\# Отчет по теме 1 Ершова Вероника, А-03-24 \## 1 Изучение среды GNU Octave \## 2 Настройка текущего каталога Нажал на окно рядом с \*Текущая папка:\* и установил путь к папке ТЕМА1: !\[Скриншот выбора текущей папки](ch\_file.png) \## 3 Изучение интерфейса !\[Скриншот интерфейса](image\_interface.png) \## 4 Установка пути к папкам ТЕМА1 и ТЕМА2 !\[Скриншот установки](put\_file.png) \## 5 Изучение работы с системой помощи !\[Скриншот справки](documentation.png) \## 6 Создание матриц и векторов ```matlab >> A=randn(4,6) A =   -0.3123 0.2623 -0.5659 0.8583 -0.5970 0.9411   -0.3970 0.8236 0.6951 0.6303 -0.7044 -1.7374   -1.0984 0.5386 -0.2843 -0.3507 -0.5547 -1.9063   0.1025 1.1803 -0.4632 0.4787 0.9092 -0.6363 ``` >> B=rand(4,7) B =   0.644835 0.573813 0.875185 0.901622 0.128847 0.962663 0.245441   0.822337 0.515764 0.478145 0.540383 0.080948 0.520514 0.075695   0.893529 0.350316 0.940080 0.651110 0.694296 0.249719 0.568012   0.404731 0.782888 0.760890 0.166651 0.586766 0.664987 0.086867 >> C = 4:27 C =   4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> H='This is a symbols vector >>> H='This is a symbols vector   ^ >> L=\[-2+23.1j, 3-5.6j] L =   -2.0000 + 23.1000i 3.0000 - 5.6000i \## 7 Преобразования матриц >> D = reshape(C, \[], 6) D =   4 8 12 16 20 24   5 9 13 17 21 25   6 10 14 18 22 26   7 11 15 19 23 27 >> E=B'\*A E =   -1.467808 1.805345 -0.234815 0.952120 -1.091901 -2.782730   -0.688507 1.687984 -0.428432 1.069487 -0.188416 -1.522026   -1.417751 2.027711 -0.782629 1.087059 -0.688963 -2.283294   -1.194195 1.228917 -0.396936 0.965854 -1.128588 -1.437582   -0.774871 1.166932 -0.485822 0.198993 0.014438 -1.716256   -0.713412 1.600553 -0.561983 1.385063 -0.475313 -0.897539   -0.721710 0.535160 -0.288015 0.100733 -0.435934 -1.038587 >> F=\[A,B] F =  Columns 1 through 12:   -0.312294 0.262288 -0.565932 0.858280 -0.597024 0.941114 0.644835 0.573813 0.875185 0.901622 0.128847 0.962663   -0.396963 0.823623 0.695119 0.630284 -0.704447 -1.737432 0.822337 0.515764 0.478145 0.540383 0.080948 0.520514   -1.098415 0.538569 -0.284317 -0.350730 -0.554662 -1.906275 0.893529 0.350316 0.940080 0.651110 0.694296 0.249719   0.102471 1.180265 -0.463169 0.478719 0.909196 -0.636291 0.404731 0.782888 0.760890 0.166651 0.586766 0.664987  Column 13:   0.245441   0.075695   0.568012   0.086867 >> G=A.\*D G =   -1.2492 2.0983 -6.7912 13.7325 -11.9405 22.5867   -1.9848 7.4126 9.0365 10.7148 -14.7934 -43.4358   -6.5905 5.3857 -3.9804 -6.3131 -12.2026 -49.5632   0.7173 12.9829 -6.9475 9.0957 20.9115 -17.1799 >> M=G./4.5 M =   -0.2776 0.4663 -1.5092 3.0517 -2.6534 5.0193   -0.4411 1.6472 2.0081 2.3811 -3.2874 -9.6524   -1.4646 1.1968 -0.8845 -1.4029 -2.7117 -11.0140   0.1594 2.8851 -1.5439 2.0213 4.6470 -3.8177 >> DDD=D.