gsAofqyhFqfzp+JRPugfcaLXIGBXvPI43GyJvugEr6ynMqYboSE6J8SUjI/1LNLNR8jgddUgTeo0RBtl5zTzgL7OwFAk8fa0nxDC8W5PN+TJ03gbapXTrfcZwBXo1YQzWFZNReSKzUZR5JJzr+WJh67AGBcOx+XjvNp0ZcVCqw9CcusVZk1qcVpY4w8P0eh3KelM6onhuMDEzuEyTo1zfm9yxMxPj2vhP2iYRiGYRiGYRhG3bEXDcMwDMMwDMMw6o69aBiGYRiGYRiGUXcOSKMxYVw7kgNz2VfKXPe2s4NrjZ3puQG0SV2uzu9frnBNrfoepDxevkO0DwBw5NELeT983sa6dS9RPGkC18gXVJMhHhm5HPtVAMDOnex9sHM7+2ZMnDKTtylzLPf2cU2hl3DrQ8e0s+9AJseahO3b2I+hW+quj5w/n+Jc3q2Rr5V5P1566kGKE8Hea17T+uAR4NRj+9GU310XWOzlXChVuFYz4bkaoVDmkfZC0cpIyeH0mVwPetp01vf097leHZEUxKdSMie31InD41z43VPsB/KFm/6L4sXz3Ov2qffPpbi9mfcrknnpX+7mGv01L3OubN3lejOMzbdQPKaJz936Dj5Xt/58GcXPb+Ga+z8sd/ULU5rbKX7HQh4vFs3d2xeL5Sq+ejv35ZEgEfhIDNRJl0UvUenn/tPV1el8vrtH9DLb+DwkUpwPWodddfQXrlilJH4SXeI5s1P0EMV+0SHI4J0UTwwdUwGgKF4bkdTE6/z3gWiNtC6/v9ftv+kU51zYxOdK6/K1DrqvyDXNcTXypX7+jM6ZP3huotHRaQzVaHhSTx2JaENjAPCSoqVJ8DnxtO464EcE1UfE1nnveyp+d7kv/UhyOik1874aiADwxMfFVy1bpLoPXqzeMRnfzb98WnY8lI2IfLO3m3O+JOYcZY+9FQCgVBPfDNnvcmnvuShKro4EkR8iGkjAhAhI9HR4Rfc+kgLnW7Po8kLR41QTvNHGNJ+zcS2uXkJdV8rS0Qui8+jv57gmuZST57WWJvcZMCfa3ZToJUTmgUktfNz5ND/PNSTdB+hIT7CvY6g+zqsmQ55/YsYv1S550lH8If0kzmvmlbBfNAzDMAzDMAzDqDv2omEYhmEYhmEYRt2xFw3DMAzDMAzDMOqOvWgYhmEYhmEYhlF3DkgM7nu7/wOApIhdymUW/rSPZQMTAGhsYsFLUoRAyRQLfXwRuzSIKKfc5xqmNeTYxOnohW+h+JnlD1O8bQcLuafNmEXx5CkzuM2ya2bWOIbFt6m8nNYqH8fL0mZfjY87jDFMq4jhXu9GFpzruTziyKMpbmtnQ7/+ftfs8LBZLBgvdHdS/MK63w7+u1wZebMg+AXA391ukGDhbTbJov1kjGDVS4nQTAy9ICJD3UQkQr1sjg10AFcomxAhLUJpU0yfjiyw2HtKC39+9iS3zfkzWZzW3sJ9ACLMnRvx8hNCFmGHvsrpgERFRKRi5FOo8n5vXs3mdSu3sPHgi7vcoaejl4W3Uyfwsb7/1L19s7e/jK/e/qizjYNNkEgiGDDcrIjIOvL4Wu3avs35/I4dbGK1dQMbNO7s5G2OaWmhuE+M7LzQvVbd3dxGZyfHVTEBDGTCgpYmblMNrHp7Y0SoIhrW2UB8FSqLyDAtQsdin2vY1ytGgq3N3OerNRFkijFqUUSh5ZqrZuwvsFg/VFM0b49hH2JUzgcfzwsHzRCTUAEzj4mpwD2+tJrniUGcK/7kz1fl/lfucwW/emL0Pu7JfoUen+N0SsfMfRv6AUBTE+eC9hudKEBFr7qPmaQ7PmXlT7ofFZnMJhTRcEWM4jZt5glcAKBH+qaaGI8d3zb4776C2/cPOn5i8CEwkRaRdIbvAf3dPOkEAOTEADJIcs5WVW8v5rNp8DlNeO79MJIchzw3joGKuXXSBEl66QRqRgoAKcn5tDw7ZEQ4r7E8mriTGQDwZHIk3U0v4txxJm7QDcZMJKKC85q2OdTkNGZ8eSXsFw3DMAzDMAzDMOqOvWgYhmEYhmEYhlF37EXDMAzDMAzDMIy6c0AajdXrNyEYqGWcOIb1FnNmH0bx+PFc9w0Au8QoSt1+0uJqUhNzqmyW6/GikmuqUypyje2EyWx019zM9XlqbhUErJdYtep5irdtd00Cjz5+LMV92ETximefo3jarDaKG1OHU7x9q1ufHGa5nm7GjOkUT53GcUOejWxKUmMv5csAgKyYsiWzvI2xY/fqPEqqbxgJikVgoMbTq0htsdSAh75bQF2W2sqKbCOUY0rKSfKl9jOKaUOJwDkcqvmU1jNLyWkyw/u8vYPzGwDKVT72ipgCRj7vg2PIJs47tYgNjHbvp9QDe7xOQ5rP5bELWKOVXMr7tOgY1kIBwJa1XLP8Hw+tovict+7Nv/7SKGiEACRTSSQHasgDyaeeAo9HLz3/tPP5phY+L0XRSj39HI83Ca1HFzOpQsEdK/rFgC+T4TEt18AanVCqd1NpXl5VgzTPNYLL5Pn6hjXOF91GJst109V+rrHvjTEE7e5ljYYallWrvE0vJ5q/JPfnSkz37ReTP9WSJAe2EUURqpWRHwOnZHYgm91d1z6+jc9Zg4xPDXnXWEykCejr435cla6/9WXWBhZ28jUIYuq8tb584iS+P7aP5f3uKXC+BgFfp7Ht3GcSadfoTnUhQciPNj1dfF0DqS/v7eNxdedW1g4AwJg20SCUuO+1t7NWMyP9rK+X1z/mCL5nA0BfX7/8hc/v0GvaE9dJDjJ+MoQ/YCanRovj2yZT3MPexwCAQsTHt6GPx7t0K1+3aYfxfaK6i69TjC8vGlKc96GMVzUx7i37vM1IxtwMeFxJO5oOICN9LynGlynZZkp0kIFq3DQG4EsuqO4IGmtnd8z4nCZc00/RfXhDnhX0OWJf2C8ahmEYhmEYhmHUHXvRMAzDMAzDMAyj7tiLhmEYhmEYhmEYdeeANBoJb+/UuTpV8cSJ4ygeF+OjUZD51xNSi+kHWufL9WEydT/Ckuuj0bVzM8XtkyZS3NzO+wmZR7wi84R3dfJc+OmkK24oSp1rqY/rWhtz/Jkx7VzrGUk9s9ZxA4APrv+cPHkaxc0trPuoynzIkdbSxvhM6Hz5Wmc9tMxay7ZHgsgPEA3MK15N8L55cl2CWpwXBCdtQtK/JnW+XoXPkS91k77OMQ04/gFeTbYRirZEjiMsSq1nmeuRW3MyxzyATEo0GAnRhSS0GFPm15a52hM1rqEG4My5HUbcRgA+rllTOF/b07zfJ0525z8/8u0nUvy5799DcXf33hrn/vIozCEPIEhlB2vEdXyqlnkc6NzFXiIA8MyyRyhuauHz5AVcI7t2PfvlqK9DXJWsn+BzPUb0Wr5oj/T6l6t8biOPl+caeXsAUKnyuejv5xr3UonPTUbyAZrXoasT6u3jgmwdq1Vz1V/k/a6KFinuW7Zykfdby5DHjdutPQzDEFtifBAONhNassg17K4ZH9/KOsn+Xt73bvFBAoBeuVdF0o/L/XwOe8UrBrL+hEnuveqII2dSnM/z/S6dk5p5qS3XnM6kuEa+t9f17lCvmIJoLhqbWS/hyXjW0sbHEU7l+ykAlEt8bnJlHsOSYoagNexjx7FuNZVwe28yLeOiFNK/PMSPqLfg6kgONsVCtFc+0MzXoX8HP/e0qR8KgDUhP0915fk6jW/l8+438jkq9HVSvO0l16vo2OkLKQ4SPA7sSrGP2YaQNbRehkeGqRFradprU5w2G8p8z4yS4hciOpFAtBBJ9dGIFVCo/wwfl/qHeKLnq4neoqfgasx2Fnh8aMryvaIptTf2zUfDMAzDMAzDMIzRxF40DMMwDMMwDMOoO/tVOrVnir+hP3FWpTRFpzstys+MAFCuVPe5Tq0m04dK+U9VXoui0C2f0J8Th5ZbAEA6JaVPw5RODTfdHAD0yoyjBfl5uk9/jpafp6IatxGV3J/NPPBx9fRwo0GSS2y0dKpUkjIPrUMD0CsH0tfPP40OvcZ7/q3TPx4M9rTRXdh7HktVLUGSnyZjcsOZDk7KAGqSw17E2/QD/rwf89O3UzrlcdJGUm6jpVO9ffz5quxzqeIeV3ef/AQaSL+S0ilPS6e0Dq4WM22irBOG3Kb8EoyClICFkif9ZXd62kJRSiWlzaHlUsWBf49E/g1tpzikBEjHvLIz3an707SWEBVlem1dXpFt7k/plOJLOZYnY4Mn01RWnNIpLZtzx0AtndKpX6u6XGtvtUw2pvQxlL6g61RkOvRKRWNpsurmoOaTpteefdjz/yOdf319e+8DvWm+rkW59xVjpt/t6x+udEpL4PjeVJGcd++PQG+vThHM4025dmClU+UkX+dCwS2d0jaLMiZqymrpVKLCj0I65TMAVOQeWinLFKYVPq6E9LtalUuJ4kqn+opaMshtDH2+KQz8eyTvwbUhU6fXZH7oitwfyzHzR+tziW6jWpZtFKUPl6TPV9yxSMflQEomy5LzFR0PpWypHHGbxZrbr4Ky5puWTkksU+NX96t0Su/BMk7LfnqyvCbHXYy5B5ekJLko5VGpIc8Oez6/P/nnRfux1saNGzF16tThVjPehGzYsAFTprg1i/XE8s94JUYi/wDLQSMeyz9jtLF7sDGa7E/+7deLRhiG2Lx5MxobGw/IpMM4dImiCD09PZg0aRL8GGF5PbH8M5SRzD/ActBgLP+M0cbuwcZociD5t18vGoZhGIZhGIZhGAeCicENwzAMwzAMw6g79qJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGMbriNNPPx1XXnnlaO+GYVguGnVj7dq18DwPy5cvf83buuSSS/C+973vNW/HMEaaW265BS0tLftc5/rrr8cxxxwzGB8K+W4vGnVCk8MwDMMwDGDq1KnYsmULjjrqqNHeFeNNxP482L/euPrqq7F06dLR3o26sl+GfYZhHBqUy2WkUqnhVzQMw6gTQRBgwoQJr7g8iiLUajUkEvZIYry5yefzyOfzo70bdcV+0RhCGIb4+te/jtmzZyOdTmPatGn46le/CgC45pprMHfuXORyOcycORPXXXfdoGvvLbfcgq985St48skn4XkePM/DLbfcMopHYrwRKBQKuOiii5DP5zFx4kR885vfpOWlUglXX301Jk+ejIaGBpx44om45557aJ37778fp556KrLZLKZOnYpPf/rTKBT2uuTOmDEDf/M3f4OLLroITU1N+NjHPjYSh2a8wRguFzs6OnDRRRehtbUVuVwO73znO/HCCy/QOjfffDOmTp2KXC6H888/HzfddNMb7ttE49Vz11134ZRTTkFLSwva2trw7ne/G6tXrwbglk7dc8898DwPd955JxYtWoR0Oo37779/sDLg+9///mAuffCDH0RXV9erando2//xH/+Bt73tbcjlcli4cCEefPBB2s5wY6kx8uzr2u7Joc7OzsH1ly9fDs/zsHbtWtxzzz34H//jf6Crq2vwuez6668HMPx4tueXkF//+teYN28ecrkc/vRP/xR9fX249dZbMWPGDLS2tuLTn/40arW9btr7M04CwC9+8QvMmTMHmUwGZ599NjZs2DC4bLjqmDAM8bWvfQ2HHXYYstksFi5ciJ/97Gev8gyPDPaiMYQvfOELuOGGG3Ddddfhueeew7//+79j/PjxAIDGxkbccssteO655/Cd73wHN998M771rW8BAC644AJ89rOfxZFHHoktW7Zgy5YtuOCCC0bzUIw3AJ/73Odw77334pe//CV++9vf4p577sETTzwxuPyyyy7Dgw8+iNtvvx1PPfUUPvCBD+Ccc84ZHLhWr16Nc845B+9///vx1FNP4cc//jHuv/9+XHbZZdTOjTfeiIULF2LZsmW47rrrRvQYjTcGw+XiJZdcgsceewy/+tWv8OCDDyKKIpx77rmDX7Y88MAD+MQnPoErrrgCy5cvx1lnnTX4JY3x5qBQKOAzn/kMHnvsMSxduhS+7+P8889HGIav+Jlrr70WN9xwA1asWIEFCxYAAF588UX85Cc/wX/+53/irrvuwrJly/CpT33qNbf7xS9+EVdffTWWL1+OuXPn4kMf+hCq1SqA/R9LjZHl1eTUHk4++WR8+9vfRlNT0+Bz2dVXXw1g+PEMAPr6+vDd734Xt99+O+666y7cc889OP/883HHHXfgjjvuwA9/+EN8//vfp4f8/d3uV7/6Vdx222144IEH0NnZiT/7sz/b73Pyta99Dbfddhu+973v4dlnn8VVV12Fv/iLv8C9996739sYcSIjiqIo6u7ujtLpdHTzzTfv1/rf+MY3okWLFg3GX/7yl6OFCxcepL0zDjV6enqiVCoV/eQnPxn8286dO6NsNhtdccUV0bp166IgCKJNmzbR584444zoC1/4QhRFUXTppZdGH/vYx2j5fffdF/m+H/X390dRFEXTp0+P3ve+9x3kozHeyAyXi6tWrYoARA888MDg8h07dkTZbHbwMxdccEH0rne9i7Z74YUXRs3NzSNyDMbrj+3bt0cAoqeffjpas2ZNBCBatmxZFEVRdPfdd0cAol/84hf0mS9/+ctREATRxo0bB/925513Rr7vR1u2bImiKIouvvji6LzzztuvdqMoGmz7n//5nwfXefbZZyMA0YoVK6Io2r+x1Bh9hl7bPTnU0dExuHzZsmURgGjNmjVRFEXRD37wA2cM2p/x7Ac/+EEEIHrxxRcH1/n4xz8e5XK5qKenZ/BvZ599dvTxj3/8gLf70EMPDa6zYsWKCED08MMPR1HkPksOzfdisRjlcrnoj3/8Ix3TpZdeGn3oQx/an1M4KtgvGgOsWLECpVIJZ5xxRuzyH//4x1iyZAkmTJiAfD6PL33pS1i/fv0I76VxqLB69WqUy2WceOKJg38bM2YM5s2bBwB4+umnUavVMHfu3MGazXw+j3vvvXfwp+Mnn3wSt9xyCy0/++yzEYYh1qxZM7jd4447bmQPznhDMVwurlixAolEgpa3tbVh3rx5WLFiBQBg5cqVOOGEE2i7GhuHNi+88AI+9KEPYebMmWhqasKMGTMAYJ/3ybixadq0aZg8efJgvHjxYoRhiJUrV76mdvf8YgIAEydOBABs27YNwP6PpcbI8mpyajj2ZzwDgFwuh1mzZg3G48ePx4wZM0g/MX78+MEc2t/tJhIJHH/88YPx4YcfjpaWFlrnlXjxxRfR19eHs846i3L1tttuo3LB1xumvBogm82+4rIHH3wQF154Ib7yla/g7LPPRnNzM26//Xanjtkw6kVvby+CIMDjjz+OIAho2Z6Brre3Fx//+Mfx6U9/2vn8tGnTBv/d0NBwcHfWMIw3Pe95z3swffp03HzzzZg0aRLCMMRRRx2Fcrn8ip+px9i0v+0mk8nBf3ueBwCDJTj7O5YaI8u+ru2e+2AURYPrDy1Req0MzRdgd87E/W1/yrjqRW9vLwDgN7/5Db2MA0A6nR6x/ThQ7EVjgDlz5iCbzWLp0qX4yEc+Qsv++Mc/Yvr06fjiF784+Ld169bROqlUikRBhrEvZs2ahWQyiYcffnjwRtbR0YFVq1bhtNNOw7HHHotarYZt27bh1FNPjd3GW97yFjz33HOYPXv2SO66cYgxXC7Onz8f1WoVDz/8ME4++WQAwM6dO7Fy5UocccQRAIB58+bh0Ucfpe1qbBy67MmHm2++eXC8uv/++1/VttavX4/Nmzdj0qRJAICHHnoIvu8P/sJ2MNq1sfT1x3DXduzYsQCALVu2oLW1FQAcn5a457L9Gc9eDfu73Wq1iscee2zwF9+VK1eis7MT8+fPH7aNI444Aul0GuvXr8dpp532qvd1pLEXjQEymQyuueYafP7zn0cqlcKSJUuwfft2PPvss5gzZw7Wr1+P22+/Hccffzx+85vf4Oc//zl9fsaMGVizZg2WL1+OKVOmoLGx8XX9hmmMLvl8Hpdeeik+97nPoa2tDePGjcMXv/hF+P7uasa5c+fiwgsvxEUXXYRvfvObOPbYY7F9+3YsXboUCxYswLve9S5cc801OOmkk3DZZZfhIx/5CBoaGvDcc8/hd7/7Hf7P//k/o3yExhuF4XJxzpw5OO+88/DRj34U3//+99HY2Ihrr70WkydPxnnnnQcAuPzyy/HWt74VN910E97znvfg97//Pe68887Bb46NQ5vW1la0tbXhn/7pnzBx4kSsX78e11577avaViaTwcUXX4wbb7wR3d3d+PSnP40PfvCDsdPj1qtdG0tffwx3bWfPno2pU6fi+uuvx1e/+lWsWrXKqTKZMWMGent7sXTpUixcuBC5XG6/xrNXw/5uN5lM4vLLL8d3v/tdJBIJXHbZZTjppJP2q9S0sbERV199Na666iqEYYhTTjkFXV1deOCBB9DU1ISLL774Ve//wcQ0GkO47rrr8NnPfhZ/9Vd/hfnz5+OCCy7Atm3b8N73vhdXXXUVLrvsMhxzzDH44x//6Mze8/73vx/nnHMO3va2t2Hs2LH40Y9+NEpHYbxR+MY3voFTTz0V73nPe3DmmWfilFNOwaJFiwaX/+AHP8BFF12Ez372s5g3bx7e97734dFHHx381nnBggW49957sWrVKpx66qk49thj8Vd/9VeD3wQaxv6yP7m4aNEivPvd78bixYsRRRHuuOOOwVKCJUuW4Hvf+x5uuukmLFy4EHfddReuuuoqZDKZ0TokYwTxfR+33347Hn/8cRx11FG46qqr8I1vfONVbWv27Nn4kz/5E5x77rl4xzvegQULFuAf/uEfDmq7Npa+/hju2iaTSfzoRz/C888/jwULFuB//+//jb/927+lbZx88sn4xCc+gQsuuABjx47F17/+dQDDj2evlv3Zbi6XwzXXXIM///M/x5IlS5DP5/HjH/94v9v4m7/5G1x33XX42te+hvnz5+Occ87Bb37zGxx22GGvad8PJl40tMDNMAzDMOrARz/6UTz//PO47777RntXjDcI119/PX7xi184JTCGYbxxsdIpwzAM4zVz44034qyzzkJDQwPuvPNO3Hrrra/4TbRhGIbx5sBeNAzDMIzXzCOPPIKvf/3r6OnpwcyZM/Hd737XmVjDMAzDeHNhpVOGYRiGYRiGYdQdE4MbhmEYhmEYhlF37EXDMAzDMAzDMIy6Yy8ahmEYhmEYhmHUHXvRMAzDMAzDMAyj7tiLhmEYhmEYhmEYdWe/prcNwxCbN29GY2MjPM872PtkvAGIogg9PT2YNGkSfP/gvq9a/hnKSOYfYDloMJZ/xmhj92BjNDmQ/NuvF43Nmzdj6tSpddk549Biw4YNmDJlykFtw/LPeCVGIv8Ay0EjHss/Y7Sxe7AxmuxP/u3Xi0ZjYyMAYEI+gD/wNptMJWmdlrHjKG6b5DbsB/wZDyHHB/imHG8Bwm9Wxf5+irs7OylOJnif+np6Kc415ije1cWfB4BsYwvFLS2tFPf3dlG8ccMGiqdOm83x9BlOG/1yHDu2b6d40mQ+39lcljcQ8Ln1AvcNNJ/jY315E+/n0088MfjvMAyxYfO2wdw4mOxp48Pv+Q1SyQYA7rV3U8fNJd/TY+Y4DDkfnfySWNePIwJ/JqrWeC9lE7pJL5I+ArfNMKxJrP1Kj1PWr1Z5H2u8HACqNV5H29BtRqFsU5bXQrcN/UwY8Tql6t6+WQ2LuPulr45I/gF7c/Bt72xDIrn7fAaaTyFfaz1nABDK9a/IOrVI+ql8U6T5VKm6bSDkbaSCFC+v8TZ86SuBtFmu8vrulQNkFRQlP0rQfOEPpGQDKS9w2gijffc3T/pzucznplwqU1ytxh0Jnwv9pm7PmBCGETauCUc8/zZs2ICmpibal3rijqv1//b6te71m/n79KHXo7u7G1OnTh3Re/DQ/Huj8uLaVRQ//OB/U7xzxxaKu3r5mTCbcceNtiZ+dhrXNo3iKVOO4viww/nzbe0UR3DHdQ8p52+jyYHk3369aOxJbt/zBl80fF9uTvLgmki4m/blb/4IvGhUK9xmEPANLCGxcxyyPO4nImebiX236Zw7WT+Z5JcfAKjKA8Vwn0mlOCkjedHwY140Umn+jG4z7thH4mfUPW2kkg1IJ/MARudFQ+P9e9GQbXqv8UUj5mHrNb9ooLLPfQQA39v3i0ZNXk4iWV9jP6YNXUdfNMIoZvAdoZ/x97STSPpI7ueLhr4kAEDN03yQFwvnRYNjWYwo7rFLXjQS0vf1I8O9aIQ6Tse0qX0jkH0I9DOSxvpaEcRcVy/c97XW/QqcMU9iPZkDW6F19PzLLWek86+pqcleNOqyF29M4q7HSN6Dh+bfG5V8Y57ibDZDcSaTprhYLcty996VzfJncjneZj7fQLE+nOs5fSO8aOxhf/Jvv1409lCJ9j6apXy5NehNNnSHk1qFH2iqUdw3SkM2OczDTNw3UmGNP9PR0UlxoaeH4nyW30RL/UVpk5Osv5c/DwDFEh8X5EGuUuzj5fItZqlUoLinp8Npw3nIlf2q1Xi/vYiT0g/54cEP3OsTyHeVgdwSUkNebmr78ZBdb7xEAC85kHd6Q9SHupibsD6IaOw73UHPueRjzIOPe514uZ/gfqMPlr70m6imvzbEfIPt6QOVuwqtDn0Q3ffDL+C+ZGrfrGCYvi0P5b7vXp/I2/e5SQzJaX2BGylSqcTgi0ZCrqX+UuBxFwUAaJrqC39V80fimuSHPggPtEyR86ua8wWPnHd5IE/qrwsxfUv/lJS+EYba15hAv3yJ/VJj323qLxp6bnST+qXS7jb8fcZ7r0eE+N92Ro5X81Iw7EP+cNvYn7eE4V6AdKjWXXhTv0owI/Hi92oZbt9e3YuwfrnHS7WNuFxxfm2XL7Uefeh+in90279QPGM6V4cce8ISipta3cfmjl2bKe7s7qb4MI+/tG3IcMXJsicepnjN2hecNg6fN5/iuXOPoDiR5G06477zBWTcSyvHkX7xFfNL8/5gs04ZhmEYhmEYhlF37EXDMAzDMAzDMIy6Yy8ahmEYhmEYhmHUnQPSaPSVa4N1XUGCa7J7ZbamaDMr9wGgJgVgtWFqXIcX4w5fK1ytqIiVV+js4hmhVFtSLvNsTyooBNxa3/4Cay6qJd6GFu739nRS/PLW4dvo6+Nt7tyxjdsssmYjoWLxrCss8qp8TcNKieJkYu8++KNQnuynA/ipPTWCB54b+l7tS72hk2+qO5J67URcfajUv6s2BjXVNkldq4qqHf16nEhWZ/RRLYlqMPjzgYg6YkXMsl/D1eN6nmoLuB96Nfc4HM2LiL/9IbMn+aNUH58IgD1SJU+V/HLa9sxONRTPlwkxEqK50JmrRIemdbYxw5Ez8YMzyYH0HSel5NoGCdEpxMxK5hy8Fvs6Y7/0E+kWcRqN4eq3HSG3ak1kpsSgFqfz2bdGozbwmdprljS/doabu35/9vBAK/73Z33NL+dTw0xGUI99OFR4PWkylOH2LW758LqNfU/GUCiw3jWKmSAkJzNu6ljytreeQfHj991L8RMP/oHi0048leITj3m70+aajazRaGxiwXl/lZ+Pl971c4p//atfUFws8nMpAPx3nvXEi086heLpc3kmq3lHLqB43NiJFHtgAftuZPyLWePVYL9oGIZhGIZhGIZRd+xFwzAMwzAMwzCMumMvGoZhGIZhGIZh1J0D0mhUw2iw1LZU5np+PxAdQiLGXESM60Jv3/V6w9WB749hn9axJpN8yH0l1iGo14fWL6fF3AUAajXdD62r3vc+qj9Dpcz7BABFWafQxzoQnYe+0s/b8NWYMOVe+qwY1ZREd1Or7D2u0fDRSGQTSAzsdyQntSa17L5jAeYarPnOXP/qBC4+DpJLce7WSalnj0Lej4oj11FfBDWBEx1JnG+C1syrsENr9HW3a6rxiPEgEY2Q+j/4WpetJfuiyQjjjC8j3Q899mjIv0dHo+F7EfyBcSvUY9ba80TMtZLjVk2Yr91Kr41T7+6ex1BOfiUaRl8D1dNwm4mEjqnDm4b5qvuRvqZ6vUjuBY4Z4sCeDsXN032byDqfj60h33dV8qCPyTD3rpHA9RiQ5TEqDU2v4Wuw962viGtD/+ZIgJy/6PrD+MDEnHp/WM3Y61frsC9e38eh2TR8n9BPaB/Wfr9yxdMU/+sPb6a4FrpmRX9x8Uconnf4sRSPmzSD4k9d+UWK/17Gv/vv/y3FFbhtzpjNnhZ/WHonxatfWEFxYecuivtE19vQwHoMAOjZxc9jD93/O4rvvvu/KD7mONaWXPLhT1Pc1MpaFiDmmdrTvvnqfpuwXzQMwzAMwzAMw6g79qJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRdw5IDL5bHLtbjFSqsMAwSLBxSipGKOsage1bPLR/4m/9kIgnHcGcCgZFrFtioU9NtteYaXCabB07geLOrm6K+4u8zVDEujURfFYr7rmrqpleVQS+orKqyHIVY8ZowVEosMlfn4jBy0ME12oCNhJ4vgdvwIRLRUlBUsTfMami+k0/UgGhCLmHyzdX5Q8/kL9pKAZ+qmn2VKkt64ecBgMbUaNBEf/KPmg/VBO5MKbv6oQFev09mWTBEx8lT85lnCFbpCZ8Eg4V+MeJ/UcC34/gD5xvR7Qq6RLG5Y+KnlVYLeOTehgGwwhnAaCkcxrIcjWycwwdJcl07IiTo+r1jFQcLjmofo3qa+n77gDlS06pkNQVcnOO6EQLNUd5H2P86Zj67YlHXwzu7sO+8zHuEzqhwTBWe04+xt4HHEM+JtCxwJmcYN9jjR/z/agrYuVQ77H6HODGThOx53Nf2zjU0f7mjEUx58Pz+FnohReeobhrVwfFS//rPynu7ljL63fxMwoAPPHYYxQffsQiivUyTp81jeKPf/oTFN/zXz+jeM2Lzzltrl29iuIN6zZSnMrwJEJTD+M2i/LcuebFNU4bs2fMpjiXYTF3n0zQNOcwNvBLJ0VgHutXqmenPuOc/aJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRdw5MoxFisPbRsaiTAkY1iQKARCQ1s8PUNA6n0YitoVezMl1H4mQiSXHJY51C85h2it9/wZ87TY6bOIXipUuXUrz88UcpDj0+D+USFx8HnmvYpwZ1Kg/wZZu5XCPFYydMpDiZcQ0Vt7+8leJCN9c/Di2JjvF0O+gEXoTA21Mfz2j9dVxuaM28u86+a9FdQz+3jSAlZo3aDcpiZKb5CjVXE0M3p8WYlNfccFaQc1WT5RoDiFST4ZgAyn6r0ZSTMMMnkO5FYkjNfTRqGo29nnuq76rKMaqJJOD2Y9URqI7IiR2DK/c86HnTvHc+IY1UZb9Vf6HGlQDgyX6oV57W4dekd9XUTDPhHpfeLrR2fzizPcU1WnW3WRWxUaDikjcYoZwjzcaqnlPtpzJ2xKS4c19PBKoJU52RjHGSj5Uyu5x2d/Y4bTY2NlNcrPA9tKGR74dqKJlwTALjGE6X+MbOjQNGcqkiyRBGIqoCsG37SxQve+weip9axvqKzRtYqzB5PD+PFVWbCaCvwM8tvV07KX5h1UqKn1n+AH++ZxvF69bwPmzdyPoLADh8zjyKp04ez22s5DZ39HAOT5o4ieJU1jXTW7d+C8VJnzUX555/PsWnv+Odsk0xm45JV9cssz7YLxqGYRiGYRiGYdQde9EwDMMwDMMwDKPu2IuGYRiGYRiGYRh154A0GglEQyq4pNZTajVjyvMQebxSTT0EpGbMqQ9zSuTdCjKtaXfKKp2y/H3PKX/cyadQPP+ohU6bt/3oXynevGYtb1Pq7oNUmuJEIHqJGO1KrVKWVfjSHbngLRQfd8JJFDe1tlC8WvYRAHr7WJ8S7OqUNv0h/3Y+ftBJpZJIp1xtCeCWG8btn8oEVHPhaDAELU2Pm0PeTxQl5hrSsCq+GFLzrZoOTWcE7oFFWjcuGgtfvBq031Q5tWIahetpoXXXcpye1ECrLqkWaqPu+VeLiaE6JPVRGSk8RENqykW3olqGhDu8qlym2Me15Anp1xWZG33CWK799QO3jW3d7OPTt3MX76d8JpUSnVrINfE6t7qXiJkff5i6e40j9RNJBbI8RgciseoD1CvBD7R/y/Zi8lz7imq/9niQvB5cNIYn5jrpH4aRTjleJXISQ72JI8anR8YK39u3DqQkbazb+jLFq2M8BiI5spUvvkDxlBnTKW5va6N4Yvs4isfKcgBoybPOI6H+H6pLO8R9NfTwenrZA2PZU6x9AICtm16k+PGHeZ1dO1gnOns6axc6d3RS3NvV5bTR0cUaiv/3s1sp/u//+j3FPdt4/RnTORfaJ4yleEIbxwBQ6ub96OzjMXjiJNaWNDTwNjo7+dw1NPIzIgCMnz2D4pNOPJviJaefRXG6ocXZBhF3n3d0qvXJYftFwzAMwzAMwzCMumMvGoZhGIZhGIZh1B170TAMwzAMwzAMo+4ckEYj8L3BukOnukvqX6OYCbb1L9Ew81L7UqcbRsPXhyaTfEiRzm3vfEQLwbnNitT9PvoIe2IAwP1/uJfiVpkDOdfUwE1IjfTRRx5LcUfHDqeNl154nuKZs2ZR/P4/Y3+P444/nrcpNYCNrVwzCLj1eD07ef7pju17a2XjLEwOOqnU7v8A+CHXlQeeaFgQJxKSmu1Ia2xFV6B+E7K5akz+hRWuzUxm8hQnMuK9UOFc8ELWoHgqdorxCgjkM1qrHkZc5w+wjqQWia7Ec+tDvYDPdy3kzzjeHSpoEW1JWHG/4/C1Hlx9DqpDtnGAngn1IkI4RKGhx6CmF+4+qqeFzudfFU+dhM/5Mb6dNRrplMyNDqBU4YtRyPRRnBSNWH+xwNtM83LVIsXIJ+CpXsU5dNFPqKxIxEmxHknOUO246bifGdpGjceI2DakkURCx4Ddfa1WjaD9aPTZty8Q4F6XpPwhkHx0zpGGYdxk/OqjoXsl45PUiq9YyfqKX95xF8X9vZzPANDTxePu9l1878qt4PtnWjwFGvM8Ts+edpjTxhmnvpXiqepNJdolfRY5JIgwmAO1Guf/s8+w3uK5Z//gfLxrOz+HrHtxLcUTJrA+ormZn1N2bWMtRGOD6zfRu5N1Hmuf42vfs20zxWGZj0OkxNi6gf0r+rq2O21OFg3GuIms8elVb6KItXktTZyPTW3TnDZOOoU1GcefeCbFuYZWih3LJtVkDD/EDidp3m/sFw3DMAzDMAzDMOqOvWgYhmEYhmEYhlF37EXDMAzDMAzDMIy6c2AajSB4ZY2GUKloXTjgq9kGtGZehR4cJpJcJx43T71+SOt4A9FH5HKsn2hqaqI4KfuUrrm6knmz5lAc9vM89JHsZiSFbuMmca1nqeZ6DECO/W1nnUHxrNkzKd6+YxvFjz36OMU9PVyXDcCZaF7L7IfWZo9GhXwiKA16jqiPglM7GFvjLXNE6/ENY9yic7UnY+qTo6roPtRDJakFy3xdPe0Cqrdw+pDrOeB4XKguIMHbDJK8frmf9wkAauL/4YPXqVbEI0di1Wj44qux+0MyHsj18Yd4TPje6NQ/e94QnZp6DsgfVGICAGXxxVDflPE6n38T1/quWbma4rdK3TgALHzLIor/8V/+iferxDXJodQP12TMTKX5Wsdp6yLfKcRnhvGoiSSv1W8EcH0JAs0p9bxwNBziUaI5ihhvHNntwTZfh0Yamo/qXQIAvo6BsjzQMu5hxsw4Xx+3sHvfJ0uvw8rnV1KcTLJmqHVcs7ONF3dx7X5SjmyK+M/kx/A2Ejmuka86ilJgVwf70fii0Wtt4WeH9nbuu4eEz4aHwaTZtInHomeffpjiqOxqaTas5s/09/ZQvKuLE2zFan4WqpY4ziZdjdq2dazBCGTsOfIw9uYoy7VuaubrGFVZNxe1u/eeCdPYF6OrwBqMjSs2UHzMUfMpzudZXzF1puvXdtrp5/B+eKxPiUTP6Qx/+0HMiDFMvH/YLxqGYRiGYRiGYdQde9EwDMMwDMMwDKPu2IuGYRiGYRiGYRh154AKnYfWGGrtphaI1rTWFW7teBBwXW/K51pgX5aPGTOG4sZGnvsaAHp6eT7tWo3r1lIprmtLJtiDoL+f65fH5FnDcdoJ7E8BAD39vRQve4z1EBWf9yHbkKO4pZXr8/qrrkbjGJmT+9TTTqN41QsrKH7iiWW8j92syXh6+TNOG5mUelPonPJ7r0ctbv70g0yD34lMsPtcRgHnVw0y978XozOQul21YnC0DDHOLxTF6HUyOb6WfsD51tsnPhk+x7pNL6H+Au53A2FNPCqk8L9a43rRVFbOg/gqlGMkQupHo3oVT7QnCS3mVh1AjM2JJ3X+CS0Y94fEKmYZKSIP3kDi6B6oJsPRqQAIZIxLZvj6T506neJZk3k+f4/lX5g8frLTxnHH8Rj1+7vvpvjp57jvJ2T+/2qVdSR+Un0RYm4bcj2cvqXXy1mugqmYJoYbchyPEl6cSklfi9xEr1T0PsbXcI+GIxxGczIa6OmphwbAE41ipHHsfuz72UCvteqUunZ2UjxrGveJ009Z4rS5/PHHKP7Zr35B8ZFHzuNtHnk4xWGKc7pjE3sxAMD4sfz8URadY6Xi6gWYA78erzcZx+ZNa9HT3QgA+OEPb6VlzXkev8t82wEAbNiwnuKjj+HrMueoGRQ/9Ee+rp0dPDaVU24GJkSDmMno/U08t+Tah3Lfb2zlcaNQcg+sIt/ZTz2MdbuHzT6G4o0vvkRx1ZE0u8dVkedCP8HPFoEOeI7pjd7DXbTvRrLWq01H+0XDMAzDMAzDMIy6Yy8ahmEYhmEYhmHUHXvRMAzDMAzDMAyj7tiLhmEYhmEYhmEYdeeAxODZhoZBwx8VajtC76Qrxk2L8VMywdtIqhhZxKHpNIt64nyAsiL8qYV8iCp28WQjJVEwvSzipZSr2sEH3/+nvA8pFoWt2bqO4jlzZ1O8+OSTKe6LUVGtfYmNbp5YxmLvpb+9i+LpM9nAb8ECNvG6+7dLnTYa5Ny1NLFofej18WOE0AebVLgF6XD3PoUJvg4Vnw1zSiIOB4BQrn0IyWHEKJSHoPmWECE3AIjeFBH4D0kRXoeSn6GYA/mRbtBN+mpVjO5CFo1F4tzTV+QJE1IJuc5ZV9SYSPN+ym46++D5IhoVYbcXIyhW4zh1B/OGXC8vijH8GwE8+HvNIkXxrGZvNVVEAygXuW8Xyjz5xLPPsFkZxPOqbUw7t1l1+2HnDjYWO+aoIyl+6kkeO5Jpvt46ttfEmCyhppNAjBJZhIe+ChM59J2JGoaXHer5VsNX7SrqBxtnfqkSf0dfObixYXfvoKMGcKGa68WMFe5ZHUa4rWJQX5fHXSdtd98na+OmTRRv28Zms80yWUoi7eZfMs/jqs6ZUZOPhB5fe733BW1s2gYAoUyqMW0aT8QQJHSyAe2b+yOllX4Q6fPKfmziIPLfS+9CduD+8Phjj9KyK6/4S4qXL+PlgDtZTy7H52zbyx0U79rJgvv+Pnn+iunCba1sxpiR8W2MLC+FvM2NWzdS7KfYUDmTZ1NVAJh7+EkULziG44kyqccf/3A/xf/9219TvOsJnlAIABqbeDKCYxbypAiZPC+vyjOaGlzHThbh7XvihleL/aJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRdw5Io9Ha2jpoCqL1XZ4Us0aBW/8VSK241n9G4nhVDbkQXGuF42rMUlk+pKzUmzumYGKgVVVjsRI7ZJV6e5w2j5r3VoqbWi+m+MXNrK+YPn0qxWHIdYoTc64R4fInllP8sx/9K8WJiOsM33nuOymePInrDJsa2IgQAJJyPnNy7vL5vftVrcXVNx9c/OoG+AOmSLWIcyMpRnk1n81sAMDzVJPh6ohoG1L/7kWcW35M/kkZJEIpFva1xlmMzBJayx7y58MYGUlC+prKFzzJr0RS+wS3WY7RCPnSRkK+okiIJqsqpkaVkmhPkjHGg1rKLfWiQ+v4/VHy6/M8b++4I/ugJdlxfcQP5DyJnmbXTq5RXuuxvmtiK2uRZk2b4bSRFR1QUsY8SO1uJsnrV+TkJuVaRZ57XJFqMrRrqFmUSgP2o65fNQmORkESqCbHWa1wDqrGYzfaX+O/iwu1n44Cr7RvrwkZ0/q6We/z/LPLKY6RgSCXESMx0WKWxOz1B//+Y4qfWcX3y4bWRoq3bNvitPnIo1zT3tXBJrrr1rLWMiHPCQuOmk9xNu1q/LQ/5/Ks49B8dPzS5A/xno/7NkirV838q6VY7Bu8Z+XFzDiX4+u+fdvLzudPOvkEimcfvoDi9Rv5upXLL1Ccz/M1aGlyz0dKxit9Vti+ayfFDaIBOn7x6RTPmM2mgofN5FzZ/bcjKE6k+BmuKqa6J5/2XoonTWeDv1//8t+cNta9xOeiIRC9p5i/PrPqOYrb2vg4x4/jZ0IA2ClmmdlMC8XHvWWvLqRQ4Gu1L+wXDcMwDMMwDMMw6o69aBiGYRiGYRiGUXfsRcMwDMMwDMMwjLpzQBqNZCJAMDDHutYK1nQO87jGZH52T4uapT7Ul9pirVesxcyD7vu6DZ2LX+a+j3gbgRSf57NcB5dKxMxELm2OnzyJ4pZpXFedb+Bt/uKnv6G4dewEp41A3gm7OzopPn4B1w0uPPooipMZrnM9fO5cp42a1OZncpwevX1dg/+uqpHCSFDaAgz4YxQKXNuez8yiOCW1hQAQRvyZlMSQuuuqzr1e4/MR1dz39HRCPCwkXXRua637VS+PhM9t1spu/lUq6h8g2gbVT0k/E9kAwrLbe0PZT61vj1Q8klLfDD6ZUVz6qOZFarm9qj9k0eh8R+JFPrxB3c2+a67DmAJ29UlJJESzITlZ7GOfjVJGNB07WNMBAKUuNt8Y29hC8cQ2Ho/6Q/UGEi2EHFgUMwZCxsBQBCw6RuqZCWta0D68CMepiR9muZOzcR93bCVkTBjovzXd3xGiu2M7UNudE2GZc6EknizlEscAUCnyZ/pknUqJc2fDSysovutXP6O4X7YHAIkk+/KkcnzvyYxhH4KOfs6/XJ7r2x967DFe3ujqC1etepHiYj8fx+ZNayl+uZO9EqrgfZjU5nolZORxaXvXDl6e5uPWvq2a0iBw/UB8Z1yVfkD9aORz8K2nnTWo1Xz8sYdp2f/957+nOBm4nmMVj3UcU+afSvG7PnQcxbmmb1LctZ69Oca3tThtPPHkGoqjGmsXjlnEvmXzjmE/imNPOI1i9a+II5JnUR1bAr1dyQozZ/Dz2yc+dY3Txrp1rNFYs4ZzviR6qkKhi+KNm/nzU6ew1xoAHDnvRP7Mxu0Ub9++dfDfPT2uXvmVsF80DMMwDMMwDMOoO/aiYRiGYRiGYRhG3bEXDcMwDMMwDMMw6s6BaTSyyUGdhdYbVqT2uFR2azcrUm/ozBGtc5jLGo4PQtL1QVD/jorUxKervLyW5W1mRZPRInOAh75bd1iS+s5sgmtIGxu5RrUE1kKseOYpiv3geaeNak3ngOd45jzWXEybzvV3xTKfh5NPZ+8PANi2ZTPFm9ZzraM/xKDBH6Y++mBQKW5HYsATIgJfl6TM7V+OqfFOeVxTmKhyTWMonhWZJF+3mmiGanDnWk8EqhsSTwLHj4LPY5rLSdHYIBoNN/3QV+A/JpK8kVSa588uV7WPcJ12MmZYKPWLJkv0E+WSaDjE1yUr89bn0m6ddW8311UXerifDD11o2djEGDP9zPBMJ4ocTXUtXDf3g5JqdveupVrZIMyLy/s7HbaqOzkeeIbm7h2/PBJ0yletZm9OioV9g4qSv1xIPkFABXVNoQ6uu/b4yIpYiY/Gv47sFD2q1LRHJTro/236o4RzmfkPhcN3IPUN2Sk+OXPbh/0hip08HXu6+Wa7EqMRkPzrV/8bhIeLw9C7pO5kMfQdIwfTlnub7t2cj6VuwsUN7bzfP6tTTzuvrR5A8WPPsGeGQCwcyf3k3KZ29y6mTUZZdHS5du5jxQKU5w2msUfZFcX3y/TKd5GMpGS5RxPnshaTgDo3sHXcPMGbmPsuL36qt5ePo8jwdy589HUtNs/5Mwz2avrlv/LGo1Zh7nn8M/+4lKKT1jEeoiUeDyd8Xb2m/jR/11J8fZd7nNma0sLxePa2ynu6WB/j5/+8J8o3riRPVfe/g7ehwmTpjlt6thSHWYc0fuXasGSCff+OGf2QopnineH6tq2befceeqZZRTPP/xop42JE/i5ccrkToozQ7w6gsC9D7wS9ouGYRiGYRiGYRh1x140DMMwDMMwDMOoO/aiYRiGYRiGYRhG3TkgjUYU7P4PcGvOtBw5bpp7nVs9lJqyZIJr3r2kzL0f6VzsMZ4WAR+SJ4eYlNrf8VO4jnDutMkUT+rjmtXMGHdO5Q6phc03cO1aJuC6w+4S14/u2sW1tpV+rnEFgMOPOpLiBQu5Xu/IYxZRnMs1U+wFXMt42Fz2nQCAji7WLHR0as3v3utVjalvPthUir0Iwt26nESOvQBSvuRSyk3tcpE9Bwq7nqE4keX52xtbpRYz4LrJkppkAEj4oqWRHE+JT0sgmo1sRrfJ18D33fPe0sq1waH4HviiKwoSoiMp8TazGXd+d/W0qEpRvq+amQznfCrLeqpcluudAaBc4RxV3ReG+pgEBzR01Y0o8gbHIb38voyJMW4TSMj1V51AscTnYGxbG7chtcDlGB+DpPigLL/vId5Gns/9+DxreLwSn9uC5HR3yR2fEhke88qiRdFrGVbE40I0aCnfPXuqn9C+pWfcl5tQVdZXXw0AqEF1HXFXcTQcDHbz6MMPIDWgTWwQ/WAgGqEgRkei+aMaMng8VjTluN+2prnePeYUYkcv/7Gnyjna2s75tnkb15L3Sp+oyJi3eQvX0ANAVp4dKnKP3SJ+AI3jeMzctnUtxYWurVCSYoYwcRz7XXW9zGN1b5foWcRXQ/s2AGzfzPeoVStWU5waIuKrVGIEewcZ30vA93aPD2efcx4tGyP+POmYe/AJJ7A2NCOaDPWnmTvvGIpPP+fPKb7jN//mtBGKF1W+ldvwZawJwLnxwtO/o3jzetbQzpzDz1oA8PZ3vJ/i5rbxFJdFU5sUvbH6u8XdPZz7uicaUfnImFZ+lp0+hcftNlkOuLqisWP5mg71qVMvvX1hv2gYhmEYhmEYhlF37EXDMAzDMAzDMIy6Yy8ahmEYhmEYhmHUnQMqdC5Xa9hTQudLPWgqxXVwCYkBoL/IWoaebq5p1Pr0Cc0tFGdkHupa2a1RVN2GL3O+16RetNjD89BPajyc43behyjvajS27OBtpD0+rrLUJ1eTXGs3czZ7YHTsYK0EABy94BiKW9q4VvbEk06hOJdjvUFN5j/vL/D86ACw5qWXKN6xYwfF0Sv8e6TINoxDdqBGNfI5v6I+rmWNwMcLAFGRa4GrxU0U10LxUGngOspElnMpyrIOBgCiBOekD/5MQr1hxIMlCnludJ2fO4pc/URU48/UpHazLHPnh1K/rLqPICHaCACB9GeRdaAWSY6LT0Kph/tEVzfnFgCURT8ViPdGMGRu/BCuR8BIEEYh9pTKhq+iEyREW9Jd4Jrs9mbVHnFddybJ+ooFR/N4BQDlTt5mMtD5/Lk+PSt1+KHk3JQ29jVYLb4GAFCSHCv18zjbnGd9kyf1272dnMOu/sL1EoJoYgKftxlJDXEkvhta8wy489lHMfvxSp8dCbwohDewT57oonzJrVqknj5AJOcsqZ4oUvdfqfE2qnLctRi/rITk14TJfK/KyL0pn+P1V23gcbmnwGN5ter6ZyXzPD4V+zmfegu9FJdDHgN7+riNIOmOs+Uq17jPnTOHl2/ne2p/J28zEp8X1WwAgCc53NmlGr29169ada/vSDJmzDiKzznn/GE/E6kGSrpR4KvOis/R6We9m+KE5A4A/OYXP6Z4+XOst2lIcJ/OZFkzlBUzq9Y058rPfvB3TpsvPsv+Hud96CKKZx/BGtthRc0x+k9HF61blLFLfS6mT2ddbiLhPv7reOc2ue99eCXsFw3DMAzDMAzDMOqOvWgYhmEYhmEYhlF37EXDMAzDMAzDMIy6c0AajSBIIQh21y4GUt+VTMucvpFbw9pX4vrPseMnURzKPPoJqRXOyLzhlZgaxVpZ5vuHrCP6iK5tWyh+8g/3UfxiA9eXrv3jw06bmXE8Z/IUmUO5Ocf1o4e/hev1/vSDF1Bc6HX1E7t2sW5j0+aXKe7t4zpCLa7TerxCt6th2LaFaxm1fnLonPKvNL/8waRU9eH5A+/GUmMbJLmuNxm4c/1Xe7dRvHYV+2ggKfOcZ5soTgesySjU5JwDSLa06l849Pg6JJyaVL72tRr3me3b3Pndezo5N6bM5vyqiQdGJuB+1F/jflcou/lXDbVmWfQrUmPq+5p/PD74Cfc7jh4pwQ9L3HeDIX4goTfyc8gDQFirDc71rhoAJRXj9dHbw+c2l+Ua40Dm6i+KR0+ll487nZVxF0BQYT1Ek3j/9IpWbnxe5kqX758Kvbz+SfPYwwcA/vDwHymePIY9Al6W8asqBgwNDawDqdZiNBCiD4hkgAprqsHgWDUaUc3VXzg1yqHoPAZqq6Pq6Gg00kESqYHa/kKRx7hima9TwnfzU71eMpI/WdFeFuWcFiusfSiVXa1UtpXHzU7RZ7286jmKp02eTnFedCN+RfpEvzvu7iqyF4JqR1Iy5hV7ZBuSC/lmt/Y/FO+gLVtYZ+b18rma0sbPN2NbuB8WOjqdNrZu5+eRdIrvH6kh96hKxdXSjSa1OFMVQfNPNRuKejUEcj9968lnOZ85cjaPT48/8SjFDz90N8V9BX6W6i5zjjcUecxdcoyri6sWWN9693/eTHE2/5cUT5uumg1hGD3GK3yIIu3+mYx7r3DR61Gf5zz7RcMwDMMwDMMwjLpjLxqGYRiGYRiGYdQde9EwDMMwDMMwDKPu2IuGYRiGYRiGYRh154DE4M1NTbEmH4BrHhPGiMEbGxtlHV6eFDFuStoKtY2qK4byQv5MyhPDsyS/W7WmWDjZKMZk27tZxLi9zxW/ebtYTLQz4ONoybPJ1pbNL1D8gYs+TvERRx3ltPHQgw9S/PJWFgXfs/T3FE8QgXrbGBYp53N83ACQTbJYKGrgdYqJvQK7asy5P9gkUunBSQdyaTZ9isTArdTD4nAA8Cq8zpwZh/H2MyxCDPvZiLHq8XXOyUQBAODVWDBekpz1wfnliTFPwuPlySwLPpNpN/+amyXnxXCvv1/M9MBCyUwDt9kfxhhBiTA7If3b87gNFQZWKywIrVXd4wjEaDAhBn7V6l7TrShGiD8S1MII/qBr6XBCRldIl0zytVIzzz4xGmtJcz7lxezsqWdlQgMAk1u5rx+96DiK7//DHyh+6Xk2u2xs5H5fEGPVGeOnOm2efcJbKV72/NMUJ8t8rnIytui9IM6M1RGSSuyIwasi7FZhY8w9yhWch7J49/LRMuybPGUqMgNjYE8fm9A9/QznQmsTi7IBoCATARQl/4KcisM5X7NixqefB4BKRQTlvXwP7e3mcTQczyLphhTnb6mPt9dbcM0+G1K8381Zzq9SP09+0tbGEyBMnzaF4lTK7bsbXt5JsY5xfWKQuHmbPBds5/PQlHNNjdvG8T2lLAbDPR1770lhjNh/NNH+WQ+cMdTpdq6xok4y9M53nUfx288+g+K1q5+i+OE//Jril1/g5WG3e+9pH8t9ramV+81zzzxE8bgJ/OyRTvG4/upOpd6TX7ugvF68vjLVMAzDMAzDMIxDAnvRMAzDMAzDMAyj7tiLhmEYhmEYhmEYdefADPu83f8BQL+Y5qTFsC+X55ozAI6DSKGPzauSYqqTTnHNfFJMwOL8Yao1rhlNyatUkOJDHuNLXb7UzHdWuUY+l3JPWSLgz2RzrNEYIwZGvR0dFG9cv47iefPmO20UelgvkBLzwrWrX6T4rjvvoPiMt7+dYj+mxtiXmuVMWvQEQwzIKpWRN0zzE0n4A2ZV1UjNHXnd5oYYc5qI/xZk+Lpkm7j+uH8n10BHNbkGnltjC5/Pi5/ic6oGfIkELw+k7j/fwvmZSqshIFARg8e+Mu9nQrRPtRLrALJy7saNYU0RABQK3K86dnIbFdFMVMUEMOlzP6qKKRIAFKvct6Iq53hXx4bBf5crrsZjJKiGNXgDfScQDYlbEuv2MR0nQ+lGfpU3UpLjHNc2jtevuTW1mzq4ljxYt5bi5rG8jaifr820CVzjvE1qzdNV9/uppmYe76eOm0xxVgz5Xty4nuKqjKFenJFXpH2F8yMcpiZZDUjjJDbOn1SLNHDtvVHSaOTbWpDN7B53dqzm+0gux+NXNu/q8Ppl/CmIsV27aPl6izy2ZDwej6oVt0Y+IfnUyh9B8yzRD7bzeLNhG+d8f4nH4VrC1ZCV5Tj6RCcyYUwLxXNmzqQ4nZbnABm/AGByI2tJukudFBfLrAPpLvB+q0YoSLOpJQCMG8d905PvgnNDtCflGB3TSPJqNABRnC7qNbSppp27V+Jw+w42QXz4Idaz/uF3/KwU9bP545GzJ/L6zzzuNFltaKF4whgeQ6dNZVPKwNHXvHajvFenyRgZ7BcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRd+xFwzAMwzAMwzCMunNAGo1sMjk4D3wgc+0nZH74IKbGtlLm2stA5p1OBvvenZLUXSKRctZJ53kb+STXkBZrXBvuSb1xv2gwiqITSSXc2v9MgmvgvRTHUt4OL+Ca1KrMlR3WuMYVAHq6eA5uSK1tJH4NmzZuoLivwMe9dfNmpw2ZMh6pJB97cUgdbBQnkDnIZHK5Qd2IpBuKhU6Ka1W3fnX7Lq6hTUm9e4Omkyd1v73cxuTxLU4b4yaxbuPlHaxlqIWcPzWpBa6EfJ38BOdKc7P73cDObj4uzZXmdq4X9cC5kqmxT0KQcOuTaymp7S6xrqi3X+qRRXwwrpFPbuC716ezhztKFPBnGsbs3e9EeeTzDwDCMBzUhgXSB8SyB77v1sxWxHcgp3Ppi0aj2sfXqlAUn41GV7PT0NJC8Usvs+fOxGauDW9r5drzrVu3Udwn+ZVJu2NgFHBelvo4h9JpzuPx47lOv7esdfmuBke9e3yP2xTJDGq+6qOGrw+PK/mm5QP3tVgNyQgw/bDD0JDbfS4fefgRWpbN8jnu6uaxBwA80UG+LN4OXR38mbDM96KmJtZ99BbcNuYexlqR8WM4roWcG1kRiVWqrPdKivcVfFcX0rWL9Sqe+H2Mm8W+BYVO1jF1e9zP2se5+olMmu/rpQrfhPTpJSl9IhBdZanq+jGs2biW4mI/n6u2zF6t02joJEca9avxZEyNsxLZsPZ5in/4r39P8bPLH6C4RZ750uBxJpHm3GmeMs9pc+qCMyk+Zgl7dUwaP40/IFqn17O+oh7YLxqGYRiGYRiGYdQde9EwDMMwDMMwDKPu2IuGYRiGYRiGYRh154A0GrVKCf6ArqIitZtJMTJIJd063oSYWkgJPLJZrqtskvrj7i6e07sYM4+01u7XpFa8VpYaaNEh+KK3yGR4n1vyLU6bjWmpWy1ym6HPO5VM8bnJy3Hv3M410gCwdQvPBe3JNsdP5Lmez3g71whWpeb5xRdWOW0EMpd9RTxJhi4OR6GksFSpwvd375PIXtDbx8fXU3F1Lqkcz+Xf1cc1sl4jX4dZs2ZR/PxTz/D+RG4deUfHGm4zyblR87mOurub9RHbX2Z/geZxcyk+bBr7EwBA92bW4zTluRa4qZHjvi4+7i3r11I8YzYfNwBMHseeI52dnOPpBJ+L9iZePyM+G3393JcBoBhyXyvK9yDRUI1WYnQ0GoSU6Tv1xDF9JCF12tUyZ3JGasvDMm+zKL4+vRW3zrskhcs7xQthx3auT28KeZ9y6jdR43MdZF1t3OSxrPOYMoPnjfebOO+PbOZ+EYiu7bkVzzltdIvmoFjknNu4iXVnvsxFX41EUxNzgZx5+mXe/z3ha7QDeNU05hrQ0LA7R/b4aeyhp4vHkkTS1TJ0drPGZ/YsHl/Kko+//z17DqhhUTXUkRgYO3EqxdMbedwt9fE+pDOq4RCPLrknpzz3+9ES+FjzOc63tNThv7yZx+mKz32ksc3N8b4K50ZNNFp9Pbzf20T/Mm58O8VtEzkGgE7RYKn2pLFt77moVNxz/3rHEyFoJMKqKBpGgxHxMS/9z586bfznL39I8aZNqymecRg/K82ZOYPigujiphx+GsVnfGCJ0+b4STLeyXIdLw5xSYaD/aJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRdw5Io9HZ1Y3Ennm4pcYslZF58mPqQ0ui61CFRVI2WqxwrZznc61mMqaNmieaDKnLTWVbKO6TYrms1IOObeBa4j31sUNpltr/dMC1w30y3/VUqbOfOnEKxS89/4LTRn+B57JvbuYa1MZm1n30dOyg+JknuCZ1587tThtS5oqwyueuMb/32MujMId3y5hW5DK7j3v9po20LJXma5BI5Z3Pl4osChozjuvKV7/EWoe0z+e0rZ3n/q/WOD8BoK9XzmuC/SXWbeLrsno11482SS37wiTXUPsxE/137GRNT+jzsVcqXLs9fSbXqKaTfBxHHHOk04bncy5sfWkFxWOlX0xsYX1V1m+meMVzrHcBgIaIa85zopnBkLprrc8fKcIwGtRihFKjHaoGIHC/xwmk6DiQ2vFQvCJ0HA3BbZRDtx+WRMfR0M7XIhRdWqYm9e3iU1Ds4Rze1ccxAKR7OccqGd7G5LE8xo2ZwB42juVITA3z008/TXGpxMc5UXRqXbLfPT1c/x5U3f6reVURHeCea6x6nJHiqceXIZvZPS7lc9w/Nm/aRPGEiTxeAcCG9az1mzSRPQJE9oHIE68Ij++P5dC9B/f1cY42t4zlbbSK30eBL3bHLr5uWfHTqVTdvu/Jvcotiue4Oc/bbB0jmlLx2wKAsMLHXilxbiTl3ITq9SNxWHQ1FinRKKRlvAiH5GP4utdoxPURGSOlo6tPxqqVj1P84L2/ofj5Z9hLBgASWdbK5Ft5/Dv6Le+g+OSTz6J47AT2vGhslbEqxh/JuRfIcj/O8ONNxJv76A3DMAzDMAzDOCjYi4ZhGIZhGIZhGHXHXjQMwzAMwzAMw6g7B6TRyDe3IpnY/ZGkzHu+5+978D13HmpEUhMrJXxi24BiP9faJaVWM5twd78i1XHq55FPcRGqX+OdSIs/RSLBn08jxh9E6kEb0xw35bnNZqmDfWkF1x6v38BeCgDQJH4ensxtX+zmOeSXPcZzeO/ayRqPakVMTAAkpI6wLMeVy+6trR3U6owg/cUy9rwbqzfJ5Olcazx5DNcFA0Cxk+fhT+Vl/nbJhQ0vrKU4J/kXZNxzcMTCeRT74ply3FsWUHziicdxGznuVzu6eB71devWOW3mpLC6JAWijQ2831NncL18LUhIzPsAADnRAkzLtVC8/YWXKN74POfwuhefp3jDyy87bRz+9ndRnG/jNvqrQ+a690bHR6NaC+H5A3kil1/nRvdi9DS+eNVo7ByV5GQ55H4blV0fjWbRx6DKbTTmWMPTnuZ+MKmZtUsNksObt/JYAwA7RKNRFP3DeO0qaf5DUnQhU6ZwjgLA889zDu3q7OT9zPNxBXJ/aG5hnVBvwT135SrneaTxwAWKRmke/J6eblTKu/vzzp2s99q1i/1R0hn3Htwp48l9f2CfjESCP9MyzBiZiKnDr2pOeuyp0z6eNYqbn2FN4vZtrDkrR3wdp4tHCwBUVO8gjxoJMdhqaubjGtvC975C2b3AO0vc9/rFu6lB/LBSoinduI71MeWyew+uyTNSTXQYLZP2akZr1de7RiNGyyDPFDpGbtnEWtJ//eF3KS72iQ5p6mynjXnzT6Z4/vyFFE+bzrrHIMGaIUfeI9tXbx0g3pPnQNBtvtbtvd6wXzQMwzAMwzAMw6g79qJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRdw5IDN7Q1IxkcrfAKS2mT77H7yyRGugASCV4naQInH0RwARqCphgwWBjE5vp7d5mC8UJEbomIlElVliEowKuKOQ4TkRdkb9lMiI8a+J9KnSxcHJXBwtj+/pcQ6JEwIKl8WNYULfl5a0U9/T2URyFIjKrukZfkZz/MGSxWV/f3m2OhmFfkG1CMGDYl69wfj34n7+kuK2bxfAAMEHMF1vGs6HVjByLXlu7+Rw2t7EhWCLV4rTRUuH82riDDfxSU/g6HnYEmwNFInJuFUF0ueTmxhjJr+5ONrxKS998+bkXKd65kfdx51PPOm0U16zkbSxjo6TOLWsp9gp87vqLfFxRA+8zAARpzr9dfSwK3dmx95qqWduI4WFQ9a2SQHf8cr/HcYWFcl50uQxXNRFZl0t8ngGgbzMLJseK4VRVtP7rN7P5ZU3O7fx5cyhumsBicQDo3cn7VanxNtZv5TaWr2LDxv4unqyie1en00aXjJs6BvX08bnIZlic64sZaxijt/RFQB4k+TPegDHX7gkBXMO/g83LO7YhPTARSyTZMmECj2eB705WMXvWLIqrw5i+qS9hqczrh7WY+0DEf3v6WTYl3bCJRfnPPs8C4G27+Dr3SxNRzHEVe8VgTyZLqan5bCPvQ6XKuZNIusa8hT6+p/QVeccmTphEcW8vPxds2MSTKFRi0qcsJoA66Ut6yMQNvv96F4O71GQWhYTH17IsEwCV+vi6trS2U3ze+y522pg5ezHFEdRMj+Mq5JlOxvGEPCaryeCrIU5QPtzyN7JA3H7RMAzDMAzDMAyj7tiLhmEYhmEYhmEYdcdeNAzDMAzDMAzDqDsHpNGolCqDRZtJMfUKxMAtSLhmQZkc/60mJWfVCtefiyQD+RwbkzXm3TrKIMkfKha5VrgshZFJOQWqLEmJKVst5tVsZw/XF6f6+cCkXB1lrXP1uA4xjNzLkkqzGZXnN1KcbxRjryrXtzv1fVGM4ZnUBba3t1HsD7nGpZKrVTnY+MkMggHDxYlTptKyrWJOtf4xV2eQybMGo38F50ZSaq49qSft8lhfEYzhmlwACN5zHrcptcCll1kPsUVMEmsR50ZvL5sM9ve5JmNtY/g6JeT7gx2bWQOUkOL0rJpUxpjA9a7kOmvvmVUUTwg5h8s+1xpXQ+5HpbJb2/3IU49T3C318X1D6rAro2RW5QcB/GD3+VWDy6Ro0Hw/xrBKit5rooOKxAXQkzYQ8Oejakytr5zbDS/ytcuJAd/saWyAtnYzmy129nVSPHcem1ICwPqtrAtZu43jMMnHUZLa/v5u1hX5MfXrtRr/MZdnzZUvtfvbxNAuK4Z+aj4HuOdbjd725J03TI31waJSKg+2nU7zdVSdpJ4PAEiIBqUqWr2SaMDUmNeXsaJUdLVS/VJXv3kT6wdffHEDxVu38XXyPW4zJ1rOzp1sTAgAnhoJyv2uY2cnxYdN4xxOJfg8bNnO6wPAzl18XJWQ76HbZb/0Pq+51d/vnrtSUXRG0leHSjZi0vd1TyD5o91oxqzDKV685GyKH7jn1xQXC/zstRs+h9Wa9gvJaU81GJD4jauNeL1gv2gYhmEYhmEYhlF37EXDMAzDMAzDMIy6Yy8ahmEYhmEYhmHUnQPSaARhDcGAsCKSOuBIalm9lKvR0PmJI6lP1rcejasyb3pXR6fTRE2K/nQu8dbmVt5mSWri+7jmLxtxvXoQuIWRmSzXUWbEYyQr89ZnA6417ivwNntjfDTKNa5h3rT5BYqrHtd79kutbSiSijCmxr0o8+dXZZ2Gxqa9+1MeeY1GNPA/ABg/dQotO/KUUyj+r5U8Tz8ArO9g3cpMuS45j69DVrxHUOPaz2Tkehj09PJc60nxwZgyjXUdXf28jWI/1wGPH3LOASDdwnqM3W2yjqOni+OGNPfN8e3sq1AQD4PiLrfuNSmSnoTUvQbiN1MJeHlZ9Bb5trFOG9XGFo5lG6nEXo1WZRR8XIDdWrRgYL9U9uQ5I5Y7Vji+GVLnHcpGtc7e8eZQowMAQZm3qX4SpRKPaRvWreX1ZTzbup37zZpN65w2keL91DGx4os2pcR9q0E8brIp1uMBQLHM41OxyGOcNIHgFfQVQz7htKHl2Ho9agPXtBZzbUeCRBAgOaCV6xZtoPq4+DF396r4NAQihMyKJiOUfC0XeXzKZ12dZE7Gm1B0RNUyX/sJY1oojkTb1COaj0qMOKFY5PtRUfwYdmxnbdyOHeyJ1DKG9Ttr17GuBAB2ib+HJ0Zfu3ZyG5Wy7Kc8m6gnDgDkMuLl1NxCcTjknhTq/ekNgC/nQJWioYxvi058G8UPLL2L4vt//xunjYZmzsmJk1j3kUioD5B4wI1S3z6UsV80DMMwDMMwDMOoO/aiYRiGYRiGYRhG3bEXDcMwDMMwDMMw6s4BaTSaUymkBmqtUw1cB1eJpCa75moAKiHXh4YSO7MVy3z/GZlTulJ0dQKlCv+tpbWF4qToJ5KB1JOKj0ECXAfcmOR9AICGFq55H9vOHhfZJM+v7de41rO/m2ttt25z6883bOuguFjlNpJ5jjNSE1+Res5ajCFIzudj6+tj/UBpSF38aNTIr1+/FpmBueN/+8DdtGz7Jp77vy+m/jXs5b9tlIybmuPjn5jh3MhKvXyi4s6v3dbH+VfYsJniZRu53r1BrltV6ue7pR45LLn9qrObdSH9Rd5Gs2gfnhQNR08fx4U+zk8ACMWTIMzysZflO4tyhfezv8jnvnMX5zMABJ28HxtlP7dt2Vs3XQtjfGBGgDCMBr0wVG+h2RDV3BzUdXyZW18Py6kWlm6rkg0ASMhY7Il30HjxXUnJmLhjF1/r/jKPgSUVfAFI+qypiGRHS6Lp0jponU+/q4evPeB6QKhIpiZjXFJ8JlwPE7cWuyZV45HotvZqGkanjrtaKcEf2MeqnFP1aUinYsb4LF/rRCA+DaKnCOXC9Hni85Bx74dJ0X1oP/DFn0j1ftpr8jm+l8Vbx/CnKvIcUJb4pZfWUpzawrm1eQuP2wAAeV5Jp/lc5tP8TBRFfB4qNc6tXN49dy2NrFVqEo1eLrt3eXmUdGqvDW8fEVCVAXDSJPbLet8HLqH4P/7fzU4L4W9uo/ikE1jncdjMt1Ccb+Y2/KTqjjjhvJj80z85vmVvcuwXDcMwDMMwDMMw6o69aBiGYRiGYRiGUXfsRcMwDMMwDMMwjLpzQBqNbCo9qNFIiF6iJjWSUejWD+o831rFFkg9aFr0E2phUXVVHUirjkP8PlR3kJC5sD2PjyMly/Npt66yrYnr7FuzvKNJcL1nvmEV7/MY9sg4bPIEp43MM1wDvXqz+Bh4Uusvxge9PVx37cUVGiZ4m8m01F37ySH/PqDUqQtPP/cUkond+7Bq8wZa1t0lc5yXXI+LRIbrXbfLXP5bCqxtGN/PuZOX93Kvy61VL/z2vygOG/i6pDM8X7vOpe6Lt0wk/SrON6FU4WONpM68KlqnisxjH0R8nJWI/QoAwFe9gXgalBO8XwkppE6It0NPjefGB4CO51ZSXPRlTv8hp3uUJBrwsHfcimT8qUb71h0AQCCfkeEFnlzfIMk5V9UxNKYOP+W1UJz3ue57wljWlG1cz74Yu7ZzPvlpyfts1mmz5kldvowvFdG+6ckJAh5rfD0xAMpVzlNfBSpipFGUMSAl3k6+Gm8ACCWxUkk9v7vHvWqMn9JIkMvlkR7wusjlRCcp97qUmt8A8Dy+DqFo9VJJzhXIdXW8liquZmzS+HberwprfGqi0VB7ky7RLCZC3sdMws2NxibxihHdR794U1Vk3K3KGDh9CvsdAUA4Xp5H+NQ4zzd9otcrljhuaHT7Ubv4LqVVU5rc20/0GA8FEo62ge8BJyx5B8X9MVrgJ5ctpXjpf/2a4knjHuN4+pEUzz1qCcUTJ8+hOOYW7GgyorjB/02M/aJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRdw6o0L5YrSEcqIv1y1wbpz4N+SzX1gFAIHVsSZ/rKgMp1sykePdKMg91mIh5T5K6yYrU8HX3cv2najCiKteg5pq4jjIt81rvXofrWpMBay7SNY7HNXEbjVy2j7jSy13jWijevJW1Ij1lrkeuiNYkmeRzGSexCLXOOqFz4+/9UBSMfH3oe88/D7mB+vCZ8+fTsnXr2Ufj77/zXefz61e9QHGGDw+1fqmpVZ2R1DMnkm6Nbb6hheIoy/kSyDltam+mOOVzPvqiU1KvAAAoFVmf4gdSd50V/Y7M716qcn7GeTP0bHyZ4p1rWSMD0XAUILoPT3QjPtceA0C2sZViP1J9wt4667jzMBIEvo9gwK8gkvPszKUeU6arHgJhSbyEtNY3KetLfXpV+iwA9EV8bsePmUZxYxP7aMw6jM97a/NEip9e9QzF5RiPmqr4u6TESyEnfjGqqarKNsOqW4fvNstt+oHqPnhtX8ZEP6bW35cCbF/6YzTga+OPUg325ClTkRnwrujvlXNYZN2TF6O1KqnmS05BKq2+Unwfb0uPpTjOK8aXm0tCvWLEfyaZ5jbyeb6fhiHf2zzP1Z4kRMtQlv1qbuZnjeY8j93qy1Psd89dfx/nW1WeR1QzoRoi9TBpbmlx2mgU3UZVvDIyqSFJHbl9//VOpBoM6Uce1MdFNG3iY3bmmec7bZxwwmkU3/H//pHi7Rueori7ayvFa9exVvDs936c4gkTpjttqibDi7uJvomxs2EYhmEYhmEYRt2xFw3DMAzDMAzDMOqOvWgYhmEYhmEYhlF37EXDMAzDMAzDMIy6c0Bi8GQ2jeSAYZ/qkDwRziYd4xUgIeq8lIi50yIgbEizeKq7JKY7FVeQp4ZCgYjEolDFRizo8kRxWC6JSCzGoKhQZjFtKuDP+GBBcKHIhkae7EN3r3tZikUVlrG4sq/KZnPlSER6csGSSVeMm8yyUDkpgsz+IQZ24SiIIbdu2YzMgIJ70QnH0bLDTzud4pVPsOALAH6ygkVe7SGL91okP9vkHKXEPCjTxMJIAJh96hkUh3kWewcpFiXmG/k6Qq5bJLMbRI7kGPDE/K6/j/OxXONtZEWwXilz7lQrrhCyO8+mk09u4b6oQtRqQoT1voh9E27+QcSVEMO+RGKvENAbJTG4Bx/ewPczkU6eIOsGMYLAikw4kFGjOp+32S9Gh8ks58/kiSz0BoAZ4xdSPL6Bxd3ljm6Kx0xl8W1728kUd/yY82lrzzanzaCR97uzlw1Ci0XOKV/yWi99Tf8AQHwo4enECXLPEQ0yvEAnWnCvj9O7VLs6sEZcPxwJIuzdx+Ymvq+U5LbRLwakAOBF3G8jTyf14ANubGJzRz/RQnE66RrYJsB9s6ebr70KyGW+CzTJcem9rrfA+QsAZbkvB7LRZhFZ59Kcf2rgp6amABBFcq4kBbTvqqGiGkY26tgPAHLuQhk3K0MmzKnGCPFf7zhPhc5zopo6az/jOO4UNOV5covzP/gxiv/7dz+heOsWNlDu6dtF8WNiAHj2WX/itJkI9FqqEbR+Yt/Hfahhv2gYhmEYhmEYhlF37EXDMAzDMAzDMIy6Yy8ahmEYhmEYhmHUnQPSaIyd0I70gG6iIkYy1ZLoL3y3htWtu+Wax0Acrop9XE+aTHE96JgGt8ZxV4fUNKekBjrBdd9RlfchDMWIsMjxrp2dTpt+QsyqklyXn0hzHXVHiWuit3dwffuubrcGdav8qSg1zlXRq1TE/BAB14f6nnvpPTFIS0oNdP9Q/YBqQEaARCqBxICJ465tbCC3+cU1FPd3dDqfH59robi9zDncJIZfXGELhDXOnYaGKU4bfopzsihdLJXgHN7ew3XUFdFHpJKcv2FNTAQBVAqdFJf7xbwx5FxJdIjRmeodkm69aI/kW08r53hHhY+zX+uZS9rP4mrcpYZevwcZqnmIc8MbEXwMfj8jZlKeiAKi0P0eJ5Pivg/RYJSkHzeOYXO9BccfT/GM2Yc7bbQ1zaA4WeZrE/Vyzq1azoZ8Pd1sBDd58lSKt65g/QUAnHH6WRSvXst6qN/9910UNzWwS6kXqpmra0ZWjThvIzFZ22Omt4ea1nerZiZmDKw5dfdimOjx/488e1UaVblXZeV+WOp37yNqpleNeDwpl8RsNsP5mku3UJxMuMa8DVkxsBU9hOoo0+qcKmNNqcj7GCTc3OgXjVhDA+9DKimmgXLuaqHeP93xJd/EY16hwONsVNG6fI51nxKJGC2mGHiq9qQ8RE9XKrv3gjcbqsMCgFCeTdINrNk44ZR3UfzQQzwWzZzJhnwrX3iR4ieWLXPaPOH4U3UvJNacPbQ1GYr9omEYhmEYhmEYRt2xFw3DMAzDMAzDMOqOvWgYhmEYhmEYhlF3Dkij4QW7/wOAVpkjunN7D8VRzfWbyKa5FlOrIGsy73dV6rozKfXEiNEJiL9DKHW8WdlGSTQajXmu1yuJRqNU0nnHgXXr11G8ZSsfZ6vUI6fFP6Rc5H2qJl3tSVdFPEUqfOzFGu9XOsU1gb7O+R9z6lQ/0NDM85l3du3VQYSjMIf3lm0vI53evY9FOf5f//a/KX7k8SeczyfkOlRTnBv9Ca6bLEsuVat83fpjamzDTq6L9sSbJFPlNhPi1VGQ+vkgIVqompt/vV2dFFfKWgPNc8h7Up+8bRv7Iqj3DAB4Us9eaeZz2dPJ+10LeX2xxEA1dI9DvXjUhyIaUvdaw+jMIR9FHqJBbYbU3YpXjefU5QKRFPc3iC9GTXQfs2YdQfHMw46iOJ3jPgoAoegKqh6fq0Ifj9WlilyLJF+snTs6ZJ/d8WlMC3vKTFw8geJaiXPuxZXPU9wveR/F+GgEcu4i0XF4qtvxYrw4huDH9F/1ekqIT8SeUv5qJQTgaiAONu3jxiI3MKZ0d26nZSnxZGlpczVk1eoYissVPu+h+EnkxZPAS8o5i/HLKsnYHMr3mTrm6fedgRTeJ0STkcureg7w5Z7qS418KOKbcoWX10STkRFtyu79kDFQjjMhepVAc0k+XyyyBhUAylUeA3tFB1Ibcn1Uv3EoojoXJYrx8/Kc+wbT0Mg+ZjNmHUPx1GmsSZs4aR7Fy5e5zxabN2+keMrkw2Q/dR+dTRzS2C8ahmEYhmEYhmHUHXvRMAzDMAzDMAyj7uxX6dSen6eGlg0F8tOkM9Va6P6sF2HfP2lFso2qbrPMP/FHkfuepPsRyDoJmVqvJNv0Zf1ymY8jjJt2EdxmKNsoJmRqTzk1ZSnHqsWUlchuo1Tmn2nLchw69aZUU8QUdQCBNBLIT7tD29jz77ifLuvNYP4Nab9Q4OkMS1IuVI0p3YOUe1WkrE5LMwItnZIpEIOYqWZ1P7xATryWBYTaj/ic+1KCVItrU0pfqloKE3CbnpTR6c/1cbnhSRlKVfajJmWMGmuZoy4HAE//5uk2hpRODaw7Evk3tJ3KkJKLKJLpVeUzcd/iRFUtz5PzItMeFot8LfukvLSmNWkAajI2BJIOfX28jf4i52woZUtlGVMrMSUb/TIVeU3KyMoybWdVSgg11qlrAXcK0kimUHdKpyQ3dLFfcdvwnXlrpQSHSqdGPv/6h4zJznWTsaYsywGgKqXCFZ3eXUqngqSMZzUejwLfPYcJGW9CmUI3lH4eBBL7eg/m5eW4MVDuXVo65Um/0unfaxrrPMcAEjUdq/c9ZbceV1U+X9FxGu5YXBYbgdqQfrKndGok78HdMVPvjybxx651Shz2l7gcrbeXp3TWY9T7qU5rDAA9PVyOqtuIdCr0Q6B2as8x7k/+edF+rLVx40ZMnTp1uNWMNyEbNmzAlCluLXA9sfwzXomRyD/ActCIx/LPGG3sHmyMJvuTf/v1ohGGITZv3ozGxsZD4k3MeO1EUYSenh5MmjQJfpxrTh2x/DOUkcw/wHLQYCz/jNHG7sHGaHIg+bdfLxqGYRiGYRiGYRgHgonBDcMwDMMwDMOoO/aiYRiGYRiGYRhG3bEXDcMwDMMwDMMw6o69aBiGYRiGYRiGUXfsReMVOP3003HllVeO9m4Yb1IuueQSvO9979vnOjNmzMC3v/3tEdkf49BluLHu1ebZ9ddfj2OOOeZV75dhvBbWrl0Lz/OwfPny0d4V43VMFEX42Mc+hjFjxli+HCT2y7DPMIzXH48++igaGhpGezeMQxzLM6OenH766TjmmGPsSxLjdcFdd92FW265Bffccw9mzpyJ9vb20d6lQw570TCMNyhjx44d7V0w3gQMl2eVSgXJpOtQbhivhiiKUKvVkEjY44lx8Fm9ejUmTpyIk08+OXZ5uVxGKpUa4b06tLDSKQCFQgEXXXQR8vk8Jk6ciG9+85u0vKOjAxdddBFaW1uRy+Xwzne+Ey+88AKtc/PNN2Pq1KnI5XI4//zzcdNNN6GlpWUEj8J4I/Kzn/0MRx99NLLZLNra2nDmmWeiUCgMLr/xxhsxceJEtLW14S//8i9RqVQGl2lJi+d5+Md//Ee8853vRDabxcyZM/Gzn/1sJA/HeINSrVZx2WWXobm5Ge3t7bjuuuuwx2LplfLsve99LxoaGvDVr34VAHDDDTdg/PjxaGxsxKWXXopisTgah2K8jrnkkktw77334jvf+Q48z4PnebjlllvgeR7uvPNOLFq0COl0Gvfff39s+eiVV16J008/fTAOwxBf//rXMXv2bKTTaUybNm0wH5VarYYPf/jDOPzww7F+/fqDeJTGG4VLLrkEl19+OdavXw/P8zBjxgycfvrpuOyyy3DllVeivb0dZ599NgDg3nvvxQknnIB0Oo2JEyfi2muvRbVaHdxWT08PLrzwQjQ0NGDixIn41re+ZSX4A9iLBoDPfe5zuPfee/HLX/4Sv/3tb3HPPffgiSeeGFx+ySWX4LHHHsOvfvUrPPjgg4iiCOeee+7gQ98DDzyAT3ziE7jiiiuwfPlynHXWWa842BnGHrZs2YIPfehD+PCHP4wVK1bgnnvuwZ/8yZ8MPuDdfffdWL16Ne6++27ceuutuOWWW3DLLbfsc5vXXXcd3v/+9+PJJ5/EhRdeiD/7sz/DihUrRuBojDcyt956KxKJBB555BF85zvfwU033YR//ud/fsX1r7/+epx//vl4+umn8eEPfxg/+clPcP311+N//a//hcceewwTJ07EP/zDP4zgERhvBL7zne9g8eLF+OhHP4otW7Zgy5YtmDp1KgDg2muvxQ033IAVK1ZgwYIF+7W9L3zhC7jhhhtw3XXX4bnnnsO///u/Y/z48c56pVIJH/jAB7B8+XLcd999mDZtWl2Py3hj8p3vfAd//dd/jSlTpmDLli149NFHAeweD1OpFB544AF873vfw6ZNm3Duuefi+OOPx5NPPol//Md/xL/8y7/gb//2bwe39ZnPfAYPPPAAfvWrX+F3v/sd7rvvPnqOfFMTvcnp6emJUqlU9JOf/GTwbzt37oyy2Wx0xRVXRKtWrYoARA888MDg8h07dkTZbHbwMxdccEH0rne9i7Z74YUXRs3NzSNyDMYbk8cffzwCEK1du9ZZdvHFF0fTp0+PqtXq4N8+8IEPRBdccMFgPH369Ohb3/rWYAwg+sQnPkHbOfHEE6NPfvKT9d9545DhtNNOi+bPnx+FYTj4t2uuuSaaP39+FEXxeXbllVfSNhYvXhx96lOfor+deOKJ0cKFCw/afhtvTE477bToiiuuGIzvvvvuCED0i1/8gta7+OKLo/POO4/+dsUVV0SnnXZaFEVR1N3dHaXT6ejmm2+ObWfNmjURgOi+++6LzjjjjOiUU06JOjs763koxiHAt771rWj69OmD8WmnnRYde+yxtM7//J//M5o3bx6NkX//938f5fP5qFarRd3d3VEymYx++tOfDi7v7OyMcrkc5fqblTf9LxqrV69GuVzGiSeeOPi3MWPGYN68eQCAFStWIJFI0PK2tjbMmzdv8JvilStX4oQTTqDtamwYysKFC3HGGWfg6KOPxgc+8AHcfPPN6OjoGFx+5JFHIgiCwXjixInYtm3bPre5ePFiJ7ZfNIzhOOmkk+B53mC8ePFivPDCC6jVarHrH3fccRSvWLGCxsg92zCM/UVzajhWrFiBUqmEM844Y5/rfehDH0KhUMBvf/tbNDc3v5ZdNN4kLFq0iOIVK1Zg8eLFNEYuWbIEvb292LhxI1566SVUKhV67mtubh58jnyz86Z/0TCM0SIIAvzud7/DnXfeiSOOOAJ/93d/h3nz5mHNmjUA4AhsPc9DGIajsauGQdgsVEa90ZzyfX+wjHQPQzVq2Wx2v7Z77rnn4qmnnsKDDz742nfSeFNg41t9edO/aMyaNQvJZBIPP/zw4N86OjqwatUqAMD8+fNRrVZp+c6dO7Fy5UocccQRAIB58+YN1vbtQWPDiMPzPCxZsgRf+cpXsGzZMqRSKfz85z9/1dt76KGHnHj+/PmvdTeNQ5yh4xuwO2/mzJlDv6jti/nz58duwzCUVCr1ir+UDWXs2LHYsmUL/W2ox8GcOXOQzWaxdOnSfW7nk5/8JG644Qa8973vxb333vuq9tl4czN//vxBfe4eHnjgATQ2NmLKlCmYOXMmkskkPfd1dXUNPke+2XnTzx+Xz+dx6aWX4nOf+xza2towbtw4fPGLX4Tv734HmzNnDs477zx89KMfxfe//300Njbi2muvxeTJk3HeeecBAC6//HK89a1vxU033YT3vOc9+P3vf48777yTfmYzDOXhhx/G0qVL8Y53vAPjxo3Dww8/jO3bt2P+/Pl46qmnXtU2f/rTn+K4447DKaecgn/7t3/DI488gn/5l3+p854bhxrr16/HZz7zGXz84x/HE088gb/7u79zZt/bF1dccQUuueQSHHfccViyZAn+7d/+Dc8++yxmzpx5EPfaeCMyY8YMPPzww1i7di3y+fwr/kr79re/Hd/4xjdw2223YfHixfjXf/1XPPPMMzj22GMBAJlMBtdccw0+//nPI5VKYcmSJdi+fTueffZZXHrppbStyy+/HLVaDe9+97tx55134pRTTjnox2kcOnzqU5/Ct7/9bVx++eW47LLLsHLlSnz5y1/GZz7zGfi+j8bGRlx88cX43Oc+hzFjxmDcuHH48pe/DN/37TkQ9osGAOAb3/gGTj31VLznPe/BmWeeiVNOOYVq9H7wgx9g0aJFePe7343FixcjiiLccccdg6UtS5Yswfe+9z3cdNNNWLhwIe666y5cddVVyGQyo3VIxhuApqYm/OEPf8C5556LuXPn4ktf+hK++c1v4p3vfOer3uZXvvIV3H777ViwYAFuu+02/OhHPxr85c0wXomLLroI/f39OOGEE/CXf/mXuOKKK/Cxj31svz9/wQUX4LrrrsPnP/95LFq0COvWrcMnP/nJg7jHxhuVq6++GkEQ4IgjjsDYsWNfcarZs88+ezCnjj/+ePT09OCiiy6ida677jp89rOfxV/91V9h/vz5uOCCC15Rx3bllVfiK1/5Cs4991z88Y9/rPtxGYcukydPxh133IFHHnkECxcuxCc+8Qlceuml+NKXvjS4zk033YTFixfj3e9+N84880wsWbIE8+fPt+dAAF6kRZBGXfjoRz+K559/Hvfdd99o74rxJsHzPPz85z935p43DMMwDGPkKBQKmDx5Mr75zW86v7C92XjTl07VixtvvBFnnXUWGhoacOedd+LWW2+1eeQNwzAMwzAOcZYtW4bnn38eJ5xwArq6uvDXf/3XADBYYv9mxl406sQjjzyCr3/96+jp6cHMmTPx3e9+Fx/5yEdGe7cMwzAMwzCMg8yNN96IlStXIpVKYdGiRbjvvvvQ3t4+2rs16ljplGEYhmEYhmEYdcfE4IZhGIZhGIZh1B170TAMwzAMwzAMo+7Yi4ZhGIZhGIZhGHXHXjQMwzAMwzAMw6g79qJhGIZhGIZhGEbdsRcNwzAMwzAMwzDqjr1oGIZhGIZhGIZRd+xFwzAMwzAMwzCMuvP/AaSjMldTLdhCAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["# Зададим параметры данных и модели\n","num_classes = 10\n","input_shape = (32, 32, 3)\n","\n","# Приведение входных данных к диапазону [0, 1]\n","X_train = X_train / 255\n","X_test = X_test / 255\n","\n","print('Shape of transformed X train:', X_train.shape)\n","print('Shape of transformed X test:', X_test.shape)\n","\n","# переведем метки в one-hot\n","y_train = keras.utils.to_categorical(y_train, num_classes)\n","y_test = keras.utils.to_categorical(y_test, num_classes)\n","print('Shape of transformed y train:', y_train.shape)\n","print('Shape of transformed y test:', y_test.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"ZplGK3iQ_n-S","executionInfo":{"status":"ok","timestamp":1764510054784,"user_tz":-180,"elapsed":559,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"62473655-92f8-4904-bdbd-8472ab9387c0"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (50000, 32, 32, 3)\n","Shape of transformed X test: (10000, 32, 32, 3)\n","Shape of transformed y train: (50000, 10)\n","Shape of transformed y test: (10000, 10)\n"]}]},{"cell_type":"code","source":["# создаем модель\n","model = Sequential()\n","\n","# Блок 1\n","model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n"," activation=\"relu\", input_shape=input_shape))\n","model.add(layers.BatchNormalization())\n","model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.MaxPooling2D((2, 2)))\n","model.add(layers.Dropout(0.25))\n","\n","# Блок 2\n","model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.MaxPooling2D((2, 2)))\n","model.add(layers.Dropout(0.25))\n","\n","# Блок 3\n","model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.MaxPooling2D((2, 2)))\n","model.add(layers.Dropout(0.4))\n","\n","model.add(layers.Flatten())\n","model.add(layers.Dense(128, activation='relu'))\n","model.add(layers.Dropout(0.5))\n","model.add(layers.Dense(num_classes, activation=\"softmax\"))\n","\n","\n","model.summary()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":984},"id":"6yw8K6tw_rZj","executionInfo":{"status":"ok","timestamp":1764510173761,"user_tz":-180,"elapsed":316,"user":{"displayName":"Александр Ли","userId":"11169366018002229978"}},"outputId":"56435971-167b-43f4-fc27-3cd19746b316"},"execution_count":23,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_1\"\u001b[0m\n"],"text/html":["