diff --git a/README.md b/README.md index 16e2968..dcbadfc 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,8 @@ | 19.09.2024 | [Разведочный анализ данных](./lectures/lec3-eda.odp) - [в формате pptx](./lectures/lec3-eda.pptx) | | 26.09.2024 | [MLFlow](./lectures/lec3-eda.odp) - [в формате pptx](./lectures/lec4-mlflow.pptx) | | 26.09.2024 | [MLFlow - практика](./assets/mlflow/research.ipynb) | +| 26.09.2024 | [Feature engineering](./lectures/lec6-feature_engineering.odp) - [в формате pptx](./lectures/lec6-feature_engineering.odp) - код в [ноутбуке к mlflow](./assets/mlflow/research.ipynb) | + ## Лабораторные работы diff --git a/assets/eda/eda.ipynb b/assets/eda/eda.ipynb index 752009a..47b3b5c 100644 --- a/assets/eda/eda.ipynb +++ b/assets/eda/eda.ipynb @@ -1281,7 +1281,320 @@ }, { "data": { - "application/javascript": "'use strict';\n(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n function drop(id) {\n const view = Bokeh.index.get_by_id(id)\n if (view != null) {\n view.model.document.clear()\n Bokeh.index.delete(view)\n }\n }\n\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n\n // Clean up Bokeh references\n if (id != null) {\n drop(id)\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim()\n drop(id)\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded(error = null) {\n const el = document.getElementById(\"dec2ab1e-cda5-49ce-8f7d-85a26b4e3d5b\");\n if (el != null) {\n const html = (() => {\n if (typeof root.Bokeh === \"undefined\") {\n if (error == null) {\n return \"BokehJS is loading ...\";\n } else {\n return \"BokehJS failed to load.\";\n }\n } else {\n const prefix = `BokehJS ${root.Bokeh.version}`;\n if (error == null) {\n return `${prefix} successfully loaded.`;\n } else {\n return `${prefix} encountered errors while loading and may not function as expected.`;\n }\n }\n })();\n el.innerHTML = html;\n\n if (error != null) {\n const wrapper = document.createElement(\"div\");\n wrapper.style.overflow = \"auto\";\n wrapper.style.height = \"5em\";\n wrapper.style.resize = \"vertical\";\n const content = document.createElement(\"div\");\n content.style.fontFamily = \"monospace\";\n content.style.whiteSpace = \"pre-wrap\";\n content.style.backgroundColor = \"rgb(255, 221, 221)\";\n content.textContent = error.stack ?? error.toString();\n wrapper.append(content);\n el.append(wrapper);\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(() => display_loaded(error), 100);\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.5.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n try {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n\n } catch (error) {display_loaded(error);throw error;\n }if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"dec2ab1e-cda5-49ce-8f7d-85a26b4e3d5b\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", + "application/javascript": [ + "'use strict';\n", + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded(error = null) {\n", + " const el = document.getElementById(\"dec2ab1e-cda5-49ce-8f7d-85a26b4e3d5b\");\n", + " if (el != null) {\n", + " const html = (() => {\n", + " if (typeof root.Bokeh === \"undefined\") {\n", + " if (error == null) {\n", + " return \"BokehJS is loading ...\";\n", + " } else {\n", + " return \"BokehJS failed to load.\";\n", + " }\n", + " } else {\n", + " const prefix = `BokehJS ${root.Bokeh.version}`;\n", + " if (error == null) {\n", + " return `${prefix} successfully loaded.`;\n", + " } else {\n", + " return `${prefix} encountered errors while loading and may not function as expected.`;\n", + " }\n", + " }\n", + " })();\n", + " el.innerHTML = html;\n", + "\n", + " if (error != null) {\n", + " const wrapper = document.createElement(\"div\");\n", + " wrapper.style.overflow = \"auto\";\n", + " wrapper.style.height = \"5em\";\n", + " wrapper.style.resize = \"vertical\";\n", + " const content = document.createElement(\"div\");\n", + " content.style.fontFamily = \"monospace\";\n", + " content.style.whiteSpace = \"pre-wrap\";\n", + " content.style.backgroundColor = \"rgb(255, 221, 221)\";\n", + " content.textContent = error.stack ?? error.toString();\n", + " wrapper.append(content);\n", + " el.append(wrapper);\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(() => display_loaded(error), 100);\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.5.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.5.2.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " try {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "\n", + " } catch (error) {display_loaded(error);throw error;\n", + " }if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"dec2ab1e-cda5-49ce-8f7d-85a26b4e3d5b\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], "application/vnd.bokehjs_load.v0+json": "" }, "metadata": {}, @@ -1414,7 +1727,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv_sprint02", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, diff --git a/assets/mlflow/.gitignore b/assets/mlflow/.gitignore index 3f86222..5f2328d 100644 --- a/assets/mlflow/.gitignore +++ b/assets/mlflow/.gitignore @@ -1,2 +1,5 @@ mlartifacts* -mlruns* \ No newline at end of file +mlruns* +catboost_info +*.zip +*.pkl \ No newline at end of file diff --git a/assets/mlflow/comment.txt b/assets/mlflow/comment.txt index f0a4963..c064a60 100644 --- a/assets/mlflow/comment.txt +++ b/assets/mlflow/comment.txt @@ -1 +1,3 @@ -Model for estate \ No newline at end of file +python3 -m venv .venv_ml2 +source .venv_ml2/bin/activate +pip install -r requirements.txt \ No newline at end of file diff --git a/assets/mlflow/requirements.txt b/assets/mlflow/requirements.txt index 971bb15..24d3659 100644 --- a/assets/mlflow/requirements.txt +++ b/assets/mlflow/requirements.txt @@ -1,3 +1,4 @@ -numpy==2.1.1 mlflow==2.16 -scikit-learn \ No newline at end of file +scikit-learn +catboost +numpy \ No newline at end of file diff --git a/assets/mlflow/research.ipynb b/assets/mlflow/research.ipynb index c1ca6cf..dc0ad55 100644 --- a/assets/mlflow/research.ipynb +++ b/assets/mlflow/research.ipynb @@ -19,6 +19,7 @@ "from sklearn.compose import ColumnTransformer\n", "from sklearn.ensemble import RandomForestRegressor\n", "from sklearn.linear_model import LinearRegression\n", + "from catboost import CatBoostRegressor\n", "\n", "from sklearn.metrics import mean_absolute_percentage_error, mean_absolute_error, mean_squared_error" ] @@ -33,24 +34,25 @@ "output_type": "stream", "text": [ "\n", - "Index: 539355 entries, 1979096 to 5189500\n", - "Data columns (total 12 columns):\n", + "Index: 547701 entries, 313199 to 690900\n", + "Data columns (total 13 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", - " 0 price 539355 non-null int64 \n", - " 1 geo_lat 539355 non-null float32 \n", - " 2 geo_lon 539355 non-null float32 \n", - " 3 region 539355 non-null category\n", - " 4 building_type 539355 non-null category\n", - " 5 level 539355 non-null int8 \n", - " 6 levels 539355 non-null int8 \n", - " 7 rooms 539355 non-null int8 \n", - " 8 area 539355 non-null float16 \n", - " 9 kitchen_area 539355 non-null float16 \n", - " 10 object_type 539355 non-null category\n", - " 11 floor_level 539355 non-null object \n", - "dtypes: category(3), float16(2), float32(2), int64(1), int8(3), object(1)\n", - "memory usage: 21.6+ MB\n" + " 0 price 547701 non-null int64 \n", + " 1 date 547701 non-null object \n", + " 2 time 547701 non-null object \n", + " 3 geo_lat 547701 non-null float32 \n", + " 4 geo_lon 547701 non-null float32 \n", + " 5 region 547701 non-null category\n", + " 6 building_type 547701 non-null category\n", + " 7 level 547701 non-null int8 \n", + " 8 levels 547701 non-null int8 \n", + " 9 rooms 547701 non-null int8 \n", + " 10 area 547701 non-null float16 \n", + " 11 kitchen_area 547701 non-null float16 \n", + " 12 object_type 547701 non-null category\n", + "dtypes: category(3), float16(2), float32(2), int64(1), int8(3), object(2)\n", + "memory usage: 26.1+ MB\n" ] } ], @@ -65,7 +67,8 @@ "metadata": {}, "outputs": [], "source": [ - "df = df.rename(columns={'price': 'target'})" + "df = df.rename(columns={'price': 'target'})\n", + "df = df.drop(columns=['date', 'time'])" ] }, { @@ -73,14 +76,6 @@ "execution_count": 4, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/andrey/work/institute/MLE/assets/mlflow/.venv_lec_mlflow/lib/python3.10/site-packages/pandas/io/formats/format.py:1458: RuntimeWarning: overflow encountered in cast\n", - " has_large_values = (abs_vals > 1e6).any()\n" - ] - }, { "data": { "text/html": [ @@ -113,84 +108,78 @@ " area\n", " kitchen_area\n", " object_type\n", - " floor_level\n", " \n", " \n", " \n", " \n", - " 1979096\n", - " 1300000\n", - " 52.821098\n", - " 83.113037\n", - " 6817\n", - " 1\n", - " 1\n", - " 1\n", + " 313199\n", + " 4999999\n", + " 59.958458\n", + " 30.215530\n", + " 2661\n", " 3\n", - " 66.50000\n", - " 10.000000\n", + " 8\n", + " 13\n", + " 1\n", + " 36.00000\n", + " 7.199219\n", " 1\n", - " first\n", " \n", " \n", - " 1833303\n", - " 8800000\n", - " 55.707539\n", - " 37.467068\n", + " 2437764\n", + " 2150000\n", + " 45.072674\n", + " 41.936996\n", + " 2900\n", " 3\n", + " 5\n", + " 5\n", " 1\n", - " 15\n", - " 16\n", - " 2\n", - " 46.00000\n", - " 7.000000\n", + " 52.00000\n", + " 15.000000\n", " 1\n", - " hi\n", " \n", " \n", - " 1494335\n", - " 1958000\n", - " 54.988400\n", - " 82.783691\n", - " 9654\n", + " 4949072\n", + " 8600000\n", + " 59.939358\n", + " 30.437069\n", + " 2661\n", " 2\n", - " 13\n", - " 17\n", - " 1\n", - " 36.50000\n", - " 11.960938\n", " 11\n", - " hi\n", + " 22\n", + " 1\n", + " 37.09375\n", + " 9.796875\n", + " 1\n", " \n", " \n", - " 2747476\n", - " 1461600\n", - " 53.298553\n", - " 50.326382\n", - " 3106\n", + " 4109465\n", + " 5100000\n", + " 59.740479\n", + " 30.569540\n", + " 2661\n", + " 1\n", + " 2\n", + " 9\n", " 3\n", - " 5\n", - " 5\n", + " 74.50000\n", + " 9.500000\n", " 1\n", - " 32.59375\n", - " 9.601562\n", - " 11\n", - " last\n", " \n", " \n", - " 5027275\n", - " 3000000\n", - " 42.897934\n", - " 47.624825\n", - " 4007\n", - " 3\n", - " 4\n", - " 10\n", + " 2187702\n", + " 3470000\n", + " 56.324062\n", + " 44.005390\n", + " 2871\n", " 2\n", - " 70.00000\n", - " 12.000000\n", " 11\n", - " mid\n", + " 26\n", + " 2\n", + " 54.00000\n", + " 8.000000\n", + " 11\n", " \n", " \n", " ...\n", @@ -205,116 +194,110 @@ " ...\n", " ...\n", " ...\n", - " ...\n", " \n", " \n", - " 2476626\n", - " 1490000\n", - " 54.943806\n", - " 82.957870\n", - " 9654\n", - " 1\n", + " 5188085\n", + " 2300000\n", + " 57.750603\n", + " 40.866467\n", + " 4189\n", + " 3\n", " 2\n", - " 10\n", + " 3\n", + " 1\n", + " 38.00000\n", + " 11.000000\n", " 1\n", - " 48.06250\n", - " 14.000000\n", - " 11\n", - " low\n", " \n", " \n", - " 1487454\n", - " 19000000\n", - " 55.772240\n", - " 37.731136\n", - " 3\n", - " 3\n", - " 4\n", - " 12\n", + " 4542014\n", + " 6700000\n", + " 55.911720\n", + " 37.737419\n", + " 81\n", " 3\n", - " 100.00000\n", - " 13.000000\n", + " 2\n", + " 5\n", + " 2\n", + " 66.37500\n", + " 8.000000\n", " 1\n", - " mid\n", " \n", " \n", - " 2772844\n", - " 1200000\n", - " 54.474590\n", - " 53.531807\n", - " 2722\n", - " 1\n", - " 5\n", - " 9\n", - " 1\n", - " 32.09375\n", - " 7.000000\n", + " 3306731\n", + " 3850000\n", + " 51.704510\n", + " 39.273037\n", + " 2072\n", + " 2\n", + " 10\n", + " 18\n", + " 3\n", + " 89.50000\n", + " 14.203125\n", " 1\n", - " mid\n", " \n", " \n", - " 3982304\n", - " 2300000\n", - " 55.378265\n", - " 39.053310\n", - " 81\n", - " 1\n", + " 520293\n", + " 1878885\n", + " 54.943577\n", + " 82.958862\n", + " 9654\n", " 1\n", - " 5\n", - " 2\n", - " 49.00000\n", - " 9.000000\n", " 1\n", - " first\n", + " 10\n", + " 3\n", + " 87.75000\n", + " 12.921875\n", + " 11\n", " \n", " \n", - " 5189500\n", - " 9157730\n", - " 55.542957\n", - " 37.479919\n", - " 3\n", - " 1\n", - " 8\n", - " 17\n", + " 690900\n", + " 4097350\n", + " 59.882702\n", + " 30.451246\n", + " 2661\n", " 2\n", - " 52.31250\n", - " 17.593750\n", + " 6\n", + " 23\n", + " 1\n", + " 36.09375\n", + " 16.203125\n", " 11\n", - " mid\n", " \n", " \n", "\n", - "

539355 rows × 12 columns

\n", + "

