|
|
|
@ -1367,6 +1367,38 @@
|
|
|
|
|
"### Обучение!"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"Обратим внимание, что перед очередным обучением нужно сбросить веса модели. Проще всего это сделать, заново объявив и скомпилировав модель:\n"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"ename": "NameError",
|
|
|
|
|
"evalue": "name 'MyModel' is not defined",
|
|
|
|
|
"output_type": "error",
|
|
|
|
|
"traceback": [
|
|
|
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
|
|
|
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
|
|
"Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mMyModel\u001b[49m(\n\u001b[0;32m 2\u001b[0m vocab_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(ids_from_chars\u001b[38;5;241m.\u001b[39mget_vocabulary()),\n\u001b[0;32m 3\u001b[0m embedding_dim\u001b[38;5;241m=\u001b[39membedding_dim,\n\u001b[0;32m 4\u001b[0m rnn_units\u001b[38;5;241m=\u001b[39mrnn_units)\n\u001b[0;32m 5\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m, loss\u001b[38;5;241m=\u001b[39mloss)\n",
|
|
|
|
|
"\u001b[1;31mNameError\u001b[0m: name 'MyModel' is not defined"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"model = MyModel(\n",
|
|
|
|
|
" vocab_size=len(ids_from_chars.get_vocabulary()),\n",
|
|
|
|
|
" embedding_dim=embedding_dim,\n",
|
|
|
|
|
" rnn_units=rnn_units)\n",
|
|
|
|
|
"model.compile(optimizer='adam', loss=loss)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 36,
|
|
|
|
|