## 13. Тестирование модели на собственных изображениях цифр
1. Создадим собственные изображения рукописных цифр "1" и "0"


2. Загрузим, предобработаем и подадим на вход обученной нейросети собственные изображения
```py
# вывод собственного изображения
plt.imshow(test_img, cmap=plt.get_cmap('gray'))
plt.show()
# предобработка
test_img = test_img / 255
test_img = test_img.reshape(1, num_pixels)
# распознавание
result = model.predict(test_img)
print('I think it\'s ', np.argmax(result))
```
**Вывод:**

```bash
I think it's 0
```

```bash
I think it's 1
```
## 14. Тестирование модели на собственных изображениях цифр, повернутых на 90 градусов
**Результат тестирования:**

```bash
I think it's 0
```

```bash
I think it's 4
```
*Таким образом, нейросеть смогла определить 0 из-за простой и неизменной формы при повороте, однако подав на вход перевернутую 1, нейросеть не смогла корренто определить цифру.*