file: добавлены assets, Prog1, Perem

Этот коммит содержится в:
Пользователь № 13 аудитории Ж-202
2026-02-11 12:27:33 +03:00
родитель 774e6df5ad
Коммит 44fc725a8d
3 изменённых файлов: 760 добавлений и 0 удалений

351
ТЕМА1/Perem Обычный файл
Просмотреть файл

@@ -0,0 +1,351 @@
# Created by Octave 8.3.0, Wed Feb 11 12:15:55 2026 GMT <unknown@w10prog-70>
# name: A
# type: matrix
# rows: 4
# columns: 6
-0.73727231346913291 0.61252763556875134 -1.0247603422502973 -0.48163379138569112 0.22966452931337661 1.1971226141126756
-1.502818910650384 -0.17905606695380771 1.4594763002989175 -0.47079045483830101 0.30012227121004409 0.020586940300524166
0.34534485618162197 2.0787797069715035 -1.0798672376220004 -0.7044893565142325 1.252896784998091 0.84114816085338584
0.55306389062025596 0.8516157716753715 -0.76826857493889833 1.2280384049799278 -0.7263373574957438 -0.29429814112780134
# name: B
# type: matrix
# rows: 4
# columns: 7
0.59105239060658876 0.095642559923889259 0.91180903661203105 0.39424578547474853 0.22193040133861641 0.71907502413404578 0.82459135092380353
0.94275390552909255 0.39913668632638211 0.84966004546821772 0.23745097838092799 0.68745282082163239 0.82789158737183677 0.18911279572064787
0.94109544669181544 0.34119623204694649 0.28108673141363094 0.17795676332466015 0.27178786557033852 0.63794937967714971 0.8560881757234946
0.30013238231898998 0.87968112363078022 0.58280067970151017 0.5333001805222366 0.63388551753916078 0.015838881753381551 0.27504917746652924
# name: B1
# type: matrix
# rows: 4
# columns: 7
0.76879931751178654 0.30926131333209017 0.9548869234689682 0.62788994694512235 0.47109489631985657 0.84798291500126688 0.90807012445284396
0.97095515114195285 0.63177265398747839 0.92177006106090131 0.48728941952491434 0.82912774698572977 0.90988548036103789 0.43487101043947257
0.97010074048617001 0.58412004934512096 0.53017613244433304 0.42184921870813052 0.52133277814687473 0.79871733402822165 0.92525033138253698
0.54784339214687072 0.93791317488922199 0.76341383253220541 0.73027404480936919 0.79616927693748696 0.12585261917569118 0.52445131086358177
# name: B1D
# type: matrix
# rows: 4
# columns: 1
0.76879931751178654
0.63177265398747839
0.53017613244433304
0.73027404480936919
# name: B2
# type: matrix
# rows: 4
# columns: 7
-0.52585061811651135 -2.3471373705029488 -0.092324700512675814 -0.93078074317774195 -1.5053914537473123 -0.32978958159472416 -0.19286734757855409
-0.058950000153664875 -0.91845134851017651 -0.16291895600568987 -1.4377940836294052 -0.37476207605560669 -0.18887306629516837 -1.6654116391836846
-0.060710713412156017 -1.0752975066643167 -1.2690920045542944 -1.7262146608661322 -1.3027334229624392 -0.44949634098393082 -0.15538189912268596
-1.2035316272622167 -0.12819579668843345 -0.53991003839287555 -0.62867082287528797 -0.45588691255473801 -4.1452874914653259 -1.2908053701522193
# name: B3
# type: matrix
# rows: 4
# columns: 7
0.55723518882456657 0.095496811560353265 0.79061273574573154 0.38411194201159027 0.22011308904269311 0.65868898783702878 0.7342704292445873
0.80917925659859702 0.3886230327382853 0.75105599747087715 0.23522589537375255 0.63457061759123157 0.73650681538836982 0.18798758240267766
0.80820369708058359 0.3346146066099952 0.27739989430765039 0.17701897560099394 0.26845410227566069 0.59554939303711385 0.75528455029163566
0.29564667373130898 0.77053566727371769 0.55036444839846288 0.50837800219706897 0.59227990787181195 0.015838219511181712 0.27159426626067934
