From 2b771f3f16f063954643a37abe12e67d971fbddc Mon Sep 17 00:00:00 2001 From: DanRie Date: Sun, 19 Oct 2025 22:34:49 +0300 Subject: [PATCH] =?UTF-8?q?=D0=92=D1=8B=D0=BF=D0=BE=D0=BB=D0=BD=D0=B5?= =?UTF-8?q?=D0=BD=D0=B0=20=D0=9B=D0=A02?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW2/data.txt | 1000 +++ labworks/LW2/data_test.txt | 6 + labworks/LW2/images/picture1_1.png | Bin 0 -> 43096 bytes labworks/LW2/images/picture1_10.png | Bin 0 -> 22114 bytes labworks/LW2/images/picture1_11.png | Bin 0 -> 24416 bytes labworks/LW2/images/picture1_12.png | Bin 0 -> 29605 bytes labworks/LW2/images/picture1_13.png | Bin 0 -> 22320 bytes labworks/LW2/images/picture1_2.png | Bin 0 -> 49360 bytes labworks/LW2/images/picture1_3.png | Bin 0 -> 109347 bytes labworks/LW2/images/picture1_4.png | Bin 0 -> 32388 bytes labworks/LW2/images/picture1_5.png | Bin 0 -> 86434 bytes labworks/LW2/images/picture1_6.png | Bin 0 -> 98478 bytes labworks/LW2/images/picture1_7.png | Bin 0 -> 30726 bytes labworks/LW2/images/picture1_8.png | Bin 0 -> 62776 bytes labworks/LW2/images/picture1_9.png | Bin 0 -> 74490 bytes labworks/LW2/images/picture2_1.png | Bin 0 -> 95799 bytes labworks/LW2/images/picture2_2.png | Bin 0 -> 89018 bytes labworks/LW2/images/picture2_3.png | Bin 0 -> 53197 bytes labworks/LW2/images/picture2_4.png | Bin 0 -> 56049 bytes labworks/LW2/lab02_lib.py | 47 +- labworks/LW2/lab2.ipynb | 871 ++ .../LR2_задание1.ipynb | 7832 +++++++++++++++++ .../LR2_задание2.ipynb | 1054 +++ labworks/LW2/out/AE1.h5 | Bin 0 -> 35264 bytes labworks/LW2/out/AE1_ire_th.txt | 1 + labworks/LW2/out/AE2.h5 | Bin 0 -> 65744 bytes labworks/LW2/out/AE2_ire_th.txt | 1 + labworks/LW2/out/IRE_trainingAE1.png | Bin 0 -> 52732 bytes labworks/LW2/out/IRE_trainingAE2.png | Bin 0 -> 102683 bytes labworks/LW2/out/train_set.png | Bin 0 -> 45079 bytes labworks/LW2/report.md | 313 + 31 files changed, 11115 insertions(+), 10 deletions(-) create mode 100644 labworks/LW2/data.txt create mode 100644 labworks/LW2/data_test.txt create mode 100644 labworks/LW2/images/picture1_1.png create mode 100644 labworks/LW2/images/picture1_10.png create mode 100644 labworks/LW2/images/picture1_11.png create mode 100644 labworks/LW2/images/picture1_12.png create mode 100644 labworks/LW2/images/picture1_13.png create mode 100644 labworks/LW2/images/picture1_2.png create mode 100644 labworks/LW2/images/picture1_3.png create mode 100644 labworks/LW2/images/picture1_4.png create mode 100644 labworks/LW2/images/picture1_5.png create mode 100644 labworks/LW2/images/picture1_6.png create mode 100644 labworks/LW2/images/picture1_7.png create mode 100644 labworks/LW2/images/picture1_8.png create mode 100644 labworks/LW2/images/picture1_9.png create mode 100644 labworks/LW2/images/picture2_1.png create mode 100644 labworks/LW2/images/picture2_2.png create mode 100644 labworks/LW2/images/picture2_3.png create mode 100644 labworks/LW2/images/picture2_4.png create mode 100644 labworks/LW2/lab2.ipynb create mode 100644 labworks/LW2/notebook с полными выводами/LR2_задание1.ipynb create mode 100644 labworks/LW2/notebook с полными выводами/LR2_задание2.ipynb create mode 100644 labworks/LW2/out/AE1.h5 create mode 100644 labworks/LW2/out/AE1_ire_th.txt create mode 100644 labworks/LW2/out/AE2.h5 create mode 100644 labworks/LW2/out/AE2_ire_th.txt create mode 100644 labworks/LW2/out/IRE_trainingAE1.png create mode 100644 labworks/LW2/out/IRE_trainingAE2.png create mode 100644 labworks/LW2/out/train_set.png create mode 100644 labworks/LW2/report.md diff --git a/labworks/LW2/data.txt b/labworks/LW2/data.txt new file mode 100644 index 0000000..7983294 --- /dev/null +++ b/labworks/LW2/data.txt @@ -0,0 +1,1000 @@ +6.028552372507079760e+00 6.059228990189748920e+00 +6.148388730839360328e+00 5.994735265167601135e+00 +6.034000861003956828e+00 6.014071576183726897e+00 +5.914146742942168800e+00 6.078190189984116643e+00 +6.039221608726088597e+00 6.034545308633034288e+00 +5.990349078671432181e+00 6.052627210123747936e+00 +5.986484759994725735e+00 6.006116326056507582e+00 +6.018699675305071217e+00 5.987194721585966661e+00 +5.946874802160084350e+00 6.199636627521369014e+00 +6.034959602678188872e+00 6.233431295843799624e+00 +6.203588472689572697e+00 5.933729116514560253e+00 +5.910868213174117258e+00 5.978358455625773615e+00 +6.038498403326477693e+00 5.921920914690594451e+00 +5.895226038827081183e+00 6.120191217671544948e+00 +5.852676865372849591e+00 5.987273925342498693e+00 +5.971389906505034872e+00 6.044937807928964624e+00 +6.014789383492758823e+00 5.963951668343863588e+00 +5.858831561220639195e+00 5.957243263511642795e+00 +5.913383906963217918e+00 6.164964125768126912e+00 +5.905030826638442143e+00 6.008846539749530535e+00 +5.990835784985319101e+00 5.895274485552153720e+00 +5.864013460930395105e+00 6.007148102390549305e+00 +5.906005561188218067e+00 5.948146707653842569e+00 +5.947310142292084656e+00 5.950916744827752680e+00 +5.978814634387958016e+00 5.919678443564079906e+00 +5.939388259554374550e+00 6.009900163776495496e+00 +6.110694769127721138e+00 5.871226552871362969e+00 +5.928596134833748366e+00 6.124525006862970855e+00 +6.049463055154125968e+00 5.965296434248830160e+00 +6.118272220126266703e+00 6.119512770180849159e+00 +5.968355816847362938e+00 5.933970676369407116e+00 +5.909187897524661892e+00 6.031603913879816758e+00 +6.109448468181474468e+00 6.141288774664125150e+00 +6.082009969800640015e+00 6.116271919827775960e+00 +5.907913162832220344e+00 5.942521537787782471e+00 +5.915046324326932670e+00 6.119629759883631337e+00 +6.121167070855195291e+00 6.114447878629793109e+00 +5.956251682242315049e+00 5.857690271353652278e+00 +5.886311076304615142e+00 5.899524999044826856e+00 +5.986648642765363348e+00 5.906879483055735847e+00 +6.001312935632058476e+00 6.050504851449142407e+00 +6.078367025681496116e+00 5.988719613015967447e+00 +6.059419295643128756e+00 6.092599389814079558e+00 +5.960504813998266371e+00 5.848775327321977358e+00 +5.900500931888360334e+00 5.925612617588015496e+00 +6.048406035112567025e+00 5.881918811626841048e+00 +6.046178927564453076e+00 6.099024746628504801e+00 +6.065115249478107096e+00 5.908150200842091415e+00 +5.990954637152058559e+00 5.912706204268818766e+00 +5.932930525513793185e+00 6.009646740410070187e+00 +5.979286887389503313e+00 6.111386527575405125e+00 +5.927593103791774176e+00 5.993792677335235908e+00 +5.928735230123360012e+00 5.965150197740223703e+00 +5.961065817817957857e+00 5.945832819352096621e+00 +5.967062565370953031e+00 5.946275581957015888e+00 +5.936476155389958542e+00 6.102626546032025701e+00 +5.922749107556144033e+00 6.042893738654671942e+00 +6.095601157069587828e+00 6.059373538357269773e+00 +6.017891163238103580e+00 6.149448079274651313e+00 +6.193775300696096942e+00 6.015355478890462848e+00 +5.934227772410972435e+00 5.867246141314376828e+00 +6.133641025554246617e+00 5.974846252307113303e+00 +6.080465162072397511e+00 6.050543932843148731e+00 +5.894681474232814189e+00 5.996317632381323648e+00 +5.871927011879295222e+00 6.052688438393767356e+00 +6.213599581882572664e+00 6.100514074161229594e+00 +6.028893164440521701e+00 6.137515278919448924e+00 +6.022327044788575279e+00 5.970131174504615501e+00 +5.912339452339474555e+00 6.036994567823404267e+00 +6.097416275368920502e+00 5.969745895322727591e+00 +5.877006060353681782e+00 6.036943075895644384e+00 +6.059908238995633134e+00 6.024213861252338376e+00 +5.953575860549008780e+00 6.235869627619274880e+00 +6.131658897437803013e+00 6.224691953058226090e+00 +5.819918602275814479e+00 5.971420458104546469e+00 +6.066625040050636741e+00 5.870462841304548540e+00 +6.001027126930251754e+00 6.138500115636002619e+00 +6.159118625568818395e+00 5.848997095871093954e+00 +5.902937393896700691e+00 5.919012633686662639e+00 +5.789840069565377334e+00 5.966957737619892121e+00 +5.944717172295023389e+00 6.073262725955784980e+00 +5.960417379707788399e+00 6.100323831798782237e+00 +5.872638151490658487e+00 5.903320723949582849e+00 +5.843031073815224907e+00 5.951170241991555976e+00 +5.816518187003882012e+00 5.994090387657000640e+00 +5.873144870911474413e+00 5.973835522859824110e+00 +5.906254871040809817e+00 5.899104107611864656e+00 +5.923446624311268671e+00 5.968838151434227690e+00 +6.160005703240376995e+00 6.039752869102857247e+00 +5.962297249639497032e+00 6.057031213292749960e+00 +6.065299669128968674e+00 5.936659185279379969e+00 +6.069291892030054925e+00 5.892001521217979487e+00 +5.936438876698939104e+00 5.913455168712008714e+00 +5.989800737247821694e+00 6.006560305966370805e+00 +6.023007647238448392e+00 5.881953026557070530e+00 +5.995038433775826903e+00 5.987105076499357637e+00 +5.962622789776359511e+00 6.066237451695854155e+00 +6.123034358656378906e+00 5.981327505409785417e+00 +6.104948252045295121e+00 6.184427353169789754e+00 +5.968263722061911025e+00 5.714799297094551811e+00 +6.011250705585758247e+00 5.953183984865148659e+00 +6.048087908316740702e+00 6.029953157586033896e+00 +5.994804196701714716e+00 5.928584274273976717e+00 +5.793922129043212799e+00 5.800330974334847234e+00 +6.166110346355860194e+00 6.108138512591350100e+00 +6.043965650457810312e+00 6.013464444340121950e+00 +5.946987146182200590e+00 5.985078416727843020e+00 +6.046710254415277319e+00 5.992494826638438354e+00 +6.108519978080822810e+00 5.972711429556740725e+00 +6.112075649975065694e+00 5.925925396584752036e+00 +6.073998494448360042e+00 5.916637482268598092e+00 +5.890547303777198707e+00 5.936341804196791472e+00 +5.876830036990102535e+00 5.976347871303042680e+00 +6.014040006698360585e+00 5.971940657430012678e+00 +6.013678851185816576e+00 5.944290554129464610e+00 +5.968379339517640325e+00 5.902489456377780996e+00 +6.145966921944517658e+00 6.004808372640381364e+00 +5.911706440810159613e+00 5.874940433912029469e+00 +6.045484340650246757e+00 5.919557886851446682e+00 +5.883095905374283952e+00 6.027074973326310925e+00 +6.072508740850956599e+00 5.874099432197898984e+00 +6.005428980296036556e+00 6.002614581517160097e+00 +6.107783527333379148e+00 5.946216789864771535e+00 +5.941655197674601041e+00 5.941310782169011873e+00 +5.847353679301728668e+00 5.971946086254480868e+00 +6.038759264756798473e+00 5.954584831361017017e+00 +6.042234244091441830e+00 5.847704573201550460e+00 +6.107740708457232159e+00 5.965435422965646772e+00 +6.185428449259424255e+00 6.030595442091533975e+00 +6.054576789881195076e+00 6.087665626843786093e+00 +6.064534084447068096e+00 5.948162022785545844e+00 +6.027233375971549734e+00 5.972239938901122258e+00 +5.993503696040984430e+00 6.015735310273917946e+00 +5.874189245502017265e+00 5.924024737705913424e+00 +6.104888262323027170e+00 5.952499611188168060e+00 +5.823206416486724990e+00 6.097990044743052174e+00 +5.885905559823193300e+00 5.837938957092081438e+00 +6.030711796103807920e+00 6.160582420125047420e+00 +6.108314469408921532e+00 6.083162090293421365e+00 +6.060539132726859179e+00 6.235592782481493401e+00 +5.940945898623311017e+00 6.053102635284292710e+00 +5.899437216512840365e+00 6.009848595358872281e+00 +5.968964872906488139e+00 6.036923263811075024e+00 +5.973148339862397904e+00 5.941577249162255825e+00 +5.989016820172476940e+00 6.016761509635554894e+00 +5.906055270095198928e+00 5.859392245564730928e+00 +6.062666425940268056e+00 6.160109318447782201e+00 +6.115211151714371240e+00 6.064608987564133358e+00 +5.812535004749667777e+00 6.058628354190663146e+00 +5.968007521656076619e+00 6.183413663497291601e+00 +5.871369523998255069e+00 5.769880220236688118e+00 +5.953541077968298900e+00 6.179829533661413521e+00 +5.983414737959072305e+00 5.910109511075028799e+00 +5.833721202962841801e+00 5.988985666097425664e+00 +6.009574389023872421e+00 6.044142934361226516e+00 +5.905095242822044455e+00 6.169991181198057006e+00 +5.940983857313048233e+00 5.965576151010775874e+00 +6.020840338064621378e+00 5.920224969410053717e+00 +6.229585800591726397e+00 6.002749007136011450e+00 +6.134122324381306335e+00 6.001972029148268994e+00 +5.895068870973745767e+00 5.944973925310677920e+00 +6.032186255345624915e+00 5.717165710033581760e+00 +5.969547774698115816e+00 6.133877383617968526e+00 +6.028501392059782305e+00 6.217944426837964222e+00 +6.101443595188072777e+00 6.139246795028197923e+00 +5.964741756839705644e+00 6.112427779674155737e+00 +5.822460861387126485e+00 6.046876237736156234e+00 +6.158790394217882103e+00 5.903034819055638316e+00 +6.037278479905859641e+00 6.148991926035258793e+00 +6.112247447363882813e+00 6.075562157853650724e+00 +6.002180370348330740e+00 6.093256305820492713e+00 +5.924914779532801212e+00 5.914786125722852006e+00 +6.111209900498424830e+00 6.030590535390269125e+00 +6.054954110640721865e+00 6.126660295029908276e+00 +5.967954497465374430e+00 5.930776548571482287e+00 +5.968404334623886420e+00 6.005188040571067809e+00 +5.953148480932693332e+00 6.048320163558539519e+00 +6.144915283341344292e+00 5.891702958346444419e+00 +6.133293748591635008e+00 5.894530336605954268e+00 +5.925008422688431864e+00 5.910570928924379075e+00 +6.038034323444536611e+00 5.922781085246553445e+00 +5.942439876686921529e+00 6.195471366059487117e+00 +6.085207532638579941e+00 5.952122055126915612e+00 +6.083999957067574016e+00 5.946400602498310484e+00 +5.793785818934228615e+00 6.030948454777181666e+00 +5.931352847459491429e+00 6.137193688996867458e+00 +6.090093166110992051e+00 5.972783414605649099e+00 +5.921987339020148511e+00 5.989547320650393303e+00 +5.995662896082185611e+00 5.989228509725245786e+00 +5.939172597398120423e+00 5.993693686049874181e+00 +5.991362908153840650e+00 5.831564857231002819e+00 +5.980577256059380176e+00 6.031162597346701126e+00 +5.865910578356659855e+00 5.895163550087104021e+00 +5.993110735263313060e+00 6.016319822576314813e+00 +5.942372354477928553e+00 5.927042627614275361e+00 +6.040575314881169611e+00 5.783064272023564989e+00 +6.144251528982794142e+00 5.888880312297825270e+00 +6.129883771728650288e+00 5.942314876144070723e+00 +6.020764819548095836e+00 5.972780026555240873e+00 +5.809822643159068711e+00 5.902995455572033201e+00 +5.903108646436558971e+00 5.917016505615879218e+00 +6.019478197120488261e+00 5.839399925148562431e+00 +5.801938531243197694e+00 6.085456501138010843e+00 +5.908285654370120987e+00 6.008876509512889541e+00 +5.769284417195031267e+00 5.859886854146366453e+00 +6.096900781470703912e+00 5.890861726255419484e+00 +5.923350685248541581e+00 6.148063127052902921e+00 +5.994828772508196124e+00 5.909817939271298393e+00 +6.120393553892861327e+00 6.058236929234553259e+00 +6.071675466448939851e+00 6.008774851412863605e+00 +5.912017730149996098e+00 6.038261561468542205e+00 +6.041814204434863278e+00 5.962351588001712166e+00 +5.755008107464890443e+00 5.956255039241016291e+00 +5.950202799466262960e+00 6.029777854216076705e+00 +6.010997694064283081e+00 5.867092948853176004e+00 +5.890677187701577111e+00 6.041574361982901209e+00 +6.097428845477883996e+00 6.063632220229743020e+00 +5.910605605642762050e+00 5.994277183943688136e+00 +5.948381401961789550e+00 5.956642342213560148e+00 +6.041322693765222240e+00 6.121669515944136997e+00 +5.935355964743147972e+00 5.984893739229683263e+00 +6.024890866371762854e+00 6.091565964059522997e+00 +5.961640194912371626e+00 5.990346304148454593e+00 +5.975690064781002064e+00 5.817400910652605894e+00 +6.104515059578386804e+00 6.042822012743060966e+00 +6.068482871958169156e+00 5.909983612777153006e+00 +5.955260517327578995e+00 5.943376148488574984e+00 +6.187064598059409448e+00 6.001502506466411369e+00 +6.035588008661934900e+00 6.075215005399771329e+00 +6.027241342777973188e+00 5.883379305299880180e+00 +6.054801114150115460e+00 6.087845629379326162e+00 +5.968371859821005820e+00 6.140360540014319746e+00 +5.760705548676375187e+00 6.057291465498429339e+00 +5.931931709620084980e+00 5.998746756958634130e+00 +5.996457421528624820e+00 6.017956587641672961e+00 +5.989577486586117772e+00 6.090289873158123868e+00 +6.054093470653428177e+00 6.184617599393864573e+00 +5.998601186651096207e+00 5.983392354811980951e+00 +6.072138904426410910e+00 6.095005340985253817e+00 +5.920505248274133159e+00 6.073049225645248406e+00 +6.081111134966231013e+00 6.131450704674550778e+00 +5.912590655415530527e+00 5.866817371079829257e+00 +5.993224432726577788e+00 6.044830885393931652e+00 +6.118522573055706459e+00 5.945047455764859379e+00 +6.007152467721570410e+00 6.101001650347017247e+00 +5.956122771204235278e+00 6.023751449950368375e+00 +5.834182760032255111e+00 6.209244546784962182e+00 +5.995878719726563055e+00 5.970664014607503844e+00 +6.078156545308386782e+00 5.856857914363985174e+00 +5.895987867716192099e+00 6.019478350026368219e+00 +6.040792087922425502e+00 5.848793547597232134e+00 +6.051720408001060925e+00 6.012847657903643395e+00 +6.035984740617673872e+00 6.145460084847779392e+00 +6.078487356242921358e+00 6.068819156644406299e+00 +6.201238215447664182e+00 5.932497019081685252e+00 +6.003459182637452152e+00 5.855486865650889605e+00 +6.002750654719462453e+00 5.867162386751855863e+00 +5.986568667256591425e+00 6.060887733494723761e+00 +6.082658053943252874e+00 6.013708016706201143e+00 +5.799136733286798240e+00 5.833623643440552620e+00 +5.997771406179618126e+00 6.221371489921057041e+00 +6.009931213145355500e+00 6.055224086201848266e+00 +5.965007616366661658e+00 6.078237315854194911e+00 +5.986205535312611126e+00 5.849212302779988271e+00 +6.143153588749196814e+00 5.955183069105638438e+00 +6.011287320831806724e+00 6.031929787736546089e+00 +6.004674802317869542e+00 6.174210179088865047e+00 +6.118736344693981977e+00 6.087954521349823622e+00 +5.980960306254093695e+00 6.179558946303242983e+00 +5.981954899171316065e+00 5.949999087793184316e+00 +5.935748596173005431e+00 5.857892146734609895e+00 +5.966763441293779557e+00 5.962878505499579873e+00 +6.115184378136087950e+00 5.805174272047939787e+00 +5.803771866046148808e+00 5.913617823039932553e+00 +6.028055682942612847e+00 5.925954184691793358e+00 +6.043145249906581640e+00 5.832386510103096278e+00 +6.082563920060517049e+00 6.030320363287148488e+00 +6.064608409815066992e+00 6.036022412733594855e+00 +6.106781849010949337e+00 5.848768542805466986e+00 +5.727297959440200259e+00 6.039918468903030302e+00 +5.968380036069496519e+00 6.106890184906500707e+00 +5.872755485196371694e+00 6.031255962969146012e+00 +6.100241586152669093e+00 5.825633629116014234e+00 +6.077797464980085884e+00 6.089374038087140839e+00 +5.840718097439678402e+00 6.008609126062924410e+00 +6.012734604429513574e+00 6.019992375095926107e+00 +6.005348427809440004e+00 5.916801505313853404e+00 +5.888616682278461134e+00 5.800976009587150983e+00 +6.079729125395239464e+00 5.834471120589550530e+00 +5.883534102053463499e+00 5.941711686068238407e+00 +5.932990274735482572e+00 6.024165423771129291e+00 +5.970034084315720690e+00 6.022714553561091755e+00 +6.089855161037939446e+00 6.080524818154147582e+00 +6.131649751654774327e+00 5.991403361471440370e+00 +6.083862235954092590e+00 6.045300408020062299e+00 +6.072202909963230866e+00 6.007925816077094971e+00 +6.139223309426093955e+00 6.019309370370158341e+00 +6.139817148178243755e+00 6.092981482036935681e+00 +6.057595496674803570e+00 6.157287717780596914e+00 +5.839110663941923463e+00 6.116956885144932521e+00 +5.918048091493257168e+00 6.081214936594740550e+00 +5.832001622639310767e+00 5.915544795367399189e+00 +5.650643453262926386e+00 5.980920591130686859e+00 +6.236122306035936091e+00 6.016572518794617075e+00 +6.082569716217148148e+00 6.087850583980978669e+00 +6.046124879629264370e+00 5.993659047352996261e+00 +5.964973215828742958e+00 6.102635425309940409e+00 +6.160915558041884843e+00 5.930548148628833616e+00 +5.799115795062770751e+00 6.018804126970679569e+00 +5.988111340263171378e+00 5.915234340609877073e+00 +6.076897877800526260e+00 5.832766471767701688e+00 +6.136055784177735895e+00 5.915944977404567595e+00 +6.024187503249610387e+00 6.095481025421287669e+00 +6.123582079386776122e+00 5.979156518175654078e+00 +5.938333980122052047e+00 6.008538484805388435e+00 +5.862320967374490266e+00 6.112072303451983046e+00 +6.059507088544557440e+00 5.797256807244441035e+00 +5.981138492643665039e+00 5.816428045983061956e+00 +6.083542303870929757e+00 5.920119538275047333e+00 +5.865129915127270444e+00 6.148601558772904596e+00 +6.032110535726556755e+00 5.940267268277936275e+00 +5.921666843527171764e+00 6.077675800227063441e+00 +5.962236730301679444e+00 5.968857755871598059e+00 +5.984058793568374668e+00 6.090208877252096364e+00 +6.052424203885296450e+00 6.077275054870812099e+00 +5.930990355525095126e+00 5.939556239834089091e+00 +5.934789926947907190e+00 6.093710851559364983e+00 +6.029025785877585975e+00 6.075647700242918781e+00 +6.055179495808804546e+00 6.138332531276898152e+00 +5.976442011228630946e+00 6.024553893648440628e+00 +6.153804617564220258e+00 5.868864885886902805e+00 +5.805968107260801148e+00 6.076761548703784932e+00 +5.997295967164529173e+00 5.850481877312352808e+00 +5.901867178591029273e+00 6.158020362726652763e+00 +6.147950809386500737e+00 5.990214920798905496e+00 +6.046746519277042431e+00 6.084899907437074873e+00 +6.093452623155275028e+00 5.926560381682745238e+00 +6.007048596713143063e+00 5.998686747712875800e+00 +6.021736618479301306e+00 5.880891867810409401e+00 +5.840362434161431970e+00 6.223717560464008258e+00 +6.203391083277966622e+00 5.851640637506415388e+00 +6.017021829804881428e+00 6.016254997676202088e+00 +5.784831496725955091e+00 6.083379484073263122e+00 +5.950359241314228775e+00 5.984851889459671170e+00 +6.088687810776568732e+00 5.771278340599644174e+00 +5.933780378318346038e+00 6.096869282147149960e+00 +6.044569491520153548e+00 6.045058976658237881e+00 +5.983574132529218659e+00 6.085107066191373093e+00 +6.098771162088957531e+00 6.096472669318241167e+00 +5.853266374397976257e+00 5.839205517634997733e+00 +6.087741444511365785e+00 5.994587618353643954e+00 +5.895910603847995368e+00 6.127513173309402816e+00 +5.869151285831560649e+00 5.873713880395770914e+00 +5.879232654227074306e+00 5.902788555953757843e+00 +6.164938102432873102e+00 5.968570161276835151e+00 +6.039789908934380946e+00 5.850900329422922042e+00 +6.158679408445625114e+00 5.970019284244319380e+00 +5.849873544415550519e+00 5.834026216615170846e+00 +5.962206970504375647e+00 6.028862671505887505e+00 +6.181708025566863718e+00 6.020579266598561574e+00 +6.071267209814920740e+00 5.970379914255631526e+00 +5.888328573535292598e+00 6.012431077154032799e+00 +5.766228334649508902e+00 6.093716902687472903e+00 +5.929497263262231144e+00 5.839858109707487088e+00 +6.163716901621588917e+00 5.990446999346819013e+00 +6.006707826127651195e+00 5.999724399529492658e+00 +6.158267102529324077e+00 5.972754986062736471e+00 +6.128947096853285537e+00 5.881336085110955736e+00 +6.031312257260134757e+00 6.107940601379808321e+00 +6.000967415810229966e+00 6.001208781802827019e+00 +5.824617691743212866e+00 5.945466584730874082e+00 +5.962201253834933823e+00 6.015679042104302710e+00 +5.948053169193653567e+00 6.024806060594008805e+00 +5.891378567623497986e+00 6.017559836646547033e+00 +6.080178941371398693e+00 6.054945114729270550e+00 +6.057425686554108957e+00 6.075312277838855302e+00 +5.937116013265918646e+00 5.963056935241950463e+00 +5.936100314013586399e+00 6.016300904430913477e+00 +6.056525774930858752e+00 6.051235682603776311e+00 +6.086288346553301309e+00 5.934151804366317506e+00 +6.105942089854546673e+00 6.072549472412612559e+00 +5.966599778346152405e+00 5.897033504750874400e+00 +5.997085270686761227e+00 6.154709323625042749e+00 +5.960817632076637729e+00 6.128390870056557027e+00 +5.932150159765291697e+00 6.037564994901011950e+00 +5.957240016267342675e+00 5.862663586962109541e+00 +5.979865263768256334e+00 6.047576527725654572e+00 +5.960088086088545012e+00 6.028019219242073845e+00 +6.104614833408619212e+00 5.794998347883255185e+00 +5.762133058889530091e+00 5.948829728907832681e+00 +6.072901265384368585e+00 5.985778331518599060e+00 +5.938284396529195597e+00 5.825957825522208644e+00 +5.934149465936745749e+00 5.911707145075325798e+00 +6.083649711030122198e+00 6.016795980236330443e+00 +6.073502152010072486e+00 5.965551644533456432e+00 +6.082261598389057333e+00 6.076773483838701750e+00 +5.837823033293306985e+00 6.023846363484041788e+00 +5.914726237007870147e+00 5.941354414285830110e+00 +6.105143839901357339e+00 5.867117706553313994e+00 +5.993917839509264489e+00 6.091805710962109544e+00 +6.026604741826814937e+00 5.958428437727741667e+00 +6.149200636393932662e+00 5.868799709209248761e+00 +5.963330809238099661e+00 5.823041473772037513e+00 +6.158980265497416617e+00 6.046906856600857694e+00 +5.854339116237666119e+00 5.851054979458247374e+00 +6.051302400271676873e+00 5.935840969710493908e+00 +6.037974631963993311e+00 6.004905962581140066e+00 +5.986302446571538205e+00 6.076361716073177988e+00 +5.968804663503640029e+00 5.901631866232007084e+00 +6.171041042761868489e+00 5.976013685922783480e+00 +6.025648846279920257e+00 5.934442693326348106e+00 +5.855481884565479689e+00 5.943816536648961701e+00 +6.162230985135741079e+00 6.163201947063327246e+00 +5.875971691074678205e+00 5.838795491594327203e+00 +5.913497269952492807e+00 6.089866682574236911e+00 +6.209181524968496291e+00 5.961266272426174240e+00 +5.940326355076816611e+00 5.952511749477160663e+00 +5.900760849056553070e+00 5.995294400888732333e+00 +6.054409484939512254e+00 6.018860654490251427e+00 +5.918193857031881500e+00 6.202885023761886885e+00 +6.066746062515363747e+00 6.129050809634648544e+00 +5.943368714042668088e+00 5.925933189351708208e+00 +6.014508072873288036e+00 5.982782637458829100e+00 +5.799912141213109606e+00 6.036653236161251712e+00 +6.211443296117726831e+00 5.957552630070250821e+00 +6.106100967888008491e+00 5.962440768878986219e+00 +6.028392659004289555e+00 5.957460852364731885e+00 +6.051302337518520424e+00 5.968005561357358602e+00 +5.949984730630497154e+00 6.029680330798734111e+00 +5.872663757671342744e+00 6.053645773385942341e+00 +5.833002781219314592e+00 6.076912656144995317e+00 +6.022817988921047139e+00 6.151381199772823827e+00 +5.892942336506591161e+00 6.101144430738640878e+00 +5.866695052235415098e+00 5.935363205978882561e+00 +5.961434448471906400e+00 5.990794178932489444e+00 +6.014280717634709283e+00 5.970207139908093374e+00 +6.089799554449661478e+00 5.974323092148226877e+00 +5.968837059772527986e+00 5.950147898495692367e+00 +5.966711580875064591e+00 6.157971983904827695e+00 +5.909458635688752182e+00 6.039685683376946557e+00 +6.056170000323117364e+00 6.003236424249400294e+00 +5.809728380218325938e+00 5.913732771218961126e+00 +6.093058457106681480e+00 6.028629032403722832e+00 +5.985996240390426770e+00 6.057041022481378434e+00 +6.132609914944444185e+00 6.061735107461544203e+00 +6.111258741496834013e+00 6.005877145561502317e+00 +6.271415915415510689e+00 6.162730408083196387e+00 +6.051481465911114022e+00 5.869832186347323066e+00 +5.983612108974703858e+00 5.922288367003947229e+00 +5.957294137192833183e+00 6.001095488388266119e+00 +6.027520412216976098e+00 5.869106711757912542e+00 +5.984596934462901530e+00 5.973925148214094705e+00 +6.037044547738166678e+00 5.824963129876594259e+00 +6.061937971366037736e+00 6.076992455588390740e+00 +5.966975676771765436e+00 6.042228087956164728e+00 +5.975522802251929555e+00 5.962142250029024204e+00 +5.940486824388854892e+00 5.882708573976968225e+00 +5.932330760595466934e+00 5.874171519832666277e+00 +5.924150710193483604e+00 5.927530253248844083e+00 +6.003922244719452017e+00 5.972176987154115935e+00 +5.920867293361447459e+00 6.023515566520706521e+00 +5.986331535502623424e+00 5.886994894002038237e+00 +6.066787057684434714e+00 5.867598097854912709e+00 +6.071717924063135818e+00 6.040194552924048388e+00 +6.121056926750690685e+00 5.951409673635603248e+00 +5.794545475798823730e+00 6.099024294912803512e+00 +5.785673310081083542e+00 5.940698100625222189e+00 +5.994207537219838677e+00 5.970551201275565489e+00 +6.005500826391085845e+00 6.036702644277659680e+00 +6.133252586119983363e+00 5.995327730568440039e+00 +6.072820837512108660e+00 5.989677859959690487e+00 +5.963656630126718206e+00 5.945482129800651272e+00 +6.122391630346499802e+00 5.985962875784380799e+00 +5.777205179419373060e+00 5.945481937699661046e+00 +6.029094880077899177e+00 5.937060624522940699e+00 +5.951727267543128974e+00 6.054110949120468099e+00 +5.996818348555481570e+00 5.951356064087999442e+00 +5.867676955732719968e+00 6.198108643290246356e+00 +6.025950366921583701e+00 6.132067612950710789e+00 +6.078642145216698545e+00 6.121402415615633252e+00 +6.098798819286792572e+00 5.975285044444291316e+00 +5.955573086619445178e+00 5.951538652389357864e+00 +5.993993892756021680e+00 6.027604294768454274e+00 +6.015964955503685374e+00 5.919286959857459784e+00 +5.843292282216754785e+00 5.984035183997590046e+00 +5.971392664954778162e+00 6.022415440702540756e+00 +5.953541829217941839e+00 6.074471422811946297e+00 +6.098000954543449481e+00 5.937800236668433485e+00 +6.038300070415441922e+00 5.766961572586692952e+00 +5.844352825726883971e+00 6.124552620269528624e+00 +6.056255823636074176e+00 6.015487717024215364e+00 +5.891952730063377608e+00 6.177905445564478626e+00 +5.908853786470779745e+00 6.190234465531091246e+00 +6.123617091938570844e+00 6.000900339297839281e+00 +6.025477191696979595e+00 6.022874156736579998e+00 +6.029667696604764870e+00 6.008510108867826993e+00 +6.088416741128905407e+00 6.109757282191826455e+00 +5.966279591110370539e+00 5.953197641874604429e+00 +6.105512644483435558e+00 6.079418641224259012e+00 +5.998374304851931349e+00 6.033627877505709058e+00 +5.901102365959426166e+00 6.070144311403995907e+00 +5.876213883765650792e+00 5.896254188942182672e+00 +6.017900279021545451e+00 5.972114143235390138e+00 +5.922982890362177066e+00 5.904783115184113917e+00 +5.903229555082232238e+00 6.081050154547868125e+00 +5.992297894878450215e+00 5.977819839236574673e+00 +5.994216773190175651e+00 5.972977564134332340e+00 +5.923536520383628989e+00 6.000870605482963249e+00 +6.025582671482910158e+00 6.083226434568374863e+00 +6.010632639540151700e+00 6.027498731295124479e+00 +6.015667928032371492e+00 6.004686349863274764e+00 +5.982975998020791941e+00 5.992715341089474457e+00 +6.112696443535133639e+00 5.947988303635128204e+00 +6.005347423346325542e+00 6.015885472955887714e+00 +6.107513933169814280e+00 6.019511422635331677e+00 +6.047755461325130533e+00 5.988483945292510491e+00 +5.999677278923486234e+00 6.117722859291586879e+00 +5.994105295572333958e+00 5.908943115681521974e+00 +6.032960679798327064e+00 5.926888232460016503e+00 +5.975620186381674692e+00 5.946309648600902165e+00 +6.001747970659447873e+00 5.969255704575223476e+00 +5.821746373075065151e+00 6.027442926632888387e+00 +5.828450329417909970e+00 5.931454245434796491e+00 +6.007469870943910273e+00 5.948943342717112337e+00 +6.096803519557791873e+00 5.991851764644709810e+00 +5.900165702529643674e+00 5.807170979044661507e+00 +6.045637844212877532e+00 5.946657123766169839e+00 +6.199039248508324107e+00 6.012916643712600262e+00 +5.911453013971381232e+00 5.964440066502641358e+00 +6.091817616392384949e+00 5.923435974343599142e+00 +6.084403005824404964e+00 6.022557698735363729e+00 +6.004327562578190225e+00 6.018200872850345995e+00 +5.981553999318561132e+00 6.155958137391149165e+00 +5.918644302550111647e+00 5.946657658443452732e+00 +5.929464149953688867e+00 6.123591934939851100e+00 +5.756186928963361815e+00 5.948217772834709649e+00 +6.048828386555672232e+00 6.051122718286969793e+00 +5.829933575142084656e+00 6.047306732132419427e+00 +5.995011389786530032e+00 5.947332852630514921e+00 +5.970138431045149296e+00 5.891603282000268393e+00 +6.110932542990529903e+00 5.958634930440421584e+00 +5.985279201996644538e+00 5.987435864142470976e+00 +6.029426500018437274e+00 6.044233268411726812e+00 +5.904596250283743686e+00 5.812196021446829342e+00 +6.002908173189183572e+00 5.891903089156241613e+00 +6.168645778703164773e+00 6.005321733560822217e+00 +6.032542146095059898e+00 5.902688430275647491e+00 +6.045194307239721176e+00 6.033737959288354880e+00 +6.101865503962470072e+00 5.942347486442651316e+00 +6.068520041025066369e+00 5.903013127062602727e+00 +6.035125208654131157e+00 6.093785996929217852e+00 +6.010048946185971630e+00 6.068818773650391130e+00 +6.026228260956011162e+00 6.006457103953007248e+00 +6.169881283257319993e+00 5.946189849064221100e+00 +6.040017627172208137e+00 6.015820501866967263e+00 +5.944930602482440207e+00 5.903206517545756427e+00 +6.221467831349158040e+00 6.040254894566156274e+00 +6.194919114937520455e+00 6.127427687678011381e+00 +6.046637798949118903e+00 5.859911589287122524e+00 +6.007694797861748981e+00 5.880222051138056294e+00 +5.892573347255419591e+00 6.027228563312644560e+00 +6.114170046313245344e+00 5.977277604201026939e+00 +5.928437337633161164e+00 5.933223063188380664e+00 +6.129316735361950208e+00 6.071089932867520744e+00 +5.947012803941875703e+00 6.107950226820357820e+00 +5.950092958612786198e+00 6.005442662636406581e+00 +6.028892046231129953e+00 5.807489801771907878e+00 +5.893738410335051192e+00 5.999026940437569344e+00 +6.003810335015487887e+00 5.912388119117759189e+00 +6.118245809822701275e+00 6.116640790457998023e+00 +5.960492331648253206e+00 6.173174523535856828e+00 +6.034406981762952427e+00 6.088387001275365584e+00 +6.068401658323781866e+00 5.971566212548282238e+00 +6.002997166446377264e+00 6.028308448134023223e+00 +5.818048995324286210e+00 6.111326471217316758e+00 +5.824139054068647958e+00 5.890442720432899293e+00 +6.020199720024539403e+00 6.177916070219452216e+00 +5.996379646925442231e+00 6.163016816431280631e+00 +5.939013274940238674e+00 6.020277194451120195e+00 +6.184839210989045988e+00 6.039939246532945560e+00 +6.229622114251623266e+00 5.940187409539617214e+00 +6.058616907414033470e+00 5.983372496250146888e+00 +6.057672649688432998e+00 6.062882794557330257e+00 +6.022487725130284630e+00 6.064739297779228266e+00 +6.126363240245108699e+00 5.846708862548090302e+00 +5.909573052658928738e+00 5.969883092642117361e+00 +6.169009884946238031e+00 5.968071214543310354e+00 +6.086221525560478796e+00 6.034326765726855335e+00 +5.979823881978321154e+00 6.077009603905103141e+00 +6.034195275926582447e+00 6.011473532042716172e+00 +5.992102133096262051e+00 6.117706882169254179e+00 +6.044310314634356196e+00 6.178344234759195253e+00 +6.032805508493387592e+00 5.910435426253929592e+00 +6.142173193973122558e+00 6.193619082507613172e+00 +5.928189789013088351e+00 5.922863508115612241e+00 +5.889481364140453756e+00 6.118883430165977799e+00 +5.990480526889747637e+00 5.942225276096218423e+00 +5.941478200581626012e+00 6.198022880775365451e+00 +5.828580445226476670e+00 6.088879732357043828e+00 +5.964910658086793660e+00 5.897020599003684360e+00 +6.016786360364228869e+00 5.979226888253805328e+00 +6.002505245289523117e+00 5.953462971857988784e+00 +6.075226813209987142e+00 6.019225906242458457e+00 +6.053426316084864922e+00 5.990340276758560734e+00 +6.117981146110171409e+00 6.063214377682375478e+00 +6.109627590628911697e+00 5.904841041534603541e+00 +6.076743396402214614e+00 5.946183335677002191e+00 +6.072198448328714804e+00 5.982994149851207588e+00 +5.929175233475188378e+00 6.130128089375892486e+00 +5.972314581471601436e+00 5.995787890093157380e+00 +5.913221918507179709e+00 6.032020587153952285e+00 +5.931616542371184408e+00 6.024380363827392948e+00 +5.957650115961982351e+00 5.967438965453383481e+00 +5.976249803288758322e+00 6.028791500416537552e+00 +6.330752526806808334e+00 6.102397256405139636e+00 +5.896166662890390597e+00 6.015404212827425212e+00 +6.271722017165646257e+00 6.093209495857689895e+00 +5.957140469099812208e+00 6.104956423637259100e+00 +6.157693402358860091e+00 6.072411863841481683e+00 +5.982550142954102590e+00 5.866656564035864996e+00 +5.913903596873372415e+00 6.035225886556732533e+00 +6.149172504940404238e+00 6.025660473772285641e+00 +6.059789954430858216e+00 6.014565180656016530e+00 +5.872248763987637510e+00 5.962449944369691224e+00 +6.008121175860391183e+00 5.978233944438557934e+00 +6.165890626038508238e+00 6.006891918828008770e+00 +6.081327823941649946e+00 6.008279507546427034e+00 +5.838147939111751228e+00 5.971637022910672776e+00 +6.010384038926535943e+00 5.970976196404174097e+00 +6.268450618893978366e+00 6.090638389228685945e+00 +5.809461986351010410e+00 5.929534032912115116e+00 +5.935187751336210127e+00 6.137258349178837946e+00 +6.193486305330491604e+00 5.940474857241500040e+00 +6.075239019295940679e+00 5.884743399772511374e+00 +6.146287710146106420e+00 6.047570952136759992e+00 +5.882330503308479841e+00 6.179981931178398114e+00 +6.026329378956980065e+00 6.049394563965746485e+00 +5.930438654029338785e+00 5.820190973159806269e+00 +5.892099816488851616e+00 6.113364493523142151e+00 +6.011334239571806570e+00 5.865628120785742361e+00 +5.983487043968783503e+00 6.040641758501025471e+00 +6.006557619809147042e+00 5.847967626854813972e+00 +5.936371988811601774e+00 5.959729465909912705e+00 +6.065409905385464207e+00 5.957715220282793211e+00 +6.001672632548233466e+00 6.050252849433079838e+00 +5.884120778231019422e+00 5.967026353662241434e+00 +6.145089738686221992e+00 6.019678665965216169e+00 +5.864805045455768528e+00 6.102359314808174062e+00 +5.809650515584773522e+00 6.065345638754060964e+00 +5.910687173565940533e+00 6.067074581443049119e+00 +6.140084639573640146e+00 5.953149653945498443e+00 +5.787157465185288174e+00 6.024603657386484734e+00 +5.971019137680912081e+00 6.002722802612820097e+00 +6.112185256995207538e+00 6.044473659130437326e+00 +6.057392202257339875e+00 5.947851487378684965e+00 +5.821170423072560496e+00 6.102526505826216585e+00 +6.065440428643981363e+00 5.845431837353820548e+00 +6.059843475238809063e+00 5.954896415456189196e+00 +5.812483542649658830e+00 6.093710869368885064e+00 +6.184024246345157572e+00 5.904730385152514138e+00 +6.042071394136185880e+00 6.162829397987458435e+00 +5.888374924956565337e+00 6.039877402368127868e+00 +6.035024977486377118e+00 6.042058125454088824e+00 +6.002992897665492933e+00 5.883887015678111787e+00 +5.979803773940343348e+00 5.982282330941363746e+00 +5.919191886539431735e+00 5.916185895462399813e+00 +6.026911416503129892e+00 6.027516882900905593e+00 +5.990125204190100305e+00 6.003708842311322513e+00 +5.986047472962995997e+00 6.080253711855696963e+00 +6.008281525635898568e+00 5.918582908538004617e+00 +6.176558368526164244e+00 6.063189735329210350e+00 +6.189704683420866438e+00 5.936575199488728138e+00 +6.026611247664365401e+00 6.148790922677650705e+00 +6.050637601522572240e+00 6.080987239569116909e+00 +5.909780081551469166e+00 6.112580186045228459e+00 +5.926310380135970668e+00 5.948538978728366899e+00 +5.963967651011459203e+00 5.998298732153601875e+00 +5.994543818946801217e+00 5.954578830951761326e+00 +5.926491746655754511e+00 5.999539245820610489e+00 +6.048870022194765106e+00 5.954645582288284444e+00 +5.922199498675488449e+00 5.957346420361586681e+00 +6.012466229473497847e+00 5.925951291008372479e+00 +6.130071518055762780e+00 6.164699269466030529e+00 +5.950206571704711678e+00 6.005660165086236013e+00 +6.207516785338484944e+00 5.988350665353809887e+00 +5.955329182834413260e+00 5.889060192284812700e+00 +6.003456244317361801e+00 5.886128982671487542e+00 +5.955229903434037020e+00 5.997882757337043458e+00 +5.864950414331258521e+00 6.103299423585531791e+00 +6.029637963633710740e+00 5.879430519958009249e+00 +5.997989591305087131e+00 6.003421186015414079e+00 +5.906191973169646836e+00 6.125447110037573140e+00 +6.048071437127070737e+00 5.881164232967189598e+00 +6.073300254297048895e+00 6.125353838168547504e+00 +6.089617714976150786e+00 5.768147688862730327e+00 +5.992029744483166276e+00 5.814562234973560173e+00 +6.054758908226207659e+00 6.061085954733649750e+00 +6.042226046256015337e+00 6.042640739793747606e+00 +6.024003468560261254e+00 5.825115019834434804e+00 +6.021272841606547743e+00 6.140572365029993485e+00 +6.165765474559682602e+00 5.829190255446352609e+00 +6.003975737303560933e+00 6.105092674991430712e+00 +6.048058496559949759e+00 6.075993654138719613e+00 +5.924890092827244992e+00 6.088567148074165658e+00 +5.991415261560628203e+00 5.827001295062650854e+00 +5.953021755135938342e+00 5.782789753506647479e+00 +5.870464869902969340e+00 6.041997707475372792e+00 +6.030828298755210426e+00 5.902001171675408386e+00 +5.699980063132579211e+00 6.171950010798481934e+00 +6.015415245442174985e+00 6.137780382331090578e+00 +6.038118796716832826e+00 6.105565723328197691e+00 +5.958232502413745912e+00 5.851402393425397364e+00 +5.926023255701699632e+00 6.018841542118428478e+00 +5.925905076422499640e+00 5.915775436924848307e+00 +5.865881010824510966e+00 5.990724885751360418e+00 +6.113281806587542277e+00 5.998340398351876601e+00 +5.993398419884104378e+00 6.037574912508191893e+00 +5.955743029895443463e+00 5.948880703588553587e+00 +6.054056820526140470e+00 6.018465330327212648e+00 +5.952816566641492280e+00 5.947336680114206686e+00 +5.999812606358753797e+00 5.794323826863232441e+00 +5.821420910178906283e+00 6.073240788035560556e+00 +6.082138604238371826e+00 5.985856441570865272e+00 +6.046320322195894548e+00 5.968835409081576060e+00 +6.072773829758149944e+00 6.021829298649977069e+00 +6.059042259127910057e+00 5.906068664027952941e+00 +6.030785259166959733e+00 6.026855574025205442e+00 +6.125362115016372400e+00 6.061567347478710843e+00 +6.047724251018676611e+00 6.043678564737029468e+00 +5.863778518298662590e+00 6.101447836316044260e+00 +5.978390501971531101e+00 5.856424524686149269e+00 +6.007537441759316366e+00 5.903771310782757631e+00 +6.075665723355907488e+00 5.882697108650265072e+00 +5.939391664329008336e+00 6.152775410256150934e+00 +5.950210242657159476e+00 5.922246428996742473e+00 +6.010352489467001291e+00 6.026786489000638625e+00 +6.060432374258223120e+00 6.118418373537682697e+00 +5.929118421946364847e+00 5.994427622623075713e+00 +5.914328631687896909e+00 6.115706668469838014e+00 +5.894160073288031931e+00 6.030440361648070180e+00 +6.163885500950883056e+00 6.087136628163780649e+00 +5.782335058829482399e+00 6.013547794286092874e+00 +5.930108080735816856e+00 6.112602199797072089e+00 +6.104329998047540506e+00 6.108534018908084562e+00 +5.945361792149873814e+00 6.101908224080290211e+00 +6.077531817595407837e+00 6.137261716525903132e+00 +6.058811060737076204e+00 6.089120408890456915e+00 +5.943645671357347560e+00 5.963762229943456283e+00 +5.954178944493494718e+00 6.087128913433576649e+00 +5.963312070872293091e+00 5.897400734572328496e+00 +5.884560012093029258e+00 5.970848604923392422e+00 +6.073781690200170225e+00 6.019782202333169963e+00 +6.119342305480336641e+00 5.960915874487159982e+00 +6.021765430095466165e+00 6.159764309762369550e+00 +5.989381409085930308e+00 5.889102446780027478e+00 +5.925498579630942508e+00 6.077262096820401638e+00 +6.164827832113481954e+00 6.005547504775377021e+00 +6.024752842379448303e+00 6.000033935960025211e+00 +6.005913818164478890e+00 6.231122294162065423e+00 +5.924289446159670902e+00 6.015031621999200162e+00 +5.949661938612758050e+00 6.033532199092766390e+00 +6.085967011718497410e+00 6.046572199767390465e+00 +6.051418627132180816e+00 6.164750964081098239e+00 +5.888814800275689265e+00 6.082971178643237664e+00 +5.914128769116845596e+00 5.947180135183372407e+00 +5.848244030292978124e+00 6.058857671422839708e+00 +5.943690021130822565e+00 5.888924488892594233e+00 +6.088591650681154377e+00 5.970716665302278514e+00 +5.979217266777883566e+00 6.003382916027804939e+00 +6.003932466128745205e+00 6.079894550759414429e+00 +5.748058674833210091e+00 5.976367984289408852e+00 +6.051556991012590814e+00 6.113317780212819130e+00 +5.983472608884255806e+00 5.905975150316960409e+00 +5.869543200791143889e+00 5.895715679354196936e+00 +5.831081772079843795e+00 6.024725774250313748e+00 +6.030445782757143824e+00 5.994504639671260904e+00 +5.913665725364039893e+00 6.081305270451260903e+00 +5.945665149396917926e+00 5.953197030496868436e+00 +6.121438306243686789e+00 6.014623982807187019e+00 +6.108603654313148112e+00 5.890322856257824924e+00 +6.008670060773398269e+00 5.986874047243406771e+00 +5.880901463470478596e+00 5.968539765634136351e+00 +5.931553265859307089e+00 6.037503379106349932e+00 +6.095587739792479809e+00 6.144013607846377845e+00 +5.989928402934862284e+00 6.001830097964293564e+00 +6.055599423342269638e+00 6.005831452292655470e+00 +5.808054329108317759e+00 5.948127343948927503e+00 +6.022314342788988917e+00 5.863460221720129262e+00 +5.944691587643677444e+00 5.860476144317686042e+00 +6.128710122922609749e+00 6.072543155098141909e+00 +6.160175522304429663e+00 6.028999934830536311e+00 +5.892070013235395365e+00 5.869000849515425777e+00 +5.981384166685264070e+00 5.893004707647564011e+00 +6.171306790323703773e+00 5.881316643781608455e+00 +5.933411549061222701e+00 6.052542071153025560e+00 +6.081997409925589793e+00 5.706762691518748376e+00 +6.103867200098266110e+00 6.000318983243613680e+00 +6.085913297419226708e+00 5.857077904076855468e+00 +5.964464351118275331e+00 6.018178996284139437e+00 +5.861835578469522190e+00 6.032839879419694462e+00 +6.059580014762079969e+00 6.136370733997968507e+00 +5.902370244931510967e+00 6.145852518735027914e+00 +5.919910798099470739e+00 5.921078179678125331e+00 +5.883728914367090113e+00 6.265458544980678113e+00 +6.038496242810225567e+00 6.078127489868100142e+00 +5.888679760918297923e+00 5.902417882047074293e+00 +5.981174925880620385e+00 5.992926055910285932e+00 +6.063781329330368841e+00 6.124516247635130917e+00 +6.015296847322873397e+00 5.986669489691228918e+00 +5.934501804367542377e+00 5.977139722338798755e+00 +6.142529411479864976e+00 6.123035440403031160e+00 +5.964972353349025980e+00 5.945949709281171280e+00 +5.974997986302830633e+00 6.071339840113923358e+00 +6.264487997334660996e+00 5.678590148175142183e+00 +5.893637635997180269e+00 5.963222020662997558e+00 +5.936051925051661016e+00 5.985700112551359808e+00 +6.069492121624485925e+00 5.994425193603695412e+00 +6.049374838879574945e+00 6.003590641244523241e+00 +6.018712121841842233e+00 5.902663750020957778e+00 +6.170025851318736265e+00 6.076546364863830263e+00 +5.864248251612456109e+00 6.035653698013022428e+00 +5.933500870163926244e+00 6.065370471191914525e+00 +5.956298876361670658e+00 5.815371953026175156e+00 +5.884244403451969418e+00 6.268101817905760598e+00 +6.071044186821254129e+00 6.135721324377830577e+00 +5.962446526435977390e+00 6.087642062670744814e+00 +6.100684998021920435e+00 5.882443089509692413e+00 +5.955425972419238434e+00 6.071059606050901891e+00 +6.084590470120099681e+00 6.055099769139228094e+00 +6.098699772178817646e+00 5.840587860290072264e+00 +6.074639795057578340e+00 5.966718003808267667e+00 +6.000797301664130501e+00 5.861939472576815469e+00 +5.989305057947831301e+00 5.917043078232512521e+00 +6.195856961402417262e+00 6.018012166578832201e+00 +5.870448301296058879e+00 5.823979961086416246e+00 +5.968630202156595566e+00 6.283378449392596821e+00 +6.025038813593849518e+00 5.967602364930896464e+00 +5.768419312177951674e+00 6.126967512654233339e+00 +6.007247472479706474e+00 6.002721106775187998e+00 +6.024259010607570630e+00 5.988702450843626401e+00 +6.020119446309093014e+00 6.079734387306603871e+00 +6.012386582959326375e+00 5.993082064268738129e+00 +5.944448732863000018e+00 5.964919116784729525e+00 +5.835487375790823883e+00 6.095738799618114712e+00 +5.889990762259488477e+00 5.963676310418472681e+00 +5.958105530145726192e+00 5.993349760335671128e+00 +6.027678948850751617e+00 5.937017288406604365e+00 +5.968139968136379814e+00 5.980411870171945310e+00 +5.796810435440419518e+00 5.867056153323334300e+00 +5.957602037378825877e+00 5.773244666174933037e+00 +6.087742725633181529e+00 6.084943020615042997e+00 +6.057934523643339730e+00 5.885231687112574051e+00 +5.964795880663147365e+00 6.041703423509622972e+00 +6.115060061562330063e+00 5.911194226370900751e+00 +6.154279262879724044e+00 6.085355946311458375e+00 +5.920312149549424419e+00 6.083458780196864701e+00 +5.950324092733122683e+00 5.899165022593613195e+00 +5.814431309785548230e+00 6.008953106831345536e+00 +6.020788803454323990e+00 6.036104385285855578e+00 +6.016744987235354891e+00 6.001761736836078498e+00 +6.028038274099734473e+00 6.033802103361816549e+00 +5.918583035454727970e+00 6.080218857929543752e+00 +5.999487209913604069e+00 6.084531667483409123e+00 +6.124878982559134322e+00 6.025737241479681927e+00 +5.983205602223163666e+00 6.009005013231437431e+00 +6.025337998755557756e+00 5.814546017607515438e+00 +5.871144593953774304e+00 5.953186057750018634e+00 +5.835681784036114372e+00 5.913380684705641599e+00 +5.998504037749635032e+00 6.004546270323461776e+00 +6.037103417665559135e+00 6.070661389147931075e+00 +6.009328971085200699e+00 6.021895831321508297e+00 +6.015725826368676366e+00 6.089618770020674532e+00 +6.068974670480876910e+00 5.974962622715454863e+00 +5.911232512120720983e+00 5.978132303447516449e+00 +5.994635778301147688e+00 5.888880085284656118e+00 +6.065878604805027940e+00 6.031162186472116993e+00 +6.077987595930167686e+00 5.969587152787838136e+00 +6.023161330499704036e+00 5.936601092611015318e+00 +6.072768821606681300e+00 5.968429366552174820e+00 +6.028097946797183582e+00 6.154446569364803388e+00 +6.023890671156097554e+00 5.993088669197668139e+00 +5.741064482795938062e+00 6.068273549031607317e+00 +5.912208664625058674e+00 5.985545784964533489e+00 +6.187137203094280835e+00 6.128557653869049382e+00 +5.956018269619176131e+00 5.980208419130518926e+00 +5.999860473924392146e+00 6.074083865962177420e+00 +5.938253966697890185e+00 5.919261125139184010e+00 +6.033546303310108883e+00 5.890507153629148895e+00 +5.963278982384332849e+00 5.934278312260734545e+00 +6.022216213654031591e+00 6.112418451412596987e+00 +5.902508038342075380e+00 5.989426719213708949e+00 +5.976172085051747018e+00 5.891455811361662853e+00 +5.958671788208296682e+00 5.884356755231863190e+00 +5.935755435116347734e+00 6.020607073099062845e+00 +6.008803815905553236e+00 5.942630637792566617e+00 +6.053326543419003336e+00 6.099421668280543329e+00 +5.928609390148471547e+00 5.906058631639806933e+00 +5.991024863378709320e+00 5.907576437434077121e+00 +5.966371448993022852e+00 5.814038421463839867e+00 +5.906017135572031229e+00 5.939863988720251342e+00 +5.975652213124311274e+00 5.931874712826910923e+00 +6.017346144505857808e+00 6.051795085687411202e+00 +6.064149233883101786e+00 6.015381192942446553e+00 +6.102657462742342886e+00 6.024667990470027767e+00 +5.844439772133081412e+00 6.057875414794726687e+00 +5.932844364282122918e+00 5.914528850351844724e+00 +6.184061089201366990e+00 6.004054611792700946e+00 +5.896462973992301571e+00 6.151851791464381769e+00 +6.038754777971560905e+00 5.938023007978703305e+00 +6.066223197297460956e+00 5.951226875004143935e+00 +6.163686601091322714e+00 5.901857947149893313e+00 +6.173192459598177528e+00 5.943299353567552679e+00 +5.973224204461884845e+00 5.916120388856334067e+00 +5.950247852566029394e+00 6.093506780727109273e+00 +6.052076432479742252e+00 5.933395800394669628e+00 +6.103718493890090357e+00 6.091089684220088785e+00 +6.050039960565534614e+00 6.045022714664537666e+00 +6.016727531667620532e+00 6.185119023788049120e+00 +6.006370775352901425e+00 6.070890320696137543e+00 +5.989008553801306256e+00 6.010306893828547103e+00 +5.898057166989883804e+00 6.069757752036537113e+00 +6.074033811643632319e+00 5.931645179930066014e+00 +5.973883139562445876e+00 5.956793706058385318e+00 +5.927463339638543438e+00 5.949942890585603550e+00 +5.793784028945822229e+00 6.008202347847198865e+00 +6.062006823562120950e+00 5.871126600904450932e+00 +6.046455506937236102e+00 5.929894042486441030e+00 +5.853681639135706050e+00 6.116040585539454177e+00 +5.982709345964646985e+00 5.917197869196285431e+00 +6.005288750289599520e+00 5.988560148052887833e+00 +5.973218641137811424e+00 5.986249601161453882e+00 +5.855131567671523207e+00 6.046156736532025455e+00 +6.042340684218455493e+00 6.091869350004950334e+00 +5.913684302357592237e+00 6.156305454188614412e+00 +5.934496368945238132e+00 5.959320695205453156e+00 +6.021264699795492170e+00 6.003239085683708787e+00 +5.959812336207312100e+00 5.927396966688696089e+00 +6.054228663731180404e+00 6.062593179433918955e+00 +6.094340994455463623e+00 6.023779666599005544e+00 +5.760544573390558476e+00 5.830209555026463875e+00 +5.966852667255079012e+00 5.990589466238906979e+00 +5.911367128656968006e+00 5.928245030291869000e+00 +5.956469368501278616e+00 6.136220176358251344e+00 +5.957942604029330624e+00 5.876572345534794906e+00 +5.979900584131487840e+00 5.901483431518284029e+00 +5.963142139888046422e+00 6.026553057712233041e+00 +5.908509392281580119e+00 6.137932105516640924e+00 +5.906074898938621587e+00 6.052078962125266415e+00 +5.927986726571961462e+00 6.014356727044084749e+00 +6.033165149769919466e+00 5.881129100228839057e+00 +6.131032122007948004e+00 6.084163965506562022e+00 +5.961575013144350343e+00 6.044910237317423274e+00 +6.018468031093372694e+00 6.079489936772525027e+00 +6.009577418684789230e+00 5.935382600123593200e+00 +5.901737669788031937e+00 6.131042162428409270e+00 +5.762695312914180690e+00 6.010271685708390876e+00 +6.051906796768935948e+00 6.114617538839392630e+00 +5.982268047196218852e+00 5.895937121606604769e+00 +6.023140542778502748e+00 6.152777094388961032e+00 +6.088052766948192307e+00 6.030298364376784903e+00 +5.869354627631094168e+00 5.974251055915676289e+00 +5.964390216131765676e+00 6.050211379645632270e+00 +6.050113780069482416e+00 5.980091289605374172e+00 +5.909061263489387095e+00 6.102746580364408757e+00 +6.076667095538574870e+00 5.864129216982791881e+00 +6.063820612137184263e+00 5.942819728976984628e+00 +5.862634075037165715e+00 6.002873992360985511e+00 +5.844377941214606409e+00 5.970148183435364686e+00 +5.836638754472029511e+00 6.084373796130975620e+00 +5.875586317667170988e+00 5.941265046768847036e+00 +6.074080571793285976e+00 6.148936581017127700e+00 +6.070832951401428090e+00 6.017428049074674767e+00 +5.970272539803870515e+00 5.926439585049681824e+00 +5.844925314316586018e+00 5.914745562657503619e+00 +6.070114274054655645e+00 5.981389215995267961e+00 +5.906212342857449116e+00 6.077883757855410352e+00 +5.893370839240637871e+00 6.104713312904676670e+00 +6.097706313622034635e+00 6.030993675024165945e+00 +6.134695860322835870e+00 6.048165202780471539e+00 +6.149908701089697338e+00 6.047827968939408549e+00 +6.039444876888861558e+00 6.062393991368575819e+00 +5.928355156082171007e+00 6.051520928094707763e+00 +6.016770443882784924e+00 5.941127574556139379e+00 +6.074225412370323873e+00 5.973998376533298682e+00 +5.945948953972593820e+00 6.153976577659725500e+00 +5.987129053461874406e+00 5.891637106032758808e+00 +6.052358903004229518e+00 6.167537946165152718e+00 +6.098220559480665770e+00 5.913226019273145617e+00 +5.843305434975103907e+00 5.966986705084946330e+00 +6.153176420715104733e+00 5.928558230726912015e+00 +5.932972288368009828e+00 5.884634185617261259e+00 +6.131605933105912953e+00 5.951865773423058670e+00 +5.937959142313024685e+00 5.981877971069192057e+00 +5.801983447661388738e+00 5.895070786419030817e+00 +6.036592586265443039e+00 5.958725271219774910e+00 +6.140883860786796156e+00 5.933465676835129265e+00 +5.990323728828055749e+00 6.056353157581098934e+00 +6.028729898414805000e+00 5.925575040958571016e+00 +6.105953875716758184e+00 6.144897961744741011e+00 +5.935848470514982544e+00 6.013225963794187834e+00 diff --git a/labworks/LW2/data_test.txt b/labworks/LW2/data_test.txt new file mode 100644 index 0000000..34534c9 --- /dev/null +++ b/labworks/LW2/data_test.txt @@ -0,0 +1,6 @@ +5.528552372507079760e+00 5.559228990189748920e+00 +5.648388730839360328e+00 5.694735265167601135e+00 +6.034000861003956828e+00 6.014071576183726897e+00 +6.514146742942168800e+00 6.578190189984116643e+00 +6.639221608726088597e+00 6.634545308633034288e+00 + diff --git a/labworks/LW2/images/picture1_1.png b/labworks/LW2/images/picture1_1.png new file mode 100644 index 0000000000000000000000000000000000000000..0bb58871922f67bb77dd025336b493f725f8a703 GIT binary patch literal 43096 zcmc$FbyQSu*Y;4Nq97_@P=ZoYA|M^o-5{+3QUU@4BaL7njdUa3NW;K@g>-ieNDd4! zN{ukYcOQS>`+m=}*0bLA{`aw#YmPJL+_~?)uj|_Tyw}!Lx_JJ^c^C|KQAJr^7X~9) zgTaVVXU~9d9vSd(fe$gb!Xvnz%QHCQiJJ{f;|cu5a~Jq?`=`vFHg4|rF3$IP@A32U zb2Hn);V<09`1qXu`wm_gH(S0qw?}TEm2)qYjoo1|swdDtqC)8cdl;!vY zv`-q7f#07~{FZHXD(OU^U=qxp_-57Q#d+P2p)p}|PpMf|6W*p$|GK5zXc%ockQIGi zV(M*o#n{u2wA^Rwic*>1zR)Yum2VDw^}MQch4`9w+*jUf6E+A8z8&s~xi5Y{voS4M z)K;njvsf9mv@_Yi+>?C2dPfT5*C+TW!R8zoAPmM~W;ICm_X;K)1pj*>C>u=)T?De7 z9U_7*21sSapifu|vobmKDRYGstQh#S3u0#Yd!cbDmjt@VItMkPx|-(R7bEJva@!jx zG;YRv@!~}X3Q`!1<`+rU#&QFZ_N z^+`QLLi9I&{bvr-aiIi$#=Xj_Ju*9t7$#$_p+E;_As7NwRJA`ezW@!Vq@YKm~WNavTEaI z-E?kQnTCmp$x;VvR9xoqhOGf^FEw^{V1Sv<(zmkIxLT1?>d#|)d;1tN3fhifDk+hV zM^TddN%XGYsRg{Yt?eBhV*?Hn1KvyY`*kPqxOH(BbcA2OZ@sC>nVXweIZfB4tT-rZ0UPh4a(02srjg7IsPr2{A*UJ>2$2jk=2pGPp1qKIKPSh}PH&|GkpG zdp4{k%>!($!1s5UW!%Y$|G{2G0MCOt-|CQ%jTXX|P&Y8^d2Sd?J1LA8*|B{hDz!gh z#Y0`$a-rdFM#PmrKo;&VuOjxkl@~M!Jkj5YNih@l4sms)kqs0cVDkdwf-We3>m#&vLm17TVGyTRK z92|C$|w_4F9GyqXi0VBX}} znXi!w_RPK@oy}*nc6?$nCrZjhUcSz0+HeQe&J@sGQ(GG$DYXSWL41~!G8SYPQ&zYEOdX>UJ5v5U!j_0}XfLO4fcQ;yQLIl|_)4J!>-Bn9j!Iay_;er$^M6fIp$TbNrG2TNopB%2cZB(|a zIy#n=KB{~OPAznVw!1A)bfr!Y`ny+G?Rxvm^toF4O{up!QdUqp=$DHTZhfMd4zRK8 zRMJPE%)Hm~+`e6W&=IR8#Yw=mwnDy0PA<6Aw7#!iqDPz@mJ|s&M>z>#N88wv3RMK6 zp5DFZo>jlgTnp;6Zp1X$M5x=L@$m=q2>*UExy>516ZkB7wIqJO<~FHOhRm@52X({ z`d#&`_lDP6UgD1o-1>T~$NJc)@9F2yffuN#j3nz{%s;e${ygr>7g=iRH7xdnY97nD zh0o?|YG2UNsF5XuPxG{MlR^qHFfYw(D&(-wmv8~61e*%f{)g&*DN|n5uCBeEU3AkH zQq3OeWioE&9wBk`>syuGAWP%VAPQ@1Yx$G4%o7#Jsd=p=+diBl1T!7U@B%kvjD#2U zq(0Dk`|jN`aP3gv1!-=fAtAv2I-&VCVv9?x+anp=wmaFoL9n^yXQe6@pD^P~=^3Qrx z?)=>kCc;EJxMTheUDy4730B06>$@4>on8T-{pY|Y1NU!mrz7XU0pU#d-R`Ucr(&|o zMr}|5eB;;ymK~;w0=91uRsVdFg-YUAAU$ZH?dn+=ESUcTh}3Z@qVD-1;EKBad_~^1 z(=W|eKkHp`fs(Qd_&kP}0RVwKw$cOEzRl4-U1RI(MW9#i7ES$Peoktr;)| zSm0S`i@~4FmA{?-Ynad8TFH%yjO*2U)Ko%$8?y2q!_|aSW!_|-YuxDt^GL!-2m%ye*9Pl zESC^%)Z3yaX0(c{i<8rxf565PTUVSTZRB5g@jn2M_efI_-tw3jYA;MWB9!-xs>4vO zif)lUxP*ED0EPS$x0?S>>RbnyumxO4+YJf_JxTXihg75f4kChCGVn?k4w$xp2Uee$ zgTvN1VPmRR&BAM$hMGEA)cx6)JK!w9v;~9UOu#W(5gmf?We#`MehQo|HFb=Ug_pwq zq%D&!*i10%_OGr|X`-vZR(Kk27m{m=TW$WG1?k!?WmhFeJ6ot%`u_l>2i=LKmGx!-=PhJ+XTmCq#$109?cOix*3DCY)%*f^%duMO;e?VtOrPG5N{|e2Dem(mOUEgpBqK^Sqh*b!q?aWn)wMHX7 zhK7e(AI!eY*#O_a!c98WqnCi?B`_VYDpk2IDnh}A+p@*XxoNYGUd_UyodJ$mFaQ}s}wXvm#-$@vw8~vt?~X`K!E7+ z?r>gfYb(|R0L}Vlj3h3GQ!l@xX?Bkn`f0h1&a$-lTdm_bbpEA<-!QMy`#~GCmp5>$ zyOq$?8Vflz2E@$0{TW~cmku+&QAwLoN+12IY$zrIq~0AL#(0Ni(+o~EdR#mjlJN#L0j z@slNwA3+Z#2o6`b!hEmN{Kz-@JA3#FKhi1*7_-5E7O_5bK=Puuq)d2 z`~C;rmL@oVd{f!9ODh_WcWFJY8=aez-iN%M3Cq(xJf7Tt#nc65v$wnZ$OW}$SXw17 zB$3wH{=;)nfzEiA?FGOf;6}gWb<50Ohv2+uyxcn4>95b%Om{#5m}J$T?zcZVwlP`V z&ImvQ8el;X%gwE^^)@+;W_Lf&^+#)=I}h%KwF+9^wPiyi@2U_QFjFGVOF z9U0NzJ6dQ9E5S0Wk8NIrR;BWgKydu=G4kOsy54D;4T?4N@B!KF0XeEpGCDKnL<{dC zU*Kj-4`z??bCyt)31N+l2B=!OPZDo7H;#Vs?V^CwR83_ju*ss?@D6Vu1zPS)_6}92 zo0~kP93P=a^fC`eUSkRXec3++CtA+`lrYylsKmt6gp=n-_g5;0KXTBLIBHQ^xM@DJy?phne)Rl_@E(&1nj!>;Gj?W07UTH zpuKHB4S>x6e(Qp$1B8~_{h#$D-6CgzM<4xqCtZ3V3E9J?`~f(Aa8O5dA%u15aJ_<# zT0H)^5t9*H5pcZj2K@fJ7JR$(NoDiFO6vAftX5aNkp(A!^zrxmM6AB9mm{%U5RYnS zq`Gk7Ds3UcBZ7Pdh1y@dc=J4`YT^GUR1D&j@)y}dpbX?yS65>jBO@sf`VcL8JE*>y zy*CteT`mCx)5et)N8jMxgoFh7dSX2%Yx&#)+l9p#>KN6$2Dby(s3dWShKT~8n^#+F z0G(Cf&LF;e0GJPF=IIdzP=lHkj3Ke`Nazc?&w{uJ?2nr+aZr>4h)v4t&-}aPAvM1E zo6Zfg8NS;plL4p45SsuV1aj*w%TH!S!43r0oWD3k$76CEm63+)O?}V}PKK3V-|A{1 zKs&|UDQ@wh%C-fPL0hCNo12GZtFiz$-h*6OUQ?4PIQU7G7{Jsl9vA)Cgn~R6;M)3n z>M!wDOb~>-X?e{!x)b>l0lRrf3wp6UJse-YYk3d~eEWMFW4F&l>=XdmW10K&ZSG*8zuPk`WS)8A)@^o{Hw@$)UgtdJuW*vCE0}Q~C z*`fM*x(`4>cM3Y*xF0`$R8nS@m-80s zbGZSUr+Mv5J-3>L-`;3tJBWRzxtuU$hYyNWZ|pAy**08NK8#UfKUMvLI=Z?{Hod=jq%kOO8 zhi0AoWgoci{sJtp6$-@A(df=gwBQ0f9)cO18V|JAQyj}<-ZA+z%%19ZVo`*5{MZ9Z`IWaA9NYDuo#(p z!~;Acrzv${4cNG(HDQ0V%6rcN1T!gCBQw`GAt8T5=INiP)4!}SQest+*r*n zK%@x+9$!<+ou4?f{#zoNSvBBfixj=iGAeELqa0u1?l_cKuFLja0Bop)@!+Zg!vG zH_rEd0g+lgRagVKaBxyb@j_6{dOp`;PAT#emMr1r)_3Q%1AC@#)$@r@vcNWV;X1x+ z1G8yy?s)HW#*xo4$9^^|)-1cb6YCZY1*5?BWvFx(w3R*r7CJiXykif9#Sl2k>Az0uBLSPrz2^J98jFurG4T5)W1G3~a z=7OwCe$+h*2(i90hIH>;sWa;B>C6BHg~Y()x&Zpofl~*Xc_5KG8WY0NHyIcjJlj<9K%{X<*K87)y)b6^UDU=@PVKNqHhe!ZTk(0OP z)+VolZi}pakaZy~>r+8{hTMjxG4I{wUE*ueJ6Q}Q!stfy-1Az)KhRwiUA zEg--G)KX2#J93gKg7%kLS2-BiQB&v6r^hV|3_GQI+|`oI)+2@eq-CeHxs7_On)mP$ z8H{>#k)u3vdIl{iRn;Hlcre6SLJWJ%1~D-Xy{P)$A=gyn7iA*;>wxQAA_t2oQ{>(3 zlu$lxw$ew<&{)lJ#7F|WLR>1|*#GWUq#Fd5zdz>@w&a0Zt3SG5kDS5yq;1q0H4 z^H+P>+YjY_#5^=&eL6jD3V#n;Gx@6t6qh(k@Z&aXnLr!W)Ihp^oCTs;M#gV_1kMW3 zWj07Ex}aYa0{5IcJ(L6t@)-+Yqo1|WXqL^*ebCxwI}G;u`CnBTc6)f1x9Ul7`a<7X zF!<%q&=lUX%7DF>_%{VTB*FklHXUamH9e%X-pKk3aZElN!4f022}X7i>hqGZ(fG^9 zv(t{!pie9$ss}17D$09%|IkCDqJSXa4UM1qgQ`MqwY#s77c|;v#(x@Ynr@M93ORN` zAS#!E-1R&qlozZEzmiW=$J>jZq2jEoFj!$bG`Nrmi0?oDH_iUPmJsIPHuo&Tw44YQ z&G2_bh5t3sm`3-_OfcTY+1YG0pfw)+9iEK2`Qn#9V`ckMA;)G$My|`mu&h#O+JP0& zk}{s|?tcPwIB@Bo@1TJXpL#kzX$4E)2`zn~%zrKF)CLnZp>b<#p^FSAV=P2t4#t#K zvF{mk@#aR2r|rnhaRB&&7FZ1|iw&Wz8Au6}@%*+d9v`!UtshDM$3R9La8^rU z$3(EtB4Bl7&_(+4V&ac=r^d{F?~3&N{)yB z?1icjYh9Za)U*{aaqaQ5XZOB>yGF#J1qXlsa|VY0ONa8{9q2yn6`0Vb3QXlQV^9kqEPwMhpGtxn5n^_k{%t{@vB9tD7{& zpJZ~2I#25B>sK!m!PMo!{&ZYm4GsCWyFc{b^Mi$y{9^V4)CQz21Rxe^(-p^A1?0_x zgZ==6Ok&z;!{Vb(xKsshU3+S*zS5Yu%4A+7j~KLRqy2P(f+x$Vy+R2_guQXBvgn**X* z5`d43CeXt!y`@(8uJd+Z7xE&JbNT&*Yp}q=8{FMhp@-XdE1GqIQhTE0f3(O{aF_YHtAk5|_!Np`oK zWA^v6)yQB2vS}hU12MZ0A9edqt<*7;r)HDsw;u!XeCO8V{YRPi#KgEDrLKA19JhUZ z{PSnlg$oz-k72N?Zy_uT9C|+XE_9QhzHB|7`1A_+hiLVWvWI}SFO8YH#0OJ~DKi4C zACh&KAf)aBl(ZOWD*#)!0dIzg6P7@L;5!(%@cwZr4av150DCWBQ>8MxCHjaF3 zp8QMiy$)fQ$^nmBS$X!CN4;myxaPA3wFvR-?bytt+!X?@5yL17BGwX68DbZsq-XI$ zAon96A|kT?@*km40c7Tu9$Vk`{(Koz%fUV+(|C^oCL?*D4ebYHv!TgJ<2^GarFRfu z6`CV#x&)X)-1DIS^r-(c%v?Sfr0PseO-uY?u!E4xFXErrxD>`11@Tn5{6h-gslW*{ixILsER#4Yd~;?^iP0;!)B&ABvf3SVbr zOn`{@v%WOZ{T-u#JtL^ukh83C71#O5=7C%K%~d>?&ccj2;qwhFFEZgU;}^v4w)1x} zhU$e8ZMo5Ok$RG!WFC7Kn#x%I;HD>s*?c~0E;eI&!|TayBP!AuY)mg%oSGh#LLL_7 zoSLN;9nQ7b4dapnq4K55$Gw=j0E?XJwgNL=n&pT^z8B8@vg`m(cx1M1n{|5`kMR<+=b>vxO zijp67Ei;wfcm7x@E@$U_yP)8@l0`)|eJVyI4jZ`%+|nDXkt@X>9+Py3k*aTW8VgtX zz{upOx1hbfIAHk$p* z#Ntx4S*nr9yHNs}bVOMj;CZ`Sy=LD9@-c3&(kUsl?{`9Fh8ilv0z&`Yl}-*4QqNex?{ zwTy^h*};^cE!pbcNpzXLExHVYq4?Q>;|~{1R`Ce+nN+%UmnJ4Ma=WK(bBi|le*4Mk zYGKFEEaafG-n3kT{Y<_MEztenGc$0A@`}wX-yb)}f7Y;WE_0a?Y0=2p)y>6Qj|$+dnjhT2CSz1!Ge z9OaqX+>nIrBh|Z40UK2p!;#purNOhlcL_@yk!va`X+=q5S1H}pFMITrak?jT&x|Dp zr!(nIiAUdwBw@Y@(jTh4*pA4ewNkOWYR?{yTt(<9(t^8ou5FH0W`x?=vf0vJRcUu8 z{%~)tnJVtOtk~n|+njc0@M691ZE7)eiuq(MHcsn%o_EVw^qkhq%7pk3 zl-F)|ag;wOT+G%>m*BJ5ZvJy|{VYG{FEC-_)|O@`lm+hxj}F74M5LzLJ3q3$zr%+f z%O2x!F3XAx(-hi9zU*9Fc%Z5j$eAv&ipDY~OrhEidQdsx-UPFq&HK#HP{+N7LS>gZI2n{xxA zY(%S|e1zj1t@ohb6xq+J=0665&w_$-a%J^~^aEn2q={?68 zTX27JRk&T;D^B;k;hN;EpBx$kanJN;Uhh}P$=IiSvQpV|rN#S^z7$6HIl7MQ+*2Wt z?Lwg8dgo3H*0|7Pkl`x*#fy0qDe5<9qPpWEZ=%5*iX*FYzo<%*zhqe<_uBJUAM+vf z>Y{3HSqB3aAz-~=wpK`omi?mRUY(NF8P^vsqK<3e)SalzT@X>bT$)7t(?*APIJntc zicQ0@HJ=}~c-|XS$^>3W7U81DWQ%i%2voYW@Qr8)Y+2bKA7ZUIH(e71AKkn2xtq(5 zLoM2fn}Cz@HEn@)_d9#DJ}XqMEnV4tzf=jMU0a;-~+&u#NNS&pq&lEVrW z0Rq@el1ecy0x4qy>G81yjRR0Kf!1q7>0Ob}&Ld!3%=dn{1SEZku{zvkgvq!9@4NJN z#BnG2@=H=OH`#QW{O3lfvr|lLWqglSZ9$QcG^kJLNPoYUnP0G8^7JcqN@YL(+_Zt# z*Zp_r2%$S{S&KPCa5OTg!`-iql45 zNJ&|giOu(k^?TYPtEAyLdCuVjVpudEaN{8=_@B(7<-9Q(sT-&5=W^B0Nu+6pBqZ3S zU&?=;mkRC5dNY;yf@I^hA1|8oQKHzUV|gH)-N>$KHVUu2{(B zp7wKTUHl%OslHfAHFz+nVj{9Td=zuBVesaAb$euZyLmDnPyHtY;be3`pL;#Wx~bH%R$z8Rp3!uV`l@&`&5}z5*&d!hM!jb0W57Zt#+5B?-H*T#mSP${o z^4Zp=vtxDUG;*|5jDKDP1YdD<^V@fOeBv;98b}~vfL(}g%Qj%MI7+y+`Dk4I?Wg@L z$7c`6W^$UuJtyjS@8?mfo2*7YzX&S?P7!uZW_)m*B`%Lw{n~t~ZGO~Nif7u0W8Im+ zL!fm8>fW=D6Qr=YCTXZL9<$n@es&j|+?mtFmT?~|WJ&@%g5X4g%36xCfas$Rh&~?f zd7JmF(;qb?>uQ=OP2IBI7X9{GfcDKIT_I#sHEn+H+mml_7YYjKqFvoPZnYt1l7?ce zRYi9$3r*bff+xBwdc8Oz-g_syCUc?ZR&UhWj%>AVl+%EuQEj8~QaVDOTP@0~F29E$ zl$T~)((cv2_p*=UW~5~nJwO2*ihQ1+W@5ZYSJJsvJm;xh2jzf5Xr`@WSMywRSJAX5 zp{RW$&0E4Y?mZ{wI?MskVd{~^H|dnh z$q*ku8AJt>uC2bvAd2Q&0bTJkT{xS#Y-WkK6^DychNa3Gebz$1v*cegzeQ1>>9N(GH!7|;~n$lcTIJ@;PfnTw=>lSt#Yq(Zcb5ed|O2#H@rR7Q*IB9Jv+^8?DEd`BT)_lUg(v&y49$x+-^6n>Pc4Mb~bD#kGSctvh5_jhfC} z?Um3I>oy$c@**K=HNblmvhP2UP$7}hEen$+oPl(}JHUTeRLzugxY!ic=W?caJukTO zA|bC_VPqEBhpUTWS*))dF3RYtq1w5GH#B3*GfDhimtW%oQvq9k_B+ZrmQxP3_7dmV z8u;xsl9EEI>TLEAad4e*%)!oPJ90Gk96_7T6?3}&lHMnIBqo}4^QO#Y;C~C>>vvkK zmpw4o6a1#@=TW-Ov9nv9QgLG!Z9Jwo)lcc&8c7%CXHqQA&H~y zje_Q2D9rIC#Wd;Fj1hd@b^#-Yk;4{nC(~MMq2f(^qt|Fm5g|KcHO`m>_5?g5 z_|T=5Q9m+tP2y|5!>ig-IvcL;Y%QI2@jkE5BkqcZuRh@2cO*{K(R6#a?VE<@eJ{df z&r=P78a_@?yc&zb&zk0|C$m5aD=0_!sv-a|*X5r3{c#}Mqhe*1g6{3*?q!gr_o!OR%mgd=Q`W6dCy`54GBZyuz{pb@CM}rU`W-C%50K znfjnibNll0pY8>E-MVAyWnZ1Qtxs&a7l^bifaEY;=M)PH84M`JR++t4KfYTEqTr1N zMPB+XK(62-ME;xbW0QGNUIFJPFk&i#X_`-1d-ml%j$ovivO01+oS#x$(e;>&gWzhj2X z&IF}(a8FM|$??I#TYSyGf~s(KpgMbOY^<2+N*qr-<>dZs>I>JT8jbO9g-SEWdc0AjB2sa9pDyrF*DksR6jQG4nQ=PJHXA?d&oI}1zx(9S?iyQH zHhwm@FD=(;Dpx0}L00F(F~&^UN7OwDt$vZQ>g+$A3Q@-l>JThj0}ICdU)1k?ktLia z+yQmj-^a^MXpThL(&_XIJ!Z(#<%Zx-<38^2JKM@JViu~bIg<=6V27OlYcb0Jg@ZDX zwi#ZEv%WhT2WXr>J4oV&@BT5by-~~^ko!~1=Cie`ZDgo$nR`~UActzzX&S{E2NTekMS}acsX$K5o0#41=&U*x&0Hh>E-C5xc%CxwgKxeiVRiMAF-q)@ zdzcg-X)T^xN_FR29`_5PRRqmZ7#p`_k9JzM)fv0yxl({ zZk7`442kxfAT$s!hBj*w^#{<+T`oSh# zukx6ih%bw5o|NbpD>)8j@GY3BuXxNCadn(4&fyN?Fd&Mm_batX-|+KFqeCKp(DhC? z3|e$(kN)0FY{{&-{}t!g+q*b?USEq!TXHWegIFqEj551$lx^L9j!3!U7aZT5{9%i7 z53Y*Q>y2}|>&TV$K+=7b%f}QIq#GGF8{j&mwxg+#E?)0_hfpUh9wtL`Wy*SJKgOu( zyjrhTlbQOXLw`%ls=8I@Z<+-k=P(6j;_-S^>Y7A!oG0{&bgjp?pYFGiWNH3|fO)ou zZ4s&p792MBj1223q!C`tU*?*<)<_aczn|0Jx!_QpVQId5v?;K*(Zf68WM9hO4WU|rE{U$JxnwEKP>lxzyv}>?4+^a?GP>N+@qLy-DjpuVZm#XUbrWnIj=7uS4k&unc*Co9M5s4^6(J{@y; z`DKUO#cMQ~<|UMHNv3UlVx$a|oy!^dLsB&U=0hljVR~Ib0ub0pCHt$8d=n3xLOs7Q zUM=LckjTiM8@7@*ygs5>^sd&i9d~Ya(q7u|y@J>=$>i;v>dj40@%MU(I#V(!!gTC` z7ftvczNrat55me|c5Vd(IKfHT3gpDkgnmtf$628I-n-wOP7{f(Q+g*lb5l5+99cVy z(;U8#T9N+j#PNfbZu>!9F->iRzmxv$X(5_zI}-ab`hh*%TT6yjU#XE=#xQLv48MWh z1CG0Z5Ad=@#T8){culohRHkEXjniYeD)Q8FTBZ9CcW4BW*T-hN-CWn}BNX~LDQ~>r zld5;knIdGes|-d?pBV~Y!lpdjGV)CCf5&!uY*5CH`6RLGeMIC1#OwiWLsW;&dglXs zpKUHjEv@G1);FCC`?gQ&*WHM}2t=m5W*Bx=dT3CWH)}!2Sm|4M?$5eLX^>OnRbHG4 z|33TO;8a752^(@a99-1Sbcu|0EpWaH40M_aOr5==%G0wrl{}@*_eJYqFMyK0shjOy zkts`}bN9G?n6YUK+=??z$c->drM#!)RcN$lXp?E$L7!}es~Fi#Ra!}!_3iPI#u4NA zijAEh4-1A?#$+(?Vt~w32EA@EC&?NdIvN%gZ*BLc8u_V}Nlf|7(k(w}hsROqV*HB5 zacOScJ)9+ex^o15<4=we#sVEAd-Pdzg{vea=FqY>cX%Ne1aN z*hb{L)_mzw&qtp_pj@R(;WX==pI=RumY&|X`2L$_KV6n{ato8b2D7l&lW`nXn1TQP z)UPK>!&=lZokO@6msi;SzSBeAp>|f?*))&|fckHPVHarNtqn!`8-bmY#gij(PCk5G zdUrOGD7zlLi2CI;`&^4cJDnKmX0vBoZf1N;5ShGMiydwm%KPM53h z+Za#XlD!}PGLj(SI`BwxpJjYe_#LOa-&LW|Jh$7Dolak}o24qq_VsOPNc}9Prb&vk zx(kaq+u>z(Itk%?&UiA0BsU8gF(8ND(a~bx5D4!o)Ti3h8R19>Rgcdluy@U@erm)@ zN)C>nEsST#;wt%ke3*s2IK@aq2rJa1GH0~c@C@D@`m#eJOnU86JP&92hZT2oo0IG?Xr;Zpb8DlZb37V0{R zAUJ`&MlE z)6+kB=fg+~Lfa>Cu0zqoxrb~T2u~L+>Ny;b9HY8ee$JSq@$mOUP z)ls9_+E~^Xf^;VI^Jw^#=^x>w%US$H>~FZu_++vlFyb(~yYiXi8-6a9nF0J;7P1!g zaGNVzQ}gJkhzQRYvqP7Cr8xBhE%F=p`Ge14$gX}bz7G&$LdYX1p+-kG(3P)|Fgj^( z%(CB_DompnIX}OI+uW!rRc)JntJ>yY8aDr=$!s>$Wcp^k)WXQCF28bzR#9o>W-GI6 z{j@ozw|CUT(lJ2(m=}k6K5?lc+(Oog%bD<-kXE=kiu1TB{D(>JrtqpOFU5zIN1eg- z5m;}{-q5}PB|t4R>9Q0-zyZ{q<*7wi{DZck*Nx^+>I-yrel&Povdtuq*J(S_z^CmN z+Kj8D9n;;Zog;XutTz<2Ga74FyJXiC6&7vFuC3K}T{CHC>RGeu;wMaQ#Zh!r#O4`aWF^49Pgal$kI>{i#~(VlT5vJvn#t6_b5NDTbxNL8?!}9cgL(u7>e?+u3<<~59|U!H7Vlc_JP#jF^``aui(S&6U$gYtCV_< z(_cp^K%*h4N6hC|7iMG%qtlh7upd-Js3_~rU}Z?4WiZ6Z=FF8Cz8QBNPXSxY7rYXDrtyU)ZO|rl$aL~0C@L~7R zdQ*#qwLD&B=PuRtJH`*b?n^IyxvqHI+oZ-aojtjpAz^HGR_gccSWeEoJ25jvl-3=|gJ%hPzMHc(f?=U}w))JykQ&iblp8s3!a$&T$Uv6q)pjcOr^>GeiBJ zF8F)!h8yH6RG6}ZH>gWy77QZTG0B`ayiIeQt~(6W1#B~1>Mx}g>7Xe zquT2?QU3x$Ox;d2=1!$sy@awd+oQ1X}#(c3la7>X|{*2Yv;P3 z;a~@<`G7Jl-ITG#_o6?~4VJst7eou?Zf%;))(~c0bcERLHdj9>Wdv`%+B~Zkt1(5H zE^y$7Nb^IZB^kq;=2|^UP)-aC-USEydj=KM(F&K$^M%CWdDDeL>Gx$sK|l>uR8$1v9A^DT% zzDm1eitjomWL7*K%&y6d!5o+7aQDU6rRSOJmyIpB)?yXfh^_s@1|q_9TV0x(%Ki-g zW?WI2b1@&^$#@SpP3uRwO!f!PJ`$mnLGMIzmzx%hOFZOj)p;CGXSzjQx8+ROF&KRl zI@lzVNe!pMHS0=!Q!LZZn`!4nOsrZAd3QebKOPu(iA1`aHs0QBLmSRaFEGX<>SMB% zL={5SRK}c6;MZ3L95(A+&JDcU2BknUoNpo)*7y(S6Yw0V&aARJqc@!T3BvN4$BjxA zp~cgma2k4i_KGWC74ZhoLbxrS_p8xSgLgn_lLb5dXU3jM*L##O*5`#Hne@k^irSIq zLK$nH&9U$))b9zrzw+*KE(u3^R@S&$LCr)nZ$qeNlLo5;!?K6${6(Z;SylIHyb@aR z9Bij$K=y4(_o4>oQ8HIM zT@0R?ujv1v#%BwzQ~b)(3^phUEix^j_cG6YH(G&5`1uXa-DRn=R@tTaR`})punwI^ zJfYd9)}i5jJCb!Bc57qD<57DSZ7iN=w_qLgaSqg6s+O&eqJvws-W|N=!m{)qhR1p* zDjmP|Q?e*&qKl8bR<~J;ojoQ1sS@b1bD&C$=YkOQp4;%M);&W(Aw-M)SSMq@K3MsBCj=6{-$YC@bieL-~h^; z`5IIp(8JE{R&EmKt!mOb%PhogXW+UnS|PGmTy>vC6C;x+Af>u#=XkR;_jo1#Uw6X3cIa8;ayANhfUKDCA+)>yrct0xg^E3h|H~jKcE~0T_~5S)7|5$ zyQBIm*XQ#k#dqqkR-7AoN^mfX`^rSWQjw)gG}76;Im_Tp1L(0@$)-T9tPbTc`W^p# z#*VyT%V}-(Q@!-YSAI=~q!(Y-`q=nwZa=tdjN`*&5QyoVRcAKO3}WM-*Em3B=wq09 z@K25$7i0oj&F0WE?(@g7u5np-q1I?J%(ag5xpX5P{dA>VZr&a5WAEURSgk&3J!Tc4 zj%>W27UdTZ@V9hpA1hm|s2Hsi7eB6d-@{^^fD&PHa127_<^){d8e>E|_Yr%)de$;N zG+->qKD_|e1*&BSQU`#^>WJnQtMAUJC3=>oNHx&^uvV@Jt!NLYSGIS-hQ?P=!Bd)r`An%B+o4MU^%Z} zWGqKo<596#tGD50Ltrq>yDPSI7{~e)$7Z|IAovKRvG`lZXo}z2)j}YnU z2?j+IttI*!?Z|74b=}Ly*BR>qD%>Yg4o+%Q{hn&Ne5u05hVDBr8{x(Mf*x1vd4u-# zl-mDbZkOfM)nV~kDY^N_W5tf6M;cw=mnN_(}BXrZj-3(hEe4qZ&$_l zi!EBVD(hdHGFN(cDpDgOvAb&~D}7~}^BF?j7I!4p%965YZ)nt;&VWi{_w4j-eXdbf z)asOyrY$n+6Ih^WmnovY~ zb+4ye9WR7=A{~bWw>gH{7kXqPt1~}r=@pc7usbMH_%2fs-{nas0|C?pxVml3N!?f zePbZqOE-Ex`5^ASPjWY zCii#}(a=*(@3Skpaz@C$^r2d_J>}7s5CIp#EyS`Yox!Ltj=Ot<*UB{YcxJ5Z%ko|c zPGngR#j~}YB-a0^?f2!q`$MHXKf~n-s zKF390my!O8J!H0vO&*JoC1&?TWG{8Eg~QvDB+wp2i3;F8B%WYoB z7gDm%nf1&@nkzAkI=R%lnM@M<{tdG{)X}}O{6^|c7ZW3%@wav=Jq;5 z26GQt{`9pGMrT2U^~gWxJr|xRC;o5Qx(usAZW6h9bh$-u8ZX0Ay0F>ZtPSkt$(qiS zfDz$hqgN)9)Bl*22~Ul)56wuNG*s&NHI)l}SaqITAD^y&NO2<~ zT(`W&zGZg%S*@<;Bhe!wRYUf%+tOGfdp~pF)_3 ztLaaZJ!CAFLi^d!H#kbNcvOm!_39QShNCB%h{n{Eq1tu9`g3q+kG$;r+?}gWwY{ph zvUW^&`zs`SQ|bN>SMMFx)DwRD1{LuuijAU36BLkYK}zUK5u{h?q7>;u5~>tM1u3C- z0!Z&5EfAWDNDm#P1eBIg5~M~5Alkv9yfToPs$shrs*1N-7;xk~y>01u_hzGvyF%5@eO-Ey~hZ*;86C;3aj;2P6G~k6IZiK zPMqIOR=K(*{^Gh(eL8?Hm%e*gIBzag54uDNWDQUCBb^OviYFHQ8Y z;w7dB-4z_^@P%Ak*obMCkS5m^qa!5pwdh>iq`s9EF{p%)rFwJbuJyN#dDrmb6^WI* zNp&aHLv}Cb7gDlHo{mJflOTl9_w$hNiH5!}Qb&k2%Sh<#x@4$V8fAYd&@R?s$21eq zoM^{pKUi1k_ipu7+Ly{*##^Hp!UH~~Irb}1PI=ONZuR{cm+kD=c4b?UR#Q04sO!9L zzTk4SmgN)O;RovSsoG%x>u@7@6|`vO}-fy7(SkEbSzmS7StRq{{1 zA9)SuA9TlUH-^vQmXHh&GSduY&s~_xTn4Y<-N5Eqxk$ab%JEbF#>@xZm(UEGLKT^k zE{fyx1=YhM07!$?`oaRUNJDcGQ`<7gu&(faA{9O ztnbKS*b%uLkp36f zU!=>M7VEoc{tdoX6PYGaVpaqV_YF<6laYLR+~}UusVa9_lxUoENDvNTC|YxGm*qg{ z7X74Y82=I3HT)qi{eSl{zG&pAYaqbw;xgJ_TdV982-WWY^Ws}P-S-zOaC!nzwthK< zF&|O-?=`$ROU<;LUOwKDB=_0YGoGEEtV?w1&5LXanK%(RRaYVUPP#3AXWCm z#Qc}=^M&la*cNjlalYtRzD1L=n(EFIRRD!qPaZh@W_nWwGU(4~dux6EbF;-l)bZ0p z`+VZdL1I(9J=f1E!Fyii%|uPj-Qzgtz_P=Oo(CyoCU$xSC%(m8qZy?Nm;2Y>RuytM zwaV9%=(qkApl_`iZx)k0d=#me+)zIH|gIfAi7=qp7be$r-B zzP*0=*aj}<-=NXM9a`Mj=!adQF|4IJX?zm$IiF_In#Awlq6zjP8##}1;8chNi$5lSU3E3ysETM`l*#g~p`pj?6 z0!LT#Y)A+(v!!KCHEM3e_^HlC&nR-!^2q71v&ma6T;;VDh&9PqPt1^&Tw+2`c-Q=b zCqI)LeSHt46`;~Pgu=^%tI0}t!S$=3S`Jc#U%NZ-hH}Cm%jVbqr&MI@n@Z<_NN-wN zT!LWt(I}!uq+I=0=C50h{>uNIRZ;>ENspBQB>%;A9i}_0$pUQl?`nE^9BSVVR0>^_ zwuFjpQdU+ou7$}!2f{3-Eg|Tx>bx~s zQ2RDE%fkkNeA0+hQ+?bc9=pWy4zsTC+uvn`NOtN_q;a#y|J}gnVphd!xhg=v#5el` z&rA{x;WswL?%d%5jE6XY@N#f*5ynU=X!7vva=xhe{d?2m4DX_Oq2w}NYk=*CkBhnc z3`?H5JJ~JPB~p+8%9xQ>V53Fa|cjfr9;BQakzfDuje}-mX`C~i5k>hMNMv*9F zTOGIeLh29ZZ%Qs{0C_}T-|l12_+9q*XyP8b@yvSYW-51bK*p(Pl%zX9IJjAYTSYvk zb62@DgnanDh|IqjRvoyNOuo9!ZX!Am-%)oD&_#eg&q_08 z`KTQEa74g3{cyE+0)Fm7iB--Q|BZ}}6Pj52GIJBzRE$R+2Hc86ELnv~+^cS^u+ool zLbzm?z<%Dcw)?ozkvLledde9xLCt5|O(+#@nTDTNX|A;zt4b$p+Zk^(;X(aa@t=+E z3zzwsyqtMjyJ?6!$z1xSX9TkN!rC-VTo`R?_UYG2=6bkmuiBZG>vEWx=&zH!f& z^0po2XjZI5-~Vb>o^>zx{C3k~vb5J6xx_&5ulD5WY|p<;pF5Lg<@6>LO_rv5Q@#{! zAsK+yql7FGvzvZFB%>jGgE>doi|4NZ6^kQy|x>ImefX)!h1B+lB&f@i^ViG)b@^=y$CAFFSZ)_OM zc7v)+kTbOoZ_)kY*6JO#B_>~dPWXZ}i?}Ol)Kquc&9%fYVM7RSYWDyw-qkcKR?=AV zYs5=C%0KXLWmQS)g_5?W$r_ieu@(;2Dwc&O`+L^0(?tqosqN4Y2pS0NE@+yhVP;WB zU?lVN#F9D`D|DM*nkU!aCRtBi6^q5oV4*#q^saHrdWuODxUs0IXrbEo!scF+hw^HB z%DJ!HQls=goLm-FJZkMOxuGd}$dLgAI+rCHDi z#BZfWKB$H%SJ2J#$C#+>;=jN%T|bxDY$Q86Sy!2G&`b>MiuKN9f4_B&p802#gtJau z!W?n>DtoPT;Ay&HFPV1YDekMHqE*~Mn}RZrXB%JzRN~j}jGtS|J=-uU?I8ewh(cQM zR0xm!UYtD8>oKQDdzDWEh0z`(^Cvjwml9O>*6Wum_ukVXVA$ZqQ(Z-sE;L?mN0(!ZFsE9Yn_+Fo+RodAXW;Z|J5R*4k~+SO#c zyhL)&7fpvkr`c5@nD1L6!Wemfvw7?8e{fx&;P^y9mV!p5jQ`}29LSV zDcjzCn@&>CKW+p^ChL#)TYP_& zr!6hLL@?TC+6p_Ez@@E}9CAqaI)q!bC>piYi==3#36L@ zAv_BM4i^ja^4c9896nP~F{??f2YEYGB-GeKS6mqo1Ks~4OC{1E4tK@@yw8(p`b4Sp zA2a9>eAM=d67RvC*m92M*~K`3iVN!vuR^17UYvkJQ+~;CG-jWoUT3HNyT^k15?2i;IL`jG?8kE4@;`DL`_rZLq0-VN8LI?BG>fJ8jX$#Y z?RukUk9N_9{fE2g)&yYq1&@69yKyw2csV&ajb5nAGwT-Ej_0*CEZ8OqA-uwS(~J+( ziz&wTY6Vq)^PZm0^YYDP*>KAV2;cLOqDSQ=)M$1{sleqkzO9(p7Q2F9;{lS63hE^fg)?Wj>Y-O4gKwknVEdUt`8hAGAn7fW9E~wZwmhpu}1B7nuJ^8M72F#3!aMI zqoNcI`(>%@wGmxaTRj!X#N#WS?R&u$PqJc^${HF1;26T-C!qlH^e+A5kPp0a;55pA z-P!9p;_Xr7^$v7JndZWmlO?SZE?L*b0`GU@_sU{9##}X;gT|U+Uj++Em{QPBVp6=m81n{j}4>M~`giGq&queKgJIRQfA*m%qC11dS{0suYc zuG=8Ive+E+A`))r3H7_E-4A&xVZF6~I3%5u>+fqdpApEh-Js^(T2NNzdHqja936+w zeLh)i@w|_qzGF>e#=LXV%8Q}g7i>#KbIRb6H5~Dt@PT zmbSa=9gMl^3Lk?Ds8NUA-wdEqZ3^TM9ROD7Mb*`x{nP)i*(4>CA$|l%V0c#^$drn| zA6FB^QkqSYrN_0_J!@(|Ztq0Od+NEOJfv^OVqi-LJKH~tnn>|IS^gL6+_Fc4!~9nd zIa=Y5z5KA*edwB>!w|N?vYuO_d&g*(-o6OaZ~8$qK@l9FX1xw zH~ie^27bbZC=|*+7#7vEUEX@+JJA5MpL=^kfw?N za5fRqi?c(F)vs#~--u3xeX<()_FUlPc|+Ts(}&y>Yn)`Vq>C4P@owIQV{LK2VDT5$~B+{aDtb^4asOnTZsaNsNfYCNFy%BsxiB7>BbA z*t7jds0IKf0L0?v-0M_b0KdruELN)lpumP-i$VB5?SGT*EA*HqFQwSEc$WE>NL-TU zf~mNm!ih3&;Wpj=Hd{aC)mk1Irpa$8`7vO&;%+MRV~}$ZY!rX{M4o;eZdZ&})y%98 zjS}!M4I@iyNPXCPs6rD||D0|a$Xt=H@zS#~Q32aIRH&#)tz!aJJD&g;QEF6)b~m8> z3LNic9^V!;D(%c}f~>s5vOI7Y3Y%||;188wh@Skal)euW$(C>hf~{E&sq>hDs952P zA>^If6X#Kr${fRx{rzJ7-s{)5T0?wd8NF1;5RA93o}>Rhd^*mW__-N36WG?as|{qA z*s?;GmQaV=0SKo}R_5Ym@k2th6=|F$-(U?!+GeP9%77^|Y3chT+n0JnkF;1iK8Eq|vH zRCO*E4Bt}o!C;DK$4BCcFH6&k_j?@uLkqt?)8WeCO^z6z5lpao;}QEps;5@+;P0r5 zuG3ROXv7JKT6;!Z0N_z|QBeti!)uaoTOSk?xAS|_)luJ5dNOQ|s%GsaBs$W<*~orv zmg^FkqYXbJH}{l#L(ZoSr`O2%;M4~MOF(xsUQZhf4MWuWC7|WXzY;r$sBbHE6;V>l z%IvL>ZQvTyY<`vQ0ICoE?z;1$j?FjAQ8@cCYKW{Up6VigkJck!jkx zS!%^eYz!yV+$+ivQV)4J&G5sOJ;5MTHO@!EpqCvS(Ax}Ne_tULQ z6n9yxg^x-VNx2UBfTyyxG;y3MA^KX&S7&byRO83#4&~Oia&qtRsqtu~?z0}>QTHtv3 zPN2nf_(O8GJ3BjfiSalC!@=9a`q{M6)tplj?n@u@EqFfZeO?_EeL7K7w97UsV?4_8 zk&`Xo!a{c0elJ1#alGGD$9dkZGc94~{$zW`FW}@fA00v-hXG~OTz#uln9;iaO&!->wF^L6LWq=ly;n4Pd#?HECMit{w)P7)uW~3tz@a0y zPIG{RTxn0GwCarf;Z6(SY@a7*c&!pDdlKkI*|~LB`3T9L>q+34y!UNozn=RBhXJUA z%1*h@NFHbN!!Lf~0NcEv&&h2`nWivY^KH^hL$?`v@=fI9nh~N*y?#E5(&aZir96^{ zrP~-wx{}p6J2fq|X?4uxMu~l#s$%IRol}}{QM{v>3MKM7a&cxmb}lG4oJkyX%M_Og zcb;*UFUL>WCf>!Lrh^F z)KAwAT?l4=+!N-NxwEa&Gyr4%zC|yS9Y4A(<{>J{T-0$|VyD0> z?B<+=BW0rp>CQZ|#mZV$z$1y`Gl`$YT_WU;*#SZFtkf;_hVTQ*Wr?_=85Mbid_h`w zeB(7pL)D7L|JiR0D!=&(l@NxZEd3zdvEWinQ3`7@~2sHk$|7DyWEsnIcURk z-Z^l9QY|-YhiJm|;C@QBl-0I83TYM9oqRqG!5#f9BpCL5#V@>I%ZnO3l zn}xdcN}|pAAoaX`e|C1yeeVqYD{prviVd%z`G|~RV#FNuc*gbhW}Go|j*6nojUEKY z-0M0o%H$N$b3USwu36r7Z=M5fqVajdEbfa5PJS&tt7kTe-{o_Liu|hZi>x!s+K7|z zwiS}XiP9i5x#C@i8FWmVG#a{CU#6K`A$o+r*&JyagYNln%D%WKp~hdyWWsz@{YPy# z!I)3i=#{ZgPpjCvSH;hDK24O}AkxhAty?2sY@f^VrqKmK515k0j!T==uVBuYfe)F`f zEfbS5wTuqyvh__@{FGa`%<*fvoNV`d^p3>U8W+W#BV_EY=!K`99wU>76F}^__u)hK zI9;ICw(f;%Cm~h9Ndc6qL9A~@5)JdtsxEqcs`qyH#`vYfZ4+o((WSw`yN*lBd4HCe z{`@VQ!