From 96e8cf5799cd36344e0fc7e953758bd8859a976d Mon Sep 17 00:00:00 2001 From: DanRie Date: Sun, 21 Sep 2025 22:11:54 +0300 Subject: [PATCH] =?UTF-8?q?=D0=94=D0=BE=D0=B1=D0=B0=D0=B2=D0=BB=D0=B5?= =?UTF-8?q?=D0=BD=20=D0=BE=D1=82=D1=87=D0=B5=D1=82=20=D0=BF=D0=BE=20lab1?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW1/lab1.ipynb | 2560 +++++++++++++++++ labworks/LW1/report.md | 586 ++++ labworks/LW1/рисунки/рис1.png | Bin 0 -> 13368 bytes labworks/LW1/рисунки/рис10.png | Bin 0 -> 25649 bytes labworks/LW1/рисунки/рис11.png | Bin 0 -> 19528 bytes labworks/LW1/рисунки/рис12.png | Bin 0 -> 24522 bytes labworks/LW1/рисунки/рис13.png | Bin 0 -> 22916 bytes labworks/LW1/рисунки/рис14.png | Bin 0 -> 29528 bytes labworks/LW1/рисунки/рис15.png | Bin 0 -> 22974 bytes labworks/LW1/рисунки/рис16.png | Bin 0 -> 29076 bytes labworks/LW1/рисунки/рис17.png | Bin 0 -> 26257 bytes labworks/LW1/рисунки/рис18.png | Bin 0 -> 25639 bytes labworks/LW1/рисунки/рис19.png | Bin 0 -> 19286 bytes labworks/LW1/рисунки/рис2.png | Bin 0 -> 13719 bytes labworks/LW1/рисунки/рис20.png | Bin 0 -> 19563 bytes labworks/LW1/рисунки/рис3.png | Bin 0 -> 12372 bytes labworks/LW1/рисунки/рис4.png | Bin 0 -> 12949 bytes labworks/LW1/рисунки/рис5.png | Bin 0 -> 16978 bytes labworks/LW1/рисунки/рис6.png | Bin 0 -> 28671 bytes labworks/LW1/рисунки/рис7.png | Bin 0 -> 19788 bytes labworks/LW1/рисунки/рис8.png | Bin 0 -> 25762 bytes labworks/LW1/рисунки/рис9.png | Bin 0 -> 20258 bytes .../LW1/рисунки/таблица.png | Bin 0 -> 20754 bytes .../LW1/рисунки/таблица2.png | Bin 0 -> 26448 bytes .../цифра 3 перевернутая.png | Bin 0 -> 1379 bytes labworks/LW1/цифра 3.png | Bin 0 -> 1276 bytes .../цифра 6 перевернутая.png | Bin 0 -> 1275 bytes labworks/LW1/цифра 6.png | Bin 0 -> 1161 bytes 28 files changed, 3146 insertions(+) create mode 100644 labworks/LW1/lab1.ipynb create mode 100644 labworks/LW1/report.md create mode 100644 labworks/LW1/рисунки/рис1.png create mode 100644 labworks/LW1/рисунки/рис10.png create mode 100644 labworks/LW1/рисунки/рис11.png create mode 100644 labworks/LW1/рисунки/рис12.png create mode 100644 labworks/LW1/рисунки/рис13.png create mode 100644 labworks/LW1/рисунки/рис14.png create mode 100644 labworks/LW1/рисунки/рис15.png create mode 100644 labworks/LW1/рисунки/рис16.png create mode 100644 labworks/LW1/рисунки/рис17.png create mode 100644 labworks/LW1/рисунки/рис18.png create mode 100644 labworks/LW1/рисунки/рис19.png create mode 100644 labworks/LW1/рисунки/рис2.png create mode 100644 labworks/LW1/рисунки/рис20.png create mode 100644 labworks/LW1/рисунки/рис3.png create mode 100644 labworks/LW1/рисунки/рис4.png create mode 100644 labworks/LW1/рисунки/рис5.png create mode 100644 labworks/LW1/рисунки/рис6.png create mode 100644 labworks/LW1/рисунки/рис7.png create mode 100644 labworks/LW1/рисунки/рис8.png create mode 100644 labworks/LW1/рисунки/рис9.png create mode 100644 labworks/LW1/рисунки/таблица.png create mode 100644 labworks/LW1/рисунки/таблица2.png create mode 100644 labworks/LW1/цифра 3 перевернутая.png create mode 100644 labworks/LW1/цифра 3.png create mode 100644 labworks/LW1/цифра 6 перевернутая.png create mode 100644 labworks/LW1/цифра 6.png diff --git a/labworks/LW1/lab1.ipynb b/labworks/LW1/lab1.ipynb new file mode 100644 index 0000000..c1b77b5 --- /dev/null +++ b/labworks/LW1/lab1.ipynb @@ -0,0 +1,2560 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "Gx2y0WGkmwyw" + }, + "source": [ + "1) В среде Google Colab создать новый блокнот (notebook). Импортировать\n", + "необходимые для работы библиотеки и модули." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SoVkJ9kXmzer", + "outputId": "29b1497d-72eb-4410-a729-194222d649a6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Текущая директория: /content/drive/MyDrive/Colab Notebooks\n" + ] + } + ], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks')\n", + "current_directory = os.getcwd()\n", + "print(\"Текущая директория:\", current_directory)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "X7rOL-qOqBAb" + }, + "outputs": [], + "source": [ + "# импорт модулей\n", + "from tensorflow import keras\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import sklearn" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pm-JKbydqHO3" + }, + "source": [ + "2) Загрузить набор данных MNIST, содержащий размеченные изображения\n", + "рукописных цифр." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "hW12mfDPqLmZ" + }, + "outputs": [], + "source": [ + "# загрузка датасета\n", + "from keras.datasets import mnist\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FgKh7lsAqMRS" + }, + "source": [ + "3) Разбить набор данных на обучающие и тестовые данные в соотношении\n", + "60 000:10 000 элементов. При разбиении параметр random_state выбрать\n", + "равным (4k – 1), где k - номер бригады, k = 6 => random_state = 23" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OQbT0Ue_qOMj", + "outputId": "371e7751-a4b6-4542-85ac-9e970b30dcd1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of X train: (60000, 28, 28)\n", + "Shape of y train: (60000,)\n", + "Shape of X test: (10000, 28, 28)\n", + "Shape of y test: (10000,)\n" + ] + } + ], + "source": [ + "# создание своего разбиения датасета\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 23)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WXzMGyULqt0f" + }, + "source": [ + "4) Вывести первые 4 элемента обучающих данных (изображения и метки\n", + "цифр)." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "ZfMm9jd_qt-4", + "outputId": "ee9da3c6-e22c-4637-c207-fc8dea93261c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGz5JREFUeJzt3X1slfX9//HXKdADaHu6WtvTSsEWFIxIlzGoDTfT0VC6zXGXCGqyshAJrjiBqUuXATqXVFni17AwNMsCmgk4kgGTP0iw0JJtBQPCGt3WUVakpjcoSc+BYguhn98f/DzzSAteh3P67s3zkXwSznVd715vP16cF9e5rl7H55xzAgCgjyVZNwAAGJoIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgYbt3AV3V3d6u5uVkpKSny+XzW7QAAPHLO6cKFC8rJyVFSUu/nOf0ugJqbm5Wbm2vdBgDgFjU1NWnMmDG9ru93H8GlpKRYtwAAiIObvZ8nLIA2b96su+++WyNHjlRhYaHef//9r1XHx24AMDjc7P08IQH0zjvvaO3atdqwYYM++OADFRQUqKSkROfOnUvE7gAAA5FLgOnTp7vy8vLI66tXr7qcnBxXWVl509pQKOQkMRgMBmOAj1AodMP3+7ifAV2+fFnHjx9XcXFxZFlSUpKKi4tVW1t73fZdXV0Kh8NRAwAw+MU9gD777DNdvXpVWVlZUcuzsrLU2tp63faVlZUKBAKRwR1wADA0mN8FV1FRoVAoFBlNTU3WLQEA+kDcfw8oIyNDw4YNU1tbW9TytrY2BYPB67b3+/3y+/3xbgMA0M/F/QwoOTlZU6dOVVVVVWRZd3e3qqqqVFRUFO/dAQAGqIQ8CWHt2rUqKyvTt7/9bU2fPl2vvfaaOjo69OMf/zgRuwMADEAJCaAlS5bo008/1fr169Xa2qpvfvOb2r9//3U3JgAAhi6fc85ZN/Fl4XBYgUDAug0AwC0KhUJKTU3tdb35XXAAgKGJAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmBhu3QCAr2fTpk2ea0pLS2Pa186dOz3XrFu3LqZ9YejiDAgAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJHkYKGJgwYYLnmsWLF3uuyc7O9lwjSYFAIKY6wAvOgAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjgYaTALRo5cqTnml27dnmuieXBorHsR5KeeeaZmOoALzgDAgCYIIAAACbiHkAvvPCCfD5f1Jg0aVK8dwMAGOAScg3o/vvv13vvvfe/nQznUhMAIFpCkmH48OEKBoOJ+NEAgEEiIdeATp06pZycHOXn5+uJJ57Q2bNne922q6tL4XA4agAABr+4B1BhYaG2bdum/fv3a8uWLWpsbNSsWbN04cKFHrevrKxUIBCIjNzc3Hi3BADoh3zOOZfIHbS3t2vcuHF69dVXtXz58uvWd3V1qaurK/I6HA4TQhhQYvk9oNraWs81BQUFnmti/T2gpUuXeq5J8FsJBqBQKKTU1NRe1yf87oC0tDTde++9amho6HG93++X3+9PdBsAgH4m4b8HdPHiRZ0+fTqm3+IGAAxecQ+gZ599VjU1NTpz5oz+/ve/a+HChRo2bJgee+yxeO8KADCAxf0juE8++USPPfaYzp8/rzvvvFMzZ87UkSNHdOedd8Z7VwCAASzuAbRz5854/0igX6uoqPBcE8sNBbH4z3/+E1MdNxSgL/AsOACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYS/o2oXoXDYQUCAes2MESlpaV5rmlpafFcE8uXMJ45c8ZzzcMPP+y5RpI+/vjjmOqAL7vZN6JyBgQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMDHcugGgP9m+fbvnmliebB2LNWvWeK7hqdbozzgDAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIKHkWJQevDBB2OqKy4ujnMnPaurq/Ncs2/fvgR0AtjhDAgAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJHkaKQSkvLy+muuHD++avxMsvv+y55gc/+IHnmqVLl3qukaRPP/3Uc81Pf/rTmPaFoYszIACACQIIAGDCcwAdPnxYjzzyiHJycuTz+bRnz56o9c45rV+/XtnZ2Ro1apSKi4t16tSpePULABgkPAdQR0eHCgoKtHnz5h7Xb9y4UZs2bdLrr7+uo0eP6rbbblNJSYk6OztvuVkAwODh+YpraWmpSktLe1znnNNrr72mX/7yl5o/f74k6a233lJWVpb27NkT8wVRAMDgE9drQI2NjWptbY36WuNAIKDCwkLV1tb2WNPV1aVwOBw1AACDX1wDqLW1VZKUlZUVtTwrKyuy7qsqKysVCAQiIzc3N54tAQD6KfO74CoqKhQKhSKjqanJuiUAQB+IawAFg0FJUltbW9Tytra2yLqv8vv9Sk1NjRoAgMEvrgGUl5enYDCoqqqqyLJwOKyjR4+qqKgonrsCAAxwnu+Cu3jxohoaGiKvGxsbdfLkSaWnp2vs2LFavXq1fv3rX+uee+5RXl6e1q1bp5ycHC1YsCCefQMABjjPAXTs2DE9/PDDkddr166VJJWVlWnbtm16/vnn1dHRoRUrVqi9vV0zZ87U/v37NXLkyPh1DQAY8HzOOWfdxJeFw2EFAgHrNtCPpKWlea45c+ZMTPvqq2uQsfR39913x72P3ly5csVzzerVqz3XbNmyxXMNBo5QKHTDv1Pmd8EBAIYmAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJz1/HAPS1devWea7p79+sG8uTrTs7Oz3XNDc3e66RpPz8fM81JSUlnmt4GvbQxhkQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEzyMFH0qNzfXc01ZWVkCOhl4li9f7rnmv//9b0z7Onz4sOeacePGea4ZPXq055pLly55rkH/xBkQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEzyMFH1q06ZNnmvS09MT0En8dHZ2eq4pKiryXFNXV+e5xjnnuUaSmpubPdcUFBR4rsnLy/Nc89FHH3muQf/EGRAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATPIwUfSopqX//m+fq1auea2bOnOm55h//+Ifnmr4UywNWY/Hoo496rtmwYUMCOoGF/v1uAAAYtAggAIAJzwF0+PBhPfLII8rJyZHP59OePXui1i9btkw+ny9qzJs3L179AgAGCc8B1NHRoYKCAm3evLnXbebNm6eWlpbI2LFjxy01CQAYfDzfhFBaWqrS0tIbbuP3+xUMBmNuCgAw+CXkGlB1dbUyMzM1ceJEPfXUUzp//nyv23Z1dSkcDkcNAMDgF/cAmjdvnt566y1VVVXplVdeUU1NjUpLS3u9vbWyslKBQCAycnNz490SAKAfivvvAS1dujTy5wceeEBTpkzR+PHjVV1drTlz5ly3fUVFhdauXRt5HQ6HCSEAGAISfht2fn6+MjIy1NDQ0ON6v9+v1NTUqAEAGPwSHkCffPKJzp8/r+zs7ETvCgAwgHj+CO7ixYtRZzONjY06efKk0tPTlZ6erhdffFGLFy9WMBjU6dOn9fzzz2vChAkqKSmJa+MAgIHNcwAdO3ZMDz/8cOT1F9dvysrKtGXLFtXV1enNN99Ue3u7cnJyNHfuXL300kvy+/3x6xoAMOD5nHPOuokvC4fDCgQC1m3ga4jlet2xY8c810yYMMFzzauvvuq5RpJeeuklzzWhUCimffVn7e3tnmtiOR7y8/M915w5c8ZzDWyEQqEbHhc8Cw4AYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYCLuX8mNoSMlJcVzTSxPto5FLE/dlgbfk63HjBkTU92wYcPi3EnPLl++3Cf7Qf/EGRAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATPIwUMfvRj37kucbn83mucc55rsE1s2bNiqnutttui3MnwPU4AwIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCh5EiZqNGjfJc01cPFh0zZkyf7KcvTZw40XPNo48+moBOevbZZ595runq6kpAJxgoOAMCAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABggoeRIma///3vPdc8/vjjnmvy8/M916xcudJzjdR3D0tdvHix55r77rvPc00gEPBcI8U2D4cOHfJcc/78ec81GDw4AwIAmCCAAAAmPAVQZWWlpk2bppSUFGVmZmrBggWqr6+P2qazs1Pl5eW64447dPvtt2vx4sVqa2uLa9MAgIHPUwDV1NSovLxcR44c0YEDB3TlyhXNnTtXHR0dkW3WrFmjd999V7t27VJNTY2am5u1aNGiuDcOABjYPN2EsH///qjX27ZtU2Zmpo4fP67Zs2crFArpD3/4g7Zv367vfve7kqStW7fqvvvu05EjR/Tggw/Gr3MAwIB2S9eAQqGQJCk9PV2SdPz4cV25ckXFxcWRbSZNmqSxY8eqtra2x5/R1dWlcDgcNQAAg1/MAdTd3a3Vq1drxowZmjx5siSptbVVycnJSktLi9o2KytLra2tPf6cyspKBQKByMjNzY21JQDAABJzAJWXl+vDDz/Uzp07b6mBiooKhUKhyGhqarqlnwcAGBhi+kXUVatWad++fTp8+LDGjBkTWR4MBnX58mW1t7dHnQW1tbUpGAz2+LP8fr/8fn8sbQAABjBPZ0DOOa1atUq7d+/WwYMHlZeXF7V+6tSpGjFihKqqqiLL6uvrdfbsWRUVFcWnYwDAoODpDKi8vFzbt2/X3r17lZKSErmuEwgENGrUKAUCAS1fvlxr165Venq6UlNT9fTTT6uoqIg74AAAUTwF0JYtWyRJDz30UNTyrVu3atmyZZKk//u//1NSUpIWL16srq4ulZSU6He/+11cmgUADB4+11dPX/yawuFwzA9QRP9XVlbmueaNN97wXJOcnOy5Bv/zl7/8xXPNggUL4t8IBrRQKKTU1NRe1/MsOACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiZi+ERWI1Ztvvum55vLly55rlixZ4rlGkn74wx/GVNcXXnnlFc81O3bsiGlfH330UUx1gBecAQEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDhc8456ya+LBwOKxAIWLcBALhFoVBIqampva7nDAgAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACU8BVFlZqWnTpiklJUWZmZlasGCB6uvro7Z56KGH5PP5osbKlSvj2jQAYODzFEA1NTUqLy/XkSNHdODAAV25ckVz585VR0dH1HZPPvmkWlpaImPjxo1xbRoAMPAN97Lx/v37o15v27ZNmZmZOn78uGbPnh1ZPnr0aAWDwfh0CAAYlG7pGlAoFJIkpaenRy1/++23lZGRocmTJ6uiokKXLl3q9Wd0dXUpHA5HDQDAEOBidPXqVff973/fzZgxI2r5G2+84fbv3+/q6urcH//4R3fXXXe5hQsX9vpzNmzY4CQxGAwGY5CNUCh0wxyJOYBWrlzpxo0b55qamm64XVVVlZPkGhoaelzf2dnpQqFQZDQ1NZlPGoPBYDBufdwsgDxdA/rCqlWrtG/fPh0+fFhjxoy54baFhYWSpIaGBo0fP/669X6/X36/P5Y2AAADmKcAcs7p6aef1u7du1VdXa28vLyb1pw8eVKSlJ2dHVODAIDByVMAlZeXa/v27dq7d69SUlLU2toqSQoEAho1apROnz6t7du363vf+57uuOMO1dXVac2aNZo9e7amTJmSkP8AAMAA5eW6j3r5nG/r1q3OOefOnj3rZs+e7dLT053f73cTJkxwzz333E0/B/yyUChk/rklg8FgMG593Oy93/f/g6XfCIfDCgQC1m0AAG5RKBRSampqr+t5FhwAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwES/CyDnnHULAIA4uNn7eb8LoAsXLli3AACIg5u9n/tcPzvl6O7uVnNzs1JSUuTz+aLWhcNh5ebmqqmpSampqUYd2mMermEermEermEerukP8+Cc04ULF5STk6OkpN7Pc4b3YU9fS1JSksaMGXPDbVJTU4f0AfYF5uEa5uEa5uEa5uEa63kIBAI33abffQQHABgaCCAAgIkBFUB+v18bNmyQ3++3bsUU83AN83AN83AN83DNQJqHfncTAgBgaBhQZ0AAgMGDAAIAmCCAAAAmCCAAgIkBE0CbN2/W3XffrZEjR6qwsFDvv/++dUt97oUXXpDP54sakyZNsm4r4Q4fPqxHHnlEOTk58vl82rNnT9R655zWr1+v7OxsjRo1SsXFxTp16pRNswl0s3lYtmzZdcfHvHnzbJpNkMrKSk2bNk0pKSnKzMzUggULVF9fH7VNZ2enysvLdccdd+j222/X4sWL1dbWZtRxYnydeXjooYeuOx5Wrlxp1HHPBkQAvfPOO1q7dq02bNigDz74QAUFBSopKdG5c+esW+tz999/v1paWiLjr3/9q3VLCdfR0aGCggJt3ry5x/UbN27Upk2b9Prrr+vo0aO67bbbVFJSos7Ozj7uNLFuNg+SNG/evKjjY8eOHX3YYeLV1NSovLxcR44c0YEDB3TlyhXNnTtXHR0dkW3WrFmjd999V7t27VJNTY2am5u1aNEiw67j7+vMgyQ9+eSTUcfDxo0bjTruhRsApk+f7srLyyOvr1696nJyclxlZaVhV31vw4YNrqCgwLoNU5Lc7t27I6+7u7tdMBh0v/nNbyLL2tvbnd/vdzt27DDosG98dR6cc66srMzNnz/fpB8r586dc5JcTU2Nc+7a//sRI0a4Xbt2Rbb517/+5SS52tpaqzYT7qvz4Jxz3/nOd9wzzzxj19TX0O/PgC5fvqzjx4+ruLg4siwpKUnFxcWqra017MzGqVOnlJOTo/z8fD3xxBM6e/asdUumGhsb1draGnV8BAIBFRYWDsnjo7q6WpmZmZo4caKeeuopnT9/3rqlhAqFQpKk9PR0SdLx48d15cqVqONh0qRJGjt27KA+Hr46D194++23lZGRocmTJ6uiokKXLl2yaK9X/e5hpF/12Wef6erVq8rKyopanpWVpX//+99GXdkoLCzUtm3bNHHiRLW0tOjFF1/UrFmz9OGHHyolJcW6PROtra2S1OPx8cW6oWLevHlatGiR8vLydPr0af3iF79QaWmpamtrNWzYMOv24q67u1urV6/WjBkzNHnyZEnXjofk5GSlpaVFbTuYj4ee5kGSHn/8cY0bN045OTmqq6vTz3/+c9XX1+vPf/6zYbfR+n0A4X9KS0sjf54yZYoKCws1btw4/elPf9Ly5csNO0N/sHTp0sifH3jgAU2ZMkXjx49XdXW15syZY9hZYpSXl+vDDz8cEtdBb6S3eVixYkXkzw888ICys7M1Z84cnT59WuPHj+/rNnvU7z+Cy8jI0LBhw667i6WtrU3BYNCoq/4hLS1N9957rxoaGqxbMfPFMcDxcb38/HxlZGQMyuNj1apV2rdvnw4dOhT19S3BYFCXL19We3t71PaD9XjobR56UlhYKEn96njo9wGUnJysqVOnqqqqKrKsu7tbVVVVKioqMuzM3sWLF3X69GllZ2dbt2ImLy9PwWAw6vgIh8M6evTokD8+PvnkE50/f35QHR/OOa1atUq7d+/WwYMHlZeXF7V+6tSpGjFiRNTxUF9fr7Nnzw6q4+Fm89CTkydPSlL/Oh6s74L4Onbu3On8fr/btm2b++c//+lWrFjh0tLSXGtrq3VrfepnP/uZq66udo2Nje5vf/ubKy4udhkZGe7cuXPWrSXUhQsX3IkTJ9yJEyecJPfqq6+6EydOuI8//tg559zLL7/s0tLS3N69e11dXZ2bP3++y8vLc59//rlx5/F1o3m4cOGCe/bZZ11tba1rbGx07733nvvWt77l7rnnHtfZ2Wndetw89dRTLhAIuOrqatfS0hIZly5dimyzcuVKN3bsWHfw4EF37NgxV1RU5IqKigy7jr+bzUNDQ4P71a9+5Y4dO+YaGxvd3r17XX5+vps9e7Zx59EGRAA559xvf/tbN3bsWJecnOymT5/ujhw5Yt1Sn1uyZInLzs52ycnJ7q677nJLlixxDQ0N1m0l3KFDh5yk60ZZWZlz7tqt2OvWrXNZWVnO7/e7OXPmuPr6etumE+BG83Dp0iU3d+5cd+edd7oRI0a4cePGuSeffHLQ/SOtp/9+SW7r1q2RbT7//HP3k5/8xH3jG99wo0ePdgsXLnQtLS12TSfAzebh7Nmzbvbs2S49Pd35/X43YcIE99xzz7lQKGTb+FfwdQwAABP9/hoQAGBwIoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYOL/AVy/ksH118reAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "6\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG9ZJREFUeJzt3X9sVfX9x/FXQXpBaC+W2t5WKBZQWERwonSNWvnRAHUy+ZENnEtwMxq0OKFTN9wUnUu6sfkjLgyXbKGaiTB1wHQJBgst+9HiqBLC5hra1LUE2ipJ7y3FFmw/3z/4eueVFjyXe/tuL89H8kl6zznve95+PLkvzr3nnpvknHMCAKCfDbFuAABwcSKAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYOIS6wa+qKenR0ePHlVKSoqSkpKs2wEAeOScU3t7u7KzszVkSN/nOQMugI4ePapx48ZZtwEAuEBNTU0aO3Zsn+sH3FtwKSkp1i0AAGLgfK/ncQugDRs26Morr9Tw4cOVl5end99990vV8bYbACSG872exyWAtm7dqpKSEq1bt07vvfeepk+frvnz56u1tTUeuwMADEYuDmbOnOmKi4vDj7u7u112drYrLS09b20wGHSSGAwGgzHIRzAYPOfrfczPgE6dOqWamhoVFhaGlw0ZMkSFhYWqqqo6a/uuri6FQqGIAQBIfDEPoI8//ljd3d3KzMyMWJ6Zmanm5uazti8tLZXf7w8ProADgIuD+VVwa9euVTAYDI+mpibrlgAA/SDm3wNKT0/X0KFD1dLSErG8paVFgUDgrO19Pp98Pl+s2wAADHAxPwNKTk7WjBkzVF5eHl7W09Oj8vJy5efnx3p3AIBBKi53QigpKdGKFSt0ww03aObMmXr++efV0dGh7373u/HYHQBgEIpLAC1btkwfffSRnnjiCTU3N+u6667Tzp07z7owAQBw8UpyzjnrJj4vFArJ7/dbtwEAuEDBYFCpqal9rje/Cg4AcHEigAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYOIS6wYAYKCqr6/3XDNhwgTPNXPmzPFcs2fPHs81Aw1nQAAAEwQQAMBEzAPoySefVFJSUsSYMmVKrHcDABjk4vIZ0DXXXKN33nnnfzu5hI+aAACR4pIMl1xyiQKBQDyeGgCQIOLyGdDhw4eVnZ2tCRMm6K677lJjY2Of23Z1dSkUCkUMAEDii3kA5eXlqaysTDt37tTGjRvV0NCgW265Re3t7b1uX1paKr/fHx7jxo2LdUsAgAEoyTnn4rmDtrY2jR8/Xs8++6zuueees9Z3dXWpq6sr/DgUChFCAAYEvgd0YYLBoFJTU/tcH/erA0aPHq2rr75adXV1va73+Xzy+XzxbgMAMMDE/XtAJ06cUH19vbKysuK9KwDAIBLzAHr44YdVWVmpDz/8UP/4xz+0ePFiDR06VHfeeWesdwUAGMRi/hbckSNHdOedd+r48eO6/PLLdfPNN6u6ulqXX355rHcFABjEYh5AW7ZsifVT4iJ32WWXea4ZMWJEVPs6evRoVHUY2B566KGo6qL5h/Ptt9/uuaaqqspzTSLgXnAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMxP0H6YDPS09P91zz9ttve67p7Oz0XCNJt956q+eaTz/9NKp9ITrDhw/3XPONb3wjqn2NGjXKc01aWprnmmiP18GOMyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAnuho1+NXbsWM81X/3qVz3XLFy40HONxJ2tB4ORI0d6rpk9e3ZU+2ptbfVcs2vXrqj2dTHiDAgAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJbkaKfrVy5UrPNR0dHZ5rPvjgA8816H8jRozwXLN69erYN9KH3bt3e6756KOP4tBJYuIMCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgIkk55yzbuLzQqGQ/H6/dRv4EqZMmeK55p///Kfnmra2Ns8148aN81yD/jdp0iTPNdXV1Z5rRo4c6blGkm644QbPNf/617+i2lciCgaDSk1N7XM9Z0AAABMEEADAhOcA2rt3rxYuXKjs7GwlJSVp+/btEeudc3riiSeUlZWlESNGqLCwUIcPH45VvwCABOE5gDo6OjR9+nRt2LCh1/Xr16/XCy+8oBdffFH79u3TyJEjNX/+fHV2dl5wswCAxOH5F1GLiopUVFTU6zrnnJ5//nn95Cc/0R133CFJevnll5WZmant27dr+fLlF9YtACBhxPQzoIaGBjU3N6uwsDC8zO/3Ky8vT1VVVb3WdHV1KRQKRQwAQOKLaQA1NzdLkjIzMyOWZ2Zmhtd9UWlpqfx+f3hw+SwAXBzMr4Jbu3atgsFgeDQ1NVm3BADoBzENoEAgIElqaWmJWN7S0hJe90U+n0+pqakRAwCQ+GIaQLm5uQoEAiovLw8vC4VC2rdvn/Lz82O5KwDAIOf5KrgTJ06orq4u/LihoUEHDhxQWlqacnJytHr1av3sZz/TVVddpdzcXD3++OPKzs7WokWLYtk3AGCQ8xxA+/fv1+zZs8OPS0pKJEkrVqxQWVmZHn30UXV0dOi+++5TW1ubbr75Zu3cuVPDhw+PXdcAgEGPm5FCkydPjqpu9+7dnmuysrI81yxcuNBzzV/+8hfPNeh/b7zxhuea2267zXPNsmXLPNdI0p///Oeo6nAGNyMFAAxIBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATnn+OAYnnW9/6VlR10dzZOhr8Sm7/Gzp0qOea73//+55rovmdsA8//NBzzXvvvee5BvHHGRAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAAT3Iw0waxZs8ZzzY9+9KM4dBI7L7/8sueanJycqPZVVlbmuaalpSWqffUHv98fVd13vvMdzzXPPPNMVPvy6le/+pXnmiNHjsShE1wozoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYSHLOOesmPi8UCkV9A8VEc/PNN3uu2bhxo+eaa665xnNNogoGg55rampqPNe8+OKLnmtef/11zzVPP/205xpJ+vGPfxxVXX84dOiQ55pp06bFoROcTzAYVGpqap/rOQMCAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABg4hLrBtC322+/3XPNQL+x6IkTJ/plP6NGjYqqLpob4c6ZM8dzzdy5cz3XNDc3e65pbW31XNOfmpqaPNd873vfi0MnsMAZEADABAEEADDhOYD27t2rhQsXKjs7W0lJSdq+fXvE+rvvvltJSUkRY8GCBbHqFwCQIDwHUEdHh6ZPn64NGzb0uc2CBQt07Nix8Hj11VcvqEkAQOLxfBFCUVGRioqKzrmNz+dTIBCIuikAQOKLy2dAFRUVysjI0OTJk3X//ffr+PHjfW7b1dWlUCgUMQAAiS/mAbRgwQK9/PLLKi8v1y9+8QtVVlaqqKhI3d3dvW5fWloqv98fHuPGjYt1SwCAASjm3wNavnx5+O9rr71W06ZN08SJE1VRUdHrdx/Wrl2rkpKS8ONQKEQIAcBFIO6XYU+YMEHp6emqq6vrdb3P51NqamrEAAAkvrgH0JEjR3T8+HFlZWXFe1cAgEHE81twJ06ciDibaWho0IEDB5SWlqa0tDQ99dRTWrp0qQKBgOrr6/Xoo49q0qRJmj9/fkwbBwAMbp4DaP/+/Zo9e3b48Wef36xYsUIbN27UwYMH9dJLL6mtrU3Z2dmaN2+enn76afl8vth1DQAY9DwH0KxZs+Sc63P922+/fUEN4X8G+udh0dxY9Prrr/dc097e7rkm2rtvPProo55rJk6c6LkmOTnZc01mZma/1ETr3Xff9VzzzW9+03NNNDcwxcDEveAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZi/pPciJ3GxkbPNd3d3Z5rOjs7PddI0sMPP+y5pq9fxo21l156qd/qrrvuOs81fr/fc83vfvc7zzXR3Klbiu6YeOCBBzzXcGfrixtnQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwkOeecdROfFwqForpRI8649dZbPddUVlbGoROcyzvvvOO5Zs6cOXHopHd33nmn55qtW7fGoRMMZsFgUKmpqX2u5wwIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiUusG0BscWPR/ldQUOC55pZbbolDJ2fbsGFDVHVvvPFGjDsBzsYZEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABPcjBT4nGHDhnmueeyxx/plP3/9618915SUlHiukaRPP/00qjrAC86AAAAmCCAAgAlPAVRaWqobb7xRKSkpysjI0KJFi1RbWxuxTWdnp4qLizVmzBiNGjVKS5cuVUtLS0ybBgAMfp4CqLKyUsXFxaqurtauXbt0+vRpzZs3Tx0dHeFt1qxZozfffFOvvfaaKisrdfToUS1ZsiTmjQMABjdPFyHs3Lkz4nFZWZkyMjJUU1OjgoICBYNB/f73v9fmzZs1Z84cSdKmTZv0la98RdXV1fra174Wu84BAIPaBX0GFAwGJUlpaWmSpJqaGp0+fVqFhYXhbaZMmaKcnBxVVVX1+hxdXV0KhUIRAwCQ+KIOoJ6eHq1evVo33XSTpk6dKklqbm5WcnKyRo8eHbFtZmammpube32e0tJS+f3+8Bg3bly0LQEABpGoA6i4uFiHDh3Sli1bLqiBtWvXKhgMhkdTU9MFPR8AYHCI6ouoq1at0ltvvaW9e/dq7Nix4eWBQECnTp1SW1tbxFlQS0uLAoFAr8/l8/nk8/miaQMAMIh5OgNyzmnVqlXatm2bdu/erdzc3Ij1M2bM0LBhw1ReXh5eVltbq8bGRuXn58emYwBAQvB0BlRcXKzNmzdrx44dSklJCX+u4/f7NWLECPn9ft1zzz0qKSlRWlqaUlNT9eCDDyo/P58r4AAAETwF0MaNGyVJs2bNili+adMm3X333ZKk5557TkOGDNHSpUvV1dWl+fPn6ze/+U1MmgUAJI4k55yzbuLzQqGQ/H6/dRu4SH3+KwRf1uuvv+65JjU11XPN7NmzPddUVlZ6rgFiJRgMnvNY515wAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATUf0iKjDQjRkzJqq6Z555xnNNNHe2fu655zzXcGdrJBrOgAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjgZqQY8C677DLPNQcPHoxqX1lZWf2yr8cff9xzDZBoOAMCAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABggpuRYsA7ffq055ru7u6o9tXa2uq5pri42HPNyZMnPdcAiYYzIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACa4GSkGvBMnTniuycnJiUMnAGKJMyAAgAkCCABgwlMAlZaW6sYbb1RKSooyMjK0aNEi1dbWRmwza9YsJSUlRYyVK1fGtGkAwODnKYAqKytVXFys6upq7dq1S6dPn9a8efPU0dERsd29996rY8eOhcf69etj2jQAYPDzdBHCzp07Ix6XlZUpIyNDNTU1KigoCC+/9NJLFQgEYtMhACAhXdBnQMFgUJKUlpYWsfyVV15Renq6pk6dqrVr157z54e7uroUCoUiBgDgIuCi1N3d7b7+9a+7m266KWL5b3/7W7dz50538OBB94c//MFdccUVbvHixX0+z7p165wkBoPBYCTYCAaD58yRqANo5cqVbvz48a6pqemc25WXlztJrq6urtf1nZ2dLhgMhkdTU5P5pDEYDAbjwsf5AiiqL6KuWrVKb731lvbu3auxY8eec9u8vDxJUl1dnSZOnHjWep/PJ5/PF00bAIBBzFMAOef04IMPatu2baqoqFBubu55aw4cOCBJysrKiqpBAEBi8hRAxcXF2rx5s3bs2KGUlBQ1NzdLkvx+v0aMGKH6+npt3rxZt912m8aMGaODBw9qzZo1Kigo0LRp0+LyHwAAGKS8fO6jPt7n27Rpk3POucbGRldQUODS0tKcz+dzkyZNco888sh53wf8vGAwaP6+JYPBYDAufJzvtT/p/4NlwAiFQvL7/dZtAAAuUDAYVGpqap/ruRccAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMDEgAsg55x1CwCAGDjf6/mAC6D29nbrFgAAMXC+1/MkN8BOOXp6enT06FGlpKQoKSkpYl0oFNK4cePU1NSk1NRUow7tMQ9nMA9nMA9nMA9nDIR5cM6pvb1d2dnZGjKk7/OcS/qxpy9lyJAhGjt27Dm3SU1NvagPsM8wD2cwD2cwD2cwD2dYz4Pf7z/vNgPuLTgAwMWBAAIAmBhUAeTz+bRu3Tr5fD7rVkwxD2cwD2cwD2cwD2cMpnkYcBchAAAuDoPqDAgAkDgIIACACQIIAGCCAAIAmBg0AbRhwwZdeeWVGj58uPLy8vTuu+9at9TvnnzySSUlJUWMKVOmWLcVd3v37tXChQuVnZ2tpKQkbd++PWK9c05PPPGEsrKyNGLECBUWFurw4cM2zcbR+ebh7rvvPuv4WLBggU2zcVJaWqobb7xRKSkpysjI0KJFi1RbWxuxTWdnp4qLizVmzBiNGjVKS5cuVUtLi1HH8fFl5mHWrFlnHQ8rV6406rh3gyKAtm7dqpKSEq1bt07vvfeepk+frvnz56u1tdW6tX53zTXX6NixY+Hxt7/9zbqluOvo6ND06dO1YcOGXtevX79eL7zwgl588UXt27dPI0eO1Pz589XZ2dnPncbX+eZBkhYsWBBxfLz66qv92GH8VVZWqri4WNXV1dq1a5dOnz6tefPmqaOjI7zNmjVr9Oabb+q1115TZWWljh49qiVLlhh2HXtfZh4k6d577404HtavX2/UcR/cIDBz5kxXXFwcftzd3e2ys7NdaWmpYVf9b926dW769OnWbZiS5LZt2xZ+3NPT4wKBgPvlL38ZXtbW1uZ8Pp979dVXDTrsH1+cB+ecW7FihbvjjjtM+rHS2trqJLnKykrn3Jn/98OGDXOvvfZaeJsPPvjASXJVVVVWbcbdF+fBOeduvfVW99BDD9k19SUM+DOgU6dOqaamRoWFheFlQ4YMUWFhoaqqqgw7s3H48GFlZ2drwoQJuuuuu9TY2GjdkqmGhgY1NzdHHB9+v195eXkX5fFRUVGhjIwMTZ48Wffff7+OHz9u3VJcBYNBSVJaWpokqaamRqdPn444HqZMmaKcnJyEPh6+OA+feeWVV5Senq6pU6dq7dq1OnnypEV7fRpwNyP9oo8//ljd3d3KzMyMWJ6Zman//Oc/Rl3ZyMvLU1lZmSZPnqxjx47pqaee0i233KJDhw4pJSXFuj0Tzc3NktTr8fHZuovFggULtGTJEuXm5qq+vl6PPfaYioqKVFVVpaFDh1q3F3M9PT1avXq1brrpJk2dOlXSmeMhOTlZo0ePjtg2kY+H3uZBkr797W9r/Pjxys7O1sGDB/XDH/5QtbW1+tOf/mTYbaQBH0D4n6KiovDf06ZNU15ensaPH68//vGPuueeeww7w0CwfPny8N/XXnutpk2bpokTJ6qiokJz58417Cw+iouLdejQoYvic9Bz6Wse7rvvvvDf1157rbKysjR37lzV19dr4sSJ/d1mrwb8W3Dp6ekaOnToWVextLS0KBAIGHU1MIwePVpXX3216urqrFsx89kxwPFxtgkTJig9PT0hj49Vq1bprbfe0p49eyJ+viUQCOjUqVNqa2uL2D5Rj4e+5qE3eXl5kjSgjocBH0DJycmaMWOGysvLw8t6enpUXl6u/Px8w87snThxQvX19crKyrJuxUxubq4CgUDE8REKhbRv376L/vg4cuSIjh8/nlDHh3NOq1at0rZt27R7927l5uZGrJ8xY4aGDRsWcTzU1taqsbExoY6H881Dbw4cOCBJA+t4sL4K4svYsmWL8/l8rqyszP373/929913nxs9erRrbm62bq1f/eAHP3AVFRWuoaHB/f3vf3eFhYUuPT3dtba2WrcWV+3t7e79999377//vpPknn32Wff++++7//73v845537+85+70aNHux07driDBw+6O+64w+Xm5rpPPvnEuPPYOtc8tLe3u4cffthVVVW5hoYG984777jrr7/eXXXVVa6zs9O69Zi5//77nd/vdxUVFe7YsWPhcfLkyfA2K1eudDk5OW737t1u//79Lj8/3+Xn5xt2HXvnm4e6ujr305/+1O3fv981NDS4HTt2uAkTJriCggLjziMNigByzrlf//rXLicnxyUnJ7uZM2e66upq65b63bJly1xWVpZLTk52V1xxhVu2bJmrq6uzbivu9uzZ4ySdNVasWOGcO3Mp9uOPP+4yMzOdz+dzc+fOdbW1tbZNx8G55uHkyZNu3rx57vLLL3fDhg1z48ePd/fee2/C/SOtt/9+SW7Tpk3hbT755BP3wAMPuMsuu8xdeumlbvHixe7YsWN2TcfB+eahsbHRFRQUuLS0NOfz+dykSZPcI4884oLBoG3jX8DPMQAATAz4z4AAAImJAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAif8D7YrEyCtb4VMAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "4\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGi1JREFUeJzt3X9sVfX9x/HXBekFtb1dqe1tBWoBhU2kTCa1QZmOhrZbmAhL0LkFFwOBFTNg6lLDD3VLurHMGU2nW2LonIKMZEB0SxMttmRbwVAlndlsKOnWEmgZzXovFFu69vP9g3i/u1LAc7m37972+UhOQu89n563Zzc8d3ovpz7nnBMAAMNsnPUAAICxiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT11kP8FmDg4M6efKkUlNT5fP5rMcBAHjknNPZs2eVm5urceMuf50z4gJ08uRJTZ061XoMAMA1am9v15QpUy77/Ij7EVxqaqr1CACAOLja3+cJC1BVVZVuueUWTZw4UYWFhXr//fc/1zp+7AYAo8PV/j5PSIB2796tTZs2adu2bfrggw9UUFCgkpISnT59OhGHAwAkI5cACxYscOXl5ZGvBwYGXG5urqusrLzq2lAo5CSxsbGxsSX5FgqFrvj3fdyvgC5cuKDGxkYVFxdHHhs3bpyKi4vV0NBwyf59fX0Kh8NRGwBg9It7gM6cOaOBgQFlZ2dHPZ6dna2Ojo5L9q+srFQgEIhsfAIOAMYG80/BVVRUKBQKRbb29nbrkQAAwyDu/w4oMzNT48ePV2dnZ9TjnZ2dCgaDl+zv9/vl9/vjPQYAYISL+xVQSkqK5s+fr9ra2shjg4ODqq2tVVFRUbwPBwBIUgm5E8KmTZu0atUqfeUrX9GCBQv0wgsvqKenR9/73vcScTgAQBJKSIBWrlypf//739q6das6Ojo0b9481dTUXPLBBADA2OVzzjnrIf5XOBxWIBCwHgMAcI1CoZDS0tIu+7z5p+AAAGMTAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYOI66wGAkeR3v/ud5zXf+c53PK9JSUnxvKa/v9/zGmAk4woIAGCCAAEATMQ9QM8884x8Pl/UNnv27HgfBgCQ5BLyHtDtt9+ud9999/8Pch1vNQEAoiWkDNddd52CwWAivjUAYJRIyHtAx44dU25urqZPn65HHnlEbW1tl923r69P4XA4agMAjH5xD1BhYaGqq6tVU1Ojl19+Wa2trbr33nt19uzZIfevrKxUIBCIbFOnTo33SACAEcjnnHOJPEB3d7fy8vL0/PPP67HHHrvk+b6+PvX19UW+DofDRAhm+HdAQPyEQiGlpaVd9vmEfzogPT1dt912m1paWoZ83u/3y+/3J3oMAMAIk/B/B3Tu3DkdP35cOTk5iT4UACCJxD1ATzzxhOrr6/XPf/5Tf/3rX/Xggw9q/Pjxevjhh+N9KABAEov7j+BOnDihhx9+WF1dXbrpppt0zz336NChQ7rpppvifSgAQBJL+IcQvAqHwwoEAtZjIMnNnDkzpnV/+9vfPK+J5T3MWD6E8N///tfzGsDS1T6EwL3gAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATCf+FdICFL3/5yzGt45cjAsOHKyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4G7YGJXmzZs3bMfatm2b5zUDAwMJmARILlwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmuBkpRrxJkyZ5XlNWVpaASYZ24MABz2uccwmYBEguXAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACa4GSlGvNLSUs9r5s2bF9Oxzpw543lNW1tbTMcCxjqugAAAJggQAMCE5wAdPHhQS5cuVW5urnw+n/bt2xf1vHNOW7duVU5OjiZNmqTi4mIdO3YsXvMCAEYJzwHq6elRQUGBqqqqhnx++/btevHFF/XKK6/o8OHDuuGGG1RSUqLe3t5rHhYAMHp4/hBCWVnZZX/bpHNOL7zwgjZv3qwHHnhAkvTaa68pOztb+/bt00MPPXRt0wIARo24vgfU2tqqjo4OFRcXRx4LBAIqLCxUQ0PDkGv6+voUDoejNgDA6BfXAHV0dEiSsrOzox7Pzs6OPPdZlZWVCgQCkW3q1KnxHAkAMEKZfwquoqJCoVAosrW3t1uPBAAYBnENUDAYlCR1dnZGPd7Z2Rl57rP8fr/S0tKiNgDA6BfXAOXn5ysYDKq2tjbyWDgc1uHDh1VUVBTPQwEAkpznT8GdO3dOLS0tka9bW1t19OhRZWRkaNq0adqwYYN+8pOf6NZbb1V+fr62bNmi3NxcLVu2LJ5zAwCSnOcAHTlyRPfff3/k602bNkmSVq1aperqaj311FPq6enRmjVr1N3drXvuuUc1NTWaOHFi/KYGACQ9n3POWQ/xv8LhsAKBgPUYGEGee+45z2s2b94c07E+/vhjz2u+9KUvxXQsYLQLhUJXfF/f/FNwAICxiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY8/zoGYLjdfffdw3as1157bdiONRzmzZsX07oVK1Z4XrNly5aYjoWxiysgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAENyPFiDdnzpxhO1ZfX9+wHWs4bNiwIaZ1jzzyiOc17e3tntf85je/8bwGowdXQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACW5GihGvq6vL85pgMBjTsTZv3ux5zccff+x5TU1Njec1zjnPa2I1fvx4z2uWL1/ueQ03Ix3buAICAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExwM1KMeE8//bTnNS+99FJMx5o2bZrnNX/84x89rzl69KjnNbHcjDQvL8/zmlhNnTrV85oFCxZ4XvP+++97XoORiSsgAIAJAgQAMOE5QAcPHtTSpUuVm5srn8+nffv2RT3/6KOPyufzRW2lpaXxmhcAMEp4DlBPT48KCgpUVVV12X1KS0t16tSpyLZr165rGhIAMPp4/hBCWVmZysrKrriP3++P+TdSAgDGhoS8B1RXV6esrCzNmjVL69atu+KvVO7r61M4HI7aAACjX9wDVFpaqtdee021tbX62c9+pvr6epWVlWlgYGDI/SsrKxUIBCJbLB/lBAAkn7j/O6CHHnoo8uc77rhDc+fO1YwZM1RXV6fFixdfsn9FRYU2bdoU+TocDhMhABgDEv4x7OnTpyszM1MtLS1DPu/3+5WWlha1AQBGv4QH6MSJE+rq6lJOTk6iDwUASCKefwR37ty5qKuZ1tZWHT16VBkZGcrIyNCzzz6rFStWKBgM6vjx43rqqac0c+ZMlZSUxHVwAEBy8xygI0eO6P777498/en7N6tWrdLLL7+spqYm/fa3v1V3d7dyc3O1ZMkS/fjHP5bf74/f1ACApOdzsdzhMIHC4bACgYD1GEhyt9xyS0zrvvnNb3pe861vfcvzmnvuucfzmpGuu7vb85onn3zS85pXX33V8xrYCIVCV3xfn3vBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAR3wwYMzJo1y/OaCRMmeF7T1NTkeU2sfvGLX3heE8vdsJE8uBs2AGBEIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMXGc9ADAWNTc3e14Ty81Ih9Phw4etR0CS4QoIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBzUiBJHHnnXd6XuPz+WI6Vjgc9rzmT3/6U0zHwtjFFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIKbkQJJIpabkTrnYjrW4OCg5zXnz5+P6VgYu7gCAgCYIEAAABOeAlRZWam77rpLqampysrK0rJly9Tc3By1T29vr8rLyzV58mTdeOONWrFihTo7O+M6NAAg+XkKUH19vcrLy3Xo0CG988476u/v15IlS9TT0xPZZ+PGjXrrrbe0Z88e1dfX6+TJk1q+fHncBwcAJDdPH0KoqamJ+rq6ulpZWVlqbGzUokWLFAqF9Oqrr2rnzp362te+JknasWOHvvjFL+rQoUO6++674zc5ACCpXdN7QKFQSJKUkZEhSWpsbFR/f7+Ki4sj+8yePVvTpk1TQ0PDkN+jr69P4XA4agMAjH4xB2hwcFAbNmzQwoULNWfOHElSR0eHUlJSlJ6eHrVvdna2Ojo6hvw+lZWVCgQCkW3q1KmxjgQASCIxB6i8vFwfffSR3nzzzWsaoKKiQqFQKLK1t7df0/cDACSHmP4h6vr16/X222/r4MGDmjJlSuTxYDCoCxcuqLu7O+oqqLOzU8FgcMjv5ff75ff7YxkDAJDEPF0BOee0fv167d27VwcOHFB+fn7U8/Pnz9eECRNUW1sbeay5uVltbW0qKiqKz8QAgFHB0xVQeXm5du7cqf379ys1NTXyvk4gENCkSZMUCAT02GOPadOmTcrIyFBaWpoef/xxFRUV8Qk4AEAUTwF6+eWXJUn33Xdf1OM7duzQo48+Kkn65S9/qXHjxmnFihXq6+tTSUmJfvWrX8VlWADA6OEpQJ/nxoYTJ05UVVWVqqqqYh4KwKUWLFjgeY3P54vpWK+//npM6wAvuBccAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATMT0G1EBDL+5c+d6XvN57mA/lN7e3pjWAV5wBQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOBmpECS+M9//jNsx6qurh62Y2Hs4goIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBzUiBJPHd737X85rdu3fHdKyurq6Y1gFecAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjwOeec9RD/KxwOKxAIWI8BALhGoVBIaWlpl32eKyAAgAkCBAAw4SlAlZWVuuuuu5SamqqsrCwtW7ZMzc3NUfvcd9998vl8UdvatWvjOjQAIPl5ClB9fb3Ky8t16NAhvfPOO+rv79eSJUvU09MTtd/q1at16tSpyLZ9+/a4Dg0ASH6efiNqTU1N1NfV1dXKyspSY2OjFi1aFHn8+uuvVzAYjM+EAIBR6ZreAwqFQpKkjIyMqMffeOMNZWZmas6cOaqoqND58+cv+z36+voUDoejNgDAGOBiNDAw4L7xjW+4hQsXRj3+61//2tXU1Limpib3+uuvu5tvvtk9+OCDl/0+27Ztc5LY2NjY2EbZFgqFrtiRmAO0du1al5eX59rb26+4X21trZPkWlpahny+t7fXhUKhyNbe3m5+0tjY2NjYrn27WoA8vQf0qfXr1+vtt9/WwYMHNWXKlCvuW1hYKElqaWnRjBkzLnne7/fL7/fHMgYAIIl5CpBzTo8//rj27t2ruro65efnX3XN0aNHJUk5OTkxDQgAGJ08Bai8vFw7d+7U/v37lZqaqo6ODklSIBDQpEmTdPz4ce3cuVNf//rXNXnyZDU1NWnjxo1atGiR5s6dm5D/AABAkvLyvo8u83O+HTt2OOeca2trc4sWLXIZGRnO7/e7mTNnuieffPKqPwf8X6FQyPznlmxsbGxs175d7e9+bkYKAEgIbkYKABiRCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmRlyAnHPWIwAA4uBqf5+PuACdPXvWegQAQBxc7e9znxthlxyDg4M6efKkUlNT5fP5op4Lh8OaOnWq2tvblZaWZjShPc7DRZyHizgPF3EeLhoJ58E5p7Nnzyo3N1fjxl3+Oue6YZzpcxk3bpymTJlyxX3S0tLG9AvsU5yHizgPF3EeLuI8XGR9HgKBwFX3GXE/ggMAjA0ECABgIqkC5Pf7tW3bNvn9futRTHEeLuI8XMR5uIjzcFEynYcR9yEEAMDYkFRXQACA0YMAAQBMECAAgAkCBAAwkTQBqqqq0i233KKJEyeqsLBQ77//vvVIw+6ZZ56Rz+eL2mbPnm09VsIdPHhQS5cuVW5urnw+n/bt2xf1vHNOW7duVU5OjiZNmqTi4mIdO3bMZtgEutp5ePTRRy95fZSWltoMmyCVlZW66667lJqaqqysLC1btkzNzc1R+/T29qq8vFyTJ0/WjTfeqBUrVqizs9No4sT4POfhvvvuu+T1sHbtWqOJh5YUAdq9e7c2bdqkbdu26YMPPlBBQYFKSkp0+vRp69GG3e23365Tp05Ftj//+c/WIyVcT0+PCgoKVFVVNeTz27dv14svvqhXXnlFhw8f1g033KCSkhL19vYO86SJdbXzIEmlpaVRr49du3YN44SJV19fr/Lych06dEjvvPOO+vv7tWTJEvX09ET22bhxo9566y3t2bNH9fX1OnnypJYvX244dfx9nvMgSatXr456PWzfvt1o4stwSWDBggWuvLw88vXAwIDLzc11lZWVhlMNv23btrmCggLrMUxJcnv37o18PTg46ILBoPv5z38eeay7u9v5/X63a9cugwmHx2fPg3POrVq1yj3wwAMm81g5ffq0k+Tq6+udcxf/t58wYYLbs2dPZJ9//OMfTpJraGiwGjPhPnsenHPuq1/9qvvBD35gN9TnMOKvgC5cuKDGxkYVFxdHHhs3bpyKi4vV0NBgOJmNY8eOKTc3V9OnT9cjjzyitrY265FMtba2qqOjI+r1EQgEVFhYOCZfH3V1dcrKytKsWbO0bt06dXV1WY+UUKFQSJKUkZEhSWpsbFR/f3/U62H27NmaNm3aqH49fPY8fOqNN95QZmam5syZo4qKCp0/f95ivMsacTcj/awzZ85oYGBA2dnZUY9nZ2fr448/NprKRmFhoaqrqzVr1iydOnVKzz77rO6991599NFHSk1NtR7PREdHhyQN+fr49LmxorS0VMuXL1d+fr6OHz+up59+WmVlZWpoaND48eOtx4u7wcFBbdiwQQsXLtScOXMkXXw9pKSkKD09PWrf0fx6GOo8SNK3v/1t5eXlKTc3V01NTfrRj36k5uZm/eEPfzCcNtqIDxD+X1lZWeTPc+fOVWFhofLy8vT73/9ejz32mOFkGAkeeuihyJ/vuOMOzZ07VzNmzFBdXZ0WL15sOFlilJeX66OPPhoT74NeyeXOw5o1ayJ/vuOOO5STk6PFixfr+PHjmjFjxnCPOaQR/yO4zMxMjR8//pJPsXR2dioYDBpNNTKkp6frtttuU0tLi/UoZj59DfD6uNT06dOVmZk5Kl8f69ev19tvv6333nsv6te3BINBXbhwQd3d3VH7j9bXw+XOw1AKCwslaUS9HkZ8gFJSUjR//nzV1tZGHhscHFRtba2KiooMJ7N37tw5HT9+XDk5OdajmMnPz1cwGIx6fYTDYR0+fHjMvz5OnDihrq6uUfX6cM5p/fr12rt3rw4cOKD8/Pyo5+fPn68JEyZEvR6am5vV1tY2ql4PVzsPQzl69KgkjazXg/WnID6PN9980/n9flddXe3+/ve/uzVr1rj09HTX0dFhPdqw+uEPf+jq6upca2ur+8tf/uKKi4tdZmamO336tPVoCXX27Fn34Ycfug8//NBJcs8//7z78MMP3b/+9S/nnHM//elPXXp6utu/f79rampyDzzwgMvPz3effPKJ8eTxdaXzcPbsWffEE0+4hoYG19ra6t5991135513ultvvdX19vZajx4369atc4FAwNXV1blTp05FtvPnz0f2Wbt2rZs2bZo7cOCAO3LkiCsqKnJFRUWGU8ff1c5DS0uLe+6559yRI0dca2ur279/v5s+fbpbtGiR8eTRkiJAzjn30ksvuWnTprmUlBS3YMECd+jQIeuRht3KlStdTk6OS0lJcTfffLNbuXKla2lpsR4r4d577z0n6ZJt1apVzrmLH8XesmWLy87Odn6/3y1evNg1NzfbDp0AVzoP58+fd0uWLHE33XSTmzBhgsvLy3OrV68edf8nbaj/fklux44dkX0++eQT9/3vf9994QtfcNdff7178MEH3alTp+yGToCrnYe2tja3aNEil5GR4fx+v5s5c6Z78sknXSgUsh38M/h1DAAAEyP+PSAAwOhEgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJj4P+lmYWv6fFB6AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "4\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.12/dist-packages/jax/_src/lib/__init__.py\", line 96, in _xla_gc_callback\n", + " def _xla_gc_callback(*args):\n", + " \n", + "KeyboardInterrupt: \n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGxxJREFUeJzt3Xts1fX9x/HXKZcDSnuwlPa0XAsKbHJxY9A1aIfSULqFyGVGnX/AohC0EC4Tt7oBsjm7MeeMC9P9YWBmIkoyYBDHotWWsBUMlYYwtaGs0hLaoiQ9BwoUQj+/P/h55pEW/B7O6bstz0fySeg530/Pe98d+/T0HL/4nHNOAAB0siTrAQAANycCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATPS2HuCr2tradPLkSSUnJ8vn81mPAwDwyDmnM2fOKCsrS0lJHb/O6XIBOnnypIYNG2Y9BgDgBtXX12vo0KEd3t/lfgWXnJxsPQIAIA6u9/M8YQHauHGjRo4cqX79+iknJ0cffPDB19rHr90AoGe43s/zhATozTff1KpVq7Ru3Tp9+OGHmjRpkgoKCnTq1KlEPBwAoDtyCTB16lRXVFQU+fry5csuKyvLlZSUXHdvKBRyklgsFovVzVcoFLrmz/u4vwK6ePGiKisrlZ+fH7ktKSlJ+fn5qqiouOr41tZWhcPhqAUA6PniHqDPP/9cly9fVkZGRtTtGRkZamxsvOr4kpISBQKByOITcABwczD/FFxxcbFCoVBk1dfXW48EAOgEcf/vgNLS0tSrVy81NTVF3d7U1KRgMHjV8X6/X36/P95jAAC6uLi/Aurbt68mT56s0tLSyG1tbW0qLS1Vbm5uvB8OANBNJeRKCKtWrdKCBQv0ne98R1OnTtWLL76olpYW/fjHP07EwwEAuqGEBOjBBx/UZ599prVr16qxsVF33XWX9uzZc9UHEwAANy+fc85ZD/Fl4XBYgUDAegwAwA0KhUJKSUnp8H7zT8EBAG5OBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwERv6wGA6+nTp4/nPdOnT4/psebPn+95zwMPPOB5z2233eZ5T1VVlec9c+fO9bxHko4fPx7TPsALXgEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACa4GCk61YgRIzzveeGFFzzvifUinKFQyPOebdu2ed6TnZ3tec+MGTM877nrrrs875G4GCk6B6+AAAAmCBAAwETcA/TMM8/I5/NFrXHjxsX7YQAA3VxC3gO688479e677/7vQXrzVhMAIFpCytC7d28Fg8FEfGsAQA+RkPeAjh49qqysLI0aNUqPPPKI6urqOjy2tbVV4XA4agEAer64BygnJ0ebN2/Wnj179PLLL6u2tlb33HOPzpw50+7xJSUlCgQCkTVs2LB4jwQA6ILiHqDCwkI98MADmjhxogoKCvT222+rublZb731VrvHFxcXKxQKRVZ9fX28RwIAdEEJ/3TAwIEDNWbMGNXU1LR7v9/vl9/vT/QYAIAuJuH/HdDZs2d17NgxZWZmJvqhAADdSNwD9OSTT6q8vFyffvqp/v3vf2vu3Lnq1auXHn744Xg/FACgG4v7r+BOnDihhx9+WKdPn9bgwYN19913a//+/Ro8eHC8HwoA0I3FPUBbt26N97dEF/Wzn/3M856VK1d63hPLe4Rr1qzxvEeSXn31Vc97GhsbPe+ZNm2a5z2xXIz0m9/8puc9krRz586Y9gFecC04AIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBEwv9COvRczz33nOc9hw4d8rxn8eLFnvdUVlZ63tMTnT171noEoEO8AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJroaNmCUl8e8vktS7t/d/jJYvX56ASa5WU1PTKY8DxIKfIAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACS5GCnxJLBcWXb16tec9P/zhDz3v2bRpk+c9//jHPzzvAToLr4AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABNcjBSd6pZbbvG851vf+pbnPZmZmZ73SNLy5cs975k2bVpMj+XVP//5z055HKCz8AoIAGCCAAEATHgO0N69ezV79mxlZWXJ5/Npx44dUfc757R27VplZmaqf//+ys/P19GjR+M1LwCgh/AcoJaWFk2aNEkbN25s9/4NGzbopZde0iuvvKIDBw7o1ltvVUFBgS5cuHDDwwIAeg7PH0IoLCxUYWFhu/c55/Tiiy/qF7/4he6//35J0muvvaaMjAzt2LFDDz300I1NCwDoMeL6HlBtba0aGxuVn58fuS0QCCgnJ0cVFRXt7mltbVU4HI5aAICeL64BamxslCRlZGRE3Z6RkRG576tKSkoUCAQia9iwYfEcCQDQRZl/Cq64uFihUCiy6uvrrUcCAHSCuAYoGAxKkpqamqJub2pqitz3VX6/XykpKVELANDzxTVA2dnZCgaDKi0tjdwWDod14MAB5ebmxvOhAADdnOdPwZ09e1Y1NTWRr2tra1VVVaXU1FQNHz5cK1as0LPPPqs77rhD2dnZWrNmjbKysjRnzpx4zg0A6OY8B+jgwYO69957I1+vWrVKkrRgwQJt3rxZTz31lFpaWrR48WI1Nzfr7rvv1p49e9SvX7/4TQ0A6PZ8zjlnPcSXhcNhBQIB6zGQIOPGjfO856OPPkrAJO3z+Xye93Sxf4SiHDhwIKZ9jz32mOc9//nPf2J6LPRcoVDomu/rm38KDgBwcyJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJroaNTpWcnOx5z3333ZeASdp3/Phxz3uqqqo87xk0aJDnPUuXLvW85+mnn/a8R5JaW1s975k4caLnPZ9++qnnPeg+uBo2AKBLIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMcDFSoAebPXt2TPu2bt3qec/HH3/sec8999zjec/58+c974ENLkYKAOiSCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATva0HAJA4u3btimnf888/73nPmjVrPO+ZMmWK5z179+71vAddE6+AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATPuecsx7iy8LhsAKBgPUYwE1t5MiRnvccPnzY856qqirPe/Ly8jzvgY1QKKSUlJQO7+cVEADABAECAJjwHKC9e/dq9uzZysrKks/n044dO6LuX7hwoXw+X9SaNWtWvOYFAPQQngPU0tKiSZMmaePGjR0eM2vWLDU0NETWG2+8cUNDAgB6Hs9/I2phYaEKCwuveYzf71cwGIx5KABAz5eQ94DKysqUnp6usWPH6vHHH9fp06c7PLa1tVXhcDhqAQB6vrgHaNasWXrttddUWlqq3/72tyovL1dhYaEuX77c7vElJSUKBAKRNWzYsHiPBADogjz/Cu56HnroocifJ0yYoIkTJ2r06NEqKyvTjBkzrjq+uLhYq1atinwdDoeJEADcBBL+MexRo0YpLS1NNTU17d7v9/uVkpIStQAAPV/CA3TixAmdPn1amZmZiX4oAEA34vlXcGfPno16NVNbW6uqqiqlpqYqNTVV69ev1/z58xUMBnXs2DE99dRTuv3221VQUBDXwQEA3ZvnAB08eFD33ntv5Osv3r9ZsGCBXn75ZR0+fFh/+ctf1NzcrKysLM2cOVO/+tWv5Pf74zc1AKDb42KkAOLik08+8bxnzJgxnvckJXEFse6Ci5ECALokAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmIj7X8kN4ObUxS6sj26AV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkuRoqY3X333Z737Nu3LwGTAOiOeAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgYqSI2a9//WvPe37+85973sMFTDtfcnKy5z0DBgxIwCToyXgFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GKkiNnu3bs973n77bc973niiSc879myZYvnPZLU1tYW076e5rnnnvO8Z8iQIZ73/P73v/e8Bz0Hr4AAACYIEADAhKcAlZSUaMqUKUpOTlZ6errmzJmj6urqqGMuXLigoqIiDRo0SAMGDND8+fPV1NQU16EBAN2fpwCVl5erqKhI+/fv1zvvvKNLly5p5syZamlpiRyzcuVK7dq1S9u2bVN5eblOnjypefPmxX1wAED35ulDCHv27In6evPmzUpPT1dlZaXy8vIUCoX06quvasuWLbrvvvskSZs2bdI3vvEN7d+/X9/97nfjNzkAoFu7ofeAQqGQJCk1NVWSVFlZqUuXLik/Pz9yzLhx4zR8+HBVVFS0+z1aW1sVDoejFgCg54s5QG1tbVqxYoWmTZum8ePHS5IaGxvVt29fDRw4MOrYjIwMNTY2tvt9SkpKFAgEImvYsGGxjgQA6EZiDlBRUZGOHDmirVu33tAAxcXFCoVCkVVfX39D3w8A0D3E9B+iLl26VLt379bevXs1dOjQyO3BYFAXL15Uc3Nz1KugpqYmBYPBdr+X3++X3++PZQwAQDfm6RWQc05Lly7V9u3b9d577yk7Ozvq/smTJ6tPnz4qLS2N3FZdXa26ujrl5ubGZ2IAQI/g6RVQUVGRtmzZop07dyo5OTnyvk4gEFD//v0VCAT06KOPatWqVUpNTVVKSoqWLVum3NxcPgEHAIjiKUAvv/yyJGn69OlRt2/atEkLFy6UJP3hD39QUlKS5s+fr9bWVhUUFOhPf/pTXIYFAPQcPuecsx7iy8LhsAKBgPUY+Br69Onjec/ixYs971m/fr3nPfv27fO8R1JMH6rZuXOn5z3nz5/3vCcWjz32WEz7nn/+ec97Ynk+xHIB0+bmZs97YCMUCiklJaXD+7kWHADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExwNWx0eYMHD/a859lnn43psRYtWuR5T11dnec9nXU17LFjx8a0L5b5Hn74Yc97/v73v3veg+6Dq2EDALokAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBEb+sBgOv57LPPPO9ZtmxZTI/V0NDgec/8+fM977nzzjs974nFvn37Ytq3cOFCz3v++9//xvRYuHnxCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMOFzzjnrIb4sHA4rEAhYjwEAuEGhUEgpKSkd3s8rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGDCU4BKSko0ZcoUJScnKz09XXPmzFF1dXXUMdOnT5fP54taS5YsievQAIDuz1OAysvLVVRUpP379+udd97RpUuXNHPmTLW0tEQdt2jRIjU0NETWhg0b4jo0AKD76+3l4D179kR9vXnzZqWnp6uyslJ5eXmR22+55RYFg8H4TAgA6JFu6D2gUCgkSUpNTY26/fXXX1daWprGjx+v4uJinTt3rsPv0draqnA4HLUAADcBF6PLly+7H/zgB27atGlRt//5z392e/bscYcPH3Z//etf3ZAhQ9zcuXM7/D7r1q1zklgsFovVw1YoFLpmR2IO0JIlS9yIESNcfX39NY8rLS11klxNTU2791+4cMGFQqHIqq+vNz9pLBaLxbrxdb0AeXoP6AtLly7V7t27tXfvXg0dOvSax+bk5EiSampqNHr06Kvu9/v98vv9sYwBAOjGPAXIOadly5Zp+/btKisrU3Z29nX3VFVVSZIyMzNjGhAA0DN5ClBRUZG2bNminTt3Kjk5WY2NjZKkQCCg/v3769ixY9qyZYu+//3va9CgQTp8+LBWrlypvLw8TZw4MSH/AwAA3ZSX933Uwe/5Nm3a5Jxzrq6uzuXl5bnU1FTn9/vd7bff7lavXn3d3wN+WSgUMv+9JYvFYrFufF3vZ7/v/8PSZYTDYQUCAesxAAA3KBQKKSUlpcP7uRYcAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBElwuQc856BABAHFzv53mXC9CZM2esRwAAxMH1fp77XBd7ydHW1qaTJ08qOTlZPp8v6r5wOKxhw4apvr5eKSkpRhPa4zxcwXm4gvNwBefhiq5wHpxzOnPmjLKyspSU1PHrnN6dONPXkpSUpKFDh17zmJSUlJv6CfYFzsMVnIcrOA9XcB6usD4PgUDgusd0uV/BAQBuDgQIAGCiWwXI7/dr3bp18vv91qOY4jxcwXm4gvNwBefhiu50HrrchxAAADeHbvUKCADQcxAgAIAJAgQAMEGAAAAmuk2ANm7cqJEjR6pfv37KycnRBx98YD1Sp3vmmWfk8/mi1rhx46zHSri9e/dq9uzZysrKks/n044dO6Lud85p7dq1yszMVP/+/ZWfn6+jR4/aDJtA1zsPCxcuvOr5MWvWLJthE6SkpERTpkxRcnKy0tPTNWfOHFVXV0cdc+HCBRUVFWnQoEEaMGCA5s+fr6amJqOJE+PrnIfp06df9XxYsmSJ0cTt6xYBevPNN7Vq1SqtW7dOH374oSZNmqSCggKdOnXKerROd+edd6qhoSGy9u3bZz1SwrW0tGjSpEnauHFju/dv2LBBL730kl555RUdOHBAt956qwoKCnThwoVOnjSxrnceJGnWrFlRz4833nijEydMvPLychUVFWn//v165513dOnSJc2cOVMtLS2RY1auXKldu3Zp27ZtKi8v18mTJzVv3jzDqePv65wHSVq0aFHU82HDhg1GE3fAdQNTp051RUVFka8vX77ssrKyXElJieFUnW/dunVu0qRJ1mOYkuS2b98e+bqtrc0Fg0H3u9/9LnJbc3Oz8/v97o033jCYsHN89Tw459yCBQvc/fffbzKPlVOnTjlJrry83Dl35f/7Pn36uG3btkWO+fjjj50kV1FRYTVmwn31PDjn3Pe+9z23fPlyu6G+hi7/CujixYuqrKxUfn5+5LakpCTl5+eroqLCcDIbR48eVVZWlkaNGqVHHnlEdXV11iOZqq2tVWNjY9TzIxAIKCcn56Z8fpSVlSk9PV1jx47V448/rtOnT1uPlFChUEiSlJqaKkmqrKzUpUuXop4P48aN0/Dhw3v08+Gr5+ELr7/+utLS0jR+/HgVFxfr3LlzFuN1qMtdjPSrPv/8c12+fFkZGRlRt2dkZOiTTz4xmspGTk6ONm/erLFjx6qhoUHr16/XPffcoyNHjig5Odl6PBONjY2S1O7z44v7bhazZs3SvHnzlJ2drWPHjunpp59WYWGhKioq1KtXL+vx4q6trU0rVqzQtGnTNH78eElXng99+/bVwIEDo47tyc+H9s6DJP3oRz/SiBEjlJWVpcOHD+unP/2pqqur9be//c1w2mhdPkD4n8LCwsifJ06cqJycHI0YMUJvvfWWHn30UcPJ0BU89NBDkT9PmDBBEydO1OjRo1VWVqYZM2YYTpYYRUVFOnLkyE3xPui1dHQeFi9eHPnzhAkTlJmZqRkzZujYsWMaPXp0Z4/Zri7/K7i0tDT16tXrqk+xNDU1KRgMGk3VNQwcOFBjxoxRTU2N9ShmvngO8Py42qhRo5SWltYjnx9Lly7V7t279f7770f99S3BYFAXL15Uc3Nz1PE99fnQ0XloT05OjiR1qedDlw9Q3759NXnyZJWWlkZua2trU2lpqXJzcw0ns3f27FkdO3ZMmZmZ1qOYyc7OVjAYjHp+hMNhHThw4KZ/fpw4cUKnT5/uUc8P55yWLl2q7du367333lN2dnbU/ZMnT1afPn2ing/V1dWqq6vrUc+H652H9lRVVUlS13o+WH8K4uvYunWr8/v9bvPmze6jjz5yixcvdgMHDnSNjY3Wo3Wqn/zkJ66srMzV1ta6f/3rXy4/P9+lpaW5U6dOWY+WUGfOnHGHDh1yhw4dcpLcCy+84A4dOuSOHz/unHPuN7/5jRs4cKDbuXOnO3z4sLv//vtddna2O3/+vPHk8XWt83DmzBn35JNPuoqKCldbW+veffdd9+1vf9vdcccd7sKFC9ajx83jjz/uAoGAKysrcw0NDZF17ty5yDFLlixxw4cPd++99547ePCgy83Ndbm5uYZTx9/1zkNNTY375S9/6Q4ePOhqa2vdzp073ahRo1xeXp7x5NG6RYCcc+6Pf/yjGz58uOvbt6+bOnWq279/v/VIne7BBx90mZmZrm/fvm7IkCHuwQcfdDU1NdZjJdz777/vJF21FixY4Jy78lHsNWvWuIyMDOf3+92MGTNcdXW17dAJcK3zcO7cOTdz5kw3ePBg16dPHzdixAi3aNGiHvcvae3975fkNm3aFDnm/Pnz7oknnnC33Xabu+WWW9zcuXNdQ0OD3dAJcL3zUFdX5/Ly8lxqaqrz+/3u9ttvd6tXr3ahUMh28K/gr2MAAJjo8u8BAQB6JgIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADAxP8BeGymnAm8eVIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "3\n" + ] + } + ], + "source": [ + "# вывод изображения\n", + "for i in range(4):\n", + " plt.imshow(X_train[i], cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " # вывод метки для этого изображения\n", + " print(y_train[i])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uFieNOL_quFk" + }, + "source": [ + "5) Провести предобработку данных: привести обучающие и тестовые данные\n", + "к формату, пригодному для обучения нейронной сети. Входные данные\n", + "должны принимать значения от 0 до 1, метки цифр должны быть\n", + "закодированы по принципу «one-hot encoding». Вывести размерности\n", + "предобработанных обучающих и тестовых массивов данных." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "t6ZI7UCEquN3", + "outputId": "3936fa48-1f02-43c0-9142-aeb5dbd2abef" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (60000, 784)\n" + ] + } + ], + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_zriXC2mQv3b", + "outputId": "f6426cd0-513b-4c11-fd4d-28e75ea5b20c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed y train: (60000, 10)\n" + ] + } + ], + "source": [ + "# переведем метки в one-hot\n", + "from keras.utils import to_categorical\n", + "y_train = to_categorical(y_train)\n", + "y_test = to_categorical(y_test)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "num_classes = y_train.shape[1]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CuathEnbquUe" + }, + "source": [ + "6) Реализовать модель однослойной нейронной сети и обучить ее на\n", + "обучающих данных с выделением части обучающих данных в качестве\n", + "валидационных. Вывести информацию об архитектуре нейронной сети.\n", + "Вывести график функции ошибки на обучающих и валидационных данных\n", + "по эпохам. \n", + "При реализации модели нейронной сети задать следующую архитектуру и\n", + "параметры обучения:\n", + "- количество скрытых слоев: 0\n", + "- функция активации выходного слоя: softmax\n", + "- функция ошибки: categorical_crossentropy\n", + "- алгоритм обучения: sgd\n", + "- метрика качества: accuracy\n", + "- количество эпох: 50\n", + "- доля валидационных данных от обучающих: 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 182 + }, + "id": "430IlEToquZg", + "outputId": "be6ac59d-9da1-4d7f-9417-b98d36008446" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_9\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_9\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_21 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m7,850\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_21 (Dense)                │ (None, 10)             │         7,850 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" + ], + "text/html": [ + "
 Total params: 7,850 (30.66 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" + ], + "text/html": [ + "
 Trainable params: 7,850 (30.66 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense\n", + "\n", + "# создаем модель\n", + "model_1output = Sequential()\n", + "model_1output.add(Dense(units=num_classes, input_dim=num_pixels, activation='softmax'))\n", + "# компилируем модель\n", + "model_1output.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "# вывод информации об архитектуре модели\n", + "print(model_1output.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kBF27Hq6R1oO", + "outputId": "32e8889b-f4ec-4087-f0a7-a132fbc1f52d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.7138 - loss: 1.1461 - val_accuracy: 0.8675 - val_loss: 0.5159\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8734 - loss: 0.4895 - val_accuracy: 0.8863 - val_loss: 0.4293\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.8909 - loss: 0.4183 - val_accuracy: 0.8938 - val_loss: 0.3940\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.8982 - loss: 0.3807 - val_accuracy: 0.8978 - val_loss: 0.3723\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8992 - loss: 0.3713 - val_accuracy: 0.9035 - val_loss: 0.3573\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9030 - loss: 0.3549 - val_accuracy: 0.9055 - val_loss: 0.3480\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9048 - loss: 0.3416 - val_accuracy: 0.9093 - val_loss: 0.3395\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9064 - loss: 0.3378 - val_accuracy: 0.9097 - val_loss: 0.3354\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9084 - loss: 0.3281 - val_accuracy: 0.9118 - val_loss: 0.3282\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.9113 - loss: 0.3189 - val_accuracy: 0.9118 - val_loss: 0.3237\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 2ms/step - accuracy: 0.9114 - loss: 0.3197 - val_accuracy: 0.9118 - val_loss: 0.3204\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9143 - loss: 0.3095 - val_accuracy: 0.9152 - val_loss: 0.3165\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9140 - loss: 0.3086 - val_accuracy: 0.9153 - val_loss: 0.3139\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.9145 - loss: 0.3085 - val_accuracy: 0.9148 - val_loss: 0.3122\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9134 - loss: 0.3099 - val_accuracy: 0.9173 - val_loss: 0.3097\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9160 - loss: 0.3046 - val_accuracy: 0.9168 - val_loss: 0.3083\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 2ms/step - accuracy: 0.9151 - loss: 0.3037 - val_accuracy: 0.9180 - val_loss: 0.3057\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9137 - loss: 0.3053 - val_accuracy: 0.9180 - val_loss: 0.3038\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9157 - loss: 0.2996 - val_accuracy: 0.9185 - val_loss: 0.3021\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9179 - loss: 0.2968 - val_accuracy: 0.9178 - val_loss: 0.3009\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9198 - loss: 0.2943 - val_accuracy: 0.9188 - val_loss: 0.2998\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 2ms/step - accuracy: 0.9168 - loss: 0.2936 - val_accuracy: 0.9180 - val_loss: 0.2989\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9187 - loss: 0.2928 - val_accuracy: 0.9185 - val_loss: 0.2971\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9189 - loss: 0.2917 - val_accuracy: 0.9188 - val_loss: 0.2966\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9202 - loss: 0.2877 - val_accuracy: 0.9195 - val_loss: 0.2947\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9192 - loss: 0.2891 - val_accuracy: 0.9195 - val_loss: 0.2940\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 2ms/step - accuracy: 0.9217 - loss: 0.2883 - val_accuracy: 0.9198 - val_loss: 0.2932\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9203 - loss: 0.2822 - val_accuracy: 0.9200 - val_loss: 0.2922\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9203 - loss: 0.2881 - val_accuracy: 0.9202 - val_loss: 0.2910\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9198 - loss: 0.2857 - val_accuracy: 0.9202 - val_loss: 0.2911\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9188 - loss: 0.2898 - val_accuracy: 0.9198 - val_loss: 0.2906\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9219 - loss: 0.2829 - val_accuracy: 0.9207 - val_loss: 0.2893\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9226 - loss: 0.2782 - val_accuracy: 0.9213 - val_loss: 0.2889\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9212 - loss: 0.2796 - val_accuracy: 0.9213 - val_loss: 0.2878\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9228 - loss: 0.2793 - val_accuracy: 0.9208 - val_loss: 0.2873\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9233 - loss: 0.2774 - val_accuracy: 0.9217 - val_loss: 0.2866\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.9227 - loss: 0.2775 - val_accuracy: 0.9205 - val_loss: 0.2865\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9237 - loss: 0.2715 - val_accuracy: 0.9213 - val_loss: 0.2855\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9236 - loss: 0.2721 - val_accuracy: 0.9208 - val_loss: 0.2859\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9226 - loss: 0.2782 - val_accuracy: 0.9218 - val_loss: 0.2846\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9241 - loss: 0.2725 - val_accuracy: 0.9208 - val_loss: 0.2843\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9250 - loss: 0.2701 - val_accuracy: 0.9215 - val_loss: 0.2841\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9248 - loss: 0.2732 - val_accuracy: 0.9222 - val_loss: 0.2834\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9250 - loss: 0.2756 - val_accuracy: 0.9218 - val_loss: 0.2830\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9251 - loss: 0.2731 - val_accuracy: 0.9223 - val_loss: 0.2826\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.9237 - loss: 0.2712 - val_accuracy: 0.9225 - val_loss: 0.2820\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9254 - loss: 0.2722 - val_accuracy: 0.9237 - val_loss: 0.2815\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9253 - loss: 0.2677 - val_accuracy: 0.9223 - val_loss: 0.2813\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9243 - loss: 0.2740 - val_accuracy: 0.9232 - val_loss: 0.2816\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9244 - loss: 0.2711 - val_accuracy: 0.9223 - val_loss: 0.2809\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "H_1output = model_1output.fit(X_train, y_train, validation_split=0.1, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "eKpVwYIhT2Lu", + "outputId": "dcd98e37-f92e-4f4b-a164-1e691b75b792" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb2tJREFUeJzt3Xd8VFXC//HPnT6TXkhCpFcBKYrKg1hAui6Kq2tjFXh29VFhLaz6k91VwFVRbFhYWSu6Flwb66ogAQVEAaWpKCAgCAIJNb3MZOb+/phkICRAEpKZhHzfr9d9ZebOmTtnTkC+nnPuOYZpmiYiIiIiTYgl0hUQERERCTcFIBEREWlyFIBERESkyVEAEhERkSZHAUhERESaHAUgERERaXIUgERERKTJUQASERGRJkcBSERERJocBSARafDGjBlDdHR0pKsRcYZhMH78+EhXQ+SkoAAk0oTNmjULwzBYuXJlpKsiIhJWCkAiIiLS5CgAiYiISJOjACQix7VmzRqGDx9ObGws0dHRDBw4kOXLl1co4/P5mDJlCh07dsTlcpGUlMS5555LRkZGqExmZiZjx46lRYsWOJ1OmjdvzqWXXsq2bduqVY+ff/6ZoUOHEhUVRXp6Ovfffz+maQJgmiZt2rTh0ksvrfS+4uJi4uLi+L//+7/jfsbrr79O7969cbvdJCYmcvXVV7Njx44KZfr3789pp53GqlWrOOecc3C73bRt25aZM2dWut6ePXv4wx/+QGpqKi6Xi549e/Lqq69WKhcIBHjqqafo3r07LpeLZs2aMWzYsCqHJ+fMmcNpp52G0+mkW7duzJs3r8LreXl53H777bRp0wan00lKSgqDBw9m9erVx/3+Ik2FApCIHNMPP/zAeeedx7fffsvdd9/Nvffey9atW+nfvz8rVqwIlZs8eTJTpkxhwIABPPvss/z1r3+lVatWFf7Rvfzyy/nggw8YO3Ys//jHP7j11lvJy8tj+/btx62H3+9n2LBhpKamMm3aNHr37s2kSZOYNGkSEJwg/Pvf/565c+dy4MCBCu/973//S25uLr///e+P+RkPPvgg119/PR07duSJJ57g9ttvZ+HChZx//vlkZ2dXKHvw4EEuuugievfuzbRp02jRogU333wzL7/8cqhMUVER/fv351//+hejRo3i0UcfJS4ujjFjxvDUU09VuN4f/vAHbr/9dlq2bMkjjzzCPffcg8vlqhQ0ly5dyi233MLVV1/NtGnTKC4u5vLLL2f//v2hMjfddBPPPfccl19+Of/4xz+48847cbvdrF+//rjtLNJkmCLSZL3yyismYH7zzTdHLTNy5EjT4XCYW7ZsCZ3btWuXGRMTY55//vmhcz179jQvvvjio17n4MGDJmA++uijNa7n6NGjTcD805/+FDoXCATMiy++2HQ4HObevXtN0zTNjRs3moD53HPPVXj/JZdcYrZp08YMBAJH/Yxt27aZVqvVfPDBByuc//77702bzVbh/AUXXGAC5uOPPx46V1JSYvbq1ctMSUkxvV6vaZqmOX36dBMwX3/99VA5r9dr9u3b14yOjjZzc3NN0zTNzz77zATMW2+9tVK9Dq8zYDocDnPz5s2hc99++60JmM8880zoXFxcnDlu3LijflcRMU31AInIUfn9fubPn8/IkSNp165d6Hzz5s259tprWbp0Kbm5uQDEx8fzww8/sGnTpiqv5Xa7cTgcLFq0iIMHD9aqPoffAl5+S7jX62XBggUAdOrUiT59+vDGG2+Eyh04cIC5c+cyatQoDMM46rXff/99AoEAV155Jfv27QsdaWlpdOzYkc8//7xCeZvNVmFIzeFw8H//93/s2bOHVatWAfDJJ5+QlpbGNddcEypnt9u59dZbyc/PZ/HixQC89957GIYR6s063JF1HjRoEO3btw8979GjB7Gxsfz888+hc/Hx8axYsYJdu3Yd9fuKNHUKQCJyVHv37qWwsJDOnTtXeq1Lly4EAoHQ/Jj777+f7OxsOnXqRPfu3bnrrrv47rvvQuWdTiePPPIIc+fOJTU1lfPPP59p06aRmZlZrbpYLJYKIQyCgQeoMIfo+uuv58svv+SXX34B4J133sHn83Hdddcd8/qbNm3CNE06duxIs2bNKhzr169nz549Fcqnp6cTFRV1zPr88ssvdOzYEYul4n9qu3TpEnodYMuWLaSnp5OYmHi8ZqBVq1aVziUkJFQIldOmTWPdunW0bNmSs88+m8mTJ1cISCKiACQideT8889ny5YtvPzyy5x22mm8+OKLnHHGGbz44ouhMrfffjs//fQTU6dOxeVyce+999KlSxfWrFlTZ/W4+uqrsdvtoV6g119/nTPPPLPKEHe4QCCAYRjMmzePjIyMSsc///nPOqvjibBarVWeN8smgwNceeWV/PzzzzzzzDOkp6fz6KOP0q1bN+bOnRuuaoo0eApAInJUzZo1w+PxsHHjxkqvbdiwAYvFQsuWLUPnEhMTGTt2LG+99RY7duygR48eTJ48ucL72rdvz5///Gfmz5/PunXr8Hq9PP7448etSyAQqNSL8dNPPwHQpk2bCnW4+OKLeeONN/jll1/48ssvj9v7U14v0zRp27YtgwYNqnT8z//8T4Xyu3btoqCg4Jj1ad26NZs2bSIQCFQot2HDhtDr5Z+9a9euSpO3T0Tz5s255ZZbmDNnDlu3biUpKYkHH3ywzq4v0tgpAInIUVmtVoYMGcJ//vOfCsNMWVlZvPnmm5x77rnExsYCVLgLCSA6OpoOHTpQUlICQGFhIcXFxRXKtG/fnpiYmFCZ43n22WdDj03T5Nlnn8VutzNw4MAK5a677jp+/PFH7rrrLqxWK1dfffVxr/3b3/4Wq9XKlClTKvSmlH/Wkd+vtLS0Qq+Q1+vln//8J82aNaN3794AXHTRRWRmZvL2229XeN8zzzxDdHQ0F1xwARC8O840TaZMmVKpXkfW5Xj8fj85OTkVzqWkpJCenl7tdhZpCmyRroCIRN7LL79caS0ZgNtuu40HHniAjIwMzj33XG655RZsNhv//Oc/KSkpYdq0aaGyXbt2pX///vTu3ZvExERWrlzJu+++G5q4/NNPPzFw4ECuvPJKunbtis1m44MPPiArK6taAcXlcjFv3jxGjx5Nnz59mDt3Lh9//DF/+ctfaNasWYWyF198MUlJSbzzzjsMHz6clJSU416/ffv2PPDAA0ycOJFt27YxcuRIYmJi2Lp1Kx988AE33ngjd955Z6h8eno6jzzyCNu2baNTp068/fbbrF27lueffx673Q7AjTfeyD//+U/GjBnDqlWraNOmDe+++y5ffvkl06dPJyYmBoABAwZw3XXX8fTTT7Np0yaGDRtGIBDgiy++YMCAATXa/ysvL48WLVpwxRVX0LNnT6Kjo1mwYAHffPNNtXraRJqMyN2AJiKRVn4b/NGOHTt2mKZpmqtXrzaHDh1qRkdHmx6PxxwwYID51VdfVbjWAw88YJ599tlmfHy86Xa7zVNPPdV88MEHQ7eE79u3zxw3bpx56qmnmlFRUWZcXJzZp08f89///vdx6zl69GgzKirK3LJlizlkyBDT4/GYqamp5qRJk0y/31/le2655RYTMN98880atcl7771nnnvuuWZUVJQZFRVlnnrqqea4cePMjRs3hspccMEFZrdu3cyVK1eaffv2NV0ul9m6dWvz2WefrXS9rKwsc+zYsWZycrLpcDjM7t27m6+88kqlcqWlpeajjz5qnnrqqabD4TCbNWtmDh8+3Fy1alWoDFDl7e2tW7c2R48ebZpm8Hb8u+66y+zZs6cZExNjRkVFmT179jT/8Y9/1KgdRE52hmnWsH9VRKQRuOOOO3jppZfIzMzE4/HU6bX79+/Pvn37WLduXZ1eV0TCR3OAROSkU1xczOuvv87ll19e5+FHRE4OmgMkIieNPXv2sGDBAt59913279/PbbfdFukqiUgDpQAkIieNH3/8kVGjRpGSksLTTz9Nr169Il0lEWmgIjoENnXqVM466yxiYmJISUlh5MiRVa43crgXXniB8847j4SEBBISEhg0aBBff/11hTJjxozBMIwKx7Bhw+rzq4hIA9C/f39M0yQrK6tGd07V1KJFizT/R6SRi2gAWrx4MePGjWP58uVkZGTg8/kYMmRIpcXFDrdo0SKuueYaPv/8c5YtW0bLli0ZMmQIO3furFBu2LBh7N69O3S89dZb9f11REREpJFoUHeB7d27l5SUFBYvXsz5559frff4/X4SEhJ49tlnuf7664FgD1B2djZz5sypx9qKiIhIY9Wg5gCVr15anQ0ByxUWFuLz+Sq9Z9GiRaSkpJCQkMCFF17IAw88QFJSUpXXKCkpqbBCaiAQ4MCBAyQlJR1z92gRERFpOEzTJC8vj/T09EqbEB+pwfQABQIBLrnkErKzs1m6dGm133fLLbfw6aef8sMPP+ByuQCYPXs2Ho+Htm3bsmXLFv7yl78QHR3NsmXLqtxIcPLkyVUuQS8iIiKNz44dO2jRosUxyzSYAHTzzTczd+5cli5detxKl3v44YeZNm0aixYtokePHkct9/PPP9O+fXsWLFhQac8gqNwDlJOTQ6tWrdi6dWtoqfq64vP5+PzzzxkwYEBouXypP2rv8FJ7h5faO7zU3uFVm/bOy8ujbdu2ZGdnExcXd8yyDWIIbPz48Xz00UcsWbKk2uHnscce4+GHH2bBggXHDD8A7dq1Izk5mc2bN1cZgJxOJ06ns9L5xMTE0EaPdcXn8+HxeEhKStJfoDBQe4eX2ju81N7hpfYOr9q0d3m56kxfiWgAMk2TP/3pT3zwwQcsWrSItm3bVut906ZN48EHH+TTTz/lzDPPPG75X3/9lf3799O8efMTrbKIiIicBCJ6G/y4ceN4/fXXefPNN4mJiSEzM5PMzEyKiopCZa6//nomTpwYev7II49w77338vLLL9OmTZvQe/Lz8wHIz8/nrrvuYvny5Wzbto2FCxdy6aWX0qFDB4YOHRr27ygiIiINT0QD0HPPPUdOTg79+/enefPmoePtt98Oldm+fTu7d++u8B6v18sVV1xR4T2PPfYYAFarle+++45LLrmETp068Yc//IHevXvzxRdfVDnMJSIiIk1PxIfAjmfRokUVnm/btu2Y5d1uN59++ukJ1EpERE5Wfr8fn89Xq/f6fD5sNhvFxcX4/f46rpkcqar2ttvtVd7NXRsNYhK0iIhIfTJNk8zMTLKzs0/oGmlpaezYsUNrxIXB0do7Pj6etLS0E/4dKACJiMhJrzz8pKSk4PF4avWPZyAQID8/n+jo6OMusicn7sj2Nk2TwsJC9uzZA3DCNzYpAImIyEnN7/eHws/RdgSojkAggNfrxeVyKQCFQVXt7Xa7AdizZw8pKSknNBym36CIiJzUyuf8eDyeCNdE6kL577G2c7nKKQCJiEiToHk7J4e6+j0qAImIiEiTowAkIiLSBLRp04bp06fXybUWLVqEYRgndFddpGkStIiISAPVv39/evXqVSfB5ZtvviEqKurEK3WSUAAKo5JSP7uzi8jxRromIiJyMjBNE7/fj812/H/OmzVrFoYaNR4aAgujZxZupv/jX5Dxq5pdRESObcyYMSxevJinnnoKwzAwDINZs2ZhGAZz586ld+/eOJ1Oli5dypYtW7j00ktJTU0lOjqas846iwULFlS43pFDYIZh8OKLL3LZZZfh8Xjo2LEjH374Ya3r+95779GtWzecTidt2rTh8ccfr/D6P/7xDzp27IjL5SI1NZUrrrgi9Nq7775L9+7dcbvdJCUlMWjQIAoKCmpdl+pQD1AYJUc7AMg7sTv3RETkBJmmSZGvZttZBAIBirx+bN7SWq8D5LZbq30X01NPPcVPP/3Eaaedxv333w/ADz/8AMA999zDY489Rrt27UhISGDHjh1cdNFFPPjggzidTl577TVGjBjBxo0badWq1VE/Y8qUKUybNo1HH32UZ555hlGjRvHLL7+QmJhYo++1atUqrrzySiZPnsxVV13FV199xS233EJSUhJjxoxh5cqV3HrrrfzrX//inHPO4cCBA3zxxRcA7N69m2uuuYZp06Zx2WWXkZeXxxdffFGt7bJOhAJQGCXHBDdjzfPpVkwRkUgq8vnpel/494388f6heBzV+6c3Li4Oh8OBx+MhLS0NgA0bNgBw//33M3jw4FDZxMREevbsGXr+97//nQ8++IAPP/yQ8ePHH/UzxowZwzXXXAPAQw89xNNPP83XX3/NsGHDavS9nnjiCQYOHMi9994LQKdOnfjxxx959NFHGTNmDNu3bycqKorf/OY3xMTE0Lp1a04//XQgGIBKS0v57W9/S+vWrQHo3r07gUCA3NzcGtWjJjQWE0bJ0cEAlKseIBEROQFnnnlmhef5+fnceeeddOnShfj4eKKjo1m/fj3bt28/5nV69OgRehwVFUVsbGxoq4maWL9+Pf369atwrl+/fmzatAm/38/gwYNp3bo17dq147rrruONN96gsLAQgJ49ezJw4EC6d+/O7373O1544QUOHjxY4zrUlHqAwqhZqAcowhUREWni3HYrP94/tEbvCQQC5OXmERMbc0JDYHXhyLu57rzzTjIyMnjsscfo0KEDbrebK664Aq/32Hfd2O32Cs8NwyAQCNRJHQ8XExPD6tWrWbRoEfPnz+e+++5j8uTJfPPNN8THx5ORkcFXX33F/PnzeeaZZ/jrX//KsmXLTmjrkuNRD1AYlfcAFfsNSmo49iwiInXHMAw8DluND7fDWqv3lR81XcXY4XDg9x//34svv/ySMWPGcNlll9G9e3fS0tLYtm1bLVun5rp06cKXX35ZqU6dOnUK7ddls9kYNGgQ06ZN47vvvmPbtm189tlnQPD30a9fP6ZMmcKaNWtwOBzMmTOnXuusHqAwinXZsFsNfH6TfQVeoj2uSFdJREQasDZt2rBixQq2bdtGdHT0UXtnOnbsyPvvv8+IESMwDIN77723XnpyjubPf/4zZ511Fn//+9+56qqrWLZsGc8++yz/+Mc/APjoo4/4+eefOf/880lISOCTTz4hEAjQuXNnVqxYwcKFCxkyZAgpKSmsWLGCvXv3cuqpp9ZrndUDFEaGYYR6gfblazEgERE5tjvvvBOr1UrXrl1p1qzZUef0PPHEEyQkJHDOOecwYsQIhg4dyhlnnBG2ep5xxhn8+9//Zvbs2Zx22mncd9993H///YwZMwaA+Ph43n//fS688EK6dOnCzJkzeeutt+jWrRuxsbEsWbKEiy66iE6dOvG3v/2Nxx9/nOHDh9drndUDFGbJ0Q525xSzL78k0lUREZEGrlOnTixbtqzCufJQcbg2bdqEhpPKjRs3rsLzI4fEqrrNvLpbW/Tv37/S+y+//HIuv/zyKsufe+65LFq0qMrXunTpwrx58yqdr+8eLPUAhVlSVHAtoP3qARIREYkYBaAw0xCYiIg0dDfddBPR0dFVHjfddFOkq1cnNAQWZuWrQe8rUAASEZGG6f777+fOO++s8rXY2Ngw16Z+KACFWVJ5AMrTHCAREWmYUlJSSElJiXQ16pWGwMIsOUo9QCIiIpGmABRm5atB79ddYCIiIhGjABRm5XeBaRK0iIhI5CgAhVloQ9TiUkpKtR2GiIhIJCgAhVmc24bVCC4epbWAREREIkMBKMwMwyC6bPNdrQYtIiL1qU2bNkyfPr1aZQ3DqPcNSBsSBaAIiFEAEhERiSgFoAiIsQeHwPblaQhMREQkEhSAIqC8B2iveoBEROQonn/+edLT0yttCnrppZfyv//7v2zZsoVLL72U1NRUoqOjOeuss1iwYEGdff7333/PhRdeiNvtJikpiRtvvJH8/PzQ64sWLeLss88mKiqK+Ph4+vXrxy+//ALAt99+y4ABA4iJiSE2NpbevXuzcuXKOqtbXVAAioBQANJq0CIikWGa4C2o+eErrN37yo8qdmA/mt/97nfs37+fzz//PHTuwIEDzJs3j1GjRpGfn89FF13EwoULWbNmDcOGDWPEiBFs3779hJunoKCAoUOHkpCQwDfffMM777zDggULGD9+PAClpaWMHDmSCy64gO+++45ly5Zx4403YhgGAKNGjaJFixZ88803rFq1invuuQe73X7C9apLEd0KY+rUqbz//vts2LABt9vNOeecwyOPPELnzp2P+b533nmHe++9l23bttGxY0ceeeQRLrrootDrpmkyadIkXnjhBbKzs+nXrx/PPfccHTt2rO+vVC2xjrIhMPUAiYhEhq8QHkqv0VssQPyJfu5fdoEjqlpFExISGD58OG+++SYDBw4E4N133yU5OZkBAwZgsVjo2bNnqPzf//53PvjgAz788MNQUKmtN998k+LiYl577TWiooL1ffbZZxkxYgSPPPIIdrudnJwcfvOb39C+fXsAunTpEnr/9u3bueuuuzj11FMBGsy/v4eLaA/Q4sWLGTduHMuXLycjIwOfz8eQIUMoKCg46nu++uorrrnmGv7whz+wZs0aRo4cyciRI1m3bl2ozLRp03j66aeZOXMmK1asICoqiqFDh1JcXByOr3VcmgQtIiLVMWrUKN577z1KSoL/XrzxxhtcffXVWCwW8vPzufPOO+nSpQvx8fFER0ezfv36OukBWr9+PT179gyFH4B+/foRCATYuHEjiYmJjBkzhqFDhzJixAieeuopdu/eHSo7YcIE/vjHPzJo0CAefvhhtmzZcsJ1qmsR7QGaN29eheezZs0iJSWFVatWcf7551f5nqeeeophw4Zx1113AcHEm5GRwbPPPsvMmTMxTZPp06fzt7/9jUsvvRSA1157jdTUVObMmcPVV19dv1+qGg4FIE2CFhGJCLsn2BtTA4FAgNy8PGJjYrBYatl/YPfUqPiIESMwTZOPP/6Ys846iy+++IInn3wSgDvvvJOMjAwee+wxOnTogNvt5oorrsDrDc+/La+88gq33nor8+bN4+233+Zvf/sbGRkZ/M///A+TJ0/m2muv5eOPP2bu3LlMmjSJ2bNnc9lll4WlbtXRoHaDz8nJASAxMfGoZZYtW8aECRMqnBs6dGho7YKtW7eSmZnJoEGDQq/HxcXRp08fli1bVmUAKikpCaVrgNzcXAB8Ph8+n6/W36cqPp/vsLvASur8+lJRefuqncND7R1eau/q8fl8mKZJIBCoOKHY5q7RdUzTBLsf0+4hUDbXpcZMs0bzgBwOB5dddhmvv/46mzZtonPnzvTq1YtAIMCXX37J6NGjQ/+zn5+fz7Zt20Lf9fB6HzmR+mjK26hz587MmjWLvLy8UC/QF198gcVioWPHjqHr9ezZk549e/L//t//o1+/frzxxhucffbZAHTo0IHbbruN2267jWuvvZaXX345VNfqMMva6cj6BwIBTNPE5/NhtVorvKcmfxcaTAAKBALcfvvt9OvXj9NOO+2o5TIzM0lNTa1wLjU1lczMzNDr5eeOVuZIU6dOZcqUKZXOz58/H4+nZmm9Osp7gLKLfPz3o0+waip6vcvIyIh0FZoUtXd4qb2PzWazkZaWRn5+fp30juTl5dVBrapv5MiRXH311axbt44rr7wy9D/pbdq04d1332XAgAEAPPTQQwQCAbxeb6hMIBCguLg49Px4ioqKyM3NZcSIEUyePJnf//73/L//9//Yv38/t956K1dddRVut5vvv/+eWbNmMXz4cNLS0ti8eTM//fQTV1xxBVlZWdx3331ceumltGrVil27dvH1118zYsSIatfjcEe2t9frpaioiCVLllBaWlrhtcLCwmpft8EEoHHjxrFu3TqWLl0a9s+eOHFihV6l3NxcWrZsyZAhQ4iNja3Tz/L5fHw6PwOrYeA3Tc46/0LSYl11+hlyiM/nIyMjg8GDBze4OxBORmrv8FJ7V09xcTE7duwgOjoal6v2/701TZO8vDxiYmJCdzuFw29+8xsSExPZtGkTY8aMCf279NRTT/HHP/6RoUOHkpyczN13301RUREOhyNUxmKx4HK5qv1vmdvtJjY2ltjYWObNm8cdd9zBwIED8Xg8/Pa3v+Xxxx8nOjqalJQUtm7dypgxY9i/fz/Nmzdn3Lhx3HbbbZSWlpKXl8ctt9xCVlYWycnJXHbZZUydOrVG7X+09i4uLsbtdnP++edXul5NAlaDCEDjx4/no48+YsmSJbRo0eKYZdPS0sjKyqpwLisri7S0tNDr5eeaN29eoUyvXr2qvKbT6cTpdFY6b7fb6+U/KhYDkqId7MkrIac4QMsk/YervtXX71KqpvYOL7X3sfn9fgzDwGKx1H7uDoSGYcqvFS4Wi4VduyrPV2rXrh2fffZZhXNH3v21bdu2an+OecTQXM+ePStdv1zz5s2Pum2GzWZj9uzZ1f7cozlae1ssFgzDqPLPfU3+HkR08MU0TcaPH88HH3zAZ599Rtu2bY/7nr59+7Jw4cIK5zIyMujbty8Abdu2JS0trUKZ3NxcVqxYESrTECRFOQAthigiIhIJEQ1A48aN4/XXX+fNN98kJiaGzMxMMjMzKSoqCpW5/vrrmThxYuj5bbfdxrx583j88cfZsGEDkydPZuXKlaHUaxgGt99+Ow888AAffvgh33//Pddffz3p6emMHDky3F/xqJKjywKQFkMUEZF69sYbbxAdHV3l0a1bt0hXLyIiOgT23HPPAdC/f/8K51955RXGjBkDBBdTOrzr65xzzuHNN9/kb3/7G3/5y1/o2LEjc+bMqTBx+u6776agoIAbb7yR7Oxszj33XObNm3dCY791rTwAaS0gERGpb5dccgl9+vSp8rWmOnwa0QB05HhjVRYtWlTp3O9+9zt+97vfHfU9hmFw//33c//9959I9epVcnRwzpE2RBURkfoWExNDTExMpKvRoOgG7AhRD5CIiEjkKABFSFJ5D5ACkIhIWFR3MUBp2Orq99ggboNvitQDJCISHg6HI3QrebNmzXA4HLVax6d8kcHi4uKw3gbfVB3Z3qZp4vV62bt3LxaLBYfDcULXVwAKpz0bMHasJDF/FwlR5wHaD0xEpL5ZLBbatm3L7t27q1xPp7pM06SoqAi32x3WhRCbqqO1t8fjoVWrViccQhWAwmn9f7F9/gAtky7AFX0LAAcLvZT6A9i0H4aISL1xOBy0atWK0tJS/H5/ra7h8/lYsmQJ559/fpO9cyqcqmpvq9WKzWarkwCqABRO7ngAHKUFxHscWAwImHCgwEuKtsMQEalXR1s9uLqsViulpaW4XC4FoDCo7/ZWt0M4uRMAsPsLsFoMEqOCE6G1GrSIiEh4KQCFkycRAEdpPqDVoEVERCJFASicynqAHP5gAGoWU34rvCZCi4iIhJMCUDiVD4GVFgDQTGsBiYiIRIQCUDi5g0NgNtMLviKSy3uANAQmIiISVgpA4eSMwTSswcdF2VoMUUREJEIUgMLJMELDYBQfPLQhquYAiYiIhJUCULiVBSCj6MBhAUg9QCIiIuGkABRmZnkPUFG2ApCIiEiEKACFmys++LPoIMkxwTlABwq8+ANm5OokIiLSxCgAhVvZYohG0UESPQ6Msu0w9heoF0hERCRcFIDCzCzvASo+iM1qIdFTdidYniZCi4iIhIsCULiFJkEfBA5fDVo9QCIiIuGiABRuoUnQwQCkidAiIiLhpwAUZmalAKTFEEVERMJNASjcXGVDYMXZAFoMUUREJAIUgMIs1ANUeABA+4GJiIhEgAJQuIW2wsgGDvUA7dUQmIiISNgoAIVb+V1gpcXBHeFDc4A0BCYiIhIuCkDh5ogmQNmO8IXaD0xERCQSFIDCzTDw2qKCj4sOhtYB2p9fou0wREREwkQBKAJ81kMBKDEqOAQWMOFgoYbBREREwkEBKAK8tujgg6ID2K2WUAjSMJiIiEh4KABFgNdaHoCOWAxR+4GJiIiEhQJQBPgOmwME2g5DREQk3BSAIsBrVQASERGJpIgGoCVLljBixAjS09MxDIM5c+Ycs/yYMWMwDKPS0a1bt1CZyZMnV3r91FNPredvUjM+W0zwQflq0FoMUUREJKwiGoAKCgro2bMnM2bMqFb5p556it27d4eOHTt2kJiYyO9+97sK5bp161ah3NKlS+uj+rVWqQcoRnOAREREwskWyQ8fPnw4w4cPr3b5uLg44uLiQs/nzJnDwYMHGTt2bIVyNpuNtLS0OqtnXTu0DlA2oCEwERGRcGvUc4BeeuklBg0aROvWrSuc37RpE+np6bRr145Ro0axffv2CNWwaj7rodvgAZqVD4FpQ1QREZGwiGgP0InYtWsXc+fO5c0336xwvk+fPsyaNYvOnTuze/dupkyZwnnnnce6deuIiYmp8lolJSWUlBwKH7m5uQD4fD58Pl+d1tvn84XWATILD1Dq8xHvCm6NsS+/pM4/r6krb0+1a3iovcNL7R1eau/wqk1716Rsow1Ar776KvHx8YwcObLC+cOH1Hr06EGfPn1o3bo1//73v/nDH/5Q5bWmTp3KlClTKp2fP38+Ho+nTusN4C6bAxQo2M8nn3xCdgmAjX15xXz08SdYjDr/yCYvIyMj0lVoUtTe4aX2Di+1d3jVpL0LCwurXbZRBiDTNHn55Ze57rrrcDgcxywbHx9Pp06d2Lx581HLTJw4kQkTJoSe5+bm0rJlS4YMGUJsbGyd1RuC6fTzeR8CYDV9XDS4Pz6Li0mrFxDA4Jz+g0IrQ8uJ8/l8ZGRkMHjwYOx2e6Src9JTe4eX2ju81N7hVZv2Lh/BqY5GGYAWL17M5s2bj9qjc7j8/Hy2bNnCddddd9QyTqcTp9NZ6bzdbq+XP+SlFhemxYYRKMXuy8ceF0e8x052oY+ckgCp8fqLVdfq63cpVVN7h5faO7zU3uFVk/auye8lopOg8/PzWbt2LWvXrgVg69atrF27NjRpeeLEiVx//fWV3vfSSy/Rp08fTjvttEqv3XnnnSxevJht27bx1Vdfcdlll2G1Wrnmmmvq9bvUiGGAOyH4+MjFEDURWkREpN5FtAdo5cqVDBgwIPS8fBhq9OjRzJo1i927d1e6gysnJ4f33nuPp556qspr/vrrr1xzzTXs37+fZs2ace6557J8+XKaNWtWf1+kNtwJULA3dCdYcrSDzXu0GKKIiEg4RDQA9e/fH9M0j/r6rFmzKp2Li4s75iSn2bNn10XV6p3pSsCAKrbD0GKIIiIi9a1RrwPUqLnjgz+1H5iIiEjYKQBFijsx+LNsP7BmMZoDJCIiEi4KQBFiVuoBCt76rjlAIiIi9U8BKFJcR7kLTAFIRESk3ikARcoRPUCHhsA0CVpERKS+KQBFiFk+B+iIHqD9BSXHvDNORERETpwCUKQcsRBiUtkcIJ/fJKdIG+2JiIjUJwWgCDFd8cEHZXeBOW1WYl3BZZk0D0hERKR+KQBFiuewIbCyIa/ksnlAezUPSEREpF4pAEVKeQ+QvwR8RYDuBBMREQkXBaBIcUSDpWwnkrL9wJopAImIiISFAlCkGMah1aCPXAxRq0GLiIjUKwWgSHJrMUQREZFIUACKpCMCUGgxRO0ILyIiUq8UgCLJU3FDVPUAiYiIhIcCUCQdOQSmHeFFRETCQgEokirNAQpOgt6X79V2GCIiIvVIASiSQgGo4hCY1x8gt7g0UrUSERE56SkARVIoAGUD4LJbiXFqOwwREZH6pgAUSUcMgYHmAYmIiISDAlAkHXEXGFScByQiIiL1QwEokqrqAYou3xC1OBI1EhERaRIUgCLp8ABUviN8tBZDFBERqW8KQJFUvheYvwR8hcDhq0FrDpCIiEh9UQCKJEcUWOzBx9oPTEREJGwUgCLJMI66GOJeDYGJiIjUGwWgSCsPQOX7gek2eBERkXqnABRp5bfCl+8If9gQmLbDEBERqR8KQJFWaQgsGIBKSgPkl2g7DBERkfqgABRpR+wH5nZYiXJYAd0KLyIiUl8UgCLtWNth6E4wERGReqEAFGnHWA1aE6FFRETqhwJQpIXuAjs8AJXvB6YAJCIiUh8iGoCWLFnCiBEjSE9PxzAM5syZc8zyixYtwjCMSkdmZmaFcjNmzKBNmza4XC769OnD119/XY/f4gQdcRcYHLYfmOYAiYiI1IuIBqCCggJ69uzJjBkzavS+jRs3snv37tCRkpISeu3tt99mwoQJTJo0idWrV9OzZ0+GDh3Knj176rr6deNYQ2DqARIREakXtkh++PDhwxk+fHiN35eSkkJ8fHyVrz3xxBPccMMNjB07FoCZM2fy8ccf8/LLL3PPPfecSHXrxxF3gYEWQxQREalvEQ1AtdWrVy9KSko47bTTmDx5Mv369QPA6/WyatUqJk6cGCprsVgYNGgQy5YtO+r1SkpKKCk5FDZyc3MB8Pl8+Hy+Oq17+fVC17XHYgfMooOUer1gGMS7grfB780rrvPPb2oqtbfUK7V3eKm9w0vtHV61ae+alG1UAah58+bMnDmTM888k5KSEl588UX69+/PihUrOOOMM9i3bx9+v5/U1NQK70tNTWXDhg1Hve7UqVOZMmVKpfPz58/H4/HU+fcAyMjIAMDqL+Y3gOH38ulHc/BbnWzJBbCxfU82n3zySb18flNT3t4SHmrv8FJ7h5faO7xq0t6FhYXVLtuoAlDnzp3p3Llz6Pk555zDli1bePLJJ/nXv/5V6+tOnDiRCRMmhJ7n5ubSsmVLhgwZQmxs7AnV+Ug+n4+MjAwGDx6M3W4H08RcNw4j4GPoBWdD7Cls21/A0z98SZFp46KLhtbp5zc1ldpb6pXaO7zU3uGl9g6v2rR3+QhOdTSqAFSVs88+m6VLlwKQnJyM1WolKyurQpmsrCzS0tKOeg2n04nT6ax03m6319sf8grX9iRCfhZ2by7Y25AWHwVAodePzzTwOBr9ryni6vN3KZWpvcNL7R1eau/wqkl71+T30ujXAVq7di3NmzcHwOFw0Lt3bxYuXBh6PRAIsHDhQvr27RupKh7fEXeCRTttOG3BX82+PN0KLyIiUtci2rWQn5/P5s2bQ8+3bt3K2rVrSUxMpFWrVkycOJGdO3fy2muvATB9+nTatm1Lt27dKC4u5sUXX+Szzz5j/vz5oWtMmDCB0aNHc+aZZ3L22Wczffp0CgoKQneFNUhHBCDDMEiOdrIzu4i9+SW0SqqfeUgiIiJNVUQD0MqVKxkwYEDoefk8nNGjRzNr1ix2797N9u3bQ697vV7+/Oc/s3PnTjweDz169GDBggUVrnHVVVexd+9e7rvvPjIzM+nVqxfz5s2rNDG6QXGXL4ZY8Vb4ndlFWgtIRESkHkQ0APXv3x/TNI/6+qxZsyo8v/vuu7n77ruPe93x48czfvz4E61e+FSxGGIzbYchIiJSbxr9HKCTgjs++LPKDVE1B0hERKSuKQA1BOX7gRVqOwwREZFwUABqCKrcD0xDYCIiIvVFAaghqCoAxagHSEREpL4oADUEVW2IWjYEtj9fc4BERETqmgJQQxC6Db7yHKC96gESERGpcwpADcHhQ2BlywI0KwtAecWlFPv8kaqZiIjISUkBqCEoD0B+L3gLAIh123BYg7+e/QUaBhMREalLCkANgSMKrMG7vg7fDiOp/E6wPA2DiYiI1CUFoIbAMI5yK7zuBBMREakPCkANRZV3gmktIBERkfqgANRQHONOsH26FV5ERKROKQA1FMdYDHGv5gCJiIjUKQWghqI8ABVWXgxRQ2AiIiJ1SwGoofBoPzAREZFwUQBqKEJDYNmhU800B0hERKReKAA1FFXdBaYNUUVEROqFAlBDcYy7wLILffj8gUjUSkRE5KSkANRQVHEXWLzbjtViANoVXkREpC4pADUUVQQgi8UgKUoToUVEROqaAlBD4SkbAis8ENoRHg4Ng+1VABIREakzCkANRXkPUMAX2hEeDpsIrcUQRURE6owCUENh91TaER4OXwtIc4BERETqigJQQ2EYh90JduhW+GZaDVpERKTOKQA1JFXtB6YAJCIiUucUgBqSKjdE1V1gIiIidU0BqCE51oaoeZoDJCIiUlcUgBqSKjZETYrSEJiIiEhdUwBqSI4xBHag0EuptsMQERGpEwpADUkVASjR48AwgmsjHijUMJiIiEhdUABqSKrYENVmtZDoKZsIrXlAIiIidUIBqCGpogcIdCu8iIhIXYtoAFqyZAkjRowgPT0dwzCYM2fOMcu///77DB48mGbNmhEbG0vfvn359NNPK5SZPHkyhmFUOE499dR6/BZ1qIq7wEC3wouIiNS1iAaggoICevbsyYwZM6pVfsmSJQwePJhPPvmEVatWMWDAAEaMGMGaNWsqlOvWrRu7d+8OHUuXLq2P6tc9T+UhMFAPkIiISF2zRfLDhw8fzvDhw6tdfvr06RWeP/TQQ/znP//hv//9L6effnrovM1mIy0tra6qGT6HD4GZZnB7DA4PQJoDJCIiUhciGoBOVCAQIC8vj8TExArnN23aRHp6Oi6Xi759+zJ16lRatWp11OuUlJRQUnKodyU3NxcAn8+Hz+er0zqXX6/K69qisQMEfPgKDoIzBoAEd/DXtCenqM7rc7I7ZntLnVN7h5faO7zU3uFVm/auSVnDNE2zxrWqB4Zh8MEHHzBy5Mhqv2fatGk8/PDDbNiwgZSUFADmzp1Lfn4+nTt3Zvfu3UyZMoWdO3eybt06YmJiqrzO5MmTmTJlSqXzb775Jh6Pp1bfp1ZMk998+0espo/53Z6gyJEMwIo9Bm9usXJqXICbu2otIBERkaoUFhZy7bXXkpOTQ2xs7DHLNtoA9Oabb3LDDTfwn//8h0GDBh21XHZ2Nq1bt+aJJ57gD3/4Q5VlquoBatmyJfv27TtuA9aUz+cjIyODwYMHY7fbK71ue6obRn4Wvj98Bmk9AFj8017++K81nJoWw3/H9a3T+pzsjtfeUrfU3uGl9g4vtXd41aa9c3NzSU5OrlYAqtUQ2KuvvkpycjIXX3wxAHfffTfPP/88Xbt25a233qJ169a1uWy1zZ49mz/+8Y+88847xww/APHx8XTq1InNmzcftYzT6cTpdFY6b7fb6+0P+VGv7U6E/Czs3lwoez0tPgqA/QVe/aWrpfr8XUplau/wUnuHl9o7vGrS3jX5vdTqLrCHHnoIt9sNwLJly5gxYwbTpk0jOTmZO+64ozaXrLa33nqLsWPH8tZbb4UC2LHk5+ezZcsWmjdvXq/1qjNV3AlWPgn6QIGXQKBBdNiJiIg0arXqAdqxYwcdOnQAYM6cOVx++eXceOON9OvXj/79+1f7Ovn5+RV6ZrZu3cratWtJTEykVatWTJw4kZ07d/Laa68BwWGv0aNH89RTT9GnTx8yMzMBcLvdxMXFAXDnnXcyYsQIWrduza5du5g0aRJWq5VrrrmmNl81/KpYDDEpOrgOkD9gcrDQS1J05d4qERERqb5a9QBFR0ezf/9+AObPn8/gwYMBcLlcFBUVVfs6K1eu5PTTTw/dwj5hwgROP/107rvvPgB2797N9u3bQ+Wff/55SktLGTduHM2bNw8dt912W6jMr7/+yjXXXEPnzp258sorSUpKYvny5TRr1qw2XzX83PHBn0WHFkO0Wy3Ee4LderoVXkRE5MTVqgdo8ODB/PGPf+T000/np59+4qKLLgLghx9+oE2bNtW+Tv/+/TnWHOxZs2ZVeL5o0aLjXnP27NnV/vwGKbQfWHaF08nRTrILfezLL6EzVd/NJiIiItVTqx6gGTNm0LdvX/bu3ct7771HUlISAKtWrWo8Q00N1VH3A9N2GCIiInWlVj1A8fHxPPvss5XOV7WWjtTQcTdE1RCYiIjIiapVD9C8efMq7K81Y8YMevXqxbXXXsvBgweP8U45rvK7wI7cEFX7gYmIiNSZWgWgu+66K7RdxPfff8+f//xnLrroIrZu3cqECRPqtIJNjie4+jP5mRVON4spC0B5CkAiIiInqlZDYFu3bqVr164AvPfee/zmN7/hoYceYvXq1aEJ0VJLCWWLSOb8Cv5SsAZ/RZoDJCIiUndq1QPkcDgoLCwEYMGCBQwZMgSAxMTEUM+Q1FJMOlgdECiF3F9DpzUHSEREpO7Uqgfo3HPPZcKECfTr14+vv/6at99+G4CffvqJFi1a1GkFmxyLBeJbw/5NcHAbJLQBNAdIRESkLtWqB+jZZ5/FZrPx7rvv8txzz3HKKacAwZ3Yhw0bVqcVbJIS2wZ/HtgaOpVcNgdof773mGsniYiIyPHVqgeoVatWfPTRR5XOP/nkkydcISHU68PBbaFTSVHBOUBef4DcolLiPNqIT0REpLZqFYAA/H4/c+bMYf369QB069aNSy65BKvVWmeVa7ISynqADh7qAXLZrcS4bOQVl7I3v0QBSERE5ATUKgBt3ryZiy66iJ07d9K5c2cApk6dSsuWLfn4449p3759nVayyamiBwigWbSTvOJS9uWX0CElOuzVEhEROVnUag7QrbfeSvv27dmxYwerV69m9erVbN++nbZt23LrrbfWdR2bntAcoG1w2HwfTYQWERGpG7XqAVq8eDHLly8nMTExdC4pKYmHH36Yfv361Vnlmqz4srWASnKCW2KUrQ6dHFO2FpAWQxQRETkhteoBcjqd5OXlVTqfn5+Pw+E44Uo1eQ4PRKcFHx82D0hrAYmIiNSNWgWg3/zmN9x4442sWLEC0zQxTZPly5dz0003cckll9R1HZumKuYBaQhMRESkbtQqAD399NO0b9+evn374nK5cLlcnHPOOXTo0IHp06fXcRWbqKrWAlIAEhERqRO1mgMUHx/Pf/7zHzZv3hy6Db5Lly506NChTivXpFXZAxQcXtyrITAREZETUu0AdLxd3j///PPQ4yeeeKL2NZKg0FpA20KnkrUjvIiISJ2odgBas2ZNtcoZhlHryshhqugBanbYEJhpmmprERGRWqp2ADq8h0fCoHwOUM6vUFoCNidJZUNgJaUB8ktKiXFpNWgREZHaqNUkaAmDqGZgjwJMyN4BgMdhw+MIbjWiW+FFRERqTwGooTKMw4bBdCeYiIhIXVIAasiOcSeYJkKLiIjUngJQQ6a1gEREROqFAlBDVlUPUNmt8FoLSEREpPYUgBqy0FpA6gESERGpSwpADdnhPUCmCUAzzQESERE5YQpADVl8K8AAXyHk7wHUAyQiIlIXFIAaMpsD4loEH5fNAwpth6E5QCIiIrWmANTQHbEWkHqARERETpwCUEN3xJ1g5esAFXr9FHpLI1MnERGRRk4BqKE7Yi2gaKcNpy34a9uXp2EwERGR2ohoAFqyZAkjRowgPT0dwzCYM2fOcd+zaNEizjjjDJxOJx06dGDWrFmVysyYMYM2bdrgcrno06cPX3/9dd1XPlyO6AEyDCM0DLZXw2AiIiK1EtEAVFBQQM+ePZkxY0a1ym/dupWLL76YAQMGsHbtWm6//Xb++Mc/8umnn4bKvP3220yYMIFJkyaxevVqevbsydChQ9mzZ099fY36VdVaQDGaByQiInIibJH88OHDhzN8+PBql585cyZt27bl8ccfB6BLly4sXbqUJ598kqFDhwLwxBNPcMMNNzB27NjQez7++GNefvll7rnnnrr/EvWtvAcoPwu8heDwHFoLSAFIRESkViIagGpq2bJlDBo0qMK5oUOHcvvttwPg9XpZtWoVEydODL1usVgYNGgQy5YtO+p1S0pKKCk5FCZyc3MB8Pl8+Hy+OvwGhK5X7evaY7C54jCKc/Dt3QwpXUj02AHIyimq8/qdbGrc3nJC1N7hpfYOL7V3eNWmvWtStlEFoMzMTFJTUyucS01NJTc3l6KiIg4ePIjf76+yzIYNG4563alTpzJlypRK5+fPn4/H46mbyh8hIyOj2mUvMBKIJ4fVC98jM+4MsjMtgIXVP2zik6KN9VK/k01N2ltOnNo7vNTe4aX2Dq+atHdhYWG1yzaqAFRfJk6cyIQJE0LPc3NzadmyJUOGDCE2NrZOP8vn85GRkcHgwYOx2+3Veo+1+D1Yv40z2yUR6HMR+5ZvZ/7ODUQlpXHRRb3qtH4nm9q0t9Se2ju81N7hpfYOr9q0d/kITnU0qgCUlpZGVlZWhXNZWVnExsbidruxWq1YrdYqy6SlpR31uk6nE6fTWem83W6vtz/kNbp22a3w1twdWO12UuPcABwo9OkvYTXV5+9SKlN7h5faO7zU3uFVk/auye+lUa0D1LdvXxYuXFjhXEZGBn379gXA4XDQu3fvCmUCgQALFy4MlWmUjlgL6NBq0FoHSEREpDYiGoDy8/NZu3Yta9euBYK3ua9du5bt27cDwaGp66+/PlT+pptu4ueff+buu+9mw4YN/OMf/+Df//43d9xxR6jMhAkTeOGFF3j11VdZv349N998MwUFBaG7whqlSqtB6zZ4ERGRExHRIbCVK1cyYMCA0PPyeTijR49m1qxZ7N69OxSGANq2bcvHH3/MHXfcwVNPPUWLFi148cUXQ7fAA1x11VXs3buX++67j8zMTHr16sW8efMqTYxuVMrXAsr+BQJ+UmKDASivuJTcYh+xLnXFioiI1EREA1D//v0xTfOor1e1ynP//v1Zs2bNMa87fvx4xo8ff6LVazhiTwGLDfxeyNtNbFwLTol3szO7iB925tK3fVKkaygiItKoNKo5QE2W1QbxrYKPy+YBdT8lDoDvd2ZHqFIiIiKNlwJQY3HEPKDuLYIB6LtfcyJTHxERkUZMAaixCO0Jtg041AO0bqcCkIiISE0pADUWoR6gikNg2/YXklOkZdlFRERqQgGosUis2AOUEOWgZWJwQcQf1AskIiJSIwpAjUV5D1DZJGg41Av0nQKQiIhIjSgANRblAajoABQHA0/3U+IB+F4ToUVERGpEAaixcMaAJzn4uGwYrEeL8lvhFYBERERqQgGoMTliHtBp6cEAtP1AIdmF2hdMRESkuhSAGpMj5gHFeey0TvIAsG5nboQqJSIi0vgoADUmR6wFBHBaaCJ0dvjrIyIi0kgpADUmR6wFBNCjfEsMTYQWERGpNgWgxiSxcg9Qd02EFhERqTEFoMakvAcoewf4g6s/lw+B/XqwiIMFmggtIiJSHQpAjUl0GthcYPoh51cAYl122iZHAeoFEhERqS4FoMbEYoH41sHHByuvCK0AJCIiUj0KQI1NaCL0ttCp0JYYv2aHvToiIiKNkQJQY1M+EfrwPcHKJkJrLSAREZHqUQBqbKroAeqWHothwM7sIvbnl0SkWiIiIo2JAlBjE1oM8VAPUIwmQouIiNSIAlBjE+oB+gVMM3RaCyKKiIhUnwJQY5NQdhdYSS4UHgidPrQlhgKQiIjI8SgANTZ2N8Q0Dz4+bB5QjxbxAKxTABIRETkuBaDGqIp5QOUToXfnFLM3TxOhRUREjkUBqDGqYlPUKKeN9s2iAfUCiYiIHI8CUGMUWgtoW4XTPUILIioAiYiIHIsCUGNUxVpAcPjO8NlhrY6IiEhjowDUGFUxBwi0J5iIiEh1KQA1RuVDYLm7oOhg6HTX9FgsBmTllpCVWxyhyomIiDR8CkCNUVQyNDsVMGHTgtBpj8NGh5TgRGgtiCgiInJ0CkCNVefhwZ8/za1wuvsp8YCGwURERI5FAaix6lQWgDYtAL8vdLpHC80DEhEROZ4GEYBmzJhBmzZtcLlc9OnTh6+//vqoZfv3749hGJWOiy++OFRmzJgxlV4fNmxYOL5K+LQ4EzxJUJID25eFTp922ERo87C9wkREROSQiAegt99+mwkTJjBp0iRWr15Nz549GTp0KHv27Kmy/Pvvv8/u3btDx7p167Barfzud7+rUG7YsGEVyr311lvh+DrhY7FCx6HBxxsPDYN1bR6L1WKwN6+ErFytCC0iIlKViAegJ554ghtuuIGxY8fStWtXZs6cicfj4eWXX66yfGJiImlpaaEjIyMDj8dTKQA5nc4K5RISEsLxdcKrfB7QxrmhneHdDisdyyZCf/drdoQqJiIi0rBFNAB5vV5WrVrFoEGDQucsFguDBg1i2bJlx3jnIS+99BJXX301UVFRFc4vWrSIlJQUOnfuzM0338z+/fvrtO4NQvsLweoIrge076fQ6fL1gLQlhoiISNVskfzwffv24ff7SU1NrXA+NTWVDRs2HPf9X3/9NevWreOll16qcH7YsGH89re/pW3btmzZsoW//OUvDB8+nGXLlmG1Witdp6SkhJKSQ8NFubm5APh8Pnw+X6XyJ6L8enVyXYsTa+tzsfz8Gf71HxGIbwdAt+bRvAN8uyO7zuvf2NRpe8txqb3DS+0dXmrv8KpNe9ekbEQD0Il66aWX6N69O2effXaF81dffXXocffu3enRowft27dn0aJFDBw4sNJ1pk6dypQpUyqdnz9/Ph6Pp+4rDmRkZNTJddp4W9ATyF7xFksPdgAgNw/Axqpte/n4408wjDr5qEatrtpbqkftHV5q7/BSe4dXTdq7sLCw2mUjGoCSk5OxWq1kZWVVOJ+VlUVaWtox31tQUMDs2bO5//77j/s57dq1Izk5mc2bN1cZgCZOnMiECRNCz3Nzc2nZsiVDhgwhNja2mt+menw+HxkZGQwePBi73X7iF8zpAc++RmLhFi7q3wc8SZT4/Dz942fk++CMcy+keZzrxD+nkarz9pZjUnuHl9o7vNTe4VWb9i4fwamOiAYgh8NB7969WbhwISNHjgQgEAiwcOFCxo8ff8z3vvPOO5SUlPD73//+uJ/z66+/sn//fpo3b17l606nE6fTWem83W6vtz/kdXbt5LaQ2h0j63vsWz+HXtdgt9vplBrDj7tz+TGzgFbJMSf+OY1cff4upTK1d3ipvcNL7R1eNWnvmvxeIn4X2IQJE3jhhRd49dVXWb9+PTfffDMFBQWMHTsWgOuvv56JEydWet9LL73EyJEjSUpKqnA+Pz+fu+66i+XLl7Nt2zYWLlzIpZdeSocOHRg6dGhYvlPYdS5b42jjJ6FTmggtIiJydBGfA3TVVVexd+9e7rvvPjIzM+nVqxfz5s0LTYzevn07FkvFnLZx40aWLl3K/PnzK13ParXy3Xff8eqrr5KdnU16ejpDhgzh73//e5W9PCeFzsNhyaOw5TMoLQGbk+4t4nh75Q6+UwASERGpJOIBCGD8+PFHHfJatGhRpXOdO3c+6irHbrebTz/9tC6r1/A1Px2iUyE/C7YthQ4DQ1tirCtbEdrQTGgREZGQiA+BSR2wWKBT2fDeT/MA6JwWg91qcKDAy68HiyJYORERkYZHAehk0fmi4M+yVaGdNiu9WsYD8OG3uyJXLxERkQZIAehk0fYCsLkgZwdk/QDANWe3AuDNFdvxB7QxqoiISDkFoJOFwwPt+gcf/xTcHPWi7s1J8NjZmV3Eoo1Vby4rIiLSFCkAnUw6ld8OHwxALruVK89sCcC/lv8SqVqJiIg0OApAJ5PyALRzFeQFV9e+tk9wGGzxT3vZvr/6S4SLiIiczBSATiaxzSH99ODjTcGlAFonRXFBp2aYJrzxtXqBREREQAHo5NNpePDnxnmhU7//n9YA/PubHRT7/JGolYiISIOiAHSy6VwWgLZ8Br7g+j8XnprCKfFuDhb6+OT73RGsnIiISMOgAHSySesOsS2gtAi2LgHAajFCc4Fe12RoERERBaCTjmEcWhW67G4wgCvPbIndarB6ezY/7NL+YCIi0rQpAJ2MyofBfpoHZXumNYtxMuy05gC8vnx7pGomIiLSICgAnYzanAf2KMjbDbvXhk7/vmwYbM6aneQW+yJUORERkchTADoZ2V3QfkDw8WF3g53dNpFOqdEU+fy8v+rXCFVOREQk8hSATlahYbBD84AMw+C6slviX1+xHdPU/mAiItI0KQCdrDoOBQzY/S0c3BY6PfL0U/A4rGzek8/ynw9ErHoiIiKRpAB0sopuBu0uCD7+/KHQ6RiXnctOPwXQLfEiItJ0KQCdzAZOCv787m34dVXodPnK0J/+kMme3OJI1ExERCSiFIBOZqecAT2vCT7+dGLolvguzWM5s3UCpQGT2d/siGAFRUREIkMB6GQ38D6we2DHCvjh/dDp8l6gt77eTqk/EKnaiYiIRIQC0MkuNh363R58nDE5tD/Y8O5pJEY52J1TzMINeyJWPRERkUhQAGoKzvkTxJ4COdth2QwAnDYrV53VEtBkaBERaXoUgJoChwcGTQ4+Xvok5GUBcO3ZrTAM+GLTPn7emx+5+omIiISZAlBTcdoVcEpv8ObDZ38HoGWihws7pwBw73/WEQhoYUQREWkaFICaCosFhj0cfLzm9eACicBfLu6C227ly837eeGLnyNYQRERkfBRAGpKWp4Np10OmPDpX8E0ad8smkkjugLw6Kcb+e7X7IhWUUREJBwUgJqaQZPB5oJtX8CGjwG46qyWDD8tjdKAyW2z11JQUhrZOoqIiNQzBaCmJr4V9B0ffDz/b1BagmEYTP1td5rHudi6r4Ap//0hsnUUERGpZwpATdG5d0B0KhzcCl8/D0C8x8GTV/XCMODfK3/lo+92RbiSIiIi9UcBqClyRsOF9wYfL34UCvYB8D/tkhjXvwMAE9//nl8PFkaqhiIiIvVKAaip6nUtpPWAkpwKu8XfNqgjvVrGk1dcyh1vr8WvW+NFROQkpADUVFmsMGxq8PGqV0K3xdutFp6++nSinTa+2XaQGZ9vjmAlRURE6ocCUFPW5lzocgmYAXjzKsjeDkCrJA9/H9kNgKcWbmLVLwciWUsREZE61yAC0IwZM2jTpg0ul4s+ffrw9ddfH7XsrFmzMAyjwuFyuSqUMU2T++67j+bNm+N2uxk0aBCbNm2q76/ROF3yNDTrAnm74V+XheYDXXZ6C0b2Ssdfdmt8brEvwhUVERGpOxEPQG+//TYTJkxg0qRJrF69mp49ezJ06FD27Dn6DuWxsbHs3r07dPzyS8XNPKdNm8bTTz/NzJkzWbFiBVFRUQwdOpTi4uL6/jqNjzsBrnsf4lrC/s3wxu+gJLgv2P0jT6NloptfDxbxtw/WYZqaDyQiIieHiAegJ554ghtuuIGxY8fStWtXZs6cicfj4eWXXz7qewzDIC0tLXSkpqaGXjNNk+nTp/O3v/2NSy+9lB49evDaa6+xa9cu5syZE4Zv1AjFpsPv3wd3IuxaDf++Dkq9xLrsTL/qdKwWgw+/3cW/tGu8iIicJGyR/HCv18uqVauYOHFi6JzFYmHQoEEsW7bsqO/Lz8+ndevWBAIBzjjjDB566CG6dQvOWdm6dSuZmZkMGjQoVD4uLo4+ffqwbNkyrr766krXKykpoaSkJPQ8NzcXAJ/Ph89Xt0M/5der6+uesPi2GFfNxvrGZRhbPiPwwf/hv3QmPdKjuXVAe55cuJn7/vMDB/JLuOWCthiGEekaV0uDbe+TlNo7vNTe4aX2Dq/atHdNykY0AO3btw+/31+hBwcgNTWVDRs2VPmezp078/LLL9OjRw9ycnJ47LHHOOecc/jhhx9o0aIFmZmZoWscec3y1440depUpkyZUun8/Pnz8Xg8tflqx5WRkVEv1z1RzVrdzP9seRLLD++zdU8+604ZRWsMBp1iYcFOC9MXbmblup+4vG0AS+PIQEDDbe+Tldo7vNTe4aX2Dq+atHdhYfXXr4toAKqNvn370rdv39Dzc845hy5duvDPf/6Tv//977W65sSJE5kwYULoeW5uLi1btmTIkCHExsaecJ0P5/P5yMjIYPDgwdjt9jq9dt24iMC69lj+czPt986nTbezCfS7nYuB15Zv54FPNrA0y4InKY0nruiO026NdIWPqeG398lF7R1eau/wUnuHV23au3wEpzoiGoCSk5OxWq1kZWVVOJ+VlUVaWlq1rmG32zn99NPZvDm4Xk35+7KysmjevHmFa/bq1avKazidTpxOZ5XXrq8/5PV57RN2+rVQnA2fTsS66AGssalwxvX84bz2pMV5uOPttcz/cQ//+681vHD9mcS5G+j3OEyDbu+TkNo7vNTe4aX2Dq+atHdNfi8RnQTtcDjo3bs3CxcuDJ0LBAIsXLiwQi/Psfj9fr7//vtQ2Gnbti1paWkVrpmbm8uKFSuqfU0B+t4S3DMM4L+3wYZPALi4R3Nm/e9ZxDhtfL31AFfOXMbunKIIVlRERKTmIn4X2IQJE3jhhRd49dVXWb9+PTfffDMFBQWMHTsWgOuvv77CJOn777+f+fPn8/PPP7N69Wp+//vf88svv/DHP/4RCN4hdvvtt/PAAw/w4Ycf8v3333P99deTnp7OyJEjI/EVG6+Bk+D03wcXSnx3LGxeAMA57ZN5+//6khLjZGNWHpf/4ys278mLcGVFRESqL+JzgK666ir27t3LfffdR2ZmJr169WLevHmhSczbt2/HYjmU0w4ePMgNN9xAZmYmCQkJ9O7dm6+++oquXbuGytx9990UFBRw4403kp2dzbnnnsu8efMqLZgox2EY8JunoGA//DQXXr8C+t0GF/6NrumxvHfzOYx+5Wt+3lvA5c8t4+UxZ9K7dWKkay0iInJcEe8BAhg/fjy//PILJSUlrFixgj59+oReW7RoEbNmzQo9f/LJJ0NlMzMz+fjjjzn99NMrXM8wDO6//34yMzMpLi5mwYIFdOrUKVxf5+RitcHvXoHeYwATvpwOLw+FAz/TMtHDuzedQ6+W8eQU+bj2hRV89N2uCFdYRETk+BpEAJIGzu6GEU/Bla+BKw52roKZ58O3b5MY5eDNG/pw4akplJQGGP/mGm54baXmBYmISIOmACTV1/VSuOlLaHUOePPggxvh/f/DYxbx/HW9GTegPTaLQcaPWQx6fDGvfLkVf0DbZ4iISMOjACQ1E98SxnwE/f8ChgW+mw0zz8OWuYa7hp7KR7eeyxmt4inw+pny3x/57T++5IddOZGutYiISAUKQFJzFiv0/38w5pPgJqoHt8JLQ2Dpk5yaEs27N53DAyNPI8Zp49tfc7jk2S956JP1FHpLI11zERERQAFITkTrvnDTF9B1JARKYcFkeGkwlm1L+P3/tGbhny/g4u7N8QdMnl/yM4OfWMLnG/ZEutYiIiIKQHKC3Anwu1lwyTNg98DOlfDaJTDrN6Rkr2XGqDN4ecyZnBLvZmd2EWNnfcONr63k2x3Zka65iIg0YQpAcuIMA864Hm5dA2f/H1gdsO2L4O3yr1/OhTE7yZhwPjec1xaLAfN/zOLSGV9y9fPL+HzDHkxTE6VFRCS8FICk7sSkwUXT4E+r4YzRYLEFV49+YQCe90fz1zNN5t1+Pr894xRsFoPlPx9g7KxvGDp9Ce+s3IG3NBDpbyAiIk2EApDUvfiWcMnTMP4b6HE1YMCGj+C5fnRacitPDHCz5O4B3HBeW6KdNn7Kyueud7/jvGmfMXPxFnKLfZH+BiIicpJTAJL6k9gOfvtPuGV5cKI0JvzwPsw4m/T/XMlf2/zEV3efxz3DTyU11klWbgkPz93AOVM/4+8f/ciPu3I1PCYiIvUi4nuBSROQcipc+Srs/g4WPwIbPoatS2DrEmKjU7npjOsZ+3/X8Z+tFl5Y8jOb9uTz0tKtvLR0Kx1Sorm0ZzqX9EqndVJUpL+JiIicJBSAJHya94Cr34Ds7bDqVVj9GuRnwZJHcX7xOFd2HMoVF/8viwJn8M6qXSzcsIfNe/J5POMnHs/4iZ4t47mkZzojejQnJVYb24qISO0pAEn4xbeCgffCBf8PNn4M37wUvGvsp7lYfprLhfGtufCM68g/byDz9ibzn2938+XmfXy7I5tvd2TzwMc/0rddEiN6pjOgcwppcQpDIiJSMwpAEjk2B3S7LHjs/QlWvQJr34DsX+CzB4jmAa6ISuGK9gPIHXkecwu78O8NXlb9cpCvtuznqy37AeiQEs25HZI5r2MyfdolEe3UH2sRETk2/UshDUOzTjBsKlx4b3Ci9Pr/wtYvoGAPfPc2sd+9zVXAVandyT3nPD73d+dfv6axalcRm/fks3lPPrO+2obNYnBGqwTO7ZhMvw7JdE31RPqbiYhIA6QAJA2LwwOn/z54lHphxwrY8hlsWQi7v4Ws74nN+p5LgUttbnxdz+OnmL58XNKdj36xsf1AIV9vO8DX2w7wRMZPxLhstHBZ2Ob5mbPbJdOrZTxuhzXS31JERCJMAUgaLpsD2p4XPAZNgoJ98PMi2LwwGIryM7FvmU835tMNuLvZqeR2HsAK+5nM2d+SL7Zkk1tcyvpiC+sXboaFm7FZDLqmx9K7dQJntk6kd+sEzSESEWmCFICk8YhKhu5XBA/ThKwfYNN82JQR7Cnau4HYvRsYDAx2xmJ26c/2xHN4Y6OFnXGns2pHHpm5xXz3aw7f/ZrDK19uA+CUeDe9WsbTNT2W006Jo1t6LMnRzoh+VRERqV8KQNI4GQaknRY8zpsARQeDvUKbMoJH4T6M9R/Smg/5C2DmRkFaD/K7dmWTpT1fFbZkXmYsP2YVsDO7iJ3ZRXz8/e7Q5VNjnXRLD4ah4BFHiwQ3hmFE7juLiEidUQCSk4M7AU67PHgEArBrDWyaT2DLZwR2rsXmLYDty4jZvowzgDOA8TYX/rbd2BN9KptozaqiND4/mMT3+w2yckvIyt3DZxv2hD4ixmmjQ2o0HVOi6ZgSQ4fUaDqlxpAe51IwEhFpZBSA5ORjsUCL3tCiN/5z72Tux/9l+Nkdse/9ITiReve3wVWpvXlYd62iOatoDpwP3AEEklLJj+nAr/Y2/Fh6CsvymvHZgUQOlrhZsz2bNduzK3xclMNKh5RoOqTE0CElmrbJUbRrFkWrRA8uuyZci4g0RApActIzDSs0OxXSu0PPq4MnAwE48DPsXhsMRHvWw94NkLMDS34WsflZdOVLugJXANihNC6FXFc6WZZUtvmbsb44njV5cWz1NWPdr0l8+2tOhc81DEiPc9OuWRRtk6NokxRF22ZRtE2K4pQEN3artuITEYkUBSBpmiwWSO4QPLpfceh8cS7s3Qh718OeDYd+5u3CVriHxMI9JAJdgOEQ/Btkg4BhJc+RSqY1jc2BdL4tSuEHXypbstP5IjuRLzbtq/jxBqTHu2mZ4KFVoodWSR5aJpY9TvSQ4LFrWE1EpB4pAIkczhULLc8KHocryg72GGX/Agd/qfgzezsWv5e4kl3EsYvOrOZiA3AE3+qzutnnas12owXrfWmsLUxiW2kSuw4msfxgHMt+rtwTFO20cUq8m/R4F+nxbtLj3WXPg+fSYl3Y1IMkIlJrCkAi1eGOh1POCB5HCgQgPzMYiA78DPs3Bbf22PcTHPgZu7+I5gUbaM4G+gBYyw4gYNjIc6Swz5rMrkASW73x/FQSz25fInv2JLA+K46lxOE74q+qxYC0WBepccEwlBrrIq3scUqsk7Sy5x6H/oqLiFRF/3UUOVEWC8SmB4/WfSu+VuqFg9uCYWjfT7BvE+zfDLk7IW83FrM01HPUHjgPwF75IwqscRw04sgKxLGzNJasQBx78+PYmxfPHuLZbCawx4wnhyjg0NBZjMtGaqyLlBhn6GdKpedOBSURaXL0Xz2R+mRzBPc5a9ap8mv+0mDPUc6vwSN3J+TsPPQ4f09wL7RAKVH+HKLIoQXQ2wIcZfTLh50DRjyZgTgyA/HsKY1n7/549u2PY58ZyzdmHPuIY58ZRyGHVsCOcdpIjnGSHO0gOdpJsxgnydHlhyP0vFmMU3e2ichJQQFIJFKsNohrETyOJhAILvKYnxU8CvYeepy/B/Iygz/zM6HoIHZ8pJp7STX20vM4OaUIJ/vNWPaacewLxJKTE012dhTZZjTZRLPJjOIbosueR5FtxpCHmyhHMCwlRQXDUlK0k2bRDpKinSS4rWzKMdiQmUdKnId4jx2nTYFJRBoeBSCRhsxigaik4JHa9dhlS0uCwSgvKxiI8jIPBaWCvWXhqeyxrxA3JbQw9tLC2Fvt6hSbdvaY8ezJS2BPbjxZZgJ7zXh2Ec9aM549ZgLZZhQv/fg5RTgBgyiHlXiPg8QoB/EeOwmHPQ7+dJBQdj4hKvjYbbfqLjgRqVcKQCInC5sT4lsFj+Mpya8Yigr3Be90Kzp49MNXiMvw0crYSyuOH5q8ppVcosg1PeQWRpFb4CGXKHLMKA4SzQEzlq1mDAeJYb8ZywEzlgPEUIIDp81CgicYkuLcduI9duLdZc8PexzvDj4vL6vgJCLVpQAk0hQ5o4NHYtvqv8dXdKiHKW932ePMCj/N/CzMggNY8OMw/CSTS7KRW6Oq5ZsuDpgx5BZHUVJsp9h0UIyDYuyU4KDYDP7cjoP1prNCgMq1xuF3JWLxJBAb5Sa+LDzFuYNHbPlP12GP3Tbi3BqqE2lqFIBEpHrsbkhoEzyOotTn45OPP+aiwf2xlxZAcQ4UZwd/FmUfel64P3gU7Dvs5z4IlBJtFBNtFEM1epmqrgQEcgwO5gR7mQ4Sjc+04cdCKVb8WCnGQgFWdmChFBulpoUCSxQltjhKHPGUOuIJuBPAnYDFk4Q9OglPdDQxLjvRThsxrvLj0PMohw2LRb1PIo1FgwhAM2bM4NFHHyUzM5OePXvyzDPPcPbZZ1dZ9oUXXuC1115j3bp1APTu3ZuHHnqoQvkxY8bw6quvVnjf0KFDmTdvXv19CREJMgxwREFUPMSdUv33mWYwIJWHo+JcKC0OHr6iw36WQGkR+IrBmwcF+zEL92EW7IOC/VhKsrEYJknkkWTk1azuAaC47Dii46rIdJBTPqRHFDmmhx14yDGjyCWKPDyUWGMotcfgd8ZjumLBFY81KhGHJ45ot5NYt41Ylz0YnMpDlNNGtMtGtFMhSiScIh6A3n77bSZMmMDMmTPp06cP06dPZ+jQoWzcuJGUlJRK5RctWsQ111zDOeecg8vl4pFHHmHIkCH88MMPnHLKof/YDhs2jFdeeSX03Ol0huX7iEgtGUZwwUl3PCS1r9lbOWz1I78PCg8Ee5QK9gXnLwVKIeAv++mr8DzgL8VbUoy34CD+/P2YhQeg6CDWkoM4SrJxlOZgNf24DS9uvKQZB49dmdKyo+DQqYBpkI+bHDMqFKIKcbITJwWmiyKcFOCi0HTit3kI2DyYjiiwezCc0Vic0Vhd0djcMTjdMTg80US5PbhtsP6gQcovB4nzuIgpC1LRLpv2mhM5jogHoCeeeIIbbriBsWPHAjBz5kw+/vhjXn75Ze65555K5d94440Kz1988UXee+89Fi5cyPXXXx8673Q6SUtLq9/Ki0jDY7VDTGrwqAYL4Co7qmSaUJIHRQfKhvAOH87LwSzOxl+YQ2nhQfyFBzGLcjCKs7F4c7F7c7H5i7AYJrEUEmsU0rI6Q3t+oKjsOIoS00YhLs7CRcHPLgpxsd8M/izARbHhptTqwVcWqLC7MRweDIcHq8ON1RGFzRWF3RWFwxWNy+PG43LjcbvwuF1EuVzERLmJcjkUpuSkFNEA5PV6WbVqFRMnTgyds1gsDBo0iGXLllXrGoWFhfh8PhITEyucX7RoESkpKSQkJHDhhRfywAMPkJSUVOU1SkpKKCkpCT3PzQ32fft8Pnw+X02/1jGVX6+urytVU3uH10nb3lY3RJ8SPI5WhNAOJyEm4PN7Q3OfjPIAVZwDvkIMXyF4C8BbgL8kn9LiAvzF+QS8BZgl+RjeQgxfAZbSImz+Quz+AqymHwCnUYqTfBLIP3zx7yoqUHYcI0wdS6lpoRgrpYYNLw7yLTEUWmMpssVSbIvD64in1BmP3xmcN2W4E7C7onA63bjcHpzuaNxuN25PNB6PB4/LhWFpnIHqpP3z3UDVpr1rUtYwTdOsca3qyK5duzjllFP46quv6Nv30BYCd999N4sXL2bFihXHvcYtt9zCp59+yg8//IDLFfx/uNmzZ+PxeGjbti1btmzhL3/5C9HR0SxbtgyrtfKdHpMnT2bKlCmVzr/55pt4PJ4T+IYiInXLCJRiCxQHD38J1kAxtkAJNn8RtkAJFn9xaO6U4S/GWlqMEfBiCXixBrxYAyXYTS8204s94MVBCQ7TiwMfNvz1Xn+/aQTv5sNJseGkCCclhosSw4nXcOEznPgsTnwWFwGLk1Krk4DVRcDiwrQ5weoAmwvD5sKwObHZbFgNg2OtfmAaFkotbvwWB8csKI1eYWEh1157LTk5OcTGxh6zbMSHwE7Eww8/zOzZs1m0aFEo/ABcffXVocfdu3enR48etG/fnkWLFjFw4MBK15k4cSITJkwIPc/NzaVly5YMGTLkuA1YUz6fj4yMDAYPHozdXsWmT1Kn1N7hpfYOr7psbxPwmeaheVL+Uny+YoqKSigsLqawuJjiwnxK8w/gLziAWXQAo+gA1uJsbCXZ2H3ZuHw5uErzsAVKsAa8OMwS7Phw4Q19jtUw8VCCh5KKHx6G/xX3G1Z81mh89mj89hgCzlhMZww447C4YrF44rB5ErBFJWL1xIMrDtMVB67gY5/hJGPBAv35DpPa/PkuH8GpjogGoOTkZKxWK1lZWRXOZ2VlHXf+zmOPPcbDDz/MggUL6NGjxzHLtmvXjuTkZDZv3lxlAHI6nVVOkrbb7fX2h7w+ry2Vqb3DS+0dXnXb3o5D1wU8QNWTB2rANDFLiykqKqSwoIDCwnxKCvPxFubiK8rHW5RHoCQPf3EBpjcfs6QAfAVYfIVYSwuxlBZi9xfh8BfiCBThMotxmUW4KcHB8Yc8bASwGCZW04+1NAdXaU6thgStWBiGFXOtlVLDimlYwLBiGlawWKHsZ8DuwXTEYLrKgpU7HqsnHntUPFZ3HLjiwBkLdk/wjklHNDjKHtujgtvkSEhN/nzX5O9BRFvZ4XDQu3dvFi5cyMiRIwEIBAIsXLiQ8ePHH/V906ZN48EHH+TTTz/lzDPPPO7n/Prrr+zfv5/mzZvXVdVFRKS6DAPD7sZjd+OJPeE4FeIPmBR4SykoKT/8FJSUkl9SSqHXT375+WIfpcV5+ItyMYtzMEpyMUrysPlysfrycfpycfjzcfvziaGAWAqJMwqIpYBYo4A4CnAYfiwEcBIA01evPValhgOv1Y3f6sZvc2NaXZg2V9lEdjcWuweLw43VGYXd6cZmMTAwgxP2zQBQ9jP0nGDoimoG0SkQlQxRKcHnnqQmG7gi/q0nTJjA6NGjOfPMMzn77LOZPn06BQUFobvCrr/+ek455RSmTp0KwCOPPMJ9993Hm2++SZs2bcjMzAQgOjqa6Oho8vPzmTJlCpdffjlpaWls2bKFu+++mw4dOjB06NCIfU8REalbVosRXNXbVXe9jd7SAEVeP4W+YKDK9PrZUuKjpKiA4tx9rP12Le3atcfr9+P1+ij2+vD6fHh9XrzeUrxeL6avEJs3F7svH4c/D2dpPlFmAbFGITFldwNGE+zBijKKy4YEi7EZwbBiM73YSr1QmsPhI4X1wcTA64jH50om4IjGsNmxWJ1Y7A6sNgcWuxOr3YlhdYTmX+HwlPVeHdFzdfhjmzO4eKrNCTZ38O7MBjb/KuIB6KqrrmLv3r3cd999ZGZm0qtXL+bNm0dqavAW1u3bt2M57I6B5557Dq/XyxVXXFHhOpMmTWLy5MlYrVa+++47Xn31VbKzs0lPT2fIkCH8/e9/11pAIiJyTA6bBYfNQhxHhqpkfL50ivf+ykUX9qvxkKO3NBDsjfIGe6cKSkrJ9fop8Pop9JZSVFJKcUkxpcV5lBYFhwMDJXn4vUUEvEWY3kLM0iIMXzGUFmEpLcbqL8aBr2wKlUEAAzPYF4SJBRMImBYMTOKMApKMXJLJIcnIJcnIIZE8rIaJ03sQp/c461udIBODgM2FaXUGe7NsLgK9x+I8//Z6/dxjiXgAAhg/fvxRh7wWLVpU4fm2bduOeS23282nn35aRzUTERE5ccFg5SAhynH8wtVkmibFvgBFvmCIKvb5KfT6y3qw/BR7g8/LH//i87Pe66fIW0qRz09RiRdbyUHsxQdwlezHUlqI31dCwOcl4Pdi+L3YKcVOKY6yny7DG+y5ohi3EfzpMYI9WB5KcBvBCe5OfLiNQ5PfDUyspUXBVdzLerWWbtjGuefXWXPUWIMIQCIiIlIzhmHgdlhxO6wk1mGwKucPmKFwVVjip8BbSpHXX3bOT7EvOERYfq6oLHAV+crKeUvx+UrwlxTi9xVjeosIeIM9WKavmMHNe3Funde6+hSAREREpBKrxQhureK0QUzdXz+CyxACwVXgRURERMLKiPCkaAUgERERaXIUgERERKTJUQASERGRJkcBSERERJocBSARERFpchSAREREpMlRABIREZEmRwFIREREmhwFIBEREWlyFIBERESkyVEAEhERkSZHAUhERESaHAUgERERaXJska5AQ2SaJgC5ubl1fm2fz0dhYSG5ubnY7fY6v75UpPYOL7V3eKm9w0vtHV61ae/yf7fL/x0/FgWgKuTl5QHQsmXLCNdEREREaiovL4+4uLhjljHM6sSkJiYQCLBr1y5iYmIwDKNOr52bm0vLli3ZsWMHsbGxdXptqUztHV5q7/BSe4eX2ju8atPepmmSl5dHeno6FsuxZ/moB6gKFouFFi1a1OtnxMbG6i9QGKm9w0vtHV5q7/BSe4dXTdv7eD0/5TQJWkRERJocBSARERFpchSAwszpdDJp0iScTmekq9IkqL3DS+0dXmrv8FJ7h1d9t7cmQYuIiEiTox4gERERaXIUgERERKTJUQASERGRJkcBSERERJocBaAwmjFjBm3atMHlctGnTx++/vrrSFfppLBkyRJGjBhBeno6hmEwZ86cCq+bpsl9991H8+bNcbvdDBo0iE2bNkWmsieBqVOnctZZZxETE0NKSgojR45k48aNFcoUFxczbtw4kpKSiI6O5vLLLycrKytCNW7cnnvuOXr06BFaDK5v377MnTs39Lraun49/PDDGIbB7bffHjqnNq87kydPxjCMCsepp54aer0+21oBKEzefvttJkyYwKRJk1i9ejU9e/Zk6NCh7NmzJ9JVa/QKCgro2bMnM2bMqPL1adOm8fTTTzNz5kxWrFhBVFQUQ4cOpbi4OMw1PTksXryYcePGsXz5cjIyMvD5fAwZMoSCgoJQmTvuuIP//ve/vPPOOyxevJhdu3bx29/+NoK1brxatGjBww8/zKpVq1i5ciUXXnghl156KT/88AOgtq5P33zzDf/85z/p0aNHhfNq87rVrVs3du/eHTqWLl0aeq1e29qUsDj77LPNcePGhZ77/X4zPT3dnDp1agRrdfIBzA8++CD0PBAImGlpaeajjz4aOpednW06nU7zrbfeikANTz579uwxAXPx4sWmaQbb1263m++8806ozPr1603AXLZsWaSqeVJJSEgwX3zxRbV1PcrLyzM7duxoZmRkmBdccIF52223maapP991bdKkSWbPnj2rfK2+21o9QGHg9XpZtWoVgwYNCp2zWCwMGjSIZcuWRbBmJ7+tW7eSmZlZoe3j4uLo06eP2r6O5OTkAJCYmAjAqlWr8Pl8Fdr81FNPpVWrVmrzE+T3+5k9ezYFBQX07dtXbV2Pxo0bx8UXX1yhbUF/vuvDpk2bSE9Pp127dowaNYrt27cD9d/W2gw1DPbt24ff7yc1NbXC+dTUVDZs2BChWjUNmZmZAFW2fflrUnuBQIDbb7+dfv36cdpppwHBNnc4HMTHx1coqzavve+//56+fftSXFxMdHQ0H3zwAV27dmXt2rVq63owe/ZsVq9ezTfffFPpNf35rlt9+vRh1qxZdO7cmd27dzNlyhTOO+881q1bV+9trQAkIrU2btw41q1bV2HMXupe586dWbt2LTk5Obz77ruMHj2axYsXR7paJ6UdO3Zw2223kZGRgcvlinR1TnrDhw8PPe7Rowd9+vShdevW/Pvf/8btdtfrZ2sILAySk5OxWq2VZq5nZWWRlpYWoVo1DeXtq7ave+PHj+ejjz7i888/p0WLFqHzaWlpeL1esrOzK5RXm9eew+GgQ4cO9O7dm6lTp9KzZ0+eeuoptXU9WLVqFXv27OGMM87AZrNhs9lYvHgxTz/9NDabjdTUVLV5PYqPj6dTp05s3ry53v98KwCFgcPhoHfv3ixcuDB0LhAIsHDhQvr27RvBmp382rZtS1paWoW2z83NZcWKFWr7WjJNk/Hjx/PBBx/w2Wef0bZt2wqv9+7dG7vdXqHNN27cyPbt29XmdSQQCFBSUqK2rgcDBw7k+++/Z+3ataHjzDPPZNSoUaHHavP6k5+fz5YtW2jevHn9//k+4WnUUi2zZ882nU6nOWvWLPPHH380b7zxRjM+Pt7MzMyMdNUavby8PHPNmjXmmjVrTMB84oknzDVr1pi//PKLaZqm+fDDD5vx8fHmf/7zH/O7774zL730UrNt27ZmUVFRhGveON18881mXFycuWjRInP37t2ho7CwMFTmpptuMlu1amV+9tln5sqVK82+ffuaffv2jWCtG6977rnHXLx4sbl161bzu+++M++55x7TMAxz/vz5pmmqrcPh8LvATFNtXpf+/Oc/m4sWLTK3bt1qfvnll+agQYPM5ORkc8+ePaZp1m9bKwCF0TPPPGO2atXKdDgc5tlnn20uX7480lU6KXz++ecmUOkYPXq0aZrBW+HvvfdeMzU11XQ6nebAgQPNjRs3RrbSjVhVbQ2Yr7zySqhMUVGRecstt5gJCQmmx+MxL7vsMnP37t2Rq3Qj9r//+79m69atTYfDYTZr1swcOHBgKPyYpto6HI4MQGrzunPVVVeZzZs3Nx0Oh3nKKaeYV111lbl58+bQ6/XZ1oZpmuaJ9yOJiIiINB6aAyQiIiJNjgKQiIiINDkKQCIiItLkKACJiIhIk6MAJCIiIk2OApCIiIg0OQpAIiIi0uQoAImIHIVhGMyZMyfS1RCReqAAJCIN0pgxYzAMo9IxbNiwSFdNRE4CtkhXQETkaIYNG8Yrr7xS4ZzT6YxQbUTkZKIeIBFpsJxOJ2lpaRWOhIQEIDg89dxzzzF8+HDcbjft2rXj3XffrfD+77//ngsvvBC3201SUhI33ngj+fn5Fcq8/PLLdOvWDafTSfPmzRk/fnyF1/ft28dll12Gx+OhY8eOfPjhh6HXDh48yKhRo2jWrBlut5uOHTtWCmwi0jApAIlIo3Xvvfdy+eWX8+233zJq1Ciuvvpq1q9fD0BBQQFDhw4lISGBb775hnfeeYcFCxZUCDjPPfcc48aN48Ybb+T777/nww8/pEOHDhU+Y8qUKVx55ZV89913XHTRRYwaNYoDBw6EPv/HH39k7ty5rF+/nueee47k5OTwNYCI1F6dbKkqIlLHRo8ebVqtVjMqKqrC8eCDD5qmGdyV/qabbqrwnj59+pg333yzaZqm+fzzz5sJCQlmfn5+6PWPP/7YtFgsZmZmpmmappmenm7+9a9/PWodAPNvf/tb6Hl+fr4JmHPnzjVN0zRHjBhhjh07tm6+sIiEleYAiUiDNWDAAJ577rkK5xITE0OP+/btW+G1vn37snbtWgDWr19Pz549iYqKCr3er18/AoEAGzduxDAMdu3axcCBA49Zhx49eoQeR0VFERsby549ewC4+eabufzyy1m9ejVDhgxh5MiRnHPOObX6riISXgpAItJgRUVFVRqSqitut7ta5ex2e4XnhmEQCAQAGD58OL/88guffPIJGRkZDBw4kHHjxvHYY4/VeX1FpG5pDpCINFrLly+v9LxLly4AdOnShW+//ZaCgoLQ619++SUWi4XOnTsTExNDmzZtWLhw4QnVoVmzZowePZrXX3+d6dOn8/zzz5/Q9UQkPNQDJCINVklJCZmZmRXO2Wy20ETjd955hzPPPJNzzz2XN954g6+//pqXXnoJgFGjRjFp0iRGjx7N5MmT2bt3L3/605+47rrrSE1NBWDy5MncdNNNpKSkMHz4cPLy8vjyyy/505/+VK363XffffTu3Ztu3bpRUlLCRx99FApgItKwKQCJSIM1b948mjdvXuFc586d2bBhAxC8Q2v27NnccsstNG/enLfeeouuXbsC4PF4+PTTT7nttts466yz8Hg8XH755TzxxBOha40ePZri4mKefPJJ7rzzTpKTk7niiiuqXT+Hw8HEiRPZtm0bbreb8847j9mzZ9fBNxeR+maYpmlGuhIiIjVlGAYffPABI0eOjHRVRKQR0hwgERERaXIUgERERKTJ0RwgEWmUNHovIidCPUAiIiLS5CgAiYiISJOjACQiIiJNjgKQiIiINDkKQCIiItLkKACJiIhIk6MAJCIiIk2OApCIiIg0OQpAIiIi0uT8f8QlCyK1BPZCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# вывод графика ошибки по эпохам\n", + "plt.plot(H.history['loss'])\n", + "plt.plot(H.history['val_loss'])\n", + "plt.grid()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('loss')\n", + "plt.legend(['train_loss', 'val_loss'])\n", + "plt.title('Loss by epochs')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sRgMl2qWqud_" + }, + "source": [ + "7) Применить обученную модель к тестовым данным. Вывести значение\n", + "функции ошибки и значение метрики качества классификации на тестовых\n", + "данных." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jYEy7cpequia", + "outputId": "c8376a95-ade0-4007-d1f4-bb42d9e771f0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9249 - loss: 0.2666\n", + "Loss on test data: 0.28093650937080383\n", + "Accuracy on test data: 0.921500027179718\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_1output.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BRRSHspNqumg" + }, + "source": [ + "8) Добавить в модель один скрытый и провести обучение и тестирование\n", + "(повторить п. 6–7) при 100, 300, 500 нейронах в скрытом слое. По метрике\n", + "качества классификации на тестовых данных выбрать наилучшее\n", + "количество нейронов в скрытом слое. В качестве функции активации\n", + "нейронов в скрытом слое использовать функцию sigmoid." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UklWDefmXrIM" + }, + "source": [ + "При 100 нейронах в скрытом слое:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 215 + }, + "id": "YHrXYowjgZ7z", + "outputId": "85eba64b-dd95-457c-c311-ef15172b59d7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_6\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_6\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_13 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_14 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_13 (Dense)                │ (None, 100)            │        78,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_14 (Dense)                │ (None, 10)             │         1,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
 Total params: 79,510 (310.59 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