547701 rows × 11 columns

\n", "" ], "text/plain": [ - " target geo_lat geo_lon region building_type level levels \\\n", - "1979096 1300000 52.821098 83.113037 6817 1 1 1 \n", - "1833303 8800000 55.707539 37.467068 3 1 15 16 \n", - "1494335 1958000 54.988400 82.783691 9654 2 13 17 \n", - "2747476 1461600 53.298553 50.326382 3106 3 5 5 \n", - "5027275 3000000 42.897934 47.624825 4007 3 4 10 \n", - "... ... ... ... ... ... ... ... \n", - "2476626 1490000 54.943806 82.957870 9654 1 2 10 \n", - "1487454 19000000 55.772240 37.731136 3 3 4 12 \n", - "2772844 1200000 54.474590 53.531807 2722 1 5 9 \n", - "3982304 2300000 55.378265 39.053310 81 1 1 5 \n", - "5189500 9157730 55.542957 37.479919 3 1 8 17 \n", - "\n", - " rooms area kitchen_area object_type floor_level \n", - "1979096 3 66.50000 10.000000 1 first \n", - "1833303 2 46.00000 7.000000 1 hi \n", - "1494335 1 36.50000 11.960938 11 hi \n", - "2747476 1 32.59375 9.601562 11 last \n", - "5027275 2 70.00000 12.000000 11 mid \n", - "... ... ... ... ... ... \n", - "2476626 1 48.06250 14.000000 11 low \n", - "1487454 3 100.00000 13.000000 1 mid \n", - "2772844 1 32.09375 7.000000 1 mid \n", - "3982304 2 49.00000 9.000000 1 first \n", - "5189500 2 52.31250 17.593750 11 mid \n", - "\n", - "[539355 rows x 12 columns]" + " target geo_lat geo_lon region building_type level levels \\\n", + "313199 4999999 59.958458 30.215530 2661 3 8 13 \n", + "2437764 2150000 45.072674 41.936996 2900 3 5 5 \n", + "4949072 8600000 59.939358 30.437069 2661 2 11 22 \n", + "4109465 5100000 59.740479 30.569540 2661 1 2 9 \n", + "2187702 3470000 56.324062 44.005390 2871 2 11 26 \n", + "... ... ... ... ... ... ... ... \n", + "5188085 2300000 57.750603 40.866467 4189 3 2 3 \n", + "4542014 6700000 55.911720 37.737419 81 3 2 5 \n", + "3306731 3850000 51.704510 39.273037 2072 2 10 18 \n", + "520293 1878885 54.943577 82.958862 9654 1 1 10 \n", + "690900 4097350 59.882702 30.451246 2661 2 6 23 \n", + "\n", + " rooms area kitchen_area object_type \n", + "313199 1 36.00000 7.199219 1 \n", + "2437764 1 52.00000 15.000000 1 \n", + "4949072 1 37.09375 9.796875 1 \n", + "4109465 3 74.50000 9.500000 1 \n", + "2187702 2 54.00000 8.000000 11 \n", + "... ... ... ... ... \n", + "5188085 1 38.00000 11.000000 1 \n", + "4542014 2 66.37500 8.000000 1 \n", + "3306731 3 89.50000 14.203125 1 \n", + "520293 3 87.75000 12.921875 11 \n", + "690900 1 36.09375 16.203125 11 \n", + "\n", + "[547701 rows x 11 columns]" ] }, "execution_count": 4, @@ -343,7 +326,7 @@ { "data": { "text/plain": [ - "['region', 'building_type', 'object_type', 'floor_level']" + "['region', 'building_type', 'object_type']" ] }, "execution_count": 6, @@ -391,8 +374,8 @@ "outputs": [], "source": [ "s_scaler = StandardScaler()\n", - "l_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=999) # unknown_value нужно выбирать с умом\n", - "regressor = RandomForestRegressor(n_estimators=20, max_depth=10)" + "l_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999) # unknown_value нужно выбирать с умом\n", + "regressor = CatBoostRegressor()" ] }, { @@ -422,6 +405,1013 @@ "execution_count": 10, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning rate set to 0.105957\n", + "0:\tlearn: 22102085.4544239\ttotal: 61.3ms\tremaining: 1m 1s\n", + "1:\tlearn: 21994630.3403412\ttotal: 74.7ms\tremaining: 37.3s\n", + "2:\tlearn: 21906687.8196027\ttotal: 88.5ms\tremaining: 29.4s\n", + "3:\tlearn: 21834890.5050552\ttotal: 102ms\tremaining: 25.5s\n", + "4:\tlearn: 21770820.6751194\ttotal: 115ms\tremaining: 22.8s\n", + "5:\tlearn: 21719543.9330108\ttotal: 130ms\tremaining: 21.6s\n", + "6:\tlearn: 21676510.1666598\ttotal: 145ms\tremaining: 20.6s\n", + "7:\tlearn: 21641355.8079016\ttotal: 159ms\tremaining: 19.8s\n", + "8:\tlearn: 21612289.0494648\ttotal: 174ms\tremaining: 19.1s\n", + "9:\tlearn: 21583808.7061085\ttotal: 188ms\tremaining: 18.6s\n", + "10:\tlearn: 21559288.9618040\ttotal: 201ms\tremaining: 18.1s\n", + "11:\tlearn: 21537048.9920531\ttotal: 215ms\tremaining: 17.7s\n", + "12:\tlearn: 21444526.1629239\ttotal: 229ms\tremaining: 17.4s\n", + "13:\tlearn: 21426349.3370315\ttotal: 244ms\tremaining: 17.2s\n", + "14:\tlearn: 21411901.2338278\ttotal: 259ms\tremaining: 17s\n", + "15:\tlearn: 21399279.8023459\ttotal: 272ms\tremaining: 16.7s\n", + "16:\tlearn: 21299421.1434822\ttotal: 285ms\tremaining: 16.5s\n", + "17:\tlearn: 21288560.2595435\ttotal: 298ms\tremaining: 16.3s\n", + "18:\tlearn: 21277368.8876877\ttotal: 314ms\tremaining: 16.2s\n", + "19:\tlearn: 21229205.2938305\ttotal: 328ms\tremaining: 16.1s\n", + "20:\tlearn: 21220238.4828158\ttotal: 343ms\tremaining: 16s\n", + "21:\tlearn: 21212849.7885410\ttotal: 357ms\tremaining: 15.9s\n", + "22:\tlearn: 21205304.4132821\ttotal: 374ms\tremaining: 15.9s\n", + "23:\tlearn: 21198813.8508479\ttotal: 390ms\tremaining: 15.9s\n", + "24:\tlearn: 21184627.2326983\ttotal: 402ms\tremaining: 15.7s\n", + "25:\tlearn: 21172748.3410688\ttotal: 419ms\tremaining: 15.7s\n", + "26:\tlearn: 21103305.4766520\ttotal: 437ms\tremaining: 15.8s\n", + "27:\tlearn: 21096636.4037750\ttotal: 450ms\tremaining: 15.6s\n", + "28:\tlearn: 21082202.2892557\ttotal: 465ms\tremaining: 15.6s\n", + "29:\tlearn: 21077185.5274954\ttotal: 478ms\tremaining: 15.4s\n", + "30:\tlearn: 21071613.1691098\ttotal: 491ms\tremaining: 15.3s\n", + "31:\tlearn: 21067654.8502386\ttotal: 504ms\tremaining: 15.2s\n", + "32:\tlearn: 21053425.8947843\ttotal: 517ms\tremaining: 15.2s\n", + "33:\tlearn: 21038024.0563140\ttotal: 531ms\tremaining: 15.1s\n", + "34:\tlearn: 20961357.9814339\ttotal: 545ms\tremaining: 15s\n", + "35:\tlearn: 20946027.4479676\ttotal: 560ms\tremaining: 15s\n", + "36:\tlearn: 20866676.4104322\ttotal: 574ms\tremaining: 14.9s\n", + "37:\tlearn: 20863078.3182449\ttotal: 587ms\tremaining: 14.9s\n", + "38:\tlearn: 20859910.3609500\ttotal: 603ms\tremaining: 14.9s\n", + "39:\tlearn: 20853462.2703730\ttotal: 615ms\tremaining: 14.8s\n", + "40:\tlearn: 20851610.3209036\ttotal: 627ms\tremaining: 14.7s\n", + "41:\tlearn: 20847674.0809285\ttotal: 641ms\tremaining: 14.6s\n", + "42:\tlearn: 20845384.9263391\ttotal: 655ms\tremaining: 14.6s\n", + "43:\tlearn: 20843256.7428906\ttotal: 670ms\tremaining: 14.6s\n", + "44:\tlearn: 20841580.8594834\ttotal: 683ms\tremaining: 14.5s\n", + "45:\tlearn: 20819301.2718345\ttotal: 699ms\tremaining: 14.5s\n", + "46:\tlearn: 20812094.5913582\ttotal: 715ms\tremaining: 14.5s\n", + "47:\tlearn: 20808932.0866915\ttotal: 727ms\tremaining: 14.4s\n", + "48:\tlearn: 20763172.9200413\ttotal: 742ms\tremaining: 14.4s\n", + "49:\tlearn: 20729084.6574594\ttotal: 757ms\tremaining: 14.4s\n", + "50:\tlearn: 20721820.5403996\ttotal: 773ms\tremaining: 14.4s\n", + "51:\tlearn: 20715664.3732084\ttotal: 787ms\tremaining: 14.3s\n", + "52:\tlearn: 20712658.7025295\ttotal: 801ms\tremaining: 14.3s\n", + "53:\tlearn: 20704254.1704930\ttotal: 819ms\tremaining: 14.4s\n", + "54:\tlearn: 20690967.9220470\ttotal: 835ms\tremaining: 14.3s\n", + "55:\tlearn: 20686546.8978473\ttotal: 849ms\tremaining: 14.3s\n", + "56:\tlearn: 20682362.4255777\ttotal: 868ms\tremaining: 14.4s\n", + "57:\tlearn: 20680744.8113421\ttotal: 883ms\tremaining: 14.3s\n", + "58:\tlearn: 20677926.0871267\ttotal: 897ms\tremaining: 14.3s\n", + "59:\tlearn: 20658478.3098789\ttotal: 915ms\tremaining: 14.3s\n", + "60:\tlearn: 20641964.4472246\ttotal: 937ms\tremaining: 14.4s\n", + "61:\tlearn: 20639551.4216654\ttotal: 954ms\tremaining: 14.4s\n", + "62:\tlearn: 20638344.8919341\ttotal: 967ms\tremaining: 14.4s\n", + "63:\tlearn: 20635991.3894815\ttotal: 984ms\tremaining: 14.4s\n", + "64:\tlearn: 20595846.8116432\ttotal: 1s\tremaining: 14.4s\n", + "65:\tlearn: 20592198.9483046\ttotal: 1.01s\tremaining: 14.4s\n", + "66:\tlearn: 20565316.0060422\ttotal: 1.03s\tremaining: 14.4s\n", + "67:\tlearn: 20563073.6783517\ttotal: 1.05s\tremaining: 14.4s\n", + "68:\tlearn: 20553650.4649650\ttotal: 1.07s\tremaining: 14.5s\n", + "69:\tlearn: 20545510.8230653\ttotal: 1.09s\tremaining: 14.5s\n", + "70:\tlearn: 20544114.9272186\ttotal: 1.11s\tremaining: 14.5s\n", + "71:\tlearn: 20541689.8802451\ttotal: 1.13s\tremaining: 14.6s\n", + "72:\tlearn: 20538792.7074671\ttotal: 1.16s\tremaining: 14.7s\n", + "73:\tlearn: 20517134.0713648\ttotal: 1.18s\tremaining: 14.7s\n", + "74:\tlearn: 20510477.9089445\ttotal: 1.19s\tremaining: 14.7s\n", + "75:\tlearn: 20494649.9067257\ttotal: 1.21s\tremaining: 14.8s\n", + "76:\tlearn: 20490851.9879851\ttotal: 1.24s\tremaining: 14.8s\n", + "77:\tlearn: 20488939.9621874\ttotal: 1.25s\tremaining: 14.8s\n", + "78:\tlearn: 20432532.8171644\ttotal: 1.26s\tremaining: 14.8s\n", + "79:\tlearn: 20428397.7107150\ttotal: 1.28s\tremaining: 14.7s\n", + "80:\tlearn: 20421638.7734419\ttotal: 1.3s\tremaining: 14.7s\n", + "81:\tlearn: 20421021.7388457\ttotal: 1.31s\tremaining: 14.7s\n", + "82:\tlearn: 20406404.2376730\ttotal: 1.33s\tremaining: 14.7s\n", + "83:\tlearn: 20021682.5008511\ttotal: 1.34s\tremaining: 14.6s\n", + "84:\tlearn: 20018322.6048631\ttotal: 1.36s\tremaining: 14.6s\n", + "85:\tlearn: 20004841.3476490\ttotal: 1.37s\tremaining: 14.6s\n", + "86:\tlearn: 19985666.0092745\ttotal: 1.39s\tremaining: 14.5s\n", + "87:\tlearn: 19983778.1947243\ttotal: 1.4s\tremaining: 14.5s\n", + "88:\tlearn: 19982460.1107908\ttotal: 1.41s\tremaining: 14.5s\n", + "89:\tlearn: 19979128.5494690\ttotal: 1.42s\tremaining: 14.4s\n", + "90:\tlearn: 19974094.9707357\ttotal: 1.44s\tremaining: 14.3s\n", + "91:\tlearn: 19972006.9431031\ttotal: 1.45s\tremaining: 14.3s\n", + "92:\tlearn: 19970846.2845466\ttotal: 1.46s\tremaining: 14.2s\n", + "93:\tlearn: 19968858.0073042\ttotal: 1.47s\tremaining: 14.2s\n", + "94:\tlearn: 19921720.6252972\ttotal: 1.49s\tremaining: 14.2s\n", + "95:\tlearn: 19916568.5707839\ttotal: 1.5s\tremaining: 14.1s\n", + "96:\tlearn: 19913228.5247508\ttotal: 1.51s\tremaining: 14.1s\n", + "97:\tlearn: 19901982.4625895\ttotal: 1.52s\tremaining: 14s\n", + "98:\tlearn: 19836107.7247888\ttotal: 1.54s\tremaining: 14.1s\n", + "99:\tlearn: 19834724.7455166\ttotal: 1.56s\tremaining: 14.1s\n", + "100:\tlearn: 19832811.9745741\ttotal: 1.59s\tremaining: 14.1s\n", + "101:\tlearn: 19818491.2851567\ttotal: 1.61s\tremaining: 14.1s\n", + "102:\tlearn: 19815779.3719026\ttotal: 1.63s\tremaining: 14.2s\n", + "103:\tlearn: 19814215.0962787\ttotal: 1.65s\tremaining: 14.2s\n", + "104:\tlearn: 19782274.6892663\ttotal: 1.67s\tremaining: 14.2s\n", + "105:\tlearn: 19777945.6507456\ttotal: 1.69s\tremaining: 14.2s\n", + "106:\tlearn: 19770488.9772154\ttotal: 1.7s\tremaining: 14.2s\n", + "107:\tlearn: 19769758.0023174\ttotal: 1.72s\tremaining: 14.2s\n", + "108:\tlearn: 19767541.9303017\ttotal: 1.74s\tremaining: 14.2s\n", + "109:\tlearn: 19766992.0126300\ttotal: 1.75s\tremaining: 14.2s\n", + "110:\tlearn: 19765032.8837298\ttotal: 1.77s\tremaining: 14.2s\n", + "111:\tlearn: 19705204.6771073\ttotal: 1.78s\tremaining: 14.2s\n", + "112:\tlearn: 19703649.0394020\ttotal: 1.8s\tremaining: 14.1s\n", + "113:\tlearn: 19693038.0415419\ttotal: 1.82s\tremaining: 14.1s\n", + "114:\tlearn: 19690294.4304072\ttotal: 1.84s\tremaining: 14.2s\n", + "115:\tlearn: 19686529.4709294\ttotal: 1.86s\tremaining: 14.2s\n", + "116:\tlearn: 19684887.8267152\ttotal: 1.88s\tremaining: 14.2s\n", + "117:\tlearn: 19369465.6970761\ttotal: 1.9s\tremaining: 14.2s\n", + "118:\tlearn: 19368868.0416380\ttotal: 1.92s\tremaining: 14.2s\n", + "119:\tlearn: 19334590.5868513\ttotal: 1.94s\tremaining: 14.2s\n", + "120:\tlearn: 19332200.0832597\ttotal: 1.95s\tremaining: 14.2s\n", + "121:\tlearn: 19320130.9244745\ttotal: 1.97s\tremaining: 14.2s\n", + "122:\tlearn: 19318220.9448337\ttotal: 2s\tremaining: 14.2s\n", + "123:\tlearn: 18941546.2095714\ttotal: 2.02s\tremaining: 14.3s\n", + "124:\tlearn: 18941056.2836883\ttotal: 2.05s\tremaining: 14.3s\n", + "125:\tlearn: 18939637.9662976\ttotal: 2.07s\tremaining: 14.3s\n", + "126:\tlearn: 18938172.4621610\ttotal: 2.1s\tremaining: 14.4s\n", + "127:\tlearn: 18935889.3619752\ttotal: 2.13s\tremaining: 14.5s\n", + "128:\tlearn: 18928784.7025346\ttotal: 2.15s\tremaining: 14.6s\n", + "129:\tlearn: 18926981.6933453\ttotal: 2.17s\tremaining: 14.5s\n", + "130:\tlearn: 18830178.3173696\ttotal: 2.19s\tremaining: 14.5s\n", + "131:\tlearn: 18828102.3918672\ttotal: 2.22s\tremaining: 14.6s\n", + "132:\tlearn: 18825755.9987015\ttotal: 2.24s\tremaining: 14.6s\n", + "133:\tlearn: 18793049.5462155\ttotal: 2.26s\tremaining: 14.6s\n", + "134:\tlearn: 18791452.8400128\ttotal: 2.27s\tremaining: 14.6s\n", + "135:\tlearn: 18484591.4924421\ttotal: 2.29s\tremaining: 14.6s\n", + "136:\tlearn: 18482373.1605741\ttotal: 2.31s\tremaining: 14.5s\n", + "137:\tlearn: 18414571.2543321\ttotal: 2.32s\tremaining: 14.5s\n", + "138:\tlearn: 18412913.4160574\ttotal: 2.35s\tremaining: 14.5s\n", + "139:\tlearn: 18409214.1141794\ttotal: 2.36s\tremaining: 14.5s\n", + "140:\tlearn: 18395140.1008086\ttotal: 2.38s\tremaining: 14.5s\n", + "141:\tlearn: 18390939.2248151\ttotal: 2.4s\tremaining: 14.5s\n", + "142:\tlearn: 18377925.8298573\ttotal: 2.42s\tremaining: 14.5s\n", + "143:\tlearn: 18371775.1291009\ttotal: 2.43s\tremaining: 14.5s\n", + "144:\tlearn: 18370251.1042623\ttotal: 2.45s\tremaining: 14.4s\n", + "145:\tlearn: 18332707.1499911\ttotal: 2.46s\tremaining: 14.4s\n", + "146:\tlearn: 18330693.2665230\ttotal: 2.48s\tremaining: 14.4s\n", + "147:\tlearn: 18329408.2952767\ttotal: 2.49s\tremaining: 14.3s\n", + "148:\tlearn: 18321783.9892793\ttotal: 2.5s\tremaining: 14.3s\n", + "149:\tlearn: 18321270.4958267\ttotal: 2.52s\tremaining: 14.3s\n", + "150:\tlearn: 18310325.1681801\ttotal: 2.53s\tremaining: 14.2s\n", + "151:\tlearn: 18299986.9413893\ttotal: 2.55s\tremaining: 14.2s\n", + "152:\tlearn: 18290217.7479708\ttotal: 2.56s\tremaining: 14.2s\n", + "153:\tlearn: 18280975.8537910\ttotal: 2.58s\tremaining: 14.2s\n", + "154:\tlearn: 18272215.6509019\ttotal: 2.6s\tremaining: 14.1s\n", + "155:\tlearn: 18263878.2178516\ttotal: 2.61s\tremaining: 14.1s\n", + "156:\tlearn: 18256009.4859248\ttotal: 2.63s\tremaining: 14.1s\n", + "157:\tlearn: 18248529.7799856\ttotal: 2.64s\tremaining: 14.1s\n", + "158:\tlearn: 18241388.0845094\ttotal: 2.66s\tremaining: 14.1s\n", + "159:\tlearn: 18234700.5127085\ttotal: 2.67s\tremaining: 14s\n", + "160:\tlearn: 18228095.5839778\ttotal: 2.69s\tremaining: 14s\n", + "161:\tlearn: 18222087.5153066\ttotal: 2.7s\tremaining: 14s\n", + "162:\tlearn: 18215963.2971261\ttotal: 2.72s\tremaining: 14s\n", + "163:\tlearn: 18210272.5545163\ttotal: 2.73s\tremaining: 13.9s\n", + "164:\tlearn: 18208920.7703569\ttotal: 2.74s\tremaining: 13.9s\n", + "165:\tlearn: 18204704.7145239\ttotal: 2.75s\tremaining: 13.8s\n", + "166:\tlearn: 18187135.8260335\ttotal: 2.77s\tremaining: 13.8s\n", + "167:\tlearn: 18183064.7135734\ttotal: 2.78s\tremaining: 13.8s\n", + "168:\tlearn: 18177887.1670860\ttotal: 2.8s\tremaining: 13.8s\n", + "169:\tlearn: 18173022.2110313\ttotal: 2.81s\tremaining: 13.7s\n", + "170:\tlearn: 18168573.4167384\ttotal: 2.83s\tremaining: 13.7s\n", + "171:\tlearn: 18165036.1971623\ttotal: 2.85s\tremaining: 13.7s\n", + "172:\tlearn: 18161841.9822954\ttotal: 2.87s\tremaining: 13.7s\n", + "173:\tlearn: 18129860.2061383\ttotal: 2.88s\tremaining: 13.7s\n", + "174:\tlearn: 18127931.5161091\ttotal: 2.89s\tremaining: 13.6s\n", + "175:\tlearn: 18124997.7778403\ttotal: 2.91s\tremaining: 13.6s\n", + "176:\tlearn: 18122975.2084322\ttotal: 2.92s\tremaining: 13.6s\n", + "177:\tlearn: 18120855.5325733\ttotal: 2.93s\tremaining: 13.5s\n", + "178:\tlearn: 18117907.6019994\ttotal: 2.95s\tremaining: 13.5s\n", + "179:\tlearn: 18116674.0864027\ttotal: 2.96s\tremaining: 13.5s\n", + "180:\tlearn: 18114086.9287957\ttotal: 2.97s\tremaining: 13.4s\n", + "181:\tlearn: 18087100.0827926\ttotal: 2.98s\tremaining: 13.4s\n", + "182:\tlearn: 18071944.2213105\ttotal: 3s\tremaining: 13.4s\n", + "183:\tlearn: 17952691.4261792\ttotal: 3.01s\tremaining: 13.4s\n", + "184:\tlearn: 17950298.6715866\ttotal: 3.02s\tremaining: 13.3s\n", + "185:\tlearn: 17949031.8169417\ttotal: 3.04s\tremaining: 13.3s\n", + "186:\tlearn: 17937943.5186847\ttotal: 3.05s\tremaining: 13.3s\n", + "187:\tlearn: 17937014.8027177\ttotal: 3.06s\tremaining: 13.2s\n", + "188:\tlearn: 17936493.5945773\ttotal: 3.07s\tremaining: 13.2s\n", + "189:\tlearn: 17935386.0093649\ttotal: 3.09s\tremaining: 13.2s\n", + "190:\tlearn: 17934203.8644718\ttotal: 3.1s\tremaining: 13.1s\n", + "191:\tlearn: 17928336.5184065\ttotal: 3.11s\tremaining: 13.1s\n", + "192:\tlearn: 17925443.1940046\ttotal: 3.13s\tremaining: 13.1s\n", + "193:\tlearn: 17924535.5533845\ttotal: 3.14s\tremaining: 13s\n", + "194:\tlearn: 17917225.8802206\ttotal: 3.16s\tremaining: 13s\n", + "195:\tlearn: 17904437.4148190\ttotal: 3.17s\tremaining: 13s\n", + "196:\tlearn: 17902915.3467923\ttotal: 3.19s\tremaining: 13s\n", + "197:\tlearn: 17900924.7512305\ttotal: 3.2s\tremaining: 13s\n", + "198:\tlearn: 17899976.2262471\ttotal: 3.22s\tremaining: 13s\n", + "199:\tlearn: 17896573.5977064\ttotal: 3.24s\tremaining: 13s\n", + "200:\tlearn: 17894480.1301072\ttotal: 3.26s\tremaining: 13s\n", + "201:\tlearn: 17891369.5414483\ttotal: 3.28s\tremaining: 13s\n", + "202:\tlearn: 17853776.3679239\ttotal: 3.31s\tremaining: 13s\n", + "203:\tlearn: 17851457.0828592\ttotal: 3.32s\tremaining: 13s\n", + "204:\tlearn: 17849621.6767992\ttotal: 3.33s\tremaining: 12.9s\n", + "205:\tlearn: 17848392.5509482\ttotal: 3.35s\tremaining: 12.9s\n", + "206:\tlearn: 17845597.2428619\ttotal: 3.36s\tremaining: 12.9s\n", + "207:\tlearn: 17841951.2763157\ttotal: 3.38s\tremaining: 12.9s\n", + "208:\tlearn: 17829332.8912371\ttotal: 3.4s\tremaining: 12.9s\n", + "209:\tlearn: 17825984.1152963\ttotal: 3.41s\tremaining: 12.8s\n", + "210:\tlearn: 17821360.2498463\ttotal: 3.43s\tremaining: 12.8s\n", + "211:\tlearn: 17816041.9633158\ttotal: 3.44s\tremaining: 12.8s\n", + "212:\tlearn: 17815089.0154101\ttotal: 3.46s\tremaining: 12.8s\n", + "213:\tlearn: 17812260.4222221\ttotal: 3.47s\tremaining: 12.8s\n", + "214:\tlearn: 17811642.1796060\ttotal: 3.49s\tremaining: 12.7s\n", + "215:\tlearn: 17811104.8656724\ttotal: 3.5s\tremaining: 12.7s\n", + "216:\tlearn: 17810456.2984828\ttotal: 3.51s\tremaining: 12.7s\n", + "217:\tlearn: 17809982.4909707\ttotal: 3.52s\tremaining: 12.6s\n", + "218:\tlearn: 17809543.7803178\ttotal: 3.54s\tremaining: 12.6s\n", + "219:\tlearn: 17809136.8325569\ttotal: 3.55s\tremaining: 12.6s\n", + "220:\tlearn: 17808758.7315278\ttotal: 3.56s\tremaining: 12.6s\n", + "221:\tlearn: 17808406.9145618\ttotal: 3.58s\tremaining: 12.6s\n", + "222:\tlearn: 17806754.0179687\ttotal: 3.6s\tremaining: 12.6s\n", + "223:\tlearn: 17806262.4885592\ttotal: 3.62s\tremaining: 12.5s\n", + "224:\tlearn: 17805319.3776209\ttotal: 3.63s\tremaining: 12.5s\n", + "225:\tlearn: 17805011.6013482\ttotal: 3.65s\tremaining: 12.5s\n", + "226:\tlearn: 17804724.0362310\ttotal: 3.66s\tremaining: 12.5s\n", + "227:\tlearn: 17793961.7547867\ttotal: 3.68s\tremaining: 12.5s\n", + "228:\tlearn: 17793044.3976904\ttotal: 3.7s\tremaining: 12.5s\n", + "229:\tlearn: 17791876.3449986\ttotal: 3.72s\tremaining: 12.5s\n", + "230:\tlearn: 17770039.2877531\ttotal: 3.74s\tremaining: 12.4s\n", + "231:\tlearn: 17769759.3423197\ttotal: 3.75s\tremaining: 12.4s\n", + "232:\tlearn: 17769498.1846872\ttotal: 3.77s\tremaining: 12.4s\n", + "233:\tlearn: 17769106.6516586\ttotal: 3.78s\tremaining: 12.4s\n", + "234:\tlearn: 17765866.7512613\ttotal: 3.8s\tremaining: 12.4s\n", + "235:\tlearn: 17763818.0836765\ttotal: 3.81s\tremaining: 12.3s\n", + "236:\tlearn: 17761637.5687877\ttotal: 3.83s\tremaining: 12.3s\n", + "237:\tlearn: 17755293.6166299\ttotal: 3.85s\tremaining: 12.3s\n", + "238:\tlearn: 17749597.6285121\ttotal: 3.87s\tremaining: 12.3s\n", + "239:\tlearn: 17731193.4780969\ttotal: 3.89s\tremaining: 12.3s\n", + "240:\tlearn: 17730941.1840209\ttotal: 3.9s\tremaining: 12.3s\n", + "241:\tlearn: 17730651.4109866\ttotal: 3.91s\tremaining: 12.3s\n", + "242:\tlearn: 17729951.1772204\ttotal: 3.93s\tremaining: 12.2s\n", + "243:\tlearn: 17725674.6169533\ttotal: 3.94s\tremaining: 12.2s\n", + "244:\tlearn: 17724397.3837970\ttotal: 3.96s\tremaining: 12.2s\n", + "245:\tlearn: 17723085.9667878\ttotal: 3.97s\tremaining: 12.2s\n", + "246:\tlearn: 17716068.0643361\ttotal: 3.99s\tremaining: 12.2s\n", + "247:\tlearn: 17685621.7941613\ttotal: 4s\tremaining: 12.1s\n", + "248:\tlearn: 17684272.6716694\ttotal: 4.02s\tremaining: 12.1s\n", + "249:\tlearn: 17683390.0888279\ttotal: 4.03s\tremaining: 12.1s\n", + "250:\tlearn: 17683052.4845925\ttotal: 4.04s\tremaining: 12.1s\n", + "251:\tlearn: 17678624.0868252\ttotal: 4.06s\tremaining: 12.1s\n", + "252:\tlearn: 17665657.9640584\ttotal: 4.08s\tremaining: 12s\n", + "253:\tlearn: 17664624.5487132\ttotal: 4.09s\tremaining: 12s\n", + "254:\tlearn: 17663925.0646167\ttotal: 4.1s\tremaining: 12s\n", + "255:\tlearn: 17653813.6196925\ttotal: 4.12s\tremaining: 12s\n", + "256:\tlearn: 17636698.5157040\ttotal: 4.13s\tremaining: 11.9s\n", + "257:\tlearn: 17634671.9750893\ttotal: 4.15s\tremaining: 11.9s\n", + "258:\tlearn: 17633930.6422340\ttotal: 4.16s\tremaining: 11.9s\n", + "259:\tlearn: 17633026.0861171\ttotal: 4.17s\tremaining: 11.9s\n", + "260:\tlearn: 17632489.1254856\ttotal: 4.19s\tremaining: 11.9s\n", + "261:\tlearn: 17628474.9187765\ttotal: 4.2s\tremaining: 11.8s\n", + "262:\tlearn: 17627320.9817928\ttotal: 4.22s\tremaining: 11.8s\n", + "263:\tlearn: 17626116.4772868\ttotal: 4.23s\tremaining: 11.8s\n", + "264:\tlearn: 17623329.0754817\ttotal: 4.25s\tremaining: 11.8s\n", + "265:\tlearn: 17622243.1901613\ttotal: 4.26s\tremaining: 11.8s\n", + "266:\tlearn: 17550321.8250878\ttotal: 4.28s\tremaining: 11.8s\n", + "267:\tlearn: 17549755.3651767\ttotal: 4.33s\tremaining: 11.8s\n", + "268:\tlearn: 17545607.1212430\ttotal: 4.37s\tremaining: 11.9s\n", + "269:\tlearn: 17541242.2629221\ttotal: 4.38s\tremaining: 11.9s\n", + "270:\tlearn: 17499407.7313592\ttotal: 4.41s\tremaining: 11.9s\n", + "271:\tlearn: 17499145.8282321\ttotal: 4.43s\tremaining: 11.9s\n", + "272:\tlearn: 17498934.5535116\ttotal: 4.44s\tremaining: 11.8s\n", + "273:\tlearn: 17498347.2546318\ttotal: 4.46s\tremaining: 11.8s\n", + "274:\tlearn: 17498149.7061684\ttotal: 4.47s\tremaining: 11.8s\n", + "275:\tlearn: 17497860.3337909\ttotal: 4.48s\tremaining: 11.8s\n", + "276:\tlearn: 17497134.2565818\ttotal: 4.5s\tremaining: 11.7s\n", + "277:\tlearn: 17496943.1446578\ttotal: 4.51s\tremaining: 11.7s\n", + "278:\tlearn: 17495461.7397646\ttotal: 4.53s\tremaining: 11.7s\n", + "279:\tlearn: 17492860.8467310\ttotal: 4.54s\tremaining: 11.7s\n", + "280:\tlearn: 17492256.7750564\ttotal: 4.56s\tremaining: 11.7s\n", + "281:\tlearn: 17491315.8920024\ttotal: 4.58s\tremaining: 11.7s\n", + "282:\tlearn: 17488802.8492737\ttotal: 4.59s\tremaining: 11.6s\n", + "283:\tlearn: 17479802.6541152\ttotal: 4.6s\tremaining: 11.6s\n", + "284:\tlearn: 17477169.5331720\ttotal: 4.62s\tremaining: 11.6s\n", + "285:\tlearn: 17474743.6190942\ttotal: 4.63s\tremaining: 11.6s\n", + "286:\tlearn: 17468342.7955232\ttotal: 4.65s\tremaining: 11.6s\n", + "287:\tlearn: 17467579.9985437\ttotal: 4.67s\tremaining: 11.5s\n", + "288:\tlearn: 17467009.9684055\ttotal: 4.68s\tremaining: 11.5s\n", + "289:\tlearn: 17464125.0260113\ttotal: 4.7s\tremaining: 11.5s\n", + "290:\tlearn: 17463508.0564477\ttotal: 4.71s\tremaining: 11.5s\n", + "291:\tlearn: 17453183.2620432\ttotal: 4.73s\tremaining: 11.5s\n", + "292:\tlearn: 17452971.0671546\ttotal: 4.74s\tremaining: 11.4s\n", + "293:\tlearn: 17452198.5884342\ttotal: 4.76s\tremaining: 11.4s\n", + "294:\tlearn: 17450925.6159031\ttotal: 4.78s\tremaining: 11.4s\n", + "295:\tlearn: 17450685.1155343\ttotal: 4.79s\tremaining: 11.4s\n", + "296:\tlearn: 17447975.7379237\ttotal: 4.8s\tremaining: 11.4s\n", + "297:\tlearn: 17446417.7251561\ttotal: 4.82s\tremaining: 11.3s\n", + "298:\tlearn: 17446166.7629704\ttotal: 4.83s\tremaining: 11.3s\n", + "299:\tlearn: 17445963.1442260\ttotal: 4.84s\tremaining: 11.3s\n", + "300:\tlearn: 17445745.7958927\ttotal: 4.86s\tremaining: 11.3s\n", + "301:\tlearn: 17444963.9290154\ttotal: 4.87s\tremaining: 11.3s\n", + "302:\tlearn: 17432650.1591210\ttotal: 4.9s\tremaining: 11.3s\n", + "303:\tlearn: 17430525.1210288\ttotal: 4.92s\tremaining: 11.3s\n", + "304:\tlearn: 17418414.4601453\ttotal: 4.93s\tremaining: 11.2s\n", + "305:\tlearn: 17417977.4735651\ttotal: 4.95s\tremaining: 11.2s\n", + "306:\tlearn: 17335624.2943914\ttotal: 4.97s\tremaining: 11.2s\n", + "307:\tlearn: 17323558.9233681\ttotal: 4.99s\tremaining: 11.2s\n", + "308:\tlearn: 17323047.3527617\ttotal: 5s\tremaining: 11.2s\n", + "309:\tlearn: 17322403.3488620\ttotal: 5.02s\tremaining: 11.2s\n", + "310:\tlearn: 17322187.6973801\ttotal: 5.03s\tremaining: 11.2s\n", + "311:\tlearn: 17320898.8497406\ttotal: 5.05s\tremaining: 11.1s\n", + "312:\tlearn: 17312668.7000429\ttotal: 5.07s\tremaining: 11.1s\n", + "313:\tlearn: 17299277.5985403\ttotal: 5.09s\tremaining: 11.1s\n", + "314:\tlearn: 17298175.9786240\ttotal: 5.11s\tremaining: 11.1s\n", + "315:\tlearn: 17296005.0430765\ttotal: 5.12s\tremaining: 11.1s\n", + "316:\tlearn: 17295834.3986842\ttotal: 5.13s\tremaining: 11.1s\n", + "317:\tlearn: 17295646.8271436\ttotal: 5.14s\tremaining: 11s\n", + "318:\tlearn: 17295412.2240763\ttotal: 5.16s\tremaining: 11s\n", + "319:\tlearn: 17295269.3891063\ttotal: 5.17s\tremaining: 11s\n", + "320:\tlearn: 17294720.1427139\ttotal: 5.19s\tremaining: 11s\n", + "321:\tlearn: 17280405.8179874\ttotal: 5.21s\tremaining: 11s\n", + "322:\tlearn: 17279788.6705542\ttotal: 5.23s\tremaining: 11s\n", + "323:\tlearn: 17259578.2219214\ttotal: 5.25s\tremaining: 11s\n", + "324:\tlearn: 17258995.8851109\ttotal: 5.27s\tremaining: 10.9s\n", + "325:\tlearn: 17256802.0040208\ttotal: 5.29s\tremaining: 10.9s\n", + "326:\tlearn: 17245667.9352932\ttotal: 5.31s\tremaining: 10.9s\n", + "327:\tlearn: 17245157.2383849\ttotal: 5.34s\tremaining: 10.9s\n", + "328:\tlearn: 17244420.0505767\ttotal: 5.36s\tremaining: 10.9s\n", + "329:\tlearn: 17240620.9311856\ttotal: 5.38s\tremaining: 10.9s\n", + "330:\tlearn: 17240126.6382259\ttotal: 5.4s\tremaining: 10.9s\n", + "331:\tlearn: 17239554.3263042\ttotal: 5.42s\tremaining: 10.9s\n", + "332:\tlearn: 17239249.4122676\ttotal: 5.43s\tremaining: 10.9s\n", + "333:\tlearn: 17237315.5959603\ttotal: 5.45s\tremaining: 10.9s\n", + "334:\tlearn: 17237170.4183008\ttotal: 5.46s\tremaining: 10.8s\n", + "335:\tlearn: 17235498.1709182\ttotal: 5.48s\tremaining: 10.8s\n", + "336:\tlearn: 17154286.9322136\ttotal: 5.49s\tremaining: 10.8s\n", + "337:\tlearn: 17152860.5403583\ttotal: 5.51s\tremaining: 10.8s\n", + "338:\tlearn: 17139897.5803445\ttotal: 5.52s\tremaining: 10.8s\n", + "339:\tlearn: 17139685.6194353\ttotal: 5.53s\tremaining: 10.7s\n", + "340:\tlearn: 17129406.8909698\ttotal: 5.54s\tremaining: 10.7s\n", + "341:\tlearn: 17126386.5318429\ttotal: 5.56s\tremaining: 10.7s\n", + "342:\tlearn: 17125338.5826429\ttotal: 5.57s\tremaining: 10.7s\n", + "343:\tlearn: 17124937.1764028\ttotal: 5.58s\tremaining: 10.7s\n", + "344:\tlearn: 17124773.5128614\ttotal: 5.59s\tremaining: 10.6s\n", + "345:\tlearn: 17123822.0085471\ttotal: 5.61s\tremaining: 10.6s\n", + "346:\tlearn: 17122604.8415169\ttotal: 5.62s\tremaining: 10.6s\n", + "347:\tlearn: 17121767.5370013\ttotal: 5.63s\tremaining: 10.6s\n", + "348:\tlearn: 17109471.1428348\ttotal: 5.65s\tremaining: 10.5s\n", + "349:\tlearn: 17092688.7777393\ttotal: 5.66s\tremaining: 10.5s\n", + "350:\tlearn: 17081854.5539987\ttotal: 5.68s\tremaining: 10.5s\n", + "351:\tlearn: 17081117.2220910\ttotal: 5.69s\tremaining: 10.5s\n", + "352:\tlearn: 17079431.1991192\ttotal: 5.7s\tremaining: 10.5s\n", + "353:\tlearn: 17065749.4676464\ttotal: 5.72s\tremaining: 10.4s\n", + "354:\tlearn: 17050839.2238400\ttotal: 5.73s\tremaining: 10.4s\n", + "355:\tlearn: 17050106.8831270\ttotal: 5.75s\tremaining: 10.4s\n", + "356:\tlearn: 17046033.2332065\ttotal: 5.76s\tremaining: 10.4s\n", + "357:\tlearn: 17043704.2415802\ttotal: 5.78s\tremaining: 10.4s\n", + "358:\tlearn: 17034226.2631681\ttotal: 5.79s\tremaining: 10.3s\n", + "359:\tlearn: 17019515.6806659\ttotal: 5.8s\tremaining: 10.3s\n", + "360:\tlearn: 17018472.9763746\ttotal: 5.82s\tremaining: 10.3s\n", + "361:\tlearn: 17017909.7121151\ttotal: 5.83s\tremaining: 10.3s\n", + "362:\tlearn: 17017463.3942640\ttotal: 5.84s\tremaining: 10.3s\n", + "363:\tlearn: 17016467.4317116\ttotal: 5.86s\tremaining: 10.2s\n", + "364:\tlearn: 17016320.3746025\ttotal: 5.87s\tremaining: 10.2s\n", + "365:\tlearn: 17014043.0108512\ttotal: 5.88s\tremaining: 10.2s\n", + "366:\tlearn: 17013536.3710672\ttotal: 5.89s\tremaining: 10.2s\n", + "367:\tlearn: 17011993.2014165\ttotal: 5.91s\tremaining: 10.1s\n", + "368:\tlearn: 17011849.5641841\ttotal: 5.92s\tremaining: 10.1s\n", + "369:\tlearn: 17011403.7126883\ttotal: 5.93s\tremaining: 10.1s\n", + "370:\tlearn: 17009763.5741945\ttotal: 5.94s\tremaining: 10.1s\n", + "371:\tlearn: 17009382.7519630\ttotal: 5.95s\tremaining: 10.1s\n", + "372:\tlearn: 17008464.7915054\ttotal: 5.97s\tremaining: 10s\n", + "373:\tlearn: 17008143.8161261\ttotal: 5.98s\tremaining: 10s\n", + "374:\tlearn: 16996814.2215431\ttotal: 5.99s\tremaining: 9.99s\n", + "375:\tlearn: 16996377.3351825\ttotal: 6.01s\tremaining: 9.97s\n", + "376:\tlearn: 16996037.5806770\ttotal: 6.02s\tremaining: 9.95s\n", + "377:\tlearn: 16991953.6478199\ttotal: 6.03s\tremaining: 9.93s\n", + "378:\tlearn: 16961328.6727692\ttotal: 6.05s\tremaining: 9.91s\n", + "379:\tlearn: 16957664.4831621\ttotal: 6.06s\tremaining: 9.89s\n", + "380:\tlearn: 16956856.4526881\ttotal: 6.08s\tremaining: 9.87s\n", + "381:\tlearn: 16947754.5891887\ttotal: 6.09s\tremaining: 9.86s\n", + "382:\tlearn: 16937471.3061729\ttotal: 6.11s\tremaining: 9.84s\n", + "383:\tlearn: 16910717.2697228\ttotal: 6.13s\tremaining: 9.84s\n", + "384:\tlearn: 16883021.8749316\ttotal: 6.15s\tremaining: 9.83s\n", + "385:\tlearn: 16874077.6620256\ttotal: 6.17s\tremaining: 9.82s\n", + "386:\tlearn: 16859663.0508862\ttotal: 6.19s\tremaining: 9.81s\n", + "387:\tlearn: 16843794.6984628\ttotal: 6.21s\tremaining: 9.79s\n", + "388:\tlearn: 16843670.2191430\ttotal: 6.22s\tremaining: 9.77s\n", + "389:\tlearn: 16833049.2556840\ttotal: 6.24s\tremaining: 9.76s\n", + "390:\tlearn: 16821522.4443567\ttotal: 6.26s\tremaining: 9.74s\n", + "391:\tlearn: 16818181.1766856\ttotal: 6.27s\tremaining: 9.73s\n", + "392:\tlearn: 16817749.5049150\ttotal: 6.29s\tremaining: 9.72s\n", + "393:\tlearn: 16817402.3614282\ttotal: 6.31s\tremaining: 9.71s\n", + "394:\tlearn: 16815679.7151727\ttotal: 6.33s\tremaining: 9.7s\n", + "395:\tlearn: 16810641.8717564\ttotal: 6.35s\tremaining: 9.68s\n", + "396:\tlearn: 16810291.1871768\ttotal: 6.36s\tremaining: 9.67s\n", + "397:\tlearn: 16808056.2422004\ttotal: 6.39s\tremaining: 9.67s\n", + "398:\tlearn: 16807804.2454334\ttotal: 6.42s\tremaining: 9.68s\n", + "399:\tlearn: 16799998.1957230\ttotal: 6.44s\tremaining: 9.66s\n", + "400:\tlearn: 16799220.2656080\ttotal: 6.46s\tremaining: 9.65s\n", + "401:\tlearn: 16798913.0252067\ttotal: 6.47s\tremaining: 9.63s\n", + "402:\tlearn: 16798319.2545577\ttotal: 6.49s\tremaining: 9.62s\n", + "403:\tlearn: 16796848.5752647\ttotal: 6.51s\tremaining: 9.6s\n", + "404:\tlearn: 16757656.8985529\ttotal: 6.52s\tremaining: 9.58s\n", + "405:\tlearn: 16745513.4381725\ttotal: 6.54s\tremaining: 9.56s\n", + "406:\tlearn: 16735416.8114581\ttotal: 6.55s\tremaining: 9.54s\n", + "407:\tlearn: 16734295.1424370\ttotal: 6.57s\tremaining: 9.53s\n", + "408:\tlearn: 16733140.3781664\ttotal: 6.58s\tremaining: 9.52s\n", + "409:\tlearn: 16723800.8980695\ttotal: 6.6s\tremaining: 9.5s\n", + "410:\tlearn: 16721200.9625357\ttotal: 6.62s\tremaining: 9.48s\n", + "411:\tlearn: 16720027.8472987\ttotal: 6.63s\tremaining: 9.46s\n", + "412:\tlearn: 16717199.5760035\ttotal: 6.65s\tremaining: 9.45s\n", + "413:\tlearn: 16713362.4492616\ttotal: 6.66s\tremaining: 9.43s\n", + "414:\tlearn: 16712806.0473182\ttotal: 6.67s\tremaining: 9.41s\n", + "415:\tlearn: 16711241.9902750\ttotal: 6.69s\tremaining: 9.39s\n", + "416:\tlearn: 16710626.7325455\ttotal: 6.71s\tremaining: 9.37s\n", + "417:\tlearn: 16644768.4542531\ttotal: 6.72s\tremaining: 9.36s\n", + "418:\tlearn: 16644403.8081224\ttotal: 6.74s\tremaining: 9.34s\n", + "419:\tlearn: 16644106.9601552\ttotal: 6.75s\tremaining: 9.32s\n", + "420:\tlearn: 16643628.6346956\ttotal: 6.77s\tremaining: 9.31s\n", + "421:\tlearn: 16640073.3813320\ttotal: 6.79s\tremaining: 9.29s\n", + "422:\tlearn: 16639549.7950808\ttotal: 6.8s\tremaining: 9.28s\n", + "423:\tlearn: 16639069.1006878\ttotal: 6.81s\tremaining: 9.25s\n", + "424:\tlearn: 16638481.2382327\ttotal: 6.82s\tremaining: 9.23s\n", + "425:\tlearn: 16638208.9073863\ttotal: 6.83s\tremaining: 9.21s\n", + "426:\tlearn: 16609090.9227109\ttotal: 6.85s\tremaining: 9.19s\n", + "427:\tlearn: 16607897.8537223\ttotal: 6.86s\tremaining: 9.17s\n", + "428:\tlearn: 16607613.0069443\ttotal: 6.88s\tremaining: 9.15s\n", + "429:\tlearn: 16603866.7848843\ttotal: 6.89s\tremaining: 9.13s\n", + "430:\tlearn: 16566652.4020620\ttotal: 6.91s\tremaining: 9.12s\n", + "431:\tlearn: 16566149.6048169\ttotal: 6.92s\tremaining: 9.1s\n", + "432:\tlearn: 16564672.1011733\ttotal: 6.93s\tremaining: 9.08s\n", + "433:\tlearn: 16564610.7741058\ttotal: 6.95s\tremaining: 9.06s\n", + "434:\tlearn: 16564198.8911273\ttotal: 6.96s\tremaining: 9.04s\n", + "435:\tlearn: 16559675.2968062\ttotal: 6.97s\tremaining: 9.02s\n", + "436:\tlearn: 16558753.2346339\ttotal: 6.99s\tremaining: 9s\n", + "437:\tlearn: 16558452.1907641\ttotal: 7s\tremaining: 8.98s\n", + "438:\tlearn: 16546587.2383006\ttotal: 7.01s\tremaining: 8.96s\n", + "439:\tlearn: 16543823.0847287\ttotal: 7.03s\tremaining: 8.95s\n", + "440:\tlearn: 16542126.8424469\ttotal: 7.04s\tremaining: 8.93s\n", + "441:\tlearn: 16541624.1632076\ttotal: 7.06s\tremaining: 8.91s\n", + "442:\tlearn: 16540326.5322872\ttotal: 7.07s\tremaining: 8.89s\n", + "443:\tlearn: 16530336.2084291\ttotal: 7.08s\tremaining: 8.87s\n", + "444:\tlearn: 16530167.9665629\ttotal: 7.1s\tremaining: 8.85s\n", + "445:\tlearn: 16528821.2477933\ttotal: 7.12s\tremaining: 8.84s\n", + "446:\tlearn: 16528766.2012617\ttotal: 7.13s\tremaining: 8.82s\n", + "447:\tlearn: 16518018.7193100\ttotal: 7.14s\tremaining: 8.8s\n", + "448:\tlearn: 16508723.6897544\ttotal: 7.16s\tremaining: 8.79s\n", + "449:\tlearn: 16508487.2637814\ttotal: 7.17s\tremaining: 8.77s\n", + "450:\tlearn: 16473955.6540161\ttotal: 7.19s\tremaining: 8.75s\n", + "451:\tlearn: 16453172.0203944\ttotal: 7.2s\tremaining: 8.73s\n", + "452:\tlearn: 16451483.6324413\ttotal: 7.21s\tremaining: 8.71s\n", + "453:\tlearn: 16451257.8036014\ttotal: 7.23s\tremaining: 8.69s\n", + "454:\tlearn: 16448369.9508352\ttotal: 7.24s\tremaining: 8.67s\n", + "455:\tlearn: 16446719.1385193\ttotal: 7.25s\tremaining: 8.65s\n", + "456:\tlearn: 16420736.1369659\ttotal: 7.27s\tremaining: 8.64s\n", + "457:\tlearn: 16420629.2824606\ttotal: 7.28s\tremaining: 8.62s\n", + "458:\tlearn: 16420336.6729748\ttotal: 7.29s\tremaining: 8.6s\n", + "459:\tlearn: 16420155.4584530\ttotal: 7.3s\tremaining: 8.57s\n", + "460:\tlearn: 16419734.8233202\ttotal: 7.32s\tremaining: 8.55s\n", + "461:\tlearn: 16419517.6225944\ttotal: 7.33s\tremaining: 8.53s\n", + "462:\tlearn: 16406145.7183320\ttotal: 7.34s\tremaining: 8.51s\n", + "463:\tlearn: 16404609.0651931\ttotal: 7.35s\tremaining: 8.49s\n", + "464:\tlearn: 16404332.0732862\ttotal: 7.36s\tremaining: 8.47s\n", + "465:\tlearn: 16404019.7507952\ttotal: 7.38s\tremaining: 8.45s\n", + "466:\tlearn: 16403507.0137349\ttotal: 7.39s\tremaining: 8.43s\n", + "467:\tlearn: 16402993.5886996\ttotal: 7.4s\tremaining: 8.41s\n", + "468:\tlearn: 16385955.8460101\ttotal: 7.42s\tremaining: 8.4s\n", + "469:\tlearn: 16373237.2004642\ttotal: 7.43s\tremaining: 8.38s\n", + "470:\tlearn: 16373038.3665164\ttotal: 7.44s\tremaining: 8.36s\n", + "471:\tlearn: 16372801.5860356\ttotal: 7.46s\tremaining: 8.35s\n", + "472:\tlearn: 16360759.6605520\ttotal: 7.48s\tremaining: 8.33s\n", + "473:\tlearn: 16360169.9657388\ttotal: 7.5s\tremaining: 8.32s\n", + "474:\tlearn: 16351841.0373273\ttotal: 7.52s\tremaining: 8.31s\n", + "475:\tlearn: 16349809.4004009\ttotal: 7.53s\tremaining: 8.29s\n", + "476:\tlearn: 16344483.1074475\ttotal: 7.55s\tremaining: 8.28s\n", + "477:\tlearn: 16340922.7262468\ttotal: 7.56s\tremaining: 8.26s\n", + "478:\tlearn: 16334736.4373107\ttotal: 7.58s\tremaining: 8.25s\n", + "479:\tlearn: 16334043.7402281\ttotal: 7.6s\tremaining: 8.23s\n", + "480:\tlearn: 16333745.0129155\ttotal: 7.62s\tremaining: 8.22s\n", + "481:\tlearn: 16332170.0024156\ttotal: 7.63s\tremaining: 8.2s\n", + "482:\tlearn: 16331680.4256261\ttotal: 7.64s\tremaining: 8.18s\n", + "483:\tlearn: 16321943.5880137\ttotal: 7.66s\tremaining: 8.16s\n", + "484:\tlearn: 16313566.1128530\ttotal: 7.67s\tremaining: 8.15s\n", + "485:\tlearn: 16312784.3783495\ttotal: 7.69s\tremaining: 8.13s\n", + "486:\tlearn: 16304256.8971602\ttotal: 7.7s\tremaining: 8.11s\n", + "487:\tlearn: 16299338.9360929\ttotal: 7.72s\tremaining: 8.1s\n", + "488:\tlearn: 16298399.2768748\ttotal: 7.73s\tremaining: 8.08s\n", + "489:\tlearn: 16282861.5959599\ttotal: 7.75s\tremaining: 8.06s\n", + "490:\tlearn: 16278027.7798172\ttotal: 7.76s\tremaining: 8.04s\n", + "491:\tlearn: 16262455.7433251\ttotal: 7.77s\tremaining: 8.03s\n", + "492:\tlearn: 16254609.6670435\ttotal: 7.79s\tremaining: 8.01s\n", + "493:\tlearn: 16250306.9197526\ttotal: 7.8s\tremaining: 7.99s\n", + "494:\tlearn: 16249855.9315045\ttotal: 7.81s\tremaining: 7.97s\n", + "495:\tlearn: 16248555.7562997\ttotal: 7.83s\tremaining: 7.95s\n", + "496:\tlearn: 16247555.1566330\ttotal: 7.84s\tremaining: 7.93s\n", + "497:\tlearn: 16247235.5993966\ttotal: 7.85s\tremaining: 7.91s\n", + "498:\tlearn: 16246264.7483105\ttotal: 7.86s\tremaining: 7.89s\n", + "499:\tlearn: 16246007.7491962\ttotal: 7.87s\tremaining: 7.87s\n", + "500:\tlearn: 16222867.6954421\ttotal: 7.88s\tremaining: 7.85s\n", + "501:\tlearn: 16222688.8853061\ttotal: 7.9s\tremaining: 7.83s\n", + "502:\tlearn: 16217885.3385915\ttotal: 7.91s\tremaining: 7.82s\n", + "503:\tlearn: 16217409.1580145\ttotal: 7.92s\tremaining: 7.79s\n", + "504:\tlearn: 16216838.3191240\ttotal: 7.93s\tremaining: 7.78s\n", + "505:\tlearn: 16216329.9777509\ttotal: 7.95s\tremaining: 7.76s\n", + "506:\tlearn: 16201534.4156055\ttotal: 7.96s\tremaining: 7.74s\n", + "507:\tlearn: 16198138.1904772\ttotal: 7.98s\tremaining: 7.72s\n", + "508:\tlearn: 16197904.2583705\ttotal: 7.99s\tremaining: 7.7s\n", + "509:\tlearn: 16193656.6407621\ttotal: 8s\tremaining: 7.69s\n", + "510:\tlearn: 16180805.8618897\ttotal: 8.01s\tremaining: 7.67s\n", + "511:\tlearn: 16176908.1769610\ttotal: 8.03s\tremaining: 7.65s\n", + "512:\tlearn: 16168261.0438871\ttotal: 8.04s\tremaining: 7.64s\n", + "513:\tlearn: 16167754.4165306\ttotal: 8.06s\tremaining: 7.62s\n", + "514:\tlearn: 16166295.0362243\ttotal: 8.08s\tremaining: 7.61s\n", + "515:\tlearn: 16166058.4053693\ttotal: 8.09s\tremaining: 7.59s\n", + "516:\tlearn: 16155412.7707338\ttotal: 8.11s\tremaining: 7.57s\n", + "517:\tlearn: 16152266.1742558\ttotal: 8.12s\tremaining: 7.56s\n", + "518:\tlearn: 16151552.8907870\ttotal: 8.14s\tremaining: 7.54s\n", + "519:\tlearn: 16140281.4351978\ttotal: 8.16s\tremaining: 7.53s\n", + "520:\tlearn: 16133450.4403783\ttotal: 8.18s\tremaining: 7.52s\n", + "521:\tlearn: 16132209.1334220\ttotal: 8.19s\tremaining: 7.5s\n", + "522:\tlearn: 16118104.6552795\ttotal: 8.21s\tremaining: 7.48s\n", + "523:\tlearn: 16108764.2393062\ttotal: 8.22s\tremaining: 7.47s\n", + "524:\tlearn: 16108234.0634605\ttotal: 8.24s\tremaining: 7.45s\n", + "525:\tlearn: 16107619.6760099\ttotal: 8.25s\tremaining: 7.44s\n", + "526:\tlearn: 16104870.7442280\ttotal: 8.27s\tremaining: 7.42s\n", + "527:\tlearn: 16102428.3934069\ttotal: 8.28s\tremaining: 7.4s\n", + "528:\tlearn: 16102157.2857565\ttotal: 8.29s\tremaining: 7.39s\n", + "529:\tlearn: 16101584.7403855\ttotal: 8.31s\tremaining: 7.37s\n", + "530:\tlearn: 16101480.3344969\ttotal: 8.32s\tremaining: 7.35s\n", + "531:\tlearn: 16100595.6548675\ttotal: 8.33s\tremaining: 7.33s\n", + "532:\tlearn: 16097511.0825233\ttotal: 8.35s\tremaining: 7.32s\n", + "533:\tlearn: 16096615.9743637\ttotal: 8.36s\tremaining: 7.3s\n", + "534:\tlearn: 16096369.6922988\ttotal: 8.37s\tremaining: 7.28s\n", + "535:\tlearn: 16095946.1647864\ttotal: 8.38s\tremaining: 7.26s\n", + "536:\tlearn: 16095637.6185090\ttotal: 8.4s\tremaining: 7.24s\n", + "537:\tlearn: 16094682.0243853\ttotal: 8.41s\tremaining: 7.22s\n", + "538:\tlearn: 16094291.9050311\ttotal: 8.42s\tremaining: 7.2s\n", + "539:\tlearn: 16093984.5280001\ttotal: 8.43s\tremaining: 7.18s\n", + "540:\tlearn: 16090374.6401334\ttotal: 8.45s\tremaining: 7.17s\n", + "541:\tlearn: 16090226.8772271\ttotal: 8.46s\tremaining: 7.15s\n", + "542:\tlearn: 16090050.1805201\ttotal: 8.47s\tremaining: 7.13s\n", + "543:\tlearn: 16069181.1048944\ttotal: 8.48s\tremaining: 7.11s\n", + "544:\tlearn: 16068504.9399291\ttotal: 8.5s\tremaining: 7.09s\n", + "545:\tlearn: 16068245.3744393\ttotal: 8.51s\tremaining: 7.08s\n", + "546:\tlearn: 16065773.4114093\ttotal: 8.52s\tremaining: 7.06s\n", + "547:\tlearn: 16051662.5046318\ttotal: 8.54s\tremaining: 7.04s\n", + "548:\tlearn: 16035327.2446945\ttotal: 8.55s\tremaining: 7.02s\n", + "549:\tlearn: 16035199.2858857\ttotal: 8.56s\tremaining: 7s\n", + "550:\tlearn: 16033842.9666151\ttotal: 8.57s\tremaining: 6.99s\n", + "551:\tlearn: 15995073.4381976\ttotal: 8.59s\tremaining: 6.97s\n", + "552:\tlearn: 15994812.5505379\ttotal: 8.6s\tremaining: 6.95s\n", + "553:\tlearn: 15994595.9921031\ttotal: 8.61s\tremaining: 6.93s\n", + "554:\tlearn: 15992248.3834318\ttotal: 8.62s\tremaining: 6.92s\n", + "555:\tlearn: 15992027.4484601\ttotal: 8.64s\tremaining: 6.9s\n", + "556:\tlearn: 15990566.0719983\ttotal: 8.65s\tremaining: 6.88s\n", + "557:\tlearn: 15985609.0920187\ttotal: 8.66s\tremaining: 6.86s\n", + "558:\tlearn: 15984517.8156083\ttotal: 8.68s\tremaining: 6.84s\n", + "559:\tlearn: 15958775.9803743\ttotal: 8.69s\tremaining: 6.83s\n", + "560:\tlearn: 15958166.8639855\ttotal: 8.7s\tremaining: 6.81s\n", + "561:\tlearn: 15949224.5334582\ttotal: 8.71s\tremaining: 6.79s\n", + "562:\tlearn: 15948769.9101270\ttotal: 8.73s\tremaining: 6.77s\n", + "563:\tlearn: 15930009.9576761\ttotal: 8.74s\tremaining: 6.76s\n", + "564:\tlearn: 15917439.6202170\ttotal: 8.75s\tremaining: 6.74s\n", + "565:\tlearn: 15908669.4567536\ttotal: 8.77s\tremaining: 6.72s\n", + "566:\tlearn: 15908084.2939630\ttotal: 8.78s\tremaining: 6.7s\n", + "567:\tlearn: 15906697.1590494\ttotal: 8.79s\tremaining: 6.69s\n", + "568:\tlearn: 15906522.4609846\ttotal: 8.8s\tremaining: 6.67s\n", + "569:\tlearn: 15906139.9138507\ttotal: 8.82s\tremaining: 6.65s\n", + "570:\tlearn: 15905855.0642382\ttotal: 8.83s\tremaining: 6.63s\n", + "571:\tlearn: 15897372.3501416\ttotal: 8.84s\tremaining: 6.62s\n", + "572:\tlearn: 15893536.4661240\ttotal: 8.86s\tremaining: 6.6s\n", + "573:\tlearn: 15893206.2810918\ttotal: 8.87s\tremaining: 6.58s\n", + "574:\tlearn: 15892918.2703602\ttotal: 8.88s\tremaining: 6.56s\n", + "575:\tlearn: 15892752.8029869\ttotal: 8.89s\tremaining: 6.55s\n", + "576:\tlearn: 15885169.7413434\ttotal: 8.91s\tremaining: 6.53s\n", + "577:\tlearn: 15884936.8745209\ttotal: 8.92s\tremaining: 6.51s\n", + "578:\tlearn: 15876877.1991641\ttotal: 8.93s\tremaining: 6.49s\n", + "579:\tlearn: 15865774.4061534\ttotal: 8.94s\tremaining: 6.48s\n", + "580:\tlearn: 15859212.9207966\ttotal: 8.96s\tremaining: 6.46s\n", + "581:\tlearn: 15858807.6511813\ttotal: 8.97s\tremaining: 6.44s\n", + "582:\tlearn: 15850129.9468116\ttotal: 8.98s\tremaining: 6.42s\n", + "583:\tlearn: 15845554.5689368\ttotal: 8.99s\tremaining: 6.41s\n", + "584:\tlearn: 15844986.6765475\ttotal: 9.01s\tremaining: 6.39s\n", + "585:\tlearn: 15844796.1180439\ttotal: 9.02s\tremaining: 6.37s\n", + "586:\tlearn: 15844586.1630771\ttotal: 9.03s\tremaining: 6.36s\n", + "587:\tlearn: 15827685.4584540\ttotal: 9.05s\tremaining: 6.34s\n", + "588:\tlearn: 15826910.6044821\ttotal: 9.06s\tremaining: 6.32s\n", + "589:\tlearn: 15824060.9875073\ttotal: 9.07s\tremaining: 6.3s\n", + "590:\tlearn: 15818523.6912985\ttotal: 9.09s\tremaining: 6.29s\n", + "591:\tlearn: 15810640.6921394\ttotal: 9.1s\tremaining: 6.27s\n", + "592:\tlearn: 15795481.4197185\ttotal: 9.12s\tremaining: 6.26s\n", + "593:\tlearn: 15795256.4491006\ttotal: 9.13s\tremaining: 6.24s\n", + "594:\tlearn: 15784420.7363473\ttotal: 9.14s\tremaining: 6.22s\n", + "595:\tlearn: 15784290.1819258\ttotal: 9.15s\tremaining: 6.21s\n", + "596:\tlearn: 15783955.0773924\ttotal: 9.17s\tremaining: 6.19s\n", + "597:\tlearn: 15781518.5372107\ttotal: 9.18s\tremaining: 6.17s\n", + "598:\tlearn: 15779547.4210947\ttotal: 9.2s\tremaining: 6.16s\n", + "599:\tlearn: 15777334.3663340\ttotal: 9.21s\tremaining: 6.14s\n", + "600:\tlearn: 15774774.7721883\ttotal: 9.23s\tremaining: 6.13s\n", + "601:\tlearn: 15774672.2356339\ttotal: 9.24s\tremaining: 6.11s\n", + "602:\tlearn: 15773528.0736833\ttotal: 9.26s\tremaining: 6.09s\n", + "603:\tlearn: 15768721.3649454\ttotal: 9.27s\tremaining: 6.08s\n", + "604:\tlearn: 15768502.0877019\ttotal: 9.28s\tremaining: 6.06s\n", + "605:\tlearn: 15768057.4929247\ttotal: 9.3s\tremaining: 6.05s\n", + "606:\tlearn: 15767950.4285043\ttotal: 9.31s\tremaining: 6.03s\n", + "607:\tlearn: 15767445.1324607\ttotal: 9.32s\tremaining: 6.01s\n", + "608:\tlearn: 15767269.0628064\ttotal: 9.33s\tremaining: 5.99s\n", + "609:\tlearn: 15767020.8174624\ttotal: 9.35s\tremaining: 5.97s\n", + "610:\tlearn: 15762309.5160245\ttotal: 9.36s\tremaining: 5.96s\n", + "611:\tlearn: 15757527.7718093\ttotal: 9.37s\tremaining: 5.94s\n", + "612:\tlearn: 15757150.7731734\ttotal: 9.38s\tremaining: 5.92s\n", + "613:\tlearn: 15756885.6252756\ttotal: 9.39s\tremaining: 5.91s\n", + "614:\tlearn: 15755584.6816303\ttotal: 9.41s\tremaining: 5.89s\n", + "615:\tlearn: 15755485.6737331\ttotal: 9.42s\tremaining: 5.87s\n", + "616:\tlearn: 15754432.0517599\ttotal: 9.43s\tremaining: 5.86s\n", + "617:\tlearn: 15744535.8203508\ttotal: 9.45s\tremaining: 5.84s\n", + "618:\tlearn: 15740683.5538600\ttotal: 9.46s\tremaining: 5.82s\n", + "619:\tlearn: 15736903.5667213\ttotal: 9.47s\tremaining: 5.8s\n", + "620:\tlearn: 15736355.4210963\ttotal: 9.48s\tremaining: 5.79s\n", + "621:\tlearn: 15729940.4032081\ttotal: 9.5s\tremaining: 5.77s\n", + "622:\tlearn: 15729775.7542976\ttotal: 9.51s\tremaining: 5.75s\n", + "623:\tlearn: 15726578.4125003\ttotal: 9.52s\tremaining: 5.74s\n", + "624:\tlearn: 15713451.5317183\ttotal: 9.54s\tremaining: 5.72s\n", + "625:\tlearn: 15712116.7478338\ttotal: 9.55s\tremaining: 5.71s\n", + "626:\tlearn: 15712039.0336448\ttotal: 9.56s\tremaining: 5.69s\n", + "627:\tlearn: 15711687.4136682\ttotal: 9.57s\tremaining: 5.67s\n", + "628:\tlearn: 15711298.6681597\ttotal: 9.59s\tremaining: 5.66s\n", + "629:\tlearn: 15705228.0021081\ttotal: 9.6s\tremaining: 5.64s\n", + "630:\tlearn: 15705060.0247650\ttotal: 9.62s\tremaining: 5.62s\n", + "631:\tlearn: 15702513.1910574\ttotal: 9.63s\tremaining: 5.61s\n", + "632:\tlearn: 15702203.6145508\ttotal: 9.64s\tremaining: 5.59s\n", + "633:\tlearn: 15698975.2951288\ttotal: 9.65s\tremaining: 5.57s\n", + "634:\tlearn: 15694674.2341421\ttotal: 9.67s\tremaining: 5.56s\n", + "635:\tlearn: 15686913.9104937\ttotal: 9.68s\tremaining: 5.54s\n", + "636:\tlearn: 15686809.9586513\ttotal: 9.7s\tremaining: 5.53s\n", + "637:\tlearn: 15685604.3787689\ttotal: 9.71s\tremaining: 5.51s\n", + "638:\tlearn: 15685081.4917552\ttotal: 9.72s\tremaining: 5.49s\n", + "639:\tlearn: 15676541.2826685\ttotal: 9.74s\tremaining: 5.48s\n", + "640:\tlearn: 15672855.0180760\ttotal: 9.75s\tremaining: 5.46s\n", + "641:\tlearn: 15666780.7593096\ttotal: 9.77s\tremaining: 5.45s\n", + "642:\tlearn: 15659438.3508408\ttotal: 9.78s\tremaining: 5.43s\n", + "643:\tlearn: 15653755.4598701\ttotal: 9.8s\tremaining: 5.42s\n", + "644:\tlearn: 15652034.4638985\ttotal: 9.81s\tremaining: 5.4s\n", + "645:\tlearn: 15645095.6489597\ttotal: 9.82s\tremaining: 5.38s\n", + "646:\tlearn: 15641226.9420905\ttotal: 9.84s\tremaining: 5.37s\n", + "647:\tlearn: 15639833.9184524\ttotal: 9.85s\tremaining: 5.35s\n", + "648:\tlearn: 15639581.1651510\ttotal: 9.87s\tremaining: 5.34s\n", + "649:\tlearn: 15635923.3848062\ttotal: 9.88s\tremaining: 5.32s\n", + "650:\tlearn: 15635813.1152459\ttotal: 9.89s\tremaining: 5.3s\n", + "651:\tlearn: 15635469.3555938\ttotal: 9.9s\tremaining: 5.29s\n", + "652:\tlearn: 15635363.9174910\ttotal: 9.92s\tremaining: 5.27s\n", + "653:\tlearn: 15633936.7433448\ttotal: 9.93s\tremaining: 5.25s\n", + "654:\tlearn: 15633839.2271448\ttotal: 9.94s\tremaining: 5.24s\n", + "655:\tlearn: 15633735.8610291\ttotal: 9.96s\tremaining: 5.22s\n", + "656:\tlearn: 15633309.8063070\ttotal: 9.97s\tremaining: 5.2s\n", + "657:\tlearn: 15632683.8986677\ttotal: 9.98s\tremaining: 5.19s\n", + "658:\tlearn: 15632461.2639014\ttotal: 9.99s\tremaining: 5.17s\n", + "659:\tlearn: 15627123.1765533\ttotal: 10s\tremaining: 5.16s\n", + "660:\tlearn: 15626996.0787558\ttotal: 10s\tremaining: 5.14s\n", + "661:\tlearn: 15624291.0204091\ttotal: 10s\tremaining: 5.12s\n", + "662:\tlearn: 15617684.3098363\ttotal: 10s\tremaining: 5.11s\n", + "663:\tlearn: 15611967.2176796\ttotal: 10.1s\tremaining: 5.09s\n", + "664:\tlearn: 15598472.2546786\ttotal: 10.1s\tremaining: 5.07s\n", + "665:\tlearn: 15597526.0470563\ttotal: 10.1s\tremaining: 5.06s\n", + "666:\tlearn: 15597430.3920481\ttotal: 10.1s\tremaining: 5.04s\n", + "667:\tlearn: 15596422.7059295\ttotal: 10.1s\tremaining: 5.03s\n", + "668:\tlearn: 15591400.2242411\ttotal: 10.1s\tremaining: 5.01s\n", + "669:\tlearn: 15585199.5277811\ttotal: 10.1s\tremaining: 4.99s\n", + "670:\tlearn: 15585003.5063693\ttotal: 10.2s\tremaining: 4.98s\n", + "671:\tlearn: 15578765.7193891\ttotal: 10.2s\tremaining: 4.96s\n", + "672:\tlearn: 15577252.0151364\ttotal: 10.2s\tremaining: 4.94s\n", + "673:\tlearn: 15576511.8797514\ttotal: 10.2s\tremaining: 4.93s\n", + "674:\tlearn: 15576120.7606092\ttotal: 10.2s\tremaining: 4.91s\n", + "675:\tlearn: 15574398.5273782\ttotal: 10.2s\tremaining: 4.89s\n", + "676:\tlearn: 15565660.7493905\ttotal: 10.2s\tremaining: 4.88s\n", + "677:\tlearn: 15561009.3437211\ttotal: 10.2s\tremaining: 4.86s\n", + "678:\tlearn: 15548878.4770401\ttotal: 10.3s\tremaining: 4.85s\n", + "679:\tlearn: 15527713.9632219\ttotal: 10.3s\tremaining: 4.83s\n", + "680:\tlearn: 15519745.2151864\ttotal: 10.3s\tremaining: 4.82s\n", + "681:\tlearn: 15519391.2760902\ttotal: 10.3s\tremaining: 4.8s\n", + "682:\tlearn: 15514461.8611265\ttotal: 10.3s\tremaining: 4.78s\n", + "683:\tlearn: 15514296.1001141\ttotal: 10.3s\tremaining: 4.77s\n", + "684:\tlearn: 15514204.8658979\ttotal: 10.3s\tremaining: 4.75s\n", + "685:\tlearn: 15513977.3554214\ttotal: 10.3s\tremaining: 4.74s\n", + "686:\tlearn: 15513906.5046745\ttotal: 10.4s\tremaining: 4.72s\n", + "687:\tlearn: 15513701.8112778\ttotal: 10.4s\tremaining: 4.7s\n", + "688:\tlearn: 15513602.4959013\ttotal: 10.4s\tremaining: 4.69s\n", + "689:\tlearn: 15513510.7910896\ttotal: 10.4s\tremaining: 4.67s\n", + "690:\tlearn: 15513352.2070048\ttotal: 10.4s\tremaining: 4.65s\n", + "691:\tlearn: 15513238.8204588\ttotal: 10.4s\tremaining: 4.64s\n", + "692:\tlearn: 15513154.0618557\ttotal: 10.4s\tremaining: 4.62s\n", + "693:\tlearn: 15512878.9114412\ttotal: 10.4s\tremaining: 4.6s\n", + "694:\tlearn: 15509248.2055515\ttotal: 10.5s\tremaining: 4.59s\n", + "695:\tlearn: 15508734.7327170\ttotal: 10.5s\tremaining: 4.57s\n", + "696:\tlearn: 15508495.7881550\ttotal: 10.5s\tremaining: 4.55s\n", + "697:\tlearn: 15508349.6872134\ttotal: 10.5s\tremaining: 4.54s\n", + "698:\tlearn: 15508190.6588965\ttotal: 10.5s\tremaining: 4.52s\n", + "699:\tlearn: 15508018.8419773\ttotal: 10.5s\tremaining: 4.5s\n", + "700:\tlearn: 15507826.3791202\ttotal: 10.5s\tremaining: 4.49s\n", + "701:\tlearn: 15507705.8100928\ttotal: 10.5s\tremaining: 4.47s\n", + "702:\tlearn: 15507533.3512682\ttotal: 10.5s\tremaining: 4.46s\n", + "703:\tlearn: 15501571.2913355\ttotal: 10.6s\tremaining: 4.44s\n", + "704:\tlearn: 15495921.0773672\ttotal: 10.6s\tremaining: 4.42s\n", + "705:\tlearn: 15495385.0875416\ttotal: 10.6s\tremaining: 4.41s\n", + "706:\tlearn: 15495191.8032918\ttotal: 10.6s\tremaining: 4.39s\n", + "707:\tlearn: 15494128.9589635\ttotal: 10.6s\tremaining: 4.38s\n", + "708:\tlearn: 15493806.9566177\ttotal: 10.6s\tremaining: 4.36s\n", + "709:\tlearn: 15493694.0465547\ttotal: 10.6s\tremaining: 4.34s\n", + "710:\tlearn: 15493305.1729869\ttotal: 10.6s\tremaining: 4.33s\n", + "711:\tlearn: 15487948.0399475\ttotal: 10.7s\tremaining: 4.31s\n", + "712:\tlearn: 15487843.0916850\ttotal: 10.7s\tremaining: 4.29s\n", + "713:\tlearn: 15482765.7669785\ttotal: 10.7s\tremaining: 4.28s\n", + "714:\tlearn: 15474767.3580796\ttotal: 10.7s\tremaining: 4.26s\n", + "715:\tlearn: 15472407.8166003\ttotal: 10.7s\tremaining: 4.25s\n", + "716:\tlearn: 15467592.3874842\ttotal: 10.7s\tremaining: 4.23s\n", + "717:\tlearn: 15467435.4901525\ttotal: 10.7s\tremaining: 4.21s\n", + "718:\tlearn: 15462871.2869120\ttotal: 10.7s\tremaining: 4.2s\n", + "719:\tlearn: 15462771.0380185\ttotal: 10.8s\tremaining: 4.18s\n", + "720:\tlearn: 15462475.2715024\ttotal: 10.8s\tremaining: 4.17s\n", + "721:\tlearn: 15454885.7938423\ttotal: 10.8s\tremaining: 4.15s\n", + "722:\tlearn: 15450557.5824215\ttotal: 10.8s\tremaining: 4.13s\n", + "723:\tlearn: 15446455.2317749\ttotal: 10.8s\tremaining: 4.12s\n", + "724:\tlearn: 15445711.0004476\ttotal: 10.8s\tremaining: 4.1s\n", + "725:\tlearn: 15441822.5331613\ttotal: 10.8s\tremaining: 4.09s\n", + "726:\tlearn: 15441182.6843715\ttotal: 10.8s\tremaining: 4.07s\n", + "727:\tlearn: 15441088.8915881\ttotal: 10.9s\tremaining: 4.06s\n", + "728:\tlearn: 15441002.5272406\ttotal: 10.9s\tremaining: 4.04s\n", + "729:\tlearn: 15440884.2830869\ttotal: 10.9s\tremaining: 4.02s\n", + "730:\tlearn: 15440734.2579995\ttotal: 10.9s\tremaining: 4.01s\n", + "731:\tlearn: 15440611.8887909\ttotal: 10.9s\tremaining: 3.99s\n", + "732:\tlearn: 15440249.4221271\ttotal: 10.9s\tremaining: 3.98s\n", + "733:\tlearn: 15440158.8154476\ttotal: 10.9s\tremaining: 3.96s\n", + "734:\tlearn: 15436472.7845071\ttotal: 10.9s\tremaining: 3.94s\n", + "735:\tlearn: 15433672.4484876\ttotal: 11s\tremaining: 3.93s\n", + "736:\tlearn: 15433490.1840146\ttotal: 11s\tremaining: 3.91s\n", + "737:\tlearn: 15433308.6881010\ttotal: 11s\tremaining: 3.9s\n", + "738:\tlearn: 15433042.7409848\ttotal: 11s\tremaining: 3.88s\n", + "739:\tlearn: 15432541.8769518\ttotal: 11s\tremaining: 3.87s\n", + "740:\tlearn: 15431856.6761047\ttotal: 11s\tremaining: 3.85s\n", + "741:\tlearn: 15431804.7359345\ttotal: 11s\tremaining: 3.83s\n", + "742:\tlearn: 15427355.2392047\ttotal: 11s\tremaining: 3.82s\n", + "743:\tlearn: 15427218.1028185\ttotal: 11.1s\tremaining: 3.8s\n", + "744:\tlearn: 15424332.1093472\ttotal: 11.1s\tremaining: 3.79s\n", + "745:\tlearn: 15388321.8033125\ttotal: 11.1s\tremaining: 3.77s\n", + "746:\tlearn: 15377267.9048803\ttotal: 11.1s\tremaining: 3.76s\n", + "747:\tlearn: 15374625.6198420\ttotal: 11.1s\tremaining: 3.74s\n", + "748:\tlearn: 15370386.0426691\ttotal: 11.1s\tremaining: 3.73s\n", + "749:\tlearn: 15359901.4299089\ttotal: 11.1s\tremaining: 3.71s\n", + "750:\tlearn: 15358774.7332579\ttotal: 11.1s\tremaining: 3.69s\n", + "751:\tlearn: 15358651.8711020\ttotal: 11.2s\tremaining: 3.68s\n", + "752:\tlearn: 15358300.8764559\ttotal: 11.2s\tremaining: 3.66s\n", + "753:\tlearn: 15357884.8170886\ttotal: 11.2s\tremaining: 3.65s\n", + "754:\tlearn: 15357643.0994172\ttotal: 11.2s\tremaining: 3.63s\n", + "755:\tlearn: 15357565.0887636\ttotal: 11.2s\tremaining: 3.62s\n", + "756:\tlearn: 15351820.0777339\ttotal: 11.2s\tremaining: 3.6s\n", + "757:\tlearn: 15351414.2517094\ttotal: 11.2s\tremaining: 3.58s\n", + "758:\tlearn: 15349501.7532204\ttotal: 11.2s\tremaining: 3.57s\n", + "759:\tlearn: 15348526.7586048\ttotal: 11.3s\tremaining: 3.56s\n", + "760:\tlearn: 15348352.7244253\ttotal: 11.3s\tremaining: 3.54s\n", + "761:\tlearn: 15347292.4488773\ttotal: 11.3s\tremaining: 3.52s\n", + "762:\tlearn: 15347207.8865499\ttotal: 11.3s\tremaining: 3.51s\n", + "763:\tlearn: 15342959.4790246\ttotal: 11.3s\tremaining: 3.49s\n", + "764:\tlearn: 15342697.6483068\ttotal: 11.3s\tremaining: 3.48s\n", + "765:\tlearn: 15313028.1511576\ttotal: 11.3s\tremaining: 3.46s\n", + "766:\tlearn: 15310947.6382018\ttotal: 11.3s\tremaining: 3.45s\n", + "767:\tlearn: 15263340.9642127\ttotal: 11.4s\tremaining: 3.43s\n", + "768:\tlearn: 15259807.2026083\ttotal: 11.4s\tremaining: 3.42s\n", + "769:\tlearn: 15259504.1148296\ttotal: 11.4s\tremaining: 3.4s\n", + "770:\tlearn: 15259395.2637694\ttotal: 11.4s\tremaining: 3.39s\n", + "771:\tlearn: 15256045.7141942\ttotal: 11.4s\tremaining: 3.37s\n", + "772:\tlearn: 15252870.9021417\ttotal: 11.4s\tremaining: 3.36s\n", + "773:\tlearn: 15248430.3201074\ttotal: 11.4s\tremaining: 3.34s\n", + "774:\tlearn: 15246752.4177458\ttotal: 11.5s\tremaining: 3.33s\n", + "775:\tlearn: 15245960.1417687\ttotal: 11.5s\tremaining: 3.31s\n", + "776:\tlearn: 15245917.6645107\ttotal: 11.5s\tremaining: 3.3s\n", + "777:\tlearn: 15245817.5185452\ttotal: 11.5s\tremaining: 3.28s\n", + "778:\tlearn: 15245619.8351855\ttotal: 11.5s\tremaining: 3.27s\n", + "779:\tlearn: 15244869.5667520\ttotal: 11.5s\tremaining: 3.25s\n", + "780:\tlearn: 15244818.8943236\ttotal: 11.5s\tremaining: 3.24s\n", + "781:\tlearn: 15244254.3637038\ttotal: 11.6s\tremaining: 3.22s\n", + "782:\tlearn: 15243818.2939855\ttotal: 11.6s\tremaining: 3.21s\n", + "783:\tlearn: 15243668.1645179\ttotal: 11.6s\tremaining: 3.19s\n", + "784:\tlearn: 15240656.8617467\ttotal: 11.6s\tremaining: 3.17s\n", + "785:\tlearn: 15237802.6637690\ttotal: 11.6s\tremaining: 3.16s\n", + "786:\tlearn: 15235097.3769887\ttotal: 11.6s\tremaining: 3.14s\n", + "787:\tlearn: 15231063.4576018\ttotal: 11.6s\tremaining: 3.13s\n", + "788:\tlearn: 15224406.4239600\ttotal: 11.6s\tremaining: 3.11s\n", + "789:\tlearn: 15220791.2846445\ttotal: 11.7s\tremaining: 3.1s\n", + "790:\tlearn: 15220221.4180094\ttotal: 11.7s\tremaining: 3.08s\n", + "791:\tlearn: 15220121.7499013\ttotal: 11.7s\tremaining: 3.07s\n", + "792:\tlearn: 15218396.9325757\ttotal: 11.7s\tremaining: 3.05s\n", + "793:\tlearn: 15213830.8844557\ttotal: 11.7s\tremaining: 3.04s\n", + "794:\tlearn: 15212644.4009126\ttotal: 11.7s\tremaining: 3.02s\n", + "795:\tlearn: 15212570.5272286\ttotal: 11.7s\tremaining: 3.01s\n", + "796:\tlearn: 15172874.1552397\ttotal: 11.7s\tremaining: 2.99s\n", + "797:\tlearn: 15164671.3501787\ttotal: 11.8s\tremaining: 2.98s\n", + "798:\tlearn: 15162711.8871221\ttotal: 11.8s\tremaining: 2.96s\n", + "799:\tlearn: 15162618.0050229\ttotal: 11.8s\tremaining: 2.94s\n", + "800:\tlearn: 15161186.8924011\ttotal: 11.8s\tremaining: 2.93s\n", + "801:\tlearn: 15160994.4738412\ttotal: 11.8s\tremaining: 2.91s\n", + "802:\tlearn: 15159385.3831268\ttotal: 11.8s\tremaining: 2.9s\n", + "803:\tlearn: 15159166.1576231\ttotal: 11.8s\tremaining: 2.88s\n", + "804:\tlearn: 15156764.1801770\ttotal: 11.8s\tremaining: 2.87s\n", + "805:\tlearn: 15146691.8394282\ttotal: 11.9s\tremaining: 2.85s\n", + "806:\tlearn: 15146533.6706853\ttotal: 11.9s\tremaining: 2.84s\n", + "807:\tlearn: 15146408.7773292\ttotal: 11.9s\tremaining: 2.82s\n", + "808:\tlearn: 15142359.7678728\ttotal: 11.9s\tremaining: 2.81s\n", + "809:\tlearn: 15142322.1248825\ttotal: 11.9s\tremaining: 2.79s\n", + "810:\tlearn: 15132770.1153732\ttotal: 11.9s\tremaining: 2.78s\n", + "811:\tlearn: 15101480.9924963\ttotal: 11.9s\tremaining: 2.77s\n", + "812:\tlearn: 15101445.1875248\ttotal: 12s\tremaining: 2.75s\n", + "813:\tlearn: 15075376.4419388\ttotal: 12s\tremaining: 2.73s\n", + "814:\tlearn: 15073160.0820287\ttotal: 12s\tremaining: 2.72s\n", + "815:\tlearn: 15072725.5140996\ttotal: 12s\tremaining: 2.71s\n", + "816:\tlearn: 15072585.7018342\ttotal: 12s\tremaining: 2.69s\n", + "817:\tlearn: 15071522.0001919\ttotal: 12s\tremaining: 2.67s\n", + "818:\tlearn: 15071382.2097110\ttotal: 12s\tremaining: 2.66s\n", + "819:\tlearn: 15071301.2886091\ttotal: 12s\tremaining: 2.64s\n", + "820:\tlearn: 15071025.2992144\ttotal: 12.1s\tremaining: 2.63s\n", + "821:\tlearn: 15069498.2268762\ttotal: 12.1s\tremaining: 2.61s\n", + "822:\tlearn: 15061575.7065075\ttotal: 12.1s\tremaining: 2.6s\n", + "823:\tlearn: 15061416.4068476\ttotal: 12.1s\tremaining: 2.58s\n", + "824:\tlearn: 15060945.6687130\ttotal: 12.1s\tremaining: 2.57s\n", + "825:\tlearn: 15051099.8538783\ttotal: 12.1s\tremaining: 2.55s\n", + "826:\tlearn: 15050450.9663299\ttotal: 12.1s\tremaining: 2.54s\n", + "827:\tlearn: 15049722.9751983\ttotal: 12.2s\tremaining: 2.52s\n", + "828:\tlearn: 15049467.7452535\ttotal: 12.2s\tremaining: 2.51s\n", + "829:\tlearn: 15049412.7697933\ttotal: 12.2s\tremaining: 2.49s\n", + "830:\tlearn: 15048891.7740041\ttotal: 12.2s\tremaining: 2.48s\n", + "831:\tlearn: 15048043.0994998\ttotal: 12.2s\tremaining: 2.46s\n", + "832:\tlearn: 15046697.3368860\ttotal: 12.2s\tremaining: 2.45s\n", + "833:\tlearn: 15038272.8803419\ttotal: 12.2s\tremaining: 2.43s\n", + "834:\tlearn: 15034639.9951102\ttotal: 12.2s\tremaining: 2.42s\n", + "835:\tlearn: 15030153.8614245\ttotal: 12.3s\tremaining: 2.4s\n", + "836:\tlearn: 15027964.0190757\ttotal: 12.3s\tremaining: 2.39s\n", + "837:\tlearn: 15023890.1409211\ttotal: 12.3s\tremaining: 2.37s\n", + "838:\tlearn: 15022954.0613643\ttotal: 12.3s\tremaining: 2.36s\n", + "839:\tlearn: 15022653.7321874\ttotal: 12.3s\tremaining: 2.34s\n", + "840:\tlearn: 15021763.5899870\ttotal: 12.3s\tremaining: 2.33s\n", + "841:\tlearn: 15021552.9666208\ttotal: 12.3s\tremaining: 2.31s\n", + "842:\tlearn: 15017213.3112838\ttotal: 12.3s\tremaining: 2.3s\n", + "843:\tlearn: 15006868.9919636\ttotal: 12.4s\tremaining: 2.28s\n", + "844:\tlearn: 15006047.4873296\ttotal: 12.4s\tremaining: 2.27s\n", + "845:\tlearn: 15003167.3995596\ttotal: 12.4s\tremaining: 2.25s\n", + "846:\tlearn: 15001516.1719277\ttotal: 12.4s\tremaining: 2.24s\n", + "847:\tlearn: 15000023.6971343\ttotal: 12.4s\tremaining: 2.22s\n", + "848:\tlearn: 14996097.9901016\ttotal: 12.4s\tremaining: 2.21s\n", + "849:\tlearn: 14995809.9617414\ttotal: 12.4s\tremaining: 2.19s\n", + "850:\tlearn: 14991694.0680204\ttotal: 12.4s\tremaining: 2.18s\n", + "851:\tlearn: 14990806.5441048\ttotal: 12.5s\tremaining: 2.16s\n", + "852:\tlearn: 14990539.4146062\ttotal: 12.5s\tremaining: 2.15s\n", + "853:\tlearn: 14990428.7975864\ttotal: 12.5s\tremaining: 2.13s\n", + "854:\tlearn: 14989061.7567162\ttotal: 12.5s\tremaining: 2.12s\n", + "855:\tlearn: 14983131.0103419\ttotal: 12.5s\tremaining: 2.1s\n", + "856:\tlearn: 14982655.3316759\ttotal: 12.5s\tremaining: 2.09s\n", + "857:\tlearn: 14977099.0608273\ttotal: 12.5s\tremaining: 2.07s\n", + "858:\tlearn: 14976713.9058693\ttotal: 12.6s\tremaining: 2.06s\n", + "859:\tlearn: 14976613.3364184\ttotal: 12.6s\tremaining: 2.04s\n", + "860:\tlearn: 14964115.6999829\ttotal: 12.6s\tremaining: 2.03s\n", + "861:\tlearn: 14961152.7626425\ttotal: 12.6s\tremaining: 2.02s\n", + "862:\tlearn: 14960316.8698796\ttotal: 12.6s\tremaining: 2s\n", + "863:\tlearn: 14960206.5805103\ttotal: 12.6s\tremaining: 1.99s\n", + "864:\tlearn: 14948350.2065232\ttotal: 12.6s\tremaining: 1.97s\n", + "865:\tlearn: 14948237.8225238\ttotal: 12.6s\tremaining: 1.96s\n", + "866:\tlearn: 14948145.1280412\ttotal: 12.7s\tremaining: 1.94s\n", + "867:\tlearn: 14947479.9936319\ttotal: 12.7s\tremaining: 1.93s\n", + "868:\tlearn: 14946706.9144290\ttotal: 12.7s\tremaining: 1.91s\n", + "869:\tlearn: 14946008.4529886\ttotal: 12.7s\tremaining: 1.9s\n", + "870:\tlearn: 14938382.9733130\ttotal: 12.7s\tremaining: 1.88s\n", + "871:\tlearn: 14935923.0018589\ttotal: 12.7s\tremaining: 1.87s\n", + "872:\tlearn: 14935763.9386719\ttotal: 12.7s\tremaining: 1.85s\n", + "873:\tlearn: 14935390.9032799\ttotal: 12.7s\tremaining: 1.84s\n", + "874:\tlearn: 14924136.4999000\ttotal: 12.8s\tremaining: 1.82s\n", + "875:\tlearn: 14923231.4975181\ttotal: 12.8s\tremaining: 1.81s\n", + "876:\tlearn: 14920764.7489123\ttotal: 12.8s\tremaining: 1.79s\n", + "877:\tlearn: 14920619.6869935\ttotal: 12.8s\tremaining: 1.78s\n", + "878:\tlearn: 14920259.9887151\ttotal: 12.8s\tremaining: 1.76s\n", + "879:\tlearn: 14918671.6063618\ttotal: 12.8s\tremaining: 1.75s\n", + "880:\tlearn: 14909484.3446534\ttotal: 12.8s\tremaining: 1.73s\n", + "881:\tlearn: 14909331.3722806\ttotal: 12.8s\tremaining: 1.72s\n", + "882:\tlearn: 14909000.4744294\ttotal: 12.9s\tremaining: 1.7s\n", + "883:\tlearn: 14907810.4215534\ttotal: 12.9s\tremaining: 1.69s\n", + "884:\tlearn: 14907739.9399244\ttotal: 12.9s\tremaining: 1.68s\n", + "885:\tlearn: 14907643.8234156\ttotal: 12.9s\tremaining: 1.66s\n", + "886:\tlearn: 14902234.6414918\ttotal: 12.9s\tremaining: 1.65s\n", + "887:\tlearn: 14899639.1808572\ttotal: 12.9s\tremaining: 1.63s\n", + "888:\tlearn: 14898572.6302420\ttotal: 12.9s\tremaining: 1.62s\n", + "889:\tlearn: 14898481.9011232\ttotal: 13s\tremaining: 1.6s\n", + "890:\tlearn: 14898396.0569341\ttotal: 13s\tremaining: 1.59s\n", + "891:\tlearn: 14897825.8306216\ttotal: 13s\tremaining: 1.57s\n", + "892:\tlearn: 14897667.5383103\ttotal: 13s\tremaining: 1.56s\n", + "893:\tlearn: 14894977.2967186\ttotal: 13s\tremaining: 1.54s\n", + "894:\tlearn: 14894451.1015405\ttotal: 13s\tremaining: 1.53s\n", + "895:\tlearn: 14894302.6357933\ttotal: 13s\tremaining: 1.51s\n", + "896:\tlearn: 14892042.1460828\ttotal: 13s\tremaining: 1.5s\n", + "897:\tlearn: 14891913.2181914\ttotal: 13.1s\tremaining: 1.48s\n", + "898:\tlearn: 14891548.8875063\ttotal: 13.1s\tremaining: 1.47s\n", + "899:\tlearn: 14891535.2806629\ttotal: 13.1s\tremaining: 1.45s\n", + "900:\tlearn: 14885531.4554658\ttotal: 13.1s\tremaining: 1.44s\n", + "901:\tlearn: 14885300.5490787\ttotal: 13.1s\tremaining: 1.42s\n", + "902:\tlearn: 14882237.8064495\ttotal: 13.1s\tremaining: 1.41s\n", + "903:\tlearn: 14871534.0201501\ttotal: 13.1s\tremaining: 1.39s\n", + "904:\tlearn: 14870231.5883229\ttotal: 13.1s\tremaining: 1.38s\n", + "905:\tlearn: 14870176.1224648\ttotal: 13.2s\tremaining: 1.36s\n", + "906:\tlearn: 14869680.0980501\ttotal: 13.2s\tremaining: 1.35s\n", + "907:\tlearn: 14869457.0180442\ttotal: 13.2s\tremaining: 1.33s\n", + "908:\tlearn: 14868933.3692698\ttotal: 13.2s\tremaining: 1.32s\n", + "909:\tlearn: 14863961.6816683\ttotal: 13.2s\tremaining: 1.31s\n", + "910:\tlearn: 14863914.5911026\ttotal: 13.2s\tremaining: 1.29s\n", + "911:\tlearn: 14855476.3946477\ttotal: 13.2s\tremaining: 1.28s\n", + "912:\tlearn: 14855166.2145584\ttotal: 13.3s\tremaining: 1.26s\n", + "913:\tlearn: 14850934.1124148\ttotal: 13.3s\tremaining: 1.25s\n", + "914:\tlearn: 14846483.1667184\ttotal: 13.3s\tremaining: 1.23s\n", + "915:\tlearn: 14837736.3329095\ttotal: 13.3s\tremaining: 1.22s\n", + "916:\tlearn: 14837595.6179847\ttotal: 13.3s\tremaining: 1.2s\n", + "917:\tlearn: 14830817.0386636\ttotal: 13.3s\tremaining: 1.19s\n", + "918:\tlearn: 14830573.0969752\ttotal: 13.3s\tremaining: 1.18s\n", + "919:\tlearn: 14830470.0025192\ttotal: 13.3s\tremaining: 1.16s\n", + "920:\tlearn: 14829815.6285131\ttotal: 13.4s\tremaining: 1.15s\n", + "921:\tlearn: 14825434.2189552\ttotal: 13.4s\tremaining: 1.13s\n", + "922:\tlearn: 14819445.0181126\ttotal: 13.4s\tremaining: 1.12s\n", + "923:\tlearn: 14819398.6279561\ttotal: 13.4s\tremaining: 1.1s\n", + "924:\tlearn: 14818813.5923928\ttotal: 13.4s\tremaining: 1.09s\n", + "925:\tlearn: 14815956.9177135\ttotal: 13.4s\tremaining: 1.07s\n", + "926:\tlearn: 14815788.2679741\ttotal: 13.4s\tremaining: 1.06s\n", + "927:\tlearn: 14815448.9260298\ttotal: 13.5s\tremaining: 1.04s\n", + "928:\tlearn: 14815074.5372959\ttotal: 13.5s\tremaining: 1.03s\n", + "929:\tlearn: 14814229.2585638\ttotal: 13.5s\tremaining: 1.01s\n", + "930:\tlearn: 14804039.0241152\ttotal: 13.5s\tremaining: 1s\n", + "931:\tlearn: 14803929.0738285\ttotal: 13.5s\tremaining: 987ms\n", + "932:\tlearn: 14803822.0317935\ttotal: 13.5s\tremaining: 972ms\n", + "933:\tlearn: 14802847.7620639\ttotal: 13.6s\tremaining: 958ms\n", + "934:\tlearn: 14802644.0143811\ttotal: 13.6s\tremaining: 944ms\n", + "935:\tlearn: 14801390.4240818\ttotal: 13.6s\tremaining: 929ms\n", + "936:\tlearn: 14801273.4225706\ttotal: 13.6s\tremaining: 915ms\n", + "937:\tlearn: 14801021.8599058\ttotal: 13.6s\tremaining: 900ms\n", + "938:\tlearn: 14800715.3029627\ttotal: 13.6s\tremaining: 885ms\n", + "939:\tlearn: 14799551.6406369\ttotal: 13.6s\tremaining: 871ms\n", + "940:\tlearn: 14795598.5613345\ttotal: 13.7s\tremaining: 856ms\n", + "941:\tlearn: 14794465.0278834\ttotal: 13.7s\tremaining: 842ms\n", + "942:\tlearn: 14794259.7563387\ttotal: 13.7s\tremaining: 827ms\n", + "943:\tlearn: 14794156.6214413\ttotal: 13.7s\tremaining: 813ms\n", + "944:\tlearn: 14792982.4344262\ttotal: 13.7s\tremaining: 798ms\n", + "945:\tlearn: 14792468.8012658\ttotal: 13.7s\tremaining: 783ms\n", + "946:\tlearn: 14792139.9923168\ttotal: 13.7s\tremaining: 769ms\n", + "947:\tlearn: 14786295.7938911\ttotal: 13.8s\tremaining: 754ms\n", + "948:\tlearn: 14783272.8762359\ttotal: 13.8s\tremaining: 740ms\n", + "949:\tlearn: 14782689.5513664\ttotal: 13.8s\tremaining: 725ms\n", + "950:\tlearn: 14782664.1266181\ttotal: 13.8s\tremaining: 710ms\n", + "951:\tlearn: 14774339.7873426\ttotal: 13.8s\tremaining: 696ms\n", + "952:\tlearn: 14769038.5403572\ttotal: 13.8s\tremaining: 681ms\n", + "953:\tlearn: 14761312.5028488\ttotal: 13.8s\tremaining: 667ms\n", + "954:\tlearn: 14760414.3496721\ttotal: 13.8s\tremaining: 652ms\n", + "955:\tlearn: 14752950.6860631\ttotal: 13.9s\tremaining: 638ms\n", + "956:\tlearn: 14752691.2767919\ttotal: 13.9s\tremaining: 623ms\n", + "957:\tlearn: 14752196.9268404\ttotal: 13.9s\tremaining: 608ms\n", + "958:\tlearn: 14750149.4071752\ttotal: 13.9s\tremaining: 594ms\n", + "959:\tlearn: 14749691.8632556\ttotal: 13.9s\tremaining: 579ms\n", + "960:\tlearn: 14749496.6164671\ttotal: 13.9s\tremaining: 565ms\n", + "961:\tlearn: 14749338.8909588\ttotal: 13.9s\tremaining: 550ms\n", + "962:\tlearn: 14749291.1143099\ttotal: 13.9s\tremaining: 536ms\n", + "963:\tlearn: 14739582.8672605\ttotal: 14s\tremaining: 521ms\n", + "964:\tlearn: 14739542.4442574\ttotal: 14s\tremaining: 506ms\n", + "965:\tlearn: 14739306.4391584\ttotal: 14s\tremaining: 492ms\n", + "966:\tlearn: 14708630.7344942\ttotal: 14s\tremaining: 477ms\n", + "967:\tlearn: 14680984.5320050\ttotal: 14s\tremaining: 463ms\n", + "968:\tlearn: 14677319.7390898\ttotal: 14s\tremaining: 448ms\n", + "969:\tlearn: 14677109.6650390\ttotal: 14s\tremaining: 434ms\n", + "970:\tlearn: 14676355.6242387\ttotal: 14s\tremaining: 419ms\n", + "971:\tlearn: 14667109.8761175\ttotal: 14.1s\tremaining: 405ms\n", + "972:\tlearn: 14643934.7657464\ttotal: 14.1s\tremaining: 390ms\n", + "973:\tlearn: 14642633.8347823\ttotal: 14.1s\tremaining: 376ms\n", + "974:\tlearn: 14642167.8071045\ttotal: 14.1s\tremaining: 362ms\n", + "975:\tlearn: 14641845.3365852\ttotal: 14.1s\tremaining: 347ms\n", + "976:\tlearn: 14640306.5144587\ttotal: 14.1s\tremaining: 333ms\n", + "977:\tlearn: 14640184.9147582\ttotal: 14.1s\tremaining: 318ms\n", + "978:\tlearn: 14640008.8483425\ttotal: 14.2s\tremaining: 304ms\n", + "979:\tlearn: 14636344.5519428\ttotal: 14.2s\tremaining: 289ms\n", + "980:\tlearn: 14633576.2663352\ttotal: 14.2s\tremaining: 275ms\n", + "981:\tlearn: 14624796.2134142\ttotal: 14.2s\tremaining: 260ms\n", + "982:\tlearn: 14624250.6774943\ttotal: 14.2s\tremaining: 246ms\n", + "983:\tlearn: 14615917.0650799\ttotal: 14.2s\tremaining: 231ms\n", + "984:\tlearn: 14615782.8388140\ttotal: 14.2s\tremaining: 217ms\n", + "985:\tlearn: 14612724.2754075\ttotal: 14.3s\tremaining: 203ms\n", + "986:\tlearn: 14609973.2837772\ttotal: 14.3s\tremaining: 188ms\n", + "987:\tlearn: 14605203.8050795\ttotal: 14.3s\tremaining: 174ms\n", + "988:\tlearn: 14605011.6874159\ttotal: 14.3s\tremaining: 159ms\n", + "989:\tlearn: 14594552.7887146\ttotal: 14.3s\tremaining: 145ms\n", + "990:\tlearn: 14591881.9316489\ttotal: 14.3s\tremaining: 130ms\n", + "991:\tlearn: 14581962.3358039\ttotal: 14.3s\tremaining: 116ms\n", + "992:\tlearn: 14581829.5331587\ttotal: 14.4s\tremaining: 101ms\n", + "993:\tlearn: 14581669.7347033\ttotal: 14.4s\tremaining: 86.8ms\n", + "994:\tlearn: 14577373.3119596\ttotal: 14.4s\tremaining: 72.3ms\n", + "995:\tlearn: 14577196.6327960\ttotal: 14.4s\tremaining: 57.8ms\n", + "996:\tlearn: 14577122.1536884\ttotal: 14.4s\tremaining: 43.4ms\n", + "997:\tlearn: 14574702.1336653\ttotal: 14.4s\tremaining: 28.9ms\n", + "998:\tlearn: 14574660.6060510\ttotal: 14.4s\tremaining: 14.4ms\n", + "999:\tlearn: 14574625.9856659\ttotal: 14.4s\tremaining: 0us\n" + ] + }, { "data": { "text/html": [ @@ -836,31 +1826,28 @@ " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model',\n", - " RandomForestRegressor(max_depth=10, n_estimators=20))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "Pipeline(steps=[('preprocessor',\n", @@ -870,12 +1857,11 @@ " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model',\n", - " RandomForestRegressor(max_depth=10, n_estimators=20))])" + " )])" ] }, "execution_count": 10, @@ -899,9 +1885,9 @@ { "data": { "text/plain": [ - "{'mae': np.float64(1276343.108894747),\n", - " 'mape': np.float64(0.35471390164231303),\n", - " 'mse': np.float64(174567675833231.12)}" + "{'mae': 1447931.3425270966,\n", + " 'mape': 1.6294525363466488e+18,\n", + " 'mse': 281898017343454.56}" ] }, "execution_count": 11, @@ -967,7 +1953,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/andrey/work/institute/MLE/assets/mlflow/.venv_lec_mlflow/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values `_ for more details.\n", + "/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values `_ for more details.\n", " warnings.warn(\n" ] } @@ -1011,8 +1997,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024/10/03 18:59:13 INFO mlflow.tracking._tracking_service.client: 🏃 View run baseline model at: http://127.0.0.1:5000/#/experiments/1/runs/24e41bb582554f42953fe6dc2b6b190e.\n", - "2024/10/03 18:59:13 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + "2024/10/10 13:34:49 INFO mlflow.tracking._tracking_service.client: 🏃 View run baseline model at: http://127.0.0.1:5000/#/experiments/1/runs/06fa7ec1f1b74aedb3509c88dc4ee1c0.\n", + "2024/10/10 13:34:49 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" ] } ], @@ -1091,85 +2077,85 @@ " artifact_uri\n", " start_time\n", " end_time\n", - " metrics.mae\n", " metrics.mape\n", + " metrics.mae\n", " metrics.mse\n", - " params.preprocessor__cat__handle_unknown\n", + " params.preprocessor__verbose_feature_names_out\n", " ...\n", - " params.model__max_samples\n", - " params.preprocessor__transformers\n", - " params.model__monotonic_cst\n", - " params.model__warm_start\n", - " params.preprocessor__remainder\n", - " tags.mlflow.user\n", + " params.preprocessor__num\n", + " params.preprocessor__force_int_remainder_cols\n", + " params.preprocessor__cat__unknown_value\n", + " params.memory\n", + " params.preprocessor__cat__categories\n", " tags.mlflow.source.type\n", - " tags.mlflow.runName\n", - " tags.mlflow.source.name\n", + " tags.mlflow.user\n", " tags.mlflow.log-model.history\n", + " tags.mlflow.source.name\n", + " tags.mlflow.runName\n", " \n", " \n", " \n", " \n", " 0\n", - " 24e41bb582554f42953fe6dc2b6b190e\n", + " 06fa7ec1f1b74aedb3509c88dc4ee1c0\n", " 1\n", " FINISHED\n", - " mlflow-artifacts:/1/24e41bb582554f42953fe6dc2b...\n", - " 2024-10-03 15:59:12.732000+00:00\n", - " 2024-10-03 15:59:13.921000+00:00\n", - " 1.276343e+06\n", - " 0.354714\n", - " 1.745677e+14\n", - " use_encoded_value\n", + " mlflow-artifacts:/1/06fa7ec1f1b74aedb3509c88dc...\n", + " 2024-10-10 10:34:49.202000+00:00\n", + " 2024-10-10 10:34:49.765000+00:00\n", + " 1.629453e+18\n", + " 1.447931e+06\n", + " 2.818980e+14\n", + " True\n", " ...\n", + " StandardScaler()\n", + " True\n", + " 99999999\n", " None\n", - " [('num', StandardScaler(), ['geo_lat', 'geo_lo...\n", - " None\n", - " False\n", - " drop\n", - " andrey\n", + " auto\n", " LOCAL\n", - " baseline model\n", + " andrey\n", + " [{\"run_id\": \"06fa7ec1f1b74aedb3509c88dc4ee1c0\"...\n", " /home/andrey/work/institute/MLE/assets/mlflow/...\n", - " [{\"run_id\": \"24e41bb582554f42953fe6dc2b6b190e\"...\n", + " baseline model\n", " \n", " \n", "\n", - "

