From 9fd6198c7cc4e9bedda3892d3375f1f1a20f3f77 Mon Sep 17 00:00:00 2001 From: ShchipkovMY Date: Sun, 19 Oct 2025 18:23:21 +0000 Subject: [PATCH] =?UTF-8?q?=D0=98=D0=B7=D0=BC=D0=B5=D0=BD=D0=B8=D0=BB(?= =?UTF-8?q?=D0=B0)=20=D0=BD=D0=B0=20'labworks/LW1/report.md'?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW1/report.md | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/labworks/LW1/report.md b/labworks/LW1/report.md index 184e74d..52f7a1f 100644 --- a/labworks/LW1/report.md +++ b/labworks/LW1/report.md @@ -103,7 +103,7 @@ plt.legend(['train_loss', 'val_loss']) plt.title('Loss by epochs') plt.show() ``` - +![photo](http://uit.mpei.ru/git/ShchipkovMY/is_dnn/raw/branch/main/labworks/LW1/images%20/picture5.PNG) ### Пункт 7 Применили обученную модель к тестовым данным. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных. ```python @@ -141,11 +141,15 @@ plt.legend(['train_loss', 'val_loss']) plt.title('Loss by epochs') plt.show() + # Оценка качества работы модели на тестовых данных scores = model_1h100.evaluate(X_test, y_test) print('Loss on test data:', scores[0]) print('Accuracy on test data:', scores[1]) ``` +![photo](http://uit.mpei.ru/git/ShchipkovMY/is_dnn/raw/branch/main/labworks/LW1/images%20/picture6.PNG) +Loss on test data: 0.1981867104768753 +Accuracy on test data: 0.9398000240325928 При 300 нейронах ```python @@ -177,6 +181,10 @@ scores = model_1h300.evaluate(X_test, y_test) print('Loss on test data:', scores[0]) print('Accuracy on test data:', scores[1]) ``` +![photo](http://uit.mpei.ru/git/ShchipkovMY/is_dnn/raw/branch/main/labworks/LW1/images%20/picture7.PNG) +Loss on test data: 0.22451213002204895 +Accuracy on test data: 0.9320999979972839 + При 500 нейронах ```python