 Trainable params: 79,510 (310.59 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# создаем модель\n", + "model_1h100 = Sequential()\n", + "model_1h100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_1h100.add(Dense(units=num_classes, activation='softmax'))\n", + "# компилируем модель\n", + "model_1h100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "# вывод информации об архитектуре модели\n", + "print(model_1h100.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7H_3OFr_XzYP", + "outputId": "dab88766-ef86-40c6-d086-8692b6c1d57c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.5149 - loss: 1.8602 - val_accuracy: 0.8267 - val_loss: 0.9482\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8325 - loss: 0.8319 - val_accuracy: 0.8600 - val_loss: 0.6231\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8654 - loss: 0.5794 - val_accuracy: 0.8765 - val_loss: 0.5055\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8787 - loss: 0.4856 - val_accuracy: 0.8842 - val_loss: 0.4450\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.8888 - loss: 0.4301 - val_accuracy: 0.8907 - val_loss: 0.4096\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.8915 - loss: 0.4000 - val_accuracy: 0.8937 - val_loss: 0.3849\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.8987 - loss: 0.3766 - val_accuracy: 0.8968 - val_loss: 0.3671\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9022 - loss: 0.3517 - val_accuracy: 0.9000 - val_loss: 0.3531\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9042 - loss: 0.3451 - val_accuracy: 0.9030 - val_loss: 0.3428\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9109 - loss: 0.3219 - val_accuracy: 0.9053 - val_loss: 0.3337\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9082 - loss: 0.3241 - val_accuracy: 0.9083 - val_loss: 0.3256\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9129 - loss: 0.3118 - val_accuracy: 0.9090 - val_loss: 0.3191\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9144 - loss: 0.3060 - val_accuracy: 0.9120 - val_loss: 0.3131\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9143 - loss: 0.3035 - val_accuracy: 0.9130 - val_loss: 0.3076\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9162 - loss: 0.2954 - val_accuracy: 0.9138 - val_loss: 0.3028\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9182 - loss: 0.2925 - val_accuracy: 0.9148 - val_loss: 0.2985\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9179 - loss: 0.2887 - val_accuracy: 0.9147 - val_loss: 0.2950\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9204 - loss: 0.2806 - val_accuracy: 0.9173 - val_loss: 0.2905\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9211 - loss: 0.2727 - val_accuracy: 0.9163 - val_loss: 0.2868\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9243 - loss: 0.2699 - val_accuracy: 0.9185 - val_loss: 0.2831\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9229 - loss: 0.2724 - val_accuracy: 0.9195 - val_loss: 0.2802\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9227 - loss: 0.2678 - val_accuracy: 0.9208 - val_loss: 0.2773\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9260 - loss: 0.2577 - val_accuracy: 0.9215 - val_loss: 0.2734\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9273 - loss: 0.2573 - val_accuracy: 0.9228 - val_loss: 0.2707\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9291 - loss: 0.2512 - val_accuracy: 0.9228 - val_loss: 0.2673\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9272 - loss: 0.2541 - val_accuracy: 0.9240 - val_loss: 0.2642\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9301 - loss: 0.2437 - val_accuracy: 0.9252 - val_loss: 0.2615\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9316 - loss: 0.2417 - val_accuracy: 0.9245 - val_loss: 0.2591\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9332 - loss: 0.2369 - val_accuracy: 0.9262 - val_loss: 0.2566\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9319 - loss: 0.2391 - val_accuracy: 0.9253 - val_loss: 0.2537\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9334 - loss: 0.2336 - val_accuracy: 0.9263 - val_loss: 0.2509\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9361 - loss: 0.2245 - val_accuracy: 0.9285 - val_loss: 0.2485\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9340 - loss: 0.2249 - val_accuracy: 0.9285 - val_loss: 0.2459\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9366 - loss: 0.2205 - val_accuracy: 0.9307 - val_loss: 0.2437\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9363 - loss: 0.2240 - val_accuracy: 0.9310 - val_loss: 0.2407\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9390 - loss: 0.2165 - val_accuracy: 0.9310 - val_loss: 0.2390\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9382 - loss: 0.2140 - val_accuracy: 0.9325 - val_loss: 0.2361\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9390 - loss: 0.2148 - val_accuracy: 0.9313 - val_loss: 0.2342\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9386 - loss: 0.2150 - val_accuracy: 0.9340 - val_loss: 0.2315\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9409 - loss: 0.2095 - val_accuracy: 0.9338 - val_loss: 0.2298\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9385 - loss: 0.2122 - val_accuracy: 0.9358 - val_loss: 0.2270\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9425 - loss: 0.2031 - val_accuracy: 0.9355 - val_loss: 0.2256\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9420 - loss: 0.2030 - val_accuracy: 0.9360 - val_loss: 0.2229\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9418 - loss: 0.2059 - val_accuracy: 0.9368 - val_loss: 0.2212\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9447 - loss: 0.1938 - val_accuracy: 0.9375 - val_loss: 0.2192\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9425 - loss: 0.1997 - val_accuracy: 0.9377 - val_loss: 0.2173\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9446 - loss: 0.1983 - val_accuracy: 0.9375 - val_loss: 0.2151\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9445 - loss: 0.1929 - val_accuracy: 0.9378 - val_loss: 0.2135\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9455 - loss: 0.1902 - val_accuracy: 0.9395 - val_loss: 0.2115\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9470 - loss: 0.1885 - val_accuracy: 0.9400 - val_loss: 0.2100\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "H_1h100 = model_1h100.fit(X_train, y_train, validation_split=0.1, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "H3nJs2o-YHqW", + "outputId": "41790ce8-c273-4d80-c95a-9b223a389926" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZA5JREFUeJzt3Xd8FGXiBvBntrdseoVAkF4DBuECqCAdD0XxbPykXEEUTjTqKXdH81QUlMOCYjnEs2EFPaUFFFREpApK7wikEZLNbpKt8/tjdjdZkkASdmdTnu/nM5/dnZ2dffMmHs+9VRBFUQQRERFRE6EIdwGIiIiIgonhhoiIiJoUhhsiIiJqUhhuiIiIqElhuCEiIqImheGGiIiImhSGGyIiImpSGG6IiIioSWG4ISIioiaF4YaIwmrixIkwmUzhLkbYCYKAadOmhbsYRE0Cww1RE7Vs2TIIgoDt27eHuyhERLJiuCEiIqImheGGiIiImhSGG6JmbteuXRg5ciTMZjNMJhMGDx6MH3/8MeAap9OJuXPnon379tDpdIiNjcWAAQOQnZ3tvyYnJweTJk1Cy5YtodVqkZycjJtvvhknTpyoVTmOHTuG4cOHw2g0IiUlBU888QREUQQAiKKItLQ03HzzzVU+V15ejsjISNx7772X/Y53330XGRkZ0Ov1iImJwZ133onTp08HXDNw4EB069YNO3bsQL9+/aDX69GmTRssWbKkyv3y8vLwpz/9CYmJidDpdEhPT8fbb79d5TqPx4MXXngB3bt3h06nQ3x8PEaMGFFtl+HKlSvRrVs3aLVadO3aFWvWrAl4v6SkBA8++CDS0tKg1WqRkJCAoUOHYufOnZf9+YmaC4Ybombs119/xbXXXouff/4Zf/vb3zBz5kwcP34cAwcOxNatW/3XzZkzB3PnzsWgQYPw8ssv4x//+AdatWoV8A/q2LFjsWLFCkyaNAmvvPIKHnjgAZSUlODUqVOXLYfb7caIESOQmJiI+fPnIyMjA7Nnz8bs2bMBSINt/+///g+rV69GYWFhwGf/97//wWKx4P/+7/8u+R1PPfUUxo8fj/bt22PhwoV48MEHsWHDBlx33XUoKioKuPbChQsYNWoUMjIyMH/+fLRs2RL33Xcfli5d6r+mrKwMAwcOxDvvvINx48ZhwYIFiIyMxMSJE/HCCy8E3O9Pf/oTHnzwQaSmpuLZZ5/F448/Dp1OVyVEfv/997j//vtx5513Yv78+SgvL8fYsWNx/vx5/zVTpkzBq6++irFjx+KVV17BI488Ar1ej/3791+2nomaDZGImqS33npLBCBu27atxmvGjBkjajQa8ejRo/5zZ8+eFSMiIsTrrrvOfy49PV288cYba7zPhQsXRADiggUL6lzOCRMmiADEv/71r/5zHo9HvPHGG0WNRiPm5+eLoiiKBw8eFAGIr776asDnb7rpJjEtLU30eDw1fseJEydEpVIpPvXUUwHn9+7dK6pUqoDz119/vQhAfP755/3n7Ha72LNnTzEhIUF0OByiKIriokWLRADiu+++67/O4XCImZmZoslkEi0WiyiKovj111+LAMQHHnigSrkqlxmAqNFoxCNHjvjP/fzzzyIA8aWXXvKfi4yMFKdOnVrjz0pEosiWG6Jmyu12Y926dRgzZgyuuuoq//nk5GTcfffd+P7772GxWAAAUVFR+PXXX3H48OFq76XX66HRaLBx40ZcuHChXuWpPA3aNy3a4XBg/fr1AIAOHTqgb9++eO+99/zXFRYWYvXq1Rg3bhwEQajx3p999hk8Hg9uv/12FBQU+I+kpCS0b98e33zzTcD1KpUqoJtLo9Hg3nvvRV5eHnbs2AEAWLVqFZKSknDXXXf5r1Or1XjggQdgtVqxadMmAMCnn34KQRD8rVCVXVzmIUOGoG3btv7XPXr0gNlsxrFjx/znoqKisHXrVpw9e7bGn5eouWO4IWqm8vPzUVpaio4dO1Z5r3PnzvB4PP7xKE888QSKiorQoUMHdO/eHY8++ij27Nnjv16r1eLZZ5/F6tWrkZiYiOuuuw7z589HTk5OrcqiUCgCAhYghRkAAWN2xo8fj82bN+PkyZMAgI8//hhOpxP33HPPJe9/+PBhiKKI9u3bIz4+PuDYv38/8vLyAq5PSUmB0Wi8ZHlOnjyJ9u3bQ6EI/J/Rzp07+98HgKNHjyIlJQUxMTGXqwa0atWqyrno6OiAwDh//nz88ssvSE1NRZ8+fTBnzpyA8ENEDDdEVAvXXXcdjh49iqVLl6Jbt2548803cfXVV+PNN9/0X/Pggw/i0KFDmDdvHnQ6HWbOnInOnTtj165dQSvHnXfeCbVa7W+9effdd9G7d+9qA1plHo8HgiBgzZo1yM7OrnK89tprQSvjlVAqldWeF70DqwHg9ttvx7Fjx/DSSy8hJSUFCxYsQNeuXbF69Wq5iknU4DHcEDVT8fHxMBgMOHjwYJX3Dhw4AIVCgdTUVP+5mJgYTJo0CR988AFOnz6NHj16YM6cOQGfa9u2LR5++GGsW7cOv/zyCxwOB55//vnLlsXj8VRpfTh06BAAIC0tLaAMN954I9577z2cPHkSmzdvvmyrja9coiiiTZs2GDJkSJXjd7/7XcD1Z8+ehc1mu2R5WrdujcOHD8Pj8QRcd+DAAf/7vu8+e/ZslYHQVyI5ORn3338/Vq5ciePHjyM2NhZPPfVU0O5P1Ngx3BA1U0qlEsOGDcPnn38e0PWTm5uL999/HwMGDIDZbAaAgNk6AGAymdCuXTvY7XYAQGlpKcrLywOuadu2LSIiIvzXXM7LL7/sfy6KIl5++WWo1WoMHjw44Lp77rkH+/btw6OPPgqlUok777zzsve+9dZboVQqMXfu3IBWEN93XfzzuVyugNYch8OB1157DfHx8cjIyAAAjBo1Cjk5Ofjwww8DPvfSSy/BZDLh+uuvByDNIhNFEXPnzq1SrovLcjlutxvFxcUB5xISEpCSklLreiZqDlThLgARhdbSpUurrJUCANOnT8eTTz6J7OxsDBgwAPfffz9UKhVee+012O12zJ8/339tly5dMHDgQGRkZCAmJgbbt2/HJ5984h8EfOjQIQwePBi33347unTpApVKhRUrViA3N7dW4UOn02HNmjWYMGEC+vbti9WrV+Orr77C3//+d8THxwdce+ONNyI2NhYff/wxRo4ciYSEhMvev23btnjyyScxY8YMnDhxAmPGjEFERASOHz+OFStWYPLkyXjkkUf816ekpODZZ5/FiRMn0KFDB3z44YfYvXs3Xn/9dajVagDA5MmT8dprr2HixInYsWMH0tLS8Mknn2Dz5s1YtGgRIiIiAACDBg3CPffcgxdffBGHDx/GiBEj4PF48N1332HQoEF12k+qpKQELVu2xG233Yb09HSYTCasX78e27Ztq1ULGVGzEb6JWkQUSr6p4DUdp0+fFkVRFHfu3CkOHz5cNJlMosFgEAcNGiT+8MMPAfd68sknxT59+ohRUVGiXq8XO3XqJD711FP+adEFBQXi1KlTxU6dOolGo1GMjIwU+/btK3700UeXLeeECRNEo9EoHj16VBw2bJhoMBjExMREcfbs2aLb7a72M/fff78IQHz//ffrVCeffvqpOGDAANFoNIpGo1Hs1KmTOHXqVPHgwYP+a66//nqxa9eu4vbt28XMzExRp9OJrVu3Fl9++eUq98vNzRUnTZokxsXFiRqNRuzevbv41ltvVbnO5XKJCxYsEDt16iRqNBoxPj5eHDlypLhjxw7/NQCqneLdunVrccKECaIoSlPSH330UTE9PV2MiIgQjUajmJ6eLr7yyit1qgeipk4QxTq2ixIRhdlDDz2E//znP8jJyYHBYAjqvQcOHIiCggL88ssvQb0vEcmHY26IqFEpLy/Hu+++i7FjxwY92BBR08AxN0TUKOTl5WH9+vX45JNPcP78eUyfPj3cRSKiBorhhogahX379mHcuHFISEjAiy++iJ49e4a7SETUQHHMDRERETUpHHNDRERETQrDDRERETUpzW7MjcfjwdmzZxEREXHJXYSJiIio4RBFESUlJUhJSamyYe3Fml24OXv2bMB+OURERNR4nD59Gi1btrzkNc0u3PiWRD99+rR/35xgcTqdWLduHYYNG+Zfop1Ch/UtL9a3vFjf8mJ9y6s+9W2xWJCamur/d/xSml248XVFmc3mkIQbg8EAs9nM/zhkwPqWF+tbXqxvebG+5XUl9V2bISUcUExERERNCsMNERERNSkMN0RERNSkNLsxN0RE1DS53W44nc56fdbpdEKlUqG8vBxutzvIJaOL1VTfGo3mstO8a4PhhoiIGjVRFJGTk4OioqIrukdSUhJOnz7NNdBkUFN9KxQKtGnTBhqN5oruz3BDRESNmi/YJCQkwGAw1CuceDweWK1WmEymoLQc0KVVV9++RXbPnTuHVq1aXVHIZLghIqJGy+12+4NNbGxsve/j8XjgcDig0+kYbmRQU33Hx8fj7NmzcLlcVzQln79BIiJqtHxjbAwGQ5hLQsHg64660nFPDDdERNTocZxM0xCs3yPDDRERETUpDDdERESNXFpaGhYtWhSUe23cuBGCIFzR7LNw44BiIiKiMBg4cCB69uwZlFCybds2GI3GKy9UE8FwEyQOlwe5lnKcLw93SYiIqCkQRRFutxsq1eX/qY6Pj5ehRI0Hu6WCZNepC7h2wbdYsl8Z7qIQEVEDN3HiRGzatAkvvPACBEGAIAhYtmwZBEHA6tWrkZGRAa1Wi++//x5Hjx7FzTffjMTERJhMJlxzzTVYv359wP0u7pYSBAFvvvkmbrnlFhgMBrRv3x5ffPFFvcv76aefomvXrtBqtUhLS8Pzzz8f8P4rr7yC9u3bQ6fTITExEbfddpv/vU8++QTdu3eHXq9HbGwshgwZApvNVu+y1AZbboLEqJWq0u4Jc0GIiJo5URRR5qzbVGKPx4Myhxsqh+uK1rnRq5W1mvHzwgsv4NChQ+jWrRueeOIJAMCvv/4KAHj88cfx3HPP4aqrrkJ0dDROnz6NUaNG4amnnoJWq8V///tfjB49GgcPHkSrVq1q/I65c+di/vz5WLBgAV566SWMGzcOJ0+eRExMTJ1+ph07duD222/HnDlzcMcdd+CHH37A/fffj9jYWEycOBHbt2/HAw88gHfeeQf9+vVDYWEhvvvuOwDAuXPncNddd2H+/Pm45ZZbUFJSgu+++w6iKNapDHXFcBMkvnDj4JYkRERhVeZ0o8ustWH57n1PDIdBc/l/WiMjI6HRaGAwGJCUlAQAOHDgAADgiSeewNChQ/3XxsTEID093f/6X//6F1asWIEvvvgC06ZNq/E7Jk6ciLvuugsA8PTTT+PFF1/ETz/9hBEjRtTpZ1q4cCEGDx6MmTNnAgA6dOiAffv2YcGCBZg4cSJOnToFo9GI3//+94iIiEDr1q3Rq1cvAFK4cblcuPXWW9G6dWsAQPfu3eHxeGCxWOpUjrpgt1SQGDVSd1S5GyFPpERE1HT17t074LXVasUjjzyCzp07IyoqCiaTCfv378epU6cueZ8ePXr4nxuNRpjNZuTl5dW5PPv370f//v0DzvXv3x+HDx+G2+3G0KFD0bp1a1x11VW455578N5776G0tBQAkJ6ejsGDB6N79+74wx/+gDfeeAMXLlyocxnqii03QWLwttyIEGB3eXCFe34REVE96dVK7HtieJ0+4/F4UGIpQYQ54oq7pa7UxbOeHnnkEWRnZ+O5555Du3btoNfrcdttt8HhcFzyPhdvXyAIAjye4I+diIiIwM6dO7Fx40asW7cOs2bNwpw5c7Bt2zZERUUhOzsbP/zwA9atW4eXXnoJ//jHP7Bly5Yr2i7jcthyEySGSn/QNvZNERGFjSAIMGhUdT70GmW9Plf5qMsKuxqNplbbDGzevBkTJ07ELbfcgu7duyMpKQknTpy4ghqqm86dO2Pz5s1VytShQwcoldK/fSqVCkOGDMH8+fOxZ88enDhxAl9//TUA6ffRv39/zJ07F7t27YJGo8HKlStDWma23ASJQiHAoFGi1OGGze4Kd3GIiKiBS0tLw9atW3HixAmYTKYaW1Xat2+Pzz77DKNHj4YgCJg5c2ZIWmBq8vDDD+Oaa67Bv/71L9xxxx3YsmULXn75ZbzyyisAgC+//BLHjh3Dddddh+joaKxatQoejwcdO3bE1q1bsWHDBgwbNgwJCQnYunUr8vPz0alTp5CWmS03QWTwjrspZcsNERFdxiOPPAKlUokuXbogPj6+xjE0CxcuRHR0NPr164fRo0dj+PDhuPrqq2Ur59VXX42PPvoIy5cvR7du3TBr1iw88cQTmDhxIgAgKioKn332GW644QZ07twZS5YswQcffICuXbvCbDbj22+/xahRo9ChQwf885//xPPPP4+RI0eGtMxsuQkio0aFAjgYboiI6LI6dOiALVu2BJzzBYbK0tLS/F08PlOnTg14fXE3VXUTW2q7ncLAgQOrfH7s2LEYO3ZstdcPGDAAGzdurPa9zp07Y82aNVXOh7rliS03QeRrubE52C1FREQULgw3QWTUesONnS03RETUME2ZMgUmk6naY8qUKeEuXlCwWyqIKsbcsOWGiIgapieeeAKPPPJIte+ZzWaZSxMaDDdBZPSuSskxN0RE1FAlJCQgISEh3MUIKXZLBZGB3VJERERhx3ATRL79RDigmIiIKHwYboLIxHVuiIiIwo7hJoj8U8HZLUVERBQ2DDdB5Ns8k7OliIiIwofhJogqFvFjyw0REYVWWloaFi1aVKtrBUEI+WaVDQnDTRAZOeaGiIgo7MIabr799luMHj0aKSkpdU6VmzdvhkqlQs+ePUNWvroyeruluCs4ERFR+IQ13NhsNqSnp2Px4sV1+lxRURHGjx+PwYMHh6hk9cNdwYmIqDZef/11pKSkVNlA8uabb8Yf//hHHD16FDfffDMSExNhMplwzTXXYP369UH7/r179+KGG26AXq9HbGwsJk+eDKvV6n9/48aN6NOnD4xGI6KiotC/f3+cPHkSAPDzzz9j0KBBiIiIgNlsRkZGBrZv3x60sgVDWMPNyJEj8eSTT+KWW26p0+emTJmCu+++G5mZmSEqWf1whWIiogZAFAGHre6Hs7R+n6t8VLMbd3X+8Ic/4Pz58/jmm2/85woLC7FmzRqMGzcOVqsVo0aNwoYNG7Br1y6MGDECo0ePxqlTp664emw2G4YPH47o6Ghs27YNH3/8MdavX49p06YBAFwuF8aMGYPrr78ee/bswZYtWzB58mQIggAAGDduHFq2bIlt27Zhx44dePzxx6FWq6+4XMHU6LZfeOutt3Ds2DG8++67ePLJJy97vd1uh91u97+2WCwAAKfTCafTGdSyaRTSH7XV7gr6vakqXx2zruXB+pYX67t2nE4nRFGEx+OpaAVx2KB4pmWd7qMAEBWE8nge/w3QGC97XWRkJEaMGIH33nsPgwYNAgB89NFHiIuLw/XXXw+FQoHu3bv7r587dy5WrFiBzz//HFOnTvWf9/3stSqbt47effddlJeXY9myZTAajejSpQtefPFF3HzzzZg3bx7UajWKi4sxatQotGnTBgDQsWNH/z1OnTqFhx9+GB06dAAAtG3b1v9ebYneEHhx+T0eD0RRhNPphFKpDPhMXf5baFTh5vDhw3j88cfx3XffQaWqXdHnzZuHuXPnVjm/bt06GAyGoJbP4gAAFcocLnz51SoohKDenmqQnZ0d7iI0K6xvebG+L02lUiEpKQlWqxUOh0M66SwNSlCpD0tJCaCuXev9LbfcgunTp2PevHnQarV45513cMstt8BqtcJqteLZZ5/FunXrkJOTA7fbjbKyMhw+fNj/f9I9Hg/Ky8v9ry+nrKwMFosFe/bsQdeuXeF2u/2f7d69OzweD3bu3In+/fvj7rvvxsiRIzFw4EAMHDgQY8aMQVJSEgDg/vvvx+TJk/H222/j+uuvx5gxY/whqK5KSkoCXjscDpSVleHbb7+FyxU4frW0tLTW92004cbtduPuu+/G3Llz/WmxNmbMmIGsrCz/a4vFgtTUVAwbNizou58W28oxc8e3ECHghqHD/NsxUGg4nU5kZ2dj6NChDa5JtClifcuL9V075eXlOH36NEwmE3Q6nXRSjJBaUOpAFEWUWK2IMJn83S/1YVYbgFp+/vbbb8f06dPx3Xff4ZprrsGWLVvwwgsvwGw247HHHsP69esxf/58tGvXDnq9HrfffjsEQfD/26VQKKDT6Wr9b5ler4fZbIZGo4FKpQr4nK8lxWg0wmw245133kFWVhbWrl2LL774Ak899RTWrl2L3/3ud3j66acxceJErFq1CqtXr8YzzzyD999/v05DTERRRElJCSIiIgLqu7y8HHq9Htddd13F79OrtiEOaEThpqSkBNu3b8euXbv8/YK+5iuVSoV169bhhhtuqPI5rVYLrVZb5bxarQ76/2CYDSIEiBAhwOFRIJL/gySLUPwuqWasb3mxvi/N7XZDEAQoFAooFJWGkSoj6nQfj8cD2D0QtKbA+4SQwWDArbfeig8++ADHjh1Dx44d0bt3bwDADz/8gIkTJ2Ls2LEAAKvVihMnTmDgwIEB5fP97LXhq6MuXbrg7bffRllZGYxGqQtty5YtUCgU6Ny5s/9+GRkZyMjIwN///ndkZmZi+fLl6NevHwCgU6dO6NSpE7KysnDXXXfh7bff9pe1NnxdUReXX6FQQBCEav/u6/LfQaNZ58ZsNmPv3r3YvXu3/5gyZQo6duyI3bt3o2/fvuEuIgRBgHfCFKeDExHRZY0bNw5fffUVli5dinHjxvnPt2/fHp999hl2796Nn3/+GXfffXedxrRc7jt1Oh0mTJiAX375Bd988w3++te/4p577kFiYiKOHz+OGTNmYMuWLTh58iTWrVuHw4cPo3PnzigrK8O0adOwceNGnDx5Eps3b8a2bdvQuXPnoJQtWMLacmO1WnHkyBH/6+PHj2P37t2IiYlBq1atMGPGDJw5cwb//e9/oVAo0K1bt4DPJyQkQKfTVTkfTloFYHdzZ3AiIrq8G264ATExMTh48CDuvvtu//mFCxfij3/8I/r164e4uDg89thjdeqWuRSDwYC1a9di+vTpuOaaa2AwGDB27FgsXLjQ//6BAwfw9ttv4/z580hOTsbUqVNx7733wuVy4fz58xg/fjxyc3MRFxeHW2+9tdqxreEU1nCzfft2/yhxAP6xMRMmTMCyZctw7ty5oEx7k5NOCVicnA5ORESXp1AocPbs2Srn09LS8PXXXwecqzxLCgBOnDhR6+8RL5qi3r179yr390lMTMSKFSuqfU+j0eCDDz6o9feGS1jDzcCBA6tUeGXLli275OfnzJmDOXPmBLdQV8jXLWVltxQREVFYNJoxN42F1lujpXa23BARUei99957MJlM1R5du3YNd/HCotHMlmostEoRgMAxN0REJIubbrqpxkk1zXWmHcNNkGm93VKl7JYiIiIZREREICKiblPfmzp2SwWZL9zYOKCYiIgoLBhugsw35obr3BARySdYa8BQeF1qklFdsFsqyPzdUmy5ISIKOY1G459OHR8fD41GU6/tEzweDxwOB8rLy2Vbobg5q66+RVFEfn6+f4XiK8FwE2TSgGJOBScikoNCoUCbNm1w7ty5ateLqS1RFFFWVga9Xn9Fe0tR7dRU34IgoGXLllV2BK8rhpsgq2i5YbghIpKDRqNBq1at4HK54HbXr9Xc6XTi22+/xXXXXddsZxjJqab6VqvVVxxsAIaboPMPKOY6N0REsqlps8XaUiqVcLlc0Ol0DDcyCHV9s2MxyPyL+LHlhoiIKCwYboJM699+gS03RERE4cBwE2S+AcVsuSEiIgoPhpsgq1jnhi03RERE4cBwE2QVA4rZckNERBQODDdB5gs3ZU433J7grLRIREREtcdwE2TaStPzy5zsmiIiIpIbw02QqQRAqZBWW2TXFBERkfwYboJMEACDRmq+YbghIiKSH8NNCPjCDTfPJCIikh/DTQgYNdKuFmy5ISIikh/DTQgYvaOKbVzIj4iISHYMNyFQMeaG3VJERERyY7gJAV+3FLdgICIikh/DTQj4Wm64eSYREZH8GG5CwDfmppQDiomIiGTHcBMCBt9sKU4FJyIikh3DTQgY/evcsOWGiIhIbgw3IWDQ+sbcMNwQERHJjeEmBHzdUqUcUExERCQ7hpsQMGm4iB8REVG4MNyEgIHbLxAREYUNw00I+MbccONMIiIi+THchICB3VJERERhw3ATAiYOKCYiIgobhpsQ4FRwIiKi8GG4CQFft5Td5YHL7QlzaYiIiJoXhpsQ8O0KDgClTnZNERERyYnhJgQ0KgXUSgEAp4MTERHJjeEmRCrWumHLDRERkZwYbkKEm2cSERGFB8NNiBi1UssNZ0wRERHJK6zh5ttvv8Xo0aORkpICQRCwcuXKS17/2WefYejQoYiPj4fZbEZmZibWrl0rT2HryKDlWjdEREThENZwY7PZkJ6ejsWLF9fq+m+//RZDhw7FqlWrsGPHDgwaNAijR4/Grl27QlzSujNylWIiIqKwUF3+ktAZOXIkRo4cWevrFy1aFPD66aefxueff47//e9/6NWrV5BLd2V83VLcX4qIiEheYQ03V8rj8aCkpAQxMTE1XmO322G32/2vLRYLAMDpdMLpdAa1PL77OZ1O6FVSo5il1B707yFJ5fqm0GN9y4v1LS/Wt7zqU991ubZRh5vnnnsOVqsVt99+e43XzJs3D3Pnzq1yft26dTAYDCEpV3Z2NgpyFQAU2P3Lfqwq3heS7yFJdnZ2uIvQrLC+5cX6lhfrW151qe/S0tJaX9tow83777+PuXPn4vPPP0dCQkKN182YMQNZWVn+1xaLBampqRg2bBjMZnNQy+R0OpGdnY2hQ4diz4Zj+CH3JFqktcWo4R2C+j0kqVzfarU63MVp8ljf8mJ9y4v1La/61Lev56U2GmW4Wb58Of785z/j448/xpAhQy55rVarhVarrXJerVaH7A9YrVYjQq8BAJQ5PfwPJcRC+bukqljf8mJ9y4v1La+61Hddfi+Nbp2bDz74AJMmTcIHH3yAG2+8MdzFqZFvfykOKCYiIpJXWFturFYrjhw54n99/Phx7N69GzExMWjVqhVmzJiBM2fO4L///S8AqStqwoQJeOGFF9C3b1/k5OQAAPR6PSIjI8PyM9TEoPVOBecifkRERLIKa8vN9u3b0atXL/807qysLPTq1QuzZs0CAJw7dw6nTp3yX//666/D5XJh6tSpSE5O9h/Tp08PS/kvxcSp4ERERGER1pabgQMHQhTFGt9ftmxZwOuNGzeGtkBB5Ns4k9svEBERyavRjblpLLhxJhERUXgw3ISIb28pG/eWIiIikhXDTYiYtNxbioiIKBwYbkLEN+aGu4ITERHJi+EmRHzr3DjcHjhcnjCXhoiIqPlguAkR3zo3AFDG6eBERESyYbgJEbVSAY13Z3Arx90QERHJhuEmhPzTwbnWDRERkWwYbkLIN6jYxm4pIiIi2TDchJDJv9YNW26IiIjkwnATQtw8k4iISH4MNyHkmw7OzTOJiIjkw3ATQkZvyw03zyQiIpIPw00IVbTcMNwQERHJheEmhCrG3LBbioiISC4MNyHElhsiIiL5MdyEkNE7FdzKlhsiIiLZMNyEkMG3QjFbboiIiGTDcBNCRv8ifmy5ISIikgvDTQgZuUIxERGR7BhuQsjIbikiIiLZMdyEEDfOJCIikh/DTQj5ViguZbcUERGRbBhuQqhiKjjDDRERkVwYbkKo8saZoiiGuTRERETNA8NNCPm2X3B5RDjcnjCXhoiIqHlguAkhX8sNwLVuiIiI5MJwE0JKhQCdWqpirnVDREQkD4abEKs87oaIiIhCj+EmxHzjbmxcyI+IiEgWDDch5mu5YbcUERGRPBhuQoybZxIREcmL4SbEDNxfioiISFYMNyFm4s7gREREsmK4CTFunklERCQvhpsQ4+aZRERE8mK4CTG23BAREcmL4SbETL51bthyQ0REJAuGmxBjyw0REZG8GG5CjGNuiIiI5BXWcPPtt99i9OjRSElJgSAIWLly5WU/s3HjRlx99dXQarVo164dli1bFvJyXgnfIn5WhhsiIiJZhDXc2Gw2pKenY/HixbW6/vjx47jxxhsxaNAg7N69Gw8++CD+/Oc/Y+3atSEuaf1x40wiIiJ5qcL55SNHjsTIkSNrff2SJUvQpk0bPP/88wCAzp074/vvv8e///1vDB8+PFTFvCK+FYq5cSYREZE8whpu6mrLli0YMmRIwLnhw4fjwQcfrPEzdrsddrvd/9pisQAAnE4nnE5nUMvnu1/l+3qH3MBW7gr69zV31dU3hQ7rW16sb3mxvuVVn/quy7WNKtzk5OQgMTEx4FxiYiIsFgvKysqg1+urfGbevHmYO3dulfPr1q2DwWAISTmzs7P9z/PKAECF4tJyrFq1KiTf19xVrm8KPda3vFjf8mJ9y6su9V1aWlrraxtVuKmPGTNmICsry//aYrEgNTUVw4YNg9lsDup3OZ1OZGdnY+jQoVCr1QCAvBI7ntq9CQ6PgJEjR0IQhKB+Z3NWXX1T6LC+5cX6lhfrW171qW9fz0ttNKpwk5SUhNzc3IBzubm5MJvN1bbaAIBWq4VWq61yXq1Wh+wPuPK9I41SmPGIgEdQQqdWhuQ7m7NQ/i6pKta3vFjf8mJ9y6su9V2X30ujWucmMzMTGzZsCDiXnZ2NzMzMMJXo8gyVwgyngxMREYVeWMON1WrF7t27sXv3bgDSVO/du3fj1KlTAKQupfHjx/uvnzJlCo4dO4a//e1vOHDgAF555RV89NFHeOihh8JR/FpRKAT/jKlSO6eDExERhVpYw8327dvRq1cv9OrVCwCQlZWFXr16YdasWQCAc+fO+YMOALRp0wZfffUVsrOzkZ6ejueffx5vvvlmg50G7lOxBQNbboiIiEItrGNuBg4cCFEUa3y/utWHBw4ciF27doWwVMFn1CpRYOXmmURERHJoVGNuGisjN88kIiKSDcONDLh5JhERkXwYbmRgYMsNERGRbBhuZGDy7gzOMTdEREShx3AjA26eSUREJB+Gm2ApuwDh2DdIKP65yltGb8sN17khIiIKPYabYMn5BaoP/oBuZ96v8pav5YYrFBMREYUew02wmFMAAHpnIXDR2j3+lht2SxEREYUcw02weMONymMH7IE7lxr9Y27YLUVERBRqDDfBotZD1MdIzy1nA94y+MfcsOWGiIgo1BhugilCar0RSgLDTcVUcLbcEBERhRrDTRCJ5mTpycUtN5wKTkREJBuGmyASfS03ljMB5ysGFLPlhoiIKNQYboLJ7OuWOhdwmlPBiYiI5MNwE0S+lhvUMOaGA4qJiIhCj+EmmHwtN1XG3HjDjdMNj0es8jEiIiIKHoabIKqp5caolbqlRBEoc3LcDRERUSgx3ASTd7aUYC8ByisW8tOrlRAE6TlnTBEREYUWw00waUxwKA3S80qDigVBgFHDzTOJiIjkwHATZOVq3yrFgdPBudYNERGRPBhugqxMXf0WDEauUkxERCQLhpsgK9NES0+qhBu23BAREcmB4SbI/N1Sxb8FnDdwzA0REZEsGG6CrExTQ7eUb8wNF/IjIiIKKYabICtT19Qt5R1zw24pIiKikKpXuHn77bfx1Vdf+V//7W9/Q1RUFPr164eTJ08GrXCNUU2zpfxTwbl5JhERUUjVK9w8/fTT0Ov1AIAtW7Zg8eLFmD9/PuLi4vDQQw8FtYCNjb9bqrwIcNj85w1adksRERHJQVWfD50+fRrt2rUDAKxcuRJjx47F5MmT0b9/fwwcODCY5Wt0XAo9RI0RgsMGWM4BcVI9+VpuGG6IiIhCq14tNyaTCefPnwcArFu3DkOHDgUA6HQ6lJWVBa90jZEgAL49pip1TVWMuWG3FBERUSjVq+Vm6NCh+POf/4xevXrh0KFDGDVqFADg119/RVpaWjDL1yiJ5hYQzh8OGFTsW+emlAOKiYiIQqpeLTeLFy9GZmYm8vPz8emnnyI2NhYAsGPHDtx1111BLWCjVE3LjW+dGyvXuSEiIgqperXcREVF4eWXX65yfu7cuVdcoKZA9O4OXrnlxuRrueGYGyIiopCqV8vNmjVr8P333/tfL168GD179sTdd9+NCxcuBK1wjZV4iZYbjrkhIiIKrXqFm0cffRQWiwUAsHfvXjz88MMYNWoUjh8/jqysrKAWsFEyVzegmGNuiIiI5FCvbqnjx4+jS5cuAIBPP/0Uv//97/H0009j586d/sHFzVlFy03lAcWcCk5ERCSHerXcaDQalJaWAgDWr1+PYcOGAQBiYmL8LTrNmq/lpvQ84CwHUHmdG3ZLERERhVK9Wm4GDBiArKws9O/fHz/99BM+/PBDAMChQ4fQsmXLoBawUdJFASo94CoDSs4CMVfB4N04s8zphtsjQqkQwltGIiKiJqpeLTcvv/wyVCoVPvnkE7z66qto0aIFAGD16tUYMWJEUAvYKAlCpXE3UteUr1sK4LgbIiKiUKpXy02rVq3w5ZdfVjn/73//+4oL1GSYU4DCo/5wo1UpoFQIcHtElDrciNCpw1xAIiKipqle4QYA3G43Vq5cif379wMAunbtiptuuglKpTJohWvUzFJrlm/GlCAIMGiUKCl3cVAxERFRCNUr3Bw5cgSjRo3CmTNn0LFjRwDAvHnzkJqaiq+++gpt27YNaiEbpUhfuKk0Y0qj8oYbDiomIiIKlXqNuXnggQfQtm1bnD59Gjt37sTOnTtx6tQptGnTBg888ECd7rV48WKkpaVBp9Ohb9+++Omnny55/aJFi9CxY0fo9XqkpqbioYceQnl5eX1+jNAyVzcdXGrVsnHMDRERUcjUq+Vm06ZN+PHHHxETE+M/Fxsbi2eeeQb9+/ev9X0+/PBDZGVlYcmSJejbty8WLVqE4cOH4+DBg0hISKhy/fvvv4/HH38cS5cuRb9+/XDo0CFMnDgRgiBg4cKF9flRQueibimgYlAxBxQTERGFTr1abrRaLUpKSqqct1qt0Gg0tb7PwoUL8Ze//AWTJk1Cly5dsGTJEhgMBixdurTa63/44Qf0798fd999N9LS0jBs2DDcddddl23tCQtfy01x5S0YvC037JYiIiIKmXq13Pz+97/H5MmT8Z///Ad9+vQBAGzduhVTpkzBTTfdVKt7OBwO7NixAzNmzPCfUygUGDJkCLZs2VLtZ/r164d3330XP/30E/r06YNjx45h1apVuOeee2r8HrvdDrvd7n/tW2TQ6XTC6XTWqqy15buf0+kE9AlQA4AtD85yG6DUQK+WsqSl1B70726OAuqbQo71LS/Wt7xY3/KqT33X5dp6hZsXX3wREyZMQGZmJtRqtf9Lb775ZixatKhW9ygoKIDb7UZiYmLA+cTERBw4cKDaz9x9990oKCjAgAEDIIoiXC4XpkyZgr///e81fs+8efOq3a183bp1MBgMtSprXWVnZwOiiN8LKihFF7754gOUaeNRXKAAoMD2n/fClLcnJN/dHGVnZ4e7CM0K61terG95sb7lVZf69u2MUBv1CjdRUVH4/PPPceTIEf9U8M6dO6Ndu3b1uV2tbdy4EU8//TReeeUV9O3bF0eOHMH06dPxr3/9CzNnzqz2MzNmzAjYzNNisSA1NRXDhg2D2WwOavmcTieys7MxdOhQqNVqKE60BIpO4IbeHSGm/g4/OH/FzvNn0LptR4waeFVQv7s5uri+KbRY3/JifcuL9S2v+tR3XbZ3qnW4udxu3998843/eW0G98bFxUGpVCI3NzfgfG5uLpKSkqr9zMyZM3HPPffgz3/+MwCge/fusNlsmDx5Mv7xj39Aoag6hEir1UKr1VY5r1arQ/YH7L93ZAug6ARUtlxArYZJJ41HKnN5+B9PEIXyd0lVsb7lxfqWF+tbXnWp77r8Xmodbnbt2lWr6wShdnsmaTQaZGRkYMOGDRgzZgwAwOPxYMOGDZg2bVq1nyktLa0SYHyLBoqiWKvvlVUNWzCUckAxERFRyNQ63FRumQmWrKwsTJgwAb1790afPn2waNEi2Gw2TJo0CQAwfvx4tGjRAvPmzQMAjB49GgsXLkSvXr383VIzZ87E6NGjG+bKyBeHGw3XuSEiIgq1em+/EAx33HEH8vPzMWvWLOTk5KBnz55Ys2aNf5DxqVOnAlpq/vnPf0IQBPzzn//EmTNnEB8fj9GjR+Opp54K149waRetdWNgyw0REVHIhTXcAMC0adNq7IbauHFjwGuVSoXZs2dj9uzZMpQsCNhyQ0REJLt6LeJHtWQO3F/KN+aGG2cSERGFDsNNKPnCjTUHcLtg1Pi2X2C3FBERUagw3ISSMR5QqADRA1hzYPBunGllyw0REVHIMNyEkkIBRFSMuzFp2XJDREQUagw3oeYfVHym0saZbLkhIiIKFYabUKs0Y8o35sbu8sDl9oSxUERERE0Xw02oVQ432oqZ98Vl3HmWiIgoFBhuQq3SQn4alQItovQAgMN51jAWioiIqOliuAm1ixby65ws7US+/1ztdzclIiKi2mO4CbWLFvLrkhwBgOGGiIgoVBhuQs3XclNyDvC4K7XclISxUERERE0Xw02oRSQBghLwuABbPjp5w83B3BLOmCIiIgoBhptQUyilgAMAxWfQOsYAg0YJh8uDE+dt4S0bERFRE8RwI4dKC/kpFAI6Jknjbvaxa4qIiCjoGG7kwBlTREREsmG4kUOltW4AhhsiIqJQYriRw0UtN5wOTkREFDoMN3K4KNx0TJJabnItdhTaHOEqFRERUZPEcCOHi7qlTFoVWsUYAAAH2HpDREQUVAw3cghYyE9a26Zzsm/GFMMNERFRMDHcyMGUBEAA3A6g9DwAcKViIiKiEGG4kYNKA5gSpOecMUVERBRSDDdyqbSQHwB08YabI3lWOLkNAxERUdAw3Mjlot3BW0brYdKq4HB7cDTfGsaCERERNS0MN3K5aMaUIAjo5N2G4QDH3RAREQUNw41cLlrrBuC4GyIiolBguJHLRd1SQEW44XRwIiKi4GG4kctFA4qBirVuOB2ciIgoeBhu5FK5W0oUAQAdkyIgCECB1Y78EnsYC0dERNR0MNzIJSJZenSVA2UXAAAGjQptYo0AOO6GiIgoWBhu5KLWAYY46XlA1xQHFRMREQUTw42cqpkx5Z8OnsNxN0RERMHAcCOni9a6AdhyQ0REFGwMN3LytdwUVwo3KRXbMNhd7nCUioiIqElhuJFTZNW1blIidTDrVHB5RBzJ4zYMREREV4rhRk7VdEsJglCpa4rjboiIiK4Uw42cqhlQDHDcDRERUTAx3Mip8hYM3oX8gIqVig/kMNwQERFdKYYbOfkW8nPagJIc/+nK3VJipdBDREREdcdwIyeNAUi5Wnp+eJ3/dIfECCgEoNDmQB63YSAiIroiYQ83ixcvRlpaGnQ6Hfr27YuffvrpktcXFRVh6tSpSE5OhlarRYcOHbBq1SqZShsEHUdKjwdX+0/p1EpcFW8CwB3CiYiIrlRYw82HH36IrKwszJ49Gzt37kR6ejqGDx+OvLy8aq93OBwYOnQoTpw4gU8++QQHDx7EG2+8gRYtWshc8ivgCzfHNgKOUv9pDiomIiIKjrCGm4ULF+Ivf/kLJk2ahC5dumDJkiUwGAxYunRptdcvXboUhYWFWLlyJfr374+0tDRcf/31SE9Pl7nkVyCxGxCZCrjKgOOb/Kd9g4o5HZyIiOjKhC3cOBwO7NixA0OGDKkojEKBIUOGYMuWLdV+5osvvkBmZiamTp2KxMREdOvWDU8//TTc7ka0sq8gVOqaquhOY8sNERFRcKjC9cUFBQVwu91ITEwMOJ+YmIgDBw5U+5ljx47h66+/xrhx47Bq1SocOXIE999/P5xOJ2bPnl3tZ+x2O+z2ikG6FosUHpxOJ5xOZ5B+GvjvWfmxJkLboVD99DrEg2vgctgBQYF2cXoAwLF8K6yl5dCqlUEtW1NU2/qm4GB9y4v1LS/Wt7zqU991uTZs4aY+PB4PEhIS8Prrr0OpVCIjIwNnzpzBggULagw38+bNw9y5c6ucX7duHQwGQ0jKmZ2dfcn3FR4nRih0UNvy8MMni1FkbAtRBIwqJWwuActWrEWqKSRFa5IuV98UXKxvebG+5cX6lldd6ru0tPTyF3mFLdzExcVBqVQiNzc34Hxubi6SkpKq/UxycjLUajWUyopWjc6dOyMnJwcOhwMajabKZ2bMmIGsrCz/a4vFgtTUVAwbNgxmszlIP43E6XQiOzsbQ4cOhVqtvuS1SscXwP7PMSC+BJ6BowAAH+Ztx5ZjhYhpm45RGY1okHSY1KW+6cqxvuXF+pYX61te9alvX89LbYQt3Gg0GmRkZGDDhg0YM2YMAKllZsOGDZg2bVq1n+nfvz/ef/99eDweKBTScKFDhw4hOTm52mADAFqtFlqttsp5tVodsj/gWt27043A/s+hPLwWyqFSq1OXlEhsOVaIQ3k2/sdVB6H8XVJVrG95sb7lxfqWV13quy6/l7DOlsrKysIbb7yBt99+G/v378d9990Hm82GSZMmAQDGjx+PGTNm+K+/7777UFhYiOnTp+PQoUP46quv8PTTT2Pq1Knh+hHqr/1QQFAAeb8CF04C4KBiIiKiYAjrmJs77rgD+fn5mDVrFnJyctCzZ0+sWbPGP8j41KlT/hYaAEhNTcXatWvx0EMPoUePHmjRogWmT5+Oxx57LFw/Qv0ZYoBWmcDJzcChNUDfeytNB7dAFEUIghDmQhIRETU+YR9QPG3atBq7oTZu3FjlXGZmJn788ccQl0omHUdK4ebgKqDvvWiXYIJKIcBS7sK54nKkROnDXUIiIqJGJ+zbLzRrHaWBxDjxPVBeDK1KibbebRjYNUVERFQ/DDfhFNsWiG0PeFzAkQ0AENA1RURERHXHcBNuF22kWTGomNswEBER1QfDTbj5uqYOrwPcLs6YIiIiukIMN+GW2gfQxwDlRcDpH/3h5vh5G0odrvCWjYiIqBFiuAk3hRLoMFx6fnA14iO0iDNpIYrAr2fZekNERFRXDDcNQeVdwkUR/dvFAgA+2nY6jIUiIiJqnBhuGoK2NwBKDVB4DCg4jPGZaQCAz38+i0KbI7xlIyIiamQYbhoCbQSQdq30/OAqXN0qCt1bRMLh8uCDn06Ft2xERESNDMNNQ1FpSrggCJjQLw0A8O6PJ+Fye8JXLiIiokaG4aah8IWb01sBWwF+3yMZsUYNzhWXY92+3PCWjYiIqBFhuGkoIlsCST0AiMDhddCplbirTysAwLIfToS1aERERI0Jw01DUnnWFID/+11rKBUCfjpeiH2cFk5ERFQrDDcNiS/cHPkacJYjKVKHEd2SAABvs/WGiIioVhhuGpLknkBEMuC0STuFA5jkHVi8cvcZXOC0cCIiostiuGlIBKFK11RG62h0TTHD7vJgORf1IyIiuiyGm4amgzfcHFoDiCIEQcBETgsnIiKqNYabhqbNdYDaAFjOAKd+BACMTk9BjFGDM0VlWL8/L8wFJCIiatgYbhoatQ7odqv0fN0/AI8HOrUSd16TCgBY9sPxMBaOiIio4WO4aYhumAVoIoAzO4Cf3wdQMS38x2OFOJDDaeFEREQ1YbhpiCISgYGPSc/XzwHKi5ESpcfwrokAOC2ciIjoUhhuGqo+9wJxHQBbPrDxGQDAxH5tAAArdp1BUSmnhRMREVWH4aahUmmAEVKowdbXgLz9uCYtGp2TzSh3evAhp4UTERFVi+GmIWs3GOj0e0B0A6v/BgEVi/q98+NJuD1iWItHRETUEDHcNHTDnwJUOuD4t8C+z3FTzxREG9T47UIZNuznbuFEREQXY7hp6KLTgP7Tpefr/gmdaMed3C2ciIioRgw3jUH/B4HIVKD4NLB5Ef7vd62hEIAfjp7HwZyScJeOiIioQWG4aQw0BmDYk9Lz7xehhZiL4V2l3cJnfLYHDhe3ZCAiIvJhuGksutwsbc3gtgNr/4G/j+oMs06FnaeK8MzqA+EuHRERUYPBcNNYCAIwcj4gKIEDXyK1cAuev70nAGDp5uNYtfdceMtHRETUQDDcNCYJnYG+90rPVz+GoR2ice/1VwEA/vbJHhzLt4axcERERA0Dw01jM/BxwBgPnD8MbF2CR4d1RJ82MbDaXbj/vZ0oc7jDXUIiIqKwYrhpbHSRwODZ0vNNz0Jly8XLd/VCnEmLAzklmPn5L+EtHxERUZgx3DRGPccBLTIAhxV4dywSlFa8eFdPKATgkx2/4SNuzUBERM0Yw01jpFAAt7wOmJKAvF+Bt0ejX6KIh4d1BADM/PwX/Hq2OMyFJCIiCg+Gm8Yqrh0w8SsgIhnI2we8/XvclxGBGzolwO7y4P73dsJS7gx3KYmIiGTHcNOY+QNOCpB/AIr/jsa/RyWhRZQeJ8+X4tGPf4YocnNNIiJqXhhuGrvYtsDELwFzC6DgICI/vAWvj2kBtVLA2l9z8Z/vj4e7hERERLJiuGkKYttKLTiRqcD5w+i67i7MGxILAJi3+gB+PHY+zAUkIiKSD8NNUxHTRmrBiWwFFB7F2L1TML6LCm6PiAlLf8KXe86Gu4RERESyYLhpSqLTpIAT1QpC4THMufAYbmsH2F0eTHt/F17acJhjcIiIqMlrEOFm8eLFSEtLg06nQ9++ffHTTz/V6nPLly+HIAgYM2ZMaAvYmES3BiauAqLToLhwHAusM/DwNVoAwPPZh5D10c+wu7iKMRERNV1hDzcffvghsrKyMHv2bOzcuRPp6ekYPnw48vLyLvm5EydO4JFHHsG1114rU0kbkahUaQxOdBsIRSfx10N/xHt9TkCpAFbsOoNxb2zFeas93KUkIiIKibCHm4ULF+Ivf/kLJk2ahC5dumDJkiUwGAxYunRpjZ9xu90YN24c5s6di6uuukrG0jYikS2BSauAFr0BezH67/k7trZ7By11Zdh+8gLGvLIZh3NLwl1KIiKioFOF88sdDgd27NiBGTNm+M8pFAoMGTIEW7ZsqfFzTzzxBBISEvCnP/0J33333SW/w263w26vaKWwWCwAAKfTCaczuIvc+e4X7PvWmz4eGP8lFD+8AMV3CxB3ajW+MezA37WT8XFhF9zyyg948Y4euLZ9XLhLWi8Nrr6bONa3vFjf8mJ9y6s+9V2Xa8MabgoKCuB2u5GYmBhwPjExEQcOHKj2M99//z3+85//YPfu3bX6jnnz5mHu3LlVzq9btw4Gg6HOZa6N7OzskNy3/jojsv1MZJxYgojSc1iAJ3GtYTAeKx2HP/13B8a28eDapMY70Ljh1XfTxvqWF+tbXqxvedWlvktLS2t9bVjDTV2VlJTgnnvuwRtvvIG4uNq1NsyYMQNZWVn+1xaLBampqRg2bBjMZnNQy+d0OpGdnY2hQ4dCrVYH9d5B4fwj3N88CeW213CTZwMyIw5gsnUyPjneHohugceGd0CUoQGWuwYNvr6bGNa3vFjf8mJ9y6s+9e3reamNsIabuLg4KJVK5ObmBpzPzc1FUlJSleuPHj2KEydOYPTo0f5zHo8HAKBSqXDw4EG0bds24DNarRZarbbKvdRqdcj+gEN57yuiVgM3zgc6jQQ+n4p4yxl8qp2Ll1034cWdt+Lrg/l4bERH/CEjFQqFEO7S1lqDre8mivUtL9a3vFjf8qpLfdfl9xLWAcUajQYZGRnYsGGD/5zH48GGDRuQmZlZ5fpOnTph79692L17t/+46aabMGjQIOzevRupqalyFr/xajsIuO8HoPvtUMCDB1Qr8bXh7+hfthEzPv0ZY5f8gF/OcFdxIiJqnMLeLZWVlYUJEyagd+/e6NOnDxYtWgSbzYZJkyYBAMaPH48WLVpg3rx50Ol06NatW8Dno6KiAKDKeboMfRQw9g2g40jgqyy0KvsNL2lexoPiCiz67RaMebkQd/+uDR4e2hGRjairioiIKOzh5o477kB+fj5mzZqFnJwc9OzZE2vWrPEPMj516hQUirDPWG+6ut0KtBsMbH0N2PIy2pafwUual3HIswIvbr0VQ34egEdHdcVtV7dsVF1VRETUfIU93ADAtGnTMG3atGrf27hx4yU/u2zZsuAXqLnRRQLX/w3oe68/5HQoP4OXNS/hkOszvPjZrfhw63DMHdMD3VpEhru0REREl8QmEargCzkP7gUG/QOiLhIdFFLImZd7L95Y/Az+9J/v8f3hAu5RRUREDRbDDVXlDTnC9D3AwL/Do5VCzguaV/DcqTtw6O2puP/f72LFrt/gdHvCXVoiIqIADDdUM30UMPAxKB7cAwz6J1ymFEQLVvxRtQavWqahzYqb8Ny8v+Otr/fAUs5VPYmIqGFoEGNuqIHTRwHXPwrVtVnA0a/h2LYMysOr0VNxFD1dr8K2aSnWbuoHS+c7MWz4TUiJDs3Kz0RERLXBcEO1p1AC7YdC034oYM2Da9f7KP1xGcy247gV3wAHvsHRfXPwVeQARPS4ERn9R8Bo0Ie71ERE1Mww3FD9mBKguvZBmAdMh+fkFuRufB0xJ1ehreIc2pZ8DGz+GCXf67Hb3Ae6LiPRrt8YqCKTw11qIiJqBhhu6MoIAhRp/ZA8sR9QXoz8XV+iYOeXSM7/HlGCBT1LNgFbNwFbH8dZQyeoOg5H/NW/h5ByNaDknx8REQUf/3Wh4NFFIj5zHOIzx0F0u3Bw17c4t/0LxOd8i644ipTSA8CuA8CuF2BXGlGW8juYO98ARZvrgMRuABdrJCKiIGC4oZAQlCp07H0DOva+AU63B9/t2Y8TP36OuHOb0F/YA7PbBu3pDcBpaV8xhyYKQtoAqNsNBNpcB8R1AASuiExERHXHcEMhp1YqcG2vrri2V1dYyh/F1/vO4dDPP0B58jtc7d6LPooDMDqKgENfSgcAlyEBqrRMILWvdCT1AFSa8P4gRETUKDDckKzMOjXGXN0KuLoVnO7bsf3EBby47wzO7P8BrYt3IFPxK3orDkFXmgfs+1w6AIhKHYQWvYDUPlLYadkH0EaF94chIqIGieGGwkatVCCzbSwy28YCo3vgeIENXx/Iwxv7TsNxcht64hCuVhxChuIQYtxW4NQW6fBSRbdBBhKh+OEwkNwDSOoGRCSzO4uIqJljuKEGo02cEX8a0AZ/GtAGVns/bDtRiB+PnseLRwpQmnMAVwuHcLVwGBmKQ+igOAPhwnG0xHHgmx8rbqKPlgYnJ3ateIzvBGi4sCARUXPBcEMNkkmrwqCOCRjUMQEAUFz2O/x0vBBbjp7H20cLcDbnHK5WHEFn4RQ6K06ik3AKVynOQVV2ATjxnXT4CUB0GpDQBUjoBMR3BhI6A3HtAZU2LD8fERGFDsMNNQqRejWGdknE0C6JAIBCmwObD+fhs0278JM6BnvPWiA4ytFOOItOwil0UpxCZ8UpdFOeRpRYDFw4Lh0Hv6q4qaAEYq6qCDxxHaTAE9sO0JrC9JMSEdGVYrihRinGqMGIronwnPRg1Kg+EAUl9p+zYNepC9h1ugjvnCrCqcJSAEAsitFB8Rs6CL+hg+I3dFefQzucgsFjBc4flo79/wv8AnMLb9BpXxF64toDESlcj4eIqIFjuKEmQaNSID01CumpUZjoPZdfYseuUxfwy5li/Hq2PdaeteBtSzngBAARCShCB8Vv6CicRg9tDjqpc9HS/RuMrguA5Yx0HNsY+EVKLRDdWurmik4DottIjzFtgKjWHNtDRNQAMNxQkxUfocWwrkkY1jXJf+681Y5fz1q8RzH2nW2Jzee7Qyyt+FwkrGgrnEU7xVn0MhagizoXqZ7fEFV+Bgq3HSg4JB3VMSUBUalAZCoQ2RKIaiU9+l7ro0L7QxMREcMNNS+xJi2u6xCP6zrE+89Z7S4czLHgYI4VB3MsOJBTgoO50dhZ2gEfWSo+q4QbycJ5tFHko5fpAjrrCtFGmY9E9zmYy36D0mEBrDnS8du26gugNUshJyIZiEgCTInVP6q5mzoRUX0x3FCzZ9KqkNE6BhmtY/znRFFEXokdB3NKcDCnBAdySnAotwRH8zX4zZGA74oBFAfeJxJW9DIVId1sQQddMVopC5Eo5iHSnguN7QyE0vOA3QLk7ZOOS9FGAuYUqeUnurX0GNW64rUuiuv5EBHVgOGGqBqCICDRrEOiWRfQyiOKIs4Vl+NovhVH8qyVHm3ILwE2Wk3YaK16P5VCQPsYJTIirehqLEaatgTJimLEihdgchZAsOYCJTmANRdwlQP2YiC/GMjfX30BtWZv2EmVWoHMydJg58qPWjMDEBE1Sww3RHUgCAJSovRIidLj2vbxAe8VlzlxNN+K4/k2HC+QjqP5Vpw4b0O504P9BS7sL9AB0AFI9H9OrRTQMtqA1rEGtE7To12kB+0MVrRSXkC8OxeaktNA0Sngwkmg6CRgy5dagHL3SkdN1Eapi8ucUtENVuWRXWBE1PQw3BAFSaRejatbRePqVtEB5z0eETmWchwvsOFYvhXHCmw4eb4UJ8/bcLqwDA63xx+GAgkAkhBnao3UGD1Sow1IbaVHmllAW80FtEQ+Yl05UFpzpFafkrOA5Zz0WF4MOG1A4VHpuBRdlBRyjPGAMQ4wxHkfYwNfayIB0RPMKiMiCgmGG6IQUygqWnv6t4sLeM/tDT4nz/sCT6n/+enCUpTYXSiw2lFgtWPXqaKL7wyFkIIk81VoEa1Hiyg9WrTTo2W0AakmEa3UxUgSLkBT6u3yKskBSs4FPrrKgPIi6cg/cMmfQw3gJgjAweiK8OM7/K/jAFO8tE6QOQXQRgSxJomIaofhhiiMlApBCiVRevRrG/ieKIooLnPidGEZTl+Qwo70KL3+7UIZHC4PzhaX42xxObbhQrXfEWeKRkpUClIi9UiO0qFFkh7JkXokR2rRUu9EnFgIhTUHsBUApQUXPZ6XusFsBUB5EQSIQFmhdNSG1lzRLeYLPL7XxjjAEAPoYwBdJMcHEVHQMNwQNVCCICDKoEGUQYPuLSOrvO/xiMi32vHbhTKcKSrDmQtlOFNU6n0sw28XylDqcKPA6kCB1YE9vxVX8y3SYOekSB1SoloiJbKd1MoUr0dKe52/xcmsU8NZXooNX36CwZk9oXYUSwGo9DxgOy89+gKRLV9aALG8WBoblG+5bKsQFCop5Phbg6KlR1NixRGRBJgSpOfcE4yILoHhhqiRUigqZnRltI6u8r4oiigqdeJMURnOFpXhXHE5zhaVSS09RWU4V1SGHEs5XB4Rv12QwlBNTFoVkiO1UNqjsUH0IDkqEcmRrZFk1iGxhQ7JkTpEGdQQKre+2K1S95flDGA5W+nxrHS+9IIUipw2wOMCbHnSURv66IrQY4yvGC/kf+57HQdoTGwVImpmGG6ImihBEBBt1CDaqEG3FlVbfgDA5fYgr8ReJfScKfI+Ly7DhVInrHYXDue5AChwYMeZau+lVSmQFKnzB67ECC2SInVIMHdAork7klJ1SIjQQa9RBn7QWQaUeru6Sn2tQIVSC5A1T5oeb82teO52AGUXpONyLUIAoNJJY4EMMd7D2zrkbymKqege00dJA6y1Zu4hRtSIMdwQNWMqpcLf9VSTUocLZ4vKcep8CbK/34aE1h2Qb3Mip7hcOizlKLQ5YHd5/IOiL8WsU/kDUEKEFglmHRLNWiRExCHR3AIJyTokmLXQqZVVPyyKUqjxBZ6SXCkElRZUjA2y5Vc8d5ZK6wZZfpOO2hIUUsDxhZ3Kj/roSkfMRa+jAbWu9t9DRCHBcENEl2TQqNAuwYTW0VqUHBIxalBbqNXqgGvKnW7kWew4V1yG3BI78izlyLWUI9di9z5KIajc6YGl3AVLuRWH86pZ7bASXwhKMGuREFERhBIitEiISECiuRUSWmph0Fzif8YcNm/4OV/RDeY7/C1F3seyC0BZkTSDTPRUzCKrK5W+YrC0Ie6i2WSVptf7nuui2EpEFGQMN0R0xXRqJVrFGtAqtuZd0UVRRIndhTxLOXKK7cgrKUdeiRR+8ryByPe6LiHIpFUhIUKL+AhtpdagyoEoFvHRLWBOUQWOCaqJyy6FnPKiah69AcjXLVZWWOn5BSkUucqA4tPSURuCQmrx8QUeQwxgjINCG422uTkQdl8ATLHSjLLKrUjaCI4lIqoBww0RyUIQBJh1aph1arRLqHn9m8ohKM9iR26J99HiDUTex1yLHWVON6x2F6x2F45VWQQxkEapQJxJg/gILeJM0iE91yAuQot4kxZx3vfMpgQIEYmXvF8VHg/gKPG2BBVWmk1WUGk2WaWZZaXnpRlloqeiNakSJYBuAHD2gxoqVCEFHl/3mG/ckP8xumJckT7aG47M3vFE1XT5ETUhDDdE1KDUJQRZ7S5vq48UePIDWoIqWodKyl1wuCvWBLocjUqBOGOl0GPSIi5C4w9FsSYN4k1axJq0iNKroVAIUteSLlI6YtrU7od1Oyu6xXyBxzu93m3Nw9mj+9AixgCF3eLtJiuWWo7cdikU+VqMcKx23+f/ASOkoKOLlMKOr9z+lakrzzrzvuasM2pEGG6IqFESBAEROjUidGq0jTdd8tpypxsFVjvyS+zedX98z6VH3/MCqwNWuytgccTLUSoExBh9wUd6jPUGo8pBKM6kRYxRA42q0vgapRqISJSOi3icTuxctQpJo0ZBcdEYJzjLKoKOr3ssYMaZt7vMf65QWnPI5f15HCXSYal+5lu1fLPOdGZAY/QeJkBtCHytMVYKSpW28uBCjSQjhhsiavJ0aiVaRhvQMrrmMUE+5U53QNgpsNpRcPFrqx3nbQ4UlTrh9oj+gFQbkXo14kwaxHrDUKxRCkCx3lAUa5SeR2oV8Ig13EStl46IpDrUAgCXQwo55cUVR+XXtkoLMVaegRYw66xuX+mnUFVs0WH0TsXXmqSWI22EFIy0ERWHxiQFKV9XGzd4pTpguCEiqkSnViI1xoDUmMsHIYfLgwulDuSXSGHHF4J8z/O9gei895zbI22pIe0gf+kxQgCggBJP7t2IWJMG0QZNxaN3/aKYSkessZqWoYupNIDK25pSFw5bRfBxlEivqxzWiseyokpbeBRKn/G4Kqbw14faUDGWyL9OkXd8kTZCajHyPWpM3rBkqnjNtYuaFYYbIqJ60qgU/jV7LsfjEVFU5vS3BJ23VYQe/3NrxXNLuQseCP73aytCq0KMyRd4fOFH638e620tijFJ71e7nlCVH9Tb7RTdutblCOAsD9yiwzf13l4ihSF7ibSitb1EaknynSu3SN1qHpfUeuQsrdt6RZUJiou2+Kj8PBaCNgpJRYcgHDMA+ghv65ih0qNB2vaDXWuNAsMNEZEMFN6xOTFGDTokXn63dGuZHZ99uQY9+16LEocH520OXPAGnQs2BworHedtDlwolVqGSuwulNhdl11M0ceoUXrDkBbRBjWiDRpEeR+jDWpEGTQV54waxBg0VVeZvhy1DohsIR11JYpS4CmtblyR95yv1checlFLklUKTR6nd1aad1PYaqgA9AWA4y9cojCC1Dqkj64IR9WudB1d0YqkNlSMRWI4kg3DDRFRA6RVKRCpATonR1RZNLE6Ho8IS7kT5y8KPoU2B85bHSi0+VqLfIHIDqdbhM3hhq2wDKcLa95b7GI6tcIbfqSwFm3U+INRjFEKQlG+cKTXIMqoRoS2lusMXUwQ6j4L7WIuu3eA9fmLjoqg5LHloyj3NKKNOgiuUmnQttP76Pa1nHmDlt0CFJ2sx8+irAg6vm40nXfMkbbSVH3/eXPVcUhakzTbTcl/vi+FtUNE1AQoFBW7yLeNv/z1vvWECit1hRWVOnGh1IELpU4UlTouei49Ot0iyp0enCsux7lazCbzUSoEROnViPS1DunV3vKqpedG3znp/Ui91FJk1CjrF4oqU2mlwdeXGIDtdjrx3apVGDVqVNUw6XZVBB1fK5Kv1eji1a590/Mrj0dyeYOj6AbsxdJxpVR674Bsb/DxBUBtZMVzXaVp/gHjkSrNblNePjg3Rg0i3CxevBgLFixATk4O0tPT8dJLL6FPnz7VXvvGG2/gv//9L3755RcAQEZGBp5++ukarycioqoqryeUFmes1WdEUWrpueDtBiv0Pl6wOQNeSyFJCkNFpU6UOd1we8RK44cuP5jaR6UQEGVQI9IXhrwBKUrvayEKfC/K+16ETiWtPxQMShWgNEthoa6LOwKAx10RdJylFd1lvjFG/llrlqqPvvFHvkdfK5KrTDps+Vf4s2kCQ0/lliJtRPWz2XzdbWoDoDFULAfgG5/UABaJDHu4+fDDD5GVlYUlS5agb9++WLRoEYYPH46DBw8iISGhyvUbN27EXXfdhX79+kGn0+HZZ5/FsGHD8Ouvv6JFi3r05xIRUa0IggCTVgWTVlWr2WQ+5U43isuc/uBT0RLkRFGZA8Wlld+Tzl0odcLh8sDlEb1T8OsWigRBmnYfqZdahsze5/5zhornZr0aRrWAQjtgtbsQpapnF1pNFEpvK4r5yu/lcniDjkUKSA5rpTBUVGmafzVT/h2lgNMbsnwhye0AyhzexSCDRKUDUvsAE/4XvHvWtQhh+2avhQsX4i9/+QsmTZoEAFiyZAm++uorLF26FI8//niV6997772A12+++SY+/fRTbNiwAePHj5elzEREVHs6tRI6tbJWs8oqK3NIoaiorCIUSeFHCkHFZVKrkXSNE8WlDhSXOWFzuCGK8Iel2o+OUWHuzq+hUggVQchQEZAqhyGzXmr1MutV0jmddC5CG8QWo2qLqAFU3sHLV8LlqAg6vsPfQuQLTyXVHBZv65M3KDnLvM9LAXgXZnKVS115YRTWcONwOLBjxw7MmDHDf06hUGDIkCHYsmVLre5RWloKp9OJmJgr/EUTEVGDotcoodcokRRZt1DkcHm86wlVdJH51hcqLnPCUhb4utgbjAptdrhFAa6ALrS6EQRpM1ezzheEVP7g4wtDFa9ViKh8TqeGSaeCMpThyEelkQ59dHDuJ4oVg7AdtrDPCgtruCkoKIDb7UZiYmAfZmJiIg4cOFCrezz22GNISUnBkCFDqn3fbrfDbq9YOdRikZbXdDqdcDqd9Sx59Xz3C/Z9qXqsb3mxvuXF+q4/AUCUToEonQ6to2sXjJxOJ9aty8a1g25AqQsoLnWiuNyJ4lKX9FgpCJWUu2Apc8FS7pR2ry+THu0uD0QRKCl3oaTchTNFtZ+BVplRq0SEVuUPQxE66XmEruK52ffc21pk0kqvTVoVdGpFcLvVaktQA5pI6QCAS/zt1ufvuy7Xhr1b6ko888wzWL58OTZu3Aidrvo/4Hnz5mHu3LlVzq9btw4GQ+37jOsiOzs7JPel6rG+5cX6lhfrWz6CAHy/8esq5w3eIxmQtms3eo+LOD1AmQsoc/sehcDXLsH/vNQFlLuFStcCTo8USGx2N2x2N3IstdvS42IKQYReCegqHXqVdE6vgvdRrPQc0Cul177rL7XQdTDV5e+7tLR2azcBYQ43cXFxUCqVyM0NXI47NzcXSUmX3jPlueeewzPPPIP169ejR48eNV43Y8YMZGVl+V9bLBakpqZi2LBhMJuDMLirEqfTiezsbAwdOrRW61LQlWF9y4v1LS/Wt7waQn07XB5pEcZyp7dlSHpeUi4tzGgp877nbRmyeK+zehdutNpdEEXAIwqwuQBbwLCXurXkaFQKmLRK/wByo1YV8NrXSuR/1Kpg8j436VSI1EmDtmtSn/r29bzURljDjUajQUZGBjZs2IAxY8YAADweDzZs2IBp06bV+Ln58+fjqaeewtq1a9G7d+9LfodWq4VWq61yXq1Wh+wPOJT3pqpY3/JifcuL9S2vcNa3Wg0Y9VrUcTtUP99UfasvFNld3i4yp//R351WVrlLTTpfXCZN2wekoFXo8qDQVr9u0W4tzPjyr9de9rq61Hddfi9h75bKysrChAkT0Lt3b/Tp0weLFi2CzWbzz54aP348WrRogXnz5gEAnn32WcyaNQvvv/8+0tLSkJOTAwAwmUwwmUxh+zmIiIjCqfJU/boOwvZxe0RYva1A1nIXrHYpGPle+56XeN+z+gOUFJ5815l14Q3kYQ83d9xxB/Lz8zFr1izk5OSgZ8+eWLNmjX+Q8alTp6CotJPrq6++CofDgdtuuy3gPrNnz8acOXPkLDoREVGToqw0Df5KiKIYpBLVT9jDDQBMmzatxm6ojRs3Brw+ceJE6AtERERE9RaW2VqVyDQemoiIiEgeDDdERETUpDDcEBERUZPCcENERERNCsMNERERNSkMN0RERNSkMNwQERFRk8JwQ0RERE0Kww0RERE1KQw3RERE1KQw3BAREVGTwnBDRERETQrDDRERETUpDWJXcDn5tmG3WCxBv7fT6URpaSksFgvU6ivbLp4uj/UtL9a3vFjf8mJ9y6s+9e37d9v37/ilNLtwU1JSAgBITU0Nc0mIiIiorkpKShAZGXnJawSxNhGoCfF4PDh79iwiIiIgCEJQ722xWJCamorTp0/DbDYH9d5UFetbXqxvebG+5cX6lld96lsURZSUlCAlJQUKxaVH1TS7lhuFQoGWLVuG9DvMZjP/45AR61terG95sb7lxfqWV13r+3ItNj4cUExERERNCsMNERERNSkMN0Gk1Woxe/ZsaLXacBelWWB9y4v1LS/Wt7xY3/IKdX03uwHFRERE1LSx5YaIiIiaFIYbIiIialIYboiIiKhJYbghIiKiJoXhJkgWL16MtLQ06HQ69O3bFz/99FO4i9RkfPvttxg9ejRSUlIgCAJWrlwZ8L4oipg1axaSk5Oh1+sxZMgQHD58ODyFbeTmzZuHa665BhEREUhISMCYMWNw8ODBgGvKy8sxdepUxMbGwmQyYezYscjNzQ1TiRu3V199FT169PAvZJaZmYnVq1f732ddh9YzzzwDQRDw4IMP+s+xzoNnzpw5EAQh4OjUqZP//VDWNcNNEHz44YfIysrC7NmzsXPnTqSnp2P48OHIy8sLd9GaBJvNhvT0dCxevLja9+fPn48XX3wRS5YswdatW2E0GjF8+HCUl5fLXNLGb9OmTZg6dSp+/PFHZGdnw+l0YtiwYbDZbP5rHnroIfzvf//Dxx9/jE2bNuHs2bO49dZbw1jqxqtly5Z45plnsGPHDmzfvh033HADbr75Zvz6668AWNehtG3bNrz22mvo0aNHwHnWeXB17doV586d8x/ff/+9/72Q1rVIV6xPnz7i1KlT/a/dbreYkpIizps3L4ylapoAiCtWrPC/9ng8YlJSkrhgwQL/uaKiIlGr1YoffPBBGErYtOTl5YkAxE2bNomiKNWtWq0WP/74Y/81+/fvFwGIW7ZsCVcxm5To6GjxzTffZF2HUElJidi+fXsxOztbvP7668Xp06eLosi/72CbPXu2mJ6eXu17oa5rttxcIYfDgR07dmDIkCH+cwqFAkOGDMGWLVvCWLLm4fjx48jJyQmo/8jISPTt25f1HwTFxcUAgJiYGADAjh074HQ6A+q7U6dOaNWqFev7Crndbixfvhw2mw2ZmZms6xCaOnUqbrzxxoC6Bfj3HQqHDx9GSkoKrrrqKowbNw6nTp0CEPq6bnYbZwZbQUEB3G43EhMTA84nJibiwIEDYSpV85GTkwMA1da/7z2qH4/HgwcffBD9+/dHt27dAEj1rdFoEBUVFXAt67v+9u7di8zMTJSXl8NkMmHFihXo0qULdu/ezboOgeXLl2Pnzp3Ytm1blff49x1cffv2xbJly9CxY0ecO3cOc+fOxbXXXotffvkl5HXNcENE1Zo6dSp++eWXgD5yCr6OHTti9+7dKC4uxieffIIJEyZg06ZN4S5Wk3T69GlMnz4d2dnZ0Ol04S5Okzdy5Ej/8x49eqBv375o3bo1PvroI+j1+pB+N7ulrlBcXByUSmWVEd65ublISkoKU6maD18ds/6Da9q0afjyyy/xzTffoGXLlv7zSUlJcDgcKCoqCrie9V1/Go0G7dq1Q0ZGBubNm4f09HS88MILrOsQ2LFjB/Ly8nD11VdDpVJBpVJh06ZNePHFF6FSqZCYmMg6D6GoqCh06NABR44cCfnfN8PNFdJoNMjIyMCGDRv85zweDzZs2IDMzMwwlqx5aNOmDZKSkgLq32KxYOvWraz/ehBFEdOmTcOKFSvw9ddfo02bNgHvZ2RkQK1WB9T3wYMHcerUKdZ3kHg8HtjtdtZ1CAwePBh79+7F7t27/Ufv3r0xbtw4/3PWeehYrVYcPXoUycnJof/7vuIhySQuX75c1Gq14rJly8R9+/aJkydPFqOiosScnJxwF61JKCkpEXft2iXu2rVLBCAuXLhQ3LVrl3jy5ElRFEXxmWeeEaOiosTPP/9c3LNnj3jzzTeLbdq0EcvKysJc8sbnvvvuEyMjI8WNGzeK586d8x+lpaX+a6ZMmSK2atVK/Prrr8Xt27eLmZmZYmZmZhhL3Xg9/vjj4qZNm8Tjx4+Le/bsER9//HFREARx3bp1oiiyruVQebaUKLLOg+nhhx8WN27cKB4/flzcvHmzOGTIEDEuLk7My8sTRTG0dc1wEyQvvfSS2KpVK1Gj0Yh9+vQRf/zxx3AXqcn45ptvRABVjgkTJoiiKE0HnzlzppiYmChqtVpx8ODB4sGDB8Nb6EaqunoGIL711lv+a8rKysT7779fjI6OFg0Gg3jLLbeI586dC1+hG7E//vGPYuvWrUWNRiPGx8eLgwcP9gcbUWRdy+HicMM6D5477rhDTE5OFjUajdiiRQvxjjvuEI8cOeJ/P5R1LYiiKF55+w8RERFRw8AxN0RERNSkMNwQERFRk8JwQ0RERE0Kww0RERE1KQw3RERE1KQw3BAREVGTwnBDRERETQrDDRE1S4IgYOXKleEuBhGFAMMNEclu4sSJEAShyjFixIhwF42ImgBVuAtARM3TiBEj8NZbbwWc02q1YSoNETUlbLkhorDQarVISkoKOKKjowFIXUavvvoqRo4cCb1ej6uuugqffPJJwOf37t2LG264AXq9HrGxsZg8eTKsVmvANUuXLkXXrl2h1WqRnJyMadOmBbxfUFCAW265BQaDAe3bt8cXX3zhf+/ChQsYN24c4uPjodfr0b59+yphjIgaJoYbImqQZs6cibFjx+Lnn3/GuHHjcOedd2L//v0AAJvNhuHDhyM6Ohrbtm3Dxx9/jPXr1weEl1dffRVTp07F5MmTsXfvXnzxxRdo165dwHfMnTsXt99+O/bs2YNRo0Zh3LhxKCws9H//vn37sHr1auzfvx+vvvoq4uLi5KsAIqq/oGy/SURUBxMmTBCVSqVoNBoDjqeeekoURWl38ilTpgR8pm/fvuJ9990niqIovv7662J0dLRotVr973/11VeiQqEQc3JyRFEUxZSUFPEf//hHjWUAIP7zn//0v7ZarSIAcfXq1aIoiuLo0aPFSZMmBecHJiJZccwNEYXFoEGD8Oqrrwaci4mJ8T/PzMwMeC8zMxO7d+8GAOzfvx/p6ekwGo3+9/v37w+Px4ODBw9CEAScPXsWgwcPvmQZevTo4X9uNBphNpuRl5cHALjvvvswduxY7Ny5E8OGDcOYMWPQr1+/ev2sRCQvhhsiCguj0VilmyhY9Hp9ra5Tq9UBrwVBgMfjAQCMHDkSJ0+exKpVq5CdnY3Bgwdj6tSpeO6554JeXiIKLo65IaIG6ccff6zyunPnzgCAzp074+eff4bNZvO/v3nzZigUCnTs2BERERFIS0vDhg0brqgM8fHxmDBhAt59910sWrQIr7/++hXdj4jkwZYbIgoLu92OnJycgHMqlco/aPfjjz9G7969MWDAALz33nv46aef8J///AcAMG7cOMyePRsTJkzAnDlzkJ+fj7/+9a+45557kJiYCACYM2cOpkyZgoSEBIwcORIlJSXYvHkz/vrXv9aqfLNmzUJGRga6du0Ku92OL7/80h+uiKhhY7ghorBYs2YNkpOTA8517NgRBw4cACDNZFq+fDnuv/9+JCcn44MPPkCXLl0AAAaDAWvXrsX06dNxzTXXwGAwYOzYsVi4cKH/XhMmTEB5eTn+/e9/45FHHkFcXBxuu+22WpdPo9FgxowZOHHiBPR6Pa699losX748CD85EYWaIIqiGO5CEBFVJggCVqxYgTFjxoS7KETUCHHMDRERETUpDDdERETUpHDMDRE1OOwtJ6IrwZYbIiIialIYboiIiKhJYbghIiKiJoXhhoiIiJoUhhsiIiJqUhhuiIiIqElhuCEiIqImheGGiIiImhSGGyIiImpS/h8Y0FfQfV1ZoQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# вывод графика ошибки по эпохам\n", + "plt.plot(H_1h100.history['loss'])\n", + "plt.plot(H_1h100.history['val_loss'])\n", + "plt.grid()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('loss')\n", + "plt.legend(['train_loss', 'val_loss'])\n", + "plt.title('Loss by epochs')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TApSML9TYYyC", + "outputId": "8cfd895d-05c6-4bcc-8237-59eaec0cf681" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9391 - loss: 0.2074\n", + "Loss on test data: 0.20816442370414734\n", + "Accuracy on test data: 0.9397000074386597\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_1h100.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yX_wu7WQguL_" + }, + "source": [ + "При 300 нейронах в скрытом слое:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 215 + }, + "id": "IjhuwXSPguhK", + "outputId": "c5b5dd02-dfa6-4ae5-acd2-514d5c160d27" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"sequential_16\"\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"sequential_16\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_33 (Dense)                │ (None, 300)            │       235,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_34 (Dense)                │ (None, 10)             │         3,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_33 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m300\u001b[0m) │ \u001b[38;5;34m235,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_34 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m3,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 238,510 (931.68 KB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 238,510 (931.68 KB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# создаем модель\n", + "model_1h300 = Sequential()\n", + "model_1h300.add(Dense(units=300, input_dim=num_pixels, activation='sigmoid'))\n", + "model_1h300.add(Dense(units=num_classes, activation='softmax'))\n", + "# компилируем модель\n", + "model_1h300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "# вывод информации об архитектуре модели\n", + "print(model_1h300.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/" + }, + "id": "1reTFSd2iPYg", + "outputId": "5c393402-941d-49ed-bd40-29893f81a999" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.5719 - loss: 1.7778 - val_accuracy: 0.8398 - val_loss: 0.8435\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.8458 - loss: 0.7413 - val_accuracy: 0.8675 - val_loss: 0.5641\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.8702 - loss: 0.5336 - val_accuracy: 0.8813 - val_loss: 0.4686\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8821 - loss: 0.4528 - val_accuracy: 0.8865 - val_loss: 0.4223\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.8915 - loss: 0.4082 - val_accuracy: 0.8918 - val_loss: 0.3919\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8966 - loss: 0.3781 - val_accuracy: 0.8945 - val_loss: 0.3737\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 5ms/step - accuracy: 0.8949 - loss: 0.3723 - val_accuracy: 0.8978 - val_loss: 0.3588\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.8985 - loss: 0.3565 - val_accuracy: 0.9010 - val_loss: 0.3486\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9032 - loss: 0.3413 - val_accuracy: 0.9018 - val_loss: 0.3410\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9065 - loss: 0.3307 - val_accuracy: 0.9057 - val_loss: 0.3336\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9072 - loss: 0.3254 - val_accuracy: 0.9055 - val_loss: 0.3274\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9092 - loss: 0.3190 - val_accuracy: 0.9082 - val_loss: 0.3231\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9111 - loss: 0.3128 - val_accuracy: 0.9050 - val_loss: 0.3197\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 5ms/step - accuracy: 0.9124 - loss: 0.3087 - val_accuracy: 0.9100 - val_loss: 0.3152\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9143 - loss: 0.3009 - val_accuracy: 0.9098 - val_loss: 0.3117\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9151 - loss: 0.3001 - val_accuracy: 0.9107 - val_loss: 0.3079\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9159 - loss: 0.2923 - val_accuracy: 0.9117 - val_loss: 0.3055\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9169 - loss: 0.2881 - val_accuracy: 0.9122 - val_loss: 0.3020\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9163 - loss: 0.2925 - val_accuracy: 0.9128 - val_loss: 0.3010\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 5ms/step - accuracy: 0.9182 - loss: 0.2860 - val_accuracy: 0.9137 - val_loss: 0.2973\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9198 - loss: 0.2794 - val_accuracy: 0.9162 - val_loss: 0.2960\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.9229 - loss: 0.2742 - val_accuracy: 0.9157 - val_loss: 0.2927\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9217 - loss: 0.2712 - val_accuracy: 0.9150 - val_loss: 0.2907\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9199 - loss: 0.2748 - val_accuracy: 0.9167 - val_loss: 0.2884\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9228 - loss: 0.2706 - val_accuracy: 0.9170 - val_loss: 0.2868\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9226 - loss: 0.2707 - val_accuracy: 0.9163 - val_loss: 0.2863\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9235 - loss: 0.2654 - val_accuracy: 0.9182 - val_loss: 0.2822\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9230 - loss: 0.2654 - val_accuracy: 0.9187 - val_loss: 0.2803\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 4ms/step - accuracy: 0.9245 - loss: 0.2610 - val_accuracy: 0.9197 - val_loss: 0.2787\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9271 - loss: 0.2519 - val_accuracy: 0.9205 - val_loss: 0.2762\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.9285 - loss: 0.2515 - val_accuracy: 0.9198 - val_loss: 0.2747\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9264 - loss: 0.2544 - val_accuracy: 0.9208 - val_loss: 0.2714\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9293 - loss: 0.2444 - val_accuracy: 0.9210 - val_loss: 0.2716\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9268 - loss: 0.2527 - val_accuracy: 0.9218 - val_loss: 0.2687\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9291 - loss: 0.2497 - val_accuracy: 0.9220 - val_loss: 0.2661\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9311 - loss: 0.2427 - val_accuracy: 0.9225 - val_loss: 0.2633\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.9301 - loss: 0.2442 - val_accuracy: 0.9235 - val_loss: 0.2615\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9330 - loss: 0.2346 - val_accuracy: 0.9248 - val_loss: 0.2587\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9321 - loss: 0.2360 - val_accuracy: 0.9242 - val_loss: 0.2575\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 5ms/step - accuracy: 0.9342 - loss: 0.2348 - val_accuracy: 0.9245 - val_loss: 0.2556\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9328 - loss: 0.2346 - val_accuracy: 0.9248 - val_loss: 0.2538\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9344 - loss: 0.2257 - val_accuracy: 0.9263 - val_loss: 0.2505\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9376 - loss: 0.2213 - val_accuracy: 0.9277 - val_loss: 0.2489\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9346 - loss: 0.2255 - val_accuracy: 0.9258 - val_loss: 0.2484\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9391 - loss: 0.2163 - val_accuracy: 0.9278 - val_loss: 0.2456\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9364 - loss: 0.2200 - val_accuracy: 0.9278 - val_loss: 0.2437\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9373 - loss: 0.2202 - val_accuracy: 0.9293 - val_loss: 0.2418\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 5ms/step - accuracy: 0.9382 - loss: 0.2151 - val_accuracy: 0.9302 - val_loss: 0.2405\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9397 - loss: 0.2152 - val_accuracy: 0.9307 - val_loss: 0.2368\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9396 - loss: 0.2121 - val_accuracy: 0.9317 - val_loss: 0.2359\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "H_1h300 = model_1h300.fit(X_train, y_train, validation_split=0.1, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "COOwQaYXg4Q6", + "outputId": "03843f70-ce49-414a-e898-4295b5f677da" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY51JREFUeJzt3Xl8E2XiBvBnkuZsm94nLRQ5y1WxIBZQQW5cFMX1gJVjV1kQ1qOLu/JbuXQVBUU8UDwW0fUARUFXBCloUREUCiggN5QCpS2lR9qkTdJkfn9Mkja0QI9k0pbn+/nMJ8lkMnnzgsuz7ymIoiiCiIiIqJVQ+LsARERERN7EcENEREStCsMNERERtSoMN0RERNSqMNwQERFRq8JwQ0RERK0Kww0RERG1Kgw3RERE1Kow3BAREVGrwnBDRH41efJkBAUF+bsYficIAmbOnOnvYhC1Cgw3RK3UypUrIQgCdu3a5e+iEBHJiuGGiIiIWhWGGyIiImpVGG6IrnJ79uzBqFGjYDAYEBQUhCFDhmDHjh0e19hsNixYsACdOnWCVqtFREQEBg4ciIyMDPc1eXl5mDJlChISEqDRaBAXF4fbb78d2dnZ9SrHiRMnMGLECAQGBiI+Ph5PPfUURFEEAIiiiKSkJNx+++21PldZWYmQkBD89a9/veJ3fPDBB0hNTYVOp0N4eDjuvfdenD592uOaQYMGoUePHsjKykL//v2h0+nQvn17LF++vNb9CgoK8Je//AUxMTHQarVISUnBe++9V+s6h8OBl19+GT179oRWq0VUVBRGjhxZZ5fhunXr0KNHD2g0GnTv3h0bN270eL+srAyPPvookpKSoNFoEB0djWHDhmH37t1X/P1EVwuGG6Kr2IEDB3DjjTfi119/xT/+8Q/MmTMHJ0+exKBBg/Dzzz+7r5s/fz4WLFiAwYMH47XXXsO//vUvtG3b1uMf1HHjxmHt2rWYMmUKXn/9dTz88MMoKytDTk7OFctht9sxcuRIxMTEYNGiRUhNTcW8efMwb948ANJg2z/96U/YsGEDioqKPD77v//9D0ajEX/6058u+x3PPPMMJk6ciE6dOmHJkiV49NFHsWXLFtx0000oKSnxuLa4uBijR49GamoqFi1ahISEBEyfPh0rVqxwX1NRUYFBgwbhv//9LyZMmIDFixcjJCQEkydPxssvv+xxv7/85S949NFHkZiYiOeffx5PPPEEtFptrRD5448/4qGHHsK9996LRYsWobKyEuPGjcOFCxfc10ybNg1vvPEGxo0bh9dffx2zZs2CTqfDwYMHr1jPRFcNkYhapXfffVcEIO7cufOS14wdO1ZUq9Xi8ePH3edyc3PF4OBg8aabbnKfS0lJEW+99dZL3qe4uFgEIC5evLjB5Zw0aZIIQPzb3/7mPudwOMRbb71VVKvV4vnz50VRFMXDhw+LAMQ33njD4/O33XabmJSUJDocjkt+R3Z2tqhUKsVnnnnG4/y+ffvEgIAAj/M333yzCEB88cUX3ecsFot47bXXitHR0aLVahVFURSXLl0qAhA/+OAD93VWq1VMS0sTg4KCRKPRKIqiKH777bciAPHhhx+uVa6aZQYgqtVq8dixY+5zv/76qwhAfPXVV93nQkJCxBkzZlzytxKRKLLlhugqZbfbsWnTJowdOxbXXHON+3xcXBzGjx+PH3/8EUajEQAQGhqKAwcO4OjRo3XeS6fTQa1WIzMzE8XFxY0qT81p0K5p0VarFZs3bwYAdO7cGf369cOHH37ovq6oqAgbNmzAhAkTIAjCJe/9+eefw+Fw4O6770ZhYaH7iI2NRadOnfDdd995XB8QEODRzaVWq/HXv/4VBQUFyMrKAgB8/fXXiI2NxX333ee+TqVS4eGHH0Z5eTm2bt0KAPjss88gCIK7Faqmi8s8dOhQdOjQwf26V69eMBgMOHHihPtcaGgofv75Z+Tm5l7y9xJd7RhuiK5S58+fh9lsRpcuXWq9l5ycDIfD4R6P8tRTT6GkpASdO3dGz5498fjjj+O3335zX6/RaPD8889jw4YNiImJwU033YRFixYhLy+vXmVRKBQeAQuQwgwAjzE7EydOxLZt23Dq1CkAwKeffgqbzYb777//svc/evQoRFFEp06dEBUV5XEcPHgQBQUFHtfHx8cjMDDwsuU5deoUOnXqBIXC839Gk5OT3e8DwPHjxxEfH4/w8PArVQPatm1b61xYWJhHYFy0aBH279+PxMREXH/99Zg/f75H+CEihhsiqoebbroJx48fx4oVK9CjRw+88847uO666/DOO++4r3n00Udx5MgRLFy4EFqtFnPmzEFycjL27NnjtXLce++9UKlU7tabDz74AH369KkzoNXkcDggCAI2btyIjIyMWsebb77ptTI2hVKprPO86BxYDQB33303Tpw4gVdffRXx8fFYvHgxunfvjg0bNshVTKJmj+GG6CoVFRUFvV6Pw4cP13rv0KFDUCgUSExMdJ8LDw/HlClT8PHHH+P06dPo1asX5s+f7/G5Dh064O9//zs2bdqE/fv3w2q14sUXX7xiWRwOR63WhyNHjgAAkpKSPMpw66234sMPP8SpU6ewbdu2K7bauMoliiLat2+PoUOH1jpuuOEGj+tzc3NhMpkuW5527drh6NGjcDgcHtcdOnTI/b7ru3Nzc2sNhG6KuLg4PPTQQ1i3bh1OnjyJiIgIPPPMM167P1FLx3BDdJVSKpUYPnw4vvjiC4+un/z8fHz00UcYOHAgDAYDAHjM1gGAoKAgdOzYERaLBQBgNptRWVnpcU2HDh0QHBzsvuZKXnvtNfdzURTx2muvQaVSYciQIR7X3X///fj999/x+OOPQ6lU4t57773ive+8804olUosWLDAoxXE9V0X/76qqiqP1hyr1Yo333wTUVFRSE1NBQCMHj0aeXl5WL16tcfnXn31VQQFBeHmm28GIM0iE0URCxYsqFWui8tyJXa7HaWlpR7noqOjER8fX+96JroaBPi7AETkWytWrKi1VgoAPPLII/j3v/+NjIwMDBw4EA899BACAgLw5ptvwmKxYNGiRe5ru3XrhkGDBiE1NRXh4eHYtWsX1qxZ4x4EfOTIEQwZMgR33303unXrhoCAAKxduxb5+fn1Ch9arRYbN27EpEmT0K9fP2zYsAHr16/H//3f/yEqKsrj2ltvvRURERH49NNPMWrUKERHR1/x/h06dMC///1vzJ49G9nZ2Rg7diyCg4Nx8uRJrF27FlOnTsWsWbPc18fHx+P5559HdnY2OnfujNWrV2Pv3r146623oFKpAABTp07Fm2++icmTJyMrKwtJSUlYs2YNtm3bhqVLlyI4OBgAMHjwYNx///145ZVXcPToUYwcORIOhwM//PADBg8e3KD9pMrKypCQkIC77roLKSkpCAoKwubNm7Fz5856tZARXTX8N1GLiHzJNRX8Usfp06dFURTF3bt3iyNGjBCDgoJEvV4vDh48WPzpp5887vXvf/9bvP7668XQ0FBRp9OJXbt2FZ955hn3tOjCwkJxxowZYteuXcXAwEAxJCRE7Nevn/jJJ59csZyTJk0SAwMDxePHj4vDhw8X9Xq9GBMTI86bN0+02+11fuahhx4SAYgfffRRg+rks88+EwcOHCgGBgaKgYGBYteuXcUZM2aIhw8fdl9z8803i927dxd37dolpqWliVqtVmzXrp342muv1bpffn6+OGXKFDEyMlJUq9Viz549xXfffbfWdVVVVeLixYvFrl27imq1WoyKihJHjRolZmVlua8BUOcU73bt2omTJk0SRVGakv7444+LKSkpYnBwsBgYGCimpKSIr7/+eoPqgai1E0Sxge2iRER+9thjj+E///kP8vLyoNfrvXrvQYMGobCwEPv37/fqfYlIPhxzQ0QtSmVlJT744AOMGzfO68GGiFoHjrkhohahoKAAmzdvxpo1a3DhwgU88sgj/i4SETVTDDdE1CL8/vvvmDBhAqKjo/HKK6/g2muv9XeRiKiZ4pgbIiIialU45oaIiIhaFYYbIiIialWuujE3DocDubm5CA4OvuwuwkRERNR8iKKIsrIyxMfH19qw9mJXXbjJzc312C+HiIiIWo7Tp08jISHhstdcdeHGtST66dOn3fvmeIvNZsOmTZswfPhw9xLt5Dusb3mxvuXF+pYX61tejalvo9GIxMRE97/jl3PVhRtXV5TBYPBJuNHr9TAYDPyPQwasb3mxvuXF+pYX61teTanv+gwp4YBiIiIialUYboiIiKhVYbghIiKiVuWqG3NDREStk91uh81ma9RnbTYbAgICUFlZCbvd7uWS0cUuVd9qtfqK07zrg+GGiIhaNFEUkZeXh5KSkibdIzY2FqdPn+YaaDK4VH0rFAq0b98earW6Sff3a7j5/vvvsXjxYmRlZeHcuXNYu3Ytxo4dW6/Pbtu2DTfffDN69OiBvXv3+rScRETUfLmCTXR0NPR6faPCicPhQHl5OYKCgrzSckCXV1d9uxbZPXfuHNq2bdukkOnXcGMymZCSkoI///nPuPPOO+v9uZKSEkycOBFDhgxBfn6+D0tIRETNmd1udwebiIiIRt/H4XDAarVCq9Uy3MjgUvUdFRWF3NxcVFVVNWlKvl/DzahRozBq1KgGf27atGkYP348lEol1q1b5/2CERFRi+AaY6PX6/1cEvIGV3eU3W5vUrhpcfH03XffxYkTJzBv3jx/F4WIiJoJjpNpHbz159iiBhQfPXoUTzzxBH744QcEBNSv6BaLBRaLxf3aaDQCkNJ+Y0fVX4rrft6+L9WN9S0v1re8WN/1Y7PZIIoiHA4HHA5Ho+8jiqL7sSn3ofq5VH07HA6IogibzQalUunxmYb8t9Biwo3dbsf48eOxYMECdO7cud6fW7hwIRYsWFDr/KZNm3zWjJmRkeGT+1LdWN/yYn3Li/V9eQEBAYiNjUV5eTmsVmuT71dWVuaFUsmvV69emD59OqZPn97ke/34448YM2YMsrOzERIS4oXSXdrF9W21WlFRUYHvv/8eVVVVHu+ZzeZ631cQXfHJzwRBuOxsqZKSEoSFhXkkOVfCUyqV2LRpE2655ZZan6ur5SYxMRGFhYU+2VsqIyMDw4YN494kMmB9y4v1LS/Wd/1UVlbi9OnTSEpKglarbfR9RFFEWVkZgoODZeviuuWWW5CSkoKXXnqpyfc6f/48AgMDvfJ/2jMzMzFkyBBcuHABoaGhTb5fXS5V35WVlcjOzkZiYmKtP0+j0YjIyEiUlpZe8d/vFtNyYzAYsG/fPo9zr7/+Or799lusWbMG7du3r/NzGo0GGo2m1nmVSuXV/8GwVjlQaK5EkcX796bLY33Li/UtL9b35dntdgiCAIVC0aRZTq6uEde95HK57xNFEXa7vV7DMGJiYrxWJld5mlqnl3Op+lYoFBAEoc6/9w3578CvA4rLy8uxd+9e9zo1J0+exN69e5GTkwMAmD17NiZOnAhA+sE9evTwOKKjo6HVatGjRw8EBgb662cAAPbkFOOmF77HG78rr3wxERFd1SZPnoytW7fi5ZdfhiAIEAQBK1euhCAI2LBhA1JTU6HRaPDjjz/i+PHjuP322xETE4OgoCD07dsXmzdv9rhfUlISli5d6n4tCALeeecd3HHHHdDr9ejUqRO+/PLLRpf3s88+Q/fu3aHRaJCUlIQXX3zR4/3XX38dnTp1glarRUxMDO666y73e2vWrEHPnj2h0+kQERGBoUOHwmQyNbos9eHXlptdu3Zh8ODB7tfp6ekAgEmTJmHlypU4d+6cO+g0d3q1VJUWjkMjIvIrURRRYWvYFgoOhwMVVjsCrFVNaq3QqZT16tZ6+eWXceTIEfTo0QNPPfUUAODAgQMAgCeeeAIvvPACrrnmGoSFheH06dMYPXo0nnnmGWg0Grz//vsYM2YMDh8+jLZt217yOxYsWIBFixZh8eLFePXVVzFhwgScOnUK4eHhDfpNWVlZuPvuuzF//nzcc889+Omnn/DQQw8hIiICkydPxq5du/Dwww/jv//9L/r374+ioiL88MMPAIBz587hvvvuw6JFi3DHHXegrKwMP/zwA3w9Isav4WbQoEGX/YErV6687Ofnz5+P+fPne7dQjaTXSC02Vm5JQkTkVxU2O7rN/cYv3/37UyPc/2f3ckJCQqBWq6HX6xEbGwsAOHToEADgqaeewrBhw9zXhoeHIyUlxf366aefxtq1a/Hll19i5syZl/yOyZMn47777gMAPPvss3jllVfwyy+/YOTIkQ36TUuWLMGQIUMwZ84cAEDnzp3x+++/Y/HixZg8eTJycnIQGBiIP/zhDwgODka7du3Qu3dvAFK4qaqqwp133ol27doBAHr27AmHw+GevewLLW6dm+ZKr5bCjcUBnydSIiJqvfr06ePxury8HLNmzUJycjJCQ0MRFBSEgwcPXrFno1evXu7ngYGBMBgMKCgoaHB5Dh48iAEDBnicGzBgAI4ePQq73Y5hw4ahXbt2uOaaa3D//ffjww8/dM9sSklJwZAhQ9CzZ0/88Y9/xNtvv43i4uIGl6GhWsyA4ubOldQdogCrXUTTtvwiIqLG0qmU+P2pEQ36jMPhQJmxDMGG4CZ3SzXVxWNIZ82ahYyMDLzwwgvo2LEjdDod7rrrritOfb94AK4gCD5Zwyc4OBi7d+9GZmYmNm3ahLlz52L+/PnYuXMnQkNDkZGRgZ9++gmbNm3Cq6++in/961/Yvn17k7bLuBK23HiJq+UGACrYN0VE5DeCIECvDmjwoVMrG/W5mkdDppGr1WrY7Vf+92Lbtm2YPHky7rjjDvTs2ROxsbHIzs5uQg01THJyMrZt21arTJ07d3YvzxIQEIChQ4di0aJF+O2335CdnY1vv/0WgPTnMWDAACxYsAB79uyBWq32+dZJbLnxEpVSAZVSgM0uwmytuvIHiIjoqpaUlISff/4Z2dnZCAoKumSrSqdOnfD5559jzJgxEAQBc+bMkXUV5b///e/o27cvnn76adxzzz3Yvn07XnvtNbz++usAgK+++gonTpzATTfdhLCwMHz99ddwOBzo0qULfv75Z2zZsgXDhw9HdHQ0fv75Z5w/fx5du3b1aZnZcuNFgc6uKTNbboiI6ApmzZoFpVKJbt26ISoq6pJjaJYsWYKwsDD0798fY8aMwYgRI3DdddfJVs7rrrsOn3zyCVatWoUePXpg7ty5eOqppzB58mQAQGhoKD7//HPccsstSE5OxvLly/Hxxx+je/fuMBgM+P777zF69Gh07twZTz75JF588cVGbZrdEGy58SKdWomSChvDDRERXVHnzp2xfft2j3OuwFBTUlKSu4vHZcaMGR6vL+6mqmtiS0lJSb3KVddM5nHjxmHcuHF1Xj9w4EBkZmbW+V5ycjI2btxY67yvW57YcuNFrnE3DV1fgYiIiLyH4caLXOHGxJYbIiJqpqZNm4agoKA6j2nTpvm7eF7BbikvcrfcMNwQEVEz9dRTT2HWrFl1vuftDaX9heHGi1zrG3C2FBERNVfR0dGIjo72dzF8it1SXsTZUkRERP7HcONFOrWr5YbhhoiIyF8YbryIY26IiIj8j+HGizhbioiIyP8YbryI69wQERH5H8ONF7nH3FgYboiIyLeSkpKwdOnSel0rCILPN6tsThhuvCjQFW5snApORETkLww3XlS9zg1bboiIiPyF4caL9BppnRvOliIiost56623EB8fX2sDydtvvx1//vOfcfz4cdx+++2IiYlBUFAQ+vbti82bN3vt+/ft24dbbrkFOp0OERERmDp1KsrLy93vZ2Zm4vrrr0dgYCBCQ0MxYMAAnDp1CgDw66+/YvDgwQgODobBYEBqaip27drltbJ5A8ONF+lVnC1FROR3oghYTQ0/bObGfa7mUcdu3HX54x//iAsXLuC7775znysqKsLGjRsxYcIElJeXY/To0diyZQv27NmDkSNHYsyYMcjJyWly9ZhMJowYMQJhYWHYuXMnPv30U2zevBkzZ84EAFRVVWHs2LG4+eab8dtvv2H79u2YOnUqBEEAAEyYMAEJCQnYuXMnsrKy8MQTT0ClUjW5XN7E7Re8SM9F/IiI/M9mBp6Nb9BHFABCvfHd/5cLqAOveFlYWBhGjRqFjz76CEOGDAEArFmzBpGRkRg8eDAUCgVSUlLc1z/99NNYu3YtvvzyS3cIaayPPvoIlZWVeP/99xEYKJX1tddew5gxY/D8889DpVKhtLQUf/jDH9ChQwcAQHJysvvzOTk5ePzxx9G1a1cAQKdOnZpUHl9gy40XcRE/IiKqrwkTJuCzzz6DxWIBAHz44Ye49957oVAoUF5ejlmzZiE5ORmhoaEICgrCwYMHvdJyc/DgQaSkpLiDDQAMGDAADocDhw8fRnh4OCZPnowRI0ZgzJgxePnll3Hu3Dn3tenp6XjggQcwdOhQPPfcczh+/HiTy+RtbLnxoupF/DhbiojIb1R6qQWlARwOB4xlZTAEB0OhaML/71fp633pmDFjIIoi1q9fj759++KHH37ASy+9BACYNWsWMjIy8MILL6Bjx47Q6XS46667YLVaG1+2Bnj33Xfx8MMPY+PGjVi9ejWefPJJZGRk4IYbbsD8+fMxfvx4rF+/Hhs2bMC8efOwatUq3HHHHbKUrT4YbrxI79w402YXYbM7oFKyYYyISHaCUK+uIQ8OB6CyS59rSrhpAK1WizvvvBMffvghjh07hi5duuC6664DAGzbtg2TJ092B4by8nJkZ2d75XuTk5OxcuVKmEwmd+vNtm3boFAo0KVLF/d1vXv3Ru/evTF79mykpaXho48+wg033AAA6Ny5Mzp37ozHHnsM9913H959991mFW74r68XuRbxAzjuhoiIrmzChAlYv349VqxYgQkTJrjPd+rUCZ9//jn27t2LX3/9FePHj681s6op36nVajFp0iTs378f3333Hf72t7/h/vvvR0xMDE6ePInZs2dj+/btOHXqFDZt2oSjR48iOTkZFRUVmDlzJjIzM3Hq1Cls27YNO3fu9BiT0xyw5caL1EoBCkGEQxRQYbUjRNe8Ro8TEVHzcssttyA8PByHDx/G+PHj3eeXLFmCP//5z+jfvz8iIyPxz3/+E0aj0Svfqdfr8c033+CRRx5B3759odfrMW7cOCxZssT9/qFDh/Dee+/hwoULiIuLw4wZM/DXv/4VVVVVuHDhAiZOnIj8/HxERkbizjvvxIIFC7xSNm9huPEiQRCgUQAVdo67ISKiK1MoFMjNrT0+KCkpCd9++63HuRkzZni8bkg3lXjRFPWePXvWur9LTEwM1q5dW+d7arUaH3/8cb2/11/YLeVlrp4pzpgiIiLyD4YbL9M4a9RkYcsNERH53ocffoigoKA6j+7du/u7eH7Bbikvc7XcmG1suSEiIt+77bbb0K9fvzrfa24rB8uF4cbLXC03ZgvDDRER+V5wcDCCg4P9XYxmhd1SXqZWSoO2zBxQTERE5BcMN17mbrnhgGIiItl4aw0Y8q+LZ3U1FrulvMw95obhhojI59RqtXs6dVRUFNRqtXv36oZwOBywWq2orKxs2vYLVC911bcoijh//jwEQWjyWCGGGy+rbrlhtxQRka8pFAq0b98e586dq3O9mPoSRREVFRXQ6XSNCkfUMJeqb0EQkJCQAKVSeZlPXxnDjZex5YaISF5qtRpt27ZFVVUV7PbG/W+vzWbD999/j5tuuumqnWEkp0vVt0qlanKwARhuvE7DAcVERLJzdWU0NpgolUpUVVVBq9Uy3MjA1/XNjkUvU7sX8WPLDRERkT8w3HiZht1SREREfsVw42VqDigmIiLyK4YbL2PLDRERkX8x3HhZ9WwpttwQERH5A8ONl2kUrtlSbLkhIiLyB4YbL+M6N0RERP7FcONlXKGYiIjIvxhuvMw1oLjS5oDd4Z0NwIiIiKj+GG68TF2jRits7JoiIiKSm1/Dzffff48xY8YgPj4egiBg3bp1l73+888/x7BhwxAVFQWDwYC0tDR888038hS2nlQKwLUHmNnCrikiIiK5+TXcmEwmpKSkYNmyZfW6/vvvv8ewYcPw9ddfIysrC4MHD8aYMWOwZ88eH5e0/gQB0DtHFXNQMRERkfz8unHmqFGjMGrUqHpfv3TpUo/Xzz77LL744gv873//Q+/evb1cusbTq5QwWewwcVAxERGR7Fr0ruAOhwNlZWUIDw+/5DUWiwUWi8X92mg0ApC2W7fZbF4tj+t+OmfLTZnZ4vXvoGquumUdy4P1LS/Wt7xY3/JqTH035NoWHW5eeOEFlJeX4+67777kNQsXLsSCBQtqnd+0aRP0er1PymWvNAMQkLltB/IPcMaUr2VkZPi7CFcV1re8WN/yYn3LqyH1bTab631tiw03H330ERYsWIAvvvgC0dHRl7xu9uzZSE9Pd782Go1ITEzE8OHDYTAYvFomm82GjIwMxESE4qy5FD1SrsOI7jFe/Q6q5qrvYcOGQaVS+bs4rR7rW16sb3mxvuXVmPp29bzUR4sMN6tWrcIDDzyATz/9FEOHDr3stRqNBhqNptZ5lUrls7/Aeo1UrRY7+B+JDHz5Z0m1sb7lxfqWF+tbXg2p74b8ubS4dW4+/vhjTJkyBR9//DFuvfVWfxenTu7ZUlznhoiISHZ+bbkpLy/HsWPH3K9PnjyJvXv3Ijw8HG3btsXs2bNx9uxZvP/++wCkrqhJkybh5ZdfRr9+/ZCXlwcA0Ol0CAkJ8ctvqIte5Qw3XOeGiIhIdn5tudm1axd69+7tnsadnp6O3r17Y+7cuQCAc+fOIScnx339W2+9haqqKsyYMQNxcXHu45FHHvFL+S9F79yDwcR1boiIiGTn15abQYMGQRQvPZto5cqVHq8zMzN9WyAv0aulaq3gOjdERESya3FjbloCV7cUW26IiIjkx3DjA65uqQqGGyIiItkx3PiAztVywwHFREREsmO48YFA51TwCk4FJyIikh3DjQ+49pZiyw0REZH8GG58wDVbyswxN0RERLJjuPEB9wrFDDdERESyY7jxAYYbIiIi/2G48QGdO9xwzA0REZHcGG58oOZsKYfj0iswExERkfcx3PiAa50bUQQqq9g1RUREJCeGGx9whRuA426IiIjkxnDjAwqF4A44ZgvDDRERkZwYbnwk0Lm/lNnGQcVERERyYrjxkepVitlyQ0REJCeGGx8JdK9SzJYbIiIiOTHc+AgX8iMiIvIPhhsf0bPlhoiIyC8YbnyELTdERET+wXDjI+5wwwHFREREsmK48RG9xtUtxXBDREQkJ4YbH9GruHkmERGRPzDc+AhbboiIiPyD4cZHXGNuTGy5ISIikhXDjY8EOsNNBVtuiIiIZMVw4yM65zo3JoYbIiIiWTHc+Eh1yw27pYiIiOTEcOMj3DiTiIjIPxhufCTQOVuqwsZwQ0REJCeGGx/RqVwtN+yWIiIikhPDjY+4W244oJiIiEhWDDc+UnOdG1EU/VwaIiKiqwfDjY+4wo1DBCxVDj+XhoiI6OrBcOMjeuc6NwC3YCAiIpITw42PKBUCNAFS9XJQMRERkXwYbnyI08GJiIjkx3DjQ5wOTkREJD+GGx8K1HDzTCIiIrkx3PgQN88kIiKSH8OND7k2zzRz80wiIiLZMNz4kN4dbthyQ0REJBeGGx9yrXXDcENERCQfhhsfcrfccLYUERGRbBhufMjdcsN1boiIiGTDcONDbLkhIiKSH8OND+k1HFBMREQkN7+Gm++//x5jxoxBfHw8BEHAunXrrviZzMxMXHfdddBoNOjYsSNWrlzp83I2ll7FcENERCQ3v4Ybk8mElJQULFu2rF7Xnzx5ErfeeisGDx6MvXv34tFHH8UDDzyAb775xsclbRy9xjVbit1SREREcgnw55ePGjUKo0aNqvf1y5cvR/v27fHiiy8CAJKTk/Hjjz/ipZdewogRI3xVzEZzjbnhCsVERETy8Wu4aajt27dj6NChHudGjBiBRx999JKfsVgssFgs7tdGoxEAYLPZYLPZvFo+1/1cj84hNzBbqrz+XVS7vsm3WN/yYn3Li/Utr8bUd0OubVHhJi8vDzExMR7nYmJiYDQaUVFRAZ1OV+szCxcuxIIFC2qd37RpE/R6vU/KmZGRAQA4ZgSAABQUleLrr7/2yXdRdX2TPFjf8mJ9y4v1La+G1LfZbK73tS0q3DTG7NmzkZ6e7n5tNBqRmJiI4cOHw2AwePW7bDYbMjIyMGzYMKhUKuw/a8SrB3ZAUGsxevTNXv0uql3f5Fusb3mxvuXF+pZXY+rb1fNSHy0q3MTGxiI/P9/jXH5+PgwGQ52tNgCg0Wig0WhqnVepVD77C+y6tyFQ+t4Kq53/sfiQL/8sqTbWt7xY3/JifcurIfXdkD+XFrXOTVpaGrZs2eJxLiMjA2lpaX4q0eVx40wiIiL5+TXclJeXY+/evdi7dy8Aaar33r17kZOTA0DqUpo4caL7+mnTpuHEiRP4xz/+gUOHDuH111/HJ598gscee8wfxb8i1/YLVQ4R1iqHn0tDRER0dfBruNm1axd69+6N3r17AwDS09PRu3dvzJ07FwBw7tw5d9ABgPbt22P9+vXIyMhASkoKXnzxRbzzzjvNcho4UN1yA3CtGyIiIrn4dczNoEGDIIriJd+va/XhQYMGYc+ePT4slfeolAqolQpY7Q6YrXaE+mZyFhEREdXQosbctEQ697gbttwQERHJgeHGxwI5qJiIiEhWDDc+5mq5MVkYboiIiOTAcONjgc7NMyts7JYiIiKSA8ONj+lUbLkhIiKSE8ONj7lbbjjmhoiISBYMNz7mHnPD2VJERESyYLjxMc6WIiIikhfDjY+5tmDgOjdERETyYLjxMW6eSUREJC+GGx9zhxvOliIiIpIFw42PubqlOKCYiIhIHgw3PhaokVpuOBWciIhIHgw3PqZjyw0REZGsGG58zDUVnC03RERE8mC48bHqRfwYboiIiOTAcONjgWpuv0BERCQnhhsf03P7BSIiIlkx3PiYXuNaoZgtN0RERHJguPExvUpqubFWOVBld/i5NERERK0fw42P6Z3r3ACA2cbWGyIiIl9juPExtVIBpUIAwC0YiIiI5MBw42OCINTYPJODiomIiHyN4UYG3BmciIhIPgw3MnCtdcNwQ0RE5HsMNzLQca0bIiIi2TDcyICrFBMREcmH4UYG7pYbC1tuiIiIfI3hRgaBzrVuKrjODRERkc8x3MhA7+yWMnGdGyIiIp9juJEB17khIiKSD8ONDPScCk5ERCQbhhsZsOWGiIhIPgw3MuAKxURERPJhuJEBBxQTERHJh+FGBtVTwdktRURE5GsMN14miLVbZ3Qq1yJ+bLkhIiLyNYYbb8nehoCXuuCmwwtqvRWo4fYLREREcgnwdwFaDa0BgvkCdAHWWm9x40wiIiL5sOXGW0ISAACaqjLAVuHxFjfOJCIikg/DjbdoQyGqAqXnxrMeb+nZckNERCSbRoWb9957D+vXr3e//sc//oHQ0FD0798fp06d8lrhWhRBAAzx0lNjrsdbrnBTaXPA7hBlLxoREdHVpFHh5tlnn4VOpwMAbN++HcuWLcOiRYsQGRmJxx57zKsFbElEZ9dU7Zab6qFN3BmciIjItxo1oPj06dPo2LEjAGDdunUYN24cpk6digEDBmDQoEHeLF/LEuxquTnjcVqrUkAQAFGUtmAI0nAcNxERka80quUmKCgIFy5cAABs2rQJw4YNAwBotVpUVFRc7qOtmqvlRrio5UYQBOida92YudYNERGRTzWqCWHYsGF44IEH0Lt3bxw5cgSjR48GABw4cABJSUneLF+LIhraSE8uCjcAoNcEwGS1c38pIiIiH2tUy82yZcuQlpaG8+fP47PPPkNERAQAICsrC/fdd1+D75WUlAStVot+/frhl19+uez1S5cuRZcuXaDT6ZCYmIjHHnsMlZWVjfkZ3meou+UGAAK5MzgREZEsGtVyExoaitdee63W+QULaq/OezmrV69Geno6li9fjn79+mHp0qUYMWIEDh8+jOjo6FrXf/TRR3jiiSewYsUK9O/fH0eOHMHkyZMhCAKWLFnSmJ/iVaJzthSMZ6UBNoLgfk/n2jyTLTdEREQ+1aiWm40bN+LHH390v162bBmuvfZajB8/HsXFxfW+z5IlS/Dggw9iypQp6NatG5YvXw69Xo8VK1bUef1PP/2EAQMGYPz48UhKSsLw4cNx3333XbG1RzauqeBWE1BZ4vGWq+Wmgi03REREPtWocPP444/DaDQCAPbt24e///3vGD16NE6ePIn09PR63cNqtSIrKwtDhw6tLoxCgaFDh2L79u11fqZ///7Iyspyh5kTJ07g66+/do/58TuVHpaAYOl5qWfXlHsLBg4oJiIi8qlGdUudPHkS3bp1AwB89tln+MMf/oBnn30Wu3fvrnfQKCwshN1uR0xMjMf5mJgYHDp0qM7PjB8/HoWFhRg4cCBEUURVVRWmTZuG//u//7vk91gsFlgsFvdrVyiz2Wyw2Wz1Kmt92Ww2WFXh0FSVoaooG2JEF/d7OpWUI8sqrV7/3quVqx5Zn/JgfcuL9S0v1re8GlPfDbm2UeFGrVbDbDYDADZv3oyJEycCAMLDw93hwRcyMzPx7LPP4vXXX0e/fv1w7NgxPPLII3j66acxZ86cOj+zcOHCOscCbdq0CXq93utlvF4dgdCKUzjw0yZkH61upSkuUABQYPev+xFWuM/r33s1y8jI8HcRriqsb3mxvuXF+pZXQ+rblTvqo1HhZuDAgUhPT8eAAQPwyy+/YPXq1QCAI0eOICEhoV73iIyMhFKpRH5+vsf5/Px8xMbG1vmZOXPm4P7778cDDzwAAOjZsydMJhOmTp2Kf/3rX1AoaveyzZ4926OrzGg0IjExEcOHD4fBYKhXWevLZrMhb8X7AIAebUPRbXB1K9bP//sdOwvPoF2HThh9S0evfu/VymazISMjA8OGDYNKpfJ3cVo91re8WN/yYn3LqzH13ZDGk0aFm9deew0PPfQQ1qxZgzfeeANt2kjru2zYsAEjR46s1z3UajVSU1OxZcsWjB07FgDgcDiwZcsWzJw5s87PmM3mWgFGqZTGsohi3Xs2aTQaaDSaWudVKpVP/gJXqKVp8cqyc1DWuH+QVg0AqKwS+R+Ol/nqz5LqxvqWF+tbXqxveTWkvhvy59KocNO2bVt89dVXtc6/9NJLDbpPeno6Jk2ahD59+uD666/H0qVLYTKZMGXKFADAxIkT0aZNGyxcuBAAMGbMGCxZsgS9e/d2d0vNmTMHY8aMcYccf3OFm0vtDM5F/IiIiHyr0Zsc2e12rFu3DgcPHgQAdO/eHbfddluDQsY999yD8+fPY+7cucjLy8O1116LjRs3ugcZ5+TkeLTUPPnkkxAEAU8++STOnj2LqKgojBkzBs8880xjf4bXVajCpSelpz3OM9wQERHJo1Hh5tixYxg9ejTOnj2LLl2kGUELFy5EYmIi1q9fjw4dOtT7XjNnzrxkN1RmZqZnYQMCMG/ePMybN68xxZaF2d1ycw5w2AGFFGpcO4NzhWIiIiLfatQ6Nw8//DA6dOiA06dPY/fu3di9ezdycnLQvn17PPzww94uY4tiUYVCFBSAwwaUF7jPs+WGiIhIHo1qudm6dSt27NiB8PBw97mIiAg899xzGDBggNcK1xKJghIIjpPG3BjPAoY4ADVbbhhuiIiIfKlRLTcajQZlZWW1zpeXl0OtVje5UC2de3fwGuNu9O4VitktRURE5EuNCjd/+MMfMHXqVPz8888QRRGiKGLHjh2YNm0abrvtNm+XseVxh5vqGVOBGufeUja23BAREflSo8LNK6+8gg4dOiAtLQ1arRZarRb9+/dHx44dsXTpUi8XseVxt9zUmA6uUzl3BefeUkRERD7VqDE3oaGh+OKLL3Ds2DH3VPDk5GR07MiVdwEABucqzTW6pdwtN5wtRURE5FP1DjdX2u37u+++cz9fsmRJ40vUCoiGeOlJjW4p94Bimx0OhwiFQvBH0YiIiFq9eoebPXv21Os6QeA/2tUDis+4z7kGFIsiUFlld4cdIiIi8q56/wtbs2WGriDE2S1lKgCqLECABjpV9crNZivDDRERka80akAxXYEuHAjQSs+dg4oVCsEdcMwcVExEROQzDDe+IAjVrTd1TAc32ziomIiIyFcYbnylrung7oX82HJDRETkKww3vhKSKD3WnA7uHGdTwS0YiIiIfIbhxldCaq9S7G654Vo3REREPsNw4yt1TAdnyw0REZHvMdz4imtAcV1jbthyQ0RE5DMMN77ini1Vs+XGtQUDW26IiIh8heHGV1zdUhYjUGkEAOjU3DyTiIjI1xhufEUTBGhDpefOrilXyw3XuSEiIvIdhhtfck8Hl7qmXPtLcYViIiIi32G48aUQzxlTeo1zZ3COuSEiIvIZhhtfumg6uLvlhrOliIiIfIbhxpcumg7u2gmcLTdERES+w3DjSxdNBw9kyw0REZHPMdz40kXhRucON2y5ISIi8hWGG19y7wyeCzgcCOSAYiIiIp9juPElQzwAAbBbAHMhdCrn9gsWdksRERH5CsONLylVQHCs9Lz0jLvlhtsvEBER+Q7Dja/VGHejr7FxpiiKfiwUERFR68Vw42vucTdn3eHGIQKWKocfC0VERNR6Mdz4mkfLTQBUSgEAUGC0+LFQRERErRfDja/VCDdKhYAuscEAgAO5pX4sFBERUevFcONrNbqlAKBnmxAAwL6zDDdERES+wHDjaxct5Nc9Xgo3+3ON/ioRERFRq8Zw42uucFOWB9ht7pab/WdLOWOKiIjIBxhufE0fCSg1AETAmIsuscEIUAgoMlmRW1rp79IRERG1Ogw3vqZQOFcqBmA8C61KiU4x0qDi/Rx3Q0RE5HUMN3Jwj7uRBhX3iDcAYLghIiLyBYYbObjDzWkAQM+E6nE3RERE5F0MN3K4aDq4a8bUvrNGDiomIiLyMoYbOVw0HbxbnAEKASgst6CgjCsVExEReRPDjRwuGnOjUyvRMToIALDvDLumiIiIvInhRg4XjbkBgB6u9W64DQMREZFXMdzIwTXmprIEsJoAwGMxPyIiIvIehhs5aA2ARpr+7Z4O7g433IaBiIjImxhu5HJR11S3OAMEAcgzVuI8BxUTERF5DcONXC6aDh6oCcA1kYEAOO6GiIjIm/webpYtW4akpCRotVr069cPv/zyy2WvLykpwYwZMxAXFweNRoPOnTvj66+/lqm0TXDRdHCgxrgbzpgiIiLyGr+Gm9WrVyM9PR3z5s3D7t27kZKSghEjRqCgoKDO661WK4YNG4bs7GysWbMGhw8fxttvv402bdrIXPJGCHGW0TnmBuCMKSIiIl8I8OeXL1myBA8++CCmTJkCAFi+fDnWr1+PFStW4Iknnqh1/YoVK1BUVISffvoJKpUKAJCUlCRnkRsvJFF6rGs6OAcVExEReY3fwo3VakVWVhZmz57tPqdQKDB06FBs3769zs98+eWXSEtLw4wZM/DFF18gKioK48ePxz//+U8olco6P2OxWGCxVA/YNRqlIGGz2WCz2bz4i+C+X133FQJjEABALD2DKuf7naN0AICzJRXILzEhPFDt1fK0dperb/I+1re8WN/yYn3LqzH13ZBr/RZuCgsLYbfbERMT43E+JiYGhw4dqvMzJ06cwLfffosJEybg66+/xrFjx/DQQw/BZrNh3rx5dX5m4cKFWLBgQa3zmzZtgl6vb/oPqUNGRkatc3pLAYYBsBefxtfr1wOCAACI0ipxvlLAyi+2oGso95lqjLrqm3yH9S0v1re8WN/yakh9m83mel/r126phnI4HIiOjsZbb70FpVKJ1NRUnD17FosXL75kuJk9ezbS09Pdr41GIxITEzF8+HAYDAavls9msyEjIwPDhg1zd5u5VVmA32chQLRi9OAbAH0EAGBT2W9Yvz8PgQldMfqm9l4tT2t32fomr2N9y4v1LS/Wt7waU9+unpf68Fu4iYyMhFKpRH5+vsf5/Px8xMbG1vmZuLg4qFQqjy6o5ORk5OXlwWq1Qq2u3a2j0Wig0WhqnVepVD77C1znvVUqIDAaMBVAZc4HQqTf2CsxFOv35+H3vDL+B9VIvvyzpNpY3/JifcuL9S2vhtR3Q/5c/DZbSq1WIzU1FVu2bHGfczgc2LJlC9LS0ur8zIABA3Ds2DE4HA73uSNHjiAuLq7OYNPs1DEdnIOKiYiIvMuvU8HT09Px9ttv47333sPBgwcxffp0mEwm9+ypiRMnegw4nj59OoqKivDII4/gyJEjWL9+PZ599lnMmDHDXz+hYeqaDh4vhZucIjNKzRzIRkRE1FR+HXNzzz334Pz585g7dy7y8vJw7bXXYuPGje5Bxjk5OVAoqvNXYmIivvnmGzz22GPo1asX2rRpg0ceeQT//Oc//fUTGqaO6eAhehUSw3U4XVSBA7ml6N8x0k+FIyIiah38PqB45syZmDlzZp3vZWZm1jqXlpaGHTt2+LhUPnLRFgwuPduE4HRRBfadZbghIiJqKr9vv3BVcY+58Qw33eNdKxVz3A0REVFTMdzIqY4BxUCNPabOchsGIiKipmK4kZOrW6rsHGCvcp92zZg6WWiCsZKDiomIiJqC4UZOQTGANgQQ7cCZ6t3PwwPVaBMqbcXwO7umiIiImoThRk4KBdD1D9LzA2s93uoeL62WzK4pIiKipmG4kVv3O6TH378AHHb3aY67ISIi8g6GG7m1vxnQhgLl+UBO9e7nrnE3+xhuiIiImoThRm4BaiDZ2TW1/3P3aVe4OVFogslSVdcniYiIqB4YbvzB1TV18Ev3rKmoYA1iDBqIIvD7OQ4qJiIiaiyGG39ofzOgCwdM54FT29ynOe6GiIio6Rhu/EGpApLHSM9rzJpyrVTMcTdERESNx3DjL3V0Tblabg6cZbcUERFRYzHc+EvSjYA+AjBfALJ/AFA9qPhoQRkqrPbLfZqIiIgugeHGX5QBQPJt0nNn11SMQYPIIA0cInAwj603REREjcFw40/urqn/AXYbBEFAjzZcqZiIiKgpGG78qd0AIDAKqCgCTm4FwBlTRERETcVw4091dE1Vz5hitxQREVFjMNz4W487pceDXwFVVvRMcA4qzi9DpY2DiomIiBqK4cbf2qYBQTFAZQlwciviQ7QI06tQ5RDZNUVERNQIDDf+plAC3W6Xnh9YC0EQcFPnKADAe9tP+bFgRERELRPDTXPgnjUldU1NvekaAMD633KRXWjyY8GIiIhaHoab5iDxBiAoFrCUAie+Q/f4ENzcOQoOEXjz+xP+Lh0REVGLwnDTHCgUQPex0vP9nwMAHhrUAQDwWdYZFBgr/VQwIiKilofhprlwdU0d/hqwVeL69uFIbRcGq92B//x40r9lIyIiakEYbpqLhOuB4HjAYgSOfwtBENytNx/sOIVSs83PBSQiImoZGG6aC4WiuvXGuaDfLV2j0TU2GCarHe9vz/Zf2YiIiFoQhpvmxKNrqgKCIGC6s/Xm3Z+yuVM4ERFRPTDcNCcJfYCQRMBaDhzbAgC4tWccEsN1KDJZsWpnjp8LSERE1Pwx3DQnguCxoB8ABCgVmHqT1Hrz9vcnYLM7/FU6IiKiFoHhprnp7txr6vAGwFYBAPhjagIigzTILa3EF3tz/Vg4IiKi5o/hprlpcx0Q2hawmYBtrwAAtCol/jKwPQBg+dbjcDhEf5aQiIioWWO4aW4EAbhljvR86/PA2SwAwJ9uaItgbQCOFZRj0+/5fiwgERFR88Zw0xz1/KM0c0q0A5//FbCaEaxVYWJaOwDAG5nHIIpsvSEiIqoLw01zJAjArUuk/aYuHAU2zwcATBnQHpoABX49U4qfjl/wbxmJiIiaKYab5kofDoxdJj3/5U3g2BZEBmlwb99EAMAbmcf9WDgiIqLmi+GmOes4FOj7oPT8ixmAuQgP3nQNlAoBPx4rxG9nSvxaPCIiouaI4aa5G/YUENERKDsHfD0LCWF63J4SDwB4/Tu23hAREV2M4aa5U+uBO98CBCWw/zNg3xpMc27J8M3veTiaX+bnAhIRETUvDDctQZtU4OZ/SM/Xp6Oz1ojh3WIgisDfPt6DckuVf8tHRETUjDDctBQ3/l0KOZWlwLrpmD8mGVHBGhzKK8PDH++BnQv7ERERAWC4aTmUKuCOt4AAHXByK+IP/xdvT+wDTYAC3x4qwL/X/+7vEhIRETULDDctSWRHYPjT0vPN83CtNh8v3XMtAODdbdn4745T/isbERFRM8Fw09L0fQDoMASoqgQ+fxCjkyPw+IguAID5Xx7A1iPn/VxAIiIi/2K4aWkEAbh9GaALA879CqybjodubItx1yXA7hAx88PdOMIZVEREdBVjuGmJDHHA2OWAIgDYvwbCJxPx7G0dcX1SOMosVfjzyp0oLLf4u5RERER+wXDTUnUZCdz7MRCgBY5sgGb1vVh+Txe0i9DjTHEFpr6/C5U2u79LSUREJLtmEW6WLVuGpKQkaLVa9OvXD7/88ku9Prdq1SoIgoCxY8f6toDNVefhwJ8+A9RBwMnvEf7Z3Vh5bycYtAHYnVOCf6z5jbuHExHRVcfv4Wb16tVIT0/HvHnzsHv3bqSkpGDEiBEoKCi47Oeys7Mxa9Ys3HjjjTKVtJlKGghM/BLQhgJndqL9V/fgnXHtEKAQ8OWvuXh5y1F/l5CIiEhWfg83S5YswYMPPogpU6agW7duWL58OfR6PVasWHHJz9jtdkyYMAELFizANddcI2Npm6mEVGDKBiAoBsjfj+szJ+DFEREAgKWbj+IDThEnIqKrSIA/v9xqtSIrKwuzZ892n1MoFBg6dCi2b99+yc899dRTiI6Oxl/+8hf88MMPl/0Oi8UCi6V6cK3RaAQA2Gw22Gy2Jv4CT677efu+9RLeCbj/fwj4aByEC8dwW9afcSb1BSzOcuDJdfuxN6cY8/7QFVqVUv6y+Yhf6/sqxPqWF+tbXqxveTWmvhtyrV/DTWFhIex2O2JiYjzOx8TE4NChQ3V+5scff8R//vMf7N27t17fsXDhQixYsKDW+U2bNkGv1ze4zPWRkZHhk/vWhzYhHQMqn0eQ8Qz+cvivKI77J/5zrh3W7D6Lnw6dwZTOdkTr/FY8n/BnfV+NWN/yYn3Li/Utr4bUt9lsrve1fg03DVVWVob7778fb7/9NiIjI+v1mdmzZyM9Pd392mg0IjExEcOHD4fBYPBq+Ww2GzIyMjBs2DCoVCqv3rtBTCMhfvRHaAv2418VizBm5Ev48w/ByDVZsfSgBgvHdseoHrH+K5+XNJv6vkqwvuXF+pYX61tejalvV89Lffg13ERGRkKpVCI/P9/jfH5+PmJja//je/z4cWRnZ2PMmDHucw6HAwAQEBCAw4cPo0OHDh6f0Wg00Gg0te6lUql89hfYl/eul9B4YMpXwId3QzjzC1Iyp2Bbh5H4R+kf8eUZHR5e/RumnDFi9qhkqAP8Puyqyfxe31cZ1re8WN/yYn3LqyH13ZA/F7/+y6ZWq5GamootW7a4zzkcDmzZsgVpaWm1ru/atSv27duHvXv3uo/bbrsNgwcPxt69e5GYmChn8Zs3XRhw/1qg74OAoIT2+Ea8XDQNq5P+BwNMeHdbNu55aztySyr8XVIiIiKv8vv/bU9PT8fbb7+N9957DwcPHsT06dNhMpkwZcoUAMDEiRPdA461Wi169OjhcYSGhiI4OBg9evSAWq32509pfjRBwK0vANN/AjoOheCwoV/ex9hleBwParfgt5wLuPWVH7gfFRERtSp+H3Nzzz334Pz585g7dy7y8vJw7bXXYuPGje5Bxjk5OVAo/J7BWrbortJif0c3A9/8H9SFh/Ev/Ad/CszA3Ir7MPldGx4Y2B4zB3dCiJ7NsURE1LL5PdwAwMyZMzFz5sw638vMzLzsZ1euXOn9ArVWnYYC1wwCst4FvnsW7Spy8J76eWTaU7Dwx/vwya4zmD6oAyb3T2pVU8aJiOjqwiaRq40yALj+QeDh3UDaTEChwiDlr/hG8wRerHoWmzeuw6DFmVj1Sw6q7A5/l5aIiKjBGG6uVrowYMQzwIyfgW63Q4SAoco9WKN5Cq9VPoEt697FiJcysWHfOe5PRURELQrDzdUuogNw9/sQZu4CrpsEUalGH8URvK1eguXGmdiy6iXctWwrfjpe6O+SEhER1QvDDUkiOwK3vQLh0X3AgEchaoLRSXEWL6jexKvnp2DLirn4y1vfYuP+PHZXERFRs9YsBhRTMxIcCwxbAOHGdGDXu7Bvfx3xpnzMUX0I89k1+H51L/xbfQOi+ozFHWndER/ayvZyICKiFo/hhuqmDQEGPgrlDdOBX1fB9uPL0Bcfx0jlToy074Rtx+v4eXsyvo26Be0H3o0bUnpAqRD8XWoiIiKGG7qCAA2QOgmq6yYCeb+h6sCXMP/2BQzGoxgo7MfAC/uBL17B/i87w5g0El0G3YOItt0BgUGHiIj8g+GG6kcQgLgUBMSlwDB0DnDhOAp3fYbK375Agmk/eohHgJNHgJOvoEQRhtKoVIQn34TgzjcBMT2lKehEREQy4L841DgRHRA54h/AiH+gsugMDn63CopD/0NX636EOooRmr8ZyN8MZAI2pQ6ONn2huWYA0DYNSOgDqAP9/QuIiKiVYrihJtOGJ6D3uFkAZiEnvwh7dmxB6ZEfkGD8FX0UR2Cwm4Gc76UDgCgoIcT1koJOYj+g7Q3SQGYiIiIvYLghr2obE462t/8RwB9xptiMT/bl4ve9P0OfvxN9FYfRV3EI8SgCcvdIx47XpQ+GtZdCTtsbgMQbgMjOAPcUIyKiRmC4IZ9JCNPjgZs6Ajd1RF7pOHxzIA+P7TuHs9mHcZ1wBH0UR9BXcRhdhNNQFJ8Eik8Cv34sfVgXBsT3BmJ7AXG9gNgUIPwaBh4iIroihhuSRWyIFpP6J2FS/ySUmvtgx8kL2H78Aj48fgG5+fm4TnEUqYrD6CscwbWKY9BVFAPHv5UOF3UQENMDiEuRAk9kNygcVv/9KCIiapYYbkh2IXoVRnSPxYju0jib82UW7DhxAT8dv4DZxwtx5oIRyUIOeihOoruQje6KU+imyIHGWg6c3iEdAFQAxgAQT8yRWnXCkmofgVGclk5EdJVhuCG/iwrWYExKPMakxAMAcksqsOPEBWSdKsYHp4pxOL8MCtGOa4RzzrCTjV7KbHRX5CBILIdQdg4oOwec2lb75qpAIDQRMMQDwfGAIe6i520AfQQDEBFRK8JwQ81OfKgOd16XgDuvSwAAlFXa8OvpUmSdKkZWTjFeOVWMMksVABHhKENboQBthQJ0CDiP7vpiXBNwHjFVedBX5kGwmYDzh6TjUpRqKfCEtZdagMKdj2HtpdYftV6W301ERN7BcEPNXrBWhYGdIjGwUyQAwOEQcex8OX45UYgNO/bDpE7EprwyVFodQI0hOGrYkKi4gNTQcvQINqGjtgxtlMWIdFyAvjJfavExnQfsVqA4WzpOfFdHAeKqw05IGykIGRKcj/HSVhVs+SEiajYYbqjFUSgEdI4JRvtwLYILfsPo0f2gUAbgZGE5DuQa8XuuEb+fM+JArhHHTSocLwI+KfK8hzpAgQ5RQUhO0ODaUAuS9aVoJ+QjwnoWyuKTQNEJoOgkYCmVurwu1e0FSF1fhnhn8HEeoYlASAIQ0lY6r+IGo0REcmG4oVZBqRDQMToYHaODcfu1bQAAoigiz1iJw3llOJJfhiP55TiSX4aj+eWosNlx8JwRB88BnwMABACxCFDEoW34TbgmKhAdegWia2gVuqjPIxH5CDKdhlCWCxhdx1mgohiwmYALR6XjUvSRNQJPIhAUDejCpSnv+nDP5wEaGWqMiKj1YrihVksQBMSF6BAXosOgLtHu8w6HiDPFFTiSX4bD+WU4ml+GowXlOHHehAqbHScKTThRaMJmj7uFIEQXicTw/kgM0yOhrQ4JYXq0DQbaqUoRpyiCriIfKD1T4zgNlJyWwo+5UDpy91y54Cq9FHYCI50tQTVbheKrB0SrtN6uMiKiVoHhhq46CoWAthF6tI3QY2i3GPd5h0Nq6Tlx3oQThVLYOX5eeswtrUBphQ2lZ23Yf9ZY533D9OFICEtAQpgOieF6JHTQITFUh7aBVrQRLkBrypUCT+lpwFQotfqYi4CKIul5RTEgOgCbWTqMZ4Bzey/9Q/QRQGC01OUVoJVafAK0UujxeK2Txg0Z2jhbjhI4Q4yIWjWGGyInhUJAfKgO8aE69+Bll0qbHdkXTDhTVIEzxWacKa6QjhLpeYnZhmKzDcXmUuw7W1rn/SOD1GgT1gOJYX3RJlSHuGgt4kJ1iAvRIi5Ehwh9ABRWozP0FAOmAqnrq2Y3mDEXKD0LVFUA5gvS0RgBWmeLUII0ODqkDaAxSDPDVHopEKkCpUfXOUGNAHtF476PiEhGDDdE9aBVKdE11oCusYY63zdW2nC2uAKni8w4W1KB084QdLq4AmeKzCizVKGw3IrCcit+PV1S5z3USgViQjSIC9EhPkSL2JD2iAtJRkyMFrGdtYgL0SIySAOlAKCyRAo6pvNAlQWoqgRsldKj67Xr0VruDEVnpIBUni+dLzohHfWkAnArAPHQ350tQXHSY7Br7aBYqbssKEqaQaYxAAplQ6uaiKjJGG6IvMCgVcEQp0JyXN3hp9Rsw+lisxR4iiqQW1qBvNJK5JZW4lxJBc6XW2C1O3C6SApGl6JUCIgO1iDGoEWsQYvYkCjEGLTuczEGDaINWhi0ARAu1e1UZQXKnGGn9KzU/WXMBSzl0vggWwVgdXaN2Src3WSi1QyhqgKCtfzKA6hdNAYp6NR16MKqB1K7j1DpURvKfcSIqNEYbohkEKJXIUQfgh5tQup831rlQEFZJc6VOo+SCpwrrUReaSXyjNJjQVkl7A7Rfc3laAIU1WEnWIuoYA0ig9TORw2igkMRGRqDiIQ0aALq17pSZbPhm/99jhH9e0FVcR4oy5NCUVmeFJbK8gDjOWngtM0sfchilI7S0w2qL0Bwtv4ES3uKqQMBTVD185qPShWgCKhxKJ1HjXP6cCC0nTRTLUDdwLIQUUvDcEPUDKgDFEgI0yMh7NKrIdsdIgrLLdWhp7QCeUYLCsoqUWC0IN9YiXxjJYyVVbBUOZBTZEZOkfmK3x2iU7mDT3RwdStQtEFTfc6ggVYhwq7UAhEdAVXy5W9aZZVCTWWp1IVWWep5VBQDFSXVA6lrHtZyAKLzcyUNqMV6EBRS11lYOyC0rRR4wtpJj4Y4QBMCaA1SYCKiFovhhqiFUCoEZ2uMFki89HWVNrsUdmqEnsJyC86XWaTHcgsKy6woLLegyiFKs8AqbDh+3nTZ79eqFNArlHgnZwcigjQI16sRHqhGeJDa/TwiSI3wQA0igtQI1kdACIy87D3rVGWVQo0r6FjKAatJel7Xa3sV4Lj4sAOiXXputwHlBUBJjjQQ23hGOi61KCMgDaDWGKSgc/GjOtjZiuRsOdIE13geJF2nC5e62DjmiMgvGG6IWhmtSume6n45DmewcQWf8+UWdxgqKHO2CJVZcN5oQZmlCpU2ByohoOgSU+Evpg5QIDJQjYggKexEuh6d4Sc8sPqICNRAp3YGgQC1tMhhUPTlv6ChRFEagF18Cig5JW23UZLjfH5KCkA2Z8BzTccvz2vCFwrOhRkjnNP2I6XuMddrTbA0I00dKM1IUwdJoUrtPCeopTITUYMx3BBdpRQKAWGBaoQFqtEpJviy11ZY7ThbXI6vMjLRNaUPjJUOXDBZUWy24kK5FUUmC4rMNumx3AqT1Q5rlQO5zkHT9aFVKRARqEG4s0wRziP8okAUGSRdo1crLz1oui6CUB2aEvvWfY29qnqcUKWxRtdajXMeLUh1tCa5PgPRuYZRUf0GX19EBeBWhRrKU87FG4PjpBlpNWemBcdKY5MAKQiJDul7RUf1a9HhHHcUwfFGdNVguCGiK9KplWgXrkf7YGBI12ioVJcfk1JhtaOw3IILJisulEvdYYXlUhC6YJJeF5mcYchkhc0uotLmwNmSCpwtqd9aOheHoXC9CqHO7jHptRphepX0PFCNML0a6oArzMBSOgcf68PrWzV1s9uc6xVdkBZsdK1JVPNwzU6zmqTZaVaT87VZ6j4DEOCwAsUnpcMbtKFSuAuMllqSaj2PcrYyRUktS1zokVoohhsi8jqdWonEcD0Swy/fNQZIe4CVW6pQZLJ6HBdcj85AJLUQSWOFLFWOBochAAjWBLhbq8L1KoQHahAeqHKHoZpdZeGBahi0KigUjfgHXqlqWteaww6buRSZX6/B4NSuCDAXOGelOTdxNZ6rfl5VR8uYoAAgSI+CII09Eh3Vg7QLj9TjN6ilPdECXUdUjddRtR/VgY37rUQ+wHBDRH4lCAKCtSoEa1VoF3HlfyBFUYTZaseFcisKTRYUm6zS6tAmK4rMVudrK4pNNhSZpUBUYrbCIQJlliqUWarqNYsMkAZxh+lVHoEnTO88AqtbhsL0UjgKDVQhWHOZNYbqS6EENMEwa2Igtk0DLtVSJopScKkZZOr6bodDakkyFUhji0znpaO8QDpnKpSemwul5zYzYHeuh1SWW78yq/TV4UcXJrX8uAZiuwdlBztfB0vXuMIRN4slL2O4IaIWRRAEBGoCEKgJuOKgaReHQ4Sx0oYiZ/ApMnmGoQumGo9mK4rKrSizVDmn30srS9eXSikg1NUldlEQcoejQJXzGul8o1uIBKF+09YVCiAwQjqirzCNH5C6xsyFzhB0QXqs87XzXFWlFIhKc6SjoTQhdbQIObvIVLoaW4Joq58H6Krf0xoYkMgDww0RtXoKhRQ4QvX1H1BrqbKjxGxzd4cVma0oKrc49xCrbi0qdrcW2VBhs8NmF6XZZ2WW+pdPgLN8qhqBJwDFeQqc2noCEcFahOqk90N0UmtRqE7V8EHV9aXWA+q20lpAVyKK0ngh0/nqsFNZAljKqgdiW4wXvS6TNo01F0otT5ZS6Sg63vgyKzU1puyHXPQ8pLrFyN2iFFzdqqQJBpRazk5rRRhuiIjqoAlQIsaglNYVqqcKq90ZfKRusbqeF9XoNisxSzPLHCLcY42AmusNKfDduWOX/D5XK1G4szXI1TLk8RhY3YoUovdSt1lNguBc3ycICG/fsM+KzsUaXaHIfThfm4uqtwBxtQ7ZKmpsC1LpHnwNu6X6842gAvAHQQVFdpvqGWnumWlx1fupBUZJU/i5PUizxnBDROQlOrUSOrW0s3x9WarsKDXbnF1kUuApNttwoawCew4cQXhcIkorq1BqtqGkwooSsw0lZhusdkejWomUCgGhOhVC9CqE6qpDT6hOCkGhNWaauWafhepV0Kp8sCChIFTvKxbZqXH3cNillqBLTt93roptKau+zvW8ZsuS6IBStAEl2dJxJaqLtgSpuVWIWg8onNuCKFUXbQfifK1US7PyLu6KU9X/7w5dGsMNEZEfaQKUiDYoEX1RC5HNZsPXpkMYPbp7ran3oiiiwiZ1m0kDpm3u8UPuliHXIGvn6xJnt5ndIUpT9E31H0cEADqV0h10qgdWVw+ortlC5HquU/mo26wmhdK54Wpo4+8hirCZS5C5fg0G96kxO829d1qNWWquliKbc+o+8r3wI2pQB3mGHW2o1I3m6lqr9Ty0umtNVf9WxtaO4YaIqIURBAF6dQD06oAGtRJV2uworZBaflyBp7TC6h5HVGKqPl9ktrpbkewOKUw1dOq9OkBx0cBqlcdg69AaLUSu8UYhOhWUjRlc3RSCAKiDYNZEQ0y84fKz02wVzrWJyi5avLGsxrYgJqlFyb0diM3ztd0mzUYzF9XohiuQzrkWhizObvjvUKqrxxLVnKnmGmuk1jsHZOudzwM9HzXBgKGN1JLWwtc4YrghIrpKaFVKaFUNG0ckiiKMlVUocU+rt3mOHfIYWF0dimx2EdYqB/KNFuQb699tJgiAQatCmF6FEFf40UkBKESnQqjeeejU7q61UL0aBm0AApQ+HgcjCM7B1noAUd69tyhKAanmmCNTQXUXW2Vp3V1vlaVS0AKcgcm5SGRTqPRASIIUdEISPI/geOn3KzVSl1uARnrezMYgMdwQEdElCYKAEJ00S6s+6xABUiAyWe0orhGGas4qc7UIFZutKK2objUqs1RBFOHezBUX6rcekUuwNsAdfFwzy2q+9uo0fG8TBGc3kwGI6NCwzzoczpaki2akuQKRa4yRq9XJZq7xaK5eGbuyVJrBZjNLCz3WZ7FHd/mVzqCjlo42qcD4VQ37HV7EcENERF4lCAKCNAEI0gQgsQE7WdjsDs+uMpPVHXTcXWkVtlqDq8stVQCAssoqlFVW4TTq33WmECCFIJ0KokWJzy/sRnigxh3oarYWSa+lQdZ+6T67FIWiesp7SBPvZasEjGeB0jPSYTwLlJ4GSp3nXKti2y8asyXaqzecBaRFI/2I4YaIiJoFlVKBqGANooIbtiCfze6AscKGEmcIKq0RfKRzVo9xRq7HcksVHCKcrUg2AAKyjxTW6ztd3WeuQdZhes9B1jVbjEL11WONZBlk3RQqrdRydKXWI1GUAo7dClRZpan4NZ8r/buoIsMNERG1aCqlAhFBGkQENewfVGuVw91Fdt5oxnfbfkaH5F4ot1YPvK7ZcuTqQiurvKj7rAHUSoV7rJCrZcjgetQGwODx2nOMkValaD7BSBCkbqgADdAMF4dmuCEioquSOkCBaIMW0QYtronQ4sJBEaNT21xx13ub3SEFHVP12KGa44mKTNXdZ66uNPcga7ujwWsT1Sxv6EXjiFytQh5daBeNOQry9sKNLQDDDRERUQOolApEBmkQ2YCWIteGrzW7yYzOlh9jpfOxosrjtXROajWqckizzwrKLChoYDBSKgR3y5CrpcigVcGgC3A+VrcaherVHos7GrQtMxgx3BAREflYzQ1f2zRgbSKgevZZiXttItd4opqvre4xRq4B18VmG6xVDtgdYo3tPRqm5orWYc7gE6JTIdjVhXZRSArWBtToTqv/Xm7e1izCzbJly7B48WLk5eUhJSUFr776Kq6//vo6r3377bfx/vvvY//+/QCA1NRUPPvss5e8noiIqCWrOfssIaxhn62w2t0hqKyyCkZny5Cxwvm6UmoxMlbaaoSj6o1gPVe0Nl3x+1x6tDHgq7/d2LDCepHfw83q1auRnp6O5cuXo1+/fli6dClGjBiBw4cPIzo6utb1mZmZuO+++9C/f39otVo8//zzGD58OA4cOIA2bdr44RcQERE1T679zuJCGr5nlWtFa9fsMtfg67IagUgKS9WhyRWgDNrLj1vyNb+HmyVLluDBBx/ElClTAADLly/H+vXrsWLFCjzxxBO1rv/www89Xr/zzjv47LPPsGXLFkycOFGWMhMREbV2jVnR2sXhEH1Qovrza7ixWq3IysrC7Nmz3ecUCgWGDh2K7du31+seZrMZNpsN4eF1rxRlsVhgsVQPvjIajQCkTelstoZN4bsS1/28fV+qG+tbXqxvebG+5cX69j67/dLvNaa+G3KtX8NNYWEh7HY7YmJiPM7HxMTg0KFD9brHP//5T8THx2Po0KF1vr9w4UIsWLCg1vlNmzZBr9c3vND1kJGR4ZP7Ut1Y3/JifcuL9S0v1re8GlLfZnP9t+Pwe7dUUzz33HNYtWoVMjMzodXW3Ww2e/ZspKenu18bjUYkJiZi+PDhMBgMXi2PzWZDRkYGhg0bdsV1EqjpWN/yYn3Li/UtL9a3vBpT366el/rwa7iJjIyEUqlEfn6+x/n8/HzExsZe9rMvvPACnnvuOWzevBm9evW65HUajQYaTe21CFQqlc/+Avvy3lQb61terG95sb7lxfqWV0PquyF/Ln7do1ytViM1NRVbtmxxn3M4HNiyZQvS0tIu+blFixbh6aefxsaNG9GnTx85ikpEREQthN+7pdLT0zFp0iT06dMH119/PZYuXQqTyeSePTVx4kS0adMGCxcuBAA8//zzmDt3Lj766CMkJSUhLy8PABAUFISgoCC//Q4iIiJqHvwebu655x6cP38ec+fORV5eHq699lps3LjRPcg4JycHCkV1A9Mbb7wBq9WKu+66y+M+8+bNw/z58+UsOhERETVDfg83ADBz5kzMnDmzzvcyMzM9XmdnZ/u+QERERNRi+XXMDREREZG3MdwQERFRq8JwQ0RERK0Kww0RERG1Kgw3RERE1Kow3BAREVGr0iymgstJFKVt2BuyR0V92Ww2mM1mGI1GLt8tA9a3vFjf8mJ9y4v1La/G1Lfr323Xv+OXc9WFm7KyMgBAYmKin0tCREREDVVWVoaQkJDLXiOI9YlArYjD4UBubi6Cg4MhCIJX7+3acfz06dNe33GcamN9y4v1LS/Wt7xY3/JqTH2LooiysjLEx8d77FxQl6uu5UahUCAhIcGn32EwGPgfh4xY3/JifcuL9S0v1re8GlrfV2qxceGAYiIiImpVGG6IiIioVWG48SKNRoN58+ZBo9H4uyhXBda3vFjf8mJ9y4v1LS9f1/dVN6CYiIiIWje23BAREVGrwnBDRERErQrDDREREbUqDDdERETUqjDceMmyZcuQlJQErVaLfv364ZdffvF3kVqN77//HmPGjEF8fDwEQcC6des83hdFEXPnzkVcXBx0Oh2GDh2Ko0eP+qewLdzChQvRt29fBAcHIzo6GmPHjsXhw4c9rqmsrMSMGTMQERGBoKAgjBs3Dvn5+X4qccv2xhtvoFevXu6FzNLS0rBhwwb3+6xr33ruuecgCAIeffRR9znWuffMnz8fgiB4HF27dnW/78u6ZrjxgtWrVyM9PR3z5s3D7t27kZKSghEjRqCgoMDfRWsVTCYTUlJSsGzZsjrfX7RoEV555RUsX74cP//8MwIDAzFixAhUVlbKXNKWb+vWrZgxYwZ27NiBjIwM2Gw2DB8+HCaTyX3NY489hv/973/49NNPsXXrVuTm5uLOO+/0Y6lbroSEBDz33HPIysrCrl27cMstt+D222/HgQMHALCufWnnzp1488030atXL4/zrHPv6t69O86dO+c+fvzxR/d7Pq1rkZrs+uuvF2fMmOF+bbfbxfj4eHHhwoV+LFXrBEBcu3at+7XD4RBjY2PFxYsXu8+VlJSIGo1G/Pjjj/1QwtaloKBABCBu3bpVFEWpblUqlfjpp5+6rzl48KAIQNy+fbu/itmqhIWFie+88w7r2ofKysrETp06iRkZGeLNN98sPvLII6Io8u+3t82bN09MSUmp8z1f1zVbbprIarUiKysLQ4cOdZ9TKBQYOnQotm/f7seSXR1OnjyJvLw8j/oPCQlBv379WP9eUFpaCgAIDw8HAGRlZcFms3nUd9euXdG2bVvWdxPZ7XasWrUKJpMJaWlprGsfmjFjBm699VaPugX499sXjh49ivj4eFxzzTWYMGECcnJyAPi+rq+6jTO9rbCwEHa7HTExMR7nY2JicOjQIT+V6uqRl5cHAHXWv+s9ahyHw4FHH30UAwYMQI8ePQBI9a1WqxEaGupxLeu78fbt24e0tDRUVlYiKCgIa9euRbdu3bB3717WtQ+sWrUKu3fvxs6dO2u9x7/f3tWvXz+sXLkSXbp0wblz57BgwQLceOON2L9/v8/rmuGGiOo0Y8YM7N+/36OPnLyvS5cu2Lt3L0pLS7FmzRpMmjQJW7du9XexWqXTp0/jkUceQUZGBrRarb+L0+qNGjXK/bxXr17o168f2rVrh08++QQ6nc6n381uqSaKjIyEUqmsNcI7Pz8fsbGxfirV1cNVx6x/75o5cya++uorfPfdd0hISHCfj42NhdVqRUlJicf1rO/GU6vV6NixI1JTU7Fw4UKkpKTg5ZdfZl37QFZWFgoKCnDdddchICAAAQEB2Lp1K1555RUEBAQgJiaGde5DoaGh6Ny5M44dO+bzv98MN02kVquRmpqKLVu2uM85HA5s2bIFaWlpfizZ1aF9+/aIjY31qH+j0Yiff/6Z9d8Ioihi5syZWLt2Lb799lu0b9/e4/3U1FSoVCqP+j58+DBycnJY317icDhgsVhY1z4wZMgQ7Nu3D3v37nUfffr0wYQJE9zPWee+U15ejuPHjyMuLs73f7+bPCSZxFWrVokajUZcuXKl+Pvvv4tTp04VQ0NDxby8PH8XrVUoKysT9+zZI+7Zs0cEIC5ZskTcs2ePeOrUKVEURfG5554TQ0NDxS+++EL87bffxNtvv11s3769WFFR4eeStzzTp08XQ0JCxMzMTPHcuXPuw2w2u6+ZNm2a2LZtW/Hbb78Vd+3aJaalpYlpaWl+LHXL9cQTT4hbt24VT548Kf7222/iE088IQqCIG7atEkURda1HGrOlhJF1rk3/f3vfxczMzPFkydPitu2bROHDh0qRkZGigUFBaIo+rauGW685NVXXxXbtm0rqtVq8frrrxd37Njh7yK1Gt99950IoNYxadIkURSl6eBz5swRY2JiRI1GIw4ZMkQ8fPiwfwvdQtVVzwDEd999131NRUWF+NBDD4lhYWGiXq8X77jjDvHcuXP+K3QL9uc//1ls166dqFarxaioKHHIkCHuYCOKrGs5XBxuWOfec88994hxcXGiWq0W27RpI95zzz3isWPH3O/7sq4FURTFprf/EBERETUPHHNDRERErQrDDREREbUqDDdERETUqjDcEBERUavCcENEREStCsMNERERtSoMN0RERNSqMNwQ0VVJEASsW7fO38UgIh9guCEi2U2ePBmCINQ6Ro4c6e+iEVErEODvAhDR1WnkyJF49913Pc5pNBo/lYaIWhO23BCRX2g0GsTGxnocYWFhAKQuozfeeAOjRo2CTqfDNddcgzVr1nh8ft++fbjlllug0+kQERGBqVOnory83OOaFStWoHv37tBoNIiLi8PMmTM93i8sLMQdd9wBvV6PTp064csvv3S/V1xcjAkTJiAqKgo6nQ6dOnWqFcaIqHliuCGiZmnOnDkYN24cfv31V0yYMAH33nsvDh48CAAwmUwYMWIEwsLCsHPnTnz66afYvHmzR3h54403MGPGDEydOhX79u3Dl19+iY4dO3p8x4IFC3D33Xfjt99+w+jRozFhwgQUFRW5v//333/Hhg0bcPDgQbzxxhuIjIyUrwKIqPG8sv0mEVEDTJo0SVQqlWJgYKDH8cwzz4iiKO1OPm3aNI/P9OvXT5w+fbooiqL41ltviWFhYWJ5ebn7/fXr14sKhULMy8sTRVEU4+PjxX/961+XLAMA8cknn3S/Li8vFwGIGzZsEEVRFMeMGSNOmTLFOz+YiGTFMTdE5BeDBw/GG2+84XEuPDzc/TwtLc3jvbS0NOzduxcAcPDgQaSkpCAwMND9/oABA+BwOHD48GEIgoDc3FwMGTLksmXo1auX+3lgYCAMBgMKCgoAANOnT8e4ceOwe/duDB8+HGPHjkX//v0b9VuJSF4MN0TkF4GBgbW6ibxFp9PV6zqVSuXxWhAEOBwOAMCoUaNw6tQpfP3118jIyMCQIUMwY8YMvPDCC14vLxF5F8fcEFGztGPHjlqvk5OTAQDJycn49ddfYTKZ3O9v27YNCoUCXbp0QXBwMJKSkrBly5YmlSEqKgqTJk3CBx98gKVLl+Ktt95q0v2ISB5suSEiv7BYLMjLy/M4FxAQ4B60++mnn6JPnz4YOHAgPvzwQ/zyyy/4z3/+AwCYMGEC5s2bh0mTJmH+/Pk4f/48/va3v+H+++9HTEwMAGD+/PmYNm0aoqOjMWrUKJSVlWHbtm3429/+Vq/yzZ07F6mpqejevTssFgu++uord7giouaN4YaI/GLjxo2Ii4vzONelSxccOnQIgDSTadWqVXjooYcQFxeHjz/+GN26dQMA6PV6fPPNN3jkkUfQt29f6PV6jBs3DkuWLHHfa9KkSaisrMRLL72EWbNmITIyEnfddVe9y6dWqzF79mxkZ2dDp9PhxhtvxKpVq7zwy4nI1wRRFEV/F4KIqCZBELB27VqMHTvW30UhohaIY26IiIioVWG4ISIiolaFY26IqNlhbzkRNQVbboiIiKhVYbghIiKiVoXhhoiIiFoVhhsiIiJqVRhuiIiIqFVhuCEiIqJWheGGiIiIWhWGGyIiImpVGG6IiIioVfl/txlel/p8VwYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# вывод графика ошибки по эпохам\n", + "plt.plot(H_1h300.history['loss'])\n", + "plt.plot(H_1h300.history['val_loss'])\n", + "plt.grid()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('loss')\n", + "plt.legend(['train_loss', 'val_loss'])\n", + "plt.title('Loss by epochs')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "9Zx95Ff_g64f", + "outputId": "c4808b59-61fb-4059-ae1b-22100e2c112d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9327 - loss: 0.2343\n", + "Loss on test data: 0.2359277904033661\n", + "Accuracy on test data: 0.9320999979972839\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_1h300.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XUYpZM7eg80c" + }, + "source": [ + "При 500 нейронах в скрытом слое:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "iu-FAtywhAvN", + "outputId": "3967a392-55fe-40cb-c62e-9d786f7174bc" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"sequential_3\"\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"sequential_3\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_5 (Dense)                 │ (None, 500)            │       392,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_6 (Dense)                 │ (None, 10)             │         5,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m500\u001b[0m) │ \u001b[38;5;34m392,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_6 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m5,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 397,510 (1.52 MB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 397,510 (1.52 MB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# создаем модель\n", + "model_1h500 = Sequential()\n", + "model_1h500.add(Dense(units=500, input_dim=num_pixels, activation='sigmoid'))\n", + "model_1h500.add(Dense(units=num_classes, activation='softmax'))\n", + "# компилируем модель\n", + "model_1h500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "# вывод информации об архитектуре модели\n", + "print(model_1h500.