{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "**Пункт 1**" ], "metadata": { "id": "KR8uP1u_tFii" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "v8fjN3CMpmzp" }, "outputs": [], "source": [ "import os\n", "os.chdir('/content/drive/MyDrive/Colab Notebooks/IS_LR3')" ] }, { "cell_type": "code", "source": [ "# импорт модулей\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.metrics import classification_report, confusion_matrix\n", "from sklearn.metrics import ConfusionMatrixDisplay" ], "metadata": { "id": "VMuk53SHqFE6" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 2**" ], "metadata": { "id": "bie8IdvhtMwI" } }, { "cell_type": "code", "source": [ "# загрузка датасета\n", "from keras.datasets import cifar10\n", "\n", "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" ], "metadata": { "id": "zU_qTq3QpSaj" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 3**" ], "metadata": { "id": "EKz2pMH5tPgM" } }, { "cell_type": "code", "source": [ "# создание своего разбиения датасета\n", "from sklearn.model_selection import train_test_split\n", "\n", "# объединяем в один набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "\n", "# разбиваем по вариантам\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 50000,\n", " random_state = 15)" ], "metadata": { "id": "Tj2SdIX6qjyS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ], "metadata": { "id": "rxfIoGknpVr2" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод 25 изображений из обучающей выборки с подписями классов\n", "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", " 'dog', 'frog', 'horse', 'ship', 'truck']\n", "\n", "plt.figure(figsize=(10,10))\n", "for i in range(25):\n", " plt.subplot(5,5,i+1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", " plt.imshow(X_train[i])\n", " plt.xlabel(class_names[y_train[i][0]])\n", "plt.show()" ], "metadata": { "id": "ELkzGpxQpYss" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 4**" ], "metadata": { "id": "R8UnsPwFtcT6" } }, { "cell_type": "code", "source": [ "# Зададим параметры данных и модели\n", "num_classes = 10\n", "input_shape = (32, 32, 3)\n", "\n", "# Приведение входных данных к диапазону [0, 1]\n", "X_train = X_train / 255\n", "X_test = X_test / 255\n", "\n", "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", "# размерность (высота, ширина, количество каналов)\n", "\n", "\n", "print('Shape of transformed X train:', X_train.shape)\n", "print('Shape of transformed X test:', X_test.shape)\n", "\n", "# переведем метки в one-hot\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "print('Shape of transformed y train:', y_train.shape)\n", "print('Shape of transformed y test:', y_test.shape)" ], "metadata": { "id": "tLtI_dWgpb5Q" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 5**" ], "metadata": { "id": "OQTGDyuytpyz" } }, { "cell_type": "code", "source": [ "# создаем модель\n", "model = Sequential()\n", "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Conv2D(128, kernel_size=(3, 3), activation=\"relu\"))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(128, activation='relu'))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", "\n", "model.summary()" ], "metadata": { "id": "fchBhH0mpffb" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "batch_size = 512\n", "epochs = 15\n", "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" ], "metadata": { "id": "pt4hPpfLpiAR" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 6**" ], "metadata": { "id": "CyI5uGgetwim" } }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "niQVFBRnpklL" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 7**" ], "metadata": { "id": "-Os4bCnAtzCP" } }, { "cell_type": "code", "source": [ "# ПРАВИЛЬНО распознанное изображение\n", "n = 10\n", "result = model.predict(X_test[n:n+1])\n", "print('NN output:', result)\n", "\n", "plt.imshow(X_test[n])\n", "plt.show()\n", "\n", "print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n", "print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])" ], "metadata": { "id": "oLC2nN-MpnVD" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# НЕВЕРНО распознанное изображение\n", "n = 0\n", "result = model.predict(X_test[n:n+1])\n", "print('NN output:', result)\n", "\n", "plt.imshow(X_test[n])\n", "plt.show()\n", "\n", "print('Real class: ', np.argmax(y_test[n]), '->', class_names[np.argmax(y_test[n])])\n", "print('NN answer:', np.argmax(result), '->', class_names[np.argmax(result)])" ], "metadata": { "id": "qMkBgHiqppyZ" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Пункт 8**" ], "metadata": { "id": "RVk_bSDct3Km" } }, { "cell_type": "code", "source": [ "# истинные метки классов\n", "true_labels = np.argmax(y_test, axis=1)\n", "\n", "# предсказанные метки классов\n", "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", "\n", "# отчет о качестве классификации\n", "print(classification_report(true_labels, predicted_labels, target_names=class_names))\n", "\n", "# вычисление матрицы ошибок\n", "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", "\n", "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,\n", " display_labels=class_names)\n", "display.plot(xticks_rotation=45)\n", "plt.show()" ], "metadata": { "id": "isaoRHSXpLSA" }, "execution_count": null, "outputs": [] } ] }