Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

15 KiB

from google.colab import drive
drive.mount('/content/drive')

import os
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')

import numpy as np
import matplotlib.pyplot as plt

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split

import tensorflow as tf
tf.random.set_seed(123)
np.random.seed(123)
from keras.datasets import mnist

(X_train_full, y_train_full), (X_test_full, y_test_full) = mnist.load_data()

X = np.concatenate((X_train_full, X_test_full), axis=0)
y = np.concatenate((y_train_full, y_test_full), axis=0)
k = 5
random_state = 4 * k - 1

X_train, X_test, y_train, y_test = train_test_split(
    X, y, train_size=60000, test_size=10000, random_state=random_state, shuffle=True
)

print('Shape of X_train:', X_train.shape)
print('Shape of y_train:', y_train.shape)
print('Shape of X_test:', X_test.shape)
print('Shape of y_test:', y_test.shape)
num_classes = 10
input_shape = (28, 28, 1)

# приведение значений к диапазону [0,1]
X_train = X_train.astype('float32') / 255.0
X_test  = X_test.astype('float32') / 255.0

# добавление размерности каналов
X_train = np.expand_dims(X_train, -1)
X_test  = np.expand_dims(X_test, -1)

# one-hot кодирование меток
y_train_cat = keras.utils.to_categorical(y_train, num_classes)
y_test_cat  = keras.utils.to_categorical(y_test, num_classes)

print('Shape of transformed X_train:', X_train.shape)
print('Shape of transformed y_train:', y_train_cat.shape)
print('Shape of transformed X_test:', X_test.shape)
print('Shape of transformed y_test:', y_test_cat.shape)
batch_size = 512
epochs = 15

model = Sequential()
model.add(layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=input_shape))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(0.5))
model.add(layers.Flatten())
model.add(layers.Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()

history = model.fit(X_train, y_train_cat, batch_size=batch_size, epochs=epochs, validation_split=0.1)
scores = model.evaluate(X_test, y_test_cat, verbose=2)
print('Loss on test data:', scores[0])
print('Accuracy on test data:', scores[1])
indices = [0, 1]
for n in indices:
    result = model.predict(X_test[n:n+1])
    plt.figure()
    plt.imshow(X_test[n].reshape(28,28), cmap='gray')
    plt.title(f"Real: {y_test[n]}  Pred: {np.argmax(result)}")
    plt.axis('off')
    plt.show()
    print('NN output vector:', result)
    print('Real mark:', y_test[n])
    print('NN answer:', np.argmax(result))
true_labels = y_test
predicted_labels = np.argmax(model.predict(X_test), axis=1)

print(classification_report(true_labels, predicted_labels))
conf_matrix = confusion_matrix(true_labels, predicted_labels)
display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)
display.plot()
plt.show()
from PIL import Image

img_path = '../5.png'

file_data = Image.open(img_path)
file_data = file_data.convert('L')  # перевод в градации серого
test_img = np.array(file_data)

plt.imshow(test_img, cmap='gray')
plt.axis('off')
plt.show()

# нормализация и изменение формы
test_proc = test_img.astype('float32') / 255.0
test_proc = np.reshape(test_proc, (1, 28, 28, 1))

result = model.predict(test_proc)
print("NN output vector:", result)
print("I think it's", np.argmax(result))
model_lr1_path = '../best_model_2x100.h5'

if os.path.exists(model_lr1_path):
    model_lr1 = load_model(model_lr1_path)
    model_lr1.summary()

    # подготовка данных специально для полносвязной модели ЛР1
    X_test_lr1 = X_test.reshape((X_test.shape[0], 28*28))
    X_test_lr1 = X_test_lr1.astype('float32') / 255.0

    # здесь нужно использовать X_test_lr1 !
    scores_lr1 = model_lr1.evaluate(X_test_lr1, y_test_cat, verbose=2)

    print('LR1 model - Loss on test data:', scores_lr1[0])
    print('LR1 model - Accuracy on test data:', scores_lr1[1])

else:
    print(f"Файл {model_lr1_path} не найден. Поместите сохранённую модель ЛР1 в рабочую директорию.")
# возьмём оригинальные X, y — до всех преобразований для CNN
(X_train_full, y_train_full), (X_test_full, y_test_full) = mnist.load_data()