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2YpqTLS9iS92", + "outputId": "e62012d2-9531-44fd-913d-051fc8c98896" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.5713 - loss: 1.7416 - val_accuracy: 0.8273 - val_loss: 0.8147\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.8444 - loss: 0.7193 - val_accuracy: 0.8675 - val_loss: 0.5526\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.8684 - loss: 0.5240 - val_accuracy: 0.8808 - val_loss: 0.4634\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.8806 - loss: 0.4544 - val_accuracy: 0.8858 - val_loss: 0.4189\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.8899 - loss: 0.4051 - val_accuracy: 0.8908 - val_loss: 0.3922\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8969 - loss: 0.3771 - val_accuracy: 0.8917 - val_loss: 0.3733\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.8982 - loss: 0.3646 - val_accuracy: 0.8952 - val_loss: 0.3598\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9015 - loss: 0.3508 - val_accuracy: 0.8988 - val_loss: 0.3501\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9049 - loss: 0.3377 - val_accuracy: 0.9028 - val_loss: 0.3413\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9044 - loss: 0.3344 - val_accuracy: 0.9032 - val_loss: 0.3351\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 5ms/step - accuracy: 0.9073 - loss: 0.3260 - val_accuracy: 0.9065 - val_loss: 0.3300\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9093 - loss: 0.3189 - val_accuracy: 0.9045 - val_loss: 0.3250\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9113 - loss: 0.3108 - val_accuracy: 0.9073 - val_loss: 0.3211\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9104 - loss: 0.3125 - val_accuracy: 0.9087 - val_loss: 0.3190\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9135 - loss: 0.3031 - val_accuracy: 0.9088 - val_loss: 0.3160\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9125 - loss: 0.3044 - val_accuracy: 0.9098 - val_loss: 0.3112\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9141 - loss: 0.2993 - val_accuracy: 0.9108 - val_loss: 0.3096\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9160 - loss: 0.2957 - val_accuracy: 0.9112 - val_loss: 0.3073\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 5ms/step - accuracy: 0.9180 - loss: 0.2901 - val_accuracy: 0.9125 - val_loss: 0.3045\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9161 - loss: 0.2902 - val_accuracy: 0.9108 - val_loss: 0.3038\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9176 - loss: 0.2924 - val_accuracy: 0.9123 - val_loss: 0.3008\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9196 - loss: 0.2820 - val_accuracy: 0.9142 - val_loss: 0.2984\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9173 - loss: 0.2869 - val_accuracy: 0.9145 - val_loss: 0.2970\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9204 - loss: 0.2820 - val_accuracy: 0.9120 - val_loss: 0.2981\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9203 - loss: 0.2779 - val_accuracy: 0.9142 - val_loss: 0.2946\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9228 - loss: 0.2743 - val_accuracy: 0.9148 - val_loss: 0.2926\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.9246 - loss: 0.2631 - val_accuracy: 0.9160 - val_loss: 0.2901\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9214 - loss: 0.2717 - val_accuracy: 0.9133 - val_loss: 0.2894\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9221 - loss: 0.2716 - val_accuracy: 0.9168 - val_loss: 0.2875\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 5ms/step - accuracy: 0.9228 - loss: 0.2683 - val_accuracy: 0.9157 - val_loss: 0.2860\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9229 - loss: 0.2676 - val_accuracy: 0.9165 - val_loss: 0.2850\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 6ms/step - accuracy: 0.9258 - loss: 0.2633 - val_accuracy: 0.9177 - val_loss: 0.2834\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9239 - loss: 0.2652 - val_accuracy: 0.9185 - val_loss: 0.2825\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9248 - loss: 0.2581 - val_accuracy: 0.9180 - val_loss: 0.2797\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 5ms/step - accuracy: 0.9292 - loss: 0.2523 - val_accuracy: 0.9185 - val_loss: 0.2787\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 5ms/step - accuracy: 0.9265 - loss: 0.2603 - val_accuracy: 0.9188 - val_loss: 0.2780\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9265 - loss: 0.2540 - val_accuracy: 0.9190 - val_loss: 0.2764\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9280 - loss: 0.2557 - val_accuracy: 0.9205 - val_loss: 0.2732\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9270 - loss: 0.2514 - val_accuracy: 0.9215 - val_loss: 0.2716\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9296 - loss: 0.2468 - val_accuracy: 0.9205 - val_loss: 0.2724\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9293 - loss: 0.2474 - val_accuracy: 0.9202 - val_loss: 0.2704\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9294 - loss: 0.2472 - val_accuracy: 0.9207 - val_loss: 0.2673\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9306 - loss: 0.2426 - val_accuracy: 0.9207 - val_loss: 0.2659\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9312 - loss: 0.2413 - val_accuracy: 0.9220 - val_loss: 0.2640\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9329 - loss: 0.2375 - val_accuracy: 0.9242 - val_loss: 0.2636\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9325 - loss: 0.2405 - val_accuracy: 0.9235 - val_loss: 0.2606\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9321 - loss: 0.2361 - val_accuracy: 0.9232 - val_loss: 0.2592\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9345 - loss: 0.2328 - val_accuracy: 0.9252 - val_loss: 0.2575\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9346 - loss: 0.2296 - val_accuracy: 0.9250 - val_loss: 0.2561\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9347 - loss: 0.2323 - val_accuracy: 0.9258 - val_loss: 0.2541\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "H_1h500 = model_1h500.fit(X_train, y_train, validation_split=0.1, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "A2ou_eTKhPk5", + "outputId": "fe5f341a-bc88-4e47-d667-0424668eb2ac" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXzZJREFUeJzt3Xd8FGXiBvBntu8m2fQKgVAChBYQgQuggoSqnAV/No7meYjAiebwlFNpnqKoCApiO9Q7C5wo6EmRgAYVkRJAivQaCUkIkJ7sbnbn98fsbrIkQMruTMrz/Xzms7uzM7Pvvgnm8W0jiKIogoiIiKiJUCldACIiIiJvYrghIiKiJoXhhoiIiJoUhhsiIiJqUhhuiIiIqElhuCEiIqImheGGiIiImhSGGyIiImpSGG6IiIioSWG4ISJFTZgwAf7+/koXQ3GCIGDatGlKF4OoSWC4IWqiPvzwQwiCgF27dildFCIiWTHcEBERUZPCcENERERNCsMNUTO3Z88ejBgxAmazGf7+/hg8eDB++eUXj2NsNhvmzp2L+Ph4GAwGhIaGYsCAAUhNTXUfk5WVhYkTJ6Jly5bQ6/WIjo7GHXfcgdOnT9eoHCdPnsSwYcPg5+eHmJgYzJs3D6IoAgBEUURcXBzuuOOOKueVlZUhMDAQjzzyyHU/4+OPP0avXr1gNBoREhKC+++/HxkZGR7HDBw4EF27dkV6ejr69esHo9GINm3a4O23365yvZycHPz5z39GZGQkDAYDEhMT8dFHH1U5zuFwYPHixejWrRsMBgPCw8MxfPjwarsM16xZg65du0Kv16NLly7YsGGDx/uFhYV4/PHHERcXB71ej4iICAwZMgS7d+++7vcnai4YboiasYMHD+Kmm27Cr7/+ir///e947rnncOrUKQwcOBDbt293HzdnzhzMnTsXgwYNwpIlS/DMM8+gVatWHn9QR48ejdWrV2PixIl466238Nhjj6GwsBBnz569bjnsdjuGDx+OyMhILFiwAL169cLs2bMxe/ZsANJg2z/96U9Yv349Ll265HHu//73PxQUFOBPf/rTNT/jhRdewLhx4xAfH4+FCxfi8ccfx+bNm3HzzTcjLy/P49jLly9j5MiR6NWrFxYsWICWLVvi0UcfxfLly93HlJaWYuDAgfjPf/6DMWPG4JVXXkFgYCAmTJiAxYsXe1zvz3/+Mx5//HHExsbi5ZdfxtNPPw2DwVAlRP7000+YMmUK7r//fixYsABlZWUYPXo0Ll686D5m8uTJWLZsGUaPHo233noLM2bMgNFoxKFDh65bz0TNhkhETdIHH3wgAhB37tx51WPuvPNOUafTiSdOnHDvy8zMFAMCAsSbb77ZvS8xMVG87bbbrnqdy5cviwDEV155pdblHD9+vAhA/Otf/+re53A4xNtuu03U6XTihQsXRFEUxSNHjogAxGXLlnmc/8c//lGMi4sTHQ7HVT/j9OnTolqtFl944QWP/fv37xc1Go3H/ltuuUUEIL722mvufRaLRezRo4cYEREhWq1WURRFcdGiRSIA8eOPP3YfZ7VaxaSkJNHf318sKCgQRVEUv/vuOxGA+Nhjj1UpV+UyAxB1Op14/Phx975ff/1VBCC++eab7n2BgYHi1KlTr/pdiUgU2XJD1EzZ7XZs3LgRd955J9q2beveHx0djQcffBA//fQTCgoKAABBQUE4ePAgjh07Vu21jEYjdDod0tLScPny5TqVp/I0aNe0aKvVik2bNgEAOnTogL59++KTTz5xH3fp0iWsX78eY8aMgSAIV732l19+CYfDgXvvvRe5ubnuLSoqCvHx8fj+++89jtdoNB7dXDqdDo888ghycnKQnp4OAFi3bh2ioqLwwAMPuI/TarV47LHHUFRUhC1btgAAvvjiCwiC4G6FquzKMicnJ6Ndu3bu1927d4fZbMbJkyfd+4KCgrB9+3ZkZmZe9fsSNXcMN0TN1IULF1BSUoKOHTtWeS8hIQEOh8M9HmXevHnIy8tDhw4d0K1bNzz55JPYt2+f+3i9Xo+XX34Z69evR2RkJG6++WYsWLAAWVlZNSqLSqXyCFiAFGYAeIzZGTduHLZu3YozZ84AAD7//HPYbDaMHTv2mtc/duwYRFFEfHw8wsPDPbZDhw4hJyfH4/iYmBj4+fldszxnzpxBfHw8VCrP/4wmJCS43weAEydOICYmBiEhIderBrRq1arKvuDgYI/AuGDBAhw4cACxsbHo06cP5syZ4xF+iIjhhohq4Oabb8aJEyewfPlydO3aFe+//z5uuOEGvP/+++5jHn/8cRw9ehTz58+HwWDAc889h4SEBOzZs8dr5bj//vuh1WrdrTcff/wxbrzxxmoDWmUOhwOCIGDDhg1ITU2tsr3zzjteK2N9qNXqaveLzoHVAHDvvffi5MmTePPNNxETE4NXXnkFXbp0wfr16+UqJlGDx3BD1EyFh4fDZDLhyJEjVd47fPgwVCoVYmNj3ftCQkIwceJEfPbZZ8jIyED37t0xZ84cj/PatWuHv/3tb9i4cSMOHDgAq9WK11577bplcTgcVVofjh49CgCIi4vzKMNtt92GTz75BGfOnMHWrVuv22rjKpcoimjTpg2Sk5OrbH/4wx88js/MzERxcfE1y9O6dWscO3YMDofD47jDhw+733d9dmZmZpWB0PURHR2NKVOmYM2aNTh16hRCQ0PxwgsveO36RI0dww1RM6VWqzF06FB89dVXHl0/2dnZ+PTTTzFgwACYzWYA8JitAwD+/v5o3749LBYLAKCkpARlZWUex7Rr1w4BAQHuY65nyZIl7ueiKGLJkiXQarUYPHiwx3Fjx47Fb7/9hieffBJqtRr333//da999913Q61WY+7cuR6tIK7PuvL7lZeXe7TmWK1WvPPOOwgPD0evXr0AACNHjkRWVhZWrlzpcd6bb74Jf39/3HLLLQCkWWSiKGLu3LlVynVlWa7HbrcjPz/fY19ERARiYmJqXM9EzYFG6QIQkW8tX768ylopADB9+nT885//RGpqKgYMGIApU6ZAo9HgnXfegcViwYIFC9zHdu7cGQMHDkSvXr0QEhKCXbt2YdWqVe5BwEePHsXgwYNx7733onPnztBoNFi9ejWys7NrFD4MBgM2bNiA8ePHo2/fvli/fj3Wrl2Lf/zjHwgPD/c49rbbbkNoaCg+//xzjBgxAhEREde9frt27fDPf/4TM2fOxOnTp3HnnXciICAAp06dwurVqzFp0iTMmDHDfXxMTAxefvllnD59Gh06dMDKlSuxd+9evPvuu9BqtQCASZMm4Z133sGECROQnp6OuLg4rFq1Clu3bsWiRYsQEBAAABg0aBDGjh2LN954A8eOHcPw4cPhcDjw448/YtCgQbW6n1RhYSFatmyJe+65B4mJifD398emTZuwc+fOGrWQETUbyk3UIiJfck0Fv9qWkZEhiqIo7t69Wxw2bJjo7+8vmkwmcdCgQeLPP//sca1//vOfYp8+fcSgoCDRaDSKnTp1El944QX3tOjc3Fxx6tSpYqdOnUQ/Pz8xMDBQ7Nu3r/jf//73uuUcP3686OfnJ544cUIcOnSoaDKZxMjISHH27Nmi3W6v9pwpU6aIAMRPP/20VnXyxRdfiAMGDBD9/PxEPz8/sVOnTuLUqVPFI0eOuI+55ZZbxC5duoi7du0Sk5KSRIPBILZu3VpcsmRJletlZ2eLEydOFMPCwkSdTid269ZN/OCDD6ocV15eLr7yyitip06dRJ1OJ4aHh4sjRowQ09PT3ccAqHaKd+vWrcXx48eLoihNSX/yySfFxMREMSAgQPTz8xMTExPFt956q1b1QNTUCaJYy3ZRIiKFPfHEE/jXv/6FrKwsmEwmr1574MCByM3NxYEDB7x6XSKSD8fcEFGjUlZWho8//hijR4/2erAhoqaBY26IqFHIycnBpk2bsGrVKly8eBHTp09XukhE1EAx3BBRo/Dbb79hzJgxiIiIwBtvvIEePXooXSQiaqA45oaIiIiaFI65ISIioiaF4YaIiIialGY35sbhcCAzMxMBAQHXvIswERERNRyiKKKwsBAxMTFVblh7pWYXbjIzMz3ul0NERESNR0ZGBlq2bHnNY5pduHEtiZ6RkeG+b4632Gw2bNy4EUOHDnUv0U6+w/qWF+tbXqxvebG+5VWX+i4oKEBsbKz77/i1NLtw4+qKMpvNPgk3JpMJZrOZ/zhkwPqWF+tbXqxvebG+5VWf+q7JkBIOKCYiIqImheGGiIiImhSGGyIiImpSmt2YGyIiaprsdjtsNludzrXZbNBoNCgrK4PdbvdyyehKV6tvnU533WneNcFwQ0REjZooisjKykJeXl69rhEVFYWMjAyugSaDq9W3SqVCmzZtoNPp6nV9hhsiImrUXMEmIiICJpOpTuHE4XCgqKgI/v7+Xmk5oGurrr5di+yeP38erVq1qlfIZLghIqJGy263u4NNaGhona/jcDhgtVphMBgYbmRwtfoODw9HZmYmysvL6zUlnz9BIiJqtFxjbEwmk8IlIW9wdUfVd9wTww0RETV6HCfTNHjr58hwQ0RERE0Kww0REVEjFxcXh0WLFnnlWmlpaRAEoV6zz5TGAcVEREQKGDhwIHr06OGVULJz5074+fnVv1BNBMONl1jLHcjKL8Mli9IlISKipkAURdjtdmg01/9THR4eLkOJGg92S3nJ3ow83PzqD1j2m1rpohARUQM3YcIEbNmyBYsXL4YgCBAEAR9++CEEQcD69evRq1cv6PV6/PTTTzhx4gTuuOMOREZGwt/fH71798amTZs8rndlt5QgCHj//fdx1113wWQyIT4+Hl9//XWdy/vFF1+gS5cu0Ov1iIuLw2uvvebx/ltvvYX4+HgYDAZERkbinnvucb+3atUqdOvWDUajEaGhoUhOTkZxcXGdy1ITbLnxEpNOCjUWh8IFISJq5kRRRKmtdlOJHQ4HSq12aKzl9VrnxqhV12jGz+LFi3H06FF07doV8+bNAwAcPHgQAPD000/j1VdfRdu2bREcHIyMjAyMHDkSL7zwAvR6Pf79739j1KhROHLkCFq1anXVz5g7dy4WLFiAV155BW+++SbGjBmDM2fOICQkpFbfKT09Hffeey/mzJmD++67Dz///DOmTJmC0NBQTJgwAbt27cJjjz2G//znP+jXrx8uXbqEH3/8EQBw/vx5PPDAA1iwYAHuuusuFBYW4scff4QoirUqQ20x3HiJ0RlurLwlCRGRokptdnSe9a0in/3bvGEw6a7/pzUwMBA6nQ4mkwlRUVEAgMOHDwMA5s2bhyFDhriPDQkJQWJiovv1888/j9WrV+Prr7/GtGnTrvoZEyZMwAMPPAAAePHFF/HGG29gx44dGD58eK2+08KFCzF48GA899xzAIAOHTrgt99+wyuvvIIJEybg7Nmz8PPzw+23346AgAC0bt0aPXv2BCCFm/Lyctx9991o3bo1AKBbt25wOBwoKCioVTlqg91SXuLn/GW2suWGiIjq4cYbb/R4XVRUhBkzZiAhIQFBQUHw9/fHoUOHcPbs2Wtep3v37u7nfn5+MJvNyMnJqXV5Dh06hP79+3vs69+/P44dOwa73Y4hQ4agdevWaNu2LcaOHYtPPvkEJSUlAIDExEQMHjwY3bp1w//93//hvffew+XLl2tdhtpiy42XuFpu7KIAa7kD9Vg1moiI6sGoVeO3ecNqdY7D4UBhQSECzAH17paqrytnPc2YMQOpqal49dVX0b59exiNRtxzzz2wWq3XvM6Vty8QBAEOh/f/DzwgIAC7d+9GWloaNm7ciFmzZmHOnDnYuXMngoKCkJqaip9//hkbN27Em2++iWeeeQbbtm2r1+0yroctN17iGnMDoNZ9vURE5D2CIMCk09R6M+rUdTqv8labFXZ1Ol2NbjOwdetWTJgwAXfddRe6deuGqKgonD59uh41VDsJCQnYunVrlTJ16NABarX0t0+j0SA5ORkLFizAvn37cPr0aXz33XcApJ9H//79MXfuXOzZswc6nQ5r1qzxaZnZcuMlWrUKWrUAm11ECQfeEBHRdcTFxWH79u04ffo0/P39r9qqEh8fjy+//BKjRo2CIAh47rnnfNICczV/+9vf0Lt3bzz//PO47777sG3bNixZsgRvvfUWAOCbb77ByZMncfPNNyM4OBjr1q2Dw+FAx44dsX37dmzevBlDhw5FREQEtm/fjgsXLqBTp04+LTNbbrzI1XrDcENERNczY8YMqNVqdO7cGeHh4VcdQ7Nw4UIEBwejX79+GDVqFIYNG4YbbrhBtnLecMMN+O9//4sVK1aga9eumDVrFubNm4cJEyYAAIKCgvDll1/i1ltvRUJCAt5++2189tln6NKlC8xmM3744QeMHDkSHTp0wLPPPovXXnsNI0aM8GmZ2XLjRUatGvml5ShluCEiouvo0KEDtm3b5rHPFRgqi4uLc3fxuEydOtXj9ZXdVNVNta7p7RQGDhxY5fzRo0dj9OjR1R4/YMAApKWlVfteQkICNmzYUGW/r1ue2HLjRe6WG1u5wiUhIiJqvhhuvMi1tgFbboiIqKGaPHky/P39q90mT56sdPG8gt1SXmTkmBsiImrg5s2bhxkzZlT7ntlslrk0vsFw40UmLcMNERE1bBEREYiIiFC6GD7Fbikvco254To3REREymG48SJXt1SxheGGiIhIKQw3XsSWGyIiIuUx3HiRO9xwzA0REZFiGG68yHXDtGKGGyIiIsUw3HgRW26IiEgucXFxWLRoUY2OFQTB5zerbEgYbrzIyDE3REREimO48SLXCsXFVt5+gYiISCkMN17kWsSP3VJERHQt7777LmJiYqrcQPKOO+7AQw89hBMnTuCOO+5AZGQk/P390bt3b2zatMlrn79//37ceuutMBqNCA0NxaRJk1BUVOR+Py0tDX369IGfnx+CgoLQv39/nDlzBgDw66+/YtCgQQgICIDZbEavXr2wa9cur5XNGxhuvMjIMTdERMoTRcBaXPvNVlK38ypv1dyNuzr/93//h4sXL+L7779377t06RI2bNiAMWPGoKioCCNHjsTmzZuxZ88eDB8+HKNGjcLZs2frXT3FxcUYNmwYgoODsXPnTnz++efYtGkTpk2bBgAoLy/HnXfeiVtuuQX79u3Dtm3bMGnSJAiCAAAYM2YMWrZsiZ07dyI9PR1PP/00tFptvcvlTbz9ghf5ue8KznBDRKQYWwnwYkytTlEBCPLGZ/8jE9D5Xfew4OBgjBgxAp9++ikGDx4MAFi1ahXCwsIwaNAgqFQqJCYmuo9//vnnsXr1anz99dfuEFJXn376KcrKyvDvf/8bfn5SWZcsWYJRo0bh5ZdfhlarRX5+Pm6//Xa0a9cOAJCQkOA+/+zZs3jyySfRqVMnAEB8fHy9yuMLbLnxIt44k4iIamrMmDH44osvYLFYAACffPIJ7r//fqhUKhQVFWHGjBlISEhAUFAQ/P39cejQIa+03Bw6dAiJiYnuYAMA/fv3h8PhwJEjRxASEoIJEyZg2LBhGDVqFBYvXozz58+7j01JScHDDz+M5ORkvPTSSzhx4kS9y+RtbLnxInZLERE1AFqT1IJSCw6HAwWFhTAHBEClqsf/92tNNT501KhREEURa9euRe/evfHjjz/i9ddfBwDMmDEDqampePXVV9G+fXsYjUbcc889sFqtdS9bLXzwwQd47LHHsGHDBqxcuRLPPvssUlNT8Yc//AFz5szBgw8+iLVr12L9+vWYPXs2VqxYgbvuukuWstUEw40XVe6WEkXR3T9JREQyEoQadQ15cDgArV06rz7hphYMBgPuvvtufPLJJzh+/Dg6duyIG264AQCwdetWTJgwwR0YioqKcPr0aa98bkJCAj788EMUFxe7W2+2bt0KlUqFjh07uo/r2bMnevbsiZkzZyIpKQmffvop/vCHPwAAOnTogA4dOuCJJ57AAw88gA8++KBBhRt2S3mRa4ViUQTKbI7rHE1ERM3dmDFjsHbtWixfvhxjxoxx74+Pj8eXX36JvXv34tdff8WDDz5YZWZVfT7TYDBg/PjxOHDgAL7//nv89a9/xdixYxEZGYlTp05h5syZ2LZtG86cOYONGzfi2LFjSEhIQGlpKaZNm4a0tDScOXMGW7duxc6dOz3G5DQEbLnxIle4AYASa7m7m4qIiKg6t956K0JCQnDkyBE8+OCD7v0LFy7EQw89hH79+iEsLAxPPfUUCgoKvPKZJpMJ3377LaZPn47evXvDZDJh9OjRWLhwofv9w4cP46OPPsLFixcRHR2NqVOn4pFHHkF5eTkuXryIcePGITs7G2FhYbj77rsxd+5cr5TNWxhuvEilEqBVibA5BJRY7QhVukBERNSgqVQqZGZWHR8UFxeH7777zmPf1KlTPV7XpptKvGKKerdu3apc3yUyMhKrV6+u9j2dTofPPvusxp+rFHZLeZneWaOcMUVERKQMhhsvc/VElfAWDEREJINPPvkE/v7+1W5dunRRuniKYLeUl+mccZHTwYmISA5//OMf0bdv32rfa2grB8uF4cbL9M6Wm2KGGyIikkFAQAACAgKULkaDwm4pL9OppEFb7JYiIiJSBsONl7labtgtRUQkH2+tAUPKunJWV12xW8rLdJwtRUQkG51O555OHR4eDp1OV6fV4R0OB6xWK8rKyup3+wWqkerqWxRFXLhwAYIg1HusEMONl+k5W4qISDYqlQpt2rTB+fPnq10vpqZEUURpaSmMRiNvnSODq9W3IAho2bIl1Or6LYLLcONlbLkhIpKXTqdDq1atUF5eDru9bv/ttdls+OGHH3DzzTc32xlGcrpafWu12noHG4DhxusqWm4YboiI5OLqyqhrMFGr1SgvL4fBYGC4kYGv61vRjsUffvgBo0aNQkxMDARBwJo1a655/JdffokhQ4YgPDwcZrMZSUlJ+Pbbb+UpbA3p1JwtRUREpCRFw01xcTESExOxdOnSGh3/ww8/YMiQIVi3bh3S09MxaNAgjBo1Cnv27PFxSWuO3VJERETKUrRbasSIERgxYkSNj1+0aJHH6xdffBFfffUV/ve//6Fnz55eLl3dcIViIiIiZTXqMTcOhwOFhYUICQm56jEWiwUWi8X92nXLeJvNBpvN5tXy2Gw295ibIov3r0+eXPXLepYH61terG95sb7lVZf6rs2xjTrcvPrqqygqKsK999571WPmz5+PuXPnVtm/ceNGmEwmr5dJp5amtJ3PuYR169Z5/fpUVWpqqtJFaFZY3/JifcuL9S2v2tR3SUlJjY9ttOHm008/xdy5c/HVV18hIiLiqsfNnDkTKSkp7tcFBQWIjY3F0KFDYTabvVomm82GY6s2AQB0Jn+MHNnfq9cnTzabDampqRgyZAhnN8iA9S0v1re8WN/yqkt9u3peaqJRhpsVK1bg4Ycfxueff47k5ORrHqvX66HX66vsr8+UwWtxzZYqtTn4D0QmvvpZUvVY3/JifcuL9S2v2tR3bX4ujW6N6c8++wwTJ07EZ599httuu03p4lShd8+W4lRwIiIiJSjaclNUVITjx4+7X586dQp79+5FSEgIWrVqhZkzZ+LcuXP497//DUDqiho/fjwWL16Mvn37IisrCwBgNBoRGBioyHe4ko6L+BERESlK0ZabXbt2oWfPnu5p3CkpKejZsydmzZoFADh//jzOnj3rPv7dd99FeXk5pk6diujoaPc2ffp0RcpfHVfLjaXcAbvDO3c3JSIioppTtOVm4MCB17y9+YcffujxOi0tzbcF8gJdpVtilFjLEWBg3y0REZGcGt2Ym4ZOIwAq5w1OuZAfERGR/BhuvEwQAKOz+YbjboiIiOTHcOMDfjqpt6+YM6aIiIhkx3DjA0at1HLDbikiIiL5Mdz4ALuliIiIlMNw4wN+7nDDbikiIiK5Mdz4AFtuiIiIlMNw4wOuMTcMN0RERPJjuPEBdksREREph+HGB9gtRUREpByGGx8w6TgVnIiISCkMNz7gCjdcxI+IiEh+DDc+wG4pIiIi5TDc+ICJKxQTEREphuHGB9hyQ0REpByGGx8wOW+cyangRERE8mO48QETW26IiIgUw3DjA7wrOBERkXIYbnyAU8GJiIiUw3DjA+yWIiIiUg7DjQ8YK61QLIqiwqUhIiJqXhhufMB148xyhwir3aFwaYiIiJoXhhsfcA0oBjiomIiISG4MNz6gUaugU0tVy3E3RERE8mK48ZGKVYo5Y4qIiEhODDc+4scZU0RERIpguPER3l+KiIhIGQw3PuK6vxQHFBMREcmL4cZHuEoxERGRMhhufISrFBMRESmD4cZH2C1FRESkDIYbH2G3FBERkTIYbnzEVOn+UkRERCQfhhsfMTq7pTjmhoiISF4MNz7ixxWKiYiIFMFw4yNcxI+IiEgZDDc+YmK3FBERkSIYbnzExG4pIiIiRTDc+AgX8SMiIlIGw42PcBE/IiIiZTDc+AgHFBMRESmD4cZH/PQcc0NERKQEhhsfMWk5W4qIiEgJDDc+4uqWKrXZ4XCICpeGiIio+WC48RFXt5QoAmXlbL0hIiKSC8ONjxg0avdzdk0RERHJh+HGR1QqAUYt7wxOREQkN4YbH3It5FfMGVNERESyYbjxIZOea90QERHJTdFw88MPP2DUqFGIiYmBIAhYs2bNdc9JS0vDDTfcAL1ej/bt2+PDDz/0eTnryjUdnN1SRERE8lE03BQXFyMxMRFLly6t0fGnTp3CbbfdhkGDBmHv3r14/PHH8fDDD+Pbb7/1cUnrxjUdvNjCbikiIiK5aJT88BEjRmDEiBE1Pv7tt99GmzZt8NprrwEAEhIS8NNPP+H111/HsGHDfFXMOnNNBy+1seWGiIhILoqGm9ratm0bkpOTPfYNGzYMjz/++FXPsVgssFgs7tcFBQUAAJvNBpvN5tXyua7nejRopIaxwlKr1z+LqtY3+RbrW16sb3mxvuVVl/quzbGNKtxkZWUhMjLSY19kZCQKCgpQWloKo9FY5Zz58+dj7ty5VfZv3LgRJpPJJ+VMTU0FAFy+oAKgQvqv+xGQs88nn0UV9U3yYH3Li/UtL9a3vGpT3yUlJTU+tlGFm7qYOXMmUlJS3K8LCgoQGxuLoUOHwmw2e/WzbDYbUlNTMWTIEGi1WvxsO4jdF8+hdbuOGDmwrVc/i6rWN/kW61terG95sb7lVZf6dvW81ESjCjdRUVHIzs722JednQ2z2Vxtqw0A6PV66PX6Kvu1Wq3PfoFd1/bT6wAAFrvIfyw+5MufJVXF+pYX61terG951aa+a/NzaVTr3CQlJWHz5s0e+1JTU5GUlKRQia7NtYgfp4ITERHJR9FwU1RUhL1792Lv3r0ApKnee/fuxdmzZwFIXUrjxo1zHz958mScPHkSf//733H48GG89dZb+O9//4snnnhCieJfl2sRP04FJyIiko+i4WbXrl3o2bMnevbsCQBISUlBz549MWvWLADA+fPn3UEHANq0aYO1a9ciNTUViYmJeO211/D+++83yGngAGBy3luqhFPBiYiIZKPomJuBAwdCFMWrvl/d6sMDBw7Enj17fFgq7zHpuEIxERGR3BrVmJvGhisUExERyY/hxoe4QjEREZH8GG58yOi8cSbvCk5ERCQfhhsfck0FL2G3FBERkWwYbnzI1S3F2VJERETyYbjxIaOO3VJERERyY7jxIdc6N9ZyB8rtDoVLQ0RE1Dww3PiQa4VigF1TREREcmG48SGdWgW1SgDAhfyIiIjkwnDjQ4IgVNyCgeGGiIhIFgw3PsabZxIREcmL4cbH3PeX4pgbIiIiWTDc+JiR3VJERESyYrjxMa5STEREJC+GGx8z6bmQHxERkZwYbnzMPVuKY26IiIhkwXDjY+yWIiIikhfDjY+5poKzW4qIiEgeDDc+xqngRERE8mK48THXVHAu4kdERCQPhhsf83N2S/HeUkRERPJguPExo45TwYmIiOTEcONjnApOREQkL4YbH+NUcCIiInkx3PgYVygmIiKSF8ONj7labjgVnIiISB4MNz7GqeBERETyYrjxMT9ntxSnghMREcmD4cbH3AOKbXaIoqhwaYiIiJo+hhsfMzrDjd0hwlLuULg0RERETR/DjY+51rkB2DVFREQkB4YbH9OoVdBppGrmQn5ERES+x3AjAy7kR0REJB+GGxn48f5SREREsmG4kYFrUDHDDRERke8x3MigYpVidksRERH5GsONDCpWKWbLDRERka8x3MiAqxQTERHJh+FGBhVjbtgtRURE5GsMNzJwLeRXzJYbIiIin2O4kQG7pYiIiOTDcCMDTgUnIiKSD8ONDFzdUhxzQ0RE5HsMNzIw6blCMRERkVwYbmRgYrcUERGRbBhuZGDiVHAiIiLZMNzIwKhlyw0REZFcGG5kwKngRERE8qlTuPnoo4+wdu1a9+u///3vCAoKQr9+/XDmzBmvFa5Ryf4N6q+noFvGv6u85Z4KzhtnEhER+Vydws2LL74Io9EIANi2bRuWLl2KBQsWICwsDE888YRXC9ho2Eqg2v9fROXvrvKWe8wNb5xJRETkc3UKNxkZGWjfvj0AYM2aNRg9ejQmTZqE+fPn48cff6zVtZYuXYq4uDgYDAb07dsXO3bsuObxixYtQseOHWE0GhEbG4snnngCZWVldfka3hXYEgBgtF0GHJ4tNH46TgUnIiKSS53Cjb+/Py5evAgA2LhxI4YMGQIAMBgMKC0trfF1Vq5ciZSUFMyePRu7d+9GYmIihg0bhpycnGqP//TTT/H0009j9uzZOHToEP71r39h5cqV+Mc//lGXr+FdfhEQVVoIEIHCLI+3XN1SpTY7HA5RidIRERE1G3UKN0OGDMHDDz+Mhx9+GEePHsXIkSMBAAcPHkRcXFyNr7Nw4UL85S9/wcSJE9G5c2e8/fbbMJlMWL58ebXH//zzz+jfvz8efPBBxMXFYejQoXjggQeu29ojC5UKMMcAAISC3z3ecnVLAVLAISIiIt/R1OWkpUuX4tlnn0VGRga++OILhIaGAgDS09PxwAMP1OgaVqsV6enpmDlzpnufSqVCcnIytm3bVu05/fr1w8cff4wdO3agT58+OHnyJNatW4exY8de9XMsFgssFov7dUFBAQDAZrPBZrPVqKw1pQqIgTrvDOyXzkKMrbi2WhQhCIAoAgUlZdCp9F793ObK9fPz9s+Rqsf6lhfrW16sb3nVpb5rc2ydwk1QUBCWLFlSZf/cuXNrfI3c3FzY7XZERkZ67I+MjMThw4erPefBBx9Ebm4uBgwYAFEUUV5ejsmTJ1+zW2r+/PnVlmvjxo0wmUw1Lm9N3FCkQiyA47vTcPycv8d7WkENqyhg3cbNCDN49WObvdTUVKWL0KywvuXF+pYX61tetanvkpKSGh9bp3CzYcMG+Pv7Y8CAAQCklpz33nsPnTt3xtKlSxEcHFyXy15XWloaXnzxRbz11lvo27cvjh8/junTp+P555/Hc889V+05M2fOREpKivt1QUEBYmNjMXToUJjNZu8W8Lt0YNtWdIg0oYOzq85l3r40XCy2ok+/m9ApKsC7n9tM2Ww2pKamYsiQIdBqtUoXp8ljfcuL9S0v1re86lLfrp6XmqhTuHnyySfx8ssvAwD279+Pv/3tb0hJScH333+PlJQUfPDBB9e9RlhYGNRqNbKzsz32Z2dnIyoqqtpznnvuOYwdOxYPP/wwAKBbt24oLi7GpEmT8Mwzz0ClqjqESK/XQ6+v2g2k1Wq9/gtsD4oFAKgLM6G64tp+eg0uFlthdQj8h+NlvvhZ0tWxvuXF+pYX61tetanv2vxc6jSg+NSpU+jcuTMA4IsvvsDtt9+OF198EUuXLsX69etrdA2dTodevXph8+bN7n0OhwObN29GUlJSteeUlJRUCTBqtTRYVxSVn4UkmqXp4EJBZpX3XIOKuUoxERGRb9Wp5Uan07n7vjZt2oRx48YBAEJCQmrVbJSSkoLx48fjxhtvRJ8+fbBo0SIUFxdj4sSJAIBx48ahRYsWmD9/PgBg1KhRWLhwIXr27OnulnruuecwatQod8hRkuhc6wZXzJYCKqaDF/PmmURERD5Vp3AzYMAApKSkoH///tixYwdWrlwJADh69ChatmxZ4+vcd999uHDhAmbNmoWsrCz06NEDGzZscA8yPnv2rEdLzbPPPgtBEPDss8/i3LlzCA8Px6hRo/DCCy/U5Wt4n7kFAEAoywMshYC+YmwNW26IiIjkUadws2TJEkyZMgWrVq3CsmXL0KKF9Ed9/fr1GD58eK2uNW3aNEybNq3a99LS0jwLq9Fg9uzZmD17dl2K7Xv6ANjUJmjtJUD+OSCik/stE1cpJiIikkWdwk2rVq3wzTffVNn/+uuv17tAjV2JNhSB9hKpa8oj3DjvL8VuKSIiIp+qU7gBALvdjjVr1uDQoUMAgC5duuCPf/xjgxj7oqRSXQgCyzKA/OpXKWbLDRERkW/VKdwcP34cI0eOxLlz59CxY0cA0mJ5sbGxWLt2Ldq1a+fVQjYmpTppteaq4YbdUkRERHKo01Twxx57DO3atUNGRgZ2796N3bt34+zZs2jTpg0ee+wxb5exUSnVusLNOY/9FQOK2S1FRETkS3VqudmyZQt++eUXhISEuPeFhobipZdeQv/+/b1WuMaoouUmw2N/xVRwttwQERH5Up1abvR6PQoLC6vsLyoqgk6nq3ehGrOSq3RL+Tm7pTgVnIiIyLfqFG5uv/12TJo0Cdu3b4coihBFEb/88gsmT56MP/7xj94uY6NSqnW2ZhWcAxwO934jZ0sRERHJok7h5o033kC7du2QlJQEg8EAg8GAfv36oX379li0aJGXi9i4lOmCIUIA7FagJNe938RuKSIiIlnUacxNUFAQvvrqKxw/ftw9FTwhIQHt27f3auEaI1HQAAFRQOF5adyNfwQArlBMREQklxqHm5SUlGu+//3337ufL1y4sO4lagJEc0sIheelcTctegGoPBWc3VJERES+VONws2fPnhodJwhCnQvTZJhjgHPwGFTMRfyIiIjkUeNwU7llhq7NfXfwSmvdMNwQERHJo04Diuk6zK5wU7HWjYlTwYmIiGTBcOMDolm6S3p13VJWuwM2u6O604iIiMgLGG58wB1uCiq6pVzr3ADsmiIiIvIlhhtfcI25KcoGyi0AAJ1aBY1KGmzNrikiIiLfYbjxBWMIoDFKz52tN4IgcJViIiIiGTDc+IIgVLTecDo4ERGRrBhufCXQNai4YtyNn3shP4YbIiIiX2G48ZVqWm7YLUVEROR7DDe+EhgrPXqsdcNuKSIiIl9juPGVata6MbJbioiIyOcYbnzF1S1VUHnMjevO4OyWIiIi8hWGG19xd0v9DogigIoxN8VsuSEiIvIZhhtfcc2WshYBZXkAOOaGiIhIDgw3vqI1AqZQ6blzOrif++aZ7JYiIiLyFYYbX7piOji7pYiIiHyP4caXrpgObnIPKGa4ISIi8hWGG1+6ouXG5J4Kzm4pIiIiX2G48SXXWjfO6eAcUExEROR7DDe+VKXlhuGGiIjI1xhufKnyWjfgCsVERERyYLjxJfcqxZmAw84ViomIiGTAcONL/hGASgOIdqAwi1PBiYiIZMBw40sqNWCOkZ7n/+6eLcWp4ERERL7DcONrlda68XMPKC6H6LzfFBEREXkXw42vVZox5eqWcoiApdyhYKGIiIiaLoYbX6u01o1Jp4FOLVV5dkGZgoUiIiJquhhufK1Sy41aJaBTdAAA4MC5AgULRURE1HQx3PjaFfeX6hITCADYfy5fqRIRERE1aQw3vhbo7JbKl27B0K2FFG4OZjLcEBER+QLDja+5uqVKLwHWYne42X8unzOmiIiIfIDhxtcMgYDeLD3PP4cOUf7QqgXkldjw++VSZctGRETUBDHcyME9qDgDeo0aHSKlQcXsmiIiIvI+hhs5VJoODsCja4qIiIi8i+FGDpWmgwNAV3e44XRwIiIib2O4kcMV4cbVcnOAg4qJiIi8juFGDlesddMxKgAalYBLxVacz+dKxURERN7EcCOHK9a6MWjViHcOKua4GyIiIu9SPNwsXboUcXFxMBgM6Nu3L3bs2HHN4/Py8jB16lRER0dDr9ejQ4cOWLdunUylraPK3VLObqhuLaTp4QcYboiIiLxK0XCzcuVKpKSkYPbs2di9ezcSExMxbNgw5OTkVHu81WrFkCFDcPr0aaxatQpHjhzBe++9hxYtWshc8loKiAEgAHYLUJwLgDOmiIiIfEWj5IcvXLgQf/nLXzBx4kQAwNtvv421a9di+fLlePrpp6scv3z5cly6dAk///wztFotACAuLk7OIteNRgcERAGF54GC3wH/cHS5YlCxIAgKF5KIiKhpUCzcWK1WpKenY+bMme59KpUKycnJ2LZtW7XnfP3110hKSsLUqVPx1VdfITw8HA8++CCeeuopqNXqas+xWCywWCzu1wUF0vRrm80Gm83mxW8E9/Wqu646IAaqwvMov3gGYnhXxIcZoVYJyC2y4vdLRYgyG7xalubgWvVN3sf6lhfrW16sb3nVpb5rc6xi4SY3Nxd2ux2RkZEe+yMjI3H48OFqzzl58iS+++47jBkzBuvWrcPx48cxZcoU2Gw2zJ49u9pz5s+fj7lz51bZv3HjRphMpvp/kWqkpqZW2XdjiRotABz6ZSNOnpRaaSIMapwvEfDR19+jWwinhNdVdfVNvsP6lhfrW16sb3nVpr5LSkpqfKyi3VK15XA4EBERgXfffRdqtRq9evXCuXPn8Morr1w13MycORMpKSnu1wUFBYiNjcXQoUNhNpu9Wj6bzYbU1FQMGTLE3W3motr0C7B9Bzq3NKNT8kgAQFrZAazekwljTDxG3treq2VpDq5V3+R9rG95sb7lxfqWV13q29XzUhOKhZuwsDCo1WpkZ2d77M/OzkZUVFS150RHR0Or1Xp0QSUkJCArKwtWqxU6na7KOXq9Hnq9vsp+rVbrs1/gaq8d3BoAoC48D7XzvcSWQVi9JxO/nS/iP6Z68OXPkqpifcuL9S0v1re8alPftfm5KDZbSqfToVevXti8ebN7n8PhwObNm5GUlFTtOf3798fx48fhcDjc+44ePYro6Ohqg02D4l7r5nf3rm4tOWOKiIjI2xSdCp6SkoL33nsPH330EQ4dOoRHH30UxcXF7tlT48aN8xhw/Oijj+LSpUuYPn06jh49irVr1+LFF1/E1KlTlfoKNXfFLRgAICHaDJUA5BRakFPAlYqJiIi8QdExN/fddx8uXLiAWbNmISsrCz169MCGDRvcg4zPnj0Llaoif8XGxuLbb7/FE088ge7du6NFixaYPn06nnrqKaW+Qs25bsFQlA2UWwGNDiadBu3C/XEspwgHMvNxK2dMERER1ZviA4qnTZuGadOmVfteWlpalX1JSUn45ZdffFwqHzCFAhoDUF4GFGYCwXEApMX8juUUYf/vBbi1U+S1r0FERETXpfjtF5oNQQDMVcfddOVKxURERF7FcCOnasbduAYV8x5TRERE3sFwIyfXuJtK4aZztBmCAGQVlOFCoeUqJxIREVFNMdzIqZrp4H56DdqG+QEADmSy9YaIiKi+GG7kVE23FFBxh/ADvzPcEBER1RfDjZyuEm5cg4rZckNERFR/DDdyco25KTjnsdsdbs7V/L4ZREREVD2GGzm5poJbCoCCTPfuLjHSDTzP5ZXiUrFViZIRERE1GQw3ctKZgJa9peeH/ufeHWDQugcVc70bIiKi+mG4kVvX0dLjgS88d7fgejdERETewHAjt853AhCAjO1AXoZ7d9cWUtcUww0REVH9MNzIzRwNtO4nPT+42r2bt2EgIiLyDoYbJXS9W3o8+GXFLme4+f1yKS5zUDEREVGdMdwoIeEOQFABmXuASycBAGaDFnGhJgDAwUxOCSciIqorhhsl+IcDbW6Rnh+oaL3pwq4pIiKiemO4UYq7a6pi3E03zpgiIiKqN4YbpXS6HVBpgOwDwIUjACrCDVtuiIiI6o7hRimmEKDdYOm5s2vKtVLx2UslyC+xKVUyIiKiRo3hRkmVZ02JIoJMOsSGGKVdvIkmERFRnTDcKKnjSECtB3KPSt1TYNcUERFRfTHcKMlgBuKHSM+dXVPu2zBwOjgREVGdMNwo7Yquqa4xnDFFRERUHww3SuswHNCagMungczd7m6pU7nFKCjjoGIiIqLaYrhRms5PCjgAcOBLBPvp0CJIGlS8/eQlBQtGRETUODHcNATurqk1gMOBkd2iAADv/XBSuTIRERE1Ugw3DUH7IYAuACj4Hfh9Bx6+qS10ahV2nL6EXafZekNERFQbDDcNgdYAdLpNen7gS0SaDRjdqwUA4K20EwoWjIiIqPFhuGkoXF1Tv60BHHY8cnM7qATgu8M5+I3TwomIiGqM4aahaDsIMAQBRdnAma2IC/PDyG7RAIBlW9h6Q0REVFMMNw2FRgckjJKeOxf0e3RgOwDA2n2ZOJ1brFTJiIiIGhWGm4ak62jp8bevALsNXWICMbBjOBwi8A5nThEREdUIw01DEncTYAoDSi8Bp7YAAKYOag8A+CL9d2QXlClZOiIiokaB4aYhUWuAzndIz51dU73jQtA7LhhWuwP/+umUgoUjIiJqHBhuGhpX19Shb4ByCwBgykCp9ebjX84gr8SqVMmIiIgaBYabhqZVEhAQDVjygZ3vAwAGdgxHQrQZJVY7Pvr5jMIFJCIiatgYbhoalQq45e/S883zgAtHIQiCe+bUhz+fQom1XMECEhERNWwMNw1Rr4lAu8FAeRmwehJgt2Fk1yi0DjXhcokNn+3IULqEREREDRbDTUMkCMAdSwBDIJC5B/hxITRqFR65WWq9ef/Hk7CWOxQuJBERUcPEcNNQmWOAka9Jz39YAGTuweheLRARoMf5/DKs2XNO2fIRERE1UAw3DVm3e6Sp4Y5yYPVk6EUb/nJTWwDA21tOwO4QFS4gERFRw8Nw05AJAnDb64BfBHDhMPD9P/FA31YINGpxMrcYGw5kKV1CIiKiBofhpqHzCwX++Ib0/Ocl8M/agfH94gAAb6Udhyiy9YaIiKgyhpvGoOMIoOefAIjA6smYeGMYjFo1DmYWYONv2UqXjoiIqEFhuGkshs0HAlsBeWcQ/NNcjEtqDQCY8fmvOJZdqHDhiIiIGg6Gm8bCYAbuXCo9T/8QM9qeQe+4YBSWleOhj3biYpFF2fIRERE1EAw3jUmbm4G+jwIAtN9Mx7v3tEOrEBMyLpVi0n/SUWazK1xAIiIi5THcNDbJs4HQeKAoC8Fp/8DyCb1hNmiQfuYy/r5qHwcYExFRs8dw09hojcBd7wCCGjiwCu1PfIS3/9QLGpWAr3/NxKJNx5QuIRERkaIYbhqjlr2AgU9Lz7/9B/qdeB3/vKMzAGDx5mNcvZiIiJq1BhFuli5diri4OBgMBvTt2xc7duyo0XkrVqyAIAi48847fVvAhujmJ4HBs6Tn25bg/rNzMOWmFgCAv6/ah12nLylXNiIiIgUpHm5WrlyJlJQUzJ49G7t370ZiYiKGDRuGnJyca553+vRpzJgxAzfddJNMJW1gBAG46W/AXe8CKi1wcDWezH4ad3Uywmp3YNJ/0nH2YonSpSQiIpKd4uFm4cKF+Mtf/oKJEyeic+fOePvtt2EymbB8+fKrnmO32zFmzBjMnTsXbdu2lbG0DVDifcCfvgD0Zghnt+G1wr9jcFQZLhVbMfHDHcgvtSldQiIiIlkpGm6sVivS09ORnJzs3qdSqZCcnIxt27Zd9bx58+YhIiICf/7zn+UoZsPX9hbgoW8BcwuoLh7Du9anMDDgHE5cKMaUT9JhszuULiEREZFsNEp+eG5uLux2OyIjIz32R0ZG4vDhw9We89NPP+Ff//oX9u7dW6PPsFgssFgqFrgrKCgAANhsNths3m3VcF3P29etkZB4YPwGaFbeD3XOQfxLMxtTdY9hw/HumPyfXVhwd1eYjVr5y+VDitZ3M8T6lhfrW16sb3nVpb5rc6yi4aa2CgsLMXbsWLz33nsICwur0Tnz58/H3Llzq+zfuHEjTCaTt4sIAEhNTfXJdWtCE/UYepe+gYjCg3hLtQDPqifi08ODMfS17/BQRzta+ilWNJ9Rsr6bI9a3vFjf8mJ9y6s29V1SUvNxpIKo4KpvVqsVJpMJq1at8pjxNH78eOTl5eGrr77yOH7v3r3o2bMn1Gq1e5/DIXW5qFQqHDlyBO3atfM4p7qWm9jYWOTm5sJsNnv1+9hsNqSmpmLIkCHQahVsJbFboV77BFT7VwIAvlQPw+zi/4NF44/nRnbCfTe2gCAIypXPSxpMfTcTrG95sb7lxfqWV13qu6CgAGFhYcjPz7/u329FW250Oh169eqFzZs3u8ONw+HA5s2bMW3atCrHd+rUCfv37/fY9+yzz6KwsBCLFy9GbGxslXP0ej30en2V/Vqt1me/wL68dg0LANz9DhDcGvhhAe62f4tb/Xbi2dIxeO5rO3Zn5OOFu7rCpGtUDXdXpXh9NzOsb3mxvuXF+pZXbeq7Nj8Xxf+6paSkYPz48bjxxhvRp08fLFq0CMXFxZg4cSIAYNy4cWjRogXmz58Pg8GArl27epwfFBQEAFX2N3uCANz6DBDXH/gmBUGXTmCJ7k3c69iCZ/dOxB3n8rHsTzegfUSA0iUlIiLyKsXDzX333YcLFy5g1qxZyMrKQo8ePbBhwwb3IOOzZ89CpVJ8xnrj1XYg8OjPwNZFwI+v4Wbsw0b9U3jz4p0YvaQA8+6+AXf0aKF0KYmIiLxG8XADANOmTau2GwoA0tLSrnnuhx9+6P0CNTVag3S7hq73AGtTYDi1BU9q/4u7HD/hmZV/xvZTwzDr9s4waNXXvxYREVEDxyaR5iSsPTDuK+Du9yH6haO9KhMr9c/jht3/wIOL/of1+8/zruJERNToMdw0N4IAdP8/CNN2Ajc+BBEC7lH/gE+K/oKLK6di6uKV+Pl4rtKlJCIiqjOGm+bKGAzc/jqEP6fCHtUDRsGKP2k24628R1Dy0T2Yv/Rt7M/IU7qUREREtcZw09zF9ob6kTRgwlpY2g2HCAHJ6j2YeeEpqN+7GR+9PR8ns3iHcSIiajwYbkjqqoobAP3YlRCm7UJhtwmwCAZ0Vp3B+KyX4LesJ759+0lkZ2UqXVIiIqLrYrghT2HtETB6MfRPHkJOn6dxWR2KSCEPw7LeRciyrji0YDBOrV8MseC80iUlIiKqFsMNVc8UgoiRMxE88zBO3rQQJ7Tx0Ap2JJTsQpvtsyAs7IQLr98ES9prwMUTSpeWiIjIrUGsc0MNmEaHtoP/DAz+M44d+hXHtqxA9PlN6CkcRXj+PiBtH5A2D2UhHWHoegfQ6TYgOlHq6iIiIlIAww3VWHxCIuITElFQNg8rt+7G+R1f4oaSrUhS/QbDpSPADwuAHxbA4R8JVfxQoMMwaYVkPW/xQERE8mG4oVozG7S4b3BfiLf2wbaTF/H01gMQj36LocJO3KTaB7+ibGDPf4A9/4Go0kJonQTEDwPihwJh8WzVISIin2K4oToTBAH92oWhX7uByC74Az7bcRav7zmD8MvpuFW1BwNVe9EWWcCpH6Rt4zNAcBzQfggQ2xeI6QmEtAV47zAiIvIihhvyikizAY8nd8D0wfE4nvMHfHswC9MPZqMw8zAGqfZikGov+qoOQX/5NLDzPWkDAL1ZGqMT07NiC45j6w4REdUZww15lSAIiI8MQHxkAKbdGo/fL9+AjQcHY+nBLEw5nYk/CAfRX3UA3VUn0UU4DYOlADj9o7S5GIKkkBPZBYhIAMITgPCOgN5fse9FRESNB8MN+VTLYBMeGtAGDw1og4tFFmw+1AffHc7B4lMXUVhShnjhHLqpTqK7cBI9NKfQCWehLcsDTn4vbZUFtgIiOgHhnYCIBAjB7aG2WxT5XkRE1HAx3JBsQv31uLd3LO7tHQuHQ8ThrEL8fCIXv5y8iAWnLqGwrBxalKODkIFuqlPoqjmHHoYstHGchZ/tIpB/VtqObQQg/fLeDkA8M08KPOEdnVsnIKwDYAxS8usSEZFCGG5IESqVgM4xZnSOMePhm9rC7hBxMDMf205cxLaT0fjfqfZYYbEDzoaZIBSig+ocBgTmorcpG+2QgZCSk9CU5kLIzwDyM4DjqZ4fEhAthZyweCCoNRDcuuLRGCz/lyYiIlkw3FCDoFYJ6N4yCN1bBuGRW9qh3O7AkexC7D6bh91nLiP9zGXsuBSAHZcBXK44L0ZdgKFRhejtfwEdVJmItp2BX/4JCIWZQOF5aTu1peoH6gOB4FbOsBMHBLYEjCFS6DEGS60+xmBp/I+a/0yIiBoT/lebGiSNWoUuMYHoEhOIsX9oDQDIKSzD7jN52H1WCjv7fs9Dpt2MD8+Z8SFaAOgBANCpVegRIeCm4MvoachCnCobYbYs6IsyIOSdAYovAJZ8IGu/tF2P3lwRdvwjpS0gqtJjFBDg3K/R+6xOiIioZhhuqNGICDBgeNcoDO8aBQAoKrXgo9UbENouEUdyivFbZgF+O1+AwrJy7DgP7DhvBmAG0AEAEGjUon2EPzq1VqGHfwE66C8hVriAIEsmVIWZQFkeUHrZueVLAQgALAXSlnf2+oU0hgAhbYCwjlJ3WFgHaRxQcByg1vqiWoiI6AoMN9Ro6TUqtPQDRt7QAlqtFBxEUcTvl0tx0Bl0fsvMx9HsImRcLkF+qQ3pZy4j/QzwCQAgAEAA9Jr2aBPmh7hQP7RuZUKbUD+0DvVDXIgOkVoLVK7QU3IRKMqWtsKsqo8OG1B6CTh3CTiX7llYlVZasDAsXgo7/lHSbSn0/oDOX2odcj8PkB65uCERUZ0w3FCTIggCYkNMiA0xuVt4AKDMZsep3GIczymStgtFOJFThJO5xbCUO3A4qxCHswqrXM+gVaF1iB9ah5oQF9YascGd0DLKhNgEE1oGG2HQqqUDRVEKQAWZwMXjQO4xIPcIkHtUem4rcb4+Ahz+pmZfRhcAmEKcW6jUKmQKlV4bg53PQwH/CKlLzBjMxQ+JiMBwQ82EQatGQrQZCdFmj/12h4iMSyU4mVuE07klOHOxGKcvSo8Zl0tRZpMGNh/Jrhp8ACAiQI+WwUYpUAWbEBtiRougAWjRZQiiAw1S+HE4gIJzFUEn9yhQkgtYigBLIWAtcj4vkJ47yqWLWwulLe9Mzb6kSgv4hTvDjnPzi5D2afSAWud81ErP1TrP56ZQaQyR1lifqiYiUhzDDTVrapWAuDA/xIX5VXnPZnfg3OVSnL5YjDMXS3D6YjEyLpXi98slyLhUgmKrHTmFFuQUWrD7bF611w/z16NFkAExQUa0CIpGTFBbtGhzJ2ICjYgKNCDUTweVqlJriygC5RYp9JTlS91cJReBEuejx+tLUkgqypHGCzlsQGGmtNWHIbBikHRAtHvgtGAKR1jhCSC7NWCOlFqQOICaiBoghhuiq9CqVVcNPqIoIq/EhozLJRWBx/k8M68U5/JKUWK1I7fIgtwiC379Pf8qnyEg0mxAdKABUYFG6dH5OsIcioiAGERE66HXqK9d2HKLNAusKEfainOc44NypDBUbgHsNsBudT5aKj23VpxfXiaFqrJ8qQutEg2A/gBw/KWKnTp/Z3dZpe4zQxCg85Pe0/lV2iq9Vuukz7SVSJ9pKwFsZZ6v7eVSwDK3lKbqB7bkLTiIqEYYbojqQBAEBPvpEOynQ/eWQVXeF0UR+aU2/H65Iuy4Hs9dLsX5/DJcKLLAZpcGQP9+uRQeC/hcIdCoRUSAHhFmPSICDIgI0CM8QI8IswHh/q7nkQgwt4BQ13E3oiiFmqJs5xpBzkfngGlHQSaKc87AX22DUHoJEB1SN5q1SFo5Wg6GICAwtiLsBLaoCFSGQGnKviFQeq03c1A2UTPFcEPkA4IgIMikQ5BJh64tAqs9xmZ3IKfQgqx8Kexk5Ze5HzPzS5FTYMGFQgusdgfyS23IL7XhWE7RNT9Xr1Eh3BV8nI9h/nqE+ukQ4qdHsJ8WIX46hDjLptNU+uMvCM71fIKkGV1XsNts+G7dOowcORJatVqaKu/uHqvUZVaWD1hLnMGn2LlVem4rkVpttAZAY5TG+GiNgMYAaE0V+1UqKWDl/y5tlnyp+60sD8iuwfpEEACDWQo6phDAFAb4OTdTmDQWyf08TDrWNf5IpeHgbKJGjOGGSCFatQotgoxoEXT1AbyuFqCcQgtyCizIKSyr8jy3SApBhWXlsJQ7KrUEXV+AXuNugZICkPQY6i+FIde+ED8dzPpKf+xVqorVnEPb1bcqaqYsH8g/JwWdgt8rQk/pZef4pDxnl1qe1LUFsaKLraaDsiurbtC1Ri+1CBkCK23mitYiQ2Claf2urrhK3XGq63QvEpFXMNwQNWCVW4A6RAZc89gymx0XnAOcLxRacMEZei4UWnC52IpLxVZcKrHicrEVl0uscIhAoaUchZZynL1UUqPyaFVqvPzbDwj117uDUIifDiH+OnfrUIifDkEmLYKMWgQatdCovdQ15AoTkZ2vf6yt0tihsjypRak4VxqAXZzr+bzkYsV4o8rsVmnzJo2xIuhoTVJYcrVaaQzOVitpU6l06JR5HqptJwBTkDM0BVyxmSvGMLGliciN4YaoiTBo1e41fq7H4RBRUGbDxWIp7FR+vFhkxaViCy46A5H02gqr3QGbQ0Bmfhky88uu+xkuAQaNM+w4Q49JhyCjFsEmrdRqZNI5H7Xu5346dd3HDgFSSNAapAHJNSGK0hR8j0HX1qrPbaXSlP2yAs/wZKn8Ot+zO85SBIh26XPKS6WtJPe6RVID6AgA2V/X7DuotFdM+a/U2qQ1VVoiIPKKzblPo6vZ5xA1Agw3RM2QSlXRIoTw6x8viiIuF5Vh9bqN6Na7HwrKHLhU4mwNqhSILhVbcbnEhrwSKwrKpPV6CsvKUVhWjgzUrKsMkGaRBZl0CDRqYTZoYDZqYTZoYTZqnI8VrwONUnAKNGoRaNIiQK/xnF5fE4Lg7H7SArh+OKwV1/R+99gj5/gjW6nUWlReJrU0uZ+XAuUW2K3FOHP0IOKiQ6GyFTtvA1Loudkqtbg5bIDVVvdyGgIBrZ9H69GVrUnSppOClFon3VRW7XqtrejC0xo9V9vWu547V+XmEgLkYww3RHRdgiAgwKBBmAHoGRvkvt3FtZTbHSgoK0deiRR48kutuFxsQ16pzblPen3ZGZLySmy4VGKFtdwBm110d6nVvqyA2aBFkEnqFqu8ee7TVdlnqm+L0dUK5GpJ8gut8WkOmw37S9chduRIqK5W3/Zy57R553R+uwUot17x6AxWxc5lAoqypYHarqUCirKlYORqdZKDSiuN1zJHAwExlR5jPPfpzexuozphuCEin9CoVe7ByDUliiJKbXZcLrHhcrEVBWU2FJSWOx9tKCgrdz469zuf55VIs8lKbXaIItyzy2pLrZJCnNmgdT+ajRoEGDxbjgKqa00yaOFv0EBd21aj+lBrALX5+sddi+vWIcW5FTPZyks9W5PcrUulUqCyW6VA5NGNZ3Puc3XfFXquwG0tqmhpctiksFWcA5z/9epl0xivuAdbpZYg12utydmlaL12t6LW6LlUgDHIOQg8yN1qpS0vluqDGj2GGyJqMARBgEmngUmnueYssquxlNuRXyoFIVfgcT1eueWVWD1e2+wi7A5pcca8krp37/jrNQgwuDbtFY8V4SjI5DnOKNikhVHrg5aj6xGEikUYfc1eXtE1V3IRKDgvrahdcF66L5vreWGm1IrkGqNUnOPzomkBjAQgHnpCug1JQHT1j37hnotScjB3g8RwQ0RNhl6jRkSAGhEBhlqd52oxKnS3DEmtRYWVWooKy8qRX1qxr7DMsyWpzOYAABRZylFkKcf5OvTw6DQq5xpEWgQZNSjJV+H7kv3wN2qdoU8NP50GJr3zUaeGv15qRao85kj2gFRTak3FWkqBLYHoxKsfay2Wus0qt/xc2RLkGnek0qLKPdPcg6q10rpFtlLncgGuzXP5ALE0D4KlAEJ5GXD5tLTVhEpTzYrc/p7LA1S7maVyq9SAoJI2lRoQ1BX7VBqpa07NP9W1xRojomavcotRpLl2wcjFWu5wB55CZxiqeH3FvtJy5JU6xxk5xxtZ7Q5Yyx3IKihDVoFrNpoK+y6dr1U5VAIqwo5zMzsHZvvrNfDXS91nAXoN/F37DBpp4LZzsLb7bvdK0vkBIW1k+7hymw0bvlmD4QNugLb0gnOV7qyqj+7uO+fPyFHu2/FKgsp5Q1zpHm/SY7Q0E9Df2aJkCq4IV1oTW5LAcENE5BU6jQqh/nqE+td+JpAoiii22t1rEF0useFCQSm2p+9F2w4JKCsXUWItR7HVjhKL9FhqtaPYWu5uUcovtcFa7oBDRL271nQalWc4MmiuCErVjztydcF5rHzdiDhUOiCoFRBeg4Up7eWArbiaVbhLqi4N4LHlOR8LpGAk2p1LEdil565HUWoJhOhwDv7OBrL21eBbCJ6tSK7xSR6z1vwr1kqq/FwfUHXxSa2xUYYlhhsiIoUJguBsVdG41ymy2WzQntuDkQPiajQ7DZAWcvQYW+Qcb1RQZkOxxdmCZClHUZnUdVbkem2RWpMKy2xwiFIrVF1nqwGAQauqGGek9xxzFGDQuscluVqUXAO2Kx/T4AOSWgOonV1MvuAKPCUXgaIsZ+tRlvteb9LzLGnmW1meFK6kEwFrobR5g6CqFJacj+77uAVd/dEvHAiK9U4Z6oDhhoioiTBo1TBo1XXuWnM4RBRZpXFEroDkmpXmen3lWCPXbLZCZ2ACgDKbA2W2uocj6buoPAZkm68YkH3lex6tSEYt/HV1WO+oIREEKUAFRErbtcYnAYDDIQ2+thY7xyZVblUq9Byn5DGT7Yq1k9z3gCuWris6nGssFdSu/NGJwCM/1O27ewHDDRERAZAWd3RNa28ZXPvzy+0O96KNhRab+3lRpedXjj8qrDR425sBSRCkmWsViz5W7UarPB7JpBXwezFw9lIJQvyN8DdooPXWrUPkoFJVdEX5R9T/eg5H1W43V0ByDcy+1mNAdP3LUA8MN0RE5BUatcp9I9a6sjtEFDkDT+XQU10gqjxYu/I6SJZyB0SxYnXsc3k1XR1bg1f2/eR+5W49cnajSQOxPdc+ck/xN1ZaG8kZoPz1Gu/dW01uKlXFOJxGiOGGiIgaDLVKQKBJmtZeV2Wuaf0eU/grutBcayFV7l7LL7EiN78YNqhR6pzW743uNZNO7TEA22ORyGpvK+K5X69pADPXGiGGGyIialJcY4/CA2o+c81ms2HdunUYOXIYoFK7B2AXlNmkgddXdLW5wlHl6f8FpRWtSq51j0qsdpRY7ciq5ZAVF71G5Z7a75q15go/0nNXWPIMUK4QpdeoGu66Rz7EcENERFSJVq2quLFsHVnLHSiylHsEnsqtRxWBqOrtRQrLbCi0lEMUAUs9Z65p1UKtWoo8xyJpYdA2znDEcENERORlOo0KIZra3VutModDRKGlUrdZpZlrlbvW8kuvXDjS2drkDEc2u4iLxVZcLLbWqRyucGQ2eoahwEqtR64WpMr7gk26enUt1hfDDRERUQOjUgnu4FAXDofoXuSx2pajam5Em+9+Lr1nd4h1DkddYsxY+9hNdSq7NzDcEBERNTEqleAch1O3cCSKIkqs9iqtRvlXtCTlX9GS5DomSMFWG4DhhoiIiK4gCAL89Br46TWIDjTW+nyHQ/RBqWqukU7AJyIiooZK6dWhGW6IiIioSWG4ISIioialQYSbpUuXIi4uDgaDAX379sWOHTuueux7772Hm266CcHBwQgODkZycvI1jyciIqLmRfFws3LlSqSkpGD27NnYvXs3EhMTMWzYMOTk5FR7fFpaGh544AF8//332LZtG2JjYzF06FCcO3dO5pITERFRQ6R4uFm4cCH+8pe/YOLEiejcuTPefvttmEwmLF++vNrjP/nkE0yZMgU9evRAp06d8P7778PhcGDz5s0yl5yIiIgaIkWnglutVqSnp2PmzJnufSqVCsnJydi2bVuNrlFSUgKbzYaQkJBq37dYLLBYKpatLiiQbvBhs9lgs9nqUfqqXNfz9nWpeqxvebG+5cX6lhfrW151qe/aHKtouMnNzYXdbkdkZKTH/sjISBw+fLhG13jqqacQExOD5OTkat+fP38+5s6dW2X/xo0bYTKZal/oGkhNTfXJdal6rG95sb7lxfqWF+tbXrWp75KSkhof26gX8XvppZewYsUKpKWlwWAwVHvMzJkzkZKS4n5dUFDgHqdjNpu9Wh6bzYbU1FQMGTIEWq2yqzM2B6xvebG+5cX6lhfrW151qW9Xz0tNKBpuwsLCoFarkZ2d7bE/OzsbUVFR1zz31VdfxUsvvYRNmzahe/fuVz1Or9dDr69623utVuuzX2BfXpuqYn3Li/UtL9a3vFjf8qpNfdfm56LogGKdTodevXp5DAZ2DQ5OSkq66nkLFizA888/jw0bNuDGG2+Uo6hERETUSCjeLZWSkoLx48fjxhtvRJ8+fbBo0SIUFxdj4sSJAIBx48ahRYsWmD9/PgDg5ZdfxqxZs/Dpp58iLi4OWVlZAAB/f3/4+/sr9j2IiIioYVA83Nx33324cOECZs2ahaysLPTo0QMbNmxwDzI+e/YsVKqKBqZly5bBarXinnvu8bjO7NmzMWfOHDmLTkRERA2Q4uEGAKZNm4Zp06ZV+15aWprH69OnT/u+QERERNRoNYhwIydRlG7DXptR1zVls9lQUlKCgoICDkiTAetbXqxvebG+5cX6lldd6tv1d9v1d/xaml24KSwsBADExsYqXBIiIiKqrcLCQgQGBl7zGEGsSQRqQhwOBzIzMxEQEABBELx6bdcaOhkZGV5fQ4eqYn3Li/UtL9a3vFjf8qpLfYuiiMLCQsTExHiMxa1Os2u5UalUaNmypU8/w2w28x+HjFjf8mJ9y4v1LS/Wt7xqW9/Xa7FxUfzGmURERETexHBDRERETQrDjRfp9XrMnj272ts9kPexvuXF+pYX61terG95+bq+m92AYiIiImra2HJDRERETQrDDRERETUpDDdERETUpDDcEBERUZPCcOMlS5cuRVxcHAwGA/r27YsdO3YoXaQm44cffsCoUaMQExMDQRCwZs0aj/dFUcSsWbMQHR0No9GI5ORkHDt2TJnCNnLz589H7969ERAQgIiICNx55504cuSIxzFlZWWYOnUqQkND4e/vj9GjRyM7O1uhEjduy5YtQ/fu3d0LmSUlJWH9+vXu91nXvvXSSy9BEAQ8/vjj7n2sc++ZM2cOBEHw2Dp16uR+35d1zXDjBStXrkRKSgpmz56N3bt3IzExEcOGDUNOTo7SRWsSiouLkZiYiKVLl1b7/oIFC/DGG2/g7bffxvbt2+Hn54dhw4ahrKxM5pI2flu2bMHUqVPxyy+/IDU1FTabDUOHDkVxcbH7mCeeeAL/+9//8Pnnn2PLli3IzMzE3XffrWCpG6+WLVvipZdeQnp6Onbt2oVbb70Vd9xxBw4ePAiAde1LO3fuxDvvvIPu3bt77Gede1eXLl1w/vx59/bTTz+53/NpXYtUb3369BGnTp3qfm2328WYmBhx/vz5CpaqaQIgrl692v3a4XCIUVFR4iuvvOLel5eXJ+r1evGzzz5ToIRNS05OjghA3LJliyiKUt1qtVrx888/dx9z6NAhEYC4bds2pYrZpAQHB4vvv/8+69qHCgsLxfj4eDE1NVW85ZZbxOnTp4uiyN9vb5s9e7aYmJhY7Xu+rmu23NST1WpFeno6kpOT3ftUKhWSk5Oxbds2BUvWPJw6dQpZWVke9R8YGIi+ffuy/r0gPz8fABASEgIASE9Ph81m86jvTp06oVWrVqzverLb7VixYgWKi4uRlJTEuvahqVOn4rbbbvOoW4C/375w7NgxxMTEoG3bthgzZgzOnj0LwPd13exunOltubm5sNvtiIyM9NgfGRmJw4cPK1Sq5iMrKwsAqq1/13tUNw6HA48//jj69++Prl27ApDqW6fTISgoyONY1nfd7d+/H0lJSSgrK4O/vz9Wr16Nzp07Y+/evaxrH1ixYgV2796NnTt3VnmPv9/e1bdvX3z44Yfo2LEjzp8/j7lz5+Kmm27CgQMHfF7XDDdEVK2pU6fiwIEDHn3k5H0dO3bE3r17kZ+fj1WrVmH8+PHYsmWL0sVqkjIyMjB9+nSkpqbCYDAoXZwmb8SIEe7n3bt3R9++fdG6dWv897//hdFo9Olns1uqnsLCwqBWq6uM8M7OzkZUVJRCpWo+XHXM+veuadOm4ZtvvsH333+Pli1buvdHRUXBarUiLy/P43jWd93pdDq0b98evXr1wvz585GYmIjFixezrn0gPT0dOTk5uOGGG6DRaKDRaLBlyxa88cYb0Gg0iIyMZJ37UFBQEDp06IDjx4/7/Peb4aaedDodevXqhc2bN7v3ORwObN68GUlJSQqWrHlo06YNoqKiPOq/oKAA27dvZ/3XgSiKmDZtGlavXo3vvvsObdq08Xi/V69e0Gq1HvV95MgRnD17lvXtJQ6HAxaLhXXtA4MHD8b+/fuxd+9e93bjjTdizJgx7uesc98pKirCiRMnEB0d7fvf73oPSSZxxYoVol6vFz/88EPxt99+EydNmiQGBQWJWVlZShetSSgsLBT37Nkj7tmzRwQgLly4UNyzZ4945swZURRF8aWXXhKDgoLEr776Sty3b594xx13iG3atBFLS0sVLnnj8+ijj4qBgYFiWlqaeP78efdWUlLiPmby5Mliq1atxO+++07ctWuXmJSUJCYlJSlY6sbr6aefFrds2SKeOnVK3Ldvn/j000+LgiCIGzduFEWRdS2HyrOlRJF17k1/+9vfxLS0NPHUqVPi1q1bxeTkZDEsLEzMyckRRdG3dc1w4yVvvvmm2KpVK1Gn04l9+vQRf/nlF6WL1GR8//33IoAq2/jx40VRlKaDP/fcc2JkZKSo1+vFwYMHi0eOHFG20I1UdfUMQPzggw/cx5SWlopTpkwRg4ODRZPJJN51113i+fPnlSt0I/bQQw+JrVu3FnU6nRgeHi4OHjzYHWxEkXUthyvDDevce+677z4xOjpa1Ol0YosWLcT77rtPPH78uPt9X9a1IIqiWP/2HyIiIqKGgWNuiIiIqElhuCEiIqImheGGiIiImhSGGyIiImpSGG6IiIioSWG4ISIioiaF4YaIiIiaFIYbImqWBEHAmjVrlC4GEfkAww0RyW7ChAkQBKHKNnz4cKWLRkRNgEbpAhBR8zR8+HB88MEHHvv0er1CpSGipoQtN0SkCL1ej6ioKI8tODgYgNRltGzZMowYMQJGoxFt27bFqlWrPM7fv38/br31VhiNRoSGhmLSpEkoKiryOGb58uXo0qUL9Ho9oqOjMW3aNI/3c3Nzcdddd8FkMiE+Ph5ff/21+73Lly9jzJgxCA8Ph9FoRHx8fJUwRkQNE8MNETVIzz33HEaPHo1ff/0VY8aMwf33349Dhw4BAIqLizFs2DAEBwdj586d+Pzzz7Fp0yaP8LJs2TJMnToVkyZNwv79+/H111+jffv2Hp8xd+5c3Hvvvdi3bx9GjhyJMWPG4NKlS+7P/+2337B+/XocOnQIy5YtQ1hYmHwVQER155XbbxIR1cL48eNFtVot+vn5eWwvvPCCKIrS3cknT57scU7fvn3FRx99VBRFUXz33XfF4OBgsaioyP3+2rVrRZVKJWZlZYmiKIoxMTHiM888c9UyABCfffZZ9+uioiIRgLh+/XpRFEVx1KhR4sSJE73zhYlIVhxzQ0SKGDRoEJYtW+axLyQkxP08KSnJ472kpCTs3bsXAHDo0CEkJibCz8/P/X7//v3hcDhw5MgRCIKAzMxMDB48+Jpl6N69u/u5n58fzGYzcnJyAACPPvooRo8ejd27d2Po0KG488470a9fvzp9VyKSF8MNESnCz8+vSjeRtxiNxhodp9VqPV4LggCHwwEAGDFiBM6cOYN169YhNTUVgwcPxtSpU/Hqq696vbxE5F0cc0NEDdIvv/xS5XVCQgIAICEhAb/++iuKi4vd72/duhUqlQodO3ZEQEAA4uLisHnz5nqVITw8HOPHj8fHH3+MRYsW4d13363X9YhIHmy5ISJFWCwWZGVleezTaDTuQbuff/45brzxRgwYMACffPIJduzYgX/9618AgDFjxmD27NkYP3485syZgwsXLuCvf/0rxo4di8jISADAnDlzMHnyZERERGDEiBEoLCzE1q1b8de//rVG5Zs1axZ69eqFLl26wGKx4JtvvnGHKyJq2BhuiEgRGzZsQHR0tMe+jh074vDhwwCkmUwrVqzAlClTEB0djc8++wydO3cGAJhMJnz77beYPn06evfuDZPJhNGjR2PhwoXua40fPx5lZWV4/fXXMWPGDISFheGee+6pcfl0Oh1mzpyJ06dPw2g04qabbsKKFSu88M2JyNcEURRFpQtBRFSZIAhYvXo17rzzTqWLQkSNEMfcEBERUZPCcENERERNCsfcEFGDw95yIqoPttwQERFRk8JwQ0RERE0Kww0RERE1KQw3RERE1KQw3BAREVGTwnBDRERETQrDDRERETUpDDdERETUpDDcEBERUZPy/24cxB7AV4R5AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# вывод графика ошибки по эпохам\n", + "plt.plot(H_1h500.history['loss'])\n", + "plt.plot(H_1h500.history['val_loss'])\n", + "plt.grid()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('loss')\n", + "plt.legend(['train_loss', 'val_loss'])\n", + "plt.title('Loss by epochs')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VhHFAyHrhRBG", + "outputId": "f471a3aa-0e79-471f-ed12-e106804d3ff1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9282 - loss: 0.2529\n", + "Loss on test data: 0.25467056035995483\n", + "Accuracy on test data: 0.9280999898910522\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_1h500.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "URnw7WBnhhBk" + }, + "source": [ + "Лучшая метрика получилась равной 0.943 при архитектуре со 100 нейронами в скрытом слое, поэтому в дальнейшем используем ее." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "50JW7ePkrGtS" + }, + "source": [ + "9) Добавить в наилучшую архитектуру, определенную в п. 8, второй скрытый\n", + "слой и провести обучение и тестирование (повторить п. 6–7) при 50 и 100\n", + "нейронах во втором скрытом слое. В качестве функции активации\n", + "нейронов в скрытом слое использовать функцию sigmoid." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z-9VWIKmh976" + }, + "source": [ + "При 50 нейронах во втором скрытом слое:" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 247 + }, + "id": "8DKZeI6erG1I", + "outputId": "eea3c575-3beb-403e-b39a-c375ba933489" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_10\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_10\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_22 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_23 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m5,050\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_24 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m510\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_22 (Dense)                │ (None, 100)            │        78,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_23 (Dense)                │ (None, 50)             │         5,050 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_24 (Dense)                │ (None, 10)             │           510 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
 Total params: 84,060 (328.36 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
 Trainable params: 84,060 (328.36 KB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# создаем модель\n", + "model_1h100_2h50 = Sequential()\n", + "model_1h100_2h50.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_1h100_2h50.add(Dense(units=50, activation='sigmoid'))\n", + "model_1h100_2h50.add(Dense(units=num_classes, activation='softmax'))\n", + "# компилируем модель\n", + "model_1h100_2h50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "# вывод информации об архитектуре модели\n", + "print(model_1h100_2h50.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VdzmA4OjiVyc", + "outputId": "b6909c25-cab1-4951-c0dd-af7b4a6d68cf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.2225 - loss: 2.2643 - val_accuracy: 0.4647 - val_loss: 2.0889\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.5393 - loss: 1.9751 - val_accuracy: 0.6795 - val_loss: 1.5483\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.6897 - loss: 1.4097 - val_accuracy: 0.7602 - val_loss: 1.0517\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.7794 - loss: 0.9745 - val_accuracy: 0.8165 - val_loss: 0.7786\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.8277 - loss: 0.7410 - val_accuracy: 0.8482 - val_loss: 0.6324\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8513 - loss: 0.6139 - val_accuracy: 0.8635 - val_loss: 0.5454\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.8651 - loss: 0.5384 - val_accuracy: 0.8730 - val_loss: 0.4874\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.8759 - loss: 0.4813 - val_accuracy: 0.8813 - val_loss: 0.4470\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8846 - loss: 0.4451 - val_accuracy: 0.8892 - val_loss: 0.4174\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8897 - loss: 0.4221 - val_accuracy: 0.8923 - val_loss: 0.3950\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8936 - loss: 0.3962 - val_accuracy: 0.8957 - val_loss: 0.3768\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8976 - loss: 0.3815 - val_accuracy: 0.8987 - val_loss: 0.3619\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.8995 - loss: 0.3669 - val_accuracy: 0.9023 - val_loss: 0.3491\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9025 - loss: 0.3574 - val_accuracy: 0.9040 - val_loss: 0.3391\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9034 - loss: 0.3499 - val_accuracy: 0.9077 - val_loss: 0.3289\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9053 - loss: 0.3362 - val_accuracy: 0.9070 - val_loss: 0.3219\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9068 - loss: 0.3315 - val_accuracy: 0.9110 - val_loss: 0.3133\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9095 - loss: 0.3248 - val_accuracy: 0.9133 - val_loss: 0.3063\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9112 - loss: 0.3163 - val_accuracy: 0.9160 - val_loss: 0.3006\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9139 - loss: 0.3059 - val_accuracy: 0.9150 - val_loss: 0.2947\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9105 - loss: 0.3078 - val_accuracy: 0.9160 - val_loss: 0.2893\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9170 - loss: 0.2947 - val_accuracy: 0.9183 - val_loss: 0.2839\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9157 - loss: 0.2942 - val_accuracy: 0.9197 - val_loss: 0.2802\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9192 - loss: 0.2873 - val_accuracy: 0.9218 - val_loss: 0.2746\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9184 - loss: 0.2820 - val_accuracy: 0.9235 - val_loss: 0.2704\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9222 - loss: 0.2752 - val_accuracy: 0.9237 - val_loss: 0.2666\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9213 - loss: 0.2731 - val_accuracy: 0.9243 - val_loss: 0.2621\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9224 - loss: 0.2703 - val_accuracy: 0.9253 - val_loss: 0.2583\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9260 - loss: 0.2582 - val_accuracy: 0.9263 - val_loss: 0.2541\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9252 - loss: 0.2594 - val_accuracy: 0.9293 - val_loss: 0.2508\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9297 - loss: 0.2487 - val_accuracy: 0.9303 - val_loss: 0.2468\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9294 - loss: 0.2490 - val_accuracy: 0.9307 - val_loss: 0.2437\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9285 - loss: 0.2483 - val_accuracy: 0.9315 - val_loss: 0.2401\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9319 - loss: 0.2365 - val_accuracy: 0.9315 - val_loss: 0.2373\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9297 - loss: 0.2423 - val_accuracy: 0.9332 - val_loss: 0.2336\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9329 - loss: 0.2365 - val_accuracy: 0.9345 - val_loss: 0.2312\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9347 - loss: 0.2337 - val_accuracy: 0.9355 - val_loss: 0.2279\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9353 - loss: 0.2315 - val_accuracy: 0.9363 - val_loss: 0.2253\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9356 - loss: 0.2258 - val_accuracy: 0.9372 - val_loss: 0.2220\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9361 - loss: 0.2248 - val_accuracy: 0.9383 - val_loss: 0.2194\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9371 - loss: 0.2205 - val_accuracy: 0.9393 - val_loss: 0.2162\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9399 - loss: 0.2107 - val_accuracy: 0.9402 - val_loss: 0.2137\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9393 - loss: 0.2109 - val_accuracy: 0.9392 - val_loss: 0.2114\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9404 - loss: 0.2104 - val_accuracy: 0.9400 - val_loss: 0.2088\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9411 - loss: 0.2028 - val_accuracy: 0.9418 - val_loss: 0.2064\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9429 - loss: 0.2024 - val_accuracy: 0.9422 - val_loss: 0.2041\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9435 - loss: 0.1978 - val_accuracy: 0.9428 - val_loss: 0.2022\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9446 - loss: 0.1957 - val_accuracy: 0.9435 - val_loss: 0.1994\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 4ms/step - accuracy: 0.9434 - loss: 0.1983 - val_accuracy: 0.9427 - val_loss: 0.1973\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9452 - loss: 0.1903 - val_accuracy: 0.9438 - val_loss: 0.1951\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "H_1h100_2h50 = model_1h100_2h50.fit(X_train, y_train, validation_split=0.1, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "BhAmmJznh9IR", + "outputId": "1bfdab95-e51f-4ef2-cd01-b1bc03352652" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcsRJREFUeJzt3Xl4VNXhxvHvbJkl+76w75sIioqgVZBdi2K1blSWtloV6kKtP2krgktRVFxR6oq2ItYFtCpIRIOKiKwKCMi+JiEs2ZPJJHN/f0wyEBKWhGQmJO/nee6TmTtn7pw5ieXtOeeeYzIMw0BERESkCTEHuwIiIiIigaYAJCIiIk2OApCIiIg0OQpAIiIi0uQoAImIiEiTowAkIiIiTY4CkIiIiDQ5CkAiIiLS5CgAiYiISJOjACQiDd6YMWMICwsLdjWCzmQyMX78+GBXQ6RRUAASacJmzZqFyWRixYoVwa6KiEhAKQCJiIhIk6MAJCIiIk2OApCInNTq1asZNmwYERERhIWFMWDAAL7//vtKZTweD1OmTKFDhw44HA5iY2O5+OKLSU1N9ZfJyMhg7NixNG/eHLvdTnJyMldddRU7duw4pXps27aNIUOGEBoaSkpKCg899BCGYQBgGAatW7fmqquuqvK+4uJiIiMj+dOf/nTSz/jPf/5Dr169cDqdxMTEcMMNN7B79+5KZfr168dZZ53FypUr6du3L06nkzZt2jBz5swq19u/fz9/+MMfSExMxOFw0KNHD958880q5bxeL88++yzdu3fH4XAQHx/P0KFDqx2enDdvHmeddRZ2u51u3bqxYMGCSq/n5eVx991307p1a+x2OwkJCQwaNIhVq1ad9PuLNBUKQCJyQuvXr+dXv/oVP/74I/fddx8PPPAA27dvp1+/fixbtsxfbvLkyUyZMoX+/fvzwgsv8Pe//52WLVtW+kf3mmuuYe7cuYwdO5YXX3yRO++8k7y8PHbt2nXSepSVlTF06FASExOZNm0avXr14sEHH+TBBx8EfBOEf/e73zF//nwOHTpU6b3/+9//yM3N5Xe/+90JP+PRRx9l1KhRdOjQgenTp3P33XezaNEiLrnkErKzsyuVPXz4MJdffjm9evVi2rRpNG/enNtvv53XX3/dX6aoqIh+/frx73//m5EjR/LEE08QGRnJmDFjePbZZytd7w9/+AN33303LVq04PHHH+f+++/H4XBUCZrffvstd9xxBzfccAPTpk2juLiYa665hoMHD/rL3Hbbbbz00ktcc801vPjii9x77704nU42bNhw0nYWaTIMEWmy3njjDQMwli9fftwyI0aMMEJCQoytW7f6z+3bt88IDw83LrnkEv+5Hj16GFdcccVxr3P48GEDMJ544oka13P06NEGYPz5z3/2n/N6vcYVV1xhhISEGFlZWYZhGMamTZsMwHjppZcqvf/KK680WrdubXi93uN+xo4dOwyLxWI8+uijlc6vXbvWsFqtlc5feumlBmA89dRT/nNut9vo2bOnkZCQYJSUlBiGYRjPPPOMARj/+c9//OVKSkqMPn36GGFhYUZubq5hGIbx5ZdfGoBx5513VqnX0XUGjJCQEGPLli3+cz/++KMBGM8//7z/XGRkpDFu3LjjflcRMQz1AInIcZWVlbFw4UJGjBhB27Zt/eeTk5O56aab+Pbbb8nNzQUgKiqK9evXs3nz5mqv5XQ6CQkJIS0tjcOHD9eqPkffAl5xS3hJSQlffPEFAB07dqR37968/fbb/nKHDh1i/vz5jBw5EpPJdNxrf/jhh3i9Xq677joOHDjgP5KSkujQoQNfffVVpfJWq7XSkFpISAh/+tOf2L9/PytXrgTgs88+IykpiRtvvNFfzmazceedd5Kfn8/ixYsB+OCDDzCZTP7erKMdW+eBAwfSrl07//Ozzz6biIgItm3b5j8XFRXFsmXL2Ldv33G/r0hTpwAkIseVlZVFYWEhnTp1qvJaly5d8Hq9/vkxDz30ENnZ2XTs2JHu3bvz17/+lZ9++slf3m638/jjjzN//nwSExO55JJLmDZtGhkZGadUF7PZXCmEgS/wAJXmEI0aNYolS5awc+dOAN577z08Hg8333zzCa+/efNmDMOgQ4cOxMfHVzo2bNjA/v37K5VPSUkhNDT0hPXZuXMnHTp0wGyu/D+1Xbp08b8OsHXrVlJSUoiJiTlZM9CyZcsq56KjoyuFymnTprFu3TpatGjBBRdcwOTJkysFJBFRABKROnLJJZewdetWXn/9dc466yxeffVVzj33XF599VV/mbvvvptffvmFqVOn4nA4eOCBB+jSpQurV6+us3rccMMN2Gw2fy/Qf/7zH84777xqQ9zRvF4vJpOJBQsWkJqaWuX417/+VWd1PB0Wi6Xa80b5ZHCA6667jm3btvH888+TkpLCE088Qbdu3Zg/f36gqinS4CkAichxxcfH43K52LRpU5XXNm7ciNlspkWLFv5zMTExjB07lnfeeYfdu3dz9tlnM3ny5Erva9euHX/5y19YuHAh69ato6SkhKeeeuqkdfF6vVV6MX755RcAWrduXakOV1xxBW+//TY7d+5kyZIlJ+39qaiXYRi0adOGgQMHVjkuvPDCSuX37dtHQUHBCevTqlUrNm/ejNfrrVRu48aN/tcrPnvfvn1VJm+fjuTkZO644w7mzZvH9u3biY2N5dFHH62z64uc6RSAROS4LBYLgwcP5qOPPqo0zJSZmcns2bO5+OKLiYiIAKh0FxJAWFgY7du3x+12A1BYWEhxcXGlMu3atSM8PNxf5mReeOEF/2PDMHjhhRew2WwMGDCgUrmbb76Zn3/+mb/+9a9YLBZuuOGGk177N7/5DRaLhSlTplTqTan4rGO/X2lpaaVeoZKSEv71r38RHx9Pr169ALj88svJyMjg3XffrfS+559/nrCwMC699FLAd3ecYRhMmTKlSr2OrcvJlJWVkZOTU+lcQkICKSkpp9zOIk2BNdgVEJHge/3116usJQNw11138cgjj5CamsrFF1/MHXfcgdVq5V//+hdut5tp06b5y3bt2pV+/frRq1cvYmJiWLFiBe+//75/4vIvv/zCgAEDuO666+jatStWq5W5c+eSmZl5SgHF4XCwYMECRo8eTe/evZk/fz6ffvopf/vb34iPj69U9oorriA2Npb33nuPYcOGkZCQcNLrt2vXjkceeYSJEyeyY8cORowYQXh4ONu3b2fu3Lnceuut3Hvvvf7yKSkpPP744+zYsYOOHTvy7rvvsmbNGl5++WVsNhsAt956K//6178YM2YMK1eupHXr1rz//vssWbKEZ555hvDwcAD69+/PzTffzHPPPcfmzZsZOnQoXq+Xb775hv79+9do/6+8vDyaN2/OtddeS48ePQgLC+OLL75g+fLlp9TTJtJkBO8GNBEJtorb4I937N692zAMw1i1apUxZMgQIywszHC5XEb//v2N7777rtK1HnnkEeOCCy4woqKiDKfTaXTu3Nl49NFH/beEHzhwwBg3bpzRuXNnIzQ01IiMjDR69+5t/Pe//z1pPUePHm2EhoYaW7duNQYPHmy4XC4jMTHRePDBB42ysrJq33PHHXcYgDF79uwatckHH3xgXHzxxUZoaKgRGhpqdO7c2Rg3bpyxadMmf5lLL73U6Natm7FixQqjT58+hsPhMFq1amW88MILVa6XmZlpjB071oiLizNCQkKM7t27G2+88UaVcqWlpcYTTzxhdO7c2QgJCTHi4+ONYcOGGStXrvSXAaq9vb1Vq1bG6NGjDcPw3Y7/17/+1ejRo4cRHh5uhIaGGj169DBefPHFGrWDSGNnMowa9q+KiJwB7rnnHl577TUyMjJwuVx1eu1+/fpx4MAB1q1bV6fXFZHA0RwgEWl0iouL+c9//sM111xT5+FHRBoHzQESkUZj//79fPHFF7z//vscPHiQu+66K9hVEpEGSgFIRBqNn3/+mZEjR5KQkMBzzz1Hz549g10lEWmgNAdIREREmhzNARIREZEmRwFIREREmhzNAaqG1+tl3759hIeHn3D3aBEREWk4DMMgLy+PlJSUKpsQH0sBqBr79u2rtL+RiIiInDl2795N8+bNT1hGAagaFcvT796927/PUV3xeDwsXLiQwYMH+5fLl/qj9g4stXdgqb0DS+0dWLVp79zcXFq0aOH/d/xEFICqUTHsFRERUS8ByOVyERERof+AAkDtHVhq78BSeweW2juwTqe9T2X6iiZBi4iISJOjACQiIiJNjgKQiIiINDlBnQM0depUPvzwQzZu3IjT6aRv3748/vjjdOrU6bjveeWVV3jrrbf8uzD36tWLf/7zn1xwwQX+MmPGjOHNN9+s9L4hQ4awYMGC+vkiIiJyRigrK8Pj8dTqvR6PB6vVSnFxMWVlZXVcMzlWde1ts9mwWCx1cv2gBqDFixczbtw4zj//fEpLS/nb3/7G4MGD+fnnnwkNDa32PWlpadx444307dsXh8PB448/zuDBg1m/fj3NmjXzlxs6dChvvPGG/7ndbq/37yMiIg2TYRhkZGSQnZ19WtdISkpi9+7dWiMuAI7X3lFRUSQlJZ327yCoAejYHplZs2aRkJDAypUrueSSS6p9z9tvv13p+auvvsoHH3zAokWLGDVqlP+83W4nKSmp7istIiJnnIrwk5CQgMvlqtU/nl6vl/z8fMLCwk66yJ6cvmPb2zAMCgsL2b9/PwDJycmndf0GdRt8Tk4OADExMaf8nsLCQjweT5X3pKWlkZCQQHR0NJdddhmPPPIIsbGx1V7D7Xbjdrv9z3NzcwFf91ttu0qPp+J6dX1dqZ7aO7DU3oGl9j41ZWVlHD58mPj4eKKjo2t9HcMwKCkpwW63qwcoAKprb7vdjtfrJSsri+jo6CrDYTX5b6HB7Abv9Xq58soryc7O5ttvvz3l991xxx18/vnnrF+/HofDAcCcOXNwuVy0adOGrVu38re//Y2wsDCWLl1a7djh5MmTmTJlSpXzs2fPxuVy1f5LiYhI0FmtVpKSkmjevLmmQzQCbrebPXv2kJGRQWlpaaXXCgsLuemmm8jJyTnpOn4NJgDdfvvtzJ8/n2+//faky1dXeOyxx5g2bRppaWmcffbZxy23bds22rVrxxdffMGAAQOqvF5dD1CLFi04cOBAvSyEmJqayqBBg7SQVgCovQNL7R1Yau9TU1xczO7du2ndurX//yjXRsU+U9onMjCO197FxcXs2LGDFi1aVPl95ubmEhcXd0oBqEEMgY0fP55PPvmEr7/++pTDz5NPPsljjz3GF198ccLwA9C2bVvi4uLYsmVLtQHIbrdX+/8KbDZbvf2PSn1eW6pSeweW2juw1N4nVlZWhslkwmw2n9bcHa/XC+C/ltSv47W32WzGZDJV+3dfk/8OgvobNAyD8ePHM3fuXL788kvatGlzSu+bNm0aDz/8MAsWLOC88847afk9e/Zw8ODB054wJSIicqZq3bo1zzzzTJ1cKy0tDZPJdFp31QVbUHuAxo0bx+zZs/noo48IDw8nIyMDgMjISJxOJwCjRo2iWbNmTJ06FYDHH3+cSZMmMXv2bFq3bu1/T1hYGGFhYeTn5zNlyhSuueYakpKS2Lp1K/fddx/t27dnyJAhwfmiIiIitdCvXz969uxZJ8Fl+fLlx11ipikKag/QSy+9RE5ODv369SM5Odl/vPvuu/4yu3btIj09vdJ7SkpKuPbaayu958knnwTAYrHw008/ceWVV9KxY0f+8Ic/0KtXL7755pugT34r8xrsOVxEtvvkZUVERE7GMIwqE4GPJz4+Xjf2HCXoQ2DVHWPGjPGXSUtLY9asWf7nO3bsqPY9kydPBsDpdPL555+zf/9+SkpK2LFjBy+//DKJiYmB/XLVmPb5RvpP/4ZF+zR2LCIiJzZmzBgWL17Ms88+i8lkwmQyMWvWLEwmE/Pnz6dXr17Y7Xa+/fZbtm7dylVXXUViYiJhYWGcf/75fPHFF5Wud+wQmMlk4tVXX+Xqq6/G5XLRoUMHPv7441rX94MPPqBbt27Y7XZat27NU089Ven1F198kQ4dOuBwOEhMTOTaa6/1v/b+++/TvXt3nE4nsbGxDBw4kIKCglrX5VQ0iEnQTUWrGF/X44HiIFdERKSJMwyDIk/NtrPwer0UlZRhLSmt9SRop81yyneQPfvss/zyyy+cddZZPPTQQwCsX78egPvvv58nn3yStm3bEh0dze7du7n88st59NFHsdvtvPXWWwwfPpxNmzbRsmXL437GlClTmDZtGk888QTPP/88I0eOZOfOnTVajw9g5cqVXHfddUyePJnrr7+e7777jjvuuIPY2FjGjBnDihUruPPOO/n3v/9N3759OXToEN988w0A6enp3HjjjUybNo2rr76avLw8vvnmG+r7JnUFoABqHefreswq1u2TIiLBVOQpo+ukzwP+uT8/NARXyKn90xsZGUlISAgul8u/s8HGjRsBeOihhxg0aJC/bExMDD169PA/f/jhh5k7dy4ff/wx48ePP+5njBkzhhtvvBGAf/7znzz33HP88MMPDB06tEbfa/r06QwYMIAHHngAgI4dO/Lzzz/zxBNPMGbMGHbt2kVoaCi//vWvCQ8Pp1WrVpxzzjmALwCVlpbym9/8hlatWgHQvXt3vF6vf2Hi+qCxmABqHevrATrohtIyb5BrIyIiZ6pj74DOz8/n3nvvpUuXLkRFRREWFsaGDRvYtWvXCa9z9DIyoaGhRERE+LeaqIkNGzZw0UUXVTp30UUXsXnzZsrKyhg0aBCtWrWibdu23Hzzzbz99tsUFhYC0KNHDwYMGED37t357W9/yyuvvMLhw4drXIeaUg9QACVFOLBbzbhLvezNLqZ9klYkFREJBqfNws8P1ezOYK/XS15uHuER4ac1BFYXjr2b69577yU1NZUnn3yS9u3b43Q6ufbaaykpKTnhdY5dN8dkMvnX36lL4eHhrFq1irS0NBYuXMikSZOYPHkyy5cvJyoqitTUVL777jsWLlzI888/z9///neWLl163C2s6oJ6gALIbDbRKsY3DLbzUGGQayMi0nSZTCZcIdYaH84QS63eV3HUdAXpkJAQyspOPldpyZIljBkzhquvvpru3buTlJTEjh07atk6NdelSxeWLFlSpU4dO3b0b0FltVoZOHAg06ZN46effmLHjh18+eWXgO/3cdFFFzFlyhRWr15NSEgI8+bNq9c6qwcowFrFuvhlfz47DioAiYjIibVu3Zply5axY8cOwsLCjts706FDBz788EOGDx+OyWTigQceqJeenOP5y1/+wvnnn8/DDz/M9ddfz9KlS3nhhRd48cUXAfjkk0/Ytm0bl1xyCdHR0Xz22Wd4vV46derEsmXLWLRoEYMHDyYhIYFly5aRlZVF586d67XO6gEKsFaxvh4gBSARETmZe++9F4vFQteuXYmPjz/unJ7p06cTHR1N3759GT58OEOGDOHcc88NWD3PPfdc/vvf/zJnzhzOOussJk2axEMPPeRf1iYqKooPP/yQyy67jC5dujBz5kzeeecdunXrRkREBF9//TWXX345HTt25B//+AdPPfUUw4YNq9c6qwcowFqXB6CdB+t3fQMRETnzdezYkaVLl1Y6d/RaeRVat27tH06qMG7cuErPjx0Sq+4281Pd2qJfv35V3n/NNddwzTXXVFv+4osvJi0trdrXunTpwoIFC6qcr+8eLPUABdiRAFQU5JqIiIg0XQpAAdayfBL0nuwiPLoVXkREGqDbbrvNv8fmscdtt90W7OrVCQ2BBVhiuB2b2cDjhT2Hi2gTp43pRESkYXnooYe49957q30tIiIiwLWpHwpAAWY2m4hzQHoh7DhYoAAkIiINTkJCAgkJCcGuRr3SEFgQxDt8E8d2HNBEaBERkWBQAAqCeIfvpwKQiIhIcCgABUFFD9B2rQUkIiISFApAQVARgLQWkIiISHAoAAVBvNP3c89h3QovIiISDApAQRBhA6fNTJnXYLc2RRURkXrSunVrnnnmmVMqazKZ6n0D0oZEASgITCb8u8Lv0DCYiIhIwCkABYNhHNkU9YB6gERERAJNASiQvnse61Pt6LZ3Nq1jfQsgqgdIRESq8/LLL5OSklJlU9CrrrqK3//+92zdupWrrrqKxMREwsLCOP/88/niiy/q7PPXrl3LZZddhtPpJDY2lltvvZX8/Hz/62lpaVxwwQWEhoYSFRXFRRddxM6dOwH48ccf6d+/P+Hh4URERNCrVy9WrFhRZ3WrCwpAgWSyYCrOweHJplWsbyb0dq0FJCISeIYBJQU1PzyFtXtfxVHNDuzH89vf/paDBw/y1Vdf+c8dOnSIBQsWMHLkSPLz87n88stZtGgRq1evZujQoQwfPpxdu3addvMUFBQwZMgQoqOjWb58Oe+99x5ffPEF48ePB6C0tJQRI0Zw6aWX8tNPP7F06VJuvfVWTCYTACNHjqR58+YsX76clStXcv/992Oz2U67XnVJW2EEUngiAI7SbP8Q2E6tBSQiEnieQvhnSo3eYgaiTvdz/7YPQk5tC6To6GiGDRvG7NmzGTBgAADvv/8+cXFx9O/fH7PZTI8ePfzlH374YebOncvHH3/sDyq1NXv2bIqLi3nrrbcIDfXV94UXXmD48OE8/vjj2Gw2cnJy+PWvf027du0A6NKli//9u3bt4q9//SudO3cGoEOHDqdVn/qgHqBACksCwOHJ9g+B7TlcSEmpboUXEZGqRo4cyQcffIDb7Qbg7bff5oYbbsBsNpOfn8+9995Lly5diIqKIiwsjA0bNtRJD9CGDRvo0aOHP/wAXHTRRXi9XjZt2kRMTAxjxoxhyJAhDB8+nGeffZb09HR/2QkTJvDHP/6RgQMH8thjj7F169bTrlNdUw9QIIVXBKAcQsJCcIVYKCwpY/fhQtrFhwW5ciIiTYjN5euNqQGv10tuXh4R4eGYzbXsP7C5alR8+PDhGIbBp59+yvnnn88333zD008/DcC9995LamoqTz75JO3bt8fpdHLttddSUlJSu7rV0BtvvMGdd97JggULePfdd/nHP/5BamoqF154IZMnT+amm27i008/Zf78+Tz44IPMmTOHq6++OiB1OxUKQIEU5ttZ1+otxuMpoFVsKBvSc9lxoEABSEQkkEymUx6K8vN6wVbme19tA1ANORwOfvOb3/D222+zZcsWOnXqxLnnngvAkiVLGDNmjD9U5Ofns2PHjjr53C5dujBr1iwKCgr8vUBLlizBbDbTqVMnf7lzzjmHc845h4kTJ9KnTx9mz57NhRdeCEDHjh3p2LEj99xzDzfeeCNvvPFGgwpAGgILJHs4hq38P7j8/bSJq1gLSPOARESkeiNHjuTTTz/l9ddfZ+TIkf7zHTp04MMPP2TNmjX8+OOP3HTTTVXuGDudz3Q4HIwePZp169bx1Vdf8ec//5mbb76ZxMREtm/fzsSJE1m6dCk7d+5k4cKFbN68mS5dulBUVMT48eNJS0tj586dLFmyhOXLl1eaI9QQqAco0MIS4PB2TPmZtI719QhpV3gRETmeyy67jJiYGDZt2sRNN93kPz99+nR+//vf07dvX+Li4vi///s/cnNz6+QzXS4Xn3/+OXfddRfnn38+LpeLa665hunTp/tf37hxI2+++SYHDx4kOTmZcePG8ac//YnS0lIOHjzIqFGjyMzMJC4ujt/85jdMmTKlTupWVxSAAswIS8R0eDvkZ9I6rg2gtYBEROT4zGYz+/ZVna/UunVrvvzyy0rnxo0bV+l5TYbEjGNu0e/evXuV61dITExk7ty51b4WEhLCO++8c8qfGywaAgu0MN+t8L4eIN9wmNYCEhERCaygBqCpU6dy/vnnEx4eTkJCAiNGjGDTpk0nfd97771H586dcTgcdO/enc8++6zS64ZhMGnSJJKTk3E6nQwcOJDNmzfX19eoEaP8VnhfD5BvDtC+7CLcpWVBrJWIiDRmb7/9NmFhYdUe3bp1C3b1giKoAWjx4sWMGzeO77//ntTUVDweD4MHD6ag4Pg9It999x033ngjf/jDH1i9ejUjRoxgxIgRrFu3zl9m2rRpPPfcc8ycOZNly5YRGhrKkCFDKC4uDsTXOrGjeoDiw+yEhljwGrD7UFGQKyYiIo3VlVdeyZo1a6o9ju1EaCqCOgdowYIFlZ7PmjWLhIQEVq5cySWXXFLte5599lmGDh3KX//6V8C38mVqaiovvPACM2fOxDAMnnnmGf7xj39w1VVXAfDWW2+RmJjIvHnzuOGGG+r3S52EUX4rPAX7MZlMtI4LZf0+363w7RN0K7yIiNS98PBwwsPDg12NBqVBzQHKyckBICYm5rhlli5dysCBAyudGzJkCEuXLgVg+/btZGRkVCoTGRlJ7969/WWC6qgeIECbooqIiARBg7kLzOv1cvfdd3PRRRdx1llnHbdcRkYGiYmJlc4lJiaSkZHhf73i3PHKHMvtdvuXGQf8txF6PB48Hk/Nv8wJlDpifY2el4HH46FltAOAbVl5df5Zgr9N1baBofYOLLX3qSktLcUwDEpLS09rnZyKu6QMw6iz9Xbk+I7X3kf/Po/926/JfwsNJgCNGzeOdevW8e233wb8s6dOnVrt+gQLFy7E5arZsuUnE1KaxzDAVHSI+Z98TM4BG2BhxaZdfGbZUaefJUekpqYGuwpNito7sNTeJ5eYmMiOHTuIiYnBaj29f/oOHjxYR7WSU3F0e5eWlnLo0CHy8/NZtGhRlbKFhae+sHCDCEDjx4/nk08+4euvv6Z58+YnLJuUlERmZmalc5mZmSQlJflfrziXnJxcqUzPnj2rvebEiROZMGGC/3lubi4tWrRg8ODBRERE1OYrHZenpATvujsxG2UMu6QXCYddzN66nAKTi8svr37ek9Sex+MhNTWVQYMGYbPZgl2dRk/tHVhq71Pn8XjIzMwkOzu71tcwDIPi4mIcDgcmk6nuKifVOl57h4aG0rZt22r/5muyEGRQA5BhGPz5z39m7ty5pKWl0aZNm5O+p0+fPixatIi7777bfy41NZU+ffoA0KZNG5KSkli0aJE/8OTm5rJs2TJuv/32aq9pt9ux2+1Vzttstnr5H5ViayQuzyFsRQdpl+gLaftyivGazNitljr/PKm/36VUT+0dWGrvk7PZbLRu3ZrS0lLKymq37IjH4+Hrr7/mkksuUXsHQHXtbbFYsFqtxw2gNfm9BDUAjRs3jtmzZ/PRRx8RHh7un6MTGRmJ0+kEYNSoUTRr1oypU6cCcNddd3HppZfy1FNPccUVVzBnzhxWrFjByy+/DIDJZOLuu+/mkUceoUOHDrRp04YHHniAlJQURowYEZTveSy3LQqX5xDkZxDX7FzC7Fby3aXsPlRI+wTN0hcRqQ8mk+m0wqLFYqG0tBSHw6EAFAD13d5BvQvspZdeIicnh379+pGcnOw/3n33XX+ZXbt2kZ6e7n/et29fZs+ezcsvv0yPHj14//33mTdvXqWJ0/fddx9//vOfufXWWzn//PPJz89nwYIFOByOgH6/4ym2Rfoe5GeW3wrvm2e0/YA2RRUREQmEoA+BnUxaWlqVc7/97W/57W9/e9z3mEwmHnroIR566KHTqV69KbZG+R7kHbkVft3eXG2KKiIiEiANah2gpsJti/I9yPcN+WktIBERkcBSAAqC4ooAVNEDFKcAJCIiEkgKQEFQfEwPUJvyOUA7NAdIREQkIBSAgsBdMQm6vAeoVfkQ2L6cIoo92hVeRESkvikABYF/EnTBfvB6iQ0NIdxuxTBg9yH1AomIiNQ3BaAgcNsiMDCBtxQKD/p3hQfYrjvBRERE6p0CUBAYJiu4Yn1P8jURWkREJNAUgIIlrHy3ev+t8OUToQ9qCExERKS+KQAFiVERgI5aDBHQYogiIiIBoAAULMf2AMUpAImIiASKAlCQHNsD1Cau4lb4Yt0KLyIiUs8UgIIlLMH3s7wHKNplI9zh25ptl26FFxERqVcKQEFybA+QyWTy9wLpVngREZH6pQAULP45QJn+U5oILSIiEhgKQEFiHB2ADAPQWkAiIiKBogAULBUByFMI7jzgqLWAtCmqiIhIvVIAChabC+wRvsdaDVpERCSgFICCyT8R2ncnWJvyOUDpOcUUlehWeBERkfqiABRMx0yEjg4NIdJpA3QrvIiISH1SAAqm8Mo9QHBkHpBuhRcREak/CkDBFJbk+5l/VADSPCAREZF6pwAUTBU9QPn7/ae0FpCIiEj9UwAKpooeoKOGwLQatIiISP1TAAqm8KqrQTePdgK+O8FERESkfigABVNY1UnQCeEOAPbnFWOUrxAtIiIidUsBKJgqAlBxNnh8PT7x4XbfKY+XfHdpkComIiLSuCkABZMzGiy+wFMxDOYMsRButwKwP88drJqJiIg0agpAwWQyVbsrfHyELxTtz1UAEhERqQ8KQMFWzUTohPJhsKx8BSAREZH6oAAUbNVMhI6vmAidqzvBRERE6oMCULCFV6wGXU0PkOYAiYiI1IugBqCvv/6a4cOHk5KSgslkYt68eScsP2bMGEwmU5WjW7du/jKTJ0+u8nrnzp3r+Zuchmp7gBSARERE6lNQA1BBQQE9evRgxowZp1T+2WefJT093X/s3r2bmJgYfvvb31Yq161bt0rlvv322/qoft2oZhJ0RQ+Q7gITERGpH9ZgfviwYcMYNmzYKZePjIwkMjLS/3zevHkcPnyYsWPHVipntVpJSkqqs3rWq/Cq22FULIaoHiAREZH6EdQAdLpee+01Bg4cSKtWrSqd37x5MykpKTgcDvr06cPUqVNp2bLlca/jdrtxu4+EjdzcXAA8Hg8ej6dO61xxPf91HbHYACMvg9Lyc9FOX8fc/rziOv/8pqZKe0u9UnsHlto7sNTegVWb9q5JWZPRQPZbMJlMzJ07lxEjRpxS+X379tGyZUtmz57Ndddd5z8/f/588vPz6dSpE+np6UyZMoW9e/eybt06wsPDq73W5MmTmTJlSpXzs2fPxuVy1er7nCq7J5uh6+7EwMTHPd8Ak5kCD/xthS+bPtW7FKumqouIiJxUYWEhN910Ezk5OURERJyw7BkbgKZOncpTTz3Fvn37CAkJOW657OxsWrVqxfTp0/nDH/5QbZnqeoBatGjBgQMHTtqANeXxeEhNTWXQoEHYbDbwlmF9LBmT4cVz13oIS8QwDLpN+QJPmcHX915CcqSjTuvQlFRpb6lXau/AUnsHlto7sGrT3rm5ucTFxZ1SADojh8AMw+D111/n5ptvPmH4AYiKiqJjx45s2bLluGXsdjt2u73KeZvNVm9/5EeubYPQeMjPxFZ8EKKbAxAfZmdfTjGHispoGaf/0E5Xff4upSq1d2CpvQNL7R1YNWnvmvxezsjBlcWLF7Nly5bj9ugcLT8/n61bt5KcnByAmtVSWILvZ97R22FoMUQREZH6EtQAlJ+fz5o1a1izZg0A27dvZ82aNezatQuAiRMnMmrUqCrve+211+jduzdnnXVWldfuvfdeFi9ezI4dO/juu++4+uqrsVgs3HjjjfX6XU5LWMViiEffCabtMEREROpLUIfAVqxYQf/+/f3PJ0yYAMDo0aOZNWsW6enp/jBUIScnhw8++IBnn3222mvu2bOHG2+8kYMHDxIfH8/FF1/M999/T3x8fP19kdNVsR/Y0T1A4doQVUREpL4ENQD169ePE83BnjVrVpVzkZGRFBYWHvc9c+bMqYuqBdYJeoC0GKKIiEjdOyPnADU61SyGqO0wRERE6o8CUEPg3w5jv//UkdWgNQlaRESkrikANQT+AKQhMBERkUBQAGoIjp4EXT4nqmII7EC+G6+3QaxVKSIi0mgoADUEFZOgy9xQnA1AXJgvAHnKDLKLtO+MiIhIXVIAaghsDnCU73Jffit8iNVMTKhvlWtNhBYREalbCkANRTW3wseHVcwD0kRoERGRuqQA1FBUsxhiQoQWQxQREakPCkANhb8HqOpq0NoOQ0REpG4pADUUFRuiVhOA1AMkIiJStxSAGopqVoOuWAxRc4BERETqlgJQQ3GiITDdBSYiIlKnFIAaCv8k6KqrQSsAiYiI1C0FoIaimh4gbYchIiJSPxSAGoqKHiB3LpQUAkeGwPLdpRSWlAarZiIiIo2OAlBDYY8Aq2/Sc8ViiGF2K06bBdAwmIiISF1SAGooTKajdoXfX37K5F8MUQFIRESk7igANSTV3Ap/ZDsMBSAREZG6ogDUkPh7gKrbDkNrAYmIiNQVBaCG5ASLIWo7DBERkbqjANSQVNMDpO0wRERE6p4CUENS3RwgrQUkIiJS5xSAGpIT9ADpLjAREZG6owDUkFQ3CVo9QCIiInVOAaghqRgCKzgAZb6VnysmQR8scFNa5g1WzURERBoVBaCGxBUHJgtgQIFvMcSY0BDMJjAMOFRQEtz6iYiINBIKQA2J2QxhCb7H5ROhLWYTcVoMUUREpE4pADU0J1oMMU+LIYqIiNQFBaCG5gTbYehOMBERkbqhANTQVAyBVboTzDcRWoshioiI1I2gBqCvv/6a4cOHk5KSgslkYt68eScsn5aWhslkqnJkZGRUKjdjxgxat26Nw+Ggd+/e/PDDD/X4LepYWDXbYVTsCK/tMEREROpEUANQQUEBPXr0YMaMGTV636ZNm0hPT/cfCQkJ/tfeffddJkyYwIMPPsiqVavo0aMHQ4YMYf/+/XVd/foRXjEH6Eh9tR2GiIhI3bIG88OHDRvGsGHDavy+hIQEoqKiqn1t+vTp3HLLLYwdOxaAmTNn8umnn/L6669z//33n051A6OiByj/6A1RNQlaRESkLp2Rc4B69uxJcnIygwYNYsmSJf7zJSUlrFy5koEDB/rPmc1mBg4cyNKlS4NR1ZqLSPb9zN3nP+XfDkNDYCIiInUiqD1ANZWcnMzMmTM577zzcLvdvPrqq/Tr149ly5Zx7rnncuDAAcrKykhMTKz0vsTERDZu3Hjc67rdbtzuI+EiNzcXAI/Hg8fjqdPvUHG9417XlYgNMPIyKC0uBIuNaKcF8A2BlZSUYDKZ6rROjdlJ21vqlNo7sNTegaX2DqzatHdNyp5RAahTp0506tTJ/7xv375s3bqVp59+mn//+9+1vu7UqVOZMmVKlfMLFy7E5XLV+ronkpqaWv0LhpfhJgtmo4yv/vcORSFxlJQBWHGXevngf/NxnVG/tYbhuO0t9ULtHVhq78BSewdWTdq7sLDwlMue8f+UXnDBBXz77bcAxMXFYbFYyMzMrFQmMzOTpKSk415j4sSJTJgwwf88NzeXFi1aMHjwYCIiIuq0vh6Ph9TUVAYNGoTNZqu2jGlHc8jeyWW9OmK0uBCAh376krziUs7pcynt4kPrtE6N2am0t9QdtXdgqb0DS+0dWLVp74oRnFNxxgegNWvWkJzsmzcTEhJCr169WLRoESNGjADA6/WyaNEixo8ff9xr2O127HZ7lfM2m63e/shPeO1IXwCyFmRCeZmEcDt5xaUcKiqls/7Dq7H6/F1KVWrvwFJ7B5baO7Bq0t41+b0ENQDl5+ezZcsW//Pt27ezZs0aYmJiaNmyJRMnTmTv3r289dZbADzzzDO0adOGbt26UVxczKuvvsqXX37JwoUL/deYMGECo0eP5rzzzuOCCy7gmWeeoaCgwH9X2BkhopnvZ84e/6mEcAdbswq0GrSIiEgdCGoAWrFiBf379/c/rxiGGj16NLNmzSI9PZ1du3b5Xy8pKeEvf/kLe/fuxeVycfbZZ/PFF19Uusb1119PVlYWkyZNIiMjg549e7JgwYIqE6MbtMiqAch/J5gCkIiIyGkLagDq168fhmEc9/VZs2ZVen7fffdx3333nfS648ePP+GQV4NX0QOUu9d/6shaQApAIiIip+uMXAeo0Yts7vt59BBYhHqARERE6ooCUENUTQ9QvFaDFhERqTMKQA1RRQ9Q4UHwFAHaEV5ERKQuKQA1RM5osJUvwFi+JYa2wxAREak7CkANkclU5Vb4iknQ2YUe3KVlwaqZiIhIo6AA1FBFVp4HFOm0EWLx/bo0EVpEROT0KAA1VBEVd4L5ApDJZNJaQCIiInVEAaih8vcAVV0MUWsBiYiInB4FoIbKPwdIiyGKiIjUNQWghiry+GsBaQhMRETk9CgANVTHzAGCI2sBZWkxRBERkdOiANRQVfQAuXPAnQdoOwwREZG6ogDUUNnDwR7pe1zeCxQfpjlAIiIidUEBqCE75k6wih4gbYchIiJyehSAGrJjVoOumAR9IN+N12sEq1YiIiJnPAWghiyy8q3wcWF2TCYo9RocLiwJYsVERETObApADVnFnWDlt8LbLGZiXCGA5gGJiIicDgWghiyy8hAYaC0gERGRuqAA1JBFHH8xRPUAiYiI1J4CUEMWedRiiIZv0nPFYoj7tRiiiIhIrSkANWQVPUClRVB0GNAQmIiISF1QAGrIbA5wxfkel88D0oaoIiIip08BqKE7ZlNU/3YYWgxRRESk1hSAGjr/pqjliyGWb4eRla8AJCIiUlsKQA1dlR6g8knQuZoELSIiUlsKQA1dROXVoCsmQReUlFHgLg1WrURERM5oCkANXWTl1aDD7FZcIRZAd4KJiIjUlgJQQxdRdTVo3QkmIiJyehSAGjr/HKB94PUCWgtIRETkdCkANXThyYAJvB4oyAK0GrSIiMjpUgBq6Cw2CE/yPc4tvxVeQ2AiIiKnJagB6Ouvv2b48OGkpKRgMpmYN2/eCct/+OGHDBo0iPj4eCIiIujTpw+ff/55pTKTJ0/GZDJVOjp37lyP3yIAjpkHpCEwERGR0xPUAFRQUECPHj2YMWPGKZX/+uuvGTRoEJ999hkrV66kf//+DB8+nNWrV1cq161bN9LT0/3Ht99+Wx/VD5zIyrfCaxK0iIjI6bEG88OHDRvGsGHDTrn8M888U+n5P//5Tz766CP+97//cc455/jPW61WkpKS6qqawRdR+VZ4LYYoIiJyemoVgN58803i4uK44oorALjvvvt4+eWX6dq1K++88w6tWrWq00oej9frJS8vj5iYmErnN2/eTEpKCg6Hgz59+jB16lRatmx53Ou43W7c7iO9Kbm5uQB4PB48Hk+d1rniejW5rjksCQvgzd5NmcdDtOPIOkB1Xb/GpjbtLbWn9g4stXdgqb0DqzbtXZOyJsMwjJpWqlOnTrz00ktcdtllLF26lIEDB/L000/zySefYLVa+fDDD2t6SUwmE3PnzmXEiBGn/J5p06bx2GOPsXHjRhISEgCYP38++fn5dOrUifT0dKZMmcLevXtZt24d4eHh1V5n8uTJTJkypcr52bNn43K5avxd6lpy9nIu2P48h1zt+KbTg+R54B8rrJgweLJ3GVZNZRcREaGwsJCbbrqJnJwcIiIiTli2VgHI5XKxceNGWrZsyf/93/+Rnp7OW2+9xfr16+nXrx9ZWVk1rnRNA9Ds2bO55ZZb+Oijjxg4cOBxy2VnZ9OqVSumT5/OH/7wh2rLVNcD1KJFCw4cOHDSBqwpj8dDamoqgwYNwmazndJ7THtXYZ01GCM8mdI712IYBuc88iUFJWXM/3Nf2ieE1WkdG5PatLfUnto7sNTegaX2DqzatHdubi5xcXGnFIBqNQQWFhbGwYMHadmyJQsXLmTChAkAOBwOioqKanPJGpkzZw5//OMfee+9904YfgCioqLo2LEjW7ZsOW4Zu92O3W6vct5ms9XbH3mNrh3rG1I05WdiM5vAYqNtfBhr9+awK9tNl2bR9VLHxqQ+f5dSldo7sNTegaX2DqyatHdNfi+1GjwZNGgQf/zjH/njH//IL7/8wuWXXw7A+vXrad26dW0uecreeecdxo4dyzvvvOOfg3Qi+fn5bN26leTk5HqtV70KTQCzDQwv5KUD0C4+FICtWfnBrJmIiMgZqVYBaMaMGfTp04esrCw++OADYmNjAVi5ciU33njjKV8nPz+fNWvWsGbNGgC2b9/OmjVr2LVrFwATJ05k1KhR/vKzZ89m1KhRPPXUU/Tu3ZuMjAwyMjLIycnxl7n33ntZvHgxO3bs4LvvvuPqq6/GYrHUqF4NjtkMEeUBrvxOsLbxvmGvbVkFwaqViIjIGatWQ2BRUVG88MILVc5XN5H4RFasWEH//v39zyuG0kaPHs2sWbNIT0/3hyGAl19+mdLSUsaNG8e4ceP85yvKA+zZs4cbb7yRgwcPEh8fz8UXX8z3339PfHx8jerW4EQ0h+xd/sUQ25UHIPUAiYiI1FytAtCCBQsICwvj4osvBnw9Qq+88gpdu3ZlxowZREef2pyUfv36caI52BWhpkJaWtpJrzlnzpxT+uwzjn9T1IoeIN8Q2LasAgzDwGQyBatmIiIiZ5xaDYH99a9/9a+Vs3btWv7yl79w+eWXs337dn8vjtSxiMqrQbeJC8VkgpwiDwcLSoJYMRERkTNPrXqAtm/fTteuXQH44IMP+PWvf80///lPVq1a5Z8QLXUssvJq0A6bhWZRTvYcLmJbVgFxYVXvYhMREZHq1aoHKCQkhMLCQgC++OILBg8eDEBMTIy/Z0jq2DEbooLmAYmIiNRWrXqALr74YiZMmMBFF13EDz/8wLvvvgvAL7/8QvPmzeu0glLumDlA4JsHtPiXLLYpAImIiNRIrXqAXnjhBaxWK++//z4vvfQSzZr5/nGeP38+Q4cOrdMKSrmKDVELssDj2wS1nW6FFxERqZVa9QC1bNmSTz75pMr5p59++rQrJMfhigGrA0qLfb1Ase38d4JpCExERKRmahWAAMrKypg3bx4bNmwAoFu3blx55ZVYLJY6q5wcxWTyzQM6tNUfgNqX9wDtPlyEu7QMu1VtLyIicipqFYC2bNnC5Zdfzt69e+nUqRMAU6dOpUWLFnz66ae0a9euTisp5SLLA1D5rfDx4XbC7Fby3aXsOlhIh8Tqd7sXERGRymo1B+jOO++kXbt27N69m1WrVrFq1Sp27dpFmzZtuPPOO+u6jlKhYh5Qru9OMJPJdNSeYJoHJCIicqpq1QO0ePFivv/+e2JiYvznYmNjeeyxx7jooovqrHJyjIq1gHKOvhMsjB/35GgekIiISA3UqgfIbreTl5dX5Xx+fj4hISGnXSk5jmpuhW931JYYIiIicmpqFYB+/etfc+utt7Js2TIMw8AwDL7//ntuu+02rrzyyrquo1SIqL4HCHQnmIiISE3UKgA999xztGvXjj59+uBwOHA4HPTt25f27dvzzDPP1HEVxc/fA1R1NehtWfkn3FhWREREjqjVHKCoqCg++ugjtmzZ4r8NvkuXLrRv375OKyfHqNgOozgH3PlgD6NVrAuTCXKLSzmQX0J8uPYEExEROZlTDkAn2+X9q6++8j+ePn167Wskx+eIAHsEuHN984DiO+GwWWge7WT3oSK2ZeUrAImIiJyCUw5Aq1evPqVyJpOp1pWRUxDRDLJyfZuixvvWYGoXH8buQ0VszSqgd9vYIFdQRESk4TvlAHR0D48EUWQzyNpQeVPUuDDSNmlTVBERkVNVq0nQEkQV84COuhOsXYL2BBMREakJBaAzTWTl1aDB1wMEsO2A1gISERE5FQpAZ5oT9ADtPlSIu7QsGLUSERE5oygAnWmqWQ06PsxOuN2K14CdBwuDVDEREZEzhwLQmebo1aDLFz40mUy0TShfEXq/5gGJiIicjALQmSYixffTUwBFh/2n28WV7wmmeUAiIiInpQB0pglxgTPG9/joTVHVAyQiInLKFIDORJFVJ0K3Le8B2qoeIBERkZNSADoTRVS9Fb6iB2jbfm2KKiIicjIKQGeiyKMmQpdrFevCbII8dylZ+e4gVUxEROTMoAB0JqrmVni71UKLGBcA27I0DCYiInIiCkBnooiqPUBw1DwgbYkhIiJyQgpAZyJ/D9CeSqfbxZfPA1IPkIiIyAkFNQB9/fXXDB8+nJSUFEwmE/PmzTvpe9LS0jj33HOx2+20b9+eWbNmVSkzY8YMWrdujcPhoHfv3vzwww91X/lgqtgOI3cfeL3+023LA5B6gERERE4sqAGooKCAHj16MGPGjFMqv337dq644gr69+/PmjVruPvuu/njH//I559/7i/z7rvvMmHCBB588EFWrVpFjx49GDJkCPv376+vrxF4Ec3A5oKyEjjwi/90u/jyxRDVAyQiInJCQQ1Aw4YN45FHHuHqq68+pfIzZ86kTZs2PPXUU3Tp0oXx48dz7bXX8vTTT/vLTJ8+nVtuuYWxY8fStWtXZs6cicvl4vXXX6+vrxF4FiuknON7vHeF/3RFD9Duw4UUe7QpqoiIyPGcUXOAli5dysCBAyudGzJkCEuXLgWgpKSElStXVipjNpsZOHCgv0yj0ayX7+ee5f5TcWEhRDisGNoUVURE5ISswa5ATWRkZJCYmFjpXGJiIrm5uRQVFXH48GHKysqqLbNx48bjXtftduN2H1k7Jzc3FwCPx4PH46nDb4D/eqd7XVPyOVgBY/cKSo+6Vpu4UH7ck8Om9GzaxjpO6zMag7pqbzk1au/AUnsHlto7sGrT3jUpe0YFoPoydepUpkyZUuX8woULcblc9fKZqampp/V+R0kOQwD2r+fz/82lzGIHwO42A2Y+/241xi6tCF3hdNtbakbtHVhq78BSewdWTdq7sPDURz/OqACUlJREZmZmpXOZmZlERETgdDqxWCxYLJZqyyQlJR33uhMnTmTChAn+57m5ubRo0YLBgwcTERFRp9/B4/GQmprKoEGDsNlsp3UtY9fjmPLSGdojEaNlXwB2Ld7GD19swRrTnMsv714XVT6j1WV7y8mpvQNL7R1Yau/Aqk17V4zgnIozKgD16dOHzz77rNK51NRU+vTpA0BISAi9evVi0aJFjBgxAgCv18uiRYsYP378ca9rt9ux2+1Vzttstnr7I6+Tazc/Dzb8D2v6amh3KQAdkiIB2HGwUP+BHqU+f5dSldo7sNTegaX2DqyatHdNfi9BnQSdn5/PmjVrWLNmDeC7zX3NmjXs2rUL8PXMjBo1yl/+tttuY9u2bdx3331s3LiRF198kf/+97/cc889/jITJkzglVde4c0332TDhg3cfvvtFBQUMHbs2IB+t4Bodp7v51F3glXcCr81q0CbooqIiBxHUHuAVqxYQf/+/f3PK4ahRo8ezaxZs0hPT/eHIYA2bdrw6aefcs899/Dss8/SvHlzXn31VYYMGeIvc/3115OVlcWkSZPIyMigZ8+eLFiwoMrE6Eah+fm+n3tW+k+1jHVhMZvId5eSlecmIUIToUVERI4V1ADUr1+/E/ZSVLfKc79+/Vi9evUJrzt+/PgTDnk1Gik9wWSBvH2+fcEim/k2RY12suNgIVuy8hWAREREqnFGrQMkxwgJhYSuvsfVLIioFaFFRESqpwB0pmtesSBidfOAtCeYiIhIdRSAznQV84D2HpkHpB4gERGRE1MAOtNV3Am2bzWUlQLQTrvCi4iInJAC0JkuriPYI8BTCPt/BqBt+RDY3uwibYoqIiJSDQWgM53ZXGVn+NjQECKdNgwDth/QMJiIiMixFIAag2PWAzKZTP5eIM0DEhERqUoBqDFoXt2K0BUToTUPSERE5FgKQI1BxUTorE1QnAMcmQekidAiIiJVKQA1BmHxENUSMGDvKuCoHiDNARIREalCAaix8K8H5BsG8y+GuD9fm6KKiIgcQwGosagYBiufCN0yJhSL2URBSRn789xBrJiIiEjDowDUWFRMhN6zHAyDEKuZ1rEuANbszg5evURERBogBaDGIulsMNug8ABk7wTgVx3iAUjbtD+YNRMREWlwFIAaC5sDkrr7HpdvjNqvky8AfbUxS/OAREREjqIA1Jj41wPyzQO6sG0sTpuFjNxifk7PDWLFREREGhYFoMak2VHzgACHzcJF7WMB+GqjhsFEREQqKAA1JhU9QOk/QWkJAP07JwDw1aasYNVKRESkwVEAakxi2oIzGsrckLkWgP6dfAFo9a7DHC4oCWbtREREGgwFoMbEZKqyHlBKlJPOSeF4DVj8i3qBREREQAGo8WleeR4QHBkG+1LzgERERAAFoManWdWd4S8rD0CLf8mitMwbjFqJiIg0KApAjU2zc30/D22DwkMAnNMiikinjZwij1aFFhERQQGo8XHFQGx73+PyBRGtFjOXdvQtiqhhMBEREQWgxukEw2AKQCIiIgpAjZN/IvSRAHRJx3hMJtiYkce+7KIgVUxERKRhUABqjI7eEsPrm/QcExrCOS2iAPhKm6OKiEgTpwDUGCWeBVYHFGfDoa3+0xXDYF9t1HpAIiLStCkANUYWGyT38D0+ahisYj2gJVsOUOwpC0bNREREGgQFoMaqmonQXZMjSIywU+QpY9n2Q0GqmIiISPApADVW1UyENplM/r3BtDu8iIg0ZQ0iAM2YMYPWrVvjcDjo3bs3P/zww3HL9uvXD5PJVOW44oor/GXGjBlT5fWhQ4cG4qs0HBUBKHMdeI7c9XX0thiGYQSjZiIiIkEX9AD07rvvMmHCBB588EFWrVpFjx49GDJkCPv3V99D8eGHH5Kenu4/1q1bh8Vi4be//W2lckOHDq1U7p133gnE12k4IltAWCJ4S2HHEv/pi9vHEWIxs+tQIdsOFASxgiIiIsET9AA0ffp0brnlFsaOHUvXrl2ZOXMmLpeL119/vdryMTExJCUl+Y/U1FRcLleVAGS32yuVi46ODsTXaThMJuhype/x6rf8p0PtVnq3jQE0DCYiIk2XNZgfXlJSwsqVK5k4caL/nNlsZuDAgSxduvSUrvHaa69xww03EBoaWul8WloaCQkJREdHc9lll/HII48QGxtb7TXcbjdut9v/PDc3FwCPx4PH46np1zqhiuvV9XWr1WMktuWvYGz8jNLsfRDq2w7jkg6xfLP5AIs2ZDL6whb1X48gCmh7i9o7wNTegaX2DqzatHdNypqMIE4E2bdvH82aNeO7776jT58+/vP33XcfixcvZtmyZSd8/w8//EDv3r1ZtmwZF1xwgf/8nDlzcLlctGnThq1bt/K3v/2NsLAwli5disViqXKdyZMnM2XKlCrnZ8+ejcvlOo1vGHyXbJpMdOE21qdcz5ZE3zyp/UXw6BorZpPB1PPKcAQ1BouIiNSNwsJCbrrpJnJycoiIiDhh2TP6n77XXnuN7t27Vwo/ADfccIP/cffu3Tn77LNp164daWlpDBgwoMp1Jk6cyIQJE/zPc3NzadGiBYMHDz5pA9aUx+MhNTWVQYMGYbPZ6vTa1TElH4DPJtC1eAUdh73gGxoD3t79LTsOFuJq14uh3RLrvR7BEuj2burU3oGl9g4stXdg1aa9K0ZwTkVQA1BcXBwWi4XMzMxK5zMzM0lKSjrhewsKCpgzZw4PPfTQST+nbdu2xMXFsWXLlmoDkN1ux263Vzlvs9nq7Y+8Pq9dSY/rIPUBTIe2Ytv3A7S+GIDLOify+pLtfLPlIMN7Nq//egRZwNpbALV3oKm9A0vtHVg1ae+a/F6COgk6JCSEXr16sWjRIv85r9fLokWLKg2JVee9997D7Xbzu9/97qSfs2fPHg4ePEhycvJp1/mMYw+H7tf6Hq9803/avy3Gpiy8Xt0OLyIiTUvQ7wKbMGECr7zyCm+++SYbNmzg9ttvp6CggLFjxwIwatSoSpOkK7z22muMGDGiysTm/Px8/vrXv/L999+zY8cOFi1axFVXXUX79u0ZMmRIQL5Tg9NrtO/nzx9BoW8F6PPbRBMaYiErz836fafeZSgiItIYBH0O0PXXX09WVhaTJk0iIyODnj17smDBAhITffNSdu3ahdlcOadt2rSJb7/9loULF1a5nsVi4aeffuLNN98kOzublJQUBg8ezMMPP1ztMFeTkHIuJHaHzLXw03/hwtuwWy1c1D6OhT9n8uXG/XRvHhnsWoqIiARM0AMQwPjx4xk/fny1r6WlpVU516lTp+OuYux0Ovn888/rsnpnPpPJ1wv02b2w6k3o/Scwmbisc4IvAG3az10DOwS7liIiIgET9CEwCZDuvwWrE/b/7N8frGJbjJ/2ZHMg332id4uIiDQqCkBNhTMKuo3wPV41C4DECAfdUiIwDPh8fUawaiYiIhJwCkBNybnlk6HXfQjFvonPI3o2A2Dm4q14yrzBqpmIiEhAKQA1JS0vhLhO4CmEde8D8LsLWxEXZmf3oSI+WLknyBUUEREJDAWgpsRkgnNH+R6XrwnkDLFwe792ADz/5RZKStULJCIijZ8CUFPT40awhED6Gkj/EYCRvVuSEG5nb3YR767YHdz6iYiIBIACUFMTGgudf+17XN4L5LBZGNe/PQAzvtxCsacsWLUTEREJCAWgpqhiZei170FJAQDXn9+C5EgHGbnFzPlhVxArJyIiUv8UgJqi1pdAdGtw58L6ecAxvUBpW9ULJCIijZoCUFNkNh+ZDL3qyAap153XgmZRTrLy3Pzn+51BqpyIiEj9UwBqqnqOBJMFdi+D/RsACLGa+fNlvl6gmYu3UlhSGswaioiI1BsFoKYqPAk6DfM9XvWW//Q1vZrTMsbFgfwS/r1UvUAiItI4KQA1ZRUrQ//4DniKAbBZzNw5wLcx6szFW8l3qxdIREQaHwWgpqz9AIhoDkWH4ac5/tMjeqbQJi6Uw4Ue3vxuR/DqJyIiUk8UgJoyswUuvN33OHUS5Pk2RLVazNxV3gv08tfbyCv2BKuGIiIi9UIBqKnrfRsk94TiHPhkAhgGAMN7pNAuPpScIg9vLNkR1CqKiIjUNQWgps5ihatmgNkKmz6F9R/6TptN3D2wIwCvfLONnEL1AomISOOhACSQdBb86l7f48/ug4IDAFzRPZmOiWHkFZfy2rfbglhBERGRuqUAJD6/+gskdIXCAzD//wAwm03cU94L9PqSHRwuKAlmDUVEROqMApD4WEN8Q2EmM6x7HzZ+CsCQbkl0SY4g313K9NRfglxJERGRuqEAJEc0Oxf63ul7/MkEKMrGbDZx/7DOAPz7+518uGpPECsoIiJSNxSApLJ+90Nse8jPgIV/B+DSjvH+LTImfriWtXtygllDERGR06YAJJXZnL6hMEyw+j+wZREA9wzsyGWdE3CXevnTv1dwIN8d3HqKiIicBgUgqarlhdD7T77H/7sL3HmYzSaevr4nbeNC2ZdTzLi3V+Ep8wa3niIiIrWkACTVGzAJolpBzm74YjIAkU4bL4/qRZjdyrLth3j00w3BraOIiEgtKQBJ9UJC4crnfI+Xvwo7lgDQPiGc6df1AGDWdzt4b8XuYNVQRESk1hSA5Pja9juyY/zH46GkEIDB3ZL8e4X9fd46ftydHZz6iYiI1JICkJzY4IchPAUObYNP/wJe37yfuwZ0YGCXREpKvdz2n5Vk5WlStIiInDkUgOTEHJFw1fO+BRJ/nA2f3QuGUT4pugdt40NJ16RoERE5wygAycm1HwgjZgImWPEaLJgIhkG4w8Yro84j3G7lhx2HePiTn4NdUxERkVPSIALQjBkzaN26NQ6Hg969e/PDDz8ct+ysWbMwmUyVDofDUamMYRhMmjSJ5ORknE4nAwcOZPPmzfX9NRq3HtfDlc/7Hi97CVIngWHQLj6Mp6/vCcBbS3cye9mu4NVRRETkFAU9AL377rtMmDCBBx98kFWrVtGjRw+GDBnC/v37j/ueiIgI0tPT/cfOnTsrvT5t2jSee+45Zs6cybJlywgNDWXIkCEUFxfX99dp3M69Ga6Y7nv83XPw1aMADOya6N809W9z1zLjqy0YhhGsWoqIiJxU0APQ9OnTueWWWxg7dixdu3Zl5syZuFwuXn/99eO+x2QykZSU5D8SExP9rxmGwTPPPMM//vEPrrrqKs4++2zeeust9u3bx7x58wLwjRq58/8AQx/3Pf76CVj8BAB/vqw9f7i4DQBPfL6J+z9YqzlBIiLSYAU1AJWUlLBy5UoGDhzoP2c2mxk4cCBLly497vvy8/Np1aoVLVq04KqrrmL9+vX+17Zv305GRkala0ZGRtK7d+8TXlNq4MLbYNBDvsdfPQJLnsVsNvHAr7vy0FXdMJvg3RW7GfPGD+QUeYJbVxERkWpYg/nhBw4coKysrFIPDkBiYiIbN26s9j2dOnXi9ddf5+yzzyYnJ4cnn3ySvn37sn79epo3b05GRob/Gsdes+K1Y7ndbtzuI7dx5+bmAuDxePB46vYf8Irr1fV1A+6COzCXFGFZPBVSJ1GGBe8Ff+LG85qRFB7C3f/9iSVbDnLNi0t4ddS5NItyBqWajaa9zxBq78BSeweW2juwatPeNSkb1ABUG3369KFPnz7+53379qVLly7861//4uGHH67VNadOncqUKVOqnF+4cCEul6vWdT2R1NTUerluYHWhc+KVdMr8GEvq31m3cTM74i4DYFxneHmDhS1ZBQx/7mtu6VxGq7Dg1bRxtPeZQ+0dWGrvwFJ7B1ZN2ruwsPCUywY1AMXFxWGxWMjMzKx0PjMzk6SkpFO6hs1m45xzzmHLli0A/vdlZmaSnJxc6Zo9e/as9hoTJ05kwoQJ/ue5ubm0aNGCwYMHExERUZOvdFIej4fU1FQGDRqEzWar02sHhTGMsi+nYPn+BXrsnsVZXbvg7fV7MJkYnlPMrf9excbMfF7cGML0a89mUNeEgFav0bV3A6f2Diy1d2CpvQOrNu1dMYJzKoIagEJCQujVqxeLFi1ixIgRAHi9XhYtWsT48eNP6RplZWWsXbuWyy+/HIA2bdqQlJTEokWL/IEnNzeXZcuWcfvtt1d7Dbvdjt1ur3LeZrPV2x95fV474IY8AkYZLHsJy+f/h2XP9/DrZ2gZF8X7d1zEuLdXsfiXLMbNWcPfL+/CHy5ug8lkCmgVG1V7nwHU3oGl9g4stXdg1aS9a/J7CfpdYBMmTOCVV17hzTffZMOGDdx+++0UFBQwduxYAEaNGsXEiRP95R966CEWLlzItm3bWLVqFb/73e/YuXMnf/zjHwHfHWJ33303jzzyCB9//DFr165l1KhRpKSk+EOW1DGTCYZOhQEPgtkK6+fCzF/Bru8Js1t5bfR5jOzdEsOARz7dwN/mrqPAXRrsWouISBMW9DlA119/PVlZWUyaNImMjAx69uzJggUL/JOYd+3ahdl8JKcdPnyYW265hYyMDKKjo+nVqxffffcdXbt29Ze57777KCgo4NZbbyU7O5uLL76YBQsWVFkwUeqQyQS/mgBtLoUPfg+Hd8Abw+DS+7Feci+PjDiL1rGh/HP+Bt75YRdf/5LFIyPOon/nwA6JiYiIQAMIQADjx48/7pBXWlpapedPP/00Tz/99AmvZzKZeOihh3jooYfqqopyqpr3gj9949sz7Kd3Ie2fsC0N029e5pZL2tIpKZy/zV3LnsNFjJ21nOE9Upj0667Eh1cdghQREakvQR8Ck0bIEQG/eRmufhlCwmHXdzDzIvj5Iy7pGM/Cey7hll+1wWyC//24jwFPpfHu8l1aPVpERAJGAUjqT4/r4bavoVkvKM6B/46Cj+/EhZu/X9GVj8ZdTLeUCHKLS/m/D9Zyw8vfsy0rP9i1FhGRJkABSOpXTFv4/edw8QTABKvehJkXw4b/0b1ZBB+Nu4i/X94Fp83Csu2HGPrsNzy/aDMlpdpGQ0RE6o8CkNQ/iw0GPgijPoLwZDi0Dd79Hbw+FGv6Km65pC0L77mESzrGU1Lq5anUX7j8uW/45Kd9lHk1LCYiInVPAUgCp+2lMH45XPJXsDph9/fw6gB4bwwtyOTNsefz7A09iQ0NYcv+fMbPXs2gpxfzwco92lhVRETqlAKQBJY9HC77B9y5Cnr+DjD51g164XxMn/+dqzo6+fIv/bh7YAciHFa2ZRXwl/d+5LKn0pi9bBfu0rJgfwMREWkEFIAkOCJSYMQMuO0baHcZeD3w/Qx4rieRa2Zyd79WLLn/Mv5vaGdiQ0PYfaiIv81dy6XT0nhjyXaKShSERESk9hSAJLiSusPNc+F3H0BCN9/dYgv/Ac/3InzlS9x+QTTf/t9lTPp1VxIj7GTkFjPlfz9z8eNf8mLaFg4VlAT7G4iIyBlIAUgahvYDfb1BV74AYUmQsxtSH4DpXXDOv4vft8vj6/v68+jVZ9E82snBghKmLdjEhf9cxLi3V5G2ab8mTIuIyClrECtBiwBgtsC5N8NZ18C692HZy5C5Flb/G1b/G3vLPoy84Bauu+fXfLQ2i1nfbWfd3lw+XZvOp2vTSY50cG2v5vy2VwtaxrqC/W1ERKQBUwCShifEBeeOgnNuhl3fww8vw4aPYddS2LUUW1gS1543lmvHjGF9npP3Vuxh7uq9pOcU8/yXW3j+yy30aRvLdec3Z2CnuGB/GxERaYAUgKThMpmgVR/fkZsOK2fByjcgPwPSpsLXT9CtzaV063oV9196OV/s9PDu8t18u+UAS7cdZOm2g4Q7rHQOM2NZn8llXZNwhehPXkREFIDkTBGRDP0nwq/+4usN+uFl2L0Mti6CrYtwmO7h120u4dc9R5A+bADvbSjmvyt2s+dwEcuLzSyf8yN261p+1SGOwV2TGNAlgdgwbcAqItJUKQDJmcUaAt2v9R0HtsDPc2H9R765Qtu+gm1fkWyycGfrixl/2QhWOvow48stbC0OZffhIr7YsJ8vNuzHbIJeraIZ3DWJwd0SaRUbGuxvJiIiAaQAJGeuuPa+VaUv+Ssc3Ao/z4P18yDjJ9i+GPP2xZxnMvOUqz2RF97AroR+fLI3nNQN+1m7N4flOw6zfMdhHv1sA23jQunTLpa+7eK4sG2MeodERBo5BSBpHGLb+YbHfvUX315jP38E6+dhSl9DbMEv8NVDtOUh7oxuw52dhpHV7zLm57Tm840H+X7bIbYdKGDbgQLeXrYLgM5J4fRtF0ffdrFc0DaGCIctyF9QRETqkgKQND4xbeHie+Die/BkbWXDR89wVsgezDu/hcPb4fsXiedFRtkjGNV+AIW/GcRyc0/S9sLSrQfZmJHnP15fsh2zCbo3j+LCtjGc2zKac1pGkRDuCPa3FBGR06AAJI1bVEu2xw+ky+WXY/YWw9av4JcF8MvnUHgA1s/FtX4ulwKXRreGlheSf965rDQ6sTAriu+2ZbP9QAE/7s7mx93Z/ss2j3b6w9C5LaPpkhxBiFXrioqInCkUgKTpsIdD1yt9h9cLe1fCL/Phl4WQuQ4O74DDOwhjji8Q2SOg+XnkntWLH+nEF3ktWbbXzabMPPYcLmLP4SI+/nGf79JWM92bRXJOyyjOahZJt5QI2sSFYTGbgvqVRUSkegpA0jSZzdDifN8xYJJvD7I9y2H3D77FF/euBHcubP2SiK1f8ivgV5ggriOeXuewy9mZlZ7WpB6KZ/meQrILPazYeZgVOw/7P8Jps9A5OZxuKRF0S4nkrJRIOiaFYbdagve9RUQEUAAS8XFE+vYjaz/Q97ysFPb/7FtraPcy2LUMcnbBgU3YDmyiHdAOuM5sw0g6i9yY7vxi6cgyd0u+ORTJ2oxiCkvKWL0rm9W7sv0fYzWbaJ8QRsfEcDokhNEhMZwOiWG0inFhtWgITUQkUBSARKpjsULy2b7jglt85/L3w95VsG+Vr4do7yooOoRp32oi963mfOB8YLzJghHfloLI9uy1tmRjaQrL8hP4MiucjCKzf4L10UIsZtrEhdI+MYyOCb5Q1DY+lNaxoThs6jESEalrCkAipyosAToN9R0AhgHZO4+Eob2rIGMtlORhOriZsIOb6QR0Aq4CDJOZsqRWHHa1YbelJRvLkllZEE/aoRgOekLYlJnHpsw8PiXd/5EmE6REOmkbH0qbON/RNj6MtnGhpEQ5NcdIRKSWFIBEastkgujWvuOsa3znDAPy0iFrI2RtOvJz/wZMxdlYs7cTn72deOBc4CYAC5RGppAb2oa9tpb8UpbCysIEvs+JZHtxGHuzi9ibXcQ3mw9U+vgQi5kWMU5axYbSMsblP1rFumgR41LPkYjICSgAidQlkwkiUnxHu8uOnDcMKMjyBaL9G+HAJl8wOvAL5Gdizd9HTP4+YlhCd+CaireFOSgOa8HhkBT2mRLZWhrHuqJYVuRGsq00jq1ZXrZmFVRblcQIOy1jXLSIdtEs2knzaCfNonyPU6IcmowtIk2aApBIIJhMviG0sARoc0nl14oOQ9YvR0JRRTDK2YOptBhn9macbCYFOA+4Hnz/5VqhxBFLXkgiByzx7PPGsK0kio2FEWwriSI9N5ZVudEs31F90EkIt9Ms2kmzKKf/Z0qkszwgOYlwWDGZNMQmIo2TApBIsDmjoWVv33G0Mg/k7PavT8Sh7UceH94B7lxCig8SW3yQWHxzjfoDmIDyrcwMzBTY48myJrHPiGdraRwbiqPZ5oljT14cP+bFsnpX9XefhdmtpEQ5SInyBaKUSAeJEQ6SIh0kRThIjHQQbldIEpEzkwKQSENlsfm29YhpW/U1w/D1HOXshpy9kLsXcvaU/9wLuXsgNx2T10OYO5MwdyZtgIsAzPgDktdkJd+RxAFrIhlGDHvKothaHMlWdyTpJTFkZMawOTMcg+pDkivE4gtD5cEoPszGgXQTpnUZJEeHkhBuJyHcgTNEw20i0rAoAImciUwmcMX4juQe1ZfxeqFgP2Tv9t2tlr0TDh/1M2cPZq+HiKI9RLCHSjEr5MjDMpOV/JAEDlliyTKi2FcWwe6ScHZ7wskqjSLrYCTbD0Sygkg8WAELH+74qVJVwu1W4iPs/kCUEG4nIcJOfPlz3087kU6bepREJCAUgEQaK7MZwpN8R4vzq77uLfPdsXZ4p68nKXef73nuPl9PUm465GdiMUqJdO8jkn20Ofr9tqqXLLBEcsAbTrYtnnRvFLtKwkkvi2S/J5r9B6JIPxDFj0YURVS/mWyIxUx8uJ24cDvxYb6AFB8W4jtX/rziZ6hd//MlIrWn/wURaarMFohs7juOp8wDeRnlwWgv5GdBfmb5sf/Iz4L94C0ltCyHUHJoVbKHHuAbbqtm9KzE7CDPEkU2ERwwIsgoDSWjNIxDRgSH8sI5mOs7v4VQDhvh5OHCe8yFnDYLceEhxIbaiQvz/YwNCyE2zPc8JvTIa9GhIdi00raIHKVBBKAZM2bwxBNPkJGRQY8ePXj++ee54IILqi37yiuv8NZbb7Fu3ToAevXqxT//+c9K5ceMGcObb75Z6X1DhgxhwYIF9fclRBojiw2iWviOE/F6oegwnuw9LP/yEy7o2gprURbkZUJ+RuWfngJCvMXEejOIJYN2Fdc4wf8aeTFRYAojhzAOekM55A3lMOHk5rooyHVQYDgpwMF+HGw3HBTgoMBwUICTfJxkGtE4HA5iQn3BKMYVcuRxqC8gxYYeCU3RoTbCNMFbpFELegB69913mTBhAjNnzqR3794888wzDBkyhE2bNpGQkFClfFpaGjfeeCN9+/bF4XDw+OOPM3jwYNavX0+zZs385YYOHcobb7zhf2632wPyfUSaJLMZQmMhJIKsiB0YZ18OtmrGyADceb41kQoO+n4WHoCCA1B4sPzngfLzh30TvUvyMGMQbuQRTh7NTUAN51R7DRNZRiTpebHszY1lnxHHPiOWHUYs3xlxpBuxHCaMsqMuHGI1+4NSbFhIpfAUXRGcXBUByka0S71MImeSoAeg6dOnc8sttzB27FgAZs6cyaeffsrrr7/O/fffX6X822+/Xen5q6++ygcffMCiRYsYNWqU/7zdbicpKal+Ky8iNWcP9x3V3d1WndISKM6GwkO+QFRU/rPwEBTnQEm+73DnQ0lBledGcQ7mMjeJZJNoyqYnW4/7UQU4yTFc5Bih5OIipyiU3KJQcrJCyTFCySGULUYo2YSTbYSSTRjZRph/iC7cYSW6PCBFu3yhKKr8Z7TLRlR5YDpyLkR3yIkESVADUElJCStXrmTixIn+c2azmYEDB7J06dJTukZhYSEej4eYmJhK59PS0khISCA6OprLLruMRx55hNjY2Gqv4Xa7cbvd/ue5ubkAeDwePB5PTb/WCVVcr66vK9VTewdW/bS3CezRviO6Fm83DF/vUu4eTDl7MeX5lgww5fqWDzDl7IH8TEwYhFJEqKmIFNPBGn2E1zCRi4vD3jBy80PJy3OSh4s8w0UeLnINF9txkYeTXMNFbvncpkNGOIXWCMJcLqIqQpLTRnSojSinLyhFOKxEOW1EOG3lP33P7TaL/r4DTO0dWLVp75qUNRmGYdS4VnVk3759NGvWjO+++44+ffr4z993330sXryYZcuWnfQad9xxB59//jnr16/H4fDdWTJnzhxcLhdt2rRh69at/O1vfyMsLIylS5disVT9f1uTJ09mypQpVc7Pnj0bl8t1Gt9QRM4EJqMMW1mh7ygtwFZWUP7c9zOk9MjzkNJ838/yx1Zv8Wl/fr7h8AUiwjlshHO4vGcpFxf5hm8e07E/i3FQZnVistixWm24bOC0gssKoVYDV/lj33HkucMC2kNXGqvCwkJuuukmcnJyiIiIOGHZoA+BnY7HHnuMOXPmkJaW5g8/ADfccIP/cffu3Tn77LNp164daWlpDBgwoMp1Jk6cyIQJE/zPc3NzadGiBYMHDz5pA9aUx+MhNTWVQYMGYTveHAmpM2rvwGpq7W0AnrISKMqG4mxMReXDcu5cTMV54M71HcU5mNy5vvlP7lxMxdnlc5wOYTLKCDMVE2YqpgVZtaqH12Oi2BNCESEUE0KxEUIRdooIociw+3qnjHD2E8FhI5wiWzQl9ijKHDHgisXkiiUsNJQIh5Vwp5VIh41wh5UIp68HquJnuN2KtQnPc2pqf9/BVpv2rhjBORVBDUBxcXFYLBYyMzMrnc/MzDzp/J0nn3ySxx57jC+++IKzzz77hGXbtm1LXFwcW7ZsqTYA2e32aidJ22y2evsjr89rS1Vq78BqUu1ts4EjFGh20qJVeL3gzvHNZyo85BuqKzzom+dUeNA3j8md5w9OuPMwyg/ceZhLiwAwmwxcuHFRPpR/Kj087vIjx/e0wLCTj9M/bJdnOMnDSabhG7qreK3UGooREoYREobZEY7FEY7NFUmIKwJHWCRhrlAiXDYiHLby4OQbtotw2HCFWBrFnXVN6u+7AahJe9fk9xLUABQSEkKvXr1YtGgRI0aMAMDr9bJo0SLGjx9/3PdNmzaNRx99lM8//5zzzjvvpJ+zZ88eDh48SHJycl1VXUTk9JnNvr3gnNEQ2+7k5fFlm4oI4XEXsfDTjxjc/1fY8ICnCDyF4Ck+6nGhr1eq4ABlBQfw5GXhzT+AqfAg5uJD2NyHMRtlhJrchOIm0ZR98kp4yo+Cqi+VGBbyODKRPNMIZXP5PKg8Uxgl1nA8tnDKQsIx7BGY7OGYnVFYnBGEhEZjD40g3Onwh6YIZ3lvVHmvVFPugZK6FfQhsAkTJjB69GjOO+88LrjgAp555hkKCgr8d4WNGjWKZs2aMXXqVAAef/xxJk2axOzZs2ndujUZGRkAhIWFERYWRn5+PlOmTOGaa64hKSmJrVu3ct9999G+fXuGDBkStO8pIlLnzFZKLU4ISzj+sgNHsVDNCgJer+8uu+JsX09T8ZGhOt9j31FWlENpYS5lxbl4i/Mx3HmYSvKxlBZg9RRg8/p6o0JMZcSSR6wpr/pKGEBJ+ZFffZF8w0EeLgoNO8WEkIWd3YaNIuyUmu2UWRwYVgeG1YlhC8Vrj8Brj8DkiMTsjMQWGo0tNBJ7aAyO8GjCXU7CHVbC7FbCHFYtVyBAAwhA119/PVlZWUyaNImMjAx69uzJggULSExMBGDXrl2YzUf+WF966SVKSkq49tprK13nwQcfZPLkyVgsFn766SfefPNNsrOzSUlJYfDgwTz88MNaC0hE5Fhm85F95U6g2vB0NG+ZbxkCd56vx+mowyjOprTgMCUFhyktOIy3MNsXoNy5WErysHryfBPKjRIA35woio8/lOflSIg6BQWGnTxcHDBcbMdJgSmUInMobks4JdYwSm1heEPCMducWO0OrCFObHYHIXYnIQ4ndkcoDoeTkBA7hbkHOXQgk8joOOx2e6MY0muqgh6AAMaPH3/cIa+0tLRKz3fs2HHCazmdTj7//PM6qpmIiJwSswUcEb4jsvJ8KBO+reNO2kdV6j7S61ScUz6MVwSlRZS6C3AXFVBcmE9JcSGe4gI87kKM8snmlpJcrCV52ErzcJTm4fAW4DB8d+hVDO8lmQ4f+SwDKC0/anAjXxegYimpEsNKoclBscmJ2+SgxOLCY3FSZnHhtTrx2lxgc2EKcWG2h2IJCcXqCMXmDMPmDPcN+YVF4QyPxh4a7Ws7i+YWBUqDCEAiIiJY7RAW7zuOfan8CK3J9co8vkBVnA3uXEoLc3DnH6Y4PxtPYTZlhTmUFeVgFOf4eq5KizFK3VDqxlRWgrnMjdlbgtVbgsXwEGK4cRhuQkylAISYSgkhH4x8X6Dy4psbdRqKCTmqhyoUj8VFqdWF1xqKYXNihIRhCgnFZA/D4gjD6gjDZncR4nARYnfidLqwO52E2F1gdfja1OoAmxNsLl9QFUABSEREGiuLzbdFS6hvEdxahaijeDwePvvsM4YOGkBJSRFF+bkU5edQXJCLuzAXT2EenuI8SosL8LoL8JYU+IYFPUWYSguxeIqwlBVhLSvC7i3CZRQQRiHhFBJq8t3B56AEh1ECZYehrE5aofJ3wEaJ2UGpxUGpxUmZxYHX6uuxMtkcYHVgsdkx25xY7A6sNgdWuxOb3YnF5sAU4gJ7xJEV3f1HpO+nNaTuK11PFIBERERqwGyzE+4KIzyqak9VTZWWeSkoKWNfUTFFeb7eqZL8bEoKD1NamEOZu4Cy4jwMty9MmUryMZcWYi4txFpaiK2sCIvXjdVbgtUowWZ4sOPBbvJgpwQ7HhymI91SNjzYvB7w5p12b1V1PKYQPBYnXrMNw2wFcwhYrGAJwWS2gTUEs9WG2RoCZ12L44LRdV+JU6QAJCIiEiRWi5lIp5lIpw1iwoGWp3U9T5mXwpIyCtyl5JaUku8uo6DYQ3FRIe7ifEoK8/EU5+MpLqTMnU+ZuwCvuxCjpADDU4y31I2ptBjK3JhK3ZjK3Fi8Jf5Q5cJNKEWEm4oIp5AwUxFhFPl7sGxGCbbSU5udvsTThosUgEREROR02Y4OVHWkzGtQWFJKYUkZ+e5SikrKKCwpY1eJ73GBu5Rit5uSwny8xTmUFedRUlKCp8TtOzxuyjwllHnclHpK8Ja68ZZ66JHQh4vqrJY1pwAkIiIix2Uxmwh32Ah32Eisw+sGcStSALQalIiIiARcsNdQUgASERGRJkcBSERERJocBSARERFpchSAREREpMlRABIREZEmRwFIREREmhwFIBEREWlyFIBERESkyVEAEhERkSZHAUhERESaHAUgERERaXIUgERERKTJUQASERGRJsca7Ao0RIZhAJCbm1vn1/Z4PBQWFpKbm4vNZqvz60tlau/AUnsHlto7sNTegVWb9q74d7vi3/ETUQCqRl5eHgAtWrQIck1ERESkpvLy8oiMjDxhGZNxKjGpifF6vezbt4/w8HBMJlOdXjs3N5cWLVqwe/duIiIi6vTaUpXaO7DU3oGl9g4stXdg1aa9DcMgLy+PlJQUzOYTz/JRD1A1zGYzzZs3r9fPiIiI0H9AAaT2Diy1d2CpvQNL7R1YNW3vk/X8VNAkaBEREWlyFIBERESkyVEACjC73c6DDz6I3W4PdlWaBLV3YKm9A0vtHVhq78Cq7/bWJGgRERFpctQDJCIiIk2OApCIiIg0OQpAIiIi0uQoAImIiEiTowAUQDNmzKB169Y4HA569+7NDz/8EOwqNQpff/01w4cPJyUlBZPJxLx58yq9bhgGkyZNIjk5GafTycCBA9m8eXNwKtsITJ06lfPPP5/w8HASEhIYMWIEmzZtqlSmuLiYcePGERsbS1hYGNdccw2ZmZlBqvGZ7aWXXuLss8/2LwbXp08f5s+f739dbV2/HnvsMUwmE3fffbf/nNq87kyePBmTyVTp6Ny5s//1+mxrBaAAeffdd5kwYQIPPvggq1atokePHgwZMoT9+/cHu2pnvIKCAnr06MGMGTOqfX3atGk899xzzJw5k2XLlhEaGsqQIUMoLi4OcE0bh8WLFzNu3Di+//57UlNT8Xg8DB48mIKCAn+Ze+65h//973+89957LF68mH379vGb3/wmiLU+czVv3pzHHnuMlStXsmLFCi677DKuuuoq1q9fD6it69Py5cv517/+xdlnn13pvNq8bnXr1o309HT/8e233/pfq9e2NiQgLrjgAmPcuHH+52VlZUZKSooxderUINaq8QGMuXPn+p97vV4jKSnJeOKJJ/znsrOzDbvdbrzzzjtBqGHjs3//fgMwFi9ebBiGr31tNpvx3nvv+cts2LDBAIylS5cGq5qNSnR0tPHqq6+qretRXl6e0aFDByM1NdW49NJLjbvuusswDP1917UHH3zQ6NGjR7Wv1XdbqwcoAEpKSli5ciUDBw70nzObzQwcOJClS5cGsWaN3/bt28nIyKjU9pGRkfTu3VttX0dycnIAiImJAWDlypV4PJ5Kbd65c2datmypNj9NZWVlzJkzh4KCAvr06aO2rkfjxo3jiiuuqNS2oL/v+rB582ZSUlJo27YtI0eOZNeuXUD9t7U2Qw2AAwcOUFZWRmJiYqXziYmJbNy4MUi1ahoyMjIAqm37itek9rxeL3fffTcXXXQRZ511FuBr85CQEKKioiqVVZvX3tq1a+nTpw/FxcWEhYUxd+5cunbtypo1a9TW9WDOnDmsWrWK5cuXV3lNf991q3fv3syaNYtOnTqRnp7OlClT+NWvfsW6devqva0VgESk1saNG8e6desqjdlL3evUqRNr1qwhJyeH999/n9GjR7N48eJgV6tR2r17N3fddRepqak4HI5gV6fRGzZsmP/x2WefTe/evWnVqhX//e9/cTqd9frZGgILgLi4OCwWS5WZ65mZmSQlJQWpVk1DRfuq7eve+PHj+eSTT/jqq69o3ry5/3xSUhIlJSVkZ2dXKq82r72QkBDat29Pr169mDp1Kj169ODZZ59VW9eDlStXsn//fs4991ysVitWq5XFixfz3HPPYbVaSUxMVJvXo6ioKDp27MiWLVvq/e9bASgAQkJC6NWrF4sWLfKf83q9LFq0iD59+gSxZo1fmzZtSEpKqtT2ubm5LFu2TG1fS4ZhMH78eObOncuXX35JmzZtKr3eq1cvbDZbpTbftGkTu3btUpvXEa/Xi9vtVlvXgwEDBrB27VrWrFnjP8477zxGjhzpf6w2rz/5+fls3bqV5OTk+v/7Pu1p1HJK5syZY9jtdmPWrFnGzz//bNx6661GVFSUkZGREeyqnfHy8vKM1atXG6tXrzYAY/r06cbq1auNnTt3GoZhGI899pgRFRVlfPTRR8ZPP/1kXHXVVUabNm2MoqKiINf8zHT77bcbkZGRRlpampGenu4/CgsL/WVuu+02o2XLlsaXX35prFixwujTp4/Rp0+fINb6zHX//fcbixcvNrZv32789NNPxv3332+YTCZj4cKFhmGorQPh6LvADENtXpf+8pe/GGlpacb27duNJUuWGAMHDjTi4uKM/fv3G4ZRv22tABRAzz//vNGyZUsjJCTEuOCCC4zvv/8+2FVqFL766isDqHKMHj3aMAzfrfAPPPCAkZiYaNjtdmPAgAHGpk2bglvpM1h1bQ0Yb7zxhr9MUVGRcccddxjR0dGGy+Uyrr76aiM9PT14lT6D/f73vzdatWplhISEGPHx8caAAQP84ccw1NaBcGwAUpvXneuvv95ITk42QkJCjGbNmhnXX3+9sWXLFv/r9dnWJsMwjNPvRxIRERE5c2gOkIiIiDQ5CkAiIiLS5CgAiYiISJOjACQiIiJNjgKQiIiINDkKQCIiItLkKACJiIhIk6MAJCJyHCaTiXnz5gW7GiJSDxSARKRBGjNmDCaTqcoxdOjQYFdNRBoBa7ArICJyPEOHDuWNN96odM5utwepNiLSmKgHSEQaLLvdTlJSUqUjOjoa8A1PvfTSSwwbNgyn00nbtm15//33K71/7dq1XHbZZTidTmJjY7n11lvJz8+vVOb111+nW7du2O12kpOTGT9+fKXXDxw4wNVXX43L5aJDhw58/PHH/tcOHz7MyJEjiY+Px+l00qFDhyqBTUQaJgUgETljPfDAA1xzzTX8+OOPjBw5khtuuIENGzYAUFBQwJAhQ4iOjmb58uW89957fPHFF5UCzksvvcS4ceO49dZbWbt2LR9//DHt27ev9BlTpkzhuuuu46effuLyyy9n5MiRHDp0yP/5P//8M/Pnz2fDhg289NJLxMXFBa4BRKT26mRLVRGROjZ69GjDYrEYoaGhlY5HH33UMAzfrvS33XZbpff07t3buP322w3DMIyXX37ZiI6ONvLz8/2vf/rpp4bZbDYyMjIMwzCMlJQU4+9///tx6wAY//jHP/zP8/PzDcCYP3++YRiGMXz4cGPs2LF184VFJKA0B0hEGqz+/fvz0ksvVToXExPjf9ynT59Kr/Xp04c1a9YAsGHDBnr06EFoaKj/9Ysuugiv18umTZswmUzs27ePAQMGnLAOZ599tv9xaGgoERER7N+/H4Dbb7+da665hlWrVjF48GBGjBhB3759a/VdRSSwFIBEpMEKDQ2tMiRVV5xO5ymVs9lslZ6bTCa8Xi8Aw4YNY+fOnXz22WekpqYyYMAAxo0bx5NPPlnn9RWRuqU5QCJyxvr++++rPO/SpQsAXbp04ccff6SgoMD/+pIlSzCbzXTq1Inw8HBat27NokWLTqsO8fHxjB49mv/85z8888wzvPzyy6d1PREJDPUAiUiD5Xa7ycjIqHTOarX6Jxq/9957nHfeeVx88cW8/fbb/PDDD7z22msAjBw5kgcffJDRo0czefJksrKy+POf/8zNN99MYmIiAJMnT+a2224jISGBYcOGkZeXx5IlS/jzn/98SvWbNGkSvXr1olu3brjdbj755BN/ABORhk0BSEQarAULFpCcnFzpXKdOndi4cSPgu0Nrzpw53HHHHSQnJ/POO+/QtWtXAFwuF59//jl33XUX559/Pi6Xi2uuuYbp06f7rzV69GiKi4t5+umnuffee4mLi+Paa6895fqFhIQwceJEduzYgdPp5Fe/+hVz5sypg28uIvXNZBiGEexKiIjUlMlkYu7cuYwYMSLYVRGRM5DmAImIiEiTowAkIiIiTY7mAInIGUmj9yJyOtQDJCIiIk2OApCIiIg0OQpAIiIi0uQoAImIiEiTowAkIiIiTY4CkIiIiDQ5CkAiIiLS5CgAiYiISJOjACQiIiJNzv8Dzxn9OcFO0MwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# вывод графика ошибки по эпохам\n", + "plt.plot(H_1h100_2h50.history['loss'])\n", + "plt.plot(H_1h100_2h50.history['val_loss'])\n", + "plt.grid()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('loss')\n", + "plt.legend(['train_loss', 'val_loss'])\n", + "plt.title('Loss by epochs')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "5lL_vSm_iDxe", + "outputId": "16f63632-1421-4549-c993-08b6396c5062" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9454 - loss: 0.1818\n", + "Loss on test data: 0.19274231791496277\n", + "Accuracy on test data: 0.9430000185966492\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_1h100_2h50.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JjOvcqWbiFva" + }, + "source": [ + "При 100 нейронах во втором скрытом слое:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "wVZnfqXKiIhH", + "outputId": "b795f670-c200-4a40-ebce-ecdc5313d7b9" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"sequential_19\"\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"sequential_19\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+              "│ dense_40 (Dense)                │ (None, 100)            │        78,500 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_41 (Dense)                │ (None, 100)            │        10,100 │\n",
+              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+              "│ dense_42 (Dense)                │ (None, 10)             │         1,010 │\n",
