diff --git a/README.md b/README.md index 16e2968..dcbadfc 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,8 @@ | 19.09.2024 | [Разведочный анализ данных](./lectures/lec3-eda.odp) - [в формате pptx](./lectures/lec3-eda.pptx) | | 26.09.2024 | [MLFlow](./lectures/lec3-eda.odp) - [в формате pptx](./lectures/lec4-mlflow.pptx) | | 26.09.2024 | [MLFlow - практика](./assets/mlflow/research.ipynb) | +| 26.09.2024 | [Feature engineering](./lectures/lec6-feature_engineering.odp) - [в формате pptx](./lectures/lec6-feature_engineering.odp) - код в [ноутбуке к mlflow](./assets/mlflow/research.ipynb) | + ## Лабораторные работы diff --git a/assets/eda/eda.ipynb b/assets/eda/eda.ipynb index 752009a..47b3b5c 100644 --- a/assets/eda/eda.ipynb +++ b/assets/eda/eda.ipynb @@ -1281,7 +1281,320 @@ }, { "data": { - "application/javascript": "'use strict';\n(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n function drop(id) {\n const view = Bokeh.index.get_by_id(id)\n if (view != null) {\n view.model.document.clear()\n Bokeh.index.delete(view)\n }\n }\n\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n\n // Clean up Bokeh references\n if (id != null) {\n drop(id)\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim()\n drop(id)\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"
\\n\"+\n \"\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n",
+ " \"from bokeh.resources import INLINE\\n\"+\n",
+ " \"output_notebook(resources=INLINE)\\n\"+\n",
+ " \"
\\n\"+\n",
+ " \"539355 rows × 12 columns
\n", + "547701 rows × 11 columns
\n", "" ], "text/plain": [ - " target geo_lat geo_lon region building_type level levels \\\n", - "1979096 1300000 52.821098 83.113037 6817 1 1 1 \n", - "1833303 8800000 55.707539 37.467068 3 1 15 16 \n", - "1494335 1958000 54.988400 82.783691 9654 2 13 17 \n", - "2747476 1461600 53.298553 50.326382 3106 3 5 5 \n", - "5027275 3000000 42.897934 47.624825 4007 3 4 10 \n", - "... ... ... ... ... ... ... ... \n", - "2476626 1490000 54.943806 82.957870 9654 1 2 10 \n", - "1487454 19000000 55.772240 37.731136 3 3 4 12 \n", - "2772844 1200000 54.474590 53.531807 2722 1 5 9 \n", - "3982304 2300000 55.378265 39.053310 81 1 1 5 \n", - "5189500 9157730 55.542957 37.479919 3 1 8 17 \n", - "\n", - " rooms area kitchen_area object_type floor_level \n", - "1979096 3 66.50000 10.000000 1 first \n", - "1833303 2 46.00000 7.000000 1 hi \n", - "1494335 1 36.50000 11.960938 11 hi \n", - "2747476 1 32.59375 9.601562 11 last \n", - "5027275 2 70.00000 12.000000 11 mid \n", - "... ... ... ... ... ... \n", - "2476626 1 48.06250 14.000000 11 low \n", - "1487454 3 100.00000 13.000000 1 mid \n", - "2772844 1 32.09375 7.000000 1 mid \n", - "3982304 2 49.00000 9.000000 1 first \n", - "5189500 2 52.31250 17.593750 11 mid \n", - "\n", - "[539355 rows x 12 columns]" + " target geo_lat geo_lon region building_type level levels \\\n", + "313199 4999999 59.958458 30.215530 2661 3 8 13 \n", + "2437764 2150000 45.072674 41.936996 2900 3 5 5 \n", + "4949072 8600000 59.939358 30.437069 2661 2 11 22 \n", + "4109465 5100000 59.740479 30.569540 2661 1 2 9 \n", + "2187702 3470000 56.324062 44.005390 2871 2 11 26 \n", + "... ... ... ... ... ... ... ... \n", + "5188085 2300000 57.750603 40.866467 4189 3 2 3 \n", + "4542014 6700000 55.911720 37.737419 81 3 2 5 \n", + "3306731 3850000 51.704510 39.273037 2072 2 10 18 \n", + "520293 1878885 54.943577 82.958862 9654 1 1 10 \n", + "690900 4097350 59.882702 30.451246 2661 2 6 23 \n", + "\n", + " rooms area kitchen_area object_type \n", + "313199 1 36.00000 7.199219 1 \n", + "2437764 1 52.00000 15.000000 1 \n", + "4949072 1 37.09375 9.796875 1 \n", + "4109465 3 74.50000 9.500000 1 \n", + "2187702 2 54.00000 8.000000 11 \n", + "... ... ... ... ... \n", + "5188085 1 38.00000 11.000000 1 \n", + "4542014 2 66.37500 8.000000 1 \n", + "3306731 3 89.50000 14.203125 1 \n", + "520293 3 87.75000 12.921875 11 \n", + "690900 1 36.09375 16.203125 11 \n", + "\n", + "[547701 rows x 11 columns]" ] }, "execution_count": 4, @@ -343,7 +326,7 @@ { "data": { "text/plain": [ - "['region', 'building_type', 'object_type', 'floor_level']" + "['region', 'building_type', 'object_type']" ] }, "execution_count": 6, @@ -391,8 +374,8 @@ "outputs": [], "source": [ "s_scaler = StandardScaler()\n", - "l_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=999) # unknown_value нужно выбирать с умом\n", - "regressor = RandomForestRegressor(n_estimators=20, max_depth=10)" + "l_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999) # unknown_value нужно выбирать с умом\n", + "regressor = CatBoostRegressor()" ] }, { @@ -422,6 +405,1013 @@ "execution_count": 10, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning rate set to 0.105957\n", + "0:\tlearn: 22102085.4544239\ttotal: 61.3ms\tremaining: 1m 1s\n", + "1:\tlearn: 21994630.3403412\ttotal: 74.7ms\tremaining: 37.3s\n", + "2:\tlearn: 21906687.8196027\ttotal: 88.5ms\tremaining: 29.4s\n", + "3:\tlearn: 21834890.5050552\ttotal: 102ms\tremaining: 25.5s\n", + "4:\tlearn: 21770820.6751194\ttotal: 115ms\tremaining: 22.8s\n", + "5:\tlearn: 21719543.9330108\ttotal: 130ms\tremaining: 21.6s\n", + "6:\tlearn: 21676510.1666598\ttotal: 145ms\tremaining: 20.6s\n", + "7:\tlearn: 21641355.8079016\ttotal: 159ms\tremaining: 19.8s\n", + "8:\tlearn: 21612289.0494648\ttotal: 174ms\tremaining: 19.1s\n", + "9:\tlearn: 21583808.7061085\ttotal: 188ms\tremaining: 18.6s\n", + "10:\tlearn: 21559288.9618040\ttotal: 201ms\tremaining: 18.1s\n", + "11:\tlearn: 21537048.9920531\ttotal: 215ms\tremaining: 17.7s\n", + "12:\tlearn: 21444526.1629239\ttotal: 229ms\tremaining: 17.4s\n", + "13:\tlearn: 21426349.3370315\ttotal: 244ms\tremaining: 17.2s\n", + "14:\tlearn: 21411901.2338278\ttotal: 259ms\tremaining: 17s\n", + "15:\tlearn: 21399279.8023459\ttotal: 272ms\tremaining: 16.7s\n", + "16:\tlearn: 21299421.1434822\ttotal: 285ms\tremaining: 16.5s\n", + "17:\tlearn: 21288560.2595435\ttotal: 298ms\tremaining: 16.3s\n", + "18:\tlearn: 21277368.8876877\ttotal: 314ms\tremaining: 16.2s\n", + "19:\tlearn: 21229205.2938305\ttotal: 328ms\tremaining: 16.1s\n", + "20:\tlearn: 21220238.4828158\ttotal: 343ms\tremaining: 16s\n", + "21:\tlearn: 21212849.7885410\ttotal: 357ms\tremaining: 15.9s\n", + "22:\tlearn: 21205304.4132821\ttotal: 374ms\tremaining: 15.9s\n", + "23:\tlearn: 21198813.8508479\ttotal: 390ms\tremaining: 15.9s\n", + "24:\tlearn: 21184627.2326983\ttotal: 402ms\tremaining: 15.7s\n", + "25:\tlearn: 21172748.3410688\ttotal: 419ms\tremaining: 15.7s\n", + "26:\tlearn: 21103305.4766520\ttotal: 437ms\tremaining: 15.8s\n", + "27:\tlearn: 21096636.4037750\ttotal: 450ms\tremaining: 15.6s\n", + "28:\tlearn: 21082202.2892557\ttotal: 465ms\tremaining: 15.6s\n", + "29:\tlearn: 21077185.5274954\ttotal: 478ms\tremaining: 15.4s\n", + "30:\tlearn: 21071613.1691098\ttotal: 491ms\tremaining: 15.3s\n", + "31:\tlearn: 21067654.8502386\ttotal: 504ms\tremaining: 15.2s\n", + "32:\tlearn: 21053425.8947843\ttotal: 517ms\tremaining: 15.2s\n", + "33:\tlearn: 21038024.0563140\ttotal: 531ms\tremaining: 15.1s\n", + "34:\tlearn: 20961357.9814339\ttotal: 545ms\tremaining: 15s\n", + "35:\tlearn: 20946027.4479676\ttotal: 560ms\tremaining: 15s\n", + "36:\tlearn: 20866676.4104322\ttotal: 574ms\tremaining: 14.9s\n", + "37:\tlearn: 20863078.3182449\ttotal: 587ms\tremaining: 14.9s\n", + "38:\tlearn: 20859910.3609500\ttotal: 603ms\tremaining: 14.9s\n", + "39:\tlearn: 20853462.2703730\ttotal: 615ms\tremaining: 14.8s\n", + "40:\tlearn: 20851610.3209036\ttotal: 627ms\tremaining: 14.7s\n", + "41:\tlearn: 20847674.0809285\ttotal: 641ms\tremaining: 14.6s\n", + "42:\tlearn: 20845384.9263391\ttotal: 655ms\tremaining: 14.6s\n", + "43:\tlearn: 20843256.7428906\ttotal: 670ms\tremaining: 14.6s\n", + "44:\tlearn: 20841580.8594834\ttotal: 683ms\tremaining: 14.5s\n", + "45:\tlearn: 20819301.2718345\ttotal: 699ms\tremaining: 14.5s\n", + "46:\tlearn: 20812094.5913582\ttotal: 715ms\tremaining: 14.5s\n", + "47:\tlearn: 20808932.0866915\ttotal: 727ms\tremaining: 14.4s\n", + "48:\tlearn: 20763172.9200413\ttotal: 742ms\tremaining: 14.4s\n", + "49:\tlearn: 20729084.6574594\ttotal: 757ms\tremaining: 14.4s\n", + "50:\tlearn: 20721820.5403996\ttotal: 773ms\tremaining: 14.4s\n", + "51:\tlearn: 20715664.3732084\ttotal: 787ms\tremaining: 14.3s\n", + "52:\tlearn: 20712658.7025295\ttotal: 801ms\tremaining: 14.3s\n", + "53:\tlearn: 20704254.1704930\ttotal: 819ms\tremaining: 14.4s\n", + "54:\tlearn: 20690967.9220470\ttotal: 835ms\tremaining: 14.3s\n", + "55:\tlearn: 20686546.8978473\ttotal: 849ms\tremaining: 14.3s\n", + "56:\tlearn: 20682362.4255777\ttotal: 868ms\tremaining: 14.4s\n", + "57:\tlearn: 20680744.8113421\ttotal: 883ms\tremaining: 14.3s\n", + "58:\tlearn: 20677926.0871267\ttotal: 897ms\tremaining: 14.3s\n", + "59:\tlearn: 20658478.3098789\ttotal: 915ms\tremaining: 14.3s\n", + "60:\tlearn: 20641964.4472246\ttotal: 937ms\tremaining: 14.4s\n", + "61:\tlearn: 20639551.4216654\ttotal: 954ms\tremaining: 14.4s\n", + "62:\tlearn: 20638344.8919341\ttotal: 967ms\tremaining: 14.4s\n", + "63:\tlearn: 20635991.3894815\ttotal: 984ms\tremaining: 14.4s\n", + "64:\tlearn: 20595846.8116432\ttotal: 1s\tremaining: 14.4s\n", + "65:\tlearn: 20592198.9483046\ttotal: 1.01s\tremaining: 14.4s\n", + "66:\tlearn: 20565316.0060422\ttotal: 1.03s\tremaining: 14.4s\n", + "67:\tlearn: 20563073.6783517\ttotal: 1.05s\tremaining: 14.4s\n", + "68:\tlearn: 20553650.4649650\ttotal: 1.07s\tremaining: 14.5s\n", + "69:\tlearn: 20545510.8230653\ttotal: 1.09s\tremaining: 14.5s\n", + "70:\tlearn: 20544114.9272186\ttotal: 1.11s\tremaining: 14.5s\n", + "71:\tlearn: 20541689.8802451\ttotal: 1.13s\tremaining: 14.6s\n", + "72:\tlearn: 20538792.7074671\ttotal: 1.16s\tremaining: 14.7s\n", + "73:\tlearn: 20517134.0713648\ttotal: 1.18s\tremaining: 14.7s\n", + "74:\tlearn: 20510477.9089445\ttotal: 1.19s\tremaining: 14.7s\n", + "75:\tlearn: 20494649.9067257\ttotal: 1.21s\tremaining: 14.8s\n", + "76:\tlearn: 20490851.9879851\ttotal: 1.24s\tremaining: 14.8s\n", + "77:\tlearn: 20488939.9621874\ttotal: 1.25s\tremaining: 14.8s\n", + "78:\tlearn: 20432532.8171644\ttotal: 1.26s\tremaining: 14.8s\n", + "79:\tlearn: 20428397.7107150\ttotal: 1.28s\tremaining: 14.7s\n", + "80:\tlearn: 20421638.7734419\ttotal: 1.3s\tremaining: 14.7s\n", + "81:\tlearn: 20421021.7388457\ttotal: 1.31s\tremaining: 14.7s\n", + "82:\tlearn: 20406404.2376730\ttotal: 1.33s\tremaining: 14.7s\n", + "83:\tlearn: 20021682.5008511\ttotal: 1.34s\tremaining: 14.6s\n", + "84:\tlearn: 20018322.6048631\ttotal: 1.36s\tremaining: 14.6s\n", + "85:\tlearn: 20004841.3476490\ttotal: 1.37s\tremaining: 14.6s\n", + "86:\tlearn: 19985666.0092745\ttotal: 1.39s\tremaining: 14.5s\n", + "87:\tlearn: 19983778.1947243\ttotal: 1.4s\tremaining: 14.5s\n", + "88:\tlearn: 19982460.1107908\ttotal: 1.41s\tremaining: 14.5s\n", + "89:\tlearn: 19979128.5494690\ttotal: 1.42s\tremaining: 14.4s\n", + "90:\tlearn: 19974094.9707357\ttotal: 1.44s\tremaining: 14.3s\n", + "91:\tlearn: 19972006.9431031\ttotal: 1.45s\tremaining: 14.3s\n", + "92:\tlearn: 19970846.2845466\ttotal: 1.46s\tremaining: 14.2s\n", + "93:\tlearn: 19968858.0073042\ttotal: 1.47s\tremaining: 14.2s\n", + "94:\tlearn: 19921720.6252972\ttotal: 1.49s\tremaining: 14.2s\n", + "95:\tlearn: 19916568.5707839\ttotal: 1.5s\tremaining: 14.1s\n", + "96:\tlearn: 19913228.5247508\ttotal: 1.51s\tremaining: 14.1s\n", + "97:\tlearn: 19901982.4625895\ttotal: 1.52s\tremaining: 14s\n", + "98:\tlearn: 19836107.7247888\ttotal: 1.54s\tremaining: 14.1s\n", + "99:\tlearn: 19834724.7455166\ttotal: 1.56s\tremaining: 14.1s\n", + "100:\tlearn: 19832811.9745741\ttotal: 1.59s\tremaining: 14.1s\n", + "101:\tlearn: 19818491.2851567\ttotal: 1.61s\tremaining: 14.1s\n", + "102:\tlearn: 19815779.3719026\ttotal: 1.63s\tremaining: 14.2s\n", + "103:\tlearn: 19814215.0962787\ttotal: 1.65s\tremaining: 14.2s\n", + "104:\tlearn: 19782274.6892663\ttotal: 1.67s\tremaining: 14.2s\n", + "105:\tlearn: 19777945.6507456\ttotal: 1.69s\tremaining: 