diff --git a/ТЕМА1/Perem b/ТЕМА1/Perem new file mode 100644 index 0000000..d2ca966 --- /dev/null +++ b/ТЕМА1/Perem @@ -0,0 +1,346 @@ +# Created by Octave 10.3.0, Wed Feb 11 17:32:18 2026 UTC +# name: A +# type: matrix +# rows: 4 +# columns: 6 + -2.4768373846762071 0.2022424292672908 1.7213593265114695 0.56066204149552512 -0.65101654748907489 -0.57757389331175413 + -1.833978171104192 -1.103007288562684 -0.3086927153971098 -0.47631398696533422 0.23475485607949262 -0.10192258453176552 + 0.12507222560182019 -0.63015998120244898 1.4213194216059777 0.51739070911189877 -0.68453163829416586 0.82192423117509672 + 0.73360191857893964 -0.4126226278399413 0.84494156531258413 -1.2094578724432639 0.52736142070578329 -0.30049223849787182 + + +# name: B +# type: matrix +# rows: 4 +# columns: 7 + 0.050805040296663662 0.61420955922529741 0.72905812125037994 0.88880452145338895 0.99263277810635697 0.96668584850998096 0.64955792205364071 + 0.95590103366676171 0.74273486734529148 0.52334680082239915 0.25204612991319986 0.36938751192961961 0.46490962708974326 0.23779102219799708 + 0.2690367190564632 0.60605009575511726 0.6916365392766991 0.90965014838540226 0.52168391935774971 0.067134930053068587 0.76744432550984687 + 0.35581901383742198 0.23349372844596328 0.058284730333129753 0.71135477494748245 0.71417393364888415 0.71730764538090497 0.25257216699041174 + + +# name: B1 +# type: matrix +# rows: 4 +# columns: 7 + 0.22539973446449235 0.7837152283995108 0.85384900377665129 0.94276429793103056 0.99630957945126519 0.98320183508269599 0.80595156309398686 + 0.97770191452546606 0.86182067006152241 0.72342712198423909 0.50204196031128701 0.60777258241024623 0.68184281699651517 0.48763820830406335 + 0.51868749652990787 0.77849219376633272 0.83164688376539897 0.95375581171775947 0.72227689936599093 0.2591040911546334 0.87603899771063098 + 0.5965056695769303 0.4832118877324556 0.24142230703298681 0.84341850521996642 0.84508812182451376 0.84694016635232561 0.50256558476522417 + + +# name: B1D +# type: matrix +# rows: 4 +# columns: 1 + 0.22539973446449235 + 0.86182067006152241 + 0.83164688376539897 + 0.84341850521996642 + + +# name: B2 +# type: matrix +# rows: 4 +# columns: 7 + -2.9797597108812637 -0.48741910739529504 -0.31600182278476019 -0.11787795352587933 -0.0073944939013718533 -0.033881708586369547 -0.43146326739640078 + -0.045100892558509881 -0.29741613866683919 -0.64751093558346839 -1.3781431530121639 -0.99590901815114274 -0.76591224262789448 -1.4363630490209951 + -1.3129074066272211 -0.5007926300669201 -0.36869469360635326 -0.094695205715716324 -0.65069339297159057 -2.7010508033427394 -0.26468934220425844 + -1.0333330655002804 -1.4546000611376895 -2.8424151353152238 -0.34058399339257817 -0.33662874175906532 -0.33225045735238196 -1.376058261239564 + + +# name: B3 +# type: matrix +# rows: 4 +# columns: 7 + 0.050783187194255855 0.57631273107564385 0.66616747537127519 0.77631874384796262 0.83746765811983104 0.82300769838129884 0.6048344155200408 + 0.81683385394541719 0.67630500099088142 0.49978176757244525 0.24938596066408558 0.36104432479529197 