# name: BS1
# type: matrix
# rows: 4
# columns: 7
0.30013238231898998 0.095642559923889259 0.28108673141363094 0.17795676332466015 0.22193040133861641 0.015838881753381551 0.18911279572064787
0.59105239060658876 0.34119623204694649 0.58280067970151017 0.23745097838092799 0.27178786557033852 0.63794937967714971 0.27504917746652924
0.94109544669181544 0.39913668632638211 0.84966004546821772 0.39424578547474853 0.63388551753916078 0.71907502413404578 0.82459135092380353
0.94275390552909255 0.87968112363078022 0.91180903661203105 0.5333001805222366 0.68745282082163239 0.82789158737183677 0.8560881757234946
# name: BS2
# type: matrix
# rows: 4
# columns: 7
0.59105239060658876 0.095642559923889259 0.91180903661203105 0.39424578547474853 0.22193040133861641 0.71907502413404578 0.82459135092380353
0.94109544669181544 0.34119623204694649 0.28108673141363094 0.17795676332466015 0.27178786557033852 0.63794937967714971 0.8560881757234946
0.94275390552909255 0.39913668632638211 0.84966004546821772 0.23745097838092799 0.68745282082163239 0.82789158737183677 0.18911279572064787
0.30013238231898998 0.87968112363078022 0.58280067970151017 0.5333001805222366 0.63388551753916078 0.015838881753381551 0.27504917746652924
# name: C
# type: double_range
# base, limit, increment
4 27 1
# name: D
# type: matrix
# rows: 4
# columns: 6
4 8 12 16 20 24
5 9 13 17 21 25
6 10 14 18 22 26
7 11 15 19 23 27
# name: D1
# type: scalar
22
# name: D2
# type: matrix
# rows: 1
# columns: 3
18 22 26
# name: D3
# type: matrix
# rows: 2
# columns: 3
13 17 21
14 18 22
# name: D4
# type: matrix
# rows: 1
# columns: 5
19 20 21 22 23
# name: D5
# type: matrix
# rows: 2
# columns: 3
6 14 26
7 15 27
# name: DB
# type: diagonal matrix
# rows: 4
# columns: 4
0.76879931751178654
0.63177265398747839
0.53017613244433304
0.73027404480936919
# name: DDD
# type: matrix
# rows: 4
# columns: 6
64 512 1728 4096 8000 13824
125 729 2197 4913 9261 15625
216 1000 2744 5832 10648 17576
343 1331 3375 6859 12167 19683
# name: DL
# type: bool matrix
# rows: 4
# columns: 6
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
# name: DP1
# type: matrix
# rows: 1
# columns: 6
840 7920 32760 93024 212520 421200
# name: DS1
# type: matrix
# rows: 1
# columns: 6
22 38 54 70 86 102
# name: DS2
# type: matrix
# rows: 4
# columns: 1
84
90
96
102
# name: Dstolb
# type: matrix
# rows: 24
# columns: 1
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# name: Dsum
# type: scalar
22.547300573537278
# name: Dsum2
# type: scalar
-0.057010896737607175
# name: E
# type: matrix
# rows: 7
# columns: 6
-1.3615601059651763 2.4051577041657137 -0.47660048596686944 -1.022927977372607 1.3797833104717792 1.4302429032552979
-0.06599454314041181 1.4455379880627621 -0.55975816400814127 0.60593865914243417 -0.069706088261014543 0.15082093809630465
-1.5297388736122668 1.4870110910353938 -0.44561084060522976 -0.32149087600351833 0.39327485227217829 1.1739575485970415
-0.29110679745070261 1.023069153614264 -0.65934081875611439 0.22787271087229993 -0.0025857875468198732 0.46958768681780938
-0.75230050784941283 1.117659909401818 -0.0045935093155337059 0.15642869455968733 0.1373968543088564 0.3218929861503898
-1.5452527897305821 1.6318591788852228 -0.22966056633712781 -1.1660720800323485 1.2013950857470637 1.4098133212944439
-0.44438524249162564 2.4850781416685117 -1.7047760846414701 -0.75151761265019712 1.1189479765487891 1.6301807403191899
# name: F
# type: matrix
# rows: 4
# columns: 13
-0.73727231346913291 0.61252763556875134 -1.0247603422502973 -0.48163379138569112 0.22966452931337661 1.1971226141126756 0.59105239060658876 0.095642559923889259 0.91180903661203105 0.39424578547474853 0.22193040133861641 0.71907502413404578 0.82459135092380353