%ee^Npi4<&2Qn;e-CLeUic=3{ zoJEm|2xz6%%4e&zqJ)-J8CU1+V}Idd7Wwd0S2hVva|CNOx-2q6W13T$&RghJs@5Ro zg2Ew?OhHbZitJ_jT&Z8C+giWeYY8w_&XYD34~3u8t*IG1Ul4G5k#o4`gUkhB{BNWX z6#1dPwM%}5sH8u@BtakLl=YDgJ`OV*jDz9NOXi>ihLaC>{bz~>6{oZ?;t<9tIQinK zWd$i4l;>5(U*{MmOT_&aF9j)|e?6DKVHdNzD!iI5<=Na2{O%+}AxE=uS*T$O?rU^T zArnSbWvzW|uKaH~_ZO@HfA31Ywx4QnR$bzFONHSqZ`sug5L+smC+EA`*Iq$?DSoE9 zhKBltfSmlT(+Rk~#ufC6%Vr{iIJq%0n;=O1^*OKo$OJ92M}DVPW#KUV2KCFn?ZXDN z-|xLE`R+Z*mtN7Q652$68pIT5j26!VOv6pe#QOC7Yor$@l;XFUJb9_Es#%0=8Kpk% zL8FiXUa*Y3YF|(b;!o6QY1@@?++ElI_M)yIn0j5q_kIqp1@tmm>^Ex?)VM)20DTqK zZCVtX{(AE-vFO8xwGNYy7>i=*K%n4ie2_r7I`O%UbmpTe!zjBrma=)S>03)rW9E2S zc*|@vo`Wp>n^|=Cct!@g;Yj;idHSJ-A>SFuh;RvZn@l$Q2mfWUV9X)`rHN7AbE@DN zh5B8=$x&yu3J%V&b?IQMxI;b-PNd5P!ThC}_SQ;T#@wPGXuqM_)tUi|n{w!Y=3_ZF zHjSfZ-I2-idKX<|0c4CMQLw*XZ^HtdI_=zZ(5pG*FsR^89Q}Fqps^G^p<8meRLeQ^ zTH6Gv2sv{ZOio(Rpoau+s~7s;i-NO!J@p@`PF0w5U&&luz0Rq|@_G0j9o=wXpq_HC zMSpDZ3#Imhb(yH~T(Tbd?Bu$2_=zwB(O*AjTt%CbjVT{7rva13=O%8}R{Au}mkWUT z_)^s2tetMr5++o-wZ^EquC}P*41++@ENpfU`}Y6`tP2mEh5`dwm2*$ptBu}`^`va2 z)1#Ievq|L2_H|y()Tel#y39f+2xE#TXTEa>7bI6X8mS}n>#dOTdERN_of6t2jhKb! zV;22!yo+Y#NaV+U|LvUJ&W0`6+{cOd+sJ!}BZ5c7!X@wa6fcXSpC~=oYCGlGb*<)o zTYs=Dmh~uqgkrfxJks(w=Mi~=N~ZfAPHP?=V)|9-sdOp+Qer(zHR;zJ%BwgK2n{jx zxCFrt@{<=iooQ}i&eM`d>F82-*Vg>(2AZGyn1OIHTC-HAF1%={{ zlDQn%8iM<+7y=d5OFd-AUtM6ORhR%J+LmN8J$tT82y|Ls>WNx+%;INuF?+P$r4)&Z z{h8moMfJ0uM&vbYxCpUNd!*`?zr_IM+vLW84v`_N2I1(N)}2}oo2|~@`g}IayH`zB zARnjCv>2byZubC`q6nI?;a^Kt#M^fJJ40o&GZxsg=Mw#VX6m$W;U?3}rmIFBOWa)} znd^?ezNOt2#yck5cHuJo(Mz8IM^Q4EP*H{uJK$w$ffMso{M9BIsvTRE*;sgOPri%H z5zq+1(&6i+P}TPl(Dkc%APyFEMZE}xf{FO zLYp~@KY#vxU<-M=(lMcBCy!?sw2e_2bhqIQ+M|A3266;0HR%Y}_*-h@kyqC8n$L*e zRi0{YrOE_r@XtCu{M;%=EStZ2GQ9EG71iv5?Z+UFGFj?~JUmzW z&!bSw&=)JhSwn{hdQO1^cx1MjDp!yP*JD-wqfP}n_bKc6ETJxC$Mk2S-T075Qku-Y z`DUVFH2+lG5(7k6p69~MZl#SHalAo)Gn_+sTYYlFeY0ymhX5S3FIxM}s_o|R6rz(C zMO}|~ST#OwVDBK?w=B4cFmUNimN}p&*nA&p2(Z0eb72UpUta6x9j^97qpzrIcU`q+ftLvT!hjuBib|2zEw5%^_ai*nm6qiF0ZPs8_gt+eleCJ zhb6s^=8JvvCm!_6zbY2}j$pgAJv`%@Ne_j7L(8f+M);oFs~yfFe<=#S2rrm7XT6SI;^X%#cMa&6`tSznK3^md2NhbvWx#)IGF%pIh-Y z2P>6fnQ!Wko#Tc~@NXd`=sRe_ip&`W&$F`(JZ^kuHfSK~nA;<#US%QBUEZ@>kYFPn z>*^Q(g8yaU>1MRvwLsvb-%PR`cowEF&YaWN@ERn_; z&QCZHunkYz@0RE!ah$eaZ|W-=rp1HbEI(bQ zlid`4Y!s*%;bBnSpt<vw%Tn&lRHKJd%6=#@WSvc;>RH^ z6#0k4u&w52j%$~s7NTF`qqy~R5ieo3vF&^5jJ^=-x$mFA;-qV2Uisk+ONH_&LCmSg zymb|(Ec0rs;?5*A14Tef3Vs`wF-`myHM{r7@L2(-??&pUPajjbizfpHQT#jJ=T1`T z2s#}asmDd?Gera+%QMS~at_ZaXVouhnW1MePaE_q{Fw?+WAp9JjTZIqQSw9iq!L#c zFIyn=DH_`n{AR1#758`Dp!P63Uuk();zSTD)%#`W*1Te?sXUHY=#AfH62~w-XqW2t zG7#7&32HEoh$szZ%6~(iH+1K4Ng6q3Kn`_?-dhvgvO4 zhADjCCUJ9GJAmc$>UhX_+16y?q8P$Td7|YWyS}R;k$bsLCB?}4`SrVsPp`AHRt3W= zzJC2!wC)qHxBs>SpZn)fRjBqwyIB2c#c_5aVzw2 zWz0g3PgdMf3NdR;+V$_e!JQ@^DZh^Pw{68Gb(^&*H?P-`T$B=;pwOJU!3R!1f;X4! zDDEaoF8Ua_+{w@nU^D+$9@NoE>U> z*5V}b7c8b8M;9*k!L&SM#aGZ6Ka<>sTRcIp!2lt5mD&FjRR2j^C1MLdmB6RwXlFEW zo^)?aK)cMt7j2CGsSws3%J^p2lMk zi<|YD?Gt>MLt&bKK%~$V7-gDe0EKEVz^gW7MWvBS_On}!uHhD8B81@X6njYW!rVmK z%*>b(uEohEGi+onyC8buk{EQV{@I&D@3s%y%UhVx>%SIpgTVV5?h2Nq80|vQe-x=N z$9IK=Uwu8{XSqQrJgf&l0Tib2UWpd@yt+NE^6QMeNy1=5(2f}ncPJUPe92)l7yTM& z$-{p)$UBjyoeNmsjmE6RyS4f!sCEa$4BJ#?oW6`c3M-~}lO@O?ZoBEOyxl*ssR&lu zH?ur$6qQQxaBBhTM?c!U>gMb{@183NMq%}5zisY&3tO^z_u+8SxJq^7;W#I@s zF@4ZyMQ_HDcx8niQ!-xn82EKKpau2P0#wT1$9}izry4=gh6*)6_KuIWR2UP;k>K+5 z^7aly!;4ah=ckZjEd5Z8*)sxdLwSz+131c$Wyq_^yyC1u3p{DJ_0{k14ySxZV3x4f z!xhoe!{vd&qDNEXYGwWp{S}RO|0H`-UYW$jSG8pNT8#oMQXL z0${nB8h4rI2T63h1}E&VS98c>VGF|+fmq?QIW?RK6KB;%ddf(119wlJIHSKi6*NXQ zE=F%}4TfX#V(-tbo{Bf=&xyLHZHTb2`D_$qb?wkqcd54@-u=nZ6)_@}rG~~GwjdcA zA9XbRy6sD<3EQif>4#PH{YvyaYCxBQDqTmav1&+Xb^nqV1OIad_l()1m1GH`k(Y8# zOICOlKqLK+2NR+eKvUfF9Oh$b&UA^Zo(0wu*4WnO)OK20)2ux}%VXn`*RjfZk?{Io zYOvnF&BitdQXyfU*J?7C`Z+n(yn3odw&d0q{J-`-wA;A!EXTRqo8#GUNl54o&HX}= z<)_vx_Qk``wlpHQ&3c6efq;yse}-`ji~UoxEQv_J87Yfx_tIHune}9H*UjXm#jSh8 zTW(qs{D+^pRObQb5n(yF_tt@1C^7Lr)v+(l=y z6Q%nhpF*{wue+7H(hC|RkFis{v6fu+J{y-tGK?$6R^Ret| zxics1aA@m4$X0tr2~p6=WNZ+KXEHw3D!xqXF~-8F_%*MKMMgJRB7u0X5W9q}oqC=Q ztngalqyzoIfb0yX75`Jh0yya~8m5)nU=Zatz}CD_TU3~n%aRqq5~udoaujvfU1SFC z@}l-_l@PRYZX_*?exX!E?%QNFXxZnKTL4A0uy1E)^r)$ZXn;meiV^u%8h&guNtPY(hI1T@j6BMWF&GI)gY1f{ zh?$%h*SFHV(no1q_37BzcZ&(6Uw!MfTI}eW(6yh|^6P6aEDA0!Xp*sE{9j*{iQ~}~ zf(h`F6;%hkGTlda8~1XNVwdHye8loo+AL6f3A*t(sZ28ox|z>eZfa}w-3I{=b)J#2 zB&oM^7+!c{V$d8(s`7*zR6xobg@$G3^RLq7ZSJe3&6GTmj%s@sPvo~f=Ll1z%q|lg zT+98P>Hgc-iW^QhtoxlknfRXzYmnu?1qUQLrqX8xJdiBwmchZJyJ^ z>Mpt0JpO%TZ^p8br!#6;G52JF9FUZ#wmKn#{?^j2o1T93XtZPON8~b6*e%S@WU077 z_j@X9fQu=*RtAzB6$6Ll>3x6sB0a{O?39yexKkMEcM6=yFbyFX#m{Gr9qm&5CkF#? zDx|k{e9kq%Hs`5Z(#$LMqZ(u-$p0|tqNJ~n=WBL5)9A3N4AG2~$*5kBi(qaP-OdqN z%lD|^cmA$9`cTU{=XHL>_MR{Yh#sjqB%-Z`P7h&9zj2N%<&-*;@_GnvPyIAu5%$el zd0O;#%(weT`+_Ie_IFMZAR}PQso=06JDH4soY*~>T}a;5YNN1&w_iyn{_bR+Bht4_ z>W5F1`N|zW*}^_m{}uw&pw`0OrdcFdg#N!3J!I)}##bFt3eBBMfCRsymyr|c)Bm5L zl<9)Ri2@9=Y4%2}|A*jipFaVVap?}pb=_at>mh6-OCcZLM$x)SKdn~jAGB(H@o@BR z2I7kWTp@p|tkdAX$$pI8op^*iWG9Sz4`cB!b4WY_wF|YIn8$M07>dauw{yPus6*%0 zT%0h--F6E_i*aIS+%jIVLel9yp=Q0Ojx*>U7+a80H*~VzF(HFTKzGso&GIRTcbsZ(Zun$CA9YDOL~*Yn<@9srWX{JH1Zv?;l8t5SMU|DW_Q-Iz#GFKvel?5 z1cF8Cz{5nrG8U=WMO=B_lP!uX>OC<|<{n#Bs-WY)YXDeAocENvb`++{_KjaWoxcC{ zqE85es0ArI`dv9}k>+OGV`%(cTcuNboxV!hg}Nu>R86b$dmc03xerqUDjX~(F`3zu ztzqkf9kw3S6?*f0w!{BYF@&*+UicuV})St=ucb}R*_x}kJlA;DM zf@qlD&)@&(+c>grC))12$FO+#m}l8DP1_-ESZ&L_k=ox^N=@UFlZQHLP1Ymdn426i zuMW|CYoJ$%c^w(>p4 z6P8U@g{AtNlt@Fl$g#q-+I5K{%bfTJnr7}RMPuLI+wPmCFYYlxG;~2-8sz4HNRJn5 z_^2a7)Cns;>MdB5!KV#845C=_5(Vo`O^PV zOYtT+3t7G4AV)R5@oLKl7^9R}jt*#rC+dS=BkOe{!x>Sd-Kc`l(dw-u3S*6W!(*_@ zS!=coaEWSdhh!B zc&SOb2UD$wY1CBOmP{#0$)`+Ts1Zyc;0IKpZA8?5r5Z!#o1?WU&H1x+o!UB;21SI? zYu1iBiK-3Z&Pla;(``_%0}}h}v~yshmdgdmMbu~XvneokYTOUVgvC=RR6rfjRV;wm zn_!vagRLruVcvhSMIdzG+(9o;ECLC1**=X9XP5?BD;1M5ZtmyyD%w-z^^nJE`sMYc zRNPp;w)*Ggt@$m&Q+|(jm{*7b4A$hp3z#uxFd#)KHObMQ>WRhTPeD4vjTHCO+*)p% zpk#f>_4PqwRt!kTNN? zR@wGXZ_@W*ymOa0wMdoAtpSZ>Ov`<(RGMCUM^^r!LE8ZMh=CcqUi()0eT!XP0}SfP zTfL1OY}B}mUsbl5bhzodNs?K|VZ~I-!v@07CEdUXHLqi8GPHfV`-d7d`d^qd!2P3T zK!n^q|9$wSOFkgRbzw2dio@>^hzf}h;YRcw zi*I7K_Z6aEyT?YHEg}6DcQ`I!ztop4r`+@JJgnr;V}mz9#MSo~eSR_w43p$) zV;|?_%GROy&!NPg6}J4X23>sBS95{Mg#Yl8$zPLW;9T_Eoh*Xb!dFJJ(>{?IMKASD zaE&sWKAXSLQCBxYJBrZ%Ban`g4Iz6^V+?T(gSm$ZxfU!9{wC>d@Z+gMv$2!CNp*c` zaO9)CJF!T;Y}J;l?yB!KQC>y93_jESg8CILerDb9>6O@+UtTi4>*S1@^GObYdxJNo zayY6Zy5RwjHil|^t{_>G-^aj5WPKOHFWDPNM(LtTMYaw4Z$v@8a5a{P{FI>yRVZ@v z)*eZQtXl@9$Go3D*t^ohhCaVq-x_;Hz-?f6XM4f#T(Mk8${%zLgk9j4%a*NF$5-=H z%lvswqz927za4S;y4}s!PxUe|Ir?2*ON0vDVNs4%Ff7=O<{iMoIF*a;x0-d9Sy>%Q zsZCaDQ3OAlQY2qe5=9=&Up@D2R%IkD*JWlK#@4GEjntdBNtJJv2bPiVyb&wjOgkY{ zxt52yZ;C~THyrlDf2!85^sajwjD858wsKe%>z3Pfoh>$8VhgVQgTADe@^eNxw${hu zi1(8mRkpq4*te=DOLuowDpDCYKK*XbUBIYB)I-a0a+9StY7V#*#Mh2mWXMTjFGNXl zW7fD+OAa|Nl@D>lG##7A`&NS4XxZoFrF zL!mz-8XKD*w9o#+ha}p1=}&!!#k4=0xIfqGq0=OkkzZ6l-^>=Id?QxwLIP z1Q*N_0)Ecu2AQD+gIp6n+lQ>amzr+B3?GDrXuFzwaJJROLVX{(-ucCH2Js!K~9J*IA7})SD zHCtE?max+y{!p74T<%NjP%YT%-VU8y`q#`ia3LCC-d*5b4e#L=;r_P}=-`CiAZm{X zwOvmZwk%ckbx#+=i`^b{KRKK&I)Y;lP@B|$YOgz1w5SH92`hKQEe`=vq()lz$z&ub zU**NwV^-eMg2LCw2;^iGC|*-^U^Mq*kR>Pm^d%2P_O~=dJzL}*Q(?L#gR9Y(Inc6F zw!2eHJF9WyFGetr<3vgy`L8N_CcY*yYRijOS$NEOxzn9^O zp`-DAz&vtN#}gQ)qNB@iPh*Dj0uFYq%+fj!_IBs%m)jkd#QcI8@RXc*9{yXC23-n2U_M9W2oeVS>b?C(@V#Ma)mnC^q`^*rkG6wSOZT;6rBfrXf>E-hNt2um&yh&p|iG9nxs~zvVMehMb zZp(zi<}&w_m_o!=JPe^WC}LIsLFHV$ZPj>M3EYD$SEYt%HE1mBt@<7hG2M`GF{T{9 z1oi#FwOkafa^$W`5ju;@YiETp#mbizt{>uK|3q?bjm6^r(;%^z!bF!+N6Gf1a7Ss0>Kz8S@f4{XAIXeOQ-5x!x@%@U7y7o zrkw~=YW(mKz+E6>`Ua+!>5NNaTXs45o5hd+^C}p-a6ZB5Zh7gF2%Vl@P!$bm~`{K6hMxc$$4SiUgTJyA3a)3 zi6iMWTxhyIl%QVYa6-2y8gX58)&Fzc+PoOz)0WR=>cI8?RkV{UF;0UHK5BZ&TTQ<{ zN}pI|P+#h20nr%g>TZOpC<+L z6YsEkkULazN`xVt)#q~VqGs-}3w$p3a$1w96AmlX=gw4MncX4|+-hEw`x{M$;aVMc zAOxyx4e^N}ws{jSl9nl>5|8M-_e$y7Z=tqA>!;l{Ft!KcM)F1zp7Ud$igLCCG-TY~ z-_BjPhSQ0f?+d?vxUDag{fGXXpP%w+I%O4AB8X;Ik}jXCNvTI% zMMo-~zZiZtxd%QYU{-JvLI?sqf6`D}2AKBz!tw1<(mw-BY!ddQy>?{6|@9V-;VeP61| zQNky)718y9Ca4O$9DbE(+-~L_xD65U<6`Aiul(JNO6e-#$H|K$tIdGqEWLHq6YliZwgFulLijnXBPfK~t{^@YRXx9vwMHwPH9Elc z+=NXP6IS)-8ourMDCJ>ndTWU;XVA=wwXRW&w>v+$+`^>b5{^+yyXzRUP^Bna+bgzZ zKA|)C*JmtV9n}pwoF-IoAoY#BR7sC31VwkP>x|0I9hJ>U( zJK{GOa(8`gN$vz^^0Wt3F+A6K9d8w&_kfrJ&bwR^}82y=Dj$UqTV1fyeq zu*tZha73LPvTo_gZsqBxy8Zimx)j=;UwKcaPG!jhT9$$<9K~Z{gz1fB>5@4( z4~qCTdk$KoIr`Esh#Ef_)H!4xakuIzn}y2C=2;#1a(d?rztvmPc|!RAEGF~M?hNe) zaRbrl2mT(~v%R@<&m#=_4+y?3oze=oF)oXro2@5qW9ot>yIIdLsP=sbR zR9R+y5h@n>(Ve_fbVVP_VtYnsuJc|yPE6LVzUZZp`F~CD2RnD zmSv|a4OQi6=rgG}&|tS^r&oeduw$g=9V)!&{rz5~{_3z*N13Y`tl#>Ykg+tC zeg{MwQgPB8-MJd!zi2Q3=_aQ7DxO{BPxk!t-gCCnR)xtgtVBB+q|b=zOTTnOpWH+u zH{mkz=P5KgQPleJ*BIY?q4GQ)kssSebz91*wDbrW?AFR1elzKdMH#`az8xnaBj3Kc zLsl5VaaA)8bGYxfj|i0A{219hqKiO=xI_+9hQt%J<^T; z9|QZ~-7}CgOZTVfA>Dlqf9zd(ss<*c+(pEQLa3WN9qtT}J4~S5b}xrQxWPj5EgaQ? zyQy-IZVk}UDKGVY&g9e2@mA)w=f!KjrW<`U8<&RMMdw$2-EBceV1CNU+WS=`l`j3oFh=LYN z;J);NVU2uj68U8!Nv}KN$Y=Xf)rYPxAMQxtceW~e2~%VFa=)k<+&}QOtSDKs{K@s? z4l^Zw&-G-i@dcj8J=#8HPsjKh(c9AUc7t7)YY$_YXdpWv60z{4kJXpB$&b{&<0c0u zYd!hih90hawWh7#HC8H6F*(tdwKX4mtKF72n))YYU#o;l2oDz={;!ZeQ@DH3v?R+Q zY3iZN&uF5T$10DKZV4)R1UYTnM@fdgZOGt|R`Bxju=x}UQ#Wdw0&D3`K-{vDkV*G9 zV*?>0a$$d6L7pY3MuQq2B0E%9O@#lFa+&9IJ!y}m2kS4eZZj|=9l=@q`PJ!jV=ZUrrG(jWZqCJjU)XNYQy8{XsldxLgRNm~v1*;*syKsylXR9E6Mh8fkDNzong^ z!$RvmwaEEH8J=;lS3QJeaXfgMXv<^~D%0NZQ3irgQQ2ny#D48_@YRan*8V-EsaOgh z1D_;m`E&IN@Z$7byE-dp|IXxr#Z>f_Wc%hrjKGsdY#Le8!)u8K5(}Vl_hK2i^r3kW zy4$cxF9X{NqxF}&V`Y224db8BCm{OX@M}n}6Er$XFG33Wz=Q|fW9^nE!!4^Ht#kyq zhyDfzE>|(6Bb**VJ=qr8m>)XLOMX_lE_}@6H=o;fuV4A& z?Xq;_*SBprcJm6KHt&Jp*Y6}f(y&{`EYxe9)RHw}ED|u_9S%+)l42%A9=&-Qz0qU0pS$Q*5IfF+W&w z*tMc?SyN>xa-!&2GwD?{@_>DQmphky81$_3vxiC!i8V6lhS69aNeblM! zpn(W6JK%!!97%S(5ze~S6eZhm3pt|9`FJo=$vuhaj%x9UuYL_`k>D%l0|HpBPn?x5 zK=1y&mw;D5T-V#ue}p13%8=}!l|`C#*^dh8A>hme_Gp*xf@<);3ZZL5>@-<k>6rTi_6Ki$ldiSBWi7hRotI@6cs#a7+LUvUEZPA)OK7PAw;dxmcy2ta9y6`Kl zaW`C^ef|1%P9@Y@23SAO5;#tW$D0Z5-2Oc0`TLnD@rz=Z&iT5rDQk4Sr|vg7{e^{v zKq7Ir&9qibbzVzhuE)#%)0=B#fG93rUKk$+H{Y%1W<%Os-XGUBNuCET9Qhm@J5jc# zD)Oe&$Xe?SZ-E*(KKWn$l?%(k9WSj~I?b$xYF3!rJH&-CTmwU=b@MvBM#ogyNh?dFcvz$S3y`@(HK zMJ?CT*|YO-mGltmabVxnKuuSmXWo8)#Rr?MC|$^<*|rrOu1nJs5T5;D*#F|aiV`3M zteqgaGE}D5;QBU|uItVwGA}6%M#&Dfnc@?WW0yna3!5LKTFido8(l;MLJ*{lqf?~u zR7*Gov72WMBQIyNN>E9PcZ-&1uTRJJ{EgVAk<8)m-)}bRI=eOQH%aVPf4be+O|eI; zd%iDCkP=jUGP(9<0ax#^Umpia0Cx^{-r8N?cb{#?I?+`Gjl2^=!wd@WP zjySj3p4j!}Ism-`g7{%-4rwq)6^tK6G)+U{|sZjNQc86n5)`Apfs*-MV5m zmM!=B54UM=0iZoP~(=UfNwYf-2sNt%6&(9bCUlOfs2O&DpW{O!Bq!TpIlM;_F(Va6zYerru; z`BjVa$2s=*N%y{!S%WhNsfwLeZ_9eM!R%IOM5+d4$7ARxUQ2lirCZNqnl5Z}JaB(sK@+M8tN1U(4Q3fvB3vq2b&G{4CsNo` zHqNi3Y}nyF;J(1F%YJJ2@D>6(aDWTNc*DypbV?@WQr!d`)i~HOOc5k5iG6F)9j!{{ zqs6R2?d7+~!Dvh*UFH`OO)N?-%%eBsbY&lCL@_NUJM_HwSIy?6~!G+QAv zzhQ%AUFO$dFING%)!C}pl>d*1Z0O-)aO=Id<=Ug%KpqW#bYQT~5L5`MtqM;I*}jxR zi+ex?D)H-ZTq?dbBr>_v4Yu@yXuRW7xFfrP^7|qhKJfzr)8pJ2_6BvV!5PKA4gm}c zMU>hZq2AQ&V;HspQNrOi(gX1XXmJ!&m=xE-qylfejmQ+3J2)*5^rQ|>B{59&B(Q#y z6i~^Kn%1K3g0#x|?Gt9v%!YXbStf8}p8)Vd@ZSNXQCVrJX3_?X1uleTxO)3UbBvUh zeh2DwZwP;ctZ%BqPXQ_RGs@gA(7T{cVNt?n$CFJYL{d`+3p2l}tjBO@tg#XLeOGS+ zY){=QZf=FZ9-nc0eJ%OLea_g&At7wZM_ukh^uIP-G6yhx?2vrOJj7i->qPAE>dgC7s{l^2;{*3+#S>3Pyqf;~I=A;98~7{dN)x$DUjR z?*yvSh;Zt5&<5Y2u~XQK;{a;G|9v=e?g=S;~{}Kn#*21XiPu%{kg}gs! z;=SsRv@|st%*qm%m&!Z#5PCeeS<{-Dgd+K+8*)CNR$+DzzFZsRlQa{GQCaxhIr!*N zzlaZkP}|hh)H!I14>I8fU=Z^XZ>LB0uvTFmZuu7tri0RFGW(;Owp;)(DhaEdYq05B zqZW;9A2~sprh4{=aMXyY%xpx5TOwt1yJ$bIrvxw1$=$A$byNp;cLU(bc?N9RkeUnu zzXWLm#h?YCGx>PL3{~JplRCL4C=X7ncLC$}2P6Gzbc_oW*RG$(U5h@ghsDv=*$Bs@ z#@qL>%6YiTcpN(TSIt8mAFw<>S_@bM+sw;?gFcV1=isn+cXywdfgARSV{2h?@nL?x ziB>U725bPHD})FY$s5L}BG&8Ds65Bw55wc}pU0O05umEDjOk*Yb3wDd(HXd#;MCMa zbG4Ubp$iBBU+d-U$J?`HfTF9ZBkNrLY4pC2WP61K7-tyi3E=la$CM1(3X?{*t>pGY z8ew&u=$WU+L!b)6sbp@0qBekbJliVx)t2EeM|(gGP;Xp;{QN7^AMFTF8M-Q5RcRF{jCfXqvi_wNP#V=qVL31!K9 zJUI*3Z_qza9RF=jt*#oL=qO$*cFZ17d?4G0rtX7en~+mRx0!BkZq1_X24`8n!)^YD z#K6d4V?)-^9XomG^qu-Xb0GH;R>jQLgd3*-crKe}ix~j29eVFQibW<62oM7(%pDlH z32hIMdh-h-ojYwF7s+1X7SaY;0pIcPWUQ$|etDEuCG}qyDthw2UhV&ng)~F+7!Kx% z;o)3dT)dV)p;zIQ-3Ro=1UDNIjxPX(yRe8zu0y><(LVHysPEJ3>tO8;?qWIf>= z{**cdr!_9ke_ewo_IOn4UJg=Mzba|{yL{!Dy_Y&|mHp@}UME>b zlTXT0TyQJwa+(>A6$eW^PA6u^Sir5-b#`u%G|;HJo)cP{+WWlQ7~h#`@2>r--a zc8+fh{+>I(ov%2eTdIUY8CKu3a0|s4oU^bPMvyFFg8t%_KcTw58;ntv0)VEU1DMdB z;gR3m8gkybUjpfFU+~W;q9f}}2?RnR*XGU9%E7R#5tCrTL+vDob0>zR^(aLk{f24| zX2%m33yHVq%2t?UzpoBpf_lLOIPO|Pf24FHGUc5UKZ+p$DQw|d#`H~AB~q0j+6fs% zNYEhkqQ(bBRh@r8Mr{fHa+U1btBAygGqN!uY^Hq9nMSqZleU&5&LDXC13%d~>1nVN6(R(r58EZvig<9ug;eC(9Uw|iTvK@dwLD-Fg@ zfEAOWPh2osz8Q~;JDLL)WmC^2y*%(d58Dq;z8RF1Z@iD>A->ww84&-3%!7CMN`j=R~+I!6`TLzYE{!_M5hnBP?aVN>ekKt)*Svp893 zG2W3~2#Y=o{2%5B1*JH%$|%cs2G*z9o|PY!S?}MUKoCY>N9uE>e*dC&34)&#l6cLN z|K=3u0{~4X%7kjsB(rJIeAsDT04-wa3 zh<*E~r$h}u7pA&&oXVVZLtsPn6ezOoSAJ0W@&jQ~#KUAaMWRqUQ8IQsyUZGCS~~>< z>WlNLw6lDFfq*4wZuHWpEyP=+=|pSL!S=zjqU^rhAHr(fpXe=l6gOXZAGMQ#)Wor3 z1fbQ@)g=KTfYq5PRi<&iAq?$SDON=w%IY8jlTkQd!c~{>NO!k;IUCvilN#b%93t0B z-GEpjm`X-TNfK@n6NU!&tX$R;)oABCbZ%d1X{kx$-`Ow)exyCP zsrU>)b9n%L$4>*nk?GWgFNr$wiy08b%D)i_L)lrPjRf&FXR zogSwq5@1n-9IM4Ilk+PD1I*_7033foiA)z$UFNMAYsi7swEtSZn4TNWA! zR9hE-WL{{F3ASUFt<0^w0HVrrfA9fs>SBNL9VWXuI33%4I;=$Y3#$(cKpgL-eMO7hEu=iXPYOSuJHfznj^Avt(}k-1>mXt7wC_( z9;XL)`8Nji*`~q<*baU?7njag!qWqL_iA-j6jEmoJ%9SNdZDX>>QK7GsI^rEY3a}N z8&(mQ7eQQjOe9kmd#BFd(MRk_})R45`cN$4zfQM9}*k6Z&D2~@__pDSee>h zFOTjD81?aPsoy&u9X9PbIuo<>Qa406+Bv6kM=nvBm6VrqC!?iOxTS$wfH z;i!5$F){Ie+%%c0mRf`WNo3C!YV65uPBU7OJ}Dzq1PvA z=|`n%BAB1~p9kP9N@CUA0CxeZ38eq8;aO2Nte(4fME$BYdW)8(p2kZxn=AhXh8l^T literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_10.png b/labworks/LW2/images/picture1_10.png new file mode 100644 index 0000000000000000000000000000000000000000..116cec34e1aed96c3626ab6c3eefeaddbf119c43 GIT binary patch literal 22114 zcma&Oby$>L`z}1RG)ObF0V0hsgfs{uNGgbQBi$W>z|bH{w=_sdcMk~CNcSM!jRNj9 z&-4EFyT5-N zbKCy!PjJ~gS#W=H(slxO!F5o0;|zfi8=?N76-pFXK_IV&p36#UdZg_wc=~9(`Ymxd zJUI3#q4v{QOAV*$>mt>8$QAn1c2~N%t zV>cQpyO5bAeqeyYz+{U{wo7Qft&_ihE=+kWS9$h6Y+&QY>lao-LxXV9`AWma(+xT) zaye32@FOnG?2Z8kKWSm#2}wywugD+5z{_hIN%JJ6q;V=nPBN%Z1^-{(yrPgIsd)F3 zy&+XfRzIY&tBI%K=x%x2tq7)6yTFw0_<^tQsO6I=BAV>|EnXU}8#J197ygvKH)reh@e5u5n=`II3{HklNGv>j{7U;J zai8B?1@#B5e`3?qqdq^@>R;e!o0^>s4+wy;k&C$p*v(esO8mVVj{EfK1F`sJyLo_m zk!F&Fzh8OgTWxLl+L~#agg--ET%7Ma(JLGT(eQow-6TD3$L(H4$4*L1-jEP%wVd0%XrsZ_^ zMKr_B&g))@TQrFILgL4S1j?tkmq-OAr4P@(bo9mDJ1UU4!JQP0S*o@od-yU9j)sA4 zc(~kAe=;Phrla%DZRm7s-0|vHBC;UUuQQT{pM;$J!{w#N^$M~7rd!M8S&6V<7d{9GNCXOuHFy$|-#VSuwPtF-jT_HbQuGhGA~_cO5J zPiP4d(ex37P(kgRE4#&J8Wo9~C#y&#DHsERcvdp?3H&g@U{vmlo~--LCoho_f;Vw# zY4hb5@qZ0>4R>Re(u77iD$xSq@H{utC9sI6S8MTX z+}yojd8v>MC0gYO{^6%VqWkq27xT`<@7}#TtZTa={CgttH>fL=*kmM23gNu7z3qUE zg00rh*>%yo&%ghB@%NT7!)yCdBosyjTW}$RNEVE*tf$&Pd-;+G^*~Rr54$Yiz3W8H z1sNk@JY8W#RCAEwz2A|qoa!*8=WcYo_WknrPC2jjWT~A*OmQ*0uJ>LIu8rA$ojF?g<#R-I(}-+E$VVlIcVW(2%0k&~2^jFC7XmbfPA=;)}wT2JLQ zY=;m)1qo(mW|E$Ie*1YcoGG!ir!6T7k(QD1zNTZbrWU0Z^@^bX{P{CApQ%F3hR1`r zr?VYFIC79xFi$x(a=8|L?uYm9!@*rEW;~nR4=B;#;BP@ueQj+vbP|}|yyesL|NS|1{sA7j;w8EYdXZ zEl^HP>#FGND8Q3{}1L zj>vA$lXaTRzx(cOWT6B!EVXrYsp)kNE7GI^KYM`hySNi^OgR}!z!fVlwLD|yAa3)OL*w{EWB_({J$vw5jf4Tj=IkE!{4Xyt7 zc8TNp?i*yKiue_#Ob9`T46)e6S3UKqx|Y4UT3aZ@MRfT1r6ReU&+&KGz8^n6u!Wm1 znXUgwwzRZt&z1@Ou~-EjhJc!<{WtMQ=ja!C$K7dO;15$CHv97pLjJeSKc$yJVBVc? zsG39OCF+0MIe{zjf@eJ?7cDL+aRm0q{NMrBKmun~iQeLeE_DW_f^nmh^}!@w6KoLr zqI%04)@hrM`ycmx|K2g|cg|nntMBN@ySlnca`&#Wo6qUyC}Ik2d7?;zM2@tmsOWY1 zm)9kO8Lap3Cq)fnNP++s%^>#9$8Y@yO(dQ0UG~p=e;@4G8h~4n<6(jQHg{VDA!;yV zYGNX*wUxnos;p$DxvOi<%*m%u!EAHb=6Be1AWI$dD+$eEH1H z&8@D?E>C^SS2M?yVfi7CjtUS2a7EW?;L&5;-SRnXHy2q`3C3d zW>0=W`^EXaGmu+su8@_cgH{=D zZ|}M$nEYJgr%#wI`u5FV;>pR$lk`+l2(!nx(iTmQ2VqMfG7}7oU8EiDtEy{hg&O?* zJ$1QTHN2bhTX~J`pT(Op3Dqy}4aCBajgJrVzdgxJ60}XJO4;+AH&~ZBulG30p}u>U zg-gGAdVA;Z&4E9N73+hkz~Op+|MpTV(hQFg|6Mra2|U@mE~mX9!%Gp9Y4YdKDz4;BY~0H+%LVD0hVrc2ODljM~mq z@szqlsKeLIhthEK)Wbv%n#q!rlTm*2x>WmpP7aH%V-LmUc1ihRx&IA*%+q7IBb^tB z{vIpAR24o~PUI96E0b^S76{mX^o!*mP}ejk>o?x#e{1#dM1|tPD8s zy!Sy1HNQClmu`Ik2#iKkWqS1vD}gdg7(Au%N8ed9mqVa-o3*ZiYXGEmSeLhiY;V7l zm6Jn*h=_<(0M{$o7|sxbg4_ZLxLERM?CI$N#=rtu26!jN(Xrg%W?Kuvkz{K_Wqpl5ekk$s@Tl5YSyg%t<;X?I*67$a&w;2x zYTtI_#>>X0KtN1Pbn8zw37Kb99th{B%Ud*wi$a?M~p##1Qa?BY-(5kgKcU zYEBTn!~L(3j7VL5DmAWE*fPU*2?%J3nTTv8ZZdA7)o=j_f6!|y9@rXKa-V(gUgN0&GWSZLaHhFQe3R) zbJ&5?)7>qL+%Pvag@ZsPkb&%5m}1TJVFAeupvlyY-I*$ROs3ZJS!+Zlj*Zd=CKDwk zCGFB<<+z&jinO5@x1p6mm0dc!4)+n4=u+fnWj|QJj}uFo^ZyeZ{|Csoz3o;hpZb!M zgU-y%ESPwgm1XL#94Rnfctk{y^a}ljb|k&*vD1CKOFbtIHMRF(#whp>QGD?tE;g3Q zoqxA;T564EHw@~RIIobJf3x4VbT3wvkL-I+O#==0%Vf*iu6b9~{dqK56dy&*h7})5@TTFlGJ!mKH}%DNq(Ijc_l_%`+0F{sr7a(zv<9Xu~J*<{6_ z)%N!RnSVLpUSCFcVkgyOByWqeUSURK5=*B_&y?@*G%!1T%$+pP-JByKrNBB1KnrNY zW+%05bHUv{5sG5+dpCD$w6;NTfzOlSO$3A8}{mV8H|Mxo?4P zCYX>WFd-bTP)=+%xbU-}W(1?t!PFe<>C2o`EteFn$#qyv4$D{0J-# z9Nt#|o|Q#Y>$P#umzd=gwR>^ow1Ht=Ax0gxRdIjLrhs2gmG|1h<^v}BnBjyIS=p`n zi`Zmw@`n@C9cv+d!=EWBjMmqlPd8Z*XS_MN+j@KJ?Nj0U_@PQ_$gh~E1dw`{Ef(|Z zT?_5T-ABo9U&v;3#+!sLy~N^v^hiq5f#+j<{4YDaxKh7Ahw7lj+w=Y#k+p1yJc=_x z818q`dUs>vZ02dVaJmMo;6Oe)dzesj+Jzm{VxAC<_dsm0AJGk;SoaK5pa(5nwv zFz^kQySPDc2tDt_CUo+>2k*0*Cxt#C|-H?7GyGAol^FM?6`1Gh+QnW{Eu#Tt|d~On!g%IfVvz}0l zY<(Eoklt{f^3m@KJqxec+6`)|7&w|v)$jx>2QCxrcca?{O9M-g=NLkE6Mzj05XYN_uZ}&UH;gPblA8Tu2fRmBX(hm zdYX?2`Y^h4dgozdaq^m3pvzv8M-l1K^F*nyxSyJY8M5`}!jD()`baR5Q+-|+WvCMr zSh>)Ol$DXe040styKEDXcjn{JF+)B8-#jLbq+d^?fL*t4VDp?V3axH`^=7UmG&=xP zNF0u_6Nb!Q)V(KC^1R3i++AYENEY%lFL5#^;BXg4PUAQYG*84?qNiva<$g<+NOO393j1-tvg!|s_fn$xq$wOw{_F$`QR4=x_DTZkATTRQX5 zS6mhtLBOiSdwau3a@%5MKi!h7+2X|EnCw<8=hkg*C{ zbS^>}CqcaA4*w^TNe+2H0?uC~W>LviKe~4Ns+yzkdIw!r?L%2hdL>3cSqnV~mZ9xy z&jioOSvJfe_--YUB}{Xj`t%3+WaMlbR$1Z(7!XxrYDn8&1qor8^4=Bgr=lk#xFE9F zSW%G|zA7Zqe2X8fh$XdB{vLzmjD>b6vllBEZ|^1&s${3jA@&6SYH)yu-yrO;cIEZ3 z(P*VT8xh@|YQZlpjkMu@i>@A`Eo?bTdA!$3@IFDQ_GC0>>S^_u7kPP3bCbet4<6{PE-8il*?kZo*^k947GF4dD>W zj>>WSdyJ9f-S4-chFb-2s69>Cxiq5<@IEMf1q$;H0HGrRu>%1#(PJWdkq=;;dA-5? z_~svBeN{)Z6Lekc=^P>tx6>th2wAqFF|%*CfpX1O`Yyu88J1`>WnX>z@?l)4l!$Uzvr>_mF+eHegkf_9Bt54(GM zgwGlW61ibb)+jGGHqOzI=%U$uBw`m8X*$XqhpW{?*zRqNL+ZLg`dt}Rf2hg^a6#3* zC!jP|ef7%Bt+cop50H6+OJ7DUvqmk`#$IZTV-~4-jCwg?wAYgfd)vcxptuoH@^H3$5$QR zcS8+>7qT+c3`L20tct**Rn54&3Ynjq_lB?`mTMf3bnk^Whwx7|I8p)3c%NH-6?+PP z!I#1$Fe`9o9`hxtiK({ctbRub#HzMfU+r+ZaXxPWahvPD-RX(6FKN%^WMwD9zDH3h z5)bluFY<}v&+eL8euXZW91uoChr#<80mDlQZfBk*@;-^-8Esv~W)d8J4T*;`8YMl? z>x>O#Pu;NWJ(7R{Qd#`gdgETMtHbP1sn-VOMJ;zKZMo{~K^)EOT|NwSV^qqQJ>J8fM}7g^Mm&QWX3z6za%Z%tY7VxszN?`KP3qrUO<5P!@ynm zC&Qx))_p>^dTXW`pT_PilaR(unK&UWN-607jgVQkR_2wwq@y7C++9C> z9(2xyq_)&P@F6LPCL@j00#zd#~G z9oCTc>_-5q-Bq&dW8-#ac_J)782!tDBV@WZU``M=%a4ny%pr?uJw$p-ULkPA89Y4G% z223vNRlBz7d|6Si@R_)hgdb)BvHQU&GuS#RF#F8hP;+M3mp?~XO@yhocfnmjE8;BK zDz5T=nWR+y!rQFw9nNkM{*IQ!<;KYs+ce7Sy@=7Oa=*sUk&X36jE=a z8pV2L9<${0wmtYSup`cCXPK7;xa!C>ugsasl-UT&uMumV{-F8c1a@dkNsB*0X>d#D zGUgwZ$9IJq|%%=B!tD}d=;#2Rb^Jv z{6nxRM}zG5-NZS(9Z@Zo_hPU$L9oGn_WB{=WH@M$ah#~$+vP_9g|e^|fDN(xoG3hc zc~MdapyDsQp)9Z&|GaFbV^fMN628?NW9WZKPM&=Sf*%p96u8$nQy!k%e(U1SWK1t-&fcXz?lu`5?J2+GJAd$$v<`k51j z2@A_MBLJuo|{W^Re>Z2Nk*k7eqKX1rAz-{fg*>4Ff^V+5+ap zAg9wqokwBbt3hE>5!D5*FvX!HkMAADEE+82ryIg7MLz^C>+iKcB(uZSKS0W#hv0J zG>A<^3=XQD6^AuBA3N1Is34>93++SZU)+@qe`A!Nyy;mBX%4AQsnj%WUYmYX{ply@ z+5pGm0ZUf?F*VNo`p?g|7t%J+e$?Q71YiN!^Mes7S!Fbua%|}B=wKOFE66=7{}X~7 zzd@2MNZYB0(GQGN^ddyx~E$d&EVN}3m=7B7f<5b#_B zc_@>=N645@9QqpVhmb2ey{k?`D)2!*V<}!wv7$a97zPS=TD~n?Ms2NMfE9*O9wj>c4*d0u3f{U`#xK??<&CaEKYIJ#YVM5lPp{o0;W7 z-zsM)rbvCBz8a~0Qia`%12UkRis@cMQAtVHr$-t*fYL^F7eHT1$aR~%v#ZP7*Ir5r z4Pff1VL&nH&S)Or{oj@y;=h?sOdE64p)u`^ltCpb*tdr;?zU^byJTdQj>u=oO2F4P zEkY?Mf~A768w$DS zon5-#0X=94qMA%yplE9Qds9AmQmw;D3xy6ctjz&yjwH5Xb+md9h;~m2_in;~%Amf~ z?pw+o$! zOW*btz;;rgb#N4yl(bn~F2evXq5i}0KX=B>VGDQi^#F~NvgTvO-MPA951XyAJRyf= z$oavN{e>$EDhzNn5gfGr^{bl#Gp(L2b5#M;1-FA!)%nDI?RxAhprOl1)4k&-Jg+rmns^;#$`F`(2v2@9efUZ4`EPcD6b3F*kq}({EeoDe^=~ z{cc&SC-n>uqNtqZ=ONUh@aE*w?}K31RaI3D-FDZ$$15l*I&F$bTpwb96;Gdea?Gs0 zr@YdGN3LHAEKon%F$nH;Z^x!cp3#>)o>c`A!QBc+bu>IZJ++(MI48^Wte;w39sff0 z&;ZGZ1MxWfsTKF}V<6aroSGVn9l%OV8Tdz)xBgZvE0@yG`k#dh&ga)xn9j5FZ>rv4-q9f+4ruv`i_>oz5|64>Mzyk5S}U#Qt!a>HIyfcOP{yo z!PjCz1+$mpRc*aZx`aLn!r2uGh_MDB+jfR-F`_~8|BE?lK(}2y0Qm1$fG!}CcGyBe z;qWxXq=-)Gjx*y!*xE%dEnOw&XQ<6xwYHj1KUX(?{W9;Z?dipch`8S^n@Ja;b{hqu=3rR9A3t#ZfmjG3qz@=R zmHx{hiR>IIb6 zhw4i6CXqW39^}LwuoZF1(IT8ET;;qSZ{9nQ!p#CA?UvwTVrm@rnosD5Wu_|Rf3B3a zdzNx^05FhYX~&8l1u0rOe@@CP4|~L+UHO~IS?$(@)X|&zYB(D*@&wRs-wbKf096ph zUl=Yj0HN`LU&m-l&Vyw+Marud{zco$E}?IYu30NkZ9^ZAaYrR`1P$wo2uxNCm6Cj_ z@Mu`^V?Ar}K(sFll3BArJ)l~F-1-c=X&Q&5PgQ?uXk8n%MOw^vLN#In0U;bxjhPSK zL(AhRMhehX&%lMKPa0R@6;TCTuiuCfNeCm2E9A$GgaxB=J$uQ-O3;AW++ zrGj<3U%=M=)_|#@;M$d~1k(j}m+B{eZ(G!&gIwB2q|P%i$dfq(sW^=3OQf-QW|rG< zzlhh2b4YcmVm;(efWF0&r#j&fSQ^w5gJkLO+u^-6R9^O5?0NWh5dyI|y>h1r+rr#W z96#a@9Qa4gwz`0RD=V(b{1bF;&gasuMYESFU$Y(z+9=q(W-c3TrV54o$iH~Qxy~qV zRv212k~nR2uoIAtZJ`iE#A#L&EtuNA7IHn0ut2Kn(Lx}FTtAm%E*`9Ozh^QT@w&>` zmwF7KYSVz?;mHQ;YIv_5qO7;9=Zf*FM0V|k*G`S&eK&>gN@kU_<~Ei0&lZ6%HG6Jj z06?)cwi8f%H)@7gFBBd68X+}-4+%*52C>nm2<<6huQ-|!()?_hrMZ>8bBO~Xg*cRf zo@#S$$7h(cPgGp5z_XaihTdS&t`l~+U1)#nQz;kSdy9!~r=PPL5{ zJT^0`M0zwm_j{3znRBALV*$sFExf>)EVj zpbar}CY)aVY3wN_Y$y@xZ`N&afVEGO?>S1Afr~hf>M<7YiYn<60^>=)nd^2947Wle0KtC zyS@Xt2ertev!0P1f`vf{&+lU6W*?Qi@A}cRrtnEHNptQb;c%e^N)t;46jEi8oZbnu z<<$>@H^)?4W{N>gbRy_S6RieUL!=+MP0lJ{LRc_^v$f>2Nl24N%=zu86Eb53C+XlT zWY0u?dH)tUpC@tsM!@A>UMguCn2p2AUP(B)-7OS*0Mi;g1m+lWaym^)!1!uB=ENDD^KRiwzKXTi5f;^=PPZC zQjXpb{iu*G(zl?7+7~|!I6RSHzP?t`)%(=xmup?JfiCUBAun$8RCy zoqHfuU#FNszUkUa>x60A*S-$EqEBLi!xbl_v!BfCf$G+BYT}EY#;~O9+5dF zv=M|d=@~`|nu%rgM%-N677`#`)^T9O)|@>gSJdYCVWwSZJ<}+S#LL6WgKw)x9qsR> zZfPxdovvK+_zGc=#!+pi-1?5J?=R&8i3{EXk*PLb6>}EjInrdXgNmO$=VQy}py!Lz zp#tE>xsdx`pBptUe$dAur^D-XS6>EDby&NX@6M9&^JNplmfi*>9z5UXU=VEE zL2nG4ZW`{*E|x9s+S>LKRCbvZqmLo_wPVQ^AuBzBRjTWC2j^LdDkdeyT~E>RX;OxT z=x8@I5K22^Pd}9?*XnJC(+5gF*}resDDAk{06}`a5qltNDnaxj&LDm=SG%^11af%J zk4yPH;;NM=P`Z2YV$$WIL~WgUtl*$E2O~P9u#o11fdBJe`&LdvcfL4cxT4L0l1O!- z7*)Wmb4Yex@mRpnqW;M=FI#bobDr^zw^A~ZDFaX!}G-id2aOz$g)(oN7H{@EySm1oM*7? zpaM+^*DI63)%&`I1d_w4rnJ-{8My|~0i(y(_}4Ud@WeXrz8fhUtD=tW8+bn6Uh=|w zyF;M7&ZVz)m@brl1|G2MYyo zsJRY}8-dnV=V4DF&HTNPzAnqRDcO4!ZPsgpODX54BAq%;CZsTOP~pw-2q9EWzD(h7 zT2lR(936Grq?YjljkfE_kk5`43^q0w?LyMzSes{hQzc>rh}Oh?sq9;(+l^^8K<+Gm z8fMOE)|#^(Y!4R1O=aM>$7i-hBaRh5^a!jhUT`tLW5XE_TVwgEG*6lPER=qusr5Xs zYVz5Xm|JsoHxD^wLIsgOl|*k@0L1RV7z21WcM&=V)rNCsK3*3=F{0nFxy3YVP9hUd z@E`o8{26D2&$~wNV2eR?o=PT{MpKzW=5Vde&hS8)7;MUt&b19lCR#WT$E8iWGRFwm z)ygIH97!ysNWOQE-sIk2uk4!X(#SvR^x7TS!O|4e4FNurmS%_n?EUS%aqiWaxtGuc z87kexHQ8=jJd7{g)-tj-sg9Lg!C5leHun@2BXrMaWKC1Q{CWO77iHVnT4(dJ-L-Sk z^mwF3xB?2zg{DT8gry*{Y3LOTmT}PfCR5fe8jLp#20q5aY)a5=^EShRxcHuD;XQq_ zgHQf53b7?3<9Kw4drxl!o8?=Ns=_r+(@;$$ea_4`fsoJeKf?}Dv(9MnR;38D9X!(b z3A^)|e*-@M@!u-Oc5POl`~v`${d!$sOT}XV3s^Pyf2wl9YD#hHV*jG@l^db46A|T& zDE#KW3|nF+Az_R`CiWjG*N432C-Gz(m>#V$WL$1uDJokjEB**+zWL)(>QUEMpVC-! zlV2!`a?8s3K`KG2U(O+AhO9a>0@OUahu+nWRDk7UIYS>&f4#FNND{}d9YJ4a)VlWq z_;gj{(}#lRs9DK0BEwph@OQ!@O9DT?uX**%8AZZDf~g)?)Om?oNRW6^k3;XyRR%pJ z1bg5)roQzL=vs>Zkb3a-eF+)O3&qb2ASrGN^0NcXgkmL8B|+c>s4n_sv=LDNs!@t- zpj{w{y59Ay2?3Ba%uml+4gifsxqL$lAqKWv5(Nvb8<`zU6vgrUTTMIx7NzYivnD;( z-(3st@(&nt^DmDolW8Y|MODzi`anjGRjHz5o!TKZncm;mu`46y!T$t({buP+S_@2e zA2fp_u0mCqxt)#crfhnm%IMn{Y%H{VLyyA^+282H z>@wC4#HZS;dX_zrdjEBZM4l+G2H-!~CK$T`sI9Mj7#A^J#aGGNO&GNQnDT7|y=gQ^ zA}1VEp*(s71A4Ngcj)Kehn&3AUJQFv_BJjxE(EJ-20T1o{-5WrKdM?h42B)M-r%1L z=j@zBR>}7uW)x~=U3QXe>NH#yJOJ6;J=ZE@pPv6fM_n&P-~k0IJ9*B} zpAiC5??7n{C_{N4eC;5a`&H3`F6ZYdtTbgmop<4c+;RvSE=D83OJC8~aev|3Bqg1j zv~AYSesXO!y;7GmHwV({q0w&#pCoZQfN`9xv00Lf&>`a)MsX(a7hcmKvA;{D+}&@jM^k7DOnvD?BG>VCK-=T-o2dp* zApb^DR-mUw8VYh=9%0-irP_!R#JpO zS)@ovKU@0GA8NV%)haIB)F&G;0IFtT6wL-?xj1TSYDqjs=#yXHP9ePk)fTf;-nO_q z4c@Bs|La$>VO^v1L{KnAtWV;N-G_}uQ63p)W9J}4IteOrAoMQJPjq*+N^YS=WicK1 z4r?!a+G6%}KjnXUJ%Z96!hzqyQ+xzLTRml*Od_*bc5Ng0P4TIKw^|J%7I)YV&HVo( z6pKnrWnEmVXDT;0Ex|Na$MRk*3>ko)X=i6=WDF2o75L#C6HN+s@@Jkc<1Jtqya<{V ziqf3Gzr6mc5L&ir3$?!WTqmHroho?Qk}tZ7-99Z780~;VLve{d zpAr&8_GZ__N^L(-fy@|(Tc&ik6ifWXD*b$NUZL66WH32KB3LEE5AQ(Y(pt9^C{qL$ zfD8vg^o<_o*VH;qSd#h{5p&x^uy zqa6W7r7Y$ZdI$U6&6L2!#OW1#I(D{~&!2aoct*e%AJp&F&hdDiS{7=qCknZ20&z(y za3?&x9~h_K<5|J+4AT>__=n1!wYGCVqW9(-$iOe({y2Y^NVfZM(fj9PByzLNqGe}x z^0#0MuT5#uNy=hsM_A%Y>u$`^(uLr1%bx?Oi3-g-fh!h#uG^YG{EZ+y)~;O**?L%C zX5#0Yr}&{vX4851kd;9iXu-IvtY zX8=TMM2+F>U? zXrI5rLjAhNqhB)%7vJl`|F~?JB~i8#7{6r)88YT3B4a$_IZ#{RxKR5Kg+Be0CF;8tI$kC64P0C_7BsAMpqQ+ z>UeWDg#>3N;E^t+)MI0>wDf{G-_{xe=GSAtVIvk0zFG#p6hJi2pW(beFI=_14*CG7 zSt7o~h=&8I10gOhF6zupfwOuHM}hOR?%M1!#f3L)Y_2zr?2=*Bfm7rZ?>fKR&cpzwjjG)St+g>a3xE>IrrY3zq3FuEhr2XZdz5mXk12Gc2A>L|N zwfGdEOn7=*FAHQeFAv6o*%7Po+_8(V(r6*dHIOabjgWTH0~v*q(w3CBhGXGV);H>L zjZaU*D=K)J>wkG;ViNxV&3B_ox+s_c>bHfD zTwC>Gnll3q4%_GibhJB_EwCM`h2XJ!63Yn|89m)|>(nv-)h7i_O?*?RL^j;Rxc9c2oYNniupyov?rAGd^wPbuU+SJA0~u&kqh318oq}^7GP=R@Ast(P1$D z3Z6-~T3OjnLl*{hyO`f}5up?FA_q%)W5*OH`o@iQ=PZOGNcqCrkrTksfk_G$_Uwhy zP=pg<6e!+T0IlMt_tQnKZQM14_7jQ(X*s)L-gfbDnd2e||5g3!SUjP!tJ+9D@<`b{04GFn7E}Cbx^5R8mWp(w;J=jpw#Z64obnMhOAj+C2lX%zv#N*fP z{VKUXjXgwa??b{#h}4o}eUVBm?mX#3G@qwK;M2AGiz|5Of~C8^L-n&|Ekqk%i$=j~ z{NK1*>0EY@9iSTC4C1ecq6EUyemrqwd*uZ?zjPaQW&1(7Cu)!__|`(6Q_q7v6!fAO3CbnUC8!aOcHso{cQ(Mo)j#z2TtOx9{kivOYp1V%>-Dfg1{VnH`^yyDh^u~qz&rty40MbwLyS@WtHeOk{4DjRk^k7}8 zr<{K+QP4p!38L*_=i4cWsF5T}qUUcqGN8x!lleh1+)Pg!30+_9YwwRc$hccBQ( zqA`=BDhg`fpK?_?S+{&PgUe!2>$~5jD9SqaCr0b}E+k_%X2PL(c?|i`H;oB*g4Mgf zrOHEil%(q~f}H@8q7J|CkLZGNJewE^v$G6!2My~htfI$LPWKuiQBVB#w?%onQYadU zWOycAT{4A#5rllDIX5x)YwcCWXFVqW{{8zM0>;SLq!N;5v*5v#Mis1sYYlP{i^mNt zcG~B7xaK`wH5(I%WDUIF68DD}`k)N3=kUo#Uw7A$-q1^qIB3Tl-=l8~56w%~7)k(r z9~oMgG|HC~7)2NPb)ClJ%uHJsTIEzC7CMbAcGP8$*kt3aHWrYSQ`K8EptyqaKHmdn zq_u9h3LqgrZ}!iADrS1M)SE)0Q*i}zY{5!1!uq6G>=Bn zT{S&+LjUIk`~|u5;?u6_WAlK_&}F0dCxZp7exjv_`V=th`^Bi{i$WQ`f`K(9Ec=V8xoA4hg{=dy?tVaB{`;c6#aqt($9Pp zCvlPLkXYT7isG&ft>YC3K8x#RpQq8f{$xj5gv!?;_diqIEDBY@#tsYq9O z3KLwlNKW=a?OWS;etfLFD1ic?#~lyFSJl+)208$o>2T=AKwdVRH|5FB3tiG5x8!H& zId^M3-uXICb;F0OmIDJ*&2>QM?mA@a(-8BK?dyCeJclzcSdQhQDDnqI_*cN3|5wnV ztKh*Ih=lnTHnqO85pLJ6!W00?^n^C&-yBx)qpat}^A;BIqKZL$vuH zjo~XQ1NCZ@wYUe16ag3Iv=NSfyMBg!ML87xBS{y7iDAvZ-VUGG#VE_!yS~-*z_;_< z5uf$?L8r*^WeYKmN^?X~|3gsGoxS&U#Bg}F3y0hGe%u%!@l8If=M~ss>&J03lC?o&W4Fy{MXLXuKW=<^w; zjQtNK2{L)cZlaivohFeXMYr8Vq$IMSmC;VM!(xjd-0N|>c3-t5AgG(qPP>l^Uv3xu z;X|%=_lHuk^$kpt9jMsseeSv74?`KN3ygs7D2#aM!GwA+pk51I zqyn-17c|^UxWvCpBZC~)40QX))|2k|i9&bNN(ZZ*2FVX@`v=nCfTM6UQ9kz0Pqh%4 z^)?Z8gFD!KcHZ)7ce27$35PC*fZA1T4l6JklhvBwfbs6Z^`pg`jzuU-5QyQJA;ixV ze!L>OScHIzxkbRcMHxyZQm*2Qs=PCP*{wu#_n8S3PBizf*V$8vnzgZ6tWFZhV&}KO zqCXmk`nEJDY$PEFcPj5a{9d&hg6ipFo-A}Woqp;&CI3ONQE#j!Zt>ru=zR-pZ3+nc znK3a>iz=uqUg_>ORd&4v9Z%^gX}yrVNlt?rkQd6DxU7m?RCX$PdrRY-t;($wV99+3kkWYuVp0*vCNeC<@+Rfc~Bu>wxlcE)zM!f=1vN zMKgJS+29^!`SEoV*Gqg>zD@gssISwbQ&PL%=&8a-2uQx#br^HnDGdsTACDZ3U^<(vE>>)S zuJYDH&yOj5T}16;>YI~|DR}~qlt2JHIu?8Gv6@fnag}jjGqG52Z2cCrT)Sei>Amgy z4hS=O?s_Bi-;?)z_AP6vjHLH!G5n@rc~Q@tQfhYZ0blJZ0;sHFbLvr_>VT4pf;HwN z{XA{Qck|7fv=uOpB%&tqXXnUq*m@ zJ5pA9Qi*`dElFtuL#*1-9{c0w8FBgZJT^=^I|;IT1Fit#E|Y9nd}c;m0hR0FaPdCiC&N< z$0C~P=>xy55stTWCUb3TX=zU-mVTuaRDTz%|Jyc|nk11p0=H@5G_@!LF+extCU1jRBDITHVQs54{WL-u-p6J%<%IvzZD~;Jj|MvjIeyW6QBbw)U-jFgU1_%q@<3B3C;84I#EhQ$ zFc+NTSZX?TM#XTHa`0lr>UwwQ-t-e@3a}|$H%bPGwGg z16_kki(Lu@HQlX`i>WeEjHoo@VXOP}Hbsa8rHvhJ^#dCy+hTk`cqOWJz6cwa^S&Nf`j=Byy!UTK z2u2f9S`z$Qr&o5YxNA)&V(&xRJ)=Gf2);x;<}NrVa_nC0K7E1BR&$kx!+!##J@a4;m_a6-kUbtboDF z>^;GTWbwTYoxZx{f56fNG>#~t58PI!;Q_|g1M9!TnPuavK1p{qoTFJ_Up6jO{wL%T zuN}nT17yb%sxaPp5lW2x@s}N8+;xZwbr?P8p!T&`*36Y&%tk(@eh{IFd?f)erFbyt8SqT3u0>LZjWqsd7#?^| zhx@7?Ar^IP0@k??1(;2_goSD3*tTEW*gVJDaTQ(D{pXz!tCaz!+B_%A@Io?w;-@%M z4a_;>-~Y|*|FK2VWRO^8eLLlD;C&ik{yE}EyA|2BFjHka@Le8QQY1eZzC4Ti=6MUw z1CQ@rgR}Rr+9de@p~hIQU4$aQ5s|1}tR9oz=$NQpDG}$S@F^OGq0}{;8A#mdJqlu0X5}Wi)_B_$BxN@<3K)0%?KbOjnXJl=*n z8N7MsrIhiM#>~u2P{L#|Mc@uTKEF7SSL&U)!mnS0SiG9LFz$_vu1Di>Bk|-1-%g{p z|4d1GzjvJD{PDim^*Vo^Kjxpg=6;@Mp6B`f z?)(1zzTXc$2c@7dlBfi*5SHS@U;IkJWArUmvvX#4hYRE5gYG18R9aSw;tQIERjC%C zwC#fNL@t@t{c_I&9qYvB4gJtf&XDcx)bLzj6F*~3+*u-RD~#2 zxR)jenkPac*|v}cwnt62i_dvmW)^W)#8tI>52gn}$GBrvbz?Jt9EGTxhr;{~vFK#< z4kGNX3Lsz{MVX+ePfD|~Ela=_A+B(Da33H+9pByZYz6!iwaftxPK`DGITetn+GOp1duzvF)0eQ7{PZ-vt-v%euW&yvVoE|VMC8nQ zS~e3{Ti(RLYa}cl;&2=ZxQJ^#Vz?RS(IMbnnNu5?)Zb5}@TW%xoP@S7Q;O(EGJDLR zbX~e?RivmKCKHk#9Z3rlr5z#($(2#s&- zHDSKXGn_4UV`%sFqS^4eQu}Ez1vmbTBbZd*Vu@Yl5+;+AvQMfdkFkm0^8JguZf`bo zQ!P;0 z6(}r`^j%QiYR&XSH)_PTb!DTjKp;?32YV&kUrgW!%5M2oD8*-49aD>KIUlUn+S=Mj z3hqKhy!%8~JR1(O%WKarb97XRn4}s7z)af3i-KnEU~hW~um^5F`+$q6;Ro}}dy&UR z+EkoU9(Uoll!7#oyf^CsriV~S=jDlN9ry=2dI?~bIGFQq-wJ~RgclmpESB$(Jmy!Aws9f%{6**#&impF~rs<>3xrFWY(ngVBIK949vR&cFZ=51@sh0o3yJY@*Tb<7UY# zm}(s8#`Ph}U(_j>(gzX}YA9iWgFV|oty-shl4N;`Gdy>j?+0)@zX0%~#0u)ycJgmh zAWX2A*EX5>b!bT1hb6XIHgwdZ8=3^N1c98mqq|x5S%FhpKB5apJ0M*Y>wX#hsj%?y z`r^6ov}k^*qVkztYcl7S_tk!i{5qpt5tV00PyIHX$Z=DaH~MZ#N$wcbvwEZOH9Nwx z!bdv%0ixPJEl$6&A2xb23Tv6`r75{i`%ZDSnUXaFLnngN3y#ozj0}C`9$5_3=FDb~ zPiI(8n>|NQZ#n#-qH+yQN=8P;%9ShQdDDHi;f0>qBar2MXI_bH&Q{iz~yChFDfXQKpP=TQcf#a~$# zzlQ>z_V}b;TE(tLcGTAXkG*62YKK1a%uWCm(_cH(&MW&|FqD-Fj~XX{Y-r&i8o@Nc z{rC_Q5Wbc9li@JX3iMKl#(2NRgcUeiStfvLAsUJ1Rcy@l3E24f6epA`1Ay`@f{9!b`UixxSGFL6bn&ZSni#ykuD z(z!z9UL>1nxHB#$vy1)58KRZ%4+o!)HexVb>hk?z&QW#ps~^KnX)xA3NqoAVjG{KD zp#Fd1*=$Ef7P>$zVDM{cAcC{}93T7{CF6Zc@W<$Eh|X7bIXdht`tV+y_h8%A#Rn0h zfSu_R%AO~qICJgUh2eR5CKFW`PDKxKIhn?7JfjJc2QFM~lHI^dvQDIp`dFQLg6F_~ zRb3rnlVZHB^L_D9onJMJ?$c-c$yr2;*J8t-A6lNmXn3Bsd~=R#tjNaW`ra(=*!KMH zNrdZ{-zij{qpvR@G@YudS-zEyVjx@47i17P7XdYa7FU9Hey5n%{` zvvUj(9-=$Ru(QaptH%!?0NG@Z=_*G`m&MriTq8z_E(I>)Dc(=>rh%Ra5LKe8viZSW zmRIJQsOaeIy|3oMN@I>2tVj3p>O5WZAa5p1#iQ zP_~~iOU8wVh5ZKD6~jzXMI{D7z%B_a2hr#V$Un2RwbMYY(X-DA`?@G@VkeiG4}7=) zMxB9EK&Pe1qePW7XuyOZgO8?Mfs|`n;Cl!{Uzn#|O?Vq=Lk$=VJ zwHfC$$jZtB#wdtV(A%+RI@MoSC_7xN5cO#9nMMBc4JF4)?sg{@_M+EKNKm9|Uf`sQ#-L+R{3Vm$Kh>h7jPA3^+rM<=OX?th`_0>+Ay}sv%d!GLE09z`Da6)Q zV|>Vyxms{V;|fqZaB6s89KAVr7gY>H+>=E5XaWep6?b46fOyjET89%stlqdl4Y9KC z?XR-<%NFa_$x(j8673;*Q*hxkO-&u@#>yv@Y!h{$7*nbj&|S_bEiEmCwb30De^LQq z9(Z|q-AYN~Ji$$x|7{u~MUMXiYx<*;aR0EZ)T;T`+9qzmy;4?Lu4QH|a}N0rNISpU literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_11.png b/labworks/LW2/images/picture1_11.png new file mode 100644 index 0000000000000000000000000000000000000000..cdf6104750dc37dd83769da68e48726d6c108321 GIT binary patch literal 24416 zcmeIa2UL~mwk5jFRa$DHVgiH$6$ODp5D_F;B1SNhlY)X|i3$i2dqKey_*t9>-BtyM(>}{fF;cYp%KGTz5_=9$db3 z<5C8LvHb8Mxl;_rA}$7Fe)SKF@sofpebRW5us)z_ecD{#`tmu;3k-#G)|X7otxXJd zxoj_3S{a&~i3ke+D){RTu8Y>zm#id&giQbK9fIbT20{-lRV{IpA1@tJvtlq-o}+)~ zh0BB)G8o!LhvoL2x#Hj3aM}M%Tb9hXev@-AmhqiBv(P;&m^*muQn4M|<%HLs`BkOG zFC09#}THZIVEZuXQFF-MD0nUZNHP0?hkp72pF?-=%dX?4vpLwku|Mqre zOJaqhTW?B}w1oB7pI@BeOE?xFv8%dm9z*uQFV_|_b}s&D{oNmH1=GI(4PsijJD zaA+vxbeLjXrLsoe$%7oMDNRle4<9}h4Zk%h`1bZn^J$--S&r`=kn2hBj7*Jv`DdtPf94S1%;kxpz`4xEf>7tB_qf0Hd7>tjJ%Qx*67i+MtD4H4^9DFQdpm^-@ufJqZc160l(BFRA zuygY!`>%hF4|q9icIfrT6>KVt)ya`a>2Jz$Zdexkx@mSav;m#{!PnsFh6Rg%3Xjjm9qYsWAD<|7-V_=ddQw|^lg!*isouw+ePzj}^%5LY_$G~x zkm1?cu^a52Y(S5%Vqk<8p(I%8do@Omvor)ttTYwLZnX2WO6d z9C8ado!L8{I+#^?u4J5PTWiALVzINcvnW5zo7e9&mQj@MD`JqZ=Oy(hBe?7A$kzfF zr4*e7HmC8JR?19YYMZEeMU`Ed>+Yc*S^1kA9r}yU*+j}qo29iq+7msGq0Z;5w19DkkB`r_ zH@RMLX!ePD_WN_YDkH^(kLGC{Ixf-qj8CMeO0@Pc{(QdlcDeAyk3lsi3B|!S-Bod~ z7qjJhO7^V}3v{y2oM?Yy6A{{M5G{7$!$a|*A`!g;j?3;?E5Dw4aptE@dsDSLQtg$$ z;7N)n^fkK)nSI>x#!Gtg;!kX1JCYmiyT8`N=_Q&qNZ1d5Wx26rr6)ZDpC$5C7!iqMc=5*_rYoUrus) zbezP63l|1DWajob4L%6WU8`Zj!XaVpV%uAHfc8y|o|nf#PDj!5PV1y8&rMPiIMd<2 z2FV1ox`nFJD7_v^Vmr#1z@q zj*RwY^yj}k_f~hX^}SNE<4C2-K&6UK9=>stkB*bw-obY~aWkX!)mNhGN{mN)YK0v} zd&Z}l<~Cu=dj7fpcD~fu=Lf~7Upz3W5_g&&7oTW-(2`Ip9T{)h_34GMP1mQ?x!I`@ z=egN|kNa0D`PIDG{#eXZ-JMfLdT4gM#mmdZrNvWH&}pJjC;x*te@nyVCXe?Icn#za z%x4JPrj@3dchal7WvFU$q1dHq>7JF>w;F0#}0{0E81D$8>GQYi9=52N~_Pw`?w(o|x z@qqrTymWj7JdYQr!{pDMJC{{5P#`mF(UaQZIZ&lxo|k)PHBWGR?H`d(4ve??=y-BY z|Fy(d?dGy&%dojdU80lg_?F`TanS=^k+J#l7Ydsxo@R|TN^U*&_(a>3t4r$aWH-M@ zZqMg5tKt48ne@y3n-JvNO9I$99fwa|9shE>@|N@4Tg%HT zSSh`J|LqmUpBtN=D?Is%P&M3D$&Ucn{NT9sogY_kWo|5w-Hk3;qjmgS75!B^bG&IU z$-A#-aa$|kn$e#v$<0k!1z}6~Mu|}UEOxkoym?<*$J4lxDh=$^6tjlrpc^Y(4W8O< z~Y=bf@wTK{-m7F=TG8K z?LT#EIoqR&X{45fs$|L!>5fyQzN0gfBS+_uXQDpow|(&LjEv2e2=MXoF&vYb8^vSkwc=(&1&N>EZ>tg{Kql-u$nric+@sE88BN7k+yA`1NxgSK zdTx5?*psJH4r0S=63il_lOqOl29O$eCqy6h5$ueQk5AfUuBE-CFLS75WKeR^wf5W} z4l%fdaY`;CrF%t&vQtyVJ@>Rfmgt{D7|iqEW7YL}c6ZK%f=TL^TO$#1!cId^n&c4J zj-|hZDQDVEB!KvM~Q3LKGC6r_3<#G`fI1B*P2gk52PEb(-wFf;gjBDm7-3>l?)un=@-ajc4xeqQs-eKikN{jHaW# z^#^gKMSi>Z=@a9xS2~^OXo>Bwp2s-b3-BbX?2YTfEox4x)^?*zOgry@oZP;B`#$3- z#+AvlRZgg`=2a~EEU3ATo?DgLw_lxSr-2fd?Chr}r}QHyzXSq*%W>z)(-i+G-KI3y zYG^u5v?V#^-~DBO#B$E+(Aoq8gQuo7$Y80>uKY%(fq{XXK3cYFJ@{%C7K{F@G3BMt zl$+jgu*41Iv+A|k05!2l|a~p9z z3YlVzvoq%wZf4vK$HDUvuN#8i%L*c*rhW}}i`O}`7F$8mw;J2t?fUhkIklux>8Uey zG69O!8;|s6PxX25?_7q6c-L-*GEZk%pmyv`NAZ(&ZtH|f7T%Y#A9k6YnJQp2&tzG) zc83d&FQq8{}6 zy?3pE`kK7Fyj{sUoMtCu#BWR>($xi>v_oVmTzHp-#d)$KP#3q@3xG_Xkc?%a0AX@k z-NT&~yra0(^`aL~uwQyL?;e(;_fUAO$tTr;42Q|iux_olnRY`PHRsY#4UBe&cuGX% z8$4)lYs>ri=YEltZ%sDUS~e@V=3RSUDnQH1->%))0+({(5h8>TfKBw{ofnP($O*E< z@tH`D*61-W&myTd!G6%!C45axrGBw3GDSp^;}bE{E*;fJ0;(^A$_iBDbPt457o^4i?o@ixP z@s{eXPr+);ykZeBs+OR2dj&_l`sr1Cx1LvPS}8oM=(HDNJ?IougDG6!3WbMo*nxr82gloA2KT(U;xN2U=jzEY$LERx zes&EJN|9SxWP#;&4cX_rZ%~tQI(hPB56Uo$M!Sx@)5oP)v3~9Vn@VI)HT3J(eZJD- zG2*w#&hdqCXTMDXQBS>pWxZot!p4%iX1| zx2j1iro>Lc8Oyh2W~`|+vk90*7r{EJBHsSZ^VsZ3zNZLbngR0}FIW7CWt6Mr|JoLS z5GnU~Ys}*vwMcm)tIdkAGMk*|W>!bXZe`X1g8cj%##8%lEWR*5 zq*}*W>iIF>`>Lj__>+g+<8LQ}JHcn#Ylc<`sLty`qv-q+cj&xSU=20Y`v@jcbUPw8YS?zg5W# zn^V3|%+j}`w#af(-No~*)M+#!*Ep&~p3U^39qyV=Y|_m0CuV-WnwwEu-r;?^e%U&~ zs0srl92Gx-y}Fe}B{o^Tqks-YnSJGqQd7X;br z&QyevSlhKdiUAS_v>PL2z8I7~4S4W#JU|GR!2`RT+Pf4^iaQTD)Gg?)=sepyuPcCRyaMOPdvrc7ns-zde+-H6)bYjvznXsuWEFadYuFSdG<1O?o%1>VV0*ms2Q z3Y1i|lsbJMvwA;zl&`S6Va-aZ;S>4|1ai95_To)8E5@p}KH1fXyYDN#)9iC<&E+P? zmg3z_Q3DAwI6K-{!78!Zm5s?-XU?qAFildDi&{FLidBh#if>=uiadBNn%p1lv_d~O zLgNk6SB-t|+*{7sUx%hEwj6zw3k+KmZjUvtvoB^DgQ0#4D<$u#L!a-DI)Z7f_m8CL zDu?NQJjsOMO*4I$Jt7jMvxfrubHRsf0{Hdt=2ywT`QvKcC#K1F`W^cn1_-ntIdY^K z82*K*L@Y{-?!^3EBi+?PRK8I%I2I@^mE2%kFFyX)4NAto9n1PqG<(ZmHj971bpYVC z;M{GFwX{XOWM;)FlwlPa4&xAFxD(s>`P~rzbCE7MscMMcb#=7Xz@lVNNA8{u|J5i{ z?Rt>xe9LYCkh<({yut%4|HM$n`s>FdJQr0Y2?C&gkF)M9f4tYu(gZL>`0T4|#ACE; zu8qyGsYNcc&!Zt0)jBd1^AMH?EWu85uPZa|5`pq(W*Rq+Vp4)+(tY7TM+MhjT z79elA3E*JBd2Yf8hEw4ry^QCDI%`q+}m498BMq~6-(GJ z$p$!k0bM)~L>@a*a0M`~;>DQ=#i@?Aw$S59+{1%yg~oe*G|bXMt6D0nyo~SnZmj6E zwnxb7#1&?hG-<_ZXO$y{Dkc^90Seetk!UlwOR1+C$tr5>a(o?dCf`Va%Ia)}Z^ zZjl0D?M^x)?_^#Zj*DL{x~&2hFd}x&U&T;0SRvW-l6V*Wh2`de>{NJKYAUrjBBXj9 zmzfdmL!HPh!a1*g+Xp6v7uEafCnoWSf$)A++&hqaB!Ro5d@N^f=CP>Zsn1u3ikW31 zatX_pEnDs>h8Z`+B8CinwkplTDsM)}bVvQYCwqFZkoc%IYu4l*p&0yKA}(7qeGv00-L7Wv(t9FqAI;&8Q&dl5SZKnLYd zPYhMRAL8mqDOwcWhmuA3{JXo0ISdF9^)+M^00QwKG;3XMP%@0?V+7e94rLpv-oRv5 z1&;m3BwaTXPQ#!7^7T1a^`h3_P(tCdc9(&rz@tqQTtc7qduT1eK{c_0SncM)K_kwV z8tw(}u;aEOYTWDIN$&|dJT+J-q=!q3Oj2$c<)o|F){Gpl$sIH%(N*Z#!Klad05t@`_sW861M*`K#eu1kE!upBY120$#9 zxMotHY`SLMy4{6}D2#;%4~2z#6N7DK={Cmm&cC6(M4TA`6#%{OHzZtkXVO}#vq3Z#++s7UIsfKhRn{3k zRt`y9cMxER-i0=M=rp^R&udkWQjO#0R+eg6X_R2k?f3kf`w9H!n#}=*+QIIjp-pNs zUwP=gN`OD~i`*ano7eZQ!1@RHyj@X98B}?Er|Lqt2nh+fy1D69YhCs@86uz8Q=4GC zx7}~5Dv>y@iPiM%g7y(RU96K~+pGKT?k_BHMz_8iRy?PTPPCgvN5JKL{@Bb_lvO>Z zR&EsChC8p^GFq2R=W%KGPHQZcIyT$xwZeww5-+wl%Osp_vaL52Mj`MOB{#9RNqr)h{(7}B#ipl5 zxVWfl!cc3uXLC~X#60vR&>ke$}%ghP%OVMZ~j29g8fD2XX&m4fCpj32Q(y* zcEwS?wEVtglMArdZmJ_cuc6Q)8+`1y{fg`sxhxi_y}_6)TBrFlYS?!c2k7XV_c0Ea zxNqFWN4#H?)0C;ERq?LxLFwAUAGqH8q8E@q(GkeW!h*G=RrF-HPys9R`I|nScUUpt z>fn0|6!Hb&VAiT=*(hn+)?QGmn;uQci5~pvy(>8IRKhu{qgLU|uH9NCd;jzwfBa$5 z8S0adq{{|)qUX-OXQx=*#gHSWPr>-8dm-6#&fAQ)zp_8VIIN6rQ__d@FK=%b0MAvY z_X`)WuP$J>I_5osSg_2Sc`iqv&ifw=!T+P7`oDhPVP#@FL4PBbN+g&8(A+x`$|r!} zLeGbo7`m(arBAh5gsVTNJimZ?Z6w0RMvFRNHSg!+`c4=uN)x=+9;=mMOKHc&g`(iG zCt?C1B7T0rd)yP{mWZ}pn|F;-WVF#|XKKx$sM(kjn`c))c*gNoD-cm+Pr{Xf=JmUb z&M;9PGH*k=jT-<{9_p-yulDpMmzIg`Nxbysjf=~>(o$+r?4G>hI5~WW-i4gX%EAI- zIWjQ|l&p87km^gWQPfHxP=uNtnx?dg(H03$X(GU{8^6jr+nbDyCzcwM?KmYr*4Gdj)da-N z%{~2`&Q*=;TG4gCH*uPg-9Nm02C_krz!nP&`glxK^Kkp==IE40S5*4D`f$1GV>0-5 zJrGW6vBtn2v9>c^Ecd8MGig8zF;R5>yB(@NDZf@LVg2sVO#KzPgGWdx4Gz}RT3#N^PUxb{eP{y!UI)Fk`5HY9_*|};({QuGTw48-pSZlBEt3l1v1Q@81zubK|eP~M8>!l3T8wdc|ruO($inm z%BZ`vg!3wziT4g}+CZ_19fWKgSoVXUZMeBXu*SG}h}CWD?x2Ip79;Bp@+oK%2IDNp zYT5g&Xn#k?n~i__B7AlHTT-7xk#IpS0@vvajuHW8Cj_vIJwg6+$AIQFN{Nk*K@Q(F zo!$y6E50*LN7T8*f5P3r3k6clPyl)pTpan8I^X zNtSINR9~Lmmx%R=@E21^XQ67orZxTA^B`m-DlBOW2Lq5%ZwJ_^+vejL5Z**`UMPH& zwncm&LidrQN2!?$EVv1z)_a@7I1Hnkb>4Xn;IxBYo1}D0{P)CNEDI*mH0G#!B(Nj8 z8y;wpL{;xIv?3PyYgM#HqERK^e*k_DL75| zqtBIa8`WLB0oJFifs%;8)bwFiFVh+ie&W(WKVZDf%V`Zz%@sL0%8sDYv#)eVr&ww- z7u|`IcpDl${iz6}%qAg%lmr;LRe;b&1UxE}h0sv|CM=rzW7#@+X7YLH?H&EVuR5u+ zqf)bUrE*2J;o;%S>Z@h~9?3a}Z7FLqJnZM-99wD^TCVWz^_{l1wgEH+Bp@Z;3dSUv;#~U? zJHx{2In*v-I5xVp?U-WE;rio#-z3Tjdvb*_UkUE1#oSt-+6`| zI8P?_Lp`oe{V}oH^AE&FKAmp4zD)4l-&cyl&TBp3`!%5kv1qWVZcAT72MAiLFu38n z0;z)Q8tt=xzGVDoOU!@0|6lj{pIK)_NgR@&o1M`^DUYJQThnL$9gSoY-)u#vGXes|nL5zRp*Z*UKA@&nEAhfkOT$sScx3wQF2{e*H-Ae% z&(g-mCjC`Ne7QPm3xNht7b>Rm=_?=ya3`t7?6=!8xnP|m5_3>KH3JvL#5++10eGL= zy@*b)9aPm83()O(*B31VYD%q2MocxSj8Gyrq=Y zgAR>Jc0{9a4J)gXnvSY!%??S~0|H;zfB8)(>;mQ4|B!YKV`j3XJ0AL+<+xLe(w{^{ zF^PSo`$03VJ)E2FdyoV!V=tgH9$2Fbc-=WS;-t}uT20ai_w~Zu)uG=XG#-#8>6J)w zMxddFdJp%H3f}3C$q*#z)W2n=RuL{9?(Dgl{sLmHHGP<${}g=K^Lvi*TRe}L1IFF; z|9buZ^gcYkeyituWe>Du_UX3I!-szpp~y^sS;=OzgTDRjOhphQ9<|Uth(oADWRf#8 zs+8=E5|ld8#9ESMWY;DG?0zcT-xU_RvGOa6K4W5tvr<)mX}m-S#iPC*QVf#zVSn$Q zRHb9fRuX6yCm4Isgx~Rf35p)ne@)u*e@8hFh8UK#vB8dYr2j;} z;+nT-8P_@pGN@5X_?YyC?GfL9w{N-M&F8`-yQ|iAFr`)uLD55D75bm(xYzU}PV#Vt zDLh$g;BO&M_mLV1HDE6Fu$c%bk^uU|3sYz~G$Dv9i&Tjnr)COOPvA1XLf%J}t%n4& zE;u{$=`WVMM8NWR?cKRnNE@sxYBFwaLgPe9k~U8poiwVjGSSQzM*EQXbdg@tF+=0z z#3D0QTN;c`qMA4>UENtnJZwv7F`1epoQ6Kiu-;%)S|Wo36d71}pqYao_~YKLkQB|@S?mCXuMc@}*pbA3kt% zQ$4*a*{~_wvE2sh#*Kr*^hL6(tFcwGPrdk*KE9rQa8@co@q4Zhx?uEiM@?jab@^ec zdF4}%hMpRj9xC1a{BOJDQ#ix2{Mq3oGabin8`IwM&P0twTBAX}Mwb}AieU+A%qs2U zPrJ5V+aV-WY733c`?^atMZNc@7x5_=~gH&W09o- zS#}5yeJ3|}fTBUPi^*+YI`FH>KXEr8>3ZBNL4UudPj?52#^>Mu{yOFC0>+O=!g$aq z*(Ttjnru=zC$RmFZAI8YutZT6X>`qfToS^KBo^i>r+t0*g(J z_nN2u%Do~gmD}6(Vv{s(>4&2>-Cgm~3T(e`MfA79owMW*@Knv-Tgw$IUGI0_T0*xh zSm~%(Yg;Az39-$eOd8aKaCr1n)SnFwD*dSw^INuSzmHJqNXk7)J3E#G2O_Vh2M0&Q zR$tL+j8M8Nie^8(xZc%=0q~%qjt>BemY&&`|>S!?8}!% zH*kKP<#RXh8Q*%q>XUA!(IWP3k~MRu?(6F~={0Lar$-07l37_Vgu&hsq&)vnkex=_ zPUf{KN4=wSUbLwD_*b96z;1J%Juf~*+%c?6_V`+tG*ECfjOWn~L)A-a4axWK=P&Z( zSC%UZ%rSa@>&=_G8-FWzx^NaJh@w+{iyj*#I zd9?a2I_)Zz-5(Gk{J7?A7G2V5UHMVSr*zb~NaSnRb|G$wn1thzHilP*VzFsBR3?~y6Ns*PGDTb}r=qSj7ZCwczsM||EN zdV4cjwS5lco<1(afx20BO}ZA#Mfd4xm*!?XBna}Yf@<$-l==u5<3t}ttLvARluRTU zR-~#G^P3qrX=7=8bpMe{Eu&IoEM{fOsG!bMJgv)vgH=yH3N2k)6?o4{z)sBI?2Ph> zpUdJ}aFuwrB}MI#KKZlz>&inTAE_n8TREB5D=+08s!wv00vk5%(62SZQMLQy@cN~Y zvD{+B@0o1j!Bs7o^b9M#U6l4Q*LaUtX4!aMR-!_WoK zLeOKI78CL(owKh)!-~bSR!XYtv27zCnW$!GT9g)PS~=>?&9fe8Rw{Jg;31PzDe}fZ z!vXnKNVCcWBD|mZKbf(~0qMO_C8Sq_mNbc5LI{ey3xTqv#6s!M5!X zFrD63%*ww}`BF6`IV z9-Uvjf}nn$cLl{S}( zl#t|;-}UY6-ga*n@`Bw43x8rF$tyL=JY4O}=8p@ntyN?oCXC!Wav;$#!Kkx5l=-pZ zZH+a)SQkgb*tAPOctchig$EMEHH857@fr1bxqME&P%5=BsTT`2uFmHa3eesaaz)QT zEH*V;7;zJc9bfgwAIqJ!^=-N}l0GPEF=Rc+?e)<=>Sqf^ZQSp%sQz19E71@e>U5T%uJaCOjkze<0AE%uGJm?rBn zF&l%5iUF6mySQX+9D5N}Jh|$YzFz(0se=nr+QKTzAgOoEzOHE4oWjov+WAD zDDTWyD3PmbJ&^l6O>lnIy*Do7`{W*iu#B7POB3Wp$&OqU$+`ye+eAb^Xyh0B@pqJZ z9Y?n;xzV!lU1{Oean)prUn9pG#p=5pU!3*;7lG@jymUdFsYseEfLp zi!j~7w=3MPKB&2Sb7ad;3Sl886N6U<^4977b#2~B)e|pg7bPdxKFTv~>$ENk5aE?b zHeM$X!0ZqBCAgM`7beBWtJZ}cm5bHZ_Xw-iP*YwTD>ZV4JvnbJ*oBTka*g57$E$zu z`-@I622*loOwq^|?~Y2a)LKfve|c*whpeK%xUdp;l~FT{2pKAml~**9mH_XExwZDl0#_7?2h} znd#R(@!IGgOG!rd#Ga7|P~=rT%1wPHrYWmA_YQF>Bm*J=F{tBoqk0|dvI7>lKPqZ6 zXu4lSm;6oTcl;2K>Q@{(C1koq=$vXA*Kb`X3st-iDZSS3Hq&gc^)g<@_5TLX`dNS^ z3bw>#qWhmxluqJ3>I&>`us)4`ygc~gP)9JW!QtWIAL1Y>cyeJ$c=#579y!$0JN^?Z zQ=F7j-Qn-2$*_AhZ%HmBo+^e7hj|0mpqMtD?o!E#SS3wY$VjVbo&RnHhXnb-R1FCe z>xOuUMZ|BSU%rdZ)T9m?TDUq2W(&{T~IMtn+KFks}>QB6fXhveWNWM&w46GuF&e_RR^7rlu zv(NUF1f~7xd2*1vA3A+WvR$w%eLvI-9LiW79aosKAUdct`-eTUEjnjcL`lcC+dIAV z`-dGT2geeAZ^f{RAFJ-CqJKU9Wu^1_A>=>UPm=1y)@fOv)I`0nROPinWNTfr=@aWa z6bwE_Q7egLJk;}rJg~Yh`Tdf+WEE~f1@4JY?}9TZ!KnVs?)mY!1Yv^`|0Jh<3QB0c zy0h&TTp{r_Xxok*MK*ixuK&jzDs}oG;Okx^E7qy;5)|PuQ?e?QGi~YdMNdxdpQ0o` zZC>yWjbfPi=2oL@zesX7qJq2c)74xvBBl|3Z<2mpnI0$zK`}0@mk<9Y2~r{L+FJ0P z7K&_Z1NThLPfAQofi%bpeLGmXEVYk3`)(d@t2$=pG{6yyLlh;tysTon@gZ|d#8Hw8t< zX0suTad81XY;0POkVl3PxZ6VDtM#tB4C5D>+4y=9LkGX>9r_zGF6-`MLT;-Re3rsp zv?-eWYC6!sxuR{Q-w6M60cc`9z*E;VeBN(A+)sdZ4^EAPSAoZAM8AuJpfNQlw&5*QD$+D{0j1&{7XEfsUn#0`o@w1 zjM>Pnn%M-&e+>>3LX#&d6eY>wm$V|{k9@;J&YW=JcpE!(S4CH!%=>sL<+J5catDz{ z6{`O@^cwOij>~9uOULwzD&cGK!kaVGYt93HTg@Oq$vESYy~jFPv3&q7o@Bi+%bsYL zNP+>qv<0(aynbJ>B)|3jgO;d-5?4~>k%adq{~!60=FU33G-{x;BFx|s#8{ip{BpkF zs8H4#nwCJWB$CNM=xqTTO+j;>oAKuk2=KjN0Ti3<&Y9&$e<)!6-Yb^~Sb=<*u~FUg zNoW70gPfd&g+-|G6moSHT@j2|Y9u%IAlO9uB>1A7r@tPQafJ*vsBRP&bOG1Jg4dPQ zlqFw@Ee@_;pVVr6m72F!S__x^90_g4qVT{?t*&WT$(d9li-@D1(ggx~TE%jQ^oV;Q=< z;$MSqkb51@gA?ZDUv^P)POQ!y31|-%oRQM4T@D$ShP0XZR> zdJjTAa7~f4oEav~o3g1-gD2%ct^f+kbXk^Kn?4FHJa1OFGR!0J8v@zFJ)#?E zl+1Lmxw9LU9?^4yIu#>X5GNmg^n=>zz}f8Q=%3Xr7I7r#7e`o!kwLnJA{Dt-K?lJ+lT$7& zFtM?J!(D+_bZbjx=B|d?pl=vCvWNYn|FNfg_u%P1?cN!rj0~U%?0yC7z6Db520(iu1anvS(%}H&Fi(9=e}t#o#tb(HqG`MejNPpUMQ^j#ngm z6j7gn{n#CDRZ&4?S4?}Mfj;QRy3q^~+88uiMi2cs3k3GIp1nbW8_S!VX`TitjnE!+ zpBU;WfFykbDf}pA8g$IF5jOf1E)Hv^9(vr}C5t!I&GI*KqmDXG(W+5{ zb~$2iPC9rb8a#2KDkFdHHY5H=Klt~^)Hmb=cP=0W#EI(>`pIjW4Z&m4C|xSPYy%C; z(1fOhIeLIxtZ2uocO>n1tW3$FfdR8kb5qVtFBC{RJ;<6pVd9A?7e4D~O=AJ%a<9!> zz!#kZjg21U%`7Y+^>pO48=cLxX+!Ek+QKxM!!g`VwuNTY$dNYOD^)o~pXHPyVk+)w zdx&e3H+lJbF__tm0vO`^HrPjvk&Be(z|bkfuDPE4_oN9`KzgAi+7!0|abi6OH z>IRONT+Uw2!a}nf5GE59rvwmaH#rWMxwt?J#-TgbaQS$YJZ89kpz$MamoZrk_Z@=K zmVpA!*a~T{y@Q7kn^VhYLFg*c3FJwBxw#rG=>u{N=5Mtfr)&sqqAPx<650U;=9LW4 ze3TkIeJI~?4jyU=`jvGw)animF5>1Mg>AmZxf@DNW|blLZ+r<44aU!d6{J6Ze8fXIcGG|U@T<#agTqZqOVd6mQ!fhd8V+6vQa;1I~fP((h zC295>2#}PjW?!|N#$Yife#mDtXNTR^m3s2ze1=!yICR_9s!eeG0EirbYZje#%-k7> z)S2P4#ZCGOW;-kJfLepdjyX&O$(^@^{bw?MQU#xkp&HDgSb(6>1LCl}xWIo$Q_n_* zXi8mChmyfaGBvWfxk=(cC z?T&t3P~1$B14Qb~D~B>gyz|+EW+a@5idh;me&oqX*?+Y=)D@G1?SUqCOm}M-BbZ}QMjLkLN7KhhTy3baI%qC z0&HTTJlt7$shqT1r+wvI`;|(ytll@vgpR?N+13fzYAS$Wa5)`=Gf?CXX*^|7w38lz18-W3|$uI9~L(i1bnD-+@!a~Y-%<~qxdM=t}7W=(ld{MMbr54Pq(kGT5w zCi{zWa+%1M7O3e8XfDI<&zJVIWBT9#@O%M*0n*fv(Vv@}h{^F5&NR-%;|-&hJ>A3=a*Wkh)Jr1epNM0B64EqMfDUQQJ@o zf)bgkxftSs{NDvxA$P$N~!3(|wn7B5mh@j}OS@BE+$wJVBf$V;4!!yhj!+S>aCe za^RBYu`E7$7lgA7$#d~oS`cxflKWdRaEQEGaPQMhJ(?lnVMDV8Do2+yu1&52I+(79 z4RGh5jkNYUt<%d#0YTTp0Rl!H*}{9PqaC`SJ71S$4wuo4KN)DbxuL3U20ki@a{lti zx}B>FX?mH`{8$q^Bm+H^Z178S`}#?T!RACG6p^86YQtk`M|+O~cI*RX_w1nuX0#1j{#w59ZRJC zBPWz9{HBxyS}4oADE+Phm^S+`LVRO10*R7-P)sU0EPa#7@tEm^HMui3XDqA#!dNTc z6%0TSiA5qVRj*h6tZk9wT9;zZsbLa#z}9st1vOi8zA5Y5R{*LPMyw(eu$-z>qp|r$ z%v3ar$^44R5T8=BsQ$z-A`JUNgxuLp@3Y6@C@7T6&+ukjFiCL8Q8yTqgP6g|c4DSZDf16IRDwy35}E^R z8~mQ$NX=H0s(YE4nOSAa%F9sKDe~WwP}Pfh1Ml3gMvXh1>2U^Y=xsK%gz;_{Y3!oT z0V(;G=@6uno9-Cx#(ERSpe>kpA+7#Cr)l}*XH26J7@9=o7c(|%!y%<2>~D`c#MpES zG%4nvOhzFrqNp%$%v7&;#Bi4GV1IjG43CLIHqY-Ry(n|YTU(Q!n?SM)Jn`~!Z>KmR zn;_AJF>~N9xK9)dG;NRu*ATFflcRA;G{{b+w&T@;l|_3Oe4}Kr^MB!$3M}n;?byB$mPj)nX=HnRvZp4FT(etMHZx?UNN^DmH!0SQ zaT?<7kM(w*J8J{abCjP;+i=Bk%mt+(QYA2is+-Sy3V-!yq;Vxri>?=8@K96oq&V-f zPaoYc?>h(i7T+W)!6T5S6XC2Z<)Zv*ClQ=qlyAjY5j4=A`mQ$^N!zuECfUfz5oK(a zIgpQBgy;j?wkKA3Om}(Lc~o_kjjl74Z?XH2hCo}Gq}Zhw1G%PL353%WU9dg%wVNRW#-gYLRqM3 zbcnekKWtGpRqYgcnZL#mC{|+eXlRRX{d;U6zci@{Sj=2#AI@UWUH?fj1A>^YJXvW*Th#ChHWcoAcy3No-y@FuJ6axbU zwx)kRf}sUInA|zbq)M2u3F95eO-<{SFcMAlxPJXQW!K1_4B}Yntf`iUN_ox&+>|h8 zdj;mrPW3b0r?9!^K~1dp=H`#gv6fK6v>^EuPRJdCW|sHbLPoeeM%t0EnZSU4)l4g| z%pCyWjbqyZrRbKTT4*7UF--5DBrIQoDF2X7!x(7PBW}$3Ow8aJKnJ3le|ie{h=WXe zR}t+8LO5r_%adt#z-m?7uOEM*A!@uZLiQuR$!YuxUqL*KY4FyigXP!Rb;~) zk-(TbN5nBJ(TsTTJ7a(ajp_j~BFastFrC9<3%D55qF#yzgqeV`ylqXsCVZLN_)S!1cC>p`;tue5oqH1o<#9A;LM$az#t zw-8fA?n;`q3KKqdR5P-<3N_k^=#-P^8f$< literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_12.png b/labworks/LW2/images/picture1_12.png new file mode 100644 index 0000000000000000000000000000000000000000..7e4ffed387471f286f12ff8086574f346ed029d1 GIT binary patch literal 29605 zcmeFaXIPf!wl(@1ml}J}04gF0b`TKhT@7eN#YV3R(z|q#lGspM6akTDL!?XZV3eXF zpdh^|2uKr=-oG*5WUaIJ+H0@9_c`Y~-}$j}UAZjC^FGi0-1nSgjydMw+Hs|WE0=9p z#$Yg39{O4SB!jVtkHPq+?%T!q8C8Dp#?dqOHWt?Q7N+_? zI2xX_Gqtu7;uqY_zkAmYCieC=c9H@DmVf&f{MP4;1#X>FKZmO!LVaFB)?DDIjq0M#aX2$TkgyFU-qwC$bIvNAMUn$UKhWZv24|Qo2IH*m9#|` z=>fV++%r|rCm3io#yTV>q+kCjCc#e2cJKFZuP;>HwMty&=`Sa`cK+p@yT`{aVZrL9 zTh4Buybxh57m+&N*q0}z5mqH&J{YJNUEPDbVK9F73M=7f{_d{yy{+_{-*)UjOuznc z;!+U(y7&IKd<*car#y@1H}n_RxYPbZzpha*SxUcdx&CGi{rdCwxWHbS^V0*F9ZTdU z_N`dA`v*yf-tS|Sc~Z;6r81Mt7BW1y?ZY=&q~H7Ls?o36W&FAEjgFlQ^D3*UDK&&_sx3^?Z3WR=TT8?TY7Ao9+EL&~wgcK$o=_9Ty4^Zv{>ciS?)%%UdiLY?TT zdr`R)?cTgI*)wzFg?inx8+u(&e|UD;cD%)@G_!DaK>W+og$B4I|K{fAPgPNe`;$vI z2^zh=J<-%Q$F_CrR;{76492Uqc(QB9Po7-EtCr|9-sU0qxp00?ye~fWzFwjG(3_uD zi#VEUXrvk)_2HBfy?*^VH~0O6{+n#SzT95A+WpH#@#+55j{ek2znPht1BvI#bQ~KD zH5OGL{k=ZfK&WnyZF^A(zj5eoDJQG0JJVwWP4%71HQUFsm7J-WX{_+yH5`c^~NQYq!^azS3f$Me6I7Ab9cB?dt&bA>jEB=Wy$k% z)200lsT}D>3=@7$F~3PVklInkQThhU7BR*M6S&VU95&J>-`f!Dmz?D^;nx-DO z?Pizm@S)j34>_##{f7^?6yTmpy;wHicbgv57=k=(}O-lS`6W zxPVYnQ@S~OUtLmVe_Pd?6xqThj?K2E6SbKItOg}M*L0j((yN9JZgSaDfhSSVu{Vv^ z&6iY?o&4yG{o%Hn@l@5uRUF%2LPEl}WW8}wlKW`f>jDLDw&Lfj<(i!p4DVS48Orx0 zeAw%Vow;_k^q0L|v)Gb-ulu$~ICHb{X}()$s30%z?(RM_RafY@T6W@x#JsPscovp< zc_m%wt;?TLup_WmpOgMjwl8^{RQ7 zn3W|yEV;c@FZl;8`mA`JTv2ZBsnI_6w%N~425;`}V_``)t$sAo!8KoRlD-nBjX&%C zuglsLY9v10z1Uu~_Sow@kCC?rIZ}ifCSxzPqhhJX{OcN8Z#_8 zT5_HI7p@Zjp+daFhu$^sYjJ}!4&EpkqZEc&~##@F)lRRV`TV1+8 zy^A?z|LM(-v}6ws_+G!d>HLnW9{a#6M|^gyRQ8yvjx6aa5ADnC zmz=IEoMUcEthS2e*ib1~X(^Y-Mt|wAKOech`^QZezWly!_vyXqZZ-Bghl6%q+j=;t zNN#?z^0v6Gewh1Ik8P#Q_`B|?vr)3rxjmqx?hPZ{C?Y!8wWu{@F z=c6Myn0VZVz(tD|`KlkPStUF1o&w!wZvEbOF@nYwVP0P1y^kO0`^$_yev>g1|JKWk z?$LItC))T|U)2Q7V)lYBm+KwsbPUSxhzvE`RT?IGR6RU2^x-O33F1X~jb*Hwj)RJk z(MSH={xwUuF4&}5x5;)@gmYwPXJZ%90ZblmbuGm%+L)C0RZ(8KkjG9XPT*LitW3d3 zlt6K;N*p&gx0smND#=fGKeZJi=XI4dXWMm5c1QZJXpsJFWyM3xJ zDQR~{s#c~IbBn!waPZ;D81)Pbjn^SU+glNGc@{npG$<)Dj&xJ)8|2~cP3yIHt5t8s z#$u0-bU)wqcHux{y7%uFmmF*>aNE3n`*!-$Z9#(r7L92;buSDRuiJC>XPkOo*17op z?CuELu?FMP-kLa}O7(thNS{qI=e-k?3R>`8AsY9uZanvMKaLj*%L#S$b)_5aj!4f< zbg-O|Y)aXADF~UMBJVTy{$|y080C96Fi!Jw+7_|&c>R1(eyZxQKthI&MyS`%atO>K zW0N?F$|fGwN5yImuUu(}Cl0AB?C_H^vzVTn9*jl~y>04&SRdVny|K(v)VejSpzDr# z6~bMJ@E zVt<#Aztra}p6Tf?&sPgsPL1@WMg^-6PK^)h4MYyf%?6-uco-3 z-{RP0C_5h;m)Q6yay6seHzbI$x1HV*MXcA;$kgJa?@p!4dVKx(GTFYTD!xh2wwU#8 zx_O;sO_oSvR{M2zL_&G_euU{E|~n zt!fl<)f^&!2{yQHkGig|u8fYtz}&dUycnB+?nV}t?g&>aZI9Vel?>h;JG`bp=L%d| z&9&*6+^qfU2pK6R=IFe2YL8{t>yUuS@J){OXKddpu&YdG>*PB63RQ?d*p#$IYE+{G z+lm8u&fm++JTZG4MSY&8fxO|0p@|OvQpACc*7>8V(qr`oL)aw6KVIFK!m5^HnTO*( z)ap8@Am6j1`D@{zm)DKW2M?6`ankWjb{=YX1~_UztT%PCcGkLY@E4%7UBfXw_A7@kuroKlH;nu7b45}5mPRjw%1x?nw^m~CG|X33?c zYt3eS0+b|UUOhdhrI~W}P?v`9<;$0c%Jk+^O2!B#M$Yyd3!Z)Po0k`*KJ_1qcyjZl zx%IDdI+}Q1&(w9RnZO}0MS$UCVL@is3-g$p6v-HTbML2_kK5(0op^8nD^Qt;^VP{- zFY!66<36GRt6wH!kCOCI(UDwikW{66of$Km2&rg0wK#-~ca-`c>la_-`RG|M*5JW9 zQ496UD&AV@W~>O0L+MFwd~4M|7fgR1!X7QXwmqW$MNMrayRP$(gck3QxLi%Yyc;KN zD8br|cX%$uI3i|LsCN%<`aNmv!es0vJWXR=K~PPq_-cudzkR~p%F9d7&kVEr1$xN7 z7pjzAJ6JGnC8Me(*Be*zGGM#0uKxxRo;a0!B#jrZ`zq)AZ<;*6vT`W6aAxap!Hn65 z&Onc`uC}?cOp0z7>r~Yc>Ag=KlM%r?6}a$W`OpKd*~d5HzVUoid4vGSvSrH%S~lKa zbb>#Bq$;aFrL4E`@%b-}=1GRSIE%l(&2bp;-~@hq&Jz}?6m7mDWtI4Q&jj9-O^7v{ zho|)Br_=xtBpf6?CckzP_B-O$Kp9@z*(MJlod7JpVPSh{+l^?bmhUPb@ zQQqu0;J0zTjO*Czym_GZ_KT}!Uo=-_o4mb0f$hAGz}8Hi$E=z`pvGX(E{&TmEr4Y4 z6+M6(U85zw90sGkH8&z7^(?2iGzV$AcaC>QdboQV&GYFMNUzmAAV2eAwTIVcf9XAd zgx{Oj#$VI2%HC>~-5F%klH;&qgYb@3ax-7n3F^ylba;2dmu*AMLElafN2F2paPu9m ziTXDK3q@uSauUZh;;?6!33Zcz4Y0ovr>1C{hW1t+ z43kaGn^ygasI78(9=#rmmYdzF>pt1(JUd!v(B?Mo>s94x_3rTrLJY#^(nq5$7DRYG z{_aK1$Ke6hBwZbYX}r3c{3qu#@WK*48=&@JZCwp`sf*AxF*rXrxU6zPOPcAa*I^Pu z?kEG8*c>_8w#hQnaw?0ets+~nGyOu%Qe+G0leRg{%K-}+_Yl9GU9vLPXtvjI`Wk?J_I zW2dT<4N714Ay^wZRCG5v0FdaKn|<4Pu@;-K?uJryUtVD38O=v`@BUzw_2G(on#qYH zp`v_*#>H{qd0tD;Vtv~Qy8#V5X=$6~*Qw7LkH5dT+Ujj3|I5#au*-h$WjVO<#D~d@ z$hI+r&1K!ekx>onu6uiT5VV%o%Rp2fLXF8s;Nw8Ta>gAFY_8wLk&FB}tn&ni-5b+P zhp>l5^%X{=XA+u*yDKYu!?NwVjdU}Cb`M<&LhJ~sTh7iOKR!47^=rG=W0>e|C!FmzxWAIMOvrDRqiJ`X)+daU_wBnCOVu-9m%b9@AP;8NNfq-Y*JDu1qwD z)QWht65_+XiR~F&ja3l;_}fn@jjz}erjUsY@K&1g#%|ucxlYQ_g6@iiJQL-$`CfLt4d4^LsswGnKNh zFHVWdq$F=|Z*xmIR4GSZj67Q|P}G-H*m^oWFgQ4v{rT0^m3ex2=~1E%`9V{vTE3m^ z5$Az@;_|NKnDv|UpK=fCl%4Khiz4M5g(eM4EVV`8tOak|bnAF~gzM*PURB>s0Im2V z6`6+CEnx6nrtKL2z+YB!mCVSS*VB=6BhkLyW54~&^8~yDx;b~#G^QEnLKQl z8v&=L)aJ2f!iqK;+S(ffwjF(ymt?shqLR05?%vf+u@3uUr-ZGVvnEhmN4j_nmy6L2 zWHxj!+rBuFKh2fKQ)XgsUQHln%20)phN{68RWt9hVgB|{IexMaZ9TA2m zh9l>-Kh)!$uE`z9(9(7rtznHA($GC|;zYB3_0f_@i#M zwAGACUfkMwsvU{eAGK&qW2HODo(|v*p8~gORhPpq0A3@5ZF1a-&!1oAau<&?-+=vR zv@a}y)77wY)MrO{jJVmm$CBamodO;b!_svQeYM4aXZrw{eCZDVfGHPH;k9jx zT*=_m=p&l!?zYVbe7t^IC9!2~y|zndAgk5d1jR|4EgS<)nf?TVwN#9CkU04%6c+bH zM{c5{xn9Vq2wcx5J)k9nU>(P66u}X9)XuQIfB*Z%OjF-TCv47xgRS`;*k9KdEoUo2 zBxJ!h_P1)uF^mXyezR|h%58-lWVI4nFeJVUMCYK&4W~ph(%&FN^;!LytDN`28wBy| zY_QH7I&fj)!&Q-5T$`(Cwa3Ks2_&X3XEE94l z+vwD6`!-Q0m-gA~J0iSeDBRXb+M56)Z?)sYJtf&Jcgg?=0jVQ}Gay&IGdgTdUu}Xn zF$0TNZ`zpKpK`b#1R8z5R}Vv7BlXK34_p)L`bb-x#8!h+ior^U7D=bi+T-4HVJQ91PUT{mQzW}7-sRlAd$)G#fbWJt-CRdYU$;Q(w&Q?Q zg;7n&f0p6km14f;A)-I>m+XBU@4>Od1^g1?R=Ud)nJ;1RFm~p>8ST zVYLx)n@%9jN`G0hX`PU9g^yQN!{LLR4$7O=(nsg|3g>uR5u3A+7CLZY*SyKDP%4N_ z>JoMO5q1SF>YorFdAa5xN43XnokuZB<&LgUYd^pq*{;e+E`m7rk~$qOZc`)Iq9e}p z5a&qGe*|^9?9`_R>Zs?^tXd>9+T5q9O5f=G{ujXu6JKas8L>p}*&c3xa+ms(A0jS% zeK}DoH^-7xICp+#x^3Q%l~+|>ULK{FL1v4iH^EjxRGtJ8d_~*_UE917e73uf=e89e z7Rdje!fU)%W@4>*%pteBbu7t%%q4WUSScS01xRcjMJQW05K%*17|x46?$n=-^Z}oB zEI(aY5#t#3r6OFals74FP2ps@bvt&7FA5teyprUj5!RE0r|dY~b#+_W1Wwz1ym9b= z|0Wsz-+x^M+|hyRGXBYFcE+0v5396>#e|3$_dIX(<0ksef1grUM7X&dvt#GZYdDs| zf3WDW$z@C)ej8;DFbW2xoK8MrVRyPuF5^obL9jW10K$>Gfb%SYJ@W(@T zT!V3{3D;ZmU5(FW-1(L-RoU^dGuX}4ReXTLT$7WNkW??xMNA zQ`nrUL4cGJe)^anZd?jlX@WCGrL20Ul}^C73#xGiHnx(3TyE$>VEs(TzJC2m57_qY!*l861==b-ZKLvatBEY`CUhv#GX^Fe{Zk6ZhWS=v{R^86R z@+-AUJkQ~i&*EqzlyT4*0QV*0D50?vuMbI@Sl!D(E5YA7zKuB*Jweb2|Crfj@jSQX z)XLMu?gMjwYD_l|Sh}lW4CJIeC>Wx@v$C@Oc|ylDoCB)i5Ew`M-EoccX?E2zbAJbV?WWYMAR;oq}F#hF)vRiwk7YE*t5 zp=UFIQ#Kv&^ltxkg51lNFOQSatrnzv+Tj1@W>GH~-OKB5v#?kfOd4$jMomV|C5|Gu zgQD@+j5mMI4s-z;pD0kH>G)vtCZ&KB#KYn&+YWAS{a3eko={eP_kxvp&>cvnp? zYUriXb$k6vgr)X?G zs$JWvL)+0=05r-&m>wd2gE&!Y1azP@Nf`R;(&en=S%fRym0ilmQ6^fDFUiq^{hMy4 z^0B-7AW!rVms2AMKBAE?yWxgT6L4kHGE|aI{Jz@#jd(Gw?wivazV11-E$!jU^>XePMn1jW3@DvCfdt=D--)j=j#tvFAxIPn#)XB& zw#A{Y_-khwM>aQoxi`RAvuaB?IBVN-k-8#)!|&Ae+#F{5jpgFrb+H#tC`1|S2RSvG zMi+ni@SNj`B7IZFr8hUX?F7^7PBi-C6A#);IIMjDK#Kv=_3o9gJtlp^fa~Jom1~$y z$}PXWxp_bYJf`Awi61A2L8)KDXfu%?N;0GG6sHjvWR$75yVqa{J^>GFJI>D@4T?;pAnlz)Eo zI^jWPhmTSeI1V3b5)C1jVlW^aBTwNvD`a+*P@mGfX}j=)MGmFqc@1eYI%f zM!KWNN0Dw$n_IT#NdTu7r~~S(Sik4tD^Ve%*Irm-m3lF3S7(69xPi>ak9Qz2?HN={ z&}3y{DK0KXHqkaXir*mrJwUC7>L4ZWW=XJ8w9vezqJx+rxIOw3a4F7XO?_wD4nq$= z^XcIgN5lVP#&O6_+{U3<0Y3D~iuG%VA0Ptqr`0mwFI>FhamoM)g$Dp-&kBD1^;h*Q zn=|RN$Ivn12dSVqjr{-81hl+wdOFYs!Vi<#!~^U~+@=9)qosap+BzbPM*HeYM|!G> z+VIs;@)kCHb*qGbLB>*p@Sq~+=&gdSriXl-G;elEw$>$R1v@n1j)>e71kzDQ?5A3m zn#j&zyyI5#_n9GPvKkpDBIW?NauROGZrD)S0`PkQ9k{n(D@>3D^53QMJ*@6g&p+=# zYzM-;L2xxUWi&*7b^sLTfDOFm`_RZb60&EjpG4Q~7v<%a{parf{&)FRczj6Lal4)9 z9Sf5N5bo4t+05PUxp0-2ny$;%M7;BfmO*#57|Szf&g{}md;E;rmK*RbxD#)X6GiQHa3{q$?<_1VC^7vaWL$|g=H_k(qwKxePndHf#dA=4yxHz;p~t*gB^L@R-&9jM zkNEzeiIhdx=!BSTJh~@MJI~n`{ToTPUFzRa)F*0+?t|Jk=;=nv6+Rm%C+dRI1b@Lq z`vlMDBgbZEse_=7zb_T2RbbK7ao1B1{A9L%~`fXh4a&eg4n}5cz9yJ zHawsk7S<{63JFTv$V`w`tm#2~S{XI7BurpcJv={?DgaEa)f0vatprPKP^aVM3p|XB z%1!vQO+ z&#L2M2y@gG-j+5qV<#*(h;E7>aSy1N*?~FH^@ct{{OgO&21FTwOx{-F&sA9CKzS=o zd4Jh~bMJpyQi3?ak?W%f40%~AD()mwIZB`A1FV5OS~4@WTGqaY0=6kc%DS~*;jnr< z6ox*RifcSlbFzN%b-vgrO1i+;XTL%3ejuZXpFii*eQFpH8TLntu~>A^aI;31&Ao1} zTB<=+7C$DQLwfRKKzi%1GXFNeXJ#cXTrIsDmCFg!d0?dVEFZ>6YxE@WQjqV%oZSh@ zhEmn%w21T%v#&aYW*~aWMDOO!P4x|ZEfXkpDx7Y~LMzlY`YF%}xk`J6N zGt#v}L%LNCLKeo|tt^_NH!a;<9Yk?7^#Nglbh#uXd<&mk$h2zVkK_MJ;19W$86Mmb$m~s1lG($9B2NLjVuxq0n19-;=49q|3rWNv`&= z2VKx&eP!CiLz3WiJMNe#USoc|G5x>_h7t=f?_~sYl6&fBaCJ zq{sEQ`iL1%1yQB^5U8jStrV```6@8keRisZ|LUbiTr6HYdru=uI%bhXxBatEt*_2r zyBZvJCJz)TC--%D_`#`YC1P;pubx6qr>+&~or_I@9LFWY{qEntPaquKLHY5|EgZR9 z=)RyC6a5Y4kOE3mDteO7kM^o3>nj)pE63SOa#9l$h0j(=ZA*R%&S><#MLsLxXWlRb zXe%Eh9evE7ggHWN9O_`79ypkL%-|y#vD_jJi;-Fb zZXd0~y;8}97o^J6s_lI+^nO46qyIVFBXJx4`)9A~zgEZn>jM98Eh5r!*zPm?Nk&FR z^(T-NJ{u+W5FxsuG6bLl*khR%FjwY@VtQ|TGYBlB+gAdS0w-Z(f>>zg7)*TmK*jfl z$})g>P_Jh*(1WymaGj2Ur$xF||2G*$;H`B(%mT$c04L9c?9}2PaDlWDD3c>cnm*z* zuP{>euxg_AdKRJ~6Ovo*h?w6;W9$T!h0}wD9y18J{`q5#aj!BI6ciBTZ@CnrG3n*C zgP-3IyZd~sw8pE%xNKdne?+Pf=nL*sj6(6Uu(s+wk??4Wp93q!9f20NSyMUS3_wQy zI&quRbfOaxM{mozohL@`ZJb(?;(!3C*(|i*cn2cUgn`WGTYO z+uyOUsA=0Otk@(i?ueq6BAK>Bjfx;tWX#UwfFv!Z=PT?r7ZAPj@QK>!KE6;;jHNX`4GUMUOI$t?D|hV7c|9M&~<)Tj$QuRXy7gYuZpt= zs=$);I^CwdO#Xv08g)pvnkl?BDfqvm)Wrw z=vVWGKi$@#f1=Tx<>F!m6s7frfd{q{X7IG!dFaDS(N$+NKB}8lKl(I0)puiRq}nSi zY@3ISSz^~ZmJ=J^aemJdx=Kdbq@kWt=5J9BecWBIuf6MUNG?mQJWvrPF~8JS^JLcB zTS-?X%{f^vZpi(%zV~k6BuIe%2WN{U9^xa$iTfo{I zinGSN^Ri6_qi;(yWNYR78nsWZu`Ul;>$+myoBGYsZ_!!?vG+ii2@o>@F^4&*F;|)TALB}|(i)5!ia{x*x9nm@3-hCwC)Jg4)^AXY#WA%o?CHzr; zUg+eZLq*Nm^GmmuUA@JtX4H1f-MuKn^+12Nu|=z8rt?5*rT&{=mK^A7Zho}>(YtQJ z4@Xji5H}|SwwJa-4sjzCx@ty~7m3mD%33t9L+A)JRw@`)Dw-N?7_ZKEH5HdQy?5I~ zADMBVdfUOdc`MkVCSgWl@*}zR&&3zM@A*@qN+9ijSx4df4BX z{=saC=eGR>B#s9fmc{C=*scX+)1PDBdHURV%VtSOi>$^4cdwC{oWZAtWjVc%`K{V{ z;?wSp8GI|b%TJ zWbDoVj;>W+TH?zxn6EafFU}!)w(Z!yeKp=6Mn0X1GGo*)rrX|I4TgHu`-4Smn427W zpfYynatAiV+cWMu(u@8fTXs6WS1Skdg988BggCtw(LY_i635A?*QYPvwT-G~fs_xI zKOBV1=Q^qgTuJRqWP85AbK3!WTni4c1Q#aolFwCyY&&-54DRoHHq8}F7V{U0yoG8QbCuAp^^o5M0H|d4$&{@$Pa4c4Lg>g?+|FmgcqJ7X= z72HCXC>C;WDorGK2Av)5s%pxN(_CRZ+S@-3w5h*aW9)o%_^vAp85SaRBf5I#pSI%FjwC|T<8;0j%dJxY?7Nfn_Q@51~Tsd{}rVf`OZp*#v<0jWz z6_5YIs4t=Ae)Ih8|4g58XDdC3MS@BkR-^m*>b{J1N`>yYhw5y*=e4UDzwO?CSdo==Qtdp$ z^UlNS8i6arFSj?02ZU=r zXue_Da^8Z$W{npR<{#^^FFMGjvT9q~d0zd76s+o-dsD?Wn$zaujJ-$id~6G%tVm2U zILz%#77P5x3>2O|kPPIP3=^L?@$#7a8l+R-x!LJbs*%K@am_qYvozD>#6$ErW^Znd z68hFGAXrVXD4xH0*AA~wRSHj`KCXOpl!fcUal9=FJMP-V@`A`jojBbU(P{$NI}D3^ zU|@-QW=d@LE#dqg1?Y9C5=*JK=nOUCeN^!(5yPYo0b{HWE$Wco{HUIwY1Km_7-pbA z@Ie>bl|ygeHv>854}%5#eIY5cMAJ)IQpaxk{(Y~>;lr7b@tkta(iqdlJ-y2u?V|&f zg(H1_EPmsW&)LRBtE48Tmt*wB{N}yRe+(5nB_Nh}+laoy&~vW2-Q3(HMY;{HjHC`j zm_^C>-CQY8>a!Pk)S-!wFKuVOe7KQ&&amjd0?Tstpt($o>6z)RhZU{w#l9@@jmlJa z8#yuHfcwf>X5^46S~l2ZB{jcf0b{~Hkk=sBsrA~sn_F3bdbL_Ees+-8@Z32b?9uKB z+CTLr1cY4(=6QJm->5bjmH4a|ge+v)G<86!2o406eQlq%jKRL_aDJgv;u|FBQu7e5N+8Md+cks*I$Na|L8pa z4J0?rrP}QYgj5xR$W8)kB&Mv%FbCyJ;|79IfV?hfo9Pm>o$L%Qy|3WSlU@krMmyM+ zq%@MLzlEA)YG*-IL!QJ})g-?>R$j%-&a%zcov&VKC380h4e&OpCdA6TkH2^m)#qco z?y7{t!8>}Zwu)M0>RcXI(8(#f!mo2b%iv&TbAg+5G${k6TNeT0HMAANx4fmCi`C7g_<@cL-fAO`&%XjnTVLr6oavU_A0-&GY(O}>|@%X2!^+S&za2pTiA2wDR z>t*FU74xayGnnD~`?wUd5U6S{b!`ZL-C$C6ual5EjZzq(vqojgh9)*PHq|>PNRUY_ zvJ^M))gL=MRT?AFv)i@gsLQpilIG^Bt1aXG8m>(@Z&rDxW^`KzT@DKstE<-mRPw?w z(!@yhkYiT3tvFSR_)Xy>@$;&3@)^h+Ws~tkGI6 zjsZ!NzjQ9F$RAJ4wgdo6F%(%6+G%WK)u?Ref%W8j-+bn3@5S=3(;00AX)+88-X8m& z`MJQ=Tg!BfhYRft8`G}UyN$mR+CDv=MT<+Yf za%HKJH$NHRh}jMmvzPjN%ydxmN_ytY^JFK>-&y(8l$7K%t)iNAU2B>%9&XW}{Mz`u zJcTdR)9%BwD!x!jtYEB>WspZ(La66j&;Gz$;NJBFZ|z#XQ!V~QL8KpNTwava)F`jp zJCLjwlmce7^hK9P919gqs44(=Egk zXID`;r{WrpRj3sXu)E6nmoNsOf~{>4Dp4dtm+kjgd4IqS23q%Q+I@FqeNBvJ3UknO5m?9;p_KqeJ#EUP7BN>iyxJBl}*L zd{;FYyA-WVLSvq63a=Q4f)o|(2Q+gAvW@8)Ra&Dd`3i0wC3mKIckT@D$#%9a>TgJ| z(_piy&A2(WO6ptj1sfW_b|U`^S?jj2J#R1!2D<8b7jvd>3FB^Yz{b6HHxv~Rk$QqG zpN1UG%CAHMeo!raoswv!JU=or zAc%|0N;NrjwlROgcVg1h4x%KhP^E+M+8WctVr9DQtTnA|RZ&q|8F=2xwq3h+h5sHB zs+AeJaPKLMR7(Ezb=dnu-mD{T4z~sHApLwD!}Ah`NktAvap&0YY;kPM@5%tsh*fEj z@vwV)-)kj@*0z zz4B(wW4Rb*NQI&>U{=#C8t$i_pVOrg+BsgsW^+LP!k9+SSglsNsAWsK`HH?bKWgeY z=@fgW#%jH5N_+WvYC#H+KY&`^ygRL;X>_cyl2xJG^BP>7Y6_E$xVXFfUsuuOgsRZZ zlVw2)b18-_TyDy)2|Bs8b2H`7_Al6e{B4RMU{^o_(gTo!K`Fgl#)gnLYkn^Hy1;mT zP9*ba^yb?57?I{90-E24Lg1rWH@2d}tLpu|T^AmgV{pa8J7*F9-JZkIo7r~JQ!03; z3~m=l684&z;cLnL+?)FicFQ4?rNRO+%02pP!zBafB4^Dkc=-J=8BjU|QXk_ss(3w! z3+kDPW0iUZdG?_~(PJ4pIqx=E1zGN2ZlWD3rdGJF;#DBPVWi$DUyIu`A$GZi`7e__9=-$@78Iq2>S{xgq#xfw-X1C(kRNio<_7VRA&is*nn{O4rEb&$YoOsakZ+ zEcKjW&)DbO^vv?g$~m@C#{sj!)i;eAQeI`+7mlhH%}h3ogRbte=&xK7kUMBa(aGco zT&<+Gz)il;Jxa^+)i)IuR;Mbrz1L2UwFh<9*yPxIOD9X?`0?{cpCml|YhC2cZrpaP zDFbg6@ZovQYG`awa+oOguCYnf)0=MJZb2r-zm5f4rft$H?uDe^0Pnw0*iAtlWk13wR zv*YI0P00q1AB^_x>#-ac_E1p3AqSpz&{`3F_b$qXWy|?c*f5rEPy5SV;rIR3(e`oW zS5^jIEbp~CrI&nvY_2wbXN&B_-LVW#$+Or|#w)kA-4UUS{Jw-PV%I}=4Zz_ttQ?(AsAlwc#R_*0&@)QcSNqutsX~P>TBa3aIO`ew3%uGbI7qUU6 z(tr)~#-=gDx85|mDnV31VScH&`T4mnK-aS1y4JSFbe8!!rykYNv4PY=g?xj9nQUrX z!~G^c24I_Lq-;TLoKAa3$C0@(X?R17n?DK&+;J)ljbV2vjXcVt{Ww@4WQwknU>s+a04CgCT-u z-riK z`r?K^c5ZT2r(;#mjmO%7?IT|qfsJ?F`!F8tS-FBY0CYlr;Ytqfu5#WMDuUdyCMU-S znt~%z?M;hZ2UQ{@CWlJXJ#<5A6E;tcCt;;hDuD+dFTn-t*JNk2NPSk%sd=>P{p&8a z(Mnlfop+D6q0Alb#%VDL4`we-x8lsk!E-rt;=GpYq((p|`}3FO5|bq! zaYtH$R4XrR&Bahq%V&)*CuWRkAwWFV|055A|GgJ5&EL8mjWwvt&=Je*eO`xIa2ny0 zm%o4>WNT~zJ&0%58SnjNWM}{(#Y~^x{PhJ37b{E7L8V!OISeEd9vXd9ZmNVhjI=#B z0s_{e!fCvDlKJgMM&8z|k40D4Y|?^u_6P=+w<(2X)wtm;fLro5CR*sfaALsM|Kl=R zsF;K(M)k(w#N#HtyiD>%why8NuGz%9To}`A=^|Xrk4W3C#j5$Jx@Rhu+KY@IxHERA z5kPC%!2C{OFTQ1b(MLm7D-G$(j9V$^5$pf$2X2r_(+1AbwksF$)gh%7`6A?-k2ZV|tSzUFzU;r?ak3=*QZW8Tac6M+)cN9nO|RQyQ)U~h?Pd0H4G z8(~lw3Z8!I$sFz;XcQT1^Oz@?i+)GS{w5OEV^nnmi~@W~WlqifpQEcuvoO(f%p*sI zo%wXaTw2oA=cpuVzqY*utOW+5!<7!o(+tTb(jGTMP&4#es1k+hnHdZjdSRN7sboHq zOL7yMX)JOo7!D_mw2U^j@)>V7TAVP+hH!EndLwAUZc9x9`+%9bzSk?toZ8&PDnM0; z59SR+7{EfUQ@StoC9*!<_om(e^oUw=YJc1whnBtT1c|(C zK7ppu$q(vyvSy6=Q$v8f&I!Qzs%&nIB3E#13tolVll*k?H+wU7q~(E7;0{!*G5^tFDIc~92S$FaFZ5}(T_=5o zM&vlu;$#=m<%W)VpYmqrH-5o4`gmb?jH=4(EPO+Qj5G!#=>Y<;j!^(&{z8PZzzC(r1=fx1{qQx8~|Pb58b5 zh3#qh7H#x|%CrlZJk-Z?+Co=zfW~tin=F|IE2O!nzGh%I^D{xDs5Q!gTq6yhTOji; z`JVk7)1X2qCUB>Y zWR-TQt4`w1=mmX0r@@Rt0jib_e@N)x+uiwiq>Lg89x>8o9v$Bjoa_5Ax=6;bT`?)s zP)%OT{hWizR7|Mke5y;*>qmz!8DgR=^z_;h?fpnfmCVoFfR7IZtl-1o<9f{LmgRAY zS!v75Lm9OVp?%$Qwq4*FyN&&|Bs2!^pZ+og#fi!%W+?vo3d(C} zu!YSuOp^c9oZLi-K!5c=7vTRhiyvI@KPHy{iAT`C zE&vAqUyJz18jz3!(e*;lVZG~|PR(S@LO=s_nq^~JJ%qNK(fg-nJ1I#oVxkHEz0<)# z`fEIG22G%mK96z0j!SEmym0o4aZKBxSn$Wxyif%6Vv7^Mr*C^42T{}0AesPf2PajQ zGm8MHn*I0LiASxR9;1JAQ&WLP#?JvU=wXA9wmH($w{4x(9pG6b1`d&_zPu!xM@ z@Uzh#kboLH`SkCuR)W8*3k4~`(v52&ZT8h!CA{Mw$>99QQ=~#t-){M- z40%HVBb+p0z&a+NnYIIJ#nj%-7^9+y=!|uYla7F4f{TlbN<`g8wATJ9OpZCkUjzm# zlw4fM1T4f2GGIZtZ!AmQX`b?Lwh{z&_9Yu__L374kq8*a zpjUKv*-=rHT;ilbgn>=WS7?T-dGZR!8qGVvMzkzeVZwK<2mc!dccv}%i+?Ah_!BrJ%DI^4URBh(AVQ?<%aVTF$o< zH1X3y-M9ClxcqwoCe2l0p-T84Kz#Mm8GSed_+Z&$O8g)?#0J3&SH@;#)jLNk{2jR2 zDc7ncxqOIL?VtOA;_LqhLfl_x^Zq5){{Iz~dQ>uvG{_I2H-3v0LoPAx@SjOco+Vp7 zh++;>J|g?L+tMyyMPr$0{e^14N|-n!7N!B z4On|f>4LT*Sr1bO4n>5ewghd{;{pF=MlzfR@h9siGgi-Z$NL{`y7`!dU%k41%_288q%|at|$33wI$wyXTY7GT{<6xM& z@UkF2Zz#PJ@_s!_;ha?07>Z*1=iwZ*-$8kK$?(Ktf5MM;h*Y_ zuVE+#B-1O)%DgdPwro1bz9*$qLF`9lLUIpKF8&ACuIR|mSRZ6~=i`296oJ>s`16rc z_?-qd=;$$m;tO4cvP%Ue&@_K9Qc>=8~yT1 zP;}TiMGP!%;m`hflLk-8$ZHd9j9%+Y(X3lo*!+<#Fb4Whgbe@>VzpbhD1nyJKHn1+ zXytvi>&1V3bivm7&4Cq0zP9wSo|X^)I~m8~$4AE^H|b4P1?!U|gfb5+X}A))$?=Nl z@fTQn%BG;1>fbx;cYECD90}7<@XCr!kh*6c{r$;hQt>U}v_DS6R5?zAn>HWxgRI9T zx|S*6tA`QEeM~YZ0}&N{d>N3rFa3!_#@W1MVdBYEPOg7USv=_^i!+)%pjmV59E=ce zp-KALQhx`?R zG!n+b$cvBWz{nA=10j7~ zxK%%QeFkwF*cmjxZPqmN>7d+ogp9OjT))ypI)NO2w8BImujxG~+Tr#mp-i4B7^*M~ ztyw&3`SRvg25zcKchMh#IESoqe(=}$y*Y>BoZ739$J{771qT;BL;~hSNeq_Ttt}r2*h|XhGcXs zb9)QgWS$2;+R`+Hsy~-XlT9=&3w2#djhY@OA@jdZ&Y-w?*8;0;gBQR3NbK$>%mFgr zC_p4n)09-RH@_;xdvMcsg zUw?Lxyu&e|xS8g7F#NVbJEOx5AH{0ayYc*|drV$x5H2@au$AS=Ia1F9QLQU^Gf_za zyK)a=kt4A6%`R>_sH`zYG z^Nwxq%~^789D-f341$Sn--?S^o#hy9N|Apo=CFP+G8on-WTu%1L*bRmobM1p8jG+; zHn6ZT5jF127XE^zbeoEn`22S@hIt+l*j_g&S5m$B!LI<*<}`QTK@Mq{7bJ_7%XXSy zo$`z|Pe%Q_8FJrB)?d2LV!#*C8vAOY*)5ps;2y8xwd{z11v1fg3EkLZF^xBe=3FQt z!gFofJ^Bz2Y*%n`9{)*fs~FQi@8W@KxktGVT@kNNDusmQ|#L*Kh7s%UPFq&XpjCLF+WX*a+BU#2D z_KdG_$kW5fEA{utMqM9-KhqJ6{^2ng?-=NObGDOSI);#o$tA zYUwbYBQN1C1?TuVwG9Xx;znXeq(76%3rfVuhC!)0xl4%9=&u=I*b_#mCBCq7ry+3! z7z4N-(MZ$lApnhH%&%`C297LlNyte(5bAa|cDI&b^oS|%)kXpDG>IV#;Kv7KBp+VDcdVXnX=BF8VIiI_&C0KF!VbB5HxpWs+{MLspm`lFL6xv#yi1WhB^19^JU zpvb!h*jcfW`x>lc@pBJo!Z*G`3vM11tH5s~<`lze?9FMBZy0+|(db3}Hza|^1V2vV z5G+W}I#kdkG^I=%Szu>~))=RkGwlX}D_9!ZxOE-Pok7f8=-_BGdD4jDIfmw4EPg@H zS%S>{y}UrUZzp&zk}*G0eT-Zn0kg;^3!sZP-32Zp%%AW;jt-5eb9Hj;uhDcoS$I&= zQ*}6s(IE0-hu~{)Bd4Uj7ixwB#L|*^+_kmaOVCn;$Q8!yWMo9U((dX?jv$u;!v;|> zS&EU=UY{tpc3+Eg=gsL@|08z#TJ&bAzAZ)fdM#*+np!c({(7)pZ(;lkSH&l%_c1dw z#xr>#sa5VaHdh@zQUUR}fbF{z2aEA+-;wh-#u{Y!K_F0TK7E$b4Bj63HI!6h<;(U& zss*Ny$)5(^0fyQs=VRE2^8p4znQR0J zp&Wus`8fDG8Gr?QvK|PZhoIu!RH^`0rSfb=D3sDu9BmT^(j5li0@#DeTjhpIAaQc* zBjeSMZXM+Bkh$2Cj{T_qj*`s_9KvJcJE6KhngoS~&dHNEWpOOx5+-p2N39#vVqR7D zVqgnThfh5;54*#k@zFW2WHCHiMG@L8FEK7LhbJ6j3rkL%yxD-rnTN0J%H~%QQboq( z(&?E&aCAz!O@_#DchF(VOvtQ+ ztZpcZlJ{PS-TATp^-yyA;TkfjgY;IB<<#n7U>qV*K!&(*;NK%OPKL(x6FHb5mAr?j zq+wyHl$*c6?5rX2s!b15ehb6#BnUIn1_AqR)B$;z2Ofeu(2rzK(NUQqDL47@7}Elk z5Hdvr;+c-%Oe(=t#cQJS$TQ0i_$eyhFo7tgoC6^@T(Vv}<8U#pTD-gnYtxoyVjPG} zZ1HnAigCujqbtF#dNb)z5Gd$7=qDujMgoGyPf%ayujaXg-I#Fqpxo36i2oI^)ReJn zDuVKQW8>P%&IsmkrB8oZ*b$^<^@r^sTI&##a}i2IqlRe-%3+mtuSC;*hz-9HDg%u%0K{+@8J$Nyy zE_3+F0@X6-N6392a~S`tvNL~*`o6>X>I6)Uh@=Q9p^z?_26i!2h#F7QW(^T(L}EZ( z4lP&8We^cjjzlNT3Ib!~7?dlfh+N|0EQeeM5$uZYsNu+h7-4{s1rc3T!qw;b+JB(_ zE+~BVeLnBkQ+99`AH^H`Bvj?aXrxQWiqY#gq7Pp>qt<+17V)n^3WWl-bOp#v%g)I7 zHyN95AeIcT%hYDv!p!j?-V%=YZk0|tg?-*MulRHUK+TG(i#XjVwh;qerqd5xPm!uh zCUUY&PHjQDmfrfl4|hLD;MamrSSKD;U%?3ve9Z`U9_sy zo8R?du;DN+q;@@ei54p-XJ6c-qHNFghcLL$&G|_S-H;yAD~aX8>_lOya*@d0i`2;Q zZ&7@O_<61Ct(u*GI!>V*%q^mU^T2Q<>gu8;yW$c_PGQEAoVoX;n0du~&y~sm=xDXDhP}Dv;e>QZCCtD{` z9LJ`NmZ*`jRVkU5{PtS=+Z%M{3fqL?p^*@|A2z`}cVdOeM*WMl zJg7;js^T6RMd9yRZ>wU6+WI2RNc8m;ij=~?1)wJI*j4^B@$#gW4yZv1n2{07EwPV( zhOijia)Dg?HVwDHI50(IZkYo=Bs}UDyPDrCc^nOu;UENr zM`W@F+-q>(5<0_bL8ofNR-rg=nj%z70qO2^e9s_|( zT8%ccetbacKkce&Z${Y~P}nb3Z)an50M)@fz^!I$pzh!KlX+vok_jK+O8JOiMsv3721o6L4C zavW66zMN?QtI6}|GEw3C)OyKF&dXcN>es+E0CkF79~a~#wSf-T_e@-4(HlL10T_wp zbR!g1DkG+QGj0}m`AvUxv5C9{ZNSjAfiq^WYr9lGyWCREK?oh0_q&Lj3tL75W)u3c zVW`=fuvirDH?{CCP69m*jVw&j(e4lo9?-URJX`335R4a-vW))xO=uvOj$|62o1fMs zc^*CcWCU#avial(i`U%$BzINKitd6{a|s#NN!dOJw&enE=AG9K_)lp1bmL;t6b-oC zjk!M|dOCm>3*?d0NH-lr<)^IM zY$+hSN;T#P`EkB$Ke2J$KePpht^l(UKMR&c{lnzfL>Fv+pi7!v zy+H#40C9wFU+?a$cxY0Ta)&)Q;7AC5tp?^k?t|n1p?(74vckiftVet)OeRtx8EMu& zxePSu-2v&)$JgH%!I=`bp#k2X(_dNo_1gA_VUx_W>SYL^6MPwDeq>BU+xM-+#Vc?5VkDQ*N{ zfZ3SLc9V-bxT%~ZK$yi?59Z>I5BKF@uI6~&E$2;EL1!bc*m1@#IAAeGaSA~f2*B`t zgu;td_SGotJL*Ws(vNmZ`8%lnZM2MgS|z%tkjNMZ&iIjy4^CiQ;0Uh{&J5XolHRomX3#^FK2oYq|uz!;KfyZzL!=j zAJSu^6)d~A{HN7k5=(Nj9sd+Uo)nURP~_#Vj~)PKT7mRg=#d0Vmff@9f<|~qx54q? z&$Lw_jFOYTsQ=+i&aUsr#-SE&Xk0{`cw^NPL`-aAKO=j+^1v9Q`(u#(xHKx|4X-Ah zuLZfsnm5d><~h~Gs1gsV#l`?<3dy~=Rv5j5pNyoT@^RObr#z9Qs|Oi>!XOy|#)|J0 z!O#UdvcbaR%aeIX3reTYxYJ55GWa>z1UadIUPTh842tb4QxpU7BskSdwZS)nIUQ?T zQXkPZxgaeq)E~l6ad4{JKbwtYsg;7*s%dddm)hM@@cflLw4}9eDDDu;(lVeNEtvO1xc0RS@{NEOO>jK_3 z{N}A?Kc>lCj@rDFRlEAjs;fpVW^OL+mVw7jPrW(k(XaEZoeP|vK9qQJ=SW;v(?sXd z%C0?szqbn<{43Zm$^Y2Cvpc4<%HCPKRP-_=edcufgfI&6AGiw+gGi(hqu#-void;! za2b&NN@6NAK^Vr$!uFh?ZCtUHPzaIeoZ^)%%Jk0v^OuJV0*>_sg+IP>h+kvd*3V=Y J|F-woe*qDUpxgie literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_13.png b/labworks/LW2/images/picture1_13.png new file mode 100644 index 0000000000000000000000000000000000000000..8ced8c7b79996ccc8ab4f2b0c786d178fe04732e GIT binary patch literal 22320 zcma&Oby$>L`z}1RG)ObF0V0hsgfs{uNGgbQBi$W>z|bH{w=_sdcMk~CNcSM!jRNj9 z&-4EFyT5-N zbKCy!PjJ~gS#W=H(slxO!F5o0;|zfi8=?N76-pFXK_IWwp36#UdZg_wc=~9(`Ymxd zJUI3#q4v{QOAV*$>mt>8$QAn1c2~N%t zV>cQpyO5bAeqeyYz+{U{wo7Qft&_ihE=+kWS9$h6Y+&QY>lao-LxXV9`AWma(+xT) zaye32@FOnG?2Z8kKWSm#2}wywugD+5z{_hIN%JJ6q;V=nPBN%Z1^-{(yrPgIsd)F3 zy&+XfRzIY&tBI%K=x%x2tq7)6yTFw0_<^tQsO6I=BAV>|EnXU}8#J197ygvKH)reh@e5u5n=`II3{HklNGv>j{7U;J zai8B?1@#B5e`3?qqdq^@>R;e!o0^>s4+wy;k&C$p*v(esO8mVVj{EfK1F`sJyLo_m zk!F&Fzh8OgTWxLl+L~#agg--ET%7Ma(JLGT(eQow-6TD3$L(H4$4*L1-jEP%wVd0%XrsZ_^ zMKr_B&g))@TQrFILgL4S1j?tkmq-OAr4P@(bo9mDJ1UU4!JQP0S*o@od-yU9j)sA4 zc(~kAe=;Phrla%DZRm7s-0|vHBC;UUuQQT{pM;$J!{w#N^$M~7rd!M8S&6V<7d{9GNCXOuHFy$|-#VSuwPtF-jT_HbQuGhGA~_cO5J zPiP4d(ex37P(kgRE4#&J8Wo9~C#y&#DHsERcvdp?3H&g@U{vmlo~--LCoho_f;Vw# zY4hb5@qZ0>4R>Re(u77iD$xSq@H{utC9sI6S8MTX z+}yojd8v>MC0gYO{^6%VqWkq27xT`<@7}#TtZTa={CgttH>fL=*kmM23gNu7z3qUE zg00rh*>%yo&%ghB@%NT7!)yCdBosyjTW}$RNEVE*tf$&Pd-;+G^*~Rr54$Yiz3W8H z1sNk@JY8W#RCAEwz2A|qoa!*8=WcYo_WknrPC2jjWT~A*OmQ*0uJ>LIu8rA$ojF?g<#R-I(}-+E$VVlIcVW(2%0k&~2^jFC7XmbfPA=;)}wT2JLQ zY=;m)1qo(mW|E$Ie*1YcoGG!ir!6T7k(QD1zNTZbrWU0Z^@^bX{P{CApQ%F3hR1`r zr?VYFIC79xFi$x(a=8|L?uYm9!@*rEW;~nR4=B;#;BP@ueQj+vbP|}|yyesL|NS|1{sA7j;w8EYdXZ zEl^HP>#FGND8Q3{}1L zj>vA$lXaTRzx(cOWT6B!EVXrYsp)kNE7GI^KYM`hySNi^OgR}!z!fVlwLD|yAa3)OL*w{EWB_({J$vw5jf4Tj=IkE!{4Xyt7 zc8TNp?i*yKiue_#Ob9`T46)e6S3UKqx|Y4UT3aZ@MRfT1r6ReU&+&KGz8^n6u!Wm1 znXUgwwzRZt&z1@Ou~-EjhJc!<{WtMQ=ja!C$K7dO;15$CHv97pLjJeSKc$yJVBVc? zsG39OCF+0MIe{zjf@eJ?7cDL+aRm0q{NMrBKmun~iQeLeE_DW_f^nmh^}!@w6KoLr zqI%04)@hrM`ycmx|K2g|cg|nntMBN@ySlnca`&#Wo6qUyC}Ik2d7?;zM2@tmsOWY1 zm)9kO8Lap3Cq)fnNP++s%^>#9$8Y@yO(dQ0UG~p=e;@4G8h~4n<6(jQHg{VDA!;yV zYGNX*wUxnos;p$DxvOi<%*m%u!EAHb=6Be1AWI$dD+$eEH1H z&8@D?E>C^SS2M?yVfi7CjtUS2a7EW?;L&5;-SRnXHy2q`3C3d zW>0=W`^EXaGmu+su8@_cgH{=D zZ|}M$nEYJgr%#wI`u5FV;>pR$lk`+l2(!nx(iTmQ2VqMfG7}7oU8EiDtEy{hg&O?* zJ$1QTHN2bhTX~J`pT(Op3Dqy}4aCBajgJrVzdgxJ60}XJO4;+AH&~ZBulG30p}u>U zg-gGAdVA;Z&4E9N73+hkz~Op+|MpTV(hQFg|6Mra2|U@mE~mX9!%Gp9Y4YdKDz4;BY~0H+%LVD0hVrc2ODljM~mq z@szqlsKeLIhthEK)Wbv%n#q!rlTm*2x>WmpP7aH%V-LmUc1ihRx&IA*%+q7IBb^tB z{vIpAR24o~PUI96E0b^S76{mX^o!*mP}ejk>o?x#e{1#dM1|tPD8s zy!Sy1HNQClmu`Ik2#iKkWqS1vD}gdg7(Au%N8ed9mqVa-o3*ZiYXGEmSeLhiY;V7l zm6Jn*h=_<(0M{$o7|sxbg4_ZLxLERM?CI$N#=rtu26!jN(Xrg%W?Kuvkz{K_Wqpl5ekk$s@Tl5YSyg%t<;X?I*67$a&w;2x zYTtI_#>>X0KtN1Pbn8zw37Kb99th{B%Ud*wi$a?M~p##1Qa?BY-(5kgKcU zYEBTn!~L(3j7VL5DmAWE*fPU*2?%J3nTTv8ZZdA7)o=j_f6!|y9@rXKa-V(gUgN0&GWSZLaHhFQe3R) zbJ&5?)7>qL+%Pvag@ZsPkb&%5m}1TJVFAeupvlyY-I*$ROs3ZJS!+Zlj*Zd=CKDwk zCGFB<<+z&jinO5@x1p6mm0dc!4)+n4=u+fnWj|QJj}uFo^ZyeZ{|Csoz3o;hpZb!M zgU-y%ESPwgm1XL#94Rnfctk{y^a}ljb|k&*vD1CKOFbtIHMRF(#whp>QGD?tE;g3Q zoqxA;T564EHw@~RIIobJf3x4VbT3wvkL-I+O#==0%Vf*iu6b9~{dqK56dy&*h7})5@TTFlGJ!mKH}%DNq(Ijc_l_%`+0F{sr7a(zv<9Xu~J*<{6_ z)%N!RnSVLpUSCFcVkgyOByWqeUSURK5=*B_&y?@*G%!1T%$+pP-JByKrNBB1KnrNY zW+%05bHUv{5sG5+dpCD$w6;NTfzOlSO$3A8}{mV8H|Mxo?4P zCYX>WFd-bTP)=+%xbU-}W(1?t!PFe<>C2o`EteFn$#qyv4$D{0J-# z9Nt#|o|Q#Y>$P#umzd=gwR>^ow1Ht=Ax0gxRdIjLrhs2gmG|1h<^v}BnBjyIS=p`n zi`Zmw@`n@C9cv+d!=EWBjMmqlPd8Z*XS_MN+j@KJ?Nj0U_@PQ_$gh~E1dw`{Ef(|Z zT?_5T-ABo9U&v;3#+!sLy~N^v^hiq5f#+j<{4YDaxKh7Ahw7lj+w=Y#k+p1yJc=_x z818q`dUs>vZ02dVaJmMo;6Oe)dzesj+Jzm{VxAC<_dsm0AJGk;SoaK5pa(5nwv zFz^kQySPDc2tDt_CUo+>2k*0*Cxt#C|-H?7GyGAol^FM?6`1Gh+QnW{Eu#Tt|d~On!g%IfVvz}0l zY<(Eoklt{f^3m@KJqxec+6`)|7&w|v)$jx>2QCxrcca?{O9M-g=NLkE6Mzj05XYN_uZ}&UH;gPblA8Tu2fRmBX(hm zdYX?2`Y^h4dgozdaq^m3pvzv8M-l1K^F*nyxSyJY8M5`}!jD()`baR5Q+-|+WvCMr zSh>)Ol$DXe040styKEDXcjn{JF+)B8-#jLbq+d^?fL*t4VDp?V3axH`^=7UmG&=xP zNF0u_6Nb!Q)V(KC^1R3i++AYENEY%lFL5#^;BXg4PUAQYG*84?qNiva<$g<+NOO393j1-tvg!|s_fn$xq$wOw{_F$`QR4=x_DTZkATTRQX5 zS6mhtLBOiSdwau3a@%5MKi!h7+2X|EnCw<8=hkg*C{ zbS^>}CqcaA4*w^TNe+2H0?uC~W>LviKe~4Ns+yzkdIw!r?L%2hdL>3cSqnV~mZ9xy z&jioOSvJfe_--YUB}{Xj`t%3+WaMlbR$1Z(7!XxrYDn8&1qor8^4=Bgr=lk#xFE9F zSW%G|zA7Zqe2X8fh$XdB{vLzmjD>b6vllBEZ|^1&s${3jA@&6SYH)yu-yrO;cIEZ3 z(P*VT8xh@|YQZlpjkMu@i>@A`Eo?bTdA!$3@IFDQ_GC0>>S^_u7kPP3bCbet4<6{PE-8il*?kZo*^k947GF4dD>W zj>>WSdyJ9f-S4-chFb-2s69>Cxiq5<@IEMf1q$;H0HGrRu>%1#(PJWdkq=;;dA-5? z_~svBeN{)Z6Lekc=^P>tx6>th2wAqFF|%*CfpX1O`Yyu88J1`>WnX>z@?l)4l!$Uzvr>_mF+eHegkf_9Bt54(GM zgwGlW61ibb)+jGGHqOzI=%U$uBw`m8X*$XqhpW{?*zRqNL+ZLg`dt}Rf2hg^a6#3* zC!jP|ef7%Bt+cop50H6+OJ7DUvqmk`#$IZTV-~4-jCwg?wAYgfd)vcxptuoH@^H3$5$QR zcS8+>7qT+c3`L20tct**Rn54&3Ynjq_lB?`mTMf3bnk^Whwx7|I8p)3c%NH-6?+PP z!I#1$Fe`9o9`hxtiK({ctbRub#HzMfU+r+ZaXxPWahvPD-RX(6FKN%^WMwD9zDH3h z5)bluFY<}v&+eL8euXZW91uoChr#<80mDlQZfBk*@;-^-8Esv~W)d8J4T*;`8YMl? z>x>O#Pu;NWJ(7R{Qd#`gdgETMtHbP1sn-VOMJ;zKZMo{~K^)EOT|NwSV^qqQJ>J8fM}7g^Mm&QWX3z6za%Z%tY7VxszN?`KP3qrUO<5P!@ynm zC&Qx))_p>^dTXW`pT_PilaR(unK&UWN-607jgVQkR_2wwq@y7C++9C> z9(2xyq_)&P@F6LPCL@j00#zd#~G z9oCTc>_-5q-Bq&dW8-#ac_J)782!tDBV@WZU``M=%a4ny%pr?uJw$p-ULkPA89Y4G% z223vNRlBz7d|6Si@R_)hgdb)BvHQU&GuS#RF#F8hP;+M3mp?~XO@yhocfnmjE8;BK zDz5T=nWR+y!rQFw9nNkM{*IQ!<;KYs+ce7Sy@=7Oa=*sUk&X36jE=a z8pV2L9<${0wmtYSup`cCXPK7;xa!C>ugsasl-UT&uMumV{-F8c1a@dkNsB*0X>d#D zGUgwZ$9IJq|%%=B!tD}d=;#2Rb^Jv z{6nxRM}zG5-NZS(9Z@Zo_hPU$L9oGn_WB{=WH@M$ah#~$+vP_9g|e^|fDN(xoG3hc zc~MdapyDsQp)9Z&|GaFbV^fMN628?NW9WZKPM&=Sf*%p96u8$nQy!k%e(U1SWK1t-&fcXz?lu`5?J2+GJAd$$v<`k51j z2@A_MBLJuo|{W^Re>Z2Nk*k7eqKX1rAz-{fg*>4Ff^V+5+ap zAg9wqokwBbt3hE>5!D5*FvX!HkMAADEE+82ryIg7MLz^C>+iKcB(uZSKS0W#hv0J zG>A<^3=XQD6^AuBA3N1Is34>93++SZU)+@qe`A!Nyy;mBX%4AQsnj%WUYmYX{ply@ z+5pGm0ZUf?F*VNo`p?g|7t%J+e$?Q71YiN!^Mes7S!Fbua%|}B=wKOFE66=7{}X~7 zzd@2MNZYB0(GQGN^ddyx~E$d&EVN}3m=7B7f<5b#_B zc_@>=N645@9QqpVhmb2ey{k?`D)2!*V<}!wv7$a97zPS=TD~n?Ms2NMfE9*O9wj>c4*d0u3f{U`#xK??<&CaEKYIJ#YVM5lPp{o0;W7 z-zsM)rbvCBz8a~0Qia`%12UkRis@cMQAtVHr$-t*fYL^F7eHT1$aR~%v#ZP7*Ir5r z4Pff1VL&nH&S)Or{oj@y;=h?sOdE64p)u`^ltCpb*tdr;?zU^byJTdQj>u=oO2F4P zEkY?Mf~A768w$DS zon5-#0X=94qMA%yplE9Qds9AmQmw;D3xy6ctjz&yjwH5Xb+md9h;~m2_in;~%Amf~ z?pw+o$! zOW*btz;;rgb#N4yl(bn~F2evXq5i}0KX=B>VGDQi^#F~NvgTvO-MPA951XyAJRyf= z$oavN{e>$EDhzNn5gfGr^{bl#Gp(L2b5#M;1-FA!)%nDI?RxAhprOl1)4k&-Jg+rmns^;#$`F`(2v2@9efUZ4`EPcD6b3F*kq}({EeoDe^=~ z{cc&SC-n>uqNtqZ=ONUh@aE*w?}K31RaI3D-FDZ$$15l*I&F$bTpwb96;Gdea?Gs0 zr@YdGN3LHAEKon%F$nH;Z^x!cp3#>)o>c`A!QBc+bu>IZJ++(MI48^Wte;w39sff0 z&;ZGZ1MxWfsTKF}V<6aroSGVn9l%OV8Tdz)xBgZvE0@yG`k#dh&ga)xn9j5FZ>rv4-q9f+4ruv`i_>oz5|64>Mzyk5S}U#Qt!a>HIyfcOP{yo z!PjCz1+$mpRc*aZx`aLn!r2uGh_MDB+jfR-F`_~8|BE?lK(}2y0Qm1$fG!}CcGyBe z;qWxXq=-)Gjx*y!*xE%dEnOw&XQ<6xwYHj1KUX(?{W9;Z?dipch`8S^n@Ja;b{hqu=3rR9A3t#ZfmjG3qz@=R zmHx{hiR>IIb6 zhw4i6CXqW39^}LwuoZF1(IT8ET;;qSZ{9nQ!p#CA?UvwTVrm@rnosD5Wu_|Rf3B3a zdzNx^05FhYX~&8l1u0rOe@@CP4|~L+UHO~IS?$(@)X|&zYB(D*@&wRs-wbKf096ph zUl=Yj0HN`LU&m-l&Vyw+Marud{zco$E}?IYu30NkZ9^ZAaYrR`1P$wo2uxNCm6Cj_ z@Mu`^V?Ar}K(sFll3BArJ)l~F-1-c=X&Q&5PgQ?uXk8n%MOw^vLN#In0U;bxjhPSK zL(AhRMhehX&%lMKPa0R@6;TCTuiuCfNeCm2E9A$GgaxB=J$uQ-O3;AW++ zrGj<3U%=M=)_|#@;M$d~1k(j}m+B{eZ(G!&gIwB2q|P%i$dfq(sW^=3OQf-QW|rG< zzlhh2b4YcmVm;(efWF0&r#j&fSQ^w5gJkLO+u^-6R9^O5?0NWh5dyI|y>h1r+rr#W z96#a@9Qa4gwz`0RD=V(b{1bF;&gasuMYESFU$Y(z+9=q(W-c3TrV54o$iH~Qxy~qV zRv212k~nR2uoIAtZJ`iE#A#L&EtuNA7IHn0ut2Kn(Lx}FTtAm%E*`9Ozh^QT@w&>` zmwF7KYSVz?;mHQ;YIv_5qO7;9=Zf*FM0V|k*G`S&eK&>gN@kU_<~Ei0&lZ6%HG6Jj z06?)cwi8f%H)@7gFBBd68X+}-4+%*52C>nm2<<6huQ-|!()?_hrMZ>8bBO~Xg*cRf zo@#S$$7h(cPgGp5z_XaihTdS&t`l~+U1)#nQz;kSdy9!~r=PPL5{ zJT^0`M0zwm_j{3znRBALV*$sFExf>)EVj zpbar}CY)aVY3wN_Y$y@xZ`N&afVEGO?>S1Afr~hf>M<7YiYn<60^>=)nd^2947Wle0KtC zyS@Xt2ertev!0P1f`vf{&+lU6W*?Qi@A}cRrtnEHNptQb;c%e^N)t;46jEi8oZbnu z<<$>@H^)?4W{N>gbRy_S6RieUL!=+MP0lJ{LRc_^v$f>2Nl24N%=zu86Eb53C+XlT zWY0u?dH)tUpC@tsM!@A>UMguCn2p2AUP(B)-7OS*0Mi;g1m+lWaym^)!1!uB=ENDD^KRiwzKXTi5f;^=PPZC zQjXpb{iu*G(zl?7+7~|!I6RSHzP?t`)%(=xmup?JfiCUBAun$8RCy zoqHfuU#FNszUkUa>x60A*S-$EqEBLi!xbl_v!BfCf$G+BYT}EY#;~O9+5dF zv=M|d=@~`|nu%rgM%-N677`#`)^T9O)|@>gSJdYCVWwSZJ<}+S#LL6WgKw)x9qsR> zZfPxdovvK+_zGc=#!+pi-1?5J?=R&8i3{EXk*PLb6>}EjInrdXgNmO$=VQy}py!Lz zp#tE>xsdx`pBptUe$dAur^D-XS6>EDby&NX@6M9&^JNplmfi*>9z5UXU=VEE zL2nG4ZW`{*E|x9s+S>LKRCbvZqmLo_wPVQ^AuBzBRjTWC2j^LdDkdeyT~E>RX;OxT z=x8@I5K22^Pd}9?*XnJC(+5gF*}resDDAk{06}`a5qltNDnaxj&LDm=SG%^11af%J zk4yPH;;NM=P`Z2YV$$WIL~WgUtl*$E2O~P9u#o11fdBJe`&LdvcfL4cxT4L0l1O!- z7*)Wmb4Yex@mRpnqW;M=FI#bobDr^zw^A~ZDFaX!}G-id2aOz$g)(oN7H{@EySm1oM*7? zpaM+^*DI63)%&`I1d_w4rnJ-{8My|~0i(y(_}4Ud@WeXrz8fhUtD=tW8+bn6Uh=|w zyF;M7&ZVz)m@brl1|G2MYyo zsJRY}8-dnV=V4DF&HTNPzAnqRDcO4!ZPsgpODX54BAq%;CZsTOP~pw-2q9EWzD(h7 zT2lR(936Grq?YjljkfE_kk5`43^q0w?LyMzSes{hQzc>rh}Oh?sq9;(+l^^8K<+Gm z8fMOE)|#^(Y!4R1O=aM>$7i-hBaRh5^a!jhUT`tLW5XE_TVwgEG*6lPER=qusr5Xs zYVz5Xm|JsoHxD^wLIsgOl|*k@0L1RV7z21WcM&=V)rNCsK3*3=F{0nFxy3YVP9hUd z@E`o8{26D2&$~wNV2eR?o=PT{MpKzW=5Vde&hS8)7;MUt&b19lCR#WT$E8iWGRFwm z)ygIH97!ysNWOQE-sIk2uk4!X(#SvR^x7TS!O|4e4FNurmS%_n?EUS%aqiWaxtGuc z87kexHQ8=jJd7{g)-tj-sg9Lg!C5leHun@2BXrMaWKC1Q{CWO77iHVnT4(dJ-L-Sk z^mwF3xB?2zg{DT8gry*{Y3LOTmT}PfCR5fe8jLp#20q5aY)a5=^EShRxcHuD;XQq_ zgHQf53b7?3<9Kw4drxl!o8?=Ns=_r+(@;$$ea_4`fsoJeKf?}Dv(9MnR;38D9X!(b z3A^)|e*-@M@!u-Oc5POl`~v`${d!$sOT}XV3s^Pyf2wl9YD#hHV*jG@l^db46A|T& zDE#KW3|nF+Az_R`CiWjG*N432C-Gz(m>#V$WL$1uDJokjEB**+zWL)(>QUEMpVC-! zlV2!`a?8s3K`KG2U(O+AhO9a>0@OUahu+nWRDk7UIYS>&f4#FNND{}d9YJ4a)VlWq z_;gj{(}#lRs9DK0BEwph@OQ!@O9DT?uX**%8AZZDf~g)?)Om?oNRW6^k3;XyRR%pJ z1bg5)roQzL=vs>Zkb3a-eF+)O3&qb2ASrGN^0NcXgkmL8B|+c>s4n_sv=LDNs!@t- zpj{w{y59Ay2?3Ba%uml+4gifsxqL$lAqKWv5(Nvb8<`zU6vgrUTTMIx7NzYivnD;( z-(3st@(&nt^DmDolW8Y|MODzi`anjGRjHz5o!TKZncm;mu`46y!T$t({buP+S_@2e zA2fp_u0mCqxt)#crfhnm%IMn{Y%H{VLyyA^+282H z>@wC4#HZS;dX_zrdjEBZM4l+G2H-!~CK$T`sI9Mj7#A^J#aGGNO&GNQnDT7|y=gQ^ zA}1VEp*(s71A4Ngcj)Kehn&3AUJQFv_BJjxE(EJ-20T1o{-5WrKdM?h42B)M-r%1L z=j@zBR>}7uW)x~=U3QXe>NH#yJOJ6;J=ZE@pPv6fM_n&P-~k0IJ9*B} zpAiC5??7n{C_{N4eC;5a`&H3`F6ZYdtTbgmop<4c+;RvSE=D83OJC8~aev|3Bqg1j zv~AYSesXO!y;7GmHwV({q0w&#pCoZQfN`9xv00Lf&>`a)MsX(a7hcmKvA;{D+}&@jM^k7DOnvD?BG>VCK-=T-o2dp* zApb^DR-mUw8VYh=9%0-irP_!R#JpO zS)@ovKU@0GA8NV%)haIB)F&G;0IFtT6wL-?xj1TSYDqjs=#yXHP9ePk)fTf;-nO_q z4c@Bs|La$>VO^v1L{KnAtWV;N-G_}uQ63p)W9J}4IteOrAoMQJPjq*+N^YS=WicK1 z4r?!a+G6%}KjnXUJ%Z96!hzqyQ+xzLTRml*Od_*bc5Ng0P4TIKw^|J%7I)YV&HVo( z6pKnrWnEmVXDT;0Ex|Na$MRk*3>ko)X=i6=WDF2o75L#C6HN+s@@Jkc<1Jtqya<{V ziqf3Gzr6mc5L&ir3$?!WTqmHroho?Qk}tZ7-99Z780~;VLve{d zpAr&8_GZ__N^L(-fy@|(Tc&ik6ifWXD*b$NUZL66WH32KB3LEE5AQ(Y(pt9^C{qL$ zfD8vg^o<_o*VH;qSd#h{5p&x^uy zqa6W7r7Y$ZdI$U6&6L2!#OW1#I(D{~&!2aoct*e%AJp&F&hdDiS{7=qCknZ20&z(y za3?&x9~h_K<5|J+4AT>__=n1!wYGCVqW9(-$iOe({y2Y^NVfZM(fj9PByzLNqGe}x z^0#0MuT5#uNy=hsM_A%Y>u$`^(uLr1%bx?Oi3-g-fh!h#uG^YG{EZ+y)~;O**?L%C zX5#0Yr}&{vX4851kd;9iXu-IvtY zX8=TMM2+F>U? zXrI5rLjAhNqhB)%7vJl`|F~?JB~i8#7{6r)88YT3B4a$_IZ#{RxKR5Kg+Be0CF;8tI$kC64P0C_7BsAMpqQ+ z>UeWDg#>3N;E^t+)MI0>wDf{G-_{xe=GSAtVIvk0zFG#p6hJi2pW(beFI=_14*CG7 zSt7o~h=&8I10gOhF6zupfwOuHM}hOR?%M1!#f3L)Y_2zr?2=*Bfm7rZ?>fKR&cpzwjjG)St+g>a3xE>IrrY3zq3FuEhr2XZdz5mXk12Gc2A>L|N zwfGdEOn7=*FAHQeFAv6o*%7Po+_8(V(r6*dHIOabjgWTH0~v*q(w3CBhGXGV);H>L zjZaU*D=K)J>wkG;ViNxV&3B_ox+s_c>bHfD zTwC>Gnll3q4%_GibhJB_EwCM`h2XJ!63Yn|89m)|>(nv-)h7i_O?*?RL^j;Rxc9c2oYNniupyov?rAGd^wPbuU+SJA0~u&kqh318oq}^7GP=R@Ast(P1$D z3Z6-~T3OjnLl*{hyO`f}5up?FA_q%)W5*OH`o@iQ=PZOGNcqCrkrTksfk_G$_Uwhy zP=pg<6e!+T0IlMt_tQnKZQM14_7jQ(X*s)L-gfbDnd2e||5g3!SUjP!tJ+9D@<`b{04GFn7E}Cbx^5R8mWp(w;J=jpw#Z64obnMhOAj+C2lX%zv#N*fP z{VKUXjXgwa??b{#h}4o}eUVBm?mX#3G@qwK;M2AGiz|5Of~C8^L-n&|Ekqk%i$=j~ z{NK1*>0EY@9iSTC4C1ecq6EUyemrqwd*uZ?zjPaQW&1(7Cu)!__|`(6Q_q7v6!fAO3CbnUC8!aOcHso{cQ(Mo)j#z2TtOx9{kivOYp1V%>-Dfg1{VnH`^yyDh^u~qz&rty40MbwLyS@WtHeOk{4DjRk^k7}8 zr<{K+QP4p!38L*_=i4cWsF5T}qUUcqGN8x!lleh1+)Pg!30+_9YwwRc$hccBQ( zqA`=BDhg`fpK?_?S+{&PgUe!2>$~5jD9SqaCr0b}E+k_%X2PL(c?|i`H;oB*g4Mgf zrOHEil%(q~f}H@8q7J|CkLZGNJewE^v$G6!2My~htfI$LPWKuiQBVB#w?%onQYadU zWOycAT{4A#5rllDIX5x)YwcCWXFVqW{{8zM0>;SLq!N;5v*5v#Mis1sYYlP{i^mNt zcG~B7xaK`wH5(I%WDUIF68DD}`k)N3=kUo#Uw7A$-q1^qIB3Tl-=l8~56w%~7)k(r z9~oMgG|HC~7)2NPb)ClJ%uHJsTIEzC7CMbAcGP8$*kt3aHWrYSQ`K8EptyqaKHmdn zq_u9h3LqgrZ}!iADrS1M)SE)0Q*i}zY{5!1!uq6G>=Bn zT{S&+LjUIk`~|u5;?u6_WAlK_&}F0dCxZp7exjv_`V=th`^Bi{i$WQ`f`K(9Ec=V8xoA4hg{=dy?tVaB{`;c6#aqt($9Pp zCvlPLkXYT7isG&ft>YC3K8x#RpQq8f{$xj5gv!?;_diqIEDBY@#tsYq9O z3KLwlNKW=a?OWS;etfLFD1ic?#~lyFSJl+)208$o>2T=AKwdVRH|5FB3tiG5x8!H& zId^M3-uXICb;F0OmIDJ*&2>QM?mA@a(-8BK?dyCeJclzcSdQhQDDnqI_*cN3|5wnV ztKh*Ih=lnTHnqO85pLJ6!W00?^n^C&-yBx)qpat}^A;BIqKZL$vuH zjo~XQ1NCZ@wYUe16ag3Iv=NSfyMBg!ML87xBS{y7iDAvZ-VUGG#VE_!yS~-*z_;_< z5uf$?L8r*^WeYKmN^?X~|3gsGoxS&U#Bg}F3y0hGe%u%!@l8If=M~ss>&J03lC?o&W4Fy{MXLXuKW=<^w; zjQtNK2{L)cZlaivohFeXMYr8Vq$IMSmC;VM!(xjd-0N|>c3-t5AgG(qPP>l^Uv3xu z;X|%=_lHuk^$kpt9jMsseeSv74?`KN3ygs7D2#aM!GwA+pk51I zqyn-17c|^UxWvCpBZC~)40QX))|2k|i9&bNN(ZZ*2FVX@`v=nCfTM6UQ9kz0Pqh%4 z^)?Z8gFD!KcHZ)7ce27$35PC*fZA1T4l6JklhvBwfbs6Z^`pg`jzuU-5QyQJA;ixV ze!L>OScHIzxkbRcMHxyZQm*2Qs=PCP*{wu#_n8S3PBizf*V$8vnzgZ6tWFZhV&}KO zqCXmk`nEJDY$PEFcPj5a{9d&hg6ipFo-A}Woqp;&CI3ONQE#j!Zt>ru=zR-pZ3+nc znK3a>iz=uqUg_>ORd&4v9Z%^gX}yrVNlt?rkQd6DxU7m?RCX$PdrRY-t;($wV99+3kkWYuVp0*vCNeC<@+Rfc~Bu>wxlcE)zM!f=1vN zMKgJS+29^!