{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pathlib\n", "import re\n", "import sys" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot\n", "import numpy\n", "import pandas" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "BASE_PATH = pathlib.Path('..')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "CODE_PATH = BASE_PATH\n", "sys.path.insert(0, str(CODE_PATH.resolve()))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import iis_project.pandas_utils\n", "import iis_project.plotting_utils" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "DATA_PATH = BASE_PATH / 'data'" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "df_orig = pandas.read_csv(DATA_PATH / 'cars.csv')\n", "df_orig = df_orig.rename(columns=lambda s: re.sub(r'\\s', '_', s.lower().replace(' ', '_')))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
car_nameyearselling_pricepresent_pricedriven_kmsfuel_typeselling_typetransmissionowner
0ritz20143.355.5927000PetrolDealerManual0
1sx420134.759.5443000DieselDealerManual0
2ciaz20177.259.856900PetrolDealerManual0
3wagon r20112.854.155200PetrolDealerManual0
4swift20144.606.8742450DieselDealerManual0
5vitara brezza20189.259.832071DieselDealerManual0
6ciaz20156.758.1218796PetrolDealerManual0
7s cross20156.508.6133429DieselDealerManual0
8ciaz20168.758.8920273DieselDealerManual0
9ciaz20157.458.9242367DieselDealerManual0
10alto 80020172.853.602135PetrolDealerManual0
11ciaz20156.8510.3851000DieselDealerManual0
12ciaz20157.509.9415000PetrolDealerAutomatic0
13ertiga20156.107.7126000PetrolDealerManual0
14dzire20092.257.2177427PetrolDealerManual0
15ertiga20167.7510.7943000DieselDealerManual0
\n", "
" ], "text/plain": [ " car_name year selling_price present_price driven_kms fuel_type \\\n", "0 ritz 2014 3.35 5.59 27000 Petrol \n", "1 sx4 2013 4.75 9.54 43000 Diesel \n", "2 ciaz 2017 7.25 9.85 6900 Petrol \n", "3 wagon r 2011 2.85 4.15 5200 Petrol \n", "4 swift 2014 4.60 6.87 42450 Diesel \n", "5 vitara brezza 2018 9.25 9.83 2071 Diesel \n", "6 ciaz 2015 6.75 8.12 18796 Petrol \n", "7 s cross 2015 6.50 8.61 33429 Diesel \n", "8 ciaz 2016 8.75 8.89 20273 Diesel \n", "9 ciaz 2015 7.45 8.92 42367 Diesel \n", "10 alto 800 2017 2.85 3.60 2135 Petrol \n", "11 ciaz 2015 6.85 10.38 51000 Diesel \n", "12 ciaz 2015 7.50 9.94 15000 Petrol \n", "13 ertiga 2015 6.10 7.71 26000 Petrol \n", "14 dzire 2009 2.25 7.21 77427 Petrol \n", "15 ertiga 2016 7.75 10.79 43000 Diesel \n", "\n", " selling_type transmission owner \n", "0 Dealer Manual 0 \n", "1 Dealer Manual 0 \n", "2 Dealer Manual 0 \n", "3 Dealer Manual 0 \n", "4 Dealer Manual 0 \n", "5 Dealer Manual 0 \n", "6 Dealer Manual 0 \n", "7 Dealer Manual 0 \n", "8 Dealer Manual 0 \n", "9 Dealer Manual 0 \n", "10 Dealer Manual 0 \n", "11 Dealer Manual 0 \n", "12 Dealer Automatic 0 \n", "13 Dealer Manual 0 \n", "14 Dealer Manual 0 \n", "15 Dealer Manual 0 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_orig.head(0x10)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "301" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df_orig)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
lengthdtype
car_name301object
year301int64
selling_price301float64
present_price301float64
driven_kms301int64
fuel_type301object
selling_type301object
transmission301object
owner301int64
\n", "
" ], "text/plain": [ " length dtype\n", "car_name 301 object\n", "year 301 int64\n", "selling_price 301 float64\n", "present_price 301 float64\n", "driven_kms 301 int64\n", "fuel_type 301 object\n", "selling_type 301 object\n", "transmission 301 object\n", "owner 301 int64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iis_project.pandas_utils.describe_df(df_orig)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "numeric_columns_orig = ('selling_price', 'present_price', 'driven_kms')\n", "categorical_columns_orig = ('car_name', 'fuel_type', 'selling_type', 'transmission', 'owner')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
selling_pricepresent_pricedriven_kms
count301.000000301.000000301.000000
mean4.6612967.62847236947.205980
std5.0828128.64258438886.883882
min0.1000000.320000500.000000
25%0.9000001.20000015000.000000
50%3.6000006.40000032000.000000
75%6.0000009.90000048767.000000
max35.00000092.600000500000.000000
\n", "
" ], "text/plain": [ " selling_price present_price driven_kms\n", "count 301.000000 301.000000 301.000000\n", "mean 4.661296 7.628472 36947.205980\n", "std 5.082812 8.642584 38886.883882\n", "min 0.100000 0.320000 500.000000\n", "25% 0.900000 1.200000 15000.000000\n", "50% 3.600000 6.400000 32000.000000\n", "75% 6.000000 9.900000 48767.000000\n", "max 35.000000 92.600000 500000.000000" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_orig[list(numeric_columns_orig)].describe()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all((len(s) == len(df_orig)) for _, s in df_orig.items())" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'car_name': (98 values)\n", "'fuel_type': 'Petrol', 'Diesel', 'CNG'\n", "'selling_type': 'Dealer', 'Individual'\n", "'transmission': 'Manual', 'Automatic'\n", "'owner': np.int64(0), np.int64(1), np.int64(3)\n" ] } ], "source": [ "categorical_values_for_columns_orig = {\n", " column: series.unique()\n", " for column, series in df_orig[list(categorical_columns_orig)].items()\n", "}\n", "\n", "for column, values in categorical_values_for_columns_orig.items():\n", " if len(values) <= 0x10:\n", " values_str = ', '.join(map(repr, values))\n", " else:\n", " values_str = f'({len(values)} values)'\n", " print(f'{column!r}: {values_str}')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGzCAYAAAAbjdwrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIg1JREFUeJzt3XtwVPX9//HXJuRihHAxkAsEwkVhwiWUCBmKSoBwiZZykSkOtUTsIJfEYqMdgZkK1rFQvDRW1tLWEWrHC4ICVSzlIhdFhIBEaqMMoUFRboJCQgIh3f18//CX/TUmXBI3OZ/dfT5mmHHPLmff55MDebp7yLqMMUYAAAAWCHN6AAAAgBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAmAWlasWCGXy6UjR474tmVmZiozM9N3+8iRI3K5XFqxYkWzz9cUvnt8AJxDmAAAAGu0cHoAAIGnS5cuunDhgiIiIpwexS82btzo9AgA/h9eMQHQYC6XS9HR0QoPD3d6lO+lsrJSkhQZGanIyEiHpwEgESZA0CgvL9cDDzyglJQURUVFqUOHDho5cqQ+/PBD32N2796tMWPGqHXr1oqJidHQoUO1c+fOBj9XfdeY3HPPPWrZsqW+/PJLjR8/Xi1btlT79u310EMPyePx1Pr9Z86c0c9+9jPFxsaqTZs2ysnJ0UcffdTg61a2bdsml8ullStXav78+UpISND111+vH//4xzp69Gitx2ZmZqpPnz7at2+fbrvtNsXExGj+/Pm++757jcnFixe1cOFC3XTTTYqOjlZiYqImTpyow4cP+x7j9XpVUFCg3r17Kzo6WvHx8ZoxY4a++eabaz4GALXxVg4QJGbOnKnVq1crLy9PqampOnPmjN577z198sknGjBggN555x1lZ2crPT1dCxYsUFhYmJYvX67hw4fr3Xff1aBBg773DB6PR6NHj1ZGRoaefPJJbd68WU899ZS6d++uWbNmSfr2m/nYsWO1Z88ezZo1S7169dK6deuUk5PT6Od9/PHH5XK59PDDD+vUqVMqKChQVlaWioqKdN111/ked+bMGWVnZ+uuu+7S3Xffrfj4+Msex49+9CNt2bJFd911l+bMmaPy8nJt2rRJH3/8sbp37y5JmjFjhlasWKFp06bpF7/4hUpLS7V06VLt379fO3fuDJq3uoBmZQAEhdatW5vc3Nx67/N6vebGG280o0ePNl6v17e9srLSdO3a1YwcOdK3bfny5UaSKS0t9W0bOnSoGTp0qO92aWmpkWSWL1/u25aTk2Mkmd/85je1nvsHP/iBSU9P991+/fXXjSRTUFDg2+bxeMzw4cPr7PNqtm7daiSZjh07mrKyMt/21157zUgyzzzzTK1jkGSWLVtWZz/fPb4XXnjBSDJPP/10ncfWrN+7775rJJmXXnqp1v0bNmyodzuAa8NbOUCQaNOmjXbv3q1jx47Vua+oqEiHDh3SlClTdObMGZ0+fVqnT59WRUWFRowYoR07dsjr9fpljpkzZ9a6feutt+o///mP7/aGDRsUERGh6dOn+7aFhYUpNze30c85depUtWrVynd70qRJSkxM1Ntvv13rcVFRUZo2bdpV9/f6668rLi5O999/f537XC6XJGnVqlVq3bq1Ro4c6VvP06dPKz09XS1bttTWrVsbfTxAKOOtHCBILFmyRDk5OUpOTlZ6erpuv/12TZ06Vd26ddOhQ4ck6Ypvl5w7d05t27b9XjNER0erffv2tba1bdu21jUXn332mRITExUTE1PrcT169Gj089544421brtcLvXo0aPWz2KRpI4dO17TRa6HDx9Wz5491aLF5f+KPHTokM6dO6cOHTrUe/+pU6euPjiAOggTIEj85Cc/0a233qo1a9Zo48aNeuKJJ/S73/1Ob7zxhu/VkCeeeEL9+/ev9/e3bNnye89g+7/S+d/rTb4vr9erDh066KWXXqr3/u8GGoBrQ5gAQSQxMVGzZ8/W7NmzderUKQ0YMECPP/64fv/730uSYmNjlZWV5eiMXbp00datW1VZWVnrVZOSkpJG77PmFaEaxhiVlJSoX79+jdpf9+7dtXv3blVXV1/2Atbu3btr8+bNGjJkiF+DBwh1XGMCBAGPx6Nz587V2tahQwclJSWpqqpK6enp6t69u5588kmdP3++zu//6quvmmtUjR49WtXV1frLX/7i2+b1euV2uxu9zxdffFHl5eW+26tXr9bx48eVnZ3dqP3deeedOn36tJYuXVrnPmOMpG9fofJ4PHrsscfqPOa///2vzp4926jnBkIdr5gAQaC8vFydOnXSpEmTlJaWppYtW2rz5s0qLCzUU089pbCwMD3//PPKzs5W7969NW3aNHXs2FFffvmltm7dqtjYWL355pvNMuv48eM1aNAgPfjggyopKVGvXr3097//XV9//bWk/39xaUO0a9dOt9xyi6ZNm6aTJ0+qoKBAPXr0qHWBbUNMnTpVL774ovLz87Vnzx7deuutqqio0ObNmzV79myNGzdOQ4cO1YwZM7Ro0SIVFRVp1KhRioiI0KFDh7Rq1So988wzmjRpUqOeHwhlhAkQBGJiYjR79mxt3LjRd01Jjx499Nxzz/l+fkhmZqZ27dqlxx57TEuXLtX58+eVkJCgjIwMzZgxo9lmDQ8P1/r16zVnzhz99a9/VVhYmCZMmKAFCxZoyJAhio6ObvA+58+frwMHDmjRokUqLy/XiBEj9Nxzz9W5wLYhM7799tt6/PHH9fLLL+v111/XDTfcoFtuuUV9+/b1PW7ZsmVKT0/Xn/70J82fP18tWrRQSkqK7r77bg0ZMqRRzw2EOpepeV0SABy0du1aTZgwQe+99941f1Pftm2bhg0bplWrVvHqBBAkuMYEQLO7cOFCrdsej0fPPvusYmNjNWDAAIemAmAD3soB0Ozuv/9+XbhwQYMHD1ZVVZXeeOMNvf/++/rtb3+r6667TpcuXfJdc3I5rVu3bqZpATQnwgRAsxs+fLieeuopvfXWW7p48aJ69OihZ599Vnl5eZKk999/X8OGDbviPpYvX66UlJRmmBZAc+IaEwDW+eabb7Rv374rPqZ3795KTExspokANBfCBAAAWIOLXwEAgDUC7hoTr9erY8eOqVWrVo36QUwAAKD5GWNUXl6upKQkhYVd/nWRgAuTY8eOKTk52ekxAABAIxw9elSdOnW67P0BFyatWrWS9O2BxcbG+mWf1dXV2rhxo+9HSoeiUF+DUD9+iTUI9eOXWAOJNWjK4y8rK1NycrLv+/jlBFyY1Lx9Exsb69cwiYmJUWxsbEieiBJrEOrHL7EGoX78EmsgsQbNcfxXuwyDi18BAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1Au7ThZtSn4X/VJXnyp96aJsji+9wegQAAPyGV0wAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1mj1Mjh49qszMTKWmpqpfv35atWpVc48AAAAs1aLZn7BFCxUUFKh///46ceKE0tPTdfvtt+v6669v7lEAAIBlmj1MEhMTlZiYKElKSEhQXFycvv76a8IEAAA0/K2cHTt2aOzYsUpKSpLL5dLatWvrPMbtdislJUXR0dHKyMjQnj176t3Xvn375PF4lJyc3ODBAQBA8GlwmFRUVCgtLU1ut7ve+1euXKn8/HwtWLBAH374odLS0jR69GidOnWq1uO+/vprTZ06VX/+858bNzkAAAg6DX4rJzs7W9nZ2Ze9/+mnn9b06dM1bdo0SdKyZcu0fv16vfDCC5o7d64kqaqqSuPHj9fcuXP1wx/+8IrPV1VVpaqqKt/tsrIySVJ1dbWqq6sbOn69avYTFWb8sr/m5O818Nf+Ak2oH7/EGoT68UusgcQaNOXxX+s+XcaYRn83drlcWrNmjcaPHy9JunTpkmJiYrR69WrfNknKycnR2bNntW7dOhljNGXKFPXs2VMLFy686nMsXLhQjz76aJ3tL7/8smJiYho7OgAAaEaVlZWaMmWKzp07p9jY2Ms+zq8Xv54+fVoej0fx8fG1tsfHx+vTTz+VJO3cuVMrV65Uv379fNen/O1vf1Pfvn3r3ee8efOUn5/vu11WVqbk5GSNGjXqigfWENXV1dq0aZN+vTdMVV6XX/bZXD5eONov+6lZg5EjRyoiIsIv+wwkoX78EmsQ6scvsQYSa9CUx1/zjsfVNPu/yrnlllvk9Xqv+fFRUVGKioqqsz0iIsLvi1bldanKE1hh4u81aIp1DSShfvwSaxDqxy+xBhJr0BTHf6378+sPWIuLi1N4eLhOnjxZa/vJkyeVkJDgz6cCAABByK9hEhkZqfT0dG3ZssW3zev1asuWLRo8eLA/nwoAAAShBr+Vc/78eZWUlPhul5aWqqioSO3atVPnzp2Vn5+vnJwc3XzzzRo0aJAKCgpUUVHh+1c6AAAAl9PgMNm7d6+GDRvmu11zYWpOTo5WrFihyZMn66uvvtIjjzyiEydOqH///tqwYUOdC2IBAAC+q8FhkpmZqav9C+O8vDzl5eU1eihcu5S56/2yn6hwoyWDpD4L/9nkFwAfWXxHk+4fABC4mv3ThRvL7XYrNTVVAwcOdHoUAADQRAImTHJzc1VcXKzCwkKnRwEAAE0kYMIEAAAEP8IEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYImDDhB6wBABD8AiZM+AFrAAAEv4AJEwAAEPwIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1AiZM+JH0AAAEv4AJE34kPQAAwS9gwgQAAAQ/wgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYI2DChM/KAQAg+AVMmPBZOQAABL+ACRMAABD8CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWCJgw4dOFAQAIfgETJny6MAAAwS9gwgQAAAQ/wgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYImDBxu91KTU3VwIEDnR4FAAA0kYAJk9zcXBUXF6uwsNDpUQAAQBMJmDABAADBjzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANVo4PQBCT8rc9U6PUEdUuNGSQVKfhf9UlcdV72OOLL6jmacCgNDDKyYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGgETJm63W6mpqRo4cKDTowAAgCYSMGGSm5ur4uJiFRYWOj0KAABoIgETJgAAIPgRJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAawRMmLjdbqWmpmrgwIFOjwIAAJpIwIRJbm6uiouLVVhY6PQoAACgiQRMmAAAgOBHmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAajoTJhAkT1LZtW02aNMmJpwcAAJZyJEzmzJmjF1980YmnBgAAFnMkTDIzM9WqVSsnnhoAAFiswWGyY8cOjR07VklJSXK5XFq7dm2dx7jdbqWkpCg6OloZGRnas2ePP2YFAABBrkVDf0NFRYXS0tJ07733auLEiXXuX7lypfLz87Vs2TJlZGSooKBAo0eP1sGDB9WhQ4cGD1hVVaWqqirf7bKyMklSdXW1qqurG7y/+tTsJyrM+GV/gajm2EN1Da7l+P11vtmq5viC/TgvJ9SPX2INJNagKY//WvfpMsY0+juRy+XSmjVrNH78eN+2jIwMDRw4UEuXLpUkeb1eJScn6/7779fcuXN9j9u2bZuWLl2q1atXX/E5Fi5cqEcffbTO9pdfflkxMTGNHR0AADSjyspKTZkyRefOnVNsbOxlH9fgV0yu5NKlS9q3b5/mzZvn2xYWFqasrCzt2rWrUfucN2+e8vPzfbfLysqUnJysUaNGXfHAGqK6ulqbNm3Sr/eGqcrr8ss+A01UmNFjN3tDdg2u5fg/Xji6madqXjV/DkaOHKmIiAinx2l2oX78EmsgsQZNefw173hcjV/D5PTp0/J4PIqPj6+1PT4+Xp9++qnvdlZWlj766CNVVFSoU6dOWrVqlQYPHlzvPqOiohQVFVVne0REhN8XrcrrUpUn9L4p/69QX4MrHX+o/CXVFH+2AkmoH7/EGkisQVMc/7Xuz69hcq02b97sxNMCAADL+fWfC8fFxSk8PFwnT56stf3kyZNKSEjw51MBAIAg5NcwiYyMVHp6urZs2eLb5vV6tWXLlsu+VQMAAFCjwW/lnD9/XiUlJb7bpaWlKioqUrt27dS5c2fl5+crJydHN998swYNGqSCggJVVFRo2rRpfh0cAAAEnwaHyd69ezVs2DDf7Zp/MZOTk6MVK1Zo8uTJ+uqrr/TII4/oxIkT6t+/vzZs2FDnglgAAIDvanCYZGZm6mo/+iQvL095eXmNHqo+brdbbrdbHo/Hr/sFrlXK3PVOj9BgRxbf4fQIANAgjnxWTmPk5uaquLhYhYWFTo8CAACaSMCECQAACH6ECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrBEyYuN1upaamauDAgU6PAgAAmkjAhAk/+RUAgOAXMGECAACCH2ECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBoBEyb85FcAAIJfwIQJP/kVAIDgFzBhAgAAgh9hAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKzRwukBrpXb7Zbb7ZbH43F6FCBgpMxdf82PjQo3WjJI6rPwn6ryuJpwqis7svgOx54bgPMC5hUTPisHAIDgFzBhAgAAgh9hAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJgAAwBp8ujAAqzTkE5H96ft8ujKfiAz4T8C8YsKnCwMAEPwCJkwAAEDwI0wAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFijhdMDXCu32y232y2Px+P0KABQS8rc9U6P0GBHFt/h9AhAvQLmFZPc3FwVFxersLDQ6VEAAEATCZgwAQAAwY8wAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGCNgAkTt9ut1NRUDRw40OlRAABAEwmYMMnNzVVxcbEKCwudHgUAADSRgAkTAAAQ/AgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1Wjg9wLVyu91yu93yeDxOjwIAwDVJmbve6REaJCrcaMkgZ2cImFdMcnNzVVxcrMLCQqdHAQAATSRgwgQAAAQ/wgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFijhdMDNJQxRpJUVlbmt31WV1ersrJSnqpweT0uv+03kHjCjSorPSG7BqF+/BJrEGrHX9/foTV/F5aVlSkiIsKBqZzn7zXwVlX6YarmU/PnoCnOgZpzrub7+OW4zNUeYZkvvvhCycnJTo8BAAAa4ejRo+rUqdNl7w+4MPF6vTp27JhatWoll8s//1dTVlam5ORkHT16VLGxsX7ZZ6AJ9TUI9eOXWINQP36JNZBYg6Y8fmOMysvLlZSUpLCwy19JEnBv5YSFhV2xtL6P2NjYkDwR/1eor0GoH7/EGoT68UusgcQaNNXxt27d+qqP4eJXAABgDcIEAABYgzCRFBUVpQULFigqKsrpURwT6msQ6scvsQahfvwSayCxBjYcf8Bd/AoAAIIXr5gAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsQJpLcbrdSUlIUHR2tjIwM7dmzx+mRmsXChQvlcrlq/erVq5fTYzWpHTt2aOzYsUpKSpLL5dLatWtr3W+M0SOPPKLExERdd911ysrK0qFDh5wZtolcbQ3uueeeOufFmDFjnBm2CSxatEgDBw5Uq1at1KFDB40fP14HDx6s9ZiLFy8qNzdXN9xwg1q2bKk777xTJ0+edGhi/7qW48/MzKxzDsycOdOhif3vj3/8o/r16+f76aaDBw/WP/7xD9/9wfz1r3G1NXDyHAj5MFm5cqXy8/O1YMECffjhh0pLS9Po0aN16tQpp0drFr1799bx48d9v9577z2nR2pSFRUVSktLk9vtrvf+JUuW6A9/+IOWLVum3bt36/rrr9fo0aN18eLFZp606VxtDSRpzJgxtc6LV155pRknbFrbt29Xbm6uPvjgA23atEnV1dUaNWqUKioqfI/55S9/qTfffFOrVq3S9u3bdezYMU2cONHBqf3nWo5fkqZPn17rHFiyZIlDE/tfp06dtHjxYu3bt0979+7V8OHDNW7cOP373/+WFNxf/xpXWwPJwXPAhLhBgwaZ3Nxc322Px2OSkpLMokWLHJyqeSxYsMCkpaU5PYZjJJk1a9b4bnu9XpOQkGCeeOIJ37azZ8+aqKgo88orrzgwYdP77hoYY0xOTo4ZN26cI/M44dSpU0aS2b59uzHm2695RESEWbVqle8xn3zyiZFkdu3a5dSYTea7x2+MMUOHDjVz5sxxbigHtG3b1jz//PMh9/X/XzVrYIyz50BIv2Jy6dIl7du3T1lZWb5tYWFhysrK0q5duxycrPkcOnRISUlJ6tatm37605/q888/d3okx5SWlurEiRO1zofWrVsrIyMjZM6HGtu2bVOHDh3Us2dPzZo1S2fOnHF6pCZz7tw5SVK7du0kSfv27VN1dXWt86BXr17q3LlzUJ4H3z3+Gi+99JLi4uLUp08fzZs3T5WVlU6M1+Q8Ho9effVVVVRUaPDgwSH39ZfqrkENp86BgPt0YX86ffq0PB6P4uPja22Pj4/Xp59+6tBUzScjI0MrVqxQz549dfz4cT366KO69dZb9fHHH6tVq1ZOj9fsTpw4IUn1ng8194WCMWPGaOLEieratasOHz6s+fPnKzs7W7t27VJ4eLjT4/mV1+vVAw88oCFDhqhPnz6Svj0PIiMj1aZNm1qPDcbzoL7jl6QpU6aoS5cuSkpK0oEDB/Twww/r4MGDeuONNxyc1r/+9a9/afDgwbp48aJatmypNWvWKDU1VUVFRSHz9b/cGkjOngMhHSahLjs72/ff/fr1U0ZGhrp06aLXXntNP//5zx2cDE666667fP/dt29f9evXT927d9e2bds0YsQIByfzv9zcXH388cdBf23V5Vzu+O+77z7ff/ft21eJiYkaMWKEDh8+rO7duzf3mE2iZ8+eKioq0rlz57R69Wrl5ORo+/btTo/VrC63BqmpqY6eAyH9Vk5cXJzCw8PrXG198uRJJSQkODSVc9q0aaObbrpJJSUlTo/iiJqvOedDbd26dVNcXFzQnRd5eXl66623tHXrVnXq1Mm3PSEhQZcuXdLZs2drPT7YzoPLHX99MjIyJCmozoHIyEj16NFD6enpWrRokdLS0vTMM8+EzNdfuvwa1Kc5z4GQDpPIyEilp6dry5Ytvm1er1dbtmyp9T5bqDh//rwOHz6sxMREp0dxRNeuXZWQkFDrfCgrK9Pu3btD8nyo8cUXX+jMmTNBc14YY5SXl6c1a9bonXfeUdeuXWvdn56eroiIiFrnwcGDB/X5558HxXlwteOvT1FRkSQFzTlQH6/Xq6qqqqD/+l9JzRrUp1nPAUcuubXIq6++aqKiosyKFStMcXGxue+++0ybNm3MiRMnnB6tyT344INm27ZtprS01OzcudNkZWWZuLg4c+rUKadHazLl5eVm//79Zv/+/UaSefrpp83+/fvNZ599ZowxZvHixaZNmzZm3bp15sCBA2bcuHGma9eu5sKFCw5P7j9XWoPy8nLz0EMPmV27dpnS0lKzefNmM2DAAHPjjTeaixcvOj26X8yaNcu0bt3abNu2zRw/ftz3q7Ky0veYmTNnms6dO5t33nnH7N271wwePNgMHjzYwan952rHX1JSYn7zm9+YvXv3mtLSUrNu3TrTrVs3c9tttzk8uf/MnTvXbN++3ZSWlpoDBw6YuXPnGpfLZTZu3GiMCe6vf40rrYHT50DIh4kxxjz77LOmc+fOJjIy0gwaNMh88MEHTo/ULCZPnmwSExNNZGSk6dixo5k8ebIpKSlxeqwmtXXrViOpzq+cnBxjzLf/ZPjXv/61iY+PN1FRUWbEiBHm4MGDzg7tZ1dag8rKSjNq1CjTvn17ExERYbp06WKmT58eVKFe37FLMsuXL/c95sKFC2b27Nmmbdu2JiYmxkyYMMEcP37cuaH96GrH//nnn5vbbrvNtGvXzkRFRZkePXqYX/3qV+bcuXPODu5H9957r+nSpYuJjIw07du3NyNGjPBFiTHB/fWvcaU1cPoccBljTNO/LgMAAHB1IX2NCQAAsAthAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGv8H8IniIUB9J7rAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGzCAYAAAD0T7cVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAI4xJREFUeJzt3XtwVOXBx/HfJiQbIkm4RBICCaGIxQQRG5KI2heUm4ig4gUnXiJYOpaNQjNVoY4I06EwtR1R2daiI9Qqioh4wYpiAK2KEFBQjCBUVBQTQSQriYY1+7x/dLLjNtw2bnKezX4/M4yes4dnn+xDyJfdc3ZdxhgjAAAAS8Q5PQEAAIAfI04AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAOB/LFmyRC6XS5988onTUwFiEnECwDpLly7VggULnJ4GAIe4+GwdALa55JJLtH37dseeuWhsbJTf