+              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+              "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_40 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_41 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_42 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 89,610 (350.04 KB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 89,610 (350.04 KB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# создаем модель\n", + "model_1h100_2h100 = Sequential()\n", + "model_1h100_2h100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_1h100_2h100.add(Dense(units=100, activation='sigmoid'))\n", + "model_1h100_2h100.add(Dense(units=num_classes, activation='softmax'))\n", + "# компилируем модель\n", + "model_1h100_2h100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "# вывод информации об архитектуре модели\n", + "print(model_1h100_2h100.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "pP1NtFz0i6Sp", + "outputId": "668df760-53fb-4db8-9f08-1945f1a7c804" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.2265 - loss: 2.2685 - val_accuracy: 0.4253 - val_loss: 2.0877\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.5373 - loss: 1.9708 - val_accuracy: 0.6772 - val_loss: 1.5106\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.6911 - loss: 1.3719 - val_accuracy: 0.7632 - val_loss: 1.0021\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.7798 - loss: 0.9299 - val_accuracy: 0.8145 - val_loss: 0.7389\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.8257 - loss: 0.7067 - val_accuracy: 0.8452 - val_loss: 0.5985\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 4ms/step - accuracy: 0.8513 - loss: 0.5799 - val_accuracy: 0.8655 - val_loss: 0.5154\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.8667 - loss: 0.5053 - val_accuracy: 0.8765 - val_loss: 0.4650\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8731 - loss: 0.4697 - val_accuracy: 0.8843 - val_loss: 0.4270\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.8842 - loss: 0.4288 - val_accuracy: 0.8905 - val_loss: 0.3993\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.8897 - loss: 0.4079 - val_accuracy: 0.8942 - val_loss: 0.3795\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.8932 - loss: 0.3881 - val_accuracy: 0.8993 - val_loss: 0.3630\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8998 - loss: 0.3655 - val_accuracy: 0.9017 - val_loss: 0.3495\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.8986 - loss: 0.3611 - val_accuracy: 0.9055 - val_loss: 0.3378\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9014 - loss: 0.3440 - val_accuracy: 0.9062 - val_loss: 0.3288\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9041 - loss: 0.3377 - val_accuracy: 0.9082 - val_loss: 0.3199\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 4ms/step - accuracy: 0.9085 - loss: 0.3252 - val_accuracy: 0.9098 - val_loss: 0.3125\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9113 - loss: 0.3125 - val_accuracy: 0.9115 - val_loss: 0.3062\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9128 - loss: 0.3104 - val_accuracy: 0.9147 - val_loss: 0.2996\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 4ms/step - accuracy: 0.9133 - loss: 0.3032 - val_accuracy: 0.9158 - val_loss: 0.2934\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9171 - loss: 0.2943 - val_accuracy: 0.9187 - val_loss: 0.2881\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9159 - loss: 0.2911 - val_accuracy: 0.9192 - val_loss: 0.2836\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9189 - loss: 0.2826 - val_accuracy: 0.9212 - val_loss: 0.2790\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9198 - loss: 0.2813 - val_accuracy: 0.9222 - val_loss: 0.2739\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9206 - loss: 0.2783 - val_accuracy: 0.9237 - val_loss: 0.2693\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9212 - loss: 0.2763 - val_accuracy: 0.9245 - val_loss: 0.2656\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9248 - loss: 0.2634 - val_accuracy: 0.9257 - val_loss: 0.2613\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9250 - loss: 0.2621 - val_accuracy: 0.9257 - val_loss: 0.2583\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9248 - loss: 0.2619 - val_accuracy: 0.9278 - val_loss: 0.2542\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9262 - loss: 0.2537 - val_accuracy: 0.9285 - val_loss: 0.2508\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9276 - loss: 0.2529 - val_accuracy: 0.9307 - val_loss: 0.2475\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9301 - loss: 0.2434 - val_accuracy: 0.9312 - val_loss: 0.2440\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9280 - loss: 0.2439 - val_accuracy: 0.9315 - val_loss: 0.2409\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9282 - loss: 0.2465 - val_accuracy: 0.9333 - val_loss: 0.2361\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9327 - loss: 0.2365 - val_accuracy: 0.9338 - val_loss: 0.2338\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9348 - loss: 0.2273 - val_accuracy: 0.9355 - val_loss: 0.2303\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9346 - loss: 0.2254 - val_accuracy: 0.9358 - val_loss: 0.2274\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9341 - loss: 0.2268 - val_accuracy: 0.9380 - val_loss: 0.2237\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9356 - loss: 0.2239 - val_accuracy: 0.9393 - val_loss: 0.2209\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9366 - loss: 0.2188 - val_accuracy: 0.9388 - val_loss: 0.2183\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9384 - loss: 0.2141 - val_accuracy: 0.9390 - val_loss: 0.2156\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9393 - loss: 0.2113 - val_accuracy: 0.9398 - val_loss: 0.2124\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9394 - loss: 0.2127 - val_accuracy: 0.9413 - val_loss: 0.2098\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9411 - loss: 0.2066 - val_accuracy: 0.9402 - val_loss: 0.2080\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9414 - loss: 0.2062 - val_accuracy: 0.9418 - val_loss: 0.2053\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 5ms/step - accuracy: 0.9427 - loss: 0.2011 - val_accuracy: 0.9428 - val_loss: 0.2029\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9433 - loss: 0.1983 - val_accuracy: 0.9428 - val_loss: 0.2004\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9451 - loss: 0.1918 - val_accuracy: 0.9433 - val_loss: 0.1983\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9460 - loss: 0.1890 - val_accuracy: 0.9442 - val_loss: 0.1956\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9470 - loss: 0.1869 - val_accuracy: 0.9443 - val_loss: 0.1939\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9484 - loss: 0.1843 - val_accuracy: 0.9455 - val_loss: 0.1912\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "H_1h100_2h100 = model_1h100_2h100.fit(X_train, y_train, validation_split=0.1, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "0qOuTr50i9MK", + "outputId": "a77c2ca8-a2ed-4d84-820a-79597ef1954c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcQBJREFUeJzt3Xl4VNXh//H3ZDJLZib7HrawC8giqBSkFmTHolitG5WlrVYFl1L1J/22Cm4oKq641A2tUqwL1IoiAQULIsqmoIDsIJBAgCyTdZK5vz+GDIQkkIRkJsvn9Tz3mZk75945cxLgwznnnmsyDMNAREREpBkJCXYFRERERAJNAUhERESaHQUgERERaXYUgERERKTZUQASERGRZkcBSERERJodBSARERFpdhSAREREpNlRABIREZFmRwFIRBq8CRMm4HK5gl2NoDOZTEyePDnY1RBpEhSARJqxOXPmYDKZWLNmTbCrIiISUApAIiIi0uwoAImIiEizowAkIme0fv16Ro4cSUREBC6Xi8GDB/P111+XK+PxeJg+fTodO3bEbrcTGxvLgAEDSEtL85dJT09n4sSJtGzZEpvNRnJyMpdffjm7d++uVj127tzJ8OHDcTqdpKSk8MADD2AYBgCGYZCamsrll19e4bjCwkIiIyP505/+dMbPePvtt+nTpw9hYWHExMRw7bXXsm/fvnJlBg4cyLnnnsvatWvp378/YWFhtG3blpdeeqnC+Q4dOsQf/vAHEhMTsdvt9OzZkzfffLNCOa/XyzPPPEP37t2x2+3Ex8czYsSISocnFyxYwLnnnovNZqNbt24sWrSo3Pu5ubnceeedpKamYrPZSEhIYOjQoaxbt+6M31+kuVAAEpHT+uGHH/jlL3/Jd999xz333MPf//53du3axcCBA1m9erW/3LRp05g+fTqDBg3i+eef5//+7/9o3bp1uX90r7zySubPn8/EiRN54YUXuP3228nNzWXv3r1nrEdpaSkjRowgMTGRmTNn0qdPH+6//37uv/9+wDdB+He/+x2ffvopR48eLXfsf//7X3Jycvjd73532s94+OGHGTduHB07dmTWrFnceeedLF26lIsvvpisrKxyZY8dO8aoUaPo06cPM2fOpGXLltxyyy28/vrr/jIFBQUMHDiQf/7zn4wdO5bHH3+cyMhIJkyYwDPPPFPufH/4wx+48847adWqFY899hj33nsvdru9QtBcsWIFt956K9deey0zZ86ksLCQK6+8kiNHjvjL3Hzzzbz44otceeWVvPDCC9x1112EhYWxefPmM7azSLNhiEiz9cYbbxiA8e2331ZZZsyYMYbVajV27Njh33fgwAEjPDzcuPjii/37evbsaVx66aVVnufYsWMGYDz++OM1ruf48eMNwLjtttv8+7xer3HppZcaVqvVOHz4sGEYhrF161YDMF588cVyx1922WVGamqq4fV6q/yM3bt3G2az2Xj44YfL7d+4caMRGhpabv+vfvUrAzCefPJJ/76ioiKjV69eRkJCglFcXGwYhmE8/fTTBmC8/fbb/nLFxcVGv379DJfLZeTk5BiGYRiff/65ARi33357hXqdXGfAsFqtxvbt2/37vvvuOwMwnnvuOf++yMhIY9KkSVV+VxExDPUAiUiVSktLWbx4MWPGjKFdu3b+/cnJyVx//fWsWLGCnJwcAKKiovjhhx/Ytm1bpecKCwvDarWybNkyjh07Vqv6nHwJeNkl4cXFxSxZsgSATp060bdvX9555x1/uaNHj/Lpp58yduxYTCZTlef+8MMP8Xq9XH311WRmZvq3pKQkOnbsyBdffFGufGhoaLkhNavVyp/+9CcOHTrE2rVrAfjkk09ISkriuuuu85ezWCzcfvvtuN1uli9fDsAHH3yAyWTy92ad7NQ6DxkyhPbt2/tf9+jRg4iICHbu3OnfFxUVxerVqzlw4ECV31ekuVMAEpEqHT58mPz8fDp37lzhvS5duuD1ev3zYx544AGysrLo1KkT3bt35+677+b777/3l7fZbDz22GN8+umnJCYmcvHFFzNz5kzS09OrVZeQkJByIQx8gQcoN4do3LhxrFy5kj179gDw3nvv4fF4uOGGG057/m3btmEYBh07diQ+Pr7ctnnzZg4dOlSufEpKCk6n87T12bNnDx07diQkpPxftV26dPG/D7Bjxw5SUlKIiYk5UzPQunXrCvuio6PLhcqZM2eyadMmWrVqxYUXXsi0adPKBSQRUQASkTpy8cUXs2PHDl5//XXOPfdcXn31VXr37s2rr77qL3PnnXfy008/MWPGDOx2O3//+9/p0qUL69evr7N6XHvttVgsFn8v0Ntvv835559faYg7mdfrxWQysWjRItLS0ipsL7/8cp3V8WyYzeZK9xvHJ4MDXH311ezcuZPnnnuOlJQUHn/8cbp168ann34aqGqKNHgKQCJSpfj4eBwOB1u3bq3w3pYtWwgJCaFVq1b+fTExMUycOJF//etf7Nu3jx49ejBt2rRyx7Vv356//OUvLF68mE2bNlFcXMyTTz55xrp4vd4KvRg//fQTAKmpqeXqcOmll/LOO++wZ88eVq5cecben7J6GYZB27ZtGTJkSIXtF7/4RbnyBw4cIC8v77T1adOmDdu2bcPr9ZYrt2XLFv/7ZZ994MCBCpO3z0ZycjK33norCxYsYNeuXcTGxvLwww/X2flFGjsFIBGpktlsZtiwYfznP/8pN8yUkZHB3LlzGTBgABEREQDlrkICcLlcdOjQgaKiIgDy8/MpLCwsV6Z9+/aEh4f7y5zJ888/739uGAbPP/88FouFwYMHlyt3ww038OOPP3L33XdjNpu59tprz3ju3/zmN5jNZqZPn16uN6Xss079fiUlJeV6hYqLi3n55ZeJj4+nT58+AIwaNYr09HTefffdcsc999xzuFwufvWrXwG+q+MMw2D69OkV6nVqXc6ktLSU7OzscvsSEhJISUmpdjuLNAehwa6AiATf66+/XmEtGYA77riDhx56iLS0NAYMGMCtt95KaGgoL7/8MkVFRcycOdNftmvXrgwcOJA+ffoQExPDmjVreP/99/0Tl3/66ScGDx7M1VdfTdeuXQkNDWX+/PlkZGRUK6DY7XYWLVrE+PHj6du3L59++ikLFy7kr3/9K/Hx8eXKXnrppcTGxvLee+8xcuRIEhISznj+9u3b89BDDzF16lR2797NmDFjCA8PZ9euXcyfP5+bbrqJu+66y18+JSWFxx57jN27d9OpUyfeffddNmzYwD/+8Q8sFgsAN910Ey+//DITJkxg7dq1pKam8v7777Ny5UqefvppwsPDARg0aBA33HADzz77LNu2bWPEiBF4vV7+97//MWjQoBrd/ys3N5eWLVty1VVX0bNnT1wuF0uWLOHbb7+tVk+bSLMRvAvQRCTYyi6Dr2rbt2+fYRiGsW7dOmP48OGGy+UyHA6HMWjQIOOrr74qd66HHnrIuPDCC42oqCgjLCzMOOecc4yHH37Yf0l4ZmamMWnSJOOcc84xnE6nERkZafTt29f497//fcZ6jh8/3nA6ncaOHTuMYcOGGQ6Hw0hMTDTuv/9+o7S0tNJjbr31VgMw5s6dW6M2+eCDD4wBAwYYTqfTcDqdxjnnnGNMmjTJ2Lp1q7/Mr371K6Nbt27GmjVrjH79+hl2u91o06aN8fzzz1c4X0ZGhjFx4kQjLi7OsFqtRvfu3Y033nijQrmSkhLj8ccfN8455xzDarUa8fHxxsiRI421a9f6ywCVXt7epk0bY/z48YZh+C7Hv/vuu42ePXsa4eHhhtPpNHr27Gm88MILNWoHkabOZBg17F8VEWkE/vznP/Paa6+Rnp6Ow+Go03MPHDiQzMxMNm3aVKfnFZHA0RwgEWlyCgsLefvtt7nyyivrPPyISNOgOUAi0mQcOnSIJUuW8P7773PkyBHuuOOOYFdJRBooBSARaTJ+/PFHxo4dS0JCAs8++yy9evUKdpVEpIHSHCARERFpdjQHSERERJodBSARERFpdjQHqBJer5cDBw4QHh5+2rtHi4iISMNhGAa5ubmkpKRUuAnxqRSAKnHgwIFy9zcSERGRxmPfvn20bNnytGUUgCpRtjz9vn37/Pc5qisej4fFixczbNgw/3L5Un/U3oGl9g4stXdgqb0DqzbtnZOTQ6tWrfz/jp+OAlAlyoa9IiIi6iUAORwOIiIi9AcoANTegaX2Diy1d2CpvQPrbNq7OtNXNAlaREREmh0FIBEREWl2FIBERESk2dEcIBERaTZKS0vxeDy1Otbj8RAaGkphYSGlpaV1XDM5VWXtbbFYMJvNdXL+oAagGTNm8OGHH7JlyxbCwsLo378/jz32GJ07d67ymFdeeYW33nqLTZs2AdCnTx8eeeQRLrzwQn+ZCRMm8Oabb5Y7bvjw4SxatKh+voiIiDRohmGQnp5OVlbWWZ0jKSmJffv2aY24AKiqvaOiokhKSjrrn0FQA9Dy5cuZNGkSF1xwASUlJfz1r39l2LBh/PjjjzidzkqPWbZsGddddx39+/fHbrfz2GOPMWzYMH744QdatGjhLzdixAjeeOMN/2ubzVbv30dERBqmsvCTkJCAw+Go1T+eXq8Xt9uNy+U64yJ7cvZObW/DMMjPz+fQoUMAJCcnn9X5gxqATu2RmTNnDgkJCaxdu5aLL7640mPeeeedcq9fffVVPvjgA5YuXcq4ceP8+202G0lJSXVfaRERaVRKS0v94Sc2NrbW5/F6vRQXF2O32xWAAqCy9g4LCwPg0KFDJCQknNVwWIOaA5SdnQ1ATExMtY/Jz8/H4/FUOGbZsmUkJCQQHR3NJZdcwkMPPVTlL35RURFFRUX+1zk5OYBv/LG2Y8VVKTtfXZ9XKqf2Diy1d2CpvaunqKgIwzCw2+14vd5an8cwDP/j2ZxHqqeq9rbb7RiGQUFBQYXRnZr8WTAZZZ8QZF6vl8suu4ysrCxWrFhR7eNuvfVWPvvsM3744QfsdjsA8+bNw+Fw0LZtW3bs2MFf//pXXC4Xq1atqjQtTps2jenTp1fYP3fuXBwOR+2/lIiIBF1oaChJSUm0atUKq9Ua7OrIWSouLmbfvn2kp6dTUlJS7r38/Hyuv/56srOzz7iQcYMJQLfccguffvopK1asOOP9O8o8+uijzJw5k2XLltGjR48qy+3cuZP27duzZMkSBg8eXOH9ynqAWrVqRWZmZr2sBJ2WlsbQoUO1kmgAqL0DS+0dWGrv6iksLGTfvn2kpqb6/6NcG2U32tSNsgOjqvYuLCxk9+7dtGrVqsLPMycnh7i4uGoFoAYxBDZ58mQ+/vhjvvzyy2qHnyeeeIJHH32UJUuWnDb8ALRr1464uDi2b99eaQCy2WyVTpK2WCz19pdKfZ5bKlJ7B5baO7DU3qdXWlqKyWQiJCTkrObulA3DlJ2rsUlNTeXOO+/kzjvvPOtzLVu2jEGDBnHs2DGioqLO+nyVqaq9Q0JCMJlMlf7e1+TPQVADkGEY3HbbbcyfP59ly5bRtm3bah03c+ZMHn74YT777DPOP//8M5b/+eefOXLkyFnPGBcREQmkgQMH0qtXL55++umzPte3335b5RXWzVFQI+ykSZN4++23mTt3LuHh4aSnp5Oenk5BQYG/zLhx45g6dar/9WOPPcbf//53Xn/9dVJTU/3HuN1uANxuN3fffTdff/01u3fvZunSpVx++eV06NCB4cOHB/w7nqzUa/DzsQKyis5cVkRE5EwMw6gwD6Yq8fHxmtd6kqAGoBdffJHs7GwGDhxIcnKyf3v33Xf9Zfbu3cvBgwfLHVNcXMxVV11V7pgnnngCALPZzPfff89ll11Gp06d+MMf/kCfPn343//+F/S1gGZ+toVBs/7H0gONr+tUREQCa8KECSxfvpxnnnkGk8mEyWRizpw5mEwmPv30U/r06YPNZmPFihXs2LGDyy+/nMTERFwuFxdccAFLliwpd77U1NRyPUkmk4lXX32VK664AofDQceOHfnoo49qXd8PPviAbt26YbPZSE1N5cknnyz3/gsvvEDHjh2x2+0kJiZy1VVX+d97//336d69O2FhYcTGxjJkyBDy8vJqXZfqCPoQ2JksW7as3Ovdu3eftnxYWBifffbZWdSq/rSJ8XU9Hi4MckVERJo5wzAo8NTsdhZer5eC4lJCi0tqPQcozGKu9gTqZ555hp9++olzzz2XBx54AIAffvgBgHvvvZcnnniCdu3aER0dzb59+xg1ahQPP/wwNpuNt956i9GjR7N161Zat25d5WdMnz6dmTNn8vjjj/Pcc88xduxY9uzZU6PlaADWrl3L1VdfzbRp07jmmmv46quvuPXWW4mNjWXChAmsWbOG22+/nX/+85/079+fo0eP8r///Q+AgwcPct111zFz5kyuuOIKcnNz+d///letjHA2GsQk6OYiNc7X9Xi4UFcPiIgEU4GnlK73Bf4/yz8+MByHtXr/9EZGRmK1WnE4HP6Ffbds2QLAAw88wNChQ/1lY2Ji6Nmzp//1gw8+yPz58/noo4+YPHlylZ8xYcIErrvuOgAeeeQRnn32Wb755htGjBhRo+81a9YsBg8ezN///ncAOnXqxI8//sjjjz/OhAkT2Lt3L06nk1//+teEh4fTpk0bzjvvPMAXgEpKSvjNb35DmzZtAOjevTter9e/Ll990FhMALWN8/UAHS0ET6kW0RIRkdo59QIgt9vNXXfdRZcuXYiKisLlcrF582b27t172vOcfBW10+kkIiLCf6uJmti8eTMXXXRRuX0XXXQR27Zto7S0lKFDh9KmTRvatWvHDTfcwDvvvEN+fj4APXv2ZPDgwXTv3p3f/va3vPLKKxw7dqzGdagp9QAFUGK4HbslhEKPl/1ZBXRM0v3JRESCIcxi5scHanZhjNfrJTcnl/CI8LMaAqsLp17Nddddd5GWlsYTTzxBhw4dCAsL46qrrqK4uPi05zn1snGTyVQvq1yHh4ezbt06li1bxuLFi7nvvvuYNm0a3377LVFRUaSlpfHVV1+xePFinnvuOf7v//6PVatWndWtS85EPUABFBJiok2Mbxhs95H8INdGRKT5MplMOKyhNd7CrOZaHVe21XQBRavVSmnpmecqrVy5kgkTJnDFFVfQvXt3kpKSzjhnti516dKFlStXVqhTp06d/HdgCA0NZciQIcycOZPvv/+e3bt38/nnnwO+n8dFF13E9OnTWb9+PVarlQULFtRrndUDFGBtYh1szXArAImIyBmlpqayevVqdu/ejcvlqrJ3pmPHjnz44YeMHj0ak8nE3//+94Der+wvf/kLF1xwAQ8++CDXXHMNq1at4vnnn+eFF14A4OOPP2bnzp1cfPHFREdH88knn+D1euncuTOrV69m6dKlDBs2jISEBFavXs3hw4c555xz6rXO6gEKsNRYXw/QHgUgERE5g7vuuguz2UzXrl2Jj4+vck7PrFmziI6Opn///owePZrhw4fTu3fvgNWzd+/e/Pvf/2bevHmce+653HfffTzwwANMmDABgKioKD788EMuueQSunTpwksvvcS//vUvunXrRkREBF9++SWjRo2iU6dO/O1vf+PJJ59k5MiR9Vpn9QAFmAKQiIhUV6dOnVi1alW5fWWh4mSpqan+4aQykyZNKvf61CGxyi4zz8rKqla9Bg4cWOH4K6+8kiuvvLLS8gMGDKiwrE2ZLl26sGjRogr767sHSz1AAdYmVnOAREREgk0BKMBSY30z9/dnFVBcokvhRUSk4bn55ptxuVyVbjfffHOwq1cnNAQWYPEuK9YQg2KviX3H8mkf7wp2lURERMp54IEHuOuuuyp9LyIiIsC1qR8KQAFmMpmIt8P+fNidmacAJCIiDU5CQgIJCQnBrka90hBYEMTbfRPHdmXW743eREREpHIKQEEQF+Z73H1EAUhERCQYFICCoKwHaHemrgQTEREJBgWgINAQmIiISHApAAVBvN33eCC7gELPme/xIiIiInVLASgIwi3gtJkxDNh3VMNgIiJSP1JTU3n66aerVdZkMtX7DUgbEgWgIDCZTtwSQ8NgIiIigacAFEgFWZC+EUdRBqkxvhWhdSWYiIhI4CkABdKq2VheG0SHQ5/67wm2S1eCiYhIJf7xj3+QkpJS4aagl19+Ob///e/ZsWMHl19+OYmJibhcLi644AKWLFlSZ5+/ceNGLrnkEsLCwoiNjeWmm27C7Xb731+2bBkXXnghTqeTqKgoLrroIvbs2QPAd999x6BBgwgPDyciIoI+ffqwZs2aOqtbXVAACiSXb1VNuyfbPwS2W0NgIiKBZxhQnFfzzZNfu+PKtkruwF6V3/72txw5coQvvvjCv+/o0aMsWrSIsWPH4na7GTVqFEuXLmX9+vWMGDGC0aNHs3fv3rNunry8PIYPH050dDTffvst7733HkuWLGHy5MkAlJSUMGbMGH71q1/x/fffs2rVKm666SZMJhMAY8eOpWXLlnz77besXbuWe++9F4vFctb1qku6FUYghScBYPNknQhAGgITEQk8Tz48klKjQ0KAqLP93L8eAKuzWkWjo6MZOXIkc+fOZfDgwQC8//77xMXFMWjQIEJCQujZs6e//IMPPsj8+fP56KOP/EGltubOnUthYSFvvfUWTqevvs8//zyjR4/msccew2KxkJ2dza9//Wvat28PQJcuXfzH7927l7vvvptzzjkHgI4dO55VfeqDeoACyZUIgL0k2z8EdjC7UJfCi4hIpcaOHcsHH3xAUVERAO+88w7XXnstISEhuN1u7rrrLrp06UJUVBQul4vNmzfXSQ/Q5s2b6dmzpz/8AFx00UV4vV62bt1KTEwMEyZMYPjw4YwePZpnnnmGgwcP+stOmTKFP/7xjwwZMoRHH32UHTt2nHWd6pp6gALpeACyebIIDQslwh5KTmEJe47k0zkpPMiVExFpRiwOX29MDXi9XnJyc4kIDyckpJb9BxZHjYqPHj0awzBYuHAhF1xwAf/73/946qmnALjrrrtIS0vjiSeeoEOHDoSFhXHVVVdRXFxcu7rV0BtvvMHtt9/OokWLePfdd/nb3/5GWloav/jFL5g2bRrXX389Cxcu5NNPP+X+++9n3rx5XHHFFQGpW3UoAAXS8QBkNkrwFuXQNs7Jdz9nsyszTwFIRCSQTKZqD0X5eb1gKfUdV9sAVEN2u53f/OY3vPPOO2zfvp3OnTvTu3dvAFauXMmECRP8ocLtdrN79+46+dwuXbowZ84c8vLy/L1AK1euJCQkhM6dO/vLnXfeeZx33nlMnTqVfv36MXfuXH7xi18A0KlTJzp16sSf//xnrrvuOt54440GFYA0BBZIFjuGPdL33J1BapwuhRcRkdMbO3YsCxcu5PXXX2fs2LH+/R07duTDDz9kw4YNfPfdd1x//fUVrhg7m8+02+2MHz+eTZs28cUXX3Dbbbdxww03kJiYyK5du5g6dSqrVq1iz549LF68mG3bttGlSxcKCgqYPHkyy5YtY8+ePaxcuZJvv/223ByhhkA9QIHmSoTCbEx5GaTGtgJ0JZiIiFTtkksuISYmhq1bt3L99df798+aNYvf//739O/fn7i4OP7f//t/5OTk1MlnOhwOPvvsM+644w4uuOACHA4HV155JbNmzfK/v2XLFt58802OHDlCcnIykyZN4k9/+hMlJSUcOXKEcePGkZGRQVxcHL/5zW+YPn16ndStrigABZjhSsSU+RO4M2gb55sdr9WgRUSkKiEhIRw4UHG+UmpqKp9//nm5fZMmTSr3uiZDYsYpl+h37969wvnLJCYmMn/+/Erfs1qt/Otf/6r25waLhsACzelbC8ikITAREZGgUQAKMOP4RGjch2gb6wtAGTlF5BeXBLFWIiLSlL3zzju4XK5Kt27dugW7ekER1AA0Y8YMLrjgAsLDw0lISGDMmDFs3br1jMe99957nHPOOdjtdrp3784nn3xS7n3DMLjvvvtITk4mLCyMIUOGsG3btvr6GjXjOtEDFOmwEOXwrYy5W7fEEBGRenLZZZexYcOGSrdT/w1tLoIagJYvX86kSZP4+uuvSUtLw+PxMGzYMPLyqh4S+uqrr7juuuv4wx/+wPr16xkzZgxjxoxh06ZN/jIzZ87k2Wef5aWXXmL16tU4nU6GDx9OYWFhIL7WaZ3oAcoAIDVWw2AiIlK/wsPD6dChQ6VbmzZtgl29oAhqAFq0aBETJkygW7du9OzZkzlz5rB3717Wrl1b5THPPPMMI0aM4O6776ZLly48+OCD9O7dm+effx7w9f48/fTT/O1vf+Pyyy+nR48evPXWWxw4cIAFCxYE6JudxvEAZMo7BEDb4/OANBFaREQkcBrUVWDZ2dkAxMTEVFlm1apVTJkypdy+4cOH+8PNrl27SE9PZ8iQIf73IyMj6du3L6tWreLaa6+tcM6ioiL/MuOA/zJCj8eDx+Op9fepTIktxtfouRl4PB5aRdsB2Hk4t84/S/C3qdo2MNTegaX2rp6SkhIMw6CkpOSs1skpu0rKMIw6W29HqlZVe5/88zz1d78mfxYaTADyer3ceeedXHTRRZx77rlVlktPTycxMbHcvsTERNLT0/3vl+2rqsypZsyYUen6BIsXL8bhqNmy5WdiKcljFGAqymbRxwvIOmoDzKzftp9PPjn7+7dI5dLS0oJdhWZF7R1Yau8zS0xMZPfu3cTExBAaenb/9B05cqSOaiXVcXJ7l5SUcPToUdxuN0uXLq1QNj+/+vNpG0wAmjRpEps2bWLFihUB/+ypU6eW61XKycmhVatWDBs2jIiIiDr9LE9xMaWbbsdseBgxoDct8iJ5a9tqcgwbo0YNrNPPEt//BtLS0hg6dCgWiyXY1Wny1N6BpfauPo/HQ0ZGBllZWbU+h2EYFBYWYrfbMZlMdVc5qVRV7e10OmnXrl2lv/M1WQiyQQSgyZMn8/HHH/Pll1/SsmXL05ZNSkoiIyOj3L6MjAySkpL875ftS05OLlemV69elZ7TZrNhs9kq7LdYLPXyl0qRJRJHcSaWwiN0SGoNQKa7mMJSCLfrL7H6UF8/S6mc2juw1N5nZrFYSE1NpaSkhNLS0lqdw+Px8OWXX3LxxRervQOgsvY2m82EhoZWGUBr8nMJagAyDIPbbruN+fPns2zZMtq2bXvGY/r168fSpUu58847/fvS0tLo168fAG3btiUpKYmlS5f6A09OTg6rV6/mlltuqY+vUWOFob4AhDuDiFYWYp1WjuQVs+dIPue2iAx29UREmiSTyXRWYdFsNlNSUoLdblcACoD6bu+gXgU2adIk3n77bebOnUt4eDjp6emkp6dTUFDgLzNu3DimTp3qf33HHXewaNEinnzySbZs2cK0adNYs2YNkydPBny/4HfeeScPPfQQH330ERs3bmTcuHGkpKQwZsyYQH/FShVZonxPcn1zkrQitIiISGAFtQfoxRdfBGDgwIHl9r/xxhtMmDABgL179xISciKn9e/fn7lz5/K3v/2Nv/71r3Ts2JEFCxaUmzh9zz33kJeXx0033URWVhYDBgxg0aJF2O32ev9O1VFoOXFHePCtBbR2zzHdFFVERCRAgj4EdibLli2rsO+3v/0tv/3tb6s8xmQy8cADD/DAAw+cTfXqTWFZD9DxANQ2znel2S6tBi0iIhIQuhdYEBSFHu8Byj3eA6QhMBERkYBSAAqCEz1Ax+cAld0OQ0NgIiIiAaEAFAQnApDvdhhlPUBH8orJKdSKriIiIvVNASgI/ENg7kPgLcVlCyU+3LcOkXqBRERE6p8CUBAUWSIwMIFRCvlHAWgbq5uiioiIBIoCUBAYplBwxPpelM0DOn4l2G5dCSYiIlLvFICCxXX8Zq26EkxERCTgFICCxCgLQGVrAWkITEREJGAUgILFleB7dOt2GCIiIoGmABQkxilDYG1ifXOAsvI9ZOUXB6taIiIizYICULCcMgTmsIaSGOG7FF7DYCIiIvVLAShIDGfZEFiGf59/RWgNg4mIiNQrBaBg8Q+Bpft3tY0rmwitS+FFRETqkwJQkJy4CuyQf1/ZROg96gESERGpVwpAwVJ2FZgnD4pyAd0UVUREJFAUgILF6vJt4O8FOjEElodhGMGqmYiISJOnABRMZb1Ax+cBlV0Kn1NYwrF83RVeRESkvigABZMryfd4fDFEu8VMSqQd0KXwIiIi9UkBKJjCq54IrXlAIiIi9UcBKJgquRRet8QQERGpfwpAwXTKatCgm6KKiIgEggJQMIWXzQE6aTVo/1pAWgxRRESkvigABZP/KrATASj5+CToQ7mFwaiRiIhIs6AAFEyuij1A8eG+G6JmuovxerUWkIiISH1QAAqmsjlA+ZlQ6lv3J8ZpxWSCUq/BsfziIFZORESk6VIACiZHLISE+p4fvxTeYg4hxmEF4LC7KFg1ExERadIUgIIpJAScx+cBVTIMdjhXAUhERKQ+KAAFm0sBSEREJNAUgIKt7FL4kxZDjHcpAImIiNQnBaBgc1W8HYZ6gEREROqXAlCw+QPQST1AZQFIk6BFRETqRVAD0Jdffsno0aNJSUnBZDKxYMGC05afMGECJpOpwtatWzd/mWnTplV4/5xzzqnnb3IWym6Imqs5QCIiIoES1ACUl5dHz549mT17drXKP/PMMxw8eNC/7du3j5iYGH7729+WK9etW7dy5VasWFEf1a8bldwPTHOARERE6ldoMD985MiRjBw5strlIyMjiYyM9L9esGABx44dY+LEieXKhYaGkpSUVGf1rFenWQ1aQ2AiIiL1I6gB6Gy99tprDBkyhDZt2pTbv23bNlJSUrDb7fTr148ZM2bQunXrKs9TVFREUdGJsJGTkwOAx+PB4/HUaZ3Lzuc/b1gsFsBwZ1BSXAwmE1F2MwBZ+R7cBUXYQjVVq7YqtLfUK7V3YKm9A0vtHVi1ae+alDUZhtEgbjhlMpmYP38+Y8aMqVb5AwcO0Lp1a+bOncvVV1/t3//pp5/idrvp3LkzBw8eZPr06ezfv59NmzYRHh5e6bmmTZvG9OnTK+yfO3cuDoejVt+nukK8xYz+7o8AfNL9BTyhLgwD/rLaTKlhYlrvEqJt9VoFERGRJiE/P5/rr7+e7OxsIiIiTlu20QagGTNm8OSTT3LgwAGsVmuV5bKysmjTpg2zZs3iD3/4Q6VlKusBatWqFZmZmWdswJryeDykpaUxdOhQLBYLAKFPdsBUmIXnphUQ75uwffETX3Iwu5AP/tSXHi0jT3dKOY3K2lvqj9o7sNTegaX2DqzatHdOTg5xcXHVCkCNcgjMMAxef/11brjhhtOGH4CoqCg6derE9u3bqyxjs9mw2Sp2s1gslnr7JS937vAkKMzCUngEju9LCLdxMLuQYwWl+oNWB+rzZykVqb0DS+0dWGrvwKpJe9fk59IoJ5csX76c7du3V9mjczK3282OHTtITk4OQM1qqex2GJVdCq+J0CIiInUuqAHI7XazYcMGNmzYAMCuXbvYsGEDe/fuBWDq1KmMGzeuwnGvvfYaffv25dxzz63w3l133cXy5cvZvXs3X331FVdccQVms5nrrruuXr/LWfFfCVbJYoi6FF5ERKTOBXUIbM2aNQwaNMj/esqUKQCMHz+eOXPmcPDgQX8YKpOdnc0HH3zAM888U+k5f/75Z6677jqOHDlCfHw8AwYM4OuvvyY+Pr7+vsjZCq/kdhhaC0hERKTeBDUADRw4kNPNwZ4zZ06FfZGRkeTn51d5zLx58+qiaoFVthhirnqAREREAqFRzgFqcrQYooiISEApADUEZZOgKwtA6gESERGpcwpADUH48R6gk68Cc9kBXwBqIEs1iYiINBkKQA1B2RygomzwFAAQF+5b36jAU0pecWmwaiYiItIkKQA1BPZIMB9fiPH4MJjDGorL5pujrmEwERGRuqUA1BCYTCcuha9sMUQFIBERkTqlANRQVHYlmNYCEhERqRcKQA3Faa8EKwxGjURERJosBaCGwn8lWCWLIWotIBERkTqlANRQlF0JprWARERE6p0CUENRWQDSHCAREZF6oQDUUITrdhgiIiKBogDUUJRNgtZl8CIiIvVOAaihKLsMPu8QeH0rP5cFoEx3MV6vbochIiJSVxSAGgpnPGACwwv5RwCIcVoxmaDUa3Asvzi49RMREWlCFIAaCnMoOON8z49fCm8xhxDj8N0TTPOARERE6o4CUENS2WrQmgckIiJS5xSAGpLTrAZ9KEcBSEREpK4oADUkla0G7dKl8CIiInVNAagh8S+GeMi/S0NgIiIidU8BqCHxB6BK7gemACQiIlJnFIAakvDjAUiLIYqIiNQrBaCGpLKrwDQHSEREpM4pADUkJ18FZvhWflYPkIiISN1TAGpIyuYAefKhKBc4EYCyCzwUlZQGq2YiIiJNigJQQ2JzgdXle378SrDIMAsWswnw3RNMREREzp4CUENzypVgJpPpxDwgDYOJiIjUCQWghqayxRA1D0hERKROKQA1NP6J0FoMUUREpL4oADU0/kvh1QMkIiJSX4IagL788ktGjx5NSkoKJpOJBQsWnLb8smXLMJlMFbb09PRy5WbPnk1qaip2u52+ffvyzTff1OO3qGPhldwOw78WUGEwaiQiItLkBDUA5eXl0bNnT2bPnl2j47Zu3crBgwf9W0JCgv+9d999lylTpnD//fezbt06evbsyfDhwzl06NBpztiAlE2C1hwgERGRehMazA8fOXIkI0eOrPFxCQkJREVFVfrerFmzuPHGG5k4cSIAL730EgsXLuT111/n3nvvPZvqBoYCkIiISL0LagCqrV69elFUVMS5557LtGnTuOiiiwAoLi5m7dq1TJ061V82JCSEIUOGsGrVqirPV1RURFHRiXCRk5MDgMfjwePx1Gndy85X5XkdiVgAI/cAJcfLRIf5fkyHcovqvD5N3RnbW+qU2juw1N6BpfYOrNq0d03KNqoAlJyczEsvvcT5559PUVERr776KgMHDmT16tX07t2bzMxMSktLSUxMLHdcYmIiW7ZsqfK8M2bMYPr06RX2L168GIfDUeffAyAtLa3S/aGlBVwKmAqz+ey/H1JqtpNZCBBKRnY+Cxd+gslUL1Vq0qpqb6kfau/AUnsHlto7sGrS3vn5+dUu26gCUOfOnencubP/df/+/dmxYwdPPfUU//znP2t93qlTpzJlyhT/65ycHFq1asWwYcOIiIg4qzqfyuPxkJaWxtChQ7FYLJWWMbb8BVOxm+H9u0NsR/KLS3hw/ed4vCYuHjyMcHuj+rEFVXXaW+qO2juw1N6BpfYOrNq0d9kITnU0+n9JL7zwQlasWAFAXFwcZrOZjIyMcmUyMjJISkqq8hw2mw2bzVZhv8Viqbdf8tOeO6IFZG7Fkn8IkroSabHgsoXiLiohq7CUmPCweqlTU1afP0upSO0dWGrvwFJ7B1ZN2rsmP5dGvw7Qhg0bSE5OBsBqtdKnTx+WLl3qf9/r9bJ06VL69esXrCrWXESK7zHngH+XJkKLiIjUnaD2ALndbrZv3+5/vWvXLjZs2EBMTAytW7dm6tSp7N+/n7feeguAp59+mrZt29KtWzcKCwt59dVX+fzzz1m8eLH/HFOmTGH8+PGcf/75XHjhhTz99NPk5eX5rwprFCJa+B5z9vt3xbts7MrM47BbAUhERORsBTUArVmzhkGDBvlfl83DGT9+PHPmzOHgwYPs3bvX/35xcTF/+ctf2L9/Pw6Hgx49erBkyZJy57jmmms4fPgw9913H+np6fTq1YtFixZVmBjdoKkHSEREpF4FNQANHDgQwzCqfH/OnDnlXt9zzz3cc889Zzzv5MmTmTx58tlWL3j8Aeigf5cCkIiISN1p9HOAmqTKhsAUgEREROqMAlBDVNkQmP9+YApAIiIiZ0sBqCEqC0D5meDx3QBVPUAiIiJ1RwGoIQqLhlC773mubx6QApCIiEjdUQBqiEymCsNgZQHoSF4xpd6qJ46LiIjImSkANVT+idC+ABTjtGIyQanX4Fh+cRArJiIi0vgpADVU/h4g35VgFnMIMQ4roGEwERGRs6UA1FBpMUQREZF6owDUUGktIBERkXqjANRQaS0gERGReqMA1FBpCExERKTeKAA1VGVDYO4MKPUACkAiIiJ1RQGooXLEQYgFMCA3HVAAEhERqSsKQA1VSAhEJPuely2GqDlAIiIidUIBqCE75Uow9QCJiIjUDQWghqyK22FkF3goKikNVq1EREQaPQWghuyUABQZZsFiNgGQ6dbtMERERGpLAaghO2UIzGQynZgHpGEwERGRWlMAasi0FpCIiEi9UABqyE65IzwoAImIiNQFBaCGrKwHKPcgeH2TnhWAREREzp4CUEPmSgSTGYxScB8CTl4LqDCYNRMREWnUFIAashAzhCf5np9yKbx6gERERGpPAaih80+E1mKIIiIidUUBqKGrYjFE3Q5DRESk9hSAGrpTb4fhsgO+HiDDMIJVKxERkUZNAaihO/lKMCAu3ApAoceLu6gkWLUSERFp1BSAGrpThsAc1lBctlBA84BERERqSwGooTtlCAw0EVpERORsKQA1dCf3AB2f83NiLSAFIBERkdoIagD68ssvGT16NCkpKZhMJhYsWHDa8h9++CFDhw4lPj6eiIgI+vXrx2effVauzLRp0zCZTOW2c845px6/RT1zHV8HqLQY8o8A6gESERE5W0ENQHl5efTs2ZPZs2dXq/yXX37J0KFD+eSTT1i7di2DBg1i9OjRrF+/vly5bt26cfDgQf+2YsWK+qh+YIRawZnge661gEREROpEaDA/fOTIkYwcObLa5Z9++ulyrx955BH+85//8N///pfzzjvPvz80NJSkpKS6qmbwRaRA3iHfMFhyTwUgERGRs1SrHqA333yThQsX+l/fc889REVF0b9/f/bs2VNnlTsTr9dLbm4uMTEx5fZv27aNlJQU2rVrx9ixY9m7d2/A6lQvKqwFpDlAIiIiZ6NWPUCPPPIIL774IgCrVq1i9uzZPPXUU3z88cf8+c9/5sMPP6zTSlbliSeewO12c/XVV/v39e3blzlz5tC5c2cOHjzI9OnT+eUvf8mmTZsIDw+v9DxFRUUUFZ0IEzk5OQB4PB48Hk+d1rnsfDU5b4grCTNQeuxnvB4P0Q4zAIdyCuu8fk1Nbdpbak/tHVhq78BSewdWbdq7JmVNRi2WE3Y4HGzZsoXWrVvz//7f/+PgwYO89dZb/PDDDwwcOJDDhw/X9JSYTCbmz5/PmDFjqlV+7ty53HjjjfznP/9hyJAhVZbLysqiTZs2zJo1iz/84Q+Vlpk2bRrTp0+v9DMcDke16lOfOqb/l64H32NvzEWsb/Mn9rnhiY2hRFgMHjy/NNjVExERaRDy8/O5/vrryc7OJiIi4rRla9UD5HK5OHLkCK1bt2bx4sVMmTIFALvdTkFBQW1OWSPz5s3jj3/8I++9995pww9AVFQUnTp1Yvv27VWWmTp1qv87gK8HqFWrVgwbNuyMDVhTHo+HtLQ0hg4disViqdYxpo1u+Og9WkaEkDxqFBk5hTyx8UvcJSaGjxiJOcRUp3VsSmrT3lJ7au/AUnsHlto7sGrT3mUjONVRqwA0dOhQ/vjHP3Leeefx008/MWrUKAB++OEHUlNTa3PKavvXv/7F73//e+bNm8ell156xvJut5sdO3Zwww03VFnGZrNhs9kq7LdYLPX2S16jc0e3BiAk9yAhFgvJ0aFYQ0MoLvFyyF1C69jg91I1dPX5s5SK1N6BpfYOLLV3YNWkvWvyc6nVJOjZs2fTr18/Dh8+zAcffEBsbCwAa9eu5brrrqv2edxuNxs2bGDDhg0A7Nq1iw0bNvgnLU+dOpVx48b5y8+dO5dx48bx5JNP0rdvX9LT00lPTyc7O9tf5q677mL58uXs3r2br776iiuuuAKz2VyjejU4pyyGaA4xkXo89OzMdAexYiIiIo1TrXqAoqKieP755yvsr2wezemsWbOGQYMG+V+XDUONHz+eOXPmcPDgwXJXcP3jH/+gpKSESZMmMWnSJP/+svIAP//8M9dddx1HjhwhPj6eAQMG8PXXXxMfH1+jujUoZQHIkw+FWRAWTds4Jz9luNmVmcfAzkGtnYiISKNTqwC0aNEiXC4XAwYMAHw9Qq+88gpdu3Zl9uzZREdHV+s8AwcO5HRzsMtCTZlly5ad8Zzz5s2r1mc3KpYwCIuBgqO+XqCwaNrGuYAMdmXmBbt2IiIijU6thsDuvvtu/0SjjRs38pe//IVRo0axa9eucpOJpQ751wLy3RW+XZwTQAFIRESkFmrVA7Rr1y66du0KwAcffMCvf/1rHnnkEdatW+efEC11LCIFMjb6F0NsF+8LQDsPKwCJiIjUVK16gKxWK/n5+QAsWbKEYcOGARATE1OjS9CkBk6eCA20Pd4DdCC7gEKP1gISERGpiVr1AA0YMIApU6Zw0UUX8c033/Duu+8C8NNPP9GyZcs6raAcd8rtMGKcViLsoeQUlrD7SB7nJNXtekUiIiJNWa16gJ5//nlCQ0N5//33efHFF2nRwveP86effsqIESPqtIJy3Ck9QCaTibbxLgB2aRhMRESkRmrVA9S6dWs+/vjjCvufeuqps66QVOGUAAS+idDf7ctipyZCi4iI1EitAhBAaWkpCxYsYPPmzQB069aNyy67DLPZXGeVk5OcchUYnJgHpCvBREREaqZWAWj79u2MGjWK/fv307mzbxW+GTNm0KpVKxYuXEj79u3rtJICRCT7HotyoDAH7BEKQCIiIrVUqzlAt99+O+3bt2ffvn2sW7eOdevWsXfvXtq2bcvtt99e13UUAFs42CJ9z3MPAicuhVcAEhERqZla9QAtX76cr7/+mpiYGP++2NhYHn30US666KI6q5ycIiIFDmf7rgSL70xqrC8AHc0rJiu/mCiHNcgVFBERaRxq1QNks9nIzc2tsN/tdmO16h/henPKRGinLZSkCDugXiAREZGaqFUA+vWvf81NN93E6tWrMQwDwzD4+uuvufnmm7nsssvquo5SppIrwcrmAWlFaBERkeqrVQB69tlnad++Pf369cNut2O32+nfvz8dOnTg6aefruMqil9lV4JpHpCIiEiN1WoOUFRUFP/5z3/Yvn27/zL4Ll260KFDhzqtnJyiirWAQAFIRESkJqodgM50l/cvvvjC/3zWrFm1r5FU7TRrAWkxRBERkeqrdgBav359tcqZTKZaV0bOwN8DtN+/q93x22HszszD6zUICVH7i4iInEm1A9DJPTwSJGUBqOAoeArAEkbL6DBCQ0wUeErJyC0kOTIsuHUUERFpBGo1CVqCxB4JFofv+fFhMIs5hNYxvn26KaqIiEj1KAA1JibTaS+F36F5QCIiItWiANTYnCYAqQdIRESkehSAGhv/lWAnJkKfWAvIHYwaiYiINDoKQI3N6XqANAQmIiJSLQpAjU0lAaj98Uvh9x0roLjEG4xaiYiINCoKQI1NJUNgCeE2HFYzpV6Dfcfyg1QxERGRxkMBqLGppAfIZDJpIrSIiEgNKAA1NmU9QHmHoKTYv/vELTE0EVpERORMFIAaG0csmK2+57kH/bt1U1QREZHqUwBqbKpaDPH4pfA7NQQmIiJyRgpAjVFlawHF+a4EUw+QiIjImSkANUanWQvoUG4R7qKSYNRKRESk0VAAaowqCUCRYRbiXL65QbvVCyQiInJaQQ1AX375JaNHjyYlJQWTycSCBQvOeMyyZcvo3bs3NpuNDh06MGfOnAplZs+eTWpqKna7nb59+/LNN9/UfeWDqZIhMDj5SjAFIBERkdMJagDKy8ujZ8+ezJ49u1rld+3axaWXXsqgQYPYsGEDd955J3/84x/57LPP/GXeffddpkyZwv3338+6devo2bMnw4cP59ChQ/X1NQKvkh4g0E1RRUREqis0mB8+cuRIRo4cWe3yL730Em3btuXJJ58EoEuXLqxYsYKnnnqK4cOHAzBr1ixuvPFGJk6c6D9m4cKFvP7669x77711/yWCocoA5JsIrbWARERETi+oAaimVq1axZAhQ8rtGz58OHfeeScAxcXFrF27lqlTp/rfDwkJYciQIaxatarK8xYVFVFUVOR/nZOTA4DH48Hj8dThN8B/vrM6b1gCFsBwp1NSmOdfF6h1tA2AnYfddV7vxqpO2luqTe0dWGrvwFJ7B1Zt2rsmZRtVAEpPTycxMbHcvsTERHJycigoKODYsWOUlpZWWmbLli1VnnfGjBlMnz69wv7FixfjcDjqpvKnSEtLq/3BhsFIsxNraR5fzf8HWY52ABzMBwhlW3o2Cxd+gslUJ1VtEs6qvaXG1N6BpfYOLLV3YNWkvfPzq38/zEYVgOrL1KlTmTJliv91Tk4OrVq1YtiwYURERNTpZ3k8HtLS0hg6dCgWi6XW5zHn9IWdnzMg1YH3/FEAFJV4eez7JRSWmuj7q8HEuWx1Ve1Gq67aW6pH7R1Yau/AUnsHVm3au2wEpzoaVQBKSkoiIyOj3L6MjAwiIiIICwvDbDZjNpsrLZOUlFTleW02GzZbxbBgsVjq7Zf8rM/d6gLY+Tnm9A2Yj5/HYoGW0WHsO1rAvqxikqNddVTbxq8+f5ZSkdo7sNTegaX2DqyatHdNfi6Nah2gfv36sXTp0nL70tLS6NevHwBWq5U+ffqUK+P1elm6dKm/TJPRoo/vcf/acrtPrAitidAiIiJVCWoAcrvdbNiwgQ0bNgC+y9w3bNjA3r17Ad/Q1Lhx4/zlb775Znbu3Mk999zDli1beOGFF/j3v//Nn//8Z3+ZKVOm8Morr/Dmm2+yefNmbrnlFvLy8vxXhTUZKb19j5k/QWG2f3c7rQUkIiJyRkEdAluzZg2DBg3yvy6bhzN+/HjmzJnDwYMH/WEIoG3btixcuJA///nPPPPMM7Rs2ZJXX33Vfwk8wDXXXMPhw4e57777SE9Pp1evXixatKjCxOhGzxUPUa0hay8c2ADtfgWctBii1gISERGpUlAD0MCBAzEMo8r3K1vleeDAgaxfv/605508eTKTJ08+2+o1fC36+ALQ/rUVApBuiioiIlK1RjUHSE5RyTygsgC050gepd6qw6WIiEhzpgDUmPkD0LoTu6LCsIaG4Ck12H+sIEgVExERadgUgBqz5J5gCoHcA/7bYoSEmGgbWzYRWleCiYiIVEYBqDGzOiGhq+/5Sb1AmgckIiJyegpAjV2L45fDnzwPKF4BSERE5HQUgBq700yE1qXwIiIilVMAauzKAtCB9eD1AicWQ1QPkIiISOUUgBq7+C4QGgZFOXBkO3CiB2h/VgGFntJg1k5ERKRBUgBq7MyhkNLL9/z4MFiM00pkmO+GcLuPqBdIRETkVApATcEp84BMJtOJK8E0D0hERKQCBaCmoJIrwXRTVBERkaopADUFZT1A6RuhpAjQWkAiIiKnowDUFES1AUcseD2Qvgk4sRbQzsNaDVpERORUCkBNgclUYR6QeoBERESqpgDUVJwSgFKP3w/sWL6HY3nFwaqViIhIg6QA1FScEoCctlCSI+0AbEnPDVatREREGiQFoKYi5fiVYEe2QUEWAH3bxgDw5bbDQaqUiIhIw6QA1FQ4YyE61ff8wHoABp2TAMAXWw4FqVIiIiINkwJQU3LKMNjFHeMxmXxDYAezC4JYMRERkYZFAagp8QegdQBEO62c1yoKgGVbNQwmIiJSRgGoKfEHoDVgGAAM6qxhMBERkVMpADUlST3AZAZ3BuQcAE7MA1q5PZPiEm8wayciItJgKAA1JVYHJHb1PT8+D6hrcgRxLht5xaWs2X00iJUTERFpOBSAmppTJkKHhJgY2DkegC+2ahhMREQEFICanlMCEJw0D0gToUVERAAFoKanLAAd2ADeUgAGdIzDHGJi+yE3+47mB69uIiIiDYQCUFMTfw5YnFCcC5nbAIgMs9CnTTQAyzQMJiIiogDU5ISYIaWX77mGwURERCqlANQUtTh+X7CTA9A5vonQX+3IpNBTGoxaiYiINBgKQE1RJROhOyeGkxxpp9Dj5eudR4JUMRERkYahQQSg2bNnk5qait1up2/fvnzzzTdVlh04cCAmk6nCdumll/rLTJgwocL7I0aMCMRXaRjKAlDGJvAUAmAymRh4fBhMt8UQEZHmLugB6N1332XKlCncf//9rFu3jp49ezJ8+HAOHap8su6HH37IwYMH/dumTZswm8389re/LVduxIgR5cr961//CsTXaRgiW4EzHrwlkL7Rv3vQ8fWAPt9yCOP4rTJERESao6AHoFmzZnHjjTcyceJEunbtyksvvYTD4eD111+vtHxMTAxJSUn+LS0tDYfDUSEA2Wy2cuWio6MD8XUaBpOp0mGwizrEYTGb2Hs0n12ZeUGqnIiISPAFNQAVFxezdu1ahgwZ4t8XEhLCkCFDWLVqVbXO8dprr3HttdfidDrL7V+2bBkJCQl07tyZW265hSNHmtm8l0oCkNMWSt+2sYCuBhMRkeYtNJgfnpmZSWlpKYmJieX2JyYmsmXLljMe/80337Bp0yZee+21cvtHjBjBb37zG9q2bcuOHTv461//ysiRI1m1ahVms7nCeYqKiigqKvK/zsnJAcDj8eDxeGrz1apUdr66Pu+pTIk9CQWM/WsoOemzLu4Yy4rtmXy+OYNxfVvWax0agkC1t/iovQNL7R1Yau/Aqk1716RsUAPQ2Xrttdfo3r07F154Ybn91157rf959+7d6dGjB+3bt2fZsmUMHjy4wnlmzJjB9OnTK+xfvHgxDoej7isOpKWl1ct5y1hK3IwCTEd3kvbRv/GEunxvFACE8vXOTOb/9xNsFfNgk1Tf7S3lqb0DS+0dWGrvwKpJe+fnV/9uB0ENQHFxcZjNZjIyMsrtz8jIICkp6bTH5uXlMW/ePB544IEzfk67du2Ii4tj+/btlQagqVOnMmXKFP/rnJwcWrVqxbBhw4iIiKjmt6kej8dDWloaQ4cOxWKx1Om5T2UceArTkW0MawtG91G+fYbBW3tW8POxAiI6ns/gcxLqtQ7BFsj2FrV3oKm9A0vtHVi1ae+yEZzqCGoAslqt9OnTh6VLlzJmzBgAvF4vS5cuZfLkyac99r333qOoqIjf/e53Z/ycn3/+mSNHjpCcnFzp+zabDZvNVmG/xWKpt1/y+jy3X49r4IuHCN3wNvQe6999yTkJvLVqD//bfpQR3VvUbx0aiIC0t/ipvQNL7R1Yau/Aqkl71+TnEvSrwKZMmcIrr7zCm2++yebNm7nlllvIy8tj4sSJAIwbN46pU6dWOO61115jzJgxxMbGltvvdru5++67+frrr9m9ezdLly7l8ssvp0OHDgwfPjwg36nBOG8smEJg71dw+Cf/7kEnrQeky+FFRKQ5CvocoGuuuYbDhw9z3333kZ6eTq9evVi0aJF/YvTevXsJCSmf07Zu3cqKFStYvHhxhfOZzWa+//573nzzTbKyskhJSWHYsGE8+OCDlfbyNGkRKdBxOPz0Kax7E4Y/DMAv2sViCw1hf1YB2w656ZQYHuSKioiIBFbQAxDA5MmTqxzyWrZsWYV9nTt3rrLnIiwsjM8++6wuq9e49ZngC0Ab5sLg+yDURpjVTL/2sSzbepgvthxSABIRkWYn6ENgUs86DIHwFCg4Cls+9u8+cXf4ylfcFhERacoUgJo6cyicd3yi+No3/bvLAtCa3cfIKdSaFiIi0rwoADUHvW8ATLBrORzdCUDrWAft4p2UeA1WbssMbv1EREQCTAGoOYhqDR2Or3+07i3/bg2DiYhIc6UA1Fz0Hu97XP8OlPqGvE4EIF0OLyIizYsCUHPReSQ4EyDvEPy0CIAL2kbjsJo5nFvEDweqv3qmiIhIY6cA1FyYLb6FEcE/GdoWauaiDnEAvPvtvmDVTEREJOAUgJqT3uN8j9uXQNZeACZelArAvG/38vOx6t9ETkREpDFTAGpOYtpB24sBA9a/DUD/9nH0bx+Lp9TguaXbg1s/ERGRAFEAam78k6HfhtISAP4yrBMA76/7mV2ZecGqmYiISMAoADU3XUZDWAzk7PcNhQF92sQwqHM8pV6DZ5b8dIYTiIiINH4KQM1NqA16Xe97vu7EytB/GdYZgP98d4CfMnKDUTMREZGAUQBqjsomQ//0GeQcBODcFpGMPDcJw4Cn0tQLJCIiTZsCUHMU3xla9wOjFDa87d/956GdMJng003pbNqfHcQKioiI1C8FoOaqzwTf47q3wOsFoFNiOJf3TAFglnqBRESkCVMAaq66Xg72SN96QDu/8O++Y0gnzCEmPt9yiLV7jgWxgiIiIvVHAai5soRBj2t8z0+aDN02zslVvVsCMCttazBqJiIiUu8UgJqzsjWBtiwE94k7wt82uAMWs4mV24/w1Y7MIFVORESk/igANWdJ50KL88FbAv970r+7ZbSD6y5sDcCsxT/pTvEiItLkKAA1d4Om+h5Xvwx7vvLvnjSoA7bQENbsOcbynw4HqXIiIiL1QwGoueswBM67ATBgwa1Q7LsVRmKEnXH92gDwpHqBRESkiVEAEhj+MES0gGO7YOkD/t03/6o9DquZjfuzWfxjRhArKCIiUrcUgMR3Ofxlz/qer34Jdq8AINZl4/cXtQV8c4G8XvUCiYhI06AAJD4dhpy4RcZ/JvmHwm78ZTvC7aFszcjlP9/tD2IFRURE6o4CkJww7GGIaAnHdsOSaQBEOiz86eJ2APx9wQ9sTdeNUkVEpPFTAJIT7BEnhsK++Qfs+h8AN13cnr5tY3AXlfCHN78l010UxEqKiIicPQUgKa/D4BMLJP5nEhS5sYaG8NLv+tAm1sHPxwq4+Z9rKSopDW49RUREzoICkFQ07CGIbAVZe/xDYdFOK6+Nv4Bweyhr9hxj6ocbdWm8iIg0WgpAUtHJQ2HfvgK7vgSgQ4KLF8b2xhxi4sN1+3lp+c4gVlJERKT2FICkcu0vgT4TfM+PD4UB/LJjPPeP7grAzM+28NkP6UGqoIiISO0pAEnVhj54fChsLyy53797XL9UbvhFGwwD7py3gU37s4NYSRERkZprEAFo9uzZpKamYrfb6du3L998802VZefMmYPJZCq32e32cmUMw+C+++4jOTmZsLAwhgwZwrZt2+r7azQ99gi47Dnf829fhe1L/G/dP7orAzrEUeAp5ca31nAotzBIlRQREam5oAegd999lylTpnD//fezbt06evbsyfDhwzl06FCVx0RERHDw4EH/tmfPnnLvz5w5k2effZaXXnqJ1atX43Q6GT58OIWF+ke6xtoPgj4Tfc/njYUtnwAQag5h9tjetIt3cjC7kBvfWkuhR1eGiYhI4xD0ADRr1ixuvPFGJk6cSNeuXXnppZdwOBy8/vrrVR5jMplISkryb4mJif73DMPg6aef5m9/+xuXX345PXr04K233uLAgQMsWLAgAN+oCRoxAzqNgJJCeHcsrHsLgMgwC6+Pv4DIMAvf7cvi7ve/15VhIiLSKIQG88OLi4tZu3YtU6dO9e8LCQlhyJAhrFq1qsrj3G43bdq0wev10rt3bx555BG6desGwK5du0hPT2fIkCH+8pGRkfTt25dVq1Zx7bXXVjhfUVERRUUnFvfLyckBwOPx4PF4zvp7nqzsfHV93voVClfOwbxwCiHfz4WPbqM0JwNv/ztoEWll9nU9mTBnLf/97gBJ4VbuGtqRkBBTsCsNNNb2brzU3oGl9g4stXdg1aa9a1I2qAEoMzOT0tLScj04AImJiWzZsqXSYzp37szrr79Ojx49yM7O5oknnqB///788MMPtGzZkvT0dP85Tj1n2XunmjFjBtOnT6+wf/HixTgcjtp8tTNKS0url/PWq5DhdEnMpVPGfzEve4jdP3zDphbXgymEq1JNzNtp5pUVu/n6h52M7eAlLKi/XeU1yvZuxNTegaX2Diy1d2DVpL3z8/OrXbYB/RNVPf369aNfv37+1/3796dLly68/PLLPPjgg7U659SpU5kyZYr/dU5ODq1atWLYsGFEREScdZ1P5vF4SEtLY+jQoVgsljo9d2BcSuk3L2NO+z/aH15M23gHpaNnMyrURo+1+7n/vz+y8VgIL+908cL1veiQ4ApqbRt/ezcuau/AUnsHlto7sGrT3mUjONUR1AAUFxeH2WwmIyOj3P6MjAySkpKqdQ6LxcJ5553H9u3bAfzHZWRkkJycXO6cvXr1qvQcNpsNm81W6bnr65e8Ps9d7y6aDBFJMP9mQn5cQEhhFlzzNtf/IpVuLaK4+e217DqSz1Uvr+bJq3sy4tzkM56yvjXq9m6E1N6BpfYOLLV3YNWkvWvycwnqJGir1UqfPn1YunSpf5/X62Xp0qXlenlOp7S0lI0bN/rDTtu2bUlKSip3zpycHFavXl3tc0o1dL8Krn8XLE7YuQzm/Brch+nZKor/3jaAX7SLIa+4lJvfXsfMRVso9WpytIiINBxBvwpsypQpvPLKK7z55pts3ryZW265hby8PCZO9F16PW7cuHKTpB944AEWL17Mzp07WbduHb/73e/Ys2cPf/zjHwHfFWJ33nknDz30EB999BEbN25k3LhxpKSkMGbMmGB8xaarw2CY8DE4YuHgBnh9GBzdRZzLxtt/6MsfB7QF4IVlO5g451uy8ouDW18REZHjgj4H6JprruHw4cPcd999pKen06tXLxYtWuSfxLx3715CQk7ktGPHjnHjjTeSnp5OdHQ0ffr04auvvqJr167+Mvfccw95eXncdNNNZGVlMWDAABYtWlRhwUSpAy16w+8Xw9tXwNGd8PKvYNRMQntcw99+3ZXuLSP5fx98z5c/HWb08yt4+Xfn0zWlbudViYiI1FTQAxDA5MmTmTx5cqXvLVu2rNzrp556iqeeeuq05zOZTDzwwAM88MADdVVFOZ24DvCHNHj3d/DztzD/T7D5vzD6GS7v1YJOieH86Z9r2Xs0n9+8uJIHLz+Xq/q0xGRqGJfKi4hI8xP0ITBpIsKTYOIiuOTvEGKBLR/D7L6w+WO6JEfw38kDGNg5nkKPl7vf/57fvrSK73/OCnatRUSkmVIAkrpjDoWL74IbP4eErpCf6Vs5ev4tRIbk89r4C7h7eGfCLGbW7DnGZc+vZMq/N5CerVuUiIhIYCkASd1L7gE3LYOL7gBM8N1ceKE/5t3LmTSoA1/cNZDf9G4BwIfr9jPoiWU8u3QbBcW6l5iIiASGApDUj1AbDH0AJn4K0amQ8zO8dTl8cg9JYV5mXd2LBZMuok+baAo8pcxK+4nBTy7jPxv2635iIiJS7xSApH616Qc3r4Tzf+97/c3L8EJfWPdPeqU4ef/mfjx33Xm0iArjQHYhd8zbwG9e/Iq1e44Ft94iItKkKQBJ/bO54NdPwdgPIDwZsvbCR5PhuT6Y1v+T0efGs/Qvv+KuYZ1wWM2s35vFlS9+xW9f+oqPvz+Ap9Qb7G8gIiJNjAKQBE7HIXDbWhj2EDjjIWsPfHQbPNcb+/dvM/niNnxx10CuPr8loSEmvt19jMlz1/PLx77guaXbyHQXBfsbiIhIE6EAJIFldUL/2+CO72HYw8eD0F747+3wXB8St81j5pgurLz3Em4f3JE4l430nEKeTPuJ/jM+Z8q/N+jyeREROWsKQBIcVgf0n+wLQsMfAWcCZO+F/97hC0Jb32bKgARW3juIp67pSc9WURSXevlw3X4ue34lV7ywkv9s2K8rx0REpFYaxErQ0oxZHdBvEvSZCGvnwMqnfUFo4V9g0V+xdRrGFT2u4Yo/DWP9gXze/Go3CzceZP3eLNbv3YDDauaScxK4tHsyAzsnEGY1B/sbiYhII6AAJA2D1QH9boXzJ8LaN31h6PBm3y01Nv8X7JGc1/Vyzut7NX8dNZC53/zMe2t+Zn9WAR9/f5CPvz+oMCQiItWmACQNiyUMfnEz9P0TZGyC7/8NG9+H3AOw7i1Y9xYJES2489wruWP8b/nO04pPNqWz8PuDFcLQoHMSGN4lnkKNkomIyCkUgKRhMpkgqbtvGzIN9qz0haEfP4Kc/fDVs5i+epZeUa3p1WkEU68awcbQ8/n4x6P+MLTw+4Ms/P4gISYz72V8w4CO8fyyYxw9WkZhMWv6m4hIc6YAJA1fiBnaXuzbRj0B2xbDxn/DT4t9V5B98w9M3/yDHhYnPdoPYuqw4fzo6sdH20v4dNNB9h4tYM2eLNbsyeLpJdtw2UL5RbtYftkxjos6xNE+3qk704uINDMKQNK4WOzQ9TLfVpwHO5fDT4vgp8/AnQ5bPsa05WO6Ad1a9OGe84fyyR4LuZ0uY+VuNyt3ZJKV72HJ5gyWbM4AIDnSzi/axdK7TTR9WkfTOSkcc4gCkYhIU6YAJI2X1QnnjPJtXi+kf+cLQj8tggPrYf9azPvXMhow9j/B9a0uxPvL/ux29iIttyVf7nLz7e5jHMwuZP76/cxfvx8Ap9XMea2j6d06it5tojmvdTSRYZbgflcREalTCkDSNISEQMp5vm3gvZCbDj99hvenz/BsX46txA27lhOyazntgD+ZrfypRR88F/dji707X+al8vUBD+v3ZuEuKmHF9kxWbM8EfNOROia46NUqim4pkXRLieCc5AhcNv3xERFprPQ3uDRN4UnQZzylPa5n0cKPGXVhRyz7v4Y9X8Hulb7hsr2rsOxdRXegOyYmxXXC26s3h8K7sa60PV8ci+ebfW72HMnnpww3P2W4gZ8BXyhKjXXSNSWCrskRdEuJoGtKBAnh9qB+bRERqR4FIGn6TCEQ3xlSzoUL/giGAUd3+sLQnq98V5hl7YHMrYRkbiUJGAWMMlshqTsFHXuxzdqJdcWtWXksio0HC0jPKWRXZh67MvNY+P1B/0fFuWx0SnTRMcFFx8RwOia46JQYTrTTGrSvLyIiFSkASfNjMkFse9/W+wbfPvdhOLAO9q89sRUcg/1rCdu/lh5AD2CCyQwx7Shq05EMaxu2eVuwJj+B5Uei2HykhEx3EZnuIr7acaTcR8a5rHRMCKfj8XDULt5F2zgnSRF2QjThWkQk4BSARABc8dBpuG8DXy/RsV2w/6RQlPEjFOfCkW3YjmyjNdAaGAz8P0x4E1rhDm/HQWsbthst2JCfwIrsWDZnmcl0F5PpPsKqneWDkd0SQmqsk3bxTtrF+UJR23gn7eKcRDnUayQiUl8UgEQqYzJBTDvf1v0q3z7DgJwDkLkVDp+0ZW6F/COEZO8lInsvEUBn4NLjp/LGJpAf0Y4Maxt20IKNhYmszY1mbZaDQg9sSc9lS3puhSpE2ENpE+ukdayDNjEO2sQ6aB3jpE2sQz1HIiJnSQFIpLpMJohs4dvaX1L+vbzME2Ho8E8nHnN+JiTvEK68Q7j4mvbAsOOHGDYzJeEtyQ1rQYY5mT1GPFuLYlmfG8X63EiyC51s3J/Nxv3ZFapiDQ2hVXQYLaMdtIwOo0V0GC2iwnzPoxwkhNsUkERETkMBSKQuOON8W+pF5fcX5ULmT+VD0ZFtcGwPptIiLDl7iMnZQwzQBRhRdpwdvKEO8sOSybIkkE4se0tj2FYQwY954fxcGsOBw7HsOJxXaXUsZhPJkb5Q1CI6jJSoMFIi7b7HKDvJkWE4dRm/iDRj+htQpD7ZwqFFH992Mq/Xdyn+sd2nbHt8j+50QkryceXuwMUOWgLnlx170pqMRZYosqyJHDLF87M3hh3F0WwtjOTn0lj2H43j66ORGFR+37PIMAvJkXZaRIWRHGUnKcJOYoSdpEg7yZG+5+F2LQApIk2TApBIMISEQESKb2vTv+L7xfm++UY5P0P2ft8NYLP3nfT8Zyh2Y/NkkejJIpGtdC87NhT/n2yvKRS3LYEj5ngyjBj2lsawvSiS3cWRHCiM5WBBLFvSI4DKh8ucVjOJkb5wlBRhJzHSTmK4jaRIOwnHA1NCuE03lxWRRkcBSKQhsjogroNvq4xhQGH2iTCUve/440lbzgFCjBIiCg8QwQHaAr/wn//EqUpNFnKt8WSFxHCIKA6URrKvOJy9nggOl0RxKDOKbYej+JoIvFX0JsW5rCSE20kIt1KYFcLWJdtJigoj3mUjIcJGvMtOfLiNMKu5LltJRKTWFIBEGiOTCcKifFtit8rLlJZA7sFKepJ+Pr5vP7gzMBseoooOEMUBUk8+/pTRLy8hFIRGkGOK5CjhHCoN56DHyWEjnGMF4RzNj+BIRjjZRgTvH8rmGOF4TvkrJtwWSny4jbhwG/Eum++5y3r80eZ/jHPZsIaqV0lE6o8CkEhTZQ6FqFa+jb6VlykpPhGS3BknttwM3xylsud5hwnBi7MkCydZJAPdAM7QoZNncnKUCA57XRzxRnCkNJyjWRFkHosk04hkK5GsMHzPs3Bx8lBcZJilXDgqC0jxLhtx4Vb/vhinFbtFPUsiUjMKQCLNWagVotv4ttMpLYH8TMg/4rvkPz8T8o4cfzz+Ov8oRt5hio4dwFbqxmR4cRp5OMmjlYkzhqUSzBwlkkPeSA4bERwpiSTzWARHj4ZzlAj2GBGsN8I5QiRHjHAKOHHfNZctlFiXlRinlVinjVin1f+6LCTFunzvxTit6l0SkYYRgGbPns3jjz9Oeno6PXv25LnnnuPCCy+stOwrr7zCW2+9xaZNmwDo06cPjzzySLnyEyZM4M033yx33PDhw1m0aFH9fQmRpswc6rvBbHjSaYuVeDx89sknjBo5AktJ3klh6ZTQ5D4EeYd9j+4MKMwilFISOEpCyNFqVakQK0eMCLINJ9leJ9k5TrKynWTj9O3DxV7DSRYujhkusgwXRwmnABvhdsvxkHQ8HDl9YSnGaSXaYSXGZSXGcfy104rTasZk0rpKIk1J0APQu+++y5QpU3jppZfo27cvTz/9NMOHD2fr1q0kJCRUKL9s2TKuu+46+vfvj91u57HHHmPYsGH88MMPtGjRwl9uxIgRvPHGG/7XNpstIN9HRPDdgNYR49vodObyJcW+QJR36HgoOh6Qynqc8g6fCFB5h6G0CDvFtDBl0sKUWaOqFRoWjhnhHMsN51iOi2OEc8xwkYODI4aD3YThNsJw49tyDQeFIQ5CHRGEOqIJd4YR7bAS5bAS5bAQ7bAQ5fAFpxPPfY9mLUYp0mAFPQDNmjWLG2+8kYkTJwLw0ksvsXDhQl5//XXuvffeCuXfeeedcq9fffVVPvjgA5YuXcq4ceP8+202G0lJp//fqog0EKHWE6tsn4lhQLH7eK/SUSg8BgVZvpvXFmYdf5510vNjUHDUF6ZKi7GbPCRzlGRT9Xqa/DxANuRmhZFluMjCyTEj3N/DdBBfL1OW4SIXBzmGA68tkpCwSMyOaByuCCKdNl8Pk7MsPJ14LHuu+UwigRHUAFRcXMzatWuZOnWqf19ISAhDhgxh1apV1TpHfn4+Ho+HmJiYcvuXLVtGQkIC0dHRXHLJJTz00EPExsZWeo6ioiKKior8r3NycgDweDx4PJ6afq3TKjtfXZ9XKqf2DqyAtXeIHcJb+rbqMgzw5PlCU8FRTGWPZeGoyI2pKNd3w9si32YqzsUozIGiXEI8vlW3w00FhJsKaMXh6n1ugW/zZprIJYwcw+kLSDjINRwcxMFWw+F/r8jsxGuNAHsEprBIzGFRWF3R2JwxRLjCiHZYiAyzEOWw4LKYyPNAYVFxzdtQakx/nwRWbdq7JmVNhmEYNa5VHTlw4AAtWrTgq6++ol+/fv7999xzD8uXL2f16tVnPMett97KZ599xg8//IDd7psUOW/ePBwOB23btmXHjh389a9/xeVysWrVKszmiv+7mjZtGtOnT6+wf+7cuTgcjrP4hiLSZBheLKV5WEvysJa6sZa4j7/OxVrixlqah+X4Y2hpPqEl+YSWFvheU1InVcg3bOQc713KwUmO4SAXB24jjAJTGEUhYRSHOPCY7ZSawygNdWCEhlEa6qTUEkGo1YYjFByhBmFmcISC3exbVUGkKcjPz+f6668nOzubiIiI05YN+hDY2Xj00UeZN28ey5Yt84cfgGuvvdb/vHv37vTo0YP27duzbNkyBg8eXOE8U6dOZcqUKf7XOTk5tGrVimHDhp2xAWvK4/GQlpbG0KFDsVh0m4H6pvYOLLV3RQbgKSn0LVxZlIOpMMf/nMJsTEU5cHxfSUE2JflZeAtyoCgbc1EOoZ5crKW+3ieHqQgHRSSZjp3+A0uOb0Xl38ozbGQakRwhgiNGJJlGBAdMkbhDoyixRGKyOjDbnFjsTqxhTmxhLuwOF2HOcJxOFy5XOBFhNiLDQokIszS7yeH6/Q6s2rR32QhOdQQ1AMXFxWE2m8nIyCi3PyMj44zzd5544gkeffRRlixZQo8ePU5btl27dsTFxbF9+/ZKA5DNZqt0krTFYqm3X/L6PLdUpPYOLLX3KSwWCAs/YzEzUOnlGqUl/sB08laSd4Qf139D21bJlBbmUJKfQ+nxMGUqdmP25GLxuAkrycZiFOM0FeE0HaINh8qf3wCKj2/uquvnNU4M4x3A1wuVH+KiKDSc4tAISqzhGLZITPZwzPZwQsPCsTgisTkjsTsjcYRH4QyPIsJpJ8LeeOc76fc7sGrS3jX5uQQ1AFmtVvr06cPSpUsZM2YMAF6vl6VLlzJ58uQqj5s5cyYPP/wwn332Geeff36V5cr8/PPPHDlyhOTk5LqquohI4JhDT7qq7gTD42HXgRi6DBl1+r/4DcM3rynv8Imr6vIO4ck5hCcng9LcQ3gLsvEW50NxPqaSAkJKCggtLSDUW4jV8M0xCjEZRJJPpCm//PnLepwKq/d1Cgwr2TjYh4s8k4sCcziFoeEUWyLwWCPx2qIgLIqQsAgsYRFYHRHYnZGEhUfhcEXiCo8kwmFrdj1QUreCPgQ2ZcoUxo8fz/nnn8+FF17I008/TV5env+qsHHjxtGiRQtmzJgBwGOPPcZ9993H3LlzSU1NJT09HQCXy4XL5cLtdjN9+nSuvPJKkpKS2LFjB/fccw8dOnRg+PDhQfueIiJBYzKB3Texmtj2/t0WKtzxpHJeL3jyfVffFeZgFGZR7D5GQe5RinKP4sk7RkleFt6CLEyFWZg8eYR43IR68rCU5mPz5mP35mPFN0E1zFRMGMUkkuU7f+nxraiqCpxSHcNEPjYOYffNfTKFUWx24DGHURoahjfUiWF1gtVFiNVJiD0cs92FxRGONSwCu9O3OVwRhLmiMNtcYHH4blIszUbQA9A111zD4cOHue+++0hPT6dXr14sWrSIxMREAPbu3UvISb+UL774IsXFxVx11VXlznP//fczbdo0zGYz33//PW+++SZZWVmkpKQwbNgwHnzwQa0FJCJSGyEhYHP5tvAkTPiG6mr8N2pJMRS78RZkU5B7lPzcoxTnHqE49yglecfwFhyDgmOEFGZjLs4m1OMmtDQPW2keNm8BYUYBZryEmAxcFOKiEMg67byn6vJiooAw8kOcFJqdFJtdeCwuSi0RlNoiwBYBtnCsh4+xc8kB7K5IbI4IbI5wHK4IrGHhmGwusDohNMzXaycNWoP4CU2ePLnKIa9ly5aVe7179+7TnissLIzPPvusjmomIiJ1JtQKoTGEOGJwxrbFWdPjDQM8BRhFuRTn5+DOzaLAnUVhXi5FBbl48nMpKczFW+jGW+SG4nzw5GH25GEuycdSmo/Vm4/NW0iYUUAYhTgpxGwyCMHAST5Obz54D/vWfapkSK8HwJkvUKYEMyUmKyUhVkpCbHjNvs0w2yDUDpYwTDZfaDLbnYTaI7CEhWMJCyfEHu4LUtbjPVNWB1icvker0/c81FrT1pNTNIgAJCIickYmE1gdmKwObOGJ2BLP7nSFnlKOFXpwu3PJz82i0J1FofsYnrwsSvKz8RZk+6/UC/HkYC7OxSjIxhFSgtVbgPV4kHKYCgmjyB+mAEIpJdQogNIC3/BeHS8dVGoyU2IOo9TswGtxYFgcYHVhsjoIsbkItTsx28Mx28qCVJhvCz3+aHGAxX788fh+q+8cWF3NYjhQAUhERJolu8WM3WImLtwOyfFnLO/xePjkk0+4aNSJSeder0G+pxR3YQmHCovJzcujIM9NQUEehfl5FBTkU1yUj6cgn+KiAkqKCijxFGAU5WE63jMVWuKbK+UwCnGaCnHge3TiC1a+5Q98z62mUgDMRinmEjeUuGs97Hc6peYwvFYnxvFAFGJzEWL3zaki1A6htioej29lPVhlw4JlwapsvlUDmLyuACQiIlJLISEmXLZQXLZQiLQDtVs7zjAMikq85BaWkFdUgvv4lnH8Ma+olLyiEvILCiguyMVT6Kak0I23MA9vcT5GsW/Iz+zJw1SS75szZfL1SjkoxG7yEIbvHnphpmLsFGHHt6/s9ck9WObSAswFBVBQs3vtVeu7YsKwOim58FasQ/6vzs9fXQpAIiIiQWYymfw9UvHhZ3/BjqfUS15RiS9QFZeFKl+IOlxUQn5RCXnFpcfDlS9k5ReWUFyUT2mRG4rcvtvBHJ9DZfUW4DIV+HqhKMGGB5up2PdYtpk82PBd4efvyTqpN8tl8k2qMmFgKnazemcmvzzrb1p7CkAiIiJNjMUcQpTDSpSjbiZLF5d4yS/2BaWC4lLyikvJLy4hv6iUvOIS8otLOVZcSn5RCe5iXxl3Ufn38wuLKS3Og6I8KHZzZcuuCkAiIiLScFlDQ7CG1l2gAt+wXzA1/WneIiIi0uAEexVvBSARERFpdhSAREREpNlRABIREZFmRwFIREREmh0FIBEREWl2FIBERESk2VEAEhERkWZHAUhERESaHQUgERERaXYUgERERKTZUQASERGRZkcBSERERJodBSARERFpdkKDXYGGyDAMAHJycur83B6Ph/z8fHJycrBYLHV+filP7R1Yau/AUnsHlto7sGrT3mX/bpf9O346CkCVyM3NBaBVq1ZBromIiIjUVG5uLpGRkactYzKqE5OaGa/Xy4EDBwgPD8dkMtXpuXNycmjVqhX79u0jIiKiTs8tFam9A0vtHVhq78BSewdWbdrbMAxyc3NJSUkhJOT0s3zUA1SJkJAQWrZsWa+fERERoT9AAaT2Diy1d2CpvQNL7R1YNW3vM/X8lNEkaBEREWl2FIBERESk2VEACjCbzcb999+PzWYLdlWaBbV3YKm9A0vtHVhq78Cq7/bWJGgRERFpdtQDJCIiIs2OApCIiIg0OwpAIiIi0uwoAImIiEizowAUQLNnzyY1NRW73U7fvn355ptvgl2lJuHLL79k9OjRpKSkYDKZWLBgQbn3DcPgvvvuIzk5mbCwMIYMGcK2bduCU9kmYMaMGVxwwQWEh4eTkJDAmDFj2Lp1a7kyhYWFTJo0idjYWFwuF1deeSUZGRlBqnHj9uKLL9KjRw//YnD9+vXj008/9b+vtq5fjz76KCaTiTvvvNO/T21ed6ZNm4bJZCq3nXPOOf7367OtFYAC5N1332XKlCncf//9rFu3jp49ezJ8+HAOHToU7Ko1enl5efTs2ZPZs2dX+v7MmTN59tlneemll1i9ejVOp5Phw4dTWFgY4Jo2DcuXL2fSpEl8/fXXpKWl4fF4GDZsGHl5ef4yf/7zn/nvf//Le++9x/Llyzlw4AC/+c1vgljrxqtly5Y8+uijrF27ljVr1nDJJZdw+eWX88MPPwBq6/r07bff8vLLL9OjR49y+9Xmdatbt24cPHjQv61YscL/Xr22tSEBceGFFxqTJk3yvy4tLTVSUlKMGTNmBLFWTQ9gzJ8/3//a6/UaSUlJxuOPP+7fl5WVZdhsNuNf//pXEGrY9Bw6dMgAjOXLlxuG4Wtfi8VivPfee/4ymzdvNgBj1apVwapmkxIdHW28+uqraut6lJuba3Ts2NFIS0szfvWrXxl33HGHYRj6/a5r999/v9GzZ89K36vvtlYPUAAUFxezdu1ahgwZ4t8XEhLCkCFDWLVqVRBr1vTt2rWL9PT0cm0fGRlJ37591fZ1JDs7G4CYmBgA1q5di8fjKdfm55xzDq1bt1abn6XS0lLmzZtHXl4e/fr1U1vXo0mTJnHppZeWa1vQ73d92LZtGykpKbRr146xY8eyd+9eoP7bWjdDDYDMzExKS0tJTEwstz8xMZEtW7YEqVbNQ3p6OkClbV/2ntSe1+vlzjvv5KKLLuLcc88FfG1utVqJiooqV1ZtXnsbN26kX79+FBYW4nK5mD9/Pl27dmXDhg1q63owb9481q1bx7ffflvhPf1+162+ffsyZ84cOnfuzMGDB5k+fTq//OUv2bRpU723tQKQiNTapEmT2LRpU7kxe6l7nTt3ZsOGDWRnZ/P+++8zfvx4li9fHuxqNUn79u3jjjvuIC0tDbvdHuzqNHkjR470P+/Rowd9+/alTZs2/Pvf/yYsLKxeP1tDYAEQFxeH2WyuMHM9IyODpKSkINWqeShrX7V93Zs8eTIff/wxX3zxBS1btvTvT0pKori4mKysrHLl1ea1Z7Va6dChA3369GHGjBn07NmTZ555Rm1dD9auXcuhQ4fo3bs3oaGhhIaGsnz5cp599llCQ0NJTExUm9ejqKgoOnXqxPbt2+v991sBKACsVit9+vRh6dKl/n1er5elS5fSr1+/INas6Wvbti1JSUnl2j4nJ4fVq1er7WvJMAwmT57M/Pnz+fzzz2nbtm259/v06YPFYinX5lu3bmXv3r1q8zri9XopKipSW9eDwYMHs3HjRjZs2ODfzj//fMaOHet/rjavP263mx07dpCcnFz/v99nPY1aqmXevHmGzWYz5syZY/z444/GTTfdZERFRRnp6enBrlqjl5uba6xfv95Yv369ARizZs0y1q9fb+zZs8cwDMN49NFHjaioKOM///mP8f333xuXX3650bZtW6OgoCDINW+cbrnlFiMyMtJYtmyZcfDgQf+Wn5/vL3PzzTcbrVu3Nj7//HNjzZo1Rr9+/Yx+/foFsdaN17333mssX77c2LVrl/H9998b9957r2EymYzFixcbhqG2DoSTrwIzDLV5XfrLX/5iLFu2zNi1a5excuVKY8iQIUZcXJxx6NAhwzDqt60VgALoueeeM1q3bm1YrVbjwgsvNL7++utgV6lJ+OKLLwygwjZ+/HjDMHyXwv/97383EhMTDZvNZgwePNjYunVrcCvdiFXW1oDxxhtv+MsUFBQYt956qxEdHW04HA7jiiuuMA4ePBi8Sjdiv//97402bdoYVqvViI+PNwYPHuwPP4ahtg6EUwOQ2rzuXHPNNUZycrJhtVqNFi1aGNdcc42xfft2//v12dYmwzCMs+9HEhEREWk8NAdIREREmh0FIBEREWl2FIBERESk2VEAEhERkWZHAUhERESaHQUgERERaXYUgERERKTZUQASEamCyWRiwYIFwa6GiNQDBSARaZAmTJiAyWSqsI0YMSLYVRORJiA02BUQEanKiBEjeOONN8rts9lsQaqNiDQl6gESkQbLZrORlJRUbouOjgZ8w1MvvvgiI0eOJCwsjHbt2vH++++XO37jxo1ccsklhIWFERsby0033YTb7S5X5vXXX6dbt27YbDaSk5OZPHlyufczMzO54oorcDgcdOzYkY8++sj/3rFjxxg7dizx8fGEhYXRsWPHCoFNRBomBSARabT+/ve/c+WVV/Ldd98xduxYrr32WjZv3gxAXl4ew4cPJzo6mm+//Zb33nuPJUuWlAs4L774IpMmTeKmm25i48aNfPTRR3To0KHcZ0yfPp2rr76a77//nlGjRjF27FiOHj3q//wff/yRTz/9lM2bN/Piiy8SFxcXuAYQkdqrk1uqiojUsfHjxxtms9lwOp3ltocfftgwDN9d6W+++eZyx/Tt29e45ZZbDMMwjH/84x9GdHS04Xa7/e8vXLjQCAkJMdLT0w3DMIyUlBTj//7v/6qsA2D87W9/8792u90GYHz66aeGYRjG6NGjjYkTJ9bNFxaRgNIcIBFpsAYNGsSLL75Ybl9MTIz/eb9+/cq9169fPzZs2ADA5s2b6dmzJ06n0//+RRddhNfrZevWrZhMJg4cOMDgwYNPW4cePXr4nzudTiIiIjh06BAAt9xyC1deeSXr1q1j2LBhjBkzhv79+9fqu4pIYCkAiUiD5XQ6KwxJ1ZWwsLBqlbNYLOVem0wmvF4vACNHjmTPnj188sknpKWlMXjwYCZNmsQTTzxR5/UVkbqlOUAi0mh9/fXXFV536dIFgC5duvDdd9+Rl5fnf3/lypWEhITQuXNnwsPDSU1NZenSpWdVh/j4eMaPH8/bb7/N008/zT/+8Y+zOp+IBIZ6gESkwSoqKiI9Pb3cvtDQUP9E4/fee4/zzz+fAQMG8M477/DNN9/w2muvATB27Fjuv/9+xo8fz7Rp0zh8+DC33XYbN9xwA4mJiQBMmzaNm2++mYSEBEaOHElubi4rV67ktttuq1b97rvvPvr06UO3bt0oKiri448/9gcwEWnYFIBEpMFatGgRycnJ5fZ17tyZLVu2AL4rtObNm8ett95KcnIy//rXv+jatSsADoeDzz77jDvuuIMLLrgAh8PBlVdeyaxZs/znGj9+PIWFhTz11FPcddddxMXFcdVVV1W7flarlalTp7J7927CwsL45S9/ybx58+rgm4tIfTMZhmEEuxIiIjVlMpmYP38+Y8aMCXZVRKQR0hwgERERaXYUgERERKTZ0RwgEWmUNHovImdDPUAiIiLS7CgAiYiISLOjACQiIiLNjgKQiIiINDsKQCIiItLsKACJiIhIs6MAJCIiIs2OApCIiIg0OwpAIiIi0uz8f3oszvlgc52cAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# вывод графика ошибки по эпохам\n", + "plt.plot(H_1h100_2h100.history['loss'])\n", + "plt.plot(H_1h100_2h100.history['val_loss'])\n", + "plt.grid()\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('loss')\n", + "plt.legend(['train_loss', 'val_loss'])\n", + "plt.title('Loss by epochs')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OxDfEOKwi_XV", + "outputId": "05be7627-95be-4b6f-f808-c2c1cec2f482" + }, + "outputs": [ + { + "metadata": { + "tags": null + }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9362 - loss: 0.2106\n", + "Loss on test data: 0.21183738112449646\n", + "Accuracy on test data: 0.9372000098228455\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_1h100_2h100.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yxJIfurhrG6b" + }, + "source": [ + "10) Результаты исследования архитектуры нейронной сети занести в\n", + "таблицу:\n", + "![таблица2.png]()\n", + "\n", + "По результатам исследования сделать выводы и выбрать наилучшую\n", + "архитектуру нейронной сети с точки зрения качества классификации." + ] + }, + { + "cell_type": "markdown", + "source": [ + "Из таблицы следует, что лучшей архитектурой является НС с двумя скрытыми слоями по 100 и 50 нейронов соответственно, затем идет НС с одним скрытым слоем и 100 нейронами. При увеличении количества нейронов в скрытык слоях значение метрики качества падает. Такая тенденция возникает из-за простоты датасета MNIST, при усложнении архитектуры НС начинает переобучаться, а оценка качетсва на тестовых данных падать." + ], + "metadata": { + "id": "PkNuW2OFDNCL" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uPMlAkIhrHFG" + }, + "source": [ + "11) Сохранить наилучшую нейронную сеть на диск. Данную нейронную\n", + "сеть потребуется загрузить с диска в одной из следующих лабораторных\n", + "работ." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "FIogKO5drHKd" + }, + "outputs": [], + "source": [ + "# сохранение модели на диск\n", + "model_1h100_2h50.save('/content/drive/MyDrive/Colab Notebooks/laba1/model_1h100_2h50.keras')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WKd8dzMBrHPt" + }, + "source": [ + "12) Для нейронной сети наилучшей архитектуры вывести два тестовых\n", + "изображения, истинные метки и результат распознавания изображений." + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "h4LlrIQxrHWI", + "outputId": "6e561547-6761-4cf3-9aac-ec6416c7ee66" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step\n", + "NN output: [[2.9130476e-02 5.3324870e-06 9.6752131e-01 2.5341648e-03 1.2145542e-06\n", + " 2.5728915e-04 1.0855521e-04 1.8212755e-04 2.3601220e-04 2.3541097e-05]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHHlJREFUeJzt3XtwVPX9xvEnCWRFTTaNMTe5GECkIxCnKGlGpSgZQmodbm3ROhY6jg402AreJh25qJ2m0ptjh2pnaom2gpdpAS8tMxhNaG2CBaEpbcmQNC1hSIIyZTcEEtLk+/sjP7euJOBZdvPZhPdr5jtDds+T8/F4zMPZXU8SnHNOAAAMskTrAQAAFyYKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACZGWA/wSb29vTpy5IhSUlKUkJBgPQ4AwCPnnNrb25Wbm6vExIGvc+KugI4cOaIxY8ZYjwEAOE/Nzc0aPXr0gM/H3UtwKSkp1iMAAKLgXD/PY1ZAGzZs0JVXXqmLLrpIBQUFeu+99z5VjpfdAGB4ONfP85gU0Msvv6xVq1Zp7dq1ev/995Wfn6/i4mIdPXo0FrsDAAxFLgZmzJjhSktLQ1/39PS43NxcV15efs5sIBBwklgsFos1xFcgEDjrz/uoXwGdPn1ae/bsUVFRUeixxMREFRUVqaam5oztu7q6FAwGwxYAYPiLegF9+OGH6unpUVZWVtjjWVlZam1tPWP78vJy+f3+0OITcABwYTD/FFxZWZkCgUBoNTc3W48EABgEUf//gDIyMpSUlKS2trawx9va2pSdnX3G9j6fTz6fL9pjAADiXNSvgJKTkzV9+nRVVlaGHuvt7VVlZaUKCwujvTsAwBAVkzshrFq1SkuWLNF1112nGTNm6KmnnlJHR4e+8Y1vxGJ3AIAhKCYFtHjxYn3wwQdas2aNWltbde2112r79u1nfDABAHDhSnDOOeshPi4YDMrv91uPAQA4T4FAQKmpqQM+b/4pOADAhYkCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACZGWA8AIP5ccsklnjPr1q3znOns7PSceeKJJzxnTp8+7TmD2OMKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIkE55yzHuLjgsGg/H6/9RhA3ElM9P73xcLCwoj29eijj3rOFBcXR7Qvr3Jzcz1nWltbYzAJziUQCCg1NXXA57kCAgCYoIAAACaiXkDr1q1TQkJC2Jo8eXK0dwMAGOJi8gvprrnmGr311lv/28kIfu8dACBcTJphxIgRys7OjsW3BgAMEzF5D+jgwYPKzc3V+PHjdeedd+rQoUMDbtvV1aVgMBi2AADDX9QLqKCgQBUVFdq+fbueeeYZNTU16aabblJ7e3u/25eXl8vv94fWmDFjoj0SACAORb2ASkpK9JWvfEXTpk1TcXGxfve73+n48eN65ZVX+t2+rKxMgUAgtJqbm6M9EgAgDsX80wFpaWmaNGmSGhoa+n3e5/PJ5/PFegwAQJyJ+f8HdOLECTU2NionJyfWuwIADCFRL6AHH3xQ1dXV+te//qU//elPWrBggZKSknTHHXdEe1cAgCEs6i/BHT58WHfccYeOHTumyy+/XDfeeKNqa2t1+eWXR3tXAIAhjJuRAgauu+46z5mysjLPmQULFnjOxLs//OEPnjM//OEPI9rX66+/HlEOfbgZKQAgLlFAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDBzUgR9zIyMjxnHn/88Yj29eUvf9lzJi0tzXMmMdH73/0iyaBPb29vRLm77rrLc2bz5s0R7Ws44makAIC4RAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwd2wMajGjh3rOVNTU+M5k5OT4zmD//nggw88Z37xi1/EYJIzTZ8+3XNm1qxZEe1r//79njO33HKL50wwGPScGQq4GzYAIC5RQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwMcJ6AFxY7rzzTs+Z4Xhj0ffff99zJi8vz3Pm5MmTnjOS9PWvf91z5p133oloX4Ph3XffjShXWFjoOXO2m28OZLjejPRcuAICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABggpuRYlC1tLR4zvz5z3+OwST927p1q+fMb37zG8+Zf/7zn54zGzdu9Jx5/vnnPWek+L6x6KRJkzxnCgoKYjAJzhdXQAAAExQQAMCE5wLauXOnbrvtNuXm5iohIeGMlyycc1qzZo1ycnI0atQoFRUV6eDBg9GaFwAwTHguoI6ODuXn52vDhg39Pr9+/Xo9/fTTevbZZ7Vr1y5dcsklKi4uVmdn53kPCwAYPjx/CKGkpEQlJSX9Puec01NPPaVHH31U8+bNkyS98MILysrK0tatW3X77bef37QAgGEjqu8BNTU1qbW1VUVFRaHH/H6/CgoKVFNT02+mq6tLwWAwbAEAhr+oFlBra6skKSsrK+zxrKys0HOfVF5eLr/fH1pjxoyJ5kgAgDhl/im4srIyBQKB0GpubrYeCQAwCKJaQNnZ2ZKktra2sMfb2tpCz32Sz+dTampq2AIADH9RLaC8vDxlZ2ersrIy9FgwGNSuXbtUWFgYzV0BAIY4z5+CO3HihBoaGkJfNzU1ad++fUpPT9fYsWN1//3367vf/a6uuuoq5eXlafXq1crNzdX8+fOjOTcAYIjzXEC7d+/WzTffHPp61apVkqQlS5aooqJCDz/8sDo6OnTvvffq+PHjuvHGG7V9+3ZddNFF0ZsaADDkJTjnnPUQHxcMBuX3+63HABCn1qxZ4zmzbt26iPZVVVXlOVNcXOw5093d7TkzFAQCgbO+r2/+KTgAwIWJAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGDC869jAABLy5YtG7R9Pffcc54zw/XO1rHAFRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3IwUQFQkJnr/++yTTz7pOZOZmek509bW5jkjSa+88kpEOXw6XAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwc1IEbGJEyd6ztx6662eM0VFRZ4zV1xxheeMJHV1dXnOvPTSS54zL774oudMR0eH58ypU6c8ZyQpKSnJc2bdunWeMw888IDnTCQiuempJHV3d0d5EnwcV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMJDjnnPUQHxcMBuX3+63HGLKuvfZaz5nVq1dHtK958+Z5ziQm8neeSL322mueM8uXL49oXytXrvScefDBByPal1cnTpzwnJkxY0ZE+zpw4EBEOfQJBAJKTU0d8Hl+GgAATFBAAAATngto586duu2225Sbm6uEhARt3bo17PmlS5cqISEhbM2dOzda8wIAhgnPBdTR0aH8/Hxt2LBhwG3mzp2rlpaW0Nq8efN5DQkAGH48/0bUkpISlZSUnHUbn8+n7OzsiIcCAAx/MXkPqKqqSpmZmbr66qu1fPlyHTt2bMBtu7q6FAwGwxYAYPiLegHNnTtXL7zwgiorK/Xkk0+qurpaJSUl6unp6Xf78vJy+f3+0BozZky0RwIAxCHPL8Gdy+233x7689SpUzVt2jRNmDBBVVVVmj179hnbl5WVadWqVaGvg8EgJQQAF4CYfwx7/PjxysjIUENDQ7/P+3w+paamhi0AwPAX8wI6fPiwjh07ppycnFjvCgAwhHh+Ce7EiRNhVzNNTU3at2+f0tPTlZ6erscee0yLFi1Sdna2Ghsb9fDDD2vixIkqLi6O6uAAgKHNcwHt3r1bN998c+jrj96/WbJkiZ555hnV1dXp+eef1/Hjx5Wbm6s5c+boiSeekM/ni97UAIAhj5uRxrHp06d7zrz55pueM5mZmZ4zkaqrq/Oc+dWvfhWDSaLnlltu8ZyZM2eO50xSUpLnzN69ez1nJCk/P99zZrBuNHvrrbd6zvz+97+PwSQ4F25GCgCISxQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAE9wNO4798pe/9JxZunSp58zf/vY3zxlJ+t73vuc5s2XLFs+Zzs5Oz5l4t3nzZs+ZxYsXx2ASW4cPH/acmTp1qudMIBDwnMH5427YAIC4RAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwMQI6wEwsNGjR3vOnDp1ynPmrrvu8pyRpH379kWUG24WLFjgObNw4cIYTDL0RHKOP//8854zkd7Q9siRI54zO3bs8Jxpbm72nNm/f7/nTLzhCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJBOecsx7i44LBoPx+v/UYcSGSfzX//e9/PWfmz5/vOSNJb775ZkQ5r1JTUz1nIrlBqCQ98sgjnjN5eXmeMz6fz3PmP//5j+fMnj17PGcizUV6HnmVnJzsOZOUlBTRviK5uW8k/vrXv3rOfPWrX43BJNEVCATO+t8vV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDPSOPbaa695znzpS1/ynKmtrfWckaSKigrPmVGjRnnOLF++3HNm0qRJnjODqaenx3PmW9/6lufMM8884zkT7yI5h0aMGBHRvtrb2yPKoQ83IwUAxCUKCABgwlMBlZeX6/rrr1dKSooyMzM1f/581dfXh23T2dmp0tJSXXbZZbr00ku1aNEitbW1RXVoAMDQ56mAqqurVVpaqtraWu3YsUPd3d2aM2eOOjo6QtusXLlSr7/+ul599VVVV1fryJEjWrhwYdQHBwAMbZ7emdu+fXvY1xUVFcrMzNSePXs0c+ZMBQIBPffcc9q0aZNuueUWSdLGjRv12c9+VrW1tfr85z8fvckBAEPaeb0HFAgEJEnp6emS+n6Nb3d3t4qKikLbTJ48WWPHjlVNTU2/36Orq0vBYDBsAQCGv4gLqLe3V/fff79uuOEGTZkyRZLU2tqq5ORkpaWlhW2blZWl1tbWfr9PeXm5/H5/aI0ZMybSkQAAQ0jEBVRaWqr9+/frpZdeOq8BysrKFAgEQqu5ufm8vh8AYGiI6P/OWrFihd544w3t3LlTo0ePDj2enZ2t06dP6/jx42FXQW1tbcrOzu73e/l8Pvl8vkjGAAAMYZ6ugJxzWrFihbZs2aK3335beXl5Yc9Pnz5dI0eOVGVlZeix+vp6HTp0SIWFhdGZGAAwLHi6AiotLdWmTZu0bds2paSkhN7X8fv9GjVqlPx+v+6++26tWrVK6enpSk1N1X333afCwkI+AQcACOOpgD66r9SsWbPCHt+4caOWLl0qSfrJT36ixMRELVq0SF1dXSouLtbPfvazqAwLABg+uBlpHMvKyvKc+ctf/uI5k5mZ6TmD//nRj37kOfPcc895zhw4cMBzBrDEzUgBAHGJAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGAiot+IisHR1tbmOfPUU095zqxevdpzRpJGjRoVUc6rEydOeM5s27Yton09+eSTnjONjY2eM6dOnfKcAYYbroAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYSHDOOeshPi4YDMrv91uPcUGZNm1aRLm0tLToDjKAo0ePes4cOHAgBpMA8CIQCCg1NXXA57kCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYGKE9QCwV1dXZz0CgAsQV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDhqYDKy8t1/fXXKyUlRZmZmZo/f77q6+vDtpk1a5YSEhLC1rJly6I6NABg6PNUQNXV1SotLVVtba127Nih7u5uzZkzRx0dHWHb3XPPPWppaQmt9evXR3VoAMDQ5+k3om7fvj3s64qKCmVmZmrPnj2aOXNm6PGLL75Y2dnZ0ZkQADAsndd7QIFAQJKUnp4e9viLL76ojIwMTZkyRWVlZTp58uSA36Orq0vBYDBsAQAuAC5CPT097tZbb3U33HBD2OM///nP3fbt211dXZ379a9/7a644gq3YMGCAb/P2rVrnSQWi8ViDbMVCATO2iMRF9CyZcvcuHHjXHNz81m3q6ysdJJcQ0NDv893dna6QCAQWs3NzeYHjcVisVjnv85VQJ7eA/rIihUr9MYbb2jnzp0aPXr0WbctKCiQJDU0NGjChAlnPO/z+eTz+SIZAwAwhHkqIOec7rvvPm3ZskVVVVXKy8s7Z2bfvn2SpJycnIgGBAAMT54KqLS0VJs2bdK2bduUkpKi1tZWSZLf79eoUaPU2NioTZs26Ytf/KIuu+wy1dXVaeXKlZo5c6amTZsWk38AAMAQ5eV9Hw3wOt/GjRudc84dOnTIzZw506Wnpzufz+cmTpzoHnrooXO+DvhxgUDA/HVLFovFYp3/OtfP/oT/L5a4EQwG5ff7rccAAJynQCCg1NTUAZ/nXnAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABNxV0DOOesRAABRcK6f53FXQO3t7dYjAACi4Fw/zxNcnF1y9Pb26siRI0pJSVFCQkLYc8FgUGPGjFFzc7NSU1ONJrTHcejDcejDcejDcegTD8fBOaf29nbl5uYqMXHg65wRgzjTp5KYmKjRo0efdZvU1NQL+gT7CMehD8ehD8ehD8ehj/Vx8Pv959wm7l6CAwBcGCggAICJIVVAPp9Pa9eulc/nsx7FFMehD8ehD8ehD8ehz1A6DnH3IQQAwIVhSF0BAQCGDwoIAGCCAgIAmKCAAAAmhkwBbdiwQVdeeaUuuugiFRQU6L333rMeadCtW7dOCQkJYWvy5MnWY8Xczp07ddtttyk3N1cJCQnaunVr2PPOOa1Zs0Y5OTkaNWqUioqKdPDgQZthY+hcx2Hp0qVnnB9z5861GTZGysvLdf311yslJUWZmZmaP3++6uvrw7bp7OxUaWmpLrvsMl166aVatGiR2trajCaOjU9zHGbNmnXG+bBs2TKjifs3JAro5Zdf1qpVq7R27Vq9//77ys/PV3FxsY4ePWo92qC75ppr1NLSElp//OMfrUeKuY6ODuXn52vDhg39Pr9+/Xo9/fTTevbZZ7Vr1y5dcsklKi4uVmdn5yBPGlvnOg6SNHfu3LDzY/PmzYM4YexVV1ertLRUtbW12rFjh7q7uzVnzhx1dHSEtlm5cqVef/11vfrqq6qurtaRI0e0cOFCw6mj79McB0m65557ws6H9evXG008ADcEzJgxw5WWloa+7unpcbm5ua68vNxwqsG3du1al5+fbz2GKUluy5Ytoa97e3tddna2+8EPfhB67Pjx487n87nNmzcbTDg4PnkcnHNuyZIlbt68eSbzWDl69KiT5Kqrq51zff/uR44c6V599dXQNv/4xz+cJFdTU2M1Zsx98jg459wXvvAF9+1vf9tuqE8h7q+ATp8+rT179qioqCj0WGJiooqKilRTU2M4mY2DBw8qNzdX48eP15133qlDhw5Zj2SqqalJra2tYeeH3+9XQUHBBXl+VFVVKTMzU1dffbWWL1+uY8eOWY8UU4FAQJKUnp4uSdqzZ4+6u7vDzofJkydr7Nixw/p8+ORx+MiLL76ojIwMTZkyRWVlZTp58qTFeAOKu5uRftKHH36onp4eZWVlhT2elZWlAwcOGE1lo6CgQBUVFbr66qvV0tKixx57TDfddJP279+vlJQU6/FMtLa2SlK/58dHz10o5s6dq4ULFyovL0+NjY36zne+o5KSEtXU1CgpKcl6vKjr7e3V/fffrxtuuEFTpkyR1Hc+JCcnKy0tLWzb4Xw+9HccJOlrX/uaxo0bp9zcXNXV1emRRx5RfX29fvvb3xpOGy7uCwj/U1JSEvrztGnTVFBQoHHjxumVV17R3XffbTgZ4sHtt98e+vPUqVM1bdo0TZgwQVVVVZo9e7bhZLFRWlqq/fv3XxDvg57NQMfh3nvvDf156tSpysnJ0ezZs9XY2KgJEyYM9pj9ivuX4DIyMpSUlHTGp1ja2tqUnZ1tNFV8SEtL06RJk9TQ0GA9ipmPzgHOjzONHz9eGRkZw/L8WLFihd544w298847Yb++JTs7W6dPn9bx48fDth+u58NAx6E/BQUFkhRX50PcF1BycrKmT5+uysrK0GO9vb2qrKxUYWGh4WT2Tpw4ocbGRuXk5FiPYiYvL0/Z2dlh50cwGNSuXbsu+PPj8OHDOnbs2LA6P5xzWrFihbZs2aK3335beXl5Yc9Pnz5dI0eODDsf6uvrdejQoWF1PpzrOPRn3759khRf54P1pyA+jZdeesn5fD5XUVHh/v73v7t7773XpaWludbWVuvRBtUDDzzgqqqqXFNTk3v33XddUVGRy8jIcEePHrUeLaba29vd3r173d69e50k9+Mf/9jt3bvX/fvf/3bOOff973/fpaWluW3btrm6ujo3b948l5eX506dOmU8eXSd7Ti0t7e7Bx980NXU1Limpib31ltvuc997nPuqquucp2dndajR83y5cud3+93VVVVrqWlJbROnjwZ2mbZsmVu7Nix7u2333a7d+92hYWFrrCw0HDq6DvXcWhoaHCPP/642717t2tqanLbtm1z48ePdzNnzjSePNyQKCDnnPvpT3/qxo4d65KTk92MGTNcbW2t9UiDbvHixS4nJ8clJye7K664wi1evNg1NDRYjxVz77zzjpN0xlqyZIlzru+j2KtXr3ZZWVnO5/O52bNnu/r6etuhY+Bsx+HkyZNuzpw57vLLL3cjR45048aNc/fcc8+w+0taf//8ktzGjRtD25w6dcp985vfdJ/5zGfcxRdf7BYsWOBaWlrsho6Bcx2HQ4cOuZkzZ7r09HTn8/ncxIkT3UMPPeQCgYDt4J/Ar2MAAJiI+/eAAADDEwUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABP/B+w7LUIa5l2bAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 2\n", + "NN answer: 2\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n", + "NN output: [[5.2140213e-06 4.1654346e-07 3.1492444e-05 1.7709195e-05 2.7664129e-03\n", + " 2.7269698e-05 2.1200174e-06 8.0334948e-04 1.6337440e-03 9.9471223e-01]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG2xJREFUeJzt3X9sVfX9x/HXLdALaHtZKe3tlYIFBRZB3BC6RkQdDaXbjPz4Q8UlwAhELGbQOU2Nij+WVFniDAuDP7bATEQdCT8i2VikSJmzhYCwhmyrtHYCoS2ThHtLgULo5/tHs/v1ShHP5d6+ey/PR/JJuOec9z1vPh768vSefupzzjkBANDHMqwbAADcnAggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmBho3cDXdXd369SpU8rKypLP57NuBwDgkXNOHR0dCoVCysi49n1OvwugU6dOqbCw0LoNAMANOnHihEaOHHnN/f3uW3BZWVnWLQAAEuB6X8+TFkDr1q3T7bffrsGDB6u4uFgHDhz4VnV82w0A0sP1vp4nJYDef/99VVZWavXq1fr00081efJklZWV6fTp08k4HQAgFbkkmDZtmquoqIi+vnLliguFQq66uvq6teFw2EliMBgMRoqPcDj8jV/vE34HdOnSJR06dEilpaXRbRkZGSotLVVdXd1Vx3d1dSkSicQMAED6S3gAffnll7py5Yry8/Njtufn56utre2q46urqxUIBKKDJ+AA4OZg/hRcVVWVwuFwdJw4ccK6JQBAH0j4zwHl5uZqwIABam9vj9ne3t6uYDB41fF+v19+vz/RbQAA+rmE3wFlZmZqypQpqqmpiW7r7u5WTU2NSkpKEn06AECKSspKCJWVlVq4cKHuvfdeTZs2TW+99ZY6Ozu1ePHiZJwOAJCCkhJAjz76qP773//qpZdeUltbm+655x7t2rXrqgcTAAA3L59zzlk38VWRSESBQMC6DQDADQqHw8rOzr7mfvOn4AAANycCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYSHgAvfzyy/L5fDFjwoQJiT4NACDFDUzGm951113avXv3/59kYFJOAwBIYUlJhoEDByoYDCbjrQEAaSIpnwEdO3ZMoVBIY8aM0RNPPKHjx49f89iuri5FIpGYAQBIfwkPoOLiYm3atEm7du3S+vXr1dLSovvvv18dHR29Hl9dXa1AIBAdhYWFiW4JANAP+ZxzLpknOHv2rEaPHq0333xTS5YsuWp/V1eXurq6oq8jkQghBABpIBwOKzs7+5r7k/50wLBhwzRu3Dg1NTX1ut/v98vv9ye7DQBAP5P0nwM6d+6cmpubVVBQkOxTAQBSSMID6JlnnlFtba3+85//6JNPPtHcuXM1YMAAPf7444k+FQAghSX8W3AnT57U448/rjNnzmjEiBGaPn266uvrNWLEiESfCgCQwpL+EIJXkUhEgUDAug3gW8vPz/dcs3jxYs81c+fO9VyTl5fnuUaK7+80ePBgzzWvv/6655rXXnvNc82FCxc81+DGXe8hBNaCAwCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILFSNGnBg0a5Llm+vTpnmumTp3quUZSXL82JJ4FP+P5/Vj97J9qQvh8Ps817733nueaBQsWeK7BjWMxUgBAv0QAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFq2OhTv//97z3XLF68OAmd2IpnFeh+9k81IeKZh66uLs81DzzwgOcaSTpw4EBcdejBatgAgH6JAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiYHWDcBeXl5eXHWvvvqq55qf/exnnmv6chHOS5cuea75/PPPPdc8//zznmvGjRvnueazzz7zXCNJ+fn5nmsaGho813zyySeeazIzMz3XBINBzzVIPu6AAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUmjDhg1x1T3yyCMJ7iRxdu/eHVfd6tWrPdfU19fHda50s2rVKusWkGK4AwIAmCCAAAAmPAfQvn379PDDDysUCsnn82n79u0x+51zeumll1RQUKAhQ4aotLRUx44dS1S/AIA04TmAOjs7NXnyZK1bt67X/WvWrNHatWu1YcMG7d+/X7fccovKysp08eLFG24WAJA+PD+EUF5ervLy8l73Oef01ltv6YUXXoh+QP32228rPz9f27dv12OPPXZj3QIA0kZCPwNqaWlRW1ubSktLo9sCgYCKi4tVV1fXa01XV5cikUjMAACkv4QGUFtbm6Srf598fn5+dN/XVVdXKxAIREdhYWEiWwIA9FPmT8FVVVUpHA5Hx4kTJ6xbAgD0gYQGUDAYlCS1t7fHbG9vb4/u+zq/36/s7OyYAQBIfwkNoKKiIgWDQdXU1ES3RSIR7d+/XyUlJYk8FQAgxXl+Cu7cuXNqamqKvm5padGRI0eUk5OjUaNGaeXKlfrVr36lO++8U0VFRXrxxRcVCoU0Z86cRPYNAEhxngPo4MGDeuihh6KvKysrJUkLFy7Upk2b9Oyzz6qzs1PLli3T2bNnNX36dO3atUuDBw9OXNcAgJTnc8456ya+KhKJKBAIWLeRstasWeO55plnnklCJ73r6OjwXPPOO+94rnn99dc910jS8ePH46rrr4YPHx5X3Z///GfPNVOnTvVc4/P5PNfE86DSggULPNdI0scffxxXHXqEw+Fv/Fzf/Ck4AMDNiQACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgwvOvY0D/duedd3quiXdB9M8++8xzTVlZmeeadFuhOl4rVqzwXPPss8/Gda7bbrvNc01fLaxfVVXluYZVrfsn7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYYDFSxG3cuHGea0aNGuW5hsVIezz11FOea+JZVLQv/fWvf/Vcs2PHjiR0AgvcAQEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDBYqToUzU1NZ5r2tvbPdds3rzZc40U3wKr8bj//vs91wQCgSR0Ymvu3Lmeay5evJiETmCBOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmfM45Z93EV0UikbRcdLGvlJWVea7ZunVrXOcaPHiw5xqfz+e5pp9dognBPPQYMGCAdQtIonA4rOzs7Gvu5w4IAGCCAAIAmPAcQPv27dPDDz+sUCgkn8+n7du3x+xftGiRfD5fzJg9e3ai+gUApAnPAdTZ2anJkydr3bp11zxm9uzZam1tjY533333hpoEAKQfz78Rtby8XOXl5d94jN/vVzAYjLspAED6S8pnQHv37lVeXp7Gjx+v5cuX68yZM9c8tqurS5FIJGYAANJfwgNo9uzZevvtt1VTU6M33nhDtbW1Ki8v15UrV3o9vrq6WoFAIDoKCwsT3RIAoB+6oZ8D8vl82rZtm+bMmXPNYz7//HONHTtWu3fv1syZM6/a39XVpa6urujrSCRCCN0Afg4oNTAPPfg5oPRm/nNAY8aMUW5urpqamnrd7/f7lZ2dHTMAAOkv6QF08uRJnTlzRgUFBck+FQAghXh+Cu7cuXMxdzMtLS06cuSIcnJylJOTo1deeUXz589XMBhUc3Oznn32Wd1xxx1xfWsIAJC+PAfQwYMH9dBDD0VfV1ZWSpIWLlyo9evXq6GhQX/84x919uxZhUIhzZo1S6+99pr8fn/iugYApDwWI4U2bNgQV92yZcs81/Dhew/moUdGBquBpTPzhxAAAOgNAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEq2FDmZmZcdXNmjXLc82kSZM816xcudJzTbyam5s914wfP95zzYkTJzzXxDN3famhocFzzfe+970kdIL+gtWwAQD9EgEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMDrRuAvUuXLsVVt3Pnzj6pqa6u9lwTr1tvvdVzTTyLuS5dutRzTX9fjHTbtm3WLSDFcAcEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABIuRAl9x7ty5PjnPvffe2yfnidfmzZs91/TlorFID9wBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFipMAN+slPfuK5Zv78+Z5rnHOea7744gvPNZK0evVqzzWXL1+O61y4eXEHBAAwQQABAEx4CqDq6mpNnTpVWVlZysvL05w5c9TY2BhzzMWLF1VRUaHhw4fr1ltv1fz589Xe3p7QpgEAqc9TANXW1qqiokL19fX68MMPdfnyZc2aNUudnZ3RY1atWqUPPvhAW7ZsUW1trU6dOqV58+YlvHEAQGrz9BDCrl27Yl5v2rRJeXl5OnTokGbMmKFwOKw//OEP2rx5s374wx9KkjZu3Kjvfve7qq+v1w9+8IPEdQ4ASGk39BlQOByWJOXk5EiSDh06pMuXL6u0tDR6zIQJEzRq1CjV1dX1+h5dXV2KRCIxAwCQ/uIOoO7ubq1cuVL33XefJk6cKElqa2tTZmamhg0bFnNsfn6+2traen2f6upqBQKB6CgsLIy3JQBACok7gCoqKnT06FG99957N9RAVVWVwuFwdJw4ceKG3g8AkBri+kHUFStWaOfOndq3b59GjhwZ3R4MBnXp0iWdPXs25i6ovb1dwWCw1/fy+/3y+/3xtAEASGGe7oCcc1qxYoW2bdumPXv2qKioKGb/lClTNGjQINXU1ES3NTY26vjx4yopKUlMxwCAtODpDqiiokKbN2/Wjh07lJWVFf1cJxAIaMiQIQoEAlqyZIkqKyuVk5Oj7OxsPf300yopKeEJOABADE8BtH79eknSgw8+GLN948aNWrRokSTpN7/5jTIyMjR//nx1dXWprKxMv/vd7xLSLAAgffhcPCscJlEkElEgELBuA/jW/va3v3mumT59uueaeP6p7tixw3ONJM2dOzeuOuCrwuGwsrOzr7mfteAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACbi+o2oQLqaMGGC55p77rnHc008K1vX19d7rnnjjTc81wB9hTsgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJliMFPiKRYsWea4ZOnRo4hvpRW1treeaeBYwBfoKd0AAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBgp8BU//vGP++Q8//jHPzzXrF27NgmdAHa4AwIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCxUiBr/jpT3/queYvf/mL55p4FhZtbW31XAP0Z9wBAQBMEEAAABOeAqi6ulpTp05VVlaW8vLyNGfOHDU2NsYc8+CDD8rn88WMJ598MqFNAwBSn6cAqq2tVUVFherr6/Xhhx/q8uXLmjVrljo7O2OOW7p0qVpbW6NjzZo1CW0aAJD6PD2EsGvXrpjXmzZtUl5eng4dOqQZM2ZEtw8dOlTBYDAxHQIA0tINfQYUDoclSTk5OTHb33nnHeXm5mrixImqqqrS+fPnr/keXV1dikQiMQMAkP7ifgy7u7tbK1eu1H333aeJEydGty9YsECjR49WKBRSQ0ODnnvuOTU2Nmrr1q29vk91dbVeeeWVeNsAAKSouAOooqJCR48e1ccffxyzfdmyZdE/T5o0SQUFBZo5c6aam5s1duzYq96nqqpKlZWV0deRSESFhYXxtgUASBFxBdCKFSu0c+dO7du3TyNHjvzGY4uLiyVJTU1NvQaQ3++X3++Ppw0AQArzFEDOOT399NPatm2b9u7dq6KiouvWHDlyRJJUUFAQV4MAgPTkKYAqKiq0efNm7dixQ1lZWWpra5MkBQIBDRkyRM3Nzdq8ebN+9KMfafjw4WpoaNCqVas0Y8YM3X333Un5CwAAUpOnAFq/fr2knh82/aqNGzdq0aJFyszM1O7du/XWW2+ps7NThYWFmj9/vl544YWENQwASA+evwX3TQoLC1VbW3tDDQEAbg4+d71U6WORSESBQMC6DQDADQqHw8rOzr7mfhYjBQCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYKLfBZBzzroFAEACXO/reb8LoI6ODusWAAAJcL2v5z7Xz245uru7derUKWVlZcnn88Xsi0QiKiws1IkTJ5SdnW3UoT3moQfz0IN56ME89OgP8+CcU0dHh0KhkDIyrn2fM7APe/pWMjIyNHLkyG88Jjs7+6a+wP6HeejBPPRgHnowDz2s5yEQCFz3mH73LTgAwM2BAAIAmEipAPL7/Vq9erX8fr91K6aYhx7MQw/moQfz0COV5qHfPYQAALg5pNQdEAAgfRBAAAATBBAAwAQBBAAwkTIBtG7dOt1+++0aPHiwiouLdeDAAeuW+tzLL78sn88XMyZMmGDdVtLt27dPDz/8sEKhkHw+n7Zv3x6z3zmnl156SQUFBRoyZIhKS0t17Ngxm2aT6HrzsGjRoquuj9mzZ9s0myTV1dWaOnWqsrKylJeXpzlz5qixsTHmmIsXL6qiokLDhw/Xrbfeqvnz56u9vd2o4+T4NvPw4IMPXnU9PPnkk0Yd9y4lAuj9999XZWWlVq9erU8//VSTJ09WWVmZTp8+bd1an7vrrrvU2toaHR9//LF1S0nX2dmpyZMna926db3uX7NmjdauXasNGzZo//79uuWWW1RWVqaLFy/2cafJdb15kKTZs2fHXB/vvvtuH3aYfLW1taqoqFB9fb0+/PBDXb58WbNmzVJnZ2f0mFWrVumDDz7Qli1bVFtbq1OnTmnevHmGXSfet5kHSVq6dGnM9bBmzRqjjq/BpYBp06a5ioqK6OsrV664UCjkqqurDbvqe6tXr3aTJ0+2bsOUJLdt27bo6+7ubhcMBt2vf/3r6LazZ886v9/v3n33XYMO+8bX58E55xYuXOgeeeQRk36snD592klytbW1zrme//aDBg1yW7ZsiR7zr3/9y0lydXV1Vm0m3dfnwTnnHnjgAffzn//crqlvod/fAV26dEmHDh1SaWlpdFtGRoZKS0tVV1dn2JmNY8eOKRQKacyYMXriiSd0/Phx65ZMtbS0qK2tLeb6CAQCKi4uvimvj7179yovL0/jx4/X8uXLdebMGeuWkiocDkuScnJyJEmHDh3S5cuXY66HCRMmaNSoUWl9PXx9Hv7nnXfeUW5uriZOnKiqqiqdP3/eor1r6neLkX7dl19+qStXrig/Pz9me35+vv79738bdWWjuLhYmzZt0vjx49Xa2qpXXnlF999/v44ePaqsrCzr9ky0tbVJUq/Xx//23Sxmz56tefPmqaioSM3NzXr++edVXl6uuro6DRgwwLq9hOvu7tbKlSt13333aeLEiZJ6rofMzEwNGzYs5th0vh56mwdJWrBggUaPHq1QKKSGhgY999xzamxs1NatWw27jdXvAwj/r7y8PPrnu+++W8XFxRo9erT+9Kc/acmSJYadoT947LHHon+eNGmS7r77bo0dO1Z79+7VzJkzDTtLjoqKCh09evSm+Bz0m1xrHpYtWxb986RJk1RQUKCZM2equblZY8eO7es2e9XvvwWXm5urAQMGXPUUS3t7u4LBoFFX/cOwYcM0btw4NTU1Wbdi5n/XANfH1caMGaPc3Ny0vD5WrFihnTt36qOPPor59S3BYFCXLl3S2bNnY45P1+vhWvPQm+LiYknqV9dDvw+gzMxMTZkyRTU1NdFt3d3dqqmpUUlJiWFn9s6dO6fm5mYVFBRYt2KmqKhIwWAw5vqIRCLav3//TX99nDx5UmfOnEmr68M5pxUrVmjbtm3as2ePioqKYvZPmTJFgwYNirkeGhsbdfz48bS6Hq43D705cuSIJPWv68H6KYhv47333nN+v99t2rTJ/fOf/3TLli1zw4YNc21tbdat9alf/OIXbu/eva6lpcX9/e9/d6WlpS43N9edPn3aurWk6ujocIcPH3aHDx92ktybb77pDh8+7L744gvnnHOvv/66GzZsmNuxY4draGhwjzzyiCsqKnIXLlww7jyxvmkeOjo63DPPPOPq6upcS0uL2717t/v+97/v7rzzTnfx4kXr1hNm+fLlLhAIuL1797rW1tboOH/+fPSYJ5980o0aNcrt2bPHHTx40JWUlLiSkhLDrhPvevPQ1NTkXn31VXfw4EHX0tLiduzY4caMGeNmzJhh3HmslAgg55z77W9/60aNGuUyMzPdtGnTXH19vXVLfe7RRx91BQUFLjMz0912223u0UcfdU1NTdZtJd1HH33kJF01Fi5c6JzreRT7xRdfdPn5+c7v97uZM2e6xsZG26aT4Jvm4fz5827WrFluxIgRbtCgQW706NFu6dKlafc/ab39/SW5jRs3Ro+5cOGCe+qpp9x3vvMdN3ToUDd37lzX2tpq13QSXG8ejh8/7mbMmOFycnKc3+93d9xxh/vlL3/pwuGwbeNfw69jAACY6PefAQEA0hMBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAAT/wc5Hussv8h9zQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 9\n", + "NN answer: 9\n" + ] + } + ], + "source": [ + "#Результаты для двух тестовых изображений\n", + "for n in [3,26]:\n", + " result = model_1h100_2h50.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', str(np.argmax(y_test[n])))\n", + " print('NN answer: ', str(np.argmax(result)))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N1YRHVyrrI-2" + }, + "source": [ + "13) Каждому члену бригады создать собственное изображение рукописной\n", + "цифры, подобное представленным в наборе MNIST. Цифру выбрать как\n", + "остаток от деления на 10 числа своего дня рождения (26 ноября\n", + "→ 26 mod 10 = 6, 3 июля → 3 mod 10 = 3). Сохранить изображения. Загрузить, предобработать и\n", + "подать на вход обученной нейронной сети собственные изображения.\n", + "Вывести изображения и результаты распознавания." + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 843 + }, + "id": "YnOUOHtUrJDR", + "outputId": "df9189bc-5726-45b3-ecb7-9e90f95ba5d5" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHYxJREFUeJzt3X9s1PUdx/HXFeiB0l4ppb+kQMEfKL+WIXQV7VQ6SrcQQbLgjz9gMRJZMSLzx7pMkW1JN+Y2w8I0SxaYiYg/IjDNxoIgJWpBQRkzakObImBpEbLelQKltJ/9QbztpIif4453W56P5JvQu++r9+bbb/rqt3f9XMA55wQAwCWWYj0AAODyRAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADARH/rAb6qq6tLjY2NSktLUyAQsB4HAODJOafW1lbl5+crJeX81zk9roAaGxtVUFBgPQYA4CIdPHhQw4cPP+/9Pe5XcGlpadYjAAAS4ELfz5NWQKtWrdKoUaM0cOBAFRUV6b333vtGOX7tBgB9w4W+nyelgF566SUtXbpUy5Yt0wcffKBJkyaprKxMR44cScbDAQB6I5cEU6dOdRUVFdGPOzs7XX5+vquqqrpgNhwOO0lsbGxsbL18C4fDX/v9PuFXQKdPn9bu3btVWloavS0lJUWlpaWqqak5Z//29nZFIpGYDQDQ9yW8gI4eParOzk7l5OTE3J6Tk6OmpqZz9q+qqlIoFIpuvAIOAC4P5q+Cq6ysVDgcjm4HDx60HgkAcAkk/O+AsrKy1K9fPzU3N8fc3tzcrNzc3HP2DwaDCgaDiR4DANDDJfwKKDU1VZMnT9aWLVuit3V1dWnLli0qLi5O9MMBAHqppKyEsHTpUs2fP1833nijpk6dqmeeeUZtbW360Y9+lIyHAwD0QkkpoHnz5umLL77Qk08+qaamJn3rW9/Spk2bznlhAgDg8hVwzjnrIf5fJBJRKBSyHgMAcJHC4bDS09PPe7/5q+AAAJcnCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJpKyGjbQW/Xr1887E88bKsaT6ezs9M6cOnXKOyNJHR0d3pketq4xegGugAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJlgNGz3egAEDvDN5eXlxPdbkyZO9MzfccIN3Jicnxztz+vRp70x9fb13RpLeffdd78ynn37qnWlvb/fOoO/gCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJFiNF3AKBgHdm2LBh3pmSkhLvTFlZmXdGkoqKirwzubm53pl+/fp5Z+I53m1tbd4ZSdq5c6d35umnn/bOvPfee96Zrq4u7wx6Jq6AAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmGAxUsRtyJAh3pl58+Z5ZxYuXOidueqqq7wzktTc3Oyd2bx5s3fms88+886kpaV5Z+JZXFWSZsyY4Z35/PPPvTP79+/3zjQ1NXln0DNxBQQAMEEBAQBMJLyAnnrqKQUCgZht7NixiX4YAEAvl5TngMaNG6c333zzfw/Sn6eaAACxktIM/fv3j+tdIgEAl4+kPAe0b98+5efna/To0br33nt14MCB8+7b3t6uSCQSswEA+r6EF1BRUZHWrFmjTZs26dlnn1VDQ4NuueUWtba2drt/VVWVQqFQdCsoKEj0SACAHijhBVReXq4f/vCHmjhxosrKyvT3v/9dLS0tevnll7vdv7KyUuFwOLodPHgw0SMBAHqgpL86ICMjQ9dee63q6uq6vT8YDCoYDCZ7DABAD5P0vwM6fvy46uvrlZeXl+yHAgD0IgkvoEceeUTV1dXav3+/3n33Xc2ZM0f9+vXT3XffneiHAgD0Ygn/FdyhQ4d0991369ixYxo2bJhuvvlm7dixQ8OGDUv0QwEAerGEF9C6desS/SmRZIFAIK7cqFGjvDM/+MEPvDNZWVnembfeess7I0nr16/3zuzYscM709jY6J254oorvDPz58/3zkjSQw895J25/fbbvTObNm3yzvzzn//0znR1dXlnkHysBQcAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMBE0t+QDn1XOBz2zrz//vvemb1793pnXn31Ve+MJO3Zs8c7c/r06bgey9fJkye9M5s3b47rsb73ve95Z6ZNm+adGTdunHcmnv8Ti5H2TFwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMsBo25JyLK/f55597Z/785z97Z86cOeOdOXr0qHdGkjo6OuLKXQrxfJ0OHToU12N99tln3pnS0lLvTCgU8s6kpPBzc1/BVxIAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJFiNF3E6dOuWdiXdxTF/xLrDa16Snp8eVi2eR0HiOef/+/t+CWIy07+ArCQAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwASLkeKSYpHQs1JTU70zeXl53pm7777bOyNJN954o3cmnoVm//Wvf3lnzpw5451Bz8QVEADABAUEADDhXUDbt2/XrFmzlJ+fr0AgoA0bNsTc75zTk08+qby8PA0aNEilpaXat29fouYFAPQR3gXU1tamSZMmadWqVd3ev2LFCq1cuVLPPfecdu7cqSuvvFJlZWVxvXkZAKDv8n4RQnl5ucrLy7u9zzmnZ555Rj//+c91xx13SJKef/555eTkaMOGDbrrrrsubloAQJ+R0OeAGhoa1NTUpNLS0uhtoVBIRUVFqqmp6TbT3t6uSCQSswEA+r6EFlBTU5MkKScnJ+b2nJyc6H1fVVVVpVAoFN0KCgoSORIAoIcyfxVcZWWlwuFwdDt48KD1SACASyChBZSbmytJam5ujrm9ubk5et9XBYNBpaenx2wAgL4voQVUWFio3NxcbdmyJXpbJBLRzp07VVxcnMiHAgD0ct6vgjt+/Ljq6uqiHzc0NGjPnj3KzMzUiBEjtGTJEv3qV7/SNddco8LCQj3xxBPKz8/X7NmzEzk3AKCX8y6gXbt26bbbbot+vHTpUknS/PnztWbNGj322GNqa2vTwoUL1dLSoptvvlmbNm3SwIEDEzc1AKDXC7getjpkJBJRKBSyHgO9XEpKfL9dzsrK8s6MGzfukmSmTJninbnpppu8M5I0ePBg78y6deu8M08//bR35vPPP/fOwEY4HP7a5/XNXwUHALg8UUAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMeL8dA9AbDBs2LK7c4sWLvTPz5s3zzsQz36BBg7wzJ0+e9M5I0ieffOKd2b17t3empaXFO4O+gysgAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJliMFH1SXl5eXLny8nLvzDXXXOOdcc55Z86cOeOdGThwoHdGksaNG+ediWdR1v3793tnampqvDOdnZ3eGSQfV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMsBgp+qR4FrmUpN/97nfembKyMu9MIBDwznzxxRfemQEDBnhnJGnKlCmXJDN//nzvTFNTk3emrq7OO4Pk4woIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACAiYBzzlkP8f8ikYhCoZD1GLhMpaT4/0yWmprqnenq6rokmcGDB3tnJGnOnDnemccee8w7k5GR4Z1Zvny5d2b16tXeGUlqb2+PK4ezwuGw0tPTz3s/V0AAABMUEADAhHcBbd++XbNmzVJ+fr4CgYA2bNgQc/+CBQsUCARitpkzZyZqXgBAH+FdQG1tbZo0aZJWrVp13n1mzpypw4cPR7cXX3zxooYEAPQ93u+IWl5ervLy8q/dJxgMKjc3N+6hAAB9X1KeA9q2bZuys7N13XXXadGiRTp27Nh5921vb1ckEonZAAB9X8ILaObMmXr++ee1ZcsW/eY3v1F1dbXKy8vV2dnZ7f5VVVUKhULRraCgINEjAQB6IO9fwV3IXXfdFf33hAkTNHHiRI0ZM0bbtm3T9OnTz9m/srJSS5cujX4ciUQoIQC4DCT9ZdijR49WVlaW6urqur0/GAwqPT09ZgMA9H1JL6BDhw7p2LFjysvLS/ZDAQB6Ee9fwR0/fjzmaqahoUF79uxRZmamMjMztXz5cs2dO1e5ubmqr6/XY489pquvvlplZWUJHRwA0Lt5F9CuXbt02223RT/+8vmb+fPn69lnn9XevXv117/+VS0tLcrPz9eMGTP0y1/+UsFgMHFTAwB6PRYjBXCOeP6O76mnnvLOLFiwwDvz8ssve2d++tOfemckqbGxMa4czmIxUgBAj0QBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMJHwt+QG0Ps1Nzd7Zz7++GPvTCQS8c5kZ2d7Z7KysrwzEqthJxtXQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAEywGCmAhOjo6PDOnDlzxjszcOBA70xqaqp3BsnHFRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATLEaKuAUCAe9M//7+p1xXV5d3prOz0zvTF8XzNZKkgoIC78z48eO9M4MGDfLOHD582Dvzn//8xzuD5OMKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkWI0XcrrrqKu/Mbbfd5p05evSod2bXrl3eGUk6duxYXDlfKSn+P/ulpaV5Z66//nrvjCTNmTPHO1NaWuqdaW1t9c5s377dOxPPAqZIPq6AAAAmKCAAgAmvAqqqqtKUKVOUlpam7OxszZ49W7W1tTH7nDp1ShUVFRo6dKgGDx6suXPnqrm5OaFDAwB6P68Cqq6uVkVFhXbs2KHNmzero6NDM2bMUFtbW3Sfhx9+WK+//rpeeeUVVVdXq7GxUXfeeWfCBwcA9G5eL0LYtGlTzMdr1qxRdna2du/erZKSEoXDYf3lL3/R2rVrdfvtt0uSVq9ereuvv147duzQd77zncRNDgDo1S7qOaBwOCxJyszMlCTt3r1bHR0dMa+GGTt2rEaMGKGamppuP0d7e7sikUjMBgDo++IuoK6uLi1ZskTTpk2Lvhd8U1OTUlNTlZGREbNvTk6Ompqauv08VVVVCoVC0S2e96IHAPQ+cRdQRUWFPvroI61bt+6iBqisrFQ4HI5uBw8evKjPBwDoHeL6Q9TFixfrjTfe0Pbt2zV8+PDo7bm5uTp9+rRaWlpiroKam5uVm5vb7ecKBoMKBoPxjAEA6MW8roCcc1q8eLHWr1+vrVu3qrCwMOb+yZMna8CAAdqyZUv0ttraWh04cEDFxcWJmRgA0Cd4XQFVVFRo7dq12rhxo9LS0qLP64RCIQ0aNEihUEj33Xefli5dqszMTKWnp+vBBx9UcXExr4ADAMTwKqBnn31WknTrrbfG3L569WotWLBAkvSHP/xBKSkpmjt3rtrb21VWVqY//elPCRkWANB3BJxzznqI/xeJRBQKhazHuKzEszCmJM2aNcs78+UPMT6++OIL78zf/vY374wU3yKm7e3t3pkhQ4Z4Z2644QbvzE033eSdkaQJEyZ4Z06dOuWdefXVV70zK1eu9M7s37/fO4OLFw6HlZ6eft77WQsOAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCC1bARtzFjxnhnHn30Ue/MnDlzvDOnT5/2zkjxrbx95swZ78yVV17pnRk6dKh3pqOjwzsjSZ9++ql3ZvPmzd6ZDRs2eGfq6+u9M52dnd4ZXDxWwwYA9EgUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBM9LceAL1XQ0ODd2blypXemSNHjnhnioqKvDOSNGzYMO9MMBj0zhw/ftw78+9//9s78/7773tnJOmdd97xznzyySfemUgk4p3pYesn4yJwBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMBEwPWwlf0ikYhCoZD1GEiSfv36eWeGDBninRk1apR3RpJyc3O9M/37+6/pG89ipPv37/fONDY2emck6eTJk96ZHvatBD1AOBxWenr6ee/nCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJ/1UUgYvQ2dnpnTl69Kh35tixY94ZSQoEAnHlfMWzcCeLfaKv4QoIAGCCAgIAmPAqoKqqKk2ZMkVpaWnKzs7W7NmzVVtbG7PPrbfeqkAgELM98MADCR0aAND7eRVQdXW1KioqtGPHDm3evFkdHR2aMWOG2traYva7//77dfjw4ei2YsWKhA4NAOj9vF6EsGnTppiP16xZo+zsbO3evVslJSXR26+44oq43lkSAHD5uKjngMLhsCQpMzMz5vYXXnhBWVlZGj9+vCorK3XixInzfo729nZFIpGYDQDQ98X9Muyuri4tWbJE06ZN0/jx46O333PPPRo5cqTy8/O1d+9ePf7446qtrdVrr73W7eepqqrS8uXL4x0DANBLBVycf1ywaNEi/eMf/9Dbb7+t4cOHn3e/rVu3avr06aqrq9OYMWPOub+9vV3t7e3RjyORiAoKCuIZCYiK9+95+DsgIHHC4bDS09PPe39cV0CLFy/WG2+8oe3bt39t+UhSUVGRJJ23gILBoILBYDxjAAB6Ma8Ccs7pwQcf1Pr167Vt2zYVFhZeMLNnzx5JUl5eXlwDAgD6Jq8Cqqio0Nq1a7Vx40alpaWpqalJkhQKhTRo0CDV19dr7dq1+v73v6+hQ4dq7969evjhh1VSUqKJEycm5T8AAOilnAdJ3W6rV692zjl34MABV1JS4jIzM10wGHRXX321e/TRR104HP7GjxEOh8/7OGxs33QLBAJxbSkpKZdki2c262PKxua7Xeh7f9wvQkiWSCSiUChkPQZ6OV6EANhLyosQgJ4u3m/WfJMHLh0WIwUAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCixxWQc856BABAAlzo+3mPK6DW1lbrEQAACXCh7+cB18MuObq6utTY2Ki0tDQFAoGY+yKRiAoKCnTw4EGlp6cbTWiP43AWx+EsjsNZHIezesJxcM6ptbVV+fn5Skk5/3VO/0s40zeSkpKi4cOHf+0+6enpl/UJ9iWOw1kch7M4DmdxHM6yPg6hUOiC+/S4X8EBAC4PFBAAwESvKqBgMKhly5YpGAxaj2KK43AWx+EsjsNZHIezetNx6HEvQgAAXB561RUQAKDvoIAAACYoIACACQoIAGCi1xTQqlWrNGrUKA0cOFBFRUV67733rEe65J566ikFAoGYbezYsdZjJd327ds1a9Ys5efnKxAIaMOGDTH3O+f05JNPKi8vT4MGDVJpaan27dtnM2wSXeg4LFiw4JzzY+bMmTbDJklVVZWmTJmitLQ0ZWdna/bs2aqtrY3Z59SpU6qoqNDQoUM1ePBgzZ07V83NzUYTJ8c3OQ633nrrOefDAw88YDRx93pFAb300ktaunSpli1bpg8++ECTJk1SWVmZjhw5Yj3aJTdu3DgdPnw4ur399tvWIyVdW1ubJk2apFWrVnV7/4oVK7Ry5Uo999xz2rlzp6688kqVlZXp1KlTl3jS5LrQcZCkmTNnxpwfL7744iWcMPmqq6tVUVGhHTt2aPPmzero6NCMGTPU1tYW3efhhx/W66+/rldeeUXV1dVqbGzUnXfeaTh14n2T4yBJ999/f8z5sGLFCqOJz8P1AlOnTnUVFRXRjzs7O11+fr6rqqoynOrSW7ZsmZs0aZL1GKYkufXr10c/7urqcrm5ue63v/1t9LaWlhYXDAbdiy++aDDhpfHV4+Ccc/Pnz3d33HGHyTxWjhw54iS56upq59zZr/2AAQPcK6+8Et3nk08+cZJcTU2N1ZhJ99Xj4Jxz3/3ud91DDz1kN9Q30OOvgE6fPq3du3ertLQ0eltKSopKS0tVU1NjOJmNffv2KT8/X6NHj9a9996rAwcOWI9kqqGhQU1NTTHnRygUUlFR0WV5fmzbtk3Z2dm67rrrtGjRIh07dsx6pKQKh8OSpMzMTEnS7t271dHREXM+jB07ViNGjOjT58NXj8OXXnjhBWVlZWn8+PGqrKzUiRMnLMY7rx63GOlXHT16VJ2dncrJyYm5PScnR59++qnRVDaKioq0Zs0aXXfddTp8+LCWL1+uW265RR999JHS0tKsxzPR1NQkSd2eH1/ed7mYOXOm7rzzThUWFqq+vl4/+9nPVF5erpqaGvXr1896vITr6urSkiVLNG3aNI0fP17S2fMhNTVVGRkZMfv25fOhu+MgSffcc49Gjhyp/Px87d27V48//rhqa2v12muvGU4bq8cXEP6nvLw8+u+JEyeqqKhII0eO1Msvv6z77rvPcDL0BHfddVf03xMmTNDEiRM1ZswYbdu2TdOnTzecLDkqKir00UcfXRbPg36d8x2HhQsXRv89YcIE5eXlafr06aqvr9eYMWMu9Zjd6vG/gsvKylK/fv3OeRVLc3OzcnNzjabqGTIyMnTttdeqrq7OehQzX54DnB/nGj16tLKysvrk+bF48WK98cYbeuutt2LeviU3N1enT59WS0tLzP599Xw433HoTlFRkST1qPOhxxdQamqqJk+erC1btkRv6+rq0pYtW1RcXGw4mb3jx4+rvr5eeXl51qOYKSwsVG5ubsz5EYlEtHPnzsv+/Dh06JCOHTvWp84P55wWL16s9evXa+vWrSosLIy5f/LkyRowYEDM+VBbW6sDBw70qfPhQsehO3v27JGknnU+WL8K4ptYt26dCwaDbs2aNe7jjz92CxcudBkZGa6pqcl6tEvqJz/5idu2bZtraGhw77zzjistLXVZWVnuyJEj1qMlVWtrq/vwww/dhx9+6CS53//+9+7DDz90n332mXPOuV//+tcuIyPDbdy40e3du9fdcccdrrCw0J08edJ48sT6uuPQ2trqHnnkEVdTU+MaGhrcm2++6b797W+7a665xp06dcp69IRZtGiRC4VCbtu2be7w4cPR7cSJE9F9HnjgATdixAi3detWt2vXLldcXOyKi4sNp068Cx2Huro694tf/MLt2rXLNTQ0uI0bN7rRo0e7kpIS48lj9YoCcs65P/7xj27EiBEuNTXVTZ061e3YscN6pEtu3rx5Li8vz6WmprqrrrrKzZs3z9XV1VmPlXRvvfWWk3TONn/+fOfc2ZdiP/HEEy4nJ8cFg0E3ffp0V1tbazt0EnzdcThx4oSbMWOGGzZsmBswYIAbOXKku//++/vcD2nd/f8ludWrV0f3OXnypPvxj3/shgwZ4q644go3Z84cd/jwYbuhk+BCx+HAgQOupKTEZWZmumAw6K6++mr36KOPunA4bDv4V/B2DAAAEz3+OSAAQN9EAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADAxH8BHkyBMgyZJIkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHQBJREFUeJzt3X1slfX9//HXKbanqO2pFeiNFCyooHLjROkY2sHoaLvFiBLj3RJcjA5WjMrUpXOKumXdcNmMjql/LDCj4E0iENnG1GJLNgpKBYmbdLR2UkdbhNhzoECp7ef3Bz/O1yMU/BxO+27L85F8EnrO9ep5c3nZF1fP1asB55wTAAB9LMl6AADAmYkCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImzrAf4qu7ubu3evVtpaWkKBALW4wAAPDnntH//fuXm5iopqefznH5XQLt371ZeXp71GACA09TU1KSRI0f2+Hy/+xZcWlqa9QgAgAQ41dfzXiugpUuX6sILL1RqaqoKCgr07rvvfq0c33YDgMHhVF/Pe6WAXnnlFS1atEiLFy/W+++/r8mTJ6u4uFh79uzpjZcDAAxErhdMnTrVlZWVRT/u6upyubm5rqKi4pTZcDjsJLFYLBZrgK9wOHzSr/cJPwM6cuSIamtrVVRUFH0sKSlJRUVFqqmpOW77jo4ORSKRmAUAGPwSXkB79+5VV1eXsrKyYh7PyspSS0vLcdtXVFQoFApFF1fAAcCZwfwquPLycoXD4ehqamqyHgkA0AcS/nNAw4YN05AhQ9Ta2hrzeGtrq7Kzs4/bPhgMKhgMJnoMAEA/l/AzoJSUFE2ZMkWVlZXRx7q7u1VZWalp06Yl+uUAAANUr9wJYdGiRZo3b56uuuoqTZ06VU899ZTa29v1wx/+sDdeDgAwAPVKAd1888367LPP9Oijj6qlpUVXXHGF1q1bd9yFCQCAM1fAOeesh/iySCSiUChkPQYA4DSFw2Glp6f3+Lz5VXAAgDMTBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAE71yN2wAiZeU5P/vxaFDh8b1WsnJyd6Z9vZ270xnZ6d3BoMHZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABPcDRswEM/dpidOnOidue2227wzkpSVleWdqaqq8s787W9/8860tLR4Z7q7u70z6H2cAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDBzUiB03T22Wd7Z6655hrvzL333uudmTFjhndGklJSUrwz3/rWt7wzaWlp3pkXX3zRO7N3717vDHofZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDNS4EvOO+8878x3v/td78yPfvQj78zMmTO9M5988ol3RpI+//xz70xqaqp35rLLLvPOhEIh7ww3I+2fOAMCAJiggAAAJhJeQI899pgCgUDMGj9+fKJfBgAwwPXKe0CXX3653n777f97kbN4qwkAEKtXmuGss85SdnZ2b3xqAMAg0SvvAe3cuVO5ubkaM2aMbr/9du3atavHbTs6OhSJRGIWAGDwS3gBFRQUaPny5Vq3bp2effZZNTY26tprr9X+/ftPuH1FRYVCoVB05eXlJXokAEA/lPACKi0t1U033aRJkyapuLhYf/3rX9XW1qZXX331hNuXl5crHA5HV1NTU6JHAgD0Q71+dUBGRoYuueQS1dfXn/D5YDCoYDDY22MAAPqZXv85oAMHDqihoUE5OTm9/VIAgAEk4QX0wAMPqLq6Wv/973+1ceNG3XDDDRoyZIhuvfXWRL8UAGAAS/i34D799FPdeuut2rdvn4YPH65rrrlGmzZt0vDhwxP9UgCAASzgnHPWQ3xZJBKJ62aDwJdlZGTElZs7d653Zv78+d6ZeH5O7l//+pd3ZuXKld4ZST2+Z3symZmZ3pnm5mbvzEcffeSdaW9v987g9IXDYaWnp/f4PPeCAwCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYKLXfyEdcLpSUlK8M4WFhXG91oIFC7wz48aN886sXbvWO/P88897Z9577z3vjBTfzTuTkvrm37Pd3d198jrofZwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDds9HsXXnihd+amm26K67Xy8vK8M2+++aZ35plnnvHObNmyxTtz5MgR70y8uEs1fHEGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQ3I0WfCgaD3plrr73WOzN16lTvjCTt3r3bO/PKK694Z2pra70zfXljUaAvcAYEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABDcjRZ/Kzs72zkyfPt07EwqFvDOS9M4773hnampqvDMdHR3eGWCw4QwIAGCCAgIAmPAuoA0bNui6665Tbm6uAoGAVq9eHfO8c06PPvqocnJyNHToUBUVFWnnzp2JmhcAMEh4F1B7e7smT56spUuXnvD5JUuW6Omnn9Zzzz2nzZs365xzzlFxcbEOHz582sMCAAYP74sQSktLVVpaesLnnHN66qmn9POf/1zXX3+9JOmFF15QVlaWVq9erVtuueX0pgUADBoJfQ+osbFRLS0tKioqij4WCoVUUFDQ45VCHR0dikQiMQsAMPgltIBaWlokSVlZWTGPZ2VlRZ/7qoqKCoVCoejKy8tL5EgAgH7K/Cq48vJyhcPh6GpqarIeCQDQBxJaQMd+yLC1tTXm8dbW1h5/ADEYDCo9PT1mAQAGv4QWUH5+vrKzs1VZWRl9LBKJaPPmzZo2bVoiXwoAMMB5XwV34MAB1dfXRz9ubGzUtm3blJmZqVGjRum+++7TL3/5S1188cXKz8/XI488otzcXM2ZMyeRcwMABjjvAtqyZYtmzpwZ/XjRokWSpHnz5mn58uV66KGH1N7errvvvlttbW265pprtG7dOqWmpiZuagDAgBdwzjnrIb4sEonEfSNJ9K1AIOCdKSkp8c786le/8s4Eg0HvjCQ9+eST3pnXX3/dO/PFF194Z7q6urwznZ2d3pl4Xwv4qnA4fNL39c2vggMAnJkoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa8fx0DcExycrJ35rLLLvPO5OXleWe+/DurfFx66aXemYcfftg7M2TIEO/MkSNHvDP/+c9/vDOStHHjRu9MQ0ODdyaeu4Jj8OAMCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAluRoq4paene2cuv/zyPnmdsWPHemck6eKLL/bOpKSkxPVafeHzzz+PK/fmm296Z3772996Z3bs2OGdweDBGRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3IwUcRs5cqR35oorrvDOnHWW/2GamprqnZGkjRs3eme2b9/unTl8+LB3Jp79PXXqVO+MJJWWlnpntm7d6p1paGjwznR2dnpn0D9xBgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAENyOFAoFAXLmsrCzvzPDhw70z8cwXzw1CJemJJ57wznzwwQfemY6ODu9MPPuuvLzcOyNJP/jBD7wzEyZM8M6cd9553pk9e/Z4Z9A/cQYEADBBAQEATHgX0IYNG3TdddcpNzdXgUBAq1evjnn+jjvuUCAQiFklJSWJmhcAMEh4F1B7e7smT56spUuX9rhNSUmJmpubo2vlypWnNSQAYPDxvgihtLT0lL8tMRgMKjs7O+6hAACDX6+8B1RVVaURI0Zo3LhxWrBggfbt29fjth0dHYpEIjELADD4JbyASkpK9MILL6iyslK/+c1vVF1drdLSUnV1dZ1w+4qKCoVCoejKy8tL9EgAgH4o4T8HdMstt0T/PHHiRE2aNEljx45VVVWVZs2addz25eXlWrRoUfTjSCRCCQHAGaDXL8MeM2aMhg0bpvr6+hM+HwwGlZ6eHrMAAINfrxfQp59+qn379iknJ6e3XwoAMIB4fwvuwIEDMWczjY2N2rZtmzIzM5WZmanHH39cc+fOVXZ2thoaGvTQQw/poosuUnFxcUIHBwAMbN4FtGXLFs2cOTP68bH3b+bNm6dnn31W27dv15///Ge1tbUpNzdXs2fP1i9+8QsFg8HETQ0AGPC8C2jGjBlyzvX4/N///vfTGggDR2pqqncmnptwnuwy/p6sXbvWOyNJ7733nnfmyJEjcb2Wr5aWFu9MT++9nsqBAwe8M/HcWDQtLc07w81IBw/uBQcAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMJHwX8mNM8cXX3zhnTl06JB3Jp47aO/YscM7I0mdnZ1x5fqrk925PtG6u7v77LUwOHAGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQ3I0XcN6zct2+fd6atrc07M2rUKO9MRkaGd0aSAoGAd6avbviZmprqnRk+fHhcrzV06FDvzP79+70z7e3t3hkMHpwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMMHNSBG3//3vf96ZhoYG70xBQYF35hvf+IZ3RpL+8pe/eGc+++wz70xycrJ35qqrrvLOxLPvJKmrq8s7s3PnTu9MOBz2zmDw4AwIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACW5Giri1trZ6Z9577z3vTGlpqXdm5syZ3hlJ+vjjj70zO3bs8M7k5+d7Z4qLi70zU6dO9c5I0vbt270z7777rnemo6PDO4PBgzMgAIAJCggAYMKrgCoqKnT11VcrLS1NI0aM0Jw5c1RXVxezzeHDh1VWVqbzzz9f5557rubOnRvXt2oAAIObVwFVV1errKxMmzZt0ltvvaXOzk7Nnj1b7e3t0W3uv/9+vfHGG3rttddUXV2t3bt368Ybb0z44ACAgc3rIoR169bFfLx8+XKNGDFCtbW1KiwsVDgc1p/+9CetWLFC3/nOdyRJy5Yt06WXXqpNmzbpm9/8ZuImBwAMaKf1HtCxX6ebmZkpSaqtrVVnZ6eKioqi24wfP16jRo1STU3NCT9HR0eHIpFIzAIADH5xF1B3d7fuu+8+TZ8+XRMmTJAktbS0KCUlRRkZGTHbZmVlqaWl5YSfp6KiQqFQKLry8vLiHQkAMIDEXUBlZWX68MMP9fLLL5/WAOXl5QqHw9HV1NR0Wp8PADAwxPWDqAsXLtTatWu1YcMGjRw5Mvp4dna2jhw5ora2tpizoNbWVmVnZ5/wcwWDQQWDwXjGAAAMYF5nQM45LVy4UKtWrdL69euP+2nuKVOmKDk5WZWVldHH6urqtGvXLk2bNi0xEwMABgWvM6CysjKtWLFCa9asUVpaWvR9nVAopKFDhyoUCunOO+/UokWLlJmZqfT0dN1zzz2aNm0aV8ABAGJ4FdCzzz4rSZoxY0bM48uWLdMdd9whSfr973+vpKQkzZ07Vx0dHSouLtYf//jHhAwLABg8As45Zz3El0UiEYVCIesx0EvGjx/vnXn44Ye9MyUlJd4ZST1erXkyhw4d8s4MHz7cO3POOed4Z+K9qOcPf/iDd+b111/3zhz7UQ4MTuFwWOnp6T0+z73gAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm4vqNqEC86uvrvTPHfg1IX7jyyiu9Mye7229PGhsbvTMffPCBd2b9+vXeGUnauHGjd4Y7W8MXZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMBJxzznqIL4tEIgqFQtZjoB8JBoPemfz8/Lhe69JLL/XOpKamemc++eQT78zHH3/sndm7d693RpK++OKLuHLAl4XD4ZPerJczIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa4GSkGpUAgEFcuKalv/k3W3d3tneln/6sCp8TNSAEA/RIFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATZ1kPAPSGeG/c2dXVleBJAPSEMyAAgAkKCABgwquAKioqdPXVVystLU0jRozQnDlzVFdXF7PNjBkzFAgEYtb8+fMTOjQAYODzKqDq6mqVlZVp06ZNeuutt9TZ2anZs2ervb09Zru77rpLzc3N0bVkyZKEDg0AGPi8LkJYt25dzMfLly/XiBEjVFtbq8LCwujjZ599trKzsxMzIQBgUDqt94DC4bAkKTMzM+bxl156ScOGDdOECRNUXl6ugwcP9vg5Ojo6FIlEYhYA4Azg4tTV1eW+//3vu+nTp8c8/vzzz7t169a57du3uxdffNFdcMEF7oYbbujx8yxevNhJYrFYLNYgW+Fw+KQ9EncBzZ8/340ePdo1NTWddLvKykonydXX15/w+cOHD7twOBxdTU1N5juNxWKxWKe/TlVAcf0g6sKFC7V27Vpt2LBBI0eOPOm2BQUFkqT6+nqNHTv2uOeDwaCCwWA8YwAABjCvAnLO6Z577tGqVatUVVWl/Pz8U2a2bdsmScrJyYlrQADA4ORVQGVlZVqxYoXWrFmjtLQ0tbS0SJJCoZCGDh2qhoYGrVixQt/73vd0/vnna/v27br//vtVWFioSZMm9cpfAAAwQPm876Mevs+3bNky55xzu3btcoWFhS4zM9MFg0F30UUXuQcffPCU3wf8snA4bP59SxaLxWKd/jrV1/7A/y+WfiMSiSgUClmPAQA4TeFwWOnp6T0+z73gAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm+l0BOeesRwAAJMCpvp73uwLav3+/9QgAgAQ41dfzgOtnpxzd3d3avXu30tLSFAgEYp6LRCLKy8tTU1OT0tPTjSa0x344iv1wFPvhKPbDUf1hPzjntH//fuXm5iopqefznLP6cKavJSkpSSNHjjzpNunp6Wf0AXYM++Eo9sNR7Iej2A9HWe+HUCh0ym363bfgAABnBgoIAGBiQBVQMBjU4sWLFQwGrUcxxX44iv1wFPvhKPbDUQNpP/S7ixAAAGeGAXUGBAAYPCggAIAJCggAYIICAgCYGDAFtHTpUl144YVKTU1VQUGB3n33XeuR+txjjz2mQCAQs8aPH289Vq/bsGGDrrvuOuXm5ioQCGj16tUxzzvn9OijjyonJ0dDhw5VUVGRdu7caTNsLzrVfrjjjjuOOz5KSkpshu0lFRUVuvrqq5WWlqYRI0Zozpw5qquri9nm8OHDKisr0/nnn69zzz1Xc+fOVWtrq9HEvePr7IcZM2YcdzzMnz/faOITGxAF9Morr2jRokVavHix3n//fU2ePFnFxcXas2eP9Wh97vLLL1dzc3N0/eMf/7Aeqde1t7dr8uTJWrp06QmfX7JkiZ5++mk999xz2rx5s8455xwVFxfr8OHDfTxp7zrVfpCkkpKSmONj5cqVfThh76uurlZZWZk2bdqkt956S52dnZo9e7ba29uj29x///1644039Nprr6m6ulq7d+/WjTfeaDh14n2d/SBJd911V8zxsGTJEqOJe+AGgKlTp7qysrLox11dXS43N9dVVFQYTtX3Fi9e7CZPnmw9hilJbtWqVdGPu7u7XXZ2tnvyySejj7W1tblgMOhWrlxpMGHf+Op+cM65efPmueuvv95kHit79uxxklx1dbVz7uh/++TkZPfaa69Ft/noo4+cJFdTU2M1Zq/76n5wzrlvf/vb7t5777Ub6mvo92dAR44cUW1trYqKiqKPJSUlqaioSDU1NYaT2di5c6dyc3M1ZswY3X777dq1a5f1SKYaGxvV0tISc3yEQiEVFBSckcdHVVWVRowYoXHjxmnBggXat2+f9Ui9KhwOS5IyMzMlSbW1ters7Iw5HsaPH69Ro0YN6uPhq/vhmJdeeknDhg3ThAkTVF5eroMHD1qM16N+dzPSr9q7d6+6urqUlZUV83hWVpZ27NhhNJWNgoICLV++XOPGjVNzc7Mef/xxXXvttfrwww+VlpZmPZ6JlpYWSTrh8XHsuTNFSUmJbrzxRuXn56uhoUE/+9nPVFpaqpqaGg0ZMsR6vITr7u7Wfffdp+nTp2vChAmSjh4PKSkpysjIiNl2MB8PJ9oPknTbbbdp9OjRys3N1fbt2/XTn/5UdXV1ev311w2njdXvCwj/p7S0NPrnSZMmqaCgQKNHj9arr76qO++803Ay9Ae33HJL9M8TJ07UpEmTNHbsWFVVVWnWrFmGk/WOsrIyffjhh2fE+6An09N+uPvuu6N/njhxonJycjRr1iw1NDRo7NixfT3mCfX7b8ENGzZMQ4YMOe4qltbWVmVnZxtN1T9kZGTokksuUX19vfUoZo4dAxwfxxszZoyGDRs2KI+PhQsXau3atXrnnXdifn1Ldna2jhw5ora2tpjtB+vx0NN+OJGCggJJ6lfHQ78voJSUFE2ZMkWVlZXRx7q7u1VZWalp06YZTmbvwIEDamhoUE5OjvUoZvLz85WdnR1zfEQiEW3evPmMPz4+/fRT7du3b1AdH845LVy4UKtWrdL69euVn58f8/yUKVOUnJwcczzU1dVp165dg+p4ONV+OJFt27ZJUv86Hqyvgvg6Xn75ZRcMBt3y5cvdv//9b3f33Xe7jIwM19LSYj1an/rJT37iqqqqXGNjo/vnP//pioqK3LBhw9yePXusR+tV+/fvd1u3bnVbt251ktzvfvc7t3XrVvfJJ58455z79a9/7TIyMtyaNWvc9u3b3fXXX+/y8/PdoUOHjCdPrJPth/3797sHHnjA1dTUuMbGRvf222+7K6+80l188cXu8OHD1qMnzIIFC1woFHJVVVWuubk5ug4ePBjdZv78+W7UqFFu/fr1bsuWLW7atGlu2rRphlMn3qn2Q319vXviiSfcli1bXGNjo1uzZo0bM2aMKywsNJ481oAoIOece+aZZ9yoUaNcSkqKmzp1qtu0aZP1SH3u5ptvdjk5OS4lJcVdcMEF7uabb3b19fXWY/W6d955x0k6bs2bN885d/RS7EceecRlZWW5YDDoZs2a5erq6myH7gUn2w8HDx50s2fPdsOHD3fJyclu9OjR7q677hp0/0g70d9fklu2bFl0m0OHDrkf//jH7rzzznNnn322u+GGG1xzc7Pd0L3gVPth165drrCw0GVmZrpgMOguuugi9+CDD7pwOGw7+Ffw6xgAACb6/XtAAIDBiQICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIn/B4TEMwmYl70kAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# загрузка собственного изображения\n", + "from PIL import Image\n", + "file1_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 3.png')\n", + "file1_data = file1_data.convert('L') # перевод в градации серого\n", + "test1_img = np.array(file1_data)\n", + "plt.imshow(test1_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()\n", + "\n", + "from PIL import Image\n", + "file2_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 6.png')\n", + "file2_data = file2_data.convert('L') # перевод в градации серого\n", + "test2_img = np.array(file2_data)\n", + "\n", + "# вывод собственного изображения\n", + "plt.imshow(test1_img, cmap=plt.get_cmap('gray'))\n", + "plt.imshow(test2_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "source": [ + "# предобработка\n", + "test1_img = test1_img / 255\n", + "test1_img = test1_img.reshape(1, num_pixels)\n", + "test2_img = test2_img / 255\n", + "test2_img = test2_img.reshape(1, num_pixels)\n", + "\n", + "# распознавание\n", + "result1 = model_1h100_2h50.predict(test1_img)\n", + "print('Я думаю это ', np.argmax(result1))\n", + "\n", + "result2 = model_1h100_2h50.predict(test2_img)\n", + "print('Я думаю это ', np.argmax(result2))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4Fc8WnRLVJr", + "outputId": "e83bc269-c810-472a-ff22-13a2256fcb7d" + }, + "execution_count": 101, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n", + "Я думаю это 3\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step\n", + "Я думаю это 6\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ORyZxtTNrJH7" + }, + "source": [ + "14) Каждому члену бригады создать копию собственного изображения,\n", + "отличающуюся от оригинала поворотом на 90 градусов в любую сторону.