0.4483420223584168 0.23555638420283118 + 0.26580293094260471 0.56962546847421058 0.6377985036480005 0.78928897143680998 0.49834077019618001 0.067084510789155005 0.69429822124738105 + 0.34835819401992008 0.23137785123478527 0.058251735999893271 0.65286058218526666 0.65499343595762605 0.65735815692577471 0.24989534263699065 + + +# name: BS1 +# type: matrix +# rows: 4 +# columns: 7 + 0.050805040296663662 0.23349372844596328 0.058284730333129753 0.25204612991319986 0.36938751192961961 0.067134930053068587 0.23779102219799708 + 0.2690367190564632 0.60605009575511726 0.52334680082239915 0.71135477494748245 0.52168391935774971 0.46490962708974326 0.25257216699041174 + 0.35581901383742198 0.61420955922529741 0.6916365392766991 0.88880452145338895 0.71417393364888415 0.71730764538090497 0.64955792205364071 + 0.95590103366676171 0.74273486734529148 0.72905812125037994 0.90965014838540226 0.99263277810635697 0.96668584850998096 0.76744432550984687 + + +# name: BS2 +# type: matrix +# rows: 4 +# columns: 7 + 0.35581901383742198 0.23349372844596328 0.058284730333129753 0.71135477494748245 0.71417393364888415 0.71730764538090497 0.25257216699041174 + 0.2690367190564632 0.60605009575511726 0.6916365392766991 0.90965014838540226 0.52168391935774971 0.067134930053068587 0.76744432550984687 + 0.050805040296663662 0.61420955922529741 0.72905812125037994 0.88880452145338895 0.99263277810635697 0.96668584850998096 0.64955792205364071 + 0.95590103366676171 0.74273486734529148 0.52334680082239915 0.25204612991319986 0.36938751192961961 0.46490962708974326 0.23779102219799708 + + +# name: C +# type: double_range +# base, limit, increment +4 27 1 + + +# name: D +# type: matrix +# rows: 4 +# columns: 6 + 4 8 12 16 20 24 + 5 9 13 17 21 25 + 6 10 14 18 22 26 + 7 11 15 19 23 27 + + +# name: D1 +# type: scalar +22 + + +# name: D2 +# type: matrix +# rows: 1 +# columns: 3 + 18 22 26 + + +# name: D3 +# type: matrix +# rows: 2 +# columns: 3 + 13 17 21 + 14 18 22 + + +# name: D4 +# type: matrix +# rows: 1 +# columns: 5 + 19 20 21 22 23 + + +# name: D5 +# type: matrix +# rows: 2 +# columns: 3 + 6 14 26 + 7 15 27 + + +# name: DB +# type: diagonal matrix +# rows: 4 +# columns: 4 +0.22539973446449235 +0.86182067006152241 +0.83164688376539897 +0.84341850521996642 + + +# name: DDD +# type: matrix +# rows: 4 +# columns: 6 + 64 512 1728 4096 8000 13824 + 125 729 2197 4913 9261 15625 + 216 1000 2744 5832 10648 17576 + 343 1331 3375 6859 12167 19683 + + +# name: DL +# type: bool matrix +# rows: 4 +# columns: 6 + 0 0 0 0 1 1 + 0 0 0 0 1 1 + 0 0 0 0 1 1 + 0 0 0 0 1 1 + + +# name: DP1 +# type: matrix +# rows: 1 +# columns: 6 + 840 7920 32760 93024 212520 421200 + + +# name: DS1 +# type: matrix +# rows: 1 +# columns: 6 + 22 38 54 70 86 102 + + +# name: DS2 +# type: matrix +# rows: 4 +# columns: 1 + 84 + 90 + 96 + 102 + + +# name: Dstolb +# type: matrix +# rows: 24 +# columns: 1 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + + +# name: Dsum +# type: scalar +22.547300573537278 + + +# name: Dsum2 +# type: scalar +-0.057010896737607175 + + +# name: E +# type: matrix +# rows: 7 +# columns: 6 + -1.5842589201785295 -1.3604460228588247 0.47540743265482988 -0.71797558348001611 0.19480856225012719 -0.012564622331665307 + -2.6363652504775468 -1.1732760515788847 1.8866778381507485 0.021752840222891839 -0.51722485036920762 -0.0024886578615648208 + -2.6363027076691159 -0.8897001174168756 2.1257012887908293 0.44683120692329509 -0.79448067324982174 0.076532925622173634 + -2.0280481705077484 -0.96500092975846152 3.3461037880047546 -0.011443236893100195 -0.7670006396027419 -0.005132570671041236 + -2.5468710708475943 -0.83011330760092661 2.9395651842284614 -0.21326179209055274 -0.53998621963625837 -0.39678677785383049 + -2.7123427764656074 -0.65557692472899465 2.2220027105901297 -0.51227728635058412 -0.1878642957108885 -0.76608285418325561 + -1.7636794927499191 -0.7187467515332433 2.3489104778768057 0.34251244885332949 -0.75919346324246728 0.15548113784028003 + + +# name: F +# type: matrix +# rows: 4 +# columns: 13 + -2.4768373846762071 0.2022424292672908 1.7213593265114695 0.56066204149552512 -0.65101654748907489 -0.57757389331175413 0.050805040296663662 0.61420955922529741 0.72905812125037994 0.88880452145338895 0.99263277810635697 0.96668584850998096 0.64955792205364071 + -1.833978171104192 -1.103007288562684 -0.3086927153971098 -0.47631398696533422 0.23475485607949262 -0.10192258453176552 0.95590103366676171 0.74273486734529148 0.52334680082239915 0.25204612991319986 0.36938751192961961 0.46490962708974326 0.23779102219799708 + 0.12507222560182019 -0.63015998120244898 1.4213194216059777 0.51739070911189877 -0.68453163829416586 0.82192423117509672 0.2690367190564632 0.60605009575511726 0.6916365392766991 0.90965014838540226 0.52168391935774971 0.067134930053068587 0.76744432550984687 + 0.73360191857893964 -0.4126226278399413 0.84494156531258413 -1.2094578724432639 0.52736142070578329 -0.30049223849787182 0.35581901383742198 0.23349372844596328 0.058284730333129753 0.71135477494748245 0.71417393364888415 0.71730764538090497 0.25257216699041174 + + +# name: FF +# type: matrix +# rows: 2 +# columns: 4 + 1 1 1 1 + 1 1 1 1 + + +# name: G +# type: matrix +# rows: 4 +# columns: 6 + -9.9073495387048283 1.6179394341383264 20.656311918137632 8.9705926639284019 -13.020330949781497 -13.8617734394821 + -9.1698908555209595 -9.927065597064157 -4.0130053001624271 -8.0973377784106813 4.9298519776693448 -2.5480646132941378 + 0.75043335361092112 -6.3015998120244898 19.898471902483688 9.3130327640141779 -15.059696042471648 21.370030010552515 + 5.1352134300525778 -4.5388489062393544 12.674123479688761 -22.979699576422014 12.129312676233015 -8.1132904394425385 + + +# name: GG +# type: matrix +# rows: 5 +# columns: 5 + 0 0 0 0 0 + 0 0 0 0 0 + 0 0 0 0 0 + 0 0 0 0 0 + 0 0 0 0 0 + + +# name: H +# type: sq_string +# elements: 1 +# length: 24 +This is a symbols vector + + +# name: L +# type: complex matrix +# rows: 1 +# columns: 2 + (-2,23.100000000000001) (3,-5.5999999999999996) + + +# name: M +# type: matrix +# rows: 4 +# columns: 6 + -2.2016332308232953 0.35954209647518365 4.5902915373639184 1.9934650364285338 -2.8934068777292214 -3.0803940976626887 + -2.0377535234491022 -2.2060145771253681 -0.89177895559165044 -1.7994083952023736 1.0955226617042988 -0.56623658073203065 + 0.16676296746909358 -1.40035551378322 4.4218826449963755 2.0695628364475951 -3.3465991205492553 4.7488955579005587 + 1.1411585400116839 -1.0086330902754121 2.8164718843752805 -5.1065999058715583 2.6954028169406699 -1.8029534309872308 + + +# name: NN +# type: matrix +# rows: 1 +# columns: 20 + 11.5 12.689473684210526 13.878947368421052 15.06842105263158 16.257894736842104 17.44736842105263 18.63684210526316 19.826315789473686 21.015789473684212 22.205263157894738 23.394736842105264 24.58421052631579 25.773684210526316 26.963157894736842 28.152631578947371 29.342105263157897 30.531578947368423 31.721052631578949 32.910526315789475 34.100000000000001 + + +# name: dinv +# type: matrix +# rows: 4 +# columns: 4 + 0.17746269747125529 -0.12856008405084191 -0.12580805918232896 0.066287693698875036 + -0.12856008405084191 0.2986185627903491 0.11391846734383333 -0.023690145445859543 + -0.12580805918232896 0.11391846734383333 0.35394287019638826 -0.070003729876254542 + 0.066287693698875036 -0.023690145445859543 -0.070003729876254542 0.33751833051407898 + + +# name: dt +# type: scalar +340.24279896201296 + + +# name: elem +# type: scalar +28 + + +# name: i +# type: scalar +19 + + +# name: k +# type: scalar +7 + + +# name: nm +# type: matrix +# rows: 1 +# columns: 2 + 4 7 + + diff --git a/ТЕМА1/assets/figure3.PNG b/ТЕМА1/assets/figure3.PNG index d439cdb..e822aaa 100644 Binary files a/ТЕМА1/assets/figure3.PNG and b/ТЕМА1/assets/figure3.PNG differ diff --git a/ТЕМА1/assets/figure4.PNG b/ТЕМА1/assets/figure4.PNG index 72da674..cc40505 100644 Binary files a/ТЕМА1/assets/figure4.PNG and b/ТЕМА1/assets/figure4.PNG differ diff --git a/ТЕМА1/assets/figure8.png b/ТЕМА1/assets/figure8.png new file mode 100644 index 0000000..e3f26c8 Binary files /dev/null and b/ТЕМА1/assets/figure8.png differ diff --git a/ТЕМА1/assets/figure9.png b/ТЕМА1/assets/figure9.png new file mode 100644 index 0000000..023bd69 Binary files /dev/null and b/ТЕМА1/assets/figure9.png differ diff --git a/ТЕМА1/report.md b/ТЕМА1/report.md index aecbc30..233ece8 100644 --- a/ТЕМА1/report.md +++ b/ТЕМА1/report.md @@ -12,15 +12,15 @@ ## 3 Настройка отображения -Нажал в главном меню предложение *Окно* и отметил соответсвующие закладки галочками: +Нажал в главном меню предложение *Окно* и отметил соответствующие закладки галочками: -![Скриншот закладок](assets/figure1.png) +![Скриншот закладок] (assets/figure1.png) ## 4 Настройка пути Установил путь к папкам ТЕМА1 и ТЕМА2. отобразил список файлов размещенных в текущей папке: -![Скриншот выбора папок и пути](assets/figure2.png) +![Скриншот выбора папок и пути] (assets/figure2.png) ## 5 Изучение работы системы помощи @@ -40,10 +40,10 @@ >> A=randn(4,6) A = - -0.456910 -0.555566 0.803093 1.569653 1.325472 0.133544 - -0.131904 0.021183 -0.091582 -0.414840 -0.421469 0.738983 - 1.719014 1.723503 -0.504743 0.441674 1.797601 0.923687 - 0.098965 -0.027680 -0.561811 1.605313 