Files
it-labs/ТЕМА2/report.md
Пользователь № 13 аудитории Ж-202 7a6f5f8cc4 file: добавлены assets и текстовые файлы
2026-02-12 11:58:57 +03:00

16 KiB

Отчёт по Теме 2

Латышев Герман, А-03-24

1

2

>> XX=load('dan_vuz.txt')
XX =

 Columns 1 through 10:

   1.9700e+02   1.3717e+06   8.0000e+00   4.0000e+00   2.0000e+00   5.3000e+01   7.0000e+00   7.6000e+01   1.3000e+01            0
   1.9800e+02   7.3820e+05   4.0000e+00   5.0000e+00   6.0000e+00   7.1000e+01   5.0000e+00   3.6000e+01   1.3000e+01            0
   1.9900e+02   2.4167e+05   1.0000e+00            0   1.0000e+00   5.0000e+00   5.0000e+00   2.0000e+00            0            0
   2.0000e+02   6.1990e+05   3.0000e+00   1.0000e+00   1.0000e+00   2.8000e+01            0   2.4000e+01            0            0
...
>> X=XX(:,3:13)
X =

      8      4      2     53      7     76     13      0      1      5      5
      4      5      6     71      5     36     13      0      4      0      0
      1      0      1      5      5      2      0      0      2      0      0
      3      1      1     28      0     24      0      0      0      3      0
      7     10      6     54      7     46      2      0      3      2      0
      0      2      2     22      7     17      0      0      0      2      1
      0      6     11     30      8     88      0      0     11     14      2
      5      2      0     78      3     40      6      0     10      9      0
      7      0      0     20      0     30     12      0      6      1     15
      1      1      1     12      3     13      3      0      1      2      0
      8      4      3     33      1     37      8      0      3      6      3
      9      5      6     24      8     36      5      0      1      4     14
      5      5      4     57      7     56     25      0      0     12      1
      1      4      0      7      0      1      3      0      0      0      0
      2      8      0     83      6     70      4      0      6      5      0
      1      0      0      0      0      6      0      0      0      2      0
      2     28      8    326     76    213     21      0      1     22      1
      1      1      1     42      2      0      1      0      0      1      5
      1      0      0     13      0      0      0      0      0      0      0
      3      2      2     76      8     92     21      0      0     12      5
      0      1      0      7      1      7      2      0      3      1      0
      7      2      1     70      0     23     27      0      5      9      7
      3      0      0     11      0      3      0      0      0      0      0
     10      9      4     23      0     35      0      0      0     12      3
     22      3      7     46      0      7     11      0      0      2      0
     13     16      8     64     20     38     10      0      0     20      8
      8      0      0     19      0     15      0      0     12      5     12
      8      7      7     63     42    121     23      1     12     11      3
      6      1      4     33     23     55      4      0      0      8      1
      4      2      0     19      0     11      1      0      3      4     10
      7      6      0     64     11     45      7      0      0      4      9
      4      2      0     72      6     73     41      0      5      6      6
      1      1      0     11      1     14      8      0      5      4      2
      0      0      0      7      0      0      0      0      2      1      4
      0      0      0      1      0      4      0      0      1      0      0
      5      3      2    138     19    181      3      0     22     12      1
      6      1      0     21     11     14      3      0      4      5      2
     16      7      1    147     24    154     14      0      4     12      3
      1      9      7     52      0     23      0      0      0     19      2
      1      2      5     14      2     31     10      0      0      5      3
      0      0      6     31     11     26      6      0      1      3     11
      4      8      0     49     13     91     19      0     12     11      7
      2      1      0     40      6    148      2      0      6      8      2
	  
	  ...
>> R=corr(X)

R =

 Columns 1 through 10:

   1.0000e+00   4.4320e-01   4.5229e-01   4.4779e-01   3.8123e-01   4.6516e-01   3.1487e-01   6.5579e-02   2.9153e-01   4.8811e-01
   4.4320e-01   1.0000e+00   8.5319e-01   8.5331e-01   8.6240e-01   8.5436e-01   5.5145e-01   2.5082e-02   4.2348e-01   8.2170e-01
   4.5229e-01   8.5319e-01   1.0000e+00   8.4660e-01   8.8651e-01   9.0335e-01   5.5091e-01   3.8840e-03   4.4396e-01   7.8358e-01
   4.4779e-01   8.5331e-01   8.4660e-01   1.0000e+00   8.7038e-01   9.3849e-01   7.0924e-01   4.9500e-02   4.5873e-01   8.5183e-01
   3.8123e-01   8.6240e-01   8.8651e-01   8.7038e-01   1.0000e+00   9.3605e-01   5.7668e-01   3.7562e-02   3.8322e-01   7.7266e-01
   4.6516e-01   8.5436e-01   9.0335e-01   9.3849e-01   9.3605e-01   1.0000e+00   6.3033e-01   4.7121e-02   4.7592e-01   8.3810e-01
   3.1487e-01   5.5145e-01   5.5091e-01   7.0924e-01   5.7668e-01   6.3033e-01   1.0000e+00   7.9448e-02   4.1878e-01   6.2936e-01
   6.5579e-02   2.5082e-02   3.8840e-03   4.9500e-02   3.7562e-02   4.7121e-02   7.9448e-02   1.0000e+00   4.7985e-02   5.6462e-02
   2.9153e-01   4.2348e-01   4.4396e-01   4.5873e-01   3.8322e-01   4.7592e-01   4.1878e-01   4.7985e-02   1.0000e+00   6.2616e-01
   4.8811e-01   8.2170e-01   7.8358e-01   8.5183e-01   7.7266e-01   8.3810e-01   6.2936e-01   5.6462e-02   6.2616e-01   1.0000e+00
   3.9815e-01   2.6183e-01   2.6408e-01   3.4420e-01   1.8751e-01   3.3118e-01   2.8287e-01   1.3662e-01   4.5537e-01   3.8799e-01

 Column 11:

   3.9815e-01
   2.6183e-01
   2.6408e-01
   3.4420e-01
   1.8751e-01
   3.3118e-01
   2.8287e-01
   1.3662e-01
   4.5537e-01
   3.8799e-01
   1.0000e+00
>> [vect,lambda]=eig(X'*X)
vect =

 Columns 1 through 10:

   1.3928e-03   3.7187e-02  -6.5276e-02   1.1402e-01  -5.7482e-02  -4.3369e-01  -8.6174e-01   1.8078e-02  -2.0942e-01   4.4068e-02
  -8.0998e-04   6.0909e-01   3.8181e-01  -5.6588e-01  -2.6231e-01   2.2396e-01  -1.8894e-01  -2.6535e-02   7.3599e-02   6.2111e-03
  -7.5396e-03  -4.5900e-01  -5.2153e-01  -6.7233e-01  -1.9752e-01   9.4377e-02  -1.1098e-01  -3.7697e-03   2.9602e-02  -4.1502e-02
  -1.5197e-04  -2.3868e-03  -3.9384e-02   2.0471e-02   2.9085e-02  -4.2879e-02   3.9810e-02  -2.5705e-01   1.7315e-01   7.2027e-01
   1.0985e-03  -2.1296e-02  -1.7772e-02   1.0189e-01   1.5147e-01   2.9246e-02  -2.2268e-01   9.3732e-02   8.4203e-01  -3.7246e-01
   4.6341e-05   2.4446e-02   3.4514e-02   6.8266e-03  -2.8773e-02  -3.6347e-02   1.2360e-01   5.5571e-02  -4.0806e-01  -5.1787e-01
   1.1860e-03   4.2558e-03   2.3496e-02  -4.8185e-02  -1.5673e-02  -5.8142e-02   5.8108e-02   9.5701e-01   5.2365e-03   2.5496e-01
  -9.9994e-01   5.6340e-04   6.5198e-03   4.0470e-03   7.5475e-03   1.2608e-03  -2.3724e-03   1.4645e-03  -1.0271e-03   5.5851e-04
  -1.6282e-03   4.6826e-01  -6.5978e-01   2.6872e-01   2.8869e-02   4.9535e-01  -1.2025e-01   5.8771e-02  -9.1452e-02   2.0459e-02
   1.7002e-03  -4.2581e-01   3.3001e-01   2.8074e-01  -3.9004e-01   6.2610e-01  -2.7487e-01   3.6416e-02  -5.9676e-02   5.3342e-02
   7.7010e-03  -1.2368e-01   1.7350e-01  -2.2481e-01   8.4320e-01   3.2876e-01  -2.2260e-01   1.8627e-02  -1.7997e-01   4.8313e-02