\n", + "Сохранить изображения. Загрузить, предобработать и подать на вход\n", + "обученной нейронной сети измененные изображения. Вывести\n", + "изображения и результаты распознавания. Сделать выводы по результатам\n", + "эксперимента." + ] + }, + { + "cell_type": "code", + "source": [ + "# загрузка собственного изображения\n", + "from PIL import Image\n", + "file3_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 3 перевернутая.png')\n", + "file3_data = file3_data.convert('L') # перевод в градации серого\n", + "test3_img = np.array(file3_data)\n", + "plt.imshow(test3_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()\n", + "\n", + "from PIL import Image\n", + "file4_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 6 перевернутая.png')\n", + "file4_data = file4_data.convert('L') # перевод в градации серого\n", + "test4_img = np.array(file4_data)\n", + "\n", + "# вывод собственного изображения\n", + "plt.imshow(test3_img, cmap=plt.get_cmap('gray'))\n", + "plt.imshow(test4_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 843 + }, + "id": "-nRxjorcM6Hj", + "outputId": "3e12da4e-94e3-4a04-e8d3-9eafcaaded74" + }, + "execution_count": 102, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHT1JREFUeJzt3X9sleX9//HXaaEH1PaUUvpLfhX8wQLSTYRaUYajAzqngpgg8w/cjAYtZsrUhWWKuiXdWGKMGxG3P0QzUUY2IJrIgtW2m5YqFUYQ7WhTbRltUUbPgSKl0uv7B1/PZ0coeB1O+27L85FcCT33/ep9cXt7Xj09N9cJOOecAADoY0nWEwAAXJgoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJgYYj2Br+vu7taBAweUmpqqQCBgPR0AgCfnnI4cOaK8vDwlJfX8OqffFdCBAwc0ZswY62kAAM5Tc3OzRo8e3eP2fvcruNTUVOspAAAS4FzP571WQGvWrNH48eM1bNgwFRYW6r333vtGOX7tBgCDw7mez3ulgDZs2KAVK1Zo1apV+uCDD1RQUKB58+bp4MGDvXE4AMBA5HrBjBkzXGlpafTrkydPury8PFdWVnbObDgcdpIYDAaDMcBHOBw+6/N9wl8BnThxQrW1tSouLo4+lpSUpOLiYlVXV5+2f2dnpyKRSMwAAAx+CS+gzz//XCdPnlR2dnbM49nZ2WptbT1t/7KyMoVCoejgDjgAuDCY3wW3cuVKhcPh6GhubraeEgCgDyT83wFlZmYqOTlZbW1tMY+3tbUpJyfntP2DwaCCwWCipwEA6OcS/gooJSVF06ZNU3l5efSx7u5ulZeXq6ioKNGHAwAMUL2yEsKKFSu0dOlSXXPNNZoxY4aeeeYZdXR06Mc//nFvHA4AMAD1SgEtXrxYn332mR5//HG1trbq29/+trZu3XrajQkAgAtXwDnnrCfxvyKRiEKhkPU0AADnKRwOKy0trcft5nfBAQAuTBQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADCR8AJ64oknFAgEYsakSZMSfRgAwAA3pDe+6eTJk/Xmm2/+30GG9MphAAADWK80w5AhQ5STk9Mb3xoAMEj0yntA+/btU15eniZMmKA777xTTU1NPe7b2dmpSCQSMwAAg1/CC6iwsFDr1q3T1q1b9dxzz6mxsVE33HCDjhw5csb9y8rKFAqFomPMmDGJnhIAoB8KOOdcbx6gvb1d48aN09NPP6277777tO2dnZ3q7OyMfh2JRCghABgEwuGw0tLSetze63cHpKen64orrlB9ff0ZtweDQQWDwd6eBgCgn+n1fwd09OhRNTQ0KDc3t7cPBQAYQBJeQA8//LAqKyv1ySef6N1339XChQuVnJysJUuWJPpQAIABLOG/gtu/f7+WLFmiQ4cOadSoUbr++uu1fft2jRo1KtGHAgAMYL1+E4KvSCSiUChkPQ2g34nnvdKRI0fGdazMzEzvTEpKinfm8OHD3pmWlhbvzLFjx7wzOH/nugmBteAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCY6PUPpEPfSkry/5kinkxfHuvLL7/sk0y8kpOTvTP5+fnemeLiYu/Mdddd552RpKysLO/MsGHDvDPxLCxaVVXlnXnjjTe8M5LU3NzsnTl58mRcx7oQ8QoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCC1bD7SDyrQMezIvF3vvMd78zkyZO9M5IUCoW8M0OG+F9y//rXv7wz//jHP7wzktTe3u6dieecL1261Dvzwx/+0DszYsQI74wkRSIR70w8K5AXFBR4Z2bOnOmdufzyy70zkrR27VrvzL59+7wzzjnvzGDAKyAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmWIw0DsFg0DsTz4KVS5Ys8c5873vf886MHz/eOyNJw4cP987Es+ji/v37vTObN2/2zkhSbW2td2bx4sXemenTp3tnDh8+7J3ZsmWLd0aS9u7d653p6uryzkyZMsU7U1xc7J25/fbbvTOS1Nra6p15/vnnvTPhcNg7MxjwCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJC3ox0kAgEFdu0qRJ3pmHH37YOzN37lzvTHt7u3fmnXfe8c5I0qeffuqdCYVC3plrrrnGO3PHHXd4ZySpsLDQOzN58mTvzIcffuid+dOf/uSdeeONN7wzktTW1hZXzteYMWO8M8eOHfPOLF261DsjSd///ve9M1VVVd6Zmpoa70w8C/v2N7wCAgCYoIAAACa8C6iqqko333yz8vLyFAgETvvcFeecHn/8ceXm5mr48OEqLi7Wvn37EjVfAMAg4V1AHR0dKigo0Jo1a864ffXq1Xr22We1du1a1dTU6OKLL9a8efN0/Pjx854sAGDw8L4JoaSkRCUlJWfc5pzTM888o1/+8pe69dZbJUkvvfSSsrOztXnz5rjfGAYADD4JfQ+osbFRra2tMR+ZGwqFVFhYqOrq6jNmOjs7FYlEYgYAYPBLaAF99fnp2dnZMY9nZ2f3+NnqZWVlCoVC0RHPbZkAgIHH/C64lStXKhwOR0dzc7P1lAAAfSChBZSTkyPp9H/E1tbWFt32dcFgUGlpaTEDADD4JbSA8vPzlZOTo/Ly8uhjkUhENTU1KioqSuShAAADnPddcEePHlV9fX3068bGRu3atUsZGRkaO3asHnzwQf3617/W5Zdfrvz8fD322GPKy8vTggULEjlvAMAA511AO3bs0I033hj9esWKFZJOrbW0bt06Pfroo+ro6NC9996r9vZ2XX/99dq6dauGDRuWuFkDAAY87wKaPXv2WRfBCwQCeuqpp/TUU0+d18T6wtChQ+PKXXfddd6ZeBa5/Pjjj70zGzZs8M5s27bNOyNJ+/fv987E8x7fkiVLvDM/+clPvDOS9K1vfcs7k5KS4p15//33vTObNm3yzsSzOG1fiuemo3jOw9VXX+2dkeJbeHjmzJnemd27d3tn4lmUtb8xvwsOAHBhooAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCY8F4NezCJ9yMiJk6c6J25+OKLvTM1NTXemRdffNE7c+jQIe+MpLOuit6T//73v96Z9evXe2fiWcVYkhYvXuydSUry/zmuq6vLO3P06FHvTH8XzzX00UcfeWfeffdd74wkTZ482Tszffp078yWLVu8M//7uWwDFa+AAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmLigFyNNTk6OK5eSkuKdiWfRxSNHjnhnjh075p2JZ259qaWlxTvz/vvvx3WsW265xTsTCoW8M6NGjfLOxLPo6WAUz/8Xe/fujetY8SzUm5+f750ZP368d6ahocE7I/Wv/9+5ogEAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJi4oBcj7ezsjCvX1tbmnTl58qR3Zty4cd6ZvLw870x9fb13pi+dOHHCO/Phhx/GdazPPvvMO5Oenu6diWdBSBYjPaW7u9s7c/jw4biO1dHR4Z0ZNmyYd+aSSy7xzgQCAe+MxGKkAABQQAAAGxQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwWKkcdi7d693prW11Ttz9dVXe2euvfZa70xTU5N3RopvkdC+Eu9ipBs2bPDOlJSUeGf+/ve/e2f68/nu74LBYFy5IUP8nyLjWXj4yy+/9M4MBrwCAgCYoIAAACa8C6iqqko333yz8vLyFAgEtHnz5pjtd911lwKBQMyYP39+ouYLABgkvAuoo6NDBQUFWrNmTY/7zJ8/Xy0tLdHxyiuvnNckAQCDj/c7bCUlJed80zUYDConJyfuSQEABr9eeQ+ooqJCWVlZuvLKK3Xffffp0KFDPe7b2dmpSCQSMwAAg1/CC2j+/Pl66aWXVF5ert/+9reqrKxUSUlJj7cmlpWVKRQKRceYMWMSPSUAQD+U8H8HdMcdd0T/fNVVV2nq1KmaOHGiKioqNGfOnNP2X7lypVasWBH9OhKJUEIAcAHo9duwJ0yYoMzMTNXX159xezAYVFpaWswAAAx+vV5A+/fv16FDh5Sbm9vbhwIADCDev4I7evRozKuZxsZG7dq1SxkZGcrIyNCTTz6pRYsWKScnRw0NDXr00Ud12WWXad68eQmdOABgYPMuoB07dujGG2+Mfv3V+zdLly7Vc889p927d+vFF19Ue3u78vLyNHfuXP3qV7+Key0mAMDg5F1As2fPlnOux+3xLLJoJZ5FAyWptrbWO1NTU+OdWbRokXdm4cKF3pl///vf3hlJ2rlzp3emq6srrmP5+vzzz+PK/eEPf/DO/PWvf/XOfPLJJ96Z7u5u78xgNHLkSO/MNddcE9exRo0a5Z3pq8WKz/Y8PFCwFhwAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwETCP5L7QtDS0uKdiWeV8GuvvdY7c91113lnbr/9du+MJDU3N3tn+mrV33hXjm5ra+uTDE5JTk72zsSzsvUtt9zinZGklJQU70w8K9/Hszo6q2EDABAnCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJliMNA5dXV3emaqqKu/MH//4R+/MTTfd5J3p7Oz0zkjSkCFcPjg/SUn+PwNnZmZ6Z0aNGuWdkaRNmzZ5Z1599VXvzOHDh70zgwGvgAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJgIOOec9ST+VyQSUSgUsp5GwgUCAe/MiBEjvDPjx4/3zoTDYe+MJP3nP//xzhw/fjyuY2Fwiuf/i0svvdQ7M23aNO+MJO3Zs8c709jY6J3p7u72zgwE4XBYaWlpPW7nFRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATLEY6yMSzuGO8+tmlA/QoKSm+n7UH6yKhfYXFSAEA/RIFBAAw4VVAZWVlmj59ulJTU5WVlaUFCxaorq4uZp/jx4+rtLRUI0eO1CWXXKJFixapra0toZMGAAx8XgVUWVmp0tJSbd++Xdu2bVNXV5fmzp2rjo6O6D4PPfSQXnvtNW3cuFGVlZU6cOCAbrvttoRPHAAwwLnzcPDgQSfJVVZWOueca29vd0OHDnUbN26M7vPRRx85Sa66uvobfc9wOOwkMeIcgUCgz4b135XB+KYjKSkprmE974E+wuHwWZ/vz+s9oK8+yjkjI0OSVFtbq66uLhUXF0f3mTRpksaOHavq6uozfo/Ozk5FIpGYAQAY/OIuoO7ubj344IOaOXOmpkyZIklqbW1VSkqK0tPTY/bNzs5Wa2vrGb9PWVmZQqFQdIwZMybeKQEABpC4C6i0tFR79uzRq6++el4TWLlypcLhcHQ0Nzef1/cDAAwMQ+IJLV++XK+//rqqqqo0evTo6OM5OTk6ceKE2tvbY14FtbW1KScn54zfKxgMKhgMxjMNAMAA5vUKyDmn5cuXa9OmTXrrrbeUn58fs33atGkaOnSoysvLo4/V1dWpqalJRUVFiZkxAGBQ8HoFVFpaqvXr12vLli1KTU2Nvq8TCoU0fPhwhUIh3X333VqxYoUyMjKUlpamBx54QEVFRbr22mt75S8AABigfG67Vg+32r3wwgvRfb744gt3//33uxEjRriLLrrILVy40LW0tHzjY3Ab9vkNbsNmME4f3IZtM851GzaLkQIAegWLkQIA+iUKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCY8CqgsrIyTZ8+XampqcrKytKCBQtUV1cXs8/s2bMVCARixrJlyxI6aQDAwOdVQJWVlSotLdX27du1bds2dXV1ae7cuero6IjZ75577lFLS0t0rF69OqGTBgAMfEN8dt66dWvM1+vWrVNWVpZqa2s1a9as6OMXXXSRcnJyEjNDAMCgdF7vAYXDYUlSRkZGzOMvv/yyMjMzNWXKFK1cuVLHjh3r8Xt0dnYqEonEDADABcDF6eTJk+6mm25yM2fOjHn8+eefd1u3bnW7d+92f/7zn92ll17qFi5c2OP3WbVqlZPEYDAYjEE2wuHwWXsk7gJatmyZGzdunGtubj7rfuXl5U6Sq6+vP+P248ePu3A4HB3Nzc3mJ43BYDAY5z/OVUBe7wF9Zfny5Xr99ddVVVWl0aNHn3XfwsJCSVJ9fb0mTpx42vZgMKhgMBjPNAAAA5hXATnn9MADD2jTpk2qqKhQfn7+OTO7du2SJOXm5sY1QQDA4ORVQKWlpVq/fr22bNmi1NRUtba2SpJCoZCGDx+uhoYGrV+/Xj/4wQ80cuRI7d69Ww899JBmzZqlqVOn9spfAAAwQPm876Mefs/3wgsvOOeca2pqcrNmzXIZGRkuGAy6yy67zD3yyCPn/D3g/wqHw+a/t2QwGAzG+Y9zPfcH/n+x9BuRSEShUMh6GgCA8xQOh5WWltbjdtaCAwCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCY6HcF5JyzngIAIAHO9Xze7wroyJEj1lMAACTAuZ7PA66fveTo7u7WgQMHlJqaqkAgELMtEolozJgxam5uVlpamtEM7XEeTuE8nMJ5OIXzcEp/OA/OOR05ckR5eXlKSur5dc6QPpzTN5KUlKTRo0efdZ+0tLQL+gL7CufhFM7DKZyHUzgPp1ifh1AodM59+t2v4AAAFwYKCABgYkAVUDAY1KpVqxQMBq2nYorzcArn4RTOwymch1MG0nnodzchAAAuDAPqFRAAYPCggAAAJiggAIAJCggAYGLAFNCaNWs0fvx4DRs2TIWFhXrvvfesp9TnnnjiCQUCgZgxadIk62n1uqqqKt18883Ky8tTIBDQ5s2bY7Y75/T4448rNzdXw4cPV3Fxsfbt22cz2V50rvNw1113nXZ9zJ8/32ayvaSsrEzTp09XamqqsrKytGDBAtXV1cXsc/z4cZWWlmrkyJG65JJLtGjRIrW1tRnNuHd8k/Mwe/bs066HZcuWGc34zAZEAW3YsEErVqzQqlWr9MEHH6igoEDz5s3TwYMHrafW5yZPnqyWlpbo+Oc//2k9pV7X0dGhgoICrVmz5ozbV69erWeffVZr165VTU2NLr74Ys2bN0/Hjx/v45n2rnOdB0maP39+zPXxyiuv9OEMe19lZaVKS0u1fft2bdu2TV1dXZo7d646Ojqi+zz00EN67bXXtHHjRlVWVurAgQO67bbbDGedeN/kPEjSPffcE3M9rF692mjGPXADwIwZM1xpaWn065MnT7q8vDxXVlZmOKu+t2rVKldQUGA9DVOS3KZNm6Jfd3d3u5ycHPe73/0u+lh7e7sLBoPulVdeMZhh3/j6eXDOuaVLl7pbb73VZD5WDh486CS5yspK59yp//ZDhw51GzdujO7z0UcfOUmuurraapq97uvnwTnnvvvd77qf/vSndpP6Bvr9K6ATJ06otrZWxcXF0ceSkpJUXFys6upqw5nZ2Ldvn/Ly8jRhwgTdeeedampqsp6SqcbGRrW2tsZcH6FQSIWFhRfk9VFRUaGsrCxdeeWVuu+++3To0CHrKfWqcDgsScrIyJAk1dbWqqurK+Z6mDRpksaOHTuor4evn4evvPzyy8rMzNSUKVO0cuVKHTt2zGJ6Pep3i5F+3eeff66TJ08qOzs75vHs7Gx9/PHHRrOyUVhYqHXr1unKK69US0uLnnzySd1www3as2ePUlNTradnorW1VZLOeH18te1CMX/+fN12223Kz89XQ0ODfvGLX6ikpETV1dVKTk62nl7CdXd368EHH9TMmTM1ZcoUSaeuh5SUFKWnp8fsO5ivhzOdB0n60Y9+pHHjxikvL0+7d+/Wz3/+c9XV1elvf/ub4Wxj9fsCwv8pKSmJ/nnq1KkqLCzUuHHj9Je//EV333234czQH9xxxx3RP1911VWaOnWqJk6cqIqKCs2ZM8dwZr2jtLRUe/bsuSDeBz2bns7DvffeG/3zVVddpdzcXM2ZM0cNDQ2aOHFiX0/zjPr9r+AyMzOVnJx82l0sbW1tysnJMZpV/5Cenq4rrrhC9fX11lMx89U1wPVxugkTJigzM3NQXh/Lly/X66+/rrfffjvm41tycnJ04sQJtbe3x+w/WK+Hns7DmRQWFkpSv7oe+n0BpaSkaNq0aSovL48+1t3drfLychUVFRnOzN7Ro0fV0NCg3Nxc66mYyc/PV05OTsz1EYlEVFNTc8FfH/v379ehQ4cG1fXhnNPy5cu1adMmvfXWW8rPz4/ZPm3aNA0dOjTmeqirq1NTU9Oguh7OdR7OZNeuXZLUv64H67sgvolXX33VBYNBt27dOrd371537733uvT0dNfa2mo9tT71s5/9zFVUVLjGxkb3zjvvuOLiYpeZmekOHjxoPbVedeTIEbdz5063c+dOJ8k9/fTTbufOne7TTz91zjn3m9/8xqWnp7stW7a43bt3u1tvvdXl5+e7L774wnjmiXW283DkyBH38MMPu+rqatfY2OjefPNNd/XVV7vLL7/cHT9+3HrqCXPfffe5UCjkKioqXEtLS3QcO3Ysus+yZcvc2LFj3VtvveV27NjhioqKXFFRkeGsE+9c56G+vt499dRTbseOHa6xsdFt2bLFTZgwwc2aNct45rEGRAE559zvf/97N3bsWJeSkuJmzJjhtm/fbj2lPrd48WKXm5vrUlJS3KWXXuoWL17s6uvrrafV695++20n6bSxdOlS59ypW7Efe+wxl52d7YLBoJszZ46rq6uznXQvONt5OHbsmJs7d64bNWqUGzp0qBs3bpy75557Bt0PaWf6+0tyL7zwQnSfL774wt1///1uxIgR7qKLLnILFy50LS0tdpPuBec6D01NTW7WrFkuIyPDBYNBd9lll7lHHnnEhcNh24l/DR/HAAAw0e/fAwIADE4UEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBM/D+yTmhQy4jxEwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHMRJREFUeJzt3X9s1dX9x/HXBdoLaHtLLfS28sMWVCZI3VC6DmU4GqDbjKDZ1PkHLkYHFjNl6sIyxbkt3VhinAvR7R+YmagjEZgkY8NqS5wFpcrQTBvadFJGW6Su95ZCf9ie7x98vfMKBc6lt+/+eD6Sk9B7P6/eNx8/9OXtvT0NOOecAAAYYKOsBwAAjEwUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAEyMsR7gi3p7e3XkyBGlpaUpEAhYjwMA8OScU1tbm3JzczVqVN/PcwZdAR05ckRTpkyxHgMAcIEaGho0efLkPu8fdN+CS0tLsx4BANAPzvX1PGkFtGHDBl122WUaO3asCgsL9dZbb51Xjm+7AcDwcK6v50kpoJdeeklr1qzRunXr9M4776igoEBLlizR0aNHk/FwAIChyCXBvHnzXGlpaezjnp4el5ub68rKys6ZjUQiThKLxWKxhviKRCJn/Xrf78+Aurq6VF1dreLi4thto0aNUnFxsaqqqk47vrOzU9FoNG4BAIa/fi+gY8eOqaenR9nZ2XG3Z2dnq6mp6bTjy8rKFAqFYot3wAHAyGD+Lri1a9cqEonEVkNDg/VIAIAB0O8/B5SVlaXRo0erubk57vbm5maFw+HTjg8GgwoGg/09BgBgkOv3Z0CpqamaO3euysvLY7f19vaqvLxcRUVF/f1wAIAhKik7IaxZs0YrVqzQtddeq3nz5umpp55Se3u7vv/97yfj4QAAQ1BSCui2227Txx9/rMcee0xNTU265pprtHPnztPemAAAGLkCzjlnPcTnRaNRhUIh6zEAABcoEokoPT29z/vN3wUHABiZKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYKLfC+jxxx9XIBCIWzNnzuzvhwEADHFjkvFJZ82apVdfffV/DzImKQ8DABjCktIMY8aMUTgcTsanBgAME0l5DejgwYPKzc1Vfn6+7rzzTh06dKjPYzs7OxWNRuMWAGD46/cCKiws1KZNm7Rz504988wzqq+v1w033KC2trYzHl9WVqZQKBRbU6ZM6e+RAACDUMA555L5AK2trZo2bZqefPJJ3X333afd39nZqc7OztjH0WiUEgKAYSASiSg9Pb3P+5P+7oCMjAxdccUVqq2tPeP9wWBQwWAw2WMAAAaZpP8c0PHjx1VXV6ecnJxkPxQAYAjp9wJ66KGHVFlZqX//+9968803tXz5co0ePVp33HFHfz8UAGAI6/dvwR0+fFh33HGHWlpaNHHiRF1//fXas2ePJk6c2N8PBQAYwpL+JgRf0WhUoVDIegwAwAU615sQ2AsOAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACAiaT/QrrhaNQo/97OzMz0ziSyKWtTU5N3pr293TsDABeKZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABPshp2AcDjsnfnud7/rnbnqqqu8M3/4wx+8M++88453RpJ6e3sTykFKSUnxzkyYMME7k5aW5p1JVCK7qkciEe9MZ2end4ZrdXDiGRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATI3oz0kQ2hJSkkpIS78z999/vnUlk08VXXnnFO4P/GTPG/5/EjBkzvDOLFi3yzsyePds7k8gGplJim3e2tbV5Zw4ePOideeutt7wz//znP70zUmKbpeL88QwIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACAiRG9GelFF12UUG7hwoXemalTp3pn3nvvPe/MJ5984p1JZOPJ4Wr69OnemYceesg7k8iGtuPHj/fOHD9+3DuTqHHjxnlnenp6vDM1NTXemY0bN3pnJOkvf/mLd6alpSWhxxqJeAYEADBBAQEATHgX0O7du3XTTTcpNzdXgUBA27Zti7vfOafHHntMOTk5GjdunIqLixP6nR8AgOHNu4Da29tVUFCgDRs2nPH+9evX6+mnn9azzz6rvXv36qKLLtKSJUvU0dFxwcMCAIYP7zchlJSU9PkCqnNOTz31lH7605/q5ptvliQ999xzys7O1rZt23T77bdf2LQAgGGjX18Dqq+vV1NTk4qLi2O3hUIhFRYWqqqq6oyZzs5ORaPRuAUAGP76tYCampokSdnZ2XG3Z2dnx+77orKyMoVCodiaMmVKf44EABikzN8Ft3btWkUikdhqaGiwHgkAMAD6tYDC4bAkqbm5Oe725ubm2H1fFAwGlZ6eHrcAAMNfvxZQXl6ewuGwysvLY7dFo1Ht3btXRUVF/flQAIAhzvtdcMePH1dtbW3s4/r6eu3fv1+ZmZmaOnWqHnjgAf3iF7/Q5Zdfrry8PD366KPKzc3VsmXL+nNuAMAQ511A+/bt04033hj7eM2aNZKkFStWaNOmTXrkkUfU3t6ue++9V62trbr++uu1c+dOjR07tv+mBgAMed4FtHDhQjnn+rw/EAjoiSee0BNPPHFBgw2E7u7uhHJffI3rfHR1dXlnJkyY4J2ZMWOGd2b//v3eGenUDyUPVqNHj04o97Wvfc07s3jxYu9Ma2urd+bll1/2znz+uxU+zvZvvC8TJ070zhQWFnpn5s2b551ZvXq1d0aSjh075p3561//6p359NNPvTPDgfm74AAAIxMFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwIT3btjDycmTJxPKbd682TvzpS99yTtTUlLinbnjjju8Mx999JF3RpLefPNN70wiu4InIiUlJaHcFVdc4Z1JZNfyz//SxvNVVlbmnWlqavLOJCqRX7ly7bXXemc++xUwPhLZ5VySvvGNb3hn3n77be/MQP53Gkx4BgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMDEiN6MtLe3N6Hce++955357W9/651JZHPHWbNmeWd+8IMfeGekxDYWra6u9s50dnZ6Z0aPHu2dkaTU1NSEcr4OHz7snfn444+9M4le44k4ceKEd2bPnj3emb/97W/emYKCAu9Morn8/HzvTHNzs3fGOeedGWx4BgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMDEiN6MNFHd3d3emTfeeMM7k5GR4Z15+OGHvTPf/va3vTNSYht3vvTSS96Zqqoq70w0GvXOSFJPT09COV+JbDQbDAa9M4lcqwMpkfnq6+u9M4ls5CpJubm53plp06Z5Z/bu3eudGahrNZl4BgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEm5EOkBMnTnhndu3a5Z1JS0vzzqxatco7I0nXX3+9dyY/P987k8hGjYlkEtXV1eWdmTNnjnemoKDAO/P22297Z6TENgkNBALemaysLO/MzJkzvTPjxo3zzkiJbfjZ0dGR0GONRDwDAgCYoIAAACa8C2j37t266aablJubq0AgoG3btsXdf9dddykQCMStpUuX9te8AIBhwruA2tvbVVBQoA0bNvR5zNKlS9XY2BhbL7zwwgUNCQAYfrzfhFBSUqKSkpKzHhMMBhUOhxMeCgAw/CXlNaCKigpNmjRJV155pVatWqWWlpY+j+3s7FQ0Go1bAIDhr98LaOnSpXruuedUXl6uX//616qsrFRJSUmfb2csKytTKBSKrSlTpvT3SACAQajffw7o9ttvj/356quv1pw5czR9+nRVVFRo0aJFpx2/du1arVmzJvZxNBqlhABgBEj627Dz8/OVlZWl2traM94fDAaVnp4etwAAw1/SC+jw4cNqaWlRTk5Osh8KADCEeH8L7vjx43HPZurr67V//35lZmYqMzNTP/vZz3TrrbcqHA6rrq5OjzzyiGbMmKElS5b06+AAgKHNu4D27dunG2+8MfbxZ6/frFixQs8884wOHDigP/7xj2ptbVVubq4WL16sn//85woGg/03NQBgyAs455z1EJ8XjUYVCoWsxxiyMjIyvDMLFixI6LG+853veGfmzZvnnUnkevjkk0+8M5IS+jGA6dOne2fGjh3rnTlw4IB3ZseOHd4ZSfrwww+9M4lce1/+8pe9M5//H+DzlejPJe7cudM788tf/tI7U1NT450ZZF+6zygSiZz1dX32ggMAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmGA3bCg1NTWh3GWXXeadueGGG7wz8+fP984kssuypIR+HXwiv8V3zBjv34SiQCDgnWlpafHOSFJzc7N35uKLL/bOJPKLKv/73/96Z/7+9797ZyTpmWee8c5UV1d7Zzo7O70zQwG7YQMABiUKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm2IwUAyoYDHpnwuGwd+aqq67yziSamzVrlnfmmmuu8c5MnDjRO5PoJpcnT570zrS2tnpn6urqvDNvv/22d6a8vNw7I0m1tbXemU8//TShxxqO2IwUADAoUUAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMMFmpBiWAoFAQrmUlBTvzNk2W+zL5MmTvTPZ2dnembFjx3pnpMQ21GxpafHO/Oc///HONDc3e2e6urq8M7hwbEYKABiUKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmBhjPQCQDInusZvIppXHjh0bkEyiG6wOlEG2rzGGAJ4BAQBMUEAAABNeBVRWVqbrrrtOaWlpmjRpkpYtW6aampq4Yzo6OlRaWqpLLrlEF198sW699daEfn8HAGB48yqgyspKlZaWas+ePdq1a5e6u7u1ePFitbe3x4558MEH9corr2jLli2qrKzUkSNHdMstt/T74ACAIc5dgKNHjzpJrrKy0jnnXGtrq0tJSXFbtmyJHfPBBx84Sa6qquq8PmckEnGSWCzWF1YgEBjUy/r8sAbfikQiZ/16f0GvAUUiEUlSZmamJKm6ulrd3d0qLi6OHTNz5kxNnTpVVVVVZ/wcnZ2dikajcQsAMPwlXEC9vb164IEHNH/+fM2ePVuS1NTUpNTUVGVkZMQdm52draampjN+nrKyMoVCodiaMmVKoiMBAIaQhAuotLRU77//vl588cULGmDt2rWKRCKx1dDQcEGfDwAwNCT0g6irV6/Wjh07tHv3bk2ePDl2ezgcVldXl1pbW+OeBTU3NyscDp/xcwWDQQWDwUTGAAAMYV7PgJxzWr16tbZu3arXXntNeXl5cffPnTtXKSkpKi8vj91WU1OjQ4cOqaioqH8mBgAMC17PgEpLS7V582Zt375daWlpsdd1QqGQxo0bp1AopLvvvltr1qxRZmam0tPTdf/996uoqEhf/epXk/IXAAAMUT5vu1Yfb7XbuHFj7JiTJ0+6++67z02YMMGNHz/eLV++3DU2Np73Y/A2bBbrzMv6bda8DZvlu871NuzA/xfLoBGNRhUKhazHAABcoEgkovT09D7vZy84AIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmPAqoLKyMl133XVKS0vTpEmTtGzZMtXU1MQds3DhQgUCgbi1cuXKfh0aADD0eRVQZWWlSktLtWfPHu3atUvd3d1avHix2tvb446755571NjYGFvr16/v16EBAEPfGJ+Dd+7cGffxpk2bNGnSJFVXV2vBggWx28ePH69wONw/EwIAhqULeg0oEolIkjIzM+Nuf/7555WVlaXZs2dr7dq1OnHiRJ+fo7OzU9FoNG4BAEYAl6Cenh73rW99y82fPz/u9t///vdu586d7sCBA+5Pf/qTu/TSS93y5cv7/Dzr1q1zklgsFos1zFYkEjlrjyRcQCtXrnTTpk1zDQ0NZz2uvLzcSXK1tbVnvL+jo8NFIpHYamhoMD9pLBaLxbrwda4C8noN6DOrV6/Wjh07tHv3bk2ePPmsxxYWFkqSamtrNX369NPuDwaDCgaDiYwBABjCvArIOaf7779fW7duVUVFhfLy8s6Z2b9/vyQpJycnoQEBAMOTVwGVlpZq8+bN2r59u9LS0tTU1CRJCoVCGjdunOrq6rR582Z985vf1CWXXKIDBw7owQcf1IIFCzRnzpyk/AUAAEOUz+s+6uP7fBs3bnTOOXfo0CG3YMECl5mZ6YLBoJsxY4Z7+OGHz/l9wM+LRCLm37dksVgs1oWvc33tD/x/sQwa0WhUoVDIegwAwAWKRCJKT0/v8372ggMAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmBh0BeScsx4BANAPzvX1fNAVUFtbm/UIAIB+cK6v5wE3yJ5y9Pb26siRI0pLS1MgEIi7LxqNasqUKWpoaFB6errRhPY4D6dwHk7hPJzCeThlMJwH55za2tqUm5urUaP6fp4zZgBnOi+jRo3S5MmTz3pMenr6iL7APsN5OIXzcArn4RTOwynW5yEUCp3zmEH3LTgAwMhAAQEATAypAgoGg1q3bp2CwaD1KKY4D6dwHk7hPJzCeThlKJ2HQfcmBADAyDCkngEBAIYPCggAYIICAgCYoIAAACaGTAFt2LBBl112mcaOHavCwkK99dZb1iMNuMcff1yBQCBuzZw503qspNu9e7duuukm5ebmKhAIaNu2bXH3O+f02GOPKScnR+PGjVNxcbEOHjxoM2wSnes83HXXXaddH0uXLrUZNknKysp03XXXKS0tTZMmTdKyZctUU1MTd0xHR4dKS0t1ySWX6OKLL9att96q5uZmo4mT43zOw8KFC0+7HlauXGk08ZkNiQJ66aWXtGbNGq1bt07vvPOOCgoKtGTJEh09etR6tAE3a9YsNTY2xtYbb7xhPVLStbe3q6CgQBs2bDjj/evXr9fTTz+tZ599Vnv37tVFF12kJUuWqKOjY4AnTa5znQdJWrp0adz18cILLwzghMlXWVmp0tJS7dmzR7t27VJ3d7cWL16s9vb22DEPPvigXnnlFW3ZskWVlZU6cuSIbrnlFsOp+9/5nAdJuueee+Kuh/Xr1xtN3Ac3BMybN8+VlpbGPu7p6XG5ubmurKzMcKqBt27dOldQUGA9hilJbuvWrbGPe3t7XTgcdr/5zW9it7W2trpgMOheeOEFgwkHxhfPg3POrVixwt18880m81g5evSok+QqKyudc6f+26ekpLgtW7bEjvnggw+cJFdVVWU1ZtJ98Tw459zXv/5198Mf/tBuqPMw6J8BdXV1qbq6WsXFxbHbRo0apeLiYlVVVRlOZuPgwYPKzc1Vfn6+7rzzTh06dMh6JFP19fVqamqKuz5CoZAKCwtH5PVRUVGhSZMm6corr9SqVavU0tJiPVJSRSIRSVJmZqYkqbq6Wt3d3XHXw8yZMzV16tRhfT188Tx85vnnn1dWVpZmz56ttWvX6sSJExbj9WnQbUb6RceOHVNPT4+ys7Pjbs/OztaHH35oNJWNwsJCbdq0SVdeeaUaGxv1s5/9TDfccIPef/99paWlWY9noqmpSZLOeH18dt9IsXTpUt1yyy3Ky8tTXV2dfvKTn6ikpERVVVUaPXq09Xj9rre3Vw888IDmz5+v2bNnSzp1PaSmpiojIyPu2OF8PZzpPEjS9773PU2bNk25ubk6cOCAfvzjH6umpkYvv/yy4bTxBn0B4X9KSkpif54zZ44KCws1bdo0/fnPf9bdd99tOBkGg9tvvz3256uvvlpz5szR9OnTVVFRoUWLFhlOlhylpaV6//33R8TroGfT13m49957Y3+++uqrlZOTo0WLFqmurk7Tp08f6DHPaNB/Cy4rK0ujR48+7V0szc3NCofDRlMNDhkZGbriiitUW1trPYqZz64Bro/T5efnKysra1heH6tXr9aOHTv0+uuvx/36lnA4rK6uLrW2tsYdP1yvh77Ow5kUFhZK0qC6HgZ9AaWmpmru3LkqLy+P3dbb26vy8nIVFRUZTmbv+PHjqqurU05OjvUoZvLy8hQOh+Ouj2g0qr1794746+Pw4cNqaWkZVteHc06rV6/W1q1b9dprrykvLy/u/rlz5yolJSXueqipqdGhQ4eG1fVwrvNwJvv375ekwXU9WL8L4ny8+OKLLhgMuk2bNrl//etf7t5773UZGRmuqanJerQB9aMf/chVVFS4+vp6949//MMVFxe7rKwsd/ToUevRkqqtrc29++677t1333WS3JNPPuneffdd99FHHznnnPvVr37lMjIy3Pbt292BAwfczTff7PLy8tzJkyeNJ+9fZzsPbW1t7qGHHnJVVVWuvr7evfrqq+4rX/mKu/zyy11HR4f16P1m1apVLhQKuYqKCtfY2BhbJ06ciB2zcuVKN3XqVPfaa6+5ffv2uaKiIldUVGQ4df8713mora11TzzxhNu3b5+rr69327dvd/n5+W7BggXGk8cbEgXknHO/+93v3NSpU11qaqqbN2+e27Nnj/VIA+62225zOTk5LjU11V166aXutttuc7W1tdZjJd3rr7/uJJ22VqxY4Zw79VbsRx991GVnZ7tgMOgWLVrkampqbIdOgrOdhxMnTrjFixe7iRMnupSUFDdt2jR3zz33DLv/STvT31+S27hxY+yYkydPuvvuu89NmDDBjR8/3i1fvtw1NjbaDZ0E5zoPhw4dcgsWLHCZmZkuGAy6GTNmuIcffthFIhHbwb+AX8cAADAx6F8DAgAMTxQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAEz8H8ghPTnjmoXvAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# предобработка\n", + "test3_img = test3_img / 255\n", + "test3_img = test3_img.reshape(1, num_pixels)\n", + "test4_img = test4_img / 255\n", + "test4_img = test4_img.reshape(1, num_pixels)\n", + "\n", + "# распознавание\n", + "result3 = model_1h100_2h50.predict(test3_img)\n", + "print('Я думаю это ', np.argmax(result3))\n", + "\n", + "result4 = model_1h100_2h50.predict(test4_img)\n", + "print('Я думаю это ', np.argmax(result4))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3D-uScHpNPqL", + "outputId": "8a2f7068-6294-4332-faf5-9cce61fd33ee" + }, + "execution_count": 103, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "Я думаю это 5\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "Я думаю это 4\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "При повороте рисунков цифр НС не смогла их правильно распознать. Так получилось получилось потому что НС не обучалась на перевернутых изображений." + ], + "metadata": { + "id": "ugtWb5qTNe9w" + } + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/labworks/LW1/report.md b/labworks/LW1/report.md new file mode 100644 index 0000000..2f216fd --- /dev/null +++ b/labworks/LW1/report.md @@ -0,0 +1,586 @@ +# Отчёт по лабораторной работе №1 + +**Кнзев Станислав, Жихарев Данила — А-02-22** + +--- + +## 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули. + +```python +import os +os.chdir('/content/drive/MyDrive/Colab Notebooks') +current_directory = os.getcwd() +print("Текущая директория:", current_directory) +``` + +**Текущая директория:** `/content/drive/MyDrive/Colab Notebooks` + +```python +# импорт модулей +from tensorflow import keras +import matplotlib.pyplot as plt +import numpy as np +import sklearn +``` + +--- + +## 2) Загрузили набор данных MNIST, содержащий размеченные изображения рукописных цифр. + +```python +# загрузка датасета +from keras.datasets import mnist +(X_train, y_train), (X_test, y_test) = mnist.load_data() +``` + +--- + +## 3) Разбили набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. +При разбиении параметр `random_state` выбрали равным (4k – 1), где k - номер бригады, k = 6 ⇒ `random_state = 23`. + +```python +# создание своего разбиения датасета +from sklearn.model_selection import train_test_split + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 23) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` + +``` +Shape of X train: (60000, 28, 28) +Shape of y train: (60000,) +Shape of X test: (10000, 28, 28) +Shape of y test: (10000,) +``` + +--- + +## 4) Вывели первые 4 элемента обучающих данных (изображения и метки цифр). + +```python +# вывод изображения +for i in range(4): + plt.imshow(X_train[i], cmap=plt.get_cmap('gray')) + plt.show() + # вывод метки для этого изображения + print(y_train[i]) +``` + + +![первый элемент](рисунки/pис1.png) + +``` +6 +``` + +![второй элемент](рисунки/pис2.png) + +``` +4 +``` + +![третий элемент](рисунки/pис3.png) + +``` +4 +``` + +![четвертый элемент](рисунки/pис4.png) + +``` +3 +``` + +--- + +## 5) Провели предобработку данных: привели обучающие и тестовые данные к формату, пригодному для обучения нейронной сети. Входные данные должны принимать значения от 0 до 1, метки цифр должны быть закодированы по принципу «one-hot encoding». Вывели размерности предобработанных обучающих и тестовых массивов данных. + +```python +# развернем каждое изображение 28*28 в вектор 784 +num_pixels = X_train.shape[1] * X_train.shape[2] +X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 +X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 +print('Shape of transformed X train:', X_train.shape) +``` + +``` +Shape of transformed X train: (60000, 784) +``` + +```python +# переведем метки в one-hot +from keras.utils import to_categorical +y_train = to_categorical(y_train) +y_test = to_categorical(y_test) +print('Shape of transformed y train:', y_train.shape) +num_classes = y_train.shape[1] +``` + +``` +Shape of transformed y train: (60000, 10) +``` + +--- + +## 6) Реализовали модель однослойной нейронной сети и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети. Вывели график функции ошибки на обучающих и валидационных данных по эпохам. + +**Параметры:** +- количество скрытых слоёв: 0 +- функция активации выходного слоя: `softmax` +- функция ошибки: `categorical_crossentropy` +- алгоритм обучения: `sgd` +- метрика качества: `accuracy` +- количество эпох: 50 +- доля валидационных данных от обучающих: 0.1 + +```python +from keras.models import Sequential +from keras.layers import Dense + +# создаем модель +model_1output = Sequential() +model_1output.add(Dense(units=num_classes, input_dim=num_pixels, activation='softmax')) +# компилируем модель +model_1output.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +# вывод информации об архитектуре модели +print(model_1output.summary()) +``` +![архитектура модели](рисунки/pис5.png) + +```python +# Обучаем модель +H_1output = model_1output.fit(X_train, y_train, validation_split=0.1, epochs=50) +``` + +```python +# вывод графика ошибки по эпохам +plt.plot(H.history['loss']) +plt.plot(H.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss', 'val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график обучения](рисунки/pис6.png) + +--- + +## 7) Применили обученную модель к тестовым данным. Вывели значение функции ошибки и значение метрики качества классификации на тестовых данных. + +```python +# Оценка качества работы модели на тестовых данных +scores = model_1output.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` + +``` +Loss on test data: 0.28093650937080383 +Accuracy on test data: 0.921500027179718 +``` + +--- + +## 8) Добавили в модель один скрытый и провели обучение и тестирование (повторить п. 6–7) при 100, 300, 500 нейронах в скрытом слое. По метрике качества классификации на тестовых данных выбрали наилучшее количество нейронов в скрытом слое. В качестве функции активации нейронов в скрытом слое использовали функцию `sigmoid`. + +### При 100 нейронах в скрытом слое: + +```python +# создаем модель +model_1h100 = Sequential() +model_1h100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid')) +model_1h100.add(Dense(units=num_classes, activation='softmax')) +# компилируем модель +model_1h100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +# вывод информации об архитектуре модели +print(model_1h100.summary()) +``` +![архитектура модели](рисунки/pис7.png) + +```python +# Обучаем модель +H_1h100 = model_1h100.fit(X_train, y_train, validation_split=0.1, epochs=50) +``` + +```python +# вывод графика ошибки по эпохам +plt.plot(H_1h100.history['loss']) +plt.plot(H_1h100.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss', 'val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график обучения](рисунки/pис8.png) + +```python +# Оценка качества работы модели на тестовых данных +scores = model_1h100.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` + +``` +Loss on test data: 0.20816442370414734 +Accuracy on test data: 0.9397000074386597 +``` + +### При 300 нейронах в скрытом слое: + +```python +# создаем модель +model_1h300 = Sequential() +model_1h300.add(Dense(units=300, input_dim=num_pixels, activation='sigmoid')) +model_1h300.add(Dense(units=num_classes, activation='softmax')) +# компилируем модель +model_1h300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +# вывод информации об архитектуре модели +print(model_1h300.summary()) +``` +![архитектура модели](рисунки/pис9.png) + +```python +# Обучаем модель +H_1h300 = model_1h300.fit(X_train, y_train, validation_split=0.1, epochs=50) +``` + +```python +# вывод графика ошибки по эпохам +plt.plot(H_1h300.history['loss']) +plt.plot(H_1h300.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss', 'val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график обучения](рисунки/pис10.png) + +```python +# Оценка качества работы модели на тестовых данных +scores = model_1h300.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` + +``` +Loss on test data: 0.2359277904033661 +Accuracy on test data: 0.9320999979972839 +``` + +### При 500 нейронах в скрытом слое: + +```python +# создаем модель +model_1h500 = Sequential() +model_1h500.add(Dense(units=500, input_dim=num_pixels, activation='sigmoid')) +model_1h500.add(Dense(units=num_classes, activation='softmax')) +# компилируем модель +model_1h500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +# вывод информации об архитектуре модели +print(model_1h500.summary()) +``` +![архитектура модели](рисунки/pис11.png) + +```python +# Обучаем модель +H_1h500 = model_1h500.fit(X_train, y_train, validation_split=0.1, epochs=50) +``` + +```python +# вывод графика ошибки по эпохам +plt.plot(H_1h500.history['loss']) +plt.plot(H_1h500.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss', 'val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график обучения](рисунки/pис12.png) + +```python +# Оценка качества работы модели на тестовых данных +scores = model_1h500.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` + +``` +Loss on test data: 0.25467056035995483 +Accuracy on test data: 0.9280999898910522 +``` + + +**Лучшая метрика получилась равной 0.9437 при архитектуре со 100 нейронами в скрытом слое, поэтому в дальнейшем используем ее.** + +--- + +## 9) Добавили в наилучшую архитектуру, определенную в п. 8, второй скрытый слой и провели обучение и тестирование при 50 и 100 нейронах во втором скрытом слое. В качестве функции активации нейронов в скрытом слое использовали функцию `sigmoid`. + +### При 50 нейронах во втором скрытом слое: + +```python +# создаем модель +model_1h100_2h50 = Sequential() +model_1h100_2h50.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid')) +model_1h100_2h50.add(Dense(units=50, activation='sigmoid')) +model_1h100_2h50.add(Dense(units=num_classes, activation='softmax')) +# компилируем модель +model_1h100_2h50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +# вывод информации об архитектуре модели +print(model_1h100_2h50.summary()) +``` +![архитектура модели](рисунки/pис13.png) + +```python +# Обучаем модель +H_1h100_2h50 = model_1h100_2h50.fit(X_train, y_train, validation_split=0.1, epochs=50) +``` + +```python +# вывод графика ошибки по эпохам +plt.plot(H_1h100_2h50.history['loss']) +plt.plot(H_1h100_2h50.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss', 'val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график обучения](рисунки/pис14.png) + +```python +# Оценка качества работы модели на тестовых данных +scores = model_1h100_2h50.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` + +``` +Loss on test data: 0.19274231791496277 +Accuracy on test data: 0.9430000185966492 +``` + +### При 100 нейронах во втором скрытом слое: + +```python +# создаем модель +model_1h100_2h100 = Sequential() +model_1h100_2h100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid')) +model_1h100_2h100.add(Dense(units=100, activation='sigmoid')) +model_1h100_2h100.add(Dense(units=num_classes, activation='softmax')) +# компилируем модель +model_1h100_2h100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +# вывод информации об архитектуре модели +print(model_1h100_2h100.summary()) +``` +![архитектура модели](рисунки/pис15.png) + +```python +# Обучаем модель +H_1h100_2h100 = model_1h100_2h100.fit(X_train, y_train, validation_split=0.1, epochs=50) +``` + +```python +# вывод графика ошибки по эпохам +plt.plot(H_1h100_2h100.history['loss']) +plt.plot(H_1h100_2h100.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss', 'val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график обучения](рисунки/pис16.png) + +```python +# Оценка качества работы модели на тестовых данных +scores = model_1h100_2h100.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` + +``` +Loss on test data: 0.21183738112449646 +Accuracy on test data: 0.9372000098228455 +``` + +--- + +## 10) Результаты исследования архитектуры нейронной сети занесли в таблицу: + +![график обучения](рисунки/таблица2.png) + + +### По результатам исследования сделали выводы и выбрали наилучшую архитектуру нейронной сети с точки зрения качества классификации. + +> Из таблицы следует, что лучшей архитектурой является НС с двумя скрытыми слоями по 100 и 50 нейронов соответственно, затем идет НС с одним скрытым слоем и 100 нейронами. При увеличении количества нейронов в скрытых слоях значение метрики качества падает. Такая тенденция возникает из-за простоты датасета MNIST, при усложнении архитектуры НС начинает переобучаться, а оценка качества на тестовых данных падает. + +--- + +## 11) Сохранили наилучшую нейронную сеть на диск. + +```python +# сохранение модели на диск +model_1h100_2h50.save('/content/drive/MyDrive/Colab Notebooks/laba1/model_1h100_2h50.keras') +``` + +--- + +## 12) Для нейронной сети наилучшей архитектуры вывели два тестовых изображения, истинные метки и результат распознавания изображений. + +```python +#Результаты для двух тестовых изображений +for n in [3,26]: + result = model_1h100_2h50.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', str(np.argmax(y_test[n]))) + print('NN answer: ', str(np.argmax(result))) +``` + +![результат 1](рисунки/pис17.png) + + +![результат 2](рисунки/pис18.png) + +--- + +## 13) Создали собственные изображения рукописных цифр, подобное представленным в наборе MNIST. Цифру выбрали как остаток от деления на 10 числа своего дня рождения (26 ноября → 26 mod 10 = 6, 3 июля → 3 mod 10 = 3). Сохранили изображения. Загрузили, предобработали и подали на вход обученной нейронной сети собственные изображения. Вывели изображения и результаты распознавания. + +```python +# загрузка собственного изображения +from PIL import Image +file1_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 3.png') +file1_data = file1_data.convert('L') # перевод в градации серого +test1_img = np.array(file1_data) +plt.imshow(test1_img, cmap=plt.get_cmap('gray')) +plt.show() + +from PIL import Image +file2_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 6.png') +file2_data = file2_data.convert('L') # перевод в градации серого +test2_img = np.array(file2_data) + +# вывод собственного изображения +plt.imshow(test1_img, cmap=plt.get_cmap('gray')) +plt.imshow(test2_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![собственные изображения](рисунки/pис19.png) + + +```python +# предобработка +test1_img = test1_img / 255 +test1_img = test1_img.reshape(1, num_pixels) +test2_img = test2_img / 255 +test2_img = test2_img.reshape(1, num_pixels) + +# распознавание +result1 = model_1h100_2h50.predict(test1_img) +print('Я думаю это ', np.argmax(result1)) + +result2 = model_1h100_2h50.predict(test2_img) +print('Я думаю это ', np.argmax(result2)) +``` + +``` +1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 36ms/step +Я думаю это 3 + +1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 37ms/step +Я думаю это 6 +``` + +--- + +## 14) Создать копию собственного изображения, отличающуюся от оригинала поворотом на 90 градусов в любую сторону. Сохранили изображения. Загрузили, предобработали и подали на вход обученной нейронной сети измененные изображения. Вывели изображения и результаты распознавания. Сделали выводы по результатам эксперимента. + +```python +# загрузка собственного изображения +from PIL import Image +file3_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 3 перевернутая.png') +file3_data = file3_data.convert('L') # перевод в градации серого +test3_img = np.array(file3_data) +plt.imshow(test3_img, cmap=plt.get_cmap('gray')) +plt.show() + +from PIL import Image +file4_data = Image.open('/content/drive/MyDrive/Colab Notebooks/laba1/цифра 6 перевернутая.png') +file4_data = file4_data.convert('L') # перевод в градации серого +test4_img = np.array(file4_data) + +# вывод собственного изображения +plt.imshow(test3_img, cmap=plt.get_cmap('gray')) +plt.imshow(test4_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![собственные изображения перевернутые](рисунки/pис20.png) + +```python +# предобработка +test3_img = test3_img / 255 +test3_img = test3_img.reshape(1, num_pixels) +test4_img = test4_img / 255 +test4_img = test4_img.reshape(1, num_pixels) + +# распознавание +result3 = model_1h100_2h50.predict(test3_img) +print('Я думаю это ', np.argmax(result3)) + +result4 = model_1h100_2h50.predict(test4_img) +print('Я думаю это ', np.argmax(result4)) +``` + +``` +1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 35ms/step +Я думаю это 5 + +1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 35ms/step +Я думаю это 4 +``` + + +> При повороте рисунков цифр НС не смогла их правильно распознать. Так получилось потому что НС не обучалась на перевернутых изображениях. + +--- + + diff --git a/labworks/LW1/рисунки/рис1.png b/labworks/LW1/рисунки/рис1.png new file mode 100644 index 0000000000000000000000000000000000000000..4e1a92eb00aa9b3e59adaee122880291334b571c GIT binary patch literal 13368 zcmc(Gc|6r=-~VY*lZu&24GA+TmC}N2A(buJIU-A?2!qHHS=uE;*6i8$C6S$0WZz}a zNH~)0*`N2NnfrNu&tJcL?mwP+nKRX#bH3m2b$zb)=e>M#RZ@`NNY6q~p-?u;%A8W6 zP*#-T-&a4a!JiDLa{rG1thlBkeS(r&%{qwRtTvR8m!MFdd9I(oK!@M2yDFo3jY9cZ zl>EEm5I{#`Y{lIw>WkV$_5wX~DmZy0Dc=DZMH2>?vjC)~1IUJNImQar^|wZ=8W=3>Fqf z{aDAp4{SL6_BXrY>RjjVfrdPX4K2lOzjoNMN$=n4wvIw+{K&V8LOCw6l5$>>yhxCj z9+?-xRu`W=iL8rfWpKgI%pnRTYm?i%EpG2VSqX2Z1w`*FJG(zNF>xOg6VqN%QPGH{ z6%@**U)kTv|423%BQl&mie8ZPx3d;$P2SOeUJEBG-oCs zcto-xPO+sU_ga?olGC*(es6lbD*BG-Qz$g|ioVkW`!0uW{q(}LozJ}M*l_D}X~)?K z<@Oh*SvJF3qN8s&?>l%p1Fw4tZ+TouGm>&SiX^z9CN{I&jST0@-YeMa`w%uK!%o&08phghc* z5ni`nouAxFf3NZaRyALkTc)@>?Trg#lJ!t?d3AMab?{Ns#G|Hd18xV4;t%V3PYt)n z33OdQStB-=9OgKsc|a>u#=Lmph0q4dO?wSPI!!F(Rl#Ij!|qrZtz+1xqJKOgIXSuH zx@>txMMK8rip=w`RvtK;eti8lp2lGFA|r-Xl&4)yni63J+aHy=2da~>u!G{>#!Be@=spQP#HpAg($=Y@tYWwtjq0vBw|%9)c?dnyS25IRvU4L znd?jV(tI2$sY)?mR1}~PZv-@~!E#JkrKk+`| z=I2+J4?fD@dzaMp<;$1xq;dxfqt%nBfrqb_Z#p2u^XzYoS_Z0r>*dv@zT=y&3bI-X zvKp`kl=db}c2^v98ePAUg|E!LH?gW_M%{U?y<1I7%ecfMMLSm|++oahd7<8y@0HX(IM1%afa5JZ##L^YCvgWak^N*WhKRHf|ktT=H{l3lh4d+FmP)v zTkR^wV^6ymzS`zZ)XP;xP$-;*02bNPii$1i7v7K)@p3XBoxk(?3@Q$8FqxbkDCFg5D%b{{9Qy9SORXw`jxdC95b(dbr-XY_pW#PTnu; z9gR;n-&RW|Y&bX8Ut|#@FAU zS~%k%_V?Q|A|p?ztEf;^8#OUa^?zilH28`Kolh(IxpVGIUYBe=+ zeW#fUy`WK}EYzje!DqWEzsLQ?ss+|$`eQ2ac*kRM^OxSy{qoGwH{k4 zbXIh)3aE(j_4QTlGJak*X3OLu#pHTQ!A@j`C;i3ttFiG*#iuEhYRW%E*yPVE9PZWh ztGY1ks1&@wC_3R)Ejq0Ym=qP&S%%4+-yc618y~L{{Ebv9X@5W`6gt|Y!G@5-n{=w~ z++JPu`_7#wNmK5Z)W37XFh(CN+}if?1JVPHEJ9~t>Ox}0XDkDsd7OAVla zwtnd&bcjxi(j6>^&fjDXKU(U^-Xbs1d8uUGx;1wmp86f9B7jH7IP2njS*%3XtgW8? zV2oCZ*vco%Wp$a9l}tQGR9$>xVj>}|85u{^)zr?`Q0{=jJsBIb1X487R6z5)v+vSd zmOk3CeB2Exf3+Uz(h1OW%EbwbV$lah-pZpLKiXTGB<;z@a`@ui#fdoag!J_E60pbW z)$5opUA`QX@%%Zz-Pk1$Rv{I9uilNdxmW6bCs6k0{>BD5P8(&q3kSZxgb}G1Yq@-J8wz-~s*fCA4LsM3ZZW2&OgWY-l8OY@& zF*?f4Xn!RMgG-m+bgzEZqE8DNrZ*$c{wu8y@kFhCwDh11EKM>uEKnD zrTBt^V}1bv+~VST`8LBUf~?eVF~>?BH1Nhv`^o@_rk#1}Ce6vpy1HSf<>Ua%28HMr zvwylBBLh;r*K^GVh5chZApRDAq z8E8-xZ%T8Th0|8xBgUhDzGD%!&m`@jeAp&9f3R4r2mmtGOm&ovgp0xoYZEVkXe%b6J@jR%mFeAi;|)XR5p6lnI_H1%38?>T27Y&^G_VSf6TRgW|cp5d_knz_;$7{rw3YfW)(Q6POW8NJ=A+Q)3}Ldve~)O<*J}|8eL#`xZV&y zZ{49?T3)V&Sr9&tBmRRvah{)%Pliav>93u*L$l7j!Q!R4;wr%lX4xV=eVw!u`?snZ z86_}tz3m@=r&INE_ZIrSKmYW^;x&4=$)t!@ma!i>eI*vdU4`d7#TRp!qkfUI;%B7a zw6XsCXsKFj8678DBK%755N&QKpkf40f5+Vh(amtym-0PTw<7Fk#7PHf(N z=1}jNL9~R#`1nJ;IS>hIDk|XQ+mHV7#6c_^RD>|L_Usz>-nIg}=U?-Ncz6|LOm|lab`_ zkF|C@@Z2F13n|m+zB$8oL^o8>;A zArxDhA0M$ga`Th#f4CsKxusR+D)bgrlHQktb1xL0q3X7a$LZwT3@%J}3-sndrtuqA zvtkb{ES{kU;D*{3#lvvy617r3*F{RM=Qpay^0lErzZOpG@+y>_GcSxmujDOZ=BXnJ zi8E`Nh47T&`~;2~ZS#;aQRg^VJa3uukY@|M5q8}mq_NAcKU9n9QW7<#F# z9&8pI#u+`s`pbvI%U}4HHbocY_*qFp;+D-wSBj$ef|{M3-Pqg$f610DTb3~qG(9mJ zkC6}`AOCmL{bU&K7@K>opB7}2S{JVzWz}ijV$@sW!Cz7t$SW;A-@`}*vj+?R=_o0W zdOr=_gnR3^HUGMn@-mPk;&yUkqKbmTBZ96FS6vP{ZLNmkDev62nT&s~B8Q;MVO*Zz zF6mC*x+m!Dnl%jvXNS^S@a;`W8VARFjM+S;51f0U2Ir{>#gk>$sr6SkBkvy^z3z)9 z=kC4%auRPAvHjXebf}KgOkW;&*d)FS?YW+ndH{VVBSQrqTT^?s$6CtMB2G0g*MaWh z;#kG-)TGqB)BWMjMG7H;5piMmrwJsZ&kJdLXF4s|cVeM~j$D2idnPb4K{c*Kd+QtM`LNDaQ#R!{h8tbcA_S7KQ@LLu!hnx~m_B5cANk@(ai?CJv z-_BHPf-0Bw*AC4Ttt=HhAwQ)1Msx&8Nl6qDuZx^_p3QI~@qN&kVGj746^u&BhX~fO zuAv++OnQEsFISrfZUynEAWIqLykR1Am}M8}nomxdhFd@x>Y*#(1frFKTI@q3!a5Wb zXmcrq5cWYx>(`D1SV7Qz3DMD~;H=d@+95&~6Y`l!>cu{O&a;DY z#F4^2=CRmOss23qUycy|Ia_7!6a_(g3Jg(IODo8Jk{08-nTzHv$0Pea-|Gyu>#9)b zx==UAs?CbWl*!SX7>MZTAQXO+t3zDVcCvL!d(bza_OzG#Mky0)Ad?oLtTDGnYI4)1 zJ`_@NlQCPq?MU;|;>c2v#fdO`+Fn0j-zSHwuevHw!;~bNx6x-@0IIz>=|4pSl(57sjrS84< zOAFKd`Xw6x15Qp(DGJxUIzXA*LYr4nYF{e!{)?yN;~!0yX%UM!J)KQy`Tz=10F%`Z^WSeI(|UQiSm!*GVM zx1@e?ufPWs1#r03QbUFXbk;08pL!0;7>!85E=gYKw91|>_0RN6jSJPOR8(Eqm`$v2 z6ep=dQPINY;D$lpH$8%VDKC~y?<*-s`ON-dr~T_=3Lf|zFqOV-V_);LkqxW&J87wf_Q#-$3!%DLO}ZPS>!VnRY#W8&h_^6sqJ zSPzC+^M;8pmLlvb1o(G@&u!l} z4-gv&s13>hfFvOR2=GZ41`7@4^j53|Jv}|TrpI;x+KYBGP+>K7^}|MXt9+Na!E!-R zQ?vqc-J0+;g;3$ZWvA4*Ei-|+6gn$re%=Ash3QVq;&2oT-+kuE`I2=;-9?4O-xlQY zELBbN@$@miQP!GiPRo8CrfcKQoCU?Cb0s_Qj{&i&NRe zcC(u9v>kHg3af>a2zw)`bQm>21c(!?QraVtueCb1oiQ`x{lw+xpIYvrW)h$K`%T~v z*-z9-^TY0}dUE(A0crNdZ)+j6W%Qh457~azCLSv)x2bz+(N_M+AqjA;FkGfIUxxCM znafO~8r>Rp-1GYzx5suB-Y{v)G|Kz)A$KMSlp`p^!*>^jE&jZ#YuCp_av}Jz^BHo(KArBW0{Q}TYURkLo$l8pjSBKD*xU*)jh{!qb#sa%* z)`Rtu3UTAx*B@bJs2G_}LKtE{KDY2ghVEs$1pN(?!k&T?huYAHQwZJSA*HUQ!~uO8 zD<53mJ1Rq(S$#u8-{^HKP?>8Q-qE&QcG3bJSMMOyItG<*#{$dCtZ2qy*_r(6OK%D1 zjKm{wEMvEuJ1M#_(Xemt-nu7;^{sFK_ic4c z0Jnj_171V@s1-XcOhCRH!%z@*_?|BI{o^Xr)(lCACR*$BxZHC@7nmSklZK9l^_(o;49YjH-Lzt%%YtahV-=3&)-@c^>p6z^G{d6V_=9Jwp~v- zuHq)5IYUxEXn9^LHgduzeE!r)l*V@R;uKH}Sh3UqZA(|4qVIp+)!1-8 zW9VVk67m&!|;&F&QJY~J1+BpG8K0aL~Dd$!D$PeYKW-0P72UzJ81i4t%Bi z=K74wa?rIn_gKFsfq^C|3kwSm&74hH230J0)OYT^Sk;Et_tsYt&FAA+dZ29fl*DU3 zqk7IC1N4;f8VtG zU!Ukp^=d>@Vz!lK3BK^=zR|ajuORY3g6?l%hEN;=3!1~UdI7i zp@1sGQ`y_+fx0XMmyTd^?0JPd%1_5(4}{RtrBKxYUQH z|5RD_F9iO-PZa;x9sCtACK1w%a>rRa({uGKGcz+GiS|=pphVnh7Nj8%zxDi~v!Ry_ z4U_bWok&7uJ!J}N)tsu6R2L;3%(#N0#6?ZjPUv~#!o6$PJBRrDIdn5+J3X&d_#XgK zQ|DvxYZz36VQn=S6F@_f1B=j`Q^&5)uPx)U8|p|?Cxq~d%KH+$h*GDg+&s>1}uMnNhBTf zG;f*6NP#M^VRhqEi93y1CK?3Yw&^)MgHN7iJJQ9Xzw_~fmA7u<2U-cq#xXWUkHdOQ z%d-tY^Q3G+$Bob_56*eT9_QdF?mmd18-0M*F=%Csvred*lqXwC_`(-MJWk-UZ|STK zXoWxY(9JC=do!29lV#7;;@~qUGVV|xBRBcUM==qpdyt5&*`%S@cz;a*e0_*uxGj++ z8`X0dy@w7G+xpxvINzI-(5qR<^+>P@sv&j@Stx%A7GGmi;amIDbTd=!=0k&V;r;+S zxPnP6wsHRc{^f&K`;gWHQeo$|fcukgFJ2fnhlp4AaFkVnvgo}#YzA;Xbois|Kr%(na z?xMuACm4Iaf2t2Z0c4kh?$|iIv=w{GSKF)2)=Fmt!8-a8{3XsVnVv|f17P0}7I=#6d8Kq2$ z89J#EIyekd^)JXcMBWFXh~_!#Im@xYOV3hn=9bV`fz6b z(W*kyQ%^QgD}PeSOkibmFr!+M+$&d(63;p`_Oh2vWyZ-GwxREsruYvorl+^98^_q0G^`hKtNU81u zkFEXnKbBPgEw28PUva8SNG)f>ylW^=t5@HVAja4t3mFj#?3vyL^9C`n{g-E@@aLeMAncXDdFX;sVG;ohD~80$eU^bISqhc*M3dsiRE<)$S?4FK-A#5E zRgj1_BE^`9VqcKK&MwmGJz!!5EI%Y^nHS1c;L?p!Bns{Wc6gfyM(&bNb>h z?JqOm{L|_Q0*%PN?ZI01$gGDT!VSiiS5-BoIWL&d*GIzD*rt0ug2W{z<-U8jME6{h z0Jqm6(ZCu8)-u1JPGVu_MvBwem%f)GciBc~^vi}dSyy{bh)#E0BV!2OksOLlE&dcr zx?mK2eb3cB&{z@KB_4sLy*=J%S=l^YY$YweJBW#eFKk^dZcp1s-M<4T*gX5)7k1>r z&Fi{Rbtn+0iI5#6g}s#NjYxtpeL~C%hO6Bin_REpP=h@6*iLK&Zc063ec$)S{Aag! zBwhsyRPwYY~2?qcE;_jMtZ?k_|a|bR3&Y<{CXK6!i92h0`oENMA z=giJK=5gjvfSfG-QidI34rdu$PQp%T!BCQ4Xs9WJsqazqu4E7+ka-P55NkA!M)+bH z`hVyvQK_-$hGb$1`61GZdN_rR@CaB0)_;K|f#a@p;X(uysW1*cuEEXA`@Ce4CDPk_ z6CozTP+7o`Cb*cOcV`GsU>gTbF>XoK;n&p|92`X45rB!95L$8sqBCNgPJQi6!pGlT zJPbTf0G~h*XW}7y8kj)@8}1G?HJ+epOIo-v#`K;Rdw-su%W|BvA+igG7EX(jjm-;; z(?!8uC>xqQ?fr;NG!eGr5MlFS&SU1pke3QOQ~lufF-)N>!b~RckLK*h$&YY`kl9#; z(DKj+-fWH&%A$+kd&!=G!|jtr^iwOjO(&WZ>E~~2%pvLQ7baUsFifrw4rf31o{QhC zBZroMgmH&(G-_8ONh8g_dqe{=-EHduD+E0zW1rq{TpVJDx76glOAc63LTf!wCP-kp zCfZj*1SJqyfUrn#(jhU#HXW z01}!P0VFG&Sro2NsKUa>wc@on%c(@G=bIfOT!!#-a1rnBk+j8pmLr!Q?3NEAk>UG6 zD;kpgx-YHIq28W;#YCC-(wFBo&FUIDevQRZyno*Cst7pP0+{ke8$nYx`H+60t?)*+ z|9;I#5Fs)GWcca8TWjK;YdAR-EvsSwb7pl+8rl&RJo#r%-rrzUYxt}?8qWZ$F*i4t zgs#nLdTB5So1cWt6ODn@A>FhpO!OR?qd~jMgjuO$(|UR1V$vz%l}JSi4<$eU1T~5F zq+?YlNrP)U`Gkp^D&vi4wVBq^ba&lmzVk0{u35-~vtr*LYC8e_uB4%3?FS2i17k6G zGm%O}!@-7Vn;IIkzhg@U%61@X5WfqiW8Ka3+jGM)w zOe4DnYa3%NzNNi&*bJgvNUrTX-^NZ#<(5(ih z!-oi*9F%R^S8o|qK8e7oZ_&L`<#0O6+Vb}Awj4j@qpd5a-*J2@yb7`K! zESs@$Nb~IqbrCNmLUI#iLsLNk_=Sb>$O0Ywgso}O$2n@BuCE6sYNN^iaKuuo7o3W9 z9Y!UWHx4A)X*{@_P<`3rMf3V?pU^^yb5&Vc$-?fQ-)V*m(6BT7B?46VBQ2e_-6?Q} zhS2Mh2scD5LuC~E{uE81s>efDR#tX$i1z80yq^Ch9A_x@x2^%v5hq<}B*jOZoJ34c zOg`Gff1j*9$w=l>-fT}s;F=A;K7|J-s~2`i+i|kVetxucvR>}sAlP&Z4xbgKu&$v0eKzwx zji-Bm$9G1v_B~_O_6GLBY@v~Y@#XUXlb{x@V!};tp5&*sNFFAj_Mg1jUWhw8yMHRH z#jnW06sSb6Qh#roZafaW@%L{%B$_8Nr^gNvDw$`-1q~R?({=3!cOB5oIECvrxHI!& zygEtmrfnkf^F*EFR$Ue(~vNeLQn}m z#px(vU|@jopG*N^Yntr#Y*CSvyocO_s_&qW{Z6f{JOkN;b|8;RRK@r#_**8KrM?~& zfH6AH(w)n;tx~A;@4tY}!5b4vFlUQD2$F-g2JJ>g*>BmfW_#5TO>b#7VCw;`Xfemx zD{xc!dEN^c)koVuo=yu(hDCr8l(S?y6O0g8PfF|8Vj*zedU`+J)$V|&s!H$o`x{!JkV-*KYz~G2z zA%lAuf=QY!*%V%*;ixfz{5DCvT#$?ivWxBaERDh+Y`BSNjv;saj%(HfcEWiN-O202jK!eh=SMYPrn z^X^o<4RdcM?;bJ{kb~>cl%^+s?fRW<3@++gT8XfQcZk}nfkdI;8*n<*w6)1yk*P`G zQT;lTKO`oDI{P1cG7Ci+12WvUAfT zEo2@Yx6$|cGts%9Q@6W==oBJ}nw{%jN+qh0xNp_fR0uwte*(Ec4j`a07GL=Kx2Mp~ zWY*w-c8(JIB@$hETGCC!x2IMRX^g#%0|pbh1~H7GF2b##d-a-f-bX&mL&%ScBm?89 zG^{5cRp;s}x*#z}dk>LvmOI!lqrP%Kt$dplLJRsT0)}3%Kd1)VkMHWoI7S!)G{e*yJug&MGkHWXF|yKt(Ao#T>;ySD=lF7NVZ>Pv-529g`}eEy zu{7bJ@*)3^7Mok*fzQBGIH6+tAzdO$+LMX_lceIddL*di1_>p=Vq{qjs*r(aP*-9> zkz2&68Yt&ZYs6ht=?MHvBH|_uy%cnsD_{V`Bc1F%1ILsPK{i4#H8L|Wfwp!M_J}Gb zFrcZ&#>SQ>#e$C>NKpJ(^T2f_q7OeGpD64uq%!Oig6h~;b?~;z9uF1J7;J*Nwstb` z6sTrA|9upi`;VyatZ&Jb9EsmyECjR6lX zLSY^2CUuXCiMgmfG8Ts99=?tW=y9J-J`?@D#yo2i$gQWdJ8a=gKySc9ja;{R_mwXn zo;9hu@}B~3vpamdh4=!qVo5*3;6w~-05H(RiF@LUXa;`?0W_Gj9jv4(A>Xh|Nps&g z%Sl3G+_46L0H*MGYX|h`madu|8GcsiJfaljZ3+pUoZZ)4@Fi|;Z*90^SA#CSMNJ} literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис10.png b/labworks/LW1/рисунки/рис10.png new file mode 100644 index 0000000000000000000000000000000000000000..68424d894bf3a61b49276040ae0e6ce254a37a2d GIT binary patch literal 25649 zcmafb1yojB*Y2i~M(GX%K?GE~1p!5+yFnzSk&sqG(jpX*P!L2)Kwi2-k(5*#DM7mP z&W-2$&-age$GB&3hVs69ueJ7CGoI&}bNg8JwjwDJ0}+BCq}P??)e!_+7(uX_3Gv|* zIdv~?_(RO?ny#CM<6SooGZ#zbmYJKAy`!7GjXB$WOBYugM~BN71^6%WUtqI#b8~VP zj#Kk830y~{IUGc}eTitj3{BJ%JDw2u0(;YXnxAX1Xmphld)`D6Km(GW!aRr5i zg=NO7ZkHqS@ZU&-lN|h!LsU;nNl97EO(G1x^?cwTqM)Qy%dY$Xed#CYwR#5^4{xWO z&hH!{_TBc^b4%tF#Y8YnPS4j^9(F?P`+t5+Eu~RVehD8BfvNSWLl`+YIBd1(9Kv#4 z9&9euW~#k4<)@>dqI$$G7h>8R&CJq2U@vq*Hy=q7a}Uzaz9uh^i%-TB78yyhCFtel zm2kMTUAtlA4BDp~&uZD|+rG>qF zcY4Tg?@zImj-KA*Cr>E$H}d=|Cp>(XYYCKY-3q?_Ue41~WU+F~__dVpkI7fE5AjnK zV^~_ge!Y5hc#!&iuCvPb!3C45ioOFPBBJH^>U}%`0fA22Vx{ZXYac9C>dcFU)(6I$ z_|Z!~*n9-*)zqX?h-T8WiXSg?pYMFDNN#{_W*uf^#Zw8d78*F0XY+ zm**u)`%BSW&<&`4NHAI4Z(Lt}xWQL+?`Pj6Ymf6}li8mi#pos(`yaSV>@U}I@$ksq zzTHmUYF6@7z~z@xLqmgUSK2jr_QndYHGant38dTfr}V*`%0RvuPI!2@gw$U3(E+)_ zTT1`k@5vYUm^&oaNY37V9dOU!O*=`j8U+) z<)-1)fAr`P?#*N=W*+U2P9_>^YJsq$<1irK*_#OgjS;k*r%&TPKc~{v%2&PMTwT3C z#fJ{~G$A2uCfT1wMPdcFNdI0A#m;1m^h9bXOI_vGNW`@Wn$%C9PEIyO)dv&P4)xzm z6e4x3Six_KVhn|CVlKSf7Igc4J#0vxZil=M>C-U%bdOPA9bC4>q0+Ty{gKS#+M3zD z6DyO=!!s_fu8m`3rYjkV4lc>c*RNALR&MkukG#iVbaB}(8dqRyr(R#Nc}6I+|8w+k zT585gq`|dvk*Ur|usjPhJVNj6#+b*u~G%m2*5)Nc#Jd`z8EBBQpKHG<0+m(R=i$&M!!`*Bc zbfZ^ic;@QWs}1y*?;5U_oP5glX)0uv+p^?mfz9``@ZdE4hOSY2K8A)&O);!7tp59y zaIy#m14B3t0omAW*IV}y<@euZbF?`xUq02?*cipF(q_|{YtyBjO`Rz0h>y4}4$&X% zZq$de`ps75W@ZvH3fb2@I&q4PuGSnOW*ySX9)t_qUUlhdoBU z3|T2C#=6?lwX;|Hs}HI1@bJK^uo0hwjefYS(RXWjrs{UO`ZzqCf|r-*XNO@TWP72o zgN-n#occpXM5~0`tg72=XYE0mPM$G89f^qZ#G^e!YilmQ!yT(%)6>SQTPKbFprJ&4 zrXx9Y&|U%d(zY`G^=p#Q`f-++)gBF%)OYW2lf*p~I^IaGY){5amW=wjn&fp^FYm8) zSk#A*hCO~XCX+YO)Z{dD@>a~`RApX^7J z*cP(4RDJYmOWJ##OI}SLo|S@{ddite!jl3Xkfp!5xtWunfBDmtsQYg!G56oN!F6l? z3eTTEA6~+#0sEt5WsO;0Ugpul`SJOl!MvfaZi1qzVUacE=F(_PLxa4b|G`Frw11W2 zHaiEz$`7H54rM2rV_2KRsd><7QnA)9j#(_5Uv3v)!sK~@>p1^vp}b&-q0rBvah?7q z>*8{0b763@*kuT!lWLacVqYS;)HdR~yPkD9rT3SU2pb``ki!rJ)JXm2M8~SR;!8ro z>RBJxDrT8P(eW<)Tu$dDAVKn4G-%#d(e8m1fq-^||k}z1g(W9mz{8rDV)vV@v)=;zIX+ zJUZChs<$nkXrwi%FxO)uQ_SfLu4+^( zKkV{k)78ydp0Km@5Bnb-Y#(fmqP8ZNr8zMIhcHpORIzrOEA|FtwVJoo4I4(ZM^zs_ zaL4p9W%q_da5$x=rUvmC4~b-vWPlu}Tj^cgJY(#;p#{lxd^*t)pRJAK)HOCd0%%r`23kGGfjNf5LVpPtH3rCH zArQqr8kN)R?Cfk1v4WjJE^Byq{ds4eiM0JdKGuAHUh~nx=n*?N_t(iE5G<(yO>D1! zR}rx7;gVNWG+8->!>NHJ;P~y0BqJnjI`R7#f*w9}Uj20)9a!W2?Z%IKg+r+KOhQC~ zI4UIOu^8E#tz)q?Qt1g+k)oc3An0{qvX8$!KgY?#Lwx=Eb=|_dq~M?->B{jOA|iAM zzvr^)5S)SMRIHBE`m91=B@%i)T35kg6 zrrQz=TxZ(7i=R*$3GNH4MTGf$5v1N%Z=U=99u4=yOGxI5q2*{Q1b{`+I2^83`uUeokjMYDBvSDl+8>CO9djT&oeWCTv1mS5=4 zOWyu+F4?f)_4Bj0PU7I;G)^|hM1UL7Zg^MHojS$Yo+zwR^z)Cq-!x>tlUQM_zUyia zfB!1%kUB*`#>9n>j~^Zw7QrdO!Rfm|1*Ez98^V zn!LQ<=72@axb)Eu`ReLwO8pZfnIL`reD`Fo-^t?A%O}sC1;M#@ zU?4foACx|OcJk(H5lXob5?L@ma%ClX`L>tC4ju%Fu+Ivk&Erlrw#8SodoK;OjHz!h zQ&R^I4H;@`X$jigs4}T<14_Ve+mng!@9?9@hECc~;>C?KeK`g*2SLC}BE}dj-uBNQ z7@l0k*YS8U?BJ-5v2k8m2f)#Yasa@y{3}E^rk|QrQh~A z0WNM&-YkT4nux}OAJ$i}pLF|KDE69!&-;y3@%2V+@bdMQROpUwSQHMjg>x{G5kQW5 zyTlouwpVa|D|NS2(^s5{EG&&Mu?;_6eQxDt$bLzud0o`7L-Y2^WPxcdHsGbwkz@mm z6FY!()%ks}9iP6)mrtLLKi^Xy)*W3n_ic^X@b$vN!a~s!Z0<*GyXQ+f+S=2>>R<8z z>Lf_{ie;!IkNkRY0Debz`7X()!a~ZECntitjeaz4+$+|Hgb@fZgaw?KW$9(xwD+hE zh0)5F4qRExf_)b3|D)hwuhXJBbsF5U14TBc97?C+^pmr*r_KrpPzDDFOAQ)ub8_MU z{+S#(eaRGE5IncXfu^?h1Y~Zd8#jP@-COqsgrlcN50Tn(exhtD&Hz2=cw_IZFI!^% zhZ5L0IF+mZKQ3RsEO4iV!Vu$xm71D*tIEU(>@+quwxzvY!Q9+DM_L73q@_jaMO>Wm z%IFf!cNYtOx_rk`sTfy?A!1brn+6d4@&EiR$y;+}h{9)x%INcoy)o5$RGY6Ys%o7p z|Fm&$E2GuopJi@M4gR@L7=#30?RuwoJ2#iIzw(z$=@KN!`{k9!_53hrh4xt;uUGo- z<6X0MwYjJ$a8ui>w@7!EYVvTxTU%QTJeG{N!~{`RHB$ND>GS6}NP^@8As{(~GP|{s z-s{UE5NA?*ZMy(*0j1oXw?dH3UsRJBv{lWF)jWAV0+f_Sy=PV4MCKTjOiaa_gs>4( z;9~LUOuVNWHw{)5TjBOmOhECG^${WajKzJ*T4);*IC1aI}gg9ZmDvlCX zz}RLh6OEq0Sp>}La9@kL69McX-Myu!r-#{FEEn)U^ciyPklcpsy4)#84p9*srHYWE zmY3_vCs7u;yR{UPmc{|ZmK+IytUX?}w^*NcEyAgp*&_wmHJa&tBsrS$#_x8f$i^Q8 z!kJVo%m6=#0rvKwL^bMNzY?#Iw!`(S^1pPbg~ZF+4x0Ez5B4-ThmNeaT!2cYXlJMP z&r>oo5+fpRvlPf!*84Yg`DXP){UM>DoM+B79_+#bn|>7At-#5fPk(zEzaI^dWD=Hw zgGlTx6r$*383?ZFua>9qc*=1XYM-#n@msYsAu==VNh?4hEMOxNB)l%UxVTWz(S=Fx zkCQ{9QYgRwr?cF{5mCovefUt9MiwUZYBm@q6H ze9za6{H91WizHF`a5TsesbDLZ=~s46M+aMzfWh55>~Da^0SoUev{Kn$iScg$xg~01 zVgf%tHC6vxz{GTWY!7o9l5Hga{qsI#u%_;;7uyF}l%%_nkTqTwkkp2Zo%K)_>}|AA zvTA!33`n$MxsG^tpn%g&j2VnKm*=)`wI`CxMku9Me-7|lxyO>i-MeQ|o>1yKV}7{5 zGf?V!4xZ=f)2D&Se!C|Uh3?g5=T(LKAIzH!fHL#^b1UZL=ONF>*;Duk_ki#<`Cr08 zY%+Od*2}3HJd7KquN37no@V#j4*bzM+%o_9`5wCIiR7Sr0c{uS>~qRi3Btl=Kg5C0Ci@@K1KI_US#~G;2Fi;8+**7~5P(<#T@GKwi}@(Yf2NYfy%opU;m{XW%-s-RZuYI$7C6HVo0o$wlh*>;1?en?iWXV3OC$w|)gIOfKO(B(e{?2;O4>}(r1H@bE zXy0|nrIlCd_U)$Csn!)>dT$?WErMxn1HusSUbjZo0u`y9)5aioDBOEBOaZ&Yk);3l z84)8YG8(CY{TKM|-H&n2tx?rbSASL>(QFAonI(^JG2?@sIS4Y>E5B;>-<(FZtRalE zyRo#>n9QBKcl&mX;gEp3>dsf>8N3;QXUugLCN(k%1XNKGI^GmvINsC{2WZeX19EOi zN=k}YjLr9qopMj(T8Hy|E+s>#u&H)=17ra+AUf_VPg2 z79G9mA>b1}tZv*es1CUCu-R$ynpko6R0xW?T1@C1D#9#aXT$bm;9e1faQN^D{cs)? zPIp-Aqi9Q;hjc-h2x}<;aF*{j*X?b@Lm1Q{oNa#_F68Q@cCddAw*LGKHE<}!6H6ik_LU&!&i%Eub$H3@?%j#q`8-8aQ#NoT)OgXbi!9IQRhvU% zfS40fYbpcM9jeq8fAYeC#m{NI<^@OcNF&s}MJjDS-Q=4)t=8-?dK5-XdvUCM zsme8(hnu?&6gV`Lzle{wfCMq{$&whvhlfu&70toQTfTg;aoI??c{Y+x0Nc#W4E1HH zgLMu2kqY|DR_(Y5U_P^jfdb6Vbm9s;pxNH$A9UfkvIufBfgkI{i4*88pFVwBZaAeP zlddjUYBxiZH&KqAid4we%9Y`xc;ZZ)JWoAcT{?v*hG39c2?2p( zAt<(h@Ifcx$xlUur>?F()GvLo{vE}@kZ6@X2yH&1*8*Vigvdup#}&JQs;UVB7N|xf zm#&^#R7B;!UC#ob~s#`oMB_E>?0YXJf*XcK~Od{(dDxpQYM zgwdg9e`ieqR`AiJng!JbK~m1Q?d3+n%%>MQQef*!OG6^x@6wtTil?Z5GK&mTx*w#P zm&;C0Mv(GJIoa+8#s%^uAx9&*vBYz%S(4q^}F1oHoVf{@i!mpfKg z52hY~kXGO_bpve5W4;Xnc8V%jXSy=&mOGFa1&|5^9&FmbOHUtv8zWUmDm;WBvqPnq zQ7NIB9rLbM5OMozSiJlhppG8wh8I>G1g7a{_|5 z=;q>Zgo*zFHSqL2!NL#cN3(iu1#G%cFN{{Rj{0sfA8wXZk3-~B1Tcn*OoN417GT68 zp#7ma3{-IrIBd|%5=33kUb=kQ8H7aisl+`N*Xf>rXUd;yis-q4MI`%3j!M<6m{Y#L zLLuf9rP>iiA{X>NH5?p523rONYP>F(I4mNfK9c_OGOEM^Yrr^-W22fr$X@aa z3KJkEHU!}jSEvg)nqgKrWGPbA5bFEUuBX)Xor!L!0a zNjTQCi)!PI{>(yiu2Sh)+* zl&4pGlbl8ac*{(WZSey!cPP}Lf7$vS0x30LKPU6!NBbX}#F~8Wy(L`XBEWBOWvy3r z*oQIfU-OHA<69Yd*$Ae8|k(#`B>mCx9hPQ z<>f!Qx?5fmN&w9eLZs|5Q?BXXXp6qar%_J3Vu9}9Q)&Jo&zB*?XoB)ufjhW+`^$5{yid%O)*?x6bd{;m?hWs_oPz3&jc*)TN$l2tV<;G19y zrh7VIcsz-;22xVyA$)ez=&b^e{lY6a$7hMa(9zWkSTwOgr7eifbhyktzVZ-CQ_TR9 zK@G=ySQ}7Obj1gRsa2}aZ#0Q&iU|@1>vGS-?WH?{L*Tp+?Mw$hS#Fep?^L6=EpPOj zppqV7)+Pv1`Boh)tno#MxLBRyiqx*EK)0Um@0U4G|Dz3fn^e2asmJtpNbOxf1>Aj5 z;^e^nD-FwZaiy##SU5^qaM0{1- z*Z?@K&< zhv1f!Y5Vh`lifW0r{IGvbUM2vMm1dS>;XZjcAq{M!pQ0r%os3)J7oGljQW%J`vZ4kJOco@jClA(rgp{1*i|ln-mQ# z9Bv*5k!RHPQ8Bn;^|$bjzq|v1gi~xrO!(~agX_WUO75+s<>}~iG{AR5BF|xd>EkC5 zHTY21^zTer5Zo64^Kv{p1!H0i97IweASr2+2urEE!tPKV7%~7N&L%*=t&5Vwy`V)V z9S@H)`x|`-ZtT|=+k=iaCwQEfP77CuB%+EP@GV&%A4n}VP*};`e);X&O+$}i_fG38 zC@t2`HJn>>5sEYZdkAn7zP8+rEp`3fpbrN_>~oriFv> zQ=u=_e_$BX&MwSv@S)<+NVB}^OUZxaP2Rkw9uK+Pduron`S{48V}fM{WI59-44_@Km5RtpM0SFaU>;w>$%`YBm?!M0@{v9-=2O@UvRxvO4(3K{LGEd*U zS@gSig#m3J7_SelH|6)-D7P141SrdIKfn*Q_yuXZhHQfSGOBjKPTPzRE`Bf?{ble! zn!Jw1@1MPE>Z~weLsJunwDjntp`V`=3BFuXjt~Mp8t`MAq?4s7wMV>AR>H2jJ3^G5 zbX2hYgzxA=me7Ak_u(hf@ifKlxAgTHKHCpYI9~*T)yBrgkGpHic@nj=9mstsQGz@* zQ0~Ep*nHUfM}3s}t^P{HIc;wj=<0aG<5Szs(uaW%w8tSUHlIuO2?F%`jkU3wqkofF zi;S|5J2Y7toYc*I*$(qh%#4DeaFFir-@8CQ`j#Y4i#P#W@aV(}*!=U;0_yiIEiE!P zZV&-4zlPS3+gun#REJ$~oN~}eQM&E^tqmGX*up2yjON*Gj6(=D15HutLhM%N3!=i(J(T~3{i<=A zveF}p$JBw?7+gJxAg?}Ls?i=_p%HFJ!z(PP#9EI119tjMQz47v+~1^?s1Te81eqMl z$R5>)sOdvF71gGISg-1j>r=@hBrDw-7P-v^xlS53t~HAkmV6A9lwG~=)W)X=t&*XM z3&`SV6?1DGFRBGo(9=IgJtiB^{<^$XzviE~#NVm6j(5AIgh4Q68*NU2Xp5lGl}^}! zDdTohI4Gi~pcs!_FljxxU|T9W>8zivE<=H+z4&ZO*zLq53|pOd<-^ojE-pgai-rhd z|D)&x6i{#w>tcOPO-;kaw>ht}rxY-mQwkKgvq^Tt38j7L`KSnfIAI1g0hF|(+Afo* z3oZ~te1u8F2?4bWW{luq_@Sh7kw_Rx>Bp_PQ|#)GVr5o4&DOS0maR|X;zHJDIwsM2 z0CdA4Y=D!2%9=b}ihc0{7s#{U!R|P8pp`CcD92yC20bt--{+n{L_|3+$Qn^Q^dnZ8 zfxKa{6`v#pbm?5Y5)fQ}Ff{i{mqihVjhiy3^?d%yCfx ze|C0OzuzC4BRnS_pUXFIBtp+dF`B9N*O%we;s;`4cS7=nR+{T)sz|GJETNz=Kb4su z63>qvMyfY6E-{Kxc%qrr->usCvps!o<)(flt27Jr8f{c{JUgSjJob>>{OgPJvwb;? zFg+QxmQeF(_jnxubbW*#%l`HXRHW(v6gvayHYzAq6w1vS(>|rDH?b0zJ(UskpP8K2 zpk7uFMLh(9UMMQ9qBRMWn6Iy|dk;h32?y*Q1lF93kyp`5i8&-icfSn(qeEy-atVD2 z{XS!mc<#sStcb_5#08knd1YDkzj#25|Cd~4DYz>qK@tYL!9jdB2dzLBIt;K%_N4*k zI@hC<>%xUc!w#SZL^kgvB+xO5xn;I@pbrZ*H?*|`>S@3NQFZbNn(WGdZRuX1fuAiq z9j?Mb`}{%s4Q@N%L3<%xt?^FH*whbPjOOyRTMxuyUvRc^=NKQ2WXEQ+=q0cIr(#!9 z!JsipTKZXSTp>rh-d+d?5po=fggPiTQdeI;JYGu+qQeUGR82r8Q3U+$v@jrmR@ObC zgdt$n{#s1B5Q^<$&Di(An!PJW<}E9XnFBk+HAI%bpS{DHzi~*!bOx1VDEW8#{Zd@fNfk zJyOq-hmvsf4(JY$Z~Jy$in>mZ0SRmd7z1L>VBxu&XHTK-hzk6wT((=E+TKY1e4G8v z`U(e>E`6N=j6`Q*KxGREKb~!VibCt&R1D6&u^*s zD_r!q%=z#}`l^SszU03NTVP}ONz-!(J>UhTXmboG!VjUR59i(wrTKEStpyhTv0t*s zRuGDLXu~7gOoxm)iR8oIzr7YMZ0|^Do7Trt$a>NADa?HMfsoA=2J0)Y^k=lVV^t2Z zbu!a!R=$36Rqez0KhY*dGC!W&VU3R8`Q7pCchleQ0oX#pcU6q5Gu@d^-=Q50?dB_P zuU_v~CM{C|XFPlB)gvk2-7yewo4eDMq34ModO469fCya~w;0i`FNFW@H#$&zZ~+hA z_fT$wW>J8c&Y?{HuEB}Qe@NOi3mzPHaV2vazzU|aH57m78f*?xaMZR(Oqg7HpI^*vHUL^QETAMh zQ29U@3TJ3*F52Qca?v8fTrK!26;(hz{tH@6$1%}SVu`XX9V~O_xxX+FxV-GNRf@KN zfnrL>ZyL}~)PM4E&`HAR=S@R&9oQivh@gSPF%a;{QsWf{stk%jaeI7xyj+g9aH%S9 z(gTlWhDnF@Me6XsSyDNQNElUx`Q3kO?t@TFag8#K%N!b*6NK(DIF$bpas>6qIW+M% zy+$Cz%!snWrhP-&GkMaHYl_V$z^L8E!xTm z7zJKrBJ8};k@PT}ny8l9=^K+Ks>fX>5w2n*?9CB&zeyncQv^kbEjob0(sSp=7K8VX zsnstYxaj0FF3G;vWQ$Bz8nwre$tPsIN$09%zT1LIg7v+pH9X5n@+ z&PEo03EJ^g6K{C63a6Ti@o@fPCD09Z42RWeI8|+Mk=dRh36z2M!~EAy;abb3&p?q( zr=F0C?$Fq*ii5X6^d815-M|1~}!@97jB^cvn#u2xRarUctT50{l$i($&ALJCo8 zi>@>N;w!SnA1D6e$|_i5OdaBnd#@xV%1)B-Jq5y1A|Vm-knh{)F@M8Nojs)SsZ^qv~%&nf3A(nT|)lol#5pWdxUD;1KMZda4Q)$hcAE^AcQUc!jyb;58Nz7T1N6l$1ywYJksP zKr@&wGPu6g;OP<&BSi9-NXj$d;3^)EE0EDfm0|_3_~#ATBAM_|2$URK66qX%xv2GPmWbfsVzpe>o{%6oo{h9V z$`H(fCG$j$;L||lxWdqqxXJ*ZzBL)T%YeJuZAWM%RIjG=W8LJ!n+IvQ3?;+ zlf)+he#B)J-E!)3b4qE#F#Z+K89+UNW=Kv+N#?cbwtA4vpF$@Nl!ib-Pidde(dG#u zWeizZut$qsXw3kv)I$ZL#c)-D&^fM4bQ*sw62+7zgrE!XLArpRV782#FR>BbDj!j_ z90ZVS?D4rbneGSBX{@TL`3NnybH@@P(0p>*>M0}NX*KVUc48ubA2MpRE~?k|nzlC0 z-HtbZq~5D?q4g-h;FawiK2WMsQdT}LH$a;&8#gx*)K8kBdZEG<`&CTZqCnTQK$Cnx zkRhGT?5~ut9We%NLtE6?78Hog1<8lpGkZyI-H?F7Gt@170_+m1e|lGo?#E|4u1fvy z3~qNo<3L1A4DU8Tf6b(`)Y-H6(4qTb?J`<5hhFapv=j$h+5|Es+EP+`x6o{)!pq(7 zE)+#{^G#)Q)}W;z$T-h&mpn^OK|vwM)ms@W1S_95xv77?A14Sw!n(PgtJG`0@_kOR ze=KCG8LR>_cpnBW{Iwe|g@9EKeE%|^Zf|jr94(25^ z7y&&W&WlpuJbCJr0JIa*k>KaWb^H%TarH^U!@D+4Hg9;LJF%uHTuc@h8XuQkG z9nN|CzmyHbnMy5gHhuIAP^m_yZa zQML(6wyIno)^q@hRP9VNNvB}^S)GyCv^KjE$?p9k|lH`h{XdnV-~-^jnR~H>7pUIDEafzn422j zW|AcuxNNzr9jl$RoMTE?NQ8$cjd-YChag|7X+V(4ipFY`iIU7{cVWZ_VKc)V^YnSP z!G{GV(>#~t`)vtgde%V&&yF|iRnWM?ZCQZ;AzX?-H7|b;chuwbTA$*+*SIWx9LHWg zg71m&IycC>*Kq74M}D*L<-~nM%PnacK=BQ>#NRcKRwGRJw`|ag9>*$K2xDn+HGO9Y z_SBBd?Ty75=%d&>20!Rf4p_EqgM)&_N3L5oIv7zk>!2^{TK(rhw8&(kbJ(x#6?9)# z-ujr8X-aBN!Vt!>yeE1be{C;>F#22jUrr$=xH%K3@pI_CC|X?2oP(QWv#_5vD|Og? zd*za&`RzD_M}Zj2=k9i^RNsN@wIx*7DAg<=S1ET#1xR7@n;@V35mm{|ZEIP2?vIb-7Pp!Jcm4_nwsnK+#IV{*`>5CuxG%3^NT5!QW1Tv?eIA;T;{ z8=2=}{;Xkyjh`r!3;VVMUJbnlTzm`Cr3y^1)sbNScXAMW4PwO8n;)8BX=$(DbRy$! z=aWm1Iz9r1@bRY69~oG(0y35-oLqP&FsVPhidoW3)0QORr-bgvyG;~*>yJy^)HULQRb z9nXO#KOA&i=y*n{llv{^Lxy~Ho z8|@FP9Lf=9T@VRYFKp|;19irh9^vRfhVk4MhD<*Iu$od7gR?*4C z&;i`DF8~(>jTNM@BDh@C3Et0pyw^6j&Y2d9?`w&{BhUoGBg`!h+5KL|uhGUrwk>S2 zIUZhV;mv8Fec*baD+1R{$G|lMr zdKMTP2V5+SW%Rnw{94W61*9g~!8*e99uiIc!s7eVj^70~SoT^IZ0pAU+bga&ig1#T zsPkV@e$+BE*B3`>7+*HCh1*wxw|pRm!#hn_lcW6ZAmbtvo=^t?a+AK3OAbu4OX&9qqCAnQ@6$jXyoy2oE%5xj|cl_`4Qt8qVpnDvwJD)`w{d3 zrG(@oZlo`Wu%uad8XT=|?CVRQ4;cmz$+$^H(M8E6PT(U+e8S9o=*>xT#PdM>^9bNS zqe!?wV?I!P6dU(U{?TRAQHGnY4qukrmb^q>nM}`MpM*{(Xe{EDP1GEl_E+lYfB&|y zFKm3+oGrX&RBGg*i*l@gt0J69B>zwmmGGevk!WmsP1#(6^jUhfS_Y=CJoWXgOMywm zdjQw4Offd1FSy5|O9BvP)b`1bXdP7+aBc-)kFs#rRQDe(E}cYYB!(HU-%&K({@%UT zw&s*0#L749%8QH*-y7Usiq<&fVT3)uTNIt(3d`i7^nS!=wo7ZsDpikbN?Ao{{+_Rhehh>H9-NVhLe6w z;#@N@6~KWERO8p3JGHWKkJ;H*UF7Qpt?jk1NdN@5%U^&O`oYZV?(`>y_5>(W@S^Pl z?rv1-`l-+sMRZQybjHi5swR#VDz8>XwdL}=l>aweQ?8UMf!-Fvpa1|9yPpHvv}VR@ zlBIBZWNW@GQ63Hs>v}n!qbtH1NYV)M|F{!X9(szhORITl{4VGqs4Rju$2{0_K#SiE zVU*B}iCLI|&Tav_z6(R1lTnvqi(cMfAiTMM5+bwJ{j>v}t+6EMKNKkx%Tsx!o?fkL z{_$YlO4@$p!e~qBLvpFG^BNf`1|<$Ch+FqY`&XR5bPW8tk9JSN+d?&h{f3+tHi=n} zG)=!kgu!najhVlEZmf}#5(!98jG4f>O?eKgYDxjp)kA;9u|lhk`^nJqK_}+M_1SUM z?@Nay^vj{3#^i977HzwYKOl=}#EwY!cFO6p#zo+5-2wa0XAiMea`(LUsy0rJoWLCU z6K-2GJtA&)GU!WoKD&W;q1|Qdi~C-I@O!$o!%k}bSoOnCJ7FgCd)y8GDj^wFj4nAQ z^|#E-*ca}LL%B$zy}6-b4BD>Xg&2?z8=(JMTy66hM3KGx!pkY+&W}Pu&^NrGIX?i} zZf8_%{I1B>VUK3+BVp%b)@FH3|*Vt5bS;u>`x$)=yU* zsO~M3MX_&W3zieYSQdnkJ`p?dVg4+(S9R*|nt1-BO+1pOw{%|5&Uq`ECf^4L{!xRIa z!%tp{JY`6Crskt_qmRbgg|P%A)6dUB2Dvm=Ez%=G$xIl?;+<>wlI3g zUG{U;gb(i9%g#MzePX&#?MtO-nx7c>dMOYGSKWS}wWzlrME?myR>x3KzD^mQr(ce>!GOXdE+?|A6GW=m_Op7g@d8aNlv)1hE5%4I-^J5 zRjHD3!&R`W{Vw?G(&9I4;hR6ea;^**pkmu+z-Qs$D1&2ocFjJF=K1b9Gxej>FJA4L zHh&==@Y~0hlJLVS-Pyt1cBaY-ub<^%sx1z;=+vUZX|9eXqjjgC_>L2%{1jW|jxZOK z_R#?sV9z)@2c`SKyA<4F8p9U5MH1I6X%KK zTw^w)C9p}K?DYscGopz!Arva#p6a{TJ+oyERC^tFTiz`eUaG5(AnG%{c|)S}mR zaVLMW0q;%{cN4+;aA%Qf5~8kXyGO3=`Ol+_zuLR${9;qO5UP5g3^3R0AKH7+|R zk(ZRI5z28cIfGQ>UNE*Bp-9Z)uDRhUCl&!MuTGt5S-`Gqq3*liYjJ80KaeP<6?~c10kGU_m=Y#6aw}kB%bN#E1IZ zN{r_T=}*3nS?SiMw%=jruoa?n$ZS;O!gY&2p|Iz~8$|3^KihSXqKZFu$4r#$7sJYf zT*~U?%M&uWl+CxenfS1!&aYO4ipd0$smUtc?i~A}O8jgi-TK@w&N^?JuM^K@x=y6b zo;E!nTUK$g_YaSGxtY>IAevAhZVx6q(shDp_y&7$ZO5Tj#$`_Or> z_#T3!adC9$KCbt&6nSP6!nrer{_%EaDl>o3dHFRZK?fFaA6%q>P_-fT-u5lbS#Anu zZ@e@+YwEJh4o=D)!b?dZs&T}0M$LLDX>_p3#ER*Y>g!Jhu~j%Is7Pn)($6pLI(5uo zG0@vahGlMmGiobS;5G!$QqZQ=r(En>Tq6q&yWB{P&Rf4@31B+pE#8!f^T;EjMCNlu zw?x#e>+Z&s2eZl3K5ke(R3iD#nVLfe@Vtl=|3}sh%J*DBxg4xqk{XjDq%U5_)y0&m zin(kVmX2{(Qr*YqOyZRlGzgx^CXmlA8p*u`uY3lMhvbS81qXbl^e&3(w6HFr+wuyP zvz-%#DNhBf4~Y61dw=82k+BITO}Dx?;NPb^<6FNzu0*ITb2WkN@woSCw@!8e&Ct(* z+C`KXW$eDjVyn#A)M#=Q?ty9XF7WGU~r^M>} zU>B*+u6X7=Zz84tAz~1HQbaB?Odl%!9Or_s%7BHhq>62gS;pT;WFDlwDWahnc)9WJ z>+`u!qEF6wJsu1(FC=Z8R$mY|(4RTreAr`sst@O}nQzxw%}|Ur@5EL2Fybzbi}Im_ zz6h1}+so@zI2qVk^VxTW69j0vB#AY(kZI!XE;=lIs|eMgD%pQp&e zPFL&~m5o9kT$`+l2~$!46?!8@>wK4BUqEg_h}fvG_7A7e80_~E-$V@51HZRZxRqhB zt-`-?6>6sD4~5sc@c2m@sn1CE+`u!xdIc83E+ro^@MJTL_`1T)NScDAVsvqrlyE@k z{v=N%ma!%iiwAtfKDPVqeDQpj{vydWt9JpKZ}^h<#MqfP-eEiOAS<1taDvX=7WsC6 zQgpM*FL2#>C7U6D5LwD)zY5Fz0t!k+O^Q}6#rvx+hQs6Ud+h7y%nPYJ!?~Xr=m%DG z-}n`$Jz;nquRY$tv{>A!Oo>P#K24J_jI58XDdpNnSy&)f16|Rgs{lS}8mT@o2@3Ea zO-sD5ug%`Cf9yH1{Dya7s(YKw0MFF@e$*iM(D0qKUXoPc-|EVB#Nb%!ENhh3gEh~?hZ-#(-IQ!=u8XWC=MVxAGb=E;#awmGvJ z*=+%zEs%BjwoO@MQ}vpi(~SUyhvQ*SyCP{?kQ^mF!^5ygSFEvr_m`<#7LF$#`9@P7 zJdo9LX5ngmepOBH4OQINRb*1sW~`{~f^UoYi|Fp}q#yWXoIW4oDnAI%!oj+wy0P{u z<_2{NVWu-zl46wWt`l2P(iII}nc08D{pV= z`yy;F1!AJF+-jypY@@o5eJsvI#%kqjiayb}qj3A_PWUKunnvkE6*njYs}{*>__n76 zYO~kn_Fz*oV`;5UIqF-+UcF_R)f23(_uEU83WxekFHV*nOP>ppw&r?>_EDD%RbBB~snDee|Zzg}6Ol z?_IMCF;VMBwBGQQ{YGI8x4nqph}+;&{|Bm0o)@0ytOz)Qt`PQTQ?g_#cs}`YAi<#& zwJbx*5!6H2rzk@hS+O8FuL1dh`{F zpPmY07mK+#*+^6R=-#EcuDlf+7!3bqFWQaU@5yr7=sj_K*?`FOaerr+K7G!Oxi`Q4 zM9Hl3o$->_rf59qxVcCs{41Qdn7P`NGzhMz-uNSNE;IeoDYb_JLlj2oR76;2 zfwqtEK6ITwyZxzOTlbHMfnjvsrAu9c>Ew~IWQP2DYWANeu9i|?J4+n?O=zxQi0FAQ znO!VSX}j$Aja04k6qK2=n8KTs?VS5*GF0@Zjo#|;@JU*iT?|rXesyxM&o`>_gZFFI z^a6!`{U}!!UM2UUv!zlvU8NyvY6tixCh~Y=+QAH8HQE~)A5Olbw-L0;z-zu?@fWk5araDy;rM52$%oQ`3dB?6x zs7CQuGW-tU`BtMYM!-5>KW`xDUikC%Jhjmi8hf{#>zZp$ZMO?wy&JUAe!f<$_ge~w zVk{rK@mzX6V^OL)hBz`#|Cz01jLYXs*RJy_8_qt}=Yqh!Dh99GH8@G0tmhjQ#8-L{ z5Nq&3_0A`6CR%9JlsR2Yaor;Lf>tzsC_6&fhl?@DuG`>#L|{w7lIaqf`pU?1JkXY| zh?|QlYMa0~%T~YtRXtf^Db-7pyxOszTta?Y5vz1jVQ0ZN*?z`aimeGL2%Az&5L=Yw zN#@>%MZ_^Zlfs$ll3mzFikeaVYQ?O*fl+%o@=`U>GV6DS5W*BUuAP=Ot@D&W+cmXE zgSO4VE<8lHXs8lDcK_}?%M<=hd&Z6@{FV^a%XAq{^Urnc*p_kJFZ4eA7K|Wyg6|wU zr^OO@?&gvNcD6xC-MYF65veA-uIo#|kl)IwxL0cV?abLe-@>`rt9~|I-6@Oy&hK3Z z$fnmXQ7c(Q+?+{&TOlK6#r@(%HTOv}cR=G5F@?1eOHi zCIrg;m^w<~h%56?BJi{GZCsJRIt^;p0O>+N{Zx z{cvQf)U*g$BGO{Xnx!a;D3vTpa*jgHkyCVNvt}6vA=y$2l@K+9EJK{q5J{rs^nPz$ z&w0*y-t%1V^oYj!YUZt% zw=9!;!BRSIDSYH?s(#!U^=(M%u1LP*(C2IkA-NTX+9`P}=&~2eYM(~n#AOhiGgdt2 zWRor)x#ehDYVvA%|02Ql<&SojQFn#!XWS4N$mTq!F23++7S`H}gM}i**BOqF%UXD6 z-Aa9U@MyqUiG*Ag)sl4+!VF&x)#D|L+Aa1JKJbuCZ};36|K;+Iu)>gR>ggXTH9Jx|%*xv`b35z30c$*+J&Sw0#Zli*A-W|{{`qHazO@6d{gZ3~w_WEY zD>W~!q0=O{XzYl$daI({J*lNequm@j>-144t*quzSBkh(S9aPQ{!5OH+r5p+A_6yQ zj)g*P(j~S;c7_n6ODZJIx1j90Bx_)e+Dh|P^-C2x-RWV8gY%cY?<#e_{8i6R&GJqm z?Ga0>e{`{ZSG0J_gjI>dw(uS&&X0nEhdB97(Tz1!=j2Bx*STIfmt8{fD_+p9>UD6g z)mxbmz~x`Y=t;cq1q@~z9|vo3U^wA`A8RUWwuzbbWT~!cAz{q>m9&dRwTp`iLrywm z52?^Pt~&3v>RGm?<8X2g?}-IV4Fa7Mwx}^Iyly9_RY!{!&R6nSl5>1>s$&!$%_eJ0 z7=Bd!nVW62BXhfuK{CxFvDD*61lQ(Sc1XTlvfR!QwMFe&eiMh=(&LlNw{rrR(LT!< zcN@nmJnDZP2(v2UQEG4TQ_4Pfn=h->Cem@C%GHi=6&pz(fmb29JIxC}XySH;^=)K< zGZi~HR`vkzrN}iZA}1~9#=;Y7y=k;qx9mi2)XB1U)Wj610%hq$7#&G)?G>UIx4qiSqoj+)48OI)H$IdzGLQ!;P(_j3`u5MlDhIO~HE&FZoXa17SKSV3wLP5oE2csnD7wHd+?VY8g4;}|U zE%1T9sDH^I$46N(%z$C|n@fbS-DI;FkIJSD!_4lWffvKfVv9;DzYm4?lAer!qG02F zb}+@VyRt-O3s2VT-xRG4{3UnoJJ98PC@$UV8SmB8k4sJWT4#RLHw_m*W+ZO+ge6y~v#({gyH!W22<)u?*3SWx0hu1apE zFHN;@r-68H_frW;Zi!5+dH$Mv(jiW(>b>rM;;s%kB*y2t_99Q@z_a`&?WK+JY3DrB zN_k_w&qHy4?7*zQ-!_xw>r6g3SS+;~JAv<9}I`b#KyU{*<)KO!Co% z%*LyE1Y7vz3V1d+v<)q2VrpGvNgwNUJ|J=1@h3*Th7Bd`))UoBHnzR1xg7tS!g3LE z*Mw4xqnefvnFJ=)N)LG5USyV+Zom$Gt5+@_krMpmgsIrbJ_g@;&(kfdTK4G7y>y*_ z%e6O747ZNu)Iz0~jI~#1rx`0wM`A2RCeDttI*segl<+0Dw(Gp%ILn>BS88vUxN7c; zBgfL&ik6pnf9Vq1>5!f^NxPvoU7o2x=%nKPs_DEU2GmV_v?1A@-f<7QjE{HkuMOx3 zH96bwqEceJu!7lsq@Qc3#;C}g%HesjCE`TR1;)NdJ;5*d@AZtnJbFIXHhsU|eN*8y z-%QH5p*7ku>+Po^1&= zg3FRQw}D!uv1&0HZX%!U8|J%qtlsUTkQDsMA?k#WLTg}3VqWg>N)skeYYiqjn+0vs zZuED$)SIuP*?Ss$#8Rx~+gK6DElq{k{4WN!Grqa_cC*#135J}Heh>%(c_pRU$P%bB z5g^pgJBdEwDELix#4;&i03JyG;&R1xJnK?ote;Ys&)IV$H~(dqd}huqArsH~3kB7m z%dEUsYT3T@`Z<+L->qv`w8nXK$|<;LWe=mOt1Z7eIF|FEfy-jR?fB*Q`pc=VRiXA} z$CeQl1rNOywYAIG;|U1~cSi0`J*zr(3OJ3S z>Rrz`Z)5M)A+6S)!CTbRrb6bdnIe6GId|Z z2Ma(s>x@1WD`tMfiifUC6^sdzCM4)5(ngl?THuO`kJBBRU)J;rpR`E%GUk1!z%dsT zaW%A*t~W5v&n%FRhDg&oDC1EmwdTtF-d_Ja@qORfm%Cb2Iwft}+k>~yZ0ju-ZJn+- z>6*RdPmQnU%O}0^>6Q`Ne_s+AFPi~skg_7Cj{n`N|6CENcs73FKbk``X(Or?$K&X9 zN#FYuB|EJN4ryQPB>_q}nZ@opxQ6J{85!lSOXwy)C@Z^7zVAib0g7aU2jCcfKt{)F z{6#b0{<&^KVo5-dX9yJUe;`m?J{6Km%=Ht)>xuPW89ZLr?@vU;ZSRT&cdEuU{lPo+ zp?l|FH$C3Yh+8gyN;9-8)#)Gk63x%0D9QAa1`F~7%^5pn*GF$5%j`dM%F}_^5J4O3 z2m)y3=%TPAbn$WjbzPd@t4&1*p7Vo7<)e@RLkJPQF9V7{C@CTQxR62;wCM9xO)tQ+ zRxcUwTEnGpWJps3l^J6f7a78>AMCu-tovx)k3R|s8T-$AzT{8^4-$T8$<_Di5ikqn z$?xjgSTv;>VUdoq;^^zGGoR>NPjo<$*pit8_5Wz?wy56> zuQwA<_i0;lYqK%o!+&e=SWGw3(LbL9pFCpcFnIH$FKPmx_g>5QW9=9Y59+z|ig z%&HdbZI)1^M4->jvPC$0>2pp`+MmZlK~oMqY5D0g2rAOq&82M ztJux{>pNfW+B#vgmMDLbj%#N?+5i5L1U@EC#NW(^(STS-`v0=)bh;&tMaa%W`xLzy zay-Jj_>z&Y(Fq~Gx#W;5pMU`76DooSHL%BYnOQkG4+)Kjj1qKx}yF#&2I&@y?pH5=CPqxt=(+#2*@D=R%C; zConUNV63{%lhs?QeDU$g2KN}X;3|DY|(s6^=h=$^HUi5M?A#>u>diqc_J z1$uy7)uAy=$!DHC0FgZqnszh8Zh6dD&e0KWcjX2^h;Q^lzm9I6IH8y89h*1=`drfU z>2JNEJ|!JBlaqmdK<7f$Z3g-Doyw2rP8C1s6?S)buR+_lya`51B$aOR6&}X4MKwD; zDM_DC4&fOaapNpsaPcJVRF=0s@O_e?e&^kj?s z^$Jk~bv>vGDJmaEN=gtp*|F8kENe{HwH2s#;-f!Z4*$O_R}a_y>O52XtfvAouJ5F~Y?=77Hm~oP!0<9Bl;X4a=jq4D=u%9_b8Q(SR4Ug`W3YUbtfRt|$1YZYRpi~uG%oS& z%14}xUA&OIB}gT;*d5-Lbyb{h7HXS0PNkyGWykI#j+Bqo9H9o44~oIcfCcKol1K$ zU4ijE(3&TUuGLx4{(Rck8Z$TzzFErAGhAT~t$M@8jj~84g{rbx4{YjkPK_j@YH{}q zS1klOlBucb;Tth@dIYdgGqb3=@tl!bYX*yWR>Ysc=?UCJ4>WKO=P7+~qo`?<=#ade z90eu3HgNi6@bmHU$tf$J@gFt7oO2H=cP4 zp*dtb62>`#VDW+K%|u?%mqQD&yKfqoCxnIkq8Bo`0=vd^#{E+a_hG83pG451)Bz+Q?z&TV& zC5()WYB1(bN#@!hxGgp@)UG((Ubq=SX@^^zItx8x0#W|36gM6%eRExm{4&&k!>=ey zk*1b2;b!eEEqmYmTB3u!BWZ-5GsNIgq#B1|^_1r&tno=~!)PUy9EpF0K8aka?q5HS zHclk=tpp_eWq;u4ekHa;M_wpg4*5hgabtGzQm@8%QDb)L+G$J@lF;F65LJmr3QG*A ztSXq-Xq1anRKDD1O8Hjwv+P_Y@R}M4O_L)(V5qHkM4^}p^Xi&l5}TY{EydH{_F&;# z1Y>>^aMlGe(;K<21cfC zF=r#ndb8vkrfCt{LXs2((Ek5S*f-ml3G=~*Y2?(%DaaDcynWks9Vr-^+Nig`9ZA7L zpK#9zuW&Q#03vRrfTP<8zh`3{dZl7GL&drxa|eYfcqulIlBStT)FH^$q(cts<|mpr zJ1`^^L6$qnCc?)f=M+SZQz|Mt`x3!gCt;+4+aOsMU2<-!af|O|mDJv4T5^=A( zx;p>po9!X+yxJ;)3O5G^p((!t6U5eQ+7htd9zYn3!od|BQiqPkVQe2sV`J$rmGqp% zB_v9#z9I8bhfBW0$P-nJ)-Hj+bt#WGGIO-z*0eHiS1_lT;S$bm_wJ;+(Wk4L@bv=k zw(I%4TpiN{zoH`f7;iby~iTe0HV^dBIQp=uqTe7^_07V@IV8Ta4X2jchgR1jKNXgp&AqEK+O z)!p&yBUlzWpW;fu7pF!k3ybg%I_4o-#6x-f`0*qpJkTwjBZrUx5{lr( zOm2XZ4Jm}}tB+TXL!C_s#ocNF*^n>GiKB$VCFwI?ii_KW z<9!mbd)vGZ4KT;Eva$wn9iYBwE}7c{?tn<7t#z1YVOvuzj^@9U!;wen%!JS7<(nW=0boPYeCBRo7d#~9CL zzem{q?B_#Ezh5Db9RBv@6W=dMfp@0ZM*QQ8pHG!Yxm^AdVn@CT PgkomAeG}7gcliGRCDRk$ literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис11.png b/labworks/LW1/рисунки/рис11.png new file mode 100644 index 0000000000000000000000000000000000000000..801eb9f570d5de3d885d0c70062e9f1411625c55 GIT binary patch literal 19528 zcmcG$WmsHWw5^_BE_6_8BDM3Xb z1{qlEfDw zB^T|ZC2vcO8_(UR+BD4*UHa%xb z5q8Db0v>gl-u4+G-TBG4^Aii?1*{Qd@+tRd(eZRe6-~QX+j-cC`K?%hCH$8B2f8rU znYS9(Uq^3$f#4$lda?rtkthKD^^gG`w%4@GFN=mfRotAA5xzhH3o9omA6#jr;D!aC zBk*I{+|K+hDC;P!a&|>4TpTSlYZYHS$=mBUCHGy5U)Cggohbty;}eObpxcLOf^G`L zDZ&L?g#}`Ldq$m9lC0eH*Z)&7j`SvyOK|!*LMy?LBq2hEwJ3gQg>BkH98kMaZE4SU z_rqwQlcJ}unWQjHBj>Y+@?bO(+N!4=&4o4`f^2O8Mhve@!izoRio2c^nQc=V;d7L& ziGE$An512_0_3hD&B?x=2ZFCZDK-S>e=6h=uL4_Q1JXQTYM!Z6KF{?iTAYb&QoY!c zw=WVOIDJGQ7F1T43cIx^HtL=tR!~rm4H2*qw~qHOwJSkURu0ke@aOSCj(&^=o7ekO z+pgL|CzIq20vRFG8Eiy{2Y>-2wTL?0Jv??!x-Nqz&xT}!>N^%GsNIuoa~d&bzuU>rY+2(u9mjZb9OMc~V!L z+5&xQI`=jk9qxu0R&tl;mn$DgGB`c?n&(iLvz7*@$>Bo7=9`6vnKr;o=1#KiT23k# z>BUBFTt;%O1gJ+D4}tJ1@ZCMx(RB^ACUfC<+r_owUs(i_fv3Di&fPoT~tzM}c)P z0;w}FA9A2y8s9T^D=BdZ$7jXk^2ez^?}U6P3qpxLc@v@_snxpNvuT$k<$HF+ZBwAJ zgiBu9!~IPE*>3>RhbNLCePPQ)_ykD>G->2jYs%$d{ML6lg70{uC%BNS-mIiC$~s{0 z(KxuP6ELg-`FhlLAX~>QN4e2fQMOYSA%=f=W6AA^9%pdk%bIdyRFyf@R}{r!H(T*%*Mao-y@#`1!d6)EOK74B@|qmq(-H$JRd}vv zhvtx8H$)EBJ0csHt*yH%UKS3-^s`>F$1Y4q=_i#J{w^CW{nHo2W zXV9*_Q6cPBbqnFz&l#CHdy~%6Ydo9Paj-(ba+px*wutIG7!ykfA5ni;qC z3E{hR-Y-i#B>{ge5-Z9ArB6mnG}DqXBstOL10z2M;c#B#JdY~#22Gc_WSN}$X$7!0 z?lqltMMO2OQ__q%hjVWRtp9-CV@s7R(u1~ z7t)E3?b$BBhoWyK&}10lU)Lv?2rof1UFTM%qt^iLdU{>4dZT2Hkiv~lgXlKDZ-Adiodl zfp-)JPukaMYMZKab2Mdw8vX}UQ{3Yvy=Uxm= zEt!y$pk7cg{Q$^&|J==+u0#;>8?dwGQ%4<)3iqGbs#XEM#{e+)^Q}EYvFzWrC!=r+ zeQaC0b=9xBSOnt~gDZI=QNPRckW!t>b^t$hb)HNxw?E^p_HdDiDJwIguz!2g<%O<4 z4)i8ZrviAJ#odh*!_ysX=Uh;1$KA@DbUcJZZ#~Fj%H`*qr-YplXDL^xUb>qj2f+fMqiDv$}TPCW|l#(*ztsOwJ@<0MG*P;#-Q^w@)bj!Fn zlV}R{J71LeR%^R1&JdbqyUPCra<_@AXrU@haUzS;&ByIZ9*orE=|o5>bG93 z{)pE$_dc*E^O8`DT_fx35n7)7LfMhKi}!uPr8T)mZt49>%Bbpog0&arqEv#O_ z%2KJcTXTVP@RydGyJ6G@P7(Xn&2`2oVZL{aX(sPzJl7tYHb22<6hCu3^7`IgJo=mO zma=}|OK5PI*lL8OfC}Vg+xax&2^E&& z?V)VCpj&w=lgFc-r0-mM(@^DWo5_K&*0oIdpu!b@|E4yp!dB4-}dwB*wvBaLR(%FGF!kr|s~K$~O)G6;nzK#+q+<5Qe)hk8@qAKu44= zLQLO84m}y$5|Z}ZKXQ7Yj|{9y-zddJzdTyHUVotN%HB+iyP0XQ9`AQum+*lL!G4ye zc!P?8H{;*!UiCxgczY8V8DDs2x2W;PVF&TBr2XoFquSFu+;BLATxi!lQ~KuVvAg!} zIhz7;Ji0#d9sAc? zOBfm>Rd6S;u%1iIvMy-YAWplV+9_iC#IAOlC{)v|}d1bM+{}1w$NUw=leA!{NI`qF(LDrL(+}kNxIG2BA zC;Qy3H8j=@8dAz3-!)`=jT%p1HZckbOzIY(rCHg505UeobOeNEC`jBN-vMQBZX+Yp zW*`3%rCPq4&{TeNW6bTn4h0?wdWVm(gev%}PSPU--{%XTr=RU8hc$q@_v5W56rwfI z7?vkZaQKU+Xe!?qV&)evJqBJkmM^CmF>a`4TZtFAQ(CuyYTLp&?FbiD@wwIZV>-RUt&xc4P88p@pJu(b*NGw#nKN zz|An>PZ#XtV}bE5&ft6CtQtJOu0rAufSEO_JMrCEoRn}&D;aBGPf?yb-eGTU(xFk3LBq%=hV(_kh?wYUnX#WH`%23|z7`-wvZHjU zHm*tBG`X39MN>4Fqg8&n)5OnJW}<#&ov{!5Z{kp=%>>H>kQo@gE>egQGR=duA z>s7Tkar~(qm=IN!!IzhGl;NPCoHi-C%4F!SXbj6f(fZ(ZR>%2!ThV8fDZ(-3_C*7C zSdqrjYG#<}P1OeU{I!x9?zedA+MPF0)Wl4jt2FSONBZ%|;-JG8&tz9!0sEgoRo{yS z^n)P-qq=4r=0~o;cT0cq!2GcwL#5_~G843n@W_|zH;w%nhptBhM%!UIshpa`)he-y z_js%3Id`;AJC6I$Zz8Kih+K{xJ91V&V5lk>yhn9?r&R+5xZ8difjzW=NLD*ybi$P`nj5p)Rptqq3W)O3X40g+Wlgl(84RO z!a$G$I>!49vE76O{g$tF6j%d_Q|?BhqZQAmKQg02*u9@+oAy5U7YbuOu>ztiHG=o+UQ#z7C>ZUo#Sx|w?~tqBHSca+ttqx# zg#pYz$o_7X4db$(REQr|OrpOR@e_q_rZEqszfhr2xVqb*87NI$g_ z+|5YF*V1Nt)mvTrrCRQ#$9fI~528E*$`b-k3fJ0BiB`8YbY}LaJe&Plw?nR7ZF8t$ zX#=J$lC~a4Fy$MNSx=+hU?@VG2@d5~r{$TO^{Ndo@W~ z5^m=p^f7En9rSZuY$Pkg#;zUVutFF&4*79ohH;io$929 zgnlzmt`73DLHYP_-bC`%$Qlyn+fN0WgLW#+ zmjPUVqu+`BFlaw7KxTKlsC_Pjyy$&;H2Kh4gM)Oo>hi)=W4e>k>aqf?78ra4fKB*M zR*)v1N$!Sq)_s3^wf3*bZyIbo*?F@?cK@E?nP_zC*S>9!qN*y+&uak8?*vLgH?5G+ z@h$h6Gk~_V{YEcjnmjw(rM#nu-2P%o^u70}L=z-*oy|5sby{i!cr;U&OhPq>ASHG|Sq9jiL&iDQc z4DR0<&^0a;mp%A=>K0v)%ZB4_KOJy)w*vGU5&w&qkyLO#n^He6!5^sjmx0$G6I)tT zv}J*7Z^-YU4oKrJ9Ix_y01t`Z9w4Eo-1yc`CoW}PMd{}Ee- z$J%FOP(OV)m$wDeZk(cS^4Gnmt(J8U$71q#@$&i}DJ;+9JR4_gAV+}=Z@II4 z2~?N-Bj*jS<@6h>n8%MXY687SFK>fvl56?jeifw2H0*lJf3)q<+%s=1XnHEF$1?`- z8Jij$GRNWAet)pLnHk5dzV*&UW1vd= zQ4i{H?t#*An{(!pZE3>V=_KNHj-VW`zpa5rT1IId_-?WE9U{?*|K?|(@&V9@0Yl$a zf4b0ul_^1OTrs93uD_>jhfToGrfjvctX>$3rspP|NvP{5oLg(PS^;*2P~X-0(UHLMGD!BdiNhR)p{ zH%r0~d|5I3#MvrwKat_7ExR#b2wQtD*%^Ddvxi)Uz6h81;%Ee0gZ;Ev>NAB#G=-if zJ!8$_TL*^u;vTWo%AX)B@{1(q9=%Uou140=`lr72M>*#@Gr{wivP24lPQ)agqmEI% znv81(X3v50_VFAoGsI75FWA*`W-qx1)pCgkY6~=X1B>AUyNLk<6GT@ffDMswiEW`` zDTS|rsoQ$wIM}VQj~Z)(&x0t)hpF8Wep0lOMW#> z#*F^9R~#PBzPuBIP;7me(l)a}T%NxAft@pQuoKci5JJ9%W#HQT3vP{IgfZ&Qlsb)e zfgth;ghLv(XKy-eLcROpYP|(>jk}Q}`x5Kb{J_&g)KxF)B`~k=icu-Xk@9Z%UE*k? zH}$>#cc6c-i_d&*&4J?^vq*$pb~vv-Xi&jxIRLMhW$Un)?D%<}5)On2(-@EMQE2e4 zJJr$|h#Yzw>!tAU_LE#ke(eg`uUfNmuJwmx54U+wb{oj;>wl6%Z!RW zRa-5l#unHlBzTY{Y)L6xJmxeE`Lyq!w|a{JWJ5w|7b3q_=uTJJN;WRtg|fB76A?-8 z!&^t|)7=NW!t}}h5o@Rw84)r!Oi61Yc_ul2#Ba4K)GjG46;{4>ve-(3rBCelLWqX>?Mmo0yPK+F}mYA<55RraZBi=M^XH@6MWd1qS!rk!1j%nP*Zd{t! ze)c_;2iWv8SR*S2o>ja4K_RGYL_*(%p4vfOjaUrDx4=!7aG`d0mBlXcOGVf$jPWzB zw2kjK-pYmLMd*o{p}D9~;yE6T7pPA@d!TpNJ`*pd&#hwx-hsMo^MvnbfoN83v=-ar zWKLGU$^y_W$XprTlpbL{lup;Z_jp-ozz%#t`Q)|m*u6ir5@;qBSZRgXl$E|n$OV)B zi@N}{JT@;Le*u8wYTM)8ThYefX3@9@9I9aTN|(@aiCJLTTQTP!Ap-A?64>HGTwnruWwhqNPomc) zcsa=4El^I_(l1E2S`5L-E%1+3^~kOZFzuS;c`dM3flku+10Y?b(^PiB5i=2NauOc7 z&kIY7#rK;g3pLNV+|2aG_kz0jGux&6xsB66IvLU(!$C>rh!a21e(GHN4Vyz8 z=ARO(nkB?2bM733feGo-`xYd-)|_7WG}aW@a9^WPC4b!G&)r`Q>H^d17XweM2~8%1 zmZC~tMve;KM2gbNE^@QQg2mS8jl3d{#kZXin)P^4Hpo&Lsa+5p(nN*~S>iuPd@x=z z_IKbN?*4w{0Y_~uvT$PYQZfr?$>Pic8A^fRfHA@mPwev&s%}3s>bX>TCu<|`6SFZ- z$)X&?(-f9I7?5T!^2qAcvfg~RVB0_Lsrkg6aPNFkljw~gkY{v$lz)rDu#s@QKg<_5 zd!ZYDw>~cZK-C8LLt@pW(tYAOhh*t^m<_W*=Dr$jmTQ{btczoWC}Q(Nt&CosFBeP@PM6qgeWU zWns<&5EgfGKnR+<0zbbVQ4eWNyspw`?h(WItx;If>}!TqWZX1*-O5S3WZ`0XIjOWY zraP-A;)KfYr0(8Q131Q&=(U-9Go#maPfQjOgkVm4szJ3J>a(pxs5(5L#{|o%s@T~$l$=mE|9qv@b9(xb_gnnd! zS&wO~wjmESi3vzb;KfBHn6Ti$(JC}y5U3rfF7(Z=(G*FL_56DE)7ej`tX^{IeXNkP z4^V`w5?oY|cM!fm?^UZO{d>BEhXX23G0r2&9E?5 zhr0EvX-P5TugjC$vuN9MER}x0XqJY4D(P>h8Q;RW$acphI5x)YqH$gtLECko8-YLQ zq5U-}WBlBeg|Q*^jT+TLo9EpkqpHNGSV?uRB+)$u7)!z0 z7&3`X+#InzifJyrw5KOBMG+S#w6RYoXcfRo^t7e;v!XlPlbY`G$`1XY_F|4BRIXK> zlk@^{w0<~@NeA0mDalDa4;_AY`TwQdb`}plce8Q^23C?(O$E-8l@4pkG=-W z?()f`bljY*oeo%6#5ew)GXdg1eca1eYca^DF|Dow@O-=9DX5D;Qc_Lf4`IZi45=ST1wtMwi<~7sZzK1l`u#C3ma7boGtAaOy3kQ2qs@L288F)tJx6 zevU=$GeEm%%ixZY_1{+(h=E?lOV(unK<&R#cgYvRg;uzD!Ak3)O1mSqkOMhuLfJ>; zMTSx1Rhn8NEa63J`vDUu3Lb?V~%6b zMknckNBK+I`mbL^r}7IYJvL2(Co(j5Vl)a79GOp~Yo}HhH3+@0$totin$4U6rfy!g zPh4Vq%xemmiK?R$K75aU-iM>FmrZIYD77cH6~s1eE;?xIGC0~Zt9K4&zR=r(Ia;tV zpe(jqz15XMb&-dxcQ;v4WpJ+o2pmVO;C3AZ5jJ0By8cr@eL2I(?}MYykPj)hwtFAb z1eTfOW4{PJlN|^-fK#J>eN(b2Esrx5;FjKsrS;?e_8X}9`_lrzGbgGuJ)wxZ0pScY zL&Xj22Th^=h2zo1Z^2Rzqatv>-&eueK${Kqr<*d&uHG87a1#m!8cTgrtH6@4-3w~m z7=U>k%2~8$hdck~ZgEt&w~ddtmT;+MkNDL~fw^`TeLR`pS!Q=A9^(wDyY8|1amd!L za32qk9~e%T%B?*|!^gdvlMWd2PJv1HtzEx5IU=Qu2iR+ zr-o|WUy<|!{$Ag7-$cOQI5{VbJFh7Lg61GB7M_vsni8K-cJ$F4HxRW79&F>grxAz} z$9N0%q<>q+I5pYkPA_X`QXQwp4Tj@ya zX!;bDtu-PqCJysE<@l=1bPU+PC66+HaQWf zQ&~RIBMDq;Q$SgpBW`<=ZLn~LX&um{oG%*1zhKLBev-ZH-mQKEI)eh+Sj`-~8z({= zHGBIAsW^QjEG)!ei8Sb+0|_lYfy0nUqG$A1ouZiEE z!o^bSiFwxWy7wwspSrjaQN4)MwYG>nw6dI9)K>qxN5x~L4o~yV)oFKZKD7CF>!+?5f1Rx^m!J_Yrn)zuhQvyc>PVDAwO3Bta1K5kUH zWXYZm-yh7V27}E8HQD?(_IMntUHbSF8GfGiFM)VGJY_LD4Z@Hg19|by*x}lx@L^-> zq_bv4Euq<7kaKI>3W(>dY>s{Q4z?{Nx+5)9OT3}5+b+cdk=pjW*XU^NJIt{Aalx|(l?jlhksr%yHqDtOOa`L|XVxJ6vvgt-j({WUVD zp(HUJ)^GwJF~cMN2QVx(zlp!nbMSi{zaM1^YZuO6P2X-uf}DgLLU?;QjeBqy$z4+J z%A=x?qv13Z6A#xTD?6SL?p~FyVhAa~TvRVW)Q6PaIGxy>F>0piI>w0gvd~0$x5JG- zr1`ALep7X_^8V#H(2M24v+D-N4-`}JoD1F4fo?5=x0|T-@#b_Ux6vR=pxc~u&KMev zq&2vEFAd!iy}iS2mH(kjWCzi-F*#W|{qddCW3KDM^a?vdV7K%Og7nM$qVm%B8K4D& z^hV=qwws9))XU%^hAf$IFyCcGfGgWAa@|x{4X=wB6F%R^^^@-=VzN`PF8%X;UhrEFPfjkLuc<( z>QJm&%bsfWG0VFbyHoB_e?QYF6IUN7-8=L8&~^g;Ftwu&93EeGChS$)3mV-(aP85* zaP6m-{{pTpXOF11feDW`@Y&;?PgZ}_k3n=Pydna?GzS5jJtXN&_p!|LzlU9t!lSE$${Qf+{~OLS+VtVcArGBFwM!F9 z2-^hMxe?+xD{5`}TwF(Qm+rl;wU-o=$^rXb-z(mk<<9c znrBpL^#)LLYmN~zTjHOE(MtRUa8Cq~kQ>vucs%+xj@4^Eu!pIpy(IT=K0 zY4Bm^vFkedfWg@Q-K5>*WS|pYt^}ZF7j_sIPsi-=L)tuaL33aSQ+q6G0s)uvM-A#; zdYX~&ecH|hai5-M+iPb%jbDi~zk7d{{t0&=SMld$jAu zKjS%B`hAnb`-FV~_nXrU(-bE~y@Y*qf1C==xb^pZtQM5ZLWJ2WyUc5@#+x?txQ}UZ z$`<(f@+vi{O5^`|_k^rx@uWXuC(QSWKFnGN&@Rx)jGo=YWKPGN)?!WkQWvXAa9Q!| z_5HgCECL3aPh`!e-k5n2(RQo{?DM7ulsTbpf>-Bp`~{>VYPDfG?ynCR3ix|px`C&w ziFbD9peDgC^CZZ@NL>846OCG?oat-rk&II)u*vsFQn5g(zhR7C5`>}qfV5~X_m&(-29l~g@mrH#1SW)o zyF;!&!D&k2XETw&cQ2Dh+5PPUN+hhJXQ!3@pBz8`t{49wA;<3RR0AGFLaut?ow-MF zI$^E4$CX^lgRLP3tTTBHdx-XPnn5G^EOs)l zEt}Q6y>k+xW)a+-^qLlaMIAy^UAAdS)dd;H`7(lj$QI8zyFs3!`(PsYRg&gTcM{0Z z$aL55Glmv!RUO?LM+}KlV7SHSM=l@GCH)2)dQR`Xx?(YOVa~9Ay4Z@~h6%-!x~$E> z&D`}nimFzq&%`Y)c&S(9#gq_mPogb_N~Ah|SU+P{XlEx6)8c4wpj!IVTw)J&0CzTa znMwY=2?CB^VdxbPufMcb!R9Ho+a0dOYQ8HzU?OGT&N0&jxOOriOl$CMu}HG1JlgTDt*p0^oH1qeQ>| z=0k9F^uu}F$e$g}c^h#*6d7a;JN$)D?-Oj>mdS@^w4KLMo#cyv!7={ebSQ8biZ+Cw z@Ri3A0eBid-gjFFx5{&}CA5rg*5@;BT0int%()%|ku3{(v-nTGq)z}TRJv3?adup$ z?hVF`dGn+EgI{sA$?MDrbee1#ZP_@ z#;|{{mx5++e%(!efoxGzFEDZtm}Xq0jl$NuSl-t;(Iq4LX zkTTIfuB8ut0``1t5|q11A?PsJ=X6kLT7~6JNSb1jI zPkV>CV|5@iU312hG#ng!^276u0XXY7Y1v;I96I_O`}WSq)+2t&gAGDm3Dr*NR4K&C zmZhayHdF{q9Vzh$n9#pNT!k+Akfa2-S%x-m5J`CfG#jODxXcPvyl z6BsW8t2IxWhan!G=B2+4Iqg8&l2NZgyUN;#QI6*6ZYTs7 zN}DB9gFxu8b$D$T>*y8w?HN2heYCnx!M|E-apt3mac8?Gw+~WS;dHPG=@MGblJtr* z;^ycK|HAP?%j^(&yCiojLT*t$0%tvPTtLy!X2WsVn$<-9C^#~({b+EAvos&hcWI6Z z9@$yM0$)C_R&VSL<+Invy_)a=a@G278q$L*8j*B~&e z-rdI1H_B`98GlHyL0nT=ff_WS`9>4a_b0;A*|{OCo}0~SfVos^??V*+Ne%|-joIA$ zD=MxCx!Mmz)z7AWb%pkOB|N%m(Vh3V3=0qMDGBDf32~Js)14HoiA0R6A{q?h0T6RE z?GWt!NR>p%aNY&*X94@FH&;iF+A#odc^*mp*_DpL+myDd;4Ja5u46UTDi@Jeqt#v% zG9QS$vI@;}DZYdKM~pQCeA9}g>2)!yXXd<=9|a1Xb6N2vEqcD|Nno(pHsA~nF?@q) z(kGzH*$&}$gX-F7=Am2MUwea1xcm%tLA;1vK(q1|=Rd?7cndm)D$Qgv0&pUMMPbv!NweL}SIDpgX* z`vMaKI2ELg_n`4Jit^48(TxN-4J-DEGfVs&5H$O!V*0as?ZSwy4(t|J&)cTe%>I&9 z^LOaYM)|Nl{*md0`M78bs>Tc&d{&yPh=CK)I`qCqgvH<4pAk_varA z40r#KeC$wP&Sx@smV{L14n#dEdjYve8Ck1cagQ5h6LUSGD;L{vF;e#KQKF8_f=jZ5 zYL%%I(#s{f=>{zBn{9jAWOYDnVBEwf?$t5>9=^nF(R|)4;~pcNf!{d%$I2%ixRCx5 zl4AYU-HgmRl)?926>s9RRtvd5yP)=`on&?6Y4EEceXcJ1WK!9CRL`v&nTcB{kA=(O zE)qwt1xb8y?Nzdsw3FScqu>lq*KXxb-!<;Gq1u+?HyRHLi;~s9)T!kaY>zD0uk08; z(bH8G+f~6B5LH3ynp*~L-*~6X<=G@3#4+=@QaK|0e;jVctioWbjazW25X3+9S;Sn^ z#my~>a*Vei%Ifqv*?_!8yI%SCytT-;nb~)VbAO~_wS!nzeo$3Ga*l5u=F31}ivI7Q z`DeJH6M807O)QQtx_C*17h9as;V9IhZ_-|qA!-pGz|UX>Kk$LT*3^!iPi45&v-eKa zJ9XMIwe;rk=4{47t4qbP*}qz4pAr;Xbzmf@C8ust(o|Wf5}8goteK*!F9>lb6Xl>D zaU2zK+UQK<_2Q#~@Noy1dqP$kt+fTms@t3~m9|UE5>PK8xLuuWb@DHroj%%%eLJA> zf=|v^ux72%B0<~$4>Wfx?PmFVT6Q9pY=#g=a2W$aIeuIf*NYnWcrf?^m=_D+Z^P8d z7FZ8joa$l`CvK-+E4jKr-_P#!fM@29-f!5LHZ~KMM5@!+7-0=FB3ZDUx6^e${y<;P z{1zpdqc|M_N~7VIq}Gd14>{wrxC~L|>|Cp`x>eKvTpI|HAIu+?-W5s_YuqxA9cQs^ zrn>0HeZYXM3%;TxJFJelS0!YiKf+&AH1b&Jv6MO0zBXo1>-!r@Q;17JED$boU0}Si zt1KnAgcYKn-fw4Ec))lcDzs`y#^|;t3-ygcGT%qhf72QNg)9FT@*-L>MdtlFa){t! z)+G)9fM$#qM4Z%u;FoAvk_niu+}=<0%B|DkIfl-}fO*frR5EIvli0_WwceHit&qs=W zh7glUSmkEh*ckB`6Ak7)e7|jGp970V>G)DmU4CJ{_fqH?=ZwYIy$@N1`TJx;)2tO= zYZNQq=blKL)Pz45Z7omfxCE@`nt7ac)HgxUz@F&R$$VhZ(Q6IxDtrc*MYshfoT#=M zSjNx$pTHBx2tnvC5|~oN$&V=0QP`Uq7K^rYUviLJXNcf%qMLAFZP3*AItv-;B>2?qwx)53t5SR71OvprXTt2*Oe$+QZ%RD+5Sf}SF(C$oKj`#%Sbu- zh3*mOz+TjNW1`M$PZuVmsE~r@UyupMg7EJqE)!=F=jaRAdoSQZ`NlH6fv1cT_tnlE zq@iq4AE=gSFs400lJ#oc9ow%@L;F={QWml4gOJk_)P~FfyjiVa&fKYPSjOCI9pdY& zLNF_2t%`WI+v7g1 z?8MiHi8+~9X|-)qbD5uko>h2ut2h2+c`Pj(ZSd$Ng^`qD84ppJH#eacIu9JB@SkET zwf9AYfLyJ2qjR`ZJ^%7J=lbJ8id1XMvVL|JLht`ZQ`^u9Cg-!Y`2C3b{kDbj`B9oL6|Tx>vGz;$+81#@rTGNu2%xZ=m6R9Zk}%4B6e~`&N6wsMmBuF^{O-tR-_d|d1??XDcWE~`$yE2!cSTMM%D;qur+9`!d z5qZ~OiAPEI0>XAblpcqnt8Nf^Og8Z`N04cEF(%gfJx0Kn%B-zYw5TY!P z^&lC;G(c(voF-&d_KjgjtRV1YFEt~j%PV6Gel1pO&;!|Wk)@)7eJ8-W*4D1{Cumox z#vKpH@E}N-fW`=5&44#t4okyX>`aBzFJV_(;oXe13&&nW)1oJjHiTHvuuCLX#nlnS zT5H2t`%OJ(h;#>KQh)Ev5tL|5t9Sd}47#!{XnI9D@zUmC)h^g8G;#CEz%#N^dj-S6uQva9?ZRwpfyku&D_Hxca8hh%+G}|$Z{!+9lD-nY(pa#h*F0$Nfl9N z4q)a(sJokk~tCDF{+92to>wIyg&CUTq@YWi3%Z;( zMxNs-tWt6rdiq!z!QhXeZ9=Jne+PZ~-TxR$>vSLpD)on!7gZdeu{8bCyP)2hHG>f7 zB?8I6e27eq$+v465n!ToS$Z$EU`T74XniZb82NPc{}%BnQ$uji9^)BZo>|c#V{}yu z_bx$t8>#!`NgM{{?1^?yvGptBAlI6DEi0pU;Pm}(I}3v!K1k#*A2$S{}3Z>SRo1f1D9Q^htpEq`|H;&7OE*@XW zfRYp%5gP{F3b)Nt-L~;av+TEsFn{}B7)83wA%2=@$-OYL=@x5MLZ3UXS*0Uqs z7R24mWL5RIWF-~9ucghDZdhD~7_Z&yZWtvU z`{A{3PBgPd5c)Huqpkj(I%@O72-{CGyWDRF=1$YL%u$|kre!$?C50hrdL=RjgaM5= zmPBD-ly1?ZWwIRy)N868gv+Pu8ol0T^`85reEa>8s;Y?9`tIs-*50hdXR!un%nlW|8Zf-gtNe&5Rg}Kr~m8Pw;TU86DF0m8b zu%Ji}F|h97;jqUgs?`G#6fZSMiWPRAq??I zv|qO1@t=Di@D3erV+G*zyxgNtTYuCpQsY45LzUxhaa2>AE5x8CbB*JZCvGx$iO%qJRK`u|=w z>rdbMM>eDU53-raL$aGT(FYZJJf&U$H~b(f%lXZ;Fd?VXH|Vy1Ony6uR0%C?RweZr zyQX-H!%fgQJ`c1d6x^#qkh;MOx1g*(1yV~;F{IneTu>B3RBCJ3&Sa~&Z>0rW2|BVT z?eC@#9~pzS=q{c6m>wugoYpj+U4f?BlPr+XpjH+~3RvGvekfY|8ca&S>hjZYHqSy4Q>mmNCU}Gcfa${J-u4z&!^_vCPmTYsu#ID=d`0G*cZotSb^9?(+Xa zfwTe`qP)Tga)Rv=-+fSUrr_0y0uKaqsH&1VB$FFS3JI zGp@uiyOd+4Y^I0EOvA<}W0ul?r#OIf@8!^mW{E@`z0DkKpd zAa1Y&f=q;fJ%H7u&oV2aBVa9eE62n(C1vhH6Tu0gBCTAO$YUrlx4KLAmLWSNQWoRV zp#y~PE>?c~x^}!6bdBaDt)5f*@BowgY2jxlKZhacl7uG;#HVL3$x708A8GGqHAw%5 z7BL4O7B0uAG!u(zYjqQBgk`p!Axn*2wSV2Dpti6`AR#&jzHO>qN(NQZw=zj<9{z>R zA_sCehY6U%ziyK7bif^TqaLbZDtJhOTwe4-Lo5fw`#66)difju|3bB^TKgAr3s7x= zV*U%dZ6TkOZJied&d})9Ci5@|={oxy?I?Y4d&BI?U|h<&Xoe__si|$rIiGd>hivGK zyoaI)!qL&d*oZ`T9&E%bGy&q1%#nS4*Pp8GR83405w=Zw@j{^ZgywcoT6KQV66O~M zB5Rk{&%xi*^E)aL`bSpJk)!h6@T`s7ybmeLuXr28mop6<;GAm>f~97>*fNNhp90{H zd{3-GO5J}3G42f1XTfq> zgXPhhJT62M@J9eY`<;IH#*nkKzKVMGJ7!@R4ZHqt3)MAnT-5N>GH-G3^wp)B z8hQNe%FlX|fyXK=DiLDqU|+GdWVU#5bspc0OWs^D>dQ4_C+{Du(Sq=lVIeZRuyd}NsWa;x-Jfw_M|t@mff z9#X&L{CvaYYgKT1ZD42NN7GW3|vdvMx%?v!-CMN>XO#s+0KhX+`$eeY)Rq%?S%{_b5a zsnh;y)ae`ruFJFZlD$>EX8o-_wKJ1tq~~9}o_9r@A%B`bO4vt zJ-=uX2CTJM*2Dm}<0N)3t`^v@?ekpd-L+2%otHM-`+T+*GT~A@a@Ywtae8gey;zy( zdv~L*?FR15h`4{`(XLw{tFkYJf(`%yohd=m;R?WWSuV!C?Gu<8J$<46v*`KzLT7?! zX)C4x&)r}wuOuUTOpRHN2~jT_d-;EQLyv_>F@Zu+~Wa9U!MKDha2Z4_;X8TbM64{{12_(^H^=e zZ6TXu%vbhpoy!^O8p;mZx*&66n;3X&!`GszoxnL%Asg_)7;CJ72eJV74aq8G%u!(m z53)Y0->J9zET~--VKn6|Pha^%hPAr-Dvvn#>YO?OY+^a=is25K&1sxeYX|m6Vf;-F znT6{%&fHKs$>)&~=N${t$8Nv_nhXteoO}h89TT>1T)k`ZhOP6!A+h6q4r^aU&5vZ| zXYZ1qm(4liF+=T~isz97FN>ti#gw$U_wG!IF>rN=WJrIK#Mg)r$nxh~KH*!>tN|S?(h|`RSw{fbzr~?_8`xn0#nH!% g$rwASp8jWNdUt3tvx$Wo@boVRPgg&ebxsLQ0O6FyWdHyG literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис12.png b/labworks/LW1/рисунки/рис12.png new file mode 100644 index 0000000000000000000000000000000000000000..95741caf81681c5d1f022c58a227d3e2c77cfe61 GIT binary patch literal 24522 zcmagG2RxQ>)Hi;7H8anARA&-a|Gr)sJ<$Vr$;5CkE=byHpgL2$(o1gDvp z5UyO;@Z^IZ5-tk5E_WR)UEEEbED#k_7mS^Qi=DL@hnt0yv$cc0h=8z=fY1dFD;F1x zvxK1F!~eWPz`^N(;43FxCm7`f=H@+T1feuVf8%6Gr&}Y4@#S0cvYH-ozee1>X)PuR z*B*RXqMy7S;cI)PW_w48L&mx~!t4_?WKRg|h%;O&t z5|Z&$jn@$2f?p11C7fJb$=rbxL2&&YZ4fhDw9#O+NAJ32`v3Q#g322qoWsLIC5G#c z{v0Mlh1N<80U5VUN;qwjrS{jZ6Z>Ng%iVYlX}P%W2@g|IQ>(wM!(5k_mscUFCs!9K ze$dJGj8PcZ^7APegz=h(kk9T6L!`OgW#-wA_^_QF4@NS=CqY4GHCUXRDk`q*FQcOa zpVFL5wrGp#TG|SUh-hMUANK1>ztf+=a_-LihL5K8<8yPtZ{9F|ixs0x=D|he)#VKg zSXN4=BKYQ_qoX;6gs38~ZM3*bPfbNiE9M(jnp|R{K6%oAZ?&5J)TvW!&15X%R4``+ zFE5F|TT4VK-65AB4vqgR9?Ns8jEiI0-|h5Oynp`;86nywT1 zKXRGja$SABu=mcIO*vVA&b@#Fv3B11xm z$xdCwFLz(9TG>8lBLMsUt{{Mja`Hp0eO-R_VQBTy!K%kf=^SRUmlvJc&teC6cCiN? zEZ^dKKGrPo&7^5AFTM}O>)?tt{fe1OViTQ zj^FY9+aoGH706&zQ{p&9#m*iXNXjs|-pt-S+aBw<*)DckP_T1qpzXDw`E*Ovd|x&L z{RLfY48Q&)Y)s?EOxsBFtC$$G@fyFKPT#`-Ve_W(XdNS26B7>Z+i$RqVGNH9R^bB? zHs5{6hNh;;nb*cmJ$IzZ18UXI${+sjx%1|t1<6YFkqjzWmJdiic%{Aq_f4o@qa3SfqU_h-LPdjE@#a z=P=?8Kkds^dKX+KVg2&zw2h~4M1&v>V1}M?N6pfQ>d(T$XjmzlwWOzhFZ3kq<}{_yh%$vYAL`qeD&TWe{TZ@dc}yRsu-u&z%t%emsh6v*POIS9ovgrxtb;+i zu|Fu%YfMc&(>*q3e1V6DN_V91*NnwSN^oQ#|b=!TSCCcg*g_j6`($#wDx%LaXe)P?gxrH~@h2*s8~S zlP~W`IkLMid_S9GT+L?Q^vsWgSf}#OYh#}i!S#NRRx24wOG{Vy`S?iI*VlIr_f{n% z`mHXpjTlJ8Q-IeIJ2^Q$fB&8W(Ji)TO-@c;tHGlziR`f{@>nitR@2mc!ms}YL8^8p zNs0Z(?E|xxTQ8nFcP<6IaixEx+&y^EuIcN`b0d5H{{9~y@44N#v^3h6Zh=4hef6;CnFZQ%n8% zH^73%hsko+w|KQrZTwE|%63@pv|PO3a?+i~UHb$b$|9kviIU9fD zcm2|C%Zvan-rm>1;U&MoBRJ2UYo6Kx?Ah7fHT-<-K}Vb{e5%RUdGw6?%$brgA}q~0 zRSs@$LQYQ3{%pcRo4%~ps_}7?$eI$9T3i-!3{p@~FyE6-Is5JH6tz!C2w<|!_-w30 z6F}Za?_DRCUqf`O)kjkHB@=`dM~8bW=BVGWNP5w3&UFUYn$$RVN(Mi9f)8%pY&%l| zcO>=MjO2>3`|b~u*{_vuyBTtTRor|1Ev)i99)0@;zUc-X|2(#-aA5?d~{~! z<|BJ@a&khBlk(nw1|PJvw8(6)j0gi%MQ#oi*#=i1{Bjs5aXd}IB94Gr^&36FF_f`o*HZSvGVEFKBEBejbUn^*fIS3m!!%@p5jo=~fv59BXizRb4s-Kl54 z7SZ|bo4ljrx@cQZnX4_!RW~v??5UFaV9N3__s4FQmX^_eU0c*(@4R+k9oXlr5Jdud{4pFZ%WCM}@Pxx!M(Q0>qS*Hy{!r z2%w6*wl=+Xp233SD4^2`Utiy0r#5~h_1=AW5PV;&)z#u&UbB7iX=&*(b7OgVd^0mM z8v}qmKg9)HswfA3DLf(yd3ZDxL_lye)4nXN71VyK`}HAnB^{b&Gx3!q(r^Qc}&&{2C zFYYMEBH@x@b@6QjL}kZ6%Y(@y_W6I};IJUN+>t&g)OOuyWH1iFBP63b*xyITD!7}j ziXuH4f=VJwXJYglAZCZa7N30i;)Q%bEeGJ0p24U4x1yIU9y|yG%%QEXtCNpcJ?FOc zLuG$FfHI3k$H+*aYNPf1@dV+Mpy1%J(~8fidU|?Bnvo2*Q1_)Dxs7nhVaYryw|qCg zo@;DqkQe6Qkomp2NdvzcA?RjnZ^`ubo=Dbhb5rNy3Y1)LpxNoKJ`Bvsx$x#TcfQdh z2>UJV?TvnTL=|3!TrVh_hpE(4G_yeMp0f7Sq1qHo1W0KOvqOa+o1_tPv1vHO;kBV6a(C&K@`y4Rj^yNs{U^b!;-#Hj)P}G)r{8bzXCiwGIn-3 zd#gJ|m&!3yi=h`|+oev3albra`T6aU`2Cvyf; z`0N>3o*#EWc3-hlnq2JVhlxE4i>{ARK5x@&Pz#U5<$jr|I?*tJNzBL~252*~zLIF0 zomXWTw)|e&mn~PXC`+g1J}~}d#Wwrm@&FYpE35eYDU7&Dk)Ej#BcuI&OwnHofGSH% z?$)-pCDF49(y}mmp@F&GZSI$KXE_}(t~dJJhiU4`VY|Ip&h=dKSek43PreWA|1<*w zL$E>^z2}UcwY4=Bev;AW&R0!1jc^1cjN%v$uix_%(Q2QZ=Tsqv_EoE?;Ma%0)@@^L zX%(zL8}|JyOzwjWt-`=BH>*qiM|WA-*aWUWWukOb_WU~f?Aq}DBBk!1SiOa0Dr$8+ zG1EGHyTMNcVGM#n9K=-kIP5+UuS5&MU8)L70 zwA}<|crDM}qWBdDvB%NDwqw7cd+q&;oKjM3K)77v+xEaC6M@j98Aw=Iy={Kw?E0a; zLuKHj*fx zY-WK*WahfveacEfq?GGsl{2%YH`kP*)o<0*IoTNI_+}^UFhO7M5pl^v_tXoD{5B!~N|gd3dnuYu=loF77lFaelnl=Ak-t?H=@ zBo+2pGr6`s?2KS3SS7}b$9(F~=U4cjpy3_|PPDeUSr2(!1Qv@F+K(_vKKg^t5g5C% z;WP{Z+G?as6iI|wf)Quo;o-^9x?&SBqG2>Sw{P*~(+r@@;siYHw}&Cn)Kems9KbMv zKcn#jat;h2x2;k7qwSTIIUgS%q1bkSvrJb{n8cIAgS|(~OJmj2z)T6tMFI;_o`hg++5NvR<^}VM8BH=d<0bxhTq!RG-Dv`gT z9ZTotDq$FIFY?iKNgFjG_YqfyGS{V`j0_%#>}71CnpaPpI57a!E&8JCd>4*Q(eL6r zDcu}buACyJzfc2t2IlW?Yi}S;NNU23qr(GX_Z0&;KO!&~+aEdW)^7)$rp`j-*DFF| z4dqV|jZ#r}yEZg7n(qDiCI0yDrTv40{GqIqkgW<<@1IOj4EG05h9uhiJFc^+@7~X` zu5x#WYe)N=C973?A0Pg_eBs_Fe22;{dSo2dS_?VGacV0r&InO30QMJbtN;=YyU~hM z5D653b$xLdiy&nXNQ7W4#V?|7U(wR%RgWTFzleDgSw^3Y3y`aci3uIn>z^?ba`;3< zDaO@4jG{KQLFCLq%=RU+Uz|oU_2fINzDHqn=d}}U`}5w2+R~#w0OpDya0Y9T4Nv~i zcTkX%!yWb6dx+BN`R{3@-z-IZb|#2Wmq%IB=T50GVAJFfzt@hpMnN%`X*X?##{$Lj zrTMNTye|)b&K7jiG4h3lg*m&gm)wq*=$qP#9?|SmDau>;MN3G*qC2zSopQtc_k4FB zn>3K%)U-6MJtKHBust=4>U{n815Q&4D>2OarGWGR`&Epv=%Oz;`XCi$B)z-lc@eff zdxZPW`y7|`3V-mO`_soEZ5&+_xQyoB`$4;y(o0pfm?;Hr{^KBF2Z0%ax>^~dRHHqw zpi_A1goGFbgI3d$buOJ^&4OcH>LxFlm{CIvDoxD*utZ%Q#(aYi6J>@@!L`27>{zvG z6dLxRMrU(V0B}~f&`Lc#f)2lSPAuE*CVFFwFgkLmIgH#-(%7gy>f;CZqC-#XHAIeR z$jiI%gFOfUq0SnX*@(EhQgfYB@(J*#arnCoq=~S=Zm=A?p~A1W3Dv$wKEqy1xk60g z#N_0SskdH220QH|&CgH%`0sDOgamdt!mesx-?%Hzgvc5|7)n8jiHWg;cBt<3(Y9Y8 zKf0ayKd078qfnz~u-C4wQM}3L&^H`jE^)N&dlU@uYZBBc_tkQjg_9`v1{DPj;lTeI zU~3CNLnC9CVgWO+8~prW$xyPfv61nz9ix9hKmi0&@59}>fkJBPFzBZs zM-YIs)PrFN0sAKQ2kIuCA_5$f}DYLzC|eH+Na2 zFU+IBYs<#_V5@(HN<#;|x3#r(4IF^k$4BGd>kIe%)l(EF!03atvlV=Nr0lB?+|YCj zdH($QxYQ9KfCmuK?##RA5E*Z8@5B1nSw#tBq4 zf@jmx(V0TLyLt1bjG7u1oS@@;7iWIqFz{|-NB~w$@DNaGg6k)0qE6pH(;)CZ6Oigq zSEUy;dIp(wd8Ep%TebC+($A)+?^pc(t_++(zOrrlA^LPTW#Br9-pgKp4N}Oh2?7I! zi1207vYL;!ZB<02Tp$orDNuuVE3A%Iq7u*KR=+V30<-ZY11P0JifsGM4*qVvk$iMnJ4e^Ae5Fh|=2IWgB?hgP zn3D?KBht6z(BDjw;~U?czI8tCwaIQ zERE{q^T&br>ACl4l*Up@?Ig+uG6Ow}vJEs-$8WWZSYlC;mv0|=BW(WB?U&vK<0=-A zksMbeBO{wZka-IHYqH~Y+TY6eZ5${tr#^M+ zDPXTDu$F-@51Aow1%xw;O~NPWNn2aOJ9;lAP8b4IDp?S- zp!1e|^cp>xy!@E}lx6_u@3RLjN4?A=)TH>;>xDSSsGi!VAvY<|^u4>-Va#UC*6KV_ zTi`@f+wYE;*kfFMAuA(;;Ns%G5>O1N1B~v;OqJDNjsYyzAOvz=s%JmIuONSh-60p} zdTW`JwvJ(eeruac9D0#CUUlxhDzJ2lcvYSBz6l_>IojvJ>lfYk2(qFU7xifs3`#IK z{v5rJa;RXmg)91@AvZ7cMUy-nDy-ezoXa*8{O|$zF`OtUln(Ky(FBKs*lO_8+1|y! z{Qhm2DGNJD{$9LRO~0P4ovUVKL{VO8fAkCTr=5vlb_~c^Vn0tQI+f`?wk;a+B4Wl) zG%fMz*`pPX>B+^`3|k@f>^{In(9cXtqWtog^t&S(AyvQuK$QbQ0y2hoqPBUS`>1&W zdE>ZtjRoozw{G3q`Sa6ZhS!dKp%-1OeCip6dKE`UVJHg}xGa2UVm$)LFll+tiK?C7 zdwPTc44*NHl05peyzY3*HUf<}@~s+$`Zf(A)QrMr^5K!jg;r6`OAN-|)W(mu=nl85 zkCH&THxe)$!33JYj$4Q>3X1{CKoNoX#EH^HVfruv`mn}>A=fsK*mlC$_SwD-$XK`E z#Bzmg=ihm6u+`=jL-gMh*1YzDaEalHzl+&Ce0+7lF(37r&vqt6mO9UA4^}%)DWaMC z>s#qD9}43;OP>Hy^*s2isbyo6^~UMz7JvRwuRH8Oc;v&viCGZr8;47s z*C8VTVlbK2+#Yv@hL@LjrJsO+AS67zu`B7i>E+l;J?_}{AoFaHlU=xdpRo*%W%r-E zb2*kAxGLkt`@|2#TCiLEfF=XbuUwRLQd;VZhbLn+T)_4l5}*8efXhdu(~_TdZQA7l{48y+M)4nk%8g-OjM z_s*C}O$==5S)L)MyTIwEnj_1N6C_+ofW#}@yoqK`fq-w5u&^CC2XdLkP$p@gYiLLS zg35LNJSl=!ju;s;THH%sM1<`Cli^kBj)?^s4L!6K>tWb}c|c0b_ICt`xbNY$j`xyF zQimh%V+w!^A5`N*=jW}qFN02}&}z)8(-xjKj8k5J)m`i?$OG^07S33Le$ro2xf{&x zGrumu&);55uz_osrf>F2w~gAwWQ-puP#n|9o7f=L(+J-jxoYWicDS?;z;c@kN%_1R zG=-M&rkgQScs>%D#rbbUKES{4qyJXS?RBcR=Y?;7>Sc(4*!Jo@gRMeP2G6C5V|_XhEDV?jNC&8YdAmXn^9@O&>Bb zshZ=*%m@wdV4t3+rGYO7p<;=DMl$BEJ28+#XU z>fc2EK@UZJI3?rxT(t|K$#rQc9W{cxYFwwjIRz7Ek0fENVczc;U|JY*9zyYqH!v4_ zm`kF1cH&)Stv1KwrI?khM}=yIUNMJ2a8ngNo@_pK7v+d1CF|6q#^}{k=+&}nS|W7f zU&AJvZj>kq!=x_4!=$dqjU-95t%-B`Jj=dnQ507NLWV7w; zrUIw=6;AVpCLfL>|0YgD`0aURsa2FU?ilGd)GrM~Ogk+sObyyeZudH> z{-ScfYyhDta3i!Ty1rIVIR#qZmgB9ZCQ;Uk0SGv-;!>+u`)kyv6-@vrMWqfQhgSrF zYi-Cj9|t*k^5hx-&;+n5lrMQ}eUorjArdSqKy&t+0--^%Ls0!KLfw5(8t~hgRXlM-Qlai27F*ApOuux}r`O(&AD2D_66TaU< zWmTlNZ+A6hgrPIZwLF6H%Ew%t|I0+(wkmq%Q%J->T50L%_%rZ2KA!yZpuxjzas*Vb z`K`ZvdqsM=oj!hs{eOCv5QM(G#rJ~LbX&q%t;YWpEc-rG*={;pYc36+IeXR=#3!~r zm_*d8SE*`G^V*9-*wg({m$=c5LE#g4n;9G;lA1XR0NMzN2+mDIrKzTHXLf1Njr(!e zJWu)_?TtC^teIA9{m?&7d(XZ1kb635{MwdUT9x1&SY%}Kgk^u8Aqtv6FHayhZ{3pZ zd@m_%`{M#q1N%E7ON2m+K>%=HE>TfBpzj{Piu%`}&M4MmJ&u?-jp}DTIYx^6Df4e) zL3fs;ZOpDR9$Bo1I!D8M$w%J0e5=9>C32_>4>R?>iERoxhNQ2N6HUSYE(3gex6D^K za<7u0etm8|Ebl^AcJ3hxl`7DAg6ZLkC7EnDay}QO&FCD zqE>~6TN2Hp&5mQ!E>nFt8J{+k&C*VO-pwQ;@6`>j>ifIZ-wxKQtO-DMi38#sxW6dDq;yyw5Jaid z)0x)j9khw!b^e5*4>gsR9x;_)-G#_v*!Z-|S6L|3pMHl3CCUuzx*kM!oQVS`VnoZ7 zP=dxmh$z{h$;Ti(AC=nnX9Rs~8=lg1mpVVFIQa8Z=M^Inrh z#X=CqJjVTq@_r7TCXFT$YDSPJ{$rA(POi#08Z{6gxyHJCXHwIYUr!D`NKkA)&Zw;B|3c`rDqCl}_&OC3HexQ^)37)KvTExc4#h_(kU$y2 zYdP}SvxbTK;B3jcS|WCNdwT&W1taRT>PAKppmG|2*0(v_-|dUB1)zp~5*2Vz8CFY` zyMUc4@4@WHRX0DM8GLNn7?bS>R>&p39HS-^lq9}9q#fukA?E2}L z&mdRq?CqIDvlfyX69>5kC5TB)-_w+#NMZ20%}58NW+U%)1vCQ8|11`aV3&@7a`4pd zTtYJ_)H=VeKvhCsNh$PrZ=j<9tewBW$+{NUlwoAyRq=3)a9TuZimkcg^NxoAZ z+r`UQQ=ahi_MqM6)DIubAlrgUu@Xc2SM&djv5OjGdGBAp%eY(O3985XMw=iW@@I7{ z5^YF;2vZ9+`be-=RCMXDRMgdF?6pB_-I9MEJa}-Lk1uP;8LBx~;3(-SrT2x7YXm$3 z0!<+Jp^aA{^+-IqncsgsKYxfkwa=#VkkpPclmN*f6-g?a9P;rZ7ogWSbtT>pp0cRg zx%a&f3Wxu-bwm3Gi!QE@n5(Sz90!wOyT9vH}Ipp|8m0oBJUU>}J zU#yseBJhNwxmT}VX`T?WDY~SqLmQnCc;;Q&!nmBQW%RZ|KxpYPO?BwYoKZ~gDc!4r zCblP_L*O8wb=dUTy?XJ&AIiH^P}7iy681-{ZZ05aXx|uuh1-&#M)yYAR|-K%9!MOV z5RVsDV!S{^7qaQ)ac@z7F>kO$2*`=c_aT5`bM`HOw3JplMg*0PQ&SUtj}AeLAp#^g zfrxwk<^g5#-qg~t``F_W%mgl^L}-;5m0FmKo!@CfOtunJCKTZ>-)xqrUe?58o?L`8}{_8$jv~?v1 z{=V@T9Pqd*lqdRd=+f=j%eh0_(A#v4G`rgbkOx#VH^b0hkNzS9z1&v6&dMBK;YfbD z$4{ffiv~6Y@F^H=tzB$PbMWZzQhtBAOt|6G%d~!fPG;J+o*ouo6$H5&AR-~_E{JDP z)e*J*F%D@if`$6nc%<*Xc>v>Ha;kc#M?Ea$8e?%gOKHg#IEMq~nTS&RP3e0aH z-_1Os??<=XjUU=%=KAC=bEipI7tLl(1RckGr;HxWwPv_ubQ6ip2YO|MYfCb?iEO0 z(B!VAc#+l~m1S?gyL19t5rcU`LENm~-yj9q|C#jRdgQ2pd5T7s>laJ9I6M}LZJ*N* z&{Xkjvg*WaxY(!+R1=@SdW9cQiv-kSL10UIy!Qu``l#1o10}B({5j>2W$nZ>{gq?? z@}GOX*56QctNOcm9=2^*lI|MR-G2Qn-nN-wI<4M?;Hb+?cv=sK`{E;cYA7vw%@iC9 zZed#mh1;?61VMw6k1JTK)CRd z@0BTgxsGUPm*ZV7PbupGBGy6*w5*2Jo`kO~&0uL5S$+owvvD?v*%%XE%G*lV%8wwx z2g8+^?Ar5CV;Td7NMKH!D6G^OpDX6ifr&PQtEYhe0ZS|##Ymvpa1IQ5wo5dl#B4Y` z;Ss0wap}Vtz8P)vPl=O9X-d^e#`BV1Ij;Xwd1D}_(KbKIgg>E7uw@R0Xzb(HQuF*4 zzSJ>(%oR82U|x>y$_Er7T-Z=yu|`x>mZ$HF)Z zdUVIr)=ZlTLdkGTKg=<6Lr-j+q!H!Lz)H_<^EJN3)^{9d&i89DQ_6?bSS7p=w?v_^ zf9HT+;}bQBh; zX~Rh-NvK{R0ISU|{1JXD-A|QY%hOHvt$!e#fK3@pCRd{^T<>h+T^9ryuPMbPAO#=m zbpbLwM7RBV@gxoKAYTFFOyF(QqSmlQ^z+Lxt*`BCyK)0*?I|oT9{U(BJhrqfO-T^v zhnaiHpszr}u_EIQnq)tjA9nPDWT$j6h5BJv7QuA%z}nu7hDDnqJO>{LY^`L5IG$HH z6DwDmY~w#$0wR4y^Bo06O^Pj?Ye+@dgd#=shX6bo9ruz67gXJH08U#^H__DR-0@ZEkD`xh`tT-?(udnwy~}3L0np?X=vK))9>k`wV;j)P)J6<0kS7 zrEbh;rx_&(3MldpR6Y^|fmGOTKnS!v%|{h|HjU3YucH+Qw3q8f1WPTnkp|QA>$Mnc z=#hlra3F4^YH_64e;cKcG93&)P361WW{h?kA~m2Egrl_(=vwvoyO5sEQVorg24yZM z&_0GjJ${5kKtQ#Ft3Ox~Zg82NC*M-vsd&iW(g6y%u@Vp2`0vBz*sE`%g${bim)< z$|}#3;2_MZ+vKVCAT;yPX$U@*qs3<_f)-*>SxsmC^q}=W@&@xW&X6 z+{#&_qN3RLPM%kH5ZvpoFMgDcmG(5K5_b!el6E6mH*b&1WCWLl9G*g zPV$IG(F{f$AkPnCHUqRWqW$6!vesJ9=NpI)fBSz(yiy?X0!M_V_J)y%v&lohNk2X& zk|@5Ea(Ckq(0V~omT>RO$sX-GO82j;~ z5LD6cKX~wHxwE4~QBza1Xbv^E>^?6S*|TTPaDV~}>{}u}ul0&oC7V}eRjW^~_R?qL zahrVBVJ0L|;2LGoW@ST+tZwBwn(BDLN$C$>YcriMvi>R9|DnDV?UwRf)>lgJNz%zT z8mRF6{3roRflyWjp+ggR{N8pmY&G-{4(~yiDk!$|HUTODlSWIk?%R3x{KwK^%TL;P zlJ`KUP{zyt_%}7$_Hl##F)b8gR|f9_x87vL>_h%H2~_xv)ME*BB(T{@=p$+X!;1b( zBI@4A&xmkv4v|G8)3kce@76>gd#h}>uo(0~unQQJV4*>S6BaG$^}7brso{WUAdQel zXL0#9LgPHRK_ktbYkn&uBK}A zHyzJExD9C47dwd;nhw=6>z)r#@z>MSi++q2H=qvdZNSGa6o|`&r)ES*Yl&Oyh@>{| zN6gTg9<36T6y2RJ%9jP;=ug}E#qf??7Wt;tJmNBQ3?@d6nA7PtO(P|Qben9b`Y~FI zIeo6bBvxtSgLC02f8;*hs|mTJ8NPD>nCdD3Z<+5F#(^vk1?}P>6!$-Ep_(PM7))!b z6w|6X2Cv~&i=YtN2gn_lchVjhE;PBz%WL|Qi8(>r0I&F5!B1BEj=ue>Q}8%VNq|O> zKJ-bj{ri;5GN+aW7OV9<9NgF79y0rNTb@C1Vuy$i1Ilqn{Sl9n=pXItPd)mZ4oTs)w&4dD27ic z-im&p@|4T}wnRe^W13;bQ*LxxLc=_nQ#WODiJT&pM(&#QL!4B940HWzLO2M(IWLj5Nr^ z$Yu99u>uIs4(rZiBDShbeis`$x45b&hUtS|=;<@VEq*@`mogPEpK)dRcjSyC*#yXV zZXpc`{WGwjb<+}S9s|R>)wwt&5v+c&YKH#mv?AIe%vD-} zGhjXS4VWIax8~TW{9B#Ay2$;N+Ib^>D(b}M-TjL>gU+gh8|W#k!87j_KT6GVNmIH1lWu$*vy5Xb|PGT9M1<-`#lEFlx@h7H|x9k;xUF9mrR3by~Wmii~Xk((Mk|NzE&7u_kEscsyEc{k%tY1|mE>bvlySaS3 z@Om~C%|(G|v+us&)h$1tH;@5OhMuNNm%o1Y>+(qCA+5DOs@XVEX?oe}xzFsy!zvqg zB1Rf&_0P?io&l@y8pBn@pGo{9$*()!Pl}IvNrA)V`?fbEt2Dn7;Dq!b8BRGRrV{IS zN4c~5faq_$2kTKqiU?w|K5K4J31zT%MTFG${~!G?qucYmb`F+u-@@xJ8`7Req%)6eS7%xOLRdYx!UC8nuIFkwT|823|B_$sZkkX)2o9pyx$v@CK zJ_+v`^u6Ci>rlo=e;NL)jOeFyLV@X{E+2i#c^)1F0irfwH~O#-W7zq#KR4>Rhsi#n zmG&s5YlrNsA2YAcl0k`wBEEHG^Q1y*vh5Ec9X*hY=(2e$UodS6exnEk>``Rem9L0UpXlNN3i$ z$)5TE;on88Yic*H>iy-_zLcQ;sVesLzq&h+qwLFDh8h~1j;a0`<5>>Cv7qk-)R2ug z>z91?J*H=7CbILZHpG3P+=EtXdTok;GjY0>LbDai6(@XRA0xdKxot@PyV-5=X_VB)%*VbZSd#qS_efU4tCJb#Oe9i8Qy(i$!yX}E(P?FG| ze`ujow6n8|b_Rjtx7Xw71HIfI52|abD%{9Pk>LXhs$r%bQ=FAAzG3$o(e24t4p=jBzMS!aMxpVGM=$A71>;=!g2p?mE^*Urhtm;7(Ars zgG%-nW)cKcu{_Tew8h{6S5#Clz@2FN%nJ}J%Sw}_FZGNzqyzd%8VQgL{okEC1+ZE;v+Gki*|hNPR{G` z;+%8P(sAql0}DPw4G1Gk@J{p{(_hp=Uc$fcu*s<=q&wbY4ZX=pS^sHNq2*Jac%g}q zYOXO^!Fa{-0cFwGlWTR-`iDe`P+!{=QXMU%I#;;fMdEhm)v{ddug@G8mY8^z!+0Y_wHhawTIf9aaPtWS->b=FPklHgB7k0ppx$RUg5J(F9*`xg>BV z;;|w4#I?VYzUb5L8iBoIgomHo$sKH!6uVzo`Nc{ae7#{JM{eJni=jHMB7`7aAn9Wc zi{7i0faiYpS$F5Nt^~6MT_|*n3rzUM_1sr`DB>YL$HB%Zh0HaPJ0#a8SmX82apd5c zkZEizourPE15>8vi^g^cTe?IDPff%Q)vZuD3W>1)R5fV$^0IqpEc1`9X#rkG&|41L zNRBZ6b1A)^A-z=6(XtAuXaSZar1r-gk zN$P>~zkG36HQ$DOiT5);JV6}z78Pc%7Nso`E#mo&Yj=F4A;SNH|BO>(UYJlhSE|Xx zdOz~r(QV*TG>1B|OlQLN0tJNq=1Q_WO2OevaT;22Oy#8V28D;0& zbxu8G9tY{l)S9Q}9RD!hHgDY`7stnJ`sKoW*hP-%c$`o{B*vS=wz|+Ta@2s@ZU1x{ zKS$Pgb6TqL;r#Bs997_VmW=ip-66z6CLaAfWUEXB2oGP;cuF5L)sO)74X4m`eM=ml ztH#*6Pfp9?l*{4{geHVtI0%(hZ}Q_O(h^15Nx{B267zzb+9g;HWo}Ja={+_zufft8 zWgKGU0>Sqf_dkCFF9ji-53wI3G~9J{iL6=FFf55b{wC{%gv^tWiS=47i1HQw##0>a z!qv;AWsz5JSbeSR*mcUqr|nyF_cGUg0|8l|O!5VEugTU`Cuj{T8HBW2Im%5y+ND5{(uM^_#C&XW`+|!NL*83=Q!HDGQ zq5AiSyuS~z9mY1SPSTXm*-A?|kF!3tmt4fSX4h|rkPDaUdmxG5ESocj%~(2lUwk1| z5Rbb1yrU|8a+a0)2^&E zJOy_4X&S*@}?7oanZUJa7vRd8T|;{H^|zp3<}8&IOF=f=ZF6UMs6x zz9hWN{xy%u8{y!RiHxaLb4+G#v|9*aTLe;JJZRY+vZVwL8=>y zD07t2z}vN#{ZH*tQjO@-CD(|=9Mevtae#lq!Dv{8eWv=Xi2^P{8n%t zKW?^UlchUHdY6BWH}CTOnb)Q4BAd!lcTH*oY4uUqvO& z`t7fh@3K}_XkXm*pMAxAHXkmqw@9BOi1!~mFL!6bVs0n(+Jo16?|X{~3X;QeKLmU_ zpKae&q$pTKdqe7=lYo4G|SF@~dG~->?^r_Ij-a0tUimc_3}-U{YOp|9o6?X|i8{R(>#yfi4`I?_ymqj9r~DHZ3dC}-$* zTJK2N{vTPL57WNCI{1X!xpqHuUt;X@)ea5(5Vr;AR^_zZGuvef8hG=>$e?lm^3{w& zo!h(ly+f&@T6$a@8=>u`cT%zk=cq(+(f=Ofxsp~l*ORp+cEM0C0fuPPt+Md>ALZ;M ztt=&)lXm1;v>}i+JC-&CRh&Fe(we&EMbg%)uB#nE)|-<}_S`ax;H?X&Euc!6Tt@#i zy=)T~Ntcfou7M%BWJ7KBol7QvJ?F&d_CzC-BkxXjrr0+zM_&VcGy1cZ6_vNoZN&POWo1Ax4wUP z>HkXa+=!<3FR$F(`MMq^Nu8fR%HLnrnVCI_J8cf@axnxStx1%9gEN1MdAe$(vFO!L zRvw=7H;kUrdTc1?mKfMwH_C*q@OnIW>cxhVU5TbyV9_v6tf7m0W?xkfb}&)l`K?9z z>{eI(O1w>C&~*R3gH$@i4|Io+mjX5?v){c)Nr^qh0?DJS45Hd>!2 z({AjrzzzMB<~Nj=hW<2}wsCzCpmaXG|Kbfi9N}m-^K07+?aTHl66k-Ul+cx-wNl$6 zdNz~`-i9?0D3}0yCa}0n`zq!t`$L$ryOhNC)r7g|o1eeJ4Ix~^pWAGdb6?2C4JNuu zzYAx=XS}8#ftzKka?xtSp-aZ_r*_I;HCv=;_iwXd*wPQq#!@Nd2e<9(J^~Xwk!%UqYmx7Q@kRoBMSz&8pI^ zIQhqXsU}vqMyesj0ZT=G99Fx2r{wYzOuR0TZFAmnkY~qvdkW0rCa#wDurw3IV*(hXP zo4xr5t9jQ(rBP4GkKb>;A)DQnKc=jmuXx{J@Z>a;d+PV(R>_{>fUKhLWeQ(3=A3Zy z+MRcif=iVCX^5QXDa>wRVc!#_yX~RFhwt0)G|S(nIc4`^6JK18W}@n)+tXyqv{h}F z?kj3!I-P8p?-Ztk=2KUineY9gKwp68Rn5@UYIDh=IXTPoVeHVxG z;r+c5r&x04s(S$wc=p&Yzx|z~SAZn0tX!SzY*AnNxvu2j>UrH@fz9E&dEq6RuCc-7 z`y_e9I(jtvFMy57Pt!?+lO&;mtlx+GIZr6hm!T0`DnqbeIa%H>>8lDqDNgX5XHYle zzfsT^aWd?;u1!(OfZmF|daGbjt=@KHpD6huQo@x&~uZQ#7Y> zMzT>WW9Fck9&J>Uo~?fYa0NsZ3;a7A_SY6LCGNqYkk}Fs!P#lIZ70tq0oTt$X5AuA zhI&U;va6c>k4UKNU#X`Vb$gwNFpXUJ+`&1>K+@3M_6~=i@|_GJ+f2JtnJ} z4tcw6t>*Y`jpww%Z~U9$`pj(}E%6+hi&L-I^M~#-8dSR@ zFIt_-KjOW`dBR}9?wPO=*<(rLjdYdnB!m4YRVUT!zj^VhH#o`~E4lL2lr$bzIyw7X z??;ju>E;*CedfEmvGCqb>e3yYdwX8*GhdM*Z&LJ0P9w&39yQyVHsIzdZNA(rz<6S| z`*e?^g6pXpnw;4R%w4W~M`evnmsS6qG&3$d+-9cZxPE`t_5?NJMhX&Ml&htbqYHsgB#X2`*lTVBE7>m=G>B2*W>bpp(q8bJp z(K8CN9hM(>zFhoXls8x6GrBte+4TNFRm?c?`%x-OIkXjQ8OIxT(@jIq2sw7G0eokos)eU#HNEwxLmw-KgZeVX$DRLr;)5@PkEnc5}=PJ4b5#@ac`k zw(dbRUUhTp8k6ZaI<)mgvTW2zddvFg4w1lp`Oa&wWMxjQr>jjG-(S;XS$nx#Zkampu9<+Ji_J4S?V8Jd|X7qt2sl7A*#`gfaPn)11L zP_?TzZsg?--~a$tg-|KOYk+Vc@s5QH%FD~=^YW^>x_*)lCx_@&9sOSfi4UMsQI8G| z9}r)JlKvALP1xzK+j|)a1$~uNkAee07{7jsEwuvRNJvW(r$^Ea@zaORU5b<4KM{Zs zopmLIQb?Wv)*vh3mRn;1y#)!cQoZGG_K$!_7(?H{U=ElEM3n8?^Vx6wW9S>jFFB4J z%4xF7Y3kRX$~edzo1oqH`u_5m7-VR-hnq$294n}P@#1`&BOGL@PrgC{B(lq=K#l3q zfBV*AxVJ#a*tK5=h6x#>na#JyVaw17v9tUj{Kvcfza8@5ByLN(;HYP9-=@78OGzugf1e{!lF#2lD; zAZMiS)^#$oU~;2SV9x@NEIFY-rr#kw`PTo%pGp~KgmB-4(XZStm-t&o3tj@TB>u7; zp$LLdc`kLn=e8W70t&9Q30cA6dlfGo@{Enuv|g-+vCT zMkL4g6w#lI%eZ^XxciJLR6`O{Qd|_657!@Df_J+a^ookzT-@9iV?xTAnp}3fMR?~y zQp5+fmGa_;UMHBsasc}+EL8&kc5StNLsNqAx0RKZ9v7?Vx;gd_^luv?C7ZTa@sWef zm{{P&@5x9u`C``2w9j_YpLtBcUBZ5$R1qm>m|)+y7aJ*RQMknV537u+FiPZ}d^SOVo@{L5 zYY2yl9$LjK9AX;0^wZS4_A<=It2cAh;@KjGG3>>NqI4s{MRpC zL%x}A!-#b9aw(6zk)!o@pKgz(y>RZDD{0ICbiVNDt3(3Ul7JfYcq+QOztySQF9`_^ zjfjg2Lcubc{t9i{2<9iTfj&mY?HyF3haO!>&dl7?ds*hRS)M~V;l!SADqVqi5|XV% z7UJTPJsn5l6o@~48v*Km7$bdJQ&Wi`DBbGzvMgfDBwQ|pqo)R&&qE}{@80S%k5^QF zz8`H+d#C$Q<<8-U0U&$42W+o-8^>-mC+;2A1lo-c+Q*KYhZ;J;IKhX~)qna#eoGY$ zgf77P7sg~9pRMGno!f{ACukWL0( zc9v7rx4YXH4@D(B0uk4*hvPI4p^5kgH=(Y|?(){HTZz689n%V{&En<>>zojL9D0w* zsoq}VTMKc{3?j+rYma^Iv&}KfNc^Kf-?=#Ql1<7*?M}1Xb&ysw#bTgTy(3B+l5xO1 zD`csws-nKFBGy(9oL}Ebx%*D-qJ-_6nH(b%9R`COhVKd(Kz8idQSk11mSjLGyQoH}%$^8KY~ z;Q|}Con@XC4~dgGAxy3)BnP}`+m3pa0>MLiLv-91E`|gJ@0jtywYWP1q33CXoRH!^ zhDwR}09mKH!ep&M7Yx16bZeJDjvcH3D#+k;`>@xKn(JJuLikfGvIG?&uNZ{`>Zf0H zuCC#pJ2x0}PD_xkDJ~_olr_+_dZ;N!oofZqI=$8$+i(wLvEX7I#iO_+z~8?zt7J;6 z6|PW^C(GS~Fg`wQZEgOIo?T-A`9fe@wKg@q>Or1EBLjm@wvW~tUGhqtjc#kMeQaD* z)S7i`*Gic5KmLd{Ng&^$X;q>ejeSTWnhf<{5d^u?Qq>6BhQMbzY19bXkPdMZRl-^^ ziZarPz)%$m;ua~XJvG(Ue5$qiq*|?o!0YCljQx_tW=kIXGvNEvLhFx^{m&}D^(|jU zyHxd~ZU!hqgJq3YJ+y+@{>U_kIA)E@|0E?4f zz0G}xrme(K0~Z_0L{-NAJMu5vOV21e7LOZ2kVPERb*Y+gB7E9@6euy#EP)kBxp4zT z!M1Rgo15EzYv6LHi;46YlMpGDz}jQ*!1_dQR-^I|`JJ@JD+QJaQ4>QL#}B_rIl>6x zSPVEQs9}VCMm;_J{^hkVh@@p7|9xHf$UTe?Rwn+)bvhN8=A(!+-@w*b^g6MHv|?)v zZLOHvZz91&p$v?4=+!qYLU&KkdJ&NgS^G>(;(Yj(sI>RdElx}L8Y;*<$Ti(CH96_& z05hDwct~AaH5}OkF1jcpRp3(%m#XR$%T^WaJ=y8$PiMa(fT9|$wf3luO>l~M2uz8c zzrK=pYuHLzeBF2A0PAB)$||f0_@_i#jARgY(?1oDoe$P9A_2(|V&6oS>CN7>W=-X+ zyo5w`S20}118qfu6lbg_@Bmf3di84dG$JTKYKd|Mg7BJ}JrJLLxoY#_ZE?}`1BjC# zxPmE|LJ8kBB~Gp)3g2O*^$43(n`K!l=W9&Dr#yTTI9isLY(&0L*kj@4w;JpeEPn8( z1U}-RK&Qb)oG|cLti)1GiU(Pl`|o6V6+fhQo0H-4)WHsB&_jdf2ITEZj?%AFlDIu> z!%l65{9wRQpQ%uvbar;$1tsJay%OvjPr@j;!Cz@gNOR5|vOjkrF^M+;iaf zW7~$5i=a;10pqUPBB9M}84;-Yvu9>MT2hF-iE!{ja7hs39+-}ftTVHcL!p%FF$>A6sZ&~ TGd|}Dtv*FlRhP=xZRP(j05H|^ literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис13.png b/labworks/LW1/рисунки/рис13.png new file mode 100644 index 0000000000000000000000000000000000000000..0125c30f1d192f04ca03d7932f4d4f7658180fc4 GIT binary patch literal 22916 zcmcG$1y~&Gx8_UGU_pahAV3K2!IR(~B)CiC?(PI9IE{wj!Gdd}!8N$MLpRbum9vYew`YWo|_gn9JS4DnOlE%g$!$3elz?PMfP(?sMj730rhWH#6 z{+rBv@Cy9fGZ$6qj|i1x6bJA($QBitT>-PUrQ&b+di@UwnIWRzSZmV_t%d6bsg zt3!MSwcgNQpIQeqw7e+7(tkb2$7za^Zuxrn&7>a{WG%_=fRSqYUXKfChFtbFc!=Jq zo{V#gGMZ87V;erqT2o>(sseFUY>ada$SrmwFLpeRNunh>-eWOFdY%Q%-n$bXFV)e~ z(t0leUkXB>MnNC`{PaulLw*E&NiO`R^5^}K>cksb_+rjvNr;Dsmrz5<69r!_qm4l( z313}Mp7_D^{%epiNnKk)1D_s7Z4U=WjKL;k=w5 zZ%!Gg`06xLP8C3`GJmWv#Z@o>T#Z zd=Dp{K^b4lR(h#l@n832GVO}GI(VG_JULNNfYNqRLTb**;(_T!gUzBI0~&c>$QJJO zD8XVePP>_5i|LHFA-L$@Aeo$rMY89|cw}Y95NSLq?losy>fE)8h=_s1x1>CXo;vMP zN8!0=@oIZF+T{sV?q1H!BZ|(4pD^1MFr0NUzc4zVOxF^;667is&yTiLVsf-dJ!>aw z@B;I>yW@)Lmg|-h3Z=Acah&bkH&yIzSYJ!z1)Ahs0DGdXRF8HTO$2|aJF+zAe(7q+ z7NP+8-5lIq1d6fOXC}q*`qoj9G1Sjj02@Q*`WdRPezA?;vn9SFR7BNfryI1dwi9RQ(@{_FRKZIM`MhycNXP;g$d9dvnQ~Y-GNI?%Fai*OgW%9H($&b-k?F;t z?3-k45!iaTD{JT(8<(bcSDji}*o0*yJaqrd_}&eh!k11chW1ik=z(%rysmgx~O~d1e#oDj+*z1HOs2DJ0(b)929T7LExE}G#8e)NrKB8s8gEkIIQg8>b7BR*ww85LX_dqPwdG5zokw?fT9+}Oud6|*N z*MxQepB_2mMO&_&8*01At4)6Jc}>4Fa1b;3Q5Ylr$qw?gmXX=$!%JR1?eg&9dsxer z?}s>;XK7JJOABq#n%pwb{Qi#e8te+HVj6J{a2W=8mexKs8^icXgfm~yt|?q%A7Osk zJHr;3frl+KueTUv6;y@M$PGL8SJ$Fw?++D{e>nsSL0|Vt$v&ImjYpso&P9>=Dl^uT zEx>?A+dOJ17ghH-cc2KW!Z{t;4imz+2(z#jTw9_ z7P#&+7xmc0F9L3F>aKWkC(o^FxPy^PHe6W2$6P;v9p_|u9YC~E~+Bc} zEnYfx(Xho&@WPzTcCz?ZE;v8jYtzr)7l_VZDa(?ggT_IgH@as}$F1G>EpH7&Cm*f+ zX}sLQ)5iWqy6N?e9Z7gR<+!AtNURmDV&T#o_KsNffROxH>|?N1akxOAVU4$epHKI! z?O{7YMXqZjBYb?rDqNOr&ur&Ey#u9jOq~u&#VKSJ`04Ty>wyYWP99ctqqpwc*s+`o z2JN@lbGUGBKbFVm$Ot#Mkfa<_~9F0aDR`xBqMTwA@- zK)&D^`@`d9x64#_CI30zL#KY&^&Njl7hC=$vIl1@GU{TfF5qp)*#r$(_t?+V5~+=BlZ|Qt(6L zG0FckU4Q<)xq9$S4Ev#UIkw%sJ)L5gv02x}_e>ddzwMwewpYOCTpFuKUCa0A$#{Ps z>{Hg0ws`jFnZ9|lS@raEdQXp1)l{44-Z)EtdhVb7L$8&_7BKJ0gLF2yBWv+iY30oKitB2pgt$RQh;$ydN z<`+}g&T1rl3PsvwLymRw#zx9#`nafnfsh$}IXO#gF{|&`aSdjjJV5S2dki%|i94_6 zQ$Cai)m>v@^>m){IyxGiKi=0gl8KTqUg#l-_6V+0j)z6AjS%(YkdlPwM%a`m4)n*7 zb~)rS&JIiWxV-8UbJX9auwDoCO-%1klapD@!Ov)4TKKaH%$$7W6 zwZ!S=c#a=1l~VLYzaEN*T788saNCm{oxfp&v}Su1{6^$aA^?w z8nD+4W@}oqCKC|-8Gm^5CT~s+qM8ujz9xYVV+<5TB#>2@+MayR%=>;54Ub{vQvOCU z3YrE0K2@|Dxvez0=1ebhb?oS0lWui}KZw6pWB3!&mZUBDmtRVnsVvbHS(z}5;m)Iu zV7nX^1FQ6L!Y=};d-iED3U0|cV)&Fsm!1rI6;Ax{cytc%`)zbFL3Hk4p<;ay#gV8i2V?Y=vm`Q7@Z`GpVH{Pu;L*nY2~)DskRe3Z-T$WoAY>IyO2~ z%Y$|%I7&YTYze`BgYYJiic{S~2yfmrdFD8MyS+JqVjJ=z@G7n`G!dkWjf-W(5vI_^ zCM9)`CZD`WKqNWPY16ntJC=9ay`2WNCq0gq`)+du_z+rwuZVq@~C1 z?Qi+shtPQ8kGvdr`E&2woKkOuW^CtY#}bIiR(PA8`0CPYU?SuI=QBjp!ltY_vo*+z zZsHnE8XH3&0bZvj8S>8M*9kec8Ox2uX&YvF(a8gTn@MhU4O${D2RQaxOC}(Jymi8BZ&EUJCniuxLE9^qY8mwRX4;Pt44S!V@?#g&JNRvf3Cf(AIMcOEgX9 zbvHzg_1eXkz;VM=6$rQK=bQPj|le1b7l^&9O!$O9ySkIua}h3U~rniwMMrR=P0+=ra(9G zF&B5Yi{T4Sd$!#rnHY+`r;o0j^eH<#Pu>9WD^#X)C+Ggdlg3G2QgY7=r$EBe&!UW~ zNMFzu=Yux0wZF4pI3C)^#V_Kmo9SYYWHVkYzwizC84`CApETCWQ4rzFUz1*w+i^{{ z=3C}z_^Zte4vKdSzq69{lhb^{T^2ndXmA?kNvNvB%NQsc+^dohSe`zz7T*><&qV&s z&Gaop|B}k1bZ3krGQprlsj0@pV~pVT(0KFeK&iE8T&;4)FAEk8HFoxZwH6tYQ>%Jw1T?u~4IKUtz`djr`x|JJtCIjFQ zpE0)-b+TXzVWv*BBi>pSOL?BS9UX~85%RnAamT1KUt3bu3JdCh2yM2P&GN^F8CK4fA*~PVxz7N|NVf=?4Q>Rgr&{43Iq65)xZ~abrdQw|l!-@6H}fp_*c+R%oOd7bc;n^d(o+)kDNpM_czS&>hWf|AaxR z>3ZCDWLwM$P!AiFdOQacJ~ZkERqTSQ=CLE#)~|*BiNX;Pa{QAex3|_kJ^ZV2c-Jg} zX`Ra8fMN$Dm{+P1%w5zc$_qdA@mHtkE-wJMQ*VLg9gR{o>AQObuqP_J2@eZrnTo;P19KZdpO@;ksP7fW+*LnN4Q-qM~sK_>(eCaK@$ zXKUO0BCPj9n@nqa+JriPBzI&&D0$!WUJ4!Nsq1#=mnAijjYI6?I{YHHdy{54GUQ*; z2Aq^{(O(C6Y*mC?uW20JZgL3Wecw8;n~j~`8y}xXST|pr%REy@I`XI+a~H|F1G4CzvNI0-o8t|_f_5ZZh% z-;3x)b9ozQJqbU{3Aj749KFC7MxH@vw-0C230aB0LcS)~7x9+g;yer_e5#jGIOO5i zwPg7SG#zZ>c6d-39q01jWS4nHE($IAe1#rpO?GE`WdxfP!7qh@S5;uyAGY%=D|7Ta z?=#mnczuLdmVYsavLTR@TP^RG2qn?_S>#;Azc?Rlq+D9DUmbW6;?!!ohT)&IUQeKc zARNE6$BJO3x+}b#_4@v#XO?6z*xt#M@1#Lh<95`*8*Q^-w>-DPzsXUfpr8~No_99g zOZPV?bIBS|d~cN@pH18I0*r^=M8E#o)st@)a%ug9XM(=RJG9-jHWM)bN*$ysU~}4? z7d<52V;#5VZ7x6V1O~J|^ZhVp&XqHB zN20ys0)e2!4&q{u1$_f92t!?#yUA?k*SR?k?