14.2s\n", + "106:\tlearn: 19770488.9772154\ttotal: 1.7s\tremaining: 14.2s\n", + "107:\tlearn: 19769758.0023174\ttotal: 1.72s\tremaining: 14.2s\n", + "108:\tlearn: 19767541.9303017\ttotal: 1.74s\tremaining: 14.2s\n", + "109:\tlearn: 19766992.0126300\ttotal: 1.75s\tremaining: 14.2s\n", + "110:\tlearn: 19765032.8837298\ttotal: 1.77s\tremaining: 14.2s\n", + "111:\tlearn: 19705204.6771073\ttotal: 1.78s\tremaining: 14.2s\n", + "112:\tlearn: 19703649.0394020\ttotal: 1.8s\tremaining: 14.1s\n", + "113:\tlearn: 19693038.0415419\ttotal: 1.82s\tremaining: 14.1s\n", + "114:\tlearn: 19690294.4304072\ttotal: 1.84s\tremaining: 14.2s\n", + "115:\tlearn: 19686529.4709294\ttotal: 1.86s\tremaining: 14.2s\n", + "116:\tlearn: 19684887.8267152\ttotal: 1.88s\tremaining: 14.2s\n", + "117:\tlearn: 19369465.6970761\ttotal: 1.9s\tremaining: 14.2s\n", + "118:\tlearn: 19368868.0416380\ttotal: 1.92s\tremaining: 14.2s\n", + "119:\tlearn: 19334590.5868513\ttotal: 1.94s\tremaining: 14.2s\n", + "120:\tlearn: 19332200.0832597\ttotal: 1.95s\tremaining: 14.2s\n", + "121:\tlearn: 19320130.9244745\ttotal: 1.97s\tremaining: 14.2s\n", + "122:\tlearn: 19318220.9448337\ttotal: 2s\tremaining: 14.2s\n", + "123:\tlearn: 18941546.2095714\ttotal: 2.02s\tremaining: 14.3s\n", + "124:\tlearn: 18941056.2836883\ttotal: 2.05s\tremaining: 14.3s\n", + "125:\tlearn: 18939637.9662976\ttotal: 2.07s\tremaining: 14.3s\n", + "126:\tlearn: 18938172.4621610\ttotal: 2.1s\tremaining: 14.4s\n", + "127:\tlearn: 18935889.3619752\ttotal: 2.13s\tremaining: 14.5s\n", + "128:\tlearn: 18928784.7025346\ttotal: 2.15s\tremaining: 14.6s\n", + "129:\tlearn: 18926981.6933453\ttotal: 2.17s\tremaining: 14.5s\n", + "130:\tlearn: 18830178.3173696\ttotal: 2.19s\tremaining: 14.5s\n", + "131:\tlearn: 18828102.3918672\ttotal: 2.22s\tremaining: 14.6s\n", + "132:\tlearn: 18825755.9987015\ttotal: 2.24s\tremaining: 14.6s\n", + "133:\tlearn: 18793049.5462155\ttotal: 2.26s\tremaining: 14.6s\n", + "134:\tlearn: 18791452.8400128\ttotal: 2.27s\tremaining: 14.6s\n", + "135:\tlearn: 18484591.4924421\ttotal: 2.29s\tremaining: 14.6s\n", + "136:\tlearn: 18482373.1605741\ttotal: 2.31s\tremaining: 14.5s\n", + "137:\tlearn: 18414571.2543321\ttotal: 2.32s\tremaining: 14.5s\n", + "138:\tlearn: 18412913.4160574\ttotal: 2.35s\tremaining: 14.5s\n", + "139:\tlearn: 18409214.1141794\ttotal: 2.36s\tremaining: 14.5s\n", + "140:\tlearn: 18395140.1008086\ttotal: 2.38s\tremaining: 14.5s\n", + "141:\tlearn: 18390939.2248151\ttotal: 2.4s\tremaining: 14.5s\n", + "142:\tlearn: 18377925.8298573\ttotal: 2.42s\tremaining: 14.5s\n", + "143:\tlearn: 18371775.1291009\ttotal: 2.43s\tremaining: 14.5s\n", + "144:\tlearn: 18370251.1042623\ttotal: 2.45s\tremaining: 14.4s\n", + "145:\tlearn: 18332707.1499911\ttotal: 2.46s\tremaining: 14.4s\n", + "146:\tlearn: 18330693.2665230\ttotal: 2.48s\tremaining: 14.4s\n", + "147:\tlearn: 18329408.2952767\ttotal: 2.49s\tremaining: 14.3s\n", + "148:\tlearn: 18321783.9892793\ttotal: 2.5s\tremaining: 14.3s\n", + "149:\tlearn: 18321270.4958267\ttotal: 2.52s\tremaining: 14.3s\n", + "150:\tlearn: 18310325.1681801\ttotal: 2.53s\tremaining: 14.2s\n", + "151:\tlearn: 18299986.9413893\ttotal: 2.55s\tremaining: 14.2s\n", + "152:\tlearn: 18290217.7479708\ttotal: 2.56s\tremaining: 14.2s\n", + "153:\tlearn: 18280975.8537910\ttotal: 2.58s\tremaining: 14.2s\n", + "154:\tlearn: 18272215.6509019\ttotal: 2.6s\tremaining: 14.1s\n", + "155:\tlearn: 18263878.2178516\ttotal: 2.61s\tremaining: 14.1s\n", + "156:\tlearn: 18256009.4859248\ttotal: 2.63s\tremaining: 14.1s\n", + "157:\tlearn: 18248529.7799856\ttotal: 2.64s\tremaining: 14.1s\n", + "158:\tlearn: 18241388.0845094\ttotal: 2.66s\tremaining: 14.1s\n", + "159:\tlearn: 18234700.5127085\ttotal: 2.67s\tremaining: 14s\n", + "160:\tlearn: 18228095.5839778\ttotal: 2.69s\tremaining: 14s\n", + "161:\tlearn: 18222087.5153066\ttotal: 2.7s\tremaining: 14s\n", + "162:\tlearn: 18215963.2971261\ttotal: 2.72s\tremaining: 14s\n", + "163:\tlearn: 18210272.5545163\ttotal: 2.73s\tremaining: 13.9s\n", + "164:\tlearn: 18208920.7703569\ttotal: 2.74s\tremaining: 13.9s\n", + "165:\tlearn: 18204704.7145239\ttotal: 2.75s\tremaining: 13.8s\n", + "166:\tlearn: 18187135.8260335\ttotal: 2.77s\tremaining: 13.8s\n", + "167:\tlearn: 18183064.7135734\ttotal: 2.78s\tremaining: 13.8s\n", + "168:\tlearn: 18177887.1670860\ttotal: 2.8s\tremaining: 13.8s\n", + "169:\tlearn: 18173022.2110313\ttotal: 2.81s\tremaining: 13.7s\n", + "170:\tlearn: 18168573.4167384\ttotal: 2.83s\tremaining: 13.7s\n", + "171:\tlearn: 18165036.1971623\ttotal: 2.85s\tremaining: 13.7s\n", + "172:\tlearn: 18161841.9822954\ttotal: 2.87s\tremaining: 13.7s\n", + "173:\tlearn: 18129860.2061383\ttotal: 2.88s\tremaining: 13.7s\n", + "174:\tlearn: 18127931.5161091\ttotal: 2.89s\tremaining: 13.6s\n", + "175:\tlearn: 18124997.7778403\ttotal: 2.91s\tremaining: 13.6s\n", + "176:\tlearn: 18122975.2084322\ttotal: 2.92s\tremaining: 13.6s\n", + "177:\tlearn: 18120855.5325733\ttotal: 2.93s\tremaining: 13.5s\n", + "178:\tlearn: 18117907.6019994\ttotal: 2.95s\tremaining: 13.5s\n", + "179:\tlearn: 18116674.0864027\ttotal: 2.96s\tremaining: 13.5s\n", + "180:\tlearn: 18114086.9287957\ttotal: 2.97s\tremaining: 13.4s\n", + "181:\tlearn: 18087100.0827926\ttotal: 2.98s\tremaining: 13.4s\n", + "182:\tlearn: 18071944.2213105\ttotal: 3s\tremaining: 13.4s\n", + "183:\tlearn: 17952691.4261792\ttotal: 3.01s\tremaining: 13.4s\n", + "184:\tlearn: 17950298.6715866\ttotal: 3.02s\tremaining: 13.3s\n", + "185:\tlearn: 17949031.8169417\ttotal: 3.04s\tremaining: 13.3s\n", + "186:\tlearn: 17937943.5186847\ttotal: 3.05s\tremaining: 13.3s\n", + "187:\tlearn: 17937014.8027177\ttotal: 3.06s\tremaining: 13.2s\n", + "188:\tlearn: 17936493.5945773\ttotal: 3.07s\tremaining: 13.2s\n", + "189:\tlearn: 17935386.0093649\ttotal: 3.09s\tremaining: 13.2s\n", + "190:\tlearn: 17934203.8644718\ttotal: 3.1s\tremaining: 13.1s\n", + "191:\tlearn: 17928336.5184065\ttotal: 3.11s\tremaining: 13.1s\n", + "192:\tlearn: 17925443.1940046\ttotal: 3.13s\tremaining: 13.1s\n", + "193:\tlearn: 17924535.5533845\ttotal: 3.14s\tremaining: 13s\n", + "194:\tlearn: 17917225.8802206\ttotal: 3.16s\tremaining: 13s\n", + "195:\tlearn: 17904437.4148190\ttotal: 3.17s\tremaining: 13s\n", + "196:\tlearn: 17902915.3467923\ttotal: 3.19s\tremaining: 13s\n", + "197:\tlearn: 17900924.7512305\ttotal: 3.2s\tremaining: 13s\n", + "198:\tlearn: 17899976.2262471\ttotal: 3.22s\tremaining: 13s\n", + "199:\tlearn: 17896573.5977064\ttotal: 3.24s\tremaining: 13s\n", + "200:\tlearn: 17894480.1301072\ttotal: 3.26s\tremaining: 13s\n", + "201:\tlearn: 17891369.5414483\ttotal: 3.28s\tremaining: 13s\n", + "202:\tlearn: 17853776.3679239\ttotal: 3.31s\tremaining: 13s\n", + "203:\tlearn: 17851457.0828592\ttotal: 3.32s\tremaining: 13s\n", + "204:\tlearn: 17849621.6767992\ttotal: 3.33s\tremaining: 12.9s\n", + "205:\tlearn: 17848392.5509482\ttotal: 3.35s\tremaining: 12.9s\n", + "206:\tlearn: 17845597.2428619\ttotal: 3.36s\tremaining: 12.9s\n", + "207:\tlearn: 17841951.2763157\ttotal: 3.38s\tremaining: 12.9s\n", + "208:\tlearn: 17829332.8912371\ttotal: 3.4s\tremaining: 12.9s\n", + "209:\tlearn: 17825984.1152963\ttotal: 3.41s\tremaining: 12.8s\n", + "210:\tlearn: 17821360.2498463\ttotal: 3.43s\tremaining: 12.8s\n", + "211:\tlearn: 17816041.9633158\ttotal: 3.44s\tremaining: 12.8s\n", + "212:\tlearn: 17815089.0154101\ttotal: 3.46s\tremaining: 12.8s\n", + "213:\tlearn: 17812260.4222221\ttotal: 3.47s\tremaining: 12.8s\n", + "214:\tlearn: 17811642.1796060\ttotal: 3.49s\tremaining: 12.7s\n", + "215:\tlearn: 17811104.8656724\ttotal: 3.5s\tremaining: 12.7s\n", + "216:\tlearn: 17810456.2984828\ttotal: 3.51s\tremaining: 12.7s\n", + "217:\tlearn: 17809982.4909707\ttotal: 3.52s\tremaining: 12.6s\n", + "218:\tlearn: 17809543.7803178\ttotal: 3.54s\tremaining: 12.6s\n", + "219:\tlearn: 17809136.8325569\ttotal: 3.55s\tremaining: 12.6s\n", + "220:\tlearn: 17808758.7315278\ttotal: 3.56s\tremaining: 12.6s\n", + "221:\tlearn: 17808406.9145618\ttotal: 3.58s\tremaining: 12.6s\n", + "222:\tlearn: 17806754.0179687\ttotal: 3.6s\tremaining: 12.6s\n", + "223:\tlearn: 17806262.4885592\ttotal: 3.62s\tremaining: 12.5s\n", + "224:\tlearn: 17805319.3776209\ttotal: 3.63s\tremaining: 12.5s\n", + "225:\tlearn: 17805011.6013482\ttotal: 3.65s\tremaining: 12.5s\n", + "226:\tlearn: 17804724.0362310\ttotal: 3.66s\tremaining: 12.5s\n", + "227:\tlearn: 17793961.7547867\ttotal: 3.68s\tremaining: 12.5s\n", + "228:\tlearn: 17793044.3976904\ttotal: 3.7s\tremaining: 12.5s\n", + "229:\tlearn: 17791876.3449986\ttotal: 3.72s\tremaining: 12.5s\n", + "230:\tlearn: 17770039.2877531\ttotal: 3.74s\tremaining: 12.4s\n", + "231:\tlearn: 17769759.3423197\ttotal: 3.75s\tremaining: 12.4s\n", + "232:\tlearn: 17769498.1846872\ttotal: 3.77s\tremaining: 12.4s\n", + "233:\tlearn: 17769106.6516586\ttotal: 3.78s\tremaining: 12.4s\n", + "234:\tlearn: 17765866.7512613\ttotal: 3.8s\tremaining: 12.4s\n", + "235:\tlearn: 17763818.0836765\ttotal: 3.81s\tremaining: 12.3s\n", + "236:\tlearn: 17761637.5687877\ttotal: 3.83s\tremaining: 12.3s\n", + "237:\tlearn: 17755293.6166299\ttotal: 3.85s\tremaining: 12.3s\n", + "238:\tlearn: 17749597.6285121\ttotal: 3.87s\tremaining: 12.3s\n", + "239:\tlearn: 17731193.4780969\ttotal: 3.89s\tremaining: 12.3s\n", + "240:\tlearn: 17730941.1840209\ttotal: 3.9s\tremaining: 12.3s\n", + "241:\tlearn: 17730651.4109866\ttotal: 3.91s\tremaining: 12.3s\n", + "242:\tlearn: 17729951.1772204\ttotal: 3.93s\tremaining: 12.2s\n", + "243:\tlearn: 17725674.6169533\ttotal: 3.94s\tremaining: 12.2s\n", + "244:\tlearn: 17724397.3837970\ttotal: 3.96s\tremaining: 12.2s\n", + "245:\tlearn: 17723085.9667878\ttotal: 3.97s\tremaining: 12.2s\n", + "246:\tlearn: 17716068.0643361\ttotal: 3.99s\tremaining: 12.2s\n", + "247:\tlearn: 17685621.7941613\ttotal: 4s\tremaining: 12.1s\n", + "248:\tlearn: 17684272.6716694\ttotal: 4.02s\tremaining: 12.1s\n", + "249:\tlearn: 17683390.0888279\ttotal: 4.03s\tremaining: 12.1s\n", + "250:\tlearn: 17683052.4845925\ttotal: 4.04s\tremaining: 12.1s\n", + "251:\tlearn: 17678624.0868252\ttotal: 4.06s\tremaining: 12.1s\n", + "252:\tlearn: 17665657.9640584\ttotal: 4.08s\tremaining: 12s\n", + "253:\tlearn: 17664624.5487132\ttotal: 4.09s\tremaining: 12s\n", + "254:\tlearn: 17663925.0646167\ttotal: 4.1s\tremaining: 12s\n", + "255:\tlearn: 17653813.6196925\ttotal: 4.12s\tremaining: 12s\n", + "256:\tlearn: 17636698.5157040\ttotal: 4.13s\tremaining: 11.9s\n", + "257:\tlearn: 17634671.9750893\ttotal: 4.15s\tremaining: 11.9s\n", + "258:\tlearn: 17633930.6422340\ttotal: 4.16s\tremaining: 11.9s\n", + "259:\tlearn: 17633026.0861171\ttotal: 4.17s\tremaining: 11.9s\n", + "260:\tlearn: 17632489.1254856\ttotal: 4.19s\tremaining: 11.9s\n", + "261:\tlearn: 17628474.9187765\ttotal: 4.2s\tremaining: 11.8s\n", + "262:\tlearn: 17627320.9817928\ttotal: 4.22s\tremaining: 11.8s\n", + "263:\tlearn: 17626116.4772868\ttotal: 4.23s\tremaining: 11.8s\n", + "264:\tlearn: 17623329.0754817\ttotal: 4.25s\tremaining: 11.8s\n", + "265:\tlearn: 17622243.1901613\ttotal: 4.26s\tremaining: 11.8s\n", + "266:\tlearn: 17550321.8250878\ttotal: 4.28s\tremaining: 11.8s\n", + "267:\tlearn: 17549755.3651767\ttotal: 4.33s\tremaining: 11.8s\n", + "268:\tlearn: 17545607.1212430\ttotal: 4.37s\tremaining: 11.9s\n", + "269:\tlearn: 17541242.2629221\ttotal: 4.38s\tremaining: 11.9s\n", + "270:\tlearn: 17499407.7313592\ttotal: 4.41s\tremaining: 11.9s\n", + "271:\tlearn: 17499145.8282321\ttotal: 4.43s\tremaining: 11.9s\n", + "272:\tlearn: 17498934.5535116\ttotal: 4.44s\tremaining: 11.8s\n", + "273:\tlearn: 17498347.2546318\ttotal: 4.46s\tremaining: 11.8s\n", + "274:\tlearn: 17498149.7061684\ttotal: 4.47s\tremaining: 11.8s\n", + "275:\tlearn: 17497860.3337909\ttotal: 4.48s\tremaining: 11.8s\n", + "276:\tlearn: 17497134.2565818\ttotal: 4.5s\tremaining: 11.7s\n", + "277:\tlearn: 17496943.1446578\ttotal: 4.51s\tremaining: 11.7s\n", + "278:\tlearn: 17495461.7397646\ttotal: 4.53s\tremaining: 