-1.502818910650384 -0.17905606695380771 1.4594763002989175 -0.47079045483830101 0.30012227121004409 0.020586940300524166 0.94275390552909255 0.39913668632638211 0.84966004546821772 0.23745097838092799 0.68745282082163239 0.82789158737183677 0.18911279572064787
0.34534485618162197 2.0787797069715035 -1.0798672376220004 -0.7044893565142325 1.252896784998091 0.84114816085338584 0.94109544669181544 0.34119623204694649 0.28108673141363094 0.17795676332466015 0.27178786557033852 0.63794937967714971 0.8560881757234946
0.55306389062025596 0.8516157716753715 -0.76826857493889833 1.2280384049799278 -0.7263373574957438 -0.29429814112780134 0.30013238231898998 0.87968112363078022 0.58280067970151017 0.5333001805222366 0.63388551753916078 0.015838881753381551 0.27504917746652924
# name: FF
# type: matrix
# rows: 2
# columns: 4
1 1 1 1
1 1 1 1
# name: G
# type: matrix
# rows: 4
# columns: 6
-2.9490892538765316 4.9002210845500107 -12.297124107003569 -7.706140662171058 4.5932905862675319 28.730942738704215
-7.5140945532519199 -1.6115046025842694 18.973191903885926 -8.0034377322511165 6.302567695410926 0.51467350751310414
2.0720691370897319 20.787797069715033 -15.118141326708006 -12.680808417256184 27.563729269958003 21.869852182188033
3.8714472343417916 9.3677734884290871 -11.524028624083474 23.332729694618628 -16.705759222402108 -7.9460498104506359
# name: GG
# type: matrix
# rows: 5
# columns: 5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
# name: H
# type: string
# elements: 1
# length: 24
This is a symbols vector
# name: L
# type: complex matrix
# rows: 1
# columns: 2
(-2,23.100000000000001) (3,-5.5999999999999996)
# name: M
# type: matrix
# rows: 4
# columns: 6
-0.65535316752811812 1.0889380187888913 -2.732694246000793 -1.7124757027046795 1.0207312413927849 6.3846539419342703
-1.6697987896115378 -0.35811213390761543 4.2162648675302057 -1.7785417182780259 1.4005705989802057 0.11437189055846758
0.46045980824216265 4.6195104599366736 -3.3595869614906682 -2.81795742605693 6.125273171101778 4.8599671515973411
0.86032160763150922 2.0817274418731304 -2.5608952497963275 5.1850510432485839 -3.7123909383115796 -1.7657888467668079
# name: NN
# type: matrix
# rows: 1
# columns: 20
11.5 12.689473684210526 13.878947368421052 15.06842105263158 16.257894736842104 17.44736842105263 18.63684210526316 19.826315789473686 21.015789473684212 22.205263157894738 23.394736842105264 24.58421052631579 25.773684210526316 26.963157894736842 28.152631578947371 29.342105263157897 30.531578947368423 31.721052631578949 32.910526315789475 34.100000000000001
# name: ans
# type: scalar
0
# name: dinv
# type: matrix
# rows: 4
# columns: 4
0.52600040745740051 -0.043198551377800619 -0.24925039922686401 0.047027740270817152
-0.043198551377800619 0.43540238432892597 0.08064099872952471 0.31914673291725865
-0.24925039922686401 0.08064099872952471 0.24810891368783075 -0.0022361058657988484
0.047027740270817152 0.31914673291725865 -0.0022361058657988484 0.51804403619424122
# name: dt
# type: scalar
135.51250352394734
# name: elem
# type: scalar
28
# name: i
# type: scalar
19
# name: k
# type: scalar
7
# name: nm
# type: matrix
# rows: 1
# columns: 2
4 7

5
ТЕМА1/Prog1.m Обычный файл
Просмотреть файл

@@ -0,0 +1,5 @@
D1=D(3,5)
D2=D(3,4:end)
D3=D(2:3,3:5)
D4=D(16:20)
D5=D(3:4,[1,3,6])

Просмотреть файл

@@ -0,0 +1,404 @@
#ОТЧЁТ 1
##2
##3
##4
##5
>> help randn
'randn' is a built-in function from the file libinterp/corefcn/rand.cc
-- X = randn (N)
-- X = randn (M, N, ...)