# объединим, чтобы сделать то же разбиение, что и в ЛР1
X_all = np.concatenate((X_train_full, X_test_full), axis=0)
y_all = np.concatenate((y_train_full, y_test_full), axis=0)

from sklearn.model_selection import train_test_split
X_train_l1, X_test_l1, y_train_l1, y_test_l1 = train_test_split(
    X_all, y_all, train_size=60000, test_size=10000, random_state=19
)

# теперь — подготовка данных ЛР1
X_test_lr1 = X_test_l1.reshape((X_test_l1.shape[0], 28*28)).astype('float32') / 255.0
y_test_lr1 = keras.utils.to_categorical(y_test_l1, 10)

# оценка модели
scores_lr1 = model_lr1.evaluate(X_test_lr1, y_test_lr1, verbose=2)
print(scores_lr1)
# загрузка сохранённой модели ЛР1
model_lr1_path = '../best_model_2x100.h5'
model_lr1 = load_model(model_lr1_path)
model_lr1.summary()

# подготовка тестового набора для модели ЛР1
X_test_l1 = X_test_l1.reshape((X_test_l1.shape[0], 28 * 28)).astype('float32') / 255.0
y_test_l1_cat = keras.utils.to_categorical(y_test_l1, 10)

# оценка модели ЛР1
scores_lr1 = model_lr1.evaluate(X_test_l1, y_test_l1_cat, verbose=2)
print('LR1 model - Loss:', scores_lr1[0])
print('LR1 model - Accuracy:', scores_lr1[1])

# оценка сверточной модели ЛР3
scores_conv = model.evaluate(X_test, y_test_cat, verbose=2)
print('Conv model - Loss:', scores_conv[0])
print('Conv model - Accuracy:', scores_conv[1])

# вывод числа параметров обеих моделей
print('LR1 model parameters:', model_lr1.count_params())
print('Conv model parameters:', model.count_params())
from keras.datasets import cifar10

(X_train_c, y_train_c), (X_test_c, y_test_c) = cifar10.load_data()

print('Shapes (original):', X_train_c.shape, y_train_c.shape, X_test_c.shape, y_test_c.shape)

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

# вывод 25 изображений
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train_c[i])
    plt.xlabel(class_names[y_train_c[i][0]])
plt.show()
num_classes = 10
input_shape_cifar = (32, 32, 3)

X_train_c = X_train_c.astype('float32') / 255.0
X_test_c  = X_test_c.astype('float32') / 255.0

y_train_c_cat = keras.utils.to_categorical(y_train_c, num_classes)
y_test_c_cat  = keras.utils.to_categorical(y_test_c, num_classes)

print('Transformed shapes:', X_train_c.shape, y_train_c_cat.shape, X_test_c.shape, y_test_c_cat.shape)
model_cifar = Sequential()
model_cifar.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape_cifar))
model_cifar.add(layers.MaxPooling2D((2,2)))
model_cifar.add(layers.Conv2D(64, (3,3), activation='relu'))
model_cifar.add(layers.MaxPooling2D((2,2)))
model_cifar.add(layers.Conv2D(128, (3,3), activation='relu'))
model_cifar.add(layers.MaxPooling2D((2,2)))
model_cifar.add(layers.Flatten())
model_cifar.add(layers.Dense(128, activation='relu'))
model_cifar.add(layers.Dropout(0.5))
model_cifar.add(layers.Dense(num_classes, activation='softmax'))

model_cifar.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model_cifar.summary()

batch_size = 512
epochs = 20
history_cifar = model_cifar.fit(X_train_c, y_train_c_cat, batch_size=batch_size, epochs=epochs, validation_split=0.1)
scores_cifar = model_cifar.evaluate(X_test_c, y_test_c_cat, verbose=2)
print('CIFAR - Loss on test data:', scores_cifar[0])
print('CIFAR - Accuracy on test data:', scores_cifar[1])
print(classification_report(true_cifar, preds_cifar, target_names=class_names))

conf_matrix_cifar = confusion_matrix(true_cifar, preds_cifar)
display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix_cifar,
                                 display_labels=class_names)

plt.figure(figsize=(10,10))   # figsize задаётся здесь
display.plot(cmap='Blues', colorbar=False)  # без figsize
plt.xticks(rotation=45)
plt.show()