1 rows × 57 columns

\n", + "

1 rows × 40 columns

\n", "" ], "text/plain": [ " run_id experiment_id status \\\n", - "0 24e41bb582554f42953fe6dc2b6b190e 1 FINISHED \n", + "0 06fa7ec1f1b74aedb3509c88dc4ee1c0 1 FINISHED \n", "\n", " artifact_uri \\\n", - "0 mlflow-artifacts:/1/24e41bb582554f42953fe6dc2b... \n", + "0 mlflow-artifacts:/1/06fa7ec1f1b74aedb3509c88dc... \n", "\n", " start_time end_time \\\n", - "0 2024-10-03 15:59:12.732000+00:00 2024-10-03 15:59:13.921000+00:00 \n", + "0 2024-10-10 10:34:49.202000+00:00 2024-10-10 10:34:49.765000+00:00 \n", "\n", - " metrics.mae metrics.mape metrics.mse \\\n", - "0 1.276343e+06 0.354714 1.745677e+14 \n", + " metrics.mape metrics.mae metrics.mse \\\n", + "0 1.629453e+18 1.447931e+06 2.818980e+14 \n", "\n", - " params.preprocessor__cat__handle_unknown ... params.model__max_samples \\\n", - "0 use_encoded_value ... None \n", + " params.preprocessor__verbose_feature_names_out ... \\\n", + "0 True ... \n", "\n", - " params.preprocessor__transformers \\\n", - "0 [('num', StandardScaler(), ['geo_lat', 'geo_lo... \n", + " params.preprocessor__num params.preprocessor__force_int_remainder_cols \\\n", + "0 StandardScaler() True \n", "\n", - " params.model__monotonic_cst params.model__warm_start \\\n", - "0 None False \n", + " params.preprocessor__cat__unknown_value params.memory \\\n", + "0 99999999 None \n", "\n", - " params.preprocessor__remainder tags.mlflow.user tags.mlflow.source.type \\\n", - "0 drop andrey LOCAL \n", + " params.preprocessor__cat__categories tags.mlflow.source.type \\\n", + "0 auto LOCAL \n", "\n", - " tags.mlflow.runName tags.mlflow.source.name \\\n", - "0 baseline model /home/andrey/work/institute/MLE/assets/mlflow/... \n", + " tags.mlflow.user tags.mlflow.log-model.history \\\n", + "0 andrey [{\"run_id\": \"06fa7ec1f1b74aedb3509c88dc4ee1c0\"... \n", "\n", - " tags.mlflow.log-model.history \n", - "0 [{\"run_id\": \"24e41bb582554f42953fe6dc2b6b190e\"... \n", + " tags.mlflow.source.name tags.mlflow.runName \n", + "0 /home/andrey/work/institute/MLE/assets/mlflow/... baseline model \n", "\n", - "[1 rows x 57 columns]" + "[1 rows x 40 columns]" ] }, "execution_count": 19, @@ -1223,11 +2209,1024 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024/10/03 18:59:14 WARNING mlflow.utils.autologging_utils: MLflow sklearn autologging is known to be compatible with 0.24.1 <= scikit-learn <= 1.5.1, but the installed version is 1.5.2. If you encounter errors during autologging, try upgrading / downgrading scikit-learn to a compatible version, or try upgrading MLflow.\n", - "2024/10/03 19:02:16 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: \"/home/andrey/work/institute/MLE/assets/mlflow/.venv_lec_mlflow/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values `_ for more details.\"\n", - "2024/10/03 19:02:40 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: \"/home/andrey/work/institute/MLE/assets/mlflow/.venv_lec_mlflow/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values `_ for more details.\"\n", - "2024/10/03 19:02:42 INFO mlflow.tracking._tracking_service.client: 🏃 View run auto at: http://127.0.0.1:5000/#/experiments/1/runs/2ced09116c264623b89d8df7fe33cb10.\n", - "2024/10/03 19:02:42 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + "2024/10/10 13:34:49 WARNING mlflow.utils.autologging_utils: MLflow sklearn autologging is known to be compatible with 0.24.1 <= scikit-learn <= 1.5.1, but the installed version is 1.5.2. If you encounter errors during autologging, try upgrading / downgrading scikit-learn to a compatible version, or try upgrading MLflow.\n", + "2024/10/10 13:36:26 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: \"/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values `_ for more details.\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning rate set to 0.105957\n", + "0:\tlearn: 22102085.4544239\ttotal: 12.9ms\tremaining: 12.9s\n", + "1:\tlearn: 21994630.3403412\ttotal: 24.9ms\tremaining: 12.4s\n", + "2:\tlearn: 21906687.8196027\ttotal: 36.3ms\tremaining: 12.1s\n", + "3:\tlearn: 21834890.5050552\ttotal: 47.9ms\tremaining: 11.9s\n", + "4:\tlearn: 21770820.6751194\ttotal: 59ms\tremaining: 11.7s\n", + "5:\tlearn: 21719543.9330108\ttotal: 70.8ms\tremaining: 11.7s\n", + "6:\tlearn: 21676510.1666598\ttotal: 83.7ms\tremaining: 11.9s\n", + "7:\tlearn: 21641355.8079016\ttotal: 95.1ms\tremaining: 11.8s\n", + "8:\tlearn: 21612289.0494648\ttotal: 107ms\tremaining: 11.8s\n", + "9:\tlearn: 21583808.7061085\ttotal: 119ms\tremaining: 11.7s\n", + "10:\tlearn: 21559288.9618040\ttotal: 129ms\tremaining: 11.6s\n", + "11:\tlearn: 21537048.9920531\ttotal: 141ms\tremaining: 11.6s\n", + "12:\tlearn: 21444526.1629239\ttotal: 153ms\tremaining: 11.6s\n", + "13:\tlearn: 21426349.3370315\ttotal: 165ms\tremaining: 11.6s\n", + "14:\tlearn: 21411901.2338278\ttotal: 178ms\tremaining: 11.7s\n", + "15:\tlearn: 21399279.8023459\ttotal: 190ms\tremaining: 11.7s\n", + "16:\tlearn: 21299421.1434822\ttotal: 203ms\tremaining: 11.8s\n", + "17:\tlearn: 21288560.2595435\ttotal: 216ms\tremaining: 11.8s\n", + "18:\tlearn: 21277368.8876877\ttotal: 228ms\tremaining: 11.8s\n", + "19:\tlearn: 21229205.2938305\ttotal: 241ms\tremaining: 11.8s\n", + "20:\tlearn: 21220238.4828158\ttotal: 253ms\tremaining: 11.8s\n", + "21:\tlearn: 21212849.7885410\ttotal: 265ms\tremaining: 11.8s\n", + "22:\tlearn: 21205304.4132821\ttotal: 278ms\tremaining: 11.8s\n", + "23:\tlearn: 21198813.8508479\ttotal: 290ms\tremaining: 11.8s\n", + "24:\tlearn: 21184627.2326983\ttotal: 300ms\tremaining: 11.7s\n", + "25:\tlearn: 21172748.3410688\ttotal: 314ms\tremaining: 11.7s\n", + "26:\tlearn: 21103305.4766520\ttotal: 327ms\tremaining: 11.8s\n", + "27:\tlearn: 21096636.4037750\ttotal: 338ms\tremaining: 11.7s\n", + "28:\tlearn: 21082202.2892557\ttotal: 351ms\tremaining: 11.8s\n", + "29:\tlearn: 21077185.5274954\ttotal: 363ms\tremaining: 11.7s\n", + "30:\tlearn: 21071613.1691098\ttotal: 375ms\tremaining: 11.7s\n", + "31:\tlearn: 21067654.8502386\ttotal: 386ms\tremaining: 11.7s\n", + "32:\tlearn: 21053425.8947843\ttotal: 399ms\tremaining: 11.7s\n", + "33:\tlearn: 21038024.0563140\ttotal: 410ms\tremaining: 11.7s\n", + "34:\tlearn: 20961357.9814339\ttotal: 422ms\tremaining: 11.6s\n", + "35:\tlearn: 20946027.4479676\ttotal: 437ms\tremaining: 11.7s\n", + "36:\tlearn: 20866676.4104322\ttotal: 450ms\tremaining: 11.7s\n", + "37:\tlearn: 20863078.3182449\ttotal: 461ms\tremaining: 11.7s\n", + "38:\tlearn: 20859910.3609500\ttotal: 474ms\tremaining: 11.7s\n", + "39:\tlearn: 20853462.2703730\ttotal: 484ms\tremaining: 11.6s\n", + "40:\tlearn: 20851610.3209036\ttotal: 496ms\tremaining: 11.6s\n", + "41:\tlearn: 20847674.0809285\ttotal: 508ms\tremaining: 11.6s\n", + "42:\tlearn: 20845384.9263391\ttotal: 521ms\tremaining: 11.6s\n", + "43:\tlearn: 20843256.7428906\ttotal: 535ms\tremaining: 11.6s\n", + "44:\tlearn: 20841580.8594834\ttotal: 548ms\tremaining: 11.6s\n", + "45:\tlearn: 20819301.2718345\ttotal: 564ms\tremaining: 11.7s\n", + "46:\tlearn: 20812094.5913582\ttotal: 580ms\tremaining: 11.8s\n", + "47:\tlearn: 20808932.0866915\ttotal: 594ms\tremaining: 11.8s\n", + "48:\tlearn: 20763172.9200413\ttotal: 612ms\tremaining: 11.9s\n", + "49:\tlearn: 20729084.6574594\ttotal: 626ms\tremaining: 11.9s\n", + "50:\tlearn: 20721820.5403996\ttotal: 640ms\tremaining: 11.9s\n", + "51:\tlearn: 20715664.3732084\ttotal: 653ms\tremaining: 11.9s\n", + "52:\tlearn: 20712658.7025295\ttotal: 663ms\tremaining: 11.9s\n", + "53:\tlearn: 20704254.1704930\ttotal: 675ms\tremaining: 11.8s\n", + "54:\tlearn: 20690967.9220470\ttotal: 685ms\tremaining: 11.8s\n", + "55:\tlearn: 20686546.8978473\ttotal: 696ms\tremaining: 11.7s\n", + "56:\tlearn: 20682362.4255777\ttotal: 708ms\tremaining: 11.7s\n", + "57:\tlearn: 20680744.8113421\ttotal: 719ms\tremaining: 11.7s\n", + "58:\tlearn: 20677926.0871267\ttotal: 730ms\tremaining: 11.6s\n", + "59:\tlearn: 20658478.3098789\ttotal: 743ms\tremaining: 11.6s\n", + "60:\tlearn: 20641964.4472246\ttotal: 756ms\tremaining: 11.6s\n", + "61:\tlearn: 20639551.4216654\ttotal: 767ms\tremaining: 11.6s\n", + "62:\tlearn: 20638344.8919341\ttotal: 778ms\tremaining: 11.6s\n", + "63:\tlearn: 20635991.3894815\ttotal: 790ms\tremaining: 11.6s\n", + "64:\tlearn: 20595846.8116432\ttotal: 802ms\tremaining: 11.5s\n", + "65:\tlearn: 20592198.9483046\ttotal: 813ms\tremaining: 11.5s\n", + "66:\tlearn: 20565316.0060422\ttotal: 827ms\tremaining: 11.5s\n", + "67:\tlearn: 20563073.6783517\ttotal: 838ms\tremaining: 11.5s\n", + "68:\tlearn: 20553650.4649650\ttotal: 851ms\tremaining: 11.5s\n", + "69:\tlearn: 20545510.8230653\ttotal: 862ms\tremaining: 11.4s\n", + "70:\tlearn: 20544114.9272186\ttotal: 872ms\tremaining: 11.4s\n", + "71:\tlearn: 20541689.8802451\ttotal: 884ms\tremaining: 11.4s\n", + "72:\tlearn: 20538792.7074671\ttotal: 896ms\tremaining: 11.4s\n", + "73:\tlearn: 20517134.0713648\ttotal: 909ms\tremaining: 11.4s\n", + "74:\tlearn: 20510477.9089445\ttotal: 922ms\tremaining: 11.4s\n", + "75:\tlearn: 20494649.9067257\ttotal: 934ms\tremaining: 11.4s\n", + "76:\tlearn: 20490851.9879851\ttotal: 946ms\tremaining: 11.3s\n", + "77:\tlearn: 20488939.9621874\ttotal: 958ms\tremaining: 11.3s\n", + "78:\tlearn: 20432532.8171644\ttotal: 970ms\tremaining: 11.3s\n", + "79:\tlearn: 20428397.7107150\ttotal: 982ms\tremaining: 11.3s\n", + "80:\tlearn: 20421638.7734419\ttotal: 995ms\tremaining: 11.3s\n", + "81:\tlearn: 20421021.7388457\ttotal: 1.01s\tremaining: 11.3s\n", + "82:\tlearn: 20406404.2376730\ttotal: 1.02s\tremaining: 11.3s\n", + "83:\tlearn: 20021682.5008511\ttotal: 1.03s\tremaining: 11.3s\n", + "84:\tlearn: 20018322.6048631\ttotal: 1.05s\tremaining: 11.3s\n", + "85:\tlearn: 20004841.3476490\ttotal: 1.06s\tremaining: 11.2s\n", + "86:\tlearn: 19985666.0092745\ttotal: 1.07s\tremaining: 11.2s\n", + "87:\tlearn: 19983778.1947243\ttotal: 1.08s\tremaining: 11.2s\n", + "88:\tlearn: 19982460.1107908\ttotal: 1.09s\tremaining: 11.2s\n", + "89:\tlearn: 19979128.5494690\ttotal: 1.11s\tremaining: 11.2s\n", + "90:\tlearn: 19974094.9707357\ttotal: 1.11s\tremaining: 11.1s\n", + "91:\tlearn: 19972006.9431031\ttotal: 1.13s\tremaining: 11.1s\n", + "92:\tlearn: 19970846.2845466\ttotal: 1.14s\tremaining: 11.1s\n", + "93:\tlearn: 19968858.0073042\ttotal: 1.15s\tremaining: 11.1s\n", + "94:\tlearn: 19921720.6252972\ttotal: 1.17s\tremaining: 11.1s\n", + "95:\tlearn: 19916568.5707839\ttotal: 1.18s\tremaining: 11.1s\n", + "96:\tlearn: 19913228.5247508\ttotal: 1.19s\tremaining: 11.1s\n", + "97:\tlearn: 19901982.4625895\ttotal: 1.2s\tremaining: 11s\n", + "98:\tlearn: 19836107.7247888\ttotal: 1.21s\tremaining: 11s\n", + "99:\tlearn: 19834724.7455166\ttotal: 1.23s\tremaining: 11s\n", + "100:\tlearn: 19832811.9745741\ttotal: 1.24s\tremaining: 11s\n", + "101:\tlearn: 19818491.2851567\ttotal: 1.25s\tremaining: 11s\n", + "102:\tlearn: 19815779.3719026\ttotal: 1.26s\tremaining: 11s\n", + "103:\tlearn: 19814215.0962787\ttotal: 1.27s\tremaining: 11s\n", + "104:\tlearn: 19782274.6892663\ttotal: 1.29s\tremaining: 11s\n", + "105:\tlearn: 19777945.6507456\ttotal: 1.3s\tremaining: 11s\n", + "106:\tlearn: 19770488.9772154\ttotal: 1.31s\tremaining: 11s\n", + "107:\tlearn: 19769758.0023174\ttotal: 1.32s\tremaining: 10.9s\n", + "108:\tlearn: 19767541.9303017\ttotal: 1.34s\tremaining: 10.9s\n", + "109:\tlearn: 19766992.0126300\ttotal: 1.35s\tremaining: 10.9s\n", + "110:\tlearn: 19765032.8837298\ttotal: 1.36s\tremaining: 10.9s\n", + "111:\tlearn: 19705204.6771073\ttotal: 1.38s\tremaining: 10.9s\n", + "112:\tlearn: 19703649.0394020\ttotal: 1.39s\tremaining: 10.9s\n", + "113:\tlearn: 19693038.0415419\ttotal: 1.4s\tremaining: 10.9s\n", + "114:\tlearn: 19690294.4304072\ttotal: 1.42s\tremaining: 10.9s\n", + "115:\tlearn: 19686529.4709294\ttotal: 1.43s\tremaining: 10.9s\n", + "116:\tlearn: 19684887.8267152\ttotal: 1.44s\tremaining: 10.9s\n", + "117:\tlearn: 19369465.6970761\ttotal: 1.45s\tremaining: 10.9s\n", + "118:\tlearn: 19368868.0416380\ttotal: 1.47s\tremaining: 10.9s\n", + "119:\tlearn: 19334590.5868513\ttotal: 1.48s\tremaining: 10.9s\n", + "120:\tlearn: 19332200.0832597\ttotal: 1.49s\tremaining: 10.8s\n", + "121:\tlearn: 19320130.9244745\ttotal: 1.5s\tremaining: 10.8s\n", + "122:\tlearn: 19318220.9448337\ttotal: 1.51s\tremaining: 10.8s\n", + "123:\tlearn: 18941546.2095714\ttotal: 1.53s\tremaining: 10.8s\n", + "124:\tlearn: 18941056.2836883\ttotal: 1.54s\tremaining: 10.8s\n", + "125:\tlearn: 18939637.9662976\ttotal: 1.55s\tremaining: 10.7s\n", + "126:\tlearn: 18938172.4621610\ttotal: 1.56s\tremaining: 10.8s\n", + "127:\tlearn: 18935889.3619752\ttotal: 1.58s\tremaining: 10.8s\n", + "128:\tlearn: 18928784.7025346\ttotal: 1.59s\tremaining: 10.8s\n", + "129:\tlearn: 18926981.6933453\ttotal: 1.6s\tremaining: 10.7s\n", + "130:\tlearn: 18830178.3173696\ttotal: 1.61s\tremaining: 10.7s\n", + "131:\tlearn: 18828102.3918672\ttotal: 1.63s\tremaining: 10.7s\n", + "132:\tlearn: 18825755.9987015\ttotal: 1.64s\tremaining: 10.7s\n", + "133:\tlearn: 18793049.5462155\ttotal: 1.65s\tremaining: 10.7s\n", + "134:\tlearn: 18791452.8400128\ttotal: 1.66s\tremaining: 10.7s\n", + "135:\tlearn: 18484591.4924421\ttotal: 1.68s\tremaining: 10.6s\n", + "136:\tlearn: 18482373.1605741\ttotal: 1.69s\tremaining: 10.6s\n", + "137:\tlearn: 18414571.2543321\ttotal: 1.7s\tremaining: 10.6s\n", + "138:\tlearn: 18412913.4160574\ttotal: 1.71s\tremaining: 10.6s\n", + "139:\tlearn: 18409214.1141794\ttotal: 1.72s\tremaining: 10.6s\n", + "140:\tlearn: 18395140.1008086\ttotal: 1.74s\tremaining: 10.6s\n", + "141:\tlearn: 18390939.2248151\ttotal: 1.75s\tremaining: 10.6s\n", + "142:\tlearn: 18377925.8298573\ttotal: 1.76s\tremaining: 10.6s\n", + "143:\tlearn: 18371775.1291009\ttotal: 1.77s\tremaining: 10.5s\n", + "144:\tlearn: 18370251.1042623\ttotal: 1.78s\tremaining: 10.5s\n", + "145:\tlearn: 18332707.1499911\ttotal: 1.8s\tremaining: 10.5s\n", + "146:\tlearn: 18330693.2665230\ttotal: 1.81s\tremaining: 10.5s\n", + "147:\tlearn: 18329408.2952767\ttotal: 1.82s\tremaining: 10.5s\n", + "148:\tlearn: 18321783.9892793\ttotal: 1.83s\tremaining: 10.5s\n", + "149:\tlearn: 18321270.4958267\ttotal: 1.85s\tremaining: 10.5s\n", + "150:\tlearn: 18310325.1681801\ttotal: 1.86s\tremaining: 10.5s\n", + "151:\tlearn: 18299986.9413893\ttotal: 1.87s\tremaining: 10.4s\n", + "152:\tlearn: 18290217.7479708\ttotal: 1.89s\tremaining: 10.4s\n", + "153:\tlearn: 18280975.8537910\ttotal: 1.9s\tremaining: 10.4s\n", + "154:\tlearn: 18272215.6509019\ttotal: 1.91s\tremaining: 10.4s\n", + "155:\tlearn: 18263878.2178516\ttotal: 1.92s\tremaining: 10.4s\n", + "156:\tlearn: 18256009.4859248\ttotal: 1.94s\tremaining: 10.4s\n", + "157:\tlearn: 18248529.7799856\ttotal: 1.95s\tremaining: 10.4s\n", + "158:\tlearn: 18241388.0845094\ttotal: 1.96s\tremaining: 10.4s\n", + "159:\tlearn: 18234700.5127085\ttotal: 1.97s\tremaining: 10.3s\n", + "160:\tlearn: 18228095.5839778\ttotal: 1.98s\tremaining: 10.3s\n", + "161:\tlearn: 18222087.5153066\ttotal: 2s\tremaining: 10.3s\n", + "162:\tlearn: 18215963.2971261\ttotal: 2.01s\tremaining: 10.3s\n", + "163:\tlearn: 18210272.5545163\ttotal: 2.02s\tremaining: 10.3s\n", + "164:\tlearn: 18208920.7703569\ttotal: 2.03s\tremaining: 10.3s\n", + "165:\tlearn: 18204704.7145239\ttotal: 2.04s\tremaining: 10.3s\n", + "166:\tlearn: 18187135.8260335\ttotal: 2.05s\tremaining: 10.2s\n", + "167:\tlearn: 18183064.7135734\ttotal: 2.06s\tremaining: 10.2s\n", + "168:\tlearn: 18177887.1670860\ttotal: 2.08s\tremaining: 10.2s\n", + "169:\tlearn: 18173022.2110313\ttotal: 2.09s\tremaining: 10.2s\n", + "170:\tlearn: 18168573.4167384\ttotal: 2.1s\tremaining: 10.2s\n", + "171:\tlearn: 18165036.1971623\ttotal: 2.11s\tremaining: 10.2s\n", + "172:\tlearn: 18161841.9822954\ttotal: 2.13s\tremaining: 10.2s\n", + "173:\tlearn: 18129860.2061383\ttotal: 2.14s\tremaining: 10.1s\n", + "174:\tlearn: 18127931.5161091\ttotal: 2.15s\tremaining: 10.1s\n", + "175:\tlearn: 18124997.7778403\ttotal: 2.16s\tremaining: 10.1s\n", + "176:\tlearn: 18122975.2084322\ttotal: 2.17s\tremaining: 10.1s\n", + "177:\tlearn: 18120855.5325733\ttotal: 2.18s\tremaining: 10.1s\n", + "178:\tlearn: 18117907.6019994\ttotal: 2.2s\tremaining: 10.1s\n", + "179:\tlearn: 18116674.0864027\ttotal: 2.21s\tremaining: 10.1s\n", + "180:\tlearn: 18114086.9287957\ttotal: 2.22s\tremaining: 10s\n", + "181:\tlearn: 18087100.0827926\ttotal: 2.23s\tremaining: 10s\n", + "182:\tlearn: 18071944.2213105\ttotal: 2.24s\tremaining: 10s\n", + "183:\tlearn: 17952691.4261792\ttotal: 2.26s\tremaining: 10s\n", + "184:\tlearn: 17950298.6715866\ttotal: 2.27s\tremaining: 9.99s\n", + "185:\tlearn: 17949031.8169417\ttotal: 2.28s\tremaining: 9.98s\n", + "186:\tlearn: 17937943.5186847\ttotal: 2.29s\tremaining: 9.97s\n", + "187:\tlearn: 17937014.8027177\ttotal: 2.3s\tremaining: 9.96s\n", + "188:\tlearn: 17936493.5945773\ttotal: 2.31s\tremaining: 9.94s\n", + "189:\tlearn: 17935386.0093649\ttotal: 2.33s\tremaining: 9.92s\n", + "190:\tlearn: 17934203.8644718\ttotal: 2.34s\tremaining: 9.91s\n", + "191:\tlearn: 17928336.5184065\ttotal: 2.35s\tremaining: 9.89s\n", + "192:\tlearn: 17925443.1940046\ttotal: 2.36s\tremaining: 9.88s\n", + "193:\tlearn: 17924535.5533845\ttotal: 2.37s\tremaining: 9.86s\n", + "194:\tlearn: 17917225.8802206\ttotal: 2.39s\tremaining: 9.85s\n", + "195:\tlearn: 17904437.4148190\ttotal: 2.4s\tremaining: 9.84s\n", + "196:\tlearn: 17902915.3467923\ttotal: 2.41s\tremaining: 9.83s\n", + "197:\tlearn: 17900924.7512305\ttotal: 2.42s\tremaining: 9.81s\n", + "198:\tlearn: 17899976.2262471\ttotal: 2.43s\tremaining: 9.79s\n", + "199:\tlearn: 17896573.5977064\ttotal: 2.45s\tremaining: 9.79s\n", + "200:\tlearn: 17894480.1301072\ttotal: 2.46s\tremaining: 9.77s\n", + "201:\tlearn: 17891369.5414483\ttotal: 2.47s\tremaining: 9.76s\n", + "202:\tlearn: 17853776.3679239\ttotal: 2.48s\tremaining: 9.75s\n", + "203:\tlearn: 17851457.0828592\ttotal: 2.49s\tremaining: 9.73s\n", + "204:\tlearn: 17849621.6767992\ttotal: 2.5s\tremaining: 9.72s\n", + "205:\tlearn: 17848392.5509482\ttotal: 2.52s\tremaining: 9.7s\n", + "206:\tlearn: 17845597.2428619\ttotal: 2.53s\tremaining: 9.69s\n", + "207:\tlearn: 17841951.2763157\ttotal: 2.54s\tremaining: 9.68s\n", + "208:\tlearn: 17829332.8912371\ttotal: 2.55s\tremaining: 9.66s\n", + "209:\tlearn: 17825984.1152963\ttotal: 2.56s\tremaining: 9.65s\n", + "210:\tlearn: 17821360.2498463\ttotal: 2.58s\tremaining: 9.64s\n", + "211:\tlearn: 17816041.9633158\ttotal: 2.59s\tremaining: 9.63s\n", + "212:\tlearn: 17815089.0154101\ttotal: 2.6s\tremaining: 9.62s\n", + "213:\tlearn: 17812260.4222221\ttotal: 2.62s\tremaining: 9.61s\n", + "214:\tlearn: 17811642.1796060\ttotal: 2.63s\tremaining: 9.6s\n", + "215:\tlearn: 17811104.8656724\ttotal: 2.64s\tremaining: 9.58s\n", + "216:\tlearn: 17810456.2984828\ttotal: 2.65s\tremaining: 9.57s\n", + "217:\tlearn: 17809982.4909707\ttotal: 2.66s\tremaining: 9.55s\n", + "218:\tlearn: 17809543.7803178\ttotal: 2.67s\tremaining: 9.54s\n", + "219:\tlearn: 17809136.8325569\ttotal: 2.68s\tremaining: 9.52s\n", + "220:\tlearn: 17808758.7315278\ttotal: 2.7s\tremaining: 9.5s\n", + "221:\tlearn: 17808406.9145618\ttotal: 2.71s\tremaining: 9.49s\n", + "222:\tlearn: 17806754.0179687\ttotal: 2.72s\tremaining: 9.49s\n", + "223:\tlearn: 17806262.4885592\ttotal: 2.73s\tremaining: 9.47s\n", + "224:\tlearn: 17805319.3776209\ttotal: 2.75s\tremaining: 9.46s\n", + "225:\tlearn: 17805011.6013482\ttotal: 2.76s\tremaining: 9.44s\n", + "226:\tlearn: 17804724.0362310\ttotal: 2.77s\tremaining: 9.42s\n", + "227:\tlearn: 17793961.7547867\ttotal: 2.78s\tremaining: 9.41s\n", + "228:\tlearn: 17793044.3976904\ttotal: 2.79s\tremaining: 9.4s\n", + "229:\tlearn: 17791876.3449986\ttotal: 2.8s\tremaining: 9.39s\n", + "230:\tlearn: 17770039.2877531\ttotal: 2.82s\tremaining: 9.38s\n", + "231:\tlearn: 17769759.3423197\ttotal: 2.83s\tremaining: 9.36s\n", + "232:\tlearn: 17769498.1846872\ttotal: 2.84s\tremaining: 9.35s\n", + "233:\tlearn: 17769106.6516586\ttotal: 2.85s\tremaining: 9.33s\n", + "234:\tlearn: 17765866.7512613\ttotal: 2.86s\tremaining: 9.32s\n", + "235:\tlearn: 17763818.0836765\ttotal: 2.87s\tremaining: 9.3s\n", + "236:\tlearn: 17761637.5687877\ttotal: 2.89s\tremaining: 9.29s\n", + "237:\tlearn: 17755293.6166299\ttotal: 2.9s\tremaining: 9.28s\n", + "238:\tlearn: 17749597.6285121\ttotal: 2.91s\tremaining: 9.27s\n", + "239:\tlearn: 17731193.4780969\ttotal: 2.92s\tremaining: 9.26s\n", + "240:\tlearn: 17730941.1840209\ttotal: 2.94s\tremaining: 9.24s\n", + "241:\tlearn: 17730651.4109866\ttotal: 2.94s\tremaining: 9.23s\n", + "242:\tlearn: 17729951.1772204\ttotal: 2.96s\tremaining: 9.21s\n", + "243:\tlearn: 17725674.6169533\ttotal: 2.97s\tremaining: 9.2s\n", + "244:\tlearn: 17724397.3837970\ttotal: 2.98s\tremaining: 9.19s\n", + "245:\tlearn: 17723085.9667878\ttotal: 2.99s\tremaining: 9.18s\n", + "246:\tlearn: 17716068.0643361\ttotal: 3.01s\tremaining: 9.16s\n", + "247:\tlearn: 17685621.7941613\ttotal: 3.02s\tremaining: 9.15s\n", + "248:\tlearn: 17684272.6716694\ttotal: 3.03s\tremaining: 9.14s\n", + "249:\tlearn: 17683390.0888279\ttotal: 3.04s\tremaining: 9.13s\n", + "250:\tlearn: 17683052.4845925\ttotal: 3.05s\tremaining: 9.11s\n", + "251:\tlearn: 17678624.0868252\ttotal: 3.06s\tremaining: 9.1s\n", + "252:\tlearn: 17665657.9640584\ttotal: 3.08s\tremaining: 9.09s\n", + "253:\tlearn: 17664624.5487132\ttotal: 3.09s\tremaining: 9.08s\n", + "254:\tlearn: 17663925.0646167\ttotal: 3.1s\tremaining: 9.07s\n", + "255:\tlearn: 17653813.6196925\ttotal: 3.12s\tremaining: 9.06s\n", + "256:\tlearn: 17636698.5157040\ttotal: 3.13s\tremaining: 9.05s\n", + "257:\tlearn: 17634671.9750893\ttotal: 3.14s\tremaining: 9.04s\n", + "258:\tlearn: 17633930.6422340\ttotal: 3.15s\tremaining: 9.02s\n", + "259:\tlearn: 17633026.0861171\ttotal: 3.17s\tremaining: 9.01s\n", + "260:\tlearn: 17632489.1254856\ttotal: 3.18s\tremaining: 8.99s\n", + "261:\tlearn: 17628474.9187765\ttotal: 3.19s\tremaining: 8.98s\n", + "262:\tlearn: 17627320.9817928\ttotal: 3.2s\tremaining: 8.97s\n", + "263:\tlearn: 17626116.4772868\ttotal: 3.21s\tremaining: 8.95s\n", + "264:\tlearn: 17623329.0754817\ttotal: 3.22s\tremaining: 8.94s\n", + "265:\tlearn: 17622243.1901613\ttotal: 3.24s\tremaining: 8.93s\n", + "266:\tlearn: 17550321.8250878\ttotal: 3.25s\tremaining: 8.92s\n", + "267:\tlearn: 17549755.3651767\ttotal: 3.26s\tremaining: 8.91s\n", + "268:\tlearn: 17545607.1212430\ttotal: 3.28s\tremaining: 8.9s\n", + "269:\tlearn: 17541242.2629221\ttotal: 3.29s\tremaining: 8.89s\n", + "270:\tlearn: 17499407.7313592\ttotal: 3.3s\tremaining: 8.88s\n", + "271:\tlearn: 17499145.8282321\ttotal: 3.31s\tremaining: 8.86s\n", + "272:\tlearn: 17498934.5535116\ttotal: 3.32s\tremaining: 8.85s\n", + "273:\tlearn: 17498347.2546318\ttotal: 3.33s\tremaining: 8.83s\n", + "274:\tlearn: 17498149.7061684\ttotal: 3.34s\tremaining: 8.81s\n", + "275:\tlearn: 17497860.3337909\ttotal: 3.35s\tremaining: 8.8s\n", + "276:\tlearn: 17497134.2565818\ttotal: 3.37s\tremaining: 8.78s\n", + "277:\tlearn: 17496943.1446578\ttotal: 3.38s\tremaining: 8.77s\n", + "278:\tlearn: 17495461.7397646\ttotal: 3.39s\tremaining: 8.76s\n", + "279:\tlearn: 17492860.8467310\ttotal: 3.4s\tremaining: 8.75s\n", + "280:\tlearn: 17492256.7750564\ttotal: 3.41s\tremaining: 8.74s\n", + "281:\tlearn: 17491315.8920024\ttotal: 3.42s\tremaining: 8.72s\n", + "282:\tlearn: 17488802.8492737\ttotal: 3.44s\tremaining: 8.71s\n", + "283:\tlearn: 17479802.6541152\ttotal: 3.45s\tremaining: 8.7s\n", + "284:\tlearn: 17477169.5331720\ttotal: 3.46s\tremaining: 8.69s\n", + "285:\tlearn: 17474743.6190942\ttotal: 3.47s\tremaining: 8.67s\n", + "286:\tlearn: 17468342.7955232\ttotal: 3.49s\tremaining: 8.67s\n", + "287:\tlearn: 17467579.9985437\ttotal: 3.5s\tremaining: 8.66s\n", + "288:\tlearn: 17467009.9684055\ttotal: 3.51s\tremaining: 8.64s\n", + "289:\tlearn: 17464125.0260113\ttotal: 3.52s\tremaining: 8.63s\n", + "290:\tlearn: 17463508.0564477\ttotal: 3.54s\tremaining: 8.62s\n", + "291:\tlearn: 17453183.2620432\ttotal: 3.55s\tremaining: 8.61s\n", + "292:\tlearn: 17452971.0671546\ttotal: 3.56s\tremaining: 8.6s\n", + "293:\tlearn: 17452198.5884342\ttotal: 3.58s\tremaining: 8.6s\n", + "294:\tlearn: 17450925.6159031\ttotal: 3.59s\tremaining: 8.59s\n", + "295:\tlearn: 17450685.1155343\ttotal: 3.6s\tremaining: 8.57s\n", + "296:\tlearn: 17447975.7379237\ttotal: 3.62s\tremaining: 8.56s\n", + "297:\tlearn: 17446417.7251561\ttotal: 3.63s\tremaining: 8.55s\n", + "298:\tlearn: 17446166.7629704\ttotal: 3.64s\tremaining: 8.54s\n", + "299:\tlearn: 17445963.1442260\ttotal: 3.65s\tremaining: 8.52s\n", + "300:\tlearn: 17445745.7958927\ttotal: 3.66s\tremaining: 8.5s\n", + "301:\tlearn: 17444963.9290154\ttotal: 3.67s\tremaining: 8.49s\n", + "302:\tlearn: 17432650.1591210\ttotal: 3.69s\tremaining: 8.48s\n", + "303:\tlearn: 17430525.1210288\ttotal: 3.7s\tremaining: 8.47s\n", + "304:\tlearn: 17418414.4601453\ttotal: 3.71s\tremaining: 8.46s\n", + "305:\tlearn: 17417977.4735651\ttotal: 3.72s\tremaining: 8.44s\n", + "306:\tlearn: 17335624.2943914\ttotal: 3.73s\tremaining: 8.43s\n", + "307:\tlearn: 17323558.9233681\ttotal: 3.75s\tremaining: 8.42s\n", + "308:\tlearn: 17323047.3527617\ttotal: 3.76s\tremaining: 8.41s\n", + "309:\tlearn: 17322403.3488620\ttotal: 3.77s\tremaining: 8.39s\n", + "310:\tlearn: 17322187.6973801\ttotal: 3.78s\tremaining: 8.38s\n", + "311:\tlearn: 17320898.8497406\ttotal: 3.8s\tremaining: 8.37s\n", + "312:\tlearn: 17312668.7000429\ttotal: 3.81s\tremaining: 8.36s\n", + "313:\tlearn: 17299277.5985403\ttotal: 3.82s\tremaining: 8.35s\n", + "314:\tlearn: 17298175.9786240\ttotal: 3.83s\tremaining: 8.34s\n", + "315:\tlearn: 17296005.0430765\ttotal: 3.85s\tremaining: 8.33s\n", + "316:\tlearn: 17295834.3986842\ttotal: 3.86s\tremaining: 8.32s\n", + "317:\tlearn: 17295646.8271436\ttotal: 3.87s\tremaining: 8.3s\n", + "318:\tlearn: 17295412.2240763\ttotal: 3.88s\tremaining: 8.29s\n", + "319:\tlearn: 17295269.3891063\ttotal: 3.89s\tremaining: 8.27s\n", + "320:\tlearn: 17294720.1427139\ttotal: 3.9s\tremaining: 8.26s\n", + "321:\tlearn: 17280405.8179874\ttotal: 3.92s\tremaining: 8.25s\n", + "322:\tlearn: 17279788.6705542\ttotal: 3.93s\tremaining: 8.23s\n", + "323:\tlearn: 17259578.2219214\ttotal: 3.94s\tremaining: 8.22s\n", + "324:\tlearn: 17258995.8851109\ttotal: 3.95s\tremaining: 8.2s\n", + "325:\tlearn: 17256802.0040208\ttotal: 3.96s\tremaining: 8.19s\n", + "326:\tlearn: 17245667.9352932\ttotal: 3.97s\tremaining: 8.18s\n", + "327:\tlearn: 17245157.2383849\ttotal: 3.99s\tremaining: 8.17s\n", + "328:\tlearn: 17244420.0505767\ttotal: 4s\tremaining: 8.16s\n", + "329:\tlearn: 17240620.9311856\ttotal: 4.01s\tremaining: 8.14s\n", + "330:\tlearn: 17240126.6382259\ttotal: 4.02s\tremaining: 8.13s\n", + "331:\tlearn: 17239554.3263042\ttotal: 4.04s\tremaining: 8.12s\n", + "332:\tlearn: 17239249.4122676\ttotal: 4.05s\tremaining: 8.11s\n", + "333:\tlearn: 17237315.5959603\ttotal: 4.06s\tremaining: 8.1s\n", + "334:\tlearn: 17237170.4183008\ttotal: 4.07s\tremaining: 8.09s\n", + "335:\tlearn: 17235498.1709182\ttotal: 4.08s\tremaining: 8.07s\n", + "336:\tlearn: 17154286.9322136\ttotal: 4.1s\tremaining: 8.06s\n", + "337:\tlearn: 17152860.5403583\ttotal: 4.11s\tremaining: 8.05s\n", + "338:\tlearn: 17139897.5803445\ttotal: 4.12s\tremaining: 8.04s\n", + "339:\tlearn: 17139685.6194353\ttotal: 4.13s\tremaining: 8.03s\n", + "340:\tlearn: 17129406.8909698\ttotal: 4.15s\tremaining: 8.01s\n", + "341:\tlearn: 17126386.5318429\ttotal: 4.16s\tremaining: 8.01s\n", + "342:\tlearn: 17125338.5826429\ttotal: 4.17s\tremaining: 8s\n", + "343:\tlearn: 17124937.1764028\ttotal: 4.19s\tremaining: 7.99s\n", + "344:\tlearn: 17124773.5128614\ttotal: 4.2s\tremaining: 7.97s\n", + "345:\tlearn: 17123822.0085471\ttotal: 4.21s\tremaining: 7.97s\n", + "346:\tlearn: 17122604.8415169\ttotal: 4.23s\tremaining: 7.95s\n", + "347:\tlearn: 17121767.5370013\ttotal: 4.24s\tremaining: 7.94s\n", + "348:\tlearn: 17109471.1428348\ttotal: 4.25s\tremaining: 7.93s\n", + "349:\tlearn: 17092688.7777393\ttotal: 4.27s\tremaining: 7.92s\n", + "350:\tlearn: 17081854.5539987\ttotal: 4.28s\tremaining: 7.92s\n", + "351:\tlearn: 17081117.2220910\ttotal: 4.29s\tremaining: 7.91s\n", + "352:\tlearn: 17079431.1991192\ttotal: 4.31s\tremaining: 7.9s\n", + "353:\tlearn: 17065749.4676464\ttotal: 4.32s\tremaining: 7.89s\n", + "354:\tlearn: 17050839.2238400\ttotal: 4.34s\tremaining: 7.88s\n", + "355:\tlearn: 17050106.8831270\ttotal: 4.35s\tremaining: 7.87s\n", + "356:\tlearn: 17046033.2332065\ttotal: 4.37s\tremaining: 7.86s\n", + "357:\tlearn: 17043704.2415802\ttotal: 4.38s\tremaining: 7.85s\n", + "358:\tlearn: 17034226.2631681\ttotal: 4.39s\tremaining: 7.84s\n", + "359:\tlearn: 17019515.6806659\ttotal: 4.41s\tremaining: 7.83s\n", + "360:\tlearn: 17018472.9763746\ttotal: 4.42s\tremaining: 7.82s\n", + "361:\tlearn: 17017909.7121151\ttotal: 4.43s\tremaining: 7.81s\n", + "362:\tlearn: 17017463.3942640\ttotal: 4.44s\tremaining: 7.8s\n", + "363:\tlearn: 17016467.4317116\ttotal: 4.46s\tremaining: 7.79s\n", + "364:\tlearn: 17016320.3746025\ttotal: 4.47s\tremaining: 7.77s\n", + "365:\tlearn: 17014043.0108512\ttotal: 4.48s\tremaining: 7.76s\n", + "366:\tlearn: 17013536.3710672\ttotal: 4.5s\tremaining: 7.75s\n", + "367:\tlearn: 17011993.2014165\ttotal: 4.51s\tremaining: 7.75s\n", + "368:\tlearn: 17011849.5641841\ttotal: 4.52s\tremaining: 7.73s\n", + "369:\tlearn: 17011403.7126883\ttotal: 4.53s\tremaining: 7.72s\n", + "370:\tlearn: 17009763.5741945\ttotal: 4.55s\tremaining: 7.71s\n", + "371:\tlearn: 17009382.7519630\ttotal: 4.56s\tremaining: 7.7s\n", + "372:\tlearn: 17008464.7915054\ttotal: 4.57s\tremaining: 7.68s\n", + "373:\tlearn: 17008143.8161261\ttotal: 4.58s\tremaining: 7.67s\n", + "374:\tlearn: 16996814.2215431\ttotal: 4.6s\tremaining: 7.66s\n", + "375:\tlearn: 16996377.3351825\ttotal: 4.61s\tremaining: 7.65s\n", + "376:\tlearn: 16996037.5806770\ttotal: 4.62s\tremaining: 7.64s\n", + "377:\tlearn: 16991953.6478199\ttotal: 4.63s\tremaining: 7.63s\n", + "378:\tlearn: 16961328.6727692\ttotal: 4.65s\tremaining: 7.62s\n", + "379:\tlearn: 16957664.4831621\ttotal: 4.66s\tremaining: 7.61s\n", + "380:\tlearn: 16956856.4526881\ttotal: 4.67s\tremaining: 7.6s\n", + "381:\tlearn: 16947754.5891887\ttotal: 4.69s\tremaining: 7.59s\n", + "382:\tlearn: 16937471.3061729\ttotal: 4.7s\tremaining: 7.58s\n", + "383:\tlearn: 16910717.2697228\ttotal: 4.72s\tremaining: 7.57s\n", + "384:\tlearn: 16883021.8749316\ttotal: 4.73s\tremaining: 7.56s\n", + "385:\tlearn: 16874077.6620256\ttotal: 4.75s\tremaining: 7.55s\n", + "386:\tlearn: 16859663.0508862\ttotal: 4.76s\tremaining: 7.54s\n", + "387:\tlearn: 16843794.6984628\ttotal: 4.78s\tremaining: 7.54s\n", + "388:\tlearn: 16843670.2191430\ttotal: 4.79s\tremaining: 7.53s\n", + "389:\tlearn: 16833049.2556840\ttotal: 4.8s\tremaining: 7.52s\n", + "390:\tlearn: 16821522.4443567\ttotal: 4.82s\tremaining: 7.51s\n", + "391:\tlearn: 16818181.1766856\ttotal: 4.84s\tremaining: 7.5s\n", + "392:\tlearn: 16817749.5049150\ttotal: 4.85s\tremaining: 7.49s\n", + "393:\tlearn: 16817402.3614282\ttotal: 4.87s\tremaining: 7.49s\n", + "394:\tlearn: 16815679.7151727\ttotal: 4.88s\tremaining: 7.48s\n", + "395:\tlearn: 16810641.8717564\ttotal: 4.9s\tremaining: 7.47s\n", + "396:\tlearn: 16810291.1871768\ttotal: 4.91s\tremaining: 7.45s\n", + "397:\tlearn: 16808056.2422004\ttotal: 4.92s\tremaining: 7.44s\n", + "398:\tlearn: 16807804.2454334\ttotal: 4.93s\tremaining: 7.43s\n", + "399:\tlearn: 16799998.1957230\ttotal: 4.95s\tremaining: 7.42s\n", + "400:\tlearn: 16799220.2656080\ttotal: 4.96s\tremaining: 7.41s\n", + "401:\tlearn: 16798913.0252067\ttotal: 4.97s\tremaining: 7.4s\n", + "402:\tlearn: 16798319.2545577\ttotal: 4.99s\tremaining: 7.39s\n", + "403:\tlearn: 16796848.5752647\ttotal: 5s\tremaining: 7.38s\n", + "404:\tlearn: 16757656.8985529\ttotal: 5.02s\tremaining: 7.37s\n", + "405:\tlearn: 16745513.4381725\ttotal: 5.03s\tremaining: 7.36s\n", + "406:\tlearn: 16735416.8114581\ttotal: 5.04s\tremaining: 7.35s\n", + "407:\tlearn: 16734295.1424370\ttotal: 5.06s\tremaining: 7.34s\n", + "408:\tlearn: 16733140.3781664\ttotal: 5.07s\tremaining: 7.33s\n", + "409:\tlearn: 16723800.8980695\ttotal: 5.09s\tremaining: 7.33s\n", + "410:\tlearn: 16721200.9625357\ttotal: 5.11s\tremaining: 7.32s\n", + "411:\tlearn: 16720027.8472987\ttotal: 5.12s\tremaining: 7.31s\n", + "412:\tlearn: 16717199.5760035\ttotal: 5.13s\tremaining: 7.3s\n", + "413:\tlearn: 16713362.4492616\ttotal: 5.15s\tremaining: 7.29s\n", + "414:\tlearn: 16712806.0473182\ttotal: 5.16s\tremaining: 7.28s\n", + "415:\tlearn: 16711241.9902750\ttotal: 5.18s\tremaining: 7.27s\n", + "416:\tlearn: 16710626.7325455\ttotal: 5.19s\tremaining: 7.25s\n", + "417:\tlearn: 16644768.4542531\ttotal: 5.2s\tremaining: 7.24s\n", + "418:\tlearn: 16644403.8081224\ttotal: 5.21s\tremaining: 7.23s\n", + "419:\tlearn: 16644106.9601552\ttotal: 5.22s\tremaining: 7.21s\n", + "420:\tlearn: 16643628.6346956\ttotal: 5.24s\tremaining: 7.2s\n", + "421:\tlearn: 16640073.3813320\ttotal: 5.25s\tremaining: 7.19s\n", + "422:\tlearn: 16639549.7950808\ttotal: 5.26s\tremaining: 7.18s\n", + "423:\tlearn: 16639069.1006878\ttotal: 5.27s\tremaining: 7.17s\n", + "424:\tlearn: 16638481.2382327\ttotal: 5.29s\tremaining: 7.15s\n", + "425:\tlearn: 16638208.9073863\ttotal: 5.3s\tremaining: 7.14s\n", + "426:\tlearn: 16609090.9227109\ttotal: 5.31s\tremaining: 7.13s\n", + "427:\tlearn: 16607897.8537223\ttotal: 5.33s\tremaining: 7.13s\n", + "428:\tlearn: 16607613.0069443\ttotal: 5.34s\tremaining: 7.11s\n", + "429:\tlearn: 16603866.7848843\ttotal: 5.36s\tremaining: 7.11s\n", + "430:\tlearn: 16566652.4020620\ttotal: 5.37s\tremaining: 7.09s\n", + "431:\tlearn: 16566149.6048169\ttotal: 5.39s\tremaining: 7.08s\n", + "432:\tlearn: 16564672.1011733\ttotal: 5.4s\tremaining: 7.07s\n", + "433:\tlearn: 16564610.7741058\ttotal: 5.41s\tremaining: 7.06s\n", + "434:\tlearn: 16564198.8911273\ttotal: 5.42s\tremaining: 7.04s\n", + "435:\tlearn: 16559675.2968062\ttotal: 5.43s\tremaining: 7.03s\n", + "436:\tlearn: 16558753.2346339\ttotal: 5.45s\tremaining: 7.02s\n", + "437:\tlearn: 16558452.1907641\ttotal: 5.46s\tremaining: 7.01s\n", + "438:\tlearn: 16546587.2383006\ttotal: 5.47s\tremaining: 6.99s\n", + "439:\tlearn: 16543823.0847287\ttotal: 5.49s\tremaining: 6.98s\n", + "440:\tlearn: 16542126.8424469\ttotal: 5.5s\tremaining: 6.97s\n", + "441:\tlearn: 16541624.1632076\ttotal: 5.51s\tremaining: 6.96s\n", + "442:\tlearn: 16540326.5322872\ttotal: 5.52s\tremaining: 6.95s\n", + "443:\tlearn: 16530336.2084291\ttotal: 5.54s\tremaining: 6.93s\n", + "444:\tlearn: 16530167.9665629\ttotal: 5.55s\tremaining: 6.92s\n", + "445:\tlearn: 16528821.2477933\ttotal: 5.56s\tremaining: 6.91s\n", + "446:\tlearn: 16528766.2012617\ttotal: 5.57s\tremaining: 6.89s\n", + "447:\tlearn: 16518018.7193100\ttotal: 5.59s\tremaining: 6.88s\n", + "448:\tlearn: 16508723.6897544\ttotal: 5.6s\tremaining: 6.87s\n", + "449:\tlearn: 16508487.2637814\ttotal: 5.61s\tremaining: 6.86s\n", + "450:\tlearn: 16473955.6540161\ttotal: 5.63s\tremaining: 6.85s\n", + "451:\tlearn: 16453172.0203944\ttotal: 5.64s\tremaining: 6.84s\n", + "452:\tlearn: 16451483.6324413\ttotal: 5.65s\tremaining: 6.82s\n", + "453:\tlearn: 16451257.8036014\ttotal: 5.67s\tremaining: 6.81s\n", + "454:\tlearn: 16448369.9508352\ttotal: 5.68s\tremaining: 6.8s\n", + "455:\tlearn: 16446719.1385193\ttotal: 5.69s\tremaining: 6.79s\n", + "456:\tlearn: 16420736.1369659\ttotal: 5.71s\tremaining: 6.78s\n", + "457:\tlearn: 16420629.2824606\ttotal: 5.72s\tremaining: 6.77s\n", + "458:\tlearn: 16420336.6729748\ttotal: 5.73s\tremaining: 6.76s\n", + "459:\tlearn: 16420155.4584530\ttotal: 5.74s\tremaining: 6.74s\n", + "460:\tlearn: 16419734.8233202\ttotal: 5.76s\tremaining: 6.73s\n", + "461:\tlearn: 16419517.6225944\ttotal: 5.77s\tremaining: 6.72s\n", + "462:\tlearn: 16406145.7183320\ttotal: 5.78s\tremaining: 6.71s\n", + "463:\tlearn: 16404609.0651931\ttotal: 5.8s\tremaining: 6.7s\n", + "464:\tlearn: 16404332.0732862\ttotal: 5.81s\tremaining: 6.68s\n", + "465:\tlearn: 16404019.7507952\ttotal: 5.82s\tremaining: 6.67s\n", + "466:\tlearn: 16403507.0137349\ttotal: 5.83s\tremaining: 6.66s\n", + "467:\tlearn: 16402993.5886996\ttotal: 5.84s\tremaining: 6.64s\n", + "468:\tlearn: 16385955.8460101\ttotal: 5.86s\tremaining: 6.63s\n", + "469:\tlearn: 16373237.2004642\ttotal: 5.87s\tremaining: 6.62s\n", + "470:\tlearn: 16373038.3665164\ttotal: 5.88s\tremaining: 6.6s\n", + "471:\tlearn: 16372801.5860356\ttotal: 5.89s\tremaining: 6.59s\n", + "472:\tlearn: 16360759.6605520\ttotal: 5.9s\tremaining: 6.58s\n", + "473:\tlearn: 16360169.9657388\ttotal: 5.92s\tremaining: 6.57s\n", + "474:\tlearn: 16351841.0373273\ttotal: 5.93s\tremaining: 6.55s\n", + "475:\tlearn: 16349809.4004009\ttotal: 5.94s\tremaining: 6.54s\n", + "476:\tlearn: 16344483.1074475\ttotal: 5.96s\tremaining: 6.53s\n", + "477:\tlearn: 16340922.7262468\ttotal: 5.97s\tremaining: 6.52s\n", + "478:\tlearn: 16334736.4373107\ttotal: 5.98s\tremaining: 6.5s\n", + "479:\tlearn: 16334043.7402281\ttotal: 5.99s\tremaining: 6.49s\n", + "480:\tlearn: 16333745.0129155\ttotal: 6s\tremaining: 6.48s\n", + "481:\tlearn: 16332170.0024156\ttotal: 6.02s\tremaining: 6.46s\n", + "482:\tlearn: 16331680.4256261\ttotal: 6.03s\tremaining: 6.45s\n", + "483:\tlearn: 16321943.5880137\ttotal: 6.04s\tremaining: 6.44s\n", + "484:\tlearn: 16313566.1128530\ttotal: 6.05s\tremaining: 6.43s\n", + "485:\tlearn: 16312784.3783495\ttotal: 6.07s\tremaining: 6.42s\n", + "486:\tlearn: 16304256.8971602\ttotal: 6.08s\tremaining: 6.4s\n", + "487:\tlearn: 16299338.9360929\ttotal: 6.09s\tremaining: 6.39s\n", + "488:\tlearn: 16298399.2768748\ttotal: 6.11s\tremaining: 6.38s\n", + "489:\tlearn: 16282861.5959599\ttotal: 6.12s\tremaining: 6.37s\n", + "490:\tlearn: 16278027.7798172\ttotal: 6.13s\tremaining: 6.36s\n", + "491:\tlearn: 16262455.7433251\ttotal: 6.15s\tremaining: 6.35s\n", + "492:\tlearn: 16254609.6670435\ttotal: 6.16s\tremaining: 6.33s\n", + "493:\tlearn: 16250306.9197526\ttotal: 6.17s\tremaining: 6.32s\n", + "494:\tlearn: 16249855.9315045\ttotal: 6.19s\tremaining: 6.31s\n", + "495:\tlearn: 16248555.7562997\ttotal: 6.2s\tremaining: 6.3s\n", + "496:\tlearn: 16247555.1566330\ttotal: 6.21s\tremaining: 6.29s\n", + "497:\tlearn: 16247235.5993966\ttotal: 6.22s\tremaining: 6.27s\n", + "498:\tlearn: 16246264.7483105\ttotal: 6.23s\tremaining: 6.26s\n", + "499:\tlearn: 16246007.7491962\ttotal: 6.24s\tremaining: 6.24s\n", + "500:\tlearn: 16222867.6954421\ttotal: 6.25s\tremaining: 6.23s\n", + "501:\tlearn: 16222688.8853061\ttotal: 6.27s\tremaining: 6.22s\n", + "502:\tlearn: 16217885.3385915\ttotal: 6.28s\tremaining: 6.2s\n", + "503:\tlearn: 16217409.1580145\ttotal: 6.29s\tremaining: 6.19s\n", + "504:\tlearn: 16216838.3191240\ttotal: 6.3s\tremaining: 6.18s\n", + "505:\tlearn: 16216329.9777509\ttotal: 6.32s\tremaining: 6.17s\n", + "506:\tlearn: 16201534.4156055\ttotal: 6.33s\tremaining: 6.16s\n", + "507:\tlearn: 16198138.1904772\ttotal: 6.34s\tremaining: 6.14s\n", + "508:\tlearn: 16197904.2583705\ttotal: 6.35s\tremaining: 6.13s\n", + "509:\tlearn: 16193656.6407621\ttotal: 6.37s\tremaining: 6.12s\n", + "510:\tlearn: 16180805.8618897\ttotal: 6.38s\tremaining: 6.1s\n", + "511:\tlearn: 16176908.1769610\ttotal: 6.39s\tremaining: 6.09s\n", + "512:\tlearn: 16168261.0438871\ttotal: 6.4s\tremaining: 6.08s\n", + "513:\tlearn: 16167754.4165306\ttotal: 6.42s\tremaining: 6.07s\n", + "514:\tlearn: 16166295.0362243\ttotal: 6.43s\tremaining: 6.05s\n", + "515:\tlearn: 16166058.4053693\ttotal: 6.44s\tremaining: 6.04s\n", + "516:\tlearn: 16155412.7707338\ttotal: 6.45s\tremaining: 6.03s\n", + "517:\tlearn: 16152266.1742558\ttotal: 6.46s\tremaining: 6.02s\n", + "518:\tlearn: 16151552.8907870\ttotal: 6.48s\tremaining: 6s\n", + "519:\tlearn: 16140281.4351978\ttotal: 6.49s\tremaining: 5.99s\n", + "520:\tlearn: 16133450.4403783\ttotal: 6.5s\tremaining: 5.98s\n", + "521:\tlearn: 16132209.1334220\ttotal: 6.51s\tremaining: 5.97s\n", + "522:\tlearn: 16118104.6552795\ttotal: 6.53s\tremaining: 5.95s\n", + "523:\tlearn: 16108764.2393062\ttotal: 6.54s\tremaining: 5.94s\n", + "524:\tlearn: 16108234.0634605\ttotal: 6.55s\tremaining: 5.93s\n", + "525:\tlearn: 16107619.6760099\ttotal: 6.57s\tremaining: 5.92s\n", + "526:\tlearn: 16104870.7442280\ttotal: 6.58s\tremaining: 5.9s\n", + "527:\tlearn: 16102428.3934069\ttotal: 6.59s\tremaining: 5.89s\n", + "528:\tlearn: 16102157.2857565\ttotal: 6.6s\tremaining: 5.88s\n", + "529:\tlearn: 16101584.7403855\ttotal: 6.61s\tremaining: 5.86s\n", + "530:\tlearn: 16101480.3344969\ttotal: 6.63s\tremaining: 5.85s\n", + "531:\tlearn: 16100595.6548675\ttotal: 6.64s\tremaining: 5.84s\n", + "532:\tlearn: 16097511.0825233\ttotal: 6.65s\tremaining: 5.83s\n", + "533:\tlearn: 16096615.9743637\ttotal: 6.66s\tremaining: 5.81s\n", + "534:\tlearn: 16096369.6922988\ttotal: 6.67s\tremaining: 5.8s\n", + "535:\tlearn: 16095946.1647864\ttotal: 6.69s\tremaining: 5.79s\n", + "536:\tlearn: 16095637.6185090\ttotal: 6.7s\tremaining: 5.78s\n", + "537:\tlearn: 16094682.0243853\ttotal: 6.71s\tremaining: 5.76s\n", + "538:\tlearn: 16094291.9050311\ttotal: 6.72s\tremaining: 5.75s\n", + "539:\tlearn: 16093984.5280001\ttotal: 6.73s\tremaining: 5.73s\n", + "540:\tlearn: 16090374.6401334\ttotal: 6.75s\tremaining: 5.72s\n", + "541:\tlearn: 16090226.8772271\ttotal: 6.76s\tremaining: 5.71s\n", + "542:\tlearn: 16090050.1805201\ttotal: 6.77s\tremaining: 5.7s\n", + "543:\tlearn: 16069181.1048944\ttotal: 6.78s\tremaining: 5.68s\n", + "544:\tlearn: 16068504.9399291\ttotal: 6.79s\tremaining: 5.67s\n", + "545:\tlearn: 16068245.3744393\ttotal: 6.8s\tremaining: 5.66s\n", + "546:\tlearn: 16065773.4114093\ttotal: 6.82s\tremaining: 5.65s\n", + "547:\tlearn: 16051662.5046318\ttotal: 6.83s\tremaining: 5.63s\n", + "548:\tlearn: 16035327.2446945\ttotal: 6.84s\tremaining: 5.62s\n", + "549:\tlearn: 16035199.2858857\ttotal: 6.86s\tremaining: 5.61s\n", + "550:\tlearn: 16033842.9666151\ttotal: 6.87s\tremaining: 5.6s\n", + "551:\tlearn: 15995073.4381976\ttotal: 6.88s\tremaining: 5.58s\n", + "552:\tlearn: 15994812.5505379\ttotal: 6.89s\tremaining: 5.57s\n", + "553:\tlearn: 15994595.9921031\ttotal: 6.91s\tremaining: 5.56s\n", + "554:\tlearn: 15992248.3834318\ttotal: 6.92s\tremaining: 5.55s\n", + "555:\tlearn: 15992027.4484601\ttotal: 6.93s\tremaining: 5.54s\n", + "556:\tlearn: 15990566.0719983\ttotal: 6.95s\tremaining: 5.52s\n", + "557:\tlearn: 15985609.0920187\ttotal: 6.96s\tremaining: 5.51s\n", + "558:\tlearn: 15984517.8156083\ttotal: 6.97s\tremaining: 5.5s\n", + "559:\tlearn: 15958775.9803743\ttotal: 6.99s\tremaining: 5.49s\n", + "560:\tlearn: 15958166.8639855\ttotal: 7s\tremaining: 5.48s\n", + "561:\tlearn: 15949224.5334582\ttotal: 7.01s\tremaining: 5.47s\n", + "562:\tlearn: 15948769.9101270\ttotal: 7.03s\tremaining: 5.45s\n", + "563:\tlearn: 15930009.9576761\ttotal: 7.04s\tremaining: 5.44s\n", + "564:\tlearn: 15917439.6202170\ttotal: 7.05s\tremaining: 5.43s\n", + "565:\tlearn: 15908669.4567536\ttotal: 7.07s\tremaining: 5.42s\n", + "566:\tlearn: 15908084.2939630\ttotal: 7.08s\tremaining: 5.41s\n", + "567:\tlearn: 15906697.1590494\ttotal: 7.09s\tremaining: 5.39s\n", + "568:\tlearn: 15906522.4609846\ttotal: 7.1s\tremaining: 5.38s\n", + "569:\tlearn: 15906139.9138507\ttotal: 7.12s\tremaining: 5.37s\n", + "570:\tlearn: 15905855.0642382\ttotal: 7.13s\tremaining: 5.35s\n", + "571:\tlearn: 15897372.3501416\ttotal: 7.14s\tremaining: 5.34s\n", + "572:\tlearn: 15893536.4661240\ttotal: 7.15s\tremaining: 5.33s\n", + "573:\tlearn: 15893206.2810918\ttotal: 7.17s\tremaining: 5.32s\n", + "574:\tlearn: 15892918.2703602\ttotal: 7.18s\tremaining: 5.3s\n", + "575:\tlearn: 15892752.8029869\ttotal: 7.19s\tremaining: 5.29s\n", + "576:\tlearn: 15885169.7413434\ttotal: 7.2s\tremaining: 5.28s\n", + "577:\tlearn: 15884936.8745209\ttotal: 7.21s\tremaining: 5.27s\n", + "578:\tlearn: 15876877.1991641\ttotal: 7.22s\tremaining: 5.25s\n", + "579:\tlearn: 15865774.4061534\ttotal: 7.24s\tremaining: 5.24s\n", + "580:\tlearn: 15859212.9207966\ttotal: 7.25s\tremaining: 5.23s\n", + "581:\tlearn: 15858807.6511813\ttotal: 7.26s\tremaining: 5.21s\n", + "582:\tlearn: 15850129.9468116\ttotal: 7.27s\tremaining: 5.2s\n", + "583:\tlearn: 15845554.5689368\ttotal: 7.29s\tremaining: 5.19s\n", + "584:\tlearn: 15844986.6765475\ttotal: 7.3s\tremaining: 5.18s\n", + "585:\tlearn: 15844796.1180439\ttotal: 7.31s\tremaining: 5.17s\n", + "586:\tlearn: 15844586.1630771\ttotal: 7.33s\tremaining: 5.15s\n", + "587:\tlearn: 15827685.4584540\ttotal: 7.34s\tremaining: 5.14s\n", + "588:\tlearn: 15826910.6044821\ttotal: 7.35s\tremaining: 5.13s\n", + "589:\tlearn: 15824060.9875073\ttotal: 7.36s\tremaining: 5.12s\n", + "590:\tlearn: 15818523.6912985\ttotal: 7.38s\tremaining: 5.1s\n", + "591:\tlearn: 15810640.6921394\ttotal: 7.39s\tremaining: 5.09s\n", + "592:\tlearn: 15795481.4197185\ttotal: 7.4s\tremaining: 5.08s\n", + "593:\tlearn: 15795256.4491006\ttotal: 7.41s\tremaining: 5.07s\n", + "594:\tlearn: 15784420.7363473\ttotal: 7.43s\tremaining: 5.05s\n", + "595:\tlearn: 15784290.1819258\ttotal: 7.44s\tremaining: 5.04s\n", + "596:\tlearn: 15783955.0773924\ttotal: 7.45s\tremaining: 5.03s\n", + "597:\tlearn: 15781518.5372107\ttotal: 7.46s\tremaining: 5.02s\n", + "598:\tlearn: 15779547.4210947\ttotal: 7.48s\tremaining: 5s\n", + "599:\tlearn: 15777334.3663340\ttotal: 7.49s\tremaining: 4.99s\n", + "600:\tlearn: 15774774.7721883\ttotal: 7.5s\tremaining: 4.98s\n", + "601:\tlearn: 15774672.2356339\ttotal: 7.51s\tremaining: 4.97s\n", + "602:\tlearn: 15773528.0736833\ttotal: 7.53s\tremaining: 4.96s\n", + "603:\tlearn: 15768721.3649454\ttotal: 7.54s\tremaining: 4.94s\n", + "604:\tlearn: 15768502.0877019\ttotal: 7.55s\tremaining: 4.93s\n", + "605:\tlearn: 15768057.4929247\ttotal: 7.57s\tremaining: 4.92s\n", + "606:\tlearn: 15767950.4285043\ttotal: 7.58s\tremaining: 4.91s\n", + "607:\tlearn: 15767445.1324607\ttotal: 7.59s\tremaining: 4.89s\n", + "608:\tlearn: 15767269.0628064\ttotal: 7.6s\tremaining: 4.88s\n", + "609:\tlearn: 15767020.8174624\ttotal: 7.61s\tremaining: 4.87s\n", + "610:\tlearn: 15762309.5160245\ttotal: 7.62s\tremaining: 4.85s\n", + "611:\tlearn: 15757527.7718093\ttotal: 7.63s\tremaining: 4.84s\n", + "612:\tlearn: 15757150.7731734\ttotal: 7.65s\tremaining: 4.83s\n", + "613:\tlearn: 15756885.6252756\ttotal: 7.66s\tremaining: 4.81s\n", + "614:\tlearn: 15755584.6816303\ttotal: 7.67s\tremaining: 4.8s\n", + "615:\tlearn: 15755485.6737331\ttotal: 7.68s\tremaining: 4.79s\n", + "616:\tlearn: 15754432.0517599\ttotal: 7.7s\tremaining: 4.78s\n", + "617:\tlearn: 15744535.8203508\ttotal: 7.71s\tremaining: 4.76s\n", + "618:\tlearn: 15740683.5538600\ttotal: 7.72s\tremaining: 4.75s\n", + "619:\tlearn: 15736903.5667213\ttotal: 7.73s\tremaining: 4.74s\n", + "620:\tlearn: 15736355.4210963\ttotal: 7.75s\tremaining: 4.73s\n", + "621:\tlearn: 15729940.4032081\ttotal: 7.76s\tremaining: 4.71s\n", + "622:\tlearn: 15729775.7542976\ttotal: 7.77s\tremaining: 4.7s\n", + "623:\tlearn: 15726578.4125003\ttotal: 7.78s\tremaining: 4.69s\n", + "624:\tlearn: 15713451.5317183\ttotal: 7.8s\tremaining: 4.68s\n", + "625:\tlearn: 15712116.7478338\ttotal: 7.81s\tremaining: 4.67s\n", + "626:\tlearn: 15712039.0336448\ttotal: 7.82s\tremaining: 4.65s\n", + "627:\tlearn: 15711687.4136682\ttotal: 7.84s\tremaining: 4.64s\n", + "628:\tlearn: 15711298.6681597\ttotal: 7.85s\tremaining: 4.63s\n", + "629:\tlearn: 15705228.0021081\ttotal: 7.86s\tremaining: 4.62s\n", + "630:\tlearn: 15705060.0247650\ttotal: 7.88s\tremaining: 4.61s\n", + "631:\tlearn: 15702513.1910574\ttotal: 7.89s\tremaining: 4.6s\n", + "632:\tlearn: 15702203.6145508\ttotal: 7.91s\tremaining: 4.58s\n", + "633:\tlearn: 15698975.2951288\ttotal: 7.92s\tremaining: 4.57s\n", + "634:\tlearn: 15694674.2341421\ttotal: 7.94s\tremaining: 4.56s\n", + "635:\tlearn: 15686913.9104937\ttotal: 7.95s\tremaining: 4.55s\n", + "636:\tlearn: 15686809.9586513\ttotal: 7.96s\tremaining: 4.54s\n", + "637:\tlearn: 15685604.3787689\ttotal: 7.98s\tremaining: 4.53s\n", + "638:\tlearn: 15685081.4917552\ttotal: 7.99s\tremaining: 4.51s\n", + "639:\tlearn: 15676541.2826685\ttotal: 8s\tremaining: 4.5s\n", + "640:\tlearn: 15672855.0180760\ttotal: 8.02s\tremaining: 4.49s\n", + "641:\tlearn: 15666780.7593096\ttotal: 8.03s\tremaining: 4.48s\n", + "642:\tlearn: 15659438.3508408\ttotal: 8.04s\tremaining: 4.46s\n", + "643:\tlearn: 15653755.4598701\ttotal: 8.05s\tremaining: 4.45s\n", + "644:\tlearn: 15652034.4638985\ttotal: 8.07s\tremaining: 4.44s\n", + "645:\tlearn: 15645095.6489597\ttotal: 8.08s\tremaining: 4.43s\n", + "646:\tlearn: 15641226.9420905\ttotal: 8.09s\tremaining: 4.42s\n", + "647:\tlearn: 15639833.9184524\ttotal: 8.11s\tremaining: 4.4s\n", + "648:\tlearn: 15639581.1651510\ttotal: 8.12s\tremaining: 4.39s\n", + "649:\tlearn: 15635923.3848062\ttotal: 8.13s\tremaining: 4.38s\n", + "650:\tlearn: 15635813.1152459\ttotal: 8.14s\tremaining: 4.37s\n", + "651:\tlearn: 15635469.3555938\ttotal: 8.16s\tremaining: 4.35s\n", + "652:\tlearn: 15635363.9174910\ttotal: 8.17s\tremaining: 4.34s\n", + "653:\tlearn: 15633936.7433448\ttotal: 8.18s\tremaining: 4.33s\n", + "654:\tlearn: 15633839.2271448\ttotal: 8.19s\tremaining: 4.31s\n", + "655:\tlearn: 15633735.8610291\ttotal: 8.21s\tremaining: 4.3s\n", + "656:\tlearn: 15633309.8063070\ttotal: 8.22s\tremaining: 4.29s\n", + "657:\tlearn: 15632683.8986677\ttotal: 8.23s\tremaining: 4.28s\n", + "658:\tlearn: 15632461.2639014\ttotal: 8.24s\tremaining: 4.26s\n", + "659:\tlearn: 15627123.1765533\ttotal: 8.26s\tremaining: 4.25s\n", + "660:\tlearn: 15626996.0787558\ttotal: 8.27s\tremaining: 4.24s\n", + "661:\tlearn: 15624291.0204091\ttotal: 8.28s\tremaining: 4.23s\n", + "662:\tlearn: 15617684.3098363\ttotal: 8.29s\tremaining: 4.21s\n", + "663:\tlearn: 15611967.2176796\ttotal: 8.31s\tremaining: 4.2s\n", + "664:\tlearn: 15598472.2546786\ttotal: 8.32s\tremaining: 4.19s\n", + "665:\tlearn: 15597526.0470563\ttotal: 8.33s\tremaining: 4.18s\n", + "666:\tlearn: 15597430.3920481\ttotal: 8.34s\tremaining: 4.16s\n", + "667:\tlearn: 15596422.7059295\ttotal: 8.35s\tremaining: 4.15s\n", + "668:\tlearn: 15591400.2242411\ttotal: 8.37s\tremaining: 4.14s\n", + "669:\tlearn: 15585199.5277811\ttotal: 8.38s\tremaining: 4.13s\n", + "670:\tlearn: 15585003.5063693\ttotal: 8.39s\tremaining: 4.11s\n", + "671:\tlearn: 15578765.7193891\ttotal: 8.4s\tremaining: 4.1s\n", + "672:\tlearn: 15577252.0151364\ttotal: 8.41s\tremaining: 4.09s\n", + "673:\tlearn: 15576511.8797514\ttotal: 8.43s\tremaining: 4.08s\n", + "674:\tlearn: 15576120.7606092\ttotal: 8.44s\tremaining: 4.06s\n", + "675:\tlearn: 15574398.5273782\ttotal: 8.45s\tremaining: 4.05s\n", + "676:\tlearn: 15565660.7493905\ttotal: 8.46s\tremaining: 4.04s\n", + "677:\tlearn: 15561009.3437211\ttotal: 8.48s\tremaining: 4.03s\n", + "678:\tlearn: 15548878.4770401\ttotal: 8.49s\tremaining: 4.01s\n", + "679:\tlearn: 15527713.9632219\ttotal: 8.5s\tremaining: 4s\n", + "680:\tlearn: 15519745.2151864\ttotal: 8.51s\tremaining: 3.99s\n", + "681:\tlearn: 15519391.2760902\ttotal: 8.53s\tremaining: 3.98s\n", + "682:\tlearn: 15514461.8611265\ttotal: 8.54s\tremaining: 3.96s\n", + "683:\tlearn: 15514296.1001141\ttotal: 8.55s\tremaining: 3.95s\n", + "684:\tlearn: 15514204.8658979\ttotal: 8.56s\tremaining: 3.94s\n", + "685:\tlearn: 15513977.3554214\ttotal: 8.57s\tremaining: 3.92s\n", + "686:\tlearn: 15513906.5046745\ttotal: 8.59s\tremaining: 3.91s\n", + "687:\tlearn: 15513701.8112778\ttotal: 8.6s\tremaining: 3.9s\n", + "688:\tlearn: 15513602.4959013\ttotal: 8.61s\tremaining: 3.88s\n", + "689:\tlearn: 15513510.7910896\ttotal: 8.62s\tremaining: 3.87s\n", + "690:\tlearn: 15513352.2070048\ttotal: 8.64s\tremaining: 3.86s\n", + "691:\tlearn: 15513238.8204588\ttotal: 8.65s\tremaining: 3.85s\n", + "692:\tlearn: 15513154.0618557\ttotal: 8.66s\tremaining: 3.83s\n", + "693:\tlearn: 15512878.9114412\ttotal: 8.67s\tremaining: 3.82s\n", + "694:\tlearn: 15509248.2055515\ttotal: 8.68s\tremaining: 3.81s\n", + "695:\tlearn: 15508734.7327170\ttotal: 8.69s\tremaining: 3.8s\n", + "696:\tlearn: 15508495.7881550\ttotal: 8.7s\tremaining: 3.78s\n", + "697:\tlearn: 15508349.6872134\ttotal: 8.72s\tremaining: 3.77s\n", + "698:\tlearn: 15508190.6588965\ttotal: 8.73s\tremaining: 3.76s\n", + "699:\tlearn: 15508018.8419773\ttotal: 8.74s\tremaining: 3.75s\n", + "700:\tlearn: 15507826.3791202\ttotal: 8.75s\tremaining: 3.73s\n", + "701:\tlearn: 15507705.8100928\ttotal: 8.76s\tremaining: 3.72s\n", + "702:\tlearn: 15507533.3512682\ttotal: 8.77s\tremaining: 3.71s\n", + "703:\tlearn: 15501571.2913355\ttotal: 8.78s\tremaining: 3.69s\n", + "704:\tlearn: 15495921.0773672\ttotal: 8.8s\tremaining: 3.68s\n", + "705:\tlearn: 15495385.0875416\ttotal: 8.81s\tremaining: 3.67s\n", + "706:\tlearn: 15495191.8032918\ttotal: 8.82s\tremaining: 3.65s\n", + "707:\tlearn: 15494128.9589635\ttotal: 8.83s\tremaining: 3.64s\n", + "708:\tlearn: 15493806.9566177\ttotal: 8.84s\tremaining: 3.63s\n", + "709:\tlearn: 15493694.0465547\ttotal: 8.85s\tremaining: 3.62s\n", + "710:\tlearn: 15493305.1729869\ttotal: 8.87s\tremaining: 3.6s\n", + "711:\tlearn: 15487948.0399475\ttotal: 8.88s\tremaining: 3.59s\n", + "712:\tlearn: 15487843.0916850\ttotal: 8.89s\tremaining: 3.58s\n", + "713:\tlearn: 15482765.7669785\ttotal: 8.9s\tremaining: 3.56s\n", + "714:\tlearn: 15474767.3580796\ttotal: 8.91s\tremaining: 3.55s\n", + "715:\tlearn: 15472407.8166003\ttotal: 8.93s\tremaining: 3.54s\n", + "716:\tlearn: 15467592.3874842\ttotal: 8.94s\tremaining: 3.53s\n", + "717:\tlearn: 15467435.4901525\ttotal: 8.95s\tremaining: 3.51s\n", + "718:\tlearn: 15462871.2869120\ttotal: 8.96s\tremaining: 3.5s\n", + "719:\tlearn: 15462771.0380185\ttotal: 8.97s\tremaining: 3.49s\n", + "720:\tlearn: 15462475.2715024\ttotal: 8.98s\tremaining: 3.48s\n", + "721:\tlearn: 15454885.7938423\ttotal: 8.99s\tremaining: 3.46s\n", + "722:\tlearn: 15450557.5824215\ttotal: 9.01s\tremaining: 3.45s\n", + "723:\tlearn: 15446455.2317749\ttotal: 9.02s\tremaining: 3.44s\n", + "724:\tlearn: 15445711.0004476\ttotal: 9.03s\tremaining: 3.43s\n", + "725:\tlearn: 15441822.5331613\ttotal: 9.05s\tremaining: 3.41s\n", + "726:\tlearn: 15441182.6843715\ttotal: 9.06s\tremaining: 3.4s\n", + "727:\tlearn: 15441088.8915881\ttotal: 9.07s\tremaining: 3.39s\n", + "728:\tlearn: 15441002.5272406\ttotal: 9.09s\tremaining: 3.38s\n", + "729:\tlearn: 15440884.2830869\ttotal: 9.1s\tremaining: 3.37s\n", + "730:\tlearn: 15440734.2579995\ttotal: 9.11s\tremaining: 3.35s\n", + "731:\tlearn: 15440611.8887909\ttotal: 9.13s\tremaining: 3.34s\n", + "732:\tlearn: 15440249.4221271\ttotal: 9.14s\tremaining: 3.33s\n", + "733:\tlearn: 15440158.8154476\ttotal: 9.15s\tremaining: 3.32s\n", + "734:\tlearn: 15436472.7845071\ttotal: 9.16s\tremaining: 3.3s\n", + "735:\tlearn: 15433672.4484876\ttotal: 9.18s\tremaining: 3.29s\n", + "736:\tlearn: 15433490.1840146\ttotal: 9.19s\tremaining: 3.28s\n", + "737:\tlearn: 15433308.6881010\ttotal: 9.2s\tremaining: 3.27s\n", + "738:\tlearn: 15433042.7409848\ttotal: 9.21s\tremaining: 3.25s\n", + "739:\tlearn: 15432541.8769518\ttotal: 9.23s\tremaining: 3.24s\n", + "740:\tlearn: 15431856.6761047\ttotal: 9.24s\tremaining: 3.23s\n", + "741:\tlearn: 15431804.7359345\ttotal: 9.25s\tremaining: 3.22s\n", + "742:\tlearn: 15427355.2392047\ttotal: 9.26s\tremaining: 3.2s\n", + "743:\tlearn: 15427218.1028185\ttotal: 9.27s\tremaining: 3.19s\n", + "744:\tlearn: 15424332.1093472\ttotal: 9.29s\tremaining: 3.18s\n", + "745:\tlearn: 15388321.8033125\ttotal: 9.3s\tremaining: 3.17s\n", + "746:\tlearn: 15377267.9048803\ttotal: 9.31s\tremaining: 3.15s\n", + "747:\tlearn: 15374625.6198420\ttotal: 9.32s\tremaining: 3.14s\n", + "748:\tlearn: 15370386.0426691\ttotal: 9.34s\tremaining: 3.13s\n", + "749:\tlearn: 15359901.4299089\ttotal: 9.35s\tremaining: 3.12s\n", + "750:\tlearn: 15358774.7332579\ttotal: 9.36s\tremaining: 3.1s\n", + "751:\tlearn: 15358651.8711020\ttotal: 9.37s\tremaining: 3.09s\n", + "752:\tlearn: 15358300.8764559\ttotal: 9.38s\tremaining: 3.08s\n", + "753:\tlearn: 15357884.8170886\ttotal: 9.4s\tremaining: 3.06s\n", + "754:\tlearn: 15357643.0994172\ttotal: 9.41s\tremaining: 3.05s\n", + "755:\tlearn: 15357565.0887636\ttotal: 9.42s\tremaining: 3.04s\n", + "756:\tlearn: 15351820.0777339\ttotal: 9.43s\tremaining: 3.03s\n", + "757:\tlearn: 15351414.2517094\ttotal: 9.44s\tremaining: 3.01s\n", + "758:\tlearn: 15349501.7532204\ttotal: 9.46s\tremaining: 3s\n", + "759:\tlearn: 15348526.7586048\ttotal: 9.47s\tremaining: 2.99s\n", + "760:\tlearn: 15348352.7244253\ttotal: 9.48s\tremaining: 2.98s\n", + "761:\tlearn: 15347292.4488773\ttotal: 9.49s\tremaining: 2.96s\n", + "762:\tlearn: 15347207.8865499\ttotal: 9.51s\tremaining: 2.95s\n", + "763:\tlearn: 15342959.4790246\ttotal: 9.52s\tremaining: 2.94s\n", + "764:\tlearn: 15342697.6483068\ttotal: 9.53s\tremaining: 2.93s\n", + "765:\tlearn: 15313028.1511576\ttotal: 9.54s\tremaining: 2.92s\n", + "766:\tlearn: 15310947.6382018\ttotal: 9.56s\tremaining: 2.9s\n", + "767:\tlearn: 15263340.9642127\ttotal: 9.57s\tremaining: 2.89s\n", + "768:\tlearn: 15259807.2026083\ttotal: 9.58s\tremaining: 2.88s\n", + "769:\tlearn: 15259504.1148296\ttotal: 9.59s\tremaining: 2.87s\n", + "770:\tlearn: 15259395.2637694\ttotal: 9.6s\tremaining: 2.85s\n", + "771:\tlearn: 15256045.7141942\ttotal: 9.61s\tremaining: 2.84s\n", + "772:\tlearn: 15252870.9021417\ttotal: 9.63s\tremaining: 2.83s\n", + "773:\tlearn: 15248430.3201074\ttotal: 9.64s\tremaining: 2.81s\n", + "774:\tlearn: 15246752.4177458\ttotal: 9.65s\tremaining: 2.8s\n", + "775:\tlearn: 15245960.1417687\ttotal: 9.67s\tremaining: 2.79s\n", + "776:\tlearn: 15245917.6645107\ttotal: 9.68s\tremaining: 2.78s\n", + "777:\tlearn: 15245817.5185452\ttotal: 9.69s\tremaining: 2.77s\n", + "778:\tlearn: 15245619.8351855\ttotal: 9.7s\tremaining: 2.75s\n", + "779:\tlearn: 15244869.5667520\ttotal: 9.71s\tremaining: 2.74s\n", + "780:\tlearn: 15244818.8943236\ttotal: 9.72s\tremaining: 2.73s\n", + "781:\tlearn: 15244254.3637038\ttotal: 9.74s\tremaining: 2.71s\n", + "782:\tlearn: 15243818.2939855\ttotal: 9.75s\tremaining: 2.7s\n", + "783:\tlearn: 15243668.1645179\ttotal: 9.76s\tremaining: 2.69s\n", + "784:\tlearn: 15240656.8617467\ttotal: 9.77s\tremaining: 2.68s\n", + "785:\tlearn: 15237802.6637690\ttotal: 9.78s\tremaining: 2.66s\n", + "786:\tlearn: 15235097.3769887\ttotal: 9.79s\tremaining: 2.65s\n", + "787:\tlearn: 15231063.4576018\ttotal: 9.81s\tremaining: 2.64s\n", + "788:\tlearn: 15224406.4239600\ttotal: 9.82s\tremaining: 2.63s\n", + "789:\tlearn: 15220791.2846445\ttotal: 9.83s\tremaining: 2.61s\n", + "790:\tlearn: 15220221.4180094\ttotal: 9.85s\tremaining: 2.6s\n", + "791:\tlearn: 15220121.7499013\ttotal: 9.86s\tremaining: 2.59s\n", + "792:\tlearn: 15218396.9325757\ttotal: 9.87s\tremaining: 2.58s\n", + "793:\tlearn: 15213830.8844557\ttotal: 9.88s\tremaining: 2.56s\n", + "794:\tlearn: 15212644.4009126\ttotal: 9.89s\tremaining: 2.55s\n", + "795:\tlearn: 15212570.5272286\ttotal: 9.9s\tremaining: 2.54s\n", + "796:\tlearn: 15172874.1552397\ttotal: 9.92s\tremaining: 2.52s\n", + "797:\tlearn: 15164671.3501787\ttotal: 9.93s\tremaining: 2.51s\n", + "798:\tlearn: 15162711.8871221\ttotal: 9.94s\tremaining: 2.5s\n", + "799:\tlearn: 15162618.0050229\ttotal: 9.95s\tremaining: 2.49s\n", + "800:\tlearn: 15161186.8924011\ttotal: 9.96s\tremaining: 2.48s\n", + "801:\tlearn: 15160994.4738412\ttotal: 9.98s\tremaining: 2.46s\n", + "802:\tlearn: 15159385.3831268\ttotal: 9.99s\tremaining: 2.45s\n", + "803:\tlearn: 15159166.1576231\ttotal: 10s\tremaining: 2.44s\n", + "804:\tlearn: 15156764.1801770\ttotal: 10s\tremaining: 2.43s\n", + "805:\tlearn: 15146691.8394282\ttotal: 10s\tremaining: 2.41s\n", + "806:\tlearn: 15146533.6706853\ttotal: 10s\tremaining: 2.4s\n", + "807:\tlearn: 15146408.7773292\ttotal: 10.1s\tremaining: 2.39s\n", + "808:\tlearn: 15142359.7678728\ttotal: 10.1s\tremaining: 2.38s\n", + "809:\tlearn: 15142322.1248825\ttotal: 10.1s\tremaining: 2.37s\n", + "810:\tlearn: 15132770.1153732\ttotal: 10.1s\tremaining: 2.35s\n", + "811:\tlearn: 15101480.9924963\ttotal: 10.1s\tremaining: 2.34s\n", + "812:\tlearn: 15101445.1875248\ttotal: 10.1s\tremaining: 2.33s\n", + "813:\tlearn: 15075376.4419388\ttotal: 10.1s\tremaining: 2.32s\n", + "814:\tlearn: 15073160.0820287\ttotal: 10.2s\tremaining: 2.3s\n", + "815:\tlearn: 15072725.5140996\ttotal: 10.2s\tremaining: 2.29s\n", + "816:\tlearn: 15072585.7018342\ttotal: 10.2s\tremaining: 2.28s\n", + "817:\tlearn: 15071522.0001919\ttotal: 10.2s\tremaining: 2.27s\n", + "818:\tlearn: 15071382.2097110\ttotal: 10.2s\tremaining: 2.25s\n", + "819:\tlearn: 15071301.2886091\ttotal: 10.2s\tremaining: 2.24s\n", + "820:\tlearn: 15071025.2992144\ttotal: 10.2s\tremaining: 2.23s\n", + "821:\tlearn: 15069498.2268762\ttotal: 10.2s\tremaining: 2.22s\n", + "822:\tlearn: 15061575.7065075\ttotal: 10.2s\tremaining: 2.2s\n", + "823:\tlearn: 15061416.4068476\ttotal: 10.3s\tremaining: 2.19s\n", + "824:\tlearn: 15060945.6687130\ttotal: 10.3s\tremaining: 2.18s\n", + "825:\tlearn: 15051099.8538783\ttotal: 10.3s\tremaining: 2.17s\n", + "826:\tlearn: 15050450.9663299\ttotal: 10.3s\tremaining: 2.15s\n", + "827:\tlearn: 15049722.9751983\ttotal: 10.3s\tremaining: 2.14s\n", + "828:\tlearn: 15049467.7452535\ttotal: 10.3s\tremaining: 2.13s\n", + "829:\tlearn: 15049412.7697933\ttotal: 10.3s\tremaining: 2.12s\n", + "830:\tlearn: 15048891.7740041\ttotal: 10.3s\tremaining: 2.1s\n", + "831:\tlearn: 15048043.0994998\ttotal: 10.4s\tremaining: 2.09s\n", + "832:\tlearn: 15046697.3368860\ttotal: 10.4s\tremaining: 2.08s\n", + "833:\tlearn: 15038272.8803419\ttotal: 10.4s\tremaining: 2.06s\n", + "834:\tlearn: 15034639.9951102\ttotal: 10.4s\tremaining: 2.05s\n", + "835:\tlearn: 15030153.8614245\ttotal: 10.4s\tremaining: 2.04s\n", + "836:\tlearn: 15027964.0190757\ttotal: 10.4s\tremaining: 2.03s\n", + "837:\tlearn: 15023890.1409211\ttotal: 10.4s\tremaining: 2.02s\n", + "838:\tlearn: 15022954.0613643\ttotal: 10.4s\tremaining: 2s\n", + "839:\tlearn: 15022653.7321874\ttotal: 10.5s\tremaining: 1.99s\n", + "840:\tlearn: 15021763.5899870\ttotal: 10.5s\tremaining: 1.98s\n", + "841:\tlearn: 15021552.9666208\ttotal: 10.5s\tremaining: 1.97s\n", + "842:\tlearn: 15017213.3112838\ttotal: 10.5s\tremaining: 1.95s\n", + "843:\tlearn: 15006868.9919636\ttotal: 10.5s\tremaining: 1.94s\n", + "844:\tlearn: 15006047.4873296\ttotal: 10.5s\tremaining: 1.93s\n", + "845:\tlearn: 15003167.3995596\ttotal: 10.5s\tremaining: 1.92s\n", + "846:\tlearn: 15001516.1719277\ttotal: 10.5s\tremaining: 1.9s\n", + "847:\tlearn: 15000023.6971343\ttotal: 10.6s\tremaining: 1.89s\n", + "848:\tlearn: 14996097.9901016\ttotal: 10.6s\tremaining: 1.88s\n", + "849:\tlearn: 14995809.9617414\ttotal: 10.6s\tremaining: 1.87s\n", + "850:\tlearn: 14991694.0680204\ttotal: 10.6s\tremaining: 1.85s\n", + "851:\tlearn: 14990806.5441048\ttotal: 10.6s\tremaining: 1.84s\n", + "852:\tlearn: 14990539.4146062\ttotal: 10.6s\tremaining: 1.83s\n", + "853:\tlearn: 14990428.7975864\ttotal: 10.6s\tremaining: 1.82s\n", + "854:\tlearn: 14989061.7567162\ttotal: 10.6s\tremaining: 1.8s\n", + "855:\tlearn: 14983131.0103419\ttotal: 10.6s\tremaining: 1.79s\n", + "856:\tlearn: 14982655.3316759\ttotal: 10.7s\tremaining: 1.78s\n", + "857:\tlearn: 14977099.0608273\ttotal: 10.7s\tremaining: 1.77s\n", + "858:\tlearn: 14976713.9058693\ttotal: 10.7s\tremaining: 1.75s\n", + "859:\tlearn: 14976613.3364184\ttotal: 10.7s\tremaining: 1.74s\n", + "860:\tlearn: 14964115.6999829\ttotal: 10.7s\tremaining: 1.73s\n", + "861:\tlearn: 14961152.7626425\ttotal: 10.7s\tremaining: 1.72s\n", + "862:\tlearn: 14960316.8698796\ttotal: 10.7s\tremaining: 1.7s\n", + "863:\tlearn: 14960206.5805103\ttotal: 10.8s\tremaining: 1.69s\n", + "864:\tlearn: 14948350.2065232\ttotal: 10.8s\tremaining: 1.68s\n", + "865:\tlearn: 14948237.8225238\ttotal: 10.8s\tremaining: 1.67s\n", + "866:\tlearn: 14948145.1280412\ttotal: 10.8s\tremaining: 1.66s\n", + "867:\tlearn: 14947479.9936319\ttotal: 10.8s\tremaining: 1.64s\n", + "868:\tlearn: 14946706.9144290\ttotal: 10.8s\tremaining: 1.63s\n", + "869:\tlearn: 14946008.4529886\ttotal: 10.8s\tremaining: 1.62s\n", + "870:\tlearn: 14938382.9733130\ttotal: 10.8s\tremaining: 1.6s\n", + "871:\tlearn: 14935923.0018589\ttotal: 10.9s\tremaining: 1.59s\n", + "872:\tlearn: 14935763.9386719\ttotal: 10.9s\tremaining: 1.58s\n", + "873:\tlearn: 14935390.9032799\ttotal: 10.9s\tremaining: 1.57s\n", + "874:\tlearn: 14924136.4999000\ttotal: 10.9s\tremaining: 1.55s\n", + "875:\tlearn: 14923231.4975181\ttotal: 10.9s\tremaining: 1.54s\n", + "876:\tlearn: 14920764.7489123\ttotal: 10.9s\tremaining: 1.53s\n", + "877:\tlearn: 14920619.6869935\ttotal: 10.9s\tremaining: 1.52s\n", + "878:\tlearn: 14920259.9887151\ttotal: 10.9s\tremaining: 1.51s\n", + "879:\tlearn: 14918671.6063618\ttotal: 11s\tremaining: 1.49s\n", + "880:\tlearn: 14909484.3446534\ttotal: 11s\tremaining: 1.48s\n", + "881:\tlearn: 14909331.3722806\ttotal: 11s\tremaining: 1.47s\n", + "882:\tlearn: 14909000.4744294\ttotal: 11s\tremaining: 1.46s\n", + "883:\tlearn: 14907810.4215534\ttotal: 11s\tremaining: 1.44s\n", + "884:\tlearn: 14907739.9399244\ttotal: 11s\tremaining: 1.43s\n", + "885:\tlearn: 14907643.8234156\ttotal: 11s\tremaining: 1.42s\n", + "886:\tlearn: 14902234.6414918\ttotal: 11s\tremaining: 1.41s\n", + "887:\tlearn: 14899639.1808572\ttotal: 11.1s\tremaining: 1.39s\n", + "888:\tlearn: 14898572.6302420\ttotal: 11.1s\tremaining: 1.38s\n", + "889:\tlearn: 14898481.9011232\ttotal: 11.1s\tremaining: 1.37s\n", + "890:\tlearn: 14898396.0569341\ttotal: 11.1s\tremaining: 1.36s\n", + "891:\tlearn: 14897825.8306216\ttotal: 11.1s\tremaining: 1.34s\n", + "892:\tlearn: 14897667.5383103\ttotal: 11.1s\tremaining: 1.33s\n", + "893:\tlearn: 14894977.2967186\ttotal: 11.1s\tremaining: 1.32s\n", + "894:\tlearn: 14894451.1015405\ttotal: 11.1s\tremaining: 1.31s\n", + "895:\tlearn: 14894302.6357933\ttotal: 11.1s\tremaining: 1.29s\n", + "896:\tlearn: 14892042.1460828\ttotal: 11.2s\tremaining: 1.28s\n", + "897:\tlearn: 14891913.2181914\ttotal: 11.2s\tremaining: 1.27s\n", + "898:\tlearn: 14891548.8875063\ttotal: 11.2s\tremaining: 1.26s\n", + "899:\tlearn: 14891535.2806629\ttotal: 11.2s\tremaining: 1.24s\n", + "900:\tlearn: 14885531.4554658\ttotal: 11.2s\tremaining: 1.23s\n", + "901:\tlearn: 14885300.5490787\ttotal: 11.2s\tremaining: 1.22s\n", + "902:\tlearn: 14882237.8064495\ttotal: 11.2s\tremaining: 1.21s\n", + "903:\tlearn: 14871534.0201501\ttotal: 11.3s\tremaining: 1.2s\n", + "904:\tlearn: 14870231.5883229\ttotal: 11.3s\tremaining: 1.18s\n", + "905:\tlearn: 14870176.1224648\ttotal: 11.3s\tremaining: 1.17s\n", + "906:\tlearn: 14869680.0980501\ttotal: 11.3s\tremaining: 1.16s\n", + "907:\tlearn: 14869457.0180442\ttotal: 11.3s\tremaining: 1.15s\n", + "908:\tlearn: 14868933.3692698\ttotal: 11.3s\tremaining: 1.13s\n", + "909:\tlearn: 14863961.6816683\ttotal: 11.3s\tremaining: 1.12s\n", + "910:\tlearn: 14863914.5911026\ttotal: 11.4s\tremaining: 1.11s\n", + "911:\tlearn: 14855476.3946477\ttotal: 11.4s\tremaining: 1.1s\n", + "912:\tlearn: 14855166.2145584\ttotal: 11.4s\tremaining: 1.08s\n", + "913:\tlearn: 14850934.1124148\ttotal: 11.4s\tremaining: 1.07s\n", + "914:\tlearn: 14846483.1667184\ttotal: 11.4s\tremaining: 1.06s\n", + "915:\tlearn: 14837736.3329095\ttotal: 11.4s\tremaining: 1.05s\n", + "916:\tlearn: 14837595.6179847\ttotal: 11.4s\tremaining: 1.03s\n", + "917:\tlearn: 14830817.0386636\ttotal: 11.4s\tremaining: 1.02s\n", + "918:\tlearn: 14830573.0969752\ttotal: 11.5s\tremaining: 1.01s\n", + "919:\tlearn: 14830470.0025192\ttotal: 11.5s\tremaining: 997ms\n", + "920:\tlearn: 14829815.6285131\ttotal: 11.5s\tremaining: 985ms\n", + "921:\tlearn: 14825434.2189552\ttotal: 11.5s\tremaining: 973ms\n", + "922:\tlearn: 14819445.0181126\ttotal: 11.5s\tremaining: 960ms\n", + "923:\tlearn: 14819398.6279561\ttotal: 11.5s\tremaining: 948ms\n", + "924:\tlearn: 14818813.5923928\ttotal: 11.5s\tremaining: 935ms\n", + "925:\tlearn: 14815956.9177135\ttotal: 11.5s\tremaining: 923ms\n", + "926:\tlearn: 14815788.2679741\ttotal: 11.6s\tremaining: 910ms\n", + "927:\tlearn: 14815448.9260298\ttotal: 11.6s\tremaining: 897ms\n", + "928:\tlearn: 14815074.5372959\ttotal: 11.6s\tremaining: 885ms\n", + "929:\tlearn: 14814229.2585638\ttotal: 11.6s\tremaining: 872ms\n", + "930:\tlearn: 14804039.0241152\ttotal: 11.6s\tremaining: 860ms\n", + "931:\tlearn: 14803929.0738285\ttotal: 11.6s\tremaining: 847ms\n", + "932:\tlearn: 14803822.0317935\ttotal: 11.6s\tremaining: 835ms\n", + "933:\tlearn: 14802847.7620639\ttotal: 11.6s\tremaining: 822ms\n", + "934:\tlearn: 14802644.0143811\ttotal: 11.7s\tremaining: 810ms\n", + "935:\tlearn: 14801390.4240818\ttotal: 11.7s\tremaining: 798ms\n", + "936:\tlearn: 14801273.4225706\ttotal: 11.7s\tremaining: 785ms\n", + "937:\tlearn: 14801021.8599058\ttotal: 11.7s\tremaining: 772ms\n", + "938:\tlearn: 14800715.3029627\ttotal: 11.7s\tremaining: 760ms\n", + "939:\tlearn: 14799551.6406369\ttotal: 11.7s\tremaining: 748ms\n", + "940:\tlearn: 14795598.5613345\ttotal: 11.7s\tremaining: 735ms\n", + "941:\tlearn: 14794465.0278834\ttotal: 11.7s\tremaining: 723ms\n", + "942:\tlearn: 14794259.7563387\ttotal: 11.8s\tremaining: 710ms\n", + "943:\tlearn: 14794156.6214413\ttotal: 11.8s\tremaining: 698ms\n", + "944:\tlearn: 14792982.4344262\ttotal: 11.8s\tremaining: 685ms\n", + "945:\tlearn: 14792468.8012658\ttotal: 11.8s\tremaining: 673ms\n", + "946:\tlearn: 14792139.9923168\ttotal: 11.8s\tremaining: 661ms\n", + "947:\tlearn: 14786295.7938911\ttotal: 11.8s\tremaining: 648ms\n", + "948:\tlearn: 14783272.8762359\ttotal: 11.8s\tremaining: 636ms\n", + "949:\tlearn: 14782689.5513664\ttotal: 11.8s\tremaining: 623ms\n", + "950:\tlearn: 14782664.1266181\ttotal: 11.9s\tremaining: 611ms\n", + "951:\tlearn: 14774339.7873426\ttotal: 11.9s\tremaining: 598ms\n", + "952:\tlearn: 14769038.5403572\ttotal: 11.9s\tremaining: 586ms\n", + "953:\tlearn: 14761312.5028488\ttotal: 11.9s\tremaining: 573ms\n", + "954:\tlearn: 14760414.3496721\ttotal: 11.9s\tremaining: 561ms\n", + "955:\tlearn: 14752950.6860631\ttotal: 11.9s\tremaining: 548ms\n", + "956:\tlearn: 14752691.2767919\ttotal: 11.9s\tremaining: 536ms\n", + "957:\tlearn: 14752196.9268404\ttotal: 11.9s\tremaining: 524ms\n", + "958:\tlearn: 14750149.4071752\ttotal: 12s\tremaining: 511ms\n", + "959:\tlearn: 14749691.8632556\ttotal: 12s\tremaining: 499ms\n", + "960:\tlearn: 14749496.6164671\ttotal: 12s\tremaining: 486ms\n", + "961:\tlearn: 14749338.8909588\ttotal: 12s\tremaining: 474ms\n", + "962:\tlearn: 14749291.1143099\ttotal: 12s\tremaining: 461ms\n", + "963:\tlearn: 14739582.8672605\ttotal: 12s\tremaining: 449ms\n", + "964:\tlearn: 14739542.4442574\ttotal: 12s\tremaining: 436ms\n", + "965:\tlearn: 14739306.4391584\ttotal: 12s\tremaining: 424ms\n", + "966:\tlearn: 14708630.7344942\ttotal: 12.1s\tremaining: 411ms\n", + "967:\tlearn: 14680984.5320050\ttotal: 12.1s\tremaining: 399ms\n", + "968:\tlearn: 14677319.7390898\ttotal: 12.1s\tremaining: 386ms\n", + "969:\tlearn: 14677109.6650390\ttotal: 12.1s\tremaining: 374ms\n", + "970:\tlearn: 14676355.6242387\ttotal: 12.1s\tremaining: 361ms\n", + "971:\tlearn: 14667109.8761175\ttotal: 12.1s\tremaining: 349ms\n", + "972:\tlearn: 14643934.7657464\ttotal: 12.1s\tremaining: 337ms\n", + "973:\tlearn: 14642633.8347823\ttotal: 12.1s\tremaining: 324ms\n", + "974:\tlearn: 14642167.8071045\ttotal: 12.2s\tremaining: 312ms\n", + "975:\tlearn: 14641845.3365852\ttotal: 12.2s\tremaining: 299ms\n", + "976:\tlearn: 14640306.5144587\ttotal: 12.2s\tremaining: 287ms\n", + "977:\tlearn: 14640184.9147582\ttotal: 12.2s\tremaining: 274ms\n", + "978:\tlearn: 14640008.8483425\ttotal: 12.2s\tremaining: 262ms\n", + "979:\tlearn: 14636344.5519428\ttotal: 12.2s\tremaining: 249ms\n", + "980:\tlearn: 14633576.2663352\ttotal: 12.2s\tremaining: 237ms\n", + "981:\tlearn: 14624796.2134142\ttotal: 12.2s\tremaining: 225ms\n", + "982:\tlearn: 14624250.6774943\ttotal: 12.3s\tremaining: 212ms\n", + "983:\tlearn: 14615917.0650799\ttotal: 12.3s\tremaining: 200ms\n", + "984:\tlearn: 14615782.8388140\ttotal: 12.3s\tremaining: 187ms\n", + "985:\tlearn: 14612724.2754075\ttotal: 12.3s\tremaining: 175ms\n", + "986:\tlearn: 14609973.2837772\ttotal: 12.3s\tremaining: 162ms\n", + "987:\tlearn: 14605203.8050795\ttotal: 12.3s\tremaining: 150ms\n", + "988:\tlearn: 14605011.6874159\ttotal: 12.3s\tremaining: 137ms\n", + "989:\tlearn: 14594552.7887146\ttotal: 12.4s\tremaining: 125ms\n", + "990:\tlearn: 14591881.9316489\ttotal: 12.4s\tremaining: 112ms\n", + "991:\tlearn: 14581962.3358039\ttotal: 12.4s\tremaining: 99.8ms\n", + "992:\tlearn: 14581829.5331587\ttotal: 12.4s\tremaining: 87.3ms\n", + "993:\tlearn: 14581669.7347033\ttotal: 12.4s\tremaining: 74.9ms\n", + "994:\tlearn: 14577373.3119596\ttotal: 12.4s\tremaining: 62.4ms\n", + "995:\tlearn: 14577196.6327960\ttotal: 12.4s\tremaining: 49.9ms\n", + "996:\tlearn: 14577122.1536884\ttotal: 12.4s\tremaining: 37.4ms\n", + "997:\tlearn: 14574702.1336653\ttotal: 12.4s\tremaining: 25ms\n", + "998:\tlearn: 14574660.6060510\ttotal: 12.5s\tremaining: 12.5ms\n", + "999:\tlearn: 14574625.9856659\ttotal: 12.5s\tremaining: 0us\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024/10/10 13:36:41 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: \"/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/mlflow/types/utils.py:407: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values `_ for more details.\"\n", + "2024/10/10 13:36:42 INFO mlflow.tracking._tracking_service.client: 🏃 View run auto at: http://127.0.0.1:5000/#/experiments/1/runs/9dd5dd7674d44c44be662e3c9bdbb5a4.\n", + "2024/10/10 13:36:42 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" ] } ], @@ -1684,10 +3683,9 @@ " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model', RandomForestRegressor(max_depth=6, n_estimators=10))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " unknown_value=99999999),\n", + " ['region', 'building_type', 'object_type'])])
['geo_lat', 'geo_lon', 'level', 'levels', 'rooms', 'area', 'kitchen_area']
StandardScaler()
['region', 'building_type', 'object_type']
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=99999999)
RandomForestRegressor(max_depth=6, n_estimators=10)
" ], "text/plain": [ "Pipeline(steps=[('preprocessor',\n", @@ -1716,10 +3712,9 @@ " 'area', 'kitchen_area']),\n", " ('cat',\n", " OrdinalEncoder(handle_unknown='use_encoded_value',\n", - " unknown_value=999),\n", + " unknown_value=99999999),\n", " ['region', 'building_type',\n", - " 'object_type',\n", - " 'floor_level'])])),\n", + " 'object_type'])])),\n", " ('model', RandomForestRegressor(max_depth=6, n_estimators=10))])" ] }, @@ -1743,9 +3738,9 @@ { "data": { "text/plain": [ - "{'mae': np.float64(1536543.887713661),\n", - " 'mape': np.float64(0.42528854535519156),\n", - " 'mse': np.float64(210549541556055.7)}" + "{'mae': 1714377.2944153566,\n", + " 'mape': 2.2781106914490788e+18,\n", + " 'mse': 406946525225456.6}" ] }, "execution_count": 25, @@ -1772,8 +3767,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024/10/03 19:02:51 INFO mlflow.tracking._tracking_service.client: 🏃 View run smaller_model at: http://127.0.0.1:5000/#/experiments/1/runs/20f66bd4c3754a04b5e47ecc0f577e76.\n", - "2024/10/03 19:02:51 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + "2024/10/10 13:36:50 INFO mlflow.tracking._tracking_service.client: 🏃 View run smaller_model at: http://127.0.0.1:5000/#/experiments/1/runs/638e0e7ad9f94ceaa01cacd1916771e2.\n", + "2024/10/10 13:36:50 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" ] } ], @@ -1782,10 +3777,7 @@ "\n", "\n", "RUN_NAME = 'smaller_model'\n", - "# Когда создаем новый эксперимент, то: \n", - "#experiment_id = mlflow.create_experiment(EXPERIMENT_NAME)\n", "\n", - "# Впоследствии. чтобы добавлять запуски в этот же эксепримент мы должны получить его id:\n", "experiment_id = mlflow.get_experiment_by_name(EXPERIMENT_NAME).experiment_id\n", "\n", "with mlflow.start_run(run_name=RUN_NAME, experiment_id=experiment_id) as run:\n", @@ -1814,8 +3806,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024/10/03 19:02:51 INFO mlflow.tracking._tracking_service.client: 🏃 View run no_model at: http://127.0.0.1:5000/#/experiments/1/runs/6f6fe970eb74485d866e918b733f8f61.\n", - "2024/10/03 19:02:51 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + "2024/10/10 13:36:50 INFO mlflow.tracking._tracking_service.client: 🏃 View run no_model at: http://127.0.0.1:5000/#/experiments/1/runs/3b80343fbdc2434ba18b42e049677a28.\n", + "2024/10/10 13:36:50 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" ] } ], @@ -1850,14 +3842,14 @@ "output_type": "stream", "text": [ "Registered model 'estate_model_rf' already exists. Creating a new version of this model...\n", - "2024/10/03 19:03:14 INFO mlflow.store.model_registry.abstract_store: Waiting up to 300 seconds for model version to finish creation. Model name: estate_model_rf, version 1\n", + "2024/10/10 13:37:19 INFO mlflow.store.model_registry.abstract_store: Waiting up to 300 seconds for model version to finish creation. Model name: estate_model_rf, version 1\n", "Created version '1' of model 'estate_model_rf'.\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 29, @@ -1866,7 +3858,7 @@ } ], "source": [ - "run_id = '' # Указываем run id\n", + "run_id = '06fa7ec1f1b74aedb3509c88dc4ee1c0' # Указываем run id\n", "mlflow.register_model(f\"runs:/{run_id}/models\", REGISTRY_MODEL_NAME)" ] }, @@ -1880,10 +3872,10 @@ "output_type": "stream", "text": [ "Registered model 'estate_model_rf' already exists. Creating a new version of this model...\n", - "2024/10/03 19:03:14 INFO mlflow.store.model_registry.abstract_store: Waiting up to 300 seconds for model version to finish creation. Model name: estate_model_rf, version 2\n", + "2024/10/10 13:37:21 INFO mlflow.store.model_registry.abstract_store: Waiting up to 300 seconds for model version to finish creation. Model name: estate_model_rf, version 2\n", "Created version '2' of model 'estate_model_rf'.\n", - "2024/10/03 19:03:14 INFO mlflow.tracking._tracking_service.client: 🏃 View run register_at_run at: http://127.0.0.1:5000/#/experiments/1/runs/ed64a91759ed43c99329810d066ea95a.\n", - "2024/10/03 19:03:14 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + "2024/10/10 13:37:21 INFO mlflow.tracking._tracking_service.client: 🏃 View run register_at_run at: http://127.0.0.1:5000/#/experiments/1/runs/a34ac1da523a4687846c26f32d44c051.\n", + "2024/10/10 13:37:21 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" ] } ], @@ -1918,7 +3910,7 @@ { "data": { "text/plain": [ - "], name='estate_model_rf', tags={}>" + "], name='estate_model_rf', tags={}>" ] }, "execution_count": 31, @@ -1953,7 +3945,7 @@ { "data": { "text/plain": [ - "array([3438055.97819847])" + "array([3083461.0078044])" ] }, "execution_count": 33, @@ -1973,7 +3965,7 @@ { "data": { "text/plain": [ - "np.int64(3062900)" + "2400000" ] }, "execution_count": 34, @@ -1984,6 +3976,4980 @@ "source": [ "y_test.iloc[0]" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Feature engineering" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import QuantileTransformer, SplineTransformer, PolynomialFeatures, MinMaxScaler" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_sklearn = X_train.copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### PolynomialFeatures\n", + "Создает полином степени `degree` из указанных признаков\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "pf = PolynomialFeatures(degree=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geo_latgeo_lonregionbuilding_typelevellevelsroomsareakitchen_areaobject_type
87948756.32768643.92806228711810256.00008.5000001
25420854.85931082.9756249654159250.18758.5000001
226056456.07216354.2312702722349139.00009.00000011
335925146.70432738.2736362843155248.00009.0000001
386189560.93348376.59309424842715274.000010.5000001
.................................
338940956.77133960.61251861712918251.31259.5703121
284882755.14861361.3937805282335243.00006.0000001
267200945.09812938.97121828430817139.00009.00000011
422705050.58396936.58186759523316298.500027.7968751
433774759.84457030.40907726611612372.00009.0000001
\n", + "