11.7s\n", + "279:\tlearn: 17492860.8467310\ttotal: 4.54s\tremaining: 11.7s\n", + "280:\tlearn: 17492256.7750564\ttotal: 4.56s\tremaining: 11.7s\n", + "281:\tlearn: 17491315.8920024\ttotal: 4.58s\tremaining: 11.7s\n", + "282:\tlearn: 17488802.8492737\ttotal: 4.59s\tremaining: 11.6s\n", + "283:\tlearn: 17479802.6541152\ttotal: 4.6s\tremaining: 11.6s\n", + "284:\tlearn: 17477169.5331720\ttotal: 4.62s\tremaining: 11.6s\n", + "285:\tlearn: 17474743.6190942\ttotal: 4.63s\tremaining: 11.6s\n", + "286:\tlearn: 17468342.7955232\ttotal: 4.65s\tremaining: 11.6s\n", + "287:\tlearn: 17467579.9985437\ttotal: 4.67s\tremaining: 11.5s\n", + "288:\tlearn: 17467009.9684055\ttotal: 4.68s\tremaining: 11.5s\n", + "289:\tlearn: 17464125.0260113\ttotal: 4.7s\tremaining: 11.5s\n", + "290:\tlearn: 17463508.0564477\ttotal: 4.71s\tremaining: 11.5s\n", + "291:\tlearn: 17453183.2620432\ttotal: 4.73s\tremaining: 11.5s\n", + "292:\tlearn: 17452971.0671546\ttotal: 4.74s\tremaining: 11.4s\n", + "293:\tlearn: 17452198.5884342\ttotal: 4.76s\tremaining: 11.4s\n", + "294:\tlearn: 17450925.6159031\ttotal: 4.78s\tremaining: 11.4s\n", + "295:\tlearn: 17450685.1155343\ttotal: 4.79s\tremaining: 11.4s\n", + "296:\tlearn: 17447975.7379237\ttotal: 4.8s\tremaining: 11.4s\n", + "297:\tlearn: 17446417.7251561\ttotal: 4.82s\tremaining: 11.3s\n", + "298:\tlearn: 17446166.7629704\ttotal: 4.83s\tremaining: 11.3s\n", + "299:\tlearn: 17445963.1442260\ttotal: 4.84s\tremaining: 11.3s\n", + "300:\tlearn: 17445745.7958927\ttotal: 4.86s\tremaining: 11.3s\n", + "301:\tlearn: 17444963.9290154\ttotal: 4.87s\tremaining: 11.3s\n", + "302:\tlearn: 17432650.1591210\ttotal: 4.9s\tremaining: 11.3s\n", + "303:\tlearn: 17430525.1210288\ttotal: 4.92s\tremaining: 11.3s\n", + "304:\tlearn: 17418414.4601453\ttotal: 4.93s\tremaining: 11.2s\n", + "305:\tlearn: 17417977.4735651\ttotal: 4.95s\tremaining: 11.2s\n", + "306:\tlearn: 17335624.2943914\ttotal: 4.97s\tremaining: 11.2s\n", + "307:\tlearn: 17323558.9233681\ttotal: 4.99s\tremaining: 11.2s\n", + "308:\tlearn: 17323047.3527617\ttotal: 5s\tremaining: 11.2s\n", + "309:\tlearn: 17322403.3488620\ttotal: 5.02s\tremaining: 11.2s\n", + "310:\tlearn: 17322187.6973801\ttotal: 5.03s\tremaining: 11.2s\n", + "311:\tlearn: 17320898.8497406\ttotal: 5.05s\tremaining: 11.1s\n", + "312:\tlearn: 17312668.7000429\ttotal: 5.07s\tremaining: 11.1s\n", + "313:\tlearn: 17299277.5985403\ttotal: 5.09s\tremaining: 11.1s\n", + "314:\tlearn: 17298175.9786240\ttotal: 5.11s\tremaining: 11.1s\n", + "315:\tlearn: 17296005.0430765\ttotal: 5.12s\tremaining: 11.1s\n", + "316:\tlearn: 17295834.3986842\ttotal: 5.13s\tremaining: 11.1s\n", + "317:\tlearn: 17295646.8271436\ttotal: 5.14s\tremaining: 11s\n", + "318:\tlearn: 17295412.2240763\ttotal: 5.16s\tremaining: 11s\n", + "319:\tlearn: 17295269.3891063\ttotal: 5.17s\tremaining: 11s\n", + "320:\tlearn: 17294720.1427139\ttotal: 5.19s\tremaining: 11s\n", + "321:\tlearn: 17280405.8179874\ttotal: 5.21s\tremaining: 11s\n", + "322:\tlearn: 17279788.6705542\ttotal: 5.23s\tremaining: 11s\n", + "323:\tlearn: 17259578.2219214\ttotal: 5.25s\tremaining: 11s\n", + "324:\tlearn: 17258995.8851109\ttotal: 5.27s\tremaining: 10.9s\n", + "325:\tlearn: 17256802.0040208\ttotal: 5.29s\tremaining: 10.9s\n", + "326:\tlearn: 17245667.9352932\ttotal: 5.31s\tremaining: 10.9s\n", + "327:\tlearn: 17245157.2383849\ttotal: 5.34s\tremaining: 10.9s\n", + "328:\tlearn: 17244420.0505767\ttotal: 5.36s\tremaining: 10.9s\n", + "329:\tlearn: 17240620.9311856\ttotal: 5.38s\tremaining: 10.9s\n", + "330:\tlearn: 17240126.6382259\ttotal: 5.4s\tremaining: 10.9s\n", + "331:\tlearn: 17239554.3263042\ttotal: 5.42s\tremaining: 10.9s\n", + "332:\tlearn: 17239249.4122676\ttotal: 5.43s\tremaining: 10.9s\n", + "333:\tlearn: 17237315.5959603\ttotal: 5.45s\tremaining: 10.9s\n", + "334:\tlearn: 17237170.4183008\ttotal: 5.46s\tremaining: 10.8s\n", + "335:\tlearn: 17235498.1709182\ttotal: 5.48s\tremaining: 10.8s\n", + "336:\tlearn: 17154286.9322136\ttotal: 5.49s\tremaining: 10.8s\n", + "337:\tlearn: 17152860.5403583\ttotal: 5.51s\tremaining: 10.8s\n", + "338:\tlearn: 17139897.5803445\ttotal: 5.52s\tremaining: 10.8s\n", + "339:\tlearn: 17139685.6194353\ttotal: 5.53s\tremaining: 10.7s\n", + "340:\tlearn: 17129406.8909698\ttotal: 5.54s\tremaining: 10.7s\n", + "341:\tlearn: 17126386.5318429\ttotal: 5.56s\tremaining: 10.7s\n", + "342:\tlearn: 17125338.5826429\ttotal: 5.57s\tremaining: 10.7s\n", + "343:\tlearn: 17124937.1764028\ttotal: 5.58s\tremaining: 10.7s\n", + "344:\tlearn: 17124773.5128614\ttotal: 5.59s\tremaining: 10.6s\n", + "345:\tlearn: 17123822.0085471\ttotal: 5.61s\tremaining: 10.6s\n", + "346:\tlearn: 17122604.8415169\ttotal: 5.62s\tremaining: 10.6s\n", + "347:\tlearn: 17121767.5370013\ttotal: 5.63s\tremaining: 10.6s\n", + "348:\tlearn: 17109471.1428348\ttotal: 5.65s\tremaining: 10.5s\n", + "349:\tlearn: 17092688.7777393\ttotal: 5.66s\tremaining: 10.5s\n", + "350:\tlearn: 17081854.5539987\ttotal: 5.68s\tremaining: 10.5s\n", + "351:\tlearn: 17081117.2220910\ttotal: 5.69s\tremaining: 10.5s\n", + "352:\tlearn: 17079431.1991192\ttotal: 5.7s\tremaining: 10.5s\n", + "353:\tlearn: 17065749.4676464\ttotal: 5.72s\tremaining: 10.4s\n", + "354:\tlearn: 17050839.2238400\ttotal: 5.73s\tremaining: 10.4s\n", + "355:\tlearn: 17050106.8831270\ttotal: 5.75s\tremaining: 10.4s\n", + "356:\tlearn: 17046033.2332065\ttotal: 5.76s\tremaining: 10.4s\n", + "357:\tlearn: 17043704.2415802\ttotal: 5.78s\tremaining: 10.4s\n", + "358:\tlearn: 17034226.2631681\ttotal: 5.79s\tremaining: 10.3s\n", + "359:\tlearn: 17019515.6806659\ttotal: 5.8s\tremaining: 10.3s\n", + "360:\tlearn: 17018472.9763746\ttotal: 5.82s\tremaining: 10.3s\n", + "361:\tlearn: 17017909.7121151\ttotal: 5.83s\tremaining: 10.3s\n", + "362:\tlearn: 17017463.3942640\ttotal: 5.84s\tremaining: 10.3s\n", + "363:\tlearn: 17016467.4317116\ttotal: 5.86s\tremaining: 10.2s\n", + "364:\tlearn: 17016320.3746025\ttotal: 5.87s\tremaining: 10.2s\n", + "365:\tlearn: 17014043.0108512\ttotal: 5.88s\tremaining: 10.2s\n", + "366:\tlearn: 17013536.3710672\ttotal: 5.89s\tremaining: 10.2s\n", + "367:\tlearn: 17011993.2014165\ttotal: 5.91s\tremaining: 10.1s\n", + "368:\tlearn: 17011849.5641841\ttotal: 5.92s\tremaining: 10.1s\n", + "369:\tlearn: 17011403.7126883\ttotal: 5.93s\tremaining: 10.1s\n", + "370:\tlearn: 17009763.5741945\ttotal: 5.94s\tremaining: 10.1s\n", + "371:\tlearn: 17009382.7519630\ttotal: 5.95s\tremaining: 10.1s\n", + "372:\tlearn: 17008464.7915054\ttotal: 5.97s\tremaining: 10s\n", + "373:\tlearn: 17008143.8161261\ttotal: 5.98s\tremaining: 10s\n", + "374:\tlearn: 16996814.2215431\ttotal: 5.99s\tremaining: 9.99s\n", + "375:\tlearn: 16996377.3351825\ttotal: 6.01s\tremaining: 9.97s\n", + "376:\tlearn: 16996037.5806770\ttotal: 6.02s\tremaining: 9.95s\n", + "377:\tlearn: 16991953.6478199\ttotal: 6.03s\tremaining: 9.93s\n", + "378:\tlearn: 16961328.6727692\ttotal: 6.05s\tremaining: 9.91s\n", + "379:\tlearn: 16957664.4831621\ttotal: 6.06s\tremaining: 9.89s\n", + "380:\tlearn: 16956856.4526881\ttotal: 6.08s\tremaining: 9.87s\n", + "381:\tlearn: 16947754.5891887\ttotal: 6.09s\tremaining: 9.86s\n", + "382:\tlearn: 16937471.3061729\ttotal: 6.11s\tremaining: 9.84s\n", + "383:\tlearn: 16910717.2697228\ttotal: 6.13s\tremaining: 9.84s\n", + "384:\tlearn: 16883021.8749316\ttotal: 6.15s\tremaining: 9.83s\n", + "385:\tlearn: 16874077.6620256\ttotal: 6.17s\tremaining: 9.82s\n", + "386:\tlearn: 16859663.0508862\ttotal: 6.19s\tremaining: 9.81s\n", + "387:\tlearn: 16843794.6984628\ttotal: 6.21s\tremaining: 9.79s\n", + "388:\tlearn: 16843670.2191430\ttotal: 6.22s\tremaining: 9.77s\n", + "389:\tlearn: 16833049.2556840\ttotal: 6.24s\tremaining: 9.76s\n", + "390:\tlearn: 16821522.4443567\ttotal: 6.26s\tremaining: 9.74s\n", + "391:\tlearn: 16818181.1766856\ttotal: 6.27s\tremaining: 9.73s\n", + "392:\tlearn: 16817749.5049150\ttotal: 6.29s\tremaining: 9.72s\n", + "393:\tlearn: 16817402.3614282\ttotal: 6.31s\tremaining: 9.71s\n", + "394:\tlearn: 16815679.7151727\ttotal: 6.33s\tremaining: 9.7s\n", + "395:\tlearn: 16810641.8717564\ttotal: 6.35s\tremaining: 9.68s\n", + "396:\tlearn: 16810291.1871768\ttotal: 6.36s\tremaining: 9.67s\n", + "397:\tlearn: 16808056.2422004\ttotal: 6.39s\tremaining: 9.67s\n", + "398:\tlearn: 16807804.2454334\ttotal: 6.42s\tremaining: 9.68s\n", + "399:\tlearn: 16799998.1957230\ttotal: 6.44s\tremaining: 9.66s\n", + "400:\tlearn: 16799220.2656080\ttotal: 6.46s\tremaining: 9.65s\n", + "401:\tlearn: 16798913.0252067\ttotal: 6.47s\tremaining: 9.63s\n", + "402:\tlearn: 16798319.2545577\ttotal: 6.49s\tremaining: 9.62s\n", + "403:\tlearn: 16796848.5752647\ttotal: 6.51s\tremaining: 9.6s\n", + "404:\tlearn: 16757656.8985529\ttotal: 6.52s\tremaining: 9.58s\n", + "405:\tlearn: 16745513.4381725\ttotal: 6.54s\tremaining: 9.56s\n", + "406:\tlearn: 16735416.8114581\ttotal: 6.55s\tremaining: 9.54s\n", + "407:\tlearn: 16734295.1424370\ttotal: 6.57s\tremaining: 9.53s\n", + "408:\tlearn: 16733140.3781664\ttotal: 6.58s\tremaining: 9.52s\n", + "409:\tlearn: 16723800.8980695\ttotal: 6.6s\tremaining: 9.5s\n", + "410:\tlearn: 16721200.9625357\ttotal: 6.62s\tremaining: 9.48s\n", + "411:\tlearn: 16720027.8472987\ttotal: 6.63s\tremaining: 9.46s\n", + "412:\tlearn: 16717199.5760035\ttotal: 6.65s\tremaining: 9.45s\n", + "413:\tlearn: 16713362.4492616\ttotal: 6.66s\tremaining: 9.43s\n", + "414:\tlearn: 16712806.0473182\ttotal: 6.67s\tremaining: 9.41s\n", + "415:\tlearn: 16711241.9902750\ttotal: 6.69s\tremaining: 9.39s\n", + "416:\tlearn: 16710626.7325455\ttotal: 6.71s\tremaining: 9.37s\n", + "417:\tlearn: 16644768.4542531\ttotal: 6.72s\tremaining: 9.36s\n", + "418:\tlearn: 16644403.8081224\ttotal: 6.74s\tremaining: 9.34s\n", + "419:\tlearn: 16644106.9601552\ttotal: 6.75s\tremaining: 9.32s\n", + "420:\tlearn: 16643628.6346956\ttotal: 6.77s\tremaining: 9.31s\n", + "421:\tlearn: 16640073.3813320\ttotal: 6.79s\tremaining: 9.29s\n", + "422:\tlearn: 16639549.7950808\ttotal: 6.8s\tremaining: 9.28s\n", + "423:\tlearn: 16639069.1006878\ttotal: 6.81s\tremaining: 9.25s\n", + "424:\tlearn: 16638481.2382327\ttotal: 6.82s\tremaining: 9.23s\n", + "425:\tlearn: 16638208.9073863\ttotal: 6.83s\tremaining: 9.21s\n", + "426:\tlearn: 16609090.9227109\ttotal: 6.85s\tremaining: 9.19s\n", + "427:\tlearn: 16607897.8537223\ttotal: 6.86s\tremaining: 9.17s\n", + "428:\tlearn: 16607613.0069443\ttotal: 6.88s\tremaining: 9.15s\n", + "429:\tlearn: 16603866.7848843\ttotal: 6.89s\tremaining: 9.13s\n", + "430:\tlearn: 16566652.4020620\ttotal: 6.91s\tremaining: 9.12s\n", + "431:\tlearn: 16566149.6048169\ttotal: 6.92s\tremaining: 9.1s\n", + "432:\tlearn: 16564672.1011733\ttotal: 6.93s\tremaining: 9.08s\n", + "433:\tlearn: 16564610.7741058\ttotal: 6.95s\tremaining: 9.06s\n", + "434:\tlearn: 16564198.8911273\ttotal: 6.96s\tremaining: 9.04s\n", + "435:\tlearn: 16559675.2968062\ttotal: 6.97s\tremaining: 9.02s\n", + "436:\tlearn: 16558753.2346339\ttotal: 6.99s\tremaining: 9s\n", + "437:\tlearn: 16558452.1907641\ttotal: 7s\tremaining: 8.98s\n", + "438:\tlearn: 16546587.2383006\ttotal: 7.01s\tremaining: 8.96s\n", + "439:\tlearn: 16543823.0847287\ttotal: 7.03s\tremaining: 8.95s\n", + "440:\tlearn: 16542126.8424469\ttotal: 7.04s\tremaining: 8.93s\n", + "441:\tlearn: 16541624.1632076\ttotal: 7.06s\tremaining: 8.91s\n", + "442:\tlearn: 16540326.5322872\ttotal: 7.07s\tremaining: 8.89s\n", + "443:\tlearn: 16530336.2084291\ttotal: 7.08s\tremaining: 8.87s\n", + "444:\tlearn: 16530167.9665629\ttotal: 7.1s\tremaining: 8.85s\n", + "445:\tlearn: 16528821.2477933\ttotal: 7.12s\tremaining: 8.84s\n", + "446:\tlearn: 16528766.2012617\ttotal: 7.13s\tremaining: 8.82s\n", + "447:\tlearn: 16518018.7193100\ttotal: 7.14s\tremaining: 8.8s\n", + "448:\tlearn: 16508723.6897544\ttotal: 7.16s\tremaining: 8.79s\n", + "449:\tlearn: 16508487.2637814\ttotal: 7.17s\tremaining: 8.77s\n", + "450:\tlearn: 16473955.6540161\ttotal: 7.19s\tremaining: 8.75s\n", + "451:\tlearn: 16453172.0203944\ttotal: 7.2s\tremaining: 