`SEoV*Gqg>zD@gssISwbQ&PL%=&8a-2uQx#br^HnDGdsTACDZ3U^<(vE>>)S zuJYDH&yOj5T}16;>YI~|DR}~qlt2JHIu?8Gv6@fnag}jjGqG52Z2cCrT)Sei>Amgy z4hS=O?s_Bi-;?)z_AP6vjHLH!G5n@rc~Q@tQfhYZ0blJZ0;sHFbLvr_>VT4pf;HwN z{XA{Qck|7fv=uOpB%&tqXXnUq*m@ zJ5pA9Qi*`dElFtuL#*1-9{c0w8FBgZJT^=^I|;IT1Fit#E|Y9nd}c;m0hR0FaPdCiC&N< z$0C~P=>xy55stTWCUb3TX=zU-mVTuaRDTz%|Jyc|nk11p0=H@5G_@!LF+extCU1jRBDITHVQs54{WL-u-p6J%<%IvzZD~;Jj|MvjIeyW6QBbw)U-jFgU1_%q@<3B3C;84I#EhQ$ zFc+NTSZX?TM#XTHa`0lr>UwwQ-t-e@3a}|$H%bPGwGg z16_kki(Lu@HQlX`i>WeEjHoo@VXOP}Hbsa8rHvhJ^#dCy+hTk`cqOWJz6cwa^S&Nf`j=Byy!UTK z2u2f9S`z$Qr&o5YxNA)&V(&xRJ)=Gf2);x;<}NrVa_nC0K7E1BR&$kx!+!##J@a4;m_a6-kUbtboDF z>^;GTWbwTYoxZx{f56fNG>#~t58PI!;Q_|g1M9!TnPuavK1p{qoTFJ_Up6jO{wL%T zuN}nT17yb%sxaPp5lW2x@s}N8+;xZwbr?P8p!T&`*36Y&%tk(@eh{IFd?f)erFbyt8SqT3u0>LZjWqsd7#?^| zhx@7?Ar^IP0@k??1(;2_goSD3*tTEW*gVJDaTQ(D{pXz!tCaz!+B_%A@Io?w;-@%M z4a_;>-~Y|*|FK2VWRO^8eLLlD;C&ik{yE}EyA|2BFjHka@Le8QQY1eZzC4Ti=6MUw z1CQ@rgR}Rr+9de@p~hIQU4$aQ5s|1}tR9oz=$NQpDG}$S@F^OGq0}{;8A#mdJqlu0X5}Wi)_B_$BxN@<3K)0%?KbOjnXJl=*n z8N7MsrIhiM#>~u2P{L#|Mc@uTKEF7SSL&U)!mnS0SiG9LFz$_vu1Di>Bk|-1-%g{p z|4d2khroXa0)?X&j&@0_)2wbnGh>-)aX z`@YZf{eDbtBNa3}8kY9-ciU7*Bs*<&A1>Wg{-XQ1JL$NKfL$T9+!LJ{|O zmLf&lG9=5`TC!&Y=jy`htuU!H?DKTUrz2fWH8hNuE@v!If)zp1vBH1s@|^nEGa?a@!l#ZOa0=SK>yku2a=o7p zrK`QObFAigR@yCT!@oYb8}!h6ZC&;>C@U+|&;ffTKfH^;4>W@cDNu^*Ii1i>XwQh$e*gac zAW69M)zJ5eu2>%qvYZv^j^5rgqUE*X0GK(Son6+(6%TY*0DBM=_5*Mcb;XgzPX-Xj z#>-S}0gr3*EuC~fEHN|}k;I9Iit`?S-&8Wk%6A}uBhJbhgEd&Li_NVEm%>#a- zpIye#W8@S#sWe(h{odN9H$laO zJtdKuoh>E1bls>002qYQun(-RUS8vfJjfCRauST{=HoA_Y{8RpT{y}C7laAHIp9wn zJ$9_Ae10R%cweUQ$;`gx*XKVOtp6DMbw;@?e3E}$<=b?k$W2?)!rG8_wnseA>9y+D z=m^V7F~Z>=AgcY(k5i9d>Lo(uF8)n5!1o6yuWfUu`zeKdZlj-nAw|qJeZjdk%Q;kW z#8iX%P7!`eiIrki8%Y@f{uKjfo`cJ-dAGFFj|-vH;BU>5CJ$%cDA_Vs=VX8RcE&mD3CHF*Ug`MJQH2uT zCiQDkogwQ5TM)G=d1Ns)a_Bo*4~1>ZWK=F_C)ZNgpcbn$MA% z!*i6`BRe72Ea%zlYCYdl_Oma%9V>;3jG(v$E8N$vjs9K229`*ko}RjTdQwMpKX+_M zNJs#fjS&zq7ap7RYR9Vf8;zR3u~;=M^?!$WWHmpH(;ALsH`Zqq@w|cIh`y*Id+bHG z%915ZMm|KYjV(SD^kZZFw8lk-hLzu457B|ge$=k4yKALT%d)UJB^JIk!3wNt@dxmT z_cAEKf?DU8^;}S|a<{LxTds#E?qIQIqvqbn6F0I_I}V69IlvN05iP{-@b`N3=NHS3 z?n^l+_6TSvaJJNq1v^!x9E=adPq%RC+Rk+g54Ucs$~XaD8@N;wBv=D1*2+wIJWF4n zCGK7@SyKC8j{`TY?WG2Nm=a+*cD1JZI$_1Ukg&~Ce)@^( ze_W_~hZJoU?$FJ6Et0Yu^wuQjSl*RY(rHCB^q zot>S{h>wd?Ix)lA&lWy&^WLTyos=6Mrm%`Bqt}&#tN0kLy&B9vME%OdMZogBEvWUG zxB7TX@9m5c*FuozTA9)7{64;WYlN3xYM;nKnMfvLY-HeaUY^tb{WjRf;HOB`raAoO zM&vPC83`}Rgnk}F|TXu(6D1Gs5#L-X_Vfh&rCl@FYmcxmmuYz{|*7uHzn&+@On?6L2|m7GjZgKay{h`&u$gD-C! zn#Ee}&3trn?i_%C=wW>=&U&+E{ZdUGc*6;yUAS<;IIzYL*FL2|zc;x2<7Q!!5!09( z;tn*^g5u%O+x~z7VJN)|6V{SR4InlK;9Ld<1~)@nT_6DfBw$_FC9aT^yP+~@E?4(0 zBXGdNLR&b;)xZim#S37buk9c%IYV#GGowpA_axEM8*2NYnA$@ zy)W0)-P$&VOy}+A4#*Q#4vbc$dtnr*;oUeoJAa1`WXM`Am?8@NdjFH*U1N@U!X8Lf zhm-lwPdwq$=__K$QvrEsMsENr69Mm?stUWAEp4ntZ+7U43={)-_pH)^W?0nb=9SFy$%X6ZmptC8%8*kX;g>V?8g| z`I1l|AwdlMM|1^3Q)-_lxdT*SEdV=XFFmf-1cqbd<&(q9Ea zQN>ucOon$RRxlM0M$$+G&T8>zkgflCYdBj+bJ_Rcnz#+O~q9Gxuf?fAHO zZgAb;xcu1J`H7P-H@EG7zJtr&(Skd|QOgm|a^i`Mwi60P{s{T+NQOkZB?{FbDl2(M z?P-d$45$WNa> zsl6}_qI&O5*RJ(yczK7gy5E&Bo8%N7>p2#?>RxYv7jWtp!;fK-Jfko>;_*to{0eXZ z$kA}rp-}PfOO)TQAQbbzue;Cq9sB!oiiRlk-ye$JL!JHm($C_b+eCj~uADj|^Y8DI zuAol*ec8Zw?DCPnFQ2|bPI@h3AXk_5=GXYMlIvvorS@C?m>OG z#G0MCc*pIPpI)g~dhVC_s}!4ezE4w#Z_CcFW5W*Q23;edR+h>qb@CL*=x)A!O7~g% zT^qi%KrvDHPI;~Op6ky3diU(l*9=kZT-6WQ)Uza6NKqfOdD{FGX z;4Y_-kWiE?N2u~==~j~vv8#-XO!tFN(LO$YGF#YXp#?5eQqpv~`Q4SHcIeT*OjXYA z!~Jz7?IP2_lE*(7rLXgXMQ@Jv}M9<#ubUXomaeUx?zzoS4`Ol6?<$ezJ}=MH~8D-^1gmDZ-@R(YE%a z%BQMjst`|b`JMav@!sp1UL^@KEpeBHJ};8X+3ML;KT3;LQswgUDZGxM5(1FTe)x^- zlBm{5iRHP1F&w@fE_b#|1Q*fK@nCh2;D||dlS2p7r#jE~JhH7;O;<$MzMNQ_ZC^jY z{rF7Mh`yWRhMPcpFWyf~v*g*)J1@rIyI*K(Y8ntAlc|zA^ZUnVM#i;95{8!bZV7G{ zxrl(L@tfGe=x76v>sFQ=+C?b|-dn?t%axe6N=y>FdX`#PFujPh?H&qs{^r{wCs4O} zD5~alERx)>+7IXHSDVgt#1_h{UDy~1Va(bSKuLZXBkVpSxfBY!91ze_=e;)* z#9bGlUbMzxSf_WIUYI$Eit|0Sp_j5<-Hy4?Qc16IA_od3Dg{CBXPoDIc%V{b+FFB= zIM_BhrFu@s)zx+4(80k}9rXfNe|XSd-Mr%^KHr}mz47}86V7FCD75fS{gNpp|zMBHt#&*FYdj2tbmw58UTTdF+ zCdRAX+GkqBQ#JDqdf$LzoCo>onJa6)K$$Df#V zZGeZIY=wZIl*ccR&qk;!hP`KzmrIq4Oi|C)SnHAJ*7onROYotthB!ag!C2#h)o`B) zyFZgt-1Yt>C7VnvuNiV~NBp=OM&Z-hJooiESvXTFTpld4Y^F|WmY&yY)7n})cY7Gq zeaUYg9QUoa{UO}lAqGaUN>)zpJ!GaV1n6vPv_TuT$OaFUXVzPAy)Ij~Ja5{e#;DQ%u@@nrX1zNjJiYI^XP*LtUWzVBwgW)UpobP^W|rRc0ydj$1_=tjurr;9^{7t+4b8T#y` zZeRzMT$jfzwUc6Fualg<7z$Bx&%kHLta7!P&a5Xz_EE^Q>z|0^ltfow%*@S6iwy5< zL8!}zToN;FkK(*D=(*ZNZT9>7$6(7r3%NsVe!Xd1#C6A3mgtt(3_cf}*WT{8w6(pj zUapeAst{-T=W9r*xguVYQn$h0&Boi;g+)X}WcX}##PX#=uDwr6veP~oH1usX^d+#^ z*KS66ZTz_J*hH!MV*hmcxNCe3e!??qR>W;NB2mPxO-X{l%w4}<;eB{G6V&wZEB9V~yY>==N{B(K z3oK~4M<4ng`vaYl$5)P$oIX#{FO2P$I6O}gCeK}~M$7-$NPBQBPF2#h`7KRPu|;>y zWnE|mdd@$j92YXv+kSq1ZT9oaOZQ1%C{aZY)6zQ!dpOSVo^jE=#bS3(Dr|o?E2mCL zC{(_7-$MdxU|=AHH`+R{QkquKjzd0*BP>-u`c1$d$8@9lIYTJ+r)YR3dwP3Q^(q~E zveel#HFDz?C+j6XcoHCa*SFfQrzbE%ONj_q64yqu6xsCtY|VBkY*!ewUK&@sE}5?W zYI+|LasG!J>D<<+eKdrWoSt4n0xV0iR?6U8N zT#C|;WY@^KW;;?6_J)$Z4cR4#o=_L;Kr5xD-W5%K7xlinuSI67#pFX^4GjusyGrud|xv3LQJOjzx8UJh;vn~s*b>=N!S12@w)-v1C88m}$ z#J$(2TVXv?z4x}(`ZWz@N6T#2%fb@i9+T=ImmGh8zd}J#IUA*$0_%7rS-aL_Gh^}f z6T(KXQqiNY$0?LK>+>O~YX*^;OC#=85s+awgkXnTUHkw79+%jS>zt!dkSu{JP?eXS z&%`*gzq9__Zau&LpeW}ME>4Pt%mAvc<^)D5NmS@}6?QOx5biv_+y}~e33NYnk)oYl z9#n=~oLpR7_O;cxx>1+-Iq%5O&<~N^h6WHH-9!T-u8UeebxAiJXIcXA`R>Wg%*>A& zKapL$^-#q5cc@uyP7VjBpr9abN7ueKRUzS)@@SPyHnvPNPcKuzenQlKFGS*?0$UZ% zs??>M50x|++mS3GVV{_i!VFgr@JkbxJkd<7elovySNIy8CvacB+|cI%yjlOmBxexM5wID$VXq7Azp~7Su{f~b8mmga6~KUTprImr{ZyR{S_on|*)rEM@;WEM0_Ti`g`7COq8oSmy% zzICm?t@#}tCtCZ_a5@SlNy-Tub*g1z(->w9q_fb()Te}dZ zQ4osK5zYP=#5_un_9iK*D7L88x(!0jEpcT(+Cf6X|7s;Wm0!hZ4DD2|s<-NbXT4Xma z4AJj^pb7MeBuGZMVuP@^Z%@SvyJSIUxo6vjO5eCyBepB-^x2HU&+^#;?dsc zDKeEmzbdipm99HH@T5@Ay^MZGN4>RmxPxJ+#O76hF*t;N9R=yfy|@V*wEPFYb!-Ec zm6s0(K&aguOwSG_kAfoX#fxL^drRd^wA1$UJ*gDLYOl!XT*rt)k!nW6XFen5I~Qv~ zU9s2Bnq#NH zU<(4mA+bV{_7Q85L=$NnLN78P@Z{DgF{f@>!1kZli6v*I8lN*Vs#H18f7rVb zv$(ieW8?ybtY&M(`ie!g?^-MC`c)_QLjpcX66FYh(0wl(%9rELY&1!Z6QmV}_%a{? zZ};8#^sh~w!{QLVIMdA6BfXQ-C zyq$K<)509xa>Xs&B=`N`i>>jTT9WSsGjsu{s1b#-$VZ*psphvG;m7%U&n-N@5psz6 zhFNdbwn&T=boc?Si+UxoGrUyKp@~xE?(e~3MenM87`{PPUf!NP|1W!+=54_1vJ&mu#VvZ)&nvg9v-8Z z3Q%)c?S@;vC2d`9H*PxB@a%n9*cIqz@9pb$(zNu?K}2=@jVSd@6{!h#3_ZG4@h**! zW6E1v0k+-1H~z4qVz@&pPMsJ1?=#KXqoVNEaaYBYyIlxQT|((bfg86|EOn|~b46Dg zjv`&-rC7Kd^Z4>}A!rNt6bDS~!m`Vaf?ho#%J?Ym+4P3e{qXf@T&`3Ql``pV17E_X zdoGvf#_urd7dFstw4O;)gu(A-3H1;)1=SP`x1QXVl;l?khl)kDfSQ5!G&^cv-|18-`#aJ=u*Nab{Ct8DHXrBUHs5z;Thay0S8Hqop`g=Kn~3SW&l8J&gPd@$nkc-*9da>WEqE` zv9)1~wJ8td@ zgL)srhsIxk428H+LQq5@B7Ey~&cmIy9AiL%o^jp-$!dgS;ds1voe|=hqgScYC5+{u zP;M-{B<9fqD`1>3^7{vCGKKQ=`pd6%1{t??fw3_v#h||^^d^aU&b*?tYataM$kW$N z@>sZzlvGnlBP3{i>J9l7&MEYAgy(J(4l+^%w6H4qQq#qqXe}rYVOsuwHKET{)h;(jwP;lH?^}EYx zxjlDgW+vmOtFpWyOr$7O4Wdx^8E46cU*&aM9;+D$L#hc-z2;l$KTJ+!KU7JHYG?S8~y8>*IP4F(-)gbPePiW zL|#+A3oCN<@L(@LN2~DeAEq`@Tblj+{QX0XpA&P)P1_O4 zO%bVH=sTtmGVa}w^VcC6Hp4YlNL53Ck znMZxyyC(slj&7P#G8g;VFDPPALb{4a8YZpm6Iyte3i;MsE^x2uEZr?Nc zA+`O~JI#Hu{^7YIpf_{$3^x$M?*42H*oQz49vJ+$c4loTYibidd$xfgA<=@9UaFFP z6|cU&B5T)0i(dK#74@v+uhb_^MV_@>?CkPz;Ys*?0E*;7s+G&ow!#2p1_qoo4yNI2 z4q_%k`5k^HhT_bMT7NJAus2k@*u060N7?b`OKLgj0Rb7Sr|*?6ZUBOCUz@4HMC&;Q zrq4U6A|(DW@v3-WRK+c(cynKX(TMq-G(YU^M#bV!}H+VIi+tm1b!%gyh~j9^A+7%(j;KNJ7^xS`P67r zAn1&r{GG}teX22*&MJ^@HHYQ4qjSTU1jn}P?uR6#w{XM7_kjst>h4jF(03g+L+CJt zvPnkVa}8H*ZSAP2*Tj*rv6ivNSYtSK%Vr3Mm5yfZ*0Qp)yrwOoH5d@$0)AH%lkmHs zvA0e)j}fY1ZI4Wf#X!!_5YLy}3^T4{xwg@$}LdsIq5}QBcL@676pSSb>iIBmhT_$tw#ZRzG0;Cb2`;wy4n4(J5fZCt@yl1 z%qJ=;7W6)ZJZhKg)*IS0%k)6kBV%Dc?UP4Ut7dB0xaex*TPJA;vzxjf?%P7uBa!z z`p%y=#N@gU+{#q(q@9j05DE*VjaFxdgB1m z4G>b3#79GhLQNQ-0-9b!{3J!1sa>1~ z9a{=v)?~E&p`cF5An9G<0bnyP)y2YRW1(LjusAEMdbz2&c^iBMhm!bCN`lLPHX@-w zGAI}rVG+Rvl(J^$`tusF#gR}_+7W8c$k;8q{T$+yfcmk3SRg-I>9yo(6hVP{AeJtSVgA( z9e9j8VRKMQlGxmLZ%NQ{ASX70OJCSN5g3c=0-uaSA~ zK_Qh`zLP^|S8)d<8YW~_L64GER15~jH(4le2AU4C<0Wqm-D;Yenp)ZOYZ&1jkw77b zE1l92jVa2-V{<`$3S|m)3Un@N1dw8gGZBp(09kR)AmlW6l-P1AyOD zmzj!zR%Z%{=7^?uYk|n+h)a{z(TVedug@FJdHB&EdrW$1v^*Lq0}4dzkZs2w^z~Lc zS#%SH&QS%ydbetlPJp=D=6B@i%ut~TkRXbk?dcFiatg-UP1cDSy;^+;EE0RcZwzi0 z@C5H~&m~Oe0T?H5*s6?cHq-7QqR)l=Y!;J>(8u>!SD}ptt!GyWi53sPZ>b_!&0e*QW9Kf93 zHopQW*8hO(^5NFw;i6Qe7BVs-3X>47X5Bb}5o-Am(;tUMvJsXt1*#7sFd?_Tv9S^3 ziYEb|hU2$C)H&4o&@?2KjaoZ9DJjB0CVMr-1a8qG;z6KL{!gK7ntge3B9HIOAxNnR z*_-K%pl4v7;L+Ea4!-V)<7BilQ1fS3etunp zTGR%(BWZ9=S#k#Ur|iKNeD=wwzt{QV3M=bHq6S4YdC2SiL!~&^rSS4C$$XL8RiH9Vdo~Jpt1q=8_gG@~v=O>nVdSDPYz2 zPgU0m8b1z*w}1@#2#_bH`y@48UCTNWMKpz-e_w`-EL1%GDsXrh0yBmlyjVUTBG6m@#@V;`!QBSBRR#sU^>+%ve z%n5h;0&NSCK#}t30%j_5oTMZQebmy@5(>yf1~l9R=N{RA^N2g*hb+VbDXMLv3$@-AErPytCcjU27t&qD&}le<}=tVe^H)!Nk+?1I>{ zaGWF~3cWHjGZPR%J5BzNbaFu2jSvdN8HNb0q3}DU`sgB#;w32>$vKFr%m2?tsiYL} zMTE{rTvuI-Qi$b+WlEl<0P6}i8!=yKpj|Bv7o%O`xA0YBR2*7U1nR%He7lbMoA8lq z2T0EuuW~s@A#iU4ve@*;C#fRirjxOv?nNAW6%WA|#qA!zrpduRV6lw`f5Y{*4Tawe zjEag12Pc!1BqHKij#rf~0<(Q}iiQ#7bXV^~$j4NL_?r_~|227&K9Jrt{sbNhuk-JR z6cn+7_DO&=nr}({xn0x>(Gi(%55li1NJ=t`i0A^%rk?Km`>O`hW0xuTNXRdNdcVE> z6kund0}u=3m?9<$4WRKJLnD4G5=;rSe}D1xne5|FAKjh85=BfBPf}2<2Fetr1$JXd zab&>o+N0d#uJU-_1nX zpYeNpJbFrt15{u_J+Z0QvzF=5Enc%W8Bj&wj`{dhk#3E+a3I;p93Bv6pOcIKvwHwW zggh`ZQ6<)YFC+vmhPwu=;O2~YBBw{-sK;{l?(zdwV!b7}hg-{k+h*i6!ILxIJ%P1Jgt zfxHM6=kLcwZ==rgs8%^!BL17CR10A2Y4t$;U}rK4~^nTy9a)m6Qq^XI}^*})rfm|G|D=T>Se^=d$}BS;po3# z@;^Od@aKO2yOQ=_GPm#_CzVtK!}~rY>w{Qc7W-jHU&vzZOAZbW?-LR@AZsEin50_( z@n(N-?o1gJSyYoDVtxW62k8)66okrq2**|s$xYX0 zT8p0iyqjrQUx(cT-Sir08+rMohM-n6GJdkuIj=(g=X(770jYMUrle@;NWTd{OtnA! z31})}TA6nzE&XR0)+jLl8wYo&ZN5o@plu2!BO@a(z^~Shj<*hP{{H$;TE>F42!=fL zu0>GT8%F5_tkewf)?p1i%!klj{qRW5lzw~R3K)G^2)Ke0gYXd0JT#^@{+`H>Ybf9& z$VzVlkkX!#l5+m3r$w@N8S=g~#Y8qnMj%8*H3nri+U@HwSApOmGe8KAfPxV(+YIX2 z8VnY+fV^=T$u1ZopuVO5_vEa+|JUL{T2srVUnPThAVi^C4y;S&T?y9_ZU(lf9EfoN z0btn~a#hZp)h;xCSp&oq#y0|p(m^SLV@gsQ#d|VN(4Gri(6=tUYmej1=igj>0C&Zq zTh=jso@PV4VDjlSS?o>QxIWOgK<;V!fU_Je%f(tF?E-Ad8Fo%Yn{Ewf#Sk+{NrKAD zjAW@ZZbH9~u%-JS9f4R9z6r$b)|h8^Y(`32c`lCt%L5O@uEnkkx!}G&HT0ldG*=?d z8SEszER9^+f|^HPUokT7r~SQm<=b$IF@KZ7vzDYX`H|OEr9pTHX&jI~;w5NTI;Mik zB8k9a2Edu$@nHVwA>$gG&S0LjJ5)|Eu0cX8A3peVKEHEhM_R7kO45(H2XemS%G4cb z(NPr@UwB&GfoV28eVgpFn>qI6D;cjz^C|FOB2QhoF;$VCU9iaT_XNM*{&ULs*NAm~ zB$Pa`M?el>o1dTOQKa~L!8J(b;e&A*L{VEDuhwi1VPGg-THv$7%*;sI#{Yd+3j=Iv zEaJ*Cg@`gTGIH0f_#-|m+h{JB907l#TY31>-#4#?@LZ-)MKCt-&{k05W?&j5oX4d3 zSPmahWj`L~PCGDY<^jA-tRpN1d^c8vgUWMNN+K|ikr9mU5;Xwr3zPpsCvZm?)1VQ} z2C^oFB9iB~z;lQZf8@>=5WKJczS$+dXCse7rfQ-qDsJt7AY}$d!u!Zb7Dh%0(i{Jd zKlx3+MKOQ+1ssG_YoOZAejdguTJWwA2vu&lO9gtpC0?nirmgSS-~{aeN|&}hGMxK? ziB2XXfEx~WM0Wdg{1?nzna1!d1i74j*y8Z^?>Ub#qG;~wC5%V`nB!4AaZ-eE;YSF~ z-`}0_J9V9hM;TcK00D)HCr?&_<|+pX41*xe!k}Ow$IIhKTFyWTj9}MP1Q&4@$Q!ho zlbK^|szhCg?xG(>nxGUXy_)2j^-7eTGFyNE_LN)z#IPyx(W=dn};x0aB6H zoSMGf%Max!0=6~~KpeaaEiC)*x1K!Ga^o8sEf3^}g_BbO8PoxHD!}Evo@LxsFufx| z$fRsTSvshLk}RvB5P6nG?%RJ}GxF&s_;e(jdJ0g*_lb#|KJ^j@P?Py+X#M_Lke>HuKQg}p9ST6S>F&lnD7o)1 zr2i!&C_nA6Q@0JC{(SkznnXm&^hDP<#Lw{AooA(y@Tr;Jg zd8QD3iBwA*l!oj2RV9P1#DDMLO(dAQ$QTfdn3z6*zvp?na7R$1pN)a$y9PK(4r$Av zs)06p2Dwn^mFz~|=~SU$%te%xl!S_8WB@OTLZ+mEhO+SR@Bmp=lu3Afd(q(%QDKwN zKi@84uAK2~B8ZAUUHJfA_XVXN$9w$(97q-a(T^l0yF}L?AP87=vrjenNDGW6z+}`( zt)!S3Ee>*2*e}Ak-zR@ysA8}RWw%J44NU`O&96v$9p;sOi@f(|EZj(7Q1MkU;DP%- zzHe3j4ZQ~0FqX^`lpR5$j@aDtW?|6R{u~e9n4%m(U|DNn3TXii z389V%&z_&GuSbAwq2j-E02R*omsHmPKv)CO{6A9~<$vwH$$zljYqbBH#P|QmRQ$i6 z!~L@f|7-dE|DW`42>%bW&HrCn(+?}RJk(~=lO-J;jT8T}v@Z5bW&(Qz}}lENKBB&Z{EB2p|VF3DY!b zN=xUcKCGb^`gG~#Fali=R2Q6nl*BlZ2qkr%^2o8vLAfC8eiJ^?6p|KbGifIZV^yw} zfj8?7nYo&oc+bBiRGYjW(PU&~kqb!hD#B*<-Mrsg=bdHkWBf^GwyjW+>`jc{dch4n ztlt;8-ac=|Udi|2>h>W-zYGFI?}ucy%{tCXzJG6=7}pX*=Murqtx{&Q*z=w|;kB~b zg>?!vlR{-B+jde+#xi*T+%h`g$3I6}jIEK;z?hf|Skv>|AZ+zzJQ6i5ybGMlcXSua z9Tv+c<*{)lQ=OeQv%Ox|j=~+UANHDo%6)%zDAlB$3R^c+CE#l5@IEouKe&oL|NPFj zNwj*g8H`=^0HW;r>c6(rH@Rrz^7eQ4I)JR1+;TO)y{zn$N#f^qqSl{uUkYMM2I zbq>Skhq$agJWnsi#%uY$Wj;N~dGP|aFXJv|)IR%*5r6P}h&XSV)5-@J5P5dfZEX2v zwnm`W`n#4+!Jw2h54_N|3xtEj*i8R1sX!sz>h?6F+a!H;iDZDN<@tB?K(}7B2n+^z z?ONuje&*1+-1G6dOn(-m^`M8KZ+&pg3o)d#WNU(e}ZA)P$> zNT+^6ht6Ges9JBI;C4{npO@IO@)Kknd7t`|;%@>(S0!zF9albVy1Tm0j1JWsQcBje z3~^~0d3T*5K^yYF5|0tpHf=zKW#?1vOo#Z}lQ)k0*2{!nWelQ5bCC%NF;W{`E3!+h zn)6<{v)JSR`vRYIiZWA}`+6`A19ArM(*m{t+u>g|U9ZTpj9jPRWiRn}f3+&T}=e$ncqfnm3NWYVW z;n{)f*BybM_!`HCX_d&N_;`n@DmrkZo;D`&z>M&|Evw+*<8gdDH?h3xouyF=?`4-q z*DvfHl#(#t1F8)Yzf)v3sy48Tf=nIDr|Y&B8xkP}?h$+W5COIaRSh>JH*{ZPKHP`B;qo~-5-!2xP zO_UM-^Q-!eClEw5d^HM6^*+sq-1T}ZOO#EhnP*3(eSWTYhjd#k+$;Rn6K(kB6s=l8 zO+Z>;i7k6iO(nE{Np4$3W6GS>U*&8MOd_mx8rw}REwl9c3qHaW>o2udf2Vwm+6zo-K@eNvd;GyHX|P&e5=5#dF$KecrYE{AUBB-qH1!+Aog{rQVSw z_8H8hobP8Zo4@7{tH`ls&P?_ zc2(DV%kOjTnP;EOI%%hUxsM*f4rEd>*c~}luJLg0qfp(U`0hM!dk6nPNOO#y=hk^I zx*cGfYfaPxL>s%Cpw^N|Sh(S~#BI$#-_PbjK|tw;pY*V857}@QIMwkjkn!HD8D9~g zQv18vyS^PU8O)vP{A_2KHdoP%tclD$^}f#KbW1fdKJ-G2Jvp&5OC!(RdFl;kLp1YG z*CrB^zQt{fyD2M~7sB&71DH7n?9%bm=V=5LOBE%O$f!;V-!Tulw4jq?Y4wy`u&_pR z%sISj%Vja6>iKADdXU#zV9P}9MC!*|rN4uZ5QY9TxzN903dJq4Z^zQnYsILM)OYT3 z?4U_3hwfF!M&c~b?r1|D!*+XAPm=Zkw=s4w+fH|BL@J$X5=Tz|t(fGpNm$sxFrV|! zl5bBj^kMDX)Iykx{Y#zfa}Uro78&(%8r#j8qL=s;h>yd#%S;tkjdR{4gxI&cBbIS# zG$_H%z?Ad#Qlm#X(Oa>HG;f6-pUFj;y1E{iH;vUFZkMG9Iew!pSkWnB|}4Z zC#7Y-T&Zij5P_)nLqa;Co=r(&3m4%bfqnh_ z&RUYCSuKkGe^PbJe}}B+S!Pjxdnb7OU<>ESmJbGM^73dPGwNca`r_0Z-dF}kRLBA6pcpU)apUA#a+j#!ev~T2b&7nx(lzCScu*<1aPL-)9>vGgd zH3oFM2THeMFW2gBz%xMHHD@-NXL(5KI-YZ(9etbR2J;pwdPrxXTz{4(?hcs8D7(6v z=5j2SMl0r?Uar$kF>YEpsycVqgWu{t*bPGK55m~giTKjvuJYQ(IcauU_V)SIO!-gq zZ8RGCW@7D^MkWSM##gHMy`!V@8$3Mj#V@a*6&DDep`&x9UfM(o)8U$ z`CIIo_ui-KZkR(QL|G&#KW%=|76JhnDW6uLO~6Kt&$3XdZ-$V^yj(BZMZ!bv*FA+BvZ$W%_biO~@pPTu(-$9m zb4JxRJ8zkkUVg{ZVIulQD?fFsM&S-oD7ol|u0}Ki_0CTclbtk$EDmbf;Wi(FgyXjs zr^7Y*-_lC4u~xUzcGmCt4)_zpz{%&HiSqo-QY{V1^LM}?`u$ru(z0w&ZpixkqF|ifO!}w_V3_XHwx7QEP|!6UcQNO($?{D)*|}>8RH59pDF?4a0#y>`%cw0$ zHR=r$t>;d4-XqUk=VWh}39{?D7?va^l~;T7$=RqRv3?)DBFR#t-@~e>zB z{**X4Q@O~iK5ZMX*Nk7T?%9})Zn7Y!eXO(LUl5l@8Y7t`bJ8Bjz=$7D-jZT?h#wuv@e@r=qNt8WG^JNyi?s7uTE^8Z?I5PO!7K` zXoiL+%S`DGZqTmYtl*1){^gX2D3vx%JJ)Byx5cl;fJ|w67CtEiGPhx$=JE^PffO?Uw@F z*r&VWQuBfo;@^zbt=Q&K50d>%ljDSu85WX`b?lMhaOW z^rRgTFTyKbNN>mSiOg~7eSAxsdeX>t`z5{&H+u#Ca*J>RY)LrI+VNJLbkAd~{OTi(~z>TKI)*wyzgDFPlogI{97F2y15(zv^E?ajK2^R`O2xk}EZn<{E zWxnG_!GPj|UiGr@rl`m$t#gS*%W_rw_T-qtc-_Q$ceVyKDfOE%*La<+hNEmI&aEs9 zeBuPPcOf@DoS$0O?pj4^h;17utyW*oHQ2zKFO4kcHV7!B4qv*_gQJ<_$y_XM7qM+m znh;sO!5cf*5N^9TxNY=oz~A+&L6Ic!uf_4BpMU(~q>7~7y8WUSRcsOBfb+oXQ_j%v z+@+5;*!e}e>Gt)w3%6^vM6N+DQRH0I+ZWGF!1B>o# zo+w^HP2z~ITc4+8?;=HuBBf`;;Q zo#!g?6H~b!iCu&-Jr|!?Pp8UUtoe*g|4I8To5eQ+1A(YyV z_LaKsKb@|^ZP0iSCr{=R=_|z3Qo3tvXDN4K^Y16!6eHW}ZnJ;#-6w?4kinn$GN~i? z_jTI1G}`EZjOlUP8hcN(Ofmf}Iiqy%u=wn?mTV0g{VrJT?z|9jm2<5^>RTkFT_n~Q zzt`2a;Ogb~nL=dl-a-H7xcblSB$=Bw4+Y2?t@Pnpt82H(80@?`)lfw?+W0}qJ_WUM zt4J#rn#E7xPM*B^jxN1gGba7o4RCP#a%NZVVASOYqvY)m{+9Te}}TYi08Wy)@Lw(BrsL}oqsUFe^KM; zc{|b;Qf{^SukeUta-NKkOXDRm9hY2sUdizoM@O}0=8Iv+s+@&{tWI@#Z01aV_>Bh7 z%&JD#NpM0oT>a)#rHF z+v8+Q8OR%}LaCThnU-w-5cb!fP4XoiIeb1`c#l{PraDW{4pnQ87q9W`C`vBIZX6}) z6O*;4G4UnDTJ*W(TWeZB(Uqjkz;p!Kv2Qre66sVNzd@qBt}1lx6OjYC_+$OF^0?Ei zsQCzs7NzKlF+Iu#a*Z(a$>l8dW-SvBthC^k^-pg+@tg>MC!qp6uAAbq`JM8gpNg` z<=JmsJe&N5xG$gGuIlx6AH7K#s-&bDNz}NdpKrjH4_g1T{FkFdYYopDcm|i|Prp`0 z^-N?;?O@bNUBen){WI69m7sHbq@AHLkH_QX+Q$5|y`ef=F`3;~)`i0{y|5szv$C=$ z#<;iSbk+&zD4deZ$&*1DxJTSfZyC7ZG5hu1^6{%GxpAfb%Drl4`wh?7F5fbFr6cZM z6j#zW7T&x#pWe@WM{qnPSexL@n02;HnhZaM1?}houdB_|@KXwLDO(?VW8fj%<8v;O zYT~R~gJbwf%_DeEoI0n~>r={;m|&3{>^ypR(2#EOJ_9WRCY3-*C@4FAD!SLD$3TdZ zYfsD$eR{g0ESegR)5O0%AV{gG9<8>oE}XR3a7-s?xmvFnb5qCk&f-bR*xW`W?C`k) z)@n*!>B*-%NCJ)}?=|M`hs9b7<+WYxc5ox*Aqr*nH$nF`ZFcafvkUFT_`N32UOozY zYx|1ZnC#>*-qovJ%*5dnKHcfbMG#tU4TJtB)n(~-% z&+<(2c|<3wHC`}MUT%I;&{k!W$eD~iSS?||mw_+qB` zs15qG3sco5uzVJBZd0%JxE!c;d6B8@%4#B)KW&Z&(lTNJ%V} zh}{!^+&;0`GTd{j!N9V>CYCnpo2`v$b)iYWL#e}O+Uc7tQcLkhCR4*^rU9oed^qX< z^Vlw{q8i?$c+^hye7LphW?!qGs%?M$B0Rvb;9-PwcrHd&4Q7x$}N+o%IAM)Q5l6)n=^}VM;ePhK`0R7C&2P zCplemoMs7szkK47BBrs*C2RI)F#R+4Xc=(wg(qDX{}HWAAPU_T`}F9Z$#AmotJAkf za1xpZ^Oy8au&ANdA~pL~Ys`Wc6v>e868nbv7yfij&GyS zuWwO>($Ea-trnUvcE)F)xW=ybQ2%9qoldUP-qON^QJovs1Rko=%`c3jiV-ijwgKiS z$lF_w#^z^R_X`YWINrf8H|MMi31t=K8A`bL-X#Bg`O})aVsfR!=UuYJ#+Qb^0>Siq zgkMvQ4SQ>5(L$KcMRz*S?}I)M=J8aX1~A~{7 z+g#o5ob8Y0ORRrByi}e&>E3tEy5O3KZi<=wrqJB&`JZ32?)ZV3t?eT(z8@Y^4);_SvY+gT4~? z^&A|%KwDK8Uw6jroZ03A&7o%I*$UsfecqMgFW$#Y4h`%=`qZWm^{W%gT{bc{#X93M zXPNE`+ZW4IWB0m+(7PUiXXB!x%=IlWidbPE-xVBYF4>oVX>(A(7H5DN>_mqIq^ak` z91^%cSw25*siP5Tf9T`|> z>%-`Km!=VR(p`oN9>on5r3yEvD-D(iyY#KSXA$U}-z{}YPpjSjlx91UVwtUJ4I_wg z8pUZNW$x9w zIFot4y2q1JRroR}^pLY%rB4txxKGK0_U9cb4Z(BIo#*R}gm0?j}No~_g^ z(<)ybv5woqPd4`UR}`kPuvFHITSukAqoPx5Xa>+LLk3IQxd%%;ab(`Xh7K=RYg}!a z2*bm15?30l>UQuTkn4vW?5pP1d$~_-C42R_PkQY;tT;oLv#hMN8YkuEkHQU6EdK5* z@!sRleL#a>de!blNakVMuEGwy6rT{^k)&szGwaW$I~>e-B<6N6)xDj{r7JbnQfDx) zxypC{V;;3?TE^jcPw(f~X=L=Y75gAnbw9=HW37D;>AfWMybAX)i4L!H&_4A2-JHc1 z$z*!aLH&Kp&aLlB?0?tt!RE%zty_-tDrN7v7fdR2lf?D%o4wJwX{+;lQeU$7rp-SO zM!O|mAH4J3k?IANtX9S5^dtoMmduy*;sx>q1vQS$2zA z5ID+f#>#9LHuLLL(25x~o%!`vBb69hoFGQ~6=O5 z*x}ew68@!kf_*|CE#u(P^kT2wuo!G8K~3EY)8&lbdRs8GRAFni43^F!U}P2@eXzh zl0+$Opx0&>#P;yjzInZF%l++7>&z95CV0=US21`QaTr$ixQpc1Qu*xO6-)9`(YIf0 z_uX#X^=dg|9arsATxXCQm$o!vs}Gx&AfYO8_{C-A!@BDRHaOEO9AAL>G3Gq~sS7PQ z@x4UIDF>ISt(t3M$n`1Da?8Z^zzZuZIQAh5H;VB(EwSRa36Ys)bG{3g#*iJC7HqL6 zFtGo0mJ)*#_o*?fmGIa)Rl`7aF6`Uj<0IM+c6<)BU7kJeVcxjKKG&GFG_5(Gi%ZaH zHZ#qjjaAR?i}9L^tAG1;#r&}|HZCHJ;+En}>7X!qL~>%T&dHeJUTj}v|NgL|fXEI# zu0Zkxc0E`3olf7zMnmhhu^4OFF`cAgYu6}l&C+Z;PA>Bs@{j^ zBGWy}NAv57Y|UV8tBx_trP1$5*5(`4cUH{dm*+b$_(Bt_dds-Y>Ns72 z{ngi53X9{qrFz@@>kZSxwp2FdcD)~UXocRL<2Uk)>s$_G?Gvw^BH9$`N@l2`T*}jb zmXDjv*9pfKPsi$VacX@C{%YvUxoxUcPoNrVTiL^@lYY4*M)dmFP{ogtIAe@rKO3e? zWSsSUVfjk+bZ`SUXFN{e89KaD*Fz`Hi5iAla=M+I`ghJ-o!RBCD;Ri%M$-*$+Kzs+ z5LZ-`7$2$n`SEq%X2v~|O?Sn?SrP`dbArPpr^yA<;E%LqvGgVT>Yyn-XDK(e%g57n z+J|(%JV>PVGA@0hI~1qOEL?j204L!Rj2p{5ZcJ|0o7Ujen~*J2~%x&a2PliKlYkP{wccWv4gWmGPzjm@sbL9}`VV?XtXeD)B%+F^^=6 z@QYt#JWoH1<$ilqqXhchP7+~jbfIdu;poTpYm>hDd69Dt}jk_hHgIwZF?=u&q2JT$s%g1c#l^Z=1wgV%rbRbbo zx0I`XipYfkf7#*lX75DpLWO{mjpKy-K=+OGuM@wt59@%mCZX+ira&pE_4<9K-y>UJ z#O2`DxWrtiD*EN{?&dRmppu08==`Li?W7Oc!l07=SNIDMr8nH@vc8P*-9Ma6LidDp z$MPN3IT9GqMt+JeO-J1oo3>S|JJ|A^L_Kay$GQHn&f~Xv_h~(R!x6mbmw0c2^E#zyq6CHJrkK)2T)U6-gFJ;#5Q0skI4ynqo56}%Am;xZS_AH8phRXO{r_R5jYGcwwf6}TtUk< z{53C47?UWZjM9cpgfzBerUr97olu8ASW~Adzry=F;?}x&g8XPQ8+BysZT{zkw|8KxPwVE62Z+eQC?2k&UgOe9K|MW;AOgShrE^O2 zpFNAr0qXsLQk-Y{rrg7bvL;}$U{7qOAX(Sk05+gixn^~`jo3-}kEH=n z9I0%Ngqf{ZO^B{`-;Km;@DHJ7brwS9$)X!5w1ULZ`s5fHrZS9wmN4U!>U-#dpPTv9 zLycX<3N|=IzOyeLL&lQ8+Fn5x@^ZDHf0EZxSc=>phdWQYgw{=s!S!n8a={jM!pYMQ zH#OIC_IfhT zIe+m+7a2w)oVK!@%-xHH1V!SFdz;95L(qnSy0ynV1uRWTxoamDu?IUkdxcy5B5{dZ zW<;+^M75aU%I*~*C9+49JklE~RV)Hcd9oM5hN)0l9mm8iG=jUS*Xur6=!MdZudq3~ z*XuGD3u}qrmT)RuIkuQI% zoKXysE!Zx(m&DS*p;@5KcV(~pZhvX1`TEgR2bV-$#x+TcdrsK?GvY)aq+#V4NbeA& zX_Cv~1Yc;8bI>5BN<3prI zQV>mwk{sP21g9(6>viO{lX^tPdf_02N?aV?Kfi-@*SK_1k3?)h?#UmDJ{Al2rc^QfTd#H8Rb_weE}9 zAc;B7D(wjnd*Y;;*FWq0sYXAE6FpK`Z)l-=ur=2&1DVA(6q!gt-nr3z3p=&gVLw8L zNU5Pw+zHib+Ab^|hAT6mLBeocUt+oltf2asI(KE-S(RbAL0)smHCMzD(f-kyEkbJ@ zA(6}bM^bLVmq+-1KE+G@aD1;8Gf|`T7LSa1;Wq@36w3|=kTPNEk{eE?RKGYk8PzNSkzUT3hA`0vh=X;GC_R^61Vo#syEGXnT78&PZTV#pKV(UiByX!N0C9$Q;g!sXbfw>rO6=)Pi`Xh^-a6`>8G+-1ivp7z;-@^EKud?a*szsN;cCOSwnZgLz*Lv%s7F8t7kzZ_ z)Lm=1-uRxWy=aghfj^7Ge@tDXz;a_Q3ZftDY*QsJg06#Fr#a$!2yh0iT;LWXjGXY{)>#{ClxZN3X9f#t85^NR+p zSy9L?r-zZQX4n)80<7j__)qRR(AKZdBymK{J1E(87;i!>o7~rI*Fhm&D7dOVqI}_c z-t&H`hwiZwj6W>XziPHg(jNMXwFUP$U(DHEV{i(bc=>_qm5?sx#Yz;_B2}u+>07sc z>{G%8izM!C1rPDoyxMK04M^82_=I|n%v-2mA9h%DsS{{;ZdKL`mPtl=nxSIjeFAjs zrAdvZ)DLf=s_CLtnjg->N*)Kn6-Huv?kUztSdt5j=sMSKR$FmU$l9Vhd^F-@wz+AK zGj?K_L|?aW;DcLR5%dVJJ+EVuGv2w}aHhYPBm&)K3;4b>q{-)OBjB_1`-PlGA5b%~ z^y27Xttv89Uad508$$m)uxcr-?%jUABeXi1(7x71uNcQWcbEurF5YqWjfyY(=f!Qm&}ne_y}tYm zzUy}0U>fc;Q*r55N(W?latzVDvr<5JxZYqHVJQkt5vnrxs1loV;BvZ?VpzT^?j-Pr z%5}P_ldeFcx7oCeY96gX`yq8_tsbca{nfT14}=pUtl9(&!_|1NaZxe)df$}c;=9^8 z@3*RU{0BZvk2 zMbp%weHZv{zW>vk9UIFdtwGMMd{8%Y-=&7gKMS}mjtt#=3psgc-D8?NN;KAezkcba zZKl9ZRy*otz7-O1xd}`PcP$1EiOUB|JEPXbF2;n~$j7#z;fOE%T|QNIn$sO)OdZ!M z(Tr!Yot_9O_~hO@u{k$VZo{SUQ{5i-b z^V_dRzLjUHdFOt0cB@}!k5i5^yTxW_TB(K$4b0I&cYL^Nrwfhay)jrA-|Y~VKTX)3 zh5SPEUGeWfJdP=9Mca==xb8&X z=(k!}!{LTNPZJ-7@0U-r-GsPvqVKx-*G_4@vY5lq3gMum<;U}}=QK1I9cF%}l|Ol` zMLn^MqBi$=Ay?ja;_dSjoeMo9kL{W)5{wn!=j&Z7HY(swue~kz&jTD4hxk`$rCH<5 z3HC~7Y$a%dt#QT_J2Z~A{W#X&j_*2F(==bKtz8u-z{pB$MKmcx>VrO7tD{=vzHaT{ z=NE4T5j>dcW=`I)oV)Db+j&N=JoM3wf4jGTIk#A$boJMC_qe2*`MqgX`w{I{|FcY! zP9MNZm!xd!dpf~GI_-K__E;mS2^dC@jwPqhYUkiOEZ^O4WEgZx_|L8{iCg!4QpmT zN!FiCOb~`@WB>NPnO43lKTFf;c28|lrt!~rmfPjp@Rio{?z=4S7P`a0Hp-oQ>-@Eo zw9lK5yko<}tLyUh)KeWqY}ij!R`zRmq=0l$KtM%diT2)iBUDN=b|8z-;BX3#S@5PB zyvoh2#Wvd`s2?n+E^=E3Br5k&ZTI;3-3lv zvV;&F#kKY38}ylwB3p*GVl&4>^Xd|5ao?jcGP(8SN9)Duo^^dW#+7ErJJF}O`<92b z@N2B*`Ggl+i+s;Nrqh}6h}pjzF5xG5?|u~k1E^N<$`d1_`3EbJ9MoGi4D2c_S3oZU zo=}U9ryMJ~kvUEM>#V?Gv~&0A&hoO6eX~MhsWI?6UI*IHrsfCKD8I?TKOEwcw5#$5 zo!)3*4F_rU!>7*X$t9ei&aAvv@BAmrss{-(rZJlRYNAY$$skusa?FqG*5Kz3TCfysl5`%6Qecn0rk<4V;8Di;)|&Y) za#|_dP?Vc=Wi6Xq&bpH@&I-u_a&UBAUGn!J*XnE|CPt?)g)LL+3nNRmQ)>%$@DkJF0L~r791B%vGptenJNaEGIi)}-9^S+hUnJYM) zmK&CvorI0JOjhQJDJP{CuO-WQU+J0r&~ut$cztio2KgL#q}iK~iZtBSGoW9M;VGmG z+kdmi^6@&dzM)a(v)O}%;U~WdrI6Y6nFm=fi(ReU*9Su{vq=w=rvS&uj_`3)i)!cW+%vx-JdDr*@ z$SJ@W>g2CJWu|$st%dz4?LN6R@7+aA#-r|d{Q#sxNqLEl(}|@v&bPuO%4Tdqx-sqfE6TeG z#scG^5oOgyeNj+cgke&>n+uqNAf^*O@;eg~p+PQlnCl)bRAS-e#Xcg3t4iA$v)H?N zd`GJ%IxY5W^3<3X)z}Y+Y|!-rd4z6S$C9MSvexCt3*E_1NZG`-U{>89$ai%Dqc+a0 zyarURqxT&S1R6!1uaPCs>FNDU+&bZ%Q;W`9Yh0Ye7T9Exo5Y>J@J&zqHIL(W+cg)_ zuLo~B*P1;hh)+)R2tM6y2fGkju6J?MaC;%8<6GA9JY5r|X&_=0+I}v!_NQP3FE8Jt zoKh#jdtn9+r*XiHLvsa;&MMhL-Nz%&!R*w}6o~YLG^FmkIQlcK2|>VFH~(4hU=EVS zWL-YTMr9eRFD4C=G*eZDx@Q}r6Pymw3QjA@#!#(v{!F?A(ry7uJk~Ui&e@wa1k5(V zq{vnistTK%##LXZ-mKuVRdk&tM-$*sOwrk?2Dya#bv;y^xle}CB`IdzmF5DeEvxD3 zMa7|U6yKLRTdnPrA2&B=v9FTFY-iFE`61oo!uEqVW5Z-tMVVLJ>g>YvpM8?EeAQpm zpH>`50LOt2Ugvu>SXJC@TR)Od@TAOgq8NZfdgMUT!Z<~ z*2E_%9-cDSxo`9%V*P1j(4UH^>y=S?kSw(gs#l@s`>{_jjPf!>i1u| zPbTdt+as6t0KNo8s(A;ae{>w-5w`}PE+4QVsay`0FnWbx;xY27UKg?bNS8F$vFYZ( z@Wtjlkm=KWYTj4MQD6UH#rV^0opY33OT}t8&2P%PD6yl+J!7O)5WaGv?>YaPJx25c z1b)9wKv#|OjUMt`m2xf3PyS7~7mT~#Y$j2hf8Pd_?*p@;{Q1_sWge(P6GP_Dpva9& z?}(&7jBpOzh9N~qeA*TqKdM1r`0VI+G%tLPT$jxN=p-J4)YVZ@VNBn0A+9>Sms zZ5l(!XiV1Gg$%u4!WfU#;tFEAW5gZpb#p%pI`xIBUb-)|cV+PIm!5e26A8PkBVvC* zkhN~F5Z~9~EIGHiylvT9pd_P!)IIwwS!Z^t$cMNQ#Er7A)z_08*bCQbx-B+REAckj ze&i%tojhfT{ET$IPa8foGy)?zbI+dQ#__oz_0clvB7J+6xO&J@=VVf^FF$?t%R34G zY8jmJ>Q}~&8k6u6`K6>o7;`7EUpZ`~fXafL%b2jc-?PVBBce?PNWI!3~`-}z_aDO0oyNX#}pwn8)+4@Qvgzw)l0-?>mo^>o=0sD>W zm?G_4?wd!;cSn#vB7MK3Y&0~aZXNo!733i!>T7ANv$xLyYs}@qT${l@d+d2%E%9kd zR~WTZ*`mdxVk6{7Aid(F%BpSvh#z+yce+bU>KJo)U+1&iHw`)(MQJm+d<|$azn$fz zAs9ucL(`=5&i=F3Yz|BXbQOzWHV*$lBs_{bnKWyhu)bH5jRW}2ON5nK&1|n_%a}mf zLY(cFdxIW@zZIx4N1*818;`s}#W63i@?H1JxUpptI{niv$YP5;%Tyo@-~OW8Yq|X| z-9M#JSJ-4nYni{kbFawtB^Q-Oa+T5be7qzLtlrYFwS#^BiGu?&tt{Rov3_gw3CgIGwUNHU?g|7IhyCR9}BRyBB`+T9~ z^hI5RXBr-ix#0%Jd~fL#)y9SQ=3^j=lf^&siAfgF*|DNTSa82(6dQJb(nPG}d6_`U zA`GHH>EriV-Ma&&q$(=sXCTbN>`q6gNry}}qObhJlQGLJ&)SEs?iUf0r`QmkK0$LT*@ zx@ukT$je)j^c0)IlxZd>6SmyY za(RE$%n>;s25Mm=at|qytN2_ZDU`{7Wzvw`0t$}!Z?clUgcXDqq}q-QV+6lJx}NzEu$W3s;Nm1c!9?u-zAAWytb~vti9`yY-UZT zx8@=f@+>yEqZf~X=oid1r7h0Sx3Ih?78o$*sD`(+d}@qMMLfzo+#p3hHeZ>n+efDs z_LDrP#Y*%SEjObd>dKcR;CR?bH z22}pV2S&|N%Fl8Aq)ddms73{8% zzCDucMA1Tm?UY2ZU?7GAeypA`u^#{1m+vli;)B27(?VlYlRix zkmLELC8qGtymM3J-=HcOU+>}&#(Ey!lijA`PW=_jndI~ebcx_wPv-4n`{l4TXZw=l zn*|o6tIy3SGuEQtfV3fB%2>w|J(g?|>mfCo%Q#_x6D#oVa%!fr2G+4cbZQxV zS5GqtTVG^QExqGhm{Y~LV%AtUP8rHI483b*iemu?)xkscTkV76lMNV)zkV~cem0^@NN-Y}6ZfHD9NGT}>@%fXlJA~8@ zlS}bb+3)xi>rl4B>(hZ%{%&)h%h!Ikj{m5FnldZatq6!mMY3*siyg5Xl z$4Wwb_kx^nQ`O-)Z^ZbGSz(0g-9RyGO{(6LR$*$zw5$&wG4UqeV^=kwi z!|mu%1rO*vYIMMyljBVBRp5|(j@qw3I%siF%6}{Z?pWWbI`pTM(Kd`813>?dA_d46@Gki~nK^dOdR zxo&SJD1hH^buTdbMzM%$I>KY4#WnwUS>mI-_9J)kP)D%>OBf&)2w^=Cay*|<2Qm1} zm$Uo0EHM)oA|OPQe2<@7zv%f~BmtC*?^7;7d)z8DQX^#Xpg2bu?Xlc_PYn}Ht3>zv zN!X{7_nOw5S`Y<$x?aCC4r$Hm-L$5q44OK88QkcP(CMW{?-eKw<-NX?Li6d`OD$$q zWt!W-p4Osv=Ic;O5OUWA$04DIN0iBWO;p({n0cm>q^)=71X7OU4nD5PFMuJF;_fvI}DsinI5;B*UJ{e?QJzXO3dG_@6hf#V)8cyiFxbmKcqk`E%Lr_5JGPH7|St%ntO#Px~_U`Sjl8 z;b<Z%8bw8at+T)ud2{v29tlT8eHSC^4YJFfXmx7e_kEhUswyI5FLZbUL9 zMt5B>+ju$e ze5zequ6&0!G3=G#Ya}t36@wjlgi^Exv_We%$Otug*HI;6uI?F|E%($1#H-q3BG@HszRRIr;h)OH>kD+2~}M0U?x(UKF7 z($Tdq3yj1ZShFo+9S8_DQ-mA4+O|2xYC zZpDUKgR{fq+_zMjYc!;J_iGH6mN4C1TT(EbyS=$y!6l!D2P7|#h1lhkhC^4pPup;T z{qN5^1Ztb25u4a*R+T=|58uZ1>FIp8pRso`jP5pVeQ=Ql7G2F$Cg{g^hevrnxZq3@%P?S9zcBoB7Y;h@qEr5ic95J}L zFx+uvzWoV5^P%?_@zHh0ytaJl=pc72l5C)icYZEllNlH;5f_wY=EuY zyIEaZ2KQ@4W^(s!L9nt+s&*>nqjhS=y;&X6A3;c_9DYo!1r)H%Go0UaO7llCJ|7Gj^o>wS0s-AiObG^lNPS$J;s^(*Hk zP=AC@*Mt2k4wa`ctm32rqD|&8F2wxQ&sN_Lqd|++IO~Wg@>>1u&VARR!gxBR;Td z=QJHC@dTWxUuxkZv-dPkcdyiSVHm-alK5-&gn8o#6x0zCZP-cezOsp>XnrFDb9y~Y z6^!tYg`h(7MqnMK)G+I|DhMhO{l(Rw{5aucdbdl{cKqxeV3);okzYy z0^2&;I+ad+Za0R%?>xrUWZ)SrShb!h^ zsZUhq%}k?|X&nv@eNjGG0rmR1^8}j-+?y=Y`a~oARfiwYx#N7{ukhKp4CN$1N8CJG zZxS(^D0^V4&<=#&AFf5ZBlW~EQqJ5Pa1)Qj+@0kdJN0BFUfnoE?Hd4&%6>KLK~Xi)`cW4EJ~YG_fGiinOYLZQT@$;T^cZ9JKRb12Dr6$>F*&l z(8AY->OH+*1$z4R2nzdONKTGs@~;gx*2yFK?RD|y(0fjkqjjmX--DcN#)Lb_(I^|u z8S+p5;ys*=j{>gBaSi_{>{9E{<=!t3Fpj_`Zhw7;RNR3%B(|20K%)#R1M^lJwo=Ri zK&&nmS09P(?T8=x?&F)h9tGOtd7I6LeD_<)WIxJklesHQjGwp5KtfE+`Px?1X$I{c zc~WoP;m?08$<@D%sDN?6NzC!TXV!5BCXJG+73W`)z+sbtmZ{i4*mL{@3HM8zIjEkFC1NS7i@lwh|)28+zgdo#Tubb zDpczW;=lf$*awnOIU?E9GFjgo$W5Aje!ETdrPv*wuJ>T;@mzJCR?zT@29o#sU+;f* zbj?K>V?kRvekV>)0#jfjwNb++C%rKV7-D4jvd~+QMHE*19)j5;5POrIs+uI^Ooue& z$7;??vVo?O;u{Z#|1?uPrb5xOmWbxYl^0EFNqfQX_(C6kTiW7+-`j^*R7R3t&0Wdj zRl6QmN>j_uV$K6{Y>virZBldRAPF$(f?gUE-0mvIy*)xp0#1U1{T1t%!qO_1Y!PAI z#iz|*B*(sX)$!*keNB~Oy2{Er)n8y{TI@HV+CRO8Pd620e*r4Ek7Cd^{GF1-4P|vu zRNN0X-`n`!Ue!!78}i;RTdS;|?)R%p-6vzteI(Cb{yZQGNhmZm2Av_Db(6e5_f{&A z9}5+t^r!|oH%#jFaBeH?w$k4mvM=h+je7MdXmdM^mR{p zJ$5N|eLPR|_p|Wi*t^ssy9aZd9XB+?y_%c%U(T;%!GbKz0PT%s#HTsj+ancE&yG7p zV$XBwolxI$zr*uzsH8#LwEBq1vjGFb_5ifA52<*klHT>2kcg8`>F59eisp_KgB}G+ zFhe+qPNlrCreF=U&*>N25~_I-gqi^jH+@MoxexYwMKI?|jFXgUxFsBg<*_DV06DU8 zE-!Vuv_JS@ho9}&$3(d;n`a3Z_79?OtYKRop(QFiI4hw%kEnRE`;t?K#DNO&&%lwv z*G?}uQ2qP+g02AqNPWD%AvWUOT+MoKl@XR<1InnY6G8s~^|f7I8qyBI z4ZS{xID=ohz|ta@4y*xJe+FSU>z;#a#QKs{;S+MK&F z&1%(cPz~rB8#}3dp?bx1WGT;SM+ACzH9AkMd8IkXY<3H4o>T=*C6QJh40UkoG^d*l zAQh~8pA&$jKG13rEAFVxY`Qw(FrH{5jgJ(lX*o!H&V0fH_yaU(pwsw9t zWA%TEW?dRQyl-B);^mAR(&Xp?*_EO;I&5Jn`#Oi$}6uf>gdnYnW}GIlDLPfD^AYkgQ$4s+6}RfpTdrvu9rPQBPG8`^LniQ z$t?qo$RIb`^Z5v?CM+o0?U2Fq?&pmGkz*gOB~`sChc}IKu3%Sj95sxqOU~nhiHR8O z>a^UYbf3&W=xEM4fisHi*K62WxWF9=fWnbXc`uY>&%){?rBUC?SeF4jieCnQ)pD#L zkLBKgloSxeSNpiaCLG%ja-N3n0oY-ZwoMZEOv(;9-Y_dok)=y z^13GXNV^)^x(mmaV9YFJO5;IqkDuGhjM7h(PW~C*lIyuL|}TZ zp>g-pUaE7kX`x+|Y^EInqsro+A}h7wP9md^It5|e&(IBceP{`aHt;AxM!#`Q_r;w{ zzRtKcw8F@`G^lFmCLoAb8)Qi4+f7O{1vL0f2IlD&bPifK*(?=%_X>kgs>Po)_6LiL zw`LS4W&yT%ip7^s$%(mCfzx;N&1$lf?$Zm^N>+Dp^&At$I(ZgL!=hR4jg6kFWf=7N zz_cLW=8GnS^zNXhRdV-OzAhq7mJn80k>e2UJMh6t?<6-9bLmDCN`+=Yj<~MxZt1zE zrpBH8M;89yx-wOl;rjVAW>Pb;WK!`GVlHxH3R@6ED*sY_zR*zQ{+$=Tnv#3>;DoYA zMiDZGjpKEVruDiT!#;wf9c;_A3tnT+z1qy6<3mA9EvFkw-!=5Ej4`UaPt)R_(7=8J z1wT?*QSsHQwBeVJsmC%ow^IMxyHktIy-}W1XH%Q99!7R&E)9Jr0l_=+^vUKU_E9=x z!Js7ch;wNcsP0uje7i+kC0CPy(VDqJ3a82=DO{;~JpRt`<+cs#VQ2nKXv>G`XqLHQ7^n=$XifIcRd`7A=6O-2vb+#QGd z5S2?We*5#pzT#|IRP$x~m(>=(ehs5QO-f9vJy+eHvJ}Iii_Bgd0gB~RX3-QO?$i`t z@0qtobrzP2?+th?V5I(q?t*|l1+s463ddQP**Ck}BbRQetTjqF6Q2qel+Uls1&){Q zWi*-J5wkbw$P$SnVKaif=i`YfXT|LFB^P_Ou!f|46Hve2G=sSgqcXUCZgpY5>ziPR3m!?(eB@22wOgs6Wevpo5@5d&U54QwulQI7H8^r&)1vi44!%XQX%} zMe8^3nYr_S)ztm<+3&s}tlszbt%Aq=ZfDQhzkZ0otU2GhnZIegHAg5NsR^xW@Xno> zztg%_>V1@{MB~23C6jx*N*K@FtE4W=lj*w!{DU4prT5EBULJ{bacd@H4w8Hu;p=i@ z7j>{D8E75T^{LrnR)*F;PZl?qaNS>5#|wnMgH|=C*QydAJ3-I|f@FZ0+^9j4!%G4!>WIM;60(zK%oF#wi(eiJY{#VObD%}Lo#?+2qI z^)4>E;q_~zt#UJnU;C+f|%xD7QL9)2~ZWMAJ5@bx-x7^^i0ecjB`S)1C47$>ecKwEKq)a`~NgVEcu_XzZ4{FHSGRR^W^QV&Qf{A@XZ^A z`i0-t4vEN1suHggI=f@l+NA{glb^ZOR2l;L$|nZ4%nx29sy`VC^jy)pbZtKh9MT%O zt(u!yzGkA$elq5jaSFhkZ?d20+<$`~vv3&E#`kP5VMw07w{D*D)!11M*mHp&?@-+v zrO9rPD;Vl%r>24`(EBoQc7CkXC8Hm=zuyvu{nn_N?(=7p5&W>jNFpZ-lxol?(uFQ* zIRE0l%=`Su=fV0J`}EuFXU}_Q5Wn)fVsJd6Pt;L*8+yg|eL5JE89N^Fp2+%6Xq!j8uYbj1(0#t$(#czPvN4!a2)H$a%8h6z3S-@}8SqElKg& zsXv`;aW^h-!LTnD20hUU^5ChYU*Um}GM<}n70yO-Y;BtV47tF}mp|>;eK}TNNM!m( zP%M}i7<^41srUJ9Xz8Q)T08FWRh;MqMz3A!61bbd!2J_&dhY@pVcwn<5sz;_%d?WA zNAUCwKYs_aR-YujJ-e*7I|-XbpSf1RsGu9r(mUpDGa$TeD+bdT>0V)Ty5J(Qd~ zhf-*S^4g%OE^mKZZsYVnhxa_&o>q>bJ~lKHKDWyzOt0h=;7#6Hc2Wuys!Vz}?&qzz zuv$Ix%*&}^)?@~NEKt@7;{4uA;c>=JVss|}CfQGBSMTGZ1;0`ur02}I{GUhLRmK(B zNvi8bm6_Fj7QowuttFI8Z!i4tirAArUny_5BjZ4@SvJZ8`*fd0bl~8gQ;kTzerbvI z>FG+I?UluHP*~<$k?zyu&lDztspI6cY!Tm(8&YFu*sGw$zV&P(Cx>*9pCzzYVBuYl zj5un`r#tA43SKzn;2~6lg)C!rzze5COVns4w9v(pum!GT$G|uWx$wm-z<0uN*>_d6 z(8qUlt7rC9^9uH!U_Z)sh#mtp0<Pz@+$eNd~Dhh%Z{{vIiUj%av!OMc4sh2Mmuy+T+%g3bQ+f$dKPW7bHz z__@|Js0gf7UXbr=N0h#wjt)c`$YKId?PR%d*^cYRqE;53!Q=yG%*(ZJ)?2ItW`|ML zYhG~WV@sP3o@mGuUmdd%=d*3C7vGD(LqJQ-3|sc+&w-w(vkMU-5$r3@;7(#m-~pyi zgW>0(U(r0I$OTX>RI^?g{q6hV7~LIqcvy*QCjv)QOpz8PdC$BrDZ^NVS#*CnwmTM5 zmaGVV9`o=C{_xpqxz@QU?plEa5-e0xVBX6CNmyRUYzLwSkuC$ZW%clzs6hQK~F zGbZj^t}d^8F~9A2Z}8W-F`AVWm~M}lAOhIq0+o*JPkQaG#R36O=~5#vF^Am#2kJ~x zq?JG?!O20847|p1%A?ce}s>er+v;Yadanern5BchMWv8|K_v!3~~{^`2)H40A&xndRLp8yqZ-9W4KK~ zNdsogwcFx*sK!1i!dNDt$0Eo#h%&HrC*`M+hZ^APk}9K|UBrraILTiso?^(%cnL6_}JN|{z(%`S2&I=c#Q=Y_TdKMom?WhbUqed3{_`S~i)w+H%)@|B~ zQb2|wG-QfrnspkzF%9}-6$7MIO&Rq|pFXw4C-T-tvU_>^g{$bU2Lortl4*bjI;6|8 zNy+e~)JTqWi%zb)w6k5;lrK0EyxFY!oPixUH@`hl=-qCI6yElJ(=uI_;fdca$a{ad z6-DQ!TVf))n}^ObGF~6e2%HW6NBzO&T3Nd@E`Wb}NTL3Clq443Pi|9><-1NfD*TXz zgvcqR`GBzdq+&ED>!zWhm*u|Q*|VSKw7lo$e*KZ}NRQE(_rw44;2c*46o;f-JI>r6 zOt&c0SN#Cu#TDm{?E=^mtBsk~KLBL&STJn(-jofyLFK$ zJxfEkB;G4Cq-^8UwV?#Pv2kSVe&g%t)9)UIZM)gYyeVt5vgu(299Fe5L*IZqPXI^{ zvp043*4}E2IVb$t?gWpv%5&aA{ijcd-Yle}Q`iPb4!!Aupl6i(`gK1~!fk>qdtvmii=}$rDYZaB#mRJl-+bw!< z;RElfmmsY)KPrUgIZL-Eduk>%KQ%P;e1XuXmCBnpUT^A~^Sb~$@axx)3QOZAqvYSa zynlIPZLR*+5#Yf(3_o&>6BOKyZJwkLuPwSKCT{%VY9*`J`vtFreXG%5hF2Z zDKl^s+kX*|fE(CdDnqaY0ZAjIzbrCm2+&85vF}&0nt)??GxWqKCMKrvg%jMD+C3d6 z^s*f%GG!Q~KXQeIb%^^?z?`YdM>LAq|wImWH|f9{JRJTuM*3{6!IQfU`e*^XGAN zFukfP>=txo^kt0G9X));>3=={KbVUDDQKVn@6aF5lzgY$0Br2yMSvR<_!-J2?_NMSC%IUlRVw33e2V?A13$+=_RR4G-+-SjN?-nk0@`#n^bANKx>$P51Y-^nAl7f*Bo91oiW)TAip@8Mdg zh3FMIrQIF@eB%xG<>6=m?NiX}`g@?63?FqRoeKaU6azNXW@f%bD}e1{RUb;wI_C6( z$DLfd;ghc5lnUGa6&1Y_6W(L6pXZdQ#$U&NGB%^#!S0rm@k(`Os3 zj^TT6-@a{#i#i6OpSvpg{4^uyz2mJHC>Vo}TgDXM{T|8~53ra|U%q_l*7WyK{z|;& zre!?pNjJgyU;_A8fK-h+o&htILxJBWxdK7*0G%%NfS3usTYNHTFcKCK$pK(nVV7Sj zL;%Ll2L3arxc+_S{h1V-j1&Q=Ssy@_fTt&M<2xgNX%0X;hYL2{2|a)96F6DjfESvh z6ij!Fc(fbN*J{=IORoCT*{M(8sX#f@0dO_2OKfpZeGqgy?A<#wJ_bCw=<|0P&`>1O zDXxLwNJT|MZbujE4p^`0dz2rn<|*k>e}};HwuQS?i2!VM{rW<8EX)+dmla-=yxiPH zyyf5Pa@hqOMy(sabuH?@-qm?Ep6c%n;m@SgWZjC{SsHo>P_sHSJK#(C?BP6V9{-zs zOXaVWuXv&pTq+ub>ALr|*K+DZzcc?L>@MpN&nwy|vGlq9{jfVBf0+HZN#p?y0GB>~ z_`iJj*!JH~sosSA=R^NHaxBp&@`RN4_HWxfWlqHQK)w^xzhAES8vHaV`{6s_?$=U3 z^B22E^<}?HAFL`WLtpc6T_11#H{B3SAj;rI+QOrwJf#1A+GS<%yQ=^yaeV3T|2#h@ z^q+O-zkh-MgM|8feq?p#sXtnFd|(FmhjPfdu>Sy@sYWj^QO$#ScVP!>9uJ_Q{}-F< z>g6%2dBB6ru|cN^+YR0Xwdt6bsaO9V@cgBhss4xTlFnaDfY5QU#8k%XR~S!VNpfN$ zFW|Cyp&2=4?_9qQwvvF&wrVFGB|#=#u3o3PeCvOQI*XWxGlRgCmdl5`Ctff<=V^Qh z>PSaZ?pBoCu0hKmu*G+Mx7es==#Veo->^OS6nH3(#91AK^uS)d zlbTWX!iE1#9~Wd)1*i-G5Zi9DrrgT#m_iHkX(xLA&KzxeCPjbmG;mMxx$<+T-ZLoU z#{9)FQqB0YeEiS2P^S7H3F-a+-*)NTe`YzVwEwo_IK}<-;eLQ-uKUwA3>OM z-}gCtuf6u#=bZiO8*v$1-R89Id#qb--*jC3rPQM%c;Kdw{fu9OZ-41MX2z!@71LOu zbHjN8EY{d#KJ0Ri zHa>AexO-v5J8zdP`KtGy9c(DGzG$${X0y?yqT=}!z#TE6cD@wNjM;3N9Xmo_y?Qmt zSH#CHO)TR+ys_K((iQ(t>v9kL@Y_`S-e=`yWos(xJ$ohT5w}#Mo1>zls-`P=3uYB8 z|M~=t!sps5ooDxU`fx&{3Uubjo*Ls(9$fmKT$>q{b-b_|61o_!1v=+YQyJC8R zvCklG_l~}Xgw4>}vvQ40l(wwZ9D8Jj274P9FF3^Ee#jI1jWWA~OG`_g*78l!aYIHT zzj>wad8Y08eOqB+%Lja63R;tv{PgSFPsejEt={w_I;0xZ$12@vA5#=hzHws^$ zb7Ngyhg=1P%AC&M<9u_?*16`b)-ghV4le=A+-T#}OY(*1E9zcMQObh=i2E1}Mu?!IcwUxaf_hViY4$Z0SBum|DJd!A z-+zyo^?iEr2P*YGT3rLW4+cD99!ctn8>G_hm-jo5geB;(X7)^o2fuHYAa^#*-Hnr( z0d?v3jj~p6smP>C=vG3DQPPP)D0t{Ol#C5JS0f`MtFCfcn^jyw!2W+({Mu5X%c%~{ z(-Ll#Mi3#Go%-Dp_I7t!T%t!*-aZ(Yj4a2pweZMyS6;-aU=P#~&fUw9bFwTu=ZWs< zcYo(yxNt#6MkXyM%l`Fk`!$L~LMkq$rmW(d{}!Q&*HoP8;~3_&kuAKyVqY+ zl*r417-L(1jS7*auIJg(Fi$x2u71X5BUP+HyYFOF6&Rh2nyT!8g`w75n*%5O#;g82 zx{i70?>;~OVQqk5z+6Xn&sTITg<@9Kq$eiQs6FSD8fZVIykf-)MTh1z{lfU=%rNz( zm}2g*6sV@sp9Vamd)Z_;EnPPI#u4r1OUX-`$hS-R%&!jr{*xK2F6%laQ8{zPLu@dfV;qw)&$l_?{DI zAFpW2Jer5~02Usfnt$G~-Rz3JQH12Zip8&IFow+;rV0pm0s*sima@X9@fXFDkItXz zEMn|J^YO)A%SEZ(u3e>f6jnH-LJF&Vc2y!}@1-@y*%oCp?JeaSQuM;ZCLHVT?rkl@ zmWuUg#eNRL|28)_x1R8T`O|?@?@ZjY%chR`^=oure)8mr>e!>@oao~&^to44GRr<% zkVfahWaiNHyyuOnWoSy6x-9y!uXlW#Sv&Re#@o36J7tR1hT8<=lIn>*J(sWHjeav9 zE;0II?QGksC^t=8lr&6)RqF&4hG*l{9mygi2=<2_x>(NKwS&D8xda2bp#smdzs5<<6N%iE1R3OjKuN@y^1q*xkKqu38ZyV%

UKL#i`-f5fhh0EGz;3iL8kdvf=(=lu zdZeMV!rdm`f4-O6Q<$>EWaNYO+VvDzy#H=2*$y7&4*dP`-EQX*Q;#>>_Z&^EV$}4{ zr2W95vSBT!O#>E3el<4E-Y!`ijdhu21g`f}b{{{-CFR`l^oUtzmQIHKuXksCm&P;D zy;f1vFG|{&jAyyLJs# zyE^G2dH=`WNfO?8eW|;4mgq%3D=MlPF-yWQ>{b@05dR?QMK|f4^b|I&)Ky#^*PJ5+ zuIVVQ40519Z#!bUx-jjB9z1Lljc zSvVX{J3s5^y4Me}@7yVabs-MDAFV3amT3NArlpS2m7bG0a35u@ghMQx_gPp@PA^ih zToIw5P{)ETj*3Jzj1jBK9!!>WFL5*1mKpE}RGds%YKoPDpVQQ$eDkW7sM&1U=0EfC z^D!rWmd`ZH`sdaD{j!@aw#nLYpuF|Mp1L#V&r9szzdy8!UfDn?&#zhf<$9T0p*x&g zy6yFSIp%6do_EE~u>ZBiyI3Eazz{ZCT!vs;rwP{FZI0 zs++zW;}17PiAwPwTL<-!>jn+#czxfIRNd=t>g??N=|Ngr+6{1059-*Yyz`2d97C2X zeE)uCh4nh*<3}s#5b?i({4E!mU(L&$iJ{r~H8Nw9Al;)E?goiD4_qctIxY<4tJMaq zh89|W2br#~EpIV3|jPUw?9EM(DK^Byf>i%%i>IG#QB3Ec%pApvbk_*X^Ur>+> zG_Z7z3<2!>iP3G77aABzY@bS~JUV_iN0@CxC9xJ|PJ|1k!h znLw$$8_2POtzDGn7Pk&1ETdQFy14-F-0<_DX=r2ylfoqqVF7aWX6D{h5G}Yon@a9=+?!H7bWaF&ZyGu;tvRFbRhAu zudgpt0h}N{?a7m^rtVFW3f*MT_ltX!&*|sAe!SC5tJ#)I)wJF}w#m{sI$p$$3Tf@N#UNWN+jo5N=EUvLE{ z>6`gnKXCf?Ym1`_1gnAa2Yq0DpE`(e1jlg@KtQW|jJwr$%I8pwg`cn~6g$f<>O zp)WjS!0h+S`a5d_1F?S);ks8q&>R^VF)FszZgK7bt5b+to}(S{@LNj=T=PK?0J!US zmz)RA{N&lY43Gih)VABTnm2E@d=Rtzq7bN7Jy0uM+gd2Mx>mHP;tz61O)HvM*VGJwx`zv-VcGmYYsKGXMk&>h+l1A#~Q zz5ed9CfE4iQdeiAOlA9pc*0xeyD@>4FWNzV4xC5Yc1@qatiQe`ZN^g-^Q#^#a2yy%>2r51bxDA|#L3z=@x$+nhW-O9PhLu{V}x zS&pB4;=%Il6NZ7$;F0wl10;f2VPqvtN2k7+I8FZ#0BV7_+I_Qy2Y_xylRrNvPsW+E~AgmUoK0W%{b+!j{$t<`!{ zjnoQrzp1ZCVuGYC2Q=lh0T#Y#7->6Z6Sq%qTg6%ItM>~grtl78KYBR^NnT`seF!eK zbUf1x@dOCsp-7Vg*H>kx>JJDL_T@4!14`7$&@m5OMW+xRz^Tv>M0H5tBng3v^1idL ziO${VZd1xk02{BI0j(>yJ=Ucr3*4h|e)aSV-oTXyM9+RFB;`sCHjllzZJDP_%lxs{ zqt&&Sqc(yA-5m!fynYP-d^-ox#sP4l%-X`Axg}aY4VRslJR=)qt#Xq!XvcZT568#H z6PzbVNY<5WPM z9Iaau{LVQv+YAFcHy2lZu^*GT52uc(Q|oLyFnwwZC;7 zh@BGymM0aKU#ZdUiHIo!_;$$k6`}!lEb*PQZ^9~?mk~WA=yujN)Pahk(;9J^&kqO!%(!*L#PuP)k|xp= zE&jboz$~*n{RGz~$G=%ZE(7J-5bKIC4;Pu<;O`UyLjW)8!XS&wA{FNb*J_vH`^Dgs z3(SrLj#fxH_WTwXPt3_VfA_r#f4qu^%%umabtuwA}k4955NP~i5OVVybV4;acznNJ0k~Yx`}d$SvJ3} zG8t`?kOiSs9>S(V_xeAZ<;9{lx6ij>(LFYC}(Y$tT~ z?9TF4K*`;89E#ktYY@*jF}i``$eHXfTQ;GrdtE+zR#iE8&l`)Qi0;u!?4GShg(DeB z>QZg3O@dE)>L)_``YL%{HG<&w262TebYpP5DK`6G9TUF+{@WLPm%o`PB%Y8}DRZ-j zAc<1#%801%Xta&T%G7t(#$m|!l>~TLzRZFVZP)=@el;W@iqpELi0U{KE60;xinOJK zD+mGif@}`*v^@rb=PMpR9d^zESAJQ5pMMNVpP%eJfZz#)auGUzzGJ6gTq5E!0+;*A z9z=Av4=xyT#qM}7QkJy)Xl6ly7A4**0RgyxRUN**IJ5*hoEt4}b7R&|P%|Nil7P{u z1)H1$X2ZVz**+QXzlqZ`Gib1lafthD7(dAQl94Te8JIwrXfLp+D+U{DppMHk2R2f@ zj09g?x+XRcyq_&0K^{TfFhq$BA>mm<$S^5oHB#TKwWrWh{*X!_CC)vJH((?$tX6#z%u?)9cTUqo4Y61;e zlFEu4XGBCqGInKHu#!=;tZQnDfDJq(=L)L_?l}P?<~vdNUBa%7-xM=h0ts;&;@}x- znbdiZaA%d53t}TOgHH~0q^TVN4@CouZ-308a7Gm(4iH|?k=)%fTwX8AJfPxZQBeu7 z9(aJHw^UVIxm>DGWUVoXa85Z$4ho78bHU<~j2AuU=UYJS+3<= z$Nb!)bncSHm#rzvA?)8iKW2T*>kc{XF%VM1WF4GDD9{Cz8yOn$p^(d2!byDtnu(`i zo3Xn3tEnpTYV%DsHF2OO2%e71Oomim?V4}hxCbYE|69^zK`7sp;svrJkam zafW1Z(}yxG;{qUXwsF@&Ao~Lpg%ki5XAfFeQ~6l(%g~{rp`dQ*p2LnCWQDX!7`I(0 zWQgv_M}q-*kb&QigX6#PJ&flSFc*JkqFgVWTSaXTDtc~QsU@%uG#HkdBUEd(d zdj(|o<=>L#<*rFnZ?P-&Gk!ppxHQH{HuOO5QJ?=xab{)~A~NR@Gw-BUAQn$aN_H*) z6XU?G;MYUxp;GNF!O#=PJEf(izr{(r`z54U9K8WRT?}ZT6yPN`ROi8;Z^wW=*;Bc# z9~64jJusVKfV>m9=0|WqJOtMULIO1n4B^I16b2KWrAnRpyM8{}UhlQm$bGJyj5&-H}gaiZejRU37jhvFT z%K+;W8cf)A#N00lY6)6^M`A8NxR(>MHIe58R4alGOM=4}HvD)EJfRM3DR|GZWO(__ z@h9a|2+xBgx{wK^jxA%qU4bDH@LX_5gYJ z|Eca`>*dh4QMYM*d$;`Eu-nhmr@EA%A5*@B>Yc=uNaEQwZn7d@mAG|FJ#sr=p4OeC zY^{BjLUk=(JUY6AH|^Ve{uOnCo(UWkVN)+y`1)O2|CVn+ft9;pjFy1&ASXed%VrjMu!0qV12p>M?H7{NvrVRW~Av zN9#C@JsfraNm)$axc_2!kr#m%zfP~Jbo>^nu!-1_i($S$c5^S}MDRzc(a}Wom0W8Q zDgLd*^tF&nc`l^y=T_D*$AXhmSlR4JtoEs%vP6H#DQDjakR;kZfje1Vm0*39W=e??AYYFJ5||QPa}5FHonMh z?~pdPUW73%wOd_x#N|fr-ycH}TjudEh7fQm&$wHTqvhJ9XC;R5n0BEpE!D_oWlzR!)C`+`XVrGt!Ul5JvFfX=M}4WH zO;Vl2;@?Rj=w?k7yOr<|hb|{~$>D`Ry1>r|=9uN$91(6)TsKZ^i1%G`GPf83D=zYW4EY#EOzABzx)z~Wf=zy$pSb)ZB_fq_ShVZ0 z7je9TuxNQhErQpm*x-PmrgLdwZ>YDqB%jrxLx-qcxv?Sv^wR=p>fY%dRR<}YBl85C z`mvPM2}gf-?QL5_7Dm4-WQ}cA@6F42xtT%ZDJ+jY<{1IjDal19? z$u(?$*aSJhU*l*hIJL7tkq`UyISH)R=PBxkG@D-KEs|phyfQFNeDuOk+EfFJTjD~0 z-`n-i%G;ckeJ@YnIZef;r0vVzts8HW_lUU2i4(g;9c%faxy!E$SElFp6HyA5smHHL zEaI7JyNpmSO&|9C=QG~m>UYm04i@7`F`xohmF18J&kp3uT9g*tMa^}c7qmIw--t~2 z?8AxJMb?`M-JfSFCH9|?zp4k1bINTG{nulIS52quF6bJY=GL=&c;)Bjy>GanYk4a5 z`x7q|UNW}WGlkIMkE0^vf6;a-awsDvX;gVN&|QC6yBJ+|YT6T(-=-b{5bMWvHL~i%VDOSBX=vp5^=LM&13iAQF@jUW_C-mIz{ zquC&siPW?UEqfeg;`U-Ik|c*BpM)5qm?UeFe=peNdm+<1Z9BoEuu>NN66PSaPxsO` z&e-_MO%)b~)96qnvv_6C^4?c;?W?GbC)p}DRkWrC@T5Q^1r&N?giR-SawFD@{fcl2 zZ^bX&&1b&<7PV1O=Y07(Os@fBRAYz|6)_rV*Ud}Q{)%j)<=_*KV&9~BUl+SIl;0Ob zse^9rZEHQfz?iE!_2AY1mz8A;m$&zXjP)dM5$ZG6_&0a`M4{hbs7?Q}F50$Y0)*rh z#tdL9+6T)pZK#JMnG{ktxBtBF6saPcs$3$+utf<*l`UvqxnA?)rQTUeka9|QzD^VA z)}h0PaRmhzxZ|2$l>0lRA*yzizVL zUG5JcAIY9belzL>wBk~0xW~|QK`LacduU=%2kpo;mLlSZcB97z1nezY`R$yZF28*E z|7MPEx4(Vekh9VRcWGDgcVIJ!26F>ZfgRoM3 za}J-Jd=(Izw*Q__x6FQB z-sLl3ml2=dnXOL)_GZSU%)V17-m}lHN$zT*U1K8e?$2G{YPG#&EfB?i#wW%xE)t~% zJYMI!vpU1B3+y)2!#{sDH+MbSwwqrSsUY46gRW;^MY!9A!B474=Wc#;3O2S7ln7KREoscjJy6$$de!{2!ld z_~>^E<`R!~y0`zIm&2k_b0a>Y*XODomyxa@3HB2_N*!e(yGtkgpQsBMz3DT3Dilin z^YpPO^0a(-hV1SMYNNn2D6IgxweHqp@+k#Z)xgH*(^Yq4~wp_?puU2Q&s#L|wu^}qnw;e!c z@p1PhOmWrEaEPHi&mGe z?)$vBV-|)f1PKLQs>fZ4H$-6zviNh{y%~cV2FP*^0p;0Ru5fjLD!}0gSlLK<2fA~3 zbrpdaisg{$uaMZNCyDdIsE8uVOQu7x^Ls(Cb0-7KGXHZTM%Saf;Si2OQ0TnjHa>5YRSvS6)PlU4rrtd%o;_T=VnHo$)HmxKN%RGMm z6}%93myN17k^2rTr2urJ?-26jxuAUE3zU`N6wB{ zBJTQ~bypCH?sWnQDpeiKxk6-tb3yN61csAny#fgSNE}C&;n`G+Gn){4-#)U3R-<4# zl!b#t@eI=3)+e8h^S!)r5XrAVxJo<_vHr*ZgQ9NA{0wOqNI*3EBq#?<;+se4=Y#@| z)-hfI1=O7D-Z79fEH>zLff0djj^YSmu1!3F_}?cAJ7v+{YtNW-{jgjluFlI6G`}&& zyRH2gdG67*36JM6o^4Fo}#NeeLaz# z6)PfHM~rs4apk{YQQh&IL~Fe|#>#SB0nvnK2Sz0p)8Rai=#0bvG?CYbZt7IkhrG-J zRj(IBmiHk2ETVLe;m4r^$Sy9An4=i+eP`_{=~v(!rk*20;hxFEspu%PQIVvhemnA> z-thrYs$HFl&e!d|koDB>KtA?7qx)EfG0qq~*#ev5LFVi`o4p;44P@p7r-x464&(?i z^oc^okw6YT$Wz1sMeG%m%~=i?$)@cmNcg~}LSa&tnBvKPIM2#@7)Ssa==Y#03R~=H zX}~<&qmCSW@>AqJzyC-^4zajryvVi+4$@0q^k}`}6Uq{mDm#&|a}rS<7WI222}B&O z<^iK}J7MIe`ul63R>kJX@Ouv>&70MZetNi_vEDQ|iJVO_X5)e6#yQ!6Cb1l+CU*)1 zd?nqIzVmh`4VM3SW2x6AD(ewvTr7orp(W?b|FE68zUmr4y%re= zoi5}W(;^!}*RRNP&;faZ$A7lfsL~@#Lwe+3!ym^!;$_S=-KNluy_njWL(t@=;3-75iwK|myke;Q{Dzh z{2mI$!HS4CSNpc|613-KLmd<8VQ@EvhJ!DaF225%K*W)5p8{Vv^$o%YJ92JDDIbDo zft@r(aMkrArl}l?D_YRqhE$LwfZy59zyQp{L8shz9 zXu->T1(CBj$FNcWwD;!?lc90b6zezre0q9%bC~%*fJPqBgbmh5-~ErWJjdiN zk$$xZz8OZeV+3S=(GmJs3Vr`V>p;BQud@jI47>u&g>-W%Kq;tzAnrDNb8fs{C2(y9 zyT!Q(mr5BP9-|)uzK0^Bjsd1D5oKUJ6>%d+M2pd(A=K~xgD9XN3rZjGFNeGa5k{i# z&FV6`f9K<37qSADWUqJ6NR9LyQpbs=()MM zrF`E3C#<+3@RuNPq(uiBSQNT*&1=n|S94!H1*$f>dU|>iAplPLj&8j97~VvfJE*3$ zLkmVO(k+G!SjsvqY?KO=w@(uOg7Udh( z3;kH7&O~a32?~|Q@&*?ZG`hF_+k-+a zZS5o|`m|mK+Xrx|5H%4IXBtPf;!9?eA0}Z|GeZjq%89H&^BJ8IVW5t-!eDcs=gl}m zdc8GH=4@ffLA)c&mxDQKej3d^1$4#AP?0H?pccfwS@soB_nVs(3*{`c7jWz}Ac!F7 zYa@)ZNIVKe;l1oLwlj*9H?Rf1dlSo*jlnp7g39NC|85iDW!Vd03YPu+WN(|34@vC` z(=0HBe)J3A1M_(Uh~g}X@((oM^5Je(4VVs{o0hyA{?7dqQJ}`!B@KF{E#+^sD1~aN zg0r%<_*_|U(-UIr5xyVx-x8*ceERGmWbsIR-n6k`vHRNrnW|*Bi5$`$&Mvo&bYs6P z0VI#6mSD~nrDY|=>pc^LDEFXMh^^<;E3?`#z(mET5HAyS8C)t8yM|7gtlD)UQ0v&tW77F*MeIUoF}+Om>b!i6f3HCL9ru|WcjveO0= z)#O-;MgENpaYU-jp6f1Oa%$M%s<`u)^!=J6@eoF*5D>$%m(qw^de*s(UP7%RTF7%t zOIu1-I>rN^G8}zU(||Q-VT0ha-3A~p7M}lC0D%+H(1M2>&fHd@ahzdo01;Qh$L6~u zh-fcmV|}@y$GYkU<<)CI99A1nqn-l^3rbvFT2bCega@$KQoZr6lS!t?lr=bCUDBq+ z#f{VKd!A@IMHY$ZYRM#ZNOVVxY<8#AcPp8a6Rf=q@#LX?Zn4LlldBv2;4&3 zqDG{XTEsB>GVF89)qrx!?n4WYiKDgg{aoFqSuf<}1yuXz?~i}0C3HLqNthjQ_Ixhd z7m>dy>@yNkMK=`k@IB4f7ngK{QK}qLiLATVtj~lO|Kb(;8&cU6w?@ZBCXnBcN@E8< zI*>~x;(L6ODbjeK+nTF?)?OC77{|nAU9bF8P4RI2?ubNl)&CfBg`abw;D?O4ytWbd zm%{nGqmHdiq8(}{J?s1{MD`kQqup)%#Bl2!h{A6U%9_8rC|y9c&ye0x zEhXa4z}Kj7;sfGOI|^z4<6nYTWmuGquRzh8C2?CCMb}|ILU>aBe|X z)`}#W7u>2fe52`Fu50`!Z>nb^xb3m-%Hvnx-EQA_^up7Mc5_JK&_oFd6aPXcX#UAR zCHj2T&2sDRwWOhIO*BEEC3qa57+#$?4KuD)^ zw%8s)I`UXrZfwoASGgET+S9|4W0K#iR(eK0qfck`Qs~laGh<7AQJa!mFZZJv#U@SM zidu*Q*=gVVF}0QJZPns{7OF3eI_w5M%Hf}#0NrG{BntpaxCc(X?_oMU$+-kQFd<;< z0V9A0L>ye4fAIO+edqD_|HH$l0^N&$pc~8|^J|l>>B-(luWliRE!*-gNW@UTwstX9 zhqyG|(lmUMM<){}qdvk?jLt#aW>9KNr)M^Llu7szdH=_r@ra~Q1-c|dJ$C?VuXMbg zyr7NaCq1XZ#A)`#l8t*W#qMt=(ww(5VuXBT@ZCk@jagP`o!@o+QSt}f8FPVQo~(1Q zBc`5{8KftLCre~8`CDuyH;huOrQ?>ngyCcwsio3QC4yRdzv!o_s?@vR7iPP3?Dk=^ zPpqNl?&%lCiDbm_6xCI(kA18ZnL=BDe>|SB;e(8{_))a?d&kYFq`VL2IT;igl(D7G zqq-I=_m^`Wxp*#gUhvjzT!>|m|BnANuW+UqiZ(i2>rzqiZDs9P1zW(w3k$3v9_z+j zD4mhK9JM!$2Hvv_+!8qNx=PK@^iTM1a%R=50`}u1NWB3@+|?}2xXif{^YsX|r9us=il8CUwmGWd5|_!c!cuo-syZz(d^Q0O z_m1oOWxIRpcZ)CS;?n!l@dD5HDQf7LSCt$RwX3IYp3|62jre#%9{{C6pCm6R_|a|UZgtOMqU z7kuxIENwUESQlmSwbCEw(7Zk`@MW1iLgQnar~3D|4c``S$|n&-%)I*`FL zFDbN4*LqBG^_-gAUwh9*0Mae(uO2|62OU0`b8AvQvfo<#z9y6lESWn$t+nIvb$RQv z9@*b}D+II&ByGN&hEl;_D2KOIhH*(-Lz0%s)5NYu+0YD%F7<`aoaI^JThm#=7*;FB zcWN{W94G$NPn$SB%RQ1KH4ytW3GTS!Gp>`~m)l2H&28KVEY}$d;MP70K3TIVtVqEB zuZqnzE!MsJ9om!;D-Sa0K~^z9XaAu0u+Lt&j33J~!FM;8vtUumZiX@JtUzkceeQer zMs3jdDn`?sf-%k~rR4D&F~C;k{U zw(WQGx}==Vjc7CT4~OSv{E8M$J~o)582_*;eShFPj5?64LA5upR^p$2gSu~vNaSGw zYTj9YGNJ8to=!%NF#CGX{)uh_ck~=-BVVmD0un#>BH# z_Z=eWu_R6A?I!TL$u{=Y{POZr{chEyPFr{1@?$LmS*73dY(`~A5}chc4*bdQH*4aV zcMzEtCW=h+H@nvE%MyPSetZvaJ^O}v-qnH5+YmI2;f4Tj! zxuQ?I(uf@dEgVelu-x6I#^W*xxfcTeQ%T3A^8aA#3Ev*CJeZ$R8G!Kfq? z&?NQ#My(0cO%Sz)-FokPqh2(ji4nS`@~Rwbr@Q51t2440z2m6u`TaB1#b*qewa)gm-Vej4Z+zhL;r4t6 ziN09mCFsMzRWv!D`8+tSyE^IVbx2;ktg>d>x$tYuGIubAu#-K?Sq^j8v=hIk7TQ2L zd`_~CCx@*rJ;pxP3QZKcX^gJru+o2!yq`O7iDI3N-PiIOfIbz^h^m}=^&S0nC`w|k zmuv24;Cl8ZOlm8w8#0p?+YM}EeNQjgKO?xR8*MI@AMm17`nuof!o$kI;Hs;1c>!5i zN8X}Qrry;XroSCCiCP6L!t$7qc5z{n>`@F^5bqTUA;wXfSiQEm9b>|FR(*&1#N=rEoc=2$W~s)brrpL^2J^_G*G{2hm3f32!SB@nHqF>9HV5jK zY4jyMX;y9o&35Ihzc^GR{#kmo)_JYT#ApB!nr&mlve`SYN zF;Bw~SH_=#^^#t;-UE$7AD0ybjNhWyLro@yG-eG?x#%@C39TnqE63pPzocW@R|T$$ z+W2p&cDH_awpw%-)q2~}Ia+g*`$C8lIf#)Uc9+g@o;L4x36t&!m|a7ygPWsNNYn?$ z1vljJVB9?nJOQ{vx^xJf)vGTt8>jy+K_@pBE4-%?>vNfwY+7>1$MCn2J6SPyU2?^l ziI4k@xG)`Gh7gbR{q`Eu8rpXUhY4Tb1RaW*VLC);fhhG$RY_Qr0{z{2W7$O62x{}6 z>4|*$I{7!Xo3I={)hj!IiC@lFE9+oNA#NOLS* z!j+(v=Gms0HHF$zBBb+mT1rY%;7w>Qn(02c#^8o@eLgj&U6752KF3NvN|LO_EEbyk zA(7p&R@NOTrfu{t6I3zdYJ7|~&jox<>9^7L&jC}yz3BW97m8R>*$5 zZhGn`g9gxE_)$Hy`ow`7Z6euP)i z177nGb))uw-~0AM-0?S?Y{)Xm6(mV z2#X&sv6slp-Y)CbW;R6?8F5wixiwo0V$4Jd6(X_5IZ{V5e9ZXHL3%d#cK19rQl(wE zR?hqGh%Yv4U60Vad^9l6XngJ1D@=H@h0|9x&caHipCUhdzh;@upXh5*zNOl*gSG~J z9}RC}Zfmg`6`opV(n=3(w?i%rsH*PtIltk(PVXp99|+`db=t(al_gy|r&=A}>0_-@Rw`cU%cJ=6%C5Q6U!_%Bve3UHsmkcT-<%F%PWp(gDA!s%i0##FW{R1X z(1n(N^Etjb^>gAdpZ7pQysAPIX(fATbSkYsg4#vtmv7kQ7oMx=Vi{9^T^S;;>hzO2 zS11vQLKx^fiL|Z-d1hrbk#ah8RizSm%FSftGw!5ap9{Ct^TwAQbm!+pC$;f-ua@x^ z^@b+ubXIxfw>_Lb?oJc<=|(I1q!{~W4;CdLe^DGeaGs*wxkNA0FmlV*32s>49lV6A zI#%O=Q`YQ{qH?vW?)ngY!C~q=@qgh;ClYnBK|MZ&1J{J6S72ip=*1XUm zo-OpdP!>H`E3#0*TmBJCk7?7-S9mW{XQfZb5lXYxUF5cEzI~?uJ%636VqT~B?a_%R zr$VS@ZbiLp@!~1xhk|(Rjq&e)C!AK)U9=3T>@L#(9~mdo;85zmrSB-*KLU9PcD$Q$ zRW>QORlTlfcgJ5#f{!xpqhTsWzy}z8r0dbGJ0vaK^&eS@uf$|;>t8$XT{2)a_Lq0U zKtC7nY%EDm^s}v9M}Ow+_m5|;(dP2wH?Ps$de6(WSGg1kmftTQpplvkcPx7@(rL~b z`5Y?ljm5U--D6g!tE1#-z40RC5~@oFj~a@{b~SV30D)bwE~|Q+N^~w4Rnf9y(|e8$ zpm9~l_>-IQ#rZ}6{Fpf5g-uu$}A^LEWDOxI<8tJ)Bw^PtjC<(`2ybpm9 zEh3AW(&4FZJ{Ue{=D)78r>UxFJ}-214D z;|?ZA-C*fC`#vKNTHyj#QFnywAG=6Gu-8mL`4->bGrO2CKWH)XBf+?dvcme}-#I$) z?QSTeceeg_4}Q4f??Y_zx9gVR6EO$M!3dPA8gPtef3(t{dS& z_NiMrXYOb4O*bmp6)ox|F|dQ|9_@?)Itra%YwG4DPu3Y?_m3h7>k)G9{+VS@)9Z9T zcWGPjV6f2d)?Jj(LL=x-SL3llNG^OyRc6ihz%Dxh^2FQdl@N}ICE-YKnv0+5 z1wM8iNxPj2(y`c(PM&0GyI1C|YSa%}G%9VDn;dLwok$zWneV^UPU4LF_V_%12xY`(9GeU=_-$kL<)7_q+6VVpCF9AF~y`#&q88>ABM2pqia^#x; z9_0I<8jim)Ofx5!$d5_Kd>I&OTybfbCR!4m^@$F5iH;(Llvfr0(l5}-pG_5_@XCHbXH0xGF3#@3Zy#9Ry;qeQW0XC8 zkt}+wv3D25-d5nJu%ajSqzvY*4L+d)X2#UKF2q%qUCZ$HLJ?OfNCVJ+hzJ>pfAn$c z)kDGl3Y+Ek%KpP5KbwW0C;Xn|Io5!En?uu20 z;=3OjY)~`TdJz`&V05H2IryGz8NdC{+}?o5=}+mFU@Kii#ve;CA&du~xA?C5Q0vO) z4!ahP@EY4`FNkm2T=p@WVyw!shem2A;4{)xE=~^MFtA_OqOABp0er>g%Cn+Y$^3Rc z2~{{Vtv8|>=c@B&{zEkfKzaBO?sX!2@$n62<=~>e2JP6dF`cvw=Z3C?_%)udv~E+3 zOX28E2|wozV0^<=i$gGnwf)W^^!lxuvUG)-WockHo1?YUJ7(?W7r4mZ9>`zJmbd7` za4g@%^$hBM;gT^|cIb+I>xJ^Kr#{*qj&Rc3s)!F25K_;NYlS$VM|C6USHLnx z{%UkO!`&wrd6yaJFN+0eFbf3Umh?}{Ytp=%E0gXne`MX|RsA_3Lp``*HDebr#@6%W`ZFKSQBj$$|AN2&tqVFgSg5$glBlC9-;<^z5QCK z7k=dDk!>}`Ig(abPj@xRpFD|bk7u`ikPf(e4Ta9On=Z87(S4_JZepE#GU22-^qvkS zqyF{ZQnGMGdOWtgV)+||Y2@-&CtQ#~PxNTRt*2__H>=p+3RQu}JZ;el5tu$RFU9rF0+=T=xws`zL!Z&wlEh1Od z$WP7l8fBiHY^{8GX0@cBSR`PCQDTmoqVhFF^r8E4`-HX&Cez#Lg7sA|- z>?&fU0}|=+@3Y&IU2#2gjkmHJMvT8sj^yNJ|JDPd%21Pl#ufj-r!Ri2_zyrGwA_03(JnP z21Nz7adpeS>*GW6MY!U!juZM${!wm4FDr<=bdSHI_Q$(>^8U8cPxE=#fWE~5a3Rb> z0CTRbtT5nc+~L?~6JU5xBQWaV)FmhIK$j|{O&xv{b@To=Kc^#o{E1%sW%^vVdH30j zIJn+dc@u8S%8aMJErx52pigigTGG1lD3%7lb|C|<%=AnzY}r(@Zj1tPY)z3Fgh6g_bAP<)VcQI*G{Q~!B_ z6lMG>_O4^zsX$23nvBY?HwSbA@0hkU#r09Jyx5`2sd%#RAc`U{uuN5xIam^~odeQ%{_Rce`sqI_$ zxGh-0hJ~tP14MMwO8~`&h^P=iil|7hN+%*k1-A`F0R?G-l!Q>EcMuh%1qcZ>6j53r zL0XV{#|-R!&pqe=-2R+ThYx$J4_Rwvt+~dWbBuTVUY#>%{7Ejmckjk0Ce}m2e&zEh zD7ORWrT@2xsOaOFad?&OG%~4tILpF?x_yG+|cTj4>>G|JqHYTF*P9-$cVaJa;wL$E5vhV#jS~?AOclz^z?-| zle$y%4H4AOMucltdZh-Fpt8~@a7kTm**g!tf)vEop>Vq889|pETORQ0qJnzK!epv6 zG@@dFgmM}86kcY)Wlhh)rAqB@$u``SzTRSCMdNJ8I89-htI+ zVstGuHft>XIK7jPVd*g0-^Lr>ukrjk^BFW@0UA8y!*KN~2hd2bYYs5b5X^K*Yb zw9L_=X>y%s6u>~B_iWlo512KtUvGzyl>W^W#27DKXr}FUwGM| zduFoocUQs(YO?Iq?fcR%G9Y0ZKig>}aW;sFDeU5O&^3&Ei%SZH<>I4*tqC~4%UuV5Wl|x%|NwdmjQz|U`ItxaT;81ngxsrM- zn+~iCE9xvrPtpnc7elq{p0_TyY+Q+1f8eh)t_OREUmR5jdJP%1^;ZbuE}$+qAdnpi zC}(X4a>St&0DrzG$#OQ}4i3yMrD`mXMxhuu(%|l0U<= zg3FGUPjSivbqeB)r65%d2$j-2Sq$OAiBt;x50U)v$CU*EsvLqnhxgf@f*0##P6e75=JCB;j+7E-n~wahp0 zZDSm8<0edMiS1trsvRv7?glF* z6IoEQ`$!9rk}`W5^f6-+q<97x#~1ub-!?_Xarp`oukPQA8O|Gmh6K^Whc5yCC|pSu z9*+C=XIAurY)+ZLCr2JU+~#L@Z*h~$V&zGf1bYg;rT5aP%lF#L#yLr2X}I>>8Ij4! zMItf%w@xLWXXoUN&f0>rr77R1H++6(rO;w9EgLMBSQ$$GIdPRB$VJVF#jL~GHvx-k z?EtJV?%C|aO|bvt^DmlT)VCwRwY$QrzY4k5?-1A-&!PR_d_Mp;hs zZVO7rkD9N|X`dG@Uq@v@+2jf=lS#iOc}yK-K1|@J@L{vMG%?phB4t~W4H(7V^L8HL#~Vdu4i8K`eAg_#%J{!N5Y^Ik6UxH z#TEz|tEIlTL-}<4z$09K0W;H6M21|$*B+OK`7`001WC~#*flA7pUIcg1gYzPFCb59 z%V+Lp@1>7OxiE(u#Xc-VbVU`FC#?#ow#m=Wv2-@(wrJ13l#{pkj#_ZVtev-|x6S;V zzh==#u`C;$ns&2SMM$^fH+wg&#bU_$H`9B%q*9A}!fNdk3#C3@9HEh|rTPayz0pZy zUx{P_((iX)BQUT?g8v}?j^#G?K3acmmR(plhLY`I z4~tTYB%vz7*BFKsgg>!ZEwh1&KZnEe95c2mt&nO-_chtvL~Y4*F4iu32M_pcxAIU> zlUP9&&8Ti|av!Vaj<@{HEShoJAhYZZ(?crfoN)BnueM74CRhuCOePQe9?VV4PL4T< z?ywIoia9@+^8K?9-UH6Zu#$GM!Fx4ZHdCcCgRkZWySlAzGj~f3h8^uU^GYn=^iLn* zhI)C)s)-4s1dHknSpEpUX&`wWED)<~x|?HR?`Ex~e?rc2#OoXN7L7$WTF%pxo~{b5 zo>gWv_i=04H9+PJBe}C?J?>1@jKo>qFxqDP`;qy`aOTw`*>?BC^CF>hV*zQ=EUR`2 z7&@z-##JZbV=3>E2CX|G#*X|c>Emn^sS0ud6zYsW8Lq+_e}Ev}Hua#MXKYn~*uV}` zU)#w3P-;QdpV1nOepb#QvY$@I&z<#NIhS8;9BGT>f4}b9VaE7yTjY=3u|HDY%%BszMfyvG8%fOnY|OPOMAj>7~JBq@2^D zEk7BF@4OU@G4eHZd~4g5Bc{I4o?$F_j_hHHFMgTs}1t`X9M8h1**>hg@wTKpIq%lon^;8F=Ok*W|mC-Td4#k{+{piNq4;-#Xz>D)o zbNH+-^;y0uZaym8JwmZ^yNBU?Zd4>aQ~6-`ab5=XTGumLPMg472i0Vseo=9s&9Lz% zSr5Ieau12Zgj~bP)uY#(?2GkW3s^^dzm~8p1tEz1BZPtstgkx&f#3x%6ZJW5Lr)g# zTWx>b{Nhy>cT&+uyjd3ZDx?vthRibxa<=1;3c>5s%3Tac1*f^vHN2FE+9IhI7guvT z%u3TGHru*(^*h%+{ZoCiwyn_#FKyGaBh^VifbJ+Y@!^R)4~QjNCF56}o&R%1w&oLw z9$QNGFBSS)`Xd{5hM2UCej89u^t?vIQ*gZ(jC z%{e{X#<*`MvQy5L&|Lnm!4ck;pg1VZZE#QB=OHwI-z{^7TmLWT01m0hJl&$k6rZdi z(37U=3fyMPM6d4++gpW;a8`R(^=X}dC{6bW!Rrgupj`}KtLxf)^J*?>=Dfk0r1rG` z{OFN=PlIU;fr)Y=aFSA>timt2ais5$&jcnpXCf;#rHlR&Ew7&%q*M!f7PW;nvD)){w}3 z?_fMG$C`1$ot*b{`9_-?_CK^fxU;~Z;4!^o_c2YHV=Ar$v@>m4!k1Z^Op9NYFNs!K zbmI?DZzj19uk#1_!LV#Z7hIsVW{DH7H0;-P?Zx?(4!KOzG?u8rJZIrslh3D2F_=#l zS=jdeE({??#MIfgVFk~KIE3cUt5IsvC(82SVS*?F6og0kf;|FMC3i78f)Xv5jzh(R z^LPDXF(+Uf|C8qvjWR0M$AkOIBw^`%=5YI$*1&$D>1z*XmDk`>FEnt~ z$AnR0JUnEB`Jj#q2|DQKtNON^PS!bUw94}oAJX`ip43*;NwdDI8SF4Hk#ciZc5_D9 zSGzT5nL{5J=Z&()Hq1^OvyPmi$->e7&F;szvkYecsIzO`2QLk7G~gZ^YfZ#XijT~-`KzE z`8agg;c%?h^`Gt5iuoY%!gaOmaD2UXfP4AH5Pi}qRBGmvc)Z4EPOer7xrY>d_On4*<; z{NxFPLI&Y`?O!471#dUe=17+fO>;WVb`<=IP;@qQdFP-H!;Ex=<6BNrJJ0x&;O=8X zU;D3-1c!>O2fS>bueoh00B!c75@t75weuYB)g1jLtRe!+_V@l?NFf<^RWsPRx0O0; zH!JH7l^~=TdHsW{gOSzD=(f$^JD=JvtfX(&;vF~%m64fpZNs}Mtf(o5dE!~~tg34M z74+uX^twpLOs&Z_+S8+>Eqps2rjqU4v}^(kk2-gS)3Xxd?uqym+_C3=(`JH1n}$|3 zN7lwiJl=Yfj)hGjG#-Zp^OF{31o7H7xE+&MjPVW!n0IGKH*w`#zn;Z*7)^ zp?#jNOslb_kfpg)@n2DziD50@EBk7)uJ=1nRx}DxhZ3Xu{3g**ce9h=b2QKek;+lrt%N&vtco}OOq$^ zt33VFl*nJPLgR_WOHTk(^=eZI45xZo2q-Cb(X?X$C0EJIituY>~iw zlpj_VGxcw|POm!fP{8&;m#9;kNbl6D&;>_^>SSf|N83v~Z6D`i%G?aRJdJ~u(D|IC zG8YR(T6CuTL)J@W1}N2coE$+q?1<>+*Vz&1_Q96?I|O>NU!wPBnU(pq_R|;M%BFT@ zNM6xnY9&v+$<~5D0I`7XD$`k^#fGc z#iw`ccK8&fiizJzrDumV+F_q*)h31rH#q7QJBdO?`bfE1WNS&4y|zoRChRFAoz}Ed zYxqra+avR=SLWOy5YtyX+i)keUHroT3%Xh}uzdSY^vc1^Bgd1xRs5=6SkZ6UxNyjO zYpLa_C}n*~$O|iY%$T=GDwJyIe}{TBKx7Gt1A18ffte0LYo*R!hs1QlxY{mYAz46@ zQ*`9YGLOO3_%C>{36Pbw6y+3R4|3hF$x;PF@hLdHFwF&H*aHs-IXq%Q0E)b7PEj0v z*VjwY3U<>gkBaQyh*Rpjy%1<8t%>O{^`Y*A^4y_hy*8fu757jZ4yU^hJ8Tdyr1jm= zwIScfz9q&#?vj+&E66sCl8n{*K-%uCE-H?X@`H=i)$ZX7i?7ph%{-0ru+6BGe$q1nDx6N4XYI}TF5r{;X6M|yrTSOKBV(Cx=Jtt8z3XInl;4eNs-878 zU7mDsKi)#$QIVHv6w==5)|B*wVfKFXsw~GO{NP$#67{+}$t_m7rFnG;>E{)HSt*D0 z_#6&vHFcmB>SoWrfQHh`S6s7;3esxu%mu+SW!C|x4|u-!w@(rUplYvh~}Ldhr_W;LuRp1+Z=h(>b1N`z8b&-wyM z&)ohA232q{?>@W~~9Zt{rlxiQNPL0iWI;XfRME+fkobo=ANu{KOzj@xW^mAm zs4UP8$OKC$(Ly_G5_=MlhMsJEG<^0BO@ZE5A9B*p(DSIJiXWCTA6|7C z>!7&wO`hh}J#QhQRC4iQDyL&;g=ROiUQs3TuTA-B#eit;d!W_sa~)< zYj{g0_*EPf??HXLyaj+%bh)w+`A08mLPjlrKeNq$C1)OP82@=1DgwsJIr^Z-O&8p; zS^9r?Y7g%p{q<`}V)}SXy_a|dQwO@1)UUvQ;LlC47QCq>x@QKd(Ad@RUet69r4_%{ zOC+bflo-K`P4&9ajJ`p1?5DGQc|H?5j;F2#YO^~BRl`-)FqwJ_(BAPoM&s@rdmHT| zbKl?7G8Nj=0!*R70KPDNoEb@}e|Q+>%nA5 z1=7WHWXi8{-XjGkVs{=xGA*Gdx)_)&B!kHnxb3js7Y|^+q0sZUn!XhpEoYWGD<$WP zR`IfHz15+gw9I z1V%RpGycv$S)M=QOSVyC+4m1p%b#`a!~>UTXg)7GPJqAyfri+9^RF{Zv(JPQ$wR*P zbrMgiCu1E%mk#f<28P4#l1$JZ?P|XgAn_9L38%M4Uem(f`yYg+52Yb0o`Pn zCB11GhIYCCZ;kgq-8IW?g`f*Lf0LLmyL?jf6Ijfh<;%_(gJe^eP92V@z;1Mc=dl6? z^a1ti@fN)J_T^9P*tT@#nX`BWq_>27`DCg1w{+zT>?9Q+ANJ{Bi;84|QCmO!-27UQ zWW?6U>fLU@`^4WFIgnf-6-Nq})shLX?e7Of&pOXJuvOXSco$GT29BT6r+h3;3E7^< zO&st0zRI!MLIdx90<{8rMsBa4T{OX`)BVdSbcwB()Z?Fcygo=rZzJB#8wm|Q03|B6hKB4RV535BMGQ6hYAirsO@PUZ$n*QH z0LT*t1?2u|z{VQ`&=sLB!JDO(5yUkEQ~kg}XBOOZ zDBfPxZdx+fI% z;Q8;eBp7CW!S?2c{M#OF4vw}*>`6Od@>b}N;qR{{Et0jg=hfH4n?T{33=gznh=!un|Zf zk3M;a6Uv^38vp!5?MG|Teq(H44oK>jUf=M3P#^r=H;skeo_@gJ=QXy3sFIFgln{zi zrc<#Jt~^UKvs!F5)oQZzgs4tTT!;x_nX;Iv*r#g;;ux+W#jVYU(-RA{wDX{G8s@~k z4eQ63&sXr14X}t^@7h1BLxH~HPYPO@`JcC;Z6z#N!meUXB3W0U2~l03{7EhBqTEH9 zn(Ky^KFy(Hf)z^7FD=5h+q>y=pM}=-#AJ&@OF`yRMM;v8%N-AW*6dt?g*24To{K9) zzc2dvECs)O_|fk)NI-Owf6Nnxu$A#=G)L07cK8MFs@d3-zj;bVTsFoHE+%)UH^wc?O2LOr3 zJ*&U`*Z+4vGISaLbrkl)_&>FB`_H{~`{MU{bryPnyO6R<1;5jU%GtuXv1$cC6C-yv zDw~?g5f9!bm+m~gMdM+Hx&Y|cEs(kyThbyLO}YEjNAYKZjUI~ z%TqFkRN$L{31mPq=nQUg&l^94UcJX18uxLWn&fWD4kLgrDp`1V4BZJ4X0e{$+Je2wV-0<`3-K zB%q*!z$(ZL1>EqE#^SFw)0(%EXMuJ%KDV8R=k!Pi`}C(?2~$^&Qj2hI$f^u3GP4i^ zW)J|NRBi@^3}9j;2jpR@4F;+UuqUg}gH zRMfEwBbj7_o9wj&hZNy|cX|T2o-XL>vIXyso&Z|*BDv6Gd;(^FdQQo_U2-J*)Et+$ zkp~$-6eh!C%*3(m!KGucLS-R+0X`unF0L7r=|b0S9hvMB-pD6&L85Tf&mL^`XwGC! zUNFPC24FtKA6%Z5I8HsQJ+@Jpdf!rgndiy4_Uoa7Gh-{ghkbL}a)mj$2ja)IsDFb9 zT5=7LiW3$|H~@#CKkT{4F7yIPW7~2x{=RByVd^7?piuwyEC2cTz++e%6AFb}Ei;alo1+f@Rw8diM&n#o*XbQCOf2q15QV3RI*u>)~1E?#^N z%ppXhp!e)KGtKWq;+Wp3`rU~`d1bd`y}thqw06Ct5b?2HEmgt6jZ7PH#og~R+H>jr z`SsrG%KAC(t|_(P2wMK2)EVGvd{TJ+FCfm(Uj)5kyNQ7lVTI@6M|+hyyCvZ)FP1-= z`M|Xq0d62xxu0I1H2>!#O%N94fx!F)3%2|h6-EClYMT34y7t^%6Y0^n8;mxiqQK!Q zvt!Q|7m&7YaMucy?|but)x%P4-#TdF)3wsB8RUqQVAgU4T=jH-nC^loqOj`Z_J{&m ztSUsu^A|5t8_o(5k=KLSnkVL41}#A7tGssF>v~2j;$ZIJmwx{NcvT_HepuKFOeoKV z@0sCG7v%U}j(|;|-m?ae%e{eyz*Is$383K|7|tM3L4FvGVm3S-3UJk%PsW~hTFa8$ zqb?#MVu0}UA8XBR>SAJ6BQ`mh53!6~<@^?zzHrsr`=eI;1^;gVKNIP@(~bbcIuF)R zI^eD(W7`tl)YKHsY6Z8UItBU>V<0LapDE-w1Pf#lF)xw-ja9Z&MJZWa;P~q3WZSh#_qEFU`jEs;XT(Yv~G}i$y9k|{KSMavI2d3#y=z|B&5&j zcO;H+83wL2P^zkXf6Ja2zn-t?3?ezuGuJi3#Ko(GrZ6r!dyu-#fV4K;#@%wo%e!m# zyCsrpYq9WF)L~dgUgNd0KnRt}`B!sb$iKbyprA|9z9O6#DXIS$?eUkw#K!^ojcu6J#yAgZFGW!n%U@4P4*_m_Ka#UcS$J2X-$= zZ$1IaKRTSY9x!9lH$Sf(=_=_ObHB%(iFtW%%`~PSHcU%MG2}joj2BCO*E%@YN;eOH zW9BB$sOu%%P?~lIf2BUbKi?-GkMf1T!>xuyR zFoQK1shyT&TNshRe1Vdb5QztCAGVYdY)DPz{>*%RPG#kspd~cRh9deK4PabB;4G`4 zjzGPUcgNH<-~M^vYpj}vWsSvk@cQDFvV5@wS%o>B4kjV7$TK9TGPgk~^1mZ#!F|^) zF)qgx+?O7n*U$i2_@RLEybfL~a=06r;Q$`ILPA zd@2I?|82RqO*cH-DVHFg{GwqE>jr_3{CmO$w|Qqv){G;=ePfme$1y z?-@8lnu7a6Z2}AsG30FZ+pE6HuJz;T-@ku@L#{z(?=%eEJ#b~QX9KCQPyPTldyV5x zRU!!kAmyZh(?}BXl%0JCC|iRf&n%J)xND9jB}Pxe_b)X8Gl1fmAu%&Ev#iob4O_YR z<)WD-i^>DIDyDCCY7EIo1xCXrXaHahwn(VM%La)B`}*0@*=Rc}_aP8isMhoD7x-p>qhSF&1%CF!v zV^I^K*nIB71u3`+!mg(~YGYzZrC=lW3`SeUG*}}(lPI44lnYM3Pa!hz>H-$>#xqYW zbCE*?1l-aVh+4lO-0lX`kKKu!n*Yl&f>c6d6~*EJPR zE@uqZ?L=rf6v>gNE!)%>-YlR6Kl9q$er%CciUKsK$wy%2o0OD<>@~B%=*wsDwj~B8 z?s#OT2T2wffn*q|rt=`pow6BQfCTsxNP^&b`n;hM5+C7g6d^kQBNG^)%_xk1d9srZ!#{XGm}p#O zThKtjg4apptMDq0=n*#LWDRDlQaDW3A+q>)AD>YA_w3LpgVgbA=%LOAfJ>}z#mAM8a6xVaWhQVnNdBS8SuVfCOL zM~xCunhb1gu0V6VsiG<@2{)rO!djF%V;duuaS9Ef-2}-F=6Y@L+aq@ZHgw-VxrTr2 mK>qm`M6me(^LWuwroF@79!uC=dU+HbRsHnEQz<8}`~5fc39_jG literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_5.png b/labworks/LW2/images/picture1_5.png new file mode 100644 index 0000000000000000000000000000000000000000..512dc7931c850971bf8a8a9c7911164e4aaeb08c GIT binary patch literal 86434 zcmb@uby$_#7CpQLv9Pc(2*o^#l!`P4h=GBkbSTm#-C=?>f*?`~C?F^xEe%pqVo;k9 zDe3Om-&o#r@ALcO&yVLEmD>A#*P3h2F~=D5eR}PR)Vei0*H9>wbr;S{T&GYN*eMh` z(^V_*mCI|>>+qM5xum@L4Pz~HtJ|iUl*_lx?->}I8|dEIZK-K$rfY0;jEk3ti-&W! zj=A|gGa+tn!~gvRm$9ifx4)^pDPCpuz4HoY6v~F%}ZVicokNbg3?Q zPA@j-mX5prvdl||@3;m#YJ#!Yk2?5ID3KdoEo!gdJ&OhW?mc| zbR7Tt@Z2%cy6k_S9S+WzIWO_wkNpqaz5n}f30aQ+AHG$1X_$3)#J9obOtYEMQg)N2 z1smmzd&_inb*;ODv^Q?s_ICOM(|{wcK*+vI!p!i5WeT62WYoH_F~&&kPyU7U?O zXJXSfE@jtHVXM9zJBg^mr<)JHId1nQn7p zcZ(2MRLwQ--Gn#axN)O%RMb9wJ8Nr!!lI&}207Zl#QL1*+Zo`R?YQZ*Le6NWXYB9=6Fh`j>mPghXfTP)5gk z>0thKWQ*Qj33baf>uIug82w#L-kQz!&mJz3ZA{{pm)~5sw$AwOt;emDR%tXpGh>}% zNZoe-{{2;J*Gf>+3|WoRHA>e<*NflSQru2Wz`d=Nlo@DBH*WK4Xplc{(D3yo_1(=Q zoT}LwWeydzfPwZR7yYS#fwL~_Z|6HNi&4!HvUhNh!9q!g2rw~otEMy>)r5&soS&@Q zb!X&P0d8l7y}do+?a9F~YdY&=8M2Uc-&bB73;t#BUi z(4Ea#8fh;wY+|$vVRhh~KmczSw&d)qd(X(u&Mx~wc}I@zWZ_lu#k3VLkN-SMH-+8z7$>{*8O$>{JB_VM+-J)Y{}u@=!xpWfyu zys)?^lXOSYe7Kbr+ZS21SW{M(e~CNikyh2qJ-c^PwjP!}g;3#fm^1I}?A+4#ZBxLo zN(FC{2;Shq!-uuW+E@Fhl~w!e6H0#-Jgj|nn!aDm{Lj~A`t=_yGHN85*x0QIzetM8X>8S}X-F#K#{;OBJKbMv&<;fj&5VINEcO^_j_dBzd%GGDC7f)8WS9`I| zI%#cYVtUU1{q5zm$1F zIA>dsMYfCD9!L20(uD`-8HWm498OwX?#%AAz+^~GE5^2()QC?1ij59CBQL+b)oxgn zgdKjZ&X8L(;VlCT;a}>Mjn#x+g{&{yCr}dq~v3}l1kZ%@@Px__hk0* z@-k&v4i+v>w|Rg4`junQ&cy2&WnsKVoLm%1P+y)O=^$@5+?q3rpNiBd^^!+S`c7T) z^xSna0tc%h!(^|J)sP2{b%gHsw==&UZut5^MOgWhdHIl_jEoGwM$s7A^LXl(Zu@t) zdA74Gaj0b6+v9Ogqg{AN;&!f_%X(I~#$;`c$-bX2j_Y2(Z{hds*;nkSY=SClFu&oM zYu9`x^=V7<+)b(aE`e%}JDwlDS%_u+nr^JNFxQ_zPBFhhgZhmlCr)fNY)UDp3_5oE z_|DPKo3HNX=ihchzwYxuW3tI$(+Syl`P!ic*_dkuL-V#J9y?;>lOirJzId^n#39+@ z=qsU#7X7!(`|H*@ElvhjS>A}gQjC*nGTma;QGPI7g0{5i`{ISGutjQLy$a9`&6cu-NSBL7GN!eWrXPx}cT3@**;-e?GP|vq9$)0Qn89Qak<(C4v zBra3VS2}$vn1bj?{^|_q*um=)T6t>@{f3Zk$Vvl=6-+>!}`@o-Q>^ zZ+U{75r{V#>%8E>BDiVKo;@R@qo;Lr4v_%Er3wySwY209vl|lp5qo2$qobova|Um# z6U`yZ+ZK5$K7UCy%W@qK(>;N0A)XIOW<3{K`$4OfS!x5jm`9kXUBsPYH)OES4%00z zYEFwclb4j(#Kgo_ZP-w%;Vr6_zKC5PS(+b?w3{A^QOV*bIV#82LIi<4g9RDXQ}TKq z*|A)}(IoHHXx~8bomcm`UolTC`q5gn5v4B#OgNBm^aqEXm(kz*^L3AlgK5;hlC{@H zY9d;)tRj)dVw5xa78VxB3Xok13JT(hbs+p zZ#4{CFrBuy7ZEc5+M zCX;E*)o15T+9=f5oy}>g=BvO5stOE&c~~oZX0z6@D6mRP$!4Xg9oYU zjFcU?sGVd)< zC2O;!Dc@pm9L$=!5-RjG()c+JV`FMpXJ=W?bnB6GkupeMy@|%JU%$3=2u2p7_~8Ah zDW#u3uc8P#E@Tub>b;OY5UZA#OYx}+K1sD74AKr`qHNl=OFx~P(kV`x^{$#S&Ra~Q z_^9UCDp0Rqzy7(R;t~$GL7=G3*xhBjckvq}rlC|TP+S`g(i-ddjPBgIV?YW@QDNae zPR`1?;rsL}*HCOaeWeWeoaP5lj*gD{UVMJI{P_{Nfw^#+@)pa1s5fse%#L;K-?vW! zpaOLO@xPj~L)2VO(Kj#Y|sIR=RB5t;-+O@{AT0_4MA&%*>n*7js~lqBc&u zyLM>EHw@o&zu1?|yd#NQ+g; zN+U1%@#Dw%L5KONt&}k&I_gi{UI^Ll0kb8O=Hc>sfy?ghb zeaUZl7{|s3^+d4hOND7Ri>H$NG41N}fIG$Y_4PyZ!s4lmoYgg)9Alh{mGgy#g;A&l zeAu-9NUPyi%W*L#U)0Z4l+~+O`(|VaJau>X^YPiZY&VL;db89Q(-y<6DnMJ@-XdeJ z(m{NZ=e*gD-oAaC?o^m<-#^g~RzFT&I(MORo@G+9%H%|F6`%Ep`m)^!aX#A#ogkju z502~oI8Q12epTEsd2x2UXTN}e{1!=H7dG4TC7!zu-h3zPD`e5Pit^OM!yn139Pl9u z;TmzsEnX$7?(MldcOuB*P|lm1r-)29n|+Iu<6gF#tmWs=5-y8Ry}Saxe!XThR(`Mx zY0w}4cIhb?OMh6awbc59Eetz;E4_gS;`@cBS4 zmCnqbFh86V_rSnFgd@^vniPx3Vit%6@r35wNu&f^f>MP}vG{IaFD zEiZ3oZq6+{Jbd52eF7r4W=kJGj%=ebc*<#yH>qS}*$v@AFosGR27qE8c@$+Fe-8*)iGzw{UoFAk+ z#pXD3+oiN6C^3;I+NsplHG65UpYGH-&z<{+v&X$CKCjQZ2sKXucqc8b??Y*l4i&mN zH_^KniTqoRot2AtzwysmK4$g{W{T2h;^Y#z*6rd?(KVa6#LLfri&6&AJ*a0t)u?UB z$g6neOsGPZ<@+M`7u!e>0mTQWJyW({Xm?>>?mY3QwrEIy$BrG>Gfg!|$H$YoL=>iq zYiBFU%Y8pt^t(kIdWMBJbo%q!MM7rFg)3Lm(poZ1&c4H278Dfl`@LR9zd~TZuc`PX zqjss_Fn8O)fWhe0)HdW>L5H~%70*(3CuK?*5_-I$;!&~O`JpVjQ)087n_cFeN?EPW zBR=2LZc%B4VKoorOX}ZV4qom|F1#)w2TQVPtFwrM3desa#RpEV8c z@DB^)0yMe)L0K^CLW*nIV@BrBI>#^8e^6l^>dCel$Ez$()^j`)mXX^cNlxWSqvm@v zEZT0LW@do76z1PP(WFZOzQ0M0Q?TE{WYhkbdAYN-on3`EZK1*4gdlPM8Zh9C+z*~GNF-=ojy8@9qkS1#W$7lJ96&KTuS`3<6l4j)nnZK%333HzF z*uIByx9>+R{~&F)#%a0pah>O@owAiLwt>q%`oW_Ght^tgvrGEEr(mAKNA?G5s4 zOSL|k_tNd2?qJ$qV9J^q6LSa)pxDOM3b0AZWS_38G2q`TD$2TS*|Nu9UJ6@rp=WhKv+z#4sTi0_WBII}9=pgocN+o0^)U6Qg%wpXVy) z9Ye9Br#Q}bF}u{~eW|WKr>Lm-TAV}W$GCzI^1y4q-+4AL%L zzFdsAc#Qh9clYjmp`oLJJMSGIazA|H#Lu~;`H&D6`|+xiFMl53xW4z`!IinWx!8i{ z6fL}7%(d4KQgg1qxd@cMf+DckpkpHVDKb4UkQtzz-mm--fQ_)d>aAPb&;nn)8?OA1 z^wdgrduLR%+e-_x{CV^a_Vy!vaS3#kTkjP$4QXQ)+%mD(_j|C3HZ@t+t5~&H3lA@+ z1Yhbv;8N&Utj$Nb$LHBy4HbHfm+nZT8WnYTiyI|#Ym|7L2CN?ew(Xec{cbrggcdY- zTe0?8?vo2iz= zt)8S8kn(1;Jeg`gTFfkioExv4xe2-HkZjAYlSb-DhcVaRtWmXYX9!LZ1zVCa-D)=q z9I1h<@=jlmS4(*oi{cX&_Lqauud8e_;@LjZ9c)~P@NBP123%M*-cwV0vdvy&d{LWM z@5iBq9&uU$Sz8x&$A+Q)$BU|JiR#Nd&g~_)Yqe6x$;k=SLFQKnZdXkaxp%VVZ*zc7 zEdw83-@*X6PERqQrd>{U;MwU}rvW->U1g|neS4b(E;=7|hV%|u757D_8Z=y8UB4QH zf1zs~e0ednvQql4wzhC~*cnH;56bro)bC{&dhR>{iVW`+F)P-ZVL}h?tORKF$+n}4 z>VLkzCU>5logHswZf;H=fV=4Et_qF;wtPKC+T^S>lrDpY#ARq;xJEJqmg-|an9oaR=Mg@mx;zKB6vwQ-MxWhR3w?d~lEVu9NEt z&+zhueuyfqG$N)nlXU%PY;b801kJiL2JBjMb-LP|Xbco!$-Ml*4=Pz&ITeXJAB%?T ziJ~q2)0QW`9{twlgI9iie!7|T>;p!v&+2h}M!#L+j%^)|uupg?eZXVKu@$%qDWpms z#|3LjKHgKEKe+bw*_8%ODXW3TPXQAfgy{>e%(5Ehx>sm}9+yJfwbJWAzhXH}N(KQ@ z`%&{!u>SHz5QU_t$KE`i8l*-lr5mC7<-k5J&2((ApZqCz#dt(^3&Ons#c-r#m+`N` z^tQCt-dy~~OU;c;TRYJ^)wQWH)Xq!xpt|hByXPZ|z0VWoTw`0C2{Q8WmyZjt^=ET{ z2c81X<*OfRoMhL8r5T0TEc$+&#ugJw7nE3Ve-M3U{kd>tKCz`4jo`dSEXxx#h`{ITik_@X zj#FwFo&;+94g4&DTfJzo$FS6kwNArwYCr*Dyu#Pl_l1zfyDCd^$jH&f53-P}`JkGk zXBH}VRP6;bQ#MLrol}BRdi7jMVD_fXn|(t=JrSr)IVNA!d0wGGI)CL#ok5-mD>HlS z4?)|BLzD)UB-4r^vg-Q-w%+uYHVzz zm>&FRmRZ5wHslDhEb=*_sLi@7O&X`O9ctaWtl98$mtP*Q&Hm6d9(xN1XCn)X2ZH@K zjvzT2ifIPDBPt%-z`2>uOyUKaj$Yh0X*UV{R-EfFpQuyIflyj$)ndU6ws{4r5IF`{ zMMjsuJg)m7Nu!kTH2i*QmvW-R9e0vGxI_`xktgYruW$ zIXs_5V3ow)i009+j^fL~8bIDebPN-HKN)Yll|GGS1CRO$9O50oroN*H59xYs!M$M?xw`s^i#ua!}ls3Nh0alQN4|w)l*LD zVjsiAvv*2AcyGL5?!NzETKJ!TRwJD!DcOhc8}6(Q7x%_O{zlZK=B^rP(oc8|LIZe( zeS|dTp}~cY30WPFXOZWdniZO;)Lpf;wU&(Ki*u7jU~W8-&)2dDZ2TD~=aQbDK52X& zaUFirn9Xva;XXQ`-=M(cGfnpc*BVcsTUjw$PD}TEoNQ(n_q+5%?2jaSmPix_u5`oN z2nLFPG9@YHgmJ5KoJ#UXP9LF9^wT&CA!0QjuQgz2Il2zJJwUsT;>8RaARpnNEEfGr z1Iut?fSSI6Fh>oEdnoe5?*?@25E+E8b&F_Vt!LVME+1EZDS)%!+nYg9NEH%8Fpqb_W|x@Cfj4dJ)5$XDoXIyaQ<%`J325cOAw^D=+yQA zZZ$9PuDVmco7_<+mH$%=&Ca6Be?#vxXyDvm+ zK30t*^{Pdk`s9Kiq zsxB*aJ(ioSK01Du)@3a^#|!WB>85RvkdSn!6%@D1`LjSZ&b!@S_}IGZxg3vKw{$aZ z|9a;@YY+SMVam6chZJ$uG;yKwo>6P&{_$6RR9e6x?;K^v(aF)fvbWm_V=f*#~rr8EqyInFYScUKjGW*~Tw@H#v}()jOBOV-I;+L9d! zM|S&>`;)_c3qg8$^+!8W_aP=h#hsW&^_0)DJj!p>?24f0IC6yX)X*FM+@(2vB6>)9 zu@r!*dL*ajuobk@XS~JnmT=HmB=>>PvqnplWZrw-|A^dr)aazFij1xq^bJDsZ@M>W zq;KL9yB_-t#nfiJy8z*~L2Tw##h}KWJCx4cLjUQX@e>o~{c(Z;hADSv85WRqno@?F zGdHt4O!yY{fR7`p9pPPVC;rI9FC=T%{026&tS`J5g*p(UmM6w<*mQTAs~nkv0aDaw zXe{sRm+L{GLy}Fh8Q1Ecoa7`tGmEJ07II42w|;;=1_zzS|B z?E0IF&q)(h<>bpeWp`6z1c*Q>VZWZu^G3d*F|RzMmQT0QNzLHPM6FPw>et0T1;?Nc z<;=SOeY!z)UNLvx!ULcYN~T7Jaa*o{?L_QmtI&$ZL$IxTj~=c1bnT*qtg?M=V`fD5 zA7%dma+1MM1KUIwc~^AHq4xkzp(mO`A9K`tR-xsTIx8c^>hFZxot{^aAUMClATTge z!$>#TgGnmP`uA!UA@fzqT2+PUresy(jKEIJfS=;g{kHE%f?8YG6f~TyBFV;udAX1! zCGc54;^Z~}(TF)WUp*#Ib^@ep31J_`LvX_j=qR}6Wj2wdj2ux=Q?r4v1=YP{hpTIz zM0o5-T_eO6eKouUpiU-1RW#U2l%VXrQeF~Rbs~J>E#ehZ*C1<30$3*L{XC4XkQ%=A z$gR()`Gy}}D*&40=bs`Sj{q2FB{4A;Y$u40wY&J&0;D9X@|TYt%Rp+f47B|^_Sgow z67tJkP0ico&-SD3qa%thL2V1O<8>9{3KHke72-+>OA@>*xJnCIOe)#o2qT32Hzh|B zvL8SW{r&azS?k%Zz?&-b(WoFVcy7~qu?RjmaQUVBx2OvQnUeyYw=~B{$ku}@0p2Fv z4wTG#x3V^)Ovld=lJ4<-xwythE-oEaC)*?tEWDr{NwG(U_AYwb`%$yvucif^A7HIu zmvMIc$O_hqfTO@;y9UB&joRV2Ya=A(A#1(88tw%wTyU4~Hg=rL+qXbHAHPnt_mync z6wte?!km_D%zM8v7-x^JAOiczR_mfqIT43Q*tQQ3dz0nbd3+U6n+Oi%eX!hn_U&6v z5=&7$uSN+;cvv0Rr%(TxVyGixt_{+BZJMD{ynGTJ(Z9f)xIkp?=T(MKTjagYusNev zi^ZThgUPu+Nn-~$cCQH1`I`qYxypX&oEGM8$0gYCNQC+c6=fcw0btaaIA=ZP;`zcbYf=#Cq=vebypb4El& z@PNDojm>cO$=cI*@9rDQ9={S?{1qqX6`DY6pac`}cj{xE<$p^QE2}5SROUVvHZOT2 zfn%r~#3WJm@s&&ZfYR-%`7Pq!G_Bq-HKUu7qZQujvz^b39#ytAk# zNonlDmTT4QM;Y{f#N5vs`h@&`Vh~ix1MpQEz2DyOD}eti0V(?w$U-PvwHr{~Kuk3> zEX-(8z~FRG9yptf{tsCjabN&BJ_&GS{{HpQyK7RbT9SDP;+ZkM&beKqEyRb{k>nPPz)1#vW$k)CB0Z)LMTDtW? zj+NkLNFGf=2K+j&?9Ur{3j(hUNDWk0YREyR0(eU9jdx#O%P!X3EtrrycbK$gXl~`X z#Yu>wNWWIjG_9MpgJ{dEUCqKGX!_YmWZRUTLvw}+N+O&E@spvh+pyks`tkab67k%( zG-2oWFSSn?c)`5aJ#Sri{+EhQ=t>^}UuA1?SyyV>uK z4hCm(Lk@;m|8Jix^a`c*Z`IO43^67`JkqrAWt;)nYV5b)ogH$<$j8@eG(C7Od zHtB;uV*UC&ke&L+p>hr6s=ik|q1%?5gHu*Gd*R+M)U9s`YT~h|Y+!yb$;-bGneFr= zvV#kCxGk?uYaTIO0r=R3q;=(3rB*T!sT8FQA)pYmnCuapy~zAev&lB5)r^dOpz?#$ z(EZsg&Gx)G{cr`YeJ|9_XJ~fHAXB_OoN(A|x5h%gd8y z6;GG;R&eKSp^W{wakVi;TTAOpuyO7`I7$B4Sq>EU9o|UlX4d*tU_3Qk(Cpm1Tkj9M zMVxQTbTa-$lFG_4%5z#6MFvW5iS6#L}Ayz zWtwScwf+16o!;ik>GAX0^VzxgStf`Lj%Bms1mC{Xt3;G9Z7c z*zVn@P(ZsrK5^yOC}Gkb@8!;&IfMNN_PugPLqqe6|3BYAYAxH1Qs)~V&)J{0as%5I z5Ym|t(+2y5g|EO#z)U10>ycNf?-SelwUQN9tlhqw0`*XW04pNytz{FDKP>mbVEh;- zx15upfg7F& zhm@LQ?e0+QZVP*?6CNASWKz>rN+%0z|EfAkYpDYn9phlFzSkW_L9HC^9TUji{ z@f$EpWadUvxQH0ob0O?{A?wSb9U`8s0hqE=NAN)jQ0n~E+?&&!QmCqk= zTxs4BFuxbs4WjDByLY2n3L}f*-nk3pyorT{Q&m-!`~{?Ki>I+0(Js7pvX{=!2UXW@2<();<2Pd%RkmMNx4a*x$fF}E#44Cbls-W(jvT*~AK zlhDV_kz`BsRju}_tybJ(Zmz^Y^(|6rLoA#;MC`%skn}{Du9lLIGuyUrKXmYFSV~;` zfIz5#$r(C&`ZwsEO;Or{6Sj8SwHWYMJllV%6LJ7acSJ~rC$bFvbSIMa`uTXvQQqN5 zRJw0a+DO>6oH2(R;d4pJ#rKM-pKEHa5@!I&=0H@it#+fM5Iep>b(7ihCO@xBY+>Z= zvfYdG)9Je6He*p}53fN1I0WhF8z|hyOta|kC+{}D8`qTlTp*d~T6P6A&yx-8s!`rw zEaBg3Z*OO4Wli9rKEH(=QGjK83Pj)J;GY~XZ1Q_K@zI!_)ZoZbDCt64a+^qwOXRc? z5=ZKP7c8}r>G`cNq2XO(_5vUn+DC*;B^y5^5~CLQ6rt>DQ{4|L$^mWZyu7?@!rliz z-30pGDVg__U9gYOCU^~3#Uk_|-0g3Z5wfJU(PPs z*h_6?e6t07pbZKzSqyD^2lJ& zP-T{B*BZV04~C)jK0UP>R}=&C4jMfc5#7Ppbi2x=06#Mu$ zsPINA_7hW6T5RJN4a3-iD#r)N&zEL@3yYOvpEXgbc~csa67O`?fAatJIya87cS%0L z9sTDcM&jP6?|(mWy|^43@!!w>AK&_X)T$_`kS|EOti1dm%TRRm0MtqkMeneUe>wN| zV2_QRU6Ialz3c9-u4P-RrGld64vdQkU-g!*&U{+N#3d%QheN<>hy_?T{z48CR|l+9 zFMp8VKJzxZ=VrV-6YOuDp;}K}V?N&#`y!Ha>^}=&T76l<>)vSX>I#Vj+sVFFt5zMF z+8`_`vyqMMLsd1ew~glR?>ELJmP1KCfB7;4W%~>ad$*RS>et^x458(?Fsy?2{QD7c-Ob%Q zstGxjkm9=!9a;rhBj!f*dcxr5SYe6(^KtPXF0s}Kg5HV0lsE<_Cnb@)M#}bj|H7$W zpYAl2*~5eE3tZM7=`B`R_g*QxvM#jg_qMIXbRph+> z9J|hQD8lz64x#gXU6jzneq@#%(VuKV1uNT8E5(kxUcN>0G~DGaKNvYUOpA$mei{rU zD`1`n$P!- zsZU@hN!gs5tx+6=ytEtr{fdXnh&o|yjOZ4aN$OXsR5H$a4B`eB@dmASCJOMN8|b2q z=#!E&13Cc9JP5^sKJKq&a&fU19S#)Ef=^Y5m}~I1kbcB62(0VzO6dk+o3)4H^jl;c^86lb6&!R8)9lR|SAKP(&Lj6-1F_hU7nZyJ>g?q@XO ze~s%74klpMNLy@46}&SmUk-I`Ft-k#&qHnxMmtKG8xkJOO+m8+i_4}1h8~5R7@r&L zA2Co!S>3*N1^VZbCd=QSSL0XULr|cCSH1>KeC-at&)u_xuY<57lVxcLm=l4PN>dGu?btdVs6K0c zIgM|VGh5}3EJ8fIC-iEz&pSjnc_j4+p=Y+cucS@x@n5gc1s+~GU#8;k`sdD<(2j!>m!4Z0g5Nr4} zb}rKk7;e{!v$advRl-(;2{yWtV3BNTxZ~VE#3x4* z0Qevt61c?P0O7O*SHp-qc348MwVT5lX4N&R3E&cn(P{JOeBF&|O+-OL=MlgJy+FvJ z6?(oWA|F;3N{z_)TENy3B)HeeWklBngCHNXc&{7#goqXWiUx(amvN}!fc?{ydW7iX zXe1~UB6|UwfB$q|9xWZw@jxLsvZw7I7H`;hWeP4S>XkRXPX53y6zR5GawT!`lT-qf}_?ch3NlPlVnB{VzMn^{z0pRUrnJxYDwQic#i^L#Eg-Ev^Q#CNLFlP>d z|K)-0@3>*p7StUf5&@7`Hy|sP5C;OZUOGwumx>!X_n^jSFr9P_ib0kldO6U%1yL9L z$Oh}r0~6I^hUw9xN59~6J&Q(sq?lPv9l07=^~vN%MVxg>tj-8Fgae}wR?Q|WzkU0b z2$LBZ0>T!h1(|VU|InTu#A(wo#QFqPi7BLAy>zLFOliRY)&V*lYUb<9G{m-wI_+u9 zT0bRe@IDkD$VkytkoDydqW2v+aw)kP5>=Jn))T|91^neURDPL(s6M@HH*{X?H-+vL z%B0){-^IUU zb`fQh?i9f^`c#PM49*5^xhfJ8b5n!F@D3s6Zp(qAM=ulGEGVm#wBpiIMoMFrRYK|@ zEDDzMdpHOmf$lMRiE6-q3A_*FHWg9^#Ol$q59Lg&>Qf1o1~LXKWuUhnZd+8YUy0#1 zHS82Z0TE|01Yd)`^?wcJaO|xa2u#kM?ENlwe< zTbAw}=B;k4A!4M%QQ8ZL{_ta>^6db*TC}7j(C_5#95`?e8DCq@3?c&m_*W8hV5;AMHa8vlb-LdYvx}Y- zA7(ZC+U{8lg9QRA0*ttWye`tJw(I-xPpm@nTVjN;)aZg;))#Sl5$lp#1;T((dWh}1 zH2k^@r3@^`z*I|Zi12{}CEdfXveB0AnGM{+IX{oH*)Sk2-`KK{CdXn`qdbGbPC-P-M{49Fl!* zDV?p4SI}6@t;!N7m>q@1ai)DGB_B=tYYg31zPMe_EGeVR7Wu%d0OTpD>jeh3fhxOZ^S6W~QT$95~G zMN=BZ;4&t2is&RO+~R7q9Bt)OO)KOodOS7l^ak8%v<&KnWDDE>PeD*)B8v042`M2wlyrB)(|5t}Ah zwhS~!gLA_@Jv|?3;9q*@lF(yL!)2mCbHK1zGb+@THlsWk??K;gCwqxWF&^OEW-O9` z{Y;|8v+Ig2Ww}qasoX_Li#@k_4)X*rr^>N>4$g8Zs&AtnomW?ot)wyXic7is!%+H> z`T=?*#Wdmd4Rj7jt%UF*xR3AHF=Ctn>$w()jK62%L)H*+E{+y5a_{Eis_qWFrV2D+ zjWGd$D{t6jg7qf_`_96k5>GR>anDO$tfGxJ7k*TB*^j)?%ir7E3s$56ATG&z^bYCi z+AVSR-tkF!Y`+he&@bXh0kk89zyHk3y+B1r5?j&O`UC~_PRIvUX@!V6G-)x_-{m7m z3*axA%brU+LA;1;2sTFQXVhiU9uCgr61y##s zED*^6=2v9yPb8)!|3R83gmwg!OX4~#8ca~h>YfmgmoIUT)Sx0l|5lPgz>m{FqcHB? z$?4WMFyMqg&HL9c_28ssovM}>CCDT(h~k!ZM~Dy{XuokYsnss2&!)GdTK!J05j%_G z^LM3Wr~Z7Jc|lt_3EBTX-kzFW#Fdae97FHC|5AWDerg8F77rTlP1LJL2NW!}lum`a zykIzBHpJ0{7);WwP55)H_e%P}*~e?PlEj7lyCtIqgK`@;ZMw6#KX{te^#k!o80SoG z!yKzKDw+m*r#koZN~8i|hPaqe0qL!_6}s;+L?)kL)_@6HGO~yc9sU1$ZY?q}51Nz? z$K_T|o}^~E6YMTu!9=@I$^D==qBw&9`q6tvb4mZLz<1csK$ojy`_OGjNlQ!LXa1Qc z{pTp+<@&(W5_lho9~6L5QEgdkmK8VYWpPMvqp~yrUA3^U2ZH4$Vp*^vv2{Ues}j>2 zglG7itn3!dDkQ=cR2e3^3n8?=P33}wMEYALT`}9al#?DMw4)+)&b6ypgx}UIWhh=F zY8lxNux54nokn9_8@;3_?ILMdv=I*?>ac=Id9@ z&(1dHD4C%~5$}k5h%sLf51Ke&m-X176jhB0;9xS`On9HaK%wbnz$h3$W*!$B+;pGv1*;RQFF$9%wli3Dmv-kmu?4% zmE+(+sqa=7pZmKgY5N$kJoC&&Qy2mX>+M(GIkr_>4%T`e z7%{Tpqa%s7B1^L;{A&;G&=vAy8#n%%kl(R(MgNh2Q$tc!s9Jv;9LSD%RKRLBn@%PX z7@vtThhQ8K0=EkuFz{QoVZ2j}NHz7e&d$3?9}NcSnibm!+40ihYPvz=H{0nisH?=5 z0aF@@O2!tjFo);A%-N%ovUJ)NZIM2(yC&M;(sT4@n^ZoT7vR1PzB`hBud3U*S@1LI z+d^0jxpcSS(FoYth8+4DzQDEU2pU^W_vW&R+P)&aD!;*YltnFv=zSFQX+Mm({HIrV zI?pX_d;9ir!1x($GvO21h9__qtig*&s<2oOb_bBn>(IsB3*7rfaa^2~Ln&-WpphLb~n8)(4oAOJrDJ$Rxh*1x6Ail=tP{4JWc zRi)V^jS#kFW~BXH_%WE7et_!8SF^|1St+On12)^3>%tqg{2Ee%Esw`~v^p#Y60!ub0)a3FTOqEtnIo#D42$AhHt7np@2#3vS1 zpg9nJ2I3J$6*IG5?|Ck=O6vXnX1RcIr^?;jk}~(&9HwuBYnXx7X*ib#;tLGJy9V~m z6{gIo#1cj5Rh)y=`8ia;cn9)Ck-85m{Ud?dn!>3NflUD7%?BE4yKO}zG3sxE*K3bU z$R&?ai611O37DA7>?^e`9_AqYCit}xKtf8{;*5POjUPrO&>}^Q+}Y}8DplmvqIoHV zD+W{H2>%S5@dK1sC@~wEvM0V>vZQvguatcL{P|;eXMQ6UKJEjV(X#WRp4b|HFTvhl z1--6rbZb}SQ-!DVs)Fe?N-`YeWKE7UE5k@T*<`T|E=oy7#g{Ev>+VNX?I99rh_F?4 zcgJ_g%b&5(-oS^^!)^>q=`mIyHqP|C0~2wNpZnsaOUc2^v7uB!GCrz|*?nB~SrU6} zWcmg8)!lp{Wy`Kz?ubcsY_??X`Upv2;cH-;k?+d7Uryr*3WWq>f!k7~66yg;v<3_X zb&rb|%!bIbLof+R>^c_Nb+p<}9DTv=VcKQ-fHmu#s={=HY3h$GZxm`){9kd7mvwB zRZYLv)NGTaOh~S+y!=ty`oi3VE5E|UxfK#-<>O=|CCua0a~xj<0EC6sIbgn<2U(YR z3JGxz+7K+{18@ev;CHgdCc{3yIP_gkX2B`uv46x>00eT0n% z5i9}TAA_^ao%zkEoNK=Wlv664;-{wYehLY1?kJpJKngZgwYUOO1;}R<&5;r}hZt;a zA{cZcPI1Ca5<@5nRg$2v|AhbgOQGL}!(Zq7+jX!kI0J5wVMAgM#{MN*4XXzB5UvHi z))Sc22*3ipEVy9X>WHz0FWntO0gUcFqC^xCSekF6{f4kjo>@UWTgVqIuwx+$Kd{Im z%ZI7O0<;Dua03K)kP-QQOL)~vktqn<)GyUX$X`^;6<`qy&u$QXgj%!v*s;yzYDiN8 z?ure`gv`Fd)#3^7aXa4k6c!Xal7vw~P?L2-9Ag2FU=o^#Le~d4D8ZQy8pnm4Bb@Of zL~w1YzFdE*_SlqDna`e)u`$yICn#d7h7)37M zd+1PEuT3`8YKhMu*aM2iE7}fFMqn&!2VGeN7vdC3~K1P0W2b0ds9Je$@mu@9&e5&});H8aWlda>hDu7jbBX|4w>% zgQ$xD$%8R(KEk7s?9D&ikUDW}xJ?z;nvby@e&=T9Ie?1?WcE@max#q4#!TSa0v%T-r`g+AzM+34-(4@I=kR;ORz(+F!B8LeUgbVX38dr z6W^Dx%d08D9ihIydx-xGsE^pHK$YAi59G3eTG&l3eq`&q(dyM=ST1z52tq1jptRo>}nT?CjIL%yz+vtv3Fa z$=Gk^s+!Qag~Xiv9&I%d?yIGqfxlj!C~j+0Yf8_$;W+0QXZ|TGhx}ia7Q|fr1<#t= z19~R4Iu%*qAg*_-FRe<6+((v~8Sd>8V&0$$)!8`IWe#_Rsr#IdjplO%)H2I!G*D7BocRnw!Zn<7XgX+&yhJ#tbb`LKsAsDIXIxD1yGH$F5~dN0jmq@#Jdds(s;GDBn=me4{Ae` zNKIqNH0oa&Cbx!)V&=ARQ6AxJM0`7p^v!Jjq;lDSD_8ht7slpE|DSQYlw>()Jo z|MmiMY5!GF#t3Uc5w2P9%&vL$>JY&@n5LR*gOL^Iw)_7$x1d)q760x)vls;x^_ibv zhba{*&Luo_rVB9d@b!R~4{uy|_a2I}QUzZV1(DRK;)pJuzEpQ1E^Dm$@-T0Qu1)%! z#QA>-^?IyX3Cm<9-erL*j#sR={$cz@t9!Ba9`8rmIiMkV7&ywA5KM|Ha1=#=oE%=FB%!rz{ z4iSN-HNK@D`B&4dpqY3a;4UK&2ub7phKdsh&a2@7mExA%Kp7NKsnl+-M$P+qdE$Sc z%4bB3R3-m=)wX-xIQDa|za%7tg3@-=#ibv1rel#_|Dg5|PtX>F#hk;fj?*cvSyK1` zSv)>%AKr}P+tX78_d9p@(}Il;Q=Idz_@6!ZR;ES;)CR}5M?)t={;3L4nRjt@6=#P~ zam4M}e4^pz&KFyja`!|i?Q~kP>G?Y1;Hfw=z3w%z^$(k?t}!Ve7wi)kvT-km5BoMt zsWNlT zS9~H!E)76yqEiGH2iqShcz(9nC$B@4!&+*kFFkLXEV*&()mN6hva2bmsrMM@Utyn{ zdZ0RF`mBy;vn9pS&?a4Fbdb7zE}v2Ioy->FY8r(xd{@HH_Ish}1IIX(Grl_580YrZ z{m*@-7t}L2SY?HWHZoxg@c>M?w1|rQ*GndPb?J3Y_Q&vODcHzNIB+G3|Ay45TyK?x znY3+bRc$Ut9g4S|zR{YPo!I&k9csT^%i1}czV+^}9tTfG6^-d<%V*}dIxZW#(`PgD zT8A-E(gei_1@?L4|1P4hR*K{BV#ds$2e<0YkMv_9{yOXeCPff{Czh{Szi*`it;pMKvKSisPu%;SAKJ_9cj0u7kMs-a|BvrKr8_MvvErqqR{pD1 z**TRwhaPnM?vNK+D%NKZ79+IkFBw{^Jh}|3xOFvihAv* zYb=*mpTg^V*vzb5SgdTw*>~C^D{klbE$zKV>UVtgkT00FZvEHZXU_M5raLqLoSx!x z(qeS_81w(d+I7cc-S6+aEk$+;*(DJYvMH++DN=-xls&RnO7=*yLm@;~W_BUT3K^Lh z8QFXDdw*{9^gQ*P=bZC9=Z~{qJ>B>H{eH&vzOL(iz2ozr>1U1Q>P*eN`;5*7X66m2 z+ThLAkd_?=-lrGlc%4)-{r`tgc1h6LFtmcKJQHaT53Z;T^{c5+CYM z%{_0;zS11gn`5`YlX1O~U|xN)&ABwb%R8@KnkXA`XvO562ds;Ok!=YOb7L83V_Ps# z!&+poAdn8xS;%<6q!K!+mf`D5dbN z!{HKvhIYI63Uh12X978Qm0~I@kH&{&3%1D5IT$t6tqDK`bwdsH0RJZn#d0lJx?Nfe zfhNrcUpnekMXgUkT)Jck(AbW@-DS{Wiv7er=ZbCR(x4OG;aUn z-F|1~8b(JCGKQf;R!j2bHQP4m)du3v6RZUM?R{XoLe7B;%Akc9LHB)Z%^PTvMW@{q zddGAhlR-hgH^uw%pH|=S!O;(CZLZF+=s)fhXILBZT11hzAdsV~gunfLS=lZiq)<9% zqCPZAV8cDZL&$Gi4QY)i_2NqgIBZtNXJ?PEdM7-2^ynT?YV6=_J%MCxtU+@VtI5dV zqe>ji2oU(t!5W-(|8a=V*6RLfuXp^XM^{p~gOgBZVScCgUP zF5yS2O4XxtKBJ^YTy zYCwH}QZF4_8=yJP;1UAEs7-Fr6a~b_hFgDJ9D|zd8F+l4^*TfO$PhH((m<>42Z28S zk3S9sp#3a|kGdFVWE$plFdNbl-FQ-E<@ zLqiD-Nyrf`cR>E}lw8rm)4MJAab9)AV{nbwd2uA7if&#?>26hO=60aY@zQ;`ayF?o z(BX207M>&Z;Trv`uMS#&d-<}9*|0P#BgN+I{g^$EVCD6OjC%Nh0u0_6@UuXo%E%}Z zJU}N!0@@Y~G^Q|s0mKPqv_h*+3D{S>p}tdx)LrXgKJ0<8#kyK@#~Y2H zA1_}nR_IubreRUq?|$}-4Cx>;qR7<_*cS&w^kWxT7+@P^EVTeIGlIm7p~A78q2nk> z2m14ncu}xCDGjwAa$_3zAIBO_4@A!WW`|mK3n{n2>HZ=Au0wwh*adfK&*gmq=&Pa( zlndB{)`&Wep!d>#ap2fBn6Hsw*tMK{o z)|Acd5#G4c$Y%(E=(q?Gp(Vx@G4LRseSDN%(F+Aj8(q#H*R-;t_MJ-?$f36(0DGo3jqox_qbU;9NLn0F7 zfP?SdWbrAmWGdq4Gf#95BYFJ*w;G^5^}w)0?QN%tH9@-;xRu+8uRXF!gJ28iBiUSv0iLuUfHMS%m5l9DPyHcoK*(DL!Mc-hFpUm_MR zGqy00y&Bs!rihQB?9eOethpXHdq1$>Y+QvAp{_aaHy4os7P4m&=n4=FFc0 z;{&qu!l~Mr2`(hE`KM4<+yDUw(d-yxR0pk=?N&{A)%pu&Cdu!Qnrixdd_2tO+LxUT zBS|`x0ta1rj}4J*o)Pu0J4ZjJ@y6_O%;6p9 zgCdSxLx^k#TvY}<5+M;0%E0M{THj*vDFkE{*VNR+RCRVzLop8+-Z3l7;_MhVTF(B2 z|2eq(<2Cb74*MKsw>ptxYc)F0Ye~R)O};u8OUI z`7k+>tKgEx1p-_EwFQ952ACrnuw`_aLZ$2tGX68!2q6?wJq|RI1~ePP7Z!yiXDGDw zGeK_Q!{*S=0ikg&9s9a^dD}RscRZ~*`_q+F{o&Uu$%f*^PkYW>GJJ)jD*y7VG_qs9)@PYrLu1^RNE^@Krb!0J|JqlIhsSq0K3zzGG78tOotYyBukvCTk( z)p=m~f@=Q&5WC1wp?so(*`iW%OTX!*ulAT((@Wxn+ZRKPxGHcK*2H7)w@{^aa&Hj{ z)oA>5L{`P?{#5#yMR`9jf6T)~LWq=(nMo$g-iL2vd5Tcq!0_roKdFD~)MM|!FP+5J zT0i=fKHJLQm4}^o01UzxTESBi4J`HX2pd4T$dQOBJ~Ec8G~fi+I1xOYSy5dbfC5ZV zlGj!dXg}i`aybavGT_0NRj5fSJS6Mszay-r4pE@bClgq<;u)a_H?FfsBAW*#KWM4LHFF9UUG072MKW9`PSIFC`@c;MI7rjxi6yQ%~I; zAP7)S$~lj|O!VW9soH;y7_g^-srmUm$`62UVS_?0)1dtzO20z~+C~!&5`K}yKg12* z;0zU}|T6{TeTRzbI?#q4hJ!Xp5h# ztGjqpsU&6qI>Djz|291YB5~S+1*o1Apo|2LtD^IxHt}@L!oYuf@xdlc(~O@mqj-2k4VM>as#4#)Iz)tZ`0w=af$5Kl?`Do6?MI!F5 zawb`Ti|hKgJMD%Ry|5>(Jr7ji>A>HC>(R79Gn4~ygsn8Z$N2I9pMN)3ETzcslrEbZW*^H#Yl{f=s$r6vJSSD=31%H1IaD(B(s9WkaAmvN%;K*vAcV^|Dbo? z_~dy?yafuB+$%D^y`4+IIO2<;-ID&DBf!_~+k6rXkC#4F+`M#=je+>E-@o{Cks<`7 zzK*wi53n;BB@=FR{aVNWLi5gi>Scaq#c(DLX9*rM%%x6(i89tu{^H^zg7 zr({{Rf$8%2xZf1zs*I^V#!_^uLS#8T4b1O0&73T20U6>$M*+ zO9Bz2W7@LN;sLFV?f}S&0Fi*L5GDHI+E!~v*g2z!-|gFJphXM1)4;1589ECo@W5jb z0a^lv`9sBR5@62m)iTAmw5t>o&jqi{=0VXQ_vP78cMo_G(O4PiaM1+O1{u|mze*m0 zPzOy>W-CY?>d@l|o+);ewFhT4vO*cO{Y3pRz!6a%4a~*i^M|q24-}SZo#9P}z(!F3 zh5>4r8@hkJAc!LUPW?{6kl5ZdP?GrVs=-+11m<-V(gtSaY&hgmZa5?zWEyz@%;<1|hPj=Vcg@!=Q2p%ZQ$1@oSeaEu z-EZJ&orjBIqG;Q`pTEK4_vV}DDQyp6(BAQWu^s)|_X4&%SM6^N|MSW$BWI+Gd@b5k zS_b?fHel}i%UF~Ws0pz(t{xr_KraUkj8Z5TSOa8*V>kLL0=+jV0@l^r`#oYD4IEY$ z&8`>Pw_~}QCsJzY9e@7n?R%X2f)EhOi4L8!XW?S^<#hz-@$_wev2hDebKkm7i4tD#Hg zQ=&4@`H+*l!RuZI8WffWgcpdSo<=eu<>Rob^&n#|>U5+Ak5`M?`-iYX;4M2t=eIxV z?XF4t$?>q^tBj6~jY1vXanu8T2&u8q5e1`bk#u#8%qLX# zx?ju7Kd*7IvMy3R=X%?0So-a_Bt(J?D*RMkZ|?bt5{?%5b2mp@m_fL$m%Qu3zh^n8 zai2whc?YZ3q6O`gfG{Ew@5HiC$*BmNx5J)=hPjq>Mn*|d$GAnZVO~8V0 zwY7sja`+W47h0Wm6QjOHki)vcCiWI-n2@i@Gs=ZN!k-k#KGJ`e3j67HKH^;qst7Qr z!QIQZ0cm;-Sg&7$k;-2-fzPiLYwADXAh`CAc*{8mo9?#j2f9T4M;yY(Xt)sTcT}z` z9#li8UqtD@xd#`R?f;ve*+i+w^sQdpse~i4XonPCq(=8TBjhXdlN1$m;Mcknq^LjF zo!A?`$4yf{!899A;KO(eop_*r#*N=C?AnW-d2QnPUnB_ZJv3|~r%OO6H?esqOVR<- z0WD_c^a=G7M}J(2w+cO!ph$3c*~C}>FbhO8=h4KlS58RC;;_?%qTHByjx& zFR!l?)@pV2DY#h1c9wm3<#L=r0`mB1Ph5OpyXS`cwXd0;~ zd^tj6gb%C@M{8JHgqr z=K(aMLns2uSLGSuK%2pz@u?4y?-eLep-#a+oY#P3dZkhHO6J=Z^YPoyGQ3;|u0#&; zQ?se$IDwln3T1o4a6quQID?NJu;0s~emqF8L+(yw!w2^9D+rP7p$p82Vk9K>hRXZS z9=a6kgsn_PZ+mITy|((Ded}(htKPb7H^7}lI(y`ef!gW?)Oax0Bi;Z) zo~^tciO!KH&W$a^ z{qS4#b(Cmq%A99K**%7!s5D7te+k^+4`P0^)DSTC)G@}FK4A!|^7(@%xKKH7Rp}hd z2Tl<6iUTKzRhz(@gItC2;ZtDcL|ry0njGAIFoTJ59gn>+DeXf-xY+h=Z6RC|fg=h} zz@i}$_4VpGjHd)vyj)*fDlLmpa3x$66T5DB1q}$pV4$CZ1k#;-kj@K3iBOOy0WopU zI4??{Kq=4wh`XQ%Qw*3q=wtJMDEj6+4SkLcb_{Fw{2h1#MAU!{zIoMY8B0LhYs$>w2-7Z+gl~+W>?o|c8-=q zRpy}@#lG}h4eeh>e+!%Zgt-0P%RBZYZm5p|mfl=!gOefWvDs6MG1a zeb5N}`Ii_WX<6AOEuqU~Z#0FNyKQCSzrH@{BNZ6;;VuW$t%=zaZlW9&RCx8@x--Y3 z#m|_bI`dre55?(E*Q^|za%cOruxLx#O*oRjZ7_gRSM|W^j~{YNC?2RP7_WeQn_tqo zAPpB}N7iv(C>*ml%71U+L_vtWD~pHY~@B}2QTU1yRP3fCrI1;y~@3iW}#`W)nWVCT^+mihol*-uGH*%|?Hbq7(eCB)`5_Cx0%ggyie ztYW3lFCh2by}njIK6h*v2H#MqYfSsNyp3q9L8nDS-;nsr=N77>T%Y^yG#Fa+0nM^; zah-Bu^p}Js`pIm<7*Z}!mM01|N1j#0`Gd6$b^Z-;gS`>WghXa_Oc6B9A|!^U%b|gz z(1MOaxY5``F#K7YJw(`3;1L`b3%WY{=c~&Aa3IPC{}5iuQ-3peg)=n*id>(2?|d<| z`1bQxd12>CL}=wiv__D<2W978m_p^q6xCM&13 zVZ~fc;!%A1hxqlEJ7+{wzRHZ=s!FoYzYkkjQ2D&+qsO3>d+?Z>EY3hj$(Ibsl)!3F?F-_9yQ7R+jDdfu4M0P;jJj z@b9$1TZLc7UN-}Tl`Z<$%v|WoaSy=NliN3O-hUzp{_;#do6sMmi>#BG+qmr7<6-XQ z^{?$oz)x;y|6g1wf{?b}_a^@NVc81%++)BB1Jwa#54y`oG@rPBAl~F-#KaCU9c#S@ zvd)cn%3g@Sxv52=*Rt;rUOJFbbq^^<3smAs`mTIcVy?(i{PhKoR@UnZooPvZdS*u; zBQu>!Bwc;!v!K$}3WlAfEUX7(DoXV`&w4n2Z-GnviR#Z19F`5;eDY_YwA?{eU#X%j zK5KBaR`S}


r773@_wDE92Dh{>awwJIJ{!;^@AOHDHu*m;R zYyQ}802lZ0#efe-qwdjV8afl6g1Hd1VWcE~PutuoH2h|dB>U-qe7^<$Smv&7+a`+p zZwR^dGf2?blkDz!R*R~`@C{X`uu*DKN0PlSyf1khxCH}WzZ)*Q?+kEBj5r^vU=4)A+fN(0ia}bl?+WPmW23ouD0jOX%)~Bo6J7#_Xfs|Jg z;GerAK37@>z2K->8O79-?-}7) zIAgBk(a|LWs z8z3~L!4!<&D77ZwQ#e|8wTU7iUPFDoC$DwpKUlm_>Vc25b|wtVE&?y{3D`x{gN7O@ z0kcPce*@4<(#VJ%#k34}rJG`lnSz z)}NAMH72uo`Q{jzZ@w}^PH|Y{nnf9G-=sp)NyH2yeYIgmunyW7vPUvo^;*#UY5+{6 z@iNfII1a#`e>nuoHRy;iTz4pLZR4cgfgA3}{5#JHY@%C*(n(Of?x;1JNQJ^r>iqfi zJJ1RR)3dKW{|+sS)G*t;(WD7o8v|q)5B5a`%n^M1vwL#A0I9MMyk6+$iW>=}KLj$3 z1F6-M(WF|8a>2kDpaEVra%hk-3k3yKqd7&r(V+(DH5383y1HbDW;sB=Q3?D4!zoIv z>c<5}Q|AA`-}1}liY;@mjYeM(>-7u_?}B`m_n--IfC8MiJXsM3sfsX(+C%b?RY^`2 z>|uSOSrpMN0Fg=%c_k_$f&mw}Gg#uDL;Y%f7qk+9nnCNDux9ty3d}t?{*1xH156J` zUl%7ZC&)wn@08!z<8!?TCl&jRpgRZo3Lc=nWID~cqmMN}gkRal<#q4unc-y4!G9BT zBg*KM%fl}Lu5mQbIkDlRgSG^ful&?$pfJNtddl)70Tl4S%nD9jZ@B0et5w+U|AUzY zzQMYi9R5Av<{`rN`)x*ZBbQ#VXKih|bgdwtZ-Y1f*?=0ZI(4AV`x_;5Hj5nLAQ5Ts zall0#s)wP9x>L)pa@=4^M(Lz{6FOz5ng5pK*!)b@zNADto2=WjOcjMghS*eBY$wS= z^{=L^u$yzgn6hTMe>P?PdX&SaW0(S0`nR%7Hv`ce7_Wz(_`sD|rr#=-=-#1PIsDI( z<*$G6{{@k-bV3b6!Z{h6(Y^m{l-tye|G2rZKNke#;td2320#xenu^8GYLAG?@67HR zZGCZ0-C#%3i`TX`W_?!nfAzx%D^tON=GaPmno`rJq1*|BhR7Hv-n$BSlM|1--C{HPyKI zIU^x~Fi{lGZt`;j(<#{{`#{^j;5k5bSC!t!K{cQ2x7ypSc>tRvjQvEOr^qt;H&#d} ze+*|^(-x6rT~oGM0bT3p_xp`JiRiv-E1BuUzWp0EMPHeJ+r9c%F5x-w>%b`7IS_?> ztq3XCywBYz5PozpoXV>h`cKfsDVG;oo|6VmVp=~y{0|}+IIEANL;pTRUVo%agjPbE z7{(ut@Yz^KY zKtF{@PJ!6S-4c}PEL|GJ$hGWuX~QU8CN7%+;iFRoP%I&?;LwvvuGGoM}BJOS+@~mH(2iQbf~LT+iZ977&!Y-vjJ$U%vfzT)4pwL&**4dy}lL3sP~gl)~y`=v9UsX)_TpDSHR?~ z8~(C-+i*8nHb+Ms=D?+0bN;%j7fBpl??1a2nr+{6V(T{McwIJ&dM!MfEkzH2UQrHr zKX`oVhBIru~QqB{p3{aW|^YN?;>m=eSh8j_r?