410775 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " geo_lat geo_lon region building_type level levels rooms \\\n", + "879487 56.327686 43.928062 2871 1 8 10 2 \n", + "254208 54.859310 82.975624 9654 1 5 9 2 \n", + "2260564 56.072163 54.231270 2722 3 4 9 1 \n", + "3359251 46.704327 38.273636 2843 1 5 5 2 \n", + "3861895 60.933483 76.593094 2484 2 7 15 2 \n", + "... ... ... ... ... ... ... ... \n", + "3389409 56.771339 60.612518 6171 2 9 18 2 \n", + "2848827 55.148613 61.393780 5282 3 3 5 2 \n", + "2672009 45.098129 38.971218 2843 0 8 17 1 \n", + "4227050 50.583969 36.581867 5952 3 3 16 2 \n", + "4337747 59.844570 30.409077 2661 1 6 12 3 \n", + "\n", + " area kitchen_area object_type \n", + "879487 56.0000 8.500000 1 \n", + "254208 50.1875 8.500000 1 \n", + "2260564 39.0000 9.000000 11 \n", + "3359251 48.0000 9.000000 1 \n", + "3861895 74.0000 10.500000 1 \n", + "... ... ... ... \n", + "3389409 51.3125 9.570312 1 \n", + "2848827 43.0000 6.000000 1 \n", + "2672009 39.0000 9.000000 11 \n", + "4227050 98.5000 27.796875 1 \n", + "4337747 72.0000 9.000000 1 \n", + "\n", + "[410775 rows x 10 columns]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train_sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/sklearn/preprocessing/_polynomial.py:555: RuntimeWarning: overflow encountered in multiply\n", + " np.multiply(\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[1.000e+00, 5.600e+01, 8.500e+00, 3.136e+03, 4.760e+02, 7.225e+01],\n", + " [1.000e+00, 5.019e+01, 8.500e+00, 2.518e+03, 4.265e+02, 7.225e+01],\n", + " [1.000e+00, 3.900e+01, 9.000e+00, 1.521e+03, 3.510e+02, 8.100e+01],\n", + " ...,\n", + " [1.000e+00, 3.900e+01, 9.000e+00, 1.521e+03, 3.510e+02, 8.100e+01],\n", + " [1.000e+00, 9.850e+01, 2.780e+01, 9.704e+03, 2.738e+03, 7.725e+02],\n", + " [1.000e+00, 7.200e+01, 9.000e+00, 5.184e+03, 6.480e+02, 8.100e+01]],\n", + " dtype=float16)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pf.fit_transform(X_train_sklearn[['area','kitchen_area']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### SplineTransformer\n", + "Cоздаёт новую матрицу признаков, состоящую из сплайнов порядка degree. Количество сгенерированных сплайнов равно `n_splines=n_knots + degree - 1` для каждого признака, где\n", + "\n", + "`n_knots` определяет количество узлов (точек, в которых сопрягаются сплайны) для каждого признака. \n", + "\n", + "`degree` определяет порядок полинома, используемого для построения сплайнов. " + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "sp = SplineTransformer(n_knots=3, degree=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.558e-01, 6.660e-01, 1.780e-01, 1.848e-06, 0.000e+00],\n", + " [1.569e-01, 6.665e-01, 1.768e-01, 1.311e-06, 0.000e+00],\n", + " [1.591e-01, 6.665e-01, 1.744e-01, 5.960e-07, 0.000e+00],\n", + " ...,\n", + " [1.591e-01, 6.665e-01, 1.744e-01, 5.960e-07, 0.000e+00],\n", + " [1.478e-01, 6.650e-01, 1.870e-01, 1.007e-05, 0.000e+00],\n", + " [1.527e-01, 6.660e-01, 1.814e-01, 3.874e-06, 0.000e+00]],\n", + " dtype=float16)" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sp.fit_transform(X_train_sklearn[['area']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### QuantileTransformer\n", + "Этот метод преобразует признаки, чтобы они распределялись равномерно или нормально — так данные меньше подвергаются влиянию выбросов. Преобразование применяется к каждому признаку независимо. Идея метода такова: оценить функцию распределения признака, чтобы преобразовать исходные значения в равномерное или нормальное распределение. \n", + "\n", + "`output_distribution='uniform'` или\n", + "`output_distribution='normal'` соответственно\n", + "\n", + "\n", + "Пример использования: если у вас есть данные о доходах с широким диапазоном значений, квантильное преобразование сделает их более сопоставимыми и устойчивыми к выбросам." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "qt = QuantileTransformer()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.6226],\n", + " [0.544 ],\n", + " [0.2708],\n", + " ...,\n", + " [0.2708],\n", + " [0.958 ],\n", + " [0.8433]], dtype=float16)" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qt.fit_transform(X_train_sklearn[['area']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Объединяем в ColumnTransformer и создаем Pipeline " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "pf = PolynomialFeatures(degree=2)\n", + "qt = QuantileTransformer()\n", + "sp = SplineTransformer(n_knots=3, degree=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "# Значения преобразованных признаков нужно отскейлить, поэтому создаем pipeline из двух шагов - преобразование и скейлинг\n", + "pf_pipeline = Pipeline(steps=[\n", + " ('poly', pf),\n", + " ('scale', StandardScaler())\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "preprocessor_sklearn = ColumnTransformer(\n", + " transformers=[\n", + " ('num', s_scaler, num_features), # преобразования для числовых признаков\n", + " ('cat', l_encoder, cat_features), # преобразования для категориальных признаков\n", + " ('quantile', qt,num_features),\n", + " ('poly', pf_pipeline, ['area', 'kitchen_area']), # В преобразования добавляем созданный ранее pipeline\n", + " ('spline', sp, ['area'])\n", + " ],\n", + " remainder='drop',\n", + " ) # Удаляем столбцы, которые не затронуты преобразования" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Посмотрим что из себя теперь представляет датафрейм" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "## не влезаем в float64 в полиномальном преобразовании. Использовать его нужно с умом!\n", + "X_train_sklearn[['area', 'kitchen_area']] = X_train_sklearn[['area', 'kitchen_area']].astype('float128')\n", + "X_train_sklearn[['area', 'kitchen_area']] = X_train_sklearn[['area', 'kitchen_area']].astype('float128')" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_sklearn_raw = preprocessor_sklearn.fit_transform(X_train_sklearn)\n", + "X_train_sklearn = pd.DataFrame(X_train_sklearn_raw, columns=preprocessor_sklearn.get_feature_names_out())" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
num__geo_latnum__geo_lonnum__levelnum__levelsnum__roomsnum__areanum__kitchen_areacat__regioncat__building_typecat__object_typequantile__geo_latquantile__geo_lonquantile__levelquantile__levelsquantile__roomsquantile__areaquantile__kitchen_areapoly__1poly__areapoly__kitchen_areapoly__area^2poly__area kitchen_areapoly__kitchen_area^2spline__area_sp_0spline__area_sp_1spline__area_sp_2spline__area_sp_3spline__area_sp_4
00.495902-0.4497420.359235-0.2147890.2534130.063735-0.18628520.01.00.00.7662570.5110280.7172170.5365370.6006010.6236240.3748750.00.063735-0.186285-0.010002-0.132188-0.0027920.1558060.6661790.1780130.0000020.0
10.1778061.433673-0.246529-0.3677180.253413-0.114293-0.18628570.01.00.00.2971420.8679990.5220220.3868870.6006010.5415420.3748750.0-0.114293-0.186285-0.017375-0.169370-0.0027920.1569210.6662750.1768030.0000010.0
.......................................................................................
410773-0.748366-0.804077-0.6503710.7027880.2534131.3654411.50183352.03.00.00.1931430.1147530.3098100.7417420.6006010.9613670.9845350.01.3654411.5018330.0684381.5701630.0086160.1478200.6651590.1870110.0000100.0
4107741.257769-1.101815-0.0446080.0910701.1759110.553789-0.14254414.01.00.00.9080360.0757250.6046050.6456460.8673670.8418420.4364360.00.553789-0.1425440.014463-0.002742-0.0026490.1527670.6658600.1813700.0000040.0
\n", + "