0.690128 -0.632586 + -2.4768 0.2022 1.7214 0.5607 -0.6510 -0.5776 + -1.8340 -1.1030 -0.3087 -0.4763 0.2348 -0.1019 + 0.1251 -0.6302 1.4213 0.5174 -0.6845 0.8219 + 0.7336 -0.4126 0.8449 -1.2095 0.5274 -0.3005 ``` Сделали матрицу B с равномерно распределенными числами (4x7) с диапозоном от 0 до 1 @@ -52,10 +52,10 @@ >> B=rand(4,7) B = - 0.192067 0.555502 0.968665 0.070620 0.934708 0.829136 0.549038 - 0.203313 0.102147 0.412080 0.391154 0.428950 0.947358 0.237762 - 0.228346 0.378330 0.344054 0.906633 0.035163 0.529538 0.953942 - 0.629267 0.367450 0.452845 0.043022 0.242846 0.928494 0.528300 + 0.050805 0.614210 0.729058 0.888805 0.992633 0.966686 0.649558 + 0.955901 0.742735 0.523347 0.252046 0.369388 0.464910 0.237791 + 0.269037 0.606050 0.691637 0.909650 0.521684 0.067135 0.767444 + 0.355819 0.233494 0.058285 0.711355 0.714174 0.717308 0.252572 ``` Сделали вектор С с целыми числами от 4 до 27 @@ -105,13 +105,13 @@ >> E=B'*A E = - 0.340231 0.273738 -0.333158 1.328161 1.013639 -0.011252 - 0.419431 0.335428 0.039368 1.586541 1.626924 0.266684 - 0.139301 0.051015 0.312117 2.228439 2.041252 0.465214 - 1.478911 1.530446 -0.460895 0.418082 1.588201 1.108717 - -0.399179 -0.456324 0.557192 1.694596 1.288944 0.320670 - 0.498371 0.446388 -0.209806 2.632862 2.292394 0.712582 - 1.409900 1.329509 -0.359147 2.032585 2.706928 0.795971 + -1.5843e+00 -1.3604e+00 4.7541e-01 -7.1798e-01 1.9481e-01 -1.2565e-02 + -2.6364e+00 -1.1733e+00 1.8867e+00 2.1753e-02 -5.1722e-01 -2.4887e-03 + -2.6363e+00 -8.8970e-01 2.1257e+00 4.4683e-01 -7.9448e-01 7.6533e-02 + -2.0280e+00 -9.6500e-01 3.3461e+00 -1.1443e-02 -7.6700e-01 -5.1326e-03 + -2.5469e+00 -8.3011e-01 2.9396e+00 -2.1326e-01 -5.3999e-01 -3.9679e-01 + -2.7123e+00 -6.5558e-01 2.2220e+00 -5.1228e-01 -1.8786e-01 -7.6608e-01 + -1.7637e+00 -7.1875e-01 2.3489e+00 3.4251e-01 -7.5919e-01 1.5548e-01 ``` @@ -121,32 +121,23 @@ >> F=[A,B] F = - Columns 1 through 12: - - -0.456910 -0.555566 0.803093 1.569653 1.325472 0.133544 0.192067 0.555502 0.968665 0.070620 0.934708 0.829136 - -0.131904 0.021183 -0.091582 -0.414840 -0.421469 0.738983 0.203313 0.102147 0.412080 0.391154 0.428950 0.947358 - 1.719014 1.723503 -0.504743 0.441674 1.797601 0.923687 0.228346 0.378330 0.344054 0.906633 0.035163 0.529538 - 0.098965 -0.027680 -0.561811 1.605313 0.690128 -0.632586 0.629267 0.367450 0.452845 0.043022 0.242846 0.928494 - - Column 13: - - 0.549038 - 0.237762 - 0.953942 - 0.528300 + -2.476837 0.202242 1.721359 0.560662 -0.651017 -0.577574 0.050805 0.614210 0.729058 0.888805 0.992633 0.966686 0.649558 + -1.833978 -1.103007 -0.308693 -0.476314 0.234755 -0.101923 0.955901 0.742735 0.523347 0.252046 0.369388 0.464910 0.237791 + 0.125072 -0.630160 1.421319 0.517391 -0.684532 0.821924 0.269037 0.606050 0.691637 0.909650 0.521684 0.067135 0.767444 + 0.733602 -0.412623 0.844942 -1.209458 0.527361 -0.300492 0.355819 0.233494 0.058285 0.711355 0.714174 0.717308 0.252572 ``` Поэлементно перемножили матрицы A и D (Создали матрицу G) ```matlab -￿￿￿￿￿￿￿￿￿￿￿￿>> G=A.*D +>> G=A.