L_|Ettxuyu@hGD9qFAV($TT12f!mW;#&^ z1q3ho!o)KOLqHrZ3Q9s@J%2n0cm~9V)yh4Y0vJo~q(WuR_OQA4dmen84mvsnYbS?u z3>uRW6WQ9&spZR$HRcWKYR=`17&J{?krinxnrk=D(oOuAh+&pPXX5K+&XfriNw(o9 zd$aoUmqmlaDhB)!my0M+{$D6ivuryFiJd3}0gxjVWIOJ{1c5Oh2Lg7+JJ(kCL%wi^ zl{a8qpzEY#uyORgwdh@)Is#StW3A_tUu#7wuU#wq_UgxDeY-$ApXtHp9CJbdlIc&(0p`b?j6y5wdpB#kv{x_1;I`%>|M0~!@*{%C&-0sG# zqhlj9V;P}i$isOAy*$wQs|f(PQ6DwTK!I#KS$>3_eDCeLXtxVqu(yy|I0-dFKrlSG zZZ>T{Z|aBsDzRg5xBnB~0Y>7sXak#IQ=rFoZJ~;PFENBhYfMZ{W#aXCp{|fi4t1c1gl@% z4i{s}-9>e=mwJkq&&WkLZ#24qlOHP;gMaG>pR>;Dq(5s3$h}1jF6jI|EIm}4IJ{|V zKb3dpKfFq@FZqJl;tv7(530!-=Rdkf5#e+VkFIY2CbRZm@J$=6lN~MHi1GSt0;wbQ zWMVgFuI#vY??JgJ`@tQD{qB=?HonVTSo)-Y{n)UqNqfO^sM2v=oMm<^gW_MTeT`*F z>EHYVetL)r1?#GNB+({W_;Y(in9_fP#IanN-8Iyj(t4PA%RlO_z$;~i92ATGA*o9J z-YW)Rtja#&rKng77K?4cn7lT9l+vxJXSKr5@M@lv_Y1G}80z$h{V$AQKi|K=W$HBS zN2XFK%>q9<-8Pu2W_pPlP~{62+u%u(WNx5j6u%;)nun<$H3 za0bd9O^>V}fjyr3@7a!j$T;X@jq%q%oURV5tm70W^WK9`B_RAz)m9U8{X)LGaO0uv z+fU6`5$;tM`fy8KuJTss4rvaz;t^brJt64&k9I+oz>c%h$is+~-TlmNxNgX>;3Tbm zy#F{&M|wV!caZ5?Scv5o^!Ib0QC2DpSgj$AK9r`CayLCpd{w;kaBWuCrzS}~vIARA zseEFfWA=#o&l*+#;vP=)QMvQSRf?9#A>pQVzpC#!tiT|Tn~1~VR-b%KVn<;0^~^gJ zZ`{GGE*>u*RqxYZHPlWCd-n|Li_;cE0wd!KNIv11s z*3xIqb}HxZpLgY@ zqfMl_J1(S^d%mi;M$p{ENXNWK4Ek|{&*K6u|L*3cAI9w}d$c7Rt;C}7(eZ^NGP?C< z=yTRu&Bc83DKnN)s~k?HX#DDu6HJ1WRlLTJ;)T}S8`R_BcM6{&}I zVmN{cYhQ*}-H(Z68c!Y=8*hKKAiPsXtk>=TSwo>ZL(o16%L*l}P}_`AAJQ`GUn#5+ zBtAqmH!y zC4bh3rI&az-1o3N>-NEj+w0&&uhQJ3d0g)FD5%n|z@g*-(FwmdF1);Rc8ABB%&HVj zPfS^b)z}F&4VHI>FJ-S*mW6~IT%Iozeh=Yn?#|9TuUikkm~S7mcL5!;)D}V>3f!pI z=F6~dvrnJyp-5jytrCJEnn`c^od_Nmh;h^TS*evyj>K7w8Rd3L79>%TtKDyB8}ksF zs>OF$FdF4v@-3KJW?Jd)m!^hSJoy=7UHMY-kgHJ!mAXy@ z+Sxe^mXp0_ubWnJWv?y{O?*#CrV|#XR!~rYG-BDd8l+yXE!V7hK7LGu{yS>LDOg(> z!v;Aztc|VR85X2v%VnO>@ z4Wn~wLAA!InU^1xW7#^m8dNwBH^#YhoJ^Ha@OpPL6{UL=p zLB2O$>MaKpZNPBXEVdcd#RllUZ==f^7I-n^?`~RK+4Sw|L|h)JPl+9C$U@GE&Nq2= z`M2uY`<*YxLbFcJ>+rLZcV9`q@GLw`8t4Dwq3AUwk|zNvTF$~Otm+ja#uvk{7K-k4 z56j?pqb+HEqM7~8l!)F})~tiib|UHJXb8vV6W7>#;gwu+rLJT5Gd)YquqVoDmnYBl zXLu^hEPnQ_w3e5$nzfQygu$ZQF=$8x)Bq@=z!-qKCiI?VLjpSA$}ohBqR_hZ^z<8} zZEu1EZOkj@&=@P2Kt1%y9wKt->CbekaFUXek_%d&w41i7>v#4O%E()2%*|eQZ>~8! z#5_Cl#k^YPPV4;5GWC-UJf(KB9rvzJAN#1-&ATj=NF~ZtKF#MUxAU1mDf#I9)6#*qSfR0`Iatl#lf$xXRbL+1 zJULW@n@%iqCsCW>tgWuuVMw1;1wEL2n7Y~(ughf9do-zO!1VlyA-Q7{$~oRB>I~{L z!zS}DT7g|XKE%RBGmoW@zl9i3w=ugh8Y2`QIGA@CYTy9!BnJ zA~;?B^?OqijHdQZc32rg3uZjg&~6W`e9OLIZRD2`>*NFz&F9abQN%R{gCvgZfk+Q_ zFf(I{P)wiN>SSOLpIQ7dUV_t7IiK2^Dd(cUn`)JPS2=aXit^IA4*`w(?=}6)QZ;9e zdloDu;CQmVO%fg}P5szIC3I|L7W*iR;B14-BrM!K|3AA&;HOx&aM4m3n@vr`CnUX# zSe-sn8N#&(4TFYbm`Grvgc#X{BFA`5dZluc^P4lhuBF}TGIUs?Shg2NDN^X{o`;mx zF$r9_7Rkg$FABgHe|LnYm}vbd?hLNm*;{@lBXL5hrLB|c9x=5&{|Y#*=%;Ppv190=bL%vr*pO?83=7H z0;4tuxahJA(SWd)mE|bv6&&HkTA!S3Mfj)krS7_Pzp2x{XxPj;vR|Pt;MBM^R|rL@ zuWzuUXXW1OD`BxT!i} znC&UK%)5jl#7?oKEc-iNU7O}^n=h7Yej{wWG{v^>Joy?DDXZ1o3(D*>@-H4C9TZi$$BTKdRL*`YC%`<8?ku^r! zF`1wqN6>MqZ!n!4VyZcXKMB_Tb+!QMNvb2(r#KO%LhgCMAOHrT?n=Y zblxY}y5ihV&t4GSz69?Ky(CrTlr0%9I;~-++h-G6%{}mrG72RMG39s0@W;hHZgv#Ody?>;)+t+U*B|4+JeQhh=v;a^SSd-KRK2{-C@jqcDx#M7w9> zXc>p!ialB`6ns$3YNd5N!@rNdaNxcZMJR{xKANkSo1TvhCp$&7XW{u68Z>2P8u>jY z=w{r`aBj~TrlYuTiHHu^Qv^IBzee)z^%ont?*o6*md}u?z_Ll+ zqAKWW6!ZH}n?U5{lv1yg{^>d@`;icW(>V7U@jg`J2l6gmJm@y-Qim3=d3MjXG>Qja z12)Fg*ZFQSy=EJDSg=2WdMel}wP2CTCvEJhr`e6_SZd1ROj3TMnf$1zv7z|O`MYU* zuLldiz^y;rxK*U`^2IEcM5DHFruW?nUO{}%PrM*ESR^Vn>b@MDbzCh^H$L~rqQ;`p z&!4Tl9*tsnsNp@9^bQwm%Ggd@#k$mOe;;_G!mzV+&@Yz1B>s!lb^?*YNZYpgHI=3= z?~hao7F{Kh5mAcv$&JN#w)5F4M+A`6z?_BGu}COz9puVzuLA&JgR;o+hBu{tp?#Q4y zg-5*1%wZ=21%Z5PqgV@}aD#NptRwEJOEgo#w?Qd_sp->(A3zs%m&IE z#J%fK6e>zxDQnG;!)ruHGt4YL z(;Y1fF~)r>@dOEtyG1a$2_|2s&N>xutx!AQIwNaX>?KV3Fl>o9OL%Rv$ccmD1jm$H z_Y;jjqt5TT{ak>(HnH?=i=d`Vmc*|+892xgjF;kx0sMo`|1p6qyjWe?ECc2iky~Sx zL27oH%6iw?U$M#TqHwIKPTx`lt7u}e-jFuI;;^$_50P#92=Pgty8@NpN?eZAlIVO- zSDPu5HM_05K<6oJyC#0!-qg4(Sw@jcvg6)U{7@flLzbPe9_K2SA}IpRn6?DPPHp9Ay*zoIJ{UOtXT31h>`?6^IG)+y2-*RiL%-uFhPotbn!dtcCu~M-nIn!{T$F*Finvx&++I4Zd%raI-Qf8)LbXB*OK6e+5SeBWD`OB4i_TVvg7f4aTWh>?K~RL?`R54%Nvp>Ak1VKMeIj-{X#;?YFCyox7#) z+V6kncjjeJo@9xExs#LFz}2|ov?DdQzWQ%7YF}yUo-Aa0zs6!s1-n3!hm7+CC&mq* zBFXoGHV&;A&!xDGh}>}0`>5}+`qL>wA{xV;bw>BNV=8i#Y5UBBoA-wcH3KsCoSd4 zf~)>zIG@R^d6dDK;KVm_gN3IhQoWbMvhaU%Qlb6i``|VX2cgjVceUF&<9+C`DfhK} z&aSBiqrpx*@fGdZM`4|N-WHq1bxf)U&KxnZ^dwdaQ8H3Zo*FNG$)>SdaI1;%Y20ew ziYaYt+ZXaTL#eFV!qk^q%v~Pnn-}Ko^NT3-t8r#?W(#k@K6%tag+=nNWkd&6dIGk-@new!1s*)G1Dvedk}U4(uw9DK(Vf zX+KWhxIe;S`OTyd4lR31w6J?pE=h*VgE;0NmN8@e- zVO{|>-^Uw9UI|?r3Ey`>;JS-uLz$+*4Q~LG)qV_4aGlVKZHc8w45A2fvZPwyn~e0F z+d5SQ4@j34-doh1AwXaRPCZE;2KrEgvVFFVjCPMMb@x7}F<)&u^qC6p`HNKXvu%C# zRaD&jTj5o9;Y)8>PPUQA$c;)}xGNnCe>FkmeHVKLSB0VNH22ySc*hqQ-l;o&OWs?u z7@O7gp4$6e^@>|-goD+McjQFDK?`EWf8BL68B-xp$88cJ>HIai$^lo5wmr5yv~i$l zkFhL&t(nt6;MppU4Bqg2w|&B8)q%4N0-wc6@s1q)WORCDTl$dqQ{Dxo`RzBN+RK{& zq&AHXeFoH_`ME?Sm;AuBRs7H=+74Wy1g9^FpT41}ATwP!640nUJo?{2E%SaW{qhje zAfZ7`f^Mzr!bUMMF*`d~XR~Uv4ApLGX?1-(mRypl&w;;n{xQ%AH^86I#LRqO>sk=E zen>$z9Fzwi18}Xia3JNW%GnY%w#vMyYFp5w&1UV+t=*k&7oa6tj%gb&B0q0GDuYRk zwcVE&DSVuYljKEb9^GPYT0~C}5BvTV_bFN@xHV{;Zf7~3#W_pers{)RJF(36cc;ip zPf^zAM?jv7cM@2O|Qs`DFMj=6vO<1yW{_;uin+0B;lBqe#mH~Zd^FPc~C7|n-QUIezled+W`1m&dC8*C=n2m zxJq_d*x`tQ<&C{tEuNILM>9ADdF^kE`d4R@&!&EKqs{H zobNC5G8ny0DagKYRqbZqEo*x=qTBh~Ue`S9K((f{@ai4}Hlv@UDCJ`6THSsqY~Sh%XH>K$s3vm0?S&@?W0@#4Lsmt(%#bS{OTkc8(S5)u+A z+|25UU@igyV6+SFjWshu$@gNV_pn1@A%u<^dz}zU7b4y254>t;ohCTp`i(- z!Aa5yk1y60pN;r}zE^Evy6IYHoq2x1Xu-|KsHBdC z+pXL%G45g6A)CDzpfAy2k}?lLY)#F1tI~D#x}u^BnxX_bTuS?gw6wIC*w|uygk(2J z!Q@=h!mD{X^>gwpo!)RQIt$oPB;gNOuu$)C+|s-tcmHxyOW?{(UrUCcYn@TbS$cfU zCnsm&6wEfd4wD~7T8`%qpIDyoaggtWx46rCdf+(=@HCcQG4)k(g7O|sWO^bIqWL|C zo)K+u<_j}DKyvuDvXxa{P9pwfo73~04|CD7oqf5d#_*dd%*+%GH8Li{+*E4DM-A2@RopOl_{*V-NW;@_uss# z0cetaVZqyCO6%sW8JWZdIR zu(fDqChm{oz07LlmmB4fAwBTX0X1hm#e^EHhQ@!xNAo804wXITdcba1S4JbolN4?) z2qUV{^ln5z8GS9V=D!N&LBC#Ha&j5$%L(}3>M(UJ zCs!7SHfien9%V>@XL(4$pQRCy@8GAIjQYW3c+r0lH_ z(ZCdL*}c2XtSMOAnu^zCJGDcby|xem4h;d$4Y+8orfTfi>WDFT^Np;%9hikCUL}=1 z6;1Y9#(LjjN%L0JTNcr37shSE~esU+D$v?7W)6aC_Y+MT@$9;RZ9>_ z0XGFO7z|viT?NS+J(KOtIonc}$!=ba>>Rg+8&<5-bn+srldMSQ(=XBK%VZ|UD@9Wd z4@hLGNM0Qo!`IIhrFbKw_L)Z=uoI#fy&H0kCNJv8?ph=OnTOrsoI-4@is3b-u53X$ z&(eg09A>Ar0H94Xx_6bto-kDT4QavDpYa)#m*@m+=}ms#=hfb2jf%BW=VK9PzQ#We z3e^OFHfrRau~!-j1&M+Bi&=RTms;T4cx8z0p*89*u9*&j$x?9N2PIzk@ZcjXLHXwvhOtFaX3(~pC-Clj*W(vLbzpn#j9*wxaO|x3#hqI zF-) ztynYc_15{n7uZ6n?kVt)=j~Uk@ztny-m}w1zws1}(%8=P`=QhD^te>q8Jot1YvW6H zal)!TVGb?C`F_UThNA;1qBg3@hdxw~HFSA@NZU6JteyO$Kg!on_kJy3kDPb^Yi0gd zJ*Zmu<%}j4qrO~utK$^sgsmO%K76QjwTe}}dD*1jVdSm$F4^d^ozXj{b7*G!G_#L- z)<;C_#C%{YG_Z#+Kf7$D=7QH!)7gH%;7qm8g8xk0DleQMVKt6W42jxWN!@AnJ8LK8 z_B|wgeBtKwzLM&{Y`i87f;#_fdmy8o2AIQ4q0KB#c9`}2M( zio`~3A&I2Y3uy*L1G$B`>epbgiWYX;;?Uk$V8x+*q;_}9Y{8^xu3subnzHW?J3ZyR zl)1Kz5Chf5^Bs6NE)S#3+d0k;b3&~QyWXa}KZD%qF5^bc1zJUi>J`WRt7FvTt2yVU zbDqtp2|R4bp(+0`O&=8-%=5v*(q8laoCJQv9RocHI9Mz}g8Xd1(D1#yrqc}(hDB72 zh(9DZo-(3LUfg@>Tr(?o^po0t5rFcqaipG*IbXa)a-Wd_R2UXoj@L|1T4{5UpVf2y z$WMRxC*=;kDS8t=Zd#Rx!43+*jh}Vvdw)y7VUF5JZ*9VSB4Bs7q7E0NG?)O| z;QEr7`SL%=qP)p38uy*fA)@{Eg{LQm$IQ&^Lq)|Ic5*QTgCuUlYu65Ztf=?{zqJe* zl(LZ}n=h}z-b-B#483GxP&#HzI(qJ?^N`S%>kex?Ml%)?NH@~6wB@8*%gQD#EW16S z50y=jIdC|I`!G%fR2_jVe_$G8UBNS-38{*`bRUJbOM9g0y{CM__B6IsT+RB_AZIHQ z9Ty*)3r)(mBsJBw2Uc1?fizBZEU*K0f{Z?VsS%m#gXBk^fN41EgH+<2wC#or%GFDQy37@jl=#N4%}}a{SWX?^HcEbtyo4hXv(q9;*~#cY+(~)=!W9uK|zU zR0{z6wtEa`i>oA0;|x0ARD0Hc%wARGY7wKNn&+of>%5uD+}d2yP+1d3PVw6#to)})A|HAty8r7ABe`q{=Y;tgQ18)a~kv$+DThpgk*tein_V( zsrJ$P+|hVIFqoZsz6iC7daFBC?VR}NZO^BA?Foi#=_fM|F&s!JuMUa#|1w2l*u1By?^%z4t0bivWuX{Anq%0Xet(c5`&lZ?-e z7f)ub6`l>(xqvf>8?9%T!AMC)uJq}i(bZErO;p7tLRf(^I4jUr)y??0(2v(#{-LtS zRoQtP-GohjaQzY4vV1=d`U>iv1CNN{wrl*v2_QsNBr=`d>2V|h3$1TgmilftUvXNN z(ER-`@LR)52u{aP{%i5ZM75qLSsXu(mf^sBCA`41XW*+7A9B59adLZw_FIEHYel!! zcS|k3a#%gD*`cO*U}~`!uTs3w(-!+{F7?U2{63vN#43FZOGjHO(8tKcoj>XvS|G;p zbY8wMu>vHl?@2!tW2_7TVzi+uJ;OE1&IL;tv~qk<tA~bW!nuB2J zt~RD!r-u-uV}9uEW8;eP?@>b+Q*CXg`F2;l>+K&aF}s{xT6AnF>PD}~b^FVy75R+O zHpMeca9wl@#Zs`cC>aylPa77e-YykC)&7C4;c>OGZGR8UkQtw@m(>JX9`RG~iPb+GCzQCaR_us>-V$MG(-)r8|3_(ohJ7Hc^9bdu}3Dcx89tLY1M>>cY#2 zCyP@NYm_j~>-`wmZEm*$RZ=&o4daOKOCNu;9gXM1d*jbUx6`VOEFIcBp?{MlSlcov zahz6c-(dD3|37ewdLI8=|JM#l$s7Hvl+7oM;qFV64I%;4)4$Z+pEk9HHJOjryxlB* z7|6WGyuwas;X)7aL+D{dW(BO5=*c(u7de*>$$KAa9~h!UOMvqg#(0fPbD}A026+?j z&GmWO?-F;w9QvR!Lmi#dDk>_-yb#TqS|CF;_Uy@r!Ri-TDqEtP3N()qomz_&YMxVK z{Ep8by4Gs&S%TZ7XC<5s8&t^Z> zj9-&ps&OZKX05BH7nH;BvVftxXjf}}js$P=%NK9n@J@u*kr2ZJ1N#p9mdxSo!}yfexG@EXk-TqH=YHs+-}3rK^BUW> z>a|_*d3_+3-<|kkY8H`}gN0dL1ivEl>>8_nlS__W`7233p^-)S?eCzM^i!-XHJZ{% zMP^fe<5z};<=Sh8Q4O|hzcccH?}*v>)bm%b_QH~yuI)b?K>=PVlM%D5?)@H$k`CS$ zEoQy!A({>PGDg)Oe1v+~Cxf>oE7Avjm3g~P)2M_fG8c$CI%fB{Ih1(RukPXMW{(y~ zd;J=SIaOZFLg1`;L(GFXVf*-Y?WKh&IjaSSu2i)oy?j;eFiXJ&-kBQP_VHQHVl|qLL&@+E0{9+9X6PMT=

CZy@jUE^E(x4E#gthDm1+KNH%63m-HIy1?yA4M#n*8cM*?qO4TV5= z_trJ2aQU{11j-bcG&k}%83n{+tQ ziM3g;T}JXeZ0gGJs4%I1%IzPLDlY9fPFuQZ$tms8L~6I7;BKSKX~CiO`om-Nk+iUx)nx)9g&@y0Z2`& zsHA9~RtY;w>Z<$Y>71^G;1I$02k}5I>CJp0LkeHqL9#}NRM4sLa}0HExipBx3yPpuRG6ds zb1?S+D)~zL!MY*LC_YFt7n_gyLi?7coHqTSXwK9y=#$wE6;3T@w^4dg5UWVHBrRxp z(a_wMt*;d$@cSKCjzK=AeFUrbar>{1)&$)^qz(V_>FvOs{kV#hW-&T;BbsNtfX7;! zA}co52yB@hR0%IOm#%L2OQFux-DG~N!lBaIIP`FyiS89Y(<`X@nZbUH&3R1JuXVeq;B?*#s@dIr5#Ld(fR zau3-1`MXJIF?c~L7%2N=#b@&6dvj@bG{mwzFYk$D?;1&V_67TC=Z+hdKrU89DE?Yk zPqCc41oE7eH@MhRw-mpq% zp=~&0U906(%R(6WpE#>N{S#TvkgG?%<+ZE~ya9kuN#Gr};m?>Q(JEfLUdzWD9Flhn zDm^B1;|7YSw6=XPg;I>9iEnep(9lgb27i?~p!%6SHX~%gRq&p2-$J^icX_2urrOsQ zr$rLp8$}7+BFfxcXla0gATTUr;+haD`abBJzRFjre56U7JXqj=)a!iKvOsT~UKrAI zA-9#Q@tTpTpdXR3EL0x0OPre-aY}wtjXl~+FzZ4dDyyIo2s!;NemCr)B7*b0wo;<*Ak7!|@>g*uYyBvR*#R3=1? z=Sn)u(~nub3>;l69_@|fmbzVUbrVR7!O5H{SUzln=Ygm@1*!zO!;LLlkz@Kx&5%0o zOMYGCh%5X11yTWn3@lk_SP>>a0f;;PzwW*RD$1){dlI828cU*4K?IG81wnBriZqRi zDA*9CBO-OA_l_+Z1xD#bK%__!klrCi1rdF3%C>U)0qd(DF%km%sA=P zcD$D9D}@AWg73>!4c|;WGsx?L1dzYBG=0j@YC4QpbQkPGVy{V$U@A=R$*Knx&o-!P z56xO=*ty-eL76D!h6?fhoSf0lzvrz=<@Q+V`8@xSNxc4w+vXsNC>j>r{8@PLOHzs%f?BPP}{h zj~Gz2W9|4N?ltf( z`Zx1yy1UAMp^?H}8dw3cTKLYJY| z1d4)h<97*H#27|zf4!=J$u85?JQo-z6yh%3#1Ijg+2J_#JdEDh2<^hAC%Bn0Ad;$? zsp|?EL0z+sCuaO^fP#?To%6vVCMHws#_R0u24yS19cpsD8k1sV{yc&Dh3S=wU`k2) zpE$TTS3wY_x4gSL{Fy;1;;65)+-PFS_#Lh6F(7#+V`py-8%AlHaRjoxUu>{>v%h1^ zHVeh*=xXY7X$9rST@K>{{t@A48()@4kJG+yhsJgDO^Ke}!JZ+(FK3YrsPJY9_APvu zl@gMord=6cbUH z_~%{u@w;-Qe`Cfj6WL**1>sqvci84*8=_Ni3pA+rx${hOL8shr%JkzEA(Tt1a}@uu zJH(J11aniYs>Ilh@hd$>t8C1Uho$CfcMvL>CerJfxjFc9bH&?Ec_E z!+RQIaL^R2Lf7*ZViizd_=>z~wzJ)$gH9aBkKJwvHAfPfJH}0Tu(vQ_vs-4(o5@T4 zMnCixUWl}wblMi0TFD=MH(ev-mGRh&UC)cFtB9ObwBxwKoUq~xrQ=z&yfw{R=8L|vnwmu|2K0W8)df+zBWgI+ub>{?m+9X-S+;f-|RHm}dmczAo-z{1{hn77od^`i!bWXhy$%@XREe{=i4-aTU|5;N)gTTo4AU zU>qt9>Jn~t3rt!=69lOhB15O6OgK3?ccO6W+zA9AvE8Og>}=DIbl+6GB24{JFs)Vn zXB*l2H7d+|_vvW~IM#gcVtwur=fag7uC5_E<-ICLrXU#5g{EofgMN1N?GZffz#D$K|S!oxeM%J)-Zt_4a|NvW2AK!K;^@NXolpUNm;{Z|cp+hvCC`+Vo2H3(cJK>J%iA_0v%_Y7{YXelp?zVCfxK zv%KdEWD%t(lu!I&mAIXELjY2)zucBV-B?#!XDj^A!u~|HgP077QI!wT>Av1&E51iH zl}k2>y}5qjdit4Bih%PMj@my#W!INrVbFMVd(yJmJ=2wo-Ym25HWYIH9qj0FJ4;x* zXv-&9u-)F4EWqK#tyuM*fl3qFUIBDTJyOcPpHlK}YSP`HvoW+jX}_v*D%-GM3bNa@ z(K6rgm?!O`bc(`Z@-c26vMH;~f0_~fQH1>jf|Nv)Q`L^Sn?)oNp8(CgSS8VOi$XCx zKdJYSiyiEuMKh5@}UR+$P=~2P3j%2zbiyDtq!N zak!V?%;9IzIbaqyfUr~i_Li-Z>jkSCCyi#*nbMny_F7=iBxGL!)O21CFLs}2;OR^; z=$rN=v*iaE3apFYe?yRp5+N#gJ(g{@bgx;r7qEzW)g`nlka?j;iiyah*;0IxA2A6D#nPN~f}w zo≫c@c^jEeUer4LgJtEEZi}ZQuluxAN4<3qqzZ{hyyZ?Y`@A`Ky+=L{r(HtAvw| z1V3KBOxqSJk$l(WwSo>$e%FYYw~_hpR2$l4^BE zZgWal@%oaO{fB%~@B|QfX)(+)4s!eq;C* ztJ-s{C9aj`OcG+Kae3VzYJec`&8xALlx*nE$%`DH7Q7bTO3zDq-Z3C&pXVH5^Of4ZrO_lC*edA)sul(G1%@lNBkiUh4pjK$hFlgK3#jkO`%;^u z-jDwB<;&NvUfrwjtAf0aA0x;8QK4r~w z-q`eX1?VQv>*z#awA_!bEU`bHp&u_jTT4gn@?rhac_GkW}hMb)t0l33CwLAEq}wzE%`s}KC|iw#?9P}F)3Mwwslx4LOADl~6)-9-8=tFHvfh&Ip|0tT zn;m{$>|8tL$?MmAr=b6_KXXllo>c@VLsWGdQ|6#!PQr@j6pv!)E%ubCSE3Sh$b93Bo<_=d(3F`l46>UcBmmWECgye7%ZnEPyuG|i0`?kJJ z*s<%2B$wa1EPwQqutw(ZC4zEK^Q;9QeNkeb95B8QW6zy2_8ct=D^b8ew!`O17MwI) z%zAJQ2}GKkh)vBf4YspGY&H#*1H-R2(>u`zJ(;0Lw)0V>J;bj_9(NVccVDyXUc1A0R5Q(8|5smnMNgE>koD9U7sk2v6+sC}pn-8_eV@zQJGhIL zr@a5k(P zvYnzU@cv)98ivCUOXK$o@f566?_J{XPZIvqqsI!)cG=-243X+($-5C0P&adU$&7L@B|KJ_9?y z9}Zu=fnP^>_N3_zVsh^Gk^gVrT}RDd`Zw$IrO-^F4>b(qtTpkeMeH*2@;WdjJsfDa zAm}QECh6gx8}6ZXp__zC#e9H=Fpu4;GyvgRS=m{|ZXcJ8Y{TKaf3u4SlOKt=WtMys z#-4=5U52T0I}aRCM5Dvyonsgk2N8eB%N9)d@xb7~$gS|^8(rp21w}khV^V};edJv1 zgh4s6jxM8?!gbkpHoxYB0G@nN_5HLGUv~WNO zl!b=zb(ru$rl^prrHLsXteAG=$)n5)ITN00z-c<6BfSbfEF?2MFvc%p zwysUrUb5qXi3_{s+b=KyF&uqt71E4DiCQD{@nae)dhW}80#p?7F^Hv2)0Dc=+(bN& z=r%-En_(gq;xGS#;7~jcF^HqU+@9d5@Bdv8ghNVT0Oq!+ipNrOwK294RRa|%C@j*X zM@2@S1vD!r+v(#H3z403vYmpxx$821Yqn)b6Y;>Wj$aV1JI+QhYTf#3;(p4{&$m~V z!O?}42E@tlGVKOe68s^x#YK~h9K!R>@L;Z$B<6`O7iQ%sYSAbr5yOtGgpogNL?-TUQ*uk4CzFFmVamrH?e}1D3*J zsi`%s9UXo!C531KP?QOvQ^c1);5 zmfzyZ{CG&R41IHlAqbO!`by7uc0(*G|F&{+{;ZDv(3IQMdF2MB#HiN3IPd43J9j2x z?R1L5E)kbF$h6f8|AMy$U!eZa>hZ zNBp-Bc69a(gg0f123esP>+-tKd{RUch!mo|lWqgpGdnkJ3To`%bQ&wbDsW}p@1oN-ilgaZ$nZfQU37Y=T*#!|Nk8@7qChK5t_+3qkTC8dUv2^O%l*|e zi%s?>eB{RNq-m)W`s~;WWy5C+QKG|WFS^@siC|}o{}4Nadw?6>foZ|3 zIHgJujQki!Ao7d-^APznW?{NrFek#mp5f;jGTEOa_Mm{+?!|MqTa=LOf64hYXWx7C zM{zEN^7e-hOy(R*?WN(wYko6lyxot$J;yH=n0A(ILN%-e@N8Y2`YjA>R4o`Nn$s$1)j1K}N3Q^SrH>!KBcG^!CMpl3*{X#B+M?Mn{LQg`eV#4#e;OgzK44a2 zN_|^vOZKbkKlGmkA42hhhYKG4Yk0W$!Tw;n*o+*9!&DrSU-?L!xa&1f-5;E`gCPU{i3Eb}Ev&DeLZd=f=9QL_(rjx|dmtWnRh~=>9 zP%6RUp&_4+J?SSB2DS)Eq;;uhTDdscpwfr)D$Il?f)A+&Dy z(L$VG|K5m9?WGnA2hWZN&Xz(DNJ>GKEgH>U7Z=k@j+2ub3+4n=aPdgHIzmwrm)=~u zHWC_0ZuSh*uCvpDvkV7QNFlj!YQ-jNi^L?GmDossv%wZ0?B~5Dd2fNu9@>+4eX7T#^$XpRbTb@i9(q6s#eb;`8$&;v=@x_!hVAkW43W zt0IGU#RwBhx`+{ z9LJ9SFA8WsgTQ}8)JH1#I50N;jJ#(kTu;i&7EI!N486+s9XllLCWcDkAeZ_&=+12W z%Nh{*7iG7Tfs~+c0_0N-gKCrY{N$m!L0>?+RcFvGUpwi)(dR+72clUqZ4R(qj{x@1 zVLKN$cT#A;FA^If{*lR%649;ynTmPbl^E|aG#u-YWnb7b(1|hB<&ZBS=GX};Ij~w7 z5H@|dN|6vt$6a}{hR*s6Tb(8LJz_DtrTB7*@~BtyoL7?|oTH=n+@n)T=I6lJ`cU}P zNvB5p$v#xDl-i9pR)@TDBdCmjM|)--%VZ2Ym=1BLIUBvZ-j@zKBE8l1gl#UAG>_Ot ztSjiJ0)*v#e0+QlSj246nHn3InC^Fo-SpGXo$&=c-(Fv#i@&#D`V;ou!>xZl z?2PfKK`??E@}8QgQv)nO^uhcsXb7O*vXdB^Vy2;~o5L2B=Wz&Vm}JQ2%}*7>-b%bIPFF3CT$)UUdKP-q~kOl z(GS8++*V|+RZv^J%@?kTRt!xMMj`ceQIXz2DoF@p*@jg?{78{f!yDhM`Yr1)-t=Ps z++rk57v|l$vxLN~OV{$8Lp-f0Jo3Qg%^B3E^ldi)7~)u!hYj+Ulir>13d&o)fQT>#O_i=qdC~XA+0~SkV2; zqEjEAuc7<#(>(9LfN8)$pO0_9vmgO#N($TcAkH@U73SY+_iVmrU9mSeK+LDVIY$+G ztI7lYnKBNl{-0SD1-t1}4ihqjB&bW)Q@oqUKf}eC7a|dS2_k`3ZSytktPjG-V0;SK z)~z>jLp%TCt~+3rR8(S62DqOsx%tSpFf(^wz9xrl?;)=ufQ-8cI(Dp3Qi?NWuy{gUU(jcavmXf-%w+Zh4_Vghu5=i_08A1xXT*7yP{_M=2{6I^_NpCCg0yI0G(qMcd6_u3~$9+ec zmYtXfH#ax4{Ht+sbx+l27V5VNY`m=Z%4Y~2&xBJk*R7z z>R6MW18}J!f8H$*osoWXC1~&#yY(@QNpeH_`QgFqiRjMtu=(*8k%`V=1hXU%OvvkP zNRycz;Ft|UW?S4-L#HXzO7Ha&P7@4FW)(6G2ggwvdSdM|c40Xjmt~47KOsrxrXfG^ zY=!;Gs!aG$Z6qv_TJ$0*ORymrcYKrE0KbJ~mjR9|ke8MA6Oi`s@c2RllW#Kei!Dx` zJb5=(KHD}8X(@ncGju&$G~9HpND+Q0dpO!40_dD%1dh_#qcbxzpSC59c2H|FnaxKA z^ivMJ%}l3sc(^FCZ3?3T#D}|icoplaF-*raDa9p}baj3a@GTU;A zUjx6>D^i4mi%IX^36osuP?ZBOqgFuE#*|?IO;GNJat!dFL#WjaM^)r;DX9t)G^0iN zE$)7_)2hH4R-~C|Au2gx(O`578Ob%L14eUnoH^iM^hWsm#+8-|#AXH3Zrg2$VE6b@ z)$J_3>Kj=RRw+$ITA5|6M7=8ujep0mwoFCvyL=}PUw3Q1eLVH9&qL7j#TrepDv`)$ zQBTCUFJ+s)B*ZY)U$g`I6N(o9tkd?|BON&& zkAQ#}(#1`cUncqn#UZ=I4`@imTKP&V@@D=!~LJ@ZZ~RVL73CJo!^eiW*m)#?tbRCL_h_FUT#0RmT9fpEOXXhoiTKVrYI)qrDD*Q~a z>Db42PqV}%C*G}a2uH)D9-{cWxmG0{J1+v0cXwH>7u2tSCUE%0s#Dqk3`8mGzC&in zEpX~Est~pLO%N3#z!_HUM_vTWDw`nI(l?Dww0ku+k=};TKW`!%<|evcH}m$-IH2e0&?VpXyVfv>u#=F`K~ei)y=P}srB zDy^$IC&vm9s}NB}k;rJns*)b0X=wqL?|*SLIds1Zbi_(37^0_bl@%4H& zU|z4+jx_EvUAt$kBH#x(xwr}*>^I>IcS>%Dn5EKoG^2T#W%A{2do=*=JC5<74K)@m zV_p5R&VKAUhcBSOxRbJZtwuYVIqAp^vPMNj@B)Hq=DTkFE}zPo8d!Xh0cW|t99|-s z`-!uU^TNrrHCI$@#Hyhk5T#yvaodr>x^#pZk!7W_R@F8RkME=$LqBuiDEYb%XZ#bl z_Cuu12fs%JoL*|}td~F8KRaXK=Hbys6>ylbb@TCIG0o=9B`BCAZo`t3tNIztb&rj^ zC|12P@O?BpKj$D8wo^VRT;h7sl~dBJ{lnVZ_d5Ub0ZX5#Q4t)J@6^Wp(a56K>?d}* z1ngpYzS}l_+p&+1DvaKQ;_fg%{j**?$}q){{I(8_fV$U1|MRyGB4i$u=80%9W?DkK z5|ymUs-9@xr+}P$cYX7WdCef{x_~5JPoCI}(di!AiKg`inL+3=MuV*t0@5*s7wbeL zw}El4!`m4=2#NF>)01XacOlx*t&EgShyH)T8!jH6^C&HjkB`R)Il?u?)~YunjN?N;r2Q?OAKm zs7ar*U{eWd@%hoHkK`I(-P;5kr1mRq+4=2*x-^=siVAy4v5q41LH0FfTu9I?TB56` zm(R#Qex5nF&zh=uRSUl&YHQso8JW!)x4JwSvLjKJ9^XzCSQ zOWk*9AZ?A5in`vo(oa*jtF6!7v6Vh9Vtsylcj-lHy`o#LjYwTUp}(NyDxblFnd`Dx>diaj;6ZL$3ako;-On(SK^+U>$?Oa-|6#q0n{f2`PK~Y-+s_FPg*ijS&UxCdeTeJjvxPW62P=q6|@9=l>>cTryv zHP@T;$qa*wZil2zEguc!_M)p~*wd#a>sB?W&eppMY8I{|cM9081+4oM1C=O^L*Rd> zIwi!GoCx5}okD9iUJy9Zvr6m5>}~ztyhTF#f>U`HA1Lc0_HtP6i{y}-EF0Jq&~rwe z=}9Ma4MgfZrPS+Gm=C(DP%aV=TJfj|t8bxPH2HC@S5Y3qNEs!iE6G=CFOiyh6Buw` zq@t21(r2fNXZgHTtaaoV7y^HZFl{Y{`^bl)F25aVtG)Uu8I=#9TJgbfb(zzrPm8Vj za40s~hn=3cdhJ@jsVQ4VjXK>&zcJm%qS;Qc)e6xKq;8xX?Mh)&=dVY_@8Zw?giQc5kkQlDJ(L@w?(?EO4pbcTy=A2*pAGjelvE$a=H z3z|Cp?UvY}`6Sk)t;28ktE&QwliT@;JghucHRmDEr0ywAMX~B@`LyB=UtTjY6YPpn zmdWvA2mP78<{9pX)r%E-lLQH9;ls@fz+{}18-)I`5T~}N{FIoo*cz$0YR^%NO4$o6 zDfN0M;bg_o(=e8$Aifah39i?q<79c%h211M6*J?olLX=>c^fPez1xaMvqwc32#Rwm z`G4*<;l7voGY;m@HLGKxV!0oSC*h}iN~Er;@N`wkfC_z)FG~STY54B$(h)7zRT;!z z^}LTqxdeP@p~FmvL$ak5s9BQ0BMFvcWK==X)dh>CK&p+SrJn{*_SpOL9mo#P>TY3q zTrNL*@A9sKy(b@+KOXz|n7b%%MALeDEKf|Jd9rErP=HrpU~{WwL3}s887}cvb2HQm zdQ{zt?SXMHFf5XwZg#d>p+J5QgfF8kis_~i02Mc!l!6PIXx4nMawn5Ckp})h| z;tB*7o5&f1C-JkNo)~w+UlbhM3;Eur;*2&=#lmHR4R5I<5KKHjwii+272epOV$sRM zeQe7a=qQn5sT3|+{bdnjNm~c&CDlx#Wz6ObWnZSpd>++v&!hJAlgf~aV68LsWU+GZ znkRT-3szN++73lVMg7HCqWkq~jBRbnP(DAXN>%zO1C}Wjg*-^tZtHVTg$` zL}$iYCh~|cfQums5CndGDmJNm7mNoaZr#0Y+vEHJ(jJ7_MYx47c0N$l?$FE(A>$x_ zsMpGie)Q-^0;q|RwQ9oFYc(93iL|Cua}&KgPGMVo5;WQaZV`&SxCTM+s*iS&*NWUi znx{WlSOc693D>d>LW$D*pSAL@=`7aTK8O-j5Wwse6Lr2Uk;O^kjJm-z&dTYN{0&xT zA}9U3F;m5_n$0B>;8Gs75g97>;~JPx!E?n5QI)jlwlFE5N2In6-?~b}OL4jvwT8I_Gbbm76Uv0daRhyq9k!X6*w(!Bu~ef{*)^HUo?IPzrCXkizK ziDddU$p7G65sw1~$M@@5N*)VuR{iOjQhS+a=HQ@ld4`37$@67`-Y~Jg$XNKno%&&KQg>NF z_WFRllL(vO-|4kr3|R2xSp=@giT9U!r=O^N1E*@zY&Xhp#Zv)X)ec;>EG{;<@{beC zdQ8&>)oY)^#_hw}PrZ~aZji9i(5Turv&H3r6o8sE7;7mga9H?t&)L1xkZN=|XOPh+ z5Lj&s1@2MTVxxDj!MggVbw0W)1rOhaUgPAZucu3Dt2^Jlk!uA)A>w{TE3a|utEU>G zAAeoY{@c>seEKQ%ru|Kg-*SjHVD9d&D^|`o(`y)BDLUnxCMfaqfj$Y4T7zV_zOv0f z_0+1evXY2B2&B&KGxvky(>vosI@jCTduR^i90sjJ7~*73Dz&@;e-`zc9kX$87%xzj zLWJH`5#h$N&+y`}g82p~RB%(%Gfr=O`MGvk^-Yg|E70F$)6Y*}4|&~wxU)haL_O#b zgB=-lt~yea1i>tQ*--~`lI%o16N~&||T2VTXFX6#nss!BLa)6oclct%L(N zP&pBJq|eS_*+RI=t^I+sQ;%8D@t3#)plAWoh*}{l<)qDEdvTxvJkTXKclXO+P&AN2 zyo^@qD?i%Uq9n~JWWw*E;OcIISn4L>1*=QD&lnutLOa`CT2d8!^>XrKa_|$med5l8 z4me9+q)1QZr+Vt*-+z_QO?;OwJxBdew2#~({R){En&-~fu>21RiElW9pCj#bdt!5% zv@+3nisWBViE**~H9oQAJ4g&~pZDa=t;s@N&tmu+B0(grkP$ITx^kWhcyjI9m!vB< z40XKKO}yu}7BnD_zJns`>mbbYq2bXZRCr7hl=BU|LF2~T=-{QD6v!o*HTf$K<*u_s zjObC`Re|$83~;Z69B!hGJbBs1PcOR^Xgl}|>9nkD-4%+*Om8(#>s7%F35w84B)dy* zpk8a^i#5Adoh)vJKsRDa}=}4%0NrGPGU; zA5nzTK}hAqMV4%=GlY8k#w&Q9pA0k8T5_mX(=*_Rn!pz0i#JE9R0 z-}^$`?|qnj3822SXgmhed6y(fNb@1Fqt~3RyjIEZY8GjMA+7|y%}Qr5=;B{v_>l_X zEP)+}0wAyh?R|scQF$zo5D>3nuKpi+vxTGoZhh+1ESIEJ&@-T0tSCkD$jQSohb~_G EKb)Nyx&QzG literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_9.png b/labworks/LW2/images/picture1_9.png new file mode 100644 index 0000000000000000000000000000000000000000..c1bcaa6d43d47c435d9e8835e46e22b7116fbb79 GIT binary patch literal 74490 zcmeFZX;_YJ_&s_zNGg;miHZ!(X&^}hq7)i5Yfe(6LD8T=iBK{$(yTPk1C>S!m5`L8 zLXze|rMbN>?{9d2`~Tnj!#?)@wjT$tH_vlF_k9iLxz4rLdEHPyuC$zK0~1A2%a154 zYEl%#EJe{)Gcw>OgM21z_|IOaLwZgp>`psfGIO+~j+r^xpR;p1XKl`N(bDmPwcU9M z5wV>jJB4`8I62v0*efb(`(N)6v2(N%4R+LX#8sBrE9+mNsFh~qH%+p9k~Kv`QAZT_ zYq>-Yv|rL&qx*cxNZuN2CMG^6fiv0FD%sUclh@kycuj?J{+#zYY|+9u$s};tV)$mV z>5Go|Pe%sUt~r!=Bw~1FS;VC<;Q?CJ-*eH|m0J1#G&Bq}d~2vL72nTF&&u|%mqxV3 zoeyhyw*2cAAMmYO?qC1EC4S#c_F4abzsC5C2YCPemfA-yIYIw^2Vch@;nTZ<3*<4jed;(1Jg5^Urx?KEzG%iCP@r692^?H|@wj z{WW&*ZL-EA$Ktl&6_+kuvi2%C^Zr18_m?kUoaDIVE>FegN6TCqGOhGka;7D7Q)FbM zsf`WOg$oyg`A;y&x{X)drU#h;<} zsj+U=!saZix6$i&*{l&UDGN}Gk+VG8>bfLvEgPFg!|Yf$bD{0$Yh@m@@#fVxvvYE; z^L%9C_WFs=2N$-}-*=eU|0RN9U$5WQ6|y^QT4ny0Ct( zqP6V%_wPRyI}1K5E!8M>bJo+>ul)3B{h?dy{7On>)(IOVh?lc<>mHUiqS+FkRegVl zn*GeUb?+bi<$HHsSoV`AZ$rmqWo2_*f1eKdz$Nb)@G^+IE316rKwYSCj>qi9H6n(4 zPWByAR1E&Sb;pjb`Pn}%iwm;kjS^N3rmyd9<1@(TI~=h7%8~oqD_<#>d#OapTv~y# zqo?w1Kd*aqIM635YSSrk4k2OT34_AjkJVysb4Z+~DEj@c?(W@r605HJnXLPy>A9qTzbzRgVZ>pgQ38|o|% zs;E$KadG)N-uq$a&aZS|6&1&wl^;Hl^I8b_Gu+wr^UcFOu47w|NA9`u>Xq``Se@t| zml2*7oAzFfKXj`vLvF|MNQzp&VZ-;g@{3xoSKhvPbIgvtZMP(^)24Ha~e1leJz$L*uE}qTC9ueg3hrJo{Wms1r%Y--NKwI^AV=yjO;y zKH686kCi<&H!V?kt~LI5b(wzN>9~W}SM)aM#w#xK>+CFbzmAbxzkYozx%kJ_wW+#U zx2yb^yQY8lkj1tz(=YnWbAAK1-SgHwD~(5omq+y-4sIDS=hom-PuCOEO3~bwl(s)2 z-?DBUrBHHlkd>YNI&ehKQNufI6(=}Ju?r{J5GbbSey zO?%foIp1FO>-{4(4vvU+?QOEGcE#emch}%KM}NPS?`nvWdFt5BWYe6UGU2vy<3{n| z>VUvNu`};@jz)+tNmLEf3IF;1JMGGqE1R-RxOoo;D4aVdR1?7Ai}CI?T%loH^_l60 ze{Q88GyBNbN;*nmxTEwv?whK}IQhgLLw7F4HztOgVa3MeruEyzrKDb_YNsW1UK(r* z5uQL8tz{-t8Y%0(PDDh6^3Jn*izuzx&*J zs-mijHc2f;$2CsPI7C33b^UsOhprk+rL{-izId2v@Z|h*j5ZzF$sz1cqE?tuPKU|T}08`Jicw(q}($w?r!W@mYK@76K%bnc)0^XK}}?e}Z??`P%B1(ivx`zPv8cLm8O42*oX zE04o;8VFmNn)0;AK2kYzhR<_uRB4a2bY)Z18myUXw{9^%KK3wlX!VsWr1!S>6dr;!VEJ%Kfgd&$m>&$E*{j^!NH7RTZCDWV``$luCA{8 zF?+9HFQZ1jJzqLE)1Q@WSR^haB&7b--b~V_iSgu<^B*wcJTe#h5 z+m0Q~2(BN)h11j1uXeo*N;8z>=RcBG_y|cruz-7+&&6p~Il;$al`oEd|MiRSOUWfQ zdq+pjk`8PDo6C0BSUBP@w&JOok!x0O+_Y&4<&%_@Bx2`&?Z#|vZLNy`ty`<<_m9f9 zmV1@gba($g)yDGRBiYd*&J%swrJ;v{KTMtC){xUda8EZW=b}bNz8wr$FLuDp?Z5$A zw~0Q#sVNsdJv|;C9_sMnn+IJPmM(qd+~4dnJ1Gpv@vXbt50n1A?_(PFv`}-#$?FJ> zX#?hc$kJ!t#nPPr@|0%v>eVcqyIGL;UjSCHZQK~}`u>jRU%qTyT$mL_x^Hw zUB|Nf(HN(cq6}ja-=_##L zE&l6g4^j?gbY?L^!YcUj@TVL)`GqN7b8~a`!gKmU#?RKjyuIo9$28p>_dnj7&^b@8S-Igsx;}K4@whJ3gDPpBJ3_=FaAWP92%Z7X*x8 z!oqjkZU7Rp@2*{&e)7qRZK|R4RJvZyfw*(7zkA-kM3|vTxV`q7c{P*aGZ!{8Esu{! z-Na2e4Yp~gTxal5IePTPJVl4Tt-1r`4ANq)qy* zNDPGKnN5nW%S0#Hx;4it_kZSgZr|pyFsIL_n;A(dAVHEL6QN(SWSMxxQHsZD;FCtT zJ{R?_XREg#Wu+J=CnuS*R<7TvK=A+}{L-2P z0>~fQtI!F=A!y`s)LrZZE4|s5rw+6fGN6`a?Aq5-%GST{-}QcSwnfC+RaaNHV7U+Q z&h(+fqLW7Do<;_lKw3;6JZA@`XuQ9E{mS#=<;yf9C1iB`PwZ~qQap%`c-^2-{r}p~?FONy(niM-7>2bVw z?_R=?61#|DvZRp-`|M>8kB^y2m?_PZMg|vp8bX@MkQMabDK8R~5t(%EYdV75CZw;) z|M^R?vubJ`09{k&!O!Qvb$dBYU^%9^pE!8%;J3DdvwO3A`LfKUq7_YOrbYHXijRMn zrYq`#WX(z+%%?$1c0oHeX;Y|z~8%(xv3E(RA4qO zw^GF$t0->-->--r24S`q7QVDgKve+V`y?c6jp~aI0WR9U{AjujtIcQu!u`OPB8ijz z+lPnROGYLq8L04x2s2=FtTkyJZouX*>8KDI7v()>5_S$E=u+NT7nR7*gL?x40un?L z8)D>Rx}Enq_XRg4e(-1GH9d1CyxZ~z{Xg+-Ta1U+^0fFgz;%ie(9H}$F_s*qR%WDP zcsL5{``P8`RmkQq2@>va7XDJ|uG_cwgtl(%41gIKih>VDMn*IgmMEa4Z(8+ zuEMm5!Ov2^*M8L0(ps~ETaJbL^)W3>voHma#-=HmhNnPQBnf5eBh-*CV?UNrrYM~4 z9UNZg%&=Or|1I_|U%t$fAa^5e^yTZGfzZi85Ys<6nHuE^76hqC0-y8{C+>weSW53d@)+qy$Ut=vSrJX zP0Ho=?c0|PR81B@Uy#vSBu1y2%+I!s%nJ((1}&q=q-Q=nUJjT|4_YITQ_Aru2k^!6ADl&~rV|$d zuDfEq7HBAJ;KLRRcVD0SRB)D^s-C;A{bJ+Ngxg8?P5vpcg{H-3knF?@GEvrDy?&j} zyM`G^5!H)@g~i``B=|8is%LNNX-UZ=%)Gt5y#k62jRG6(UZr~L@8P~Pr_Y{c26iv_ zkdcv*xR_LW<>;3hupKCKJyv^uOw~^0?3l1ckq+8}nffSY^t#-0=!^6ml2dQyhqrIl z(u5x0LY1xDC58RGf&}j4b*sCzQD%&QT$)#ZxcG-`9Jk-?aOKutpBu(`rrJ!+xqWNN^z7QbJGA!p&6}Fx>$tgt@BrUma(gL)jrjikyJV(dX|Mja zQqG=k(eFTsf=5?(J_IJRF}#lQ_W;+&9ixX+0aFQ773k^3N^g2}wNT2~G7-;afdxou z+PQqru}~`O{pQ0b`F6AO)^jKxKKvcH)bBi8SAI#U>Y3}YJhT7H*q+<_&%i(`S3AeUagy31Q&U~;iNFskLBVSNVN zsk&HxanK+%LrS9E2!L{U59po0xC0mBBRgn~sPV?rr%!9TgNg{W$HPR$tl|B-FhASK zDkEjr(PZPbgr43M{6cGU$n-PU-#af28B!^w3LE!2DT~@hD;BLqw)5E5@yyj1AEHw( zWt|-DQbJf_2VQ>(3QAkV;_TU5sDQhG(DsJy=&+sW{jh_;%M+L0qog+bT5)Cl9(x|| zrjlX=wjfl6->`i@Mm^VTh2tYi>}EYx~=&wVHcAOCR#Y#h*85mAaJ>6QH2F~}F;CrAZe6p&df+AZLi-$mK08Lt~ z+kvi7LrjDXZN6 z3&R0CLW47* zC~O8L;77>@uhH*^g!FUi!3J;x9o+(1XJzg2W83!a@!*j6fc&7o_QZJA%uWBE(BT3I z^mIgSirnYAic-f!H>K;Jc%T!jK%#!{v(&W4An7ov#=A zx85W?12XBz`1lKKXV%rLeJA=`l4kQu_kvOcirQH9{J8^eCh)g03Y8l-ZcwrI2eq}d zf+ZImP!Km6|C$9i2NE&s;(TkAZR3d|M@vGtEzbR3si~>ibY2&A1=i8H0lULKMV;A@Dy&}hLw>L`D zQsH|Xwrtpa&L6P93%r-h==UWclG(s=I&B#r8A0M-%F4-k3k%o0DOtlHtoPfuE6Y}I zS74(&&P{a%;hqwWYf1TRhuHY;iJeJGe-cUykjkTKsi-)* z@cZedVJ?KLUAKeM)rN+Kva_=ljvi&flU_rTJk{&6?eXKsjf<;Stui$?zh~L6dlu&AO`)Zp^KO9_f=O?7OJ`Vrcue?PvbB&m;*t0Sdg^XFjFRv;-g|-~%w@rb zpeZovRfs4#7kZ8hoh&^1ZT^jl`{cltCr_m4_bY%scR>C7>GS9QM4|XE$0vko6oc)) zlzVYwt1kUpT!K%eG)wl4{3Vl~qs~bb5${ImS-N7y3d$RRUgeTt+8B0`U#Fl}viJG+ zVj8N@uJbl1!L#W-xV2yr#-YzouxBr;m(*iF*bjHeQa3H;WiL;uTNu%Nof_>zFzD#z zLRk7MpD>7uiU#&;U{^5UPHFD6`6;>uYAD#~o&*44pg_|f6s^=`rDs{clLE0zduK0K zd`yf5x__GXj=)HW_I&JN25{uck6VMX!Kjd#F(iJd{6 zP&|kz{$)R6Nw#SvtzXO1m0Uuy1-tFPDqNnM(y(sD7+O5Pww%(uel|rrEmSh&%=>sg z!>2nbQ>kY# zX<!3{c6gA>7B|_pjExr2M&i+f?6`T(Tpo z&9MiP`x8|{Of4<_h**K>pjUW~1KW~HxEQw8ZDySROMCn1;FHdHd^%Y_@3GVSF+{_u z{;cwBiz@J>1i6}!7=mNVE(7>e==*FfBet`bEDYGZ`*P6#*IomhQsfl$4EThzkh#Y zb#Ae9zc~tarXrP7R#w-6rsK}GWV%fBtp#Pj468UFdI9(iP`q1Eu--Ymne#!TymP#)QS5 zoXkfg83NLBEMDG01O&VhOi#kyte3ecv`$FR8H77A9)=)@3WHH6)9?m(qNLpm`cgCU%3JR+9uFRaavs;Nuh-e#xvoka@60>gHilj%IPBwvM8maIKrT3Wg`)Rshu zI!IWIfIju_+;wxz4}AlvxS`V>BFJ+0BL&Du%P169+n>3NLi$B27A9|}uA@LITK=G*29V<4Cmo^NMDt$TT4jsxPren-dLs(lDqFMz(p+$Ya9rRlCjnB6HU zc{MR{8-eTr8+I{4PtYt{0JYr(096CJgDh!?1M5Kl?cBZl@cZ~f8d=7&0SIEywQ3;V ztqpBQzHZJmx&`DAcQ|kZ5uU(EsArq*C%6nmSq;FJm~ES+UpGNEckZwrjo!xruwZ}j z;^DXhex~QnvB=2CPym%2$ zaV;W(12N4P%gPKwHbibQM9+yrVN_%UbWRSm`XZskpL%_d$U2}@Q3~HeCO1Phz*H)D zMi9I_zC#Jf+04>%n{#DI$Uouc2?+8opbH|&673YBG#21~r?@y)^!{eh7J|iRcA$7FgAt7r?pa5MSkI+O! zIanby0P_Plr3e?TfI6$OJ(Lu*KVIMe^)8MM^tkrq_d8LL`iX3hTJ90j6_L~MM3GTZ zV&*Rx2`>*GKDby8OS^V#@2LdlxB0(!Y}@t?C1ri18{1v+2%cn)r&s=E8gWcS)%6I1 zGUbhl?MjOAto^ouP2>2t`yNOR|M_yQ$E_qRwq%@?T6*??qI4kg?tj0!w*WIhaN<=7 z=8JO#?r(VyaB_KOd|75@CMh*`x7_h}yg$D5;lDgD@#j`^aNIz|iG!XQTA`@@;W3=lfOd$a^u8>B(p{T^ciqNVhxTQAZ ze;8x<*pGlzN5Xf&ax*Nu%mKF9|K?4fq9SQHPu>x=np8lw~J#wTH+=oW8`sP=saw9WW;OQ-Wco?U~dsh?X)ztLPhmX^JVpjNhH+Q{$5%UG2 zt1rZ61x$Q28gQQ;+lEIC`S1}V5HB=7&?*5UQ#>hc^rJ-s0p(udd5%ke3gI8;wxvll z>t4#qQja@8X?7|@@+}SdQ0jhZ4#JGvNw15c&&Bl^>P$IY69WbWu3P?y7MJs!^G6|f zq~}tt{xrW;PQVx46?lV?uVr??fbex`!AoWh<{U!2mxBM}qY;V!+}7%nz1jKsO=tH& zm~ZZ%$;;aqT1hVcO3?C@t~5RnLgQ`3(Y@;be9=gLa#7R&c~O1b_&OP*9eAAodi{TG zQTmTBir-humn3+nW$X6sTco9>+o#W+JBLy&>(9(7C22AYETMOGYhPtL>Kz{9@4`IV zJ2|}oK+Wx*nrY+MumSv{o@oC%dK%;%c!G{x>X@@1_?aZ0oAw_AV#?8aa>WIm$wsS& z#zJA{SMo7zp`#Naca6GnX$%=c*!>*wd(5Y>B=j{ZpM3{pC85m8NfK0|v%wIUA7y3b zcQyKN;Y=PR6WKd`#uWbM3ekKN)$CEJ1En6b>i~r?-A&eu-PbLow{F`8 zOzs;^uBd5wsKNZ?KS4uP{-$|LZBio?TDi~B z?H^{WkOHNREVtAG(-A*bVhfN9K7WD!)$=&&!RV)= zbcBCRQ>OjRn?RZyeB2VS9)TCp$UA*ZNH3e(wAV=iDrF)Vmv7;q$FcNxpZ~(Bs#>=( zT^QG`B-d3HwUG6k3+K4y&*vMS=U;ZdUO(6bAPo{c;4q*pCBAS_uPjhHQmph#pUJl*qgN_#qb2C7m9WR^Ah}T+m^o{rWn)Hrx}nS zNErdlc<}P&XEnBe#>N_-wx{;-igXPRXF0UDt$I?52|Cl1e79}-fs~!dM?u@x-j7Ev zuWWB`*FN52Y4SKBAr`V5W)6A}J7Un9$FnmtsbAiLzac-t;J8f=q~vd;3`^bCLX|xX zh?eLEC1I7)?Ts3widv?;{@*V#KQ5}~j$&HNdT>5&Kx*Kc}#Ga&JNeNcM6 z9tKkh^+UnQiS44H>A=gbMqX~wu8yZ$*7!+u_ z*n(RV=mD3r69V>4R7hIM>NN1j9adDNKOQ3&i1K{%&Yi5ByU)FIj{^1+JKHR@XV0FB z)>aO{kwZZHBF4}B;omZY9uLM8)~6da6A6QY3(&)=QPNKsd2F+4h^z!m_C*E4_skQ{ zg~&Y)2ShFVibYX`X2aq4;>8QXsUTCoKsEb8*b06(LaRaNyp9?G647Ycbr|N%p$i~; z?FT!co^*T@p)@yd-n_?iZqMoZ@GHd4XcqAwb_WO`qyPYKOKMJN@c-$Ugs)`<1!h%C zZxT`TQ>nWYOa<@YjPkPvA+Db41r<}{nTrEefue~h0feZ8$Eg~uXri@3pM$jHk5^7X zb?K+iobd-|P>DL2IEafJyTA7LGh>X-wdF5E{UH#>ynOi~P$`7J&9$r}yfSgb5ReSo z>XfVO4ga#;uDdJ(LD&H4CqwUveyayj#H?oKrnrvV%fw7AOCglhr-in}8}elROrL8C zt&XgY4B@~wZR!41Er%#Yd}X~85XMZg>Qu6_;K=|rRs&&_q5w|AW!-l}qs;hItU1X# zd=WIly~cLQRN6+oi4;qaye&XnhKpO?bb8qY(uZhQ=e|5;!}R(+eE86~e+W)GSW#jz z225GyUW;7Bz6@act-t>k{*z{C{ET;pt;r}P$5yU8_^v>dMO7^=?BF4^!hd2+AS6ki z`^1W=(${$`GV563P1ERzr1h!j!VbhiUm*I5#>Q2c4&9Rt;1hG8)sXTBdi2%1cfYro z!s2!~h-*1yIPe80zb$*2oxPJ3k8*NyAo9fE%Mv;UYLoi_v~e&Vu&DBV84L*yzKY^e zwLD3-5MG`D5DL!$G`fvWAtExBt38lB^3CP;jT`&1uN~lX8fYtE1}4A%xTv`JJ1Bf6 zk3hQGmzF^4A4@GcbWr}+N6T_r)C5$*CPR}@wm8xE@r1P3<;(ks0}8ALDd#Y;SL5O~ zQ(qB@&$Q+9gWrAFJ+ZYmD?Cp*T23N#&Q+iL#f6B#z~$h?c9cf5OX%S1**0vb4G2*c z*D;uRrPp`6u3kMP2b=tDz@gw{;W>Q5g_dGgVpjaePxwjSQeJe-=X^`7Oc0V9)zsBl zDZVIEMGP)jxE(&ezJ!A!@JiSqzXJ40ZeCl05|Icr)!f?jo}AwVOhXLfpne6M0@aZ% zjz;ZWtI)^WGNXg?EK%k`v|#^S=ynQCB8iAfkm(qsDrH*elN0Ew^d ziQP&irI$j&5)!kGFdc$CRDcVQu&HyT;8i}&21{ypunb4OhK{DtYM3*tE`3P zPs7lM;-UBNuZ9t-Dj?Carr73MfgRJ*~yP5W%+0QePe89*B81-9dA>5 zeMo+Od^ISD>nM={1P*^YZ|?z0t_Bp91C;J(ZWBxn4i4~*`|wcIU-70DtBO*eRd%_^ zDP~STIn+*s6qR``vdN)%trs&_44udjX|yycLrqBxG9RE(`-4IF4wASMTO{Fr?it88 zQ{7=E>IuqhgyMzuOG|+G5T82ruBxxE|N8A)TrSslBjuiksQbnc$JSG^kRzbrzq4`A zQvtxg%_Vyi(GPAsL(5Y5pxBVxtweOj+)om{JjJV8?tka+WQ zjT@>-5u@U(*d%F@VH~&k&Wc%R7@Vs!Z!m9YTz+BQUC$p6#Afl(#IYa1A#r%HqQDxy zI+W>bXr!>|fsIq)zyY7}S#%>v80j{~U|rBCm!3Gt`8~=W)Lez@L1o-aRt{(LXP*6F?02g5w3!2u_F(YVE{`pC7BPYPJ_Fnp#{zWy0qaUVxgDfdtad(kATaGkb8WW=pKZ*B(M5xQ=2oBY| zsR6sdSUU}UiNIVu>=m@2sn>U1_Bl5^FFddDB~sF%nXt1WxS@Z9qFqi>ofPwcbGilesKIdnZd_0Ug($b zZYoRN^+vE`a2%#5zv&m^FYbq@q@=V>yeb!A=tNzc8f9{M%|1Cf;|EGC=GOh2&(qy; zYgCpwHb<+bqN4fWCuBzKGGaynOeVw~*e7C!#3Ce?Zk36!tS-U;J92(#R`T@n-%&VR zHhaA9CeP;0G(?|9ScQ$)9@{b{sCV4o^2X&VFHwb|{U&VpXyGeaAy{ycbJNW@`12YZcF(OE;F#X}b_7C*BO? zN2gHE!8~R1Ou_+klYWUhLa3t|Nw zCU<}qfRPpxugb^QQ}j2|E6*mrq~b#!!8peN||?Hb@gio#Si?)$z;>F=7O^b8CHj;*FE z0LHJ%cmFf=4P+|%uquIzLKtd8%2yxKmIY-O2o39bL&NbDyTSa4yPe$M#c*N!M0pV) zFJBn2H~?N=LTkw{ekvTg?R+N`BGQ$R!hH@Q2;q%^SW{Z9{}esmOOrx36^b4*yf`|- z0J2Lp+37I9iip!hv4M;o3!*q#H;W5=;8GCP=wXV5MS}2nq;$hp0WnxiLQG>Itt_hFx$S>?EcA!qZr}mpcs_(Sx*q3kD$px9WN=<(LD$+f_ z&P?HVY46g2qcv%ESTBs)=h3hMFU0MW}}=7CS^eEQL@yhCh7R zzsn*~mc5VHVi#a2_)E7pdX##xlQlI{hxI7eVpXH^u(KfUYz@p_oT*wVRRI$rA$K=* z@3cx(GvQ!1ZP4_y1=pbo1b|RS zMWYh(9*E3}+wQ>**+jB7B&u(4q%hoZ%N>0GXenh1HK&n%9L6_Nh7&Y^m8Yv0gg_0e z={4A_j&zM!AKdqz8KBYJ29IXWR$XN6hMOnMA1E%c)lbMFAYD@*JvjEp9Yf3ZabY^`U^dCf{4t(1z!YF%iUz9K(Uk5?tU|T`easFHd}W04B#Sbs%9` zzy-DkSOrpT#PWhi14K4NO9Cx+qWy&nCqBP*FrZ^#@rG7}6@CqcsNg4_hF5Qp$#lStJatP&AhY|AFSbSWVd_ z`zt{8JIqZv^cJ8PCb}+qFYxCk;`#8igk9MFYXwbI$4VpH&azF^n#lqe!)tziy_XG7 zYk_)s_Usuv=sswF2bQs?Gx2r`9Iim*{W}thM z%h`IbN%!}MnuzN_#zDQFyfctPRmN4?!UL@@^?HkfpM!zuSt#wOP2*8bhVOM2fWeqRDo{tH(Gk`jA7Cv8 zIF@r`+JPW=km0`-pxUD}UPGopZRe{3Ti*-a)KE14R|s60D`?(4xqyCZ#6w zE9qe*QxC!}WzLaX>iovJxjELgYnPyuNH;FsfFe~Vyaxev2?f(vRb3r3>RNTT02jbu z;u7+1@@yDxFWC`QfmX_7?I%n7@C?d9js5pUW;M4m(!%C63J2f0PuctXe0XHRPSik$ zd=LLA92YC`nL7u9;l2wMF}ewnIUW@Ofgxarh$#Xi0(qGZp$G=5_yZ=t&;&$GMWjo` zvAZ@7+9cW-USe~?N_Fkkt5-t(L9RnziW*}Z5jJ5qxIeiF>&cckVeh-dCAJ?8_a=cC zC3`iT8R#fDC64=|0fXlUb`90nwcWODl=9#PODKZmdtfTKiaUx!Kz8{vvG8S+EhylejH8Ue{4C`z)dNcW8sW^_xcP*^T=HA3GRk{Ge+^LW#}wg142}f!Hh2+51#x&& zJaCFJWAo^SiwX%H{q?0N&(zjdn6z@B+jA8nDlhaUm6!-nr70OF&QBYk;%GgA{^fi2 z(_@yK(Q}s7{X=`ER=;oTu86eYBMw#8v6ne%wj8dTEneH*Did#pqQ`;-$ntP(Y9R2{6$Nz>aeOhs+978KiH!W{m9XWn zeshz|^?Co}Yyy9$ur3RjwGJJ+xuy~T2OX#nQYM59pQ`uE&7ftKLJEU5VfP8kRoM64 zI?@q2@DTcwp8ixrB7=OnX{(R!6izsaEuo)>GvftvduYrN!|`HIol3vlofI{ZX?Qx4_mb zAa(k|7rh;|C4VpGv>V2Y$V{JAImZXMuHwC80$?8Tnm28TpS#`eLhk#&Ufmi{AqeOH zpRZsgOviuyGybB%RekH<61$?J>l!@UzhD0^T?EecD|4~0?<5Hr@1lwAn@A7MaXg+O z6qQ&2ZKn$OEI+yvv=d;=+s3`D8bdsu+}L^}GiY8Ba~(TH%-`_iUV{^-w!5^n^xN=o z5X{nB`1lynpwypx5aDrXXa!;f+Hb-nCI<(zyXHa z=H0VrJxGOCy$fhae+gc{&&A!{0)hzRvSnt_hH5D&Tbjt%W2?v)enb{RFHlO<(9fSW z-iqUEk!?2t*ZQDZdIYliS6e}vhB>8Mtjc=w{87L$5Ose`uUL`h^WI+ z5qU`Q!A>g;<4Q3c*TMIhv=@PXTuQ;4xgL|*m=E&#EBGPQRNhaXTsp3O7i)*_Ek8Qu zC7|}P-Q^;mzWa!M7TPQHv|vxvA*mN55W&g06~r5Y_78_2ukM~p7wbK#tn6QFabQ6y z1kkhc^Jh*}T*TG_L&}5QwuFgJj`V_3M_fy@27mtgT2Hv@wm^^GeE;>=A3qW#g~i2J zf!;n0C$Tz;IJ73A3|s}4`2}b*(aa>%SS8d32R$cG0}Ylno= zc_W9$gXAD~HLW1{if!f^Ae>f#_Ir=C@~N$@3U(P{Duf4u)S-Zhq zL=s&9m+S@*2tlr_930C`OgdS(!)D&)S*bboHZDOmS&ed=q97jwX3HRe2Z9t7s2BAV zjg<4)Kw+h3j&NnmU)b^yoU^g#MeaT^=(|=$Vh^ zxW#enSK5n!L)P6Bks&5+e@UJ38(2#|8wYEC!_^3qGSsu&xqltBwcC)VQX&_>6kQ;6 zGg1bzB@y?HBJRdvux%GPxuGQWSZl@qFERZOiD^wSE#=Lyd;{OdaIECMmL!1bA`B*uS$GMcu@h#t-rFf)%823k(^CiDzUB;ODcO}i zeg9}ld`sqF3kFTiMYKDBp~NmJ;nCZX`5x7?h_LPosYWHc;pirP0MMc|%pO4XL?<~h z&4JE1r5{l|pqe9kjv|yNJZ$gbJ;e7iz=lRh|29W(1wq&q@en47$P^H;rksJOm!PCS zefngI&R!<9Jt(Z=Am9Nj5(#K+SsDoZ>u5VA=TBfaGhK4u24fjcJ!l-Z4jKfJOb+D% z{if||r3T`!YWV*4W14%SVeNkhGZ+z$3C{r>m|zVGWRKUvK0J0>_U-)t6p`FCaQFnN zJrMb7t}a_mQ4r`4264#-|I9#l+T8s7x5>q>tqJX(TQmcuZ~f?%uy`F4HnD$SSnH=x zgu`j&=K(F}pS0GH>b8PKTp`SvH<%SZc z30=y{%IfVoKa=9|Y#z!MRP2bVv&3A9Li%H-6gW>%W?EBmUj)IQEA$;v<3ycs5R4Kr z@q+mEvq%DyK8(E47ASQ_*d}14WZf7(4g=mW!V!UZXlhqIn6e zXk>EmWbXt#%P^?Nk`l0fs9kU(UJzu9wlk1(b5l0zK@*;fyO+zC^}LY{5}GNl}XI$|k1?`3D3jLZYPK@6E#q2{56rP<7*%2?QRd-w7E(a|^7`J>7;& z3SZ=cdw{!G-W2yqG-I4Pz(VPjToeYc{l4ge6-p>2%YRH2C^y8PiQ*AL%9trrm=1_5 z0(j{f{6qZqT3*RP+tjKpOHuja0w*+@cPDFT7yfuc?C_YIVuRpA2Sorh zHwJ3WZDEg7=?GzT@9b)5yFC&`pgO+7^ee~s&#`g%$sg>!oji^ID{SXEMu z)Y^s~Qn3(sY;vw*>pHim`pKC57rA6N;;bU# zM1qbST)c`rfqI6)F3>zmef|3e<#e@oXtS`eU@0-L;fr;QhLT6bMCH=oN1lBEu#k8P zvlL{vS14G6z-0>xd!Y(t^znvY%IW2C_*?HyD#4J3j>$r&>3^vtJ?N0tdhqh&$F(34 zz-gy8<{Fh;tVT%s7`iz9+X{rRRq{}(f9KLvIo|JQQGkWa?B>Q1Ya|bYyNU(IvKh`_ z{lw(MpXX4gspN&Z)7xyz*!2%j2Ez^&09vNsc7EEg%&{3XZ{mhS~3Tv7ERLgm9W)QWi7{ z@X}E8mO?zvG5r!2iEoA@;zTTNOz@-I4{lkl!|+l@hRETn-qNaT3oUbmRsV+gpF)E_ z!dQa2Yv1YC)UIWpMU#vVh%@C&y2&TtV(C4<{5_y>FhfPK6*}4meVsLHZkU{(VXU2L zMrnyf^9W-TzSE4BoD~H*gEXQ;O@8mP5uT~9IFW+#M!)Yb!@@a*S6F(48N)VUU9;vY z+G)DNOgvw|+f58CMB9cy%}lvW4n#DXmbEn)#oWzI^pu4TEKV19A(h2Y}#Cbyu8l=e&o;h!)m+L70 zjg~)<_V%;BL!T(xwbmpkncdOAU=*ycLTM0SuEm z4+q=9FH{*2!u*dq<^2}|_d}LiveT-2o2xA9H&y4TA7WOPT+o^qx^Ld{z*6EvK?8vx z&7lnGiVGym3(&3!E%=&*1rPq=5;U$+v0(2E-VA^J>P^%jw2KHNftKJ!?4z{g1Y)#N zabCxKRMpfl;0@Xv_@qi-dLrcB!alD8VurV&v1l%zZZlm4Btz0@VS%3Fa7k;;Ycp!Y zaH?%T9?3|$BU3H~r4-*%{=AoFk+VWd*l02l=L^-2p>sS4nXT&0o8_P&6;PXuKtTl@ z{Dy8I(mDF`ZA=j48*_MYnCO<%-RW@u=VXAY3WXB0W7P^<4enVXP;2t)NaUJlsqlB61dX$o!@MQ5?qo3DCx|LR7t88!VZ%#`Stz;Sq)Er!xaX z;<#FgS~*u@LP7=3REUm_R^f)BX4ZV{$Lq#nB5HzJ%|7#f3o#j@N`8s^LdR(1SXb(HBNIYA&&By|?7!hkMOUiBlpJw!wXJ+qWM!``;=ovYyc&om#`J z=^BxW?ZF=-pv)W3lB@jm@X*&D3cjTUZc- zA=z_^S={v}oEmjO=P)e%mKht%KV5=og@0dzt#jhRBoQF4DD{6#yAHv2H5%a#Au{FQ z&f+NbvT*b4hYj#OL>8#x zl4+?)TmM&$Md@cXG?rug#DbuUszvY9(2LQ#4bcECdC6L8`&sSL7rjy5)6gvg%{`>A zgfs&K7w+>&-7~Zw-hvey_r!jfjY~s5p!2ROTNhLZeIY7H)dSALD`8>mIOk#~kybFV zW^Ta2q!XQVC6Qs;kX{JBnTpMMdvS{<@w#raz#(1VP>eBs2+zsCA12ZKq|>u5Akhzu z!O_S)cmElCwmV*q>ptg--TI*h@iK;1y zAHgI%?)*wc(rx=_d?ul;Y|Szs(z{EPURX)he|4U`54DCI%L!&ep443=XKk)UE&x4M zjdLR2mwC9uHvI@)`lQVO$&vWO&|82}WrMZtPIGTh&vj7mU(t3>0vm2_sk^&7@r1(p z0@$lHYm}4*DYgpfK*2`72S06G2pj$&_vmF}85-O+qYaH5B8HT&)xdl43MN4N()Sd{>D?8sBlB4xrsb&m)`gn$k&>RAZ z0F3=y!*jxO#tzgN;4Dwnv9&Pr1%ewSA~NJnr%K|OX;ql21>j+(uEMgK@iPdAutDMB zh0(fKs{t`YTvIm6Qc1ck_#4i2qgbI{Nj8v{XdG39UcJ)Y4&N0?jb8u`55R@q~xXRpt;7Z*?put94-z~O`2SvKxb$DENf zaRq?Jm_dlFH7GpC58Z?bawaPdqkF1?gZL09w?WQRM*z%L$H56i>^T5}&JVdHIo)^8 z9mm}zI~MC*o0`76D2DkQ7#N_359S+SnMxf13?o*X@}K{Mx;GE!I{)8C-%ZnKYO1NI zl%-t}LMjoOL=sXVdu2;V_MP^{TGnK%knAC3Z%Tv^B|DQPSt4t8=YE*^%xC6%&hI+s zcdqOFapsS?riS!xK!C z&ex6bh^?fdx8EUj>*(CMcke02dOHUPgX+&u{50|$)o!eZ4E$%b)2r~z4XZERemv0I zs#uM+?9`Pz5?)%SrEeCq%DHHu)W<`-p4ycpRvx@c{Zf=|ii#Ch-yIEv0wN+JN`M^e z-kwwo2ZJ(WtBDrlw*D71`(`o*F{P(qL4d{qYy&k8<)_O_@&pHe!{h{IL<~p}HG4|h zCg7o5VO2*+xw~^0MkxXwy4n3Ex9$fk-dB~CN)W{+s|>k)IwZcnOHR9iljfWra2hwvr^}JcqJ)V9Or>Z^!GnXh3#YaoTcoQ&=u@7EN25jYjA!) zIc4HWOS_+eX?<|X2a#%pl(*uylrH%Dvc};cL!ffvamg0&4J8S+0g$fegHKTU38J;_ zOYB0HqfD)K&^9zQL{x}l3kf2OS>jEx$AU|9F4EgtXtYFWrtpFo(HwvOGq_E>4m5=t z+?~h?>Y$h3*Y@^n&`~`^;1fA6j!$qmZ>KJO{4OTURxr)68goA`qLL1gC}lhpbseYJ z={1KhV^)IZN$#a?lQ<3gt$+UW{}sLQe^0dN`@Ls*vkclSH`KS>xua;BO}2|}>Ofw7 zgksv^34K4MkHs+|{y~DsK)81NZ;VBN{NlUp*X}Kigkp`XQs53y))o7u0LF{J^Yjnn zZamV2=wwKQxETMYc`7sk1!EMdGL1n!YG ztYCW(^5?vy#L)PRjW(EpU)X8+`DkeOkLPBVnga9yO)~(8o6wqI_LNPAF_XpTSk*#P z5&4%5q&_#S;J98h5}GX4nvC;zP%G>@{X|c5y}d&~vmJM74gks}jUzjIBd97bdDt;x1UHh(qu$%SZ0ONSl!A+SY<5&`)- zDQPhL8@Y3TTuCuE##?WKZmjPDr2h)tN=mY{pE8)}8%U2-L97vX+Ka2ML|)J2;rk=J z63~}JS@r;9I3g!CHkLfW)Ab2r)G?@!kgl$h>Z~jkd`HMW>qTI6Xmp?XG2pgOsC7tv zSW@^Po>Ww*HkYAGJ_u_Q*eb_VTLd-j*0KiiL7xS3#+^33r~HR@Xk{@|0|sC^8Eyu! zTsUkLw*AE8KTv>>M*&nP@jK;Bp0ECK!$Ip1QQO34+7c4^za(rD{la4i(f6UcEvc-f zC=4LY!7NC-r;=3WC8z+YJHqWJtt!|oNgOAZ&$0>%H=?7tpdl21t%v98)RYtTgcHSA zTTGOAZ#m*eT^12}e-1t#HOkE#>Hm=9lY9vSa$RXU#Wep~B91#vW=`ETN#PGo$ioR) zc^9Bu2>0tWC*z~#ZQ!SE8D`Q}KEO4ponvVv6`sF&x#BK7Nu(JVB z@B;>xpqbjpbpEhZkUrG0XtX2X!9ccWP@+88xgUyXu%|bUZheJn5C-`{U#;2jy8vBD zixV19+GpBRo4g6oJSpGPhR8o0DVM>(l($0H_7?=Dp`g1C&<}_4$4#5Q_P<{t^br{J zyvW@JQDvt<%1Hq=e+nfW1Tk%K#i#6-3#rUNhUAw|mUh56i;!^1%?Hv1?xW#ChD%8p zj>CE`=aqPNN1;bGoX8?!eFcY-^PR=F``k+hj^l8fRjK& zbZ|xXLfpd;2rD^3EvY%@IvSfPibgGAhe)CxLGp(dd6INBqK3KrwQ119DDTo|1I9vFi;+& z0t9hi`XIVFe81xj;-p+>XBd~jTE%?L;)ik?Mmh&@@0FsCurTwgGsC^-z^POBw7avw z&eMnz8IO$0Ah_-XwdAjRZomEDk2I$UYKR1;kk&lFoB^2}lhhYYVQ9~TuIDU8>F=H` zQw-gAefcKo2PkSma33JAiZ~Tspqu2dQ{{Bus{zLWc+Z@J;DGa0e(FV?btm zS(1^{T+X0Wn(E_hcwK70Fcbp{=|MUNl67F8i%JI) z7F;5#>^$^|$U2s7V>-7e;PKIU41#=-VJU-D*{e1NqDP;{ptTp!Qq+6JcXyMC7vsTb z?#CO64O{y`-%(#nQ8r%Xh%>ud-pOJ&^kO4)J=mE5j-;J(LqZzWL-FMzhlIs19NML zkib~&U4f#bcV5CkWcGa~k1tnam-k);BO&;Cnk0i|%_9UvVrvn&y`eshVGHg-k4-6% z3`5~FPWKqM@Jn;9D6ID4E!lUm?}6h@mA!P602`ie91#%qKW#f6x$x-GqkrHWqeF=j z*!Ll{A9_&aNE8IeGA?ML7v%Ae=n~rcQGnNaBoE%9P&q{0kpbFFTxP6T%dN}<)tS3< zr@+a}kt!UbEwXq(EW8Gm_AhU=}q&%+J`z>FAM_lgYes zP`ffN;kw3}lp+&=BmASYGmyU_CGYbn55}_$J4VvuhwE7wBc_Y-DKC3_FT<5zhR+Qz zVg?*wh`g+yesFtgoGX{py1^CxXEZ`Vc^K|N)Tvu_fA|>(P*o&TP z@(M0#aIo9<%=GrIwBOsM(zgRHzme)GUVl%JdsAHj9yWNz%xR{1*j}j#Te&|@ml!x3 zoYkNA_Dy;39W4v1w|Vfxe1N8x4nC%Am*CsMXho_c!uJt4H0ZjybCC9LAaia2A&WNt z$Pm}&&4=^j7LR8xxO$wM>}SqbANeF~JzteW+-VKvcaVJa(eOB7g$`|TD8z&x{D8Ju z-+ioj`SN9&#lsScKYDvT05@$!s6?JDfQt61>#WO@W*ExZN6%&O<(5&#Pa>B1ufKo|K3ps*((?*WGdc8rLb zxBdt_RO$t&GQe~jsJo3svp^nt#5>xZ{DpN~#>ve60HOk=UmAnM-77+3CZRNC6FI*4 zIUCrSGkf3xLyRKh7~&oYec@F_LSM3Q#;{Lx!=2S&Cg8RX8{SVq{i=Re4@J2^HV{?) zz^umb-JaDyCbfF~n$yYS3{u#*CSCZrWTHf9I&Ok!>zVJi9NVAZr+2@?UN+`s@KG>5B@){9WL zkjqe-t0a7;f5y6z7f8Lr96YV;y0B~e9eDm36aX}fi-!fnygPRu%aMo!h>8N)uiO)F zzvw-sEPNxH1tyEIOCL@rc6%>?2QUEPId8O?smzzVj!yoX*^DsMK6`3P}Am z?C=5Y`^IBSG|*y-$m9-083w};j5`x*AFP%i(7@~iS;WSwB)H)KQQpJ;2x)v3oa&nx z52m_oQR&pwPz6{fR$Wdh+m(sZ#^)1?pY3qfR_kCwo+7Q)|4 z$SzJ_xZp*`q8Cj-rF6oJk2O^RQ6+fpX#|4g6-Ww)kgx}U=OC`M;b77I#=uDYkON?8 znzi?Tzbh@3oS-l^dgb!vd6?q3jZ(Q43BDFHY-FzorGxAqhbUpN;531cIz|R_5_Gqq z8zN~YE}SIFBIeJtsD#n}B&KNT1D%E5C%VMOA8pGcoHRf_^Qm(M7(j{K4t5<@o0QS8 zMUEqE-v+>lodUn0I-;(T5-D*R0IKL!tSn^=I{Zx{ymp%&4T>_}4fzQR!Ud-Mo(!`a z8XL#eWaVKT9?10vW7h7JgP1``-6g6Q$d+6C9Y|BWdfFnI7Dwqr@@X1Q0daHe{IeBl zu$4eomqANAfS&vlpzBllF8dKeVCtd~^*eJXWOX#;kq`}%P~G_{#w8e1#Tlb5HjG)nS|@Yatypo)^^D!N{hbP?@@(I{T| z_oG7hY{F0l;^~}+7q=T9jH*gE#XA9@If%nM_bQjoFMsGKM+YNT<)W`hNCMbF0Z@pf zW~k~;YN!qfiNPVaYy0{+BV5e9OGHh?>>I@Z3q8qH7Q%Q{23{ibB5$xDrc)t?k@gqh zEhB&8mJi=E?m#024 zN64$yzABHe?>iomPl(}FE=RN3(Ywe%E(3WjsY(g9x<3l%BD$Ldw*m=Zxsq{88_~`D z)5`_4!we@r;N>vhsuiVQU|(P98(T>zTMIkT=Fvfb0z+m|2!^_3(3$uLpqzgN0Tmem zlU)axwQaBt#W{?+5&EnsF1G))JVj~LFDDb!mFvUL1_oxuLe*wa5#|X?@52qdU8d}= zOB`u`T~ri-$<Ov$f;Tva?=T(4HIR7RX z;=YpTfqgc;w-D`*bQV6d-EjZ@{UfY#h|ko?k%=Hc4S&`+OwdraBx`bzUW*hD+PhygT%AOSTeVa4y!R9Nz{Kiza2DJG2Ai!9n;Y~0BA}D zKca-E)loRWtI!YnjwXyX@#K5h?dVF`Pl_a)ulK9$9%8y!3L)ttoPKDw4w2gTu_p?3 zT;v-N^uH9us5_ZWV^+@_k1UU{L);2@U5!4spP3S&Y5Fd<5Ss?r(@>0r5|atZ@dfy; zGnmqlS3G?91yoTi;x~;dzF%4Y2ecQz<0?=k6p!Zs&hbih8kZBp1?*dU@IkHtv!aLs zP1g(1J`;Q>X11fQjdX88RJt3W8mLoHQ()g7eMnmR5e=eY!WFFn9^YkMg+4e=x)5ZO zJQL`^O#l$GlbinRE3#^QeSF?QVU9Tz(lG$GJ<>q3Jh=MI$COqPQh^eDB8}>Crl~C^ z_XmO>7SYosl?rpK@qJX3IM zIXC}8cT=_2Jab!H)rNpA20KtIhSsNCY79*kta91nO{Ct6o)8uhIhTg&ueR2vi&6h0 zphkai*?@&J8*t6PL6P(TC-RAQZq_dO_sLuGYA9^&TP4+9uSUD@cBnsF2vn4SH*}R7 zedVD|2dtNI-`UGpb*_5^~0Gn1MFR#ua&on|uxGS0uYREsbqxry&sh%83gUsZuY%^w*spnIlb z?eSmoG$zCa4?M=u@bBw2oMLtlswWPi{ALDNe;rWw&p=K-IEZMKF8^`Fy8I|BE<3nO z*sHcV;oGlbEJXRlUAos{_z6SuTysulRSM(Uvzxt$hM)@L;^ImMaiPG+qDqf`%1%Gr zvti*CG_hQaUx6Axg8Ao+*uH(SI~1E7twE~KyL1e|j{o}w2Yy9d+sgPAg2!DSW%9^Z zE1}s|>sG(#?w&c6S_fKa;qso|-W`lN@^j&pRvQq)KVxcCbuzE#IG26ws0@NMxi@3- z41MUi+{C%5JIq36Se4$1?tb2sYUmBF_1m{&nahBfT}Q8tAEkpo!g|y(gtQUBkBOtX zcIVC=tH6x3G#17}RKv&Yw3-A0Mn_Jc;zEWW*EE$sf*cH{oI27 z02~t8B=G(+;8L$(WTvFQ6bWx3OuMkz2><1$y=>`HTufY2l}YhiElMbt*Xp=}$N2^e zJ=)MkYnlLMJ{}zV3S}%q5+maeO9s)bMGlG{-O&%<^A&(guHi4X9mS*R&yYlAm|voM zbR7ea=S{0lcW>|2ScrzzOnCpfsg9XvlSiuucsP<`^R5c3Jw1IH<9iJmNyF;@m|$~| zfB*fNm{vM3Mys)Fhg16r`dMTaOUj#qzm z9rxJca&tFiA*O{Z^4nl#mR54=toQ^q)XpzG3*HR*rMZ=Cm7(w zItZ$_I1qzw!hkcZI;*$n8r3hgZ%y`Np?3g?0s#ONlIL z!jYVsY_&iRB*r*I;9EX{Ia^!$YjJo#4gI04f!#3jq)S^V6Z3RBD2(nOBwa=J{{*mz#Lyac`GOW6eU)S8$H-tq! z3vpam1MiF&&6Zs$Z@=}c;YFYXRWlqy1|EeYbOjmfA>&Z$7{(Cv;mKX5B5Fa&KOPV< z?AoOJ^Of$m;VQ_S3n2gY3^!CVm{IVL?(07(U|2jG8k@)~_x2Q$OidOqPey0FN4iee z@f+MQhS3PvH>e-eu*x*guxdrcGW5r)c3SU~qvRher%fY6(;;C1XI^|&fK2yvU$MDLro0fMy zVq;HDf|or}kSyA9aPYFq@Zu&u36m8lzy`(!bV7S8Gf0D=^~NyP zHRwnlz}aAppx&*j9DswgrPgJ7M0Kvs5Z6pKSi&fqJhl!5F`(RCup@ekgXBL%Eh$F% zY1*RO;J~`GHK72HuvzAq1NSkOWKI`T3CBkSZDVX3J}f^lpb{XL-6KOm!NC!LX|eWC zWtB3TQORyYHRYDZSgOaatbc%#`FuYA>ppqq5teXen2LEK#3B10ewe*M2@m>*G&Nue z%83!^Gq#<2x*j%qi55GqL7wmsArGcK;lH_#10~v~k-h`&bb*I7BARg-_&nu@0m@%O>=R{V3U;cmWT2*GD7FQdij;VH*EJOI~Q7 zU@Xj!0AL;qPA>TV0lUk3JQlQjh8&6+4oWVFjvd~P?grJ6Zehs=Jdc;4QJWb3>W<*~ z60i_36Dl@_nLTnql$}L^PmTnrFqh#zVhB*S#VDxk1mN<3tV&;3H_2vHWef&7;N$jT zAEoZ}WTir=(q+^1^OqS`U#>g}M2UHK91^kS^u+xn7&Q@YP0B?8e@Bws?azbVP`4d$ z9{YBN(JkbL9im8tHz5hk-7h?*FjAcg`h zY54j$d>#`fzF>uuH0bPkG_ofHveU0HwRrIwKjz!sDXTC&6E{w~px0ZkH&cee|1ZYI z#*o}~eTb5hCUrKjowbTW6si6uI6n;jW>@$nk?I2uHwvK z9p=32LIfA!vit_lj0#i#`68GhQP`(l#bF$qga6Xs^bt#)$Sj4N$8jWIgZ4N7-lrAA z>FS(?4a*o7pcVnDvR`p0BymaLn(%li*@vY-IwJnumv`0;1^oin;SJz&Utr&9Y(x$; z?IfW@TLR;pXZ7DN;Fk#br4@||N+djXDfuTug&nb5_jZ35;^L5e;l@L7 zG{ZToamZy|{-+<8QO?+Onn8T;AZ)&_3*00E1%R-T$r*bggST@NPRTuCZ`)&l))E%9 z6?As#>f825OmEzddcR`F{HNB$fpZ?p|3+?9jh?J5+sfXsByya0&@?x z;TBsB1;;i5fOhWzZUhd35Cl}(v|&jJ5<7~^$6rO|k>@>{z#f~Xdl0TwmMerk>Q zLgeI<)7@V4ou``od|Bl*fVR#_#i_)cnknhBp0uZK0pPRq~=eNV{H zt13sNsW3DQpxhqxqO?W;eM2GHW+9%Ofg3AugM?ibKq<-TIi{r<)hq2PdvYRrDXHmE z%e3Ko?{f|6{OOk?B?WijCmQ}rxKazNKmSeWN4FU#VV3ZwAIVEMrU>9 zp?yUlCGiRAMexW~tr0@L`~u+xPUU>)YH1Q192I4YtynL zIBJMOGkvGeaYwV(37`$vU4{;!iSnCyf^}bBRaVMZAG_n33Fr&;1*ZBtIwf*i1DP7F zp(r_YLT96O%W_Z~q%y{uFmH5*xQOix-|fJS6FRqwyiL4p5qQBl`~cL(7BPnr z^;@>I`u)PoHBv63RmQ4!qhqxWX`B@SsB=tYRc;Py4!K!?Tw-v1g@Z%8Q=n-Tna2~k zabevFmEx~;?FdJ7YiOrCL?vChV%BwMkcO*jpV`ZLY4^qf@Fz!2pg?WV>>mWm{S@10 z@!2%)ccQ~sq=*#HrHiMB2u4KnPknt}NIo%a_jc_mU2nVYkoU<(5kdQsjJWP z8O_v5D~O6_$Hzo2B326b`wX_J!cv-BYo~1gz&GG9bKdzdp6mYk!Lx$CyX^_UlQDE5 zL~(H!S8RQqlKWXnEMo%!&MyMC5+P$KUmIWntk!D z2m1UYO&il-w+2SSFROYIXy?G^vUN`1n`{?(etHydSKx~0oz`m-%J7qc`ROl+bzj)H z%gV}VhL-d!KtnJe@EZBH@`=)>v?XV=T>4Hf_ili|=HRbC`rAIbZJQtI>`(@34%E#{ zyr*A)Ib@V;*Pq%EhY4futH&@JU09e8(j_)muB5Dtx5?d^Mts5A(7pH93cUT7)&qz( z+);MEy3EEPku3%w&fpmX^0JM55pyNfxOSI=yQgU%JZ9AF5HUy)73jzF{P(-%5H=Z- zZCZi#Z{DQeE=tJik0rr@Q>@|#OspOa-n|4DTg5)v4A}z$R!Q>N0&w!fVRmM$Vw*sX zx)uAsFG0^>l>#`hZN>0Lwrdv<1OoOWUnpN%J$+@A1CIrENZe>+i~d%|Go11cW@xZ%Mh>kM|e zfRGvT+wFPKs2T&%i0IJRyaZ1~>Qa>KG<$izKfR(vEUM3vN%H(j`QT_8&x@J7Xb&{{ zB7jIW6+64Vm<79qDY0%%Rpsy{>qo?bw6C7R*c03}7NIUiv4pVE>UbR8|Iwz7J`n$) zZcn3rCo4ce!%-E%c{JG4+}w;B7FjW1tve0*qq>UF$#=o{<>TM3MuOh~4g;j<5{azD z!iEQIPbe7d(1IB#D=1kR^su;y4|ej3f-STRup4SZky)Ltf4e`%(^LMh;6OMe2IEt5 zHBI3yX4@VQPV#j3hZydL`A7hMe535xP=yW;ZcDx;?u#b6yOmf5rc;xXFX!jGW_?{7 zD+Xs&Y@0gfpf$ze>$+AX*M`OVNFbjl4Iv^_a`Ssc&5e=KJ>H33UE;8}` zi1`j^J?3NGoTM&719*o@kzlI(ZYrAp6A$A{WWT4vI7RxN_8w}rKgAAD-u~r?ex3- z?Jz2#&GMv4K(C~7>M>AY>Ny#Iz-r^9x*@VAfSe$G>!aRwDZj3Jad{R+#F=dg!=q;$ z@IT0?!K$}*IiS0bd(B|Hb_UBwQ5Qm8s~BxTR_{n*jKikGYA|XfK$tcrHyN>`w7N7J zE~*T2nG9p;YeGwSsc4C+s1vp|Owif}di#6AVjA0k5 z{ui@rC4^$3bbtxUF2ppZ1HbOXfc((}{{6Hj7kwZ3=VLxyw#67}fI#m{AJ)frw+7hV zv;_GPP}76;W%Iw~OFS0Z7}2n`xhWkx;rzq5Bs2YB4T0D-l)W&eKi1{_7M=bXbb7Gd zyj#e$;P|@WB9Ijzs>%Fjhw4;*ua&S zNWNAsYxQ8yQ6(=-7I=WJ-GRiWwecFZ3q5wbceg!TFE9f&R1P>|7*nvGFYw{|9P`$| z&*M~z-p`;luF@0&g3sDcz^2=2!w<&ffV1euHe%snD;_TDNbrFH$>R10EwDI*88V^!UbiF0_gkf}%wr7j)7C6PBdwcX)^937=ONwKae;Zw|lnmZwfSthVqZ9L%80 zI_WKZl**#e)SvG-yP9ccSJcS#{e#@)V_!#P4avlvx2;{mahr z{lvg5uufu!QFXt9IEh7pje2?Xs|*IPz8bmQLnKYia`4OFyCkxC`!E=nCt9Q6Y^&@x zwQ??2JHYn5@#V{nClr~BH9!=C7d&HTmh{0p_4@S%7-<3%^{tdYf14)@?QUee029X2 z_Y|kI5MezsadT=3PR+@gWLQRt&TXt^{z-Xtf0&58(Z$yR?fSN+OdcCGs1&RbI5dnx)ka+0uRb&!JuB8B{_j!B zDd1g)Ee`4pYb7!{ywV3$eix5GbCClF^;$-u7aL1q=cs zhNZl@p=h}2?!Fj$>D#C(wwuaeZAeM>>v^xm^pUS|4IUwIW2kxshMHq`nn?pWxBBvK z9#Cf*ci0I7o$JA3^rQhR`{B|qgEIzn2|?MB#bYw`fY+zD=olE7*~#%h+m$~(x(<86 zE<>>qDVh(V6RJ=zz=~)#)&n0l3Iiw3hSknZ(R=agUgV!iWl?atU=QvAwVy9LRrOAv zCWAP5Rh_}dIN~bd#;OO2bk(@pF4q|+v^Kn@J;A=Li{FV?&?<7s8(v}$CbKwa<~W88 zLXs^GPWszD>_?}HjHaI+7#=p|lRD@KSp4jTIuPMtAGhR&!MuRBWORw13a5&;t!+Lg z=;4ZDw0EsNK=QrT-O%Yhe_+85L&D?r-mX&vOdw#cK_$BVmj$TauK;xHZcG$}D2Ewp zNdR^)Fz4rY;V@RWN}fCSWY`hYzeIK!O$jTvEg^XfaKrN9>ybG=rtP;)k0P0&1+@?O z$diCzNejPNOSZP!?-LW#Y&XY*?K%8)GCr{3WD8Z8)KIJv>rq11G)YGg@g6d_C@zhs-9OydPW8ZzIS5%!n znnm4OjQPV4+#K5khLAP@0uEIM^iSZZ@(*PXf)Vmd2@x?Jt{U@qiz9L+ajRu91`Qjilj;~ ze=AT_fGWLJPG{n{7?xmHqDCLrTRO05uImp?n*-*)HV(%WrbqI@7~ zS5=5ln!xT#Y!o6byFV^7t)1O?&aBbAh+Robi-3b$SC@(JMF+kL0zi+=vaJ=aGnUlR zKo7-+mgmhEBgJMYQ}+%Oth62Pduxg=XSr>Qv#rxtV;%P-=dZ@*T~UFB8*Z|#U}0ey zXm*5?e^Sm0xGvaCO}ESfUTc|dQt%c=f7`ULe=;nq-AAs~b5HXvMc0YvCiiQ;$O9%k2in~WozW`@GOk^B##9c>Gr=?Wj6ND3@1 zEp3bRRd9n}%ib`j!D5wJQN7kofEC;OGCRZQRob$865VfdIBfIU*Zl-R%2W)0Dc~|S zW`~_swtK(!j^+(V@xS(0)vjw_8)z8rY?Jf7*^xfO*ku0fB>U)g9v*km{v07M@rf^E z1KzG|I#aEygEdclqPw8!_%+S^<%=~=cAnD+{kQ+B{*iCdruan3h ze>%=xym`U9vetn^n!o8mn=TrrAYdx z*4L|bJW#C_K>XW=Q|k?x@7EFcYqrhyhIsq@TcB5qxNtBESO1v7q78J&{e*%@l=1UpI zQ;LuaZ&wf>Z}(tU4xei0YRjML$)7vknoa|+2Ykb)HZK+JeflIm-UIq5RM-b{#y+n}yJA21uYHYw9N2Vx$x*`9yp~Pg}SaAM$Fnu&Am_*1gdbQ@o1MdBTO(!x#k~i9f zaAr)iO^r>Rf+ofFyRGZ$*@>jtwRlKpS8|0~9WR`f7l86@I=$=d;RX!tNq7Hdjq=jHe_VQw<;iWOIx`kiV?`2P8fLk|bmO=2@)B78 z+MPddjbVtnbX&G&1G4(E{lmvXEK0Ty^v}-po1=U$LYLioY5r0g=YbA-Y#|IHPStQ{=Cnv!}zy)+BC{T zUu<94UkAT}R8AdqvMC6ro0lsc%Wxj8<5I(4#ECNjL8|ZAjjV%xbD0RbHd##qMQpxO zQWkakfx_aW)BUaztYUT-Ef6NRx{jCXs5ja+)CUg%l;$!Fvo{zlR&){E&dV$BfB{lA z+eY(Z=kHB5y+hA?Q%VH~?HgytQT+*LcE`r~&wvOANggvK_Mn4dp|X5?9E@-+Vh;)EmV2aJpV7;&3!svAkH#Ff{G`^d6JiJ8V|( z4#-MvuFn+-QNgC#o(k&(aCr^PylaX7*$UEoLQC@R$)jHG4$8~h_UlnCcuS*|p#FXD%Hk5G1T;c<_ zBcDCn74ziDVf2pvK*o605YgLgL?@?AMHR3QveRS}>t zpGL?2+~Q)c@W!$6E`Vu*n1gGNPc1*ffuyYmAj-2r0=W_2qlnG&sJnfGi}Zf{xlEim z>UR3BOT&}2oM!@esQGAGRURrnbCW#)xRc0settzT+~I7Fy~)LNGIItB*CnXSSlW!H znyXG?sZd6-F2*hFfF}4r2e*BED10{O{WP7St;_GCx#Lp9#8q1x$ZlE8bcV4xe0eBq zZ*Si=k?zXZAg=ngvOdei$JPg-)*SquiF23z1lK>E4M%<^1RR0rTeyZVHl#V({WO`x7+ZGnafbH%Cu99w%kx< z-&?ip`^i3$W1aD5gOc%)jml1CG}&la)SkH+wNIBWqG!dXGS;5%xTFh%je-KYxq~G< z#WB%g_fMWYxf!IF@#y!a^ors>yWvV1-z29Fo?-<3dvtBFv-@BQsF*F3eCS(jm2k{Z zLqjWw!jvM!;gXUPA4sRUIzucK2FpeJceyN8pB!=pQtp{Av~lBj{_OYJ-Puj$c{k9a zhih7v2^TBLu=`u#ZO!GQ!yL|Av^akk9v5${?r%v#&c!uGo9E)QnbXA^Hs&VY`9c3YX=}?oDY2hj_s!Ij$}(D#*T}O;n>aQGC{0Z1C`)EfS0@fV_3C97|XQ zH;;F#=HH(?w5aNAGQCVIbRDzrx2acEi3ySw&r7!%oiq&An&u1L?`UIz%4I7>SGr-SQ?{a|KQj08 z8O;vHgGlzmbuN>x5$nuy1X#tL?5Z#@7KtXQ7+2dDJ;t8kRBSq1rK2j+`}Ea)XD$6; zWS}jStlK&hkhO}TiT0tYs2J6A_N&hGfD4M{_cZxYD3(R{wAQc$*JJDi%b4~drwCkznJo+cnTVpCh4a|3g^Gi z*e>hir+6>e@Vv2c1h`kF6DQusraR+PCL?^V*?aLcimyG{Wl&<+^`OrZ+nSjIxI^>)#8r)YtfXye!^+!vn4{&?B0qMqe$9{2W%49&Q+@ zWupe|u62f2;AUAim$6UKQMcNmMuK!*VPXs(K>nHJa_HA0F_Ik9k;s zO{@9rAX|pjm0FD#Uo9CxeNluEiS1h(Yvj(WY-Q}pQe<{5kkG%)K%YgfU+3cv<0Nz=&rnHV14`BV*{AY^q z!S&E|k^sW1CjWws8#9DHVnFOf{;JKA;tei^S>IkRjz~!n#Jhh~%^URBj2Jd-OSbFC)D4U;Mpo|3C-7Yi4x=2kH^?cL$iF9DY~1^xME6SC>gk6#%L^3t&J* zTmF+nZ*q}E?vLj-1`4T2ZJWHb+pNKZW#CiD>oEAjdFKQyIM(Rr%%Fdcoffp-Z}8yT z_Q^|Iz4njRQsbwsrTRy$uD9o{H*vxT9wMHWK7z`Cs}7WwcPU?X{D7nAdkV8)tz@{1 z_@rEJ{N_?SnhT}hA0h2JcAu`JT@Lj%*(PmNA>{bd!(Yo_2V+n+(a@J#U}$9C(rtTM}*D+A&|^ z;06hkN$t1Q70uMbab+HhuL?69y~fIujU@@~zM2(V>7JiO=CD^D?P%!lGBvJG(U;2^ zYjtOpaLM-ITt4^38E+QpW4#ys!@NyjhbOakJ2t=yimVPwW-!FhmjA#=uM2JID9O{p z8cb|8*tKg{yWJKBWBg2m<}*`;`jzbaob0;3OiWC8#Q)5Autx7}`JnnL2J_9Ppv8X9 z*~iq?*Xrx*BLubaKVn?k%`fZoBqru|N=gbU`=+)wT!jt$FizN?`(2yL^{YHTGPWHJ zx}S=h!?aiO@EWj4Ga@6 z+OkPQL~xKxS3?#E-Q(Pe9zz>mS)X$l@kB@XBreV!&wbyB0OBG$L{qm&#t(oX0<;aR z*CuoBrRufoc;SWg-n_X0-#W*t`>8hH)8cQnj&t0t92HFQ-vqlp)}XyEQl&y4!^#(w zfpDru2c&z_gHz7<+U+u2*ziQpUF zQQF2@S915R1go{RHFZ7InNx|I#wPv&A1pL%-&wQI@uses>GeDw-hVE+U`nuVIX6dwGcV60yF3}aXSp6G9bmW*7B(L-F0|nI z>CaQV?U)GvB<=$%WOZ&RG!J1gX|AcmpipR^WySvQ1t>Y^kPXxaV-q#`9EeC|Rc`Yb zgW;@;8SB{*^VYYtKkG$=*8)qh?}(fnkPX(k@Q8G`8llj{JRF5W5#aZ>buDAkIS7XX z;j`o6unq{>JK39>`rLwXX$pasarmalV#XU8kz9io;Tp}A&}_Mj_C1dnNXEVHvkFHY zv>Q`%zqX8*+pf)+>!GQ;iZx!q*v5=_amnglD&vxq-+SB9{Zrpw&E2D&XMXENHEmw7 zT&93GqcP>Z^BhEi1qxz=Z#LcCESodgmp#`MQw!2NIx;dsNMZX=jAL(81auG4E2bBP zEMT-pP<^j?Juom(MykLzf3gXNxWBy(72U)4{EsWoyB-I(z7?u4G0&d`_ToVm55$O% zQH3o#3vgrL#r$PbMn+vr8(^+1482hLt2W@RrZ$sDq18~pR$%V5HbbF*J(Up%prG1W zVT(`+DEouOBKh40c(%g+{nW+Te?~JgC`6Ak4q9@?@!(`1HXI{)`legGohKVw6bSmt zcwS+glpAnTMP)02o<6`6wg-t=8VDk;wD;)DI;1w3Av$1%rcn-A&ELKi`S|hHh>DIj zIOT_T52ObD>j_1e^7U`&xxRIskctoU_mC}{W-ajk8xBg_SiV&&6EZBmb2prx80b9Fi&^P!{SguL>9RX=t0I z5fXjBmX?$}Lf16p&ct|gqV8VuM%a`}Hs~Vc4k{@m)j_uR1;Zg{e2ZYm!%Q8oc{o&w z63Eb5y_k@IyPHq8kk1c{_9a5A7?S(wx5Z10>TD|yt$vMjzFJkwTA3O|a|G8ybPsG) zkhbl{oat?dfA%y(=H)c?c~AarDukOIdJqZf|2*I+{2R}L`V)ZNUW9{I3%Gx(wLt5nw$G89Am%m@$;-iIDi! zDjZpL?9(#WHMsfSNSUa)U%|=?(FIH<*883; z0BJ|{v}jX5kIwj!xv0=!n(>-&JY{8NN=G{q)-u-TQ>w2z^XIuM%`;BS+zN_(HJTZj zHeEpcja}kU=6Rrl<)%|o3qWSmMiPh^@vUS$cyR9@zpdCd4m15C$f$Io4NXQn{ThY* z@{C3cxwuh0pe`!_`*>oy?=|phHVj#t*i7O}K1oP0wV2P?X7E3r0$IeTM9{OPn>My) zw@hEavf&L_e!7l&u|})+^5%fWcV|}+T!2vLu~K30hME4^>3n#j-QU}vGt>&e)Ob); zxdFWfMW~Ox<_P9Olh@Mmg+kT{pFerNsKQ__+cO`LPPfo&SCodB12dOG$ebj%is@j! zZ-P4b^?t+RH~Ig_dqZ#41ohet>6Z{7bj_l6>uwP_sjhyX&3U*|o@0_uEkWrQ%)?hI ziU|;ML&!0wBlr~bLq6>Q>08cB5;B5d=$QffZ}alI7=qC2yS+;n;WdUsBKY4q8b7Bt zo~wNhF?@@xd4-zbApd{Mf@(3#fL~b0gZ@g+wHkm%MD}|cBGRw{p_AuW2XF?Yj#Km` zVY9GaZq^G2cLV>c<};HxTvWvPu470Floooh&|#>D2RP%7w}twsCz2qB|7zQlA(lM^ z#kg%&1;mn%uon`lNrqe1z9N zZi3VRSC4t`MYG=O#*=spe*5BJ$!ed=vxHT4K(mw*R z)f@dWP=?fIm;>^C4Iv1OZ#Kg8f(>O-V@DqGmV`z(w*V)q(&T1H{=W0?z!eb^;7sKX z92fZe@T?XVVQ!^1*7-YD?^0KFga<)E^Iut_AGy@aS7G0FEPwn}asS9kI?Vv%a;WUG z&Fsh8nuxqSabkgB^>7~bTUOoI?w%g}W!``b%HqP0%kC_JYlu6}CD+I=5A5`G3*B}a z&bw{~Qf%PmV*bdmdCbc!S4sBVOI@FR1QE!BMO#~&WBKxy={{QuYXWGhQ6DXCeH?tj z4V+eLoim<}HHzZndLC>df_SsGj~Zs4*?n0&Gic9W-&(%Orq%_D7y;;=*f}^wZA{R= z7>xdGiXbEcefyISUg2dFTiW?ZswDuJ=Yv;%E`;FEx<3dxmQ);KHKGOvWtB7*$oQVv zm}X6p(#^5l=dLS)gkC)kY+G^>huqh(2GLK~R?;nuVb5PPv!A*dk$=`x>O~=24oa6+ z-A~4oZHZqv5-f`EQ=#7 zQw-H;4EvuU>Wx+*T8ouba9heOy;aFHT;G+xjQ14Fcm5}C{L5lI_?LFQ@AjxGtts>z z3Md3}$quP*W5bq=H}usI{XNmxJ1+0mrSkOey6ere)!KF&yin9WpM17S_wb>blY*<_ zwK;t`oWzO5TBY-@;@a7j)vT}EOUTPJqgXs{NA zTr1$-+JrU~r?IbX^Zfk%52>luaU?BY&*>rlK=mkFebQ@ho$=w9&s`5FYnnISc|L5m zwE1gW%U-iC?f9i{_WYTkB+b_xuN0O(Ir?Tq@X`+mmgn|cuF_M?*1Q3?$^Q{5d-g)m z=8ab4DBqF?r#11~W0flxk3Ro0-_85)f(DgUsPk$qD<#5iZ^tEOaRdEGDhLs=Y=wNm z3%c@5^I-UV77(=xhC*3NN)usH09$kS4!=973vAE4Cn2Md3iSfwNi_E_xfG%_Jg-dP zUk}^=s(9OzX>bzJ68Rx#UKk-7iTyFs5*a$Tx(-@!ck}lpl{;VRKzOVc?g|=d{UV(q zD~XoHvU70`a7lhD3y+O4JHH$KccLb>g~GnBNNO*M0H}m~VXi(yplR-Mp-MAnYV%S~5%`IO(@a{_Nsg%CyrsmnN^`7RPQ~Jp| zohf6DmzoEXTpf&Wnrb^lKbBQdM^O{lJ#g9kuOQ!b#Ial*oQ{-~Sjt$_siy|c`&eg1 z^Y^1~hV#vplY;2M?#O@M@n8)ehqP|P$}pIT;bCi>cv zrSa^?B?*<>q+9^Q7D^p?iF(hp)rC|PO7k$}REUzkEyys;$f;MfWn6(Uf-tbN?CC84 z;N~PFW=?JE%*#bOrKEZ-B+vKpKSU1^IPug0WK1D!O+xDbY_>fkc{s zVk1Ff&JNYMok?~Xk*l11k?-ktnM;3HM0dq3Yc-FdO#ggEFSpC#X6D(RX{Be!7w?fS z;+vG2{nROyy|jb1qSilw)5J}G$jq(Gy1!uFrgBe(rinc+@t;HOle^Qh+o%kcA*tZA};)-Qr-y~BTKtPKl;;!b;8#_DICNZNcC1rwo$!GIz zj84tP^0CHF@fy8w!c4(DcmB+flIjd&!l!>2!{+!ZYY(i-ZD-q#m)^Sd#9_McWH{3u zt-sRLM2dhRi^ETMv~Z$N#p_HT|AlQNcg@9iTS1rJ?pS-JTnihkF5%6ioL1_o4IlDE zC00!j$W%tPzFT8clJw|c5g&ckWxH!$%jE~NEm>DnxLjw<+G?`k8+*FiNPUx|mC2iQ zlyDev@q$Qnx4j9-D57f&GDwh_1MU@_5OgTZ=Ts~JFI?mJZ^6Xy?SGQT>qp-&y9OVr ztXZ4ZU+z7gAIcp1o&A~2A)T!zJQKTfGPd3D&d#oTv}}2G}w0RU3n03a6YofbYR6y@?N@ z2~l6JT0JY(9|KLx0-F2uRFUhH44X~u8S~dHss#{fwzTh?PpvXW8`%<9p#1+&T&uNo z6F;no4q)|iLM+zoxuEIJnGYS4ZPqN@qIB_W2Wc@gBrpG`OQ&>qCov>1_0L?iO&h-- z{#QDBv-c3E-p&8~;mJf6H~xJ4??2nFYEJrcb%)Yl=mu-$x0(C5Zhd*KX!egEt2L%8 zC|t?`%X-CMCVU<(OOg7kJ?ZtYx9u#NYEf{j8bldendn>;pLC#7MkA_sE}=3;YttVk z4dq>Zq&nMXnex*iPSc>j-n@2G!)oVO3ggOt&v?ov)-pRkvo85FQJ>Cm&iP{LDgI{3 zU#-tmjlqXs8nX0LA1&MX=wRaNxx~d__Hx=bv2kOw*07}0Q~TUU-n$k5`c%)3h%-AE zf4p()R_)Zx{WSxxXHO1SeirfMn)}74a^uH_ou6j%edKc#+qiL5Vyx6neBpoIYVr8- z;oRZu;>xEn``|I2b<)6j$sO;%s2oZ6!I&=%-|3`IS9+zX@wtpLg zXRH$`MM6?2jZ{=xh89F2ZQ5vGr9JJ&NLp1?(n3kvwWm~`(IQEbN;~aZrG5V$-@CHR z%=^60`~IGP-aa2QE%$QW*L8ir=XoCIaUACeJlD7(9-$>=Dge&{&;`hdD$WZcNY~-v zV9_!HX|h+?bdRo*%D4Cot)MtFZRo#-XgK>S2onppUlGZ+BA~Y;RlpeGR1x5CcF<`? zhE8D(QgD@80M$)ZXG}8Bw-SEf_OlPH=f?BHXXPaHMt2GF@cGB8kqqd zQL#RenE~&m+bPb}BCH^I3GF`dCP{x`r^9iV3?-zK&&vS#wj29!jY{kzflO9LXgvXK zaBp+H5}xdlXKo=}LlAp*Bw&T>h^VQnGXrAw90kL6)V4wNJn3H4e-o>d&Npm~);5Y$ zJw?k<=atiI?*9OREHZS__#WV_zw@uCO@_Fw5N)g*wFBV1tfjdsvUq(3`jo$|xt-#i z8Y!d;7t3ASw#jpiA8v_TOLIzHVSPWx6A^*F3PIbU@#Aqe<0C?^6!Ru-VGC3nR^iYe z=O_|GDMI#wZBUW1lY)7Mk7FsGdQkg1%g8e;jK) zrYOqz--_rVeUpTT1>q_av;C)E3B*LA3U77;*#JPv7d$A8E(YmyO|q5$_I)sC&-eHe z%!RWPQ)T-*)0;lMHOKAFfnGyOMMY;%yvEq(o&Fx+VnVT}187JLEbh}KJ9)mX{m|(m zbu0RmkyiFr>U`}S`{W(9wOERRzd?k|>GT;eTNg0-1FI>Gu^D!M5705NbAz_!K`;?i zu@z(QtaArL2&?=cN@>9cYf!CDDJamRW1=$kewm0XL2^w2%=AA}HFx@{5`pXOwMyI` zyqnR$pD$sT?`;9#a~()R!9!u8X2GzTGrJh9pJZ}uR!`osYt3z1pd{3$Ja>c0S z2`)uA>UDpky8{(_QXz0ic0mvqB2iD#3B8l}la;i*p~hq|2XZ>H8wim>Beih8G* zb0F)?O812IhpitwB&Tg98xkX*oMitDo7hL;oPD9?jNJ-(Yb|5d4Gy-adt8plrO#P? zU=Irea|Z7Fr1t|W7SaKpTOO{>Urv5#VG26ktNB}R?C>TWoXsFhsrF^}+IJHC7Z~e) zxQ^BKIOC$x0mQql^vlVMxq}~N3i9uLeDa9fZoJmUzBs7!6hAi!-@6!SXyg)`m~tkW z1Csv9s=(lMsU;(tX`|k*`6ZUMb-k*ln6~#BuZAeYC|B3;z{@X{PO7|A66L$kuPbLU z^GR2#?fp+lGNYIG&Sv<9*Ri>14>3A8Id)x3O0qQ_+I;cQ%1z@TAs}8eI-qk?LQfW2!J=HzW;2*;T6v*iFJE&&Eo!~TN z8I0Z!-?$+g`cN-DmQZf2Hm5tu!B@4%eLe%YSsrd;{Y?f?DX#v26K|r(-I28eyJ-;O zXn(l-9=9^o%chlb3I&8M0M`TQdN5x}O0fUJKJ+JuBxDNQCXA?Xn#^!=U%dLj7AOQZ z(a^vO$bxXO2SWPCcKk?j{jwdpw{g{PP~Ej!ZfNHO`&#U)gy~6`&O{GjI^GsggvzG{ zObHXSRnFiJD`E&q%QQYuAxS^5WXhpW7<(Hfyq*AC_T9=&FTU$_IBS$AmCU&19%P^3 zi&MSnr{X4q)W+2nbEgYXLZ6))1I$*_I`gIV@%h`<$K4G>%#L2+Tt(vQz1f4BADFpH zkMb3;MWIZlhRx(y)oY*Qbazb%pPuZS3Y@JwS{^;wr#iU)Z20^mPDgZ3KA#Ks8m|LO z5boW)lh>SElaqZ9T-TcDUX#c0=*`15T)!8SWuSQ9{+gN?5G}y+%!l+-8o&4R1tETp6 z8k##z>Jgo?Lq4o((M$ENdeb|omK-zB*-jqu9KNs#?r9~Py}Wlz$LCO#y;`h3GaJo z?swU~T;fd=m5Go>dgn&0cla5pmpBzu?m3i8>mU`Dx3xWv%7G0=M|>5Cq2qoLJ)Iy9k+|P{~u_cChEkr$2f) z>DZUM3E$;hfOu2a&z%QrEF@F}^rTV%$)7Z+p1}Xnw864koOr+1M**|lwQE=N8!0Z& z^Uutz)zt3(vU9>Y{ptMn@LHaILO40e>UOyIlj^MjAO3Fu@voL zUlATbNu!2jev&yGIXa!_arzXX+3OZX{#ozVtn1dQj16^XV6^!Xq$ z(ju{I-!m!#hMFdH*`%|Zky-kujOIkYst_DUNS`>;YRae`L=soxAnZ<*4QVZYO{-yw zh6#sG21Q&h{XQDS-=Np<&gV=EKIDfp5uVw>!7v`c!s5hDZVpK3j`fbUa$ydR)?X7C z{?5BsG|+0JViO{6tSs>iy8%4H5r-JI4uGh@BRmq)Z_h>=gdpAb>=`vFb$(l~eh7YP zT*K!9JIQzwAZm`3;Bn|>W=E)<1{}#u&uDuG&R($Wsf*V1*qG{MVHEaQ>XvYh#fc~B z5BAI_Ejm4!b+HLS^d!hG_L@+$=&F(_+=HZ+Myf-No~WDP?6)^9crItFt*s^QQuOzP z36(%>zF8+RqlHDX!nD;#vT%LTs_U19Mvt<#+*=acJhMb@iAWf&lncY|*}utFte-qW z0+qGHc8G~7B+JQyv02OTaGdIh4UbWbSL3vd>l+8#ep89z7?Fa)u7dJN4MmIi4Oz;Q z3F_0w-o`uX2Tb;zC`{malDDIZ!;a%vt);70$pauMHHsE0mw+x3uMzhBU zYJ;*C@(~H|oSc~IejJ>)l<`CM2Oh(*>enO96VaeJ$v#Iyxf?Gyo+wPivdiwiSr2P> zqxU5Jne_$sr&luQaE!U~uXygl(-B8{1}#$6Vn|Iq6LpQVC7P-@hfQ1c*YphYPRvZb zU8AWv+}tVj{`USxo}I{><%ovW1xZMR)ziR$mk?hJQt-WN80T*b0dZs1m; zJu3`z*6nYyHz#?DXC2I~SP4}Ll7mD><~t%zj$&eOD=Q12iPnU(MmgjFOf$*L-}{z3 z0sOArG!N>E?mac+(Apxde$7kOEP3@i*?%uh@tgKK(Ck_`3zw0O7OzHe-grSZ>In^Gd1Zz?=RZMeSME$)P7q7swvb zr-vN$l*=G(X&snr=R$aJ&NJU;v<%)Y?(W{$ zZ0+7yI?PQTvn6rogz(TnIF~~8@%sl5gRLqiCR{eym8B$EwX`oJGydWIhuwtVJizl; z)w$&=%%0xZvZhg_x`ccb=O<@!y7<3KWP~QxM6|36DKVQ*RHRUI?nbIWz@5A6h1G^U zyXy8;OOeik^OF?E;oU%IBKq~j!@|7@+|%>hd^|S(IJjS|p(_ALpJbR!ht?`L;o5CT z$)wpQ$ibhhCIvjlZF5zN=neiUyzCQtu}HQ!=X09`cHF{Tp2N^VlFdO;{(b3R^Z5Uz|XT~e)wah0@hJbcTXM69n zbN0hvySLW*C4rqX~MUf>`=>?EKU+>Xms2v_6u&p zTh#CG)x|P)PJd;nM7ixJBd*@zuuMF0rigkjKg-3IPpS;8#!dR+(()1uroAy2qe1JJ#36BSL)>b&+K!*H}&shnzI zJ~a41TC6y+zkrk-M4IaAN@!;20yINYs1$7R=BQoHj=N(>mhAmL@|PfAdY{JOeEfM4 z$x6>j#_yRV-SM$HXqd(d_vg|O{F!JgiKI1WxzoRbdgw+kq5s$N`#Nd8&+m@1h0vlO zdp@PEy1H7@!NH+r8c{Ci?7owVo6nwHFIAP(WRo{@g>#^vi_<&L=%IJws(xlCn?bID zYx`%DC5s##<&b=nfQfS1_j+63IixZG{~q;up7ByY&QNne_&#fexjf4If0)yyTCR{! zl<9pJTV>+m`bU_I8|yO<@q4@8RwtuF^STP8)A+_uAIkhIrDk3qkW9UATWLZl~{M@ettuuZmAp-c3J00+FT}?qD{Te0*(L%8)ii`SLQY&HPOnM}`Y)jQppmOYZxHJ( z``>W`VE92xq!QTdBL|WsH(%N=&EIy@2BJkmIzEvO>*6`(M2iQLAm1^m3cJ{TG=9n8 zllcZatwteHaYM}`jr=GB-IRkw1y(!Y{=x3PA~z!=qXyy%$cyX19+2W>yTiR#SNofu z$n&soz^3sMk6R)PHP3gZ^T*y$D*^QZq{c-4c8)h@VA2<$M^4&H_D-}?66pTKHq~U5 zk~fD|^287y^~?&*|f)&t+6hXzmQplA*@p+ zy_!LWOLbjhe6;(E!#l*iU-&R64tvcvh>Dy6w}fO3`z5VFs-6GladiR2gloYrIL;Zh zAy?9kH6lHo4`ioMw4XR-sdv``+w@!TXt&qKwTtcg{EihKULjvFy&`70qwr4umB>T^ zr9}m{#~rfcgti03iQIPDXTg?5D@vLNA`QbOo6x(p8;shj2JrEr^7LtJz;vp+UHYsR zk}n zmR_=d5nKLKpKK=&5-M%O<)6RqA@f8>Epp2GNHjfp9m8dey?{9rbE{i5=z(F8R6}Pg?JxgN#O}S z!q{U_T6a=~kI(3O(&)jBi8GOWo2RdpGwhzAaPO=DhPZLZa?O7RvWNnq-*GgX=p!}Znnx=10vHc45(&CQ^-|hv>(e%_cMxqX86r9&%BQn* zqJ~JFQbA;}uWyJ(8|6)Mhr;$(H@*Y39zWA0Y8E0s0gaBGPPT9*fCyvXg=8}j)jhJW zM4*mEF(R|NRn?2^Vk!yGLoBQ|!#p8?q&bvJlK7DAZo=$5{7$-an)URZn;i zmq&F*9I=`Ib?R0(VR7aH@%dhp@sa+;v-0Hu%fy?ySo6w`?kSM`@|S|AerCS0K)l{` zn7Hzqls*Tbw(!^c$IxSmENl8%s$GRXXU$YyaI366avAa^YJjY=Mt*1&Fzhc`<>5hj zxsLg)vzq)px3i=Y@R&59CZUUM6)Q9o<~nO4CGvPZGpqQ3d-IBLqZLY%qgUe98^$X@qcsoD1TDqK`7>9aKU8>EUY z!a3_5+=NLV@HJ2wa?tM{lU87mwl_%WY)c)E;-s-i;R9taAYHKz){Za#l76Mi{Rt`) z=oe(S9TpKLs8hNBpP{mElAVb7{~jtsr_Z<{S*d&(P5IVph$Yw-j`eR^hoAE1^F(tz zi&c5!wr$k7olie23q&oTqQZuV5sn=@7E}+Qx4wA<@@*<=8znp(O*H+Gn-_p6k&>x# zR}ndr2BF(OKe&(XbyXXd5P(9(?4ALnC1@BSZ~go}!~tF)dItfAc#aBM=v_KWEDH!3 z!L)=kBOl_mmeIUfhhVE(eF8zC*S5*Wv+W1*Bjw9zcY{AG+I~C9IenM9TW)~ketyz7 zz)b9b7jcPO50y*K6kn>T2B7xNX?9vUtyk5$VLj1ax3v1nc)7ZwgSLM&gx;BbS>4TW zJC-)TE$V|+Q}7a;?;DqNIPP-30K|ua6z%_Y8l`XQpU9pqmlP(9a;Pagp+O)f8xWT= z5jg^|@4GcrUJbyXVoieO!DuthW{U8y6BA9Is4FYqxqWrD9aoMl z6B>F{aAQT#F}uRr^f0vi5|+ePK%luz-el~PZb=ublU^{3Rb+0$u0|yrCyV+h>!HrU z+lm99dj%UD7r?H;kqbF>e*wj&gQ~eh2TV(aypipRBM_j3>OA7>$~t)AT`bArMyzfF zKt{Q`{qgcJAdjTNhL(L3ntg*G$Yyhy@Jp8JPk|pEs+I z{Xwq*fa}E4yS*poxa4zc7f+y>9wJf3q^`%XSm0MRFMYN~{Jak;L^}B2ni&+a!&FBQlAd_1AD z8k~bnKya)MPThy+WR!?3y?cNO`p3P1W~eXBT;S_N6e-F5$jM^KK;Hp4d+_8Ac$)Nl z8h{N!5x9IzvvAm9f~s~PTE=0Q^nnk*XTsWov=B=-r##O4y$c=Wu4mxvgfhY^`r7FI}A=NlS!g@3+rv^>JB zRV^X&Ql;Erc-L^Y=F?M6?x4sNzq{(0wp-(4{Ti8Tn8T6(*36BX!Ojbn)qXcv0>aXv zGNMSUYmehv^Ksp?k^azQg-%>?Zv3$^rAn84&lkSP^Dt@+OgYO&1yiXx+5Hg0+|7qL zl|fe+622&yU4c_Ve4@A36n)S)EJC!3%CCGXD4*)ewg>MRkyKXv&=4RXLr zAiIFxyEEvgh5Z~kIrPd#LMpus-DRYBg@b%m9M^#!ed+6I7ENbA~GX~^j0F!!dEs1Z z+;YL8GxL=im?toaZhYf3#_yK9iQa)wme7z1^fMw&Na`!q-mqeNkrEo+IeBCOyan~H zV|y4u?Wm9Vrh^$i`^ntwUw1HX`B^KT4#qLroqP4da-eBNQ}I0FXM(i#GY~&|AbvK~ zJZyo#n<&j>KF8mEE~T7dBtJCGCC;pmM5f0DDfanEOLy6&4%-$`zoEYHWwZ|WI#~qq zF7YH0CXC*s9OirEa3AFWst4}j=;TT5OWH&-QjtGP&fTTMzT^>G67B!Qa}sA(Lc8|e zlKEy|{jxjV&5=zfyj)J8y>zN7lADcmDCx*C&$kK%GvdEco`T~K&vCo-F3+QM7bd^( zp7@ong?pzTM@G1E;nj;suMeHojX-%pIbcL^IB@|~rVFN%n%+WI*LtOn9c#WRD-G?( zWsNA%)-UseL^p`88Z%&Mv2w`-%jd&CtQH!2Z3FQ-W50Fh>(9P0ZE4B}t#M<2BBmk} zuQ-gUJYwl7T6YhxaDCww#$|`(5^eXO2O$sg7ut>8pjGwc&CbABpvhs>*lZRn!5u`? zBIh5quu9p%Z=pE91gXwg6)jMjd!1KiZw)4!z^#)oa!G<0;VmoxYn#pROAw76$>~k6 zYX%|E02VKg3yi;M==G{4GO%w-2}m@qv@*%f*a|u~?R1u z&>)137&D^Az&EcPSQ4@>I>CEPX zTdO!6EHd_u3^gqhPC$!qyTS)z)R&c&bpZHc1bVfQztIuwR6*T=7j`jO6%LrTx{jC{ zF~L?ZjKEEt7xu#m4^tRwS9^QUV^P&8rOmCf5)MK1inQjNK3xXDQ86@cWeHs54Y=qp z%DHU_=0-%kj>cDDO6{I6jlCyxkO3sVyllN>$}b=PiC>I~Y>>D=q_xmL8S6)GQ~MT#hW;7_g7u0-$amn;qu3E1Db!rn{F$Pto{?;B*m(U#8**ZH0uB$ zEKTh0(OO1Sn3j2Vtmw=>w>G=`8@T_P)~GY+mnp$b`8xA-r=)4$^F`$#(+kj=HVki}&2K{u$}@d*~RYBQjvF4xZirPC5_h- zd7@U2NN4JCj>k$1^rhO1sq+a9rm=RuojpNC4{hz)&$M%F@p}`Rq6W^_Sh=?&ZPTW` zTOh(Y!r1{V?sUlIZEm_i-G3c?L)B8h_9wQE@SgOseRUHfcx!_#8~fXfx{;xpefr%a zH#BW%d?PhGegCk(;6awPNN~#1;GY*uJ}}S8wWbr=KnQ}6y=){EANW2ep4_o!s@WoZ+Nd?8epCn@oV>g%WJH9vZ3Be036kxa^Lcd_vN?&3kpwh)$vIli z9%$j{@0-shwt!#!$PkLp4ru3?ND35(jTe*(4H&cxfQ|{EP+Uw53ZH}EM%PNh?)Dd` zWY;^5J!3XY(sIrLZ6x`h^XZp!&*`CGyTJs79AwgJVt_5o-t1b@YT>c>M|`(Ou3vN? ztQ9Tyg-yIBqVq~sNh~xyAd}AVQ_c$0I&3ryXxmOt@{BDja3V-7G(^!}37R?CxCqx2 z*~961x{7K^K)4BM)l#E9GxcfW^FTnF{VtLWvQMlLVPi9N76RsRv<)eALvg zT1)n_Vu5qimz)PPR7;A&6G39%%$ot*^VC zSBCJpM&7v9dJep;7LJ{JQRG)!RHa*fdKB=$gW>+y-#Oqwa)zQE1Q%cT(cyh=BxEU4EV@yGV|@1r1=m5`k9RMSsFU zh@~@8He>!z9`SCBz+9RnShx_~CY}898xC_&nCPM}cjzoykKJesTSBWe(&RKNZ)^w0 zry^*A>52Z3c)EyD-H=q6MEi(PE-wHd!mxmKZEbC)04a-L zYS#jHHa)94Lhc~`5JX%|H3lV0R6krB8vJiV8@F=N^JrN20BxL3u48^ zc0KD%9qqDMVZ~oQD?L zQi(yixngP>a$T%fO%%^YY|C^8mX1QJ@o-x>7H^3J`jq2%u z7CZ!ugCWH8F{qSCU8(L{Mc~8KjnT{L6Eftt796F-&E#be?`}lbh=s^q%1)KiRR7m_ z1e8O37wX@&(q8I0Tl<}&W=W#;IzrV*A98dLUv7v2E@FVG$50n6=A$H zEv&+b`xVd3a0T@*0q`1q7!zYK5?DITdM3|t`ZTjVx%rTVK_?$1vg#;8D;5MFf9XGoY89N&>u@%e#MQNa7X{Oh7cbt7 zU;g1WhL;eQbPNO937Wx{VzYqNq zDENNpU@6UF4Jspe`jDJu{Q(pGU>G7t3)7p^wMsKmlh-2(>Fsel!-Ni0@^_=1LmW`| zRd#Sgwv3m%{dQ0Fig#+Ns;b0emot|Y-Pdy1jhN&kN!-Y+jH%%${nHO@T0}XA7tirk zWhRPS;yy?8h*U*4-1;07LVpnb=e*?e#t-utF4co48PTw>?qg9H&J)vSL3jeR;L=Lz zi&KnCP&;Z&#ECyvTl(E|6u`{gV%Hw0LeJL7D>z}DqxM6 z-8ENFQqHYG=&20^qx(uGAAV+w<)hqi{qIijZn^UA=K3VV=n57k_tO@ z(Ol4UCKMWWvxOfZ^pI6Uq14hL zfcngFMkuL52wL0bqAW%44npS=>A6t(+6o81Ja8@)-Ze(hq-CEwI0~Nf!(7~>Y&nFt zxj6qe-^+gkDw0j0or2-On^ry;snKOnMOE)|L0EL(z4SQ~l*EDyxCeZ45Q5)BL+Od` zQrv*!wbg>^ry-Kiz{FP1QPi!cl{bp!+CaW*+Ssp#aGwpu3l%#j4o}}yn~k~m?`vhG zFJoU?q08w;b4!TU;pqj`chnF_dA=W(QpC~#i}*T#tOL06nutNBPZupq&2+#D80v2l zNx#s*2ro`oa)Xj;m@XqRG0__Vr*IPL1qM|SQ9cW<-JbLHC0k2TC>o)K-aoZ2GpBo+ zz^Ry%yTyA|tMpvi$iBLr<9XQK~aj9%^LzvjvJ-07lDa1@aoo8x%D)0^cGI z`q4~He{vs~=WlAkdLW)^z~!S)d|b>Jb9qA0lP-r>9f6}~H^ZI;B9w1RJxK{zDrh~| zQ^Jl1i0iMBp`>>ss0`qE5|v32Hr(<)9lP>3mPLQcq0^vMS=n>5-jJc2AD7ydU;e4tEciOL?rV)ocp9ardLWz zss)6HcOOTn^^d%NH0uvqs;GoDoAa+n>rBB?OnP`swC{Eb#R?f$)CO1{cQJ?#9Gf?q zC<|UvQ~B-Qc}hvCCZ;#TsAes3t&YuDM$wD?dXN7~q>o&=2MBvYG0Q?9%z%BSwfa%w z7@*jK=}BO{!_KJ)@&m?PFb{?}d9ZX;PEiY1=jo{oCAI>+n`G0h}nJ{<1*=LhcJHhZU-! zb%aiY9g`xewt#99w=+)Qm;JdRj#I!t;RQgLN>e?$B2uQ}6iUHDl|k9UOa&>a`=N6c zHVf)^|3`hC^lJ!s!oG8-z8P_haj%;t)>=L+lAw|ag%d#^WFuY$=ou7evc3eJ#En+C}SJGeZ1k9RGJv{6ZSH$c4N#ml*fPu4iZZfr@{SB z70p&(4dhoLLA$pNA@z>g?mr01A{RK=a;D zW8iH>z^q#n=4{`0)8MsssQ9_O7YI9l<&l5ghd_(-=xGm32@3ey7b4zmum?0QJofoH zbn(8};8=+XuzMXbn>m-PKU4nH<%p&>)0ICvH1tw-avFoQECZR6CaD_70;JKsaG0PX;91 z>xguMn2Ec(Zh#drrf+Tmc$xc*|8)kLBZ0Dv$A1OoOTL8^iY*L?uex_r`@CJE-Au%#5y#;;+KtaIYXc>qJ)G>N<8sZ%s$ z1_XHZdw@KkH;)OMetD;{};bQLyI()zhN#A(=_{$ zlrT?Be2_qNAv{c1s7SR;3n-MU-)^E)b0h^=R`51b{piz)7g4a|#77vS%jA<8FT{6} z*aRoRYmOsf1Lf{7)P+n919w*Qt7CrP{MG?mq^RO)GJk<65^Z1#Ld-$*Io43_p8Fa) z?gZzhETHZOK0RGbLLX7d%lA*tO!i9x3MSYQ=LK1agOUB5xB&6}T;JeLDAnljX&+pw zVVf~V9HSBv_7HFh^`9H|0_yw_xZ8WeySvY9mI#j>XD6GA;Pgm`s=xHYzCWSVQlk_6 zsbnPG-fz5=zAn+f2x!HySZiKjNBLs&8hdHZF@YNW$!~k&-(vlG$06)}L^)#yMpmC$ z9So4!U~6?;&Gutt$b}3XE9@j645VumxWOYGTfuS8Y$dETnPDmo;G2yLrnki}`iC{n zz4ATPN!<{(vSh=Bqw1(;;jy(;>$V{3?qRn(o?$m^Z|c+#HZ;g^5mZz?7TNgld zjFJiyc8ae-`+roK5ib}jgiQb(7+6yaR5BL?d8*kktZzR1F2FYMq=X3*oB;p(ZNj0I z6!ZjG;=;s&6JF*Rhf#nGD&?^SNO5F`30mb0`O&p+VlsPD(i@y2TOlCRGgvw5sLxqz}0;x~#6VuSu z2R}U}?mH?NCsCug87^#JuRN)4;5Yv>A&kbR3w1q=XeMMqS661R6!iD3pxk}`?ZQ|8 z+lBA3IS;`d9gjQp6iV$}**ph}QJfoONg)&ai8v3TSlR>Qz>o4FKkHT`T#Ta85Ftz{|j0}pVCI8Aiw&3X;tVB`|s%_ z!fk>g(60X)F>fGZB9rkVCY}C!R2d1NN=RwM)0%{5M0V`r#Iv=qcR$8-5#_@8U`G*J zw3_ft+3Pejq=m6 ztGv**rMiWov)hnS;q7GK$pBjl+!{njJmHf}Y`}xz- zTnc5|*`s2=p820Y`#<%JTl=+}5Y`C$$`q~z>6s@GCRH5A+o)VDOwS;M+r7|L_He># zhCoo2a+WhUuyHm6odyVI-N@0HpO z|7Z?!(&zl6eNY`B8W04Tq!l3Yn@80(!pwRAL$%6GK{F{L!>^FIT_7MJVf||BryLK zk#yFGlRoS^b8C9b0MpxG+)?wrYn$C<9J*u&##+3K2uTRDV5QzxSMSd*`;!Qjv$VBB zU*rEP>T6S1CD->h(@G%oPzS+qG}!;x=i-Z3QSJtQ zy}y8>En#+=8W?!7JCWy74<;44q3$dKv2|JxRh#>yKMcZ2`3CoHk`#`;P{{QiFt8Xetlcp+K=jM)Zd4MR+z;fT{^PW! z7yk~jI(j(&LAiT`D4kTdJ`~~nacV=ZCwtiI}<8Y!ab}}+Kya-#Qizj=qoTM5EY|3)dl2DX%iq^ zu%V9#LrLH#6WfY(;kQMQck1LuxE7CnlyM4*tVF^|_Jldl@!aR*f|JPmG*AK%QZ(U& zSZDPTaEQqL$wV8X%qQ+KRJe+iF#rADB0`M52Fpa64y?=}SQe>6$t7(T{xcdew?`gD zH36^aepDS}WauKA!3)`4xIq-^;MR z8J7T7IoYVmC<{Oek^Zu-WF6o7ZZbj%)gfB_dxz*`)JW9%MWlo%Eb`)S4=c1%un zN{YBSja_qcC1bg0XoyWPg4W@wFgR2-UlW-+pK6%VqI7gVm1$sGOt~RRu#0)8P+je& zfg)yR0(1Hmy%Ok-+W@G{9>rbL`Cr^zi6+i^gLArZKx?1Teds-?XgxLhklnztx0aU( zS9W+?VqO;vDJsXtFoA(Ip2yL?S}b;#gMYWX5QjeP0986N&S->g3FYLE zUtaxjddqs}xgEy&x4Zv=9Ogfjh5XO6sK4Ybr6hJEixI3RO2!^eTFTw0U$)lIzoI9z zWgF>nQe~~g3L@mf=$)pi9heVWZ{q}@Xs^+`N2D65mBN`l^5x9h`wUu-V5(#REV^6# zl`mWe@&VR1vc>&`FHl$qZXY9h9o`?XnKOKSnlGOAZEEtfg4(6F3%z#4>>g&hm7R!2 z?sZ5a=47j=)6tfXk8em>l5rX-Sl7ZthXs`JomJ2Fqo+&QwU8b-j=Ug=yr~Xxq)0QT zCJej3PZ%bM{dnu6XRD>qDi1_DOD1a;FQHd?9pf;I+mV&VXA1jf?MEwepRA?9oMG}M zZm*oAQPAkcDqa-ahT-Y>^1ptE-%zrhV?XsPBPU1Ows6-`-}!!$DA~MnywBWpw>Ac~1lL7+sKymO{I%9H7{g9l3f+Xq~O@hDy+03zB%^3}!Wn$op zm!ewRYt4_9nID<6o8_o4nX?KUkgYbYWW1($&;{E^`q%j@VP9OdO6I{6twW@gk!~4> zf~|<8N2J%$qKWZ>*FixNAevcn&S4LmTjPKUl0QRx`PQmO+YA zHxHajQqyDOeYk-w@L_a->#?Ih{CL8%a4(bO#+`IO=H`hAd}>L*XvM!Gd(5%))3R$F zJsterA3p38E?G-U+xmw2mu=fFU%tGjtTS#C_wy}RR>~BU@9No}$<5Y$DDG6!vapiS zZM*U7QU1SG(ZtRDB|0t$$2pFS=p@jYxx`aY`&p5<^|9WK^rIfj1nr6C9*&AQq zwfv^dzqfXD2o49z$I5Z<+o$ZX`^OXuiG|N#bBuiVL5<0MM9FIwk;@tA2migV*b@Bt?$TxW($2WK~o+h;&{XQ%5wC6t$4nxG*>ANnE&)kY7+h zhVSJ!HK~J&vJ-am>Cp_Hy)`M49CYp=$CM6v2wL|Y!H9<6U0mEM4Q_RI>J^ui>=V+( zi*Va~IyW#l==bT<#Y?EoT9Nvi#A+(UpRH^b_PBmse{f*5w~lS^-n}@q?R0K425r3>h|rH+($-b(6t!z-HB#+702qOb0FJaCC^b6 zx591&D;g0Ik?WqGw~(gPFgdjpuDS%x&2|BSvk+&kbSM)D^0{+oHO3M&R!-EejNN7C7N?u+k5YjPd3qZ!C3SCj}xkcF}G@SH*0 zngbni152anvftX7_4W0wn48Ln^UGK2R;|kn=zEtW)~VE2m7-Ekz8T`MmA4ae_tK8j zy#6|c+-0_OLhhlJjQC&ouU$$ZS{+#31+xV=}?MV|o_TCu_pFnAb7 z&~nL|TlF_`GB7YCJ4{*~J#ys6n>VMGGB4g!=%Lx$ed*j9yzB?z-qL;hPqwh;g zPcNmY7`T(+RilEJmaFTJOP3zQ#eLR6=N?%)fO{jw|3J`(mzdx_VhoVX138@iqojT`59%?3s|w#0f1*f4tse!D{FBOui<@#L^a=#5KiR$x1cY&W6L>= z2+Tq@ll*+K$Cm~lL|1Ry#%Xc5!Lh{p!gkQ_Tb<0yal}29UKWmPab$NKT9ruzP=5V0=xNKQB z?CtgSdhnrmw`>vJy=&L;l7FmPRY|0fC%l9(egXlzwp|lr-xR%$+X$2v>rY zrL5bw9om1PUQZ7<#xQQ6NZemMys*KRShsfV5PX5(E?GgRhptNY;Kl8lQ1CG_Fht{) z=oP*oX$I|{1?D-N@XCQMSpbc1`668%oi5C4SXrix9%N8(aDD4L5E_Tkz`osJzNu6% z0k6FHhaW7^ligEt(s(x4jE6-~Q2EMlzikRSESdQ1`PpVYmwkrCs9P~xA<1Q5(7w+? zb>$wmaE&NOa#_sE51XquxQOYK!GeCKphB)%zWfcyc?^vG#|we-Kk)JKIpJm8_(bX1 zAAhV2$up|q_H=W5gJz$6Uf)aGW<3dW39MWZnO?=1Ar9+qrGy@Q6Ia-&6mNIKj*h8h z+$-`}*>ByiQ&jv;d52aC*!mAL;E{G%-Ep>kBTh;ZW%IyW<_=@4o|kH74SU9X2<0NnwcDg%jb2 z$a4vOq7$WxIksuP|Ni@PUskD=Wko(7=mjmZ_MPiW6p5lwGxDc3Ic?g_^?FSF4VE*y_%*@P&af{Z++*$qye6hI5 z$lfC=D#74GA3k*GkQM|FzPD~^j|q7E!V-~?Al=uPQ`er;W+ZK8m9CO&uY~xiYQ{O- z5vQJ~_QxN8kj?o`MMWEK!w1^=MMWj>I@<})_wX3A!S)k1c}`Aux{u~`bs5w=Hjje2 z{=2^2ln_;!O~rbzIayXU z6`=0Jqn%{4^=Rkms1k}TNoP>)M3bYdzdy0Dv5}FM_CETf3HJu2!-V6vg(Gd?<0YO4 z0$R_1=H%q8#8oXVD^tLAL*6~l9CGS(p?4a^uw6P!ia(o$o^}H0UuNjKpOcP zzU}+@N8mkRc;twyK0~PxC@ol+HJ>&G-ulq#(56=i+6-A^XB8D6E?KffK>G#ls+B9> zBE5a{w)>&31*a*`v)gI;25B*s1{nX{rC>WVbqS#;w$_Nx0lm7~oYiugqn9N2osm<= z9=vMx>MFFAf`Vkvo{d2yID7hZcua5J#LL?rz^7vI8m+BbLJkwDM0dwXLvs&)r97O6 zY2P`H3iCLpVwm@y3D1Pfcr3SN2~m)*Z#X8=boKVemzS4MV0J=Gsg9xL6r{bp+qa8x;hwwr zvd65|NW$1S9;#A(gyIYD9{q~VX$aG%_OrHNqb-NSg8^RUS<=W0pMBMP5xZBdSyPQI z)fBGwN{Y z^=k8^TlJpBIll0jT)*cIZAKEB*kc*judnP=wmNX<19rtDE)j;;yJq|R#>U2W6u~2y ze;TZ86Fq5(s;gc)J+*04b|XE}*xPw|qp-)eG&fsdw_a6LyZgv16)B7}$Cb@7?~s0$ z1QPDU0*&$)FOJD_ySck#^1&HItEQ6=G&MEJO=?vZyIaN&gO!x5}FLH(ByTG-89afb-x3Em}Id^bICSij0MT);k`k6hUpC zaQ*uA6JF?aN4x4_w6K0zHK;MXLP9ykNl>9GPftyyrl+S@2DdjiH}kNtL{uhTy>=~Q z%z9=x(J3Bj)Bd4%65L(r!x)l{0%R@A&LpN{y}0#p2VBg%P(a?IOyoY)Y0d&zbrBfE!t4#c>b%DxSiUh!-a z`?@SGgf80+q>^Z5mJwPhM_oTJR@(aO4s!_jw~!x~R7dDO-VuRnB~)8pLX%{tlKZeR zRwQjIj_&wLC{}s4G}jhtoYQi0mF9vYAJfx&i1agP#2$gjEkL2dBx%Alrq)1O6C}FRYHEA#-Mbg> zC?qVbhO<@G`VNHjRe4c)J}YT_;73^k_-rG;{n#TEEewuElH5oWrr-K_VB_AoYnK^T z#Xf;#{|%+TWcj;J^*eGAR#{wX>KTN$O`%~m4E+53$$I765Q}}Vb5)rCuz0bueG_p0 zGjP4&px>i%1MhdojFTL7V(!E-z*#}TEp2VAh?x6XpVbU+N78~ISnJ>@m>jyH^yiOb zh*2&2^D!!RH%aGk(wnZlBYRjp+Ym=4qfkj211^C-0|RvzV=BF?Ybjl1wp}v+3f5E~ zPu3v`375?xjw*>NkHZ7@sJ`*=Sed5C5fm1N{f&%jAC_B+0il(!op`*x1#u&L^MQ+^ znC>@xWsUG_c+Gc0(7=@AFq!_L+hE4v_jU$YA&>}g_3Bl4T*V-#CqIGq@IV{>XA*;h zgK1Bms9-?Zx`s#RuOI;Fp{hVQVYuXNF1as3EhlEtqD2$%0a5`KnB2vTYuAP&h9pPx z-@bjD@#mlK;yl`pf7V8@tbX{AJp?xEvEHLF+&Q#j`SKymTCzo29D=$|7%i0vU@aLF zV{9^^XPB9p$vXlbjS9MbJDP+v+*jG=Ry<^W7id_qlcW9BpvCgo*XP((r_NP`fP7hn z%vxR1P3Z>1E)L{<`8%am?aJW?f=-qBq)}@!U(j+NA|mI4?sQgOzUmX*VpOe08~hL# z$T>7qo3{Oo>O>*TwreLR2S@6pJ-=TPNMyqU1Lf7~PC3Onm1Dh&UuO9i*4lM1*5yW8 z6N{@}jfHP$YMMl@56Pm*xYXk%&tJWg$A@tM2A+yjDHD9)o~fzn1jcoi^`*V7s_Fu_ z!vbIiXRb~mQcstC-9Ob!SyMAlNehWG?rhEIHwb7$ap|_mJd>!I=Qt@NS;(D2N=I#Z zm+X&x~%RvxYKi0p=d>BQVDp(0C34+(^Jz;YtoRZ^YC{7#*(Gc=YI9l zQmv%Our2jyl-9BX4{t{$9JL905W^hYFTs*o| zrvkMW0Kndw5tjL`-jTHL`)1^VpN|tpgx(I%~g2@jVr$jUY0Qs8A%FUG(rBUKkDoTXEwK9V!_&k68f$XC z0E;(yl>e<%uJIJO-5J=jOMr4_>FMAFLOls$c1~D;j*_ByMlRcSE#;g)N_|X3xUZ$H zebm4p#?_Ssvps50*byz)tE)Hd3Ec|NOE(<7GD@Jg*OI3zaeSRt0I)gWLh0MwtN|Rr zgH#f)LWOpN_21bQjfdLsP~pAtPDP3U`3wzSF)!e+i~yqypNLk7Mf`BvS`DY-unuk( zT7gezZ^1!f0%YcV;Un&RKNxnM(a_Xv!%Qd?P8F510Npz2I?+L)v`1(z>ikDyLMVlj z`3FLAB#sqqzV(lhd@0Dl`RQ)m-G$@5%Q8mZ{uR<_EevJz4GZHU`<|=o6Tlh3&9ZF1 zKQqo=&HE=Q7P~R~DH+l666UIEq5Y9;T*pT~C^60G`ST}y`P2mGL>}PY4wOM=1I^+e zYf>;-08CUl6iSf~A08po9MjfeuGy!P1h1qFmM2jHFOwrH9B3(G-MjY`!AnplpUCAy zafdO@A2@%;E$P zq^0kC!Qc1){^y)=;@&gvxMz&Z7!HZO)_P;cGoSgq>-9}V8Ir@4hcOro3HHV{6%6J8 z8wRtt;~)|I#;{w@2mTYXk-lxCYN2mqf8RhR;by18K+Tm^-QMCtCjW-xy>|-TlFx=yS6l? zkd5K8@L7?^kFdEB>zn)F%5Uffbk|(gm+Of1(@WNjyN9jz3B1@gHZ~?KcbS-ko8>fB zF-3hKrg$9a9-R6Y~29XX4%bf^k*?hTclG7CYIyx??bb@@72;VA!iTP0ei6PHr~M z9C_75#kQ;lvDEWYFUPjlXFCoty*p+<=b4g`(ed;1v$n=YI_yMCqA#hyPfS{FpJQiu z&rEM&<(;n*Xu4X~b$tGDsp$pPTmmE^#tU`)9gE{F4DtI^?Ia8GMCQL=ba2~VDcx@K zpmj|uUg;A~I1yj`XW)&{>QI20jt;@l?+hC*&R2Zv_DYYnFRAbpr|4p%RF_SQg52%u zpCh%Qu@Uxtcix;~^DMlCaX)+=w%a{qX|`YIoEbrRdA7a%7Tevto3o|cCHnR6n6bFL zNADGd#_2`Zr?MjV20Kk>2PcMa&~E>!oH=4XI2^3g?$01cj}@NDixpcNyJ$Pn%KY1L zkJ`)AthdHs*DY2yF8YcL2pi`AdU?)K$UePrra(IQj!9ZJVRO0LWHK%HRzsv{kZe4! z{mfnObNq@&$k_wwi?`M$g?_s4u)k zY#6^qZt*XxX%7Xkm!S#IDs-CX#Dyo7{=sllFbEzBkTE`m{~ z^<8!Kpn8!7c@ioC&UMFMw}TmL>UfpnRl)=;9~2#!j|ThivaF;Q^w@`a@J;<722&18 zb>3p6r!&i-@;0SOe%9g$(dl}j$q#l}^Q6>5tya|F$pwQx!mSxP;$}s26%#)`#kSuu zpq?hQC>H$wa%AZM~po3`4VDA%=Q_JXks=r0qUS&1nrDXpb$Zc0&HJgiRoCupz* zBVi_Y>%NFR{{7P~%5A(ker>&fJN+4{&i6*p7r6 z7_ao&Yk(!HYiJ}w*wE}Y%Z-2mUM^mnNKF?jZ+tKHrv8+;er?DUcYgU97~wfe&U@}T zJyvqIQ$Lg^(+kr{g~sT5Ay_y(F%~x0r|NTFsLQI655J<|&ucv*uVwk|beC<1RyKsN zRJmaGF7v|a#qj|9+z(wAGc9J)!uj* zJfoE@w^RE4lLV4OchTIU;dRv3T;@P!QI7K83?#j(<+izGY-Dt(@JC7U`b;6Ez@unb{9k!J)b>5^<=FGTW=@4t zj3mm3#=MvEm}rzDYXhemG~RohgYw)t%PyP5*0K2{T5aAa6Z!?oLbIv-?)Mri(eceH~#$eKxb)e$otJ7y1s2)CK+j9!xJ!_X4ts6;^nT? zvGtcE=Mo@(W1H`LP$%>iJ9%hd!C;lno+Lu z6%HJjOViyNqE5@LUKBiw?V1)w^Fvia z%Rh9N0-`qP2@RaC8;_AY!d>uzTXVlE#kW3P>36n9K3EgX(ZS#E9NQqiEh0SU6;Tzy zH2JZdwB?NL` z>}MlI6=_`-n@mUgVPdUmnz?q}J%+K~S3Akfy{Uz7^*b+k$JxAG1)%iKW!j6Uz7aAt zJ9Dpe&tkM5OHi|3uohm_mA}_URpaxu4DNO2h1f4Al|+6S3oD7tU0b#^XJo}-u4DIL z+#9K!e}87iGGmhwB(ck{<@Q&xC|OMy6awe-&)onpK_N>KV+Ao(KX?0gIhioKFn|EH zj&!Z8npwzt$r+_vLKdNTJiZmcP8e)aJ^Knoz6!gD{PmQaoGWb*{#uW46g8UX^O>~& zS$(|oq=l`zUZ(8qY$*Peu)Yq% z%Ivk9v9i0;ZJJeNWjXS!V_Ye@7>F@kaz9+ zH;Wt=RKWji`V2@1|BUySy4h(lMLvFDJU8$SUjuMLi0{GISFQP@ktVB-E-o&{kaHW- zC&yxa6%`_cvU{y+@N9Chf)1U-Ym4InxB{ExVIk|4CHsDt(RH4e<5O7;_4x6)0L5x2 zGYBRQqwY%Ln}o47E8n(fWMTp_D!E3+#>6V@5 zIn$4lDf#)GmaE9<3Y~-5wNxP0rsoDZx&FL$0&|Ry8!$ZQZEI_5yOBrC5zKt|$}k>#TaQbyJilr?pvYw>G|U zxGLMY6i#Kn(RP~VGt2F@3lp|apD9^4C!yfJ207(PO;=-Mv{_E)bqF{w3+$%DR&W46 z5ClMm-XOOAfqop!oY2$Z%6sLC@t@zngeH<=yNYuFPE3@n&$K`mWWuh2$HxQY*U8Ra zRp`d!&uH1Usdtt(h_2j)U0|DT&jrY7f-VNwnR$nB|1o3@`uNE%$o$>Y*xqvwd2yYq_`5aPcxU4%e(lYMa3LQ<06HcZnJM z0MN1lAk*^fm#I>3{=VB#-?Tw0IL{nm<^U+TKzqAG$1M%H!O}eB-j`64M8(vYLGbIG zy25KcOh_YrienaAxKn z%&}dB+0xaO0y$&?LR_29);zfjpdSA?K#8a{h^)B00TwB8;68itVzd7NHZYQu#3)yx z^%VdDJ?!^FCu82QH^ZZoP_l-&TClyfZae7BFJwLlwt1NC)fqfmpOJ72Qrieo$Hhh{ zc%q$V@@3E}1namagNX|U+HMbXxP2nY!H$<1Ga7~_r`{Ks$s4@94^L4^W$op-GLr@g zHl?IQ8wy7Al~5gr;nQH*a{jIHa^#!nQmuZRNm{(7c|Jqy&*u5z8U}2Hu)ST6hhkV* zSmvG?@bEE6ZEQlZ3nctKZzCEe^gQq`il2iu1-uC zBW&J?ZjNmZwnO1+w^AFkXWL{&{NUyEWyc}Pt zR2u>a`;uf0toE5rZ9B+ZQ-if${rA69H#EwESJ(k$oElPq{A;ojYR&YaO8)l15K68I z;pQn&()DSC9x=Waw`End|J#B!hA>t#oTmx<3nMYg{;; z(*n_w�Lm>e|{l;you(0oqx)kLc(}D(hv~{pJJYccax)ZyEI!IXFU%tt-wHX<0$h zS!IVR9RU23U^tBf-`*?%wlW_2?uXX=0xkdiVvAA(5t|2;IdJtI#oNm;CIcqSWN%?E zsrbh48#Mgb075ghwq(TDls{g*US<+nvN12WIp^!v>bA8&+rbmfMX^d=2W~ zjTgLGXpWa-i07GvGTF$c(Q0|B({VbxBh#(>z#j-xDO;QC20RC79fpo~NY)^~wQ66A zw(_9;ZfI)Ss_QG7(7(O4fQ;hT)cwc63!DwB0;yyBwn<%i^9WAwb zTczk9S9hhmw#^A($imcMMaA{B+n=uX7TV`(xk7YV&?-rK%-n)-an#mgVyBl{E_c>d z;$geLU!`#Wq?2pJwu=;JH3n;jIdY0wPy5 zx%Oj8e*!#htZW}yD*~a&o6Jn}`x>6Ol`chhe_N{8aL@5mXhTs_>!druSvhXYN^tg`B^v_Q~K`lMTF4Ev1B zHVy)C0IWrzZ2UZT34AZboT_@pr1i@WJ9Fx+2^N!Yvp)iE71)f&0KX%LAo9ZA85PF| zAs#f2HvkZap>S8jUMQcckzt>%lcrQ~{W?aDrT4{EzcC?Sp;!Tb+;B0lbA z7r;DT|{xNW8)plbJ|rbl8EsFZHgw_P=*B`)hP*FwMW0z!6yIcV=+WjTz*31s(W_n^crfz0amaGQol z-|M>9+2gvezXWtEbWNXqnt!tR0}N1)n&7;-)RE=84Wx~r-Lv4h@s>mxt+=n_ZK)c| zbATJQiYuqBwDlNC*Xk@>W0|6yRd@{QTjBp0U}IPdYl&%{8_i!%l3e*gw=TecTZ8>6 z5p|{axx|c;HI}&M=N!3{YcbMqF7#`gb8_2nR6{+cpFthkSpgx7S{JC(dwC}n1tbA< zxLuJORdQQXo#GjJdEUN#97>m)0Ar<@UOWbbJl{tvvofq=#$$iE{6Ro7fk3zx`7P)g z#9qxSf7TK4;n)C{dsfeHehTo68> znsmFas~a2XJYO}{4+Xke6Gb0S$<~?)n|9G{6`|j&qvG3wo)?I&KpdMIj1+acUQ&!k zs#Rdq1eSrgmNCdnO}8}7;tir)t_Zh&l_aK)Q{eCAozKKzj-3hxUKh&xqd!kFDYnA% zPwCvhn%VEVo-E}->fb!bf2M{Gn5Q-%D&B3bLv8L&aJEBig^MZQs@(0A)b22&Zv|J# zXvK;yXZ?O!J$*(LP;$(m6r{B)c(1mojUlGa%7u}-8YeS|w+%$|5Mq-N(e>UmOKs^# z)vMzdGdn$?IB*0!&1c>tpaG%OZJWO^vXaK>GQsk0`7&6s0j&iPSbi26K(|Z)G+&;T z&(Sk)XV5C&gTYE7DsjKS#_#fM7`WaxEYGCwWd(tDZ6~t`t7_)X((T_K;sQQ32nS9q zG>8WWl8!}K*9-auH&p`z5bh!ZoW}Q@tYN&SKCSS9Wb(_mqx&~!?EQi+R{01`Tr$i1 z_0qpt_sa-T!C}5DS4Q*%h=BNg%YXcB00oc!Lt3bc)*LcWSqO!&oM`CXKm0I*WCALa< zyLy2^uc<+Bm8(4ZwT+NQ*qEt5hyg1srvkBXmj<|c*I_uQvl2>2KW+H#tlUW-){G)< z;XBnDIxg|9n``56U7cnEAa}Ihwp9$l52FfyK0VS^S8>MFWC42-;{+r}Vm+m9b1xjj!09I=7H zPCz#NuD?yhXHZXt&gQVCAIxK;K7vrp`UZ?6!P=8$2QlNS|GXxP>0WgZL}!MP!Io! zgbgzO_2or+Zd1OsK`+pOPpZeiA)i8?i*f)E5Q`9LO@M1`gQ_wqEvHKsiZjGl&2xWt zg=GsSc)dWR3R)#ZEF<dI$b-2#1o1{fS;%o=$~`U<^-k zgw{j0ejTM*{xE)RT*)m3Wgh?e!m;&FK*jU|DO9l3u89c7X$VVQz&^Bo(v_);64!|W zQeFG)mfO~-8*ugH*_ukg1}rtpaf|~$&;eyqA|U+S)ly0c# zxNX{Ai8kW*`T`I>36g=5icrWp7@Uc(=<-eA;<9SqLDk%4oSL?GdY^FlOOhHpIgY93 zsdl5p2t0MxB9N0EQ0zqT>pG`{r{MsZyiZ&rqu{2uz}quZzb%4lzy`pw5iC(Fd*M_J z?5_?~6Sp8wCMZUv0IHzp;Ov7G3?-4=`vYI!Bqt{~0Y_^C5l2o%JIBEMj6N4wkY3?s zsOWz6+I6S(u0w^~Rdk*VgZcdi<=;bA!$BJQOurl;GB2)8W+1XBOKU6ER}67>LyntJ zDqV8;IT@&`s0=li4U~K)fT9rr1>0fN*=r2|#qsA8;`xd})@-O7dR?+eSy<)i z1O1`zPx1Moet=k4f|#9A7}!{7=m_I8Ay^H|qV5u<$m5U0nOO!6=KMTPT#$I|v>P)E z3UCnTVM*%KdF;PjW))xWY_I_rBph+QKD}E)@U&~$Yt_hW3-`Ni7ehs+TB-LzyFvc# zevHITR6pE!tLr0p9U_RqmGT+je{7H97{5VWNlaEvoOtg+(_F(*`TEr6-p>=@X${7ko&7q+pDw+A)J!vZ;@_W4ho^%(%#!acmZr%Mz*)cZLl30cqA?-hOp}4{ zx{fGI#1wGpR*XUPZ2^R$2K^<})6ldi&PGv_8ptuUMO6DXfbDyZCW!_I-J2L7eUcCf zw^eJd5XOs*a-PR7TV!aJ^8n?T4q#rayVwP~UOAFAoQUy&E@CqWi0%e(c z;K-Sz_wRSW1WY#;G1{=XzKGvPY=&P@WtFe%;ziVzbr84OfChtxmX_A#;XRl#-xReU zX(rH2rF*~J@8$;liIabv zixLv9LmSzM`3DCo?JV z{yVKfWMy6qNH(z3Fjsp%GNO-+1QzF`b1}f_0$?DkGOrCmSHTk4YxYJV*u-v;9E@Z9z6xV z=y^;HyG}{beuk^@CdS5xi+o^dCs;9bmJpL~eYpJ|<-orqDSW#Ki#q#`Er z0&`O8jlC1h{!a@$>7#dk7ikCJOXBtM|13b*`R)ITsv+BwJo-eO3Nw(8 zz+m#t#QXs10qScZLIY^*yf>=L@EbJ^4RU*~ox5Yat~GLB1?PuWSqU(Jdd_s5L9)sA zvwbLO!-@~ED@udgJVWUYwfePA?Oq3B39s)d>Z!bdn%Y`h4I^yZl_3HFyw^3A_y`~j zg3Ux%c4|s01s|PkXl*wXibgOD|7$;YMH+O(k~Oa`1Jr@F?J~`(gDX$kTY4IsnW;ks z0GRtmW9EJ#+le^nvKT>52a`YlSIXf|buIBiV^7bAAXbeOgNDf02X9}Xf#fjJ6zf4r zN!i-kddlAN@AM=ax%Wb!8}RIzy^7ocb0K0Q%sYRQU_MUpdYe3`@r9}tc_28<^8Z*h zay%7v7~xqv@{fGz;K3TP%<94iS{%9Avp$_%dzFjd&Syorx z5zG&0?7l&|1nhWccA`>LIzU1lRE|J2`~c8E2B>`R>GgGJd4eH!m&`0u?hFqzAk}!H z0{S}|+C&NTE_2_=cTlTEp9t!;K`H%wdL0mm6?A#{yRPm&k#D|*ifSkh#_s{80|W4E=X$u z{YFb?-?kxkYGJ#}%CCB*8MqBsp~p1-^ay(+A_N^54Z$kM z5mN|-8g+jMh*0W6d6?EMfCy$_;rbFtQ8}L!>jNSdt=jlqagM}~6N1MZ0Ok9ytUyZ7 zhC*i&B6&NMbPv}{VBM|tz51+`jAnZBdd#XeQP_4o50KT6tTWysjH3V4T9{;t%~*GF+@ARvd*Cxc1()Ih($1jrLr6O&Yw zd3qm}lORaX7Hno{_&t1xp@ktoIT@>RI}N>4||U zu75_a%c@k5Sg!^ZW^ivSMTzxtzbb(2FbSbt*_TGtbR~nH+F{5qM{=S*LRh#YR}Jm~ z^b8nr9FW6#Z*+@lKWR*z-9K<$OZvo3CBIXx>hyb-PGKdrq4$|qz!9b*x&}2TP@@uvXK6rxQ6+x{jv$S~G`#>62-R6KW~n6M0l89Ve5wJm}1S+HM{bxSOS~aD}r7@HJKiz~3UY z53i{Rz1nEg&;h89T?3@NRHL({LMFQScCf&0A-sRgeIMyZ7Z-;cQRiPF77scKP~hf3 zt9X!I@qrhOsL;#>O!|KvS%ZO-$=ALzCs~7-wgy=tr2dDRM4A3{L;wt=-(nx);zx()^AO@Q>%&<_5iTWK4J0|LNp-5f+%&0w5gzusi$<>ND29BV>g#^w<4kabtI6T4P@9yXs z7oC2=T>HfL6V!wvBoTpqe>Q z$|ZvW`3l{Ho_Ks=hE=Z4ZG3>D5EjWx(o44-cX&o%_fc~)W|CJOLK9qfw~du>-|hT= zorGS!33fEFyHG#*H& z1@sKt%)oB6pnC}3qy6af0kl%c-E1e@6<}f7dh)HaA$3e~KO-V(etTXj(@h6}HYJ~N zV9DmPCL)T3V5od9Yc>%s%bk|a`}a3O$%!N<{&7&xYsuj+zs|q5`;ddG7YaT4K|tgm z2ZY>+C~Dav9fW@zfLpN)liyGbFM>ov7CjgNINHrI8AqsK2<4>0fhj)@HUUYP22fHR z^_b1`htF&R%7v~9>MN0emdB1dG14)`2l@mD<^C!K#ZOQW2-$*8WD{Ep1VY68IwqMXK2k}CI63Fad@W?+xh)}DNNk?<^KvU_@7Zb{`YVC z6{-2401HAqg^M{L0I_)fc$M>kG`n|lJx+N33DF3_PnfYtbwVok=U!bnzY>yW0H=C?eG5vXyU?lh&Uw3g z$wBJga=%MR?1wfA+dS433#`^L>({$~K6d3P{>D3yNJ{&o&fmDIU-~;77h7%60sK_?qux^2KWwN(alYwRIjrj_Fz>M6ue=Krysij zAsUWUXGrMbABQw_vrFk(g(I8AAiD&|cU=QA#TLqCW287i@=mC-)u0cKM@8Y%SkuKv z`MbkpIV~wiuc%K|6YC=+3!&giM+ZpAATNubBV4AE$!dh2OB*QBiWlmIC;EyD>5Z!V z8Bo`O&vM`zD#9tbAKv(BwVPknSf1j!I>Dj%>>-7|@nZ^-9kva~X@MjFrDMr{2IGKG z(G3_{$H)8S1ZdihL&5dPx#7GA)q`~$BrgK6DLQ%x&(J_&W?H7=kCbm(uB*dHVuo6~ z|A=$<09>qsU_i0`@fB>jCXq7aKnrNarx=n?{oQGN1}Jbk?emd95h{bk-UWyN#q@K< zyBT^vAXP@Y&jbO7D#GO#>{o2JAoL|+_?(ko_69p zE6+&RH6v=9MoFRVjRiSvcGYE6=Kx&Kzp(c7+G=NmYXY)0e;c4oj5{;+xPqY?LSOeU z8ovHY!Tsm~H)oKz>WEo!Xz2Iw@Ng+jrrl2!p-+uN0#45xIE-xuYe)wz(eunc z)N1!%{6?o~sG1nN*MipF;wGHIV!Cn1_~b40B9Ze62+tw+Vn* zwL9$U1YXm;36>>YicD0kx4<@lz8B=QIH>%kw*MAEA3;a^8cKph=uBus&k%`I$dDvr zdhZ*cwR6g>?2H4&&BQCJ2_G3Pueyei}Gj9c0pq_38Ex-zWyJmws)?F;K+Ry zbh0xS${zh2y1yP>AXKcWiNif$KO`TVd@)q$Z|U_E@0XOCij-dy05RDQAI)`KGKR7y zDLtKiCT4d`XP-su?T4rbP=Oywr2+2x6bf*v$;s_tEI@Cm07?JJh-YIV)&-`5V9yAw z3Hdj|ASf*Y46Yzb1eAxkFfhnQb-@S8YKZy76+Qk0zehN?Qj31~si@An0f7W{FcC3~ zWK~dM53>8mLMtDNfmA>W6-2jc6ab2$#v9@lEXk3s8-qbQ_lv0G0*xRE)OZ3!2?aH! zy`L!p<6vtDOMm_2$#7FsGqnpxD!%(r)@ur~(GcJNm==JLj*p)|7543)ByxWZN4iodgs_6g!M~cDxpSe*0!;o?rYEh?Tpn`Cqv2BCI2h3&s*gCMeZbpz} zceIv}_)I{n!Eg!A!R&l-z_rf6RN8z#KyKKRXGtmQNB}>u8S;}c9Al z*Ka}V?S?-b6%g{K5ye3@pEv_t;P;xpv9>G%s_G*sdib|O_n}*_&u!ZU#af335J4%G zdywVcEddG=f#6{C@=E&r|3wYdUUAN1D$jJbuee)JtsW3vvC~S<-ICoxNUCrYWP;Ue zW$Y^r9`n2O+keT%k#j7u`(=3~sxWIk{`JBU^wf)ROT#y8IhWQV0RU-0Q^m2*8VT2- zXgsIR^>>5+y#2mAH)zSUyx}NGLcG&VPriQ~ji@7%6ZpqTJ|i*$J!Law=1W+_(%Ss~ zOgsrJN86`Lnp9XQ*}+QR4nVWC-J^evuTlE~58Esp>_K}Da8w;mVq|Uuq8OjzMx;Lw zTLGI+Kq$8W#Ik`3-URwwJ120E$Q#h0=itS^xBBS!U0#m=WTYdJ{%<{0wKJLjGh@*IiEAngN4(rA`Wz?O&{+he{xLQo z$vBgi*4&{Z7jD6BJ9f<8=;l>mNW(bqU*(=)W}*BSvHjPx_ykc$1Bn7G$uHh&y$RtB zJP7(BnwI2$f!hG;#I98-xt_4+dLX^>=&!|IKi_h~KMs@!GC)AZ=k&We0i^n>MP*RB z?b1D{Y2lqgbtxbCdN}kZNU?P4wD-T5@xMfQ7!}lOx;@gbwA7(h_f6{+{p}LxeAK}J zHaQtcc1v<58=&AQLGcWUT>;f2ocfBo%$bj|xhp?!-UKTW3!x7IE`SuoIYR|o&KUD27)zU>|ixA4iJ!nof!{vTWXBN^IA`!UWJ&?4`g2vs{X zv*+i5r2{uE0|#)0U1E0|^gMQ+f}s<W*dQfQ#JkwNi=2!8o+TN{E9J*X-W`|lT=-O3%6ocu}I_Dn-KeTK8QxBnBp zYrL6DfwNRE|AY2Dtj@0 zHeXT+C?Y-c0QOZcWvVBuWiG@*O^Z&9CAn>HMfTYP-Z6pFy$wXb`l|)%3B!!xrZFJT zPk~r0>1i4VGFOCqWu^*Jg)BZvcQ1H*bK$FTy*Lv+T7H+`PYCNXTzI1Rz_dges`mv2 z1p^kC2Uq{q*Ep3zDX5YyxZ=jxlXX+6PMyc_ZAz4*tbZWRLX@u|?6mdk0cq%ZAg%`0 z)xfn#51O3zGcwWx1m6y=0W+OhV9SA-Yn)kyyJw1hoHSlYeLfzQot|)=yU6RHPCl*2 zCEEY!px{5FMcAjFTPJ>(A!|bJT~aFI!-KzfmX~t^W46km>NgKR@>wb(_U6 z)W0c&+MJF#j~LFKBG3rkbT|^jx4wepL9b6Tp_U{%w9NPL`!RG308Wo3(T{^hyaNto z?VOVX{aq8FIczBD16pB6pv`B37qXxEfH+N%TH*SH zen0zb?5j9j7fnMHt&Sjg;>|4-GQjL>z}TvdwxXe_IkM@}sTVw+S;PJ&PfhQF5z`!u z&0W;>zz)f|5&fW&@Z9^~J?D=f)eSf_|6S(TF^Ri|*MP?1&og+U(@IT;GNn$l;=o_e zkGA=9p9%%q@4*DRd(G8H%4kSrQS2xqgAe|V{%|%Oy#7BvfmEAiBoL&@Z4>hnBmHMe zG>wft3+dgB2iY-40|)_+;YR2t?yvh?G$;i)H}m49K^i;2M#e%D`d{1#BjHTrnm0YS zy=CD%jB%BK0C#Zj-d9IZmj6k#a#?~GPWC$$=_~y6*MAQv8pYCqmSoi)2F(1wVG6puo|#|nd;TrLIz2>07e81~j9<4X6(>k8 zAg1o4`x{fgK3kVD*w1$V?9LkOOs)*3vAYKDh99zT{e8l}1%8ZtEATpp+(jT7H!RXc zj}PzrNxOSZ*U{fk*9Npv7TFn>Sj)4gFNS%Fi!eR0l5oJ%MumBNV6JbIgHqsdl-ALBtANN>~x_0sQzQ(@G37m%c z`rdH%T|{rs5RYL#I-Lx%5D@T%+WoliVV4176HP=1@#TcZ8y=Obr83R zOH2Onw>zN(neE5m&QpfIFK)Bmipx;mzljMf{1Of9z<##lto^;^s-*nE(28n;E;JuR zm$J#LuS2)A-WnYWfIFM{-Sk-We`?5aQ zL);h69lHqd50p7L|v-?LD@)r9m9yUM-yvf5#A>`13At`ToPWTXS!uSFyN#W$8sy9};Bh)YkIYH~Y&H<09NJn4nlH^P!sYKJP30j*(Olp5HfqR^$MQHPeOdWaEeAfapbB8rQMo-UudC?SjKq60Gd>hg|d2e~$)$lz*GtbE4O1IQ0MQ#htT6e_yD~ca8e)I>RdVph8{TZV)A(F@R&l<$n(2Xn@1FA>q)#3Ntex zhqV;hhmn^~U~rd(81QoLG=U0)N8i6;?p|m)aY=`&0fSM6+_JMPXTcZlFFzXM*^C>y zVpzpdB{3i3y0r(R25%qHe_w~;$m6&1m6tpF67U?ubX*`|e(%T1xuY1))4LORMI#a$m=D|UChvv(c#20vFFFWr z20VYkRA$Wp3(?`wJ`A1VKQ{NBzj<cFZ8V(FVL6!`y@d6;L_qiN={(Ujv#K}3# zaLuk+9sfHx^;8%f%)P=sVHi4YwjiEFq?>G8lg z!a$hir)7@V79?InH6%3G5C4j#JN2JDV~oZeHYn-gLtM;L*kbnEA0?oLp#}$5m-C@T zlmv%#!|$&Ggxe9Kpffe7+4Sj?GBEC%rk`H0gJ6aP)Mvm`{c=96#$Fh3iAjUbLBM4Zkw;i{XY6NFmUOly+Xe-2GV}-m9mz69*!UyiExb0w5Snda zqE0#NAV1NK?x$5FS={1 z#F*;N$qc!3rgRamjy()qs)7%3_y8*to{j!(tf-T$ujmG@_F< z{&7f$>1o{d@r~$B%Np zoXRQ8d7jOUeVE~?-{tWKj>JLTRkFc7(;SjW#m!d3-2I`a>nMK@9h(*l3FRsD{J*Qc z1*|6^^&s@pkZwI>L9+hPAXx$D*$4G&iW96qe^eR6b_F^Xl2SuT#GuB{#*mw9$0R z=rbn@;S{3|#4CpwQRq`Y0C$B2Y)(zFT2s&H`FF3?|LNRABPo{^s7lRt^u(TT*C+_| z5CE95jVBJ0zyNlW61*Y;Zh1vY(B+J3kZN!6L0nAC{;=xx4_Wm{7PFTF+U42bm6{G{BKV#u&2ET*eZQ#Xa6`RXy&z8C98SP3^HQ7u*`r4 z?)eTXY_y(dwPvLJwszHj&Igh;R>nMmEe4WC z@)2R%_JJ_qTIU07nyY+C&Y`YN^#2MVd4BwIg4q;#x$J3HNy0jA5!?K|<;oS1fmW-R z;##{{;HX9GkF)mJd;alq@eSg>g{Qt>>VT|4M}fmNPfMq!|HMwxM9N}m-QJ1cCx%&F zFr+B9N?A`!i?1VGPShoNeGR}BB$L%T!p5{keDMliQG{!Q`+R8o2S2+W$>Ixx4^H$+LSb1OSe z52tM@y|(Qujvr}I5@$~|&HB4si)T1|>^4!VEU6$A0h}mj_ed|AuWsykeYgyJ%9ZWz zS^Gm}XR|TxaW`-Y4F1pL!UCpEcP zC`*U-VtPUZRc)7+=I~GCk>!U!iPl@JE}m%-rP8alUwIVB+`dk-x=iI$M|Z zx-% zx~g3G{^a9_+fB=P?N)r zWSZ;wG4Au~moH%(x$k;=H;b;^DEC-*as!X49?zn4giLTBxr#j5g%E8qdKvQ(BFUP^ z00}Xi(x0Lq`WJc_bcrx7U0$sekCWq25T_B>UTg9#DlUbm5~O||$nuE&^417|9`OMM z4%(h@QB7PHwjP1P`0|>a{Mzi$*O9@zQSw*dcgf z?y;ygR4NnEc%I+VG&+_KIO+b6mp-wRnQmai71o3P=}R zl*Ma4bUBno>u%_gptFQ`T(Q%0De6!ZfD>WdnGbhg+|L$!n%AWLUsqpxhFA6tKJ*8m zS-reC_BcVlgp_)q)7)HFu!{eJ_E6v3Z`u9Up<5RZVboXx>MJe1jqdpLmMg4jTdO-d zmAn&^J3;T_CPQ%>;@v)A|DfnO2)Q&WyWP{EFet<*lr?=b@(p@Aak4-qL4KaE`fD^p zZ+W-c17SjI$g4^yKsiCsfFR$s#>|ZnfZDIUrO`Vl3{}q(E}NdC&riEIuoM)n7f#>7 z7Dxl3^Zss$cQ7HC>>G%SAtGYjpC^0H3n`n**U;yluI6gVd`CaMbz}~>$HRcMSLI6$ zUnYd`xV6dF%t1$;&)TbBfb@QFu{Wy8=J`j#N=)c2e!Q#3lcIs z^wkR)IL)E674-1YmSxemSj+38!isx+x=zM9) zNLf)TB;+iiR(*Wh0YyA2T^uPbP5s&)TG)}OV7f0W{c;^zNA`g$wo5Zolke z{~2MrEtmY&#O{wOZ2k(BFzWX)Kp+RC#B z7ie~Z#VFsx_{(!o&1RDmo3}IW1k@K?ekorwuZv62yL)n9P}reLm=7J5d3uyPc|xSG zoM3{U-~oSmG922GNT%OUApyw0=!q!jYf(~zuy^Ju-ZI$zy3nzg)(t`J+L{H!_&m9% zRw}PYb-5v9@EeXB^oK3pdCHQA$%k^SB+&5!4W0gJD|^z8gBR$G6IwsXlHtPK<>lz| z)@PMyh28#0^)N^ZCVyS9{KUl;Ky`y#)NtGb8^r+G#02|xvEZcM=8d%y$vXoxRIBob zE_E_j%GapL7Hn9Jd-24faG|hBd2V6*3Y*~_W?fv^BdQSBl0ELS>M)=JkIF=9M3SWu`%o#n{h)D~mB#M(YVOqjmDv zuIzIyoSu7rXj+HK@HO|X^Y){UQmYr~t_teoZiRi3ugO!xtvotuQ6hgCZu3I&4BcgP zn^F0iqX8uv+-%)}x>`I6f^ESG3Cj%-M<}4ec81-8x6cgTuXeR(d3H!|umAICh8WnW z!7r~Lhlq;cupzG!)x-%NdEX5_@afzagZcggJb-yRPAQu zpqk?PR~ADGyj7RdrE_|Y_N4s-BFg!lc4vnNA5w9sa&NJuIps00_a+}@3_Nt>#8dn$ z&*ag;OKxLqqcgu4iP#ioXm@Jx@x>nr3c6!#fk!CbxUbdGPEc%UfPfGk!!Q{`$2C4O}d_ zlV^yb<8V3w#8YLQ3B+uJj!J>@tV*qidA8C^gf^i`5~AEMe;DUO$*?)Qoj}{sdSj(` z)J+Shr(r-;F$2TSA~s1j3w7g_lOHa^={kC8&%3`u@Q_~g=BIwKYT)gh7`I-*d-Y^T zqoQ0zOwM$MGr|lH>o)cZdY!UAW>g)xD9vrn#q{0J`33(0OYGH^-`g9B({r0E#F`rS zAC*7Xt^9gj=q)`0DjcJO5bvhv27N0v@pPVgxCE8vKXc8*w1EjC_mR8F1V+V|h!xms za&bwB-M`vB$lnJT=RVipY3_iOK%@M7Pe7vF{L4d5NmQ>`9%{Z@l&a>L0i4Gh2ELj3 zLZjkG0R*A>i~EmxF^{SS(sGRI2Jnm&T{=U6H-s2v6hi?h;P6E5u;or*myX3LMz(;7vc ztNe3d*-n~jG3xV$-Daf2%IAIJQ#WB4)`>pXtsg{!_K_^f8?kR=x3IO3X zv4E#|b39j?-?IVvyehkteT;gzkv`LvDGC@hn6+`-KJ3FUtF6~cH`5lUb5WaH>g89h zu!r0*j%3HUQ{k_es=gBz6Iw&@_wC8ZGA&+`1@}4g{8&~nXtw<6(Uu(*%}^a8X+O&O zbX>BA-i)|iKJU;Y7AX~OwsVwmH5|d|`4zolB*GFunlETM=sDV1m+DRe?AtHZ*xco| z-M#!L++u)L#y|8FfmiQBFGSK4 zuT=wJT#Sx4nqG}Fz!7!wTlNIYL%`lHxwDj|GDlq|LDU;jek0)kxGht7fD5pB{gLQy$H(>(~Zy+Fm>Ply%oraw!05^biX2GkQ(e=c*YdD!lo} zzBEg_0_H~Fz9*5pa8+GoO1_5kDIUVZ=a5HYe9ANVaXpSafrlZVkqaFD@-*xeT!h49AX2)(jlPt?8;XW~v?bO|%j!LEzz?5rust_n5&Er~Xr< z%BL6^AM8|rJ2z!+X|D5rY2^J*b~NG1EI~eb?@LA7vevcZguD0oUs+dn1M~1oM(}|8 zy)&h~DS@ZJr0yr-bL?TKU8UKp5>0eP5c3ntKzScxvn3++%5kXOJ5!j z1^)lP`>C{*QmG`NLkL5to~6)xs0q=bl9 zMHuoJH~Nt<2u;|hl+YIAvn^4$hEazk0h^QH))|t=`}XZls>(0BKz?TfR-j<;WWl!u zEx~WI>*jsuO50~&T|Mv>bpQO}B_>Q`^BpcvcHfAy~Wi4(~jj#CY6|_*!c4vjdSth#rLP3 zJ1hSiq2p_F?>yQ4U`n-uM0%gQu%6yyJ-uM3<4vW00}F~`w-;r1E?t^58wSNp#jyvY z1<^HotAwj&2L{%-T5k%VRBMzh>@j5w%GQywx35M_C_PJA-8FI}CZ=*Vhfq^voAJDL zwm%5-z{B;Hp>d7dIZSFIz=J_Vt9&=#DG~UldIpgX=x9H^~iC7uD3{C%v2c-xo8@Vf4-CGq-LbSftg8W#>|U-u{|yb4xCP%haKs1x`!}B`{{IST)`$<-eaxo1m$-5^!3N|Tm=JvK zI8l`k&UND6TcO~jcxRhcHPjU5w#c`?*ch>6Z;YH!)sxRd!6;c*!ucSKD5#7Ec$+@r zua@Z?7+Wb1XIUpITa5XSSGItgP+EFZ#9U9c$I4>+ur9J8Z{##Hxv(W66ER1b>Aa;mC2$p}l(KwlKepr2a{yjTlEnW477;oW9|8QzGxA<&Y z>JQ(j74~2$S|hA+diB^qzasG657RKCfvaZ4GyUY{%fHAMYM}zn59u1}JP{Oq3r@RI zTn>2c@h86jg@K4W;FRj9V097h8Gjm;KhYo5BkBA7Z^{A9!FqWXcqHCholGj+sG0ue z&0!dbdp#zqoP5-)OS$YZRyV63KkSiLV3<@teVK7z*yB;B^52zk`>IB}x!mKiS?yA0 zU^l_@ShXt9*`}}YZUDy&njaQ3B{&%DaA1(Y(zrO{oZ$oeVW+}kQexD6_D1tQGteTV zVNf%l$MJ0X-SCB*vDPg!a3YwR&h)Y897A+)ed1%(2A-%-7IdvI-jCRSSr+YCFw0!t z;&(M9kDGoT%V6fd8qx8nc189`PuZ~#?n~-EG8@Z zL?VYHQO9zsdjKH&VKd?yc+w?mEd1WD#jzP#Za*2~`+(u&UgzJXJ@T>L3%xuaHq8^C z;@nyubZi`8anjK|MgYvt1!jdLfYCH{UWo*wgRazYl{%iF**=jM&1n_xb+`x{?tE32DUQbLq-1*7@;2OQoReTJ0`9ieBLd&0`r?OT z;O4Kf8P@;#E@8okgg^O&!4stT9!25`0^%iwh4O_@Lf)i?+gmf;+zDs0s<1PrFpndp zU(qhX#GzvRX>$Kc+gMmov0AaI1#3BUjs*0k>~Y%+~FBbW+1t zmvbi%JU42$w^rnYkl%tg3msZ=BtyH3H75jTCSs8y7I6iI1$Q#6OVTHbYHKyNFUjv3 zH8S$6n09P8Hp(;J8ZdkK?#FcCJ014x{N^-lVb0n#?J}^Dfy<+hqp_qC)% zgMPN3F#0`6?60FHI&;@74>-<&f+!elg_bkL;DD~}*N8`}F9|=isZmMwu)cIG1xbIP zpMumXdKT!^qqxdO|CFMS6U(y=%R? z!mO6(KhwyqZ|J#W=k(Bcc$x&&c=wkl;Sy<`5?H0rjinoQZ|eshzVy#KEIlr&W?Va` za^Bgc_IGdxshv9U<*J@!XTtwi+;r{P`3S}i`PLu7U?2h(Uw8PE_b`eFI=fhdxKMDe zV}f_~H*k{6wci{U35Eo)0@HdfpPnA_3fbv%4*H(tb1qP+`F(WNwCnibWVDFcysY(N z7oy?v(%bZW+B~rYNE>L)(PU)O!>e<#Y0HbkCO5%LY0Kx zE5v>IG%>u>W;(*BT&NiPzxeujn5Zk3!l3ndAxUSF=lnCwb*}-wG2QE79S66s;u2%I z@WXz#6Oy1|e(5oGs zJV+AM?4x*wEFbRm@e$M;`b9|of>?X$`br<=uU}2)M<^uMxK_)y*Rpwn5}*F-->Y~@ zKQ13j!4nd#!=RV7X5~p?*3qmq{ILM57y?_uIG3R5fI(;CO2Cb#Kz;EVfK~OydFfB? z|Nd4=h0oGqdR0m|A2Xo4Y3az6P38?RSEe7?_wTMQfQwQt-~D}K84?1%r&&=;wb0z4FsrU!V9)LJcp=3#c zSCED4-dOeCgO*;@e1iB7;!cJp1J+)b{GnF+6JULcYWo`j#J1CM3~BHkbf9>K3frb^ zeqhQ8?+VBNwgVc4e}n&xh0nc56EqxKypKMG_^mdoN}XflTE)oe(Jr^o{bp4~_-RMC zQ!>bKwUYCyQjT~ItYu-axgrb`CtmXxy73s;r&9nY%@9Jb!Dl-Bg7~))8t$K$s5d?9 z4?RNagUH!IHcIS^?1e)n53$|t<_rx(Dzey-_Ov8>xj&}carz<(LL?r zdQ2_FZSn{yTBT2AuB1=ePbh4g_izB>KP4kTPbbac2%uYn7nh2?GK5MJbkJ#K;z~n) zFGLK1RBqS`CSmrzU~pUwaxwYC%QdQpd(vH-Y=E>fnw7AdMUk(}-aSk_bZ94nXCz5LBBzOXJ! zKLsz{AY(B3?O&l`3g!&OJn%$hZGWjJ%0hRjG-&rZnpJjnNVzD_9+L zo`$HpNlvnEn&POY`lIS}bI&z@?2>pp9)Kdhzdq!&B=+9m56zO3GUJQ071SJNiBHvo zd^i%}Il0E4uJW&6mqccZPp?YHe8EEo%n*1~rhuLN)I6PFEGN zd%wYMZHwYK#U`zK@1xJ(;sW!GTdO7sf3we}m3}La+P&xf)|k*5G04i~F!pc;1dZcw zPp+N*5~n>Dz6V$@qU0`ACjk4;r5-!R`ZYZ`FWu%fY?tncMxU=j8Qz|45NYkO!7^Gz zl#F$zC#$;>Kg}Pn1R-`x+K$G->kDa~IXi?BAQgO<`J*-}t*h&?tZ_^{{nU5J5a6wC zW&3BuUS@bY4O#ElKF-`1=epj!kMis8oAzOh&<5<|pT+fMzU!PNq`{n9??7Pnf!}7rP*}|I)3#v^+e?Fc+<|I2RcPC*QlyMH zH^T@ZWbul4%K(Z+&*sXoQDoDRzl2E&LcmGRhsuO3J@ftd4PjIp0!jzsgSi~sJ~c0B zj+Gm5)zFuEpX{T2V~-I!NT`j~QhLPyU10t$W!=428sGVNk4J3NMhCBwq2P!X}?Im)K``;e!&0qNiTa72sd|79dHVahx`clgL4UzcFgdk zXD9=4ddxU(vCg<|{#-%rA8<4eB{X%z&o-*od0Yyo!0LDkKJ@z0gbS>_UpkkU#KcuJr zyx6h0f=(MJ4tJ804N4Pp8&zkeK04zihJzB@c^!4>j<>*9;C&iA=8^1 zey79PV`jHT&ISR5egL-E9y}g57?o+5I0=&0WJ0y!K}9vF4PxRyVE^jYRN`%G&fo0I zs|rIte-=ph&0F+#6!y=>B**;P*G58}0US=qi)zIWnWwYwpHZ7$y|U(U-dR~OkNrFs zBJFkD$Pd8hnv$wj5%yuW8%tzgQDcoSK|}9@=Z|#QdLAYw!s$mg0eJHiXvr%td{Bn* zBf^z?gu%XJLNO8q`0)p>e6$yEIigF>R=ZyFcWd;A+NfzK@=&oVC#Wh5^Y5QC&HETh zEiv9?QuIA8fif(&U*crI`GZfYnG(W_mM^%t^Shroq0vqPk%V+0+yQw`A-k(j^(1A6 z4A3;f@1yk^vf$*9xJ7p12Id}~nl|n9(|r`N+ua_&UFVNRIY5kwi8v593sc{b6=z@G z+y-^KnxA{ocE;^P3LhFm4}JWN*W=JePA>AB&>Q z4YiIYiG4=2?jKPby-Br|K`vg~s)V}xr2V5q0ehOi(iQfLfe2qbK!02~;A|QoRr2P* zk;sH>xYEz*;|&DSPcl-D$yDi*uaG6ATp-}Fvg9jYf}+a!?^4s<0g!bi^l}MFYmdf) z8w6wT=%2Y_9@9a}!Cg7Y&w8Q8dR{M`lfI$I-iczTNbVmJYH`(Oy_Ed!+Wa0!>0l+g zoo?IUU2f96(w9}at95oZCu>`aS4{^ZJLpWN9~IH%|8{Mmg`z&4BN?`lPa-QW;$;r( zM09aBm@{E(5KD zC%L5^r072=#8~P3XbSSAG6-eY-*%IHYo8u1X?Gj)o{_LC3HKL@eXDu%ND6+weqt-6 zh8FAAoK9bzasp1LX^pvG)kTzZO{-?!x>6xkVE*m(u?)@H03m0j7g;=Dbp$sdeZtX@i6h&oYmXfa=GJ!#wLXqZ48& zXTgR52U=^Z;lGpLJYq*r!Rxk>NN!b8|0LA1EufB*E7Z^h`7AgJF0H$EeoDbiI@9!< zTv8Mu-0KGIN7v@x7T2t`&!fWswx8@sp#^ajb(9$5F=X@slZm*AP3t8#|3l8`;(Gjh&3&GEcP>w^X6oWGKjN1x1 zD+GA@K2@JZnkOM^^Am4_ci%70RTM$wc68;a!ng6P{%7lwygBUki(=}tz)kwj+99gL zWdT$dsk5uZrm~Z}_HH9|uNCI+)WE(MqQ z>^T6e^OO+{{zCTkmhj%q<{RI+0W*C@iy<->1Rsp^9F(DO&$|mC(Y*o{KoCWr(zGqk zu55O>25x>m%tn~S!9CzG0>%4OW}gKr*8d4_3{^HU9!)jdGc!h}FZHQ>RvI&IzmWj) zlM{U^dy3$~a|I7GS_nVIhOjT0R^>UMW&jKSnWtwBZYxUJze15^dv^0TZEnC4iidke z!`QPo&_cY!a1N#Yg*atG$xme--AWkkYPj|d^ZCM})?P;_jT-O8h^jR`a1yA^x^Q~1 z(kR%3urz!#O^wJZ&9ZmnZF<|GN>Sv3f=yQKdZ(S@l3n}M9`CP;3Rm;nK-(Hf=x#R*zwnrhy~$>-L`)fkE0U5#b? z6t4v>TXm#O8Gz)NfUCAJr`{u`;6-oe9kaI>WW^`h#o6JyLV33!cc;3pQw%8~9Q{~r zxqhl9@tvi$YuAaH()OGl9hp8#v8kU>tUFK$Q9Gjk(fads^YK3KB-@-xa)c+XO9e>U z$;tmw=;=BmSy@o{*G5^GO?pyIkiNn8*a@;xgmPy#h8=Kliuf~2zfL5KYQ~e&k6{>(u-B}2tt7;VD+gK z$e-O4yMoQk`pq+Co328?d;2-cP|0yvFU56ziA*sGOAXcXdP`!K5N0GKF7_=^3~3VZ zwxDkha*ZiFklD2EG*eJW@n{a^E!m&#qo9xLlEX33kmUd|wch;O|1Mv=IU3^JP;~q3 zyF0+hWhU`7J?*wQjs~2Eg>5Fi@L3}3^z8gJF|j7U+QyM}i&a@wgsNiw2c8dD-fii` z|1CZc^Pn{NH7OfI>A~nXi7v>q=euUA*A9QMsi73jKkQ0%!P-o0HO5JOPR8ql=5qR3 z;M@^BvcR#&fG)gv<=Il`M8fT133%OQb;BtAsSLG&6RdQ*q_D(byUEF@_C+X=^~I5g zNGr6oPBNF*A%0ImP`bkPAfK9A?nBaNcTP>WWwOVn7R!iJ-F}=AQ)l$CeFx1faGqDV zEC~si08{O`$t;SO_*2^gPFd$~CwdDLl;Nt|X^$T;fBevf1DJC^mh_s`qrDg=ah|uM zT~AEk8aw0p2SP^rQDe?;aN}qmUlSv<2|7^!HEkFSKfLN%Slq0$R+JD7YowD3`%x3@ zN1Iq3Fx-~(7kF@l(b9k&EpEPiC+L4UkCt`3zLX@o$|NkS*vd>o% zx~)WcZ1UQ_Qx7wh_{c@!5h6x+gnPht8X8`z0dS-s{UzoNeB*^QN&{u*=5%r z^ak)wZ^!1PU91X#mI6X-bx=?hpccp4{4X_cQsHl1s5Dd5CEIuO1!J+^_EfhUW#Y7b~khx14pNVc@kHRjK(fK z8ShwnA?M;cZse&f?JG3uoVBv`Xe`oqfkIBkI6URz_AR&nc0TpAMtuj;c|&|hQa0wH zZf(?!FF@ti+(%EnJWnlkyf|4#tF#DJK{Py2iq5n(-y8P5$M>k3D=f+ptox9P>%#Yy ziK>yfwPC}JB||1h&o4TO%(H*0YY57w8(-ICljg)+E02WPu9cyb zp|;PYPiW5R(iu-Re=`SB6x}D6ihY=$0M^>99Xmw5!tC|$ndV}!R&TYaKf7!$m)foG zK~IHd88@71KKuh$pjfvdh9a#!}uQcYQ`BSss(vX}mQ(=Gi~3y%0Dn zvi|8Yyh>*gDRvQfT~C3c|B2QxQEr@vY6eJLpfaJ8L_$+R)$;4^9LZR5c~(;shXtX* z#%r#nI^yW01Zf3=euq3oxqYxn0vxiXK)#~aODUNn{Dz)V0Togf?udQ`%zHNEqHZzi zH58B+*k>;!TUE&M!W`;O%`jSC6u0EV^ceaDs2Q!C(Qk|Xy!xsq|Fxsqg|hxVo$Px* zRtnvE=TKDgFgPTa_*jGUbZPjW?==>TE*S_oGuSiQ!IYd@z6t_t6?2?{5C%(qYU%dW0Md1<-or_2TYK& z9v@^KAJDiyS7fXgiex)O!U&=XBXBo0iSeXyQDH#q9r93Y{KS z7pD}Pm?i&&|0eB(K8Blj&0Dt)I9LBLKtb~+UowfCe zfyYJ%R7InXlA_CTf$0$4?DBBc6{Z+;?fI*Na(-trY1nva6Z}+HyubmN$=Bmc{>)=U z>+WKnKv^aNN29zJg^m;G-c-V1U!NoQ4`X9X%ou)}i zjf=>4|B_tSdz{Nm>OU7xlsoA+{fzV-4cY3LbWZbn59$PK?Ca1~dDq49l~LXBW1mH& z`pO3VTJy#KL?w(msDl{#^QUY=n)l!y%|7q0)HUiGn;pAz+nfEzovL@#fiyu79sK3< zzH;2pl^Keav%V1WN4-tWm;GqtVd!~ma{MT3 zwwkJ_=2An$QfveCK?`{Cf#ntxJK(?xC|$kgSMuT>2)`GG`-tJ90~(QDrstWZqu$_O z*m*MDVHYAEpP}yOc7-Xb{FdeQ%Kk(i>h(xa`xbYvN-m)v$7E(u51B(&I4cLgfn6I( zkb=|#fqj?M@2%LCCay6sberBa;(cWg)dAKCZCkLZkh6__@n!