-- X = randn ([M N ...])
-- X = randn (..., "single")
-- X = randn (..., "double")
-- V = randn ("state")
-- randn ("state", V)
-- randn ("state", "reset")
-- V = randn ("seed")
-- randn ("seed", V)
-- randn ("seed", "reset")
##6
матрица А со случайными, нормально распределенными элементами, с 4 строками и 6 столбцами
>> A=randn(4,6)
A =
-0.737272 0.612528 -1.024760 -0.481634 0.229665 1.197123
-1.502819 -0.179056 1.459476 -0.470790 0.300122 0.020587
0.345345 2.078780 -1.079867 -0.704489 1.252897 0.841148
0.553064 0.851616 -0.768269 1.228038 -0.726337 -0.294298
матрица В 4х7 со случайными элементами, равномерно распределенными в диапазоне от 0 до 1
>> B=rand(4,7)
B =
0.591052 0.095643 0.911809 0.394246 0.221930 0.719075 0.824591
0.942754 0.399137 0.849660 0.237451 0.687453 0.827892 0.189113
0.941095 0.341196 0.281087 0.177957 0.271788 0.637949 0.856088
0.300132 0.879681 0.582801 0.533300 0.633886 0.015839 0.275049
вектор С с целыми числами от 4 до 27
>> C = 4:27
C =
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
символьный вектор Н
>> H = "This is a symbols vector"
H = This is a symbols vector
вектор-строка L с 2 комплексными элементами
L =
-2.0000 + 23.1000i 3.0000 - 5.6000i
##7
преобразование матрицы С в матрицу с 6 столбцами
>> D = reshape(C,[],6)
D =
4 8 12 16 20 24
5 9 13 17 21 25
6 10 14 18 22 26
7 11 15 19 23 27
матричное перемножение В и А с транспонированием матрицы В (число столбцов в В должно совпадать с числом строк в А)
>> E = B'*A
E =
-1.3616e+00 2.4052e+00 -4.7660e-01 -1.0229e+00 1.3798e+00 1.4302e+00
-6.5995e-02 1.4455e+00 -5.5976e-01 6.0594e-01 -6.9706e-02 1.5082e-01
-1.5297e+00 1.4870e+00 -4.4561e-01 -3.2149e-01 3.9327e-01 1.1740e+00
-2.9111e-01 1.0231e+00 -6.5934e-01 2.2787e-01 -2.5858e-03 4.6959e-01
-7.5230e-01 1.1177e+00 -4.5935e-03 1.5643e-01 1.3740e-01 3.2189e-01
-1.5453e+00 1.6319e+00 -2.2966e-01 -1.1661e+00 1.2014e+00 1.4098e+00
-4.4439e-01 2.4851e+00 -1.7048e+00 -7.5152e-01 1.1189e+00 1.6302e+00
создание матрицы путем «горизонтального» соединения матриц А и В (числа строк у соединяемых матриц должны совпадать)
>> F = [A,B]
F =
Columns 1 through 12:
-0.737272 0.612528 -1.024760 -0.481634 0.229665 1.197123 0.591052 0.095643 0.911809 0.394246 0.221930 0.719075
-1.502819 -0.179056 1.459476 -0.470790 0.300122 0.020587 0.942754 0.399137 0.849660 0.237451 0.687453 0.827892