*D G = - -1.8276 -4.4445 9.6371 25.1145 26.5094 3.2051 - -0.6595 0.1906 -1.1906 -7.0523 -8.8509 18.4746 - 10.3141 17.2350 -7.0664 7.9501 39.5472 24.0159 - 0.6928 -0.3045 -8.4272 30.5010 15.8729 -17.0798 + -9.9073 1.6179 20.6563 8.9706 -13.0203 -13.8618 + -9.1699 -9.9271 -4.0130 -8.0973 4.9299 -2.5481 + 0.7504 -6.3016 19.8985 9.3130 -15.0597 21.3700 + 5.1352 -4.5388 12.6741 -22.9797 12.1293 -8.1133 ``` Поэлементно поделили элементы матрицы G на 4.5 (Создали матрицу М) @@ -155,10 +146,10 @@ >> M=G./4.5 M = - -0.406143 -0.987673 2.141582 5.580990 5.890988 0.712235 - -0.146560 0.042365 -0.264571 -1.567174 -1.966856 4.105459 - 2.292018 3.830007 -1.570313 1.766696 8.788273 5.336857 - 0.153945 -0.067662 -1.872702 6.777990 3.527320 -3.795516 + -2.2016 0.3595 4.5903 1.9935 -2.8934 -3.0804 + -2.0378 -2.2060 -0.8918 -1.7994 1.0955 -0.5662 + 0.1668 -1.4004 4.4219 2.0696 -3.3466 4.7489 + 1.1412 -1.0086 2.8165 -5.1066 2.6954 -1.8030 ``` @@ -230,26 +221,27 @@ Dstolb = >> B1=sqrt(B) B1 = - 0.4383 0.7453 0.9842 0.2657 0.9668 0.9106 0.7410 - 0.4509 0.3196 0.6419 0.6254 0.6549 0.9733 0.4876 - 0.4779 0.6151 0.5866 0.9522 0.1875 0.7277 0.9767 - 0.7933 0.6062 0.6729 0.2074 0.4928 0.9636 0.7268 + 0.2254 0.7837 0.8538 0.9428 0.9963 0.9832 0.8060 + 0.9777 0.8618 0.7234 0.5020 0.6078 0.6818 0.4876 + 0.5187 0.7785 0.8316 0.9538 0.7223 0.2591 0.8760 + 0.5965 0.4832 0.2414 0.8434 0.8451 0.8469 0.5026 >> B2=log(B) B2 = - -1.649914 -0.587884 -0.031837 -2.650442 -0.067521 -0.187371 -0.599588 - -1.593011 -2.281345 -0.886537 -0.938654 -0.846414 -0.054078 -1.436486 - -1.476893 -0.971988 -1.066957 -0.098017 -3.347759 -0.635749 -0.047152 - -0.463199 -1.001169 -0.792205 -3.146051 -1.415328 -0.074191 -0.638091 + -2.9798e+00 -4.8742e-01 -3.1600e-01 -1.1788e-01 -7.3945e-03 -3.3882e-02 -4.3146e-01 + -4.5101e-02 -2.9742e-01 -6.4751e-01 -1.3781e+00 -9.9591e-01 -7.6591e-01 -1.4364e+00 + -1.3129e+00 -5.0079e-01 -3.6869e-01 -9.4695e-02 -6.5069e-01 -2.7011e+00 -2.6469e-01 + -1.0333e+00 -1.4546e+00 -2.8424e+00 -3.4058e-01 -3.3663e-01 -3.3225e-01 -1.3761e+00 + >> B3=sin(B) B3 = - 0.190888 0.527370 0.824130 0.070561 0.804426 0.737348 0.521867 - 0.201915 0.101969 0.400516 0.381255 0.415917 0.811876 0.235528 - 0.226367 0.369369 0.337306 0.787433 0.035156 0.505135 0.815702 - 0.588552 0.359236 0.437526 0.043008 0.240466 0.800719 0.504066 + 0.050783 0.576313 0.666167 0.776319 0.837468 0.823008 0.604834 + 0.816834 0.676305 0.499782 0.249386 0.361044 0.448342 0.235556 + 0.265803 0.569625 0.637799 0.789289 0.498341 0.067085 0.694298 + 0.348358 0.231378 0.058252 0.652861 0.654993 0.657358 0.249895 ``` Операции с матрицами @@ -285,13 +277,13 @@ elem = 28 >> NN=linspace(11.5,34.1,20) NN = - Columns 1 through 15: + Columns 1 through 18: - 11.500 12.689 13.879 15.068 16.258 17.447 18.637 19.826 21.016 22.205 23.395 24.584 25.774 26.963 28.153 + 11.500 12.689 13.879 15.068 16.258 17.447 18.637 19.826 21.016 22.205 23.395 24.584 25.774 26.963 28.153 29.342 30.532 31.721 - Columns 16 through 20: + Columns 19 and 20: - 29.342 30.532 31.721 32.911 34.100 + 32.911 34.100 ``` @@ -320,10 +312,10 @@ GG = >> B1D=diag(B1) B1D = - 0.4383 - 0.3196 - 0.5866 - 0.2074 + 0.2254 + 0.8618 + 0.8316 + 0.8434 ``` @@ -333,10 +325,11 @@ DB = Diagonal Matrix - 0.4383 0 0 0 - 0 0.3196 0 0 - 0 0 0.5866 0 - 0 0 0 0.2074 + 0.2254 0 0 0 + 0 0.8618 0 0 + 0 0 0.8316 0 + 0 0 0 0.8434 + ``` @@ -344,10 +337,10 @@ Diagonal Matrix >> BS1=sort(B) BS1 = - 0.192067 0.102147 0.344054 0.043022 0.035163 0.529538 0.237762 - 0.203313 0.367450 0.412080 0.070620 0.242846 0.829136 0.528300 - 0.228346 0.378330 0.452845 0.391154 0.428950 0.928494 0.549038 - 0.629267 0.555502 0.968665 0.906633 0.934708 0.947358 0.953942 + 0.050805 0.233494 0.058285 0.252046 0.369388 0.067135 0.237791 + 0.269037 0.606050 0.523347 0.711355 0.521684 0.464910 0.252572 + 0.355819 0.614210 0.691637 0.888805 0.714174 0.717308 0.649558 + 0.955901 0.742735 0.729058 0.909650 0.992633 0.966686 0.767444 ``` @@ -355,10 +348,10 @@ BS1 = >> BS2 = sortrows(B,2) BS2 = - 0.203313 0.102147 0.412080 0.391154 0.428950 0.947358 0.237762 - 0.629267 0.367450 0.452845 0.043022 0.242846 0.928494 0.528300 - 0.228346 0.378330 0.344054 0.906633 0.035163 0.529538 0.953942 - 0.192067 0.555502 0.968665 0.070620 0.934708 0.829136 0.549038 + 0.355819 0.233494 0.058285 0.711355 0.714174 0.717308 0.252572 + 0.269037 0.606050 0.691637 0.909650 0.521684 0.067135 0.767444 + 0.050805 0.614210 0.729058 0.888805 0.992633 0.966686 0.649558 + 0.955901 0.742735 0.523347 0.252046 0.369388 0.464910 0.237791 ``` @@ -391,7 +384,7 @@ DP1 = ```matlab >> dt=det(A*A') -dt = 47.415 +dt = 340.24 ``` @@ -399,10 +392,10 @@ dt = 47.415 >> dinv=inv(A*A') dinv = - 3.1251e-01 5.8486e-02 8.0228e-03 -2.1952e-01 - 5.8486e-02 2.4673e+00 -6.1622e-02 8.8955e-01 - 8.0228e-03 -6.1622e-02 1.0567e-01 -7.8216e-02 - -2.1952e-01 8.8955e-01 -7.8216e-02 7.9417e-01 + 0.177463 -0.128560 -0.125808 0.066288 + -0.128560 0.298619 0.113918 -0.023690 + -0.125808 0.113918 0.353943 -0.070004 + 0.066288 -0.023690 -0.070004 0.337518 ``` ## 9 Изучили работу с индексацией элементов матриц. @@ -536,16 +529,16 @@ D(3,5)>=20>> >>plot(D(1,:),B([2,4],1:6)) ``` -![Скриншот графика](assets/figure3) +![Скриншот графика] (assets/figure3) Функция расчета и построения гистограммы ```matlab -•>> hist(A(:),6) +>> hist(A(:),6) ``` -![Скриншот гистограммы](assets/figure4) +![Скриншот гистограммы] (assets/figure4) Функция pie() @@ -554,7 +547,7 @@ D(3,5)>=20>> ``` -![Скриншот *пирога*](assets/figure5) +![Скриншот *пирога*] (assets/figure5) Функция bar() @@ -563,13 +556,13 @@ D(3,5)>=20>> ``` -![Скриншот график](assets/figure6) +![Скриншот диаграммы] (assets/figure6) ## 12 Изучение работы с текстовым редактором среды Создал файл и занес в него команды из 9 пункта: -![Скриншот файла с командами](assets/figure7) +![Скриншот файла с командами] (assets/figure7) ```matlab @@ -593,4 +586,14 @@ D5 = 6 14 26 7 15 27 -``` \ No newline at end of file +``` + +Проверка запуска файла из командного окна: + +![Скриншот запуска программы] (assets/figure8) + +## 13 Файлы переменных + +Создали файл переменных (Perem),перезапустили IDE, загрузили область переменных: + +![Скриншот файла с переменными] (assets/figure9) \ No newline at end of file