=Y9LKj^?F>1=N+&Obh zeu(*+Qdx1esWiYjqMFYpVdlhy7&rS3C(pyHqw!a(76ED=VCg~AK~FJT>_ixNeSLu9 zQ~%uK$d9>ei@Orz9M4>8L%?RdimgbI_Sn;Fl$qA+WiD@ZNh(Y7MRZ|9q}R{+wdca^ zL{xT5@-ABqYrW_BgsmSu-b#ebN%zQah0QsR_zH;lcsg~jY)YiZG~(P+mBa6Ilp7fDOP8wI%3(S z5!i~tA-k{aOJYF%*gn)p0)T^TO7q#81vr{;#Q!U5PYCmuW)lx~OBTSEsQ+m;fNvfY zFr%v@;9Rnxk14t^)Lx~PE9JJ-kuSnnQ5ST@Z%ScRmJdJyMZ8@2nRdlsw9Ov%!VxBX z=NGJ~Vcq;Ku|Kg2pew{U9%nYSFVx<@)^UUFPAa+f>S)stHwRI9T(sN_IM6Tu(D;Eo+uS>#ii)EqCuH{7&Sr46UYUlAveS*{Iz;L*MYte^5>TPg5XPJ0}N5Lm@+j7to~T z3W4_PVgvv4#>!k5Rr2O(smge5@_;r1fB!Df%!WMJGr+bg_w(1ZEA~Q?$7-L}kiXJ6 zc-Hq&Gq{qGaFf0K-V%?_+K5cUvQc?A8F z!z%x~AuT=wo*F#8_g|DumCDT@=pPq(PBtZx5rcMRl03V0^%uw(Dz81q{|M{>rJ(G)@(2oo$NtI+Xv zYu~Hn==ptS>os$&0?^|X7Wr^^OTHi5j3FV)rMDLZy^Mp73}rb0=ZNAAJP0+7j{riE9LII@j1bmoXkr#UvNMZ4~h{asAVl&-NK1b#bn&LhqGuT=8fJ znoVONw4V4x?dBaBG>#a8#mgxWg2yea2FU~KsGn`hAI)B-4%iET1WM)zDcuxGOK3M^AkNI;}b+oT|ttTM4u#b9}DiFFXLJ}K2`V(ox53? zui-MFp##15w}~{1g!o{^wt3rJ#^|cD(76xb9w5{vX6!f7d}4)*8yzwm;Z3*3M{r-6 zz=_)qG_xkG%zd>oCb+MVqa{+&HR&M#^a9z6eyC(C(|wCGY3s4~iEd(#o|mgV#)wI& zNlfxcegVd8Eu^>dLYx40qF8k{Pg607YkVm;Ac8N3M>~_cWOGvY1fy{r1zmpNmfD-~ zu7rpvX0{ISrDAb_L`S0I7szwG!%kbQ5M}QUogUr3w6$8Jg-b&Ye=9{q{e;j|SJp*+|fhbK_N}aM7*^)n} zUwKL6KaeoVt5-Ur#V(~5>RQgPTl~K2vpqSA>bk(4%C~!ed~*6jOnfb@_wq{@Up`?f z2u)5yc-)oV3!r=sK<8GA6AX|w&}?XpWhJP@=m=&l93tkeX~h0++R{7#!nJVyC4U4{<>y%|tk4W1*?3!(^?zc zB)yoA4xLjbX!?3^NuCcK!mTGa9Gumzo)L3MvjK-laR&!@M6~oKg9U=ym*1X=qv}U~ zqXTDt8>W26AkNd)GE-@KspAG;377qgv8Q+<1^QWc!2L9C57^8Y6jMmAzSq?>S{hkg z5_vCW48w?8e)WIhiaHa`Rs&xkfmoZX6mf59!2~#`Q+}VgGTS&Crvg$i7l?T}!D!)9g6= z?T^Y?7dLsdL#{g9stT(<F51Nioqhz>CDIfU*85KDQ*XpBjjaj~ z=diQ<{An%}g!x&0q4Y3o+BvMK%8reb$|+@h$y^8ejZ=hE;fLKsLXBIk4+5%Ov0q+F zSMT)C8JiTjqO6xR0wbOYn3|9N<*(hcNU2l0mx$lI6UFfHHBFvf{s4O^nczNd&`A3>?LPbBAte?c%?x%*;t+1b8JCP9{u`w68eH*_j4=UTI&=VE3P z#QU0k>$W1Yy!qk|{nV~-nY4b-`1!puOoQZxvE+eJKm@JI7o$jDB#H89L-MY>eb0Ek zk;P!5U$kyG8~jc=L2FJ~`6;VUED@&dT)$fI9&)lp=8!Dbu zbI;Nq`BPiIiY%{}C)q3`Qv|yA+Av%Fs&P!a5U&$sL52o(2Bj)Wj*Kt>uZ8Lkok6gL zsU+G;+HRMw=7&x&#}#JT-ghwiI{N&JP?!KfYl+>W%7~s%Ky}vCJ!RvX>JdTweu&ZEF4%qFTZ zlE)42@})K^n$4t=ctF(bTpBrtPAXTEF910)s*L;$`zw#{o{>Ray%B zW$m(41}*dMny%4+ym6*Kb&(#^R>NAYH#)Hojl+lGs=TcPe8aDLSHiaS3H$~KlivP9c$@Z`<8sN>z2#SJNiWv`xoas>@zym8F=}6ewQLljdeXKrNj`w^!m0y zpu$I-Zg!>4NT~po67*@Llt)bm2-R02aMu!WxrqL5))LHHY`B?+KHxdRh6N;0Ij7wkpEzD zt~c5zYZXbuMC8yrmmaNb$KE-v?sS*w9hBAcEYkKYXK#I^BX~4!x>^XN7w5Bkv0J*# z`BnIt=2h3UggvO6z<4tz?)^~?ZCArUhEDhKgEWl-#4%2hydsj76*zs4_R~)!%YRy> zG)vmp7{sexw2ft*4|LCU%htZd|Gd!a$8VU48gA*t&SzUZ9$q<*1gTQMTeT{l?KH?7 zqf+CAqe%(qYKa(Q&3n^S#d68VBYY!b8Oijdj-!rkgc-%>_{!1Sf`lSTOUK^b5x^;V zTyg_^fe>EV(*L%FXs7)Y^^VfYQtJWg-uw^YLgD3#kGA^mEuT~Apchdeplq?xdT=~J z)hARwh)y<>Iz4GuaHQW0Hbn_5eBsx;RPK`d63eMs-ULK~b}gfqFKWN}1?ywGi)8=K zu+C2+L~5Om+pcA6<||nBl}K!jZBEXI;PyBA%-)0>el)Z4b27{!7$iFeTrH%>P<)Y} zbu4`=7OXR2RoT0D0!DS*%oSD4MuermMp~bRJ61Ga2dYdwcUQKy7hHJIarXB53>S*t zNps+N2U1U^Fq~U&LPlwcnYwh$UwyDd?@@&?94%bwODv(Lamt=RsC*zC)KD8>efb~l7FxrUWkEjUiQ0hmT~>OYFW4TZIefN-veU@HhUMM@-w}U6D9r6 zqXtC2!(YpPn8ZgCFujB_{Zmu=FFYIno9x3j_SjCIQ#iq$_|4y*kMsYLy`1>KD|r62 zMLu^Sn;+H!Zc1cvuFr6`i}imoDOLTJUj}JQh|a=^H=SY9O!y};_>Z#Bajfajk*sTP z#3QNom{1hS!;AX^b65Du>6o?T7N@x?pFYRK-@$9&zcg;bekE{wRUYTsYQKtZ-***) zU2=<}-aNK5X4v^#w|R*Q+4MwRg*W4F@f@OHUkDR)84_9>W(}7@^h0maaDBkP@hsWT zVzvp---_ewi%*>DzRb6E0!jY?`Z2+sMJ*HO@GE6ytSL7B zQ5R(N-}NI10wNQV5j1;oye-k|vRc=v57xn*O#4~Rnk~wIV3TMDTL!|){ZUg4d7P@a zlT;GivEG6p)@03ZU~YWUy?HdW$8U~VMQuKu!qhDUK4+!G(qHKQeKbbYImIpW6&L%< zg`09gR^px>O5f^&!ukgH)wm(OLg460QvZxErMt%lFpNBlr(Ua+)u_ ze{)cYa3&s?TRoF77 zlazEDvf&$lw%JF~Q{|hz_kAP0La}xo4NZt63WBXuDva!)Y}v4-sxk7)b6)t8I`gC93Ve7mGv&G9WIKAxa*!#PL{FJ6SWu%Xg&Uknb-Gt)oWa1k*HqZ{KvGcI zVJsPB>P;h&tZ~(X*lK&aDEa+_qMsS-J_{b8OQ5MI=B~iH4wV=X3hNVQdxSY#mA%jPR`S3(_;21x!Pz!&{atU0cX^1)f^x%Au1}D z>+;gGDOJ&|kIf$74E@}FWMni+e%*0GC9E=CZsb@S{$eU1;uu*&@<>mhu zG>*DNL$v%CciNUE5+d9AQE!n#KkLkKkEh8h~(%Dw}Mw1QK>9Denl4%mak z`&V=xy0;I=*A1$Wm_;ZD@?)_NbId)#w0~6AnfU*N#zHhpP>xewBBbhSoC-d!9e9%A z#&Kc1Tddii!~U*c7%tGC+nboW#%bVrUcbd0W!IStbi171opzc?6G`~~R%mZ1)5`<% zGcg1DiT?V9+H3=u_lokinz(tBV!Wv^B#-$f$aIiTqYKVhUP0NJK-v#c6ZRI?&Cw;T z2BbMT=^~tkj!{A>3SBaqO1CX}9V6{8O<_7ki>NL>+?bZWuOb>HI9jbMb@_{L`^%|1 znaT$_$EMG}-dPOIPn%tS5?pe+Qde3-_6OckWuD9pzN1a?BowsYi^tBnXSID=S+>jc z=jVUJVsQ&UOLNT!2dPUCow8A?x#X$ncZ%yD18=hzx^B5$1f3)`r1M-V5&3oJ?~Ug< zo6R!@Rp-7G8w{RE>RFQy|J?mxsvVvt*oHg~@Y&<4+5{zq30SbTS{!-%8Ca5!_~1-& zRu^(Pd4mIgv+$HPf8(;M7M9O_&;9=&{7%*zA2=g*i?~*zWf2$$9^e$0KDg?hLETBk z%_T%DQ*Y^QlPtvQ-!WDr{K@!3lv*1(4DH`Hweh9ekB0QY?;j2>YuN3=(TiP$(CQo~ zl0$84j7FY+!`|rCm!qqS1XhQ%hs-rtN;y0UIk=?_ATOq4XJ@g-NdUvQ-jq0qFFxXL ze5+0K68+q}r_4uO>j3Q=Rk2~pVx}6CM-WPQ8)3r%%y=k;%l=NJEX}bR?VPCYo=lL6 z=?rDie7r}4+$+g+nTy~mRk*w`@JQMUo{E6`G>O!Xd_9e=I}U zIyJo0WTE7cGen6rNZ@Ert)RF)%PfosK;a&g)UZXbg;57_H1`Pb+0`*L)S0OcQ+Hln zI^L>C7dlgggP;)%C`t9Fs}@97MJN+y+DQeN2V(Qt!@%$l~HW74XkyO&I!i8 ztgFWOU%*y`oVleBSl&J|#f&=I9gQa@1Eb&S%A{FnlnwuYY-Wr*)SjrOl^2PV>Pq zxf1Om606#vMM{TMz4Hw$@%N}vZrXlOp*bf+)W$f#7tFI(8_0Pl@#6!^OWHD%-4z7! zrde6P&Nr6Gt&F_wAT0?oCpNz1DL1|RsFbfGNOUNNgknEj|r%k@T`=tDr zm3O}UOC@0jLh=8Zq4&Rn!}?IhZdW`v`}2Be?>2{+lfBE$X0G?m;9AjgX6>{TTYbWj z>1-eMNocO2ql4SEs?aJmj@rF`TU`KC?`izX66Igp$lGoIEnUx8njR52-e^K9v|la@ zX>2_vt%au<1r;N(y|SD(MV8#A`VD{8_*~upD>6CiCOL=bKXV`dS0DC2DA5g4R}FHy*uNLNv_J&Im{?64g`1LW}p9ioSphNoTd0P>!|Q94yLz0U;iWImJu0d zpENV`;P1;%%n)vLwW&r6YxS)T=EMW%Qavn|XVSeqKF@1=&<|n%*QdlWKIl80&uq=lDhJ;!DjD4GRcGA@!^c9e+2>coL;QFpX zFcwq`?Ch~P&h3y(N61{$UMb7?7wOn?NKePNdK-)Ghw+)H-k3jp4 zG#_d$q6y0>8r3%=hsy#6)Vsa?$JolCkDl^7b;qkgI*fuhvJRInuo4(xE znKDlN#6{AiEkEDbzxp$hnBSvw^!+MvcS@7chkSTZCwAVg&0P1RpNCX+jn|$uTIq z88tHi+u{*{=y>kRa1Sjm2=9h5;B3hMktwCdZ5Mv!P<6#To8}YAS;|q#6+%qz-dVT=KgKYdW-&aDZPENv`T!{TZkH$}K#)+q^VZAwnVBTIA9Qk@U5gHin z0g7b4($*~jbs)5dm73wji~wZ?rmRgRdNq#8l%#h1efC<1-g!`JX+ziY>WEf4?g!ND zB}nSg>}csDXBnC!hK+L!cfIiTBan-aS6d``%sopaWr{z@aJRjG_s)$gPKKT;EN zG=wn#b18t|W2tCu6dPk0_(+`o=w|QTveVEyyTb7g$_8Eig|ZOpE6-oSpeOoeTVv=K zW1_2^hK_Y5?&hJnbht!4%+)r%LGQ_zsWH|T1yds0J&0s|Eca=soZAa)=xT#;P!j0A zB`BVIL87RMAt*{zKe;c^RYi$QOcJ70gskx30%-sS zpo$vD(pO4=Pqaj0ffrYsW$Ht|GvGWIk@c+SNdJhsQE=&!bGi0G^VA*_jOw zEtzZ4;dy9Gqix0o|*K z?Uow$;}(MJ0C{)2zJEp70kRhV^LuT7xOFc#071mH`U-2F*qN+%y~{=;fkyS z+eTZWwQ=~rMOJfS*ovv~5s1rSUCVm#mEfxJ$%u zhCo}WQnH!7t;@gv6wmPwp?-Cl9N83%`Jed}utluFZ5H|?EG!HK*5~Ww9gC|w-lx$J z6T>3Ad+;&@u+bYq{rZm_yIp)C`PSq=kz=WYVHX)T=Hc+uw-dLL8XpP|;a`JVP~J-l*ue-(5xamCYh9C+jhWaU;tk{!2{t;i^`afXHKzbwOlD6?Iz;naMGm z^{84H$M6({2b9fZ2)uYzE`Hn5dL-2keGHz!4=;p+YAv`mq5+%Di{j!iiohM`3@;&G zq_9|W`>~M>F1Bi`vpl@{7}# z82&a$5bW`#u|Jlk<=)#3fdu{rO;Lc|{h8AB4GK)-3w!<6!x=~KTCe z$-4c@zg$1VjS^Po0cDVm%kO(S<&7ilglSZ#t&6c!nNWkPr@c0Br<2HHMj8Epp2T># z01gpj#vs$2I$lV#TG-h7Y0n0WB#n!6*o{>-glnF`my7>!A*51BYA@xL_1sJg=35S_ zy)cBO#`%+KZmc=J*5D~lLFqEf4Fz|@3`4W2#KjVIc&SB2$1wi4-FB*{w@G@DRmT|K zYl*a4;?bB1-pMh6*0E;M=U{hKRk-Mkjn$Yv+yM1v{*5G$xla~ve%1Ah2hED|U+Eo$TJ|(6x8ClCs7v2ncTgr{DGd8Kqap?#EF?deUNLyb zeZ%?2>yzZXqBqo>Ev#(fp0flA#xS=p*t>0m&}yezF*x*GW!PHw(OnW^U|OtVbJRUz zS%`w!m>mA3a7W#3=gFXrYGU-NFL`APIlmO{Fb(Iot_REI-~)pTg44vW*FDmj{?=-T z?BQL5imqFO)BEU?a>>7Y1KE0aUQhe+sUe-(o0|tz8#LU~ocY_Il95@NPY91qj&*lW zBI$=dcdi@}SZOMr0S#`7jTz}iO`v;-6+}b`%V-etXjr?`O7xE@U<^x(D~ApWl(8g@ z+3YvkxBo^$nY02R2Plz^z`GKR$Cm8MUkI&S{psG*IbArJa<@(FZ7eksE1x!IKWm1D z<}@7MG%H|3v4D(qCg?T$qX5H2V zRl|D;=>s%;Jk3p6#WlH@4oKsaQ2vH*ikV94!X2_uzc8ehNdUyj-vgyvu;zB4i+asSbx zfMX!q-!!oD>QJxrLY*sYP8u>lXtG5mFNb$9=&;6gM_&~Lr!XIku$aIA_KMdsJAT#h zrX#doGPGE$a6@V|Ys-fX$;6^a0eGh%*?KpVRF%2fGO*6sJtlce%G{Memmr~<1_f-tE&Jt@t#00jvABio!tkwa zPIh?oMR%@8!Oyhb49D7=9u7<&Wz(?2rBZz?iDGoUFmC#OjZ~X_#M0q{lAfbS3d*c4 z^pL^u;3Q+3De<&F`ZD+|`f@QSC(?`W`2+ppn;~(S1VC)8`f}#}8^;WFaF7BeTw6}G z;EWH2+kePic4Dl`F@JwL*HYDUH-o~%ZdXm;2h*tGGz7ARrJ5k?z{^qh@nK;z)rOsa z?=CEdcNb=?`1sykOGSUN{s!o0WBztmq2CbtFh3KJY z8sE6ESB-9q9+5fyCk`=dDZIWHA?LH)!Y+&D>%ZbQN2z0iVfb3X^v-VM50aPl$f z%%Aq1)TiDBKwT=69+X{9V~2eqzy96gJIy+|C`Z@tj2CE88i zXuL1SXWn+R$g^zAlrG9a$OvGMG3&9|WyyMZR0M2GVIBW@RguW|c6%kt zV~|PRW85suK*(rBUMQ0Zzloun#NaT?Ep<38`_tB?mkZ;**|ZmC96!t8K7hl4$P@4C z?4_pQB|9xGtdaKxnFvqg>@#>9Ry$Iz@%oa}*L{j<;iXXn3%$!vya;FQc3uQR_M@ZE zT(HDCuzOCcx0)l$JlKT#hDGuKgG|k^o>_^PYcF2JjXZPn1&^06dEY#|ao}BatnAoZ zTIe1o(2&qlgUZ;0Qev!p%VQsojP^S$=Jd0?_&agyr^QTQ!hp%%tE0m{9W4jeXqQF2 zPV>}}QZn!_P}CN~xWBann&n`589b7*&Seo8mVe{0V7T~G>}m~Bx)T{{RCxt=6BtHq zM9Mt^xRSK82$YTst$ZZ`WaOiDcQk^#TA>y+5_Ru6>YG+g7pf!Rt_f4bsNzz}6PbbE zLL`jKxjLH#*(}P+s{yWh(tQGBfx3d#N1B3PuxYfny1o71#&OT0@uB4u#C7QLR`Y{ zO@8j=`E-*RrZd^>e_3BZ+){~lX8*B*QkB_k zHTTgC)%1FU!}>HWR%GD2@z1sutGwp6Lakxixl6l5PErrhluQyU$QmJVC*+8V5Z))` z8CvwNO8W786#2Q!3{bT_7j9Z@Hz;OIFAu(WUvli73P0gSpWw1Cd>K;xTg&~=9?Q_2 z+w0A&wXQn^uf?aePjo~?Y-_1ZG+j?eeXQbb`aPN}GV-FQ^BQUlSP5eWuxIEUmJ$Pg zdFv?be*RHe{v8f-7Sx(r=bT|DZaQwOPGUYqh;#8Zy=PRq%b0NU-m25_aMPA7ullN# zx-FVI?P5_4p(zb>8jSFxZhsp5sPm1 za2SjEZ6ziP_+w?gA^)uxiE2>CLxxeuPGw<&NpglBW!nJET9=k^Cv)^ML0B zfiP$UzE+h1K#UUPAdxl-Pw#_(4SjXOBnoCTcx2OT1xtY#9u@ zhK*akwwL;*t^~u&G%MycQt&v0y<}69M;bq^_J-xp4Lxzoopn>!TF?gcK*FlPgvtTV z&iV~rx8-D67+5SCUVq$}VPLk(SN$`^8-9JiaEUGAc|?=qD%`akAiQ^P11}8n!~KN} zT3l+c^~PJTd}qDeZ_m9J4nuz3#eEu$!6mcOuV?IndzYT8Y&WmIi1mre%Kl>)F06Yj ziWuOkcw<=}kv(~dQy>GHF)vI53B9Ap)Gbd;+g+UfcoMP2pvA{(TU=uBuGiBLQ?#d( z!?%ty)9g%t*^We%EC6Xh zeIdem#TDM|7IXy=^;s#nI{tfFe*cD&Bs}OzB6%RKqQ%a^%%2}xFiufqo>`myQAFUc z=YGsPrC+OxVjx_d4)y7TSDL9#a#Lhuz&*cNcUZ@Nie#w9h8uyEb)-^{{XF%#_QO|X z24ZsS41eT1>Fl_1LYoeFz)u1AzJ{BOQ-sI3{x%#?%It8opf?mg2anxXmK!KK7#iJl zWebcsPRjeJxyQr%@d`AKyrux5m2k;9`A%U{!XS3j&W25^%1N0yCWft4`m=-t3tSil z=wbbyA#VKlE=CJPlE!A_-{ShANswT!RexZJ1ARK0QO+R2n%O({z`=AzzYShNgQ&$z zyTRvQ?!XUb@Kxh@?d#>AhJ?@B;qCnz!ObJpet$itLOaZqsh(OgE=)j)@{s1dUH`}= zBE+Fdy2G5%l8%(#dG_|TYQHzSqIM>ua$I8PZT4-4sKR$W8p}8rYm9VCzy`jrrrfO&Kw75>-jOJB322-_t;!tsoORETNdi&BCE{k) zgHkh$s(4$<{9jG|iK-Ib=Sv<@R0D0&NUwsih=hoq40L3_zV+6}#Y-@O=uD(X_5MG_ zoM%u|{kp|LQ9!y%Zwjv>1f(NKF9K2pA%gT4h%^C1?;YtNB2~H~&CpvwK&n8L-cdu7 z7C?GL&Og37^WHgg@7(k0eB2*)b~1bR&U)7KTk8u%(O8Jz#rl?9@Q7#$udRdLpOmBU z_Q1uV_B}trBv?{1nxLRQ^V?-3hYs&+TxUE9`)q$3-9%8g{FWmnJibfBMaGPnF`a*KJL`AB!lPRgbC zCvORy_3f#2M(yek*xUtySXi)gSN*daLa+fl*u1;BqNLAhk3KXCfc||kwAJ0DOB!-s z70J&tSVLv8suujwqF-QmZ;_7Ot3GS0Q|?LnJALu{t`0U0Vmt|r8c%OGZ=yf7c?}W) zq``aM5x)fNS*y{YIxM>@W~l^^Z9`~V^G-0=NdZXwYP#rJn*syfs7Tx+?_M6{0_)48dg==N?}Tgzbyj z{B)dVwJxYgqZscZmB!i{Wd%8FM;>abuo6hE<0LPA|GT_naU$7B%ybbz5#ntS$&QgZ z%B>BJ#^Y6L5Mlahyp{_A^mTK>MrZS)7G(V5+~$kJoe@arxF(=DB`uM@%q9HJ{g%q5 z^ccCz6-``2cvPfMt8$yY+ZRQvtZ*)zP7la<^`l}l=lL9rx)NuQ41aOr_C-PyLdOu0 zM*WK?^Zk&gL&BKC%ZSLx(w3y@)S~{5Gs#+UD(412Zw-bm7UPIEl{m)j83%jL+*oZPxjuuuHmbA00 zhf^;nh1KcDGa!}h%myz?wYONyE=$An;vzaGi}$5&E!VL4^&HRisqLj*(=O73SI@=Z-EG5{AeEU~ui-$r<3^^GWRk3M#cPV{Rz{4f5vypJw|;7IR}K4Od|~sb9jA6pgb7Z2 zXSn5fW&^@BTpvZBf&OT5!17Q!ih9n=hB4U`k8+zw2Ksz*l-wAo85qM&Sl!5yUoJwM zed+HY6tlhFZX6^WjiH0s=L@l=Pd_bmVNKRvk75U0hwJl+DE7+Mk(ehEs}kMJVy-_N zsE?WHJ~TdW7K!uG**KF7k8!e$PIjzBsA*1dcdJP+#~b!*g$kC6@^D>1SH{KPv8aJP ziH`K`*W=^m<*mQfhqC5tX4yL@@nE5g3$kU(rT-v&#Q-Ycamz4(I7;E0jbXMy1?uCW zZm<;%O>g}HU}QaFMgOU3$A==sR0-3#)^C_!rZK#EE_P=d|1tR)q|{4qgbRITzq8kk z>5g2|fbvRH^E71_g0`ok-D*(!1RBPEmx%nSF!_hw>xu?@bv~;v2gIu0@66iTKjUW) z14AHcm8h3v(Wbi|E?2+AXCGBXOjMvbh8$(T*N%JSB5}q0vQA zN8=j~kLl+qly3Wy6ytIE(`j}v3Ccd!bsrjJSs`VHO~1M=lS(^| zewSvxig;Bi1}+yauIz)gGE8$8m>A6_AiSHN(v>=(NFFGgjc}IH11?Ie_v@V3npB3`m$1()Q+1GK#mC`uxj^B>L{2^-EJ?i&`(-3}0D| zHp2SZKL2ud{%SU<`ONP&jz+RRgCXP}BXi@p);hG~WZz#1y%4obV)ht%!zSBvewf7< z(q;_O=i+F4bX{pX^4U~8M|V5RD@p{l*L*ob@O|5@r+XQ+|8L1jYw$pukKhj|X*<@j z8!^0@eytN91><8dCLHk_;{h|Mpu5?1PqD~UqT;*&MJH3RClBZZg*g>Yi!*Cw4MDa` zCj%t@`9UA}vp844DAVcBA7;~WHtgKF&RAgSa@a?m+ON(sNs(~H2CITWt{?IWBchVgdS~H7X}A@jNbkhkASu>T zGD$w46L5aa`RW|ihOCszkVwPsBTfNyapDCW9HtWW!;aE-Hbx`;1uSXeYQ<UF>L>saH(ywW0}mgxm#UybYwK8F}M8Q zfJ|I~2fgUX$Dc5#$AY&IPv>mi4T=r0Vw5de(`HblZnrCVBC#Hy>+Tn~6g@V@@)ET8 z`Q~>jir%ZTN<~zGJ|JBhQ2Z8L{HyqFaZMJwWzq+!VNYQrds}iUj$@O`sqXcv=* z;W;Pb3E!IR5}%5#uT})Y8UZWi)vlk;QW*R9ZZj70XlmLPkZe#Q_e$^fZyu?)zU(Oz z8d|)dcHh|a5r4Hh1}XnAxg)0JmX6W_Cww$m`B(B^Pmy<%p>DxuO{~-fY70vvUb5|G zj3ty(8{lGfB$h~>Dq-gHsg)m{?isJAi2+04=N>>51^bmxh5`<~a z1K+^}prh{UUTn>XxNPVHL$?fiV+`vsmMh26`BUqGF}TfV0X@5(J=^c82uJ}_a6ka^ zdr%zNtWX-aeZ8E{WOV~rDtSWr?TFk@8hpfFM=XuqHji5wFJqIMj|)*+&RLpt+NX=- ze2%>e>4`pYga|U`MgE)66u#s{o*#Wf4)|{nebd3R1_|@HFUxfn3^MLg^xQMiyZ#gD zSH4cSwIxdA#8sRaX6e_~pEpZ9nW#_olPt^bieqgNN>=Q<@oS$~dJ%BkX;|Uxd56fuOY`WaD z(>mLl`4p2PE)YJ71ex(Gm|3Q6{?b$j6)(pPn9iHpL(AEEIj2NnPurDj^vgO^Y5 zoAa@UEouk*Gn&~a&VobZFSM{kE-|h5Mfa+Ch5Zl zS(sOc=rncDcCK89RSeiMoDWCAtYG~XcYbtl)G%)FlL4O&eY@M!dnNnrI821x{-XM< zxfp8;(PWgsc@uJ2w>Cb)tG>bqY%ZM6XnT8muup!ZXkuRUYyO@Fj-WtZzXKO{qmBk*Qk8o#q^r?=O7`pTWB6i-aREqlYbITaOCsv$$`*Rf6yGh;Z7tu^+U-OBo00};3F(#&K|pB)q(eyo2?6OA>5vdLSc%dP#BG8&%ke# z8)sYL4?lFD@Y=k%GsI zTaL*D|GiE_U4cKOf-pngzI}T`5MLbr)jf3$_3rK4M`6kTe;*Q!M)AHlOF%&Iir=$C zkB`^wXir=DUdl6B6uD8IL3@mMvz~5)A60FR-`hvxtpDqzalH$DS?2{zX~@XP-gtZS zYS*Bu&?kpa^lvke$frquyyr`Ni;h_L#f#FtKmL!Uq_!iQo0_zje&^q?7^N#8k+!zx zQ`WGf5`MLGE7i$#=v&~Wdp@MJv`?Nq!6y;fBK6ThY15qf^1OH^Gb<-^qw3EeU8c*I z_j?jgY`Z)6I^9q1k=w_bt?#dJWgYCseRm1p(mI(Iwp<-_7^e_Rl zK^~i#Hn#quYIiaBy?Vw+l9JyiEW45)l8m}+wzExFXmWRo9&(J7+c!>Fk}@)Oc742; zMV}CN(}KY;-tOG1@_6%+vV84Y&nLOF)6-VFBlbOIb|y=&gz@n32x)J;Rm@U~-#YZa zK?S34eRr`xcUHOjfJ*FS?=l?9NOF4(HB@You2t>E@%&qxmifk1vt%@%_sQ|$W*q_d z+HN&E{sZT8rGtmNF(x@WE5oG$^uiygwOm4lS1ZCQDsI189<=Lr3Xh23wVjhCr=W-y zFr%$>+Wu3E%Qyu;*e(=r+;_{zc->E2i0OqC<}1;MW9X*#_G$a-!x22O$)67y^?Ng( z+0J#np6^MwfqN==`ICvObc+0IK>>S&h|3;Nq?Vf?oKknN&oOu8wP z@e*#M-Zfc8L`39UPTYMEKyzp4o7wSfSXfx;d|K?@&X7fOdppiWHa5TQ#r^`v%^Bm| zX>2(eQ(0op;9xad_{>hUI9PIIePSMM(tnV&ZRQ%NHFepHt?R{cm=br|DjJe|(c-s3qI+x;w>@qjhBDply zoGMTDd65_}Ffd@d^gDEAq_+wona7VW-MF#!W_zI2hJ{|pw#GE)NUTVs%yzw+IL~fTNls4g?Ynn^s@J>V z3D{;oB`33cw;1)L<(rQPsTIDg#i3TOnQ9JW$GJlG3`HI)WZir<68WB{`>|bz&?1K> zjB1C-t~&Ckdvy6~RjiiVzV~PO^gouj9L8Vc&UL2}WGUz76gUk-K>KYf;LhFUezM8f z0g=G?-tbQdRLo)Ta0t$Y#Kfpg@4?ba&Z+E8VD7Q%dfCxRa72X zSy`p>Ee{r5zI}UGYerAgVFCyJqMpZL!kap8z?6`NCrPd})}ksp(fuU4`eZv-h2xxg z$%Ids=HboieWG*z-mLOz3JX%7_p)D9YZ)0CrD}eB|DGHUbSGnElz}vaDmmI{h3qyy zVn6m}t75XeKr!sO@G@7~2^Wo1nt?qHI7 z&HtNy zGXKm{=GN8KRms=IS*=D_x&PVVu0E>sz`!b5DO;QyEMiy6iYT?2eIFg|_ynV2!ZJ_0 z7V|+cgVgG1Wwe;PC~PNI_rsyFx52@=3Oj!6ITr;4KJ1P<2kX@PK!~&KUMx204|>Sp z_~so2%hwl;#7I1HaJU8e%n%aQu+!ofBzT`}z=PaA*_(va?gcS)W2Joct3f-hrrW;0 zslWwP@u(9!`k=p>=DGnPgpd@w#a|VG6F5}AzA;R2^jTZ8L>=s|cDCOfYqRMTX@p5X zFJya7GdI$rYTpNTX8%icE+oR3n-(2K{hCjM8AJfHO!{+IY42}Lr}y?Sck5xVp1DDW z_swr;JlK9|v~q}tuwJFeID%KNiS#lDN1J7-`UCXIao}pzVNQ1ugX0w0q$dFv&!S1<|e#%|hJNN5LY`$&-ezHuWs89U_k6MwjKI{?##hl3KXd~E< zzux-$Uq_N3L_mnR>klHVQ&Uraz|Ph|&UO|LkN3~yWFXAfc^KKPNQ}(N%1QtvKjwZW z6VSky{sW+TziKo1!i9di27OFMxI@*Y9l{#!BfdgQoK`KOY|- z43?eKGORAE@fwU@U!E(c_fv(|{G_``W@PKWrE!(aDCq|7BY?9p zbZ`zbvQXxSaPZ%MX8QCm>O(Ae@(wXak-hfk zO01{L^eRP0tHZUppaDBk+PHFoy;$@SiaN`_$EtiC5! zR=oQ9`gZEq1(ocU%?bwcR5}mWQZ)>uV>2#X8_))oM49_89)n$P2L5U}5>7OGnIecULbnF%gC7 z(CF#ug~Z3Zs`Wp5@WK^x3m#SFT=--&wtwfid@+AzHP-0OCXqfNdlV zXS#L*bkvyN&&sW8fyH0*>ApV=zi~LaV#J(vU$HSORSF zqa&BPx;p8yri8ev7elaf@d*e90BoR|o14?^j?dU#aFLcKMnQf`KT4>pyL+2KCSo@w zH5D!_ZfkoZQsdS6;M*H#^YiojH0zgNO};8W?zFM7!O+@$ZdU#zIQ@^4ovX&@1em?v z(buUvqWmz5bfPX%dwUL$!A)H0>v^uRveudxXW?E$Wtv!&j|BBEUS((ZpPQRwtJmS* zxA<7QbY^wisdS@-y}6@f2A)x5dUwRCk>2HGe>PjIn!&doqb5$!1~v|o>;R{36jvVy zLIU`}rJ=U`djdc~G@t&Hh|L1S&L7j(eJ4-fy?xZB`b7!g*2~d~(zJUwFd?#wIPZjn zhTcK)OFs+(0{EJmn+4~E+=!S_BW{PwZHZ!ukYRUHT9uU@mhu}B+yh6)x$X=!au%Bn z2@DpQGy-*~g$$5cp{YS4>wk{(mgTs3CC8g6NG3^lyb428lw zvLZD4TK|IvQTag@J|39qhK2?tnxErTQ`mQ%nVBJ{rnY~Ak#UFcbs(cyf{f_?o80P? zgYf#!Fd5P27r`Pw;IdYAYgk?1%%1=G^XK$%lJYf1mk5BQ?UMmbu?0InE2BFvbWaD-F z74@p4ji*3RY@V#f!ef(&9q|yH;~1~l><~8Ehmo^f8?Wt2;JFGrC(U@Ij302hWV|{% zCnpgAT{ZhYoaeI69zOyvGy+oCpGyt~62Wr$GL}bE)1x?P7F6m^_jA0KRA78D$CuQ*&OKjABXwag?UQrYbcw4r2Y z(1g8mwwWanyGA#Etw%=83c^Kq{)>kvYrbM#kmjrQXJV6N+}Jm1mju-%z8y~K-d7py>x>#pY~hx^k}O@8wrj$2-rznUAz6Dr?-=)n$SKigQ2NN3uXfj{Op8RI}cnK4q=x zg{)jy@;^V`!xe>4sMf#hMIxF6`4i3ngWE1IBceFJjnG{nuj7`tfSgYan&fU*?*NzV zsdTo7$$_m+NOvp5)6-L}e_G+j+s9o}_p@lU`X^uixu^_s$h+%=UQ9CW-wJ>?P)3C7 zaI${czVb4?-MYm-MC5R(0H7InoZT+50r$Qp1vKnKq(yL z2pAxLXt`qh*KTz%txf=d5hT1);`RHt%8!8a^?p?BC9pvE0X;}TIuo>=BLxORgqok9M?$h> ztUw^d$`}AQFufNR4w>z6l2FFPnn3!r6rdX2~Q#!FuO2x!(U@JF$KJK}2 z{`_MgWn7W1)djV%qA?uiKKjz!co|Y{Dk(__`F#y!jtSprVS6q{_aolP#$d4(!+`VG zeE>j^c_4Y`_U^FF(ONwTA-z!HgE5nXt$BdJ9=Hq+C=Ud_ZFY)n0@de%B>*_{{>zuw z5KN3mLXr;1BF?5m(1RNl@!`Wp?AVcy(ib(1E|{hY&0Ke#KL<(qQE>l@ix@(4KHYp4 zAtsPd3^QM>dUSMl&H@QbeHzInasNKqxpO~!h%WptGU><5wb|n1`}pxAr2f6)n2dKs z7X&PS-ltX+vWNfY166BjX@RFB{i0U%3CPVbXf_C!r95{I6VY(a5YmW4g4$oUaBpSL zt*D!*_cc-XjgcdfMP0prEAM%G$%D)Z^RlAN%}tVqzj&t;nyi z@WweV^`?}^VNtgo`C22nS%8!G_9|2zt_UL^z#w*xp-=1~1vm|JW-oX;d0;k~3jAdI zag*@drmPM!G~Kq*lFaIte$g^^kUsq~s%+J3i!%=jK}(CYsIn1oC}h@<1p*5+EIj-> zOpft@5PyH_Q|b>Ks&c8)!0opz?&ue(oxf#y5pK7YYTw4;yH)sAB;GKTj#Yis2&8MKUtMXdn~R z{tb8gb2Q!s!>Wx-0L6-eo*vmd=S5v^-SZ)w7`EvoQW5C{8hrvf7oTAV9YU>{rDDF{ zBN3U>`o#>>0LdYwm8(2}OQQ^=Kgm(YS^6@&#Rn1+*jnz#{D|5G12@Hp-oup<*`}=b zA^M+TiNsBc$6d5{#e$pJv;*M*)~k|`{g#>|6_N=Ur89Xzr+LyDOi!M*BCshxGWZE} zJ;hP?cK&`#_)&O%^2eW>nUnL&V1JqIe4Qr_L1tX;Dg(zh3g>qyN`Z1J2GMCX@WnBH zeRUz_E+=w}`L*ON#Ws zc?fnoj_5=jHS1XZXu=RsvRsS4?L zVHb+VS9DzxfTcsVWl{K^4!*1Dh-&=E@)`=~&V7=uS6^`8i{zB};&)`pJPObK^RtSc zU7Jpw5qxg=ln_28)xk<{myGV$E*7{?MHcGR4QgnD<4m+Xn+ad^f-6?Hj|9fGvy#k5 z<#nrFJW+6o8demJmk!+k<+g{D2kdi9DU53&Rn82H^2>AI>;=BOa3#2yiEx3;O$gN> zUC8OncV*?2`N0O-H61C7K>q&yy96xGTj-`=-KW<0-Vra1u?O|VG5B%vy0t2{Hb%Ob!Rf35dbo2{dE zqB%`5+k$!PbRftbd@!!!@QdB{E^^jtc-Bt5)VK-A`U5QD4M=PIouCiB1u2Hddg{@} z<|dLpRAG&Sd}9Ct8j?OV%3sC5+N7kU2NK>`SMR2upmjMywASUA`6&8k*U4CE* zLgWVI`+VDZIrGYGCCITTNH8fN?Qv*T#YM0yTceM6Ula^TmuuQRey)Qp=fH#t>NZ7_ z{+32&jNBpN?w;Y3z){^ZpQLwf(BDYzN}Ca+%+0-o0Q&>L&Uqef6bjSv3% z1|)$&A5Am5?di;P#J2+4St4O8;s>+??9LGw%2}fAzFlu>P3^t43536Z5@l^|y$5QC z6krw<$W;F5WBA*jT=!%4cwzf9h?JJDn0S!HkR*=(6tiZcd57fnvY`5-$Dhr;smVe! z9|X}MY}jLH`ONro@z{*d1@jtHfiRE_D|bgBC1||$^JC)R2!Pn%`>qxyHfzVt3;1V1qACsWlW#-nLIK27bnX9AK`=KsGTE)n2qDmRD-5 z-~!J~<5LT9v;_%tAQ;xeHx-SHEp^J9HP%?N;IWwf%zrgup zk~K-u^xB1Pn*pmNabUt%LL}4V8T>Xjoobb4oVCobWQhdnh}|}0$JRgvF3@j1hs4&> z*#v@`_g9~Swh|zw01&m{MPrcA{xA~y0I}iY;~!OuKmEW_Ybwz5S)Rqc6wg=#>kCfsHjc|OY?Jc?h29X$;mvz`U z>$76$Xhdp*?flJRtmFGT3e_@ORzx$LsPi@*t%!y@msL>szPCP!U|2{Kh)y)!8mSy} zxtBBp_gYsS`S{u^$^GcUpzZCmM#>Hls}qoD9~DId>*TxC&5?8ncUuSHDZ_4|9HOKm z7@n!UHiPSjJBsnSy$~CLxU@c*1)!!p?Z4;Pmm{^BNmkb?CODz)>n0ooV*T1 zUYnN03mh=yg*;8)!c0#MZz!DHs@#*bYSzZAkbmu49lhAHpbE z-J-Ky9gT-dR(AKIj}DJf_m%fyVOB!%2y||bz1iR2pFx&GYayeE7mZt8+Lr>A%p~U{$xGa-Lg+n8Ds6&bBoZZsHO_X zO;B+!EbKmwfAh?Z{Wi`aZ?t4#5P|-&C=Bp2g)Mu<+qb=yAVAjD*L!IMo=Lsaj?vQG zjB$~fd8R}kpj%7LYb^Ho3w(NKAxhzBgX9Fthyoi0KyaADV|~ws42Fy1v7h|jzQw-d zRZ7sdxNQv)zy^Sq)h|^;`eOA556%F^is-n?%=|tybi%#z&+vK+UF-6z!^rcvN5y1L zw;4duXs>R=3m4LL4NQo9-8lJCzYxpAOx4luMAfres_)zDkBDxy`YL>?KF z_&C4v6vFz9g6&sRd%)KpqD6y`hjN?U2|z0dgo#7;8-&_3M+NE9@oLKl*aXyE-={MN zzD~1H$i+1B)F{}#-A{Cp?7+C7t<#XE;bJiGEIsk+!<4kNGv)YFey4f~OC*dUpiU@z z)EbLax*xzsP$$E=ko+L=J&XA2?VVngXX$lT9Fp5Cr~(tfhteR6 zv2etOhf5e37^K=nM@NHvw6B$WD>5!l{j($pfmxL^5CWokbUe|H=H^^bNYn-*4=K8L zhMhh#Jq3HUOqlnAK4EzZHJ-0V+h|!FW|)5~cdpxLSZ_k(d9h-=+Gdw zLIc=|AS?ZZ@?cn1Ita2HYK3p1NHgTl1s8#`9;z!%>H;u-z_OuYYg02bUrh)2%t4MZ z&NV6?0^+FHF=YD9X`eAd*W?OU=OxqoxJHq41V)F}e(N!9zrTDCLf`&eJ(jBQ_cp@{ z222Y9ctdz;X)!KddfPaO4B5>4r(DmRam7L7%U6N=V0~kkYsQBZ?BWJu-Tyl3*z{Qj>{=#TNwQ(73oIu~FAu4fkk3KcNW;EAFEZ zfRP*ncYweS2f#AXH!U<%-}NBk2|`9ofo=-|s%!4-G=zwA z_^Yvog~uKU)Fi`ulSJ}5UQ$g>EyAYyc-aCWea^$XQIgCIPIH&w=VQ-j%}Um95B3?R z=u4^GMn=`m{MZ1tUL-Q6PfDvZ^WP9@+9ldI;smx4S|bNA_>Uh-;U^X)QifzAe}rIP z7fBM?*bPB(;Zt?`%0)^K&l(M0ys`@148?uY-&Ju;ej2XCSo_+Y+_u(j&FLKx z(WPPY1|IF*OWT-Gh3dVDlXTH?h>3^ibulGA$$`B$?(ZC7WMMDFW6F}!FteBFy2@WS^Dc>8wpjLYnn9 zb}{FbAa8~qq{0bL1jVCIrZe16-JZ%*_GSl8ATq2 zteJr4D`Di$#S$!$RW+&+ArFuQS8Wy}8?;g78<`%bboeHfi1_~Dar$32ax4#D z^J7R#_NghPErk0x{l!{l)}5QduQ01lM>oX{=#0Ed-{UU431ZaFEY*wfTvCK6**(R$ z7R81sYbD^|A|kpz@oJ1UIMT)5D1;4?PfR762i{!9YDRce=*d$XaFm+gWO*w6!*Ak#j0+T5tK@mYVT z+Y3`R&s#bBjD{3R$PD74>Gg+f4(e$PNEN_!Ji%l$TH(mTAqIMjB(r=(GN@xGd;lDC zHk=TaydN9qW9;k!bx&A4^0HX6ckW<-%A*YeQ@X;*fMMcQ5s?vhsCvZ$0&;_Lo)TL> zXwXllL7^Ku$Z#9UFd(+Wm|?+iOvwyJ<3x0!WKVP;dmVs60rGz zh*aPES>6Z|j8!g(@K)u)Zvvsbf&%Ek5S%W(sBR^KwxiGgjk?V3)xBZ!Q(CKW_@v^G z5c()B?TPc#%7043uN7l=avrOO{S@DM4sL?Bc;QIkNpW)fu7^7y$UQ~EiCw?Ote6-$ z03iL$_kN}TK@Bn0R66f|g_ePO1R9G}7$&r~i zcdTe%Ib~K_CKPqz6u^gYbHtWHP*4ztJ1%eO`~{CR>G&4VDI2O>524^DXkNOsWD1qK zhOPOY{d&d|S+nQ`ClAB`031Ym(1U+^-Qkgxlzvyz9bistA9P$f&WBAj*z`LAP~;&j zliJ6WiLUM6)x2w+k}SR06|P`p@mcv_MJD5((bCe=?+p#{awwt8zBPpPdPfo>i z)o}FZkj_h931k6~_oBjqv;kUEDKH>Hd`*Uc_m>8X2t0sK@EP}Ju&p`+F`64GzX{$c zrHKBO%3V!FM+OkF2id3OU?D4Cg#!^kw+}R=pQ<$IzI`}`m$uAD#+4VtVB6!-%13I$wB4yG-nP`*3nF5}|j za_kz~qnOY5`=^Nb#2~365=tR|f?p<>qP;eO-$W_GCNwk@1Vn~i5pafm_Rqxmh3Di^ zNb?C|%82mgSroreA1wO6Hx-O2dvAP<_(e6kH?%K_9}nVPN)9WEANvHAa)}2wE;7S^D z@I6yv%kWieEjMwXLu?YY7!F(3NW z03x9L5Pl}h0ODz25S&RT7?owwZ3C02^NL+M7U!?rgFM(Z$+YBG-eX#BEmK;A&yd1y z$_fm|mA+wocRgXk(`Z@t3Dq02=j@R=M10Q#1Br}OaQP{0|4YWggfOsW$?&;C4_3X5rr6Q*5E;xsW;dd+1F(H4!9h*-2w$T>4Cd$$kr^Uloza&U}ZF z!%|*th6utnXl=+> z{~hWRKYW1VSEltTnYj7l2O+47f%Owf;L}2M`RzT<1r-&32)#>ZbN@cP#DBzney1^j zsgGo2b{RqBJLyL-7qetk4b)beG8MC6*WiLysssDTPUHB1Op_OP?vZN|y$`a!znxLWi>4_T$i@7!c*b=4fu#!LFUPI3j zJ^Q=u&EFY*qkm4YsgqF6jm_=`vM0)Lqz+g-5~2*fYC#nrqO2oN+I3C5>gLe zw}bZ;f8;vmZCIE8+*?E*_j6%!Fa5s)J@_2_$l~O!e&8nYoBRriTZ+9&K~8=bY)gnN z5A+>Xv$*{gOrbx58Qq6Xpfb1g$~j_FAok1XNt2Aj@*^$O*K>Mz9i!h^3OhEW(y_6n z7M#>)3&ywyGWm#IvH3I*~MdJ~kg0`LKWL+Rzf*Q*pP(t1Fek@6bq_Ga64 zgn@vw_8HWmK@MvHS-!c>o8Y)Vibn@C`C;%3ly(u9&Umz8!pEef8h7R2=P!MVUN!7s zK!1K?iTk_&|1S!pKWmIq0|(Uc;qIF7GD=G4!kDGNSL~G_;`|lN7i<*C7Yds)F`C?2q7Z$&$%w!hwa}l- z=%YioyA35`MJG2=eya>Au1$m}dny0K3NP<>UuaSjKlNazF9xXNX8iOwT{(2z zB2{^FDtj*gV85pzMIu|Fkwz2-6xTqxU)uyF-V3`3N8pS5*;t|BDiZ*s;>Hc zt0#rygyFc*W`${`J-^3Y1KtcE+|*`9!(L8Kf{buqDFK&qzK~3J{kZG~LMNuSAkZq1 zQQ3R$V*=RkJ_Yi25*QgDH+E5q8idbIV{IG*M6VVx+(&-{6+iroZDY>_!wBIXe^1fa zhT(bH1Vi8GH2L>Hw3b!eLY3Oo#N)pF8=#S24b;~%%sZ=(5>PUx37$sZI}m+^XQcBW zbDZW8YbS`+Utd5Pio$liI2PD%f}N!VE8FlkT$JPM#+NlKomY~~*S2ZtxH#~18z4q^ zn8GuwHpFXB7uOAO80e~B@|Zy~L>%$ouaMHbJmqj@Faja>>D+lGz%~mZ8Oagn9D8-& z`ut5xhefAJ{R<4M9&m}&`?9t)U8G1&LIbjP6J+0peTK+Rs99vd4W-M#APF1DE1+M| z{0;fP;Le56X&KZ0mp)kdhDPKfJW&ow&KeO6NgI#5N@K8rUHtux#B^U0CIwx-LiQFcVg{hy}@xL6wgEV|PK0;`^B-in6Of>??l~cBG z!?qL69(WZD*P1X-*Ll-Cq}4eNfwM9jA|0I7RGO!eH2o?#aX>aO0Nom*2n4*Sn--&Z ztw;qJF{gve1s-g!C!GXTPsdb*Rv`WgAt7*71dl-_AsY8Dis_-~MJdS2iUUapfAr*vpwRGu z{YvedspIfs$!VUbWCb9NayV7k;(wL?apEt{5#+!l7;hhyif+7DIN2m5Zl_WGBTZnL zvnc(a-molzWsR_}%=J70F-n<`B2LZfuLkrvG|Iw}GQ(Dn%qBQBw2RdCAz7O^J%*Z% z&1{E0h@fCm0)OT@Qi!mcd_Yc4jso|s=>Gmbq?vb6uSk=Ot^@5?wb+~ECg=fRc* z1~uzZgMz*xM#sP$`o#-!H>M4BugBKtCY!m?nC#Bvu@6Z_8vNXrYy6QS>K-W<@vn>@ z0~z0qyNLESvZ9e|>`yYHn-H@s81#v2V4T1MWoO3a*n$*`p%I`Jb%=J#f35(Nzql1*de97*SWTd&f|HB-f@%>+Te>3o*b zJ#Fynomxpdly8RaN&J&mvHNs`1Gqg~wE%&SzLz{8??!_LiCCjbtR|0U*;}w+nfw=O z6}a$gT;hiBlEz5`=}-jj#lKNk{R?In)V>f`E|g}^xQN`%t=Pba84a^Hc4J@a- z;IUXN^psnP5)>bg#Vy>6e`1vY@d4!6FFp8A zO8tnQ5qzzg9KtS&|Er2csBNQ)Ob6aW*)gSMAJFMRA^Vla2|tW1tSA1imE!r!NA{kl z89T)QVkZg!GlYMJ3j(Gn#ABrno>LW$4?D0(W`nPOGaW#-LI(sVL{C9M*h_`J0GEUL^g?I>kY;C{W@^Qf-T$%%(%C=6VIh@A zzTX$@%ONC%wixr{&OxI>3d}kpMS)W&-?)zr@ehGr4>3V4mIcXu)Mb#(S(WAiOI~k+ zb_^~gQ|nCQKCD8AbzNv3a|Wb%Gz%NY5zLJxbD#VdvaPKH{E9rRgQ_Sv0vLCvUNRuI z1ft$dT<{i#MMf%5ySTZDUb=KCU4vCH$k^Q5!oK$d4Mat2V|XaH<3%kSC}<->J*+Jr zLgX6e<;wy&6&o#OImrrdGpcaU+Oi;cK&qDwB?6Tzc-kOHC16FfyhR6|*+{Sg0a)$q zwW4b19K%wuY(koyr7`0-aq=zP z;eBnAWW{WPFg$Djr-C6`cU?+$uwl6gM#~e6vkXli1Nhw#OAvK+S~j`TIQtgmj9p^m zy6N#pcp^{rCBw4b?nkC?`qQWUJkAro10Dm>RBNbb{E7&bC;dtI)!H@o(~rYn+Q!t3 zKUVJDH*IH2vLE_=QCSuM<%IAw%GQ=782g#t^`=2tNBQ0oo^Amnc?Fm=dBv>9UE~r} zn;t=B6xkY{r?>SP4=3rm6oOc4`?0X|mOV}@kb+RDHjDwfy)3Hmw!DyorU(>J!Q^YG zc%w{JA|cT>>5>t@evf!u0xyNredvqX6+JW8m()rvdIM^1QrEP|oT~pqxB&QwnW+G_c(p1Az~FT%@IM4EU75lG(4-<*MIEp%}G7$Lo^KQ7D|r}iBLtByTzQV7=xLo zN@N%)V-)ulDygbI;l3PlI~Dn@`QR2mH6=6OjWnTJtTXkzZO^K@zj9F#!Lw~iC|l;t z86}7EzPtW3)Tp7aHwY2r#e{t4Z6+wuy|*u#y#vw1`Y!y6$(^Jt;R)OtKtnkagazQ? z@S|LzKLde4P%=TBkTdPV^UmGf-M3)XK=lV^JprKytk?e+pSRQ6*UtP+eA%ASq4K21 ztQ9Ndln+RAWME_@C3!#>8xL3;xy(yhf>j6#caiA{!uWD%$ve`ZIn z&L&Ks$Xn@LlDL&kGe`;Q+|--w+8l8y#Bv@Lr82LstIGtijgpGW3VQk=qGfUxKq($5 zK4R`>R263V7x}NZ@IX7IJ8Q^q2&!Pb*u{SmT&5ITBI`CBR-d+II`~6Kdht4~SDCSe zApgJd)Sgj(R_6yeNe6s@7XgvUO&R^e3 z^$+Rp{Q2pA01YoDD!0ECG3JZ89a-g?{9EDj@N#aL$xSg5fg=)=1LK$WtSI{TOc=kd z@?_Dk8B+gGKy@b`JN{pK@OXK<>p$e+we7Y5TK*QTlW#-jFQ9{Q7`jAFhf6{cqc3>6 zs=>u4a>7T!EIAIk8K@*IK67eS!Oduf9%dUwZy^g9_1GGp!zc!Mf6T z7SH=lPE}(c$J-1l)a^DpY!ZF&@*<{vuP>B<8ZE zWaF^t;6~ncL0DDF3VIJ3#^QzE8yYJ;G= z2fxjrIm4cKc7%_a(tkkW&g1iko5Odqkt|yelCFw^HlCn8Y&cv;)h*gWC@Qz5R3J`?2sYSB498#j2q=z z#QPNSBS{2-5)rl6j|Cv7EYFNXI@UX2Sl3Oulju}UpgjjCP8oQ%>4EZXue-ne0%OlO z*#{}cvVl~>48p*?*c~H0)UhxNYOOCVTf6TGq|VxBC}T<8LC@>7EyE$D=R8j0T`*p5 z=hV}2UBfe2M(&poPWxRi^DBewlkl*P#}f`jDo6fKui+zcjEr?7O-BY&y7OlaV=1c~soX4)$K9!u{Bw_AMTcIf1$Bhn>%)g^T z8>^N+ouf7h|{RC}`^hIX|KHp2Q|YUq3}Us+Z-rrcJAHDMCN%7zNrL-PytwOm9>S!;Ip}*PsD_3kK*-$ma<99TS$pW48(4$)}6(E zk}#0B5XygqFb4VQZEz@@`IB{njtb+N4ZTCq@V4F7H|Vy;PDV-(cc`~eTmLN^Dv#Y; zpYUaT59R|gxRP&!?gTXBn59}HAX{MtY@zDJbY*~pdX3!f|6di@O+tn*!(7Rpd$kD z|H$9-{X!r87W=mCvie?J`8J)aZF&^Yz2r)|Fho50o;cs7U?1f#pvQMmcWzrN_#*yG zXa7Orn$t$8f5_l50T-pQ2Z}8iA#zUwjX_!wPc{*AhCem8!N6C278f)y9C1)?Rlk{@ zr&hOojXwHs%}#y|x}UA%o5NVH>$iln%|eU~Y@HSgw4iZ`G>wt8oe=nyuHN}UV(j+k z=?q*yNUZADbPfdjyE48Q3SK7Q zg|-5-zaTVq7(rh$SbdS+-4;7$>A0phcoauS^~oX99fuC{Qh+RlV!6SUR*PfUutr6%1pnkP-7nXnzv4 zC>U5+4z3W*)p#7dcySv;()XM0&@NVC6^%!$5X;8F`(>Ac>5KKw0=Z}>Y}J~<=cpq4 zq<pnFnJyH+t{L1RZaI%0POwm1%s(sV$gfcr3c zpo;q>EQP%SnjZi!d}{eV1HS4L=-=Hq-W>ybDKXS0z9U^f;D$TTr}s#_O5Ur-q;Pe% zlkv_+3!J&lAqfgv-AnA9?FX*uqxvB1b<<$G5_kPyayuqDh3lpqute_xb-{GA!NPao zMf~7RK&@1o06P~L?;ijMVC4c2871)XHn5ngFY_peg;;Z4dF9(ywASN3Q8$$LoKwA5 zG{{@baAW$%v8@He`6V^Pk|)`PMOp(+((__&E=9S}Ijbnx4?d~M9Ni^bp?zqRU;OH1 zC>qw>Pp~ymnYSP{cg(^QU6O6%$&E4_?9{*##xDN=(Ex*D>kG+y<`G)?{5`3;p~Wk*)tuk-r}a&24>*Q`mLT4J8IkR$@>FU1t3^=PtA_99r*o(j zL9WF+3m3}J)t@U`z4I6Y)t@-#IrRwld}%}5zK${}I}0e@XiATmPro9?ZA~m^>kb@i zcq_$?p8vgv7&yP40An;^Q`wdMf(@asmRf`(IWNL3vd%`xABCCHbpeIKcKhxD`R^2el)y3B0s5A zs6-OfEf_R?D)xKmJz@txj6Bu0VZoYW-i5Y?=gsz6)PQJc8Q~n+$Ede2iSPSPqzj(( zTy{$9V&)33_huM9GJm+XfIN!~JPTg|4p+spe#5B$a>k3yM{_iT8FN8mVw6reyphX zHsgVGtkkeb-epv-OF>}VUBn*tX!0ZKN{H>bqXo^e$<7roPb`%BPm$=LcREv4ksE`> zL!K&kfS{M9qOOQm9}rxz^{&I>L8DPTa3*=Ut%LXUrznI7u;fAjX2_n(J(qhr%-6G> z83o+%YeLK)+ddAuIHu9E)vM*H{untGT=3xyVd{g?dFP{M>}xGQOa-jac^#;u!^3!& z5@Q)scG#$LHz_?*zPjz+Gj(q2^ze4a9q$fWKjGwKb}RW%o@!;wi(~Y|PB0X4XK*fl&Ybq{I+UquM3)l`J4UrL zCsb9jm`&ath?H+DDOR3f-8@sA0E1hUg1XXofd}uC+MN#bJzYLjsPqNy;D!59BQ0N- zeI2%Xh-$wi!^+`gMLpiWdv~H`)+IQy8ejMWs!Q}z+TCHR1%}bl>ShE&DdBaLC=`h!RH#e4dH2mf@OB-h14i z0$nwN_1B!eSU7!(u#erzQGi}lE zegt^=$@XLwG|z>Ghfj&Y3tNtJ&->IuS*Tv@WSu0ZY=Nyq^w4zFX^|6zwnlJlW3C0# zmTsa^_ZW9YP7d%?j<8YgRoNo$B_%{C8JDVehhi#Of_Gr^Yl9>MHU2#7=_lYdm=iNR zl^HIA04K6?2);0*zDz3Q#YFJ-C|&5hJ?Teu;Rg>Mq?*A0y36fXDKzDc$Lof)yY5vr zYKdSzO=vI`Sg*+~-{?{t;fWm|p(;PW`GaJN($Vv|GR&H>ir4-GE-_tFc6PQL39&fn z6c=uqXYYu>dutGlWEL1FGgy?6{z0&ceRVr_f>&0+6@AdOjhY32ie5mAJ-8Q&t!8It zFvr&&)*Kdg7}rkG8`g@aFi#|IwX=6<|BD(DmTN2bAC89}6I^fJfUn%?+WRLsPD=?5sv70v%iGR8(KHG2 zZC}uu4L{mkG>2*GwoEz=Wc%NEDCPbvvd8+*f*!A@4Vx#e2fRyTt}lxk`r>t=T!(_* zA_UC#7&nxiiT<+?<*F$>?sFUS z!Fdj6yw+K?uYTw5+M?mh^VAK8_Uhju!sSB=;77Y^{TTOZ9V3^ySF;}eOR5Ws&WRZR z1~OABO*WkI4m7m?t0JO;dJst409N_qX-4omBORvTVTX5|P{CWiR)50_i;$`o#u&XW z@;)x)g$PLRFDUoOyT70?ym#+IFK-y0kF+-iiRS?R;%r@;R&CBIUcqxmvn|Jfr4jOa zkB6coHDfb5$u%0ZOKSc=4bN=}iUZ#ff%+j5il8P1o*$&k=_oA99>HubSJLUhHHt`v z@F6t0&BNFt{UNabwnHLbaW18({M%Kvy|b8=>MUx!)?{l4My<&ID8vo*x;AYzMSofSu&HZ+GQ zg9|)$Rz~dj2K;Q{QoxbHAxhCOH^!>D#VpW}A^Zk+3_IPop_qbm2cj@RfQ z&*0VX-m%qMKO=&FXh;@^p9TGYznbKib$#nt0VliI@1k??(i3R)T2PjJzIQxpxsF|f zoi+LLcjV^)IBF+@ z@dz`0IhDsvP<=x=Pe^BXcWnXXU_r>)G}WFzySYRp0)}>-))SW>oto`Q>C~IGEh2*| zAl5E~V}@XV5TWBb#2qfhcRC^F+5bi4G~ptdh>p(^658M3J}zY`le5{7P;#- z^){hhF6`NB*4^9~|w$Ak_!ETJX_*7ns(9HnT! z6N{IIy7%t=cFlN;OjT;n|5w_Xhf~?Udw&T}GG-o=u|#CZEXr(=DN`AjF=OUgO6G+! zBtk_>iHsp4V`fSjBQuGNAtLX2^?Tm^>|-DMx8LJEcE|cB(>-1HeP7pke!rh@pTAAJ zZ!DHB9Nz3(@cUIs)lJ=AlYYm~D@u-!S(65e!Q}C zdhyrp#@Bv_4{{^z4Pi7-1&5j=4*uNCi4~4-PiWzz+fF$j6}W)MSXI=&mTbB_SYN%3 z8}5W6k3o^E6Bo~i%uPQf3Jtermdk`7jRRaT*_aDqW8o;xX;{>bq7cwz>nfI~xvB!>cF z-_yoHo%e;^PrMfc>9;Kdr7f3!tS+yQ1=q}CG%JtUE>zqKmo4z76tlVfu-(o)**)T` z4k(gf-lIjGNWOovvFP{IBE{~c-B2xgg-}=_-aT!3a?n+1a`2qm9eEebiYwpTTLIs) zd3WkgeD~>x8{EE&SFZPSCN!8QGri}%IV9{_&(GCoa0=6&-okQdtZ4Jt;fnfRFWkOb z-D}0qbz!cSi7ut?4vTo^&|wlInO))OPC*wzO1tezuDYS(hi4>~T3x~{3Uio8#bX-A zXdLNTS(dKBSSEm(qr=OptvbUeXLbbGMoATVZ*6XHOrIR8W7^ni$#f9iNO^HCk?~9Y z%kb;LrIMMSD1Ke8k&K#^r7R0>#j)?Z5W;+P;iFJ$-S?@gV%NC9C|Ea06LUDSS%2P% zY`wn8IBsF15K6Q-kHcCjxip+v?N=(FW!v8W)s0Tsa?u8eBqz9nYwB_c_p1lufOYWfXkooD4mTqmc3CZ>W`ZC&k})Oy{G z+St2f-$pcjp8UlaGq0jL%+1t)9TV}Ex!Kc8r*EsVuki42TH?Hdg=OinvLn@!x2GB_ zL^3~%-uJqqns{`XWUG=6X6E4ijyE;XtZ1dm?VP=5v&GOfP&9Fmc(rq0*B>*`+w$tV z(7i+VR4XG>8IwZ4ye>E^Qz9%7yHa6Swtt>LVYz3nb!_-|r^IdF-KO`i1s^XYv0aEZ zT#N-k)F~KL3&l}Ng90H@gJeO*jb}C{??v2sO-Z?Oqe+&;CgIG{VeUse0W%N!@y8dM z83P0_R}6MP?UF-H_TEV@`QIK7SNe>^#xhhqwLAHGoES9Vi8#_60R{K4-McDaDJ4DM zcQ(EI{Z#O{h*i=xs?u|vxNWMs7RK$DM1Ddp`$^G-mg@o&#%UZcxgS`}7k3V)-+eHU z%O2~n^FXnb>|DW6KpMR))h~rc$Fld*(wT0jsJ%5~W(rc&WllukDzAiX*QzKJ0oruU zLwR?L+gaiL_L~AaSk9X|U)>fRdPVN(+i>&Z5T#4bvGy# zI%&H0kvMBo%?^`VfsFo|(*5H$;u%*T9#w5^c9-D^|G+7dNg0DHkM+R4x=M0UnMW7= z8u>OQitEF5(_yB;^XuD9Ukr<{-7Si`y28&V6YeG7d#Pc^`x)IIgnLu+0yOr|sc1^~sCGB^;^K{Ujlu0xw7@mv168)X$xv@|(wh znm~qP^B5+QU|9Bccy{dz4jaLg8JtX2dhxA{1tRZ5FAtF?r^|bKAPgta}~&rPVTQQdUX(ur|wo!ffIMhAc((=^fUQ$l8k3 zJ^j?ijz*%o-Wb~;52m0p{7{B@vt$O9!S2ta_;dyl?JF$+3VAoH07#0f)YJOCiO_2W ze(fjTGv>VxDc+C zdJLSU6!pU~)RakF$9Pnv)Z@I5x*4m}B#NO;D%q9nRBT2&nr@0Wt!}c-E=6Y6-l<{q z+)6nZC3_vjA$cr$P$^9|S=jG{>kT}n>nCB-pe^rsVl#m=7qcpPP)E+t6}EOGKb{3% z5nJ1L#nNJIx4tPQ2{ccUDa|(U$#=cG=}r68hnYt$3QA5VIY)1bDL1)t^%cYA%#6`G z;okByVTQf`-dbR`m4fZc)>vU`EiL8oO)&>5`=Y4moO8;>QCJaynYJd;4Bn=@ zM7L-KS7lYX%dX+-ZqOZPn36RHLzBZZ^Meguu2*>n#MF-YT@2AK%d!c1U4#M5vkh0z z%s5=QZogA<(AFEaKOx9lemY9m^QvKK6#E3L+Y9?21v~i0`4s`Nh5M8CUEmx3n-*|v9qm!ECO%- z<%JOB9so1u<~FY~3pbu3=gQ9nTDWdsg&!=PJAJTDEA(}Q)LD;V#!m6N>g>Y@hZNtm zGzW@B^WO5MACzi1Uvm)h=5~d7PlAfWM6`q`#tLAI-(Y2B~Ro`%(%|()pZsJkB zyY7wT;7nVV4+s;j7}CJ^j^1;|u2TRHdr+00b(SSPfL{iG#>kRBS!U%Q!i}&Vlu5Uzz(AH|M3)>uZ zo1xZb@4k4RV%{K#g7&g1&q6@SQg^)FL+Vy}?$l$dr^lH+a#>5*PQ;Zy7Gkp&|8+~> z#YFwdDxEoXrWrj!hibWItrnL<(xbzV5Qe!^uoC**CKyz5L9hvs@b*A?-SWxa|A^4L zE^vlR+<|KQSpV3VQC1%fUr%JCQr&q2gWqMVN9pFzYt*f{&nszMxI3@vK{+QX8DpD# zwd3hY)7!uFh^5*^%x0LfXQsIF_)dF z;&`j&I8Q&(5&cXkwE{Y zpu5H)EhEjW{S5g#Su1SSm$diKcvqxf7vRRXg+s^1yB~_`20g^^Dp&Wk2 zq>rlJ&*J&=&hV*76(~!)DoeS}DuncYm%#t7Bh-T81~?|}r-(C0;yzUw`Pc$|2pOyq z+Y6LoKYPbviGAAQO&Zh$vVO22%rzoP0QkFga&_!7LK2w?F+wi`2fW-puqXq8G!AMp z)+Gk}p{5|fwudr|VGo$!S?_iFu#D>}_Yj?UOm2EPdxcN1-pEMz_vp4*?vJ*OJAJ|9 zz3Z(;*VY_Euh&hk5_2_5yM%jHy>U3j$hZ@Ejs0VZ0^UQ{-p9IhsN{-kmCHnVSSM+= z5ux#p&A7+R>!w2^O2#ZN{%cnad8iXw*@NPwz2@$urp{6Q?>cL;U)YX37lT@qlhb!s z%!5)IzK+N#7cG_9CeLLvt(Jg^p3P$|(rKfw>vnX|7lvoOGAVJQ9VBA(wD$Z@i7&s( zj~cYe8KPCB=A@%lETLAU_KhXUZY%y3m>1{1McaVm&g3#Z%e%$b!6q^h+cFc&d-`k& zNz`5Uyu0dA@$OM~N%D#g=TA9+0`1k2UN0x7(D4Q%u#hq}NYjJ*3AD$6^A!~n6UgfA z>XKX7%R&V@bo^)PeukBSR3_XG6e^m~-UFraa|z7w_bsQB8pz5IikMz!O=NL#(g)<` zO>VlYzI{1{{p?~ z@+qPG=j4{xxm&l(>x+|be^hX}=OESIr15l;wfcpB;U|_@YMMy+3{xkxP$zWLYeWki zQZwPfz0~D0li*^jSf7|-t-!kv0mX);CClgHx0M=#XBt6+Guz<%ZMeJ^k4+~;BBVS1LL998+jyh z5fi86zj?B%-BnCHKU>72#kZlRS6OlC*8PBzpa{qhEWi}?G z!;$?lIIlkb!T zoZ2qFhdF&ua#Ei3RpXX3?wy#p)E_=+>=bRtLegpHza>iLyUS5vv z^;;V9Xmpm&(v}AtgbZ>xWzv)pvr*S^m#zo%(bg4CYmcZIev|K8G|0RpA7@PTL?xw~ z%$<>5*DOs(!-Mm|)FHWL#klqMxzr@H0^Wcj?1p>F+~g|5gmAFmS3~j@-gL_2JEsZx z1Qndzxh)wVS)Y1N(}c}#zfjU1^Lge`^HigahrYeXVreQ6sN3E+o znA{Y#o?yb$utzwL#|2wHTA#{b^nEsDWhE`<(A8L(lNYvH#OiC-zghQJrR|Fx-ZX@_FS-}RF|%#DW%ukD4micuRNob zj$IeI$6zfa*nH(mbYTGrelQ-+YCm6ty?^m^gWI}Q9+50N+f(i_eF?dtH|(o(S-#f{ zedL}Vm18(*QAW|^LhMCiQebtY!M5V2I8j-DU+jx;rB^(~Vd3S^_QRC=#f{I;Kk5u$s z%E+o~{uqh>b3SIghZ86bd~&;-bxriKI1T2VW&K!e2O^sp$EH7LQ zpxWhd%*h`7BF|$Wn_%g4k%-VU}XgS`EF2P9bMuVCq?{9NclL) z%S)Wx-VEJR{#rMtzmS7fTADfUV>{rghC%e|&i|PNP{wxwLi!L+0{GCFM68Lxh>>sb z6rxx_PEF0qstH)*K{GE3pfX*^UrYZE9G@v@VQ!uIYY@P2bG;8&Ld{*x-?9fSiGbW4 z=Dd{$nImtO0d>m^a=nGGqp!;jHg{c|0a+XH_wo$r3>?4($pKD2TAqO;_i&Aq!<(?M zLxDfOHbBQaKP2Se62jasvPS*QGDkiQ{Y#gC-cHUgmj=HcnjW2Ukp}A@Nl4MhRtY|$M1P)1FB-Nu`tE>#4(V+Mi2)H3cC-3YAqo4 zq#XigPVUXayA}F?ZU{bo;TdikA(aV*0dwKP6j>DFDv_}UDA}D(m!aYY44V1>_2Pa! z*4w*$4HWqKg^PL?77q{*nOj`EzY2nI;sKZ6DNMc}GWZI5_3y#GulA~_-_H~Q$>9x; zOk~ji|M5^PqZ`58&>t+Zj~|DAIV4Uz`?Lix3$Totx>~A%at;HmE&_xl_LqBrb^QW4 z24D(&E}?J{4hxY7;bej+{BgxgHOSnUhRla&pDG@`UD+)L(k|c(uYRr&M0{hIWt`uy zd?leoaRaukYhHCl;`$Ve(yn#SZ3fK`;sGIx?DjQ=`PB3Fi%f z*n)eH|E^)i;1__B!-|&*+QTR$3Vf&4zTZ2*-tcK))2b&^8o_iC-Y?){=(x`dSlo93 z_)R-Y26-5vUH!Aa=z0s#Tffy7f}%Qi0QuD5zx?sTnq!OLRB|3DKwJ<&e>{ZqR_4Dp zWo7(AZ=^Oz5+VLT&JRE-E91NmpmIw)Sc4&e!Y`0C01YO<<8AK3W1j3rRh86f2F<(a zi~nMj5kEJ&sHE~M|NG(>=nd}x+V&@0JH%=~2-er90n~x5gM%@Dkwj4~9O_8rH53Ap zCgZ~oV4exsh@t7=Ei@WoV4%boFnvK12Mq2F5WeF8ucM`9kTLieoI^6cOKlMU^lg8| zlzmpjq|qEkO(kh*9P|M|NS><|IrU&Uah11$Ko0-9L^m2)AqK%z+DACKei z!7usmj-NcSAl|S65CCF`zk>yY3(ERXH84nlu|~a=pS1=L+&HiTvw|5(0%HRs>K$Z( z#RCkK1u~ItpW8~Krl+?H2B7vkXwTZ3`ScsA!Vbp4px_wX>+*(HIxGAs)hk!-BTSeA z;O_VBkTdHsEUMqZ;W!qUlr(~E`Su4uv2hIScKHB^f)ymG5}@L6+XJ`CJ1Cc21N4^- za3dpe&k6}Azt+@~E4fp!ldT(*-dT zA6E({6rAu@OHVHm!T|i3fO;I+IV<|IZr6$X+_`i9cja&GgV#Y4rFx+JskODWcQ*(K z_a<9~KMmY;cfr8b$%4Yq7jnf-MJT7AczJ0V;ztv_TI|)qB0ACbFlyim!}+Pq-WzL zzdZBqajQK1T!O1F?HOQsSx!S(8$27HaLdTBtWxOI!ZVAURRW?@G+^Nz02fA}HWboz z%)lcJL0;hBLrgc|xfL1Afi5QRU$l3iQ6d@UlR+vrsd^xRf-*P7f2kLMBo3L9aV8S77b8fYs5M_lStY{pYbP}su)lC4!Vsv$N>j5qqoseJ; ztbO!e_yeCm)C08r<|>crD%gq3HNJvK2mvIDq94p?O<2A75>c|J05puirED_ZZ3o~_ z-xC9}y#ts~kl7nVyu>dFpw;}%R@0C=QAPrmqD|H%Oh75Wn*dAdPcSfE{-_-DHGQ%T zPu|Z}0NSE}O9kV07_kkfZj?V-dr2@UvB6uXkf( zgQ6bn;dPJ`CKCM9-39^|d^RFfc>d&~uoR$#xIWD@hBAz_w9}!Za35fckhuqJ#2A3L z`~|Pn3y>^xu!$F{CIL|}3``J@p?MG7=$XZo2$OW+0rYklJxk+nkKcgGVitm(f*4E$ z%A+XE2TEJco8~G!#b{hKkV0OFD376WruO`)yMQOW`yfN>1U%d^a9$9J6*0Ym4=D;k zf9Np`kjKmOoAe-41nz_9yImmmzmQvj5GxF1W=#TDI2W)T2fIM070&2J26&i?Am%@a zYP4Ta!rg$lum^kd3aFg>1}Ld8p9YO9c#73;&HC1$mz#Hw)2rQ+EN|iBW9ijR&M}gGWEaRoOxY&(DpA2VI~U)&hAJ28wNS;6UOA>^O=vx_7S?b_V@K zFm^NJtRoFLd2(QM0xdv(XNEQuLz@_R5f(};1t??-DV5AXG&KZR*ohh?XLwhQ!hOzj z@+7LJya#_A2I_pM^!MMuWQ)XM%pjgJi~?lfj=|%nLE(RHb~hqCT-aku8B9($KQ7Fm zs6fP^x^+#6YqQ%H^mI#DP$s4T6b?lJGKp{v!3Y%l7dh^qNJjw4wJ~cv-sbX@`G3qL h(Io$W&WG$dAnaw{mu}F0--UsH8Y3j_&n!QFy;u;3cpC3tXmcXzko1c$;YAXo@)MR0ctcfFN--;#ar zIqN=W@AHGFMk!Tu%rW}gTW@_vC@DyyA`>7(K|!HPONpyMLBT{pK|wtI9@XUy2!w#8T3u4a+w_ z)~b0lFC#LryTCVzOomRh6?E2S8CM#?mn3I?S(PTk0ZR>$iA5!cB0L3A_0y+085QMJUsBpg3(10 z$VN3Cw z&FI{{5}P#8$K#XF2^q}~@3$krCG?81GZK9JaiR|SLYjbV!!uCWg5PGEnI;U*20P=P zsq9TOCn@Gw4i8fnk)p8C{5flclUY}oo`H7hnitbj)LD$64Ur%=g>B?>y^0-p@Fqv9 z$(yc!D?bkC_FDM#$CGUcx@b5c4U3U^CG@ABEzx9@?&pXo;dZH~W6yUA2cdv#J{8aK z3i=AZ=sE2sG{`@J=6_bq{xA!Yu|5;q!g+C~8`>BIfj^?5J!(p*v0z!$ree=Ii%O`e zl^|3WXh)D(fA#6giY5KX`x4`ALm3g>2Tk)F0asCxn0~qmXT1Aty)!JoPu25QT1-4VZq z(o+#d-CZdC0+jYlw5Mg2D582es zfUh`g5ST~pXLVb<|4br!{}x=7cE$XtIU#QP-J%2Yv89pSedud@7KJ@oA${Vgq=-*A zo6*-oyv)evbU+wQ0K3T9EPgOW=nOQTk8|1HX?TD#Lp)Z7|* zA%sgUKAQvB%+TFfQ5-dkC7+SUlqov)`ptxX1Rc{;lxLI^W@M3 zE|b{eDP)!d^)g-%`S-G~OvyH6t8$#v&sLqTAB0wmyWo*sYK1ND6NX;rK=7LizlN-MyvSxI7M9XYR1dU*hb13@BD^(?f38_YP_)C(3+2hf;$qtkX3a#iBYn z1-e-r{}5K8G(gNHC0@vY2$N4W|6IwuLr)|CY=^MJ|Ug2OPxh^}MS; z`B+w;&RR!!gm#B}iL613?v0)Kk!|Nd!j6 zUmaYb_Qz4(T-3(aIGxYVdD$QG9{g-WQ}7#nUs1Q-{@A-{U|yqQMZTzj^<03q#2`1% zef4Hqx%8yhWcJ91_rtgoNc%>^6p+-3pvW$`J!o^m|2y#Y{ZwUSVPVnXj=X||u6^na zWLCjh3d>KwSHc%fUco5Q%F@gGgr=G+&&tBzZ%`Kxl=%H5qLJ*>#P8`t|DJlu_-ExH z>R|rQ22D|prJ({GXw;*Gdc@vjY(Eu8b>xAkxC*}aH>r8-iCiN^s11^pF~W+;m2^T-@b9BdssO0|eL$7{|Lr49WpWP(ZgQd+wNbbN zy->t~pn=J~&?Wvq^CEiqmT_S3)7#`7RyylR>LxsJFE_eLk9Mu{<1t#fYWAdTa!Z1hL{v2o+t$u<0?2k z^Lv%ozh%*NPicCED_NKt_)tDIH1}eQXE#fpP~(#|6m~sED{eGIMw+WZ-j{ZXDoaO= z;B(~nZKS3Kg-ze50D6wW+V6}rvTHfQJk8FuXGszR?SxnERweRsomtm2=y(p~mKWmA z!yON?G?4MHCiPy35?eDBD> z^J4arWV>^5ipa0_x5Q7lo^}C40bH)US6tW5m~DnFYX{4txdoI%PRks$$dL^Nk8D0D zo6!m)+i6~>+T;@8wBiY#GO*W{(tY}6vZD0h*HW;7Q18}xOX(O@saO~ ztmVoVobMnfzkl8F2;e7skwM_}Tw0Iv_fAyp)`kF}TfMob!u{MiaR1Qo2Jb`S8u0R} zFfQ={p42Z}#&BKI&VJ_{M)rojd}X$$E-kB)v(<$xU3#=#|211uYqv!?<0j`kpeAXe z_y}8SaZYGVju>DGtC>xjNh z{5zV_So*?B=9Hr{`wI)%wzdX3dqlvZwZ z?ML^cD0ArB-;hOpmAt+6;!(ioW%71I*-`Oub#Cgt<*dLN2Lv7n^00;q3gJpGq0Uxd z64JbQorDL4Id6Hv-vaxi;BL6r?l)iYb#Y76?|zS`e9W<@=InC5Lj^jF0Z)viJAV*9 zbcysOXGWb`os^ZwJgs(>r4=Lk%}d(TXQ3Ii;jCLYy_($XtW?D~mI| zqWT8!_k>J`K+Ek?rwo!2`=u}6TWx_h+;5o-2q)Qtg`qUxy|+)Ega@w{zEGv^0&|Ba z2_>E;q3Ip4ZV|Ara%w)wa~k+bO5_~$>{zI81;9ti)2LRVXsRhEY4ALWQpJ;}z?Ahp zOhMC2zvnA97-7yK^M*ZmcoDpcv+VR)CuIu!7FLJPbcG3agQ25lNoVmNvUm*?_>O&r zJa`S=C%wX|Mn_vb08PWM2f}!~F zU?z8HknX`Ro(+KzfTPO}$BK;M!EO=D?8oC5>l&_9k@u6Lc&aLQ(uYj~$s}JZB0b6S znN+hBw94rx^@piitXKj_^+eRLqObV;@jucW1+f-hy4e3hSfjKj^LgTtw(ZK#q0dy% zHM<8xt>~%Q+XY0~5tp3x*A~!-H}iksC`iORhl!UfVnIjqEO|Y*CH}Sx<=qg|aJ0~1 zRB47nSsDAF1x)HQ^Vh3DeKf2#n3P--ZI7Kcp`r0<1J96Ov{UmiZiEF4-OR#*sGb?S zpRaWxzwB{BmMXr@h_^;K9AguTLSyRYOSoVD99=mof`K1R&v$}1XD5}7nKtk zF+3h#%Ql{-;9ji+#^C_ouwx8p)a27L3($NaFRXygejL-UDEqo;WAaWT7duXe-j&g^ z8rHjWRD?=twpOEEdjG`3+(G(8e)f~VRaivw`K(yD`aJpTQvV{l&0ylkzmr(_US) z*t*o!hfOmbdFt+w8T{(te9O!N%HDC!nu&)#z{YF-5N3)3aI$2Cq!~$4JZb8rhihEu zQHk7q(jNVkQ$SWgm2}b&~Kc1W&uNtJrsay<>Xg`iA>pyNggEeOreE&cHN( zusnwi_e_prVjCnQlMK5X;130>H`|$pwQDX<+d-4|du*!0K@Cpdd!T%XENX*mHb;C4 zi|2avzJ`BE`$uce+Z50CIA8(ZkObJAp?POK@GS@7*4+xL#>*w8Mk0O0FvaDs#sVKp zedBfSa8gQtD+I-O)F}qR!SI2YIogyY5?KmS0gL@FBIn4vibVNB?4(8klQnnlE|rNj z&x`??a_GcgrZ!@TAv&RK&^(F-hXYr4Ltx_&(>KrWWy+$oPd6(76Lw`U9grMrlODfJ!Ae%^!0DyFXQ=Ohbli&1sWi)T&k<)?8*g{rioo*e zBLD4*f37Q21*W8ve;vx8#Z<$qF|onD@@c=8Dfz((x5Uw_x}q2TZ8zF;y7QYeLr`{zjNqRR4JPafX2PzDk2 z)$~TvuFo#QaohTdr%^T?4!u2dFU*VWe^RVE6+(7RIj>6On;xU*bsa*AjDsUV#mmJj zo}96BbH?RTlXA}``N6FF$jd)T$v4%yj*gBm%i+(T69;;VxQ5MQaNXXDh8r6{-6zR= z_mBz1?RFp<)b7)v}0ak-9v{hbX3Yig92E8A$XXdp0o0HvgA z|4Nd+NdLD6*apdqKW2MyF$*7OI%c;}{MNTh{p{{|DgNYWUVRI<4T7gpvY@J021ng@ zSUykRI{r^mxh#Y_slUH=t?6O|BHMlPJN^rSYYB*ym_snoa6%7#MR{H;Os38PszG;_ z#{vVc36Yd}c9L@ck;DEonf-4J!X>q_z(C5vPjuGM|2R;{3I7s}9mHfXY_HMPs}{MV zMu9IIMo9$cYxqC&^f8K)#+Ab*r+tudJ_To`jQS-+To=$H%lM6Gi&h#;{(K8Bu}{(b zv0NoMix8;|wq%!GAv-AY#ln~P1#q^@g^3_o(}HxYGrIe(Z$S#x!-B{ei&f~&4UXy~ zCOxBpMVl|u;7NM34GETWjD`~1N`Ei_aqWqjet_Y9P4!I`_71O522)MCz*t9dXd$=1 zS8W2YtoTECSm?F@D{zG~S8M-*>8WD#R$j~jiF#$!C$8;=(R`U8yV-hO2tMjf5S~vM zIgg%#HFP=Io8>d8>59mTiq{Y1&fH;I(iYhS2h>vj`&jZIa(A56uJW$T9=}&@W>qO% zh~qb*Ao@vG~GE!|vaEF@v4MNuLTmDSUXIYgU`-n@w#67IOoEFvlSY@dJ-}f zTEOFArnBtNztSk(WzJu1V4OWSpRR%_lhL+p$Jk_1Jl>N;QyFy*sZHZ4m^ z8c-{_ZzD{4+cxvab05v+U@s-`^<7GC$PJSMlsY}-&(hZx6^qpqGkx3v?@lDzg<#^rTzSErzr$_+9A~8E2Y!~f?cRGqKga|9 z9JhmhVG=v_K%uu4lVUOOB`~wAk?hu#Yr_4!v5ZV#J?GR}jdeW6npRy8P)FghBPq4* z2+bg1y5ee2r%AqU+@w-aQJLH@a&wAqJ|^%w;i$?pFl)8tewM{n-J`Sogxo6b#BGHf z&8@q6;ff8S(v*{rNxVdLnraG@dl?W;mT%_sgmsT#wUyEG#LtzPoAfMqgsFuHQe3!| zOHUTxh1V!~xwJe_F~NmiBi1BDd5Vp1B#`PaM7az{xq*}Vk)J!3^4Rzv7!W;%E?JK( zLKW63O?5Z#{IaU1uNX&`xzd~v2EI^_kGycFd*O@`crF<%qB_liz09R_i#uwy!e?cD z(7C-68s^%tA76&sum_&ut%O6$OVBY8OcxkAhpN2h=%_wLd4=v4&@T9ArEG0F)`V8M^adr;F?&gTdxYj8 z_WEATdqMvKVyE%X?-PRSY(HhTIn@3DW)vZIk@P&6J@=g9XOK*ktvr;$`yL*bxPGee zQ#m}#lE}I=mLrSP^eYJ`9@UO3sw3Xads(ts)7ZHwn=ecH5=`5VHQ~YSc62gwVt8|s z)eOG%abndRS+X-a=HB6OUevR$dN4wJp%T9Gs_!Jdh)Tt}aV6v=4b!w0{)X_wX+$92 z2irL42R>H%@`|fT>{y$%Hu_yg1LItkYh}LB%ET}0mVmKE7bKi0mFyM=%$9h0(o%!# z&V)N&&%%s6z!=b_Eqje{%;OE`w2oFV-;f0ic^G3)35ox;#PmKMW0Fdut~}4a1@pe1 zGg|gBCX7u`gn^YHHqhMP+>jfc&oG^>sw=wFzxbDt6kDDj&cf?W0_$ciGt*Lo(3PJ= zRF}tybs(bgR@viOU+^b;P$EI~3*5-_H;=`~E||QD0pzr=*Efy1{mumZ7xc*l22NGZ zHn5DH6i%e$$`6*L{QktTK{Lj!bSv2=sS0hExskdGu0JD~NQ|+Nx=iKrkH=m+r6Ms4 z*dBv*keuGN=>Ii+79@|AHG~$KYhML}Sbt^l8<}!e(&<7p*0H+dlp3UxOLPES<}~a) zlq$-XD`}#z`p(R{XIt`WH0_@qWXbFn-oD5SjF!9A<~^iz@o4%13pP71t7kMy58tNJ zj=7gYIKw@ZZq)m6Ry5 zmJhLe9I@*;zaP{oKU#JrUpJ3kp3#OGzSNFvJ*3dy>r5GtesAr&QvJORE-Hib`Z8mp zP{`(cnDR7IijiCVN3qCXnID-4_^{d>CT#FF%MiS9Vfs)7gMP}Gi{nl>i=NERES|(7 zq%#9bP%WrSR;22+fGj?%g5y%P>3_}536fdmE;%-0s6({tX>4GZ^B4cy|n z>!47dg=o^4jtuw_iKd6y9Q~@6*R+%^jTa7HUR*oE3YF;>fF53KlxBrD7iVB{ZfPWA z+GgQQ(MxXL86aX6&2mXF6qM(3lqZ$)vq_yG5e#{CzugbH z2vlmWT$x_zmhR6W>Xs{sY)gO7cy5IBwm+!ol2u@h0~KpNy%GLStLHT3LDnl#ZBp7# z6cK7?^@2Unw6jls4+9Mcz=;vFZ+U3lZ$hlmFET#E5#Vl*C9J?8aeLJQrT_)EzKkxeX1539p0*||u?^e_}Igg-O z%X^(A`|&F1^x=Speg*-6_pgrLXH0v;nE(^Xhdz3 zE=_3m=e12ZHb>sCs-G9yIKKsZ4Qem>IWF2`)_PbOKv0_Gh9=nk!sTF1|*j9jSq>@3dNQ1?|S~qeQ5tx+Y0PQrITox7t;jTt}=2x zJV%AeTm1+!r}gucNLCP%BqNc(q0^MZuvO=Jk)U1(`$|ju#AYqMgNJPj5K)P=ccKt+ z>%R0Jh;ULmBOR^TgwGXwHssy&=$E%QAiWc!BRejgi4PkP;fCJ4u(uQGXDRsZSnc|R z8N146w^o|sd_dh)ZtK|vq$V?Q&dA3@ zP19snN}Mt>`hD`_40?I(JgUuLgPxo87sk(T8DR98m4xn-1b2rdZSfYCJu%&}Ok|Dz z{xW&RzFt)Taib&edV)wevdIL^H9gL%&cLgK1z3y|<*3D@yx^?o1gigGbbXO8`%T^pOo zeUxG18r=|Kc-Zu#m(9owqZ8QaT10nfH>&Evd!>5n9zMznFYc>_rA~2z;dgClSpySSVcXhrEOU zBHO@VHrH-d$@QB6zac?{sU5q$eXA!mb0o%T%R^?doNNwPzU`{6He0Qq8dWI`Op?Eh zmb2M<<`*aKRPRG!I$oF_-2&ov(-C$)*|9ZmzXM*%M|i{gg?k*tEnl^TEZ|prD%4Ex(PsR6|)&6 z;nOy#cvvC?2CL=2@v#lHN8jp)iItd|+SdUGY2F96Xs_D3BY!qmdPLaXrcNwts{iYx z-7w+tz!U8IX5d^`bJy;}sNLElX>a}W!c*3g|KtnVjBr&--YU$qPUzYNj_Oiqygu-e zV`N1?&c7~Q`+#)rne)sR9((SvReui2%{*OJV_y5)a*OR>tetrn+|+$!oU61j9h=4@ zEiDlxsm8lI99ebd(T;qG$yieIQTjfV*K$#;#BY=IXNeARCv=B69(OTg=WE5{LyJz; zA@M0qXv{*n1>IW5n?j@)|D>&7pZ9xY8{>}IYCP;8+oTerll?o=<{jK#M^ZZ}i+wLvf% zVNM}3N4ZL;=cTJs$LPo)|N4{Rt^T-mULdcm;^$p1p05TII?XU$6i#G$x0==zdSjdD z3osOhvD9tkP_B{N`Jo49M<&_k{BHOjx*zzl1Q{TAE7`~y8 z;VJ^qIc`pa&ts2ht}j53#n@GDgrNSBC!8H$69uv6WdNv+bm!FI{8N{ChIQVwE&2Zj zld)P@c83Re?dGU78D$(c2BgLn?c09X+GjevO7zdPv zNZ~~Fa9N&EZB4_HJoas}h>fV!zU5b{x4F={5PQ;|ztKSB^ZRR>@7;jpc}ccI_-%w zZFw~EP07l86fgxqWkpLy*b&Mtyq*?vh2kedDDUS{B5C0rWXy4%k6m`G|MYtXwCC?s zs;~I|%z(tjnz_&NhiN!mFn(~)$`TU8HzWCVzD$1mSeF`svQM7j+AyR00biiBZ4Gtg zc!LIZOY=t)U5`C+9ur{p*Rac$&7NO=%K=^VK0~=FvAu7NX9d6>p-o%On{SLD(0=_C z0Afhrcj$n%=?WMdMDb>;w^*(KB(U%I(+gs-j8g&u6Zfh#OSZ$+lh?kuHqF+&dlPY6 z(xeE@BkOtcHIrQ9XIcGm*e$zX{ea_aWZv*t$p%((lP}r@H_Sp+0 zeWrP3$2fA7@LdrsIf}xoEVqm+*$W5}mP6TMJ!{>_J}gbJmsL7{bcW7&;&}@#=Gl4l z4)EUtSnki51_GBq(_>zEf?3}z{;Jc{J3jW&!O_09vA6)%c!_uJ%O|28A{qfsqbA z;HL52uI)Z*@-^$#^j@c6&8iX6UpCQDkaWE9WxUcr^Zst?KDkL{^M}i!@%#-WR>wqc zZ*Q9(ew2?EqWUq0GU<{B&shJ5TDkXlhTiuXsX$TlJHSoDZS=@L@>IQDpWAGT)5O~Fol=(%$I{(gr?IBu+?rGmIz>$rx;uuJ zhDdI2tjZL(pAUEWNN}0;xqJE@t_J0ezQo@YI zg}mHK|3EY4@PBj3{5PyP>IpP0&RA@=jxMJmeYC=ywhg!64S4SMS81xU8veM4jxek@ z$FI9tn6;V-yz5|h6+hPb;nENr$i2VEI&_8om%Rw$H2T7{@ayii?i0YpS{>;o7SQst z)wE7&crgPc@A)cltcZB#|6}txSo2c|$u2dCONfb(v>3`CZU2Afl@gfBw78+d&ymqW z`S3TN|Ca+p2w~8Muv)8Spw^e`C)_t#Gw}%HO3#;(Qc;tomlzGUIHCgQ$DeA`$(Jg> zJV&`ev>j!o`>M2QJfFy~DcejelK+um^OoHEg3<`iCwTU#4ZTT@naXadR5gJU&i_9I z%dt)xKD|t2mSj*K(xMod?IbY@VOlQ*bvY9A6>a!*zna*{GvtGnVI6H1!f!5lf&F13 z(LgbbZ01sczos8|NBP%3USzjQul@iBtFo+j&?Sl-T2X6Sn$IQARp z)I5)viB#T4q{G=>k#QxcT}`FX1Vp26x4arNqno#ObC`~R1477dRDxyuz;3XyvubTp zVg`wk4MhW;4<8+63>$&}1Ik@%}C>lNNG*6 z`$@jU7jhU|^Lb(JLcgGN9t4{g!s^5FgTwZMQ3BSLfJ}qWht4YjTw=A{!lt$+cUksT z^QRYGp>6E7?YufbFOZPo7pp5#fefrIl)B@uo8tDHjLs`UXa%c5bpp7cJ3^%kLY|kw z+R8517iw<9OFzUbMeFU|X8)H|vfB=L>}Il}G!|jhhUPg6L&lQS`$2#oq&Ondf8|*{ z=kk3Sf2UH-VPeB6QI4_-9^&k8{5S3RZ=M~~;PJAa{D|~VNtjTjLH(Zlx!_CN>?C2g zY_P+ppHsu9s%^0#*%T*e+35F{Nz6mbao9!Sg+9)49-~2;6EZ<=%?bzTW5lk|PQ&6Yu-(W}V@cy3aut^oB19c!Nk^U@ zVszN;kP_KpA8PE8I4z)+7&vhQvQ(auwBuG87m9FAkUjeD*(HuFK%SH_U_3ACU0c|$ z_g#{sA9Frah|}fzkF~d&_?i16wEL}g*bJUz1@##3_@X#=de$Af(bvGpwWSk07K8K$*XExHnxT z%*ZR`&b-q)Jklv0Mgp#9-zc$nrbv_}MN_|X{DJx90NNt20G9(2ePR18BKEBq5ER^y z0-AdISOB@mtL)wEwSXj!fyiIDO z(_F(^+*>Jxnh#*Ei@O{0E~T-+wH z#RICdkp5a!g2bVERZO-ti~4?qy9f1IRS2k*Z{1bL)u#WZ-J)G@SVR&?AF?nN9_20#v;g+;9g|{a*}=hKd0J8CYvV-)|(I7UL>+A zM>}RxFQAd{cXr8-5L}?brr3SXWrHc#gFpFu6SYw> zxRaGP#oexIWkZOb;L;cAZ!se7AJ3khQ=h>-?&OlS80Y+?Xc7vk4t$rEZ1C>KBJaW+ zu+%CPRw}f;);;#0!-ZJd$5mT>4 zPIS)a<>!x+lcs)97Lby8(+jIW9`A}KB;>a_4#co+s4Un8mXdO+|e{Cu=)*Bow` zuQY3df{0N&cQ<=i&6U7Io@Xy3lNx<>L{Ui!!&lJv#ViCx*}ut3G(tF{NoS4WJ$z2(FGMXPVRS&H0?#BW>l6IWPJmTIFK9hj|Cis=n%!2Wc_c$ zL4vPlU^|46v}m+o0bu4uncZM?K~u!a($>}$1Tb{5iQe?Hx%sLgHuM_-+%01f1U z0}OQQZ8>j^5ytYOjbE4*_<-r3FKIyFSAPW9e`vAu+KqJ=_$~Jk+jAx6F|oD7%aBd4 zboWlV5B%SVc~+JLVf5e7T}$=1Wcq(~U7 z5D|+v?8;>L%dlHz>)^&7>Ke(HX|Qu-{u=v_z=SHaZ28NA zLu8Ihxc#vHp(iF&0NR|+_>wqs&4*nk&Y0QZ@}shvnx8xbMcow8cOZULJxK|*QE*YH zfb$@%+~IaF5OEnku+!W4DF$x2x8%uU1*lJ6NmfxyVxwz@J@kszsldeevM_H)ttugmyRtlwqK%N zD((x3MqE5fm1SW*DZPd5W5MtkEtOAYVUqnBR^I8dm zDX>5*0%Gg0+G)h>o4!&nZbctnLk@4vP zNv~dAreQHoV(iil^Z7%K3-6Eh=A*y>0UJv4U>1u!g>!Mz9xa=Tk$r~^sI(w=AeT&s zCRCY%qZy7Sp6MfLRY*S=!s>zmT}bH3O?>v|`togAdw40vE&(i=y{5zc6J>k{*WAdO z$?1e(;G;t7DnE|nQ3aPqsqo_v5tlx#aY38kkA#2G=1l@!kf>KPJ}P$ zdF<*F0IVtx@UZj*=V)!s2#HMdCzKyEtR%$=-)bxbALji(p)7US`J zpu1~4N^AcZ2#42%q96!%k4PH16QzLcKkQmzhHU+NSxFzTS4j1#3o6RkOV8Ay)5chR zDYAYll*Tof+-;S>C`6nU!|Ar zqWU2@|MEMYK1Z)M8b@wGlVGX`WldsV%=A4kK~WfgS%u8INsA2KsXpo66ZKAX|DJ&* ze>O-l3vS*+gsK8TLqQ_|kuwf*&YP~P!Bk`-X)cdj+7wR@^ncoyh=xa^t|T0lGr?IF zA#fUCB+&8{hE(Ie@ExKvQnz}-=SN&OS4_egYpP1VPR$Eid*mhORb9tO2&Oy$V z&cj`u&60g-rWfj;GRKfJb&Fy`G@)Vekfk}{s#7Fa>u;$1DNxLpKB~s3hcYc_L5$H9$ri=Eo6cF}2JK#-x;((gOU>g&$d^}7YGeT@ zv~qi9i`5xPvOEHJ-|TC%D%eYxHaELq;~l1lInj*Oe<}{~Bxef9FC}Kt91y2&&9tAI z)YZ1wgNk$Ve|+X$ z?BagO&BL%NZ|;aO3#>ll`Y6{KJWvmjY}*~ZP=u!?O3Rxab2sNCN3hf*f35RKf%SxK z_5s)sZxwhzS4)J!!tw!4BXP1^<=IRn*ei$B=3fyhu8 z)4|yCX7ZAUi9Gj0ue_%B^@n}k70jmB_AhJSWW!G1h0!N>PZ9#Oa0VG&=`Aw6P0)#H zR9I_&hh6+iv0B8~pk2th+*8mWc&f?i^(J@6JV;(!n@{hg{{+JVG}Wap|J3U|vriSL z)^M{8B{;5SUDa8kN1P30O>OO|?)QZxg}n5{3+8-Eb}PUNwkUp{DaYKgMVpKW8cqX#{*IWB*UN8TvYW=Age2x|U>orT@{f(>!c^I-snA;e`g{C(LoGMkW7 zThJ%l)OJEUItVB4caf(ve9{E>6*tFeBr zl7T}oKBwSmaKPg`t)2RC;ldjgpGLM2=16Pn+h_p17`u0~c;Z)k`?mkSMQE6O6T~H> z;z_vg!^~|ci|WBRhxsHh`epj1YppKuUuIoIGI6b+XgDF7eiuY}Gr0%#OTfy`gWqOZ zM9|8~*NxwzrsrKQdc(ju=4h9OWPfopPr7aCa=rg8#9tfJ+*8VrN*F`EHYQ)P?$nTv?CRbH4j3ggweXf3aw93pSN1-?lFa_R7oB z#vvD?2$fYsdBW= zBF~bv4$||NH+Rsg|2nBdLz@udt(I{j?MWk0dJ8{Zj=0WZ>EdHo?8hxzG)7u%lUA4G zEyztb<}EE^$s<#l9S7sDuD_^1`~%=DE!(($mJNrlm18#z`BV)u(iV6uo{vT-}1eUgNW`ukvWCxH#{&f|MIPjk)%|!wt*@CB9UK||W=~d}l*iO*) zyRg;z5{BvX#)NQmV7?FL5S9;|Ibf8%bTFduNkPznkV>BsO7-8ao3Y{QeVm!AU7c^N zt0?U!MA$TITV;AY(EQ_?LgBQEa682OBC4SlklN~oYC=IXe1ai&<8MU=#uxPxoq0d3 z%S-3rk~kThl%rrRqJE8%dQEh=L{lWb$K{Rx1OMBut5r`j!9XF0;}td&Kl)4e@d-uT zR~w6f#RJl-G|DByz8o5=JRII+A<)0GXJaQbWTT?}tQXY(nd6lK$$F$`h{*%g2Bn>a zsXWbVlW&Rt=(PmyCMP^sk%lKKVP*S5JF!TXpn_A<&o|+e>>P$?0)zfbuViJPZ+M8q zcVTTfjW;Ij^c9)!7EWe7Bbk#OutL8-D4*B$g-hI=FU!*ZKfRoJI8=Y%#}%@L7~9WQ z$-d98>{MiwC6i?`P4*@Gu3~I4h%AY0CHpobAu|YL4J}GBhKwb|7;6aG@|>aH{XEa_ zzOVa!{(9!Wb6sb-&bh8R-}iZa-tYI^!{D;6*G@9H9RCJ9Reo|EFs;af`vKPe znVhba5wEEQGs?Z_U~n1O?E20CP2aZu9zb^9JC`L%^q1@vJI$nGma+{ z43@Ql5(c~47i}Ui2Gy-+cykj-H)$r%-go18sKPlHDGRbZTZ_ZeNtrB}*0V@>2c!hoR2@?QJxdzE!+Wpo(+4YwnN<>zT0A=ol{lQ_j@q#SNu?a`*y z0~zeeVquo5yWd3_a*o|$z^>#_R;ZB+9UQvB^&7JzEkXpnb6>M)>_C;Js2btI1y6YBKX;ZV0)mz~CdU zN7b%tKmCJQyBl1M=#GPIQY_^-lcyzz^b)S=yH0Te*>wfF*bG&*VydM|C-*+^!sZ4d zd!PGt@!(HaZt_ik&#)FV-GUV`aVrT=XO{LM+y`zQ%O!umX|c6{mZ1jW$w(|s&s@&f z&D#HtIkqEYT7Cy4r*&(cFT>)7i#r#%h90Ioq?foFyb7h4#wY4v%9gc0OcxnU_60SQ zEIa#filZoE&JZl&Mw43i^V4{i)>PbrGV$%9lj-puY#CM`z*xw6p-eGpOw8yg=Xi262RGlp2;*u+^?jug60C$s-3 zUaRV;>AGUbQeI-Xdw`Ur7yISHnVimr2ES2V8cuC~Zn0&g+nps@`J?d(%~%$Q@8_xu z*`*S!KTj21-StuO3H0FbSsQ2}l=|xJFfVs+++kbzjO5V}u!M+*a+%m(FgTxnlvt3s zK+gX<+}~Ahh7g6r*6Ux5xpm2&r%ZhX#u{Xg{juHPFuk(ku~p?KObuNmKJYpx|9j~& zzU6m|a=S*n&q~JLQ7v3xC|t_^{?sYl-92pa;Ps}U>{1HLA=RR zC*L0X(#Z6;D#t$iiqO-#Q&p2Dkdoaw(!9UOgITxk25L;Yw{JejU9UigXC|rRyH~5- zHkt+V$Z8IW5<0MBysvg)&0eS;7qD6=p5g%x}Vp!etHIVxQ6YQ06! zr=d%cV^jrRu?iTdCR@4$tP{>dv?<|%&OY*1ss=!D+3tWO3$Y#6f1yPOioVt{+;7!a zsdKyY$vfE|&rQ+Hlww8|70v(#Ki<%~-7pI-j~hHQOYsO9IM1g1j`x*)4JEu^ZrQg3 zO4_sbi+Zg>;93cy`6>zsm9e`lyw=4PZJj2sz;U+~_pOCIPu{N|Ywq#e`IEXjC)8a5%QqvaKjsH>>kBYt zm|vpl+#zjiC7Wh2PvOqe3SQUHaH`7hmyU$Mw;Rvuo`30uZ&?zT=d^)OzQEZg!j?3; zoM4bW5*r2xe4_d;nFE$ayC&kF)yCpKiHU0J?n#b0+@o{MCho|b0QBL^{%xoZ)J^gV zke|x6X1_)`{T20Qo_MOqdci!osP~ftWd-CTRx_`Jv5RytKB`bk3p*0VL4@&o-h6msqS@>nyh zsQ}U_O@vw`0?GGPWGW%Q=0~3WLCA5I)L*r%OV_)j>~ro(Xa>ARtfIC&u^C)()j?nb z-N>2r55cL%5F8(WX*&!-lI+COi!%%lO%ukQp%VEl)7UEI?t;*g(APW)oFUfbWF**V z)!Nk)pvsaTLg{SWE}C#@mWo8R6b-E7(|~TUN9y5^YpuHOtgbs2tFDRB7f(o5`<-XL zx7qurebDNA-S%EV#YXt8ar=M~!4tQNG6fAMf8ZQZR{*_z{EB7g_YC;Ogcb1jTK-&a zA(2d)Nqy6cZf=i@%2DY?+Zt4RVDdLNSMQYj#2D9c*8ia$t6x1=g*%P|l_ecLPxsZx zF||KG+VLYhEO!<0PH_bD6E>AjP2&epGFuG)u?Ov~_{6`)hBgBg!2TM$*<9B;o9_)W zWRSle?<=x58pTPB6nUqfE@qlBmbaD`Yi*Ok=pS%x9Gae~hRgjV<`Auu9?PoPJK^uk z)8D-@0T~NKd$J}Ke+nBCWQotFEQ{_&SkL<!*M!9dq*@yVw>@!+f!%b zhoH+l&yfF&ImL!dp>j0TAm-O`QDWO7+n@?S>UZX5RAb|xKbhS z8{MY>)^r9DR27?ADTui*U>9aPi$-x3dK({w1%?M^MPUj)W_R7Bw^Z-=$$ANv_g7b% zA5zT^xpy2z5yG38!<>*88!z4JHi7tyvx^pjf37lG5M%^N3@0Se%a{A(7JkYo1x5EO zm>-ogr2rok6dRJmTWmg_(=05TW=_s43-LGPnKq&lRn**xehDjJS-4Icyk-?TJK@0hU zMk4r`xoI59YF4ko;6Dh>8~F}@5l|^J3xCN{6&{+wBh6zod7Nc#L*=92!ksG|rwSo* zu?A5q1MX<6-ngb^Q_K84$#wWWJW4|C`?)HOyu?i-=z=7gRe`~}tY8&a&U&JLq(acp^mQNHvA9uX!jaath?C`I84o|3JITqkSzS;9jLu_WiD#fkd(LiF z7w-tfca3`1YfGKu03Mu^qj<*ApQ#BRapb+kF#rvGZ8P| zyao)x5arA~TSXbPHZP)FdKBf~9>C4A{|z_!!L;hO2^(Ceswp0Ti@v?UUG_tn8C}r4c`hSWI?j;1<>k+9IM^P*jtI850N+{x zQdNZRIT^oN0`z2p747W9!N`|HEjmlV9PPIV?q4#j1AG`W&7yOAXZqzqQg!k z{@S`d`{LHr{j^{smL+@IMrI?ws%q>TA?%8GqC9=);)Dxfq$V@xN}=STqLh1QKW&d zE#NN+R&>p&D)1f@KQ{eq(RJ~za|S7HpxJls*hfpQK)PE6Bt8$eX~xl*P3{Dn|}f;_Uo0qeOlK)jG;=mzSyP`cW^O+ z3Skc~)};R_N7|qb*(b@F&*PKQZd)g<*TLN@5N7*|Lbtbt&jW{K(EiYLe!fDNJ33XQ z?tdc9e0lEckLchvfFe7fqhiim%o?DN_bjV>DOaF zPhQ7yuR~su&a?UAJBRw=B2W!$5hQzKG_cy++%z%a;tKuH`6IJECD3@zU1rXPldY4< zQZZ>F;M3XS%8D|{;cr}4RX+`pUh zJV7+EX#k`H0{CYwZB;ujodK|3?BywV^ohySb=$zqUsqoc-$7@|(O~hN@c4t6-grLX zh6fzChtyJMLE4tCa}KYTqpNq00WlCHhxO-T$e8VVW+!I&AUn@vQEc ze1$4fc9>D-!L&Zm9B3V-sn32bA-oZd0`3LChu|#~Ce zx>H7=F^3niZ(#Vn0~jP2k^hukK9Rco%IqSA`f<+jF9G&om>IMK74A{ z0kr1ErJlPQrvE4b)jxgC3tOt{J0Fw(uanm~q`gYtHNPWG zG*DVVrzEC;*{?rsPc`B)ZOj-WIS%jXG7wu6Fnp5<)&}Uf8{abgu6Xo_>g+AJ zR-7G|gUMA1^B7=acGlG;i$jiDKv@0xw@v1-Ls47mcf;W1=YI{SsaL65->2PF)D7pL TH(CKYmud7N#=0+bY$N{*u`z^S literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис16.png b/labworks/LW1/рисунки/рис16.png new file mode 100644 index 0000000000000000000000000000000000000000..333a271b8db3239662497c21ebcb54a38abba217 GIT binary patch literal 29076 zcmafb1z1&GxAma}X$1kL6ctb!q*FmeL{y}t8wrU+HwK}gpn!l}^Pw`noMBGy$}rOYq%SUozA#~Jnc0-sj*b?e84-0jJyt6^6KBOw zS}P+bCzo{gugG>=;>R0aqtxG z+*yyjeea(6@4A{E_g$b{*3{f!xp;B6JO0SAp~H25v1GP8mBP@_u&%DoZn3B@-*&VLZF+*7 z;d|LkT+6Q_tJzVEG#oB`GWb4H&po|nmz+_oj`?VX@H7?Gm%+u2g@G{PQO|-KqPcx7 z0v!^v+e^dna$RGifKgqbVgMU0r)D*rDyYpYQM<&3Q>!p-XuqtiY{+dUHYp{=s9-=r zLBZfp=cg>~lBM8L{iL${sMBw|_r?R5ccyrJnp{S`8YQ=fYDck0F3yX;>Z_mPJ*sps z!VDE!bR(1V`~=zW-I@3q?9npz@$grtG9Sm>iZ#XQj`)tcmsD=!ezc{BTZ2t)ZKlg3 zmF8KuEG({Eln*}7$M-f`z`QH<9`h0g>y7+W3t!)H!R#}}d+%Mj6~e^jvfzW=*GHq# zJHyM~F26clcg6$G3fnNi(=hp&^$59tPTjBJK|EDaSy@?V(-21ShO`HXe_%ER%-fSp zTiy?$TevEY_U4cH2?z*C8AL*Tj@ILY8O7f>GW*1Q|E|EQ6jco~_HfD5XQ!6AbiG~N zqBrAAh~yUC_J{|Mb9v>BPMt4C1SKQx9DRBoT*z7T@4VGz*OGSGGlzxJ@X)VxZH)_tY83{u$INq zQv1YH=gw)_U~|1UIq-PnJlAext3H2bNz};IlfQA}*#jLNYdU{JiNlTV69yIVtd7w2 z_4V=???cka7SqYeNjOLs?{id!Lsv5D?cwJht7BfBr-B$C~IK@Z0iF&CJp?K%cqY76(hM0t;*0LzydVv28qqutJUX15S*MZC9a4(#X^6`C@W5s@y*y@kC%`p0u zCEf~In@x@9cV5s`Vtp7fbF@-RvFcu_3PNUoxy z68Q3^=tF_duTJyC`=1jNTl|_~FXmfxvuYJt*89=weTTi>OmOKGgx|Mf$gLH?=k$CI zo!TY0b@aS8)!et2+A?#i=6D=tVqMm{?@7ZWCS7nAhaEdQ+m%c*-IF+jBhRAubG+ zh0Vlyya^AdX7V|(hZ}83jrTs6X8G!xD}-;A9Oht(hf}X2>h4D&So5u6_oUn!zPeV9 z5LePkA8t^g($mwY=ImgTt+k6U=b3jfspsgpHH^gPyPx&HK3M$ZEWe3@-y$t$=VsX& zAvwc&9-igGO^fanGB{Q{zxke{#I%J5yKfrrHCFwUIIN@tNeoEvAfe$j=*!WqYiL-5 zb=o(ud-I$)lw(%37)t>JIqej6%tILm8*f)t3F%DI7SSEl3mr}HUn zR@B=1`V~%2PK^|={jC=P0sAd6P3s-f%RV-ACpx6D5;Q@6khLN?Tx!XLS0+NF(c8l= z#zG&_z_FnnQQ0lk0v^l63L zx6_@)gRT*N`j+Dxh(9`?i_tUWI_oRGRQf!C$vv>J@Y)Gdy6Wtb5yi)k+2L{X-@JLV zHAb{szu2lT2Z_p3UVD^ORJ9)jtz5B(+lN$GbW;-Fo!d@#!JV4wE6n7eCcb8zSQN*evM2XNc8MZf5--tpetnE zUoCyKO2J7(f)XBfq(bhVidD&A@mCR~&b6ccjF=?R_YyXW3YUWI}^?gV>yI{BVnzhJ|sF5 zW32SyT2ud5r%X&Ml2H&)(E!gb*!ytrtaJJBl*Kv{_=f=m!{kvzcA;}WSw}O_0Z&TV$=mZz^&z!QrKZ1R<{>v)&ZCu=& z+VQk*2MSnQt*uHzPkyPU&YXE${e$8BDGM~D88-l3WoykG^AZPv3f&2!GAvyt3}TLf zm+!n^foJM4`Tf*V>BJiYjoWhP*kPku@OvMu-hv6cbK?ds@^mZRH;J7i3b&2;g}7fs%eZBFQ;gcAv81RlBW7R9Z%5;^)thsKw^vuiwY(T$^f%zGiWn zR>uwpBG|!Zu8%1aL3buXL}J?&Lmm}dpY79iVLaU5ZnP;`?>7$NgNgIr87I^#d_2x0 zY*a@y;yOWwwffkmzC3zMPVQVv{z_PAs4py-UgM+jRnB z0~q^FAG@akVGI^v#x*YGk3z4ZmeJ^!1_Z=FerpjE9vFzP3sE0tq0q9IIJ5WM!rb>q zSGl>(V6`WuralBLvQ!C}DF<`po?lSVQ5tIh{G?3D5Sj#u>>TP@A`^$=%@TWm5+P%R z0i^!{$nR>)BESO(>IEiEry)=1j2||;`vP>iX=Y|tnS~$w{(S>XXVJUIsI*GFJBy5( zmdkUHJWY^`rljm)6LsiKg@5(D&c{p4*y4r*5SifqGHN;m*w_L}OG_;Y5>D{p3%RYC zNFD7MR~@XiSO&zi#koGa#q1RhQ6fg@099z!_olQ|q}X;;&jOV{U>%|Su2_?Eb1PEO zD^B~WiU;BQU*dT^BdHo%TCbW+ST0?f%$i;bC#wyQ&HQrv?%gTC7?bcLG4H^oT^xM< z`3d`lem(%i?R%aP=^2%>H*WAoD@7cQ^i6ia!Vfj18*(0ef+Q?t7K)z?S~3a)US#s# zF+?6uyEOJd;5`;FmMD7i`=bsz+Eb@aCOyR??8?;Ofdn;MAk_!xU3==x&$b8mFD@kA z4ns=MXmJ;Ah^p`?!eH}Vzy1`{3M)5C%qauAX&fTifE0ZQ?o)aA@URi!F>1(07z#pR zeV;=?D0j^O>*;v!P9Y#=yf%RFKs+w1$7*H$3vT|ab{%y&xk)9`+B9B@l&cWoKlHi3 zgQx+R{O!VmH59lCXmq}h2LP2r)2*f97Qinpj1K{rscGn{Ek(g}S)YPPl_u3kG)RS>k z_;S@rl8KuXeG@1U(OO>im7WD>8rX`@eyiLFx??Fx$lhv{vxPqg1M`QS@zS9~GLn$V z73It9y@TWHv0NF6tWGG;PeFiy%t0q;NlhVrz$^6eH4=qk*Azgts8wR4J7umEFBJCZHaV0+)D zYw3Lr3Wx^}pQeWAY!e(ww@6FzG6WR4V>jgG<&BE8>_r%k{Jcu62XKKjk*J0pd}wNH zWb|jCAQij$oI>jR!R|WpETSab&=K)`hBf#(J&;zfx$&DDiSAAJW*-2UPuRe!k)k8)}l#H~I+(cJ(ukUdyU>#L}!xYK6qE&EaE z3F;3#KfT;O47a{lr=}9B==J(0ijfQdUOLT>)2H7465Yf-UozOH>oR;Zl3O?M)vKB* zG!*@2u!uc=t;cwtDe9iR#KKbJllk&Pe}$U>t*+yPGB5c5DL{n)vBE#e26Vxdp$u&# z6CSD-U#^h#_Lf3Hg=exd_RVp5BzE*@tE2)D3WKAKXu6Tm(%CS$Z~n3{TjWaMO2IkYOp;W+HXtKh-a;g#x+ifxfSi$t zgk&NkGv{+@=}zH{=w`lsSd%JGrcOXWKmlM(K&1`8>x0UctM;RWo}3%?-sgJo;6YMy z@+vHcFRrUbNP!Oo&rt|eS+Tv@ciQD7WpJoZ8-2bTY)fao{r2E|pS)bsE`PL=NY*F8 zk(#V&Ek=#vUPqjpnZ1e@v(YnGv!RBC+;3NZMx(RR!{yz(ckLqP#oSJ_U49W98tQ2e zVS^vI7!U#2{~me)3HQqwY#eNrbqH#BRq>5CX?5#1X1gC@yd~8$BM3-ndaPo5@u&@+ z7%^J6*>M1y_x)^gN=m-_rX`?!$l@9KE-A*1Z#;ow2xgKz7uHkF1!ZIz2w?tsk`_~uQD5B3P| zO+T?+1SRRN!H#9I%RRiW!v&d4d z%**uCZxg6*kH(Yu!&vWL-QMfD@THksprg4tL%kAWvF7*=!fU}#e%Bh_3DUH@th>>` zVdOpj@tJskzMSw5Jnx^Z>JA7m`|K_bd$o$Om%#S6`I-AVpYM#{luH^f+nxSsU#1gb z18k&2UZw`yHGCR_Rc?--l+TTFUwSpJSuigns98>~*=_78Vd;EM`Bg6-0IAhQ>CD73 zIA;9OfhDy^p8c`WsldsykSPP&2AK6NN4~O)Qj@Z7(2J_k+4Se~>k)(-Mia|ir=*?s z81j-s*x^fb)V|LWvIrl$q~zdJLGn96kZ`_}G75mV-4ztU^@`zb*YoARH#(x1SK*p0 zPIqwFiE6mU3ZwZ*`(0FP4Om!Iq#@0@0Uwj8_S1yFcb`mw{xqC~H(Ghie6$+k6Z-C* z%6Liw!Vp8WTpsvhOo;sc^5sjYuDMIcaNl!2QZbLm*iXnKPa2?f;Oo~@DIaZW7M=G; z^#Re+>bYKkpasi;`|BST2-bMj2rHX#{W;XJY%DC#pn}dbYx^LUsjYh-MSLmJR_$&% z+n_Xlv9>JS_EU4Z`!O2pZDIQ56V1hnOVxT2NPJ-sMZe&w+Nr@T|M`&!Ks@k^apQ02 z^0SaS?nH8%9`0=h)A2n+QU|Qj0-Lys3JHG-W@SgmYe;xluH0sVv}w3D*@OxY59c*& zr9+s4)x+)40?Xd3HeY91l~}1zu>X<)uy_L2K;SZDD%zlW^v}(VJ73SppZ8#IsLTSbn~8~uXGPJM9A?^0AvU5aut)oK_4P<0 zeB;IqBsX9V{v$UWTu&~B!u1Z+EVh-KG|H*DRR}u*nQHn=BU7!>m(bYQHXsYEewEl# z$UyWyXj~pHk1SuV`smOuO6UtUah#gh+;ewd+@=U3-^xociO#&`_ake90u_>>0&D?p zPzGQ(YPn*a93h1-T(|(ZXzA-bH*C=xs;bnWAGCcG?z>IVIo%g8;P;5(kic4%u_BMLC+^5157!QeYbqkO{n9j8p8~2e^@0S5&@RJ`owo zc>SN_u}tNOSA;E1*KwFgx`;NLuLA_mM={7U27)piVZ2n5AQ1e+DOA+ld`Ez$(f_NO6T`s#B=F z$wk_{fJ5LO?95A{N-35UH+S7C4X$i5Y7C-OWu41o5k{&42zTqzs@V2eaR`RCD4^S# zAVnX1f`wn;vAra=I|LDk*SwtpAk;yn42MPzlt3@w?fWgUE+cL+@S_wf76HTqA5Kff*c7Sz=J}yeYwD_Z4HBgT71NF{q7qE(HlTMLa6_J&u5PcN@ZlX+fOvSef##h zjt&E6x6KyB8~50r>>PM>QR9kr;k#6&0*~ouJ~HO^CO|yD3M-pI+>E}sg&Whfgq>aS?q7EutcqJ@?Qk@*d62R63_=2o|9?bvV z-Z{Yuu^)KUvw4(LE7`$i+9h?Ar{21w2TUWs0Oh4v@(@e*g!|b!U!eQjp%mKLo6o&{ z=T7a!DlgClYik)yr}q%-3)>p0IjZ+I=Yi}X1sTH-Amb4~C_$40=J8X>k$Og(bG;(5 z%1C4c$bY`-r$y`^oMzN{LG|O5f`LKI0+dbG24MM2w=#jq5(QMmDTo0HK%61s9mtb; zF3Wm=y|t(KIwaOfK^_|enIHwCu*A;T^Npq9k2CQ;Oe>p5h(>dq>(^R%Qb8lD0C3JA zV&@BB2>;K=*ap~v&EohngA?n%*G>V$bII;pkD9^2zyJ!wMb$@Uy%}ms(fr9nRe(SC zYujM)Du9p)aO-IM;>C*yp^6|O;Lx(|+JSV&@=y3;`EP_YK5v{z-`q}Dddbz$_owWv zs|1tQ%|V=gH<6Nd={qYW>A!?{k6EUiIAHcjYZH=^CbNDvT`5;=<_#9pw!M|1uI3Sc zur9Ibf?@TcIj4kLbFW17J0vb5s7LMnoqPA#`1rmIRY6e(8pz>td5KUKA zTU>M$vjD7^j9C|aM3jFWKcOj%Z5e^*fvRO7^rJfNk7KDNE^_g6nFW3}dR(h|i_`h3u) z{PphoOaVxAzlxuDG#JCaXzWV9QwDqZa39X{r!SWo1sm`(5O~RVBKPp_DJzo$Y@U9v zZId37`@q=mQx)ok`13$@8lzbCHNEhO4SsyS*}u5uj#ch`@L1ITmg`D3L7{U8-!Qcr>`s|y zQuxlSkRmekmf>t%n8QWeOo;{){#B@e5$izA-OahXhL0#ZS5ZAe?Jmg!+}S6%z`{WJ zl~$9I+K*`&r&)3Y?{Ad#RY4Iyqmq=D|nqQ<-T3ro?dtxo|yOLejDABtbm%A0eIIt9hhZ*J*@8UQD17fA`5k!mxFKqnxx4TEn%h>9BF%odp|FRAAdT}{~g_U zIkny~=H3LLu0U!&K&k2P6Yq2LG1+slZS-&uBp9qxJWbwrDSFNEktiD}LFDGbaPNo4 zloBt5`sfeH{gIr*0ct&6gIMO9iu0K$Hi}nhoWB!)AGxKuwI^fC1Y&&n?_ooJ%ZP?Y z9|rhd$+QyY5GO*HIR2q#%@@z%GkQ>MR6&*u<7nD;_2iQ)uUAq`V(d&_K_>Dx4trEh zW*kwrn+)>jE%@_l8MPjga89NBz@;6VEjttbP9cns*DtaSN6bR-F;+`Pi}b;Nof&&I zj|zuZ|P3KHO6a$ZTwtd3XFe>VFXwCY|&14W&J7eM@!d{LR*==*cp z+iVRM^(N0$a=(2!_0M(bivrK zT*8lmF{<&CI*Vu^)l-rbjPK)}<3g$v-jKbZvJ*xl8|-ogG0F6>!E8IIRWSOyBjw** zBs`~Gyw2N_GNw2RVE`87=57Kv4^>SQloCMpeglEm;M=qA_wl@jxU6C6H9xbpg?*wy zD^+vFLJCixu|?A~+XQ~d1nmWu#OWSXcx2=)07}u49?nJ0((A1P3=*!Lm_^WVqoU}% z_XkJcbMztDXbPdFnR|2TBZerHj;ql*jmNywo>2J)Gl=H@nu0|3GB|hxqnBrZ1KgZ3 z*mS0v{rvskg@>z}Z)RzvJ|fdP-W;13({TP+SAs%{fNoHU!Ur)=28Do<2C{r(zApq) zJ|dA{?RcoFD)->W%e=Q?VR*ic6W=CQdn{sG+GnI~LEWylGrzB*L&{3^z*zwGXqRb- z;AZ~~LAA`{tA!;!9Dj8hgo7@!SpE<$c-H^Nc^eT^{^%%aA1S~S>FT?n62WDxAh;pi z+u|q|j15qSA&dhd1(ONzmJ6epc)*^gn3(it%Tn%sYycXBV<8^6Tk?QJ_0iO?H!A9b zkCsAEo?V9o5}&w9@s9F;DWw}4X)T}r{A5#$06-Y)1!?Jc&}QR+dxa@i)-L|>SHS@v z1RA_3S?X31Q{Yno`Hl>rgfv_UN0O>0)P#L|9;0JQ@Ru4*bB?L0tzB zkzA(DGJV0B4)%8L%TAaDC+;+y?@(+Q)}8>V7gY^_2-GAzs67Y_=6ceD>4kG@>~kx( z&Vd>=1zahZ4S@Bl2N7zZ(nA>Zo--Oc_5@}H(NI<8=wVtOt?HjtZ!!w}N{z&fb^<3N z>$VSqr01@E$GSI%UqK;71i(GJm9gtSbXUWm7KL*1*n%`G>T|SvT(Ka~-P2P7lE)Z4 zE>^I1994ZEAkLk1rqd!pw(1DJAc_p6&F;2uaRTPbeqMm-Cue3f+*&K#*5^K3K2p6~62vzROW+`p`5PD=h-JvG@2oNp(23N?z7c1e3Qt@@#&p1nn$B?SDgOUQ|~6nL5S16Ox=qiWB+YMK6+ zm}7`w{jbTW9?B>sHg3OMYd$%I3wtXDFWpylz8v)v7YWC-aPoSKTzn2v`PUFkK5!Bw z_}BPc*1Q~a!IJCW?+@2KnNoBdY+`Zm%RYF7I#ycWx_^Rmz4%um`3%2@-+lJe^f(YJ zo>xr703Ey?aJRG_^UUvxr`l^rKW zq;wOBi8qkr4(uWmo*g0j#I}3^loKn%R7&f|HvqD#tjd68=LbR{rBr6%t?#o^}c-Ni|}u*&1_`W@8J1+@M!Aa!CVP4zg;Fv>mgaK>VY@NjUzghDnTr4HO zo>GtkSxCxov1>;!JO7=B;IBL5y?Dr7>O*k^y4M}~5GFvL#2|_Q#EB_B04xf!)S2Rq zjScjaSx4MmC=Q{V2gzZrO?b3tq9o0DJYtBv7DIF2kk=B<)HMmqb!ut~F+9NgbrUCm z1!)GY=TIBGXV^+0vLdfMOtAym1R9_7w=UOS4fd~TU zUDm2S(1LO|Z>sH$0IgaI04-X?o(08IxpDem_52L@KO{fSo$yC!P=!hoOH@X-UZwj3 zRn;g)udDL2NKny8E0 zsLPElasj*EN&)DgxeBSf!)FJz=feLH>h3lRWuU@iVpUBaxvcfAwV*q$c84>r6|CG$62W#JiF;oN)SMvRzxl@`3=k&XuByJoT;2t1c1_uYDP5JrxLD$b%V-WgC26DV1rrs#MM1QS2PW&^0iB0`GAEI|( zPg{H$%lG@uef2_SUU<|>o_qSkhwAZA!zdirc*s!I@BS)hm5!9hkazl%(LP2!D1rN6H3p)$j_bG| zQlL*xP3`6qTT!!U?JzlP?Yq>MTQ4-XPULAL=xWlMKoFG;LK+CZyZVuBwP&ThB^;(( z$H%@sUl=a$!+P7>^ZD$y==WoMq{#!GgMls2r0E@c2GQfd_{j^r6f+b+8*{xuH-l)@ zqUeSb(h>7Xk{+BG(gI~IZ-%E2$evSrqo5K((vmcnSe|SOis;1hYg zFNQ5P9DF|{HTzc|+pXt`*V>OUbaLgMckCA)r3Db ziZJQ;p0yxIe=j^n=au*2SLL#c636!P9s=aVS%mD{=Uu(R;?5umTp4OX#Z z##PoMN#l(=hUPtx8uBRxUa;-P#iOrO9H($g$RD59@4fhG6o|||GQ3P9J~^oHVEkL~ zfv*p31IF|5s+i8#@;+1JfN7J59P~+iSCRKT_Ykqnr^cZ2v`d;rFcTKY1-?G?uV(mp zU#IxK%yE80#`6irLwd{@O8zytwJTSyfS^vp zscH9X4aDaQKq6n3l8OUkEJ6mD$9t*gv_g1=Br#PCTwN*?=BA_rqds9;A>CRC>KJ&4 zYF{UladUG+$S?4yYGfWDl>?AuyMRSC%bmHvQf{>I=SP-4rb?#_ctLx>OW0yyW%km% z4PIz{iyrgH`3nx@{sH|#8J|VxGJ_xt3N>~G*waX0COR%*cgN zUQP79o4rv8uTKZs|BI12ChyvZI_i{G`!0uBt_b^^81sj<|IBIO$dNa#* zoo%aZ{N?LUa+;(}5}0fKy$IBz1S4x1c=DUt+aU=2E;P03#hXNziJ&Kmkhr`0yB-)y z0#x}hxKXY@QGRq03`Y|oJ_i>;a2m0wrH}!MC05MIXn$)_?R_+2R1x>hB~1Iv&@BX$ zX+8wQ9C%Ls$r)ckLix#;^4ezSkEE9Ti%a(JL5?@yD3|(gR521T0TBn-oWUXk~ zJ)+|AA9=HT#Pp&_?}JR#HK=rsb{eJ8;O|;ROwN`)>?p(t1v;UXL$l?6ALgij*$3+Z zN>3wj!R`%fHYFcHMX&>PK=o0>e~@xpck~h+Zk3!ke`)*t1sam3AD=X3W!bq`(cg7% z%=eFNs|Y%7?iPf<`fsydZ&D=?Z|S|4K;$y-&efMDXO?P3)F*3eP82w2r@*u^zTzpV}8q^V^ z-LCY`V_?l>{xlc9`kt34=;^b>D!qif z$G;lNd`X>6rwPiPkpU@Z`&Tbj?b~4G5?|8`uSH@G{2nCAe}RcbhrLWD-|fR)8$MH| z8$%^?%#YAm_Tqu#i~FndA~Dh*P>qO)i1h^a(@Z=imlG!o0l&~5t*kZeGKq{h1!6}C z>`{eT%Tnh67>0r#h8G|`;DFQlVd9<6q!Y?(wbjaV@=%v;sij0oe7XidS zZqlv-q+S6f0Cxoz-w%M^V%Z4{F3pR)MltFv3!f&b-{HesM!u#2L#g`cznEDFfX*h?^ZI809$s^EFrnNnzEPM}&pN zpwH07KtkmBh9t=pb)3hrMG-?ecrm-n3T)3*A$&@P8V3!xjshH-FMNj!DVZq-yS z9w7Mr3^fEL2ABeqf`RXCZP|IFi_XSHbIjxJ4$X3pQ@O&Eh{O~0kP_rWni^^k45w{C z@76){2OlY3Eia-RA;yQYh5VMeuWwXR-f?_up2o4b`4~Pim#Kzw-x@Ht7_E{7Ilb1V z1U#QeI~Svv;~20!ITKf3>6>aivtUB1l-IqM#uhgSy;7us8E=LLyQKG+9v7IV7@ud_)~;`Aj`oU}1^SK{i^@-2UOZ^$Z9yDBz) z=ei`y&spk(Ob@=L;7P4#bxbE|0+x4I4S9n^U;N~&^7?uu18#d0Fc>Rqw*`;i=%-^2 zv={2~{uox&Us&o6kb@o@VZg?EBVLo_J7e%UgkcZ^2B>Y;9dubp0xDea*WJrFX@{$K z#?m!PGX$;-q~^Pa^zo!f$cR+LOU; z2m#6M7LbtCkJ+!|;`@tdl#uJ+;*83!nkgeZEO&aSiaZ#=Yt|WBq^mp0E8>F4J)q^` zQV)Q$uHVhUe~47x$JkXq^%2RR`!=VRKEE^QQH0I%1K?fo)sr%B4QYPsRFz#X?z+ zTC!5(++Tq*h{p>CI-81Bc~<3^KhkF7HGW7F-4J*;oUoUleQHKc0^xp)zm$2>aMDuL zv$g6&FUU48(o1=YAUB7Co-M@f0j1^MD82ztoUD#~bHr#W*5YVb)PaIOCrlR7S3 z?Ne1CW~+${R4O=vqh|DJ)0_&)d}9NKo%EI)GL(O5XWae25DmQ=O7TAwLue9YXJ;P+ zSQh^Ny}FheNGfV^E)BtF!RuIAa|HhR2|JOwl(kf_K4cz#^Z%w$KxJjYq~C@meDuZ{ z#n4JfWUB2h^tY5|Q+sl{J)<(Y;UBqpeLd4hx>f#+?_5hy`om~`(^pt0U=*{pij3fy zK*;NvHFuL>`nUF%{BwqHX2UNwUf_K1)9r%?DC!7Tw}t)7)bBt1+0Xn|S7z;`wkV&O z1B1KukHJ~vr;43};r)l+2eBROd$ra=(9y%e6$V81lpA=bqvqp z_V0>LZ;(ZW#5Wo}egDI7L0qf4D$D3yqOOzbU_-8y&wG`(|6QDaD0I2&&HdVvF#+ro zUmRz<(Ek?jz+DH1qHvChP4`D%9n&#NVLv{HEZbv$q08@O5oI4Ur)sc9(dEO|{drFT za-gbOhJ>M4W~9;sXSA~iF~3jQR_&T0y|75{DA)_3IHpA!P}&e@hEFtPxRqv(T%;2q zAFPu$Wm7bW$wR|W@a&aJuaIcz>xRWXF5=k)$nKKA&WNiGY97=DYZ&g20Rr9!uG6j2 zwFrx3NR$A}m{X@TR2l-O1PBMvMezG?bMLG^@>i)=g zoS}G-eZh){p&zyAO%MYV>E9Hr0zw9~xbl%EHg9uiPq~2x2zAI&;Y=*JIY3U78k`gK zM8`VB6&eV1?2}#5()XJ!Wji7sDEpdAvQXspn9S}DfvoO{<$X4 z-+%0iV82h+d4)3w67Gk{R4^H5K>TzF?`Y8I#fzxN^x8tFv=HZ5psGAh8ef6fg-@Bw zySFQ4j=4v)JH#m6poz%ZcnJ!2y<p9vrPsN?v>bs79b^rGu3@S)aEpw}qhqwd@DG8A29FL=E29%5h5PE0nKP3@$Y9TB^ zDpc;&az!||I9(+}t4@l1q3LX|)gl8+!twc@HmMpig&x$uu~2;;qcTe8~Zgv*IZ29$Cu zo>rM;*zeP}yjEbw>oR~$bXlG7lJlmdv=l{}6&l~3o8GNHIcvb{T3`h7pWTRlDshlXre$V#u(ErXHK{srOv zH`9cHEfd#{pry7EUfmPQN->%BJMdu%j8}QXyl)2_QAVCRHtD<*Nl6=fpvu%7aH&B zTs`TOO6tLYGtK=6=g+Xqs3~Y6Lq6C;1l~bk7r*C@9XVr$XZ{lOuYE^0^&r&0&}MY7 zRf6Htuz^0hsb*;C#1hx_SxU(L?0IW9y`}(4Gd<=?>+(J(v_duOI;^N{W17`ICYQVY}Jp~Q0c&kq5PK2d* z8Ri9v)fw`A?Dx19uN&=lJtGE|)Cv%5XJ}~)oENqHNzeWsr9FMR2GSkkt1W6@1+$Dj zbnX9k6l+;TyqdsFJ1z}HYul9hUA*;SpdwNcH?*5ZakTi0Z_WuSm;)|I!*S8kw*g6m z1$1hQjg=Kp!g~QGETH{7=)u*4u37Z{tzf!uw%+UX2<`>-Y6phj3@vhxiY(8V6_nMu zy?XVE{p!^7M7rCbXA=rU(g|#6B`~<=v^r!+W+`QQF{rmYVS7r+vr>Ca)Y)2%Z zhx)02w{p4jVqj2^F%%CGClda5-a2i%B%KMoHsD$WW~$!kOV4cCJyQl(;_kOkNUccZ zw;xn_`G3>)P)C|nSj6Hw#vD%16_J0V`MyO{|@=;4x!`9Ta=az@=SSk|!HVZ$z6XUir`YC#;_qQrX)3065}{(v7HM!mM7ky1HVuTrz{ z@mn9G4an^$PhN@dM&z4UXE-z~TP&_;tzzp(eqKli zVg3vY`1zpMGK)L2uXHndj6{Zhx@K(ue2;uouM%eK3+JGF6i+dO3Y33u&Dj3P8mM%L zkv?6aW)~sWmfBjDvUk~O))=CJXxj{7Rm_1s#>MmV&M)D^@)q3A55tY$uk?JNfoNR; z(VDQ*7NwMDCCV^-Qf6M0aPfC+xGR~uO$({bAw(5iC7d+TKua>lH@QBAOI%nRL`zd} zfM}|-!L;n5gC!5&^RH0GKd(y;ZuYhy-1`nc+%AbwonNLrC?xVF`6WM*_dzs9yN-e| z1LK|o5ydzaJ{!eV<#+0v^x0oDmeZff?NJr`i&X}_kOmM3&4;j&3D1zhNSU8{C|132 z;_3?9?X~qUbE9%d#^!@GuWa<|`d|dGNWmG$b?>F!DAB zVV_3*yH2By__L@`%eni}5Yzq|U8-T!!n*RZnxvBp+hl$?Ucc&i(;OtA!ZLq<;OI|< zbYyxH%e381BXieX_NZE_Ywq+p`}3?X*3-o|o*(`EfdE{@7cTOqnN=3Madwgce{6{6 zZLoy!$y(pkt{$W+y898Pf_n6<);3-uwNS<4=;6$#Sl;Nd?z^+rzv3C|h!Ophhah1( zqXU0*;%iCuJVC-kBaz5$B^-nIh#4vABn&j?s~-85!l=89IA&$J%2ZNCup<|$H z65itSJY|nb14HUjwYD60Ee)@@lk(?+Xv11OIbk{)xfQ5N%jS9U+skoy4ZdaHUnoB# zZ}cM8{_q!SCFyuXFX1Z{=#F^h3Vn^s4QBCilH{4uulEZc9T>|~a0NU7b%Pg5L3<@+|U@_1;fC{CmWq>-&vsK#5fOTe>4+n?cvs$N^T5NJ*C$m2lP@P{%-?rV&% zod>(s7K8Cz0KJn%1*|VEVi}bmO|pigRk-C<_zAMlf@mAI8W@az*E;RHS?so-S66{2 z0}@9PdXeX;6cuRm6n;1d`Nk64Axp&7tsTWH0~E8@GZJ7&EnY$0?)8^)^<=l^;Vc`) zc<5kMZFX+blj1GKlsvt=U+`S>HZ0f=R+Ko8fi{FLP_SPje%DcmToI--t)&QZUD&aL>Q2&U5&|@KN@7#HCq51N82zq;GL#zefH^*9u!IUjWPIQhTl-|aBAkA zM~$YPJjaJ8_S*N|4ObV=EDsW2@D${RV32=+3H-gZjp>Upgw4SI;>3DwP*Bh#P-~$7 zXmgq5KdSr*;H2S8H@?kpc7aHOkfgv%oIuPq|K&Db1Ir40BS9pv_6T@V7tw!!bTYHi zY`6Ry&b04&#APjbI(d!kogvm}|5jl~d||Z1FT^JC8XKN1R{ZfP3)3wp$!K14F6`kF z>h`$$(z#!6Ln$BTagbg6xn)!FALV;WrIm_M8VI2#|6>@h4G#?`gwMcB{f9D;bP2}G6sw*%X z#_%Oh;FuDVbTQCToE7FVR^FHX#jK|^=t`KJXfANIM?R!zzYL3!&R^9e;#qcFt=X*n z6FNq0`GnrbLzw%2C?H_Phc@+q0c%#oczpENc%0!x9#mfg-t9(kYT+C-nwpp(kY_0d zz7rv1<6m0-Y}x#LWQA0R?lSiW(o?s2v1T{Cbz~F_X>`_w`mih!He8=ecNdEm#NKtN z@#Ic7WqR=c9-0)0%dZlg+p>A_kGVnI$8(n+LmMG<{%Qgr;S=9CZwh^QQ|@lcsnAUc z^!;9~GPG9SR#d#|(hfETXwB1IbWjv@#1QBB&~hsGmyu2%oEr+59k}`mJ0j$(Ul?>D zw>13Ys9t01O>Oo~a7aNsVz`bWwuZ_C>AS1|O4oX%;uyw5-xI6yhOWD$%}^;iEQuMu z&xeLbuNB%*9+lWIV)loZ`{9dr5JC=T^o-H}+iGm!S)YzP`Vg%qo=Fk@`CyeZ4u%+{FAz-6-O$YqUw<+g zUsnN~_>CLNlZDV>h15Im0IWf4me=0KIDA3KXV5W@_~8p&C_rZ&a_qiqVrt4~P>q7m zsv3TiOUL7KuU)3C9n`4)5xcUMYtW-~!$YTb)O$E$iR(b!V*m4Ium+b%2X zCA`>sdAk_iy|diQz0Z_ijvvg%TMa;wHCj>nj*v$>GIOu6&cu=~vKiW})~Plw@LI6c zgctMC5 z-oYyb?v#u`=uLu~JuE02>$~@@pW?j4+5D}VTVdm6Qc*v#VLxUX3O0B!zjF*@?KIo6 zMnBd^@OanT>hHY@!ASe2_Rufbo(EhOj2nut+<3umP>XJhQe@(S6@{lGy+j}V{J#eHQ&XoK*uk+k%ZB~6 zjn6yvc9s`cbeK<8uFac5O*pSEEhdMgt7dL!mWoYMZwBLOLMnDaktZqOfVMJ#ig zL7i|Teu3mhEi;ZeuF0|=c4VC7hW4mgvoF5-hmdwL_9$ZDp#Io0d><8gh1ANpUM&NZBo%o%?rO=f)f z)N|y(QkX=T$>eZ^^XKxgZ>{C@JBQPyg&zEP;%t;=f`t3@kVY>8pdx$Ti*sn>x6W4c zOW4cs&x+Y7m!J@qcHwPI-zK_!-b2ubQ82V@^q|$l%G(Ue7-k=zP?*>>UI4qjDe(EA z%cS1+0vm@^Cf3iEv1Ih40Yi9sOI(`UG$;R0W#=7^<^TVElCqf8Bv1>R;W;?E%*-yl zZWGWRoUjQqBnIerqXq4MXP%TGSxL>KXeZ59r&MKer>NUIgW9jh2Hr{v+&-r@dl1S* z%^^E^&T^#^d+>FoOKs}fp2x7l4im3MUk=aMDrW8*+my>E#eJ1VqX(Y^6QDjaDEGNo zdN?*pM40I6P`%OWz%QX$!>qH?>9E-^Mg8xx$xP%rYZtBF;LaHT#O7>AZef^+8?yPV z7M;Yecw0Y8T}NYs9Jl3Y z#$On;Ospu+8-n*8eQezOXIzL*U`M|7R~g^?KRrjQUOOn>*KFo%ZreZBtQdOvtdD*l z_L{d`!YLZ<^(`y-HX{}D*)dzVv+S7w)<5yS7+9Zgj_vmZ3xc z>44#6DfarWqueo0T*)5SqQ7J<5SWS`Zo;Co^rv{eh&EPZz)t45Y`NWFTOzF|T8-yV zON6X>>so3vw)*YM%GEn6-p{1j**iSjre2Ciwl!9j*UFkR#4cwBI_)rEmWxQlp&9-# z7uTFqGv0GZlr5wjLjn7FX0Lgg5WDm2fg>CZ7|!qg)?y}~rPco!PJBcVfve{IyKNw+ zBH-2&n;#E*%fhUk*a&Ix2`y{j2&WqdhyyZu|1Y#GfTr@8`0Q3cxp>E113*~ZK zvg1U8LxJc39SzBWyq3=eV=S3-mjdjDo_8WC_g&1Yk(k|6jK{^t-{jg#vKK>>XU;3$ zFMaH_sWaKJuc$ZW!|`J-OIdQno)r|Xpn2nlgVB(Ji4?m-qtZKRPh{?rERYHIfZj8Pbl5H z@V(HpG*nEGZ1TO-UB>xB?NTLKH5AHD16RH9jTU>919ocCT>t28Q||?MyIkjBa(}?i zx=vo+q*T9`vGcBSK9WXEm<`K|A+=YCkbEkuDq|9Bc{`WB6rDh(z( zx;UJBF@)lg^pC=PQX(0^r_uAuVrm;qkv_HDO5Jn&^u?Fr{mM*j}|N zk#*~yCy(s~OmegC2udn0`mYwtS9j8846Gx`r@#HpllR+mOI2z6}Nh(|DX3_9?}Ei4Zi z?OckV|6Y(xbK}8m4XiaV$zI0F;mHg(99(TWuz)U9hy67#W4(BBxKP@UPbH}f!1Jpd z<7_|NGWVxrzj^mJ?8!0|j!tfNNufk@2oC93*2lw+3A^wN z6zjFc)2WhGLGoS5TrG9EJkO z7i(%$yOnKPhrf4;;v`E^t*(&BdYeN)mago|DIDV%S+JKu&~)=Bdq+blTsIAZ*ZNPW z+Q!(XG-8NYK!C*DrrOk_6Hp&7@Unr=L_@i74DMGtmdAu``2i-DuRrvpq+MNW)%1Jx zK(5(YzFt^>o+&?ujJyL^|GL~!${;^KGi8`+l2yzCCzgSmbop5q2F;RXg^y+EOZ=j) zD)CA6^!lX_OEg#?o&789)6|-QX3@RdAcankklbILi7;a;ZQ-e~pXlmaeJwljo)q+{EgeeDtnZ!{cU}BC19e*=s0$ z7*X=jYGdd=L@txsHr?rnOov#F@ zAT?Sz;`#Yr2DV2^pVi6eDHyn-S+|W&t0hLbrx5JWP?Un*aA227pUIzcu&Jr{dVnLy~9Al!CNAC~b`aya50k^rUbZ_&`D6D^xqK%O8qBao6tqSQ$9!Z*aDNlM`{t|K43s zoN-zPM1mF6Z%-D#cL&?dk11@c2CU}fue(I~o(iU4s^VJmZuRfeo zOi3U7vbM-_33PoU^J)pCJ8A`NhT2kY7nD%ZQ76!18G1;UjS^z5!rXgZl0!pTB0^`v zuwrd4^HXl5XTzDv6d5VPr1A;9BPf1Uo?k@1$bTTdZTzAO{eg+LysBJ77WlF_V5Er! zK0$Ky1&&i2L)ZALT(F9We`pQL@I;HV{|$ky=ycN<2KWqP*V zgWR0oAPtMUcvdn3uY&hcQl)xt!d-@P0#vq``MJk6JTlonJpSeTTBwJxdcFZLE0BvK zD#ajkb#(%z2of|{ut%lT0QUnj#V1dmxcy1zH316mslmZPQ#TBo%+CQOsNx&?CFJL$ zpvQAi;qK;!v*9D-Ba@Typlq1?f8*UsgI{?^F}9ifu3Hfz*;v?DG-%b+vPrbT{?#2{ z%sKAeK82dK<^I^g+50fxR8gk+=IeHC{IE=-yB*k-K&OY!+qN0qY;g?j--y*ExjQ#mX<$PrA3SqV-(+rgZOX z1?8SL{99rQj9}67n~Xrj#o;xs{erAPkut_1vIgx*=eGmPgPlwl6q`OkxvLY{RKYWA znUs>y+yQ<8bntD!tB2tHI)J4F{E*(InB&Hbf5}TLgFuQ3C6}7L2p~1mnDIRKHM+J{ znf9hCtv<2kV~6ovr*TH);-1yrdvbYf`(bI+du9gu95=hg9TphY?|f+0NWfmcc-Dy} z?vw$I3NxBAQexxDkCcpdPEt>cun0Z6mBNwp3V)48uuwAOok82WgoVtkn%q<<13cX zhO|0Q_Zivj&#b``GuzxygYG9Uhaal-0TIrD{!>nE@2?Uc}Bfv)2$;6p&WKEPZ< zL5ywxwhyt}GfsMUJ+izU)6(b7pE)9n3C^mpK269z!n>B>tg<-!LD<2XE}4NjghiG0 zsp{#oTFLcF1)NpNmeo=MQ&~oaOV+RyGXt7L8cQ@y2c@~!WxNYwopE*KAQU|meMJSemfeuSNugfS zeUz*8ZBxL8+skTa!E&>n@Cv5Wl5$>z3M;~xPa63lcNQlm(Rr=p`?9DG$voq`apKfV zbNQSiS#tvfnx$BpI(4lbm);#0#rC!;2~?FNOO-T>YnU3ABoWnikE89g&$9HlUFk~j z!ierSz;WF!GXz6rJDAoHpaTvd){xeo@74l$Vy2`!JHku@C>t&C79ON7emDT12LjFj z?#7#vH^BLMqICUD$=d1mdGz>0nl~i0p1)i6NZZ9LxYjqKU#@JCVKI_n92}uT(@H+X z)tl7IO0IG*9-UIuBqHGDy*y$PHM-F!NF+$B{OEciSIfbEk6#wi%Uw?*k}IDiCL&{H z9><}Jr4YMYtm9G6sr@)!K)#L%wAeP;zUKfwBS0bv;EgKV<0j5z5% z;XRAMS`iNX?NJWMcEAdNg6b^t#DYK(LDVSx$w8qMtb`uUh*xDy>>SNdb5Cy;x|#9& zYz5w$rCPF}wAEXcQ&m{gi*ZYw!$_-Ym{ETY;n51e4eXOJpXo5at;&=otL-JL-6g9I zaRt%d8(K6StdAC@gT8H+{Z&GgrO()|EGI^W-t7w%3fFV+`XU&qM@JVSJ`#=g3>j64 z8r6uBWvH16@1RH!l(+|s6=qc;~nx`Q@W*l|*%*H(Bo=vWqnO60mQogFMmA;U9UmS(OVxLZDQ1!0aeEF@PN)wP~mnZuOQJ!F!gr!SoUB~U=c~U$Xd>WMo%H`!RAN%s(Wvigg_*C#4 ze74-VxOzKGzIK`{M9c+jETDH5(0rIK{fxxX%)~wu^(T5)X~HGA-a7~pw7%1j({Yyb zIrnEQu*6!u;_SPp{JJkr3$w9bVPiJbRCMs^Ywi=6x;#RbCZHu|ephHJJ8Y7rGA!JR zkeK5=(;Bh<*u1QP;aQ`sX0?~YyD}rj!()#PM4}Kkq?;=H1tZ2MrDP7+=!x_FYaZb_ z`UzBiE{*P({=WQyY?Zt}G&xN?np-t+=KoZT5N|G6@WGhY-ASPzGHMe1%O}b02@zpI z_oWv&id<|XoWVnnXu?RMSWI6}!R3B!1qG(?eP2q-1q0KR#G=c&bNQz`$(Ndp< zsf_0`uPh1>xn>Z#0taD^*syu=TtI)>3w@kkRj#G;;wkm^va8-w&zA(63^_VCuTomN zQ&{fy6{AMT^6I#m5}j>ijcnROY+6ekns4GgX(~T)l3rtGW(OM&d_~pby)u#hC_oaU z*|b2NmUQbz$e+D5*8{+06{|G4?R(Xy>limPG6 zuvF=&;$y%0ofFlz0+8DdWc4?(c0sKPMI+bD^rHE7snWx_&7-7DZzw*{BLwwRS9>Zy zkRH->O;fJlOQw&RZk}po$W^lWMg2vHYR@l^vo+#uX7R+XQQcFSiH$qh<#miyv3QTo zmUf8{+5)`bes=6FGT)tz{ZIC(9oNC2n9{D9QsBgX?P9tQhJOeDInXk zfau{pD6^u5zMS@_az^yH|Nm(ua0C61a!eFM?>vm?79ha^{p!lWG|UJAg$v(T8u55O zc)<0KjR!%=f=k8b*eU%``T>ZiQ$ebZ{|wq^3gu9jhr&FVl%S_p#A_u~a^Z0XEkuC; z`xPuiT>!HC)&O(JyI|u7;S3At!gTt1|IIUxSSTGQrvyj<+X><*X4ZwDH31`dH=>i0 z$Pqn8MJ}9zJo&4*CnNd^b{cWpi#o0g|2jw+WCfx7zn>u@&~0^s7CEucme}iN2L3+) z1n4i7tnZBd>mNoCn=z^nTGWWvK>F`1@lPfT<<%Oyes)n&Dlh_p5dhjT&LMZ6vtxnV zY7O%&cv&NnE|nGv4ZEcOp@H7Fm+`d65JUko-=F#8~ z080r%&Z4EIRVZ(O5gGx200T)CWIfP`Incnr9|2@*J9i(D@SSi#_S|5m0thTbT?m^QD|`50ybP@LLV&zO`qChUdb7 zWfSmYgP?!0KWL?FVN2F_cH2PYLxj08)U;AFdB8;ClApAC%LUwJSy)2h`MNw>;>&4o{wi=L6O_-Ff(``D z12*yD(0{I9*VF`#>`Cg*;^@*VyI015IKzY1BN`q##MKE{LsiE+=MbDQ*jEq-L|$GV zz@(}J_T3OxFBp`-^?oCB9Q1SlMg91GxNCyTi34^iWJA#3JqrALc0N>L-g0@Y^qc)u z9WUH~i<5Ey=?1OD%OCa_0TTA>IlTxN7-s7Cpa zBoWLfc7pB48r-3@;J$7xH!etrdl;1ApN(1`yv3yfWQx#Og}L+Ury4-4wmeFv%<5JHLC( zk1PQ;-HZHb6=YOcfdxa=)HKWW>i~1Rz{+dnrS%ocTEf7Db~Gw8M9Nzt%^(=DxK*qH zkwp9?&)US`ZfX|@NN)pbX^=RiO@U3{78IZp$a~b~%1qSFv9Vw%4>|AkP*PITfLHz{ z;HMoW7|7lK}AkcjM(JB^D6$~N6jY(g_8Iv5jOBF zC!guDtw{#og;Q)o!kK_}17tk`j}t3Qy#czt36Ea7^n>}%c%*~_Oic=i3WM7vZ0ZN! zttF5i7s0&+KfaKl{870~D)@Gux)x{p7@D~ASvlmJSH4Gh9hL=Ux< z>DZA^TYCf{BJPW+x3*xIL3rKeZ+DEvoIjIXg;yEW^EjlWGJr0b2Dd{Z(CJf%C6Lbt z@A5gI$Xde33V_=Yh#Gm*C-85m&14{KW$-&98%to4T{%902Rs?dgDJo+-G3Jk2tfUmr0-+dgw?JIT84Dx<393h(fR2iX;@()_ zMe5{W1ov{U@(d~6dq`L?ax&M_iaYj&XW_%!aj?Rkz-jYHCYi23SqBHLS2Z<%4h9DJ}$2WShJY#|Q{CGa@TexRuK|msohKi1IxuQkL{{s5&;Jg3; literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис17.png b/labworks/LW1/рисунки/рис17.png new file mode 100644 index 0000000000000000000000000000000000000000..be51c9dafe49f68ee5d4430d0fbf15f0f95a7120 GIT binary patch literal 26257 zcmdSBbzGI(x;Bg*2w0$^fJ;;q5Jc$|MJWMkX{2j{w6ujTkdT^4OE*Y2h$09Rq;t~U zos;_Rf$QwE_c>?3C*Je^@%?_R%@$@n&luyr?knzz+Y?D)lH-)eiHL|uL`8&Th=}%A z!hZ}$55rHUGc_jQ+dfMf;rm2szb>JF9Ml(-5F{eX@Fw1Rb_o7`?74`NB@xj{KJ?$d z2R_#AL_~VmMTG?AUZ~IXI62CVgzfIG4To=Dls-jr;Tfw@lzet8Wz=K0moE;;+-fUg zlh?`XJI;`d>9OjuSqqF!ZJTRywmo;^R&TCxk$AOos=-z1sI*jav!lN3HTUk_oBdQ){;_1jIC)FkU8bs1hyQYi}GG?SH4w0#R z>su2el{Mn`#iUl!E&r@}(=@N7ObC}MjU&skC>54@L+!B0XF0tybQ3E~V&qPY&9OJh zkjqH9|8VrPb9+jXaPmmd-3J?^mx+kH{-`Q{I%}uAFwCoFXOzZu^_7~v^ADWNtXiS5 zUdy^u@Zpc8!BfVqjD}57bB2`$6a9tq_DOM~zAX!@5iOUt1lY>fsnl$xtrY*HEmH0( zCfKo&|7ty9Yf@q(U63>;XAmw;W@C3lwl&kWd@Vvfwo6yHd{^VFQx8`+$#=m(l0KY$ zsX3N@G$bQG&~QCTZqx?H7b_!SBs1b4ZeD{u)UNQ&@NxR_R9r)YuC4`h63GrnH7C(a zzrf@`!A-Y)oa99QXFFD6vttjdaw-EYdiiuW^0qpN}y+nP444 zZM;plw#EoFS=1wyAL`q8i|bjxeR`C#^QjWE#K^aHEsHXF^^d$77uq`IVwoSwW67DO ziY*NV$^)A|#V(FQu6eu|E1t!KsI=>XFK1j~pJeIDJ$jC@nz)ul+xkZltr#}D^nsqmA-GN5~n{!VJwL(>3bS4VIBTwQgggo5`#vP`G{7#qg` zw}C?IvWz^%%HwDoAC(aja^)iX@Wlt^`BvtBtaQAR&o?Nk)sutsKa&!1c5;?!bssU~ zla1B0Tj?)xyU#*&==E-*^9#w_XCo%%f0#L+o!0UXNj~Lkl}~%#z2~mnf{rJ@$$a&g z_}QbF{ISIA-BtN%PXkyKEkoql%4F=<%hjcx=<}UDf%O$8CoYa;y6`R_`Shxqmwd83 z!-Hm#ibhu7qiSyIr^r)Ei0Ow79o3nIHFTL%8oGXRs`IUX5ti^QZ$1oF`fD$bjr3#96HoiKyDWNAgTk3&r$^|nRER3@s!tYvZ-df_9fPzllA*< z<_{b*{-CRbwf;(IZrW(mJwyC@h~n(iG4;(|CF9jkvQr^!WM`iqB73`9ta$F}q2_OM z`mU>WiEU>>qIT6ZZ@p;EOp%a!D*OFAJKr-2w$(m1vgKO+X;udlCGMQDk~3ez9xd~J zQdetO%410nU&vz&qvYrjVk7!mo!FOto?|;nZ0@GU(rj_lrGuBRx-Q8O*j^ zAt9S?!g=$@tz8|FT6mZCi?lsvLwu#`dIV*kv-B>jQ$9DlT%x0SO}iW|uWR{KNe;8T zxMu*p=knAoMeBSrGn&m_dm1uad^DUuyOBXPLjb5Z#BK88rx;^#hdlUreRXzmt3uh?iGp;B%ZCFZffRmlJ+*q z7cVner&9~kB|Y-I$=z=8M@DmT%Hvpuu}9%D`-tvk?-XfuulpypiEb>-T{(N;PwCBO zF}AuOr^gSVgV+!j+*yb&_2p}wAQ~sx>mcLpX=kB>d_Cr&c>=zl^w>v4^z!mQwi~*a zqq@4%WyA7u^buT-QYjwoHYsX2pFRhVm(h4_J`<%muKe_je2P-Xl4Wu!eZY_HEu(pT zb?u$Qi8oUklp~}{)t!IYwpm0t@<%wD3q<2-$~)Jq)tB^bzJC)C4DILBI^gVU_%<)P zA$e@fSz=(rjZgZhS-g4r!8!7~rmqKtYi*Rgiq%fvGTYi*W-_H5bv%!ImbN4`w9HO6 zFmu`YlD1PtvDB8-Bf4;n_xK5)JI+Qt3oO4rowF?I;$EDgz0v8&sSjqtRg-u%A=~=oXF=yY0O?itSqL^|U-{vpR zd?e&`X4J8&Yz`YMoBI0oA%#T+_r7;pcy8ySnRAi4e=^P`6Q}IAcd|zytUb3s-4dCrvUq>s$_&ohlo??Oz^BXoG(sovdRp`V7y=O6TXx!f6G-naje}? zWO#|s)b1Pp`@=S4__!@xmDgJHpc;% z$z$|P|DmjXYuvhv&)1onM+xh!X^MCA5-eY{$>sG*KQHdFVjs329CZljS(}8c%gZC2${Dv)k1TsX7RMW$;xc1^!Y1=#Ba0Hnx^UtgC z0Zrc-bpC;V!aBWIrmL3WFqWI;aBVuUgEDSP{+s8QV! z<=u}`Y)jELkKZ(7QZ&}K&vxXcR_{DLpH7oYw#M5kw0%c^XX|*KOpe0CG*k9uqaAzs zbt6_Yt@?;-r*~3RSgI~HMc8lf=Biysx<>A z;>tyX%1aX)ttBQmn)Qv_YUG``UsT;Oo4XL$YfMq8c0FCK#gh24V`nM!{g$VRO+wAb zZ1=epq@L!h>*uZL!ycESb^H*i+UlD$=Na6WufjYqB5Gl{`&Rm@)binx)dUdlm+85tZ8YiTiRt?6x# zq;>t_?nVnuujTXgsz1uomrj*QZoXF(C#;|8Uci6)Zg}Dao;%cg=*bqh{0$v>G11km ztqnG5x;Zz_?n;7oAI*F&8z(14B@ZQDxO6mC-SD4@!GfE9AEFj`ZTTkAyj$750eyhu`Gih%?yG5?pYO_lW7=5Jugb>E;O9_d zFW(|x@$S`pD~a$Fm(^_#Za@Fv?9#?)t(B(spNg@WHv{P1v!{-e-(s54=Ct|3$RcA9 z_%ZHBEZ>m;e?rTnFb~N@xyHqV`mNG5Vu&c>@dUE4gB9V92OqSjj8v12_f~!1ba=km zV4<<-mwM2a<*Mkz@P5LQd}6Iy(h6Cs{KIAWh+tQXKKy6*!YBAP`GkSqQsB$rr0v3$!Nz`bYt};rY3@4k;FW&j7r2xleA}ce1+axOwaJ)a4nM+j;%9j z=oGM&R{jmgYO>?PvNKT@LlmiJ)Ndswe~cpiHWHkyG-^Qlf@Y4(Ex~|M;*0rVvd6KW zD_aB3pyG{0z~Q=)SCIN1k(GwroYFP#R4L~6-s@iWRx zPJA!#<&$C?us+!}ra-Pxp)P1svEg`CCEls4(ug97cUGt6k1G6AE#Y*`rtIMMk7L3! zO;g+?>Om5TsangWo-0+QF3VkQRB!a;)T zioBzSP$HpMCe`J}WQ~KYT*&goRJ}bm)^18KagD4h%r8#eO+GCjgN@KrRgN!{rL)>NqRA{ zBb(z-hL#MgD}<_qc}T~i^Q$h@EX1|%!%W%YTrDp zDQ8{mD=@87>}@ogI~hhQN2JKau6>4xJKe~-KHR5S9PRN5mgk!}yAnyU^_ke|1zW13pIy|5C@)#HY3rC& z1cSH7^D$$Y2Rb}Q!*v{})i3ttHs+So-4Rg7Y{s~=`XvjM$c}DtQI)L&FS*>o!{(?F4Jy))>_x7 z>m8@PXS6+h`6RFJ_{cU6w#66lb(E$bki`CYR>Y}Ss_(z2ensE?aPK?!*nBf)hW!-t zjS$Cs*Q&=ZcN$^BR-9gUyevil?1uX4M9*Pw~~NMo51*K}Xm~ zB;V83%R6_|aS%i2(_1Od%_zvT9P}oaM4X$3l(R>}-WY%W82%b|X3Nz6O8HRNx52gg zpCVxry)I;|5M{gb(`sx0d(&IZr)4)ECE0^wnPhTftC>C^mpqlx}`vS9l?|mMT zWd>8~2Scn0SS9@aqy>a{B;IZR*h zEf=3Q^{=$5wetwbmzX9M!4~kkRZ4u}JvNrdQNr|L$wu^-YW%{~6~+xgPG|nwHE)x1 z1A(18$Jzq?Hrzr2^Cv3u#JBd<>!kP{#Ailt_es{Wp1u{&LR0d~@(L-I_NpCTd7)YK zHcd&o>?VfMMnjCXew1}EUbo1T>(e{kpqbN-D`tqV^j2WTs^fi%F?Ab%?y79UI-m78 zlT!bBzokQVUu9Hm;T&CX;0{J*Q#+C`OU<`LaWU7^IB%Z8sN_0+%(u=g%0owzcGj$p zJ;ShFD547XUFy=W#p$`5;meZOjAN>e=CJW7&%no1G5wIM(o0ZHD30&P1O}B zTKlUbszX#k3S(}YHv^|;G<~sEsVhKJ`7Y34D7)tcIa`>}+_Nmk?F1X?Wd}yNCOWG3 zfj3+A|Dc)ZyEvnmTie|;)AhqStTNYWocwOtYV)5L={gswCkS6gwummM&#qffK6cr5 zYO>bDuL_p@5>9Xav(M&qo%nRAuO{~~ZQuCB^VlYLZjCG?*Hb0_7`DK~4QcXH z@?df`@1MUp1AnShhc;=2&m9+9`+FE9&sHwBmG?EyPMK*{?NaBZBEuurM^)Ip>{0g(4&|yj5j+nt&FzjQs@Y`78=ZcNQF`C7EMZ~*nR#=|DxZm z-|R>H{Mx{p_m-Z+cwU`@^YMiq#Z9~|AgN5xy47~3xpw=eJ=OcF2@HSe-WRj74K<&nvH z65wh);^6p>t0LoH^r~*;Ylm?9QIS^fclG%*_z{Bz{@G^VdB+-H`l|_sBRD?A!-Qu} z9YA_4V)ty$`=z6Ntm4W_7hL4WeoIs7vnsYxc1i_p0>iR(TP^KYvf6%f!)_*Te1(6w zHfkexic;IfH%Vi%z)MSj1`ez2(kJ?h`iWZ3E$r63oMM>d%xjB$)Xv`X83T4Dq4VzP zcQ?*_h^bsLa!)!mW}a%~n=+QKZPocE>4pb?c-vnRH7drze-9FjLGY2xce;$c_qcNm zM(<~%Gp~sXEQcDl;TS@OgYHJt@w#@Ujoq70QS%}uZLjjl#(=PEmE%;rdj;2v(t|g2 zCmSPF*@%Hct&qLk(`Wk<7nl-0>g(DK=jtwHF7mtFSgCTXIG&o$m9?oW;HhiL(^}bR zgnxCi*x+P|q;ZZ>tgvM~T}YL3>K*S!Ht)ntY3VB2bgYnC?fLVPqYtt%^qb=8IIZ?v zQhaPfzR2KSk|B0p#BXL(I1yv6$`eOZIYG4^B8X#-W-dnL9@cQ*dqZav}2T#`t z?`%P-3Dd(vyUQ{50cepVb|(Km20|}7-V%-xvZE4YVvof)f6#8o1*Oi) z-$CU*xvSLsBr>OQGX{JV;4wD~y%RbWTcZb`B*AU{rQjGwlKm_)8IR?W6>WURXm_#4 ztZl~%V1LA^@%}Kk75skg(jYMSJ4 zciCCJI=%Jl4jfVt6kI2tqzOn!mr`{}xH>p`O!EVHJEMQZX*^AEQH)Xa z$Ix{5ULBVm5t*N(C^p(E>7>C47FGPI62I_zrb9e}ImB>zXRW%e$|nz#AEveW^L@K^ z3+JQVMIGF;`su3nbLC|uY401j-BfnIG|b1$OzQAY$30s;^tjTQ8yv;}%@EHP-&PMvl)BKPr0Xt>#m9+W5v9cd#xXGyN-w*Kn^XY*mNI&y6k=Ex-({yHw47vexZ zNk`$da+fi!KI!I!V~f#1N$VnSG5d?DHjrS}3)>bY-bd=`-=tq#tXPSjrnOXZlrXxT zrdrrDlEl8lIE&vIz3|&TXj9h6cTvj<<6OPTYbn_go=`k@+4d&Ku#&&|rb4U)-#5qeC@M`nu^whl6$1O@L~SbFS= zO~~SSf|^{~N+spSshQSZ&QFh2HNNWHcRJ`$WTCXGIZYlJ zw_W?T30SmipI@0pQ9_gj?UK0(gs)sAvMFt%Ozel;6$V?J@oof7a>F{ zMuN4v5 z%(C>6e87~9@6lwdx>;=E?i-70&xJ`=HkL|K#x5cmZnNCW&yu@8co*QfnQ%nlX7-Jiy zquWJe>@r)~XHv5aY`$agOr5OuCEMh;oWs9Qca?`1P|>-hf9W;V?#i0@cCu7AT(j&$ z(L&%tVCyN`;*-19>ey5I&HtWo4NOqO?HX5mH&h%y4o2kgEs=ROaDd@YNPeN_z zr|uQx7DuB~#+ZwLKjYYu_oigo2!Eb*El}sXpJZRIn%0jwKc7EJrZ-n-G?{a9C3w@Z zbz6sj%!qSp3A3F)!a)eB_TlbJ<;Axv)l^+kAWMkMitV z!>d79E@me)e8Ve_tu^+UHvD@TnMZvkF>|_0`;3{4Yr!hfXq++TpplF_74DtSPI4E- zmXp%4(eJ8c*Z@uLk`nzp2l{gLLasWct9P-_z6gHK<*6&mDp_mK*6#3n#n3~)h>8A0z%a+H~c-3O3fui*%+dNBqIN69Zol5sheW}qY7to@tm6bhzMc2N`%&Q=h$jLItFIu`b#G+OT;|9Jv%ws zbkVFhGBfjzEiddx+=z^xUYyclqR)LgdU_U$r$sEQ9^O_jb1uO$YotjDY|EWfeg3M_^I|-K zV1G-kQ0~^PTchK!2KUN%m|ic4Gnd5F^KU+mjg2K#a+F4zISySc9FO|2TzS!KyvMeW zP51~rme9jOR@u|jqg-T@+HIOwx;4U#o3WXCP0aK}RMhP-8FdQ0_>xphPfu!E8k4n+ z%_DU+HMLO#wA9*Fyyx?BbB*AXL);8y| z>%g~Ed)Iz6NPoH8vVNjfQG-nwjjmkc87*Ij>~8=1^{cI5EIfI1RBxsujoWPo{c7$Z#kDuPEC!h*u&`}TK-U2$Q|JCe}jPm z2l>9lC64lS5ftzq@YFmJQ#KUEfF_`xr~La$`FD!=KP#>Ozdk|q_nJm6Y;Gr|rw6uA zu^rhba;CGh)1p9CuT$aKv&c$s8Z#_L2^)LwvL=?wZYnjerK`&bi-FU|Ktft=n4Fd- zdF|S@nwpwB=&67}bZ^Vw9Em^cp{b@aM-r3J2X8SS?2%*M)M)>gwup?`|#Cp{jkk&rjvj33>`Yu;UHzGyw}8wc9zeASXTn6`a+7#~pI>wskL_d~M_&s< zpFj;~u8AdH4%6-g1VjQm3*IY3G`ml|`BpzUuOw>(MWa{nf_vjNY`VH#*SF<~%J|mP zFZVclUqr9Y_9Tx*xTx3F)s2qJj4MSTbOZp;F&}!w#?F473Jp~}AN+J=XsKR6BT&sI zh?m;?I5F`G^cMMcRZCBsnXXvtskWeKao^JQAIwQnQTK6y%hXhvz9-znbI~)pWf` z;lU^VggvpH?M`&r8FOi?4Z6!_JFA+il=UdD+v3B{0?n@U_xEHRd(G$YTL3j2Beeu9 z2)EVvM{XXT03V;o;$mLUOI$M1k33~;Y;w8m?>m=itgNgo+Lyra-Z33r-3e$SY&fsS zVchbE4jqD0b#^W-op)vaq+2D)w<4#jrx&b?4t-5^H4E;5QEQSs_lx<@O1Udl0z1+) zPRl+@HZdh7YA);FX=?8fr2p}#!>!Je9n}782J0tFn#j@TnDvWm>{6CV^5@U@_UguP z0@|m%ib@E)B4H|h%G+ft8eS1rEWKnkSm}`f%w<9c|ot!XK+v}%%bL| zUT51+A6hokZqBSwY%T_Wy{r!a4%3w_s*-04OFG?Grh&uWx{LEN=`B_QLZNrz-9Ppb zDC8UP7LBMaW~OHS;ueQmicqpKSsbpW)Khvt+#jX5S)9S{R-s@X2%38*<7WieV|?G z!GiPZc9<)%hh7cmv#qVoziU`XUQsdL*Y`9uhM+e@F~`teIIZ=>%Sv+nV8o-Rrx6 zb!N`8s6W94Ff&U9s#>@~KV8L}wRhzh*JY++u@p0XWqpkCw_dY++#xuNBGxDJ;QtLK z3|w7NbXifP$@24h?ZqQp zb_xJYfkqqk6k5Z1zI?J_v@WDBla`o*vEf>vsumW*#>O@QeHb>PwY@#wYVkQ^evj$M z@Gz8-%bKlAyu)lk6(bK;?EJa%4i>c7GCb}`HX7>Pdt(l=kDHs@YJL9MUz`Nq;kK}> zzP`RrC~T3nmDLRrCLP$D{)2Zum%sS_j)XAgvZEgm5HJyH`KvLM%W@fd2aDb%T;}p} zvy?HMU+%STOE$Yjo$aZzon)KY?hALR;oWY3Jj{ANFDJ)vdAzZ3A}&NuSvkqe%PXIu zvYu}(6dh$?h4%$EJL_2;R!vG)yNn4FQZBGoX`jpy`n`g;Uk6Fio|@O2R5V*C4zeMV z>nW&EkR7tp(mtkz6W1j|*d=WHobpPSW0~RE1ixOFU8f}}c>9<8Sm5$Ow@`AJh9Y$U zds=m3YIe2_ct;xS_+*nfb8Cg$nLTDOHnvCGKuAzhQflp7XFPc{Av*d227@s&HkLIu zPKGu6OZ&iGt;H1;sqolLKY`Boi+AZU$%Q*YzWzZ$i9WQ#M)UpUU8PP%8~VO6Ku{*= z1UB3#m{b#7iO(4|Mm;2S);sHYq0cXH+SI~o+>C{p<(&) zXR!iXg~e|Me7=(Y?EAZaAyiqK(-sA+1`U@BRMYaAM>e*d0WC&GM=Q4^o|>Cy%ofe@ zZ}%S&XdrW*Kft&6lXef%|59yAw}1Wo+0c=p%?8hRTJ6+FZ+>5mk@OPh=e9Nl)F4MA zL?dS@3JMB96UwTqhaV=P^k)@9r7C&C;5O;*S7BHT00*s7*0HrsYr;hQ6gn1#)>GMr z&DV3XvkmaM7$XxCe;`nY&Z%ljo`$EMKY4)CgN%kh#hafXV%(nA3eaWM|8<|!eEAXk z&6&IvkjNswv-v}$sVaGrW!p1mIeK-JeBd-7@Up7D7HH5EBRYB&9gDqfZH|*5ymwhY zqUN%_qMV`SirRqFCcdw&yTCHXYC;Bd3eQ}z?9ynREC!Q0Te@kw4M64JKGk}FjQ2B8 z1xw$Tv;h7$%l5zeD(w=q)W58&q)?MC7hCA%)w)GZeBr_ckUlp{yxtc4A}sDF5@9kX z^8ORp7vP51<{_RyTx@r@DhU<0oNr5SZ`$gr4eWxhj*bw4Okal+H}iKqEi?wiyv*?n zpr(*I!W~FUP8NsvhT4W&L`~G@s^-@5SXt<^Vun(G-O$9VcgC(I7Kx>tkmb4&OQGdD52uvf6)-W0D{UJh07 zZV2oO$A?>x#pSB|7-x9EWpCbSQjlaD;2B7`r*>_f*pC;Fpc4+CAl^MQ^Mx(C=ob|vcIYsFmU;85IKX`7hBLghU|-UjT@KP1E$OVtVe zV`tQCrxMm2Zr5OKw&y>fl>1`X0&&*@ak^LxtcUb(MmY>s-3CAaZ5$Lsa!yVwBTuF- zjzS`wx08`)aBVZ-FwLO@UO*iM3gNR~@bRwyx>WxC$*F(#gv-^i^tu#Mtbc!?zgk#Y zT7wUTdS=1!X%b4-pNx3!sgx{Mo9U;(83DOyg}tCX0XW5GGMM%h%3tI#g^l~YvI z$5Ks9PRi^ty#23U?o|LIEp5)yI&3zMo}M1`I2drVg;Pwhmxl3SaVaT`psPJOdK+kV z*M;GSy(JDS-)VLl7@ii(P1i2Ez<-L5n@Zul(74K^EeO+^i-9PpVy zg4^*@7xb9!QChl@lj%=7re|lNu!4hwmtlFKTLaiD7g)sZDI&fR&2CV|SSnm?EvvX! z?I)H8h!g{tuqmPmtoZ-u33ZEa1Ai4g+24O-RkwdM(xpr9bwU71IZ`pj;3TQy72GcmE_yh1^Y z1@qcv0t^P&x!y%mG#ha*lPMrlZOu{w7;sm{!W~#a!NU(3G&aO)_HoFkrlx|Q1RLnQ zniVk-q#q7+*UH*@!cU5y1vf5?V9W>6ke9DWD`#eA5PL&gy--DC4BZ17pXUYrDlaO+ z`jB^y^ETmUaz=)9kS;BE<9;mG0H; zv4I1K(7^-Vkz9<6eDI#0hX;S@QU+Kk+cSMTsYqFXi#ib-s4fFUg-iJ@*kSO0NNM;l z*{!hi!-?nV`}lGr)twW7j} z(GcsUIu7I6?gGNjTAA6u5Scd%Es3(IF3@iZSK3sp@t8bAFu?6MMgnsHsVuETk>-m8 z>4AKyyZXOcJTBa|g5QSx%_vfR^5imnAhTJLM*`jHaJ8Rx8W-738lb)S zM?{$Y9igG-O+b`ASs_*C!Gkw8bG@lR`zL>#(`Y$Dw_&l`iJ6N( zgOMZ#mRce@F=4>d|KcBu28pYryV@%7#Pw#@{(}8~mMC zGv}p?Acd%GyCdP00jy|%?2}hjHNhT{v$V7n!#9HMCaW$ChN)=T7mpq3f6$n2aIl4m z%R7QVV?H#^!!zPhz!C1Ws)R7=jR^@2zbaDpc3;8xONx&E&WKmeGYxA?*D%9+tLTT@ z>50)%10gLWOeO=M|7K>;?!);Uyl&)&x$JE0nOnK4Op0Pl4p-61z~FQ181cYDTlU;n z^H3OPn@FDvB-(RT{)e&IKeMOq`R-YF;Revi{v~wyQ$|iM1~mRJQ1x|nt#8Qq6AR)qF9%ds0R(Ib!Z&#)N8G5dB_^WfHD3n|%* z{FQQB8ykIOLf(3wXSsjjf|Ed?Ex7d6K9EX*r27f4n3L{=j6`_F*`A^tvp)VTk0GId z^!AQc()lo?7t4TYk`6`{7-$8SV{yyRzF1EwP;owoE`kUK-{y1{oEiX5|NCI3gDc8` zGt`H=CV20zlR+a!MG9F~@JM!ZV`HRRkqsQ3w6Yz0OmA@~?0}h>)P~UM1K!BgD%Eg? z(c*?9+y)ho%{Wviv^7V7Ul4Y{ zd4Yhy7kDnHsD3MQSocU^roe98-QBHfZpMFtyK8NY1yqEeQ7}IJJcCCT0wDZvJLKtJ zRtl>D8JdiJ-@VHpoBBY3z+S^nChu_*x6I7UT1Yw%makuxQBa68bJ@hhg@W6Jl zpmW7ba!;OU0xp5HlHtlORAmB|1k?up+11qrMl1A%-?RZG5Wn|vb8W62D%1e$?Eou9 zfAgj^oFA^E_ku5folhp7_JiF z)v(4Nyyc8^rx{~zs2=zsv};2kkb0e1$gvTZvWbC!6~OX0hz&1o)Mjdf7cVVVz7CwS z1w4tm#g{d|eo5Z!*VEC7S+@0sk5VI3bMa+YmcBRt=JZ{-{kh%}0vImFaK>o&tWMlZ z*jF_7i`4o*BlQ2JbWP+x$j_urix(crD<}Z`0|X<>=XY;WRJVKRva=Kc_yqK+DVWU| z)&@x5UUJw5_acurWDmv=&rq_d9a=DeeT4%GYXKn)JUlUlMii}THh>S@8OU}*bHt7g zmI@EIi^?I^0j)8?V!+)?Mx>l( zZE|u_PDUmQw1efzm#l)f`Q2WWsPoN#J@6YK(h5c?e**;AX@*FQ{RW7UKn*xj!y_ZH zXCME~o5Q1oe0^c4ZqfW!z{i`S^78V8@n~^R;LD(q3+F|@h;i^+T2P51ZUdf-K@3f(t`Zu!fJI}4kP7Z^ zqHrn=nI~Y>{gOv=@)Fwt3J;g%XqpL?J_0r^fABc!y@>4Xg>n$ZqhkPakra3l>R5;^ zvVpayW&Tqt<}XtWTXo}QyRzpWh2@(z?a=H{|P9*e>oxOKF!Fo_T+&Qu@--Us%+ zw*o38NGp6;&u?x!=j7&2!bpTqd!zH?Q*d2PIO$`R;0ltttiS1XT#`_GG2lvn#?loD_pE$Kn`(IcD7s}p)K!U zrX0j>I|JKYnbO!*2Jmm=TkDPn*GCjZ#b=LyZ>--svCGqGsqg{XM4!{z#1Vn@SI+Zq zXvS%F7ig@3rvAlkNnZSZ9Y_mhe61kw7$??Pe|?tFntF=%(a%gqbQa$BL%jp8ft7ew z<^wy#QUO@(OsbT5U?xNUrUt*;%r%1YVpW*GsjBQ}uyb)5dM|jQja}nC4ZRHt`8NgO-{b|qN~hQI3TxFa)AtkFLd_k!P+|?SAT=HZ(rGYO@STxo6^fNR_NBvozaShhxK=pGAoBDs+++TKK4P+c znSnuE5ez4k$5Eq11Q|}#BEa&%M%RHh1?n3G37JS?|IT+ZAS3wQeH5UF?b$E1h#DNb z$NX;_SmjGf0q5dJUYEd@s;;SNLPvb@C1_V^u;f7$0A_+D4$&nteEXYk?>`7f<9~y1 zztr@2MFHa>t*rrz$yr%T38i5C46ki&ZUI1yMjaq}c?SKhCLH5Gh@gKzdG-9qo-wvZ zQ2vu4#lJs{{|&DCaqlu#-y;nVHV>jpAj{C8Syny23KCGbdzY6L7M4vU_mjBMg(t>uZ?adcQCb0G72rlT$3Dz{GSTPjG&qL9ZH&NoP*IJ3u3fp-P}j z5=NL^ZbH-2*cv>C;>)wgD-kT9koMcR`+JisaF}AC4{0a4Aq)HW6x+Tj?X8|UXGP>3 zAyXEa$H*LslZr?K6s{gy`r&aAw(xgYfu^})FZ}?< zwPn$9R8c|7aNzrU;YlEUFdEhltbr-LJ-KWnq^uEiNdk-ueJb;AgC-7>MFzl0ecHiE z*&8?_sydv)@Q@X9LSVH9ote6*jpyi8`-;#E(M34QfavF*$!^XDeF~}c6c~4nDC*ms zE9(pOzq;2qcKUWVUBC@ciy4Km3H-}X3t+D?Tg4JJ^+DH9FC`>7gC}_d@@B+1w8PoW zAwGZ{25?IJ)xCQpBqYkEjs*xF&|pG4n8_4(Z;5t+00C|g2@36I3;7W0X&hx65@_6t zaAW{77t|3P~3qB~RR zx|W(%<3r>-T%CXkFPJb3`o*`V%ErNgJWw>709_l{2Fk^Oq`akBhx<_+*9Nk?uSkm* z^x9vYyA{$GrigmFi28USD38IXMHB)I4zSMQ8gneiB!Tc4!|Kp8Gb_T|aEYSJ`Ff&* zd??zDp%NV1N^)>-Njk_8?d%u2|Gzc`vnPuFLA?GSKmYjOk;fu|$W{b0Ylz(kv(nI+ z02-m|P@4Z9MU()}2&^t4VtZO2?e!5Dd^CWBA00(xCGQQVj>JHwiY7E*JEy>=gGe}z zt41^(0z+`q(a7@f!V4JErWgy@PD)LcKtVeA0I?7N{DgVL=+G8MT$2|SPqzJv5gMUJ z#+WeI1XMe6w}E#T0_{3Y-R$iOUQv(B?luz4ULkh-8+Kuoo5899H4{)+-S5qz`geeu z$s^~pDOQ{fCgna2d;~zS-rZh9bJ3CSsS%Gumj`MV8M>&1>VodRf1*7ODLXh%$iAIe zE88t$DxSYDd7lI_B=mmB5-)*qNlJE;r`-#aI_&@+;O|TBF~HrOx!pF@*`&R=ahWY( zDuLyA+Wi%4AbWW}2Xu1#>5QtDhKA3GW*!_m2v@}Bvg0W6>9!!C^6hfYS5VXvFb+q2 zj;RHPBp%;pfBR;EYb-Pxu~(R%9{u&Ed~R(oTWBv`WdrZvw8xooC?Qnq`VmeFs9L-} zXrAaFE-%qU2T^;8Z=7;}aMtygQ|iXc05BH^YyTpEWfg z@JXkRew7Z~01CXjsmDSEtB*#jAndr_aTSIvt!4|xjGz(^hFk?{i?G_0iU(`$F9h90 zOk8~8`p37rN@(mE4V?xBRdb7d20t6-c^YB*=`Vk?aarsu zXo#E~;F`1p=gyx}6&_%I(NxCCg3Gi58UzNS|2;qC{TmxI(2@fN<&p7~j3p+S=N+Hf#{~BK#wObUB|G z8v?WMsTyVKAVgsd-w)Q1-!UJ}D?%$|8Le^!9?nkriO&3P;N3jYdqLEtx;pURpX(=trC=%ZT9V! zqJ4rZf|+LcLL;TEkhLbDF)y%63ap%!Y_68sY{Si9Q}-3|D~STDmayT+^PU zDr$$v5l*W?P?EHpt&ln;b!O=&=jT5K>VTpPD?kooh}^ixLM^YjxS%);$hy69IxSI^ zq_RNOI#@4lpvL22j(>b-bFQ6SQ8f~*l2qj!F&NZ_EVD**_r_;%%~jC)td*|up>bl3 z?MX#Mu+Th@#8k3E^(C0K2B1Ka1ZK1MA{xYmc&VkX&hLzJlr<*FCtH;tI=A;8(4(`R zx9!n;fPm2M5;*-Fd_}m)wsWQPhhV5Gp`btsF+2F1g;$1JT3SSWDQ+pB?MzE6n&n0v z)38JhMnCq(mueJCqtacrrx42egQyD*rUdFG0UtX-ApnT$Wi)F6M6~(!Az~|-YysC& z77fZmTV46V?9763F&X>%>Hu0SR^v9t9_P)OV1B1USWvWwp`n-dm;(40KxlGoW|Wad z0D)#Z;9N>Ngmow)vGd}5xz8_G82-o_Y6HkLMW@8-2f3mF2(`lPRXj*)2=n@aTr8SE z9f6Gv^#InsB8(U#Kdw>o_)wL1JMtay|6gTS9#3VyhnqfaLrqhYxGJW`jiQB|lCd;O z$1=#CY{e+l6lt;RTB_?>24yQ`IpQ3LM9LDAl1j(Ew4D^$TZCih+~@25asRo0%>Anz z%ln@9eSg32^L@V0^PH2V2IBU<`MVEd@6M~3EvZ%MT*~(y=9PTBUGo95I#eKM4Cp{? zMPW7|RN!96f-LEZwH|>`o6)V83|u*t@j4e07%)dOI`&hq+GyEfYE2C3WMf=;1{@@G znE=-ysj8whC}>0)63LsJlke_)1!7b6O0E< zG2l?hL;nMLk!_UwmYPttv0^B=uydn_bn$7#gi!zWVa&-$Y}5;CtPL~cO(Fi0@ai;> zNL~PhBp2=zrP6)6m>d8Db2JxCb|FFn%649PzL!na9PLbefn1FAKRCm;|CZML?y7F=te-cND_0{2A3v|W<+&w?Q* zzGCr(+32DNo=~|%$4(j#&kvZB3%-dd6 zIc#KG0QOO1T>+7)OrTmEd-`SUIOY+=x&Z?^`mc8*4i1PAZGvNFOf5KE0l6Pg^9kUb z0n4JB`a=i-Q?O{l)Hy(~ce#27>FkME1L1foA?BM4{!v8_RMr|kFHe5I?cw!brEBjO zgT_OZSAZDIVJ1$L`eJCsqlY#+WLsKht4#%OKM+I*s(ljhA?8(jynQB?>brpt-pb*;7U)Zr@e>f%=n(Hn4;%JG>S?TtPAK9{(99GV1S$q|A0M9#DWHnp z`t{*b>WSMHh9sX@dEXYy0|YN{sU<7FZV8xa3n0~G6BKzjAf=Sg9N=AE@e`U`45?z{ zV@5#05==pZWo)Wvgl>?{)~lEm*!isdVxN9}l{itnW zaCB%VpKh$L|Gw{bVSvz|P6yY8v`AsunQ;(H4G`5$MFlt21@8nDitn#?qxXHcPBjC| z3TlCu5u)?5bzU0{V#GvG4)`fE@ZOSZ)(GBTlI}+vXpBi3q2~%F50V z2)ru#{hF(*>j;bwL|xZPN&`HjE7G>OLjCgv2jeu5SkVfX~ji++iU9J%svm-waUnYkU996R$88Lw^~3DOWw zd!RKNpeB`2LB3;kra;#Ph)_6PCv=9fXU>O+4pD5?DpIl%Lc8hl0Xo;Anr&?;7V-qa zUtx4$=lfNgMj(Ksa|0{vuvq?mK=a{jHd`6)9ct{r#9M&9!hQv&4zPSZ+B+1?y@U^; z#vT`XqxKmdCpO?V zo(np9S)*#4O5WnKv`t*Au4Dj1uYOw_|e?MUB`yFIXf#$ z2b;-&u2;u*hu^VqMZ=`j4}l+tL83m_wvvoIt@qx|r%np66B>><@>l`<(xR{z zPPQ3^rUYxay}N)ncN3@Pf^8sC#XSvw2F)o8?USvz?HS__B2zfJ7b}oiTBZN|LDm%um!QIx zR#{7E>Rp|k4*(jV*F|r*VZgaL%b36(&F$fGc=DA@UerKsG)kU>Mfm1?+gRAKVA3WH zkV@62UHIoOjY9ut5HNoE{}IAoU)+hn#Ztav-fbsd_d#Zkmz7mB!jQPTE5BA+vXtgh z<}ajgJD0RhdKjFoTbet(e7XgNl|3bMM7xshSnPV=D_c0` zEhF!Q)i(U1gh+%>A&Wiylh$pylP=!DH^uL&@lwZ(Zf(UGxV`Ch+@5RUr6Ti|5+)^i z9%D~)U@~HWYnL1z5S6-QuZ_+ixw=B*#sT0p_c|~!xHo1c36NL^D zW-}(9hHGo9pPerLvMlnhR)IyV>}S;uN=(-i+cNf4{H$Q~pfi#-U3rZkl{}W<(B4he zhu8Ky+E}iS+^uux(4EHgP^bI+*1EQ`>hz#=%Yq&qgK&c=Jz+d6bRzXUBAJ7nkd@;d zkyKl)z#ZHYWf}d!*gY-xCyw~Dbs|;zD=#)6QR7q0Hl?I*K5$GXIyQPq`MbSq$6)G5 z-iV^aC1j~12{qY%o!Cl01J?tTiF%$Thg{Y6D)nC;aEGowUc&rm`h=W9gz7g-7QIPy zdlxIi$Ug0UR>oJ_G?mkeXn2WXI&oPO(Z|tcqMI|SA_Zq++zHH#{smhS;pG1AR|_mg;R!o zF5azj_G$m23ooX1gEBUFRn9~oU%j#1`a5m)I=`_*K6JMe0vwoI!+Q&b=fDD`oG_P^uFxUKKyN+$8%a@n*7G_ zR@f*KrP;Xnzj0%Kjc)s+^RP{++_>pO(c@{M3{f9{?-xi-y_d4#yV*w`&)aXbBTwO9 zliz+$pNeV50s1Q4x5vtec{dN5aIL~SqL_69PJu5QI&nXr6(1Tvj_a_?r-%5sfslUg zRs8(-d8Z!SbI$GFX*TMueR?ia`O3j_&A8P^1!`TFW)n0kv>M)mu~hd6miT4kf1+Bs9rcuaGY#f1>nQbm zWcaX5#2TMppkzJ~7!X&sX0PYHi7^~sB^giF;yj(zT;JVWFOLrPKe)8Uq{6|f-~i|7 zqSA#6N*8&W`Q@$Hyhh%9(%C(0>Q51#YmS+h%J{{}H?h0S_LYc_`)ag2Uv6uPJd)-e zEIETi?Y+kNvg3KLv_HqYo zwPs(rnl^H*cqY8fj8zv)E{-QQ-`L>wMr0s>s%a1wc9o@bmPTzkL}IUSLa>F zmWdB-Xh9ffU5h(i>sXWR76{{V?&V6mBMrah!{|-cNIwo33%wu5t?B=8UnCN$L~GY0hC!_*FQZ=ufaa zF#Bi&gQ1aWzRZL1@DuJqk6=hPI#kV=zaw!nyJB!pz{J)wO2!9M?*!ALzrvCT3-UX8 zN6EM+aC@HA^`;yB`wQN#$%|D;!4hVreio%nDiNL%v*3tERN5JLW3!asbP>R8VZk|4 zyR=Jxs8+$GtD`@D-Y2Ani)rJt3qH3h9)7>`EU)I7`AdmOEr*e^jh-eXBZ>APE?XP_ jd-q$+&>TDeW74$H#-xVdu%g%oug}xfHr$u1bvW?flPN-9 literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис18.png b/labworks/LW1/рисунки/рис18.png new file mode 100644 index 0000000000000000000000000000000000000000..0a4dc56e99b366a69e92db98c07d48a25cb3fc46 GIT binary patch literal 25639 zcmeFZbySsW*Dj8U3W%{0B)6iXq|%KEDgx5d8<1wvod%+Ugh6*p_o6{Tx^vOpix60g zUU24v`>pTYzjMa<&inoM8)NU`fK|_P-}Aoa6?5_ask8*yDe6;1L_}nd9^RKDB05|J z|FfPr4!@y{jHiHq4q3}d+$G9rp`C*tjvCyNxi?MJe!eGGm+Y4K3SnuzF(2=f1- zdmn8vL`1r!kM7@5aL`;Fa&`G_s%(GXe(C(uou{{TmEJ`kP3J=;)Lg%j{PgRwxC`bf zNwOa!BTq?`JE@i%r7vzJBVFmqM%~1Xwo{n`nS5VN zVrt{w=;_lDz0hURp~`TLe|l`>MteV>Nw;YWY3+um5=Ul0OH`73NUy9{5n1$zVEpQS zaN@G4Y{I>A-^aQ3uODZWW&~9l7F`%tO<8!~H%(e!a`#x|(U|YaWqa&`uFXQ8>gEE>i^c<{k26k4Q@jTf3Mhi z=#o*LDceq%@^I)zo|zjuo_T1aZlo!}PjzwiT)>5lj+9D&0o7aXsa|Dzp?t&P7&YVk z@nJbV%9f{z0wi!ltU6SI29Zi4oHCStkGW<%vSmz^QT`of9a3CJ0{xQ7qW4qMS(Ve{ zNiGl`a*02Di%!GD>G6DupXS?7>G$22UnCK0OS2YYkDCp4vQX+Ox%)see*DDVAj$+Gi~La(a2hy^e*VO1D_!ZZ%Wb17iaN>x0FR; zbfu0f|2|KOY<<^~-l;%)oKi1uV&?2ZV@pvZ$)t+H@XE-EMk1m?w(olqd=2?+^6_%b zJ{>;~+{HVJ8MUi!W!;a+C{*;+iseZoY zBU!W;O9OZ7d4&%tE*~YXp65$7bxSl3qP(72{A_rqs&u~LLW8wQK)c(FiLFjHFGrA9 zV&KtjKifA-GI#Tmsz+Jf$PvU5@~#`i}1aPO=87qqTv z*|WDON!iw_I1&*(@9TfgR@ab|lXKx&Sd&Vio=ORQenwM6&b8kv%vw(V(RsYBb@3T* zb3+3>r$#1sZz4HeNyB8rgbC~QHjNIRuM~mD=&hx5__oeJ<7H_K{fXai?Z<`msa_FE zd&}OMbD@;>sS3P7F=J)w($p~}r52HR#`?qs{IZY{qXpd)4vtwj)3&a%U0=P!c~ehXbOh!VOV^l-zXJZcA>~J)7^ldfSpd%H8JW(NR(ivC}9P zg}fhQMe@tX)6)YVn=h7o^1>$NWnACpDHHkPUZJd+sjRuIPmy}x@lt_BYPY8?PpAl2 zrHZx$>i$O&mA=q)#o-Lz;>1~lPLmXq_;AzmCSoH0Sj}tgwtjLlA0J5b+C1q(44DktN+B+vrpjfi znd_c4Q((&VK%zyBm`}D|)NO}|md*)~3Y}T9GbXC6?<%duBs)0i*Iv|lbgv~MRgWf! z+5KI%VNl)^4VOmFvYgGs)-AF(w7MLpH+$r6j7pQWw9>vEJ{J3x`DgLq=_wBJl8De; z-gp-_4FNSC$<^IP+YzbD@@u?iN|uVXA?EwfhuLC_?>lO&C1!LFdJVhi5)tvY^B0EQ zzp|6J-M}%ogyNgqP!#K|uAg=x%9uiqjG7{C)sU{!y~WkTQ|V#Yijt#5M2V5Gvu+A3 z=!YR|=9f<#IU%<8-Uq7 zIWT&2sPo&xO^YD5529M9Hs^+JelIr>nh!5_H!f&w&y;xR9xR5T;Xt=0yxyPj_cPWg z-qwq`8YmCilQ=8set+f<)426yf(g5WMjU}|$M$_Gy~e@-KXZEx?_`nPlaCml&^QNr^uV*( z*07zV=oPL&lHC1lv5SlYGddXY-R&-MtqMrzit(arPwQ$l%?w;>Sb5g& zmms}PX6H)J(Y|q~#z|0xoaL32{c{zSAer36q3q<6&DFy!*wtU>eSje+QBNv2QA4!Z z$S!n0ci>u@zJCNJ@AIYvrK9<}Dhj4b2Asn+FjqPS(Ig+RX?DG8If+^Bo=D_vU~ zgn^|-lC(5`R9{jtXz6Nea&T~*==T&tSO45$8Cc{Vce2Sv zO&Ic1snrfRaZA@;y?`ufuk8X$34Qx5F$-4vU@Ya5d9N@f6Y58T%p$J7cPWehRMTzk zjh$=~dZxzq?6|lQ)VidsU+sFW+`vS3U+py2kM|)TV;5huvh4C2dO7Gn`}BoN**f)c zWrg!Bcfn1Gs}(2LmWY`0c6Z8DRY&)Omej-3Lv3k_N8SgrDb)XHUL6*z+7JHOU^{Xy z*}*Z}>VrUjqojgh_A`4s0$r;x1?A&}4ZDg7pAjdUdIdXQ1$hnK7Jg>wNXcK+;grB< z2Cn5(0cm0Bij6a&*0k3#mCj5ix%SDI*Pkix3@1nstQ)2(ZhX9uDVHsTdq<)|LhUi8-K<5KJ57?`JEBqif3~65j^P$r5#s88?5F$rsk8l1GW-mb zGqk3<0BiArf3TLZDCDrKRg)CMa-&r-wjVMP@coXuFql04K7n~9YBA55UAljk#+3^V z#N^g!=RgKw&s$=J?`}Vy zU`uXaC@FSV%+qC1h~2pyL1>OlGgVBk8I(Boj@~mM{o=$R~ z0Rh9*S>=})&fADEtmV0i$!B%R65Y^Ji0}AD`BrO2I@dycqjl0r`RntD`1y1zT1C1H zi2|#1EvDv3qXh-u`8al_)&$)U{|cI1)%0Mk%MXN3hzDdQ@QO*PmsqA7pPIpC5s36i z6!X|`K6@}W6rJDQ7b-OLjMtb3H~@Q-?h^@ownp$`!h&dkf@Dg{NkXuk#u{CkGWW-A zM&_ODfQ4;^jvw_6r*{ipA9-}0cp!PmiQhC%rWP$h>nq7>T9ECVmG%N-xmc5*62h;{ zwYxLkqNfm-en@CAeB~u7l!-iCBxn}JZ*%tpYByj%@yhdXQ$IRAtRgio_~&H?KW8ge zG7e{*w&A#m5%DOAiXY#_XK2<1_MQ&+8F;y@{%$isu6N!up=qnS;iT|+%FDn?GCH<{ zdAr#2Rd0#NTop(a%y7j!O=*P0eM&x?p?8we+AXA1Gn1F2<#b^SZ&N-R*1yEwYG$_? z3Nj_u|96^4<$+FRt4_*BcBA>l+8G!Tvox0Zt(pt56A{mz_FBhc)1<$M&i5Pjuygnu z%qvkS|0W^ubKOGZm8Q#s6xC9J(IJ$G#UHSe~CX`DIMwbhOW>%v9hU?=rxup(K5hGr}_FG-vS*Iv*b0io|L;2WXj)8 zW|UqPP}N(z*1}6FxfS~P{1h%XzG=={k)m)#h+^s3z?Q6dS8lrqr%*JPpcwspfc-l- zrR^-{w4ypo$r*enG&)l%J9_!hL{r{gAN-^vEG(2HR*7Gf&X2zkZIrbOj&N!1iMzK) z7$V53M^NU)&GMfwW}dGVYv~mUq7E2jNuQ?<3&>S;N?qe~lS6cv@xpayiRMq|j2t(@ zUiV?WUJcV8T~ET4s8ln{YW@+$&LQ{yFgwl3RBV1nd(EWt>w5*cypI)eq-+ldy~Ze!&J$yKTRnJb#z={V>DI9|K8|j?8KTLbIKj`19WP zq6~s^-Y}mMa2PO8LSx6GeaflTN>F930=+eN+0ULBb7B3d(9o;C+f zUpOu@82FiYVH@{@cEDFxQ)+a|>ei{E!IswV*}57Zds?|8z1{c6a1IOVg%g(3yE!eT z?fLu9GV8sMY|zt1O;d0zyJ;A-aP*i4)VSTvH;oaFJSUa$bGy}$I3i%ZNnS0?+K&5|JrJbv_OW}q*5LDZ6El|>mYw2R=m>nF|-7iG%R?AILFI^6>D?5>x`81uACoXHEBk-I3_k0GW zV;VDwaq50`#pFwU=W`P(Ur5^S3axyLki#T!9=detk6PV*b?Cf0Kl2?mUS(!_$4?Yz zN4JTBh@N+$q_5?A2d}ECxVYFK^X9CL{|&Vfk)A`uIliyM9KUhelwFI+8>?56uG_nJ zh{4aUG`mH!RKUjch!``e@as`Lbr5`2tcd=Mw*WOxrbq6RE0i^T=e@9=Lt*RkDvXWsinED=p1S+RcnM4f z4Q<}p!6c^P-aw9d(n^Vy_ZEw*pZra4s$8GYRE~Y>UTdr4g z&E)$ON!qbnL#oZ+(=|R+blwtcLWwo0Ie9dZl%|W%vfX(VWj=#?a<`vEW8`T>WA9)M zBlQ~kQjAW~qTHlf&iw_+)YR7ST{0$D9ovkz?NQUH?8>3QYfIR(`b8G*d`hPyCF=@3 zO@nUr?>+r7AZ0s9&9;qteOJ>&qp}PghxgkWtjel*BRgx-@mq$E#ZGdYD6dxSEzW}P zCs3Zdi*e_Q#C(lS$;P(1pVp3W4!kdwImyys*I#WWQi(pRO{+6*VM?Gi#kTkQcn|gV zo9nh~rbg_D?oU)LkR0g~RxX**QCUYlQ}WPTsQLb0lv*vRfZJOXO{aU-O*7b%T)-}P zg1)RQt5&z-`oNpMB-uA3GQGpcn-5u6JRe9L>QxJz;wRmSdiLYyAYDedtwK=7Xdlm; z^1@=?*o;xMuFB@l>~S{ALbHe?RQzw!bZ1CncCyd%21ZXciRKjZ#ouhLO728bv16WuQX+}Qu|oj z)5oh%bE?VqRxPWs*0UHt@&eN)l!sc4X_Btj`e2n;G5cu@W9ZFVpNFUiG-^!dtiVEQ ziamCOhAL_O7)2=e*MBSan-9HA=f~)yJS%#oX)XI~muFG)TT`L+MW$zgdLahhI}tf= zRtHn!wok-yfKYroTwK&oyV4(L#fJOs5zA{aRnUpIO~W-ncM=id?s<$&1nlc<)M=Tn zjO<G3_}U$y6fO#OFRI{NH}TCZhTSBsH$NYQQZDVHOcL(1>w zPhaL|E~ED}38FkoYBlLREiPAn{f{Fj!e8-vTCtIaQ_hu_3{x<_EBr1n*z1cX(~To9 zc|v=1W8m(wjd$%@^fG=m(}uM@nW-|BzG1Jkd1~VSa5VH2U-py!*i&UFW^roB=z$Rv zI}mQpg52KPYYwK)o9d=^KQCpX*33O{&UrKK`4Jwz>1&H!Ml{+zJnXc-sBhaI13eM^ z{k4+Qo5we>vVQ4BQ6KWunRaH*JDN6E=$R$0Xmg?M2xIwR`R1b%$7NLcowDsw-tYL>!*y~5ngJM-uhCy#j?Vz-1*8iaA3C7)jAs_jPH zphJLllN$vQy*3g*%~L?+{p8CMauXZa)mZYapxbsHqZ4$G8#L_P9a@hwo0vLQvqtXv zM0nvDFWYQE@jdrU(Wd23wan7G1ML#z4;F}_hkOmG@S)!fn_VYpSI}QVi#?Yj8F(9k zb=cxISp0F_A?#EI!Dd(Ac|o_mdLi>C!K`W_Dv0vF8rJS(G+=M^fn`Y~|k2l>h zEsZ3C_M~HWzmJ8u8tx68>a+Az;m8$p%A)^RgR0H(Ju`?ODLhr+6GFVaNG`z7|A2CP zu#&dP^u95pRTTdw&BxPC8m$78MQ=^G)Y(*NK1NACq>-qq@3rfre&clp@R_trdB zx-IWxP0Jpm7(T}>eA|jNo%$-SW+J#x_m-D)hSJ2&_Wf$HsQ3-Fud%j$%$oiTKYu4? zAb%i_)=UUZ7dSSQusZVPtGHbETW!