410775 rows × 28 columns

\n", + "
" + ], + "text/plain": [ + " num__geo_lat num__geo_lon num__level num__levels num__rooms \\\n", + "0 0.495902 -0.449742 0.359235 -0.214789 0.253413 \n", + "1 0.177806 1.433673 -0.246529 -0.367718 0.253413 \n", + "... ... ... ... ... ... \n", + "410773 -0.748366 -0.804077 -0.650371 0.702788 0.253413 \n", + "410774 1.257769 -1.101815 -0.044608 0.091070 1.175911 \n", + "\n", + " num__area num__kitchen_area cat__region cat__building_type \\\n", + "0 0.063735 -0.186285 20.0 1.0 \n", + "1 -0.114293 -0.186285 70.0 1.0 \n", + "... ... ... ... ... \n", + "410773 1.365441 1.501833 52.0 3.0 \n", + "410774 0.553789 -0.142544 14.0 1.0 \n", + "\n", + " cat__object_type quantile__geo_lat quantile__geo_lon \\\n", + "0 0.0 0.766257 0.511028 \n", + "1 0.0 0.297142 0.867999 \n", + "... ... ... ... \n", + "410773 0.0 0.193143 0.114753 \n", + "410774 0.0 0.908036 0.075725 \n", + "\n", + " quantile__level quantile__levels quantile__rooms quantile__area \\\n", + "0 0.717217 0.536537 0.600601 0.623624 \n", + "1 0.522022 0.386887 0.600601 0.541542 \n", + "... ... ... ... ... \n", + "410773 0.309810 0.741742 0.600601 0.961367 \n", + "410774 0.604605 0.645646 0.867367 0.841842 \n", + "\n", + " quantile__kitchen_area poly__1 poly__area poly__kitchen_area \\\n", + "0 0.374875 0.0 0.063735 -0.186285 \n", + "1 0.374875 0.0 -0.114293 -0.186285 \n", + "... ... ... ... ... \n", + "410773 0.984535 0.0 1.365441 1.501833 \n", + "410774 0.436436 0.0 0.553789 -0.142544 \n", + "\n", + " poly__area^2 poly__area kitchen_area poly__kitchen_area^2 \\\n", + "0 -0.010002 -0.132188 -0.002792 \n", + "1 -0.017375 -0.169370 -0.002792 \n", + "... ... ... ... \n", + "410773 0.068438 1.570163 0.008616 \n", + "410774 0.014463 -0.002742 -0.002649 \n", + "\n", + " spline__area_sp_0 spline__area_sp_1 spline__area_sp_2 \\\n", + "0 0.155806 0.666179 0.178013 \n", + "1 0.156921 0.666275 0.176803 \n", + "... ... ... ... \n", + "410773 0.147820 0.665159 0.187011 \n", + "410774 0.152767 0.665860 0.181370 \n", + "\n", + " spline__area_sp_3 spline__area_sp_4 \n", + "0 0.000002 0.0 \n", + "1 0.000001 0.0 \n", + "... ... ... \n", + "410773 0.000010 0.0 \n", + "410774 0.000004 0.0 \n", + "\n", + "[410775 rows x 28 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Удобно использовать для отображения всех строк\\столбцов в DataFrame\n", + "with pd.option_context('display.max_rows', 5, 'display.max_columns', None):\n", + " display (X_train_sklearn)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Создаем пайплайн с препроцессингом и моделью" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning rate set to 0.105957\n", + "0:\tlearn: 22102731.6794979\ttotal: 17.1ms\tremaining: 17.1s\n", + "1:\tlearn: 21993522.6168201\ttotal: 34.1ms\tremaining: 17s\n", + "2:\tlearn: 21906449.8053083\ttotal: 52.6ms\tremaining: 17.5s\n", + "3:\tlearn: 21832729.3406948\ttotal: 69.3ms\tremaining: 17.2s\n", + "4:\tlearn: 21770057.1251014\ttotal: 86.9ms\tremaining: 17.3s\n", + "5:\tlearn: 21717915.6748554\ttotal: 104ms\tremaining: 17.3s\n", + "6:\tlearn: 21673891.4625967\ttotal: 119ms\tremaining: 16.9s\n", + "7:\tlearn: 21635252.2084506\ttotal: 136ms\tremaining: 16.8s\n", + "8:\tlearn: 21599880.1735130\ttotal: 154ms\tremaining: 17s\n", + "9:\tlearn: 21571896.6598855\ttotal: 174ms\tremaining: 17.2s\n", + "10:\tlearn: 21548918.7920905\ttotal: 191ms\tremaining: 17.1s\n", + "11:\tlearn: 21469169.3085785\ttotal: 210ms\tremaining: 17.3s\n", + "12:\tlearn: 20917151.7105915\ttotal: 227ms\tremaining: 17.2s\n", + "13:\tlearn: 20898090.1442249\ttotal: 245ms\tremaining: 17.2s\n", + "14:\tlearn: 20880604.5205543\ttotal: 269ms\tremaining: 17.7s\n", + "15:\tlearn: 20866509.3261171\ttotal: 292ms\tremaining: 18s\n", + "16:\tlearn: 20853897.8112220\ttotal: 316ms\tremaining: 18.3s\n", + "17:\tlearn: 20843816.1230098\ttotal: 338ms\tremaining: 18.5s\n", + "18:\tlearn: 20373459.6724846\ttotal: 357ms\tremaining: 18.4s\n", + "19:\tlearn: 20363758.0877283\ttotal: 377ms\tremaining: 18.5s\n", + "20:\tlearn: 20356328.7643766\ttotal: 395ms\tremaining: 18.4s\n", + "21:\tlearn: 20348176.2337057\ttotal: 418ms\tremaining: 18.6s\n", + "22:\tlearn: 20334645.4973208\ttotal: 437ms\tremaining: 18.6s\n", + "23:\tlearn: 20311618.5886958\ttotal: 453ms\tremaining: 18.4s\n", + "24:\tlearn: 20248723.8214635\ttotal: 474ms\tremaining: 18.5s\n", + "25:\tlearn: 20244454.1815028\ttotal: 495ms\tremaining: 18.5s\n", + "26:\tlearn: 20232541.1732198\ttotal: 512ms\tremaining: 18.5s\n", + "27:\tlearn: 20227699.3837877\ttotal: 532ms\tremaining: 18.5s\n", + "28:\tlearn: 20222366.2734304\ttotal: 550ms\tremaining: 18.4s\n", + "29:\tlearn: 20216976.8323394\ttotal: 569ms\tremaining: 18.4s\n", + "30:\tlearn: 20213554.7196297\ttotal: 588ms\tremaining: 18.4s\n", + "31:\tlearn: 20208505.6535641\ttotal: 608ms\tremaining: 18.4s\n", + "32:\tlearn: 20203647.1730367\ttotal: 629ms\tremaining: 18.4s\n", + "33:\tlearn: 20176285.8516750\ttotal: 651ms\tremaining: 18.5s\n", + "34:\tlearn: 20023706.8473414\ttotal: 672ms\tremaining: 18.5s\n", + "35:\tlearn: 20019782.0125353\ttotal: 693ms\tremaining: 18.5s\n", + "36:\tlearn: 20016194.9834484\ttotal: 711ms\tremaining: 18.5s\n", + "37:\tlearn: 20010918.9789974\ttotal: 728ms\tremaining: 18.4s\n", + "38:\tlearn: 20005122.2496024\ttotal: 744ms\tremaining: 18.3s\n", + "39:\tlearn: 19826427.5860800\ttotal: 765ms\tremaining: 18.4s\n", + "40:\tlearn: 19821027.0706518\ttotal: 783ms\tremaining: 18.3s\n", + "41:\tlearn: 19816871.6294044\ttotal: 804ms\tremaining: 18.3s\n", + "42:\tlearn: 19810410.3099000\ttotal: 825ms\tremaining: 18.4s\n", + "43:\tlearn: 19808449.0405768\ttotal: 839ms\tremaining: 18.2s\n", + "44:\tlearn: 19807738.5191228\ttotal: 853ms\tremaining: 18.1s\n", + "45:\tlearn: 19787631.7962327\ttotal: 871ms\tremaining: 18.1s\n", + "46:\tlearn: 19782405.6845722\ttotal: 886ms\tremaining: 18s\n", + "47:\tlearn: 19781333.7652417\ttotal: 903ms\tremaining: 17.9s\n", + "48:\tlearn: 19778478.0759503\ttotal: 917ms\tremaining: 17.8s\n", + "49:\tlearn: 19772999.5998384\ttotal: 933ms\tremaining: 17.7s\n", + "50:\tlearn: 19770396.6950975\ttotal: 951ms\tremaining: 17.7s\n", + "51:\tlearn: 19757815.1021254\ttotal: 967ms\tremaining: 17.6s\n", + "52:\tlearn: 19756418.1596308\ttotal: 983ms\tremaining: 17.6s\n", + "53:\tlearn: 19740682.4658575\ttotal: 1s\tremaining: 17.6s\n", + "54:\tlearn: 19731694.5829607\ttotal: 1.02s\tremaining: 17.5s\n", + "55:\tlearn: 19729400.6708806\ttotal: 1.04s\tremaining: 17.5s\n", + "56:\tlearn: 19708097.7439061\ttotal: 1.07s\tremaining: 17.6s\n", + "57:\tlearn: 19706618.2167345\ttotal: 1.09s\tremaining: 17.7s\n", + "58:\tlearn: 19703139.1808417\ttotal: 1.11s\tremaining: 17.7s\n", + "59:\tlearn: 19699441.8400171\ttotal: 1.12s\tremaining: 17.6s\n", + "60:\tlearn: 19697329.4392297\ttotal: 1.14s\tremaining: 17.5s\n", + "61:\tlearn: 19672228.5413298\ttotal: 1.16s\tremaining: 17.5s\n", + "62:\tlearn: 19670302.3131038\ttotal: 1.18s\tremaining: 17.5s\n", + "63:\tlearn: 19636766.6788921\ttotal: 1.2s\tremaining: 17.5s\n", + "64:\tlearn: 19630850.6376277\ttotal: 1.22s\tremaining: 17.5s\n", + "65:\tlearn: 19619131.1000212\ttotal: 1.24s\tremaining: 17.5s\n", + "66:\tlearn: 19615162.5371031\ttotal: 1.26s\tremaining: 17.5s\n", + "67:\tlearn: 19612717.9376186\ttotal: 1.27s\tremaining: 17.5s\n", + "68:\tlearn: 19610093.0375816\ttotal: 1.29s\tremaining: 17.5s\n", + "69:\tlearn: 19604632.9545269\ttotal: 1.31s\tremaining: 17.5s\n", + "70:\tlearn: 19602538.7842824\ttotal: 1.33s\tremaining: 17.5s\n", + "71:\tlearn: 19599538.3152449\ttotal: 1.35s\tremaining: 17.4s\n", + "72:\tlearn: 19597720.9114956\ttotal: 1.37s\tremaining: 17.4s\n", + "73:\tlearn: 19595900.2449834\ttotal: 1.39s\tremaining: 17.3s\n", + "74:\tlearn: 19590119.2198134\ttotal: 1.41s\tremaining: 17.3s\n", + "75:\tlearn: 19563519.7751941\ttotal: 1.42s\tremaining: 17.3s\n", + "76:\tlearn: 19561396.5778182\ttotal: 1.44s\tremaining: 17.3s\n", + "77:\tlearn: 19558409.0529330\ttotal: 1.46s\tremaining: 17.3s\n", + "78:\tlearn: 19556656.6178205\ttotal: 1.48s\tremaining: 17.3s\n", + "79:\tlearn: 19555751.9045509\ttotal: 1.5s\tremaining: 17.3s\n", + "80:\tlearn: 19438777.0032411\ttotal: 1.53s\tremaining: 17.3s\n", + "81:\tlearn: 19433573.5226672\ttotal: 1.54s\tremaining: 17.3s\n", + "82:\tlearn: 19417916.7947902\ttotal: 1.56s\tremaining: 17.2s\n", + "83:\tlearn: 19414603.8189686\ttotal: 1.58s\tremaining: 17.2s\n", + "84:\tlearn: 19412946.2034238\ttotal: 1.6s\tremaining: 17.2s\n", + "85:\tlearn: 19411933.0613585\ttotal: 1.62s\tremaining: 17.2s\n", + "86:\tlearn: 19411233.9838117\ttotal: 1.64s\tremaining: 17.2s\n", + "87:\tlearn: 19393294.2612631\ttotal: 1.66s\tremaining: 17.2s\n", + "88:\tlearn: 19309658.6838140\ttotal: 1.69s\tremaining: 17.3s\n", + "89:\tlearn: 19008541.0625168\ttotal: 1.71s\tremaining: 17.2s\n", + "90:\tlearn: 19008184.7592218\ttotal: 1.72s\tremaining: 17.2s\n", + "91:\tlearn: 18757278.4678381\ttotal: 1.74s\tremaining: 17.2s\n", + "92:\tlearn: 18753814.8365244\ttotal: 1.76s\tremaining: 17.2s\n", + "93:\tlearn: 18743709.2369198\ttotal: 1.78s\tremaining: 17.2s\n", + "94:\tlearn: 18739028.5538371\ttotal: 1.8s\tremaining: 17.2s\n", + "95:\tlearn: 18736686.9989415\ttotal: 1.83s\tremaining: 17.2s\n", + "96:\tlearn: 18689358.8045410\ttotal: 1.85s\tremaining: 17.2s\n", + "97:\tlearn: 18686394.5094769\ttotal: 1.87s\tremaining: 17.2s\n", + "98:\tlearn: 18681331.3190831\ttotal: 1.89s\tremaining: 17.2s\n", + "99:\tlearn: 18679609.4138724\ttotal: 1.91s\tremaining: 17.2s\n", + "100:\tlearn: 18677402.7868206\ttotal: 1.93s\tremaining: 17.2s\n", + "101:\tlearn: 18675795.7763439\ttotal: 1.95s\tremaining: 17.2s\n", + "102:\tlearn: 18655586.7690829\ttotal: 1.97s\tremaining: 17.2s\n", + "103:\tlearn: 18572482.8219956\ttotal: 2s\tremaining: 17.2s\n", + "104:\tlearn: 18562979.6696884\ttotal: 2.02s\tremaining: 17.2s\n", + "105:\tlearn: 18560892.7036464\ttotal: 2.04s\tremaining: 17.2s\n", + "106:\tlearn: 18552826.0741258\ttotal: 2.06s\tremaining: 17.2s\n", + "107:\tlearn: 18542571.4569691\ttotal: 2.08s\tremaining: 17.2s\n", + "108:\tlearn: 18541590.1917815\ttotal: 2.1s\tremaining: 17.2s\n", + "109:\tlearn: 18525641.7974257\ttotal: 2.12s\tremaining: 17.1s\n", + "110:\tlearn: 18525356.6429839\ttotal: 2.14s\tremaining: 17.1s\n", + "111:\tlearn: 18523683.0948846\ttotal: 2.15s\tremaining: 17.1s\n", + "112:\tlearn: 18521935.9363212\ttotal: 2.17s\tremaining: 17s\n", + "113:\tlearn: 18518558.3136450\ttotal: 2.19s\tremaining: 17s\n", + "114:\tlearn: 18516818.0597770\ttotal: 2.2s\tremaining: 16.9s\n", + "115:\tlearn: 18514936.8651584\ttotal: 2.22s\tremaining: 16.9s\n", + "116:\tlearn: 18511592.2096944\ttotal: 2.23s\tremaining: 16.9s\n", + "117:\tlearn: 18509579.5237218\ttotal: 2.25s\tremaining: 16.8s\n", + "118:\tlearn: 18507548.9330612\ttotal: 2.27s\tremaining: 16.8s\n", + "119:\tlearn: 18506183.8309113\ttotal: 2.28s\tremaining: 16.7s\n", + "120:\tlearn: 18503895.7203859\ttotal: 2.3s\tremaining: 16.7s\n", + "121:\tlearn: 18491818.4017809\ttotal: 2.32s\tremaining: 16.7s\n", + "122:\tlearn: 18489744.2684678\ttotal: 2.35s\tremaining: 16.7s\n", + "123:\tlearn: 18415456.8260566\ttotal: 2.37s\tremaining: 16.7s\n", + "124:\tlearn: 18348881.2241651\ttotal: 2.39s\tremaining: 16.8s\n", + "125:\tlearn: 18311367.7530810\ttotal: 2.42s\tremaining: 16.8s\n", + "126:\tlearn: 18309766.0935271\ttotal: 2.45s\tremaining: 16.8s\n", + "127:\tlearn: 18307882.1998270\ttotal: 2.47s\tremaining: 16.8s\n", + "128:\tlearn: 18086194.0185441\ttotal: 2.5s\tremaining: 16.9s\n", + "129:\tlearn: 18054245.4959147\ttotal: 2.52s\tremaining: 16.9s\n", + "130:\tlearn: 18052465.3994692\ttotal: 2.54s\tremaining: 16.9s\n", + "131:\tlearn: 18040453.9990169\ttotal: 2.57s\tremaining: 16.9s\n", + "132:\tlearn: 18038566.6263542\ttotal: 2.58s\tremaining: 16.8s\n", + "133:\tlearn: 18036782.4977680\ttotal: 2.6s\tremaining: 16.8s\n", + "134:\tlearn: 18035468.3341409\ttotal: 2.62s\tremaining: 16.8s\n", + "135:\tlearn: 17848583.6017626\ttotal: 2.64s\tremaining: 16.8s\n", + "136:\tlearn: 17845654.5327536\ttotal: 2.66s\tremaining: 16.7s\n", + "137:\tlearn: 17842697.7991284\ttotal: 2.67s\tremaining: 16.7s\n", + "138:\tlearn: 17841628.6965791\ttotal: 2.69s\tremaining: 16.7s\n", + "139:\tlearn: 17834584.6170110\ttotal: 2.71s\tremaining: 16.6s\n", + "140:\tlearn: 17807268.5157860\ttotal: 2.72s\tremaining: 16.6s\n", + "141:\tlearn: 17805339.1253482\ttotal: 2.74s\tremaining: 16.6s\n", + "142:\tlearn: 17803353.3235615\ttotal: 2.76s\tremaining: 16.5s\n", + "143:\tlearn: 17801850.6143386\ttotal: 2.77s\tremaining: 16.5s\n", + "144:\tlearn: 17642955.2771286\ttotal: 2.79s\tremaining: 16.5s\n", + "145:\tlearn: 17641294.1196675\ttotal: 2.81s\tremaining: 16.4s\n", + "146:\tlearn: 17630140.3074217\ttotal: 2.82s\tremaining: 16.4s\n", + "147:\tlearn: 17627624.1255641\ttotal: 2.84s\tremaining: 16.4s\n", + "148:\tlearn: 17603041.8192761\ttotal: 2.86s\tremaining: 16.3s\n", + "149:\tlearn: 17601706.1883032\ttotal: 2.88s\tremaining: 16.3s\n", + "150:\tlearn: 17598105.5599714\ttotal: 2.89s\tremaining: 16.3s\n", + "151:\tlearn: 17596130.1775217\ttotal: 2.91s\tremaining: 16.2s\n", + "152:\tlearn: 17566158.2893671\ttotal: 2.93s\tremaining: 16.2s\n", + "153:\tlearn: 17561600.3479789\ttotal: 2.95s\tremaining: 16.2s\n", + "154:\tlearn: 17561066.8829644\ttotal: 2.97s\tremaining: 16.2s\n", + "155:\tlearn: 17559497.2458160\ttotal: 2.98s\tremaining: 16.1s\n", + "156:\tlearn: 17549103.1492444\ttotal: 3s\tremaining: 16.1s\n", + "157:\tlearn: 17417460.8175816\ttotal: 3.02s\tremaining: 16.1s\n", + "158:\tlearn: 17354233.0707389\ttotal: 3.03s\tremaining: 16s\n", + "159:\tlearn: 17353510.4138067\ttotal: 3.05s\tremaining: 16s\n", + "160:\tlearn: 17350918.2211301\ttotal: 3.06s\tremaining: 16s\n", + "161:\tlearn: 17340803.3815998\ttotal: 3.08s\tremaining: 16s\n", + "162:\tlearn: 17339833.2389756\ttotal: 3.1s\tremaining: 15.9s\n", + "163:\tlearn: 17337448.1962437\ttotal: 3.12s\tremaining: 15.9s\n", + "164:\tlearn: 17280514.8942759\ttotal: 3.15s\tremaining: 15.9s\n", + "165:\tlearn: 17279967.6717146\ttotal: 3.16s\tremaining: 15.9s\n", + "166:\tlearn: 17259575.6925611\ttotal: 3.18s\tremaining: 15.9s\n", + "167:\tlearn: 17256092.5283615\ttotal: 3.2s\tremaining: 15.9s\n", + "168:\tlearn: 17232370.9072862\ttotal: 3.23s\tremaining: 15.9s\n", + "169:\tlearn: 17222920.1982134\ttotal: 3.25s\tremaining: 15.9s\n", + "170:\tlearn: 17220459.5050885\ttotal: 3.27s\tremaining: 15.8s\n", + "171:\tlearn: 17108933.5754492\ttotal: 3.29s\tremaining: 15.8s\n", + "172:\tlearn: 17107858.3964618\ttotal: 3.3s\tremaining: 15.8s\n", + "173:\tlearn: 17087693.6261034\ttotal: 3.33s\tremaining: 15.8s\n", + "174:\tlearn: 17078725.8587178\ttotal: 3.35s\tremaining: 15.8s\n", + "175:\tlearn: 17076605.6995543\ttotal: 3.37s\tremaining: 15.8s\n", + "176:\tlearn: 17065489.4227360\ttotal: 3.39s\tremaining: 15.8s\n", + "177:\tlearn: 17048293.9417726\ttotal: 3.42s\tremaining: 15.8s\n", + "178:\tlearn: 16956375.7520814\ttotal: 3.44s\tremaining: 15.8s\n", + "179:\tlearn: 16951632.5745194\ttotal: 3.46s\tremaining: 15.8s\n", + "180:\tlearn: 16939921.4923755\ttotal: 3.48s\tremaining: 15.8s\n", + "181:\tlearn: 16937521.5248547\ttotal: 3.51s\tremaining: 15.8s\n", + "182:\tlearn: 16930168.2973283\ttotal: 3.52s\tremaining: 15.7s\n", + "183:\tlearn: 16928350.9826028\ttotal: 3.54s\tremaining: 15.7s\n", + "184:\tlearn: 16921041.8847808\ttotal: 3.56s\tremaining: 15.7s\n", + "185:\tlearn: 16904415.9585111\ttotal: 3.58s\tremaining: 15.7s\n", + "186:\tlearn: 16901279.0112120\ttotal: 3.6s\tremaining: 15.7s\n", + "187:\tlearn: 16899751.4709599\ttotal: 3.62s\tremaining: 15.6s\n", + "188:\tlearn: 16898724.6935600\ttotal: 3.64s\tremaining: 15.6s\n", + "189:\tlearn: 16890919.8609484\ttotal: 3.66s\tremaining: 15.6s\n", + "190:\tlearn: 16885832.6963876\ttotal: 3.67s\tremaining: 15.6s\n", + "191:\tlearn: 16884064.1703843\ttotal: 3.69s\tremaining: 15.5s\n", + "192:\tlearn: 16882805.6715898\ttotal: 3.71s\tremaining: 15.5s\n", + "193:\tlearn: 16882377.4311044\ttotal: 3.72s\tremaining: 15.5s\n", + "194:\tlearn: 16868261.4753760\ttotal: 3.74s\tremaining: 15.4s\n", + "195:\tlearn: 16867864.4150752\ttotal: 3.76s\tremaining: 15.4s\n", + "196:\tlearn: 16867144.3128568\ttotal: 3.77s\tremaining: 15.4s\n", + "197:\tlearn: 16866773.9579493\ttotal: 3.79s\tremaining: 15.4s\n", + "198:\tlearn: 16866248.4342985\ttotal: 3.81s\tremaining: 15.3s\n", + "199:\tlearn: 16865215.1244569\ttotal: 3.83s\tremaining: 15.3s\n", + "200:\tlearn: 16826208.1864283\ttotal: 3.85s\tremaining: 15.3s\n", + "201:\tlearn: 16816325.2863139\ttotal: 3.87s\tremaining: 15.3s\n", + "202:\tlearn: 16741257.5127752\ttotal: 3.89s\tremaining: 15.3s\n", + "203:\tlearn: 16738712.1206975\ttotal: 3.91s\tremaining: 15.3s\n", + "204:\tlearn: 16729911.7175693\ttotal: 3.93s\tremaining: 15.3s\n", + "205:\tlearn: 16725949.0938213\ttotal: 3.95s\tremaining: 15.2s\n", + "206:\tlearn: 16724948.4248716\ttotal: 3.97s\tremaining: 15.2s\n", + "207:\tlearn: 16682907.0572452\ttotal: 3.99s\tremaining: 15.2s\n", + "208:\tlearn: 16681759.2175568\ttotal: 4.01s\tremaining: 15.2s\n", + "209:\tlearn: 16681439.2294628\ttotal: 4.03s\tremaining: 15.1s\n", + "210:\tlearn: 16669482.5532922\ttotal: 4.05s\tremaining: 15.1s\n", + "211:\tlearn: 16653097.2592396\ttotal: 4.07s\tremaining: 15.1s\n", + "212:\tlearn: 16646075.4382241\ttotal: 4.08s\tremaining: 15.1s\n", + "213:\tlearn: 16645055.5859017\ttotal: 4.1s\tremaining: 15.1s\n", + "214:\tlearn: 16644757.0447694\ttotal: 4.12s\tremaining: 15s\n", + "215:\tlearn: 16630229.6079666\ttotal: 4.14s\tremaining: 15s\n", + "216:\tlearn: 16629140.3182322\ttotal: 4.15s\tremaining: 15s\n", + "217:\tlearn: 16628131.2044490\ttotal: 4.17s\tremaining: 15s\n", + "218:\tlearn: 16564908.6961966\ttotal: 4.19s\tremaining: 14.9s\n", + "219:\tlearn: 16562975.9514213\ttotal: 4.21s\tremaining: 14.9s\n", + "220:\tlearn: 16561066.6684942\ttotal: 4.23s\tremaining: 14.9s\n", + "221:\tlearn: 16559949.7001093\ttotal: 4.25s\tremaining: 14.9s\n", + "222:\tlearn: 16558227.2571740\ttotal: 4.27s\tremaining: 14.9s\n", + "223:\tlearn: 16557965.4672609\ttotal: 4.28s\tremaining: 14.8s\n", + "224:\tlearn: 16555916.3204459\ttotal: 4.3s\tremaining: 14.8s\n", + "225:\tlearn: 16555158.9901642\ttotal: 4.32s\tremaining: 14.8s\n", + "226:\tlearn: 16554134.5700631\ttotal: 4.34s\tremaining: 14.8s\n", + "227:\tlearn: 16553333.5497729\ttotal: 4.35s\tremaining: 14.7s\n", + "228:\tlearn: 16550835.3039861\ttotal: 4.37s\tremaining: 14.7s\n", + "229:\tlearn: 16540704.2999595\ttotal: 4.39s\tremaining: 14.7s\n", + "230:\tlearn: 16539430.0502239\ttotal: 4.4s\tremaining: 14.7s\n", + "231:\tlearn: 16538656.7542080\ttotal: 4.42s\tremaining: 14.6s\n", + "232:\tlearn: 16538215.3432778\ttotal: 4.44s\tremaining: 14.6s\n", + "233:\tlearn: 16523491.6516828\ttotal: 4.46s\tremaining: 14.6s\n", + "234:\tlearn: 16522811.4726726\ttotal: 4.48s\tremaining: 14.6s\n", + "235:\tlearn: 16522570.4993597\ttotal: 4.49s\tremaining: 14.6s\n", + "236:\tlearn: 16515326.2207752\ttotal: 4.52s\tremaining: 14.5s\n", + "237:\tlearn: 16514433.7188151\ttotal: 4.54s\tremaining: 14.5s\n", + "238:\tlearn: 16511393.9885983\ttotal: 4.56s\tremaining: 14.5s\n", + "239:\tlearn: 16509426.6581912\ttotal: 4.58s\tremaining: 14.5s\n", + "240:\tlearn: 16507868.7317227\ttotal: 4.6s\tremaining: 14.5s\n", + "241:\tlearn: 16505964.1613172\ttotal: 4.63s\tremaining: 14.5s\n", + "242:\tlearn: 16505412.5915435\ttotal: 4.64s\tremaining: 14.5s\n", + "243:\tlearn: 16502400.4263770\ttotal: 4.66s\tremaining: 14.4s\n", + "244:\tlearn: 16501653.9086014\ttotal: 4.68s\tremaining: 14.4s\n", + "245:\tlearn: 16500906.4506835\ttotal: 4.69s\tremaining: 14.4s\n", + "246:\tlearn: 16487930.8086712\ttotal: 4.71s\tremaining: 14.4s\n", + "247:\tlearn: 16480877.6383523\ttotal: 4.73s\tremaining: 14.3s\n", + "248:\tlearn: 16471564.6718598\ttotal: 4.75s\tremaining: 14.3s\n", + "249:\tlearn: 16470912.2244580\ttotal: 4.76s\tremaining: 14.3s\n", + "250:\tlearn: 16439481.0195614\ttotal: 4.78s\tremaining: 14.3s\n", + "251:\tlearn: 16438722.2145898\ttotal: 4.8s\tremaining: 14.2s\n", + "252:\tlearn: 16436581.1033330\ttotal: 4.82s\tremaining: 14.2s\n", + "253:\tlearn: 16435709.3753331\ttotal: 4.83s\tremaining: 14.2s\n", + "254:\tlearn: 16435393.3040452\ttotal: 4.85s\tremaining: 14.2s\n", + "255:\tlearn: 16427833.6475921\ttotal: 4.87s\tremaining: 14.1s\n", + "256:\tlearn: 16427538.9619444\ttotal: 4.88s\tremaining: 14.1s\n", + "257:\tlearn: 16426754.6014133\ttotal: 4.9s\tremaining: 14.1s\n", + "258:\tlearn: 16425325.4787898\ttotal: 4.91s\tremaining: 14.1s\n", + "259:\tlearn: 16424830.1071685\ttotal: 4.93s\tremaining: 14s\n", + "260:\tlearn: 16424367.4771794\ttotal: 4.95s\tremaining: 14s\n", + "261:\tlearn: 16423620.3866744\ttotal: 4.96s\tremaining: 14s\n", + "262:\tlearn: 16418460.9950502\ttotal: 4.98s\tremaining: 14s\n", + "263:\tlearn: 16418032.0692749\ttotal: 5s\tremaining: 13.9s\n", + "264:\tlearn: 16413318.0802500\ttotal: 5.02s\tremaining: 13.9s\n", + "265:\tlearn: 16412919.4639762\ttotal: 5.04s\tremaining: 13.9s\n", + "266:\tlearn: 16404758.7470010\ttotal: 5.06s\tremaining: 13.9s\n", + "267:\tlearn: 16351627.7878422\ttotal: 5.08s\tremaining: 13.9s\n", + "268:\tlearn: 16344295.2421375\ttotal: 5.1s\tremaining: 13.9s\n", + "269:\tlearn: 16331247.7157844\ttotal: 5.12s\tremaining: 13.8s\n", + "270:\tlearn: 16326915.6148344\ttotal: 5.13s\tremaining: 13.8s\n", + "271:\tlearn: 16326191.8172448\ttotal: 5.15s\tremaining: 13.8s\n", + "272:\tlearn: 16319637.7277947\ttotal: 5.17s\tremaining: 13.8s\n", + "273:\tlearn: 16318923.5839147\ttotal: 5.18s\tremaining: 13.7s\n", + "274:\tlearn: 16317169.0024984\ttotal: 5.21s\tremaining: 13.7s\n", + "275:\tlearn: 16316795.3991608\ttotal: 5.22s\tremaining: 13.7s\n", + "276:\tlearn: 16316109.7416048\ttotal: 5.24s\tremaining: 13.7s\n", + "277:\tlearn: 16310202.8104501\ttotal: 5.26s\tremaining: 13.7s\n", + "278:\tlearn: 16298459.8554384\ttotal: 5.28s\tremaining: 13.6s\n", + "279:\tlearn: 16291155.7372562\ttotal: 5.3s\tremaining: 13.6s\n", + "280:\tlearn: 16290567.5040426\ttotal: 5.32s\tremaining: 13.6s\n", + "281:\tlearn: 16276490.1501273\ttotal: 5.33s\tremaining: 13.6s\n", + "282:\tlearn: 16271927.7428385\ttotal: 5.36s\tremaining: 13.6s\n", + "283:\tlearn: 16269614.0932734\ttotal: 5.38s\tremaining: 13.6s\n", + "284:\tlearn: 16264177.6687309\ttotal: 5.4s\tremaining: 13.5s\n", + "285:\tlearn: 16260208.5522827\ttotal: 5.42s\tremaining: 13.5s\n", + "286:\tlearn: 16256576.4502796\ttotal: 5.43s\tremaining: 13.5s\n", + "287:\tlearn: 16254058.9454826\ttotal: 5.45s\tremaining: 13.5s\n", + "288:\tlearn: 16253471.6159361\ttotal: 5.47s\tremaining: 13.5s\n", + "289:\tlearn: 16242124.2487904\ttotal: 5.49s\tremaining: 13.4s\n", + "290:\tlearn: 16230782.7457944\ttotal: 5.51s\tremaining: 13.4s\n", + "291:\tlearn: 16191161.7445135\ttotal: 5.53s\tremaining: 13.4s\n", + "292:\tlearn: 16167339.9071325\ttotal: 5.55s\tremaining: 13.4s\n", + "293:\tlearn: 16159980.4064988\ttotal: 5.57s\tremaining: 13.4s\n", + "294:\tlearn: 16159399.0252395\ttotal: 5.58s\tremaining: 13.3s\n", + "295:\tlearn: 16150457.3272648\ttotal: 5.6s\tremaining: 13.3s\n", + "296:\tlearn: 16144925.9225207\ttotal: 5.61s\tremaining: 13.3s\n", + "297:\tlearn: 16140131.4634348\ttotal: 5.63s\tremaining: 13.3s\n", + "298:\tlearn: 16127231.1253291\ttotal: 5.66s\tremaining: 13.3s\n", + "299:\tlearn: 16126440.8665551\ttotal: 5.69s\tremaining: 13.3s\n", + "300:\tlearn: 16121670.0530282\ttotal: 5.72s\tremaining: 13.3s\n", + "301:\tlearn: 16118523.8621931\ttotal: 5.74s\tremaining: 13.3s\n", + "302:\tlearn: 16117237.3364004\ttotal: 5.76s\tremaining: 13.3s\n", + "303:\tlearn: 16100956.3152589\ttotal: 5.79s\tremaining: 13.3s\n", + "304:\tlearn: 16100095.8360116\ttotal: 5.81s\tremaining: 13.2s\n", + "305:\tlearn: 16054781.9357689\ttotal: 5.82s\tremaining: 13.2s\n", + "306:\tlearn: 16050463.3724197\ttotal: 5.84s\tremaining: 13.2s\n", + "307:\tlearn: 16048555.0092161\ttotal: 5.86s\tremaining: 13.2s\n", + "308:\tlearn: 16015172.9239833\ttotal: 5.88s\tremaining: 13.2s\n", + "309:\tlearn: 16009335.5533753\ttotal: 5.91s\tremaining: 13.1s\n", + "310:\tlearn: 15998648.8127455\ttotal: 5.93s\tremaining: 13.1s\n", + "311:\tlearn: 15980765.2802978\ttotal: 5.95s\tremaining: 13.1s\n", + "312:\tlearn: 15979245.1236180\ttotal: 5.96s\tremaining: 13.1s\n", + "313:\tlearn: 15978068.6903782\ttotal: 5.98s\tremaining: 13.1s\n", + "314:\tlearn: 15977679.9868077\ttotal: 5.99s\tremaining: 13s\n", + "315:\tlearn: 15973038.9221634\ttotal: 6.01s\tremaining: 13s\n", + "316:\tlearn: 15963196.8958982\ttotal: 6.03s\tremaining: 13s\n", + "317:\tlearn: 15962448.6450769\ttotal: 6.04s\tremaining: 13s\n", + "318:\tlearn: 15950478.3599818\ttotal: 6.06s\tremaining: 12.9s\n", + "319:\tlearn: 15944527.8146609\ttotal: 6.08s\tremaining: 12.9s\n", + "320:\tlearn: 15939031.3101246\ttotal: 6.1s\tremaining: 12.9s\n", + "321:\tlearn: 15924774.0481590\ttotal: 6.11s\tremaining: 12.9s\n", + "322:\tlearn: 15918158.2603557\ttotal: 6.13s\tremaining: 12.8s\n", + "323:\tlearn: 15917976.5103597\ttotal: 6.15s\tremaining: 12.8s\n", + "324:\tlearn: 15917308.9613640\ttotal: 6.17s\tremaining: 12.8s\n", + "325:\tlearn: 15916629.6017292\ttotal: 6.18s\tremaining: 12.8s\n", + "326:\tlearn: 15916123.7456763\ttotal: 6.2s\tremaining: 12.8s\n", + "327:\tlearn: 15904319.7137130\ttotal: 6.22s\tremaining: 12.8s\n", + "328:\tlearn: 15903227.2886123\ttotal: 6.25s\tremaining: 12.7s\n", + "329:\tlearn: 15902710.7326004\ttotal: 6.26s\tremaining: 12.7s\n", + "330:\tlearn: 15901051.2047678\ttotal: 6.28s\tremaining: 12.7s\n", + "331:\tlearn: 15900692.0685465\ttotal: 6.3s\tremaining: 12.7s\n", + "332:\tlearn: 15900158.3561260\ttotal: 6.33s\tremaining: 12.7s\n", + "333:\tlearn: 15899484.8247248\ttotal: 6.35s\tremaining: 12.7s\n", + "334:\tlearn: 15895616.6483881\ttotal: 6.37s\tremaining: 12.6s\n", + "335:\tlearn: 15890182.6803330\ttotal: 6.39s\tremaining: 12.6s\n", + "336:\tlearn: 15886874.9399864\ttotal: 6.41s\tremaining: 12.6s\n", + "337:\tlearn: 15875868.1894422\ttotal: 6.43s\tremaining: 12.6s\n", + "338:\tlearn: 15873032.6717763\ttotal: 6.46s\tremaining: 12.6s\n", + "339:\tlearn: 15872131.4797120\ttotal: 6.48s\tremaining: 12.6s\n", + "340:\tlearn: 15870607.2643030\ttotal: 6.49s\tremaining: 12.6s\n", + "341:\tlearn: 15870336.7168652\ttotal: 6.51s\tremaining: 12.5s\n", + "342:\tlearn: 15858142.8926846\ttotal: 6.54s\tremaining: 12.5s\n", + "343:\tlearn: 15852036.9987456\ttotal: 6.57s\tremaining: 12.5s\n", + "344:\tlearn: 15851211.3433301\ttotal: 6.58s\tremaining: 12.5s\n", + "345:\tlearn: 15847806.5747006\ttotal: 6.6s\tremaining: 12.5s\n", + "346:\tlearn: 15844645.9411026\ttotal: 6.63s\tremaining: 12.5s\n", + "347:\tlearn: 15828961.8759232\ttotal: 6.65s\tremaining: 12.5s\n", + "348:\tlearn: 15828277.1286653\ttotal: 6.67s\tremaining: 12.4s\n", + "349:\tlearn: 15806247.6086130\ttotal: 6.69s\tremaining: 12.4s\n", + "350:\tlearn: 15805767.2260881\ttotal: 6.72s\tremaining: 12.4s\n", + "351:\tlearn: 15802172.9751853\ttotal: 6.74s\tremaining: 12.4s\n", + "352:\tlearn: 15798132.2195380\ttotal: 6.76s\tremaining: 12.4s\n", + "353:\tlearn: 15774125.0526984\ttotal: 6.79s\tremaining: 12.4s\n", + "354:\tlearn: 15767494.8834016\ttotal: 6.82s\tremaining: 12.4s\n", + "355:\tlearn: 15731151.5366199\ttotal: 6.84s\tremaining: 12.4s\n", + "356:\tlearn: 15726875.2608364\ttotal: 6.87s\tremaining: 12.4s\n", + "357:\tlearn: 15724472.5494185\ttotal: 6.88s\tremaining: 12.3s\n", + "358:\tlearn: 15723297.7594400\ttotal: 6.91s\tremaining: 12.3s\n", + "359:\tlearn: 15722321.1192803\ttotal: 6.93s\tremaining: 12.3s\n", + "360:\tlearn: 15721857.6626695\ttotal: 6.95s\tremaining: 12.3s\n", + "361:\tlearn: 15710326.4707038\ttotal: 6.96s\tremaining: 12.3s\n", + "362:\tlearn: 15707760.6100833\ttotal: 6.98s\tremaining: 12.3s\n", + "363:\tlearn: 15707158.0261594\ttotal: 7s\tremaining: 12.2s\n", + "364:\tlearn: 15706003.0865566\ttotal: 7.02s\tremaining: 12.2s\n", + "365:\tlearn: 15705333.4509082\ttotal: 7.04s\tremaining: 12.2s\n", + "366:\tlearn: 15704909.3717924\ttotal: 7.05s\tremaining: 12.2s\n", + "367:\tlearn: 15704572.6361770\ttotal: 7.07s\tremaining: 12.1s\n", + "368:\tlearn: 15704091.9297076\ttotal: 7.09s\tremaining: 12.1s\n", + "369:\tlearn: 15703690.1015585\ttotal: 7.1s\tremaining: 12.1s\n", + "370:\tlearn: 15700680.6466945\ttotal: 7.12s\tremaining: 12.1s\n", + "371:\tlearn: 15700315.6448947\ttotal: 7.14s\tremaining: 12.1s\n", + "372:\tlearn: 15697040.1692281\ttotal: 7.16s\tremaining: 12s\n", + "373:\tlearn: 15696796.2204033\ttotal: 7.18s\tremaining: 12s\n", + "374:\tlearn: 15696264.4344640\ttotal: 7.19s\tremaining: 12s\n", + "375:\tlearn: 15693401.9079029\ttotal: 7.21s\tremaining: 12s\n", + "376:\tlearn: 15689250.4266617\ttotal: 7.23s\tremaining: 12s\n", + "377:\tlearn: 15672430.6718126\ttotal: 7.25s\tremaining: 11.9s\n", + "378:\tlearn: 15672223.6811755\ttotal: 7.27s\tremaining: 11.9s\n", + "379:\tlearn: 15671696.0210353\ttotal: 7.29s\tremaining: 11.9s\n", + "380:\tlearn: 15668194.2779147\ttotal: 7.31s\tremaining: 11.9s\n", + "381:\tlearn: 15657969.9944029\ttotal: 7.33s\tremaining: 11.9s\n", + "382:\tlearn: 15657528.6748760\ttotal: 7.34s\tremaining: 11.8s\n", + "383:\tlearn: 15648138.7441656\ttotal: 7.36s\tremaining: 11.8s\n", + "384:\tlearn: 15638402.0348663\ttotal: 7.38s\tremaining: 11.8s\n", + "385:\tlearn: 15638060.7715624\ttotal: 7.39s\tremaining: 11.8s\n", + "386:\tlearn: 15624483.9251685\ttotal: 7.41s\tremaining: 11.7s\n", + "387:\tlearn: 15622845.2961097\ttotal: 7.43s\tremaining: 11.7s\n", + "388:\tlearn: 15612041.0236596\ttotal: 7.45s\tremaining: 11.7s\n", + "389:\tlearn: 15603146.9662897\ttotal: 7.47s\tremaining: 11.7s\n", + "390:\tlearn: 15601990.1450766\ttotal: 7.48s\tremaining: 11.7s\n", + "391:\tlearn: 15601363.3416613\ttotal: 7.5s\tremaining: 11.6s\n", + "392:\tlearn: 15599191.2003307\ttotal: 7.52s\tremaining: 11.6s\n", + "393:\tlearn: 15598570.0990730\ttotal: 7.54s\tremaining: 11.6s\n", + "394:\tlearn: 15596230.5863681\ttotal: 7.55s\tremaining: 11.6s\n", + "395:\tlearn: 15594189.1350767\ttotal: 7.57s\tremaining: 11.5s\n", + "396:\tlearn: 15593961.6649448\ttotal: 7.58s\tremaining: 11.5s\n", + "397:\tlearn: 15593760.1873024\ttotal: 7.6s\tremaining: 11.5s\n", + "398:\tlearn: 15592809.7875300\ttotal: 7.62s\tremaining: 11.5s\n", + "399:\tlearn: 15589855.2174745\ttotal: 7.63s\tremaining: 11.4s\n", + "400:\tlearn: 15581318.3623033\ttotal: 7.65s\tremaining: 11.4s\n", + "401:\tlearn: 15577270.4245693\ttotal: 7.67s\tremaining: 11.4s\n", + "402:\tlearn: 15576952.7417484\ttotal: 7.68s\tremaining: 11.4s\n", + "403:\tlearn: 15576586.3492924\ttotal: 7.7s\tremaining: 11.4s\n", + "404:\tlearn: 15571167.9875037\ttotal: 7.72s\tremaining: 11.3s\n", + "405:\tlearn: 15569357.4405457\ttotal: 7.74s\tremaining: 11.3s\n", + "406:\tlearn: 15569128.3887365\ttotal: 7.76s\tremaining: 11.3s\n", + "407:\tlearn: 15568355.8228671\ttotal: 7.77s\tremaining: 11.3s\n", + "408:\tlearn: 15552620.3053293\ttotal: 7.79s\tremaining: 11.3s\n", + "409:\tlearn: 15544601.9052501\ttotal: 7.81s\tremaining: 11.2s\n", + "410:\tlearn: 15536694.2284926\ttotal: 7.83s\tremaining: 11.2s\n", + "411:\tlearn: 15536245.0468606\ttotal: 7.85s\tremaining: 11.2s\n", + "412:\tlearn: 15532278.4875558\ttotal: 7.87s\tremaining: 11.2s\n", + "413:\tlearn: 15511482.8547340\ttotal: 7.88s\tremaining: 11.2s\n", + "414:\tlearn: 15511021.6526090\ttotal: 7.9s\tremaining: 11.1s\n", + "415:\tlearn: 15508419.8137283\ttotal: 7.92s\tremaining: 11.1s\n", + "416:\tlearn: 15507384.4861211\ttotal: 7.93s\tremaining: 11.1s\n", + "417:\tlearn: 15507194.7228751\ttotal: 7.95s\tremaining: 11.1s\n", + "418:\tlearn: 15506862.7422276\ttotal: 7.97s\tremaining: 11s\n", + "419:\tlearn: 15506153.8325314\ttotal: 7.99s\tremaining: 11s\n", + "420:\tlearn: 15496691.3479538\ttotal: 8s\tremaining: 11s\n", + "421:\tlearn: 15481503.6612742\ttotal: 8.02s\tremaining: 11s\n", + "422:\tlearn: 15480916.8373585\ttotal: 8.04s\tremaining: 11s\n", + "423:\tlearn: 15477965.4399634\ttotal: 8.05s\tremaining: 10.9s\n", + "424:\tlearn: 15476411.7695084\ttotal: 8.07s\tremaining: 10.9s\n", + "425:\tlearn: 15468806.7207207\ttotal: 8.09s\tremaining: 10.9s\n", + "426:\tlearn: 15468191.0361515\ttotal: 8.11s\tremaining: 10.9s\n", + "427:\tlearn: 15462223.8900134\ttotal: 8.13s\tremaining: 10.9s\n", + "428:\tlearn: 15461803.2638937\ttotal: 8.14s\tremaining: 10.8s\n", + "429:\tlearn: 15461674.6665670\ttotal: 8.16s\tremaining: 10.8s\n", + "430:\tlearn: 15461479.5870748\ttotal: 8.18s\tremaining: 10.8s\n", + "431:\tlearn: 15453195.7741336\ttotal: 8.19s\tremaining: 10.8s\n", + "432:\tlearn: 15453014.5225347\ttotal: 8.21s\tremaining: 10.7s\n", + "433:\tlearn: 15443545.6603354\ttotal: 8.23s\tremaining: 10.7s\n", + "434:\tlearn: 15441941.3301205\ttotal: 8.24s\tremaining: 10.7s\n", + "435:\tlearn: 15427097.1810393\ttotal: 8.26s\tremaining: 10.7s\n", + "436:\tlearn: 15426444.8850360\ttotal: 8.28s\tremaining: 10.7s\n", + "437:\tlearn: 15425931.8135958\ttotal: 8.3s\tremaining: 10.6s\n", + "438:\tlearn: 15425636.6510092\ttotal: 8.31s\tremaining: 10.6s\n", + "439:\tlearn: 15408527.3130183\ttotal: 8.33s\tremaining: 10.6s\n", + "440:\tlearn: 15401292.0399180\ttotal: 8.35s\tremaining: 10.6s\n", + "441:\tlearn: 15400300.0007984\ttotal: 8.37s\tremaining: 10.6s\n", + "442:\tlearn: 15385821.7387360\ttotal: 8.38s\tremaining: 10.5s\n", + "443:\tlearn: 15372274.6725325\ttotal: 8.4s\tremaining: 10.5s\n", + "444:\tlearn: 15358531.6955122\ttotal: 8.42s\tremaining: 10.5s\n", + "445:\tlearn: 15356630.4066797\ttotal: 8.44s\tremaining: 10.5s\n", + "446:\tlearn: 15356309.2575797\ttotal: 8.46s\tremaining: 10.5s\n", + "447:\tlearn: 15356011.0701583\ttotal: 8.47s\tremaining: 10.4s\n", + "448:\tlearn: 15347229.8183089\ttotal: 8.49s\tremaining: 10.4s\n", + "449:\tlearn: 15347025.3608803\ttotal: 8.51s\tremaining: 10.4s\n", + "450:\tlearn: 15345286.7109960\ttotal: 8.53s\tremaining: 10.4s\n", + "451:\tlearn: 15344124.7316516\ttotal: 8.55s\tremaining: 10.4s\n", + "452:\tlearn: 15343817.2840735\ttotal: 8.56s\tremaining: 10.3s\n", + "453:\tlearn: 15343647.5665711\ttotal: 8.58s\tremaining: 10.3s\n", + "454:\tlearn: 15336925.2172151\ttotal: 8.6s\tremaining: 10.3s\n", + "455:\tlearn: 15336698.2993745\ttotal: 8.62s\tremaining: 10.3s\n", + "456:\tlearn: 15329979.7120713\ttotal: 8.63s\tremaining: 10.3s\n", + "457:\tlearn: 15327261.0806467\ttotal: 8.65s\tremaining: 10.2s\n", + "458:\tlearn: 15323010.2123614\ttotal: 8.67s\tremaining: 10.2s\n", + "459:\tlearn: 15311019.0130373\ttotal: 8.69s\tremaining: 10.2s\n", + "460:\tlearn: 15310926.3865304\ttotal: 8.71s\tremaining: 10.2s\n", + "461:\tlearn: 15310336.2245889\ttotal: 8.72s\tremaining: 10.2s\n", + "462:\tlearn: 15310110.4541169\ttotal: 8.73s\tremaining: 10.1s\n", + "463:\tlearn: 15303072.1276272\ttotal: 8.75s\tremaining: 10.1s\n", + "464:\tlearn: 15302242.5369794\ttotal: 8.77s\tremaining: 10.1s\n", + "465:\tlearn: 15297608.7119635\ttotal: 8.79s\tremaining: 10.1s\n", + "466:\tlearn: 15296797.0467934\ttotal: 8.81s\tremaining: 10.1s\n", + "467:\tlearn: 15296300.0517609\ttotal: 8.83s\tremaining: 10s\n", + "468:\tlearn: 15296063.8959076\ttotal: 8.85s\tremaining: 10s\n", + "469:\tlearn: 15295732.1346916\ttotal: 8.86s\tremaining: 9.99s\n", + "470:\tlearn: 15292857.3473687\ttotal: 8.88s\tremaining: 9.97s\n", + "471:\tlearn: 15286918.7601534\ttotal: 8.9s\tremaining: 9.95s\n", + "472:\tlearn: 15286315.3203651\ttotal: 8.92s\tremaining: 9.93s\n", + "473:\tlearn: 15285879.4191647\ttotal: 8.93s\tremaining: 9.91s\n", + "474:\tlearn: 15285274.3372733\ttotal: 8.95s\tremaining: 9.89s\n", + "475:\tlearn: 15256344.7627420\ttotal: 8.97s\tremaining: 9.88s\n", + "476:\tlearn: 15253934.9737803\ttotal: 8.99s\tremaining: 9.86s\n", + "477:\tlearn: 15246843.4949940\ttotal: 9.01s\tremaining: 9.84s\n", + "478:\tlearn: 15243343.3462813\ttotal: 9.03s\tremaining: 9.82s\n", + "479:\tlearn: 15242572.9694361\ttotal: 9.05s\tremaining: 9.8s\n", + "480:\tlearn: 15241326.4672520\ttotal: 9.06s\tremaining: 9.78s\n", + "481:\tlearn: 15239166.7953532\ttotal: 9.08s\tremaining: 9.76s\n", + "482:\tlearn: 15238928.3561927\ttotal: 9.1s\tremaining: 9.74s\n", + "483:\tlearn: 15236052.2752831\ttotal: 9.12s\tremaining: 9.72s\n", + "484:\tlearn: 15235679.3228742\ttotal: 9.13s\tremaining: 9.7s\n", + "485:\tlearn: 15232651.3693052\ttotal: 9.15s\tremaining: 9.68s\n", + "486:\tlearn: 15229975.6083089\ttotal: 9.17s\tremaining: 9.66s\n", + "487:\tlearn: 15229313.9998434\ttotal: 9.19s\tremaining: 9.64s\n", + "488:\tlearn: 15226438.0742381\ttotal: 9.21s\tremaining: 9.62s\n", + "489:\tlearn: 15226207.1844110\ttotal: 9.22s\tremaining: 9.6s\n", + "490:\tlearn: 15225891.0814311\ttotal: 9.24s\tremaining: 9.58s\n", + "491:\tlearn: 15225564.2658996\ttotal: 9.26s\tremaining: 9.56s\n", + "492:\tlearn: 15225253.9290857\ttotal: 9.27s\tremaining: 9.54s\n", + "493:\tlearn: 15225101.8010381\ttotal: 9.29s\tremaining: 9.52s\n", + "494:\tlearn: 15224892.3278437\ttotal: 9.31s\tremaining: 9.5s\n", + "495:\tlearn: 15224266.9506867\ttotal: 9.33s\tremaining: 9.48s\n", + "496:\tlearn: 15223549.6289167\ttotal: 9.35s\tremaining: 9.46s\n", + "497:\tlearn: 15217058.9143160\ttotal: 9.37s\tremaining: 9.44s\n", + "498:\tlearn: 15215188.1396205\ttotal: 9.39s\tremaining: 9.42s\n", + "499:\tlearn: 15213406.6164570\ttotal: 9.4s\tremaining: 9.4s\n", + "500:\tlearn: 15207254.2720114\ttotal: 9.42s\tremaining: 9.39s\n", + "501:\tlearn: 15205153.9646281\ttotal: 9.45s\tremaining: 9.37s\n", + "502:\tlearn: 15200806.1942231\ttotal: 9.46s\tremaining: 9.35s\n", + "503:\tlearn: 15199634.6987740\ttotal: 9.48s\tremaining: 9.33s\n", + "504:\tlearn: 15199380.4930022\ttotal: 9.5s\tremaining: 9.31s\n", + "505:\tlearn: 15198823.7154717\ttotal: 9.51s\tremaining: 9.29s\n", + "506:\tlearn: 15198383.1739967\ttotal: 9.53s\tremaining: 9.27s\n", + "507:\tlearn: 15196517.8231824\ttotal: 9.55s\tremaining: 9.25s\n", + "508:\tlearn: 15196123.7863901\ttotal: 9.57s\tremaining: 9.23s\n", + "509:\tlearn: 15193553.5984846\ttotal: 9.59s\tremaining: 9.21s\n", + "510:\tlearn: 15192915.8305172\ttotal: 9.61s\tremaining: 9.19s\n", + "511:\tlearn: 15192433.8180747\ttotal: 9.62s\tremaining: 9.17s\n", + "512:\tlearn: 15192232.7761378\ttotal: 9.64s\tremaining: 9.15s\n", + "513:\tlearn: 15191287.7774708\ttotal: 9.66s\tremaining: 9.13s\n", + "514:\tlearn: 15185944.6629542\ttotal: 9.67s\tremaining: 9.11s\n", + "515:\tlearn: 15185636.9427557\ttotal: 9.69s\tremaining: 9.09s\n", + "516:\tlearn: 15179818.6448808\ttotal: 9.71s\tremaining: 9.07s\n", + "517:\tlearn: 15166631.2810761\ttotal: 9.73s\tremaining: 9.05s\n", + "518:\tlearn: 15162871.1512677\ttotal: 9.75s\tremaining: 9.04s\n", + "519:\tlearn: 15162079.3860934\ttotal: 9.77s\tremaining: 9.02s\n", + "520:\tlearn: 15159062.9503455\ttotal: 9.78s\tremaining: 8.99s\n", + "521:\tlearn: 15158581.5138320\ttotal: 9.8s\tremaining: 8.98s\n", + "522:\tlearn: 15158391.2959379\ttotal: 9.82s\tremaining: 8.95s\n", + "523:\tlearn: 15152869.4477779\ttotal: 9.84s\tremaining: 8.93s\n", + "524:\tlearn: 15139481.6776876\ttotal: 9.86s\tremaining: 8.92s\n", + "525:\tlearn: 15139265.7200114\ttotal: 9.87s\tremaining: 8.89s\n", + "526:\tlearn: 15138627.9396250\ttotal: 9.89s\tremaining: 8.88s\n", + "527:\tlearn: 15138327.3985020\ttotal: 9.9s\tremaining: 8.86s\n", + "528:\tlearn: 15137232.1130610\ttotal: 9.92s\tremaining: 8.84s\n", + "529:\tlearn: 15133609.2868548\ttotal: 9.94s\tremaining: 8.82s\n", + "530:\tlearn: 15133460.8763140\ttotal: 9.96s\tremaining: 8.8s\n", + "531:\tlearn: 15109552.7299063\ttotal: 9.98s\tremaining: 8.78s\n", + "532:\tlearn: 15107658.2624187\ttotal: 9.99s\tremaining: 8.76s\n", + "533:\tlearn: 15107455.0365402\ttotal: 10s\tremaining: 8.74s\n", + "534:\tlearn: 15102205.8936957\ttotal: 10s\tremaining: 8.72s\n", + "535:\tlearn: 15101649.0029598\ttotal: 10s\tremaining: 8.7s\n", + "536:\tlearn: 15098173.9534708\ttotal: 10.1s\tremaining: 8.68s\n", + "537:\tlearn: 15085621.2661752\ttotal: 10.1s\tremaining: 8.66s\n", + "538:\tlearn: 15082526.6318871\ttotal: 10.1s\tremaining: 8.64s\n", + "539:\tlearn: 15074383.1362937\ttotal: 10.1s\tremaining: 8.62s\n", + "540:\tlearn: 15073773.2640630\ttotal: 10.1s\tremaining: 8.6s\n", + "541:\tlearn: 15063446.7982745\ttotal: 10.2s\tremaining: 8.58s\n", + "542:\tlearn: 15055973.0283975\ttotal: 10.2s\tremaining: 8.56s\n", + "543:\tlearn: 15053040.2567599\ttotal: 10.2s\tremaining: 8.54s\n", + "544:\tlearn: 15041098.8477743\ttotal: 10.2s\tremaining: 8.52s\n", + "545:\tlearn: 15040727.8174604\ttotal: 10.2s\tremaining: 8.5s\n", + "546:\tlearn: 15034658.7375625\ttotal: 10.2s\tremaining: 8.48s\n", + "547:\tlearn: 15033907.3523765\ttotal: 10.3s\tremaining: 8.47s\n", + "548:\tlearn: 15021509.6398422\ttotal: 10.3s\tremaining: 8.45s\n", + "549:\tlearn: 15021114.6655523\ttotal: 10.3s\tremaining: 8.43s\n", + "550:\tlearn: 15020965.6552495\ttotal: 10.3s\tremaining: 8.41s\n", + "551:\tlearn: 15020305.1478324\ttotal: 10.3s\tremaining: 8.4s\n", + "552:\tlearn: 15020011.6987184\ttotal: 10.4s\tremaining: 8.38s\n", + "553:\tlearn: 15008656.9019111\ttotal: 10.4s\tremaining: 8.36s\n", + "554:\tlearn: 15008257.1960286\ttotal: 10.4s\tremaining: 8.35s\n", + "555:\tlearn: 15008047.0288160\ttotal: 10.4s\tremaining: 8.32s\n", + "556:\tlearn: 15007888.1230327\ttotal: 10.4s\tremaining: 8.3s\n", + "557:\tlearn: 15007709.6828693\ttotal: 10.5s\tremaining: 8.29s\n", + "558:\tlearn: 15007209.9707405\ttotal: 10.5s\tremaining: 8.27s\n", + "559:\tlearn: 15007071.5552244\ttotal: 10.5s\tremaining: 8.25s\n", + "560:\tlearn: 15006945.7227292\ttotal: 