8.73s\n", + "452:\tlearn: 16451483.6324413\ttotal: 7.21s\tremaining: 8.71s\n", + "453:\tlearn: 16451257.8036014\ttotal: 7.23s\tremaining: 8.69s\n", + "454:\tlearn: 16448369.9508352\ttotal: 7.24s\tremaining: 8.67s\n", + "455:\tlearn: 16446719.1385193\ttotal: 7.25s\tremaining: 8.65s\n", + "456:\tlearn: 16420736.1369659\ttotal: 7.27s\tremaining: 8.64s\n", + "457:\tlearn: 16420629.2824606\ttotal: 7.28s\tremaining: 8.62s\n", + "458:\tlearn: 16420336.6729748\ttotal: 7.29s\tremaining: 8.6s\n", + "459:\tlearn: 16420155.4584530\ttotal: 7.3s\tremaining: 8.57s\n", + "460:\tlearn: 16419734.8233202\ttotal: 7.32s\tremaining: 8.55s\n", + "461:\tlearn: 16419517.6225944\ttotal: 7.33s\tremaining: 8.53s\n", + "462:\tlearn: 16406145.7183320\ttotal: 7.34s\tremaining: 8.51s\n", + "463:\tlearn: 16404609.0651931\ttotal: 7.35s\tremaining: 8.49s\n", + "464:\tlearn: 16404332.0732862\ttotal: 7.36s\tremaining: 8.47s\n", + "465:\tlearn: 16404019.7507952\ttotal: 7.38s\tremaining: 8.45s\n", + "466:\tlearn: 16403507.0137349\ttotal: 7.39s\tremaining: 8.43s\n", + "467:\tlearn: 16402993.5886996\ttotal: 7.4s\tremaining: 8.41s\n", + "468:\tlearn: 16385955.8460101\ttotal: 7.42s\tremaining: 8.4s\n", + "469:\tlearn: 16373237.2004642\ttotal: 7.43s\tremaining: 8.38s\n", + "470:\tlearn: 16373038.3665164\ttotal: 7.44s\tremaining: 8.36s\n", + "471:\tlearn: 16372801.5860356\ttotal: 7.46s\tremaining: 8.35s\n", + "472:\tlearn: 16360759.6605520\ttotal: 7.48s\tremaining: 8.33s\n", + "473:\tlearn: 16360169.9657388\ttotal: 7.5s\tremaining: 8.32s\n", + "474:\tlearn: 16351841.0373273\ttotal: 7.52s\tremaining: 8.31s\n", + "475:\tlearn: 16349809.4004009\ttotal: 7.53s\tremaining: 8.29s\n", + "476:\tlearn: 16344483.1074475\ttotal: 7.55s\tremaining: 8.28s\n", + "477:\tlearn: 16340922.7262468\ttotal: 7.56s\tremaining: 8.26s\n", + "478:\tlearn: 16334736.4373107\ttotal: 7.58s\tremaining: 8.25s\n", + "479:\tlearn: 16334043.7402281\ttotal: 7.6s\tremaining: 8.23s\n", + "480:\tlearn: 16333745.0129155\ttotal: 7.62s\tremaining: 8.22s\n", + "481:\tlearn: 16332170.0024156\ttotal: 7.63s\tremaining: 8.2s\n", + "482:\tlearn: 16331680.4256261\ttotal: 7.64s\tremaining: 8.18s\n", + "483:\tlearn: 16321943.5880137\ttotal: 7.66s\tremaining: 8.16s\n", + "484:\tlearn: 16313566.1128530\ttotal: 7.67s\tremaining: 8.15s\n", + "485:\tlearn: 16312784.3783495\ttotal: 7.69s\tremaining: 8.13s\n", + "486:\tlearn: 16304256.8971602\ttotal: 7.7s\tremaining: 8.11s\n", + "487:\tlearn: 16299338.9360929\ttotal: 7.72s\tremaining: 8.1s\n", + "488:\tlearn: 16298399.2768748\ttotal: 7.73s\tremaining: 8.08s\n", + "489:\tlearn: 16282861.5959599\ttotal: 7.75s\tremaining: 8.06s\n", + "490:\tlearn: 16278027.7798172\ttotal: 7.76s\tremaining: 8.04s\n", + "491:\tlearn: 16262455.7433251\ttotal: 7.77s\tremaining: 8.03s\n", + "492:\tlearn: 16254609.6670435\ttotal: 7.79s\tremaining: 8.01s\n", + "493:\tlearn: 16250306.9197526\ttotal: 7.8s\tremaining: 7.99s\n", + "494:\tlearn: 16249855.9315045\ttotal: 7.81s\tremaining: 7.97s\n", + "495:\tlearn: 16248555.7562997\ttotal: 7.83s\tremaining: 7.95s\n", + "496:\tlearn: 16247555.1566330\ttotal: 7.84s\tremaining: 7.93s\n", + "497:\tlearn: 16247235.5993966\ttotal: 7.85s\tremaining: 7.91s\n", + "498:\tlearn: 16246264.7483105\ttotal: 7.86s\tremaining: 7.89s\n", + "499:\tlearn: 16246007.7491962\ttotal: 7.87s\tremaining: 7.87s\n", + "500:\tlearn: 16222867.6954421\ttotal: 7.88s\tremaining: 7.85s\n", + "501:\tlearn: 16222688.8853061\ttotal: 7.9s\tremaining: 7.83s\n", + "502:\tlearn: 16217885.3385915\ttotal: 7.91s\tremaining: 7.82s\n", + "503:\tlearn: 16217409.1580145\ttotal: 7.92s\tremaining: 7.79s\n", + "504:\tlearn: 16216838.3191240\ttotal: 7.93s\tremaining: 7.78s\n", + "505:\tlearn: 16216329.9777509\ttotal: 7.95s\tremaining: 7.76s\n", + "506:\tlearn: 16201534.4156055\ttotal: 7.96s\tremaining: 7.74s\n", + "507:\tlearn: 16198138.1904772\ttotal: 7.98s\tremaining: 7.72s\n", + "508:\tlearn: 16197904.2583705\ttotal: 7.99s\tremaining: 7.7s\n", + "509:\tlearn: 16193656.6407621\ttotal: 8s\tremaining: 7.69s\n", + "510:\tlearn: 16180805.8618897\ttotal: 8.01s\tremaining: 7.67s\n", + "511:\tlearn: 16176908.1769610\ttotal: 8.03s\tremaining: 7.65s\n", + "512:\tlearn: 16168261.0438871\ttotal: 8.04s\tremaining: 7.64s\n", + "513:\tlearn: 16167754.4165306\ttotal: 8.06s\tremaining: 7.62s\n", + "514:\tlearn: 16166295.0362243\ttotal: 8.08s\tremaining: 7.61s\n", + "515:\tlearn: 16166058.4053693\ttotal: 8.09s\tremaining: 7.59s\n", + "516:\tlearn: 16155412.7707338\ttotal: 8.11s\tremaining: 7.57s\n", + "517:\tlearn: 16152266.1742558\ttotal: 8.12s\tremaining: 7.56s\n", + "518:\tlearn: 16151552.8907870\ttotal: 8.14s\tremaining: 7.54s\n", + "519:\tlearn: 16140281.4351978\ttotal: 8.16s\tremaining: 7.53s\n", + "520:\tlearn: 16133450.4403783\ttotal: 8.18s\tremaining: 7.52s\n", + "521:\tlearn: 16132209.1334220\ttotal: 8.19s\tremaining: 7.5s\n", + "522:\tlearn: 16118104.6552795\ttotal: 8.21s\tremaining: 7.48s\n", + "523:\tlearn: 16108764.2393062\ttotal: 8.22s\tremaining: 7.47s\n", + "524:\tlearn: 16108234.0634605\ttotal: 8.24s\tremaining: 7.45s\n", + "525:\tlearn: 16107619.6760099\ttotal: 8.25s\tremaining: 7.44s\n", + "526:\tlearn: 16104870.7442280\ttotal: 8.27s\tremaining: 7.42s\n", + "527:\tlearn: 16102428.3934069\ttotal: 8.28s\tremaining: 7.4s\n", + "528:\tlearn: 16102157.2857565\ttotal: 8.29s\tremaining: 7.39s\n", + "529:\tlearn: 16101584.7403855\ttotal: 8.31s\tremaining: 7.37s\n", + "530:\tlearn: 16101480.3344969\ttotal: 8.32s\tremaining: 7.35s\n", + "531:\tlearn: 16100595.6548675\ttotal: 8.33s\tremaining: 7.33s\n", + "532:\tlearn: 16097511.0825233\ttotal: 8.35s\tremaining: 7.32s\n", + "533:\tlearn: 16096615.9743637\ttotal: 8.36s\tremaining: 7.3s\n", + "534:\tlearn: 16096369.6922988\ttotal: 8.37s\tremaining: 7.28s\n", + "535:\tlearn: 16095946.1647864\ttotal: 8.38s\tremaining: 7.26s\n", + "536:\tlearn: 16095637.6185090\ttotal: 8.4s\tremaining: 7.24s\n", + "537:\tlearn: 16094682.0243853\ttotal: 8.41s\tremaining: 7.22s\n", + "538:\tlearn: 16094291.9050311\ttotal: 8.42s\tremaining: 7.2s\n", + "539:\tlearn: 16093984.5280001\ttotal: 8.43s\tremaining: 7.18s\n", + "540:\tlearn: 16090374.6401334\ttotal: 8.45s\tremaining: 7.17s\n", + "541:\tlearn: 16090226.8772271\ttotal: 8.46s\tremaining: 7.15s\n", + "542:\tlearn: 16090050.1805201\ttotal: 8.47s\tremaining: 7.13s\n", + "543:\tlearn: 16069181.1048944\ttotal: 8.48s\tremaining: 7.11s\n", + "544:\tlearn: 16068504.9399291\ttotal: 8.5s\tremaining: 7.09s\n", + "545:\tlearn: 16068245.3744393\ttotal: 8.51s\tremaining: 7.08s\n", + "546:\tlearn: 16065773.4114093\ttotal: 8.52s\tremaining: 7.06s\n", + "547:\tlearn: 16051662.5046318\ttotal: 8.54s\tremaining: 7.04s\n", + "548:\tlearn: 16035327.2446945\ttotal: 8.55s\tremaining: 7.02s\n", + "549:\tlearn: 16035199.2858857\ttotal: 8.56s\tremaining: 7s\n", + "550:\tlearn: 16033842.9666151\ttotal: 8.57s\tremaining: 6.99s\n", + "551:\tlearn: 15995073.4381976\ttotal: 8.59s\tremaining: 6.97s\n", + "552:\tlearn: 15994812.5505379\ttotal: 8.6s\tremaining: 6.95s\n", + "553:\tlearn: 15994595.9921031\ttotal: 8.61s\tremaining: 6.93s\n", + "554:\tlearn: 15992248.3834318\ttotal: 8.62s\tremaining: 6.92s\n", + "555:\tlearn: 15992027.4484601\ttotal: 8.64s\tremaining: 6.9s\n", + "556:\tlearn: 15990566.0719983\ttotal: 8.65s\tremaining: 6.88s\n", + "557:\tlearn: 15985609.0920187\ttotal: 8.66s\tremaining: 6.86s\n", + "558:\tlearn: 15984517.8156083\ttotal: 8.68s\tremaining: 6.84s\n", + "559:\tlearn: 15958775.9803743\ttotal: 8.69s\tremaining: 6.83s\n", + "560:\tlearn: 15958166.8639855\ttotal: 8.7s\tremaining: 6.81s\n", + "561:\tlearn: 15949224.5334582\ttotal: 8.71s\tremaining: 6.79s\n", + "562:\tlearn: 15948769.9101270\ttotal: 8.73s\tremaining: 6.77s\n", + "563:\tlearn: 15930009.9576761\ttotal: 8.74s\tremaining: 6.76s\n", + "564:\tlearn: 15917439.6202170\ttotal: 8.75s\tremaining: 6.74s\n", + "565:\tlearn: 15908669.4567536\ttotal: 8.77s\tremaining: 6.72s\n", + "566:\tlearn: 15908084.2939630\ttotal: 8.78s\tremaining: 6.7s\n", + "567:\tlearn: 15906697.1590494\ttotal: 8.79s\tremaining: 6.69s\n", + "568:\tlearn: 15906522.4609846\ttotal: 8.8s\tremaining: 6.67s\n", + "569:\tlearn: 15906139.9138507\ttotal: 8.82s\tremaining: 6.65s\n", + "570:\tlearn: 15905855.0642382\ttotal: 8.83s\tremaining: 6.63s\n", + "571:\tlearn: 15897372.3501416\ttotal: 8.84s\tremaining: 6.62s\n", + "572:\tlearn: 15893536.4661240\ttotal: 8.86s\tremaining: 6.6s\n", + "573:\tlearn: 15893206.2810918\ttotal: 8.87s\tremaining: 6.58s\n", + "574:\tlearn: 15892918.2703602\ttotal: 8.88s\tremaining: 6.56s\n", + "575:\tlearn: 15892752.8029869\ttotal: 8.89s\tremaining: 6.55s\n", + "576:\tlearn: 15885169.7413434\ttotal: 8.91s\tremaining: 6.53s\n", + "577:\tlearn: 15884936.8745209\ttotal: 8.92s\tremaining: 6.51s\n", + "578:\tlearn: 15876877.1991641\ttotal: 8.93s\tremaining: 6.49s\n", + "579:\tlearn: 15865774.4061534\ttotal: 8.94s\tremaining: 6.48s\n", + "580:\tlearn: 15859212.9207966\ttotal: 8.96s\tremaining: 6.46s\n", + "581:\tlearn: 15858807.6511813\ttotal: 8.97s\tremaining: 6.44s\n", + "582:\tlearn: 15850129.9468116\ttotal: 8.98s\tremaining: 6.42s\n", + "583:\tlearn: 15845554.5689368\ttotal: 8.99s\tremaining: 6.41s\n", + "584:\tlearn: 15844986.6765475\ttotal: 9.01s\tremaining: 6.39s\n", + "585:\tlearn: 15844796.1180439\ttotal: 9.02s\tremaining: 6.37s\n", + "586:\tlearn: 15844586.1630771\ttotal: 9.03s\tremaining: 6.36s\n", + "587:\tlearn: 15827685.4584540\ttotal: 9.05s\tremaining: 6.34s\n", + "588:\tlearn: 15826910.6044821\ttotal: 9.06s\tremaining: 6.32s\n", + "589:\tlearn: 15824060.9875073\ttotal: 9.07s\tremaining: 6.3s\n", + "590:\tlearn: 15818523.6912985\ttotal: 9.09s\tremaining: 6.29s\n", + "591:\tlearn: 15810640.6921394\ttotal: 9.1s\tremaining: 6.27s\n", + "592:\tlearn: 15795481.4197185\ttotal: 9.12s\tremaining: 6.26s\n", + "593:\tlearn: 15795256.4491006\ttotal: 9.13s\tremaining: 6.24s\n", + "594:\tlearn: 15784420.7363473\ttotal: 9.14s\tremaining: 6.22s\n", + "595:\tlearn: 15784290.1819258\ttotal: 9.15s\tremaining: 6.21s\n", + "596:\tlearn: 15783955.0773924\ttotal: 9.17s\tremaining: 6.19s\n", + "597:\tlearn: 15781518.5372107\ttotal: 9.18s\tremaining: 6.17s\n", + "598:\tlearn: 15779547.4210947\ttotal: 9.2s\tremaining: 6.16s\n", + "599:\tlearn: 15777334.3663340\ttotal: 9.21s\tremaining: 6.14s\n", + "600:\tlearn: 15774774.7721883\ttotal: 9.23s\tremaining: 6.13s\n", + "601:\tlearn: 15774672.2356339\ttotal: 9.24s\tremaining: 6.11s\n", + "602:\tlearn: 15773528.0736833\ttotal: 9.26s\tremaining: 6.09s\n", + "603:\tlearn: 15768721.3649454\ttotal: 9.27s\tremaining: 6.08s\n", + "604:\tlearn: 15768502.0877019\ttotal: 9.28s\tremaining: 6.06s\n", + "605:\tlearn: 15768057.4929247\ttotal: 9.3s\tremaining: 6.05s\n", + "606:\tlearn: 15767950.4285043\ttotal: 9.31s\tremaining: 6.03s\n", + "607:\tlearn: 15767445.1324607\ttotal: 9.32s\tremaining: 6.01s\n", + "608:\tlearn: 15767269.0628064\ttotal: 9.33s\tremaining: 5.99s\n", + "609:\tlearn: 15767020.8174624\ttotal: 9.35s\tremaining: 5.97s\n", + "610:\tlearn: 15762309.5160245\ttotal: 9.36s\tremaining: 5.96s\n", + "611:\tlearn: 15757527.7718093\ttotal: 9.37s\tremaining: 5.94s\n", + "612:\tlearn: 15757150.7731734\ttotal: 9.38s\tremaining: 5.92s\n", + "613:\tlearn: 15756885.6252756\ttotal: 9.39s\tremaining: 5.91s\n", + "614:\tlearn: 15755584.6816303\ttotal: 9.41s\tremaining: 5.89s\n", + "615:\tlearn: 15755485.6737331\ttotal: 9.42s\tremaining: 5.87s\n", + "616:\tlearn: 15754432.0517599\ttotal: 9.43s\tremaining: 5.86s\n", + "617:\tlearn: 15744535.8203508\ttotal: 9.45s\tremaining: 5.84s\n", + "618:\tlearn: 15740683.5538600\ttotal: 9.46s\tremaining: 5.82s\n", + "619:\tlearn: 15736903.5667213\ttotal: 9.47s\tremaining: 5.8s\n", + "620:\tlearn: 15736355.4210963\ttotal: 9.48s\tremaining: 5.79s\n", + "621:\tlearn: 15729940.4032081\ttotal: 9.5s\tremaining: 5.77s\n", + "622:\tlearn: 15729775.7542976\ttotal: 9.51s\tremaining: 5.75s\n", + "623:\tlearn: 15726578.4125003\ttotal: 9.52s\tremaining: 5.74s\n", + "624:\tlearn: 15713451.5317183\ttotal: 