#A$geiNP%5uK9RIXQ z-Ml#BJ-XZ`<`Jv<>sPbFoFscZ9@SRnIjy+95A9U;a$ne86M)_NrenbEd9fXk zMBYHqkoUcQB;8$8;osP0FOb|XU(<4k-EZH<#~k~Aoq#TYopU@#{_jK>#o3ryayb_* zMy~Pci`bU%eFgm70GY2`1i+}THi~BZxj{lQ^yL>&fls(ega&Fjc9AOyYgrY8b7OJa zD00Msj%^wUVcN4sfeO%#^#*hU;nJ&Okt>nu^AZ|oN>AuilMS{CnpkIas<}``Z4_sw zZ%e&4iaVXRf2s;F(p80)`Pg5i2jr`u-7HHQSB=bYox$KDLC#t0K)I%64wQ~6qBvLu z1FI68kF!$=H$u)=n*q9y5l^YY={L)+p${ew^SdZ_05_Ff87=X6*AyD^l0v9XPjOY{ zrOY`e=6(>?JwM8(CLJ>GRjJad!5{<$pCAvJq%&Hq(ZkxY4F8PA3Fj;iZg;mfje*-+ zl_d|AMXRMpo+YGWKSTj^sh+_Nzj5nNkZ^$|C?q^Yv9eubm8{#!YlsvlMRS*rc<)6A zBdZLiLbT(}{>a6YqDThaBn3Yhax)DO3TRnjkD2%E8aqN#Fz-o!DXO#@o{iyBGo+OJ zC`2in`90`bpo`Xv6jj`dCpRV9NWMy+zb^wr6iI{<(44;MZ7W+fHq`rytx^Av0Q5)0 zTU6&h6-3LNgm!2>>8l<*-a9mZBdVMmM!<6lUEOdFrY zR*DAmrU|ltEq%1}qA=48^vu`}hjtU%dpHPQ{s2biP7=cq0G3>IyR*otJ!F=PxuZ)y zMN`&=u1v}az0n|~vRH5P6t)QUDFUK-%DvqUS=j`d2QDNwip5&iBA5 zbfvp)H$tf_Us^i8k^(C#yq1jj3X@RUOWbeV?x7c_ZJ!_H5uwg91iq@!B2VVSD@yqv zLdRc)+B^f{%GLJA=K{p+I1Z3*3oUkMJ^H*d)N;;s@gBSk|L}je0ZO!sGlrShE~t=K zYlUyCA~G7=y$_&+8@7w?{)ZiAPZkm@!%8TsFjHvK^LcXw=h1WNlDhqO-t(p9K&z^> z-!q~6(Sa~$UozF>DM?zkc!f$?|# z2{8+!HrHBY_0Iqk2A#%%Tat*Z7HgdxLDEaKszw!Uz4f9_1?9LIitEHXLR6qg+GusC)E&v4O3cdop{8GWvBG0EFo7#FcF!t=>wc z&aax94(UJWMQ3m3Vy1XC`=3Kj*VuL18l4X0AmA!KT1Wk%zPes_9Fk9CNFTY5Q3)CS z13=wv9uG->LYp4nTP=44Qw75q?4Nr;&%HJs))%g1&gE24hj&{_h2tIM&6CpC0uokb zi%^F0p&)@CkXK54cv&_H!P-7!Z%q zsLk|F> zv(*l;8<5X6`Q+$VE}3Jyuu5ge38dEo2lv1+@xu3&+ANlcwaKehys6_m0E=cG^w+V= z>`T&B0didSbbY-xB!iS#JfL|qUb@1*?bEXNX;`2C0__RaTPIh%1c3Cqv8UPNBb2u9 z5K$t4EqvVHmMdw*1%8oheK9tz7Wijq#^Ka-{h}v}`(PG9N4Rc~wmXcA% z@LB--UtkOBhEJp0XkwI$KX{iM`McVFnoP_n;UOzQRd$ zJzv3dlXU7;fhMuI16{qHZs{kav}RZ3Xml(MqZOdJ?^sS)YxhxSh|X_zqAZF^ZHj1y zgZmxp#M%t@qMg?AN3+iXkw%`i8j($IDb$t46mF}6U$&0M&*Yx?kE2@Zyoe19C z@&y%y5lbSJRlyqdtTL$!2(YsN3@DN-T?DtedpC4M(0^?HQ~W{tje&PA;WqB;?D8=Q zRdYY(Jycvcz65528V$aXY)G=mCq2;RdbJ1H!`p|odNh3~B5LNG<`ml8D=}<;ApD#Z z6H<6%Q>t})dWR9y70`qLo5c#q^P1SpyffzP2kkZMnwDK{oK3JR*XzJUCut@A^u4$D zreB?MT>V+Y9`xu@{3-DS!f$9e{uburbr{xt1SImi0_R)MKpy6UIOpEr0$*jCga#{I zY0wTRsk>Z|&uAgm7Vx;N#+C}Iznw*IHle?AA1AG^)U1F#<}-D(M_ayOtCs6`?eu3M zLH-a10e3~0{G30iI1cvy5a55|VvTb`RS_%!hgj1DzIMrwKW8zMH%8R_To&20J~NBJ zh-sR^Yo!^WPTGLCI55D_bcS@7;C`m7&)lWHP|_fdGJSIWggB|MC#9_^Y#w&RS|LK^ z-C*b!#>@UscSC#J9nysu0uAw>OmYdrI=a`D_~RptV&XTt%>+QPF;I@NX5me?iYy)j z>wQihAPUsdH7$NB>d{uJjLFtDgtS%M;o%o{kd&zjkh6x1)s->AeLc=Y&2s16_BYNS zVSzORmV)Ty^@L8^*sH?w^s`c>n)bUo`a6piOxY8d{Mu+I=_T;rMm3^Cw=;+8J2DLsG`t1~XSKbJu~?gw709}N{_*G61ESyXnC(a}{cA86lShUuP1 z;9Xshk`$n54ECj|*oR=6Li47J*7Vt3@ViplC8wLHthq4&kI*6Z#;}d}uA@$zhe~QP zFjqo`Qq`bzIf`0q5q-P2>|w|xbd$_$TDMptO?!!1t+g$aXZlo<0n7+pC-9cAtR z2{p|5T|`F9)pR5sKn@}kp=Ay-IowXfm;wxyaM|&d!*a;noQzKWwytLvIi6MdleheW zdKOefuN~hkp>{n}0cf*ExGXSb^ZL@|Tte1ROGLD5%9m;n*Vq2=-Ybm6c54=oPF&2z zSo#gZQD@+u$GD36t}WPrZek++X}kN`uXkFzPs2_01yWWjqDLR}4%vWL)XpXT;ZV8L z5#1*9JezR)V>>Ir@m??GQ}85Ej?a^N;7u+{BiEo^a()XLNjq@XMf74{EkrZ(N$u^; zwVrj4%_CwEg*Td>rq4S6mf}Jl~X5IikV%Q{|G& zjP!Er9f#=rcrrOu397C;&gqp*fLqhpPXUT{hU$n~v%SS1S9&2*g`EBd4K%ctX~s>q zQ*_9!INtaR2EyX!#tS8b`KHk=zb4U(x?;Myms5GN1D1B>db3m$unH)O;>lw8=1jCJ zFi^Fn1$xHi#rB!fH$BiFE@A8TJO32zqn!UfvD${@D+gUYDzpPOkmk?#k2>bTW;=Wn zSAy%K9Z#zrClvW}&lI7^%iZx3AtatRRB^gxcJF2-*m(-l&j58zq)L9BfGY<{qm|E8 zJ2;aEz0i3{*@T45z^SKa>AMjGmk7Ln4E_SgG2hr*SL^`r$_kw%-#%7bfdaNJN(3lx zf1W?B6sHK#<6IeZ9y8zJ8RrV52nUovby3_eB+{_+Xow7tH{U%kpD<*+z12+=xow%5 z9dindrp83Z{%GyK8bCiCbK)Gxn&2syAnU3u-rTvqvXdaAnLY^vP!k6lt7~SQQHB8r z)UTzgTn}E*ooNwzp=1x#oeo4NJb8bW@S>DDsD~IWKI;3o?|dc!!4L@Ca|N=BBMHtq zP*n_76#BM_u91(HD7gS?n{9R6Dn;Kl?C3r;bdF+|Wr5xF6(U}NW}bKlc%a%{fkEwSR;NhPR$@S=;T6C@K>EgTd>(ex2_YTc=))x>?!DgdFWQV=q^iUZ(q zJn*K`)$1SJe!%cxiUS|{Pf@ZvhXElQqh+5eq6KuAfsSckx;y6jrlx!?JnB}hcpjYe zBHn|j?1jlaE@dk z>1@l=6T($CstCqTgyf?Oys#=Pa0@@0js+~Vb}b&0>QkA~IdJWZyPo49Y^VSN(2{1)(EsexNB<@+eJH}o|5$~X;|8K-;YQZTMH*S-w*ePzip7{p)F z5>4j(f^@w|e-5O>m?1E=>wXK8kuxr!Hzn9|US;opWuw0bEdWvOa_*#aR!!ZP{|c6p z4ZHY`$kY)p>`=Kt%Iz-ZV-b?K6mrakPTR{xJ z?#Z|%nrn(A%vRy58O!;1CILBvW*N|F$bmd3^hj9Ks{gwaecl_s@MP&Gl}>60X@sGb z!9T3E;&8k*g`OF0t=%nFW%t-zokfcfyitfv?2apK5qqwkIOz% z>{LbsFw8b4m0lzfEI~O8El%WWE9?5mY>nE;tIV(w##U@0AF-m~tqp{9=vx)19MQFV z&`x&q!xb#`!r#4nvvXWQg(HMU@1g8MbfUnAY0b|oD}1n}~le zr65!T;|$k?q`6&PQ#n=Hr=oL8U=O-2u5Np0Tt;(^P;Z!f<3>C!f^E2Ng2pIuz zTfcr(Y_|pLxIXGsW`wU=tv9(b`;%>YVz#uB8 zoX3ud^--{G59(H(tGh@EIpy8n9AxVy+|LG%fg#>fX&&?s{exGr5qoWGNywxbQ_qTY zdnkzC4Py_(^mS1q?H=`|DKD`9+x><{pYA=4*gn8)RJiVLoiOU~d2uRtPQUt@@^wfE zd7QzJFl>aUC@>f)Yq~YgAROa7Y?{u$P*Q%&3GF{WvUUY32;%`e%`h?3i;NZ%ZFSyu zf!TVCPPP7-hiD?TEFqjaXPx&f@R-6Y?VqQ3fuCQkF)u(OqOR7aJeAqQa{Ir&B(os@ z_Hx$oi#Ne0c|q++0PwE4lVE?T(c($J!o@TLl=Guax$}kR@t9m2Lh94J52w@NIibsN z5`U=rGXsLVvD?LVEbaH-{SEg<9OfbuZR5GL`3+v&p_S(FlFh0fg%iP%4hr*p2+mAr= zPH8FUC$yR2dmJdR1&$U@_={5gX&nmlQ@af{y>@epr9isp$$41yEBg^Gt;Y{|2)v&5Cfz7XH(Ib-+_6 zpCI|Jzq@I6r@VkWId$WI;rOqz{;Hax^&mf)Y1iT9ue_5~2kjN-VUjNStsmVz7vr=J zI!T2)02CK8D>9%-0_=c&36>1t1N3*2iHuR)0gcbLv`d_1Z())kq`_e~B)jNH5w05K zyL^0Xu!Yb;ZZIsRhA(W0SA)WUi>v7CJ!Kmjw6Q2+|H&G^6Y72|+ve2dkNfk4^{0NY zR9n`gAI2~H}#W3ah|#BA=zE-sTv5H{%ydx;`nj%->G5!mn36h>VA zIT1^^A!!u5J&Ok*vw1nfV)7V(>3tOU-m)W%t7Nm%w4vq@i-K$nRD?A&@7ewFq-TNf zFvrG*`^-u#k5;uCymGAkQ*M&YEvJowrYaOs)u8Qa%4G%~glZAnoreW+ z5_d5-Eyuk?UuSD`**A&u2W+p%gs(&wFVx^D$;Q37vV9VE$egnftIgMh1&QZ6p=*nM zL?b!F`W>YECk^dERbigdFW7L)OBHW*2SWc&g>xJjzVQ{}sPy?AV;gDi6CbqsrihL5;obKmE!X_rga`O@THi^^&}0 zP&gQ42&x>4m9h=Us9FN(S}?frBEn^6GT0F=C_QGgxd*Hv*rSHInCiV8v$37>tL}PXMKn)* zfOb0PcZb9AM+Cv&%IXpUW$_aF*3U`|Y`ci>SvDxxq2~ITo>X@9vS~QnssvZ7E4hR; z_L%=F!Cr?uc>qabmC{73-Q9|qw#oYy@*W_Fd&PEP%d3mZ_Ib;Ummb#ZT}rr}p7iYA z;hYaD2n!;lv2KMolaO6k@Ry5)H@&cZ3-cUKZ8|JmJlb!M)is;ct7LrtBZ zkG+H%z=uLOlwn=1xD=2SL3^t_)F3vg!;i2F?vA_!NF6IN73yZ2NY;nQeaPY#=&qGg zs!Yr3qJ&8+;D}!qy$@=NcaX-G?*D`|&M^cpgPkFs=b_018p5NVA24YpkWl)Gp2nj@ z8n&C*q*!d}&|u>*4oCQ9AcVYJqcv(FX20nqLPPih4YzVH=+=@?jJx`by*7Pe2&C-WPuf%f?j4@cX!Cq(Pr2h}!I$#wIntUh) zL8NPCP20Kz5_UX(9I!qR8HY64g${LvAUIxQ(|bTl?ANOjt@o^7A=BT_Cu0AwL|qr^ zz=?$=u@zN7NOs-=;}`d=D*%-SD;zCROO&&n7zB5Zs)pTrcbIsoXFr~;2fRYF$ zt~Gsfrc14FJG~n6LXpvA0L&c?+d6oOMMDY|m0B)-MN`3v0wn&Ys-1d>HsJw zs{wYgdZ2P$CUUadHtdM-;wQ$|UiUK+@+LYNTidZ=D507^KQt+fdZ2qLvzH1bh4#YG zA%JU|pG0b-&K3^CY@4#KaSm4TIF>32_92~rnfK29nfK&|VxbWyieANtD6z}&XZjCsNuXDF>-R2R*u&*xDKkzDF^iS|H zQsLO^U;ReD>6OQC1kaSzLhpT)~WppxZYXTbtdhg->#Lk-B(p$mbe`P9%$wN1q<`dty z3;{iC<+X3S_yFVO3lADL4NHqNX8!gf2}N$&st6JKi!VQ{jj|S}8c*+2D~}?gk779s zC~@oBJGHCk)0l=LwX^IAHHbj|dNCdLH=fvjtg{qtp1S1X>SyAjrj_Q3LL`mxvr92> z1@C@Lg^yKg`7YcF8ZaC-D~nv5hGP%mgC=B{1ioHBM3_|i`V)#QU-AmugyaQoJ#uYW z9aeG#DG^_*s!N8O#n>tE5_uUZO{<{R*1ZmphpJOf5Z%T|&cy{jdcF$*&78SK9c|tr z#xYQuU@<(`&m>_3erajib=> zLrdXwU*#ZQmZmvp{sh=9=E3V;$~6t1zTFv;PA+^N6$Yvy7gQd?v0 zT!X=ufOkXs(s$46&)4^@RYR=F9=&DBXrJgNb)wFcKCt@Wadhw5KJVto<4lEfz@=BY zyymU;c8Blk7QJV>_)8o^y^qcP{EhHZ{6&(Um}N(X}|wDQ)>@5Tt3O=T?ulLqcu&Wv`=KjUadwTb+ZcjxXb_l&LhsSfqKa$CDJk znGc24N<2~?MT@z5r*l*nU86=mo=Umq`F?8q!` zh#_;C_J%Z1Po2)^N2`$Myu0-I-{=hSxb;`qx$|Uc(H}P^pI2Db0Fj^%V5Ml@l>CbXAb7RKX+VhNEr3uaTL#1N3 z&%*NQLi;=K>EU55t@f7;LCh_(>B02n5g1Ytz1~Y9|Gw=1>lcHxr|kvo!Cj?A;Tg~# zw1CYWObnj~Y*g%W9}K<1(jJ9wmOe+jr=#%c?`%T(yI5oUea_ve(a*TWE;R~>1Dfm< zKtMD&|Fvaf9WI;dbLbu74Xm6e5@;|$2nglon&MJ3bcuQ2aiBEF`+|ddgi{+m3cVk> zkz=eE5w1Cx5vRy6+}C=$A7RV zhQr5vi&YRjJ|=bVPjIKa_z`{;rOItE7+@HG628&vJ$q+nDlLLoW%+x~f)8fPAGbpk zAUiM4LP5Z2{}v#81;PKG4wy7B_nxbE|Lzu&L-^Ywf_U#}N;oA9PB1K44& zq5p^(oml-+KH1*Kg_Xdt+rAiD%HESELUnWM?8F{L`J&UwoS)E+W)Q4xn6&-?3g^bJ ztl85K!eK{qbW3e4{j=rfE$1|xWX+CuH+Zh3|_DRZzh%lmb4`ODI>wE+TE&&w3*p?^mte~Lxg)472Oz)Pa>Ed54 z@%KZYKjJGq_XnKU4B1$3i$U`9(gA0*47~vap!`9Xi;=)np!eWa^J<@gXNKQQ@N~hT z&2Q+Aq!>cOsWJ_w$e|6DT1J7gp5et-!zee>}-HH8*H{TdTa8U{(idR6CoE&E)x zwF#gMYqG#rNx85OMyPQHJ_o?lz+KlnS-R-j=yx?l$9y*XB|u`}R;L39uCm@A0Tm96 zt|Cv2G`+JCjlrHWq3L0z8})~NdWcJl_7y{t?aTF}nd0tadysGc|90qCgw6g2C5Sz% zCQP_W2z4BNj3?R{n_~hVE3dPkb_%Y?Lm08xBxOD8G%MXVag&wS_T>)$5&>E%`+KUr zq4MP6KSdc7)HZnzJzt7HF3K57K&#E-%))y?c_k=RA9sm3Sy2m{>8b{)Xlf0l!qh#n z^KS9fpU7RYY((L3Y5(HvaOr63PM@sLs?N&bhvQ#6|3DuAid#W@>0?kxn(x54vpd4p ze&26RzxcL6L$<1m_NUBq*W&nA3i3yfuPrdM7lLRkhUmnyh|vXpoNqW&r6!v~K#QCK zOx5oJ0>9aChDP0xAxGv#djN+gVL!`TOxs zNj#wlj*ve!isbNu%3ID0AP93`fqgZYxX>L2B41N^@A zn*IOSn8aM|cGj4}XP`rwpFzNvq;oQ}M|SY=i`E_BhO8Lf9g&rZPqWDfkxYSqhTH`x z4@W-ZZcC>90J4D`z#kAeeQi{;Ul<5(_?6EDU=2ugWAxE7<(uhvGbF3uDdJJ`6|rz^ zZ2cR$euRDr)QvZ)*@*fGd9|~%!^NeuPz3FW@^%7nD+0If@2~Tt4mCyt-GrnUSq&UDhz!e%$Z0+R7AI$v7REU4_haaP%IAYu>5qQp z^B%__n7L68lQ+b)bWJPLz5_`psOL~Dxvf${00(PqO$oo|tj1K|w0b>1*weWoW32E` zbOp$D0MHtxa@pTB8E>}0yT^-ayf!uPh`EKuQh3gvu8H?UJ8y&WZPn5fMSkO_WiRm9 zE?GtZO^!f;R0zq}$?A=YB)^2Pzs@V{hO1I3=hn>mgmW)h>ilkcXp>$JlY+hekB8%3 zQh!Ik1Fi*S(K@1u0w!v~e&{tdgSeC-UyJ|6w(Ec*7>fI2^ELe*u{clQOdq>Z-xoyF zgYcQ70bOHPR*8?*i1~nbz$Kuopzp_Dg;@=ct=ioQd2HCm>GoP3Ov>3Mfbkv!MeS^g z0tIxyYG_|{F>xaUM7z+Gd@*_Jgd5o7Rk2)k4l5j_fAVkj$|nhrN9WyPv6?T+T&X?G z-7sRJmdx%X0?&U#U-yg&!8(9|VQ-pu??2)IEGvlKL~=MIDtk;+Ztc%s-3>pHS$GxA zK#Lq;mjR)o~sO+ywa2d!1;Dkx`H0T!I3 zBc=r}ZZVpEHjj@LY9hyf{6yAdD(E=Qy&dj=o>mYCoI_RmRrph{({c(;27xgSpv1Ty zDR61q1I6PU#%?yLbT@H?0`b7_v>kO44SH=7U2=dOQe-jD1P25Q*BSGD$Bxm;SOt0_ zYOy;8RC`a2A7#+%5ro z2SMfovg7xCPz*Clp&t2l{v$c?2Pu0@B%am2`Hd-#`X>R7Feu{*bCx#+)~|@_-XD4x zfQQ}rh3FR&&>G@$ARaJ_joC@Wy}*A#Hj&#Iz$n^B1#F8eb&HHRe0kWA1-l2cpiDUO zH30S&S4R%QfT*|`nD9B%gE~U29}0})s?u%Ui?B}Wt0>UQ(e;|j{FT4g+S7%7dV+D_ z@)onmZuh_vg@A0o*0w1Icw;+XA;yDyP9QG^GGGM_P!iuFv5rDp16nJ_wMIbcCbAjw z?J$GYNyK$4%Dh?vtpenbzlDieFGIf0+Z1KB+Zz@)qUzM}RbCJwu(+T`{nD@HAy%jjFKtMd_t?b;c!=(`Qy5oxLm{9B_st;13)4=~6t!tXG3rcb;olXa%1TFVN zLzd|SK%tp(TX^jD^R`S@fL7FQtm1n@tNlED^&0{fR4u>9S2PMuHV$+ zKqa8+HlN)Fl?H|^ukFzh>71!ZQ=>PC1U!Ye&71wLSacsmI;trlMsv$f%?zE$35)pE%htcM$Z6=C_6gNAE( zFAY$p^?)X#127wdaXD%BNj?v>ed~5x=+-Xyej}dk_ekr9aQTknyOLWZ=aOTtUj1-Y zfQ##j7L7~KO(#{G>m2I>U}m7ao13c5(1RaVgO&D;S4}Qxyrgdx`bl!<_H!AlBVxwC z#N{t}%X!!7u5b7nEJ}&VvgOs}3(A~a**bz4CfBIxz+mwk4Fn&Ea&NSQ%Yj_G62gjk z@1V^r86gN~gg+87d5-0|X@t`KN81wm19_0GI@H12SQY}9 z;aj-?yMS!)JN0@C`fbkKJl-TI(L>w_iu*o?DW#)o-}zcK{=EM>c;`FPGZy^x^OzSu z#rEkh?zS4`9k)9AD_u^ZXud(?J?k^K5E>R3tiOe<_G`0+uN%KjHhw854HI8Q#z85w z7hB6JlXrSQ27t~cX70#}O@siAzhrMU2u)?)I`z=o*l?g!KjK_t`g@y|9c zQI7PiE^iHlmG0}98vA-oVA3C1S_rqlBJ2W5tDh*mB4m-hco=zSZpxs+3!2$(*REq0cdH)E<-U z3;li3OoN^Rg5CRcZGid11WMdbs0j?6KUl9B`ze)%b$xotwXkdgw8>S%JsfLB z;6Dk;BouOpskX!v-MFQ(S5;Qlc#+yOe%ytc*x-y1H}_%<(#lN|U%Fgz4~>S34x0cQ7bsaNzHjza48?5`aJE1}Y} zI{W$*v9Yb#T^Hr>7sb7*7b>)1u&o0=@J3A&3_0`&n?9lFGa|?D`nqF+PY}8lEvx^4 zbD!nX52G|`^2#|{^v_r2^)UL23JuCOFEzDZh=XsVq690cyUJ1#m6NLrzw$MT>7U!Y z^uEqlRh9)|CNigwTr|M~1s`5uk57?bE!4kyY^;hIsSH&HJ_CnGb50`;=C04KD+{W* z-jQC^nPiT)tSW=U7n)`D<78`fOZBH6b}ctN8jj*46lIpM6&%tB#$VMrkiF3BFdP{> z$?3kt2Ih_sWM^-tZDY*th+;fcB#B8*+~+uh+cs89JTZ?Z>mL!;8^uQxLK#}mkGtsg^w81DeWxH|FM713y74(ayfc!UkM`bmW7&ponZiTn z^&1RN`H1R%(GEo;4mVn6pSp#abv$S}X@6@q{QEW&-Po+{8X8R#jAkb|zBxo41-G8$ z<(sZMJ4J%k6@bCwkOvN^i$X>{(ar|$i3Y>l3Sio#j}TN32K!rLXVjOw+?%eX@-3KH@El%L#K%=wU>G7>>`I_3J?FCFFsx5SxauVX+X?1qxZ_g0Qciq}W>*Tnq6VN30 ztfC1upyzbTo_)O{EGF`0_CFc&8CnRxTC9k~19Z@1ES83_4bG;I`l=AzB&#p3 z<5S{1)`5wWK30HC}N(>1w@tOtrPvdlkm3!ihMEdgTH){2@wfsls_&{ zp!DQG7ru=Pkp(Z=@^0#4wVQKqU!8>$93JAI@x7475Ap%1M!{C(zYOdU11k!55g?)| zPb)EzG8q*dOG4mfxFDORHagJ3CC{!|2fpo;32N91R1SHr_eK}V&(C)qQAO&(Q&Ccm ztqiC0a}hs6stQ9AbMl|Lxoz>z1mk4Kunu=(Et#{jvX&DTlV|sg9XH~XlN}p~*3m)y zwko)`ryFk0i@MO>zBR!NEcOqA+G9E*r?eJyc|Km^_f1UadI5t?kj$SF>l#}3d;m%A z<5dDS_Y-U^bIf-k2qHbp+Md0v94Cu)f*aVQKnUe?$890Pu^bk7ZqK2!t2 zn&9{vhO1PcEe57e4*OuAUIZ zV4&V7Q(iikeg{KxjYa)#c>Plzf!^qd*ZCt2VF=&)Vw$wWm9P0WCLI65sS#*&#aMbl zAo~HbfEM!RJQr5(BZylKgKlA4~Tt((zYI1eXR)9 z^>1C!&X%U}*h&aw)~DY=08@$olCG9>sO-(jpH^L;U3lH|)XTUd8r+l;9hM?1ECU6k zsa||XH#lTA>d0!hJ{?PpU+VnR_llmaRk=b9tHL)QqrxW83tFqV?%hfJ%#W<>>VxKy zJ8P~_=ONxkB!QqvviUD#7{Bh-g0Na*>UVCwvd@|Xrwd8X>gjv+d83=|PhTHimi48) zMT+!Az*3wD(?KZiVioTK8#QlD(MCfWF-dy;bcugzDQBMi^M|ir#1{MeFhgU_24-$l zn@o^#3q#6r^ah}nkGwEg&By7y-<~1fX5mJ3LehcLs9pb`zDj9epd0lh90Fn&_ldn4=ch~3dpq!HVt>au1|}nM5$pv-x^h@yVj6^<^$WW`0TW|`gn+zFMGb) z?WiMNfZduk9icfGl%``hLCNZS-*L>zeSI3LGK)t$1M+7j=UxJO{D;N0-o9!6PNz>I zn@**V z28g;;M@?#HpYwS2m^){pCUW`v5UtDj&4&20!xt@dZ-^|K*x0bJkZxIh#lfD{>SZZL@mifkQf}A{_6iOBm4rOeS8|En&5D8fK`~{EWw)frIfZaET+hZUypnC z={hYWF49u@p9Z<4y4+nOL(nUo#BtJh7_R~1UOKN4y3!QBELHj)0%>-=0wrudgh1?+ zaG$O?P?q|%U|k_Q+wYCqZA`jJz6TgEOZE2c>tyRAe++xSEe%{zgvDhcL~8*mSejG(b1j$T^g^Uk7DkQ!?)?hn4J#~iGI*k0U_7kl zPaBt&rEG4ln2@Io#OP9$*=Z$Z?aH~qG6u*Sbu2xBzA!vug>lr-+rfKQfOJ>!lT+R*-F-BVi@gsxtE&G0xlt-0d} zXr1m2*VfqOKnp-Q<^S8OymPB%Oi9=f`uwacy9{>VFRpKn813uh`&S?0)508s7+{Qf zqR8AIy|Fp=GozDj2r&#j6jfP4z65Z{)z~Qrjas~=g~iqhcYh&`H?ptaxVJuyS-D$! zU9)wC{Ds_DvsV+}j3`53i@Q)Kcv2nsz+h=X{CG7fhtJf>IE1J!U!oJ^OY}Ak9=;KU ztc=P+$c=FJ*Js~^KoINl59TmSv@?RavlHvmLdv|mWB zGWKI$=h)UgfcPcoq>85_Ucz9*zILPNvTh?($A}fX?!Kb|7kiBR5MMR|Y{hEvV0r4- zy%>PWmWQx+Q+G7OipsALHbMI<%i&iiHJyFY94qesB5Mqu_{)_0)B~rTYU!i}=MxCM zBoCa{+jYP~dOe}0AQogA>0Ru?YQ=Bt88LR6ilPZZnU<1H>4X}U)rE#@{Yu^*|P+ zBk9lC0zpuN3jFV@lRLh*xn3j0xK2vu>E}^2{6@P(r5}bSX*g6Zh7Q5u%O>z6at6H^ zOJ>EPSk(!Ns388&f1`wV13-qfGB6D6U&%JU)`IYn35W3q&vWKQTwoot`fqyfU;;Pl zJoW=}t%$c4ys#ykGb<^o`;NM!^A8(~-wKJw2p94+7V2_+3n$t*pDKWEUrGkRv1yQ$ z`2wT8nvP%vKv&!@gnt;F=cD(8D>X)apdt2E-Oyr8ajqgvx2xBuCNLk`ymA``@NJcR>wkojQ&MJ4sIK#eHRT?wh{2nK~BTQjxm5XG_Z30CENW$vk9Yt7@ z%|w+Lk)!RXIrbG6i~Z3M{PFNnQMp!~ABdQ!^=XY(?4Q;lx8P-FiQuYOwMD#a?GOZV zSpL}6&J9=Z>Eu5A;quSU^Ig{77hP0CE%yuh9Yruef&I29_F39mAB|>_xDc=3^wBcj z1hnNAW2UmU8ZNin-&y{9$OJhtK6c2SP2({j{5K_bVk}=7~3*Qr;a1 zB;y7|+O4zNGYRgy*}*YJa#lW69VnP;8d!mK-Iz{SYP8BJ!5jHr9&^(!hK?BTyyCp0 z0bbF{nB&EjQO_Ahi2oly5YtjDI~qRH5g%z_T~}g>Gv6cA5mFGpi5DGx+m*BL0w~@S zH!Qw=@!m7Ry%}f_25A>~MIfQ$S{J+Thgx?~fIvZ zYT`(}*x+|`m$;LW%{NHLBLE)!?!aD|&HHdR{|%SsPsT1umE+BB^huVw&wYwr=8RM~J`TZBGzSoHt__4OC!;t34GUZYkl;x22MKcm893c*r6z3a_mK8;8*k z6Yz4Tq;vk1BbtOXzwl%5SRe(rFz%o=Zu@MhIDBWUIX@4Rc2Zb`lsRoxec9VL(C55q zyo6uEU{)n77hCoG>QAf3-A1s%teu z8RhXa2}K4qtBY^)om*8;y|yyy<5Zk> zt%z?cwBvU$_zi35WMqn%pFKbz$0g|iiGj+jI7{YuFjLK-X2iktMLj^~>(k}F$$F{G zV()TNU&%8)+5*6FEi30qTu?i{4{8KzAJ(iQ5A}X;O=*z?qd&6i^cskA8u@&vtJJ7#@^x zV39?DdS4F0+!xS{wgmebj@8tK3+pyr$_I3ixk$N!+u0$h?hRnI5QX^d3GPFeMf^&n zQo*w=?D6T|wHFroNTh zF%q6%bY*{t+r#TdZ?qrEyeo3!nfv6deZOYOk*lJWRqh8Sh!?@pgC$AX{lie;w@b7vx|Xj*@i`tXmsm8_8yKw21tJX zyi2FaIeAkb8<#}#D4lmYP&hlQ6NEZNSR)Eb5B%0nDc}v{s3Fee&sYzp$@aE9(~Gfx zRJ9ImOh%Z0f#uV3tPRr9v*CkFg&X9=s+g073H*n)tXzbWe#Qt||C5p(hh1hVzXF31 zJOOu7Sbs>)D&WBZ!mLJRVE))eFd7CWx35z(OJY9Q)h0VucO@H*&b#@EFlOp56MuR# zPo#bf2m(CM(EL0-`i(9_vQUWaRji7k&k#H=sCRotZLPc8q@XhJpCO zU(OgQar@*mDG;f85@Sw|x7wHYRAjYPh~43A^W?7Y4@|)AM1C^XtXF;sjwQK5wQWB* zq{9l-e;s(9Nir?C$K>u`CO9_A3FZoY`eKjCu(^tt9h6=Q<^oEgt`;&GpBG5f;?g_4!$c;x+DnI=#nEOyC+NR>U%nJj+!TRt6GnFp&o_Ion|G}e z>}L6u-oCa@eiap57|TwK>{weLw1A~7S1GgOHgftgqrcs%PARFukdBMY$)27sTLv1BNqjCk3|VY`1G% z?>hd`uuWVdsYq{9!Co3-x&J67irJW8{PV(8F#o$Wlu2Q5_NKq(@H?r*u4=2D5{nNY zs;EH^Z$he-8@ihAT-B%w45WeVL) zb2rdk$ej5Z0*KIDbdVi8Fa+7}*wh{hWy?u!f?mO=P#iC*56_pcPrq~BP7oH{3HgpW za_~-RDR1GEd;MGd5o7-A0X)f15baLB7kmtDl^u&P0avf@G-Fv7xSuQSocSx%HZQ~+ zV59+3&fVhev!d_FikccBOC={N6eH&Bx`hssc+vdV+w(^w@2nCGV8yS}*1` zKhe(h*N7PdYA?e`9BJM6kLQ(>H=A;0>Z1-`wC%|8gIl9}|Q_BnVv0A;zyvKjv+3n69aE~1)tm*il|e|1qQ6q9BL5^lVnW3=*y7NW~tt!AgCt2n>-1x%M1d`@>>KrSfr_rPWfP-KsW7 zB4a@U0(|14AjyAapbN+)E`<@Rq?Kb4{93=9wFK zl_dnPc9?1nzpDb$9NqK1?C$MU6^P>-%O=uIn$+OT_SzUAZtK%~dq4SWj^*B@BNlsx zHww!Tk!quVWRIhs)uNwNBiY_K?f}C5q)_8-Rp2DjVZXGaMUydk94{-=lYl!+FL(@}W2#L2vq?-mm2C z(7mY*KQd77QJQrRysHlR^*( z^I*?+t1T8g=4Fm0UM`M5LmQYdJ<0ey3Nv6{Hgrz}nb-J(qFhoyy?RtF8&+7i&Sd2k z(~uksy-9kk0vqOe9dHM}EX1V>GUWB?!%p@>+852Nu=4OpZ-tijI{@f%%Gpi_P$wP4 z3WIwPEDrD5W4P_&JAK&0e$yZD`IA&?7*125;-v69N%^R-he1;DHH>or4J0FkZkbk* z9v6sw*!cKX(4`WY`BbqSJH7kM(NC)X^*Al4oGE|n7<+^s>ee)dPKQfl($2Q1_q@wR zA+t9is-u|V|5TKsWDPxdNIMazN8_O`oFG#a&CbfbQCM^3SS%x-m<{ewY`?U4EQ1!gCuLT7CgYf~h5I`V9dtV(J0`s>(FK`fyxv3Tust7^+fk3n*$Lfk? z>5ZP0_ZvS32XShDG_jRhJ+g#T;*)ZkulOn9VAfJ*L*_)h+T|GUm)Y@MCMdmtau`;8 zM+s(V*;mE@bPg!zV{MCTZ>_BSRj`!SR#x2b>cO7|e1^>{g}Cv$11`BBWTgR~e zWugMjjjldm_ng9s{9XBSyGESvgvpP6-EFp={=tKZJ%r0^gFAH0g4!2Oh!?q^7N0&2 zTxSKDa^amCFR|j2eUkl?rlD{j$Kpw~TRuOhOrWx$1*t?hYBTb)QdO=LHP1mGX+gQv;gU;3G$m8{740_U5!#3 z^AJJ60FClqcBC0K?_WFEQz5=ztH7hsx^Q$H0x-fsXwmEoiI!GYv+V4bj)nf1#jwXz3(MKG+FRx7#WQ6K2%adxNFJ`<+wd4ACaEDKMhloJ z5ML?uG6f^<&I1dU8IUlJAHG=Z=`l(xMx&j8#R$lFT>BQNc}gz0p%-GGm=R$fAKI=x zWn+~~3prGj5eFPf3&{Jit~e|I-~cS;e|K3{cVz<8hN9-|T-#IgEOHVcX{=Y|=hfnU zV*%Vt&sx95OFKaXWUUnxMU%$aD4l(y9fFzNe2Z1-L@lNaixVQB?5+SH2x=O;9$qen z-5dRQ_pw_?8ki8*l_WtO!>`^W1mlajDPhlQj!*qDW)Eh2{rj8G)VFm16E#OTi+v@j zKSGzE^v}RRI(j9@Zx~Acqp0Yaucj7<(nq9Pp9^yNE{}Q7$DMqm`TI~rF8#p*rv4l0 z^PFk1%r3#by}jr6#Xl9T+Ry&%)zJ%e^_7j@+q)NcA^FJre&t{ZDA@RMYh@*hvCu8j zX8F&6c?55ywdFl;n<#tBM;XNtW?a*flSfD1v69zmNs^bXdG7lUdAE};ugEU;S7ve3 z5EAopw;-n8vrjXhj2Tt*@W0AU_Pw9k|J-rj`umS=-F8xA=$zH_oH&H7rR~RzN_7Mk zRpLnwwLI$*clbM?T|M%Zr49b*oEE-md%^a0%GG;O)+&5qD;~afkjNK@a&%$gv$?Z( ze@&)8V0WQR?#-CSS_jOn6tToV;i1~skK>K0CkWO#aW~3xQ2la8hfz_bI`gkAJ9o|% z=*7Ey29JCGbl>xFtAZ&i=HZ;k1veg+Th3|m)l&Eew%_ypUmHbenwpwd#XP?=dWiv{ zmwJ&+O^Pa~UT$0B8 z7s7v|BzR~YY00PlYDXnVGj&*`Dr_(1yx&{t-5jxT+@FxHakl%h_~rhe0q@Ra*W@lq z$#DNqM@Px0{lk4{UY)#Hrx~YZ35WfZF8&E$rd&GpkENsbmOlSD9UAUhiM`S{(9|%} z=1=*@2bOp6w{nh{os#p(QP+d-Mc+5E8B1+#$)XoXc#igV)Vf74_xf#c`gxy1ENTQb`hm zX`yXQZqgzH{jPPYq`y80*gV{^GY!)bw8RdD&~;7r%eo zKra+SPKR-GfPHvkAnSaK#ijkRUh1rhWMzrQtw*LshKsIz49go>qm?tO zoSbJrTz>9kf4UcZ>7`Kwy~GugcSo*LNY-|R=7sKhybQ^jCocE zGrqn*1XaTs_xMA;7*&!4lF+`!zxFT@$=lUaVgzL=Q%d~B0i<&?o@7Eu2 zy);;3ZoYqCylJ|P3M2WAQax?tcO=qI-1eoRi-*t8NskI6wE}~rHM+dK+MTP@UKifE z#tT2UC!c<4q@80IL$^^Eh_NZ^7IsWdE(y0Un0h}kyFLyHcli%%90UFJH?i@E9Y`mEvEPxI?a7BeG(w8IF$PHbxz`mR5&{ny2(L=ZBr`*W{0`KAvN& zmG_ey@gv%0Q#v#p^0i%Cu^qvZ^Ff-(I8Z?;3=Q39|G0f7tIKvPF51|LrR+zCv21Cm zs67rz0%E_+eO#*Y`e~Z5eozquKJW8SBR?uR zrhTkc|Gnc;hhBd@agQF>0!!PLLR@_F8f4I6;xjX2JL$W+!5>d38se6hH)jcx8Ksln z=vrx{_=w-BmqnAzO(Fq?p7LGyW`!cIk$hdvjM?;|*wfuO z!-;$+DdtRRTi$4RhKJxLeP*d#4`(Rs#>w7oFhRD*^0m|a*xgKC9zs;6_%tU`1hxf- zyBi53$8~Y!_N|dR6D!!lfv+i)B(iel?eGJe4yos-vNAog>T@>kk!o?Lv>{GVmN=@Z7ph&k=dM?FjqU!t&!PO8 zLcF946g16O3I+D1&Ap0A@3w1PNfP!gxc=C43}Q<+KMS9oA~$o7 zP=M$3fiO2$7U))7cK{zzCvL9@BMBSRdDE`&DSe*kvS6I}a^rgWO@BYIvrx51)~n#+ zNJLCRjKUR7GjbpdRshad;5}IJRctN6XdLQ@+~sg*VurSskgaM-`qgR2e6qtuDz0e| zhBjNaTK+&G)6j5qwDR3%{Fbzk-lvJN?ZHWJiVPc@UdjUY2IA35Dsc~l6ytAmsk>*Z zVu-X-5dHfX36pQhY%3hUxz?qjAv^ zOQj@J`AVUi!&s}Ephx_Wmh)=M(cbggo$GS-yRU@6$YaXWg`}yjjm?x9Q;ZFDZ?-A$d~UPcTQta|z^y~2C?v@-}o zPhxS~ngadT>p`Od9YVK6Cv*dpGj(D}NcybsUcNGZa_BpSO08cWbnf(*Sa;BNeG#X! zlRs?P>8jmKJ1c%Er}{aJapEEGUHFx^f4*znd|<7)K(wz}`?OX*dYv$V6e)~p;ZBtC zf`U2oGhGBD)Zt}W@7>0F;(90=Lz&5|=IbkK=rzx9ysX{uxGHUh>X|Mgt6dX0d9p89 z-K9;(r}F4ABe5u*%T>RG^yKL6C^=mueT#F>6EYqibRr4MJGF#+?|o?umdbyZ>PfhI z43aBE%cCDHPX~tW_ZF%qCHwLOG|rxX%rN?U3e#nt4vrdXjE@ydoc;uQb-J03HmOOkU$tnulv$a1 zy<4wbvz%O@lhW`HZ=aPbX3 z1SU~Nf)b5P^@r~f(DBE^=*92ZzDP~NFSW#WkiJESxR1Mx?N3?osZT6oO-UVkCA>SGH~{96`!5}>=>jh z8`E21B)_`=;U`_i5Z4{s%yWprZBM7lM@dNhCw%BGB6lAhVQ@nfx|~}R!rV_AheZTU z`HXx-iIP#q_>mM3?{a13F<#{U`r2B1fM*&JD22ZZQ})MR>8G&O{qU$BE=78{(iPgh zV45+fplgeWuh!w`K_mkI&Lgh(f4G4+a7`2?Q~GpxTi<=9kC#ZfwOT8-d3I{FU{m_# zmU^8=*`Y9Ty^242>;VhtmZd}awdkhc>#rfm1^?d#Zv+QUU7Fm|3%X_}Mx9~OU#d^` zyD)_xipAW!ZW@18Gkg4W)%mKf-^xwOc*Uh{vqgc^~dCBBCwCI6sHcjY%0) zyTzn>45P(G5iia86BQ@z5ZgCQ$3BujS{ZnLy5W~PZwd+t#L$I#1zpT8`)lJYb-W1J zb_eI>FBSGFvS}rzy+gHtBc-hKHBrXn%>jj!&38E#4fWR|d5g5qPjD<9gso8MXE-fv)0BEhU?r zH9hUvO^<^}&WT0DQeRiQutBvM?)WEJ>WNCiJ<^VNqkW;3!3OywHE`T&HZI_0b7TU4 z+Km|3fCHT@%3W$(G4Af)FD7`|ef>{IwePsy-1CPfk2!QxudcI_++M2wd+}yfznWuP z*pm+|MpUe#O=9fovS+mx@@j7wq^NH;(ym?@+6iF#?Rj?6iK@^~H}dRxlORtuY%fiz zWf01NiWDJyGeGe6Lq5uRpDFm0gjVU~ZicoV)bl9e_SZ(a<6gWCxb0J*Q*t3iI%(J| zHa_08oz0^~+sK#qqz;3jjf)x*hK{#u*P<%zCLxFaGGPyL(w2IMu# zE0dQ;7HLZ9UM`I4Fm1j^OSjN3a)wb)qAhJTC)J<4=S)=NzPtXUvK@R*q7EmyK|zvc z$X}Z2+SkzspTW=GH68taUEiG)MahXaD~vE}($~_M&Xq<$$$Pd?!VxTnQ%^$dludtj!&_Ou6dTL$n{4IFYhmm2)EA(aw^6&{m8pk`!OrQ`U+O3w zEA9%4g|K{~HwYg?&Q};f6Cp(`v$>d8!|_=H0=0WDpoL)cMCQj}%~wJ4{N=v$CYWnX zZ}qjxy-E*VSnjo%=A~b_`_rVPpn3$UU+AaovqSZ25TwI)5XadtNkYELXVI>c)Lius zFS%_lLuW5CIn`!{B80xF=t%TudtRHFWJiqrOTIX_&pdCR?5x%(=^n(9)stHpGE1GT)#VcKc?-6a-!7vhD8td^)31128S;-xA1n1 zz}?rVLLL075`Fac$p2})b<52*2Ax) z>y=&CR}(3Cb5x&fuh)M*>E}k*o<5!wHPfTrC3c$^Y++$xI>pAM)pvwgu0Amf_6+Iu(H;0k)@|NC zD=y&kB>RN`_meV1OoF!<`r60N+) zqV`%;!*=ddZZG4$B}b9?1I$L5ws=W0gj7B0NAd;0QT2V$}hM{USHjY%Jj>qU(oKh@z z%8QbRC>d0TwWdRRJY)w|q1-};^^HSNOC*|2y3%cS@HcMHA2|mRD!y?h=_mvmiCc{B z#38uP=9$c`O#4yaN6d%i#@t%x$oQCb>B!#^oJ-dHmX~YsUj(%nxo9Hp{96!1R$eF6 z|1!MULF@Ieb1q&Mz_Y29qB@-Ih+Hp}7ngDD!cFqCd2)RQ_S*%A-2tv(s>6y1 zZl7J8CL;XE+xX{)F4!kZCkyI^WdZc%>LecHI3(+ql-0*f*5h^U-%ce#!k{W3uc)XX z)&l2V(!pN%qGgt#U)2!W4rQCQ9l6w%WFf95Zbc22#?yhOK~d(1-lC!4grgal;=mca zd+^BKAQTYZdh!SL)Ffyj^6~~gMUa}4IBvBv%@+Bc2(qIN-ufIZ7jwxX+3D#wwQp9p<$eb%E&;ux zba?C6$Ez&8P|JNs7EQX0d&A9$(Q2G)N^ah3ZK}=tqVrJO5&AI8T<<5H@i6g+P=>x} zW#a?Ksfq@wdg`sCrRCyPI2prEtHkIFSGzdk0qH#R&1$rDl5Di(tw9Pww?7z-m$|sRvIuc`Sq`k_U%kVxLE!cy zvEAZ=T=_=TQouk7tlIy^lMH4dg=i9I{sE~LaXfb7-yOjn2N%^;u~WIDVDy#DH|T#e z^=5lrKlGNcG8bzp$0fgnpi3<-J_)?wf8~%+r4fQAWB;XJXVKkx(p{%k9e?$(i=Ev} zKKrpYB8yP#N|+Dv1A<5PbcPxi?pg$VQFm(s{;#(4Sx${!?B44TbNQjx-rJ(BKr*r4F7EWJrLJ1%NJjuzyU z_COem%a1REKm55_Y982Rm*2oDG0rIP!nX&%y##{n-Bm6+SyzNJUc;RYSaw1v+u4)C zDwu(S<#DFENCPZ(+2|+?KF`g^@p$2}eO+%b8rWe*dfZS4q*F23zuHv9O-sH#*)su` zLDj&huz*uMlSy;P`7h;#b5A^ZV`TJ(p{uX2g?8YCJ;$=j9WvF1nT-B@&%dBZjAqXk z0#SNjpUp=&sw7q|=dH?0pSadpu18bDU==<-lQ|tm#Sb(v=ML@(uf?|=(Y)V({Af*< zbOCO4afgYnM6s>kPpA>~lin*o65ZlOjKa@OHvER1+Sw>xF7tglc!V3X4vBjR+^9wG z^GY>?sTE#6NG>-Coy6Qr&szSHXqFQ88cUC37?5R+OtZL2*rb*t;ZuFZA@a+~j0hdq z;)9P+<|!WBAU$-ZW`aQ6E|vqgAxf)O$`%N<)q(LJvgXA{?`cm0Q}Dx?pjGE#k|e)y z;G#>nDP5&HS9tu%E?T6_H?TGMO~|s|E3J&wg?|Y`^PM!JTduNiPqQ0pEo`vczuss) zvhOpeZ|Z}7PjJ|g!2zGvSl=tU{{HyAmG1H8!}!(!@C7y&f0B_E^#che-K{iF21@f8 zRI+qbc-2}Ozb3O&g!Pj*fW;^0o4zhIa>J;%PpLrLM;0C2wR9gTdf%GQh0i0v#?zWhKfDiFB7K9YV(rDCO?MrB1-7~544MT>5>tY` zkxkjH6RP*3Fe)q;3dbZ^5?5bkKZ~{EO+l&?Bo@cqO2IGB?V6B&Ya%VH+*ZKTVZ3RC zXt%pLZ+EfVHr*8FL$Ca=pK3p>BfUws!NTzq&-h-rj~u2%+31EW^Icw=mh> zfen1I%xE^SbUq}u>Ix?o1QbMI0$AB0h8D&t#kn`rZDeY0mM|DNP#0wao}nupHpk0g zFss)LpUWM<9?W7exbe(^tP5#apUMjtPn>{puisXi2{IDFiyNo)!e9cpZ26+&>@&U| z>)}uPI>NPs!*xYE2qm2#VAZFNuLM>kivlWPft5f zT00!yw2jqWCDzy~l{gdHm*xwrCZx``C61)HpMjHZU7{c#cO%A0uG<+5ON7>^bNOid zt<;0*k^*IvgHXkTBpJIr&yNs~igai}B8xs?WCm@dA3aPqc$YRY`AY-O0&eQS7c63j zJfCx&O~dln=7zT8^er7`=F0?s7dc9Q4sVrJF3ICG|7q6zFRY8x!pDr&`E?kljTK-t(-m&1e;?0l%WEC0xMhf*eY9fjemZe~B)1|&HOlbv3-=Bb1mG-2ir;oV585o$qaPcvCqSnuZ`Iic3s{mx|ma%brl3j6%=HL^H+-uSU zWw4Lv<(clcoUwJ07-{6AO%-|Zpfvv1Y^l-<)lVu{?${Oxi-e>7H>1z)&wcN+W-eT} z`PnWB*O53&>1Io?Adw<4+LgLj(4CJvUtW#WcNaG>KYrfNexoAWd<%`i zZ74ieS632|>~{R@-#KD6hM+oAQWVw`zV00pfz+Mx>LxnEl5HiTSxR!~_j|~l5d>3~ z_g$B~VJD7q(!?q)4o*I2s3dmX!C!)$!C%CK7qm=v`_Tn0Ha0T9+*P>meR(VB{61 z+3@hLy86S-HK~FVPXwQqtH?wC@IuN5jJPtm49GV_<2hs65>-C}Vo|m?TRXlpmP4ei zH}0ZbGuXn%pE5H88Q115EWiZUbhV;Ck1FA`l21Y1MnLdZ<4#u{Bv?L3#%b~*z_1Xc zV4{(yC!6!Yi{nq%TP5Nvu4f&JYq^~7A)Ah@Pm_8Z0lWAp}3P=mCyNKUz;7x3x73zHx0|mDu#X%0R*u7zn@vla%fwgd21jV`^p zr{FgC6*7HJ24q;krlDT@0IypXzII05KcS^4x9S>;*x+`PR@)c6;zO1aEEXN|)jfx) z&;p_K%zn+ba1L}rwfLMK=IRby4g;t8^m=c;8?(}$M}_qYxN;CB_Wga|Q+5efV+ohW zMmszygGRyP58BMeaIh-q?qEHaE*@6y_>2N2*tU*Tr0pI!PUJplo1mZ>&BH#hUEi_&Dcc@gRznme3|@2 zm9G;j3j2(6`J_v^=$~Cu3xdW1thSOFWY1MGl z1|SO~8m$ zYU{{_9AjTX8d#%{ik|CO*s8WSsT|q-XLWl3cH|!;+H!B zBPOa@?^WIog-9H?ig6Hfblf%X0<%t|UxA%?ct-o+yEr52oVKk{>cuJuW9v9P!oLavvB_*G(UU5gTAU>2;@DW#$T=<*bk zi(ohRWbS|%$!nvfSiWqfiGJc z?W2JPe`e$d>bpp`@BbW1xsKc6Kal|E^%^*w#-6f4UfNBATwf2N%4UUszsY@Q`P@<` zzw>ckLsbuUeId6&esX(*8u?uelJmB8?}oU9SKmeN3aer~yYEIn8D%LdM$G+H<>Ina z9B?D5B5-qb9|eA=0oXibba;1f=|{0^9rZzf0TQ;LrW8XR#7d7CZaA6gYZ{fAQa$$P zit?%9RuyWBpnp5v^FBv+%Tj3&WD%+D5>I+)>!-2rnjiH!<7_UBN%}yp1U1!PVC{03 zwjgLWhW7hlJygv`gAo5OJu?@nWJ~2Q%&2er<4G?49RXdmh&YJZLX)Iz?Z=}xmrx$Q zM){+UXHR*C7az*4kWXD4rKKOpsTuUzpM%=H%T)=oi%sC}ipHXJ_XI7PAsSF0X-GXP z(LPYhAyj!0XB$rg&1hd}3=-FrCk2bJv3xJ!kM?|xe;^cGYjF5l^Fj3GeGo)(>@(KR zoES$eQYz+;5(}CS?`^lh+}gAn3J0B+{>cq%y9=&`Yh2)}dK(e0)C{~3$GoFW(Jh0y z9{`@fc z3!7%Dwb5WPhuGGzXWBcLn~55AEU7c4R>qm8EgsER`N5X1-1>9)OPrQ1GM(whk&sH?~AMGRX6a+I$3k|mA^kHNK?lf+DULTuGIT9Wf6v)j^QzwE=Mu{Vu( zW4bc?1XyA-&3|ruuAsQcu|bS21A?@z3gk=a6I)ZXYCOMGa9Me_gtQn3Y7_7>!#)9O zjPI-~A9Nm$4+|!VPPv8srx)#c;UgBC!E(ExEPQT&H{sM}$e4-`StaP_zT^2;+?y29 z8=EgF#&s?vc>iH_N6trH{e+0OA+C?M?iAp<7Ed}AbYY{aVQCfKqad(;rutfpR5~>l ziF5Kv+sOf~De=kX$>QyG+Uo7rn#!>iO-Zza!~Kucpeg|)<{oyoXMY@Wa!fcIf`=zq zvOgY}$=v+&=Xf(m)fV~=@H9{hFP)y8wz0B!jKQ>AVmOpmuYzYUw5(wBkko&3{S$L{ zaiXzttJKfK&qT!n*;c+ovFL{`lSuYDw}W_ZZ)DNY&^)}yRJ!lCS6;b8E_IvNx&yZk zghMKL8;KSK+U=-!R?yi{mLDWn=HhsFi>WydA!K}PPU3xD1RymaE!$^hd>Yn+SyPs0 zXHB0$A%eYk_XQZn_12BE<)|l%q}Ue^W`iQGO!w?uOwCV*al}yC(H*4!hK+UeClCc~ zrp)fcH?3?si5U7ETH*?UOSX+O?bwKO0jxG7hUV>3 z0^l7K8uKy)#17k?2*ZN9on+TPYY7o*942>E;UTB9hx(V6W}C>Y?LlZ`92QM+0DM%0 z6=>s(?|7gXNDxVweT9Q0C?1@T@C`rhMrP z%H8{gX@{?`-YpE=E(=deJC~}O9PzChvAJPVfoo*xUTx<2Qi2zS4aT4xun3MxdNIfU zV0aT$=MKt5&3;df=*@jA<5~Haku6;~qbo(FrS@-nq81n-ivZf}%Gg*59?v1BS?4#C zas#*(b}4US?=?tem?!o}VqB7$XA$CjOpY_GFI3cd&j*Co$vj>(`C|1W{o(yfAyDWB z`!6O~bn3i6F2O`umY}Vo3{!%r$v#hB1j$c78|qF-`mt=5d&`h&9^eCZoJVkkr}1mt zUb<=68Q)gZAI@wm%Qf`uV%*jH4cy&2AWh_PePx2&1@^cLsmL6LB!p93e44VXtr$i0_hbJiPwg^63s$S!iO#`|D`i7J`71wd-bTzT+LIg!F_|xadX%i zV%Ap1bVYdG&#YnqVVWkzm+h>*D8he~c!m-^sOP~EoIv*V4cEZ46JH6Z^QZQh^hiTV z*Q!F0wC)QSQspakA(?7H&F~`Z>R7;`egej<(tIZ z{xj<3cdkVEZ?*_#QS7W8gy=%s?RXI^kp2@-hp=R*9mx*^U>7!lpOlH-H&!@28O2$+ zH^;i-F>@I2np#2bP#`a9J~;z7p(|7pvvf|1l47s^m&}DQC0)XZGgM?_Uyb>V;kU;b zhlR8DB|g>gGn*LdG-E&&v(=UXBL)+1(XQB$cvRG6vPKj10FJaXC|=_M^Cie3dkq(qqReTRhi74;I-Zxh_7jZyuYg@fL-a^Ux0Vbt38F^t?S(3aq$~#- zb@7bwDL_Cj)ZAO<6Dwj1{6y9!}t+?_ZzC00Hju`@yX z3}FbkK=tI;q7B+g&<;ZW8;ZNH_onKPEu%=jQ}a{z;`)Liu|Fu)Z+hj8gukMbwef1f z$1NMb-Se%Gj;*CxTB`CZ=vW}x&G|x;!9{jF15Hno^p6r}tN)eA69{v73whP8`=qO~ zX=lz*`?`?*T{};!V?le!YMT9(*!ibMYP?MIYcmLO9Shgf-Cg{dfRBw!st#OlUcdeE zSOTNsVvR+$DQbrEtEm7f>AW5J`su?zY!1qwnN@g|5$c=p(RB*)CpvZ5ognT9X91`A zWhF26#Zdv6tI1OutsMH(jwX35;UE4lzPxqDGDs2wq@O>)g&AfNwOFhH(1uhF=Jm~Km@nvrv9r-$5U%#mmCjgNQ?$f_ptAzO}kZq(Iq+-t< z{pg)yybJra5pZ*vGO8zVQlFOX!j>e&lLO{y#WIy-Z;fpEZ-?KD`wR9e4zqqP9bP)Io07h`{A@nn- zuie=Po&_9AoTAG?6h}Tp;Je1}SA^mT14a9DcR0Gct|}*{Vo?N4*}cux1%&w8sop8K=YP@Ac*fsTQPyo?FM!)ak`{#NdGDH1 z=SC+7ht=JQlsOyzfz%;l+4;@%=rn8dnc7Rr*w(xCN4$4|GlTlgX`y+FD!P1sd*5S* zb+5oFM`n+%S~v}lzdHJ_yT8Gx9~ge109|9j)J4Wl+!9X zLj~fKA>9uM;xKkhlK{A*v@{IsZ3I{0s`vFdRNM56DL)E!A>le0krm#V*l`H%ny^`|pvT&}3xbl%!z%ptix613-+_HN80mH$u53+~e zR7%{ig8HS94kh}H{^km@tNiJ3ka5oZQZG6~uIGlh4Ji6Qow*tvC--w5xpoIGtQ-x= zl^0i5Rd=)4y@qpR_I78YS%FbkWqRVZHKh)?OM;j{CwiGfZ6VZ2A25|zQ~??jN{1S^ z9yrIY;_Pr%dd-LJIkf}>rE++$y@n6}+1+mB&%<9tq{y1F#X^Cav{0-CV+~BL_Fj7$ ziWsyC2I=VyStn==8068J`@af|5rMK=lmG=hfQzm}YeunPg!C75>L18hhNzZFUPT^g zThTu+F=ab=196&eADUTYkNz_B7>HcohGcD{eU<`ouO%41Hm?B2OOBj`HcsFzh) zlVr<`JgTm)m$b9iF*}^}*1r@6BY#H-;>HIaR-y@z{q+gY$;{;{% zr`M_t&Q+-sS0K5Q#`ZJT-eI-w2Iw>b{-v{Jt83YBdJZ}i2|+{ohYWEIPI6~wJc`YA zbzfvnft7-0B*p(}e18N+L|;YF_%x7VB2PTZt1^58KSZ%O1rcZ%o{@{Sv#l4G%Hval zZq105Ob0{pK6vUVuHj*Md=Is$`0NRRRyc6xgIX#Fc2nNK;;vr4xRsl5i7GdDLsHY* zqIX(lsV!m?^gRDM}2Olu#OLJGkXqKflCJsq?^4{}> zP+Eoehra9OK)El*zbhE@a*|r_F&I)#+6=f9w~vtogMen8)O35d&3{M#DynC&N6Aqd zIm;vk2ZvG3+%im?o7NQ{Fuc2-J({uz|LCgHvsYeLB`=aVKPXvT{{Yf1FzY-9QO;IQ z84=weX~88eJ0c0_5m0LZh1Jou`q3S?@?~%@9PN;CS&+t;&Y0~43TWlMO{%?9BxCEW zV{9N%_?Jdxnzg{OTP}k_l}(&ZJxTGdv2M*~XtcW}a6YLCM7{O82ABXsA*a|G5tZs+ zYO)lx#?_m;^@>X);yyJh)?ax8au2lz78e6&uucgY4Mm_&h1>fMI5@?u_nPdZ++keo zJ)DEkLX#4j@PB--HliGEJh`wu=v_-0_K#1Bz+ADjwVq9?40$paIn(#UwUV#5>N4BP zhX@ROu)8a<{Y$bSH2DbL|IuDW2PKn;NTEA7DM)4(G>NHj&12NlZJD`h^HGug=qowa zm$Q%8WW;k!2!q`sBELip)1n<(?8>ecuRbqLf56-D5mCuSceR&lEJBZGuv76M7W=w;4HowcRA_i909KXwibrGMQ*~g^kQ;nHxwSD0xtdZqs9ulbRb8&eNp$waPaYk&3++oi=v2isZ%^UV!o@4*-~*`SDl5 zd2C{ypNAuVbakEX_vy-Wz7%~S=^^iVOIcbI4GKr`o2V{@%G>mhwmnW4zU`R(eye9| zHI9z6v#U!NZ(7d&;p)AhY<1*Oub~8V^-`rZf-lPTV`zDJQaN&Y)APufo71pi0;DQ; zc&?q;+*>NVm&P)$rV7eID$SO-t$s2ZT-lw~twhr*W_rD&jg~IR( zi#!TJhXb`Vxc+pfPCx~L?NU1S!=(n)aG-m=jT6V~&ExXIZ{q-WkZDLUPEvOJ|e;Gc{QrP&N2jNqw zA-oT=7|lb-oEbspj~74c5x-5TF=HPZF;YPY7Yth7x2I^}xS zW?Mg|`AOYqguZm~|L|Ys&lV&P1^4X;lCG%OQ60lkmEKi^KcF2c8{B0uH|vh!xS zh<{-w?l4{7r#mtiHliF_h!%j95zmw!8;^C5FUxfYDH32)&cjj!fg{b_@q@AR=Tt5l zuhta^pKs|@YhFU+vWWr2tdYO^V1FKW3WH&?r~#No=7uP!*;0hmPm8^ciwJRJV(W{o z?<1)*0k+JXqg6LHpD3o;Z&eIWJa8Ik7h^jf3=k=k8tX`kUT;dP`ScN%P57WX3~{T5tC7yE}R6{?r_yI7iFgDd&S}jsD^KTd(c@PPAcXS@En9zd7g;e@ohWfm0~GT zKoz4RYgWJs=Cb(b_iJv~2^0Lgsnx!Oz+NA40!jS$z_-Y5H@yO{VO|qmI zcXLJTQgwHptM%ZSbW`OR5fd$g5Dmx0d~jKWcCkEa-MvG8yvDU!W2@;7p1n#a?dj2Yzz=Uhwxqm; z|31`A2Psv*Np?IV+jE74oqsF2f{yX3oU34&c&zi7mnzu2W06kBMgi{#*Ci@Y2@5>4 z_c+*Yw~ky%4*y*F(f0^6xgORvB`ErNylnp#TE!KP+y4-%H&YD~sBLUT~y{Leq( zqR5ww_)vIRv*sk@YmpPzxW5cQq~6&t>>p|&R%L(Jj>%P95 zmV1&KDTn%PE-^u~{^1eyU4A*6&Oi=zhT8FPSQeczxbY??QXu?|{p;#!_V%8a24(BU z%%#)Sqpczn&9w96Y%VT$L3HtRWA-g^V# zFn8XXI|cQCKF=5Mn-t)Pi_2H@>{aVBWu< zT+>L#qKLVo%^}f%nSjnXJ9k=T#YTrG=9!Y#d+bEwwYIvHrM0LZ3Z|8(Z5)i=ft<|3 zq(oT;Ek$p9B7UOtbdrkv7EBKHRlu!)W6Dc!QZljr3{^ngsn|Yr18B5b!Bz)AOP?Mj zGFsUK;(M6dqHSgAYg=mqi6Yw`jz(OR|XR5pP912t^jR*hsga;n<>s znS(Y>VKO5<%SgkHnegIhuFvnx_d!o*nC=gv%QNhKH%Dzzg&f(NbNq@jK^-Y*e;?-@ zGB49>2JuQ5`86+2rS=m(<(e7EOJ7h*L%j|%dap@*=P|Im#nKpY9ppq5F2fNV8Qm>a zObIBST7f;Dz=pSU0<2KhqE#G>jSsI*)feIa)$8JQxrs~0DqxXHu?84;|26r2pGoeE z#`F~trH`*OX)?5vCVMvak|CvLT|9tniL|ry3mi#PQw?5BL9ZaYVaoxtH_CIRZ{xfE6@F&Fm`) z|LblG7V>{>ie@2qJ>MReWfL6WzRlT<(-YbI+m-B7G4~-7b2~ioz1SkWV+=+Xh6KVX zJw?RBO1rhi?q-#ZL9ShwHfns`iwtelUrS48d%kdBrTg>*#tf$c&6hQAC#f94G_)7| z&wfi5eI#la!h3L-r9BesJqp&^hR3p*A23-4Sy%Mc&UWj(M3-pDnhm63odSM;q5oa* z#gA)0D5BR6xQ*DhkZ0j}-FrKvDj$HUg9QNF=e;pIQIiV4s`K*KP3SeI65!9WZkjHM zl1;~ESAuY`>zmm`gR{FFVedPeG3yLqmZXxX_1_I$I5p-^CMDzvmzt$WOixc3I%Dw2 zMVOwd0bh%j?gLNOf3OOm{mXAjF|}B_{eAC|ms}wX$hQ4-oNgqcYjrYdVn+h*cy`L* zXIcrbY`;B~I=NE}Ql%$NQXAH0yTXjzXM2zPGwKBhu_@m!%55nahb5fC8sKF6EBGF# zY+B(pyAyZUUX|dL8aS!IT)^1!^}zk~ol0owRzHUuKG~!Umnh|4Ki1P2{_Y~Ynj#Lt zr{2RS=WA*PB~_>mI;kC8+_|-XdyU{JF8!+VZh%aD{N>e-JKUc%~1v`ag zEd>}XQ^>TYehwSJ{H#)6x|Y#%%*8M0W9YcfyoR z%dsmh4ClIW)hSgiDbgoFNIh6@^yh!@8fsX*jup%BLw3n1WHCC8f5~fU3V{Gbn(L|g z{S+;Ab+@#0VRFbN1QQJd=VA9riMg`(B87xO#i-Pure0@%mwRqh*bA|z2bT;=r>0>y zKhk?L*NoEj3dZoHnn^zjk!g~&P;!o8`_s4(!55O1i>pZal|=h6okoqvxmxob2E%v9 zC;k=J)Sk;Z*vr`U^j9Jo1=urabBP@l^0QDY7sI|zuFfvq(%(h^@{0n;^shBG171YR zm5!?s$o!#o%InzQ)Y>%$j!5r;mR&=*vg%IU1ox_K2c5Z}P~teL z3FdG2ZCC*0sCA0+q+3Nkof~O!I!Fi6;K$F@sZ*&$Wu(zR2c0PNozQ(Cgi4`lg=@vr zQD@W%zmlqGtwztEPVsnaj=u`ybgry7f-qxr<~>tmSXd0wX+m6?dlbQWq-1B3E3fDw z0W%775;pakXIVS`@QiSFu@-`}@j;7T37St#$$q@H+!JV^xGp3Cn1(1l_f{ez zqT{0lcj?#(+aKlQF+&qB++%abX32hUT^|xPUgX`f66yQCeNRSll9pM5(3tTs6r2{O z!>PgTW~Wu~rd5f1!(Jv!tC1%P?^XMYE5`|Pw07ZM1MVH>stOZ%Uz`<=@fmNw4-@2p zvnBo#AcW~0#$jX1w~u2>sArH~@uV1J24GtUjcXOk%;P!B4-rqRECG#;Wy|`% zD;IP>Q0dDdPE=Rcvq7&laRSU%PJrDCyjGvALLT7%oD9(zT1>L79j9cm%4w`rq&8kK zPGmZwNhc+qzHZ1^Emp5}{m^dV-EA=jVdKcf0uGL$XL_XKS;qq3Ldv&zMnvL^>R-zf*Hv@BfALGV>5n(l&uI+TAUU<*}Xh>p+av5_kkJr`LOKB;#AA^|!JPO?D`B?dtd;m$LC0_ENac)7x~Q zt&CfbLsi=m?N9^jl}VD0|0y?PK7nr?i(TYLgVB;Cm2iP!=E9fHKTOn80$8ulUOrgZ zO;IMfea-+-+V&=j&^P6^@U;2H*m}VDD{>&T)c~T*2{{*B5P@rC=71$;Svb3LE$S$#?dc=r$Vpz^W3WE?^Y! zKxVo))6D=~P>y5&0C-Uw7G}9PDydGSCv5!Z#M?!~|#%{J# z*CY%LI{p}DklarN#+U>~$kTJ5>f?6e4l0AGQm;&>aErc1KCn^od&Abu;D~t5L>*Ij zw!q%Mjxk->m|#!>rllclR02Z=9KkA+h(*rF7owB&UVjKL=A}XQ4MbpaB?f-i?(c33 zmza+2@pX2c@2^_;bNu?|qXTDH`av%36p8-U{o}=T8BB&ft+>Lbxt`leuz z-=ZMTsYr(vw`67x<_@jA$yoo4-mfMrHzzZu&-mJGYZjXrK+MC{PIoE4v^R4apbrC; zr9g7iuuMu0F*ewzmo~wy^mh@)3ob*VoTCi&dRaRxZglKEp{0W?#8u}0{rgs?MI7b^5*68 z1(;GtNv5O7|3hQ_=@}P#7~(y2XegjtDILYDeI4%E@&^fT9fh3vsDUf)&4^yq;?^>) zROd+v7wRFkj`rDKI_O(_sMlyURF?L*5B=7j+s?5FjFNYNxM}r*sOq@2I&TMYxv>IG zRd55Xvk{@|2ux8>tLz2WVT&Jlr%YTuc=3JW&_{xUa3GQ<8XLs=33Si%*-9p4UxUol^z9A?xEJ699z+T{6kJMO||C||zO1Q6O7 zU>5gMT;we{yA|(Z9$`3Z#^6O;hR+jRU=%tjjI3_(`KLWew|Gu|89?EjQT7ggNX?yJ z-*3xZRi^e1EO%gjr+@9*{4cNJ>d8eKssl~+$1Sh(HJguvNNUfVPGvccc)0dx5L^-q z9$vENMTDS_^4K;YZ<{1+}$`wsE8#!I8sGV!=cWv9b*fW+XBR`-5U>{Ni!|aU! zpN+!H#`^l(72)2~ulLT!+aG^1*Rg560_QT_y`dj`T#g8@4?$e!`K$ivW+#M<^>t}> z=BYfdaNa_iY_o==rBcRn;&0XFC3v1j7xZbpm7} zBTa*DxS!l!&s&J8uc$rL35&LNzft&GC*lit`ajd=FI9s}cr;JJwZAu)8)zB_8`^fv z9Z)wcr3o>82XWhzqAP9r=0}Cf8fo<%&|txMGGM&)qTMxZ!JJ+%x^!jyncU)|jx}t& z-|gJe9j}k+NaNYr!qVzjhS2QZ@VFeMdc%QLz3&mjfqbO3BRF7FN^yW2cFB?QK>N_0 zvfyWCbE#@80yxm zdpFWFU}xD4u2ZHkZ6%8=ssa*O$3WJ*or?aGjR|NMhdmybVKbsV`S6iKyi>o9i|1ou z<6`^KWXJQ~=bxpYQO7v& z&2DYaq+C&Y!~*k1E8}#X{(E!jnj2^zm&!L~t9=(z49-Z>{0vl7acs5y72=p{$yO(^ zOf+W~)1+&HD_4(0!sVl1a3zdWzx{%r8qzp&UCTRf^LTWs|8=BFW{Puy{fwQ%S%Jm1xvLua=2Ot`2PMW3yWs8i*KxPK|~w2gV#9 zN}H5qz{8@qBh?708nD~gIrLY^__u%vJml$8!+l2nI@zspJ9vLJR z1QcgBk2rk(PW;IT58~%ad3Yq_h+KDzNi?ZTr(_;2XgDPtC05Ty)%T`Pz=~nN1z*UA znGv7#6pa+R3&stVFZFT_hKRmd7LXdF%vqV(Wn~qH?)^$~A1_NN&4K{5ZL{{pC}x}6 ze_DEUmnZ&)wv;$>!a6Aw|C9QYWdu1dn}UYtFL4oFT{=X1Qfc_w#8RL3KI2g^MdsrJ zR_|e6nOyn~-^?95VdGq*`sb9Sw8Z~1a+!noxVV76{ERXzqlEZx7dmaxQ{Y5DKVHRY zfggT}tbh$PVCNWcm=D8qomMGECXG{bbpbJ`A#p3C=S_-}EU7uAP20Oc&bN=M08Nw^ zcf^zVV3KR?DI90*DLKQgFc#=gWcW92IeEY1ArQn9RIBcpjgn4+4QVx6lplDs_fuX= z+~q|WC0`4CbHSKfZRK#<|2=dF4`|8>rF<7G#nJra%{=s<;vl03cg$kq2N)xX#$WV` z*Dw&l{3`GU6f^#R9qk{XyuNd{C)h0Okq_dSyR zl3Rx=NQjx-Fn@$_r;f}8b%BY~5|y4`bFiwas>RNRxJ%x*KyyxHwB4b|3|F(Os1J4F zoJl^cE4unpgs`Iwl@LXyhlTMnW%ADUS@;G-%XMY=H(lKUWdyiiBgrxx9ulukJ61LHl5?Cz;zoO_{cy_twB-i%d zSK){gCBY_~;Sgi7Hdb6cwv&2SLgoTX{|K)O2>1 zN@klvpuK4Z!Ib}L+huY!E4S4pk5z0>Ko6dKf3fM_Q&`OhEI!eyNd9!JNNEI86ZS{N zaUKhh*8(?@i7xSn3O-=I;8Am1ygl2ye7NIO)G7TPQy;X#+q-Z$9mJ#x|J5cT$+HyI-a2Qqp5dXr21&&A__Wc*c+9 z!Vs`=)}-BTZbGsu98O@EA_h%W&*j#t@f7S7{E{xKA*c`_33#VUD@6jr9^95>)OE+O?6<7Su zHLk&*1Ad|!laZL+zs>x^@E2^^ZMYXP4c@U}I2lS*uYJ}QLwfy?JW*$C3RCT@nagB!hn)4?jVJ8~+AS~FW{7YvP!3e^1_He+iq$8K!+96J*PM!1a z88O^;u&OAT_+Ac@8B^^};zdvS^SdAH@09-2kyh#t+8J51fqxU@Lnpx|25j}?1wqRx zT7T6lz_V!|Mg-#8>TuT0lq3f*V^ua&_qVMxlih)mwQ>x&$#5(c|VnTUtR!nrE zZ-xvVKDnHVpT|YX6c(r2x7ac1qb1TQ)h05JD1+|w-eW6VT>aP1UyF3Ezv5vJ@I;t5 zbfs&$97b|1M#+GF9&*x$GC&|z!y|{IY5U@d5?NPz^G79a%t$1W=$;IVaM3;<{~J=j zO~s3uOa@2af*rWS76t|aU{+pka%LuyecX_FL z`1Lx-nxD%eh|>ya9`+)MQA(~u-3PmpR@0NxB##p{-;GfX{*1F52eH8t&sKR3Lfjiz z44-Vz*jJ7`&z=j70k?S!5A(+$+2tm#ebN*-LjJV&-@!+Bb-|*9C0sodE!8l4p#5$w z;g$}eHGdc*_Ef=auq7`yQW_I*^y5}3bRHu zJAXH_naHg!UE4wAvhDxdR>dO_I<7#mIoNWPbmJ|&`F@mGyw?2j>haP!@dGKEZAfnQ zm0nue*_cz?4Ej`QYTjX%6$a}c*ypTNRW}exybpSvRO!#+q+h5IOhIUiy2zp>%<<~? zSARFKt?PO6KcFo4WG!s?PrR?KeOA^y)&dG1%?CMRz&s~=^?b2)@8wBmHyA&U7^H%T z>%Vwhe$OL+@8{2W`x(lroVd^D_8iX2qR;Rq@;W3J2n-hiNImgVinXT1v3XLGXx1!x z2U*=mR@kjMK&`zdx!SFf1XF0ry^55+F7Oay5o9{&YeBr#9ax7xj8TIN3Y={k{ z98!;;G&Y+QVTrv9Tak*LpUExRu=PqDfpuR$5eO9!m(KZZ99gVR3e3%GmZ9f<@r+I2 z0xIz`U(Eby#r&A2%@;msVm0Z_q^EekYTz8-YxoV`KlEt!&!f6`&Kl}xVFiZ3x6x5+ z=S*__&bqbheNOQ@>(a?33b~WC@HdsKP0|dFm6PFD<3Yc|fVd!34Memb$_!Y;; z9+ja8^GR-T832_mEutzn|B6Gg+dIHvRPXoizqQf66ohI#K2tbQj#U@$ z)ZJ8VN_Um)&U`L2^Y>4|yJMp}Y!p9N@`tJp5&fSfQR>w5qAQ0JYDRoEd-E<%T6GfP zBAbFegQ@;sqS4X7)?uqfaP{U63RP?3DrxypMJD34LZwM4mjBeRts@XRfe13nG{RLO zv~;#*u|~5w0n%+D#{;tr>;`jDJHT1^f=e{4=rzSxuHN66+}K^4s3C#Q8?|Ev+9d=6 zzkOCVcQLD4gx~p5-WtP5 z9L>5c1UPKc2#MGB#l1muX>@$_xaCnC∾1elXd0Y`w2yQsaLlzY49Rg#R7#^S&nJ5 zg7Gqx!|gw5uj~UwP4td({7IWAGdwwv;-vFA$#rA@bcy|0n_4bRw^lqd?>kMpMhj+G z>*gCvK4Ze`;}T=*(T}C3DWZMHTD3KAGF_*!9~`LA;Jk9rn+amu0spi&YAVl{?mpeB zM&`H;T3T;tE;r+XUr{|))~cL=2M2b)q&OqC|FXG%ICVW=-qo9#Rqcd0BQH{b1I z(#JAd_mz|xx_kl84jbOf6;L>CYaM~GLC0xIww(Eqxdt1r{{XQ zqrs9V2Sp@h&N>#QbTG<1A1ovYadm^91D=5V0AF@c&#d8LhFkep`4$FLf&`iPqQ3LT z(iL$qII7oNmJnmJK$>#8y|?dA3kxRM55%uE|ALjEEOF9rR0xJJ3;oGFc6*2HzP%pG zh#2Qh?XQ1kPiFuU7eufakTjg8BYR>lfT1un9&)3H{Ku3y5@{#NsI(nn6ggj#x>pTc zog~9ojh6g|j2KL;eBBGHgq{4_M?HHXQzVBOqNeEkU)gJ zCMpesrvISeF?Fd*L7DUaeIBg;qR}uO-e(SPAsbn~a%bsjf_;C5w^x5#!f5LcVzce9`Roe4 zzb#!|p^npO&zHgn@Rn$6Jy3ds2DcJ7gencs=p8Hx8q+xwek#c8gKWA=d+0m{%C3msb`%CF^!A^Y}yF9|FpubThFc)t-82%%ZE*HpTA1 z1WyBYCCmu@qy8#05Gx1-cQ%>?4OtA5vKWfA28>S<`XOcU=2ZI-s?z?fU6WO^z0k|6 z)4jiT6qukj3n4aiy>%TY=5+*}Zd3sT0XEm-Et>ILO5$G7Z{=A#MVM};V);|A=U2*? z+P6eCs$=?=ZZ{y^MU_%cfQiPyV3os8nh~aXo0a|1{Da%)!yGeaQ}px_jH*^9+}xT~ z7Dxo55RzD8V#TYW1c}ip%GbT?GRv4U@Jwl|@OC`hZM2q;}jhbV}WA|TzVbc3`?BS?dkf(S@= zhjb&LbfGMMw5u(TyjDB>Mn=p8mIk%Jd!rnjd%p=JRrd&Yn_hPbW#kyC7C5_~UfbXB z@R|)VCYiOq!IUPzKI!ffbqT4(zkfkl$Ds{I52{-_dq2A7dem5X5{J3L1GDo+t2Syn z+)2&_D+V;B32g{QsqXC0{xCPvOc4H@>NH;eYY!SSTF4vP;dONia_3Ajcq|Oqj5LK0 z8r`V`@7^s>u4yH+%riY+E&N)252kF2i$9l6H!zIAK9!(22d-#Y1u-bW`Qnt93lN1Q zSEl=?cZT>LH?x=Y#G3DJetq3FNW8JqcI(Jep*f1(GA=EX=yvOn8;Z)th`#@ zUR5>pPQ3=13!A02&V#eJ@U0=&hm? zqa-<2>IBwXSrvW@*xOH({9uF3I-K&%%xc3Zd96g2je|v(27c74E4?&IaahHCX|Ts5 zx$8906#RL#1~f3sC&_(TGfH}y1%kqdi`~py ziGgiGGlSSi1!s8;Rl14o?W+XoC(ta`G%QYfklQiYpy_zGka{ohwQA?SYSb14U0Q(1 z)*dczwiJsm#7=EPl);BN2NWjwnz09m!&$0=0MKkUGqM@8nOIgUomR?ru8+sjVG#S* z!*Jga>pv|_aXeh1aeFlQ*t3+f$*F9RcAdkj5k-dbj_!ew$o~3@wbnuMiJ3n$G|vyC zR`m4{DqofBOyvW8W2j%6%8aJ?l4L94qS*D;B;r7s6Xs^=d}OCgW|(vRP58`WM!*~I zBh-AW>GZYJzL(n?Z*laJLhp71USX2G^^aFNT-G+DDYeJm#nLp*3FPk;_rCESFZ}aPoSb2xliu2WA1+yy@4LrN;9FfbH)~ivShxv zX*Lo(sHJZ>X3k^J8RUhLvV&S0<8#y&&58woo;m7t{0&p?FZbwb+C9Qt87S-cQqMPL zr?6fiMx!Dv)q6N#pw}t#TDOHxeZBdEaz{&jbt0y^wT`7pB(!w?QW$1^(D|g-Ko%0n*SieR< zNoE_)9F!Y*17AFTfYmd}JCFCz4>k7nIn;S%rfU@brIwm?kp@IgGHl{JzHda^kuQChru(M0)0Oyxt2*%RbMH-N;s~y19)}6Ll9+GPM5l6M($$}uoC6i(d^ruv2X=G zE1lg!ZKqdy_lfKb%^it8`amF^AkgvPD1A8;2CrVV9UKr6Wd6IR4v(Vp41O?@_-ek{ zFqIK6f9im@N62z;we)jaq}gra-luz2!kehT1MGccJUpDqW+?vj#UH=;7M7FXj{S*F zOxC>UR7kY!XiHI$I>KV5joAIy5L|-Bh%S4>HS9i1j>>q`lYSms-Uv_R&}6sv>Us8i zu27GDWi@@ngB*h)_Q<-X&{yIu6v+U+L>#xO?n1on(3$oLqsv=L_m~sq%fU@L2M}se z?GLK}y^E5n&GN49C@Z=3o4q4d?NJW|>&W2k2`C zzscSrqJmo>ROh!>Qjq_mh&|)cWC@GZ{zt|T1krgLIKSRwP)RNJ<8wI&rTr03IInJQ zbwLta75nu}8TDS9`ZqAkoAU$d#nRPV@pY$oS3hVCeqOWQ@CT9%sfwEq44)5YC|Ha_ z29~m|3N?!f*JNNz7i{?VX zZBfaPiq^;_BZfxhJSLP>pUS15%ib@>h{Vx9LP7v)QZ0B(wr!?<^`C@@u21JbeY4vl z7ETK|N?GXT>$CAHEeUP{e^|y^Wz7O~Q5a5GMQsLl7!klHeo-cM3W_0cY|(`Gr_9ce z0xMcjIIw}yhcgd1WvLFA?p3>B6dD(nX{>X0&-6}@vgcD)yq3p@TKc38zZkz;k$N2B z3JkW6ggoJ9;@&mE((fC)i?wSttd|zzVuv_i7M)eYIGU(S`bln`?WCjyUL}%NUA{m| z;^GuYQdeQWT!65i^nUDEc59={k{NS9(ja9g+uO9BEm$1Sigo7Rp^j0J9Qv@L4M3@u z^*O7qyD-VK0DGj&+9q06-Aud#0~cjcPIqjL^Oi|%!WNHkuq9Y2*OY7BZZJ~l=*v)W z37eq-2g^ofNO2sOkyG?23|bZ^#{hs$uH`di>le19|#cgTMBCOUG_9q z9Ih3ZimgwF%D?%1M=ZP%s5-d!r^h3G@bI+h6%1Z~;>Eh>`m9N4*U$Y-w2@+1=X6NF zF#Lz!)jHIKiy-kFS(d4JBcpu*W}J=?=^DgR>iBnYh@lZ8*A{&y2lnb zC3f)Y_6wdxz#u$!$et7NZ0kVGv^H2*v zb~FOzom8BDD>F-o@cZgt7sE{GWqS*hg4Zv=ntOWFzesTV=g-h&szm6u5zA&S<+c`5lu)v1O4&Y zN8cFFGtCqn9*0ZTCl%M zAr`c~@^iEl?^#rOui=-#u=I1)fVFetXI~X~0=4rsxQFKoLIT}SpkEm{{kL?d?oE|1 z{u;%4+}NL^X+c9tt#aP77F#z%Wp3n&!mNyzK1^$5QhPs!rw|CyNLW&Y{Svz1Zp^Uz z@dZXTXlB`I&EgCg2BzQ1*J?4XIb4<$Lz&8XC+}6%g2|%ao?Kwhe4*s?OYgH3>C{%s zT4~|)Ne$gsAvadSWDD7^^?!EOf4%%h=o%7fK*z7^Lk6oh$iTZne>U21$$FpENr-q< z)Qil6`w7aBohslq-_)6c7E?B66qI<7wKv{STdyu1H20Vg+}LQc%1)++Tzu^zvDJ*f zL(6=%W4(&Sw!XmWIirY=jbpQj?{0Azw7nRWYY;*Aknm0%bwC&ZdiUQwYK)#ry@FYO z>VEkU4U1iQ7)lV7wKzr>=h{|BwCp3@oD~}xo^{2y(O-GsgF0F#o3u`DHmI{(D=xRF zZrYCrk~cZw*m9QAKPZ8F$NctOcoy#NTAx-Ar{Psw8GM9Gs4 z6^e?8#3eyM-92LgXcA&9;tE+(P)%ndya62o?6A4LQQr#E^pnDCb=@4 zJ~t)CbL0*&uILu}LQS<1Ksa9Ygv4L;N=rV*c~n|FjW$ot(P`ymzWW-q^wjd0HfvdZ zdRkY#*Q{_}#K2rFO?INj`3IxU($n2?@xY&1yLNs(MhZ|Q2E95blJ88d>#@xyloZ0( zv|ranZ$)btB#j^0H($$=9d~!x)JK&MwiT`Mo!ISW!TKEU)lRp66Jz-JEdKU$NIeX7^}aaHt}9#XIu#hex?o9qRO& z4c>kGd^yjFgHR-jMZZH*rYI{NMZ&BjdW1uaVe<3IlrL4xJ!0BR7{GmU8hMi8w92u7 z4k=W9?$FfKYkHdU#o9A-@8oP0F6?arh?P_MdCmL^ShM!!n#TgPg~@&e-AxI8i=h$) zQU3A)o?Y*uuC2YDs>qzM5V$YOq*t!KR1jj}$# zrljY`*romJa&lF^AFP?-(|CJv6&aphdQAbWUBPVpuz! zd^ZICwC83^0I5ArE@6o<)NkizVG1A6YKTlWK7VCIC?>BL=a)8g1q**>E=`VVHwk7; zWcjt-A44^yNMx4cV`2GHL{-Yt=uUnV6B_a#Whwhi&;ND%!|NdrCD(>@b_&{vNaqa+ z4rshC_r=IcB&jIO&B4`@FiTA0HZK@_&`F6qBy+KJ0j6l*C7l(o@JmLWjf-94!Vi`4 zHsZPTaA#plwjL^*U^qB#_?qG4r~D3`B`c8H)beqq7RGbEe?G3JmAEcVT0S>i(%W>j z@g+?~Yzu=s4>7&0!C4$nk8E=fKa-#>WrV|JROW*FeEoZEH z0FlNG&&EZ*&{ns$-ehmVP(@W$s~b?H?ZgoJ$bfK(!tULv#+S@O?6v)Gxbixj!fX*b z*m(enb$t-Os}dN|Us^OQPAb;cc645igEHgxlSN zlZCN}S-dt+TnT-lwe`48q^QZ{>%8x6lwbIFC~HyH{%!Pv^%)FxZ6Z}&O~t@dw7iM? zp3;drvA{d^N&cnRo0|=FAdVC!P2OG9ABVJAiCkzB^M)=x+vmOu)4x*l81m z*(ZB;jz~5d6qvts+nH}C12nL$PLn%BI(4XVC%aUoWEQnyBuUO0t zW*UCj`i=bGiIU9KkHxAX71ovwM1B|X-Hy;LYucETYR@JrslZFj!dsb0aQ?!qI^(ug z{qk<%GrQ@AdzkqPGd(?X?voB=JM7nl`1cN?-!dt#d8-VtvsQ?*ut>d4OM+_pHj&R+ zEAzja$(R*82gIN|cKB%X!LzgR1JcP7p{+NLC$8TV#U$~^k0pOh`n$cnku9raI5#Wz zP!y`8>PaiY0JEYR(JPwTen5nRG6r|q)FGXMp{#p~evbwC9e3G|YL3v^YCDCs-T9z9 z!K?{KoWVcJe8hm|+RU3Cem;jR_i?=tp-fvm%Zo$MX*k991))-Eds?C;e*>3YDO_{B zJXdSYgS`K!x1w0E980c7!x?x+3xp@;=Kb3VK5L8YDw}PF&rVcVhbzSyJGWlhCA~Eh z_{;{Yr%4WoYwlC3TLJ6pg3jQ$mN7K&&pq1Rn+qQvMnClT?GsG`_K8m37xr; zD46anm;gE;150tB_shhgNBH=gNS$4Ntp;^3CyvNI4h-C#a1@qJ33^(p75Y`%cHC1f z+L<5d1Uyyqar$k6s^Z@VEN4)-jX2{gIf!|5!EI;w?1Ot}>PcddDlLw>vdl-lFss>u3d<$W}bj z33RHLCR=6df#`LgWrlkWS|5_qxtb+URCkpyuo-&|1yTfb&@JxO@~DSUnMDQw*`kmK z|Emh$z2$SRCwGrlg(pP|3J+Da?>6~UYcJXp>LuuOR7T)YEWZt%(_^Hea=3bQ)Iga0b{M(<7}a{MNabo~?)ELpyGo8aHFQcGnFlZk#4WAj#$0Y++$W?_^*_h3_k*`dF#j5SSb>3oGLx6viCv8YJ2 z9+8ccwe61Bp(hFr>rI~?mygD&U5L%n4uH}ZyJdsgw=6wEE#3N!7j(wToI>V#{4=u* z*vN8f_$O@2{KA_O9Q4*(Gl(`rJm%6aHMJ_p<(snG(B|!Qf8DzY^Fel>M*7{lkRpLG zUXkDP8f&rV_Yd(Xp)sgbO!6Kh0m?*an3!TlA+%X{T+zd$Bqc>rLAnmK);VpSXj?6t zgEv;f8;Zmk8#kXDJim60E{7JM?m>n~(Xm0v=g&nfETcubXp^RzIdDjxAJ_y=oqS5!H-HynCZ_q_})A185(Xo*L<@C}4~^QW3t( ztsXF&N-H);WyMYv10IYJ_U^YxI{eRn-XSgRXu} zT$%5PRf&=-;qK)O{U#E9w1##3i_o+%fCXO;n%;+!qAGfy;rC)1Q;W$zUB+WMb11EN zugX*boFfNpaw?2Wafv$EPFS~$6IIJ>A{d)k)wqAJPII%}6AKJ~mR&{IMx8uAa9azy z98qyW>2Jo3x~g953HP%-dH<&p3`(g_o*0^kye~1|xmmNq%(7ATI`U=`Vc7%RHg^Zj zk?^+comkT6gRHIz?D%a@860}Xja};BShavJR5CfCL5mHXX)PY(=A~nkN^9Ou=H}v3 z!cmKqE-~i)MA~`y4n-E1FOkQ1pt+b5vdC!d7d=;SnoSJ|7<2ge!1rg!&ETGkZWA(o z1j=E4VIRN4F!wq@`7zRrlMG4du&6Z3Z1A)HI$z-6Z$85rK4VHt!0 zw3A}5-pXsaMbf%g!j?t z=aXHDp$EeaQdlA#ceX0bDp?4b4a&B@9XGNA){@#>W?i?ETiAm|er4QUytln1aal}O zlceW1-{!rkuUNy2y(zy})@uYd2h>-0K8WtNv`42J);vlb60#dF2!E`zQH`VidEC+1 zL+lrD(X8`hoS&OCynFG*i@B|rUSly)Q0C!&k}QyO5n2lG=NJ1cf&-wfxd!!*SEc5; zK2AM5kA%v%?R#xzn^%qFF4bbnOGfDJZhpSHP=_gkFMWJ+u;>MZyjm_@mB+x>V-ZmB z)mT-vg!PVi@Agcf*TK%Pu~Nx8HB`SV`cr$Hn4W4-Syo`Hl!vJ*og5Ax+Ecj%VdG$& z$Lwey{|?mL^d)5=kKCc-BTt0FbE}(2BE#jnEuD}39(?DLY3#3d`PCA&HCT&|Cxoft z;pQGJapj&<;KEZR^TlB%MZV+vw1SfE&po$B8$Qy2>=2Z9%0xZ|bH--*68L04sY>6g zeVlgty?H4GyS|TOCEWaa71xpGfUM(B6tjA>Fpqd|LB(~a!=;~lOj;hJFWW2Cwjo84 zw~hHxQ($WHj9a}F2su-uUr}WO&oX+JMYdL#aJb2Ek$iCrP>&YhW4%*#?#W_z??#ek zq0@tN^541!aRRuyTP*M8 z`Id%9Rwfts>}TIlgSy%>`YNFqgTgBC(H%Vh@nxypOPm<5O^lW>`wXgz9tQtnoyCZ( zM87m0vTxG?8F@N2Zl(8nwe3lS{!ub*y=U&|_MTLO)jdNF>HW!<%a5Az+89 zIf?RS_8YnW2pEh)=t@dTf`%#>nw>V~^9QwnJBh1w*?vWZN?FoYkK_3h@%O59vO z1~08B6HZ0Nh|fCMsIxt2WLZqoF0;8J7XQvf)hYSKk?GdY% z3TY1&O0vD6-gR%3&2hMV@jRPcem@b`VO6oYLP^aHPe?tu*Q{66M>d2kbj{jo184r( zzP@0~O+P(@QS-v25TO#QdA~r}grWV<`Yn9~%wETa{2RmJCwO5I@1ER`io(>b-)iAn zN#iy@E=(s7%Xs=?xFHVqFA~VbE_@>BTdz%`V;{1W(@9J41OJl-s~2r8@04dFc;+rXX~|TzC^-wlAf|{Ta}GTz=B=>rhxO}PnkPzk}NJx3Pdb; zf>)gOr#Fu{9-Gl1^%{m`PR! z2ix_LuUqkETSzM~y$zGxfS+17$#IyjGQO0X|9JB_%Afk;*VfSTt*`#|;cS*Y<|Sx3 zWi%o!BLUQVR{h?HauZVUBud931bu$4HqdT&hAY4x-3ynPbopiS{>Fv# zmvjaUQC9Pj-YhtxVqH>f`J~zu{HU}ft)G2YFhze3oAZ!(Tt%Jkmexmk=Y7ULk56;q z6*UkhvgFw@Fp zr6U6m+)plQUau$MEQHOXE+~4T6#pu<0|U=MgvwE4x;+$6ac}x?C1qGdRjpad7kAZT zw8Wc5f}=M#iO1bANx1xR;Cq6|$j&bjT34>fgeD4gh1K9=iV|TcDbcD#-G*!#@=f> zbuTLN?u%BT_0vP|%?e%apO=$?Uo z3g-KqXL#f9&0Ki(?H&hmI~Vj!r_)nBy>Yy9G`)!&pC5>b|GxP@zm->nGP*yH_V2sIy;ZX20fND(%7x0?kOrM>9)SR5yNe+mMAItKbG?i z109nZ5ICGQHj!!vF(`Zn40N&uS76oiWOo!#jO~WkWhNZNmU_9Y{lrQDW z+qgo%p12-wwK%i#{m;$dmwZ-KH6NwU{=APCnb`<)_pYp$FH$NhE6;jiQNGLZ7&R}| zJ>K5}D7*ts<>++9N>0P(bc6L`g5yH@+<*2Sxh@PPv_pIKL|NGvc<^+$=h|Wo+YAV1 zo8LC94i~0E7q1W*DUjY8Luvn-ugA%XcHeJPQ&V|$^|*r?hcz`+-SUr2d2MZ~?Mne6 zhlelC#>((BpJju8;ruc1!Ih`!i3F+WKa`S*KD?BSxTvV?|I~AtL7wr6Cf&uZ3i}ll zDtLB3M?EZgzCDtucWB5@Hi6$c%5nKSc9Pp}tX9F?h5$#2l0;m1? zXzgz)5_qmhYcOM`!0`Wchi_+jRZ1-=Dje39D=lDl=Gthf1Y=}<05OwbhjNyRS9gMd zRO!-KdEt-4$jHcaVDMr#g&WztAANyEz2uWm;O&?Ho9FjW@=ld{Oh1#6o?hpNf0Nzq z@K<{xp3Uw%%v{@a^?^RVoxRKz;u3f9@KQPgoIH)fQFn zm0SD&QD6To>irJ};vM?IeCI_@ei7!>9KK-It|4#mx!eFB81uNK&~E7|ZMf=#J`k?U zAtI-|?t7J!K!cUrSTbr6hzQ9LNDGerMR9T94fre_8#YTIcclsQheERAhYHCEbVWJ; zr(Vm9@)w^7(Mg{Bk}1XzY9(zGMEE}+a?U?2=#N(a&v_E-2cYP`G~u5g0w8ce6y|@v zZZrN>vH$s1aykGmb()Uj-V@a>DPO)^yeSdfSh-Q7{*wk@9bX|$wy9fSBZ!1W?Sp!Xid(YnfF2BR7Uk7XDrOTHu9|#gB z``dQi9i02#;Dv!@%xPEjcZ6RY+`!`ZelZ#d zS%gSY#c5*GPP1=$tiFk2eKZ}+c|=RFKUjM@e=u%MuHp9k$Irf0ocDK4eXM7jr(qoH zudKqCzhA^#)nkMB(y5hNyzPgy;mTm{Ue->p1eI=Q3iC9?&6jXXfhUj39CWrNm*zslqUZPv;$g~KMvnSevpz3a!D#-E8N5sG6bw76M z;s5@bAQj~wrOtPDyeMJ~V`KH(BN%|6a4)|BS3sxsWVZqKUgc*pzB+a;FlHjpT(#3J z;4~kp{6t$j1O$tejN5E8iw6`Hvw8{hPK#p(wp|BYJPwxgp3;HpG&o_zntF5|2>hwTL;7xiZ3awKwUrfsNHHNvxd_?o9MFs6^30tQBZh|sNFao%kC`O zdhASZ0xTf9kdE01ROF*m!R2u@g6G;GXhQQp`&` z?jmZoC1me=!>vT8`W=Dd46(;kSJdxTLd%gYC~%`19&T=a;JUZ}ESsQK_Y_~93$YFu zb- z<FZ-! zg6_RZj}7?S@jRP{H4KEE&B#>Nu=eKCsq>8K@iPhV`>ogvhiwIA6~(L?raF+R%(gh7 zZmDGP01m`;RZXFTx$uMsxO`&emtjpZ?nOnZbJ*M4BkK->%%WAJr0F><#(2RLReI9h zEHN6$(ZoTSjFw~@ALxe&`M`X4ec0j_Q2P0BPC6~&8JpkTc<>D@MrQ%C+qK8rIKuED z$3*c%jQc>S(_3t+{0n^VTk%%tQLLI5QOIX4udE2IE!BBp^uh(CT_k@;wDQ1hIQ{CC zupW7yb_0?qQ3@`SL}Y;^EcM&-9YW?NVCmRx<{rtBja1m10%fIatUcVZuK}k&pY4Ld zz%bn26M6YiRb%9^EGBsbC&5r4IpYUrGFh6HB>rOP+3Kac%rKSf%+FzM1oEPejWRsr zbJ+QyDq2aojJw5Jf+;w3>QM1+yTdBQFO(K|UMToK{h0Ob9QDPPzb5l%YzzwE)P&7p z<0RsA#l`_?{)A?4QZ2vU6bWQqdYD0qW_w}L?bb$!soZ|y=K#MBBB($#Zj6S4w%X_c z{XL#ney>7rO3ZxprL6Zv!^krm=G1UmE56EQbV>MhUmr05#KgpW;Zb0r4VS6m08T{&f%C#!abG=nI4Sely_<6%F9YA&x0<)$|ga_-R|`100^#1yPR2q z*+kVfkdSl10_(ichtFAfe7w`s0v<|liMe{``@1;dx8#}&3_GkkAUFfZVa|7Jwq+Ld zl>}UA6EwjrVrx#1HbRCAjc-Ou%Ew7YTtXaM`8)A0>*f3Vvmrv(=x9!QnU}6{Vro{{ zeHA`heGNM5`lwl_#$y zIztPki`l{sNFlr3&nISuUEDEzw)C*xN$62Q)T`8co7piSw{Y+C2Bn($dgu5Z*EK%C zk!J!Qjq>zp@@%GfQ0u|o`grk5FgYIqYV(J(HW~_E#hl%;Zi$JH1(Ngd?DS*{e*Y27 zczR}L18jxh%H|pa>`f9ft2?*mkg=P0_R`u*cTH2pBBdhW4n`cuXDF!S&kxz}=QL@|7ZsKX;h+;Akb*~N6=YOWf|61zj z>gZd#^I0w_SU%+;ah^frz?)fK-i@lA%`w{^-R7Wce5@BZ7kZNLP>2~r>3~xM6Xm_q zX6>;;U!T7mkUEB$?|$;q71SH@f`>s@y|%Y)x{rLiI&!eMO&&BW257%$WutqWwS z6}R_KDu7&JdUs=r5k+|%&rlp* zgso7#rDHaMJ71yYqk#2nE5ySN{E9Wfv*Vp^2`aZaa+}s0$N`R*iQ_ih;|=wU|u>tFkIzqYee;r&+^6=Zjx8XW!H|8kuhG= zVYtZ|4%S6YT0JIo&tDtxu*l|s>R(>XZ=sYOEiq4MZHreQxJyA)mEd>T3e`-3lU^1#;U?j&5abx5xvx{?9Vq ze2ek3MbG=2GjehqAlPF!hIk{<4gB5huTs#4hq4krJGSky0dc;+4PnjWqa*M{hONn4 z9;fwpD*@>+vXmKFS$2rhi07|*@q=*@LPXp5JeKRAGyC{{e^*EV`EwpP0L7Rv?l?J) zyc)R^NW6G-4l)qPpfrUvL1=8o4&f8{KvZ@Xx@;c?lP?v$_|cy6<%`fgzR8G^cW&!(Vd0 z*aYL#xoDQ*JB}v#KM#b0@l=1-=*`^}iI8UQQ8Nsb6F8T7&->|9*0{}vJQovPa8c|| zn>s;PIcQ2a|5;Koh6n$=Q4A%^zeJ0wW2-%W1bG)RW9b-nv=HIL+u)WKxTeM1T!d|Txwn29rBY&c4RKvA zQ3_sVQ7g&|&SnT~1FJ2k2Uvk9sLXG0PA^?$M@2)~#Iszj?6Ds3`u*Y4h4#i2T&hfS z%IR$dudQ1SYS>;zO~I!&fU^^jqgj~@p~#R$<(k#F{h%SUg(mnZKG=lx1_NXOt$;Hg zP*K4@Yq~YzvVov94Y` zYXk0V@#rdCwfl=w=BIhY%b`I1In(fd0RS|5hEHK7cB*$-bE|jNj4ASypt|9EaZ4Php`?)q=h!4f^)u25{6E0|?<-gZMbdrvdnLh+e=Q!E zf!aAks6-~7o0z<#1O!G47qtl6N`v*RI> zlB{6yz|(S?K4%PL6ZuAyT({dsX8+;>evldZbD+fT1q&aV0OW?YX>=}n`g8&`Ke_w< zbnJX_aq(3i3vxKcUW$y~;j;YLa)Mi!K>9#Y1+3@$4OFL|;AbNu-}nZbFwdYZEZ)r$ z5GxRA<>oNkMn8NQDCDvQMpl1)tlSBLGOJ#3QY0{sH3!Y=a}I|D=HOAbGP}S(c{*Rw zdnQ4I-XFNZS`EQIa7MWx(A_D-et#~2po0#pDkx}7uJ(S7%YOmF-}V*6=^?jn#2*5n z!2M`+QV)!&6Zn+Y5L%~5MYE2WX3Tua%&AWa5e|TZMARdE#JtcI=li_>^EBWOsCUJ* zomgyDo9Og%i9rBr5F-!_2w5Nib@*VgL{Km}K{bZoo)NLBP`JJ}ghPO1+-ENgs6;0)Aj|$bb^sWG z9~D24tu6rmZKOr5)0SQutPThh_&q%bC&_`V?W17!GdbG;2>lHXCL^C$fXRkEYB1bKLDylpBDK5whppBwP+|nR^t7KTf-mGZbsK0pIaL# z#z2jMS2W_L<$f@aKqlys63qZaLKaC`vcn$m9t_m=>(|*`c2`@2Gm8Zzmy51cKg4#2Y z3!VkZ?RKT)v-#wpdFtpckOaRRp+52CLHN4M^O2UVDBM@X^+kgJ_Ho@e*lAtIX_ z!NDK)Ugvs%PP&UYHz{l2xkS|Vy3rxNAkBXv$9|p=dCUN$jzra)NoU7c5|qxg;7^oG z_mTIu6WpWMy^ON^`R&HLtHTf@cP_#lyN?i-qDgMxZD>{NHC@bB=h_g?3RqDwD|_~K z$xf}3G6^$7MI~R)dw0*r$0x{}&O>DXP#Gi$TlC(a=aM)1H;+hz4(j$zP~^aa|E38f9?br)1m<-4>X?bwwJ9;fcY5Mx}N#v z3uh7}iXvCuf^$pgyA4S1Gd0>A^-^3pD9lFbeET4p-#i>dFnIqrBo&^}SF4uW&_Svr z(v_sc4}2Zt0?!U7u(F&<g~~T0il6t zE)M^SVa_y4>Y*(del(O(*L%bJUon_ zW2#Eu2XKigL{nAOpR1b}1J!ZC9klLz)+{eBBnYacZK(IgB)#(WThLL<%ga^}W6m9G z0o0AWIF8%A-LW^Q4C41xix~tEhYX=GO4ZAWhT=s~Sco7Y7{ffrbuzLo z&}7dC|7L&vE(ZLQ?!d?QrEs{aR%GG@hjSVNL$taA1}eL6qV48D>oz%yfZ?#&R!E`` zoQIe@&k3Nc%jf<3>j;vz56;%+a%S!fpn!D%L2=G}?64oy^i|e!1_y?@F2QlaAH2U= zB$662o4pA*#r$lZ>)?sOqPpTBhVowfZ2 zU|r4jVEA*J3wwkEEo%*%=Zd({#+47gnJaAzV?+wYTLN4nSD0m7gU{6DAEs{>~X3c@c7(xTk1+3pqcIRya zB-NFko!tcSwbe>?Y4XR9XoiM{P&Zs@Q$oRMaKWPHz(~WcS6rpc>IMR?#5*s<4uS97 zo1t(E!5#xi*_t7{x%I1GP9MT@M9+N<7lmSiE112%fOq4s8KyxJFE>L32_Pe@V>Ard z-&^oo=eZ%(hom?V)N=}A^Cn*^_w?c?W^keIg5_lxeaC?zL2ivX;WT?00I42H_Nwi6 zCTjo$big6!oqP8{uvQ2VkZYlZ;(;VF!fyP#lO7(f;Qk=d;U=uo+^XfTpS}Bl8fiX_ z{lvt`2$O(9^dO--l&6dF$EAC@k{vs#kU?|`i5dOh%Rj_#so|1wUqZ0MZs8-d=i^9D z5e|6}Ai9#Jwcw}7L*fI6t?CN6vQ3B&2iX4O3JY;@?^~Zxe@&~#zvTmBZ{or0PTXJ| zv`Pde0v$GqU*jxm{+tMm^Ox>HeDUPjGoKRkQ9by;W=I(Xf@jL0&sbtPNr}ikk_aJp zo(o09g^`I#9%3a>ku&Kj!S!I1>18e;n8qw}SrDv1FbK(6(kEJ#kXzpeC#Yvu zn+)bqK=uOJvmh!F$`HZr3$Ubb!`iNQ7lMk@2UnICkfv_{Mw zt(&hQ;%p7reF{8sdV2c3Qj2kRNPD?LmjKj%=ogR5fk!e4m9IGv_aNaglHFBRy$1H+ zTdju&;-Hs7guV&c`V_#0ocWpl_-Q3Z1hVh^HvSv-f#_}yQ7F#(vyT6M|NpGg;@IQK X=>#36&lEWd{(CGgE0%L#=hgoLMu5;* literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture2_2.png b/labworks/LW2/images/picture2_2.png new file mode 100644 index 0000000000000000000000000000000000000000..f93f382ab0ef053283c59936192ced28b065a36a GIT binary patch literal 89018 zcmeFZWmuK%wl+Kw6%#B(X%PgGP`X1=q(eeLK&898K?PAjk&s5Zk!~Tp1Es#TwYe1!GqcIxpI|bx)ME~^yl)9tIck1a#R`KVc!d6slOmXGfWg6F#6*M@ z>?3Cf?26BIY=2#B9=u5?OMQgneT^s0nfNQ`-^V>?=XmdtLtU6sowD_~`n=!3g&SXd zE56{%QTjfDt2o^mNy@9m&a8=cT!MoswK8oSMX_ z-_$0+D$t9PivAPR{*M^Uh12;5_kTWh^&lgx2)#s(2}|t%gn50l<;?z%LJ6n-iy!rP zdqeA46Ym1wTz;GMbbIQXGtWiFhx$vbJ~L^k5OZ5m}t#Df7P}jY6%S+(*Fz$fs z<{UAf{rlBkBWCPu&%L?6B4rz!f>N8AB>vUzTN6=s(N`qj$_^_X>GCDKw$g9aJXOBj z)Rygvy=Jp8sBY4mFE`N?RnW-Mr$79`!*S#}ZF@`0DO))l3{4vS>;ZTf5a{RNIw_*KFj&EEHpnN|8p&D;pc17+?}1J zdS-Tu5s|r)iReqgbYo+onw>{!BOk7>=jznw8~3odEY;F(bXDyndg1fjCE#CqRoHJ? zPZg4Tot>SXm`(rHmzNjgH#RnuVmR5@^c%z3H^w8(RvK8FC+n_dw_gt6i`!ls5`5Bn z03&`8*~U%Vh8th?^BOtow+8zAGZH02r@aUST09ROrxue4W$IY`N|8Mg<2I-`yhK#> z`)PW_R>j(2pTkGSa@cXzoX1b8Q)OZVHhzx=bX2-*dWIg4<;zgXyTe@m>t^~Ig~QL& z&BFCkoCED0IaZ^7oK3t^5gaD@qyD^xeI`YUU0LeEl2;1!zf-yV{^6}!YMn|w<+i&S zvpQg>Spl1vbM!%Hd;4TTmqxv#*&8X2@8nLi@5uQbQ{KH3zLzZBksRYnFBZ;gmxa$W zNm=oG)E*q=K6eXmWy?crv;k@cgs67 z)o8^Ghbk*Nvo)E;95<$tZN8G(rNC2Vg_aE1_DzBPG8G&1JFT{ZHK%^Y=aqDt&GGIn zH0d)8|MKMy|Hfo|>9FVVeAjKq#u!0OuuqM2p@;1z`QPvGY_GK0e7UHnUo>EAgk3LN zs7!B@5mdJtZ;;c{ikIddI|uf!+^hXY>Lwi{CidL-WEu?Sw4$8cJJu$yTbx7AR^t^l zFNkImLp6?N%i<^GF(kI16u=ZeGA4Fi9}CsDddXaXzU3>!Uu*JbJO|$ zk}$0YRIgixKYFq2x5PF~l(?wh3A@q87ba;4aplMPZ|}0y%cj9mEZW!1!9%d#f?JoC z*HYx-JsF5Gu?^<5IB<^wlRgfkpZyC}y8_j%Z(03YjZV-fd1s7_+cIH_#n8~u zx=Y>8;Db9(uk&(aN0vG-+TmV@i71b@Z+G|oYkpJTuNt)JI|K3O5WY#~P66qcev@o3Q&LQS9kA<)xQDD?1 zjZ6_@Wb*0Dcl76a3j%Xzay8YjF{qa+6b(A2;|u(LXi_?r1ou@R=bUXz4)7P;u}48Q zoK??1er$WeZMThL=NBG!s!bFFV3T!A&ve@jxpb7-nMK+58iY0PZVv5EdsDd5IhK^CWMwIZGO4q;Wvk?U zS+gns_33!nkkRH`ksaRc6Qexq6e{?3sr(M+oh#EQg5#dpS>d4@|i#|gLBaS)zApbm!`|mxEKXD=NT0GackMM}8%gutC^7O}N>zS*9f=VwAf?eh&vFrMYx3V_# z#ov?Wrm@OXgM)Qh8&K{uEz1NyWqb7LNyC~OWHolZCen)a@dy>E@l42RjA0GmObUDM zK$uR37#$1NpH^Dh+hNDI+O1UpvBhYl`Z-EGG%5j2rkuw%XM6H&7Hf!%I?@yoMp+$l zb3>*LN$Pfb((aJku8VG&G5A=o#aA-yo0u&TaEG?K;A>d0ECaBYK>4s&cofd>1-5?O zs;^uv=bDJLTKRT4ASEvDrqf(OsBQNnJa$gb894IxhA>u|#KW2>WV1W2=nr-Bn)Y*T z{~&Oay?5^oa=q=P&?*H$7U-e;C!wNL+Z(s4)*H>N+vP;pSIMqOg(r*#>|G^Lo`7O?(8&xtKcHsP zSJ*M#k&eZ7Y0f|xuRp=3r33k&XEN3+-~7i-u~Z?sp-Pv6Hfi2em(A4;$W1GN;`UI% z&gO#6w@coWRlD2S_*}#84J?3EB70;gTvonIjt_x}Wl2Zz6sS%>m>aLRHJ^r%*3qTu z#&|XOkt<*~Z2?{YgVr^K%6G-tPX{=*u!KoY=hidT&sM3KmL$eMj8mJM3vx~QRee^5 zOSSo|4Bu-9lLl?<2wG?P;NusJ$5hW_Fe-r<%m>cx4XlJXyzl`VS(dJ_1qPZ`U_<6u z^qL~W*tg-%a}pOlS?qreH*7$Zebi^5*Bl+y|Iq6sOWOkAq*|3cT^*^m_V%Fixx&6c zLPEl@DJB3Q^*Y2witx$>AX7`E>73JHT~JVaIgti5km?KyR*F`q2w7 zLVCGV%}giB00N`DJiw6Wl>fs>rY-?I&ze zL|7K=SuI4yaHh86%!!7u(RJR9sf@g)x}YiWq2>+aovn41ukHqINn`5K7MgQi*_uL$ zrr%pyUTuNh1n#akyXE?S?&#>Km5aY~sBo}o$dxxQONyh1x~IEapLbg?#w8@I5IDPK6_B7lQ#u*>VwoY`pwqD)Ksz0-UQ8C z=zR@Hx<=_^sPsU&0)Xz2&da%J2IxY0 zcV`<5b%40Ij@qDYpNW5{piw7-y7|XL{>g&i#`#?uPGeD~0LdG*y~C$^@{*$+r>|mX zx|$bD2YSt_w%gN{nHwWGWnK_5cS1$R_V5Fye#&ovniPCux;rO+!e$6|F|1+3*Y_C0 z)qCfC?UASy4u+1#Ra+H&iiU_;Bhnc_N+7(ir}S(Pa>YX03De#6*A`=JZI(5@geoc~ zP&ataSw@712fA#m)JnQRe0eLawsac@4$ap4|964=Im5>WfKI zV!}_ion?wXtUozF5332pJjP^JrZ(Rjn+p)X^VQ9)tgLcH1IP=9)=@1{N2dmb%N&c} zMI%#J&1+!OVq&#^9KGL`S*B-Z-T>BW*7ji1DCb(>gF{qjd3~3fhQ_W(hp5dUF2rE{ z=NlQ_y1d0NB(yU#Gip*=8C4O+xnjBR-hH$U`{L3uSLLiSV$f%t=QqXzxxT?O_rk#M zs@=`121glwtU~=1Sn3-!Ny%0|amU$rhEN4ir!-4fJ=VCC|ZzTb)zr?!At)~NM zs0(mjh~0S?8n`|rTEbnmEy$ZyjoNk#D}md)l$eAF=k^fx%9vo>JY zT)t}c^P!g8Gu<=KpMa$lH4IBxO*ENcqx^6?6Yv;v@^*JNjp`YT+QI*4QX5JNyB{BS z0TV-|V6?;d#VG4mv8>P=2CWGV`aO7L)~`zK7NYH7KX~9uZAKzcWCI3n1XxP7+&*W}e$=le;CXVCt*Y+(sNP;x7uW%)p91oo z*Dd*f4|@^wJLa20hWFg`YnW)iC)06~v!C)RyL$&z|B`qNPEfG0;JRZczu!V>JsFG8 z%~w(@$t(9<%jOE(=8A^qb5<~zxBG>QNp9^G$CdA*Qh3g_dXOMWH>T6KnS%(DB*Ow7 zDkh?x3JrUWbYomrYr_S@Bz65BM9fSG?m9erdcwVr#RY&z>DE#`7D92?;{`{Xy1e1_SnJ^> zcU*k)bIw5tfEp>69Y1;=@{i!khJ^wA}bg z8c!SJEH6*rGR3CfldUP(Cf9XbXV#T6v$9enfPeMv&PuYN!H-W*_W+CC{DW<5wj0)E z+W-+O8>@5awQp$CA=sjr1d#csQrpFdX9UD--|lgqft1MuyUy;kYAlv&dNkT?$Dw|n z0E7AE8;k6ecl@nZ?wu+1LgTQ?osAjEAx9J>P{o1LXPCg2xG)c|SfC?zdQ3lhu);}C zqpPdS2#5(3#Ku+x*K1|?LYe7I>rint38&knoxl@JPFN}{eL($7tgd6w?DfupmX?-j zD=jiBp0q`XWApkvv{~g#;s{s)Ab1y8o1o#mcpEVQ0OAb5Yhn;1Kn9dbQoNl+s=G!n zPz7l+g4^vj+~5U2=8m7M1w0jf^qUzJ+l4se0FfBa<~xrCE9XD1IVKZUFKpPB0$Vc%~BG zAfRrKPC#H85KPz_H;RCgI?2oMNe% zfmmTLV?1Y{2NN*~n4 zPo7wAxkWG)bWd6?fSljDM<>((@K|O@4nPOb`X74NxsQBF`muh%z?;<4$8lxy(pADI zPUB&E2N=~Zt@c~VM7eGNbiSAk&_gtKhE-SE|03&^Yx>M$@pt^{w1?*rW!P7goj%6N z$!P>EnImj6wHUxMlqC<4X&=GJ4kEtrlw8?-X*yu1H?^NKQd7UH=tU7)rfzASz|T}K z>-^4F(x#%59PEiIu(R(`^}7Nfb=vn@R*S&qYvs@qq;5Bm2)IL6M>!kvCv3wD1b~%1B(!380^GK=uH2m)*MyAe zvMucz&Snr;31-zW1SwpZ>h=3AWkto{sjmuk`1W_cU-Bjmbl4trS~yh7q(u=7N1u71 zR0bgactI#bz2Mdlf-oHg1%=7)q7;m&vu+rn6~w$!eu9{o1qmxAtmV$0)=$4l?#w83*V%p5v?o-6$8l(lIh z9)2kl&Hzbd3?Np7^Eu=;agDxgU;`Zg8sO1u_Ms~g#(@qdCpv?DZ+iJ7Z>ijvz7``s zDyY?l)u|6TR4Jf!y|vqI3@Rbk34efAP^Q&%STdLVJcBCdFj&Tdn^8-w@SzX@>`p5N zh~*)J#NP{$k41$?S;IkR^78n`N3Q9W>gQ*H3k|Z9^;sKo6Exbn9?nc;6!oR@#PUgT zz~|@e&nuH|&*}-*A9NGkn7k~yEE&ml;~SMu4-|x0u)@^bTzLY%U+xJCf_|YIjt08K zTD$&0^SBOvOpZL3H|3`4;!*+FB(-4(P?5{v>A^PL#_+_k`cMh+Ljt?2MOBC7sy!JW z6klI1g=)$pdjS|)#jpNk1-5glP}zuXY|LaMvUd`oT(dQM&Yx^%UEWZ&HO7p%ELOK6 zs1Ip^u>=^OeZ-10dSn>vrg7!!dA+KQj_meA6E(5a9g=08R~%3d0z7ZpaskwSSXJN} zfRp-i4w9`JW9q1D;iSjrD3-wUPts^%Q{w&W$~DUEEjsmp zjFY+Ys_5az0~L^UDl_u#W4oJx^kV7pMvelBYz1z^v$5v3yXF=)hAQAn?C5k6;5No( zM_?dNIJ=PX+O|U?c(cwMWn$1!YTd@RW#+aSVG4wM!w`HhlL-vjv;HW?{VdW4d^~{X zy^o%U#ZA*~8+$3_3k8X3@jDb-8itT{nr!Nn1I2^NV=?hVD^1)Jkss>ybrFqQz5_Am zfLb$@K2Z)PL27ahJt>;Z<`<7$C`kq*-z#~78tOr;uR^_7qQy|CdiI041 z0=|Vcy9_`9Rs~9?JWmmLxaf4pP?CdE*Od4RwScUIx-@@d-uCcG;-I6m&A^hPYH(q! zzN5Q)((qxz_ju76U_@lb7l21*@_Aff*=vxjqag^16v}7UPW>U;NORBlv8_>x-4!AtH@5eX%xj?PsCj}bml)YOb&9|)w8u!cfy3TVhW?cMW+keGX+BDS7N3^i;` z5DRJZBjW{va}Ah=@(wnH?%JWgfZQ;O2ylQRO)O>RQ>}@m3zeJgK=BL!TawgvVP+BT zGBL^PN6O7&BulDAk!Q*XJYT$MK-1P-VL%N6VR)qGLgNdMPkg&~?_PXnVXwHdx=pZd zQ=|d+0O%vu+t{v|qN?po$f(o?0RKAR@X72iCbr+oS~)V4r`y;{6Z#Q^Xp-Z80{ z{#5@0P%{X7{pZ$la~E9yoTLX1=DkqN-VVFt;G)VxXJZ^9`;2w>Bk!IjR$xnDQSFO7 zh|>WYxg^%IGzWPkh(Rq^lOyAjlCHQw_1y~)qF~5%(;&j6P!2>QD3M+TA1wshj;P>e z2}(RBIW^}IUxKP1GTUxpZ*s>JNP!_!w7*apu5>#p0?M-m5J)&- z!tRueTN*IVDIJy^-4Agq03PrFltnZV@SJy{&WS_X6^JZq{EjQKEMe_X>SKWf)bGqt z33E?Uk>XY1e078wmvDGSqjn}5` zYO?kQgA3GN*3JBD+I|sUPsqo)DzL8N-Bxa3(<4;|!4YQl zqd`ezFR8r}@sn`~Fj61{_yYA1i;dWFh?%vZRNN1-`ZfGfrOm15O06~vHwY&`AwZdw zNg?j|CveJvs18?KBL@zto+SyWK(#Of@YRWwNa@0oHwJ)FgTufVxE;D?tjjt(JFnp3 zlj@g|AyVZh)Yf5Jdu5yxLOO#i_f_6M6wU<-&VQ`}*gIMxrU&|E4Ukc3WVn7j(WZKB zp5Fik$#rhapLgrWP6C*=-RakQle5FM?U%7K*T$ z#*)~v0dmX(#!+xZ6HCbJ~rgDu(!R4sxkL5V6x3z44)5kaL0!gPDDWa`MY9 zkOey-K)kMfUk2iwO^Yzz(+6pv$SkT)hx0oXk~>abs({~z3%HbqFsY}l&h_bqdqe|z zQ@MQAd&=jse@lYc8@9*QN09Wk0i=~8aGAA|OZ75t8~0#Uw=ds$*>aq@JT{C~FAeGn zWC~1WvvI%>tDyRPP_C<99b!5HBU3L~n_7TCkA*Tu2-qkuj$ZxCCg5mDngE1y!e+Mn z1}jwo_1DWP5j{YEA!!qlF5%Z7c|rklwlSJtO(KLr4)Q&Z&2$1{&T=i`V#DS2v*3x* zE~_et3;`&R%;vgf-x$U!S|7rA@AmDdh{r~ELZB1L8)TN>E~((o|3uoZb@ge{$<*ZN z*7nqU1=dsY9i5$yJ5AE)N&uZK$IXhQKDPl8nt?)kTe-{6Z?B12w0$UU=RX(%{gn+! zUhqt(a26e3NDm~8D!C#MRuBV%o)0nYh$w~%N*k@fBlv4mv)hiZxNDO0Y+9L5V+^h-wxKnZ|hF(N%umnsJuP_+a7C&mNF;OKpjt)KXy>I@^^3u!LV4N@T@*rq0+ zmhZ^@1hH*)SvNi+FJaI1^jY8 z|0QsF(nyq*p*et|biCjL4}hUD0qp4r7e^Eo5^hk5gDey>0g!=;fb=R*ITz(H9ySdM ze0R<5i_mW1Lk{JgXUKP`cA*X&j5&aVIVG&E%7aQEfQ%YZJT~%FuaA^L+`*V54j(wz z41Z_}C~wQss3<)`bF;)qU!TtYA_zk5${3+p>NjGUAYDh8mZs9v&wBS>YHNK5KwJL> zW8sl9^qBAx%0Q|uN?UVm=w7M!XvI?fdO@3bB{5p{?Ac+zi>!B0A_BPcnF;@)ucL2q zY!(%MO0v)KY5EcO{eK##D`$6}S2KS7Jg?`H{*-K~m_0}Z5*+$H?{4AQ%=d@k5>dVQ zw|_|=Xqid8{dl*IWJEpTE1LfAN*gOs4@b&1o4K?RQ8_ z62MB*b8}g8aXx~^gxV;8&XB!*sN(R!t5FVRh8^@!7}y1h4DYwDd~lD|5ki(RJ#7fm zvqW%k@FODHZ1ksHUFjfC9%OtG3soSJe^9OljqA*xR+sCPJcRB*Jwq+21RwOf{o%}y zyVPfq2k} z@3;ErS@-|?iFYgwRk~V{smjH-fov`t)h=l6FQQyK5T z^*9k)I*56!Q>YC>d_)F_#XFO;`QrS?c8B#YXmI< z$N>d=gx1pWJN^a(NJiXNg(J2VDt8^;W*j`yhwCaJ9p_t)iN{F%v3kK%`6ue*ZnxSE zJyrL8Sskz&r#)EikR;sBzt(?G>&r_y_ygk!3IO)NVLaMU@x~`}zIu6og?nqV))!JEIJqo-OL9&82rgA@a;p|UarTKyk?948}D-3q))B51EtQ1lg;0%g1n zcQayd90CnV$>lL|l=D(8&q~WJTn3as;8jkk|NMShR#qpJN!idDGZnMDm5fvv1VxO( zLHzz~dr@$+r};0V7da&?@x%~%Ju(MLAWVZE9%wfRgo`0GSY-~%TzMl9v>!<@kKW1r zceJOWRsJ_Oy@{kauFYox8G;UNkOZ1apyjQz3git4&nh6;mpwa4l0+jBa-WG6I(Xcm z>A_C1)4Bv6c4V%8Kl*-no%a4X=Kd6*1JqO@CJ%6GyfGpfK_bLM0jSM5diIJwAcee0 zH)yDs{vPi=Hc=7-EhS>|EMY6}fSg7z#I*hoyYX?2!4753C<9`qg88#n=y zLqc#-0+g!=of^{sz)1A7nhuJLSqiz&m># zG7wRDIW*_o*`x6F!}Su~t;W0u_UriAtePW`pX+v;NTD zVr8?As6NvMGQ1`3_KQzUcS3+9?U3vhN6!Uv1yxYWZO4^g0DWa-1lALv7D$95sNOaj z7oY3HQXZ5e`T$d+>soWPMEL=wg}EnEqn@JD5#MWU(7gkMy#JqEAcTYN^gZtOird?- z5UwS?Qcx2EqBe_;u0mDZ9xqDJ){Gj@N*20Vp_@XDB`@{G(( ztV`71vt!1d#OmDj9e~IL$ud);LN$ulPU-e-w!^^-(9)K^L!)W`;}Ftr9D&)*2Uctb zr0Z*rC2_ef`xg)={7zI|2ZWNExCMu$!fdmL$mfVl1fe0bA z!orZGIvl8100p!GcmRbWV}78_Tb+9EG6=(7e1)2Xf!RUz3Q!*LK&w1cr&a@m397d8 z=IY#KlKYJ80EiU8aoeGP@BNGYXn`^SF6tVCo&=GBGCO7H5C-<{GgDw9;PMKfc6))& zp3=-Y0=2b*V$J-1414%2MeH>7ndjg1+Rzr{B0wv+~6|s9j4oSvsn{!pV-zs^LaBx0UYTI_f(^-G`{J&=wSIKXU%k zBZ>O~5i@*;!7BuUabc6-t}_yeiFs`^h>3}UTP!2rt20q0Qq0-5G$^p=A&v zSRg7?o;`bZK!TKiYC*ww=wzbTzpa^!O{X=e!X&TYGDr-ALD)b`l>w?aA(1gA8-dIR zh2&|71$4`UfEDA7vP$lNglWpY4H+>L{*~0Ri82BT*D^o$UC5m!$8>-PK_#?cuytcz zlUY_qP_~`X))eAMFhlAL2@Wd(K#Z&zA*yB5b}odPyK}Tq>s1Q!wh>Iyzm|r7D#cGB zrnR#o8D1eo56nF@oaWf~>=#;DO_Jw;|4x5d2c5p@(9)39R%FtL^0Nun6{rZYh3>?i zZCT=ff6kHZWc;K63#SlfXbMXn8~{dQmiMCF zYUa93!VisdNJ|6Rpt7ZM-}5l;op9OpY`1L*6jA_4cL2}WP^A~`aD}xI@<;m9<3zeU zI|wqM3INV425F@H&@bT#RCzwQwD%(6pC#V+(Md{tgVPL(+R${xS!pg|PyudYfM?iy z4Ts*>{i`abQ~&QCkU+QiZ$_a1W5XQ(cdh?-2mXJu1LBI^hlJS5p%2G#p<*o`Lbf71 zhxqciSf2^4;;F7X*3cqoSQm6P)ls$P$MNsC)o+u^%A6)@SFFatp0f~E_X}`Y?GXh+ z(4f2K2qF8qzy#Dl4jI$7y9R9`21Dn>T(y5qf*2(?f!rWC@$Sdk7t0r!w z6BUdCeG5X5nn3Yf;jd$de(D<(l#;&q zJy|B^{fkqjBG6g;Ox=g;euZNJVq&4UJQZl%M?_!kPM$o8dZ1h@c6ZX|dke;J)9|RM z@5#7r8}0FRq#w@M5LyWF-+mygd>XI)UiBdx!betTHG$&UU*~_3G<2=)Ahekis7CFE*fh7SI{*Cik{jQ@J?6wANRmAS7$*FZ0HI}wh*-aE24 zxU}~M8fxqL_J`sV`gTN>3J9vbcQ8*FLWJw>1|392$sH1q9t~AB>eno63xKYn=OS?( zRkvT9CrtjZ|8WfI3!N5A06nO)1c@NZ%cyt%I1y9B)(o^Q3DLZ~f%;d`>r^fj_QN&6 zXlFqU-;Z?$wAuBH#B|clL;UDJ-(Mmd6~n1nS<+~}B&%}65KY^Jv~_lLz%QAW*Pt(q zMhs37V8M~{jGB-g>62J&8ixagkEbMmq6XE-e=v(95fP=Kcdv{_sfOOAUKx48JpES7 zKPOUmydjKO(6t=se*&lxr;wPc6~Lbag8+9SJ+ntmOs8jevUfdbo8Csb6!gMh>AzpM z+14B*v;A^0tV*+~O_OeaD~79qy|V`WaIcddy0qrF&lNH*bai>(r>9g)iYB-80kpr|jCu0pZ`=OM z)Ze2@6uSMa&gCXT*Nzzei&93dVuX5i1-db& zpg|{?dH|+_P+vaM+JXI^MtcZMe=5lQPq2h>*9I&8;O5wa)hznl2CdX&<{xmvs-PC4 z7eh0MXlMi=%QOfUjm{dHn%RQeQ!=RQz8z@&IZ#!IIZYpQvi!RIwtR3my0^ zjD~_X_8Jv*Lee8do!|uob>0$~D54x8e=lffHaX#?>;~8ari-!(9{!6-`lX@=FO@kReEi9ouT6-34 zLac&$!13zy=ojw)du&R4KK?_<7=?~M+n4CGsZObcmW20*?0@oq@}LUWPZ69_`^REo zYVxlm2oeaicE5iKVi;-lUT{eC{Og|khwLu@k)H|u@qXy|$3(7dxIQ`l-oh{2kpF$0 z`|(bkLX1Z!<5a##$ie-E3Z=$6aQ*WV{(kKJzucSd?Xf?$XP|V1Yy^0ZU&PYn{t41S zRP%No|GG#?3ChAhvDv*<rL4Ju@o`CV@Z$PIxM5fWyN;6fx}9qL+S^*iqO>&S0W$6 z=El!&ICwXKas*}PE;QZb4(sfnvi;2@np0{k2C&>$f2?AExnOwK=nA0EqGye@uGlGs zGNyH|$Xgxx^b?Q2tOqPMDDX2uXp&6m&I+x+8Ty-3m(f;7IARigM@e8A4x^6Ot5ot5 zuHO5^bcphKERChbDLmOUu1dIP5Jk8*@7i2ZD?TqI0CBSlLR$k29E>}QFp3_rTjnPx z`%iM-ZEQ^K`btJ*s)8ZBkT3bGI&Q^W=+8CkYVr+Qzl%x)@SU+0!&E=N@g>jJ#C{Cp zs-XC-0VT9Cy(xEH9UYxZ=|VXc_XuJYESzyMK`%6S@(BpQ{;h} zkw$%mV>T`>dl!&xVW~YyiJ@fT(!;^j)ofrHv%4}t!2A$qJNJnR=T*(U7E53ck`3%r zN0P{eQb&Ft#z32BF?qgd%bC-oSM|9;^N)Gq@oktA|IckN2TEbMbd1UIMKJN+`*KPU zF9=T;P%yc2#$CQ<@gzpppKBM#+;{wk&)XKSkeSX*)U9*g_QtC(w@>bW0(Pe5wx?A` z$D>fpw==3OmS}{!Z)hh8Fu)A7ksVLJ@U2FQ|E~|1Tkz{=mvGOX!Km<^tiI<1ortI- zsKw{><$O>tY2Jw4p~Ax)40xdc#8&RV;{*r+f-p-8t!q(8MMgq5B&)>$CdqGjl*0$Z$v znuI#D)USz&@7Pnm1-ckbx{6Y`D4^m~@)&d$Pk`bM;82y|q8ht?YfP%<2{Vb%wjv^wqkuFx^Z14X&b_uE8h zVr5o<9VFv6?Fyl&GA4}31HgflN{Ybdz3BARz?9hKgba8`?o`29x@g= z*x$Ov1vdKgYMUht4Fx8kPAZt#O+YEcB0DZj2zZHSi4p_l_mC*tu1rMPbfV{MxIcXYQ^#Q5heQ~N#e^IQOO8!cJKCCq zL#bM~SS-2k{z0QQ*~%qhArAyEYu`SqN_B^e4kt0ae{I2XcLyxBdY!=i9=t8|jn9uf z8W5sh3LN(#83a0^AvpV0+y~|oBKBHpnIw041^-QUP7{o~CH$5C$DN1Focgt^H@_V_ zrYarIR=c`voo8M)6 z?)S7+sUAa|j+mN=wYHEwAg)}3$H)zlt?u-MU{IN5`8*b>V$VG6Uo~ccib!{ev>AgL z^I4|ABpc?>3mX6(3;^15CrX)n}rhE9E~QZRIL4G$AU+vG-PH;W66<)kPIIe_6` z`?1`13xV~J*&ksC9kXH_k2`QNGJ?X;G*v>Xe9K375>+ca zQOAgo;$8jF+nV?&^h1>8P)z;bTXmbeki*go!X%2GUxbg+slOyAw*_!QC(z_3bbJ-h z2_4T7)lcMjS7X`sV1^Jk-Pak7Y{=*Ed&qM%A4-bnm@Tel5B=i=tjm{t^P2@)d-NnW z=dbZ^q*T=>J8|A%Y z;C)U~ujWr=X0cfT+AJ>GP-G9c_Dj(^Tm%y8;Mad21{fU8N8zJm-;54ZZAz5?a{Akf zo$oIY3QLHb0Qd?O@tFUM@YWizkNxya+V~k6D^4t_%$KnXk&Iu5fGTft!$eZGo!Psa z_@y>WtRcut3DCe?M(q=CX+SOw?(M$xVVz(st3BIkyZQ6Xhj=E&8W#V;F#VH zU%_G^%aCY)GLl4};o$y8JPPnSSBHZw=ljJA9({VEYODLsSo}FRBbNOugUto;-XUOC zx7a}k%(a)~tDJN}8{Q*{h84ELIo!C0Svauwuo z;O^BB%l?KMbr~W}1AQThK4f8GLe^+Fl>T6eB$~$0Fo;PIxx1uAa*2ulS_R&DF!<+Z z69;VbqM!YF@PQ5JbhZZ3MX!SM;Rg)*o`8_$_J7AzBt$+EcS}zCaz~MP2nMFf`X49s z{wmE$6{~$4OwrkjZC`MCFD}pXqzmM|E8g`oY#h2|BJr-q*XK!~*Ur%2-eLQd4WGU- zL+>JGO6jrR&-Y}TQlidvX6cuGDeo#ZVE8I_Oim^~Jva4gTQ%F&)Ei%_4|Lvm_*#!}rG)@!)&nNwNJhq^h;{gCm6~5`Fx{#!lqjJ;wm72ydFJZ9 zq{&TxvRl`Vd)@$gLo?LwzIs&e&hL#f7`OWQJ)W#_?M>=E?6uEB@nlUz=SM3Sv60;2 zrx%wtKK_mpwBL1M)Xa%XnOQ5#Iv~7H>or|$c3Y@gi&kP#CstL7t1I^VQoi_%SZe-g zMQrq)W>Zi-1_dikO-=o`*vq0WTY37n24K5B@-KW35M&ZdbHpl6HLyy}On)@${8pSG zb498(uC7k04d?0oBGaf*gL*3csTyE4;L9vp8ixL~8NNf~pdk3;=V*V_-xr_?;L9X* zD%^ev9wlDO$m!WpuxUOM$rgb_v>kngqRWDL$i}LE4TZv>5x3 zOZ*J_(S<+p!V`TvgWBzPQ=&mg~gQQ?~3bn*TT98pNnK<^;m`3{IZ_>h$lf}^3zd8 z*QS7;)_!-n(k1xi;_6MdL^T#(IXGMR77G2vks6f+Mve0O@LU{?xj_lQ7Nr4UlsT9U z%-Yl&Ssm%GmB56_zpOHgOS;n$`hbdmS+e`KM}YGX!AX|_7|TleG?km4OYqKuheH9B zUzTHI{EH$6(+X3m$qMTcLw7424;2Ewt&5{*7T=EaXx%4LD~^tC5pi}XDps0Yo;Emm zal=xEPNQo!^X&=Zv4WlO&W^}2t1Y2Z{j**(}TdT~+sxaU^h6ZMDCLM=7&X$EW1mlhqiL*Vw?3-u>M1Fy~oz*ZY*`=5j! z_zoD}ICEz)o^dUOp}N}GN84KB`e z;6$MnuNRtr3ZOGaA`ta`0b!<&rbejIKxr5zi5dxr#O#JaU;N3^q19gsx)CGD?T2wr zUbs#fv?NLlak;Em(8Y${cjygjk=YsD3Z>{v$q%kuFv9XnhQD-z1akUpy#V9p+Cp|h zV-qXX(`^ngczfnys`xp)t3h6t4f!u0x3EmUhTVtsIZU`0{Sz}4T!$WOtF}V=JzFm+ zanQ%>OkGsOL-NfRRfydf7Ho1`&+)4hjdU|ge<_YaC}M-4v4nd`wRzjv*JC)so0H>k znKK3x=QFbo2?bqJ6FzVe;Gi*SkgR{XKi!3iZ5rRk&tCYd_!lUntfb%105n_t>^0e{ zL?7?n#z(3H&DOIPuMTA7xc$C18JkEw;8vAysq!J@H z4OITQ7P2?Fmo`?|n`FjbV1pc{ivyPk*ElNpu94d-j1%~@B&g&n)Q zG`47}?y*&zbc^)5BUc@?^dW>|?!Wz6v!?XY&o5^&!%DYqb<_Ovp9%iw#i9Mh7k9U^ zz<0fE@lym5Z*q#76t+jpM>hln3r~-HX!fwrnC9C@J$pFr9+Qje#-lGM3^oAZi6+qu zYe@OAnLa4Tr57R%5>FcIF98#LM@W-fw;i6<4n{Mhmz3Cpecxj#uG4pEk3m8>ZnCYl zVyZ1M$~Mq;P$itFBSz=EkyD_-bNMCkWp7d{b^Ax%G&tgFkrXEqnzLUJN%Wa9L(@d- zUsW z#Q=72zG7K=dUtdFcoC^k>I8mzqJM3|;f7}MrTM`j*rphDk= zpQ8wk!?HK=xr9`6MI5JSriw=svecKG^CqHGUwly3cnt!%VHeY{#|H}Q5@qUd)LPW_8 zb{%AosKzPChI))Vw^}yO*9}dPYwEH~OjB^ZCn!oltN;8hrT$ST4FY)$&k)j6rw@&t z$zREHC=QL)x#hJow5#eik4Le&jY9?Wnk=8TYRLJrSe(lpVN7cRp#$tlrMEhDf1lbZ*2A1*7uK~F>!|>yTxVT0)qu{K3kKP?XBU7 zRmm#`Oq7;-vt7-YyXjbd{ywqB?h41Mji#bz2`%Ck^^d!@#~?bosgI860H+(k;Y zOD?L!i)^PXg0srJ@FajZfUk!ju2`fMG~hSMkse{yy_*~z?pR^|j?Gg0NBzs2Nr?j! z!c;9@^1^VNXgb{?Zbd_3@0sjS)AAeGjby=Ke7=@#mLsYmq4GU=TgK$3w){X5oEG6B z^#rES;;}6YId9<@HdK=*hWW@sdE3&)Ytbzg-EQ2)w>lZWOZaOcn8q^U*4zWhGx3ab z@l;Ys7jxCD$wgb?db*v?el@}*h3U!|phB3E6$;7rcxfn(E%lV_G7sQd2s{sk@4IkO zjcbQ0(wElPBg1m+E0!oM#OE>`{towjKcH!Oti7IhjdbH&-8d)$s zD#YiH8`K|v8Hp&3*^&~>!Z`RoM(I4em)KVx z_L0=IPcP<|kNCFlekE7qsUmU~PNK=>Zp@dwlDIbbrtr-$&>g73f`2NvwEpH4mH=Q7(v`0CR2jc2s7_!Qf?LAjksr~=IMBAWd9}X1 z(OS7FUN%eB7}2$174CgmdI@WFYuVh%!ic=->1pvp`-?sn?j0IZtfP9qjN%K|+U8rC z$Td8{2yb3>=^KSaU99iXA!p#r!;IYY?zryMGm^+=J#V1{aqimzTm-Hp(^srW%YKHqq6lG`~l_1b}ub2pBBxIBHHG0>k^8pd)*?4m@Mf7u_2ld0$0 z?R33bAXzVek-z+vks4UWy%W`5#?qVlY~=SFJVT)Td<)G4h#4O}X)r8g5bt+PjXW%5 zht4)8M5*}t&D2@QApYmN@>SqYAEySf}EvZ7`{rWY(1cB%v|^><-st6DeIogckTk6k*PYC#UOm_ zvc5`#hdnjGqZNoFp7+Fo+0-h6`I1#}ICT0=_W<0*SKuEHDapI7EMKK%2Kx*2ZaZsq z9x5IK@4F;ifAnm^ai+T!S((A}mAt!rHK%NobXss1yRinfXoWcT$jE&=(m!AICK@}J zpWtABU3^Y8^`CM;+nJtn(x8UJJdak)tAiuPe@IWS&tw;sli&EH7UnrTu``~ZDxQNk zl5;Z_FEOs&lwPiPB%~y`%&lVA)p@nV@|db4VG(S}T1;^})^ZfW#p}9!=r`Wqf!op% z9P6Q@Is@(${hinHUU)z#*ycJa%Kr^6dkl9GvlGX3S$gDregi*k=KV`jVP~XOhO3GX zF}}!bZ(>fgjG3Ac;?wOK06RPgAniw5x>^-7iql|zu8~i?j;NlGcd(z|T;IrFDU$^4 zO8)C@fm5V;+cW9ezMA;VbywS3AwI5?XM~V6F@OK5w``tVf2r*Z(x6|S)N7R2F?Dm& zU}e0>Pbzm>yQNhuiaq*Cg~t5|buJEeF#yD@o8{Q~J}i7GUCiRU?-3bU<4x+lGZa+G=V`mf#$qcG<01pMc0HnL3NB zWYbnJ#3$F3&k#Ixyb?||p}jM0C}wxoWU#KTa{)qO%CF1%2H5HWlV$Tfmztw_FMMfZ zf?U_i+GhY3-y$&KZ^U*k;bfV@LK+(f7b0XWfqbkh8Vavk z_(`c_n*;1IY%qW~vEsT>E2_NXUyZU&9JZU?!khP;(I{KTP3hZC2#LA%Mms0Hi>i35 zALm9H6Xgku+KmGv-~Ja*ZypF`|Gfc!+o&Y%qR=kOkag_R(`JcM$k-|dV;Ng^#uG_p zE6Zr?#gJ@a?8{WLjzPu}hRHI-*s^AS&phw%eg980bKjrOIoG+a>zp%1KNV-+RTe|z z(b$csRVl%3xOlPTMT=9>S#xe@k}un!I!sSXGyHk#@Rc{!{@CUvhFoLeC$QA-YPt zWSf#b3;y5FeJsaQstltUGKmBKQ`XJsw>oM=<9wx~9TTWunYH`Fg;r|qh<@v5ki=Ol z^Kv{ZH1c-R+BPenxWr2H7H>n`r?Vc=DJj-D3G6fK^AO;i10eGKfcT)BR%u27)1KOS zAEo|%$hXpEz+uC}c*6_s9=8#=+LRrvDYEVVX#hhFJ3X?R8;N4GXbDxC9;KNEz< zat@1JDC!sC7}ij9_VHU^XMnevh@tI79K5SPe45m9yvJ2}i0EC`D|b~YA!J-a`85Hr zD|DAvln^6PbysP_8S{0g=R$ohWuN-V0F#kwtvA%#?PcUdTY$&ItC7%sEMI2-j~0|B zI60ok+C5#xJzA1gZ+yUO-C?nH1nd35x?6nWQ?`CSk77D8KlzF`yr^I~pE83NnMna^_-t-lHYla^P~}Bp{lAFXPNYXDO)P)0 zQwBm@);V=?A!Xbml2?`|gj*W%cKD(~l%X!Qmf@AgT-x3mZ<8LGt4@knCo`8m+<*+< zXfI=DS?$3eBXjft;0sm>zyDwx*UU9YKNSiqzGnoLcO$eZ8>_tyDXv55tH~~@fnC`_ z2)!7;bw|-hp}*&pf9sow-AO)8cYgqN-#%1dsD1|8%}utb`E{46=VT|oXQX~l(ZQ^z z{}n+Af^VnsM@JRqN^1}(EA=xX%}_n3|CLj6MPFWntE^G{;|unw zqL!O3-?Sl#?D&2~1`*DCiPzk=ntlzyj!H|S$kGhLvDjeJUD4$T$)UeQ0sShfOFa|)j zO%3W-;oLzU%QMM~@^V-c%QHQ*I@*9qLl#=?n;t06R(;mKZ>k%JXP!(|U!TG&x%{{R zwk8aY<79Vk^k9Jc(psPWrb*sC5i}IQH8mTr2^hZX3v*{~^6-e#3Lide0JP)>B%yl- zv44~cnX~+?mWKzM^b+vbZIKJK!o>KHQ%+lrq%h9XXP*}rSEUiNWQ&T;D>q9H(S$kg{=lPa!Z2lH`^du5Pa#4_f@+pWdZNgeH3C(%RBc?D+$_%Pd!w zhLf!8j^N_BS{19`E-k^7!26LM+tWhE@xeOUPR#{++F-;pUn4#Br5+lUCsmBUchUxS zt0N~6Z|%zSklCq{m`bd^EKi$@!VvOTzXLg=IIdul{O4So#9fcSLmiE8J2Zuh55x=+ zBZA*zCN9}}H=gZfC**5<0pphig91mbEW(DV&h5?Rx?j{?u%K9VnAfBdqpe9e{6)ap zai|P*)@8s~x~d*3K4l5+UN@YNu%l+(aUEoR-^(eV?;QABK9>7E0tCnS2vG)y9RI1xh-%VT8lpUby6YuZX&?G zjnv}KjQuKJYU&N&lvPw=_Je9a$Pi{;yf_cYM)Swavq!H9V>+x;hYTVH}9m*52;;|v9=>IDCc%{dO+;S1R zY6VHp*U-QLY>S!Y= zi_$(`H98c!f1UQi++}Ojpu3SM>xZOnLP);(zR*hK(F{NL!)Lc$Zas6PO z!~SYq^-~I>clL%9ts`82-{`vHp~!wt83596{_l%_vlYa4mgKIZ$LH5%g@M4ONZGCi zYzv#=yhVe$Cx?GXYAj+VGH|C@ulfrgb`^|SuK@bpjY!(<8@?WMVRJ-ikP>ThDN{q6 zgZT=2>Jf>H7~_L*9G=%TDb}%^VBEQA$iXf_Px|}s&-Z1mG?GY0qC5D7={Te?4~onC zVUpgAs?jkSgj02wanx&}Z+3!$J^tU?bhJ5X3R^jM@AY%CdsyBMXLy%IM?ZX%781fo zIsm2ZN5S-kJ^uUQaUk*;elqXe)7fxv!VdzH8!IeYhoZ2E5z!1-4P9|9e_Yjm-j>ga zc{+8zLj}qqx1`ILMqFeYeLT7h5ZQjiuYUE!ofy~A&Q3+YVe;7b|25!!9g8szOGUqD z%1ycP5#QSWELUU>`&nSG6Pf!0xedGM~p!!wTLYEpw>M_=*R zJh9*Z-h&c8Q$s21b1JcG&xbfT`;srKu{=f6Buw;XX+KUqca*Eb#N8_5ugLiSVx#?k z*fAuTj_BA|I|G7^L-wNj+DYD0xHVuqO_>giw@2gLyjT+QDcG+nzOvi?ul?B+7yN5t~8A{b=*NJ zrnFIlZ?z+1G!A^XEY=}I99`hAy9gEWg0uRrm%1q@){kGl0T;zqGlQteF)UK^#Afb? z3O(tJ3_|!$R5DJfYuk^E+mcilBG*KlWuOZZLU?_gj$a3B)e3|t(e*-??cRXx4chuo z6%~Dd)Xie%*>lezwb6I~a^-QZJE=-B&(bX;)e2m4+3M#@d!6$^?!9bUz8I$Rxp5`@->*U z8*oHf6Y1#@(gA5&N938fp6K#FB54+Sr#H)fu2G%RzXlOUBEE00 zl(V+I-|pN*i8y7u<{hnjkdsR6^{d-^_2-@lY>lG(RG+(1R>q~jg=GdUYKVcSQpcYI z^AVDSF}B4!{UqS!7)S1h@9w&(n}PlupFm96HdUIIo!D5Y zmAK>JocZDylJ|5uXVnuV&&tTRul8T0AZV%Aw54l8C*GuXBTKW1;`!=Hdk5>PO5J`` z9~5x?nasJN)@G{*``Nq>UyWuo3de~YxH~G!KG>mSqbP8`*FWM*EZ7A^-cfNsw#(xIuzG^sBh8Il@%dGU_Yq9 z1M$VeCl9MAq4V^cNQ)3MMhZ88g>3|KU^S!kzTK`rFc#$2pyU}aIb z$Nw_(jhc6meoHF)?k?UE~qRm!8V9B zAyZMq1!oy6RA144-Q5KP-wvYIR{!VFdU_%|Kafg#+M%KX>BA`Jwg6X>xUhr<#Z_fH z8Us=Hp^ZOK4kD`(3dz2@eg2*knd*1Af4$X%SnkXB{6d@s0gnwj)s#+}t$|GCLh5<4 zjNyCg*6PQo6aPF01d)au57O0ji|bjjUf*JtUrSUoUpKpY7KQh=Z&fbD0C-1`nRx zTSRm$jV)oQEzQZlbibWj8rSQd$?!+X%Ys8WBO=&yAT|J3#My|QxkFd^SHh|v53*Nj zPM&uaq(ylJ!BH3FlrQ7SEBk6LV}jX0t$vLfLQh3%Y5S8w$3Hwwi{umn-dgVhmsx&K zreZJ$f>$C&ZBur=8a_Wp!%q_xy#y>aDA;&V-hxvZ#uWtH_lYgzbAWvDQ1)Fn4offj1swoU?`0h8B1Dml^he zzaHMp@{|JGn20X?y)oK?nIM^>5u|TyUf!Kc+3IIsDtKSy%-$Wa3DA}w z*?5DSfFH}5ye<+je&r2@a3lm!w+^@oI?MfjUh(WlPNkxyT6efO2`2Z;8K_xnP~6&L zw>E5SRxV>F^$G&adu*AKX9B zEl97BtiHSlZid^sYLeOw*9DTuOD@lRg0_YS*Dr&2@O*o5aMn_k@+Dpsx6CtmZBT0CJ7o3WCu;NZDQ!g}44V!b$%&Aq6s70krq3pFTwVJJkGQD!SM zV7qd0G`clTfX!oe?Wx2I-a84md#bM3KB-NNASBk48;u3PQ)?rhPQ6%n~_d8a=#b{X``#b@F7*dn(~CEPgm(S$nx=JNURX<%YG|i1DM`8Ksg$}`T`OLbBI~P3yAhjqf>`9k zdsySLe_tYzJjVQ|?wbk4y!IpD!^5+%nlRywGVFYcwCGdg8LcrTEJ>|RDq?AqN6=dzYuaEx)-syAHIP@@)Zb1SI)j; z-n{o<(yYaKi9=JLX5xgY^XOMhQ23pSo~bI=`<&LPqVf@tH3xz($m}8PE7(*GY>I{!c9~EFk+I?OLDs(3wdr5Z{d$p-yc5?2O^Ri>2LRua_d- zzG2A=RH7EQn%hwD*aF`5J_Z13U<=6|e$T?gQy%Rd592y|vi=Flh>+wpJ>=Ir|ED99 z=pu;h`SX|)Q9H@#6ceV_ZXQI9c`%|Q&9ZrU`23&k`L=(8CLPhLZc(wdh9?im^R)GL zzvWZ)3lRu3#vXHN8`9)6ul}l4)Vr^F>euLnxiOnh0ayzS2+V6gGKmEEZIGzC6g~e5 zf+;XrD^0ELGvk1$49AB?P6|8LVrXK#I&iOKX6;A2~cFG4(!g>9=cYN zsOTuD=8*$)L9;d|e_94f8cF?3iXQZ%;eHWZ51{b#o+ZQSLazDy`L2GrYi=T4_So|u z*fv1%onUn;&)nWrfAV}A?LyJcAR5)DqED_rlnVS`T`LgkdfFg|SF5Cc=5pY56}o@B zU0SpUhg~KFY>KVVURx)HX|)$7?)3h@fPhF8lnqUS;(2alF?HPidEw<{fEZ`GrY7vm z;R5trRWWz^1XF}6He6YZj+vcpj`cxt{#|yPfXJye0a$BdTq^T?_(Sh6 zS=^R{Zlzr>KRS>2Ob9EzlvtgPM%Nc8+w220yX)QHIsuk3N4tkrGS3Z(2%|Dm;^kdBGWOmn2{?b;At&rRZ`m6d+`{Lbw*mGe{rZ5}6L zei@)t8}fsTh>d`f>dm;ICupFQJNlip$?IkmM(qo<-mLq2LYG0&%&o*^_4xR7|CKw{ zIMD6ptrjMxu)o7Kv`dX0>JAxZpii=E*HUXvAvpQo4(3GU-c$&m zzpB!v3Lcfo?9j@Y%YW<{rFMd9p4jE5M6Y`eahTarzx%KIug`avf*BEl3MFFj_h82 zYNUo_(B}uuJkfdB$*ImVzzfYyVhLL<8PhUX%VJF=@XZ} zq#GjU$NE(tHSy;7Z2KE5O=YP%RsGm@4bDBOL4l#plXT;X8KrGJ-*bo@;SCGdWa{Qc zF4#^is$k$=mpD><@3oLf!;47g1(V<;3}1Ju&LvUkXd%NczKdb!3&!{RF3vp#&HGWl z=j_x3muj36Mi6%G>BmWQ081X=ZK!qje-CbNB0lR;8V`KG|GLMk`w;!j80g+vSkf8{!j~_UD|*4u;MPn;x}J6^L1;A) zuYu&@k)h3p$)FhR#(NM+R%6FyY%#=>V50(7<}UayY*73w#_BRjlvtXQ>1*EC9y}eV zK{YYVd(alCR)`fmWn}37t*xaoR8m(UAg`jCjOIAo$Y~65w4#@sRN_t4E0V??^X6C(_0+!G z1EYmxB#QQcu`JH$wsB5IxYie$@2Nyq*kEdj@o5y|??uri32Pwr&KpntsLl02SqfRD z;OzX*A-N2n!%&b`W$201UZI~ypgMg9^J`pdl7V5D3{gY$z~SkR^0nL=^v%sg+6yL| zN4W6I)Y$4zDkKE%=x9yX~j5dDbK#CYH%qd*9&Op~_ob~&;Mc|y$tq>|0 zmTk0+3qEFDQgakkebXuhcb)B-%BhtB({;Z5tkA=xr+w&1f)H-bCdoYW?KeJE`p;ku zZ1zdb$v(Mtr^@vUk{Xm$j%;w~Vilpa=3qwCkxoTYVk?!oXy$+YHK()=qzDcKmty&; zI16J;lIFw4Jp~L6N`6h$+LFEZ_A6l&=l8HXujXIrw|9hpgt0&6MD*uqqBb!cS(2;< zY0ks=IksmAKyD4!w=>d+T&&u_fiDlHxb}{yO?tM^x5yBAEn<}1qYQKB$*ZeFA(?`g z2HYZL-9M2j%Ry%T5_Q6>YI_jpX?MO(c0nbJ_t~uD?e)(qe+=krgnA7aKI(OlTZEvz zUaEUVRQ(guji#D;z}lX2+U})C zId3erfMVjBrbX#chC{WgL;0j3HcZ^nZU zj)&W|cT9ZzW8VBE?&W?trL7H%qV`5RLWQ`(G_Mnqd0?X z1(Roe#8wpEtb5MLFDcVphp(@cSAkJLGj&yxsSt<2j7#Dqo81& z4-?`I`Is_In&Gtl<5pJK^yAtMlgzlQNwILW795X``0Kg3ZL#i?*GZ?55^%tMq1gAU zB*=^Q+}34<_sYBVXA-0TRR_n>>*3XN9MF|@fR>6zq0x`^is(9)Dg+}#j%dupMO#cy z+xzHHS*W_O(i%Z*zG^lVeKv^C`|)v7%QU&^VX~h;%7?qpI4PzYQ1!4)^p+p*KOnqd zDV9B%#3VnmjWnNWbT2Sw;U931M;mGa8qc=I8N=?Pf@2DY^lrkD%hZdTDXYcByH-eP zaoL{{gyQ-{BoNuTWs2L!m2C;LFzvkh{@ zY_;GlOt@0sAW+JnIA)+LYR1=9gL2~P_*GRVd7o*Rmh~cv=+cOR1AccwZOi7ock>=Y zIPh-H*btTa74pLAw9QGHE0rJG#q`JRDwoDM5NWvcs2m;2nKldt8y_NRGS;R9NoXcr zt#aQb;&^^`bbUlDUb1bgMdG$ycVP=gF((7#&|-cIn6&%MWDG`S%*U4b?hLK)Z}T6e z@0^FrwQd}Hckp}knEYph+u(C(qUS*nNP6JA4;4>63K~gG&`Oo}|JQ_EGl3m6)#ZHT zdX6!Ro2~9ReCuzKL?%c}hP+nrI?WS8v^%mg$0RM)T-Yo}CNTwK+UB-G6X^ixtT9jG z@`1gc4#d|#;~oC+X0uh(`eEnFt23Z;h%nWWtL2+XR`VtW6q3r)12CiN?2#WfMjWy4?DlFGX zab&{mlgu}6?85_C92zNu|BF}PjdG@E64Qc@LkWF~L{d83k5(HS@dRRaom4gX3GdD$ zFbO{s$Kf#VxV_Nksjdh6iKf2XRkFnxaOQxdSNe)JZMi&P?)84j7aLIYg!{W?UEA1D zIr12m6*K@Qot8j66b-UlI3^v4p7~f4aAjOonXpVcdM`^%gYoa$lIqA)+P$1d{?Y_> zuj8>}Lxv53kl&2VHLG#ca^wCelo|4QlcV;&O7D3obG_r1jJ@Y=Cm=7(;D*y9oBYt9 z`-BAjJN;0VOMGo&*86zPBa7>Oo|NX&pT0G?-GjcT7_lCUnHU;WmIm8GIfuv#*R?z~ zaKwjI`J*aO4|l+G+EW6jJlF~Xjw;f%bx?fm7LF@y21z!ew)DA$eU$Zp>8ty z(@%cTpM3&NsO{fCE)D|sY#fHqFa=)+cWS(h7Lx*i%ZE<>5I; zbNz8{bIM{{s~Wa!b)GqkAx2>)(s`7XK?G6&vo%dyJ%mYa3ZD)XA=*69|4Hgc2ujzam?D=oO2Is02*gGiystHjUQ(Tx0P_#h#K6HYPYRG?vz3@frtET%UvY033wc;S{f zoVk04pDZ}{^pGKUM5GdhK`T2SEUw_ssuy&{Hp>uA>*7&zJ7{qo8`otNdkY z<-g8_=15-M)xaIZlcbF``*B*u5FiKP{{WQX!e6N*7ax$n$)__lD4>Iz7JgqVdV=2A z1oP{H6J#!IHAY!Qv7lC zb z5rO~6#pg^THE5`M@vz`ixf^)(+6zOM_|Gykevvo`K0gW83H7hoqA?E*1+N@5n@#gO$3&hvL{? z*q;6&HNyU}kYuO`yAA^<6kh>GFj?*Mad36`7BJ|E>R0S}f6gffiG!_{j>95zg#<=; zKb0$1ZgIeQ-4Oryqc$OaLwUlx{O(+(_uu7yUPHm`LU5Q>wNKmgl4QHx)q{jItmO!7 z`3jptQLUGi-QAyQEA^B6`^b~^OEA|2T3m2{xM07JpJ*Z{c3D}{UycL3>(a&>8b*oO zZ2I)*ICr$v-g`Nz=y-!ok9lPUM?viJU6FyM+t@fMY`i!xP!sjDGmaN#sm;}SZLAWB z(M0CBJMIt=EX`1jsrY@{4c(IW^ZSdVeO9ol)j-)EJK_~)2PL1OasB!!o*kM!yZ(TZ z;rxF=3&plI90NwMh#La*>Q6LkZONb3NLti$D_T8jRSGb49}0CRZhhT*mAX-}+Un^N zrBkxyn23|i)Nm-}H8W%ZIGl3J-1X->sKuYQ8L8jT+G28cl`kpe;P!2f8l~Vd8V6sG zU7u02cQ?O%$pp!C|CX;5XX5$6?`TwhlgHV4G-}LR_9md>SPa1=vt{Rqp>gaz3aNz& zn%>yo85mXn5dzBmG1pet`A4b}VBJYzOk7o|Pi3Y>mQ>ZuRBS**wnk;N?YYOTa^eI0 z(%^&NkH)5=5A|fbyZ^`$x~Gi%4yvlv^%5xMcKw0fAo`iQ9q2gXR;#1n%+fx)y99h4 zJNwMug-8DeM3vrKSQ&&{k?2&n&2rzz_Jo9tOWV3Wt2;M+XAzsD!X3)9q$;*|^v}-` zqnoasaK|VzZ~%7M)E!K}4oYI>nPjkJ(R=+ZB*_79cKxIH)SB2;7)WaHB>LJWW}k!)UpMOnfY{%MDc8DaJ3(9uB|r<+)-rM(^UVQ< z5@ax|yb<}nOVZnS;1UE3@59t`6J=U2&jQNj7=ESI-Z4AEgw-mr1&==!VQ04E263>C z-EjX-o=1-hI(@o=Qxj5|b-bCn_)>b*T0fAtX7{5zNG{D+rHD68CV!q+yL(; z*!(K9`>dsPq?E5XG=+c^Bx1po3L8y(~vgYH2Tmi<7*VQ#l|33^^LFmch z`?WZcEL?+ zn17tL(kKCP*`Yl}tHjO~*gn+F+w6V8)#-J3?|>oo^L_(S4N6xw@$h-rPehlb&D2Yl zR=KnRKRPG^rZpMttpi9=@H=G&sz{7Ra5$U@lbUx^Hbzi1+oe}ld^eXmZKuka2#}8# z8Ns`6=X6KU`b}Pc&(j#KInirFglz`ys~v%@W%F7J%)C;SZv1NtIEfT5nBtCG)!+tz+7! zC)eKF(L;|nqmO(N@)z+{A&GYr77F= z)k4<*u95%2min%adzC$)8?r^tX?GT?W|oA>YPp~3$}0L(W+`q2YISaeCG5`TQG2(R z+nw`P>8W##PNhFZ^XfU>`C|Dw*RadWkEF{3^NMf+NH>;ljMKH(T`E;sA^`y17^UDa zq%&scYN?rS@fd>6iSCZ{lXTL7s6-*g=6)SspIm6>X8Zq=yG4WAv-?mioM0`WV!Z4x zuveQ#4m@(7@P_`1_08pJDho2DcG}h^8>x8zMUD+FQ`00}!$oaOzzT9eQt9D|Kx zdUyx>jnj32`9n=MF0?6I=zZ*|G11vNY_&^f`vdg$>K_G9$symj*Isr zlU>Z}NA4W@>YvSMbT}iJ9a_RCgWAIV+A+?ILiN~;xCrL~o7JDyUT6|K`<2r~Ek(6| zKze#P7n*ZgJnyrZD?GjlyOZ`AXn~#w=0vQJy9OE+Z6)x%_Mf^gRYchvZt9iptw7WW}=I z=P-?jJkeSdf#<^2Eq-)R*W%o*h2d**ITnsQz*@)mY>icco=_uFXvZ-nd-84=xKSjk z2J$LPx;OuK&zgY8ls6n3xq4f74_ICrUoMv~puiBmP%7@xUI^^7$IKL#zyvUCxSgaT zTX6q&(#k)kK%v#_+b1p72@J+eMMGp9ZtecWJY~Aa(sMJG0wyRitTbW-oayX<9fXGs z&W_dYtgmHIj%BFBwCD##%xjy=rTQsqy#wP4A|Y>$ffX5_g$&`DfWef^Tw5a@5Vgfz zES2nkqM72vwGYL=etIeD%4kXQ9(PlU=ZxfN-W&p$Rbnh8fMW%uQWjRI4p1REQyQcoa3D5;E^6a76US;?Sr zkz0@6gjT_@b#SJ{hxo2;jzH6*l?5!BViZEL;QeJs*0xiPamDD7tXn+eEQwLyzo0lk ziG)cuiigVZvb?5IhhH$A~eTbZS(}NXi$AOLP(RJSdjf!2bW2W0&k{D&0XTIxz z3VJg&I1!sDT%t4rUKKq@n;ZE|CA0sEh0!^4;4@^*U`|c$PV;-sq|~@jV(1kH{ zK#5mDWufs>`E*H*Q+4s?zd;`J0v6^0W=f-n7FPE|{Q*2svA0(NG@F5?1zr(6W2W>W zy|d#ppM~nj_OH_q-G@5(aRO$-gL6TQR#@<3JK-dRu@Lyf@hY6!K;e4pD)xn&o+wn5 z@fZiv46UQdH9X%9#12^=&-H{=zK2jZQ~cZq%Or}%hV++9lH_wQzI2};=Jt%Ui)H9E z9{5+e>*vSoGoGb(92e?@ZH>bq51lel55hm@`R+DbowcpL^>A%O$YfA`{InA#O;39z z5ZtZImRD?ctwaJI1z9kHUECWOqTd@2)+-m5@I3gUc3>MxC!gk^-sYKWxl(zEB%3lgwfThS`_WDpMB~^H zw1w}6!qL_}8sXhWl1;$?|R`n{J7jqjF&y>%j8+@qfzXp;ngMmKdjJw9<@zEGt} z?RKnW`|{tBEVYo1g<~M$f$}g#X}~~$(+F~HVzY@;q>=p=?v|uz#~cYKvll3Rs@2oxvwT>GE_axMQC% zsr4k)!1iXk6+?wC{&M*G=|KEFc&GdS-!xTYdG!z!(b62X&~Tu&FjqRLg`S6zDXcd3 z56HmrY?I(zT-{Lw&_`qK=n6%}l*(N+tzV21h;LK?b2~xVIJL9J312qKVbgu|6=S0Vxdr zlS|R7k{$N;3;8`|W|wqhYPM^ZDmrqcfo87BCnwu!B^-2Eg>P!Ny@cYVO1$Y{r~*x+ z>-42cLT_H3Hc#HZvzg*+DM}QKQCa(_9&|>tBU(=jR=fKQyboGzJl{=IQq&!_>`|e! z!f(J652nlRiN)|S6W*{h*nGJKk125ueu>~-P}crF|V-338Vy*O->Tzc*EcfS9MuAmpYOD(n9~+;gJ7SD7Tb5I# zEa&stORn#a=h1ZSz1#9OCg$G>@KBrA*h-eL&h1<=hHKK?`7g#TI+W`lh^KKdm5Uw% zAIPRJu`|)GkryAE_kcj8x?(!HH0YbTjF3jCLcb^bePD31JbIj=r=qpnr9APJ;6_EX^0e_ld;LbE$lmr8Z4?j8@=DD z-cinC4LJ`MImqJo;67GcqizCkIOi1w-J%nVKbcR@B!AqE2nSnL;mKWpPUfe~??Hs` z6S44=!zAV-PQ&fkKbRu(}mby|nqd zb74nh*l@QBU7;~r2;@!Hr?}mT@V|resAW^NwuR(3nT78W@_VzUzEbJ8hMDV8yZA38 z7e6X#FTu(pC{%l=tgAy4-ZBKx`2 zi&}hk3%}uoakGth4veJQSpx3*Aj%J4n@kiG?NY#dV8s13st5klZ`$1gE1(~ zWWo7-wxdv&4#l+GEcj#_FSb?Hkf|w@mYa8j4%5pzz0a(~_uski2RtwRg8E-~2MRSx z=K>vS7D4_~OyA!sE+0Cx<2tJ=H(eo5gG*3$S!2Sp9s2U`yC$rMtX`2{F~4uOY3A8~ zXKf)R)F|T}Xch;cC5T2(J~l7lmk4fGXu$H*pu9bAvUXm1V-CME9sh5FKjYfY`@oX8 zv2wH6!z=t1L22%h3{Ci=&-LeV8(Mip@%hYnGF21q6I!E1%l?KYGA*m+1h~M(=&CEY6u=>@!~`##Ux%o zldz;bwoD%>(XrlDR1V!^S=*U9Z!`3qycyWJog#nL5Zcgv3r^KsT3g|X3UwcDR6L^A z&KN|HhsDR7kKSI8P6D#gw7kKZ9E6{+B=r`*?6(Z-E!Td{)_Q#4V{;khQf8FCVf=%ASqhdyV z0X4SwL|-oaP8$SZ1@{dkQctsT@I;9RKl9pX1bxd|x5TMa29b-0&Pcwe(6~zWXGh4r zpMc-oAu1Dkf_O8_qDEzX6WloiyLFNTIX8id17A@Q{`ljbSK!bDIWTE4?%i0icUixV zHu$2bW%~~Kf?*J>(p3xk`}SKl^yOR9?j*(5!3=^)C8TN+yLoA>cujnz3|$9~N-5xY zkB~@x^47E9Xq!*+)ZdkaTf;mJ!owws)XyNkHON5swFM;m{O=%pphMV~b-2BBZRaK) zYrT{O^h>60G_)2|YuWw}pL>S4%Qp|8%smLA7acvn!O+zPl-@X4btiNg#HraRNt(Wv z+3nqsP(6?8LMup$KYmS^c=J^Y^HvJ}X7D10P?=|{u>=*=CGt)i;uRmSywo5(c%k_D zQf5M+4nGYQ-r)z}R?qli-KucDGBkm7t$A{ErPnGNzqNN@w8i?gk;j#1M^m~bXdMb~!l30D zTD^kGZWSEyNWqtrvq6_OTv%eot$`1K=sVMtJRotlK?l|$WPjRUsn=Ycxlaas2Gv5w zjSKoSp~#TV$tRYJgaks zoI#yhYoZow%*c8DHKghfIyl4 zJ+vC{u6Vo@F!H=(iSZU@{tr;}21dl?1keJu3+a%9fGWhEN!Ewkc!3KRKI^A#oDlu( zkGLI7Kc={vJWx?wRl6Oq{N z1Yd!p(5(gI{(pxKHOf^lGW z%7};UKB-s9aG|(b{{F}f?)7+y0*4srchD;LN2!kLWNV=Jx>sc*-hN7ExmunFNvo+| zT?ciXzci#kF23ukimu>+=YZyjP>Ndv;R2+dx&1r;NR@RPE3gERO=_O0EHqU|>|3w6 zM1{FM;xMA)1t>Tby&w7orrw84C8*pihiknymHenzPM~zHKO#lo2yew^VqSKQIn4KB zdHdT5Ca*}>=c^&a#EK+2a(2c-^seWMr6!ne4?A@J&U52$RwEGlnDsAceb-W^2YmJBAnq@0rd z`EpvTR|5q!_8`&>g~9W|ws_Fo!xG$iL3nn4zxfpSB_OsF3MPkP{d9l@#hR7%v2m-v zY-4dn#$NRpF_kHta=Vm%4q-eD%}g@bxJ5M-*kezo%PZ%Nv82U;CH8CjXEm<}_M7<3 zeeGn??dLv1t_&(*m+hk68kEE5Z+?V%>g;8B%YF8ecM=tTxc0$@SJAh(tu|rloY`UR zQ~pcV)SI`$-ryycJl^yqp^x2K$u=D)*FzTF>DW}N)CC&wV0>ua$+QCs3I z4E0}Mg;X)7_Gbm$;Ubl_e}-!BQ;YTssM4Emko(z_s73;7Fs%bCi5yF~Ew_o+V(B|} z6*4?s-wR%sAxfB`%*T_{U>z!SOib_u+(vi%7=)=Ira6XzQi`XY@>I4$q1>V%l>nCk zYftqXLjO4^Wr3?vN}lb@Xy^P0T4MziWf;owq9ui)OCT;i%ZQ$T2$I+F&oQXxjfIqc zy`J`8ITnrAAZN%RKzRHjALo?CqGEq=X1*WhS0Wa>v6!vZpfOpfG>)lLL|BJ;ui^p!A?Ngr{e;DY_Uo z60=9ggLhjKDUJ}YA$npqJpqf+pWeGfUy5;^G8YqnAx*Ixq>W0t|J ze;WNBB8;C5;W>s%|-{#TQ?$2SG}lc=mjF* zEeKy^O(1)SSv+ca$OD6pNENT1iXH@2k^cd^fLQt0v+kI63ivRiCMx38+8#~^c=VX* zKb1z*<{b@=5X2@n=-vepI=;WbadFO%B13tz08b8tdFUp#fFP<|%J$uiJ@%D)chQYK z=ExJ&z7VO2*|CeZtN8)NRW)&(>yx^)Bt235A=b*#aqH4oiFb(nf*SKCA&T)m6R{D* zowXHRSy@uwWByb8F%GtOZ&;?eItB6DwA^L7G>DY3(s1N?6 zy19W<&4jb2{y&b6%h6>*2C{O+qDA)#KU~|V*)(P?r}S~bKtNgat=l(QY|r&O;mjSG zS)ZCq#Es(5CNR>@5+1}BCL{~@lkT}m6GV*GO7SsEzQWO(w6)&3 z5v2~AoRN{u=GL9qSUX*(gf$-{&JioKq)h*Ft0S+ZJqI(ovIQKst?q=6EXj{&%~JIZ z1@g5npt?%0JLXP!G)+ajyGNA57KZ5ffDP3SrWUrG$XvnX?4X6Ba<_V$*YKOx)1uWvQxiMf*Oh`}Z@Z zbR!GOTb3hRT$@`T)w+~sWVPs3jmNk=oU&j>57K$3#i)=&Iu`g5Bm=I&%#=h@6GkEU4zvubq`Kw-D z(s8P1RJuQ#TUbG<-E8ej?j;7aDoaSp4wHVY-4PbSo3M2$=4FjI8#bqS z3vYI7JW2J#CjLRh%RKEH94vuyUhlPYV?uhS7+I8bT<0|~Fc9h<%$XT3`w@eZX|2gh z_TUmg{(tMNHP8H)X}O}ojm$gT zE(0`zKbqq6!=&iHSP$IfG1x$Eck-5A_UAA0{(|S*M$sLWR9#0ZezQZAk z;dR_z%pM-v7+M%GixU>cwKatg%e}1cQX*?^tH(S`8!9bxT#JCqsD&T-@!59vX2+Xh zA(0#equ(Y+PQT7*K@^5}N;6_)S|)XMTk1C7EonI=dr{^%k9%$FCF}>VrMevK8PIl1 zk4Ipgx5D&vjA9RylHz63R-87jrnz>TU8J|)ci=QQyuRj@#2@P|GELq^;L&M^|g5 zrRKu!fH=+9j4c3{@Du$*>cw)U=#Lx|D zUX9+2?7yv_e|{eVR*A=cGvlfatdo6$E&S29tW;03U(!GRV?FMHS~=Wo9VS}%)+Z_$ zn@2%@D8!2xba9gi7fU$nPRIR+QOyjqUWuFdVk?7+ZuRozVXxr_v#CaNT?rXTVC1^G zH7k2}zBH>^R)hRpQ7Pr#L%HiGsq)BJ_Uhl3o!Q5+e6qb8`vdo1zIqqz#_hPP+)144 zyYtMhG5N9L(F6@t;@Z!N1tOeKV|E9|$@zKB(|Hoe)w@NxLV5Y6FFSkp-r-NlOLTkDn3g{B)%Aw3~y2AvN;HF)Y6)(oZQ`)k`vHM5mzHQ7QKnujz!9WSswuut%S+*w!HBRKidGOU|&k7NIr5bc;sLhaiE(L@sShkiYQt-T3 zMGFLbO|VV&a&})m=D<}6_9u0<2nU_(O3J=A-D0!q{O?n%J{*%YULQX4Bii?L;VHUf z@ps!yP6rcYeck4yj;9EsWvGV_=c-*jO-*h6MZh(VQ;+HA$uoRudRmC6H-X_#WS6fd zEJuRJCBmMDQglr8a0~jIHPB8?yvTH1|D|E|^T|25xE5uBqrY_K(YLUYbn2ysH$?#jVp zRU+A;y5r8>>E{&L8oN%u`|qz+&ZqkS1P0KiNYo_gs zw5w$Y34grDIb3ER3ap(nl!IxJgn2nOHnuMc{*rqm&PtyGkIUR-3M;SD(-{QpQ`1bW z*82~WQ)InV>DtKROV?>N3qCz@Sg&Eae%ARWXApb9fkpevjJ>Br@A-p0W7acQ zZHh(JfI$>r)p#Zv?Sl@i_>Wj1>#=^Rb|c6YSdDcx2Fk6!j~y@zmU6gyli?8w?QGIq za7@m4T_f~fc7lpkDN(*g;m<@r@r##v$a@d{+5 z)Y;tQ)EyO`hL&8ruWj`6Z|0eh-!?vKyykLy~>l%BC8`AdSSbfxsdBmdg4~f{UoqVvga3u z?yr`9eSjp=9+ajz_vIUH4KnVR7o_OUmLBhqapb(*KmS7~jz4!^pZWK)8;@zoxpQwi z@hfJdh0f+XToS@AcK#_PB`%JerClEmrWk#0Yb0*_JrO)uM`x~Yll8y)+SxozIof?_ z?mVS{{+;T7M#1mv!c?UF_;RJ|?O`?FV|tIZ(Q8~Z`RLzf{?ucvF?TDR)GYh&`k;=e zQut!7pbvgko}_repFB5}^>}ocZ$Q9Y?aQEJV88o_Y_{K-Qe3y;PubT08BX7kB-NUu zlks$;g|laM;D@mxI?%A-!3ixFG*RMVY2b0sIH}lw{}bMuTmI^Jr(8BPUTD~V zI$W-{4F2JaSk^eY>HNrhl8A znYaU9jC!ZhmINGA`Ry-{>#u2Yjy%Zg;mUfORV{e3sx#BQ;QN2YGxER$Ll;kDeS{pZy zeNrKV}c+Wa`r|6Op+MA_m zCSB>|XO3;h#Kr5@qs}kOoz$klyK@S}zjNLz-82gRyDETMw~LP~HE)v$B=#v@{tfFE zKOancvEgPx@g<1-RR#aOrqv2k^dd1k8)}X~MCd*aH8L?tcC#3ejEIcX$!XjFBq-v= z;4Os3KIxjJ`zrSFzi+c|`7gVk8GFlHp{Ap(?4}e_d#%~HT+Bk#&4hu4o)v)$ZHT>+ zEw6MgH8dz}*y!Hrh_2TYZj-o!Z3-_IyE0sBEuQ9PA|XpcwYaFLR=z4woV`DNj;r#r@ zgoXz70O|WqS;JoQeS;O>{?^j3mC|J>#(gfcqOvtBHQv?yx#W>K5tj3{qErMXSvzLJ zNB`}PpVwYi7C!7Y)7=xYF8HZxVKFmZIhCG{E7$q(NY#rw-a_t#`QxhnMX-ld%u_gz z>ZC(z@iJ+|EBpY5|| zyQGKWNQocBx-y{ft4xB(X#!W7J-|afLKcN;ayOd+_)d)I|ekk~PaM_>*%c0r&oX zrQVp1S!|HPn;RGi-jIFJL3L9%$&>$bJSj0g#3xbGF#;TC{$*MP;MZ5&X#_&`eTvsG z{hc$<_v{s_lS1;`gSa1rFPCw7sG9D=_zxBsHV@QzO&B*fSlMRHcU{n8$Qsd-TX2fE zXZQ!MhtKVkCB+%*?0F!cU2^U;S-ERs^ZNQ4oAIWMG-vDh_0JViBq4kSeT~P{>*)2a zzf4e(W_8N$2*XTY-(0;)$VxyW!=|bZPWjod`%jusxXU%Bd&-_%l%qQ?(@}fN_kJ-6 zA37#Rrx6;@Y?|d7d;i_$m3~W=6X`fuP8L&pl8R2H$54q`s1$h)nh-7Syw}hP)9_S0 zwC8OXZW0eF=N#LogaxMsp0Vz}n&oKbqP(=p)~W|gB+kL8_67_GmnIX0o8ne28L=la zOT{@@=9rF$S(^GxhR3v~yBn2-rkv>o5Hka|T4pBmx5Wza9yc|4AbPtSISiYFue@(X~L%i;CRdgP7 zv*C|v&v(O-psCR*;_aQuv@_Dx4Wg!@eX%xLC9w|d60N{rgq)smfe!Y0eSi$2tfXyC zxpxA4;ylzK(sTK?uAFTA(xgr#M%+OaHgqyqYKIIeoO5t5&`h^c?Q4u0T(MVE+oH|6 zUKs(ugsz)UiAUtZL!|A9;h2KXHnF}&8%J2|eX$2w+b{GKOhQCooVyH#K8&95-3-HE z*K5qSQ|XfZMV5_^m7gZZ&4qH)(lWtO>w6<_PAM9v3h`~3YXO~U&Ugq*d3xqSMZQ7~ z?er9R%5{R=_!YI2EVHmSln-;_vy#K2QKRVo8F$_~~CAwL^K{`D{ z)2tbd?x_$hdO_`;ve9bjuwSh&$i}vWnvSsn2V)U=!zZ;qW1uokY-a@tZeVqpbFHQ;(8$ob!Tfo5Px<+F-SeL4RCD~^Cox+K{!ukgAox#9G{t_u* z`yyOs_LIZ$+fg;C3HOvwluf#2v8o%dsYX=^S5*v&f5S0>_2*1mosOU(V8hn?qB!v+ z&mmbTbqy*$97EAk-{<}F>`}?De&iw}vv7CGcV1LFSfuzdK648wN}<8jc7o@X!6BE~ts#{bAMed*E`Wo$sitTWIgS z)&>0hR*gq+kN5cF`b%j`SO3vQ`c>}wlB4=J9WR&MpI$D*awH757< z@To~XaM)9d)(>$P{BD46Po=xz^L3bSsEDU%K6O##TD<>A|Boem<$#5Y)&oc(aFa5Ed3-flgVIn>anuUhj-l!R2Gm zz?Dq#@0X5Ey&gkuD^>t!n@aK;E*Udb)qbtJhZJ)&Ju?cto!GrK75S!O+){_e&}?zf zbfoIpr|bVgZ#laoAfCNC2f(e#1$d@f>@M{!3>0z$9Vat!N}d!*c6>6m2CQB!fbHD# zIzI{E8~*;^z3xs|8&rNY{^Y95MJ7^-8pQJKpm#um&(u%nhc_k;+Fm!l4Xug5R88P! zoW)52x3$~5ZnHp-trmUr;|xDu?C!z8IV3x>Kt%5BWDbw7<7u4nDbAZzHgTSptsfs`QDD(2J$-^T*oKi_nNpz(8{ z&5_lI!!~`w=XLfTm`fCkhhr=X58Iy{2R}Huj~A^-D0+9@(I(DdMe&V%SHZTR& zGIjhk>pL^mj%=Hr!u>fbOWn5qwc%|j2fI3VtQG7pJp^4)<6#jZR_$dVD#|H%*t(UK z^aa*ETT`xYnCGsI&B@msm)B3vyb3WhT`f3yer@cea~d6VX5xF?YdXja66#>Gx9k2aZe~P<|HyK4P;C28ZMO zwqX*P z*EiZgq}P_W#AxH;TVu#J4iadxk4to9pf>Y+A2oVNa@(56>%bsw*ZclwVyu!NX;pJeqNWT0BX_V-@qK+E9-F_!w9aDpI2ziAftK#LjJ z1)BvX)Xg!V^?-ES4tdHAv7}o5uRu-q>FAH|eH@!N7;$BTdhXwkCw*n;*mrk*caceH>O9#- z%>z|(SM+<7zoCRS<1}vOV>sr2F?p%G$Cj)U5?XWDiW4GY+|t^I^c`_r2^1p#VUH&z zFNgRX)c<$|e_>-|_+4fLpM!l8O_w~2pZBeY0tgYK^n$$wbXRY<^H40e z43xY}Q|)P0XgVfXvN{O2Yz)K5X4~B2QIeuqYjQwD*r(|AxC|*yBH$x9kUZ|kfM16< zJM)L#wHBlhc{NK#zG?;cAca83ZG9R@hL#Nmwaa8S%;0J#&P){4tPEr~h_c_R_B2hw z$V!C|u3IB;7nX4Eb#XiL6>aFTYOi2FSMC_a>w}(#dtK!nBo7wyJQ1%XW*v51KkOjj z)V+m1rGZPosXN&rT00rDRBt|UbuAeyG>#7-dBlV@AakFzeQRim`aTT5>Lwv?GWsq* zvFa7caX{!wKQebY&ZBSeu#15qh>Mh^HFRo`f+@tW)jOt@h?jl2Rf8X#+0~EAHm;DA z%R(KX!1iqOpElw}zx=r=t`o*vjWbXY(eR-`n zqIG6*9^tVp>q#PT*sY6hh%1Y#2}E6qP4v1##cq?IevMdsddu~b>naJXZ0^gE)ejTtRR z>Z)P5q*!WO#n;C)jq}hNFPxf=i7VuQmY5f=QI0;+{fD(fF3}vgx5jW$RNhH095KeH z+hw`OMS%~i_`{fEo#s^nvB%S2S(N}8@Yh!StwTd}E`j zD(r+(&Cpx2I)k-q3uUYd!<3Nh{AoA}QygTV_YD-}a{$`IgNKq<1SgmXHQknr8FE7$ zA-k|7n`GVPNvU49y5&KG!r4oO#ysd^!#$$7&%Hv_MFPi=IdD-pwrbptrxW2N>5}WK}4$0`%H%P zu8&;d_vY6Y2?-6o3_U!K9pePoD}fohUMF=Z`^cyAiM`+*7$iwE3}Z=BPPh5~!R~S8 zq%Z=@f1)fh3QrluTfz8M2_|_ECx*VZ??mx}WDJPJ^}C0Z?OvOvrO8wd_$X0JP+SP{ z?sB~8`9$KC7p=p+12cIYm|_OaZPY@4TaDHj5_*!ihzB)t$&|82`0mW04%%_o>-s#?1j|3GBRU`Ow^H^On8559HQU!Mt0);AY8{8sr z*?17C9=cn=p5i4tv>Ej@Y5)d{1K4VEk`nl3jc-ap)?s|z@kTrH@%K3T?94k_iBu@^ z8E3qsnODWwYblb4F`k4}+F{=4f$fpD<=}b(5H+8JrM{m(DuxRmR*3YGLEPCQZ~=Qm zGxlh)=9(uI)Ri>B(8~~O8FYa7HHgS`D0jN~%c~%v|Gcgb5)BVz$hk}1$0rLw1!lZW zr17sZ%^4JpuD~O30o$KolFbJ2Rdcw2ebb40@?c{XQCmv8$zVB2CN5mdw1%IQcM(p& z3RlUohdsmLCW+c_vQx!HIYKvn%_A=z6+QM&$=#|>IHLMY>-E{$Qyx)m z&zDky1I`C92T4Oc2hjR!oN+{PP-kpV1#sBCve)y}X#oupYJodCTPVYB-4#)5cthoy z+U#sDQ-`NJogPo>;r1+vrIkpz7kx`Ud3}Ig6oWRuz*GSub2a}tb-;egSbgH0dHHuOjP*3y@yXu0*|BbiftxCtxN z^IJKfHL}jAP>TC5dz;mM-M=`-YtDzDy~yMZ*u*i2^oT5&(n=7k>{9%-2jhLT>%w8^ z^%T5EClY}vAiEt*=2n?dlj%MxTB0wP`&BZg6Lr0zOAU=u&d&^?F)FxT8R+q})vz~5 zx9$b{z?sW6$7iS7kjVSq^i!jyb^X~|G+A&hr9F^vNm)`()<}W7kAFv-KhMsre7{`g z+>S)HORY7^L8&qCs9v;63R0Z!T|4(`dQ>FxsgLx>=rvntpl#w^)mhw1PjkJS`v+=w zPYL(VvxksVd_+-IqOfofJ?6jK$;s*u3ODZqBq})vGLH#|rH@Z8 zsc%23%7n!gf`q3`mMO-2uMPx7V3gIw*|JE^#xDe4O+IAR3pN9^4Ilc3Nke0XBDb)E z8n{3ck)r7%POOuY@;bYYS-U=FmC2YA|3`pE@ie*1fO&m9`m^;xdDMM?%vW>B$JHAy zrfe>ofy`yZ9$STUV$UaHEc(O3lN;%o9ix0<4~J)u;#O(U>yt4;=uSMP2N{1Q%j6hb z)gm<>0B4O(^H`wGbmt_e?{LXxXCBC9v}Zh~0$|rgZRL?>`cr+&3rcMdF7xgic}g(K z(Qhf7pxG=yfr}kV>d*8~!{1ws_EtLwxP-f(fNC@7U!9D}Qnu02*-)Mu_osTgqs7cI^Nd?M98({^y|TiecE)Zx;}te`2iBI$*q|Bh*LZKYt4Ly1wGyWzV*u@FBYDXkKLhr)=Tpx0QWc&OTvG|tjViE#Z*(!4;U~|n&I*&^@*ObQvF+j z{0)t!#T`s0MvEd2i%-KbmS~G*+yP`59l|>uIj}bawBuReVvmjM)+N5 zjM)U)|F-UPv#tF!){Q{#we>2?n~Tg80(5;#8A)vdUcuJaX#cueDkdB^WEBr6-){WG{CM zv?pV#%k7t!E&?2nt`Uv3EoJWNGb|1GX&y+Q>=r@xb63W_A4UoRW|?7i^VDgev-V=3 z>2zz&YFdZ0gbdVId=|%Am>}rBy97v_^(j-da@Z4qpbrMorweXObZy84fG-UlS|t;% zKs{NWn!8Rm058$|4p$j)TU zl4Omyqo;~du&qd5u0J4*dl_SEVnv-=_p1U<*+cDwIzu#@_z|v!IX1 zU4|OWKlFk&8HHt+#IpToRDSocA_lK;>PJxLNd?|Z_4{izYs)_z(=#1;AO=1@8R~P6 zZ->kcTR#br+{+m@DOTf<@TDDf!HptqsRNBcK<-YQY3fp>A=IWz)0=yc8GwR%xp$wvLn0wv?=4xaJouBko{3X9x)b=Y>O^-kQ1#x zf5SUDfIQ{ZD9dAgrXRne$R5$xnt{$EAeDVxQC**Ai{f`(HfV@DN(7Oy; z{6%NcXcc*2&2Yo(Dx(ot$C>Cg#dqbgvd|J}4mQCrx;=71{2pM<#K9MmROE%TGdniV z-$qo=X?660VC?Q;6<)Nu0wwQQ7%Vd>^g5CiPXh7Bl8npT3fBj%n4aB5_TMG%&RF6v z@MdKecOcJ zE&tBmaA5-}1qLzV1WY1Gxbs~v)q+n>yeBeZ8h+%l|Ci49F}lDC&^;LqfatJR!eWEi za)0alRBDA5x_wYH2n*HldfzyD-e+F#DJ3a1&(3$JyKNv~JS8UuHa7zt4&@TN42OLl6ezE0e^T+d6f2#k4dO@nNJ~lHZBFxW zPyek@({y8neZ0Mi*M$aIXt4ef`}(h;dL2Qvl+!0$MlSjLyqKGp; zQTxTGp2u9GK{g27PV=jK=NQn1?jEzPx(cHPxZZ@T0m66s997G-Gc$jtcvr7R(w_u` zjYJJ2+tB7Vn#1pY|4I<~=;^_M8?>m@Om1NI_VM{UYFuW7>*aC={2o;2Z77+=mZRHk z_tlG<)mZd4&7B0hYy29J%$8?MgG(N>&1RJ9ud8q!kToA6G?g3bghKR?eZs91NR1gsPObqv3 z&u_hWa7my1%{}UE8`5{;%^rC!DAI1xO(D@OUBoDsRm!Kyiq+7klJEsS$~{1LCCk%R zT;7DAij}QuzYH)v@a#ZKJ{-(yc1 zWj_*4^Rm+2W@LQp7685%AW$jSwXtZ-&?K#J7W3YMhF;VYP3nTfZk9RzE)Y^0cu{KWfEp5Mq8S8~yvZFFI1F!|i+y57 zlWup-@`M!zhXH6O6%%$VSNkatnEZB2NE|HXRTb232=)IxG!f8{H5==m84b99NBW9{ z2tZ#^&M^wF=~-gYk$B&UpB~DvcgX+d|21iOcGo<8DmxU}*{GT1e{N|+j9g42_JE5x zzC%5c9{C)C!&A;luglkLxWrSt-w2*GxyZypru|sN67p3B3P?a>XNf|kg{G$-h=}NV zP$X@Z!|%wCJ`2#LudAX(n;nFI12m&Ei{!j;T!@c~EL36h%@chYXhvt+{B8KzbT7ow zs%gF~LuC~g<@jjNcw#yxql18bIQMs|cr_U0n*eUny?X%#c4J_toF!>CJ}+J`9HW)g z9&bob%%XSy3%YP7e@O=_c2V19{oT?8K-qJL27pgv4dV0$qp8m~zacDk$BMn2Ip+6T z4FMoP;+02^oF(?{9MI#cXCiMy(c2fvr*-?i1nWEU$$0L?hDI(|cIY&?|Jws0jAMl#45z_)%R#;U?pf?z(C($^HHFFdm;MW5R33oWV0Gjg1vq2)cDbN<^H zS}N=&`K`v4ZK|z#!$pq=5}0N%k1b-BJ~`+WMxA(pAHUQu|c+IOckJ!^GiJ$J>4z*Ip)1Qz}<^%3&->%V}!l^SmCgwjg6c0 zwSc=exMivs5~{I)Q&pyxuZP;^0o$!~vo9MPSmBA~LZXs88x(&ESs4DTkdvgOw7Xr| z(0oUDbo3@=-{(N_v6PIcP`8HVhRF4_x;@JfLc>q(1-Rn1L8QQ;8+K!3wIW`$upPMw zE(RN9&G*j*F&{CP#mrypT9&^HE@pXFn@qdvGcf_B#MY-$5FzPsUViUOfYDI!RuLfS zReg^=508WK;~C6Qn`y_>Q7LC9JUk7a5?h$T3dJ8qbTFCws?}W(EwT}p4=AjQUAK{y z2N~7l2V`yi;dG1UqZsgilM2;no;-B`Qz)zuh!8KJ4Hsw)!_T^G{94(4P5p{426q1Q zMc22X+k{Q7{L}hBT>Mk9#2%X$pCkJkeKp}QgZU-2b}f&ZP8i^Skqp!{vB5&GWo!WH zdUl1*CP3{eiwK;MG|C+t8%Fhw7lh zal~_s*z>EwQg|Njy^wU+bvf}5H0PHK1?6IUAlRvvs|ne5nkA@4_zYxgN3J0kMBuT+ zh!l4*S4e_V!ao2P-H2R7uQ>zA)bkmX+$_}jIHK-el90Uoxhv3ckEY0I{5N*iqNU2y zL#Ba~%v-J^4#|?*?~ju)wO92GnrZ#9$$1HGh&lV+4Z*`% z4!P{iM2aG3TAy3`;{V8LtpH?qnpg>ru+xl)l*AI@Yn)$V!?Xw^eDD?HcD z7Y&^0YNy+1x%=j|`splz_(f}ocuw^fL zrg-F~8Jy;ue-y4O^Q~v8_Jbch>pK#2^Lo^eRc|_V>+YdAyL;9LwWPEFN+;DXt%C)B zKUuVk&YT@O&oscLG30$HV8h?7J6EE2an#}5hIBHfx%uY@o|WB1iJu(i-$hwG;e^{U z`s>Dx@BV9z&RrjphSqq}T#^+$_5lJb&J$?YpD17`bNA=i_R2OT_h~r0Z(R->_cp-=l9sE~=}kZ7in=eEds#={ANm(xKK&VHkCf3G|;jHgk9h zh7HV>j{Qspp?z{dA?q-}J)k$LUYe}7|22ct&&*{Gzn=}1qMiqPm+m0i1%+JAHJ1Bx z(UHe5!Py$@?|g;B%y15aPwS#{7&jMMHailB3W=fXBN=y_XucF`3~ab`(OiM4#VB1mRxv#1T3o0u~Q2`&Pl zD)$u!pnAb&vkTPWG%VwWh$uR2j$srnge3`kw?)7!&=DBA8y^y*~2;vJGPBEf!a;@yN0aD4#)x2eQ!F1$(r(nJj1cB$CY1F!(UAHxbinkYf0R`zmk*zdO?!Q!>wJg4=&L5 zXiXIV{bcnPqP>$x2C4_Boktosdcyz$JB%f|#VE`y_o7Jr7ydlMosDH7s7Jldgc*6t zx~lwWu>G2Q-Ok)axw@I_JP_DMxW|#XpmT@A`c6g|>|LdyZ+iDw%VpgLRpi6pn&2LU ztmio44kvJb&UJ6K-_aZRVYNN?-A?G;SVVN1SbFA4G8TJk+m1}gUHV;a;-XxllG|15 zyOR7nIizX|*NfVJ$N5EXp>jHQ9Yy{Th&qum3=`?`x_)-k-_?Mrf)7x=ykeVQRAEWW zHgkV^>0U}Yj9veOytY%D1lho<5?Z3(c#l)>jou&hLQ&e1MdVHT%k>F){GqNuN~NDn z7rO#_uU;TLl5Aelfe#-UxjN8Yz*Uo~Y4t|)8B_c6&5H*3TRBv_G#!p`!th>O8hn=0!|q7vO@L* z9tlV_Svh-!2{V~wThGRrpe*C{+JNciADH0mWbmL3F zDu+z?E%{M3+)m7A^aWE|b*!>*%$m@joyEoVDp{y+kSx>y06@k*GIu<&=UGvtF75*P ztkTCv_;LX6993eD1x8(O%Q5}KCiCXt$XK9i4qa+SMoWs)l~`g!;~n92z~0O0dCg&}wE%LZ z4gG5X72kXU#>Qz*B`xKc7Tt_V3JHi4ytG2UmvL_5qvkY@g2eGor=R z>spbE#a8Lf5Fd(Si|rJ*HxDFryzY%vv<}+o!1N>A6#X3pt&DA9ZNm+HaSw}F*(MN( z)DJkaH4HunCJhNU-FEWsyut2d=eB|s3&)fwYDo3Fs7c(EsQcgV6bx6Syn)KPB@h&_fCz zsu}!mm2jF9v+}>T`_A*F9cg?d_H4f3 zL7NLmugi{f;sukF<;%12ap4#)*})%l=htx#ql1cIjN_6%SkyZ?`7)XM{WU9mz!!jP zE9S)*`S2lvS_?lfS!CDEow71oVJazYfHZfta+&oqV#aQ_E{(hAS+ z5_`jEgAU}?xU^<~oV4^!nwePC)PB+nB!!i6-&J1sl4rNc@s$~PtUwGPj)ef=UeNQjg3H{A$Sizm^hez0~U)M zCrj0BsCqh24E(ScwR{`$MXrC=q`(A;zk5?D^rSwP_TiI3*kn-UR(uy=+bx+ovKL1MV^2M{{@ofay5{ zYUZT%cEP*7+6<`fp28ks<^;P0WOn8vgbQ$>EK5>O$)lJ&qV9eY7;dSa0eq8Yu=?%v`8YBSUmjtvTKGEF!DFyUmw%#ZwP1=bdA(_j(Iex9Nnpj z`q8oHYaPC8`=uMn1R^pJI>d% z7oY!*j@Fce0=2q*%`nTIQx*5=;)Yhb4Rdzp8ueR}l(5Mpa&j^ha^0aM85~P4Hv@w0 zV7c&(|GL)6Sf#6*aTypYLk#}+Zbjb2o6EllY}?yfw>HM*>j`)R`D@v_ncCx9c*Z|1g0S5LKq8fS>p_qVt_kyl#K!&rdNwYk4%Ql+~fGE!Q#0SMNvcq z)73+iTeBMOJs@JAo51-H@9NlX(laB8JseQ{K~Pkh-@c^t{Y%}k$r!3fI9}_Gl*p?X zMWcmWh9JJ=uNmv|2gA>8E*x(^k#YPh*2H@X>n>VtOadIZ@0)i_|3% zz>okK1HDCkBfwuThBe^I^E1hl=&PrSu%;+VPvO$tOVdlM4FmuSgXe6s1IiV z=ezQ)fzug?JpAV4#Bm%tRKmGgMAR(UgZ*6L3nj{=!AtFy*+dT0M& zclh0_e@T-P4aZTYndE@WS%b7*7FBjCgZz}!}%de*Y>`E3h;7*VXOfgtyZKH%h7lC*BZq0Y! z!wF!Z`4nX&SUJc&YY&Hwl^y=R{j*JAq)ZMl(SX>R=Zn!eK3W-uD9WRT0Ji{Gq}=SD zhu8oH#?@p@ifkr&j{ElJm&k@NdLwdF^+M<)FjSd_2F6a)QTbgLV=KB@#}j_2$OkB0 z&bG^)`WpP2=F+1Ru4lL%vQFP&%Kg@Q=B~Q^Gh;P`0hR|~4Dq!<>QhmHW%I)TJIgn` zpwR`IlELc2W-F0I*acaI}S}$^_>b_WDt>2hrLpio32%BEB+L+s;d+0m~@{@lm_^tm_q&-@d znuwNr9i#Xp(Dn}EWRLUC*3M?@qWiOZ;!kc!<+*{0*Kmw-LnG>AkEGVM5Ax5jGNu{o zTl=2#AlLoxrhy6#Mzj)g{`my{Z00D%7Rg(v!A`y3b{NzCPQg%4!pT^KIcQ5jc|JY3 zT}#y6P1#$0GvZ7atthMTO?o}d)e|v1=Z?Gfc5$@!zAdlmQ%N3i{w8}Eo1z7nd^H%8 zm@KTZ((t;Z9@Qht4Gwgv5+F+(IPCJsFHdAH=!4n-mefBh8lfUD511q=p7&tDUhZ=9)^Q$-*%Yfx?A^jAOy60cZOH!v>XATI^zvD&`n5gV z_5rAqTICMmD!2!;!Lc&X!)g0v+yyW~DyLp>D1CU00h45&2*eEY55-MY{e$3$cystz zG;DW+9s1?`tKg1{M9Fh+3VtN2c%b%1M1A#kxXemcw+9@-hZqU?q$nBUV@+7-{J1up zR}d{CU;ACvJWRvgF)JiA(jr1~{*hX5dZyD;{$<9DE7z?DS^qM)n?{hp(AJri0CH=i zd1(H6L=V#UXz^%PE5wIi^Tp}@3jKwvA5Kh9&|vmbSF$R)hFRN028!|;{1s>{4#p1x z$g6+eg^tXe&V^SG29dlM*9xZ^SMv(oIK06)NTABV!Ih>^gJhKtN3y#!0!wOWY#E_%*++YSf1e$ znG)OskZ*=M-?_E=}|AK1e$~gdgy*?$9 zI>C%DP|g8)vKj^HxFU?+3^}Hf%m-kdOu` ziJ?=vb71CfzQ23d{rjB7az6Fm``NGO*`t8*3b~Eg)!nDe9n7ub&dcxXHvY4*L8YOZ ztss+N-gTBsPC&U*TeFr`w5LTE2B3ozt$&%b`?SlP5?W)|%x*yIds|`*#Z^&_bh2JG zMx+sWW@m<@+a_GNv~AS>m4Fx;TM{K z!s{hS3+D8>j!ALbR!y?=J^xA-t?K1f6do_yEc|o zq16{8#`Y%kYy@Kqtl1%PzQr!4;G(G zh9x%;F+6T(Jy!Wx|K-9=eMCyqsH}8?H9)=m?WLZO*&!xPEaR8f{~WL9w2cHEFuNd0 zFI`9@>EG@+30R#R;WT=&_tnUEi2ZFyMDtv#X9wjgU0U5#+g#ViZBPYF+>J&|5-NY? z3doE;5A2c_L}X+N$&BjCjt=;JlfE)7n^Pe0GrYXb4zfe)b_Yq;Ynn&LxKGEHVgUEW zfz^pS`@n%R?}RTM zVJ$+ynF)<1OpqK)yE%Xpk!o+#&ez4h326^s+@zxy`5r0!n}-%EK>1KxUUoUA86{P{ zPm-*IzNx+%mi|uGI-$z(9*+hY+Hb)NCMk$;Y|FaaF9uDsq7(#7zU)tHTzut zoAWr=>pYb8EW<^@NF5D|2z>G+@*b(~f+DMFf;oJEk^lH{CG0TSnT(PA8cPxUy5%Sx zbpP%-A-j9-L4BZa5Q!b&4`JQS12{dD`tH-Z$UF22xA6J5N5vIfO(|!Zpg9i|80Tj<9fEzjCBWLu|7skK~TKB{0h8rfU)mj<@| zA`vXR<#`!8819r&@TkwK?|Cg@y!ukKKz3%Ex3iQS4CV>T<{sQ6#y#4eOqw!1PRx8( zj$hCpl!Pxcx2-K(xEY1-Z^2Anm5pWWKeUy~kxquv{$h56q@a?UI+Ry=Gb_{R z9qK-^r22-F6W2pEvGeac$ADC5k`$PD0Q^@(>)EGM>l_bCd}n+ypUEi+v$R*V*xmG; zM(7-YhPbGRaKe_JJ6*N2I%o-9LN70$WotOAPvjUCytUk<(W{+Xf#d-ptolfys-A<7 zBY_vR0*37_mdHRXc!pUBm~v>jp!F}$3u)($2GN7txB1EAZ0l2WDX8ow@CR^I1D&vc zcD@Vflb_~DLl{d)hy{lvj|9OK7+nJb^nW<5C;C~Gl;VvD8jG=x9UrI#UfiZzU z2%oop^@BjVX=3ed)uRRd1TY_I#3eTj@Xiq8AtWCe?o0!t&JwTg7}#qlNIC1g`;rwe zH_x|6^gO$tT(~6UtE^8}@x*`opF=fvK8bSiR#%0_&&?GGBaasQ_h-87>}ZsLg3J?R z1wu>Jk@J4Fzk9}yP*5Dn_J6FT8JIAsouUlY7We%S9<0VLri0FxnLqJmlt&rs4YnO@ z3KTZfy>=QnMWJDM<;cRlR>^-G`e^nqD^(08b>Z5%^*zL83NoTDvTGYJ2k?tv$?~-% zqh!Evuw%`K%k@1bsN9V5ik>8d7#uhF>m0GC+79PXt7`uKak5vZDoo5^`r)WHkE(ki zokV)=!p?g4`~!9&KarS7&9k?uS)A^}y^7hW@`ZmuRIVLk*6SLF$C4Hb zsFRZg`K5K(U+F&<;C+KZ5lx5v=7k4Oix}+}Ff_x*q!Px=8FLtd;6zqeQ$3Q~t&6Av zm=C}`ilWJlAR9Yy)?TEHD_Y}Lys2h(YCPW5_~4mE+l^_Z{q#=Ayv+q>)sQFD_7HRwdqRUJK=zT~AgRajFbES>LKU_Tb-31u-7I+NZZR z4WpogW%Na15PrkUW!znq{`y<*r)OlWNC=+TS1VI~HkCd>l|EC`c|@9Q87&trw^U0B zWn*KA?%bT3ugg?8{}3T>+lE$Yfv}owHhE1{@kG|2pG3!IOk9%0xwm^zr2w3TImv7>h`AJ1|vJ)nH4{s7s4y~{JB?`UyNEsEKZkR9*|N3 zR98Lq9lV#QUKWrF^{Qg?+uOC1LFg?`^Na z;8#pW=HIso%4;6zC zev!?;dFMFZMkYm>67U_l-oMUmb*s}aoZ$QZlVNJ9wzV@3Z7$U`n7bd{0HvU9g3%4K z9?=3KiD&1RBk(8dvp%R0lL}6wBdh@5Bh4gsOX=V63;FpA72DMXjXt}snM?+dXv@C@ z4@Z4NvY7e_u4cct%tA_dA(gb_Q>IY)^BMHcW<>SD@yU9DdTwp=1i3X9CKeWXAD}=g%n1Q{^~Upb$4kJ%-Ke|9GDgxa38=uSJ{ z2Cy~54GQVg7N>^O?9S@fegMVep5EiZLKSrXCEH%;D(iYPb8(;ZICB)Z{F*>@KEV@aazXo+0d>M*0xQowDV=(f#B;eF*IFm0}@ z;O}cQ0Oi2qa>icDL-rNX*9R2~xUEfGq3=th@WT!zDDacWVC|^Uc_{Ff(E`FYe$>Km zT1Sdk@Zh9?uBOZR2Vz;*AU(8jl4G3Fo74tdn%k@>qVZ%Rm$q7VUyU&OJcZxqbCv>~ zptPr0vH7>03qwdGVoEpR)w!yb_mCuy|2R^1${Sp^2Dh6cS~pes$p{zNIsH?8tESvo zl)=C8fa)B*AY?cV)W7_tgzg`kIodCS7Yfi?1b@I}M&=8(LK^7B?A|D<)<LUif+FE?T$MRY>J;V0I$kr44BJyOHO;k=%S+J|f zkMOGiNABm7pvzix(@D43eujU0Asb-qB@u0?l+p}@=hr+ZyHmRk3yV-GtEtbyj?Vla z+@|v0etq!P9F!&GF0{M&6^fw$56PZW4-`@!!B zk7Kuu?kS}Bl-{sgN)=;|i@|CxnYbTzwjB}-oGJVYAY zry$lZItw0)+5~>MKT}iI)*J4Fr6fRxK0NM$6*EX4zoYtUJ8kH>GEo2%By zBAFKV0DADzdeFh}Ldpa0{ezc@t-%}<@n>#guxXFQlPxVUa3>{Q2G2QCD*Ud^PSV*- zw5&4x9pmcg8(*Y}siT2!EMe_$p#YuuCDiEW(p7Qn)RbJMJ=p0`p3cCrJ@Ic-tOs%_ zcO)?%T!W;IzEc+AYdJ;t2RG-g*_6~uQ{C6GhGpE+Mbdl6Cs=Ih8nyqM3pICDye`wgbBcCo+xI5Y`EeSqcf zA5OnCs*C|_c6dJs&?1ZqLl+b9N<~!B4_5L&K$C$3Q*61zArp|-&+Uycml$1X|&512fZ2cSBsmw%s3=E z^E>xkJovZ4zrpPy_l#N5aMtk`s7kTPPZ{#;Z6KG1l z`5_^BJ+(c4c$F4etLGh|r>l=jd85TfE2v&?48pz(C$Fq)MUgyZeHrGc&0?NGOJsJ&q%Q{4r987Z&!0$4?H zoyRp24gjRezFgM#X4Lul8o(4XO7Z{iDu3$R%F9o@KOfAXEg#JR$m3nIX`&ro0V_7H zuMdV-@54u5Q$E$#k&H53B#6sr{vwEL+%mpX3i?A+0|vtr@2-DWTtcPX;sa%dj`TNB z0H)AM*d2||qCZ%;8htwd1iWOMvM!h|Sq2EB*jfMhVMtmqc)2>Spkw8Fqz-zAH11gL z2*;Y;CyE8cbN}$zl-~dqs5fZx44)tJ#E3agwjfKL$(v?EY-L zbdhgw>zJ5oQZ&Uhrmu6U?kv+)Y->F2s zf4Ea?B9N#gTCkmJW!Y){v>uj=pj-=b;>fYRX26!lt#0Ttob05X?SGR`bic}Nf!n-& zq}(Bm4xGGf+169vo6q!Rw`1&S1RY)X!r#yfdViNIu(gBl5WS$@>HVMtLGnB)6m zY4?{n;P_Gge(@0we?Iqj17bN+Bphj5Wle6Jp7%c6Ya0N&@MhZyzqn#(cucEMCG6uT z99VHsqzCcr$&{q02@F6`|1 z`R(q6eP<{!-#q&A5e&%S)915VW10Z`G#>_o!<-s}&x6Q##g_LjE~96IPrboQ&G?rpV9##(v6qIBek)7GWlv%_ToPKwmx6UB);4uqlWV zVjS1@n6FtVwohAbZ^n%&gSyZZ%Elr>;D`nwE6E$4T)7QQ@x!t8qXM zB-g~l@;B$g=`*c`hzJsZYUni!+YUt)_Gt%4Tu22xITuytR8tz4Apr;!md*b&@xiwb-AU;ZP?`{c$nYd3;|v+Ix$e>hFp-2B1sYR z>oNXYxB z)Z`^QDIm0{t6%L7omj36^*dHcokk%*0(9VGZ||cZi?nbu4^5LFZ|7dLpBIH77jE@c zP~}7)%E_>}B+L4oQD%y*HGz>v+q5t1k|>424zF3Fw@SZ8JA9{BaQBo{4YIAXAbTrk zo?lOI-iKItwsj=#>UD}CI4mg7z|HAr3y-%nkGTv_g;NwHXCOM%XQFd}5O?fodv@BU zeE3jeg@euP{9NH6%izjQzClrvu`w4Yd^Sfh6+X^!H}y|I@Pt%33>QMGEp`l$4f6 z)k~+Q>TmppXT+hN^;;@QsQ95o4WD+~-I(ei1&6Z&WYp})e*23N~|K}n~+6c0%X1If|SLcU(* z`B%+NnbZ5WLReS!pKV%BR&VdL4>73{e9NV5^-f=#pYjRCa=W_K8!a3;CRJAqF)ZZ- zeE*!4Lbwx(MNFo;dbC!3pfKNjZ+Gx@yx=g#fum|-n9j+aUQie_S~wYVIqd9mbE8Q{ zac$lNCRC~YG1#6IWWY-P)%_HZW-(x68QAyY6)XRyPg|8q zqaBhxY@jf3=HUYh?7A|`edWLsj@S$FUfzV0)p#Af$RBJ=*;FXUs&c{RXdq9wVc;F_ z8%=3`dWLWsanrPRnK2y{m?ryH&Mv*5*Rs^3}t!{-3Tzn zXvb!7&K5=8NTw=NRH!inf}Qnc3etb;Kl1=Z6N=CYJ6^`K(9)K|m&~t-Pgp!69`(zf zYCr4|+5|JMfj(d z&&Ya+=G|;AB3<16#o>w=(>TAI(=I`;hzydE@VwypbuD8Kia1Cy!orQ19M65}B1FB1R=|8T9YK1*-pJpaq$A|fK= z>ne)(bU)wqW;gQ~`^a^1Az0=bq<5S(3~}b?>`45@9XnP@>~~bM|LG2Knh!-HWbtfL z&0ow>KLBL@a4El)Q8Pv*Bzj$AhKKpwxv7-+%Zz6TC&CbMKgvcVZJu}0jGg-Uq7=rT z+NCZ_D!O!4VrgRo&S+Yx9+da??D9q0A)+tnJF+29OB))3Bm|KJ*`G1t8;mf-Ra6i( zIwE;&Jec`nny}rSi-bUzm~6q(ZNy2xf{8%X5w z9BbOTyk1l0JG_ui3K?H-FRL=wVc%4P?Q+^4EYK-vhcZ*q(Q$qB@dV*Lc4z;-UR_u7 z?!6a|@Yu2gPVKNZll`W*(q{=Ybojj%?PHV%L8uC$U>v< zH?t*d|J+F09)hTy-u@^($`h{xM7jP$gD)dl_S8ZNDe*F(w*crll@_OgGR{^(AMazH z%wi80l-JQF)e<#XcZH+`4@nV~BHD=mAUmKH14WwW@^3YX`ynWHMQDJa5Ma&|iF9Ha z`OdK%XZ=QG=AWW!H_2K>vy<$p&2GhHXSKa3omNw=mH`H+7VDUHW zF^MXm0*l#C_{jaoEW+_l91#A{*v*?wlwfiOy!fxKeb@24HriwwO8PR{UEJY zxSbt`QQmoVh&ia#m^Tf-*z)J{q!IdIt&q@pq3XxACQvhqLK}$~Xn;{Scj-pEtCw&1 z`D)@0=iz4clq&2p|M;J%xVO&Xch2U!Bj1$23bSTKoY`| z*Oj?C(rtZe_uGBxVrkW8-K;s{PDgi33;O_l=hwa-@{kHeTYz_ZCS^JWaQp zPuWc`2~Fq=i*9^!@GG5RC3v;g=d*e%62=109Ih{{JA(x~fWDTD-ze|*rf3h!qG8rg z(YJi&D_Hq53Rb3U+T&qHlYPDNre`KK86}TskR8q9r-ld~9SzmA8(+3W>m^35#AW3@ zM~A+zAoaW?)@zr>O>6NivK=Ia85ujtp7)4pb*(25-hqy)&~)VgH8xI(=kDo+=p2qm z*_oH(`cR+i06a@yRuxh)EiEtq?XBzA!nPtCmjgi?Wi`(a!lZ=nhGxWK2zk40irfIS ze}9ypFJbE@yR-CBK*)7}>{ls67OVJ0L82-rhx4;?sJ;DBwN~)~J*>hFvZTt5KIy7f!M9(1wQl(5Gw#sspQG{p?k&T3CEu;Fr=2SnKl*FIYvP z*9>>kFx|+E!o*E|$p*+ee7SS|**!wJOKv(yt%taxhv1Pj6;T-QATCRZ7lm4wx{Q~c z(s}6Cp^@G4GHO{-?avezJ`(w>` zeK6P}m!-y=BKmlUr{!8);he0?P^wEX&zk2D39dfJ=G4>s+b-A0xmH53VO#)lCaRF* zVRe>OGp9xmO-VjW(Q^KyM}{u1yXBP!kobmiavGK{@~fq^H}Q5N!gLYr-!KGtFG68f zm#Mlm0sR^|nc>iwfq7=g*sxRgycAsQIVWXC;`VKAY(#tGu<}Q7O#~&%Q}1;h#fZ zodDt5r*`Iw$37qJ3fSaqso*?0aCQ3W)ER~0lNqy)9IS9#nm{ee*(^Xt_3g z89mx(&x$$_9O`KVqn{K0J_r9e#IBs(nVJ$GZ<%+n3`I}@j$#n^F04L09?Dezdy%sn z&FAq~XJN}~=ejL+P??&Af=C!6z#z!@-=kWJWwfsBvAbW1!vA}>X%yAATHiu@Tfy__ z(JV=r;+Y|T+^kI=fS5Wr(xxrr4b+3-Kq@YCTj;;#JmGhRt6~!V1OlYKVGpA=8q@7J zE=D73s&H@;d*fg zd2H46Gv@u${>Kj`$FDPn(p0j!>bR9*2#@>m2ra;?qF=MHIHD&sc@QTYS8f55<*s-M z+flNFbzDp6D`#ESC48^hdGid*F0Xi=ehrT$tR8?0IN*=j*dIn-yah{96^{j$_)ZD zPdy7zoYFnQYtjJm@rMMtiRe6*JO4%={CK`)uk>Hh94lTe={<|%)J&PFOV|8YDIsO1 zFXINAUl=vvMfKv12~`Hqpqb2QeUq||W`Zg86G zBT+S_2Z^VA*a^TUr6j`81q;t_ECVJ}Dc4yFH^20W8G1G!S7h|DG6lj@l)TE-(A5hp zlO+v9F5;4*^_2@yw1fF=?!aD+4yC7SP!%lKDu={59!g&1fG{R``HiSY=vf{*u?mr< z$|Tw8X?X7;AKj}EOmSzIQS^VhCXI)Q+1lFU{qJ_!)o~9wTM~`Hm8?$Lz|k&! z)2aQ9COBlf$qk$`DpI1Mm<-bLWckm3>T}(A z8b7@}pB#544Vfb5@HChRd2o-w7|`#t!;0j@aS!;3K$_O-A?-pS22Unn%x(Vn0lbvD zc|{tYMzx#gtMrdA2;4ZS%t(oUkV8codo7Tn)}iGA8%ymEVLr>Cpa#ll4|%JdrKXh~ zxe%5%eD35vE`TJFai&jmH8noq3D8&=UcNIYH^U4~r zl?M6}%r^wA^h%IN7rl-*ce+8NhKdmz9?!+~g19K>rljpp7#QSg#U3NlR7l5smEAP5@(aOSiz9Jn9qC}qf;kcW2j&|dk z!CWx6O@=*`!KA>gZ{CDORVzOl&p3hn1nz6ey~$rIuk&9Zt&p^Kf2i4^=Bo1<(1So| zw(HGIUkOg701uF%*o)2-8d~@^k;Q)vX0TDi6*G>unS>m z4k?A#_I#vzwAF4EDL90nJifUajUy7gQ$d9DS^ZdRIwpA;JZ5R-gd_VcID}Ao`Lp&P zZF6bl8#DNhJ-r&me7Yo82;((6N;-G_P15}IYyEB*rY}iTReB6$qbFm3?n@!wf7D67 zqf(iDDCVT|hV-SUQRQg6?itmqJ)#dM1l#u;)8!enGjIAXvE&6W@~dae?P0TPg-a>1 z+br?7yB;Iw!E*p8Rur~mreG%8hCsQKDYP z2`3a{pwVeKSexgX)^>5n!x%Bj}%inQ*c