%ufxuINDPZ)f_}oe7O-q%v8zbFPTgiA@FZifi zO_A{};Vjn4X3wXO>vgRZ95B^b{}oajZe2CdTG@*j^grA1)k$UxJ9Tpz+$2BK(MwyXLi5^<)%&o)(={6`=tpzJ{2NABE}t zR(qPe^_S&{iOX;Ig$_CzsR5-G-jME@4#+JTiGTQ=I5zoegUZESRsUC+Gpumk(>p%- ze~P#)?XMHJHJ!}AVe_!fa?xK={BwRFvm=u}g)2s22)5-ly24rgJ}AsfyY+@=wU^7o zQM#5?14MLp5_=7+?zs2*q%Yd_E9=szxqDa@rb|p^kqwBFwQY%C?>~8%$yDam1Hn6> zzIH53EeEkBHy1QwVz2Tv*x}4LOZ%s;GLxOZdpLlDSuVLU{Khlocs!R7uS2GNu9sr0 z@cwCGElC!ygsYB29JI}3W&VV(1GD_MZH~n%zDZy{wOuJ*)RWn$w6eOC6(vydELSlF zpY4_$_YX{y+nzq@cd;U7%34Z+y*|R4m zFPYbwwmz*kHzmZ3VDV9wCxpY~bK~!;4)c_!ayx6te$Z8e)FV&3ID~=;{05#qLf?PX$--f%0M39`QuE z|4N9`Pw}@+b6i)l!>gj+Ww*xqpcYpz2VCFY%gpRG*Od@L9|8yE-1K?wojnUqv=;zp zd++00xWAQo_`12(r*P}4WHWS+3iv=(6ssIwH2*1VV70{RAI z%xFl`cx2=apT^#PZ(ejl!L$)pL({Ru&Y0(=0fTcJgRF=9z3EZXfU4|#!iBx!%ZxaT zp^5F!%YAnYlGbcz#!b7^21YkcCAMNO2S_gndVflGq~S|-(D8ZfrW;A{P87c?|9Zrw z%Z)0%v#K=m$uavBc&x{4!QmR>15)EcNttebahw|Bzn3!a#yA-dQ2ezoh1#|>8}B#J zAZ#ez=XI>~8Z&%YJZ^#wa31iPqQ3ai%7YA;};v}B87uXua7L29I z2t9B(fBrKSyTjm3G7n?0L(<3}c6P zf+#&SE$A~Y{62XZZ_)TR_1MjU69nU~DXV@{> zL+i}>&0^24kerFos%!MRY3uHId2r;zok9*1Dy=_GZd8|9DCmjp)+dP)U z&YPK(VT+w@ZNZavj;OSw>!U?&Iy_(RS*%{YEM%vRT622{CX*026_x+;Q$e&8jRRB>8-3eztA!{@7YEtTUDPQI+!#W&e8Q2SkzRo7%+(4xaUyY$+qdZy=?uMbC) zP@VtF5A?xz`NnT+_>o1t;=R6qI$D>Lug>?|Z$<>c>KGq?(UWVjCykj{SQ@PTSm%qW zS{a|0AGy@ZsG}xZ)1&U^&+EjC9<#f03op?-6~0hc{D!0|u!vqoMTBagB?5(+sM;l4 zOH(P_%hJs-=$%2?KP6Kox8A*1+oRsGql)BN~m%I3pb2 zp7wUtGEq>(kV(yWCi=HIyo~sL1?e`hf*7DC;3N)@(*u|pOJjRAU{sC#IrXW!I z7v&0oftQW+HYit~KqnJiGSs#A;nwNk(~5@K1tQ;jNZRy5x7uB7vQ3E8cDCHye)!y) z8|6D<_RsM63lmHIKXa)64=sR1RR5=kBC^D4O;rN>2L=NC{i8iRj#~2)5sB!i1hO{D z>F8XprTlhGy6z@CBQz{5-+V-rjF#U&f`aIGGkDz9wM^WHIw3EQ+xOOOG5fooV~L5^ zP{XAv7%g`Zp&LZE2UP+Sm?9nS2B}-U@96Ao?jzd%c%GBA0F9o{$7ssmx$_d4F(`DH z3Q+zM6qNMk%Wn|6x=jYVzFbN#815LdA4yNmELVlMD+^@TNTCz53-*44TxWdzm0VJI z|0`FouFNrx9RUP<6{4oSH+?R0i8HuuYPYR^!mZRYU=xBgJ9Pa-5^L$5pP2NdwKsB9n6krm z5&ej7t+If%brFp^PD&Ns)urGra`ozixw$z(mrV+qna`r+RT?8LD06dVXXlcNVZ681*wQ)6xrCtkm&EjK-W=s$DYaZ=TSYd) z-B!G{g1r%Wd24R%rm)TI(}bj?)Qk*iA0MARCwckLzO(|dvT@?a*f<{5*Vi}H)wM<6 zdA%zyF7Ek{&$@BrM(9oLSH>nL`39}@$!lpplcL;G{6x1OerA&4WdIRNg!6)H`eXy! zJRj#L+959^k^prJ!HTOdXEDSSOSA*axaP z&);)$a@x#9*c-#X{<%dDvsfEBy>oK^I&hJ0LxNZtFo>Dc0H9(eA3<&!o_1f z{es5@msL~@ z7f2-1l9(F&LBHENwVdog;hed?IU2T#p|= z?%;4+A%XI4ae23gOA?!VL#f&Jmci}%qa0Sro%O{|mdsKe_ESW+)z3gd1B96x8yU4% zk&C6}n_%X5M)u1yiszZF&mwn|pRc&MxcKQxRBIC7u){sA{cQ}gpzla3Z;qa>oeUkj z4F{W=^Z7dfZrh)ucdXG@;1`bog{W`-@xuMFj11qw!s&F(Xcv~3Yc@AGuWq@(e}WD_ zqwN;^6FfbS`%v>VsMEq~&GNu)?T_s5xFa~Vx7F%yjO|I^&fMSTK-MoQ!Y-7(3@7&s zr7<{1s^Jp*%)K?SeR;rzu0a^JGU~jhVcpELT`%Jnd+DBMus5=4Wr?j7x0Th@QmfvQ zr^5EUfBzn?3zMZ?#qF~BGpj(6q;_U4IVVRB@MM}bT1yfhgi>kFNr#>#6(u^vDrD6n zFk?7b_ffx3$=KM~uP49p=U7!hFxAcuesXe>Uc_u;X$ZMy6}!pgq)0gpjR+O=)Y?{8 zPmg|}W%wwG%?ly8TwmhKn}f`ZjByfC(a)bhpY1ov9=O4MIEId4lj1s=w zjlOz%dPV^Husi_zo}?Fb0#ONxiN+0IZs_-Y?35NtmvH?O9-fB7+2k(tzBqK`i@*OL zfvBrjui_1z`JobqotH&&7wSTJOl+Wta!s*i8^iLpw)rYGma(z1cZ-UO9!pE}8XTIH zI8ilA`RVg#=ikDi(@G01a_5?wjDC9=%5C&X#m;oTE18;0|APuT;N!>kxIaRJgTKm4 z3sl1f9$vcal*TmRe+6lY&>^!_(8#LJ7R^L*HS$X%C*d6dhfMRd$-obPF~;+M;z!Cm-yqy4|=It5jZ`MrKEfu z;eMA^zI^%eJmWY~H1Rps#+;_{m6m_1)50#1jlsC~IEgSlHA+o~m==)@_1uMrckjMZ zv0}Y+Y3wUKLu%ZXGt(%0Y^_tj1YnZLe3D*c;9NaZ6zmu`A0M*FT#fJIyu40LO;0lm z2=s*?i)I+JIlKKPK0e-`%b-jo#K2TH1o|c6P(H^s9Qzup3+rbArR*m}FXH~UBTxUG zwF*Eu?*%`5(I^?9O%1KBd!9M)YYq!Fa;X2JF#Wa)zEyS0$Tr z7vy~(qU9ZVS4Fl=s=IrvE z@WvuL3%PKX04`y1LiB!|)uys|+bdH71xrLY`nOTD|IWJqEBim_S1S%P|3ry=vpHPG zNT`ME(g5D_I;A^#FzUK+#|_Hmu`iDhhw7<`4DG6^so6qTgX4`*Yd~7KPBD>{b zR3M6nhi9(OAPUg#1J$j&f8UbR^uln5G|)cIo!51*hy;i@06y%Xb*ti|NAFea;*$p2 z=etv#h1to-$Y3}Ay9*gY;fM-t(47{++tncTSYmpI+s+$HWU8m(m9r>I zvMONKh$6@+U40Dqm0VOLFxm7I&@sai5`3v$uT=;@{q$SxcoRBSbyclGyE=dmJ} z88%Ms*($nYs^PqtUp$u>W&@ooI9E?4uqRC=E?>?w-?clKmoRKoih0E#0&?Oxw$gI^Sthip1%Hk zT5by{z}S?Olvnhf3F+xl(BX|uO%-%?mu0S?5M4ZtHSlt)0Us8ZR2VE9a<8xl5|KLIkJ;%1Uoe01&G1JXq z`S8^4?(R9zx!oW`lgY()pMJtEn!Bs1p-tO!TSZf)!g%M}B^bJC%u8d|TE(;|)h%B3 zU4gf1Gl6O-FdxZa*x#((uHh?>QA|~uBW#Rd+;?l;4VMOsRMDm(tc@K$e8XP>T9Zpl z)kn5k>~TN>H4$|+;Vbmz(uhXN(EL7K0W?Skj7FhQ zkDoljX^}7B{+RqHycz!;p141=zZ*qgCa^WlSCI^Ld(hhM`t2oN;o;`~T2?j$P+4r7 zD!Ms(1Q-C&FV$RqA7B78EfK)+0eM*)Pi-mIPAICXhVEbR5?L92O>TU^;CcY^&#vqc zw}UNkgORa{RVc@PS#!%p6lljr#eP|&^O693n!LPxUF#5IIWsf!m$0zZ$;s!4>i}h3 zn0dz2Ss6CmZFhoU<9cvQD37E;lq*_g$rgY?R?u?Gx@6w8Skz*Z>IgC5G*D!lgL0J>3* zWty(5^-TJGJ#g~yz~VymY5^93`Zldv8dZ9nq!x84R6+CDEj*i=oD9~hH7guD4$7yF zb%0vX=Iim(w1z+fuUrYfTHBMZhKWOMOa*E6Kpkrb(yeT{AcsyxoK{gm;W{6mGI$Hq ztVDzp+EkYi#{(42GdRi9tOxW*S_H2Ey9TfWVyHQXac#P})0a*Nnk;nu`L>vQ`WFxB zH-{#0weVN54hYVKTjTJV?m+E%!3qE(8ZxEX-Fe#uqhbH6BljSO6aYN;!vu6!i@%v^ z|67vxf5{qaEEz9dx&yZ$5(?+%OK2$d+AqRK3YXkd_mNRI5~y@6{ElA6H63sZD8y2` z&1~BxfP-pb9zMRX)I&tGx_{BK#{p0eIc<);4G0X>Z^^M8dqX+jB`?F%ShkcHX4X;5 z;BFfD_szR_$Zcm}WIk1kkOEr;_6|T^KPyAQXNr) z()-_eIWiXiKjDKsKCo|Ug+PEdG(4V~nF-51Lww{oX&a(fL7!O%rju}#K23^rN`V6i z3j_KL*ddhXSLpjd2EnH?FT)1{GysDHZ|Y`a*);(H6#)SO;0S=8YD^I}pFl8#hY!Y~ zW}j^}YVE}?yKR)fqx18|h_2UDgZ?LY$o_lAe{qI9v_1IGR#^b`@w;0M3{F8y%RCU} z3iiViKmkxX z5(5mr<{sML=%m9LkuTYuG59avC-{FLc~_B&x*ttgQ0(Zh#N<>WwB{m5a(KbJQ%GgCr#9^DPS4^{@49-OLx&`{$*XDN6d ze2WLTEh1l@d?2`5gAO@&?i`>%Dv;;SBpG1idHMNx!=0*?^#4kyPkaR8mn@&Oem!{D zvX%}!SFT3iE7z{A^Z&liZ4>b#%-yeDqCFreC^b6z8*5ediK-VuKirBDA8?ilI$T(2 zXdak~-CbR?NN-zT9Dr*)lh+g};*0|zGXWD}FS)o_6}%6Ue{d{liDG#+b8{%e6o5~SE`avV$H!-an{7uN zNW>?yMvqWdY(60DZB$@NmdjJ^M_iR@_{_RW9oL$w;WaNbffDY%;c&UbH{z0ORy=nt z!nQ|c+Oz_kTW~-gBZR9rTh|syg5l56@6$T)n%kLPCREZ;I-nPM4BMi=7EEnJAHyy0 z?=3U4vUbHj@Wz2rosym1uHMuNyjVSlc06%v??*dnbq{ zT*(MQT1I%q0}TD<>Z^~;OIJMIHmexs=TkF#x|Oxki>znnp%32ryLaQzpJ!A&=1IeC zzodRZE#Vz`z^+F1X5A68TewLXbOmv)p?r}-)^7<=RjrAw7$FS?I7>abf$2ov{~{8Zz|kO|(DT)~iCm|4jpFWBlb%IcPH{^24gf;<3U zHnprwWW06!+O=!UV0iP=+06=uiV_DMT3R>nHw$H<5#MLp(2#lFDGstuK#c!UbUwGY#2a2r-}@ zRFPh&=`?p0#JKf=(+)&zu0xWe+vDWB z3{qxJV7h++rvkKHx<-kT7-3EZ4;P6vt>URbHC)-Us|@r${m=ZzAx_cN)%8mRdI;<> zUZOL*P(u@u{9s?QfBGu{U4pzr0*7los}QGtQ!u^zt(>Ho^`nEk&L2d*GJx-OCQ5NN zT4et+0jy$=&(4fH9VABlAO8n@kb@Ta7Y)ld`~7*Q`N_{RydV*21>}$;2cjR&7h?Q0 zqFaR5os zZ=||2N|pq3Nhwpmetil+=C{s9Bu(p~{X@~pD(BpJ=k=FW;OF80Tqfervh2xsnOa7_$kkQ-wjA4hx?W{Qoitc zj9|{S<#rvU8%O>}VVu7PeB}dMjqW11p+B--V5kA01OR^zL`6VXLhdCF+TpLo0|x@^ zPYaN}KtiCQ-fZ+$xA=bSfS9gYV!?c9`$ZGVKo+T%I%KPOdjA^{<3A383qo3e#Q|Q= zehdHjF~;0|X8^hDrbHqfjD+9@+-jk|My( zogjs3%3%Z60Uk|=Ug5I`58hZ=TLVilZ8_ZLXQ5Ap9LD)}@ac!+>T_7Z?OZo}{6v_y zeC5Xn^V`sy+0d3y%K67L3-S0pp+9?-oJ`|t?yX*eK=juhKlAqV~pS)j_Rzu4!O&-L`?pp}4i z;z`bs0Ul2mt58R$#t)!9IB<4=_aoGPai|2tIyFy(qN?p z3YCteB}gkzOM8-8u~!Uqt*fi+w>)+DWYO(eMnxs1c|-$XGb;`P5YZ@(zqMR8QZX>W ziZ_Ox@o@}8os0Evjix|!|-6A>gbg0_Zh5n7%F`GR+UUz5YirU4T<6cnLC_8CfP&tg<^ z^$}qVvGL>r@)rWO6$UGR!XcM*-QO9(e7PZy1Ws5m^Sc$5HLhl2Qjt=EsO9Zxx(-C1 zBjL35bW=NYj<3ruGeXFR513b^BP2=%-VZz%HqtOvRn@NE-mj2ulhF%50~6F8-n|=s zgD84N@elr2B5XPy2~K?Af?h#&i*(0D6v}KCDr_$~Cg%H}o<*hycqF(Pv3(U}al!kc z1#3RJtW3jseL)r)1%hBeI36LM4XCfLu=ei?w2^AJX=E#y1v1f7O{tYuS}Kg(+~2Yr z7VS+uMhk-^vWJcwpAA$qlLc9Q1xbhINxz*ud2(;6WN)aaXFBs(Lw$Was$eJ)F;spz zE4!0S+b#Cxy1!EED@(uLYuSC@`B4X)LX_(miI)Er5P^oXZ85NH;8frFUH~}_Z2fqq zx(}U@lB1(z@wgX@O*Mt`EX~NKCwuv(&Yv+l^m_!~k$@Pux?xMW04y(J#~kEP@HZcz zfAj#yumuwE2$@9y=Z^)BH7M^P!|Z#o43H)OMvg~qKKLCrgEqbJ%~-*(lO%F*ME7^C zk^Bz`A*3PDdgJ>0`;k_S=yu4hdlIF>kkT=P4zb-CwHFVyDHA8**Yo53`DXoJ&A;I0 zF2c4r%5b0H#d+2<(ukGow7XJ^2bVJ$jaGv7L-HsozM**6o%Oj8gUEKszf*uH$-!EL z-qQ6H_oGMgA}%B@^Z?m<&m$ZXZ9ZZa2ySqKnt7QbGCa|>b+s5$bybdv-5kW=%+>`l zuC-sBC=-=&=k@Ura`MK13J{{T8ey;Wf;992DK2u}KL|^6bVd54XraS`F$F2XkWHsl zKZI;5Xj_n-`{V>7iMU_vT|JN(XKhJR<@)|6X#pY{mcaG+6$v4(A}DZ?p$Cw{-ve*~ z=M^#9`U}jXRE}?xBF=T8#=*RLxZ%J2>5ad_@<0D7$N%L+f87B-0M7<552yqDJ%eP1 z-BDtQ20**Oe2QKm9aw|i0B4}g?1vpC_91LD38Zu0+nP~Cblpo)`G1`Y@X#Kms%vWM z`V|#cR^DaPEbV0-c>M5T8xRv<1|UYach_3M=0TR$34D^~99>uru!(d3T!;U>t?(Bq z${{8X80UC~5N{Q<;?t+mYGy^%2N(JjEFSRmA;IW6AT#M8_ti`=8Q{|+whpjm{fo0) z0EG?B%?MQzAh|7em+H9hOJp1d+-smjQ2oNLizZr#Vms)s;Nv8@@2y3_B12lNj6~A< z7x}f3fbGvl@b@pq|33)XzxyzwR1YCRb8>QOl7|cI`=Sd*iAX49L9l5IYl#1x0qmBUy;zUaZvcfqnU2S0L&(?hl^(lfx{J*|d zg7H$L+CzjV2%9;Ww!tv^3C9{lI*Pl4TMx+kF?veVZA&j*HUDvA5XXj$j2Izr*nOW6 zJq0)QV)z1JARGiN7@KW?oath_W8_W?*|mAb-OSMMQ_|C$D+ce8i^OZ~j#DBJ;DA8P z1FPr;H5d!xkT@UF`Z#pq8*PB@SFa8aS+|NfjlLwdA>c8o0HM(JBo2ux6dRJQkW?X`ZrdrvHwTx5fh5Bgx{Bd8Zmz$`I;m9Cye$Xx zBd`)V7;Hl3-9kfCph-sS9aagv3h~46@KTiYw`Bq%Wcbe)!0ZG(6bPz4#E^_OZ zEMPK1D!xQT0ms0&cY{F{otT&yT}zDEXP`^LSsRUlXz=-;lU&M`S$Zl6Q+0GKVlNy$ zj3}KwM`YL{|9Sm6WcC4eryWoQ_w5L|;Z#Gw9n?{$m1;^`U>u0cicD4^Q)fWA+y71k z#&U8vMOJ>CM;JZce1F{>CPP+ROJIX}OnO*dr&zSwadVvqk09x}rYm02b$c%9&Z12b z4AJ0VyN#?kp=CE^Xta0MfbgV1 z_`<@-cn=A=VZhF&=Awb&{vM&f%-OyzM+2dbh|YUO!rpd_Qau`>HVBOT`M$84DuKLa zgI|$hH{jjfwiu11wH6^6aFwQG@4%r3f(}!C@$VY1L7V_{CLoLVZu~Umg1v1!4|@w_ zM>XF#09v~3)>IG{38%ob`sGL?BQ=nWJpnk|27;6fz19dEAtwNM{8GuX@nE4Pl5zGO z#Aqht7d#nUak8lXyhqRqyG%065@Euo;DCMptRlxo?e8W*a00eBBn&A?u8xe&x$ked zrvg_*GzAjgkU zUi$Mck_C7dYMPj&K9-cUT`HPkhFJLhd!|X}T1|wG!{ISpU+AL-`voyLAE-Cyup*%* z;`ISZ&IERCeHLQ^bCr%9EfGy!sFW z6n|%983W@iso{|o;2=>8J6P21H7tVG$kT78MuhHm6~i7_ z0mnnUaRLBupbp`OvmS>i`L(MoxPgBbFPHBqC@Ln55SHvc#%@9e%I&`Af(%c3Q*vA* zeQOEV4*{eU2_<_MScg(nyf$yfxLSqfVce|)Y~@-e(>yKv?BRwtET`G&H2BPR9Yg zN8n?^Pb^~wT)0A@frD>aT@h4OC2*25!SNOl2=Oa0jZaKm%|`pcsarV^@@fy17)Fp_{>W^6-Wla8Oi_?Wj5|6;69Jl%%y9G;ikdS8)m)V z-q8^Y#fi*Biym&9*+wDb)c#(6)^0&p@HaKaHM`>IyySIEywR`xU5v)X)OK@XoRH2h~7o!>ySx9WS|$Kd-Cne ztzhS*fzxROld#B;;9OEv1_^uNZ7@Dh8)u3kR2ARqz9$cd2+Fn-VMKZjzk#b;Q_%zp zBLT9%=tW}~VS)nAJ+KtDu;#E*`L1@(5%le8TaO!CS^Eiqx#uXW}?>LPQ# zP)kS}cugjf)vvZQ)BH#upk7J}Gosp|bI5@@MP_MLI46ev@*cC-dy(0GQqHmz?6d1 zVm{{A&;d7;1jU65^9?MS3mXOMI}nm*;ISAJK-fJk*`4l8w**KFx+bHiu@_;K^# z#DyW?f#4I+wZ#1ugkd2`03IuP*uoT_xjg|dj$LfStvsw1By-3=4RFtmb$6Bb5p$@U9oAwPhb1DO214t}+I6NR)G z!A8Tfn&KdY-nkL88tkcD@2@1V8q!i4TAf?i_``( zVvji1QW1iR5RAgeLkDt(EA|P?{pGGDeKr*zLqd`fT@REx5b>7v3=FV6YUbSth#+&y zK%~|T2&rl4F%_&!of4{PEovsnTx3!E^|h{HxS`8pDYN~l+Y68OUGmUB_}sG z9~wH+_sOjz;Dit+81~yX$~Qzb?E3VO`6nEV&+c$2TYUyB1{uc;HGw2OVC4YBUIUCq z=ET7U{cIx0LC87BmsyKvn?w@NA_JR-!Vfh$Agh(4RG5JR1i>n zxUx|1l3_RmOCuS@cRvUoSpjB^?DFvQM+mL6fpd<{uBGqnNRZ?K#24B9S+xxX5d&w& zdc_UwZe*^tAB_q_T1A9izY!93fsBH&f)p55JW7xo0iyys)>i=AWBHv?`2_{oj}r9l z&@&L0gJds(f+Mspa146(cU$*o0mWV~6=T^^@Rb>{t$G<8oax|Z_&NoKUYmh-Yp51Or0@0fGhTaLJWf z@kX7Aa|l8}(}f&5A0`Ym+_t8iu;~SP&`{u>u*e1UWNKyBe`dmZ(wIF3Sahe6^B{aa zysl-I<+5c3C%_2C+L*6j|EWbH409YvGKpaA^uE;)0>VgC1cr-cH_dS(*HqXbM4dol z2pOrdnb|r9l6$ZTGGPgj9fB(80+kO#Trr5tiG=q6ivO#YD~oFK+@gvi3MjThRYa^+ z6bJ=1A}u0Xs353Nh7e{%iea8p5ELy`TTzCp3}Tp7AP`U{A)vtlQHDU#BqEbg2?8bz z1sM$Fo|F63uC8^T?xQZv@aKHz+h^~6Hu{z&D@C=vNn4HaabhLu>duYAoQO6+xU?Rv zkJ2AI@_DrjpforcU@~ve?cx9k%0sjWgAi6?jCRpR@Vr20mrTrhe9$AoB+3KyCFMAh z1;a#~5@8D76(37Gba4^og3`EmGyZHTDR7Ac(s^Sgn6$l?#S?K15Da;o*Sv<3`+8b95!G#CXCvr)GvL)>{3w-rVC`l|F z9C={;1?Yi3qT$4IqCDIyiiwFyN>uN8kADV}Au6|m?iz3}ct%ch$hzP|Kb~pO>0H-` zS`WY$cEm&<0OseHFn^YUu?u^}!s1OK9Cti2 zczpnOhwL^$>X|HtZ$JPty=Vu*2^shb4jAf8AHZdzd>}H66}{~ZSdhg~^_-?;0xJ0L zC!2N1c6PW92P5lSR*}i6Q+KqP@4v!J|$Cp6^gYnTg#S?)c>e8`r2*eLbcoGK+wCDLy#Z~70Io9NI9|dqPr+db@hOZH$T9#rBkbI1%5#lk5c-Oj zz2Ah76!9s3M8Jy0YGcCtE0`A!d5}RAmjxW;Bf@J4o1G`ptl>IdEI9U zsE-HbyBADjAV$s3Sjs4<+QJHmcFnubU4WfZ)(cQc-6knW2u}qslU%P4*kk{Zxc&DL z=>Me%Ja?~#m;zPHcH6skT<4JjNhs?kIZ}XjP~A9$*ySH0)bX!))NiB{?pD4H+QMj zV!v$Tu%DOTq@ zd&NmVCbe??f5@Emao{Zb$czC-o-;~TU|R^(lEnEvP4L)pGRHpq%} zZ(q2p`8`b8i!nOEuoIc|q&h}Gav}9n+`w5uF!d7GqPw{DayhB|))A+%Ngq;f&8bF9@E( zud;`sDIaldzyV_Gj7^a*{^<8OD4#uQ%?prUd9hcSR0vT9%XF@(TYJC#(@6M5zttc5 z9zPoncpcbbv1aAM=A5cx!jDI<`q-A;dbOoGF?7!H;9iz1zk+&SxJb>ZkcDYK=KR#tfJs ziiNSx@X7#>oCz8}{A{J(ghr~?x|*K$#zspBt!zI>=KLaA8OtqS^~9PlIyqR}wN}jw za@8A1j(smj?V7*vS!iJ=iXOQ7yV4jPPVrwlxa8Jh{4I}A8lHTLoLW#o_+U9?hO#4R*KawpyT zc>6|Pr(5hO+SUUm;@r2x$w~9CBQB@BLM# z5ExItp68dSFJ|p{JE3~o;IQWEdBWz9XW;lu8Ercs_26i-i_5mbA3wz! zKw;2=6)%#4^5cqfUDneIPlpeB37*+|_(8~-j%T_A4KwAGGtjMhDI-=MR}>Zh5_%2Idg%ejsD|4qm3mQ>ZX@#Ci@S%^roTt~M_rKuL zXq9iqbEMdJ_`VkI$7v;E!GcaZmB2HyY`l5t&w~|k1Xa$dK>UTTSEY9Mg=H?2REm4D zc~NWR-Z@8RNR>~@JF07XQa&S`(cu@mdlNrn`((b@u}pFO>VQ;k S#Aid|zU8BIZ9&%Q%w& literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис19.png b/labworks/LW1/рисунки/рис19.png new file mode 100644 index 0000000000000000000000000000000000000000..6b28e5c20aa48ac51b9b218ee5c15364658b30ce GIT binary patch literal 19286 zcmb8X2RPPk|36NHJ0+17MJSXq%1TCxOM@gtvZ5$tMK(ocQ>m1qq7ZJ9M7FFVNmjB+ zR@t)ozfRrX=Q)n=@A!Y8o(}hQTi4|?&h!0#t@q`B?5GMo9S0p16&3xVgG$G#sHoMc zsFub5MT755p7GGe|EMn>SJ_XM{BdI+zF1+dsHR9ol^VKw?(|B0y~_6B$%|A}>*UCP z)CX=lHc(L=9yp|=sO4<XX-s_Z@r})!5V8#=TYZd)VHN z?|lCEzqv$?$(M~aKM>=2ANKxC>qYv6goMq!(K2EI)QpS{_vB&mKV`p|Qv~LAr-W1vajw#fQFdc-zl) zj1nwau^NV0I=-$A= z5s;ZF{jIxu`sL@($FE+yHZ3>w{>&~OUfyNZ)zy9>Arxol%>Q}mU<%*MmoHy<%wF2K z_tF{{7nd(tjzTh*e)#qFo*QxCjpkR^aamR{(gVOH8UgtPdXaV_*4g!nNdJShS#{tC&q_ndZRO^T|&qWi9kQ>s|R7 z8RyylwbGWB+kbdy*!`R)*YYOSIxa3@3iUN#U%u_z4+lw<6c-m*qz9z(=Vtgynjk`L&6svfa*T@Kl}Cpz0IbkkmbN`#hn-TcDw z`Slf=iw0|Wc}GvXFfkr7{?8BX*EMd`WS?Bm${Oo-G5%DBHFlIq(sP@(JQL<)`}Z&V znqebS8ljhNaqYzmQL%blrrM73JHp|sSy)(1HXb{AG-QxI=Gl?(fSdd&4T0+gj{4c{ zb5)SM#b?c)D(myGbu=g>q~627)pLHPPxx!w!mo_qubZ4bC?i(S%*GZsJ1=ox)r9#* ztCvVh!)o6mo>J=WZ{K=_n=)Emj|7Rk$a4K?%Qp&=c%D!`nq+R`GTLy7mv_|;^*?)P z7Ns-c;oU z@u8-~Xf)hY zuA#wLpLEja+G;kFjD2h_8RqytyH1jHx)*KgU&pGMChYue+etcPW zi|{``RHyO_3M%%PZ1EL% zK5`bXts1>ie_qJ?$G`uq9mVTY*zP7%b|;9!w}1csb*Mt0J{{Bj`$T>hD#W$qQCa8V z&GpF!f!tnmjI)zNWtJ(q*MI$N8u0uqfhrf1D0}3{k&*gSHatQ?t4<6kT0q%qkeQH=kEXDF(9cbTA4YjdB}Qq)@K2TlTl+W)CKs4>rHi3|c1R zGP-3gxBQOMh>%TtucK^=)jKTAx%AHOTFbz|#;5lF{rk*``coy+k4fD-bm)*t(xD-a zv)bA$W*;AJD~zGt`{2j;d&Pz z)O;X$p?}=F&9p2;Is4MjV%@OTopA{X+do9foeGlZ{{G#hA=vLZX4Hn_9jvSOA2?8=t2t2rH{*s4c;^K!KbDRGI73xVtZsMao( z<91iG-A^VHZaQkK8_DNqqN=_+UqcC6KGVg$81E)G_HpkJGoKo2{8&#Fo2i;g$i~8+ zM_$6E5m?kYhAHed+O~3Ge!U!jP}~3cmE)gwqn?#nr1wYQuN9Y+^hNpk{dLvXcYtFg zf|4HWyeWQPm;D`;e%a$#Esj*L=ZdtQY`dH9%4jG5| z!6r$R>!;5X66jE&(4*eGdGjURGMwG=IP*1~s@nw8C)3QHJbn7DTxu(?#fiD{v{$c~@87@g7aFRfsCY$0!M2?W z`^Ud+?z@!k3uEfnHf^k&n_2z@>EfaDa#=^GZ|=m7b50Vy@%o z&YU@8JTu-W?a;gK=p%WL?g!Wn&bfwd!*(pZ7758S_u?wL_gh;FqpyX&dv}m(U*d_s z*D*19zkRzu|Kix#*hsYs_vw!h_c+h~%t*Cvky$EICE67=0~2qpGx)^CYbSO1!``p( zDWuA1`stM1Xhm^wc-2-Th1wgPcsCATYiTh9xT4%rQE`RR21IYhlZKkHQ3>2}Zofin zyEs4D^}5M=Y^kPB-7%jqy&Dicwa{dex_Rr?l>~0u*@@*CihPWcTbk(0}1@|?Z zWSD<`P0t>!^hamNr;kAcG%X2W@f2vbuh{wS<3|d%K;FWPCHioTc~um<__-TH368LdpFYCt;DcAZz*EjuG(H`*2X4cs43)AHi!V+7ck4fP}7Moa59yXD~{ zM`{eBq*@%p*ewGB0}o_ax1fYzt+rT(SA>h8$~wMrjYX%%o@B3)*m5^+A;tZ_z&QWx zJO23{f1k==jk)YP-g||5ISp2}(R{zoK~+^|Q?#SYkdy{^>K8%@*8M&I#ye9Vm+iaCRr8_#5YK?1}aYi z1sG_~-wJSzn<8`2r%OvCr{M%kZ!*t_4~qDb1hHWHgO*_;LrN z#?H;T{|0r9KYz&>G>0r4X%;nc`CP@s$tgskcI^E`-IC?F-c&8ubz(m@C}~-_*4o;j z7if8FXqJC4OJk>Xn4f6)jkTXWed>3UKfK~vO8$agki;fAS7tN@JfBU(P|3yR4T`2; z_j{uzf4?mNC4cl_Tjb}-npn4;LanT#GSGU^q9&I9?c29l_Xc@aCz8!Mf+<(8UIp0A zb(^fuJ?e^%5_pqeS;MyP^H#C?@%hO%(~15%te$r_`QBAlq6v)~il;nZFBPO4RcqXD zKW&uO_+yqgHzG^F`}oisv$PFQo;)$x_^DE=Er@le9@ge_%{bgDpTftpbkYCr0+)V# zxzbe@3LbGZPBSQCYpU#go(zlfm9nlYO+SCl@@i_=h3ka2itOi&j(wLRi_RWMie=V7 zGU>s6vySI*WqMn(rL1#CD1=Vt&;PVZwWv!FYP;h^7B*|871*`;mU?}$-7 z){Hx<``T&)%GcF&%ZAR7y@Tu2d3Y@(=gN2U@hu0zRjRnVGbQLsg^1}yDW{DwI_j4k zm$dIb;{nkHeGVv^Mfm8p_m2a~U6sXkQ~ltP6$E!k`~xf6HW>~Q}3bzB0zzB<1=v~2l<%J1P1RQZ*Zls0eQ zPN$)vk@YA}MTyyJZi#e1eoTdid*{v_K|w+Avz7K2FWw9b^SO14>EWJ>G>JMXl>Pg? zznjJ=DOFxEa=}Vx0S+x}F!BmkSD0r8u0l-}vim9G73^q>NweZBa@P8VP-P zrS>c*T{w67=j@NuoR>H{Efx5C11-n$3Z-m4cF*4uMjJKc~Xf+GgVTty&-v5Kx6rsYi^dxj`#a~WNw=qtiJs! z^$)lIQkfWDW~+E~=vrA2C1&tqqST4;_=-1$l%ae!s^Zepw;UWf;+8rayY%6aU8pnq}S$wJY_h0n%brMiX zviN0XHxl9)pP<+EvgAtX&r1!N8|^O~`1)_a`v;#9Ow7y6yN-=bpfmyu;S+i_>c75z zlG{)Fq1If`>!OZ*gcmGY)eYFYDk&@b-;4$Rd1cvfG-!F&^!EqV(aNh)sLM7vp_KX* zUIs@KtG|t1fL)J@9l6)3v)F&V$;KO%X6s|j{FfTW^2dC98r<;t2^HJ=u1TH*YJ za!#9^D@DExF*!LKffV`kX8IF_Y_CD~oi!4*a?KB#0-gl{JhdAEdZnB&^+QwyABnPRFRD zLL|TVh)C|Y-!E|oyv-TtF%_jwHA;4aLH4DU!bWtD@&BojGH#Em>WYdAA7D__P@P7Vgkx&1OO zx=t?*PTuM^B-iXvqXvL9o-e^0ZT2?fbS>^RM-%tO?;i?rhdU-*Q(Y%4!2fBn1=yvm zH%7U9-=IXH%tU%^wPvr&kB^V%m|R%?{=-g@nMs3|QL|xC8S! zu-=vs3o{GLHBf(ax8*cz_PM*~fb#;Avd>#VI@Qgvj%2s|n(HQYG*V`3DYd^>)4Akg zdcI_H$z6^oC9K-=pnP?SWG1(XpbLXvfBTAbQ~x#V0?Mm|RF9cX1ssR(g6d2)lW zK^9OB%IM(yrCgn2arQO8#lRDZECgn6JZ8|^#-|eU8}ZO{O5*w6-pkyvEKHK#TW5@M zoM9r8qWQW&D7s7Nsb>w)WQ6o~+8nNT71q{X@+SM%qDt7G`h)<}DTGfMVq zXPp1pbQ_ zK_9c(Oq}DidjlWtT=u8G|t0VwAWDEF}ua&=^<_H zZ#_M@nP{jFjWWv?%@+Uv8c4?9kFO{_YGsu)cyYoocYU}>ZS3UXaQ?7Ele3Q}qwP^F ze>A4yl%f7-X6gnlx0i`L#;gn=U6Zk~Znrf%ypQF7E_Yh+_uJ>jptQI2@bmKrXzatO z|5iU88~t83{mja^gfh385&?y5(2}WRblSCzHn&HkiVlTFsMp?b`2_c5qN~%z~32$E_;Eo z0#al_F#~S$sqpUHNgu|qw%^%V+TPyYUEu4_OAlpTnBvqQU57bRXECuUF*afQ66j!% z$&dhydVbXcsF zmnH7V)fCxTh`rbw(Jx;zff<9+C}Z0IE)q)!hXVzHPg0U~xB187Pfrfa+xYv%?-_9` z809$5tZa~Op&eXCFJ0+YT(&u-#BY&dZJa!RyJ?gX{gWBHamzhQ`G3ZV|CBrbKfia? zb*H+a(e)+!ZcV~HeLieDg~e$GL${w2AgD&kf^@hN{^&uktXnu}dd=?QMzrijIAEM7k_?@#kgkS>HvE&wi0 zaamcQuTKPC1N}_QxZpC)v>}wLP=y8Q>uWZ2&d#J{jIMx$L?2$!Jy{5ogRHCGnmC5* z^qloi%WJGNV&K7id3}L1Iwq#1Nb&FJ=w%+Wze>>8AfNDat<}RR1d8Mp+}(L@mfSj&zSuV z@&Rr`xojED_JPjQ@r_oJ4*j*O%0jtqZj9D`cJNfe&fgciVYk_bbwx9*tgP43O=2Kd zbv}7)Cd!UANUp)DDWx6 z#%PB@7PDcBj_l4}pt%mP*L^5AHzOhfuva@9%^$I-ujbh6G*~>`QG{CIJv*4qfV*1I z-IH|zbq!oZd2+DjW@KbAu1ejPoO4Oc%7vgU0dQAvi%l2irt?gp3l)&<4_Lw@A;Cg! z6G+&6YhLPhVc}A~P+4!#v}m0a!_2Oby)Q2I9Bu3AetT^-yMm`Ik)jsnXHDV%ylDE_ zSt))P+^!7J>Lv)VyvIyCP+i&kFaZzlCTQt5Zrr#GN9t*8Z0B^(BQ~4pR-AC&WUHH? zhzKc2!&ng}V7#F2m!0*F1q26|fWW>muj2aAn#&1mC&BsfCrIKY05l_@C9~Z)SAr+) znl5CV2G(Jhbry~CoH?(b<6J$IQ(BH&06`KG0POI)&g@u7#8?Nf@j)RYSi5su@U7}| zN}w32&LbvC2HC7=1qGVwa@RULO`yBNW8m!W?k4nn>ENbEyA{Vg07~tKawknHBP58n z0Q3pTV})-KwZ7-~kB~7_$q_fE(Wc~#1~{*uh%GFK{AvO{g?+c#n$I;gcIZMexSqP{ z7I&O2jsdOd=DJF>y7X*HGRl{aAJT|>_H264#c-RH6dQa>V*4LIeq0p16D~9ao0-T4 zU8vhw_B?y{o*FxEk4jyf<1$7x(;rP4BIgD*%1TR3-dlq1KClCuKEWnj zxpL)~JdeGGF5N8pUh@+~M1}O6YFf5-#Ej!vzgjUi4G~SICQ`hDp(;y99&I1}T$#Tx zA(8`e9|Fd5W@Scl>vUc2-n|?B^yvz;j}^jRJWfNco3M-6)ahk9Iy#`muA`ynxcd4+ zlgUVD$vrVs8gy)&EmrGB6!+=`ZK3wjTyKc;1RllFMB=j`4hcGsnei*{&%DL;ONHtB zc-tonREnP&Z4|4opvfo3FjlCpr>S^7gyBX4xd38*VS0 znji8CMJ;om8!5Xd?~yfSwsb4HMyM{gt=HSh8YseGHZn5uFG;(Qmb>`#vm>d{79UU7 z9Tb7?0^NFYi%Zyh=Gw`Zi4#8>*M|wHmtuL3jMu1}j`vmr({CbpH|lGAF7_Vz5|oi4 zv95o%S%2DtE$LAjb{hve8=BX!hisMHTPY0$@n1ayIrM@s+rxB{c5`xms z3~PMyEC50&EV3Ra!xy{Q*W~%5%Ah5J6qeL@>!ARgPHQ}-r$?vnDHw~u1yP07=?~XE zQb=nI!c~;s81i_!C;+yV_sZ2T?7ApcUtg_4VJhez+Kb-+jc5<3ItfY0c6G20Ok95T zs36?w504buY){!Dnip$}85e$Pr1%yS7ZT0TM z2WFe-YOH_3?c2R;`jpU;aWz*!-^D=!EOX$Oq%VG7L)1I`d+dCLExRQoRDR~K#f8cI zk-4#|7b zKw*4d&oZr1)S_0f*`+6vepJt=;Vbsh@Y~fQn-vteaU)e=_2RmXyyFWcFHbf(Oyup` zw~JagOE;qjDW(n?&W~P%{#A^|NF)r0zRxQsn=dj@O)WT|7w3RE=uc1!ibb$z+dNKg zsxHOz8X7$|Kq0a(^733*k`(BqsjyH!JlwM$Gz-fOW|T9QJz*%VS}|$os(DrK?^=oP z=DAf!wL0^ahH^9DQo{Z&I4AzrShV2hCDWv}4Lkx^pnQansBU^G8}7d5o2 zW6UK(VpZeg4({XCDqminU7a`mofDj-!YRlvep|J66k%|nFouRvB0@WNV*lN18;b(; zCW_ytO~H_pVdl>M^U^iv#CZ{vATR>U;0CrX%3CxvYUI0E)dhGhMjh@5P|XcGi;NWMs?|;OD0ydQGWGYA=^X&L7C3|La%!9VR|xwb$)_{zS{Da@YbJud}NQ3IvQ= z;530!651Nb+uV77w>i{~Xh9NYVYeK0mc`yeE+Q(g`+@98|NR~6bgr&W1@tt_0YUI| z=!yhmmr|FMl?`|*kh>=K`J4Tl7w2nWd402$MvK{Aie%Q=D~H!rXtsq~!L$5hL7Se> z;`R>Kz`^v2SFa!e(TF7%o)b4g%fu0(W@nC+azZSJc-b;=UnP`_g-;C(5R2KL-7?Fz zW7%3RSp+sVuJs+%K03n<^R@d>@NsBAgS-0M^7E6Uk+~vU1b!CotZfm!6s#;z2%Rg- zKjo%aXEdeScI=0b)fK8>0_KOmi9WStdu}ft&6&~J$jDgtCkd7%`5vbtiY&%o2+WwO z!K^vg_!5aLS2*Dg7x*>=Q(D*@FD|t(rmo8KGN$J|SxB z>iUh2+Ka^|wqIwQHyKYB>9nuz+Z6WxsatUdy*Rj=)1CL0a*n4(*&P@pb{KS@L>7u< z4FR!rGi`b9?l|cU*UB#rJCQT1d<;10o|Fw&2)9BA{2pi%ODWFZKU`0RqHWjaG1-Bz zL9uD5+;xz_5oSoC2XtIG*3bYF0zh(-Dgll5DxNqEgm)EEr&9jkX8L7fa*n_3Lj@S~p?WZ+E!UgTIn`>8IY@R97g0AcXwB zvT5Uj5f@3yU)tmUJ8ETCEMU ztHEVm&qvP8eZB4}pKSgwQx}aHG71cIqC#R#VFw|YgVHw2r^tPfsT&8+m1ezM&xnN#4a)l zLYDq+Ievc1B+SwRlw6Lu8vpY0!v+`OY#V6m>#uoG8EXlA0u5NMcJ5F8^rhdkl}o$- zLU%`&j_^>{fG}1kj3r`oYwQE!5)MCtD}>{gcI-zeL@(bncW@_nZa6JJlih!rc#>St zAGV6DQk+6B7by)nhBm>LE9)e|ak41d+ARkh{w4>5O0*SS6k2>*m3-oCGtYtRej57_ zzooj1~E&ksXIMT--w^ZyLD?x__hFV1b1S9y#X)9A#8|x%s6b6arg@~CvUX!2~j{( zY{v6ckqUqDrr$IQ@my$h1V^HNQBxt?vj5=0zW`C@KUP*%E#^aDZnPQQ2fRR^L>R7(WE0>!5Co#H|8Ow>3lrnY2mdSSbh#qsuVlf)!8)8a z$VmVl_|tMZQ%$ycDOhL!l>8m^G;%qiVD?-vU?_hl>uS((g3h2C77a`g{o6LX<>0}C znWL4|RFs%%DHifq9HEUA7>gPsAp1WyBLv@Q zh%`ERdr-IMlr? zMG`lnA)cdw!XWPG!u`Q)_YT$y5t+`3AC{aW^C=hN&$pZ3`e!QRKg8tW$n@n-arRGb zna*1GNZhCi44LGl_~cjRzOHu5YaL5aasTXofuyJT7P4z4Yn|ml3%WjEJN@DK1OvEWPVqh0UhW-DQN*9~opBZ&X$$|b4 zuIcYuRV3)AjJU|svVc?P(OZ{@kRt~aGQ?nEp~c6qi@A(CXeIdohM`R4uxl>K{<=`D zgFZ`%2y)EKWUHz1LAL-9Fg+yz~k_v**|JPFF z7@LKkLcK}WdEMSiKhRnLOB6}Sid+N)gYhI}j_vJtS?5liKspd9A*4~@qAo5BE&fge zLux~$tLbNbF4tjuIJkGs`82~vtw55qoQ4o}<#O%ifefgE*12_SU!Hw87zMf+h$;~& z0Y>G^Ym7x7pRKry&q13Zci(2GCCeZ3JrX55jq>z^#8K<}T78_5a9PYf7@`~H*~SC@ zhL-*F(g6)-qvV7Hk(4N*P!db0XYPmUu zLIa`@Kb`prY87z%ze7@%wA%xg#nr6JZdr>DY)$f%Exj{|NNz8~kdbfpVAg7bEQdm) zg;6$Sq!!~f9@DPfSb$I&!XsBcd{C90sMTEZo9GO>8`CXyR3Az+f-M&vV34~?viZa! zm>%ny|5)+vU4i){kLysUPeZPChTHbL@Pm!kA}-=A8^uv2wEMm)%))(OM$jf4j7Bf} z34WQn6Nm7Kq9XNg+a7T2GOXBd-@o%Be~KGK1f~C%fr9m5f zh_Up@b7os<$fiIRp%d*ma43l~(C2Qi_=LJ%+*#mSTYfovjxaR<_^ z*|FzIoWgTGd{mcmZ8Du@x8`oab= z=zx<0dO-~Xb#i3nptgHn0v@xh?Tas$|Er|C;?ZWq=NF29KHkS?T~#Xy3_3|} z(U9h29*ZBS9IAg8Wj(3rPS7yB5({At9@J+E?8It0Pjo-{~0@+`ba zxDY?`UurlsVwjBT;CDplI8s$DA7tG&fq*fXs=GrXc}lmbmNxa> zvfw%kT=uJjNTWO-@!9&xPa(;IGgWmthyE0SLP zQg&{sw(@fNlvj%nll{wY{~^HAy=%RjY|pM;O~W zw=@4~WYke{MLV!Q0k#U6J7%=pEqgqpm+we_BYmpphC z4ZKbgd2gO7zgXzK5*wcz7JBO03RcwzlJu~yso+T|w4>e@0Dfy28is%XuQ&3TsJoMK zK&dtfPeV<)C*!!C%VS(4XR0%hKsvN$T4jwF7n&r2C`dVU9(^w$cIMr>B>gu`B_$;b z85pQiohskGZQClOM*dp0Y9v?QnpP68w=Ob1L_dZc3%t{qBc z8Hu_=L8$AyX7BIk?GF^Jt$iAX4qmwEVwGHv8}-S=Iyzh#x9wM9%_4jr#b1L^5?NG5 zIz}GXMDpjDFvN9hDbo5@Ckk#30#0SH6p5kb@bfDRK^)gF{ruWd#_csO7rIjfzD(K% zQ0ck0od%vllo2 zE>c3*`o@%|KVB9LoFL&Ua#8{NhqqX#)TAk+b6-R3T&(_;McsC>&rcJ!Lr^HW=gIS%(fu#U@c;fY zGpbP)DK}mM?L+=a9SgNN}KT)LeSxA0l!xPc0P`!I;a5 zs4Zibh*0F+yFhl3Gx>OU6oVvA?qF>hI$&*`48jAHwWPe9j8og}Tl8es;!!}fALB~u zC1p_pQc#O>6ZCH}Izc!p7rwrNu!12XCzq(bPDk-b*oDL!ec_gYyHxGSoaHhw=M<0D zPSzb#Qu6%2FZREGnt57DA+S|#i@tn@aL<5txMP{?jD4KhWlqX}GrUj{#u1c|FtKYX zbTYrgY8d zVL-;Un~Z%6ArYJ9u#He==)5G73GWwWZ6xwsMw8v>w?o7%LuovbSm%@k-UgNdL_|JZ zb33;|Tt_ZF3h)L4kd(uR>8Lgf3$H~RB{l-9h+znCH*Kr;3;X{9FK^eK12sLhUb{M#|L)jJbXuODrnQ| z$I0L~nY_>X=v0-42(G&9$coO+&f(seP*PAQo27w{5e$Gz1!)4^d^5}dT%iRu_mXF< z{R6jFD=7tENs$#$y>}UZd}&$%94xKc1~XImUt={ zkcG(!j!;gN&!eJ83(DY`9aQ+E@t*%DqV%T;C=z9YN#*A!DCqBDcC6$ZhlVx_0ldRs zEmPoVPTOM$1?#4`xcIT-K)opY8c!Rx4~WR+&Hp-e=Iq%*D@hVeD(fmF;U**mrak0+ zB2lS!>`*#%XjPU&-?Erg!y$EXLA=g*uf`UBej<&?Zmh*?kU2a|PKm#pjEEK_{wV3Q zZ4F+zu#_<14iKEr@Ud&89T7VUrtd`IQ}b(+cT^ym7_1ezLpza4B7Qbv7QY5t0W-)RfSxMY&h50^pXoQ{H6f1sS>hc$eDu~yJ5rrRz1Xfz36#^MW00)dLEL*wq zzT=RfxwbW^A1-~X9Gt4hOO3*p`?#4tNksn{v6A#@rPch83g@ewo6SX+kqkw>d zSs<=q8(k$%>DjjC7oqcY{-HjdFi#Xx(U6qg@uCv!?ki`!m zxKr=dI);@JzeCHAlF|;z3Hw!WpTZ)+TShcKms~5N)%jm0^?VjV&TE;)BeT~jDbd5H`G=`LQLNYv+m?*R5Uz)QZ_@Yq8QJ#d z6$Q}Zoto`vp#zW+bpisAq)c+w`}F0_MF9kALl8k|1~S53T_LQ{aDk|mG7f^E*C9wQ zk*iYrUD*_IHTn5*%`@iaWRIi0Om1pIJ|#JS!Ieb1Q02&N!ff`y?occ$`5U_&R(jqKrkd`(uJ7}&mM^rxCPs`Z6oNB z$Sg%&M+ky)z9BXynv+O!P8AKILR(*OcmwY|Bp;*f_qDXR)j^9g9FfI zh#1^-<5OTzbxH)&<(J6iqFGYVM$}oiun5mR# zT2WCU@S-=7>zSaPSgh%DtEi)(zb%N)^FOD=b?BpR0hFJ#Ao(lWFLN~ub64+5?QF9wf$qRE?mv4eupP;zi0hzD@C(w`68zecR`-EIizL z0nw(8NT=39WEEjJ{Z43+30{Z+yRX#*_ul_A7`2NjLzUQHKw)Y}vY%M?t|zR-zZ5ovw}7Ac06I(PmXq!4m@wv}#vQ zAa!YzKQBpgb4cnyO~;HGNeNStAzpmvA@GKK4J8FL9v}`ZaB4kHDf`eel#&QMYFQ`b zv{Ed_5~)OTE8sg&%|(5}_=dZSXdq&}%Nb-ZV-azK$!sQ!rt*OlZDk6@6$wqyi+q9i z4^(3x=Y<>mjf}xPS(ja8d6R?^m=4j>$@t$$E#)T!!xDT+0%gEPZ9U(S3NoI5C^tV| zgWi2l^tAU-mkVYoFrv-Yp}4 z%=-@B$wUoH9`m@z^!0Z{vDTshtVY@g?@Q1=dO!?mzH=>E=?IA>EX>`nG{aRa?66%? z$$bLS4eJiw%OtgjJw>{_uvZ&?11iok9ruq+OiWi#oy!5sA)Eqt+62Ky&!*!#o^6<| zM8c&L=Q!#%JM-DN`#e(B$V1|Obm5zCp^T-%nRx7SEKd>>bkg?U{zA@*yyFW=0}6)= zo%0d}LuxZML)Zdz3~P8FiXz_b5 ziG%FKEhBpm7X1s@>tHP_N>=9}XhAX)Q?&b7MHz>!l=-Y|mA(3yIA zdKx!U7E6&_Hx(|I6=c{AoBXsm2MFmEyROm>%-YZgcue+(KRN}Enlwhl*&btjC9@~W zjjCX>>_|+tA42^^-b1ml7@r-4qgRyTIU$5bzZn|GIp#@ZIs2Q+d!M#nA3>DT&1lcNcXMun8e`5<@L{@SKfaFDf9q z9eyRU&Q}04k)K=2iLg583$p<*b=XQ9BiD=39TG9~a7hDtdMM*qE<(b+u(t4Xm<<%(`^5JPu&Sv}Z1%nHo-1GtLc!@)#| zQw^4ausg1&;Le@b8m)e{#904OV78s^v(u5Ur6unfM1odS?Zi)#iOd_y#^mRKpo90qqB^8}R4IACvG@N6z837r literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис2.png b/labworks/LW1/рисунки/рис2.png new file mode 100644 index 0000000000000000000000000000000000000000..07f763d814c67a273514184d93800b01a63492e5 GIT binary patch literal 13719 zcmeHuXH=Bg)@B(RGq$-wLaPLkqymCSFd&FDAUT7Ik|iTb)JCOMLQ4=OisV=-l7(tT zK?x#Rl7L7m1QaNcP%zJ-?_KlFuUWV6nt!vFmIC#@b>4IK-cQ(@+h^32Hmqe|OQBFU zD4$Z$q)?X8@V9t13%;ZEd(;K|v&=eovgGfw6ZhO&C=>}HWrbtfS4>AbuexgY^(=m`6?*vaE05i#))vZvlSfY)Y&FpS zd8NUdBpcx@T{~Z{tUQtM1}(v6kwyn2=Kb_XkIpk6pVaty+qN@CrO#Hc-luT?=<;2= zcpkp{&0>c6J)C1=Z?)9VYp#Bxy2Q%QSBtg$;?VCh@IGcv>ikpv-zXIQ*LB*JqTBBZ zum@K5IKJ(1e6Vo^<YFT^XH#F`2FQ0RxX*;$w}ABjTFcF*XIv3 zH8!TY4L6T_lq^p3We9|sUAmO@$#YD$=D`8K&nqa=uDE}#++60Z^=!N2YForBsoB|T zW2JN1ia{LKaw{o+DSz*eaJJ@-F1eo5 z_AYIb&QcuCg~k@^aZ#^xA-z^4Hf+58#nqhtny8eRBkt+yadI{-*)h6Q)2s?E&)=Gw zn)+QS6t%QaO`od!!VRU~bKIXopX%P_tvB49C6=;+;&?j7apq)# zM#=OiPkKjT&U^VqFSpSS1Mk_%y6%^L;rH(+H)ZHWscVR{>zJ6t9FIT4OwGs;OIb$w zuve{Me%^;RHP%JVyVSlNz4I%baZRm>o*V zb?iA_f;IGuQz-0j)PsnvYy(Sn!CMcvd8|qzM`$rC1vf}wbdzXTF$)nc`K_v|@gULJ7Z?@bOH-zn!+kX@(Ni zwNFAq$GyYJ9~)(-wRnn;suV{v zy(vS&>xbjSE}ZcloeW*;Z{07Qi#z$L^J**mR#B|%%!Fy7&TU&L*BaK~>nE)L|K)$| zLC~JU{l_wqclGsw!WB#n1&uyCaiK)G1vy6^M+=vAY_eGdBBXet{ zvd`{M&9!ZbbPAnr8lRi;N8OC>-z!hK=7y|^^`HxwTHQF8e4H)mLjG;&_r$QfxmwI>s($ z5l|k$mT+&6Qo8%tCz4r_H<0<^;o*kQt?qI8{5V$=C8>@$*V?=FU`o?nh23j!9#7B8 z%Hpnw+DQ59o$ITZ z+4*l}9zS~g8E^Ll54KvyN&LGC%ubI{qZ~>NNGRJEj~oi*mN!M*dMwNg+jZD-?P#i+_F{JsF z95xAYeSdghFxGRl?#0y!afeSbvI{?Yi+Y2O{5!SfwN9VD^X%EPFB3DaKfaxtIHw#^ z)fZAbpk-)i$ow|r^*_rEN;xVH{;+b(WqQv|y&Id(Kp|hMn1!e-@(bUC4NJWW<>tPM zUHbIGz;~v~>^aI-u0xk;*{uyrC9@JG6NQo9LR-isdvD#4Jd~CHsXk0VYcj)(dD_6h z;9vJMZ8}#QD~s^a+`BcTVJHl1y1QLCEHpF$wa#T$^1RNfXdzRoo+-5@pci$1{ECc4 z^pncU)1?_}8N)52Lp!|?VyAN~YY+9_kU2rbiKELe&IGenYztJ>(a<Rs=SK3QoQ`vO zeLLno|GmP3qvcbHXRi0$Ww9W^?RR7D&mB==Uq;DPoWaY9|M;aWFsqISb@p&f*TP4; z?!T_@6A}{dy&=WHDt7uKDkH(Pr4LG5Gr#6lw{u}g8+UmyH+9nGBKl9H>IQc4w*gzmzm;vY1x8{I zrbgOB+Z@#OGU*h`6ZZeAWcu^H1DP0d<&!WLY02ke^*?d_=&wUBE7#Wqm-YN;E*o;) z$IHu`)&nfpoB5Hqhl4dEJA2e9_!Q6i1xq78-oOt$eFFnk!;DBL;~a~c`VEpDXUmG&5C`TLe)$8vH-L&d+S=GlpZQ+y;j)eL z;=KhnHa6M@2G->@+f~?mo}cB?k(~NNVYhNHpX2)5e1ADDw-n-FRbqZFf46?3^X%@j ze&+r06%>8{fB2%q`GJR=OJz-sL~ns&AbS#^`Jt1sQJ!6$s$}Pd@-^*%&>)V(=gXyT zMysWC*ypqHU#Na?pz`h8{k;Xr>T%fz%**iv%dcOP`_a7u(cnGZnX+N$p$AUJJ&yYE zXWj-xWl^)~M`z-dJ-V;2LaDYacS63XBcbt;atlAqO+45$GS>{Bod{@90O%szWJ=3di0=68qe9wW5Zw=^`E@HnStY5#Ha#jL- z?=0tk{$g(zs0gkWcK^Ob`I?zB?uAE)FT^sZwCfp^!D^}Oz@3sdvy($u;+;EdGe(1a zrB5jbiJI&=x|diCl!LIK&jZ{NPj0r|z&fGy8(;@h@u!+wHdsyD)2iUgVbH!yGoV{qpu6y)MB&`^ETaCf04e zpMU#Z>zBX(MBvI}>TBAr6SoElSv#$wva@;xc$$6i5f`;?r8vU+R(q8@?k4S{t|`^HKYt9LmCV$ zV=l^Ng2dlkw9JxkSJp6c8!_!WV|ePMLw!-+y0T6Ma|<_|g2e zHOFm{IXyf(OqE<(DXvRtNPF=@1~FmNRq8!H$E=S?IUy)0*f%}rR?cSmKs~fnMuN`p z=$n`Uw1!1SdQ?ANN$I|D#D0d88B&a=HZd{rTc-mwZOglq!6oZq#hhgzR5jh)a_`)| zOF-pj**V5gLq!JJWwo!o0(Agfs_TzF;ary}<4qa8%nwHVV z&yG^q=kR;?c6s-y&E7kupq7%eFd>sNQP61^tiu_Z4c^4(&1-+`*mZ)oVrr)%L`YiP!VmWf_Z+_AE?4nBFmoIyTg@t=QpJ?cJm8MN) z3)S^}zY-P`6VoU)J37`LR8%C5EcYGWw0dRrqHA=&u}DOHLqjOLQWw*^ebagtqdsIo!)JW{`3r};a>CeJ6?O>|l7-T)gJ;Xv3_)Dht5ot7AAI}j z=DOSq?>37CWxRM{oS~a_&^%f}Nl)%ap0pc15n+lSfZ#6iKB--Y4<9C)n4@Kjx=cL8 zQeD87&FfimtsD5n%9SUZcmwy!bF@I0>6|%3J_W+ozMzLi%wD?|`nG;}CQJY6s{p6X zyjpxA;&vbR13PL1dg-4^iV13B{}H{kyddk{T%KPK$RhZ_8XToEfhM?p*f$UCg1Ax` zH{~zs|NN!nW7~3Y0%4=P-{?WJz@Cfsl6i6y)nXFoUaiCmt0F|zZQO1>dv;LRq^L1q zi!M2cz(38OKG=Ql4>n0*WF8thyq@#T--kA0;h8ClCwZs&kUuUKL z?rS~Bc$0asEa1x%#7W!O*sk0O1)B4)^Xq^pp5TfEqIc9jVvECLW9`eGR3pWecbK@| zW0Op8&9NMYPR8Mov?j29Aab>?8|;?Af5<47F4N&u+k<1Le~9;Et3XK-_nfl3D#JAq zUqA%Jp-XKKoL+?(yy{or%~A0`zAHQ|4Bt3?`t()=xK#G|_;{kO-)a^=kCEIKa7h#) zCry=sF9QQ{AG!vsABsURflubzwH{0xi1`E3t#WJ{h)uxf^P9Uhzo@QMVUI~}dv2Wo zI{?f~E>7L0zgjtczAfK@3U5K|Ry=AOp{TvmSH3;EJof2Qxf8gDu>O<30IHWq3`g4Y zNsx8XXnbnXK{KP?@gj>dk$R!Ci_frqS%$fl z0d)#b(#x#VeHRxZrQOnTUf-`whQ`hFq>UfZnfLM4yci-BQI$ku$i5y+VB<|hMNiwd z&c@c(?aSLuVru$6J`3(e8(I90aY{L20}sMkNz^U1Fo##6$)1)ggyZ#`0wOWG5c1q8!z7>KLD!Y*3eQA2l}d9LZ%r zWcPqn24GI<%jm-{{ez$HiZ(-fN}wtrbbr%I{!Q5-UL@s<)VWWR$rc#1tb;J<{GE8I$?9Uq;nRQ6nBANfJDt_1iypp|&)>^jif* zazQPk^o7*1rriBnp%g*p-BUz4Yfq=YT|7pQ)Ad7l@fMZ+S@@d#QY z*jys8T|ih^6(`RwX&)_8{Po!l+Hgf+))uj|e^GD%H37Yl{6#bUQR?r~`piwf@2t%> zDGs{YHh%>SCMZXRJG6a77sLgs4?I$t>BGtD52R+}e?25K`gHgJ>`XpJ@dg$@n3=E$ z+(z0Y(z-Md9-!#G1u!0-n^&;@OF-4vYa)dc6K@zDIdm?Q?ieXeoG0d(Z`a?ez{=IE z-o;)}*nKaNMmua>pJ;Bn-%aM_+5KrdrcmKxd>3Y*R|K?@Q?Vx&9D2IC_Yuk{b6}o{ zcfPnjhfkS!#|kAgQr0sMnhwZ>Ljkkl$dIP|V@u(Gn-FCoiYfPen6p@#vIR#(%WzYs zK~9L_a{kS?c}n=qtgX{@Gxg7vuel17D%7x?4}6X>k(`*Aimk@V)ncT1U--@`!wbR;VgO!HIA(!{Ncl^$5*W;yFDIt#68>eO3zO?F8F3~-ct|R%FbsF zz|8%p&cqTT&>NLktYQVwpa$6&4J9Yq+j+w;1FVCZlE)J^0^S>xc;q6(sta1*RaR<3 z?bJw#P+KzMPxwbV9nUVJ?^{x&#-O8>@82WlyeI3FU?~Fb8`R}v8tK1YKYDa-YDCOj zKR}052rAh12JGy_VQTB@T9i8x1rX;m zo5r@Hi~YZjoU(M*``sux$o;;JVViEIc9tEP$L!(w~$q8PfWDe_78bvA49m55!n zax8$$sC1BO;C`s=HVgA4IXBAvIEvN=!WGhG%aw=6#lAJ^aPF1w=5Z|UR1WXD7-5oZ zWM7CUC-M62)jG%tl*lHWE=W>eRm8A6Z7zn5ABK?Dd8wo&6C~ICeit~;bNf!|66RF9 zVWD$UbEZK85O>}-Mfh=D>gCanH1POg0Nn?aLX-iK=I-Sbaf1pW8n4RzL2}E{l4;XU zms;7P#f3S>NAqCo-txc=+od{7Jo5?1?(`g6N*~u++3CTwl-T-t!5_DTne6-4!kUkP_#U4#!}RQjpcV5Z*|ctIzm;d+-RJ z=^*rS%ZK8+J{9Tk$*SEZd5wdL`oRK{(;Rf>Bl{P6vlFh zww@lpci9fF-~|_+&1tozONPi{mt>3D*epWS^=Px<*|Y_ZB@o_iKa*vUqX@hS;UNav z?5F8ceq}5NnXZd~x^(H1-{W;RkE5ucR#&IuZYZO~tSJxNnF3BYG+rgz^3x9EvxNU> zz?NywHp#Gzy{Z_0=F}Fx-#%a;LEL$iMIuzt`G^3tX=vO_&&c3amXMIxCoHT3;Hn7X z3>04APH7N8Q!XqlY_{ie@!t=K6ZGfyN#&2davatH`(fwA_p;N*Z_Xb;0Xw;S6MAKC zUq5R6^wUqMsrk>(m9dO;(aeZf3T;3HB!k{m_3z^w<6ivXPg;|>aNCX@wm5W;{)d*& zU57MBT62`3&%p0nOx$Bg-`96xA`V)r6fKCuU@^sHFol|tdB{u@q(Pz#dT%&2tc$jRGZ%fqGR`{>l+e1| zDUeInP|Wf@Dm%C|p_5X(KxnAQQuA^r2qBJ%;^M!CuIX@6D7p#r6iRdafAMlodCyVw zS2UM^^XpW*gC6`1wu+`g7t3wiw?jd^JbQ*pTL7wl5%rz9d&ur1-0PdicM%_!MQtZw z>=!7GXE`}FQsJAS?W0k;zzl}*^R!?>!_8Neh^)H8Ov$;NL7@k?*Z%>e2zF;7%d6oA1Uv>*841%wNvT^!qr z8mHQr%c#u9oGN!HAor+ll@B2|v889&!qn*WaN4P$r9mQ^RJVloK>X%KI+MX*zwBvJ} zrDKRIK>DMB>=LI@T|&e!R&FJ4$TG^$7JUOSv7P_%otV#0n;b}I3wP<8{%~R=(O}ZU znK|HmNf5i%b&pS?+A|4$D#LLiQP46hkvCg|C_HMeGAKqX z9xF8>mEyhJoE>hV3SevCjWB-v`SWM0NzC@!3fe|S8PF=A9L){w+T5gPmeo_{Ka6paX0(LU+uGV#Y8TUS zo@f(-owNiaW*;=14kVof zlxbVk*+@C>B8!^Hi}t5Oo`dHyTYQ-j%~Uh9I3laa6vis_heJMC`j|0L;RbK>$NpJ6 z&;Xltf<@0sS68=k$hC6hvf$?1R$z&dk`A%t-e`*IVCSu$2rEM?6V{9ZpCqatWe+u$ z-{E}s@HWb|(B1L1^FfAB&)?iGr2lBUu;E~Z{KC^B_S)Rx7?9>*Ei@J>>>QnSniNM*J#gefU%qqSY1x@Cp`d~6vL4UJCnlgnwb6-( z^M_s{@oB*@W}&8CzjYr21Pz7jnbraNnsRORK*8Ss3tZ$Uiu)sNpPzq2TDa;rZ{7q? z3*`ZUFvLk|qaRFq;x#cx^l-vJ8DJwYA9y;TGD^9|$BUgoCnr@!v_$*r)vFBm*hN?p z&mFqtP(Xokh>bMNFad%Is$lGhG~ajH7aYUQ#UuPr~Qr6*azvI6^3sN}bzcN;*|s`xojQ37LYYD1hSaB4O-=`0($;2FLd8{CN&Hx%P(@Sn?}-X(IvauW>^ zadU_)Os_o6@%BRvIQr|aDGf7$J2vzz`Y0)hrhlF&b->_{E36;Djd<&hEG=OU)~c~- z7e_}9WFY>a(yLCnySBm6r|_>E@cut&lJ$7p%t&Xk9??n*%(*^Csm4-oPml&lhf)fBPlGce7JbG!oQ(H$TEj9HNnPNa02hkw?1`yS!FISC`iJ0ar zBOOD-eQ-nJ;1k0XlU{aDO8QeDKR!;B|J2vk1XOx>7FN(L(!Bv<^Z_sU8#pCTKjuDJ zSrfQR(gV>h^qhVe9yV}aW>GM}N8_;%nVCY2!MYQjMQ*l^et{@t1mrLQi2)!THMJld zLnD-v1v6I&$OCV}YI?L&+WE^L;E~QQE=?GT0=YT1BqVfolgZrRDpn4wZ}SPhwkS>; z#>WgpMQDg<*~R$@kAWC>j2Q?lNgsG!2jRK|3QqAbNu#rCVM>x5ny}&XKY4HjR*k6| z2vVO5Y7SFGKVo8U2#He%px1%itKjxEhP`ObY`P0CfjICCSeLNmF`|-&p|_&(NP*Jru?Nl0>H ze}aeLh)^GPp^J)Ov>`+RQ(hQMpwsC@M##<%ChQXw)DmY8Zy0Kv8Hl3_QeSA2Q3J_N zyRQg}V43kh(BJ2$b(t-?OAu%8!Tw{=A>bvrG+5lWSqLONRVkQ@QOhmm_z0+!uC;K) zroL;!lenuGFM@HWLuNflpBtYroD^Y7dX-IR>+yNAjkxzQr@Qo=oSrVp=*#VwBE_vk z$k+^up!je?tvTkaG=T+0mq*g=JBzH*GKE=S?6=c^2957AloUax+em>Tn2Etr1~iN{ zp0s9RSR6=(tX$H1u%9vTNX`azK#Lh2E~s}p#Gb~Snq}G`WZ~x8HP7iFPl*(TZq_GW zb9oS_U|ekq-kV-fpbwY?L((~U@}|%CyJl8sEEkRBwTpYtx}xrv!0CinM8Y+4WCK5T zl~Jd}J#rNKU(lfT*eKT1pNPVFGw7D)SuerH- z9|x--CLY>6JugEo60#P+Ce}zblb<*T+EX&|{s_r2aTw$qIHb;$`EP95=<{s_r_7Zz zf_mB7QXGfknlsTgvaJjgz#(Y*?Quq62!M2_Sg$OQG)a&cVLWOBaZ+MQWXd6hQotPx*;6ms#rn_wM zm^QC0?Py{Uwn*R)m{v>2P>wYwP&~%p@zXBHaxSJke@@H?a%mGjYpBZT0O2eU>Mb~l z;g-2)4-x*vC?R;Z!}LmgcJZjREZ)xGmjCz~srmEjx5JEmVq#iw0EzDotiC!BlY+5n zWlhYpAfosopAQX>&+(zl1X>8}jMUW98g@bP!3~f3v23U()Y)udJOUI_D^#DB`|f@h z>gKlfEHFr0yHE5JdTe2lo|&2X(#t5ut=VA7QEJpuA0ld#kRdG5kj5NwfE8Cg)SQu; zn%YGTDzzG_T5bnd1%m$VvG7Ekv-)(GFD=$*)|zm!5)Vc_=_UJfd7P@VYK;D52VNNql)ZG6&e666?F;xV_G*<(mQ!g|^SN`6P)>XIY7#o>68$aQ+7IV9;u@{qe15 zDdRjQt-J|NU{d^WNvp^AH#XqiIMod z{QN066^y0|A`0LTgZVZ*w2VzdQv*uD7U0tFIt&K;uJ`*}3|{8t<;evr?1r4xw6`A> zSp2nA;O*PDR!_{x1UdpwZ|~M;7PO^K44LJ@pnDOT6ztJ_wQx<$uFYkv`ixMkvwHq6 z`<(kh92gVbj23_eX)B=!$1j+~l{z2d1xNzINP|Y)>QDG-xfsIX#5nfLsZv|jDQd?s zBOSSj9?==US}F$99-|ov`JeI9Yd$Vvhrmj|mlobSrq4*<4m>Lzi841m7Evlxit+&N zVgff&5{wCW0ZVWztA7+zF91YsVZe7mY26MHZK`Pr5u`BATg(!BCT8eVu1}cJU{EKH7Xd1Cmtu^t_e!P%{SI;LFQK!NS>f#moS0fVej5i7?|~LA^b>; z8i^5*9^!N^kyt2RLEX$Vgzg1#%;ajZ9wHixG`Z0HAwCxdO$bbfJ$#skD&^vlvxC)N z$G{-%^XK!>(gK@r!%{p!Y!3_}V^QLc-AB>3R!8Y;B)&Khors=$?IX=McbI7#f;I0i7OC-s~%IWmbt{t`&42?EuBr5Tby?xXlYX9dI0#Vt*t$X zrF;OayAw@FdXiu+$bE7Yw-peb45)`eOba!k62iC3CX-!g@DU1>Z{Mjl(^|~OJoTf8c%v%1~w1-qZ!V^(~iS{6r8lHmy(hC+5Qh``~qc0}jTbTJEs9K1` zCp@enS(R)ZncPM4G}9i){^<5&%<16QFwo|L>5cPocKEYuVf6tu^c zxDNU+BT~2jXX*>iwi@CI2zZ=%Y+9D9bcbz*kVuf*y7?u zz(T^w(Jyxwy|)UyniTJMyw+djS{oI6SzyE~JH;YyEeFTEG=B&s9UWDq=?VEgl=U}* zl~>)~M|XYA!P6WZ8+6j-<+t)2nrP*TtXmyZPZd_fVavfm&1{gpT_m1XBwnqvWxrc^ic!sg1>|qWFN; z4DG&eF^07rb``WS^#KLl-mIH~_nfY zme$p{xVYLyEmA=JH~;3rtN7^{nJ!`HNO{KfP{3LI?!$)QmBO(+o zT)6PptA%4#U%q-(d2Pp0`|&TbH*elF>Ud_Otfr=5ZT-0LD4k{romT9s=i9XP{Dz0E zC4Ro-yd!MIxc|Tbhc4&#-Qwc9D+@83&6Q+nWu<9gu!%&X+qpAx(++W=yKBW%nuQ*p zE7%mxeUed>jxHd<-+z^AqSOwq=w-)uNr|zmWUQ?Zy3dS8goo2OjdmU}y1tbzfBP~i zb}QX=>Hls!JW&k^-eZJ+a{Rf#UXB~S|90Q}-|)gUq_kVNZs`=*?znyMtp8q>+et}D z6dp69+gv$0EM5KgH}CXWpvx|sX2CjM#YWd6kt%!agG=b>@{h{i+D9R;q|{f-YFF(w z(-l-QR?d3l$dO)NdHE4_4O21?HSW&!n3$lY#ov9exD(|`q+5lor3QSsL9B^o_l`I! zb_N7LRMQkvYpy;V_4DT?HVL;aJC3@@+t?g3@SIR^8fv3$lKOoxB{h|GrlZ0~`ku$= z5jIJ8hPbrk;$jx*h4Cxh&bXT?|L@%#*VFnfJ-aa3lz$+*^wjU^4!gxmiB0K8?y5KT z*qhVR(taY7GKBtd3aP27g%X?k+b_qZS;&?(Y~L5UibP5#lMQVJVz)3d29A&0UkwVX zGRvK_;pVWk!eV&+o<6@gKPBe9AV$4$<3y)pQ?gPd`@qNC^uhz!pj)+K&uDA+J%}+l zrmnupwyN15Wx_RU6)QjN}{0`s}6WVEzy zG7X+$pxU=@pYh`Z92~3ki=F8DeEnm61;hg$koOO}lrRmEGcu}9N-yrIEmp@FYRL&? zWnro2N%~$aowwGHD@iBqkn+N}#FK}AuNAb~(NJC)&ayVw?(mz&c-D6r+I(`q<5aoy zF1^}|57@n%5|wIupYPVKTWMk}+}sNB>7;F@rl!V^hdTL#BE;;!P=tns)rch-O;62v z8n>9O*?+n(QU^si_&+;%b;q682wq}lX0~uUcvw=hYn*vsb8~YI&#sJC%h`)!t|yE* zH|>>y)X&@s+W8$OzzAQ_NH#~ZUTKR@62amJG;Tk0Zr;_}X9>FrZ2#@1KAC$X=# zIIhS$P9e$R)a^&tj9v?Iajm7Jqr++l3O0{d9$HJov`dllqqRtt^cDQ)f*rAqX=4Vb zM>_Cr(S(AkcGniaZ*HbzWj#<^yfhvp&BWV0(N`Ci!;5PvY@kdkFaJEQSNyI!GleH` zS;t+1UF@zpe_Q^=CU&-?E~??HbxYlHmAEor!+MT%%o7Lc+n?;=oNiK3&+qHwqO7yS|`fqEWOP%ZkMl^*nJQ zvW`=+_#orP`Kcl9+Tt5GZbaR>wYRqT@tFe$8N-;?{c5jRB85A(wzc)%b^VO@CGLih zo>k=r9*z{V>c3m0-`a8|F(}BYs)jQS{b+d<-Q#$emRX>B{MFdgr%!24p5M#G6{;zt z*fh9iVQelkoSdC4DnXf#w#QHXFePQxg9i_A3q?h@6DP(*-@?Ko(0hAa8ncwryTRu4 z9G_)x{!I@H3qOp@pFB*jfqjVmVbz|+B;odiX(%)@QdHu4P;RueVoOVl(cI5(#*gcJ z?3tt}jjZU*SM9%F-|}*GKU?lc>%v`vf`Sf>!tL084GpR&k!s=2xO5iY^pq41e(HgS zSV1wbdFO zgXf;9hC7qAw2Wp(yNubQP+jzHD56%~zkeT}gtn;XJ%=x4)$&ktpgBE~XspHvI8B@yz3u<7h`{&ZmJ+rP<6YaXHnW~tal=OUz??rl|cj!=7 z$tF&vYt^NfCuw#b_78q|sQFMcAi{-<7diR)>99j0=02Bs@Vk!cEld|w)b!Sb<(SlM zI;ivH`S|4*A;F*acM06Zc?4LJy8qyTuo;=0g2PtkF;m;}=rq6i+g%O!Bw2sYjMcqM zRa)fDwqWs;GVBwWm)cFI`SAUr(~`CYtTi5ne5{Y%W!!n=a&>>o-Yixd9wn0t(Rguz5>m%!~+`qqP zV!x34Ypwt8uJ8VX2djUyW-LBc;VoKo`SNAr@0E6Xttsic1`uj8{2?b| zr}Ci1n+-g<9}g;0p3OY-r($RLEH4FeC-wIBZeeCdB?}D={c@?OTBkk6(0iXEWovso z>ph;(;NZg&l)`|bRop*V#ho59QGK19iz{tnR}R{=Bd#=p;bq-UAM1g5PN~Gr+2!+O zw3N(DVF`C?3bg1z??5A-Q2!4fbpCA9uV24nd)4!nG>pHRpJ3}I!f0v?w4grK4 z$ep2EFM4H_n#|zsN2-ly)6QhHj-Ok9{`~pbs+~)_YK!M*#v+eLbA{w&VeeO6Ozq6G zpnsEagtN9-YH8L4XO}3JB{}>voDXd{GOLQIn@NPVKpjF#&N6Svx)Vg&KA3drBe*UvIG&|cX zzg=Q3_KH83Bp~dF!AoLn1far4 zWa*dC?35^f{J3FU%*C-+Y_N&_PDNg|;rluBxV0n_?V-e`b=mD!<{>eX-QwD5Ph(~U z@7je(H}hqFPZF-$c~fK0QkH3^(Za%(1pHZ@VN&ZSW;@!y-N|ialV=}Xnh0C)yFE)a zHktW-UNYG5r&KpbUxCe&jk2E^6}7FlW3_M^1M7Bha&U|fq(+A3WU))Se?f=HXBzrc z?sXI!7Q1yQyTaBjp=E&iWc=yF7k$b`o^_x&qDJ+E9?05aqK_4SqH_>CY^0!DL}-3+ z%H5%Ehih;SFNxG6d^qKkE>EcOEI+^Xhr{>N(n1|%6qW2rBw^3x#UB~jPrMi1`P-bo zJg2;Q>lT)=kz~Why_dsM@t=(HUt+Rvvm+(T~wTVaI0S-U`vTmx}bn9KVP6>|ILUnAd45 z`uI#nGH`30#P#)g4Q7tf9p61O9t1dH)8{k({T1*!R%WC=3;1x@^fd$OK(?W@YMjvV zKdnyc@(0|&O(k8tfIpLo%fXs5{b@P8_shM0qeB-J6)_!kdCWBQx}ib-*fD>mAp-6s z)Bl)5o6{@Q2zR!KGaC>;7iN^^!&^MS;WYMHKYVqZ;KgeM@_q2?)%R5&%REFyY&&^s zi>HS_UOAnvPTa<+JL{c}l|}KMj(&Av_L@n)E^Q*6<8xoiz_4~}5z)B^Yi}eb+RYB% zA1nWz#YA=gnZKa9%V_7>@KvwhybWoxwJ4^PftVH%pBAId)G9Q)(h^P+X>b$t`R{e!jlteh^Ll^3Mx2EJEu6OA42lelM;xKiOLr-Q`~Vj^9;P6U68Wx?EV<-3NAi zj#sWzlRD2TWWMFI*Npz~$J})#u4A<-d}Ut??gl^1+(1@U0NnD!zWgbvlKV0I;X|J4 z>grv85Vdy)fC5VwA#(5>I3On{w;FZ-%G0L;Ev>D|g@sHC3JMQ#BmgX)xQyuT*}HeJ zyx@d<%RO8-me0P5R`g41q|}R}W2ILtn$ylt{b(iFh*{IU2;$-@*X@+o*WWQ(*te;= zrY1yNR=y=`KwSnMP?XstJR%~X(M(QFjkeUlu1{rdU|@hNnnJogfnKBXaC{?F4HR!e zqsebK0ES-ynAfel%gbJ!7g#Iz%&`V5;95(fF=iKu{3pN^OjY5H985PVTfKCGfu4(~u6^<11wJB8Egmfn9HHv;9ukR! zBMSl&JI2DWCiS9^+VSI+Zu>XN(8VJVr~DUYg|u1qJ*` zQ0FF;hk`;GdW{jXY6PSZIX%4uP(KlCCh$_c%N>4`E!(z%qhZ_aRiyNS_W7aMIfH2k zyE^csXjg+PEw%qU&4GK89>!l^UI%gdAkamWxc2`{3%oh+L$~tIkQ)a`Jw8Z zK;r+X%>Mg6sxC8lI94^VZbsbs#|1ZC^2tQ0Cm*d*dqEFC?z?Q292|0(hAxTU9e0y3 zR?SQhv!PeU5h!*Z!eRMmTM!Vx)$b&}!rt1PM``jDg&axDjOMFCO zDOuz_Dc`~_ysxb$I+K*A7*X@p;ziD*v${>SY7=mE4>xz1ww!!Rd2pig)M(c^6?OILb9NPr&(bX7 zzE8R5!(*@lfYNn$FBZA@hAlHIOTCm@dO>J;nQwyLE%vXQGi$NrlfTLv;a`YzO2%pCkTMmZs2hUTYZCCGX(`9cR*FR ze*L;1G?Q?)BU|G|Y_<}tyUXI#iWm~kEcnE8?h;t7(f5W}0FYG_E$!{8=L&4yX1ZK+ zynee_cNWsc7`Q)j+eQfK_^cdbDz20F!Xfu`djB2?4iA?HKk0J`s`5iG@59HTnB$gv z$E>4JYyL7h_hrhx2S1Z@)%wA~pKfxQ&O1U1392!c)zxL8*o7`}{P=Oy;{&%3oeNCA z=T2?tvzYJ3PgpJ!y)^{B``(loiLDS;g0sDkvi=u(gHE0~9ePOM*RK~SoTvS%(kByNl7x3(0#vIsNIWg zYiarN*<(xrp3-RX5HGw3xn?17PiUg)%^R}YH)2K5WOwoMZo&=dZG|0Ip&;LK8zqfd z(9Ed+&0Xb_C+h-fS&19KCgsV5>bukH7aik49beIIPx|cApVWkt2f1K3FRywj3rC8} zgX6K^zkfHztpdxTffTK&rxy-c2gL`}j{|GzQnF)WV&cwGS6(jFJG%_1=rn(GmXF4$ zkw`X;al&e!UB5srp{_BVm4u^6&HhiC_qW;5fA&J%`|twkIXP0I7#=n;9D2)mTu80T zXK8Y$#7w6nz-L4enJnfxdl=v9ZIRwBVfSAHjF%rj zB8Pg67Om^6i?qA6Y&R`HMF9)7pkrhva>~8T?Z>0^!^YL?0rqp$ZovVSv9;xWX4icU zs*i)Caz;jm9Dd<4_BkRrc)f$;OMuXwp5v6yY`a1)CVDZR$sl#^y>MBAz0+f??2dpb z^$L;MWC8W)WkW+X?&Xy`cbFVAk z$%ua$DyyZ+r#GiJ;-miQeE4rXl?LH?wr}Thuijp*a~XluzO1jW zf~3c6FK|C!leBHDbaK7+XG8>}wz@#7yaCJKM%m0tWsZ(BUbMRaL`k>1#=^2J`PI>X|Y%kT%kN2k*{jvi%& zZ24Srrt=CxQIzMl-fy@PJFr2-=igN3lnuYmaXKd%bhTC^n4bl2%{BTdqaA2 z2$b3vgHEe1Rxk^BOj{3s%HK$cd4Md33>0#$CIsMi>6Ew}`iG0y1ChNtYPZ}Ivqlz& z_NcGGq~NTjKVKjCQ0QQyEZz5}p~2eIY~B%7^C9fH>Ja+txQ?^AX0jyG@aHmQ2HH+& zGN9}1;^R9xV|Dr4w{L_z9F>?DDd{nNwLx%ncGj)o4*%-d*w}&3Wk-q6)jD$~1(XCt z;6skdx_jR97QcqtH$yFk(<6$Gx6eQ=!^!s4Q|)X6qOfNBELv%4X+8gTiSlBQFQKlk zd_U-|TBL2+DIfFQ2zxY@Os0lq^!($|X^3p*t&sieO<6qrDV% z+2WtM^j2?>S5!=acJln=MOtW{3UHGOtzHg(%0G~%8tV_b^4wa)WNBfJSc{hoKaRwu z^$!hxo1}!RQ9E! zXsU8WcgIXOnmH;ySv4pmjC=;+jq##=(I=&3FI^I_pLV#IqobjxN3$?2qH^NI z)~w_y^5e(VkI&|6XlnZ5i&t1=B}$LJfBzo7g#FL2$1CbZ3$SEiHU6cg62$r9K6y|6 z{Q2D|Ik{1nqnAAi4F*m6xotseX(<~7Cjj(KAEg-#vI{08MbXM(K@=B@|N7Co@l3`x zz#_;rR3bK?uHsO^9tzWbX9+tWTl2-YOUdQs>>v?}_~Piy4!;I8TVMiWv(5rxL&{*- zy6&-q7#opK86WdmW}F`_tT9f;a7wkkIQCzE5Np9Q)tccrtgQckDZz_9f0L%i_Apq1P@TE)vrpOn43* zszDKiu^E7M>%825*KMq9hR~(%sB%HCI!~~VrTHN_V}s?+o@pYi0XruZUzljf-pjwc zSIhJTC8IDw!@YCFkt>jf`TdXnsgns}euj%bw1dOK_iW_BkoLg6K?$BfAbNUJUf`4s6iqjC*_aT2S5ue31BPei0JJ#h6N2*2W=TNC1ALx zlVELMU(!_^L~)jM|K-~}C~sl0kA;PW=z)-+Dv`Sw>4+npIWzBNl*U6{>@>J4zA+H; z9m>K7YY||M6kPu938fb!E`47ruXx9{S}H`cOG0>{Qft=G)eVKTt#j~p?ZwW_#mF^p zymyTC+tIEheNLT1W{nUu^mw)V`go5VDXK|)t``LX%F;@AIq@7v%9j66vpwe5ugG~w zup?W=DE(8I?z-wqeoSrV@zzEIU|yob+!4H}uAIQ`7tFIot$BRBYO@K7ly`cgR6)*J zENmH+QWgqcUf!%IL%Z_1G~l&raVX=SfZ-yUAuN5nfbEu^Sw4cvE^dSealyz87lWBPOMxXL5 zn2uc9qZq*wP{;1^*nt&)!JrjuNfr`xtI05Gw-wib5C)4yJgObJ1$>aOh&a~t0Uw*SPY zLxe!+A|huxK|qLz9OW0dJ2EaVBJ7vH(h+PM(WgQ%i7h*J99mh31#Nl_h;lr9d_iP# zaAc$sVOOfJPI&NNvpK=X)MaHU(@rLCihi|RWd62Em2#Je2qT0yMTl+UuA^*Elp#Ea zEtA26U;h0}&i`>@@V6zUzx_f)q9CXc!8(=O2P*;T2)7vv5&DmO*dX9pFz7KY*6|pL zw2e$A6QHjPtn_ZuYX%BhBAN`EVBr!jMH&y%TgFVvmoFcIBpwX@kpjsQ+=T;DULZjhP!J=2 zk91e;M0I1k#x6;X;-Ie|vD16Da;!Kw_?YHjck{R#FL`mN=h9sNr(4E>%R>vbX(f~XI)#wVKzJsHB-EPok_^6wF(~+v$=K9{4 z&;9tv-Iu*J2z!cvi)_-~Y^c0$qecC1k;3>j{P8pqUDSt}0p2qKV|O=Lm}sZ{YACpe z?LJGu(FiVqea6>2JA)2cN;vF#F9y(e+Dv!yqV&F3&heB*al&$h`B znEReuk3kt`J*D{DNQQ=dit;VgYsBw8%5mBKAN$*HZEKHjQ;GAVPwb11A8K zF=o?HQ;T5AS4r^Y_>bIZNlN&+G$&=SLgzuWA=ZPAY3n=Rf_}bY{6SWq>rX@)Y6@B@ z)-G9u(llQeTOYS{>~k4y;*;?kD!di~w^Ece8Gb=^40k?z@OF~=!|e?=Jx<~^$}vs- za>tK{tk?r$F2k@@#4mka|GK^&xj$$_{O=!F#PvLSuEDSpg(3oTX1Qm>ofQ-nd-1{B zS3-JqK)`Swke{TD{3;3JhhQ^oi=(ci45=bSBe{Fj70w9k7h0fItRoo0=dYXCl`mYl zk1U*fS)dA^PG!QwCi5dil8o>P9$Nt@i#ZKMA?51JQq<$pOn^ zRL}u^a=b56`bFQwu6_HCmxk7!J`Jo}W%!tzgPQbzGTGEG*`wpAE(2b{e9sqYiszk0 zjx{Q3)`kf6 zohVQ>wR|H0h0FZsX6il2+7c2697RxRP#An8*vp9eBEL{*pWO4VdFHdn$?#R!sW9D* zJ5$1?d>y8Tvmr#_06yFnr zWKHJi9K=q?kz2i%=K0Nir%?>RK>iqP@Ye&;Px;$Sf2oowGz<(rf3;rcmvGcN#k%)A zQxi8DAk?QKBpMRXj1$N!#Oro}M zAhE#(CEin05N0f=KF-?g@9t%!MA$YdX>ev{%9iZp#sGsscKf)vsNjMMrUDS;F^_FD zs~YMLIxO_`Sjeo$_5A7%uD3tuJmCz&f9j6PuU?J}|7Mf+J8SFLMeS1Sq}JP4+ft)~ zAKv;qQLelUfo&Cep5=SJE5(U-RpVt{F~IAm{chJ7Bbifw&n`co@5FLvk)Zx-gG@g+ zL+TZ4eA{q^S}7luZtwO;|~ojEy+EJ=TSP0 z8NkZvq~^ZTBMLD5fxoKnI+2B4&AWg9iSSiO=I+TV?4{;!6SnOXTZx)DmrZ}N3amSx z=rw(ozwN=@y9p(4twrLQ2CTf=dxGa3*^FeEbI#CVnj<2>@x8BVzX~RPo zQko+6!_|NQY`HMr;`LC+;Mxmbd?WAaS&C$Edv+odl@pW>PvApzKIp`CuvF1dP#S2r zA3uEY4jaGm8mOiC6#|OL;4LrBRIu(po!AsKH`$MrHuR+Q=6$t?-VD%qT)OnMhwdHT zz!)4GEgHivFu_5%FcO4oN2z=QYY_M5p5%rv0gV4UMz{t;&A8izQ>Sk9JW8|5Dq4%; zjn)Qw2_qcwu#OR&Q6gzA!B~io!g2zwZ%y@epZXC1B8bF@Ltkw&3`zVEh-zT1;T2|X z8*_6RsBlc{E?ii3KqoY17Y1;`ossXR#Z5%pjnQ|B?a?%+2uxpvS4+amEMJq{@Z;tE^I6bNsLf~+caJzMM%nMa37JjPmQ}ZAd{3lpV z{Ec23ut?x*p*y+J#J~l%%9cJ~;`XmAeMhHBXOWdn9{rW~lzNKyO_8=nX{K$m@ zq|<{_821@ovFUhr9vKiOaVH*v-QozcS+zZ;<5OQrOj*ETWA_}Fh0CYdc@-`JAyOxL z{@l=(Z5Wx6ReXY&c|1|)sxTu-gI#>72wVw2 zG(KX-(4~>uih>$WOf3X896GsHI5w&NKs!EL1G2RKV7-yFRoV#9JK z+aLmxpb;dvJ5pZa#QH(<>bZ7wR0g?{6&o~kbd8pmmsj-lDo}r@KS;?xADR*=zZrS$ znytWwaYq}kRnWJqq7PzzNJt{heegjHkSGqXyo<{-9NW)jB|Q_`APckIX1~JI#g6X% zI^~WY3&DuyWCZi#S#oSJJ`X9PTr*2YM@Q4G#H+y|fsWHGX1~YVp?_Y! zT-4J`<%@iU&>YR~EvY^&n2I3c3piL0RJK>uux{VJy``TS+%|coiX8LyE=RaJD+>{b zSVYOblLZcH#Ikr?pr?Cx`EUF5_N&NLKuf~0aqBM-@h1jiyAdIKd@P(UR19L#7be#_ zQrIUpU35#xgV>3bc=){!8qGpg+^>#eAfbo8oKglLzsKQJYF!=z4S`MHM1AGM__vNHS=-C2tVghh5dx<$Y!q=klGbEjC~@U8nH`1B_o4_z3Kk8c*ULc zi5VXoq1Rg>_9#)4hy;pV#3}DdOa%fDT(SvGNy6^=lT_!-7dz^0`D?c`3=@z*(E6Mv z!pYFm0{AH|E>2Q3z4EbrU~Cry6>-@&7!*$ov!VPKCix#ZYH{L3XmTRw9RUK5*Rx$z zl8%tN@4xSKYVN3dI=!&4Fh*<;BV_k_u*|0s`_okFzZv@dR}}uA)4?>lf~QHObGc>_ zYkk8qS`R8{^3HDc;mUfe^G6n<&rt6ZBnF7%Zd$;@YM2 z6#kA`ZqX}Q6Q9|hbrSOfsYLa+EuBzAO#AK1JEWdVL$)237m?o@hZXkxf`Bmlp7s$J zQTBzl{z+L-&vj!E_oSCFCe(vrnCgn9DL#q0uhA>%-#9K)vIUEQ&!RJt9nLjtJcdjP zB?YppgvWVpr}Q;YBnp(J4Jf4IF2e(^JNiRKabBT~!JGfYC)@a{|Li3{sYbg~X-{)hiwX-ry{FbnQ#1HZ zPp3KlxAocoTVI%TJeF6#m_gg%@?J~^hFWEpF+#_=nr1=a3$eur)aB*NmoiY>6|b>{ zAmO%>z8)3YM@TV7kf?OZJ&#+&;pSCk`8;{lUnPYn4(%Yfe8N zo28Sp3X|cApr=HRjxd`c9yydC|A^rl!d3(x1?Z@#U+tS_F%D+vUPk=Pd9Fm>PecnW z79q@C1(bkbJw;ShlrNB)byxAW`rC)9PM?$vK;S^Pl!2+?h?e5=)vRX=o%tGR*mz z$JL~Y0INN0MxB=)DG#FZgsIh({mJazi?^{6Nc7{Ww0;qKAx^jxZ2h%DVAo#9M9jI(EEjd5IKN9`RP z90Ga;76>K$fASoM|9MIOFAse9U%c?pDcEHpbaa}^)GZf78O_7?Aa4LHzL^+LCsLz& zBodJ>!?zj$sb^4_DAD7=vd{L0@kK>PuO=QMvB?5XhN0&K6?X8Tt4E+XObHn30L@5n zuH!l#CedV0M<(}Trk>akFl}oZcjJ)}1j}cVbax7qXhZyp$jTs+B3iU8>Jhujx313* z&vy7-=U!$YG1YRK37`m%p!ksX8YbZ`M1wjC?39RyDIB>EWrWBIVVDAOy{m;sE+7w# zfe;GV?KQbgQX8Q&jBb63;epYz83WZ=0V?GKF&6?)BvA ze(aHw(c+EmhCY(KMPIif{$&MniJ=rca-fC7)LqJ^Kc9x~9o2<<|-0JZK}{ws?bUr$dmT0roL&<_<^z z%tWPydeGyyj$H=irQ196RtgUx0i#og6KmRA4Un z<#yA=NqUG7S!jTo9tfk1f3irJdVZ{5!uSuP&HmdhZ9*N@0j4XoQpR8ak-jpx{B0XT zEd2Kq9WI)giAV`979q+28gU+Mnz#-GVUo!E5mX#0FtmEWLyfKz6%&*GJHM2emV&rO z#OomwAN$Vi>gg$A)^Nvy{D@q9%zH08;g3c!vjq ze1v_0tQ1m()ex2WU50fq(QSlZwar$8~kKiLvRPcS!&1|ccxQRLY z-rMJFD*<%FF$sd>_V_u1%E!JxxT%Sv$rb%-Oy##(?veY60f~Zc<3@y$PXw!o5Fa!R zW3(S)0KU*FV>+f{fr?ecTE^R3%39=HpUvcCo&LkmW}79(DUf)<&3HFEcKPddC3^&f zdY^UJRwXX|;>IZa8ZDfpo!gm6E&BVmYhr(wwyu3_e@YQ!aIcqessd&lg(c(ig1zkpan z-lNKB4b41P09$bt5$MFBLI|iP!#p1oKG>R2pfn5(BLQ|(@x{@Z#oT}K;Mpw>P?kM^ zzT#Fsae_KzbsMk|5#gAfsaTFc4Pk)YEX&`xgaNL zU#kcpp~KitNKygnZ$UwarGbYgIXgRlC~@UOkP=&J98vGxyLTr~WLDq4BwKrYW~3vi zKhcLBqx*Qk2Brr=jJUV3v-6I!oPw<%TIAR-Qch!QZcdmD_IN@<-pd?D)1yd(uzL*i z-@JXB@bnP%JBD>5GODHUQ;0LJ%0-W0*I}=DCnBM_n?KuU)ZT;0GeFOMmn^rAXvh`I zi(`~Y6IB{0Oc=ClNH{`|0T+v@$$4_mUueylzKT20rnYnX6xaNx&HTX}p14IYqjY}(!y#7PY7-H;K* z840WBgHAZs42Vb*J+Q#G%LvhgX`4pe=tZf+=$phKC1w^eD}x9d$|*1hECfG~>V3hMG%$Bg{{ALjh| AqW}N^ literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис3.png b/labworks/LW1/рисунки/рис3.png new file mode 100644 index 0000000000000000000000000000000000000000..9ab7b4fea69ca323c47c1c532555bf7559c75c0b GIT binary patch literal 12372 zcmd^mXIPV2*L55fdmB5|u7H9CsRAkrqSBin1RGMN7YPuYu^=iSAfiYS>4c&b>0}fI z1p#TIAVdYEgY*&t-#R+a^S(d6@6XK7Z?1SLB)RYVoU`}ZYpuPEuKAr={z$^|Ly~?&re!c~xFhmI@@dPuM4b>RhuG56(w@dy6v-&n z6H{w;8AM;5x6IUR3sAABIFEm>|^i^Q`S<-U+bMp2Nro1P4=W$))soW zg?Ua-Sg;BU$VGd4tX{uTXzmm(}l=ba2BN78m8X`=*!spw) z7CkC8<;?E*>}<)SN=i!Kt+P(^`zgi5#OREk(4Q*%FGrdDv=%EnAN0T3IFi=jqy=^Xg(wtnF>g zQk$5Vs2=m1Tq+=!WR&NepqEM=6_`c&a!0ytT)DcVDhg*OQZVx2v_SzabIs0EkM)c_ zbQUaFP+DG|X)}*}Zr4EB+qYFC^~R~PZlfLHZhciN)ec1Brkv3%rcU>VdVNHQ^M>Q~-XyVs}%3@|WbRWt20#-{w(vFCCaoS?4uAi*iQ+ zL0r6%PNB5?fAKLpWc(*D`7A`64ntRP`}Pw0iXXS%=Q>#;z(1AjAH00v__1S8{VZ3_ zpEF#iXZ)!ovwFVu;9u*XoqN5|#MHE`&3=Xa7su?eX1BUHH34?EVwjA}hrj-q-P^*w zdey4%wp^S5Mbfq}#KcU4LP9?>MTMU)!~J@UR+ zgfZeG=mu)?oQznth?II`&!)m9lq+0zr32k8Cexb9aVD`_XXMfp!$`?Je)Q;3+EBSf zrVUGu?X0Y6Zk|B0AIW3M9_?*-cD_V;>^F*SZrJFu95#nuFkF3teB7x$%%v;DGUb_# z#*S5*8c_ttj6T%=q;`X`1xd<-_f6K z5fl7 zW)fcCUfbPh!>s#W{%EA0IjuAFy&_$4vN4t2IOg;J5Nz#oaq@x^5_&Bq ze)ZcU+@ILB6nFY7@oQ*m26)I&D5jqUnO{v-Sykm>R0gLag!doKBVTj+?v@td;+1HuG3$_57y; zmk(If#QJy`TJAHg&~|oy?qL`eAHO5VPy|8uYFT_9mq*ri3dM)-AExq^E!f99cka+q zfj&62I#;Q%&vX9R_s41eA0AT%nHDbeL2U(!~_XCIanr|Y5VmsHUYn& zeSc`$(_&ygN5b{Xom0=wT~A9-pK+Dm!@hpSn|Eo6VDez=)4mx3EZ5^y5$7sBj}bEp1TAZwhG}r=Nb&{QcuYw7#5nF^k$Az_pVz zBgQi^2REpjh~m44G6%Yw3-Y#|eDGLMD>mMxzj^ewiT-`^)o@uii{XwcZaMdC>+G*w zVJ^+CKSS(n5f|H!La{B@;bC68HYd}%$zc8Z^|x-{X4vaX@_zVQ_d%eL zHb9`^`6Y&RQ|{YNM~kxiyL9N^uc_~dE-gK-qpcnPJKpR_O0Up#chCO`V}gQ$xJ6B*f>)3HHe~}Qy&&B6`}!u2v8G&hU!GH?>{v%m zdw9CdY|7(9wKDYkCU3h(O4D|}e)Vbxc!K@IvNla^?R)NW#z7HMFM6GY_w3OCgx*ei z_3Fsa3UQ>MrQKE%cq8mpG!P~6a?aI5*AGVq(p!$EQVSfrld~)uGR#B7FNN^a$Imv| z7A^Vpz_gOePDi25n-!itd-gYs4s&WEw{G1!NGq_YOAO+aME6H<`*?f%m$cxeVP(~$ ztgwLcS0@5P)%{IV_lVH)`P!~gBokJ@?EuKWIikVjM zChMmwawbQ#W~Mp4UUNXW7~*u?WU@$L`mu0ozNRR1D((5D##n5o8UgZm5BDJsQkc`U zCi}8o28Hf9BnU_WEd@@cLnU=`jELq0kD8M(!8-e73oU_HVbAR#ZIqv#gC(;o)@Y zG1L4kFX2J`>kGQSl}oT{Gt6s%WedEDMps<1sGUq&DiVC+?c2AN8gQa*A3C zk0h_Fs;U4og%jU-Q2s0BxVn10;>0%5%`~lZJGZGk*!==P1DvXm9mAzRT&xUFwkez_ zmP@Ic9O=%yJaCSkt#KSscJX2??x$yHcO47vY2hZUKEiW4$76A=esX2|Jjy|>Bma=a zhO7!M+v-=M)vgnfzGUjIiT((cxe8nY%N(KNKJoR~eJwD8?)-p&fS#EJ2j>u=9Q<;1 znMGG^0#^6gItyn50B=|%n*SK-0qdiQ@`47FXeHt?+)lMifM&jX-?| zK&EQ2tqhcr@4#hs0rww&cr3nZr#p{wrRrbM^mOUR$^Zv9$Ff~nA4~S%^6~k5=ki?o zbwR^W4uXXBESmFOe<6S2WS1~ITer(CP`)l*`p)`&u~bv1Q-B=jo{wj7st_Zzo@XUJ z=hxlArQaf?7jj)4F^Jo=YnRHUhKz(Ei%)4WU^lw$L7|~mGuy>zOTD6~!XhGlO6^^Y z@^9|+_8N-~O8l;`@Qo#r4W zCx3u3dq5$u8cf=$tM)D85@dCxe`dNLp$sK?nBT8N&U*JB2M?ZpZiO03ZiA|@-=_I9 znB2X4_h?OrcI?=puA$+NdqD(rcE&{@)lF(*RR9O0d+1*!V^&c9GOH_wJ0K`8Z!F`| zR|_P%7aY7jwf?k;8l7H9fC4PtyjAQE?e<3!Q?9N0VmITW^im=7W?$mm$!KuYZ z!U8C#GkO42BzOGV?Vzx*WYi1`NMCLV>rim^)BmlRNl8RI5{PU2{=GreSF%0SVYtCE z)x4$Hry<)e3Tis(v~|vFLh2PG8^*&tMn4gYK+L3cl~ebJa=P6SN5>4X<~oQZQU-~} zKX>j4QO7=qGY4+_`s(7x-+%wT)j6+st&$b1(1{AHF8pN#JL65qPXqi_@uRsavh%u{7$*DFQq~BdGqs2kHRm1TL8tETY5lHP+8B&DX5P* zL+A9lFl&%>F;Pl>LLwrnO}S1rZ~QkqynHe1&P4jp*0`E-Q&=7!VhD{HV z^T_ou6gH+$Y!zTy{0W70X64G2Q8+LNZ*jBt8<2Z1k&U{#_b12tft@>~r41kz!#zH4 zA;c;z4N9u2B1~okN(wq*utKIE*3K)rVo_dGCkkbq&%g9IK*jH_TD_XsLMTzl0-`Wm zxVLWGmWU$!bG^Z|(H?Vw`dd(ZMPK0@)TSEC`>fwrEN5-|NW$hricucE5LPPa10B4X z$+8h>S?fDAF^g%7@(%6@nA$2Nlt|qk#JAt#-t>5hd_&0+>xsd($u34J`R4Jd_hNQ( z5HJ6@IMDytS*EG4uV0|+>N??fF;ibIqH?-&T>o+bb@ke{^{ybMpO(!%0?7Sq_lPW` z=$@d~FQu}?8qZ7;7@$_5zapd`KZlGT| z8xR;66dq1(4}uvduO0R=O1E+KQZIb4JO6OxT}}k$$WJRxm79q?F-Hy&UU^@{D6x*A zX9;12f}k^sbpm)!z{abF1(ZbIstlJs&<4oQz&F8Z)jX$%B1YaTEbAO&&J++rULGo? z#Uo*zWH0``z-`Rp`@4sdPPOcHjwlimKq^xcC*Vl@jdo_QTaiL-Q#qw`e0+h!Z z(&kg)v@XFW*Y+@OF|)h5F8wJBR&MKnQBwtJIRa+$CT%C5Jl(LrU@V-lM2#p#^S`dl z%KdtShgjOgev)zSc`C35(9;(^kUqrbB*w?zZR{mA1AAIHJ!wf2*_cTO)eG8!ifRZW z`EE_;0rM%m55oqaxVfx*G^lK`6xW^y-7*--`M0MN16M>d7}YYlDx5Xt`X8`&2~y||wq?-SjD(=cqCY2CX3 zSDoJ<+312aY!O^O{}^jtk*?d(t$oRHK17D=wHEB;3$akpgAMl6VS2#D@Z z$x}6r@OZxEEgnirN*_Y4eMo0PledlDO+P=scl3CaR_?tQZj#^!B6gJur`FD0Yxv7g zj~A!I(ywBq778(0sbouG+rya*h=u_KexeNI_$8eJw?Kg~9zQ;a8uIYr!{?i)0|7&2 zZ2^tFzB_}=zm|ivOE9W`SZPAiGeR) z9)|x~>pHM!hu9o1h&qpPhecdh;bR5a+uQf7oh4Zgy(lu$U0;cM5~ms_cKOE{Ksu5r z3WfzRhu9msNvF;V%yxSIU$ZxC${*%~%Ibe;vi*;(e&zu}5Mq~6AuKCvbl;@TZSHTg zCOFg5sp>l}%&1XR*AL8Iypo59aqZeQX;HtD^FWqsMPF&jingU1Vu${fb6+&)w^`W5 z53aZ+JF@EnFbHnN=`cMzyJsBrzXTml`Fs(sx%%QU>TXPEC@=dcMKvAF+AsIZpNmj} zGA-(kgFnOS>P;&Xsd;gA9;6F0?q_oCQ8yLVO;U$JX(+PR4?67oKkX*$J_&*Z`=dJ_ zDNjJR0C4*9t8JLx=J7rcu|uJCvv!{ZG`0RL!A6c%M{_x&jlC@f?0Qd*9-ovwD18-J zVA}|-_x$4u)C&;qf4*@=D04;GP1f)z;X4u?=(Us&0=*HWd5X?NNj$jWF%A#$GWyf& zqg+|>i{x+jXw8B-1p3$s_!;6MKKu3jlej81JVOUpR(;y2lusiCg- zkykIid$7W_+y*QKuwzm6f>XXzU(5>%&B>zn>rEp6uxkIn2a81&g4j{XR>OT zv`)?eR0D5sZ=%i*AO4dxS7D;WKYdE#BQb648i+>%q-+;jD`32-bk1bLiC~dmHe6tF zW!lbN)cjMVj|vvD-|pLyk={l<>#WAYOgzm(bYZb&VUDRqU)A9Qf{S0MYwx~Kp~U+I z7Ta`I$IvF)g2A1{+{bNEfK(ux5u^xE9Gx_6I3Dm9X~X2`D*5tipzlgxnMeyzM-oV! zr`RyN?H=X*x!ox>0b5VhX4x2zbk>m0OF;DSup@NKNg#Svp$A*+eDPuw7Wh^0jsX?I za&qCza%NMwgA5A32S0q6@OLqgb{~K0+~1r`^0brtj5Pg>b5&*C* zZ_lFqvwk=%n)4fJsG;X8mD6O+evR5o3|^d@Bg`{27C&XJ6GhMK^{v&|fNIj1TfN$Z zbuJ$;Gsf~X_Lv+db*t4;{1%(;gFf4J;$Nfq8X%ZSOJ$cLCJoS`HpsvHY@13*G+IsU zH7$f_etf0?7WV$;ip}&vo5_dE=g%RDK_b99E6?tg8f&Hq!vd>Tt{jTu39W3e!Sn(H zctIHEPsdwoOKLqMK`V|3zg$pLB7#oe(L-T|E7)XL!pFVu;$qKiD?ru4MTgp1fEusA|LAn2();#TVC&VBQnrar9bAG3rNMJoPqUtYh^#*Hru+e|Tiff^Zf z_wI6UyC`pCCwI9B(sYF7&;jDHg)aZ1d!*}mqqP6VsPU0003;G8%C#^18Q|=@c_Q}_C8Z&=ST24)uX+W>S4U|q|MDxnC72fI=;%=7 z$lRh4w;^*GPZV5zj8lM`Ql|!_y}^;-MePt4zAaDPzGC5Zq6|$gT=*d)?Trtjh4JHF zvoiczh)cAVg@uG}v8vSOdlivd!=!V#ds*GauPo`4(@soWDmz;;#Y+A~+D`E0H=T~t zt&eW}sAN@nOXv*HSZX+W_yc-}4L>Dxbs^ee2I_NDIukNM*G z)m7ksPXvT2&V;a#Vwq0ex`g^+%mn_P2IyQ+NQec?A{xBQ0&WqK(_bIN7{wxSkx2IA zQtHZk_wQr+MJ>;{w;G*YB9vi63GLgLUb?8?ZM3Hfn}HO54BAR4rsvEwJdGs#{8)^7 zoMO@0$)mlEap+j1Q+@I(*Ah*rp-pZiSV&JLhx)ptgmF5{T6*lW!{+qZZM;h@;lwr+ zxMd+I!SLY7)}oQ%)bsIK=~^qe@ubAzQ35d20h&;YvWhNrp|a;r$OqDtX~=U)^%am8 z@hXa}t<^@aK>5xLS#7*VR~;i5goN0~DyV1xoG!HOTH7n7+Idw%B?s=z z_;Qc5PsvSoY$kI)C>|lwPKjJgxT7&DVKF^5f!2x!4iZfPGfxqcm`iyjAA9lBj=3~B z1*hbE=O)j|z5C3;z``-ty%+-mw?LL_miY2zUM%PK;gw1&U8~Oo_Y0BtEF>kAKof$i zA>TEf>=wol65o1;#v;hDGNQwtL`9K-1S48!j75El(S^$Dm=jx-5m#!hwEYmhsA6%- z#;Jg7A{1|n7M>!0B=8bkGsCe{lTXt2Agp{1#0p^;u>ZSItxyK@#L$^Wi6bpXR8!dR z)`6Ut-iT?BkvhFxcsToA2QL^oe=;W7q=qQ3yU3Dt_XWPac)1=!CfN>dbm7gIYktUaRIp#Rs90PBcETQV~-bml}1|WJm5P-dPt3*N%Z} zP1dE-W8S?x+50J73B1F*Cv&IpV9pzKPNjI4qOmDbW~&2Qb#Q=nXh-7w`DAI@@J>KI5(iZz2L=W}#H8s{mxEfwOprzCrj?|LG&$TE zg;~O5EY|vL=;`4sCP#$`=e~k5>ZRsPH!+QPUjAKWN>y?HD}fDcOVRDrE8?A8 zr@~M)4w9A*CLxnhC%Pn<6FwvofZJWjxu-S~;U@ZNJG+(Yg*`l*z)4@JRc{S8e1aeq zf`2b1CG|7oKwjZ<>B3xnZex?y>@j9k9wBdBKpUxUeH+;3D80FUV_0i{ApOT!*_=xG znS5fst=Oz+_VMXi|N6nbd-sx@B~aimQFP$PU$f!wKlqSp>{;BuL9AgM)^2I9Gb2CW z5a;6Wx?#CGR4Hk5nJ^Q+wY0$Wi$}dCJ`ri$gNGQ31dsMLS+cD2p|X%HC^n@Sv-%F< z0PKRRCEFtUN`eb@K_^8I4MIIa;>OrMIn;uo3K^7>Z~|eNOVD-=fjW?~|E*7;c||H_ z9VB_JGuofZgaHFca}h%A1o{qu;HXW0lfzd{weUQvVVC2+WFib_Chgd97Y4m<+hzGI zMK@tTZ*L8#NJmr?p;Tky)4?|C!l-BvXFP7Djb?mOl2vtoDI*o+oj7lE=guWp81@*) zMPf0b7>~)*SN+?Ge}Dv7w^)3_Zyk)I84hcvF5h*C2wGyw05@*uD;Kp49BG!#Hz~XS zrfdM?28KFyZ?x&zsh!`Rxy&!jDoigD#`I#}#88ViV zfZZT{OYC_ZAkDR)`Ar@bO&tb0P+b@Utw$BkaOtO#d_+r78}Wn_I3w>Er~$PJQG8l7 z|Hq$12@=7C86LooI;cMo7eqPJZOl5^Fh`R;)~| zfSAM>|AlG6B!%4w!we{-VIbHHlAUO1lI9bb!##ihNGx>qnl%>02ZmU91e zQlRxxg9E;R+Ri7pMF=0z(a?w_)*~i^$*>&qA=7h)j(i0@woXwg^k!ZfGfJvD^Sf};fggBw8lK`tbbU>!vXHuaLJ74)ze=}}sK#kxAUpcWlTAQU6c`~43Zh{m@y%&o9;|lIOcj_2 z{=j!k^g=$M2S}J6zbp;v-~{yB!a2W5+qd3?_d<{9 literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис4.png b/labworks/LW1/рисунки/рис4.png new file mode 100644 index 0000000000000000000000000000000000000000..c7cddff54f2ec00ec312eb8fe01dc386a62973d3 GIT binary patch literal 12949 zcmdsdc{r78+xM!iL4(>ArO+r-sLX^?5`|=*+u0d2Wy)L{R74pwPnoC6l)18_LS{lp zGA*Gp&+qTj^M3F1e*f+Le1Cn%p>-T_ueI*`x~}v5P3OJy3Njnl?OaEpP&Ue*Idy?T zS@8=0ir22jZ_Kr;@e9fdn+q~hl#CBdgZK}P(Fyqz6v{K-_49wM!vATl&S=_DD4WH} zzZEAR*|kt8M>%Crolv=^H{9W98!*wa_`}T5ujw*-GcBs;-`>5Fz?**gmg# z%lO>F?B|=C_?;)OtlLc4Y=bw~NG=tXdowmn$~}GdOv$V{t#0~9PjwiDa`#>!mpZ4U zq`tz~9gXRMIA7bPg()*!8Y=Fb%i{d)2(z%&OC~WM&$7M2m6yvYl)te)D5}Yi^=!7w%vGBWlzE_YHAu(T#yCyQA7!ENg} zwyhKBt;nF*6lF~>WlPu%G=#LcZ+pyEDVw!7*Gg>s1}f%RjCu9)L77FAW% zcl~1my>6xYIXOAh#$@FzN7?&cUdop)#a_5@AvE`|zfS%4my}mjr0SQtiC+62jVt1L zyH>G?Ts`GHHPZBO@5!n{3Rz+;4?lj_S=-@`LUrDf>DcCU?Zo)A!KOdHypfZYt^4}U zzuKBY(UPw^YxU`cb*Pv_#^h*Mrr2naa_Q2-XyD_=Nl}aAiSOUPKU%SZVl2Sc+ZMyh z%G#D^8TG!hve#BLFeD^7Je(;$At5wQf9qNrvKJ3_34JJ{#R_T^JLR1AWpTYK_g(S? z?MjM5t^wr<#JIYmXGp1bw+^|l{G`X5_2-l1b|i;ZfJIk{$Hpsvh& z|5ee5_ix|gj#X4ubByWlEsd{i!=ox07{oFDmbfAH%;)S!fr0VU)7SWXjNb=v6ik2d zsuqqNAGg)L)_ofbS5Q#EkpA%do9+6>J>?G!nI2X4Ua+^%Wt3s%UkLM};cGPAY<+|GThAjb4zJC4l!A=1=e>TNt6pet}{55=9 zEz@u0Gm24oJ9qBxt)XH;qk_^G{hEzy2=1G(Xn2 zgF-oiJ7GF<>6Y7g-0s0d$%SN#!eK#Ox0zl}Uf!1VyhYJB*K7*y@p}>)x^uXzRA0Sijlg{EXAjcWe_4QHzau)IELpgaqso(B)mvkEG|%>x(pJf0}M*@s*L4 zm6Z>}VXgpZSzD?Zj0S$r>;STj{xa6s<;kIw9qG1N?MhGP2aiVsZQsDS!(J; zs{VqUiHXTFL~tggo?$w6?Yw}1fT^+Z!-m0tiXJ7j`oPFYmI+Qu+CFQ;_f=Jm@xgkg z~HK{?>|XIJ*``9JI6b^mKH> zb$EjDi7F~j-gs>fvu+IH)=oI-Nf%;$N-r}{`pv_K4{N_nY;s?k>oTi)e8iBcuKdBS ziT7NYD5J&MmeQ1zl=t2@l<&j`P$A!E|p5nw&_>k zv&hnlqmi5)*e^cy$p*!|YCS_zLP9xtD%Au3{Hgx64%Tw~f`TbUMMcuuXn85AsfyRe zW?a_MtYj-%b@RknR9Aus6P@F+NCtBSqsqvYue+amyt?Qm6rFyNgEf2$ooAf1*-C09 z+ozzlx1~tOWeN;htXjI&FnC3Y1Er(jzBm?z4K*nDR?4&Js1lB)=TaM}li4lMla#KN zBPS76^J{yo4Zwq>s{V~GB**7|L3SS=m zw>R;Bw*3-4?Vj>*1tTw>a~;^O2)kxYY@w-XirZLN*JEoHZ~-(lqw?R=HM34DO3XaL zK}EkglzdCg?g~Av+~&K_f-*iFzVh*~{Nux~y!R6#fU+_xSJKSC8c)Y0d=YO&SE@NS z=8coRG3dfdiiYnN8j6P3-+x(e99M0VuVc6^5X1%ihR^5ipe^U#y|29En&V_Pv9hrN z_I_Kvp?0P}3MGjvA{KM9z+I?JHXMe%p zm!6)cX9hBSK5f}14UJe6R4yN%a(;fkq00sFpKtfKJ^kY*itzmTXspLy-ZvUnr=9^o zY`3GmBel1wr6n~ZLjlbLr$=lg_VLDz8|C@HzEUzX)pt2(fy&tKV|`&zLATt9K#iO7 zEcJCAdjs|7gby&$nbpNghaPi$4&Y8aVo**F2ik~imI#H?=8<%^wttLc|NfH=iHhoO zZY5}nrIQL)@BCOpCEZI-KiC;xvD;k-y|>|gAlHQC(wHPz>=nWFl;dVz1vG2un36QJ z3{5(V9CwP^COKx|_y!%)jD2-;joIw@V5qQlY)0v#Q-t$K{%q;eoTPbYQESn9kY-Nm zmUFVQN@{9BNBQ^y0|FYq<(_AMvR}r>xc@`MPLZomz!=c<6IjHZj9*?~0f25Radpm` zW7@i5wW_{8Z&VE%en6hl1%A=Z0-92J_H7ret)IC_L>1T#HIFlM1XspS4!3iGA4^M1 z_jMeQ4HGo42VrFEaGM)0SeR_L>yL1t68`ZE76L8`GX=E_sp7SL*kZD`@5KvYkeZo= zMZ+nPgXp!%$;sdnmTec5m8+L|@j=!BE8&30kJ&xTe&lR5TzTU<5cQLV1MZaX&$pX9 zT*j)MzQ0;Cfd)=poEvSKXwkR)Mg2KWBsL^hRh?r!c#!(NyX>b^aeeS^e>KqSp@|f9 z`o4}Qypl)l3OjyYJBA;*bLZyEU(*03V|iW~=m$+X6_bsympZ#=^Z8&N-9~J=d0V#Z zs#U8}($iJ{_#?)CxGnzpp6C-dSBDhRP@+|(bv^9t>}JOs6eoyQiH<%F4%hblve)87 zru(25Z^^?0x(*$7IHLY~t`n*R$h2Nq#WZK?XLgr)n*DY6_dXtic}l?-p)K41ht%hl zJPln-iw>@ntwsey8HM}+K=B`cZC&SCMyR?)!QesCgIe_6izA&!L_oY196nilq8zGq zS1MTxGZ}89Pi(+8*}WI?EUWu6tRmLoCUZPZy7>MnJeIC*M@z>17c1ef_Jx6de*0v9 z&Mn|)-Rhe-5AqdrvAV0Ss~)&WZAw-53KA^n4bmR(7O;59O8E2?c< zy7bqxGDbEknoL`kkuTa!OX*?`CnqPmCG;6X$EL&20=6jZ5)l#M=6oeK^5UdWhpj(j zl92^|{)lfz4sDG9# zIZt&s^iDVd`5ihPWp=ww$1uteRs$JZ{&WX$Kl@R5_@`LANz_ymX+9EzK1?F}qH6GM zfq{X8;QC;!1W+Ey)(3DXHx@crqCtVV2J6~~Fv_II#KcHfo)#akJ*oBlPtXt0MO7W0 zE6X3g;$JlOpR)9W2XhBjwgKtYTQYR3r=M`~@~XSK7NZ%0l!05JA9q`^b91BR`b9-$ zT67eEnSe(&KauqZCF0g){F^=?UrBlEj%1f<(_>#77 z#phf39Tt$HA=Zs4g&ZHIY%K*I!ZMQB6OeL3kf7rCb!3+f2F0{r6vZqBnjH z2s?UN&Py%kG0OCyeCVI$zteBqW(=SJzhH~JCe_>9Yv|p;1QaqBAe#f8$S7lrgJ$+2 zTm*;D+&q2qTdM)sDxZ-L9m_G}a^dP<>!uVO-8HI?HjKZ=)kw^pLq|e$t2PAePk`E+ zwC9@3w`b@Us%UAoU7@2~&)q}aGCx07Gx5>D*JR{V{!TIbw34afQ4@epwIPesz+PS3 zI%(pil*6KUW>7%|g|ql!^n(y}G$WiAV2FUjhz?4pwJ84`(GUHR&I;POSL(oKiS5y0 z+aOOAN;(g9%dw%fEZee;LdFEN4qv?PXybqD7L6UXQC3q^6HdYfbkl&)P*b$&S}K|? z{s{Ykla*Ea$B!R<)$;ZupOT~Izp@qle9yIvAL)6We%O|ZP@0u1W?UqinwkX6y975; zj;Ec{^{CqcTr{kSOgGCcR@<&)bpseafgU^rKB3OO?Pvw7>`+T)3#extBcGu$v93gH z5?HQ%Uh&^9ik{1lH=$T%!w=!f1Z%Obrd=h)osRv?%kEb20lVQgRrI7~;ph1CPu;8U zSVf`M{*QBmnxCLHosAH4Py^uNE8>cZjsaa$qN86j1s~|`>oWyd7tHj9*^N~T4JCwG z)Wg^L1#k(h##i%oh`|GJJ$dq`W7dIpAV|PMi@ZXUxm*Jum}+v3tUG|qP^l>?oHGk< zt5&XPYHm&`DA1CKQoM2eIFz0WgbSQ06(yyZ>M$WQxJ`2M@~SA!D&3Wo+7zram1>%< zU#gc`JQ@PsrpN^Ewj@-zD>{y{Za0EM6HsyibN38zP$Eyc)}sp zDyui_h=v3F$=f&A1GckV1Auj*=-g6bE7cJ-*1Zl z^A5E~FFESKraG)En9&Ub0sjhE)Wy!E4S-dzqWQRxOD>oVW$hjq8kHS4dXPeU?hXQvm49HMFK8u4QogKAA9T$HT2zGH#`%tvc-6>QN~MZ~O+c{gAF*lPYm_C6?xGP?BghLrv=XP2P-r{N`=^512$Q5R&o-xIP*L~RG6u`-o|wr&Qrt5>c-XJ~3{Z;31aKqL%5A=9cbEa%9A=KrP#p3e)g!uI5o3l-sZt+8zrJcX-E{UcEhB*N{ zKidwwmcg{F4}J&WClF%*xe4}Ovl|P*j*vh^B%fn0B`xg`HpmRVeW<8i3b7C)+!tql znRj-y8R)-W+j-T{=M&_^5)gVo@5=hY%#4z7-L`#uqKC&yG|<0_Q8AvM{vir`1)c*If7^!D#G8+Z zNZ)(%&H$7~Ltk|mu6lwVeI5i()zC0uc52jegaP&@y(+E5!gvG8LFfT88X8IJ`mU}vvxT2%l-)qP(=~GpVLflaE?{C)B+CB!>-X5)?l4js4Sa23MD%wi6`0>$PexF z(wi`0SGZa&kB=BU;Z^i;9E=Yp*$N7t9l||W&nX$i=t)4pwy}{4ILbBWfS=8!d(`#|5gihu>h404mN8_QH6o@{=FPDJA4DI|KR!8_hzYqVG6h5FXUKu zb$Z85zWi+yySR9V_kLs)%2-)+3}DC*ultM_qs(PQAJ`^-!t$h7CI*ys8~=FLX_k?n zAg%bKr^1(PG|*QuN& z8eKR%!A%8yp=My5U?_?6(yJ9D)E*(V`=`#y|Fr%10IT;16Zr1SfjVhrZ%_uyD6k#8 zRQ@~QX5jUDUg(yI;dXV@C11~7JhXN;jk4LHc#sUX-mhQr5YL}K*BW24o%z{2`_*3& z>#;C5HFSHs9xQp9nH}vXBMm3R8RPDoRSFb*YT(T0@f(AV$%w$ow>Zz|LFboz28b1sH zGqlHFbb8&obyYhU4CrY;@4{NXsi=S#YgirH6npv3)vH(0uB?CrC^D>!P>(+;ze0ym z!Jedr(xs^-+wlPJ-m4X^`cd9{}iGOL?))?zrzdx zTMYdntE#4!Q0zPv3U#wEq>l*mH8d5Zo4ou3#^2bymwi+Cfd8Q~{=Woutd@!cbTTJ9 zdo7R>@DW0?Kv&;ah4! z?q46tWZMnFXi-J{2`-x=?4u~FMC-_DR=Iy#sVb6mNtR6D7b8YB}vdNq*w{3A%CU9QdfcXPBfVS^Hvg2 z!POLX7)iT-e;wg9v%oHX;Btr4P<%63h}V8hV-P3W>_drC^!` zgQCmH$-&JLxb)Xr*HP!L1~OJb^cXePiR~Ka4~5MXtLG85Vi-L6aO&T+#6P!2{^L(E z&!D-v99mZGK!k5%Y<&Lkj)46LF{*cIDj@WGN6lbiewaw!kooFQqiS}na!2)LW)_;9!PvxCXE5p zDmpr8mn(ya5JyGgciY$9&Nge|!HGGmoN!KL#Ky_Y7#|2)DP+8(jD0@_NPdH87+&zCBc4z@i zV2)QvlG2;NeA4ipx_pLJ(KH(?Zv?z&a>2W)oJ@qs#c8S_3q`?sx2Muxjn!sS|+ zONqp=4=uH_2eI3E#3IKAd~lj7QS5`ZEK^_i&Cfa5e*4PhvxY@qn2Cg`m~v_R>aVVi zW&b+iF2rHx-czDt=*ZVMwA!|JV?J&|& zX!h~xA7t=ACY{JE^Va9m$Xq#W3OlG>rKKMvm*x$#1e21JmEgBej&!7gR|25GGt@x4 ztLbV-Nr-O$4R?JHA@1|6EKM>S}ZQ7$1ZQ8+QpB0~UZt zh(TJg1&x^g;F}%NL0^H7*#d#8qN~e|r-O3cxRd{kxYPK<_Tiud@R?1jLj^>yem#>l zw|h>zva0GzP?TJvJZ%shXfVCnxzW;0xJR-Vuu8Vz;-)~Z@NTw2q9qq6^GeBv5#Q?o z2b{RA2hY`Ra{K<9&AfLWeEH&uW^E@-e%XC~xdL+}1iczT{OfIVdjP8wz$#OGIb2A9 zCK27FnB=1*7QC0Je6pM-tg#oBE;8zRj`6EEv0NFM^|ppTKmtHfm+7ZPdX^1cO$aFjAZa%;9zBIly-UbqxsRa3 zgF)vFE&`fzGm0nM)E1Z{1iQAnAiyG1382vf&DxetNlJ0qMl~$Bz-*_GML6Vb?Loy- z@j#OCBtLz6zI6HxuWh?|-e5{m#Ger(W4vC)gumIsjM)NIJNKy#CHESAiKn$a}jB;4Z6%nVpkN>WlS zgkdVC8-{Y*EgI4^vq+6$+%F|2<^&Gx2S(@a`#3PfA6M70zDLl*YmuHZYoV|caof;L4$yrT2^@DgAD?vjqGHw zhq$ijmz~#oHjeQ$i`rXjly+sJ3NT?}mdP9n`I@YpXbKo0K<$_XI3;3?xUu9rhz(7c z7eHPGc(0bG5p#Uc#m-^xqZeONbX_N!$Z$(&v6Rqlsl7ui>X_hjg7INnEzn~8_TgS? zL!xg+e&0?Kost2%b?es?^$X}B^bD-B8AX$X>K=0Lnv0yB98Oh~Tu_16-j`9c165ah za+CNI4&{U-)Gzt05{%1niHT{?O^vDp{u{19jm+v@hItO?L{yeqdR&-W?(pWd14sgw z1I2W0p~1?^L`XQ}&o6I~piseI(N2*Q#f_YH0J9p;h#?P4dTU z1$N5N4CB45k%*|CV3@}kybxgA*OAtPB7pZj6r>F`v|T6KajcI(guEx~l`j)cFb7E3 z7aGbLRg(zNg>x~0)1wR_bs*WM{{yu(D{ak)}nL>n-ugO{q+ooYV{X? zZYRtTu|=92yaAv~bSH_F5#c=|_KBSb2kaX3UO*lef+LFbhOBebbCXf$Dm7h%pji+884SA|b5rUe~fQ z|B|2cmv6E~xm@5uYxOG-*OEHNDmZxsYRth$|3L`0K>?dQ&^T)5x|vn&BqoDiggkaK-6CNRnu z@bKZD%oZ+$b^&W{o`7k`zJGt5>ZXr*^c)-<)hz18P7}nnLescd-9tsIYsT;_KPG)) z6lJzn^nLHUhQLv-AqNi4yA4>=<6jI-I zgZ^2PGBJzV62!iL|Nax+^-qylq9j}JSm0S;jR7_N7}FH)DGl95=Q)9yiBgie!VJqy z%`DM^rZ5%_DeL*cA7NeueV9;22V_P6y?}mK;4o_OZKCP|Vi=4t8IutX%wG^A@7uR; zcem?i;#h$ogLv)x5P2@~jsA;ux$l)sYF)6;wo4DM8Yjng~ckbF{2X#a~A|*u*&*1Vfr142tAuU}X<$`u(vPhj*x;NfJ&39~x@^BpGHTV~fUh z`#|MkhvZTd9TTgAdrPOktS2%SO_-=PzyWx=0Gd6VS>0-dD^Huq@BnBzxF{#a;9=q5 zQ40`631HaN(8#p)GtQ3|>>(1Iz-u0aVO2+Xcci$pDX1bjl1SpnHja zhbcK~;hT|>3oQfCu3D(85jTwXr#AfY*-0`Qrl6qE;NLdtHbuA$k~|zh&|@MfTeFPv zsHxNb@1O(7JO@yd9|OY6Y{P6XcC3*A&8JT~h&KO~x~X99iP+t^MZ(I+xFeY{H0T$*AS{ee+NPY_gKa&h65=jye8A*gP3=0xGfB*anokA_O4Cz&(2 zs5++MSJN@E`&R4+YU6%PF_BM{HkcfV1TjB}gr1Bj6AD5fERPx4dK3#`blKVb*jEyA zVuPsl@m^5jp`9YZ!NFWRHl)B$2t9iF{y~NCkG7g=d`bvcFb$golzWRwYD{W@aN`{N z!T%!-DBs2ijVl?0@Srushyc^VBnBaQ1l*0r*C#{gnRk`wVyr<88Uxlz!zc`5T?jDK zmW&9(3&)f%Uyg^TAz)awgJdD;CEuq^#-PuyYnT)dzmef5kg zpk-C}nsdz_^Be#8M~BEr3By8TK!bpQz>10p%7K75~TW}n2J0;F$$&A3}pScbxGoG zQVFgP)4xOn4w|#tDpU2!vcL?PkX#%XWconn#HiGv6?Ngi7kzY=G)vMwVGz$rR&n#F z2oarIvB`QGU_*w7_X-wH*wG$`z}rf@+a0kZy-Eu@zivNYtgo)F_C?@_#P>%)eWuxi z{d0@IRLEBZ_y|9wZt}%d~vS$N^j?i>6G%udC;IXHAmO!z|tVHj%Yh#J1d$O6ze=v}2q5J%ma;esF1L z&+;IJHr70EyTD-uw+Id4(c590J6K{>*`*PTG-YPycuI5q#PgWda6=+%>s3He#O^Yp zUj7Jti-3YxmNf4d-PERgZrcd$OzG%{?$*^ozB_3J1&0hBzb12wjBWDbVtN*1xbYG| ziD*BA&a#v5LvCnF+I}xLrbYy9yK%Al_J%ALt43#}aAj)f`%G3{ihYU(iM&O-oPGAy zrpeewqk~^Rv_V!Hq@-n^XiqU!I9g((k3FuKp&a)=SUR4PPvH`T5%W)s-<2o^9;G^E6g8n`Br)k4QW!|Ch$X)HlqEC2pmP9A zDRoy6)FxE4@mtTor^KSs822kl{BiL}-Q_Upv|m$41kBqdcrDlDh@DrMLGa$n<>#H) zPP6>%(Vox9XroU(X)O_VYvvElx2n}%i;<_|orx!mOw6FFo*rE@Ud0fR^``-;e+K6Q z9Gu$l(&&6jqU!yK=onM|6reJzyX@oU{&Oo`w2CBCj418e9i`R5_C9@;XU1umwUlO= zZVVCkJ!Q~1;o#0xY-YxGI@%HxiKOCuwiH7%BxMxCL&IJ-`2kl3No&5>{_miRc1Ede z^Pjc1RdKF7^qJHZlbFWY-xuCAf)8hzs|krCH#~?^-Z((q?>_~N@4ParqDpxt+UR$- zY*y!vcL>az<-at-GTq#;dharDsp*{APtq2GH}~VC0I%nf1P$DD$Dgq@0mtI?2IU=* z--a_LDd=Kgg~SxaUWhO0ihe&!dhY&V2AnljMs}94>b%+KbIzL+mI#9+q48kkEPa16!lm`}{S$!C%Yfy!c$ja=`K~32Y@4@UgKizYdfD4OJblvG`h!hr@ zhHDAYXkV)&JkXq%UwSI&Znn`vnL7spm{FxRYd{$~HqweLUv$EAQ+8&!y^+!6L2#tL zYA>T0NX<@-9odW@+09D`RlqS!;0z^uGv_O`^)uP6-q?aCeLd?mi+h5Itur7Nvc6`?9S)9uPN9+I>iEakj$hvlc z$V2RP&zSrWY4FjjEdlWcM>^R|Q53g>#S3}-$LHW>Oar~j_>_`qf2|9-eI@Ik(;29gri40aJI?)-ayy}H>3|0z}5Zs3#KAt z&8f~`^<29=CM6*!t?d^?2@j80tmKo;B~v1R2^ts~oYea8Gw@%6=QtC{*P^hPgveo%A822A7z2K2f2iC<4~>@C z)fP~c{&_B3yYa}BAP$~ort;M_q32v{$BcyLSFz~cH~@9ja$RQeb5V`(ffo%-?Nn`K z2={v!T~GlAPs0t_CxN}ul=Tm=W%f&THw4S8OU`w-xWphVK4?dvBxR>?ctVYR0b8X# zJoZwVD_L&YerMmy?#fH>c@}eZxC5XbSC5{h0l8;SK#D7Tdh5L-jV0H- z#q#V>(Ru23N#@p}iZ!=n;=Cn)XEvM<{g;8LE}y<1tmK{d++w6?K}|i?HqCunvMk6S z8%V`{4wZir^P>Lq39hRzD=jTeVhJrnD9}E{KZ2$wVfYh-ZKB8)k;r;~43~MS-d3qL zG$6kZDli&P?tS;+S0O$$|9c+<2)?g6e#jBR;P+$v5fVfZ$lf2or;PpQXujM(TV$og z|6=<@LBo`WcQe5eL$S1XxQf_e<)K(n+racX*)j66aLtIWl@(bc1$ft821Q)3?2oF$ zwl9WU7i`CQp^&7nOVGW_Ups=CnNu<1YSf`7dY8n4wh<|%gji8xioac2O;eHKkmc}{> zK%Qe{@7Zu0()*S0&_nVYWPJ(sokGO7pl%K_)O)#y*rrT{IYaGe<6}?Pd7i+Xr18mh z{$(iYF(KU|&L@kEtjrJ;gmyND>xH>FZNmSQYD2bk$$SEj)R93G2~SEInkW*lpYGpi zRrICx@lMdK(RdA4?@`{a&rK*rB+U2t31+F|j*Jw{#x75?Dui#xLnNZ|O(yQ7T|Vu_ z6UkBj^6CV$mZgyukpab=C^a_m&Gcg?mjEE|oX%rii!Pv$lIdjNNi9xLY5k`p1J{nx zTMMe!9QA;UzBX9-Jo8;{nsWt=Rl1i4-`c(`91G4ntejaV0{5eF_0*Pe{uNx{<|NFz zV(WjuzgO+X7aAsN&8Y=O87t*Gz00V)gp4StL?v!dD)<4O$GxPE)ca#&GN-T}+lZuH zmr{)zE8R*26(*5AyCF5o*6W>1+=a{sYosL6>|%1XK#v8VUU&k^q+{hPmry&jgrV0t zjmoNWO;%y@nlWvUeXlM?89VE612G}R*xz2xaZ-I6vXE87Jif)ng&{Q`kGy}g=J1Ta zd~RXM4QeA5gO|l)nhDRoM;|?UTl1B;z=r)+2MFDiotJv^#{syrhic2pWMEQ>U>8KP zmidfay6DgMmF-hq4OJw4IlSDU2eOV z_>y}otYC~Yb<5>S>LlTMR9LJ(IsH} z+3FbRQC!CXH5RorSsT^Jac?X^?f+!uZ z1Rm$0$p^#g2J@L22U`G2R1@+14}lUg&-rUzR3&LzHL>5$QjVvm-`u&qK26=$Wlkm& z7%qX(!w5cJnK&q`^K1{vk&xk^A!<8ro6WnPO=W6L*Y`cbw8MnfMBe(47O6Lp9IhuO zKo&{&ADT=YF@5g8o^PW4P}>1I-(m9W7-Bj%OzJb)xAmyf{QH{g^NUr6-6!(uBeu20H_dEtvUXA{ zKm=NC)mzX$pqeq->IrIeXZmPSTsE>6kh+AhMSbPsd$5SClT);&OFg?X{4?pGU_Y0v z#pxI;>l_Qe-0LNA9B|QQE3hP1_XU&a3aXQSvWp;`#_SE}ZTu2({zfmd{p%6L>Vh@W zbA0II=E#gp&j@aDAwydnTMDe5u%F1djpDJGlH$w^xYTJ4sL7NG2xdE4b5*pS`*)t9 zbX+1^lp~1OxW`kqbDbT(&yB9hDid<7RiGq4f4J6P^d^P&Z7%C;$k15Z)A0Jv%=(g} zEGFX`Qbc}aE~D9V&5vsF^lQ)W2U z=9aX#PY{@aw3>lel`Ceu0KrS1%)!TckWQBt8%y_r+8cRZf&mJ9JX4RlD4QCq56s|= zy!a+%Oc+udB=xRPsohm8a}TWvw}*d)%61XliDMInSJQj#Q`>L1Z*Q71iqy{wL9im) zOdb_HAxH(ORWMCv%!J&N#|pE7eu+HcUz{;IMK|^zJErF+o&+f-+ypXliNt*;aLGuY z)^w8%*A@#Vw5gL;d7T)8e^W+IbyV<)yRjZ$ksV=i5v4wk*vJ`#w6lmMD79a=uC-ja ze0PhD{qlSR9lF)+)+*6!aK6`jms+V`aLuLfZ8X|EAXMf+$yRQuW$B~?b^Sx;3%A`-3^9-EgKrlTFc;Er-XyOi%+7Fq$UdHL$nL!XWdvEY1-!&1QP zF4fop$VTo{o)Q+bjxdrWH69D%b3be~FSDcn59Q?RW(23yQ^%E8mgIX1fpN_rK9fF< z7yw;N2b%cdd(ef$S9q%_1Bj>VCHT=<+~nEX&7=I9u|NxsjicVX+ShZp-gKC6i34oU zE0}^7G>GEB5dKxTEwGjvM5^7c5U2cmGAGZdS2E~8$D6!+la~Lf4w&@~J#z(Y2Fm_dJ9x&;9ZOsKNF-uC>X5ZNndH-|TUmyZ!c|1Xd}?rW&eqd02lt@i3aR zw0KhSnD?I~c$(aEc5#s8fUx4scQkjM%@1fJ;94Ij*taEW{{AfjU6*DTg@dJ+5W z;)bCrioW2V)oM86JNVQLv=nKlpI83A7x!FCs=VA9k1Z@Btiq2%wL-q!7`o9yt(@w2 zHCgnld29cq!MA6NF00Ohqz*`5e#WCm&t7D$WMok%P2K#oq|)~z(Rb_CmQcz4s?_C` zqc&zQ{pCeMUiv(<@j5`-eqy!oM$nOIhd7lqwFXtq14)wCKEGS$?sRE@fV=Q5hUHYa zPk-ovuoSl0iOJge8(5>urMeo|ctdklED`rXUwo=aZk#&2X|f%UxKCL~MOn^(Vz8T< zB#95&39qkpn4@Lkaac@O$~eLncBy9wnowQmGB~bd}ia z&CTxGq_)^Iqq=LKZ77JJhR@(=Vr`jD)X3Zpvxy)HA)J{UiK~Dh_P2rg6^t^i#@D5Vo$^vN7FkQr-Rq}+p~pdFEJxNjN-ttJ3XwMma6sdH2R9B><8wc z#GVR{ovqssxCrKxa+5@goC$ij%~DdMQajUUuvS+kcUt+PWKYm8*F4`^AtT!@Yj;u* z;1eF_z4`_zBundemVq*6}a{*U!i zZm=4b&Oy(+qlc3GOG94>@mAdLjx6as8TwnlG9DJS##3tuT31vyIZ1mp$NBEm`PA&@ zjZ-n#mqEn@Nm0xNF=q#3hCrl9B3CLKupMjDI#E@MHagN>9e0OFGBsSTQoX9K)_(`6 z@4h|U3@^W(4aJjWx;yUDlqbP7s2tHKEoHdd?hbj~p;36fjRPeU1XByHwYPM!YhljXNFgzObf=RG9_B14)R;}^<-&&@32ZWO?cB@vzzPPlf zJC(CLKU7?`;r~gOFb~gQzuDC<+u&ktDp#yyi>ex}tLm+n3>@04W%AVt4d{9GO75F@ zfP22DS;3N(7KVm~eXVpPTqm<<-CNM~4d7u)z!Xf@owp-4%>T+Ak$)v_$N2v{Y1+SKDF4cz8WtL( zOJc1E2Od;6=RU08>yz+2nN44Z=SJ{Peb0g@jo>l&?_jf9GrbsTGKPMj&-Di;x zf17DtcaR9 zGDf5BW^jc7#YWQ5Y@T6o;U&5RnhK>95pf25r^=1jczGk8oa0FS8Y3_ zB?>e`oBh0?Hb(d+D2#J7ci8$DY;y(=W%y@otQOhE(>1z2pCJqLRL;)0CdiF#F!R)v z`bXA_swUr{P95Kj1jxI+WVK)_y+`U@+!of`z-N+R6vU3dQX6ppo`pRgPK}!R_<42OW zIt@5Zh8t`ipdiy&AVM_LsGQ60Oc>&%UTjHxg2s;w6QPiF_GudSN{RUlnBuhb7}|Co zX|X)`+y#@vcgb@@0Gfn_{RbZGZ?!ieNH}7fZd7lshNnIwZaU_BXKj$Kkx?7sfshsL z%KYYK_d^I|Ub+?SlU-imJ|%l)cPV6W8s+=815fv(Ld``6-g(%%TBDj987^TL0^%QI z_G*Is);96RLMAMJDEK@7)Yx3ur8CWRF2U<8IjA8*Ey{b1e$FpAaSLafyIrLFFmDFc zVq5WuTyb{dd+d{q8=R_Z=O@DC>%;`UB0*|W4sz+E(d4U#6NYpwY!dP_@@D@y?qHVO zJV$W2Rfk6`Zk-vTjUmsCjWSFU(E%LFc@#X4>&8t6h7x^hX|L9)i%9QF{fls8wQ=D! zF4@r|b3>I`zrrRQjZ!o9r|8V3Vz)wA*o% zX1+H=;w!gKp?nU1mAN>Tc#Q< zj5uY|xIn7TweS1btsw7AsK85$?LKM-C~kp4bA|lEmrVOLfF(jKz}V5IUXgQSdh^w{ z6HwXk3szAv1bu)D<#Yh@ENgEWnsB-YKl}cmkba`(8#fAggWai?NG$jZ+Q1CD@!Q)* zb;ebDE5y>M&kpRu1Iq)uCd;o?gpXRuWaj$2ZjBZt3Yo^jldsA zdlRLvb8=WAw>+<`vRD_?`Cwr_Ex(-TxsDYaIjLnrdEHaD1V1<)S!HHR0>eRrBga&H>3739}?X| zS6wz1o$TMa=@f4$2^s!(ux)2nr#^WjyKZ(OT7uNVdL?;0qTXgKW*#|9IDwsSW^2$$ zZ(ycgLB3i(4W1AQ5?qOz92<&Uyk>4+@2N_B7H81ZFq>>~d@clNZ-vel)kQITah>n! zDVj1yf{w@-LghT4p=2Yn<7{ur-D|@vnyQ9dn!mQxMp*P;hDWsx6HPacREhWb?8HYo zR-Hb7*o;J3^ZLGAKVS*>on;L;A3{DE$tmCXLMOEJ$(w@;o7OO}Jm@^K#Si10$&-CU zGJNfwt|u^_lp@zklCPqWZynb}GfmJ+9tUc1x`k?onEMp~Ne^sh&c#B4o9aBeeLq1@4HSsCr4>Gt@i z5~0=~VAYuL?W7=+SONvdYmSK3<)rEM~S;>VNN3Cpi6sx3W?;+%K1 z087-OY!;E=h&|^eO$VBL^$xJ}RJq?b+P-~nz#$F4eQeK-5GwzE+A-n!&F=7GRyYs& zDbQ@Y6E1YhLR_0t_NnFdYJJ(^bJ>?IpDSQ2+q>+aZLaE!G0}sKQW*TqE9-q9w~beq zKk-M*xx6p%~<^yhgNbnKLeky4NEnx?|z0I8So$@Gj)K0h#xIo)1 zw_+0o4#wTibOZ{?hc3QV)N1w4;tXR>yh=~phy>tD5L>{TSs+W+(~U@iP|~?r6V!U- z!IU@bPwU{~{(5n33IQ?6Cy^7{m&X^xx6l($Y9Rk;F5f}PkZ_p{W?$9Ya`=qmMvksi z)J@MP-(hYPPTk#P6C3rwc0YmW)3>tpQ<=5?tB%QlPcg~#W+kd+*b zW39-?CX|3d+hia8SX^%x4Rg)KVTcxCy%H`rgB-IZ7k;9nR-{o@Iw!ekI-DfkzJ5@e z2Y+}tFULtq4V~`|6e3)cndZY<|5Jo+W3!#Zl*H2w^%%yy4%I?2L6fs(hc)uAs~nwbHGOMu85${~7aXfPoP_*q9eFgI<<=naHl z4piQ~^CTv@T_Hh8*~R#%58+i~HnC1k5S+o`)7n49XgpP3KeX-Ixpd$2{XX@2uk6$MN$O}uJxW^Shtz)6F1S|_#}3P(33e-7TrvZmhVw=# zMevHqNR8FR+QwF}M&%hCaI4CTL{SQl>Zh%nk$VenvSkCFL0hbo*PU&9#5?ZNLxj}% zV@6asgec=O)LuTA$3%jN;B;qiTcW8Wo-ai+;A&a7L?j)G-IF$_qpQD$xwjS<`DCUf4F76e>x%CrYtv z4jtSJu1^!WQQ=9Xo`P{=wA6ulT+_QW?9&gMbxH15j`*0IM_Dv+tRr-;=~Rhx-0Z#!oW(68FBYerWO;)Fl}4+cWJ={h&^H z`bKF`Tdg71>Ou<63y>+#$hzx^Tay3FhcUgp@YOZ+JYF^*V%g@fVwf&MW z?4FFBSCI{AXakQ(~K(_ha_oKt$H~2d!$mAf*`fPe7 zf$}gJ;kDf+0j5OlCy~c1cC%Jk3=`UFIsE#@MY8{z6H-FlBB4vUqVUO^;b~uhQ^|T^D9JZ!WqsX#r2po#{~*t_`Trll8P*tkIusdyKwp9 zoRM3cO`X}>xqYLwwU7K zfCet!gh{A2`23@nV5BIf%RLvA8yDaoYBluv;vHwUiHIJJcYk+M^DnGUBu=6PzrrmcgK z4c@~gXuag8LMx5UsdFfL|qg zsX}u8Ys5S!IWtK;Avna#wwcjvzW&Db?6Oqo-xzh*R0?$@aybO;`gEB3`b_l=fztsW zCkg#cUZWN0MagOVgxMLX#6^@8pb_ds1*|K+@}X&Qc^sQU)tJmPD6`Nsa8!cc1`<R{8$bk$)-$rH8Kb*bf<3s7HKuL&&ul{FL>z(G}Cqa`5~)Rwy`3SJpOA-*V(_ zhQNza9=!uD`-!I|_Nk$AJi8;2*_slr0pSaxf#ig>@4!K$TF4GEr zG2uyb#xVPh*(HY=zfg3}(dRBkWYe z^|E5K@c2vZT;R3|3!z*emv2dtJq6|OawYjCnULzVllpcrV6?*l0j_Lzw5LhxD{0RDeL)0?)Js- zK$&gNYQSP;41!o{JttrmFGbY>oe*kbiswV-?|v96{@P_pvvc#_BoPliaTRI&MBCjQ z&Ab76?!EmDU}_fipom@Jj;vD(WL{-%QxfZ%gh~n)%jyU)4xJM@Pm94K?Rth=U=}|s zH8!c5f`@oqVATB;&-LI!zVbxc{a3*bVbbi4e3;w>oZ5?2wiV`7e-&+3u5Nc^1DJMK z`1x?G*4z$P*9xBhEoudr2{I2ld76j;aw=gcrcn|7`(kbdF6J(qi_b`YWvsPdztqo9 z*k2&?;9eOYo@%u1d+}BZi4&y$WpPO~ugE%#$7_>LHM8J!(}u+2|3ox`K!e4)V8YVk9|8O<4}%iz8w4& z{N|9za6oW7q&A3;FW(FV&pZDFYLs()9W=Ljbj^;tKm=`JJ4jC^ zNP;ZmTHFCm#DP=PFnU*ld8ZcN_g4fxuH3(sVHM*4QUf+`VvJ58KO?^O7Ke8$TW92b zx5%j~BQ&`hMao4`0XoRj> z_{u%2%-QQQ(ILao2)9=#m{3Jkn0_Yuapw$8#O_1Ofl4Cr)Re>^Hl@mh`;DEkb6oSC zgL|h+!PTlUIhk?6%zl&37e_NtE7t`xcKCyV`sT8~aZKfgs}pEwGH-JLkLEXT9?;sA z8-S+h7uHW&f^Lwa%%=)`Jv-MLYp5y-s}kSCt4grWxvYaePqPCq{H0Y}z*P-Lzi}pa z;Ng!bMN#-Wgl~f@HrLSMI8ue=re`)w%GM=9fQ{1s3cM0bqF?TL&m!5IUdUSgqL_d{ z$tCzgP?)cOn?8nXb*Nuu4G*jVAgEhv^5y2xdQe~vJY28}s9m7Q0eWq><&cs40^aUFlvL9$E8FR+TNMVJ8)m)L; zDSAtsxGqq@&hFy{Y~P{hgn^Ckut*YtQG$k{hj~O-iDsAM`H-VtN{xrd+B!_79D|1c zcN_+PFvYN)%Y5XyXbSW?Lc&#`FcyTgV)q?dQK^nk@A-ucW!pCZi!dB!*S>>k4+va- zHWrlIWrqFm9#PKJzvzG-I5+@;R0_=8#U>^ecPt(ZFA%}j4O>Zn4GqO`zrkr%2;Dq3 z8~76lJbK0$Zti$???<4J4qt5A@Lu=+lcD>8y3?Wo)M-k9|h-d~Lc*K|!)_KJm>t#k=yC?Rj znScX*oq(TI(l6iP6%yZ18-)~tL_bi@F3GbFs__v4}3+aoQ4GZqU0t# z)OJ#j0)46{ zI4^@4pr;pJZ8dR<{_QgP<2eQ`n7d|Br*@_&==N0bptRYlB3|RH$bQXD#NcABoC@6E z0e@+$-Nc-GYfGCua?hCkAe9%t;YLSII2@iTuXeZwHe)|^36W1P9x6Yq_;e4lJO;5) zBaSIQG@EWt@pXKm|0&-lQDapVOT^RN+amT|_G@q{^;i(olB}v>BDjW=VlXf4P)$ZUMdTjN=(W>kvyc# z7pz+((PsW-7It;0^CxqmvURw&Z2`m7u`-_eP_mvv5r66O9i}`6=>AX(U2tpNDJdFo6?YQ}}Q{aAOI+eBxgShtzumWjRW=&i)AX8SgG3QJG7AT~N{!cXH|WJl4s z#NS(ic?7cY>xqQ?=vkK2(M}a8+#>6kW4HaJ?eh`WpW(JizRR2>Ic6-U%ebskhDvoq zxB9f;0@Qm;kSxn90RfwAseFe-2SEpMn?Vxvg4fF}$?7j~CO$<>W8Hvi7T$??J$GW< zb~Xs%&peQSE7=quor&&+WsLj?i_?&|*|>da*v9Np9Dw0}1)G^C7~opS@(GV^WE;!# z3^uzSErdvMMld`_E469PLj8aCBOj6R#j3lWt2rhg#`1gvpK;%nwJV#d_k-=69a(Uv zUvDYia|M9^i`N2`R?Q|a2$GFaw-qO2rT==`ta*hghN9lBTi81g8M3#1VS%2o*cZefY%WZC((S%`*gixw|_w)WCtlp4J6bXTObl7zkk#}Hl?knvTBtSMiEjfEZ^ujd}dfiyHM@Fg0N z%c_$^*CH*c#HR-dy>m2d-PX*o#B48qF^Yu!z;ed*TMLGUnFO<{K)_4kqYC*#Fmt#W zWHZLHi~jd8gj2`qB@RqFV!6x(#5wuFJdFoq<-@A*cQq6t{6*hWao{}@D5;c~h>u!= zS}7$u8IDLb2WrP(TjI1aZI2R9!@2Acyy{}@>=THCdmj&zX+H(yusA;G3qo z=cvD|Ax9Y6PaHWRdMy8Bjtqbzx<+!uqDp5a;SU@y{t;%HIj<#L69?_;yaSRM?PgS>7r4|HBqNVllG@^wnMlfmi6Oj0qnSIW9>WTUlzm zZqyEkkpGBF%*iVb8{pg{nL9XEN?=R4S3qVq?QaB50Bp@)_5j%xsQ->6Vby{z+tH3` z;OyT&GAKajLM{U4?)E&?ih;*AaYNEys46X6tcn~q?L``TUilzseWt8Y`#$2jRLY_uB?K3)@Su{hd`cWj>@e8zBCXl4X2R)msaq4jTDg) zcGT>SARqi9R=QL^yoRYb_j@$x| z`?VXg?hs_c+6Z?tb|LdLf{UB`QsACWoykpC zb&Cag-lZJsCs|gj#Q!bJu~fK!E%16TS-!L%*YH(h_yY^%L5LrXZkXRSHu96paCqQ} zL>=5YW)g@5?>RhQT<_k>&z@(?BZs@P%5L4f&pnSNL$Lpeb_C+fN~?p}sze4sRoZTT zlaAj%SQv|8x2g2UzgW!fJFY>@JoK01X7nn>YEe#G#{$;+T2*wE0(g??P;wW}23Q9d zQi$L+5NA(`Pe^Zil+PpZpnuzC0a&|&ebfXhYBzYY5eO;Pi0(vao$Lo5qY&VC!}Vj+ zN_*1>TwTHI7mvWpc1F>FBKX+88WCagIt`H*+cLs{-;7~LMuRr$@dcH>Nsf!^_Ps0W zv=PAmx(!pRq$&WE(z1cw5_!Kiv|0n#;JJhju%)8er*rah(qXYecD0GPb;QPJ>!x|K z>P*aY+@UK&_30Y2-VNq^8k1dG+bfmrnS0E|HfG6(U5-a-kH?ITUoz^Zy8E%hZZmF? z#?uG@rAp&B?*21nM@u5`ZnA2RP;C?5zz#a;?;)H8vo{^7Ps;|PnOyvC=~d}+T-qkz zGv#G4A`u#{ltA2{x%KUBHjg)20;zfUh%{A&5ZDKdkl+1ZYL2x;Z(la5ki6znnC$K*?t+1)p z_c`+b&RKOs>Kcj8CculldBTvJQ$j%7-!5~n-avHR|KcvWAIbBNX?XC+;l17JG8<0^ z?03)sdbnAIhgtHaz&b$&jPY-JsBADU|JXfWCKYy|zIS~-aigYCQ6c`Fl|J{J1lXu` zM&iDvk`+UF*=5A$PRvK_Wd2t_7|VtV`KfTSK7P*uFIu!TK9O3tyJ^%R(r3mL9D5D6O{TTGuI8aqb_ zN{=doa#dM(a%fAVAsv{`ms+J5oZIY^HW6#);Mk8v)tUGVBrWMn9l&z^FmUVUIHmY3 zXjf73{epZ{!`&kC7Yt%%+*36$h1k z@iaJC^kdvEC;;VX#~qJVP@D;nzdz}GkR`6bDE@HcM;BunBmYEtghF;i#Q1s33D76= z#~wVKj9Y+0ky88fKd@w6J8s7I!=Jzz(u7!PCR=1rM{qGSbYnlN27^d`COkWUNP=Uw zHF`~cB<)%RDku5^TT~4@J_PgVX41n_`sT(~Hv0hVRZIK3S1s;!Ij4524WjTccN<>9 zaP|>MkHlazEPGZJDo>TDYDy%32oYyDK3CG!MCz05?8-~_D(mQgeDqu_mhEWP*nx@N zyya=zY}u!x;$~OzE)5X%GGDsrGlWs0w(IW=)6>Afx@GB*%11cE`G&1Fg!nQZ8(3== z8ioeKXR83Lr6R3cbw{R;-9h_B{N5scdBUijDXWR> z!9~3-P%N9OT2cG)2%+hGGgDGRq%q?L<6V-PxQx93;wBL5c==Y=B!`}9RJ%cr-lbiU z7u+@=-afnpTzGW@9~fcNe?8ggNXuYKr=-frDPnRr-z`>IKp5xc5Zzg=uHgaYoEeRD zVt{WVdxLKYmEd!8790p%vsZTZ7;c|FOQPcD5ASrKQDVggSQi0n?4Cl~6KkMxEldup zKwryIs4F^2L(XdZOD4_e0+57slOu8E<1zIKm9)(eXKWMP$81Z8Tje0|bIMq91n-P+ zH+NY0sjSeR4Go>K*V?EVB@TU9+%+NA2Z_>qtKNJtBRwEeQ0(ceQ2EisuQh#~wf5C} zhce3UzKJDxNsBN+K^BQF($!*5t-(U~KozdTExIDT)w`HDnP*ykf}{2*VXY-W^T*>( zln5x3w#$r0N$sgIXiG_A)q_FTQvwY6|0X%E^(PG)!A*dJBbn)h1fdZTSATN2_=tZnur(#wd088f~HhQqX@FsZ z;^L)ifQ6|>uN6-OD8`o%m--?o)tiNQybD7F0kV#4))< zIVr)rY4^VQU#8s!q~z4j98xYpP@qC9S#(pkGHBrad7EY?i*bOnj^t(b&2s*awnh7l(d`ID#bC2jTO3QF#WD3v{Tc*YphEN-=vrIM8 z@gLKC#IgKaX~Z<+9G=HWpDD%hk4X7rtVNExq$v595jXM3L6fA#glCRB;azuq7aM>cH%e{73;ov6JuF0oCW-qRg|80nV6KqNkb#B2s1C*uX(1{=K2Y{+Of*+l zRaK?4LWZvfnhxP*m47zT`}nAI04fvr@L32@0u5JK^j=7VoM|H!fubWX<}?t`3Pb+_ zzH#<5L_4dHe?EwP^lfyfHO)Eui?vCG@v+*iHX`WU*8Q_Lp=2 zS`E>=xivX}foRyVOeFr(EQn)3 z!GE)vItsc>wuL$YIw`46%eYztK#izhu#d;*$)exwYIVXqQ+I!;)8?)OLD2WTR;$-c zdNKWB@CX0d7X`&xoPt&V+msJOz&`E_}%?b%pgaM+oB|0%A5}tYao2e!!ve=`Ud%E5XKe{`0)~lhBm|` zX&-~^cGV`12!?YXZvG6dSJN;850TS?J9`g`xhO2xdRrkJ6PtClAI}EXH1s1GzgxuN z2~PH&>z`3?mDl`02w~x+rBhAPb3E%8^;PJ~O=T?l$f_x|-GB9$J?O^1anq*Tteo=C z8=MiFK}53}-;gAw(VNQwT^)Il>A!;#4mWZ5MRB{@HEdm}fKh{t-=ix}r<*+a<@Dp@y5P7edGou_7#JAxMe{sFZ?=f|PV4pdeC$gf#d964DI zU1vVH_x`@`Kl_~jy)Lg87Hd6mKl7e*j4{Vt?-b-D3GuGtp-?EoM^X}sC=`Y$3WaXK zJqNF-Hq17||M+bmsM#u67}`4MSsS2a^=vK8ENsn;^{?3*Slbv|m~*hOv$3$KL&+?BM!T zx#o1eJyJMOTS_cm6@BM@lc$KzTWEV(CNY3+MUxWV{TVL{!kdTP~^#pa1ge2gWBw7l74Ws(M{n2>s=Z7oe zwzjtMsU%k3dTee-ds3?6Q}HpV8=Y@k!?^Hk+0=@y4dPSj=q{?@iNcvXr*5O(`T9x) zen;J)Ysfcjz3NR&D`#eQ_xJDL1XR4Ar<;RSZ%=OShuky3qZY8Qo3;-4`n9fjHtO-i zhYyov3=MBRZ}^n(z>l0aQZ9_gqAejo zF?7Rjy&T9J?|jUfzEv?Xp+7M(u~&I|SUKtTb1}10Zgr&Gs&x3qty|XHJ*v5IWITg| z-PLyE#K@m1%Bj4w5jK{k!+9?UzlCxbsg#UF3Ayam(w>N#m@u*g`@wG;3#pkZj1;(7 zjtj|&b0g&f@UmfR7`s_t7NZZtY)fb@9Ll?EK3=2Hyd|6`vu4rB$!W;#a5>Mo>s(^j zBWYAbtr8viITgwy!qg@|iMhoh%a#Wu6nV^y#5R*zTR zPam6`vs9iQulny_Ar{`d)~n+#1dn6t9YfUE&Y*?Sc#T(t`^o-4MnsW)ABqsjhL$ z5RC$}^O1x3romT8NuNi-^~c%>x$JPVR_slD*Pb1#_PnJld@%Q&D`R%<_jlQB-@$Y&8XX9 z`uUJ{!A+StO-;=RKJ%fX?{2Cj?6TXaca2Z>kKJb4quUz;=#6_bwB}slBgH!drq4=j z?-Umoqv{$OHfxDRvW&ZaFlJ8Mms;^s-Br)?g<$-XBJ4AYq3!m#sCUtz`VBV9cA@*7 z@T-HhpOhAFo2Yp$Js?i*nRMSKsO4SAA9X){h4C7ts_k?Wf()P9*x1;1sV|^is7ICUj<{U* zCRu3Z9}2Le;e2snd9aXJX!ZAZob2rEqod9CSey0r^)$8YH(I6k)Z2&eIqe{+SU+{y zT}jBw`rH;Npz56dIG6b^wN?Uzukhw?#giSVn*rSO6jWDbfg@Ezu*S0 z&1~CEF0P=>c9CdUg@Dk|XXzzscfa9XCwTK3CyC8x?qD%7U?ijJ-cZ& zY}ZS@c@WP1vW8QZ-+oCd*RYk5YOy!ds69%EtSK=uk(7+guH^vsAuFr{iC@BmyGg0- z{6%MK-R5u1@rj9nAt8=shB2@bL2Wm0+<1x`)b&I5`EZF{o>~8w+;-vcUx5s&xKea+ zkRI)(;FgWxb7gS62>Su!vb_nv2&gmc+ zJk7T}F*Tj0gOFtw+-%{1Yu%jt?%$cN!86kqNtt2tp40Jcu_3M3POfKJP5zY5eA$5&l5s2nNb2@m?~)fmcl?kI$FnPfyK@jN4TsM*Zus7@w5p4 z{55|5Fd}Mx1w};+Q9Zru_4V~+O?eihQ6V8A3ZauuJN-uD{<2+D{YKIC=7k)VV^w(5 z8Ko=yZb$2qD=DRUbx=V zBL-N|?+&XYC{5en5B@PU+<^S5>NpC|3<@hJg{CF?LYY7tr|b`zP{m|z$v@MMM{Xi~ ze0*eW3GwltqoTBz?a7Vt%mOkzd?iL8UNw!GuXqfamwv>darF4`fuK!jSJS+Bn%s<= z^7Lp{*^#_GBkgcu2xWn6&=A7VYeI;%_!TDF0o&J z-)cDNNi2Mgi78bb4ROY9F(UZTpGG!X_*IC20}HMD5xe_-v(5{MJFgrH9ar{8j~_Qj`;fZ>!fz&tHT|^wJJ=R2;KllkL-|(_4W1pO6-_uUDwb&BaZYABThz1u28g* zZ8=!*@;gLy+40U`npWwz*=To~(qW>ik31ud5U}!qH)^3Yzv%iwxLR?@qT{xIvnx@a z;nuBl9%#&Smasq9x4PtWjk|7n6H-3Bc3})sw=Pslu7Oh~R#ty)gqts)(Z|s#-^bh13$ih8ZUHBu7@NiC(l4NmZ==onRY=Q7AYHCSL@aM zUoNZVMo|!zhEJbC{%`8yFQn-3p62t|tK>AJsrcM`RPoV~a4 zpDcG}iFlHt$xi}~^9jL?EiHAE>)rGDhk&IjULC3xnrlUBt4h>J+IUDz#VcuQwgC8Q zgKe%oJ1!|9M-+y6gO1@N95qX~8e`B*rmx{8-#}3s2kl7wD4Z5rus@@c2v5%%XHm<2!H4x*V7&Mz>o7(GCsiX z1xmflk$v*#$LISS)BpVQ&)DYv<$M1~CDhjw6~6dQmr*=(RrvJC<{PudL&$(v?)`%+ z;INXWU=Ap239z7T8I-o|V><*`2fR>lc)dJa8vOO^C305nmi^gio%G$kV>h@mM@S{b zCkKnKb%_=1?YV7cT9O+E-UCK{-V-x}3d+=0k0eAllaZ58Z0<9b8~u)Z5Dy#w^XDor z3hhRSLs3OV#h~8XckU!-iJ3seSG~r(aq}j%&F%{X+4I7kLEvv~ZAph;piQpcLSbW| zS&FAF=H%uA8Zgcub!cWTT$@jf-T*)_W?hU55pvG`lZZrpB0e&$9C8y0QTzHn>j;Jwg9v^99A^Hv1mCDNe8>^jr)Xhzr5;4&Kw6} zB+0xBb+)VGl?(Y@H3j4LYe_?xUjqZhQ&rL-5tzP6J}7~k+k?_`g-uuVMX_tLh{@`j zqKi-PfIwOI$hdO&PFr*HcSs+AI7ule99nV+^>NLP_SRjueoNkcmJ>fPKAYV@Gdb=< zYY3pFfj|VcJdjV%#~0cf&ZBz8BSMZrE-|-rzpk#XVbMO=11 zX{7hJgu1-})eepu-r=&bxruIUZ=Z!qq7Ol5Hdye{3!lOoHdSY=IF2_F_0^r#+pzeA z@)DRGHtj-^a&km)?nI}}nb^tY!cn52{)$%ur4FkZYc!d?&19;YPsWA(g?28ZR8oT= zVSakdQv6mfl7HPtkx}-va`|!ckEBNKdE{7TEYGQ}764d2HR$WZU29+J$Q(BGGembCWDN z3=AucJKVB?H8o;8OZ}LZH9Xu0N}1bO+^iUwL`iz7*Y; zYeWq7je(Qu$7l>Zhwi4?BS*m~++K+VvHjKT0-NF{$?ro4&$-S>~(OkvA|87KX{^N8~=kt1Mn3jaZr2beSgpa5`N*hfu}Sc@myavJ+0fGUi#wUh|B74Kx`212<=^Opv_!65II>V2CVAa zJWU69mnox&ZfgKa{bK;d2>HEvll?`879|=f(7+MV-@$2%ENX z$a}8q^%N+`z2T-A#omDGtzdxyf`c0Xmpn;d&XIeI0k_wH#q+#%b6!P;BtVLBV}IUR zXK(l8(fUcOBUR5~A`c4-kx%XGhRN&9%!D3P#VlCablr5$PKN4yIY~cm~53tIZm8EM?}>KJRV;(Q7&>1 z9*YyCtt%Xc1cQYZ42+ELM~`NBkkkaZP)_97_S$6+>Bo=vmo3~MFaAkKBf`RKQIDaa zp{qULZ*h{7KK%8&8uc}m2BaH4G%TB;*X;iO{t$=;w)34{dwY%uwyAUzf}@Mf*g0>_ zkvLOT@$_+UHLGDD}*&1@j=eC236a9;#XL(ZHmSnH>iD(4XCi%O+I(yV4Jxjv5T|)*%W@5;mNn}JM@8RlsER3n? z84^-T8!>TRyYa@-;+3*ZxqJ8SIWA>4%yqug^d=}taxWIY zOg@324cbMK9TG~L@b28DqqA#ZBM>Cg_()t>tDd?WM9ZaB-#2bKwo7|D>IbsK7myz; zAu@iKyEt@qcJ>v#)L_;~oGG!LuK}+2EE)2n9o}-UL2f?+8jyq!+vPa`Q&*_eqHDXq zGj&7&jn{;6nOgEvwS;mcYA>eI#IU`$>(A04bae}Sg{>VYlp&@1NJ8Rj7Wd16Ed6>s zs2&e(ZMUAd7{Oj_1a8{yOF|DD9{^sVwzKu8nRfRR4x>mra`)52(c*=aRJ8)LD?t9w zgdEf!P_aD#4Sc6Zn~$WV#scMquV29JD7GZV1iR@=D<+4`Z=u`%&@mvOg{ks|kX*I7np4 zMrN+k+}%cbJyU#Y$sBXMfCe4&-DT_;wyp~yzP_Bch-3s3qcRQrpcJ2~%D{<5ZaAHK zf0aoAB+mfvdC+QR+XPnAHuC%W`q+AZxZOq$=7ehMqJot(4grt_;PRa<*FunYRn1*K zX(2?;4ETY%bat3tEnWDPF1c~=(dw(!?|Umh0E0q2y2se38g46V#nb6o(Z$>ZX-Wt zqVOdI3MNJ!kcc*%nNaRvPMuv{OfT`A0WxeLN~c+Wj@M(>@~_?9 zPa!MtEvDtFW$E6Je02f}X*(cD-@)ZuK#nOb$^wp#jye_ru}v)Hw%>xR1W);3d$9qQ z9is{nBY|Q00+Qk8{szb)*Lu2%KUG6Z0rlQP0o7^J0gIs*HpZN^KhBgkeAwjAXs;_0 zHhR3`uryj34T6xM?FwXQM14SDd~|gC0}8D=h+L?Agtgv;&+B|i%tkAY--ai~#CU*^ z`vnj#=!mrtvbArp@h^+G38H|ve4yg{g3nUqfq)r<=5JPztMo6QLxH#mxSbry7HR7F z?;$>LN{8KQwo@LH4C6gt=uR#JH4bE1bm3qt-)uxJXpLgCZIS-_6~I1yU=s!dxcr^{ zT$09ViUicmxQ@ji#`lanZy-4jkj#8_yQqafxlI-i10 zh-g~8+ucg&t1Xq4K7KEVJ0|M=uJD*sH3zdY(9>f^w>NygE`Iy=ZQcc!ih~6vgt45g z`G{nJ?Edf*)h|#7p8+>ZY60Zqcrc$B%4c&6B<5@I?BM|@YHCt_%CyrA!-BBvVF$?% z(1nn+^qW)dvh|;ony@8p)ye*>>V6d9ruU%uSoLZ-psVY`p*Vnc)(m-wT{aLP+$NHDAnGr9 z^lH0&gwUS>DISQsR;5nLRU+(bvTw*q-r<%q^ie8dB9*mFQ2)7pmYPYwyY6mx(jJnT zWdr?1PC^jS1@iD4hG^G|9uSFvAgIu|EV1+3&Up+j&%9^Ks9Gd!uVe;VjaNA0%mk_v z0>fu4+z%Xk}@-qXbnbRQu8mhg8;CB0_2ro-t#-g-n0GJFZ4Bb z_VpwKfP6pSo+o9DpyaoG@nZQ6(C{yzp}%78dx~W?)Ytz883Ep+Vt``2bLV`5DPRIk zl&dhUaCGLM(L_e!=+&&!D(Quz1H~s!hbfV@;>*<9CaVkU`>r8B9)aG*8{0RN@!L+O z3#*j2YvsBEcW=T^ncRn)9#lj)!CLlLGAmE`K~akX9J;m8<0pEp3JT&c5W~e!bE9F) zLJ<=i-ClF17BHcEGX<$cO&vPyK8V5>k#WLZP@ox#;Utn`sSi zpmrFlh7z#uD0s9}SUC+am;rbVC?W;s!%ZRV&yh6)x^6U7WHn?z`10$wZ(jhrBZyx` zh5XmAUz+y)1~QTS`45-f^LAKRSbi?s+aT$nL|Ya^#S>R_vcZ2AR4x5qUvB2T_&pI~ z(AC-5*wmC_$->0s2ecCj6(pa;%7A*5Qud>3zHZ)Dh2NrZaB*6MksR|&9QD#Krt68k zqRlsseNroWdRG-we(Vsj=I>@hKZT&SN<0B`2s&+Gu|z zdqN{&yH?LB`_rGc9R%tsqv%%;0crXlMuBjaV>w=fHw)l-Zm^IQ1xLQg%$zP33QrkO z9|>dEg&Pm}P|V&S2wXf*LMRGK)g;8uY%9+wv^2eeg2P_9!^nsigvd*w5F&H?psM`@ zyySSa-q4?=hY7jK5O`Eq%d}H)DJz z7r#Uj;JgF9Akc)grh#h~N~wYx#E-QD?JzVbX{UIzI!@DMz=trgD3tii78en22A4F2 zzP7cB)e-P+c&Er45sj3nTIoRm~t zMn)z+^>@tNxh32u#Ge6(0W^CcrRYTb89J^~YEK>5MUDFw7IyotnR{Bi?*=*YA`Jwx zEt3;e9>Dnd>J5pm0oBkw&Kfy4`jonV#U zVq_jQ#>ej2uTD_Rfh<*IukcYg_~l;@F#Gaoy?v$1p+SeFht5vLBRBW-jPcEVwVZ#> zgF5aOSZ>1@kz!(z+5=L3Y9J~FbxCf;5k-}NUFSljMt~b)8B_K6eL?L7l4Mm$4WXhE z=u7~PD$-;Dbey!hqf#i&TTF_|I>gUXC%E|i4QXutRYb*c1YISNfdnOKEF9Al^8ldg z1N7~PCT9<-6J3-Exsn@G*)1_YU*ETZ7z(^W#IJ+MQ5`a-XlU+B0L|tt_7vCU?!vF2 z`_k;fmo0{rbKSf8W0-MD!tNnQez6i30o#H#Fg7Eq7PZjKaRHCf9!}*)ym`{k;W0IHT9C z`?Od@I)v(f&lrcgWFGsdqZ$?e4xlaFcp`EI38?t`3$PS5vgq4Gng-&!_5G;7H-Z7j zzT1uY)Db0m_!?OQ59E*qHI3(pwo%JH2nmtuL#}LJOE;muntEK^=D${j1y*Io_m*h? zr!_AmX3ju;O)J~lK-?RDKO*lx=z(aRxMemV3pEnx+Ze8YfHJT%@?w#*jqApGS0k_A zhu6yr=EgkZF#FQKDd2XpA?I_1Aou81r}6ltM)2h9s@{5GC}8aog=1n35Q)Q?hJZd) znJOcuk9YCD=VGABAS@6l1UrEzpUn(a?h)i=HiGY+$WB)XMVgb&$B_8bXDt*tgf(Q= z?(ds){9S=Gx~m?bA_2H%;4o}SQrSl^+Hk3Z57JBlL8lRRYbo9|v;b9NhoDor`28SX zB^l@TLud-XE&L+?MNA8jxz>j`(|#XnD{MBgcEmyfWeOULW?t6Z;U6K3^QRhV3FHwe zaK~I{0|IGj+HK>Z?L2?;9N|?7P)nF1MxjJO-pVuW{RB)S8`>hcJy|Bgi?M@a=r9OW zWAUf(xh!9R%kTQ~O(_7xOhbN3v#gMh7DnI<^pSI2cFhrrkN7a)ih=edZ>ZnAdGqU6 zDm+@GfxhP|>?*7i`Dbu;)9VlV9zLz@lRI=RH2Ya;kUTT4zxEz<=6!ixmobr}7I$5X(WuW(ADX z6JL&xkDsbl@Z{XJE>5TY>EL4MOF}YhxJyY(D-S{xz>v)+%}8JFJn5~sQL{5MojC@N zp(`o|N>OAF<(v7fO($9mU9MM}oJAtSetwTqDK1ovMVxqwF^M<7+uV1BrU;wkn(mUl zOMI$Lr_%oj>7duM&{ijZdU(YH>2^R;_aFFfQ*?CX3edjB4p4jdJ-I~E#I9%aWy9u~ z!6H)$C9nxnuzEMg>)Ur03r?o z(kz|{GhNs&?e^945V*d#*I0jni$on-HX{%6a9%)dB)H6WZL7@nvdPxmZzMV(q*Y5i znHU&+z^&j9L7viN3gtCZ)25XRp}OGzv05pf&2ing27yS$T_>J<=)6J}k1d0mb)ILd zOWx%;*qgi(oT%;9QQ9s}|AT|HXSs}#etv!eGdB`}8uUKsS%{pMuJT|ksO`}Ah3vDP z{v;E#JE?fmQzW1EES20rJ$Ns`zL#qTWR4x_pV3`}L_(skvVg`LImqBc#EETr^le2= z$zpsN#Lg8z0-tFj5fb(BuHrn8++hX0;QLG%XU>-<<{0~CLm7u0>_oW;425{A>t+D$fn9688ppulHQ!4WeXVMPP)=gxz;4LJ%w}EB%DJ97mE$Dp z!gcntHoPniCAJdF^?}C<7Ad&RD6nIstRy@W%ox7p99M-QV!SVslj1M`jO~f>*Ccq7 zdLK$kHxs`TC}u*=`lVzg{uE)~zHfan6mC%SVf~;U zNAj{5`t}#bRy3a6n~~tv9{bD4DoDX=V(6ra3n9I<*9wa`74sq8@y)~4Dc(jIV2URgI_KHzh&})~hF|_ctUjsV!AE{LS%Z$X&2~ zD!DwNO^DQsZc4aiCSuX)!`JiNj&Lo`P;iW=3u}T`aozhagdp{sB$*Ztu40UP7xZCi z%&FiPf3G?Q-YL0+Gh?sz&RPvUjEAg}4jg}3ZBTDc4oQ;EvGA4#H9~dLSXiY6ShIMq z6$}AERM0BU4`{E_Dbhmr{&x3S4NzYxd3n%Jfic^(Y=9b6!}dX1($LV*%No*p42V;J z91gbTYXKf=`HxOuAuB{xKpS#aySx3MioAJ)0W$e7VEQIo6(Hs1fIp`L8n+jnmw_7_ z*1SEBaNwR))h=kmBZ?z1#f6dsyGb>1-811XnW8|-ZEtP7_KL8p(~GF7yu9F!zoy$rKNe7^SVO7 zGzX$LX4T?$4zv}J_8X&Vwi+VvLhn{!VH@6e`wrhFZfhGG^xD4bo@)hvy378ySZ{uV zK2A%V=U3-)-OF{QZwjkdTbVL8+bv8O^9#F~&dB6hj?Xt<4g31?DLM&yaV-&ifzTTa zgnQO@U4MXh3g444@lJl==qt3Kb*qf-?(W80eJm?$0LqtS`AT=PQs_Mc>4Z%Xz8j!* zzQ2oVY-~hTEwIk;c#Q9E%uCv=X+)a+!p_QmCC?r0y78#o)lErhWaJ{vzxt#mog-de zUOg;>Nf-(sZOsoA+sy4FS{En=jvK!i_IoQ&louD}{?~lJbiQX_N;n#vK?LWBX+8{_ z<8;+&@(|IFJ)gri5?{JwHmFn8CF1%hz<4sw&->5(EDu-EfW|`5-~Q}>HBR?&zYrq9WgKL9i-jB>)p8_=0T%|siG@vvJ3-0+s-cfudZ%_f=X%lVko18n;#7@Wc9c3; zkh5rBb{4vTn`JpJcCfQdnaoHtO5*V5fxt`Nm(@D06@q^^MK9ez{%4RepdN|0gKeT| zAm8*6Py;~VNEM6}aM%E$2F(VBJOJ&F;T?$W5L%>Da6`{ej`m|sWkT3q|Nbs%13d_9 zQ0O?|tpIw&9K5)sB(bj5vPpfi&*3QbE#JSHC!G@QBn5dxRvCJ=O+idZYkSUVUoZkb z&tdxKE=XUkAmWK!v+hFHjXOBY($WEoaH%BtB8tJ*-4gn`J-_oPw) zmrUhkFS&0O%<8SSuCf=||3DodNx?M#XE_n9JX|R)hJXGp!_cAP0B0^~y7u1F?92Kb zFMY1Vj<>jaOcfLOMgUNB6X6ps9ON(=cTikdkb=nm=0i&blnHLi5V4FnB5rR#Kqp;K zVno#^oxQi>HoRB)rLQ_SR)L7l8Hig5!%z^vP(oO-K^0T}cPHE6i4s7279krn0k|l1vQmd=TXD=8P@|9K@iy6{sfVvR;*tX~P}K z!5v*{P$RI){F|Tdz^CH`QDiFG1W(TH%I+~bDR%9J$QhP=f-<=ceXIUhrB=?fo79Gz zyrevg{e$ock~pDMiCcXrt;)fFwRiMd3Tcc_#mB=LpIT9&UJl1iKVujRAK>kJyHAnV zbnvDAF7JEfwaY%k=k4cI_6*etks{s(XS$)h{9kE&_L9fdFN{1AJ!kC*J6Tv^zCYec zPG<-~QT6Pv+!C_yJI@G-mJ-TD>JvMbeN4yW(07fK~l#fR%UhRWLi|K19q-1Zsr@V4P+uhDbFaC?XDnYU_rV76 z3EDO&C8=6&P_@XSL_oxY&2~Bt?q=4+XgBA%vQ|TS&{Z;0t_b@OzYaCDbRi%j7X72YPI9=(!$X0JZue=Q zP3__j*2!#I9Ei)t#B$xkBYFdUGc1R--aLlHq_#zy905a@$C3YrX~TCi9zCn&l+FE_ zpMnGZeK47@Sx+^ZR2qR@PY{{}(7kvKVi^kTn2+7ugdtlQLJMCe^qv>|m;+KENOdV? zZBxGj|JD+u`2fs8Wi(MmCUDgCP%`a@|Nd}POk)5+)qA0H7UtR3CYm1Mr6!2Z5|DC< zoZNajzxNB+a?H$@*qgZrP+K$M7S^?dJZoT6^ttbOjyhix3`)QRXAmDavHPBQkO2T9 zll~mU{VQOO`RD8ZD2vYv2bs#vT~a6?x{+6ixSlf>La7~fX`k$6az%uZ*Sa@sr*|Dh zEPd)7Q7rs7((MhluY7xD{eqhU!3@|KZ;xzGdS5Cz;D~Z;$RSjcDF>5n>j`^Ek%V zK2AtYI5^UhHu#T1%C%qKy}**?L*oo$4Pg~@nt=zOgH|wNDH2#I`pzAkRsj00U-t8c zjXxR|UKoAZQ?s+VV3t#aq*aQZS&>E-;Xc$natFK2} z&PF;QJr(sr^VSTlQpDE}jvuf={NUE%I!aL^V86p(MD$ri*E*}?v7+tt2qT!ok}K4= zQ4gSH<9_OfLj1X413+6AYhEHFQ$FNpQq7oxjY>RRBMki+#Fv0nBGiAEt!WszZ~~hG z(r<#rCZ;YNw%15%ffhm&7$L*~ffR!UA4VJyBNM0TpETq`hSsa2ANY`q=V>t4xx5*6 zK1_|Nx;Y6(PiWycDzolR=n zoaw1Y=kDaus@Z#W{rW8jX?dxcHI_qpv=te1=}}6hi2;{IN1=tz&dP8zbonH~JAwk& znTepdEMd=+UCgdCj$oIdA|widgUnL|wW;QR`_$cG1z8lyl8x_Dl!-f#9`jNr*YlqQ z-~y`8@6~PwS;Bu^jxS@QwCdB)1?4k+r8`s|I|kg6OnF*$NPiXaJtLzL$ODD8&O+WB z*-s2b2ORsMWO6)ycc31g4aG2|sEF%=OF02}?3oE3>>!onu|72VFc}hi{wQidpB}AN);C4kkUAQRccPq;9t5ILL?KPw$p7^)0 zuXLy2%z;8{0N@*mHh4;5p!ZUGfWhk>h^gJi*x^)u*b^GHC$g57lsEFwf9oF$JefJf z;%u0^4o`mr4q?@FClOU0+2=z@sgg)$_T}Q>Id_`AtNcNl+&C}XD|SOn86egh*Wr^% zkgE}cUQnCJ{!}1?=Jo5{i?!7+W0f8~0ntv|-D4bZup`At{6pDZ>t>ZQz~P3(cM8i$#fLRC>uu}ATj`AF8pxDqL}Wh$s+ za5Fpt-SlPxdgHP5J1b)@FsTL%B=y{Qao#h@P}d(rrf~%A(V$m5iEGXkr-6`q6L~;r z_de8mSKBfm+J}}R%B1m=6+_6GcH12Vpy$o1_oq{&fY00u$DB~dq781v#Cz!zdnTsj z|3GzjP-l~WMw}LBB8j*|U8L^xB8trU_>%KudL;(9lZSF}tpfVYF)tDc6Pfo+2ZIy! z5M(*v`@cXVtI=Gr5x4P95`bS1YJx6!=!2TT8R!W%7-*o)btMubmgQkpVa-o-=z9e8 zoCF1`wFnl^zxW&VR6#)$dQ740&mZPDSqzs1L8m$d90pnT%j(ET71B}P0AH_n6Jn-E zh|8nETiMRrCI~t2h!qE=N&eNVj|a*<>Z0snh{Rz{XBKb-SjmUOb#KiiI2!B#pp_ww zI-D2?lDk?ZUqO8Q0u4WmwK`IHVB$P%_Dg*oF2W~!&$Zq54M6vbDmlHlonD4>TLiz% zYix}Q9>kgYqyk9F1dxIO!Bx(rnqoMH_2F_M=GeCLvwRaWQU*DKa`S)V<93h#^6^{$ z#>bD&z0FWvUL1IyRXoA=-ezrinBb0<)K(w5vFT3A=0T*H$h{(=s~%U+?5ZN;zoF1GWi{bRI%YQ% zO`z3ke%$DGGu$VxJ)1y;*(+>62yMllid zA~HjWjg1{!T5~l)I`#hInJPv~^80!g3_IL|nU0Rl4JY33lKzIUZ4kfxC2thcY6H7j z3({!@dny=$m>t0qDqdKHscF}vyaWb(gc3tMAXOZx>9QZppEmVkG@W2$xGCy;qHkvw zeI3%L&1SKy2Md0;gaoDnAP;ug&7@4#{3aXt84yS-d!~Tfkt6hM-Q#*pdG+PdeuPKb zjf1jgn)q_>9CASbptYarEPSOHZwk%X&LqwhK2h0kJ?GZb-}pDrpzTC%5_zmT7)mB7 z!e0IujG^${s!lLwh4~G7u2jc{PKg#tB{JxwY~1DZ1%$lan0e-jXN@meV0+}TG%@eR zbq9ASz9_{T^dlJ(cv!YnS|8@u3)3+M`j+?WXuI)|Tt<&4`Vrxl{Wo6lcH?hFo*m;O za9Z+dbkZE^5)P*PuF?d0Py39bnn=K5EPr}1@a+|uT~3qq+t3&%L$V!me0Dy4nhxXn zYE<5_==FZD0Sf3;#g{;?45Xhy*E=oc$!(yr%#F<7GJ=`Ba}UmOOEL``%ToOXovr=e zB0an)1s8wzV#jya#{_>XDK~b^&l}m+#0n07e`kl^;~{&v;Ou#(iUbqCK6cLX^~4Ut z1rL%UHQdf4+pB$=x(C;1RZ;p{_5(1gynv0=HRxvktkZwJ_ouo6hba>`{Y=#qf)B{P zpxY|wNbdM{xzf<5oF7^609bG(VUmM2q3WhvVy0*OX92js8C0)@Z!~^-Rc%XjJF~$O z@#@Ii-@)5S)d|+Y9R1;M&GAKESwJ6P%W&AL1qQQ+6&b#T2 ztajr%tOU0`PaP+*u&^18fDoqKg#C*sVC%tzPohFTS07oQ`{MkeJ1S$)AioR0! z?Zl5et#RmW3_w#<{&4h5>i91-yt;(M@afKc>r~LSeEzgvUDR@~ZLMD~{S(y2=igD? zmzCLZaP!Ver5&vJ!)bBd;?kHo-8tLdEw#Jn{+a&vIY@&lwh3V*uCPE)p5EgWAY;?( zdedR-U;EJK>zKp~W?zU~Yg_oM^6YqZv`A~ZWy#^4b&s=lBXWt^3s1>CxS3IvthObR z_^p`84Mm+J@i1%&xepE^Kp|izoAK znr8Z0CbwN=v9>k-S=>|Jtv z&vS(OQ1u!dXRouCZ(RfrGZ)N+k+reHL~&Gh_faEiZ){V ztUQ`#MaJ;JCW$zzv=Zav-+uWbUi;u*4a|fMhPWeVJ8LaJQqx5nn6bTbvQ10kYk?zL zIP<#<)3ubov~6*;uiMzA+3MeP*t1?HsG9E(n<-*X2iuCh*CyPY-JBJO67w*!3z;7o zCV`>;tWLZCvz@uZL0x@t zfJTbs-wrB_1F6amlxAgR4H(d0^#Gv)>fJvE2FkqAK|v4H)d$!|H53%8U{I|X6es^f zzWE4JEBP=m7-<00u%}m ziq^nYeNq&?2{kbXh&Q4aOfUXtv9_~co+|h}Kuy2svZNv6qur}pI5_|HYOQ~%%|3gs zhsrN@h7-Pzny*e+67K!01HlCyh$C$}H;TUhy_BA{P2j9i??@R`oJYYQSqBbKVCX59 z!Z3LQywwj#M()c&ZYcbX5K_`G`*<0Qh-wu|eReDwlP@M2VwKKPv9&EpG^XwUDp2Fg zei(rnB=X1g5d~J050OC@FzqvGwVUK`fJbZ{zB1uUWTY&JXaI@E;j0E*g31LMyxMB@ zetplH=D5v_4i8*mo^W)TCaO3~l*um^COp`Q2RNrDZ~JmCe#2JqFv{7D{5 zYVR7C2z8v&brJjmW-lU4aSi=6CJmB-4jF`8eD)=N{fIhCEk>z-ZA5+(H5WndIcx%^ znC46zKRPu&c#F3rdhVa!`*CCKIm)q-+)U-_KQY(F3rp!#S>dneq>#VvU}P0vGs5}j z7*)k(REROwN;bHTlgFL{+mjDFCeW)EbNK*=_Vm&a)pp!U>!Y>4{!p#DxR1&fEKHCX zF5N*z%J2t`644TfvXllfwVR!-FQUu}RtL1e7|%1FQRqh9S4g*7KcTL%tM6&rNk1JFd%o`sIZzl>*hq{2YXY8!z5`D z@SfTjc+aCnqHN}vJlp~nbd?Fan9XbL-hYrWLb$_EdQ|FUB}?XP9&q*VhE1}ZUARS- zI!}O(bmqbBeQ5Hjb_>HXaQVUIXLWBWZw6IX;p!4^g5CBErFP&-zVqcNeQlTF>#eRc($a0O}nMA!s<$IMhi`Ex#%|F?TsHp7T1m`tQe6?7P*i-01q3?Q60ZnxTz0@Xe#fJml+( zRBEXqbfHrbg4KYgw+UX`K51PP2H&7wKLIL&n@KgY=VAx)FpQlqd4ys3;GB~s64pMr zF=c?ZT<%Y2BiPgL5_TI2r!78!)4UDEP*AcOAhVRVSevOea>t1=i1Wc0NJLq#y8j`; zeW3@vb>pjWAUr>8Zy_qzvYG8MjCWN!EGusY&8M4N51q#SqUqJ{!^NxtGLlx0B23gG z3R#=ispd2uy&Lw3z64`!E|GG7rFY3!1+j8b!NJ1r2UgF#d8t$7?T;>6Nc%=0!u+w* zS%KRq)h8LH&*1Wtrob4q*+&eI=P5cTSJ5=hz{Q zbR#@b+26$uqPC1wLwGtO#G+*l)q$$pHEd&}OzzX)SM47ZeSwF%Es0LLWBst!Yxf*2 ztJ@{K9rT*W@|VlKm6#|}_)-%cV)BP6-pKo;(Mib*cFghH9$zBxO6y0tljvce2dZi| zQCnozXKGA7keIpwy_~1d(%8&Q*49&0#R}^O)5)VM4s7EhxhwkZKVONq_@sLiX#_zB zUFpw^=A8BU5VYeaW8(;sXzC4OciMhJk3@2F{T@~vx@V7J?f84IVRS$v9GO>#o&oYb z8sN~R&0hk`2iU4=#;uDPzk;}fuoCD>PTH4VfsQl)sFc;r-@IBIoScgoPNm~I!Co_% zTK3NP4|k*+bnH!C&9hl+$YAm+S%8FC)S~j3oAj29ZfE?XH0|;*WN6EFPGM(>?|^6; z=5fwuk&iYW*S88L%7*_$hSR_(|14V{8-NG_HUC#|S{W##7%{L42A}^w>?FM40^=;q%*?j%O*7uw9RK0R|4Jj| zyap}SY|~yAFc^?}TXf^r|EOIZ#c`lpQYSpEAd)VxD_N4MT(C_e_av?yuCL591)VA4 z1|T3y7-)sj{}9B-8d0yW*Aa6c28WiCR-4<~6QLOZ)@(#ep>dwOUSfye_6!E$nL zG`OrGOutqQts>i7LY?1>?L=LoG>bwHPc|`eHXavEzbSw(E1AEl`q=a3YT(!Zpy;wq z4>?iDx0k>~e=H8pwZDMv>3$S=%Miyx*LO)`Yiny{C=U6SA()n?MZPx&E;rVc%Bgju z_Y)`dmXNP}m_LH*36|;neUpZufPg2gy+Th~)rVV7&73Ya6R+ml$qO&aU3p+ia4u3` zuUZbji^AM+x+J=&>?P{)WTU8PEnM5bb?MJEitXM^Xw{{B1hufU&|6U0Iv7Oj#s zPz3{#Z~e(HnW=k68p@_8Hs=Ii1jMXS@K59C>mV{jSw<4iZtjCQK^OFTnBU_sw;wL@ ztt#13JF($d-fc^iEzCW?RT}B{y7!yK>}z@MEY9XP40k>*$l`Q&TA!gM$MR_>u5n(rjlVSgAa9Lk#aMEXY>?Ko9Varq1k? zetz|;_Un=7DAI}uB35EAOp&g8ziUf*BE>VmtxsLrFWT`UbKM%wz*SWP+PQaC0`=uw z+ln`de05OfYbGN5j5ndPwS^Xem#4>CDGw~ilka@}dhYV+%vE#8mkBf2Fir0H19hXP zcU!S&{_zVtBFD`!Ps;J*)7t0c>qmCwS9oHCxc%<`^nXU+?8=_$T1@6HI%tHzE%*X7 zF4ED9KV7koPcgi)E5Zpm+H1cRdzX4gHAxmmHD5`exU+T;x-m+-zbsNQ<)g(HkdY4` z#Ksd|8OI(2882^_nXf>T)YSX_5LFe2gG z*0KQ2>i&R?VnDVauvGw@h?i(Xrm%Y~FLNrIAr0O?V)2qwJDL{7PMX^@FZ4`PA_bzjd>*RsG%cP*J;* zo4p*eGsAAel|qx3%*Z{bMQC-G(kw3XzdFB~HuSoX^TNEvHL%{i#rWJ^zW2@YR~Op} z<(w6lE+CV!VmDiLYbJRD%iO6I^pK^t29$TVrl#2phswz^<7jr9b#iOJR{M1cvPqA5ZxeDD}R&g&m$G{^Th4LReVY! zldH7HjsB(9T!H|8x9KKaUOyuJY|W^-&$x6#L@t6sDeRs8Sa%6M=R83?Qr>uS$Mr&;;T6c%Cd|F*LoCGHsXxjJQMKMnn#~bm} zJ99GJRG}Pv?<=)@2lZ&LzVOZK-5TsuVs1Br(XvZrrb~&%YHnf8UhC<_YabRHMJ%pu z?%djpws6>-o_Pg&K)8j&KbutzBAta=7wMgUaKzZ)8C&6rgE|LBmWzDcIJTvC9hZ*J ztCVAy!bR$g<>L6xpfh}>$KUT@Hc~s$*x;A0trBXh99w_RELfUNWj;jDeZJUQO#Ou~ z^ZC7312;*QyJ?|!#K(R7|8#aH&{TKt9yewt97B=fHAW%RA*3Q9l!}8g&r_z%B;uGN zLuITCQ3>ayqzpNk%2;Fy;g}j!=9%uZd*A>6eeb&Wu6x&QS*>Fkj^F<6-`>xDp6~bb z=n1kMFE@~J+kYY8l4suH`mfi$()X;`LRJ)sBQ@=SLVP&LKGUa`LQ)nC$F&w_`Qx`0BMCBB}z=$CpxT99=!WB>dv zH&gnmS5c3D#kk| zl~n@|C;SBJ7&kK721Zh(E9_FuFSM-NFn#0kh>pr4nlisEY=)JP%CW+r!2cUfyC4U< za|ApEb1}NnKTK%Yy01OnYt28 zsS7nZ=O1^G-*YzaOFGAK{0AqM`%O0lrj2A^fb1~g6BD*XjrdRR@|3oHe%k$L{$;;9 zu!s0_OAwnJwDO#E{$WiZ&c7s2x!8#{n{9}aCdKG&(wDljWyMWg5M%3n=G?$lP1akL zrsZl`3WMd6As5o>b@6FVDg_NtDbB2Td*-Ptw^p$x+rcW)3-K}Xny{>O$+1X6-n6Ug zcxQ2>7&Rq!R&K_Ek6AOgxBe5$jdE(eFmB?SsqduTODYqJ{#^NkQ5Q^9OmCg5Sj!^T zV(%yfdbuqr*bbNJglxDPM0F}KpG@-UE;Yrtr{+7QVzdSw&OFtRBd5_Q`4v}?IoV?| zwELVhrMOT2*s1!`((7}G*TI=#`ry9$J1qFHsqe3iEAb7l)r6@ohL7#sC*5m8hm)lhzZb90?I>uja?TjdJ)eg+))6ohy`^Tbcw?04 ziqi)*AqcbiJGht*bTSIyC0kgRdF_8u(Or4CDi?g1`_=8rl#30-_>RX@Hq@RpBVWs3 z4othW`{mPq3w3^c;FOKIGe;GxC~?z@zcs9Mh!gYush4hb)?xt9mpPBF@nQSU$Z7B) z_J4>J7BX@L{X@@KBK~X#y?{0&&AuaYyfLhs%o|Fy&zJjGIQdt1RlSOtqUCey*s)H5 zYh~SM)&It)fY6!QR;s~aUNg6Oj-%7VQYd&?n4m71c)wxnFuCkeWB5}X&qFVgOxo^m zLM1a^x{p(zKA9H4Z^y;QoYVSs8KZoLo2j9YE~z(Evex)(RODcUwbO_p;S%S}2=j}> zf|r!I%jG}#d=S90)mf~82+@mQp8STffmkko>#+uZ@WOb17Eh-DdB9DS(3~KK7ax81 z&NQL*gv;ajG+xKgj=J}!4QPQ)<-KUBmb`A~L$jjn+WT=?{Ogi5b;J z>=i>#>8BbJXSVtC-sIB08>Hg5Uu?zaP@hoExQabQJvSq9-SOvk!1DJb+q=73l^pmt zV&H|gAl|qx(d*;MM6VS7@B5TL>Xh?}y?sB4|6{S*G~uj&MeG}$qm(CwjUFq;xU#Dz ziteO8IG=u(OON=2 zIraVgFar+q1DfS;6Ucmdt#`DO-J5RUv&6M!q(ro6>y3<_raHW5P07mXMbGHEPzU1gOo2w5BMw34-_1o*|MUcd$C3$1!53$kSkEpR9dpJWZ z+o>e-RA#yBb-(%dub3>q<@C9kw|Z8F9;&7eRKe{5e(arQa(C1ms0JJ`(p#&_T3E_R zas17Iq{s$wx;cTv40tuxZQmQG{nQ2bulBn?|9TJ$7B`qsVoX__WOLf2af!EOym5>x zv_E|%RRR|4O=4PS-?#MZNha>itS-EHA@7ZX+64EBWb;wM+v47B;;bC)lybL99GK~1 ztzYeGh1b*#rz5C~+K)wu@umRdgskRAhWX1D%>R>BU0S+$R9L77=ww|O<@`u(o58QI znoWEk;3Y2k4~(}l9%4Zp| znY7V+{mk1#iIGc%<;TKXo;8j6i`dKw@8p{lt(8)3d=aVbwr1F8oiwaS9@_ng)7b@3 zy#+xt9w(hRRTJ|*Opk+6eJYQ%MZC?e;l+w^q`SgxzcB#bw45>3Y_js2{0F?{z6qp0*SA{AI&{<$<2 zGD9V2T~2so>NPbL218$Y*@K7Q8}P}N&X2!a5XZB`Yt1Z$~Rhs-wv={kZek(ak72*?4c6xN>5E z4>8z>xE4>~6(wRgTrpiwRE`IS-Fq;DjpOJ(A$YLkwHB%KAfp#?gn3)4PK!8J_~9$b zg!=)ZN|s-M8BbSSf4zr2s+}upm@BHD>w4>W)42DzSJiCgMa>r%8Z=+TdMjfJCkim{ zDJK5bn&gz@q#!XA1EsO^-*$s-0{nd7ZkNoqgfk{^bPy5;v?CH zL9Mf$WjS=?xA{;1Rj=$#%d*lkNn}my(;56^tfYCDLp9O(+B;S;LDA8L;Nw1b6Xq$- zXH(Z6W406wV5&0@e*G$Hsh=rCJ=aTVUmwRxoy^g`ov0Zx$m0FLsQ z^p!Ox0O~*nj=A{Re2xHelK(H@hAgpcRcl8#myy)E3ceseoocv z5XTDW#YCdxIqGBkJjdj+SEUR>xOph!Q;mvK!+W&q$giI&lfF`9G1X7KCMXjJ+;A+B zwk2U!ySa4_cx-ahHA{(Kw*ZVQ@IVd#JQY$|0_AQ1yfbJ3>R}ty3;{cJMtqY3;U99F z!Q)p1*g~YJ0}Tn#Q0sL2z&|epSypDnpbj zbr%S_>4n(okEtKHkWy+I&h~PnX%)9 zN*iJTnGnc9&=Rp(YKW9%?dGB@9ksnXCTvTh+FD~x{kXaIS9$W@#DpFAzd9f>Z)q7{tzLHEUv8YsgP#(Q z_tC0q^rX_c)XB^0#RF)dfN(GTHC!Fz!W{P$S+b?sJWcx^q{Y1`3zhbk7f^)I;zFWu zdQ8MLZkrXJu~{B6J!b4syjO-+r38sIhgWr@fmOh`JL#D`or$wSNiE`wshOMpH?7iO@xEk**8}B2d>n*E0 zPgwINuFrd|dwZ=ecx^1i=7!@KW91lQ?uX;@!?BE>ykSx_o*We2CS_{I_oJ!HdajRr zZMx)RYj!bR(PTi=Pl>yVE*@66T~WhdnjBj%PnSGeU5Y4@m^x*P3AKa zr0F{aqI{J?+a+SKX~BI|286RRsF^d=LskA%Q6cK2f$}5Oi#t zh^;h;cl`OY6G*tgKEQ~$ERf+uG6H~~WdR6T1~j5Ep@wi`G&hcCztA&y-oNJhr!ERD ziz89BR`*&K*9VNq`2`Qc$wQ%!xBL!3^}YGq%J|Z{`11PfdPqR1MfE46Y76PYvYlB< zJXO+r@kiJkoz>4cP!dlF%G&!=pWvJ!#T|-kji!kw?jjLv@p}L>M6Aa&R-Oj}_^-t2m2?W34Y=o3b36OTIdqCOix%I0j9)wYkzGiwZ`{guix$sv z@!XAkNI=b8pWhK&#Hg$Lc4-|Fc@m4ajLsS9dg;i*3`ygr#Zyy@1g_R-(Nt@te>&FI zCB$qgo5pP|aiHm|bko%`H^!SsDX8W8d9KCMa?