75fb7ZbL5XJkDkAs45kTIIYEAgF9//33Tk/DWnV1dZKk+Ph4JSUlESaAQ4gTIArNnj1bLpdLO3bs0NVXX63U1FR169ZN06ZNC4kPl8ulsrIyPf7448rPz5fb7dbq1aslSV988YUmT56sjIwMud1u5efn65FHHml2Xw888IDy8/OVnJysLl26aPDgwVq6dGnIMScz1vr16+VyufTUU09p7ty56tWrl5KSkjR8+HDt3r07eNywYcP04osv6tNPP5XL5ZLL5VJubu5JPza5ubm65JJL9Morr2jQoEFKSkpSXl6ennnmmZDjms4ree211zR16lR1795dvXr1Crntf5+5eemllzR06FClpKQoNTVVhYWFzR6LjRs36qKLLlJaWpqSk5M1dOhQvfnmmyc9fwBSB6cnAKDlrr76auXm5mrevHl6++23df/99+ubb77Ro48+Gjxm7dq1euqpp1RWVqb09HTl5uaqpqZG55xzTjBeTj31VL300ku66aab5PP5NH36dEnSQw89pFtvvVVXXnllMHzee+89bdy4USUlJZJ00mM1mT9/vuLi4vS73/1OtbW1+tOf/qRrr71WGzdulCTdeeedqq2t1eeff657771XktSpU6ewHpddu3Zp4sSJuvnmm1VaWqrFixfrqquu0urVqzVy5MiQY6dOnapTTz1Vs2bNCj5zcjRLlizR5MmTlZ+fr5kzZ6pz58569913tXr16uBjsXbtWo0ZM0YFBQW6++67FRcXp8WLF+vCCy/Uv//9bxUVFYX1dQAxywCIOnfffbeRZMaPHx+yf+rUqUaS2bZtmzHGGEkmLi7OfPDBByHH3XTTTaZHjx7mwIEDIfuvueYak5aWZurr640xxlx66aUmPz//uHM52bHWrVtnJJkzzjjDNDQ0BI+77777jCTz/vvvB/eNHTvW9O7d+yQeieZ69+5tJJkVK1YE99XW1poePXqYs88+O7hv8eLFRpI5//zzzQ8//BAyRtNte/bsMcYYc+jQIZOSkmKKi4vNd999F3JsIBAI/rdfv35m9OjRwX3GGFNfX2/69OljRo4c2aKvB4hFvKwDRDGPxxOyfcstt0iS/vWvfwX3DR06VHl5ecFtY4xWrFihcePGyRijAwcOBH+NHj1atbW1eueddyRJnTt31ueff67Kysqj3n84YzWZNGmSEhMTg9u//OUvJUkff/zxT3gkQmVlZenyyy8PbqempuqGG27Qu+++q+rq6pBjp0yZovj4+OOOt2bNGn377beaMWOGkpKSQm5rOi9l69at2rVrl0pKSvT1118HH4e6ujoNHz5cr7/+ugKBQIS+QqB942UdIIr169cvZLtv376Ki4sLOVeiT58+Icfs379fhw4d0qJFi7Ro0aKjjvvVV19Jku644w69+uqrKioq0mmnnaZRo0appKRE5513XthjNcnJyQnZ7tKliyTpm2++OcFXe/JOO+20Zieznn766ZKkTz75RJmZmcH9//v4HM1//vMfSdKAAQOOecyuXbskSaWlpcc8pra2Nvj1Ajg24gRoR452dUnHjh1Dtpv+9X7dddcd8wfpwIEDJUlnnHGGdu7cqVWrVmn16tVasWKF/vrXv2rWrFmaM2dOWGM1OdazFMahdzX438enpZoei3vuuUeDBg066jHhnjsDxCriBIhiu3btCvmX/+7duxUIBI57dcupp56qlJQUNTY2asSIESe8j1NOOUUTJ07UxIkTdeTIEU2YMEFz587VzJkzwx7rZP3US3h3794tY0zIOB999JEkhXXlT5O+fftKkrZv367TTjvtuMekpqZG9LEAYhHnnABRzOv1hmw/8MADkqQxY8Yc8/fEx8friiuu0IoVK7R9+/Zmt+/fvz/4/19//XXIbYmJicrLy5MxRn6/P6yxwnHKKaeotra2Rb9Xkvbt26eVK1cGt30+nx599FENGjQo5CWdkzVq1CilpKRo3rx5zd4npukZn4KCAvXt21d//vOfdfjw4WZjtPSxAGIRz5wAUWzPnj0aP368LrroIm3YsEGPPfaYSkpKdNZZZx33982fP1/r1q1TcXGxpkyZory8PB08eFDvvPOOXn31VR08eFDSf38oZ2Zm6rzzzlNGRoY+/PBDLVy4UGPHjlVKSkpYY4WjoKBAy5YtU3l5uQoLC9WpUyeNGzfupH//6aefrptuukmVlZXKyMjQI488opqaGi1evDjsuUj/fTbk3nvv1a9+9SsVFhaqpKREXbp00bZt21RfX69//OMfiouL08MPP6wxY8YoPz9fkyZNUs+ePfXFF19o3bp1Sk1N1QsvvNCi+wdijnMXCgFoqaZLiauqqsyVV15pUlJSTJcuXUxZWVnIpa6SjMfjOeoYNTU1xuPxmOzsbJOQkGAyMzPN8OHDzaJFi4LH/P3vfzf/93//Z7p162bcbrfp27evue2220xtbW3YYzVdSrx8+fKQ37tnzx4jySxevDi47/Dhw6akpMR07tzZSArrsuLevXubsWPHmpdfftkMHDjQuN1u079//2b323S5cGVlZbMx/vdS4ibPP/+8Offcc03Hjh1NamqqKSoqMk888UTIMe+++66ZMGFC8DHr3bu3ufrqq01FRcVJfw1ArOOzdYAoNHv2bM2ZM0f79+9Xenq609OxSm5urgYMGKBVq1Y5PRUALcQ5JwAAwCqccwIgKuzfv1+NjY3HvD0xMVFdu3ZtwxkBaC3ECYCoUFhYqE8//fSYtw8dOlTr169vuwkBaDWccwIgKrz55pv67rvvjnl7ly5dVFBQ0IYzAtBaiBMAAGAVTogFAABWibpzTgKBgPbt26eUlJSf/BbXAACgbRhj9O233yorK0txccd/biTq4mTfvn3Kzs52ehoAAKAF9u7dq169eh33mKiLk6a3zN67d69SU1MjMqbf79crr7yiUaNGKSEhISJjInysg/NYAzuwDnZgHSLL5/MpOzs7+HP8eKIuTppeyklNTY1onCQnJys1NZU/gA5iHZzHGtiBdbAD69A6TuaUDE6IBQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAVom6TyVubbkzXnR6CmH7ZP5Yp6cAAEDE8MwJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKwSNXHi9XqVl5enwsJCp6cCAABaUdTEicfjUVVVlSorK52eCgAAaEVREycAACA2ECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACs0uZxsnfvXg0bNkx5eXkaOHCgli9f3tZTAAAAFuvQ5nfYoYMWLFigQYMGqbq6WgUFBbr44ot1yimntPVUAACAhdo8Tnr06KEePXpIkjIzM5Wenq6DBw8SJwAAQFILXtZ5/fXXNW7cOGVlZcnlcunZZ59tdozX61Vubq6SkpJUXFysTZs2HXWsLVu2qLGxUdnZ2WFPHAAAtE9hP3NSV1ens846S5MnT9aECROa3b5s2TKVl5frwQcfVHFxsRYsWKDRo0dr586d6t69e/C4gwcP6oYbbtBDDz103PtraGhQQ0NDcNvn80mS/H6//H5/uNM/qqZx/H6/3PEmImO2pUg9Dk778TrAGayBHVgHO7AOkRXO4+gyxrT4p7HL5dLKlSt12WWXBfcVFxersLBQCxculCQFAgFlZ2frlltu0YwZMyT9NzhGjhypKVOm6Prrrz/ufcyePVtz5sxptn/p0qVKTk5u6dQBAEAbqq+vV0lJiWpra5WamnrcYyN6zsmRI0e0ZcsWzZw5M7gvLi5OI0aM0IYNGyRJxhjdeOONuvDCC08YJpI0c+ZMlZeXB7d9Pp+ys7M1atSoE35xJ8vv92vNmjUaOXKkzp67NiJjtqXts0c7PYWI+PE6JCQkOD2dmMQa2IF1sAPrEFlNr3ycjIjGyYEDB9TY2KiMjIyQ/RkZGdqxY4ck6c0339SyZcs0cODA4Pkq//znP3XmmWcedUy32y23291sf0JCQsT/sCQkJKih0RXRMdtCe/umaY21RXhYAzuwDnZgHSIjnMewza/WOf/88xUIBNr6bgEAQJSI6JuwpaenKz4+XjU1NSH7a2pqlJmZGcm7AgAA7VRE4yQxMVEFBQWqqKgI7gsEAqqoqNCQIUMieVcAAKCdCvtlncOHD2v37t3B7T179mjr1q3q2rWrcnJyVF5ertLSUg0ePFhFRUVasGCB6urqNGnSpIhOHAAAtE9hx8nmzZt1wQUXBLebrqQpLS3VkiVLNHHiRO3fv1+zZs1SdXW1Bg0apNWrVzc7STZcXq9XXq9XjY2NP2kcAABgt7DjZNiwYTrRW6OUlZWprKysxZM6Go/HI4/HI5/Pp7S0tIiODQAA7NHmn0oMAABwPMQJAACwCnECAACsQpwAAACrECcAAMAqURMnXq9XeXl5KiwsdHoqAACgFUVNnHg8HlVVVamystLpqQAAgFYUNXECAABiA3ECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKwSNXHC+5wAABAboiZOeJ8TAABiQ9TECQAAiA3ECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrRE2c8A6xAADEhqiJE94hFgCA2NDB6Qngp8ud8aLTUwjbJ/PHOj0FAIClouaZEwAAEBuIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWiZo44e3rAQCIDVETJ7x9PQAAsSFq4gQAAMQG4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBVoiZO+FRiAABiQ9TECZ9KDABAbIiaOAEAALGBOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYJWoiROv16u8vDwVFhY6PRUAANCKoiZOPB6PqqqqVFlZ6fRUAABAK4qaOAEAALGBOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBVoiZOvF6v8vLyVFhY6PRUAABAK4qaOPF4PKqqqlJlZaXTUwEAAK0oauIEAADEBuIEAABYhTgBAABWIU4AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVYgTAABgFeIEAABYhTgBAABWIU4AAIBViBMAAGAV4gQAAFiFOAEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAViFOAACAVRyJk8svv1xdunTRlVde6cTdAwAAizkSJ9OmTdOjjz7qxF0DAADLORInw4YNU0pKihN3DQAALBd2nLz++usaN26csrKy5HK59OyzzzY7xuv1Kjc3V0lJSSouLtamTZsiMVcAABADOoT7G+rq6nTWWWdp8uTJmjBhQrPbly1bpvLycj344IMqLi7WggULNHr0aO3cuVPdu3cPe4INDQ1qaGgIbvt8PkmS3++X3+8Pe7yjaRrH7/fLHW8iMiaO72hr9+N1gDNYAzuwDnZgHSIrnMfRZYxp8U9jl8ullStX6rLLLgvuKy4uVmFhoRYuXChJCgQCys7O1i233KIZM2YEj1u/fr0WLlyop59++rj3MXv2bM2ZM6fZ/qVLlyo5ObmlUwcAAG2ovr5eJSUlqq2tVWpq6nGPDfuZk+M5cuSItmzZopkzZwb3xcXFacSIEdqwYUOLxpw5c6bKy8uD2z6fT9nZ2Ro1atQJv7iT5ff7tWbNGo0cOVJnz10bkTERPnec0R8GB3TX5jg1BFxOT6eZ7bNHOz2FVvfj74WEhASnpxOzWAc7sA6R1fTKx8mIaJwcOHBAjY2NysjICNmfkZGhHTt2BLdHjBihbdu2qa6uTr169dLy5cs1ZMiQo47pdrvldrub7U9ISIj4H5aEhAQ1NNr3QzHWNARcVq5DLP3l1BrfXwgf62AH1iEywnkMIxonJ+vVV1914m4BAEAUiOilxOnp6YqPj1dNTU3I/pqaGmVmZkbyrgAAQDsV0ThJTExUQUGBKioqgvsCgYAqKiqO+bINAADAj4X9ss7hw4e1e/fu4PaePXu0detWde3aVTk5OSovL1dpaakGDx6soqIiLViwQHV1dZo0aVJEJw4AANqnsONk8+bNuuCCC4LbTVfSlJaWasmSJZo4caL279+vWbNmqbq6WoMGDdLq1aubnSQbLq/XK6/Xq8bGxp80DtBSuTNedHoKYftk/linpwAAYQs7ToYNG6YTvTVKWVmZysrKWjypo/F4PPJ4PPL5fEpLS4vo2AAAwB6OfLYOAADAsRAnAADAKsQJAACwCnECAACsQpwAAACrRE2ceL1e5eXlqbCw0OmpAACAVhQ1ceLxeFRVVaXKykqnpwIAAFpR1MQJAACIDcQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKwSNXHCm7ABABAboiZOeBM2AABiQ9TECQAAiA3ECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsEjVxwpuwAQAQG6ImTngTNgAAYkPUxAkAAIgNxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKlETJ7x9PQAAsSFq4oS3rwcAIDZETZwAAIDYQJwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwStTECZ9KDABAbIiaOOFTiQEAiA1REycAACA2ECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKwSNXHi9XqVl5enwsJCp6cCAABaUdTEicfjUVVVlSorK52eCgAAaEVREycAACA2ECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwStTEidfrVV5engoLC52eCgAAaEVREycej0dVVVWqrKx0eioAAKAVRU2cAACA2ECcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKsQJAACwCnECAACsQpwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsIojcbJq1Sr9/Oc/V79+/fTwww87MQUAAGCpDm19hz/88IPKy8u1bt06paWlqaCgQJdffrm6devW1lMBAAAWavNnTjZt2qT8/Hz17NlTnTp10pgxY/TKK6+09TQAAIClwo6T119/XePGjVNWVpZcLpeeffbZZsd4vV7l5uYqKSlJxcXF2rRpU/C2ffv2qWfPnsHtnj176osvvmjZ7AEAQLsT9ss6dXV1OuusszR58mRNmDCh2e3Lli1TeXm5HnzwQRUXF2vBggUaPXq0du7cqe7du4c9wYaGBjU0NAS3fT6fJMnv98vv94c93tE0jeP3++WONxEZE+Fzx5mQ/+KnC/d75MffC3AO62AH1iGywnkcXcaYFv8kcLlcWrlypS677LLgvuLiYhUWFmrhwoWSpEAgoOzsbN1yyy2aMWOG3nrrLd1zzz1auXKlJGn69OkqKipSSUnJUe9j9uzZmjNnTrP9S5cuVXJyckunDgAA2lB9fb1KSkpUW1ur1NTU4x4b0Tg5cuSIkpOT9fTTT4cES2lpqQ4dOqTnnntOP/zwg8444wytX78+eELsW2+9dcwTYo/2zEl2drYOHDhwwi/uZPn9fq1Zs0YjR47U2XPXRmRMhM8dZ/SHwQHdtTlODQGX09NpF7bPHh3W8T/+XkhISGilWeFEWAc7RGIdBsx+OcKzan3h/r1xsnw+n9LT008qTiJ6tc6BAwfU2NiojIyMkP0ZGRnasWPHf++wQwf95S9/0QUXXKBAIKDbb7/9uFfquN1uud3uZvsTEhIi/k2bkJCghkZ+KDqtIeBiHSKkpd8jrfH9hfCxDnb4KesQjX+XtdafuXDGbfNLiSVp/PjxGj9+vBN3DQAALBfRS4nT09MVHx+vmpqakP01NTXKzMyM5F0BAIB2KqJxkpiYqIKCAlVUVAT3BQIBVVRUaMiQIZG8KwAA0E6F/bLO4cOHtXv37uD2nj17tHXrVnXt2lU5OTkqLy9XaWmpBg8erKKiIi1YsEB1dXWaNGlSRCcOAADap7DjZPPmzbrggguC2+Xl5ZL+e0XOkiVLNHHiRO3fv1+zZs1SdXW1Bg0apNWrVzc7STZcXq9XXq9XjY2NP2kcAABgt7DjZNiwYTrR1cdlZWUqKytr8aSOxuPxyOPxyOfzKS0tLaJjAwAAezjyqcQAAADHQpwAAACrECcAAMAqxAkAALAKcQIAAKwSNXHi9XqVl5enwsJCp6cCAABaUdTEicfjUVVVlSorK52eCgAAaEWOfPDfT9H0His+ny9iY/r9ftXX18vn8ynQUB+xcRGexnij+vpGNTbEKxCFn+Rpo3C/T378vcCn4TqHdbBDJNYhGn+mRPLn69HGPdF7pUmSy5zMURb5/PPPlZ2d7fQ0AABAC+zdu1e9evU67jFRFyeBQED79u1TSkqKXK7I/Ova5/MpOztbe/fuVWpqakTGRPhYB+exBnZgHezAOkSWMUbffvutsrKyFBd3/LNKou5lnbi4uBMWV0ulpqbyB9ACrIPzWAM7sA52YB0i52Q/fiZqTogFAACxgTgBAABWIU4kud1u3X333XK73U5PJaaxDs5jDezAOtiBdXBO1J0QCwAA2jeeOQEAAFYhTgAAgFWIEwAAYBXiBAAAWIU4AQAAVon5OPF6vcrNzVVSUpKKi4u1adMmp6fUrs2bN0+FhYVKSUlR9+7dddlll2nnzp0hx3z//ffyeDzq1q2bOnXqpCuuuEI1NTUOzbj9mz9/vlwul6ZPnx7cxxq0jS+++ELXXXedunXrpo4dO+rMM8/U5s2bg7cbYzRr1iz16NFDHTt21IgRI7Rr1y4HZ9z+NDY26q677lKfPn3UsWNH9e3bV3/4wx9CPpyOdXCAiWFPPvmkSUxMNI888oj54IMPzJQpU0znzp1NTU2N01Nrt0aPHm0WL15stm/fbrZu3Wouvvhik5OTYw4fPhw85uabbzbZ2dmmoqLCbN682Zxzzjnm3HPPdXDW7demTZtMbm6uGThwoJk2bVpwP2vQ+g4ePGh69+5tbrzxRrNx40bz8ccfm5dfftns3r07eMz8+fNNWlqaefbZZ822bdvM+PHjTZ8+fcx3333n4Mzbl7lz55pu3bqZVatWmT179pjly5ebTp06mfvuuy94DOvQ9mI6ToqKiozH4wluNzY2mqysLDNv3jwHZxVbvvrqKyPJvPbaa8YYYw4dOmQSEhLM8uXLg8d8+OGHRpLZsGGDU9Nsl7799lvTr18/s2bNGjN06NBgnLAGbeOOO+4w559//jFvDwQCJjMz09xzzz3BfYcOHTJut9s88cQTbTHFmDB27FgzefLkkH0TJkww1157rTGGdXBKzL6sc+TIEW3ZskUjRowI7ouLi9OIESO0YcMGB2cWW2prayVJXbt2lSRt2bJFfr8/ZF369++vnJwc1iXCPB6Pxo4dG/JYS6xBW3n++ec1ePBgXXXVVerevbvOPvtsPfTQQ8Hb9+zZo+rq6pB1SEtLU3FxMesQQeeee64qKir00UcfSZK2bdumN954Q2PGjJHEOjgl6j6VOFIOHDigxsZGZWRkhOzPyMjQjh07HJpVbAkEApo+fbrOO+88DRgwQJJUXV2txMREde7cOeTYjIwMVVdXOzDL9unJJ5/UO++8o8rKyma3sQZt4+OPP9bf/vY3lZeX6/e//70qKyt16623KjExUaWlpcHH+mh/R7EOkTNjxgz5fD71799f8fHxamxs1Ny5c3XttddKEuvgkJiNEzjP4/Fo+/bteuONN5yeSkzZu3evpk2bpjVr1igpKcnp6cSsQCCgwYMH649//KMk6eyzz9b27dv14IMPqrS01OHZxY6nnnpKjz/+uJYuXar8/Hxt3bpV06dPV1ZWFuvgoJh9WSc9PV3x8fHNrkCoqalRZmamQ7OKHWVlZVq1apXWrVunXr16BfdnZmbqyJEjOnToUMjxrEvkbNmyRV999ZV+8YtfqEOHDurQoYNee+013X///erQoYMyMjJYgzbQo0cP5eXlhew744wz9Nlnn0lS8LHm76jWddttt2nGjBm65pprdOaZZ+r666/Xb3/7W82bN08S6+CUmI2TxMREFRQUqKKiIrgvEAiooqJCQ4YMcXBm7ZsxRmVlZVq5cqXWrl2rPn36hNxeUFCghISEkHXZuXOnPvvsM9YlQoYPH673339fW7duDf4aPHiwrr322uD/swat77zzzmt2Gf1HH32k3r17S5L69OmjzMzMkHXw+XzauHEj6xBB9fX1iosL/VEYHx+vQCAgiXVwjNNn5DrpySefNG632yxZssRUVVWZX//616Zz586murra6am1W7/5zW9MWlqaWb9+vfnyyy+Dv+rr64PH3HzzzSYnJ8esXbvWbN682QwZMsQMGTLEwVm3fz++WscY1qAtbNq0yXTo0MHMnTvX7Nq1yzz++OMmOTnZPPbYY8Fj5s+fbzp37myee+45895775lLL72US1gjrLS01PTs2TN4KfEzzzxj0tPTze233x48hnVoezEdJ8YY88ADD5icnByTmJhoioqKzNtvv+30lNo1SUf9tXjx4uAx3333nZk6darp0qWLSU5ONpdffrn58ssvnZt0DPjfOGEN2sYLL7xgBgwYYNxut+nfv79ZtGhRyO2BQMDcddddJiMjw7jdbjN8+HCzc+dOh2bbPvl8PjNt2jSTk5NjkpKSzM9+9jNz5513moaGhuAxrEPbcxnzo7fBAwAAcFjMnnMCAADsRJwAAACrECcAAMAqxAkAALAKcQIAAKxCnAAAAKsQJwAAwCrECQAAsApxAgAArEKcAAAAqxAnAADAKv8Pk6E2Ks3I3rgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGzCAYAAAABsTylAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJgBJREFUeJzt3Xt01PWd//HX5DZJhCTQkIRAaHRBNFwrJGm6WrAGUmSxqBzi5XSzuMeuMvFo08vC7krC7tkDB7WHrh0vu57KXmqJcgrtVgVCEFgpSkC5xAArSpUKJCBCQsAQZj6/P9zMjzEgmTCZ+Xwzz8c5nON855vv9zNvJuHpZC4uY4wRAACAheKivQAAAIDLIVQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUgBhTU1Mjl8vVo31dLpdqamr6dkFh0nW7Tpw4Ee2lAAgjQgUAAFgrIdoLAGCvc+fOKSGBHxMAoodHVAAE8fv9+vzzzyVJycnJhAqAqCJUgH7szTffVGFhoZKTk/Vnf/Znev7557vt43K5VFlZqV/96lcaM2aM3G631q5dG7iu6zkqq1atksvl0ubNm7sd4/nnn5fL5VJjY2Ng2/79+zVnzhwNHjxYycnJmjx5sn73u98Ffd2KFSvkcrm0detWVVVVaciQIbrmmmt055136vjx41d9+z/66CONHDlSY8eOVXNzsyRp6tSpGjt2rPbs2aMpU6YoNTVVI0eO1KpVqyRJmzdvVnFxsVJSUjR69Ght2LAh6JhtbW167LHHlJ+fL7fbraysLE2bNk3vvPPOVa8XQHeECtBP7d27V9OnT1dLS4tqamo0b948VVdXa/Xq1d323bhxo374wx+qvLxcP//5z5Wfn99tn5kzZ2rAgAF6+eWXu11XW1urMWPGaOzYsZKk9957T9/85je1b98+LViwQE899ZSuueYazZ49+5Lnf+SRR7R7925VV1fr4Ycf1n//93+rsrLyqm7/Bx98oG9/+9saOHCgNm3apOzs7MB1n332mf7iL/5CxcXFWrZsmdxut+655x7V1tbqnnvu0e23366lS5eqvb1dc+bMUVtbW+BrH3roIT377LO6++679cwzz+jHP/6xUlJStG/fvqtaL4DLMAD6pdmzZ5vk5GTz0UcfBbY1NTWZ+Ph4c/G3viQTFxdn3nvvvW7HkGSqq6sDl++9916TlZVlLly4ENh29OhRExcXZ/7xH/8xsO22224z48aNM59//nlgm9/vN9/61rfMqFGjAttefPFFI8mUlpYav98f2P7DH/7QxMfHm1OnTvX49lZXVxtJ5vjx42bfvn0mNzfXFBYWmpMnTwbtN2XKFCPJvPTSS4Ft+/fvD8zhrbfeCmxft26dkWRefPHFwLb09HTj8Xh6vC4AV4dHVIB+yOfzad26dZo9e7ZGjBgR2H7jjTeqrKys2/5TpkxRQUHBFY9bXl6ulpYWbdq0KbBt1apV8vv9Ki8vlySdPHlSGzdu1Ny5c9XW1qYTJ07oxIkT+vTTT1VWVqb3339fn3zySdBxf/CDHwS9ZPqWW26Rz+fTRx99FOpNV2Njo6ZMmaL8/Hxt2LBBgwYN6rbPgAEDdM899wQujx49WhkZGbrxxhtVXFwc2N713x9++GFgW0ZGht5++20dOXIk5LUBCB2hAvRDx48f17lz5zRq1Khu140ePbrbtmuvvbZHx/3ud7+r9PR01dbWBrbV1tZq4sSJuv766yVJBw8elDFGjz/+uIYMGRL0p7q6WpLU0tISdNyLY0pSIC4+++yzHq3rYrNmzdLAgQO1bt06paWlXXKf4cOHd3svmfT0dOXl5XXb9uV1LFu2TI2NjcrLy1NRUZFqamqCQgZAeBEqAJSSktKj/dxud+B5JhcuXNAnn3yirVu3Bh5Nkb541ZAk/fjHP1ZdXd0l/4wcOTLouPHx8Zc8nzEm5Nty991364MPPtCvfvWry+5zufP1ZB1z587Vhx9+qKefflq5ubl64oknNGbMGL3++ushrxXAlfG6Q6AfGjJkiFJSUvT+++93u+7AgQNXdezy8nL9+7//u+rr67Vv3z4ZY4JC5brrrpMkJSYmqrS09KrO1RtPPPGEEhISNH/+fA0cOFD33Xdf2M8xdOhQzZ8/X/Pnz1dLS4tuuukm/fM//7NmzJgR9nMBsY5HVIB+KD4+XmVlZVqzZo0+/vjjwPZ9+/Zp3bp1V3Xs0tJSDR48WLW1taqtrVVRUVHQr46ysrI0depUPf/88zp69Gi3rw/Hy46/isvl0r/+679qzpw5qqio6PaS6Kvh8/l0+vTpoG1ZWVnKzc1VR0dH2M4D4P/jERWgn1q8eLHWrl2rW265RfPnz9eFCxf09NNPa8yYMdqzZ0+vj5uYmKi77rpLK1euVHt7u5588slu+3i9Xt18880aN26cHnzwQV133XVqbm7Wtm3b9Kc//Um7d+++mpt2RXFxcfqv//ovzZ49W3PnztVrr72m73znO1d93La2Ng0fPlxz5szRhAkTNGDAAG3YsEENDQ166qmnwrByAF9GqAD91Pjx47Vu3TpVVVVp0aJFGj58uBYvXqyjR49eVahIX/z654UXXpDL5dLcuXO7XV9QUKAdO3Zo8eLFWrFihT799FNlZWXpG9/4hhYtWnRV5+6pxMRErVq1SjNmzND3vvc9bdiwIegVPb2Rmpqq+fPna/369frNb34jv9+vkSNH6plnntHDDz8cppUDuJjL9ObZagAAABHAc1QAAIC1+NUPAKudOXNGZ86c+cp9hgwZctmXFgNwNkIFgNWefPJJLV68+Cv3OXTo0CU/nwiA8/EcFQBW+/DDD6/4zq8333yzkpOTI7QiAJFEqAAAAGvxZFoAAGAtxz1Hxe/368iRIxo4cGC3DxUDAAB2Msaora1Nubm5iovr+eMkjguVI0eOdPuEUwAA4AyHDx/W8OHDe7y/40Jl4MCBkr64oZf7CPfe6Ozs1Pr16zV9+nQlJiaG7bgIxpwjh1lHBnOODOYcGX0559bWVuXl5QX+He8px4SK1+uV1+uVz+eTJKWlpYU9VFJTU5WWlsY3QR9izpHDrCODOUcGc46MSMw51KdtOObJtB6PR01NTWpoaIj2UgAAQIQ4JlQAAEDsIVQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYyzGfnhwpY2vWqcMX2ic7Rtsfl86M9hIAAOgTPKICAACsRagAAABrESoAAMBahAoAALAWoQIAAKxFqAAAAGsRKgAAwFqECgAAsBahAgAArEWoAAAAazkmVLxerwoKClRYWBjtpQAAgAhxTKh4PB41NTWpoaEh2ksBAAAR4phQAQAAsYdQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUiHiqHDx/W1KlTVVBQoPHjx+uVV16J9BIAAIBDJET8hAkJWr58uSZOnKhjx45p0qRJuv3223XNNddEeikAAMByEQ+VoUOHaujQoZKknJwcZWZm6uTJk4QKAADoJuRf/WzZskWzZs1Sbm6uXC6X1qxZ020fr9er/Px8JScnq7i4WNu3b7/ksXbu3Cmfz6e8vLyQFw4AAPq/kB9RaW9v14QJE/TAAw/orrvu6nZ9bW2tqqqq9Nxzz6m4uFjLly9XWVmZDhw4oKysrMB+J0+e1F/+5V/q3/7t377yfB0dHero6Ahcbm1tlSR1dnaqs7Mz1OVfVtex3HEmbMeMlHDOoa91rdVJa3YqZh0ZzDkymHNk9OWce3tMlzGm1/8yu1wurV69WrNnzw5sKy4uVmFhoX7xi19Ikvx+v/Ly8vTII49owYIFkr6Ij2nTpunBBx/U97///a88R01NjRYvXtxt+0svvaTU1NTeLh0AAETQ2bNndd999+n06dNKS0vr8deF9Tkq58+f186dO7Vw4cLAtri4OJWWlmrbtm2SJGOM/uqv/krf+c53rhgpkrRw4UJVVVUFLre2tiovL0/Tp08P6YZeSWdnp+rq6vT4jjh1+F1hO24kNNaURXsJPdY152nTpikxMTHay+nXmHVkMOfIYM6R0Zdz7vqNSKjCGionTpyQz+dTdnZ20Pbs7Gzt379fkrR161bV1tZq/Pjxgee3/Od//qfGjRt3yWO63W653e5u2xMTE/vkztrhd6nD56xQceI3bV/9/aE7Zh0ZzDkymHNk9MWce3u8iL/q5+abb5bf74/0aQEAgAOF9Q3fMjMzFR8fr+bm5qDtzc3NysnJCeepAABADAhrqCQlJWnSpEmqr68PbPP7/aqvr1dJSUk4TwUAAGJAyL/6OXPmjA4ePBi4fOjQIe3atUuDBw/WiBEjVFVVpYqKCk2ePFlFRUVavny52tvbNW/evLAuHAAA9H8hh8qOHTt06623Bi53vSKnoqJCK1asUHl5uY4fP65Fixbp2LFjmjhxotauXdvtCbah8nq98nq98vl8V3UcAADgHCGHytSpU3Wlt16prKxUZWVlrxd1KR6PRx6PR62trUpPTw/rsQEAgJ0i/unJAAAAPUWoAAAAaxEqAADAWoQKAACwFqECAACs5ZhQ8Xq9KigoUGFhYbSXAgAAIsQxoeLxeNTU1KSGhoZoLwUAAESIY0IFAADEHkIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFjLMaHC+6gAABB7HBMqvI8KAACxxzGhAgAAYg+hAgAArEWoAAAAaxEqAADAWoQKAACwFqECAACsRagAAABrESoAAMBajgkV3pkWAIDY45hQ4Z1pAQCIPY4JFQAAEHsSor0AXL38Ba9Gewk95o43WlYU7VUAAJyCR1QAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWMsxocJb6AMAEHscEyq8hT4AALHHMaECAABiD6ECAACsRagAAABrESoAAMBahAoAALAWoQIAAKxFqAAAAGsRKgAAwFqECgAAsBahAgAArEWoAAAAaxEqAADAWo4JFT49GQCA2OOYUOHTkwEAiD2OCRUAABB7CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFjLMaHi9XpVUFCgwsLCaC8FAABEiGNCxePxqKmpSQ0NDdFeCgAAiBDHhAoAAIg9hAoAALAWoQIAAKxFqAAAAGsRKgAAwFqECgAAsBahAgAArEWoAAAAaxEqAADAWoQKAACwFqECAACsRagAAABrESoAAMBahAoAALAWoQIAAKxFqAAAAGsRKgAAwFqECgAAsBahAgAArEWoAAAAaxEqAADAWoQKAACwFqECAACs5ZhQ8Xq9KigoUGFhYbSXAgAAIsQxoeLxeNTU1KSGhoZoLwUAAESIY0IFAADEHkIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1opKqNx5550aNGiQ5syZE43TAwAAh4hKqDz66KP6j//4j2icGgAAOEhUQmXq1KkaOHBgNE4NAAAcJORQ2bJli2bNmqXc3Fy5XC6tWbOm2z5er1f5+flKTk5WcXGxtm/fHo61AgCAGBNyqLS3t2vChAnyer2XvL62tlZVVVWqrq7WO++8owkTJqisrEwtLS1XvVgAABBbEkL9ghkzZmjGjBmXvf5nP/uZHnzwQc2bN0+S9Nxzz+nVV1/VL3/5Sy1YsCDkBXZ0dKijoyNwubW1VZLU2dmpzs7OkI93OV3HcseZsB0T3XXNN5x/d7i0rhkz677FnCODOUdGX865t8cMOVS+yvnz57Vz504tXLgwsC0uLk6lpaXatm1br465ZMkSLV68uNv29evXKzU1tddrvZx/muwP+zHRXV1dXbSXEDOYdWQw58hgzpHRF3M+e/Zsr74urKFy4sQJ+Xw+ZWdnB23Pzs7W/v37A5dLS0u1e/dutbe3a/jw4XrllVdUUlJyyWMuXLhQVVVVgcutra3Ky8vT9OnTlZaWFra1d3Z2qq6uTo/viFOH3xW24yKYO87onyb7NW3aNCUmJkZ7Of1a132aWfct5hwZzDky+nLOXb8RCVVYQ6WnNmzY0ON93W633G53t+2JiYl9cmft8LvU4SNU+lpf/f2hO2YdGcw5MphzZPTFnHt7vLC+PDkzM1Px8fFqbm4O2t7c3KycnJxwngoAAMSAsIZKUlKSJk2apPr6+sA2v9+v+vr6y/5qBwAA4HJC/tXPmTNndPDgwcDlQ4cOadeuXRo8eLBGjBihqqoqVVRUaPLkySoqKtLy5cvV3t4eeBUQAABAT4UcKjt27NCtt94auNz1RNeKigqtWLFC5eXlOn78uBYtWqRjx45p4sSJWrt2bbcn2IbK6/XK6/XK5/Nd1XEAAIBzhBwqU6dOlTFf/V4jlZWVqqys7PWiLsXj8cjj8ai1tVXp6elhPTYAALBTVD7rBwAAoCcIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLceEitfrVUFBgQoLC6O9FAAAECGOCRWPx6OmpiY1NDREeykAACBCHBMqAAAg9hAqAADAWoQKAACwFqECAACsRagAAABrESoAAMBajgkV3kcFAIDY45hQ4X1UAACIPY4JFQAAEHsIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYyzGhwhu+AQAQexwTKrzhGwAAsccxoQIAAGIPoQIAAKxFqAAAAGsRKgAAwFqECgAAsBahAgAArEWoAAAAaxEqAADAWoQKAACwFqECAACslRDtBfSU1+uV1+uVz+eL9lIQBmNr1qnD54r2MkLyx6Uzo70EAIg5jnlEhc/6AQAg9jgmVAAAQOwhVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtx4SK1+tVQUGBCgsLo70UAAAQIY4JFT6UEACA2OOYUAEAALGHUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC3HhIrX61VBQYEKCwujvRQAABAhjgkVj8ejpqYmNTQ0RHspAAAgQhwTKgAAIPYQKgAAwFqECgAAsBahAgAArEWoAAAAaxEqAADAWoQKAACwFqECAACsRagAAABrESoAAMBahAoAALAWoQIAAKxFqAAAAGsRKgAAwFqECgAAsBahAgAArEWoAAAAaxEqAADAWoQKAACwFqECAACsRagAAABrESoAAMBahAoAALCWY0LF6/WqoKBAhYWF0V4KAACIEMeEisfjUVNTkxoaGqK9FAAAECGOCRUAABB7CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLUIFQAAYC1CBQAAWItQAQAA1iJUAACAtQgVAABgLUIFAABYKyqh8vvf/16jR4/WqFGj9MILL0RjCQAAwAESIn3CCxcuqKqqSm+88YbS09M1adIk3Xnnnfra174W6aUAAADLRfwRle3bt2vMmDEaNmyYBgwYoBkzZmj9+vWRXgYAAHCAkENly5YtmjVrlnJzc+VyubRmzZpu+3i9XuXn5ys5OVnFxcXavn174LojR45o2LBhgcvDhg3TJ5980rvVAwCAfi3kX/20t7drwoQJeuCBB3TXXXd1u762tlZVVVV67rnnVFxcrOXLl6usrEwHDhxQVlZWyAvs6OhQR0dH4HJra6skqbOzU52dnSEf73K6juWOM2E7Jrrrmq8T5xzO+1skdK3Xaet2GuYcGcw5Mvpyzr09pssY0+t/MVwul1avXq3Zs2cHthUXF6uwsFC/+MUvJEl+v195eXl65JFHtGDBAv3hD3/QE088odWrV0uSHnvsMRUVFem+++675Dlqamq0ePHibttfeuklpaam9nbpAAAggs6ePav77rtPp0+fVlpaWo+/Lqyhcv78eaWmpmrVqlVB8VJRUaFTp07pt7/9rS5cuKAbb7xRmzZtCjyZ9g9/+MNln0x7qUdU8vLydOLEiZBu6JV0dnaqrq5Oj++IU4ffFbbjIpg7zuifJvuZcwQ4ddaNNWXRXkJIun52TJs2TYmJidFeTr/l1DmPrVkX7SWEpOvnRl/MubW1VZmZmSGHSlhf9XPixAn5fD5lZ2cHbc/Oztb+/fu/OGFCgp566indeuut8vv9+ulPf/qVr/hxu91yu93dticmJvbJnbXD71KHzzk/1J2KOUeO02btpH+ELtZXP5MQzGlzdtL33sX6Ys69PV7EX54sSXfccYfuuOOOaJwaAAA4SFhfnpyZman4+Hg1NzcHbW9ublZOTk44TwUAAGJAWEMlKSlJkyZNUn19fWCb3+9XfX29SkpKwnkqAAAQA0L+1c+ZM2d08ODBwOVDhw5p165dGjx4sEaMGKGqqipVVFRo8uTJKioq0vLly9Xe3q558+aFdeEAAKD/CzlUduzYoVtvvTVwuaqqStIXr+xZsWKFysvLdfz4cS1atEjHjh3TxIkTtXbt2m5PsA2V1+uV1+uVz+e7quMAAADnCDlUpk6dqiu9ormyslKVlZW9XtSleDweeTwetba2Kj09PazHBgAAdorKpycDAAD0BKECAACsRagAAABrESoAAMBahAoAALCWY0LF6/WqoKBAhYWF0V4KAACIEMeEisfjUVNTkxoaGqK9FAAAECFR+VDCq9H1Hi6tra1hPW5nZ6fOnj0rX0e8/A79tEsn8MUbnT3rY84R4NRZh/t7u691/exobW111Kf6Oo1T5+zvOBvtJYSk6+dGX8y563v7Su/F9mUuE+pXRNmf/vQn5eXlRXsZAACgFw4fPqzhw4f3eH/HhYrf79eRI0c0cOBAuVzh+7/E1tZW5eXl6fDhw0pLSwvbcRGMOUcOs44M5hwZzDky+nLOxhi1tbUpNzdXcXE9f+aJ4371ExcXF1KJhSotLY1vgghgzpHDrCODOUcGc46Mvppzbz4CxzFPpgUAALGHUAEAANYiVP6P2+1WdXW13G53tJfSrzHnyGHWkcGcI4M5R4aNc3bck2kBAEDs4BEVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQuX/eL1e5efnKzk5WcXFxdq+fXu0lxQ1W7Zs0axZs5SbmyuXy6U1a9YEXW+M0aJFizR06FClpKSotLRU77//ftA+J0+e1P3336+0tDRlZGTor//6r3XmzJmgffbs2aNbbrlFycnJysvL07Jly7qt5ZVXXtENN9yg5ORkjRs3Tq+99lrIa7HRkiVLVFhYqIEDByorK0uzZ8/WgQMHgvb5/PPP5fF49LWvfU0DBgzQ3Xffrebm5qB9Pv74Y82cOVOpqanKysrST37yE124cCFon02bNummm26S2+3WyJEjtWLFim7rudL9vydrsdWzzz6r8ePHB95ps6SkRK+//nrgeubcN5YuXSqXy6XHHnsssI1ZX72amhq5XK6gPzfccEPg+n45YwOzcuVKk5SUZH75y1+a9957zzz44IMmIyPDNDc3R3tpUfHaa6+Zv//7vze/+c1vjCSzevXqoOuXLl1q0tPTzZo1a8zu3bvNHXfcYa699lpz7ty5wD7f/e53zYQJE8xbb71l/ud//seMHDnS3HvvvYHrT58+bbKzs839999vGhsbza9//WuTkpJinn/++cA+W7duNfHx8WbZsmWmqanJ/MM//INJTEw0e/fuDWktNiorKzMvvviiaWxsNLt27TK33367GTFihDlz5kxgn4ceesjk5eWZ+vp6s2PHDvPNb37TfOtb3wpcf+HCBTN27FhTWlpq3n33XfPaa6+ZzMxMs3DhwsA+H374oUlNTTVVVVWmqanJPP300yY+Pt6sXbs2sE9P7v9XWovNfve735lXX33V/O///q85cOCA+bu/+zuTmJhoGhsbjTHMuS9s377d5Ofnm/Hjx5tHH300sJ1ZX73q6mozZswYc/To0cCf48ePB67vjzMmVIwxRUVFxuPxBC77fD6Tm5trlixZEsVV2eHLoeL3+01OTo554oknAttOnTpl3G63+fWvf22MMaapqclIMg0NDYF9Xn/9deNyucwnn3xijDHmmWeeMYMGDTIdHR2Bff72b//WjB49OnB57ty5ZubMmUHrKS4uNn/zN3/T47U4RUtLi5FkNm/ebIz54nYkJiaaV155JbDPvn37jCSzbds2Y8wXQRkXF2eOHTsW2OfZZ581aWlpgbn+9Kc/NWPGjAk6V3l5uSkrKwtcvtL9vydrcZpBgwaZF154gTn3gba2NjNq1ChTV1dnpkyZEggVZh0e1dXVZsKECZe8rr/OOOZ/9XP+/Hnt3LlTpaWlgW1xcXEqLS3Vtm3borgyOx06dEjHjh0Lmld6erqKi4sD89q2bZsyMjI0efLkwD6lpaWKi4vT22+/Hdjn29/+tpKSkgL7lJWV6cCBA/rss88C+1x8nq59us7Tk7U4xenTpyVJgwcPliTt3LlTnZ2dQbfthhtu0IgRI4LmPG7cOGVnZwf2KSsrU2trq957773APl81w57c/3uyFqfw+XxauXKl2tvbVVJSwpz7gMfj0cyZM7vNg1mHz/vvv6/c3Fxdd911uv/++/Xxxx9L6r8zjvlQOXHihHw+X9BfmiRlZ2fr2LFjUVqVvbpm8lXzOnbsmLKysoKuT0hI0ODBg4P2udQxLj7H5fa5+PorrcUJ/H6/HnvsMf35n/+5xo4dK+mL25aUlKSMjIygfb98+3s7w9bWVp07d65H9/+erMV2e/fu1YABA+R2u/XQQw9p9erVKigoYM5htnLlSr3zzjtasmRJt+uYdXgUFxdrxYoVWrt2rZ599lkdOnRIt9xyi9ra2vrtjBNC2htA2Hk8HjU2NurNN9+M9lL6rdGjR2vXrl06ffq0Vq1apYqKCm3evDnay+pXDh8+rEcffVR1dXVKTk6O9nL6rRkzZgT+e/z48SouLtbXv/51vfzyy0pJSYniyvpOzD+ikpmZqfj4+G7PRG5ublZOTk6UVmWvrpl81bxycnLU0tISdP2FCxd08uTJoH0udYyLz3G5fS6+/kprsV1lZaV+//vf64033tDw4cMD23NycnT+/HmdOnUqaP8v3/7ezjAtLU0pKSk9uv/3ZC22S0pK0siRIzVp0iQtWbJEEyZM0M9//nPmHEY7d+5US0uLbrrpJiUkJCghIUGbN2/Wv/zLvyghIUHZ2dnMug9kZGTo+uuv18GDB/vt/TnmQyUpKUmTJk1SfX19YJvf71d9fb1KSkqiuDI7XXvttcrJyQmaV2trq95+++3AvEpKSnTq1Cnt3LkzsM/GjRvl9/tVXFwc2GfLli3q7OwM7FNXV6fRo0dr0KBBgX0uPk/XPl3n6clabGWMUWVlpVavXq2NGzfq2muvDbp+0qRJSkxMDLptBw4c0Mcffxw057179wZFYV1dndLS0lRQUBDY56tm2JP7f0/W4jR+v18dHR3MOYxuu+027d27V7t27Qr8mTx5su6///7AfzPr8Dtz5ow++OADDR06tP/en0N66m0/tXLlSuN2u82KFStMU1OT+cEPfmAyMjKCnhUdS9ra2sy7775r3n33XSPJ/OxnPzPvvvuu+eijj4wxX7wkOCMjw/z2t781e/bsMd/73vcu+fLkb3zjG+btt982b775phk1alTQy5NPnTplsrOzzfe//33T2NhoVq5caVJTU7u9PDkhIcE8+eSTZt++faa6uvqSL0++0lps9PDDD5v09HSzadOmoJcZnj17NrDPQw89ZEaMGGE2btxoduzYYUpKSkxJSUng+q6XGU6fPt3s2rXLrF271gwZMuSSLzP8yU9+Yvbt22e8Xu8lX2Z4pfv/ldZiswULFpjNmzebQ4cOmT179pgFCxYYl8tl1q9fb4xhzn3p4lf9GMOsw+FHP/qR2bRpkzl06JDZunWrKS0tNZmZmaalpcUY0z9nTKj8n6efftqMGDHCJCUlmaKiIvPWW29Fe0lR88YbbxhJ3f5UVFQYY754WfDjjz9usrOzjdvtNrfddps5cOBA0DE+/fRTc++995oBAwaYtLQ0M2/ePNPW1ha0z+7du83NN99s3G63GTZsmFm6dGm3tbz88svm+uuvN0lJSWbMmDHm1VdfDbq+J2ux0aXmK8m8+OKLgX3OnTtn5s+fbwYNGmRSU1PNnXfeaY4ePRp0nD/+8Y9mxowZJiUlxWRmZpof/ehHprOzM2ifN954w0ycONEkJSWZ6667LugcXa50/+/JWmz1wAMPmK9//esmKSnJDBkyxNx2222BSDGGOfelL4cKs7565eXlZujQoSYpKckMGzbMlJeXm4MHDwau748zdhljTGiPwQAAAERGzD9HBQAA2ItQAQAA1iJUAACAtQgVAABgLUIFAABYi1ABAADWIlQAAIC1CBUAAGAtQgUAAFiLUAEAANYiVAAAgLX+H/mu6lj3TQarAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for column, series in df_orig[list(numeric_columns_orig)].items():\n", " _fig, _ax = matplotlib.pyplot.subplots()\n", " _ax.set_title(str(column))\n", " #_ax.set_xscale('symlog')\n", " _ax.set_yscale('log')\n", " _ax.grid(True)\n", " _ = _ax.hist(series, bins=iis_project.plotting_utils.suggest_bins_num(len(series)))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGzCAYAAAAbjdwrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIV5JREFUeJzt3Xl0VPX9//HXJGSBbBADhCVsAYQgmyGgYL8sBQMqi5bFNUFbweMgeIC2pBUMINKqxWgd3HqAKqAUFU5PURAjKAdpjShLDdCAiaLsIkRAQpj5/P7wxxxjAhKccD8zeT7O4Xjm3jt33hMv4ZmZeycuY4wRAACABcKcHgAAAOAcwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEqOUKCgrUu3dvxcTEyOVyacuWLQF/jH79+qlfv34B3y+A0FPH6QEAOKe8vFyjRo1SdHS0nnzySdWrV08tW7Z0eixJ0vz581WvXj2NHTvW6VEAXEaECVCL7dmzR59//rlefPFF/eY3v3F6nArmz5+vpKQkwgSoZXgrB6jFDh06JEmqX7++s4MAwP9HmAC11NixY9W3b19J0qhRo+RyufznglR1PsjYsWPVqlWrCst8Pp/y8vLUqVMnRUdHq3Hjxho/fry++eabnzVbq1at9Omnn+q9996Ty+Xyz/bZZ5/J5XLpySefrHSfDz74QC6XS6+88ookKTc3Vy6XSzt37tTo0aMVHx+vK664QpMmTdLp06cr3X/x4sVKT09X3bp1lZiYqFtvvVV79+79Wc8DQPURJkAtNX78eP3hD3+QJE2cOFEvv/yy/vjHP1Z7H7/97W/Vp08fPfXUU7r77ru1ZMkSZWZmqry8/JJny8vLU/PmzdWhQwe9/PLL/tnatGmjPn36aMmSJZXus2TJEsXFxWn48OEVlo8ePVqnT5/W3LlzdcMNN+jpp5/WuHHjKmwzZ84cZWVlqV27dpo3b54efPBB5efn6//+7/907NixS34eAC6BAVBrrVu3zkgyy5cv9y/r27ev6du3b6Vts7OzTcuWLf23N2zYYCSZJUuWVNhu9erVlZafb58X0qlTpyrv8/zzzxtJZseOHf5lZ86cMUlJSSY7O9u/7OGHHzaSzLBhwyrc//777zeSzNatW40xxpSUlJjw8HAzZ86cCttt377d1KlTp9JyADWLV0wAXJLly5crISFBgwYN0pEjR/x/0tPTFRsbq3Xr1tXI444ePVrR0dEVXjVZs2aNjhw5ojvvvLPS9m63u8LtBx54QJL05ptvSpLeeOMN+Xw+jR49usLzSE5OVrt27WrseQCoGlflALgkRUVFOn78uBo1alTl+nMn1gZa/fr1NXToUC1dulSzZ8+W9P3bOM2aNdOAAQMqbd+uXbsKt1NTUxUWFqaSkhJJ3z8PY0yl7c6JiIgI7BMAcEGECYAKXC6XjDGVlnu93gq3fT6fGjVqVOX5HpLUsGHDGplPkrKysrR8+XJ98MEH6ty5s/75z3/q/vvvV1jYT78I7HK5Ktz2+XxyuVx66623FB4eXmn72NjYgM0N4KcRJgAqaNCggT777LNKyz///PMKt1NTU/XOO++oT58+qlu3bsDn+HFA/NDgwYPVsGFDLVmyRL169dKpU6d01113VbltUVGRWrdu7b+9e/du+Xw+/xVGqampMsaodevWat++fUCfA4Dq4xwTABWkpqZq586dOnz4sH/Z1q1btXHjxgrbjR49Wl6v1/92yg+dPXv2Z1/NEhMTc9591KlTR7fddpv+8Y9/aNGiRercubO6dOlS5bYej6fC7b/+9a+SpCFDhkiSbrnlFoWHh2vmzJmVXikyxujrr7/+Wc8DQPXwigmACu655x7NmzdPmZmZ+vWvf61Dhw7pueeeU6dOnVRaWurfrm/fvho/frzmzp2rLVu26Prrr1dERISKioq0fPlyPfXUUxo5cuQlz5Genq5nn31WjzzyiNq2batGjRpVOIckKytLTz/9tNatW6c///nP591PcXGxhg0bpsGDB2vTpk1avHixbr/9dnXt2lXS9yH2yCOPKCcnRyUlJRoxYoTi4uJUXFysFStWaNy4cZo6deolPw8A1eToNUEAHFXV5cLGGLN48WLTpk0bExkZabp162bWrFlT6XLhc1544QWTnp5u6tata+Li4kznzp3N7373O7Nv3z7/NpdyufCBAwfMjTfeaOLi4oykKu/fqVMnExYWZr788stK685dLlxYWGhGjhxp4uLiTIMGDcyECRPMd999V2n7119/3Vx33XUmJibGxMTEmA4dOhi322127dpVrbkB/DwuY6o4yw0AgkD37t2VmJio/Pz8Sutyc3M1c+ZMHT58WElJSQ5MB+BScI4JgKD00UcfacuWLcrKynJ6FAABxDkmAC6rw4cPV7r0+IciIyOVmJh43vX//e9/tXnzZv3lL39RkyZNNGbMmJoYE4BDCBMAl1VGRkalS49/qG/fvlq/fv1517/22muaNWuWrrzySr3yyiuKjo6ugSkBOIVzTABcVhs3btR333133vUNGjRQenr6ZZwIgE0IEwAAYA1OfgUAANYIunNMfD6f9u3bp7i4uAt+ZDUAALCHMUbffvutmjZtesHfaxV0YbJv3z6lpKQ4PQYAALgEe/fuVfPmzc+7PmjCxOPxyOPx6OzZs5K+f2Lx8fEOTxVaysvL9fbbb/s/Why43DgG4TSOwZpTWlqqlJQUxcXFXXC7oAkTt9stt9ut0tJSJSQkKD4+njAJsPLyctWrV0/x8fH8hYQjOAbhNI7BmvdTp2Fw8isAALAGYQIAAKxBmAAAAGsQJgAAwBqECQAAsAZhAgAArEGYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALBG0Px24cuh1bRVTo/gqKhwo8d6SlflrlGZ98K//TFUlfzpRqdHAIBajVdMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1giaMPF4PEpLS1NGRobTowAAgBoSNGHidrtVWFiogoICp0cBAAA1JGjCBAAAhD7CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgjcseJnv37lW/fv2UlpamLl26aPny5Zd7BAAAYKk6l/0B69RRXl6eunXrpgMHDig9PV033HCDYmJiLvcoAADAMpc9TJo0aaImTZpIkpKTk5WUlKSjR48SJgAAoPpv5bz//vsaOnSomjZtKpfLpZUrV1baxuPxqFWrVoqOjlavXr304YcfVrmvzZs3y+v1KiUlpdqDAwCA0FPtMDl58qS6du0qj8dT5fply5Zp8uTJevjhh/Xxxx+ra9euyszM1KFDhypsd/ToUWVlZemFF164tMkBAEDIqfZbOUOGDNGQIUPOu37evHm69957dffdd0uSnnvuOa1atUoLFizQtGnTJEllZWUaMWKEpk2bpt69e1/w8crKylRWVua/XVpaKkkqLy9XeXl5dce/oKhwE9D9BZuoMFPhv7VRoI8pVM+5rz//H+AUjsGac7Ff04CeY3LmzBlt3rxZOTk5/mVhYWEaOHCgNm3aJEkyxmjs2LEaMGCA7rrrrp/c59y5czVz5sxKy99++23Vq1cvcMNLeqxnQHcXtGb38Dk9gmPefPNNp0eApLVr1zo9Amo5jsHAO3Xq1EVtF9AwOXLkiLxerxo3blxheePGjbVz505J0saNG7Vs2TJ16dLFf37Kyy+/rM6dO1e5z5ycHE2ePNl/u7S0VCkpKbr++usVHx8fyPF1Ve6agO4v2ESFGc3u4dP0j8JU5nM5PY4j/pub6fQItVp5ebnWrl2rQYMGKSIiwulxUAtxDNacc+94/JTLflXOddddJ5/v4n8ij4qKUlRUVKXlERERAT9oyry18x/jHyvzuWrt14JvRHaoib/fQHVwDAbexX49A/oBa0lJSQoPD9fBgwcrLD948KCSk5MD+VAAACAEBTRMIiMjlZ6ervz8fP8yn8+n/Px8XXvttYF8KAAAEIKq/VbOiRMntHv3bv/t4uJibdmyRYmJiWrRooUmT56s7Oxs9ejRQz179lReXp5Onjzpv0oHAADgfKodJh999JH69+/vv33uxNTs7GwtWrRIY8aM0eHDhzVjxgwdOHBA3bp10+rVqyudEAsAAPBj1Q6Tfv36yZgLf87FhAkTNGHChEseqioej0cej0derzeg+wUAAPa47L9d+FK53W4VFhaqoKDA6VEAAEANCZowAQAAoY8wAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWCJow8Xg8SktLU0ZGhtOjAACAGhI0YcLnmAAAEPqCJkwAAEDoI0wAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWCNowoRPfgUAIPQFTZjwya8AAIS+oAkTAAAQ+ggTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDXqOD3AxfJ4PPJ4PPJ6vU6PAtSYVtNWOT2Co6LCjR7rKV2Vu0ZlXpfT4zii5E83Oj0C4KigecWEj6QHACD0BU2YAACA0EeYAAAAaxAmAADAGoQJAACwBmECAACsQZgAAABrECYAAMAahAkAALAGYQIAAKxBmAAAAGsETZh4PB6lpaUpIyPD6VEAAEANCZow4XflAAAQ+oImTAAAQOgjTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDWCJkw8Ho/S0tKUkZHh9CgAAKCGBE2YuN1uFRYWqqCgwOlRAABADQmaMAEAAKGPMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1giaMPF4PEpLS1NGRobTowAAgBoSNGHidrtVWFiogoICp0cBAAA1JGjCBAAAhD7CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1giaMPF4PEpLS1NGRobTowAAgBoSNGHidrtVWFiogoICp0cBAAA1JGjCBAAAhD7CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDUfC5Oabb1aDBg00cuRIJx4eAABYypEwmTRpkl566SUnHhoAAFjMkTDp16+f4uLinHhoAABgsWqHyfvvv6+hQ4eqadOmcrlcWrlyZaVtPB6PWrVqpejoaPXq1UsffvhhIGYFAAAhrk5173Dy5El17dpV99xzj2655ZZK65ctW6bJkyfrueeeU69evZSXl6fMzEzt2rVLjRo1qvaAZWVlKisr898uLS2VJJWXl6u8vLza+7uQqHAT0P0Fm6gwU+G/tVGgj6nq4hjkGHT6GKztzn39+f8QeBf7NXUZYy75O4DL5dKKFSs0YsQI/7JevXopIyNDzzzzjCTJ5/MpJSVFDzzwgKZNm+bfbv369XrmmWf02muvXfAxcnNzNXPmzErLly5dqnr16l3q6AAA4DI6deqUbr/9dh0/flzx8fHn3a7ar5hcyJkzZ7R582bl5OT4l4WFhWngwIHatGnTJe0zJydHkydP9t8uLS1VSkqKrr/++gs+sUtxVe6agO4v2ESFGc3u4dP0j8JU5nM5PY4j/pub6ejjcwxyDDp9DNZ25eXlWrt2rQYNGqSIiAinxwkp597x+CkBDZMjR47I6/WqcePGFZY3btxYO3fu9N8eOHCgtm7dqpMnT6p58+Zavny5rr322ir3GRUVpaioqErLIyIiAn7QlHlr5zfCHyvzuWrt18Lpb0S19ev+YxyDcFpN/BtT213s1zOgYXKx3nnnHSceFgAAWC6glwsnJSUpPDxcBw8erLD84MGDSk5ODuRDAQCAEBTQMImMjFR6erry8/P9y3w+n/Lz88/7Vg0AAMA51X4r58SJE9q9e7f/dnFxsbZs2aLExES1aNFCkydPVnZ2tnr06KGePXsqLy9PJ0+e1N133x3QwQEAQOipdph89NFH6t+/v//2uStmsrOztWjRIo0ZM0aHDx/WjBkzdODAAXXr1k2rV6+udEIsAADAj1U7TPr166ef+uiTCRMmaMKECZc8VFU8Ho88Ho+8Xm9A9wsAAOzhyO/KuRRut1uFhYUqKChwehQAAFBDgiZMAABA6CNMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1giZMPB6P0tLSlJGR4fQoAACghgRNmPA5JgAAhL6gCRMAABD6CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWCNowoQPWAMAIPQFTZjwAWsAAIS+oAkTAAAQ+ggTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDWCJkz4SHoAAEJf0IQJH0kPAEDoC5owAQAAoY8wAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDWCJkz4JX4AAIS+oAkTfokfAAChL2jCBAAAhD7CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWCNowsTj8SgtLU0ZGRlOjwIAAGpI0ISJ2+1WYWGhCgoKnB4FAADUkKAJEwAAEPoIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgjaAJE4/Ho7S0NGVkZDg9CgAAqCFBEyZut1uFhYUqKChwehQAAFBDgiZMAABA6CNMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANeo4PcDF8ng88ng88nq9To8CACGr1bRVTo/gqKhwo8d6SlflrlGZ1+X0OI4o+dONjj5+0Lxi4na7VVhYqIKCAqdHAQAANSRowgQAAIQ+wgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgDcIEAABYgzABAADWIEwAAIA1CBMAAGANwgQAAFijjtMDVJcxRpJUWloa8H37yk4FfJ/BxBtudOqUV96ycPm8LqfHcURNHFfVwTHIMcgx6CyOwZo7Bs/t99y/4+fjMj+1hWW+/PJLpaSkOD0GAAC4BHv37lXz5s3Puz7owsTn82nfvn2Ki4uTy1U7a7amlJaWKiUlRXv37lV8fLzT46AW4hiE0zgGa44xRt9++62aNm2qsLDzn0kSdG/lhIWFXbC08PPFx8fzFxKO4hiE0zgGa0ZCQsJPbsPJrwAAwBqECQAAsAZhAr+oqCg9/PDDioqKcnoU1FIcg3Aax6Dzgu7kVwAAELp4xQQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAHVqlUr5eXlOT0GLORyubRy5cqQfTwAgUGYhICxY8fK5XLJ5XIpMjJSbdu21axZs3T27NmfvO+iRYtUv379mh8SIeuHx19ERIQaN26sQYMGacGCBfL5fP7t9u/fryFDhjg4KWqjAwcO6IEHHlCbNm0UFRWllJQUDR06VPn5+ZK+/2HK5XLp3//+d4X7Pfjgg+rXr1+FZaWlpZo+fbo6deqkunXr6oorrlBGRoYee+wxffPNN5frKYU8wiREDB48WPv371dRUZGmTJmi3NxcPf744wHb/5kzZwK2L4Sec8dfSUmJ3nrrLfXv31+TJk3STTfd5A/k5ORkPhsCl1VJSYnS09P17rvv6vHHH9f27du1evVq9e/fX263279ddHS0fv/7319wX0ePHtU111yjhQsXaurUqfrPf/6jjz/+WHPmzNEnn3yipUuX1vTTqT0Mgl52drYZPnx4hWWDBg0y11xzjTl9+rSZMmWKadq0qalXr57p2bOnWbdunTHGmHXr1hlJFf48/PDDxhhjWrZsaWbNmmXuuusuExcXZ7Kzs40xxrz22msmLS3NREZGmpYtW5onnniiwuO2bNnSPPnkkzX7hGGVqo4/Y4zJz883ksyLL75ojDFGklmxYoV//RdffGFGjRplEhISTIMGDcywYcNMcXGxf/26detMRkaGqVevnklISDC9e/c2JSUl/vUrV6403bt3N1FRUaZ169YmNzfXlJeX+9f/+PFQ+wwZMsQ0a9bMnDhxotK6b775xhjz/fesiRMnmsjISLNq1Sr/+kmTJpm+ffv6b48fP97ExMSYr776qsrH8vl8AZ29NuMVkxBVt25dnTlzRhMmTNCmTZv06quvatu2bRo1apQGDx6soqIi9e7dW3l5eYqPj9f+/fu1f/9+TZ061b+PJ554Ql27dtUnn3yi6dOna/PmzRo9erRuvfVWbd++Xbm5uZo+fboWLVrk3BOFtQYMGKCuXbvqjTfeqLSuvLxcmZmZiouL04YNG7Rx40bFxsZq8ODBOnPmjM6ePasRI0aob9++2rZtmzZt2qRx48b5f6P4hg0blJWVpUmTJqmwsFDPP/+8Fi1apDlz5lzupwlLHT16VKtXr5bb7VZMTEyl9T98C7t169a67777lJOTU+Htx3N8Pp+WLVumO++8U02bNq3y8fht94FDmIQYY4zeeecdrVmzRl26dNHChQu1fPly/eIXv1BqaqqmTp2q6667TgsXLlRkZKQSEhLkcrmUnJys5ORkxcbG+vc1YMAATZkyRampqUpNTdW8efP0y1/+UtOnT1f79u01duxYTZgwIaBvGSG0dOjQQSUlJZWWL1u2TD6fT3/729/UuXNndezYUQsXLtQXX3yh9evXq7S0VMePH9dNN92k1NRUdezYUdnZ2WrRooUkaebMmZo2bZqys7PVpk0bDRo0SLNnz9bzzz9/mZ8hbLV7924ZY9ShQ4eL2v6hhx5ScXGxlixZUmnd4cOHdezYMV155ZUVlqenpys2NlaxsbG67bbbAjI3CJOQ8a9//UuxsbGKjo7WkCFDNGbMGI0cOVJer1ft27f3/+WJjY3Ve++9pz179vzkPnv06FHh9o4dO9SnT58Ky/r06aOioiJ5vd6APh+EBmNMlT9Jbt26Vbt371ZcXJz/uExMTNTp06e1Z88eJSYmauzYscrMzNTQoUP11FNPaf/+/RXuP2vWrArH9b333qv9+/fr1KlTl/MpwlKmmr9tpWHDhpo6dapmzJhx0efUrVixQlu2bFFmZqa+++67SxkTVajj9AAIjP79++vZZ59VZGSkmjZtqjp16mjZsmUKDw/X5s2bFR4eXmH7H74ycj5VvfwJVMeOHTvUunXrSstPnDih9PT0Kn86bdiwoSRp4cKFmjhxolavXq1ly5bpoYce0tq1a3XNNdfoxIkTmjlzpm655ZZK94+Ojg78E0HQadeunVwul3bu3HnR95k8ebLmz5+v+fPnV1jesGFD1