^3 DDD =   64 512 1728 4096 8000 13824   125 729 2197 4913 9261 15625   216 1000 2744 5832 10648 17576   343 1331 3375 6859 12167 19683 >> DL=D>=20 DL =   0 0 0 0 1 1   0 0 0 0 1 1   0 0 0 0 1 1   0 0 0 0 1 1 >> Dstolb=D(:) Dstolb =   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27 \## 8 Изучение стандартных математических функций и операций с матрицами >> B1=sqrt(B) B1 =   0.8030 0.7575 0.9355 0.9495 0.3590 0.9812 0.4954   0.9068 0.7182 0.6915 0.7351 0.2845 0.7215 0.2751   0.9453 0.5919 0.9696 0.8069 0.8332 0.4997 0.7537   0.6362 0.8848 0.8723 0.4082 0.7660 0.8155 0.2947 >> B2=log(B) B2 =   -0.438761 -0.555453 -0.133320 -0.103559 -2.049133 -0.038052 -1.404697   -0.195605 -0.662106 -0.737842 -0.615477 -2.513947 -0.652939 -2.581039   -0.112577 -1.048919 -0.061790 -0.429077 -0.364857 -1.387420 -0.565612   -0.904533 -0.244765 -0.273267 -1.791851 -0.533128 -0.407988 -2.443381 >> B3=sin(B) B3 =   0.601067 0.542838 0.767662 0.784334 0.128490 0.820716 0.242985   0.732738 0.493200 0.460133 0.514464 0.080860 0.497326 0.075623   0.779288 0.343195 0.807605 0.606069 0.639845 0.247131 0.537958   0.393772 0.705330 0.689566 0.165881 0.553671 0.617049 0.086757 >> B1=sqrt(B) B1 =   0.8030 0.7575 0.9355 0.9495 0.3590 0.9812 0.4954   0.9068 0.7182 0.6915 0.7351 0.2845 0.7215 0.2751   0.9453 0.5919 0.9696 0.8069 0.8332 0.4997 0.7537   0.6362 0.8848 0.8723 0.4082 0.7660 0.8155 0.2947 >> B2=log(B) B2 =   -0.438761 -0.555453 -0.133320 -0.103559 -2.049133 -0.038052 -1.404697   -0.195605 -0.662106 -0.737842 -0.615477 -2.513947 -0.652939 -2.581039   -0.112577 -1.048919 -0.061790 -0.429077 -0.364857 -1.387420 -0.565612   -0.904533 -0.244765 -0.273267 -1.791851 -0.533128 -0.407988 -2.443381 >> B3=sin(B) B3 =   0.601067 0.542838 0.767662 0.784334 0.128490 0.820716 0.242985   0.732738 0.493200 0.460133 0.514464 0.080860 0.497326 0.075623   0.779288 0.343195 0.807605 0.606069 0.639845 0.247131 0.537958   0.393772 0.705330 0.689566 0.165881 0.553671 0.617049 0.086757 >> NN=linspace(11.5,34.1,20) NN =  Columns 1 through 15:   11.500 12.689 13.879 15.068 16.258 17.447 18.637 19.826 21.016 22.205 23.395 24.584 25.774 26.963 28.153  Columns 16 through 20:   29.342 30.532 31.721 32.911 34.100 >> FF=ones(2,4) FF =   1 1 1 1   1 1 1 1 >> GG=zeros(5) GG =   0 0 0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 0 0 0 >> B1D=diag(B1) B1D =   0.8030   0.7182   0.9696   0.4082 >> DB=diag(B1D) DB = Diagonal Matrix   0.8030 0 0 0   0 0.7182 0 0   0 0 0.9696 0   0 0 0 0.4082 >> BS1=sort(B) BS1 =   0.404731 0.350316 0.478145 0.166651 0.080948 0.249719 0.075695   0.644835 0.515764 0.760890 0.540383 0.128847 0.520514 0.086867   0.822337 0.573813 0.875185 0.651110 0.586766 0.664987 0.245441   0.893529 0.782888 0.940080 0.901622 0.694296 0.962663 0.568012 >> BS2=sortrows(B,2) BS2 =   0.893529 0.350316 0.940080 0.651110 0.694296 0.249719 0.568012   0.822337 0.515764 0.478145 0.540383 0.080948 0.520514 0.075695   0.644835 0.573813 0.875185 0.901622 0.128847 0.962663 0.245441   0.404731 0.782888 0.760890 0.166651 0.586766 0.664987 0.086867 >> DS1=sum(D) DS1 =   22 38 54 70 86 102 >> DS2=sum(D,2) DS2 =   84   90   96   102 >> DP1=prod(D) DP1 =   840 7920 32760 93024 212520 421200 >> dt=det(A\*A') dt = 73.956 >> dinv=inv(A\*A') dinv =   4.4666e-01 -1.9520e-02 1.0379e-01 -3.8572e-03   -1.9520e-02 4.8342e-01 -3.4279e-01 -8.4195e-02   1.0379e-01 -3.4279e-01 4.5435e-01 -1.6761e-02   -3.8572e-03 -8.4195e-02 -1.6761e-02 3.6871e-01 \## 9 Изучение индексации в матрицах >> D1=D(3,5) D1 = 22 >> D2=D(3,4:end) D2 =   18 22 26 >> D3=D(2:3,3:5) D3 =   13 17 21   14 18 22 >> D4=D(16:20) D4 =   19 20 21 22 23 >> D5=D(3:4,\[1,3,6]) D5 =   6 14 26   7 15 27 \## 10 Изучение управляющих конструкций >> Dsum=0 Dsum = 0 >> for i=1:6 Dsum=Dsum+sqrt(D(2,i)) endfor Dsum = 2.2361 Dsum = 5.2361 Dsum = 8.8416 Dsum = 12.965 Dsum = 17.547 Dsum = 22.547 >> Dsum2=0;i=1 i = 1 >> while (D(i)<22) Dsum2=Dsum2+sin(D(i)) i=i+1 endwhile Dsum2 = -0.7568 i = 2 Dsum2 = -1.7157 i = 3 Dsum2 = -1.9951 i = 4 Dsum2 = -1.3382 i = 5 Dsum2 = -0.3488 i = 6 Dsum2 = 0.063321 i = 7 Dsum2 = -0.4807 i = 8 Dsum2 = -1.4807 i = 9 Dsum2 = -2.0173 i = 10 Dsum2 = -1.5971 i = 11 Dsum2 = -0.6065 i = 12 Dsum2 = 0.043799 i = 13 Dsum2 = -0.2441 i = 14 Dsum2 = -1.2055 i = 15 Dsum2 = -1.9565 i = 16 Dsum2 = -1.8066 i = 17 Dsum2 = -0.8937 i = 18 Dsum2 = -0.057011 i = 19 >> if (D(3,5)>=20) printf('D(3,5)>=20') else printf('D(3,5)<20') endif D(3,5)>=20 \## 11 Изучение графических функций и их вывод >> graphics\_toolkit('gnuplot') >> plot(D(1,:),B(\[2,4],1:6)) !\[Обычный график](image\_plot.png) >> hist(A(:),6) !\[Гистограмма](image\_hist.png) >> pie(C) !\[Круговая диаграмма](pie\_image.png) >> bar(C) !\[График bar](image\_bar.png) \## 12 Изучение текстового редактора и добавление программы >> Prog1 D1 = 22 D2 =   18 22 26 D3 =   13 17 21   14 18 22 D4 =   19 20 21 22 23 D5 =   6 14 26   7 15 27 >> Prog1 D1 = 22 D2 =   18 22 26 D3 =   13 17 21   14 18 22 D4 =   19 20 21 22 23 D5 =   6 14 26   7 15 27 >> \## 13 Сохранение и загрузка области переменных !\[Загрузка области данных](perem\_function.png)