 Column 11:

   3.5306e-02
   4.6772e-02
   4.8953e-02
   6.1556e-01
   2.4277e-01
   7.3685e-01
   9.5893e-02
   1.6945e-04
   1.7911e-02
   5.9523e-02
   1.7425e-02

lambda =

Diagonal Matrix

 Columns 1 through 10:

   2.2947e+01            0            0            0            0            0            0            0            0            0
            0   1.9317e+03            0            0            0            0            0            0            0            0
            0            0   2.5940e+03            0            0            0            0            0            0            0
            0            0            0   3.4573e+03            0            0            0            0            0            0
            0            0            0            0   5.6252e+03            0            0            0            0            0
            0            0            0            0            0   8.6721e+03            0            0            0            0
            0            0            0            0            0            0   1.8915e+04            0            0            0
            0            0            0            0            0            0            0   4.7523e+04            0            0
            0            0            0            0            0            0            0            0   5.7484e+04            0
            0            0            0            0            0            0            0            0            0   2.2565e+05
            0            0            0            0            0            0            0            0            0            0

 Column 11:

            0
            0
            0
            0
            0
            0
            0
            0
            0
            0
   7.4946e+06
>> Sobst=diag(lambda)
Sobst =

   2.2947e+01
   1.9317e+03
   2.5940e+03
   3.4573e+03
   5.6252e+03
   8.6721e+03
   1.8915e+04
   4.7523e+04
   5.7484e+04
   2.2565e+05
   7.4946e+06
>> fprintf('Eigenvalues:\n %f \n',Sobst)
Eigenvalues:
 22.946585
Eigenvalues:
 1931.665464
Eigenvalues:
 2593.979592
Eigenvalues:
 3457.339562
Eigenvalues:
 5625.151474
Eigenvalues:
 8672.065947
Eigenvalues:
 18914.627989
Eigenvalues:
 47522.678185
Eigenvalues:
 57483.681267
Eigenvalues:
 225653.068540
Eigenvalues:
 7494628.795394
>> fprintf('\n')
>> SobMax=Sobst(end)
SobMax = 7.4946e+06
>> GlComp=vect(:,end)
GlComp =

   3.5306e-02
   4.6772e-02
   4.8953e-02
   6.1556e-01
   2.4277e-01
   7.3685e-01
   9.5893e-02
   1.6945e-04
   1.7911e-02
   5.9523e-02
   1.7425e-02
>> Delt=100*SobMax/sum(Sobst)
Delt = 95.273
>> fprintf('Delta= %d \n ',round(Delt))
Delta= 95
 >> Res=X*GlComp
Res =

   9.2542e+01
   7.3433e+01
   5.8855e+00
   3.5300e+01
   7.0208e+01
   2.8096e+01
   8.7136e+01
   7.9776e+01
   3.6243e+01
   1.8250e+01
   4.9667e+01
   4.5067e+01
   8.1785e+01
...
   5.7737e+00
   3.1540e+01
   1.4739e+02
   1.8314e+01
   3.2846e+01
   1.4511e+01
   1.9235e+01
            0

>> fprintf(' Results \n ')
 Results
 >> fprintf('%d  %f \n ',[XX(:,1),Res] ')
 197  92.541636
 198  73.432513
 199  5.885468
 200  35.300393
 201  70.208100
 202  28.096191
 203  87.136298
...
 1037  1.846687
 1038  17.646937
 1039  153.910670
 1041  119.835954
 1044  5.010210
 1  2.691959
 2  379.300890
 3  13.497203
 4  2.462250
 6  19.718182
 7  200.667783
 8  93.618235
 9  25.650544
 10  26.344823
 11  65.285854
 12  21.514761
...
 187  5.773718
 188  31.539990
 189  147.387148
 190  18.314164
 191  32.846011
 192  14.511067
 193  19.235467
 194  0.000000
>> save res.mat Res -mat
>> hist(Res,20)
>> xlabel('Results ')
>> ylabel('Number of Unis ')
>> saveas(gcf, 'Hist.jpg ', 'jpg ')
>> CorFin=corr(Res,XX(:,2))
CorFin = 0.8437
>> fprintf('Correlation of Results and Money = %f \n',CorFin)
Correlation of Results and Money = 0.843710

3

4

5

Eigenvalues:
 22.946585 
Eigenvalues:
 1931.665464 
Eigenvalues:
 2593.979592 
Eigenvalues:
 3457.339562 
Eigenvalues:
 5625.151474 
Eigenvalues:
 8672.065947 
Eigenvalues:
 18914.627989 
Eigenvalues:
 47522.678185 
Eigenvalues:
 57483.681267 
Eigenvalues:
 225653.068540 
Eigenvalues:
 7494628.795394 