G*k0tbeMnM8kv(?d#6=uc5`4W>%81%1q?mY#gu(nLIbIw7#`%^;B@-tk<8C3Z2^?IXK=@Mco$^xI_8IN^-_` zY2ZixokT&=Mf3+j=c<~Lpq>)=$PaY>XX|yKqnXLAHpoWt-fHk;o1J&BN zAqKdv>o4XL{3eMfPowPlow}Ppxao;`&5cDtb;)1MX$~+`{$GB^&%+Rzx%KGE$bZge zM-_3*34lLDp_Exfim`8VbzV!l8E)Rf%02u$-rhc}XovTm45EDRC>?4Gmr0b1l&XL# z`jVc;vtg-A)77UV0va?pUAt8^)u|I~bERtiadhhmmbencyAY)g+TZ)dAfG#~DW!Uu z>eBhAxHU67$n5X*txX`V>4Z)taW~fr`0AdMZ`EfWl-(nWk`X=E%0S6@ zhe+<2YRE1dq5@}tFmC;>9wU+>kUh6Gr>6GO?}9a)n2K4y=RkuK&3-yM6xkGL$zjCe zPE{3++zLDLTG|VvJe(_b{s>d~b=u}3Qs%QVdxo!AeYZP1YJ@<{;O){efoPnJ%&_+~ zVo2Ww=6I>qk_PSQfXk|RN8rRL~3qt>s)o5zlI%O)Yh?H^#d8f67VlsRwz_A(zpZ_x!1{!(8GXf2Z1D-*9S0h+K$s+bq5G)jadIo22YBZ7xl>U$8>o0YmM$lQRJh{f$om9`> zRGkrET!ofY2J*WME2I}-K)-ucR8j6NaQXY2%71RM_)Ei966v+XahtH_-1{N3%PE~!%;*-T0!sOgv;dMRrS@05z1#G#TI~d{bgu~1FTr#G_wQk6bF)!=pCDP&Z9$a! zkE>wxz(dGT4hA5vu@xm3|BxvnvOlReBNN%kT-Q8cC!g%^Zvx4#_7ku!V>-pm2g z=ne(cfh;2OZgjf(ZM18I9a{3%Eg7-zqvg~G|Gw_5V|B+b1*)LWCRSA%i%+H#)Z|%Q z4F2d_@EiTjB{A`Ma^w?mnD&{r_;ynF)<*+FmOE*nWnZi0+v1z=P@#{}1+@q_ism)T zp1Vi--NR=gH5a=%$QEuVm2Ci1jJ*1vmk(Fak!SF)7S6>vgvBR8A7ML0RsN4%tot@S z{&11UqsH6JwTOhXI2eq#o3FN5OaHl2Z1;<0&jA79#1vB)B=3YGCAgHjxCpgG-&Ukf zV&K%P2-TC6g+%(4c*}c_{{Oocu7Exppb}^36_HNrcI+j_D|KYMj~IsZg>NDb%C{}f zkOxWZJdTf81-DvzrN=)}p27Q+T;|x>TeInP5&eb9LXg>(2{-Pw23p|e!^3Cv+_+uBBYorHQN`9l~kBCBFP&71< z->g1}&7GhF@VYwQG(6eV^L`XPot+$3QL2sp^zK$Yssd}Pt@ z|BE?cHN1lT&~NIy3wov0cnN2r)DB6@@{79g)?o?RL5faAp~SR--C zW3HtegQ3f^9i?qQi^`vh@rRH&`Be?Q-5+kQj*QM_ZUOPPHutE~t;DT`2c2H|e1quA{cD)?;C~YchUApz z@6|#=l1IhB5Shd;UgZET(2bY05m$)I#y_PEVV_rtLczwy5>R36T)}lH$I8N@2)(2p zOgR)}l$2CLdf#4Nw5)Pq1^A%y*LMd|L0Z&w9hZzrL1+>w#d8y}7wcfYeigqje~2r^mZVlIpG>|45+EZ{Sf8F@{e`!A8E*6jQ13E=~`1mll!WRsEs*HJ;;YYi337K3N z^_Pa}eNTZ7x2^To^$sh5M3_R%{XXK&Kqj`t?I;OhB^~K1G!dZ~-Zg+G{GR{0F?qN! zoOo16(w8uU`vS>s1Q`Rx_DV!2E@LSKyy2GkU6Z8dxm)gULOVWJ9$-s5SNw-!7E|Kc zD}ROYmA#FU-Fu9DF8ySASZ9qT*EoSW`TMgcq4-vwX5?)THVOy_fOQnpXu9tR?%@oG z!_E-2}A`+ZFyL?C7jeY|UM=xOC$ zs2dzupFyM1Fx&c}=QD9~wbD7^TX|#*d8Z+nO2&AJi2V(Rhw%Ac3 zUtnvG12ZXeBOYpN7t4u)YcHq698R)kI5=jS-6Mzj7)+ zPQGmAS{Z7oe?)Y+zJr}~Y5v}7{NwqGit~q-Qhr9d{PGhI{XdVYDVlbVrr49kxPtE+ zKy1WK-7x30=D&g(4u=;LSlMf>$r*=&Aw1W*_uIkWPL5@a?%@8$)QWk-+q#+P{J|tg zn5yo+WEoVDX=+kS`S6SK_++mP!M{ujapD8`V5Rt@8%vJWTVy!-NNH`W`m_3Ug-Yap z*tjn=z?XKG<&FUPJ0lL#_VCpP-Oz>KjKiXYePnBQQpp34=ZtgD?uv=W{}T zew9K5_^ey6tEYFBA_w$xCn!bJZVE(#ppFeOaW(pVuP7{Di>2Ke^UleXmIvj(+{XWe z&;ldEOHv_K2bO;gx)Ni3yMNnBzMyL#OIER3ZQiZy4@T#+>nf`4Dn(n*HKc%db<{V(sT`#SsMte4#bojmpz|CwkI^FM-DaKBW)#r5qg$4i<LI6&!*b)8Xcc9)qIWHWtdFOv~BNz!Un`+_a3E{p%kB@ zW4Bb>C%TRGHOK?ve-jgqRoqrszgcSBy0|k11gp!%Tp{K4wRDnK9Nqo2A04tb;xL{< zZ@k4Tq(Q$7nu=351#{vBfvVpoMO+ELhDIxLi-skrqqVeRM`Cp!*VU^bk5tllqRlmw z#K2eccM$?P^7CIOJ8Q^$0HfibE+2(F{?bMANu@_y>G5E@5<@1w#*VgR!hZz;5<<YR#hy3*0-B$akc41Bb--IZQ)BxyTarK%9 zrY!9L>S_HB>|xnS!0vKf1%q&P%<7EyLZ-jGZFvDGv9B&KKxr${;^F0W`s$SV4B?I; zw)Kp`LV9=j1E=Bl)k3hVCq?YtyN`JM{;Uso&(`UhiWapp&Dzk!=w&}mgE#&9=sS|N z;?CgSF#s+n$<~gB5i!U~kaobyn-;mBIW?kWQ3Zd^$QZq*OGi%(fb6lc7;nor+gzVs z_oKyMf1f$>OS@W;~A7Bd%m6At`FBbCNM zdyaW0f5PIY8%6uRM6!c8qMqCvovaQ+rkL605IH`P#EJNFQ@rQK;4NY8P25wdwY+ZO z@*9UoyEqa79v?}F2^r)W!6_YIJwr+ikEEU5fpq53nUO18Has$X7gw!|Kd?b zraf|zl`>(5T}lx0{VOWnp=yMjF3E-OUXf~prI$gEcYl(gLRW=O&y_&*?mBVRT3*-f<-mVrQ`m}C&Z2uHZfNBgTzoWg;tGy>^B7LHQlU@f z7q)TYjwnz4&F0B^^5Jhk{ct-eu>r&L>T5f92y)VYIhB<#3)pNyGVw z%-Q#pbs68>Z2s1|ch%oiQjP7?G*BiZPNGj|eHA+PBji$SvY-j;h3EBlNh%Qf$}*lC zXL7vv9T=u(iMVyrqMG=Dv_H(||M#R{;Ad)5|M6UnNq6c~iNvLhtGBElp_eIN37O<~ zTZfx?7%i0!W|Frz(bD^@d=akHWrVQjYYb4G0I&x_N@#~&uB+iud1$=QLXJhl3VcZE zv?2dZ6ryT{mV5m?JFZR^{D54@lMLXhX}ND-V;M*1;^o%EoqB09ZLej$D#b)k*R(X* zC4ncuBgko364h$=q)dobNG}l{o*}2IS^L^z7&_%0{p;=3&CcPsl)vLAMQ$zb*ZkXV zIP0nZYqeW%IZh52JHYxg4(^cI(e%ooMa#q=+&{{#ld5G$&m>Ncn zioqS?KgFQ^XndU5ncNxtR_&xeh!WLW7eGAE^wpm&G?rs{_h%tY$!V{ra@>iuU7Vh$ zUMH2xp36?p8;om(1P!mLa~>?xp79}g~~t0=|`|(NZa5k_k|+fD3p@WJi6oK#)hJTUnduhgKvIB{mfTY zllfMEHhG0d6sEF@h1?Uc8X>UgdP>vx!kmlO^V0Kym4H}zI!9rM5@eTvM55YbQF7_` zE+@OL&7l`fy$N!H9lrmJL#la*xnmr!L5)-A`l;vm>(4`)}&6EXQf?_(d1m4wrnvyCp9x zhn%7~>C@}ssGP@CChJ(-YI9eQO?qp0?2?pQQX}a_O6S3--7xv%7%8^-XkkK38(JP* zBxjaF4)g2{2PP8pqzCsDWKc8A^S^@mhr28o&yO`&gEY2OVluYb{tcwG4;h&%kvp+t zst4ci1Dt6IW1sT)u=w@bc5NPJPm@>jjjY|Lra+JNaMA1E;_pF(@ikXjnbAg|B?i?$ z&6f4OU$Qc^_+hiXE}Dhn>$MfY%CK5=sib ztoW`abyBhjKE-i6pCyrrhB@{FE-Q^v?EX z4>Y%}K0KPKQg@gCuKX;jOFs21=e`s!+OAjIv1`dt6qs6rfUtTxV> zJ*N@$?s3|*tU^RFHjh#g@MXS)468kd$-l;N-rIqneg4^;p1ngRiIQ=1dRWg1s{zBf zzW2)2codt_xEp1DAS@uRg9Ug+*sNFO7cuL9AmJ_8dB(Vu(|q~pmzZPyPgCZ5kfN{D z4l~A|V|Kh|&V*y0lKt@{tiN1DJQ4rsH#ZYV1bdEpX@3OFFa5Wrs1te4SevtvC_^)-h1fkrI ziy5^SoBVVlAmb>>=D`nniyp*AnBtN;H*L`O`g$uwqhl=0aZ_x~(Ty8YF=g`ERN8^`v^De>6KKJC%{oCudsElQqM z@uf@>?q#@--97BUPZYmN@40Ce;fDLJc_bIK5DWx9PMy^M$j{GOv6!N0p zIE*rNOQ>WVSoPQaGZ>tH1E_Q*Sz)r6-{IbJLU*4EjQ5>_IIU za#^)#p-Z}9J&qi(Q5O+=T6|)YXGy}xO!=1i^+E6p`+N0r?lwFb3?XV}YWVF!1bnO0 zMB!Xa-}{zJhof2~4hnm}NYx(y>*qD=L1{3@&k~l4pUnNqxp=y(=ws)&HxIAb{2A`e zZwULRO=M3`j`~f^g*sAN>z{gJ1&8*-Y+LkqU&g-L)pq-P_A+I3Jp$AKe8BKt`N3f* zgxHn$8CLJmlsH@?_r&jGUZ?x_8l1lzC~^2MqofH`NWl2zZ->2ydYs5D=VaA+>G39n z5|HdLd;F<7=f2@Ic}380&NB_%!{9`aJB~RqHMzv(U+$kOq@?5e8US!usS~w2-`O*6 z)3p5GAPfvMuKzd(DQqsp;W>(sNA{Q0f9oQn&jIannru+;7i@h<4#^&6FQjM6xJdo) zEIzUmn|D{=r#^QmWK{WH1>}s0Znc(P24bfSYj4SRml{{DlI5bFl?1`#@B6G|M6LLJ zSo(b&kC`_@6TzOgLvbWVgEL^zjAYy=+D{oVZu*XXcZoRNzwP%|lJn($W%2h<50Yu7 zr`BX<8{xO%cHXi7jc>YlwFl)i_LSn2T2Hm)=^EzsGG|t&8f)u1GoN5%QtC95mquq6 zV{@;@sx>3cWtNuKa(wtKw(KUcU=0b&LaZ#KV)0y;sw5C*qE6 zqX-wO-*ze))>7~!#o(w3%p$%hml@s7SNmgQgX`h{giw+M&>ho0XUvsOf?3d0W0(3G z_LJ?kU0H5;Ec2GzqlxHTs0E3|G~){aHv; zHAhlCQ;N9qBG!wMJDLm0UfdEAH4-e5AJVLzMc&tV87Y*rWVD)93WaGoeMI;y1p`Pz zH$30&t|lMt!_;`>6Tk|DXLqa|#I zQh6%r1)XBHb@juzeVd}UCYFPyuYYt|3Y9GmTS|lF88X^M7|~9bVPkg0&J)xd=7iGiU#!TcjlS;*lbq0pc0DT__Hd z{!a3dVCI#fiO}jB3DQe98duSgalXRgob?g$6)SCQ^>O?eT&xsk+BDV3I8$U%(T+rF zyytk*_4>XaJhZbfXrZqs*RYU0w3=+;=wnueROGk!eo{_1MzQ`=9$3#Snp24z!k8#> z%@2|J+5hEqqyMdvs37z69-2vn{Xfpf59l=7-(DWuBY(J>Kci7)(T=uTN$-AQL+m!6 zvrVR))aQC~w1Xg>>bUKe{nSeCdm%7(+~#DPp=#+}+MDI?g`ZPTP%j2XV84U6?Jc9B zdFzit*|VXsGCIbg)m*2)XhTyMv|S$@^&0{XGixs|Aeuf!`s=jz5#8Iz*w`RL4_fG9 zUZ7tohX%0ceX+IVvPrQDxG~nFy-bA4@8bOkWuUaJma3jqmF~{C(0t2@R5yMxC}c*h z@-w;;e+Rt9u{q3kR=y5hT3XbQ{JptOPQ>J*xV1ZAP_=7}ZTr^l?w96DhQnxmwK`%E zsZpTXY6^QMC0A52uD3kn)OFQ0DxRDTf#iB(8v;|k>S0HZq!oUWfn#DoD_NI_tjPg{S@*ZQ^1i_Tq!@s?n|df=d$fS9ce}&N4ovyk?ouph*XNj5#&lz+5~^ z_DZ5eZ1A_EgW!DFCtJHoAFCviCnh;H{Xk4he2i4x!aIcJli3E>i-S^K?K7}4`cN8X z#j-x4J!`#cKR8k=J8{_lZN>oJD&n`}L%v?xWq;-=FDB%;?-*DY;*=y495E z>b=6w0=e^s^iKomA4R~Dk@<6D`Xj8dk|U+(e!q*b89V&c*ZY=&`Tr^JJAD zB-0*tQspKlAyBVlCDF5QKF|Kt5I0-M1I-&(sh<5QCn|X>`Z`4taVr z%|&0et|3n6YN^P?=VHSchA!DT1($*PAH`WqA!4`GlTUn2Qu(n}w%nLG=>ueE_?{$H zZj+K`iSg5LRu=xzt=0=HE>kTe>q~X9^v5W8UvYjMdv&h#tETnq(~&aucURaiXB{Oc z4A96a7k_;eCtBK*{cDcqbq+uKzyloBaN)JGss>Y-pBa~wSo_HFR<{X zv{Sx2S1oG!F+y6X$>u2>x=bY4{DS|p0Gx5DA>lF8(N?mz(Ku>_vzQW_cNL1&KKrEU z{P>fr7k2R7{N3@Ur^+^1RPBG#7%q`m)3GJQBCBcUdnqx!Hi}tAD=qbN0Y@ambt3k< zc|;G^9QAKMy)JI*xk;?2z(V;lDq?1YR`NxE<5&Y8W_)Te#+;LRjZu@(^kmquX}ZV4 zzh0*N%A+#>njj|8qYjeo`(rHJcaSXKGmWh^o&L8y@?7*6s6>=)VqQ@YhoMcVqkB%@ zogRUiOc#T{j+BXUK4}X-Qq(l8rt2!i5ENl6zAOBQ&|j)1MRZ=_fP~v*q#A3K6`cF) z1FM83H;C64WZqk84Q4j_lI1nv7|yz1<~KV}U)r!7D}v0OrZfBOEon?DRF(^nB>#vfTt8^_u0(8Lh+J^js>AG$ zZrmGP5)MV#hl5A8D2SzHBuS~sh^l+MaXecLn2>@2@=zHDyvZGJ!lD#}TY^65*cH$bJ&6%)L zsYLDUxU9KIKha-pR^f9rZ{cNYNl||oi|tNQeDi3|Rqvy{F&uHymQZ+lm?&ziZ}i&4 zFS%r0o6icNeUJReF2u~qnzc~2E>mQ`iI;dX)tZT=$v*LVJE;EA`q1n}?b`?HLT&b7$HlH*P|HjG^S)h1I=MDOV$b2@=)MzYxw zDf)w~RP{#LmZuz6+pA9U6`3mKMLKoQZz{=9}kPL5TZikLD)mL)q-_LYa*hL7sm%k1}usd!edT1Q>dAhp+B zGICR3{=F-;(lqMM7H49>7B(=81)pPp^y6p6H*JSaTa&Wyq!Zs}OUV`>a7(Yl+z>LR zC=bR8b zsR8D^sf%}6Co<|X;Dp%U(E`6ZPoBQf<_wGV&xe}W{&Je}`EsYf(|vd2^3wf<`}a$I z7Pb`IypnDjZ}=H{PM%meUNMJThbKou4zeZzgG6eEn+83R+_vxj_Z1k#Fb@4S0y-kryr zzT7aIt>l8HwwV=8 zD#CRbF2vF~*-sBBeLumoMJm%?9cDAZ9$gB|Uu32&t+=J(dvvpF*O(||i(tb>w!j`$ zX(G^pSG*;glF1#8Q0JF(7os@trhlEc=`nG)J47~_b{#UGB0o^cIxCJMB9cG%0^W^I z_{v6s7G`iup29DlN#ZqTO82~_*eEoYJd9Wok-fVA?wjM(bzf5^Sb{GNpC4seojKU4 zUwwpPeMtUV-r=Ega(=>iMG&H@aB{w9Pl_)cO0Q-rU70Ff>otS#WihC+P=pUw5LfzB z!uQLjJzndc9munXH6)pYGL=Jxjzr_XgH1XQ`8K7us+N{L>&6}RtvQC=gYVe~zD&>d zKgDmVw6uDV+{8`_-ad4_g69ztipC%cy8}&r){=4m&jarz!vv+&TsS7(XJ@T$4Tn6j z>}&N;KHZr*x^EbrYxdvDJ_NhaAZ^UtWf}>`@gh(5`OOVfxxcA94_q%$_t3KdYWVCw zKVf%Zfy96P4%bx$3-iDKM4Cc`Bq-vakNjz`lW=U#zux*^e<3-8VAz+^gJ0BnHZUWD z?-+wHg&lS^!g+%&-W5vf$~7GwIyb`nOP$Pzrsir$H~sUIe!)(zt{Qe9q-ImC$g*f% zXb{7{w;L#?<$XZxwY{h?wG@1stBkjr;prPSNjiM-7WWB}Q3{5~HRskBAX1Aa{?!%I zlQnwHunTwE&-KL-`{5wA2LX)Er8c?!{-RFPgYoY3Vcgz3tDVN9HDSWAaYb{cnVL$1 zB;(E&q57s!fB29D+kf2}1f_y{j?39Ydbzfh8K!kt&`YDygd<0eT(R!Da@n9rdo!*w zn8tXxB8UV3l9u;CqxkX*#|4(*awLLwxEF?A z8zhyLmEAZ--&fb?!fR+!QmHmj*>_kB-{-*koHo@Uk0(8s!fXVsyHKbF@y0xBgXa-a zd)xe9zkY4{C>I<~(91FhnBCFXjBEd=xZ^b4KW2ljRY zNROW}ad$a%{mB1uYvi}YE-aB)ev{2v6ep(_v<6Q*^<~|7qIq|g#hsImpR^A|oO`X2G%pto+L}Bm-08AEcj>w%JpPkpJH=FUTu$*>fp_LQPTe zFzGQ`pL~ajjv_66{g?3KLDPHb7W}a@SJ_R`s3-~doX6;Yf(i++3>gDaE~5L;JHkVL z)PUP!#+~{ul}?@d0XJg=hbpMmh*2*X#ZKGwWc?hAG(3S4-kQziHL0Pv=egQWE8%u^ zcR6A2{!~k1-Uw`zzrp{n!0@F&;wgwwgOyabmfS}w(3)fZN@sU6SOT?qc=~kxOIrXH@C9`vJRYKIaTpvEn68YX)Y4m8@ z-5?L29*!`cTY49kh%A$3i?7+dtzn~zzxmSs-%l8LEG%-rvi$RY3ikgU)bcjQW14>$ zD}=v&YcyE;#C0Y$Hv_9&Ay@&;6Qb|jO|m-Esjxi$+rH*p01#qHWu1q3EJ2s)bNZ7)s60eqQxV!B)_Zp&<@@*gQMGfHA~c3zSc}aze^U58;k~^`c2OnD z=i<%i_Xb!u;o0=^^oPHr!<`_ohLen|LoDX5hTQ-feHfJ@bs?kLm*nW9!6#%Non|_2 zuu{2>zcafnNf0Ne(RZZO&9;2DwDkBGz2GrJk43p!K8WbbC|+X-kAqh&+YYfMc<>3@ z_C;mXlQDaMSnH!UH8nNwOk+$dTB^IL`4N@qtB0}f1o{2~r{)4DD%QyycdO1nbsV~poV(t+D2uIzm1jtubUE2}ywJzf*VSAROn=$?_ zI5e5()>>sC<#{kEr5?I>2HN;_8n_>)zNk_fV^+s>CwH~YWp#bJblOF;)JX8Tzh@mr_mFVLn+yzmCf#*X~bo@8(u+Urg zWF1Cs@3+vv<(=(XPE5sdp+28p+rs0@5tpUm>3JVi9NJ#2W)`S>LB~(Z?72euurdDS z9+=VE;M1r|thPlrdT-4M9b=YcU=(#MMS#(`>exMx#Y!Yo9_)F_&Ry$N6#}F~n&M8f zYNZ&y=;=Ftvtfvta%nQg@SNGiNQ3B>#@#tP?{6C~dN?Rak|a-|h!F!jZ@ZGBD6v25G^p2F>=y39PSik$jTsohDU1q1iF>}Z1jF}mS6 z&$aGae0{V)9Va{c!d;Ak{xU8#7dI_n-c;I~VX7QksBA5x5+nF~rZ*R}l46eX**ftc+D)_H0`gZ-kMOPze+c@?1Z&KA5L?@&eUiJoF<$ym8q! zf9y2Iex!=S#;N7Aq5)yP-*{I})<)JknGfeS!$s~xfL>`U>ii%>hVQY$XnF-e(+Fhb zxRo7dbA|9tUlMCerrJ0l!j)^3W8426aMh?Q-ADj`>g37$@It%D)&4Z$MOTDQiI)Tl zjz7&&M(;sT$hRilZ2qRjqY^Jp7b9eswqdNf5bt! zy$C-^4~0^N*L&CFsvVA@ztE+6DmftpYHQ*+|MZ<8j}Ppi+6*XVl}Cfu`dkJ)CvjLY$l7Ph-1)@r^Z9I&02c7XXJ8L@i#HLF zylq+10NzPx0IP)=OvwYl4FSBmx6&w!SMTd=iDGgaToJl<0-6+Nf6U#Em}>iSr$=wCL9Kl+_}jha8oK^5miZow)opA_K_ z{4W?pr~;VW*n#W#@sw;+-APjUxeJ4Oz*0V?r@z|NV6lT)lxG8DjR08@`gCWB_`r={ zsV#*rc3GC~M`Qv{R7M(l1##;an79cA*@W*921>@A5+ps5r*@odB7&3?uC0UoGb27X zF<*$ULN4Ets@Dl~cR7GSyI#6<>CtGILfNu-pW93-N5aim;U9mlaO?JM-&R$z<8XZu zNEd$Ww+g}9W(8*bh zCmv#pr^flhS(d`>38}qB1Q5683;&=Y_KuoFyH#6?x>EZs-@rHU(EV0j=^un3b?w@} zY6|QDDV{~gPo!%9C@WlPQN|`JN4jxprLDw!uIXSLCK_-65t^AHwY5qZEsOzfVW=Dn z_tEG+l^9tBtO5OoO|7A$k;U@dM4U_fpUaNbzQxho6%7I7t+(pQ`a*z0>=r+P_THH> z#IDWtx&w<@j^NgxhPhzt&m}6k~-fT0Vypz5w(1<$s*M2(rD? z9m+7kx5#+%HG$S#2!$&acpX6~+)n+^wev;vSk}=OZO}G8pg0!*f;C(!L!!9|_ zc?n={7`wYUg98}FGdk4s3MA}p&R`5c*A&5h;kFT5?Q0>IOhmR zh=Y1Lnr+kD;SK?EyDHVoX$-~z(ZDBCp$+h81n>w=GURBW+{;xVjCz^J0d-DJ_Dmyp zUb44?#|>8oW8ZRWxjBs2FK!a>c$<=)H5{||wtD6X1SsKXwX(v+D*8X|0_cTHE1aLk z0u}7WU3fr$z-MIuT6+fi$8&2g7wL*IkWszhcw}-PWTC2pSQ$7_zUbcAvgp|0O z#oGIK=Ghx#RO3W(hPz8NNN8}(03$Z>1<2?=I0(hvj01niTgl{&mZ7JnTM3NsQ$tZL zg5K8cBnkS9qEAQ!NFLlA+95^;S~Qxb%Y)shC4h)EBbHId-nVL*#CcR zg|Gm}*)B@hCt?I~Bh&UR64?`f8zCXF&OH`D!{H}N$S%Is#SlIAHX0Av+RZz6?l1df zROoM)M3~Qcwkx`mTw>)_s|&Nog7lPIM&lDdW&<`a-2WsIoC`fdgn|I4N5JD7 zzCKoj8hTi1L-KE1XXfpa`bu?*=e?mGjB_b5iQUR(U zVu<#HX#6~Yi@*lgjyJ%MVUHj}`t)q`NkFNRM+;c_zkW@XW!+8nN&aP-47r3KWWv}k zREiVuRE%QIP!DypkAS)_3lW#9}9v9Yl+gvfB`4IcQe zUwAh^9&()?J`HG->+Ft5w%=k0Zm?omFF6sH0h9v?!eA>{bVY&UglvKq#|ZxcB8 zQMie(I<|=2g2+W+g}ThaxdUGG)eH{Dda|toz!=K1>O29K5DT!dJKyjaDAp74?%aqo z1Yq^CsE8p>%%v*Nek9#->h>6+!r>N>G~iZb$m0T4ed6nT;Oiq*q}Tn#nD#rAGEi(j zul(R3(L!3uuG?G&!pU{kU{=+Q4Qr^~IA~VA<@{Mg0DLUaAkI$M;Y-RLh)#RjK_3^u zRHQ6GvAN1!$AixV){0RGW$MAt0vp5ug<|P%q*fLFd2rBavgxN@k?W665bIg^lFjLF zRmS*bIM1!a!*0GW9|ygf+=ofiFLZ+n{W{I8=G8eSlpXxvGY65I`p}bayAc?|xIP?k zWWW;kYQApp=Tj{7m0NpzJ5I+eF0pSS?7V{8+qZ99Y>+QII2iY+>@cq1Wnk{qsZ)xb z>bknq5)j=z0|KD7FnM{}`OHDGWig^oUsnpZMO+svX|RA&iJp6Y)T&Lk34c7c>wbU3 z43WrE&3W~^cS+A?U&=eSw+x(j2+Bq(+8ekIt)Mk6LI%ppt}_7ZbX{pySR9YBdoWb? zY#pk35XkhwYG&_>6!lLFpin-iBK5P&EWy(p|s6?n;EyAi@*^ zAZM60I(Klz{2mujS>U~D9O(e&rrty z7!j%nYNqf)=|Oc(%|vk~dLi2iqX0&KsonL1doc6i3ebn5)eb$_)U~krt0w2%4-HkvXt(_oHu-=p&5T~Nvv+wQ0tb!V8mLN+3wB0?FsO}GAF=VBE=|vvlAyoC*OxV4DQ+P!=qJ3YV^MCJj$=Y zgf@8@GYd`qmU|h>XXj;pz}WD{B$ao=L<;~rqg?t08k;*vMMi2aS*aKp6s?j{umP4; zhm=tnF{YqEw;&#~RLy(~{vk2(aajH2s*ReAg2uHc$UVciE}Oe>w4f_h-9)2w*gAm3Lw1K7=bn z_>!U!YZv14l~)NQe3YouCDdRLTl|e*0dP=Z$uQ6{vQmZ!#7p5DcmNh7K#b9HW=mIw z>CyRu8E#Z5z^3+_%rLgF8-o#gw$gy4D3nmY;~VEVntP9kHrM9p&Am;I(OyA;&A-$cnj)wP4-unE z5oZd#HLF|~kTah^s950f0Q|II451>HZ#(K4fF+rdl2QuZ_zPfGioL2JpKXg4<-;Q) z9zd0LUHZlLcB?s6PspNo-&}w6?C;`5@q(83qx>NcaEFG_2DKA_H?E-2P$-+;oSPgT z%Mh~df$C7r@|?xMN})l$2XhKQ;Tzf;1gb!#Q-kQt_p4!-FF`>2LvcEV;!OI~qY9J? z5qbwulDq51P-m3#8+eVYWD7!pSbe{pK1MQxDc-!)GFRILK2$nHfuhvNvmU5YC&Bx! z8oQfz?@QlZxOIDA&YV(GQ=i{h8Z^G+XB*3$NbqJtAvKXBlo5qkcwozsqEaW_+td{* zJ4pX9sjeJE$RdTBg%}jHFoZWz`tv>rc(>XKkPMaNQrjq>AV(6CUqdu_H%J0a-7(u; zLtulJ5&Bp+r{6Qc>T}0eVMu^(E_4JD!&V0548pexFYk%$NyGy_et_#V&-NvNA1AXx z$8**eoD6uL$&S>RrA#m-M0k>WC*quY4#N%9Hg2uX1VA}Pl`f6dS>g5|{uUrViBK2S z;=kK?2g!a+!Y<9JeO615tZm#U82A432&@GZ_L}CxsBQ3$p1@QOPNG3*gfui`me0%M z;Af_y`@v0}%kYTe+mm22coqB{6h6DuNaX|lC+}78$|tw1MVa9)1U_W-?_s>A2N+ zd4MLG(c$<&ySBc5s(uKMZ#d_7olN;HGZD@?GFVEvtbvH-H(O? z2xyJ)xq}UgVwEWm4i2`j=dJ$iX$DH{D|!cTnz+XnJQOPf9_{o}Sa-}VVbG+TVG`ur zor`l*-o)NZf<{8YaASu>=|U~3Gj40XFvVWJ_f8RP`&XD{=g zCXl`NA7)7eI=(F3s2qht$`7PgAPiU>K>W=h(5s1_W{7Dga@;O&$Um!gL=c=tNr9mP zsGy%5imNg*GNL;{c&Kv=!Dx82csOCeyQC#7�VK9O^&H2kEB{@fh`CF%1|MaxiU< zK}@bpv&M!|Tb&=yb3M_Q2KnamC*q?!z354_*$Gg#Q78;7GX;#brQCUX0a6j=+!<;_svb3+;1ky@}i%>ONRA z!mDj}&Wjf;^0}>;BPQH{$MW$c)wt(Kw_hM_K3`4An1;Y*X*f|)d=zCjp1gLXa*)r$Snr7|FOv1|P}toz8DfE zXt8dqWgx(wdlLF-xOB5h!83RQ2zw@&hNlV!V}mrm-8I@+8q?t+l|#}{cJ4odDUh9q zry7js5JX3eW6y_*Q-Rj5#UtfvZMK^hEY61wu|d%9hBLQdmwD+PcQ8(V7NM6B+&B8^ zOQH?R`^|k})7q1<_EmJ+`HwH0kX#=OZv>AEcP1uV8tw{?pa)F&b2hesh-itpK7707L>NF z^}#lWF?Zc9d5;Uew{EBO3lMd`RRuqLq10 zQ^)3hfzw3lTg6w^gEO?A8Y$ZS_6z7SO!tgQLY z_-j+jHL-A)ftRkUi-YPqI(yakA6Q`(x4k)9x`8lJx>mv%qD6Ubit1;wy5Z|j~i>Tn#e;Y-#9lG|=HC#siM zb|hTki7ULK$jS80b9E*%V5G~r&#!0kSIjG`60M2{+Zy*db-d2)a#h&EBG{B;(f(_J z3{Oi`e09?FlP_z*V1%1}85P~{YJoI00^w0(=hN?n6D3LT+ zFHVzJl$^HVh#LcY?dfnhe1*hZ)0ONxY4QdkO$`k*FifbFTTV;LH6B7+rqPqyQ+->D z7YANRjAb>xm!5xikt3n2*v+Tdy}QJ{V#4{T^q(FYi|!I#Qq!A@jPB&IT(gcmo0>{m z)p8d7JFi8}Tkh%Px|1D?*H+0Auyk)Ej1NT6P0!3Y^xUOOv>U9g{_^FDmexy+RGkEI zyMg$am~+9w!LGvzakDdZG9!V?(w8qhaFZSw{hlFP=rrM2z>dS6s+LOYz~MLrFZgrl z_F0!#SIaAgox1F~M(#!?f&W|qk7y0xk_`$B+}V<$EHMRVWUO3@3W>+T_V!h*G z*@s6vy~jTJv76ULNR^Mg*~Z&9ciQ?-ug^%Y&;FL4a_{D1H>brrC1&lrn3;#3N{)X! z=zsbEVF`>l`}>XmaKT9Glf_kb?N=u)?0-GGxY6_NrI*o_9Bws3mQ=WJoM8Uq5|opMO%zhx4Y(GxKl($aZxb;`9|jWoStdl;GN&kv8d)Kf@J30LCMSJQrGFsWp@CqL?*XoU^8Kir{3 zs}0tsIm`5lsAc;&qW2lT%N+>`8I)H({NRv$9_$HcZbQfk?Ai&jBcfbz{9i)Bj5%dWLg}N z<=6-CWHrOc%6h+~pDlyljMCpwOz~qEd!VBaUc67z@z&JOk7y^@cexA>b+4^DeYdlg zzu@e;(CL&E9etn+_W1kzTO4}tvzV28(KcIN%e4%LeH*vX<)++M>EGIJRhly1S=j2D zT)@!^*3WjCF?NR^haNNVy5PI#wWglSp$Nu9N2W&mW``Obst$$R`uLa`?vrg63^6;l zRo_$Bojl(R5r{Q&GKf7{uUNY=PMJ|pdTn{;5CJ){WnS+_bv3nHz3=a9r(Zvlo+$is zWwued+)+tMDZ5OVqgH0^j?~nLourtmK%S9DJP|0k7L$Lh)z);2;BcGH<2U1Qi5Z%T z65@2a7Oo59DVN_|APDdN_-Ao2@(`hNzh@D{sUBj0#aMF`Y4#Jl)vXT?x0f>sNJ;5d z?zQtRa2!kg`SXT5IB$8SjA;XRicY?2r01&3=k$fP<(bH}ts18thZ@coyDexaDLqA# zs;Q}Y$kAsS7ycG`9R#4}+-?tng!$%Y=GwF_12r!t`h%{hsi|=js%vVRP`I<~EZ`Fn zxss%j(f|t@OCs$!s#~CTai2qwab1M&*uo)#ztsFyxkDy!MN_VoezrxshIFKIdyYk8 zoy=PDA%*8ndl>Ybd+)auIG7i&X_5|TuZTyuXT3V@k_pSOJxn?Z+eCPRnv`?$6IL znYBgb^rd&okM~B2q&gogpn z`1$#%8Kq`bIFBAZn%AkWsjEJ6e5^Fd*Vh;C;o;E($uuEHmp~w#U=*^3jec>N+?j45 z8|5(4QobUX*W*>TG&hoDkqhQ3gB9G}G2Y|N$Pg3~;&Z!iflQO4olS2k;<5Y(ucf8s zw@?T_D|;eTvL_F6k9m<4X)Q_a!#jVO)jx*F;8X;v$U2t1@q!WR_FSv9oX*G00@UDC zmnNlswy|sUO+iXx?RaZg`Ltg8L*58%tdzk&Nogf)MJaG&s?u)#i7B=vm#CN+ZZx^F zcXiV2-ywi_FX*bMFkO9TtoVN1336dMnN9kRb8$O7x37GRZtEVVdiNi7D{>38xH60Q zs0}#Wng0I%a^|8#hW9({YQ=d*S7ercAGG+9d1!QOqG(1b`&RvdXz5QsYb7VP3P#jt zn`>=EOV>mi6qap)n>~t zwY5(h-^6#ztWGhmz^5c%ml+PX(G0d+^TxM+hm|9e%f0DFAmg@1pMNq7Ib;|T9fRcz zd_uRT>@U4^tJA(wF}us^$?l^lmVTUic8@2*y=ZATDchuugU}$$C>3L#R-E%`Y`)V; zA35DHxR}S%5Rd!vROJ%fu_;bDat{Zg;)SUBbHHSWtKyTh*E|(2(B81LOhxH}JW)E* z=P%R37Z2%9Z35f9}wH8aWLvJ8}v=-_fK@p`BoRH+3aDaZxmLw^k?>|`B zGV3NFko*JHvW>p%c3+umEtn`FpKu!2A*f!s@Idd*)cNe&KZHjO5l$)Z{oIRIpY2Fg zM~0yf2Dkd@IGm$uuN%z%u6G4j&T^i*p{}7Z40)jO&s5(?k-tdosW+djGr26fio{P1 z>H?q~FI`)e$W>NWZk1Z-c;m6ML=dKCcDruGustME=p59?z64&Q3adC0vHP(fXcJf@%~0yiXP(Li!v!x04`{O7!`P z?C6rg;W{3x7g6Elj#ut;()m1GJ~T9B2FtD_vod@AR6gvEkxr-X=E>fQed89(FYbEX ztWmzI-$Q!-{B7y#Tw3`TeK1_{!gfNoY4n|?p*ZlYK<;o@TZ6CRKjM`4qjX7{1bBl+`YC@s8yrc zBvN1oz*{7s+UJuc&40T+}#x;u|j@7x!+#%pf@S$L|)%Uzu;0-JK+NxZ88hJ-rj~WBTs; zQxNK8=NUIpJ3P=RcAa~i5@>VGZGQB+8|1Kp>1u(4ZJy-$u{PLd$I@?imlQ9}k0l{w znx3u#mpACIPP2qNwwX%6Z4PSpp1%CE`678@98CXhxH)O0lV`H>tOzN~ajfmLWOrGY z+l15@Kvz;zver9o@1?smbcwo!j@po^tE;PLmqyY?9t)&y8j;>Hb^2SfmWb5iufXQi z?i`C(;8z|ikinW3x;@iYSI8qP3*D`dK=-tgb0tTT-<@!sy|uXF@%6=VS%^(n3Lz6( zR8CsraPKcdPQ^bK{~Og?brz@#Xe4ja;IL@RA^=8B?s6SDitMK3AToZ^s%!6Ur_t}n zlieZx?7AHi9Bc}B5OPnF1Nr72Y770lD-iV_Cnj2fS;~p3BuHhn+t^OX0rXY1vB`*V z8DK@EtorlkZ?Ang5@DxJsY4*sT#>wd#$bdDs}c=RF(Uq5t7(G){+0Nc8p!ja<5C} z&*b#7~jjgw&KGtiZ9mc^$)oRrU%q_#Z548_F6XY2pPa>ntays>0{0Eu&>dRMPp=J>lhp$7W-3uV*32tLQ zc_c=D44_XVBq+hMFtePwA*;g&uQH%X1g$Mjz3>IeHTM{`eofAvRv zG`+%WEZ=VMf#_Z*h^$;>pLdCNMdw{3-Ir!J=j_xyf0zL4!X{xKFAYF9;Bny^P|fBX zho1{P_q!|4Esuw})~F+p&86;fk;5ehGS|))|NN+?0*8^=A10CFb4wo4b>vvW1?C-1zYD-U66Sh!eqr=I@$4y6M;Nc0uqOl-S7wh*Qn_Ou*My zVy)L$wY9VoLiAkuoL#;}o!LC5ZvhNz*KP93s%!3k;hS>DR6-%mg1`FQoBJv#DS6GC zj*&sH3%E_T#R2ytQyTjF$DW)mhWIEd{XkB9<%Qz>a20TntH?jY#O>ZMu}awA@~b2q zHZn5enla}9vbVXkj*4buJTL;1Z{p}n5fdPGx`>Q;w;wBF#}Ox)Kqw)aDV^%wun#g* z`4`Agx!%Q({Efec4k0+9R{}0GqBA>C#S;m8{0TSfOuMe*52MW!hKkxbw^?tm0VJKX zEJa#`>@z%P)E2=!{Q2|e4LUVp6raroNg2Wpc@?hkSoYhw0L$CPo=HEq{+Q$s_`ap= zF3lkV1oCBbcj(B>%w*G?vTR9y+0fvd+wn@w%8@%}mb?;r!c=wAHsTM`29%r$Gyfp)NQFm((-I&hBANe|eU zv}j*OUC8Zpyq3NKTWJ`?3Y&DXDVuhSTw0bdz)AE^-2BY60^5YET@7GFMkPlh#51o} z;Nyv(?i;dsxywxh8?DebU5aoUzYL7w5bGA_S%Awi1<8rv!b8A6>H)6p&&>1TE(TtQ zko_!x-Ul^RrkcPKLF`hsDp@q1EC8QsUc3tVrZ~N#bO~@S0{@d%H$g%e?k+7Y0SQNY zf(&t{Ue~EJRw-Pf`P7lql9G~n1zFt_j0vepUqHX|e$xD5Dc7X7f{*oe8_L=BtDZ}Z zkzO-t5dN+O@+dz|km>yc2_A_(DCjqzwJX&3Tv7L2{GvZwM#H!vO%k}F!(=%fPm%wC z`^&C7Gm6FV1JN!}SBIZd6en90G111@Y67t+HQ;rGXa*fu@8_zj&6{`cNKpt8L;|4b zjSrg;wVWUQ(FV!DVKk#M5x(LFr444ms@mC_Yt_AR%upSXJ4j90j$_&u-_y^~?X@Ou zWaLN&vPU~8c6$2rLD@uEFr5{$A1FbAS%3`@gOh!*wO*P$`Ud1I*n;yU5CQ;~&H@BA z>#q)Wm^T12TmT;H0NEu;)`wyE$2*hsC2JJXMNFOoSlQj-0c@0uIqxkPKLIF3+dC8g z-AArQ(J-D?p`l|?14+}%-)OR@oU0&GIt48$)9A`jxWkcqPa;2za0 zI(0MhjlZ-uc)k7ig?&jJQm(&23TpPE-I4{;ojWWB@CD_u!JF<%V88%+6+ZjdZ(U{v zhTy7{obHSJ-D6;ok_ELixPVL4I9yrwMxZ$Xy8?FQL4+~ytnIj<+5-q_6ZsEdVS~>l zkseE?;qDJ-d1Pc{rs;G)-e=L z!gFoQO(Ub`wmJ}k(m$=h3NxPqm{GC12B1%|2ln4)@lU_10%@cpg_2hq8ycuViasBe zoSfWJIb9=C*W^-Eu=><|=Y;e|>bqqyJ!(L7^kk=2NDpNQPxNItj(*<`f&Ky+)x8u+&0=( zESXrz@`P^xopfzaCGq~ChfnJ>3@hV3oCGveFV%Qcn^v+UZ{Cu8*~Z4ky1A##e)Riguyz7S6)C`=%t7GLE_6)EvFc9s_1y|= zNVT)Tp>g}gy{~})n)j65EvI$7WD;ic;NFO zo(PFS6YiJYlBS;qIu|eGC%3Wekoj&;&$*$-i?A^-mwK$2>1IgE$moOgkrDy^;tt6S zg#SmdLiL<8mrLf`%*$WT0!~0ICt9L5>Wnw&;@40JxQoZ{T^DK@}?9@a7;A2tJcdWJ$n#>!2X_cp`4BW{{5i=vlaR%!T|`UIpFl;`}$%6m0;1s zcg1mlM4U(|x;VFh9G&etH~ivheWJPmy6KLG#LV50#0po#SHK z^x=+gLxUMLH z@(I`k`PdBP)ng_}+o+6=));iUxVWTl;kC211(;m9lb(qdu67NRL01#MTQg8)^zJ=- zpjpiQ#+Y~My4g6(|7)#DhgAh}0u*PhJw5}K9)eiR&?OC(7*OH^B1>1stQh9^Q09VH z)XA4q0@`B_q&NYjPx=kip{H!3SCnP6{@bJQ zs0iC?KCY07{6P+s$iO+2jz!f}Rb2*7zq51QU`&TKHwHO^okKyZ14B=H)$aexkjOM# z+uyIaP16ES_ac*+Kv_`*uSaaBqeBPu0dNv~688|K;Va;-*^s@=5k;N)#NJ%!WQDL> zHpc|2Oyt@0CF+9u8S~J`CoVRY@95XyMz;f0)OU%Xw}p+Px+V|^Z`h5wpdp=R-o2Y& zNGPpkOov_NIj}u|;rvIAG$8>2D2$$nag7S(rX&k8NU$S-^joLW=6;PGcM5;WCNi7+xT(JYh}5fMq=`3`=LcqvFqz_C+mYA#)* zeh&p9W)>C!F|iQ-TJGx_%HyCV+`oT+2{2nzs;=a23){Qab?&%kn^hb*EA?OFnc6kp zO){scP6T2h%g;FmnVl0A_blFzdqS10`s-J9aKF7NI*?z~po9eo{2cz}IgmV?fxxDK zSbi<%_GPHbgpE^btaw#xBfPld=v81}m-b26e}gIkXeZo?k{xt+XsUQScaE2%u7K^G!i~SL}a2;xPkVV+r*6IVfQv^bR|@_yOboRH%p^GFUmz zf`7e%ZSHv7c8q_(?T+OMbGe}ULU9Vjk?-NBUFead`kQcrLLCIAMdiSms1zdHYhBCg53;N9_CK9ZQ`@n@ z;d=H`%X8lcm~dZBL%!kX$0wrK%Wy~pY1OgwlLqRpy-+&z_7#+R%RV@+*THQnnXI@| z00P|tVU-jEYIs6cR#PtoYxKw2wTbsxlk5B_AKKwdtWKmE?zvQ=-tD90{#c-is}X_}e};@qFT z=~4JlF(K(n`oR3h3m_22LFp&~fQ2jY>yeJZyuPPNb2-b)cR*M=SX)dnKmIh6%E=%< z_SkL@g+HBtR{z+%YEIH@-IF*!-g)gxoRT`|>)~WZR^f9{$`kE+4u#PWX@F{IPOF=E z+2xP+Y8BCP)2_xx`6{UVz^_>TWpY*UyXQx=qLGS;*dfrGRHzIU*REI<3?1IK_f$HS zD?N52qVs{M+q~OOT#``HN&x)>WbLYufe5|}P*92m{CZDk0YJeBP{9^RuCI}(1>%?W zTj-HMe{y>kxUb5I$3=P+Si+qN4HmhbZ{NQ^>*Ge5BE^pE;4EPGBv|rc5Ca_xBq_gs zC<1Gp9Tv8?6Y83z7(irdAnQBjU0nZ~XCUfaLm{ez186k`XzvPW#i34WL9KnDggl;f z(kHePrG0=wJn13pKiWujh@=PEaJ+PCkYl!z7J@(v$K;GWZAuYIR4Gk22f<|A%6{{ z8aM>7IS5?l(7Le%UK|t|x!wP8Y+i3Ax`D_4z@N12_#AfM;VP8J{a%|*bQOy_3^%#@T>g)^<52qa z)Xz;&CCzD@L-iK!DNjoLU^+-$y;1d=^YcwpsZqB#p%MwJNf;Lal{ZL-6lOuYy*1vE zU$8v=We!A@*8DX^vCbHf)ISyLLpqJ0a(x$_3FWx)1&S{O$iw92WVZ#TLV~`0`5E*G z1U(;!INt{GNZmsEGpL`}Od{QLp!BnCZlYTskwx!?FN&qIl$8)W;C`k-0%SgiMny3K z$+B?lBw#0rj)Ro1Kd{3>wSCVpY(}&LM0TJ_)*VmHQ#a}9>2c&5u18l}{zHHq2{U_qI9zYZ;aysFolv(5$V)k0?hCp=JYd2gzOM5d;>L6M zM;nn=Yu4(wS6mgMTe4F(xWL81FgvB}5t_SrHFwjd_-CkWfwX(kEn?#F`4JGnpc57ivmbF(VMwF3Rtq0~^Rg zkuE~YEo_{g)B(^7Hdg`w#JEDrEdq9J;_WLNoZ;i)LFiEJa4|{)2wuaHO*j z8uv{;hJvs;qd^_~_`f0F#mTK`23}Ag*wI zXP$t^aYJJoK(azQD0NwwuD}hkeou2Up2$cZv58_vXeyPV2&TSp-!2PC|M- zVr#}VFJ43E#0Z2ar@YqnAtzQ_7tqw7f)0j9u1L8h=%JVNOj@ZpTXC%yAZO=a$)d5=-A!&$f!>Fwhu}o&Kk zLNF=!t{%;|Wu6EH?g{o)0~t>hU>e9b?|LjiByNUW+mxm+L+3`JDYz(pO$`;uWg5^) zc?Bq0mffHdqS&Y+1>6YoZyE?~R}DY;UIreHuuf8Hfjkt73~8+>zQb9SCmgj5@fG#k z+=AOw*VSo4@1Uqr^{#NJM*-yIa5-mcY6^AxJb48LQNT4)kUJO_*eEx^tEX<|)rU49 z2`eiIlo77Od{R)O-PW|8PH^>;HGhZ54xj(kzFces|I59;|M#B%yS>x@*Pj2?o}YrL z`l0v60h(+RfsC7V7Gxtl3b!dk+9G(kLZI0*3MF{xmxk(@ z=j0L)OJFG{C~fTUoO@NlR7UE66G$e1$V(nQlcu>L$wR6eKGj$FiGnhlO#c)HcLUy}( zVif9vL8{cC(6Jx?FJnJ6;;RC08{WpNEA@d4T4@tN*(j(Px3DV7t42z@b0@SAh5x@q zd*P_98>kD06O(2^!@LF6!(nLWC?+4dnhvcIph9j~V4y5NJ`cp*r);9~V1NcNQXCvZ zFoWz!iUG+4mC2wN=35LQ&>mFy1W+=e()K#FcwQSZ03e3;dF$j8cM0NkBs8}W8lbc+ zo9YR)^@Qy&InXkP8kJ?5p<;%lbR@8&kdMGJo$D6L7@|(XZ%3}R#{H$5%~3>H96qZd zY<%5KiA`AdEBdehLu?<>ByR6uf#6)T;KpM3k6YHPN=|4%axSH-i6Ct>+qlig-&tFU zeJvY44qfGV@7Jiw3TNH+t7>}e$3epM*N8D|6ZnJ;xH|l!C#y~-w=Fidb`DTm85O2% z5Ci2EVueb#7Hu~ZMl!d;v>-eez;xM^p${4qS+#D0D;O98e1#P<; z_$nqq7VFa_J}}f%D<1jM^c99ty3Y@+Giy;Xb0EpEIJ0|($*|1=>vi@JLG&d_8x zxiZ&B*R!A?V!UVUq(#hlr>rFdx{kPuvPDkZbD4?xdE<@Lt$<%M_q&uZbL^s+gK0R_ zQx#(}d`~dYbZe8tR~f#H$7mK>lvzZBt9}hN%935&+XJUE6IW44_2#$PkfR)#)s zQc!(!LE{y=K@8LSSEDn^Ehmbu(WgWm;UnDkgcTue!k)>L5H1<3@9~WK?qp7Gos3I| zji^-xww%$FxybEeCUh1mkSBz;u^(Ppw(D$X*)8AgVV>nS8vqJ*#}WL$X2A5QDlpbz z#CJZ3uc4ey!SIuuq+?UjO3h1EquBaXi&erS)VztWrm(dGQ^QHGL%w{8y~y!wzFm1~ zp)~gK<8SR_6@})nJXLQz{MW4WJjl@S)p^TljK9;yCwpmr;A?|X2;m|JpZj8Lwtqfe zNjvn!b^KT*#kC(}*4xxNl6GxNpYI;7PLIMY`vm(It(KGBodg0c9=xz;&G9#9@zjG8h7asNbG3}6l?v{&x#y6dy2x|r-^*=% zMC%3+^H0adEj!OzO>}q1zqm861p#@O+$y>jb8{PW2(l$!o3UZ;Y;5vKRwD;`L^J_7T z(gC)%!(Elq9|~i*-;RSD=MjL+!^+}FU86r5s)H{;n_{e&*W~<2moD_COy(FdplB40 zg&^FpA?%=R#)+q((Sdherg)d`vWH=?W!2Ts16hqb>|`)EU*D1rFHb7AWq!Q1Hl(bo zr*~r!f9@c5&HB#Cc3E>b zU9f!PKJZdiL*wj3>Vbn5w+Y+j^|d!*>r``1mT%H34TJjtA{?t_^O_IS%a=R%rRb+E^ z&OJwq=B`NjM7?yC|7(Or7Nhj{Kc+ZlY@oE1@TFcnAKENEQM9qJJ%GL%A5}ii0?`Hw z_&B02CzC`Gxx~XE2kb|gGs-Zj@QooaBII?a#Mz(cc+8(v%QZD zx**mWQR0Uq!;z^p&AkP*>P<4{FGgDNyJ2cq?LWlpaS3; z+w8bNW@hph?5F1`_d86U9N(x@-2MSkFiz%t;i$bb9z{=2Ps@o~w5dU{p#^&D6S2b% zSD-=*&D97yKn)PJO=p`n9`_&{yR6S6<__n_GYp{}dY{+fY)x_deiaH4Iz>1+^nn&<9B| zfO-i?ZbgW=#GNcrZvnUEPTD6K!)}=_C^k9V`Ia8rpk9EVG}Ql8igg}ceevNA<;b8! z@4cN~?R%}usD{72_C^O^4DnjffTr61stig!1n8a$>7G!&xzJbrAKHd>3LZZMqCyt4 z05>5RPSZSIU5VYedTpM(!o?iaU+BnJwz%P*Un|yOAa~DtEkb8MIwLe3YMxqOe{nx{ zHjI>I({}-ISAy0%W3Kib)5Z(XpPM{&3LSEy6u%vY)%s5zE8@|Bjt;wmEyN@n2CDkL z<-6_nE)!DwW>?9im`o_Dm(Hq=y%hfVtYp;W8n;PTtG@Xat(ON^a2>vs0X&QYnCz1s zK0;Fst26{+c$22SJ9DGWr>FapjvId3AjHDVj3K_$&glT7Z;TmxPmx#9QYt~aol%?5 zCaO(aD3$)aXI3poVoR58CvDpV(thU!D%r*ed6eo4bbClTFFy2U)F^vhg0uWE!i0f- zFY&Ya(y0u*(8((A4yCD3IIahDg{7zjx(s0MZ5f6a<(T^c%&MuVsPtukoERJ)t~<5_ zGM{F|3(GOFfFsax@!Mv#O!TDH$$`-1_+x_p`;vTR)_&9r{_t@&QB#u(Q^0?4-bc}Z z=ohT2f|H!-sHt>a`h#8JG}kN?{F9)>$CbM<+^hhCDLU=w)rxxMP)89oC$JS1g44*I zWM;l_YO&qwQ$H0=jO2uUjxvcKZKxw80DY?W1O#|5!kJg_ydmgRx&lk$JtIFbIG6-2 za-f>D!oi_rFlIdJL;Lcj5sm?&zKRSlNL{#?!f{fKcn&>%Osjr~aG0mLj_Cvq7HqfI zmTr0SUZn2yK>{lHe4Z03o+ZIST0Vj+aKj)FJbNpAl0XbXeSHAXJIka%X~j3ZlxR+T zen}xv&+Y3bzCfb;Low`j%&;3lwJvTy0SybvQgcBd$Ruq14Hy@vW6&vKcq@0&V>-eu zhF{-Rl8+k@fK4hAYPNk2w!^^L_8D^QySnE9eFP)#WZGA3tDR4v=SKmT5_0fnc|(Uy zTaLWx%y@IcCi?gX$wyd_RtwUZ_zX89o^vK!4E6f>IchvV;gZ=DegB<%;u+c}zu>D~ z=deI-b*)6F;P-(MI25XIkz+{5a~O|>-t$=Koy^%H6!iG9@4Wb+oTg6iZTJ=g727e0 zQj`?`In*ih3J>&;a7WhF3pU@!u+0Gs+c>w5cWRIWWMkechL0%h;m0y9Jr*j7PQgJ} z$1eDVja+z5` z^=CrpcP*ec^(;EigCS__2so|_zK|yXfSwYftS)6vf+6ZE@)R(~b1*dg@#Dwb1ZXfi z-su7-4dB?J9ibs|bvEwBQ(D~dYws?YLVzn8_!>UG8ON!IjaJU}GHnoav|NGa6U2_8 z-%+#B9fZ7s{^!@AmO1-=i%^qm7}Ul`nyx5AzfLH);F}?O+=semO@Wo-1^ZuJZVGQM zh?wVQz9^KlxA&5 z8;kjjDm7SBu9;eXKR6OmEHA@LSm28ph1DSUK-j!T9nl{gckv5qdFWzH^S}|`C2kBt z_2{miPxSIw61X9JR4o*d&#$tCL~sD$&bTIf&S`mCx$CCfFTjZ zUNQ&yv9WT+vZrI<{dn@vZMYq<-H4hm^-tyBTqO`*GY8Fc4TFDiAYwq7%{;w)?sW|J z9)C&~1c!WDpd|mxUJMt5=-}jGG#_Hj;8i@d^(%FP>JPnuf#~3BTmcnsBX&tH;}iu0 zb0(g*y^&$jeo_khhSAwuH8}H+=PY~NgA3C<6g7($*V!8uf(8Q*A3vy_$#8b>C6oX?Txn39eGRQr(3LU-MZKp(XK?tM ztK4+BqRNR7etzGaSNyzMAK`3p%!_yd-Z;fqD6E;c?%zL5bC<|H1Z~3KP&+2HKx@IV ztozXLG7D{}=Fo@?eVrE8h3@k|Ei8)!+#|j0v zY-lD<(J$3Qy~x}sH8euPNrOhl{(%9kE(wB@1E?%Jl&IwdQ7-A~Yx&C^qZ6aTBpedC z6W~1H67=D++g<~ujl*-<1`h08fo@N9zyc0giJ-H8s%so)#R}he)nyNSM1*rqiy+5^=4kxFI?eV;` zm#F%o&_7(%xwlQX)$uN#$OWFP?%xj=Gl3ZYV zogHi{swe`gUQ(knIy93>HMxVbT^OcnKLL{slg2B`2f>N}#EKqputhruiQBimZ0~&}L6WbnOj~Ty!_H++DN+lbESXos)N*ttM z6nU>SA2_4qZ*2@3@Hva!o#M;eU}gzllOuw>z_*ZDJSZ*;Jy*mgV@9sEO}t;Q`^~7*#;#<5 zy`4eABQ|Mh(i&;K%%DGlD|7$Xol+hUGvBYi4&aBCdq;p*z@NA~@XlJrbvk-ep`McawELR{Y2 zh4W9E#{B2SWLD#kN=MFTtE&jU5LGBOa-L4uA-6}*J76or)hs#kT75*}t!F0-f9KzU zreU)zi&qbpZCn~dMMKH;7oW~=w%)0Sb(nKSIQoe5*Go+_9k8wyAKcK6&RwAX0zusZ zR470vQO!F{prZ>8$zPhZg3U&Z)ER!sS(O!GBl*b!S;kX%pD=sUPF)%upH@!pz^s=d-eX-WWC82Z42Jo`r@02d z?SJFKouD`~An~a6K$Kq5dh`3PA6<=29|NIY1Wh<;(8C)GuSS680Amvqfp+QEy8Tc^ z*LAs3kll^8Q*;QTb_0{*SqVAkd1nOJq=;-Os z$`p>xkN;P&yerX->J8V$_Bcb+dfB*@7@i(L#0oX2MiVlt-`lnayIs|9L zlWjJM5qDig@iVYpfY)6*sT;dtAG#s5{X@H&wpHYfYdzGs;hP(Sq$4jIT+vIF2jGk% z5c!xsw?Qh$$PGtS0vW01J`1v$Qi4(SiCP+aH9)l`vhIgO>HvOX*zi9{_MI_Gku zXtZTi{}`rMaf_mWgu)17C>?dlQ8hI|4UOSr3RyL+2i-(@0Y%cmm2wvITwR_Ba5@tg zm&aN_*F^grUkzefKmor%3O(V0GYv8Kg}RUBzOJKKfDeM&0H?!`q=RErMi(AXo0>M~ zQsMG^SXEqKdqIJZU&tv(2m;(@hybfLZqB4cCURvQ|uV3r){eytjd(Aa5s!=W%wvb z6fM1~<|)~tLl0bNi0#fOSrnl34rK~TX{(Ep-;)3Z$m#Y1!;l3K^z$R-xqlBfR-7&t zU6{9xl8qo2ays09C-?M!eE5S#-i?#*IJ`KgqecJ$7c8$aViv&=G)m);{2?s{6ks1z z!DYxdIFZUHr;B0Ae-FyxC`lGQn!;IAu}5PNKahn+o{T#9CeaC>gfClp-(|-5`hIIi z#-VUJB4u92lUK7{Rc`=vv=$N4prjqjkZS0wL#eSfDyC!|W^}8hRLT+vQIZ6(a{O@O z!Kkg@WxgS-HU1Nl2-zGX@so&ACnO|a;ujKYL+~IM%Fai z!vKDw{u(aifN~h8Xfun7yaqGoS%L#IIj@p<4jt5)TclK=$|{f(y|t#6pYc9Qxl#7( zS5Ue0wQfj`<_4SLH~^qW3*(G=vRkf@swy1=GO8TMRKlnsVuRz}B0%OO$cM zKa;B1hNm!P)xcu@%o6(Q$MjVb%6B4hxQs0uP#VSc2qU{(0YBa`1ID@*6pUdefd0VD z@n(;2GEgwU(NTTgbsUI(uoI0}aR4f9xq$EZW2S9QkmMb}`OlYnfL`OHVGo$u=LulLQC1t|f4rG6jeKO#Z ztn`9#F|5?aAjQxXEVi zrJ}Ml2^zuAxQvY1EKm@Yq&U0;`c^rQIfyjZi-knGf6O`jh&$?pz!8KLouW`>k76xE z`pODx=t1EKeOvK$lq$AZVi$ZVi%hxx<>1ICKfi#6F>H785z$V3l;b7LB&P#jHD#c| z>S_SRH;k2Gj>;1XS{9yPK!NgoTGTAH+c%6$pN0j*4`iP#LHKrw z^P<#CBj8OTusAy?i_;5%86f-^6?E|veK4;v#%pyi2kt;p(kseJpmK|<0w(taqZ5c?DB*q;Ol(&RB=0<$ZUpt*x=|v~#o=RB_eN zu>Kxcns>FjW*2ez-$2}ssvllqc!&UfvYYcuVBqELX2KrJ&Xf)ybnNHpmeSY=C{Hx% z;z+7rK0a}%**~T)X4#|+=VSUD2gHL)Z`|LwYSS4S>DlsLJBRK%Faf2ZV@|0IQ?;ALHaMh1h+RKZY&;Uge)DqM)2S))L;GHzuBOcIITAfojG2`=3xx_jrVQ<6C zbdcT`mmQ~lrf0lcV}qab`_0hDv%nhoT5P&}!7|m{=d7lr&+QpgV-2;uc^j&2_y4LC zS+70U$$#vmi)1l)DiUJKM?kQig+AJN=n7_---=g#X!L9^KxX2v=ln?7$2t272=G36 z@+AAt;&e|xI*AO2Hq7dy@1vGsbgBitGXs>Yw;-2|v|O`l2HKed$GV&Im1yJ`o^1@8 zXUs#YXjMwg2Qx9VUpg{B{ji{bs46;<4~N6H=$#yV3dc{jh#I`#&}m(<4a!I%NDf3V zB0_J?lV1F_Q*^q4T^(2d=ny8GkX~tmia%k1a0HPK6+cf|N5Q$&lw9&1X>=^AV5U}* zJzW!2v<9NElx}r3sk$0=Hs=pYB9)JL<-G$SIzWaQg_e&UPeBR{=qS>rsaELZx2EP%H^ zdHdLV0ztc==|{=A_sO85a4$2a&Et_y#_961`Mw@Bq0qaZhVY0h^M*N`Gil~eDzkSNLZttKph6h|F>G2x+Rc(P)BEa6M2p^Q4 z2Aqkp7$k>1dq)QX*Qe4~Ckc0n2Rk<-6{|-V9yz<1Y|!=33e<9_aM(VaveJ5)W$3fB zcyna&(lc0v$=&cItZksI5gDO&E3chh?09F&NTB-*vA^yW1YhBZacG#AjAFBl{p!b? z2>iV1mNRA;+~Ss@tO2wf;cuR_$duk2EB`;gfDR&!ZM?-PfL7EnlV-sN%+)vS3SdKI|xbtp|94NA2E-bGGmV~{|NJG_(BlNIy-v#$KY| zD@;=@2mBzJvGCBLPkkF;+x}zEKZ$|?hQdD13RO}ylFx|^(%c=ZTzhZKUMTBWE-_stF+M;$%esIEicv>) zus5aUT?M70fF&DVaP8WxM|gC?BGkUmPZgTMMp_!QObB&SJS$5{A}jWVzyup7N_h&z z&}N-aKdv+X7|vqj87Evk=DG?pwZdNP?2N{bIjrh+xC<%41tktIiWM z4J(Ipb4?Ai18rV7ofhE5ocrTyXf2b~gm%%@f@%4osY+-xh>>=W(bUg=KV-e~=MB7C zw}FaIPN?M8o$aM=x%LAu8=4Xx4Z)e>_?=XT%yLcq;oWi<+y*YeF?|#A6?QlL;@WED z)CIe*Y^Fo1eb?q2l>(<{WEU2f%%LfmJtxwVg+Ln%;sNpommf6MYVlE*nuWANj%+SI z?UZW2y7-AD&Z&zJdWsfS;k~oru8Hv0lm_!O*5F)HP=w|3H4WnqX*=U0H|S;_K7)VM zR=k{<+$ zP9y~~oCdPDY6_}gWHc@E?{^*S9MDULGcC^f$KZI2v+T^k?eB!+#L=vWU@s53MFjg| ztP~FX(|JG>!qv8?xzT4)_w#-PV-;!d@<4^xM5QP+Dchx$^L*X1V*T?cp@7hk`j6hl zn#y=)$rJyhLqLnd1$MVjAv%D?i-GjbcUOep8bCzz|A~`$`sCy_CW<{86HG!OvhrAb zv#oLeCrfW?m31G4*OZPbxjTZkk%mT1F%m*XEiys~#3ta9CQq^ScO%u1vZqE9X#c9) z21-uDOqiu4;5aY5&0-~$Qc^^UnA&Km8n8oimc3U?DF$ELK( z{qK{s(9!?J)7JdWS8rBdB+o z*EBl(Q5yAiypZ=Gguv4>nD>8TJtI1yXD5Af<!z3kZk<{~RSqit^7;mUxH>B1Tfy=sx06rHvD|a= z)r|GPzDp|u`Vx>$_swR%EJdw_oKQVBx*kn@rBsp4-0oya2*-wV-}k z$oS5B_6EEQzNj5*YjK@5v{Y(ro|n70O?OANSA4Si>o5zgraY%{cdIv+!kma>6tJmr zvQuwCPSsm35Ia*&YEboGMI!H(7lu3~z~=@af)?t>Y7z;#(2B0yrifE4;;pEYU9^uN zx1eE_*i(d0^ckpdL?7io`vUaXdAx}`E7(l;XfKm=!KiPXNG=4nU3ev{oD0R(rLvME z;<@#vp584lvoy}Li^yTRA)@8d=>1)QRtZ4)K|%hJ;p$s&(pJC(PB)q=cm(3xO4m8s z@|6Fs$Z+*NcEh~C8~qCHd4nig$;+T>g-inv?~%NGls2V|4Y_~&3LPi+K=Wp%d-+=^ z;-14?>vk;db(IMVC(sHxRZLrvb95VjZ{aGYMwFQFHrvMuzG$KU%Zbvg zc>cvlulR^d$}#0oK`& zQ}hD1L#;S-A^SE+36}s0q!jk-uXEcLK~1*{^+nwZcbsc%h~nhV^>Bh}kizwmjuR{{w&B^{Ltl!iGv`xXH^R5=i#7OW za`zN6*Dp3WeUqc0BwHly`;)6>ZKea((#3N6`A!jOF#)9CC+-+ijI{6{Z`UwMA8W1` zgf4f6qG%Sl4OHy2sHRWN0Y?tNxSKsaNN@^lM&ESU|Cio4@Jo#Pmmr8kp6v@fbLA$I zzVKNzwE-B*z<@Q`jiHbl)w_!tuOxsno}3E2MJ3$yu#r9zYdCZ(zxc95f-z8^&FUh1q zWGdUGxdEY@n zaQ^o$W7|Ku=iklma_^nd@`JOzKrXaP=&8YM4y9NMM=<+UZZc#oE7IPNNIw zyWtn-F@J0H%htHVy*FM*iwSXC=J-MU4ksh9;H~q4)`8`p|I+RCnzpAkkDHnd!flnp zcQo8IT-x-fnts2wbc-6RE%r2(CP36X#k8xIvUH zPBx??!>A}9ET0_YHC}GN1M)HD76)BSWy@12NGmI2be4C>2^N~6YSjRR@JCXXLiM^* zd^l^CZ_xqC={Zi(kX7sPeC1zWHYhP14J97k`TVY?eDG)*G^&w$_ZI*?1W{J9GIv*a zoRPp%!4Dr8h(QcQ(0wPw3;A?QyQo?IK^+0IJy*j#T|Bk&Ti5HB3iq{IV(i{Sk_-H$7`+ z4j|N;gMAcjWvFNL3givx_%(Y@+ol@p`yTqrCq>ERmO~R5{BLEcQ^9sf0d!z^)nM-C zh9RecVF(;uUgmp+>}C5Nn1cy8A%y_n<$jWg6;Xj89^Ti7x$2(!W$fMNua$*X=v$ZW z6tp>|R$F-+8~ zXbIdCcc)Wdf4(v)zYe$2sHp++@aTps@+Z<_B@gsc3dHcn$>KY117}J4%d7O33*t~0 zvx~okn3asIP0*vMz7G*f<~3mr+>N^G5J48*&p6lf10Cgv(V#O|%$$FP<98sE{jFIR zXnFcnav()12o285gopJ|=E-()$sa96$LyQRaSdVfeaz6$O8#B{XKR`#FA-84)X0cF zPYRV$ztXm}vX66tt)rsEL+3mA?58X6;Wp~7pb!>KUkSZdczM=0DT|L6&w8Chck&&j z$);0PeORxG$G->X%lyjzeH0Ee5(S%kwA{KA`U$iHPbL4?ncVY5OL^6ur2Kn0cR&oA zZKid1HJziFBDOZ1Tpa*PE&s&J_LO@5aJ8m6E+x?DpQ3Ira?e|SV<$xWa zVxXxBIqMzSn8S%AMHqoyHEmDZWiIm%q~k3C;^MqQ-g{0OQ&x3nB1h#}O;}^UtQLIY ze?6Tf9CD>U0f(1`Y|j3VyTA?DyR4B>7<|?}$_M5nh=4oQGvWY6p)!zc0EgnAINt$Y zRO3k_ny=p3^itNm*(f;`KzG$V@z#!Cd^v{tQgWabW){iAG$u;NKUt#IwOAh+f1d{E znYi;uC+~b^(D?ae9A{=G+@6Jrx_rL{1*tWOurvqtb?czxG#*P$LcG7Xz|ZcZOp(8` zluyIRo<=Syum61)bL=jAVRX`QNe0bPjwvr~1x4K(BX?;62sq`U(j#jMf6zT{LkD>d z_xqxZ4ZZ?BLSEb`r=E7iRp*zOWUPQ$UIUbe&MqjqR6)&+&0|{}aN9cvMJ?xt5Fsis z%m%2$fpapP`EkVJh$8R>u2amH3PnoOP}A)}BDm-9ZS%P}Qu!OhCZ;01Gk_}G5hdSg zG&=1tN(3VZLN92CYVc{sKKc^X@gGy@yy9My`d=Gt+OThNeYUoE{9@<%>Ipz!0I8^( zFwD;Aow+|BnaAxQ^>E4;@DuRBFJ7#4Rv#MA1;h7R+Rxn9yT{4+?{gPO_21+W7Vf5R z;1`{_g%z}pE+PFTYnm?8vgLf$6+;WckS$!?a8Tbiq?WR49EP~fKmETyG+%B+hzLB4 zYB$M$7~vCHD<5nAi5mGcLD_$T4|BY_IFVYMBUVa}?T~BTB*b^}@#~A#G5M@TLoWEE zCI4yqlkw(&<>X$^dI0Dh#tZ5kc3i0mRG9R%{XnQ}FJvN7oDkyvp^=r>1YowH!@ZBs zmPw@{Z>(oi-pZ>a*J>)nMKC0OLJoG#t4Ck(+;o#Y`@m2hur(aj!5+ZyCqCb~`26PGst}!;2w&_R$k@bDM_m2VG+8z+YYrHxEnE@w7aHhGyo!-`FTEu!~i zX69#$6e;VcqONnWVIt_)C@2?iYoDC=VjpIMqo=A}Xlipx725hLJa$;tbPxN96e0qM z;l-I^Qj*vA?G6fICP07Cw`p5)OS?uJwCVub!UE^@e=(JW6cU{nmpm~$pH-acr*`>2Da|!UDq=o<#H;MO1L>yd6%y(roC_eZYc!xPI6q z);(I11WUEATQpWkOJOi0Rt1hf41vHRSSXit?*Ju86U-uG2ez5z(>7lTT1Ad1ok;UVZ)|o%{ zJ66`s5zm?7>338L^(u1JdqR+9RIu`;7`^YO5Ai&=-+&V`AulW}?5`Ggt>ex9KBl>F zVany*<=&2=40^fhuZG&a{vW(W!1;hg7AjH*PC22*+K<#Eys!-?$bv|ZwGy4ni{541 zfkL1#_LZv*6B7Pyv?F~7==A2mn>%I)&-r5LR|*)|brtap&yuPb0LOBY^?TT8O(d|` z6vb-EiONdP1+|C-2hIMbURt4Bt@Qnsnyflu!JXyyQFNIwQEi>q6=NxHoLvVA)%>SOBvmZ!7U1Fde0es2+sAw< zZ0$^f`CGht4zR?kulMZW=(q2X7J;HZ`kkvuPrUSU-R(iz95HAKrcSq<&ZcYNx5HAC zIX6+J$rk|liDeG@()lp*i`Bx9FT=LtZx@|zN#}l(IGQm_NT%wTV7NBsO>qo%rHP5z z7V~qX?&NBhtR1@cVOcJ5?yH{H1C5H+)HB3}FnsTM%f6^|U%ZB9$(Yv4oqRz#y9b|Y^j!*yybN6IO}Ff8n5Rq0 zC@WvEO6IXBcW{-+cIZ4ic6?kS#H+!4c~(ncw`~9U$x*t3JsY8gKYdjI)=I_+g8ff>_IpB zvT^~8NWs?nx*w4C;}ecO5jTvKyZBZ^Mz%ctRRN8mHsexW}l7-=TvPI6$_q$ zTQ>>sVW+!0pu{tPgcKKd$p48NLqjQzYA#GoSzBV1VpTPz7e!7m1+_*tzRo*L44|Sq zSp%~qZJ3weeb{*dGpivb^X!tr{R~*u1(PsjFVL5T0%)?lc~^=n6=|9+U^cK?L?HW! z;woa}YKjJ5`_TejV@XL^4ajo18bh%=*o0@^`Tr!@I#5uldWD7vk&-S=x0{DjFzQ)6 zk6%4KvbH@t9!@O$NDtLpHuvrcz|jVt{KTE(NDJX50jru$A2fIf@NGq)eCVxNQjg8j z-JGD0XZO*8#e?m=eesCBVZ)wJ{L16Wb)yBz7lXoyg}V;F@7)*Z{Pt>6$dXWQ#-yagwy1&`RhA?sJ#71<`mZC zj>B|%R-DG$-}IR_^)?Qhr+(Ql7@u8)x`8|5G%E=288tcgV{VL-=G7`a8^#^4BJMxY(>a@?mw>ms z{}gvl7Xq&)iB*3lpq2~!tsvC@PiG3Ru3a2cVj-gTmrf6NmBdWm4^{td1vomOmbK)p zhlWbxG9c1_NwbxLt+=kN%HX7SIKpf-M@rn|l{PB~rDlB!HrOliZC6*a@3_&Iq&$oe@vSNcSLdV9=u6g%|hj|AMZJ93oyj|1@W^7?`%AnH_Zi>WBYhiYL zqRpFC0HSMY3l|c1xoIxJZqjj1ZT76E@$zEy+!DN*oeC?Za3nRKo=IKYxLE274h979nZ#wRMe#SqXBg8?TxzD>xL!532r&*|Jdvt1(u`G2qGs4)k;JS#V+ z-&2H~?yA8-Fo0n23c0w7eGX#||I4nw%@Ys4WjO!Q_H%Iw0B@%p<^DxA>7{U6>&)G_ zdd-eYrZ+{PlkLFW?f(ZRrwm2s1UY_Pb*ftMF&lONw1!so-2{@lydXPHM-cq+iA7~j%dDYaHQX<*4E@9Tl!2Vnn)o%^7?XL z*CT1((7*)WHj-kThN^i}%xSBCHM{o2nJ=D2sXeUGW+v{K^_JtP+N_Sllw2l0URE4!IplDF5%)v7zBBa}-;0O6mN#{1FBq!n`MnG$0m&f4K4<0Wt(4K;> zblraNZIK*aVhTGUV!g6O6J&3XfVq_-PAHzM8B>ED8WvkLJML7%g4)y^uKRT)g@H6{CaJucmLssrW{THgsuw5 z@~UQtDYXY{6lsY^v_p_PeG_e)+w&-~LrU?T>l{OC76cHe&%zDNXY2AkZkbsLc542V z2=X$2^y~diC!$UJ9A|TJkh_A`HAtyOEGKEvtuAzhBV};+&o@RDpDbK22waHjUHfaF z#b*9C6mWA$(TV$((r5cg`-jsY@dxEPQJ$b2C)Qs6?cB>@AmvC-w(~~$!lwD*#CG7J zYb7&zp0lY_@~+aS%uTXe{44)%^&ch9_t1c>yXXO7d*!<8?0DEc8~G+M6z(dD_rIAS zC}aC88~#;FA8^m}7q>)Ay{Fes|IbDUU0QeuDsQz^6K8)m-NKE%nrFi3yuh5P6`$jd z%i69VjdMa>cl_litF4!C+{XI$9hWYFPIP3`XMuDgU$&eBWeaq83J^ThJ4V|G>4N`xjY9!@<4mgOwUV?Jv@fyU0*zFlPzbL!*XmwbmmGKC2dS)Z1UR zG)ecEasY9!%HdtA?8c426F2Kyd|S`LlS+YYhF|}R>7Ops;k?o=a3RR)OZi(#zG(oM zQ?lCwY|TF_tS^mFZ`M)&NCohGu2#v_OinO!^(qV;xIc=o{%XFU?;QE#Iy;ziQOCuA zn-y>F;c{F6syWW)klje;axV=aoZM0VF57=WE^gEj3D9Y58%u{J0HVRfq`M&j7fs{E z7w7Bfc7NOmP-Fyf11DQS4b>JHbgNvS2hjQGw{v3GjGi6`AT2K)Go8q2==R!WFIz#C zjjAKtY0d$beo8r!t<|%=3MygThG414uoQm~?wZ8IWB>)@zv0r;t~9l;Z)4Ji1FYiSm7ZkzCgacXYJJCnqmt&sCF*8Px$TD$aj-@u{n3` zm8ECQ+p2ka`7&>A8cKj$deLM{Qeqk8Flz{Al$PDu zS=EB>@=Xag@N#q?0y0UvsLO2k8uOd_8yxd?Enc)_hUrWJBYsuFZ*%{%SkZ&v>Bvk5 zr{&ctaJOVjKZJ7!e>Jox$36cK^36Kkv=7f2eLapyzZdkKz=@*wZJL6$i_1Ul!%`t( z_|9UPCG*f((&N*vN7cU+9YDay0VTF!U^sQF1KrFJw?^jgNwKHhJgi6wTop#C(2iLn zy~ingW6n>!L?Rk9y4!IZQRr0Rkh|A8+JH{ov{7tj_23CLBGgcNKVI<3vqWIL7}4GZ zSWT;RfsD2CQVtaFO0%38Y5cv>IYW?LRX@rIpidNgb2U9CdXG)G4Nb;Xs&4`?JvlBs z9Jw|=k8QM$tPdQ{J}`U@M$A;Fe>HC&T-p)(fh{+B;ucoE6Xcf7{4pYyyd#@)8v^|O^-t`0Hm+EJt)1au$b==- zynRozz)vXowssfym)!lwr;q$sUf-z##F$@Pi;v)MXlIs7+c?1J0bpf1L>3`L$@bD0 zXKr18x?ZJK@xom6LGH8NFZ{XcW4EB3?PSZWAQ5AlKvJL4JzDT)x8B6p?UNs6VQ$B6 z|0k0vkNH>T%c@_1Sz-jQ*66I?W5T>QV^t5Rw5n71WP|Mn;YeTX4yfnL0kM52jU@zj0seO?(QE;M8-5R~o@rkv9p_8|cb$y)|gNs+yYciuNaV z|64TcW^Y_5fH%f-k&sekYl6u@najdmTUqMTCLi#We7ITr@)76eQx}kllew-Xgqa#I z6=TVLp8*F}yJ7pl7tiG}8o;g5NJ5@1O^86bmcZ@6(E;?%I8J`?6~4qm5I z^R_%6?z_3CTuKI>h>%pvNmxC=P4D!xuym6$r}7HR3S``A0tJiSX&Us%x+Ir}Ppq97 zFflR?HI#b|l(UsXNI2?R>Ralcszf=%rTNibA8`3fy@<6$k+-=oc9y{vC0QC9zlJZJ z<02{cBElhzJ_@D!+Ud+Eo8QZ6;Eu%0?WZP|5qGq^crARspXApwAC5jR?)CrdcT4+G)8{?y6qpfNfl8G5m6qt<(5pFaLuENiM2)S1)C*uU>~7th zegcpp3kYRt+ApBs5}fRASyWN_2QhuyPEM^&7YJaX1HiS zxiTorM=dSb01_`!XzJBm6e)-Q{?`cc=XBanM1Pombk1YwK%a=!YtTChQWn2ZNIOe} zhy5W3=_DzYDvJ3L7Lq{9jV* zS|Ga0{r54j@{|tF0y_y1Di>189>1 zVed*2`&iH82>Qa0q^l?Iegb(EP#%pk33M98fw%(|A;1p-@g7=$HB2Tqx;_lK`Y9M* zYWx7Od{U%v75f9ExI)HibDLK{w5IG8%hcd-_sI~RW3K@8TUJ|`5Y=aV z_|hyFLN6;AX%lQw6n3ZIarOxYQyk;9*qcXoFQQC~d0jFlL?|FmhT8AAj~O0yHw#0S zpA@Z|#s=_Y)>M!Y2M)6~kCGj1r8zQ!Tv_Ti=o>cBM@qWDH1r>}zf-kz-J1zvLp#SC z9-#>6m;RHhmE>mHF=qr*&G!>BBZ9qc0pKGL;I)-1k*&M(oBcd5ygc~N_?4!^vZcs)(V?$VY#{MaS2yhnlph-%z+u1YukvS=C^f1}S| zj@jXVxH-h3DFCOR+F_V;CKb5V)pybQX*Ua9T zFl8S51@X`&T~8)N1StnwnGST*#JaLih4o49j1&L5#z`1)eMg=kVR|`_(<{c}XHq|; z($wZka@Ab`NAEN>=C^ga^Bl|9j1S#Ct>`e0@bSNf&&KWRulnEt$dL4y5AQ|q9Zb+; zJ*(PH=w!{fcs!aT6OJ+Lm}J9fuTRv<^0c2oP$E?)8v)`(J>7=)wNEc?FZwr7{iRws znl-u?gJbyD0p)zPmTk(L98bop9l@Fsm%``y7*y0SRC&}J^s{TQME%>wMjRCu=I4h1 z;?4;co0@GgQ zKkCL=J1WSGPr-qOoQb4lFIGM=g|`;PBoA^)JX|wJ3n~sb8`Xek476zE=Vl+5toeIY z8%D#f*5+7>gUr4cooJi1{f&t8qsu{OfpX+qu2@k z!zrj>{kFqQ>(U#e-Nzww8o;;YVjIj<6o!-<3=!hx^$=0!nhXxMzFz!{7(RWr`^jUo zUfFY+EmZ~ZPqV1jrWdXfufoR4(_Ck3YgR%$*w*#(Hxh1#Lh=HBy{)%}A zt#J8j*j!u8$h4mJOT86H@5pHe)aB^np)?yCa>9~+lY;S14)ohiP^W4&x)=Zrx|p-$ zO?S;gBWi@;yM%I{#s0^)f!8q!gjOce3Q$vp8@fuk7g5zbw(j@0D-s>aN1D^N#$yO zJ4%bt)4a&&`8lAG#2R{GQ+`Pe-#^S6yqsv9xii%e$McaG-}c?*hVZXsy`G{Rq{n)*Z3g$Fn!hGkBBzCs_l#X9E(I4>4w>DJ>5OsAUP~D`c zW9MpMPW8r$&5cCge-)5{HRwOWVX1-0VEhSiCC>oG+UiLH2fernbLkC^3bF3iq~EEQ zbXdv9>R&6@kv&Ew{@`4Ir($Wj-~u$n9x9c%uQPr<5?w0-`?qBP*PHzLq@EK>glB8{X3{0vdTIiKzwWf;-@+(Al1!_APxg`Rxc{oMR0T3CZqWc^zr zXpF0u6d~-8O_KJrfC699y1&1#uj<#G1tpA&X+yc~F#I<@SSb-!%Lt*(L+Ad=lWoP* zpJ4#CMhM`$WurQRzjs8qT7_NIUsq9weNVwVzF-#PS+_Me3!#)9VTxnsH^$g7FD$YZ z(8Z5V5E8tZW|I1W$2Q6CuF&3fUAwu-p+IS+=#%%WoACwqGegr75B64bcHyb6w5GMJ z@+GjdkoMyuG3Sv7>kZs;AD@!gzA3-w61*k(+ZhZrt3;wId3&Zd=X3wup(Wgh15K<< ztV-~s%#_EIWY1zl{&$lC@+GfG;DJv9O-SmG{}OIWU`mRYf%AqV-$g>XzxIX) z7VAW4j|%OzroE1TeU_07Z1!~QuAzYYS_Z<|DBg!J10UcgegZ8yUfkso;nA7ASQUw7l1T}Pe5y<;D^{y!~M@)VX5QB=P5MAbgn2(88o10T-gbV*&P zs}VldLNN`0PQcw9%{)57i=iJl*DYo>W@TUf)t~z`PL7YIpvvgsDl`^J$iXgmUYKPs zyBCeAHt|XqCA0`K-a@xIrC)#AP{91)d2!MuyRB9D%$s}y?TYj>iFMsvb8|B61JOl! z$rK`~eK`hMS;^wrRl_#FDf=XS5;%*;PHYr@vqyrTRES5FWj*5Ti^pNFgxczN!s8B8 zMaV~nTb4~$el33bvK=P%Hm7g?Xj2$DqC|p2%3&UqQ6B^g(%-XdMSA_`2onv=dpZNZ^}OuXqP@MaFYOQ#8ERU_{m& z_O7mOGrpVYGnJO&ZNZBX4E9Ye1Jx}%6;FwO_jzxr7&N5@P=g&wd!P z{c}j;w2NCGu`lz-B%E|AFfe2n+Yt(;OcG}6zza`56cjeE3v=L0O7eZcvvn*b!UKb7 z$(~uX6cJ;FngVG5)F}CH%;S$$LFwvvbd??bUC@=hhLxEN+aO32HSM(eYxnZAq%LV) zaST+a!Tdz_C0#*G1b9bnUXTEs+sa~Ifg!k*RrW5`j5F$U->dZRbV$p zJVZ4qMAXUVggF>b#t%;hM|$;b|8Csts3%)kxSLtafEdt-74AjobdfYRM)n?sDpe z*bXes?99pB_&nRjjqh`Q-r_yaK>vv@J6p&nzuupOn%)2KHO@F#NbRO};(4jDE}1s9 z!MSRu$U9_Ws2iUps`>UkRH{#R#GPDq)r3lN{W8bzV}D<+d$#=~Gc=^_*}e$GEClZ4 zkBN?5^BhP`HIaJwu)*2h#bz*fu&Pc3ld?M`p2CY=Vs%!52xVPt=Z#%QPTUYGhFVIF z)U*C>v{8MD;-M{ZJ$lRgZt)bmY*#Xn%EtXWeHtz+Z=C;ZKFIPO+ezj7jL5CBIIdoTyrB*DtA{u8wN__nMaD1!vQrc}&^? z8XcTk{!E^rCj2%maE()v=>;Ny5$Hk-HQQX{az_i6t&U1`?+{JZK9{9gL`Tw#ha__^ z1KmbI5bFNF;s>-7*$k3G(EcY$>}v8de45IiFE9LmtG^V^#2X_l#ObSifJLs2547KT z$#8pJ%jCx|9E1zyh$6Z;wQPcx;lbHxVZ8_JPUBohho66cNuVBl;@agQ!0f*^SFwua z$4AhMFFk-*Dwa6v|6R?2yF|0}e^y9ihNy1yTfaq4n>L*0<_(j#wo#^T;iBR}NBBOgjGRbk@|~Tjp7($Mb`3P} zecZ=~$W!be6v*G1EL-@jU<@OKK^)TF3})XuSaZOqC*i0SvwFYJLlD2QOgs^POG3Zo zQJ;Ef=$-hnOHrC50|v?&Hu5m3`UOY6YSVf6T)md94Am)GW9Qo7nj`y|npr!2H4eGx7MAJ7L#&FB-I@S6oqtKl_uqu{(a@I> z-@c!F4-VMFBs^{zskJE64sfmBkIh90^w7Y5<2&~*n ztF+RL!-84$CIx8lc<5am|{ViId(J ztzx8^P4c6YwRiR>Ta7aeKAX252$67X3cf=Q5AW~%)>0c%HT6i~yxz~W{KRPI90b?P@6M!_|I z-{vy7iS(ks59WFVl*>6-y!}eV!7LsBX*CwL_aj|1CuO7mQq{EeeiVwXb!6__H$26N zpT5YMCO6H6l_Fx3+UDaENc^>TYbziso=bc&O>)j^r__7thM%kuYU8Xs|jf@E;Jhr+07 z4eRB1Rex|ZZuP)hxcuNRJhgB@LxH52HkU`D7tIXL9hR3g(CPYaI`9c4b4^w<9u_GO zmMq^?x$06L3BCxsaY9C=82Pkq_ag=`tVaR7F?ELkGtAFuf9U;d>>$>|k50cb6StZz zs@B|v?%-c#scN$eCQNxV#cG?0*PqB+e#dG>uZpj&tv4>UGhf!op>i(JEOTbxQ;k=@ zDm!J9j*e@!ws*NK=+b;`(%xhFqs=Iv1=x_#NlS`u(rBp$_}MLRZ4D9uT4_D zQz*zow*&F%#KHnF*K<|>>A8)Ygs^8THsy-O)%isDtAn8A`63Vq)KD}J@ zg5`#GZ!ZMzdOV?lzd9|m;8TJY1qC;@vAIt=tE?TgFhEk8;Ou@ey!8#?e)1=CFV(`oIR!tQo_PU^5B<5+m zf1}M{r6shT+8z#ZQ+K^=_rOt5rluDIH((q09)y$kUCpx_>j!S!j~JvO@-}R}1u*kg zj?iSx@8to*;b~LHx6w?_8AAPML=8)RP_2MaoRk}z5^Ld5oa$pC};vxskd>Gg-vtZobMO?a5dw>59Y8#dKj$=s< zZob6CCDI^Z-XbnDO%0vx>beQJTA259MTTD}@3#9JlJG=*Oyo->qsFW1aLJl5X;7yZ z=owI}$(ELZi`+65nbNy<8-nZALpf57d!Y^#^*`7zn;}((W-gDlGgqvF>yn{3ZJX|_^d){{&yS9=fz$ch%EL_rv zDvq<^(oAPX%K&dYxo99|M%P!XaH4B?znwisAC(l?Z~fum2SCiCYR6{W{e;U;SvEQ4 z#to$kgsS)Omb_W3%uA9JtwZE4;yWg))ZT8)$zZ%PKXVM{q&%M9I5}{W)vnHe)6)B0 zm7TpQzQYYp)N4|Yz)kar&CJ?%X0oX*)t+vO|J`g{4in5JPXzH7Hl7!&a=UG?@$e)X zOBlXujBqC<6D)epd#-RhgbVygpCo}dv;3PLkWIs8M!xS#Ja?C1B-UPivRp=tnXpau)tVsz-Fj`Bqhq<{S&f4&P;y|qc3B+aT zP%`~FF<&zGYt}&rmBDf>SFr7>Nic{yPisRRw5lygU46c-GTEq(vZv1p+vGgmZeZ(tMPU}uJ56_Cue(Oc{3Z#n{E8mn_s=t8A#<`UMtlod!bn3zPgJ86c+^8 z`42N6K7_~wyslBHK4#26`}9ed>w)|<2x&sho}}_~kJmW>S#ESA2{{bFb8wfrx?iV* z@JIEO@Zy1E*MNYz9BZrvoGEx_KiHt7U1z#+^-L-`rARMLs3x|mDwBpG#tvx2Hk zY-*}m;MTa>n&HNzbuh7WR;IdeFCryboso-y*Azk%V%k`kq4K+Es`Yu?5~(=|1dusA zUafEDV0`k^FIHAt+XCa^<|)kjjLEW%D~-9N#MfWePMf;bq`rL(pkiUZmJpuCc=j_iWEEA1KinUh!G~<|5 zvx=U0+7u3V{hZ^9rG@q6ee&-4sMI0y)I}qcW0oSv=c(Vx(aFjTne~<#?dRci9bMbp zpM|WxXH!l(b5|Hqu281;5>pd<=z7KHpc4 zK{hOAf@9ZUzE00-ZDbUirXljPM@{<49 zM+0~1hv1*$24trTt_j$FBtl*sDVC9EjQas+@n7fJC(eGWzjQ2}{|Nkk32AcE>3y}R zj9CG`y0fCA6UTucy$HNJdIR1{o^IX#=IE=_(4>>L*st*wXKqUDH2_Dd@Vv?fn z)^{Erthba7m{9zgGJ#>GN>uom z-eeBHB}pt3aRW5fdSYj>{vd*!kb>c>MT^}KGP}di^LIj>q9R*J0du%CAH~118%Ik? zGnSnaUg{)OBc|0|9@=X8t^dZ=2sA>>Li};F8>w0VXy^v0A&Y`x6`#V1p+&-{&*m+N z@Ky@OLN(|*s)k<#N^$f41BH|I2{^;MAoPRN6$~fZ^Lgy&>|n46`x5ob5Q4*v=yVGS zTin(RcVV<!{LW=Yd#w#8{_Q>y`#i2tP21<&@$Rj;IS4s(r9PC1#Oc*6dXJ{JcV!ts?=B#Key$$--4q4$T4iEuKV{AZULo`>bf z%itEl6zbob-|V$8To&)&G9wfKc1hUa#NMY%8@C(~2xsjBm+AR0S7X?*h3oO3o{TRN z|7MJZ+|10DN*O1wiHkS+ope(sDl|D~*f<{_{b{y6T*ef$eR>L786K<&Ay`SGRNjy)qYC65J<;cA9>>gc1pcinMxv}}(dVxWmkG$;Ow(U34(3>0|J+^ zr`Uo0IuYmDYHQmEv5S4S>6+|0!;`fD&@ReR7)l5DdE�n$j~_;$l7|2!lt+(7fknVT)$_X5?HLGD6#k5Vjt@W~BOF=7^+Glv-Ix!=7Lb$GNI65@fG zz-i{cq5A#k^)sdS9UUIGeU3&B3qB_KUR=1b>{$exJL&~qwt47+0Wk#0DKA5iehiZG zzPp8Qo|hTmS319kw84}kZlnV{ro$5W+a;x!BoNCf-c1-2t ztxt?)60In^$H21*B+u&;;~3Uk$jU4tY5U=n)ec|XHG^NDA9^-G{=e3~IxNcVYkP(v zw4es z`{pvxnP;B8pS||I?zQ&b>wb}tu4!tzu#s|&-Q@3yiOS%dqcWZL{Il2esHCKedV2T= z!cJT!dU5nPVZ<-KIuPWsd@*vdqYQ+tF$im~%*@xvj<7ILQr=w+JF~YY?K#cNYQMw} z?qg|Tyu>S83?$^2=%E6Sl@C+Wu7}zUzR$Iu@7_92pLAioOad*R6tyF-aLKt6TxODS zc>hb)K;@;3r&PHt4?Tb`#&nS_d9?gQljmZ;?wADGJCO)dRMPNV1hV@v9_y(0s{Vp+ zXsGtZhcmL&#y87#dC*uxQE@5z4p-hc`0G`EpY~-BRv50z8$>IqM^R|MJF5 zbdlW3{KDysHY~Mu1b8`#yWhrw?5xA!#AK-39Lx1$dHk7vI_go|PGa<1A!7NC&xn-~ zhd3$8km9?nqjtvU{1U9nUA7eT#L@IbC;QEYfiI;YRit-4NwIVfUzh@nhXf zf;$jt`^@+BnA1a=S=d>xENQx@W~zI7`|RLV06Vg>yxiFC(EHYOlVHVX6+XMiG1i@J zw|MQbah0DJ*?(`SPUmpQ&Tjeiw1t4LYff}JDVwk@90iA^ct&2LHg`u<2^sG~D(2l( z-G`l6gR0w)UK|}YSXfj$<)AD=5+WiTOXN`EGvn22m6F3{AKqGpN{7t-WHD(en$aoa zM#g;<>%5@3KE;Ex6oZ%M=A9Diic6GmZ6rDR!s;52f&a^w!wwE!0Rb$s=jFjl)q~&i z6WU+$1(H&8qD|)gL4) zT0`%xB}Bd&cAWrX`B6n}-? zZy;qW`NnGo{Ei3lIHJbATOQ#gSkTZB8GpQr%=un2k3Fsh`8Gelo##`3UAIw8`3}{y zp2$0+qLk4}`&klO2e3o`MBY^A4U4B&wT#=KX-4TC zB@lKV8PTZF%16G987HRk5# zgHK!WaAZieEG$C4)xlc(QALPVr}q+5u)F1$Agt2Wn!S94O_esOsGww?Yqhrw?Czvr zP)tdO!$VnoSu5JJy|c5evlGwF&27^wH@;R|Tf4%#hr(ld2)}G>=#kyG*Z6td#m6^w z2&DoJNa@?xtVZZhw&Sc&$Zt}j^+(bq^bbrl8yidS(pG$gRC2G9Y~_e@^7{uLZjJ}j zOAFCqcebH8jE0ZO9Y~TAPFV%CDkEcjeY(zj#>UvxuJPO1k!KDu6eRQI_?i>uTM2nw z{k1`emrxR@$a%;s#M`y8#EJB~LvRJ^1)ZA|CYCkoY$heF-kED@%Ad|CF0L#K%HcK| zcIG486pP(bGc#=eWSNr}cKm$p;P`lM@$0K<=i8xGLQNgKQ|&rBI+vVj%!=8VD%p>; zf_cao_(UtSNA-F1?aCpe9+1J=4SzY#;NNlIci!7}-_Ft+I^EV-Ad{zy)IKqzNInU0 zp)tG4#Pw$NbTqsu!Xl(Hb!&gW#`9vtDn&WXkLPZ~*@f(y1<{A|u*MUDjW{@#2&zt% zQr5t8o=iA)c1~!uL6&UDbfi_w?v3M%H%WNE=hk9i7+hbovoqwczTkxCI~7hZofLR0 zXLjKyi-9xsb&a+7-}`E0-C-Y$(C96RH@{{X&mX@Rs+P>{ zGGCVX7_f26wqNnI9~Q=DE?q=%8*_Y+S{p+r8cNMVnYv*{gOQU%!3&pji9}u`Zq4WK zxhO{L{&=Aw8Oz+wuzt%*}~?p*idEJ$_IkOwKsgV>!&L$WZ$~}JHGPF{Tf~=s4 ze(@qKBf~07ZL{z73b$7i17iGyk%HDCJVqg+(?bP3CVveTGv}BDb#_iPGx!`@&y?2u zRVJPB8;2B^gCJZT4^EgdU&@hSf9yQj%oiu>l+ZiwHWwltXf<@u{lZr+A|m4Lvpak8 z@>XWu$vCF|YU?sS2yRoy8#&1CPnIOeZiOh8o;wUW)KZ280%8UMu%%#o!7gsv2c@WJ zj%)2@4BK90lAJe=1{RJybB#pNvB%p36EeThi2$Tn8d5lK4Nw6)WSTW)6#V@pHkv=e z)Y+*ahfF#C^%*>kpv}c>7#|J!C&|SE!A*7rmrzMhJCl*!?}g9^T5;`+Jt*I?mNR)2 zm1Ei%LQMA)Qo$`roUk=S{`{@^4!nK?OZacQ>OPLoUfKqDODG#;|iG+5Vt zz8$xEH--l3zn5x;Sum*8su$Vp6E&o82fo$3II3mjwPtuIeYOnM%${GvahxWG9m~6d z16hen&d#!sOPJ;)13TgW(>CeG(`v8tS8*(_)@N_cocN~c7RF}wChUH!cX-8;BY}5C zoJsB}tjZQl;xQmDvUMS@H2SyITHbjNYnh8p=h7RV>%3-=|4yRu3-P#jx^uVqR@aQx zZ;DIUs##q7gM*>_(<2K4j|Kg2WEt;>2b*@YEUK_%O5nY>LlIKt5=m3gUTf{45q|yo zw*4DbJ|kUT8si2I6y@oDb4&LNLAvK;ZFs~;OVd7C+sPgxoy+DlHpN*rfZ6!bND2Cib zg){|PhdixycQ@|*ygn&AkS*)+UXu4N?!lQqel98U+gk9v@=P!F7~5{DoE^1`OYtvi zdfvxsbT?QAo6ih!ul_}l=!j0Ga>`0zop%r3RvVmosm=~3N!jHFzL!`Z4alH&S5O;` z?9{0c^O`?A@|c;C8x;9odd+0dfA8m2ZfJ2k)pg7y4T_;HoXnBR*kyNmY2DLMx97XNWrNGAAZjP3o4i9E?@wd*F)_s}Gm3PxfnMC1|x$ zXR8MHUtqCdrQ8tbtr0tFBAS6DiOc%vq`0_c^j(5m@kntZwq!uSUu#YYD10Iu zToT-5p1}gJfPDxeByZI?YirNRoX0QS$nrSM7ExP98ZEa|vX1+G!shHjD9Q?2c37Pr zB?yeY3LpNS39#`@>W`fUEqNp;jMbD&N_(khbP{%dnqA`jz{V4w@Mv5ugURz7%g3PK zPqD@FUgdi&_NI|*ri z>f>=jy1!O`up)bocDMJ8r>3-PDm57Jna+QQi|~o*+edh$g!@KUIod8Vuz%VTn5WjBlexPDZAc?DGVS zd#|rup>jD|!2g>-5-$&PMUE5!90OOA@g-lJHtQ+lGBXu~^kk))1X^Hsne~;nSpx?p zPgj$VpR(S%T87oRtvN&o5tXgXIMDdu@+L0oyMBb4HoFHA zH5_|w_jAU6cnH^qkqKVmuoz56HrAZL8XC|1p|dZ2tc)kgyVR)1{Ek^5>v>!2V{4Y# z3Bu2EV9)aM3dDG5xU7@k0?T!SerBClxUWkZ9 z3-?NNpN5CyrHi`6wuO_7*TD?<&&%p{7cNKh@wx>3+Z?1R#k^LjK%O81qzC7q3VgLQ z&3`xHR3n~9Gw9@ZCzYVp1zaMUCr~N=K01MwLn{v(^qibm3jX_}U(Y{|)***C7r!#g z-@XkMG$O<7)Ya7=z=j6mD`MteSwDYTv9Pn#(s#DEBN2J8Ud1OQ+@Hjy%uPzVB z*x#5AFDWT0&A9c`^&<({Jl#G+-pQ=Ae3HyWIEF2e8r-^h6AK~B`C{#%f}ku^^pSd< zpWiw#Fkn@elf%%TBje(g1#-<6Ai$MYpjV>X$K?dW@Xw2jn4Fw^W^OKV{)CA-w>K*C zB0IeCX;Vx}itg*zuN+3z+#WZwh>VgYe*gYmWLzs)X4XvX;^JZ?8s0VQ%D~huu`VNj z*cKSU5sYaY$v$HxZvG|sPEu0R=YQH`P-ZMHCLu8g50PyUBqND}gM+J9KGxT_O-@c) zrI(kNe@K7eIW;wPa+9$eZ~d0MZ|7qam?L{7=>h~5sVC4V2y7c3Fq4IV_#Dyo};jf@9&V%8%)S#^y{`xfwA&pSiup0Bf zea}1RtVDK$d?&T{##DO}=Uvjvm!IB_p|KdRc1pwT=d_=goD=}9P}RxrkzInAhaG!N zqIHJpHITkPy>?V8d`R;v@#zXO}AJD+ov6ap3};a#K1u5g+ncv;Q1i(a0f;R` zhlC&&J#IKoeEe$F#Coja;UNSS9cI?nh|J8)8sHeXqN*zQXK%T7Bq~YaGw3M*Nxq<( zb>nhpEZr?Ag9NL2{u8zCoiHYq68`(^?a&|B%^5kz=_Wc(PR<7-WpoJ%34}e-u(v5g z)TIN|6W)1mn4UoI7D3{b$Vkm9IQEM8qXFq-LLwR={rX9BB=D`ahxxDCib9HSFpz-ja$(=lj$Gt7Wqb^E8M z1a5FPC;W2wA`kB`6nyOTi=##Il5?{#4XPgmLPoUt2?k+dz* zEv?MV$<8i2IX(Rjnl6Nc_bn}7)YsP=Hu`y52*r1mHG=fS@^?Km;k4mKfA7l_6a`6t z18~qGFxrPx1g|VRV-XmT31dC(fkw=%tVFTFVVh(q1k96}nF%BM z@}|r6%OrHP3NQhIvlQH@@@5jO@VEKsBlIXLhcDl?(&@9$SsQE97(imVkC{D>KN^aSwC zwY0Q~G+#bK2T)Q{0_ubvU%JczB&SH9R^UFidX97qbauRsQ=WMCXm^E5%1@};Wty0T zgyawAzAh}ppqkG{<30kmU5j=s4Hmw$LX!j9jeqo%-*W-QZT%1Smzxe3XopJlNZ8dg zTL1p4|%9{}NYn4Q-PD6)&LusY^`|FcMI>iYVb!o9T^CF&3gox0D8^liJ=(7{e&&N8GYtrM88y8tGs{k^;1VFdnFHuW!`GkZ3Gz0 z1N0AD!t_N1B!46ie!#<*uo}o` z_ISmxRa*WB{zN1fz|0!^GDJ&Ya$NKF_Pz&N+aElZv=a|uXzaIsqPqtMG-~VXOMYeh ztDAguZM|K}TFD3O#UA$EaPjkN`ug}3<>p@94L;uw<`Nels~`l#=>v88zU*U|Mc4AV z$IaHKo6Ajo=P%!Tqr*ABwpI!Z?=_Gb$4%!VjzP}+q?r4!{w0m_I=%03|6jT3|B}$g zqlyeaaCzLI!zI4*V5I=VrT;((SlmN?$5DQ8%J6IT$A@crD`zL$17V(b;^>|7DgKaa zab8SBh54j;3!?25l#dqdA;Ek0V|9D9J6p=15IHF2zc*SZ{-=lk5SV!uA)!m(OZ4y% zZ;fh*&mm>1u)@m9Y5{W(5#qPI%*ev>+5R6^`B3MdOAK;h?;a=y9{4!^c#qEW94O1j!6sb?S`2-TXST#FZbWop$;ruq zPsc%=0RDai_E+5lr_iSX71$9oW41Z%mT^+ac4+{Id3xohV3shBcmaWdUtcR-RLzm5 z14=;g!2zZ#h66z@L(NJnB@E4ic>pvBujyn<1;exvo8Xad77o6IDH-ND{@%{A=uUAn zM#enNbPj~f^&5NyK>zmf)_hMJ;L_RI+2T;~Mcp#v$eo=X?r~9&NrlI*Q)+k_;kq)+ z1H!xXyUX7nr=;kWIas8ZysWk9qmcwK;xKEHl$4UvD$(VMrWGXyo^2pKaD6}$m8BkT zo9)XsJ_2f4>9f1NUkBg^8iY9@@*)f-%-5NvrN|qe%jO-?)M2WIjX-{LL0c?retEbw z3ON2Ow2~s2;!f<9)@$VrkHBNKwY8yOh&yuS9=o2M_(lykdn}Q6#L`90%$Oe>9JCA$ zUWA8BCFXiHmR>4--jDhm59X16Q-C=16a@}ZOkCXUwHr{{ZaRfOBW6(NQH+&~D8l&Y zaqC~bX_oqXGUtbJ=!V6`2fM3Kg?b^Q{$7!$9MG7nJ-?d0H?sXe*uFB57-8T3?6NXv zewk@w`dnp4&k7tiy7#@zL}J_%Mj{_3olAAr?Ck7cA#b$vpWSes3E|Q!GcMQ#dY(0B zTVCV8@7(4GE=UK8HuhASK>0?^8s|yDV@V7+AaquSOREAK0gh<02d0mHos7TA8y7pE$F_*CL_f>~`#o7u;O}OoH6kn4j_%fRu2u(~%4XW72 z_l0fyugotmr&~)v7?dvQTRG+#bBP_YPw*xQ(ngSeKN zhli(UfLTC*Ov-Pk1<3Gk3^a~b*^&@5NJsNE9biF#(7RXF+x-)r_zslzJl1|(hRR2G ztgKk79mgI4%R`1FGwM@e_%;NPz>X;n7BXC1F)bahCZdz@!bY6zjk}}@J5Vh2XGI-u z|H6c6 zczwM@LSiBr1x2zo#ZO?poAAZVtgJW?0JIcB-9EV63`}Ya2QsX7#LvHE)0+y1@qXEk zC;y)7gxk_Be#?(SpUa*%VUURX{>lYRJ~Wfv<% zT?(bGxQ{o2&m{&=AYcUwZliDW`|tL&^*^Fam z1deR&$B#u|>sE#Zxp3yH2#A0^ItRxe){BN2kv{45?b|oPv|`Mi0eIN9ub+|hI?-Zg zc5N#mCUng+rs6jbnGMo4Na`4jNznku4R1Gs2DM}TcT6^2%X4|LVzJTXgBkV zh*0DN?olJqnI}IJH7ei6EiNozc(=-wE*lz+)~|M?M&yFbbQn!k2S7aqpJ{ZZbq^MT zg4Z~8%{>+n5Mrv{yZ*fp?zFyEO6;w^#>9k$c%GjA424I0Y1F|cUp|stzs`d*Gb>B2 zKte*o5~x1ts64?=0_kjs@I>liB8nkq_NRmI057dB-~W1tp%ud?cSM|in0GyAM7+Lj z-ND@*2Z!V^ktM7H7N}?0dyTt2eE10rY-W8u_VZ`?0PrdX)vqApwy7b)Jc z42h0z3_cG^JOrEjJRN*aB#ZS>UH!*wvYUtzp!W5cT&I8%*jZyS1_4vsDa=ILb(!6v zyEw-S(V5bLKU|w3XEDa>AUW+L1si~0+|<<6Y!zA$2CadtdC56*3&`7qHkFABI}GjRG+78RwEyiF@?j}62S(E>I~ICy@v!Z*?APl@1n`}?zFjSN8esA)`1 zb2JScFP@i#_A{x#DO#}EB$YAG?fy6Zq6kPNuxpeT4y0nk4!3pc^uTT6`2JD6qX*hR&N6s;r8Yt)u zjRDLJthiTH$}zLUO83?67}6_Oq5)nlAkGc*3xsK>-y9@`Sh{aq<7|?+8~s=v;H9Us z#N{>^2G_@qUvge1p*-!*EjaAu=OlA$F5O9-i{DF96jokv8wmFJo-|`Jy>kCCG7?-u zst~AwN&D{IyU_;U>wbHykuWo;aNna-rSMz$Qwb4Z@6sBfoe$@`sn@6LJPE$Pxz}@R z#ocB?;RqtRF)uZdb*#*LbhrIq4d|+BXbgCX&mo_!wnLJmDk~>F-M%YR=q#AZB^VPU zS!07`M>s~BG+=OW>nb;Q?{leYfOmx9zO$a5Uc*-RwX|WoiI4AQ&ww7L7mh$#L3YCZ zVBkZ>xU&Gy*JBXQkua~R>Lz&gE3S_0UY3%SB-~F-Osq2I1tO{`x>Zu%)Gav3&&Y^$ z7=DXH43!#li4C-{sS+E8W6{D&@wBLASH8=^+;+C8%Po$LZ*X`iNL?~ zRY(1X2mTHsGt~hBVB-i`aFjsU60LKu18E*?;pjkq?n&XZJ^Zo0zD_0S!;hd&^M?~JKRp$5ok4^V(S`xXgxtz3v;sqNbjwX+AX|2SrX@7Y z69sW*u{JA|bVe}*9WZj;d-DW1Aaz~I@!=tLos0&gC4pje0(IqwdaIc?JpX!(OLP;E z$PMyE+{PbCp;<`8d&eT zXIEE#>66V{m^>tawF1yj0gpvZ$>Y^3$a}P57!$C9zgt342T-co4X8h~w|fC43}dAA zwd2pqg%-W9pI;tat&fRy4FULP*VnV>Z-51iHU&yRAQ!Q_GBO7YYs`k;&)?rRT{ll2 zA3`_+3@HQP27l6JjDyFnmi}b6Eqo5p-v{b(s4kT1zxzb`WoK*a6HvLY?=0_R$^_E` z6>ftS2|+2d2M;)c4rcMfX}*p@$Z}1uOg@~L?s-zulUny*_hG=p4k1gGD(XTH3lD3& zvSTpH(O1ODVZzsqId#G%X0T-evKr1_rvjE8xmM@|s_Qm{aK3;am@&|b&eck1XJ
yJpQJ@1k*@CUZ4g|B0TrBqoa-XsQuPW6 zwIDVGCapV5gJh6F0yJ&~Q(;v}mWSjUutXAWgGy{smnr!e8sWc|OfXj9mVei`xL+MJ z0sp*o5Pz0l|MRc^535`M%M1dv2^RPMuP*96NBvzhypZr>1N75Cc1J;7zU-#?qyGYD C1x4}z literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture2_4.png b/labworks/LW2/images/picture2_4.png new file mode 100644 index 0000000000000000000000000000000000000000..3b0b000c2fc3eb9d730ffa99220f8d88f6e69266 GIT binary patch literal 56049 zcmeFZbyU@B*DkyOL9kF11*BAvQrLhg_8-8)eyyv{GYtH$5rmT4L@Bz957!2kxR_2-t z21Ck@!4P+mlfiFZE@s!m|A{zU*K$y`HgRyiV`q#}xZ_}R-`e56+271g#&-5*)>i!7 zynk{3b%FVwgM*E|2oI0tzpmi6wln1kvD31Hr%>3)Xxn2jly}hoh*Bj}%rKa4eeAU> zYA#XJeXcHQqZ_pg?s-8+uRc6_hB@QmS@zT~W5iF1AIhn}d!8ECsq;D1P&di(V^V6N z&M8?7i_aC@)XvA$j@~+|ter@l$3vXQdPWL|<*SlBV%kjmMWp8q|M*r(wq7~Ey~&uu z7kQIe*Z#EyQsM_bFc|bxO~j$7MEEDh$N88tG2!1fhlp7J{I>4s|NCG1B+h@Nl>GhV zw3Tu=w|;xEtwbPL^{rA-RqaT` z9(SB<$DT6u$lYDZ@lGo)7RnTEU$ba@&HHNaC`-lGY?;Wyr{e;yi+6Y6H7gO4gO1Mq zuBKmx7dNMJa@H(A4Y|gprpmM>E3`eLIDYBxPvnks{rXK20;;}bheO`HN!#A`I85`G z6x@{JwY^YB?tP$Hr^qULccaC7aMzyI01!}nV zJYzY1kA=^rzn+}FliIsAJZt?CztR47+fwO!aOa#l)?r(H#GI|AosUpH|dXw z>BIaPM4j%<_Lg)Pm<6+#)xBh(Cy4`HO_i-&mx zF_@hCE!6t=9w(IL<#rL+CN_RJ>(3--3>U;03(DB`UnwOV1>Cp4>$>A67p#wz& zUZ?2;>4kANRH=UBvEC9wRzKdoU7Z_X5|ixp;nQg$VT*RaF}hFl9%dBN(l2#*)iN$R z@;W~LY@hpFg&Pl|^Gi`UXt7@{SYRB@^8j}(%YI}~?3YWgu#^@O)W^AqfQV55t zLz{x2*+8Y|=0r;DCG&Q6&y@~M^<8-k#^zj@3ke2;Rgsl_o?SZ0DZcpST+PyZ%bsKy zT~7(N+cQM-bzZSL;Yz#f^BhtB^+rvx?5r2Qud4E4`JjPwIA)Kdc2A(Y=#6jEAq-p3`Xy7)H zH0ZiC*3`B<(Kalsj=}u>+=mK-c~m@GIt3?=R!rP|_5OZSRne*eCi;}b`Bt*jjJ@5p zs_ru99F{a`zayn^p~D9XHW^%fL&FLjLQ$cz&63T@4Buh(42_cHTN-=2I|3$+G)c+H zoo>^QPZ`kUIqZUoKOJp{o#Qh2OoH(_N=r*C0yFbX@!p(ZgVzbT57TT>b!5P@1RbgA z5HRB4=I#tul1Muv{Uj9*S$$(;`yD@q zjv*ykA+mmaX#xyCwQKF3)Ag9Y?p&QOr#ODTz3j9b^U-hZX{rKl%l8;Om%rCHHL07J zB*S?~ILKWr)grl94)dA1lrq{7KDAc0SFyP~kx*V-x|4=y}Dy~h-8=vCq&5u05+^qiAN$-$4w%jL@i?8CJk z39HJDvBAAA$1Z)%@u`Z%dajx&$C++{c;P6w$+VgU@Y82YFJdrM6z<@reWZV^**fTI z_LjQr?W{S@6n2?Ub!MFz4-X4VkBgIP2)oz@htT1tari{+-nMD<+F*$P{PKhSjLO%q zUoS|}w?^*i_xFUtd*9=wxqHA>T(;~^1m}D6IGbX-u60Ecw|=RbyRLwzVNa2D7kIrD zurBlZ5Dq#4bG0va?Jm#8=uMjkyHFYZ7R?dWH=@u!%7}~sdmzY*2+HQjXH3^lo zKmK!bWlF%JGjnjFfu~9jhaVGKbxuysg1cX-F6tDpYpK8a0*1FoTBoh8?YA%NyUoUE z_*7a-434E@q4qS)KczkHimy(N>7F>hck{12zn{LP?FC5CEv8A({(&L1>6Z%#m%kMZFM?LF}pH$1t18YyEBgx4X-~ zzjv3|n`Z54;wC$Ggd^+=+=l}M!Rw?Bt`dRER*RMJY_IfmPfAR@H(DPWA?lnBW-ege zFNS>U!IKxrT{G$3r*r8!5y!NK`+)?cG!Z@M9z3`dChynea+%48C{ic2%Q9R-MAeoUP@v=yFPPED_Q zrE$l&U(yM1#tUE2FTEsW1yTQ65h+IMDg{KVuE~KaZz&ZimBASI*|b%mB^vC5H~glZ zE|FXsndHK|;7VWC)BkM@^R3zPo-G+S7jx=JSAQ@)Jw3PpmUdu!eK_z;otm23zTL&} zs(mUdDi7=Wz!P`$C-0bshJ~H{($sWVK3ZfYXjoQO_QS?1@mjCFQiXS=?)&=`mtZ|y zD!6jW`R3b{BpK{_JF|32U@7j*7Y_$YN+=r`FxvSK%u$Yvj*u~QB_-e8`S|2@-y9&Phid{J>+?E+-iu$^eCyWc1|;LR463|5nFRy{ zT->e87j9fD+K-Vs`}QHY`h5T(kjJEmY5w~4ds4W8&iIt~`Y*rkT%()OfmMJ!+6&Cu z+?sf)*7}?c-?`oZv>@QQ=`cDr_Jlqdhl{rzuKhZ`WY$}3ivxFZe&T(P)xn=i?>Iw4 zL*3w(jvT`(Y3_zEU!Jx)-zt;bT?pLV7>{M8-5L`IFsRPh6@UF8I>2;dF7G6^rui>| zPeHJZyJQ46$O|EhayK>xPIoDsqx6aa@aaz+R9}YQYhD#9*8SuIgvmczDn#JeabNv-7fW$r(k?ng$wgduu~>jBW=(PCR5V4Q%O4;PDi<4t2dHNaV`8XG4e zgr^WClv}$+!~6HO&|i1OEC(vZi^ui7yeb*J)_>6jDk&&*AOKnExh2a-OznQ#nEP1x z5zA{h_IQCh6ddzgB!XF@U51{Ou5{{Jh*jQ7xKTQlU3STCLi(tMaGsbZt)+goWc zi&J*48X93wD47_=W?|2AG-*!GjX!vD`1IskKgQN3!2$YJ%k~bm8)N9%xfcQ`O0i*atr(aHlnSagSEOai> z-NxKJU8msQ+ZWuW>@^FIccHWd1e!}U*gS`uM`Qd8shVK8UVWWlkV$uwa_{zoSN`L)G9=K<0>@L}ny#{*QA z#05q+A4tX3eoF_;@k)X3z*uwiX?h;*yla4aj4HCL+}EsT`pN`pwBDPw-SFI8{$B37 zq^6~n$|&yk`#D$kHxz>4F@**U%|@&`_62*>Ce2Z4D^p!vZqd~bZt&v@-~ewbNi_Gn zjx$i7I3a_JxMZecsVsTB8dGT1rxSVEQbk+)&F)g{9^!?mZJvmx!9jO}HJ}vs?#kA8 z19!19F1e>Y;JFqJkvzqDz*7?_+w;kto*i(%?XW~=s|IoaRq3I}L5!mm=B8^XgL^ZU znne*Mz$IGsl}^lg@434i-;ZH_fImRIr}S(dyc8OGIyeFG*?eWPqozIq(WK=zr7rKi zEyHN{*%Czs{>k^&1B~=V7G2qjT?lI1=xJyq17c!lV@v5CK7NOypn_xz?BGNCWKV^= z^IvfxiRe&~>_5^Da9a(I|JPtPi^Y+zV83k?Y*BGuJDX--g3gF6HS&i>M9_uKB~-@q z-rQ=Lg>aU>M(;G&&#<~Z{JFAx3*uq6(;FLr@CY;Xo*hI7#a@b535ZPxaOq6otO2J5 z6=8~iib6E9bkv891gL=2w!tAooGCpoPX#zmy4PCSz+-xT@7?V|iP*7)l|ti&lZWXp z$>3P&WYT4KZn7zZFoY${!-KXCBixyk?_SV3*TZN3kEe&Gl#mGZ*p4QTz+xhwCusl@<#6t)H%Y$ZHDx>K?GIqyW zVsii}*WI^zRSF{mfXjxh^*hE>K7Unyu4Ol$cg>?PKi2sxYdAZ?MMYKi(1FQPv_ zI7}yKMc*O(`JuR)=X7q}3G#iDJH|Qm0svO8DoJc4A{wQgZ!)pFHP;0TEuCI+*}6Z| zBB$aqcav;7)dc;FWLZ(a8&_tm{#o~lr0}a(+aZ?tP2Y5%?*i^{%Ffe$#W)^|#eRQd z8bd3#Ga7DKyS$5{!|kJ$07*RoQr9#9KD|n3*Ku+mQzi%((oYV3&ogddp>-egf;mmX zdrz1g!ASjm79I905X8ISBvOls1DExjui1a3ncZ!=AxH5359O4pOx+@GA**k354ecy zPhQm7S2x!B?Oy$tFUr859LJ-bC&8H7Uowa;f4|8zQP8G%ka4M9Rq1n*Hnw1#W-2zi z?d)M1L$?W5bq$RhW|zM^gAPJkC+a-wKjCS7_wFNy(f6A2im?*kRscA84aDL!R>jIH8v<-H;QDK3V;Bs}d16@%=IDp}7yd4VbIK5W_Xx4Tfkz_^BgN5B-7B;`y0<-dv;!;22_w=e>)lG{xn8KLPb-g}z0g1YGmOl>JBOY1%f_+4%YSg;uwA3K=EuehIoAw+yc`TNwJx z8yTs8RB*$=MBMJ6=@~ zVY6E#w&ZaOWt(7Ok36*YVWjxZA*1mVn##;~sOL!8rzAOFO>(69ya>4GcscG87MD%u zsxAEh1?w2EO*4d=aJf}|Io>-{uUm3C!M_}QDQMlVH??q+-uBvGCn)w2qrjyOkT_)v z^p`^uPTaK7X;Y<{&OlFVY(WE{EGe%Xkkh|z@e-m>s}B(g3l_yUYE8Yjpq+^HSpo41 z)h~~P_lKMqW?ciq$3VdW<2L|uFgUR}`|O^i*JOKI;pG?4pM3c6!A*bxA&aY}?+hKj zU(bE5K_1(3O6AN3z^Ex8ibrPkds38`9H)QecJ`#DrhbFqm`o|Tt&9r^3rp@Y^wu|x zcGS3k9u5#O{s5_$f`aHfOnUI-J)j$CDP}9TW^d<5g>q?{gR|1fH&OV)i*|VE8QUeR z-r_-5F!QWDTY0e`;Vd9zRVYR$GkMI{+%6hml?zJ+jCiKQct0YxjNaR}3;;LIG>NlJ zL_7C?heMWilgabaT_we`)>akqo#i&Sr6xh&@xu%v1+{ada7~*1x@IK6P@td(c3*x8o^7+ z-SyWk-^+R0BCRXaARG>;8)!sJF~?bCmz-aBe*@SYwAfpqZh0-U9fVbsvv&j8n3?x5 zE#Eaz6OTOMhcSA8QE5s4;Tu%?rM~_E#mT>CfXKF1?XK_y&U`CfaLr zLS!;E0YyttH_j%O=D?ELMi1Ax0nG!jd=Kmh&g}~k=h@5}-~C)XJUqo!cfj7I)1`F_ z&6ALD0P0&C_^<-d`p_W2G#{b6!L{juXd>z~{S8KxQ)toEDdg9Yp*aN>9*yE+8XUn% zh&t~!Z2&w(2wKND&2&?Xd9|nBIzwHY3<^p*u%GTK?<#PeiAZ+@HBdSDyu!nQhQS(N z>99Lp>IGviy|#4|aKJlQ!}a1lw^k>na;h|d5j(Wsx;c>;tf&GUR2_T^;sT(3q^Yw0 zp8xf6B}H9Z+fnb*MF;WPF zd3GLnvtEYx-YyZA2>Sql5kQ|tBNkGCd)nhYdxO4|SF^Xivck9>Lc04$`_MR#@BXtZLj|KO#2-{QJmUowi9)=z+52ePNqbSc=TY2T#f3;QbQOu48YGv~b#iOqvZCEeV|_Hwf{C z_kZ%u{K%C?+DV2+mP0MA>2DB#4oyr>C)&4&YaTqsjg;(5rp@%0Ki*yW{P}ZDc1?#F zz$OTO$D5)>HGytFF=>g(0uX2p01XhPYQ9Mmf=JOGi(e7zB|AiO^!_^|B*DMG|1%zN z&lIR&?EuOOO`7QNklfDR-Vp--6vX|uP)&n02+-|9DTr5y?5+>51bS~vBbJLG4%l_a zW<@(ow|z(=h%OetK0J<)@GR~3+OqTn#SF|P7OCp~{)ZTVFp7-5Hfk?(wnnEB?#y~` zT67RGu_tBBubPzn}E1vHaeAg6*0 zV``P>>V9&BAsx*YBvW)!!?^X+;Y1_J5!{J+Z*eaCHXDY9Y_)U*CwFyKC?KVQyG$OW zY4=DAhF#pp$7h;rvU9#W^+(ZEA_hmSn$>1NZ zo816>a2ufn3_;Q=r-uU1F!PB$IVx9Z8LPE3WK9?d<|!`%bNHW^XArhPKZ7*?%fEaLiKHO^ZLcZ- zz4T>s1qGKvLqdcu?|&qV#ohvU29kA~Dq49AMn-5~$Spt`iJ+W9BCS1F7;<5woG@nEAy2 zG(~&X3LGI%Y)cA+W5!m5fQ80% z)fN2vFzvb#ZO1VzX&~ev7s8UjwTaYp=UF|F&1G7|*P=kUJ_woFwC*WNIOZE08yyA) zZN`MVZH^GJQe8DLFpx1$V!5dMUVdk5tqaJL!&Fw$BodNVH=TQJ{g999!4j50=HP{t_SHLq*Zl>%0h}x(3+N$9#ezNfmr&VKY#a(C#i37;_#D4mnQ#Wqj%SIN8!t z(&K{(_PUODoffjW2&N!R(|Oi`i-(j_U!MMrtSv7Ic;(pz;hce};))MoX|2pwmfCv%P7M3v8U2 zAk2Zeo}B&FH$d_ZUHZ;g9LijxfOMqgkB|NSi7`aRrE0SyXF0rT`+A0EPA5`3_5)%L zGGcW5{Z@MQT|wD&Uc)7q`9Ydyg0*9QF~?o|Ag83%MM5bS2XY#uVPaZ~ZHL=I-V8F5 zfapYLJ^bjnBJ&@QBO|phiNEqz;U-KGWGHHCRlYt^U=p|2>Vsd zF?|Ik1K_8cm*BMFpY+mF|9gM=tQaJw3h;Kx@^7fbtRdY6apH_22M0$z2C9Ap{C@UMsm#{d9Mkh=t@hjtFb4>Z{8OTIDR@0De z1@)o5%G(>zvH}=VhQ#`yuX&C)B-8Iz`w-`327yS`FKKRr_<8%TPUi#ScE0+c|$ z9p#?NUF|TD_42_Ovu=BWc=dGgf=!u=3Id4rUQn}>tTbUFp zE#^NQ6j^CkRoBv@S%@Ocv%E3XUHLs|n3UqnK_ZTmi4Z%04H;Cef96>RnKcdORyy;( zXSrrS)9(Pmer13@R*)UhhXb|=EHyetWb*63oRZt8BIg>?Q@>Fi1waQLtlzY|>pQ?K zx=8myn*~$EwgRvb09=H8ulH8Zz$LHk^{3;c_yG;7XCGp30SPIn4MdB$^GY$9kb6&q zrFL8WX}W?Ei-XkbPzwd% z0}73%Jj6c*Zn)&k*isHEi+TBcnWrKC2l#xts_z}EcUl=`rUB2YL;Xx%e!hU?q#7b# zAPcF0E{za-&@g0!ZyAvee|mOY;Le9f(#=2wOTjyuN6G2vL@X{Xp{x-6H)o(QmYz`+5c4rh$_?gq~PoeQK?H$iX|@ZR;%w{H^Igan=b zu;l>c9Ytme+R`h^OXuE}E;YHranW>@mwle=Ifd4EWeL=xHjp0$px6TPE?paLPpfG8 zO@zcrs|#JWF|U5{?)wK2K21gde?q8>EToR!-XGCjsAa0y7>lG6cPo&9(wBGE)(`Z?ss7>3xL|Q%T~Rq)6@4MDWl=qC^+D8e6@G-+)?s-z|#Sm+qQ?f z-h4qj34bQ@P9AFk60gKlv8?iC!Mb84?8Zy_v^3R}$wvN`_LVL}!x>9cW8;p^J+;uu zY@=qbbLSH3jT%ivz!R>N4!{u?0AUmMJY&_Fw0UuBCxX}L3E5$~6QQ0;L_EL#BgUQ7 zX&>$O$pb1k`6D-hB@Irz&b!+WVqAtO^zFW~f=Q`@CCgBc0ys(6C%!;?MeW9o+B4%R zDJfl>)gZqHwT!C*^Ze_P{d4W4d(CXeetIje3Nwlg96NX89!Pp_gAevQ037-aCtK6X z$||c!d!VGqU}Ry-9W#9eKOniYY_?Pmx7<~= zt6t_j_p*Kl`8Qm_{hxWMy{JMDem)G>v-TsIH@kdM*79fGbpSRXog5!U3h&CRvy(2AjzaaX1B~@*Y@<6>tAtU%|aR?!P^h@8QDa|0#b@bOF zl@9D_zY-;rgdU_xT(T)#C}h2p9kV9{j| zjQ5x23_#h$KTyDSq~3>WwgB=*(#@y&P5f*9X;r5jk+~wz<`>08zVAbX98~o{X7mmk zn7V;MPdSntRy_%Ts(Pqi{Ezd)u~uf5)sAA0RkTLQ3e_mg!_A& zh6^ZD3x>XRo`u0JzJ)CUT55RpcdtBv5iWysAGm6)}mbU_c<6)=E~0y9-m{)MQnLP`J> zUwQCY7tSeS9!Mb`j<_q(%8*yD-U9YaNg+h2pud1TCBhjr?<*~In*Q+?7=h5`K!}?_ z3o?L0t4**5EiXF=n6+L5(k!c>;OHhom=A@o58rd}myl7@1s|4CUf%mkczwqUSvoiY zqu7u8UV$PBHxnD-@9^O~s$44tzP7bBYU6uyax%nxJ+P5~wpYgGzRDkH`hODq``-&b z|L@!XkKzLV+71AAY>H8-sBRX7BcyC_7Y`C=Y2}_Bc}+w@2Bh_|$Ih5wmF>M+!g0Z* z57qlD0*>tZk!yqsuuw@9@MYiql%0?flYUtSMZ=H+4jb$`7brIL&7W}0F>0($6BLh( zAgZ59Ns)gO4;XO@FxssuubqeE5RN&Z5~#n8;NCFGH(^|q8d_THSWq#{zHFenVW|0J z1pqQtzSP{N@7$LJJeSit0m_||l9FoLz_Z|3ss?x9dz9B zT!adBDgSXQRZwX}0DGu|vIqsi`&zt#lecH?S5AK*O_P04Z(#KSHU;AVrLhj&{%~ zm%2S$0|Jl=*#|=?&dcVF3Q2@rkW(onGKMrD=sQP*CB?=2LMi2onorA|_|Miu!Er|) zqB|}5K77S5=q(`Agoyw>nQ{b}#)3sTZhzB1aWO7ik5(B{AsRX5i_cN%g@9GB7E1NA zfHaSi87KflVvQPpJw+}v zI(kGNaAGwr{#8=tKi6WXf3~f6WyXbQje)c(_82cpKNaMUlUE8abr!5e7gi_W$Lr(5 z$%zZ&5v=VilY<%lm>#-_UnZqLgP4f4&O9$Pwi`@^a%R=}e{RZ~lfW4und8p;@3lND;$M}m{u)u#B|rL$!)0hF{o!-kD~yhs9o40D(W|&x7O~8OjOPp-q^(*goP;s<~|s zP*c7&P@sLhiJuK-;hlM?n(}Rb_Z6H+<$w5-a@(R6mI!ZTxBfh)y`A}H{0nF*nZH1o z3S%SK;lxNVWku8hWWu-pN1^^d*R?Jo!0Qq*z~i}<#XH*$v3U6#-e!Dmmhi=GLlc1j zG#8=X7?9$EKy87Pbs<#K4DzDR4v^l&QGx6xT!%7K6Y(#&?Q9UAoX<>>%lel490o`* za9K$3|9XAdQs>JAWD-(AT-th)*9y4>g+ae88>$**ppFFKt9R?behQ|uN_C536%{j8;A1e z;l#570_#KNfA4vzFKQ7_KCb$c?3&!%8rk##CZU2POq3aCfD8mK5prnhh?%q|V!z~q zy!H+10W!*?pB-m2|L};yFG>=Ml8udxuY30AUWVYGl7cCw`}1b$=!KuA^{>?4M5G5o zu5uJa96R~u?n05_YM0^qP#wL`ycqMk0YchL0i@fEHrs4Uc1RCp%vJ3f*pD?n`|X5y zJzzUhrBl?@X#h4*>K4*7XQNGe5zPVk2GSC$<_Aiq=LhLK2}VgN0bq39wE;L5!y+q@ ztq%t?#4@+H=6r|WU)1^i^v=g2K5=I4d1rji?$g7Pt0kASkFcWx?TWqKtq5`V_u!Tp z!~oJ6!ptC-L7o=h``$7V)TxZ}EYMwze+ZtJWd3h~$&oyVv=ihqIFAZ<&As(|?d(GG z3tOQdhRMkfdix>4?CPbC73Z%|%|r6Q2T7g^pfksMuD$`da@5W>kWoA&CMH`+a_5pu z|8r`tf;%6{K)e;~ZzF|+pXa)8eWFu0X|6J3=LeiuTSssKrKpvu#m<;?6!0vPGJivf z%q__G`EJRM5fBaZ*mMYV=_SA-q8e?amMaMMC4vIhS_4Imm{;1lSLwvNQ=fYbQJDQ! zo(S{~Q4}wn9G+o-PJ;AZC&H;N$$MxAm71IvF0=#SfeyWf!7eE4J1I5>ZBbpIn`iv` z=$8Q~39>j{(4;atm#B zpNQ}h&C6dAZWyxa7c=YPHWIu0^zM^q>I)nG+5NDtj~}ZjzO*&Cs5Jx;sGQ)}Qx8JT zn|*WI){33|lm|QhF=z4JZy3irvyu}_SZTl75$=cX%3&d&MpohJRL9Uo80E;rrxTOp z0&H7iR9>9qEji7JT>B}4YcI^@nR^c+Sl$7C=)ef6Z!mI_gnOPn!pD+Sh2kxxPStl0 zRpOtc;7vw&V6f*_qLQRQZI%v}Eruq)3}0Gia19@y+V76ZXP7m;yK^HriiYCy*H`#e zG9~PXz%z&z&+suofeM~vO8gc+*;EK!XR?V@3F&vY1h#aktZ zk5$(RuUAi225zjJkoJ9erkbZz_~N_v%fA zs1Df`g_@alQsCF~CSivAwQrq z&3$F~HK=|8qpgNqu`Hx2J!h*1Cf>m7OvpkcVsBlcWy2pS{3Vy{lUX>dfAVo0wQ=FY zVCph;*)Hmu_-`%0IwC1%<*aZDsuTv%yl!)Hhp}vMasB*?T6jE@X!E1P*kv5-Ct32QL??XususxZ!QLp+>kZNs2CgH zV@Kene|aKB<1d$HVc2J(^!wkcMXsO~5_<^OvOsq4TN{jIP~pfd1Vd_k5>gD=apJep zKAf7$P@@OA@8I*x{^KyZ3wb(AAZ=7ZL0VEdVp@yiXVP2^l2`Gk;GBwBbHN$VgFv zLHX?Wn@N3T0SnZcGL}6ee24#K56s_L_G8NLPiagn)CJhOm0r5@&`9+y9>|=9i-L|& zu$$pXFpP`UB(0U6wdphn)v5hK8RWwjE9!Yl@BzWWk$kAU0zsNE!r2EDi<7(xsuHzo8`7 z6qg8Ehh%&YvCmUPEBfK;)mUj}UvL|>h}yU$7;ChWe9 zO71KN&z3JKZg@zDZ%yZS^f!aL=?JMfcF?d#$Jn|6kw=VReAc!X0#%rA`|r)~=Me1r z_aiGliQcY!o$&!>=8Wr4pgj8!jH5UX+Mmjeo9QQfDgAAyI$IA53W+k6HOdbg;#c(; z+IT7`CaRW$bN*5^v+ekKt+%(&-uqU)9*$qNegCW)&&IqobS?(ijyJc4YKn-)`r^y< z@q9tX0WE84W=L&dk)q^!T*%4J_tU(`|01bhv`dTs@Dq$2^9eat88z5=&GOCk0*5r- z*`KPV^H)vBRjK*oLQ>=5aK|9PO{HLmsXka=pIA1Vrzp7`G_oWt7(0nSy?E|`w~@iv zy^zjqfm&ZOEXjTt%;akYI~M$uD3E=9|9l#Q)3?oa*xTuxklguNQquke@6~vZk%m-W z)1xB6{JKpki;=NX5<6qrW8%+KsU@;;7shfN{}A3|g%`vif0$m;c!)<;RrOrSLCjN1 zi2qWH-6g7SBgc%QBItCmZ=T{ES>3f0%4Eb3?lqBMqEv6$-uuh~Q)LPCW5hjw?!VBX zDOX27JndnAjNl%RYe@YBv>N72BEz_~%HYO`F5X{d7$NqP#?(aCd0=MRV-lTGjElS$ z(J0gy#ETuq*nF!2hqo9SCL0>6a-iZ9rn=+6!L0EO{^lT^A}1#a$18aE!dt#X=EF%W zi@j7&PT)DHC%j5%7W&O;=%9oNx{k2WNu_q@&Yds0P6?p$1mfrKzi8WcIZ?W}Y`3nSo3)PfFg_zg`yT~Lq*iR9y+3!hI-LL2S~ zKbg5WJS6%&mYN;~W2nMCp9uoN z4${NprJ#A37Er&7Sjd7J71lXSwsQzcK=t{@lGAX?wy3O;b(9p_JaZ;^Za4->19Ral zARiWY8$qtycNp^NHnU`yp^pYvT-Sef7ALao+7n@}okBDoL&1~jlUE7lWnys22WgN( zSa?op5afrPXL8_UC;}iS#_WpX35NOCGL1*iHa^aalxT4X8QMN^YZw*L1G$zjj%fGebD`B z>X22=jcc884+PF5;KL{tOpk#x=rdw05e|NWgWGjtYDxPH0Tg4x%VkM?Xwp*Ot*${J z^%*hJP%bsz!v>c$qO*W;L0XV?KFAWn&~xgkIuf1cr zcb5sEPSD7Q*`b+4DCjqb52Xk&219-l>{+OZ+{Z$_?X&2;JufJEZ4M^JT)Up9hBsRu zmhpO@JZ=;C&;Uw?y!&{h4f;7zYB?1ez&aQWAz!c3^P&pX9pd1q3|yBJYbq%Rr9{0%Ag%Q;6+v_Wke4^6U<|`My z{rU5KVd8e8KScUM`^p*z2T483ai7w6cm)hP4z(^&dawJUO6U^%aZUk&!ul!sD4|=& z&&$I%N}$46p@Ac^H%6;(;jvFPc;p_g7UVxH48|mLv?OY>&(_~ zqEwao<%t^GSpF6@?X}tN%dU3w%V)Q;);Wqp(?pymDk(eF^zJ^b#@k>+Hl z)jH+cn@sSL6i%#2g|jvESJ1~W1g)=&;!9cnuF-p|7numzDJN)P=Y%p7sIE`H9M=d9 zZ%;gPVoAU^>u&(FD1T6#U*W3I(4@{Rt{?iIwSU5^>XQ*g>Zx6_Gk1Q3ok+TDm8llK zZIBF^^p5wYCT`bByRwKb=go1t_BJu&&$7#17(2=Vj(JxM4hV8 zx^xR_zidH_qrz3Za8@Tu%KAWs8RT0Xw<((8P{ebJPf-5=9hHvIIj~PD()}j1Q0PEe zTqopn(C0%kpe!D~MAQnBpCj}eXqG%W?Nj%Yq<;E7_C`tnt(F$c-Oq|q zYdFMyS^(!EfrM0_#2PA87p@6TbI@|tXAuJrm!YyU7*fCw8W^-s(Hs48a4yUnEOMmA z*k^c^|0xMv*RP>Y$_hY~Ss0%n7(4(zxjZBOgIk+(oNo~eKyj%&e7U|47sSAM?tC|u zzn=+WSQ74P6CRJFhat}4U2*NdhoO&LdvD|TJlWyIb~V#+6+?WSmj;LDqA5UROnBvM z>JY1p7y?O7L66TK`rAStg)ycjm@?o%{9UT(u2bM^nM?2tn=r@*Mr9Mz{eGbn69?8k zYANuG3wH$&8Ji>%A_?{-%-mUB^$JI9i<^-Qid84b-=Ut{YF7L}9Ep0KmGwE_<^F#2n)~F5(?=MY@w_fp4RqRmkNdgZktRPC(6Y>bGS!VHYyV0s}wzc z3K5)mHrO}aGGKLxT~#G<*}(|S2_s{NU)u=oe%y(_1{%XcXaY`RFtbAtK5>PF=*1$8 zwnRN#oSikSlgQ_EiRZH-ybd7di(Zb$sqyGT57h$r3FxoJh5YaXF!~gMeoPm#0DZ@- zI2H(`Yxplh{JGFJcfnfr`O5ik=xMVz&~SV#2pjq^@7B4m;|ELF5hs~7@t$=8C12w_ zDRFZ%DS(D2=tbeQu+~g&w8$ED`7SKHpYzkx80!V1b`bvZc6Uj-~iHYWBRz1AwokO!f4*QRc*{Vq6k45t1e~q3b zxKz@U1(NAkgC+!qFoXx@?GO3+)6W1ojad_JJd6bRg(h+y5BXRDtHIrvdBno|)pVt> zXzl*XVRxKVPEG*@5}&N<{X7@W$?0#Kw+|(xfPG<@YtaZ)ZF2>(Ipaby1q;hL_Flp_f-qtlCvo$Dg0trG`Ka@iWhWN~hfe*vw#v{n-iSdF@>x4^N*DQM8HulXpLFwxWzpcIr~pU~ ziX(_+Cs%tw7XFS2`h*rg5TU&6U7`Olk2T~+zh2ai7?HtS&~bDvCEipBW{MVi4hHWt z5|$}fPC{fl4$$!EIkYZ*kSGi4#pOO!!EJkukAV#zmB#-bW-Mc6LJDyqBxZJ6?`$a0 zTy2yT#G!taIV25%B?_0_k^VYv@5KEoPxB9&f(%==`=rhlvm70i30(V&i@mS1To*}D zcoCx7{e$+9z6w>@1_l$~U~px^2|s8O{Gj2yN!jto=Hs(|Hl#4oerX`zGFD?$b9Xc1 z5+j)4lyl&JjeK^_qTSay!CHbj5ficc%x4)w0Uu6HZDd(~vJQNqY7*Jubjg>X01is5 zj!(fekfXw2;WK4YE}UGDtWM<04zjBJIq|bS5V;&V3B#4Tq(m+2Lx|2Xz^LF@`=P5f zvTz!if7Kp5DI^-c$wyKj5#}7(C|CreA3U-;Zb4XT{2&@*tpl8A9jq9C5lF@5FR$>l z&<2H!U&2ChhxSE9%6TF`u}JW(j_{sGb&Sek;d1V)LW1F&^IJ)Id`9xf&`-mbr&U2c9`bHqJ6YKH+vpJU@L_=+h}#Xjkehx~0m4CkzJ+AJ zhy7`C`b}{X3>77wK;UPz^E2EzvX@4=Gv%Sm-){sl#YF$b-(YYUDr$Tf$_Bp`w~JQd z*>i%^M`MwM#QfrD?T_*N=7HRguO`}c!8L%<`-}wNSFi)h{ZGt41Cw6Kw|Ofdv2hn4 zYMGDy;9}QC>H#38L+qx|-H5*80Wb#FGTw$d+wEMT9}p_+vjFv@Vipld8ZN`PlSKHn znScHWccx@8$7?RnnBU-qP>d7~%2-OA=M2ynAE9p-x`S>qx?V$Ha@d70#!R73T_}*f zboa~A(03Qep6cIC|3!O9E6?W?$D z=*~?AK!-jl;|Q3z);?Xzj$&V8PSxewk`fh2Fvvbv)1GL?dp{WoaPCmmzyM7Q0@`Ix zSx{!1p5H9OIu|8Ny9 zd;InJy!8LTHy$_mLa)uQKDRON&YghbXkQ#`2K5^p7)`!vO3sjPof>e+T$Mh z@@MMT-(-T1=D>H{L?#l08YsOEZ8%Mn8$ewP8-w8e*BG?`AW{3EN8a5=Y#tI?$qMi- ziygHMn!JisNinvYAAy#rz4&KA8>#CHv86tI0QGSNmOYnI6R^uJYKnso9jduk;1jQF z>%#v|yi&|YT0i_)Q0bYp?7+dp<6_`;>(yQNURIVK3EV_UN$r~Q<3Xb@8oX~N*SJFK zsFk^P$!c!BPkt&O-olm_R2P)>Ru^(BDthZXn1$MZ^3eEtvQu*r4)EPTXxiI^@4fhr zgR+iqTZgaQFhtP~+EG)tet2A4tZHW?|k=nxnc9T7yMZuS}fq+95t8M#x>G9>) zwi)ee!*cPciB?AEzsGW*wZp1nMME4uGy&CX!HCJCYI8(SNKfev_9hY)=~n7-a$km` z813;g;XhDnsigFd^tnWNGFsXj^RjqE69R<;&|5v}&)-ZQb9wD0J@h6(yHq@Ul4}ip zI?`)r$`COh`1)A{`rwGXJL?Ib&5cb93*<3n)J#Z|b~buukjs+7*@G%^yBY&(i8;?2 z=xCtHIKY>NKHF+Y;UXmm=+c!B3tF=LP?r zs1MYNq)7;2S^eRd|GK8Pl^sH4XW8Ys z5RzivAP`JM>C%gwvZ#etCyg)pr#;ssuFvC3i$7ax4>}MfP*Di+kou5XnatZuJVB>C z`{P*I#x>4X9~Gbk@q$bkDFSset3zS8)tctQD>rIsm|PRTv!sZuHXtiie2b2j4;PwA z_u7E&mfp&&{!*@0CIWn0D{x6Q0|CwAC!^5?H9O8^A!w@?7a)GY%7So)o}MK^WbE`l zB*w}gaTRw?3=1~_@xlZb)b%ciZ>C1LY0Nz4j{M+^y|t9ZXfGfd%*9@XmH-S*f#Ik+Xly z`UiIh72^uAFL&lpG7%$l6<(KR*^}5~E%@-O`z%FPFV}?-uU%o0HTz$WTlaQi+Y|g8 zCevEIca0q0DzY3rNz;*#Z-Py@ah)eB>qVi3wC_i_`vo_SyCiXP&)2$=_o_nL>S*72 z{vLr-$dgT&U?yG2|gd%v** z25oBt3_9tBxTlTZT>?|aAfe!Up>Z19(>O^f4)EO_5Sg4+bIX|*6(xqN9$LWmzWZ=WU5J65weK5JWu@HcpU#Qao(>%iRT{Dd=0aQ=C7A8Y}1uUb0t zNdjcKs$x@#Hg>lS`iuV8h$yAo0Wx6tbqbh~qNKp1N{u1f9P}6XQQb*XLq5E+3OF`lJ6`*t~vKV0mb;Q&>_?tQ%S`C*5Xd$$KY zNZl=KLeltspZ~5^_1gQ_y-d^7JhfmW?Fk?Y0B^>bOB1{vIh8eM7asoqnHc23)O)O< zXT|5fIjeVZg$xfB>DE;^4i=Xy)KPSweY(1$=}!?%#l&xK8yZ>Fd>UZIJQ`j`5 z_%N}vR^d_u!Oi8!Y^#wl#~0tmx*NVjr<-O-b*dUsCgJ2{5;>1s80Qre^c}ul9F+|W zc12Np{t~{LSs?F?%FNG_(l7r7v^cg`?AY4?DY~=B;C)E?e|Q9c!}c>9oRf#Lq+>A) ze(d2vaCM(}&m=ThAl5JrGo_d3V5-dW z({A08>sE}R24ua<-v}mWggf1TwaiHo^hLL|=f5ExKqO<{C_9_WFUC@*)tSUlCNIp@ zffVg~Uc>Skij_OpN6f6eBc$S2m1VOc3 zE$Eat9ZaL&ujRLY-_%O267l{|NBFq!*e$MUCU<`B+MqI1J^tlVmutVo>ZUtz&adHE zR4K(8^VibF8ifsI7v0;stH77FGOz1LC}Bx$^e?c zlO67k^bw4X4Lv!Fa#XhjZt_Emj7&&L?P$1Tf=y-!{y$1{&`? zQkBf)cc8WWGt}K6*4wZ<@KS?Zc$Cy(-u7+>NXPsFa@)8;%2GX-eFWBCbMTF^Tc@7t7) z-8Ao_R6A@uYgSSNctG1k)VmF&ShroHC&1H*Z;y!ZUHHA@e!*c?ak6C~f#&MUFO2YQDAK$suBz=@zN z+?&hk2rq`P&nq@22~_QgJV9Gc6&*fZpjft_+oJglgXxLid_cFlIJz)gn5Shn`cLm3 z;M_ROAo~xClMfCc$^hbYU$M=`!?*ta=HF|rG_FpMc?+LW2nwKgUhovM2s#khr4!+U zhCW<#tD$kmWixyHO#BAuFwxPhmR_08Hr9b)A&*lU0(1phfs?(sc@N2p3mc$I+MEK1 zf&HIwNHDJ`E1wz~*Q1bYafepoA@oPNSJl5Ba74CeF!IVbvA2<(9VkP#{hC5?t**RG zXEP+{gw1IB=2_M|X}0~Z5~V<2ZuQqBU;dHl<$y?rL!))Md3dEw0{7k+dt;h%ZFzZC zpOR^^C0aJwtK3`)<71egF}RohAcqyRjjxA2#H@y1fjBzQx@@kerKFNYy@&xc$8D<# z`*U$_u}SD3b#RcSl9H9Lfy0K@ZMg@S>fxne#R>}%QHnb_;2wGc1gN@PNP$lcgsZCJ zdc+CGhVyozt77n>dn^=uQ9*=)9qsMIAfSBL3pAPgv;M+Wi#*k{~*QZ%7Oo zQk)|yt>Z>`?mkTP07vJ=SrtB5xDv42VaLvfjM zvkx~H0f`whhbhwx3YaiG zy`$5Uu#aTWpcw?vTB@9Fv0HWEnfk0m%N(~2qzo774TCOpt|6GZ#k=Nc+6Kg(3~!fq z`ql?zg1Mw&SUppJJ682pkV> zdkzO;Q$6S|38&Enr+`{~jbht{*5u=5bh8e6l;%B_H{ZFC&5Iw-<{TQ_#$U`6!vWAz zTW20#_Dkf!XBA0AopZ4x-}Q!(6JTi+I_~c#qW9cf4dM<0KPvo{Me9TpbjrSd!xdU3ASHQ#cj->Ke6|r(5;W-=8uj!fr)C=j(XwjU=OC zyV{Q&M*5Ll+}vkK(yJfptB@V{E;%Ijb)dce>%RygwcKH;%5fOVX}}J*;rve zw>~l)79^B|P5t5sA1$irUnB94LngYf2_09aHE|gdF!U({I;P?8Z`6SsD@mXODVG)T z;+5B>G+ex$=O1HQxX*yzSNZPNv0(o=5fV^foA84q&{vM+|>{ zZSs|CYfyyinrjPuH)7q_o6O6Y?uKF#0vJ7wjek!c!^3<7bCh{I*tK=JNPkxOw^Uk2 zbBmqm=F7)+*{kxz(;GU4l<{>T6LM7IO6qd9OjGQm=o!r+Rtw8P0YvuC9a8t-f7En7 zHq*kw=MhW)DsBwAPTe5V!5)uR)-`8mo_~y@>v1=;cHG;}h~Zu?nhP{lS`*vg{lmfG zYP$}dHyQgPnsXCC=G(%`I()vasAHseQy`nB3Z~zUEnj4lj7CZ*uIbcSiaWVh9E9iM zNMm_nRMUn__fYiF9ZE3MZSK|-JH9+kR_+gm%c?5#6eO}`7mx) z42G#*5LWxQ><1gg)VqWfmGcpWP(z2?Day2g+{rw+!S2_Du|eG2?hJ*N@G-yb*W;({ zH4EhUE&*m1C0H3Bh8w_pee#U2W3HZz9ZEE{-)TV8S8D9wijExj7_2YENj1C zkWkcoh|Z?_qXw9Be-Q$#Qi>xko_uNXcSc8&3d;GFp|rZF)xmk#>W3WEUWM2sS`1); z=C#!xUNoLA2JYqcfwHi?aNx8o=>fPHj2_-WIIxtcR1h*YK6~(7EIlR+>j$;*{>q1z z>CdbnU7k7KT`_|g?z*``RSfhCLs#QI^c7Apvl>RdH&SlZYVD-T<`7n`IRwu`@>>G) z@3WSLym9WN2x1Zn37GGRE@&tUr^^f*{uVGRx14=aOEI0d*Pg$>`4#3`L=p7V0B8kBw+8Zg|8j%IVy z4S&3D)HPP~fhX~HMyNXdoyZTO>d$JbtYY^W$Z2-BVQw+Z(E=Z>!6 zp&|W=&&y>aSS$wE0{M#bx98tt>!`{MTM00JVpH&t)k7SkQi{;BeO1}edv3dF(No=A zW)&AzVlcqQOx;{t*m;h$wCvXh;VQJg9TdL@v>T#!=T4iQG~xSJxnxvjDZi_W`6Jvh zv&}dUOY-t&uE4UMQgB5BNOh;Tk#RFz@D-OJ1{ijV3Rs!>tlo0wE5HNFYbOEyM>h>P z&Fzv{Bj2$XDba84#^olzO`b3NsXMGWLos-MC|SrX8yVqa|1%iCG8D@~&S9eV0cK|4 zO5oT(`DT$?7T<+WMt8iu4s_C>{(&(v#LOAYLERoV>wriVbWC{lSc=Rk-0&7pk2}2>`4H_p=&}*vv=)bh+-l zuYAT`iB#;27PlZaY+l3-j4(jN@pg4UB%3*nuLInQy5~JZ5D%;{MgqIL--n zW>ep}Nqf8Y#J(kX{;x24-chWcU1`gCtVDOvEa{eU9s2F^FE2=0MVSIZL)4pYW`b8A z;4f}&9yJn>kU*gC&WIBp6k`X=6*4+ODdsiTMO*5Llacd$=jzA-ju{y2?Gp38N%53( z0VT<>h}&)q05V8(vuY2|Ir+!DlpDKUa!xwWg+7vQaJcViCg>s2f2&9!f*5 zCK%A%^}Tf52quT{n1s{_UY!quE{mI*m+45-LXi7D=E+`heGm1!%mVN?tGs9f$K*$E zpAS8~r1j8`p?n5(bcIrdtlM!L6Q&$){cVm`7I;sxE`3ZX?IA+$CHxVtkg4XT(V9|j zqk2vK>ONc+XQx*fI=Kw`%t*_-z^inelMpaGlj^GtdiU)k`bas!S?HnbbT$7gg~K}Y zrB|ED&S4AvmTr3`D!^Ie*XTMOt|bFeZX9Rmyo8SSR@-ueJF??2r|C=0%y&Y@m}t>- zK8lsE5h4Qxc?{_vbuiI^uc5@yGOkQ^|Iy!Xf8G{m>KAH*Mr2?>78jqzrXW2`8p5iV zF%Oz6e2Xo1YJ8_1a8uCuzy9YS@^O0mvW!t5LKY5mV8qaaj^7PNzFPGs`r9DIP7#E_ z&y~!SW$wS7^YQ6J&>thYnr@mMg|)|GbA~d*n+6z`#ad9$+)goX(~sv5TQSCOQ22sU zxsKm}N-o;=WUmVM1&Go3-E<7bFqM?BeK3U1z|f2;Y!bBOegcQ|UHCj0TgLCt91g06 zK?+M08%>F!GWCSnw@}E(y?i2e5@TCVL4ZqcUrOoDb21u%p9&^kT!m5qacqXN7wvL) zgvahR)%ev6RTc92)(=5sV*rOz&oS+-O3gtpS%2lWUD>qFx#-5%y&unSlVy<#{sj3a z?avLsxfRn-Vyv67+y=U^HSe7A@-Ff?bbIN*WJv}H&!<|EbxPBg3ga8$N}@p!y{r4) zpfSNiG1~QD9uy4jsZ3d03@nY_co2`#QCmJNoEA`S4X6o_PuX!@N=)3b32s|z-%+pm zg2-4E9$~i`e-eY52)pB~O`R5=RB;9nSrTSP2axVqN{6~rqfE)~WKU%uuuc8bATOa3n^fRD0i6uD{j}yq%Z;;}*pSK1@00+d?$%kAzV+CF7nxh88!Pyw znSrNI!ApM8M`AHk6O5&h18FTtx1G^eP!6B>l~tEGAJZ9sk&3n|O(GB6fSXS^i>_9a z>E48k~uzwK20Myyt~y7f?~6AS&vlV z2L}aW0|4~y#4vh=x%%&?THC-YylaSwq)=$H8G*znW6ZbaPOva;`zSwG#@&d&yEhgK zzg*>Xi&#%uhmX-3LMDHlWu}>iu!P4>0uq9}ZIXgv420MMQEf*{3^?}>H>8Q2Xm&o+ zze;$~E~y<4yes6(5D3ULJ)0MQaNo!>X8BN03vPtZ;(w_I;2G1|f;iwFiBMrK0Oez* z#-P+4O)ybtgj}bl(SV2g=bASb8_N=K>ji`K(?5B|YAQu1Y4EVtr7rsL{Ydeky=~pt zL9vQ8e#@x+V1ZO{l$Z6I^pec*S#}+~^wv^p(a}sLPr%ey?^;nWH!iCd&F7M*)jgd3 z<)H^t@9+?XeH6K%K*t&nM{7UuI&>erC=NZBKIFWJYe)F&F&~fBbL8-(Dp?m)M#ZoYW|10@{Z-9eu4&%1Pu)X5V&@Y=FoQy@1hAF08TdqfY6}J!C|0ARde%mA_V}5R9fD0 z!jz6j2R<9ixoKRYV#{gh`k2LN}j`0=S#i65!Gvc(waKNpx+Wq6;K*Ubf8Y+;l|K#SG3GBX9G43oJpCdBR_vQ$$@EnzGMjebIg7aIXFBIY-ns; z*_gMRD9Z$*u8#&F8l)&+B4TsWw0JELH0ea%67g63b^ksQzz=vg$@2r1IZVDkN%rP? zTSG#~yV|vn%t9_jSlVCA-U15_uFBK^l`?EVu6PBC0+OcV9vKN|Oh;JRfIsL~G*E-$ zf+{zMX~Tx@dI`Y!2JXTAuf@*O)m1=~`A(!1T-8RCo&T?mNr8_ z&P>_BgR^poaNeyNN>k*KgUf)Rn0eC$)uCCD+whUP^)Qoi`A5r*;S}M7q%z^Sc06E7 z6$J{)B*MlLt<fT10KT5L`6X%*zLbRl>gDmC*yv+i zr681HTe&Sx2h6`^Ns&p6uK>o*G3OZUI{jLh_!+u_J8+!Jgcn)M-%=tZLxkd#7n|3_ zI;88K?ZCr@Dp!}lso_oV0DLtH!AQ@A4ey?9n~}<-tkv@ct<3+lUF@Lk;#9UC>j7;S z5qJ_$yfL$VStETZdxZXx?-S-TH-Ahoe`RN}?085!9;JQH2hH)lOTc%m_OJtm?QMn2eZtTklvVl9! zDo4TwobwW6(f(mpS?6@Q@{cxu5=!3q|CE3r&fJjI*A4_m^M-NMqD7n(jd_M5rY*U{ z>dTI?X~?6nfWN?M(B0T*aNu?;M~|vq>#s-+9(-BhcZCjwd;mKFy_v@@^}Sy?3wNSe zaPMb-KsW6>*n2?DM*N=r_U9O(!R%5RcgJE|u3dN5qVbY(Sp@CjD&ljv%wXS1qL9Yc zjNrix6L>b@BJal%%A*c}@aYRDt2`UE#aiIfkw0$19^q+Vd&@ zPOGR#bii^1HWBNHrE#qkI{WtYEhTFg7d2%T82q8?4Jg-Ow($W#nZ)~}i|vkD`A1g2 zK2P@3lf8Hdy*|rSo3ak-EjCaz_IX%eqs(xR<&m*6zSFzBYP(`?hkJ|W=Bp}TZm33j z?`8)KBWqHDXNb+Sun^GruPni#m9NEjQUX^fS4N6nSOO>a8;Hk5l1PUmMWwSYdb)FLmu>(2NMliZy{G6|>>&YPYrsJgXaJYC)Y!uN7tX4R}R?Jw9B0Jcp6*J(NUO>$U% zEt+a?!eW~~3>TthlbodSAr_3~Ln>ikDxA@_{u~Y#uP?s4MM}_Czezt-#gVhrgle-} zC9T|UBE2=!fjp5hunh=oZ&b6}Rh%MF|7T0P-}HaBG-TwtPiA{^VbYq#ut~Nc;YrW*iF)Ua#}M|Gp3%=nFgF{-|59%MFi- z&l$y7K4|hLez$+BPs0lE&IR{i0{JW7T$c?K-_qU$_TP^9M12C(=Tfi`hN4c;!R+m;TTCD zA~Q`?y?^02R@Lm;&b1fHZCCEY&GMGZWQ*|}0r<&R)dG)6M1*N-{ve?~S-_6|lnZ2p zu?_Z(c7k{y!oz(}uOtEMdZ%n3n{msFB!`08Psp}doXCvH%@&vZL^)irI5U$`@$uQh zO>(Mw-!AVdZmG07798yH#*b(K?m+Ow3vah50K>CuKmUZLXUc7sJ;;Ur7YuouA$S|u zot&Kfbx=qjq;Ug9aR$g_Vx6-USmtR47hsF5ylA3;7OkM5hhFe|j4`lPeRAI4y5MN1 z0&I9hAcXghM&bml;S8+5Ys(@UZv3bw^3;^Tb05~PhU4OnzFQE(|8j7XgbWviU;O=f zfEcS-ST(%lV9Bl?E%YpJ4G8@HCo#jY<#n>w~gBzOM9Ow zZgIW@c2}20)b4m*bi`rTjbr6sca~;#CRJ@~`4EO~_jclkO(zNf!ZOM1eOj!~`mTpn z4MD#Z+zH*uMj$k|$H~2}&j(bPRQ{=lLAIv}u=W4jBL>!>YI!T&#z^jxBly}TSS&@pjV!d$*}m2;RtKr;3fS?4D3A#4#gTNxkc8pga&fZD z8^0+_N{ywQ!e;21UA52;OJD_g7THq!?wLKEQM*4w;lsmu^EBURAKcrM*t8kxXc~OK zKVFhjX&&zL>65}jjcU0s%j0J{H~1e=U;8x}viYpxj|cn5#DZ*zrLBmG)rovcUEc~Q z_H{wMK%d2nFoW6bCDhv+?iimkv4T@9K}!o__uFFg1?NepklP{5Six2c{ti1_gq?p$ zL!l>W5r#e?*ZVxuN~5F_m3#g=y;B~xZI5oAwC5y>QEH>02Q zyHxk#H0An4OT-nB$m;U-oG)T*#wZrOJ4m$2A~6mdOyWyiVW_4ODav_RYygC?f*EQA zvjf*Y$vcYZyEHj8dHM=oadFzQ$@Gy*d+*eFjIfgyGMj`RL|Ka6yuMh%HuagdQm?V+ zr!l4w_WXH&W6>}(>+=51ZFT_&ysQHeV!6PRtN?bfW`JaQey{{LH#exhYp}*Bpwz&^ z*ZNuex%haN;#HJ*vq(st_#SF>CW~b%Odf3D72pKtOH$H*x z%`k%{s7G6c!vLBgG3EdO^k`Oy%hhoQ^LmKcvW!jguil$)1M?7|AG9}HnCJpp;IPKY zcJJON>|x3$1oJWb{&&f`fAUy7CRU%9@ zm`7gv$C;_LNF0{fNZ&6^hZrkn?xSiQhx>r%o_G^1BuY;^y4K$juNbpWz5DG8T}wa6 zlUleME6fJm?wERhew8udyGQ6fAE@3CzEq=rtDOQ4m!DNR2bCUPjf3$g-UacKf(^z?knqQm3Z8l?H9q!7OQ4&d@? z0|2AtO9XDr+Mn)qATO`4h9kulQbc6e-QG*J5h2MLSBV@L-WP}|f3|>F&7{AMd8m>Y zmz>uCaKpoOMaf_+3Sxi`W`TcBUB?~s%rr9`7M-G~Abb(NWZPNYtuaM%QGKtCr(mgI z7$H6olix;ana>Gt4#_Tyty+VSBx-;pxM@O}1WUD{iMngyAiUPV`zSX@VZxB4X~vvJ zfdPywHgGsGTn=69Q?!aU)X3ZJa!&*yMGgh*sal3bkVPQ2qC+!Tld9FvH_hkDK>-K3 zX<=!|2&#_F5mmvH#Fv14)MD>mFTC(lefehRk*3;HK}NFT{DnL{=Y)u3vaV2=8l zT#~*sJ2gG?-9RwkV(@IvohO7L{St&<{iX$3QZK-`v;U#1$izhfI1zznbIQWty=IL) z*v?4~Hb+yc`GSQMhV^oSb7ogP3A6;UlOWYe#_F!`VW;G+R>LpXjH<1z-=U>CMG>*_iv8Z+gwb375wB%{KM z(F3N`lW^%dgu_LReO3J`y1fJ@>;S+R0VQ?@$VLP>qu=!FH4{Z=NZt21QXFMm99rxQ zwvRWyNe?yIwOXN0U)U&ffpX1n*AK1<5u;Gn3iF059dP#a|Q=&Q~H zFFlPP3(P{+-*4$(G*F>lSQ0#e!n?q4|C1xAgxQ-T#klqL*2BMa=k4mx%`N%_5^wl(5L)(Wx5jwB<8HlonH9TkPs;z&vO3erJxNGM__y| zpzfXw%_~9D+!6dU&grD5|r0k`MRThp{|AYL9}PPNoL zSzY;M?zi;)#;CqHl;=TINz1&Y2R&H^5}5o`gg?1^>lngZpMbq|c>-=d0LM ze??PiH~nIwiflCZFJ~DI{I+YhhsmgRvL+vLQXI}=q`{!CqdEGeKHe*I;);}Q=5NqVo z#=;Z@l-b{nmSq7pK&Lk);^7TbUG=(!Xn-fz=f|Saniw36mEu3pI=pY>rBo}-K|>?s zp{4f5WvQqq#a&<2885OXpf>ASEeAJti4E^`Ys>veVVN!9X6M@;?eS6=&n z*4CKLbGnu72SgW~p&73R!iS!ekfvWQVVnFl**(~qf=ra0G~9H@GE(q9Bhan9=dsO+ zNKK0^F&c{}ORr36xXWT{n*F$KwobjG(nNxmMGmD?q&vMD^+4#eSq0zvYKgMbY(@q# zFAF9HJgdgAA)vwnRww@mvAMz$$KH$lv|?rsRp0x;I*)i85R;s+snUBVdt05Cg;@Fn zMovnT7PHD7Agt}hyx*f~X0d9G*0VbUBaisjwK|mf{&c|H1CfP-m%lW`6lm5z3+ZRA|6|N5YX4=Oh`MrkQkREV*YtV~{I4@Ul# z-9Wp=apOIjf)mr>x=ruHhY`LU;^LbR{4Od%aHs$KYC9^_S1F-3zQ7n9;wO%wfwwUU8(681rlqgEK(DJj_{TSG!I<;GpZ_V%0=tei7Kys(e^oBN13x zG~tU1AZDjLe6hLo7`ej=g$P$*)UiW6*YJMVlqRoSTsm{UuzG$6uzc@3FVA^f((aRF zby#l>Lk`!}>7I(sXGk(rybE>T%QlAw1+880OpcPKGgvqtvwin#;=so4Ez8c#kBm;{ z=(QPtam{Vm|LK0~?~K-ZSFgyAMcG&^lCKyZs9HUT$PX0y`C7%4TRr-FdFT}xRL)j$ zXLYSVW)-_D^5#8;vze~m8XH=VMlK+UtKP1aHllOrF4h*w(9j@+OUT7ud+#K-;`Qv@ zzaM*3`Z}8CZiy|@$a7Gq1dl`S8|J33?|U?i0O$39JeI{l@oe_ZpTSPQJ^s@E1xgjA ztr1nmzw5xt zi_@2ncNYsw&8EQKLby=di~)L#pWlIKQVjah79(?(lQrG|3zJN0ioIRfJ zwR>hf9ytFo#U5* zf~G-k<{(q|5DPmZCYggD3rz(%Krj->I1#m5h&+>C*a@m|PzCsxn@q^J+eW0TQjePCz7Si8s|7v@{#K=_y|)j4u^leL9- zG-4@~E}T@^Vy8BiN@PXUoIF`GQksA=>VUU|Lr5?6XQkCaeW@|w*u(aEXE`(hPJ<@T2o9drdI>8njkPNNdwqIRcnTp>$zk^SqP?54>X>#twnw@UW zG24I*R_ct6W+!K;?7JoGSh?ds>z%P3h_|7_EuE1t0qAl^%&ynzv*#Yq!P>Hz^F(5K z`PP+go=@&Su}o$J>RQ}(D<7eR7@3onb^k1(^(Ey}8K57Cig-E=L`rkv;Iw{z=oD6( z8pWk9g&vpF))P&i{WPCl{qf>%4NRct^Fv6BpSm|7dd@{P8f(o)*817I?~N5=aJB5{ z8_rMt?}I=HG;-rZRZ*ncnDYuqBTUnX5mbFVo@b9Pd6j#jbaajlGk=W%K?c zXhht2Rw+mD6x`F}Uv=-IDVRffAe%b`ROr^@a3G;d~44K%xbEMlowAcLS-W3 zTjBZP6suwjUWy83FQ&U=TT?~LFZ*~ej_*DvU2*>j_F&czWoCP(RQbKQBKUxS^i2Nz~*OOo=x&aT`y_vR~dw@1+g z`_oq*BVD*5@=_77Ldcpk{(&eNZ677&A`V3RC*e{eljGWH?;BKO<7-`$F}4?0p)Uq+YH zfDdYfAENSE89|3HHijHI^H@xAUm@*3GAm%j!66DLG^BXpr8(~DA?LRCr+peP8vfWy zU!%G4ZYJea)bFFS-8uK;lufheU56<=(gvs9%&jP-0f9PO=v_MTb1C%Zr%xd_*9WNO z)r6EA5q&j=TEoI8?{>Zx9iGISoQ)T+Y3$~zPBh=F^~bUfm6+|l_Ds3snZm3bvo2;8 za~F;}LIe5(>n)uUj?!#>otqVToY@9+mHq07S5H9bmnvHNEch=nW0K+NQwcq=)i5S1 zD*Y7t`Iq<&OQ=sjn?h$qd5MLp-Q4etiwLebrBkqNu(C`w)iw<~{EG&>6|(C$=Fe%s z)-#leSg7{%-4)2l2tAlEJ|WX_V_@phy(7JUpbk$Gq&n3F!G(kVo9dmSD)uB)#aC1Y zH3P$j8z)qJUX=nTV};HqWm>GPYp6fpq%XpLQh9p!E;O1eH_67>Y41wLv2`EzCvdG} z(nyYz^Cz>X3^IZU0f*KY4vfo4wtlEEmTbq_ls|~&t}=3Mns+>EFOcD?IQ>`bgW}%$47WoO! zTxU%Y=8WI5VB^G`1u*kECoI_2#YI?~NmL&eSS}gSZ~HVF&VVm<=M?d0mw*henrfN0 zyQl9@6oqAIy>4#~HMiY>awc(CwOq%nQ8+YVYUb0e1{?Y5CFWk8WtvUHPCQe-vh@ER z~#F8Y@&}LWo+^`kzw$uB$kiy4Y(FG8lZx3o`K^5%Xs{ zx1o2x#K(hA$sMle+MVbWlmD(Nbkn=y{A25PsWzWUAz-;pM;AaZo5f`1C3Xf8xn8Kc zuUpjlrj^Y6f#tf~r-=P%%zrg#wLA0b zYrS)4W7l!5vrtjA$Uj%-$g4rDjYePPU+fRRCNSEZ`Z6m%Bb zWpCSeBD;+)j)vk%xZGYZKNwH1BqSs}=f;x@7}g?hVqorVW2Hs277ZK?Czn@df%x$y zVsUhHD~Sistp*rhsVFPCq)Z!B*SpB0@SG+#=K}7wjxN7%xpqn!TurWaD^~KxN?+*? zG!{qU$=ggQj6`*WSNY1go|cT3Qt-;4JMvr0@m57WSgczQX!eD9ZElV6G@W!k6guaB z^Fe^WR-b?I@0&V82Z!Ee>nU~g$fc#}`kQMVbf`vd&$0^Q+ioYnb(in;!c8_+MS-On zg2?-#66|A>L!`Ownz0q>FN?CT4Pbhmj(0q!e)j&g#Yhd;cU#1hR&lq!mt8x%oO6Tg z197dtLmoN#6f>z58590$Up>kjaX-wVoN(VOYVwo*qLA)1-`J@7xcgJT^Exl zCuUTBH%fb!aBAzw z!Ak-6pzz+OU`1NMoGeC)2k2E)GD(7JonWlM)GbSc=FphI|EDWKbzr#Af+$7$6E4wr zv=zuj*Tc@25mxvLBZ)7~L`LfMxVb@lr=P20g}sDNz9I4iV!c&>;2g7VAFj>E-HO-%k~7ZSrn)Xpx8h z9neC`vo(VyKPwB_ zbt)ez;X%zmqbbliz2t{jd9C^PJnnRxbbaiN#d33{^C2oAd6P;|rD0%#g!Cn8t%q7@ z&U!ENHjNk@gW#C9W5GD*XtXe)sq96l)sxj2#t2V5{y-iUma8y~@(8On`>jp20qYw- zyD2hs_-ZePLknjwAx)w?6(dT6V&%?Wf&|WFjb0M(8*GR0&BGeaz4jDFW(-j;xmLnE z!mc0Qdd+4W9LFJpmwqxj?~QZf5M2KaG&4Hh<3z+G_(_U1<(r+ER4T7XPvUe|K7z#! zYunr7af|D+G}&n(h-jH`hUXR5ab~k6wr{CV zDac~rlng&+t{5a1@f4A~>K^R~AMvB~Jq$N{5Nld{_}GE=bUechD?2EqaYWFQ=kIoD z`Rnp5rNe5b`@JSnc)!3Wnz#|e7$ZbR#fd2BjF4}27-m2y%$8^0Wz77>ki=7nj=rL6 z*-zf>mc+04;Y-djd&LivsQfl&RRt4uev1gtekH}2*ww5=EBP3!k(KkUsj8VLZ{7^= z>Zk0bM0*`q4#HDJ`Yo1L9!p1?1}en$i9p?V*))!g{YAI^Q3tD4PWmAs2QzJY3X-!8 z%*a8-gcYYaw$?#$3uHrsxBKp->!CU4$kf#Lz?v~IPt$cOQh^06&J#i#^8H3=Jrsgj zIe4_LraU%JKxaVNl`77K-CJeT>yi=ASs@mb93|dD$%o-&QtsE}i@dpTEmk4gRy9v! z$6^`7Qvf4#=sI5LlQ?s%fJSlIu;1=4>kw90*&-_Y1I4$!u{CLWrR|NM(EIyx@eAd! zVIS@W@K&tGQ$%{#&%o{#mrZWdJ_<5(*UP~`h=ull z=#Lo6tcpD`sQxNAJJh?}$zyl*3#aaN0X&Se0aa8}bIu)Kp<*K_nqwZoBY9iEmJwJi z4Q{UUn_c7Ibpo7*8SJcqc^Ew-V|=c}#Y#w5%xChFqmI{kh0kGxcLAK~v_ec4swo=~uh`y_CbIhc}|L$?G8WC7%JxYqA8ZD-$k2d00z zC(pUJVpjLk9Pf8lNVBQa6Rf~d!?4g8eRzP63LY60mk1+lWWk{HX4FIL-4UjTnQY^b^EikjWQDBrOZc(Ll8XyxT0W(+TL zRAq-uJ9kdq*Zwa-yW?pc?MfwMD?Li8kDJ&~C)j4<*y3(e{_{YJA*@+$UtP$otz@wJ{f=Q%Qx z6ZPt%>b^VKcZufx47?+OKf*{PT57dt*u`SWHSH}OaHW2eK;$5lI{|OC6s@>k>P44>eg4CZw55`uH(c;!K06* zw+dW$SdPD&503l6(T4Th=Y&x&;~NCKyTj3XKoLR8xtEIL$i=?o7XhV2C}T zNnO#r8F*NTt-Y?HQbxm8?K2|*sLIysH%-zP!8IrX1jZSsayCyM5GI=z3d zzpPPyTlsp(vJRsk`}PUV9$ z2JC{1xbL|wwii<!axzm=qS%0nQf$`n&2< z6bge=-*P4>cqX?Y58OTiqH6IJ81N!-MEr&O=ZI=CxhRUO^IRokZBG4PwhT6nXWtlb zvr=V1u6LiU8t?9`e8MyRn(fuz)rN`Gw{IC9m3q6gI-+;UFBTgx(rSNC_oW$(>4|$U z5omV4Z;JCLpO+kLG`C)om9?2coug5S(0Q&Y{nE@!FTPo)kg%`3?;f_oC5H=G#^!Mo4b`^WnblEtJXLqS>y^Ot(Yw? zO6WZ^n)NgWLv9sE2)ho${k9lp)fHLAPq^wB^2HgCN!Dw32)skW;~=(mPB94QjVL$6 zchCQB<{r!fnshHK;AJTRRUa>V#Rp}lBZ}b6?}6_6Iq&ricmkbbKi)m}QNyV8y^xCv zDSAZ8!W<4rW}g0@1Z+2?+iv~eDYdM7z$C=6(8&5;-}`)(M5wOTI<9&zTrexC-isqy zqa$)+>&$+RjhDQ{c%tO=IIi{hV3o+@a$hz}O3Gvq&MFrgHhL`+aMzGo1%Ag&>Z8w- z_Fs2+EzpVCd*r)l{6{}DVFjA4f#^J^Kbvtnl&II(1aKyu0ER#_Hz)TSzr)R0WJ@V* zyrUyALAEQRP^YT%-7(^$PyqM>=?q}}5YLNB5UQt6>jlb8MDLW)H@yfiw{es2%|j1h zeMdVbqT8RQXEsOl-}O#yspbf{76`cd4Kp0>1fF>a)p8kVZxtBU!%t2W6V{X-`Wt{_ zV^VG=Z*unT&^Bai492#$;IAk<6mVxswdI;TPgA~H$X8z&VGalhQ!JQ0A(SVOhf|;@ zTIPkCTKVgYR~O9QEWTKQK5O&!n8_l{5`6CFNUM258ilALEq2a(y5Pg)_^y-SX+X^J zRUqm2429){O6p;;f&P`+$p0(tE1;@uqcsm9sDKC}At{X@4bmZ?bSi?R(jC&RD4;YP zMGy%kM7p~~y1PSC8cFHdhyTBKX4blE)}5JeEfw{|8#|u;y!+idqZtbWvSfkOWH>H) z!jX;qG1uI;mG0#(xKG93;q^dTHKK#G+(}L-sMO-C5}#|zk2ehVS6i;&^^>t>d=_S^ z*C=-HA-8MEAKP7C)MzZV?K~?3GLi8@?CxZuwK>ccQO{EQeEYocf@FOh+147%Am-Cq5%oLJq4-8B_E0Z zKn3V{D(9vzUm19uV6E6%VhlcnEi{L<;>Qhq9^6@oW~18M*$kvEATc+LrZ{c-#oUpk z*glGZba1HqaM#hgKj|grRed)!t-QKzCsiGKhSsImWAhE;$%2Y$Eq(Iourd!J{IscKg97+q&E4#TN zWP;r#|8yizkiP~d4wFQXBQZ8td5@O>Q?CjWLnDe`6%k< zl`BuZNrw`PsGnR>74ig_dA508gcyr4Xq$HLAdQvJ^;kzmnTN^eP?xGw-bBHl^5O9U zNo&L-9vob(BwycFS)lBFQj7=O50}$BKbd%My(C)ezRKU)Yey0G1#70N`fxPIu>`Sj zdfcaFGA|oT3$`sj?<2R2GF4-fyithjROF2yjvD6Ce%B2x*Yn|Aj9?N4(aJiB*no^U z5i+-Z?Ld*cjyyFrPq(&u>DC1%iQm5MLxVbacY}MT4OWD0M`;<%cTG84TKyN=Q_l+H z*bFnH7#JG1woPL32r1Z(&t~e?KbSUO+ZjvnVAfQOyNU)>yL zI`5?>Ojdi2x!8=!1`tJ78=J+s-hTy!AXeLlGw66O)6#N_sV%i#CBb?S8g(nY)D8nG zgW<`W{i(+u%ldw}Q_Lu%k|4XjdV^`+5sqQflq?Em@vvHJ9&H+}JQ94+eh0Y7D-h93 zmvDFXva4++p`m$`dc60dqfA#a`{~opucyZhb9XWoS0}k7EX1EZ8!ITpVm5m2 zCw>;O5XaY9c}uwPS3~i^_wexe1#w?}OGV9`c$eckiR`(B!OVRt_V+hQ*kzwM^k=AK z>$JbDv2eB3QH*ES$V9|)Po)N9-m$L7l?MgA+}k^5)pise2k&HiMTOS(o|R#X+a}J~ zJzY#&JtL|ESG!nVzd@(e@9RT`8LhOC5Bqu^t9}eIL;c)Z>Tza{(wlPrh$%bp&&ioSbbyMY`j(I$>OhH@yAAQ z38OAuX=$Bt-%hHgJoyjRZ7Z0<|?CVWtT3RNv zBf60|iz%aK%l5gZ)a=$pWn8Qswl=%k&LeLwiDlB92+0hWO)Om_kJ38^Vplpi^zKLo zyusnY{~^%8yP2xMaNTP@NOyn#gM|k9y*8)sS=-xD9jeZ^pb0VI&*C?L)6{TImWZ>& zEn@4FyfsfwO9$MA-BjD+1u9++mDs2^bnQCadGY}_e=ySoH(f;`O?|10(2bXLp2uk0 z_%KV@OKabze>3K%G*sRI0g4-d_{$o)y3vo6JEpovU!(QpB26KtquF#Qjx{l5RO*v| z|MyT%&i~JxHvXh`2t~#v6|+usEWD_00*SDj{I(q;5h9jIUUYQ&(fQTfLVjXC3GK2x zXFl;siVG1cV2~&`3Un#i$Vi_@j86h2J#G2BAuPxfdovA9eu$+ovC2Jlj(es`uSzfb zEG1*Mk>R)by667jlj2vqnNOCiCGM~*uRPvc%i#OLVxVu?fk*Z{vEwZes(e;OM=FJ8 z3O#*K)5wtVv+GAA^}^mO({zH`mfSgmd{i7A|<^fLm^-<|eE?IqGIKKWo_Vaj5JpPxKLPYA?U2yku) zz?F}h%RrNtNOLzM-aY??eI@DBRGQq4=8({WG+n_%MYNRt?6Inr1}QP>Y(baZo#+P! z-y`W5q$Y^vr@QLBxqt`S?Bd`dF)@Q;}kR%hi4hfsUji z4!-t$l>;9>5EyDJNO;nWJ{NCTh9tTnZ-^MURQZH~B6g9j~#JL*lh z#q`-r?Kln$ip+;L@FNUOsy*sL$fA;|Z!(=91Hjxh3S7*nVQL#U`63+6`6MseTnnkf~= zE5sOU`X7~#m*yG|M!xv|NG^=w(OmN1LQ@Ky5<1XXO5Ok#P z$?Z^jM#UbXqrn`!EQ4+gdkwH-1H1@mDYE`B;_d(oSdp25`AEu<@GRA zJS$W4{icQMXl;uqFi@S2PisWh*CI!>l5BKlrhOM2FXFF?X09Ms)DG?_Wk?D7cnxiQ zHCNlgdbwF;;#Q3SU zR;2XDn}zLnHwo=qgKo+4kxrzeY1>{?{Z58__H1LvW6ZyvM*Pd_K;#3yxn>1_vc1BS zMWwq*QEJ}R55wuD6xUPqDvF#Y*&ns^cKgX1prH}^VWyl!jD04Ln1l4r;?1V?ME=~* zid~uJYOVCtA_AWE^HbF?mlC2E6k<{yZBFU*3OK|jATz#2Sh7py~q)-MIb_=ri zCTohUm+~DAtiQV&>)V0UrYECGrd)rID^(bSm#v~cp(DAt>Lx1-I+iC#pA@F?mRn5e zvNJKD0ad`Kf0u7uUKtAtNGZ!BBn*=jO>pr#%eihWxAyVc$wY?jjhD7B_#s+#HC0j~ zJ>e|(uk5MP!QoO}Yjo^%m`0UN(}l7rVj#s&X!;XNYzK#Aqybb^IKS|*&Y6!jE5a?C z_Km5HEmmB$$UjRt6?}oU@DgLYHYP?<$BCraN&(vjF;YEVC5IH%t-kXT2YQN0G`@oz zN2|TnbUxY9^8S+@KEAz_2w^4h&TKLy9AW#ud>Msycy>Hi(HPu6l=_G$wxrCbTDR*H z$w-y9atUF1aEVQE-CTvUy3n&DCsfYG=kV|~I+2&N33oJ+jK+TPTNdM*+$>5~OzBN5 zQ~W5dqeU}K{5AAW;}*Mre?G9T%6+3h>vmT4lnC&+t#?=<0#pfs3ZhvIFn`Be& zfjwo_G-r6gs2Jh>X5v#Kb>1@!$VggT#iu|_d8)`iFS4L(Hb2<3VmcJ89=E&*zS@eQ zbnN}Ub-M-mBw2#Vfcb)}#F#=Z$c0MRmx(?F8!l=6I@Y4#MWJ^qU1JmlX(hOsT{n<7{=yoh);wx$Rj2y;5Fe7?Zn2@o zPuXB#F~1G69{hfj)BO6@{Gjn_6HLtGWRcuC-rTmEm))7BPb>TZG&3-BfR4BS zM6&sF)Ee(6h>9G1Wi$3jhR2z0f7*ZzXpKk1=rH?Qwko&BW(ax|w7c*t znXg@q2y$(>p?MsXJdUC+H1s=k4(&152H-z-VcJ5V` z#dvnT6!wLWTpP!+^2n$4ui#7o!)i#ji7T>LM1=m&^I!L8n($_7&oA-Y4ulyoU$9P* zXFnQ>sUHFmNVu7X#T-l$el)0G9hPCps=f7Ltt?<&T_e%n$F^`EiJ91 zb4^VjCs3~mhypa~uvGx-k#1wYvJ`h>3PY;WDZe&g$87)8STWTN65C6*(?ca@*mktEw582pvIztO zfgN86iCg&SvSsSm=KvObXyB4FFQ0#3yF%J&MWNTB-~PJE;fCHasYQ0a5rZ41EK?ig zd5MVxlHOCsxzDaeL*|;MQ8mfpPnc)mr>>Tgcb=XYms|Vd;n`xUJQ}sn<%z1;LvJ_* z*BijX^MeF6NVgYpI~z8r1ES@dnne2tiQX^j@?X3?GnTWSW5J*zbs&Q@C@8)mGZ$Uv zUCVa3c$zpv1fHYg1M_eE*_xZUZ6jJU9c0=$`je*x3vBt$aR>g`eMAsGmctoyJ^d4l z2N0!);vi_a)Lxlw2sM)Tpd<0A5OQ+bmH0Af0oUFiyjg)dvi{jnB#HeR5C`0Mu<^Lh zPaaQ}p(%c(sqfgB>@56@L-IlS&)%wzPiT%Vn$OV{xRR&Sj0+SSZRyX8wZk?rxchti zFIS#p>cTp3BV-8)Ph&i)F_4xAwtoGUkAZ?9Ge>|ev_G#|SO-vxMf&U+q<@Va$wljO z+;IMDPeUW|A?9xMBGnyNoTp3O9Ou&&mv}AEPY%;$_{g;EO5tX7HHk#(B~(-=$L z7d+U=2@e15(}QBHXV}*ee3mT( zt}?ABB`hq2UXRirljCl?3mf{CD2*0Cor`3tVubzkFV;HAuhxRwW7>rzlr5dsF0YMU ziWj);ETx3etgkPz&?eEHP}dQwzRAt6`6`+9N!zhg`-dV)1z2-O9F*IL-1(-4@l9Lf z13qPx^{0W4lCdx1Q`N#Ous4tP_Q(SZxjrveJ7t{s{^f)O5zGi;wjN6&4|lo#sA#5_ zxix*SbaEcxRiH1L&`jL*FYxs>+|;)b+HDBjE(Iu%rklhToNR8Um>3GEVk(v-;EJU!DZ_14FV32cOJ1_p&tiTmJ+ zi;GtW{;HXsW5~pcIC9JIy*^!&eM#^BecgLKvsX8!hq;+B&=IWrIDu>8kn?EzF)*-d zG39O8hol=c{SF$gyZoenRqiGR>Z@?mAP~RbC5HWxY=RlPVZT@kGvT+;@L|X}Yng6P z*R)U!abNGEm9cIYdrXw!Nk+{P9?g+BF*W8#uXb(5fkJKHp1M!P-kvk;TPN-d0;@SI zeL(?6N7~-r-ZGc}?KFGLx&3-jn5D4=x*9-l?tZixCpI0%br$_PPF=rB`*u4A>Lk9bTxvh@?6la!UHqJFZ@p#W z)g?G>?8zqITFERoyWOu_v`U(V>pCwCvk}dE<3@48-3f z^wr^|ceOVo8AQV9+Nd_9QkaN0K&Y4ctICHEW;>>>ahM}COzCglShRcawW^WNyLq4& zTdne7nH}tpgQ1iNytY9Qk4Y~KJzOki)giMfv;@J!_K#7Hz6GWG8-q<&W(PCJDhL@I zy<}}O9wEH96+V}lX~19K@d}#2Bd0{^9?k{wh<`F&Lzsj~AKceK|0fZxEk4;) z6}@hIfy~wtp^AtYUjMCT*o0d*guePDSKfZRkD**Q89mPkTeaw$%>im`($ehy8db1- z?#{mvM9ehpnVM*3-Il|U8p;DTo$+yXW|y#uSkM{hrFHJvCGZMYxc475SNQ0?iiRU# zxUIw>VdGJI@j=K{$kCUU?qXG;O47Nf9TtuanbIFlPhZl??2^X_Tl65xT<`?!5dseA z0>1hM6q^%~7E>%N+>OUwl=P=N_+c{A5`X?gj&F?8eJ;hP?mBURG?AJ4H#m;vkmIBr z5FoTs4%-cL*Z61dI@2{4!|$2vn@9y&1W3OHg*4YRK@4p4w{I88Ax&4KzWZ}@d#ZwheN-;j#c;;|8P2Er2>#%xde$Wp z3S8+2=$kc}+0gT)ihZH>Tz+vrmd8<$P4QLqvuA?h`lxTE?ZZPM+xZiZeaxz=qISTe zSk%;4;&bcrhr^4BD-~aLBd5%RSNWWshM_ zp4Mt{@jiyUlWZ3E^;QZy6pP8ucA%bSMELdU%&3wlrJ?PWW_4tySr3)qj#M3 z{lAqx2X z`z!~b7XRPppEbGocxmYra@0WnePr*UJmSAkr0vC5|NExN3%UFEO%<(!Xl;i(OJALq z`?hv=q^dpk?BP;%b>P4M4}UN^+V}xw;8U0Ptbx<##0^^h5J4Z@hfo*7VRh(kb>M^l zeC>I(6$X;Wv;%UGPkYlk@8t0 z9XYY=scy};-k4i}^3G_8=g*%&xvf%u(MygghQ-&aHLC?)bS2_WIr3p zd)Cy>!om{t_N}CZ1OgY!Ka8%h6Xna{093c!@zOuOT$(-b_`2GV!})ELEtei`@D4%^ zERv4--K(-Pf!6^6re%6LxT;uKSU>vvZ``w+;??opSyaNr#@49{&CTWT^7if=x_ReO zi<*>E8TzHGTNrPc$x$<-JfOaq8B%m2FsJ~&WmM-uZ1i{CQTpcQX6$0i!TZL>DGqw_ z@>gl;=z5bRF(@DY&#g&wG{Is(;F9y>{`&Rnn_eaV%20MNv{Ak-CPw8AIj5fH|2g?x z@p68N!=u&QxoO|?#xjSw>y(tCxA-g#VaF|QEzR@S)YOoQ`*_7IuSgqH{+EmI!Oa}I zcgXl3a!TtMp{tED>i<5v7${x-_xV4|ZHLTacVc*7szO6|H~!wrU;}iJ-lZap)QA&t z=Z0oh{wIe!U$yd|n@`t>LepIQLK^@~AwfZxF)=Y|3~Ic7kL1(YPE}>}2fd9SHcN!F z=6b)|QURpHs0|t^wi@n%m>ynRH$6=a_xT$m=^lm*v%Y)fFxPaOo*wh;?99CP%cZlE z9Tm!lit{2-(a~HkYg$Ma4J`OC<|jE6jLPws`=@eYOL%L~j#!~#d|*$HDk&~jmO<^* znupbX%*T(UPMcGdARZFQ_up(mpZM8&e{8|OY%P?W60r&=TMhW6{MMwsWSb%UTnNo@AgnG~|7(slC-$nn{3@!4Woqmz^C}B9Y_>jZAbk{Se)$tb~50~APNW7>gu|}F= z{Xm8Wm+OY^96xH}fByXWre7@tJ7xC=HDeg^-0pJ!NQn(OzwJbjf$!-}3@qH1jC6^O z`^mb=Fg1B;>DPZ89UTh@Z{7N?m>{CvtVU2Cpi^qgfjSc6MbJgPN)W=-~z(KhoNu$?{E^Uogv9*uOiWhj*v(q z1_1%BSbm#02R&=+tl8Do%q*>ZTBZQm`GK(#o6Ozy@nLH{STH1vm-XEbP*geu(s^}= zj61GFRxNO&vjg!Q`VU!SB~>2kNZNx7Vwhxx_J*RL_9Wn_|}?_iTN6&2hs z`*H~ywdc;Y1nD+ZdmbPVGVh4cpqaVMZ7!}}>%{Ny%|CwpC{rOgRgsp)gzvX1NkmNe z266A~bc=s=Ss(j7QO@)3CTl<(pVe$;ZVk7-?{Xi5^uvdr)}_D_NrPnuBY z2S+uw#Hj1>z70JS6CE>ii?z3^>UAhLklz0-NLLCBM*uF_s|TUClI7puLHPatZT|P~ z-z2y%YC4W}>C$Z>p{Idrgn}{eS)a`Q?)@s@_18Xbwe0-5$=YmV@P&L>k8p-iiQWpt zr*2A;^q-lV^WWOCpYwUXTo!hGonQ;P5YC>R9)E+S5D^uPjE@gd5kDn@?Z!rc72(e_ z^?e%__5kwWJ8}-Tx9>;N%9N=@>Y+|HZ12+2qNgi={sDDN_NcB#DwH`cT!o4yAvWVB z_1)bnC^rxf8$OVuM-ELU(GgGu5)vmr|9Eu?=QPJ%&pqy{+iEPnPg4(5eX=1~e9_;k;X7NjR#jXiM6$aE)&ayk801(hKCk1YkykZw`) z35k3SmSjW2_zAA+BD$EE*tf@-#2^ZxtLp0N*U8AE$e)CQxr@p2|r;aLeDLSb3#E6$YaXSuczjM zp@8y6;vGYu#eJz#<=>+tP$sXwzTWh>2V9=R){G=<83H`g}{L?~){5qPuNY zAM}8)8^|>C`cK9n2j5rG{n8sBi<|MH758nm{_x~DI zg{wbAGQBMPVBr6KY{U5eA8_e26btq558~$T|E5NVWPNfCk!RX@OT=Th<@~B-qNk^y3FfGQ zT;opFB6BtH95ey~q&8zk^#I-?qoSfV{z7+MJWx0II|c%T_a*r1FOCasEs5f_oyDAY z2YYmjEpNu%vkUto6Z`}47{KYsk^w7GP+lo$xx2HrC9*Bq1#tN-iv;oC6$ zfQHC>v7}sNH%$dvwRLdNj8Z#rjkkC#9)IGuxevcW#vel{0x`vd`}bcB`UW=y;(rCO z!K__Ce{yo73IHBN7<;MfbK%N93A-*_sFzYJwtS4THz=5=Q^E#g4~619DV~)Bxsu>1 zi8=H`OgrOlGc#WX54*;z3_DVyh7#D8JJ76G9l?x1jux7km8};+4U+M*CGm5vN_IxZ z2kyV#kc15D96-rnq|?9t7=BQ{qnY*b zm(8tvwpkP9FPdis8X6jIBH)^ODiTaF>&urfEo^IFEOjZK?|%o)yk$p1MwYSryO(a# zL3D3GqYdB?+ms6IF1!hT=kclngHOKMO}JM9Kd{28XhJa4n9plHqUydi^Ah&z3+^pm z=1Hzn%RzZLdHI6BTHpd;N)S4<-JACM>gMjQU4?I8U|=%%{V|zXEuum(d; zW~1h?VmF=sVMECDmxrb3n-CKb5ou^<0*&Eryx_=bS)G^rE`g~*bX303`J$i5VIT(0 zaO=y?TBDgzNXlhx1WiRnWp{1#2CHUP9XQ}Tvu-M{qviC=moL|4>y)CH(i0E`i;ZIt zO!J|vST3nTP&2JE``Zxe1;SPtg8D(zXy*G;QlX_R`c(qT2_kPn6Uc|}>Q|A1-{U=o zP8yzbd-zl$P>l*}DAqPbiAJOuS_h&9Z|idYbakltiIoI?r7zyH)z#BB>fDeUrd zt~vZq??dWm!#R2aPQS0$z|Bx_@y35k6}w0Bjq;tA)lu?jHJl^!=n)aW&DiS_n{o6W zZp;@yV57M#2bjTMQMbo%G=mQ0K?%GI2)8wESNm*xzV)Nv3&zEcSbwlhMxbgz@810Y zRd@~hi-9Py9(@Ict?o253;CP~O!*w!5V30F!tOVM2grx64j~kRgkbvJw&$-@xNauc z63>GGaspPPXJq{HwAc~_)bhQLT_^+{F(IIn^2fqUV!jGdOc2y~G#2;(1A2bEzwWm1 z{z->E#-2MkV*+iN&C4t(>%|I&HJD3b4djrxRM27ewZkXYt*S&=eP*DHO;;5Qr@7m8;hF?~ z$aokT4`b&ZKn3}Ojmgk)uRo0>7A0yt%xKIgKNChRp76`aw8`lNfrReiKWEGIp=;D7 zzuAR_)QJjb)=vKYt|ZJPr?n9-rF|oH^(ggPAMZHHu9_^D@!9?Ic`-YQOu?z9=v!}Uf^wI}>TTD&Hlq+5+71~fD@ z2n46yR2A;#i=ROR5N3INXfl$6*3F!-=D~BfAaX>|u&`W#*r;^eC=FItM61Z0004I9 zkf(>o^Ey8?gdY$OM0cMO!4!+#jsbWfpu)v@7*H!Ff8F}iRUX>g+sEyJs7ZlALX!<` z8_-6g{u#Iy6f6WQq2smb=H_O&F;Tv?x7X;8jlTuxFikk@>diY^UUn#+YV_4V&WIc$ z$3D_sof2y@A{nkqF$RW9Am`W!B(vI&ES64iHK8v7nG2cx73dZ{pn!8YE&`x{n)ZZU z);RfV$au|Fequk~3b{=Oz!-k)dKCx+fNFp8d$uW_i2$)nS4pSc=0ctP z3)AYSgGo5X_8jiIgV3m@$Pxq($6}cXJN-u3*=;J8R)RiOgg-8`e^zz0lDVuu4cKiC zMG1B0jKdKeA_;8P^4U5973+L^T6_m#OgiHYr4lLkserPhJ-A>H2_o?T-fuOL+aV&l zMqusuD#f_D2_fjlra=?L$6vQ^=lygS+@KP+O}{Vr8!lUNN=h4DF_*QE4$%3Aao^jK z5jAn$9Du?B<8k_S9>N+R+EReG)_Ka#Gl0gZfN|r@&CaeJm3?>w>NL3uD{Q>uLKa#M z-Ub2+`GX^%V(NhKLD+B4%gr76o*iPJpB-}`3%pL%?fsv6HZBvNhN!rQiBA)rGX! z>eL5w6use`_VQOq+`;^=)*9Dhhdw?B2Zxd0(C%Jd^D#&9k2g4G%VH?zQ8CqbcCp$Zv{m&L# zD?m|@*?I!E8eICq6c|@*#6-2{y@vI!MDfHM4f(C0WRXZDa$}E4IbP!aeRRam@K@{6 z0%ol|8o#XCbJVg@K=mRJ$1iM`uUwG?&x$|*wE2;tkq*({6@)pYqP!!%8@I@R_h}L5 z5KTOfnR48g?s&+z;|Y9W}_p3 zvTaRv=31BQ6cP13^QyqJu$`_6g)n0GL4y(l>$(fLu11{EUv}fhjoxCbCq{WaeY>_2w;FLN1g;}4{M_%JWHMzg*bBy* zv!hksgFle3jD~=Sk<+*(!U^N^+qZ8mZhifTb^RQyq7(J_@G!~g(H;iP=W4cm6yMQvr}{gAt52B>&67{FcWw>z`t(0ztxoSJMT0E;1voCg2GOs3?t$S z_i%afQcKT8r$Xrz%cxz+o(pkQn` zn9+E+Z0G01XA6$MqV%x#{8${tyn*Texi(q|H89zCH>aujEC(c}s@xq8HuO-hA1}3Q z2DgtwltxLad=9hH*5f63sK^^|cAoFKPu1R#4$AI$d3o9ItvrTL!bZU!rbMq-KzNYb zkrNXK5HiTmtPE!U1=OSVMf!@!>2811@`|LSWYcmtkP{6+JUaZDl~Dvd44*8WDCT{g zknk16FVA2kKy;EIfRe!?+@H>6 z)QKTXYj01H$`}6G$GE*vIW>uQb3K92hLx@#S ze6J7a9r%w?A__RG;GOb5(9^AOx&o-_`zVx~V&lT%-GR+)X^};tE&%-vK)FHW7RP%4 zHEZckV1?NSdq=^g9C;I3;K!>0>OyIk-OWi4ROUSP$WoW z-06XWLMR4&e4HG_31vo5g_xn~M=pDR_4p$YE`pmk-y}f0B3@o1fcap3xUhV%@ouFY zT<;&uH4sP1t6qhZq`5gWNU&;^o5SwPAP#JX6le)gl{bJ2lxTXL{Ao5H_(p(^f$скрытых слоев | Количество