+=BGoK#x_KnEfH-gEk zkE3I|gLf9KV85B??Bk3KZ;x`myd${W?I2Z6Gg#@HHY zniB&L00aw`b~9}Suv#g5k*p^73AT7`zV5Nh6m6`f(5khH*}uFdvAEtEMA*axM|QUE z{Y73V|Macsjk#`er{S4c9`m}Mqa`#|8 z-^`0V-skL_Ut}ZHa00rXd?bb+1|gN#kEf2XoO*m;i*$adHR#zbkN&0?(|x8sA8-&y zLaxzBF4}t359f9Gv2d?7VgEE+dambr9J#0t-nq}xufvcijn%}3l|GR2`?Q&9OVA+)W2&ih@$J#4a^eY>1c!Sg1eRIxb}eV0V5!6kofLA`ywM~uCkv<)DV80ESf&XPq8}FB z*&S4)K4?ZMe(GNb0>E_RYJwC1ZDt1t0tg($y3V^U{sVk5zXae>1Rf>6(_zU+VDQ~4w{vpbRdNg# zz!?#z!D6TmsykUqA8680=)7aF4-u^Z>-nG!_<;I#7b@IL3myd;0hm$-oeZ8`R%>Z( zl>?TPlY^aIIw0(?1`fJE&nSF&WaP3tRH+?6%2ymxQacE&73;qg;GmOZ{6|!-MQ{*% z^(XzzH23>BnG9n1q>r@_m`qRrOoYA;Mgj(p>*FSPp-}r1mj%v=l?_0XE5dfS_rl9cb^%}t9 z6y5rF=9($6KsA=)d`0M*t5GmO;s!6h$^n0e*GK0fN|K^KmLI63CgR14Wi<%y1*KHr z<(&dzKcd>hTiCig#CN-xFyXLa?aLn*|4KtAI}S2+2-xS}lh zFK!kYDvd=D?&dDQEC{HvfE`aV%_OVuPW{+Dn84`x4$oT`xCRio4{kCJg!?cr#uDT@ z>Kw|g%Li~^i2+5HJb+qY7@q~I#U&*b0hrD0Q}v5azd|G_qOQX40>Cj8RAqb*{_WQ$ zW#()m$2AbnqADQ1wud8#%Z3?nq`|wq08YqR@F2a1y^FC7)P;Oi!xp*iN*+UR;Kub# zT^8O+4_zAaDoW{qwKxHFQ%4y4+;PZ4*nN0#Cb!vTVLcUG-(Z7Bwd1W{YwBapAB+x^ zJ9aAO7!*NnPHF)}g)SK$DvifgW)u*1NjMCkt);PLQ*zdARcK#(~% z1seE6=FeR0!yrL21+MURm^ldDf8DBtuMDu2%@?Wzh%W$=^ZS?nd@(K1EyL^s-t$7| zMRkgP=zh?$R<-NAibM!t(?m~y;Z+NI>YPb39|H!tg`9#ykFQG36cE}_gPRi-UDt8v z-C5F6#{ksFCpi!}@##?eEo>f_m9CmOgf1$%*!PcRgc)@J6{isug7w|+dOr~)V zE|$!0qX(Tyx_amHL4EKMqSh72ui1jyvw&R<7MeRBg782FB@_n$`{`SRa;ClfO zF$4r2xqYaF{@_eLw94283n*Zbj2Yd8x?~{Pelq_u+yZa7jSH{|q3$}MQgP`mvt-ja zdXy3#J`q8|tKjF2MzB%@0jI|z7%2k20g4Sx`Dxf43g8>L)Dcn}HF61A8TLo$ZM4?G zb8$`m7ffCb{`-~i~v&r1Nw?0<@r0zL?|%P7pabH`&F`cbL5?4ek= zbY;W*b6{9lEkimWmK30wk#+*FHC%RuM=b#;Utq{T83`3x3e?|%5%rHbo&+X5^RZ{} zNIU@(69o)_Ax!7kxH!g|PXJv8=Lw&ZM}rKr-}jG=Fi(?A@gOL=CZMgQ11gYn^fVN_ z0G~pN1E6a#AUQBJBZJLyuHQDPCooj2z{43pF7jsJ_$yni1~U`|LT!Wc>K5$X@4lfv zBoIu2x`z`k15Q-9O3yKdo?I}Cpfwv4xd(+=kD0f5e3S?|7E2{fmZ`uen1a84QW z?bZj7z6?y*`T2R&JZBAhSDhmuHNOUIS(w!)OIMbu{N96`++1QXh|9 zfL#XB0C!d&cLh`Jkaz0=`AeU&k-r&|L{z}%Uxj$)#rKLqEbxP815}Z58IhxNU9ZE{ zk;yi907-&C->}KNAje5Qx_AU%PXYl|| z-GO#Xh}#l;Q3H`Kgj)VPVtfyuI;Y78NehV``weCLKP&`)b(Z_DtHkD&1`#HqXEe*l Rpcfy7j+TLD=`pK_{{XsBOQ!$; literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис7.png b/labworks/LW1/рисунки/рис7.png new file mode 100644 index 0000000000000000000000000000000000000000..ecf28b92fe4fcca976bada00bccbad713af739d3 GIT binary patch literal 19788 zcmcG$byyr-m+p-Q3liKrgy8ND!GpWIOXKb?!AS`2u8q4p3GVI$cX#-j=Xu|EX3ku5 zt~1}9^9R)K?&|K^)w}lot$W?8!sKPekrD9`As`@-CBBL%LO?)8fZGf3@4)}RvUqfZ zH;|5s;zAJRqlEk52QX%WGJ+5gRWV3U2C(4A2zFmJ93ddk_}=~?g}*z`K|n}vNQek3 zyXhXU_*!Z0Ca*tM*s$bEbLY}VQd@+hak;n+eczi1p0Q-SA;Kc>R&7RSSN`@JK7rd3 zM(ew4N?j$hQcNd1n+p?ltmoE!?N%97US9qw2u%o{ zLPagAU z0=!3Qe({Ia@OlQx{0^XSpNHUz*`iZmX3O?Ivf zx8dq-pC9X2{0zur){19s3ac^Wt9!fgVK7oOvqBJXvJECmpuop_1`2RTmMy@aww)@! zvflrpr4v@Q@$3?b^~4eeJ+DFwX!|KYCaEN+B=@e&B(?Lr*QoOOwHINUSJ9fTJ!X0R zl%YWVWxjdkm*AM3vhp>07dcSFB4dlXq=cEr7`bPtuJ_JW_%p<9W{f>mc3oi!#hH5P zEVtWxI24@9V+G5y?YHiz*93HZ^2>b|^{VSwKiy?Gi%1H!z2Y9mN~pWaqKUJ#GT;3r zUGS<l0b%_-s~8!W*A zy;zgG(c`Q7(jbqpq7Z5m!if88dGq-dd9kGpg2tXUZw^AcddgMvp>r@|wg^nS9MjXEL zf&y{c+TB%?+%baaNYT;P$W*yvN0Z0UE;u)o@T?w_PoOz|6w+~OI~ky8hM_aC)ilRB z705Le+H+C!HssmGy7bRGI#A_DGTMmgrA6GGPKhl6j`C6|SLkP@Q?2Lx<7n&JLZT{h zz3toY61bjU`~6wBC~|3)gbxpEJ|pG-NF)z?a>LX1mLA@>e$VaCI<-qfC{b8DS%Xw` zoVSGv3MN?3#iD~()I?|}+HwGYlF=2Fhx>0Mjm?gBmCb9)p5-M2bmc9)*`*|&;0pYt zdsrM=XM#|}&oiG3Ghn~klfkZU1f4hO2%4(!wR!R;F4H9ojiR8A6aP;3W8YC~>p}*u zTzgQY9agos^#;eawVshWqSpV_H@Pl-rrc%&R9Q=lm1DmYard8CHY)*67pIVR^^bPG z*je~yTA|pCUWl=uobft^cP~*8$z1NuHIQh3e0Yk|q@MERH36xRdwZ?q=en^QbuO-c z#1IBe>t>Q)1th*}2q>i!c`DG=y-+V_bp5_rAr48CneyrjbQeACvzk>Lj)DurJ{WX_ z<(fFnOR-$GN%gbkvteL*ZliDY&|IBCHwF1N{jj__J5WYfQE7S-2F!FWZ_~_b{xu7H z77Y{y!R@2_zq>RIJ(PmT8x@uCf?3ujVPca&EGl=$v|D$>|0wvW34E<26NDutvbw|5 znLAuFxkwgTzKaS@dw zO{EvraOW)@$-Egv$@%+%uLTZc3U-s?TsEtf$tK#%%V#WvUWbT!-0pZPG7kGzdaG6! z&ZXYcz^U!7ODDFC%gvo^$gbgNASsS6b~0*o4t-qlLVk3jPxNT^d5tm7Pt>`9X6y| zc$T+2w%LuxJN{~ENjx(sMJ$C^0f#~;2Su}W)r^Us;TsrKOvvlID2z-6MUX7Ph&a-tS&7e=^(;_x^9QtTqMv+@gD;PXBlGwvA){|NCG^Jn z=amM4p z)9-5OoNmozrj0~zITGVgHWa??_DBueK^<-)BBnijIco^L`Mt0 z;hCsx2LzG;sh7hEvwdWzi_Jst#%n@nXK#wab|Bu&{1tVF$0OMdJrIrdu|rQ zWunc)zWJb3iL4g8kjzgQA~RX@kAB3@)u?|Q#1#5Af(=mKONV&MEgImPH6#%sn}%O) zBT?i;$cULJRHyj{r%{z8=Ybvk*83njg#Sr{*e*IjHVxvpeSwN&GEBtV2cmT+{JRD) zmU}7UwFO7L9@`4GA@Q3}O*&~6U6bqEo{a-mhLyNxUlimuKjnc$Z!5RwAzrdMrDg*_ zn^RhOQwaU2PfXD0jNx#Lh{XWZ@e@UPOxV7e;jZsZpnEb~QZGgsb3GP%QJ&QTZ-Y$^ z$G&qxSkZIzsz_1vP5)f6vxD8R8@q{ChTbc<+3?$N*6-M`bFRC!nVBl`@3v+o539qv zHod<_Ri1wN8E+8 zuW5*|Q}LvlS%#flOdNWKs*B<}eWR5|FaPNa{Eii!C)lYk$1hAjsIcDVwDepj>e+Ci zZ?vzJB_%oJqaVy65(c=QFNfzqp28lz5jj`ru!=n+l;N3EG!J70NegYI;ME_Si5Gtn zFKIk56;*ai4fE%&Y^q{=@fLWu?k?9WfxTn0g3v_^y94W^lTTi&Xa1$G9G>Eed80Rz zU~n8Q7#z5wlVRqEp3yt)F$=@26G#xctgJtsfKE1=RN^-wipZ!Jc%u~;zW6`gzRPLs zS{X5Rb`>;B&a3>KvL)l5p023gazY+|oJ?@UNKW7q=^2rgJI?rY9aNy@r!K4mTKwaY zp4u$GisDVO6)0O5c-el#>=d!RsTt(S@r5zt*9#d4yW+6e9wmRb`a6B!eP3_r(v%<0 zlLA69=*E;^;2mX)-r0nB@w)_{r+0-6bX5*5DT^Vp(Zm<(K!+_a%G4BBK7c9xBV=xV zb!6u6@;03yh8=$YT5qEDtKko+?0(x^pPrkX8cVJH&W*ECsYvR-jWwUw0r~9rQEkkZ z4514g1?}0#`Ekjdc`l_M?kCYnu3tFYWHj3fvfWNnbaJA=wC%8tB{W7!DTx7XHo!HR z_pEInS^fLOvNFkxOVFt@(GJ}$C(gDO;<7M#xWGhFS~f4cAQWe*#2;%@c+Bq1DqwpU za2ANvdM?y58#0lP)|Olq(vXNNa7MJbAmD+wLvIIZZoO(mM+GV~nrOR3gc~EjQl12Z z)a{4%qQv44H+(pTnjyOQW@0hCLIDPkOf)DZlf3)XK%UCYkjugul`K z$%UD4q{>R+i$Vbw@7yqlg+Y4AX;wQoFrYp3f7pE3?{KP5Je@}trI{8xV*P##neYvT z$iPeD(fz5T7fE~WlIy{!NZ=$JpQB5!xahQ1gs!gjDmt8dDs*H*`KbI|M8;OhENodx zQSnfkM?L=6I9X`rEzj&wOU1~sJ%A~W97YpLRN!kye`xJ$`>&Y9u9<<}v;>bZ6*Y()f`Uh97X3LUzhoH2Volo1)-;+%EK|sR;0G{j z6fpWjS%tpi1X7igFZ-HdxQ&QhkS)Uiq@Df`9!!q0B)xsD6DJt@m~2k+zNGl2%vlRk z62PP)$_JRnE*Z%yQ;t{f*d}c>MePFUiK)a%U-9^H^%oumGUg8Nt``A1CCqukCp_zklE}!!;ox=^6u}yWmAYW(0rvW{y}&S87pbZ|B>)&1eZT9jtPq1 z50itI<$-W4(~!M5XOyT9y6lOv$?wQ z`viO5X`*{=sbiU@!7$kZs`44$fn*78TN=TTEm_XU;8EYm>zm?lmRjo+TtkwmIXbRX zT--rS(T6zEAXg(qv*xCIN_S_j;mH&SrdP!9&2G1{qp=H)~K>vqiUgr@8Gi|CTDO-C#}>7V$AD+xmQ$ z`Cz9iTn8+?xi_o?$99Lw?~b7kE_Te!A?zkEM^p)CI_vq4>>-oCFE-dzL6!AJj~`Xv zYvUM}x);4`cvT_yG2RQ)%GkQn=aG4^iwLpB9$bf<9>2`gHIYM}=B@C~9`;G5EkssB zO-G(l7JzBwKIa3yw)QQz>DybR1&*}|)jo(CN?@^l*eaTfjfU;~&4I$&eN7pMQ+Qv& zvVM2z8^bU~bB3l2-S~jpl80>A@Vs++t?qF~y(Pc=CH&O}BLbg}0Sg}}zp2h_Q(Xn?mMXWLAayrBB02H;LI2w(}I}Ho5pJ7 z62B7&s$+_UUD@ncT;0ygyIO*NAK5EG2kg*#{<=Z?RpF8(V?V}j8&%GZEB{9;t5~KC z!D8YLR>ElTy&!s#^BHc_$F@b!pX%Lrc=-<9Knsy?Ep%~oUv+kt&x!GCEL`HsANGR^QUBRg%u3H?a z_1zU_<abI_vge+rx2|&u97$Zm= z=}5W8^CSB-X2w56owQ#4<0JQSM1$a~PDA228C~w={lM%XyA554d zM(~d8IZ+qOcbQTTp_sJZvG4l)$;_H;QUSD!?$x2EzJ>9cZ4DL8s{<2VszAECvY3nt zV1-cK>)MosBw*%Wk;EPwt&}xfI$dWksuf&0PsS^87dBn6w)}+AZ?&oM-^G_0O-}Ap zrB4UPiSxPh{KBL80JID^abHwTMd@#FQd{6SVK19+VGK88UU==-7}v&33o8F1DP!8> z`x0vehuV%W98YoSUbbK5S`w6_a>;)6-sieqmHA(GDm)xq>y^7qaa~X^nhUawty6Im zAkq!0q-+H%$R0Z?r7jE{XwrdPUS=*>s6C-0PaMqzIxJl~MC^S1=X#3zWp+``lIJVT z9EdId%v|QS*0%iG%|g@42+WuZs5LF0n6dGyfTKjq#;p2a{nIFT+oW^9_d8yBJ?I@M z#upldeJ&u&SMxBfBnRTZuItcz2F!NzY`;D}&dj|YE0xOeT@N4V(P<)`R!-}I>iMpx z50qYSDpX$|J2a7oC-{^T)e0%Qn_%Zcn;Q__VqSR52YpnghqLJBbOJ`^2nPw(ZzRj5v$xTG&7XJty zL=q9M&A^9rnYV}rY2+S9=%-B7`U=6P;JEesIywNwi4pi9wK~ic{)*$QO0I?*>&p^L z<5Y)m5dKHuO%Uh;dz;?7*r#4Rd7-19OHc?TC-2w-Tu-qA4iNsB`U;il zdC8OfNg7w&cPekSe87!J zz>j|Uc(P&o&M*Ort)S3VITNF7%oX~lUq|*ab?_MhGacgqIy6q?mCIR4 zt)N?&+!xBWL&UUTbqY42Q%0Dv%&bm4(UlHG&dTPw);XD(KX~|=Wi<)r{Jdh%Gw$6j zY8uDtCUxx*Ri!%-OVbRlXl{SfR9Eez7$IGf=%XQsWn1@2J-#r*ZTi%u_kbSUe|T$? zJ~2-7{ov{-*vqgAeb7z^$_cIKjNsILI>=}>^(ZgZTg{+ZuDo>d{;WG>ge>el)C)zf&P5Q9R_uns4 zJ@=z-UQuAmwHj7|1$*tYzv`k{?m(i=#m0WY)&?j7<+gX5z#xF`$Jl8BK5&25O^FQD zQgsb@LS3D@M!xvihP|B*%`W6RFABu!}n%DSC5IaF6nsDh+RPnCFG%yS*F#{BA>dXxLbooW@MH*&x9 z$ELKbUj;~BKn$TuBB%T#WJO(8<*_e>b7uevk+qCkD%5ZHq6aDUG>++esf*?^koEMK zI`tF&K}5Wn``($blO#R$rp-4Nu8q%bzh1P<9{JWYFUR~N`wl&tHGQYGpoXLuo0sG% z7^2c8+z(^GqvpaHxFvmP@c#J&wo+OXf==d`wmdVA!1@*}wtwH17ANopu|Q$9F_-$py~D1@sWIhF0eD{{lwFQY+LlKl!^3dfp}{HyRr%! zoQwM-Q@Cei(}iEv`=+eA#NKgQioy4Hk(){ic05wI)SAQlYaa_ng&to+fF30ei}dCV z?;;!Y2iA5DoK^x{gex03jckmr8P+W$Hg0{9uL}*-q{_YKTD?2>EG`8<#pC=zs@gY< z6S3c_-B*EGSAc)Tmd3o(*J(xJ@qym;0jORNl&}4Pi}Xj$I!6FKE%%@`8o=}0ewmSh zKin>r>wFp+fyb5leH|eETpeBljM6SW4UpSW|E27nCyT@>0KNwPpzOGq7dPB*LuJ=C zKm!mIe}rS-wxCkD9by=rrWYL3l$On&ezL0yr{*KGmLy5E*m#Kkw1v!Z*Q%2%gM>ZB zvX%FgD+)#aOz`@Ze&t{fb(3^3kIH1<$cbD@{4jq|>XdvSx&FR$a19mJpM;_~Y#$j_ zmv_Js63DoqU5QiM$XX1;sUr&%To`>K4e~bj#I0}mf@9auTz=@SV5XN$rEFwciR0ij|4$1!0iuyX>!J| zPy(iC2W_v0jFJe)ARbk&OHu2ka{Lw~{csuw!-z+1U264)I~zWghb7A&seEzn=2(ZM-?;ofm?r^V_VCcuZNV;~FoL|kk{))fE)c%ZP1NCa| z6HTP${38l&+wFZb|8Kw}&n?x_gY{+oafda^J1LDjHTAnFF65P$u)5jw$}j7Ne*G&= zt1*2hLt&mZ=|q4~jbqMSxL-)aEAie~h7rFAFp`#5eZ2k4A4)aR?)zBEW-DCFviMiW z=Yfr)qf6j!NGYZ@+N1Mk9!3rE9(j@?v5bn;kG4BEr>z4H{59>8dP0WZxRtI@au1?^qCJ5zP zhE8UDj$Jn*$=H_f@RD9}F6;YzA^CHou;|5CY%TaAl387D6ei4iJnAOekSnjEX}wy% ztn5Bn!PWEJD1~n4+-*QzI!%CXmH#+aE6G~f15zd5(HcQHH|(faO51HHINGjhCP8KWV*T_aJO-=h)1M`MAS-#G|?~} zVTJdIJ<=ZLC%@rt;AfPiLlxF8GM-dTR5uoj zLLGe}Lpx$=Y?k15UyzT$x)8|Xk75~1w(D@}0Otj4<0AAW%Z^7dMPr$fX(QU9YM0fM zI7y`YeE$ta9Rkg9GUf$bC6FM^eOSKu=YYO*Dmy~KUZi<`ylf(Sam7V`fkVW_Nn<-i z4Dvs!u24I(42FH z-3VIeBV+$^8Wf{|fZ4Z_cg4j0=d(vvby;6}A>FT-(zsa=Atk!m`WMW#RCG#2h3Gz4 z=tu(%hI8UeKe!0{chXd6PXp;hhe;b*wx$XCpPW$FWNBpnTn8P~%?35b)v92i2T|ks zIKWxlCY+KT0NRA(PG{-)&^0f)tA%*gYsqX~v_sEMmVdC{ev%MIBB?Kr`U>7uA5BII z$^Usi_q+X@O}`C~C~|9EbbS5#uT0DTtPyVym#CZ5FHvZ$Vm%o_(uk4HTBID9Gb{8MW z@~6dSw!%o@fS9)L#gZL5t=(KZbAV{mN+uYVzArr^RAnF8?2?OsGbWSc|2e(!-+u;` z7nSG*bBo0S=>N|&Nya}L;KYfRYRcD$#BY`>J{65~w|dLAlcc(>r1$$+2AF1F@IKnC z&<43>t$@?JGI^p+4FY9G(3If;%<4zE$~>~78gf}b$tNeJe-W{+WZEClDnE-~ZmEBN zj9t?~dC+yiSfs%rw!i&Pz`bj6E6`b`wPSr7P1Q_MT9k5RI;aVArpuucr?Mb^>p6=^ z3?+=bfzoYqO1x zzbH%k`14+MLQ=lC2f{|L1znNftXS;A7BTPxFKnrAwt(hGJN)KdP<%c7DT3IuLetr| z7OALlp7&js6qI&i3bz$y=fXY_?iHyezgbxMHO%NHyxbxmN-u+4E2kD))n5S95=^W*%ePxE`ND9MH@ zA9UITQuZ&u*djbyXEY5zQ1HI*`u@=dsIagZ6smNmd(txwr#MgFSdY|iT7S|v>ga{3 z$1K8WO7~%N^xJ0MxP*bR#22K7)at2#&_N5=due=f*{;5;=IAgsS z1GSy+CWppSP+`>z=NX3GL>W)UE-{VudA$xBv;G-13q_qVFBi0LIhC(ZT=IgBy^HMp z@}rd=2qd^>NkHrfc`)48Am)BTOaGyZXwT7`oMwm4t6U_fpmgimDX^OfjTbR@?Ns+t z)Bux^THio9spyEm?kOq-^MPf@5seRta}dqFllpsjtiZ7e7(0fU|ku+t66 z<;l8Sc8<=R1I9CgWrtn$6{@@**XMOk-WT7c?$4m>$P!#+20P%hqPt)_S}Hxe1SZF* zq24-i@R@Cwh(GFV-(lqzhuz7ofr{_ZgN#on?i~bv=J?2%@^HTFBc(yJ9dQmHpu(C=bP&r4@$JlR&BVWus_FWoHCt2dgi@d#faIxKu})qHq{ zX>>^-6kfi8hj~eKrjdSPnSQ3neb{n4b~Wgl#8{|9Mmh9XUn1=+G={D$j;Uj3-sVNz z2sJp`8n#`NSk!;&B%MrncsB}TMSBEYBTEj+!pw9}- zA2{P0#Z>5d@W*Tgv7TX?hw;nG z51^=42?o{VFgGmkE?T{%-IjGzPaEsL+h&UnjR7C=Y*GmpzVCyNyjViYHV299hbjF3 zB;LbM^bS`1o!#{|Q{#y_UiL!OF$x%!tGNY8rTs=Ys{`4x7J{8A|G)8-A1r_684&d`WK7Jd zPUD=kam%^gswl}BC2)_pO-h(Wc=ciAR5Fip=`8KmVWAI{Yv2s6j&7)W>-7GnE+N0Z zM(;4xuKQRM>%(Kz*?mp4_*!#FnK04+u1HfyN2ktaIE*DLXx^Q_zI|I?M3mVz6;}m` z;gc6b7%KG@b9nQp#^xquzS!AGn~)vfZh(PkkYs4%vc+N(YFEoca;ZrG_*|OM;gO%v zoeKuXO1;#(&SI{_9YvlU1$?vuP{?6O9n5`Su~QTZ9Z_p^AK$Wm1(hPhdKWl zTU)RxcTPS!tC1fe*aI}ZI683?oMlg$P~E^Lkf)X#52mIFMex=NP-lQR!9cKOSG|>Oj75jg(kI8aZeqxb*Txnbd z`M`a$eQKZDYwz!|7jl!8G}6D!J*esgzO@7|H#yFwU31*_FHVGyX7-c!b(mWMbv7Ka z?8E=WRj}F&9>?i=el#8RHX~G9i&Y=yGN0JfV33yUDn$MP*2Km?La_g0()!QpnE%%s z-IVNp%(x9USXh#8LU0}^6|CAX2hL*Bf@LepaK$_OP=?xb!OKh3-ZC~3(KjK~7)u3~ zc;yuDpl!}tPc?z6`7$Fn!w8^xNatX+SWfHfd$^`kJ4>l&1+o1lV4Wn!!g2MnjZCPE zk&<2hijc8G4USTKDC4@VoKjNvi|MKw!-pAVZAI{czwpWlU0^i%YU}X_5RohJ&9hNs zR2=LnLM@|GU;Zk!tC!vOyYE9&kri?bV8?QRy0m}bgwc6=;;u+{x6P)cd=z6fohGxx z5@Q%kB@viw6h9MPO6apJ|Fpq$K(Vyps1p(;23GRkSC;ZO0JPVtLOQ`-PHwcmThmDX zKJCrDnCz00mn5>U-*ly7!G0_G0vB|rWcD{T`-(hZ_~1D5A@^z#HeHl6)D-zK2mR31 zcnFO0DWNNorh{uv7>lWZU*MHE4?H}4F|QlB{BGKkmqNP-HaB`x`E%f?QPshx)`|{@ zi0z0ort!SFH>8tAixaQNFQNOfsJuMj-8h3!xA~c~(|6_3%$P;odfGqdCue-!AViGigKmQi zD5uP3D+rt-Z3}{D*4j+Fsl6{tWnIOHd{7FKE$7q55`wqC1yQNf&P_^xD_==gj*r-R zfp;9z)F9WH zG`;pOdw8IX!+ZGRrR}=!#OFD+@6kN6C8QWKBGKJtOAmc%Fp|n*`CWr<-Wl-(d)Q2- z`N#@da0_|0Rm{9`cTo9QLo)jupJL+cYYYxG%H)ytuH7Nt@R()ouU-K<@Uked#FBdD zy&cDeJsdAJ4n=3gXvQ%52j*_^J><{ZpyE&lIjbL({M_&T&7X|FVaB@oTKlIF-A?sC zQ=-i${2jr3SFDgo`E{s}_A(oA&1=n{l%y?wS^%~kwpdRE^liJMOilwfy5W-PX!6X2 z?j8p;nAJd?i2D(?!_xB@|%o}>v?+B zX}9sv@cWun_WbxTKG-Y;ELqQStlFtXVN=t;MR8#KYU!C~8WSR;vUg57&x=bJKCMfuB`)gY^a@~q{{d|~#>e)LCv9=5v7pWJ5RTOy; zZbZua!{VTKl7jHTc$!}Q#$}yUkopuU3Vaqk`^aG zH&s8Uu@oEaHTA>;hwb20R1nBhk13ikF$lgW2p#ce5&-v{u)^f&A|GS%cowYYQOE4P zwaAl>LS;LeqN=5X;K@J)Bhp6LD?87>5;rAHn5w|1h0ZuGpbt}x9@=fsydoc8U#m1D zM9W{=vi|3il(cUJQbmS~b6wCvEik$?G;xtg8JbPTv-Zo0Qd?QT^E``JKn8`MjvzhW zfL+2&NKA$qu*e5KD?U15c&xcikUT`QxQ$ffZD7umy0u;Baf=ab9hE&yNU&3v%{iW zk9`5nKAlvExsNwR&B8jr47CAB83E3l;qjw;-xyeoHER&iV+ZIElLkTCU%# zqG35*H_JFxG+QYqdzbuCX^lQ9X-jbLTUAM{C6GM(gqbVJRaESA{p1%5rL<+QOPLIj zn5WLz#1Vq8sGMvKR9EDqR zw~E)l_vvX{F?;iG>f#wlZYBOTtQo!%avl{-*S;jX9>?8Xe$mr<9Q{1)jh@99*ZgvZ zdpw6jjj9>1%B@4yZ#L*YmKSyv`t_d2p(a}DVtgZX&tH2T3vfhsaF92HZf80tQL9nP z^fs+oB|lr`fngB2Yux;WF_;_@Zk=6Uzstu z!2r8MmQ&5Ll3G{ggVE-WA(+WqoKjThS`AJ12oC%_w7JS|jfnvm7B~fsnXJxToG@AcBtF;V zm%6%SZIOBH*#GVe6cYDEyR~D1W|Hy;&x_Syc)&EA0_RvuiAu}x0pJx%LELEPBm{gq zoSieyPPFfzR8sZJi<-3wz&mK3e9napI6iBl?-9$TYQAn6Fun;qu=Cc`27tJhBCjRD;*oXXrvjeSOl7(ZPjc9##$nfobZ}__I|SJtrwa7N)CYR5 zhOMA0qTH(wN-E0E(>I@J+1Her!7-{Gdu-}Mrjh=gKn#Gq)!P3{^>lg>4Okt!2TLJp zT-ru-Q?%^_`bQg#6(-okzE6xB){HL4xbZg(1>!;?I)YGSa}-YNPQuj5Ej?}?d5JU( zrM(a71t}WfwK!;M+-N`R)C3?M#LgHi$--yQWLC%VWgLr4xw5dP_UbDGNx*Qzoz;2m zLR$J?#8&MC#+0&&lz_hKy<)A?ui?`Rx^z)TR-0d~xU|R^(r3m;J4H@5)wrKa3v*D? zO+AW;5_7UB>7NF6fAL4uA^%-R=FpPe(iQx{TL5JJbL$3uO8A(S^Llq-MfA>#jLvGf z%DiG9;(Qw^C}ZNFDI+GfSx1)uTrnXz1d)xC0yg=d{-*rCTig87!0em)k7_roLisV7 zl&LW)N*VEQY8Q%_7aL4a9NCALJKJrC#Kl9euLDR}a27Z9j*WHmIhzsEPg79NnU^(u zH4n(qt+B#Zw3Q8oG;)BOcbX}b}TZ^!Fe*}xJnwsoewdu(U9|) zJ>bz|>%$+odJ`qmD->b7ylG$#QN+}mW@Sd<2pmS-;ob_k&;o952Q~sPQRoV#ukK&| z>g3Ko%fCI^lbZ6~JQZ(lY%B=XB%XV^{!6IDNUTY4DZt@&k*;21q@A()njHA0H^egv zHdOtF%Gc9XgOI>7aMK05>Xz*d9i2b#Gf#*#ltz5?>7rftQ1M%!?ZWi|ra37dnS-t; znc@H({0K00S61f7m&a6(4ldaoWr!kKM-O6ke6x$wvfy|Pu;Lm}bt{Yd9;e(lRa;;a zbFE!h!>vH$qn*9?7P9M%dG_XJ%eAsj8fhz!G|?rk@(*;iLOeO{1&b-BZ~I6IE`USB zE(1ZELTqVpnWrR+n(k~hblC0jDj+yNB-OgT*TUc6%DIP~P00L{RyGvXr)QF7Sj7uG zu%mx2HyKS(?D*vH__$L%;OFsf0C-~JNhPK&FtopWz)hSPB3wa={phSib4fTB#i6K_ z$aQVS7E7MqG^iZ=VoezST{$kz1KUwfq8|D9dm6$zjJ&N~&vd|lq(B8zf!@i_-vJDP zr7>Y#;K~Mc0w+s8(OsGrc$}4(>KHOv-uh5AhLR$I{akF}3fW|9H(A|Ty&+34(uXlA z3(%-Iji!EaExH#^|8`J#33g)^4e06!%93aQPFPAqwDw~qa9~6Gl&JD~NR6w(I`ZbI z_Xjv3VR2$X3yNX^C+Oe8LqCO7h?=b}#?pl)g8u~&p|`j&q}g%ytQqL|HboaagR@FZ z17#fL^z92S*;!5|DghZ=5B1WF3#jQnjszyj@E@qpO@>%aC#+Xvya?6;se{l^17uLK zi~r5hoEjLueLwY{cPTGlI~|$OYhYPGm0c|s<5{+(xc|7`X=qv3@WE5Z?fPeNDVcQF zVer2LMu-C?AQ=IG4k)P19MGX4b?gy?p&)TJ+J^p|Ntncvgq_zmXPOx%j7|^9kio$Tk+h%4p57{}M-ovdmcPGl~ zf_?JZ+)IV9`l=1rtJVL`-CS0O=m}o}sqG!9BZ=>!Gh8Dwq-ZQK$d8@o=7N)fsO&?~ zH$6V@8!kl^|EJHfby2Zra0b4uXEtLVOk+jY)G7Tiiz%DZ{`OJv8paz&hxLZ_Td&$g z>H!OV+wSwTI>u#2kfZ6GG_vv7r(vuPwN9J8oL#W;N}tar6fC%xK0f<&H~*HFt8lGX zcB9X_4vIlhShccb%SVo@RN?Jo2tv!L96`lCE~9lsvVPL4krK4`CHHAe;pD7(-{^iWx1y6Iaf4*jV+nY+KGV4^t_EFazgZOC|{@# zoFiPqTXKnJap#LouET6W-XcJHOI~$SI0xx$hq^BjJr+NH{^CjQ{Jg=mSizu7TuTjd zY6jO)%u^^jPJ$!DyeFb2je-2VVWtSJK0 z+0xN3Nh8&qrsr`aLomdF^PeXWp@3ji;c{hA_xh)Sc&_Rn24ax&<@@MKjfz`!e&wMI zVZnzC_F1<`hGQ4S)Z^*0g8J+@CGa?HZ2Xt8IM_pBuBg8nkROv@8)Z%^R~N|lD0hCD zEp~b19HWtz^LT*kEZ45u7&=;u=E5^gFxg3N?PLp$OR7&4VXh(VIUsPnn_`mQSFCri ztu`PXXHb1e$q%NK2lasxu>N|*hI1J>t4LV;ke)|gfCM9&&{rG(ra$lGgKdtM)p7FR z{kiv2nW8DC=d@|7K1U^+2;4+Zxvx$J+T1ZKRC*!TVmiJg^)AEU1nY_^m?4g(M9Yb0 zf03sJkA>R5aZ?POuEUe}2x|@)UerG8<$kjw&M-C4V)m{`EIxi@Vr@BrklK4gF@07Z zStW4UKiP>cxE|7V_%A=3j+5>Fm+wbJ;)*?O@u&u9u*N6fNd0rb3=j_!vH5cImIda4 zN88bKkw~Q*^%QCm%~-ZKUYR7#t^r4@%-x1tK}hR z3;r2zgX&--7DQd6a9Y7?9<1M~0L^a9IJivAmwog{o!!dST*bT&_4GFv*Tmsmb)Bm0 zY9z-*cM4q3zn!IBPoisdzH4l-TK%w9Si$~Dbpa*{$Kh+j50BGVzdCY%{G|&vbzXvr zxN)wGPJLMNgU@Av^A=Hq(+k#Osy5+wq_}yQh|}4r7yBe27#&^89Bh_wkEaGImyrr+ z_rL23!6c8g043A>+ense4{osp06~(0bZh~)V71b{EsDci1U1Q%aVzjaM@tz?W#)9J zI)uTkeb}d@WCV0qd;JMC2EJ@JS8GP~KdAaRrR<5%f?Q`Qej|NOP`&Hbtn4beCEor~ zlJnwBQ3rN*3+|H^loTCM@&l9SKP!1XK0txBiMS>n=TsW$6$;4q^rjWPf8?k~JA~yt zK8t`;ys;Xn^82KFp?in3ABT0plGM*NF!Uj#IpsSXvXy)g!jKIJW%e%tn{K@sKWM6b z*|n%~=kSnYJmBE%c++Agn*&7G<~)l`Q(m98x+NC!lhJfqSc<7}MxHAYL2)b)$(%ryw^n2G~wdGu)cxdlPCreaIxe@=9AK zb_*2vnn`K7Ji7-iN5MRN5?09175Z)z*dNRspuDX6Jw-zi$oxgZSz|NsD7Fvs*iv6) z|0Y4j)i}(oI)g=5Xt`8Wa`MZ`X>f>jLUf3Ty|5&_7RPwI<2%}tMc3gNTkryp!~e@l zgM<&Gd(9T_^mdenkT+Fdw1UO;LMw7t=ZK>dT!klWf81otz~r;e)63!?G2;-hr_ZpF zSCNTOBo%C--eO2Ce{v5jIYko#l^#JyP zZstO`mT#>UbIq8W>sl_)#;}WD#lq6&bi=04A%!j%cbb&qK99c?tlCD$QDQ-qOr>SO zCG;mh@c<3*h;8yv{NDT?@VpLDj!XI*Td=^9oWJa)Nbgi2P73ROTz$ha0b9^_134vP ztG!V*xEA)OeZs-!>55b18<|Y5^IQ$KdAONn%!N-xi)TuAX?Eu|R#U(|Kg=aGmIC3oREAm+8|6sm^ zR^8}UU4b5bkH2EIWTMIP*d}}Bs@C7o|FO_+|8avWgTObxfZp+7!SbUFx8rl!$7i4? z?E-tPxC6N##uxC75|ofoxP3XL6u~zeXogeYxDrWzW|oQ*@o9Zu&QHFhtjs21HC}wJ zonAqUOW6!C0Z65}S)o?wDl7O-iqpkP9x#0U-!Y@eMhBlH4PT4jqAd5zxT0$Ln^pb& zc%x^0sopI5q;rfpiLv`+9{Re|{)D#R;-9!3V>FeK<)QhgDGy#z3%(wbIogBBj1!mR zXi@ho!{GD``siU4Z0Agm)G|6%U#;S5>?!T+~os+KozHkkFjx+A20;M66P$%YNb zSNvS_@VmFc*Iz4FJye>WU%Ar5?$Yap7bP-Mbb5Hb1k0md^S3ht+@pqm1=L-+ndxT@Y%)4`@!U?#j)DOsEFm+{`|IanA_sSGAodaQd zwtC=d=3j!~jnC=VZqDV4s?AH7`NDjwoOSqR$3>?DKG(?0wmxp(TJ6F8?vXREtD5DF z2+)SMAKRfD+S1-dp7B`{I3;co!%2a&)238tZl5;2G4)t{hC^VC$=hy`ccxYLYkdC{ zm=+c!Nfvy5G=JCDO>d;C%zl4NVYl7Ab>7i+YT=!p@~R>?fqkx}9laTccPv|wU2eVp zOvc0n-?NLKRlSzle8cTKaMEd3badgX>2G^%_sIW$JZ+V#$m}-{GhQB<$#ZdbWON{K zsBw;wf5gS@*}~1A?pH_s-n;W@SrYRXKZ}<+7ti|vS9yka1=Oph&QZH0uM}G55Ebz! z<%Ch;F$FWvEssKW0qeB2Db7uiK`ce`;BzVwK`@|Yw1_j`9%|}ZsZ=B7T_)z3~?+u1ijB-86qQFdY;~1!scIwd!dDRzP zmv*=9UUnz?5sysAqv~KL;F%XYt^>ykkH{`v-X#2bclN2U>2jPCC1$PF=>?{)B=1Qk zTR@w-S~jTKVmavnB!hbP14JYYxLDC{#od{T)wd14u$Dy|ZRZpQ%kVb=4@hFrQ}0~) zyY^uMP_q+9U{CFa7w?vQwu`rj02${bk}j|FXvtOn$Hrxy&w(T5y0L3*_dGjbG%_a5uEg4dO;n7;Z9pX!UL4dDG_NvAcWbeh`v$~!g`F5+$gue10t zL4EsKX@wVFkyT2-WmaDvGOX3LUouH^ug)Ljv=Fq6i4)|-j@`>rHguRf7#L>y@miNZQgJ+G z@>3PGMr-=z9T(?4I?_A&L8WbPZpEArQQF|4-HzQ0OEz>ght)To)I6*P&JGt&#&FD( zd#O6*i{P8{DpS2bUU=v)`0D)pFOZYIwzUD*wC3t43Lj(H*t~CMV2$wJn<7QPVa>p= zENy{3s+FL%FwQ3FmoFG8gAYSV(q0K!AOcxL&{R|nIVI#svnT9ql-K{+cV6|7tX*Og R2|NLf!PC{xWt~$(695I|IgtPW literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис8.png b/labworks/LW1/рисунки/рис8.png new file mode 100644 index 0000000000000000000000000000000000000000..0c7833df97c184cc9f64d50c6b0693aee91335be GIT binary patch literal 25762 zcmagG1z1&U(>}iFE~TVHk&sf6l1>p25CQ41=uLyPNJ}XQ3P_29ltF`ZC`d^P8!0Ji zL;)p!v+#WH`QCq?OD_+5ul4lI-1j~65UHcBMnTF%iXaHZC3R&z1i=+Y5S(^mLij{U z&xarWk#bita=+?)%iYV$^(LZa<&JT1c6YF~=J34f>SpWgbWTWAL`dWe#~pWfjGL6O zu;YK85OQ|CEu83TAqbTf`WGip?xih)+@QRqtf23mwlePJM|*RcaQ$|9 zg~Q!Y`FL|Y!YSN54pu6a4TrtwrV6y$=fCrLsr}HWO>DkrE!pzUia;ipfL34mIjP1P z@pGDoT}}^+e*CfV6uFb>;9=`|e~ns27oUcPM)!CYu@_DR z{C6*MDh&R4N*l(^#l>Z($LIt<IlibAlv>I zp*4)kTDZ*=y2r~LzMLh#7ql`~5njWqto+vc|Jr8uEvMmPGe$|*lb>##)8si$NX7Pm zJ#bHSlIdlCWR=@|w*Q}By^HPWzQ_bPccg}O2Iz@2h;s(C5Ezb^gxq0k|59(Oo zwfD*Uv0fAY3@1*U=w1355gFN-?)5dY|K$}T({q?fdH1Cu3Te+}`TBtU%;BZJ7h23` zuD^ZWvA?;wx&BgapCmFe5(cJzBH|4|hE|N8~o&-I}QovcB0V zJi~stLu6cLN4HM(edLYJ8|zk5&8O!{N@_Pr*}Nxl5)%_A2lB5b3xctjD=Vvp+lSlrhmF>6CJztR4uy7EugLtQ zZHr@%`?WG=Gu0I8z1~Rl#;Tdn)N9;>m!F@s@>f$R8KamT?b)+uMFJ1}N*%r&+aC8~ ze=KD7z5YdEAvrp7>9yJrmzg%J#(M-24<59%L>}L0A``~Pu3ZWIeVom2UE%qQ7t>#E zXSB}5$x)_j8=g`QINaZ^JUsa0GN0~ceXzI7D=gd&^K&`a^Eni|`a-j@prkJ9jZOP> zlA(DccictX_vUf?f3_{kpG7{UNQij)yyENK%lI5lW93C{_H7SNaNC_{+F0nzIdHq( z^Nfz0i>qa+xTZT$NJhr2cB75izP2Znj6oThzDGdz-L#wJI8Ox9Qh)HXUJxij5X0qNMJ(UBkR{^&*d`prF>4_eHUQ_Q>O>m2>s@WPc7^#hKq; z9T#|||0?JQ?CE=AdB20*`ThB2&zg~Ux37qDaw@n>us~ze*(%Y{Z_QfWQhoOnCgRDH zC)pow922CE=8ekU`8jM6jkFN4d1q==@h6`M%Imw+!mSp&)3d+#qlXLG$W1oi%!q#Q zfcB+!y75ephI00Y$8d}~Ry=LSt34Rc-6Aip{?326`|aBetpE1-&cUBGt2agnqN}Tm zw(YXBK4rI-JG_+DcjvXsjH+oRCd+&_|02bxxZvm%#&ZAnPb7$vRVveYqRxBm{r284 z9X-AE&+mhb;!Z613V9n}GyH#@xX4E3RKM>@OG~>G_x$GD3;IKY?_z*K}=CxaLwP4VDGMLD+%=nFMKM&IIG9!RgfqJh< zC&|ooj#DWt({Zf)U|8nvR?ruRHrVdH`RwfM*B(m-X)?a$Z5hdVRW_BJb}u%6{LnQv zjsiDe;8OzDvF?5GV1pO+15r^?y;({`?rUFJ<79vH{#yPrQ*T}{cy!pl4;CbVJ-|Vr z{4w97rmd}A)RC>ji;GLo5qbi_vGGKYeOIdZ%(st^kf1oZ14iwa$G5R=J*UJ% zDw|rU*vXoTF|E zY?BHn?;l;_E3hEPqz^isr~+1#aAZ*`|dLRU86Srr7@!K;y!8Lv3M z_W^V4tMOX1!!y3g7DsfC!?NqC*oW@!V%OSVqxK2{Gf6u9NrTTA-s2VEO#T{kZijVV z|9n}P6UItLe?}gfdvo`vT~*Yjfk{y;wb<2-jSUe-atZHs%cN~e76~L&F?e7=|F9}0 zg%R~V?0)Mw+8MGjY%+H(yVE3bGVI671=#|2tO`vkDC_q&$yg|fo&_H4c0O*M+0eK3 zmvCR8MmPio1vAOTzj|}SS&>P*=yNPp+_}!7Ag07Ln>Sl4^#bGB8|q0jUiE*>8h(Na zhj!hnx#446;S|#xPSrfKfp6+H*?@ESr*2Kw_m@LbaIYbkq~wY1i9k7nV$;Z(_Bief z7wEy2>G!T)85lX5hDPqO<}ixp`HVoe-k*Y3*n-9zXQzHIl@M`saUEBofrDM7R~+5xD(O_g+}hfTGk@&ZvG|7% z^_K4P*iq_F2_ZD0L!Wam7ZfJpA`sBpA6=1+TwZn{XB0uumC)y>GxuE)gZX^Qkedi} zOcpW|frxkG#tjZ09>TE-=l0VXe$(vueha;vFdN2-i2&(p_eIbVG;w&~)zaQhWa>K;BhCd&jRteoSeD59_wRRptp_Xi z-u!r4)TWI*O~M7&rtN`(vNC=wyId?ZY`OXEqxZK2wY}k&&!11CQ2^X1YP5bkQ{f}; zeZ|cK_dQ^Nkp{5CjZym&D*zr43y2_&u75n8VfkaO%c%4Y4Qva7gb-3R$!udo7%co~ z!l~HNm^ZoMy*}{+r;qhI6 zW3n;iz`nTt;O-my;o@oVHLagMY3c%eDl(~{w+Pss<=^h?>Y_WX_4H(0YilG^jOy~& z_cc31CeGKYx@TP@!L+H-5kp`Um6bJTk#v1tY12-5D2BXBpN8OJ@6vRiB%4>`>SuQU zEnQIvln){zsAE)fQl32%s@v=k@OVX({X(0%RjNGt7)|IGB`TTwhkNsKA3lBzZnPx+ z{+@`ECF0&aT-38EyceeV7;fVfk*CWCfgFNeG&mVTnGtH;{svKT+;d;ek1_fDQXp(Q>RX;U%Hh4)@r5osad5Yc#4Jq zNqBR>J5AP~364eWH?b}u?9O9lIsf0KffH$#E>h`66;7;S6wGrL+3AYmKLv${Dr$`; zHm&_T3uJ#fzA=h_`tX&Q*T_TGCS6enNOUYPAOg zD--inc;w{ClMR+40|IH@7uk%83{o^-WR|k@=3XG42C$#PM_VyV-jhHG^!}F&y>J@-El=|5?kP|AUTvlwH zT#Bv!>~aO2(!hdCnr1(B;RN?Tn{qVI7*k_oCVD|*+C*PRY$eS-4%5EncbJ(VYoHt= zj1m}*yT6uCBQOR$lAu#w;Z`3GkY^JC-U zlCzX!h-z~0-5Aa%tMqKFFnVioVl|tZMi)=qWm?%`w3I}+b{!XAA&7(6sNCTMzCr^U z_Y)FuiVULH>JQn};@DatngS|S24`UE)+J_CAK>4xFSPpj7(R}3-7b$))hs%KxpE0uO%<()#p_bHwBB>LKzS0p;lfZ6^E2;h5~QJ|{(uzm-rH#304Or`s-RfW-TgcoaCLK3r}AGu zyJt|)8hH4};sKis6F^nv0)ryEy;vYsD2_IIZHZ%kck$E%W^u~XSDqqwDs z;R0Vwkkc0dp=uk5uKdzaQD1?fFrruKQe|2R5xNh29wHB@eQLwo@{Q4V{n%>D3jKIS zF+DH+DrU|r&*4zJ|6CoHo-7-*YX#1655N{TP#~U1B!9No+Viiz6!OUcr@oWH9HW}j zbqjpjVAVzVO6~AqAFuo8+5|gyVv#%g93u_*#47_-XAH!3ylX z)$tl`K0XrQ?3MSJUZtW~6=L_bjsXbvyh)$y{rQtfmBPpy_jZ50x!uEtLIsP!eKBNl zyRSYl@Kd@p1I*-}YEC1NYbE1bu&z~7FBk9*!I!}zVZbiaEhOON zm`tvXRyfD?$o?S*_#MVUoFeIVOWoMgZWBWI%v1Z~MqqiuSeJIzk+(O=P$*Xmp$!QV zuHQS>9?RP7F>DsTuyCi)xQrCAGuR2r!cqQ9&U}HKgoI?I+Cu=?M;~l{{NpFEM>p1E zYxr(1uT!eVU+fCC>y2%tbvu62i3&ql&D zzu8y4ksJ|JQC6lEB8OQI+-;6Y7exKOh}M&{1U!%OM{PP1`KE--bzYnBNAR~{U(cdZ z>&5A3-nelWH`UA5o^;)Ma``wD`u0|_#>b=Zr*rD$Ne)glk6 znB&TI`^plTDG?F8evD4{KD2nCYE@J06i>w7)y6MJ1GxZAeH**@=v^-QRXBXbPrqS< zZbhiU->{=!U{9bxyn8E&f}~lC`h?^h42gHSiOH#M|Cb5sFZuZRJhYR5dW31@D)u~+ zQ8K8jK6|$&w^Bd?>}}`17e8Sb5ll8b@5aw&v&P7XybCB? zeg6Ep{ulYpxm4#i5NOm`WbV?6PxzfXcKo>2*(aDTv0;>2EBrZl@4G!6#_SaIH$d=Q zc}89^_&qRirY&Zn|0UG}Rc;9Hy>RwXLWHct*4hAyh1mf|QB_qXEQgR(`j$Y+sJZJy z0`~@hr|HKgPWk=wFEpRr1C+%KY62(!^?gjJHDD=uTAc8r)$n(v0T~5;`tO*%JPy{w zDqx=zlnfsSpEbEg?%K^=!VsmKz@nnuz#p-XOk*AgEwqT<#DFOu!24 z3JqUb1_dRRri}v&QV%Fa%u04}f??baXRlAXGqK!7=?Q$&mIELL*I&+#w6t#m|iG z{pB+L)QZ@z{@Z4W$;mcf-rf{pidp!aOJ)u*0M!*y;yqv|78M;WYB#`(f-a=@jg8u& z48)pH2%?OvQtk*+>NqxZXzm#KmD<~7SB8xW#@fGlUoW40N7L-UeYxD+FKSmxuNX#}C`U=i}$9pvY|pZWEf9f+c=t6b*=j~ZE5YiMZT znoF}#CMG3Kf%gjSq>~6JD=jS@+IBoY)wbe!)E>6VZQu6Ig-UE>V zyzZHWnhg4}4pF!E3Tn>Du&n02F;Sg666x9y?Q9l$vnYx$mGS{PkN#;UJv%!q;s5(Q z2+ZzM>F#zj7AX7JadsI+N6OnLV`8%m4u71j^Oa&>qC7u)SSKQS)}|Kbp)niH&%OS+R*a;o*t zdDJz71fyVJKtEJ$2CQWV7gbWx|DV`j_459`_)-+`DH>Qnd2Kt_b1?*^ecDQz%DT#z zE|CD6#r<9b@E>{vh-KEg)?ZN0NqI+k>IE=Z6p?}d-`l@eHzxr6++%5I3j9dkreu); zS&@OsY^`w-$?XLJKevV$fglBgQ4rfL zCmVusW`BUSOcmrnu$x?|m{7fb{lo*+d@@In>vec(7qC_D4g)}P2c4q<6$@_Mx@En) zIlC}i!j5EuwJi+fAAkGyEs7?m;Pqe0Wf%O+bQzK@vUKFB@7o=&E^SUIQh>|D*#UItsMs-JS|? zmS`OHT>Bb>%IlB>@JeqhHC>hVkYeT0ObG(gOaQ_q#li34`sruBs|wcET&PBI;@mAu zn1+PU=1CL@f#8$_QVg$vKr>i8Dx3ZzSGAQpj`f1sW+n<6HI2I3lo`8x`#^KJ1nQFw zz)DCpC;%20K}8TrH^RgHwZJSL-d>>VK|QBWo|J#te@&8I+nB)8%k4IXi>tbp*{Ko- z#6l3-I9BWaI34bSL_HlBxW|p+hssKci@!!}Jib4!q77*bDzhK9{=KzWIrr2a5VeTs zve6mS%HG3+U_7FA)cnB7t7~hwfhOSsI&Raf>lA##C>L~s3&Gat{8Lf!n9w1UoLtXxEbzI7_u#%E;WWr* zR^v(Gwb7K__vx|SnNkg!AXGz8J{g_rRGr^;NvzA`1#7cbyzTpOz1-!;U`QtbLvV0q zJ6)Yfl>$`pL>N2r7fPG~DDg>rE^G{KzTS4&oogWm%I6I|m>ldMX~g5o+AUFCp)y1>wB0pO}PJ_lKA6P)IH7^0XZ zpL)R&T{^qr=zKw7cm@W9@67{Md@t*+4CqhX2(sQ_E5WDC;jRHJ?p~DWh89(N~_-#-yXvpG#gr#QwpyHjAf{DM)w|&<-s>h!M ztQ>MvzLuOd%e0=%*cmtCg z!?14&duU(ONQkOk-BBv>A$zkH@lF$kc+W|A9Q}b&>~k^wQRjbue4i8LX!;>8B0}Ah zT%1!!bS~@&^|{(qlHgcW&{kM-{PW_Du~VfF&)+^28^q^cB;rMZv~vT-giAQ#z=tk8 z*F)HQV#fWYzkpNS37WL*{oRHYfjy@A7&FC#?+54NNQ5~l9hOQhVp|!(4(F{>1baUy zcuW|c3Z+1Y+=j)>Xu=eCMbR(*0?}sZiHDMx2iA=l-ksD3L(N{dIvQx=_-t_J3W=L7 z;IpR;@a_5vDJ7Dt?Fsyd=3^vue4d|RKm!Ls{nOD%l=+9Mtx$ZLkjChwct7>_G3cA9 zSu29EOs|vTwkGL^Jqk8KW4@4G$ zD^^P%GG~pCHko<|WAp9{$|zf-8HT_AcCO#2R|=n96G%vxA4dCm=5i;_daNB?gdc)*)17w1G?>i@K}@kbL7Wd)JcOn^Jv}R_n-`jBkHJ2II`_AAiIus5UfxUw6$ z^WOrFxaJ;e8qrfc%6>~&2`rn0=`)dJ@L+knmX#zl6H?-cPTL~d_gkt*GkU`H!oj0w-{-^dG+w3XP*A79FiRFka4<$7t0A>Ko$wr0K97 zM?W6*(^#P>deqO2qxKHD0{;3sGHCBam7*w&ZW$fjhrdIE7O2I$|Hn7(8t@7o#lNE& z*gDZG%k+4dxxH>~PBOuq{c8rvt7j5sGnBJS~1RP7Z(FEGdPpCy3 zh8zGaG~E#92cSIbt%W|&`EQ^6rrlXcnzsN&vG?D9 zcvAC6iB1P1PzrhQwdbH2u6_RrmLY=Z&t(`_-Y!9np*%Ku3J*D`(= zcb3KQW5FIdz-lK=0b8D-C+q0w0A;Sg?-o$A6lpJ~q#qzlhCuq{lH|L0@Ai9sbRhDf z)1O^|Ch(t}7{*>Jb|#hiHvu8^)6Ce|c*&mmT4jD5z*G(aflhQ-9AaX0klPIT;z0S` z3mor1)JUgb5DBV1CjD&mJqcx85U50o)b}$3Zo3(n`Cnc5*MI)Zced!c?0Eha=22qe zeJmCm)gKK1)6&Zt~$?lVh=5_#{1tnen?J!4&7{KE(NdeVQ}GX|9Tk9$KM z8xo(C6l(tduGLWCbtDL)%5DfHf--iLBfNe0E&&21nhFNN|5ivk;p){l1b9bQtSDG$ z<3vcwLaa+`?^j?$(0D*?S)^EH$z^`jLdt?Bvcl2$Xm;|{0!W@d`81lbR#Sii( zmX=3B9(>Xb%gt5tZWOI5XSHLv@&1|-dswO^Ukx%fBCgJRP}O0A`k>(>a3%xaeB32? zMRgG5bo*<`=HrstFacWdk)dqOTCY>CBFNp_oS42*nS;m7o|geHgtEZr-pw%`Hbl$8 z(#cHwHco$4Iy-Xl#_S=bfp+yC!P|IW&+fGU1xUODfYSKLS1dR>U0zWv z{v)sQL`z|u4gvbj{(>ZG{6)zlC=^QHtR-TriQ%RA{6ixoia;SqxB0K%M)B;d-2{JY z@c+1faANlgHO=Al-(#Ar66l<;z!I-Dm#mrh=z

kPNPmm^#LGy?SC`vBW zysA`@==_O-VH1jkNcqs$t_}|f&a%2Sqy9QO{*_^+&!3fw4UlYiEe=f^L{17brVDJ-yzmL`6^*6cbZ# z@~V~?GqN{NVSKcO9~G`;P^CjY61*55QfOLr%%(lI6?7C-1P6UZBxTm#-IP>DIfmw5 zGoev8j*FhmuCdcm`JQ5dxu7`YBj$TDh!9lJ2gFB!EVxU7){Q;B%|eA$Rw04sepG8=^W;boTI1iW~XG-UpATl2XrgG zf}Wxogi+`T0{8}CL^SV@px6=%bVWhXGDlylGsZccS>W$k&c9oRg`~pNY_dhMYXI;f zL(|L`@>{Ev=2f$8peIkIKtx5?w-bbB`*p}a{jm@>uVs|+{nY}(Obm$U_^`f7-jR=) zV~?z(=x%7L8oNI&AUWi<*P8joz4c~v>?mn3EG*2Vf317gP&_l`Z_v>xamoiOo^v@_ z2nm9e5iL0VwGGH2*+2>2L1Syzb(K!7S)A6t$2}ZId*?h;;^W7-2&!*dHHYCK*4Ea0 zf>K>iOJ-keU7S2aq~nwRkJ;(HH+CW4cXmq$7>-saHlVu0I@_X zu0*Ysb;w3|NfdKk#Px;~OH4>7E71khfd$h7%D4{eY9M*I2C2U&vVj{ZSA&{z4lp^_ z_%ij0F}}))QrL*z{AN>mc;!XD`4l07brMHwW1wmd52^NCi30XaqLF*{PN@CBCq4Ve z&TWZkPA8F<&&x#zK#MLhoMosIz(<8)$giP7C(=;s^8*s#QBVv=3eqlx9Vc_HxVT;(uFI#dmU(YjKhMoo zc-fx?TFwp}Cn2AGsEtFrS@?MuEfCBKXH)d?@$nCM&=Og!FKE^i3ZcQx245Ye8144hYQ`yR##aMZOm2Wk z0IY22Rbkm|O-BDB{uYT2UXUPFw<~kzfPBg0x6h9_no}(9_f*B$|5QA@y5c`PI|?R; z*4BVBBoCH9U{`i{84a0dj7#$jwt0DZgT_`=!Au%?Lh>oft(k=dT?2|PH5WI_V?^%sYfi#}%$HsS*1 zv+|_ws}~F^77Q9lmKYQ${UTbf_qsurxqz=tzZd1%hQ*~_B<2Rd|3iOL<>ZbhM5iY|5GkF8kc482?`b+v-FE5 zjLJ4DSWCJ_VIq>~Dvz4~hXE<9zS9$u$Kc{LQ$%n;-&2KZ#n*TGxF9En7XBe30ejx1 zclvN4sf&l8=`=LoSz`Vk!YnLt3rHBua~&TT!kPa;H)VI7>#51Tur5RpK|~?v3FtTz ziu;V--HHi}-+*)zuCd+0Zcm^hHU3d<6Wk6pJ9`}DPG_LdfpjJ{t98yY(j4=P__! zTHr-RpA`d`l5hpHw~(M_pCJ)?pqY7#z^Tfj={J|s&a5cc9h$CqiJt=RJqo(m(Z>&2 zaDvcMAYOfFp=;Rnsw?Gsr9c@r@qhKDauVm>vGq#CL{`eDxvLR-tUCn-UpO$jtGu~E zcu4E*Ua2-v>qx>oLypfoP6;x@ULSA4aEEJ)J*Mft9-h$!|$V*s<@N%yR_QP!Uc%zBxlGW!|lNevj z`3a`Bdw`C`1mTUUJ7{EE_%Ie%$mL2Ml(ZW!uT3mcM%s@x?k9HJhP@ob{$@pysgq@23;r=Y@v0#5Q1*?JTqIlz3eHy z{3}YKnm(GA?XT_-AHcM;c768^kK$OC&ij;iQu&2viq~VR9Kw<7|@2eyQ zL6fWcW4~WaTK>1d&EMiVS=jIPzvl#1^DkKn*0+ z_^Ee1f%`-sx9QkUtMa<*j6o62>1f>>4rIFc5BN_x2;p=Z6so-9JE>y-P{?qC*7R@P zBZMMDv+p&frCXZ}KB0oxmj8$Nr|If?7BcCH9Z?1`5Vg7CvJYiA9+VJu-2T6(fXQ#Y zlT??BX<2mVf(j*|IHATxb>GS~+8G)SdPF(u@Sg?eAPD=MWBX&9&MV{8jsiX$3XvC7i;M|vh)hBCMT*pNE$>a`CK??zebd`XQp@Uzt%&j zKKXU`V^Dya&{GVGH#1sA24IOOwJYq>BOV+Ctt|mnXQ!kds_Jx%j3OY3KLh-1=X*g3 zTKr}My6n_%n(rn1I`TS*PdzS!Htu95>MAXXmr_!tS1a*$cXw07?CD)yU3=l$N#XT( zZE_!WKvX%PXF}kiTlz z;#0I^^bw9!-lh!+6bN-M`Z4N*jyo|pKEE!Smog>-LgOH0N-B4&Ur?6dVTF#uTD2m) z`goM6w;h>PX;@_6pPJk8Vb)+RUVj_|4wDArsd(tI1rgJ`0T{7q?$U^JwwzH7CAYtz zfk@wwT%1B-)~rc|W`C>|7m*$HlzI@#1qH5Yj807V%Eb{43LS59UWo@APi&E(oOvn;;X|-GC=>9r5Emi?;SA`Ax_9Nykl;o2E7=Lo&2OD;!|-G33o!O1ichl~94! zD@=i`ug0C8a`kO86hhY{Z0beUdT46D362R)zy$Y+H>wofbjdd3b=ZGKZdGZ^%VmOl zNd}2%nDXe&PpT}qB7ii!W!Ju6b_Z=9>Y3oK;t*}n;U6=5UOL#Hu^an}-UUfr~mWcUeFu09i%8ulVY9Lr*i7Xf+q24!tBNWQ%iLqG2F z2pUCq{zL#mx7`Tz%2YPt=TR5aA}xLoa_Rc0R8Sy4Q3VR_yO9VY|KVQ^RInq4%WPivZ#aDW1qD*rain{>{BA#wyAd~Iv05n?0FuN z^x(Q}jUGd}uq@VWm$jdUILN`Tk8CWR6=82MFdGU;JJ_6CcWGdxN|PgZFuSJ~?xCD< zLG<;gS>@sTbY8d0zXtvq&W(e6Lc`>j&p)(!6mNF6c6$9(OuH0~CwVGmcUO2y5Y4!z z!1AfewBrb#MZ)R4z0Mp%@mKqS}35Y%)zSv(%}E)y>I+ zZOrG17s6maTQ<{Z)~=Xi}%R2$IWzP07C9VSn4Q zthCk0?tdP1e2`ReO7v6JI-`?4(TEwFrf(pF`6wpE1_Q_9qdoQ1Ef5l+_B;gcoKDpF zZ}eZ08~pAD)uZ7Y#6apa?~sk8C|3~j6ys+1XI5fZ$O_M`uZtNY4L`nw$N%i>d0kT( z1*A^Q41gPZzz!#r-iW|$h-GZm@x{eOMp-`zxXvcDTLslUlL=~Ujc_GZ;OZsjggkv) za&32JVwKYy!%BfIzW&9IXeO>rRg@ zD6ZCM`+R{bK`{7IK@k0W9ADAjYrE3r<-SCM9ydn{N0m_x1mj5uU4z z#_p~%EdLowm1Sc*JVh&4i?n)?QG3~m)rl@QOq4y^aIs>*Zgx<4Z^W`ymiwDlUN#n{ zD6UJD_&1{=`_nAhzM091l$3PRvj*-EGGb&!MQI>0koW7{MBt&!0f?!VQ1VmuJJ#pN zoE2!D*SbqUjU^1p>b_YVv%I_(wak*>axauAHKOpLvU0TS!l(b2)b{*; zQrn6}21Gx%$5&h9^J+}%S~zd*5jyrvl z{CHvV+&@t1{eYdvhl3y`pEZGO13d9=BB>aB*^DUf&J%vG(xa2j#HU)*E2fu1cD)^x z)%G~K=}1GVS3eIKhZL>xMExs7T?Qd)``8dpD^m<1)Rc|9whB2+g9|@Ut{VU3$@SUa zP=0CkKUHFti!V||{z(u*zTcI;e#1_hxN?ms^UsP-LkN++z((2B+JZ$n%{kfq6E?|v zK^EN@Ll-peH+>aMf~*nT2F~?O~ zJ|IB$R@c+ev^18jj)oNu`exU_pZkT%{8d9l0HoPXi~*-OC0FC{$SNN;Z9{Ism#@fdI6z-}nAT$d4W{PXG6p~F_G7Sy&%{fVm-DFP< z*RlE1n1z-6%EO5@>(=6lNq65SGh;Aigj`(z94yniC@&ipkNo#((-*YLWCnY>WrQWh zFS5F#QrEGy^)p2!+YNf%*JPlw+UgFqjZj^={Ct1h%M zW+hGKwtPcQ--#~ION%<}XsJh1c6Ic?9LgFoN@Xu~a96?=`vZ6_yF%=T|M2d+ocL5e zQ%N_05Y;vI`Ma%O`-UiQRnnZ;S8KS_8(uR2i}*P%;S30Y-R_Chmg@}p@SHg)^lRpvtr|SnCuztKE*!aRvQethUO60xiHTH<5IXiMJpwso&5+yYRK2EaLp4( zVk6ysheY0;DZZCLeF4A4i}08fp34eO(uFf}u>GNw%@ks!33tW9JTJBM3PmD8im7<1 zRP$5sv})ELNfG+?7;{K;^l3{(Yd7(^>!m5)Zsl{o`b;&^h}={{h?S`RRb_rAzIE{{ z;)^b<&l`@9QT9G<+In=1rZ365GE0@OEw3@6IC4F0%W@!3mYU$yuZ(w=aC>gVqndav zjlU_sNe_`f6V<1%!7N2wpA|AK?rxZ&B%OAz(T1R#{c-I6A=w_T8<}&jtp&~9=}|ly zKGV2xxOoF>%cGE^#~~v|x|pwzAnDRI3)HlaJ6OpVEr5`;f|Xa|BL-z z>bNDTmOnk$SAx07scwlyZ!l9 ze4iBIi6Wc5d8qg{k7Ols)4+(l#3ypq!0=Y!tNjq$=}HJ%i^8EL`g;19!PZ$i&T$6? zA~R8AKC%SfInK||$YNH=?|=RgG>-dijujg=2Nd}2AV3P2DS##7geweWE$0@tzJaQ??IQY}Y&zAEY zamMHHsA)cd1mz22F@B?vZTxTiKv;~3oOF%u{pa2X%fy#RsA9R z1VYQgy*Rx%>RW-@MYO$VM}vmm5SD89=a@YwS|K+m)ial`m1cPQuwTB9Z?fr9=E6zK z&Sc{t*KG|otpU~i=*~2~J_>``1T#zJfh~|Q2`)W1k0~%wnfY$ehchq3MkD#yl|}gV zlu;dBJE?<&PaW;)o-s`IYjVnpcJ?q_667KEZM&EOMj5>v3U$X^wWrtRO}Yq5m1V8X zBz274o*QI5d>1sEwq;~aF5xIYrMp;3YnDjs`d}kSlv1R{husFx!k!DK@AxNvZZ1+1 z_ysQ1S9$r3eScR(lX>^7P{^L{`Gb2U|8RG)NiT84jQ91Zu4S3caDI058hL2^y^}w# z-JvN`i{_OvF73~`S&Ea-LsK-+s(wsJ{_6LYP5zHK8r=l4)g3{bT#Fy%Fds9NC?^vN?0E|TR_ie(ctx1&@w^hx!&eyYcQ&Qf{E_A%k^Nj1AZ zy*1@DBjQjoqStgtE&+qgv*hYV2LgE?8vF?P>sjstVMC^Uf^%dS>xSDT8mRFWY!I`P z?L^{4;7;uW1(l$`1qTjklmEHs{h^pOtUjXht79Q zPQ!Q5&x2*^=?s4e!by6r&Z?Jf%ysH*`alP5iJFFQdVTB1!mG{K&7&wR0`4_Fk;(F; zy^NE$b|i(9)6E$P2CgS^hr~uE|T!iB|#aLn-YflVJw#=P1$Jb&ElJM zv>;*ekh@H0H0O=N7KbE1&BuhIgd0PgZ$c?QCP*ot7@+2_s2eHL+fJS(x0Ezl+$eOf z+qy>^m3ECS&8mwI?!?1-GYLRr@RW()Q$rjqj?Gy z^w&%R5J(hpl(d+i+DhZwlob|g4%Itd=*d7iUxn~uEZd*J?`pZm7f+l2gQ&QLSnwg2 zhq{QDe0G)eLp=}mh+c&fUBZCg>x7ASYpON;i{wM~$l}GWJY{q4D)L_SL~b%XpK%pb zL^3~LvI!;^{n|Vx_05?tDu02kU+ofJVcD%!PSt@3^jBlp@aHy7{M3J>7fyCNy2ItW zAIaPLiLm=atntonTrVq4rOwRqmP*1s)V+{w;nu>dyLdW^_vuM)u^#I(KB?To*@wj? z`6zWVr3{3sYjS6z^zt?co;@_>!%w2ue?ake*6^a&V~r)k>j95qM~~6!HEe{Ycf|c( z&`|rNQj&vHR{U#1NtqL3t8(&<-n?F+#`{Bk#)&M)MD27;@&>;L*>|KneY?IaVQ3nL zJtn<*X7)o_BKNTMwyXwc9(FM}7fW!tiZ1-etLrPTk693Fh}b7k>(bmm##O2wp$@A> zcg)z%s@HTnu#M${^NyrNAH|&Xo}kLt_P1p6*Avc%Xm06$;wlhGsWjcb8mIGJ7wI;)XQH!XVwSR|B>UN7cWb?My-4h;8Qb?qz%}t4gRoQ zEyVfZ`87^X#poSk$K0XJj$mH;jXpt3ZC!#`l2?(PLZNA!*>-I2ap1~>fq~KDE&(5H zRY%ZtKOC5Qigp_t1Z+y=mJdP{nPbYUB&j_u5Y0EAAH3}-QXeIbJ;n732NGo;Au*cb zVF!OoFX#E}r*?4i_E@VqMQ-;^Qz(CJH;rb6+I=`c@F(`#b$roy)qMH1OCdYNg43Fx zIc0`9gcPH_AJMyf-Tw3fpO_{xxz>V?jcSs2qa2^k;Hj2@j_rl(xleB9&gY)Enf)?b zEdSW4ASVR#D};$(pOb*iVmrkd8-FNTZEcz$JIWmU>Fb8_p!+V37$+>#K<2IFgI?OPY0z>%KEHN6v5;nQLHlMkK6lbVZ-tbUNYZK*dDrrXwHo%d@B6xc*R`+T_w(5wE%N>DKKIzK@~<(`bt*?V z{W4`usX8$QqaW1HuUU=$spBY_PdkNQ{!;Q$R#mx2&r79Q5=({4h*P>q?-3sU7<$J< z$V`B-Fm{BUyOvk^R_bRMP*rl<^!c5l6E)%f3XyM7&%}{o3cY?FC2j{*si#^%v!|&* zhfCHp@s!}EfedGx{#*JchhN!^=~Xu+q{Oa162u>#$0u;MX3cy_n?1q`-b}hJ0F*TK zTc+ajH39YUbsS=733D-dy5qF$9toZHd-3(&slKwwtM6AIxh*!h>SVtxYDvK2-#|8* zMX|qP-(8*T^^*~=qnVML5StWsTQ1+V$Tu3O9{$~iOXB(0XN7XDbs+pj}&;H2olkqx1;+CzIv6ZKWRR0H42i-ND%QlG_v5evHz@(dxNW% zd6eAy-H%U}Zw$`I)*dLLKxu8^`HCOo<>NtAY0qGR7`kgx{V6V{9v%UjFKrvWRs6{{ z(W}z5N5$q(*L}rvs@~raGM3NN-_SOi#_ZkMuGIfi>t4N~L%qa+P^gsAA?AaoxTOJu z$LJ%iX(osU8aHg}KW4%vVk3PiyP>bMA!Sq^WHcO5H*oAP{xHZcJ*I4(qr_^hE2d4|p~2LP zR%&%QUZvA@mbN|qohFl)cc1?1*FtB?SR{3ZoW!Vp8=p*D2kEWN+|IvHN8pB>u3b`A z*w%RgkF5ASt}+E$_m#`;oZ0IXn-)<%qFJtqcbC44e)#*IZ+8#P+wogZtoRZ2@w;#R zT8}ug-jFqx;rJkYy`Ca?ZsGBw@6aGb;*4vpZY+_!5swn-w+C`85*HIodNL0Bzskz1 zHTcBODMa%+h@C0Nu5uV%YGm_#$9fm@8DxU*jxwDeWonZC)&b>9A++x5%m<@ai@Vhg zF0)oMW7?yhTS<7L9d^Hm@1D`{fM6(_YQnLVx8uyuJZl~F1{r+UA$IUzNf(BKK$BDVg*!WPwNqM6g5oW*};X8g}j|VAFRG z3RGvZ8ctJ|%m|eoZ_MYko8F)Ox6VHs#q5s5g7T?P(um{nL*wQhGtdqXWIz*`BFgP}#25&Gp;bh82QG2ci@tl_L{gJPB>&z*{cabZvVjFA9+BT0g`{Zi z4-Eysl{5>7Q;!@g(qPF7pyieDu^rmH=k9Z%Amf=2U0gc^vQ0u#{q$~~(Y|&1m*|dK zO=cvIzlY10^`QcRIU)r)FQ{BjMUsCe`fOM3x3?FE?oB`aH~~+=Z9D+#l;+<)cf@X{ zRBs;{+XT$og??>Z#%J7bl54{Mw(p-E@2u@CD$#nUB(CvfCOZj*BfZd=Syz)E=&W*^ zOM>RfC~7&^X&5(VCdnBSU1}@o{=o1{^s(%XQKEyiMM#HBdL^Z_1aH>JzkbT}vO&6f zkZI4N9enhDpP;PH;tydX7w~Y@a4BtY)YWHA(CViI=>8aN>>VnlHJ!O< z@k!^`uTM9dfz?98n)6!L)bQp_GfQzxHWe6t*QC>ZvOdjrR9T_lIHX=Xu)xXi`qadDS^Z8h z8vs^O>$V(j4uIZ`LP45@{0<#N!?$9nMoCcbAyNj!K&X4->_6ZU#pubKe*@uM8Vk+2 zmyVm)yKXh!-frxlzLEc}RU7S>TeGj)ubG+_>+Yu8Sgzaso+IUkN#E#=m!=iYubekL z{WhB2WIa*xJ4Rp%Xp|NkFy+wXBv`d(mHXeOgtQTV1`9o|D=O7)+l-_sIl5r4H{ez%_uPJ6wd z9QwwTD|In4G@M5QCEV`X7~h=Zfp^(5pT|yYxm);B7mRrSs(5@t25E{_oND?*ziZP% zffH69-hzgdvA|zhUJ@4a|6~D4Lv-{i7$~XLOw9(l(pX_=Isk;78QThD@NCybzJL4+ ztAS~^4O^7|hgwZFrNL1ajm?Ak?_7kKd;b%ELPnSB>90`AQjH5&pErj||L-c~by|WO zt-}!!14%)`!w6U#6@}G1_yGi2y3JP(9WWeuAx*z*7^ey(aC0dtDyeBe)}fXcIt|5N zgO7B7gww+*tC$@zMB=f73j^)32ly~sS0@XfUsX-bLx*4N5bUmf_Ke%;oN(bD8-D?q zPlq=;#9qF94%qE<`vI%7jVK4Ks=UL1>8D=gJ`Y4#ONp0F>;nV}QL{hw8|4A+5OHEH zazzle<+}Ik5nl~dL$!5vTwbpdNdF4rLu_M;-c5oNi6C)q;uJyy%MLC;zi%#(ozz*r zt~rWGeLUS$3b7td5M-789;DnLmptPn>f0yw1E@hIa`WM^b9UgRh(oK=>{CrTuy*f{ zmk*E?>~MRzh(e1Ct1}|vKaen^m^CGljvz6QA`Yy1->1>X#S?;LAQ)d)qIG(2_TI(D ze62kh*i#XM;?L|>=fe0)m&Bi6QP>#HbWEUxNSkI1S4?>SYHw(GsmS)hyxC#~L)-u= z3W!Hlm+Ca3a=G(t!<&mxuVhKT~c)=doE78!`j6nP5V0Bhs zTl-vdx&Lw5ty?Y1W~K(Jk+KS7)K(1HUV&s5wnOW|<4IXg1ud3hc!Z&VBFpiNJ2iM7 zaaCbXJ~X@Yu>&X~%!dn7XJMJf6p0&O$p%FyB>>G~%6(94A3W%+pGsl6Ai(axG!>pd z8JqGITdr`!(UUR2n}7@L4AF2v$^37VB205RG?it((3=TuK!9HC*FL2ATIVjPz6r&R-AAruCog2Bzr z>8YX0SljLS3}vT*3>;hDxBz80YB}DhJ^J1fG+GT@qNmY0wZ$arpqWN_OpP6a)luZ_ z+qdYJcF^>q6x_PCX1~IhMmC-YTTA4Xr}|d+jZa-Xp#X=OzNO`gXq|mAd~HAvwQwnn zZYL~)^k*i}>0RETZ;(oo+eZ`%Ghel}wOtff%-N_D$E{AHD-3jM2UaEW%wevVLFR%> zOq`*JHMqc^yMt+{$~3gY*t|!og^~J`;F-P>v`| z&{_V``^VBo$i>(UpM!61awEDw?^C;dt}Up|j9FiZ3GqKx!goQG7|ED{EJFtz98}PB zub+e@iV!c2UKbH1goCxwlaokRk@P3b<4;ZWt7V;A6ldKVefj{56J^xn$B&bswCxmo zyoP2|ZVA|;6ZfJD_v9R4GeI<)tFB(X>LQe>Eg>n%=Qa3l?U#4?uwK(Fi}YLao#MPl zyR{AYHAXHUNaQ1b8D=BPmb(Wch($OIZDGDT6bZ}GnqJuamO#f>jWs89?nz`anKMq{ zG{g%W8+6EnTMd_c7-p*d{{8!x>b81soB7t&d2{!bD(suXpa$ZD2g=oem(3L@2Segc zR*$|y*SGPn%HV>0%$(oJ##x6Cd znMfPJ&j;Xz?<9hRE<(2-6EBrI#pD9Rg@-I(M-Hkk62ml+t^<@MA!QdLXNTL6Lcy8>q-r&tz8ogqxkUjxR*s-JvWB7N z5qdEffSw;7Hjv#`_q~YBkBF4OW(2}pN$jo?GBRT)XYqnLuuXq%uUJXm9YD$Mbc%Rd z#f`%i+Umv};Es4>beIV2vR=5A=&Qr8amZ^_(e-%V7JPK18ehcYC}QO4~(Jn~@Q zhq40CJ3}pr*WJxc-GIM3I+}lkIN8qcqpTu1ow14n^GtDyD;PVXW5=pgjqvUKUXFF* zdkJ0^Jg3@6;+Fkt*tv5f+h06=y3l(gP-bjs*(qe4NKC;CHZzF@W)UhcrWKB5uWmao zh~LT`midnLb)0mTTW+`IN@QFd2c-yMULxorVJpOpE3p%JnQc?y`!j<8^}^y*uH;u{ z%qtRRW4`{GSumutWP^2m)Wt#xU!k-Z(#|R`A<=1e4KfVene7o8Gl zjR@&}0HXnwtF-k3N=$&eRLqm@2PfgT*h%UXbi`$l@eoRHm_TZjO{iQXvQLCT*xFva zemw$S#cU$CL}lfq#BV;pL$I%)AU5(Q;Nfj9^Vv*9OO0uMa89V9Sc5^N;^hE9zFwJy zv2hHzrG7fArzB)zMPBthqvhGcoV@dv% zbGs5>aKfrk#?mipynH6>u(5*`4j*oU@Ld-5oPRop|JY;`bXZ>T^M>^dX>!Go{P=Ib hNaJr`!7;OP>B~JY{jK&U;p;*u+8TQ5S!%YY{|#0MAk+W= literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/рис9.png b/labworks/LW1/рисунки/рис9.png new file mode 100644 index 0000000000000000000000000000000000000000..a606697fffa359ce2080897a049d70962503c227 GIT binary patch literal 20258 zcmb@u1yoyIyYGt@D^80;aVYM^rMLwt4#A3BahIaSi@Ovp?oN77Y5y4MScbS ztJ0k&4Sj)iQk52msTd_WfWAR67gH32fvJu`do)6XzDM~YqwNF(gC+Fm3HveDWex^L zsZmx!?2|k2c*V~~cQ1AQq0)|%3c#Po6saVU+o{*!EcAgT zj!Y4R^=td3%Kq<7@c;?v2ja*Z@5FNd`sB;^cPf955&t0bo&L`r3KAwUV;fO16+E3a zSxaJ;;Gb%Ecm>%h&BiLmSB$7~Y6PH}>tZAC@CH`7Y7yN?3z6{Lbz&v$mnUU;hh0QO z$zm$^31EZpmi=${Yw2U|*~WX7jOs0+x>*a`&o7x}acQq7uk{q~K}^@%Zj8`xv~c0I9KFuXf1^J?i^nAbj+aLCj$W$6OMukM z=B&B~TMlp3)l-SfW#@BNKZ`3luXp*T&Wnw*snlC*uy&PO&@s#5O{g`aR6$XiqijMJk9LC2B-zqS zxS-`*ed+)%f_~2LgfdljCG*0sMbF2pSbOdiy&(%+7>bT{Gm5=?M>J`-06Hz$#Z`XE zqM`ts4!(~kYvq4N$wf6nn2y}SP%=?c>Psog=p1kDo{CzqfP*-z^Vz+7hO>7Kj(OQB zA8@X}vRvZ9qk?tVgImAbEOCC_iG&~DyjRA^&pE5nz=|fJN?kvOerkzRR?Jc%i50bgrl_=Ol= zH8L}@N*r;-e&oPXRCmzbBj7AXqjPHLwr#b~pIC-nNOxO?uORiQ_3NP0;>$Qt3og6N zsw-wvVSR-@dGmbf(40_`=`&aW>`jK4;>RnI;YbvE#j^{T(7+ge%(!f5sSi}a zu?kQdgQsrJK(N>jx&sNp?q1=Qd$zGZ)q)Gdr@CS4G>!WzqaM`kzjOm{D&%pV?NXY^ z@GF2}U$*bw?TJK~m2XJ|~E&9xT`WF83$|b27`*mW@Q; zzcN{Yh}r=w6W4|?F0&U=ab(#E(5UmL#4gO!kk`JCraP`j&5y}$bx-I+_0mQ;LT3}6 zSJ=6>3}C(cdH&vAC!ojfa0g5_WV*}x{pIqv@ip)4OGkZ8$&C(=Me+9HM~NDj6%V+K zeJ3>~KA?THs6FQi6Xz3%#oP0KWeU$YucKM@3yAAiZ%}yJx6K=v(!H>?q3T-b5bH75 znti7NW^eh{(buxDbB6;nFo1jx@E0iUDWa8u+j$cM%c3_1(-TIgu`!Bz*=+>A;ETyY zl+OZ6vC>Y0RGVqZwl&k(!vN@eWWY(n>R6*(7u+3%|>F;1HhJ=T)E>}0lm|k3P^}voJHQ0;SgVKu+#pYr_IE( zBJOld!SG=+C`31Lj1ces{x)9Kc-iB<>c%HI+^wQ9>D3OxT4v^uR)kVG1vIrs7O>5J^qfT6P_IzWy46(*! zNMfB4jjfg}u||P~$sGR11?#acCu);h!sc^)JvzX@ITff^s5lw_ueJQ*hT1IbeK6Lh zT?9J)RU|wq)z5z7<6dar{510R3Z!dV7{JWW)m!qi9+ct z2g?7u^Li+$$F9fES1!xu(Ha5-h9uf&24nY=mIeOwlc3>=_;-Rl0~O`8U-?Ipm{o}u zBBX)rNymt~z4msoa=nBCxBXZ0IrL;!rPO}YfKq8FsNezMLqql&cavLHZ!OZ++g}NW zySBMJi1*l;g`2>mhHp~Y5L;9Ce3VAtni|7B-uYo<@ckg>=nXj@!!JeDtkY5J7hj+l z;kN}w+d+L~9Faii8iOIF<@1aezqax*xZK?X;-Uizt>jP7ddH4HbG$RadQVK{I=t%7Qwj-P#Km%?lA7>rXbezZ| z8PMZWjzfrwQxtpJv2cWp1#3q)ifaJeX#lMQOD(p0&U^0E%bN|efX~*H&+JRnWlwEy2TD)+i5rKG;V#1 zYdh1mFLB$=WQTZ&z51GuDWDycKC_%hFsN>UQsOu{f1EA<*lRn-LBZ3iD92=C>asG! z$g@fvK!zoGFN}ZZ7_W(w>xnD)rdD#a9Fb5VN{faNw1o5JqFkGAE+Z7B?mYB(267iYK{7A3ZV_x)I% z3I!(H8g95N0)@6C?^Su- z(%H+T`~8px=0$rxd^|Vwa(L`Gw@C8IvE)Lw0nGmW;;F+K^gfQ8BbUW*==AhR26VR> z0lCu?es+;mE{h!z(JCi34>;8PWj$f9udw7`0InBNw1yk6aSyKKxc%-xUc1W z3L5?485=`#?HY*7lw@}tO@rkUM0aY2O>i>EuC z`(EXNEdU&~Y|?Fp32j$DPm{m%?NcX|+0N z&+?FI)>i=4B^802)0aD<;h#`*G8&R0YD#g{gin;N8?QIO$^vJn#Xb_?6|@%%L_tvG zm^DMv{$Ctu4LYOAW52zpPo9=1SwX|1^H@=(sZ1b3T0Xj%m%lQIE8*b%>4R%2U`wKz z01W;WO*2K5DUw0;qeRcM6kBU&xM?<Ag`W~FvX3Wqt3x|uSbmhC^gZZx3Yw@j2eNW* z@qd_vU8iNU))P@$KSCNV2i8UKgPgP{7D_M1S3Nm zi53*GN;t*MhuwP$E92PBqc(QE$*_y_{_s(S=<7^Jv;`;&zdMLUtoih(MpkSp zr~*qjIF|IR0jC9F`u3oFYRH?8V=th@@gUST0lpaAaCzTNzz*T`9B4BC`1lc|Bxc*> zeg~p|Hiuch^(%Z4aDfK_I59!Im%W^2ICQuDsDqdGwZk0tB9-IWj9M%H&}&n{l=0)` zj-Q!%qhcWcJG$o}*PW&bwKmPg389ANE-~vN2tK>ag4~!=LApF3*Zqui3>#bhXs^fZ zMp+Co^E3^}2ULUiW_Xpp}_(;$DoJ+Hx}c4D+S-MR%lW@awVH{1$9v z?0lnLHENku%=r3%gFe1-sYgDXeLr#JOMUU4t!Wk~eEIZ2_j{}ML}n8t<*w(Kt5;s{ zb2cT9BR=2Df2Oc?hfHa!Dcw=|7sWT2U-{Xy-w4a-k!_8mRpK(d&`tz}6U8`Ao6EJr ztwTx5dc!j)3~lOhj_}J(yJ?5E> zNkW~6t!o>$K7z}G!|4dDFaYk!+l1m1)wtRzDQ6Vd$jh-W?#(~Pff*i>(doxzf6UNi0-omq)Zx!CYA+8 zbGpL>d|@b#Yx*E(AI($8I#kL82)Px5`{{iCA$7fN*)73h**i*=Z=;r*vggU{Gg4e~ zieP*8;+1!xX|J9g~+F2OHTDYmsOznJT)1JKD3d%;^W(;g0G-si+z@tem!PYP=Cr`aBy z!GQYO4j@?esDzW&iQdhexoT192$qu5BP32F_vzjw@SfLU$#+}mZFeYzt#WHo^v5km z|782;VvWjkz>Qkh`)V(~iqD9C`T!cm`)Gn0z7%L*RmC1aSYVOI#_L;OW{_`qmxo8sV#7D6*y<%_%mO&xdswq9R6Si` zthC$O7p(=o^=^-PGMI~QZ`)d%vXsSDpS-h6$Rh>5=b4b#`abB&pYDH7zD@G|#Pi$> zA+7F{gN8>;Z*gv6yjty6YMuK(VZ^p~Xk>)QyE>SP_9u%0Rthqf`pTz(SWQTNCA(mA z=;}tc!>=MYeD8Mj7v)`|PYZbK76wUnH%0t+t2tRfeNDcKLYS>uY0K$agp)w&gYsFw zre*oPGh&N8*m5Eyr3vkLTZi)NW+2hVv@mO8pKy|<)j{n7FX~v%(KTnySbDp!`fP{7 zx@gi^ciAubJwKO`2Cf<1#`rU!(nrMQMRw=@j>O&&f-fI{wm|k+FB*(+CB^Db$_ro z`|LOXbdRBVaV+0CD4NT9=JjiatiALCwfx)qFD~mf<*v0~hIZ;3pHKhn4YaR(dYprZ zQ;?B}ykG*X=W<@ooV+GxtFDr*$82|=7}<|+Vvp}>$dLQiN*^&Kc|4wlPkaEIo{{xE zS62$X@@s4367g}Kg~_;qz$U!>t);2ve!7K~A(Q5K>PKTndjq%g3j=dc&Oeb51&=Wp zF)T#-{TUg-27aY&RDN-*ecZmAl|$=F@0e(dbie9(O7iH`J?h0@Aym3@1N33GmO=!v z1Yn;dq%dyeMv5b=e4F=wrjCoop59v6Jwu~FEett7Mvv=JG;}o?>I@sJ67(b2ZKV5K z++0>KPGz_CU;)sLG_Yd*6O$qR7tzW8ULL(*EwtS|*e(rY_qAHFI-e17xSZ;!e#%Jw zD=-uKZ2PDp^mvT;pb=l`viTeaz3>`#{2fW3kLV!BwEro7n+#EBSe(C>Y7ydxKKVotC!3=r*tPJ`C(~g{4N))+e_!l*J zG5gMo$DU#*We9nBrAY_Z%d*C1?u|NY7wDV+lX? z#LwTPv22M9LG3hIg~!MfBw|_#r`gKv(o(s|$mC$NINf)}o@B$V=L6gJ5k1;E2MaSH zCPu}UAHPJT>ZxF9aEP{q4^mwpzLhaFJIar0m4~o*Y_<~k?p$p4H;TF>H?U~w8%f6%$N~^j1Xe9r1B#4}$F4PTZ^uM$0zi{*Hw3z5q=T{)5r@TX z;)n{(k>P6TemhF3T(f?s$?#mS^EQpDcirNaog2{rk8E$5d@|5}_o;HO_{8`s{JM|# z`dR5QM(NO2k18lTGup5=7WdEBCn$V%S7vsw*&xLr*c10bt~jmBVg-=w%H4bGY%Qv- z8+>_XpbpUI%yhHXySu>9jk?~k&HKD}yesov>ors>?~&bY6K(n8MUg7Ah=z(q#g&kM zJOfnlAzL^Ov2HbTHUqD26UD@gCn4j+0g)WCdz4DSmM1S>RqoLBIH_J?i6E$;oy)|Sbwy$1G0-ToWbFYe~}%U1%P%5|*%vH^57 zfOljP0w0#WX`EOD9a6?!37*tX1P-FZSH5^>6yde=(o2czDZ%W!N1kk@@a!p}KkHMH#dw8#3zTcD;w{&}ahFUEZMFrQI^~^b3lT#~&{L#+!v5T_?E4(&41(5R( zr^^+a{zLn*DVs-%`}YA3RInB8Aul{<2bA)is)wX+8%cAzn+U6Ws;%=nDK8;gutd6x zhTh^K@!vv!O;<`8dGQuG0y0LC!;1TOCzRPk(xDj7=f%dJt!``DflHjW!YXRp>_|pa8 zs>?aHyGkQPzvJh6PUR~q#la(7I^|_a24xhG3{hp;t-L)=awwIFphSbyFf3_6J zUSZ zYP@ZszXCYXG2a2#L}9N zn@mZF)Yxy!N91?w+x-DP&}cj1k|3y|Yrm)ukUWTi!AraaMI$ffrR_w97P`SR5znal z-R?zhLtSR|LLzzcPin44S;`MY=Gik1#}&W1N8b;a@>Tc3+lHB-`Mzxoc2|4x0(e1e z%*xhBJzN)QE4BJz!6vYzVnE;EdX>Y=26q}v9MZ2DnQ7EYaqB>*lBUpapjCc7AC=u# z?DZzcVG6WyY^x@+(!8(BYwf`*o+xGU;P+IE7<-PkP=44U^%VAo`KP+_l~?9{g2*49^Zk1oX_g@IL<-Jyad_XyFfL9-WmE$0|h z!&sq<*YY^~raLCLd`puS_~y1ee%F!S_t((0h=mX?sR2Sea_iS|->KIYPo^i=j6E1? z?>#OoEx4m}%NFg@O>Ns0K=BxeSG&k6Ru$%Lh&RR^cdcJ$li(_zNSGdLU6v+A;IpUt z;P7(~8|$(psPr>^-?-S$=Q!JcL|a*cy@YW$JfD&*@$CpC?ZlXaEn&m-M-m2p{>svF zEW~7K=Q+J(+CCpV~NQ6kw(AT90uA(X^6wAfYwjed#~70Qn!RHtCMvTkm@^ zjp0+KCrQ`yki=^rMLLX0VyX?8g`Y6y9T2044&k?SwlR&)*y-4((KZTBbbYmrC^Qwm z;?k?=x(|-L!84A~xz9#;Jy#EYLT z^S1YnUnL64C{)H4(bLPpn~*w1I%}13k!cd1zp`X22sl32yq-7b5ui44onEH-7^kwBQZO9QTCQxXYk#~@drxHTnaPM2 zbT|^P>-wchn;e&0MQS0a9io%ebx&aM%yTBG_3c3kv#;(`#a-J#B%j`W&SD)XGV|pU zW{ycHx&g6_)dI|7rb}17gQgD?39OCbX3B}e$!;W8{~K?A3RzPBuF!T8r9R==I>4f` zg7o^4Q&+c>%Mc0UOQ>t!(T98EcY^X7@{fL&+&Fx z@^qNwtNR(O?~!`=neKT;j5zKla8g6;8!nSs%79S5&;uw`re8*uc4kGfcw;?e?(3V) zja+p21rJj3>(l~EGKo05x8gQJ1v0#76qAkxxWVtn*7`p#{wr}28Jh7~w^{Q424(*v zVM8&7tLgbIh1Y}s&dNA4JFRiS`x>zPcx4|486o_O$gjWGpG#k#HR2!XDz?vtJ zsgMoP1vLS-tG&e&K2`Krpv1E7#yi*kl|T9~oEHBe_P?`4|6urk{C2UwyWm@>2GudC zY@eAb1n!@xCH_AWQa#Lcl1&5BTJ`pR%7Xh3tisl+-NN48qg>%^5fhbHxV83g#RaEN z#J;CcF6Rs8;2#h?g$EdWLj4&ouNNKO51PT{<82ha3Rv~uxeHU<%Q+I!G3dV#B!7H% zoOmcnUI#XBe0yN!KFTxtE#LXrwn(fD!BjRA0JOfqMz7S^d3{ls5Q5$h61-{-{eFv7Pm+yeZ!A;49t794RrnsgFpzP~1-F}?@LPc8za+3idq84;M zsR`pK5&5m7qfDIcfEmz(q)kQl>CKFLrX7_do7Y)9(Fw&j;zm#ovJNrqZZz*=#JZ){ zgVWOt!ZYVM$gr|b@>Yp$5<8YSx~XHDP3R+5ijY_mXLyMpg_r1cPV=JTLXWmpc1caL zg|M*Hbt0npwRKs2Wwpji?|!0Hw2w{s?jbRS==YGXHkuzOf`05U-ZxLT_vt)P>+|Z? zdY=#4A3kN?l4njYHAx|h2rzdQzJ+OU^k>PQ#**po)d>waG1sO~yy(K*} zXtehkSD5fAPqIEXKd8b#D8zxT_n{vigW5M1cu{P1d$Owxg!Ha3kiNtq@y4QKZyKpd z9`k5vG2~*N{+rH;|3&9T9c|1$i}b;*xYQ*^-UoQL@LfS5xSm(T zmU_CUdUfOl3<~cTvy0;kGzS-@k`fwBMQRf88Mry6CZ}X;j|*{$_bKA`%szeJN5BTa zbc_MNuSARZzc-vnaBV0mU~cqBq<=uu(qWsqLnG0jg7B1>+r05bnYkOBBC z|8K+bhfN4UkS|(at)6mnMfa#d_jX4J_f!4D+^Fcp3-+{daU#GD{smoa+yj2lPF#l7 zzzgTC-D;GmgOK{PaN(2n;SigjK;ooIFY7$7ULZ_KiCX-Taf${``hRVrA2C69OW{8keJ^rJ0Ms- zHZpLj_8dFP`~_RwHs1@+l}il&%Pfzb!^N7}p|c2j1aJAya=%@jRRhM9@NCbw0ktn#GELKA# zXmMo;POJ0th(l%<8n5X=2*V817T?~%N(~F8+zj?Fj{Jn6l!w~G+HyqjsS8@Yq`Dkg zOnSZ>IZk;w!ncQevG9q>)OERt#0qvNX|WUNhm5|wa(!uVS&Ck3c=Z*m{fMviSkJw( z?70L41GRemx&XFMM4IhoD}qTH+dXe`xgx9m%}M8C+w2-@E~l`dlgBk{Uc@lImk+%p zF__-tdlO4<6h7})?Wr=Or^MD9b^%QTuBTeaLY-X5s*!USh+mTWCzFqqB^2 zbO`$;i9MmY`HL4Ca+PA?vluva|CaJhavnVhl5QpnW_7AGpm0r59f${fEVW!Vo^f4b zvfeU1%yg#D;g$ZT>Lj$q+=TxyvKCwmMbG0s!;S3nrKD%V+YFw!O<3w31=rL>2ZvXT z2B>Y@I{T{_DRdPu5!o!N*AJx4(75ll5BBDdq)PKuvrsUMdJ0`83^{9!DE^8^A4OUs zR1r-Ol(Dg~3_M2xX#xyx#yA`#y`&7QDpTHB`9MCEmlosRxC63W(0Si20>+xsM`?vn ze3!}gqsPqzVdgpL}&HjF>aYUN}nmlzWAfiH;>= zQLZ`N^XBr%N>Ypunaax9sW!z)`?SzZ?(#&>e?TO(+h7>4@hEV>4^cp|*wCxRT?mpo zB7k3JLU2c^w}6SpIqSJVSJ9I~5ZaJ55;cowY!aTL|3VN{g)ugNp1^}$FeCHE523ZO zd!b)3arW{K}Io=X~0cJ`lmyEM;{KE751FgP*=Kai6DlEV6+3w#dA2kH`^2URjlIzs5 zHW4BS%^WccLVOm38lz)#``MEa+$tV_5W1!I+rF)3cYi-VG)F_=NJMH@Lb zi7}HN0V=bTO=kTqNgD}nQ!fQ^{{w&jmu@6MfZhRx@#^-!bnI2L%fEGO*+pLSzidV` zA7}f>XS&ybRrcI>I&>%5k+Bc@%g(;c1M`5RCB?r;_#Y@Pg)SH1h%a}^ka9xAWdS*d z7l(!o+V49IUVQ%o_;a@Z77G4f*p?;4RD;sJgVY~fRWhJ*xd{7%8PrRptE3`kY&9R6 zOTSu@C$4Ju^P2{K#Ip}S3F8=yoO@8a8=@QBZ?`J_1!d8>()cy#^q-VH*3Q~F zbFysOIsLH9(=q@o#e&*|&=Eke{oP|>ki91X=L}9oBh}gWM0uGb8PZ8U)kt;h_sn}` zAa5b|ds~q_QeCt3Ev+|*YgJDc#D55Q;F=F=2Ak&yN5zr1{Fj+1cHM3$#k1p0$()w8 zfl0YfTt#~MC%>xCB@@3ET=Tr6>JM3@DpLY0X`&TRw=>r|%u3Zps$&#K@Qfcm7e+z2 zXWJ)@8L~V(B5Mq0a2CxLG8(SLxXZIcnhIYYw;?JzMKMOgY2pPTUdT9xC+>Om?-pYm z*^~@5B-PcY7hui7rJ7fY4PCG@Z{u>1jSx?Nh-qH zM*0>YDG{5#cM8N>ZVe*?S%{!R>6*I(a~*}v{HWUoCWMIOYb`Xmgb^d+!No$O2xBvqC3}uJp_u}RrHe}C* zAI$_2{P;m_TM5~$Nmh`|>7H)=d4;ntgCm&Acx_+Tr?{(yyUY^X~QLil;)^UOvf9`Loy>EWYmSzoF`F`+FJrNTM{y z@YQ_Gac8Jdbo%5_Tk0TJfb{GaRLQ5Ts*2;>9%11Z>%r|jt;M%kCIctqHTI*Qe~$iS z6&dDWVa*=w*p4glaI|6Wpvq}NEwEUN^erV|4%D|6`F6V*>8aU|HfCNFGd3DqY5P`T zGM6GCjAyZSMlJ2&3Ysh$c$P(h_RxzQ8FfXQ+qaf>wmlJ!2B^~?WpaYIucqD#TSHdg zJ-tGcs%$ZW2Mn6yb7rY%Z2j9>G|x!rc-)U_{;CDp@8?_#!S=X7vz@Q@qKpLcm{qpY zg}X=>qV45lG0G+ke&B68x0E-i6Og$(3|A%C*R!^O7Ey5Br~c$C-NK9E4^8=$$6PLX z`0&P$q^|P&lNz-D(((Bg%m`hh_KVGROPb#C>hkhteMz4PERM>%f{v?!O40Hk`X-dk`#x)6H*>U)URTVfA$CUmo0wLU3 zJ#<;Rm~U5rYEhbZGPC&5OGzIj|I5@1Lmtwz%9t{zgzkNJrs9K$7F+h?%SDJ~z@? zVqf;=M5&5#=nTokBB-PU0SCRAuF^)_ksi6b?;&!WXVoN?D~}x3q8{NLx=_Jvi(&JCB$TG90ekRa)j|^LQtwUhi7sA#T#)a z28L^D_4A`{BX8%eA!p)T5lZ`ZUSH|DB??ZfWeL20#FL1I3M*Mb^)H}CQ}NA^1xQ=+ z=QESX15EY@1q*@5=RxGP!u@s*xf!*&y6UJu`M4*kemJu_ckzbm7{sPy^F3&yquyXb zZAG5R*Q&D4V;4qQ9k8xM?F12o<7&t0%p@>bWdCI7v>ZrP$ci3yi?l-BUsMmHfIh{U zFdRv7l_@H;@=7uW#Thq6o$&nahXaW}?4kI%#J>fa0B^{^K?<{Toymy;rRkZy(bCT{ zqeMOX@Fu%)E;P~99K*$TpAQ4%l**df76kQgx>snTt)7Gkc(Se>a!k?riQ@cx{I#V# z?b~EoR#|5sl)L!5C}6Q&O;4eOnnmG4N)548^Viku1^f1N^7y7Jv3jz1L|rrYlOQK3 zbNkzF4&tgGjXtjREvFUzq&}}*asFz$8O~E&7!F?{XhKL@qrf%5IF!;|*4A_k>P%mU zY|AVWby;0-$S(D~S#ISybNgv2cyd%cOat~!-9h;YwNft|&|u)`b2WN=eM7lc(w#@| zeu#ms{WTmPYBcXxiAjLRA}(`K=xM62fh%K!sG^5&{;)HcpM6M@i|MEV_%m$xnVuWT zq-$*!Z;juguJ5G#m5e;<`H9SGhVu-A*E|k&J$$4hU>M(%)y^&*rSz1p9JRH}Xu5ob z-TX_^hO4CG|4=ouT#GDEeoI&ouCr7@WKE%yJU<`>&dmQgz{>1w-(Mp*HvLc@sYAPf zS6E$u-baV3^Toga8N zfR0oemGQf}Eh?CZHigqdiCrjbICT(T9NFO|@q-M)+*hYaOrEVtV^OG4UI#AaRt&@S8o5wO!)VLEBX3}bnv@o z=j^xuzOsOv9`;!w=K(`jh7tE$Q0AUZ^4P*4` z-_PJa4GrTT(fXxm9)CrJO3|b7FTwlv%ea>>)K+DdVZ9#Ks;KL}H1;a6(Tn~sm9e!s zM=r$zP(=t%S(<-s4aK<|i2*O1VEW%Pb7yOP%{`-Ux1oaFdf2$y@6YJfEL$i%R5^tc+Ct2VQSOCpQ)`{gF5K=y`6o-e?J{$t!?>n8f)pio4<6;efg@L!DF!YTtOV)dqM^lZDhD*NJauVde~_MgezZH$}8z(7gxDdSe!2vTG>>Pk&bb2E=c!P>GW4L8|VW zH59&K4+w=~HoP~~ZzTW|_aX7n`Ui^xV>eRiT*ia<(bJlWj89v#(!>Xj(sD8YZIENg zL6?SLIMlSd|3MgVuYY7q{})weFQBiWk79x!Eba5K{wWgd0QlhlSTNS1AE~y;w){V$ z%Z_w))p%)(a`wh}X8n}SVKh{^6>Q^PZ#?3<1kcc3Tcmv%5po?gCh1B7hFzLy=3DJ$ zGDpFWo@!Y_>3-~IrRIbM5hu=_Xlf`T5uLx}M!)m6{-q21HSE2Ew~OI!a`IZn0+;~` z%slLBN?FsM2!|wPMj~UO*-Nr_#;Cv>B0o-@?|Wodd(WwY#_&QC{8F=PrxxD~bE6RU6z58@LG3KqyT8A;XP0sKIgRVio&>v?n;z)wVm_fKt`S=3}Hvazcbi3uw)RGFDLa@{aXJG3I0l#kKvWWIu-jkBg z8WB}HaJ@*$$qZJD%w+TQD7bghbBiSA^x>9Z=Ke!R=A0X+rPuQ%l%0&qg?oM_atzX5 zP1iE3>wQlzPbUU6jqG<#_o>`N2jaG?)}!+Tkh60B6GEGvG%Ka2XbK5xs%nEyWnN;E zk_H~4sXf-IC&-@oy8^X?*YCENP3ZmVt|uvUOw*((Hla2~?CE>?zd}#mfuN^L9O!~G z7tr&W>y-idPMl|0o)_#Ub)~gw(z(ije1>N`iA*fVW-8@m+kdJzw9x}k*;-WgM3VFR zdj=9Gz14Gm{t_Jo^=_9-876XWHBUP84B-a()xl)}`}Wj7af>;3qUWb%jl9X&i8B{L z6;2|k-X~ja%E^6hN|t--(^nvlqGLVCHs!PJzVAp@)5!#A)cdPi(w^BR$UDsN>?#y- z)%x)&FUUTSFAj!tUHdZTIb+w{%nLcBF!p`uy4QJxgfVEgGPM2?tck3zDVo~jYbg8S zPHr#W47v9V9Ou>9Q7gAWGdw}ri}%AO$fab=w0D`5gl>?xL{QU%6hGxvzLy)_Jhw$9 zIM=Q3_Gzpd%xn&$i8}D(-D~30yeJ7R>B7VrO%z4E2H(N}P^aDd)5s=#yUfgqa zC3{c1zY$~>Gv-xvf%#JX(*ORjH;+qWeh8KK+Ly4Lw-k9Mo5r4e9XAxkHgv*(aAOH? zMN_KS^DvF4;XJHcuXt@=t26Q~;5QGX8m95-s7+(29>VBZ;uY2lfR-JN@w4wBoJeq( zk5M)4`_w}*h)39n8tG>J+kyPYzXg9wW*D{ZtJgG~CdfW?%78|(2@|*#1T%H1HbfU*MMZX|+`9d-=R8Gr1BJ&xkfpXc<_K06SdbRLl_lF-%W z;bbMCxH_($;9Myp(ADi~wR*<15b*3zt$Y{Ue_UVVg)j&Ut+N0sq}WXo%lz0`hzW>6 zH2>{;x$>COQ-E1=4KsmUF`Imn`QRRl zXoIVn_0!mG_l0M7R#1{AEc>_+jR{w?PL^Ap(Ej?bWA1CzO2)pP4|VmQ0ab+_ zuD0v;?|2*Oq!(wAHR6+H7ilZjS8s*6$lM^GcH>++h8g0p??*s${vXW>h^^x%|=RylW-Z>FwmV zEsZAHS>}gN8dA*hHmFncsup9}4Z{l0D5Up6vC+Gm@Of7V^n1`i`zpzOX*Q&Whcb1J-m791M6o(A?5K`x(8xzvhp zIFd9Q9h`F(fYwt)f7Nh$(UTW{9%F>{%x0f+&tRQtEmm+dPWn?+RlMM^N6?z_{=l1e zZ~}w%&4Q;Q@6TTi(g< zSLtxe%mVmL3_LHGQ`L~E5^czxEV7zv+#*M{FMU%!ryejv4bN(S`#b1QXh3`Y&=Sp+>Dv)bl}qvCWV_ zvJv~2O5J;P5|$B3Hycw}R^fk(x) zZ7Sh;8jM9rCkwS%{Bd6+9mxJqm8t&^&%rV$RO=+xvUq}phU;&x5b*v8sRj;W#-3gJ zmr+UvKW{kOnEDTou%UH(J7axX4fu9x&v)Fx^?OTZCfZCMnJu~bWoTCBSsAK=wupE0Bj3wQm2qISM- z^Vt$=6nx+>cOi@ZjV`;42zA6+17s|rBB{QgWB7sPdnk==r`HOiATr-B68CuN_?@^> z#H7}$b>IGh(?i<~sAXV$(S(rL;@v*!L^iXqwEsJF;#=c6v!kLCj!Env{n$1jie*6g=Niw_8G!EAu{8VJUfkXyBr1$=ZewWzLfD5@-^M z71wP5uTtM2-`aeafr&W_OTF=_%}kK2%J7~u63UMQ$wU}9=Ll!SF_CJXD9)nW%wA`S zx<{YCe-14Uo!p~am&Fk*M*3=%vi>I@F6Doido#mRC1~F49>vV}OyomHaKHxYfKHf5 zlOX{;4V9-w8J5qNF*S4s$>sshGsFxGnCL!6yPA=zLblg~gwVRm^L-co=&|^Un&{~& zOi2|B0y#J=K8v>G;u~?m#@&DB%~ZEA^!Z8iKc$-1wrNYhGjkc&wf^DD(+~5+8RWA! zQ>#)G&=P&2dATTEzwCP!@!H-x*#-_w8Ph^^- z|Ix{rhqIOMVO$K_>S&9imbPjwH4L$@rM4(CN^1|AE0{<^OQ{iUEVZ=USW08d5J97= ztub_lTt-o~Ms1VCGPJc*ySCK)k}l8OW#&Hj{(Js7=XrkT{LXpL=li}d|J=!0w@&~w z3hyn~nSKIq=I;Ogg{g%^r`U?SqVARq=WLp33zXIRopb1YX^LYpFZ9JP=tFz0w$3yR zw#X)qwhw4zQ&TPDU*Fq+Dg1p?)T>vwhny>$wqdl6N8j3tB9Q;sfx+>D@^DNwH+C6l zdu(D0Tw+0IHO0ZIajsj+9ui4r*l`vg%)L4VLPV8GtGK7#UFx+PRm0a~R|eHzIo7&= z;V`)~@Uz;J4~FpoC|$R zC>I0}eU$8j7z#NW5beHE512vY28xO2sqkHFTIJJcOqJ$esvnKk>vf?07bW>7?d2!t zX$_dC&C)5J!kv2dY_UvvIg2vFzJ{#IYF0kw@j7eobEgVw2)?bF-tl&2!KSEAf;x1cEUx)AXbKKP>b*E9MHK;-$wsu>)q12Tvx-Htg~w42BzDx;l`Z9`(9ZpMZtn zh~CwzP7MJX>watx|N1uZc%{c)!5Y;Llgq+PPylciS9HiCS_z|X`(hO{zZ+#>i7XAZ z;lj+!e}BFLiQU963OMca526(9dx#BF z;i5>9k5bS#{S6CfLH{4`^(3&+v#^@mIuUhEx(H2RLosAte&67!(>DqM=7njK+SW*O zS7&8xr>HBB4lG}HXFpruF6^rvva^zqI{3OZRWHj553dGn{F9NA7ejJY$!x5n)h5rF%S#3^^GQbPX9-Gq{i^lR3O1hR0aq zH5UfqXS~q5n`+`uha9Da8*E0bXB25wspTgHQ|PE-P1FNfy69VG(%YQ4xKQ5eSDLx% zQ2}c;!eUl=VG~E&OKNWtNp;1&&9`2| z5__wq71#i@zq~5h4h^1w%7dXSF>%rj=w)c|Wsu-Ximd}MEK+VQcw9yKVD<-|l+6QD zY{$Yt4l5KstunUts_@dI0qTvoCwrz+&gK9SGn}C?0@xW?UYXC?vCnm0{}F0(9jS4O zwzq@=;pc44M)%|W*h-V32yWtT!f$*YwpN!6#}7(ui*XOV(T}slDHo8J`LBI|rZL^J z!g^gtzt+t>)szoRrBrH7PLCAF$QO96)G?bIr$Ox4j)Au$P_u*Sine^NK0HfXKgd6L z4vdGfqrxud2N0Yg8k4uhl6a%`ie?$De0DDeJZR0NLBJ19mail3Yv~;+v*ESkNY|vV zg`1|ur2iru(uEJ4izaSXDZYUOiDSUTde2HKg literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/таблица.png b/labworks/LW1/рисунки/таблица.png new file mode 100644 index 0000000000000000000000000000000000000000..efc6236e63c056195fa3f44d248700ed877601e1 GIT binary patch literal 20754 zcmb@tWmH_t+OFLM0t9b@J531g?g>t?;O_43n&2KFxCM6$?(XjH?(X(AS^HgU@Aup1 z{5o?CMmOEFXUVL(pR4YAX3$qD5kxo~H~;{EC?+Z>3jjb-000p2u;32>Uzm0V!7uNu zMOEwo0QmQ>e-MDgWGnyx65T{V;OkdoD|;(DV=HSSF#!Q0Yg;Qr6LSLqzV>2}s#E!X-Gv-l?y0oyQ7VIv_3-SQ!qM_d@GBW)} zIVuu6pDF?lftaF%#h$e*&f%xARXttz{)qqG?`&P;S6kkI|om|36uc< zqVl`O>4J=y09lrN%147$23Uac4XS@Y@Tt`-oaz9;7-}_Feh&?B50N)R&kTto4mjPU z0KYN=H2e8Yus&_R$->U;*9Q0>z3z*C;cA1mm%2k=UDJ=Ntp!q&i2sdx)V383>NJl@<7NU#?xQ z%XBK&fE~Qy@p8j=rj@;U!?W}844$T_=CT&1CiTOYVF`nWB`$$3Oq+B4dOMk{;;ooyp)>3Y+~abrVzl~Th}G{XlPjT-g& zJ|(iv99k#UdPU0Gl*afqR_@;$0v^0YqK)>Tt~!b6a7&lPoEoV-SReYI1fzML>YjZd zmgMGhSfvUPixM?iGs(&6*x5c9ZReISEHoYBqdR5eW*~W%7UxVYDN3#}ooEcgq^hR6q8gkW&-%ToM6q1>TdBr4 zdAG9CFoh{P;n_OO%Ft#y*P(n45x3itdX~AC!(?EhSY`poQDT^@N&JUbWovd><7`!y z>xu7p$b%2^E^;@)K1XBqVn)Wk^4F~m)1`Nol1KUR6I#Or9E3J&dP{5f9C6JWyiP)% zQ){XVSC7JHlEcN@3tUM%dln~-)su^Q#{oR6RV|+OS7J6j{YDv5&vuQwu5*(f=MFm3 z+iG20eGdtQ?)SG(*N_-m>^_^Ly{9*kk%UO3@FMVPXw2YQL!>7vD+vI&k^%tUJ^;Yo z3;1;x0FZ?RK%grF0Gx3E0H)Q9D&Y?RK+;J}@Uy)0{9%)eHg4C_%S#kKnQ!u&04lsN z*<&g}|5)3%loP1GwxYg$5+5KIpvbCO#Ml*!ygfUDsFb!KN9z{|dAn&M?mbD1f@++u z$PZbGQf70D58U%;hOFVQG$Ind@RMVQwl^`YW0c#iy7r zzsQ4C;e=!+WyymxV)zc!@+7r`a$zKf-qYQ_0c1NQXUC!_}7$-%*(AYU~P z%`?a?dmF=a@Sz&(K^!@84 zQJOQZHjkz4^Ux)#35KmrkyjOc$AgtHi zjsSQMV%~^Dc1n|Y4tLnyLJNe>mqV$LboG_NH3Vf{4#UbFN=*l;JrY+Eu155;s+(VA zI8-M`=*Wc?L)I}!e%MfJ_WMpK$5QNzOD78XIlb)U*A(95x7eZ%o-}-}EqTrp=Wv3* z|0?Q_H_{ppnT8s9#FT4MgMY+rc)ldQJ**u;CM2joL;^E8oXX?o$m4FVQ~%Iq*P5nG zypYNZmouo=WGF?G{GjVJ^BB?b?Z`|}Fm>VJchAeCO6_kYLH)h8Ho+c^4OokxFzomJ z2O|OZb4vIF7D>-Gw38Z6bM|>!M=_V)6udOH*;rCEyuMgI>3(Qv9XUb_N}<$CJ?%@N zB`-c?M=yQ9tTYY?UQVm3-irq5#ESJkpM=IQS)Y8YHI5XAH7s}~f?&pEi(0hD&8mIO zu5oMl1*_AB@^V8-*a&GrwsenTf}4nefq}gO)`fw+EM=3IE3_bxxbO-!XdIRg7-hC7BNu?D0h?@aobo!9C3+~-onl5d#NUE+f)3bD%u7IfwZ!AZe z;5uFX+2^=StSj%pz(#N{t7qmdxt+rUUC>JoM0~6@kJ6Jf=iT#Ak*8-COGld7%O2-^ zEJR9PM&hnv3X*y(o))12*F(vPu=H(@22~raor6JihlFo$Av)`IrW^PO5t9L4YgdGZ z7f(J?@!IT0scjeHJkbP-{+~kBDJaE5-ssL&k=rt8Z=3~$ae4HSro{b_n~>~*H=9Ld zHz(9Q{-+M)&;zpO?#&KIW+Ssm)Mf@B0d89D3r-O9oJLZMM$gYxefIK6EehKw6(Lfk z(6be>SMUipHGO0d$?j**N;aSAlSXgNDxweH>tq^@cc|e*YrNJ#BBZ&icPyi~%UdHu ztHoC9`NmG%7A}@TMO%If2#B8jS_>Xzj#N9fzu2jTP6y%T;cWk6BUXP>u{rwmE01}8i7waxIjNete zg_>w}SoG`3RF+!L9;wgDNi%bhnqC$-=5G2dT=z2Y=aC8}X_yE%4G{t_&g0Woc=n3j z4fGR`x}4O*Zd3aeCyQiem8{eAQcZ(lV?|a#J$QYhr$?u0yvqlT`;MjNA;3M zScfK948eQNc1H=Q}64% z{Zkq-O|S%l9(1;UiB>}0#hp9v%9$cl%eu8zk3jVO1QBGI>)+sb$UQgSt;p+M2AE{Wm!(RN zF{ZsWqpz>`uf1|tEtFpsEd>j(vC31y5P`*@+X*`%PkTQ&&k=A{10FHgc|s-d!CkVU zUe-`69%I&N(A_tq06N*k!A#S z)^B8N&ZIn#2n85*vhv9o9zkPtG{FL)#j$1_&RZ40;T$Rt z<%FYlI+y@0ye<;|C3lye*$@cjJ$a*r#b(1y+PwAWBnW5MVKH?mFJ~xkwHvGj5h?v9 zrSXoQAI6bXLI!4M-}Z%ofo)#2y^UkajR;aVuxHQ*L%{iK&&fA*wlN1iZ#&E>rlS%# zO*j*_5P1L(?g5f3Z&zy`ouyN2je*jHNM+ap0ha7ejIF}9esgbl0CFt=Hs9^W>eU0L z7Of$M9b(L-`1#9m12)eQ*crqH#tHWAlguSN?zx1^Q^pUkH#1$;Ib>}*L$ph~MLO-F zd90=uH)hwaq*S{pwrY%4pg;##*i~=i?adDu#4ZBcC&`}-0 zH%EKkus`4w=>C0-Y}!6JQ2iYrCeQ^<3Jn;kwrc8TzY<^-6xi#(G05$yDX4$6w%vQI z$+U>PW|ngSthJx2SMp*EpT|@eLp~5`5XcfLLF*{!g2B}LQPoT0FCMa9garce#pAhE zD;8Df zs0mo;txeB9cVX$%oQFgf3fU+kM7xN{9{EJZ6=MK1^LkzusZF0wgi5a3*1Y1l)(&sr znPF$9Qu{dyh5{(crGJ;oLwndw(_AQpr@AJOow(>dr8jtbKOZoiOsAT9c>I2>Lxf3@ zXIjmIkzz0fmv(Bx0Hu4_=~`Yv)y>B>9iD2dyZq8v>g;hs@-0pnf4)VPe%17%O`JO` zHbY;AMjl}bRMT0{^dp1314%a*dY{= zcAk3{Ln&-x^0h8ZP^o7jA6@sNl)%MeCY7Yc*+yY2SVk5H43FaJ==@z@Y3^loQ^3@i zO-};t+I9^?;8C&D8bVvFJ0}1LeZ(2`s@Z%vsWvW#373DPlXrsk zRf!t`lLI+Ai#X8Oxo;MdNjWVEc<}hpGMqdzg=oaVtydY)D_6NjY2zidE9dhDgf^)S z0I^f`mBBN8tZ=(4c=+~Yw59lC5yLi60ISA+*m0NiSew38QaYA^K*D~JC45wP&+`m# z_GoQJaJ@C3(QBG~_bwlKb+tx_wb`0g!gW(?2?SaSv4YeU--HNnKEJ<6_q*ckv^v4Jvg!^2UFFoM9Uv%m+zi(EfesW!hobhi?c4L5I~5)SU7M|yQs&6(xW zs|Z@g*9mNz)G7%!+h#jqsVKrng!GC9G|ed8gZ_py{UOf{#lYU{3hb+&fxS^mu?T$gYRkFo2{spvqH03X54 zmQzXK-7@uDxp_dKIux0GaPP|-FSJO7)0D%i9_#o(U#`w^ou&L`9YF%02+OF3kIi#N z_n;dC>aGe92on_@7^$!k->4~=L)fSxsLv9*VysU_2|8DCwjihK+#lqP8u=U&NJa88 zl>Fl7vYek(fp?6RLVS)^{6b1#&!DbC`|I;(Ae`x_G*CSbu_F7Hjw#PYL{QL^39`gV z0mTU325uvEcn)ca7`jas!CcsGdF5jol=XSngOf4Q;4$9&3(wO-MjUM~wqe59r1E$g0LIPh@kP+0d2{3`16{dKH(fokb+ zujAg$OiUoO(zP5ad`_nMpjFuaWyd_=7{#ZxmAVTr9O~D08~REa(la$ZjhpoK+f`R* zUTHK$$B{c1xqB1umz%kP5t^T#;Yc^{Hf8p zNF_eZi|HX1B(^*LO^W%`IOkOy1ZCewhgJ^Jv zUHD;jI}wIp9kBl{I2sedtZ(;lzuacwDu8gUDHBguZfXy0I{BFzQ-db8GRz-uT$|IO z>zsg_S@LObr=?>1*UAZFkwOO(N#RJd9ibJtAIR0mc|)q1zC02$@0P;4yg@^KEqufw z(utrM>$tI6+UDL^!E%p#K0UX#V=C7??XoRgPzlXpD6F0 zX!=BCG3A$9DnHMRG&!H|nfce!x)h7?BuQ_9}h2jL(23Nno1f3XoU;5ee?~bx8 zDc%l0qM2Up5KnGw-;5p}L%Im!l89Yr?+t~uob9leNEj+0R3RRWSYKIZUNFGysPM~h z^fj5cIT%~ns51U`IWxCIBL%qu$y;4ag3wd`w6LAOaM;u^@bPrhf2|1XIJ9!us(ARF z?#%0$bpb2Xd|BKrqzOGe@Em4W&bNIX3GyMOgV57sw#_3jS_{kSRbQz(tyP0VR*@qB z)&~TNxKGEakGdw^dW-37)3-PlaSk25{4zWKcN0y>VIS@pj?E9ao?_f)hdpi3A{vbb zQI4?O7}URZJ+VQaUM5E$j+u*0BO7&D8|g2o_e>UPyo%)}^6Na-SVzukYZcrj`J@Fx z!*F7+O)b`Xu+>`M#Ozjkl}7}I(Af3(iytAD5*Ds|zj0fPDvt@Uyl@wa!YAJVj~E-B!70`6Gs?%?CJ_be0yP0jmpKMFM1chLnU9JI=bhye!oMtaI0GArU(~4fX3mp)X$D5h-+0p@FX%MSgm`)YB8l~>P+J` zJ|F>scWBA4p*KzYGKeJw1X5}r`A;McG-n^C&N}NmB(dHra43D&$E%`4*aFY<_B{~D z7T#TK5gQE3gUK!P;{U(Mr2gqI-An`3(&BDgF%xc?0PhfOfOjOx+cKYR)dJ=IA_^pi zM=iU7d3XpUX9+>g6cz&ZJe{uP0XT z`&i1}FZ2RX97$=S6^98jXYh(yfgB!pl-YZ0Hzv_T?QuyNt^5lmFrzrm}qZ| zGH~ruTnwk4TAwS-$E>_o$JpGE8h6JFB-%+@pf3nZ?)smHe{#O>M#q#Y-}>Drv9g*h z03Gj2jF)}D#bD&0BKxxz1G4B-b>qeH3-^`d74Maj)b~3tCdOw?ESVtjh2N{S3Jg( z(WMCnHx)o;+mr2ebdF9#FYI`;%^zzVIl%4sQCKjyu|&ZIsZgDb;sTig0-dwfDhTTL z?IsN!sd<8s7ulen*=?@z<8HNuO9LMlV0mAiKy;u=#Y!zYcnxYU%wr(jLrtHx-kB%RHa%%_Ot+bNVu4SenwV53JMKMvBZ`(*)l2$3TiV@#${8#qNt8f1sAT1g`1 ziakOZ`Pm%Zbd81dKGHfsImTou|9>j>Rd*PHYb34~@ zK6aWZ!NX2|+h1%N?hKPou^YPGddjglLd)5NqdlTJP3L=d`Uwy}1-O~}F6|rE`diWP zP1y};qX*{dhO28L#O+p`onG2M)*?28!v8R=bIxXkwEV-r&=vpdJ|wCh$ecPpo}{DX zg0!Ryz+ADzLtn5D>n+ypxjkjruaH_rB?2w-4ezy!njdEO1~*dY{~T9SQ!fyNhw!ae zr|ztiUTOL*9p4_H?3(x7ow2;-BC_gWoINkd?DSGQA_0@!wd=UkZE0_F49t?1zHl(l z^6Vg!Uwza5S@Kmk9KlUL2d{FMOmP|6`KijJ>?m^TkX#)+7p&2GWv1@Km1w$7FBsWM zG#VU_=Bw0dtXjq$A2%{pqU%KV>aNU??prjx{piQoS@AJ&OAefObXJGW@EPcIi#B=- zs?DBPtkgMrb0!zAO1PIwk$TX|agy^jzFL@bKHH0Bgrw|8T?&~n6c|8zE!N9oV#Ksy*_%GN?Ci#w| zY2)|{Gi~bqQ_CZThf|NgQN+sz>6O~WrUOy_4W`>3+(*NavYor}>5P`m&8EK$M zcRVNQ1nc{jl8d5$Z|t>pTY*F_;|{Ck7D@+$?I1+%k{6qW78LIr@xcooJoEa$kgkOG zWVx}T*Pb_x5x*v4U3CT_CI&T>XD$80<^G!61^=%mw+GEJ9(puqRqgW4HPZdD9p?%r z;0MyY)`}HcI0q{nUHX3P7_zS`h?h@r{N*rW^9b3g-(uv>eb;z37+XzFvuv~%INP`D zo`%TIj#PoM{c=#tkj|CnQvLVM1$k#5`(EaBZEJ`VLXA7Zf3VB>PTuJ z!}%<2o9DMk1yYmNg24kxYWq9oaSOJ0?oKk4c5{rYURdcEfhE^(f@bz$k!7as0>{uM zcDrNOYR{vAl6boBeB5tZi`|sptE?T6yb zv%yIFdo*|CoV+Hb6*5&xwfakUT#c_O#v8@;2ZvggD&<$=eyig`4`NO)kW z6Oj6b$3`OENC^ETZ1*W`od@pf6|2-~K)=`6<$6bw(w6=~xpP?cdefysK5UUAco2w- z);rA{^G@Sxiz{?D6(e#51v8Sb-Q+rJn!r-ZY{~4SyMJJ>L~R#Uw&Lx2uu~dR+Z1ST zEL6ox_(I?|aSsnXEPx#<^}O%x3};=MUj;e5kq=g3jq1AoD*CHazaiD+&6?Wr{MHZR znoo7FmAq%Up;rn1<2T;=4e}M@++Lmt>2Jgpe2ZKeW)83lZOPhWA_3tFW?e+R>rTGX zWYRSY!>V3kOnn;R)_u`3%(xg)rA)d}qq6dMddq8*)a0TLYu&1+*iNQF_S+T@FUdOR z^1Q3t_h}cB&f|;b)1$~Yinx%##eeyh!w|WeUlE-4?nMU^bY}j{qS_13Vq~P3hQ)VA zEotu@28>L9?GGv%9rZ_oD_xSbhJF%Y3Rgc&3<)kOXZOn@Z|K4}E47a( zi8@->@r{F~WD!jLYQf00rgE-#D~ppA%;1Yn%R%#{92_BXGRW`$aw&y+Fb+}GM)U3&VS#cekCkyYK*~G0Q-_=&qnBQZsq97D!iNW^(V;i zXlBKw4(mJ}yt5sgF#q6sqap`&H#!!OfySl)gC<0KDNO#wrXu8Z2OMr)?)4HTzreVc zc7)7*Z#eP|Q$zJ_nRWWn;NHZyM22K?(GkM5}IX?l}v0F6Z8aVu_7(HR|fVrost0~SsudFh(QY@ zhLduCwpz`PD=wnpP{0*&{>L?3OgLVS)(Y$`v`!I$uxqmVBq#_*A2lJtZ3f-^-hKwW z293=jAPGi@61fouo|x*|PU4yduvYJqynI;h(A==;;bN@y-6`fqYjXnAdx-zoSzU#H z5P|RnlpmkJwmx24|F{HR)745PglmGXNQZ5;%)@yu)4NWSiBj2u({gnJrrp!wPzF&> zdg)oCk)NYtRdgJVZ_K_HWZjd;l-SkN*dodMZgn%{rlp^qah`XpsVF7^aOm;QYUS-e z^h52%@Z}Rcq5S_a&9MZGumU~=eGuaD8_q`F3ziSqfXF5u%nHpLj2-3NKYfCdC55q3POv<8RvNW!<|L$mhaHMP0Nbx?F3dR-_>ZQP|bj)`*x)%<8pudD-NQ z*V`#VITv?m0G?}}6TUa%5=O`{9R$?M;J$5^eb)UMi~)v%c|>e!sT@oX!=vPmb98W* z-R)O%nWxX0d+iJ4+${*ac32i$2`sm+yts@!9!yQbFzz)#JH_MB6$fi&y4(U^hy9fa zq?f9z!8Zb(CTGxaDuOXJS)zwkIw7^j`#5QZvxQ}WI0CFfefX}SkK>mAdu5((jxp=i@AkCRe z@EusTCp$2H-AKDv&6E6Of)D?&=dTHX65h`*VB{2sfO`YH?>kBNTOPU4~siQ2*oNI(Si&PU+sIS>uVi zFEy9!R)f!`Md0^dNN^LQR#i}cNyO#TW)M!nc2H-0a~IQ368PZ{gnkn%ON}lU_i4KB zmdC-Z_?gcqnOHAqRe!el-UI92Ihvu*O*;D{n+|&k3;q*(6WiE4^Kr25j_|i=g~g1| z_KVJ1#b$zv@L+mAE+#Zj!vwr&9Q#(RI4vHjmjb7PE)1Skrdo5o=s;F@idXsfOc7gI z_xBU*#}*@Bhp9I|nj{ac!t?9~w^C_DpdM)MXd+Z#{1rdDeeZA&ke8-hTn8RwGII&y zjXp21j7LZP0cp2p5ySV?Bd*vpCYZTSJ zoBqHDZ|Sx%&&8(=4zy^WH@-5+hcw57&+CCE%Lz+kzw=RrOBs{@8LV?C&3l>+j(yp^ z*qxe#eXsA-=X$H#f=wTfUjO0Va}D#d!Y=A9@PFb5yCC1P)A)2QkCUWt+lQAsl~+8R z3o=ymunL5vg6v*1y@DY<#0$v3@cr#$K>GlXA%ZfZohkiIBWcR7!C`g`95?@)qoJGU zveDNQx68$m4HBJvaCe~5G>VesO|vpxbo`(RwzhHJbEJ=-)psXD((p#dwvCwE6xTj< z0z>Cx`eIM#SGYCW&iO}&~BvCVA!7jtDqprS5>G!!+T5+ zAtRhuh=|#ql(vAkE3AoS29V4VljOL|Btl^%E9o1```Oo-vPL|T<2`J&ImCF7vKrQ7 zIcqDc0?^u#B10f~q-z{R$qsk6na>c5W?2}`6Ei^ozw6^fDQXcfiiFbScUqna zk}3yx(Rb}D&`j57{bcB?WN|)y5L+M&Wi13UBZyGz<67N5l=1B4_%EsUugFsScp%I) z{}}HFpL?Xg(8yO)pKGz~ok^N?;Y2lvNx0WtFJGq?>=5g?p`EGtF*{UjVVeYhn`pF0 zUC_-_90&~Rdh_Wwufle0#)7JHt}u~(DW3C}u_cBmx4X@*lQFG6L&xUzx;knew9 zgQkZ#<2?H-MvOvF_Krq~UAys&9#KfD3?uO&oNW=i+qp`$J60FL9=GI*UXv{BHO_QUC`<1fzfz4qjeuNtY(|guRXbKO{TJ*FXP?N4=MIMPt9PQz%-$=86ta@( zp6+T>ha=&d{S&ehmECv;mC_J=Y%dtMQLKfGlOSzeo2+Dil6jyQ%k94G7`>o*5AK`d zCkFnpX5NweU!mlnGo)`dh%;Q)qFpuNdWN_y(UV_)rek;}Ws5e{W3_D?ddq`)WSMg~ zAD@EUM4Kn6KZ@Hx6)~$*t@Q?5;pZl2U}U&g!Okt4WnHiwvkU&-h;q)L87-}aEb;RF zIk&q3rL13z(GfJy{gd(IZjC=|-(p`Nbsxqf!@$h=B+jAMqRE>r3yO~;+G~b@=XT9p zQv=!lgtDo8(Jd)qeOz})X0?v6>+b32aLTCVvzUnNRX6(=4DB^>ccZLn((L3Q)fYnP z?Q%3kio{}M#)ShKr#7!|U65Or6o!kvYzu2zakj&8Rg@G4l0;t`7;@+MC(X)6N2TmK z4ap^(>M1mTS&hY;Um<_?4>2>zZ1@OdpJcnwA<)wmL}EEU-GA+$K^5Zf^XVujO&V)dJ6yqF*bdgoq&$cCBR4 z)@9V3vtu@HaNy~C!xRR@b9GTRJ*)$QSdhnb@Lhej1I8487ZwuDIt@kp+Tf!=0Wr2Y zB38byPvjviNX4k7cV&+a=EL^4KpoL}HPlbkSU8EOh1sLs>AHCse&R)LffT{ASpSiy z3RXNJ3Jlv74{#DI`=}E*OZD$;R0I-|MMzX3K5==lmYN4uNrTfS!g>FTEBhz&6#+HK zHLY~mu4YX?dSoXFrv~37AG|decI4q}ayb`Rm`!fRx_!Ise11kc9-u{GfrIk~6xr>1 zW^8NZ5<^{w z(?>%Q%99hisgqM$=0j+>mGk0pOL@&UjyF@T?F15Xi|l?yg0`h7o^SG9kA6dyf(wc& zz{}8x$P3_=N*{FCtrKKV&%S%7ATC3l+;AYDWHrPsg@xP-*29f!s%)vnLuJlul3oK?4qKc=dB01Ti78)<1pOQ-f={3H0&i;DF%3 z_<(*x8g*u$rUMuUM^(x|OEZq&IJ3L2rBSwI!@`8tVCMkoeY$d4A!xQS6P9&CX@xk^ zz{_2+SlyyE9Aw-@&+O2k&x^a{AIg`rg|nHUvv9}nI^vm#h$m&`5%hj7SQiJJz1Hj2 zu8E_`+d9!t5Kf-5be+Q({rhK2z7P~k}Y zm1FhP((%MN?#5{uq8w1mtm-GN#IG0jH9w&qzkB{b5FmPdsNbnYG&t(+m>rv8%<)DM zrzFNYYoYWf`{$M`Awfo`3}W%$Z@mUtOwVqxa|{BZ2~8=2f4f zipCwH3B=Jur!ZB14}TNF3|c?cV35H%0){2@D&3(&0r+~HGG>;H31GF&GInHn(6>}J zinnjz1E)VNs#rC>d)q8>V+DcH-039jdK-gEhLX)=frOQznf8UHa^mne5zU_RuTpve z*4xpkvtWa>*kzVdw)Q+ex)ptb+DHZqP$@wxM^mb&Mqkb(mGG!?5_zHuekqgasOoqQ ziRiDPYS`HFR0X5f=5-aRc!}g<0eM~UU>IjFQZlSy5;;y3T>ZMTo8)?a`)980!lAwo zLOJfIjx#FKBn6ezU%x%p{gfw=HMe5U6_4AkE;_&`PkOCl#&Zxmtr9E{QVhR*xMbB` z+xQ%enn_J1+(;_Ko}6GL%JRXd7=k3mntsQ_m^&33w7rhz><DHD5O#9NF~nA9?zJlK5Z6@sB$~ zjC#eZr4cfd@V~UJn&gZ#ZDc0Cw~iLS)T{_kTqb?N^7_Ne<1AmzLPX=)=7x9{c)rgw zGeZf2!mdna5}Y*(#5vzc$}!<4<{scie-dvp;Fgt3iuxoj;Pdo*DKSbQW+6ju-nefN zJEnGfD(B=LdrR-;#A*o7WgS-dsDCro-BaVDpp#0tSNS((tP1`}bGJgL`oXXjZ5$>- zb+ElJgdIm?$)Rmx`k=v@@*r|#zcRkn=h+?#bYqI?nerVi$D$Sp!^8po<)%X!p zhR2N)rLh^{DU)f^=hbXOOWND2PI4s!Rd6M6Hii(qrVN^VlM`u>rk-bE3-re zSE7ZTf^7`+Q*c`MV`hII0L+G(o>ge1nhc!9!i0WOB1R<1d!$%YW{w7~_!^#Xa!6v! zDQ6!(3<(%g1e>Mm+Pimb#Bk_8@i;I6N_-UomWRc4(5r*_i<0;v=GMm?&~32!PAg#0~=*x%gW9=y(1}X_jDgyDeJu7H3CsKz1a6i(Z_9* zBhc_VL;IK$QhipW=RL(O6iGynm!wFCw(9hzrF0->g!jOaI>94?#gmXJjX6XoSm8ZJ z!_$|b3CjbDTZ@NO+*pu71>`kYK3RL4T|o!qG*TM2n#SFAJjg}m;5v!FXBY9 z#LomSAsEujP5dcJrH6J!g?X0ZrNU1*_t5eP}pv^T7CuSJyhh^`P0y`_8lDG`S zq~`2poY1%M2~+@BX4xAFx?kJ5;j9%oG5yAN(>yfaVyH;dy+KW)wt;T-jssrWeR^{tgz$pbg)b zE%a3s=LPmtB)s)&C9Ix7R!_1R$sqpf8yu4ZJ4qOuz|CQP!NfyYXxnz>avf4TbA<5oE!mI2_?di%nurw7=;gG%dsirh8>9{G=wh zxx$i64gyJclnM%Bv>s`CYNTa=MVR^I3oD12+~&ABjoO4^%29A45OMDwt;>MIb*6C{ zHuJgBT`s#=|Du61rx|qqD9`(QoZXg0Z(dN7$J@@8=Lw80O}bEFiiAT&f)m&ujA=|J zfFDK;)u0CG;Zwc^>MND?h3g+u&G}Nb$tqveS5OVf_G;y>B{3!xj1>3b)tRAw6Y$8i z+V9%{kCJutOe#@{5B#-M73!%|A%TA7PR##O^yDg7R#gj`bt~K`)Q6&~RFB<~CN71L z84Pgx4=>rgVOce;bA?k2_Qv`BfJ$h89@beb+M2atHSyFBglgze`S!Lz4_YPyX~@V= z+irvU8pG5^xpgRt9@`qG7prl~G=8i|;Af}E)pb2?{?Fz%SnA`L|F_il2>;)tK6_m3 zzb?U#23D)sz)u=z$u&IH+c%cTfLHxL(Gd|LB1QF@%#?K39r9`SV3}1Ke&pn^l75Tz zho+K{^Y|^9MWV8z-(X&ov-x#PF^-k;w?XPQw-rYmFT+jRb@plUtBz+?!D0`nb}<%i z%+1sW#~9YJ|6XwQEuvpb7P=PvfERK{rH?=Kr5Y`oOd_6Mr`;C^b^9Axxb|d; zgk>Z*SaY*A7<65f7A*#n_c|*lKohD>WEe9EYfucaUD0%J2+xEgI5jd+-!&G2e{ z5@Rj62nvT5U2?T(giMq|rOYfA$?Z8gaT65mhOX)w9?K6o8`=iP6Xya|kEo83BC|(b zfjn&#|!&O^;vlM-0E$K`5iFb5tZ8O;7K9HiiJ} z^qa(VEamsWIqaay=7&7ISiAj7lZhP3BtuJ5XFaPS7J!k|Rt`P^SQUfRk|O2`Kmdj#V3f6|jLH*Ro zgC#&C^frtassD`DpF&YXYSaY zjntl*bFyVsgHIo<+m%$# zm?mUHS%yOc5MTR%eH+7eS<_c9>)`zlV`D(ekZe{W|6I9neRDPmG;`;atUSsC?=u5{ z)*l9<`%{gLAy25&1DGEFyD`8jFt&^nT78#JQ4*VR&Tfw;K7$K3APy~Bv1+s^o_K}k zS;f|Nb)k}kvPkx&HZlp%YfLd@&dVi^=CHcXQjN~_1xs6&1OifIy z{7lKTFX`SCcU(}Uss^uXKXK*gksQ9mgP;n7q*@aN*UO<@F&7lWg&mm^WK7>&$|xzI zSJ<=>`NT?vHSHCsfV6Vuz+Ji?K3AqUxSUvSxqEW zt(NrtZF(2$0Ct5V%DK_>+BFR0L)K2jS0m;aMzViYJsQAic#&CXS}^=bLvs`7KDRy% zy+bTIyF;|l$Lz`fqf&~+KV$CGa}kp|Ie!&emte!lYwC4aC!z@a=<+W3?V0@Wo#R0x z_IN8NGDX_RP6%6K&(KP&g!iCT|7{A~598B2_p9lNp0z89re+Gw6R^7--9^1`E0w}( zF%J$6p*%@ef3E^EI}gMeC3ALGZ;YIfpbj5^FnyN#1kx;S*c19hs^t70H!|uSW3W)1 zUErmS{_tlfF%j=iaUA{j$#EsxosIOMarExQJ*2UZ5Kvcm!EnM0=Ut$62|=|(v=Xv%`W{JkK0;+?sWN)-A2gQZ7W0`mOt0X4u(+m>D@TD6 zFzjK}_eV|w3KC&Kfjr+3|015l_--6}&2DK`O_-GAS~(ZdG9}G`d>1EKRCSjcHTcQh z^;%4=K;I33;{EeT9>DGDinx|HLxv4@T-snAE@jkjnS4ZAY(`|~ko1S|?Avh+?(KwA z$_FnM+$ayxZHU}Hw{imk^Y0@=X#yLXT;w7Q@AJF3@7a5g)ez*0*6CJY*5N1 zrIZnyDe&zgxYwHn8B=Mo(!pZ+aT6IT>|>(c%=pz^4m3Y;=)y885&}^Q6nINwWT()_ zzJJR>aa3a8!qZ#7|8N;?FLe8}c#GFEw$hVM!&ry6N9e`_QX7-qEScE_>!Ee4>qcZh zw@}nse4$k5AEU=9nF7o!Uw#!%NKd+B;+@eCL<4MfsTIkJ8k#DUulHKcn|~!olpUN z_1)G=%sWUq`x6#zk23*cHJ?K6Zeat09>9|Vjx_0TB8lxPu+o43AlTWo>?X7>4NB^k zlFHNYbqyADR+c{LmRwz8*grR%i61HNQ%Z}@lAE@$G4#w0ol64<`VIuUkA_hWec^!> z`Qu{&=|rf%NV(FmjlmD)gk!jKk}_5kr#iYkNboFTNK9j%1bVIX@IkkBof6SQ*N447 z&~e|pp%|~`cq`I@#2O+hGMVNLn}yqP*OMv3l+jEA-ns2$MzwW>Q0v8a&04DAnPM!v zlYsr~Gd4f*u4Q0BWM7!hKQ=?@d{l;716l7^&!Ks1JZdRE@j{mQ{C)lSXFL#uXcp@B zjf>>y`o+`^x5gu6Ah>sAt|<@%eq1~cjLA`yKKsjw&j3pvBdjM$FcWO&Bk!*JMBfGXX(LBo95pJz>W|w~0*|G3 zRcJo)#1dSD42V!e-CF-&73clc)B%QJL=>zHgJDmZ3WP8PnN?&Nr5c6|5ePF(ktIlo ztP-Yz5I{i%A|N}FAw;%DA~Qi*A)rtQD5DtJ7fhp0leOUXMk5ZPSKg zkoi+#&1ITzjRkGZ-oHrtV&hCCU$&Ni?JISxS_+T9vFSTFLt z{RT6P5Ha^Gs%p778{Qb<`=P5#{SHk}SW8Bmg(JIfgr@a>Z?@ErtU)Ov)wM;>bP4h4 zS0Y}A(z`&hO+>!!@v{EI5oiXzqkJ@cdp=!O$ttxFwVC=JzPDxe-seSSR0vL# zEyUB>I}-NADjVR}QZS&m*rKT*RyG-}cVYE1#n2%;WuzDo6d8lYJ$Uq_)7KK9hGZeW z)}Ti|B7I~R?y+Ey=>Fkmq+z+tZ=2%ZdKreAa>2|V?k&Uw{3#i)ec z*`bLIJ2vOsZUAovZZ~f8QFEmvZ5=j?P`<@ia1eFv&w4q57_mwh1yR(Ma2VBQRp^+G zR@Al$i_Y&zOf9_FI(VJYJbj5kW-#Xr1RcKsZ*dQQ*JSpTN7ME70E4N`OG$^8YS$Xs zty2k}y;z9T#{GvCEy}+6WmfKUHx|DU?QB=Lf9=Z=Fu}7m<`CUUDfG-f4PRdLS62wJ zWmt)Hl<2*9GGu?8medYbHp|0UXcnp7Z>a8arh;UKG99*5UyfdwXGP2{?R;=kd6B>P zfX_5Jl?)FZZ$q9dCkQ5_dinl5Hr_^LZ=ADs3cwb3-xwqg?}hDf_S-DsQt%%0X;qA5 zS>Xodhfd$NVFW}%nix0)`an!`wBz`Uj+A((Yo&#`upel%KqCFH*%ka=kwz0Z)!);& zouFcRdbmP%z;>cL)Wa~~EDY2YWLMl5DBT>B$yF`ycSbM)Re;!Dc~~hA8T{4x|^q1+ay?7JG7y_`Z6Aolp{TIWL?A#zowC5fjcZOrx zbh$U=1vUH2q;r{<;h&iSx3xbVS*}8`pZVAcxuw;5TD6lUR~AXKNze?1IqKip%{K1r z(>=G3t?xT#DW@6ba~367eFz@5*5Z>iz4nRRvapfuVUq{I1GHt< zWpDjhfHoj-%c%ZI{?e@2a;AJ#ml}_HB~zpauL7{OObbaJ4!yV`aJWsp2LTEL)r~^R zq@)+1$6*bb5D|s1I7{-Yz8nHh?}Fsf zCT$af(W2p-tq$xN+Z}4vOB-QMF**z00FGG&aULQZoeJND2fN6KL^!fSiM=Xv2QWFi zy2!_u$5d|*CrXW!GzgS^(0JdZAjbR|yp-l>_WXb>%Uk}X>vSYbi~iPi))Msei+aC_ zN7oOfIi_gHQ@}u>nC#CLPtm13_6@yiidOBTTxFq<#OA6mcg8+#2pnvLO{*lULNeY-Cix52pDu?&?3(8Fg(zF9ge>&>dhUZa)i zKXz}v{xGHH1nxHL8rDj;lw_%$2>k3$TT}BR#AAgQL#MuETR*Ns*2*Q&S?BW^r$u2D z_g7JFX~5_>{IT?~$Hjl|T0D$4S!UA_acJAg1c``Or_{6_Q-H%)(A`bsp20`5!|;WC zq2=WS_CRz|WClN?SesR{6w(+QCX>!zddXjA&_YU}A6ZtBk`(_zxc>y@f6b5y60Z#pB$71Ej zW&P<)(#Zgm@BUX|>IFEBUlQsUeKxlz(!By>A|w>O(DfWlbf;8`=*i!Li%&s~A6W5G za$CE5L3Pwy)d{k|pyU>s_=J8uks6bCN*naQP0SB>qRa?K*K0K#O;UQd<3e@Y+x6gJ zF9Z%FIp+0XCUmBM>#=EzOig;*AKhv6Jah+|mW)AptT`dQHPglGKt9>O!mq=>*txp z>+T%OYwo#5TS1jNAsblp(g`#|Q6a16S=DsiFeLHc9mH^NZlgA&ms|IV7|EqCz>TPp zD&V1%Ctx&Efh|@UE$e|XlkD5edtEBNT4Q>Qi&ST0L}TP-2yB6y-*Ua)V&d4HRvi11a zTbD+X9`~B3{VO_w0UvH&pSOpE)M7^1Jc|73x62>C^fqVUIygOKka7VWBdDTybh^Vbk+B# Q56TWLO|350TyTy10~jU?+W-In literal 0 HcmV?d00001 diff --git a/labworks/LW1/рисунки/таблица2.png b/labworks/LW1/рисунки/таблица2.png new file mode 100644 index 0000000000000000000000000000000000000000..b5715a3e44850ca404d65b9b106ea9c843b4fea7 GIT binary patch literal 26448 zcmZ^~Wl$Zy(>8o?hvHVG2X}WZ?(Xgm2X`y9IHkC|yW7Ew6nA$!xV!WG{`bds=KYY_ zWHZU^%qBa@wbw?fC`qFs6Cnct05n+{2{ix!dItc2B0~I60mw*MMEXx4Im_s}0RSl2 z|7%cyj4T2G00!4qTwF!P2ILNMvjI7i%ZiJWJG+9cY#l5C0Pof6=>UZoC;?2<-AJvW}ymm z0?3gdCHrC0c%3?NS!+EdGW7tc0-Ac4MKnR%FcrooAzQjMct_14i`M}FG8#uV`4a5- z05z_1`ZvpMHbj8UBUV^=)D>tMS#Jzr1G`K<%Ibn54hT=`%iKLj7G(5 z2}JjyiwFxxEdb;S;?}l_3$myXVgdpgq-3J@sHl-ywu%LQJI@NS!eXvf38`Y(D|;Bg zcs~~^ZhBgl+%p{FRqo)(Zn?4e5l!1NhYT}G{YyE zKR<~vWvhS>UzQ?BXH#(E3HN1h_{M%ynVy>+qs5>Wpn4KFHIl5zJ@`D-nKtcU_6z?` zQ=fdcYZ@+_TwYCM3$(*>P;<1i1yA0^rjMW1_(b@04N64srTC8_GmM@Pczu10Y3{lA z$fV6gH)013w@fRUESZp5Z;4b4^iA#Ln=jg=&PZ>K(N|k6; z8AjZNw6rX|Je1Z4CAxfn*QYz{3a;2yH6VvAJs1H6l-iNr5i;KS52s#dV#_%|*VKKWC#~Lotpp zhDcBNI$PEY3QlxXAbWNjNKT69*g2XLfg$ff$sORF8@ZY3zRQ5(5XEj{r~{x&9V~THN02Pvb{`jG?#{g8mYR%DJew}yB;_FE+thkzhHi6 z%nKo@Cy$6ij*!8Y@V)GM#PYr5`qq_te)ww6gLL&0$Pxz7T|dmtZWrKq98b5t$nv{r zKco+VK^Od|!l$tv9J+(fyKT}2gU(BE5e%bDLUcN1jESzvd$pdg#33pnQPe3;j4l{N zKo8_*7+lLoL&yP()aE;Tm@%Z1xTnFPQi{;`L4pHk|<7rOT<nPwQaIWn{V z><~BIcIdFwN)ls2Hq&eAhr~ub+yR&f55587~ii%K-CKOLP>6PR3Q>%7W{>tgNvxf9z6cc2}1N&-~-tWuwI(m2IV02m2MtPyFog^xMi0yV0q1?VE;eadF% z`5l0_q}P!8`{1<6PmV%%2hZhK>|z(8-xeyM@6Y93wGDnSXa_Psm2|E2f=ROh#T(#& z7i;d-8)d(Y5P-Z~%4m0FnZ)U72Ax%CUkue;64H=@dkCMp^-l%$5;(Uoz`#(t1IWug z3y_8yGDCZGAJLcf?hzd|bxMr;C1P!krh}4s^`v@^n2jJNkK-ujk102yXz9|A@1SY% z5=>S}8msISoMb2ywzN8eahWg^_5*^qnRFkPcEGJY&N%&Wgj`Gc*Tg=Pp)A{R*iiIr zlUZGMxWdUYm@ZOs>dg`@b@z~aUwCXY*6(42Zol_ORBe4GYyR+5ef?fJOH4jzF&{dK zI3QgDwP=`)Il>A?jSfm%deJiRU9oG)9&1!HH#ZJkKw=(` zV<=18y|*;}t(zp;ziHbep?|_D05-(EYZ&`WoI>9f?dq(1m%dB32s2x1EC*h6OnY7C zFa>+F)XHpOc%HF83s5B;>ET7BVP^Zc&V8Bc1Vvs{XFIO3zkAF(7r$Mx{{g$l^<)-N zcX(De-2J2~($6l|$Jx4QUUFphd!%hS%EAfC2Ob`72q4`Hq`VxB$R{%}i1mp_+cmW9%Pe?=h8IFVIj z7NL}0d+OP?^d6V8aw3~!U)pEy;)-tXliPurqgBI#Bu74HkCPqfnr6p+$_P5#YCfMS zO9Vh5wzyXYGmne@1MN*!7#XSTm4081wS{gdamxlr{uVV&%zu!#s@CgX=IvbH z3LG*Se!F_0j=~8JxL7Dk^w4yhLiPixf8Xfvve6S^Nzjp>Nb9LBLV}YZi1E#FbL!6; zB+WkIspKs$bzt$WC@~T0gb9yt#YXm~oPM%WG9_iLVCxXmd1&5ceW#sM1l+v$_il;M z#aox}@*ZeA(XlmO>t2ETObhMtlh#M$XtwsjgDC#n5F`mqm11bOrbKV*S4$*!+f(GDgt!;8%~ z=xdVQhaB-2rsY8PG|)}j4lX~gKZiZ&8?l51HrJfwey9g9QI`=&(o`xrOHA7#u`iAu zMPLUj9bNydgSjH*F~{^s2b>M{84-!hD$N~kC%h48lt`Ho-#3qA0Nzm465VF(>=Czf z=t=C88cI-7wfSZk>|4fLED-_g2jwG%1H+<+G0-F>{P`#j2`GW_la5S4j&x=q*==z| z%n=YsXSdYx`E%!UU5;+{Vmjqn%YKo4Y8JL^(Q58yNwgRNhPpQfv%C8jk^=W@FCq^* zP23l(HZSua1BUIyA*QSVHr?qy@>nQ1Ec3T@-Gmin+F8HF^{LzWtOaf%ypMNOG-b{P zZ3Tikgjiuf&IO;!G0@dwDS#giDoKd!=0Kp~0)7m;ZU=A90Bo5i^CEi(}fzZHp% z{Fou3K+cnl`5CxD!1rUOfPMAIG;G|%g#tF_r*;!*MW31b-v}hD^C8$s{RIlx&;*~( zY3%0y=q}ZYiQYd}06ITIe}Lk>;y+`*<$aRFjY|qqnV)x=fYja9Rvbw#Jx%ABMusn* zxu;_o8ZP=~G(O|k%?|zec@I_nK5M3PcQ52_?WYECCgIiSiryJp;u~N$brE5k0L4A= zHaiva^JLrM0 zHxKaZ6<>wlRm!q5SjKo`5$e96@FZwDGk2+zsLt=r{}2$&3TC$?x4)9yL&;j{2Dv`6 zWp%5|!Qn8t9Qhh?2$JWCWw-R;Kgs>V>eBqCSqr_Snqny+iDoi$YQU%s*q!t`p`isa z1ooagelb^dh_e_uj^Fsvv9xtWLrX^cDbw+pwF93K8}u0~)E6wAb&n8UZ)t_)$GBNT)V&OqI&XrS~J1#b$-Lu}K7Xr67`={Muy)T$=< zgasq_f%#qC8IM+oa(7b63HjPk)>1gnv^ME*{&vi#8mb=na51(AqbsHB8xE>ex>di0 z5_9hMZN}mp)#!eT=Uh-VVZOF;r9J@sPVo!k#qCh3FgTb8GUWY|O+wb^r-SzW zT$1I71&Q7XmU}%-QA9XOY1c!-6c?TMkS;kR&SZ2U0wiIFBRJYOyBm zK*qJX_nF!(rB|vs$G_<0%0(m}kF2W}s#9 z;0^}e;jC4D7@zX^YP(4O2qwZTgbM744uO)vgHx%8R5z5VkT>0|Tmk}>d=n^y%Zs4l zXv(*?&@1|kI9S9-!QU-0-iTbI8L&xl+fT_(>C9B2QDsh0;?G|y-k(J z$&B4$IH_l#%Or{i8=}?j&fI;XaT_i#{RyE+FTI zZD{0JBe>+j1TN@OEQ9hT`i9daH-?u5_nWgRd=bf<6GDr3SIdnojA-|CXw2!ghJxHks{l<2$+t@Kbl)_VxV@H{Fb$WNYh)o!tKyv* zq4O6(&3T53?XpsSPBu4*<+d`yU*WMiI#Vbi^ETHTCDrrIduS=gkDSA#p*tLdo-JC-C$>7j^3L;S!~xD*6?Wd&3R4yjV%NI7VP0?HeDUDPnBN_@ z5xz1a6ERskhgef||Gu zFAd7TA||VKBV0v3&C+&y%t_YUh##(ZZ-?d496aygby z>B<+A0I5KX&zPNOjJV+|{|IRdZ{YzE(xT|3}sTiN^XfGdS(`fzr*Y4S<>Y_05CzEoe`)pX^7f?}|F|S~Z$=NX@^>--9Y7 zsGnQ3=OP!B9A55?r7^*{1|mJ9wc&pB=+K|aHXrvyh%3UTNwtBx+J3%E@@G%SFrYm! zI{F7c!3QF(08D-BP~EEW1C3j^rT2QLyzITPS6A0cM1|c((lc1QYj>%%tI;7}dMjnX zNk+X~Ob?9J%BNeOWGBqBNunxKZr~D)?lE(qB;lZ}j;P5D&Zy*E4xCwT@_qRA=om45 z=ZH*$kq13K$rSaC*mJP`z8u3ur}@z7xQ{AAKQmuVLcQ_CTzJNh_%5o#sJ*0=H;|+2c&x_Rs@Ckm!E)6B=WwW) zt#&1Kd!+~dD}ROR0G7d4ii6@q)-1glotlVp=?a-}1vjn@cBA}w4ihqV>$Zm2+z(Qh z(>V>fSUr0uUR`=FxsLaL&X1Q<3xQ)8CUd`amQsnuo=lTRS`}}&qX)Zm3BqutcTrHw z5RXsI7LYZn963f3mZ&RnR5dH};m0c<|M~UkF~uR_wF)chrNHra8*8>zbG%r-QjB3R zSLj<5%KhSww7(NiWxP3A%38iZrZ2Xd&}_{ra((YA<-(gn|De%Yatz=#Fh{n@ZP2s4 zaU#4?rg}1V^H-YxfXuRF9Mr#XU5r*qs7vcOHy{}XGJOrP1E)RwWPiw!9dK@8tCh}X z{#;mB>f}0%Jz!gVPs4J=n<1$k4}WC7A9!za&;MllizQrjQtH$ zPACh#!r%WHLl~lET(>a#4`FfnfhC6DPe3J|WhbdOI)pz4>bQa<%TxLxPn=5oQXRQ* zabDG!rhIBSab^%Tp%+O|)!?bQIE;%fH4tTVqMLuN*5#+n4d}^n=@cJqb7(E&TACyM zyStYK=t4H<{Gbg9U0kjqyQg-vilZlNImImP5uE*++cuLVXr=Iq`#Isuw{-GoUf2|C zrsx;VPOYk>eQ>^9bnV1wr>c~%l@w8AR4;f?pIXx2%$uiB6S7m*m7;N~jTzlG0mJ1I;-28unsZ z#C0Mr?Uuggi3S*!!H7dgjP;H9)gc`}u}y{e>Ajd3gz2qb6nfBfKOCn6jJAr3G0h%c zIxI@bWeQ!jKf{r&tsVapPvOcexO5mY%q`{tqM%UJ$yWNC!MQ|zOek^+LM9>1sapjuyebNF=nJI$PUM_ zKOM-P#3I38rW_@s+#-9h@!-Bm(AC9D7U>W1P#jp#>5*`nQIx=fu`7x0R0FD0HfN0q zWBO#C11ShnJ>EBeMt2S=#Pft=OR(G9@IaXQC4HaUjd0=vem$v5z++&=Ki?U!jY%c5 zA*9-c1hu)F)53wGo91%x;%m-u;)PbIdP8=8sW#oG&K&3SU!E87&CQlk~QUa z>0(P%TlT$Hzra2vwIq?~@}G5_urYksXmMyjrnc(@NZn1dz^bM`CyeaG+k>vR40*WrpA6fDWp^^?5q3MG60P5@XE z1z)o98xo3DS_cveRB_q0()E9jX`_{)@uVElR-#j$A8>=PR;(_5a(*Jtq*fo_;|Q^z z1d3NK$WWvZRf;ojZzw?b2zod%XZ-O^&N~ILiziibpN_R=L&Yj=@U3VLAHNz{sVv3% zck_IupV|0M1zBAJjlA%$y!9Uw;b4Vu$OVjJ;Ygkm`zE#oUP8v4_kMO7iHuo_9-#h7 zW&x}l6zX<5@8EK`_1F}SGH^v@j>XcFJQyyNEtsgLo7_M(!?70bYW(dW(XXtwWxw#R zR3*G!*KgzNMLT-YmsKJB9mlMO)=Rq?ERDbnQ&dFQkRvI}vSuq8(3_BSi=aW~_tGV$E(>@4hZ=>iQ6Rdd#REV9besV@k#SAlhU;;_X9B=hi8@X`cPKS3KV|DMZ#S)0OACtKxJvXPne50$5tiH#-2oLTb=Z*q~W zf*g8|P^DAKYLuPFE}C~s>#Xd~lmJT_+?U;!0HJ{rc$CP(4sgazcPU|J`uk#;+NZ&+ z>Se-Q6AlG7X9=j2V#C;PM}&RTZcf-O7Lj0{sxp-K>NO&O#riYTs*UAbbMc#3b!1j& zz@FmBF_WK#vFu}{eA_?K+<%(Q+_&Z|s=xVQ*itt67sUvTE1wF*>`IYLq0>0Zl~8b@Tf5X3t_EiZ*8i(HU62 z&|fUtpc5YNKfAsPnu_wr8 z@2mt>@x2|UrJ1g9+vS^CFTp4%{)nmC8PLlxe*_eqyx>0S`9g0$N&p(wAozj44&nx= zy62LbB||WTbEr0qJs8Zly{|rT8LO)$LV(C709-UFD)c-=6xt-h_8>Y0ZY$N#P(LYP z4-Xo?S)i4fWhLJP-d?NEPGJ#M7Dw|1jH^^ z!`#_c8&v0(t0lsGbV~lFG74TxX)6(Gu0O%tAi^3z6fMyz{^s0c+Vw7? zHV!uCb`kVk^ z23L0{{Bj{_(c~*zDvzZ+2uDMud8JFc<)lD*i_xDkT6$IQ?7*{^Ryh>>56@_S<`td3m#GN#qnQDTqt<#?T@apGbzs2zPevbTIW8f3@#h-ftAEg`LFFkQGXa$`}q zjUA}zv(yF~)E2$rx`0>orQ#VNc{VD~_5~ui15MaLNe>wh-kV|@E_kJv6__lO%2e+RbvF~7`Wa0V+SW&ger1~A9Uiqp!JCKps33Gdhh;krvuU8v z{fnEaf-=uW*;r~lP~65{_*(2d)g9Pc!G3tLf)^T_z?)bn|6e5cK9^4w|0T#HaaPH% zG~iyyT&T=ce)$qFDAcZYwzuznYtVyQp6#qVMXPP;)@+da3Cv znFeu?r6tmVIH7A=^mMGn9Ho(kqDOu>&~nTvF40=r|gT+ zy0hQr`l2jo6$UOEmc|FIJ#y)b+=hVpQ68&fJ(23fz&YQUdFJdCZFM=k-j`^uzLJngt+};Igz*d zYuPG}5SYq&zqua+z8t-mpZTv@*}<+cE(P^YGxlSt%8VEKZ2^BX_N?L2q2J}iWB2=c z=mTFXny(e~Pt+(LuCg<>9)IR39ozrT^|xLAB;_~qPRAsTTMeORzLh~@CR(lO4Ljvp zABW8UAc>7?S!w!fq5eytu>yC!^YdXpgOc&SCSGgNqrE+>uVeXRPxBpnGzsGltbcdW zP2YDQhu@;bn4WcB^P1Zx5Dj1Loz(d&WjS0Poz9TzB}b51E#aetm5bkxgO3eEo9{XE zf$e@LVWN}n(e)%w>D{m1oRZ~gxH4-!?&;HCPMp`eJvqKP74Nu;mbKqqU{R%?P!1k1q3-8~?D)%5zm4jt5eUvVa2ZDYX76 zrh})Ur^DY{u69TrUX*L8(<2?NY`0k>|9Q<5Q<{fLuzu{&DuNF@tRe3n_UZQTYIsy# zF&?+`T+U|W9z$cOOzolSvCK?;VumpAIdW$rQzVr;sv?^NnS`_V;(oKivb$03t8?#f zBIa=9|6eHL|ImqTzHy&oWoK0{vinKogSIq- zJlH=~ZtA+BDR;hI^nRV(H#Pc5+G^~AGA_5@bRkG|V9|cXQr2Oa2bEbW6-lX(QvSqX z&MwKy8T}?FrQQjfS~a5oChOqR(%BV;dOvwW2ELvau<00VK#7B8Ar9;n2J1L79SZRP zz(rUYP(7qNv}Wiw?2lM5+oUGMDj3z;wiA-a>&zU{7iX-Kr zuIxezpJX|Wp~v-kA7#t?Qm?~q1u|8u^>k-hqug<3Ovzk5qr$U&qpZiL;^|HZwEAgZ zk_?X(Zd|=861~%tb-jA|uKAvJ9A0FpocoMz@ae1%F0lRlCh%@VdK%AZAKvbCT0)Pt zRHe-Do)IW&GClF6c2Sz)FZtJNgfzTU#8zTm@)K#GP_aZ@bkGTDSxrCtv9*Hd`lxNg6|U`}Kn^qHS+y2PVm2 z#&b`u&Af>F<3273aX&^&8|=Tk#xo0D_&b|jbr3I}Z}6C#DfEMg_5WJ`!#SFsCE;tl zsj@GH!sgMOF}_2I{+(@*qB$mZk#){BEBW_OLMyER>LJMKY2E=IIgOvIC@FikvD69Z#hS;jrM>;j}o1Ir@a+$Q=E^G z%WoDk_oq&@j0vFqk@x93E4;3R6E0agJwm6P5guRuRZhgPoK89}!Kc#RT0>?CJ|uzu zs=|O-wc@I;zuM+=HSe2JCj*wDjN5;lBlZjqW4uo9Yb6Z4ExiSbmFX(;nDvUYZbM4y zm=quoA9pC@Q`+DAK>p3sElBckB0XDcQ}27+8orS}dE>jM+yTL6oy6PE8{1daW+YyQ zh6U^H70&SACfEPr{4am}MNE~o>O`e!L|{Go^ov~I2u{rn%7QUP%fa}R}fU;I@S z%zfs_fo8gr=XXUl@=n!-bLY{uQ}NH;`jU?@wHX7Pc$VQ2!wgB0fiX|cd-$k4qep+? zjQ`B5Y0g@})kbCATy-;~h#aSVV}Dzqy~RtNjs}KDO>q!`ujVe84=+1ME?ZkY+cQ;$ zJsuYZPj*`=8$=lj6(EH{U&%h+*bKmxzoUms9q@cAqaz5i`ItagDM~Rcvr;sN$1JW> zTRgJ+gMSDxpOcMzBP(@RMWhB;8|wbCt^Hbbkrztd^&2}i#%mk zA5dGX=m{Mc({|i7KEVT_Y??ZN@uyz_P7T$4%eq@R4c@B zz?d;7LJr0v%@W4$aAnus4?8n8%zl~9MPJF>tI`cl?i@ysT+9)c7%oRr{wFO66LAD3sk6-($+N?Eg z3*>cAS-LFqjeYX8vfTu}TtX@Q^5YS>>Txqoclkk)gm?re#i-KR|99X8@csl7o$_Ow zBVod!#|U8?_uxeIQ?3^zH7>xf&yfQ_nB;-wC;h-wFwtFH)vf+pU`qZJYm#U(8a2Xg z{_TlM-%(P4CAtz}I(OyIYVk$FT3va3=5u|6cX}|@y}ydO!?pE54TmmlBW*AqN7WR; z$Etm;;dS)EFkj`oF;A6gfWJH4Z(SFP_o50~O*~X8J8bH3l0Xr&8gyc$s1B}HCY9#t zd(`bS5RWyFQ69uSibm9C2m6t}z|Z6D4C+GOm@t#8qu+I187c|~igPBn>SbEW8mg(; z>t8UnquKYVhUTilm6D3viMhU-VEy#a)bC5CFBQsijCMD)x*9ks#v9!(cWV~KODcTl z12B2~rJ}4b_gMwYAg1a9q11zra`zsjQ!t5hZ9+iyEuM03IbL3!Rp1#ucl(5Bz`0N% z_Sv*elt$~M^{h>U{hDc)6PJ>{#_scEbWm(m=f}#`zW`K$hulqsykp$Qey$*VsN@81 z7G6u1-um4=!CuKiXKLvaM#T{7J+H?>q%r&LhuLbj$8|S0X-NA6UdCO#u(0qZQS7Lc zLWn99UZT3r5Hbp(j{1~$KD77@{_otjOf4arsoxMM&lj3#zvKDKS_o?vfHQd4N_YL_ z*K+s|?BPu1|eBB%Z*D8y69A%gtC7c?58=SRw;(3>ITA2h@-f!7;9; z&U3764DWSY-5UKaqw0!#lbEbYtSx}%%or2bWAxJrMzG^(#z?nZR}~(3YKzOa`Ek2= zXF#l98u$KJx3|^M?4J=?4g%|j+s*a0%S;*D7K=xV+<*mh)v7xJo`>h>wNNrIL7<4> zTMH%B`mj+LeOEA#%JT->n$YHZqUb`b4Io>dwO8eS-V)92u97~>7qGo(TIY@Nar5#| ziWmcmM6z$6`{=xxBvsMBOs_Whr#t{&4*D3T)2f#7=#y5ke)@L9HhQs#z=uqL*D>HI zxgmO1Uj64SbRNqkRMC=6r{nVmHy>d>^ok|?a>j2JbKgGIf0tg|$%_C*c;z&=K%JN| zafAJs=9VaWR_|_a`->mKak*cb-}a-hTcCHci35&P>4WE3QUjlkGCu&41rN{`U#TMu zsWayvxzsMirI~|*Rx=%Z%BTEl%6D!0N0bUe#bm07F%-$MV_H(a?fDZ2X%O^PVoH~5 zK8&jNx_8LR;{38x#J{jJ7a+;w+oFPT+f`+?zN_vuONGg(=Iqb!?tJW!A?tC`-s$;yUgA|6f z%Fp~TFXC@2T=VxE&0l$&7h!(6FR7MHRcqsub2rnJO@Ch~h`-ib<7-(3Hz*-U++xvA zPwn+@laHBC!e|cfGYIqaBC8v!=&JkxYupk+AtN_!Co=Tjz|3E7I3}+O=_lsN5V>!E zi7tbQl5}DH8dCt}PRrX>oj&8VxvNz%+N)(!F;`cm&_!JK>ydV-qz`NFP$>ebv|H^P zVxmQC#vPq+-RWvq7fUO2^!GhJBVl>CBy&P%+jr?-y=84*I8ti}9E5m;kn`Sq&2J=m zT`aPA2)H^6?rWoVFeA*wP%1(2xbO;Ee3?DYme5!7w@P_+Bxx#DB9L&ZSSV^u0sw)A zJ7e)_3|$AYmj55y?Kbhbmpf<*u^wvTLmf1;?SEvlSm4yT{1la8~8Lyx^I zvEWeEvRT1=3OqK!MWB%sqx)&#K0cyJUv}eGF%4)VIT^AFOJZ+e%ja}nS8j+z?2xDj zb+GEjv)&x{sDRe5e!pYo%7W;Q5tNODEjku+)I`S++uxY|1NAoZj^S6z z{yUr3>tW(Cu3k+U7vdGExj1Z8!IJ`#z#t~k)?bmph7y@$By7D{{Px%O*EM{!Y_0SI z{KAp2&n^8j{V#H%rd{F!XSi&RcGA;Di9oD{Se{b!6Ia85_1`5uRb;Bq!4XAWBhftp z(>G}{FY6%_UL#8s7TRuNA5GPX@xouOvS`wy<)f}5e@;P?=-BPt$^uQ#u*jW1v)_Zf96R4F* zaJ$5SS+ZYc_Q_^j zg<{rr_0}Tsg*PWNl&Y6OOnH>D>FN9uL*|?~G2V}-O#0C_NrYpT2q|OQWzYJuY%c~L z59(`h;-E&8=uq=ro>}H98j-6^`7+{cO<9sgq8H|83`4;rDzn%NSK{Kf(KumS>%CGw zKZN`|%8Y)8_^{GI&Wrm=i1olfUl7Jxc$=X!;UcNV4Vm@?)|FxMKTqNS(jG{z80Us@ z8A-TFy3&r8*b#%T&XuT$UqY_!O8DBGGrTur-MPR?O-l1}819E3hX&L<#2E?g#Do!jJ)OCn#w`?UAe#9&=dM z83{xm$nNbh;Vq1o_y`U9*V&mF-?~%5>;c@$&!f>PC0H~4_y>)FWHjJ zebjg0!wx2XeYi|Axanh&6$*>H&E81e{G0H(Pr7>h{q&al5k^(Zd^hepO+P+$;Vuw( z^NBu?AkAm3=A*?InxvCJy63LAZk~N%;@v%TUK{rs)I*D*Rm1biHX-7FmTm2VVJ#)` z64dl<>G)2mn`}?Swejth;NwyUo6mdLxmhU@f$l+b1I(WpGeyayRgNKD$)4?Yp2_@r ztzDsjKiGG5h`lQ6JQa;X*FAMcYG6QmN=ka`9-h1#41*pf@PBm%Zw%M4*t7OuS3S0M z_fDePKv}u-gCve^FjGW3=E8cHb!uO|164gjdK&*LN)YUsZhMXXUuOyjp_InQ1);&& ze8F*R)3Vo{R?1PTmB)22N|U!Xm{9v?UWsR(yely^epIG;zO^m19R3s#rDxo5^MFGWU~^ySWiXLK z-HoYVsr3t`ayNU8Tdb94W8{m@txZhhX3v0&WHF1Tt$szK@c3y`RCjFa3c)wiHiSGI?<0y=VyW>S4l$w&q)^#vj z^XV)=(_##FV>HGg5z+rqbtFvvlnn5Ap*&|DUtx^6gu5-zI31#KhUm}r^ zqwxr<_-JIIa1~us;v|ZaUBx7P8#N_7SrzvCO+}PAD1EeNWlN;XE#g_yS%5(|g%O-H zIhgSmXJ1B~Ycr@5begs|45}jESbprRVJYTaqrf!>TO$+9{GHM4smRycN}m(iYVG;_ zrV+?Ube7aZnVQS^p8qxt3z}{_61=y;QP_fSg%{T0=(gVm{bC_zbG_Kc){#)2pVT`D zQpW`-!|14dSE=9KRt8?1>!$=y5)<`Z&V+t*U;ZVE)4W*36_jcq8j-Et!OINSMD1a7 zPnheM=L(Gn(yj!+S=Vgo!P<;!cn(qVjv&&{2NR*?Eh3L^RjWeTRTDmc2H+})MU3##y2*u}NeyIwwWb=9NehAWy#tm#pigmf;{A5s@ zy&NM*A+hwGsTc(gIIrDDLqDsz8fwIUCcWhtq2-}ba&aBJV=7N$VhPwmSRvn<>1K?} zUMbJRc;&SU2===2vK}-cZ_=Yj5WEN)d*rgwSRGM8rB6PWkZMN%s}CapFH^31&p+^I zUaj}nTpru1YPl&mO!HQ~ubY2Ak-4nl$SKh3${O$8mR7&OZsP?&2P>EhCmKL}zrl#+ zLa!i6;;79+8CPuAZbHypW_Ic;Am!ay+{0%YdO*K4Vv2@;`F ze<4WQG6maD{$k{XQL+yD;AOS1ksI3*GVXxV5%z!FQ?|4J=!bR@<~p7O=_Meo`Yi}r*w_kdM)T^i(J5QCLlL1h78^k0zH>w$T}n)7y6%7 zlKce1ov+XxmD^(=9d!E@T4fvS*rX z@df2$5NL61*|Hy;1)P$&-ttAxAORYm*lPn{)pNM0DZve#mKaqwVwbJ@)7E=O9$5lO!-M@tTPisiH-6 zrr5n85t+wn5{{ehyS((=$Sp*wgETEu_0BW@FKPB39@+B#jXt@zN0fYf^>e!)>9PNg zrIf`z28)slQum&5%lvtxlM@Yr@zFt*{I9|d290iiF39<$w9pna(d^N~Mkd56{D)iV zc$)lyO90<>N2{^fL`RPuvLqfFJvQ(AKrBN}O0oWsC(Xgqz;qdM&0NjTA@9`nHef_q zLo++pB!2aIz`59n>cykoeKx+){$@$DeJ$AGH|?{unvI5JY59_P;X8ZKEow|HrjV`} z1&VdC8~A@&im#4Op>1yctE@t8q$9-)DOEeM3_hvfsqPTFBbLF>9*>gJNST9x+-espkcgfXd3ftp zAkK$AzTI(_k^G4NnsQ6c_Wp~gsfyA?bBOZyFa-KX3V|$o#*XQ&PmmIWil{aBR_T7v zrvlV^D$44oxuI*k^sN=Y&3SKQ*iaSbp0Y0ZDy(E z)-FL$V-7r5z6sxFlyUTi=dxs6c8ux5M{fT>PlXfYtjsbS?$xu}HXGhhk}MiD%a16F zt#$hIWgBXy@tofH<|yBYfBZ*_^uD;tV;K}?a%C%2TdCZST4koK+%6UIJQyGiA7<7WM@l(XqvTxdeH_VgR>&h} zXXQzpEpcr#KXj32w%N7$?N}pJTI*w}_yMC8>GJmB;o;Ku;JO!aj`LmBHPu6;1Xx3^ zKJ;j%G_o@`Cm>^Z!Z#x_IW!ii#`0vP6B~ zgp#~i4?CcG)HD;4y(gXRU-Moj6sLZVZT-Y|+7zNPDUkEuBJEl=#9nQW%cg4D92|h0 zD^#V!KLZbHNzIoU`{eLN)vhIS1K`cP^YiMUClbAZ(XP2)4uCOXt z&Y2~9ji93eIUel*t$2|R>Hqmi|B$pj;lO+H(}?oKU>$&?=qbMx;bsjen6_#kz>taw z!Joj%SY{*4RtW(?tIVt%K?+}0I9a= zvm;SRIH!cMJIN1P*wi}@X4?9&w6XAC!xQQM3)3bn+0db~{ShjBD-hf_{{-jyY7Axo zV+Pq{lM~$MH11OH$|0KAn%SQd{@YxZew!AasF+_FUW7P+I11YxPmHH8XfW2a!zT0I zUNxq&eew^(1KpFY4PBBpJ1Wt4^3YqlQYEJNy=2|r`q#4m8nM`aVO+j#!>e;0;5yap zjwfC}*{e~|sZ%}^s9d4sXn+KKYur~_4mzZbwPv~qA2p@ie?32hT<7t4;&ymV-~9sY zp{2tb{rAGP2^Rn^(elBRVZUvt_YMHp-u<{Cz~A>M&xBOZw+s({|MpDSzu|?Nj_3R@ z#yf6n0d{NOdZ2jSTb1W~0NnmyR9Ao>kJ$csV47Uogpq~vt(C%iu^*jqS=w!)!V@0+sm2Fl+2w64n=%7NDFYR>s@}ewujz8 z^s$NToKU~E8V>CE!#Oax_j^h{W;j%??0CTcdMFdx?sA?|8=%0i$J#3B_i5f~Zp+$} zJ}7IFaCdMAuqbys0(^9t8^bBzm{CPb=k98V|5b$$vS; zM0>DO#yrSy?HhKf?a)aye$_4|kNlL1_9^+AQw+9)PVzY`!?Udv$*@apr-6M6PBQ52 zQ*t9D*@2kWX`l{&xC75Q91M5hU((Zbz=0W&itpVYVInJ6r>69L&FbOU^5ZS< zey{idU|O<1GqwLqYQQq|r0wV*8#)-CM@ZP++TFT!XmvzD`xXEkUvb;7O*@Bja*f!2 zX>)?!YP6POtX}Q~qzsCk9y0&66@R(I>1np3T}n8t zlstjl{-Np6bnEuycCnqM(wCbu(`)B1-&=Lt5`fRQE-UFa=MJ60GsyXn-2FU3L`1HumgL*aoOTA!KUX^2GJ5<*Z=kzsnu(dlUK;4^GBwkoq1<5_ z4FMW5#kTkeTa$_dc-3Sbyx|8BNHt)Cp%_4LW&KvvA6O0d83h~Wwq^&zAB5W3Xq!$F zd(5L0P%`+$9m642c_6gd1xND5+#%+Gb(QWg&YZCo-LU2cQdilD{i9((Axg+BT;8NcHh1BI2fMSNK13~0GwRO)Fr!m0V+2~^2J;tIaA{f zpmCS1)IOCt77q|-U4Axkar0L%odc-EVI4pWs;t?WYhBwp7@p@apmhS!VlWys&Hzs6 z9D2zW5>0MSwhv@hkVV_7DN_J$;^zs(9doywZN32L7IxqAi~idXfj?;XiZ0 zdx@PBSM8>TEkVPnD^nilIXdw7a8?Wk03%LX7n9z)>FUr+t`OjssRzi6S7o=xwGWJs zntG#&S@W`WUuiMb_3}BO#gWn1ro}cidH1j#xwK@h+*j>r!~Yw6{ZmtXATv$v=^2oe z91Nxu{2hA96-xTwP65!FJ#&&1`n?Z)lJG)y!nQ{Bx0?V8ehLgqA8N~0XjuG$r=tze zdlV@W7Y#(k6e{FXJS75%zvo-Rp_g1Cs0x<=E>Zcx6q`pT`hJ_eqb;rR&f4BOGvte` zer8$^#li5rg9b$d;NC!g5x5*vGeBu1r-7R{suXkRCwCacet>ffexNwwCDV*jIlFht zSG8?je%a^GAlvrlkoq_no_B~gr&@i2?|M(u!|zTbR16B5odnY@A3Kb?T%vuqr7@tJ z*03vZeP@id^hTHX`8@zRb_C$W`R{EpZ|6EFi?WgxM{e%!;$V25A#p%oW8#Znqywdv z+-Wze_`QuoLAiu_a=8I<@h=Ac;Ry*nn}05d@zCf7!Mk1ni0N2o z@Dw5p~mmcq%?7;o-80O?gn$`W?`q-w3?$bj6>L1#2qxFQM z4*ldBh4y^&s#~4ezJNy?sjCq8Msk_iEv^1Qzh8gYeY1RxpF;s|e2`LMdDEOTFL$fx zV0hj^TlK!30y#A|d+&Ca$<$YT3(IaQ4_{s-Q{Os}Sbyz75Jl{|` zZsA#3ruM9Jjr}P2Ij~aF66{j!1bfzbtdjp_Onhz_K6Q41qoI@GoOu`b+HvRzi-71y^mE1lmNe$Um%UYX_;qEeY?S;)w#(2 zc^rm6g`Q^Tbq(z1TY4b*tzewqWDzhiey9)5Z)N@{Ous!a1l2pHv1W(4kvq)HXb#ZE z{8LuRwkuTuf@-EOhT&BJDiZ+g|Dra~>jTbN4>Ud=N1p=2%NKOFn+MT);sC&jbV%Lh zTplP};6Sux2i1ULVc}ODT+J2I*HIau9DA}B0X&N}Sw}UF>9I28q|acWr*&PXMz%s* z%7gsO@SHSK`5z_T^#zvD9&X<%P!I?yc=vANHSa<|K;gtI4zlJ77ox3`xZPY+FWQQX z+y)?+NZZiBi36*GfRfgP;_>87GHZuF{9%|beY&9UTacXW=?%DfNP2pLhYz6jw2Sp? z@*|QnRUQD&z82dAHi~i70FaI%fce&#uBOWOowCd0MF+#51dJcF9XIeNFECh~vU6VP zG%n!Cd6j#_>D^px7Kd%9k@kU+%K;+ra0AW_|NZvXnn$zGh*|haNe9E91T-V(j+xc& zI9O0r016fn>!u2eLqWNunW9*gnPpv5aDwLj%|uP#Kxq%4^2#G$x?dle9m_Df>N|P# zKponD5K7^~jY{?Id&tunqtO*G;jDGC=DafCVjnjV7Xi4H%s)Zg0WO&afXoCXE2|r? z6#em&S@nGr>2BQ*8C~$ry(gMjcUEs-@9ALp6GO-9$M?4P^vX!{0%L~a=IWc776g_I zyzS!#)_?KjcXS4TLGP9`ox4#ZM41_1J9}1rpXtYKi=dnwGp7^|hCcz^ zNi7d(gNdb3$lbUQh>Q0R@(Vp4Qvy5M;QK<)2;#6?o|rW)G(a~Zr>JtR1|P=S1;bfpi+04~!1f%&P1LASqXnX{`aQW4r{CI}qTbn#<<7F7FI5 zwDRKlPIG%Ye5<)e{Vk(#;-}#C zp;M5D?LW_P?;F!K1ziC=vRy#Vu7LKH7d;exdSQnzCGVjA`)voo9}_NRvYQcCK>I*O zihvwO7J0Cv7-kPWO$Qu!W_S)5Zl{f_)}D2)wI3Ou11lvl(k{i0uxFj$v4aq_$mfRP z-+bfv6hCcLwI5NR1BMUmZlBHI5IffSe4qR;g*|W}5?Lfx#=f+BLz&?<0NMHTI*i6%&B(GYwfMm<56m{vWluPM{lGU|BvJNv` zDB_pm}dR-?Id^`?#5{A&GUQ|Fmyw)g!G068(L zQ`3Y0?w)3zLavyB8}3a2;&$H%X=-gs68BsQYFfmhpIl?@3*+8nO&8P9?2_Z%2YtcF zc3sxAhp3L%%4x2jd?)ooHSFm#@9~ul$qcj$94oH~-Bp$0>(q?5i7@mi?Ss-gGWv_ENpiID_D9dgt17XEZIC5U) z4wvr`1mLMjIBP3PCLVw=ZX|`(vz8g1N`OlbzMBc(#81qVh$DxU@*pD1#9nYN=LOup zRUilm2|9b%>6%X=pg^JPSIaq6lpDmPT3c+_0#R8}LK1rV}l$K1Wvs50={p812~ zWzYIrI2fMyxVQg=a>4799*~k;&>L{|AR|4|*9Xvg+Qs@c`4RE9oL4B>Dr~N~e5f99 zkL;uXyJEg^0yNXSrhe?dF>eU&uu>lKEX9|ev~W%A3%fusPFeshdZSM3434aBxrb3S zY5+yaW?aP)GBO(T!F_~TJCtPnFv4oBxHqfm8UOm>ys6sJhCj&gpDVgi_KVklX^LcL zbrTV6ImyJKqFljGt2Y4{QgdeWeBn2#Y4ftl=V@t6dokMUE9=HrE7o3n{dAYbO&ko* zbEs+q)FRxd&C2R##98ZXGJqXrb<1}M_Ds+L=u@4u8SXmrwHRISiOeFliM;dnuCm5+ zP5p9PXy}^0C*C}m7b(UZR?6SN1$`=B-s!1;F+*{8^UX{JEa~==)h*wlOkwMcj~M*# zn>6oVu3FF-{byFCZk#fwAOHyyi?x6XD@tBi=di=`94Ti6Fyrh+;gGmEAT~ZA$S*W0 z8c2?D3v;L_S8!@)U9;p8ogZ8fWb}c~uK{pm^p9l$Nh9`35J1>_c@tplVE6-=QF#Y& zgDM()tEFdUbyL?eTeG^ADeX{E?l9DU1;8e^2j_jv{HDb$Ex@T!QyKu7AD+TL?4};T zPqB{p+}AsGF#NF*zyx4AgMc?#0xUPbp<$qAslb}dAr3n{mk1qydMT`5@mUoxjcdLb zfS3>8dwp2}fHR$sk8a+)dGq>PtKt7q)b~L0A1$m?TU<=&9X-vwLhnOU2ejR=?z1jH z!-*dcZE~|J~#I5K@JV&76a41y6n8{=ixx|g0n??DXDXhUUFJsT_kx& zrwld%Fv<<(jkFnO8*?;ZvKwGrv-2dQZni1mV0fOu`PUAc)&^~B3c$NHm#uf-*b-ns zrKRg!mvwX~DEAoF;-Gd>7=Zu$OSKiyG<~~<%}?k*GmD1}0N(GtFNtB*tTu|e+7k2` zxzD5PVE98;TZaxgJN0vtSl6uS(9L6_V#Tbj%9R1n!8w0bsq)~Vg?i@@w5y}1>3{M3^N}giC&kjELrlbcM z?smg24e>SI82y2LHiH#;d4^p|-g!M|gYv(a2OB=faMX5bhpRzlpZ*{ne`^8=bx9`amVm~rE#xxyxO4zW@(74|NC8y@ct9!S&Z~xamO#zs_gQ_nU zvXyRIm0ADQ+)ulAjQBY4RG@q3lP>Qp>~!B$Zu!1{{r3X84K-$a4TjA;4Uo`t!jV-Y znjHba_~E;4-doo;F4q-1+VJNQcij8|5+efw^NUDhemz#5KS~Uplf4Ac?9X@A=UeqR zeq(F}Kkdc^$oRbCY|opYEf}@N8TjdkJ&l-NcEHly1};0=@aGFV%9JcsI<#I45I>~( zyX|}3&L47}9N(-u1P@%WHLE0kblv*ETZO(qYAx75yE*_D%6;ic*p#6CNxi8fb@?? zSm*Rqdk4TLFxU;4WoT?YZ(?p2)&4hFDNARhTY|>Kj8Db)lZN`aTP!g{dpNQCha`*F z$O>;pD;`6-?HsT3$C7CD7_jt?lSiMvES{D6l5w3;Ri@AE>*Cb2><=jx-=W8M8I-!c zze>cV^Shi_c`m8y+r@z7h5M5=gW6duyZTYA#pRWkhM!iPdbRm2?EGExTkW3WyL1#2XT-Gdk0-1vVQpzM*EE@mg`d%akR(52kMjDtcYycF#XE zZnxz(Yh|Xp<@iNsxmSTPy7R%mq}^@Hl&6!AfyzuB}y3 zt*sqYuDa&(%35VTKjaW-D-|qLORG|=3pR8@TfMxiho_rQ6Q}Caxa0)7xbHk%>Qli_ z>sy^xF4~5L%GcDoHlUfmrg&AFxZM7vYpImFU2lB~qoqr-^9Q_ZO{%IcR7%s-S#eU) z(m8Y3F!w_5vg|2(EYeC!rnR$q-8Td%9DMD1erUrpRqg;z-j-NfQ7OVR0g_Px37>r) zmhDs_W=_MuLIF}Ut@#eM-o!Ypl>hHLrO|+wN~NOIfYxLlKyOw9SUA(itQNo`VjDeb z)@8x4+HCNv0D2U_83DC|1&n9`1%(Z_7OVzy=fXs63K;@QXJbm1-$Jnv+v~1Ms8Su$ z|8jf#X)=8CyxW#u{alEPDdq?G`d*382Tvf*;OT6A64{GfbqKxv*BiiHyxn0;`JOpP zn`du7X?|tbZ(8EhoLy|^r8pS=|1jM7WPcTDNreQDKN7!<@KiD_Y6QFv^zXm%(tQJT z0t{a>Zl$d540sV9<8gS${R5{02*NSdq%dpAy?YUOnPOj&$;ZS$vh zr^#oEzV0)3aQJleCM!3zk2O&}&px9$n_jkGze)W*bn6T*{SM8eqAADjI03~OtYwZSWPTaZM z5or8AgFlI?_;*({8;$@-5*GFVke1CP&6yV(PPPuhDc#z&O7^m9UH12w@%qLh>GUFM%p`x%I*}c0S#Nn27J4iA1>cUtrlz@^#YE$y8! z8eISr&iUX86!p264q!027t1cJI188<-=rxMPcEDXmgCGg(A>7dwbO{csZhi}ITgT^ zrYYfI`2T07VAfzprD7c}5RR5aU&xs95~vh4x4m_0XVhv%4bY?ZtblFzy&tH-U{)!h zLJg=;(eb;}ExxIcHmLz&tycC6@6YBag20z`~4I&zMXT8o7 zL{EMQpD$YG-nAycb&6Md;E$VQ)#FsC0v8LA#If`KS!=jgR(U|d3fHd!T&HMmlO6mk ztd!HHi?MJk_I4yy82#CY+d22{IWFIJt_?9a6K~SA$wvXsB-~572%!ETqejW>lMTl? z4d-H$&5%JXki;D-|G>o;%GbX6Do$fdWR5Ri{)^W=ZKm*f>VWlgDwJ^1!=RCIK7bXz7xf0gx@#nJ`nPq_8G z+{a%13;f}W>xKlkIkT;PaB#CdnInV3<{0~yoMqY7B&1-ovnN^v2iIRQ#P7vK`LZTQF{B9RL! zR9Jccb85%$A~KHdr^Ga|=XDVgxm2j1MLzQ1l%LnrTs2i^;g!M9?hB~}oKe98oi2^l ziKWhVWjSYiwH8&#Sw~&%3TidjvJvaa~w%sv;;f{U$-^OUCse%5pN(x7jTji?EI zR!*p0|J|#x1iCP(((BkS-u&BiXWJ)fE>&9rWMEg;XvN#)1bt zR;^E*;Yz8F&fpXlan(K;-foxft0ven3gv8idg8znXSnZHcfb;juYD+_>ShNi91Q?&_U?`!2B(C zDRvZ8Q0IR!bx)7s(+8LStG0vB|B0Y_b}9DG3~JlKl3j6;PmAHZ-fH=0h=b05gVs~* zQtTdgnP&${+s|)&N_Ke4Th$ji2>!Rw+o#wDu!pqJ$xq8lS#sx;KX8Eh_VDzQW}K$X z;0MMSV*eWC3FccfyVS83T$mPL_D$=U^7W}v#fBDyO@0nD?0>g)=7+rvX-1dq*j_O! zS;oEDHbX@;%7cI822Z>VH_RGV3^0Cm#U38Q#RgHIe4(qg|GuI_Z+N-E&Ow#O-Le*} zZe8lj_?9;Tb~N+29MD_>NI~?A`Z>NZy3ahy1WCyo3&zj+xEj?32q-?ny8VvSK z5|Q;Z*Ne;=nJyC7njb{uQsqfEZrr$WbFA9|kuQQL-MId#3)N!sEyMG{42XXar(a96 zP9#2Ph%u|AXNe@+)(|VhZ+R8IBO)8=Eb)bWE{e!LrBSAc4D-4EOc`z&`G&LGDG`y> znof5`V%;jFi@p^XL{j`i$MHY*!)QO19XNZVp-VW;l zFH|&2LdSC=A`_iBkXwfToAVZix2amYQ@3ti>sM>?m$k(01JesL65p%&eO3qj^oq6* zWidFD;_m`@tIwuiiS~B`Jl!uw0v(g4KGVBVzModaYH^2$waP{T#0B?k5t*n+0dz$$e z)qlEneZrC@e`!t*e%V&kdy@H$=0(?K$KjfE0&bDIXp^re;O`Ne4Ak;n z^^ARJMq6ih57hyxv4g$T0I1H6XDiz6(-Z?J$hA|pqI=dsN2MI+vXY7~?bZXZ%|6*3 z-2-a91b~aPlb?g(xw!WVrL|64t&_91PPRMho!(9-k6p}m1RdaESAH5E&HyTdB?EUi z00k4^UG~Z|&Yza$&ADuipe@8@E?ea<%;je*+O1@3CLkAo;~iU(J7)lJCBr%{kn!aM z`R^9g56j-Zcei#q2g4tO6H2zH&+v}dp4uBapRw(xM*c_Jp}}MZbS7uD+Uk?jo75VB zKyKs{pT0FelqV@9W^E=vW07=D?f@!h$x1R;hm$t}qS2~=yI+_4YVV93ALor7y>kN7 zb|-)2;$V1Qw0?};Ft*ORj#q};lH{2TPF@ckTELpzDlVgtn-A%kKwN48Zvfw{Sf6K& zbnBE-SJKF^PEBJvtai(phhm!2 zvm*|M=LPP4-`R_Rg>`qFwrNMLe>ksY73bJ=AVW$xm-UNH19Zls1prLslYl!Xi~vTQ zakA##GV+WgrMy)p3xGwRJ(o>AwcQ`xm#q47D|NL%p#kGhG-X28xS(-))hgL%{}%Na zop=Ys??+r_DB$r0NjBe#uj%2~kqY&$L;=U>pcH8waT_>oZs%p~Iu*G=P&@ym3MeEegU(mQi3%X~bKHK?NPXA@2^_RjnOs6TevUZ#XE z3O6HL^CVKUq=R1ev!cZRJ>>u0R% zw-;`E4+v-I1I5St1kJy1LBwMx`1g+5TPz}Cu~WH@#Lnpg`3DcSJ-tx^S=Fg+9v=5#x`AyT26rUaCB6hNpI^ zbvV31mv|A0EyF7oFNKUXpK!<#y$iZ33Syh7u0R{fd`Aex)>w!ZHXZgST^m*)R9Sr}UXy5dI zucFYdheJ>K6b^>}Z@A^jAr3qnWc$Mv`+P{A;BKFq_W>9Cl-wyh!ZlyR`=K^mKhiFn z^DD6Iwq5ch9`=1=my(}`5A2{>iLm`KLZ*U+Fc&-MVUB4K!_h_nJ|Eu)Q;3T1J!c#6{sL$CkOF$e%?_Y#JOitumP3R=qmXawM=ROu7|`T?ldFf;=YO91fXDKrBR zGyq=8LTMO4_>*-G|#_OM~J z;Ss|=j+j%<`D(PtsLt5hm@$585^Pd!YH7O8^o^O!?5=r;dA-F%i{qAj%L*&X>KJz% z_l&i_^>v#ln+{$wZ^*XLPGHwyA7|e`s>H$1;h|&JXqVB=W3*1rPA$&sUA$eose`Uk zzBym-wqvYVU@B-Gw{LucyNCOLN0Vpi1ogxqFB`AkNq4*}eKz~b{X~;J{ki^w0o_yD zrZ!Hi4Xm18HlrvgFE}?OXXd6^Il|n~ys)D1GEr4TZDgakZFYCm*SXwi&v~Nxa!JmD zO6i@L-bL1ngJRWjdu2`WpO<(nO-LwR)|zM{7b~_a^()NO(xkHFS1I1BvRAigoanT) zW}P#Wnf`E%Z)S1Ur**N}4I9R8EZ8)-Icdw&tx?+=c1+GYy-SdPw7{jXyx6s*dhdkN zi~EBQ=nuvo>N&i&+@hlDSWxBTYTXHLP3@_e(_hXWIUjN1W8LBUIhVd&K6gca)!|y( z_54QhP0p?6+dG@*>22?Jw$$8X?uR|#wZDFJ^+|EZ%4ecZ{&T$OdfC){@^xWP=3B)( z$@`ffeERtP_5&7QID_QS$nf`(ksl5v3r7oE6f^(;03c&XQcVB=dL;k=fP(-4`Tqa_ zfam}KQV0M66<7cOI+p+d7jM^EACLe50mw;2K~#9!?3BGvlTj4LfA{T6KZr3xp&Cu3 zT_I7bO$0_6bucbW3{1wA$$!Dg4HCk{ph*)FSqS20O&SRp1A%HB8X}~Cr3H&9^y6{h z<>f7*3@$93v)y}s_dX}j$uWrk3JWg5Mq!_S9Ux2_0Se^UZwy*aR;U0zV)WBXga8|) znBfOix7Hl{Xb~Y!Cs(mq5T1H>8NAyI;eHKzE?0QV{K zfedB3=qJPoW9+(r3K`v1QblDotx>(!H?1k9f>IjN4H+5T)=TB|PCYW>C=v4OxmK0d zu3&Sqs*QwD?=Ka1UJ1t z`tT!4>^rUJnCA~R?H-#;tgua#4$KL7z!p_H+}93S<|hVuz#2t<6XZ%gm|=rB5AZu> zD7Ic8a>m#4I0fEt^8 zVaLUMBzQ~{pUBpOWm1f@$U%eQwFuMBTapw{kDQ@}D7&ol_YBZ*i+e1Sb;TR+&M|P# l3bH&Mp8_v;&P9X&1^}!NyPCO;^2Y!G002ovPDHLkV1l^yf$#tT literal 0 HcmV?d00001 diff --git a/labworks/LW1/цифра 3.png b/labworks/LW1/цифра 3.png new file mode 100644 index 0000000000000000000000000000000000000000..4dd47e6824c843f6ad6ecfcdc37a478440114552 GIT binary patch literal 1276 zcmVKLZ*U+Fc&-MVUB4K!_h_nJ|Eu)Q;3T1J!c#6{sL$CkOF$e%?_Y#JOitumP3R=qmXawM=ROu7|`T?ldFf;=YO91fXDKrBR zGyq=8LTMO4_>*-G|#_OM~J z;Ss|=j+j%<`D(PtsLt5hm@$585^Pd!YH7O8^o^O!?5=r;dA-F%i{qAj%L*&X>KJz% z_l&i_^>v#ln+{$wZ^*XLPGHwyA7|e`s>H$1;h|&JXqVB=W3*1rPA$&sUA$eose`Uk zzBym-wqvYVU@B-Gw{LucyNCOLN0Vpi1ogxqFB`AkNq4*}eKz~b{X~;J{ki^w0o_yD zrZ!Hi4Xm18HlrvgFE}?OXXd6^Il|n~ys)D1GEr4TZDgakZFYCm*SXwi&v~Nxa!JmD zO6i@L-bL1ngJRWjdu2`WpO<(nO-LwR)|zM{7b~_a^()NO(xkHFS1I1BvRAigoanT) zW}P#Wnf`E%Z)S1Ur**N}4I9R8EZ8)-Icdw&tx?+=c1+GYy-SdPw7{jXyx6s*dhdkN zi~EBQ=nuvo>N&i&+@hlDSWxBTYTXHLP3@_e(_hXWIUjN1W8LBUIhVd&K6gca)!|y( z_54QhP0p?6+dG@*>22?Jw$$8X?uR|#wZDFJ^+|EZ%4ecZ{&T$OdfC){@^xWP=3B)( z$@`ffeERtP_5&7QID_QS$nf`(ksl5v3r7oE6f^(;03c&XQcVB=dL;k=fP(-4`Tqa_ zfam}KQV0M66<7cOI+p+d7jM^EACLe50bxl*K~#9!VqhQ_Fr#oddD#B{L+}|9Ojb!_ zO|f71kKOo*A;~Ce>t-gw%=qnO-zk`87MP@9Sc>$^Jr8-!T%SI8fo3 zitbn&$~3Tj#E z{8+o=8(KJPW@pBsBN-u;W_m5=v+uye6~ySRSw&gcIy5*V|fq8Q7UhtIzM m$CmmS7#SJ<|7V~I01N;E6M@SZQJTB}0000KLZ*U+R`sCEkzKl)gj5&q@hY_5?)@_euSf22N!q0z{yc?Q2YY_Kym8e z5Fvwu2%hQO!{u_psMvL#(bD64NQRTZj^-}DnS22ry9f-;mW=gZvQj}U-ZdMsK&I8^7~DvX`q=iB1U42l889Owo`W%@9?Pza=*pJ1GOl4 z&v_PAhbjpW{6@+AX8izvfZqekvW%u_csw5LcKd$<%mMz$ZrpA+qobn?4GnQ|alzHq z6+*mUQ>)dArfKN9PEk=2ilSheCYem;Ll1!E?*V~8fQg9-(&;oSD=Y6CEEcM(tLg3S zrM|u%hr>Z8li~jUo|BUk!r?Fn2M65U-F*(U+wJ)Me#*9U~ zvAn!248ststEmI z7qM7OOifJ*UDw~d+4Xj5gb>`^+z^k)DJdzTrltm$%f;p8CD+&2n5K!MDD?I9(cIk3 z#>NI~YipRMi4X$AFo?xs6c!fJ($a#es_gIY6OBecu7zP3Y;SKfGc&{0)fEE+0|bLX z1_uWzD=Widv0$1e0E(iZC<_1fM*w`3d zU0qaGRm?ixV;BaKB%x^ z*%{~O=cuYmMMVW(uNR-shpy{591g0gs%U6vK+`mwPABc{?Tn0!Fg!eruIp@VZLzqx zNFtH=N4E6Y1DutrQd#P+D4w%jH5KLZ*U+R`sCEkzKl)gj5&q@hY_5?)@_euSf22N!q0z{yc?Q2YY_Kym8e z5Fvwu2%hQO!{u_psMvL#(bD64NQRTZj^-}DnS22ry9f-;mW=gZvQj}U-ZdMsK&I8^7~DvX`q=iL|PwHS4wtTcN6nWdEnxe31l$50of=M;eL^LiA zCTvbDOeW6$3gh4pz=Xu;NWy|H4)PTeb|Y6^u4;q9V6|Ft9Pe~G-EQ|UfSS!_mSy+$_5y(bgz)|ST~U-?uQxg) ztJS)(u@Q|%YqeUl*?f9>+TY)&DC)PxreP3ClJxuip-^aTZ7rYA%d!jrU>F8MC`r;N zpaene?CgX>A)2P+@%ZWKsUQd>Ns6KU=H@UA>%W)F<#;@PczF2m@Sq#i>2$Iz zYciQE7R&YZ_1)c_s;bk|(_XK4YisM~=7#6_cDt=ZNeF^$Zf?H5zG|9wb#=A8ylk`C z%x3e{)YQ?@kt9jS$H$YClez~508mx+l@cH?vD2i_Sg+d{h z%Q+klmSri5LJ$N+(Z$8ZrKP1#r^EAnwOZ9}(#>X*rfHwgH!(4xX&QuZeSLj*cbDV1 z`}_MyB=Yj|GKxbp40CdFB8uYe?QJ5F;Ca4ODy7ruU@!