{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import mlflow" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import make_classification\n", "from sklearn.model_selection import train_test_split\n", "\n", "X, y = make_classification(\n", " n_samples=1000,\n", " n_features=10,\n", " n_informative=3,\n", " n_redundant=0,\n", " n_repeated=0,\n", " n_classes=2,\n", " random_state=0,\n", " shuffle=False,\n", ")\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
RandomForestClassifier(n_estimators=1, random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier(n_estimators=1, random_state=0)