| Модель | Количество скрытых слоев | Количество нейронов в скрытых слоях | Количество эпох обучения | Ошибка MSE_stop | Порог ошибки реконструкции | Значение показателя Excess | Значение показателя Approx | Количество обнаруженных аномалий |
| | Количество скрытых слоев | Количество нейронов в скрытых слоях | Количество эпох обучения | Ошибка MSE_stop | Порог ошибки реконструкции | Значение показателя Excess | Значение показателя Approx | Количество обнаруженных аномалий |
| Dataset name | Количество скрытых слоев | Количество нейронов в скрытых слоях | Количество эпох обучения | Ошибка MSE_stop | Порог ошибки реконструкции | % обнаруженных аномалий |
- Данные должны быть нормализованными для сохранения стабильности обучения
- В обучающей выборке не должно быть аномальных образцов
- Размер выборки должен быть достаточным для обучения (минимум несколько сотен образцов)
### Требования к архитектуре автокодировщика:
- **Простая архитектура (AE1)**: подходит для простых задач, быстро обучается, но может не улавливать сложные зависимости
- **Сложная архитектура (AE2)**: лучше аппроксимирует данные, но требует больше времени на обучение
- **Еще более сложная архитектура (AE3)**: позволяет наиболее точно обнаруживать аномалии и свести ошибку к минимуму, но тратит на обучение много времени из-за большого кол-ва эпох
### Требования к количеству эпох обучения:
- **AE1 (300 эпох)**: недостаточно для качественного обучения
- **AE2 (500 эпох)**: обеспечивает хорошую сходимость
- Для реальных данных (WBC) необходимо 50000 эпох
### Требования к ошибке MSE_stop:
- **AE1**: 2.0432 - слишком высокая, указывает на недообучение
- **AE2**: 0.0196 - приемлемая для синтетических данных
- **WBC**: 0.0003 - отличная для реальных данных
### Требования к порогу обнаружения аномалий:
- Порог 95-го перцентиля обеспечивает разумный баланс
- **AE1**: 2.3 - слишком высокий, может пропускать аномалии
- **AE2**: 0.515 - более чувствительный к аномалиям
- **WBC**: 0.482 - подходящий для реальных данных
### Характеристики качества обучения EDCA:
- Более сложная архитектура (AE2) показывает лучшие результаты
- Увеличение количества эпох обучения улучшает качество аппроксимации
- Для качественного обнаружения аномалий необходимо тщательно подбирать параметры модели
### Требования к данным для обучения
- Обучающая выборка должна содержать только нормальные (неаномальные) образцы.
- Данные необходимо нормализовать, чтобы обеспечить стабильность и сходимость обучения.
- Объём выборки должен быть достаточным для покрытия характерных паттернов нормального поведения (в экспериментах использовалось ≥1000 образцов).
### Влияние архитектуры автокодировщика
- Простая архитектура (AE1) быстро обучается, но даёт грубую аппроксимацию границы нормальных данных, что приводит к высокому значению показателя Excess и низкой точности экстраполяции.
- Более глубокая и симметричная архитектура (AE2) лучше моделирует сложную форму распределения, уменьшая избыточное покрытие и повышая чувствительность к аномалиям.
### Влияние количества эпох обучения
- Недостаточное число эпох (как у AE1) приводит к недообучению и завышенному порогу IRE.
- Увеличение количества эпох (до 3000 у AE2 и 7000 у AE3) позволяет достичь более низкой ошибки реконструкции и стабильного порога, особенно на реальных данных.
### Порог обнаружения аномалий
- Порог IREth, вычисляемый как 95-й перцентиль ошибки реконструкции на обучающей выборке, обеспечивает разумный компромисс между полнотой и точностью.
- Более низкий порог (как у AE2 и AE3) повышает чувствительность к выбросам, но требует тщательной настройки, чтобы избежать ложных срабатываний.
### Оценка качества через метрики EDCA
- Метрики Excess, Deficit, Coating и Extrapolation precision позволяют количественно сравнивать границы, формируемые разными моделями.
- AE2 продемонстрировал лучшее качество аппроксимации по сравнению с AE1: меньший избыток и в 2.8 раза выше точность экстраполяции.
- Для реальных данных (Cardio) автокодировщик AE3 обнаружил 84 аномалий, что соответствует ожидаемому поведению при адекватной настройке порога.