a9fX7t27aqw/NwreHFxcTp27NjPnhnf4xWTEBETE6O2bduqRYsWqlPn+97s3r27vF6vDh06pLZt21b4k5ycLEmKjIy86Fc7OnbsqI0bN1ZYtnHjRrVv375S+ADvvvuutm/frl/96leV1l199dUqKipSo0aNKh2bCQkJ/u26d++unJwcffDBB7rqqqv8Vz5cffXV2rVrV6X7tm3bVmFhfFuDlJiYqMzMTHk8Hp08ebLS+qpCIjY2VtOnT9ecOXP07bff+peHhYVp9OjRWrx4sfbt21eTY0OESUhr37697rjjDmVlZemNN95QcXGxPvzwQ82dO1erVq2S9P01/CdOnFB+fr6OHDlywZfBp0yZovz8fM2ePVv/+9//9Pe//13PPPNMhRNmUTuVlZXpwIED+uqrr/Txxx/r0Ucf1fDhw3XTTTcpKyur0vZ33HGHkpKSNHz4cG3YsEHFxcVav369Jk6cqC+//FLFxcXKycnRpk2b9Pnnn+vtt99WUVGROnbsKEmaMWOGXnrpJc2cOVOffvqpduzYoVdffVUPPfTQ5X7qsJjH45HX61XPnj31+uuvq6ioSDt27NDTTz+ta6+9tsr7jBs3TgkJCZUu/3300UfVrFkz9ezZUwsWLNC2bdu0Z88erVixQps2beKHs0By9qIgBML5Ltc0xpgzZ86YGTNmmFatWpmIiAjTpEkTc/PNN5tt27b5t7nvvvvMFVdcUely4aou+z13uXBERIRp0aKFefzxxyus53Lh2ic7O9t/uXmdOnVMw4YNzcCBA82CBQuM1+v1b6cfXb67f/9+k5WVZZKSkkxUVJRp06aNuffee83x48fNgQMHzIgRI0yTJk38l6bPmDGjwv5Wr15tevfuberWrWvi4+NNz549zQsvvHDex0PttG/fPuN2u03Lli1NZGSkadasmRk2bJj/YxOq+p61dOlSI6nC5cLGGHPs2DGTk5NjOnToYKKiokzdunVNly5dzPTp083XX399eZ5QLeAypppnCAEAANQQ3soBAADWIEwAAIA1CBMAAGANwgQAAFiDMAEAANYgTAAAgDUIEwAAYA3CBAAAWIMwAQAA1iBMAACANQgTAABgjf8H8F0Q8Wd9pFYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGzCAYAAAA/lFPrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALnhJREFUeJzt3XtUVXXC//HP4eJdvIFcFMHK1oAmKIrLC6FHyjB5xJkaGx0BZ0anCWdSHnOontRqomzKYaWMZqWWo8VjiV0kS9HR0RwviC5bmCWjxZMCMpQGFuI5+/dH0/lJwFdAEMX3ay3+OPt893d/D0vg7d77gM2yLEsAAAColVtLLwAAAOBaRiwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAbhurF69WjabTSdPnnRtGz16tEaPHu16fPLkSdlsNq1evfqqrw9A60QsAUAzOHXqlBYuXKhDhw619FIAXCGPll4AADSloKAgffvtt/L09GzRdZw6dUqPP/64goODFR4e3qJrAXBliCUArYrNZlO7du1aehkAWhEuwwFodt98841mz56t4OBgtW3bVj179tQdd9yhgwcPusbs3btXd911l7p06aIOHTooOjpau3fvbvCxartnKSkpSZ06ddKXX36p+Ph4derUST4+Ppo7d64cDke1/f/9739r2rRp8vLyUteuXZWYmKjDhw836D6ov//97xo6dKgkafr06bLZbK79FyxYIE9PT505c6bGfjNnzlTXrl313XffSZKCg4M1YcIEffjhhwoPD1e7du0UGhqqDRs21Nj366+/1uzZsxUYGKi2bdvqlltu0aJFi+R0Ouv5mQNQF2IJQLO7//77tWzZMv3sZz/TX//6V82dO1ft27fX0aNHJUnbtm3T7bffrnPnzmnBggVKS0vT119/Lbvdrn379jXJGhwOh8aNG6cePXroueeeU3R0tJ5//nmtWLHCNcbpdCouLk6vv/66EhMT9dRTT+n06dNKTExs0LFCQkL0xBNPSPo+gNasWaM1a9bo9ttv17Rp03Tx4kVlZmZW2+fChQt688039bOf/azambHPPvtMkydPVmxsrJ5++ml5eHjo3nvv1ZYtW1xjzp8/r+joaP3tb39TQkKCXnjhBY0cOVIPP/ywUlJSGvPpAnApCwCaWZcuXazk5ORan3M6nVa/fv2scePGWU6n07X9/PnzVt++fa077rjDtW3VqlWWJOvEiROubdHR0VZ0dLTr8YkTJyxJ1qpVq1zbEhMTLUnWE088Ue3YgwYNsiIiIlyP33rrLUuSlZ6e7trmcDgsu91eY87L2b9/f537DB8+3Bo2bFi1bRs2bLAkWdu3b3dtCwoKsiRZb731lmvb2bNnLX9/f2vQoEGubU8++aTVsWNH69NPP602Z2pqquXu7m598cUX9V43gJo4swSg2XXt2lV79+7VqVOnajx36NAhffbZZ5oyZYr+/e9/q7S0VKWlpaqoqNDYsWO1c+fOJruUdP/991d7HBUVpX/961+ux5s3b5anp6dmzJjh2ubm5qbk5OQmOf4PEhIStHfvXhUUFLi2rV27VoGBgYqOjq42NiAgQJMmTXI99vLyUkJCgvLy8lRUVCRJWr9+vaKiotStWzfX56+0tFQxMTFyOBzauXNnk64fuNEQSwCa3bPPPquPP/5YgYGBioyM1MKFC12R8tlnn0mSEhMT5ePjU+3j5ZdfVmVlpc6ePXvFa2jXrp18fHyqbevWrZu++uor1+PPP/9c/v7+6tChQ7Vxt9xyyxUf/1KTJ09W27ZttXbtWknS2bNn9d5772nq1Kmy2Ww1jv3jbbfeeqskuX7f1GeffabNmzfX+PzFxMRIkkpKSpp0/cCNhnfDAWh2P//5zxUVFaWsrCx9+OGH+vOf/6xFixZpw4YNrrNGf/7zn+t8i32nTp2ueA3u7u5XPEdT6datmyZMmKC1a9dq/vz5evPNN1VZWalf/vKXjZrP6XTqjjvu0Lx582p9/oe4AtA4xBKAq8Lf318PPPCAHnjgAZWUlGjw4MF66qmn9Je//EXS95eXfjgT0lKCgoK0fft2nT9/vtrZpePHjzd4rh+fDfqxhIQETZw4Ufv379fatWs1aNAg9e/fv8a448ePy7KsavN9+umnkr5/t5wk3XzzzSovL2/xzx/QWnEZDkCzcjgcNS6j9ezZUwEBAaqsrFRERIRuvvlmPffccyovL6+xf21vsW8u48aNU1VVlV566SXXNqfTqYyMjAbP1bFjR0nfv6W/NrGxsfL29taiRYu0Y8eOOs8qnTp1SllZWa7H586d02uvvabw8HD5+flJ+v7M3Z49e/TBBx/U2P/rr7/WxYsXG7x+AP8fZ5YANKtvvvlGvXv31j333KOwsDB16tRJW7du1f79+/X888/Lzc1NL7/8smJjY9W/f39Nnz5dvXr10pdffqnt27fLy8tL77777lVZa3x8vCIjI/Xf//3fOn78uH7yk5/onXfeUVlZmaTLny261M0336yuXbtq+fLl6ty5szp27Khhw4apb9++kiRPT0/dd999Wrp0qdzd3fWLX/yi1nluvfVW/frXv9b+/fvl6+urlStXqri4WKtWrXKNeeihh/TOO+9owoQJSkpKUkREhCoqKnTkyBG9+eabOnnypLy9va/gMwPc2IglAM2qQ4cOeuCBB/Thhx+67lG65ZZb9Ne//lW/+93vJH3/x3D37NmjJ598UkuXLlV5ebn8/Pw0bNgw/fa3v71qa3V3d9emTZv04IMP6tVXX5Wbm5smTZqkBQsWaOTIkQ36zeCenp569dVX9fDDD+v+++/XxYsXtWrVKlcsSd9filu6dKnGjh0rf3//Wufp16+flixZooceekjHjh1T3759lZmZqXHjxrnGdOjQQTt27FBaWprWr1+v1157TV5eXrr11lv1+OOPq0uXLo3/pACQzbIsq6UXAQDXso0bN2rSpEnatWuXRo4c2WTzHj58WOHh4Xrttdc0bdq0Gs8HBwdrwIABeu+995rsmAAajnuWAOAS3377bbXHDodDS5YskZeXlwYPHtykx3rppZfUqVMn/fSnP23SeQE0LS7DAcAlfv/73+vbb7/V8OHDVVlZqQ0bNuijjz5SWlqa2rdvrwsXLrjuYapLly5d1L59+zqff/fdd5Wfn68VK1Zo1qxZrpvBAVybiCUAuITdbtfzzz+v9957T999951uueUWLVmyRLNmzZIkffTRRxozZoxxjlWrVikpKanO53//+9+ruLhY48eP1+OPP96UywfQDLhnCQAa4KuvvlJubq5xTP/+/eu8YRvA9YdYukRhYaGmTZumkpISeXh46LHHHtO9997b0ssCAAAtiFi6xOnTp1VcXKzw8HAVFRUpIiJCn376KfcTAABwA+OepUv4+/u7Tp37+fnJ29tbZWVll40lp9OpU6dOqXPnzg36pXUAAKDlWJalb775RgEBAXJzM/yCAOsqSEtLs4YMGWJ16tTJ8vHxsSZOnGh98sknTXqMHTt2WBMmTLD8/f0tSVZWVlat45YuXWoFBQVZbdu2tSIjI629e/fWOu7AgQNW//7963XswsJCSxIffPDBBx988HEdfhQWFhp/zl+VM0s7duxQcnKyhg4dqosXL+qRRx7RnXfeqfz8/FrP2uzevVuRkZHy9PSstj0/P189evSQr69vjX0qKioUFhamX/3qV3X+zpLMzEylpKRo+fLlGjZsmNLT0zVu3DgdO3ZMPXv2dI0rKytTQkJCtb8PZdK5c2dJ39/z5OXlVa99cP2pqqrShx9+qDvvvLPGv00ArQdf6zeOc+fOKTAw0PVzvE71OnXSxEpKSixJ1o4dO2o853A4rLCwMOuee+6xLl686Nr+ySefWL6+vtaiRYsuO79U+5mlyMhIKzk5udqxAgICrKefftq17bvvvrOioqKs1157rd6v5+zZs5Yk6+zZs/XeB9efCxcuWBs3brQuXLjQ0ksB0Iz4Wr9x1Pfnd4v8Bu8f/gJ59+7dazzn5uam7Oxs5eXlKSEhQU6nUwUFBbLb7YqPj9e8efMadcwLFy4oNzdXMTEx1Y4VExOjPXv2SJIsy1JSUpLsdnutf3rgxzIyMhQaGqqhQ4c2ak0AAODad9Vjyel0avbs2Ro5cqQGDBhQ65iAgABt27ZNu3bt0pQpU2S32xUTE6Nly5Y1+rilpaVyOBw1LuH5+vqqqKhI0veX/zIzM7Vx40aFh4crPDxcR44cqXPO5ORk5efna//+/Y1eFwAAuLZd9XfDJScn6+OPP9auXbuM4/r06aM1a9YoOjpaN910k1555ZVmf6fZqFGj5HQ6m/UYAADg+nJVzyzNmjVL7733nrZv367evXsbxxYXF2vmzJmKi4vT+fPnNWfOnCs6tre3t9zd3VVcXFzjOH5+flc0NwAAaL2uSixZlqVZs2YpKytL27ZtU9++fY3jS0tLNXbsWIWEhGjDhg3KyclRZmam5s6d2+g1tGnTRhEREcrJyXFtczqdysnJ0fDhwxs9LwAAaN2uymW45ORkrVu3Tm+//bY6d+7sukeotr/M7XQ6FRsbq6CgIGVmZsrDw0OhoaHasmWL7Ha7evXqVetZpvLych0/ftz1+MSJEzp06JC6d++uPn36SJJSUlKUmJioIUOGKDIyUunp6aqoqND06dOb8dUDAIDr2VWJpR9uzB49enS17bX9ZW43NzelpaUpKipKbdq0cW0PCwvT1q1b5ePjU+sxDhw4UO0vgaekpEiSEhMTtXr1aknS5MmTdebMGc2fP19FRUUKDw/X5s2ba/29TQAAANJViiWrgX9+7o477qh1+6BBg+rcZ/To0fU6zqxZszRr1qwGrQcAANy4WuT3LAEAAFwviCUAAAADYgkAAMCAWAIAADAglgAAAAyu+p87QcMEp25q6SXgP9q6W3o2Uhqw8ANVOpr3T++g/k4+c3dLLwFAK8eZJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYukRhYaFGjx6t0NBQDRw4UOvXr2/pJQEAgBbm0dILuJZ4eHgoPT1d4eHhKioqUkREhMaPH6+OHTu29NIAAEALIZYu4e/vL39/f0mSn5+fvL29VVZWRiwBAHADa/BluJ07dyouLk4BAQGy2WzauHGjcbzD4dBjjz2mvn37qn379rr55pv15JNPyrKsxq75itaVkZGh4OBgtWvXTsOGDdO+fftqHZebmyuHw6HAwMAmXScAALi+NDiWKioqFBYWpoyMjHqNX7RokZYtW6alS5fq6NGjWrRokZ599lktWbKkzn12796tqqqqGtvz8/NVXFzc6HVlZmYqJSVFCxYs0MGDBxUWFqZx48appKSk2riysjIlJCRoxYoV9XqNAACg9WrwZbjY2FjFxsbWe/xHH32kiRMn6u6775YkBQcH6/XXX6/zjI7T6VRycrL69eunN954Q+7u7pKkY8eOyW63KyUlRfPmzWvUuhYvXqwZM2Zo+vTpkqTly5dr06ZNWrlypVJTUyVJlZWVio+PV2pqqkaMGFHv1wkAAFqnZn833IgRI5STk6NPP/1UknT48GHt2rWrzrBxc3NTdna28vLylJCQIKfTqYKCAtntdsXHx9caSvVx4cIF5ebmKiYmptqxYmJitGfPHkmSZVlKSkqS3W7XtGnTLjtnRkaGQkNDNXTo0EatCQAAXPua/Qbv1NRUnTt3Tj/5yU/k7u4uh8Ohp556SlOnTq1zn4CAAG3btk1RUVGaMmWK9uzZo5iYGC1btqzR6ygtLZXD4ZCvr2+17b6+vvrkk08kfX/5LzMzUwMHDnTd87RmzRrddttttc6ZnJys5ORknTt3Tl26dGn02gAAwLWr2WPpf//3f7V27VqtW7dO/fv316FDhzR79mwFBAQoMTGxzv369OmjNWvWKDo6WjfddJNeeeUV2Wy2Zl3rqFGj5HQ6m/UYAADg+tLsl+Eeeughpaam6r777tNtt92madOmac6cOXr66aeN+xUXF2vmzJmKi4vT+fPnNWfOnCtah7e3t9zd3WvcIF5cXCw/P78rmhsAALRezR5L58+fl5tb9cO4u7sbz+CUlpZq7NixCgkJ0YYNG5STk6PMzEzNnTu30eto06aNIiIilJOT49rmdDqVk5Oj4cOHN3peAADQujX4Mlx5ebmOHz/uenzixAkdOnRI3bt3V58+fbR06VJlZWW5oiQuLk5PPfWU+vTpo/79+ysvL0+LFy/Wr371q1rndzqdio2NVVBQkDIzM+Xh4aHQ0FBt2bJFdrtdvXr1qvUs0+XWJUkpKSlKTEzUkCFDFBkZqfT0dFVUVLjeHQcAAPBjDY6lAwcOaMyYMa7HKSkpkqTExEStXr1apaWlKigocD2/ZMkSPfbYY3rggQdUUlKigIAA/fa3v9X8+fNrnd/NzU1paWmKiopSmzZtXNvDwsK0detW+fj4NGpdkjR58mSdOXNG8+fPV1FRkcLDw7V58+YaN30DAAD8wGY19a/SvgH98G64s2fPysvLq0nnDk7d1KTzofHault6NtKhefvcVelo3jcboP5OPnN3Sy8BrUxVVZWys7M1fvx4eXp6tvRy0Izq+/O72e9ZAgAAuJ4RSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxdInCwkKNHj1aoaGhGjhwoNavX9/SSwIAAC3Mo6UXcC3x8PBQenq6wsPDVVRUpIiICI0fP14dO3Zs6aUBAIAWQixdwt/fX/7+/pIkPz8/eXt7q6ysjFgCAOAG1uDLcDt37lRcXJwCAgJks9m0cePGeu335Zdf6pe//KV69Oih9u3b67bbbtOBAwcaevgrXltGRoaCg4PVrl07DRs2TPv27at1rtzcXDkcDgUGBjbpGgEAwPWlwbFUUVGhsLAwZWRk1Hufr776SiNHjpSnp6fef/995efn6/nnn1e3bt1qHb97925VVVXV2J6fn6/i4uJGry0zM1MpKSlasGCBDh48qLCwMI0bN04lJSXVxpWVlSkhIUErVqyo92sEAACtU4Mvw8XGxio2NrZB+yxatEiBgYFatWqVa1vfvn1rHet0OpWcnKx+/frpjTfekLu7uyTp2LFjstvtSklJ0bx58xq1tsWLF2vGjBmaPn26JGn58uXatGmTVq5cqdTUVElSZWWl4uPjlZqaqhEjRjTodQIAgNbnqrwb7p133tGQIUN07733qmfPnho0aJBeeuml2hfk5qbs7Gzl5eUpISFBTqdTBQUFstvtio+PrzOULufChQvKzc1VTExMtWPFxMRoz549kiTLspSUlCS73a5p06Zdds6MjAyFhoZq6NChjVoTAAC49l2VWPrXv/6lZcuWqV+/fvrggw/0u9/9Tn/4wx/06quv1jo+ICBA27Zt065duzRlyhTZ7XbFxMRo2bJljV5DaWmpHA6HfH19q2339fVVUVGRpO8v/2VmZmrjxo0KDw9XeHi4jhw5UuecycnJys/P1/79+xu9LgAAcG27Ku+GczqdGjJkiNLS0iRJgwYN0scff6zly5crMTGx1n369OmjNWvWKDo6WjfddJNeeeUV2Wy2Zl3nqFGj5HQ6m/UYAADg+nJVziz5+/srNDS02raQkBB98cUXde5TXFysmTNnKi4uTufPn9ecOXOuaA3e3t5yd3evcYN4cXGx/Pz8rmhuAADQel2VWBo5cqSOHTtWbdunn36qoKCgWseXlpZq7NixCgkJ0YYNG5STk6PMzEzNnTu30Wto06aNIiIilJOT49rmdDqVk5Oj4cOHN3peAADQujX4Mlx5ebmOHz/uenzixAkdOnRI3bt3V58+fbR06VJlZWVVi5I5c+ZoxIgRSktL089//nPt27dPK1asqPWt+U6nU7GxsQoKClJmZqY8PDwUGhqqLVu2yG63q1evXnWeZbrc2lJSUpSYmKghQ4YoMjJS6enpqqiocL07DgAA4McaHEsHDhzQmDFjXI9TUlIkSYmJiVq9erVKS0tVUFBQbZ+hQ4cqKytLDz/8sJ544gn17dtX6enpmjp1ao353dzclJaWpqioKLVp08a1PSwsTFu3bpWPj0+j1zZ58mSdOXNG8+fPV1FRkcLDw7V58+YaN30DAAD8wGZZltXSi7jenTt3Tl26dNHZs2fl5eXVpHMHp25q0vnQeG3dLT0b6dC8fe6qdDTvmw1Qfyefubull4BWpqqqStnZ2Ro/frw8PT1bejloRvX9+X1V7lkCAAC4XhFLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsAQAAGBBLAAAABsQSAACAAbEEAABgQCwBAAAYEEsAAAAGxBIAAIABsQQAAGBALAEAABgQSwAAAAbEEgAAgAGxBAAAYEAsXaKwsFCjR49WaGioBg4cqPXr17f0kgAAQAvzaOkFXEs8PDyUnp6u8PBwFRUVKSIiQuPHj1fHjh1bemkAAKCFEEuX8Pf3l7+/vyTJz89P3t7eKisrI5YAALiBNfgy3M6dOxUXF6eAgADZbDZt3LixQfs/88wzstlsmj17dkMP3SRry8jIUHBwsNq1a6dhw4Zp3759tc6Vm5srh8OhwMDAJl8nAAC4fjQ4lioqKhQWFqaMjIwGH2z//v168cUXNXDgQOO43bt3q6qqqsb2/Px8FRcXN3ptmZmZSklJ0YIFC3Tw4EGFhYVp3LhxKikpqTaurKxMCQkJWrFiRT1eFQAAaM0aHEuxsbH605/+pEmTJjVov/Lyck2dOlUvvfSSunXrVuc4p9Op5ORkTZkyRQ6Hw7X92LFjstvtevXVVxu9tsWLF2vGjBmaPn26QkNDtXz5cnXo0EErV650jamsrFR8fLxSU1M1YsQI42vKyMhQaGiohg4dahwHAACuX1ft3XDJycm6++67FRMTYxzn5uam7Oxs5eXlKSEhQU6nUwUFBbLb7YqPj9e8efMadfwLFy4oNze32vHd3NwUExOjPXv2SJIsy1JSUpLsdrumTZtWr9eUn5+v/fv3N2pNAADg2ndVbvB+4403dPDgwXpHRUBAgLZt26aoqChNmTJFe/bsUUxMjJYtW9boNZSWlsrhcMjX17fadl9fX33yySeSvr/8l5mZqYEDB7rud1qzZo1uu+22Rh8XAABc35o9lgoLC/Xggw9qy5YtateuXb3369Onj9asWaPo6GjddNNNeuWVV2Sz2ZpxpdKoUaPkdDqb9RgAAOD60uyX4XJzc1VSUqLBgwfLw8NDHh4e2rFjh1544QV5eHhUuy/pUsXFxZo5c6bi4uJ0/vx5zZkz54rW4e3tLXd39xo3iBcXF8vPz++K5gYAAK1Xs8fS2LFjdeTIER06dMj1MWTIEE2dOlWHDh2Su7t7jX1KS0s1duxYhYSEaMOGDcrJyVFmZqbmzp3b6HW0adNGERERysnJcW1zOp3KycnR8OHDGz0vAABo3Rp8Ga68vFzHjx93PT5x4oQOHTqk7t27q0+fPlq6dKmysrJcUdK5c2cNGDCg2hwdO3ZUjx49amyXvg+Y2NhYBQUFKTMzUx4eHgoNDdWWLVtkt9vVq1evOs8yXW5tKSkpSkxM1JAhQxQZGan09HRVVFRo+vTpDf00AACAG0SDY+nAgQMaM2aM63FKSookKTExUatXr1ZpaakKCgoavSA3NzelpaUpKipKbdq0cW0PCwvT1q1b5ePj0+i1TZ48WWfOnNH8+fNVVFSk8PBwbd68ucZN3wAAAD+wWZZltfQirnfnzp1Tly5ddPbsWXl5eTXp3MGpm5p0PjReW3dLz0Y6NG+fuyodzftmA9TfyWfubukloJWpqqpSdna2xo8fL09Pz5ZeDppRfX9+X7XfswQAAHA9IpYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2LpRwoLCzV69GiFhoZq4MCBWr9+fUsvCQAAtCCPll7AtcbDw0Pp6ekKDw9XUVGRIiIiNH78eHXs2LGllwYAAFoAsfQj/v7+8vf3lyT5+fnJ29tbZWVlxBIAADeoRl2G27lzp+Li4hQQECCbzaaNGzcaxz/99NMaOnSoOnfurJ49eyo+Pl7Hjh1rzKGbZF0ZGRkKDg5Wu3btNGzYMO3bt6/Wcbm5uXI4HAoMDGzytQIAgOtDo2KpoqJCYWFhysjIqNf4HTt2KDk5Wf/85z+1ZcsWVVVV6c4771RFRUWd++zevVtVVVU1tufn56u4uLjR68rMzFRKSooWLFiggwcPKiwsTOPGjVNJSUm1cWVlZUpISNCKFSvq9RoBAEDr1KjLcLGxsYqNja33+M2bN1d7vHr1avXs2VO5ubm6/fbba4x3Op1KTk5Wv3799MYbb8jd3V2SdOzYMdntdqWkpGjevHmNWtfixYs1Y8YMTZ8+XZK0fPlybdq0SStXrlRqaqokqbKyUvHx8UpNTdWIESPqnCsjI0MZGRlyOBzmTwAAALhutci74c6ePStJ6t69e63Pu7m5KTs7W3l5eUpISJDT6VRBQYHsdrvi4+NrDaX6uHDhgnJzcxUTE1PtWDExMdqzZ48kybIsJSUlyW63a9q0acb5kpOTlZ+fr/379zdqPQAA4Np31WPJ6XRq9uzZGjlypAYMGFDnuICAAG3btk27du3SlClTZLfbFRMTo2XLljX62KWlpXI4HPL19a223dfXV0VFRZK+v/yXmZmpjRs3Kjw8XOHh4Tpy5EijjwkAAK5vV/3dcMnJyfr444+1a9euy47t06eP1qxZo+joaN1000165ZVXZLPZmnV9o0aNktPpbNZjAACA68dVPbM0a9Ysvffee9q+fbt69+592fHFxcWaOXOm4uLidP78ec2ZM+eKju/t7S13d/caN4gXFxfLz8/viuYGAACt01WJJcuyNGvWLGVlZWnbtm3q27fvZfcpLS3V2LFjFRISog0bNignJ0eZmZmaO3duo9fRpk0bRUREKCcnx7XN6XQqJydHw4cPb/S8AACg9WrUZbjy8nIdP37c9fjEiRM6dOiQunfvrj59+mjp0qXKyspyRUlycrLWrVunt99+W507d3bdH9SlSxe1b9++xvxOp1OxsbEKCgpSZmamPDw8FBoaqi1btshut6tXr161nmW63LokKSUlRYmJiRoyZIgiIyOVnp6uiooK17vjAAAALtWoWDpw4IDGjBnjepySkiJJSkxM1OrVq1VaWqqCggLX8z/clD169Ohq86xatUpJSUk15ndzc1NaWpqioqLUpk0b1/awsDBt3bpVPj4+jVqXJE2ePFlnzpzR/PnzVVRUpPDwcG3evLnGTd8AAACSZLMsy2rpRVzvzp07py5duujs2bPy8vJq0rmDUzc16XxovLbulp6NdGjePndVOpr3jQaov5PP3N3SS0ArU1VVpezsbI0fP16enp4tvRw0o/r+/G6R37MEAABwvSCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAAOPll4AAEAKTt3U0kvAf7R1t/RspDRg4QeqdNhaejmQdPKZu1v0+JxZAgAAMCCWAAAADIglAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMCCWAAAADIglAAAAA4+WXkBrYFmWJOncuXNNPrez8nyTz4nGcbhbOn/eIUelu5wOW0svB//RHF93LYGv9WsHX+vXnub6Ov9h3h9+jtfFZl1uBC7r//7v/xQYGNjSywAAAI1QWFio3r171/k8sdQEnE6nTp06pc6dO8tm438hrdW5c+cUGBiowsJCeXl5tfRyADQTvtZvHJZl6ZtvvlFAQIDc3Oq+M4nLcE3Azc3NWKRoXby8vPgGCtwA+Fq/MXTp0uWyY7jBGwAAwIBYAgAAMCCWgHpq27atFixYoLZt27b0UgA0I77W8WPc4A0AAGDAmSUAAAADYgkAAMCAWAIAADAglgAAAAyIJaAJBAcHKz09vaWXAeA/bDabNm7cKEk6efKkbDabDh061Kj9a9OYOeuD7yXXJmIJrVZSUpJsNptsNps8PT3l6+urO+64QytXrpTT6Wzp5QGoQ1JSkuLj45tsvsDAQJ0+fVoDBgyo9z6nT59WbGxsk60B1zdiCa3aXXfdpdOnT+vkyZN6//33NWbMGD344IOaMGGCLl682NLLc7lw4UJLLwFotdzd3eXn5ycPj/r/hS8/Pz9+zxJciCW0am3btpWfn5969eqlwYMH65FHHtHbb7+t999/X6tXr5Ykff311/rNb34jHx8feXl5yW636/Dhw645CgoKNHHiRPn6+qpTp04aOnSotm7dajzu5eZcuHChwsPD9fLLL6tv375q165ds7x+4Ho3evRo/eEPf9C8efPUvXt3+fn5aeHChdXGfPbZZ7r99tvVrl07hYaGasuWLdWev/SSmdPpVO/evbVs2bJqY/Ly8uTm5qbPP/9cUs3LcPv27dOgQYPUrl07DRkyRHl5edX2X716tbp27Vpt28aNG6v9cfXGfC/BtYFYwg3HbrcrLCxMGzZskCTde++9Kikp0fvvv6/c3FwNHjxYY8eOVVlZmSSpvLxc48ePV05OjvLy8nTXXXcpLi5OX3zxRZ3HuNycknT8+HG99dZb2rBhQ5Pf9wC0Jq+++qo6duyovXv36tlnn9UTTzzhCiKn06mf/vSnatOmjfbu3avly5frj3/8Y51zubm56Re/+IXWrVtXbfvatWs1cuRIBQUF1dinvLxcEyZMUGhoqHJzc7Vw4ULNnTu3wa+jMd9LcI2wgFYqMTHRmjhxYq3PTZ482QoJCbH+8Y9/WF5eXtZ3331X7fmbb77ZevHFF+ucu3///taSJUtcj4OCgqy//OUvlmVZ9ZpzwYIFlqenp1VSUtKIVwa0bpd+7UZHR1ujRo2q9vzQoUOtP/7xj5ZlWdYHH3xgeXh4WF9++aXr+ffff9+SZGVlZVmWZVknTpywJFl5eXmWZVlWXl6eZbPZrM8//9yyLMtyOBxWr169rGXLlrnmuHT/F1980erRo4f17bffup5ftmxZtTlXrVpldenSpdo6s7KyrMv9mDV9L8G1gzNLuCFZliWbzabDhw+rvLxcPXr0UKdOnVwfJ06cUEFBgaTv/zc4d+5chYSEqGvXrurUqZOOHj1a5/8G6zOnJAUFBcnHx+eqvF7gejZw4MBqj/39/VVSUiJJOnr0qAIDAxUQEOB6fvjw4cb5wsPDFRIS4jq7tGPHDpWUlOjee++tdfzRo0c1cODAapfLL3eM2jT0ewmuHfW/2w1oRY4ePaq+ffuqvLxc/v7++vvf/15jzA/3H8ydO1dbtmzRc889p1tuuUXt27fXPffcU+dN2fWZU5I6duzYBK8EaP08PT2rPbbZbFf8jtapU6dq3bp1Sk1N1bp163TXXXepR48ejZ7Pzc1N1o/+1GpVVVW1xw39XoJrB7GEG862bdt05MgRzZkzR71791ZRUZE8PDwUHBxc6/jdu3crKSlJkyZNkvR9DJ08ebLO+QcPHnzZOQE0jZCQEBUWFur06dPy9/eXJP3zn/+87H5TpkzR//zP/yg3N1dvvvmmli9fbjzGmjVr9N1337nOLv34GD4+Pvrmm29UUVHh+o/Qj+9FbOj3Elw7uAyHVq2yslJFRUX68ssvdfDgQaWlpWnixImaMGGCEhISFBMTo+HDhys+Pl4ffvihTp48qY8++kiPPvqoDhw4IEnq16+f6ybsw4cPa8qUKcb/1dZnTgBNIyYmRrfeeqsSExN1+PBh/eMf/9Cjjz562f2Cg4M1YsQI/frXv5bD4dB//dd/1Tl2ypQpstlsmjFjhvLz85Wdna3nnnuu2phhw4apQ4cOeuSRR1RQUKB169a53nH7g4Z+L8G1g1hCq7Z582b5+/srODhYd911l7Zv364XXnhBb7/9ttzd3WWz2ZSdna3bb79d06dP16233qr77rtPn3/+uXx9fSVJixcvVrdu3TRixAjFxcVp3LhxGjx4cJ3HrM+cAJqGm5ubsrKy9O233yoyMlK/+c1v9NRTT9Vr36lTp+rw4cOaNGmS2rdvX+e4Tp066d1339WRI0c0aNAgPfroo1q0aFG1Md27d9ff/vY3ZWdn67bbbtPrr79e41ccNPR7Ca4dNuvHF1kBAADgwpklAAAAA2IJAADAgFgCAAAwIJYAAAAMiCUAAAADYgkAAMCAWAIAADAglgAAAAyIJQAAAANiCQAAwIBYAgAAMPh/vATHliePqiAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGzCAYAAAAv9B03AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKd9JREFUeJzt3X1clXWC///3AQREAW9AlORG00pEwQAdLQdE1NAYdbTwpkSdtSlhKllzbWd/aU2Z2mg0DurqopRTyTijzqwphmi6upaA0VQYsxqOliNqmgrOKHKu7x/9PA+RmwQlkM/r+XjMYzyf8znX9TnYkRfXdZ2DzbIsSwAAAAZwauoFAAAA/FAIHwAAYAzCBwAAGIPwAQAAxiB8AACAMQgfAABgDMIHAAAYg/ABAADGIHwAAIAxCB8AkJSZmSmbzaajR4/e1u1+8MEHstls+uCDD27rdgE0DOEDoE7/+7//q/nz5+vbb79t6qUAwC2z8bu6ANTl17/+tZ577jmVlJQoODi4qZfTaCorK1VRUSE3NzfZbLbbtl273a4rV67I1dVVTk78rAk0NZemXgCAluHaN3h3d/emXkqDODs7y9nZ+bZv18nJ6Y79mgAtET9+AKjV/Pnz9dxzz0mSunXrJpvN5rgOxmazKSUlRW+//bZ69+4tNzc3ZWdnS/ruKNGgQYPUsWNHtW7dWhEREfrDH/5QbfvXtrF582aFhobKzc1NvXv3dmznmosXL+rZZ59VcHCw3Nzc1KlTJw0bNkwHDx50zImJiVFoaKj+8pe/KDo6Wh4eHurRo4djv7t379aAAQPUunVr3XvvvdqxY0eVfdR0jU9+fr5GjBghHx8ftW7dWt26ddP06dOrPG79+vWKiIiQp6envLy81KdPH73xxhuO+2u7xmfDhg2KiIhQ69at5ePjo8cee0xff/11lTlTp05V27Zt9fXXX2vMmDFq27atfH19NXv2bFVWVtb1VwegFoQPgFr99Kc/1cSJEyVJr7/+utatW6d169bJ19dXkrRz507NmjVLiYmJeuONNxynwt544w3169dPL730khYsWCAXFxc98sgjeu+996rtY+/evZo5c6YmTJigxYsX65///KfGjRunb775xjHnySef1IoVKzRu3DgtX75cs2fPVuvWrXXo0KEq2zp37pwefvhhDRgwQIsXL5abm5smTJigrKwsTZgwQSNHjtTChQtVXl6u8ePH6+LFi7U+91OnTmn48OE6evSo5s6dq2XLlmny5Mn68MMPHXNycnI0ceJEtW/fXosWLdLChQsVExOjffv21fl1zczM1KOPPipnZ2e9+uqrmjFjhjZu3KgHH3yw2rVUlZWVGjFihDp27Khf//rXio6O1pIlS7Rq1ao69wGgFhYA1OG1116zJFklJSVVxiVZTk5O1ueff17tMZcuXapy+8qVK1ZoaKgVGxtbbRuurq7W4cOHHWOffPKJJclatmyZY8zb29tKTk6uc53R0dGWJOudd95xjH3xxReOdX744YeO8e3bt1uSrLVr1zrG1q5dW+V5btq0yZJk5eXl1brPZ555xvLy8rKuXr1a65xdu3ZZkqxdu3Y5vhadOnWyQkNDrX/84x+OeVu2bLEkWS+88IJjLCkpyZJkvfTSS1W22a9fPysiIqLOrweAmnHEB0CDRUdHKyQkpNp469atHX8+d+6czp8/r8GDB1c5NXVNXFyc7r77bsftvn37ysvLS19++aVjrF27dvroo4904sSJOtfTtm1bTZgwwXH73nvvVbt27dSrVy8NGDDAMX7tz9fv40bt2rWTJG3ZskUVFRW1zikvL1dOTk6d67pefn6+Tp06pZkzZ1a59mfUqFG67777ajwq9uSTT1a5PXjw4DrXDqB2hA+ABuvWrVuN41u2bNGPfvQjubu7q0OHDvL19dWKFSt0/vz5anMDAwOrjbVv317nzp1z3F68eLE+++wzBQQEqH///po/f36N3/i7du1a7R1Z3t7eCggIqDYmqco+bhQdHa1x48bpxRdflI+Pj0aPHq21a9fq8uXLjjkzZ87UPffco/j4eHXt2lXTp0+vdn3Sjf72t79J+i7KbnTfffc57r/G3d3dcWrxmhu/PgBuHuEDoMGuP7Jzzf/8z//oJz/5idzd3bV8+XJt3bpVOTk5mjRpkqwaPj2jtndSXT/30Ucf1Zdffqlly5bJ399fr732mnr37q1t27bd1LZuZh83stls+sMf/qD9+/crJSVFX3/9taZPn66IiAiVlZVJkjp16qTCwkL9+c9/1k9+8hPt2rVL8fHxSkpKqnW79dUY7zQDTEb4AKhTfT/T5o9//KPc3d21fft2TZ8+XfHx8YqLi7vldXTp0kUzZ87U5s2bVVJSoo4dO+qVV1655e1+nx/96Ed65ZVXlJ+fr7fffluff/651q9f77jf1dVVCQkJWr58uY4cOaKf//zneuutt3T48OEatxcUFCRJKi4urnZfcXGx434AjYPwAVCnNm3aSNJNf3Kzs7OzbDZblbdbHz16VJs3b27Q/isrK6udIuvUqZP8/f2rnHa63c6dO1ftiFB4eLgkOfZ7/TvPpO8+s6dv375V5twoMjJSnTp10sqVK6vM2bZtmw4dOqRRo0bdrqcAoAZ8gCGAOkVEREiSfvnLX2rChAlq1aqVEhISap0/atQoLV26VA899JAmTZqkU6dOKT09XT169NBf/vKXeu//4sWL6tq1q8aPH6+wsDC1bdtWO3bsUF5enpYsWdLg5/V93nzzTS1fvlxjx47V3XffrYsXL2r16tXy8vLSyJEjJUn/8i//orNnzyo2NlZdu3bV3/72Ny1btkzh4eHq1atXjdtt1aqVFi1apGnTpik6OloTJ05UaWmp4+MAZs2a1WjPCQDhA+B7REVF6Ve/+pVWrlyp7Oxs2e12lZSU1Do/NjZWGRkZWrhwoZ599ll169ZNixYt0tGjRxsUPh4eHpo5c6bef/99bdy4UXa7XT169NDy5cv11FNP3cpTq1N0dLQOHDig9evXq7S0VN7e3urfv7/efvttx0Xdjz32mFatWqXly5fr22+/VefOnZWYmKj58+fX+esppk6dKg8PDy1cuFD/9m//pjZt2mjs2LFatGiR491kABoHv6sLAAAYg2t8AACAMQgfAABgDMIHAAAYg/ABAADGIHwAAIAxCB8AAGAMPsfnOna7XSdOnJCnp2e9P6YfAAA0DcuydPHiRfn7+9f5GVoS4VPFiRMnqv0WZwAAcGc4fvy4unbtWuccwuc6np6ekr77wnl5eTXxatCYKioq9P7772v48OFq1apVUy8HQCPhtW6GCxcuKCAgwPF9vC6Ez3Wund7y8vIifFq4iooKeXh4yMvLi38MgRaM17pZbuYyFS5uBgAAxiB8AACAMQgfAABgDMIHAAAYg/ABAADGIHwAAIAxCB8AAGAMwgcAABiD8AEAAMYgfAAAgDEIHwAAYAzCBwAAGIPwAQAAxuC3s/+Ague+19RLwP/PzdnS4v5S6Pztulz5/b/NF43v6MJRTb0EAAbgiA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjNFiw+f48eOKiYlRSEiI+vbtqw0bNjT1kgAAQBNzaeoFNBYXFxelpaUpPDxcJ0+eVEREhEaOHKk2bdo09dIAAEATabHh06VLF3Xp0kWS1LlzZ/n4+Ojs2bOEDwAABqv3qa5XX31VUVFR8vT0VKdOnTRmzBgVFxff1kXt2bNHCQkJ8vf3l81m0+bNm2ucl56eruDgYLm7u2vAgAE6cOBAjfMKCgpUWVmpgICA27pOAABwZ6l3+OzevVvJycn68MMPlZOTo4qKCg0fPlzl5eU1zt+3b58qKiqqjRcVFam0tLTGx5SXlyssLEzp6em1riMrK0upqamaN2+eDh48qLCwMI0YMUKnTp2qMu/s2bOaMmWKVq1aVY9nCQAAWqJ6h092dramTp2q3r17KywsTJmZmTp27JgKCgqqzbXb7UpOTtakSZNUWVnpGC8uLlZsbKzefPPNGvcRHx+vl19+WWPHjq11HUuXLtWMGTM0bdo0hYSEaOXKlfLw8NCaNWsccy5fvqwxY8Zo7ty5GjRoUK3bSk9PV0hIiKKiom7mSwAAAO5Qt/yurvPnz0uSOnToUH3jTk7aunWrPv74Y02ZMkV2u11HjhxRbGysxowZozlz5jRon1euXFFBQYHi4uKq7CsuLk779++XJFmWpalTpyo2NlaPP/54ndtLTk5WUVGR8vLyGrQeAABwZ7il8LHb7Xr22Wf1wAMPKDQ0tMY5/v7+2rlzp/bu3atJkyYpNjZWcXFxWrFiRYP3e+bMGVVWVsrPz6/KuJ+fn06ePCnpu1NsWVlZ2rx5s8LDwxUeHq5PP/20wfsEAAB3vlt6V1dycrI+++wz7d27t855gYGBWrdunaKjo9W9e3dlZGTIZrPdyq6/14MPPii73d6o+wAAAHeWBh/xSUlJ0ZYtW7Rr1y517dq1zrmlpaV64oknlJCQoEuXLmnWrFkN3a0kycfHR87OztUuji4tLVXnzp1vadsAAKDlqnf4WJallJQUbdq0STt37lS3bt3qnH/mzBkNHTpUvXr10saNG5Wbm6usrCzNnj27wYt2dXVVRESEcnNzHWN2u125ubkaOHBgg7cLAABatnqf6kpOTtY777yjP/3pT/L09HRcU+Pt7a3WrVtXmWu32xUfH6+goCBlZWXJxcVFISEhysnJUWxsrO66664aj/6UlZXp8OHDjtslJSUqLCxUhw4dFBgYKElKTU1VUlKSIiMj1b9/f6Wlpam8vFzTpk2r71MCAACGqHf4XLsoOSYmpsr42rVrNXXq1CpjTk5OWrBggQYPHixXV1fHeFhYmHbs2CFfX98a95Gfn68hQ4Y4bqempkqSkpKSlJmZKUlKTEzU6dOn9cILL+jkyZMKDw9XdnZ2tQueAQAArql3+FiWVa/5w4YNq3G8X79+tT4mJibmpvaTkpKilJSUeq0HAACYq8X+dnYAAIAbET4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYLS58jh8/rpiYGIWEhKhv377asGFDUy8JAAA0Ey5NvYDbzcXFRWlpaQoPD9fJkycVERGhkSNHqk2bNk29NAAA0MRaXPh06dJFXbp0kSR17txZPj4+Onv2LOEDAACa36muPXv2KCEhQf7+/rLZbNq8eXO1Oenp6QoODpa7u7sGDBigAwcO1LitgoICVVZWKiAgoJFXDQAA7gTN7ohPeXm5wsLCNH36dP30pz+tdn9WVpZSU1O1cuVKDRgwQGlpaRoxYoSKi4vVqVMnx7yzZ89qypQpWr16da37unz5si5fvuy4feHCBUlSRUWFKioqbuOz+o6bs3Xbt4mGcXOyqvw/ml5jvOaAa/9d8d9Xy1afv1+bZVnN9l9+m82mTZs2acyYMY6xAQMGKCoqSr/97W8lSXa7XQEBAfrFL36huXPnSvouaIYNG6YZM2bo8ccfr3X78+fP14svvlht/J133pGHh8ftfTIAAKBRXLp0SZMmTdL58+fl5eVV59xmd8SnLleuXFFBQYGef/55x5iTk5Pi4uK0f/9+SZJlWZo6dapiY2PrjB5Jev7555Wamuq4feHCBQUEBGj48OHf+4VriND522/7NtEwbk6WfhVp1/+X76TLdltTLweSPps/oqmXgBaooqJCOTk5GjZsmFq1atXUy0EjuXbG5mbcUeFz5swZVVZWys/Pr8q4n5+fvvjiC0nSvn37lJWVpb59+zquD1q3bp369OlTbXtubm5yc3OrNt6qVatGeYFcruQbbHNz2W7j76WZ4JsSGlNj/buO5qE+f7d3VPjcjAcffFB2u72plwEAAJqhZveurrr4+PjI2dlZpaWlVcZLS0vVuXPnJloVAAC4U9xR4ePq6qqIiAjl5uY6xux2u3JzczVw4MAmXBkAALgTNLtTXWVlZTp8+LDjdklJiQoLC9WhQwcFBgYqNTVVSUlJioyMVP/+/ZWWlqby8nJNmzatCVcNAADuBM0ufPLz8zVkyBDH7WvvukpKSlJmZqYSExN1+vRpvfDCCzp58qTCw8OVnZ1d7YJnAACAGzW78ImJidH3fbRQSkqKUlJSfqAVAQCAluKOusYHAADgVhA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEj6T09HSFhIQoKiqqqZcCAAAaEeEjKTk5WUVFRcrLy2vqpQAAgEZE+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEjKT09XSEhIYqKimrqpQAAgEZE+EhKTk5WUVGR8vLymnopAACgERE+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhIyk9PV0hISGKiopq6qUAAIBGRPhISk5OVlFRkfLy8pp6KQAAoBERPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjtOjwGTt2rNq3b6/x48c39VIAAEAz0KLD55lnntFbb73V1MsAAADNRIsOn5iYGHl6ejb1MgAAQDPRoPD5+uuv9dhjj6ljx45q3bq1+vTpo/z8/Nu2qD179ighIUH+/v6y2WzavHlzjfPS09MVHBwsd3d3DRgwQAcOHLhtawAAAC1PvcPn3LlzeuCBB9SqVStt27ZNRUVFWrJkidq3b1/j/H379qmioqLaeFFRkUpLS2t8THl5ucLCwpSenl7rOrKyspSamqp58+bp4MGDCgsL04gRI3Tq1Kn6PiUAAGCIeofPokWLFBAQoLVr16p///7q1q2bhg8frrvvvrvaXLvdruTkZE2aNEmVlZWO8eLiYsXGxurNN9+scR/x8fF6+eWXNXbs2FrXsXTpUs2YMUPTpk1TSEiIVq5cKQ8PD61Zs6a+TwkAABii3uHz5z//WZGRkXrkkUfUqVMn9evXT6tXr655405O2rp1qz7++GNNmTJFdrtdR44cUWxsrMaMGaM5c+Y0aNFXrlxRQUGB4uLiquwrLi5O+/fvr/f20tPTFRISoqioqAatBwAA3BnqHT5ffvmlVqxYoZ49e2r79u166qmn9PTTT9d69Mbf3187d+7U3r17NWnSJMXGxiouLk4rVqxo8KLPnDmjyspK+fn5VRn38/PTyZMnHbfj4uL0yCOPaOvWreratWutUZScnKyioiLl5eU1eE0AAKD5c6nvA+x2uyIjI7VgwQJJUr9+/fTZZ59p5cqVSkpKqvExgYGBWrdunaKjo9W9e3dlZGTIZrPd2spvwo4dOxp9HwAA4M5R7yM+Xbp0UUhISJWxXr166dixY7U+prS0VE888YQSEhJ06dIlzZo1q/4rvY6Pj4+cnZ2rXRxdWlqqzp0739K2AQBAy1Xv8HnggQdUXFxcZeyvf/2rgoKCapx/5swZDR06VL169dLGjRuVm5urrKwszZ49u2ErluTq6qqIiAjl5uY6xux2u3JzczVw4MAGbxcAALRs9T7VNWvWLA0aNEgLFizQo48+qgMHDmjVqlVatWpVtbl2u13x8fEKCgpSVlaWXFxcFBISopycHMXGxuquu+6q8ehPWVmZDh8+7LhdUlKiwsJCdejQQYGBgZKk1NRUJSUlKTIyUv3791daWprKy8s1bdq0+j4lAABgiHqHT1RUlDZt2qTnn39eL730krp166a0tDRNnjy52lwnJyctWLBAgwcPlqurq2M8LCxMO3bskK+vb437yM/P15AhQxy3U1NTJUlJSUnKzMyUJCUmJur06dN64YUXdPLkSYWHhys7O7vaBc8AAADX2CzLspp6Ec3FhQsX5O3trfPnz8vLy+u2bz947nu3fZtoGDdnS4v7V2rOAWddrmz8C+3x/Y4uHNXUS0ALVFFRoa1bt2rkyJFq1apVUy8HjaQ+379b9O/qAgAAuB7hAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhIyk9PV0hISGKiopq6qUAAIBGRPhISk5OVlFRkfLy8pp6KQAAoBERPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIxB+AAAAGMQPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjtOjwGTt2rNq3b6/x48c39VIAAEAz0KLD55lnntFbb73V1MsAAADNRIsOn5iYGHl6ejb1MgAAQDNxS+GzcOFC2Ww2Pfvss7dpOd/Zs2ePEhIS5O/vL5vNps2bN9c4Lz09XcHBwXJ3d9eAAQN04MCB27oOAADQsjQ4fPLy8vSf//mf6tu3b53z9u3bp4qKimrjRUVFKi0trfEx5eXlCgsLU3p6eq3bzcrKUmpqqubNm6eDBw8qLCxMI0aM0KlTp+r3RAAAgDFcGvKgsrIyTZ48WatXr9bLL79c6zy73a7k5GT17NlT69evl7OzsySpuLhYsbGxSk1N1Zw5c6o9Lj4+XvHx8XWuYenSpZoxY4amTZsmSVq5cqXee+89rVmzRnPnzq3X80lPT1d6eroqKyvr9TgAuFHw3Peaegm4jpuzpcX9pdD523W50tbUy4GkowtHNen+G3TEJzk5WaNGjVJcXFzdG3dy0tatW/Xxxx9rypQpstvtOnLkiGJjYzVmzJgao+dmXLlyRQUFBVX27+TkpLi4OO3fv7/e20tOTlZRUZHy8vIatB4AAHBnqPcRn/Xr1+vgwYM3HQn+/v7auXOnBg8erEmTJmn//v2Ki4vTihUr6r3Ya86cOaPKykr5+flVGffz89MXX3zhuB0XF6dPPvlE5eXl6tq1qzZs2KCBAwc2eL8AAODOVq/wOX78uJ555hnl5OTI3d39ph8XGBiodevWKTo6Wt27d1dGRoZstsY/5Lhjx45G3wcAALhz1OtUV0FBgU6dOqX7779fLi4ucnFx0e7du/Wb3/xGLi4utV4jU1paqieeeEIJCQm6dOmSZs2adUuL9vHxkbOzc7WLo0tLS9W5c+db2jYAAGi56hU+Q4cO1aeffqrCwkLH/yIjIzV58mQVFhY6Ll6+3pkzZzR06FD16tVLGzduVG5urrKysjR79uwGL9rV1VURERHKzc11jNntduXm5nIqCwAA1Kpep7o8PT0VGhpaZaxNmzbq2LFjtXHpuxiJj49XUFCQsrKy5OLiopCQEOXk5Cg2NlZ33XVXjUd/ysrKdPjwYcftkpISFRYWqkOHDgoMDJQkpaamKikpSZGRkerfv7/S0tJUXl7ueJcXAADAjRr0dvab5eTkpAULFmjw4MFydXV1jIeFhWnHjh3y9fWt8XH5+fkaMmSI43ZqaqokKSkpSZmZmZKkxMREnT59Wi+88IJOnjyp8PBwZWdnV7vgGQAA4JpbDp8PPvigzvuHDRtW43i/fv1qfUxMTIwsy/refaekpCglJeV75wEAAEgt/Hd1AQAAXI/wAQAAxiB8AACAMQgfAABgDMIHAAAYg/ABAADGIHwAAIAxGvUDDO801z476MKFC42yffvlS42yXdRfpbOlS5cqVXnZWfbKxv+Fufh+jfW6+6HxOm9eeK03P43xWr+2zZv5DECbdTOzDPHVV18pICCgqZcBAAAa4Pjx4+ratWudcwif69jtdp04cUKenp6y2fjJoCW7cOGCAgICdPz4cXl5eTX1cgA0El7rZrAsSxcvXpS/v7+cnOq+iodTXddxcnL63lJEy+Ll5cU/hoABeK23fN7e3jc1j4ubAQCAMQgfAABgDMIHRnJzc9O8efPk5ubW1EsB0Ih4reNGXNwMAACMwREfAABgDMIHAAAYg/ABAADGIHwAAIAxCB/gNrPZbNq8eXNTLwPADyQ4OFhpaWlNvQzcJMIHzdbUqVNls9n05JNPVrsvOTlZNptNU6dO/eEXBuCm7d+/X87Ozho1alS9Hzt//nyFh4ff/kU1UGZmptq1a1dtPC8vT0888cQPvyA0COGDZi0gIEDr16/XP/7xD8fYP//5T73zzjsKDAxswpUBuBkZGRn6xS9+oT179ujEiRNNvZxG4evrKw8Pj6ZeBm4S4YNm7f7771dAQIA2btzoGNu4caMCAwPVr18/x1h2drYefPBBtWvXTh07dtTDDz+sI0eOOO4/evSobDabNm7cqCFDhsjDw0NhYWHav3+/Y05NP12mpaUpODjYcTsvL0/Dhg2Tj4+PvL29FR0drYMHD97+Jw60AGVlZcrKytJTTz2lUaNGKTMz03FfTUdPNm/e7PgF0ZmZmXrxxRf1ySefyGazyWazOR5/7NgxjR49Wm3btpWXl5ceffRRlZaWOrZz7bW8Zs0aBQYGqm3btpo5c6YqKyu1ePFide7cWZ06ddIrr7xSZf9Lly5Vnz591KZNGwUEBGjmzJkqKyuTJH3wwQeaNm2azp8/71jP/PnzJVU/1fXtt9/q5z//ufz8/OTu7q7Q0FBt2bLl9nxRccsIHzR706dP19q1ax2316xZo2nTplWZU15ertTUVOXn5ys3N1dOTk4aO3as7HZ7lXm//OUvNXv2bBUWFuqee+7RxIkTdfXq1Ztey8WLF5WUlKS9e/fqww8/VM+ePTVy5EhdvHjx1p4k0AL9/ve/13333ad7771Xjz32mNasWaOb/czcxMRE/eu//qt69+6tv//97/r73/+uxMRE2e12jR49WmfPntXu3buVk5OjL7/8UomJiVUef+TIEW3btk3Z2dl69913lZGRoVGjRumrr77S7t27tWjRIv3Hf/yHPvroI8djnJyc9Jvf/Eaff/653nzzTe3cuVNz5syRJA0aNEhpaWny8vJyrGf27NnV1m232xUfH699+/bpd7/7nYqKirRw4UI5OzvfwlcSt5UFNFNJSUnW6NGjrVOnTllubm7W0aNHraNHj1ru7u7W6dOnrdGjR1tJSUk1Pvb06dOWJOvTTz+1LMuySkpKLEnWf/3XfznmfP7555Yk69ChQ5ZlWda8efOssLCwKtt5/fXXraCgoFrXWFlZaXl6elr//d//7RiTZG3atKlBzxloSQYNGmSlpaVZlmVZFRUVlo+Pj7Vr1y7Lsixr7dq1lre3d5X5mzZtsq7/tlTTa/L999+3nJ2drWPHjjnGrr2WDxw44Hich4eHdeHCBcecESNGWMHBwVZlZaVj7N5777VeffXVWte/YcMGq2PHjo7bNa3ZsiwrKCjIev311y3Lsqzt27dbTk5OVnFxca3bRdPiiA+aPV9fX8dh8rVr12rUqFHy8fGpMuf//u//NHHiRHXv3l1eXl6O01PHjh2rMq9v376OP3fp0kWSdOrUqZteS2lpqWbMmKGePXvK29tbXl5eKisrq7YfwHTFxcU6cOCAJk6cKElycXFRYmKiMjIybmm7hw4dUkBAgAICAhxjISEhateunQ4dOuQYCw4Olqenp+O2n5+fQkJC5OTkVGXs+tf/jh07NHToUN11113y9PTU448/rm+++UaXLl266fUVFhaqa9euuueeexr6FNHIXJp6AcDNmD59ulJSUiRJ6enp1e5PSEhQUFCQVq9eLX9/f9ntdoWGhurKlStV5rVq1crx52vXElw7Hebk5FTtMHxFRUWV20lJSfrmm2/0xhtvKCgoSG5ubho4cGC1/QCmy8jI0NWrV+Xv7+8YsyxLbm5u+u1vf3tTr7dbcf1rXfru9V7T2LXX/9GjR/Xwww/rqaee0iuvvKIOHTpo7969+tnPfqYrV67c9MXLrVu3vj1PAI2G8MEd4aGHHtKVK1dks9k0YsSIKvd98803Ki4u1urVqzV48GBJ0t69e+u9D19fX508eVKWZTmiqLCwsMqcffv2afny5Ro5cqQk6fjx4zpz5kwDnhHQcl29elVvvfWWlixZouHDh1e5b8yYMXr33XcVFBSkixcvqry8XG3atJFU/fXm6uqqysrKKmO9evXS8ePHdfz4ccdRn6KiIn377bcKCQlp8JoLCgpkt9u1ZMkSx1Gh3//+99+7nhv17dtXX331lf76179y1KeZInxwR3B2dnYcxr7xIsH27durY8eOWrVqlbp06aJjx45p7ty59d5HTEyMTp8+rcWLF2v8+PHKzs7Wtm3b5OXl5ZjTs2dPrVu3TpGRkbpw4YKee+45fsIDbrBlyxadO3dOP/vZz+Tt7V3lvnHjxikjI0Pbt2+Xh4eH/v3f/11PP/20Pvrooyrv+pK+O11VUlLiOH3k6empuLg49enTR5MnT1ZaWpquXr2qmTNnKjo6WpGRkQ1ec48ePVRRUaFly5YpISFB+/bt08qVK6utp6ysTLm5uQoLC5OHh0e1I0HR0dH68Y9/rHHjxmnp0qXq0aOHvvjiC9lsNj300EMNXh9uH67xwR3Dy8urSoRc4+TkpPXr16ugoEChoaGaNWuWXnvttXpvv1evXlq+fLnS09MVFhamAwcOVHvXRkZGhs6dO6f7779fjz/+uJ5++ml16tSpwc8JaIkyMjIUFxdXLXqk78InPz9fX331lX73u99p69at6tOnj959913H28Ovn/vQQw9pyJAh8vX11bvvviubzaY//elPat++vX784x8rLi5O3bt3V1ZW1i2tOSwsTEuXLtWiRYsUGhqqt99+W6+++mqVOYMGDdKTTz6pxMRE+fr6avHixTVu649//KOioqI0ceJEhYSEaM6cOd97pAg/HJt140lWAACAFoojPgAAwBiEDwAAMAbhAwAAjEH4AAAAYxA+AADAGIQPAAAwBuEDAACMQfgAAABjED4AAMAYhA8AADAG4QMAAIzx/wAgm4pMRhrd8wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGzCAYAAAD0T7cVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG7FJREFUeJzt3X9sVfd9//GX7YAzFoxKSSAEI9K1YzhpjATGIgsUUhLEqnS0nRYpWsuyqdNaU2XyHxX8sZCo01K1WkanXpVsUxWlWzSaSFBpSQmMpYO02TCkVG0somZLJlaGgXWdE7M6rn33R76xwpf8wMTmfm7u4yFF6Bxfzn378sE8c++55zZVq9VqAAAK0VzrAQAAXk+cAABFEScAQFHECQBQFHECABRFnAAARREnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQI0lLGxsfz85z+v9RjAWxAnwIR9//vfz4YNG9LW1pYrrrgiH/7wh/PP//zPSZKf/exnaWlpyV/8xV+M3/7MmTNpbm7Oe9/73rz+g9A/85nPZN68eePba9asyfXXX5/+/v6sXbs2M2bMyDXXXJMvfelL580wPDycbdu25f3vf39aW1vT3t6ez3/+8xkeHj7ndk1NTdm8eXP+9m//Ntddd11aW1uzZ8+eyX5IgEnUVH39TwqAt/Hss8+mu7s7bW1t+exnP5tp06blgQceyIkTJ/JP//RP6e7uTmdnZz7wgQ/k0UcfTZLs3r07n/jEJzI2NpYf/ehHue6665Ik119/fZYsWZJHHnkkyatx8uMf/zgtLS35+Mc/nsWLF+fRRx/NP/7jP+bxxx/Phg0bkrz67MeGDRvy1FNP5Q/+4A+yZMmS/PCHP8yOHTvykY98JLt37x6ft6mpKUuWLMmZM2eyefPmzJkzJzfeeGOWLl16SR83YAKqABOwcePG6vTp06v/+q//Or7vxIkT1ZkzZ1ZXr15drVar1Z6enurcuXPHv97b21tdvXp19aqrrqp+7Wtfq1ar1ep//dd/VZuamqpf+cpXxm/3oQ99qJqk+tBDD43vGx4ers6bN6/6iU98YnzfN77xjWpzc3P14MGD58y2Y8eOapLqd7/73fF9SarNzc3VZ599dpIeAWCqeVkHuGCjo6PZu3dvNm7cmPe9733j+6+++urccccdeeqppzI4OJhVq1ZlYGAgzz33XJLk4MGDWb16dVatWpWDBw8mSZ566qlUq9WsWrXqnPu44oor8ju/8zvj29OnT8+KFSvyb//2b+P7HnnkkSxZsiS/9mu/ljNnzoz/d/PNNydJnnzyyXOO+aEPfSgdHR2T+2AAU0acABfs9OnTOXv2bBYvXnze15YsWZKxsbEcP358PDgOHjyYoaGhfP/738+qVauyevXq8Tg5ePBg2tra0tnZec5xFixYkKampnP2vec978l///d/j2//+Mc/zrPPPpsrr7zynP9+9Vd/NUly6tSpc37/tdde+86/eeCSuazWAwDvPvPnz8+1116bAwcOZNGiRalWq1m5cmWuvPLK3HXXXfn3f//3HDx4MDfeeGOam8/9f6SWlpY3PGb1dafHjY2N5YMf/GDuv//+N7xte3v7Odu/9Eu/9A6/I+BSEifABbvyyiszY8aM8ZdrXu/YsWNpbm4eD4NVq1blwIEDufbaa7N06dLMnDkznZ2dmTVrVvbs2ZNnnnkm995770XN8Su/8iv5wQ9+kA9/+MPnPcsC1D8v6wAXrKWlJbfeemu+9a1v5cUXXxzfPzAwkIcffjg33XRT2trakrwaJy+++GJ27tw5/jJPc3Nzbrzxxtx///0ZGRk573yTC/Xbv/3b+clPfpK/+qu/Ou9r//u//5uhoaGLOi5QBs+cABPyJ3/yJ9m3b19uuummfPazn81ll12WBx54IMPDw+dcj+S18Hjuuefyp3/6p+P7V69enW9/+9tpbW1NV1fXRc3wyU9+Mt/85jfzh3/4h3nyySfz67/+6xkdHc2xY8fyzW9+M0888USWL1/+zr5RoGbECTAh1113XQ4ePJitW7fmvvvuy9jYWLq7u/M3f/M36e7uHr/d4sWLc9VVV+XUqVO56aabxve/Fi0rVqxIa2vrRc3Q3Nyc3bt358///M/z0EMPZdeuXZkxY0be97735a677ho/MRaoTy7CBgAUxTknAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFCUurvOydjYWE6cOJGZM2e6bDUA1IlqtZqXXnop8+fPP+8ztf5/dRcnJ06cOO9DvQCA+nD8+PEsWLDgLW9Td3Eyc+bMJK9+c699hgeTY2RkJHv37s2tt96aadOm1XocGpA1SK1Zg1NncHAw7e3t4/+Ov5W6i5PXXsppa2sTJ5NsZGQkM2bMSFtbm7+U1IQ1SK1Zg1PvQk7JcEIsAFAUcQIAFEWcAABFEScAQFHECQBQFHECABRFnAAARREnAEBRxAkAUBRxAgAURZwAAEWpmzipVCrp6OhIV1dXrUcBAKZQ3cRJT09P+vv709fXV+tRAIApVHefSjzVFm15rNYj1ExrSzVfWpFcf88TGR59+0+NfDd68YsfqfUIAA2vbp45AQAagzgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEAChK3cRJpVJJR0dHurq6aj0KADCF6iZOenp60t/fn76+vlqPAgBMobqJEwCgMYgTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCiXPE6OHz+eNWvWpKOjIzfccEMeeeSRSz0CAFCwyy75HV52WbZv356lS5fm5MmTWbZsWX7jN34jv/zLv3ypRwEACnTJ4+Tqq6/O1VdfnSSZN29e5syZk5/+9KfiBABIchEv6xw4cCC33XZb5s+fn6ampuzevfu821QqlSxatCiXX355uru7c+jQoTc81pEjRzI6Opr29vYJDw4AvDtNOE6GhobS2dmZSqXyhl/fuXNnent7s23btjzzzDPp7OzM+vXrc+rUqXNu99Of/jSf+tSn8pd/+ZcXNzkA8K404Zd1NmzYkA0bNrzp1++///58+tOfzp133pkk2bFjRx577LF8/etfz5YtW5Ikw8PD2bhxY7Zs2ZIbb7zxLe9veHg4w8PD49uDg4NJkpGRkYyMjEx0/LfV2lKd9GPWi9bm6jm/NqKpWFNcuNcef38O1Io1OHUm8phO6jknr7zySo4cOZKtW7eO72tubs66devy9NNPJ0mq1Wp+93d/NzfffHM++clPvu0x77vvvtx7773n7d+7d29mzJgxecP/P19aMemHrDtfWD5W6xFq5vHHH6/1CCTZt29frUegwVmDk+/s2bMXfNtJjZMzZ85kdHQ0c+fOPWf/3Llzc+zYsSTJd7/73ezcuTM33HDD+Pkq3/jGN/LBD37wDY+5devW9Pb2jm8PDg6mvb09t956a9ra2iZz/CTJ9fc8MenHrBetzdV8YflY/vhwc4bHmmo9Tk386J71tR6hoY2MjGTfvn255ZZbMm3atFqPQwOyBqfOa698XIhL/m6dm266KWNjF/5/5q2trWltbT1v/7Rp06Zk4QyPNuY/yq83PNbUsI+DH0ZlmKq/33ChrMHJN5HHc1IvwjZnzpy0tLRkYGDgnP0DAwOZN2/eZN4VAPAuNalxMn369Cxbtiz79+8f3zc2Npb9+/dn5cqVk3lXAMC71IRf1nn55Zfz/PPPj2+/8MILOXr0aGbPnp2FCxemt7c3mzZtyvLly7NixYps3749Q0ND4+/eAQB4KxOOk8OHD2ft2rXj26+drLpp06Y8+OCDuf3223P69OncfffdOXnyZJYuXZo9e/acd5LsRFUqlVQqlYyOjr6j4wAAZZtwnKxZsybV6ltfB2Pz5s3ZvHnzRQ/1Rnp6etLT05PBwcHMmjVrUo8NAJTjkn8qMQDAWxEnAEBRxAkAUBRxAgAURZwAAEWpmzipVCrp6OhIV1dXrUcBAKZQ3cRJT09P+vv709fXV+tRAIApVDdxAgA0BnECABRFnAAARREnAEBRxAkAUBRxAgAUpW7ixHVOAKAx1E2cuM4JADSGuokTAKAxiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKErdxImLsAFAY6ibOHERNgBoDHUTJwBAYxAnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQIAFEWcAABFqZs4cfl6AGgMdRMnLl8PAI2hbuIEAGgM4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIpSN3Hig/8AoDHUTZz44D8AaAx1EycAQGMQJwBAUcQJAFAUcQIAFEWcAABFEScAQFHECQBQFHECABRFnAAARREnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFCUuomTSqWSjo6OdHV11XoUAGAK1U2c9PT0pL+/P319fbUeBQCYQnUTJwBAYxAnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQIAFEWcAABFEScAQFHECQBQFHECABRFnAAARREnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQIAFEWcAABFEScAQFHqJk4qlUo6OjrS1dVV61EAgClUN3HS09OT/v7+9PX11XoUAGAK1U2cAACNQZwAAEURJwBAUcQJAFAUcQIAFEWcAABFEScAQFHECQBQFHECABRFnAAARREnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQIAFEWcAABFEScAQFHECQBQFHECABRFnAAARREnAEBRxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQIAFEWcAABFEScAQFHECQBQFHECABSlJnHysY99LO95z3vyW7/1W7W4ewCgYDWJk7vuuisPPfRQLe4aAChcTeJkzZo1mTlzZi3uGgAo3ITj5MCBA7ntttsyf/78NDU1Zffu3efdplKpZNGiRbn88svT3d2dQ4cOTcasAEADmHCcDA0NpbOzM5VK5Q2/vnPnzvT29mbbtm155pln0tnZmfXr1+fUqVPveFgA4N3vson+hg0bNmTDhg1v+vX7778/n/70p3PnnXcmSXbs2JHHHnssX//617Nly5YJDzg8PJzh4eHx7cHBwSTJyMhIRkZGJny8t9PaUp30Y9aL1ubqOb82oqlYU1y41x5/fw7UijU4dSbymE44Tt7KK6+8kiNHjmTr1q3j+5qbm7Nu3bo8/fTTF3XM++67L/fee+95+/fu3ZsZM2Zc9Kxv5ksrJv2QdecLy8dqPULNPP7447UegST79u2r9Qg0OGtw8p09e/aCbzupcXLmzJmMjo5m7ty55+yfO3dujh07Nr69bt26/OAHP8jQ0FAWLFiQRx55JCtXrnzDY27dujW9vb3j24ODg2lvb8+tt96atra2yRw/SXL9PU9M+jHrRWtzNV9YPpY/Ptyc4bGmWo9TEz+6Z32tR7AGrcFaj9DQRkZGsm/fvtxyyy2ZNm1arcd5V3ntlY8LMalxcqH+4R/+4YJv29ramtbW1vP2T5s2bUoWzvBoY/5AfL3hsaaGfRxK+GHUqI/961mD1NpU/RvTyCbyeE7qW4nnzJmTlpaWDAwMnLN/YGAg8+bNm8y7AgDepSY1TqZPn55ly5Zl//794/vGxsayf//+N33ZBgDg9Sb8ss7LL7+c559/fnz7hRdeyNGjRzN79uwsXLgwvb292bRpU5YvX54VK1Zk+/btGRoaGn/3DgDAW5lwnBw+fDhr164d337tZNVNmzblwQcfzO23357Tp0/n7rvvzsmTJ7N06dLs2bPnvJNkJ6pSqaRSqWR0dPQdHQcAKNuE42TNmjWpVt/6OhibN2/O5s2bL3qoN9LT05Oenp4MDg5m1qxZk3psAKAcNflsHQCANyNOAICiiBMAoCjiBAAoijgBAIpSN3FSqVTS0dGRrq6uWo8CAEyhuomTnp6e9Pf3p6+vr9ajAABTqG7iBABoDOIEACiKOAEAiiJOAICiiBMAoCjiBAAoSt3EieucAEBjqJs4cZ0TAGgMdRMnAEBjECcAQFHECQBQFHECABRFnAAARREnAEBRxAkAUJS6iRMXYQOAxlA3ceIibADQGOomTgCAxiBOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKUjdx4vL1ANAY6iZOXL4eABpD3cQJANAYxAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcQIAFEWcAABFEScAQFHECQBQFHECABSlbuLEB/8BQGOomzjxwX8A0BjqJk4AgMYgTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAodRMnlUolHR0d6erqqvUoAMAUqps46enpSX9/f/r6+mo9CgAwheomTgCAxiBOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKLUTZxUKpV0dHSkq6ur1qMAAFOobuKkp6cn/f396evrq/UoAMAUqps4AQAagzgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCKIk4AgKKIEwCgKOIEACiKOAEAilKTOPn7v//7LF68OB/4wAfy13/917UYAQAo1GWX+g5/8YtfpLe3N08++WRmzZqVZcuW5WMf+1je+973XupRAIACXfJnTg4dOpTrrrsu11xzTa644ops2LAhe/fuvdRjAACFmnCcHDhwILfddlvmz5+fpqam7N69+7zbVCqVLFq0KJdffnm6u7tz6NCh8a+dOHEi11xzzfj2Nddck5/85CcXNz0A8K4z4Zd1hoaG0tnZmd/7vd/Lxz/+8fO+vnPnzvT29mbHjh3p7u7O9u3bs379+jz33HO56qqrJjzg8PBwhoeHx7cHBweTJCMjIxkZGZnw8d5Oa0t10o9ZL1qbq+f82oimYk1NlDVoDVI7rz3+/hwm30Qe06ZqtXrRPwWampqya9eubNy4cXxfd3d3urq68tWvfjVJMjY2lvb29nzuc5/Lli1b8r3vfS9f/vKXs2vXriTJH/3RH2XFihW544473vA+7rnnntx7773n7X/44YczY8aMix0dALiEzp49mzvuuCP/8z//k7a2tre87aTGySuvvJIZM2bk0UcfPSdYNm3alJ/97Gf51re+lV/84hdZsmRJvvOd74yfEPu9733vTU+IfaNnTtrb23PmzJm3/eYuxvX3PDHpx6wXrc3VfGH5WP74cHOGx5pqPU5N/Oie9bUewRq0Bms9gjVoDU7JcQcHBzNnzpwLipNJfbfOmTNnMjo6mrlz556zf+7cuTl27Nird3jZZfmzP/uzrF27NmNjY/n85z//lu/UaW1tTWtr63n7p02blmnTpk3m+EmS4dHGXIyvNzzW1LCPw1SsqYlq1Mf+9azB2mrUx/71rMHaHveSv5U4ST760Y/mox/9aC3uGgAo3KS+lXjOnDlpaWnJwMDAOfsHBgYyb968ybwrAOBdalLjZPr06Vm2bFn2798/vm9sbCz79+/PypUrJ/OuAIB3qQm/rPPyyy/n+eefH99+4YUXcvTo0cyePTsLFy5Mb29vNm3alOXLl2fFihXZvn17hoaGcuedd07q4ADAu9OE4+Tw4cNZu3bt+HZvb2+SV9+R8+CDD+b222/P6dOnc/fdd+fkyZNZunRp9uzZc95JshNVqVRSqVQyOjr6jo4DAJRtwnGyZs2avN27jzdv3pzNmzdf9FBvpKenJz09PRkcHMysWbMm9dgAQDlq8qnEAABvRpwAAEURJwBAUcQJAFAUcQIAFKVu4qRSqaSjoyNdXV21HgUAmEJ1Eyc9PT3p7+9PX19frUcBAKZQTT7475147Rorg4ODU3L8seGzU3LcejDaUs3Zs6MZHW7JWIN+GudUrauJsAatwVqzBq3BqTzu210rLUmaqhdyq4L8x3/8R9rb22s9BgBwEY4fP54FCxa85W3qLk7GxsZy4sSJzJw5M01NjVm1U2VwcDDt7e05fvx42traaj0ODcgapNaswalTrVbz0ksvZf78+WlufuuzSuruZZ3m5ua3LS7emba2Nn8pqSlrkFqzBqfGhX78TN2cEAsANAZxAgAURZwwrrW1Ndu2bUtra2utR6FBWYPUmjVYhro7IRYAeHfzzAkAUBRxAgAURZwAAEURJwBAUcQJAFAUcUKSpFKpZNGiRbn88svT3d2dQ4cO1XokGsiBAwdy2223Zf78+Wlqasru3btrPRIN5mtf+1puuOGG8SvDrly5Mt/+9rdrPVbDEidk586d6e3tzbZt2/LMM8+ks7Mz69evz6lTp2o9Gg1iaGgonZ2dqVQqtR6FBrVgwYJ88YtfzJEjR3L48OHcfPPN+c3f/M08++yztR6tIbnOCenu7k5XV1e++tWvJnn1wxXb29vzuc99Llu2bKnxdDSapqam7Nq1Kxs3bqz1KDS42bNn58tf/nJ+//d/v9ajNBzPnDS4V155JUeOHMm6devG9zU3N2fdunV5+umnazgZQG2Mjo7m7/7u7zI0NJSVK1fWepyGVHefSszkOnPmTEZHRzN37txz9s+dOzfHjh2r0VQAl94Pf/jDrFy5Mj//+c9zxRVXZNeuXeno6Kj1WA3JMycAkGTx4sU5evRo/uVf/iWf+cxnsmnTpvT399d6rIbkmZMGN2fOnLS0tGRgYOCc/QMDA5k3b16NpgK49KZPn573v//9SZJly5alr68vX/nKV/LAAw/UeLLG45mTBjd9+vQsW7Ys+/fvH983NjaW/fv3e60VaGhjY2MZHh6u9RgNyTMnpLe3N5s2bcry5cuzYsWKbN++PUNDQ7nzzjtrPRoN4uWXX87zzz8/vv3CCy/k6NGjmT17dhYuXFjDyWgUW7duzYYNG7Jw4cK89NJLefjhh/Od73wnTzzxRK1Ha0jihNx+++05ffp07r777pw8eTJLly7Nnj17zjtJFqbK4cOHs3bt2vHt3t7eJMmmTZvy4IMP1mgqGsmpU6fyqU99Kv/5n/+ZWbNm5YYbbsgTTzyRW265pdajNSTXOQEAiuKcEwCgKOIEACiKOAEAiiJOAICiiBMAoCjiBAAoijgBAIoiTgCAoogTAKAo4gQAKIo4AQCK8n/fAQl2LXnGiwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for column, series in df_orig[list(filter(lambda s: s not in ('car_name',), categorical_columns_orig))].items():\n", " _fig, _ax = matplotlib.pyplot.subplots()\n", " _ax.set_title(str(column))\n", " _ax.set_yscale('log')\n", " _ax.grid(True)\n", " value_counts = series.value_counts()\n", " _ = _ax.bar(tuple(map(str, value_counts.index)), value_counts)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "labels_to_drop_from_orig = []" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
car_nameyearselling_pricepresent_pricedriven_kmsfuel_typeselling_typetransmissionowner
85camry20062.523.73142000PetrolIndividualAutomatic3
\n", "
" ], "text/plain": [ " car_name year selling_price present_price driven_kms fuel_type \\\n", "85 camry 2006 2.5 23.73 142000 Petrol \n", "\n", " selling_type transmission owner \n", "85 Individual Automatic 3 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_orig.loc[df_orig['owner'].isin((3,))]" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "labels_to_drop_from_orig.extend(df_orig.loc[df_orig['owner'].isin((3,))].index)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
car_nameyearselling_pricepresent_pricedriven_kmsfuel_typeselling_typetransmissionowner
18wagon r20153.255.0935500CNGDealerManual0
35sx420112.957.7449998CNGDealerManual0
86land cruiser201035.0092.6078000DieselDealerManual0
196Activa 3g20080.170.52500000PetrolIndividualAutomatic0
\n", "
" ], "text/plain": [ " car_name year selling_price present_price driven_kms fuel_type \\\n", "18 wagon r 2015 3.25 5.09 35500 CNG \n", "35 sx4 2011 2.95 7.74 49998 CNG \n", "86 land cruiser 2010 35.00 92.60 78000 Diesel \n", "196 Activa 3g 2008 0.17 0.52 500000 Petrol \n", "\n", " selling_type transmission owner \n", "18 Dealer Manual 0 \n", "35 Dealer Manual 0 \n", "86 Dealer Manual 0 \n", "196 Individual Automatic 0 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_orig.loc[(df_orig['present_price'] >= 60.) | (df_orig['driven_kms'] >= 400000) | (df_orig['fuel_type'].isin(('CNG',)))]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "labels_to_drop_from_orig.extend((196,))" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "df = df_orig.drop(labels_to_drop_from_orig)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "299" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
lengthdtype
car_name299object
year299int64
selling_price299float64
present_price299float64
driven_kms299int64
fuel_type299object
selling_type299object
transmission299object
owner299int64
\n", "
" ], "text/plain": [ " length dtype\n", "car_name 299 object\n", "year 299 int64\n", "selling_price 299 float64\n", "present_price 299 float64\n", "driven_kms 299 int64\n", "fuel_type 299 object\n", "selling_type 299 object\n", "transmission 299 object\n", "owner 299 int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iis_project.pandas_utils.describe_df(df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
selling_pricepresent_pricedriven_kms
count299.000000299.000000299.000000
mean4.6835457.59839535047.187291
std5.0916118.61133527607.236346
min0.1000000.320000500.000000
25%0.9000001.23000015000.000000
50%3.6500006.40000032000.000000
75%6.0000009.87500047500.000000
max35.00000092.600000213000.000000
\n", "
" ], "text/plain": [ " selling_price present_price driven_kms\n", "count 299.000000 299.000000 299.000000\n", "mean 4.683545 7.598395 35047.187291\n", "std 5.091611 8.611335 27607.236346\n", "min 0.100000 0.320000 500.000000\n", "25% 0.900000 1.230000 15000.000000\n", "50% 3.650000 6.400000 32000.000000\n", "75% 6.000000 9.875000 47500.000000\n", "max 35.000000 92.600000 213000.000000" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[list(numeric_columns_orig)].describe()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'car_name': (97 values)\n", "'fuel_type': 'Petrol', 'Diesel', 'CNG'\n", "'selling_type': 'Dealer', 'Individual'\n", "'transmission': 'Manual', 'Automatic'\n", "'owner': np.int64(0), np.int64(1)\n" ] } ], "source": [ "categorical_values_for_columns = {\n", " column: series.unique()\n", " for column, series in df[list(categorical_columns_orig)].items()\n", "}\n", "\n", "for column, values in categorical_values_for_columns.items():\n", " if len(values) <= 0x10:\n", " values_str = ', '.join(map(repr, values))\n", " else:\n", " values_str = f'({len(values)} values)'\n", " print(f'{column!r}: {values_str}')" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAG4CAYAAACeiEfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIPhJREFUeJzt3X9wFPX9x/HXJZCLgQQD0YTwKw6i9WJJOiFJ/VUSBWOKUFA0nbQSo2WmY9LaSWsL0/nyYzoOjK2Y1l6HUgeQVjsRqbQFjUAMpYMIAcRKU5TUYBGaEEQTkmgId/v9w29uvjEQc8kl+9nc8zHD4O3t7b1zc0ue3u3euSzLsgQAAGCICLsHAAAA+P+IEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMA+JyNGzfK5XLpxIkTdo8ChCXiBIBxnn/+eZWXl9s9BgCbuPhuHQCmufvuu3X06FHbXrnw+Xzq7OyU2+2Wy+WyZQYgnPHKCRBG/H6/Pv30U7vHMFZbW5skKTIyUtHR0YQJYBPiBHCgFStWyOVy6dixY7r//vsVFxencePG6dFHH+0WHy6XS6WlpXruueeUmpoqt9utyspKSdKpU6f00EMPKTExUW63W6mpqVq/fn2P+3r66aeVmpqqmJgYxcfHa8aMGXr++ee7rdOXbe3evVsul0svvPCCHn/8cU2cOFHR0dG64447VFdXF1gvJydH27dv1/vvvy+XyyWXy6WUlJQ+PzYpKSm6++67tWPHDqWnpys6Oloej0d/+tOfuq3XdVzJ3/72Nz3yyCO6+uqrNXHixG7Xff6Vm1deeUUzZ85UbGys4uLilJmZ2eOx2L9/v+666y6NGTNGMTExmjlzpvbu3dvn+QFII+weAED/3X///UpJSdGqVav0xhtv6Fe/+pU++ugjbdq0KbDOa6+9phdeeEGlpaVKSEhQSkqKGhsb9dWvfjUQL1dddZVeeeUVPfzww2ppadEPfvADSdLvfvc7ff/739fChQsD4fOPf/xD+/fvV2FhoST1eVtdVq9erYiICP3oRz9Sc3OznnjiCX3rW9/S/v37JUk//elP1dzcrA8++EBPPfWUJGn06NFBPS7Hjx9XQUGBvvvd76qoqEgbNmzQfffdp8rKSs2ePbvbuo888oiuuuoqLVu2LPDKyaVs3LhRDz30kFJTU7V06VJdeeWVevPNN1VZWRl4LF577TXl5+crIyNDy5cvV0REhDZs2KDbb79df//735WVlRXUzwGELQuA4yxfvtySZM2bN6/b8kceecSSZL311luWZVmWJCsiIsL65z//2W29hx9+2Bo/frx19uzZbsu/+c1vWmPGjLHa29sty7Ksb3zjG1Zqamqvs/R1W9XV1ZYk64YbbrA6OjoC6/3yl7+0JFlvv/12YNmcOXOsKVOm9OGR6GnKlCmWJGvLli2BZc3Nzdb48eOtr3zlK4FlGzZssCRZt956q3Xx4sVu2+i6rr6+3rIsy/r444+t2NhYKzs72/rkk0+6rev3+wN/T5s2zcrLywsssyzLam9vt6655hpr9uzZ/fp5gHDE2zqAg5WUlHS7/L3vfU+S9PLLLweWzZw5Ux6PJ3DZsixt2bJFc+fOlWVZOnv2bOBPXl6empubdfjwYUnSlVdeqQ8++EA1NTWXvP9gttWluLhYUVFRgcu33XabJOm9994bwCPRXXJyshYsWBC4HBcXp0WLFunNN99UQ0NDt3UXL16syMjIXre3c+dOnT9/XkuWLFF0dHS367qOSzly5IiOHz+uwsJCffjhh4HHoa2tTXfccYf27Nkjv98fop8QGN54WwdwsGnTpnW7PHXqVEVERHQ7VuKaa67ptk5TU5M+/vhjrVu3TuvWrbvkds+cOSNJ+slPfqJdu3YpKytL1157re68804VFhbqlltuCXpbXSZPntztcnx8vCTpo48++oKftu+uvfbaHgezXnfddZKkEydOKCkpKbD884/Ppfz73/+WJN14442XXef48eOSpKKiosuu09zcHPh5AVwecQIMI5c6u+SKK67odrnr/96//e1vX/YX6fTp0yVJN9xwg9555x1t27ZNlZWV2rJli37zm99o2bJlWrlyZVDb6nK5Vyksmz7V4POPT391PRY///nPlZ6efsl1gj12BghXxAngYMePH+/2f/51dXXy+/29nt1y1VVXKTY2Vj6fT7NmzfrC+xg1apQKCgpUUFCgCxcu6J577tHjjz+upUuXBr2tvhroKbx1dXWyLKvbdt59911JCurMny5Tp06VJB09elTXXnttr+vExcWF9LEAwhHHnAAO5vV6u11++umnJUn5+fmXvU1kZKTuvfdebdmyRUePHu1xfVNTU+C/P/zww27XRUVFyePxyLIsdXZ2BrWtYIwaNUrNzc39uq0knT59Wi+99FLgcktLizZt2qT09PRub+n01Z133qnY2FitWrWqx+fEdL3ik5GRoalTp+oXv/iFWltbe2yjv48FEI545QRwsPr6es2bN0933XWX9u3bpz/84Q8qLCxUWlpar7dbvXq1qqurlZ2drcWLF8vj8ejcuXM6fPiwdu3apXPnzkn67JdyUlKSbrnlFiUmJupf//qXfv3rX2vOnDmKjY0NalvByMjIUEVFhcrKypSZmanRo0dr7ty5fb79ddddp4cfflg1NTVKTEzU+vXr1djYqA0bNgQ9i/TZqyFPPfWUvvOd7ygzM1OFhYWKj4/XW2+9pfb2dj377LOKiIjQM888o/z8fKWmpqq4uFgTJkzQqVOnVF1drbi4OP31r3/t1/0DYce+E4UA9FfXqcS1tbXWwoULrdjYWCs+Pt4qLS3tdqqrJKukpOSS22hsbLRKSkqsSZMmWSNHjrSSkpKsO+64w1q3bl1gnd/+9rfW1772NWvcuHGW2+22pk6daj322GNWc3Nz0NvqOpV48+bN3W5bX19vSbI2bNgQWNba2moVFhZaV155pSUpqNOKp0yZYs2ZM8d69dVXrenTp1tut9v60pe+1ON+u04Xrqmp6bGNz59K3OUvf/mLdfPNN1tXXHGFFRcXZ2VlZVl//OMfu63z5ptvWvfcc0/gMZsyZYp1//33W1VVVX3+GYBwx3frAA60YsUKrVy5Uk1NTUpISLB7HKOkpKToxhtv1LZt2+weBUA/ccwJAAAwCsecAHCEpqYm+Xy+y14fFRWlsWPHDuFEAAYLcQLAETIzM/X+++9f9vqZM2dq9+7dQzcQgEHDMScAHGHv3r365JNPLnt9fHy8MjIyhnAiAIOFOAEAAEbhgFgAAGAUxx1z4vf7dfr0acXGxg74I64BAMDQsCxL58+fV3JysiIien9txHFxcvr0aU2aNMnuMQAAQD+cPHlSEydO7HUdx8VJ10dm19fXc9rgEOvs7NSOHTt05513auTIkXaPAwwL7FdwioE+V1taWjRp0qTA7/HeOC5Out7KiY2NVVxcnM3ThJfOzk7FxMQoLi6Of0SBEGG/glOE6rnal0MyOCAWAAAYhTgBAABGIU4AAIBRiBMAAGCUIY+TkydPKicnRx6PR9OnT9fmzZuHegQAAGCwIT9bZ8SIESovL1d6eroaGhqUkZGhr3/96xo1atRQjwIAAAw05HEyfvx4jR8/XpKUlJSkhIQEnTt3jjgBAACS+vG2zp49ezR37lwlJyfL5XJp69atPdbxer1KSUlRdHS0srOzdeDAgUtu69ChQ/L5fHziKwAACAg6Ttra2pSWliav13vJ6ysqKlRWVqbly5fr8OHDSktLU15ens6cOdNtvXPnzmnRokVat25d/yYHAADDUtBv6+Tn5ys/P/+y169Zs0aLFy9WcXGxJGnt2rXavn271q9fryVLlkiSOjo6NH/+fC1ZskQ333xzr/fX0dGhjo6OwOWWlhZJn31SXWdnZ7DjYwC6Hm8edyB02K/gFAN9rgZzu5Aec3LhwgUdOnRIS5cuDSyLiIjQrFmztG/fPkmffSvhgw8+qNtvv10PPPDAF25z1apVWrlyZY/l1dXViomJCd3w6LOdO3faPQIw7LBfwSn6+1xtb2/v87ohjZOzZ8/K5/MpMTGx2/LExEQdO3ZMkrR3715VVFRo+vTpgeNVfv/73+vLX/7yJbe5dOlSlZWVBS53fXFQbm6uxo0bF8rx8QU6Ozu1c+dOzZ49m+8AAUKE/QpOMdDnatc7H30x5Gfr3HrrrfL7/X1e3+12y+1291g+cuRIdmSb8NgDocd+Bafo73M1mNuE9EPYEhISFBkZqcbGxm7LGxsblZSUFMq7AgAAw1RIXzmJiopSRkaGqqqqNH/+fEmS3+9XVVWVSktLQ3lXAHBJKUu22z1Cn5xYPcfuEQBjBR0nra2tqqurC1yur6/XkSNHNHbsWE2ePFllZWUqKirSjBkzlJWVpfLycrW1tQXO3gEAAOhN0HFy8OBB5ebmBi53HaxaVFSkjRs3qqCgQE1NTVq2bJkaGhqUnp6uysrKHgfJAgAAXErQcZKTkyPLsnpdp7S0lLdxAABAvwz5txL3l9frlcfjUWZmpt2jAACAQeSYOCkpKVFtba1qamrsHgUAAAwix8QJAAAID8QJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIzimDjhQ9gAAAgPjokTPoQNAIDw4Jg4AQAA4YE4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRHBMnfAgbAADhwTFxwoewAQAQHhwTJwAAIDwQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAojokTvlsHAIDw4Jg44bt1AAAID46JEwAAEB6IEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGCUEXYPgM+kLNlu9whf6PjP7rR7BGDY6Nrn3ZGWnsiSblzxqjp8Lpun6unE6jl2j4Aw5JhXTvjiPwAAwoNj4oQv/gMAIDw4Jk4AAEB4IE4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFGIEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAUx8SJ1+uVx+NRZmam3aMAAIBB5Jg4KSkpUW1trWpqauweBQAADCLHxAkAAAgPxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjOKYOPF6vfJ4PMrMzLR7FAAAMIgcEyclJSWqra1VTU2N3aMAAIBB5Jg4AQAA4YE4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGCUEXYPAMAZUpZst3sEAGGCV04AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFGIEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABhlhN0DwDluXPGqnsj67O8On8vucYxzYvUcu0cAgGGBV04AAIBRiBMAAGAU4gQAABjFMceceL1eeb1e+Xw+22ZIWbLdtvsGACBcOOaVk5KSEtXW1qqmpsbuUQAAwCByTJwAAIDwQJwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAozjmu3UAAEPPKd8pdmL1HLtHQAjxygkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKLbEyYIFCxQfH6+FCxfacfcAAMBgtsTJo48+qk2bNtlx1wAAwHC2xElOTo5iY2PtuGsAAGC4oONkz549mjt3rpKTk+VyubR169Ye63i9XqWkpCg6OlrZ2dk6cOBAKGYFAABhIOg4aWtrU1pamrxe7yWvr6ioUFlZmZYvX67Dhw8rLS1NeXl5OnPmzICHBQAAw9+IYG+Qn5+v/Pz8y16/Zs0aLV68WMXFxZKktWvXavv27Vq/fr2WLFkS9IAdHR3q6OgIXG5paZEkdXZ2qrOzM+jtDYQ70hrS+zONO8Lq9je6G+rn41AL9+f/YGG/Co3hvv+ZoOsx7u9jHcztgo6T3ly4cEGHDh3S0qVLA8siIiI0a9Ys7du3r1/bXLVqlVauXNljeXV1tWJiYvo9a388kTWkd2esn83w2z2CkV5++WW7RxhUPP8HF/vVwAz3/c8kO3fu7Nft2tvb+7xuSOPk7Nmz8vl8SkxM7LY8MTFRx44dC1yeNWuW3nrrLbW1tWnixInavHmzbrrppktuc+nSpSorKwtcbmlp0aRJk5Sbm6tx48aFcvwvdOOKV4f0/kzjjrD0sxl+/c/BCHX4XXaPAwwL7FehcXRFnt0jDHudnZ3auXOnZs+erZEjRwZ9+653PvoipHHSV7t27erzum63W263u8fykSNH9uvBGYgOH/9wSFKH38VjAYQY+9XADPXvg3DW39+/wdwmpKcSJyQkKDIyUo2Njd2WNzY2KikpKZR3BQAAhqmQxklUVJQyMjJUVVUVWOb3+1VVVXXZt20AAAD+v6Df1mltbVVdXV3gcn19vY4cOaKxY8dq8uTJKisrU1FRkWbMmKGsrCyVl5erra0tcPYOAABAb4KOk4MHDyo3Nzdwuetg1aKiIm3cuFEFBQVqamrSsmXL1NDQoPT0dFVWVvY4SBYAAOBSgo6TnJwcWVbv5+OXlpaqtLS030MBAIDwZcvZOv3h9Xrl9Xrl8/nsHgUAYJiUJdvtHqFPTqyeY/cIjmDLF//1R0lJiWpra1VTU2P3KAAAYBA5Jk4AAEB4IE4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFEcEyder1cej0eZmZl2jwIAAAaRY+KEzzkBACA8OCZOAABAeCBOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABjFMXHCJ8QCABAeHBMnfEIsAADhwTFxAgAAwgNxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIzimDjhu3UAAAgPjokTvlsHAIDw4Jg4AQAA4YE4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFEcEyd88R8AAOHBMXHCF/8BABAeHBMnAAAgPBAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwimPixOv1yuPxKDMz0+5RAADAIHJMnJSUlKi2tlY1NTV2jwIAAAaRY+IEAACEB+IEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFGIEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABiFOAEAAEZxTJx4vV55PB5lZmbaPQoAABhEjomTkpIS1dbWqqamxu5RAADAIHJMnAAAgPBAnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAoxAnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMIpj4sTr9crj8SgzM9PuUQAAwCByTJyUlJSotrZWNTU1do8CAAAGkWPiBAAAhAfiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFGIEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFGIEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRiBMAAGAU4gQAABiFOAEAAEYhTgAAgFGIEwAAYBTiBAAAGIU4AQAARiFOAACAUYgTAABgFOIEAAAYhTgBAABGsSVOtm3bpuuvv17Tpk3TM888Y8cIAADAUCOG+g4vXryosrIyVVdXa8yYMcrIyNCCBQs0bty4oR4FAAAYaMhfOTlw4IBSU1M1YcIEjR49Wvn5+dqxY8dQjwEAAAwVdJzs2bNHc+fOVXJyslwul7Zu3dpjHa/Xq5SUFEVHRys7O1sHDhwIXHf69GlNmDAhcHnChAk6depU/6YHAADDTtBx0tbWprS0NHm93kteX1FRobKyMi1fvlyHDx9WWlqa8vLydObMmQEPCwAAhr+gjznJz89Xfn7+Za9fs2aNFi9erOLiYknS2rVrtX37dq1fv15LlixRcnJyt1dKTp06paysrMtur6OjQx0dHYHLLS0tkqTOzk51dnYGO/6AuCOtIb0/07gjrG5/Axg49qvwMtS/t0Kpa/b+/gzB3M5lWVa/9wiXy6WXXnpJ8+fPlyRduHBBMTExevHFFwPLJKmoqEgff/yx/vznP+vixYu64YYbtHv37sABsa+//vplD4hdsWKFVq5c2WP5888/r5iYmP6ODgAAhlB7e7sKCwvV3NysuLi4XtcN6dk6Z8+elc/nU2JiYrfliYmJOnbs2Gd3OGKEnnzySeXm5srv9+vHP/5xr2fqLF26VGVlZYHLLS0tmjRpknJzc4f8DJ8bV7w6pPdnGneEpZ/N8Ot/Dkaow++yexxgWGC/gomOrsjrsayzs1M7d+7U7NmzNXLkyKC32fXOR18M+anEkjRv3jzNmzevT+u63W653e4ey0eOHNmvB2cgOnz8wyFJHX4XjwUQYuxXMElvv1/7+/s3mNuE9FTihIQERUZGqrGxsdvyxsZGJSUlhfKuAADAMBXSOImKilJGRoaqqqoCy/x+v6qqqnTTTTeF8q4AAMAwFfTbOq2traqrqwtcrq+v15EjRzR27FhNnjxZZWVlKioq0owZM5SVlaXy8nK1tbUFzt4BAADoTdBxcvDgQeXm5gYudx2sWlRUpI0bN6qgoEBNTU1atmyZGhoalJ6ersrKyh4HyQIAAFxK0HGSk5OjLzr7uLS0VKWlpf0eCgAAhC9bvpW4P7xerzwejzIzM+0eBQAADCLHxElJSYlqa2tVU1Nj9ygAAGAQOSZOAABAeCBOAACAUYgTAABgFOIEAAAYhTgBAABGIU4AAIBRbPlW4v7wer3yer26ePGiJOn8+fND/q3E/o72Ib0/0/giLbW3++TriJSfb08FQoL9CiZqaWnpsayzs1Pt7e1qaWnp1+/frm1+0Qe5SpLL6staBnnvvfc0depUu8cAAAD9cPLkSU2cOLHXdRzzykmXsWPHSpL+85//aMyYMTZPE15aWlo0adIknTx5UnFxcXaPAwwL7FdwioE+Vy3L0vnz55WcnPyF6zouTiIiPjtMZsyYMezINomLi+OxB0KM/QpOMZDnal9fVOCAWAAAYBTiBAAAGMVxceJ2u7V8+XK53W67Rwk7PPZA6LFfwSmG8rnquLN1AADA8Oa4V04AAMDwRpwAAACjECcAAMAoxAkAADCKo+LE6/UqJSVF0dHRys7O1oEDB+weCf9n27Ztuv766zVt2jQ988wzdo8DDAsLFixQfHy8Fi5caPcowGWdPHlSOTk58ng8mj59ujZv3jzgbTrmbJ2KigotWrRIa9euVXZ2tsrLy7V582a98847uvrqq+0eL6xdvHhRHo9H1dXVGjNmjDIyMvT6669r3Lhxdo8GONru3bt1/vx5Pfvss3rxxRftHge4pP/+979qbGxUenq6GhoalJGRoXfffVejRo3q9zYd88rJmjVrtHjxYhUXF8vj8Wjt2rWKiYnR+vXr7R4t7B04cECpqamaMGGCRo8erfz8fO3YscPusQDHy8nJUWxsrN1jAL0aP3680tPTJUlJSUlKSEjQuXPnBrRNR8TJhQsXdOjQIc2aNSuwLCIiQrNmzdK+fftsnGx42LNnj+bOnavk5GS5XC5t3bq1xzq9vaV2+vRpTZgwIXB5woQJOnXq1FCMDhhroPsVMFRC+Vw9dOiQfD6fJk2aNKCZHBEnZ8+elc/nU2JiYrfliYmJamhosGmq4aOtrU1paWnyer2XvL6iokJlZWVavny5Dh8+rLS0NOXl5enMmTNDPCngHOxXcIpQPVfPnTunRYsWad26dQMfynKAU6dOWZKs119/vdvyxx57zMrKyrJpquFJkvXSSy91W5aVlWWVlJQELvt8Pis5OdlatWqVZVmWtXfvXmv+/PmB6x999FHrueeeG5J5ASfoz37Vpbq62rr33nuHYkyg38/VTz/91LrtttusTZs2hWQOR7xykpCQoMjISDU2NnZb3tjYqKSkJJumCg99eUstKytLR48e1alTp9Ta2qpXXnlFeXl5do0MGI+3quEUfXmuWpalBx98ULfffrseeOCBkNyvI+IkKipKGRkZqqqqCizz+/2qqqrSTTfdZONkw19f3lIbMWKEnnzySeXm5io9PV0//OEPOVMH6EVf36qeNWuW7rvvPr388suaOHEi4YIh15fn6t69e1VRUaGtW7cqPT1d6enpevvttwd0vyMGdOshVFZWpqKiIs2YMUNZWVkqLy9XW1ubiouL7R4NkubNm6d58+bZPQYwrOzatcvuEYAvdOutt8rv94d0m46Jk4KCAjU1NWnZsmVqaGhQenq6Kisre9QcQou31IDQY7+CU9j1XHXE2zpdSktL9f7776ujo0P79+9Xdna23SMNe7ylBoQe+xWcwq7nqmNeOcHgaW1tVV1dXeByfX29jhw5orFjx2ry5Mm8pQb0A/sVnMLI52pIzvmBo1VXV1uSevwpKioKrPP0009bkydPtqKioqysrCzrjTfesG9gwAHYr+AUJj5XHfPdOgAAIDw46pgTAAAw/BEnAADAKMQJAAAwCnECAACMQpwAAACjECcAAMAoxAkAADAKcQIAAIxCnAAAAKMQJwAAwCjECQAAMApxAgAAjEKcAAAAo/wvDrd3+Se43tMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAG4CAYAAABxSizoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGUhJREFUeJzt3XtsV/Ud8PFPy6XIoAgqd7QbOE1xg1kLMeoAxbFu08nGplmcHX8YlOJYcMmQ5BE359xUHEZ/hmVGGIlLHOrcJowxEON10KG4mG4JKDgCE4Q5KaCI7e/5Yw99VrnYQsv5/n68Xokx59JzPq0e+s45p7Qkn8/nAwAgAaVZDwAAcJAwAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkCBMAIBnCBABIhjABWlm0aFGUlJTE5s2bW9aNHz8+xo8f37K8efPmKCkpiUWLFp3w+TrDRz8/IDvCBABIRtesBwAKz1lnnRXvvfdedOvWLetROsSKFSuyHgH4f9wxAdqtpKQkevToEV26dMl6lOOyb9++iIjo3r17dO/ePeNpgAhhAkWjsbExvve970VFRUWUlZVF//794/LLL4+XX365ZZ81a9bEF7/4xejTp0/07Nkzxo0bFy+88EK7z3W4d0y+853vRK9evWLr1q1x1VVXRa9eveKMM86I73//+9HU1NTq43ft2hXf/va3o7y8PE499dSora2NV199td3vrTzzzDNRUlISjz76aMyZMycGDhwYn/jEJ+LKK6+MLVu2tNp3/Pjxcd5558W6devi85//fPTs2TPmzJnTsu2j75i8//77cdttt8WnP/3p6NGjRwwaNCi+9rWvxeuvv96yT3Nzc8yfPz9GjhwZPXr0iAEDBsS0adPinXfeafPnALTmUQ4UiRtuuCEee+yxmDFjRlRWVsauXbvi+eefj7///e9x/vnnx9NPPx01NTVRVVUVc+fOjdLS0li4cGFceuml8dxzz8WYMWOOe4ampqaYNGlSjB07Nu65555YuXJlzJs3L4YPHx433nhjRPz3m/kVV1wRa9eujRtvvDHOPffc+N3vfhe1tbXHfN477rgjSkpK4gc/+EHs2LEj5s+fHxMnToz169fHKaec0rLfrl27oqamJq655pq49tprY8CAAUf8PL7yla/EqlWr4pprromZM2dGY2Nj/PnPf47XXnsthg8fHhER06ZNi0WLFsXUqVPju9/9bmzatCkeeOCBeOWVV+KFF14omkddcELlgaLQp0+ffF1d3WG3NTc3588+++z8pEmT8s3NzS3r9+3bl//kJz+Zv/zyy1vWLVy4MB8R+U2bNrWsGzduXH7cuHEty5s2bcpHRH7hwoUt62pra/MRkf/Rj37U6tyf+9zn8lVVVS3Ljz/+eD4i8vPnz29Z19TUlL/00ksPOebHWb16dT4i8kOGDMnv3r27Zf1vfvObfETk77vvvlafQ0TkFyxYcMhxPvr5Pfzww/mIyN97772H7Hvw6/fcc8/lIyL/yCOPtNq+fPnyw64H2sajHCgSp556aqxZsya2bdt2yLb169fHhg0b4lvf+lbs2rUrdu7cGTt37oy9e/fGZZddFs8++2w0Nzd3yBw33HBDq+VLLrkk3njjjZbl5cuXR7du3eL6669vWVdaWhp1dXXHfM7rrrsuevfu3bI8ZcqUGDRoUCxbtqzVfmVlZTF16tSPPd7jjz8ep59+etx0002HbCspKYmIiCVLlkSfPn3i8ssvb/l67ty5M6qqqqJXr16xevXqY/584GTmUQ4Uibvuuitqa2tj2LBhUVVVFV/60pfiuuuui0996lOxYcOGiIijPi559913o2/fvsc1Q48ePeKMM85ota5v376t3rl48803Y9CgQdGzZ89W+40YMeKYz3v22We3Wi4pKYkRI0a0+rtYIiKGDBnSppdcX3/99TjnnHOia9cj/xG5YcOGePfdd6N///6H3b5jx46PHxw4hDCBIvHNb34zLrnkkvjtb38bK1asiLvvvjt+9rOfxRNPPNFyN+Tuu++O0aNHH/bje/XqddwzpP5TOv/7vsnxam5ujv79+8cjjzxy2O0fDTSgbYQJFJFBgwbF9OnTY/r06bFjx444//zz44477oif//znERFRXl4eEydOzHTGs846K1avXh379u1rdddk48aNx3zMg3eEDsrn87Fx48b47Gc/e0zHGz58eKxZsyYOHDhwxBdYhw8fHitXroyLLrqoQ4MHTnbeMYEi0NTUFO+++26rdf3794/BgwfH/v37o6qqKoYPHx733HNP7Nmz55CPf/vtt0/UqDFp0qQ4cOBA/PKXv2xZ19zcHLlc7piPuXjx4mhsbGxZfuyxx+Jf//pX1NTUHNPxvv71r8fOnTvjgQceOGRbPp+PiP/eoWpqaorbb7/9kH0+/PDD+M9//nNM54aTnTsmUAQaGxtj6NChMWXKlBg1alT06tUrVq5cGfX19TFv3rwoLS2Nhx56KGpqamLkyJExderUGDJkSGzdujVWr14d5eXl8Yc//OGEzHrVVVfFmDFj4uabb46NGzfGueeeG7///e/j3//+d0T8/5dL26Nfv35x8cUXx9SpU2P79u0xf/78GDFiRKsXbNvjuuuui8WLF8esWbNi7dq1cckll8TevXtj5cqVMX369PjqV78a48aNi2nTpsWdd94Z69evjy984QvRrVu32LBhQyxZsiTuu+++mDJlyjGdH05mwgSKQM+ePWP69OmxYsWKlndKRowYEQ8++GDL3x8yfvz4eOmll+L222+PBx54IPbs2RMDBw6MsWPHxrRp007YrF26dImlS5fGzJkz41e/+lWUlpbG5MmTY+7cuXHRRRdFjx492n3MOXPmxN/+9re48847o7GxMS677LJ48MEHD3nBtj0zLlu2LO6444749a9/HY8//nicdtppcfHFF8dnPvOZlv0WLFgQVVVV8Ytf/CLmzJkTXbt2jYqKirj22mvjoosuOqZzw8muJH/wviRAhp588smYPHlyPP/8823+pv7MM8/EhAkTYsmSJe5OQJHwjglwwr333nutlpuamuL++++P8vLyOP/88zOaCkiBRznACXfTTTfFe++9FxdeeGHs378/nnjiiXjxxRfjJz/5SZxyyinxwQcftLxzciR9+vQ5QdMCJ5IwAU64Sy+9NObNmxdPPfVUvP/++zFixIi4//77Y8aMGRER8eKLL8aECROOeoyFCxdGRUXFCZgWOJG8YwIk55133ol169YddZ+RI0fGoEGDTtBEwIkiTACAZHj5FQBIRsG9Y9Lc3Bzbtm2L3r17H9NfxAQAnHj5fD4aGxtj8ODBUVp65PsiBRcm27Zti2HDhmU9BgBwDLZs2RJDhw494vaCC5PevXtHRMSmTZuiX79+GU9Dexw4cCBWrFjR8ld3A8XL9c5H7d69O4YNG9byffxICi5MDj6+6d27d5SXl2c8De1x4MCB6NmzZ5SXl/uDCoqc650j+bjXMLz8CgAkQ5gAAMkQJgBAMgomTHK5XFRWVkZ1dXXWowAAnaRgwqSuri4aGhqivr4+61EAgE5SMGECABQ/YQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkIyuWQ8A0JkqZi/NeoQOs/mnX856BOh07pgAAMkQJgBAMgomTPx2YQAofgUTJn67MAAUv4IJEwCg+AkTACAZwgQASIYwAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkCBMAIBnCBABIhjABAJIhTACAZAgTACAZBRMmuVwuKisro7q6OutRAIBOUjBhUldXFw0NDVFfX5/1KABAJymYMAEAip8wAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkCBMAIBnCBABIhjABAJIhTACAZAgTACAZwgQASIYwAQCSIUwAgGQIEwAgGQUTJrlcLiorK6O6ujrrUQCATlIwYVJXVxcNDQ1RX1+f9SgAQCcpmDABAIqfMAEAkiFMAIBkCBMAIBnCBABIhjABAJIhTACAZAgTACAZwgQASIYwAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkCBMAIBnCBABIhjABAJIhTACAZAgTACAZBRMmuVwuKisro7q6OutRAIBOUjBhUldXFw0NDVFfX5/1KABAJymYMAEAip8wAQCSIUwAgGR0zXoAANqmYvbSrEdos7Iu+bhrTMR5t/0p9jeVHLJ980+/nMFUFAJ3TACAZAgTACAZwgQASIYwAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkCBMAIBnCBABIhjABAJIhTACAZAgTACAZwgQASIYwAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkdM16gLbK5XKRy+Wiqakp61Gg4FXMXpr1CACHVTB3TOrq6qKhoSHq6+uzHgUA6CQFEyYAQPETJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDK6Zj1AMaiYvfSEnm/zT798Qs8HACeKOyYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQjIIJk1wuF5WVlVFdXZ31KABAJymYMKmrq4uGhoaor6/PehQAoJMUTJgAAMVPmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyumY9AFTMXpr1CAAkwh0TACAZwgQASIYwAQCSIUwAgGQIEwAgGcIEAEiGMAEAkiFMAIBkCBMAIBnCBABIhjABAJIhTACAZAgTACAZwgQASEbXrAeg/SpmL816hGNS1iUfd42JOO+2P8X+ppKsxwEgQe6YAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQjIIJk1wuF5WVlVFdXZ31KABAJymYMKmrq4uGhoaor6/PehQAoJMUTJgAAMVPmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMnomvUAKaiYvTTrEQBOKsX25+7mn3456xGKhjsmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDIyCZPJkydH3759Y8qUKVmcHgBIVCZhMnPmzFi8eHEWpwYAEpZJmIwfPz569+6dxakBgIS1O0yeffbZuOKKK2Lw4MFRUlISTz755CH75HK5qKioiB49esTYsWNj7dq1HTErAFDk2h0me/fujVGjRkUulzvs9kcffTRmzZoVc+fOjZdffjlGjRoVkyZNih07dhz3sABAceva3g+oqamJmpqaI26/99574/rrr4+pU6dGRMSCBQti6dKl8fDDD8fs2bPbPeD+/ftj//79Lcu7d++OiIgDBw7EgQMH2n28wynrku+Q43B0ZaX5Vv8GitfJdr131PejYtbWr1G7w+RoPvjgg1i3bl3ccsstLetKS0tj4sSJ8dJLLx3TMe+888744Q9/eMj61atXR8+ePY951v9115gOOQxtdPsFzVmPAJwgJ8v1vmzZsqxHSN6+ffvatF+HhsnOnTujqakpBgwY0Gr9gAED4h//+EfL8sSJE+PVV1+NvXv3xtChQ2PJkiVx4YUXHvaYt9xyS8yaNatleffu3TFs2LCYMGFCnHbaaR0y93m3/alDjsPRlZXm4/YLmuP//LU09jeXZD0O0IlOtuv9tdsmZT1C8g4+8fg4HRombbVy5co271tWVhZlZWWHrO/WrVt069atQ+bZ31T8F01K9jeX+JrDSeJkud476vtRMWvr16hDf1z49NNPjy5dusT27dtbrd++fXsMHDiwI08FABShDg2T7t27R1VVVaxataplXXNzc6xateqIj2oAAA5q96OcPXv2xMaNG1uWN23aFOvXr49+/frFmWeeGbNmzYra2tq44IILYsyYMTF//vzYu3dvy0/pAAAcSbvD5K9//WtMmDChZfngi6m1tbWxaNGiuPrqq+Ptt9+OW2+9Nd56660YPXp0LF++/JAXYgEAPqrdYTJ+/PjI54/+c+kzZsyIGTNmHPNQAMDJKZPflQMAcDjCBABIhjABAJIhTACAZGTyN78ei1wuF7lcLpqamrIeBQBaqZi9NOsROszmn3450/MXzB2Turq6aGhoiPr6+qxHAQA6ScGECQBQ/IQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkomDDJ5XJRWVkZ1dXVWY8CAHSSggkTv10YAIpfwYQJAFD8hAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkIyCCZNcLheVlZVRXV2d9SgAQCcpmDCpq6uLhoaGqK+vz3oUAKCTFEyYAADFT5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJKNgwiSXy0VlZWVUV1dnPQoA0EkKJkzq6uqioaEh6uvrsx4FAOgkBRMmAEDxEyYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAko2vWA7RVLpeLXC4XTU1N7fq4itlLO2kiAKCjFcwdk7q6umhoaIj6+vqsRwEAOknBhAkAUPyECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMoQJAJAMYQIAJEOYAADJECYAQDKECQCQjK5ZD9Be+Xw+IiIaGxujW7duH7t/8/59nT0SbdTUJR/79jVF0/4u0dxUkvU4QCdyvReu3bt3d+pxD34fP5KS/MftkZg33ngjhg8fnvUYAMAx2LJlSwwdOvSI2wvujkm/fv0iIuKf//xn9OnTJ+NpaI/du3fHsGHDYsuWLVFeXp71OEAncr3zUfl8PhobG2Pw4MFH3a/gwqS09L+vxfTp08f/7AWqvLzcfzs4Sbje+V9tuaHg5VcAIBnCBABIRsGFSVlZWcydOzfKysqyHoV28t8OTh6ud45Vwf1UDgBQvArujgkAULyECQCQDGECACRDmAAAySioMMnlclFRURE9evSIsWPHxtq1a7MeiQ701FNPxTnnnBNnn312PPTQQ1mPA3SiyZMnR9++fWPKlClZj0JiCiZMHn300Zg1a1bMnTs3Xn755Rg1alRMmjQpduzYkfVodIAPP/wwZs2aFU8//XS88sorcffdd8euXbuyHgvoJDNnzozFixdnPQYJKpgwuffee+P666+PqVOnRmVlZSxYsCB69uwZDz/8cNaj0QHWrl0bI0eOjCFDhkSvXr2ipqYmVqxYkfVYQCcZP3589O7dO+sxSFBBhMkHH3wQ69ati4kTJ7asKy0tjYkTJ8ZLL72U4WQc9Oyzz8YVV1wRgwcPjpKSknjyyScP2edoj+K2bdsWQ4YMaVkeMmRIbN269USMDrTT8V7vcDQFESY7d+6MpqamGDBgQKv1AwYMiLfeeiujqfhfe/fujVGjRkUulzvsdo/ioHi43ulMBREmpK+mpiZ+/OMfx+TJkw+7/eMexQ0ePLjVHZKtW7d+7K/GBrJxvNc7HE1BhMnpp58eXbp0ie3bt7dav3379hg4cGBGU9FWbXkUN2bMmHjttddi69atsWfPnvjjH/8YkyZNympk4Bh59M7xKogw6d69e1RVVcWqVata1jU3N8eqVaviwgsvzHAy2qItj+K6du0a8+bNiwkTJsTo0aPj5ptvjtNOOy2LcYHj0NZH7xMnToxvfOMbsWzZshg6dKhooUXXrAdoq1mzZkVtbW1ccMEFMWbMmJg/f37s3bs3pk6dmvVodJArr7wyrrzyyqzHAE6AlStXZj0CiSqYMLn66qvj7bffjltvvTXeeuutGD16dCxfvvyQKic9HsXBycP1zvEqiEc5B82YMSPefPPN2L9/f6xZsybGjh2b9Ui0gUdxcPJwvXO8CuaOCWnbs2dPbNy4sWV506ZNsX79+ujXr1+ceeaZHsVBEXG906ny0AFWr16dj4hD/qmtrW3Z5/7778+feeaZ+e7du+fHjBmT/8tf/pLdwMAxc73TmUry+Xw+qygCAPhfBfWOCQBQ3IQJAJAMYQIAJEOYAADJECYAQDKECQCQDGECACRDmAAAyRAmAEAyhAkAkAxhAgAkQ5gAAMkQJgBAMv4v5xY77pNQRVIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for column, series in df_orig[['present_price', 'selling_price']].items():\n", " _fig, _ax = matplotlib.pyplot.subplots()\n", " _ax.set_title(str(column))\n", " _ax.set_xscale('symlog')\n", " _ax.set_yscale('log')\n", " _ax.grid(True)\n", " _ = _ax.hist(series, bins=numpy.logspace(\n", " numpy.log10(min(series)), numpy.log10(max(series)), (iis_project.plotting_utils.suggest_bins_num(len(series)) + 1), endpoint=True, base=10),\n", " )\n", " _ = _ax.set_xlim((0, None))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPgFJREFUeJzt3X98VPWd7/H3JOQHCSSQpDABQSJSJUT5pWBEfaAF+eGCP7Z3ra6WYi9r7eLtlt5rYR9bgXXv1XZry27hamvr1lvWrqutPyiaKhQXiygrNFgEVDBaF5JACCSQkB/MzP0jnDiZn+fMnJk5M/N6Ph591JycOec7GeP55Pv9fD8fl8/n8wkAAMAhclI9AAAAAH8EJwAAwFEITgAAgKMQnAAAAEchOAEAAI5CcAIAAByF4AQAADjKoFQPwCqv16ujR49q6NChcrlcqR4OAAAwwefz6fTp0xo1apRyciLPjaRdcHL06FGNGTMm1cMAAAAx+PTTT3XBBRdEPCftgpOhQ4dK6ntzJSUlUc/v7e3Vq6++qhtvvFF5eXmJHh5swGcGZB5+r9He3q4xY8b0P8cjSbvgxFjKKSkpMR2cFBUVqaSkhF+INMFnBmQefq9hMJOSQUIsAABwFIITAADgKAQnAADAUQhOAACAoyQ9OPn00081e/ZsVVdX6/LLL9ezzz6b7CEAAAAHS/punUGDBmndunWaMmWKmpqaNH36dC1cuFDFxcXJHgoAAHCgpAcnlZWVqqyslCS53W5VVFSotbWV4AQAAEiKYVln+/btWrRokUaNGiWXy6UXXngh6JwNGzZo3LhxKiws1MyZM7Vr166Q19q9e7c8Hg8VXwEAQD/LwUlHR4cmT56sDRs2hPz+M888oxUrVmj16tXas2ePJk+erHnz5unYsWMDzmttbdWXv/xl/eQnP4lt5AAAICNZXtZZsGCBFixYEPb7P/jBD7Rs2TItXbpUkvT4449r8+bNevLJJ7Vy5UpJUnd3t2655RatXLlSV199dcT7dXd3q7u7u//r9vZ2SX3VBnt7e6OO1zjHzLlwBj4zIPPwe+18Hq9Puz85qZYz3aoYUqDpFw5Xbo59DXatfPa25pz09PRo9+7dWrVqVf+xnJwczZkzRzt37pTU15XwK1/5im644QbdfffdUa/58MMPa+3atUHHX331VRUVFZke22uvvWb6XDgDnxmQefi9Tg8tkn57wN5rdnZ2mj7X1uCkpaVFHo9HI0eOHHB85MiROnjwoCRpx44deuaZZ3T55Zf356v84he/0GWXXRbymqtWrdKKFSv6vzYaB914442me+u89tprmjt3Lv0c0gSfGZB5+L12ri0HmvXNZ+rlCzhuzJn88PYpmjNxZODLLDNWPsxI+m6da665Rl6v1/T5BQUFKigoCDqel5dn6V9wq+cj9fjMgMzD77WzeLw+/f3m99XlCb1845L095vf1401o+Ne4rHyudtahK2iokK5ublqbm4ecLy5uVlut9vOWwEAgDjtamhVY1tX2O/7JDW2dWlXQ2vyBiWbg5P8/HxNnz5dW7du7T/m9Xq1detW1dbW2nkrAAAQp2OnwwcmsZxnF8vLOmfOnNGhQ4f6v25oaFB9fb3Kyso0duxYrVixQkuWLNEVV1yhGTNmaN26dero6OjfvQMAAJxhxNBCW8+zi+Xg5J133tH111/f/7WRrLpkyRL9/Oc/1+23367jx4/rwQcfVFNTk6ZMmaK6urqgJFkAAJBaM6rKVFlaqKa2rqCEWKkv58RdWqgZVWVJHZfl4GT27Nny+UK9hc8sX75cy5cvj3lQAAAg8XJzXFq9qFr3bdwjlzQgQDHSX1cvqra13okZSe9KDAAAnGN+TaUeu2ua3KUDl27cpYV67K5pml9TmfQxJX0rMQAAcJb5NZWaW+3WroZWHTvdpRFD+5Zykj1jYiA4AQAAys1xqXZ8eaqHIYllHQAA4DAEJwAAwFEITgAAgKMQnAAAAEchOAEAAI5CcAIAAByF4AQAADgKwQkAAHAUghMAAOAoBCcAAMBRCE4AAICjEJwAAABHITgBAACOQnACAAAcheAEAAA4CsEJAABwFIITAADgKAQnAADAUQhOAACAoxCcAAAARyE4AQAAjkJwAgAAHIXgBAAAOArBCQAAcBSCEwAA4CgEJwAAwFEITgAAgKMQnAAAAEchOAEAAI5CcAIAAByF4AQAADgKwQkAAHAUghMAAOAoBCcAAMBRCE4AAICjEJwAAABHITgBAACOQnACAAAcheAEAAA4CsEJAABwFIITAADgKINSPQAAANKNx+vTroZWHTvdpRFDCzWjqky5Oa6wx2O9XrLH7xQEJwAAWFC3r1FrN+1XY1tX/7HK0kItnlypl/Y2Bh1fvaha82sqLV8v2uvsHn+i7hcLlnUAADCpbl+j7tu4Z8CDXZIa27r04+0NQceb2rp038Y9qtvXaOl60V5n9/gTdb9YEZwAAGCCx+vT2k375bPwGuPctZv2y+Md+MpI14v0ulgl+37xIDgBAMCEXQ2tQTMOZvjUN7Oyq6HV0vXCvS5Wyb5fPAhOAAAw4dhp64FJpNebvV68903V/eJBcAIAgAkjhhba+nqz14v3vqm6XzwITgAAMGFGVZkqSwtldcOtS327YWZUlVm6XrjXxSrZ94sHwQkAACbk5ri0elG1JJkOUIzzVi+qDqojEul6kV4Xq2TfLx4EJwCAjOXx+rTz8Am9WH9EOw61aMeHLXqx/oh2Hj7RvyvF/xz/46HMr6nUY3dNk7t04NJHZWmh7r2uSpUBx92lhXrsrmlh64fccOlI/fm0CzQ4L9fS62IVbvyJul+sKMIGAMhIoYqN+Yu1cNr8mkrNrXaHrLD6wPyJpiuvPvzyfj3xRoP8YyGXpJsur9Q/fWlqwmYwIo3fKQhOAAAZxyg2Fqlih1E4LZBRkCzSTEJujku148tNHw/08Mv7Q97bJ+k37zZq9LBCrVpYHfU6sTI7zlRhWQcAkFFiKZbmL9EFyXrOefXEG8GBib8n3mhQzzmv7fdOFwQnAICMEmuxNH+JLEj2i50fK1rM4/X1nZetCE4AABnFziJiiShI9klrp63nZSKCEwBARrGziFgiCpJdWFZk63mZiOAEAJBRYi2W5i+RBcnurh2naBtjclx952UrghMAQEaJpViav0QXJMsflKNl11ZFPGfZtVXKH5S9j+jsfecAgIwVrtiYv1gLp9lh1cJq3XtdVdAMSo5Luve6qoRuI04H1DkBAGSkwGJjFUMKJJ/U0tEdc+E0O61aWK1v3XipfrHzY33S2qkLy4p0d+24rJ4xMRCcAAAylpliY4kqSObx+qIGPbk5LlWPKlXF0AKNGFroqCqtqURwAgCAzUKVzg8si2/mnGzF3BEAADYySucHFoIzyuLX7Ws0dU42Y+YEAACbRCqd71PfTqC1m/bL5/NFPWdutTtrl3mYOQEAwCbRSucbZfGb2rujnpOI0vnpgpkTAHAAM8mTcDaP16cdh1psu14iSuenC4ITADApUQEEiZHpL9RnGK9ElM5PFwQnAGBCogIIIzEyMP/ASIxMdDEwxC/cZxiKS31F3nw+n5rbu0O+xjgnEaXz0wU5JwAQRaJ2VkRLnpT6EiM9XjOPPaRCpM8wkH9Z/DWLJw04FuqcbF7WIzgBgAgSGUCYTZ7M5sRIp4v2GfrzL4sfrrx+MkrnpwOWdQAgAisBhNUqo2YTHrM5MTIeyUgyNvvZLL9+vL4595IB9w8sr08i9GcITgAggkQGEGYTHrM5MTJWyUoyNvvZzLr4cyGDjkSVzk93LOsAQASJDCBmVJWpsrQwKO/A4FLfAzUdEiM9Xp92Hj6hF+uPaOfhE+o55x3wdTLzZpJZfTWTPkMnYeYEACIwHj5NbV2276zIzXFp9aJq3bdxj1zSgOunU2JkqFmKHJfkH49cOLxAKy5N/FjMVmi1q/pqpnyGTsPMCQBEYDx8pMTsrEj3xMhwsxSBEyXN7X3f33KgOaHjSWSSceDskDEblO6foRMxcwIAURgPn8DZAbdNOQzpmhhpZRutcc4jrxzUjTWjE/beEpUjFC2HJV0/Q6ciOAEAExL98EnHxEgr22gNTe2x7WwyKxE5QmYL5aXjZ+hUBCcAEEK4baixPHzs2tIaz3U8Xp/eOnxCOz9qkdT3Pq66qO+9xHrNWLc4J3JrtF05QsbPuqm9Sw/95j06CCcZwQkABLBzG6pd14rnOnX7GrXy13/Uqc7e/mPrtx1ScX6u8gblDDhuZWyxbnFO5NZoOxJUrfTJiafODcIjIRYA/Ni5DdWua8Vznbp9jfraxj0DAhBDR48n6LiVsUXbRhuKuyTx22rjSVAN97OOhkJ59mLmBADOs3Mbql3Xiuc6Hq9Pa156L+I44xlbpFmKQMZVVi64NCnLH7HkCFlJ8A1EoTx7MXMCAOfZuQ3VrmvFc52+nInuqGONdWxS+FmKwBhgZEnf9+dMHGl5PLEycoRunjJatePLowZFsST4UmQtMZg5AYDz7NyGate14rlOvEsNZl8fapZi+oXDtfuTk/1fT71gqH5b90pc40k0qz8viqwlDsEJAJxn5zZUu64Vz3XiXWqw8vpQO5n8v+7tDc55cRqrPy+76twgGMEJAJxnZ6l6u64Vz3VmVJXJXVJgeWknnpL86czMz7qsOF9/d9NEuUsHU2Qtgcg5AYDz7CxVb9e14rlObo5LaxZPijrWWMdmt3Dl4ZPFzM/6f99ao1unXWAqhwWxIzgBAD929kmx61rxXGd+TaUev2uahhXlBX2vuCA36Hiq+sHU7WvUNd/9ne544i1949/qdccTb+ma7/7O1g7CZtAnxxlY1gGAAHaWqrfrWvFcx3it3RVi7WK2PHyy0Ccn9QhOACAEO/uk2HWteK6Tm+PSrAkVmjWhIuh7qaxsamdtGTvRJye1CE4AQPb1v4E1Vuq4xBMs8PmmF4ITAFnPzl46dsmWh6nZ2iJNbWdjvocTP19ERnACIKs5Ld/BGFO2PEzN1hZ5aPMBDc7PjanxotM+X0THbh0AWStavoPUl++QzC2tdjYeTAdGbZFoWjt6LL9/J36+MIfgBEDWsrOXjh2c+DBNdO2R3ByXvnPTRFPn+mTt/Tvt84V5LOsAyFp29tKxI0fE7MP05zsaVDG0IOG5KMlaXhpeXGD6XCvJsXZ+vkgughMAWavheIep86LlRdj1EDf7kHxo84EB9/nOTRM1vLjA1uTZcLkajW1d+trGPZpXPUJfvroqbK2UwGOXjxoiSfrR1g/ldeWo9qIKXXU+wNhx6Lilse041KKmtrNq7ehR2ZACuUtCv2c7eyUhuQhOAGSlh1/erx9vb4h4jpkeM3YmXMbykGxs69LXn/7DgGPxzm5EWl4y/Hb/Mf12/zEV5+cqb1COTnV+1tjPqDrrf6xwkE/fvVL68Rsfqdvj0vpth1WUn6v8gNeasX7boaBjod6znb2SkFzknADIOi+/ezRqYCL1LaNE6jFjd46I8TCNd5Em3uTZaMtL/jp6PEHBxanO3qBjvhA/gs4Qr41VY4j3bGevJCQXwQmArOLx+vR3L+4zde4350yIOPtgd8JlpIepFfEmz6ZzDkbge6ZXTnpiWQdAVtnV0KrWDnN/rY+rKI74/UQUEDMepoE5LFbFU1k1XXMwwr1neuWkH4ITIAmypdpnOrAyKxDtIZ2oAmKBD9OW090DkmCtiGUWxFheiic4SqVQ75leOemF4ARIsGyq9pkOzAYU5cX5URMloyVcGk6eLyBmZRnB/2Hq8fr00983RL1PKNHeb7jAefWian1t4x6Ld3OGdJ35wWfIOQESKNuqfaYDsxVJH7q5Jursln+OSCTx5oDEkoviUl8QHG2n0TXf/Z3ueOItfePf6nXHE2/pmu/+TnX7GjW/plLrvzTV8lhTycx7RnogOAESxInVPvHZgz7SQ/7e66q08HLzSzCP3TVNZcV5Ec+LtxppuMTOUMzsRDETOP/ZlFG66TJ3TONNFXbfZAaCEyBBKJ3tXMaDPnAGpaw4T//3zqlatTD6bEjg9b7zZ5NMnRvPTpj5NZX6/bdv0C+XXaV/+tIU/XLZVfq/dwa/j2g7UawEzv98xzQV5+daGmfBoBwVBbzGFSJeKMrP7a+JYtawwaHPr2T3TUYh5wRIEEpnO5vdOzjcJcmpRhoqsXNejbX3YSVwrh1frkf/YnLIQnPhdJ/z9v/zsMF5WjqrSv991lhtebVO9157UVCF2F0Nrdpx6LjWbzsc9dob/nKaclwuUxVikb4IToAEoXS2MyVq51Qqq5Fa3YliNXCOZ3tz29lerdvygT4/YrAk6f4vTFBe3sDZj9rx5ZpRVaZf7TkS9ed31UXlBCFZgOAESBBKZztPIndOGbks923cI5c04DN3WjXSWAJn/5mmHYdaQpaQD8Wnvvf/yCsHteLS8Oel088PiUfOCZAglM52lmTsnEqXaqTTLxyusuL8iOeUFA7SlDHDBhwzZmgmjBxi6X4+SU3t0Wdc0uXnh8Rj5gRIoHDT4W7qnCRVtARQl/oSQOdWu+MOFp1ejdSYPWrt6Il4XnvXOU1aXadl11YFJQgncinS6T8/JAfBCZBg/Mc29awmgMbLadVIjTyb1/Y36ckdH5t+nden/gaJ/gGK2eJzsXLazw/JR3ACJAH/sbVHrMms2bxzKlSejVVPvNGgb914qfIH9WUCRMoPCcUlYzdTR8xjQHZJSXBy66236vXXX9cXvvAFPffcc6kYAoA0Ey2ZNVLgUjGkwNQ9zC5X2LHjJ/Aa0y8crt2fnDR1TbP3f/ndo/r603+wNK5QvD7pFzs/1levvaj/mNkdPMaoVi64VD0Nu+MeC7JDSoKTb3zjG7rnnnv01FNPpeL2ANKMkcwa+Be6kcz6V9dV6aW9jSEDF0la89J7Ea9vZeeUHTt+Ql0jx9UXBES7ptn7v/xuo5b/Mv7AxPBJa2fQMf8ly6b2Lu348LheO3BMbWc/6/ps5Fd94ZIKvdxg23CQ4VISnMyePVuvv/56Km4NIM2YqWZq5EX4a2rrMtW4zsrOqWhBUrgdJf4zHR+3dGrdlg+CrhHYxSDUNc3ev25fo77+tL1N+y4sKwp5PDfHpbazPfpe3cEBAVNf8bVxWn7DBOXmuNTb2xvy9UAolrcSb9++XYsWLdKoUaPkcrn0wgsvBJ2zYcMGjRs3ToWFhZo5c6Z27dplx1gBZKFoyazhmE3UNLtN1UrJ955zXv3sjY/04Iv79D//vV5XP7ylv7neD0MEJpHGb1wz2v196psh6jnn1dpN+03cwZoTZ3r0/d++rx2HWgb0g6rb16ivhdiifepsr9Zt+VCv7W+yfSzIfJZnTjo6OjR58mTdc889uu2224K+/8wzz2jFihV6/PHHNXPmTK1bt07z5s3T+++/rxEjRlgeYHd3t7q7u/u/bm9vlyT19vaaisSNc4ja0wefGfwda+tQQW7imiN+79ZJump8edR/33Y1tKr1zFkVRGgz03rmrL71b+/ot/ubg2ZCIr0uktYzZ/XWoWP9/xzpOic7uvSdX++Nel4sfvb7vqJrT2z/UMMG52nN4km6/pIRWv3CuxE/n4c3v6fZE8rl9ZyTxO91NrPy2bt8Pl/Mv/Uul0vPP/+8brnllv5jM2fO1JVXXqn169dLkrxer8aMGaP7779fK1eu7D/v9ddf1/r166MmxK5Zs0Zr164NOv7000+rqCj0NCMAAHCWzs5O3XnnnWpra1NJSUnEc23NOenp6dHu3bu1atWq/mM5OTmaM2eOdu7cGdM1V61apRUrVvR/3d7erjFjxujGG2+M+uakvkjttdde09y5c4P6OcCZ+Mzgz+P1ad667WpuT0xNjSeXXGkqEXZXQ6vueeo/EzCC6IYX5emRmy/Tvb+0N48kXma2EUvSI7depnnVn+P3OssZKx9m2BqctLS0yOPxaOTIkQOOjxw5UgcPHuz/es6cOdq7d686Ojp0wQUX6Nlnn1VtbW3IaxYUFKigIHgbYF5enqV/wa2ej9TjM4Mk5UladdMk3Xc+udWuAKW/kdzFI0xtA77q4hEqGzI4YYXHImk6fU5bPjyhbk96Fu5rPevp/13m9zp7WfncU9JbZ8uWLTp+/Lg6Ozv1X//1X2EDEwCQwvdcqSwt1L3XVcml8P2LAv/Z/2srvY3M9EpKpFBbedNFmck6M4DB1pmTiooK5ebmqrm5ecDx5uZmud1uO28FIMtEagMwdezwsP2LJNnW2yhSr6RZ48v13J4jcb7L8MaVF+mND+O7xvCiPJ3sTH5Cal91WMA8W4OT/Px8TZ8+XVu3bu1PkvV6vdq6dauWL19u560AZKFwbQCi9S+ys7dRuHt5vD79+g9Hgnbp2KGytFB/u7Ba//r2n2K+/qLL3Vr3pWl6bX+TVv36XZ3sPGfvIMNwlxRoRlVZ/24dwAzLwcmZM2d06NCh/q8bGhpUX1+vsrIyjR07VitWrNCSJUt0xRVXaMaMGVq3bp06Ojq0dOlSWwcOAP4i9S+yu7dRqOvl5ri07NqqkAXh4uFS3/LT4PzcuK6/+Y9NevQvfJpfU6m3G1r1LxYaAMZjzeJJys1xyetJyu2QISwHJ++8846uv/76/q+NnTRLlizRz3/+c91+++06fvy4HnzwQTU1NWnKlCmqq6sLSpIFgEzzwPyJOnKqS5vfbbQlabakcJCmjh2uIyfPquecV1PHDpcUW3Di9UlPvfmx7rmmSi/WH7VhdJENK8rTI7ddZnnpDJBiCE5mz56taKVRli9fzjIOgAFibZZnR5O9ZAjV86YoL1cLL3NrzeIaXfu9rRGXUorzc7WkdpyGF+dr5+Hj2vZ+i9q7zuk/Pjiu//jguB7afECFg+Lbw/DD1z5QZ885tXb0WHrd8KJBmllVrjcOtaijO/wUSHFBrr5y9ThdfVGFrhpf7sjPCekhJb11AGSXWJvlmX1dqgOYcD1vzvZ69NyeI9py8JhOhQlMjFE++heTNb+mUg+/vF+/e78l5Lld57xxjbOz16MfbrGeVXuq85x++16z/uq6Kv3k/LKS/3vtfw//bTIzJbAFwQkAWwUGCic7uvXXT//BcrM8K03u4u0SHA8zPXdORdghY+wcmlvt1hsfHO9/+DuJT30ByEt7G7Xhzql6aPMBW3Y/AeEQnACwTahAIccVunCa8cBbu2m/5la7B8x0RHvgG6/zeqW/ftp6l2A7xdqYUJKGFOTqe7ddrtPd53TNd38X83WSwSepsa1Lw4sL9Ptv35AWS21IXwQnAGwRbqYj0tZX44G3q6F1wO6XaA9843V/9+I+y4GP3Y6djj2gONPt0d3/krqu7WbLz/s7drrL9t1PQKCUVIgFkFkizXSYEfiAN/vAj5TY6R/4JNKIoelZYOybcz4fVHHXjHR9v0gvzJwAMCVS0mk8SxuSVFE8sLy5nQ/AeGY2zJhRVabK0kJHL8kEqiwt1PIbLtbyGy7u/0wrhhToW/9er+b27pBBptGLyEyTRCBeBCcAooqWdBp3ABCw6mI88MM12XNJGl6cp9aO6KXYrQQ64QIw43hT21m1dvSobEiB3CWffX/1omp9baOzOgZH4t9TyH95Zs3ivgaLgcs9sfQiAuJBcAIgIjO7ZuKd6Th2unvA18YDP9KD8h9urtFDmw9EDGCs/KUfKgAbNjhP104o139+fFJN7d1Brxk2OE9LZ1Vpwoghpu7hBN+cMyFsknCk3kHsxkEyEZwACMvsrpn/+F/XR5zpiKb1TPCD3+yD8utP/yHkNX2SFtb09cCZfuFw7f7kZNjdJeECsFNne7Xp3aaw4z51tlc/3PJBUroS26FvOWdCxHOi9SkCkoHgBEBYZnfN7P7kZNiZDjPKivNDHo/0oKzb16iHNh8I+bocV98uoZ/t+Fg/2/Fx/9cG/yWpeJN5JevvN9msLsuwGwepRnACICyzuSTHTnfp5imjQ850mOEuHRz2e6EelOFmOgyB25cDv/ZfkiodnJ9WyayhBAaEgcEYyzJINwQnAMIym0tinBc402HsAAmVr2GotLgDxK6ZDmNJ6oH5l8ZxJWcoHZyrpbMu0riKYo0YWhh1GQtwOuqcAAjL2DUT7rHmUnBwYcx03DxltGZdXKE1iydFfL3VHSDxbls2GEtSofJdkmnW+Pi35p4669G6LR+qYFCOaseXK//8/988ZbRqacCHNERwAiAsY9eMFLTb13Qeg5HYWhlQ8KuytDCm8vJ21y0pK84PGlsyTRk73LZrrd20X55IJXmBNMGyDoCI7NheaucOELsrlB4+fkZfunKsfrjlA1uva9bVF1XoV7uPqKk9vqArXCsAIB0RnACIyo7gwq4dINEKtFm1ftthSVJxfo46erw2XNG8ytJCXTW+XGsWRy/itqR2rJ7a+aeo10x0RVwgGVjWAWCKfy5JKvMYIi01xSOewKS8OF9Lrx5n+XX+S2L5gyL/5/hXe46auia9b5AJCE4AOJrH69POwyf0Yv0R7Tx8Qh6vr3+pKbBx3fCiPFvuWVo4cFK5KD/yfypPdPToxb1HLN2jcFCODjae1qa9R/W1jXvUcy5ycHSm+1zE74dKTgbSFcs6ABwrWk+fUNuWIykuyFVHtyfqfXNzc/SvX52plo5ufXT8jP5566GorzHT58df1zmv1m390NJrwqH3DTINMycAHMkotBa4bdgooFa3r3HAUlOOyxWxnookU4GJJLV29Cgnx6WCQTn6p62HHFcBtqx44AyRO8adT4BTMXMCwHHM9vSZW+3unymwOxG0qb1L36s7aOs17fJ3C6tVOWwwRdaQsQhOADiO2Z4+/ttmK4oLbB1D65lux5a1P9nZo9umX5DqYQAJw7IOAMex0tNH6lsC+taze227//CivLDNCJ3AyWMD7MDMCQDHsdLTJ1oTwFj4JI0oce6W3EiNEoFMwMwJAMcx29Nn+oXDTTUBDNwaHM2pzl7Jp4hjSBW2CyMbEJwAcByzPX12f3LSVF6Ix2d9XqWlozvuYm+u8/+bWz0ixisEX4/twsgGLOsASDqP1xe1FL5RaG3NS/sH9J3x7+nzYr25wmdnTG4h9jdiaKFqx5eH7Cs0bHCevnL1OF05rkwtHd0aMbRQJzt69NDm8P2HXn73qP7Xr94N2s7skkwtSVVa6GUEpDuCEwBJFa2wWrCBj26f3yxIIkq1u9QXVBhLJ1b6Cs2rCX/ewstHaV5Npd766IR2Hj4hyafaiyp0ZVWZdn9yUv91slOvvteks70eVVUU69vzJ+qPR9rYLoysRHACIGnCJa8ahdX8C4mFO7e5vbv/3BsuHakcl+S1KRs2XKVVs00Lo52Xm+PSrIsrNOviigHH+15Trv92xZgQx4HsQ3ACICmsFFbT+X8Od67x/aEFebYFJtLAZZhQzCxHAYgfwQmApLBSWE3n/zmSxrYu7fyoJe5xfeemiaoYWhA12LC+HAUgVgQnAJLCamE1M3YcOhHrcPpzS74yqyrq7IeV5SgA8WMrMYC4eLw+7Tx8Qi/WH9HOwyfkCbPOYjZ5taK4QC2nIzfwM9R/esrsMAew0sU32nKU1LfEFO59A7COmRMAMbOy1GEUVmtq6wr5oHdJKi3K07ee3Ttg63AksYYD0XJL/MXS5wdAfJg5ARATY6kj8MFtLHXU7WsccDxaYTWf+iqzmg1MYrWgxq3ff/sG08swiViOAhAZwQkcz+yyAZIn1qUOo7Cau3TgEs/IkgINK8pLzGADvP2RtTwVK31+ANiDZR04GjsknCmepY5QRc28Pp/+8qdvJ3jUfVo7ey0twZhZjnLT7wawFTMncKwtB5otLRsgeeJd6jCKld08ZbRqx5er5Yy5BFi7WFmCMdvnh3ongH0ITuBYj7xykB0SDuK/vGZ2N41Tl0Ss3i/ccpS7tJBtxEACsKwDx+pLjAz91yg7JJIr1PJapLLxVpc6jKUTMx2G4+UuKYhpCcZKjx0A8SE4QVpjh0TihStAFikwkawtdeTmuLR4cqV+vL0h5nGatWbxpJgDCrM9dgDEh2UdpDV2SCRWpF05hsDnfCxLHR6vTy/tjZxDNKwoT2VF+aauNzgv+D9tw4ry9DhLMEBaYOYEjuUuKdSfTnazQyKFou3KkfpmUMz2p4nnPqc6e7VqwaV6+JWDUa93tter4UV5uuqico3/XLFqL6rQVePLWYIB0gQzJ3CslQsulcQOiVQyu2xWMbSgf+dNLJ+J2fscOXXW9DVPdfaqbl+TakaXataECv5dAdIIwQkca87EkeyQSLFk7bYx+/oLy4pMX5NdXUD6YlkHjsYOidRKVgEys/e5u3acfrTtkE519pq6Lru6gPTEzAkcL7BgVyoCk2wtoZ+sAmTGbp1IP9V47sOuLiC9MHMCRJHtJfSNAmSBPwMrnX2jqdvXqJ9E2Eb8V9dVaX5NpXYePmF61sQfu7qA9EJwAkQQrsaHUUI/W3JfErm8Zma78kt7G/XA/ImWZ0DY1QWkJ4ITIIxonXdd6ku2nFvtzoocmEQVIDOzjdjIG7EyA8KuLiB9kXMChGGl8y5iZ6WJoJE4aybUYFcXkL6YOQHCiLfzLsyxsl3ZSNC9b+MeuaSQs1pfnTVOc6rd7OoC0hgzJ0AYTu2om2mizYa41JeAbOSNhOsQXFlaqMfvmqbvLJqUsl1dAOzBzAkQRrJqfGS7SLMh4fJGqH8DZDZmToAwklXjA+FnQyLljTih/g2AxGDmBIggGTU+0IfZEAAGghMgCh6ayZOo7coA0gvBCWACD00ASB5yTgAAgKMQnAAAAEdhWQdZy+P1kUcCAA5EcIKslO2dhgHAyVjWQdYxOg0H9s0xOg3X7WtM0cgAABLBCbJMtE7DUl+nYY831BkAgGQgOEFWodMwADgfwQmyCp2GAcD5SIhFRom2A4dOwwDgfAQnyBhmduDE2mmYbccAkDwEJ8gIxg6cwIDD2IFjdLY1Og3ft3GPXNKA88N1GmbbMQAkFzknKeDx+rTz8Am9WH9EOw+fYGdInKzuwDE6DbtLBy7duEsL+4MYA9uOASD5mDlJMv4Kt5+VHThG8z4znYajBT0u9QU9c6vdLPEAgI2YOUki/gpPjFh34Bidhm+eMlq148uDAgy2HQNAahCcJAnFvxInUTtw2HYMAKlBcJIk/BWeOMYOnHALKy71LZ0F7sCJhm3HAJAaBCdJwl/hiWPswJEUFKCE24FjRqKCHgBAZAQnScJf4YllZQeOWYkKegAAkbFbJ0liLf4F88zswInlmo/dNS1oh5WbHVYAkDAEJ0kSS/EvWGfswLFTIoIeAEB4BCdJxF/h6SsRQQ8AIDSCkyTjr3AAACIjOEkB/goHACA8dusAAABHITgBAACOwrIOHM/j9YXM0Ql3PNvxcwGQ7ghO4Gjhujgvnlypl/Y20t05AF2vAWQClnXgWFsONIfs4tzY1qUfb2+gu3MAul4DyBQEJ3CsR145GLKabjjZ3N2ZrtcAMgnBCRyrqd16E8Rs7e5M12sAmYTgBBkp27o70/UaQCYhIRYZKVu6Oxs7cz5sPmPq/Gz5uQBIbwQncCx3SaH+dLLbUt5JNnV3DrUzJ5xs+rkASH8s68CxVi64VNJnXZujyabuzuF25oSSTT8XAJmB4ASONWfiSD121zS5SwcuRVSWFure66pUGXDcXVqox+6aFlTPw+P1aefhE3qx/oh2Hj6RljtW/N/DjkMtWvPSe6ZnlML9XADAqVjWgaNF6uL8wPyJUSuhZkJRMivLN/6WXz9esy7+HBViAaQdghMkXKhy6pJMl1gP18U5WndnY+kjcIbBKEqWDrMJ4d6DGRNGDqX7NYC0RHCChAr1V/+wojxJ0qnO3v5jds9mRCtK5lJfUbK51W7HzipEeg9msDMHQLoi5wQJEy5p81Rn74DARLK/xHomFCWL9h7Ccakv2GNnDoB0RXCChLD6V7/dJdYzoShZLGNjZw6ATMCyDhIilr/6jdmM3Z+cjPv+Zpc0nLz0EcvY3GmW7AsAoRCcICHimZFoOdMd9/1nVJWpsrRQTW1dIWdv0qEomdn38P0vTlZLR3fUxGIASBcs6yAh4pmRqBhSEPf9c3NcWr2oWlJwEbd0Wfow+x5mTajQzVNGq3Z8uaPfDwCYRXCChDD+6rfyqDQSOadfONyWMcyvqQxZxC2dipJlwnsAAKtY1kFCGH/137dxj1xS1MTYRM1mRCrili4y4T0AgBUEJ0gY46/+wDonw4vy5NPAOif+iZy9vb0hrha7aMXa0kEmvAcAMIvgBAkV7q9+yXyFWABAdiE4QcKF+6s/U2cCQpXrJ/ACAPMITgAbZUKjQQBINXbrADYJV67f7tL8AJDpCE4AG0RrNCjZV5ofADIdwQlgg0xoNAgATkFwAtggExoNAoBTEJwANsiERoMA4BTs1oHjWdmaG+pcKXRNFTu3/GZCo0EAcAqCEziala25oc4dVpQnaWA12srSQi2eXKmX9jbatuU3Urn+dGk0CABOQXACRzFmMyTpsdcP6QdbPwo6x9ia+893TFVTW5f+8+NWtXX26O2PTwad6x+UGBrbuvTj7Q1hrxuqoZ6ZWZZw5frd1DkBAEsITuAYxsxH65mz+t4MacPrh6UQfY2NWYn7f/kHW+/vO3+3tZv2a261uz/4sDJ7Q5M+AIgfCbFwhHAFzJItcMtvLIXVjHL9N08Zrdrx5QQmAGARwQlSLlIBs1Q5drqLwmoAkCIEJ0i5aAXMUmHE0EIKqwFAihCcIOWcVJjMpb58khlVZRRWA4AUIThByjmlMFngll8KqwFAahCcIOWMAmbJThsNzFN1lxYO2EYcbVz+sywAAPuwlRgpF1jAzJ/x9d/M+bzGVRRpxNBC/e5gk5544+OY72dcc/0d0zS8OD/sll8KqwFAahCcwBH8C5i1njnbfzxUAbPa8eXKcbn0kzca5Itho4yVomgUVgOA5CM4gWMYBczeOnRMLQfe0pNLrtRVF48IOTOxamG1vnXjpXrqzY/10t4j+uOR9qjX/3LthVpQU2m5KBqF1QAguQhO4Ci5OS7NqCrTywcUNQDIH5SjZdddpJrRpbrjibeiXntBTaVqx5fHPK5YXwsAsIaEWKQ9ElcBILMQnCDtGYmrUnAnHhJXASD9EJwgIxiJq+7SgTVHArcHAwCcj5wTOJ7H6zOVjEriKgBkBoITOFrdvsagbbyVEbbxkrgKAOmPZR041pYDzbpv456g5ntNbV26b+Me1e1rTNHIAACJRHACx3rklYMKVWPNOLZ20355vDFUYQMAOBrBCRyrqT18t1+fpMa2Lu1qaE3egAAASUHOSYYLl0xqNsnU6Y6dDh/AAADSE8FJBguXTLp4cqVe2ttoOsnUyUYMLYx+EgAgrbCsk6Hq9jWGTCZtbOvSj7c3pEWSqbuEqq8AkI0ITjKQx+vT2k37QyaThuPEJNOVCy4N+x58ouorAGQqgpMMtKuhNWhmxAySTAEATkBwkoHiTRJ1SpLpI68cDPs9l5w1ywMAsA/BSQaKN0nUKUmmbCUGgOxEcJKBZlSVqbI0fDJpOOmYZOqUWR4AgH0ITjJQbo5LqxdVS5LpAMU4L92STJ0yywMAsA/BSYaaX1Opx+6aJnfpwId3ZWmh7r2uSpUBx92lhXrsrmmOqnPCVmIAyE4UYUuwUJVYJSWlOuv8mkrNrXaHvNcD8yc6vkLsygWX6utP75VLGrClOF1neQAA5hCcJFCoCq3DivIkSac6e/uPJbI6a26OS7Xjy00fd5I5E0fqsbumBf0M3WlazRYAYA7BSYIYFVoDN7r6ByUGozqr05ZVnCDS7A8AIDMRnCSA1QqtPn1Wt2NutZsHb4B0mOUBANgnJQmxv/nNb3TJJZdowoQJ+ulPf5qKISRULBVaqdsBAECfpM+cnDt3TitWrNC2bdtUWlqq6dOn69Zbb1V5eeb8ZRxP7Y3A14ZKqPV4ffrFzo/1SWunLiwr0t2145Q/KHScGer1zMwAAJws6cHJrl27NGnSJI0ePVqStGDBAr366qu64447kj2UhImn9ob/a0Ml1Bbn56qzxzNgyeh/v3xAy66t0qqF1QOuFer1iUy+BQDADpaXdbZv365FixZp1KhRcrlceuGFF4LO2bBhg8aNG6fCwkLNnDlTu3bt6v/e0aNH+wMTSRo9erSOHDkS2+gdKpYKrYF1O4yE2sDloY6AwESSvD7px9sb9PDL+/uPhXu9kXxbt6/RwugAAEgeyzMnHR0dmjx5su655x7ddtttQd9/5plntGLFCj3++OOaOXOm1q1bp3nz5un999/XiBEjLA+wu7tb3d3d/V+3t7dLknp7e9XbG7zzJZBxjplz7fTgTZfom8/US1LUxFgjiHnwpkvk9ZxTb69PD29+T/m51pra/b83P9L/uH68cnNcEV/vkvTw5vc0e0J5yCUej9en3Z+cVMuZbpUV50s+qbWzRxVDCjT9wuGWl4X8r2fmGqn6zAAkDr/XsPLZu3w+X8xtXV0ul55//nndcsst/cdmzpypK6+8UuvXr5ckeb1ejRkzRvfff79WrlypN998U//4j/+o559/XpL0N3/zN5oxY4buvPPOkPdYs2aN1q5dG3T86aefVlFRUaxDBwAASdTZ2ak777xTbW1tKikpiXiurcFJT0+PioqK9Nxzzw0IWJYsWaJTp07pxRdf1Llz5zRx4kS9/vrr/Qmxb775ZtiE2FAzJ2PGjFFLS0vUNyf1RWqvvfaa5s6dq7y8vFjfasxCzRpIijiT8PIfG/XAr96N+Z53z7xQv3j7k6jnfe/PL9fCyz7LPdlyoFnffKY+4kyPMcof3j5FcyaOjHj9cNeLdo1Uf2YA7MfvNdrb21VRUWEqOLE1IbalpUUej0cjRw584IwcOVIHDx7su+GgQXr00Ud1/fXXy+v16oEHHoi4U6egoEAFBQVBx/Py8iz9C271fLvkSZr1+eAHcKhjhrIhg9XtiX1Hza/qG029vqKkqP9n4vH69Peb31eXide5JP395vd1Y83osMsz0a5n5hqp+swAJA6/19nLyueekiJsixcv1uLFi1Nx67RwsOl0XK8/GaIKbUh+UxpWarP412QJVxwt2vXMXAMAkJ1sDU4qKiqUm5ur5ubmAcebm5vldrvtvFVG+/RkZ1Lu09Lx2XJZLLVZdhxqCVs/xez14qkJAwDITLYGJ/n5+Zo+fbq2bt3an3Pi9Xq1detWLV++3M5bZbQLy5KT6OtfUyWW2izrtx3q/+fA+ilmrxdPTRgAQGayXOfkzJkzqq+vV319vSSpoaFB9fX1+tOf/iRJWrFihZ544gk99dRTOnDggO677z51dHRo6dKltg48k91dO07xFHF1lxSodHDkuHN4UV5/TRUpttos/gLrp0S7XmBdFwAADJaDk3feeUdTp07V1KlTJfUFI1OnTtWDDz4oSbr99tv1/e9/Xw8++KCmTJmi+vp61dXVBSXJYiCP16edh0/oxfoj2v3JSX31mnExX2vBZZU65428CSvwu7k5Lq1e1FdhNpYAxbje2k375fH6Il7P+Hr1ompK6QMAglhe1pk9e7ai7T5evnw5yzgWhCszP7d6hLYeOKYocUaQf9nxcdRzTnX2BiWjzq+p1GN3TdPfPr9PrR091m6q4CRX43qB781NCX0AQAQp2a2Dzxhl5gPjj8a2LjW2damkcJDau84l5N6hElrn11TqbI9H3/z3vTFf1z/JdX5NpeZWu2k+CAAwjeDEIju7/Hq8Pq156b2IRc8SFZhIAxNa3SUFWrN4kubXVMpdOjiu6wYmuebmuNguDAAwjeDEAru7/K7/3SE1tXdHPzEJmtq79bWNe/T4XdN0w6Uj5XJJsdQOJskVABAvywmx2cruLr91+xr1wy0f2DlEW6z89R/19kcnYgpMJJJcAQDxY+bkvEjLNR6vT2s37Q+5/OJT3+6TtZv2a2hBnlo6uqMu9xjXc6JTnb16bvenMb32m3MmkOQKAIgbwYmiL9eYLcX+lz97O+TrA1kpFZ8KR06dtfyaytJCLb9hQgJGAwDINlm/rGNmuSaWEuuRlnucXrL9guHmK9S6zv+P5RwAgF2yOjiJtlwj9S3XDCu03kEzsCiZP6eXbP/zaRdoWJG59+wuLdRjd01jOQcAYJusDk7MLte8dqAppuv7FyXzN6OqzPTDP9CQgkEqys8dcMzOCQuXS5p5Ubkeue2yiOd9ddY4/XLZVfr9t28gMAEA2Cqrc07MLq980mo9ByOW+0TznZsm6iuzqiRpQPLuyY5u/fXTf5AUXJbeKp9P2v3JSc2vqdTjd03TmpfeG7Dd2b8eCgAAiZDVwYnZ5ZVx5UV640P77rOroVWnOnstX6diaEF/XkdgUbPHclwhk3r/duFEHWvv0ietnWo/26sX6o9GvY8RTFHdFQCQClkdnBidc5vaukLOOLjUl1Pxtwur9a9v/8lyjxvj9YFFyWKdSYkUTJkJJHYePmEqOPG/D9VdAQDJltU5J2Y75w7Oz9Wya6ssXTtS512rCbEumau8agQSN08Zrdrx5UH3NYKxcPMeZu8DAEAiZXVwIn3WidddOjBgCNyFMnXs8IjXCUxwjbSLJVqQ4C9SkGOV2WCMZRsAQCpl9bKOIdqSSLSKri5Jg/NyteGr00xViDWChPs27ok6ttKiPD1y22W2JaAawVhgfoo7jh5BAADYieDkvEi5FWa3HOfkuHTzlNGm7je/plIb7pym5b/cEzGXZXBeruZWu01d0ywSXQEATkZwEiBUjx2zCaw7DrUMeJ2kiAHA8OL8qEm2Rp0Uu5NSSXQFADgVwYmfUD12yorzNdNkguj6bYf6/7l08CC5XK4BW4aNfjvGrMUrJjsZO73cPQAAdiI4Oc/osRM4kdHa0aNX9lmvENt29lzQsaa2Ln1t4x4NK8qzVOek5XS3Xqw/YnpGBgCAdEZwosg9duxkXN9KYJLjkh7afKD/6yEFufL6pM4eT/+xSB2QAQBIN1m/lViKnvCaSoE5KWe6PQMCEylyB2QAANINwYnSP6cjUgdkAADSDcGJrFdsdaJwHZABAEg3BCeyVrHV6dJ9FggAAIITRS7rnm4yYRYIAJDdCE7OC9djJ53QtA8AkAkITvzMr6nU7799g5ZfPz7VQ4kJTfsAAJmA4CRAbo5Lsy7+nKlzp48dltjBWPDFaaOpcwIAyAgEJyFES5B1qW8JZeN/v0pOmKjIcUn/57bLUz0MAABsQXASQqQEWePr1YuqNTg/V8uurUrq2EJZdm2V8gfxUQIAMgNPtDDCJci6Swv12F3T+pdQVi2s1p9dbm05JXC2ZXhRnoYV5Q04VllaqHuvq1JlhATdHJd073VVWrWw2tL9AQBwMnrrRDC/prK/g3CkJnv/9KWp+s+GE2o+3RP1mi5J6++YpuHF+QOuKYVu5vfA/In9x8uK8nWwqV2fnjyrC8uKdHftOGZMAAAZh+Akitwcl2rHl0c9Z+3NNbpv4x5JCttAMFqDvlD3Cbz/tZ83l6wLAEC6IjixibEMtHbT/gFNBMuL83XzlFGaW+0OOesCAAAGIjixkdllIAAAEB7BiUker89U0GFmGQgAAIRHcGJC3b7GoOWaaPkjAAAgNmz1iKJuX6Pu27hnQGAiSU1tXbpv4x7V7WtM0cgAAMhMBCcReLw+rd20P+TuG+PY2k375fGG258DAACsIjiJYFdDa9CMiT+fpMa2Lu1qaE3eoAAAyHAEJxEcOx0+MInlPAAAEB3BSQQjhoYvHR/LeQAAIDqCkwjMdic2ys8DAID4EZxEYLY7MUXWAACwD8FJFGa7EwMAAHtQhM0EytIDAJA8BCcmUZYeAIDkYFkHAAA4CsEJAABwFIITAADgKAQnAADAUQhOAACAoxCcAAAARyE4AQAAjkJwAgAAHIXgBAAAOEraVYj1+XySpPb2dlPn9/b2qrOzU+3t7crLy0vk0GATPjMg8/B7DeO5bTzHI0m74OT06dOSpDFjxqR4JAAAwKrTp0+rtLQ04jkun5kQxkG8Xq+OHj2qoUOHyuWK3nivvb1dY8aM0aeffqqSkpIkjBDx4jMDMg+/1/D5fDp9+rRGjRqlnJzIWSVpN3OSk5OjCy64wPLrSkpK+IVIM3xmQObh9zq7RZsxMZAQCwAAHIXgBAAAOErGBycFBQVavXq1CgoKUj0UmMRnBmQefq9hRdolxAIAgMyW8TMnAAAgvRCcAAAARyE4AQAAjkJwAgAAHCWjg5MNGzZo3LhxKiws1MyZM7Vr165UDwkAAESRscHJM888oxUrVmj16tXas2ePJk+erHnz5unYsWOpHhri8Jvf/EaXXHKJJkyYoJ/+9KepHg4AG9x6660aPny4vvjFL6Z6KHCIjN1KPHPmTF155ZVav369pL6ePGPGjNH999+vlStXpnh0iMW5c+dUXV2tbdu2qbS0VNOnT9ebb76p8vLyVA8NQBxef/11nT59Wk899ZSee+65VA8HDpCRMyc9PT3avXu35syZ038sJydHc+bM0c6dO1M4MsRj165dmjRpkkaPHq0hQ4ZowYIFevXVV1M9LABxmj17toYOHZrqYcBBMjI4aWlpkcfj0ciRIwccHzlypJqamlI0Kmzfvl2LFi3SqFGj5HK59MILLwSdEylP6OjRoxo9enT/16NHj9aRI0eSMXQAYcT7ew2EkpHBCZypo6NDkydP1oYNG0J+nzwhIP3we41EyMjgpKKiQrm5uWpubh5wvLm5WW63O0WjwoIFC/QP//APuvXWW0N+/wc/+IGWLVumpUuXqrq6Wo8//riKior05JNPSpJGjRo1YKbkyJEjGjVqVFLGDiC0eH+vgVAyMjjJz8/X9OnTtXXr1v5jXq9XW7duVW1tbQpHhnDM5AnNmDFD+/bt05EjR3TmzBm98sormjdvXqqGDCAK8v8Qq0GpHkCirFixQkuWLNEVV1yhGTNmaN26dero6NDSpUtTPTSEEClP6ODBg5KkQYMG6dFHH9X1118vr9erBx54gJ06gIOZ+b2WpDlz5mjv3r3q6OjQBRdcoGeffZY/JLNcxgYnt99+u44fP64HH3xQTU1NmjJliurq6oJ+SZBeFi9erMWLF6d6GABstGXLllQPAQ6TscGJJC1fvlzLly9P9TBgAnlCQObh9xqxysicE6Qf8oSAzMPvNWKV0TMncJYzZ87o0KFD/V83NDSovr5eZWVlGjt2LHlCQBri9xoJ4QOSZNu2bT5JQf9bsmRJ/zk/+tGPfGPHjvXl5+f7ZsyY4XvrrbdSN2AAUfF7jUTI2N46AAAgPZFzAgAAHIXgBAAAOArBCQAAcBSCEwAA4CgEJwAAwFEITgAAgKMQnAAAAEchOAEAAI5CcAIAAByF4AQAADgKwQkAAHAUghMAAOAo/x9ABoZvrTboxQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "_fig, _ax = matplotlib.pyplot.subplots()\n", "_ax.set_xscale('symlog')\n", "_ax.set_yscale('symlog')\n", "_ax.grid(True)\n", "_ = _ax.scatter(df['selling_price'], df['present_price'])" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }