Этот коммит содержится в:
Mokhov Andrey
2023-03-05 21:51:24 +03:00
родитель b59ad62c3c
Коммит 494dd80838
4 изменённых файлов: 931 добавлений и 0 удалений

Просмотреть файл

@@ -0,0 +1,627 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "3dda6a69",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer \n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, roc_auc_score\n",
"from sklearn.pipeline import Pipeline"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7fd6636b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['fasttext-wiki-news-subwords-300', 'conceptnet-numberbatch-17-06-300', 'word2vec-ruscorpora-300', 'word2vec-google-news-300', 'glove-wiki-gigaword-50', 'glove-wiki-gigaword-100', 'glove-wiki-gigaword-200', 'glove-wiki-gigaword-300', 'glove-twitter-25', 'glove-twitter-50', 'glove-twitter-100', 'glove-twitter-200', '__testing_word2vec-matrix-synopsis']\n"
]
}
],
"source": [
"import gensim.downloader\n",
"print(list(gensim.downloader.info()['models'].keys()))"
]
},
{
"cell_type": "markdown",
"id": "3f93b5f6",
"metadata": {},
"source": [
"# GloVe"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "be870586",
"metadata": {},
"outputs": [],
"source": [
"glove_model = gensim.downloader.load(\"glove-twitter-25\") # load glove vectors\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "599d6406",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.96419 -0.60978 0.67449 0.35113 0.41317 -0.21241 1.3796\n",
" 0.12854 0.31567 0.66325 0.3391 -0.18934 -3.325 -1.1491\n",
" -0.4129 0.2195 0.8706 -0.50616 -0.12781 -0.066965 0.065761\n",
" 0.43927 0.1758 -0.56058 0.13529 ]\n"
]
},
{
"data": {
"text/plain": [
"[('dog', 0.9590820074081421),\n",
" ('monkey', 0.920357882976532),\n",
" ('bear', 0.9143136739730835),\n",
" ('pet', 0.9108031392097473),\n",
" ('girl', 0.8880629539489746),\n",
" ('horse', 0.8872726559638977),\n",
" ('kitty', 0.8870542049407959),\n",
" ('puppy', 0.886769711971283),\n",
" ('hot', 0.886525571346283),\n",
" ('lady', 0.8845519423484802)]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(glove_model['cat']) # word embedding for 'cat'\n",
"glove_model.most_similar(\"cat\") # show words that similar to word 'cat'"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2db71cfb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.60927683"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"glove_model.similarity('cat', 'bus')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7788acf5",
"metadata": {},
"outputs": [],
"source": [
"categories = ['alt.atheism', 'comp.graphics', 'sci.space'] \n",
"remove = ('headers', 'footers', 'quotes')\n",
"twenty_train = fetch_20newsgroups(subset='train', shuffle=True, random_state=42, categories = categories, remove = remove )\n",
"twenty_test = fetch_20newsgroups(subset='test', shuffle=True, random_state=42, categories = categories, remove = remove )\n"
]
},
{
"cell_type": "markdown",
"id": "79dd1ac1",
"metadata": {},
"source": [
"# Векторизуем обучающую выборку\n",
"Получаем матрицу \"Документ-термин\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "0565dd1a",
"metadata": {},
"outputs": [],
"source": [
"vectorizer = CountVectorizer(stop_words='english')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "a681a1d6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(1657, 23297)\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>00</th>\n",
" <th>000</th>\n",
" <th>0000</th>\n",
" <th>00000</th>\n",
" <th>000000</th>\n",
" <th>000005102000</th>\n",
" <th>000062david42</th>\n",
" <th>000100255pixel</th>\n",
" <th>00041032</th>\n",
" <th>0004136</th>\n",
" <th>...</th>\n",
" <th>zurbrin</th>\n",
" <th>zurich</th>\n",
" <th>zus</th>\n",
" <th>zvi</th>\n",
" <th>zwaartepunten</th>\n",
" <th>zwak</th>\n",
" <th>zwakke</th>\n",
" <th>zware</th>\n",
" <th>zwarte</th>\n",
" <th>zyxel</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23297 columns</p>\n",
"</div>"
],
"text/plain": [
" 00 000 0000 00000 000000 000005102000 000062david42 000100255pixel \\\n",
"0 0 0 0 0 0 0 0 0 \n",
"1 0 0 0 0 0 0 0 0 \n",
"2 0 0 0 0 0 0 0 0 \n",
"3 0 0 0 0 0 0 0 0 \n",
"4 0 0 0 0 0 0 0 0 \n",
"\n",
" 00041032 0004136 ... zurbrin zurich zus zvi zwaartepunten zwak \\\n",
"0 0 0 ... 0 0 0 0 0 0 \n",
"1 0 0 ... 0 0 0 0 0 0 \n",
"2 0 0 ... 0 0 0 0 0 0 \n",
"3 0 0 ... 0 0 0 0 0 0 \n",
"4 0 0 ... 0 0 0 0 0 0 \n",
"\n",
" zwakke zware zwarte zyxel \n",
"0 0 0 0 0 \n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"\n",
"[5 rows x 23297 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_data = vectorizer.fit_transform(twenty_train['data'])\n",
"CV_data=pd.DataFrame(train_data.toarray(), columns=vectorizer.get_feature_names_out())\n",
"print(CV_data.shape)\n",
"CV_data.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b20aef46",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['00', '000', '0000', '00000', '000000', '000005102000', '000062david42',\n",
" '000100255pixel', '00041032', '0004136'],\n",
" dtype='object')\n"
]
}
],
"source": [
"# Создадим список слов, присутствующих в словаре.\n",
"words_vocab=CV_data.columns\n",
"print(words_vocab[0:10])"
]
},
{
"cell_type": "markdown",
"id": "d1893e86",
"metadata": {},
"source": [
"## Векторизуем с помощью GloVe\n",
"\n",
"Нужно для каждого документа сложить glove-вектора слов, из которых он состоит.\n",
"В результате получим вектор документа как сумму векторов слов, из него состоящих"
]
},
{
"cell_type": "markdown",
"id": "bc36b98d",
"metadata": {},
"source": [
"### Посмотрим на примере как будет работать векторизация"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d6af65a",
"metadata": {},
"outputs": [],
"source": [
"text_data = ['Hello world I love python', 'This is a great computer game! 00 000 zyxel']\n",
"# Векторизуем с помощью обученного CountVectorizer\n",
"X = vectorizer.transform(text_data)\n",
"CV_text_data=pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names_out())\n",
"CV_text_data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11dda58a",
"metadata": {},
"outputs": [],
"source": [
"# Создадим датафрейм, в который будем сохранять вектор документа\n",
"glove_data=pd.DataFrame()\n",
"\n",
"# Пробегаем по каждой строке (по каждому документу)\n",
"for i in range(CV_text_data.shape[0]):\n",
" \n",
" # Вектор одного документа с размерностью glove-модели:\n",
" one_doc = np.zeros(25) \n",
" \n",
" # Пробегаемся по каждому документу, смотрим, какие слова документа присутствуют в нашем словаре\n",
" # Суммируем glove-вектора каждого известного слова в one_doc\n",
" for word in words_vocab[CV_text_data.iloc[i,:] >= 1]:\n",
" if word in glove_model.key_to_index.keys(): \n",
" print(word, ': ', glove_model[word])\n",
" one_doc += glove_model[word]\n",
" print(text_data[i], ': ', one_doc)\n",
" glove_data=glove_data.append(pd.DataFrame([one_doc])) \n",
"print('glove_data: ', glove_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff68d8dc",
"metadata": {},
"outputs": [],
"source": [
"def text2vec(text_data):\n",
" \n",
" # Векторизуем с помощью обученного CountVectorizer\n",
" X = vectorizer.transform(text_data)\n",
" CV_text_data=pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names_out())\n",
" CV_text_data\n",
" # Создадим датафрейм, в который будем сохранять вектор документа\n",
" glove_data=pd.DataFrame()\n",
"\n",
" # Пробегаем по каждой строке (по каждому документу)\n",
" for i in range(CV_text_data.shape[0]):\n",
"\n",
" # Вектор одного документа с размерностью glove-модели:\n",
" one_doc = np.zeros(25) \n",
"\n",
" # Пробегаемся по каждому документу, смотрим, какие слова документа присутствуют в нашем словаре\n",
" # Суммируем glove-вектора каждого известного слова в one_doc\n",
" for word in words_vocab[CV_text_data.iloc[i,:] >= 1]:\n",
" if word in glove_model.key_to_index.keys(): \n",
" #print(word, ': ', glove_model[word])\n",
" one_doc += glove_model[word]\n",
" #print(text_data[i], ': ', one_doc)\n",
" glove_data = pd.concat([glove_data, pd.DataFrame([one_doc])], axis = 0)\n",
" #print('glove_data: ', glove_data)\n",
" return glove_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b778776c",
"metadata": {},
"outputs": [],
"source": [
"\n",
"glove_data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb6edbdf",
"metadata": {},
"outputs": [],
"source": [
"one_doc"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1bdb459e",
"metadata": {},
"outputs": [],
"source": [
"train_data_glove = text2vec(twenty_train['data']);\n",
"train_data_glove"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a7ea7c6",
"metadata": {},
"outputs": [],
"source": [
"train_data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ac20e79",
"metadata": {},
"outputs": [],
"source": [
"clf = KNeighborsClassifier(n_neighbors = 5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08164a25",
"metadata": {},
"outputs": [],
"source": [
"clf.fit(train_data_glove, twenty_train['target'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e459faaf",
"metadata": {},
"outputs": [],
"source": [
"test_data_glove = text2vec(twenty_test['data']);"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d8144e75",
"metadata": {},
"outputs": [],
"source": [
"test_data_glove"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a69830f0",
"metadata": {},
"outputs": [],
"source": [
"predict = clf.predict(test_data_glove )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ac5cf20",
"metadata": {},
"outputs": [],
"source": [
"print (confusion_matrix(twenty_test['target'], predict))\n",
"print(classification_report(twenty_test['target'], predict))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b8cce5a9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b9bff90",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}