нейронов в скрытых слоях | Количество
эпох обучения | Ошибка
MSE_stop | Порог ошибки
реконструкции | Значение показателя
Excess | Значение показателя
Approx | Количество обнаруженных
аномалий |\n", + "|-----:|------------------------------|----------------------------------------|-----------------------------|--------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------------|\n", + "| AE1 | 1 | 1 | 1000 | 19.5568 | 6.53 | 12.67 | 0.073 | 0 |\n", + "| AE2 | 5 | 3,2,1,2,3 | 3000 | 0.0108 | 0.4 | 0.33 | 0.750 | 4 |\n" + ], + "metadata": { + "id": "df2BIryKfkpk" + }, + "id": "df2BIryKfkpk" + }, + { + "cell_type": "markdown", + "id": "b8e54861-e2c2-4755-a2d8-5d4b6cace481", + "metadata": { + "id": "b8e54861-e2c2-4755-a2d8-5d4b6cace481" + }, + "source": [ + "### 13) Сделали выводы о требованиях к:\n", + "- данным для обучения,\n", + "- архитектуре автокодировщика,\n", + "- количеству эпох обучения,\n", + "- ошибке MSE_stop, приемлемой для останова обучения,\n", + "- ошибке реконструкции обучающей выборки (порогу обнаружения\n", + "аномалий),\n", + "- характеристикам качества обучения EDCA одноклассового\n", + "классификатора\n", + "\n", + "для качественного обнаружения аномалий в данных." + ] + }, + { + "cell_type": "markdown", + "source": [ + "1) Данные для обучения должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение\n", + "2) Архитектура автокодировщика должна постепенно сужатся к бутылочному горлышку,а затем постепенно возвращатся к исходным выходным размерам, кол-во скрытых слоев 3-5\n", + "3) В рамках данного набора данных оптимальное кол-во эпох 3000 с patience 300 эпох\n", + "4) Оптимальная ошибка MSE-stop в районе 0.01, желательно не меньше для предотвращения переобучения\n", + "5) Значение порога в районе 0.4\n", + "6) Значение Excess не больше 0.5, значение Deficit равное 0, значение Coating равное 1, значение Approx не меньше 0.7" + ], + "metadata": { + "id": "1s5_ye8vkleI" + }, + "id": "1s5_ye8vkleI" + }, + { + "cell_type": "markdown", + "source": [ + "## Задание 2" + ], + "metadata": { + "id": "rqdVflKXo6Bo" + }, + "id": "rqdVflKXo6Bo" + }, + { + "cell_type": "markdown", + "source": [ + "### 1) Изучить описание своего набора реальных данных, что он из себя представляет" + ], + "metadata": { + "id": "rSvJtTReo928" + }, + "id": "rSvJtTReo928" + }, + { + "cell_type": "markdown", + "source": [ + "Бригада 6 => набор данных Cardio. Это реальный набор данных, который состоит из измерений частоты сердечных сокращений плода и\n", + "сокращений матки на кардиотокограммах, классифицированных экспертами\n", + "акушерами. Исходный набор данных предназначен для классификации. В нем\n", + "представлено 3 класса: «норма», «подозрение» и «патология». Для обнаружения\n", + "аномалий класс «норма» принимается за норму, класс «патология» принимается за\n", + "аномалии, а класс «подозрение» был отброшен.\n", + "\n", + "| Количество
признаков | Количество
примеров | Количество
нормальных примеров | Количество
аномальных примеров |\n", + "|-------------------------:|-----------------------:|----------------------------------:|-----------------------------------:|\n", + "| 21 | 1764 | 1655 | 109 |\n" + ], + "metadata": { + "id": "gf-0gJ7jqTdk" + }, + "id": "gf-0gJ7jqTdk" + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Загрузить многомерную обучающую выборку реальных данных Cardio.txt." + ], + "metadata": { + "id": "N2Egw1pho-F_" + }, + "id": "N2Egw1pho-F_" + }, + { + "cell_type": "code", + "source": [ + "# загрузка обчуающей выборки\n", + "train = np.loadtxt('data/cardio_train.txt', dtype=float)" + ], + "metadata": { + "id": "G8QTxAFapASY" + }, + "id": "G8QTxAFapASY", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Вывести полученные данные и их размерность в консоли." + ], + "metadata": { + "id": "zj2WXPNco-Tz" + }, + "id": "zj2WXPNco-Tz" + }, + { + "cell_type": "code", + "source": [ + "print('train:\\n', train)\n", + "print('train.shape:', np.shape(train))" + ], + "metadata": { + "id": "W6hTlfk6pAo9" + }, + "id": "W6hTlfk6pAo9", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Создать и обучить автокодировщик с подходящей для данных архитектурой. Выбрать необходимое количество эпох обучения." + ], + "metadata": { + "id": "0T11A0x4o-gr" + }, + "id": "0T11A0x4o-gr" + }, + { + "cell_type": "code", + "source": [ + "# **kwargs\n", + "# verbose_every_n_epochs - отображать прогресс каждые N эпох (по умолчанию - 1000)\n", + "# early_stopping_delta - дельта для ранней остановки (по умолчанию - 0.01)\n", + "# early_stopping_value = значение для ранней остановки (по умолчанию - 0.0001)\n", + "\n", + "from time import time\n", + "\n", + "patience = 4000\n", + "start = time()\n", + "ae3_v1_trained, IRE3_v1, IREth3_v1 = lib.create_fit_save_ae(train,'out/AE3_V1.h5','out/AE3_v1_ire_th.txt',\n", + "100000, False, patience, early_stopping_delta = 0.001)\n", + "print(\"Время на обучение: \", time() - start)" + ], + "metadata": { + "id": "rPwtBtdRPztp" + }, + "id": "rPwtBtdRPztp", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать порог ошибки реконструкции – порог обнаружения аномалий." + ], + "metadata": { + "id": "8ALjaY8lo-sa" + }, + "id": "8ALjaY8lo-sa" + }, + { + "cell_type": "markdown", + "source": [ + "Скрытых слоев 7, нейроны: 46->26->14->10->14->26->48\n", + "\n", + "Ошибка MSE_AE3_v1 = 0.0126" + ], + "metadata": { + "id": "b4sk_fhYY6Qb" + }, + "id": "b4sk_fhYY6Qb" + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3_v1, IREth3_v1, 'AE3_v1')" + ], + "metadata": { + "id": "a4sR3SSDpBPU" + }, + "id": "a4sR3SSDpBPU", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Сделать вывод о пригодности обученного автокодировщика для качественного обнаружения аномалий. Если порог ошибки реконструкции слишком велик, то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (6)." + ], + "metadata": { + "id": "DGBM9xNFo-4k" + }, + "id": "DGBM9xNFo-4k" + }, + { + "cell_type": "code", + "source": [ + "# **kwargs\n", + "# verbose_every_n_epochs - отображать прогресс каждые N эпох (по умолчанию - 1000)\n", + "# early_stopping_delta - дельта для ранней остановки (по умолчанию - 0.01)\n", + "# early_stopping_value = значение для ранней остановки (по умолчанию - 0.0001)\n", + "\n", + "from time import time\n", + "\n", + "patience = 4000\n", + "start = time()\n", + "ae3_v2_trained, IRE3_v2, IREth3_v2 = lib.create_fit_save_ae(train,'out/AE3_V2.h5','out/AE3_v2_ire_th.txt',\n", + "100000, False, patience, early_stopping_delta = 0.001)\n", + "print(\"Время на обучение: \", time() - start)" + ], + "metadata": { + "id": "ZvM1VbKEgalO" + }, + "id": "ZvM1VbKEgalO", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Скрытых слоев 7, нейроны: 48->36->28->22->16->12->16->22->28->36->48\n", + "\n", + "Ошибка MSE_AE3_v1 = 0.0098" + ], + "metadata": { + "id": "9BrPUb_8fX5R" + }, + "id": "9BrPUb_8fX5R" + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3_v2, IREth3_v2, 'AE3_v2')" + ], + "metadata": { + "id": "kh1eMtvpf6F-" + }, + "id": "kh1eMtvpf6F-", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Изучить и загрузить тестовую выборку Cardio.txt." + ], + "metadata": { + "id": "vJvW1mOtpgFO" + }, + "id": "vJvW1mOtpgFO" + }, + { + "cell_type": "code", + "source": [ + "#загрузка тестовой выборки\n", + "test = np.loadtxt('data/cardio_test.txt', dtype=float)\n", + "print('\\n test:\\n', test)\n", + "print('test.shape:', np.shape(test))" + ], + "metadata": { + "id": "GrXQ5YymtD2u" + }, + "id": "GrXQ5YymtD2u", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 8) Подать тестовую выборку на вход обученного автокодировщика для обнаружения аномалий. Вывести график ошибки реконструкции элементов тестовой выборки относительно порога." + ], + "metadata": { + "id": "6iqO4Yxbpgob" + }, + "id": "6iqO4Yxbpgob" + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE3\n", + "predicted_labels3_v1, ire3_v1 = lib.predict_ae(ae3_v1_trained, test, IREth3_v1)" + ], + "metadata": { + "id": "Vxj1fTAikDuU" + }, + "id": "Vxj1fTAikDuU", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('test', ire3_v1, IREth3_v1, 'AE3_v1')" + ], + "metadata": { + "id": "21DdnIKYtmtM" + }, + "id": "21DdnIKYtmtM", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE3\n", + "predicted_labels3_v2, ire3_v2 = lib.predict_ae(ae3_v2_trained, test, IREth3_v2)" + ], + "metadata": { + "id": "Ql1JMAM6sf7Z" + }, + "id": "Ql1JMAM6sf7Z", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('test', ire3_v2, IREth3_v2, 'AE3_v2')" + ], + "metadata": { + "id": "jczBRWjTt35R" + }, + "id": "jczBRWjTt35R", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels3_v1, IRE3_v1, IREth3_v1)" + ], + "metadata": { + "id": "2kF1XknIpg48" + }, + "id": "2kF1XknIpg48", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Для AE3_v1 точность составляет 88%" + ], + "metadata": { + "id": "LXHt7-gxuJIy" + }, + "id": "LXHt7-gxuJIy" + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels3_v2, IRE3_v2, IREth3_v2)" + ], + "metadata": { + "id": "5ow1D88nsrir" + }, + "id": "5ow1D88nsrir", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Для AE3_v2 точность составляет 92%" + ], + "metadata": { + "id": "LDsC5WyeuRHS" + }, + "id": "LDsC5WyeuRHS" + }, + { + "cell_type": "markdown", + "source": [ + "### 9) Если результаты обнаружения аномалий не удовлетворительные (обнаружено менее 70% аномалий), то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (9)." + ], + "metadata": { + "id": "fPPbYwnQpqS3" + }, + "id": "fPPbYwnQpqS3" + }, + { + "cell_type": "markdown", + "source": [ + "Результаты обнаружения аномалий удовлетворены." + ], + "metadata": { + "id": "IVmw2aeduXml" + }, + "id": "IVmw2aeduXml" + }, + { + "cell_type": "markdown", + "source": [ + "### 10) Параметры наилучшего автокодировщика и результаты обнаружения аномалий занести в таблицу:\n", + "Табл. 2 Результаты задания №2" + ], + "metadata": { + "id": "u3cAX_IgpvWU" + }, + "id": "u3cAX_IgpvWU" + }, + { + "cell_type": "markdown", + "source": [ + "| Dataset name | Количество
скрытых слоев | Количество
нейронов в скрытых слоях | Количество
эпох обучения | Ошибка
MSE_stop | Порог ошибки
реконструкции | % обнаруженных
аномалий |\n", + "|:-------------|:-----------------------------|:----------------------------------------|:-----------------------------|:-------------------|:-------------------------------|:---------------------------|\n", + "| Cardio | 11 | 48, 36, 28, 22, 16, 10, 16, 22, 28, 36, 48 | 100000 | 0.0098 | 1.6 | 92% |\n" + ], + "metadata": { + "id": "tryfJdjTvgU8" + }, + "id": "tryfJdjTvgU8" + }, + { + "cell_type": "markdown", + "source": [ + "### 11) Сделать выводы о требованиях к:\n", + "- данным для обучения,\n", + "- архитектуре автокодировщика, \n", + "- количеству эпох обучения,\n", + "- ошибке MSE_stop, приемлемой для останова обучения,\n", + "- ошибке реконструкции обучающей выборки (порогу обнаружения\n", + "аномалий)\n", + "\n", + "для качественного обнаружения аномалий в случае, когда размерность\n", + "пространства признаков высока." + ], + "metadata": { + "id": "eE7IYyGJp0Vv" + }, + "id": "eE7IYyGJp0Vv" + }, + { + "cell_type": "markdown", + "source": [ + "1) Данные для обучения должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение\n", + "2) Архитектура автокодировщика должна постепенно сужатся к бутылочному горлышку,а затем постепенно возвращатся к исходным выходным размерам, кол-во скрытых слоев 7-11.\n", + "3) В рамках данного набора данных оптимальное кол-во эпох 100000 с patience 4000 эпох\n", + "4) Оптимальная ошибка MSE-stop в районе 0.001, желательно не меньше для предотвращения переобучения\n", + "5) Значение порога не больше 1.6" + ], + "metadata": { + "id": "67p7AeSWwVXE" + }, + "id": "67p7AeSWwVXE" + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/labworks/LW2/notebook с полными выводами/LR2_задание1.ipynb b/labworks/LW2/notebook с полными выводами/LR2_задание1.ipynb new file mode 100644 index 0000000..4c62d32 --- /dev/null +++ b/labworks/LW2/notebook с полными выводами/LR2_задание1.ipynb @@ -0,0 +1,7832 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1c1905f6-acba-4dba-aba9-4d2fe59298df", + "metadata": { + "id": "1c1905f6-acba-4dba-aba9-4d2fe59298df" + }, + "source": [ + "## Задание 1" + ] + }, + { + "cell_type": "markdown", + "id": "61f467d3-d1c1-481a-8560-f259a22e0824", + "metadata": { + "id": "61f467d3-d1c1-481a-8560-f259a22e0824" + }, + "source": [ + "### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58e787ca-562f-458d-8c62-e86b6fb1580a", + "metadata": { + "id": "58e787ca-562f-458d-8c62-e86b6fb1580a" + }, + "outputs": [], + "source": [ + "# импорт модулей\n", + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')\n", + "\n", + "import numpy as np\n", + "import lab02_lib as lib" + ] + }, + { + "cell_type": "markdown", + "id": "5bbb8290-8806-4184-b33b-f1b0680bf563", + "metadata": { + "id": "5bbb8290-8806-4184-b33b-f1b0680bf563" + }, + "source": [ + "### 2) Сгенерировали индивидуальный набор двумерных данных в пространстве признаков с координатами центра (6, 6), где 6 – номер бригады. Вывели полученные данные на рисунок и в консоль." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "29603d03-8478-4341-b7ad-bb608ad88890", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 901 + }, + "id": "29603d03-8478-4341-b7ad-bb608ad88890", + "outputId": "59d12923-8a3c-4145-d6bc-ea85ff8adef2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "

" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAp8RJREFUeJzt3XucH1V9+P/37mezmwTYgDSYAGkCG7LZDeFSoYqRi99iESNKloabEfAhSLlWkFbQoJAKPNqGy6/WYqEWLAi2qZsghnBTqVJEvICBbLLJ5gIYUJTCLhjYZXfn98d0duczOzOfuZyZOWc+r+fjsY/k89nP5cyZM7PzPud9zjRYlmUJAAAAAAAoXGPRBQAAAAAAADaCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAASuicc86ROXPmJHrvNddcIw0NDWoLBAAAIiFIBwAgRw0NDZF+HnvssaKLarx77rlHbrnllqKLAQBALA2WZVlFFwIAgHpx9913Vz3+93//d3nkkUfkrrvuqnr+Qx/6kLz73e9O/D3vvPOOjI6OSktLS+z3Dg8Py/DwsEyePDnx9+vgox/9qDz33HOyY8eOoosCAEBkTUUXAACAerJs2bKqx08++aQ88sgjE5732rVrl0ydOjXy90yaNClR+UREmpqapKmJSwQAAIpAujsAAJo57rjj5OCDD5Zf/OIXcswxx8jUqVPlC1/4goiI3HfffbJ48WLZd999paWlRdra2uRv//ZvZWRkpOozvHPSd+zYIQ0NDbJy5Uq57bbbpK2tTVpaWuTII4+Un/3sZ1Xv9ZuT3tDQIBdffLGsWbNGDj74YGlpaZEFCxbIgw8+OKH8jz32mBxxxBEyefJkaWtrk3/5l3+JPM99y5Ytcsopp8iMGTNk8uTJsv/++8vpp58u/f39Va+7++675T3veY9MmTJF3vWud8npp58uL774YlUdrl27Vp5//vmxKQRJ5+gDAJAnuskBANDQq6++KieeeKKcfvrpsmzZsrHU9zvvvFN23313ufzyy2X33XeXH/zgB/KlL31JBgYG5B/+4R9qfu4999wjb7zxhpx//vnS0NAgf//3fy9dXV2ybdu2mqPvjz/+uHR3d8uFF14oe+yxh/zjP/6jnHLKKfLCCy/I3nvvLSIiTz/9tHz4wx+WmTNnyrXXXisjIyOyYsUKmT59es2yDQ0NyQknnCCDg4NyySWXyIwZM2Tnzp3yve99T15//XWZNm2aiIhcd911cvXVV8upp54q5557rvzud7+Tr371q3LMMcfI008/LXvuuad88YtflP7+fvn1r38tN998s4iI7L777jXLAABA4SwAAFCYiy66yPL+OT722GMtEbG+/vWvT3j9rl27Jjx3/vnnW1OnTrXefvvtsefOPvtsa/bs2WOPt2/fbomItffee1v/+7//O/b8fffdZ4mIdf/994899+Uvf3lCmUTEam5utvr6+sae+9WvfmWJiPXVr3517LmTTjrJmjp1qrVz586x57Zs2WI1NTVN+Eyvp59+2hIRa9WqVYGv2bFjh1WpVKzrrruu6vlnn33Wampqqnp+8eLFVXUAAIAJSHcHAEBDLS0t8qlPfWrC81OmTBn7/xtvvCG///3v5eijj5Zdu3bJpk2ban7uaaedJnvttdfY46OPPlpERLZt21bzvccff7y0tbWNPT7kkEOktbV17L0jIyPy6KOPysknnyz77rvv2Ovmzp0rJ554Ys3Pd0bKH3roIdm1a5fva7q7u2V0dFROPfVU+f3vfz/2M2PGDDnooIPkhz/8Yc3vAQBAZ6S7AwCgof3220+am5snPL9hwwZZvny5/OAHP5CBgYGq33nnbfv54z/+46rHTsD+2muvxX6v837nva+88oq89dZbMnfu3Amv83vO64ADDpDLL79cbrrpJvnWt74lRx99tHzsYx+TZcuWjQXwW7ZsEcuy5KCDDvL9jDQL5gEAoAOCdAAANOQeMXe8/vrrcuyxx0pra6usWLFC2traZPLkyfLLX/5SPv/5z8vo6GjNz61UKr7PWxHuyJrmvVHdeOONcs4558h9990nDz/8sFx66aVyww03yJNPPin777+/jI6OSkNDg6xbt863PMw7BwCYjiAdAABDPPbYY/Lqq69Kd3e3HHPMMWPPb9++vcBSjdtnn31k8uTJ0tfXN+F3fs8FWbhwoSxcuFCWL18uTzzxhCxatEi+/vWvy1e+8hVpa2sTy7LkgAMOkHnz5oV+TpTV5AEA0A1z0gEAMIQzcuweuR4aGpJ//ud/LqpIVSqVihx//PGyZs0aeemll8ae7+vrk3Xr1tV8/8DAgAwPD1c9t3DhQmlsbJTBwUEREenq6pJKpSLXXnvthBF8y7Lk1VdfHXu82267RZoCAACAThhJBwDAEO9///tlr732krPPPlsuvfRSaWhokLvuuktpunla11xzjTz88MOyaNEiueCCC2RkZET+6Z/+SQ4++GB55plnQt/7gx/8QC6++GJZunSpzJs3T4aHh+Wuu+6SSqUip5xyioiItLW1yVe+8hW56qqrZMeOHXLyySfLHnvsIdu3b5fVq1fLZz7zGbniiitEROQ973mP/Md//IdcfvnlcuSRR8ruu+8uJ510UtZVAABAKgTpAAAYYu+995bvfe978rnPfU6WL18ue+21lyxbtkz+7M/+TE444YSiiycidmC8bt06ueKKK+Tqq6+WWbNmyYoVK2Tjxo01V58/9NBD5YQTTpD7779fdu7cKVOnTpVDDz1U1q1bJ+973/vGXnfllVfKvHnz5Oabb5Zrr71WRERmzZolf/7nfy4f+9jHxl534YUXyjPPPCN33HGH3HzzzTJ79myCdACA9hosnbrfAQBAKZ188smyYcMG2bJlS9FFAQBAa8xJBwAASr311ltVj7ds2SIPPPCAHHfcccUUCAAAgzCSDgAAlJo5c6acc845cuCBB8rzzz8vt956qwwODsrTTz8deH9zAABgY046AABQ6sMf/rDce++98pvf/EZaWlrkqKOOkuuvv54AHQCACBhJBwAAAABAE8xJBwAAAABAEwTpAAAAAABoou7mpI+OjspLL70ke+yxhzQ0NBRdHAAAAABAyVmWJW+88Ybsu+++0tgYPlZed0H6Sy+9JLNmzSq6GAAAAACAOvPiiy/K/vvvH/qaugvS99hjDxGxK6e1tbXg0gAAAAAAym5gYEBmzZo1Fo+Gqbsg3Ulxb21tJUgHAAAAAOQmypRrFo4DAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoIm6WzgurpGREXnnnXeKLgZKatKkSVKpVIouBgAAAABNEKQHsCxLfvOb38jrr79edFFQcnvuuafMmDEj0kqPAAAAAMqNID2AE6Dvs88+MnXqVAIoKGdZluzatUteeeUVERGZOXNmwSUCAAAAUDSCdB8jIyNjAfree+9ddHFQYlOmTBERkVdeeUX22WcfUt8BAACAOsfCcT6cOehTp04tuCSoB047Y+0DAAAAAATpIUhxRx5oZwAAAAAcBOkAAAAAAGiCIB0AAAAAAE0QpEO5c845R+bMmZPovddccw3p3wAAAADqFkF6HWloaIj089hjjxVdVOPdc889cssttxRdDAAAAACGabAsyyq6EHkaGBiQadOmSX9/v7S2tvq+5u2335bt27fLAQccIJMnT865hNm5++67qx7/+7//uzzyyCNy1113VT3/oQ99SN797ncn/p533nlHRkdHpaWlJfZ7h4eHZXh42Ph6/+hHPyrPPfec7Nixo+Zry9reAAAAANiixKGOwu+TvnPnTvn85z8v69atk127dsncuXPljjvukCOOOML39Y8//rh8/vOfl02bNsmuXbtk9uzZcv7558tll12Wc8nNs2zZsqrHTz75pDzyyCMTnvfatWtXrNvRTZo0KVH5RESampqkqanwZgkAAAAAhSg03f21116TRYsWyaRJk2TdunXS09MjN954o+y1116B79ltt93k4osvlh/96EeyceNGWb58uSxfvlxuu+22HEteXscdd5wcfPDB8otf/EKOOeYYmTp1qnzhC18QEZH77rtPFi9eLPvuu6+0tLRIW1ub/O3f/q2MjIxUfYZ3TvqOHTukoaFBVq5cKbfddpu0tbVJS0uLHHnkkfKzn/2s6r1+c9IbGhrk4osvljVr1sjBBx8sLS0tsmDBAnnwwQcnlP+xxx6TI444QiZPnixtbW3yL//yL5HnuW/ZskVOOeUUmTFjhkyePFn2339/Of3006W/v7/qdXfffbe85z3vkSlTpsi73vUuOf300+XFF1+sqsO1a9fK888/PzaFIOkcfQAAAAD1pdAhy7/7u7+TWbNmyR133DH23AEHHBD6nsMPP1wOP/zwscdz5syR7u5u+fGPfyyf+cxnMitrPXn11VflxBNPlNNPP12WLVs2lvp+5513yu677y6XX3657L777vKDH/xAvvSlL8nAwID8wz/8Q83Pveeee+SNN96Q888/XxoaGuTv//7vpaurS7Zt21Zz9P3xxx+X7u5uufDCC2WPPfaQf/zHf5RTTjlFXnjhBdl7771FROTpp5+WD3/4wzJz5ky59tprZWRkRFasWCHTp0+vWbahoSE54YQTZHBwUC655BKZMWOG7Ny5U773ve/J66+/LtOmTRMRkeuuu06uvvpqOfXUU+Xcc8+V3/3ud/LVr35VjjnmGHn66adlzz33lC9+8YvS398vv/71r+Xmm28WEZHdd9+9ZhkAAAAAQKwCdXR0WJ/97Getv/iLv7CmT59uHXbYYdZtt90W6zN++ctfWu9+97ut22+/3ff3b7/9ttXf3z/28+KLL1oiYvX39wd+5ltvvWX19PRYb731VqyyRDU8nMnHxnbRRRdZ3iZw7LHHWiJiff3rX5/w+l27dk147vzzz7emTp1qvf3222PPnX322dbs2bPHHm/fvt0SEWvvvfe2/vd//3fs+fvuu88SEev+++8fe+7LX/7yhDKJiNXc3Gz19fWNPferX/3KEhHrq1/96thzJ510kjV16lRr586dY89t2bLFampqmvCZXk8//bQlItaqVasCX7Njxw6rUqlY1113XdXzzz77rNXU1FT1/OLFi6vqIEzW7Q0AAABAsfr7+2vGoY5C0923bdsmt956qxx00EHy0EMPyQUXXCCXXnqpfPOb36z53v33319aWlrkiCOOkIsuukjOPfdc39fdcMMNMm3atLGfWbNmqd6MyHp7RRYsEGlqsv/t7S2sKKFaWlrkU5/61ITnp0yZMvb/N954Q37/+9/L0UcfLbt27ZJNmzbV/NzTTjutairD0UcfLSJ2O6jl+OOPl7a2trHHhxxyiLS2to69d2RkRB599FE5+eSTZd999x173dy5c+XEE0+s+fnOSPlDDz0ku3bt8n1Nd3e3jI6Oyqmnniq///3vx35mzJghBx10kPzwhz+s+T0AAAAAEKbQdPfR0VE54ogj5PrrrxcRO5X9ueeek69//ety9tlnh773xz/+sbz55pvy5JNPypVXXilz586VM844Y8LrrrrqKrn88svHHg8MDBQWqHd1jQfmvb324w0bCilKqP3220+am5snPL9hwwZZvny5/OAHP5CBgYGq33nnbfv54z/+46rHTsD+2muvxX6v837nva+88oq89dZbMnfu3Amv83vO64ADDpDLL79cbrrpJvnWt74lRx99tHzsYx+TZcuWjQXwW7ZsEcuy5KCDDvL9jDQL5gEAAACASMFB+syZM6Wzs7PquY6ODvnOd75T873O3PWFCxfKb3/7W7nmmmt8g/SWlpZEtwJTbWREpKdn4uOREZFKpbhy+XGPmDtef/11OfbYY6W1tVVWrFghbW1tMnnyZPnlL38pn//852V0dLTm51YCNtSKcBfANO+N6sYbb5RzzjlH7rvvPnn44Yfl0ksvlRtuuEGefPJJ2X///WV0dFQaGhpk3bp1vuVh3jkAAACAtAoN0hctWiS9npzvzZs3y+zZs2N9zujoqAwODqosmnKVikhnpz2C7gTm7e36BehBHnvsMXn11Velu7tbjjnmmLHnt2/fXmCpxu2zzz4yefJk6evrm/A7v+eCLFy4UBYuXCjLly+XJ554QhYtWiRf//rX5Stf+Yq0tbWJZVlywAEHyLx580I/J8pq8jrKu9NIx04qAAAAoEiFzkm/7LLL5Mknn5Trr79e+vr65J577pHbbrtNLrroorHXXHXVVXLWWWeNPf7a174m999/v2zZskW2bNki3/jGN2TlypU17/Wtg+5uOzAXsf/t7i62PHE4I8fukeuhoSH553/+56KKVKVSqcjxxx8va9askZdeemns+b6+Plm3bl3N9w8MDMjw8HDVcwsXLpTGxsaxDqCuri6pVCpy7bXXThjBtyxLXn311bHHu+22W6QpALrIe70EU9ZnAAAAAPJW6Ej6kUceKatXr5arrrpKVqxYIQcccIDccsst8olPfGLsNS+//LK88MILY49HR0flqquuku3bt0tTU5O0tbXJ3/3d38n5559fxCbE0t5uz0E3cfTw/e9/v+y1115y9tlny6WXXioNDQ1y1113KU03T+uaa66Rhx9+WBYtWiQXXHCBjIyMyD/90z/JwQcfLM8880zoe3/wgx/IxRdfLEuXLpV58+bJ8PCw3HXXXVKpVOSUU04REZG2tjb5yle+IldddZXs2LFDTj75ZNljjz1k+/btsnr1avnMZz4jV1xxhYiIvOc975H/+I//kMsvv1yOPPJI2X333eWkk07KugoSy3u9BFPWZwAAAADyVmiQLiLy0Y9+VD760Y8G/v7OO++senzJJZfIJZdcknGpsmVagC4isvfee8v3vvc9+dznPifLly+XvfbaS5YtWyZ/9md/JieccELRxRMROzBet26dXHHFFXL11VfLrFmzZMWKFbJx48aaq88feuihcsIJJ8j9998vO3fulKlTp8qhhx4q69atk/e9731jr7vyyitl3rx5cvPNN8u1114rIiKzZs2SP//zP5ePfexjY6+78MIL5ZlnnpE77rhDbr75Zpk9e7a2QXre6yWYtD6DSag/AACAcmiwdBoKzcHAwIBMmzZN+vv7pbW11fc1b7/9tmzfvl0OOOAAmTx5cs4lhGonn3yybNiwQbZs2VJ0UXzp0N6clHP3eglZjmzn/X1l5mQi9PTY6164p9UAAABAD1HiUEehc9IB1d56662qx1u2bJEHHnhAjjvuuGIKZIi810sweX0G3fhNHQAAAIC5Ck93B1Q68MAD5ZxzzpEDDzxQnn/+ebn11lulublZ/uZv/qboomkt7/USTF6fQSdMHUC9oE0DAOoJI+kolQ9/+MNy7733yiWXXCJf/epX5cgjj5Qf/ehHctBBBxVdNCPkfRHMRXc6zq0dnXr0PgZMx50gAAD1iJF0lModd9xRdBGAXHV3j89JZ+oAyoY7QQAA6hFBOgAYjKkDKCumcwAA6hXp7gBQAgQtKBumcwAA6hVBeog6uzsdCkI7A5CVkZGiS5AOd4IAANQjgnQfkyZNEhGRXbt2FVwS1AOnnTntDgDSKsuCa850juFh+18nYAcAoMyYk+6jUqnInnvuKa+88oqIiEydOlUaGhoKLhXKxrIs2bVrl7zyyiuy5557SoUcTpRMPc4d1mWby7bgmg51CgBAXgjSA8yYMUNEZCxQB7Ky5557jrU3oAycoLCnx55D7E5ZLiudtpkF1wAAMFuDVWcTYgcGBmTatGnS398vra2tNV8/MjIi77zzTg4lQz2aNGkSI+goHSe92gkKnZTlMtNtm3UrTz2iUwQA4BYnDmUkvYZKpUIQBQAR1eMoro7b3N09PrLPgmv50imrAgBgJhaOAwAoU4+3zdJxm1lwrTh+6wEAABAHQToAQKl6vG2Wrttc5s4RHbmzKPweAwAQBenuAAClnFHcMqe4e9XjNmMiJ4vCux4AbQIAEAcj6QCATNRjYFKP24xqumZVAADMwUg6AACAImRVAADSYiQdAABAMQJ0AEBSBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgCA4UZGii4BAABQhSAdAABD9faKLFgg0tRk/9vbW3SJAABAWgTpAAAYqqtrPDDv7bUfAwAAsxGkAwBgoJERkZ6e8VR372MAAGAmgnQAAAxUqYh0dtr/+j0GAABmIkgHAMBQ3d0i7e32/9vb7ccAAMBsTUUXAAAAJNPeLrJhg53izgg6AADlwEg6AACGI0AHAKA8CNIBAAAAANAEQToAAIiNVeQBAMgGQToAAIist1dkwQKRpib7X+c+7QAAQA2CdAAAEFlX13hg3ttrPwYAAOoQpAMAgEhGRkR6esZT3b2PAQBAegTpAAAgkkpFpLNzfDV572MAAJAeQToAAIisu9u+P7uI/W93d7HlAQCgbJqKLgAAADBHe7vIhg12ijsj6AAAqMdIOgAAiI0AHQCAbBCkAwAAAACgCYJ0AAAAAAA0QZAOAABqct9mjVuuAQCQHYJ0AAAQqLdXZMECkaYmkblz7Z+mJvu53t6iSwcAQPkQpAMAgEBdXePB+Nat9o+I/VxXV3HlAgCgrAjSAQCAr5ERkZ4e//T2sN8BAIDkCNIBAICvSkWks9P/dmthvwMAAMkRpAMAgEDd3SLt7fb/29rsHxH7ue7u4soFAEBZNRVdAAAAoK/2dpENG+y0dmfU3P1/AACgFiPpAACgJndQToAOAEB2CNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQBQ10ZGii4B3NgfAIB6R5AOAKhLvb0iCxaINDXZ//b2Fl2i+sb+AADARpAOAKhLXV3jgWBvr/0YxWF/AABgI0gHANSdkRGRnp7x1GrvY+SL/QEAwDiCdABA3alURDo77X/9HiNf7A8AAMYRpAMA6lJ3t0h7u/3/9nb7MYrD/gAAwNZUdAEAAChCe7vIhg12SjUjtsVjfwAAYGMkHQBQ1wgI9cL+AADUO4J0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcwwchI0SUAAAAA6hNBOoAxvb0iCxaINDXZ//b2Fl0iAAAAoL4QpAMY09U1Hpj39tqPAYwjywQAAGSNIB2AiNjBR0/PeBDifQzUM7JMAABAXgjSAYiISKUi0tlp/+v3GKhnZJkAAIC8EKQDGNPdLdLebv+/vd1+DNQ7skwAAECemoouAAB9tLeLbNhgBx+MoAM2J6ukt3f82Ghv5xgBAADZYCQdwAQEH0A1skwAAEBeGEkHAKAGskwAAEBeGEkHACAiAnQAAJA1gnQAAAAAADRBkA4AAAAAgCYI0gEAABTi9nwAgDQI0gEAABTo7RVZsECkqcn+t7e36BIBAExEkA4AyAwjiojD9PbS1TUemPf22o8BAIir8CB9586dsmzZMtl7771lypQpsnDhQvn5z38e+Pru7m750Ic+JNOnT5fW1lY56qij5KGHHsqxxACAWhhRRBxlaC8jIyI9PeMdDd7HAABEVWiQ/tprr8miRYtk0qRJsm7dOunp6ZEbb7xR9tprr8D3/OhHP5IPfehD8sADD8gvfvEL+eAHPygnnXSSPP300zmWHAAQhhFFxFGG9lKpiHR2jt+mz/sYAICoGizLsor68iuvvFL+53/+R3784x+n+pwFCxbIaaedJl/60pdqvnZgYECmTZsm/f390tramup7AQATjYzYI6Jew8MELJioTO3F6WDo6bED9O5ukfb2oksFANBBnDi00JH07373u3LEEUfI0qVLZZ999pHDDz9cbr/99lifMTo6Km+88Ya8613v8v394OCgDAwMVP0AALLDiCLiKFN7aW8X2bDB7mDYsIEAHQCQTKFB+rZt2+TWW2+Vgw46SB566CG54IIL5NJLL5VvfvObkT9j5cqV8uabb8qpp57q+/sbbrhBpk2bNvYza9YsVcUHAARwjyC2t9uPgSBlay8mdjDkiXn6ABCu0HT35uZmOeKII+SJJ54Ye+7SSy+Vn/3sZ/KTn/yk5vvvueceOe+88+S+++6T448/3vc1g4ODMjg4OPZ4YGBAZs2aRbo7AORgZCR6wBLntSgn2kC5MR0AQD0zJt195syZ0tnZWfVcR0eHvPDCCzXf++1vf1vOPfdc+c///M/AAF1EpKWlRVpbW6t+AAD5iBJwlWFlb6iRV4DOSG4xyrBAIADkodAgfdGiRdLruRrbvHmzzJ49O/R99957r3zqU5+Se++9VxYvXpxlEQEAGePCHXmhQ6g43KIOAKIrNEi/7LLL5Mknn5Trr79e+vr65J577pHbbrtNLrroorHXXHXVVXLWWWeNPb7nnnvkrLPOkhtvvFHe+973ym9+8xv5zW9+I/39/UVsAgBU4YIzHi7ckSc6hIpTpgUCASBrhQbpRx55pKxevVruvfdeOfjgg+Vv//Zv5ZZbbpFPfOITY695+eWXq9Lfb7vtNhkeHpaLLrpIZs6cOfbzV3/1V0VsAgCICCN0SXHhjrzQIVS8si0QCABZKXThuCJwn3QAWXACc2fhK+dWTKiNxaSQF45TPbBAYHaoW0BfxiwcBwBlwAhdOtxbGnlhJFcPBJHqkc0FlEtT0QUAANM5KdreETouROOhvpA1p0OI0UaUjd96C2SJAOZiJB0AFGCEDjAHATrKhGwuoHwYSQcABRihAwA1OI/GQzYXUD6MpAOAQlwUAUAyzKtOjmwuoFxY3R0AUGqMygFmYPX99DjfAfpidXcAQN1jVA4wB/Oq1SBAB8qBIB2AVrgggyp+qx0D0JMzr9oJMr2PAaCeEKQD0AKjnlCJUbn0qCvkjXnVAGAjSAegBUY9oVJfn0hz8/hjRuWio8MMRXHmoA8P2/86ATsA1BuCdACFY9QTqnV12Rf6jkqFUbmo6DBD0ehMA1DvCNIBFE7VXESCeoiMd/KMjo4/NzQkMnducWUyBR1m5cO+AwDzEKQD0EKauYhlTs/lAjs+FqBKjrorjzKfFwGg7AjSAWghzVzEMqbncoGdDgtQJUfdlUMZz4sAUC8aLMuyii5EnuLcRB6A/kZG7EDWa3jY7NE/JzAfGbG3w+nEQDxO/ZmuiO3Qve50L1+RynpeBACTxYlDGUkHYLQypucyL1iNMgRxRWZU6Fp3ZJnUVsbzIgDUE4J0AMYrW3puHhfYZQ74yxTE5ZWybFJ7II07mrKdFwGgnhCkAzBeGe+tm9UFdpkC2CBlCeLyyKgwrT2QZRJdGc+LAFAvmJMOABpTnbJd9rnuZZuL695fjY0i8+er3V8mtoc8ylyGqRIAAL0wJx3ABIw0mUl1invZRyErFZGOjvLMxe3uFpkzx/7/6KjI4KC60W5T20OWadymZRYAAMqJIB0oOS464Ugz1133wE1kvK1v3Di+TabPxW1vF2lpGd+eHTvUpe+burhYlmncZZkqAahgwnkfKCuCdKDkuOjMhqkXL3FHIU3q5HG39ZERe0Td9Lm4WY92m7y4mOrOBFMzCwDVTDrvA2XFnHSgxMo2P1cHTkdHT4896ugOckwSdc6tKXOWy9zWmYOdH1PaO5AljgMgG8xJB0ou6siOqemsOitLZkLUFHdTRhbL3NbzGO3WsZ6KaGcmZxYUScdzApIx6bwPlBlBOmCQJCloXHSqU8TFS5EXRqYFvmVt6/V2K60iU23rra7TIi26fEw77wNlRZAOGCTKKK43qOOiU508L17yvPgN6wgwKfBtbxdZv768bb1eLpJ1yFapl7pOS4d9BfVMOu8DZUWQDhii1ihuraCOi0418rp4yePiN0pHgCmdPO5tOeQQRvRMRaqtOdhX5WXKeR8oMxaOAwwStpgLC73kK8uFtvJaBE33NhOnjnXfFkTHvjQH+woAomPhOKCkgkZxGdHIX5aZCXmk1evcZuKm+uu8LYiPVFtzsK8AIBuMpAMG8hthZERDb3FH3vO41ZuubSZJuXTdFiQXdMyEHUvcSq4Y1DsA1MZIOlByfhdDjGjoKekCcHnMCVTZZoJGreOOZicdFTex/TPSH857ngs7llhlvFhlCdA5JgHogiAdKAkWetFT2gXgsrz4VdFmgoKjpEFT0lR/k9o/AWUyYceSDquME+CZi2OS9gvohiAdKJmyjGiUgSlzpdO0maDgKE3QlGZU3IT2r0NAaZqwY0n1cRb3fQR4Nt3Oa3HU8zFJ+wX0RJAOABnJ877qWah10R0UHA0NpQuaTBoVj8uUjhvdhB1Lqo6zpMFKPQd4IuYHefV+TNZ7+81SvbQhZIMgHQAyZOJc6agX3UHBUXOzmqDJlM6MOEzvuClS2LGk4jhLEqyYFuBlUS7Tg7x6PiZNa7+mML3jCnogSAeADJk4KhznojsoODKxcyIv1E0y7mNp/frqYyntcZY0WDElwMsqaChLkFevx6Qp7dc0pndcQQ/cgg0ANJPF7YyifubIiH0h7zU8HP7+JLfLqnfUTXxZ3pow6W388rhdYlpZ3qKwTLc/rMdj0oT2a5Kkf0NRH7gFGwAYKIvRrrifmXRkJej3ul2U6DTCp1vdmCDLEaqko6m6Z8tkPdpdplHoejwmdW+/piE7AaoQpAOAJrIIQJJ8Zpkuuh3METRf1sFm2mBF14vwrIMGgrxy0LX9mqiMf0ORP9LdAeTO9JTCrNLRVafIpf1M0/eTW5lScusZ+zEZUpqB/JXpbyjUIN0dgJZMH83MsvxZjHal/cyyXFyUZXErMEKVFKPdQP7K8jcUxSBIB5Ab01c8zbr8WQQgBDXMESyTsBXeURttHgDMQLo7gFyYvuJpnuUvcnX3snG2m3Tf8jBtX9brsQcAqEa6OwDtmD6aWamItLVVP9fWlk35TfhM3VPFvVMTRKKl++q+XfXGb3+YkpFj+vQeAEBxCNIB5IbUa/OZEngEBXJBnRWmbFe9CNofJq0vYEpnAgBAP6S7A8idiemfpqfrq2LC6tpJ9pUJ21VPwvaHCfuK8wUAwIt0dwBaM/Ei1fR0fRVMGcWMu69M2S7TJK2/WvvDhIwczhcAgDQI0gEgIhOCg7jiBFImBR5x9pVJ22WCtFMHau0PU24nVsbzBQAgHwTpABCRKcFBFEkDKVMCD2dfDQ5G21embFeYoA6XvDMCVMzFjrI/dO9EKdP5AgCQL4J0AIhJ9+Agiq4ukU2b7P/HCaRMCTycToiWlmidEKZsl5+gDpe4HTEqgnlVUwdM3h9eZThfFIHpJgDqGUE6ANSZnh77Z3TUfpwkkNI98Eg6mqv7dvkJ2taodRAnmK/VRlRPHdBxfxA8Zos7LQAAQToA1J2lSyc+V6Y52KYsBJflyPXQUPQ6iBLMxwmcyjB1wA/BYz64dR0AEKQDQF1xgjWvVavyL0tWdF8ITmWwF7Stzc3R6iBqh0acwKlMqepuBI/ZM6WDDQCyRpAOAHUkKKjr7Cy2XEmEXbjrPJqrOtgL2taoi6/VCuaTBk66dIqoQPCYvd5ekUMOqX5Otw42AMgLQToA1BmdA9goooxE6zqam0WwF7StUeugVnvQPTMhL9RBttydVw4Tz08AoEKDZVlW0YXI08DAgEybNk36+/ultbW16OIAQCwjI+oCA5WflScnMHfK7wSjptC1/GHtwRnx7+mxg1N3YF9m7u1ua7Of27rVrDow4TgfGbE73byGh/UvOwBEFScOZSQdAAyQxaJVJl78liHtWNdMhrD2oGtmQtbco7s7dti39DOlDkxa6I5sDQCoxkg6ABhA19HXIpSlLkwY4axnpo/umnac1Gu2BoD6wUg6gFIxaZQ0C2UYPVZJ15HouEwI9OqZyaO7Jp4z6jVbAwD8EKQD0JZJ6ZpZMjlYyEJ7u8j69XpdzOsc/LiZUk5dmNohZPI5w4QyFoXjF6gfBOkAtMV9iceZGiyoNDJS3XFzyCHFd9yY0pFkSjnzEjXYMXl0l3NGeXD8AvWHOelADMwhzY/p80GzUo9t0D1XtblZ5J13RCxLj3m2psz7NaWcWavHec/1eM4oG45foByYkw4oRi92/kxO18xSPW6/O6NiaMgO0EWKn2dryrzfvMqp23b7qcfsnHo8Z5SJKecZAGoRpAMR1OOFnQ5I10StC9IiO25060gKqqOsy2lKJ2bZgh13uU3dBtSm23kGQD4I0oEaynZhZxKT54PWK9XHhXNB2hjw12rVKrXfF5cOHUlRguQsy2lKJ2ZZgh33/p471/7RvYME6ehwngGQL+akAxEwHwwIl+VcX/dnO3Q7Douc9xvn/KS6nKatHVGGOenu/e2m2zEB9VhfADBbnDiUIB2IoAwXdkCW8ujI6ukRWbqU49BNhyDZxE5MU4OdoP3tpmsHCQDUuzhxaI1TPQCR8YtOUy/s0qrX7U6rXurNmQLifax6+zs7g4/DeqlrLydl2xskB9VFFvXU3T3eiZkmFTfPfWhqW+nrs+9wMDQ08Xe19j2KVa/nKADJMCcdiKHe/sCasiCUbuqt3vKe6+v+3Hqraz9h81WdlOgs6ynt2hHsw+i6uux6dkyaJNLWZv+fucp6on0DSIJ0dwCBTExj1UE91ltRU0Lqsa6DuEfqvPtjcFBkxw4964l9GE3Y1AaR+utENgXtG4CDOekhCNKBaHSY62qistVb3BTNPFM6y1bXKnkDA79V93WoJ/ZhPEkDPlKti0H7BuAWJw4l3R2Ar7LcrihvZam3pCmaeWynE3CWpa5F1N66zu+2kSLjt7HTqZ7KtA/zEPdWXCalWpfxtqa0bwBJEaQDCMS9WZMpQ73peO9rv4DDhLoOCz6yCKL8AoO2NpH58+3HutWTCftQF3Hn/+t4HHuZ1JGQBO0bQBKkuwOoiVTJZEytN11TNMNSfXWs6yjz9LOarxr03VnWU9rPDnq/jvvWBLoex15pjwFT2ocp5QSQHdLdASjFhUUyptabjimafinc7sc61LV3xLzWKGatbUojaMQ1i3pSNRLqLVvZR1izpuNx7JXmGDCtfehU7wD0R5AO5KSM8+1QXrqlaOoccPgFC0HBh/v+1rW2ScU5I4/6ySqlWqdUbVPP37odx15pjmud2gcAqEaQDmTMtN5+lEeawCLtva+zoGvA4RcseIONxkaR5maRlpbq84DfNpl0zsgqGyDLLIM4TNoXfnQ8jr2SHNe6tA8AyApz0oGMcY9U/aicG6jjPMOi7lmeF53qPGzeb1/f+H5obrZfG3QecG+TaeeMrMob5XOzbgum7QuTxd2X7BsApmFOOqAJevv1onJUTOcRNpVpoFm31SSfr0uALmKXpbm5+rnm5uqgYXDQTnMPOw+4U9xNO2dkleEQ9rl5HH8m7guTxT2udc2sAQAVGEkHMkZvvz5U7gtd96uqFZ2zHo0vy2h/1PqO0150bVu1ZDWq7fe5edWRqfuinuiUWQMAYRhJBzRCb78eVI6K6TzCpmqBtawXZSrLok9R6zvOecDUc0ZWgZL3c/M8/kzdF/UkabvT4XwNAEEKD9J37twpy5Ytk7333lumTJkiCxculJ///OeBr3/55ZflzDPPlHnz5kljY6N89rOfza+wQAImLNxTD1SuDq7zSuMi6QOLrIMgnTs5kohS3+3tIuvXRzsPcM4Il+fxx74oH52nKgGAo9Ag/bXXXpNFixbJpEmTZN26ddLT0yM33nij7LXXXoHvGRwclOnTp8vy5cvl0EMPzbG0QDoqb6tUj1TUm8pRMZ1H2NIGFlkHQbp3csRVq77dQcEhh9QOCjhH1JZ0RfCkTG2bWTC9fZYliwdAuRUapP/d3/2dzJo1S+644w750z/9UznggAPkz//8z6WtrS3wPXPmzJH/7//7/+Sss86SadOm5VhaIB1675NRWW8qR8VMGGFLE1hk3QkR5fNNCwaC6jtqUOBu6y0t/m3etDrJSpzjL8tzbz3tjzL8DStbFg+A8io0SP/ud78rRxxxhCxdulT22WcfOfzww+X2229X+h2Dg4MyMDBQ9QMUgd77ZLKoN5WjYrqOsKW96My6EyLs800LBsLqOk5Q4G7rQ0P2v06bN61O8hLl+MviHFK2/RHlfFGGv2Fly+IBUF6FBunbtm2TW2+9VQ466CB56KGH5IILLpBLL71UvvnNbyr7jhtuuEGmTZs29jNr1ixlnw1ERe99MtRbOOe+226qg4esL179Pt+UYCCorr23VosSFAS1bef5JUvMqBPdZHUOMaWN1hL1fFHEuTirz9Z5qhIAOAoN0kdHR+VP/uRP5Prrr5fDDz9cPvOZz8h5550nX//615V9x1VXXSX9/f1jPy+++KKyz84DwUg50Hs/Lk6bpt789faKzJ1rX1g3Ndn/d24TZXrwkMeidap463rxYv+AJ0pQENS2KxWRtjaRjRvprEoii3NImToPo54v8jwXZ52lYMJUJQAoNEifOXOmdHZ2Vj3X0dEhL7zwgrLvaGlpkdbW1qofE5QtlQ7Z9t6bcHGYtE3Xw6hH3P3X1SWydev4461b7QXJmprMDx6yCgZUn1P9ArWtW0U2bRr/PifgiRoUuNt6c/P4ey1r4muj1IlJ+z1Lqs8hZek8jNvZkNe5OK+ORtP2F4D6UmiQvmjRIun1XClt3rxZZs+eXVCJ9GH6aBgmyqL33qTOnKRt2qRRj7hBUZL951xIezlzmN1MDR6yCAZUn1P9AjURkdFR+1+/gKfWfnC39cFB+/+WJbJt28TXrloV/DkmnRdUqHXcBZ1D0nRilKHzMG5nQx7n4rJkKZhWXgD6KTRIv+yyy+TJJ5+U66+/Xvr6+uSee+6R2267TS666KKx11x11VVy1llnVb3vmWeekWeeeUbefPNN+d3vfifPPPOM9PhdtRqqLH+k4E9lwGRKZ46KNq1zoJk0KEqy/5wL6ShMDR5UBwNZnVO9gVpbm5rRVec9S5eKbN5c/bvGRvtzw9qAKeeFtOIed069qujEMKnzMEySzoYsz8WmZynUWwcZgOw0WJZfIl1+vve978lVV10lW7ZskQMOOEAuv/xyOe+888Z+f84558iOHTvkscceG3uuoaFhwufMnj1bduzYUfP7BgYGZNq0adLf36916rtzch8Zsf84ORcEgGNkxL4Q8Boe1vOCpsxtOmzbnOe80uw/Z/6zk/I+aZI9guv+/vXr9WwHRcmy/Tmf6QTEPT12YOEOgJJ8pl/76OgQWb06+HOLPi8EtfcsPjvpPg16X55l141O5VN5HOWtzH/nAKQXJw4tdCRdROSjH/2oPPvss/L222/Lxo0bqwJ0EZE777yzKkAXEbEsa8JPlADdJGVIpUO2TBtxcLfpefPK06aDRml7esJHVNLsv/Z2kb4+O/AaHhZ59tmJ5wtd20FSqke9ve0vzec7da1ydNWvfXR02O0q7HOLOi+4RxA7O9WOIPqNTibNjgh6X2dnNqOfpoys6nS+MDVLgSxIACoVHqTDn6l/pJAvkzpznPJ1dNgrVbtTck0WFBQtXVo75Tjt/qtUqkdr0p4v4lxM5nXhqSrICaqjLIIoVQGPt32sXp3sfXmcF7q6xhfN27jRXshQ1fHtl76ftDPC733NzePTClRPD1A99aCeAj6dOg6iqNUm62nfAUiv8HT3vJmS7g71dErnU82UbStrKqA3PXPVKntbvYJSjovef3HSS/NORZ07t3ol+7Y2O4tAFRPaZNL2kVe7CkvNT7tcTFj6fl9fsrbobsNOp6Hf56etO5VTD0xOARcp/hyXF7/9JGL2vgOgTpw4lCAdpWf6xY1KRV4oZTFXVrcLP3d5vMHfvHnpA5asxAlU8wxqs55fXfT87TLp7Mwu2G1pqb57QXOzvfq9I20nRpZtWtVnR/kc3c6HIvX79zfsb4GOHYEA8mHUnHQga/Wy0nEYHeZFqpwrq8P2+HFvi/titFKxA5g8yxo1tTLKPMqg35k+59K0dR10tnr1+L3dRdTV5cjIxNsLDg3Fu7Wd8zlezvuynB6g4rNrHXe6ng9F6vfvrzvFvUznTAD5IUhHqfEH0qbLhZKqi2FdtieMM1rS0VF9MZ11WZPcliooUPV+Vl9fvkFtpWKnt7u5b3OmgknrOmTN77wY9Vzp3FGgo2P8sYq6TNuREuV4yHINGBWfXasOdD0f8veXjkAAyRGko9T4A6nXhZKKC1adtqeWkRF7BD3Psrov2DdtinbBHhSoLl48nqLf02M/VhnURqmHtWvH7wne2Wk/VolFOv0D2SSjs+3tdjuJU5dR2kCaNhcngA1aL0KFtH9zgupA5/Mhf39tdAQmp0M7BorCnHSUXr3OiXMr25w4k7ZHhzncGzaMB7q13u9O0wybr51m/muSY1LH+baqFbWNfm1UJNs1FfJoA2nWHND174ZfHeh8PtS1HotQD+cwVWg3KCvmpAMuJo+UqepFLltPvknbk2dZnZEqr6VLo78/znclFTS6Gdbey3Jx67eNRc4pDhqJ9T63caPa+58nSdGO2wbSjOTqmkLuV3adz4cm//1VrSznsDzoevwBeWIkHdBQVr3IZevJN2l78iprT0+827+FyeL2Z2G363ICwTKOmoQd03FHQlW2pd5e+57mzuJsfiPpDlWjtHmuqp90xN7EVf9NOh/qiPrTg6nHHxAFI+mA4bLqRS7bHziTtievsnZ2qpsHmsV8cL/RzeZmkc2b7cd5jprkOd8xLHsg6pziLEbcu7rsi19HpWIHst3ddoq7W5z5zkGvcToF3LKcq5xkJNfUudRZla/s84J1Xh2/Hpl6/AGqEaQDmtF5ISCYQVX6a1apqu7yzZtXfUutPNp73hflYcd0lAtS532qO++ccoyOjj83NGRnUDiLwHV0xLtYrlW3XV32goZueaRoe8tcq33pnEKel3oJXkmt1g/HH0C6e9HFAXzpvBAQzKF7+ubIiJ0+7063bmwUmT8/2/ZexPEV9p1BKdnu553pAF5pU0Br1UXcdPGwz1M5FSOpuNuj+zGUpajHicl1RGq13kxuW4Af0t0Bw9GLDBV0v7ipVOyAyT2q2dSUbXsvKlMl7JgOylhwj/Bt3mxPC1CdArpyZfVnrlxZ/fs42RS16tZvAcO801jjjprqfgxlJcpxUoaRdlKr9cZ+QD1jJB3QWD32ItfjNocpc30UNYqlciQ9yW3Borw+rwX2VGcVBH1e2tsDqqDLqKkpx3SttlGWjC9u9wUdmHJeQDqMpAMlUU8n7DKMyqhUD/VR1CiWikyVpPsnytzosLnqPT3R1wiolR2gKqvA/fqgug3aHhUBetTyFj1qatoxvWpV8HFSprVTuE0cimTaeQH5IUgHoAUW76lWL/XhXUQuj6kdKi7K0+4fvwsz73MrVwYHvHE/20/aoNXve8LqNqxzJElwl+TitsipRKYc0069OusHbNgwcV8W3eGRhbiLCwIqmHJeQP5IdwdQOF3SUPNSK62t3uqjt1dkyRJz7pOuYv/4pQqLBKeKx9nvcdKQ06T6Jk13dm9PEd/vLUMeTDqmo9ZrWdPEy7pd0I9J5wWoEScOJUgHoIUi5wnnJc7FX9r60LUO/Hi3dd48u450ljZA9Lsw8xP3Yi3pRV+U9uJ+TZqLS/fnxK1H53U6zHGPy4Q53EH1OjhoL1wY9B5TzjVRmLCfUB60t/rCnHQAiRWV4lfkPOG8xElrS1ofSeqgyLROv7mtzoi6bvvPLU17rVT87z+uIn04aRpy3HufJ/ke7+f09ESf1+x9b1+ffzDuXkFet3RlE+7a4d2PjY12cN7SEnw+KVOAXqa59jCDCecFFMSqM/39/ZaIWP39/UUXBdDKpk2W1dlpWSL2v5s2FVOO4eHk7+3stKxKxd6GSsV+rIvhYbtc3p9a2xu3PuLUgcp9rmq/OT+67b8gcbfbXefNzdV1X2t/RP0u7+ds2BCvjF5BbSpu+/H7nKjt1e91Gzb4H1MbNuhxLguS5ljJg7eN6npOzYrOf0dQXrqfF6BGnDiUdHcAImJeypU3xdKEuV1ht6dSUca4dRBnnweVUcX8Tfec9Khl10mc/Rcltd/7eUnruKfHHllOs2+itKmoqfJB6em1yhhWhkMOEdm0SWR0dLwNW5Z9X3nV57KypXUHcbc3PyYck2kwJx1AVkh3BxCLSSl+QencJqw27E1rW7lSbXp+nDqIus9rpc+rWJm2vd3+br8UcJ32n1fcqQVBqf3eOnfmXDuS1vHSpen3TZQ2FWUfhd2CrdZK+2Fl6O4WmT/ffn7OHJG3366uUxXnMt2n0ajmbm9uJhyTKnBLNgA6IEgHYESA6wgLWHSf2+W9+LviCvW3XolaB1H3eVh9q+7cWb1a7/3nFTd4jlLnaeZtu59TuW9UHVdhn1PrXBP0Xvcx1dIi8vzz1e9TcS6rp1skhbUTE45JlXT8+wegfpDuDkBEzEjxi5rObUJaatbp+VHqoNY+j1LGLKZJmL7/RILLX6vO49yardZnuj/LkebYVjktI+nnBL03aH90dFR3/iT5Pt2n0ajm1wbXry/v9gJAXkh3BxCbCSl+UUd/TbiYzDp7Icrn1NrnUcqYRfaCqfuvrc2eIx2WFh1W50Gj36tWhddx0Ehvd7edAu62aVO0kWC/kdQ822bYe/2mZBxyyMTXdXTY9ZfmXGZSlpFbmvR+v2Na9+0FgLIhSAdQRfeLMd1T2uOotS15rQkQts9rldGEzp2seOtGJHpatF+dJ5m3HZbW3t4+8d7Wo6Phae9+8691WZsiaG643xzq9nZ7BF2FLM45WdWpivnz9XxMm06XYxVAeqS7AzCSCSnRUalazTvJd6l8n4p9YuJ+dS6MVaRFr1sncvLJIkNDdoC9Zo3IiSeGvyfsrgFBKeBBK3d7P6tSscuSxRSYuPvab2X8Z5/NLx1dRdvMelqRaXfpgBomTFcDQLo7gDpgWiAXJs5ibUmlHWELq28Vo3cmrqDtBOdOMKsiLfqKK6pHxa+4ovZ7gkZ6/crQ3Bw8wuw3Kj80ZP9f5YJpPT3x93XQyvgLF9rTDPJIR1fxmVkuQmfSXTrKQKd6rafFDYF6QZAOABrJ6kI7y4s4FZ+tsnxZXzwHdSikTYtOuu/D0pPdZerosBcACxphi3PLviScenNWrXeei7Kvg8q2ebP977x59r86T4HJOog2df68aXTrUKRzBigngnQA0EgWF9pZXsSp+GxV5cvr4jmoQyHtXN60+95vUTUnaO3osEeeg+6B7QhLk03aDp0y+X13nH3d3T0ejLvfv3WrvW0dHXqn+fb1Va8RkEUQXaY1O3Sl26g1nTNAORGkA4BGRkbUX2hneRGn4rNVlS+Pi+coHQpp6jXpvg/roOjqGh9xrlUvzu22/KxaFa0sfmXq7PQPxhsbo+/r9nb7Mzo6/F+/eXPxAVOYrq7xW/SJ2NugOohm0bds6TpqTecMUD4sHAeg1LyLPem6MJnfwj9z56ora5afr2LRorSfkef9rKMszpW2naVdVK3W4nG16kXFAmR+i9CNjKS/b7u7rfjR8R7mRd9vXdfznol0W5zPvW/Zz4DeWDgOQN3zjiyuW6fXPEIvv1FglRdb7hG27m7781XVhYrRuzifEXQP77xSPsNGrVSl3Mcpd9joXtJ6yWJ+/dDQeLq6c1u5JO3F3Vbc2+IelXe3kaJHOUWKS0nWbf50Gegyau23bwnQgfJgJB1AKYWN4ukw+uGW9yibbiNBUdUabc/7NkRO/blHr4qq27DvTVMvaUbmwkb3VWaILF5sz0sXEfnjPxaZNMl+3NZmP7d1qx63pYq6H1TWj6nHugmKHrVm3yIvRbf1MokThxKkAyidoKDXS6e02LwuuIpOu00jah3ldUHhDbpWrbLL6JVH3UYJAPO+0FIxhSFKed3tIkhWnQRJBH2/6k4mk491t6z3V9HtIYmy7FvoLe+O73pAujuAuuaXWtrcrOfqt05gkVcKpakrAcdZsMm7BkFWvFMUli4trm6jTBfIohxh9Tt3bniZgt4bJ0U76sJdzus6O4tP/Q7aD6oXPjT1WHdknapv8lQA0/ctzKDbnQzqDUE6gFLyBr1r1ugxj9DhvUAUyW9VZl3mVMYR96I06wvwoE6DVauKqVunHHldpIfVr/d3fX3R3ysismRJ9AvDqMGJ01EXdZX7vGW1ariJx7oj6wAh7PN1WMegFpP3LfSn650M6gnp7gBKrejV3YO+T4f5hCrqIs/6jJN6l0f9hn1HXqu7F5WOGLbttere/fvGRpH58+3f9/baAfrGjRO/LyyNd906kZNPthemmzRJZMYMkRdfrJ6T7twnPs7n5i3LNmtaSnfW6dxBn79hg50RY1J6r2n7FubQ4TqlbEh3B4D/47140WGkUZce6jR1UUSqaNQV4POq37CRrKR1G7deVY82RqmjsPqtVffex6Oj9uOenur7uTuijJRfcUX15+2xh91G+vrsn+Hh8aBL5/Rgd3uaN0/tyKhO2xlF1uncQZ+/dKl56b2m7VuYg2yNYhGkA0AGwoKnMswnLHKuWpR6Slq/3iA1LGhVces5rzj1qrIzIk7nQKUyPkrtaGsbv4tCWN07j73+4i/8y14rWA2qA295RfS/4HTK5Iz6u9tCPcp6f3k/f9UqPTpPAV1k8TcO0RGkA0itTBcxKrYlSvCke8AQRodMAL/vcgeag4Mic+bYz0epX2+Qum5dvKBVhbj1qrKzR2WnS622vWrVxPds3GgHp+5t6eiwtz/swjBOHZhwwenOJjBlJDcrWe8v9+d3d9uj6G4mdp4CWeAYKAZBOmAAXYPgKKNvupbdS2X6dpTAodbK10F0qE/VmQBxtilsP7kXHNuxQ6SlJXr9eoPUk0/OP1MgSb2q6OyJ2zkwMjJ+X3LH1q3jr6/Vtjs7/bdz9erqbVm9Olr5/eqg1u3YdFRk51cW36HqM7PeX5WKf9aCaZ2nAMqFIB3QRK2RQR1vERM2+qZ72b1Up28HBU+1Vr4O0turx+2jHCqCwyRtxG8/OXWzcWN42nMQv+BoaCjfYCnprfhUjDb6dQ64R7Xd5Qt6fWen3Zajtm2/7Uy6Ld4R0a4ufY6TKJy5/Ko6v1R1eiVl2rk/6Phev17PbAsAdcKqM/39/ZaIWP39/UUXBbAsy7I2bbKszk7LErH/3bRp/HednZZVqdi/q1Tsx7oYHrbL5f0ZHrZ/r3PZvWptS9rPdktSL5s2WVZz83i5dKrPNHUUty6C9lNHx/jnJK2jtrbq90+apKb91qqfoONfRduLw10Op611dlrWAw/4l8+v3EnaturtNOm8s2lTdbtrawuu76ifF/e9WdSXSfvAYWKZAZgnThzKLdiAggXd4iLrW9CoYHLZvfK41UjSenFGieO+T2dJ68K7n+bN86+bjo7q9Ola5s6tTuGeNcteJTzprZii3hpNt1vcdHbac6Kd8lQq1SO93vI5z+twzOtShqjftWDBxGyPzs7xc2jcMi9YILJpk73CfZS2lEV96bAPkijqVobIFreng264BRtgiLA5iCasAB6UmmtC2b3yWMgtSb2MjAQHoaruF6xalM9M2ka8+2n1av9U7VoLjnnL651j/eKLdrpr0jTyKNMn4sxBjrOfku5Tp63FSfuvtYp7nsd8kWWIm+IdNB3Dff6Pw7mN3eho9efXmpuvur50aAdJmLCoIKIzbcoF4IcgHShQrQsa3VcAD7uw0b3sXnldpMWtF6dNNLrO1s3N0RfVCqLDXNQkbcRvP/kF7m5hgUpvr8ghh1Q/5z4OkwQXUYPvKAFNnDpNu0/9ytPcPLEODjnE/7N1OOaLKkPcNS2CbkWXNKD1rkzu/qyw9q9q4UHVn1kU3TsTEE2RtwgFlMk8+V4zzEmHbqLMI8x7fqpKJpc9S3Hqxd1GOjrizVMNotNc1KRtxPs+7+Mox5a7zM5P3LnAfvzqwm87a5UxTp2q2Kfe8rjnSEed76/DMZ9nGZKuaeE3Jz1Juwv6/vvvjz5HPUl91Wq7OrQD1J8s15gB0mJOegjmpENXus6d0rVc9UjVvogybzTud+U5F1XVfO8sy+wuY1ub/dzWrcHl9avvOOVTvS3u8pg6z1jF8RL1M9KsLeCMRKcpq9/3i2S73oFu6ykADtomdMWcdMBAOlzsutMWmdOlH1VtJCzNOul+z3Muqqr53kFlDErn9vuOIO60/JYW+77tYeX1q6c4dRr22iRz1N3fYdo8YxXnrjymbjiSTqsI+/5Vq7K953qR93QHajF5ygXgIEgH4HtBypyucgu6iEmz3/O4MEo639vhDcD9RrVrbXfcAC5NMBOnTr2vXblSXUdb3H1bZLCm4twV9zPyXnjMW7/e7+/szLZjxbSOG9QXFgJEGZDuDmgo7xTzqLe10j29FfElTWsOa6NBv1PVrqOmMrpTzh0q0t7jplKqSL2MU3fOa+N8b9TPr/W6om9lpSI1X+f0/jj1m/W+KHpfA4BpSHcHDFVEirnfyOTGjdW3+GKUpLzipjVHaaPedqK6XUcd1W1vt2+j5uZu7+65wFFHBZOk+cYZhQ76nDjHnpPiHqWccfdNrXKEjUDnMbquYoRX51HiOCP8fqOJKvcBo5UAkB2CdEAjRaSYB12Qrl7NnC4d5J02XCug7OoS2bTJ/n/UNqq6XccJDvzad1ubnfbuDkyjBtJJArgo5VXdkRG1nEuWqNs3QR0DPT35dj6qmHah45zWpPPA06w1EYUOnRcAUDakuwOaKDLFMixtkdXdi5FlKmmUfer3GifY8gprozqkDnvrcnDQXsjNLw08St1ksW+yWI04rJy9vXaArnpaSxGrjAfJc3V31d8bJGk7Sbv6PH8DACA90t0BAxWZYhk20sfFWTGyyKqIM5rmt9+XLp34XK022tcn0tw8/rixUX27rjWS6G7f69fbt0ILGo2MUq60ab7e8ma1UnZYObu6RDZvrn69inNO3quM+1FxSzNHnM/IY7pSkhH+pO2LO3wAQHEI0gGNFJ1imXVAXuSKzybdGiiroC1Jqrq3TF6rVtX+Tne5m5rStes0twl0bnWlojMsyehiUHmz7qDzW/TPrz3Nmxe8b6K2vbxXGXcrOqjMY7pSkg6ipO1Llzt8mHTuBgBVCNIBjeiyEI/qi6IiL56LvnBPIougzZkbPDpqP44b+AeVqbMz+D1+3zE0JDJ3bvw2pvI2gWk6w9K0p7Dy5tlB55fd0NFh7yu/29El2V53W81r24oKKp1FCJN2rKW9j30USW6hV/R90E08dwOAKsxJBzAmq3nQWcy3NeG701C9LxYsmDgS3tkZry5qlclvdNlb/3PmiLS0xN+uLG4TmGQ0vFZ7Crv9XJS5+XnM/3Vvg4gdsK9f778fVB4/WW5bEWsfxFnrIMr787iFWZx9UPS5s7PTnpJh2rkbAILEiUMJ0gGMyeKiTNV9i5NcaOuwaFlSzjarWvzKrx6cdOSkZXPUWqAsTSATVv6Ojnwv4sPaU19f7YCr6KBHJN4xYcLx426Lquo36jGXtgNKh/YQpqj7oKtY1JDF7gDoiIXjAMSWVXpjmtTttOmOOt/vOIh3m/v60n9mklT1Wp/nFpZmHGfRtrB7hOtwm8Cw9hQl1broNSdE4h0TOh8/7uOkszPebfSifGat841f29261W7jUaYr6ZBOXktR068WL54YoEdte6amyOu03wFowqoz/f39lohY/f39RRcF0E5np2VVKpYlYv/b2anmczdtsj9LxP5306b8ypP0u4vi3eaODjWfm1U9DA/bn+n9GR72f73fPo1StrDXBH1XFvzKEbcO8iyvnzhtQdfjp7PTshobx+u6uXm8bEnrN+75Ju35KavzbZCi210UQcdSR0e0tpd3naal6/EFIBtx4lDS3QGMyTq9MU4KoupUWxPSH8PSut2jxmm/Q3U9xEnbdbcxZ7ucUego79dlP3rLoXvqsp+4x6MO9S4Sfpz43YEgzWeGnW/Sni/zSicvKm09iTTnfROmZ3iZeN5AbTqdL6EX0t0BJJJ1emOcP1qqU21N+IMZtI2bN6tbqTqLeoibZjw4aP+7caPIRz4SL+1Xl/3oLYcOqexxxT0edVGp2AG518aNydOGk5xv0p4v80on1+VWalFUKiJtbdXPtbVFa386T8/wY8KUB8Rj6nQL6IkgHcAEulzURAl8dL2gSVqu7m575XLvZ+l88RYn2OjqsufuOrZts1cXN+XCOogut08sWl5tdPVqkUmTqp+LGswFSdrRErSaf1RZtvUiAkHnlnRJrV07vl5GZ6f9OCqTOstM61RAbSZ1iEF/BOkAtBUW+OjYYz0ykr5c7e3jqeCmXbxFSUf1S0ceGhrvmND9wlokPADRfR9lJe/jsb1d5I//WP1npu1o0e28lGcg2NsrMneuve1NTfb/k2x/rf0QdvyZ1llmUqcCwpEZAdUI0gFoz++Csqgea78/uO4L80MOEdm0KX25oqxcbtoffydA8OrstC9msr6wTlpfzvt0C8BE9GkDeR+Pzmrqbu47B6SRJoDVcSQtr0DQmyWzdWv07ffbb979EOf4K7KzLE4bNK1TAcHIjIBqBOkAjFNEj3XYBaL7wnxoSGR0NH25TMsiiKq7u3rOaVvbeNCQ1cVM0vryvm/xYn0CMJ3aQBHHo44XxLqOpKkOBP22JyhLptb212rH7vcGdYAUXb+ONMckgVw5kBkBlQjSARgn6AI9S2EXiEEXoirKpVMWgQrt7fa934eH7Z++vuxHj+LUV1hQEHaP97zp1AaKCpjzviCuta917DhwS1uOsCA0LEsm7HuD2rH3u3p6/DtAOjv16KgS0euYRDHIjIBKBOmAQXQZMdCB+wJ9zhx7xfCsLtbCRsj8Lsybm5OVK8r+1XW0Lq5KJZ/gJWp9RQkKREQaG8fLX1QApmMbUBUw65gqHGeEtMwjabWC0LAsGT9h7dj7XUuX+p9nN28OLk+edDwmURxdOuZgNoJ0wAA6pbbqwn2B3tIismOH/XwWF2u1Rsi8F+br18crV9y5lp2d+QSLRV1gqvzeqKObUYKCtjaR+fPtx0UGYGlGbLPap3ED5lqdJKpThdNsd5wR0rKOpEUJQuNmyYRlRPl916pV4583b549tUiXoLiILAo6AIByI0gHDEAaXbg8RjDCRsiCLsyjlivO/u3ttUfnnXnvc+aoDxaL6hTK6ntrjW4GBSDuoKC93b4VVFAAFjRPNytxR2zz2qe1gpKgcmR1jku73UlHSMs2kuYXhLrvQOF9bdTt92vHQQFvZ+f48eekuus0tSCvLAo67YH60GBZllV0IfI0MDAg06ZNk/7+fmltbS26OEBNIyP2H2Ov4eHyXQgm5VyoOOnnTtAcxnltXHHeF6Vccfdvkm2NK+g7ktZZ2u9VJaz8Yd8d9j4noHSCBufC3Ptc2IiiE/Bl2R6jbF/W+zeoHOvXZ3eOU9Gm8jjmTOBu683N9kh2lPYdhbft+R1X3u+I8poimH6eBJCdOHEoI+mA5nRfjEgHcUYw0o5CxKn3KOWKs3/zmPcY9B1ZL9CUx7aF7buwfRV34auoo8Iq7isdNdXbr257esaPhZaW7Efmgsohks05TlWbipKJYZKk5XWCwY6O8c9QlfXg3ddRpg3oOrUg6xR35r4D9YGRdMAAuo4Y6CbKCEYRoxC1yhVn/7rLL2KPaK1fr7Y9eOvIGWXNus50GCGKMwoWlAXhx29U2Fmgzs1J6VXNr25FqtuSSPaZKEH7OKtznMo2lWS0t0hZlJfMruLpcJ4EkAwj6UDJ6DpioJtaF4lFjULUKlec/evM2XQMD6tfo8B98Z7HAk3OZ61cWT2aunKluu+I8v3O90YVNne21qiwexTZLav26B0NXrXK/7tq7d+0mShBo9JZneOiZtlEqfNaiw1GvbVf1rKc909mV/G85+cy3UEAwDiCdMAgXAilo+MFZtwAce5cO2h2jI6qD+zcAZOKBZqiBnyXXFLdGXDFFem2oxYVCzD5BYFxpjl4ZdUevUGwtzPBW66gMqQN9LzlmDt34verVCv4T9oGonb4FbHIl98+UtlBWebbzJnAqfOODpGNG6v3N4DyIEgHUFd0ucBMcvHe2ytyyCHVz2XZ0eB8ZtI6q7WN7ovLTZtEtm7NN8tBxciiXxDovg1f2Khw3PtKq+BuJ+792txs/+uMsvtRGej19eUbvKrudIja4Zf3nTnymPdPZlfxurr0uUc8gGwwJx1AXcpjJeswSeYVeueji+Q7FzZundVaUdxvbqt7lfEs51pmNbc2ybzfNKu7q+DUd0+PfX/4sLKrmg+rw7zatG2g1r4eGrIX5Ev6+WGS3KlA9zn0iIZ1AQBzMScdQO5MW1226BT3KCOS7sdBr1G9aFyYuCnuYdsYNJLnPM46y6FSGR89djQ3p28XSUZOncX5iuJ899KltcuuIhMlSfvPQtrpL0Ejyk4GSUtLdZtSkfUSJQMn73n/yJeO07YAqEeQDiBQlIvkIuZcmq7WRZZfnZp2YRalvH4jeSMj9lzLrIOIkZHquf0i1QvkJf3MJOngOnRwRS173EDPb9uStP+onx3XqlXpOx3CUtzdo5sqOp6idALV2ke6njMQnS7TtgBkhyAdyulwwYl04gTeec+5LIuwi6ygOjXtwqxWeZ25224jI/ZiSLqPoqr4TJ06uOKWvVY91dq2sJX8ve1/yZJ4nx2F8xkLFtiPN2xQk5Xi7dwYHbU7fwYH03c8xe0EIhgvL7IigPIrPEjfuXOnLFu2TPbee2+ZMmWKLFy4UH7+85+Hvuexxx6TP/mTP5GWlhaZO3eu3HnnnfkUFqF0uuBEOlED76JuaVYGQRdZYXUa5cJMp7qfO7d2eYvMEMii0yPOZ+rWwaWyPmpt2xVX+K/k79f+N26024TKW4l5P+Pww9X87Qpqz83N/sdmnOPVtGwaZI99D5RXoUH6a6+9JosWLZJJkybJunXrpKenR2688UbZa6+9At+zfft2Wbx4sXzwgx+UZ555Rj772c/KueeeKw899FCOJYcf3S44kUycwFvFRaNOQWURat0Cq1Kx07/dr/OrX506ybxl6esLf31RGQJRR6PitNE4n6lbB5eq0bla2xb2OOgcsnmzuluJ+X2GM/VBxd8ub3teuXLisZn0eM3yWNHtXKxbecqO+gY0YxXo85//vPWBD3wg1nv+5m/+xlqwYEHVc6eddpp1wgknRHp/f3+/JSJWf39/rO9FuOFhyxKZ+DM8XHTJkERnp2VVKvY+rFTsx0E2bbJ/L2L/u2lTtO9I+r564K6b5uZodRRnn2UtaVl0O19EaaPuMsctv077TLVa2xb2+02bLKujI/hviop6c39GVn+7nM/wK6/fc4OD8T/b+/8kvO18w4Z0n5cWfxvylXd963aeB/IUJw4tdCT9u9/9rhxxxBGydOlS2WeffeTwww+X22+/PfQ9P/nJT+T444+veu6EE06Qn/zkJ76vHxwclIGBgaofqEcaXrnEGa1JOvqmKvOijL3/Tp12dIxvn9/cXIdOo7JpyqLb+SKsjbpHQufOtX90GhV1izvKrEKtbQv7fXu73WbcGSTuvykq6s17j/jGxonfk5ZzO0G/48HvuZYW+2fdumifrSp7xt3Oe3rG5+oXlY1DVl6+8qpvnbK9ACPk0GkQqKWlxWppabGuuuoq65e//KX1L//yL9bkyZOtO++8M/A9Bx10kHX99ddXPbd27VpLRKxdu3ZNeP2Xv/xlS0Qm/DCSrh693+WTVY+3isyLsre3oDrq6PDfVp1GZXUqS5ig9jY8XLuNBo3EVir2PlJRjrTiHCNZHU+1ti3s97XKpGI0eXg4+3NJrZF0709zc/LPjSuonTc2FnPckpWXrzzr25S/C3mhTdenOCPphQbpkyZNso466qiq5y655BLrfe97X+B74gbpb7/9ttXf3z/28+KLLxKkZ4wTD6JI+we7Hv7g+13IB22rTp0WOpXF4T4vBZXP+3xbm38bC7qwjdKZkqc4x4jOx1OaQF7V96ThV0b3c34/tVLfVQZXYR0GRfw917ktllEe9U3nyzgd/z4iP8aku8+cOVM6Ozurnuvo6JAXXngh8D0zZsyQ3/72t1XP/fa3v5XW1laZMmXKhNe3tLRIa2tr1Q+ypVvKKvSUJmVVp/TuLHV3i8ybV/2cqvtXZ0mnsvilWAald3qfF/Fvo36L+Xk5C52llbRNxzlGdD+ewupZZapuVn+7/I4H93PNzdWvb24efy7s9mqqppi5z8VBn58n0241abo86pspkeOYzoGoCg3SFy1aJL2eSSmbN2+W2bNnB77nqKOOku9///tVzz3yyCNy1FFHZVJGANlIE8jF+YOvS6CRRK25uX50uujRoSx+99z2C0iHhiY+v3Wrfe9sdxt1gv6NG8e3r61N5MADq783baAbNH8zyuf5rZIe1m5MvYDWvXPBK6ju16wZD8qbm+3HUebvqgqunHPxhg32fk/7eWnp1MlXD/KqbzpfzDtnoWA5jOwHeuqpp6ympibruuuus7Zs2WJ961vfsqZOnWrdfffdY6+58sorrU9+8pNjj7dt22ZNnTrV+uu//mtr48aN1te+9jWrUqlYDz74YKTvZHV3oBxqpYyVKaUsz21JM4dYN2Hz+v3SO6OkfXpf455/HvS5SXi/p62tdhvwtpMHHlAzJz3OquN5K1NqtLue42yX6mPSpGMc5qn39lWmcxbiM2ZOumVZ1v33328dfPDBVktLizV//nzrtttuq/r92WefbR177LFVz/3whz+0DjvsMKu5udk68MADrTvuuCPy9xGkA+US9Ae/jH8Is7y4KWunh187iDon3W+hsrB5larqKGwxrzgdCO459HG+2/HAA+O3AGxuth/rxoR26SxEGOf1zN8FysmEcxayEycObbAsy4oz8n722WfLpz/9aTnmmGOyGNjP3MDAgEybNk36+/uZnw6U1MiInSbqNTysNoXXSSvO+71ZmDvXTu92tLWJ9PWNP3ZSbp1yOymSunPm/PX02Km87pTLoH0Qtm+i1IOKfev9Hr90SHd7zqLNt7TY0wAczc0ig4PJPitruh1PIvb+W7x4/LhqaxNZuzZaOrGpxxuAaHQ8ZyF7ceLQ2HPS+/v75fjjj5eDDjpIrr/+etm5c2figgJAFrKeY5vmfq9J35vlnDVn/rXb1q3B8+ZMmkcXNt8yybz+oHmV7rpQ0c6839PWFn4vb9VtfmioOkAPei6OLNuLjhe7XV3Vx9XWrdEXiUo7f9eEYxOoZzqes6CX2EH6mjVrZOfOnXLBBRfIf/zHf8icOXPkxBNPlP/6r/+Sd955J4syAkBsWS5Sk2Z11rjvTdMhkJZzoV/UwmIqAw1VZfUG/SLZ7B/39zhtd3TU/nfOHP/2rLLNu1cYD3suiiLbcFGcjiyvqJ1bSRfz0q2u6SwAgGRip7t7/fKXv5Q77rhD/vVf/1V23313WbZsmVx44YVy0EEHqSqjUqS7A/VFdUpZmrTiJO/NK+3Vm+4+aZLIO++Mp4iLBKeNqxaWoq6bPPZP3O9Q1ebXrRM5+WR79NxZdfzEE+N/Th51lHabs0g9XbBgYqDe2Zlt2rouafImHcMAkJdM093dXn75ZXnkkUfkkUcekUqlIh/5yEfk2Weflc7OTrn55pvTfDQAKKH6wjvNqHLc9+aZZr52rX2rNxE7IHNGbZ2L7Txvi2TKfWTz2D9JvkNVmz/xRHsOuvOTJEDPuo7ijBz7fWeWI8/d3fY0BUdbW7a3nSpyWor3O0w5hvNCRgGAuGIH6e+884585zvfkY9+9KMye/ZsWbVqlXz2s5+Vl156Sb75zW/Ko48+Kv/5n/8pK1asyKK8AOqEzhc1adKK47w3KIg/5JDawUSc+nMuojduFJk/3x45DbrQj5ItEIf39bUCDZ3aRR7TAPr6qlPMGxvzv4d5khR3R9Z1FCUYDAvE0waTYe2xvd3ef8PD9k9fX7LOrahtvohpKX51a/IaFqrpNv0AgDliB+kzZ86U8847T2bPni1PPfWU/PznP5e//Mu/rBqy/+AHPyh77rmnynICqBMmXNSkGVWO+16/NNGeHnvVaD9J6s8dqGzZYgdlcS/0435v0OuDAo2+vvjblUdQEKfTJUl5urqq39fUlO1orJuq+stqfYiowWBQIJ4mmIzT3iuVZIFykmM5y7U4/PjVbVFrWOiIjAIAScWek37XXXfJ0qVLZfLkyVmVKVPMSQf0psucSp3EmcueZP6y32c3N8ebixz3e8Ne7zef1bnYjfL5RcyHDZvTnLQ8ed1K0Cur+stq3ndYu6hVh0nPNzquReCWx+2dwuq2r4856UUdvwD0FScOTb1wnGkI0gF9cVHjL2q9JK0/bzDg3Jc7baAf9L1xtscpS5zPjxrc5HWfWr/yrF8f7buL6LQyqaMsSodC3A6hWsFkHucpU86FUTpJdCpv3kw6lgBkL7eF4wBApUqleqElEftxPV/kiUSvl6Rppt3dIvPm2f+fNy98TnpQ+eJ8b9TXB/0+7POjpDAnSSNOmvodVJ6o3513+nLSFHDVi+VFFWX6SNi97ZNMXckjnduUlPFa7VO38uYt7+MXQHkQpAOAAdautS/SRex/1671f13ci0L3onEdHSKrV9cODvyCqLjfm9XrowQ3ceaJpl0joVKx69UvWNm0qfYc1TxX1ReJHxymXV096Wf5lTtIlHvbxw0m8wi+igzwonaU5N0+TUP9AEiKdHcA2jAlxbNIUdNHo77OLx3TmQPuTQEOSg12f1fc9NYsXh9WTpFsUudrlcOZ4+9Ht/YdJwU8Sv3U+jznvXmlBgd9T5LU7LzmfufVPri/OYpW71MkUG7MSQ9BkA7ojTl8+anVKeK9WPLumzlz7OBz40b9Lujdt4zzBh6DgyI7dkSbs56m08hdX42N4/eed+vosMuVB9UdIlHrJ+iYdu+X+fPtzIKwz1Jx8R5U5o4OPdtx3jj/oih0EKEeMCcdgLGYw5efWnPdvSnu3rnKW7fagY1ItNTtPLhTpp37yXvT20XUpc4H8daXE6C739vcLPJf/xVv+5JImkZeazujrJUQNse9q2s8MHf+bWwc/2ynrlXeltFvnzY3i2zebD+u59tkpbklXT3eAx1qcbs6oBpBOpACFybqFT2Hj33qr1aAOjoa/YJeNfd3ei/0lizx71xYvz5aG/N2Gq1aFa1MfsFgW9v4Zx14oMisWXbQmTbwrKXIi9+gjg4Re794swucUW5354nq8rv3aZKFEuNKs+hgnpJ0SqnsQEH9StNBBJQVQTqQABcm2ct7TloW+1T3CwwnYHXbujW43LXSD4MWSMuKd5/19Ey80HMWxPMLPKKU1ek0ci84FrV9eAP8tWvHO6AmT7ZT7p3tyCpwzvLiN2r78cuOcRbU8xoasqcjOJ0nWZTf3RHopNZmsYq63zklSrmL/PsSN5Op3kY/dT+nm8qUuxkAubLqTH9/vyUiVn9/f9FFgcE6Oy2rUrEsEfvfzs6iS4S0VO7TTZvs94vY/27apK6cQYaHk70vyXYPD1e/T8Sympvz2U43v7L7Padif6RpH8PD1ftneHi83tw/Sfeh3/epKnstcT7bW65Nm+x242x/0PuzPt9mdby6y93YOL6ttb5Dh78vUdpi1u1YJ0Wc0+sNdYx6ECcOZSQdiIm0rPJRvU/zHF1KO+qWZA2ASqX6fR0ddvp4nlMTgvbZqlUTtyftFIo07aO3154b773dVxajRkFtIct1HuJ8tnf72tvtduOMqAe9P2754x63WUyx8VuTwFndP+ycoMvflyhtsZ5GP+stY6AIRU91A3TD6u5AAqyAWz6q9mnet5GbO7c65bitTaSvL/7nJL2NWpG3ywnbZ6rLlbR9RFnZXNVKxrXK6FcnUVZwV3nLvzTvd6/Y7ydNnWbRjltagm+7J5LNbf/yVg8rcnNrUACqsLo7kDFWIC8fVfs0z9GluHPKwyRdRTvJfaVVCdtnqus7yWhu2Kio6lGjKCOw7jqpta/jtoWg+o66v2vtL7+MBK8ko51Zzf8eGQkO0GudE0z6+1IPo5/1lDEAQB+MpAMpFDmKiGyo2KdZjy45ZVQ9wpPFCJ7zWVnWSZ7HYa3v8m7n22+LPP98PqOicTILau3rtG1B9f6OkiWQ5FjIctTa/dmNjXb5hoai1wd/X/RRDxkDALIXJw4lSAeAGoIullWlCkfld6G4eHF4unucdGWVAb+3rIOD9mrmRaXw5hXw+K3i3dwcLzhLyq99iEx8bu7c8H2toi2oDH6jlifud2aVxhzWMTV3LoG3yeg4AZAG6e4AoEBQKmzUFFnVF3N+6bxr147fd7qz034cp4yOvj47mHSXPU1Kp7es7jT8PBfDyvN2VkHbNTxsL46WdTqwX+qxX5uplb7rPG5s9P99LaoXP4uabhw3TVx1GrO3rY2MTNwfRQd4LHCaTtH7D0D9YCQdAAIEjcwVsbBTrVG/uOnMXgsWiGzaZK9CLWIH7ElXbA8qa2Oj/fl5jqTnva/C7oed90JTYW2mry84fbe3tzpDo63N7vyJ0xZU13ucdOM4o50q05j99n3eqdFB2066NgAUj3T3EATpQDlknXYYFOAMDtqrNnvlEYBFDXzipvFmkfbrLeucOXa9uYOEAw6oHr1XrYhVmd3BkKOoFbpHRuzF1uKu+K4iwM4qKMzquE97R4OgtpbXvq9V3yatGA8AZUW6OwCjxEnBzCt9OSgVtrm5uJV+o6bzBpXdzbvqt+pt8pZ17drx1N+VK+3gsaXF/lm3Lvn3hEmyXWnTgZ3gZ8OG8TrPe4Vu9zEyOGh3kASVwy/YVJGqntWq36qOsyT72e/c43yOd7qI+3vymNoRtrK9Lvdej0rXcgFAngjSARQmScCd5DZLSQUFxUXdIskb+MydG/xadxnnzLGDtaYm+z3OwmHuOle5TX63GHPKWqmInHzy+O2phobsx1mJul2qO386O4u7NZX7GNmxw+4IiVoO1R02zvvyDLzCvsu7n9eti77fvece9y3hFi/2/948OvFqBeFF3EJMVScIANQtq8709/dbImL19/cXXRSg7nV2WlalYlki9r+dneGvHx62X+v9GR7OtpxBn5/19wbZtMmuKxH7302bgl87PFxdz+4fvzpPs01+5fI+t369/z4cHEz+vVHU2q64bVFXKo6ROO0rz89S8V1tbdX1MmlStP0eVK8iltXYGPy7rLfZUav95rUf0nxPWY5BAAgSJw5lTjqAQuh4X2NTxKmDoHp2UzVH269cIhOf6+sbH0kXsdOEBwfTf39SRcxdz5KqY0TF/O88j9ek91L3CtrvYYsCilQv4Njebi+8mFf7iboGQNZreSTd32U7BgHAD3PSAWgvaQpmUanmuog7v7RWvba1qbkIDiqX33Pf+c74/N3mZpE1a9J/fxpFpANnSdUxknb785wLnea7ou73sMXvJk2aWOd5tp+oawAUmXYfpmzHIACkRZCOUCzggixFDSbc7TCrBalMkeRi1l3PkyblW66OjonPffSj9si583PiidmUKY4ydf7ocozkEXjFmXddqdidUm6zZkXf7069+mV9vPOOPXKuQ50XJe3+TnIMco0CoKwI0uGLBVyQh1rBRFg7rOcRlrgXs+7g4p13qn+3dau6C92VK8f3S2OjyJtvimzcOP6ct6xxbr+mooxhn6FLYKuSDsdIVp0ffueGKN+1du34qvudnSKPPBJ/v4fd4UGHOi9Smv0d5xjkGgVA2TEnHb6Y9wsdpG2HOtxTOUtJypHlsR00Z7dSEZk3r/re4VGpuN92Vvfszosu7c1P1LIlfV3Q+8La8dBQ7Q6gtHVqepvKmq5z37Om87EKoHjMSUcqpt1TFeWUph1mNcqi2+hNkovBrEY2w/bPyIg9op7kHKLilnt53rZPJd3am1vcstVqq3FujRa2/sGCBfYt52qVKW0gVcbMC5V0nfueFZ2PVQBmYiQdvnTtpUZ9SdoOs2q/RRwXJmUDhI2kJ6krFSs+m7xqtM7nYdVl836es1J60OdHvZOALvWlK1NHfnU7NnQrDwA9MZKO1Mq0iBLMlXQhoTijLFFHX5KO3iQd3cl6ZCaLC3P3/mprG1+kK+k5RMXCY7qtGh21PQwN6Tda6FAxkum+BZ/f5w0NhX++99ywapW+9aUj00d+dbpG0XFkH4D5CNLhi1Q+6CBJO4walCVJ140T7KW9CDYxRdu9v/r67J+055AkdwBI+hlZitoenNe1tNjzqnXpXHBL0/Gxbp29bc7PunX+nxe27SMjE88NnZ3pOmPqLaDS/fxSa3/odI2iW0cggHIgSEco/shAB3HbYZSgLMlFapxgL8rnh43umzwy473tVZAo25PmDgBRPyMP3vawZEnt17lT8oseLfRK2vFx8snjo+hDQ/Zjv89bs2bi5/vta3f7SlIm00eUk9D5/KJ6rYO86NARCKBcmJMOZMTUuX5lErQP0s5TrrVva31+lJWhyzzHUeXK2CbUU1B76OgQWb16fNuDXjc4GO92dWnFOXfFee3QkD167uXevrDV3aPu6zhl0vUOElnT9bjRtVxRmdoegDIw4fhjTjpQoHocmdFV0Mk6bXpirdfV+vwoo+xFjMzkNZKmKtVW5xFBt6D2tXlz9bYHtZu8AvQk56646wN4t6W5ufo57+e5U9yj7us4HQy63UEiLzqO/JpyPIfRPUAAysj083EQgnRAMd3n+umi6AuvrC9Sgz4/6oVoninaef6BU3khbtJc0O5u+17xblEWRAtrl2mOIb/31jp3qVgEccYMkUmT7Oebm+209iiy2NdpPtP087wOU0C8TDqeAejD9PNxEIJ0QKEyjARkTZcezzQXqWnmUse9EM3jAjXPP3CqL8R1HBH0095unws6OsK3PUq7jHoM+bXToPeGrSavchHEnTtFDjrITnEfHBQ58cTon5PFvs7jDhI60y0ALnMGEQD1ynQ+9iJIBxRiJKA23Xo84+wbVenAOgWWRfyBU7n9Oo4IhnHPQQ/b9rB2WesYCmun3vcuXly9mnxj4/j3O+euNMdsUPtKck7MYl8nvYNErc4WJFPWDCIA2SjzdTcLxwGKqVwUKw0dF9BIu2Bb0VQvaqTLPkqyXSrKrsv2p5VkO5Jue5RjKGh/Br23Uhl/baVij6o75665c9Mfs6YvBubmPr83N1fXVZ7n+bIcO0UqU7sE6pku191RsHAcUKCiR/Z0Hh3Io8czqxHgLEacdbnIjjOyrbJ96bL9SaWpi6TbXusYCmun3tc6o+bu1w4N2WnozrlLxTGrU+ZILbWOZ3dWwciIPaKe53le5/O7SbLOICpDqi1giqKvu7NCkA5kpKgARLd0cq+sLtizvngtc0pVnD9wurevPBVVF2HHUK126n7v/PkibW21V5NPe8yacAEV5fzhF9ht3JhvQMbxp0ZW53M6UYDilOF6zI10d6BETEonV52umUfqokkpVVkwqX35UdnmdKiLoO2J0k6d98Zp02VNsR4ZETnkkGjnjyJTpHVoc2WSxfmcFHoAYeLEoQTpQMnU40VC3hevRQQrugRIJravWhfjSes2bO63DvsqTjl0KXOe3O3Cj9/5Q1Vgp7rNIZqhoYmZIqraftGdKPV4DAOmYU46UMdMmv+pSt6p6HleCOmWPmli+wpKEU5bt966WLlSr30Vp53W48W9u124hZ0/0qbuq25zJhx/Oli3zr6DgfOzbt3471S1/aKmROn2NwKAGoykAyVVb73qZU1F13XkzJT2FTa6FTXFOcp3VCr67itMFNQuRNKfP8KODVVtxJTjTxctLfYouqO52V4gUbUi/g5x3gHMQbp7CIJ0oNzKdPFadPpklvLcT34XsevXh9et89qo5TR1X0XZvjIdU25B7SLptkaZVmFiGzFBWBsdGrKDdK/BwYmp73mUR/X30KYAc5DuDqBuqZpbqIMyrihfRGqmX4pwUN329Y2Xr6UlejlN2lcjI9H2Q9nTaIPaRVK1Vl43qY2YIkobbW6eGIz7PadSXvuUNgWUF0E6APwfHYOSss1BLeIWUkHziP3q1l0+Jz02ajl131fu9n3IISKbNo0/77d9Zb/dl8pbw0W977bubUSVvDo6o7bRNWvGg/LmZvtxWURtU7p0PgOIhnR3APg/Os/tK0PKcZrUzCy3353aHjRPWSR6Cqmu+8rdvv24t69sabR57JM45w9d20iQqOXNc052kjbqt7p7WaS5JSOAfJDuDgAxRR0JK0rYBbIuZXQElSdJamZW2Q3uMtYqT61yerdXt+BrZCS8Pfttn+o02qLaaJ7ZMatWRR8l162NBIlbf3lmX0Rpo952V9YAXSS4TcXZJ7r9LQHqGUE6AIiZc/vcF9CdncWn50e5oI+b7qv6or9WGd3lcy7og8qZZwCY5OLZm97e1lbdvmttn4rU7KKnkOQRNDrbuGCB/XjDhvTp87qIG+Dl3dEZ1EaLbne6iLpPqC9AP6S7A8D/MS0tcMECe17x6Kj9uLnZXp26qDKrTvcNSmfdsMHeP1mV0bmA9Vvd3f04j+kRadqkt3xz5tiL4bk/a+7cbKcahNWR6pRvv32VR8p+kdNksp4GErf+iqoLbz3oPHUpb1HqgvoC8kG6OwAkoHIhqaw5IyJOgC5iz7dcsiTfMnjLE3UULUpg4WQzeC1dGr+sUcroHXnu7R0vp3ekqacnn1HDpCPBftu6davdieNu31H3QxJB9d3To3bUzm/fOOXOMjvGbxpBXtNk8hj5TFJ/RS2M5+2c0XnqUt5q7RPqC7qr17ZIkA4AHjqnuDsqFZGOjonPb9xYTICQVUC0atXE55JeQNYqozcgdnd4eH+3dKma7Q3bjjQXzzpM3wgqw9KlalPQ3fvG6QBw2qWqoNFd5+72v3DhxGkEedRzXnO//eovrP3p0NGpQ9vXSa19Qn1BV/U+DYMgHQBcTOqxXb26eiGkogOELEbROjvtn8b/+2uVdhuDyugXEG/caH9X0Kh5nIXCvKJcfKS9eO7uFpk3b7x8K1cWf4/6VavUjtqFzbHt6kofNPrtp66u8dvXbdwo8sIL9lQCZxuzHj3Oc+TTXX/OLQqjtB+V2QpJ1Mut7uLQMQMCCFP224DWwpx0AJD089GLuqWSM+LrBJRZz6OPMk9VdV1ksVaAXxn9blHmzM90yqFqbnXUOaBJt939vo4Ou0PHueApeu60ivmv3s9zr83glnb+ubes8+bZx5pXR4fIs8/mdw4oYg5xnt+p6pg37VZ3RaO+oIuy3QbUEScOJUgHAEl+AarLYnN5XlwVESC4F3PLirvDw2vDBjtNW8V+TnLxEXf/Rg0ui7jgSXPM+L1XZPw5h4p2GbSf5s8fH0l3y7Mu8z7v5H3BzEJm8RFgo2zKeB5g4TgAiCFN+qgu6VhhF2eq02DzTI30W8wtK+3t4yPP3hTzzs7wtOk4dZwkjT3OxXdQ6r7fdhVxUZ8mBd3veHM+z73qv4p2GbSf1qwpZpqJW95zv/Oct8xCZvHU+7xdlFe9T8MgSAcMwQVKbUnrKOkFqO4Xk3Ev3qKWO88AoYhOkBtvrG4LK1eO/87bJpJeIGd58RHUnlev1uuCJ8kie2HHW62OlCT89lN7u71KvrNwY5F1mWfHgMo2G3auYSGzeHTpKAZU02EhyiIRpAOao5e8NhV1lOQCtNbFZJJgXWWAH/XiLWn9ZX3RHLUTRHWnyBVXVH/nFVcEvzbpBXLWFx9BwaXJFzxRgzeV7TKozubOtdtinLpM206L7vxT0X6inmvqfQQtKt07igEV6rWDjiAd0By95LWpqKOkF6B+F5NJgl7VnTFxLt50bWO1grIsOrDi1JuKC+SsLj7C2rPJFzx5BG9++y+ozfX11f68tO1Ut47aNO0n6rnG9A6lvJB1AJQXC8cBGivr6pYq6VJHUVevDlrcJ4sFUqJ8pi71FyRsgaysFpWJ87l+r12/fmLdsaiTWlnUZ5TF2KIeU+6ypW2nZVk8Sfdzjal0WbwUQG0sHAeUBL3ktelSR+4Ud7/R1Z6e4NGwoaFsUhajjDrqUn9BgkbUskzzdNfbvHnho7Xu186ZIzI4WL2PdRsFLZqqNNws2metUd5abc5vX6dtp2VKZ876XFNUnRS9L8g6AMqJIB3QHHPzatOpjoIuRJcunRgAOBf1LS32atGNjf6fkVTUi7fubjsYdd6jYxvzm3ec1QW/UwcdHfaq6O7gze+1Th23tIjs2GE/7+xjXacS5E33zooowXCtNue3ryuVdKvqR2nnRQeJcWRxri6qbenWpnXpWAWgBunugCFIl61Nlzryph+uWmVfxHl1dIhs3jxe7krFHlUPS1lUvY3usnZ0VK8Arrss0zzjphgHpfL6SZveq0s7j8OElO0oZQxqc0H73+noaW6ufWwHCfpOk9OcVbbhotqWCW0agF7ixKEE6QCQkbB56vPm2RfvXoOD1fdgdmRxQT4yMn7v8awuNPMIKFV/R9K5s34X7SLq6tfUoMyUuci9vSJLltjHZa369Wtz3v1fqdj/dx/zPT3Jy6d6rnsZFNW2TGnTAPTCnHQAdU+HFFD3xZo3zXP1av80Vr8AXURt2rQ7TTOr+a55poKqvihOmkrvl8qrMr3XxNT53l67I8iP00GkA6c+N260R79rdYD4tQXvWgZDQ9XH1saN6Y4tb4p7Weaqp1HEmhp+bVq3tTwAmI+RdAClUsRoY5yRXPdro5ZV9aiNewTOragV0nUUNg2g1v72+33a0X7dRu6CtidstNdLp3ZRq70mOcazPgZMP8ZUyfuc79emTcpsAVAcRtIB1K08RxuTjBa7L/SjLuymcrQobMRN1UJOYaN8poz0+S0et25dtP3tt1/SBtK6rMIf1OajrGzupcvob1h7TXOMZ72gpU4LZhYpz9XNg9rs+vUE6ADUYiQdQGnkPdqY50iWytGiqPf2TsP7HXPm2Kuf5zHapWqOeq05xnmPXOowJz2ozUd9vug6VLVdcWS9LoMuCwnqUo6s6Z7BUC/7ATARI+kA6lKeo415zwlVOVrkNwKnuo683yGSfYaDynnwfvvXO8c471Hgou+HHNTmh4aCjwVvO1izRs/RX79jQtUxnnXAVHRAptutyFQJ2s+6ZjCUdT8A9YqRdAClkudoo+4jKrXktfK6SD4ZDqr3hymjwHlKOuLsbWu6jvbFXUFd1+3Ik+nnQa84a4XotO/Lth+AMmIkHYBWyjrauGqVniMqUeVxgekEt1lnOGSR2WDKKHCegkYRa40ueve1TsGNm7dcQdvFqKUty4yiotYqiLquiU5tmNX+gfJhJB1AZvIY1S5iNMO7XatW2f/C5rdP8mgLWY0kmTIKnKeoq7sn/RzdxB1hryeq66LItRd0u4tCHLRJQH+MpAPQQpYrrRc5kuXdrqVL8/tunYXtkzwyHLKaK2rKKHCeguogat1420pPj7qyZYF7lAdTfdzleYcOL13uopCErnPlASTDSDqUMWVEBPnIekSiqFEDk0dasqbLSA7nIv2Zfq9pXdq6n6Lav4rv1eH8qsNdFNLg/Afoi5F05Iq5efCT5YhEkSNZJo+0uKmuK51GF03bF/UmqG1s2pTvqGkaOo5aFv23WMVxp8P5tei7KKTF+Q8oh0KD9GuuuUYaGhqqfubPnx/4+nfeeUdWrFghbW1tMnnyZDn00EPlwQcfzLHE8FNkahr0lmX6cZEXcnlcoGcV3GZ1IV/0PoE5+vpEmpsnPj86ak7auI6BXFn+FuvSAcK5C0CRfJKK8rVgwQJ59NFHxx43+eU5/Z/ly5fL3XffLbfffrvMnz9fHnroIVmyZIk88cQTcvjhh+dRXHg4IyLex6RbQWT8QjaL9tDdPZ6SmPeFXJbblXWqpd+FvIo03d5ekcHB8QBrzhw9Rhezwjkuua4u/0DcSRs3qV6jlDVNW3HqqdbChWX6W5zl+RUATFF4untTU5PMmDFj7OeP/uiPAl971113yRe+8AX5yEc+IgceeKBccMEF8pGPfERuvPHGHEsMN0bPEEUW7UGHkawstivL0bAsU9K7ukR27LD/39go0tKix+iiKk4dFZ1SbLqwNqdL2rgqfm0l6rHW2ysyd6793qYm+//r1gW3vTL+LTa57ACQVuFB+pYtW2TfffeVAw88UD7xiU/ICy+8EPjawcFBmTx5ctVzU6ZMkccffzz0PQMDA1U/UEuX1DTUJxMu5KJemGc9rzurC3lvOU1KW67FG2gtXlyOlOKiBLVBndLGVXF3uG3aJHLIIdE7d7q6RLZuHX+8davIySeHtz3+FgNAeRS6uvu6devkzTfflPb2dnn55Zfl2muvlZ07d8pzzz0ne+yxx4TXn3nmmfKrX/1K1qxZI21tbfL9739fPv7xj8vIyIgMDg76fsc111wj11577YTnWd1dPVLTgGpJUtezXjW6VpmSHsc6r3adhnu7GhvtDggvVvaPp4jVs/P++xS0SrlI7eMj7L1efm2Pv8UAoKc4q7trdQu2119/XWbPni033XSTfPrTn57w+9/97ndy3nnnyf333y8NDQ3S1tYmxx9/vPzbv/2bvPXWW76fOTg4WBXADwwMyKxZswjSAWQuSeCaVwDjvZBP+72m37bIT1CwVKno1RlhalCWR7mLbJe1UtzDOnf87h3f3Gx/lk5tDwAQnbG3YNtzzz1l3rx50tfX5/v76dOny5o1a+QPf/iDPP/887Jp0ybZfffd5cADDwz8zJaWFmltba36AVAfiky3Tpq6ntdce29wkHYufNJy65wS75ea3damT0qx6fPj8+hYKHLFc3eHQHNzvGkm3d12W3O0tYmsWaNP28uSzucEAMiLVkH6m2++KVu3bpWZM2eGvm7y5Mmy3377yfDwsHznO9+Rj3/84zmVEIAJdAheksz/dl+c5p2aq2oufNRy67CPovDO8127tvgFCx1lueVWVrJe46EWd8fV+vXxA+yWFvvfjg673Z14oj5tLwumnBMAIA+FprtfccUVctJJJ8ns2bPlpZdeki9/+cvyzDPPSE9Pj0yfPl3OOuss2W+//eSGG24QEZGf/vSnsnPnTjnssMNk586dcs0118j27dvll7/8pey5556RvjNOmgHMZ2oaKNLRZX501FRbHVLF864zXfZRVLqdS4JS8aPOj9dte7KiWzuLWu9Zl1vH/a/bvkK56NjmUX+MSXf/9a9/LWeccYa0t7fLqaeeKnvvvbc8+eSTMn36dBEReeGFF+Tll18ee/3bb78ty5cvl87OTlmyZInst99+8vjjj0cO0FE/6JEvXlEpi0WPnrlFTQHXYUQ0z5WhddpHUel2cRc3U6NebyGn24rnUTtQsjo+dN3/Jp4TYAZd2zxQi1YLx+WBkfT6QI98cZKMCqvu4TZp/6cdEc2iPHl8b9g+YsQjGvex1tEhsnr1xGPNezwODtr3s1d5bJiwv9KUsYjty+ocpvO5UeeywVwq2pUJ5ziYwZiRdCAL9MgXK86ocFY93HmNnqloU1nduzxNefLgt48Y8YjHqbeODpGNG6uPPYf3eNy6Vd250aT9laRdF7l9WZzDdP/bqFvWA8yXts2bdI5D+TCSjlKiR74YcUeFTZ13qXoOedzPK1OvvntbynTc6pKR4Hc8eu/3nrQNl2l/+dEh26Mes4zKdH5D8dK0eROOF5iFkXTUPXrkixFnVDiPUZ2sLvRUzyGPOnfdtF79KPvS2Uc6jvIl+e4891GtOgu6hdz8+RPLHLcN67i/kggqb9D29fTkewyqPoeZ8LeRAB0qJW3zZTnHwVwE6SilvO41jYnC/iB6bzGmU5p3VFn+4a617TosMBdFkkBVp/aQJtDOcx9FqTO/W8itX1/9OUnasE77K4la+zho+5YuNeMYDMLfRtSbpG3e9HMczEeQjlLjZJo/vz+IQRfEJozqeBX1h9ukXv2kgaou7SFp+YvYR7XqzO94VNWGi9xfaes0yj72bt+qVeYcg7XwtxFJmdjeRZK1eV3+JqE+MScdQOZqzetSPQcx6zmNRd3X3IT5cSpWqy9yTmra8he1j+LWWdo27P6+PPeXimMv7j7WYd0E5mmjaEX93dMBxx9UYU46AG1EGV1U9ccvr/nAQelzWY8wmNCrH2WUtlY9FXkxlHaUuah9FLfOkqaA+h1jee4vvxHwuMdd3H0cNn0g6/1r2joUKC9TpltlgQAdRSBIB5CpPNPD876IcLah6M4B3QQFMqYEHGkCMVP2kSPucVjkhXpQh1+S9tTdLTJvnv3/OPs47/1bz4ER9GHSdCugLEh3B5C5PNLkVKRZJ2VCGnoRvCmCJtWTe4X0osuhyzSBIo8xh7sNucVpT+7zUUeHyOrV1ecjXVJbdahvwGHS+RvQFenuALSSx+gTC7rpx5virnM9OeVwj/Yfckhxo/1xsg5UZChEvV1e0asdB3XwxWlP7tHpzZvHR6fzyvSI2uZ1qG/AYcJ0K6BMCNIB5Cbri8siLiL6+kSam8cfcyHtT9eAwxuYLV6sR3pxnDTnNCnRcQPToi/U3R1+SdpTWGdR1qnlSToBiq5v3enSyVcPTJvKA5iOdHcApZNnuuqCBSKbNomMjtqPm5vt+1BzATORjqsDe1M4/S7680wvdr4/appzUavR65ASHrc9OWX22+b165PXY9S6SJMurEN960THcwkA1EK6O4C6lmdA1dMzHqCLiAwNicydm8/3m0a3kRi/UVURkcb/+8uYdLQ/yeieN82+rS3aKHGaDIU0UxCyOMbi1lvU9uQdwV65cuLodJJ6jDMynna6BwF6NRbUA1B2BOkAkJCuKdy606V+/PZfW5vI/Pn247jpxWnmNHuDDuf7o5QjKCU6yq3udGi/aeeCB2VAOLx1e8UV/sG9Xz3G+dywQFGXui4D3de3AAAVCNIBIAXmjJrNu//Wrk0+2p90dM8v6Ni61U7BjlIO74iySPSgV4f2G7fe3MFYrQA/LKDzBsjueuzutsuR5HODrFxZHaSvXBm+nfBHhweAesCcdABQgDmj8ehWX2nLU9TccFWf5d3+vPZPnHrzm4fsBPhh25qkPqK8J+7ncgsrdZiTDsBEzEkHgJzpFHAWqVbKaV63uYor7f5LO7qnakQ7aSqwU86890+cevOOuC9ZEm1b49Zt1DqM87mkaKul2/oWAKAaQToAYIK4wUPU4K7MCz6lCbT9go4kAVzazoIi9k+UevMLcjduFOnoqL2tcQO6qHUY53N1SdEuW6cAnaMQKV+7BkQI0gGgbkS5kEk6kholuMtyNFGHizQVo3uVSvrR7KSdBUWN9kapt6Agd/Xq6NsaJ6CLU4d5Z0s44uwXXTNYgDRo1ygz5qQDQMnFmb+ZdD5z1HnFKufljoyI9PWVb26qqjrym1dea665zvOmw9pxVnPos/jctJ+ZZD62zvsVSIp2DdPEiUMJ0gEgR0UsmBb1QibN4mdRv0PFgk/uz2hutr+zLBdpaRegCxK13lXsn6zbuG6LDuYtbmCSVZsCikS7holYOA4ANFNUWl6cFOY082ajpvKqSAl3p9YPDZVrMa6s5i4HTUfw1lWa/ZNXG6/nC/AkUxJ0mQ8PqES7RtkRpANADopaMC3uhUzSebNJFufyihJcx+lkMFUWc5f9ArvOzuCAOkkd5tHGTe6AUSFpYKK6TQE6oF2jzEh3B1AKOqfAFp2WlySFOc/6jFs+d7pvY6Ndt0ND5ZmT7lC5D7wp0pVKtGkCUcuQdRsv632xk+zjNHWh83kSSIp2DVOQ7g6gbpiwumvRaXlJUpjzvOCJOwLrDkrmzxdZv76c90tWuQ/cdTZvXu1pAnGPq6zbeNlG6dOct9JMScj6uK73TAcUgwAdZUSQDsBoptx3W4e0PB0vZJLMsfULUrJYgbtM3HXmjMCGBdRJjqus2njWt4YroqNPxXlLp+PZhM5SADAJ6e4AjFV0GnkSpOVNpNNtdOKkEpu8L2vdzizNcRWnXqK+Nss2knf7M/G8VYtOxzAA6Ip0dwB1oeg08iR0LpufPEaUdcgycEQZ4SzDqGFYyrRzHDU2Vj9W2Xbj1qGpo/R+TDxvhSmiDgGg7AjSARhNpwCvTPIMRFXclk2FqMGGKVMsovALDHt7RQYHRUZH7cdz5kQ7ruK0mbh1GLeNRA0QiwqYy3TeKlunAwDogHR3AKFMSek1pZymqNf01VrbXcZUZa+k+z7q+7KswyQrnxe5cnzW5628zotlXX0fAFQi3R1Aaqal9JYlQNJBPaev1hrhLPuoYdJ9H+d9WdZhkiyHIjM5smo3eZ+/dcmGAYCyIEgH4KtMKb0m0CkALnsgGiZKsOG9nZnJqcpeSfd93Pdlke6dtnOpTO27qPN3meoQQDF0uh4qEkE6lOPgMl89j6TmLWjEq+i6LtOc2STCgg2nPjo6RDZurA6IvIrej0kk3fdx3pfFyGs9dy65cf4GYCLTMjizRpAOZTi4yoOL3fy4A7xNm0QWL9bjOCJ9NVxXl8jmzfb//UYqTT4fJt33Sd6n+pxS751LIpy/w9BRAeiLDM5qLBwHZep1oamyYiGg7AUtoNXQIGJZHEe6irLwGefDYtX7QpKcv6tRH4De6mFRVpF4cShBOpSol4OrHtX7xW7WFiywLxzDcBzpJywI53wIXXD+ttFpBuivHo5TVndH7kivKy/2YbZWrQr+HceRvsLSqnU8H5LmW584dzBHHzAF05WqEaRDGQ4uIL7OzokBXXOz/X+OI33Vmn+ty/nQ5LnxKhCIQcdOMxHaJuDFWjjVCNKhDAcXkIw3oFu/nuPIFEEX+rqcD3VdiCfrAEW3zgkCsmLp0mkmol/bBHRTdAeaLpiTDgCaYP4oVNJxbnxeC3jpMreRBcv0osM5Vpe2CSB/LBwXgiAdAIqnw8VyPdAtIMijPDp1TuhW/yiWTm0TQP5YOA4AoCVSPfOlU5pvXgt46TIHmQXL4KVL2wSgP4J0AEBudJ0jXVa6zI0XyTdA0aFzIu+AjODfDDq0TdVoe4B6BOkAgMjSXIwxslgcXUbq8gpQdOmcyGN76yU7pSznCV3apgr10vaAIhCkA4YoywUKzKTiYoxUz/zoer7IO0Apum3lsb1h2Sm6toM4yhoIFt02VSAzCsgOQTqgubJeoMAsqi7GypjqqRNTzhdlCFDiyDLF3S87pafHjHYQhffcs2RJseWBjcwoIFus7g5ojtWBUbQsViRmdfdscL6oP377XKQc7SDo3NPRIbJ6tdmp4mXA+QaIh9XdgZKgpxo6yCJNnQBdPc4X9cmbnbJqVXnaQdC5ZvNmUqt1QGYUkB2CdEBjzOGFLrgY01+ZzxcmBph58c577+wsVzvo7haZN6/6OZM7HsqkTIvgAbohSAc0R3CUHS7wouNizAxlO1+omGNfL8e5OwgvUztob7cD8o6O8nQ8lA37AVCPIB3QHMGReqYsrqUjLsb0VrbzRZoFC3U8zvPqMChbOxCpnoNuescDANTCwnEA6g6L3SAPLI6XTtoFC3U6zp0Ohp4eewTYPdKNeDiuAJiKheMAIACLayFrOo7gmijNHHvdjnPuJ60OATqAekCQDqCulHlxLeiBgEydpHOrdTrOdeswAADojyAdQN0p06JK0AsBmVpp5lbrcpxXKiJtbdXPtbXRMQgACOYz2wsAys258GduI7LQ2TlxLjTtLJ0k9cdxDgAwFSPpADKj++ghF+56qNVOdG9HItXz0AcHRebMsZ8nU6N4RR/nIyMiW7dWP7d1qxntGgBQDIJ0AMqxcBaiqNVOTGpHixfbae0i4wFZUbe/IvjTi07z4wEAZiBIB+pMHhfwLJyFKGq1E1PaUdBIqfv3eTCpU0NXWe0rXebHAwDMQJAO1Im8LuBZOAtR1GonZWhHeQfNpnRq6ChsX6loc0kXwDOpvQMA1CFIB+pEXhfwpHYiilrtxKR2FLR699Kl+QXNRXZqlCGQ9Ds/ZtHJErX9khUBAPWNIB2oA3lfwJPaiShqtROT2tHatXYngoj973e/m+8xV0SnRlkCyaDz45IlxWUmkBUBAPWtwbIsq+hC5GlgYECmTZsm/f390traWnRxgNw4F9Hu20Jt2JDtd3LrI0RRq52Y1I7cZc37mHOCuZ4eO0B3d3JkoYhzSla82zJvnsjGjRNfNzycfVscGbE7Por4bgBAduLEoYykA3WiiFFJLigRRa12YlI7cpc172POb95zViP3ZVgzwM27r1avLm66hUlTPQAA2SBIB+pE0oWLAJMVGTQWdcxVKtmnopctkPTbV0VOtzBpqgcAQD2CdKDOmHoRjWyZOgIaRKf50kUcc3nMaS5jIOneV0V2bNKpCgD1jSAdAOqYTsGsSvW88FZeqej1EkgW2bFJpyoA1CeCdACoY2UMZss2XzquvFPRCSQBAFCLIB0AXOolkBMpbzBb9HxpHeqvjKnoAADUC4J0AJDypn2HKTqYzZI3SF21Kvvv1KkNeVPR584triwAACAegnQAkHKmfUdR1hHXuXPt4NS5b/eCBdkHzjq2ob4+fToOYB4dskIAoB41WJZlFV2IPMW5iTwAdUZG9B2hHRmxgxiv4WF9y6yazvsnDic47umxswIGB0V27BjfPmeEWTVd25ATmGe9/boqS7vOm/c4cnfmAQCSiROHMpIOIFM6pQAHKXPad1Rl2VbvaPbWrfnMudexDZV1zYEoTDjv6EzHrBAAqCcE6QAyZcrFXlnTvuuJX1AqItL4f3/psg6cdWtDOnYc5MWU846OknTujIzUR+cPAOSFIB1AZkwayauXez6XmV9Q2tYmMn++/Thq4Jy0ferYhnTrOMiDSecdHcXp3Onttdd/aGqyf+bOrZ+sBdoTgCwRpAPIjIkjeSrLxkVc/rxB6dq10QNnVSnSOrVvHTsOsmbieUc3UTt3urrsKSWOrVvLn7XAVAoAeWDhOACZqscFiOpxm3WTZMGwel9krUw4BtUIO46CFksUKX7BxCxxngCQVJw4lCAdQC7qaZVlLuLMo+vq7GVQ5LFfT+edIixYYHeEuHV2lvd8x3kCQBqs7g5AO/VyAcN8WDORIq2eDmnB7L9sdXfb6z442trKve4B5wkAeSFIBwCFuIgzVz0uspYlVlgvv/Z2kb4+eyR5eNj+f9mnFXCeAJAH0t0BQDHmw5qNFOn0VKQFsx+gM9ongLiMSXe/5pprpKGhoepnvnOvnAC33HKLtLe3y5QpU2TWrFly2WWXydtvv51TiQGgtnpcUbtMuPBOL01GiQ5p8kAtnCcAZClgXc78LFiwQB599NGxx01BS4WKyD333CNXXnml/Nu//Zu8//3vl82bN8s555wjDQ0NctNNN+VRXACIjIs41LPu7vGMkjhpwX5p8mVdiAwAAD+FB+lNTU0yY8aMSK994oknZNGiRXLmmWeKiMicOXPkjDPOkJ/+9KdZFhEAgLqhKo3XySiJ83nOQovex6QWAwDqSeELx23ZskX23XdfOfDAA+UTn/iEvPDCC4Gvff/73y+/+MUv5KmnnhIRkW3btskDDzwgH/nIRwLfMzg4KAMDA1U/AACgWlZp5nGCaxZeBACg4CD9ve99r9x5553y4IMPyq233irbt2+Xo48+Wt544w3f15955pmyYsUK+cAHPiCTJk2StrY2Oe644+QLX/hC4HfccMMNMm3atLGfWbNmZbU5AAAYS5fV2Fk9GwBQ77Ra3f3111+X2bNny0033SSf/vSnJ/z+sccek9NPP12+8pWvyHvf+17p6+uTv/qrv5LzzjtPrr76at/PHBwclMHBwbHHAwMDMmvWLFZ3B0qIlFggGRWrsavG8YwoaCcATGHM6u5ee+65p8ybN0/6+vp8f3/11VfLJz/5STn33HNl4cKFsmTJErn++uvlhhtukNHRUd/3tLS0SGtra9UPgHIpYjXokZHsvwPIi45p5gReCMNdAACUmVZB+ptvvilbt26VmTNn+v5+165d0thYXeTK//0V1yghAEDO8kzT5cIwP3SE5Is0c5hEl+kZAJCFQoP0K664Qv77v/9bduzYIU888YQsWbJEKpWKnHHGGSIictZZZ8lVV1019vqTTjpJbr31Vvn2t78t27dvl0ceeUSuvvpqOemkk8aCdQD1xb36s99j1bgwzJ5OHSH11FHgrMY+PGz/6wTsgG7yPu8DQN4KvQXbr3/9aznjjDPk1VdflenTp8sHPvABefLJJ2X69OkiIvLCCy9UjZwvX75cGhoaZPny5bJz506ZPn26nHTSSXLdddcVtQkACuak5fb2js9NbG/PJlWW20OpFVRvOtwn2/nenh67fblHmcuOtgzd5XneB4AiaLVwXB7iTNgHYIY8AypnZNd9YZh3AGm6sP2lywJm7GdAb/XckQbATHHiUIJ0AKWRx4g2F4bp1QqAiw6QdekoAFAbmUwATGHs6u4AkEYeF2rM200nylzSohcw03Glc5iBOdH547gEUEYE6QCQQD1dGKoMPKIEwDp0hBTdUQCz6LTYIQDAfATpAABfWQUeUQPgIjtCdOgogDm46wMAQCXmpAMAfGU9N5y5pCgD1jAAAETBnHQAQCp53IeYAAZlwBoGAADVCNIBABMQeADRsYYBAEAlgnQAgC8CDyAa1jAAAKjkM4sKAIDxwMPEueMmlhnmo80BAFRgJB0AEMqkwINbYUEHJt4v3cQyA0BZEaQDAEpD1a2wCFiQhImdRCaWGQDKjiAdAFAKKlakJ2BBGibeL93EMgNA2RGkAwBKQcWK9AQsSCqP2xaqZmKZAaAeEKQDAEojzYr0BCxIw8TbFppYZgCoBwTpAIDSSHMrLAIWpGXibQtNLDMAlB23YAMAlE7SwLq7205x7+khYEF8Jt620MQyA0DZEaQDAPB/CFiggoltx8QyA0BZke4OAICHqQEL8+cBADAfQToAAIYz4dZxdCAAABANQToAFIjAxUy67Tedbx1nQgcCAAA6IUgHgAIQuJhJx/2m+63jdO5AAABARwTpAFAAAhcz6bjfdL51nO4dCAAA6IggHQByRuBiJp33m673uta5AwEAAF0RpANAzghczKTzfnNuHTc8bP/rBOw60LUDAQAAXRGkA0ABCFzMpPt+06HDwEvnDgQAAHTUVHQBAKAeOYHLyIiegRX8sd+So74AAIiGkXQAKBCBi5nYbwAAICsE6QAAlJwOi9sBAIBoCNIBACgpHe/rDgAAwhGkAwBQUjre1x0AAIQjSAcAoIR0vq87AAAIRpAOAEAJ6XxfdwAAEIwgHQCAktL9vu4AAGAi7pMOAEBJcV93AADMw0g6AAAlR4AOAIA5CNIBAAAAANAEQToAAAAAAJogSAcAAHWHW9EBAHRFkA4AAOpGb6/IggUiTU32v729RZcIAIBqBOkAAKBudHWNB+a9vfZjAAB0QpAOAADqwsiISE/PeKq79zEAADogSAcAjCFYQZlVKiKdneO3pPM+BgBABwTpAADm6aJudHeLtLfb/29vtx8DAKCTBsuyrKILkaeBgQGZNm2a9Pf3S2tra9HFAQAtOIH5yIg9qtjeLrJhQ9GlArLjtHUAAPIQJw5lJB0A6hzzdFGPCNABALoiSAeAOsc8XQAAAH0QpAMAmKcLAACgiaaiCwAAKJ4zB515ugAAAMViJB0AMIYAHQCKxXogAAjSAQAAgIJxK0wADoJ0ADAUoy0AUB5dXeOBeW+v/RhAfSJIBwDDMNpiPjpYALhxK0wAbgTpAGAYRlvMRQcLAD/cChOAG0E6ABiE0Raz0cECIAi3wgTg4BZsAGAQZ3Slt3f8dmnt7Yy2mMDpUPE+5rZ3AES4FSaAcYykA4BhGG0xE+msAKLgnACAIB0ADOOMtgwP2/86ATv0RwcLAACohXR3ADAUoy3mIZ0VAADUwkg6AAA5I0AHAABBCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQA0MjJSdAkAAABQJIJ0ANBAb6/IggUiTU32v729RZcIAAAARSBIBwANdHWNB+a9vfZjAAAA1B+CdAAo2MiISE/PeKq79zEAAADqB0E6ABSsUhHp7LT/9XsMAACA+kGQDgAa6O4WaW+3/9/ebj8GAABA/WkqugAAADsw37DBTnFnBB0AAKB+MZIOABohQAcAAKhvBOkAAAAAAGiCIB0AAAAAAE0UGqRfc8010tDQUPUzf/78wNcfd9xxE17f0NAgixcvzrHUAAAAAABko/CF4xYsWCCPPvro2OOmpuAidXd3y9DQ0NjjV199VQ499FBZunRppmUEAAAAACAPhQfpTU1NMmPGjEivfde73lX1+Nvf/rZMnTqVIB0AAAAAUAqFz0nfsmWL7LvvvnLggQfKJz7xCXnhhRciv/cb3/iGnH766bLbbrsFvmZwcFAGBgaqfgAAAAAA0FGhQfp73/teufPOO+XBBx+UW2+9VbZv3y5HH320vPHGGzXf+9RTT8lzzz0n5557bujrbrjhBpk2bdrYz6xZs1QVHwAAAAAApRosy7KKLoTj9ddfl9mzZ8tNN90kn/70p0Nfe/7558tPfvITWb9+fejrBgcHZXBwcOzxwMCAzJo1S/r7+6W1tVVJuQEAAAAACDIwMCDTpk2LFIcWPifdbc8995R58+ZJX19f6Ov+8Ic/yLe//W1ZsWJFzc9saWmRlpYWVUUEAAAAACAzhc9Jd3vzzTdl69atMnPmzNDXrVq1SgYHB2XZsmU5lQwAAAAAgOwVGqRfccUV8t///d+yY8cOeeKJJ2TJkiVSqVTkjDPOEBGRs846S6666qoJ7/vGN74hJ598suy99955FxkAAAAAgMwUmu7+61//Ws444wx59dVXZfr06fKBD3xAnnzySZk+fbqIiLzwwgvS2Fjdj9Db2yuPP/64PPzww0UUGQAAAACAzGi1cFwe4kzYBwAAAAAgrThxqFZz0gEAAAAAqGcE6QAAAAAAaIIgHQAAAAAATRCkAwAAABGNjBRdAgBlR5AOAAAA1NDbK7JggUhTk/1vb2/RJQJQVgTpAAAAQA1dXeOBeW+v/RgAskCQDgAAAIQYGRHp6RlPdfc+BgCVCNIBAACAEJWKSGen/a/fYwBQiSAdAAAAqKG7W6S93f5/e7v9GACy0FR0AQAAAADdtbeLbNhgp7gzgg4gS4ykAwAAABERoAPIGkE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANNFUdAHyZlmWiIgMDAwUXBIAAAAAQD1w4k8nHg1Td0H6G2+8ISIis2bNKrgkAAAAAIB68sYbb8i0adNCX9NgRQnlS2R0dFReeukl2WOPPaShoaHQsgwMDMisWbPkxRdflNbW1kLLAn3QLuCHdgEv2gT80C7gh3YBL9pE/izLkjfeeEP23XdfaWwMn3VedyPpjY2Nsv/++xddjCqtra0cHJiAdgE/tAt40Sbgh3YBP7QLeNEm8lVrBN3BwnEAAAAAAGiCIB0AAAAAAE0QpBeopaVFvvzlL0tLS0vRRYFGaBfwQ7uAF20CfmgX8EO7gBdtQm91t3AcAAAAAAC6YiQdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0jNyzTXXSENDQ9XP/PnzA19/3HHHTXh9Q0ODLF68OMdSI2tx24WIyC233CLt7e0yZcoUmTVrllx22WXy9ttv51Ri5CFuu3jnnXdkxYoV0tbWJpMnT5ZDDz1UHnzwwRxLjDzs3LlTli1bJnvvvbdMmTJFFi5cKD//+c9D3/PYY4/Jn/zJn0hLS4vMnTtX7rzzznwKi9zEbRcvv/yynHnmmTJv3jxpbGyUz372s/kVFrmJ2y66u7vlQx/6kEyfPl1aW1vlqKOOkoceeijHEiNrcdvE448/LosWLRp7/fz58+Xmm2/OscRwayq6AGW2YMECefTRR8ceNzUFV3d3d7cMDQ2NPX711Vfl0EMPlaVLl2ZaRuQvTru455575Morr5R/+7d/k/e///2yefNmOeecc6ShoUFuuummPIqLnMRpF8uXL5e7775bbr/9dpk/f7489NBDsmTJEnniiSfk8MMPz6O4yNhrr70mixYtkg9+8IOybt06mT59umzZskX22muvwPds375dFi9eLH/5l38p3/rWt+T73/++nHvuuTJz5kw54YQTciw9spKkXQwODsr06dNl+fLlXHCXVJJ28aMf/Ug+9KEPyfXXXy977rmn3HHHHXLSSSfJT3/6U/6OlECSNrHbbrvJxRdfLIcccojstttu8vjjj8v5558vu+22m3zmM5/JsfQQ4RZsmbnmmmtkzZo18swzzyR6/y233CJf+tKX5OWXX5bddttNbeFQmLjt4uKLL5aNGzfK97///bHnPve5z8lPf/pTefzxxzMqJfIWt13su+++8sUvflEuuuiisedOOeUUmTJlitx9990ZlRJ5uvLKK+V//ud/5Mc//nHk93z+85+XtWvXynPPPTf23Omnny6vv/46mRYlkaRduB133HFy2GGHyS233KK2YChU2nbhWLBggZx22mnypS99SVHJUBRVbaKrq0t22203ueuuuxSVDFGR7p6hLVu2yL777isHHnigfOITn5AXXngh8nu/8Y1vyOmnn06AXkJx2sX73/9++cUvfiFPPfWUiIhs27ZNHnjgAfnIRz6SV3GRkzjtYnBwUCZPnlz13JQpU+i4KZHvfve7csQRR8jSpUtln332kcMPP1xuv/320Pf85Cc/keOPP77quRNOOEF+8pOfZFlU5ChJu0D5qWgXo6Oj8sYbb8i73vWujEqJPKloE08//bQ88cQTcuyxx2ZUSoQhSM/Ie9/7XrnzzjvlwQcflFtvvVW2b98uRx99tLzxxhs13/vUU0/Jc889J+eee24OJUWe4raLM888U1asWCEf+MAHZNKkSdLW1ibHHXecfOELX8i55MhS3HZxwgknyE033SRbtmyR0dFReeSRR6S7u1tefvnlnEuOrGzbtk1uvfVWOeigg+Shhx6SCy64QC699FL55je/Gfie3/zmN/Lud7+76rl3v/vdMjAwIG+99VbWRUYOkrQLlJ+KdrFy5Up588035dRTT82wpMhLmjax//77S0tLixxxxBFy0UUXEY8UxUIuXnvtNau1tdX613/915qv/cxnPmMtXLgwh1KhaLXaxQ9/+EPr3e9+t3X77bdb69evt7q7u61Zs2ZZK1asyLmkyFOtdvHKK69YH//4x63GxkarUqlY8+bNsy688EJr8uTJOZcUWZk0aZJ11FFHVT13ySWXWO973/sC33PQQQdZ119/fdVza9eutUTE2rVrVyblRL6StAu3Y4891vqrv/qrDEqGIqVtF9/61resqVOnWo888kgWxUMB0rSJbdu2WevXr7duu+02613vepd1zz33ZFVMhGAkPSd77rmnzJs3T/r6+kJf94c//EG+/e1vy6c//emcSoYi1WoXV199tXzyk5+Uc889VxYuXChLliyR66+/Xm644QYZHR3NubTIS612MX36dFmzZo384Q9/kOeff142bdoku+++uxx44IE5lxRZmTlzpnR2dlY919HREToNYsaMGfLb3/626rnf/va30traKlOmTMmknMhXknaB8kvTLr797W/LueeeK//5n/85YboMzJWmTRxwwAGycOFCOe+88+Syyy6Ta665JqNSIgxBek7efPNN2bp1q8ycOTP0datWrZLBwUFZtmxZTiVDkWq1i127dkljY/VhWqlURETEYs3H0op6vpg8ebLst99+Mjw8LN/5znfk4x//eE4lRNYWLVokvb29Vc9t3rxZZs+eHfieo446qmqRSRGRRx55RI466qhMyoj8JWkXKL+k7eLee++VT33qU3Lvvfdyy9+SUXWuGB0dlcHBQZVFQ1RFD+WX1ec+9znrscces7Zv3279z//8j3X88cdbf/RHf2S98sorlmVZ1ic/+UnryiuvnPC+D3zgA9Zpp52Wd3GRk7jt4stf/rK1xx57WPfee6+1bds26+GHH7ba2tqsU089tahNQAbitosnn3zS+s53vmNt3brV+tGPfmT9v//3/6wDDjjAeu211wraAqj21FNPWU1NTdZ1111nbdmyZSwd9e677x57zZVXXml98pOfHHu8bds2a+rUqdZf//VfWxs3brS+9rWvWZVKxXrwwQeL2ARkIEm7sCzLevrpp62nn37aes973mOdeeaZ1tNPP21t2LAh7+IjI0naxbe+9S2rqanJ+trXvma9/PLLYz+vv/56EZsAxZK0iX/6p3+yvvvd71qbN2+2Nm/ebP3rv/6rtccee1hf/OIXi9iEukeQnpHTTjvNmjlzptXc3Gztt99+1mmnnWb19fWN/f7YY4+1zj777Kr3bNq0yRIR6+GHH865tMhL3HbxzjvvWNdcc43V1tZmTZ482Zo1a5Z14YUXEoyVTNx28dhjj1kdHR1WS0uLtffee1uf/OQnrZ07dxZQcmTp/vvvtw4++GCrpaXFmj9/vnXbbbdV/f7ss8+2jj322KrnfvjDH1qHHXaY1dzcbB144IHWHXfckV+BkYsk7UJEJvzMnj07v0Ijc3HbxbHHHuvbLrzXpjBX3Dbxj//4j9aCBQusqVOnWq2trdbhhx9u/fM//7M1MjKSc8lhWZbFfdIBAAAAANAEc9IBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QAAINTvfvc7mTFjhlx//fVjzz3xxBPS3Nws3//+9wssGQAA5dNgWZZVdCEAAIDeHnjgATn55JPliSeekPb2djnssMPk4x//uNx0001FFw0AgFIhSAcAAJFcdNFF8uijj8oRRxwhzz77rPzsZz+TlpaWoosFAECpEKQDAIBI3nrrLTn44IPlxRdflF/84heycOHCoosEAEDpMCcdAABEsnXrVnnppZdkdHRUduzYUXRxAAAoJUbSAQBATUNDQ/Knf/qncthhh0l7e7vccsst8uyzz8o+++xTdNEAACgVgnQAAFDTX//1X8t//dd/ya9+9SvZfffd5dhjj5Vp06bJ9773vaKLBgBAqZDuDgAAQj322GNyyy23yF133SWtra3S2Ngod911l/z4xz+WW2+9tejiAQBQKoykAwAAAACgCUbSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEAT/z9RyfehNUODXgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Исходные данные:\n", + "[[5.8619435 5.99297106]\n", + " [6.12066008 5.98527609]\n", + " [5.98643623 5.9813867 ]\n", + " ...\n", + " [5.80640873 6.16429542]\n", + " [6.01437944 6.13645626]\n", + " [6.00333385 5.99329265]]\n", + "Размерность данных:\n", + "(1000, 2)\n" + ] + } + ], + "source": [ + "# генерация датасета\n", + "data = lib.datagen(6, 6, 1000, 2)\n", + "\n", + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(data)\n", + "print('Размерность данных:')\n", + "print(data.