0.345345 2.078780 -1.079867 -0.704489 1.252897 0.841148 0.941095 0.341196 0.281087 0.177957 0.271788 0.637949
0.553064 0.851616 -0.768269 1.228038 -0.726337 -0.294298 0.300132 0.879681 0.582801 0.533300 0.633886 0.015839
Column 13:
0.824591
0.189113
0.856088
0.275049
поэлементное перемножение матриц A и D (размеры матриц должны совпадать)
>> G = A.*D
G =
-2.9491 4.9002 -12.2971 -7.7061 4.5933 28.7309
-7.5141 -1.6115 18.9732 -8.0034 6.3026 0.5147
2.0721 20.7878 -15.1181 -12.6808 27.5637 21.8699
3.8714 9.3678 -11.5240 23.3327 -16.7058 -7.9460
поэлементное деление элементов матрицы G на 4.5
>> M = G./4.5
M =
-0.6554 1.0889 -2.7327 -1.7125 1.0207 6.3847
-1.6698 -0.3581 4.2163 -1.7785 1.4006 0.1144
0.4605 4.6195 -3.3596 -2.8180 6.1253 4.8600
0.8603 2.0817 -2.5609 5.1851 -3.7124 -1.7658
поэлементное возведение в степень элементов матрицы D
>> DDD = D.^3
DDD =
64 512 1728 4096 8000 13824
125 729 2197 4913 9261 15625
216 1000 2744 5832 10648 17576
343 1331 3375 6859 12167 19683
создание логической матрицы, совпадающей по размерам с D и с элементами по заданному условию
>> DL = D >= 20
DL =
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
превращение матрицы в вектор-столбец
>> Dstolb=D(:)
Dstolb =
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
##8
математические функции:
>> B1=sqrt(B)
B1 =
0.7688 0.3093 0.9549 0.6279 0.4711 0.8480 0.9081
0.9710 0.6318 0.9218 0.4873 0.8291 0.9099 0.4349
0.9701 0.5841 0.5302 0.4218 0.5213 0.7987 0.9253
0.5478 0.9379 0.7634 0.7303 0.7962 0.1259 0.5245
>> B2=log(B)
B2 =
-0.525851 -2.347137 -0.092325 -0.930781 -1.505391 -0.329790 -0.192867
-0.058950 -0.918451 -0.162919 -1.437794 -0.374762 -0.188873 -1.665412
-0.060711 -1.075298 -1.269092 -1.726215 -1.302733 -0.449496 -0.155382
-1.203532 -0.128196 -0.539910 -0.628671 -0.455887 -4.145287 -1.290805
>> B3=sin(B)
B3 =
0.557235 0.095497 0.790613 0.384112 0.220113 0.658689 0.734270
0.809179 0.388623 0.751056 0.235226 0.634571 0.736507 0.187988
0.808204 0.334615 0.277400 0.177019 0.268454 0.595549 0.755285
0.295647 0.770536 0.550364 0.508378 0.592280 0.015838 0.271594
операции с матрицами:
>> k=length(B1)
k = 7
>> nm=size(B1)
nm =
4 7
>> elem=numel(B1)
elem = 28
>> NN=linspace(11.5,34.1,20)
NN =
Columns 1 through 15:
11.500 12.689 13.879 15.068 16.258 17.447 18.637 19.826 21.016 22.205 23.395 24.584 25.774 26.963 28.153
Columns 16 through 20:
29.342 30.532 31.721 32.911 34.100
>> FF=ones(2,4)
FF =
1 1 1 1
1 1 1 1
>> GG=zeros(5)
GG =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
>> B1D=diag(B1)
B1D =
0.7688
0.6318
0.5302
0.7303
>> DB=diag(B1D)
DB =
Diagonal Matrix
0.7688 0 0 0
0 0.6318 0 0
0 0 0.5302 0
0 0 0 0.7303
>> BS1=sort(B)
BS1 =
0.300132 0.095643 0.281087 0.177957 0.221930 0.015839 0.189113
0.591052 0.341196 0.582801 0.237451 0.271788 0.637949 0.275049
0.941095 0.399137 0.849660 0.394246 0.633886 0.719075 0.824591
0.942754 0.879681 0.911809 0.533300 0.687453 0.827892 0.856088
>> BS2=sortrows(B,2)
BS2 =
0.591052 0.095643 0.911809 0.394246 0.221930 0.719075 0.824591
0.941095 0.341196 0.281087 0.177957 0.271788 0.637949 0.856088
0.942754 0.399137 0.849660 0.237451 0.687453 0.827892 0.189113
0.300132 0.879681 0.582801 0.533300 0.633886 0.015839 0.275049
>> DS1=sum(D)
DS1 =
22 38 54 70 86 102
>> DS2=sum(D,2)
DS2 =
84
90
96
102
>> DP1=prod(D)
DP1 =
840 7920 32760 93024 212520 421200
>> dt=det(A*A')
dt = 135.51
>> dinv=inv(A*A')
dinv =
5.2600e-01 -4.3199e-02 -2.4925e-01 4.7028e-02
-4.3199e-02 4.3540e-01 8.0641e-02 3.1915e-01
-2.4925e-01 8.0641e-02 2.4811e-01 -2.2361e-03
4.7028e-02 3.1915e-01 -2.2361e-03 5.1804e-01
##9
Изучили работу с индексацией элементов матриц:
>> D1=D(3,5)
D1 = 22
>> D2=D(3,4:end)
D2 =
18 22 26
>> D3=D(2:3,3:5)
D3 =
13 17 21
14 18 22
>> D4=D(16:20)
D4 =
19 20 21 22 23
>> D5=D(3:4,[1,3,6])
D5 =
6 14 26
7 15 27
##10
цикл по перечислению:
>> Dsum=0
Dsum = 0
>> for i=1:6
Dsum=Dsum+sqrt(D(2,i))
endfor
Dsum = 2.2361
Dsum = 5.2361
Dsum = 8.8416
Dsum = 12.965
Dsum = 17.547
Dsum = 22.547
цикл пока выполняется условие:
>> Dsum2=0;i=1
i = 1
>> while (D(i)<22)
Dsum2=Dsum2+sin(D(i))
i=i+1
endwhile
Dsum2 = -0.7568
i = 2
Dsum2 = -1.7157
i = 3
Dsum2 = -1.9951
i = 4
Dsum2 = -1.3382
i = 5
Dsum2 = -0.3488
i = 6
Dsum2 = 0.063321
i = 7
Dsum2 = -0.4807
i = 8
Dsum2 = -1.4807
i = 9
Dsum2 = -2.0173
i = 10
Dsum2 = -1.5971
i = 11
Dsum2 = -0.6065
i = 12
Dsum2 = 0.043799
i = 13
Dsum2 = -0.2441
i = 14
Dsum2 = -1.2055
i = 15
Dsum2 = -1.9565
i = 16
Dsum2 = -1.8066
i = 17
Dsum2 = -0.8937
i = 18
Dsum2 = -0.057011
i = 19
условие if:
D(3,5)>=20
##11
>> graphics_toolkit('gnuplot')
>> plot(D(1,:),B([2,4],1:6))
>> hist(A(:),6)
>> pie(C)
>> bar(C)
##12
>> Prog1
D1 = 22
D2 =
18 22 26
D3 =
13 17 21
14 18 22
D4 =
19 20 21 22 23
D5 =
6 14 26
7 15 27
##13
Создали файл "Perem"