10.5s\tremaining: 8.22s\n", + "561:\tlearn: 15006659.1182026\ttotal: 10.5s\tremaining: 8.21s\n", + "562:\tlearn: 14990956.2777262\ttotal: 10.6s\tremaining: 8.19s\n", + "563:\tlearn: 14990396.4483383\ttotal: 10.6s\tremaining: 8.18s\n", + "564:\tlearn: 14987445.9684421\ttotal: 10.6s\tremaining: 8.16s\n", + "565:\tlearn: 14987242.4937056\ttotal: 10.6s\tremaining: 8.14s\n", + "566:\tlearn: 14986914.3913112\ttotal: 10.6s\tremaining: 8.13s\n", + "567:\tlearn: 14985397.3680809\ttotal: 10.7s\tremaining: 8.11s\n", + "568:\tlearn: 14983620.9809238\ttotal: 10.7s\tremaining: 8.09s\n", + "569:\tlearn: 14983502.4657892\ttotal: 10.7s\tremaining: 8.07s\n", + "570:\tlearn: 14981044.0324593\ttotal: 10.7s\tremaining: 8.05s\n", + "571:\tlearn: 14980723.2716378\ttotal: 10.7s\tremaining: 8.04s\n", + "572:\tlearn: 14980572.1170260\ttotal: 10.8s\tremaining: 8.02s\n", + "573:\tlearn: 14973680.7983651\ttotal: 10.8s\tremaining: 8s\n", + "574:\tlearn: 14973048.9211978\ttotal: 10.8s\tremaining: 7.98s\n", + "575:\tlearn: 14972915.1126009\ttotal: 10.8s\tremaining: 7.96s\n", + "576:\tlearn: 14972199.0905777\ttotal: 10.8s\tremaining: 7.95s\n", + "577:\tlearn: 14971983.7721189\ttotal: 10.9s\tremaining: 7.93s\n", + "578:\tlearn: 14957898.9717928\ttotal: 10.9s\tremaining: 7.91s\n", + "579:\tlearn: 14957705.1186241\ttotal: 10.9s\tremaining: 7.89s\n", + "580:\tlearn: 14956864.6464907\ttotal: 10.9s\tremaining: 7.88s\n", + "581:\tlearn: 14956793.5985069\ttotal: 10.9s\tremaining: 7.86s\n", + "582:\tlearn: 14936615.4020320\ttotal: 11s\tremaining: 7.84s\n", + "583:\tlearn: 14927341.5935344\ttotal: 11s\tremaining: 7.82s\n", + "584:\tlearn: 14927173.0473101\ttotal: 11s\tremaining: 7.81s\n", + "585:\tlearn: 14925197.4629218\ttotal: 11s\tremaining: 7.79s\n", + "586:\tlearn: 14925098.4418921\ttotal: 11s\tremaining: 7.77s\n", + "587:\tlearn: 14924720.4012434\ttotal: 11.1s\tremaining: 7.75s\n", + "588:\tlearn: 14924548.0850986\ttotal: 11.1s\tremaining: 7.73s\n", + "589:\tlearn: 14924429.2484482\ttotal: 11.1s\tremaining: 7.71s\n", + "590:\tlearn: 14924249.9492593\ttotal: 11.1s\tremaining: 7.7s\n", + "591:\tlearn: 14922760.7637420\ttotal: 11.1s\tremaining: 7.68s\n", + "592:\tlearn: 14922668.6039019\ttotal: 11.2s\tremaining: 7.66s\n", + "593:\tlearn: 14921904.1544328\ttotal: 11.2s\tremaining: 7.64s\n", + "594:\tlearn: 14921616.5712965\ttotal: 11.2s\tremaining: 7.63s\n", + "595:\tlearn: 14921504.4340608\ttotal: 11.2s\tremaining: 7.61s\n", + "596:\tlearn: 14916470.2050042\ttotal: 11.2s\tremaining: 7.59s\n", + "597:\tlearn: 14910126.6958298\ttotal: 11.3s\tremaining: 7.58s\n", + "598:\tlearn: 14910008.9874822\ttotal: 11.3s\tremaining: 7.56s\n", + "599:\tlearn: 14897073.0426329\ttotal: 11.3s\tremaining: 7.54s\n", + "600:\tlearn: 14895441.4673869\ttotal: 11.3s\tremaining: 7.52s\n", + "601:\tlearn: 14886302.0907964\ttotal: 11.3s\tremaining: 7.5s\n", + "602:\tlearn: 14885801.5005932\ttotal: 11.4s\tremaining: 7.48s\n", + "603:\tlearn: 14882503.0646614\ttotal: 11.4s\tremaining: 7.46s\n", + "604:\tlearn: 14874019.3400341\ttotal: 11.4s\tremaining: 7.45s\n", + "605:\tlearn: 14873500.2430527\ttotal: 11.4s\tremaining: 7.43s\n", + "606:\tlearn: 14865462.6336328\ttotal: 11.5s\tremaining: 7.42s\n", + "607:\tlearn: 14862999.7669828\ttotal: 11.5s\tremaining: 7.4s\n", + "608:\tlearn: 14861224.3133684\ttotal: 11.5s\tremaining: 7.39s\n", + "609:\tlearn: 14861075.6580339\ttotal: 11.5s\tremaining: 7.37s\n", + "610:\tlearn: 14860568.8273555\ttotal: 11.6s\tremaining: 7.36s\n", + "611:\tlearn: 14859416.0190514\ttotal: 11.6s\tremaining: 7.34s\n", + "612:\tlearn: 14858007.8996720\ttotal: 11.6s\tremaining: 7.32s\n", + "613:\tlearn: 14841059.8536694\ttotal: 11.6s\tremaining: 7.31s\n", + "614:\tlearn: 14825984.3023723\ttotal: 11.6s\tremaining: 7.29s\n", + "615:\tlearn: 14825713.0129450\ttotal: 11.7s\tremaining: 7.27s\n", + "616:\tlearn: 14825155.2269332\ttotal: 11.7s\tremaining: 7.26s\n", + "617:\tlearn: 14825042.0195200\ttotal: 11.7s\tremaining: 7.24s\n", + "618:\tlearn: 14822382.7492341\ttotal: 11.7s\tremaining: 7.23s\n", + "619:\tlearn: 14822270.4983850\ttotal: 11.8s\tremaining: 7.21s\n", + "620:\tlearn: 14809251.3212298\ttotal: 11.8s\tremaining: 7.19s\n", + "621:\tlearn: 14809144.4174146\ttotal: 11.8s\tremaining: 7.18s\n", + "622:\tlearn: 14808206.9650871\ttotal: 11.8s\tremaining: 7.17s\n", + "623:\tlearn: 14807763.1153500\ttotal: 11.9s\tremaining: 7.16s\n", + "624:\tlearn: 14807694.0482449\ttotal: 11.9s\tremaining: 7.14s\n", + "625:\tlearn: 14803545.1572635\ttotal: 11.9s\tremaining: 7.13s\n", + "626:\tlearn: 14789036.7759627\ttotal: 11.9s\tremaining: 7.11s\n", + "627:\tlearn: 14788794.9986179\ttotal: 12s\tremaining: 7.09s\n", + "628:\tlearn: 14788688.3809499\ttotal: 12s\tremaining: 7.07s\n", + "629:\tlearn: 14788541.8835870\ttotal: 12s\tremaining: 7.05s\n", + "630:\tlearn: 14778230.8477320\ttotal: 12s\tremaining: 7.04s\n", + "631:\tlearn: 14766980.2464707\ttotal: 12.1s\tremaining: 7.02s\n", + "632:\tlearn: 14762227.9098513\ttotal: 12.1s\tremaining: 7s\n", + "633:\tlearn: 14757495.8103489\ttotal: 12.1s\tremaining: 6.98s\n", + "634:\tlearn: 14757376.1815109\ttotal: 12.1s\tremaining: 6.96s\n", + "635:\tlearn: 14756083.0412951\ttotal: 12.1s\tremaining: 6.95s\n", + "636:\tlearn: 14753767.4530116\ttotal: 12.2s\tremaining: 6.93s\n", + "637:\tlearn: 14753290.3447435\ttotal: 12.2s\tremaining: 6.91s\n", + "638:\tlearn: 14753022.7557700\ttotal: 12.2s\tremaining: 6.89s\n", + "639:\tlearn: 14740249.2596392\ttotal: 12.2s\tremaining: 6.87s\n", + "640:\tlearn: 14736397.7056314\ttotal: 12.2s\tremaining: 6.85s\n", + "641:\tlearn: 14736172.9141301\ttotal: 12.3s\tremaining: 6.83s\n", + "642:\tlearn: 14731660.9563354\ttotal: 12.3s\tremaining: 6.81s\n", + "643:\tlearn: 14729836.0515586\ttotal: 12.3s\tremaining: 6.79s\n", + "644:\tlearn: 14720035.6906060\ttotal: 12.3s\tremaining: 6.78s\n", + "645:\tlearn: 14719242.6927172\ttotal: 12.3s\tremaining: 6.76s\n", + "646:\tlearn: 14716028.6349038\ttotal: 12.3s\tremaining: 6.74s\n", + "647:\tlearn: 14715855.5810228\ttotal: 12.4s\tremaining: 6.71s\n", + "648:\tlearn: 14711356.1065186\ttotal: 12.4s\tremaining: 6.7s\n", + "649:\tlearn: 14703879.5938587\ttotal: 12.4s\tremaining: 6.67s\n", + "650:\tlearn: 14701959.0037503\ttotal: 12.4s\tremaining: 6.65s\n", + "651:\tlearn: 14694579.1428590\ttotal: 12.4s\tremaining: 6.63s\n", + "652:\tlearn: 14694447.7757472\ttotal: 12.4s\tremaining: 6.61s\n", + "653:\tlearn: 14694346.4527135\ttotal: 12.5s\tremaining: 6.59s\n", + "654:\tlearn: 14694282.0699231\ttotal: 12.5s\tremaining: 6.57s\n", + "655:\tlearn: 14692672.9854013\ttotal: 12.5s\tremaining: 6.55s\n", + "656:\tlearn: 14691720.9415672\ttotal: 12.5s\tremaining: 6.53s\n", + "657:\tlearn: 14691539.7097721\ttotal: 12.5s\tremaining: 6.51s\n", + "658:\tlearn: 14691425.5541377\ttotal: 12.5s\tremaining: 6.49s\n", + "659:\tlearn: 14690590.5168329\ttotal: 12.6s\tremaining: 6.47s\n", + "660:\tlearn: 14690157.7456528\ttotal: 12.6s\tremaining: 6.45s\n", + "661:\tlearn: 14688578.7084883\ttotal: 12.6s\tremaining: 6.43s\n", + "662:\tlearn: 14680972.4839535\ttotal: 12.6s\tremaining: 6.41s\n", + "663:\tlearn: 14671047.3675193\ttotal: 12.6s\tremaining: 6.39s\n", + "664:\tlearn: 14670912.0116672\ttotal: 12.6s\tremaining: 6.37s\n", + "665:\tlearn: 14670742.4164308\ttotal: 12.7s\tremaining: 6.35s\n", + "666:\tlearn: 14670612.3448712\ttotal: 12.7s\tremaining: 6.33s\n", + "667:\tlearn: 14667180.9906929\ttotal: 12.7s\tremaining: 6.31s\n", + "668:\tlearn: 14657593.1840317\ttotal: 12.7s\tremaining: 6.29s\n", + "669:\tlearn: 14657416.5658364\ttotal: 12.7s\tremaining: 6.27s\n", + "670:\tlearn: 14649340.4331746\ttotal: 12.7s\tremaining: 6.25s\n", + "671:\tlearn: 14649117.3383210\ttotal: 12.8s\tremaining: 6.23s\n", + "672:\tlearn: 14646999.1447110\ttotal: 12.8s\tremaining: 6.21s\n", + "673:\tlearn: 14646883.2358912\ttotal: 12.8s\tremaining: 6.19s\n", + "674:\tlearn: 14646693.4691223\ttotal: 12.8s\tremaining: 6.17s\n", + "675:\tlearn: 14646427.3184101\ttotal: 12.8s\tremaining: 6.15s\n", + "676:\tlearn: 14638983.7297169\ttotal: 12.8s\tremaining: 6.13s\n", + "677:\tlearn: 14632759.5485617\ttotal: 12.9s\tremaining: 6.11s\n", + "678:\tlearn: 14630933.2619290\ttotal: 12.9s\tremaining: 6.09s\n", + "679:\tlearn: 14630504.9824220\ttotal: 12.9s\tremaining: 6.07s\n", + "680:\tlearn: 14630187.6471958\ttotal: 12.9s\tremaining: 6.05s\n", + "681:\tlearn: 14621229.4404689\ttotal: 12.9s\tremaining: 6.03s\n", + "682:\tlearn: 14619264.7885720\ttotal: 13s\tremaining: 6.01s\n", + "683:\tlearn: 14618533.6254987\ttotal: 13s\tremaining: 5.99s\n", + "684:\tlearn: 14618199.1681064\ttotal: 13s\tremaining: 5.97s\n", + "685:\tlearn: 14617552.3724416\ttotal: 13s\tremaining: 5.95s\n", + "686:\tlearn: 14616075.9835293\ttotal: 13s\tremaining: 5.93s\n", + "687:\tlearn: 14615027.0844831\ttotal: 13s\tremaining: 5.91s\n", + "688:\tlearn: 14603166.3928840\ttotal: 13.1s\tremaining: 5.89s\n", + "689:\tlearn: 14602919.4938364\ttotal: 13.1s\tremaining: 5.87s\n", + "690:\tlearn: 14601251.8111274\ttotal: 13.1s\tremaining: 5.85s\n", + "691:\tlearn: 14596937.5458267\ttotal: 13.1s\tremaining: 5.83s\n", + "692:\tlearn: 14588431.1296637\ttotal: 13.1s\tremaining: 5.82s\n", + "693:\tlearn: 14581396.6142492\ttotal: 13.1s\tremaining: 5.79s\n", + "694:\tlearn: 14576640.2415778\ttotal: 13.2s\tremaining: 5.78s\n", + "695:\tlearn: 14572975.8845101\ttotal: 13.2s\tremaining: 5.76s\n", + "696:\tlearn: 14566867.0286308\ttotal: 13.2s\tremaining: 5.74s\n", + "697:\tlearn: 14560679.2228769\ttotal: 13.2s\tremaining: 5.72s\n", + "698:\tlearn: 14559934.4479083\ttotal: 13.2s\tremaining: 5.7s\n", + "699:\tlearn: 14559445.0309658\ttotal: 13.3s\tremaining: 5.68s\n", + "700:\tlearn: 14559340.3958885\ttotal: 13.3s\tremaining: 5.66s\n", + "701:\tlearn: 14556887.9166841\ttotal: 13.3s\tremaining: 5.64s\n", + "702:\tlearn: 14556769.9275109\ttotal: 13.3s\tremaining: 5.62s\n", + "703:\tlearn: 14556665.0100120\ttotal: 13.3s\tremaining: 5.6s\n", + "704:\tlearn: 14556497.0075167\ttotal: 13.3s\tremaining: 5.58s\n", + "705:\tlearn: 14555063.1170817\ttotal: 13.4s\tremaining: 5.56s\n", + "706:\tlearn: 14553042.7361420\ttotal: 13.4s\tremaining: 5.54s\n", + "707:\tlearn: 14552708.2241446\ttotal: 13.4s\tremaining: 5.52s\n", + "708:\tlearn: 14552599.2682841\ttotal: 13.4s\tremaining: 5.5s\n", + "709:\tlearn: 14552382.0908993\ttotal: 13.4s\tremaining: 5.48s\n", + "710:\tlearn: 14552142.4536412\ttotal: 13.4s\tremaining: 5.46s\n", + "711:\tlearn: 14552000.4502329\ttotal: 13.5s\tremaining: 5.44s\n", + "712:\tlearn: 14536742.2382155\ttotal: 13.5s\tremaining: 5.42s\n", + "713:\tlearn: 14536667.3161668\ttotal: 13.5s\tremaining: 5.4s\n", + "714:\tlearn: 14536304.3680604\ttotal: 13.5s\tremaining: 5.38s\n", + "715:\tlearn: 14536182.7158109\ttotal: 13.5s\tremaining: 5.36s\n", + "716:\tlearn: 14535967.7392353\ttotal: 13.5s\tremaining: 5.34s\n", + "717:\tlearn: 14534508.6142506\ttotal: 13.6s\tremaining: 5.33s\n", + "718:\tlearn: 14528638.1263730\ttotal: 13.6s\tremaining: 5.31s\n", + "719:\tlearn: 14517357.7804254\ttotal: 13.6s\tremaining: 5.29s\n", + "720:\tlearn: 14516851.6147617\ttotal: 13.6s\tremaining: 5.27s\n", + "721:\tlearn: 14511638.9369384\ttotal: 13.6s\tremaining: 5.25s\n", + "722:\tlearn: 14503521.8166802\ttotal: 13.7s\tremaining: 5.23s\n", + "723:\tlearn: 14502188.4019520\ttotal: 13.7s\tremaining: 5.21s\n", + "724:\tlearn: 14500440.0215795\ttotal: 13.7s\tremaining: 5.19s\n", + "725:\tlearn: 14499768.4571353\ttotal: 13.7s\tremaining: 5.17s\n", + "726:\tlearn: 14499524.8931128\ttotal: 13.7s\tremaining: 5.15s\n", + "727:\tlearn: 14499176.3274553\ttotal: 13.7s\tremaining: 5.13s\n", + "728:\tlearn: 14498980.3385646\ttotal: 13.8s\tremaining: 5.11s\n", + "729:\tlearn: 14498855.9496290\ttotal: 13.8s\tremaining: 5.09s\n", + "730:\tlearn: 14498596.7397089\ttotal: 13.8s\tremaining: 5.07s\n", + "731:\tlearn: 14492352.8619711\ttotal: 13.8s\tremaining: 5.05s\n", + "732:\tlearn: 14492020.3137913\ttotal: 13.8s\tremaining: 5.03s\n", + "733:\tlearn: 14491666.2108348\ttotal: 13.8s\tremaining: 5.01s\n", + "734:\tlearn: 14480978.4686218\ttotal: 13.9s\tremaining: 5s\n", + "735:\tlearn: 14479030.1594746\ttotal: 13.9s\tremaining: 4.98s\n", + "736:\tlearn: 14478950.2204465\ttotal: 13.9s\tremaining: 4.96s\n", + "737:\tlearn: 14473787.5987907\ttotal: 13.9s\tremaining: 4.94s\n", + "738:\tlearn: 14472472.5216995\ttotal: 13.9s\tremaining: 4.92s\n", + "739:\tlearn: 14468027.3906271\ttotal: 13.9s\tremaining: 4.9s\n", + "740:\tlearn: 14463046.5031942\ttotal: 14s\tremaining: 4.88s\n", + "741:\tlearn: 14462567.8451495\ttotal: 14s\tremaining: 4.86s\n", + "742:\tlearn: 14461662.1640772\ttotal: 14s\tremaining: 4.84s\n", + "743:\tlearn: 14461412.7787956\ttotal: 14s\tremaining: 4.82s\n", + "744:\tlearn: 14457080.3104863\ttotal: 14s\tremaining: 4.8s\n", + "745:\tlearn: 14455816.8580813\ttotal: 14s\tremaining: 4.78s\n", + "746:\tlearn: 14451274.2659032\ttotal: 14.1s\tremaining: 4.76s\n", + "747:\tlearn: 14450022.1655873\ttotal: 14.1s\tremaining: 4.74s\n", + "748:\tlearn: 14449711.3365770\ttotal: 14.1s\tremaining: 4.72s\n", + "749:\tlearn: 14449156.8766032\ttotal: 14.1s\tremaining: 4.7s\n", + "750:\tlearn: 14448991.1128152\ttotal: 14.1s\tremaining: 4.68s\n", + "751:\tlearn: 14444878.7492399\ttotal: 14.1s\tremaining: 4.66s\n", + "752:\tlearn: 14444785.6319899\ttotal: 14.1s\tremaining: 4.64s\n", + "753:\tlearn: 14444523.1195537\ttotal: 14.2s\tremaining: 4.62s\n", + "754:\tlearn: 14443980.9051959\ttotal: 14.2s\tremaining: 4.6s\n", + "755:\tlearn: 14442449.8568196\ttotal: 14.2s\tremaining: 4.58s\n", + "756:\tlearn: 14442022.7067717\ttotal: 14.2s\tremaining: 4.56s\n", + "757:\tlearn: 14441891.8251215\ttotal: 14.2s\tremaining: 4.54s\n", + "758:\tlearn: 14434173.5480419\ttotal: 14.2s\tremaining: 4.52s\n", + "759:\tlearn: 14431966.3321856\ttotal: 14.3s\tremaining: 4.5s\n", + "760:\tlearn: 14421158.4055385\ttotal: 14.3s\tremaining: 4.49s\n", + "761:\tlearn: 14420380.5526392\ttotal: 14.3s\tremaining: 4.47s\n", + "762:\tlearn: 14418464.4429589\ttotal: 14.3s\tremaining: 4.45s\n", + "763:\tlearn: 14414445.0255361\ttotal: 14.3s\tremaining: 4.43s\n", + "764:\tlearn: 14413829.3708310\ttotal: 14.3s\tremaining: 4.41s\n", + "765:\tlearn: 14413694.8356085\ttotal: 14.4s\tremaining: 4.39s\n", + "766:\tlearn: 14413259.2614315\ttotal: 14.4s\tremaining: 4.37s\n", + "767:\tlearn: 14413210.9305813\ttotal: 14.4s\tremaining: 4.35s\n", + "768:\tlearn: 14412451.5241734\ttotal: 14.4s\tremaining: 4.33s\n", + "769:\tlearn: 14411887.7754672\ttotal: 14.4s\tremaining: 4.31s\n", + "770:\tlearn: 14407291.5589952\ttotal: 14.5s\tremaining: 4.29s\n", + "771:\tlearn: 14401850.3194431\ttotal: 14.5s\tremaining: 4.27s\n", + "772:\tlearn: 14401685.0712261\ttotal: 14.5s\tremaining: 4.25s\n", + "773:\tlearn: 14399916.3391059\ttotal: 14.5s\tremaining: 4.23s\n", + "774:\tlearn: 14395953.2355612\ttotal: 14.5s\tremaining: 4.21s\n", + "775:\tlearn: 14395882.8636725\ttotal: 14.5s\tremaining: 4.2s\n", + "776:\tlearn: 14388546.8521669\ttotal: 14.6s\tremaining: 4.18s\n", + "777:\tlearn: 14386149.3990942\ttotal: 14.6s\tremaining: 4.16s\n", + "778:\tlearn: 14385003.5881008\ttotal: 14.6s\tremaining: 4.14s\n", + "779:\tlearn: 14383835.8605113\ttotal: 14.6s\tremaining: 4.12s\n", + "780:\tlearn: 14380021.4648146\ttotal: 14.6s\tremaining: 4.1s\n", + "781:\tlearn: 14379157.4604392\ttotal: 14.6s\tremaining: 4.08s\n", + "782:\tlearn: 14375259.3113908\ttotal: 14.7s\tremaining: 4.06s\n", + "783:\tlearn: 14373440.9548670\ttotal: 14.7s\tremaining: 4.04s\n", + "784:\tlearn: 14369819.6596951\ttotal: 14.7s\tremaining: 4.02s\n", + "785:\tlearn: 14369482.1310883\ttotal: 14.7s\tremaining: 4s\n", + "786:\tlearn: 14369186.9789937\ttotal: 14.7s\tremaining: 3.98s\n", + "787:\tlearn: 14368930.0521956\ttotal: 14.7s\tremaining: 3.96s\n", + "788:\tlearn: 14360771.3978411\ttotal: 14.8s\tremaining: 3.95s\n", + "789:\tlearn: 14360698.7609296\ttotal: 14.8s\tremaining: 3.93s\n", + "790:\tlearn: 14360526.7964010\ttotal: 14.8s\tremaining: 3.91s\n", + "791:\tlearn: 14356907.0861542\ttotal: 14.8s\tremaining: 3.89s\n", + "792:\tlearn: 14355859.4628108\ttotal: 14.8s\tremaining: 3.87s\n", + "793:\tlearn: 14352436.1140971\ttotal: 14.8s\tremaining: 3.85s\n", + "794:\tlearn: 14352269.6156056\ttotal: 14.9s\tremaining: 3.83s\n", + "795:\tlearn: 14352158.3097017\ttotal: 14.9s\tremaining: 3.81s\n", + "796:\tlearn: 14351870.9927012\ttotal: 14.9s\tremaining: 3.79s\n", + "797:\tlearn: 14351656.8250020\ttotal: 14.9s\tremaining: 3.77s\n", + "798:\tlearn: 14351543.1131320\ttotal: 14.9s\tremaining: 3.75s\n", + "799:\tlearn: 14348289.1928420\ttotal: 14.9s\tremaining: 3.73s\n", + "800:\tlearn: 14347506.1242205\ttotal: 15s\tremaining: 3.71s\n", + "801:\tlearn: 14347325.5675423\ttotal: 15s\tremaining: 3.7s\n", + "802:\tlearn: 14346999.1868577\ttotal: 15s\tremaining: 3.68s\n", + "803:\tlearn: 14337132.6989066\ttotal: 15s\tremaining: 3.66s\n", + "804:\tlearn: 14334237.2898098\ttotal: 15s\tremaining: 3.64s\n", + "805:\tlearn: 14327707.1452830\ttotal: 15s\tremaining: 3.62s\n", + "806:\tlearn: 14326745.9149928\ttotal: 15.1s\tremaining: 3.6s\n", + "807:\tlearn: 14326077.7205286\ttotal: 15.1s\tremaining: 3.58s\n", + "808:\tlearn: 14325968.2777152\ttotal: 15.1s\tremaining: 3.56s\n", + "809:\tlearn: 14325282.3589449\ttotal: 15.1s\tremaining: 3.54s\n", + "810:\tlearn: 14325153.8711618\ttotal: 15.1s\tremaining: 3.52s\n", + "811:\tlearn: 14322236.6861694\ttotal: 15.1s\tremaining: 3.51s\n", + "812:\tlearn: 14322002.4573230\ttotal: 15.2s\tremaining: 3.49s\n", + "813:\tlearn: 14321635.4752667\ttotal: 15.2s\tremaining: 3.47s\n", + "814:\tlearn: 14318290.7066198\ttotal: 15.2s\tremaining: 3.45s\n", + "815:\tlearn: 14318236.9649185\ttotal: 15.2s\tremaining: 3.43s\n", + "816:\tlearn: 14317989.8840358\ttotal: 15.2s\tremaining: 3.41s\n", + "817:\tlearn: 14315936.4882069\ttotal: 15.2s\tremaining: 3.39s\n", + "818:\tlearn: 14315843.3014233\ttotal: 15.3s\tremaining: 3.37s\n", + "819:\tlearn: 14315758.7406470\ttotal: 15.3s\tremaining: 3.35s\n", + "820:\tlearn: 14315554.5036181\ttotal: 15.3s\tremaining: 3.33s\n", + "821:\tlearn: 14315435.5805586\ttotal: 15.3s\tremaining: 3.31s\n", + "822:\tlearn: 14315329.6866876\ttotal: 15.3s\tremaining: 3.29s\n", + "823:\tlearn: 14308498.9925178\ttotal: 15.3s\tremaining: 3.28s\n", + "824:\tlearn: 14296422.6750795\ttotal: 15.4s\tremaining: 3.26s\n", + "825:\tlearn: 14294363.8932914\ttotal: 15.4s\tremaining: 3.24s\n", + "826:\tlearn: 14280774.5940710\ttotal: 15.4s\tremaining: 3.22s\n", + "827:\tlearn: 14280567.1863461\ttotal: 15.4s\tremaining: 3.2s\n", + "828:\tlearn: 14276167.6246580\ttotal: 15.4s\tremaining: 3.18s\n", + "829:\tlearn: 14273133.7845702\ttotal: 15.4s\tremaining: 3.16s\n", + "830:\tlearn: 14272060.1648094\ttotal: 15.5s\tremaining: 3.15s\n", + "831:\tlearn: 14257262.4559377\ttotal: 15.5s\tremaining: 3.13s\n", + "832:\tlearn: 14256257.7015837\ttotal: 15.5s\tremaining: 3.11s\n", + "833:\tlearn: 14249758.7552648\ttotal: 15.5s\tremaining: 3.09s\n", + "834:\tlearn: 14245611.9143671\ttotal: 15.5s\tremaining: 3.07s\n", + "835:\tlearn: 14245098.2241487\ttotal: 15.6s\tremaining: 3.05s\n", + "836:\tlearn: 14240734.3798939\ttotal: 15.6s\tremaining: 3.03s\n", + "837:\tlearn: 14238120.3063837\ttotal: 15.6s\tremaining: 3.02s\n", + "838:\tlearn: 14237924.0213227\ttotal: 15.6s\tremaining: 3s\n", + "839:\tlearn: 14237790.8302519\ttotal: 15.6s\tremaining: 2.98s\n", + "840:\tlearn: 14235942.8856731\ttotal: 15.6s\tremaining: 2.96s\n", + "841:\tlearn: 14226526.4945080\ttotal: 15.7s\tremaining: 2.94s\n", + "842:\tlearn: 14222342.2375670\ttotal: 15.7s\tremaining: 2.92s\n", + "843:\tlearn: 14221989.7829792\ttotal: 15.7s\tremaining: 2.9s\n", + "844:\tlearn: 14221776.2390137\ttotal: 15.7s\tremaining: 2.88s\n", + "845:\tlearn: 14217665.9042702\ttotal: 15.7s\tremaining: 2.86s\n", + "846:\tlearn: 14216177.5775088\ttotal: 15.8s\tremaining: 2.85s\n", + "847:\tlearn: 14216118.2488163\ttotal: 15.8s\tremaining: 2.83s\n", + "848:\tlearn: 14215942.4545638\ttotal: 15.8s\tremaining: 2.81s\n", + "849:\tlearn: 14215596.9497439\ttotal: 15.8s\tremaining: 2.79s\n", + "850:\tlearn: 14215079.5388703\ttotal: 15.8s\tremaining: 2.77s\n", + "851:\tlearn: 14214985.8639517\ttotal: 15.8s\tremaining: 2.75s\n", + "852:\tlearn: 14211015.9062503\ttotal: 15.9s\tremaining: 2.73s\n", + "853:\tlearn: 14208109.7579081\ttotal: 15.9s\tremaining: 2.71s\n", + "854:\tlearn: 14207069.5540754\ttotal: 15.9s\tremaining: 2.69s\n", + "855:\tlearn: 14204056.3353921\ttotal: 15.9s\tremaining: 2.67s\n", + "856:\tlearn: 14199737.3760866\ttotal: 15.9s\tremaining: 2.66s\n", + "857:\tlearn: 14193953.9975060\ttotal: 15.9s\tremaining: 2.64s\n", + "858:\tlearn: 14193531.3710520\ttotal: 16s\tremaining: 2.62s\n", + "859:\tlearn: 14184582.7017658\ttotal: 16s\tremaining: 2.6s\n", + "860:\tlearn: 14181360.5909759\ttotal: 16s\tremaining: 2.58s\n", + "861:\tlearn: 14178407.2830794\ttotal: 16s\tremaining: 2.56s\n", + "862:\tlearn: 14169917.4406672\ttotal: 16s\tremaining: 2.54s\n", + "863:\tlearn: 14161867.3578748\ttotal: 16s\tremaining: 2.53s\n", + "864:\tlearn: 14161611.6299398\ttotal: 16.1s\tremaining: 2.51s\n", + "865:\tlearn: 14149098.2506612\ttotal: 16.1s\tremaining: 2.49s\n", + "866:\tlearn: 14149008.2568752\ttotal: 16.1s\tremaining: 2.47s\n", + "867:\tlearn: 14147575.3003422\ttotal: 16.1s\tremaining: 2.45s\n", + "868:\tlearn: 14141370.5683044\ttotal: 16.1s\tremaining: 2.43s\n", + "869:\tlearn: 14141139.9686371\ttotal: 16.2s\tremaining: 2.41s\n", + "870:\tlearn: 14140906.6108388\ttotal: 16.2s\tremaining: 2.39s\n", + "871:\tlearn: 14136972.2399677\ttotal: 16.2s\tremaining: 2.38s\n", + "872:\tlearn: 14132863.3886077\ttotal: 16.2s\tremaining: 2.36s\n", + "873:\tlearn: 14130176.4823179\ttotal: 16.2s\tremaining: 2.34s\n", + "874:\tlearn: 14130009.1218439\ttotal: 16.2s\tremaining: 2.32s\n", + "875:\tlearn: 14129938.0340251\ttotal: 16.3s\tremaining: 2.3s\n", + "876:\tlearn: 14129730.1355073\ttotal: 16.3s\tremaining: 2.28s\n", + "877:\tlearn: 14129144.1514023\ttotal: 16.3s\tremaining: 2.26s\n", + "878:\tlearn: 14128257.5078373\ttotal: 16.3s\tremaining: 2.24s\n", + "879:\tlearn: 14123974.5623694\ttotal: 16.3s\tremaining: 2.23s\n", + "880:\tlearn: 14117573.9417940\ttotal: 16.3s\tremaining: 2.21s\n", + "881:\tlearn: 14117199.4807352\ttotal: 16.4s\tremaining: 2.19s\n", + "882:\tlearn: 14116866.5963846\ttotal: 16.4s\tremaining: 2.17s\n", + "883:\tlearn: 14114235.9424007\ttotal: 16.4s\tremaining: 2.15s\n", + "884:\tlearn: 14114037.4869654\ttotal: 16.4s\tremaining: 2.13s\n", + "885:\tlearn: 14113795.5264062\ttotal: 16.4s\tremaining: 2.11s\n", + "886:\tlearn: 14103701.3697817\ttotal: 16.4s\tremaining: 2.09s\n", + "887:\tlearn: 14102545.5321288\ttotal: 16.5s\tremaining: 2.08s\n", + "888:\tlearn: 14096643.9605945\ttotal: 16.5s\tremaining: 2.06s\n", + "889:\tlearn: 14093637.9560237\ttotal: 16.5s\tremaining: 2.04s\n", + "890:\tlearn: 14093398.8314629\ttotal: 16.5s\tremaining: 2.02s\n", + "891:\tlearn: 14091893.0920055\ttotal: 16.5s\tremaining: 2s\n", + "892:\tlearn: 14089051.2497645\ttotal: 16.5s\tremaining: 1.98s\n", + "893:\tlearn: 14088275.7091360\ttotal: 16.6s\tremaining: 1.96s\n", + "894:\tlearn: 14088065.0293484\ttotal: 16.6s\tremaining: 1.94s\n", + "895:\tlearn: 14085363.8111205\ttotal: 16.6s\tremaining: 1.93s\n", + "896:\tlearn: 14070847.0790061\ttotal: 16.6s\tremaining: 1.91s\n", + "897:\tlearn: 14066938.0257631\ttotal: 16.6s\tremaining: 1.89s\n", + "898:\tlearn: 14061332.0592375\ttotal: 16.6s\tremaining: 1.87s\n", + "899:\tlearn: 14061275.8140325\ttotal: 16.7s\tremaining: 1.85s\n", + "900:\tlearn: 14049395.4083470\ttotal: 16.7s\tremaining: 1.83s\n", + "901:\tlearn: 14049223.6858779\ttotal: 16.7s\tremaining: 1.81s\n", + "902:\tlearn: 14049090.7140090\ttotal: 16.7s\tremaining: 1.79s\n", + "903:\tlearn: 14038509.6975127\ttotal: 16.7s\tremaining: 1.78s\n", + "904:\tlearn: 14037966.9340313\ttotal: 16.7s\tremaining: 1.76s\n", + "905:\tlearn: 14037929.7816334\ttotal: 16.8s\tremaining: 1.74s\n", + "906:\tlearn: 14035361.6403404\ttotal: 16.8s\tremaining: 1.72s\n", + "907:\tlearn: 14025931.6101841\ttotal: 16.8s\tremaining: 1.7s\n", + "908:\tlearn: 14020604.5578164\ttotal: 16.8s\tremaining: 1.68s\n", + "909:\tlearn: 14018039.0515475\ttotal: 16.8s\tremaining: 1.67s\n", + "910:\tlearn: 14016909.4019073\ttotal: 16.9s\tremaining: 1.65s\n", + "911:\tlearn: 14012709.8837074\ttotal: 16.9s\tremaining: 1.63s\n", + "912:\tlearn: 14012638.0469528\ttotal: 16.9s\tremaining: 1.61s\n", + "913:\tlearn: 14008600.0892461\ttotal: 16.9s\tremaining: 1.59s\n", + "914:\tlearn: 14007920.3022894\ttotal: 17s\tremaining: 1.57s\n", + "915:\tlearn: 14007639.0218815\ttotal: 17s\tremaining: 1.56s\n", + "916:\tlearn: 14000153.4424950\ttotal: 17s\tremaining: 1.54s\n", + "917:\tlearn: 13993056.1891854\ttotal: 17s\tremaining: 1.52s\n", + "918:\tlearn: 13989377.5685025\ttotal: 17.1s\tremaining: 1.5s\n", + "919:\tlearn: 13989042.4889836\ttotal: 17.1s\tremaining: 1.49s\n", + "920:\tlearn: 13988995.2411999\ttotal: 17.1s\tremaining: 1.47s\n", + "921:\tlearn: 13979426.4500026\ttotal: 17.1s\tremaining: 1.45s\n", + "922:\tlearn: 13979364.5169235\ttotal: 17.1s\tremaining: 1.43s\n", + "923:\tlearn: 13978421.6270684\ttotal: 17.2s\tremaining: 1.41s\n", + "924:\tlearn: 13978232.1417556\ttotal: 17.2s\tremaining: 1.39s\n", + "925:\tlearn: 13977413.1833242\ttotal: 17.2s\tremaining: 1.38s\n", + "926:\tlearn: 13974984.8789985\ttotal: 17.2s\tremaining: 1.36s\n", + "927:\tlearn: 13973117.9034490\ttotal: 17.3s\tremaining: 1.34s\n", + "928:\tlearn: 13973040.8894481\ttotal: 17.3s\tremaining: 1.32s\n", + "929:\tlearn: 13969309.5963784\ttotal: 17.3s\tremaining: 1.3s\n", + "930:\tlearn: 13964934.5197786\ttotal: 17.3s\tremaining: 1.28s\n", + "931:\tlearn: 13964075.8787535\ttotal: 17.3s\tremaining: 1.26s\n", + "932:\tlearn: 13962384.7500669\ttotal: 17.4s\tremaining: 1.25s\n", + "933:\tlearn: 13962116.7297324\ttotal: 17.4s\tremaining: 1.23s\n", + "934:\tlearn: 13961984.2654879\ttotal: 17.4s\tremaining: 1.21s\n", + "935:\tlearn: 13961283.4113454\ttotal: 17.4s\tremaining: 1.19s\n", + "936:\tlearn: 13961119.7725702\ttotal: 17.4s\tremaining: 1.17s\n", + "937:\tlearn: 13957581.9271590\ttotal: 17.5s\tremaining: 1.15s\n", + "938:\tlearn: 13956711.5699546\ttotal: 17.5s\tremaining: 1.14s\n", + "939:\tlearn: 13956195.7669965\ttotal: 17.5s\tremaining: 1.12s\n", + "940:\tlearn: 13956019.7725634\ttotal: 17.5s\tremaining: 1.1s\n", + "941:\tlearn: 13953817.7128654\ttotal: 17.5s\tremaining: 1.08s\n", + "942:\tlearn: 13951728.3708942\ttotal: 17.5s\tremaining: 1.06s\n", + "943:\tlearn: 13948374.3380936\ttotal: 17.6s\tremaining: 1.04s\n", + "944:\tlearn: 13946396.1172757\ttotal: 17.6s\tremaining: 1.02s\n", + "945:\tlearn: 13946318.2181768\ttotal: 17.6s\tremaining: 1s\n", + "946:\tlearn: 13946223.0768320\ttotal: 17.6s\tremaining: 986ms\n", + "947:\tlearn: 13943040.9225619\ttotal: 17.6s\tremaining: 968ms\n", + "948:\tlearn: 13942723.6463439\ttotal: 17.7s\tremaining: 949ms\n", + "949:\tlearn: 13940873.9346942\ttotal: 17.7s\tremaining: 930ms\n", + "950:\tlearn: 13940657.5960414\ttotal: 17.7s\tremaining: 912ms\n", + "951:\tlearn: 13937643.8070567\ttotal: 17.7s\tremaining: 893ms\n", + "952:\tlearn: 13927861.6944498\ttotal: 17.7s\tremaining: 874ms\n", + "953:\tlearn: 13927713.1158209\ttotal: 17.7s\tremaining: 856ms\n", + "954:\tlearn: 13919785.6047620\ttotal: 17.8s\tremaining: 837ms\n", + "955:\tlearn: 13919738.2222830\ttotal: 17.8s\tremaining: 818ms\n", + "956:\tlearn: 13914879.1616648\ttotal: 17.8s\tremaining: 800ms\n", + "957:\tlearn: 13913904.0967614\ttotal: 17.8s\tremaining: 782ms\n", + "958:\tlearn: 13913369.8497656\ttotal: 17.9s\tremaining: 763ms\n", + "959:\tlearn: 13913210.3609993\ttotal: 17.9s\tremaining: 745ms\n", + "960:\tlearn: 13912875.9812733\ttotal: 17.9s\tremaining: 726ms\n", + "961:\tlearn: 13910617.8439350\ttotal: 17.9s\tremaining: 708ms\n", + "962:\tlearn: 13908740.7255579\ttotal: 17.9s\tremaining: 690ms\n", + "963:\tlearn: 13908173.0945609\ttotal: 18s\tremaining: 672ms\n", + "964:\tlearn: 13906394.6235472\ttotal: 18s\tremaining: 653ms\n", + "965:\tlearn: 13904710.4079211\ttotal: 18s\tremaining: 634ms\n", + "966:\tlearn: 13901845.4980302\ttotal: 18s\tremaining: 616ms\n", + "967:\tlearn: 13901304.7542491\ttotal: 18.1s\tremaining: 597ms\n", + "968:\tlearn: 13901227.5036081\ttotal: 18.1s\tremaining: 578ms\n", + "969:\tlearn: 13900564.3429757\ttotal: 18.1s\tremaining: 560ms\n", + "970:\tlearn: 13900431.9676622\ttotal: 18.1s\tremaining: 541ms\n", + "971:\tlearn: 13897718.5750538\ttotal: 18.1s\tremaining: 522ms\n", + "972:\tlearn: 13892434.2051176\ttotal: 18.2s\tremaining: 504ms\n", + "973:\tlearn: 13892171.4126968\ttotal: 18.2s\tremaining: 485ms\n", + "974:\tlearn: 13891466.0625935\ttotal: 18.2s\tremaining: 467ms\n", + "975:\tlearn: 13886354.8726715\ttotal: 18.2s\tremaining: 448ms\n", + "976:\tlearn: 13872366.2643593\ttotal: 18.2s\tremaining: 430ms\n", + "977:\tlearn: 13871047.0266210\ttotal: 18.3s\tremaining: 411ms\n", + "978:\tlearn: 13870327.9449845\ttotal: 18.3s\tremaining: 392ms\n", + "979:\tlearn: 13869912.2574551\ttotal: 18.3s\tremaining: 374ms\n", + "980:\tlearn: 13865882.9385922\ttotal: 18.3s\tremaining: 355ms\n", + "981:\tlearn: 13864637.2130234\ttotal: 18.4s\tremaining: 336ms\n", + "982:\tlearn: 13863950.1729492\ttotal: 18.4s\tremaining: 318ms\n", + "983:\tlearn: 13860344.3288697\ttotal: 18.4s\tremaining: 299ms\n", + "984:\tlearn: 13860136.8254682\ttotal: 18.4s\tremaining: 281ms\n", + "985:\tlearn: 13859522.8057507\ttotal: 18.4s\tremaining: 262ms\n", + "986:\tlearn: 13858306.6249102\ttotal: 18.5s\tremaining: 243ms\n", + "987:\tlearn: 13856860.1094265\ttotal: 18.5s\tremaining: 224ms\n", + "988:\tlearn: 13855323.9194082\ttotal: 18.5s\tremaining: 206ms\n", + "989:\tlearn: 13848524.5771249\ttotal: 18.5s\tremaining: 187ms\n", + "990:\tlearn: 13848229.3075576\ttotal: 18.5s\tremaining: 168ms\n", + "991:\tlearn: 13844412.8445986\ttotal: 18.6s\tremaining: 150ms\n", + "992:\tlearn: 13844333.0927820\ttotal: 18.6s\tremaining: 131ms\n", + "993:\tlearn: 13840812.1167177\ttotal: 18.6s\tremaining: 112ms\n", + "994:\tlearn: 13839796.5731119\ttotal: 18.6s\tremaining: 93.5ms\n", + "995:\tlearn: 13839035.4643377\ttotal: 18.6s\tremaining: 74.8ms\n", + "996:\tlearn: 13838769.7099457\ttotal: 18.6s\tremaining: 56.1ms\n", + "997:\tlearn: 13838205.6345566\ttotal: 18.7s\tremaining: 37.4ms\n", + "998:\tlearn: 13837777.8741797\ttotal: 18.7s\tremaining: 18.7ms\n", + "999:\tlearn: 13837569.4194450\ttotal: 18.7s\tremaining: 0us\n" + ] + } + ], + "source": [ + "pipeline_sklearn = Pipeline(steps=[\n", + " ('transform', preprocessor_sklearn),\n", + " ('model', regressor)\n", + "])\n", + "\n", + "model_sklearn = pipeline_sklearn.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Pipeline(steps=[('transform',\n",
+       "                 ColumnTransformer(transformers=[('num', StandardScaler(),\n",
+       "                                                  ['geo_lat', 'geo_lon',\n",
+       "                                                   'level', 'levels', 'rooms',\n",
+       "                                                   'area', 'kitchen_area']),\n",
+       "                                                 ('cat',\n",
+       "                                                  OrdinalEncoder(handle_unknown='use_encoded_value',\n",
+       "                                                                 unknown_value=99999999),\n",
+       "                                                  ['region', 'building_type',\n",
+       "                                                   'object_type']),\n",
+       "                                                 ('quantile',\n",
+       "                                                  QuantileTransformer(),\n",
+       "                                                  ['geo_lat', 'geo_lon',\n",
+       "                                                   'level', 'levels', 'rooms',\n",
+       "                                                   'area', 'kitchen_area']),\n",
+       "                                                 ('poly',\n",
+       "                                                  Pipeline(steps=[('poly',\n",
+       "                                                                   PolynomialFeatures()),\n",
+       "                                                                  ('scale',\n",
+       "                                                                   StandardScaler())]),\n",
+       "                                                  ['area', 'kitchen_area']),\n",
+       "                                                 ('spline',\n",
+       "                                                  SplineTransformer(n_knots=3),\n",
+       "                                                  ['area'])])),\n",
+       "                ('model',\n",
+       "                 <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('transform',\n", + " ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type',\n", + " 'object_type']),\n", + " ('quantile',\n", + " QuantileTransformer(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('poly',\n", + " Pipeline(steps=[('poly',\n", + " PolynomialFeatures()),\n", + " ('scale',\n", + " StandardScaler())]),\n", + " ['area', 'kitchen_area']),\n", + " ('spline',\n", + " SplineTransformer(n_knots=3),\n", + " ['area'])])),\n", + " ('model',\n", + " )])" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mae': 1371773.3280469999,\n", + " 'mape': 1.651780914989046e+18,\n", + " 'mse': 271999053666354.03}" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions = model_sklearn.predict(X_test) \n", + "metrics = {}\n", + "metrics[\"mae\"] = mean_absolute_error(y_test, predictions) \n", + "metrics[\"mape\"] = mean_absolute_percentage_error(y_test, predictions)\n", + "metrics[\"mse\"] = mean_squared_error(y_test, predictions)\n", + "\n", + "metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024/10/10 14:29:09 INFO mlflow.tracking._tracking_service.client: 🏃 View run fe_sklearn at: http://127.0.0.1:5000/#/experiments/1/runs/aa74ed5ed8aa48458ae26929bc237338.\n", + "2024/10/10 14:29:09 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + ] + } + ], + "source": [ + "experiment_id = mlflow.get_experiment_by_name(EXPERIMENT_NAME).experiment_id\n", + "RUN_NAME = 'fe_sklearn'\n", + "\n", + "with mlflow.start_run(run_name=RUN_NAME, experiment_id=experiment_id) as run:\n", + " # получаем уникальный идентификатор запуска эксперимента\n", + " run_id = run.info.run_id \n", + " mlflow.sklearn.log_model(model_sklearn, \n", + " artifact_path=\"models\",\n", + " signature=signature,\n", + " input_example=input_example,\n", + " pip_requirements=req_file\n", + " )\n", + " mlflow.log_metrics(metrics)\n", + " mlflow.log_artifact(art)\n", + " mlflow.log_params(model_sklearn.get_params())\n", + "\n", + "run = mlflow.get_run(run_id) \n", + "assert (run.info.status =='FINISHED')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Autofeat" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "from autofeat import AutoFeatRegressor\n", + "transformations = [\"1/\", \"exp\", \"log\", \"abs\", \"sqrt\", \"^2\", \"^3\", \"1+\", \"1-\", \"sin\", \"cos\", \"exp-\", \"2^\"] " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-10 14:34:43,949 INFO: [AutoFeat] The 2 step feature engineering process could generate up to 105 features.\n", + "2024-10-10 14:34:43,950 INFO: [AutoFeat] With 410775 data points this new feature matrix would use about 0.17 gb of space.\n", + "2024-10-10 14:34:43,986 INFO: [feateng] Step 1: transformation of original features\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[feateng] 0/ 7 features transformed\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-10 14:34:45,030 INFO: [feateng] Generated 12 transformed features from 7 original features - done.\n", + "2024-10-10 14:34:45,061 INFO: [feateng] Step 2: first combination of features\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[feateng] 100/ 171 feature tuples combined\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-10 14:34:47,541 INFO: [feateng] Generated 171 feature combinations from 171 original feature tuples - done.\n", + "2024-10-10 14:34:48,231 INFO: [feateng] Generated altogether 183 new features in 2 steps\n", + "2024-10-10 14:34:48,231 INFO: [feateng] Removing correlated features, as well as additions at the highest level\n", + "2024-10-10 14:34:49,298 INFO: [feateng] Generated a total of 98 additional features\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[featsel] Scaling data..." + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-10 14:34:49,789 INFO: [featsel] Feature selection run 1/5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-10 14:35:35,384 INFO: [featsel] Feature selection run 2/5\n", + "2024-10-10 14:36:01,168 INFO: [featsel] Feature selection run 3/5\n", + "2024-10-10 14:36:22,873 INFO: [featsel] Feature selection run 4/5\n", + "2024-10-10 14:36:47,567 INFO: [featsel] Feature selection run 5/5\n", + "2024-10-10 14:37:16,308 INFO: [featsel] 53 features after 5 feature selection runs\n", + "/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/autofeat/featsel.py:270: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", + " if np.max(np.abs(correlations[c].ravel()[:i])) < 0.9:\n", + "2024-10-10 14:37:21,842 INFO: [featsel] 35 features after correlation filtering\n", + "2024-10-10 14:37:28,155 INFO: [featsel] 24 features after noise filtering\n", + "2024-10-10 14:37:28,214 INFO: [AutoFeat] Computing 18 new features.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[AutoFeat] 17/ 18 new features\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-10 14:37:31,290 INFO: [AutoFeat] 18/ 18 new features ...done.\n", + "2024-10-10 14:37:31,430 INFO: [AutoFeat] Final dataframe with 28 feature columns (18 new).\n", + "2024-10-10 14:37:31,431 INFO: [AutoFeat] Training final regression model.\n", + "2024-10-10 14:37:32,884 INFO: [AutoFeat] Trained model: largest coefficients:\n", + "2024-10-10 14:37:32,885 INFO: 1397647.486074062\n", + "2024-10-10 14:37:32,885 INFO: -444567.439631 * sqrt(area)*log(geo_lon)\n", + "2024-10-10 14:37:32,886 INFO: -229561.254963 * kitchen_area\n", + "2024-10-10 14:37:32,886 INFO: 228699.320633 * geo_lon\n", + "2024-10-10 14:37:32,887 INFO: -77449.633774 * sqrt(geo_lon)*sqrt(kitchen_area)\n", + "2024-10-10 14:37:32,887 INFO: 68865.207107 * sqrt(area)*log(levels)\n", + "2024-10-10 14:37:32,887 INFO: -58234.749991 * geo_lat*log(geo_lon)\n", + "2024-10-10 14:37:32,888 INFO: 53857.792425 * sqrt(area)*kitchen_area\n", + "2024-10-10 14:37:32,888 INFO: 48541.235065 * sqrt(area)*geo_lat\n", + "2024-10-10 14:37:32,888 INFO: -27253.343264 * geo_lon*rooms\n", + "2024-10-10 14:37:32,888 INFO: 27008.036497 * area*rooms\n", + "2024-10-10 14:37:32,889 INFO: -18811.054781 * object_type\n", + "2024-10-10 14:37:32,889 INFO: 15811.284677 * sqrt(area)*log(level)\n", + "2024-10-10 14:37:32,890 INFO: 5197.560812 * geo_lon*log(levels)\n", + "2024-10-10 14:37:32,890 INFO: 3144.707961 * geo_lat*log(kitchen_area)\n", + "2024-10-10 14:37:32,891 INFO: -1348.579984 * area*geo_lon\n", + "2024-10-10 14:37:32,891 INFO: -674.637306 * area*kitchen_area\n", + "2024-10-10 14:37:32,891 INFO: -445.508078 * region\n", + "2024-10-10 14:37:32,892 INFO: 63.854761 * area**(3/2)\n", + "2024-10-10 14:37:32,953 INFO: [AutoFeat] Final score: 0.0394\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geo_latgeo_lonregionbuilding_typelevellevelsroomsareakitchen_areaobject_type...geo_lat*log(kitchen_area)sqrt(geo_lon)*sqrt(level)sqrt(geo_lon)*sqrt(kitchen_area)sqrt(area)*log(levels)sqrt(area)*log(geo_lon)sqrt(area)*kitchen_areaarea**(3/2)geo_lon*roomsgeo_lon*log(levels)geo_lat*log(geo_lon)
056.32768643.9280622871.01.08.010.02.056.00008.5000001.0...120.54497618.74632019.32326417.23096928.30603763.608176419.06562787.856125101.148102213.062479
154.85931082.9756249654.01.05.09.02.050.18758.5000001.0...117.40255320.36855726.55734915.56582831.30237260.216666355.543992165.951248182.316081242.398434
256.07216354.2312702722.03.04.09.01.039.00009.00000011.0...123.20313414.72837722.09256513.72166324.93788656.204982243.55492254.231270119.158279223.910594
346.70432738.2736362843.01.05.05.02.048.00009.0000001.0...102.61989413.83358918.55970711.15051325.25164762.353829332.55375576.54727261.599041170.226122
460.93348376.5930942484.02.07.015.02.074.000010.5000001.0...143.27748523.15494928.35890523.29552937.32124890.324415636.572070153.186188207.417943264.360338
..................................................................
41077056.77133960.6125186171.02.09.018.02.051.31259.5703121.0...128.22748623.35621324.08486520.70452629.40167068.554774367.565517121.225037175.192711233.018045
41077155.14861361.3937805282.03.03.05.02.043.00006.0000001.0...98.81305013.57134319.19277710.55379026.99899839.344631281.969857122.78756098.809477227.063854
41077245.09812938.9712182843.00.08.017.01.039.00009.00000011.0...99.09071817.65700318.72808017.69341222.87432556.204982243.55492238.971218110.413775165.186482
41077350.58396936.5818675952.03.03.016.02.098.500027.7968751.0...168.18783310.47595331.88826727.51715735.724540275.876107977.58458773.163734101.426472182.079662
41077459.84457030.4090772661.01.06.012.03.072.00009.0000001.0...131.49196013.50757016.54332821.08513228.97503976.367532610.94025991.22723075.563717204.353716
\n", + "