Delta= 95 
  Results 
 197  92.541636 
 198  73.432513 
 199  5.885468 
 200  35.300393 
 201  70.208100 
 202  28.096191 
 203  87.136298 
 204  79.776499 
 205  36.243011 
 206  18.249808 
 207  49.666520 
 208  45.067095 
 209  81.785392 
 210  5.555862 
 211  105.361366 
 212  4.575460 
 213  381.204021 
 214  26.712747 
 216  8.037618 
 217  119.627795 
 218  10.061485 
 219  63.762947 
 220  9.087658 
 221  41.684105 
 222  35.907417 
 223  76.139589 
 224  23.752550 
 225  142.216169 
 226  67.755801 
 227  20.597788 
 228  76.818771 
 229  104.284923 
 230  18.541601 
 231  4.473983 
 232  3.580878 
 233  224.758597 
 234  26.863645 
 235  212.911324 
 236  50.921549 
 237  33.628254 
 238  42.168327 
 239  103.701129 
 240  136.060809 
 241  713.711764 
 242  34.027235 
 245  4.102289 
 246  27.086730 
 247  2.667541 
 248  2.497556 
 252  103.829221 
 253  7.460715 
 256  34.755449 
 257  4.359736 
 258  5.741187 
 259  15.989432 
 261  45.399798 
 264  2.462250 
 267  6.424390 
 268  66.503024 
 273  73.935542 
 275  11.130530 
 296  3.684256 
 304  9.970486 
 305  28.031419 
 311  1.352414 
 318  40.905330 
 322  11.722703 
 325  30.793455 
 326  42.716264 
 329  10.023429 
 330  32.260491 
 334  25.495269 
 335  36.870098 
 336  42.948416 
 339  87.963238 
 340  228.668981 
 341  99.146097 
 342  28.749899 
 343  9.622160 
 346  1.359974 
 347  54.213640 
 348  107.547742 
 349  116.106427 
 352  299.102890 
 356  14.333164 
 357  20.479493 
 362  144.908794 
 365  14.952535 
 366  25.976099 
 371  268.149429 
 372  12.353605 
 373  4.526119 
 376  104.664655 
 377  91.264814 
 379  209.329940 
 381  196.452926 
 383  4.812125 
 387  1.387719 
 388  50.732954 
 389  118.633179 
 391  212.528679 
 392  37.744725 
 393  30.102473 
 394  320.669960 
 395  0.000000 
 399  41.450044 
 410  141.123026 
 412  405.347359 
 413  12.875247 
 414  117.612150 
 441  8.989886 
 446  74.655250 
 448  89.566395 
 451  37.992598 
 456  40.599701 
 465  37.339465 
 466  142.928780 
 467  9.122607 
 472  53.463843 
 476  93.289532 
 477  57.155319 
 484  19.139209 
 1001  5.491474 
 1002  85.213352 
 1004  170.642969 
 1017  90.453986 
 1030  57.810669 
 1034  7.372961 
 1035  9.614944 
 1037  1.846687 
 1038  17.646937 
 1039  153.910670 
 1041  119.835954 
 1044  5.010210 
 1  2.691959 
 2  379.300890 
 3  13.497203 
 4  2.462250 
 6  19.718182 
 7  200.667783 
 8  93.618235 
 9  25.650544 
 10  26.344823 
 11  65.285854 
 12  21.514761 
 13  176.510003 
 14  1898.884523 
 15  91.241365 
 16  304.552394 
 17  6.355976 
 18  3.439437 
 19  158.859588 
 20  187.802059 
 21  26.561371 
 22  8.657907 
 23  110.316703 
 26  21.286647 
 28  8.028500 
 29  76.976887 
 33  148.320170 
 34  97.178361 
 35  6.713123 
 36  88.631285 
 37  333.404629 
 38  27.838269 
 40  11.662869 
 41  0.000000 
 42  71.250154 
 43  0.369757 
 44  10.360736 
 45  3.855089 
 51  81.568715 
 52  54.636552 
 53  23.501931 
 54  90.446620 
 55  57.162095 
 56  162.850196 
 57  305.874565 
 58  6.323299 
 59  59.415851 
 60  46.966205 
 62  56.660855 
 63  815.675312 
 64  47.723188 
 65  277.021471 
 66  328.086215 
 67  113.590454 
 68  11.709047 
 69  33.969900 
 71  0.913379 
 72  122.671912 
 73  59.978744 
 74  7.491057 
 75  12.504248 
 76  24.208529 
 77  400.110964 
 78  263.576362 
 79  25.930889 
 80  36.895259 
 81  254.783774 
 82  6.870138 
 84  12.625935 
 85  23.783568 
 86  3.159890 
 87  5.151827 
 88  0.000000 
 89  106.765711 
 90  15.783445 
 91  30.701284 
 92  64.989933 
 93  43.087958 
 94  31.124285 
 95  5.171761 
 96  48.085148 
 97  5.347890 
 99  2.124571 
 100  0.082078 
 101  21.635603 
 102  52.057076 
 103  25.625192 
 104  9.750228 
 105  36.202865 
 107  4.626653 
 108  3.190574 
 109  9.578291 
 110  6.374896 
 111  3.684453 
 112  5.784829 
 113  8.236760 
 114  6.872598 
 115  41.304826 
 116  1.988474 
 118  7.571316 
 119  1.231125 
 120  5.081094 
 121  21.547440 
 122  30.299927 
 123  45.503740 
 124  9.093912 
 132  10.369658 
 133  7.125935 
 134  14.133228 
 135  26.102416 
 136  5.071976 
 137  12.085286 
 138  0.713469 
 139  0.675086 
 140  4.092547 
 141  7.454102 
 142  184.663991 
 143  10.455368 
 144  7.448129 
 146  6.242521 
 147  8.860180 
 148  39.991951 
 149  6.891026 
 150  5.160709 
 151  15.489599 
 152  5.590467 
 153  27.378151 
 154  10.801195 
 162  23.750968 
 166  11.426264 
 167  8.473236 
 168  6.898371 
 170  3.416283 
 171  208.746883 
 172  12.158394 
 173  3.563165 
 174  4.158866 
 175  0.000000 
 176  1.847873 
 177  8.478820 
 178  1.277897 
 179  0.035306 
 180  0.070611 
 181  0.035306 
 182  3.039279 
 183  0.000000 
 184  4.205715 
 185  30.094936 
 186  20.128055 
 187  5.773718 
 188  31.539990 
 189  147.387148 
 190  18.314164 
 191  32.846011 
 192  14.511067 
 193  19.235467 
 194  0.000000 
 Correlation of Results and Money = 0.843710 

6

MinRes = min(Res);
MaxRes = max(Res);
MeanRes = mean(Res);
stdRes = std(Res);
fprintf(fp, 'Min = %f \n ',MinRes);
fprintf(fp, 'Max = %f \n ',MaxRes);
fprintf(fp, 'Mean = %f \n ',MeanRes);
fprintf(fp, 'Std = %f \n ',stdRes);