9.54s\tremaining: 5.72s\n", + "625:\tlearn: 15712116.7478338\ttotal: 9.55s\tremaining: 5.71s\n", + "626:\tlearn: 15712039.0336448\ttotal: 9.56s\tremaining: 5.69s\n", + "627:\tlearn: 15711687.4136682\ttotal: 9.57s\tremaining: 5.67s\n", + "628:\tlearn: 15711298.6681597\ttotal: 9.59s\tremaining: 5.66s\n", + "629:\tlearn: 15705228.0021081\ttotal: 9.6s\tremaining: 5.64s\n", + "630:\tlearn: 15705060.0247650\ttotal: 9.62s\tremaining: 5.62s\n", + "631:\tlearn: 15702513.1910574\ttotal: 9.63s\tremaining: 5.61s\n", + "632:\tlearn: 15702203.6145508\ttotal: 9.64s\tremaining: 5.59s\n", + "633:\tlearn: 15698975.2951288\ttotal: 9.65s\tremaining: 5.57s\n", + "634:\tlearn: 15694674.2341421\ttotal: 9.67s\tremaining: 5.56s\n", + "635:\tlearn: 15686913.9104937\ttotal: 9.68s\tremaining: 5.54s\n", + "636:\tlearn: 15686809.9586513\ttotal: 9.7s\tremaining: 5.53s\n", + "637:\tlearn: 15685604.3787689\ttotal: 9.71s\tremaining: 5.51s\n", + "638:\tlearn: 15685081.4917552\ttotal: 9.72s\tremaining: 5.49s\n", + "639:\tlearn: 15676541.2826685\ttotal: 9.74s\tremaining: 5.48s\n", + "640:\tlearn: 15672855.0180760\ttotal: 9.75s\tremaining: 5.46s\n", + "641:\tlearn: 15666780.7593096\ttotal: 9.77s\tremaining: 5.45s\n", + "642:\tlearn: 15659438.3508408\ttotal: 9.78s\tremaining: 5.43s\n", + "643:\tlearn: 15653755.4598701\ttotal: 9.8s\tremaining: 5.42s\n", + "644:\tlearn: 15652034.4638985\ttotal: 9.81s\tremaining: 5.4s\n", + "645:\tlearn: 15645095.6489597\ttotal: 9.82s\tremaining: 5.38s\n", + "646:\tlearn: 15641226.9420905\ttotal: 9.84s\tremaining: 5.37s\n", + "647:\tlearn: 15639833.9184524\ttotal: 9.85s\tremaining: 5.35s\n", + "648:\tlearn: 15639581.1651510\ttotal: 9.87s\tremaining: 5.34s\n", + "649:\tlearn: 15635923.3848062\ttotal: 9.88s\tremaining: 5.32s\n", + "650:\tlearn: 15635813.1152459\ttotal: 9.89s\tremaining: 5.3s\n", + "651:\tlearn: 15635469.3555938\ttotal: 9.9s\tremaining: 5.29s\n", + "652:\tlearn: 15635363.9174910\ttotal: 9.92s\tremaining: 5.27s\n", + "653:\tlearn: 15633936.7433448\ttotal: 9.93s\tremaining: 5.25s\n", + "654:\tlearn: 15633839.2271448\ttotal: 9.94s\tremaining: 5.24s\n", + "655:\tlearn: 15633735.8610291\ttotal: 9.96s\tremaining: 5.22s\n", + "656:\tlearn: 15633309.8063070\ttotal: 9.97s\tremaining: 5.2s\n", + "657:\tlearn: 15632683.8986677\ttotal: 9.98s\tremaining: 5.19s\n", + "658:\tlearn: 15632461.2639014\ttotal: 9.99s\tremaining: 5.17s\n", + "659:\tlearn: 15627123.1765533\ttotal: 10s\tremaining: 5.16s\n", + "660:\tlearn: 15626996.0787558\ttotal: 10s\tremaining: 5.14s\n", + "661:\tlearn: 15624291.0204091\ttotal: 10s\tremaining: 5.12s\n", + "662:\tlearn: 15617684.3098363\ttotal: 10s\tremaining: 5.11s\n", + "663:\tlearn: 15611967.2176796\ttotal: 10.1s\tremaining: 5.09s\n", + "664:\tlearn: 15598472.2546786\ttotal: 10.1s\tremaining: 5.07s\n", + "665:\tlearn: 15597526.0470563\ttotal: 10.1s\tremaining: 5.06s\n", + "666:\tlearn: 15597430.3920481\ttotal: 10.1s\tremaining: 5.04s\n", + "667:\tlearn: 15596422.7059295\ttotal: 10.1s\tremaining: 5.03s\n", + "668:\tlearn: 15591400.2242411\ttotal: 10.1s\tremaining: 5.01s\n", + "669:\tlearn: 15585199.5277811\ttotal: 10.1s\tremaining: 4.99s\n", + "670:\tlearn: 15585003.5063693\ttotal: 10.2s\tremaining: 4.98s\n", + "671:\tlearn: 15578765.7193891\ttotal: 10.2s\tremaining: 4.96s\n", + "672:\tlearn: 15577252.0151364\ttotal: 10.2s\tremaining: 4.94s\n", + "673:\tlearn: 15576511.8797514\ttotal: 10.2s\tremaining: 4.93s\n", + "674:\tlearn: 15576120.7606092\ttotal: 10.2s\tremaining: 4.91s\n", + "675:\tlearn: 15574398.5273782\ttotal: 10.2s\tremaining: 4.89s\n", + "676:\tlearn: 15565660.7493905\ttotal: 10.2s\tremaining: 4.88s\n", + "677:\tlearn: 15561009.3437211\ttotal: 10.2s\tremaining: 4.86s\n", + "678:\tlearn: 15548878.4770401\ttotal: 10.3s\tremaining: 4.85s\n", + "679:\tlearn: 15527713.9632219\ttotal: 10.3s\tremaining: 4.83s\n", + "680:\tlearn: 15519745.2151864\ttotal: 10.3s\tremaining: 4.82s\n", + "681:\tlearn: 15519391.2760902\ttotal: 10.3s\tremaining: 4.8s\n", + "682:\tlearn: 15514461.8611265\ttotal: 10.3s\tremaining: 4.78s\n", + "683:\tlearn: 15514296.1001141\ttotal: 10.3s\tremaining: 4.77s\n", + "684:\tlearn: 15514204.8658979\ttotal: 10.3s\tremaining: 4.75s\n", + "685:\tlearn: 15513977.3554214\ttotal: 10.3s\tremaining: 4.74s\n", + "686:\tlearn: 15513906.5046745\ttotal: 10.4s\tremaining: 4.72s\n", + "687:\tlearn: 15513701.8112778\ttotal: 10.4s\tremaining: 4.7s\n", + "688:\tlearn: 15513602.4959013\ttotal: 10.4s\tremaining: 4.69s\n", + "689:\tlearn: 15513510.7910896\ttotal: 10.4s\tremaining: 4.67s\n", + "690:\tlearn: 15513352.2070048\ttotal: 10.4s\tremaining: 4.65s\n", + "691:\tlearn: 15513238.8204588\ttotal: 10.4s\tremaining: 4.64s\n", + "692:\tlearn: 15513154.0618557\ttotal: 10.4s\tremaining: 4.62s\n", + "693:\tlearn: 15512878.9114412\ttotal: 10.4s\tremaining: 4.6s\n", + "694:\tlearn: 15509248.2055515\ttotal: 10.5s\tremaining: 4.59s\n", + "695:\tlearn: 15508734.7327170\ttotal: 10.5s\tremaining: 4.57s\n", + "696:\tlearn: 15508495.7881550\ttotal: 10.5s\tremaining: 4.55s\n", + "697:\tlearn: 15508349.6872134\ttotal: 10.5s\tremaining: 4.54s\n", + "698:\tlearn: 15508190.6588965\ttotal: 10.5s\tremaining: 4.52s\n", + "699:\tlearn: 15508018.8419773\ttotal: 10.5s\tremaining: 4.5s\n", + "700:\tlearn: 15507826.3791202\ttotal: 10.5s\tremaining: 4.49s\n", + "701:\tlearn: 15507705.8100928\ttotal: 10.5s\tremaining: 4.47s\n", + "702:\tlearn: 15507533.3512682\ttotal: 10.5s\tremaining: 4.46s\n", + "703:\tlearn: 15501571.2913355\ttotal: 10.6s\tremaining: 4.44s\n", + "704:\tlearn: 15495921.0773672\ttotal: 10.6s\tremaining: 4.42s\n", + "705:\tlearn: 15495385.0875416\ttotal: 10.6s\tremaining: 4.41s\n", + "706:\tlearn: 15495191.8032918\ttotal: 10.6s\tremaining: 4.39s\n", + "707:\tlearn: 15494128.9589635\ttotal: 10.6s\tremaining: 4.38s\n", + "708:\tlearn: 15493806.9566177\ttotal: 10.6s\tremaining: 4.36s\n", + "709:\tlearn: 15493694.0465547\ttotal: 10.6s\tremaining: 4.34s\n", + "710:\tlearn: 15493305.1729869\ttotal: 10.6s\tremaining: 4.33s\n", + "711:\tlearn: 15487948.0399475\ttotal: 10.7s\tremaining: 4.31s\n", + "712:\tlearn: 15487843.0916850\ttotal: 10.7s\tremaining: 4.29s\n", + "713:\tlearn: 15482765.7669785\ttotal: 10.7s\tremaining: 4.28s\n", + "714:\tlearn: 15474767.3580796\ttotal: 10.7s\tremaining: 4.26s\n", + "715:\tlearn: 15472407.8166003\ttotal: 10.7s\tremaining: 4.25s\n", + "716:\tlearn: 15467592.3874842\ttotal: 10.7s\tremaining: 4.23s\n", + "717:\tlearn: 15467435.4901525\ttotal: 10.7s\tremaining: 4.21s\n", + "718:\tlearn: 15462871.2869120\ttotal: 10.7s\tremaining: 4.2s\n", + "719:\tlearn: 15462771.0380185\ttotal: 10.8s\tremaining: 4.18s\n", + "720:\tlearn: 15462475.2715024\ttotal: 10.8s\tremaining: 4.17s\n", + "721:\tlearn: 15454885.7938423\ttotal: 10.8s\tremaining: 4.15s\n", + "722:\tlearn: 15450557.5824215\ttotal: 10.8s\tremaining: 4.13s\n", + "723:\tlearn: 15446455.2317749\ttotal: 10.8s\tremaining: 4.12s\n", + "724:\tlearn: 15445711.0004476\ttotal: 10.8s\tremaining: 4.1s\n", + "725:\tlearn: 15441822.5331613\ttotal: 10.8s\tremaining: 4.09s\n", + "726:\tlearn: 15441182.6843715\ttotal: 10.8s\tremaining: 4.07s\n", + "727:\tlearn: 15441088.8915881\ttotal: 10.9s\tremaining: 4.06s\n", + "728:\tlearn: 15441002.5272406\ttotal: 10.9s\tremaining: 4.04s\n", + "729:\tlearn: 15440884.2830869\ttotal: 10.9s\tremaining: 4.02s\n", + "730:\tlearn: 15440734.2579995\ttotal: 10.9s\tremaining: 4.01s\n", + "731:\tlearn: 15440611.8887909\ttotal: 10.9s\tremaining: 3.99s\n", + "732:\tlearn: 15440249.4221271\ttotal: 10.9s\tremaining: 3.98s\n", + "733:\tlearn: 15440158.8154476\ttotal: 10.9s\tremaining: 3.96s\n", + "734:\tlearn: 15436472.7845071\ttotal: 10.9s\tremaining: 3.94s\n", + "735:\tlearn: 15433672.4484876\ttotal: 11s\tremaining: 3.93s\n", + "736:\tlearn: 15433490.1840146\ttotal: 11s\tremaining: 3.91s\n", + "737:\tlearn: 15433308.6881010\ttotal: 11s\tremaining: 3.9s\n", + "738:\tlearn: 15433042.7409848\ttotal: 11s\tremaining: 3.88s\n", + "739:\tlearn: 15432541.8769518\ttotal: 11s\tremaining: 3.87s\n", + "740:\tlearn: 15431856.6761047\ttotal: 11s\tremaining: 3.85s\n", + "741:\tlearn: 15431804.7359345\ttotal: 11s\tremaining: 3.83s\n", + "742:\tlearn: 15427355.2392047\ttotal: 11s\tremaining: 3.82s\n", + "743:\tlearn: 15427218.1028185\ttotal: 11.1s\tremaining: 3.8s\n", + "744:\tlearn: 15424332.1093472\ttotal: 11.1s\tremaining: 3.79s\n", + "745:\tlearn: 15388321.8033125\ttotal: 11.1s\tremaining: 3.77s\n", + "746:\tlearn: 15377267.9048803\ttotal: 11.1s\tremaining: 3.76s\n", + "747:\tlearn: 15374625.6198420\ttotal: 11.1s\tremaining: 3.74s\n", + "748:\tlearn: 15370386.0426691\ttotal: 11.1s\tremaining: 3.73s\n", + "749:\tlearn: 15359901.4299089\ttotal: 11.1s\tremaining: 3.71s\n", + "750:\tlearn: 15358774.7332579\ttotal: 11.1s\tremaining: 3.69s\n", + "751:\tlearn: 15358651.8711020\ttotal: 11.2s\tremaining: 3.68s\n", + "752:\tlearn: 15358300.8764559\ttotal: 11.2s\tremaining: 3.66s\n", + "753:\tlearn: 15357884.8170886\ttotal: 11.2s\tremaining: 3.65s\n", + "754:\tlearn: 15357643.0994172\ttotal: 11.2s\tremaining: 3.63s\n", + "755:\tlearn: 15357565.0887636\ttotal: 11.2s\tremaining: 3.62s\n", + "756:\tlearn: 15351820.0777339\ttotal: 11.2s\tremaining: 3.6s\n", + "757:\tlearn: 15351414.2517094\ttotal: 11.2s\tremaining: 3.58s\n", + "758:\tlearn: 15349501.7532204\ttotal: 11.2s\tremaining: 3.57s\n", + "759:\tlearn: 15348526.7586048\ttotal: 11.3s\tremaining: 3.56s\n", + "760:\tlearn: 15348352.7244253\ttotal: 11.3s\tremaining: 3.54s\n", + "761:\tlearn: 15347292.4488773\ttotal: 11.3s\tremaining: 3.52s\n", + "762:\tlearn: 15347207.8865499\ttotal: 11.3s\tremaining: 3.51s\n", + "763:\tlearn: 15342959.4790246\ttotal: 11.3s\tremaining: 3.49s\n", + "764:\tlearn: 15342697.6483068\ttotal: 11.3s\tremaining: 3.48s\n", + "765:\tlearn: 15313028.1511576\ttotal: 11.3s\tremaining: 3.46s\n", + "766:\tlearn: 15310947.6382018\ttotal: 11.3s\tremaining: 3.45s\n", + "767:\tlearn: 15263340.9642127\ttotal: 11.4s\tremaining: 3.43s\n", + "768:\tlearn: 15259807.2026083\ttotal: 11.4s\tremaining: 3.42s\n", + "769:\tlearn: 15259504.1148296\ttotal: 11.4s\tremaining: 3.4s\n", + "770:\tlearn: 15259395.2637694\ttotal: 11.4s\tremaining: 3.39s\n", + "771:\tlearn: 15256045.7141942\ttotal: 11.4s\tremaining: 3.37s\n", + "772:\tlearn: 15252870.9021417\ttotal: 11.4s\tremaining: 3.36s\n", + "773:\tlearn: 15248430.3201074\ttotal: 11.4s\tremaining: 3.34s\n", + "774:\tlearn: 15246752.4177458\ttotal: 11.5s\tremaining: 3.33s\n", + "775:\tlearn: 15245960.1417687\ttotal: 11.5s\tremaining: 3.31s\n", + "776:\tlearn: 15245917.6645107\ttotal: 11.5s\tremaining: 3.3s\n", + "777:\tlearn: 15245817.5185452\ttotal: 11.5s\tremaining: 3.28s\n", + "778:\tlearn: 15245619.8351855\ttotal: 11.5s\tremaining: 3.27s\n", + "779:\tlearn: 15244869.5667520\ttotal: 11.5s\tremaining: 3.25s\n", + "780:\tlearn: 15244818.8943236\ttotal: 11.5s\tremaining: 3.24s\n", + "781:\tlearn: 15244254.3637038\ttotal: 11.6s\tremaining: 3.22s\n", + "782:\tlearn: 15243818.2939855\ttotal: 11.6s\tremaining: 3.21s\n", + "783:\tlearn: 15243668.1645179\ttotal: 11.6s\tremaining: 3.19s\n", + "784:\tlearn: 15240656.8617467\ttotal: 11.6s\tremaining: 3.17s\n", + "785:\tlearn: 15237802.6637690\ttotal: 11.6s\tremaining: 3.16s\n", + "786:\tlearn: 15235097.3769887\ttotal: 11.6s\tremaining: 3.14s\n", + "787:\tlearn: 15231063.4576018\ttotal: 11.6s\tremaining: 3.13s\n", + "788:\tlearn: 15224406.4239600\ttotal: 11.6s\tremaining: 3.11s\n", + "789:\tlearn: 15220791.2846445\ttotal: 11.7s\tremaining: 3.1s\n", + "790:\tlearn: 15220221.4180094\ttotal: 11.7s\tremaining: 3.08s\n", + "791:\tlearn: 15220121.7499013\ttotal: 11.7s\tremaining: 3.07s\n", + "792:\tlearn: 15218396.9325757\ttotal: 11.7s\tremaining: 3.05s\n", + "793:\tlearn: 15213830.8844557\ttotal: 11.7s\tremaining: 3.04s\n", + "794:\tlearn: 15212644.4009126\ttotal: 11.7s\tremaining: 3.02s\n", + "795:\tlearn: 15212570.5272286\ttotal: 11.7s\tremaining: 3.01s\n", + "796:\tlearn: 15172874.1552397\ttotal: 11.7s\tremaining: 2.99s\n", + "797:\tlearn: 15164671.3501787\ttotal: 11.8s\tremaining: 2.98s\n", + "798:\tlearn: 15162711.8871221\ttotal: 11.8s\tremaining: 2.96s\n", + "799:\tlearn: 15162618.0050229\ttotal: 11.8s\tremaining: 2.94s\n", + "800:\tlearn: 15161186.8924011\ttotal: 11.8s\tremaining: 2.93s\n", + "801:\tlearn: 15160994.4738412\ttotal: 11.8s\tremaining: 2.91s\n", + "802:\tlearn: 15159385.3831268\ttotal: 11.8s\tremaining: 2.9s\n", + "803:\tlearn: 15159166.1576231\ttotal: 11.8s\tremaining: 2.88s\n", + "804:\tlearn: 15156764.1801770\ttotal: 11.8s\tremaining: 2.87s\n", + "805:\tlearn: 15146691.8394282\ttotal: 11.9s\tremaining: 2.85s\n", + "806:\tlearn: 15146533.6706853\ttotal: 11.9s\tremaining: 2.84s\n", + "807:\tlearn: 15146408.7773292\ttotal: 11.9s\tremaining: 2.82s\n", + "808:\tlearn: 15142359.7678728\ttotal: 11.9s\tremaining: 2.81s\n", + "809:\tlearn: 15142322.1248825\ttotal: 11.9s\tremaining: 2.79s\n", + "810:\tlearn: 15132770.1153732\ttotal: 11.9s\tremaining: 2.78s\n", + "811:\tlearn: 15101480.9924963\ttotal: 11.9s\tremaining: 2.77s\n", + "812:\tlearn: 15101445.1875248\ttotal: 12s\tremaining: 2.75s\n", + "813:\tlearn: 15075376.4419388\ttotal: 12s\tremaining: 2.73s\n", + "814:\tlearn: 15073160.0820287\ttotal: 12s\tremaining: 2.72s\n", + "815:\tlearn: 15072725.5140996\ttotal: 12s\tremaining: 2.71s\n", + "816:\tlearn: 15072585.7018342\ttotal: 12s\tremaining: 2.69s\n", + "817:\tlearn: 15071522.0001919\ttotal: 12s\tremaining: 2.67s\n", + "818:\tlearn: 15071382.2097110\ttotal: 12s\tremaining: 2.66s\n", + "819:\tlearn: 15071301.2886091\ttotal: 12s\tremaining: 2.64s\n", + "820:\tlearn: 15071025.2992144\ttotal: 12.1s\tremaining: 2.63s\n", + "821:\tlearn: 15069498.2268762\ttotal: 12.1s\tremaining: 2.61s\n", + "822:\tlearn: 15061575.7065075\ttotal: 12.1s\tremaining: 2.6s\n", + "823:\tlearn: 15061416.4068476\ttotal: 12.1s\tremaining: 2.58s\n", + "824:\tlearn: 15060945.6687130\ttotal: 12.1s\tremaining: 2.57s\n", + "825:\tlearn: 15051099.8538783\ttotal: 12.1s\tremaining: 2.55s\n", + "826:\tlearn: 15050450.9663299\ttotal: 12.1s\tremaining: 2.54s\n", + "827:\tlearn: 15049722.9751983\ttotal: 12.2s\tremaining: 2.52s\n", + "828:\tlearn: 15049467.7452535\ttotal: 12.2s\tremaining: 2.51s\n", + "829:\tlearn: 15049412.7697933\ttotal: 12.2s\tremaining: 2.49s\n", + "830:\tlearn: 15048891.7740041\ttotal: 12.2s\tremaining: 2.48s\n", + "831:\tlearn: 15048043.0994998\ttotal: 12.2s\tremaining: 2.46s\n", + "832:\tlearn: 15046697.3368860\ttotal: 12.2s\tremaining: 2.45s\n", + "833:\tlearn: 15038272.8803419\ttotal: 12.2s\tremaining: 2.43s\n", + "834:\tlearn: 15034639.9951102\ttotal: 12.2s\tremaining: 2.42s\n", + "835:\tlearn: 15030153.8614245\ttotal: 12.3s\tremaining: 2.4s\n", + "836:\tlearn: 15027964.0190757\ttotal: 12.3s\tremaining: 2.39s\n", + "837:\tlearn: 15023890.1409211\ttotal: 12.3s\tremaining: 2.37s\n", + "838:\tlearn: 15022954.0613643\ttotal: 12.3s\tremaining: 2.36s\n", + "839:\tlearn: 15022653.7321874\ttotal: 12.3s\tremaining: 2.34s\n", + "840:\tlearn: 15021763.5899870\ttotal: 12.3s\tremaining: 2.33s\n", + "841:\tlearn: 15021552.9666208\ttotal: 12.3s\tremaining: 2.31s\n", + "842:\tlearn: 15017213.3112838\ttotal: 12.3s\tremaining: 2.3s\n", + "843:\tlearn: 15006868.9919636\ttotal: 12.4s\tremaining: 2.28s\n", + "844:\tlearn: 15006047.4873296\ttotal: 12.4s\tremaining: 2.27s\n", + "845:\tlearn: 15003167.3995596\ttotal: 12.4s\tremaining: 2.25s\n", + "846:\tlearn: 15001516.1719277\ttotal: 12.4s\tremaining: 2.24s\n", + "847:\tlearn: 15000023.6971343\ttotal: 12.4s\tremaining: 2.22s\n", + "848:\tlearn: 14996097.9901016\ttotal: 12.4s\tremaining: 2.21s\n", + "849:\tlearn: 14995809.9617414\ttotal: 12.4s\tremaining: 2.19s\n", + "850:\tlearn: 14991694.0680204\ttotal: 12.4s\tremaining: 2.18s\n", + "851:\tlearn: 14990806.5441048\ttotal: 12.5s\tremaining: 2.16s\n", + "852:\tlearn: 14990539.4146062\ttotal: 12.5s\tremaining: 2.15s\n", + "853:\tlearn: 14990428.7975864\ttotal: 12.5s\tremaining: 2.13s\n", + "854:\tlearn: 14989061.7567162\ttotal: 12.5s\tremaining: 2.12s\n", + "855:\tlearn: 14983131.0103419\ttotal: 12.5s\tremaining: 2.1s\n", + "856:\tlearn: 14982655.3316759\ttotal: 12.5s\tremaining: 2.09s\n", + "857:\tlearn: 14977099.0608273\ttotal: 12.5s\tremaining: 2.07s\n", + "858:\tlearn: 14976713.9058693\ttotal: 12.6s\tremaining: 2.06s\n", + "859:\tlearn: 14976613.3364184\ttotal: 12.6s\tremaining: 2.04s\n", + "860:\tlearn: 14964115.6999829\ttotal: 12.6s\tremaining: 2.03s\n", + "861:\tlearn: 14961152.7626425\ttotal: 12.6s\tremaining: 2.02s\n", + "862:\tlearn: 14960316.8698796\ttotal: 12.6s\tremaining: 2s\n", + "863:\tlearn: 14960206.5805103\ttotal: 12.6s\tremaining: 1.99s\n", + "864:\tlearn: 14948350.2065232\ttotal: 12.6s\tremaining: 1.97s\n", + "865:\tlearn: 14948237.8225238\ttotal: 12.6s\tremaining: 1.96s\n", + "866:\tlearn: 14948145.1280412\ttotal: 12.7s\tremaining: 1.94s\n", + "867:\tlearn: 14947479.9936319\ttotal: 12.7s\tremaining: 1.93s\n", + "868:\tlearn: 14946706.9144290\ttotal: 12.7s\tremaining: 1.91s\n", + "869:\tlearn: 14946008.4529886\ttotal: 12.7s\tremaining: 1.9s\n", + "870:\tlearn: 14938382.9733130\ttotal: 12.7s\tremaining: 1.88s\n", + "871:\tlearn: 14935923.0018589\ttotal: 12.7s\tremaining: 1.87s\n", + "872:\tlearn: 14935763.9386719\ttotal: 12.7s\tremaining: 1.85s\n", + "873:\tlearn: 14935390.9032799\ttotal: 12.7s\tremaining: 1.84s\n", + "874:\tlearn: 14924136.4999000\ttotal: 12.8s\tremaining: 1.82s\n", + "875:\tlearn: 14923231.4975181\ttotal: 12.8s\tremaining: 1.81s\n", + "876:\tlearn: 14920764.7489123\ttotal: 12.8s\tremaining: 1.79s\n", + "877:\tlearn: 14920619.6869935\ttotal: 12.8s\tremaining: 1.78s\n", + "878:\tlearn: 14920259.9887151\ttotal: 12.8s\tremaining: 1.76s\n", + "879:\tlearn: 14918671.6063618\ttotal: 12.8s\tremaining: 1.75s\n", + "880:\tlearn: 14909484.3446534\ttotal: 12.8s\tremaining: 1.73s\n", + "881:\tlearn: 14909331.3722806\ttotal: 12.8s\tremaining: 1.72s\n", + "882:\tlearn: 14909000.4744294\ttotal: 12.9s\tremaining: 1.7s\n", + "883:\tlearn: 14907810.4215534\ttotal: 12.9s\tremaining: 1.69s\n", + "884:\tlearn: 14907739.9399244\ttotal: 12.9s\tremaining: 1.68s\n", + "885:\tlearn: 14907643.8234156\ttotal: 12.9s\tremaining: 1.66s\n", + "886:\tlearn: 14902234.6414918\ttotal: 12.9s\tremaining: 1.65s\n", + "887:\tlearn: 14899639.1808572\ttotal: 12.9s\tremaining: 1.63s\n", + "888:\tlearn: 14898572.6302420\ttotal: 12.9s\tremaining: 1.62s\n", + "889:\tlearn: 14898481.9011232\ttotal: 13s\tremaining: 1.6s\n", + "890:\tlearn: 14898396.0569341\ttotal: 13s\tremaining: 1.59s\n", + "891:\tlearn: 14897825.8306216\ttotal: 13s\tremaining: 1.57s\n", + "892:\tlearn: 14897667.5383103\ttotal: 13s\tremaining: 1.56s\n", + "893:\tlearn: 14894977.2967186\ttotal: 13s\tremaining: 1.54s\n", + "894:\tlearn: 14894451.1015405\ttotal: 13s\tremaining: 1.53s\n", + "895:\tlearn: 14894302.6357933\ttotal: 13s\tremaining: 1.51s\n", + "896:\tlearn: 14892042.1460828\ttotal: 13s\tremaining: 1.5s\n", + "897:\tlearn: 14891913.2181914\ttotal: 13.1s\tremaining: 1.48s\n", + "898:\tlearn: 14891548.8875063\ttotal: 13.1s\tremaining: 1.47s\n", + "899:\tlearn: 14891535.2806629\ttotal: 13.1s\tremaining: 1.45s\n", + "900:\tlearn: 14885531.4554658\ttotal: 13.1s\tremaining: 1.44s\n", + "901:\tlearn: 14885300.5490787\ttotal: 13.1s\tremaining: 1.42s\n", + "902:\tlearn: 14882237.8064495\ttotal: 13.1s\tremaining: 1.41s\n", + "903:\tlearn: 14871534.0201501\ttotal: 13.1s\tremaining: 1.39s\n", + "904:\tlearn: 14870231.5883229\ttotal: 13.1s\tremaining: 1.38s\n", + "905:\tlearn: 14870176.1224648\ttotal: 13.2s\tremaining: 1.36s\n", + "906:\tlearn: 14869680.0980501\ttotal: 13.2s\tremaining: 1.35s\n", + "907:\tlearn: 14869457.0180442\ttotal: 13.2s\tremaining: 1.33s\n", + "908:\tlearn: 14868933.3692698\ttotal: 13.2s\tremaining: 1.32s\n", + "909:\tlearn: 14863961.6816683\ttotal: 13.2s\tremaining: 1.31s\n", + "910:\tlearn: 14863914.5911026\ttotal: 13.2s\tremaining: 1.29s\n", + "911:\tlearn: 14855476.3946477\ttotal: 13.2s\tremaining: 1.28s\n", + "912:\tlearn: 14855166.2145584\ttotal: 13.3s\tremaining: 1.26s\n", + "913:\tlearn: 14850934.1124148\ttotal: 13.3s\tremaining: 1.25s\n", + "914:\tlearn: 14846483.1667184\ttotal: 13.3s\tremaining: 1.23s\n", + "915:\tlearn: 14837736.3329095\ttotal: 13.3s\tremaining: 1.22s\n", + "916:\tlearn: 14837595.6179847\ttotal: 13.3s\tremaining: 1.2s\n", + "917:\tlearn: 14830817.0386636\ttotal: 13.3s\tremaining: 1.19s\n", + "918:\tlearn: 14830573.0969752\ttotal: 13.3s\tremaining: 1.18s\n", + "919:\tlearn: 14830470.0025192\ttotal: 13.3s\tremaining: 1.16s\n", + "920:\tlearn: 14829815.6285131\ttotal: 13.4s\tremaining: 1.15s\n", + "921:\tlearn: 14825434.2189552\ttotal: 13.4s\tremaining: 1.13s\n", + "922:\tlearn: 14819445.0181126\ttotal: 13.4s\tremaining: 1.12s\n", + "923:\tlearn: 14819398.6279561\ttotal: 13.4s\tremaining: 1.1s\n", + "924:\tlearn: 14818813.5923928\ttotal: 13.4s\tremaining: 1.09s\n", + "925:\tlearn: 14815956.9177135\ttotal: 13.4s\tremaining: 1.07s\n", + "926:\tlearn: 14815788.2679741\ttotal: 13.4s\tremaining: 1.06s\n", + "927:\tlearn: 14815448.9260298\ttotal: 13.5s\tremaining: 1.04s\n", + "928:\tlearn: 14815074.5372959\ttotal: 13.5s\tremaining: 1.03s\n", + "929:\tlearn: 14814229.2585638\ttotal: 13.5s\tremaining: 1.01s\n", + "930:\tlearn: 14804039.0241152\ttotal: 13.5s\tremaining: 1s\n", + "931:\tlearn: 14803929.0738285\ttotal: 13.5s\tremaining: 987ms\n", + "932:\tlearn: 14803822.0317935\ttotal: 13.5s\tremaining: 972ms\n", + "933:\tlearn: 14802847.7620639\ttotal: 13.6s\tremaining: 958ms\n", + "934:\tlearn: 14802644.0143811\ttotal: 13.6s\tremaining: 944ms\n", + "935:\tlearn: 14801390.4240818\ttotal: 13.6s\tremaining: 929ms\n", + "936:\tlearn: 14801273.4225706\ttotal: 13.6s\tremaining: 915ms\n", + "937:\tlearn: 14801021.8599058\ttotal: 13.6s\tremaining: 900ms\n", + "938:\tlearn: 14800715.3029627\ttotal: 13.6s\tremaining: 885ms\n", + "939:\tlearn: 14799551.6406369\ttotal: 13.6s\tremaining: 871ms\n", + "940:\tlearn: 14795598.5613345\ttotal: 13.7s\tremaining: 856ms\n", + "941:\tlearn: 14794465.0278834\ttotal: 13.7s\tremaining: 842ms\n", + "942:\tlearn: 14794259.7563387\ttotal: 13.7s\tremaining: 827ms\n", + "943:\tlearn: 14794156.6214413\ttotal: 13.7s\tremaining: 813ms\n", + "944:\tlearn: 14792982.4344262\ttotal: 13.7s\tremaining: 798ms\n", + "945:\tlearn: 14792468.8012658\ttotal: 13.7s\tremaining: 783ms\n", + "946:\tlearn: 14792139.9923168\ttotal: 13.7s\tremaining: 769ms\n", + "947:\tlearn: 14786295.7938911\ttotal: 13.8s\tremaining: 754ms\n", + "948:\tlearn: 14783272.8762359\ttotal: 13.8s\tremaining: 740ms\n", + "949:\tlearn: 14782689.5513664\ttotal: 13.8s\tremaining: 725ms\n", + "950:\tlearn: 14782664.1266181\ttotal: 13.8s\tremaining: 710ms\n", + "951:\tlearn: 14774339.7873426\ttotal: 13.8s\tremaining: 696ms\n", + "952:\tlearn: 14769038.5403572\ttotal: 13.8s\tremaining: 681ms\n", + "953:\tlearn: 14761312.5028488\ttotal: 13.8s\tremaining: 667ms\n", + "954:\tlearn: 14760414.3496721\ttotal: 13.8s\tremaining: 652ms\n", + "955:\tlearn: 14752950.6860631\ttotal: 13.9s\tremaining: 638ms\n", + "956:\tlearn: 14752691.2767919\ttotal: 13.9s\tremaining: 623ms\n", + "957:\tlearn: 14752196.9268404\ttotal: 13.9s\tremaining: 608ms\n", + "958:\tlearn: 14750149.4071752\ttotal: 13.9s\tremaining: 594ms\n", + "959:\tlearn: 14749691.8632556\ttotal: 13.9s\tremaining: 579ms\n", + "960:\tlearn: 14749496.6164671\ttotal: 13.9s\tremaining: 565ms\n", + "961:\tlearn: 14749338.8909588\ttotal: 13.9s\tremaining: 550ms\n", + "962:\tlearn: 14749291.1143099\ttotal: 13.9s\tremaining: 536ms\n", + "963:\tlearn: 14739582.8672605\ttotal: 14s\tremaining: 521ms\n", + "964:\tlearn: 14739542.4442574\ttotal: 14s\tremaining: 506ms\n", + "965:\tlearn: 14739306.4391584\ttotal: 14s\tremaining: 492ms\n", + "966:\tlearn: 14708630.7344942\ttotal: 14s\tremaining: 477ms\n", + "967:\tlearn: 14680984.5320050\ttotal: 14s\tremaining: 463ms\n", + "968:\tlearn: 14677319.7390898\ttotal: 14s\tremaining: 448ms\n", + "969:\tlearn: 14677109.6650390\ttotal: 14s\tremaining: 434ms\n", + "970:\tlearn: 14676355.6242387\ttotal: 14s\tremaining: 419ms\n", + "971:\tlearn: 14667109.8761175\ttotal: 14.1s\tremaining: 405ms\n", + "972:\tlearn: 14643934.7657464\ttotal: 14.1s\tremaining: 390ms\n", + "973:\tlearn: 14642633.8347823\ttotal: 14.1s\tremaining: 376ms\n", + "974:\tlearn: 14642167.8071045\ttotal: 14.1s\tremaining: 362ms\n", + "975:\tlearn: 14641845.3365852\ttotal: 14.1s\tremaining: 347ms\n", + "976:\tlearn: 14640306.5144587\ttotal: 14.1s\tremaining: 333ms\n", + "977:\tlearn: 14640184.9147582\ttotal: 14.1s\tremaining: 318ms\n", + "978:\tlearn: 14640008.8483425\ttotal: 14.2s\tremaining: 304ms\n", + "979:\tlearn: 14636344.5519428\ttotal: 14.2s\tremaining: 289ms\n", + "980:\tlearn: 14633576.2663352\ttotal: 14.2s\tremaining: 275ms\n", + "981:\tlearn: 14624796.2134142\ttotal: 14.2s\tremaining: 260ms\n", + "982:\tlearn: 14624250.6774943\ttotal: 14.2s\tremaining: 246ms\n", + "983:\tlearn: 14615917.0650799\ttotal: 14.2s\tremaining: 231ms\n", + "984:\tlearn: 14615782.8388140\ttotal: 14.2s\tremaining: 217ms\n", + "985:\tlearn: 14612724.2754075\ttotal: 14.3s\tremaining: 203ms\n", + "986:\tlearn: 14609973.2837772\ttotal: 14.3s\tremaining: 188ms\n", + "987:\tlearn: 14605203.8050795\ttotal: 14.3s\tremaining: 174ms\n", + "988:\tlearn: 14605011.6874159\ttotal: 14.3s\tremaining: 159ms\n", + "989:\tlearn: 14594552.7887146\ttotal: 14.3s\tremaining: 145ms\n", + "990:\tlearn: 14591881.9316489\ttotal: 14.3s\tremaining: 130ms\n", + "991:\tlearn: 14581962.3358039\ttotal: 14.3s\tremaining: 116ms\n", + "992:\tlearn: 14581829.5331587\ttotal: 14.4s\tremaining: 101ms\n", + "993:\tlearn: 14581669.7347033\ttotal: 14.4s\tremaining: 86.8ms\n", + "994:\tlearn: 14577373.3119596\ttotal: 14.4s\tremaining: 72.3ms\n", + "995:\tlearn: 14577196.6327960\ttotal: 14.4s\tremaining: 57.8ms\n", + "996:\tlearn: 14577122.1536884\ttotal: 14.4s\tremaining: 43.4ms\n", + "997:\tlearn: 14574702.1336653\ttotal: 14.4s\tremaining: 28.9ms\n", + "998:\tlearn: 14574660.6060510\ttotal: 14.4s\tremaining: 14.4ms\n", + "999:\tlearn: 14574625.9856659\ttotal: 14.4s\tremaining: 0us\n" + ] + }, { "data": { "text/html": [ @@ -836,31 +1826,28 @@ " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model',\n", - " RandomForestRegressor(max_depth=10, n_estimators=20))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.Pipeline(steps=[('preprocessor',\n", + " <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('num', StandardScaler(),\n", " ['geo_lat', 'geo_lon',\n", " 'level', 'levels', 'rooms',\n", " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model',\n", - " RandomForestRegressor(max_depth=10, n_estimators=20))])
ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])
ColumnTransformer(transformers=[('num', StandardScaler(),\n", " ['geo_lat', 'geo_lon', 'level', 'levels',\n", " 'rooms', 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", - " ['region', 'building_type', 'object_type',\n", - " 'floor_level'])])
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type', 'floor_level']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=999)
RandomForestRegressor(max_depth=10, n_estimators=20)
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999)
<catboost.core.CatBoostRegressor object at 0x7448bd575f60>
1 rows × 57 columns
\n", + "1 rows × 40 columns
\n", "" ], "text/plain": [ " run_id experiment_id status \\\n", - "0 24e41bb582554f42953fe6dc2b6b190e 1 FINISHED \n", + "0 06fa7ec1f1b74aedb3509c88dc4ee1c0 1 FINISHED \n", "\n", " artifact_uri \\\n", - "0 mlflow-artifacts:/1/24e41bb582554f42953fe6dc2b... \n", + "0 mlflow-artifacts:/1/06fa7ec1f1b74aedb3509c88dc... \n", "\n", " start_time end_time \\\n", - "0 2024-10-03 15:59:12.732000+00:00 2024-10-03 15:59:13.921000+00:00 \n", + "0 2024-10-10 10:34:49.202000+00:00 2024-10-10 10:34:49.765000+00:00 \n", "\n", - " metrics.mae metrics.mape metrics.mse \\\n", - "0 1.276343e+06 0.354714 1.745677e+14 \n", + " metrics.mape metrics.mae metrics.mse \\\n", + "0 1.629453e+18 1.447931e+06 2.818980e+14 \n", "\n", - " params.preprocessor__cat__handle_unknown ... params.model__max_samples \\\n", - "0 use_encoded_value ... None \n", + " params.preprocessor__verbose_feature_names_out ... \\\n", + "0 True ... \n", "\n", - " params.preprocessor__transformers \\\n", - "0 [('num', StandardScaler(), ['geo_lat', 'geo_lo... \n", + " params.preprocessor__num params.preprocessor__force_int_remainder_cols \\\n", + "0 StandardScaler() True \n", "\n", - " params.model__monotonic_cst params.model__warm_start \\\n", - "0 None False \n", + " params.preprocessor__cat__unknown_value params.memory \\\n", + "0 99999999 None \n", "\n", - " params.preprocessor__remainder tags.mlflow.user tags.mlflow.source.type \\\n", - "0 drop andrey LOCAL \n", + " params.preprocessor__cat__categories tags.mlflow.source.type \\\n", + "0 auto LOCAL \n", "\n", - " tags.mlflow.runName tags.mlflow.source.name \\\n", - "0 baseline model /home/andrey/work/institute/MLE/assets/mlflow/... \n", + " tags.mlflow.user tags.mlflow.log-model.history \\\n", + "0 andrey [{\"run_id\": \"06fa7ec1f1b74aedb3509c88dc4ee1c0\"... \n", "\n", - " tags.mlflow.log-model.history \n", - "0 [{\"run_id\": \"24e41bb582554f42953fe6dc2b6b190e\"... \n", + " tags.mlflow.source.name tags.mlflow.runName \n", + "0 /home/andrey/work/institute/MLE/assets/mlflow/... baseline model \n", "\n", - "[1 rows x 57 columns]" + "[1 rows x 40 columns]" ] }, "execution_count": 19, @@ -1223,11 +2209,1024 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024/10/03 18:59:14 WARNING mlflow.utils.autologging_utils: MLflow sklearn autologging is known to be compatible with 0.24.1 <= scikit-learn <= 1.5.1, but the installed version is 1.5.2. If you encounter errors during autologging, try upgrading / downgrading scikit-learn to a compatible version, or try upgrading MLflow.\n", - "2024/10/03 19:02:16 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: \"/home/andrey/work/institute/MLE/assets/mlflow/.venv_lec_mlflow/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing ValuesPipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('num', StandardScaler(),\n", " ['geo_lat', 'geo_lon',\n", @@ -1695,18 +3693,16 @@ " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model', RandomForestRegressor(max_depth=6, n_estimators=10))])
ColumnTransformer(transformers=[('num', StandardScaler(),\n", " ['geo_lat', 'geo_lon', 'level', 'levels',\n", " 'rooms', 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", - " ['region', 'building_type', 'object_type',\n", - " 'floor_level'])])
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type', 'floor_level']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=999)
RandomForestRegressor(max_depth=6, n_estimators=10)
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999)
RandomForestRegressor(max_depth=6, n_estimators=10)
\n", + " | geo_lat | \n", + "geo_lon | \n", + "region | \n", + "building_type | \n", + "level | \n", + "levels | \n", + "rooms | \n", + "area | \n", + "kitchen_area | \n", + "object_type | \n", + "
---|---|---|---|---|---|---|---|---|---|---|
879487 | \n", + "56.327686 | \n", + "43.928062 | \n", + "2871 | \n", + "1 | \n", + "8 | \n", + "10 | \n", + "2 | \n", + "56.0000 | \n", + "8.500000 | \n", + "1 | \n", + "
254208 | \n", + "54.859310 | \n", + "82.975624 | \n", + "9654 | \n", + "1 | \n", + "5 | \n", + "9 | \n", + "2 | \n", + "50.1875 | \n", + "8.500000 | \n", + "1 | \n", + "
2260564 | \n", + "56.072163 | \n", + "54.231270 | \n", + "2722 | \n", + "3 | \n", + "4 | \n", + "9 | \n", + "1 | \n", + "39.0000 | \n", + "9.000000 | \n", + "11 | \n", + "
3359251 | \n", + "46.704327 | \n", + "38.273636 | \n", + "2843 | \n", + "1 | \n", + "5 | \n", + "5 | \n", + "2 | \n", + "48.0000 | \n", + "9.000000 | \n", + "1 | \n", + "
3861895 | \n", + "60.933483 | \n", + "76.593094 | \n", + "2484 | \n", + "2 | \n", + "7 | \n", + "15 | \n", + "2 | \n", + "74.0000 | \n", + "10.500000 | \n", + "1 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
3389409 | \n", + "56.771339 | \n", + "60.612518 | \n", + "6171 | \n", + "2 | \n", + "9 | \n", + "18 | \n", + "2 | \n", + "51.3125 | \n", + "9.570312 | \n", + "1 | \n", + "
2848827 | \n", + "55.148613 | \n", + "61.393780 | \n", + "5282 | \n", + "3 | \n", + "3 | \n", + "5 | \n", + "2 | \n", + "43.0000 | \n", + "6.000000 | \n", + "1 | \n", + "
2672009 | \n", + "45.098129 | \n", + "38.971218 | \n", + "2843 | \n", + "0 | \n", + "8 | \n", + "17 | \n", + "1 | \n", + "39.0000 | \n", + "9.000000 | \n", + "11 | \n", + "
4227050 | \n", + "50.583969 | \n", + "36.581867 | \n", + "5952 | \n", + "3 | \n", + "3 | \n", + "16 | \n", + "2 | \n", + "98.5000 | \n", + "27.796875 | \n", + "1 | \n", + "
4337747 | \n", + "59.844570 | \n", + "30.409077 | \n", + "2661 | \n", + "1 | \n", + "6 | \n", + "12 | \n", + "3 | \n", + "72.0000 | \n", + "9.000000 | \n", + "1 | \n", + "
410775 rows × 10 columns
\n", + "\n", + " | num__geo_lat | \n", + "num__geo_lon | \n", + "num__level | \n", + "num__levels | \n", + "num__rooms | \n", + "num__area | \n", + "num__kitchen_area | \n", + "cat__region | \n", + "cat__building_type | \n", + "cat__object_type | \n", + "quantile__geo_lat | \n", + "quantile__geo_lon | \n", + "quantile__level | \n", + "quantile__levels | \n", + "quantile__rooms | \n", + "quantile__area | \n", + "quantile__kitchen_area | \n", + "poly__1 | \n", + "poly__area | \n", + "poly__kitchen_area | \n", + "poly__area^2 | \n", + "poly__area kitchen_area | \n", + "poly__kitchen_area^2 | \n", + "spline__area_sp_0 | \n", + "spline__area_sp_1 | \n", + "spline__area_sp_2 | \n", + "spline__area_sp_3 | \n", + "spline__area_sp_4 | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "0.495902 | \n", + "-0.449742 | \n", + "0.359235 | \n", + "-0.214789 | \n", + "0.253413 | \n", + "0.063735 | \n", + "-0.186285 | \n", + "20.0 | \n", + "1.0 | \n", + "0.0 | \n", + "0.766257 | \n", + "0.511028 | \n", + "0.717217 | \n", + "0.536537 | \n", + "0.600601 | \n", + "0.623624 | \n", + "0.374875 | \n", + "0.0 | \n", + "0.063735 | \n", + "-0.186285 | \n", + "-0.010002 | \n", + "-0.132188 | \n", + "-0.002792 | \n", + "0.155806 | \n", + "0.666179 | \n", + "0.178013 | \n", + "0.000002 | \n", + "0.0 | \n", + "
1 | \n", + "0.177806 | \n", + "1.433673 | \n", + "-0.246529 | \n", + "-0.367718 | \n", + "0.253413 | \n", + "-0.114293 | \n", + "-0.186285 | \n", + "70.0 | \n", + "1.0 | \n", + "0.0 | \n", + "0.297142 | \n", + "0.867999 | \n", + "0.522022 | \n", + "0.386887 | \n", + "0.600601 | \n", + "0.541542 | \n", + "0.374875 | \n", + "0.0 | \n", + "-0.114293 | \n", + "-0.186285 | \n", + "-0.017375 | \n", + "-0.169370 | \n", + "-0.002792 | \n", + "0.156921 | \n", + "0.666275 | \n", + "0.176803 | \n", + "0.000001 | \n", + "0.0 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
410773 | \n", + "-0.748366 | \n", + "-0.804077 | \n", + "-0.650371 | \n", + "0.702788 | \n", + "0.253413 | \n", + "1.365441 | \n", + "1.501833 | \n", + "52.0 | \n", + "3.0 | \n", + "0.0 | \n", + "0.193143 | \n", + "0.114753 | \n", + "0.309810 | \n", + "0.741742 | \n", + "0.600601 | \n", + "0.961367 | \n", + "0.984535 | \n", + "0.0 | \n", + "1.365441 | \n", + "1.501833 | \n", + "0.068438 | \n", + "1.570163 | \n", + "0.008616 | \n", + "0.147820 | \n", + "0.665159 | \n", + "0.187011 | \n", + "0.000010 | \n", + "0.0 | \n", + "
410774 | \n", + "1.257769 | \n", + "-1.101815 | \n", + "-0.044608 | \n", + "0.091070 | \n", + "1.175911 | \n", + "0.553789 | \n", + "-0.142544 | \n", + "14.0 | \n", + "1.0 | \n", + "0.0 | \n", + "0.908036 | \n", + "0.075725 | \n", + "0.604605 | \n", + "0.645646 | \n", + "0.867367 | \n", + "0.841842 | \n", + "0.436436 | \n", + "0.0 | \n", + "0.553789 | \n", + "-0.142544 | \n", + "0.014463 | \n", + "-0.002742 | \n", + "-0.002649 | \n", + "0.152767 | \n", + "0.665860 | \n", + "0.181370 | \n", + "0.000004 | \n", + "0.0 | \n", + "
410775 rows × 28 columns