410775 rows × 28 columns

\n", + "
" + ], + "text/plain": [ + " geo_lat geo_lon region building_type level levels rooms \\\n", + "0 56.327686 43.928062 2871.0 1.0 8.0 10.0 2.0 \n", + "1 54.859310 82.975624 9654.0 1.0 5.0 9.0 2.0 \n", + "2 56.072163 54.231270 2722.0 3.0 4.0 9.0 1.0 \n", + "3 46.704327 38.273636 2843.0 1.0 5.0 5.0 2.0 \n", + "4 60.933483 76.593094 2484.0 2.0 7.0 15.0 2.0 \n", + "... ... ... ... ... ... ... ... \n", + "410770 56.771339 60.612518 6171.0 2.0 9.0 18.0 2.0 \n", + "410771 55.148613 61.393780 5282.0 3.0 3.0 5.0 2.0 \n", + "410772 45.098129 38.971218 2843.0 0.0 8.0 17.0 1.0 \n", + "410773 50.583969 36.581867 5952.0 3.0 3.0 16.0 2.0 \n", + "410774 59.844570 30.409077 2661.0 1.0 6.0 12.0 3.0 \n", + "\n", + " area kitchen_area object_type ... geo_lat*log(kitchen_area) \\\n", + "0 56.0000 8.500000 1.0 ... 120.544976 \n", + "1 50.1875 8.500000 1.0 ... 117.402553 \n", + "2 39.0000 9.000000 11.0 ... 123.203134 \n", + "3 48.0000 9.000000 1.0 ... 102.619894 \n", + "4 74.0000 10.500000 1.0 ... 143.277485 \n", + "... ... ... ... ... ... \n", + "410770 51.3125 9.570312 1.0 ... 128.227486 \n", + "410771 43.0000 6.000000 1.0 ... 98.813050 \n", + "410772 39.0000 9.000000 11.0 ... 99.090718 \n", + "410773 98.5000 27.796875 1.0 ... 168.187833 \n", + "410774 72.0000 9.000000 1.0 ... 131.491960 \n", + "\n", + " sqrt(geo_lon)*sqrt(level) sqrt(geo_lon)*sqrt(kitchen_area) \\\n", + "0 18.746320 19.323264 \n", + "1 20.368557 26.557349 \n", + "2 14.728377 22.092565 \n", + "3 13.833589 18.559707 \n", + "4 23.154949 28.358905 \n", + "... ... ... \n", + "410770 23.356213 24.084865 \n", + "410771 13.571343 19.192777 \n", + "410772 17.657003 18.728080 \n", + "410773 10.475953 31.888267 \n", + "410774 13.507570 16.543328 \n", + "\n", + " sqrt(area)*log(levels) sqrt(area)*log(geo_lon) \\\n", + "0 17.230969 28.306037 \n", + "1 15.565828 31.302372 \n", + "2 13.721663 24.937886 \n", + "3 11.150513 25.251647 \n", + "4 23.295529 37.321248 \n", + "... ... ... \n", + "410770 20.704526 29.401670 \n", + "410771 10.553790 26.998998 \n", + "410772 17.693412 22.874325 \n", + "410773 27.517157 35.724540 \n", + "410774 21.085132 28.975039 \n", + "\n", + " sqrt(area)*kitchen_area area**(3/2) geo_lon*rooms \\\n", + "0 63.608176 419.065627 87.856125 \n", + "1 60.216666 355.543992 165.951248 \n", + "2 56.204982 243.554922 54.231270 \n", + "3 62.353829 332.553755 76.547272 \n", + "4 90.324415 636.572070 153.186188 \n", + "... ... ... ... \n", + "410770 68.554774 367.565517 121.225037 \n", + "410771 39.344631 281.969857 122.787560 \n", + "410772 56.204982 243.554922 38.971218 \n", + "410773 275.876107 977.584587 73.163734 \n", + "410774 76.367532 610.940259 91.227230 \n", + "\n", + " geo_lon*log(levels) geo_lat*log(geo_lon) \n", + "0 101.148102 213.062479 \n", + "1 182.316081 242.398434 \n", + "2 119.158279 223.910594 \n", + "3 61.599041 170.226122 \n", + "4 207.417943 264.360338 \n", + "... ... ... \n", + "410770 175.192711 233.018045 \n", + "410771 98.809477 227.063854 \n", + "410772 110.413775 165.186482 \n", + "410773 101.426472 182.079662 \n", + "410774 75.563717 204.353716 \n", + "\n", + "[410775 rows x 28 columns]" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "afreg = AutoFeatRegressor(verbose=1, feateng_steps=2, max_gb=8, transformations=[\"log\", \"sqrt\"],feateng_cols=num_features)\n", + "X_train_arf = afreg.fit_transform(X_train,y_train)\n", + "X_train_arf" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# Создаем обертку, в которой добавляем метод get_feature_names_out() для получения названий признаков\n", + "import numpy as np\n", + "\n", + "class AutoFeatWrapper():\n", + " def __init__(self, feateng_cols, feateng_steps=1, max_gb=16, transformations=[\"1/\", \"exp\", \"log\"], n_jobs=-1, verbose=1):\n", + " self.feateng_cols = feateng_cols\n", + " self.feateng_steps = feateng_steps\n", + " self.max_gb = max_gb\n", + " self.transformations = transformations\n", + " self.n_jobs = n_jobs\n", + " self.afreg = AutoFeatRegressor(feateng_cols=self.feateng_cols,\n", + " feateng_steps=self.feateng_steps,\n", + " max_gb=self.max_gb,\n", + " transformations=self.transformations,\n", + " n_jobs=self.n_jobs)\n", + " \n", + " def fit(self, X, y=None):\n", + " self.afreg.fit(X, y)\n", + " return self\n", + " \n", + " def transform(self, X):\n", + " return self.afreg.transform(X)\n", + " \n", + " def get_feature_names_out(self, input_features=None):\n", + " # Преобразуем данные и возвращаем имена фичей из DataFrame\n", + " transformed_X = self.afreg.transform(pd.DataFrame(np.zeros((1, len(self.feateng_cols))), columns=self.feateng_cols))\n", + " return transformed_X.columns.tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "afreg_pipeline = Pipeline(steps=[\n", + " ('autofeat', AutoFeatWrapper( feateng_steps=2, max_gb=16, transformations=[\"log\", \"sqrt\"],feateng_cols=num_features)),\n", + " ('scaler', StandardScaler()),\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "preprocessor_afr = ColumnTransformer(\n", + " transformers=[\n", + " ('num', s_scaler, num_features), # преобразования для числовых признаков\n", + " ('cat', l_encoder, cat_features), # преобразования для категориальных признаков\n", + " ('afr', afreg_pipeline, num_features), # преобразования autofeat\n", + " ],\n", + " remainder='drop', # Удаляем столбцы, которые не затронуты преобразованиями\n", + " ) " + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/autofeat/featsel.py:270: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", + " if np.max(np.abs(correlations[c].ravel()[:i])) < 0.9:\n" + ] + } + ], + "source": [ + "X_train_afr_raw = preprocessor_afr.fit_transform(X_train,y_train)\n", + "X_train_afr = pd.DataFrame(X_train_afr_raw, columns=preprocessor_afr.get_feature_names_out())" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
num__geo_latnum__geo_lonnum__levelnum__levelsnum__roomsnum__areanum__kitchen_areacat__regioncat__building_typecat__object_typeafr__geo_latafr__geo_lonafr__levelafr__levelsafr__roomsafr__areaafr__kitchen_areaafr__area*roomsafr__area*geo_lonafr__levels*roomsafr__area*kitchen_areaafr__sqrt(area)*geo_latafr__sqrt(area)*log(level)afr__kitchen_area*log(level)afr__sqrt(area)*kitchen_areaafr__geo_lon*log(kitchen_area)afr__sqrt(area)*sqrt(kitchen_area)afr__sqrt(geo_lon)*sqrt(kitchen_area)afr__log(area)afr__rooms*log(level)afr__kitchen_area*roomsafr__kitchen_area*levelsafr__sqrt(geo_lon)*sqrt(level)afr__area**(3/2)afr__geo_lat*log(kitchen_area)afr__geo_lat*log(geo_lon)
00.495902-0.4497420.359235-0.2147890.2534130.063735-0.18628520.01.00.00.495902-0.4497420.359235-0.2147890.2534130.063735-0.1862850.006208-0.1951290.060916-0.1321880.3731510.6880760.044178-0.211335-0.481294-0.153548-0.4908050.3078350.690329-0.132529-0.3528340.323880-0.008748-0.0315290.068167
10.1778061.433673-0.246529-0.3677180.253413-0.114293-0.18628570.01.00.00.1778061.433673-0.246529-0.3677180.253413-0.114293-0.186285-0.0834020.655053-0.054279-0.1693700.0051140.071369-0.173647-0.2527751.191304-0.2672680.6157980.0319070.282625-0.132529-0.4186430.552794-0.056540-0.1438291.129118
...............................................................................................................
410773-0.748366-0.804077-0.6503710.7027880.2534131.3654411.50183352.03.00.0-0.748366-0.804077-0.6503710.7027880.2534131.3654411.5018330.6614270.3751990.7520881.5701631.274445-0.0025210.7455072.3822580.0715992.8288901.4312721.729715-0.1604911.5814362.432437-0.8431500.4114751.671069-1.052343
4107741.257769-1.101815-0.0446080.0910701.1759110.553789-0.14254414.01.00.01.257769-1.101815-0.0446080.0910701.1759110.553789-0.1425440.807887-0.3300700.982478-0.0027421.3389960.635065-0.040302-0.055435-1.0255880.202136-0.9160540.9406241.2179100.311575-0.174762-0.4153590.1356170.359680-0.246790
\n", + "

410775 rows × 36 columns

\n", + "
" + ], + "text/plain": [ + " num__geo_lat num__geo_lon num__level num__levels num__rooms \\\n", + "0 0.495902 -0.449742 0.359235 -0.214789 0.253413 \n", + "1 0.177806 1.433673 -0.246529 -0.367718 0.253413 \n", + "... ... ... ... ... ... \n", + "410773 -0.748366 -0.804077 -0.650371 0.702788 0.253413 \n", + "410774 1.257769 -1.101815 -0.044608 0.091070 1.175911 \n", + "\n", + " num__area num__kitchen_area cat__region cat__building_type \\\n", + "0 0.063735 -0.186285 20.0 1.0 \n", + "1 -0.114293 -0.186285 70.0 1.0 \n", + "... ... ... ... ... \n", + "410773 1.365441 1.501833 52.0 3.0 \n", + "410774 0.553789 -0.142544 14.0 1.0 \n", + "\n", + " cat__object_type afr__geo_lat afr__geo_lon afr__level afr__levels \\\n", + "0 0.0 0.495902 -0.449742 0.359235 -0.214789 \n", + "1 0.0 0.177806 1.433673 -0.246529 -0.367718 \n", + "... ... ... ... ... ... \n", + "410773 0.0 -0.748366 -0.804077 -0.650371 0.702788 \n", + "410774 0.0 1.257769 -1.101815 -0.044608 0.091070 \n", + "\n", + " afr__rooms afr__area afr__kitchen_area afr__area*rooms \\\n", + "0 0.253413 0.063735 -0.186285 0.006208 \n", + "1 0.253413 -0.114293 -0.186285 -0.083402 \n", + "... ... ... ... ... \n", + "410773 0.253413 1.365441 1.501833 0.661427 \n", + "410774 1.175911 0.553789 -0.142544 0.807887 \n", + "\n", + " afr__area*geo_lon afr__levels*rooms afr__area*kitchen_area \\\n", + "0 -0.195129 0.060916 -0.132188 \n", + "1 0.655053 -0.054279 -0.169370 \n", + "... ... ... ... \n", + "410773 0.375199 0.752088 1.570163 \n", + "410774 -0.330070 0.982478 -0.002742 \n", + "\n", + " afr__sqrt(area)*geo_lat afr__sqrt(area)*log(level) \\\n", + "0 0.373151 0.688076 \n", + "1 0.005114 0.071369 \n", + "... ... ... \n", + "410773 1.274445 -0.002521 \n", + "410774 1.338996 0.635065 \n", + "\n", + " afr__kitchen_area*log(level) afr__sqrt(area)*kitchen_area \\\n", + "0 0.044178 -0.211335 \n", + "1 -0.173647 -0.252775 \n", + "... ... ... \n", + "410773 0.745507 2.382258 \n", + "410774 -0.040302 -0.055435 \n", + "\n", + " afr__geo_lon*log(kitchen_area) afr__sqrt(area)*sqrt(kitchen_area) \\\n", + "0 -0.481294 -0.153548 \n", + "1 1.191304 -0.267268 \n", + "... ... ... \n", + "410773 0.071599 2.828890 \n", + "410774 -1.025588 0.202136 \n", + "\n", + " afr__sqrt(geo_lon)*sqrt(kitchen_area) afr__log(area) \\\n", + "0 -0.490805 0.307835 \n", + "1 0.615798 0.031907 \n", + "... ... ... \n", + "410773 1.431272 1.729715 \n", + "410774 -0.916054 0.940624 \n", + "\n", + " afr__rooms*log(level) afr__kitchen_area*rooms \\\n", + "0 0.690329 -0.132529 \n", + "1 0.282625 -0.132529 \n", + "... ... ... \n", + "410773 -0.160491 1.581436 \n", + "410774 1.217910 0.311575 \n", + "\n", + " afr__kitchen_area*levels afr__sqrt(geo_lon)*sqrt(level) \\\n", + "0 -0.352834 0.323880 \n", + "1 -0.418643 0.552794 \n", + "... ... ... \n", + "410773 2.432437 -0.843150 \n", + "410774 -0.174762 -0.415359 \n", + "\n", + " afr__area**(3/2) afr__geo_lat*log(kitchen_area) \\\n", + "0 -0.008748 -0.031529 \n", + "1 -0.056540 -0.143829 \n", + "... ... ... \n", + "410773 0.411475 1.671069 \n", + "410774 0.135617 0.359680 \n", + "\n", + " afr__geo_lat*log(geo_lon) \n", + "0 0.068167 \n", + "1 1.129118 \n", + "... ... \n", + "410773 -1.052343 \n", + "410774 -0.246790 \n", + "\n", + "[410775 rows x 36 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with pd.option_context('display.max_rows', 5, 'display.max_columns', None):\n", + " display (X_train_afr)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/andrey/work/institute/MLE/assets/mlflow/.venv_ml2/lib/python3.10/site-packages/autofeat/featsel.py:270: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", + " if np.max(np.abs(correlations[c].ravel()[:i])) < 0.9:\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning rate set to 0.105957\n", + "0:\tlearn: 22098446.5317890\ttotal: 26.8ms\tremaining: 26.8s\n", + "1:\tlearn: 21992091.7064548\ttotal: 48.4ms\tremaining: 24.2s\n", + "2:\tlearn: 21903440.5994842\ttotal: 68.8ms\tremaining: 22.9s\n", + "3:\tlearn: 21830593.5742740\ttotal: 91.3ms\tremaining: 22.7s\n", + "4:\tlearn: 21748722.8033271\ttotal: 133ms\tremaining: 26.4s\n", + "5:\tlearn: 21688987.8050450\ttotal: 165ms\tremaining: 27.3s\n", + "6:\tlearn: 21646302.4819252\ttotal: 184ms\tremaining: 26.1s\n", + "7:\tlearn: 21610896.0334767\ttotal: 212ms\tremaining: 26.3s\n", + "8:\tlearn: 21575613.5629762\ttotal: 231ms\tremaining: 25.4s\n", + "9:\tlearn: 21532487.6625332\ttotal: 250ms\tremaining: 24.7s\n", + "10:\tlearn: 21508450.4917176\ttotal: 268ms\tremaining: 24.1s\n", + "11:\tlearn: 21488319.9869637\ttotal: 286ms\tremaining: 23.6s\n", + "12:\tlearn: 21469291.7749161\ttotal: 306ms\tremaining: 23.2s\n", + "13:\tlearn: 21451889.3409628\ttotal: 322ms\tremaining: 22.7s\n", + "14:\tlearn: 20959897.0899417\ttotal: 342ms\tremaining: 22.4s\n", + "15:\tlearn: 20915005.0974918\ttotal: 361ms\tremaining: 22.2s\n", + "16:\tlearn: 20902468.9186388\ttotal: 381ms\tremaining: 22s\n", + "17:\tlearn: 20876275.9865972\ttotal: 401ms\tremaining: 21.9s\n", + "18:\tlearn: 20863745.4030443\ttotal: 419ms\tremaining: 21.6s\n", + "19:\tlearn: 20844197.8334799\ttotal: 435ms\tremaining: 21.3s\n", + "20:\tlearn: 20835022.9165113\ttotal: 453ms\tremaining: 21.1s\n", + "21:\tlearn: 20819361.3350514\ttotal: 470ms\tremaining: 20.9s\n", + "22:\tlearn: 20806038.1056633\ttotal: 490ms\tremaining: 20.8s\n", + "23:\tlearn: 20791066.0897815\ttotal: 509ms\tremaining: 20.7s\n", + "24:\tlearn: 20785138.4355827\ttotal: 530ms\tremaining: 20.7s\n", + "25:\tlearn: 20779683.7658929\ttotal: 549ms\tremaining: 20.6s\n", + "26:\tlearn: 20756913.1557035\ttotal: 569ms\tremaining: 20.5s\n", + "27:\tlearn: 20520618.7506031\ttotal: 588ms\tremaining: 20.4s\n", + "28:\tlearn: 20515058.2045385\ttotal: 613ms\tremaining: 20.5s\n", + "29:\tlearn: 20497214.8435344\ttotal: 629ms\tremaining: 20.3s\n", + "30:\tlearn: 20485495.5395393\ttotal: 645ms\tremaining: 20.2s\n", + "31:\tlearn: 20362395.4848014\ttotal: 665ms\tremaining: 20.1s\n", + "32:\tlearn: 20356605.5880092\ttotal: 680ms\tremaining: 19.9s\n", + "33:\tlearn: 20347239.3145337\ttotal: 697ms\tremaining: 19.8s\n", + "34:\tlearn: 20318678.4277386\ttotal: 716ms\tremaining: 19.7s\n", + "35:\tlearn: 20315715.1306063\ttotal: 736ms\tremaining: 19.7s\n", + "36:\tlearn: 20306647.3686296\ttotal: 750ms\tremaining: 19.5s\n", + "37:\tlearn: 20304056.5675365\ttotal: 768ms\tremaining: 19.4s\n", + "38:\tlearn: 20279918.6270216\ttotal: 787ms\tremaining: 19.4s\n", + "39:\tlearn: 20245735.4325516\ttotal: 807ms\tremaining: 19.4s\n", + "40:\tlearn: 20232809.7613533\ttotal: 823ms\tremaining: 19.2s\n", + "41:\tlearn: 20226855.1916398\ttotal: 840ms\tremaining: 19.2s\n", + "42:\tlearn: 20165027.4942330\ttotal: 858ms\tremaining: 19.1s\n", + "43:\tlearn: 20133428.0260678\ttotal: 878ms\tremaining: 19.1s\n", + "44:\tlearn: 20127643.2042711\ttotal: 894ms\tremaining: 19s\n", + "45:\tlearn: 20123741.9957328\ttotal: 909ms\tremaining: 18.9s\n", + "46:\tlearn: 20119779.4220799\ttotal: 923ms\tremaining: 18.7s\n", + "47:\tlearn: 20092957.0547636\ttotal: 943ms\tremaining: 18.7s\n", + "48:\tlearn: 19946079.6554416\ttotal: 960ms\tremaining: 18.6s\n", + "49:\tlearn: 19821808.8946012\ttotal: 977ms\tremaining: 18.6s\n", + "50:\tlearn: 19803278.9061355\ttotal: 996ms\tremaining: 18.5s\n", + "51:\tlearn: 19801590.6142514\ttotal: 1.01s\tremaining: 18.5s\n", + "52:\tlearn: 19789100.0910140\ttotal: 1.03s\tremaining: 18.5s\n", + "53:\tlearn: 19777917.4738028\ttotal: 1.05s\tremaining: 18.4s\n", + "54:\tlearn: 19774511.9959684\ttotal: 1.06s\tremaining: 18.3s\n", + "55:\tlearn: 19770278.0583089\ttotal: 1.08s\tremaining: 18.2s\n", + "56:\tlearn: 19767272.1525211\ttotal: 1.1s\tremaining: 18.1s\n", + "57:\tlearn: 19737586.6619601\ttotal: 1.12s\tremaining: 18.2s\n", + "58:\tlearn: 19735073.7186798\ttotal: 1.14s\tremaining: 18.1s\n", + "59:\tlearn: 19731977.1775776\ttotal: 1.16s\tremaining: 18.1s\n", + "60:\tlearn: 19729360.9863921\ttotal: 1.17s\tremaining: 18s\n", + "61:\tlearn: 19707341.8305192\ttotal: 1.19s\tremaining: 18s\n", + "62:\tlearn: 19705912.9617897\ttotal: 1.21s\tremaining: 17.9s\n", + "63:\tlearn: 19695569.9610055\ttotal: 1.22s\tremaining: 17.9s\n", + "64:\tlearn: 19602043.4428838\ttotal: 1.24s\tremaining: 17.9s\n", + "65:\tlearn: 19595860.8468991\ttotal: 1.26s\tremaining: 17.8s\n", + "66:\tlearn: 19585975.7792716\ttotal: 1.27s\tremaining: 17.7s\n", + "67:\tlearn: 19234362.3548543\ttotal: 1.29s\tremaining: 17.7s\n", + "68:\tlearn: 19222847.8276263\ttotal: 1.31s\tremaining: 17.6s\n", + "69:\tlearn: 19203670.0381568\ttotal: 1.33s\tremaining: 17.6s\n", + "70:\tlearn: 19194731.8572529\ttotal: 1.34s\tremaining: 17.6s\n", + "71:\tlearn: 19189178.2195288\ttotal: 1.36s\tremaining: 17.5s\n", + "72:\tlearn: 19185908.3707087\ttotal: 1.37s\tremaining: 17.4s\n", + "73:\tlearn: 19155559.0100268\ttotal: 1.39s\tremaining: 17.4s\n", + "74:\tlearn: 19152289.8647161\ttotal: 1.41s\tremaining: 17.4s\n", + "75:\tlearn: 19150374.8353251\ttotal: 1.43s\tremaining: 17.3s\n", + "76:\tlearn: 19147819.7625768\ttotal: 1.45s\tremaining: 17.3s\n", + "77:\tlearn: 18905771.5461154\ttotal: 1.47s\tremaining: 17.3s\n", + "78:\tlearn: 18813956.7525671\ttotal: 1.48s\tremaining: 17.3s\n", + "79:\tlearn: 18812152.2844158\ttotal: 1.5s\tremaining: 17.2s\n", + "80:\tlearn: 18810840.1198449\ttotal: 1.52s\tremaining: 17.2s\n", + "81:\tlearn: 18807792.9722698\ttotal: 1.54s\tremaining: 17.2s\n", + "82:\tlearn: 18794957.0370160\ttotal: 1.56s\tremaining: 17.2s\n", + "83:\tlearn: 18789742.4771797\ttotal: 1.57s\tremaining: 17.2s\n", + "84:\tlearn: 18788127.4684607\ttotal: 1.59s\tremaining: 17.2s\n", + "85:\tlearn: 18779174.8446130\ttotal: 1.61s\tremaining: 17.1s\n", + "86:\tlearn: 18776838.6599274\ttotal: 1.63s\tremaining: 17.1s\n", + "87:\tlearn: 18762161.1954900\ttotal: 1.65s\tremaining: 17.1s\n", + "88:\tlearn: 18757830.5865033\ttotal: 1.67s\tremaining: 17.1s\n", + "89:\tlearn: 18755840.4393729\ttotal: 1.68s\tremaining: 17s\n", + "90:\tlearn: 18751801.5819665\ttotal: 1.7s\tremaining: 17s\n", + "91:\tlearn: 18748802.4640957\ttotal: 1.72s\tremaining: 17s\n", + "92:\tlearn: 18745806.6911284\ttotal: 1.75s\tremaining: 17s\n", + "93:\tlearn: 18742900.1222446\ttotal: 1.77s\tremaining: 17s\n", + "94:\tlearn: 18738594.5552785\ttotal: 1.8s\tremaining: 17.1s\n", + "95:\tlearn: 18730694.4604996\ttotal: 1.82s\tremaining: 17.2s\n", + "96:\tlearn: 18716702.4931339\ttotal: 1.85s\tremaining: 17.2s\n", + "97:\tlearn: 18709192.3246265\ttotal: 1.87s\tremaining: 17.2s\n", + "98:\tlearn: 18635095.6806873\ttotal: 1.89s\tremaining: 17.2s\n", + "99:\tlearn: 18632966.0990175\ttotal: 1.91s\tremaining: 17.2s\n", + "100:\tlearn: 18630198.4193049\ttotal: 1.93s\tremaining: 17.2s\n", + "101:\tlearn: 18627320.2940055\ttotal: 1.95s\tremaining: 17.2s\n", + "102:\tlearn: 18624992.5308547\ttotal: 1.97s\tremaining: 17.2s\n", + "103:\tlearn: 18618176.9079508\ttotal: 2s\tremaining: 17.2s\n", + "104:\tlearn: 18616616.2003003\ttotal: 2.02s\tremaining: 17.2s\n", + "105:\tlearn: 18615481.8394393\ttotal: 2.04s\tremaining: 17.2s\n", + "106:\tlearn: 18594311.1106124\ttotal: 2.08s\tremaining: 17.3s\n", + "107:\tlearn: 18586972.8173311\ttotal: 2.11s\tremaining: 17.4s\n", + "108:\tlearn: 18579105.5403110\ttotal: 2.13s\tremaining: 17.5s\n", + "109:\tlearn: 18571608.0568352\ttotal: 2.16s\tremaining: 17.5s\n", + "110:\tlearn: 18564537.7386806\ttotal: 2.18s\tremaining: 17.5s\n", + "111:\tlearn: 18542636.2829769\ttotal: 2.2s\tremaining: 17.5s\n", + "112:\tlearn: 18537851.5356183\ttotal: 2.23s\tremaining: 17.5s\n", + "113:\tlearn: 18522312.5392837\ttotal: 2.26s\tremaining: 17.5s\n", + "114:\tlearn: 18299782.3915596\ttotal: 2.28s\tremaining: 17.6s\n", + "115:\tlearn: 18218935.9622759\ttotal: 2.31s\tremaining: 17.6s\n", + "116:\tlearn: 18146172.4915107\ttotal: 2.33s\tremaining: 17.6s\n", + "117:\tlearn: 18141986.4938230\ttotal: 2.35s\tremaining: 17.6s\n", + "118:\tlearn: 18140036.5077328\ttotal: 2.38s\tremaining: 17.6s\n", + "119:\tlearn: 18139373.2496994\ttotal: 2.4s\tremaining: 17.6s\n", + "120:\tlearn: 18100168.1884696\ttotal: 2.43s\tremaining: 17.6s\n", + "121:\tlearn: 18094370.6540347\ttotal: 2.45s\tremaining: 17.6s\n", + "122:\tlearn: 18076110.8650986\ttotal: 2.47s\tremaining: 17.6s\n", + "123:\tlearn: 18002967.3050945\ttotal: 2.5s\tremaining: 17.6s\n", + "124:\tlearn: 18000869.0550730\ttotal: 2.52s\tremaining: 17.6s\n", + "125:\tlearn: 17998261.8587970\ttotal: 2.54s\tremaining: 17.6s\n", + "126:\tlearn: 17994552.1626533\ttotal: 2.56s\tremaining: 17.6s\n", + "127:\tlearn: 17989433.5442655\ttotal: 2.58s\tremaining: 17.6s\n", + "128:\tlearn: 17987664.3924249\ttotal: 2.6s\tremaining: 17.5s\n", + "129:\tlearn: 17985129.5906005\ttotal: 2.62s\tremaining: 17.5s\n", + "130:\tlearn: 17767790.7079583\ttotal: 2.64s\tremaining: 17.5s\n", + "131:\tlearn: 17764614.5830372\ttotal: 2.67s\tremaining: 17.5s\n", + "132:\tlearn: 17759771.7712261\ttotal: 2.69s\tremaining: 17.5s\n", + "133:\tlearn: 17754155.8700602\ttotal: 2.71s\tremaining: 17.5s\n", + "134:\tlearn: 17693934.4243247\ttotal: 2.73s\tremaining: 17.5s\n", + "135:\tlearn: 17690379.1381722\ttotal: 2.76s\tremaining: 17.5s\n", + "136:\tlearn: 17656262.4869520\ttotal: 2.78s\tremaining: 17.5s\n", + "137:\tlearn: 17654254.9885345\ttotal: 2.8s\tremaining: 17.5s\n", + "138:\tlearn: 17652331.2748711\ttotal: 2.83s\tremaining: 17.5s\n", + "139:\tlearn: 17598030.4596968\ttotal: 2.85s\tremaining: 17.5s\n", + "140:\tlearn: 17578507.1040494\ttotal: 2.88s\tremaining: 17.5s\n", + "141:\tlearn: 17577574.9902621\ttotal: 2.9s\tremaining: 17.5s\n", + "142:\tlearn: 17573676.9930119\ttotal: 2.92s\tremaining: 17.5s\n", + "143:\tlearn: 17569875.4728705\ttotal: 2.94s\tremaining: 17.5s\n", + "144:\tlearn: 17567623.4002267\ttotal: 2.97s\tremaining: 17.5s\n", + "145:\tlearn: 17562562.5781482\ttotal: 2.99s\tremaining: 17.5s\n", + "146:\tlearn: 17557735.6477683\ttotal: 3.01s\tremaining: 17.5s\n", + "147:\tlearn: 17555290.2733648\ttotal: 3.02s\tremaining: 17.4s\n", + "148:\tlearn: 17506148.2650265\ttotal: 3.04s\tremaining: 17.4s\n", + "149:\tlearn: 17501859.3755534\ttotal: 3.06s\tremaining: 17.3s\n", + "150:\tlearn: 17320336.3209735\ttotal: 3.08s\tremaining: 17.3s\n", + "151:\tlearn: 17310638.0817615\ttotal: 3.09s\tremaining: 17.3s\n", + "152:\tlearn: 17309298.5975507\ttotal: 3.11s\tremaining: 17.2s\n", + "153:\tlearn: 17264598.6767781\ttotal: 3.13s\tremaining: 17.2s\n", + "154:\tlearn: 17262893.4148730\ttotal: 3.15s\tremaining: 17.2s\n", + "155:\tlearn: 17257977.2188279\ttotal: 3.17s\tremaining: 17.1s\n", + "156:\tlearn: 17257618.1172949\ttotal: 3.18s\tremaining: 17.1s\n", + "157:\tlearn: 17253459.4416097\ttotal: 3.2s\tremaining: 17s\n", + "158:\tlearn: 17251834.0223366\ttotal: 3.22s\tremaining: 17s\n", + "159:\tlearn: 17250494.0433762\ttotal: 3.23s\tremaining: 17s\n", + "160:\tlearn: 17246530.7193890\ttotal: 3.25s\tremaining: 16.9s\n", + "161:\tlearn: 17244324.5437997\ttotal: 3.27s\tremaining: 16.9s\n", + "162:\tlearn: 17242945.7857344\ttotal: 3.28s\tremaining: 16.9s\n", + "163:\tlearn: 17089182.2500413\ttotal: 3.3s\tremaining: 16.8s\n", + "164:\tlearn: 17088482.3072367\ttotal: 3.32s\tremaining: 16.8s\n", + "165:\tlearn: 17084007.2547317\ttotal: 3.34s\tremaining: 16.8s\n", + "166:\tlearn: 17081285.9812766\ttotal: 3.36s\tremaining: 16.8s\n", + "167:\tlearn: 17077090.3713744\ttotal: 3.38s\tremaining: 16.7s\n", + "168:\tlearn: 17074688.2414973\ttotal: 3.4s\tremaining: 16.7s\n", + "169:\tlearn: 17072284.3050889\ttotal: 3.42s\tremaining: 16.7s\n", + "170:\tlearn: 17068468.9102157\ttotal: 3.44s\tremaining: 16.7s\n", + "171:\tlearn: 17066197.4252855\ttotal: 3.46s\tremaining: 16.6s\n", + "172:\tlearn: 17065070.8976940\ttotal: 3.48s\tremaining: 16.6s\n", + "173:\tlearn: 17058249.7058775\ttotal: 3.51s\tremaining: 16.6s\n", + "174:\tlearn: 17057138.2699917\ttotal: 3.56s\tremaining: 16.8s\n", + "175:\tlearn: 17046622.4909743\ttotal: 3.6s\tremaining: 16.8s\n", + "176:\tlearn: 17039258.9949482\ttotal: 3.62s\tremaining: 16.8s\n", + "177:\tlearn: 17035020.6708538\ttotal: 3.65s\tremaining: 16.8s\n", + "178:\tlearn: 17033414.0467352\ttotal: 3.67s\tremaining: 16.8s\n", + "179:\tlearn: 17033127.0083630\ttotal: 3.69s\tremaining: 16.8s\n", + "180:\tlearn: 17031867.2300183\ttotal: 3.71s\tremaining: 16.8s\n", + "181:\tlearn: 16899607.9791508\ttotal: 3.73s\tremaining: 16.8s\n", + "182:\tlearn: 16898005.1178062\ttotal: 3.75s\tremaining: 16.7s\n", + "183:\tlearn: 16896717.9374833\ttotal: 3.76s\tremaining: 16.7s\n", + "184:\tlearn: 16894382.9799229\ttotal: 3.78s\tremaining: 16.7s\n", + "185:\tlearn: 16890727.0168983\ttotal: 3.8s\tremaining: 16.6s\n", + "186:\tlearn: 16889455.2180397\ttotal: 3.81s\tremaining: 16.6s\n", + "187:\tlearn: 16887062.5404989\ttotal: 3.83s\tremaining: 16.5s\n", + "188:\tlearn: 16886735.9764847\ttotal: 3.85s\tremaining: 16.5s\n", + "189:\tlearn: 16886228.5886393\ttotal: 3.87s\tremaining: 16.5s\n", + "190:\tlearn: 16885081.6996963\ttotal: 3.89s\tremaining: 16.5s\n", + "191:\tlearn: 16882001.5269585\ttotal: 3.9s\tremaining: 16.4s\n", + "192:\tlearn: 16856550.5531312\ttotal: 3.92s\tremaining: 16.4s\n", + "193:\tlearn: 16855256.6233436\ttotal: 3.94s\tremaining: 16.4s\n", + "194:\tlearn: 16854312.8679165\ttotal: 3.95s\tremaining: 16.3s\n", + "195:\tlearn: 16851237.1947603\ttotal: 3.97s\tremaining: 16.3s\n", + "196:\tlearn: 16783006.6207643\ttotal: 3.99s\tremaining: 16.3s\n", + "197:\tlearn: 16781595.9134206\ttotal: 4s\tremaining: 16.2s\n", + "198:\tlearn: 16781234.9503645\ttotal: 4.02s\tremaining: 16.2s\n", + "199:\tlearn: 16779709.3482853\ttotal: 4.04s\tremaining: 16.2s\n", + "200:\tlearn: 16774173.0594017\ttotal: 4.06s\tremaining: 16.1s\n", + "201:\tlearn: 16759421.8485325\ttotal: 4.08s\tremaining: 16.1s\n", + "202:\tlearn: 16758955.3742817\ttotal: 4.1s\tremaining: 16.1s\n", + "203:\tlearn: 16757936.9617034\ttotal: 4.13s\tremaining: 16.1s\n", + "204:\tlearn: 16757664.0812284\ttotal: 4.14s\tremaining: 16.1s\n", + "205:\tlearn: 16740267.4215143\ttotal: 4.17s\tremaining: 16.1s\n", + "206:\tlearn: 16738705.6070140\ttotal: 4.2s\tremaining: 16.1s\n", + "207:\tlearn: 16737706.6477167\ttotal: 4.22s\tremaining: 16.1s\n", + "208:\tlearn: 16736478.8671502\ttotal: 4.25s\tremaining: 16.1s\n", + "209:\tlearn: 16735204.9463557\ttotal: 4.28s\tremaining: 16.1s\n", + "210:\tlearn: 16732141.0391019\ttotal: 4.3s\tremaining: 16.1s\n", + "211:\tlearn: 16637668.6111380\ttotal: 4.34s\tremaining: 16.1s\n", + "212:\tlearn: 16636325.3039320\ttotal: 4.36s\tremaining: 16.1s\n", + "213:\tlearn: 16633425.3422990\ttotal: 4.38s\tremaining: 16.1s\n", + "214:\tlearn: 16633379.4218933\ttotal: 4.4s\tremaining: 16.1s\n", + "215:\tlearn: 16631776.4435300\ttotal: 4.42s\tremaining: 16s\n", + "216:\tlearn: 16628682.2349567\ttotal: 4.44s\tremaining: 16s\n", + "217:\tlearn: 16621402.6020240\ttotal: 4.46s\tremaining: 16s\n", + "218:\tlearn: 16618529.2945134\ttotal: 4.49s\tremaining: 16s\n", + "219:\tlearn: 16618289.4608715\ttotal: 4.51s\tremaining: 16s\n", + "220:\tlearn: 16616246.7258237\ttotal: 4.53s\tremaining: 16s\n", + "221:\tlearn: 16613775.7036046\ttotal: 4.55s\tremaining: 15.9s\n", + "222:\tlearn: 16612492.1305852\ttotal: 4.57s\tremaining: 15.9s\n", + "223:\tlearn: 16531999.7964791\ttotal: 4.6s\tremaining: 15.9s\n", + "224:\tlearn: 16531623.8181282\ttotal: 4.61s\tremaining: 15.9s\n", + "225:\tlearn: 16526053.4271391\ttotal: 4.64s\tremaining: 15.9s\n", + "226:\tlearn: 16513833.4679535\ttotal: 4.66s\tremaining: 15.9s\n", + "227:\tlearn: 16472689.7602332\ttotal: 4.68s\tremaining: 15.9s\n", + "228:\tlearn: 16471447.4428699\ttotal: 4.7s\tremaining: 15.8s\n", + "229:\tlearn: 16464946.2498018\ttotal: 4.73s\tremaining: 15.8s\n", + "230:\tlearn: 16455905.0848516\ttotal: 4.75s\tremaining: 15.8s\n", + "231:\tlearn: 16453392.6114472\ttotal: 4.77s\tremaining: 15.8s\n", + "232:\tlearn: 16449023.0849558\ttotal: 4.79s\tremaining: 15.8s\n", + "233:\tlearn: 16438897.0011580\ttotal: 4.81s\tremaining: 15.8s\n", + "234:\tlearn: 16438736.3967663\ttotal: 4.83s\tremaining: 15.7s\n", + "235:\tlearn: 16437731.8258800\ttotal: 4.86s\tremaining: 15.7s\n", + "236:\tlearn: 16436980.6157656\ttotal: 4.88s\tremaining: 15.7s\n", + "237:\tlearn: 16428114.7269303\ttotal: 4.9s\tremaining: 15.7s\n", + "238:\tlearn: 16428049.7767929\ttotal: 4.92s\tremaining: 15.7s\n", + "239:\tlearn: 16427992.0895827\ttotal: 4.94s\tremaining: 15.7s\n", + "240:\tlearn: 16422121.5472397\ttotal: 4.98s\tremaining: 15.7s\n", + "241:\tlearn: 16417230.7540032\ttotal: 5.01s\tremaining: 15.7s\n", + "242:\tlearn: 16416409.8463259\ttotal: 5.04s\tremaining: 15.7s\n", + "243:\tlearn: 16408285.5767443\ttotal: 5.07s\tremaining: 15.7s\n", + "244:\tlearn: 16401737.8703071\ttotal: 5.09s\tremaining: 15.7s\n", + "245:\tlearn: 16400754.7007342\ttotal: 5.12s\tremaining: 15.7s\n", + "246:\tlearn: 16400112.0638635\ttotal: 5.14s\tremaining: 15.7s\n", + "247:\tlearn: 16398418.5457083\ttotal: 5.17s\tremaining: 15.7s\n", + "248:\tlearn: 16398232.1545492\ttotal: 5.18s\tremaining: 15.6s\n", + "249:\tlearn: 16388945.7310621\ttotal: 5.21s\tremaining: 15.6s\n", + "250:\tlearn: 16375911.0840421\ttotal: 5.23s\tremaining: 15.6s\n", + "251:\tlearn: 16373443.5034802\ttotal: 5.25s\tremaining: 15.6s\n", + "252:\tlearn: 16372753.0693531\ttotal: 5.26s\tremaining: 15.5s\n", + "253:\tlearn: 16367086.2902241\ttotal: 5.28s\tremaining: 15.5s\n", + "254:\tlearn: 16358517.8494899\ttotal: 5.3s\tremaining: 15.5s\n", + "255:\tlearn: 16353748.1922851\ttotal: 5.32s\tremaining: 15.5s\n", + "256:\tlearn: 16353453.6682681\ttotal: 5.34s\tremaining: 15.4s\n", + "257:\tlearn: 16352481.0366512\ttotal: 5.36s\tremaining: 15.4s\n", + "258:\tlearn: 16351858.3396725\ttotal: 5.37s\tremaining: 15.4s\n", + "259:\tlearn: 16351336.2107277\ttotal: 5.39s\tremaining: 15.3s\n", + "260:\tlearn: 16350293.5343411\ttotal: 5.41s\tremaining: 15.3s\n", + "261:\tlearn: 16350084.7826337\ttotal: 5.42s\tremaining: 15.3s\n", + "262:\tlearn: 16345905.3652731\ttotal: 5.44s\tremaining: 15.2s\n", + "263:\tlearn: 16345758.0845827\ttotal: 5.46s\tremaining: 15.2s\n", + "264:\tlearn: 16343268.6433109\ttotal: 5.48s\tremaining: 15.2s\n", + "265:\tlearn: 16342154.0157515\ttotal: 5.5s\tremaining: 15.2s\n", + "266:\tlearn: 16342037.5821118\ttotal: 5.51s\tremaining: 15.1s\n", + "267:\tlearn: 16341927.4242046\ttotal: 5.53s\tremaining: 15.1s\n", + "268:\tlearn: 16338213.3074397\ttotal: 5.55s\tremaining: 15.1s\n", + "269:\tlearn: 16327216.0649996\ttotal: 5.57s\tremaining: 15s\n", + "270:\tlearn: 16326925.2351069\ttotal: 5.58s\tremaining: 15s\n", + "271:\tlearn: 16326820.4998486\ttotal: 5.6s\tremaining: 15s\n", + "272:\tlearn: 16322749.1113577\ttotal: 5.61s\tremaining: 14.9s\n", + "273:\tlearn: 16322549.8844895\ttotal: 5.63s\tremaining: 14.9s\n", + "274:\tlearn: 16322371.4247002\ttotal: 5.65s\tremaining: 14.9s\n", + "275:\tlearn: 16320864.8994995\ttotal: 5.67s\tremaining: 14.9s\n", + "276:\tlearn: 16320396.8778183\ttotal: 5.7s\tremaining: 14.9s\n", + "277:\tlearn: 16314920.6844460\ttotal: 5.72s\tremaining: 14.9s\n", + "278:\tlearn: 16313439.3322462\ttotal: 5.74s\tremaining: 14.8s\n", + "279:\tlearn: 16313236.2051088\ttotal: 5.76s\tremaining: 14.8s\n", + "280:\tlearn: 16311407.0527601\ttotal: 5.79s\tremaining: 14.8s\n", + "281:\tlearn: 16304548.9854054\ttotal: 5.81s\tremaining: 14.8s\n", + "282:\tlearn: 16303849.9772984\ttotal: 5.83s\tremaining: 14.8s\n", + "283:\tlearn: 16303036.5859092\ttotal: 5.85s\tremaining: 14.8s\n", + "284:\tlearn: 16301982.1736398\ttotal: 5.88s\tremaining: 14.7s\n", + "285:\tlearn: 16298399.6511182\ttotal: 5.9s\tremaining: 14.7s\n", + "286:\tlearn: 16296854.5778267\ttotal: 5.92s\tremaining: 14.7s\n", + "287:\tlearn: 16296542.4281682\ttotal: 5.94s\tremaining: 14.7s\n", + "288:\tlearn: 16295967.0032405\ttotal: 5.96s\tremaining: 14.7s\n", + "289:\tlearn: 16293311.6501461\ttotal: 5.99s\tremaining: 14.7s\n", + "290:\tlearn: 16283984.2593662\ttotal: 6.01s\tremaining: 14.6s\n", + "291:\tlearn: 16282886.4463887\ttotal: 6.03s\tremaining: 14.6s\n", + "292:\tlearn: 16281871.7729414\ttotal: 6.05s\tremaining: 14.6s\n", + "293:\tlearn: 16246204.5878946\ttotal: 6.07s\tremaining: 14.6s\n", + "294:\tlearn: 16245494.1797635\ttotal: 6.09s\tremaining: 14.6s\n", + "295:\tlearn: 16245310.9552655\ttotal: 6.11s\tremaining: 14.5s\n", + "296:\tlearn: 16179763.1037634\ttotal: 6.13s\tremaining: 14.5s\n", + "297:\tlearn: 16174244.5922696\ttotal: 6.15s\tremaining: 14.5s\n", + "298:\tlearn: 16173695.6328831\ttotal: 6.17s\tremaining: 14.5s\n", + "299:\tlearn: 16172405.7367805\ttotal: 6.2s\tremaining: 14.5s\n", + "300:\tlearn: 16172246.0701414\ttotal: 6.22s\tremaining: 14.4s\n", + "301:\tlearn: 16171107.5926661\ttotal: 6.24s\tremaining: 14.4s\n", + "302:\tlearn: 16157568.5702286\ttotal: 6.26s\tremaining: 14.4s\n", + "303:\tlearn: 16144286.9945713\ttotal: 6.29s\tremaining: 14.4s\n", + "304:\tlearn: 16144147.1664354\ttotal: 6.32s\tremaining: 14.4s\n", + "305:\tlearn: 16143334.2932193\ttotal: 6.34s\tremaining: 14.4s\n", + "306:\tlearn: 16141949.9492589\ttotal: 6.36s\tremaining: 14.4s\n", + "307:\tlearn: 16141366.3505893\ttotal: 6.39s\tremaining: 14.3s\n", + "308:\tlearn: 16137962.0407039\ttotal: 6.41s\tremaining: 14.3s\n", + "309:\tlearn: 16136765.2464605\ttotal: 6.44s\tremaining: 14.3s\n", + "310:\tlearn: 16136435.2151644\ttotal: 6.46s\tremaining: 14.3s\n", + "311:\tlearn: 16135167.3393975\ttotal: 6.49s\tremaining: 14.3s\n", + "312:\tlearn: 16126588.3099796\ttotal: 6.51s\tremaining: 14.3s\n", + "313:\tlearn: 16090881.5848383\ttotal: 6.54s\tremaining: 14.3s\n", + "314:\tlearn: 16086166.4184594\ttotal: 6.57s\tremaining: 14.3s\n", + "315:\tlearn: 16085587.1075779\ttotal: 6.58s\tremaining: 14.3s\n", + "316:\tlearn: 16080938.2192392\ttotal: 6.6s\tremaining: 14.2s\n", + "317:\tlearn: 16067462.0352494\ttotal: 6.63s\tremaining: 14.2s\n", + "318:\tlearn: 16065922.6279599\ttotal: 6.65s\tremaining: 14.2s\n", + "319:\tlearn: 16064453.8241861\ttotal: 6.67s\tremaining: 14.2s\n", + "320:\tlearn: 16064268.9105041\ttotal: 6.68s\tremaining: 14.1s\n", + "321:\tlearn: 16063736.1872678\ttotal: 6.7s\tremaining: 14.1s\n", + "322:\tlearn: 16059090.5784481\ttotal: 6.72s\tremaining: 14.1s\n", + "323:\tlearn: 16058389.9467196\ttotal: 6.74s\tremaining: 14.1s\n", + "324:\tlearn: 16058214.2923750\ttotal: 6.75s\tremaining: 14s\n", + "325:\tlearn: 16058048.1995323\ttotal: 6.76s\tremaining: 14s\n", + "326:\tlearn: 16057417.1434230\ttotal: 6.78s\tremaining: 14s\n", + "327:\tlearn: 16040701.6305809\ttotal: 6.8s\tremaining: 13.9s\n", + "328:\tlearn: 16039470.8630631\ttotal: 6.82s\tremaining: 13.9s\n", + "329:\tlearn: 16032631.5814722\ttotal: 6.84s\tremaining: 13.9s\n", + "330:\tlearn: 16032070.6826659\ttotal: 6.86s\tremaining: 13.9s\n", + "331:\tlearn: 16031915.8360432\ttotal: 6.87s\tremaining: 13.8s\n", + "332:\tlearn: 16028975.9765947\ttotal: 6.89s\tremaining: 13.8s\n", + "333:\tlearn: 16016824.1323937\ttotal: 6.91s\tremaining: 13.8s\n", + "334:\tlearn: 16016228.4994905\ttotal: 6.93s\tremaining: 13.8s\n", + "335:\tlearn: 16016070.8522111\ttotal: 6.95s\tremaining: 13.7s\n", + "336:\tlearn: 16014982.2574027\ttotal: 6.97s\tremaining: 13.7s\n", + "337:\tlearn: 16012619.6711177\ttotal: 6.98s\tremaining: 13.7s\n", + "338:\tlearn: 16011597.9679398\ttotal: 7s\tremaining: 13.6s\n", + "339:\tlearn: 16011439.6179806\ttotal: 7.01s\tremaining: 13.6s\n", + "340:\tlearn: 16011237.0264874\ttotal: 7.03s\tremaining: 13.6s\n", + "341:\tlearn: 16011100.7602433\ttotal: 7.04s\tremaining: 13.6s\n", + "342:\tlearn: 16010972.5659207\ttotal: 7.06s\tremaining: 13.5s\n", + "343:\tlearn: 16009852.0826445\ttotal: 7.08s\tremaining: 13.5s\n", + "344:\tlearn: 16009168.4228047\ttotal: 7.1s\tremaining: 13.5s\n", + "345:\tlearn: 15976690.8343983\ttotal: 7.12s\tremaining: 13.5s\n", + "346:\tlearn: 15976185.1053865\ttotal: 7.14s\tremaining: 13.4s\n", + "347:\tlearn: 15975217.3778555\ttotal: 7.16s\tremaining: 13.4s\n", + "348:\tlearn: 15946059.6698335\ttotal: 7.18s\tremaining: 13.4s\n", + "349:\tlearn: 15943921.9286677\ttotal: 7.19s\tremaining: 13.4s\n", + "350:\tlearn: 15923347.5578938\ttotal: 7.21s\tremaining: 13.3s\n", + "351:\tlearn: 15909368.9323773\ttotal: 7.23s\tremaining: 13.3s\n", + "352:\tlearn: 15908103.4358003\ttotal: 7.25s\tremaining: 13.3s\n", + "353:\tlearn: 15907697.8671225\ttotal: 7.27s\tremaining: 13.3s\n", + "354:\tlearn: 15906419.4144558\ttotal: 7.28s\tremaining: 13.2s\n", + "355:\tlearn: 15889596.3525450\ttotal: 7.3s\tremaining: 13.2s\n", + "356:\tlearn: 15887061.3042659\ttotal: 7.32s\tremaining: 13.2s\n", + "357:\tlearn: 15875563.8672287\ttotal: 7.34s\tremaining: 13.2s\n", + "358:\tlearn: 15875514.5027199\ttotal: 7.36s\tremaining: 13.1s\n", + "359:\tlearn: 15867206.7753817\ttotal: 7.38s\tremaining: 13.1s\n", + "360:\tlearn: 15859470.9974766\ttotal: 7.4s\tremaining: 13.1s\n", + "361:\tlearn: 15858985.1414787\ttotal: 7.42s\tremaining: 13.1s\n", + "362:\tlearn: 15858517.7532614\ttotal: 7.43s\tremaining: 13s\n", + "363:\tlearn: 15837491.6512974\ttotal: 7.46s\tremaining: 13s\n", + "364:\tlearn: 15831413.2891292\ttotal: 7.47s\tremaining: 13s\n", + "365:\tlearn: 15821910.7944137\ttotal: 7.5s\tremaining: 13s\n", + "366:\tlearn: 15821799.9898810\ttotal: 7.51s\tremaining: 12.9s\n", + "367:\tlearn: 15820518.3355521\ttotal: 7.53s\tremaining: 12.9s\n", + "368:\tlearn: 15819654.1102879\ttotal: 7.55s\tremaining: 12.9s\n", + "369:\tlearn: 15817089.7995770\ttotal: 7.57s\tremaining: 12.9s\n", + "370:\tlearn: 15766391.6002990\ttotal: 7.58s\tremaining: 12.9s\n", + "371:\tlearn: 15765040.0677397\ttotal: 7.6s\tremaining: 12.8s\n", + "372:\tlearn: 15760061.5223284\ttotal: 7.62s\tremaining: 12.8s\n", + "373:\tlearn: 15749082.3035499\ttotal: 7.64s\tremaining: 12.8s\n", + "374:\tlearn: 15747797.5966906\ttotal: 7.66s\tremaining: 12.8s\n", + "375:\tlearn: 15747152.5320861\ttotal: 7.67s\tremaining: 12.7s\n", + "376:\tlearn: 15746747.2372895\ttotal: 7.69s\tremaining: 12.7s\n", + "377:\tlearn: 15745624.1380163\ttotal: 7.71s\tremaining: 12.7s\n", + "378:\tlearn: 15744096.9300078\ttotal: 7.73s\tremaining: 12.7s\n", + "379:\tlearn: 15742874.3850591\ttotal: 7.75s\tremaining: 12.6s\n", + "380:\tlearn: 15733524.5241015\ttotal: 7.77s\tremaining: 12.6s\n", + "381:\tlearn: 15732270.9170805\ttotal: 7.79s\tremaining: 12.6s\n", + "382:\tlearn: 15719725.8632121\ttotal: 7.81s\tremaining: 12.6s\n", + "383:\tlearn: 15719230.3528365\ttotal: 7.83s\tremaining: 12.6s\n", + "384:\tlearn: 15676373.5724698\ttotal: 7.84s\tremaining: 12.5s\n", + "385:\tlearn: 15671887.7149678\ttotal: 7.87s\tremaining: 12.5s\n", + "386:\tlearn: 15670551.0130636\ttotal: 7.88s\tremaining: 12.5s\n", + "387:\tlearn: 15670425.5008512\ttotal: 7.9s\tremaining: 12.5s\n", + "388:\tlearn: 15669002.2342788\ttotal: 7.92s\tremaining: 12.4s\n", + "389:\tlearn: 15658431.6652457\ttotal: 7.94s\tremaining: 12.4s\n", + "390:\tlearn: 15652471.3699308\ttotal: 7.96s\tremaining: 12.4s\n", + "391:\tlearn: 15651498.0813307\ttotal: 7.98s\tremaining: 12.4s\n", + "392:\tlearn: 15651135.3309948\ttotal: 8s\tremaining: 12.4s\n", + "393:\tlearn: 15650319.0160971\ttotal: 8.02s\tremaining: 12.3s\n", + "394:\tlearn: 15623676.9804036\ttotal: 8.04s\tremaining: 12.3s\n", + "395:\tlearn: 15623224.1380220\ttotal: 8.06s\tremaining: 12.3s\n", + "396:\tlearn: 15623121.3090365\ttotal: 8.07s\tremaining: 12.3s\n", + "397:\tlearn: 15623023.2887270\ttotal: 8.09s\tremaining: 12.2s\n", + "398:\tlearn: 15622927.4120694\ttotal: 8.11s\tremaining: 12.2s\n", + "399:\tlearn: 15609221.8376412\ttotal: 8.13s\tremaining: 12.2s\n", + "400:\tlearn: 15608322.7052502\ttotal: 8.15s\tremaining: 12.2s\n", + "401:\tlearn: 15584384.0903136\ttotal: 8.17s\tremaining: 12.1s\n", + "402:\tlearn: 15583221.7488379\ttotal: 8.19s\tremaining: 12.1s\n", + "403:\tlearn: 15582377.4877972\ttotal: 8.2s\tremaining: 12.1s\n", + "404:\tlearn: 15582017.7231803\ttotal: 8.23s\tremaining: 12.1s\n", + "405:\tlearn: 15576732.9317645\ttotal: 8.24s\tremaining: 12.1s\n", + "406:\tlearn: 15574973.9524782\ttotal: 8.26s\tremaining: 12s\n", + "407:\tlearn: 15564448.9029698\ttotal: 8.28s\tremaining: 12s\n", + "408:\tlearn: 15543394.5508652\ttotal: 8.3s\tremaining: 12s\n", + "409:\tlearn: 15534527.8559499\ttotal: 8.32s\tremaining: 12s\n", + "410:\tlearn: 15530876.5817135\ttotal: 8.34s\tremaining: 11.9s\n", + "411:\tlearn: 15530436.2178164\ttotal: 8.35s\tremaining: 11.9s\n", + "412:\tlearn: 15508718.2497187\ttotal: 8.37s\tremaining: 11.9s\n", + "413:\tlearn: 15508312.0517832\ttotal: 8.39s\tremaining: 11.9s\n", + "414:\tlearn: 15497587.2325260\ttotal: 8.41s\tremaining: 11.9s\n", + "415:\tlearn: 15496501.5231033\ttotal: 8.43s\tremaining: 11.8s\n", + "416:\tlearn: 15495748.9679620\ttotal: 8.44s\tremaining: 11.8s\n", + "417:\tlearn: 15495493.0983923\ttotal: 8.46s\tremaining: 11.8s\n", + "418:\tlearn: 15495157.7485844\ttotal: 8.48s\tremaining: 11.8s\n", + "419:\tlearn: 15494761.4867226\ttotal: 8.49s\tremaining: 11.7s\n", + "420:\tlearn: 15476869.5579718\ttotal: 8.52s\tremaining: 11.7s\n", + "421:\tlearn: 15476568.3211614\ttotal: 8.54s\tremaining: 11.7s\n", + "422:\tlearn: 15457053.1662726\ttotal: 8.56s\tremaining: 11.7s\n", + "423:\tlearn: 15454248.0587157\ttotal: 8.58s\tremaining: 11.7s\n", + "424:\tlearn: 15453981.7021927\ttotal: 8.6s\tremaining: 11.6s\n", + "425:\tlearn: 15445132.0573074\ttotal: 8.62s\tremaining: 11.6s\n", + "426:\tlearn: 15444808.9479642\ttotal: 8.64s\tremaining: 11.6s\n", + "427:\tlearn: 15443874.8831344\ttotal: 8.65s\tremaining: 11.6s\n", + "428:\tlearn: 15425719.7215241\ttotal: 8.67s\tremaining: 11.5s\n", + "429:\tlearn: 15407994.7740128\ttotal: 8.69s\tremaining: 11.5s\n", + "430:\tlearn: 15398613.7193006\ttotal: 8.72s\tremaining: 11.5s\n", + "431:\tlearn: 15398242.2656151\ttotal: 8.73s\tremaining: 11.5s\n", + "432:\tlearn: 15396326.0844633\ttotal: 8.75s\tremaining: 11.5s\n", + "433:\tlearn: 15396117.7697572\ttotal: 8.76s\tremaining: 11.4s\n", + "434:\tlearn: 15394399.1314246\ttotal: 8.78s\tremaining: 11.4s\n", + "435:\tlearn: 15394033.3822923\ttotal: 8.8s\tremaining: 11.4s\n", + "436:\tlearn: 15390957.2266817\ttotal: 8.82s\tremaining: 11.4s\n", + "437:\tlearn: 15382395.8217422\ttotal: 8.84s\tremaining: 11.3s\n", + "438:\tlearn: 15365582.8921318\ttotal: 8.87s\tremaining: 11.3s\n", + "439:\tlearn: 15364963.5068288\ttotal: 8.88s\tremaining: 11.3s\n", + "440:\tlearn: 15361146.0696731\ttotal: 8.91s\tremaining: 11.3s\n", + "441:\tlearn: 15360088.6108971\ttotal: 8.93s\tremaining: 11.3s\n", + "442:\tlearn: 15358099.3599881\ttotal: 8.95s\tremaining: 11.2s\n", + "443:\tlearn: 15357486.6853299\ttotal: 8.96s\tremaining: 11.2s\n", + "444:\tlearn: 15357164.2756586\ttotal: 8.98s\tremaining: 11.2s\n", + "445:\tlearn: 15356822.8743038\ttotal: 8.99s\tremaining: 11.2s\n", + "446:\tlearn: 15344640.3766766\ttotal: 9.02s\tremaining: 11.2s\n", + "447:\tlearn: 15334858.3266831\ttotal: 9.04s\tremaining: 11.1s\n", + "448:\tlearn: 15309546.1099028\ttotal: 9.06s\tremaining: 11.1s\n", + "449:\tlearn: 15309027.9299073\ttotal: 9.08s\tremaining: 11.1s\n", + "450:\tlearn: 15307537.2549447\ttotal: 9.1s\tremaining: 11.1s\n", + "451:\tlearn: 15307029.7535768\ttotal: 9.11s\tremaining: 11s\n", + "452:\tlearn: 15306746.7683229\ttotal: 9.13s\tremaining: 11s\n", + "453:\tlearn: 15305123.1900217\ttotal: 9.14s\tremaining: 11s\n", + "454:\tlearn: 15295824.5259009\ttotal: 9.16s\tremaining: 11s\n", + "455:\tlearn: 15290559.5079922\ttotal: 9.18s\tremaining: 11s\n", + "456:\tlearn: 15289236.3362428\ttotal: 9.2s\tremaining: 10.9s\n", + "457:\tlearn: 15285680.8241152\ttotal: 9.23s\tremaining: 10.9s\n", + "458:\tlearn: 15276859.6343040\ttotal: 9.24s\tremaining: 10.9s\n", + "459:\tlearn: 15275894.2453187\ttotal: 9.26s\tremaining: 10.9s\n", + "460:\tlearn: 15271709.8818145\ttotal: 9.28s\tremaining: 10.9s\n", + "461:\tlearn: 15271188.8035764\ttotal: 9.3s\tremaining: 10.8s\n", + "462:\tlearn: 15267899.4071259\ttotal: 9.32s\tremaining: 10.8s\n", + "463:\tlearn: 15267657.0601824\ttotal: 9.33s\tremaining: 10.8s\n", + "464:\tlearn: 15237652.9178159\ttotal: 9.35s\tremaining: 10.8s\n", + "465:\tlearn: 15229269.3743958\ttotal: 9.37s\tremaining: 10.7s\n", + "466:\tlearn: 15228949.2022209\ttotal: 9.38s\tremaining: 10.7s\n", + "467:\tlearn: 15228708.7243314\ttotal: 9.4s\tremaining: 10.7s\n", + "468:\tlearn: 15228104.4976588\ttotal: 9.42s\tremaining: 10.7s\n", + "469:\tlearn: 15220454.4378489\ttotal: 9.44s\tremaining: 10.6s\n", + "470:\tlearn: 15218384.6387816\ttotal: 9.46s\tremaining: 10.6s\n", + "471:\tlearn: 15207740.8458334\ttotal: 9.48s\tremaining: 10.6s\n", + "472:\tlearn: 15188696.0366634\ttotal: 9.5s\tremaining: 10.6s\n", + "473:\tlearn: 15187194.3517643\ttotal: 9.52s\tremaining: 10.6s\n", + "474:\tlearn: 15181425.0998155\ttotal: 9.54s\tremaining: 10.5s\n", + "475:\tlearn: 15175973.9576126\ttotal: 9.56s\tremaining: 10.5s\n", + "476:\tlearn: 15175836.7822360\ttotal: 9.58s\tremaining: 10.5s\n", + "477:\tlearn: 15161401.1824127\ttotal: 9.6s\tremaining: 10.5s\n", + "478:\tlearn: 15153175.3872623\ttotal: 9.62s\tremaining: 10.5s\n", + "479:\tlearn: 15150675.0588374\ttotal: 9.64s\tremaining: 10.4s\n", + "480:\tlearn: 15125191.0312629\ttotal: 9.66s\tremaining: 10.4s\n", + "481:\tlearn: 15124142.4843150\ttotal: 9.68s\tremaining: 10.4s\n", + "482:\tlearn: 15113727.7397332\ttotal: 9.7s\tremaining: 10.4s\n", + "483:\tlearn: 15113631.2944187\ttotal: 9.71s\tremaining: 10.4s\n", + "484:\tlearn: 15112144.2828101\ttotal: 9.73s\tremaining: 10.3s\n", + "485:\tlearn: 15104136.3121881\ttotal: 9.75s\tremaining: 10.3s\n", + "486:\tlearn: 15101260.1405676\ttotal: 9.76s\tremaining: 10.3s\n", + "487:\tlearn: 15100486.1242395\ttotal: 9.78s\tremaining: 10.3s\n", + "488:\tlearn: 15087634.4821946\ttotal: 9.8s\tremaining: 10.2s\n", + "489:\tlearn: 15087440.2245165\ttotal: 9.82s\tremaining: 10.2s\n", + "490:\tlearn: 15086512.4354190\ttotal: 9.84s\tremaining: 10.2s\n", + "491:\tlearn: 15086303.4626980\ttotal: 9.86s\tremaining: 10.2s\n", + "492:\tlearn: 15085311.6786629\ttotal: 9.87s\tremaining: 10.2s\n", + "493:\tlearn: 15084910.4748658\ttotal: 9.89s\tremaining: 10.1s\n", + "494:\tlearn: 15084117.3189372\ttotal: 9.91s\tremaining: 10.1s\n", + "495:\tlearn: 15083173.0721914\ttotal: 9.93s\tremaining: 10.1s\n", + "496:\tlearn: 15083050.9104097\ttotal: 9.95s\tremaining: 10.1s\n", + "497:\tlearn: 15082864.4673084\ttotal: 9.96s\tremaining: 10s\n", + "498:\tlearn: 15080381.3453750\ttotal: 9.98s\tremaining: 10s\n", + "499:\tlearn: 15080168.5694770\ttotal: 9.99s\tremaining: 9.99s\n", + "500:\tlearn: 15078324.0060394\ttotal: 10s\tremaining: 9.97s\n", + "501:\tlearn: 15056755.6274416\ttotal: 10s\tremaining: 9.95s\n", + "502:\tlearn: 15042382.2129683\ttotal: 10.1s\tremaining: 9.94s\n", + "503:\tlearn: 15026820.6795480\ttotal: 10.1s\tremaining: 9.92s\n", + "504:\tlearn: 15024745.0307165\ttotal: 10.1s\tremaining: 9.9s\n", + "505:\tlearn: 15024568.7525820\ttotal: 10.1s\tremaining: 9.87s\n", + "506:\tlearn: 15024336.2234656\ttotal: 10.1s\tremaining: 9.85s\n", + "507:\tlearn: 15023422.4830957\ttotal: 10.1s\tremaining: 9.83s\n", + "508:\tlearn: 15023240.8907292\ttotal: 10.2s\tremaining: 9.8s\n", + "509:\tlearn: 15022616.1932522\ttotal: 10.2s\tremaining: 9.78s\n", + "510:\tlearn: 15022376.1992724\ttotal: 10.2s\tremaining: 9.76s\n", + "511:\tlearn: 15022278.6413562\ttotal: 10.2s\tremaining: 9.74s\n", + "512:\tlearn: 15004327.6956801\ttotal: 10.2s\tremaining: 9.72s\n", + "513:\tlearn: 15003257.9686608\ttotal: 10.3s\tremaining: 9.69s\n", + "514:\tlearn: 14990786.3446388\ttotal: 10.3s\tremaining: 9.68s\n", + "515:\tlearn: 14990443.3344833\ttotal: 10.3s\tremaining: 9.65s\n", + "516:\tlearn: 14990121.8336965\ttotal: 10.3s\tremaining: 9.63s\n", + "517:\tlearn: 14989690.9644545\ttotal: 10.3s\tremaining: 9.61s\n", + "518:\tlearn: 14989542.6281186\ttotal: 10.3s\tremaining: 9.58s\n", + "519:\tlearn: 14989263.7455940\ttotal: 10.4s\tremaining: 9.56s\n", + "520:\tlearn: 14989009.4488058\ttotal: 10.4s\tremaining: 9.54s\n", + "521:\tlearn: 14987311.9040697\ttotal: 10.4s\tremaining: 9.52s\n", + "522:\tlearn: 14986317.7528784\ttotal: 10.4s\tremaining: 9.49s\n", + "523:\tlearn: 14985961.1745765\ttotal: 10.4s\tremaining: 9.47s\n", + "524:\tlearn: 14968328.3342953\ttotal: 10.4s\tremaining: 9.45s\n", + "525:\tlearn: 14962501.6277491\ttotal: 10.5s\tremaining: 9.43s\n", + "526:\tlearn: 14942891.6903938\ttotal: 10.5s\tremaining: 9.41s\n", + "527:\tlearn: 14942347.7961868\ttotal: 10.5s\tremaining: 9.39s\n", + "528:\tlearn: 14934661.6369111\ttotal: 10.5s\tremaining: 9.37s\n", + "529:\tlearn: 14934441.0003035\ttotal: 10.5s\tremaining: 9.35s\n", + "530:\tlearn: 14931641.8082484\ttotal: 10.6s\tremaining: 9.33s\n", + "531:\tlearn: 14930520.1388588\ttotal: 10.6s\tremaining: 9.31s\n", + "532:\tlearn: 14929412.0007072\ttotal: 10.6s\tremaining: 9.29s\n", + "533:\tlearn: 14915426.1594625\ttotal: 10.6s\tremaining: 9.27s\n", + "534:\tlearn: 14904596.5361540\ttotal: 10.6s\tremaining: 9.26s\n", + "535:\tlearn: 14890185.4475504\ttotal: 10.7s\tremaining: 9.24s\n", + "536:\tlearn: 14886779.6625443\ttotal: 10.7s\tremaining: 9.22s\n", + "537:\tlearn: 14876751.8448602\ttotal: 10.7s\tremaining: 9.2s\n", + "538:\tlearn: 14876547.3177551\ttotal: 10.7s\tremaining: 9.18s\n", + "539:\tlearn: 14875843.9123383\ttotal: 10.8s\tremaining: 9.17s\n", + "540:\tlearn: 14875635.6509434\ttotal: 10.8s\tremaining: 9.15s\n", + "541:\tlearn: 14874902.7520310\ttotal: 10.8s\tremaining: 9.13s\n", + "542:\tlearn: 14859983.2972329\ttotal: 10.8s\tremaining: 9.12s\n", + "543:\tlearn: 14859037.2857669\ttotal: 10.8s\tremaining: 9.09s\n", + "544:\tlearn: 14858735.3241348\ttotal: 10.9s\tremaining: 9.07s\n", + "545:\tlearn: 14858447.8254575\ttotal: 10.9s\tremaining: 9.05s\n", + "546:\tlearn: 14858039.6683507\ttotal: 10.9s\tremaining: 9.03s\n", + "547:\tlearn: 14855695.5721103\ttotal: 10.9s\tremaining: 9.01s\n", + "548:\tlearn: 14855414.9960052\ttotal: 10.9s\tremaining: 8.98s\n", + "549:\tlearn: 14842814.4427164\ttotal: 11s\tremaining: 8.96s\n", + "550:\tlearn: 14835564.3391437\ttotal: 11s\tremaining: 8.94s\n", + "551:\tlearn: 14819577.7196652\ttotal: 11s\tremaining: 8.92s\n", + "552:\tlearn: 14819455.2265537\ttotal: 11s\tremaining: 8.9s\n", + "553:\tlearn: 14806899.3496044\ttotal: 11s\tremaining: 8.88s\n", + "554:\tlearn: 14773549.6793954\ttotal: 11.1s\tremaining: 8.86s\n", + "555:\tlearn: 14769089.4691329\ttotal: 11.1s\tremaining: 8.85s\n", + "556:\tlearn: 14759669.5852017\ttotal: 11.1s\tremaining: 8.83s\n", + "557:\tlearn: 14752711.4885984\ttotal: 11.1s\tremaining: 8.81s\n", + "558:\tlearn: 14752461.2596739\ttotal: 11.1s\tremaining: 8.78s\n", + "559:\tlearn: 14745918.7043695\ttotal: 11.2s\tremaining: 8.76s\n", + "560:\tlearn: 14736330.8545338\ttotal: 11.2s\tremaining: 8.74s\n", + "561:\tlearn: 14735421.4083610\ttotal: 11.2s\tremaining: 8.72s\n", + "562:\tlearn: 14734938.2732989\ttotal: 11.2s\tremaining: 8.7s\n", + "563:\tlearn: 14734447.1224459\ttotal: 11.2s\tremaining: 8.67s\n", + "564:\tlearn: 14726118.5713267\ttotal: 11.2s\tremaining: 8.65s\n", + "565:\tlearn: 14719546.1823157\ttotal: 11.3s\tremaining: 8.64s\n", + "566:\tlearn: 14709567.4599738\ttotal: 11.3s\tremaining: 8.62s\n", + "567:\tlearn: 14694027.9597995\ttotal: 11.3s\tremaining: 8.6s\n", + "568:\tlearn: 14693692.9986164\ttotal: 11.3s\tremaining: 8.58s\n", + "569:\tlearn: 14693561.9187439\ttotal: 11.3s\tremaining: 8.55s\n", + "570:\tlearn: 14693442.0160345\ttotal: 11.3s\tremaining: 8.53s\n", + "571:\tlearn: 14692737.3364226\ttotal: 11.4s\tremaining: 8.51s\n", + "572:\tlearn: 14692137.5271357\ttotal: 11.4s\tremaining: 8.49s\n", + "573:\tlearn: 14691530.7388111\ttotal: 11.4s\tremaining: 8.46s\n", + "574:\tlearn: 14691029.8955245\ttotal: 11.4s\tremaining: 8.44s\n", + "575:\tlearn: 14690818.7607646\ttotal: 11.4s\tremaining: 8.42s\n", + "576:\tlearn: 14681703.1018489\ttotal: 11.5s\tremaining: 8.4s\n", + "577:\tlearn: 14680949.4082557\ttotal: 11.5s\tremaining: 8.38s\n", + "578:\tlearn: 14676048.4086374\ttotal: 11.5s\tremaining: 8.36s\n", + "579:\tlearn: 14675589.1077203\ttotal: 11.5s\tremaining: 8.34s\n", + "580:\tlearn: 14671195.7882485\ttotal: 11.5s\tremaining: 8.32s\n", + "581:\tlearn: 14670480.8296800\ttotal: 11.6s\tremaining: 8.3s\n", + "582:\tlearn: 14654727.4539384\ttotal: 11.6s\tremaining: 8.28s\n", + "583:\tlearn: 14639429.1254808\ttotal: 11.6s\tremaining: 8.26s\n", + "584:\tlearn: 14633852.7201094\ttotal: 11.6s\tremaining: 8.24s\n", + "585:\tlearn: 14633703.6960294\ttotal: 11.6s\tremaining: 8.22s\n", + "586:\tlearn: 14624412.9464839\ttotal: 11.7s\tremaining: 8.2s\n", + "587:\tlearn: 14618972.8317531\ttotal: 11.7s\tremaining: 8.18s\n", + "588:\tlearn: 14616486.0209931\ttotal: 11.7s\tremaining: 8.16s\n", + "589:\tlearn: 14615131.0944873\ttotal: 11.7s\tremaining: 8.14s\n", + "590:\tlearn: 14613962.8427238\ttotal: 11.7s\tremaining: 8.12s\n", + "591:\tlearn: 14613842.5042162\ttotal: 11.7s\tremaining: 8.1s\n", + "592:\tlearn: 14607367.4815511\ttotal: 11.8s\tremaining: 8.08s\n", + "593:\tlearn: 14595899.0274001\ttotal: 11.8s\tremaining: 8.06s\n", + "594:\tlearn: 14581493.5554420\ttotal: 11.8s\tremaining: 8.04s\n", + "595:\tlearn: 14569978.9787320\ttotal: 11.8s\tremaining: 8.02s\n", + "596:\tlearn: 14567790.5291056\ttotal: 11.8s\tremaining: 8s\n", + "597:\tlearn: 14565382.7120784\ttotal: 11.9s\tremaining: 7.98s\n", + "598:\tlearn: 14563687.4847174\ttotal: 11.9s\tremaining: 7.96s\n", + "599:\tlearn: 14560814.4487806\ttotal: 11.9s\tremaining: 7.94s\n", + "600:\tlearn: 14560701.1190891\ttotal: 11.9s\tremaining: 7.92s\n", + "601:\tlearn: 14559812.7564715\ttotal: 11.9s\tremaining: 7.89s\n", + "602:\tlearn: 14551099.3396330\ttotal: 12s\tremaining: 7.87s\n", + "603:\tlearn: 14543008.3301129\ttotal: 12s\tremaining: 7.85s\n", + "604:\tlearn: 14538512.1145981\ttotal: 12s\tremaining: 7.83s\n", + "605:\tlearn: 14524779.0889213\ttotal: 12s\tremaining: 7.82s\n", + "606:\tlearn: 14524617.6849148\ttotal: 12s\tremaining: 7.8s\n", + "607:\tlearn: 14511616.4568623\ttotal: 12.1s\tremaining: 7.78s\n", + "608:\tlearn: 14511232.8044844\ttotal: 12.1s\tremaining: 7.76s\n", + "609:\tlearn: 14511060.2609313\ttotal: 12.1s\tremaining: 7.74s\n", + "610:\tlearn: 14479396.7266039\ttotal: 12.1s\tremaining: 7.72s\n", + "611:\tlearn: 14473120.4120408\ttotal: 12.1s\tremaining: 7.7s\n", + "612:\tlearn: 14472716.0504790\ttotal: 12.2s\tremaining: 7.68s\n", + "613:\tlearn: 14471477.4257026\ttotal: 12.2s\tremaining: 7.66s\n", + "614:\tlearn: 14465162.0927641\ttotal: 12.2s\tremaining: 7.64s\n", + "615:\tlearn: 14450476.2512675\ttotal: 12.2s\tremaining: 7.62s\n", + "616:\tlearn: 14441209.0170320\ttotal: 12.2s\tremaining: 7.6s\n", + "617:\tlearn: 14436956.0584123\ttotal: 12.3s\tremaining: 7.58s\n", + "618:\tlearn: 14428404.3865433\ttotal: 12.3s\tremaining: 7.56s\n", + "619:\tlearn: 14428240.6940479\ttotal: 12.3s\tremaining: 7.54s\n", + "620:\tlearn: 14426072.4923693\ttotal: 12.3s\tremaining: 7.52s\n", + "621:\tlearn: 14425962.6965766\ttotal: 12.3s\tremaining: 7.5s\n", + "622:\tlearn: 14425800.7502365\ttotal: 12.4s\tremaining: 7.47s\n", + "623:\tlearn: 14425596.9394628\ttotal: 12.4s\tremaining: 7.45s\n", + "624:\tlearn: 14425425.0487104\ttotal: 12.4s\tremaining: 7.43s\n", + "625:\tlearn: 14424623.9312247\ttotal: 12.4s\tremaining: 7.41s\n", + "626:\tlearn: 14424381.6428818\ttotal: 12.4s\tremaining: 7.39s\n", + "627:\tlearn: 14424300.2618762\ttotal: 12.4s\tremaining: 7.37s\n", + "628:\tlearn: 14423658.2257666\ttotal: 12.5s\tremaining: 7.34s\n", + "629:\tlearn: 14423367.1811322\ttotal: 12.5s\tremaining: 7.32s\n", + "630:\tlearn: 14422983.6379172\ttotal: 12.5s\tremaining: 7.3s\n", + "631:\tlearn: 14419256.4088209\ttotal: 12.5s\tremaining: 7.29s\n", + "632:\tlearn: 14417950.8214231\ttotal: 12.5s\tremaining: 7.27s\n", + "633:\tlearn: 14417585.5655445\ttotal: 12.6s\tremaining: 7.25s\n", + "634:\tlearn: 14417285.4725608\ttotal: 12.6s\tremaining: 7.23s\n", + "635:\tlearn: 14411450.5385767\ttotal: 12.6s\tremaining: 7.21s\n", + "636:\tlearn: 14410705.4825797\ttotal: 12.6s\tremaining: 7.19s\n", + "637:\tlearn: 14402850.1386270\ttotal: 12.6s\tremaining: 7.17s\n", + "638:\tlearn: 14394505.5011945\ttotal: 12.7s\tremaining: 7.15s\n", + "639:\tlearn: 14389880.7745743\ttotal: 12.7s\tremaining: 7.13s\n", + "640:\tlearn: 14377444.1374488\ttotal: 12.7s\tremaining: 7.11s\n", + "641:\tlearn: 14377195.5387020\ttotal: 12.7s\tremaining: 7.09s\n", + "642:\tlearn: 14376865.8516819\ttotal: 12.7s\tremaining: 7.07s\n", + "643:\tlearn: 14376087.6875871\ttotal: 12.7s\tremaining: 7.04s\n", + "644:\tlearn: 14370960.0957715\ttotal: 12.8s\tremaining: 7.03s\n", + "645:\tlearn: 14335061.7135929\ttotal: 12.8s\tremaining: 7.01s\n", + "646:\tlearn: 14333517.2675055\ttotal: 12.8s\tremaining: 6.99s\n", + "647:\tlearn: 14332926.4750268\ttotal: 12.8s\tremaining: 6.97s\n", + "648:\tlearn: 14326885.6760510\ttotal: 12.9s\tremaining: 6.95s\n", + "649:\tlearn: 14319019.0801501\ttotal: 12.9s\tremaining: 6.93s\n", + "650:\tlearn: 14311067.4550712\ttotal: 12.9s\tremaining: 6.92s\n", + "651:\tlearn: 14310524.2181344\ttotal: 12.9s\tremaining: 6.9s\n", + "652:\tlearn: 14306662.6889616\ttotal: 12.9s\tremaining: 6.88s\n", + "653:\tlearn: 14306620.9494302\ttotal: 13s\tremaining: 6.86s\n", + "654:\tlearn: 14299409.9997647\ttotal: 13s\tremaining: 6.84s\n", + "655:\tlearn: 14291944.1281620\ttotal: 13s\tremaining: 6.82s\n", + "656:\tlearn: 14287581.3648732\ttotal: 13s\tremaining: 6.8s\n", + "657:\tlearn: 14284339.1795952\ttotal: 13s\tremaining: 6.78s\n", + "658:\tlearn: 14277508.6533752\ttotal: 13.1s\tremaining: 6.76s\n", + "659:\tlearn: 14276678.1578443\ttotal: 13.1s\tremaining: 6.74s\n", + "660:\tlearn: 14275723.1778056\ttotal: 13.1s\tremaining: 6.72s\n", + "661:\tlearn: 14275270.1651625\ttotal: 13.1s\tremaining: 6.7s\n", + "662:\tlearn: 14266913.2486421\ttotal: 13.1s\tremaining: 6.67s\n", + "663:\tlearn: 14266545.0175669\ttotal: 13.1s\tremaining: 6.65s\n", + "664:\tlearn: 14233391.6468042\ttotal: 13.2s\tremaining: 6.63s\n", + "665:\tlearn: 14233247.5294223\ttotal: 13.2s\tremaining: 6.62s\n", + "666:\tlearn: 14229273.4180518\ttotal: 13.2s\tremaining: 6.59s\n", + "667:\tlearn: 14229079.1897143\ttotal: 13.2s\tremaining: 6.57s\n", + "668:\tlearn: 14221641.5929433\ttotal: 13.2s\tremaining: 6.55s\n", + "669:\tlearn: 14221550.9286433\ttotal: 13.3s\tremaining: 6.53s\n", + "670:\tlearn: 14216689.3069859\ttotal: 13.3s\tremaining: 6.51s\n", + "671:\tlearn: 14209543.5584520\ttotal: 13.3s\tremaining: 6.49s\n", + "672:\tlearn: 14202612.4178331\ttotal: 13.3s\tremaining: 6.47s\n", + "673:\tlearn: 14172077.7613748\ttotal: 13.3s\tremaining: 6.46s\n", + "674:\tlearn: 14171162.6718566\ttotal: 13.4s\tremaining: 6.44s\n", + "675:\tlearn: 14170808.6487783\ttotal: 13.4s\tremaining: 6.42s\n", + "676:\tlearn: 14169776.8913464\ttotal: 13.4s\tremaining: 6.4s\n", + "677:\tlearn: 14169502.2201892\ttotal: 13.4s\tremaining: 6.38s\n", + "678:\tlearn: 14169400.6557676\ttotal: 13.4s\tremaining: 6.36s\n", + "679:\tlearn: 14169091.1534075\ttotal: 13.5s\tremaining: 6.33s\n", + "680:\tlearn: 14155284.1836303\ttotal: 13.5s\tremaining: 6.31s\n", + "681:\tlearn: 14151372.7789899\ttotal: 13.5s\tremaining: 6.29s\n", + "682:\tlearn: 14151116.1785403\ttotal: 13.5s\tremaining: 6.27s\n", + "683:\tlearn: 14143570.0998262\ttotal: 13.5s\tremaining: 6.25s\n", + "684:\tlearn: 14143402.2361827\ttotal: 13.6s\tremaining: 6.23s\n", + "685:\tlearn: 14142685.0144028\ttotal: 13.6s\tremaining: 6.21s\n", + "686:\tlearn: 14142429.1239136\ttotal: 13.6s\tremaining: 6.19s\n", + "687:\tlearn: 14141516.7840252\ttotal: 13.6s\tremaining: 6.17s\n", + "688:\tlearn: 14141303.6839720\ttotal: 13.6s\tremaining: 6.15s\n", + "689:\tlearn: 14141063.6576353\ttotal: 13.6s\tremaining: 6.13s\n", + "690:\tlearn: 14140704.6119570\ttotal: 13.7s\tremaining: 6.11s\n", + "691:\tlearn: 14140169.1508485\ttotal: 13.7s\tremaining: 6.09s\n", + "692:\tlearn: 14139962.7510552\ttotal: 13.7s\tremaining: 6.07s\n", + "693:\tlearn: 14139698.0396403\ttotal: 13.7s\tremaining: 6.04s\n", + "694:\tlearn: 14126587.3299292\ttotal: 13.7s\tremaining: 6.03s\n", + "695:\tlearn: 14098439.5247326\ttotal: 13.8s\tremaining: 6.01s\n", + "696:\tlearn: 14092413.9670173\ttotal: 13.8s\tremaining: 5.99s\n", + "697:\tlearn: 14091976.7326058\ttotal: 13.8s\tremaining: 5.97s\n", + "698:\tlearn: 14066081.2809070\ttotal: 13.8s\tremaining: 5.95s\n", + "699:\tlearn: 14065657.9655402\ttotal: 13.8s\tremaining: 5.93s\n", + "700:\tlearn: 14065056.3116360\ttotal: 13.9s\tremaining: 5.91s\n", + "701:\tlearn: 14063060.5479925\ttotal: 13.9s\tremaining: 5.89s\n", + "702:\tlearn: 14055416.6213175\ttotal: 13.9s\tremaining: 5.87s\n", + "703:\tlearn: 14054788.4400664\ttotal: 13.9s\tremaining: 5.85s\n", + "704:\tlearn: 14054567.1177084\ttotal: 13.9s\tremaining: 5.83s\n", + "705:\tlearn: 14047841.2592422\ttotal: 13.9s\tremaining: 5.81s\n", + "706:\tlearn: 14041942.7637161\ttotal: 14s\tremaining: 5.79s\n", + "707:\tlearn: 14032003.1913976\ttotal: 14s\tremaining: 5.77s\n", + "708:\tlearn: 14031541.3957558\ttotal: 14s\tremaining: 5.75s\n", + "709:\tlearn: 14031381.0858530\ttotal: 14s\tremaining: 5.72s\n", + "710:\tlearn: 14031307.4373230\ttotal: 14s\tremaining: 5.7s\n", + "711:\tlearn: 14031104.5109335\ttotal: 14s\tremaining: 5.68s\n", + "712:\tlearn: 14031079.4384099\ttotal: 14.1s\tremaining: 5.66s\n", + "713:\tlearn: 14025939.8399957\ttotal: 14.1s\tremaining: 5.64s\n", + "714:\tlearn: 14025576.6473374\ttotal: 14.1s\tremaining: 5.62s\n", + "715:\tlearn: 14021357.5621778\ttotal: 14.1s\tremaining: 5.6s\n", + "716:\tlearn: 14010970.1733229\ttotal: 14.1s\tremaining: 5.58s\n", + "717:\tlearn: 14005353.8685640\ttotal: 14.2s\tremaining: 5.56s\n", + "718:\tlearn: 14002594.5921397\ttotal: 14.2s\tremaining: 5.54s\n", + "719:\tlearn: 13996198.0652146\ttotal: 14.2s\tremaining: 5.52s\n", + "720:\tlearn: 13995827.6286278\ttotal: 14.2s\tremaining: 5.5s\n", + "721:\tlearn: 13995625.1482069\ttotal: 14.2s\tremaining: 5.48s\n", + "722:\tlearn: 13988390.1767698\ttotal: 14.3s\tremaining: 5.46s\n", + "723:\tlearn: 13988033.4042234\ttotal: 14.3s\tremaining: 5.44s\n", + "724:\tlearn: 13987705.1114549\ttotal: 14.3s\tremaining: 5.42s\n", + "725:\tlearn: 13987572.7496949\ttotal: 14.3s\tremaining: 5.4s\n", + "726:\tlearn: 13975549.2973251\ttotal: 14.3s\tremaining: 5.38s\n", + "727:\tlearn: 13975497.6102345\ttotal: 14.3s\tremaining: 5.36s\n", + "728:\tlearn: 13974565.7941638\ttotal: 14.4s\tremaining: 5.34s\n", + "729:\tlearn: 13974089.3687881\ttotal: 14.4s\tremaining: 5.32s\n", + "730:\tlearn: 13973918.3603598\ttotal: 14.4s\tremaining: 5.3s\n", + "731:\tlearn: 13973640.7407537\ttotal: 14.4s\tremaining: 5.28s\n", + "732:\tlearn: 13973544.9664352\ttotal: 14.4s\tremaining: 5.26s\n", + "733:\tlearn: 13973335.5730618\ttotal: 14.5s\tremaining: 5.24s\n", + "734:\tlearn: 13973314.6886931\ttotal: 14.5s\tremaining: 5.22s\n", + "735:\tlearn: 13973147.6337343\ttotal: 14.5s\tremaining: 5.2s\n", + "736:\tlearn: 13971840.2578089\ttotal: 14.5s\tremaining: 5.18s\n", + "737:\tlearn: 13971217.9164376\ttotal: 14.5s\tremaining: 5.16s\n", + "738:\tlearn: 13971169.2519933\ttotal: 14.6s\tremaining: 5.14s\n", + "739:\tlearn: 13970958.9393172\ttotal: 14.6s\tremaining: 5.12s\n", + "740:\tlearn: 13970812.3031235\ttotal: 14.6s\tremaining: 5.1s\n", + "741:\tlearn: 13970614.0036168\ttotal: 14.6s\tremaining: 5.08s\n", + "742:\tlearn: 13970368.1657139\ttotal: 14.6s\tremaining: 5.06s\n", + "743:\tlearn: 13969808.4623390\ttotal: 14.6s\tremaining: 5.04s\n", + "744:\tlearn: 13969753.8877122\ttotal: 14.7s\tremaining: 5.02s\n", + "745:\tlearn: 13964356.3635191\ttotal: 14.7s\tremaining: 5s\n", + "746:\tlearn: 13964236.8387923\ttotal: 14.7s\tremaining: 4.98s\n", + "747:\tlearn: 13960803.9188307\ttotal: 14.7s\tremaining: 4.96s\n", + "748:\tlearn: 13960533.2698482\ttotal: 14.7s\tremaining: 4.94s\n", + "749:\tlearn: 13936556.5617582\ttotal: 14.8s\tremaining: 4.92s\n", + "750:\tlearn: 13930527.6037931\ttotal: 14.8s\tremaining: 4.9s\n", + "751:\tlearn: 13908519.4055456\ttotal: 14.8s\tremaining: 4.88s\n", + "752:\tlearn: 13908076.7827156\ttotal: 14.8s\tremaining: 4.86s\n", + "753:\tlearn: 13896619.8772339\ttotal: 14.8s\tremaining: 4.84s\n", + "754:\tlearn: 13896469.8030620\ttotal: 14.9s\tremaining: 4.82s\n", + "755:\tlearn: 13895917.6733027\ttotal: 14.9s\tremaining: 4.8s\n", + "756:\tlearn: 13895914.1925891\ttotal: 14.9s\tremaining: 4.78s\n", + "757:\tlearn: 13895906.5141022\ttotal: 14.9s\tremaining: 4.76s\n", + "758:\tlearn: 13894680.8452164\ttotal: 14.9s\tremaining: 4.74s\n", + "759:\tlearn: 13893900.4048769\ttotal: 14.9s\tremaining: 4.72s\n", + "760:\tlearn: 13893090.1903054\ttotal: 15s\tremaining: 4.7s\n", + "761:\tlearn: 13886422.7563719\ttotal: 15s\tremaining: 4.68s\n", + "762:\tlearn: 13882542.2101709\ttotal: 15s\tremaining: 4.66s\n", + "763:\tlearn: 13876917.9849237\ttotal: 15s\tremaining: 4.64s\n", + "764:\tlearn: 13869154.1279738\ttotal: 15s\tremaining: 4.62s\n", + "765:\tlearn: 13865721.0256688\ttotal: 15.1s\tremaining: 4.6s\n", + "766:\tlearn: 13865325.5531724\ttotal: 15.1s\tremaining: 4.58s\n", + "767:\tlearn: 13864488.0985036\ttotal: 15.1s\tremaining: 4.57s\n", + "768:\tlearn: 13862722.3729616\ttotal: 15.1s\tremaining: 4.55s\n", + "769:\tlearn: 13861558.2772508\ttotal: 15.2s\tremaining: 4.53s\n", + "770:\tlearn: 13855644.6008357\ttotal: 15.2s\tremaining: 4.51s\n", + "771:\tlearn: 13844736.5245748\ttotal: 15.2s\tremaining: 4.49s\n", + "772:\tlearn: 13844053.5084590\ttotal: 15.2s\tremaining: 4.47s\n", + "773:\tlearn: 13843767.6841598\ttotal: 15.2s\tremaining: 4.45s\n", + "774:\tlearn: 13843660.0878431\ttotal: 15.3s\tremaining: 4.43s\n", + "775:\tlearn: 13843519.5656229\ttotal: 15.3s\tremaining: 4.41s\n", + "776:\tlearn: 13842165.9056632\ttotal: 15.3s\tremaining: 4.39s\n", + "777:\tlearn: 13842058.1043917\ttotal: 15.3s\tremaining: 4.37s\n", + "778:\tlearn: 13834683.3005966\ttotal: 15.3s\tremaining: 4.34s\n", + "779:\tlearn: 13824330.7648540\ttotal: 15.3s\tremaining: 4.33s\n", + "780:\tlearn: 13821449.5219745\ttotal: 15.4s\tremaining: 4.31s\n", + "781:\tlearn: 13821357.5962736\ttotal: 15.4s\tremaining: 4.28s\n", + "782:\tlearn: 13814359.1324883\ttotal: 15.4s\tremaining: 4.26s\n", + "783:\tlearn: 13814227.2826089\ttotal: 15.4s\tremaining: 4.24s\n", + "784:\tlearn: 13808325.0086331\ttotal: 15.4s\tremaining: 4.22s\n", + "785:\tlearn: 13808274.8826495\ttotal: 15.4s\tremaining: 4.2s\n", + "786:\tlearn: 13801638.2244459\ttotal: 15.5s\tremaining: 4.18s\n", + "787:\tlearn: 13801419.2751533\ttotal: 15.5s\tremaining: 4.16s\n", + "788:\tlearn: 13801306.5570793\ttotal: 15.5s\tremaining: 4.14s\n", + "789:\tlearn: 13800184.3721073\ttotal: 15.5s\tremaining: 4.12s\n", + "790:\tlearn: 13790356.3064221\ttotal: 15.5s\tremaining: 4.1s\n", + "791:\tlearn: 13790143.8154680\ttotal: 15.6s\tremaining: 4.08s\n", + "792:\tlearn: 13789781.0560736\ttotal: 15.6s\tremaining: 4.06s\n", + "793:\tlearn: 13788151.5387251\ttotal: 15.6s\tremaining: 4.04s\n", + "794:\tlearn: 13787953.6654068\ttotal: 15.6s\tremaining: 4.02s\n", + "795:\tlearn: 13785685.4062468\ttotal: 15.6s\tremaining: 4s\n", + "796:\tlearn: 13784520.1734342\ttotal: 15.7s\tremaining: 3.99s\n", + "797:\tlearn: 13780517.1557671\ttotal: 15.7s\tremaining: 3.97s\n", + "798:\tlearn: 13779711.5747369\ttotal: 15.7s\tremaining: 3.95s\n", + "799:\tlearn: 13778313.2436650\ttotal: 15.7s\tremaining: 3.93s\n", + "800:\tlearn: 13777901.2822639\ttotal: 15.7s\tremaining: 3.91s\n", + "801:\tlearn: 13769185.5397209\ttotal: 15.7s\tremaining: 3.89s\n", + "802:\tlearn: 13769019.3830993\ttotal: 15.8s\tremaining: 3.87s\n", + "803:\tlearn: 13768538.0466150\ttotal: 15.8s\tremaining: 3.85s\n", + "804:\tlearn: 13768454.8685936\ttotal: 15.8s\tremaining: 3.83s\n", + "805:\tlearn: 13768380.6476226\ttotal: 15.8s\tremaining: 3.81s\n", + "806:\tlearn: 13768059.6021701\ttotal: 15.8s\tremaining: 3.79s\n", + "807:\tlearn: 13767932.4589060\ttotal: 15.9s\tremaining: 3.77s\n", + "808:\tlearn: 13767739.9474389\ttotal: 15.9s\tremaining: 3.75s\n", + "809:\tlearn: 13766687.9264105\ttotal: 15.9s\tremaining: 3.73s\n", + "810:\tlearn: 13760378.6609238\ttotal: 15.9s\tremaining: 3.71s\n", + "811:\tlearn: 13756092.6317829\ttotal: 15.9s\tremaining: 3.69s\n", + "812:\tlearn: 13756015.2398990\ttotal: 16s\tremaining: 3.67s\n", + "813:\tlearn: 13755919.0526178\ttotal: 16s\tremaining: 3.65s\n", + "814:\tlearn: 13755811.1990879\ttotal: 16s\tremaining: 3.63s\n", + "815:\tlearn: 13755526.6973763\ttotal: 16s\tremaining: 3.61s\n", + "816:\tlearn: 13755241.5375202\ttotal: 16s\tremaining: 3.59s\n", + "817:\tlearn: 13754829.4717828\ttotal: 16s\tremaining: 3.57s\n", + "818:\tlearn: 13750314.9701585\ttotal: 16.1s\tremaining: 3.55s\n", + "819:\tlearn: 13750081.0895962\ttotal: 16.1s\tremaining: 3.53s\n", + "820:\tlearn: 13750052.2455171\ttotal: 16.1s\tremaining: 3.51s\n", + "821:\tlearn: 13749379.8505211\ttotal: 16.1s\tremaining: 3.49s\n", + "822:\tlearn: 13744872.5921679\ttotal: 16.1s\tremaining: 3.47s\n", + "823:\tlearn: 13744473.2684358\ttotal: 16.2s\tremaining: 3.45s\n", + "824:\tlearn: 13743675.2045582\ttotal: 16.2s\tremaining: 3.43s\n", + "825:\tlearn: 13742643.2577464\ttotal: 16.2s\tremaining: 3.41s\n", + "826:\tlearn: 13742458.8752724\ttotal: 16.2s\tremaining: 3.39s\n", + "827:\tlearn: 13742240.6771652\ttotal: 16.2s\tremaining: 3.37s\n", + "828:\tlearn: 13742155.8504755\ttotal: 16.2s\tremaining: 3.35s\n", + "829:\tlearn: 13736167.4467943\ttotal: 16.3s\tremaining: 3.33s\n", + "830:\tlearn: 13735996.0708658\ttotal: 16.3s\tremaining: 3.31s\n", + "831:\tlearn: 13735493.2005146\ttotal: 16.3s\tremaining: 3.29s\n", + "832:\tlearn: 13733689.1766800\ttotal: 16.3s\tremaining: 3.27s\n", + "833:\tlearn: 13733607.5051327\ttotal: 16.3s\tremaining: 3.25s\n", + "834:\tlearn: 13721414.9907570\ttotal: 16.4s\tremaining: 3.23s\n", + "835:\tlearn: 13717127.3635539\ttotal: 16.4s\tremaining: 3.21s\n", + "836:\tlearn: 13716999.1069396\ttotal: 16.4s\tremaining: 3.19s\n", + "837:\tlearn: 13716913.2399601\ttotal: 16.4s\tremaining: 3.17s\n", + "838:\tlearn: 13711226.9169250\ttotal: 16.4s\tremaining: 3.15s\n", + "839:\tlearn: 13710970.6941366\ttotal: 16.4s\tremaining: 3.13s\n", + "840:\tlearn: 13709877.0723952\ttotal: 16.5s\tremaining: 3.11s\n", + "841:\tlearn: 13709787.1005052\ttotal: 16.5s\tremaining: 3.09s\n", + "842:\tlearn: 13709650.6948000\ttotal: 16.5s\tremaining: 3.07s\n", + "843:\tlearn: 13709188.1202366\ttotal: 16.5s\tremaining: 3.05s\n", + "844:\tlearn: 13709037.6576260\ttotal: 16.5s\tremaining: 3.03s\n", + "845:\tlearn: 13708902.2827845\ttotal: 16.5s\tremaining: 3.01s\n", + "846:\tlearn: 13708778.6197114\ttotal: 16.6s\tremaining: 2.99s\n", + "847:\tlearn: 13703386.7859640\ttotal: 16.6s\tremaining: 2.97s\n", + "848:\tlearn: 13703267.9377232\ttotal: 16.6s\tremaining: 2.95s\n", + "849:\tlearn: 13702980.6317410\ttotal: 16.6s\tremaining: 2.93s\n", + "850:\tlearn: 13701940.0387833\ttotal: 16.6s\tremaining: 2.91s\n", + "851:\tlearn: 13701787.1153741\ttotal: 16.6s\tremaining: 2.89s\n", + "852:\tlearn: 13701336.8187285\ttotal: 16.7s\tremaining: 2.87s\n", + "853:\tlearn: 13701128.5982232\ttotal: 16.7s\tremaining: 2.85s\n", + "854:\tlearn: 13700214.2512716\ttotal: 16.7s\tremaining: 2.83s\n", + "855:\tlearn: 13700030.8591834\ttotal: 16.7s\tremaining: 2.81s\n", + "856:\tlearn: 13699030.3116141\ttotal: 16.8s\tremaining: 2.79s\n", + "857:\tlearn: 13698969.4703703\ttotal: 16.8s\tremaining: 2.77s\n", + "858:\tlearn: 13698909.5329623\ttotal: 16.8s\tremaining: 2.75s\n", + "859:\tlearn: 13694731.7280367\ttotal: 16.8s\tremaining: 2.73s\n", + "860:\tlearn: 13694626.1354617\ttotal: 16.8s\tremaining: 2.71s\n", + "861:\tlearn: 13694549.7530144\ttotal: 16.8s\tremaining: 2.69s\n", + "862:\tlearn: 13685158.2690592\ttotal: 16.9s\tremaining: 2.68s\n", + "863:\tlearn: 13664600.4370607\ttotal: 16.9s\tremaining: 2.66s\n", + "864:\tlearn: 13658903.4964855\ttotal: 16.9s\tremaining: 2.64s\n", + "865:\tlearn: 13658772.1453303\ttotal: 16.9s\tremaining: 2.62s\n", + "866:\tlearn: 13658700.0253906\ttotal: 16.9s\tremaining: 2.6s\n", + "867:\tlearn: 13658541.3184384\ttotal: 17s\tremaining: 2.58s\n", + "868:\tlearn: 13657593.4117992\ttotal: 17s\tremaining: 2.56s\n", + "869:\tlearn: 13657046.9219992\ttotal: 17s\tremaining: 2.54s\n", + "870:\tlearn: 13656760.4817945\ttotal: 17s\tremaining: 2.52s\n", + "871:\tlearn: 13656606.4015105\ttotal: 17s\tremaining: 2.5s\n", + "872:\tlearn: 13655695.7827993\ttotal: 17.1s\tremaining: 2.48s\n", + "873:\tlearn: 13655316.8101662\ttotal: 17.1s\tremaining: 2.46s\n", + "874:\tlearn: 13655037.2038031\ttotal: 17.1s\tremaining: 2.44s\n", + "875:\tlearn: 13654796.5930907\ttotal: 17.1s\tremaining: 2.42s\n", + "876:\tlearn: 13654519.8205448\ttotal: 17.1s\tremaining: 2.4s\n", + "877:\tlearn: 13652603.4478047\ttotal: 17.2s\tremaining: 2.38s\n", + "878:\tlearn: 13648499.0930775\ttotal: 17.2s\tremaining: 2.37s\n", + "879:\tlearn: 13648337.7075388\ttotal: 17.2s\tremaining: 2.35s\n", + "880:\tlearn: 13648157.2472955\ttotal: 17.2s\tremaining: 2.33s\n", + "881:\tlearn: 13647331.0259756\ttotal: 17.2s\tremaining: 2.31s\n", + "882:\tlearn: 13642530.0968617\ttotal: 17.3s\tremaining: 2.29s\n", + "883:\tlearn: 13623623.8704151\ttotal: 17.3s\tremaining: 2.27s\n", + "884:\tlearn: 13616321.6923828\ttotal: 17.3s\tremaining: 2.25s\n", + "885:\tlearn: 13616254.5151889\ttotal: 17.3s\tremaining: 2.23s\n", + "886:\tlearn: 13615914.1338129\ttotal: 17.3s\tremaining: 2.21s\n", + "887:\tlearn: 13606970.2289736\ttotal: 17.4s\tremaining: 2.19s\n", + "888:\tlearn: 13606728.1952106\ttotal: 17.4s\tremaining: 2.17s\n", + "889:\tlearn: 13606589.0295901\ttotal: 17.4s\tremaining: 2.15s\n", + "890:\tlearn: 13601534.7404156\ttotal: 17.4s\tremaining: 2.13s\n", + "891:\tlearn: 13601203.9114680\ttotal: 17.4s\tremaining: 2.11s\n", + "892:\tlearn: 13600921.2715171\ttotal: 17.5s\tremaining: 2.09s\n", + "893:\tlearn: 13594610.9357134\ttotal: 17.5s\tremaining: 2.07s\n", + "894:\tlearn: 13593918.9554990\ttotal: 17.5s\tremaining: 2.05s\n", + "895:\tlearn: 13593623.3583576\ttotal: 17.5s\tremaining: 2.03s\n", + "896:\tlearn: 13592786.5943511\ttotal: 17.5s\tremaining: 2.01s\n", + "897:\tlearn: 13592494.0020987\ttotal: 17.5s\tremaining: 1.99s\n", + "898:\tlearn: 13592321.0874097\ttotal: 17.6s\tremaining: 1.97s\n", + "899:\tlearn: 13581909.8355361\ttotal: 17.6s\tremaining: 1.95s\n", + "900:\tlearn: 13581714.6855455\ttotal: 17.6s\tremaining: 1.93s\n", + "901:\tlearn: 13581583.2702309\ttotal: 17.6s\tremaining: 1.91s\n", + "902:\tlearn: 13577447.8482879\ttotal: 17.6s\tremaining: 1.89s\n", + "903:\tlearn: 13572604.7633084\ttotal: 17.7s\tremaining: 1.88s\n", + "904:\tlearn: 13572521.9981344\ttotal: 17.7s\tremaining: 1.85s\n", + "905:\tlearn: 13572394.7665040\ttotal: 17.7s\tremaining: 1.84s\n", + "906:\tlearn: 13567645.7843907\ttotal: 17.7s\tremaining: 1.82s\n", + "907:\tlearn: 13567146.9327071\ttotal: 17.7s\tremaining: 1.8s\n", + "908:\tlearn: 13566540.1488621\ttotal: 17.8s\tremaining: 1.78s\n", + "909:\tlearn: 13566264.5900869\ttotal: 17.8s\tremaining: 1.76s\n", + "910:\tlearn: 13566147.7496118\ttotal: 17.8s\tremaining: 1.74s\n", + "911:\tlearn: 13565954.9762823\ttotal: 17.8s\tremaining: 1.72s\n", + "912:\tlearn: 13565722.8330228\ttotal: 17.8s\tremaining: 1.7s\n", + "913:\tlearn: 13565374.1058795\ttotal: 17.8s\tremaining: 1.68s\n", + "914:\tlearn: 13565339.9876957\ttotal: 17.9s\tremaining: 1.66s\n", + "915:\tlearn: 13564999.4851646\ttotal: 17.9s\tremaining: 1.64s\n", + "916:\tlearn: 13564553.2714396\ttotal: 17.9s\tremaining: 1.62s\n", + "917:\tlearn: 13564493.0894889\ttotal: 17.9s\tremaining: 1.6s\n", + "918:\tlearn: 13557832.3311930\ttotal: 17.9s\tremaining: 1.58s\n", + "919:\tlearn: 13557604.1444962\ttotal: 17.9s\tremaining: 1.56s\n", + "920:\tlearn: 13549415.3576224\ttotal: 18s\tremaining: 1.54s\n", + "921:\tlearn: 13549296.1319348\ttotal: 18s\tremaining: 1.52s\n", + "922:\tlearn: 13549065.8874742\ttotal: 18s\tremaining: 1.5s\n", + "923:\tlearn: 13549013.2277371\ttotal: 18s\tremaining: 1.48s\n", + "924:\tlearn: 13541252.3964380\ttotal: 18s\tremaining: 1.46s\n", + "925:\tlearn: 13541118.4393823\ttotal: 18.1s\tremaining: 1.44s\n", + "926:\tlearn: 13523659.8134394\ttotal: 18.1s\tremaining: 1.42s\n", + "927:\tlearn: 13523372.6123983\ttotal: 18.1s\tremaining: 1.4s\n", + "928:\tlearn: 13523298.9960587\ttotal: 18.1s\tremaining: 1.38s\n", + "929:\tlearn: 13523229.7847989\ttotal: 18.1s\tremaining: 1.36s\n", + "930:\tlearn: 13523163.3403551\ttotal: 18.1s\tremaining: 1.34s\n", + "931:\tlearn: 13519155.8624765\ttotal: 18.2s\tremaining: 1.32s\n", + "932:\tlearn: 13519105.3541888\ttotal: 18.2s\tremaining: 1.3s\n", + "933:\tlearn: 13519031.1159000\ttotal: 18.2s\tremaining: 1.28s\n", + "934:\tlearn: 13518973.8153038\ttotal: 18.2s\tremaining: 1.27s\n", + "935:\tlearn: 13518376.6585356\ttotal: 18.2s\tremaining: 1.25s\n", + "936:\tlearn: 13518172.8356066\ttotal: 18.2s\tremaining: 1.23s\n", + "937:\tlearn: 13517992.8884415\ttotal: 18.3s\tremaining: 1.21s\n", + "938:\tlearn: 13517941.2098579\ttotal: 18.3s\tremaining: 1.19s\n", + "939:\tlearn: 13517200.6339096\ttotal: 18.3s\tremaining: 1.17s\n", + "940:\tlearn: 13513047.5537990\ttotal: 18.3s\tremaining: 1.15s\n", + "941:\tlearn: 13512950.9711099\ttotal: 18.3s\tremaining: 1.13s\n", + "942:\tlearn: 13512678.2375099\ttotal: 18.4s\tremaining: 1.11s\n", + "943:\tlearn: 13501004.8881561\ttotal: 18.4s\tremaining: 1.09s\n", + "944:\tlearn: 13500891.3365531\ttotal: 18.4s\tremaining: 1.07s\n", + "945:\tlearn: 13495622.4796461\ttotal: 18.4s\tremaining: 1.05s\n", + "946:\tlearn: 13491170.4852445\ttotal: 18.4s\tremaining: 1.03s\n", + "947:\tlearn: 13475101.4449889\ttotal: 18.4s\tremaining: 1.01s\n", + "948:\tlearn: 13463999.2463230\ttotal: 18.5s\tremaining: 993ms\n", + "949:\tlearn: 13463491.9256000\ttotal: 18.5s\tremaining: 973ms\n", + "950:\tlearn: 13463000.2524334\ttotal: 18.5s\tremaining: 954ms\n", + "951:\tlearn: 13462656.6373331\ttotal: 18.5s\tremaining: 934ms\n", + "952:\tlearn: 13462372.8551029\ttotal: 18.6s\tremaining: 915ms\n", + "953:\tlearn: 13460952.4213064\ttotal: 18.6s\tremaining: 896ms\n", + "954:\tlearn: 13460850.8235406\ttotal: 18.6s\tremaining: 876ms\n", + "955:\tlearn: 13460696.8538462\ttotal: 18.6s\tremaining: 856ms\n", + "956:\tlearn: 13457056.2735812\ttotal: 18.6s\tremaining: 837ms\n", + "957:\tlearn: 13456515.4174941\ttotal: 18.6s\tremaining: 817ms\n", + "958:\tlearn: 13454202.7159913\ttotal: 18.7s\tremaining: 798ms\n", + "959:\tlearn: 13449065.3874411\ttotal: 18.7s\tremaining: 779ms\n", + "960:\tlearn: 13445971.9860801\ttotal: 18.7s\tremaining: 759ms\n", + "961:\tlearn: 13431187.4696091\ttotal: 18.7s\tremaining: 740ms\n", + "962:\tlearn: 13420640.2806388\ttotal: 18.7s\tremaining: 720ms\n", + "963:\tlearn: 13420343.2454284\ttotal: 18.8s\tremaining: 701ms\n", + "964:\tlearn: 13418335.8156443\ttotal: 18.8s\tremaining: 681ms\n", + "965:\tlearn: 13412369.4847919\ttotal: 18.8s\tremaining: 662ms\n", + "966:\tlearn: 13402367.9503594\ttotal: 18.8s\tremaining: 642ms\n", + "967:\tlearn: 13402321.3484318\ttotal: 18.8s\tremaining: 623ms\n", + "968:\tlearn: 13402179.0832179\ttotal: 18.9s\tremaining: 603ms\n", + "969:\tlearn: 13397225.1329227\ttotal: 18.9s\tremaining: 584ms\n", + "970:\tlearn: 13393750.7282482\ttotal: 18.9s\tremaining: 564ms\n", + "971:\tlearn: 13390423.6410648\ttotal: 18.9s\tremaining: 545ms\n", + "972:\tlearn: 13376811.1247023\ttotal: 18.9s\tremaining: 525ms\n", + "973:\tlearn: 13376327.5071527\ttotal: 19s\tremaining: 506ms\n", + "974:\tlearn: 13375464.0838350\ttotal: 19s\tremaining: 487ms\n", + "975:\tlearn: 13375290.8335452\ttotal: 19s\tremaining: 467ms\n", + "976:\tlearn: 13374990.1920422\ttotal: 19s\tremaining: 447ms\n", + "977:\tlearn: 13374808.2609258\ttotal: 19s\tremaining: 428ms\n", + "978:\tlearn: 13367352.9513837\ttotal: 19s\tremaining: 409ms\n", + "979:\tlearn: 13362655.1953826\ttotal: 19.1s\tremaining: 389ms\n", + "980:\tlearn: 13362591.9016145\ttotal: 19.1s\tremaining: 369ms\n", + "981:\tlearn: 13362424.3720459\ttotal: 19.1s\tremaining: 350ms\n", + "982:\tlearn: 13362142.5062367\ttotal: 19.1s\tremaining: 331ms\n", + "983:\tlearn: 13361843.8288514\ttotal: 19.1s\tremaining: 311ms\n", + "984:\tlearn: 13361292.0256243\ttotal: 19.1s\tremaining: 292ms\n", + "985:\tlearn: 13361195.2903051\ttotal: 19.2s\tremaining: 272ms\n", + "986:\tlearn: 13361068.4898725\ttotal: 19.2s\tremaining: 253ms\n", + "987:\tlearn: 13353507.7997423\ttotal: 19.2s\tremaining: 233ms\n", + "988:\tlearn: 13349051.5645266\ttotal: 19.2s\tremaining: 214ms\n", + "989:\tlearn: 13344467.2156917\ttotal: 19.2s\tremaining: 194ms\n", + "990:\tlearn: 13344375.0678171\ttotal: 19.3s\tremaining: 175ms\n", + "991:\tlearn: 13343966.5070671\ttotal: 19.3s\tremaining: 156ms\n", + "992:\tlearn: 13343619.3277021\ttotal: 19.3s\tremaining: 136ms\n", + "993:\tlearn: 13343484.5481961\ttotal: 19.3s\tremaining: 117ms\n", + "994:\tlearn: 13343227.6871102\ttotal: 19.3s\tremaining: 97.2ms\n", + "995:\tlearn: 13343170.0970924\ttotal: 19.4s\tremaining: 77.7ms\n", + "996:\tlearn: 13343011.6160519\ttotal: 19.4s\tremaining: 58.3ms\n", + "997:\tlearn: 13330480.8328314\ttotal: 19.4s\tremaining: 38.9ms\n", + "998:\tlearn: 13330241.9625622\ttotal: 19.4s\tremaining: 19.4ms\n", + "999:\tlearn: 13329412.2161376\ttotal: 19.4s\tremaining: 0us\n" + ] + }, + { + "data": { + "text/html": [ + "
Pipeline(steps=[('preprocessor',\n",
+       "                 ColumnTransformer(transformers=[('num', StandardScaler(),\n",
+       "                                                  ['geo_lat', 'geo_lon',\n",
+       "                                                   'level', 'levels', 'rooms',\n",
+       "                                                   'area', 'kitchen_area']),\n",
+       "                                                 ('cat',\n",
+       "                                                  OrdinalEncoder(handle_unknown='use_encoded_value',\n",
+       "                                                                 unknown_value=99999999),\n",
+       "                                                  ['region', 'building_type',\n",
+       "                                                   'object_type']),\n",
+       "                                                 ('afr',\n",
+       "                                                  Pipeline(steps=[('autofeat',\n",
+       "                                                                   <__main__.AutoFeatWrapper object at 0x7448995df580>),\n",
+       "                                                                  ('scaler',\n",
+       "                                                                   StandardScaler())]),\n",
+       "                                                  ['geo_lat', 'geo_lon',\n",
+       "                                                   'level', 'levels', 'rooms',\n",
+       "                                                   'area', 'kitchen_area'])])),\n",
+       "                ('model',\n",
+       "                 <catboost.core.CatBoostRegressor object at 0x7448bd575f60>)])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('preprocessor',\n", + " ColumnTransformer(transformers=[('num', StandardScaler(),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area']),\n", + " ('cat',\n", + " OrdinalEncoder(handle_unknown='use_encoded_value',\n", + " unknown_value=99999999),\n", + " ['region', 'building_type',\n", + " 'object_type']),\n", + " ('afr',\n", + " Pipeline(steps=[('autofeat',\n", + " <__main__.AutoFeatWrapper object at 0x7448995df580>),\n", + " ('scaler',\n", + " StandardScaler())]),\n", + " ['geo_lat', 'geo_lon',\n", + " 'level', 'levels', 'rooms',\n", + " 'area', 'kitchen_area'])])),\n", + " ('model',\n", + " )])" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipeline_afr = Pipeline(steps=[('preprocessor', preprocessor_afr), \n", + " ('model', regressor)])\n", + "\n", + "pipeline_afr.fit(X_train, y_train)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mae': 1381270.9152113453,\n", + " 'mape': 1.97323058892439e+18,\n", + " 'mse': 262290784020649.34}" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions = pipeline_afr.predict(X_test) \n", + "\n", + "metrics = {}\n", + "metrics[\"mae\"] = mean_absolute_error(y_test, predictions) \n", + "metrics[\"mape\"] = mean_absolute_percentage_error(y_test, predictions)\n", + "metrics[\"mse\"] = mean_squared_error(y_test, predictions)\n", + "\n", + "metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024/10/10 14:53:08 INFO mlflow.tracking._tracking_service.client: 🏃 View run autofeat at: http://127.0.0.1:5000/#/experiments/1/runs/65961cc40d284389b693dcaf1c25a5cd.\n", + "2024/10/10 14:53:08 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: http://127.0.0.1:5000/#/experiments/1.\n" + ] + } + ], + "source": [ + "\n", + "experiment_id = mlflow.get_experiment_by_name(EXPERIMENT_NAME).experiment_id\n", + "\n", + "with mlflow.start_run(run_name='autofeat', experiment_id=experiment_id) as run:\n", + " # получаем уникальный идентификатор запуска эксперимента\n", + " run_id = run.info.run_id \n", + " mlflow.sklearn.log_model(pipeline_afr, \n", + " artifact_path=\"models\",\n", + " signature=signature,\n", + " input_example=input_example,\n", + " pip_requirements=req_file\n", + " )\n", + " mlflow.log_metrics(metrics)\n", + " mlflow.log_artifact(art)\n", + " mlflow.log_params(pipeline_afr.get_params())\n", + "\n", + "run = mlflow.get_run(run_id) \n", + "assert (run.info.status =='FINISHED')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/lectures/lec6-feature_engineering.odp b/lectures/lec6-feature_engineering.odp new file mode 100644 index 0000000..c302e8a Binary files /dev/null and b/lectures/lec6-feature_engineering.odp differ diff --git a/lectures/lec6-feature_engineering.pptx b/lectures/lec6-feature_engineering.pptx new file mode 100644 index 0000000..a9b5372 Binary files /dev/null and b/lectures/lec6-feature_engineering.pptx differ