\n", + "Pipeline(steps=[('transform',\n", + " ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type',\n", + " 'object_type']),\n", + " ('quantile',\n", + " QuantileTransformer(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('poly',\n", + " Pipeline(steps=[('poly',\n", + " PolynomialFeatures()),\n", + " ('scale',\n", + " StandardScaler())]),\n", + " ['area', 'kitchen_area']),\n", + " ('spline',\n", + " SplineTransformer(n_knots=3),\n", + " ['area'])])),\n", + " ('model',\n", + " <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('transform',\n", + " ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type',\n", + " 'object_type']),\n", + " ('quantile',\n", + " QuantileTransformer(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('poly',\n", + " Pipeline(steps=[('poly',\n", + " PolynomialFeatures()),\n", + " ('scale',\n", + " StandardScaler())]),\n", + " ['area', 'kitchen_area']),\n", + " ('spline',\n", + " SplineTransformer(n_knots=3),\n", + " ['area'])])),\n", + " ('model',\n", + " <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])
ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon', 'level', 'levels',\n", + " 'rooms', 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type', 'object_type']),\n", + " ('quantile', QuantileTransformer(),\n", + " ['geo_lat', 'geo_lon', 'level', 'levels',\n", + " 'rooms', 'area', 'kitchen_area']),\n", + " ('poly',\n", + " Pipeline(steps=[('poly', PolynomialFeatures()),\n", + " ('scale', StandardScaler())]),\n", + " ['area', 'kitchen_area']),\n", + " ('spline', SplineTransformer(n_knots=3),\n", + " ['area'])])
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999)
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
QuantileTransformer()
['area', 'kitchen_area']
PolynomialFeatures()
StandardScaler()
['area']
SplineTransformer(n_knots=3)
<catboost.core.CatBoostRegressor object at 0x7448bd575f60>
\n", + " | geo_lat | \n", + "geo_lon | \n", + "region | \n", + "building_type | \n", + "level | \n", + "levels | \n", + "rooms | \n", + "area | \n", + "kitchen_area | \n", + "object_type | \n", + "... | \n", + "geo_lat*log(kitchen_area) | \n", + "sqrt(geo_lon)*sqrt(level) | \n", + "sqrt(geo_lon)*sqrt(kitchen_area) | \n", + "sqrt(area)*log(levels) | \n", + "sqrt(area)*log(geo_lon) | \n", + "sqrt(area)*kitchen_area | \n", + "area**(3/2) | \n", + "geo_lon*rooms | \n", + "geo_lon*log(levels) | \n", + "geo_lat*log(geo_lon) | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "56.327686 | \n", + "43.928062 | \n", + "2871.0 | \n", + "1.0 | \n", + "8.0 | \n", + "10.0 | \n", + "2.0 | \n", + "56.0000 | \n", + "8.500000 | \n", + "1.0 | \n", + "... | \n", + "120.544976 | \n", + "18.746320 | \n", + "19.323264 | \n", + "17.230969 | \n", + "28.306037 | \n", + "63.608176 | \n", + "419.065627 | \n", + "87.856125 | \n", + "101.148102 | \n", + "213.062479 | \n", + "
1 | \n", + "54.859310 | \n", + "82.975624 | \n", + "9654.0 | \n", + "1.0 | \n", + "5.0 | \n", + "9.0 | \n", + "2.0 | \n", + "50.1875 | \n", + "8.500000 | \n", + "1.0 | \n", + "... | \n", + "117.402553 | \n", + "20.368557 | \n", + "26.557349 | \n", + "15.565828 | \n", + "31.302372 | \n", + "60.216666 | \n", + "355.543992 | \n", + "165.951248 | \n", + "182.316081 | \n", + "242.398434 | \n", + "
2 | \n", + "56.072163 | \n", + "54.231270 | \n", + "2722.0 | \n", + "3.0 | \n", + "4.0 | \n", + "9.0 | \n", + "1.0 | \n", + "39.0000 | \n", + "9.000000 | \n", + "11.0 | \n", + "... | \n", + "123.203134 | \n", + "14.728377 | \n", + "22.092565 | \n", + "13.721663 | \n", + "24.937886 | \n", + "56.204982 | \n", + "243.554922 | \n", + "54.231270 | \n", + "119.158279 | \n", + "223.910594 | \n", + "
3 | \n", + "46.704327 | \n", + "38.273636 | \n", + "2843.0 | \n", + "1.0 | \n", + "5.0 | \n", + "5.0 | \n", + "2.0 | \n", + "48.0000 | \n", + "9.000000 | \n", + "1.0 | \n", + "... | \n", + "102.619894 | \n", + "13.833589 | \n", + "18.559707 | \n", + "11.150513 | \n", + "25.251647 | \n", + "62.353829 | \n", + "332.553755 | \n", + "76.547272 | \n", + "61.599041 | \n", + "170.226122 | \n", + "
4 | \n", + "60.933483 | \n", + "76.593094 | \n", + "2484.0 | \n", + "2.0 | \n", + "7.0 | \n", + "15.0 | \n", + "2.0 | \n", + "74.0000 | \n", + "10.500000 | \n", + "1.0 | \n", + "... | \n", + "143.277485 | \n", + "23.154949 | \n", + "28.358905 | \n", + "23.295529 | \n", + "37.321248 | \n", + "90.324415 | \n", + "636.572070 | \n", + "153.186188 | \n", + "207.417943 | \n", + "264.360338 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
410770 | \n", + "56.771339 | \n", + "60.612518 | \n", + "6171.0 | \n", + "2.0 | \n", + "9.0 | \n", + "18.0 | \n", + "2.0 | \n", + "51.3125 | \n", + "9.570312 | \n", + "1.0 | \n", + "... | \n", + "128.227486 | \n", + "23.356213 | \n", + "24.084865 | \n", + "20.704526 | \n", + "29.401670 | \n", + "68.554774 | \n", + "367.565517 | \n", + "121.225037 | \n", + "175.192711 | \n", + "233.018045 | \n", + "
410771 | \n", + "55.148613 | \n", + "61.393780 | \n", + "5282.0 | \n", + "3.0 | \n", + "3.0 | \n", + "5.0 | \n", + "2.0 | \n", + "43.0000 | \n", + "6.000000 | \n", + "1.0 | \n", + "... | \n", + "98.813050 | \n", + "13.571343 | \n", + "19.192777 | \n", + "10.553790 | \n", + "26.998998 | \n", + "39.344631 | \n", + "281.969857 | \n", + "122.787560 | \n", + "98.809477 | \n", + "227.063854 | \n", + "
410772 | \n", + "45.098129 | \n", + "38.971218 | \n", + "2843.0 | \n", + "0.0 | \n", + "8.0 | \n", + "17.0 | \n", + "1.0 | \n", + "39.0000 | \n", + "9.000000 | \n", + "11.0 | \n", + "... | \n", + "99.090718 | \n", + "17.657003 | \n", + "18.728080 | \n", + "17.693412 | \n", + "22.874325 | \n", + "56.204982 | \n", + "243.554922 | \n", + "38.971218 | \n", + "110.413775 | \n", + "165.186482 | \n", + "
410773 | \n", + "50.583969 | \n", + "36.581867 | \n", + "5952.0 | \n", + "3.0 | \n", + "3.0 | \n", + "16.0 | \n", + "2.0 | \n", + "98.5000 | \n", + "27.796875 | \n", + "1.0 | \n", + "... | \n", + "168.187833 | \n", + "10.475953 | \n", + "31.888267 | \n", + "27.517157 | \n", + "35.724540 | \n", + "275.876107 | \n", + "977.584587 | \n", + "73.163734 | \n", + "101.426472 | \n", + "182.079662 | \n", + "
410774 | \n", + "59.844570 | \n", + "30.409077 | \n", + "2661.0 | \n", + "1.0 | \n", + "6.0 | \n", + "12.0 | \n", + "3.0 | \n", + "72.0000 | \n", + "9.000000 | \n", + "1.0 | \n", + "... | \n", + "131.491960 | \n", + "13.507570 | \n", + "16.543328 | \n", + "21.085132 | \n", + "28.975039 | \n", + "76.367532 | \n", + "610.940259 | \n", + "91.227230 | \n", + "75.563717 | \n", + "204.353716 | \n", + "
410775 rows × 28 columns
\n", + "\n", + " | num__geo_lat | \n", + "num__geo_lon | \n", + "num__level | \n", + "num__levels | \n", + "num__rooms | \n", + "num__area | \n", + "num__kitchen_area | \n", + "cat__region | \n", + "cat__building_type | \n", + "cat__object_type | \n", + "afr__geo_lat | \n", + "afr__geo_lon | \n", + "afr__level | \n", + "afr__levels | \n", + "afr__rooms | \n", + "afr__area | \n", + "afr__kitchen_area | \n", + "afr__area*rooms | \n", + "afr__area*geo_lon | \n", + "afr__levels*rooms | \n", + "afr__area*kitchen_area | \n", + "afr__sqrt(area)*geo_lat | \n", + "afr__sqrt(area)*log(level) | \n", + "afr__kitchen_area*log(level) | \n", + "afr__sqrt(area)*kitchen_area | \n", + "afr__geo_lon*log(kitchen_area) | \n", + "afr__sqrt(area)*sqrt(kitchen_area) | \n", + "afr__sqrt(geo_lon)*sqrt(kitchen_area) | \n", + "afr__log(area) | \n", + "afr__rooms*log(level) | \n", + "afr__kitchen_area*rooms | \n", + "afr__kitchen_area*levels | \n", + "afr__sqrt(geo_lon)*sqrt(level) | \n", + "afr__area**(3/2) | \n", + "afr__geo_lat*log(kitchen_area) | \n", + "afr__geo_lat*log(geo_lon) | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "0.495902 | \n", + "-0.449742 | \n", + "0.359235 | \n", + "-0.214789 | \n", + "0.253413 | \n", + "0.063735 | \n", + "-0.186285 | \n", + "20.0 | \n", + "1.0 | \n", + "0.0 | \n", + "0.495902 | \n", + "-0.449742 | \n", + "0.359235 | \n", + "-0.214789 | \n", + "0.253413 | \n", + "0.063735 | \n", + "-0.186285 | \n", + "0.006208 | \n", + "-0.195129 | \n", + "0.060916 | \n", + "-0.132188 | \n", + "0.373151 | \n", + "0.688076 | \n", + "0.044178 | \n", + "-0.211335 | \n", + "-0.481294 | \n", + "-0.153548 | \n", + "-0.490805 | \n", + "0.307835 | \n", + "0.690329 | \n", + "-0.132529 | \n", + "-0.352834 | \n", + "0.323880 | \n", + "-0.008748 | \n", + "-0.031529 | \n", + "0.068167 | \n", + "
1 | \n", + "0.177806 | \n", + "1.433673 | \n", + "-0.246529 | \n", + "-0.367718 | \n", + "0.253413 | \n", + "-0.114293 | \n", + "-0.186285 | \n", + "70.0 | \n", + "1.0 | \n", + "0.0 | \n", + "0.177806 | \n", + "1.433673 | \n", + "-0.246529 | \n", + "-0.367718 | \n", + "0.253413 | \n", + "-0.114293 | \n", + "-0.186285 | \n", + "-0.083402 | \n", + "0.655053 | \n", + "-0.054279 | \n", + "-0.169370 | \n", + "0.005114 | \n", + "0.071369 | \n", + "-0.173647 | \n", + "-0.252775 | \n", + "1.191304 | \n", + "-0.267268 | \n", + "0.615798 | \n", + "0.031907 | \n", + "0.282625 | \n", + "-0.132529 | \n", + "-0.418643 | \n", + "0.552794 | \n", + "-0.056540 | \n", + "-0.143829 | \n", + "1.129118 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
410773 | \n", + "-0.748366 | \n", + "-0.804077 | \n", + "-0.650371 | \n", + "0.702788 | \n", + "0.253413 | \n", + "1.365441 | \n", + "1.501833 | \n", + "52.0 | \n", + "3.0 | \n", + "0.0 | \n", + "-0.748366 | \n", + "-0.804077 | \n", + "-0.650371 | \n", + "0.702788 | \n", + "0.253413 | \n", + "1.365441 | \n", + "1.501833 | \n", + "0.661427 | \n", + "0.375199 | \n", + "0.752088 | \n", + "1.570163 | \n", + "1.274445 | \n", + "-0.002521 | \n", + "0.745507 | \n", + "2.382258 | \n", + "0.071599 | \n", + "2.828890 | \n", + "1.431272 | \n", + "1.729715 | \n", + "-0.160491 | \n", + "1.581436 | \n", + "2.432437 | \n", + "-0.843150 | \n", + "0.411475 | \n", + "1.671069 | \n", + "-1.052343 | \n", + "
410774 | \n", + "1.257769 | \n", + "-1.101815 | \n", + "-0.044608 | \n", + "0.091070 | \n", + "1.175911 | \n", + "0.553789 | \n", + "-0.142544 | \n", + "14.0 | \n", + "1.0 | \n", + "0.0 | \n", + "1.257769 | \n", + "-1.101815 | \n", + "-0.044608 | \n", + "0.091070 | \n", + "1.175911 | \n", + "0.553789 | \n", + "-0.142544 | \n", + "0.807887 | \n", + "-0.330070 | \n", + "0.982478 | \n", + "-0.002742 | \n", + "1.338996 | \n", + "0.635065 | \n", + "-0.040302 | \n", + "-0.055435 | \n", + "-1.025588 | \n", + "0.202136 | \n", + "-0.916054 | \n", + "0.940624 | \n", + "1.217910 | \n", + "0.311575 | \n", + "-0.174762 | \n", + "-0.415359 | \n", + "0.135617 | \n", + "0.359680 | \n", + "-0.246790 | \n", + "
410775 rows × 36 columns
\n", + "Pipeline(steps=[('preprocessor',\n", + " ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type',\n", + " 'object_type']),\n", + " ('afr',\n", + " Pipeline(steps=[('autofeat',\n", + " <__main__.AutoFeatWrapper object at 0x7448995df580>),\n", + " ('scaler',\n", + " StandardScaler())]),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area'])])),\n", + " ('model',\n", + " <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('preprocessor',\n", + " ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type',\n", + " 'object_type']),\n", + " ('afr',\n", + " Pipeline(steps=[('autofeat',\n", + " <__main__.AutoFeatWrapper object at 0x7448995df580>),\n", + " ('scaler',\n", + " StandardScaler())]),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area'])])),\n", + " ('model',\n", + " <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])
ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon', 'level', 'levels',\n", + " 'rooms', 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type', 'object_type']),\n", + " ('afr',\n", + " Pipeline(steps=[('autofeat',\n", + " <__main__.AutoFeatWrapper object at 0x7448995df580>),\n", + " ('scaler', StandardScaler())]),\n", + " ['geo_lat', 'geo_lon', 'level', 'levels',\n", + " 'rooms', 'area', 'kitchen_area'])])
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999)
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
<__main__.AutoFeatWrapper object at 0x7448995df580>
StandardScaler()
<catboost.core.CatBoostRegressor object at 0x7448bd575f60>