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "00ba79e5-d8f9-4c40-a065-e8fd21a68e21", + "metadata": { + "id": "00ba79e5-d8f9-4c40-a065-e8fd21a68e21" + }, + "source": [ + "### 3) Создали и обучили автокодировщик AE1 простой архитектуры, выбрав небольшое количество эпох обучения. Зафиксировали в таблице вида табл.1 количество скрытых слоёв и нейронов в них" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bc736f50-204b-4b1d-8c1c-0dd34fb1f02b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bc736f50-204b-4b1d-8c1c-0dd34fb1f02b", + "outputId": "8f082198-c299-4beb-8043-92716c2c0984" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 1\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 1\n", + "Epoch 1/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - loss: 38.5869\n", + "Epoch 2/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 38.5613\n", + "Epoch 3/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 38.5357\n", + "Epoch 4/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 38.5101\n", + "Epoch 5/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 38.4846\n", + "Epoch 6/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 38.4590\n", + "Epoch 7/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 38.4335\n", + "Epoch 8/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 38.4080\n", + "Epoch 9/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 38.3825\n", + "Epoch 10/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 38.3570\n", + "Epoch 11/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 38.3315\n", + "Epoch 12/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 38.3060\n", + "Epoch 13/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 38.2805\n", + "Epoch 14/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 38.2551\n", + "Epoch 15/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 38.2297\n", + "Epoch 16/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 38.2042\n", + "Epoch 17/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 38.1788\n", + "Epoch 18/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 38.1535\n", + "Epoch 19/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 38.1281\n", + "Epoch 20/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 38.1027\n", + "Epoch 21/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 38.0774\n", + "Epoch 22/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 38.0520\n", + "Epoch 23/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 38.0267\n", + "Epoch 24/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 38.0014\n", + "Epoch 25/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 37.9761\n", + "Epoch 26/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 37.9509\n", + "Epoch 27/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.9256\n", + "Epoch 28/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 37.9004\n", + "Epoch 29/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 37.8752\n", + "Epoch 30/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.8500\n", + "Epoch 31/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.8248\n", + "Epoch 32/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 37.7996\n", + "Epoch 33/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 37.7745\n", + "Epoch 34/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.7493\n", + "Epoch 35/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.7242\n", + "Epoch 36/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 37.6991\n", + "Epoch 37/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.6740\n", + "Epoch 38/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.6490\n", + "Epoch 39/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 37.6239\n", + "Epoch 40/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 37.5989\n", + "Epoch 41/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 37.5739\n", + "Epoch 42/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 37.5489\n", + "Epoch 43/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 37.5239\n", + "Epoch 44/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 37.4990\n", + "Epoch 45/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 37.4741\n", + "Epoch 46/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 37.4492\n", + "Epoch 47/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 37.4243\n", + "Epoch 48/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 37.3994\n", + "Epoch 49/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 37.3745\n", + "Epoch 50/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 37.3497\n", + "Epoch 51/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 37.3249\n", + "Epoch 52/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 37.3001\n", + "Epoch 53/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 37.2753\n", + "Epoch 54/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.2506\n", + "Epoch 55/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 37.2258\n", + "Epoch 56/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 37.2011\n", + "Epoch 57/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.1764\n", + "Epoch 58/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 37.1518\n", + "Epoch 59/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 37.1271\n", + "Epoch 60/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 37.1025\n", + "Epoch 61/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 37.0779\n", + "Epoch 62/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 37.0533\n", + "Epoch 63/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.0287\n", + "Epoch 64/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.0042\n", + "Epoch 65/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 36.9797\n", + "Epoch 66/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 36.9552\n", + "Epoch 67/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.9307\n", + "Epoch 68/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 36.9062\n", + "Epoch 69/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 36.8818\n", + "Epoch 70/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 36.8574\n", + "Epoch 71/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 36.8330\n", + "Epoch 72/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 36.8087\n", + "Epoch 73/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 36.7843\n", + "Epoch 74/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 36.7600\n", + "Epoch 75/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 36.7357\n", + "Epoch 76/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 36.7115\n", + "Epoch 77/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 36.6872\n", + "Epoch 78/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 36.6630\n", + "Epoch 79/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.6388\n", + "Epoch 80/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 36.6146\n", + "Epoch 81/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 36.5905\n", + "Epoch 82/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 36.5664\n", + "Epoch 83/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.5423\n", + "Epoch 84/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 36.5182\n", + "Epoch 85/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 36.4941\n", + "Epoch 86/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 36.4701\n", + "Epoch 87/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.4461\n", + "Epoch 88/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 36.4221\n", + "Epoch 89/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 36.3982\n", + "Epoch 90/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 36.3743\n", + "Epoch 91/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 36.3504\n", + "Epoch 92/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 36.3265\n", + "Epoch 93/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 36.3027\n", + "Epoch 94/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 36.2788\n", + "Epoch 95/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 36.2550\n", + "Epoch 96/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 36.2313\n", + "Epoch 97/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 36.2075\n", + "Epoch 98/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 36.1838\n", + "Epoch 99/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 36.1601\n", + "Epoch 100/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 36.1365\n", + "Epoch 101/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.1128\n", + "Epoch 102/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 36.0892\n", + "Epoch 103/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 36.0657\n", + "Epoch 104/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.0421\n", + "Epoch 105/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 36.0186\n", + "Epoch 106/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 35.9951\n", + "Epoch 107/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.9716\n", + "Epoch 108/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.9482\n", + "Epoch 109/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.9247\n", + "Epoch 110/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.9013\n", + "Epoch 111/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 35.8780\n", + "Epoch 112/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 35.8546\n", + "Epoch 113/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 35.8313\n", + "Epoch 114/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 35.8081\n", + "Epoch 115/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 35.7848\n", + "Epoch 116/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 35.7616\n", + "Epoch 117/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.7384\n", + "Epoch 118/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.7152\n", + "Epoch 119/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.6921\n", + "Epoch 120/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 35.6689\n", + "Epoch 121/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 35.6459\n", + "Epoch 122/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.6228\n", + "Epoch 123/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 35.5997\n", + "Epoch 124/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 35.5767\n", + "Epoch 125/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.5537\n", + "Epoch 126/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 35.5308\n", + "Epoch 127/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.5078\n", + "Epoch 128/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 35.4849\n", + "Epoch 129/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.4620\n", + "Epoch 130/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 35.4392\n", + "Epoch 131/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 35.4163\n", + "Epoch 132/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 35.3935\n", + "Epoch 133/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.3707\n", + "Epoch 134/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.3479\n", + "Epoch 135/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.3252\n", + "Epoch 136/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 35.3025\n", + "Epoch 137/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.2797\n", + "Epoch 138/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.2570\n", + "Epoch 139/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 35.2344\n", + "Epoch 140/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 35.2117\n", + "Epoch 141/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 35.1890\n", + "Epoch 142/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 35.1664\n", + "Epoch 143/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 35.1438\n", + "Epoch 144/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 35.1212\n", + "Epoch 145/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.0986\n", + "Epoch 146/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 35.0760\n", + "Epoch 147/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 35.0534\n", + "Epoch 148/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 35.0308\n", + "Epoch 149/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 35.0082\n", + "Epoch 150/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.9856\n", + "Epoch 151/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.9630\n", + "Epoch 152/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 34.9404\n", + "Epoch 153/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 34.9178\n", + "Epoch 154/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 34.8952\n", + "Epoch 155/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.8726\n", + "Epoch 156/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.8499\n", + "Epoch 157/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 34.8272\n", + "Epoch 158/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 34.8046\n", + "Epoch 159/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.7818\n", + "Epoch 160/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 34.7591\n", + "Epoch 161/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.7363\n", + "Epoch 162/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.7134\n", + "Epoch 163/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.6905\n", + "Epoch 164/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 34.6676\n", + "Epoch 165/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.6446\n", + "Epoch 166/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 34.6215\n", + "Epoch 167/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 34.5984\n", + "Epoch 168/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.5751\n", + "Epoch 169/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.5518\n", + "Epoch 170/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.5284\n", + "Epoch 171/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 34.5049\n", + "Epoch 172/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.4813\n", + "Epoch 173/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.4576\n", + "Epoch 174/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.4338\n", + "Epoch 175/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 34.4098\n", + "Epoch 176/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.3857\n", + "Epoch 177/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 34.3615\n", + "Epoch 178/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.3371\n", + "Epoch 179/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 34.3125\n", + "Epoch 180/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 34.2878\n", + "Epoch 181/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 34.2629\n", + "Epoch 182/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 34.2379\n", + "Epoch 183/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 34.2127\n", + "Epoch 184/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 34.1873\n", + "Epoch 185/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 34.1618\n", + "Epoch 186/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.1360\n", + "Epoch 187/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 34.1102\n", + "Epoch 188/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.0841\n", + "Epoch 189/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 34.0580\n", + "Epoch 190/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 34.0317\n", + "Epoch 191/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 34.0053\n", + "Epoch 192/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 33.9789\n", + "Epoch 193/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.9524\n", + "Epoch 194/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.9259\n", + "Epoch 195/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.8994\n", + "Epoch 196/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.8730\n", + "Epoch 197/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.8467\n", + "Epoch 198/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.8206\n", + "Epoch 199/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.7947\n", + "Epoch 200/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.7692\n", + "Epoch 201/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 33.7440\n", + "Epoch 202/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.7192\n", + "Epoch 203/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.6948\n", + "Epoch 204/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.6711\n", + "Epoch 205/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.6479\n", + "Epoch 206/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.6253\n", + "Epoch 207/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 33.6034\n", + "Epoch 208/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.5823\n", + "Epoch 209/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.5618\n", + "Epoch 210/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.5421\n", + "Epoch 211/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.5232\n", + "Epoch 212/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.5049\n", + "Epoch 213/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.4874\n", + "Epoch 214/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.4705\n", + "Epoch 215/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.4543\n", + "Epoch 216/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.4387\n", + "Epoch 217/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.4236\n", + "Epoch 218/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 33.4090\n", + "Epoch 219/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.3949\n", + "Epoch 220/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.3811\n", + "Epoch 221/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.3677\n", + "Epoch 222/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.3546\n", + "Epoch 223/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.3417\n", + "Epoch 224/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.3290\n", + "Epoch 225/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 33.3165\n", + "Epoch 226/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 33.3041\n", + "Epoch 227/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 33.2919\n", + "Epoch 228/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 33.2797\n", + "Epoch 229/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 33.2676\n", + "Epoch 230/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 33.2555\n", + "Epoch 231/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.2435\n", + "Epoch 232/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 33.2314\n", + "Epoch 233/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.2194\n", + "Epoch 234/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 33.2073\n", + "Epoch 235/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.1953\n", + "Epoch 236/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - loss: 33.1832\n", + "Epoch 237/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 33.1712\n", + "Epoch 238/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.1590\n", + "Epoch 239/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.1469\n", + "Epoch 240/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.1348\n", + "Epoch 241/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.1226\n", + "Epoch 242/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 33.1104\n", + "Epoch 243/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 33.0982\n", + "Epoch 244/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.0860\n", + "Epoch 245/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.0737\n", + "Epoch 246/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 33.0615\n", + "Epoch 247/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.0492\n", + "Epoch 248/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 33.0369\n", + "Epoch 249/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.0246\n", + "Epoch 250/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 33.0123\n", + "Epoch 251/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 33.0000\n", + "Epoch 252/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.9876\n", + "Epoch 253/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.9753\n", + "Epoch 254/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 32.9629\n", + "Epoch 255/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 32.9506\n", + "Epoch 256/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.9382\n", + "Epoch 257/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 32.9258\n", + "Epoch 258/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 32.9135\n", + "Epoch 259/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.9011\n", + "Epoch 260/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.8887\n", + "Epoch 261/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 32.8763\n", + "Epoch 262/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 32.8639\n", + "Epoch 263/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.8515\n", + "Epoch 264/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 32.8391\n", + "Epoch 265/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.8267\n", + "Epoch 266/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 32.8143\n", + "Epoch 267/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 32.8019\n", + "Epoch 268/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.7894\n", + "Epoch 269/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.7770\n", + "Epoch 270/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 32.7645\n", + "Epoch 271/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.7521\n", + "Epoch 272/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.7396\n", + "Epoch 273/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.7271\n", + "Epoch 274/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.7146\n", + "Epoch 275/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.7021\n", + "Epoch 276/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.6896\n", + "Epoch 277/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.6771\n", + "Epoch 278/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.6645\n", + "Epoch 279/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.6520\n", + "Epoch 280/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.6394\n", + "Epoch 281/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 32.6268\n", + "Epoch 282/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.6142\n", + "Epoch 283/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.6016\n", + "Epoch 284/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 32.5890\n", + "Epoch 285/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 32.5764\n", + "Epoch 286/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.5637\n", + "Epoch 287/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.5510\n", + "Epoch 288/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.5383\n", + "Epoch 289/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.5256\n", + "Epoch 290/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.5129\n", + "Epoch 291/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 32.5002\n", + "Epoch 292/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 32.4874\n", + "Epoch 293/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.4747\n", + "Epoch 294/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 32.4619\n", + "Epoch 295/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.4491\n", + "Epoch 296/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.4363\n", + "Epoch 297/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 32.4234\n", + "Epoch 298/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.4106\n", + "Epoch 299/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 32.3977\n", + "Epoch 300/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 32.3848\n", + "Epoch 301/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 32.3719\n", + "Epoch 302/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.3590\n", + "Epoch 303/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.3460\n", + "Epoch 304/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.3331\n", + "Epoch 305/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.3201\n", + "Epoch 306/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.3071\n", + "Epoch 307/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.2940\n", + "Epoch 308/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 32.2810\n", + "Epoch 309/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.2679\n", + "Epoch 310/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 32.2548\n", + "Epoch 311/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.2417\n", + "Epoch 312/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.2286\n", + "Epoch 313/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.2154\n", + "Epoch 314/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 32.2022\n", + "Epoch 315/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.1890\n", + "Epoch 316/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.1758\n", + "Epoch 317/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.1626\n", + "Epoch 318/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 32.1493\n", + "Epoch 319/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 32.1360\n", + "Epoch 320/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.1227\n", + "Epoch 321/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.1093\n", + "Epoch 322/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.0960\n", + "Epoch 323/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 32.0826\n", + "Epoch 324/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 32.0691\n", + "Epoch 325/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 32.0557\n", + "Epoch 326/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.0422\n", + "Epoch 327/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 32.0287\n", + "Epoch 328/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.0152\n", + "Epoch 329/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 32.0017\n", + "Epoch 330/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 31.9881\n", + "Epoch 331/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 31.9745\n", + "Epoch 332/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 31.9608\n", + "Epoch 333/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 31.9472\n", + "Epoch 334/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 31.9335\n", + "Epoch 335/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 31.9198\n", + "Epoch 336/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 31.9060\n", + "Epoch 337/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 31.8922\n", + "Epoch 338/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 31.8784\n", + "Epoch 339/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 31.8646\n", + "Epoch 340/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 31.8507\n", + "Epoch 341/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 31.8368\n", + "Epoch 342/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 31.8229\n", + "Epoch 343/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 31.8089\n", + "Epoch 344/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 31.7949\n", + "Epoch 345/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 31.7809\n", + "Epoch 346/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 31.7668\n", + "Epoch 347/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 31.7527\n", + "Epoch 348/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 31.7386\n", + "Epoch 349/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 31.7244\n", + "Epoch 350/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 31.7102\n", + "Epoch 351/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 31.6960\n", + "Epoch 352/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 31.6817\n", + "Epoch 353/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 31.6674\n", + "Epoch 354/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 31.6531\n", + "Epoch 355/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 31.6387\n", + "Epoch 356/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 31.6243\n", + "Epoch 357/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 31.6099\n", + "Epoch 358/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 31.5954\n", + "Epoch 359/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 31.5809\n", + "Epoch 360/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 31.5663\n", + "Epoch 361/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 31.5517\n", + "Epoch 362/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 31.5371\n", + "Epoch 363/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 31.5225\n", + "Epoch 364/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 31.5077\n", + "Epoch 365/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 31.4930\n", + "Epoch 366/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 31.4782\n", + "Epoch 367/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 31.4634\n", + "Epoch 368/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 31.4485\n", + "Epoch 369/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 31.4336\n", + "Epoch 370/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 31.4187\n", + "Epoch 371/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 31.4037\n", + "Epoch 372/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 31.3887\n", + "Epoch 373/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 31.3736\n", + "Epoch 374/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 31.3585\n", + "Epoch 375/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 31.3434\n", + "Epoch 376/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 31.3282\n", + "Epoch 377/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 31.3130\n", + "Epoch 378/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 31.2977\n", + "Epoch 379/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 180ms/step - loss: 31.2824\n", + "Epoch 380/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 31.2671\n", + "Epoch 381/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 31.2517\n", + "Epoch 382/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 31.2362\n", + "Epoch 383/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 31.2208\n", + "Epoch 384/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 31.2052\n", + "Epoch 385/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 31.1897\n", + "Epoch 386/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 31.1741\n", + "Epoch 387/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 31.1584\n", + "Epoch 388/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 31.1427\n", + "Epoch 389/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 31.1270\n", + "Epoch 390/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 31.1112\n", + "Epoch 391/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 31.0954\n", + "Epoch 392/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 31.0795\n", + "Epoch 393/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 31.0636\n", + "Epoch 394/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 31.0476\n", + "Epoch 395/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 31.0316\n", + "Epoch 396/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 31.0156\n", + "Epoch 397/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.9995\n", + "Epoch 398/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 30.9834\n", + "Epoch 399/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 30.9672\n", + "Epoch 400/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 30.9510\n", + "Epoch 401/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 30.9347\n", + "Epoch 402/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.9184\n", + "Epoch 403/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 30.9021\n", + "Epoch 404/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 30.8857\n", + "Epoch 405/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.8693\n", + "Epoch 406/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 30.8528\n", + "Epoch 407/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.8363\n", + "Epoch 408/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 30.8197\n", + "Epoch 409/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.8031\n", + "Epoch 410/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.7864\n", + "Epoch 411/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.7698\n", + "Epoch 412/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.7530\n", + "Epoch 413/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 30.7362\n", + "Epoch 414/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 30.7194\n", + "Epoch 415/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.7026\n", + "Epoch 416/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 30.6857\n", + "Epoch 417/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.6687\n", + "Epoch 418/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.6517\n", + "Epoch 419/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 30.6347\n", + "Epoch 420/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 30.6177\n", + "Epoch 421/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.6005\n", + "Epoch 422/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 30.5834\n", + "Epoch 423/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 30.5662\n", + "Epoch 424/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 30.5490\n", + "Epoch 425/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.5317\n", + "Epoch 426/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.5144\n", + "Epoch 427/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.4971\n", + "Epoch 428/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.4797\n", + "Epoch 429/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.4623\n", + "Epoch 430/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.4448\n", + "Epoch 431/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 30.4273\n", + "Epoch 432/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.4098\n", + "Epoch 433/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 30.3923\n", + "Epoch 434/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.3747\n", + "Epoch 435/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.3570\n", + "Epoch 436/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.3394\n", + "Epoch 437/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.3216\n", + "Epoch 438/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.3039\n", + "Epoch 439/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.2861\n", + "Epoch 440/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.2683\n", + "Epoch 441/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.2505\n", + "Epoch 442/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 30.2326\n", + "Epoch 443/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.2147\n", + "Epoch 444/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 30.1967\n", + "Epoch 445/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 30.1788\n", + "Epoch 446/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 30.1607\n", + "Epoch 447/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 30.1427\n", + "Epoch 448/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.1246\n", + "Epoch 449/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 30.1065\n", + "Epoch 450/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 30.0884\n", + "Epoch 451/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.0702\n", + "Epoch 452/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.0520\n", + "Epoch 453/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 30.0338\n", + "Epoch 454/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 30.0156\n", + "Epoch 455/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.9973\n", + "Epoch 456/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.9790\n", + "Epoch 457/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.9606\n", + "Epoch 458/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.9422\n", + "Epoch 459/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.9238\n", + "Epoch 460/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.9054\n", + "Epoch 461/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 29.8870\n", + "Epoch 462/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.8685\n", + "Epoch 463/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.8500\n", + "Epoch 464/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.8314\n", + "Epoch 465/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.8129\n", + "Epoch 466/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.7943\n", + "Epoch 467/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 29.7757\n", + "Epoch 468/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 29.7570\n", + "Epoch 469/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 29.7383\n", + "Epoch 470/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.7197\n", + "Epoch 471/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.7009\n", + "Epoch 472/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.6822\n", + "Epoch 473/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 29.6634\n", + "Epoch 474/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.6446\n", + "Epoch 475/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.6258\n", + "Epoch 476/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 29.6069\n", + "Epoch 477/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.5881\n", + "Epoch 478/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.5692\n", + "Epoch 479/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.5503\n", + "Epoch 480/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.5313\n", + "Epoch 481/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 29.5123\n", + "Epoch 482/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.4934\n", + "Epoch 483/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.4743\n", + "Epoch 484/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.4553\n", + "Epoch 485/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 29.4362\n", + "Epoch 486/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.4171\n", + "Epoch 487/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 29.3980\n", + "Epoch 488/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.3789\n", + "Epoch 489/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 29.3598\n", + "Epoch 490/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 29.3406\n", + "Epoch 491/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 29.3214\n", + "Epoch 492/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 29.3022\n", + "Epoch 493/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.2829\n", + "Epoch 494/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.2636\n", + "Epoch 495/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.2443\n", + "Epoch 496/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 29.2250\n", + "Epoch 497/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.2057\n", + "Epoch 498/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.1863\n", + "Epoch 499/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.1670\n", + "Epoch 500/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.1476\n", + "Epoch 501/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 29.1281\n", + "Epoch 502/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 29.1087\n", + "Epoch 503/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 29.0892\n", + "Epoch 504/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 29.0698\n", + "Epoch 505/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.0503\n", + "Epoch 506/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 29.0307\n", + "Epoch 507/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 29.0112\n", + "Epoch 508/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.9916\n", + "Epoch 509/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 28.9720\n", + "Epoch 510/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 28.9524\n", + "Epoch 511/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.9328\n", + "Epoch 512/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.9131\n", + "Epoch 513/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.8935\n", + "Epoch 514/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.8738\n", + "Epoch 515/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 28.8541\n", + "Epoch 516/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.8343\n", + "Epoch 517/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.8146\n", + "Epoch 518/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.7948\n", + "Epoch 519/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.7750\n", + "Epoch 520/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.7552\n", + "Epoch 521/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.7354\n", + "Epoch 522/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.7156\n", + "Epoch 523/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.6957\n", + "Epoch 524/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.6758\n", + "Epoch 525/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.6559\n", + "Epoch 526/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.6360\n", + "Epoch 527/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.6161\n", + "Epoch 528/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 28.5961\n", + "Epoch 529/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 28.5761\n", + "Epoch 530/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 28.5561\n", + "Epoch 531/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.5361\n", + "Epoch 532/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 28.5161\n", + "Epoch 533/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.4961\n", + "Epoch 534/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.4760\n", + "Epoch 535/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 28.4559\n", + "Epoch 536/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.4358\n", + "Epoch 537/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.4157\n", + "Epoch 538/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 28.3956\n", + "Epoch 539/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 28.3754\n", + "Epoch 540/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 28.3553\n", + "Epoch 541/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.3351\n", + "Epoch 542/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 28.3149\n", + "Epoch 543/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.2947\n", + "Epoch 544/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.2745\n", + "Epoch 545/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.2543\n", + "Epoch 546/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 28.2340\n", + "Epoch 547/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 28.2137\n", + "Epoch 548/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 28.1935\n", + "Epoch 549/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.1732\n", + "Epoch 550/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.1528\n", + "Epoch 551/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.1325\n", + "Epoch 552/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.1122\n", + "Epoch 553/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.0918\n", + "Epoch 554/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 28.0715\n", + "Epoch 555/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.0511\n", + "Epoch 556/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 28.0307\n", + "Epoch 557/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 28.0103\n", + "Epoch 558/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.9899\n", + "Epoch 559/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 27.9694\n", + "Epoch 560/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 27.9490\n", + "Epoch 561/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.9286\n", + "Epoch 562/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 27.9081\n", + "Epoch 563/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.8876\n", + "Epoch 564/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 27.8671\n", + "Epoch 565/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 27.8466\n", + "Epoch 566/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.8261\n", + "Epoch 567/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.8056\n", + "Epoch 568/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.7850\n", + "Epoch 569/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 27.7645\n", + "Epoch 570/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.7440\n", + "Epoch 571/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 27.7234\n", + "Epoch 572/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 27.7028\n", + "Epoch 573/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.6822\n", + "Epoch 574/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.6616\n", + "Epoch 575/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 27.6410\n", + "Epoch 576/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 27.6204\n", + "Epoch 577/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 27.5998\n", + "Epoch 578/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.5792\n", + "Epoch 579/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.5585\n", + "Epoch 580/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.5379\n", + "Epoch 581/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.5173\n", + "Epoch 582/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 27.4966\n", + "Epoch 583/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 27.4759\n", + "Epoch 584/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 27.4552\n", + "Epoch 585/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.4346\n", + "Epoch 586/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 27.4139\n", + "Epoch 587/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 27.3932\n", + "Epoch 588/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.3725\n", + "Epoch 589/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.3518\n", + "Epoch 590/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.3311\n", + "Epoch 591/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.3103\n", + "Epoch 592/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.2896\n", + "Epoch 593/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.2689\n", + "Epoch 594/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 27.2481\n", + "Epoch 595/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 27.2274\n", + "Epoch 596/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.2067\n", + "Epoch 597/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.1859\n", + "Epoch 598/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 27.1652\n", + "Epoch 599/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 27.1444\n", + "Epoch 600/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 27.1236\n", + "Epoch 601/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 27.1029\n", + "Epoch 602/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 27.0821\n", + "Epoch 603/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 27.0613\n", + "Epoch 604/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 27.0406\n", + "Epoch 605/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 27.0198\n", + "Epoch 606/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 26.9990\n", + "Epoch 607/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 26.9782\n", + "Epoch 608/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 26.9574\n", + "Epoch 609/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 26.9366\n", + "Epoch 610/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 26.9159\n", + "Epoch 611/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 26.8951\n", + "Epoch 612/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 26.8743\n", + "Epoch 613/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 26.8535\n", + "Epoch 614/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 26.8327\n", + "Epoch 615/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 26.8119\n", + "Epoch 616/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 26.7911\n", + "Epoch 617/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 26.7703\n", + "Epoch 618/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 26.7495\n", + "Epoch 619/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 26.7287\n", + "Epoch 620/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 26.7079\n", + "Epoch 621/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 26.6871\n", + "Epoch 622/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 26.6663\n", + "Epoch 623/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 26.6455\n", + "Epoch 624/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 26.6247\n", + "Epoch 625/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 26.6039\n", + "Epoch 626/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 26.5831\n", + "Epoch 627/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 26.5623\n", + "Epoch 628/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 26.5415\n", + "Epoch 629/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 26.5208\n", + "Epoch 630/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 26.5000\n", + "Epoch 631/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 26.4792\n", + "Epoch 632/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 26.4584\n", + "Epoch 633/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 26.4376\n", + "Epoch 634/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 26.4168\n", + "Epoch 635/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 26.3961\n", + "Epoch 636/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 26.3753\n", + "Epoch 637/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 26.3545\n", + "Epoch 638/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 26.3337\n", + "Epoch 639/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 26.3130\n", + "Epoch 640/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 26.2922\n", + "Epoch 641/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 26.2715\n", + "Epoch 642/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 26.2507\n", + "Epoch 643/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 26.2300\n", + "Epoch 644/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 26.2092\n", + "Epoch 645/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 26.1885\n", + "Epoch 646/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 26.1677\n", + "Epoch 647/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 26.1470\n", + "Epoch 648/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 26.1263\n", + "Epoch 649/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 26.1055\n", + "Epoch 650/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 26.0848\n", + "Epoch 651/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 26.0641\n", + "Epoch 652/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 26.0434\n", + "Epoch 653/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 26.0227\n", + "Epoch 654/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 26.0020\n", + "Epoch 655/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.9813\n", + "Epoch 656/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.9606\n", + "Epoch 657/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.9399\n", + "Epoch 658/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.9193\n", + "Epoch 659/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 25.8986\n", + "Epoch 660/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.8779\n", + "Epoch 661/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.8573\n", + "Epoch 662/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.8366\n", + "Epoch 663/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.8160\n", + "Epoch 664/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 25.7954\n", + "Epoch 665/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 25.7747\n", + "Epoch 666/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 25.7541\n", + "Epoch 667/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 25.7335\n", + "Epoch 668/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.7129\n", + "Epoch 669/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 25.6923\n", + "Epoch 670/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 25.6717\n", + "Epoch 671/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.6511\n", + "Epoch 672/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.6305\n", + "Epoch 673/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.6100\n", + "Epoch 674/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.5894\n", + "Epoch 675/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.5689\n", + "Epoch 676/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 25.5483\n", + "Epoch 677/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 25.5278\n", + "Epoch 678/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.5072\n", + "Epoch 679/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.4867\n", + "Epoch 680/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.4662\n", + "Epoch 681/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 25.4457\n", + "Epoch 682/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.4252\n", + "Epoch 683/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.4047\n", + "Epoch 684/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.3843\n", + "Epoch 685/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 25.3638\n", + "Epoch 686/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.3433\n", + "Epoch 687/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 25.3229\n", + "Epoch 688/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.3024\n", + "Epoch 689/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.2820\n", + "Epoch 690/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 25.2616\n", + "Epoch 691/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.2412\n", + "Epoch 692/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 25.2208\n", + "Epoch 693/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.2004\n", + "Epoch 694/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 25.1800\n", + "Epoch 695/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 25.1596\n", + "Epoch 696/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 25.1393\n", + "Epoch 697/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 25.1189\n", + "Epoch 698/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.0986\n", + "Epoch 699/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 25.0782\n", + "Epoch 700/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 25.0579\n", + "Epoch 701/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 25.0376\n", + "Epoch 702/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 25.0173\n", + "Epoch 703/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.9970\n", + "Epoch 704/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 24.9767\n", + "Epoch 705/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 24.9565\n", + "Epoch 706/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 24.9362\n", + "Epoch 707/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.9160\n", + "Epoch 708/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.8957\n", + "Epoch 709/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 24.8755\n", + "Epoch 710/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.8553\n", + "Epoch 711/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.8351\n", + "Epoch 712/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 24.8149\n", + "Epoch 713/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.7947\n", + "Epoch 714/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.7746\n", + "Epoch 715/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 24.7544\n", + "Epoch 716/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 24.7343\n", + "Epoch 717/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.7141\n", + "Epoch 718/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.6940\n", + "Epoch 719/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.6739\n", + "Epoch 720/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.6538\n", + "Epoch 721/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.6337\n", + "Epoch 722/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.6136\n", + "Epoch 723/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.5936\n", + "Epoch 724/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.5735\n", + "Epoch 725/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.5535\n", + "Epoch 726/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.5335\n", + "Epoch 727/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.5134\n", + "Epoch 728/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.4934\n", + "Epoch 729/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.4734\n", + "Epoch 730/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.4535\n", + "Epoch 731/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 24.4335\n", + "Epoch 732/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.4135\n", + "Epoch 733/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.3936\n", + "Epoch 734/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 24.3737\n", + "Epoch 735/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.3537\n", + "Epoch 736/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.3338\n", + "Epoch 737/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.3139\n", + "Epoch 738/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 24.2941\n", + "Epoch 739/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 24.2742\n", + "Epoch 740/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.2543\n", + "Epoch 741/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.2345\n", + "Epoch 742/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.2147\n", + "Epoch 743/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 24.1949\n", + "Epoch 744/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.1751\n", + "Epoch 745/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.1553\n", + "Epoch 746/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.1355\n", + "Epoch 747/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 24.1157\n", + "Epoch 748/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 24.0960\n", + "Epoch 749/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 24.0762\n", + "Epoch 750/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.0565\n", + "Epoch 751/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 24.0368\n", + "Epoch 752/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 24.0171\n", + "Epoch 753/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.9974\n", + "Epoch 754/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.9777\n", + "Epoch 755/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.9581\n", + "Epoch 756/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.9384\n", + "Epoch 757/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.9188\n", + "Epoch 758/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.8992\n", + "Epoch 759/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 23.8796\n", + "Epoch 760/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.8600\n", + "Epoch 761/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.8404\n", + "Epoch 762/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 23.8208\n", + "Epoch 763/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.8013\n", + "Epoch 764/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 23.7817\n", + "Epoch 765/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.7622\n", + "Epoch 766/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 23.7427\n", + "Epoch 767/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 23.7232\n", + "Epoch 768/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.7037\n", + "Epoch 769/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.6842\n", + "Epoch 770/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.6648\n", + "Epoch 771/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 23.6453\n", + "Epoch 772/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.6259\n", + "Epoch 773/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.6065\n", + "Epoch 774/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 23.5871\n", + "Epoch 775/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 23.5677\n", + "Epoch 776/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 23.5483\n", + "Epoch 777/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.5289\n", + "Epoch 778/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.5096\n", + "Epoch 779/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 23.4902\n", + "Epoch 780/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 23.4709\n", + "Epoch 781/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.4516\n", + "Epoch 782/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.4323\n", + "Epoch 783/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.4130\n", + "Epoch 784/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 23.3938\n", + "Epoch 785/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.3745\n", + "Epoch 786/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 23.3553\n", + "Epoch 787/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.3360\n", + "Epoch 788/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.3168\n", + "Epoch 789/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 23.2976\n", + "Epoch 790/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.2785\n", + "Epoch 791/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.2593\n", + "Epoch 792/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.2401\n", + "Epoch 793/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 23.2210\n", + "Epoch 794/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 23.2019\n", + "Epoch 795/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.1827\n", + "Epoch 796/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.1636\n", + "Epoch 797/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.1446\n", + "Epoch 798/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 23.1255\n", + "Epoch 799/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 23.1064\n", + "Epoch 800/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 23.0874\n", + "Epoch 801/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.0683\n", + "Epoch 802/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.0493\n", + "Epoch 803/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.0303\n", + "Epoch 804/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 23.0113\n", + "Epoch 805/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.9924\n", + "Epoch 806/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.9734\n", + "Epoch 807/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.9545\n", + "Epoch 808/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 22.9355\n", + "Epoch 809/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.9166\n", + "Epoch 810/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.8977\n", + "Epoch 811/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 22.8788\n", + "Epoch 812/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.8599\n", + "Epoch 813/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.8411\n", + "Epoch 814/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 22.8222\n", + "Epoch 815/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.8034\n", + "Epoch 816/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.7846\n", + "Epoch 817/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.7658\n", + "Epoch 818/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.7470\n", + "Epoch 819/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.7282\n", + "Epoch 820/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.7094\n", + "Epoch 821/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.6907\n", + "Epoch 822/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.6719\n", + "Epoch 823/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.6532\n", + "Epoch 824/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 22.6345\n", + "Epoch 825/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.6158\n", + "Epoch 826/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.5971\n", + "Epoch 827/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.5785\n", + "Epoch 828/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.5598\n", + "Epoch 829/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 22.5412\n", + "Epoch 830/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.5226\n", + "Epoch 831/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 22.5040\n", + "Epoch 832/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.4854\n", + "Epoch 833/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 22.4668\n", + "Epoch 834/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.4482\n", + "Epoch 835/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 22.4297\n", + "Epoch 836/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 22.4111\n", + "Epoch 837/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 22.3926\n", + "Epoch 838/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 22.3741\n", + "Epoch 839/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 22.3556\n", + "Epoch 840/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.3371\n", + "Epoch 841/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 22.3187\n", + "Epoch 842/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 22.3002\n", + "Epoch 843/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 22.2818\n", + "Epoch 844/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 22.2633\n", + "Epoch 845/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 22.2449\n", + "Epoch 846/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 22.2265\n", + "Epoch 847/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 22.2082\n", + "Epoch 848/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 22.1898\n", + "Epoch 849/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 22.1714\n", + "Epoch 850/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 22.1531\n", + "Epoch 851/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 22.1348\n", + "Epoch 852/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 22.1164\n", + "Epoch 853/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 22.0982\n", + "Epoch 854/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 22.0799\n", + "Epoch 855/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 22.0616\n", + "Epoch 856/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 22.0433\n", + "Epoch 857/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 22.0251\n", + "Epoch 858/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 22.0069\n", + "Epoch 859/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 21.9887\n", + "Epoch 860/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 21.9705\n", + "Epoch 861/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 21.9523\n", + "Epoch 862/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 21.9341\n", + "Epoch 863/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 21.9159\n", + "Epoch 864/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 21.8978\n", + "Epoch 865/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 21.8797\n", + "Epoch 866/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 21.8616\n", + "Epoch 867/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 21.8435\n", + "Epoch 868/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 21.8254\n", + "Epoch 869/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 21.8073\n", + "Epoch 870/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.7892\n", + "Epoch 871/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.7712\n", + "Epoch 872/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 21.7532\n", + "Epoch 873/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 21.7351\n", + "Epoch 874/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 21.7171\n", + "Epoch 875/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 21.6991\n", + "Epoch 876/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 21.6812\n", + "Epoch 877/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 21.6632\n", + "Epoch 878/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 21.6453\n", + "Epoch 879/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 21.6273\n", + "Epoch 880/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 21.6094\n", + "Epoch 881/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 21.5915\n", + "Epoch 882/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.5736\n", + "Epoch 883/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 21.5557\n", + "Epoch 884/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 21.5379\n", + "Epoch 885/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.5200\n", + "Epoch 886/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.5022\n", + "Epoch 887/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 21.4843\n", + "Epoch 888/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.4665\n", + "Epoch 889/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 21.4487\n", + "Epoch 890/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 21.4310\n", + "Epoch 891/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 21.4132\n", + "Epoch 892/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.3954\n", + "Epoch 893/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.3777\n", + "Epoch 894/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.3600\n", + "Epoch 895/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.3422\n", + "Epoch 896/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.3245\n", + "Epoch 897/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.3069\n", + "Epoch 898/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2892\n", + "Epoch 899/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2715\n", + "Epoch 900/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 21.2539\n", + "Epoch 901/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.2363\n", + "Epoch 902/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 21.2186\n", + "Epoch 903/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2010\n", + "Epoch 904/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.1834\n", + "Epoch 905/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 21.1659\n", + "Epoch 906/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.1483\n", + "Epoch 907/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.1308\n", + "Epoch 908/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 21.1132\n", + "Epoch 909/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 21.0957\n", + "Epoch 910/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 21.0782\n", + "Epoch 911/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 21.0607\n", + "Epoch 912/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.0432\n", + "Epoch 913/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 21.0257\n", + "Epoch 914/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 21.0083\n", + "Epoch 915/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 20.9909\n", + "Epoch 916/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.9734\n", + "Epoch 917/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.9560\n", + "Epoch 918/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.9386\n", + "Epoch 919/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.9212\n", + "Epoch 920/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.9039\n", + "Epoch 921/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.8865\n", + "Epoch 922/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.8692\n", + "Epoch 923/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 20.8518\n", + "Epoch 924/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.8345\n", + "Epoch 925/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.8172\n", + "Epoch 926/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.7999\n", + "Epoch 927/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 20.7826\n", + "Epoch 928/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 20.7654\n", + "Epoch 929/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 20.7481\n", + "Epoch 930/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 20.7309\n", + "Epoch 931/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 20.7136\n", + "Epoch 932/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.6964\n", + "Epoch 933/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.6792\n", + "Epoch 934/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.6621\n", + "Epoch 935/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.6449\n", + "Epoch 936/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 20.6277\n", + "Epoch 937/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.6106\n", + "Epoch 938/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.5934\n", + "Epoch 939/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.5763\n", + "Epoch 940/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.5592\n", + "Epoch 941/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.5421\n", + "Epoch 942/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.5251\n", + "Epoch 943/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 20.5080\n", + "Epoch 944/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.4909\n", + "Epoch 945/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.4739\n", + "Epoch 946/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.4569\n", + "Epoch 947/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 20.4399\n", + "Epoch 948/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 20.4229\n", + "Epoch 949/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.4059\n", + "Epoch 950/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.3889\n", + "Epoch 951/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.3719\n", + "Epoch 952/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.3550\n", + "Epoch 953/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.3381\n", + "Epoch 954/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.3211\n", + "Epoch 955/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.3042\n", + "Epoch 956/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.2873\n", + "Epoch 957/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.2705\n", + "Epoch 958/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.2536\n", + "Epoch 959/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.2367\n", + "Epoch 960/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.2199\n", + "Epoch 961/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.2031\n", + "Epoch 962/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.1863\n", + "Epoch 963/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.1695\n", + "Epoch 964/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.1527\n", + "Epoch 965/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 20.1359\n", + "Epoch 966/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 20.1191\n", + "Epoch 967/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.1024\n", + "Epoch 968/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 20.0856\n", + "Epoch 969/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.0689\n", + "Epoch 970/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.0522\n", + "Epoch 971/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.0355\n", + "Epoch 972/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 20.0188\n", + "Epoch 973/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.0021\n", + "Epoch 974/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.9855\n", + "Epoch 975/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.9688\n", + "Epoch 976/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.9522\n", + "Epoch 977/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.9356\n", + "Epoch 978/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 19.9190\n", + "Epoch 979/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.9024\n", + "Epoch 980/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.8858\n", + "Epoch 981/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 19.8692\n", + "Epoch 982/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.8527\n", + "Epoch 983/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 19.8361\n", + "Epoch 984/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.8196\n", + "Epoch 985/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.8031\n", + "Epoch 986/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.7866\n", + "Epoch 987/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.7701\n", + "Epoch 988/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 19.7536\n", + "Epoch 989/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.7371\n", + "Epoch 990/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.7207\n", + "Epoch 991/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 19.7042\n", + "Epoch 992/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.6878\n", + "Epoch 993/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.6714\n", + "Epoch 994/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.6550\n", + "Epoch 995/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 19.6386\n", + "Epoch 996/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 19.6222\n", + "Epoch 997/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 19.6058\n", + "Epoch 998/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.5895\n", + "Epoch 999/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.5731\n", + "Epoch 1000/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 19.5568\n", + "Epoch 1000/1000\n", + " - loss: 19.5568\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.5568\n", + "Restoring model weights from the end of the best epoch: 1000.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# обучение AE1\n", + "patience = 300\n", + "ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(data,'out/AE1.h5','out/AE1_ire_th.txt',\n", + "1000, True, patience)" + ] + }, + { + "cell_type": "markdown", + "id": "ae9e6816-d300-455a-a4ee-77e4911e02f5", + "metadata": { + "id": "ae9e6816-d300-455a-a4ee-77e4911e02f5" + }, + "source": [ + "### 4) Зафиксировали ошибку MSE, на которой обучение завершилось. Построили график ошибки реконструкции обучающей выборки. Зафиксировали порог ошибки реконструкции – порог обнаружения аномалий." + ] + }, + { + "cell_type": "markdown", + "source": [ + "Ошибка MSE_AE1 = 19.5568" + ], + "metadata": { + "id": "Np8zquNSgtO9" + }, + "id": "Np8zquNSgtO9" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb7eeae8-f478-4295-b6de-b5790b7861f2", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 725 + }, + "id": "fb7eeae8-f478-4295-b6de-b5790b7861f2", + "outputId": "e77d7472-ae81-478b-ac72-a45e1c3165ca" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAALXCAYAAACdJe4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwDxJREFUeJzs3XmcTeUfwPHvncVYh5gYO0kRKZIWZSlLSaWoSIUiRSGpaCOltFDSrkILaZWioqJUhGSLFpJ9G8tYhtnu+f3x/M6c5Z5zl5l73Jnxeb9e9zVzzz333Oeee5bn+T6bT9M0TQAAAAAAAADAA3GxTgAAAAAAAACA4osAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAACiU1q1bJwMGDJAzzjhDypUrJz6fL+/x33//xTp5J6QpU6bk/Qa9e/c+rp9t/v0BAABQtBCABACgEGnTpk1ekGXUqFGu65mDMfZHfHy8VKhQQerXry/XXXedvPnmm3L48OF8pSHSR7SCUrNmzZKmTZvKq6++KuvWrYso/QDw7bffWq5NDRs2jHgbo0aNyve1sE6dOkG3vX37dvn888/l4Ycflssuu0wqVapEJQsAoFhLiHUCAABAdPn9fklPT5f09HRZv369fPzxxzJixAh544035Jprrol18kI6fPiw9O7dWzIzM0VEpGrVqnLRRRfJySefnNf6LTk5OZZJLJBRo0bJY489JiIiI0eODBpoBgqrOnXqyKZNm0REZOPGjSEDbsfb1KlTLc///PNPWbJkibRo0SJGKTJUq1ZNduzYEetkAABwXBGABACgiOvSpYtUr14977nf75e0tDRZtGiRbN26VURE0tLSpFu3bvLxxx9HFIQ899xzIyqwn3/++eEn3MWXX34p+/fvFxGRRo0aydKlS6VUqVIF3i6AE8OhQ4fk008/DVg+derUfAcgq1WrFtG1s1KlSq6vEXwEAJyICEACAFDEDR48WNq0aROw3O/3y9SpU+XOO++UzMxM8fv9cuedd0rHjh2ldOnSYW27U6dOx72F3vLly/P+79GjB8HHQqR3797HfexHnaZpMflcFD0ff/yxZGRkiIhIqVKl5OjRoyIi8sEHH8jzzz8vJUqUiHib9evXl5deeilqaSxZsqScffbZcu6558q5554rVapUkY4dO0Zt+wAAFDaMAQkAQDEVFxcnffr0kWeeeSZv2a5du2TmzJmxS1QY9NaPIqr7NQBEwtz9+oEHHpAqVaqIiMi+ffvkiy++iFWy8ixfvlwOHTokixYtkhdffFFuvvlmOe2002KdLAAAPEUAEgCAYq5///5SsmTJvOc//vhjDFMTWnZ2dt7/cXFkVQCE77///su7xvl8PunVq5f06NEj73X72JCx0LRpU0lIoCMaAODEQq4eAIBiLikpyTID7Pbt22OYGmfm2WbNAYI+ffoEzC47ZcoUx20cPnxYXnzxRenYsaPUqFFDSpYsKSeddJI0btxY7rrrLvn111/DSov5s3QrV66UwYMHS+PGjaVixYri8/mkS5cuEX1HfXZxfQIaEZHHHnssrNnEe/fuHfD9Dxw4IBMmTJBWrVpJ9erVJSEhQXw+nxw4cMDy3t27d8vkyZOlV69e0rRpU6lYsaIkJiZKhQoVpEGDBtKnTx/55ptvwvoOU6ZMCTnj+YIFC/LWMQ8N8P3330v37t3llFNOkZIlS0qlSpWkVatW8tJLL1mCzm6cfhe7OnXqBMwivHXrVnnkkUfkrLPOkgoVKkiZMmWkQYMGcvfdd+dNohKuefPmSffu3aVWrVpSsmRJqVq1qlx88cXy8ssvy5EjR0TEeixHa/iCtLQ0ee6556Rdu3ZSrVo1KVmyZN5v2KhRI+nWrZuMHz9eNm7cGNb2vvvuO7njjjukUaNGUrFiRUlKSpJq1apJx44d5aWXXsrrsmz333//5X03876rW7eu43G8YMGCaHz9iLzzzjt53fUvuugiqVOnjtx88815r3/11Veye/fu454uAABOdFS9AQBwAjCPo3js2LEYpsQbX375pfTr10927txpWZ6ZmSkHDhyQP/74Q15++WW58cYbZdKkSWGPgSmiAkpPPPGE5ObmRjvZ+fbzzz9Ljx49ZMuWLUHXe/HFF2Xo0KGOaddnSv/rr79kypQpcskll8iHH34YdPKM/MjKypK77rpLJk2aZFmemZkpCxculIULF8rkyZPlm2++kZSUlKh+9syZM6V3796Snp5uWf7XX3/JX3/9JW+99ZZ89NFHcsUVV4T8Drfddpu89957luU7d+6UnTt3yk8//SQvv/yyfPbZZ1FNv4jI559/Ln369LEMTaDTf8O1a9fKJ598IuPHj8+beMrJli1b5JZbbnEMDO7YsUN27Nghc+fOlaeeeko++OADufjii6P5VY6Ld955J+9/PfDYrFkzadSokfzxxx+Sk5Mj06ZNkyFDhsQohQAAnJgIQAIAcAIwt3rUx0MrTFq0aCEDBw4UEdU6688//xQRkUsvvVQaNGhgWdfcmlNEZMaMGdKzZ8+8IFt8fLxcdNFFcuqpp8rhw4dl4cKFed9/2rRpsnHjRvn+++8t3dLdPPvss3ktFuvVqyctWrSQ0qVLy3///SeJiYkRfcdrrrlGGjduLEuWLJGlS5eKiPss48FmE1+/fr0MGTJE0tPTpVy5ctKqVSupVq2a7N+/P6B7/fbt2/P2yymnnCINGzaUk08+WUqWLCkHDhyQ1atXyx9//CEiqoViu3btZPHixZKUlBTRdwvm9ttvl6lTp0pcXJycd9550qBBA/H7/bJ48WL566+/RESNiXfLLbfInDlzova53377rdxxxx2Sm5srtWrVkgsuuECSk5Nl48aNsmDBAsnJyZGjR4/K9ddfL2vWrJG6deu6bqtHjx6WWZUrVqwobdq0kYoVK8qWLVvkhx9+kHXr1skVV1whV111VdS+w7Jly6Rbt26Sk5MjIqoi4fzzz5c6depIUlKSHDx4UDZs2CCrV6/Om3TFzbp16+TSSy/Nm4HZ5/NJs2bN5IwzzpBSpUrJtm3b5Mcff5RDhw7J9u3bpX379vLVV19J27Zt87aRnJycd56+8847cujQIRERueWWW6RcuXIBn1m9evWo7Idw/fTTT7JhwwYRUS2/r7vuurzXbr75Zhk+fLiIqG7YBCABADjONAAAUGi0bt1aExFNRLSRI0e6rqevIyLa/Pnzg27zr7/+sqz/0ksvRSUNXunVq1fe50+ePDnouuvXr9fKli2bt36LFi20f/75x7JObm6uNm7cOC0uLi5vvbvvvtt1m+Z9lZCQoJUvX1777LPPAtY7duxYfr6eNnLkyIj3r3mfJCQkaCKiDRw4UDt06JBlvaysLC03Nzfv+VtvvaVNnDhR27p1q+u2V65cqTVv3jxv+48//rjrupMnT85br1evXo7rzJ8/P2+dpKQkTUS0c889V1u3bp1lPb/fr73wwguW/f3DDz+4frZ5PTe1a9e2fHaZMmW0d999V/P7/Zb11qxZo1WvXj1v3T59+rhu880337R89r333hvw2+/atUu7/PLLLd85GudPly5d8rbVtWtXbd++fY7rHT16VJs9e7bWv39/x9cPHz6sNWzYMG9bl19+ubZ+/fqA9dLT07U777wzb72qVatqBw4ccNymeV9v3Lgx398xmvr27ZuXpm7dulle27Jli+UasHLlypDbM5+rrVu39ijVysaNGy3HWWHZpwAARAstIAEAKMZycnJk8ODBec+Tk5Ole/fuYb9/zpw5kpaWFvb6o0ePlooVK0aUxoIYPXq0HD58WERETj31VJk7d66UL1/esk5cXJwMHTpUfD6fDB06VEREXn75ZbnnnnuCtnoTEfH7/TJr1ixp1apVwGvRbCUYiZycHOnbt6+89NJLAa/ZW2XeeuutIbfXpEkT+fbbb6VBgwayc+dOeeWVV2TEiBESHx9f4LRmZmZK/fr15fvvv5eyZctaXvP5fDJ48GD56aef5OOPPxYRkenTpzvu6/zIysqSmTNnymWXXRbwWqNGjeT111+Xzp07i4jIRx99JG+88UbAxCC5ubkycuTIvOf9+/eX5557LmB7lStXlpkzZ8pFF12U17o1GhYuXCgi6libMmVKwD7UlSxZUjp16iSdOnVyfH38+PGybt06EVEtcT/++GPHCZ6Sk5PllVdekYyMDJk6dars2LFDXnvtNXnggQei9I28c/ToUfnwww/znpvHfRQRqVGjhrRp00a+//57EVGtIMeNGxf29v/55x+56667wl7/5ptvlvPOOy/s9QEAKO4IQAIAUMz4/X5JS0uTn3/+WcaOHStLliwREZGEhAR5++23Ixrjb+nSpREFVIYNG3bcApAHDhyQGTNm5D1/5plnAoKPZoMHD5a33npL/vjjD/H7/fLGG2/IU089FfQzunXrFrWAWLSULFlSnnnmmahus3z58nLNNdfIq6++Kjt27JC1a9fKmWeeGZVtjx071jVwJqKCpHoAUj9Wo6Fz586OwUddp06dJDU1VXbu3CmHDx+WdevWBXznr7/+WrZt2yYiImXKlJGxY8e6bq9EiRLy3HPPSevWraPzBUTk4MGDIiJSunTpoPswmOzs7LxgdVJSkrz22mshZ5d/8skn8yZzef/994tEAHLmzJl5+6tSpUpy+eWXB6xz88035wUg33//fXn66afDno16+/bt8vLLL4ednubNmxOABADAhAAkAABFnHmMNjenn366jBs3LuRkG0XJL7/8IpmZmSIikpKSIldeeWXQ9ePi4uTWW2+Ve++9V0RE5s+fH/IzImkterx06NBBTjrppIjft3v3blm8eLGsW7dO9u/fL0eOHMmbLVhEjTeoW7FiRVQCkCVLlgz5uzRt2jTvf33m6mgwj//nxOfzyVlnnZU3cdF///0X8J3Nk7VcccUVUqFChaDbbNWqldSqVUs2b96crzTb1axZU/7991/Zv3+/zJgxQ2644YaIt7Fs2bK8WZ8vvfRSqVy5csj3VKtWTRo0aCDr1q2TNWvWSHp6etDgfmEwderUvP+7d+/uOEZrt27dZODAgZKRkSG7du2Sb775plhdEwEAKMwIQAIAUMxVqVJF3nnnHcfJTkIZOXKkjBo1KvqJioLff/897/8WLVqE1ZKpZcuWlvdrmiY+n891/XPOOadgifRApGlau3atPPDAA/LVV1+FPZN3JN3ugzn99NNDTtZjbpGrt2CLhnACqKE+e8WKFXn/h9uarUWLFlELQF5//fV5rS579OiRF4Rs27ZtWIFEEZFFixbl/b9169awuxEfOHBAREQ0TZOtW7cW6gDk9u3b5dtvv817bu9+rStbtqx06dJFpk2bJiIqaBluALJ169aOs4cDAIDwEIAEAKCI69Kli2W22b1798qGDRvyuk7v2rVLLr74Yvnkk0/yxrwrDvbs2ZP3f+3atcN6T506dfL+z8rKkkOHDklycrLr+ieffHK+0+eVSNL0zTffyNVXX53XUjRc+uzGBRVO0MocoNRne47FZ2dnZwe8bj7GatasGdbn1qhRI6z1wvHwww/LggULZPHixaJpmnz22Wfy2WefiYhI/fr15eKLL5ZLL71UrrzySsdZqEUkbwZ4EZFVq1bJqlWrIk7H/v378/cFjpP33nsvL7hev379oMHim2++OS8AOWvWLNm/f3++WhQDAIDIBB8ABgAAFHqDBw+Wl156Ke8xffp0WbJkiaxcuVLOOussEVHBth49esiGDRtinNro0SefEVHj84XDvl6oQFupUqUiT5jHwk3Tnj175IYbbsgLPtauXVueeuop+emnn2T79u2SkZEhfr9fNE0TTdMsk634/f6opDVY61KvReOzzcdY6dKlw3pPfsdqdFKmTBn54Ycf5Nlnn7UEz0XUpChvv/229OzZU1JTU+X++++Xo0ePBmwjPT29wOmIZmDYC+bu1zfddFPQddu3by+pqakioiZJMo8jCwAAvEMAEgCAYqpJkyYyd+7cvNaRhw8flr59+8Y4VdFjDvQcOXIkrPfY13NrNVYcTJo0KS/4dNZZZ8mqVatk+PDh0rJlS6lataqUKlXKEqSLVqvH4sR8jGVkZIT1nnCPxXCVKFFChg0bJv/++6+sWLFCXnzxRenevbul1XNGRoY8++yz0rZt24AgpDnoPmjQoLyAcySPNm3aRPU7RdOyZctk7dq1ec9HjhwpPp/P9ZGQkJA37qeINXgJAAC8QwASAIBirHLlyjJx4sS85wsWLJDZs2fHMEXRY+6KHO6Ye+ZJTkqUKFGsA5Dfffdd3v8PP/xw0K7mIiKbNm3yOklFTkpKSt7/W7duDes94a4XKX3SnLvvvlumT58uW7duleXLl0ufPn3y1vn1118DZmquUqVK3v/mwFtxUdAA4uLFi+Xvv/+OUmoAAIAbxoAEAKCYu+aaa6Rly5by888/i4gKRhWHmV/NsycvWbJEcnNzJT4+Puh7fvnlF8v7Y9FF+Hh9pnnsv1ATsuTm5uYdHzCcffbZeYHcX3/9Naz3LFmyxMskWTRt2lTefvttiY+PlzfffFNE1LiGw4YNy1vHPB7iL7/8EnLipXDFsnu9LisrS6ZPn573/PTTTw85U7nun3/+kX379omICmKOGTPGiyQCAID/owUkAAAnAPNM1itWrJBZs2bFLjFRcuGFF0pSUpKIqPEOQ7Xs9Pv9Mnny5Lznl1xyiafpc1OyZMm8/50mPomWuDgjmxeq+/DMmTOLZeu4gjJ3PZ49e3bI8RR/+umnmLQkveqqq/L+37Vrl+W1li1b5gXltm7dKl988UVUPvN4HcfBzJ49W/bu3SsiIgkJCfLjjz/K4sWLw3o8+OCDedt59913ozbuKQAAcEYAEgCAE0C7du3kwgsvzHv+xBNPxDA10VGhQgW54YYb8p7fd999QccxfOmll2T16tUiooJzt99+u+dpdFKpUqW8/7dt2+bZ55xyyil5/wcLOO/Zs0fuuecez9JRlF122WVSrVo1EVFjqJqDVnZZWVmWlocFlZmZaZkEJ5gtW7bk/V+5cmXLa0lJSTJkyJC85wMGDIjouLMHNHXH6zgOxtz9un379gHfPZgePXrkBem3bNki8+fPj3r6AACAgQAkAAAniEcffTTv/6VLl8rXX38dw9REx6OPPpo3Ucjff/8tHTt2lH///deyjt/vlwkTJsjQoUPzlg0cODBgVuHjpXHjxnn/z507NyqzFDu58sor8/5/6qmn5L333gtYZ/ny5dK6dWvZsmVL2DOJn0gSEhIsrYdfeeUVeeCBByQrK8uy3p49e6Rr167y66+/5rXKLagdO3ZIzZo1ZdiwYbJs2TLX9ebNm2eZwfzyyy8PWOfee++VRo0aiYgKFjZv3lw++ugj11Z/aWlp8sYbb0izZs3k2WefdVzHfBx/9NFHYX2nKVOmWCaEMY/JGqm0tDSZM2dO3vOePXtG9P5q1apJ27Zt854zGQ0AAN5iDEgAAE4QHTt2lPPOOy9vLLvHH39cLrvssqDvmTNnjqSlpYX9GaVLl5ZnnnmmQOmMRL169eTNN9+Unj17Sm5urixatEhOP/10ufjii6VevXpy+PBhWbhwoaWF1vnnn39c02jXokULqVmzpmzZskV27NghDRo0kA4dOkhKSkreuHrnnnuupXVnfvTq1UvGjRsnf//9t2RmZsrNN98sTz75pJx11llSsmRJWbNmTV5g66yzzpKOHTvGdL8UVn379pXZs2fL559/LiIizzzzjLz11lvSpk0bqVixomzdulXmz58vx44dk1NOOUWuvvpqef7550XE2g0+Pw4cOCDjxo2TcePGScWKFaVp06ZSvXp1KVmypOzevVtWrVplCbifdtppMnjw4IDtlC1bVmbNmiXt2rWTjRs3ys6dO+X666+XlJQUOf/88yU1NVU0TZN9+/bJ2rVr5Z9//skLTroNVdC1a1d5/fXXRUQFZn/77Tdp1qyZlC5dOm+dO++8U+rVq1egfeBm2rRpeV2/y5QpI126dIl4Gz179swb4/PTTz+VV155xTLzudk///wjd911V0TbHzFihGW2ct1rr70mr732mmWZPajdqVMnKVGihGXZHXfcIXfccUdEaQAAoLAgAAkAwAnk0UcfzZuA5pdffpHvvvtOLr30Utf1ly5dKkuXLg17++XLlz/uQawbbrhBypQpI3379pVdu3ZJTk6OzJ8/37FLZY8ePeTNN9+0jF93vMXFxckrr7wiXbt2laysLNm5c6e88847lnV69epV4ABkUlKSfPHFF3L55ZfnBanWrVsn69ats6zXsmVLmTFjhkyaNKlAn1dc+Xw+mTFjhvTu3Vs++OADERHZu3evfPLJJ5b1GjZsKJ999pnltww183gwiYmJkpSUJJmZmSIism/fPsvM5nZt2rSR6dOnu7ZkPeWUU2TZsmVyxx13yMcffyyapklaWpp8+eWXrtusUKGC6wRG7du3lx49euRNAvPrr78GTNTTuXNnzwKQ5haLXbp0yVcL3q5du8qAAQPk2LFjcuTIEfn444+ld+/ejutu3749YIbxUPr27esYgNy5c6esXLky6Hvt56n+PgAAiiq6YAMAcALp1KmTNG/ePO/56NGjY5ia6OncubOsX79eJkyYIO3bt5dq1apJiRIlpHz58tKwYUMZMGCALF68WKZNm2ZpoRXL9C5btkz69+8vjRo1knLlynkyq/Bpp50mv//+uzz55JPSvHlzKVeunCQlJUnt2rWlc+fOMm3aNPnhhx8cgyQwJCUlyfTp0+Wbb76R6667TmrUqCElSpSQKlWqSMuWLWXixImydOlSOf300/NmVhaRsGdkdlK9enXZu3evzJo1S+677z655JJLpFatWlKqVCmJj4+XChUqyFlnnSV9+/aVefPmyfz58yU1NTXoNitWrCgffvihrFq1Sh588EG58MILpWrVqlKiRAkpWbKkpKamykUXXSSDBg2SWbNmyY4dO6RXr16u23v//ffl/fffl86dO0uNGjWOW2B/zZo1snz58rznkXa/1iUnJ1uGKpgyZUpBkwYAAFz4NE3TYp0IAAAAoDho2bKl/PLLLyIisnjxYjnvvPNinCIAAIDYIwAJAAAARMGmTZukXr16kpubKyVKlJD09PSYdvcHAAAoLOiCDQAAABSQpmkyePBgyc3NFRGRa665huAjAADA/xGABAAAAIJ49NFHZcKECa4zwv/3339yzTXX5M2UHR8fL8OGDTueSQQAACjUmAUbAAAACGLz5s3y+OOPy7Bhw+TMM8+UBg0aSPny5eXw4cPy559/yu+//57X8lFE5OGHH7ZM9gQAAHCiIwAJAAAAhCEnJ0d+//13+f333x1fL1WqlIwePZrWjwAAADZMQgMAAAAEceDAAfn888/l+++/lz/++EP27NkjaWlpkpubKxUrVpTTTz9dLr30UrntttukatWqsU4uAABAoXNCBiD9fr9s375dypUrJz6fL9bJAQAAAAAAAIoUTdPk0KFDUq1aNYmLCz7NzAnZBXv79u1Ss2bNWCcDAAAAAAAAKNK2bNkiNWrUCLrOCRmALFeunIioHZScnBzj1ERXdna2zJ07Vzp06CCJiYmxTg5wQuI8BGKP8xCILc5BIPY4D4HYK+7n4cGDB6VmzZp5cbZgTsgApN7tOjk5uVgGIEuXLi3JycnF8uAGigLOQyD2OA+B2OIcBGKP8xCIvRPlPAxneMPgHbQBAAAAAAAAoAAIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOCZhFgnoKjRNE2ys7PF7/fHOimOsrOzJSEhQY4dOya5ubmxTs4JIT4+XhITE2OdDAAAAAAAgEKJAGSYsrKyZPfu3ZKRkVGoA3uapklqaqps2bJFfD5frJNzwkhKSpKUlBRJTk6OdVIAAAAAAAAKFQKQYcjIyJAtW7ZIfHy8nHTSSVKqVCmJj48vlAE+v98vhw8flrJly0pcHD3svaa3iE1PT5dt27aJiBCEBAAAAAAAMCEAGYa0tDRJTEyU2rVrS3x8fKyTE5Tf75esrCwpWbIkAcjjpFSpUlKuXDnZunWrpKWlEYAEAAAAAAAwIUIVQk5Ojhw5ckQqVqxY6IOPiB2fzyfly5eXzMxMyc7OjnVyAAAAAAAACg0CkCHk5OSIiBrjDwhGn4imMI8RCgAAAAAAcLwRgAxTYRzvEYULxwgAAAAAAEAgApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSERFnTp1xOfzyZQpU/KWTZkyRXw+n+URFxcnycnJ0rRpUxkxYoTs2bPHdZv297o9FixY4P0XBAAAAAAAQL4kxDoBKP7KlCkj3bp1ExE1Q/SmTZtk0aJFsmLFCpk8ebIsXLhQ6tev7/r+jh07SmpqquvrwV4DAAAAAABAbBGAhOdSUlIsLSNFRP744w9p3bq17Nq1S4YMGSKzZ892ff/w4cOlTZs23iYSAAAAAAAAnqALNmKiUaNGMnToUBERmTdvnmRmZsY4RQAAAAAAAPACAUjETJMmTUREJDs7W/bt2xfj1AAAAAAAAMALBCARMwcPHhQRkfj4eElJSYlxagAAAAAAAOAFApCIGX3cx8suu0wSExNjnBoAAAAAAAB4gUlooqF5c5GdO2OdChER8YlIsqaJz+cL7w2pqSLLlnmaJjN9Fuw33nhDpk2bJrVr15YXX3wx6Hvatm3r+lr58uXlwIEDUU4lAAAAAAAAooUAZDTs3CmybVusUyEiKgAZZujxuNm0aZNjQLRFixYyd+5cKV++fND3d+zYUVJTUx1fK126dFTSCAAAAAAAAG8QgIwGl+BYLGgiov2/BWRYgcjjkPYyZcpIt27dREQkMzNT1q1bJytXrpQlS5ZI//795YMPPgj6/uHDh0ubNm08TycAAAAAAACijwBkNBzHLsyhaH6/HDx4UJKTk8UXVziG+ExJSZEpU6ZYln366adyww03yIwZM6RVq1YyYMCA2CQOAAAAAAAAniocESqccK699loZPny4iIg8+uijkp6eHuMUAQAAAAAAwAsEIBEzI0aMkKpVq8revXtl/PjxsU4OAAAAAAAAPEAAEjFTunRpeeSRR0RE5IUXXpD9+/fHOEUAAAAAAACINsaAREz17dtXxo0bJxs2bJDnnntOxowZE7DO2LFjA8aQNLvxxhulQ4cOHqYSAAAAAAAA+UUAEjGVmJgoTzzxhPTo0UMmTpwoQ4cOlUqVKlnW+eabb4Ju4+yzzyYACQAAAAAAUEgRgERU/PfffwHLevfuLb179w753u7du0v37t0DlmuaFoWUAQAAAAAAIJYYAxIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCARFTUqVNHfD6fTJkyJW/ZlClTxOfzWR5xcXGSnJwsTZs2lREjRsiePXtct2l/r9tjwYIFEaVVT1fv3r3z92UBAAAAAAAQtoRYJwDFX5kyZaRbt24iIpKbmyubNm2SRYsWyYoVK2Ty5MmycOFCqV+/vuv7O3bsKKmpqa6v21/z+XwiIqJpWhRSDwAAAAAAgIIgAAnPpaSkWFpGioj88ccf0rp1a9m1a5cMGTJEZs+e7fr+4cOHS5s2bbxNJAAAAAAAADxBF2zERKNGjWTo0KEiIjJv3jzJzMyMcYoAAAAAAADgBQKQiJkmTZqIiEh2drbs27evwNsbNWpUXvdrkcAxJP/777+A9xw5ckRGjBghp556qiQlJUlqaqr06tVLtm3bVuD0AAAAAAAAgC7YiKGDBw+KiEh8fLykpKQUeHtnn3229OrVS6ZOnSoiIr169bK8XrZsWcvz9PR0ufDCC2Xz5s1y8cUXS+PGjWXRokXyzjvvyA8//CArV66U8uXLFzhdAAAAAAAAJzICkIgZfdzHyy67TBITEwu8vS5dukiXLl3yApD2cSftZs6cKR07dpSFCxdKcnKyiIjs379fLrnkElmxYoW88sorMmLEiAKnCwAAAAAA4ERGADIKmjdvLjt37ox1MvJommbpihxMamqqLFu2zOMUGfRZsN944w2ZNm2a1K5dW1588cWg72nbtq3ra+XLl5cDBw7kKy1lypSRyZMn5wUfRUROOukkGT58uHTv3l2+/fZbApAAAAAAAAAFRAAyCnbu3MmYgUFs2rTJMSDaokULmTt3bshuzh07dpTU1FTH10qXLp3vdDVv3lyqVq0asLxhw4YiIvymAAAAAAAAUUAAMgrcgmOxEmkLSK+VKVNGunXrJiIimZmZsm7dOlm5cqUsWbJE+vfvLx988EHQ9w8fPlzatGkT9XTVqlXLcbneIvLYsWNR/0wAAAAAAIATDQHIKDieXZhD8fv9cvDgQUlOTpa4uMIxyXlKSkrAeIyffvqp3HDDDTJjxgxp1aqVDBgw4Linq7DsHwAAAAAAgOKMCAxi4tprr5Xhw4eLiMijjz4q6enpMU4RAAAAAAAAvEAAEjEzYsQIqVq1quzdu1fGjx8fte3qM2rn5OREbZsAAAAAAADIHwKQiJnSpUvLI488IiIiL7zwguzfvz8q261Ro4aIiPzxxx9R2R4AAAAAAADyjzEgEVN9+/aVcePGyYYNG+S5556TMWPGBKwzduzYgDEkzW688Ubp0KFD3vOuXbvKc889J+3atZNLLrlEypUrJyIiTz/9tFSqVCnq3wEAAAAAAADuCEAiphITE+WJJ56QHj16yMSJE2Xo0KEBQcJvvvkm6DbOPvtsSwDy8ccfl7i4OPn0009l5syZkpWVJSIiDz/8MAFIAAAAAACA44wAJKLiv//+C1jWu3dv6d27d8j3du/eXbp37x6wXNO0fKWlZMmS8vTTT8vTTz/t+HqodNWpUyffnw0AAAAAAAArxoAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGAGSYNE2LdRJQyHGMAAAAAAAABCIAGUJcnNpFubm5MU4JCjv9GNGPGQAAAAAAABCADCkxMVESExPl8OHDsU4KCrmjR49KfHy8JCYmxjopAAAAAAAAhQYByBB8Pp+UK1dO0tPT5ejRo7FODgqp3NxcSU9Pl9KlS4vP54t1cgAAAAAAAAqNhFgnoChISUmRo0ePyubNmyU5OVnKlSsn8fHxhTLQ5Pf7JSsrS44dO0ZX4ONA0zTJzMyUffv2id/vl8qVK8c6SQAAAAAAAIUKAcgwxMfHS82aNSUtLU0OHTokBw4ciHWSXGmaJkePHpVSpUoVygBpcVWmTBlJTU2VEiVKxDopAAAAAAAAhQoByDDFx8dLlSpVpHLlypKdnS1+vz/WSXKUnZ0tP/74o7Rq1YqxCI+ThIQESUjgVAIAAAAAAHBC1CRCPp+vULdyi4+Pl5ycHClZsiQBSAAAAAAAAMQcgwQCAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeKZIByNzcXHnkkUekbt26UqpUKalXr548/vjjomlarJMGAAAAAAAAwCQh1gnIj6efflpeffVVmTp1qjRq1EiWLVsmffr0kfLly8ugQYNinTwAAAAAAAAA/1ckA5C//PKLXH311XLFFVeIiEidOnVk+vTpsmTJkhinDAAAAAAAAIBZkQxAXnjhhfLGG2/I33//LaeddpqsXLlSfvrpJxk/frzj+pmZmZKZmZn3/ODBgyIikp2dLdnZ2cclzceL/n2K2/cCihLOQyD2OA+B2OIcBGKP8xCIveJ+HkbyvXxaERw40e/3y4MPPijPPPOMxMfHS25urowZM0ZGjBjhuP6oUaPkscceC1g+bdo0KV26tNfJBQAAAAAAAIqVjIwMufHGGyU9PV2Sk5ODrlskA5AffPCB3HffffLss89Ko0aNZMWKFTJkyBAZP3689OrVK2B9pxaQNWvWlLS0tJA7qKjJzs6WefPmSfv27SUxMTHWyQFOSJyHQOxxHgKxxTkIxB7nIRB7xf08PHjwoKSkpIQVgCySXbDvu+8+GT58uHTv3l1ERM4880zZtGmTPPXUU44ByKSkJElKSgpYnpiYWCwPAJHi/d2AooLzEIg9zkMgtjgHgdjjPARir7ieh5F8pzgP0+GZjIwMiYuzJj0+Pl78fn+MUgQAAAAAAADASZFsAXnllVfKmDFjpFatWtKoUSP5/fffZfz48XLrrbfGOmkAAAAAAAAATIpkAHLixInyyCOPyIABA2T37t1SrVo16d+/vzz66KOxThoAAAAAAAAAkyIZgCxXrpy88MIL8sILL8Q6KQAAAAAAAACCKJJjQAIAAAAAAAAoGghAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAmg8Dh6VOSnn0RycmKdEgAAAAAAECUJsU4AvHH++efLrl27Yp2M4iczUyQjQ6RcOZEETp+o27NHJCtLpEwZkQoVYp0aZ4cOifj9IuXLB13t2LFjUrJkyeOUKABOOA+B2OIcRLGgaSIHD6q8f5kysU5NxDgPgdg7duyY1K5dW3777bdYJyWmiKAUU7t27ZJt27bFOhnFV0ZGrFNQvB05oh6F2eHDsU4BAAAAjqcDB2KdAgBFFBUBBCCLrSpVqsQ6CcWPpols3248r149dmmJNr9fJC7GIzIUhf27Y4faVyIiJUqInHyy66rUNkfJvn2qa35iokjlyrFODYqYgPOwMFzrgMJK09R9TtNEkpNVb48C4l6IPEePqsrlcuVEkpJinZrImBt1lC8vUrZs7NKSD5yHUVQY8xHHI025uSr4npio7g+I2LFjx4jRCAHIYmvx4sWSmJgY62QUL9u2idSoYTxfsUIkJSV/2/rrL5GZM0V69BCpVSsaqcu/W24RefddkYcfFnn88dilY8sW677YujV2aXGSna2CjrorrxT5+GOXVbNlzpw50qlTJ87DgvL51N/sbHWM6M/zKytL5K23VID7qqsKnj4UWpbzcM8ekXbt1LV3+nSR66+PdfJQFB09KjJpksjpp4t07Bjr1KhC59tvq8JgNI7pjz4ytnPwoEh6eoE2d9zuhatWiXzzjcjNN4ukpnr3OSgY/f6dmamC3EWJOe/x+OMid98du7REiDxpFI0dKzJihMg114h8+mmsU6MsWCDSoYNI1aoia9d6N0RAp04iX30lcuyYyHffiZx7rjefU0yZz8MTXSEL3wNhWr/eWht5PNi7XPz9d/631a6dyPDhKgAZS36/Cj6KiDzxRGzTcvCg9Xl2duTb2L9fFUS8yNguWGB9zhAHx180hj6YPFlkwACRq68W+eOPgm8Pwd1/v0iTJiKLF8cuDTk5IhdeKLJunbrmffBB7NKC6BgzRqRRI5F5847v506cKDJ4sCqIbdnivM6GDapgduONqsWIl95/X6RfP5EbbhBZtqzg2ytgwDEm/H6Riy9W15o77oh1aoqeo0dFfvvN+4BgUQs4BhMfH+sURN/u3SJ//hnrVBR+I0aov599VniG47rlFlVm2rxZZMqUgm9v40ZVzrb76ivj/xN8DEMRUeXnRo1E3nkn1ikpcghAIn9imZFYtEikfn2RU05xLwB4wZ4x/+uv/G0nN9do3ffLLwVLU0Ht22d97nVhKRj7/rUHJEM5ckTkjDNEzjpLZOrU6KVLRHVJu/VW67LNm6P7GQhknw390KGCb9NcQJ00qeDbg7t160SefVZk9WqR7t1jlgzfDz+IbNpkLPjnn5ilBVGwb59qsb92rWqFcjw98ID66/erAqiT4cNVMHD6dJEZM7xNT79+xv8vv1zw7RXFAOSBA0Z+4fPPj89n6kOxxNKXX4oMGlSwvIimibRtK9K8ucgjj0QvbU5iFazx4rcqTGOUa1rBy2Rpaapc1bChyJw50UlXcWTPk+7c6b7unj0iw4aJfPiht2kSsZaFC1o2WblSpEEDkdNOE1m61H29/DQSiZaNG9W1b+7c2KVBRAV+164V6dUrtukogghAIjJz54o0barGvvv559ikoWtX9TcrS+SVV7z/vMWLRX76KXotIO1BP7MVK1Sz9uMV4LXPlL5jx/H5XCf2gGM4g3zn5op8/bUKdHzzjZEZ6NMnummbODGwS/iOHeoYPFEdPaq6oG/cGHpdTRP59luR33+P7DP277c+jzQoHUosM1AnAnNrCnMAMD+2bVPDVhw9GvFbffaAo70QgaJlzRrjfy8DAevWqRYfbgEMt1ZQ5qE5vv8++ukyy8w0/o/GmFx79hR8G/mVlSXyxRfWAvT69SKzZwc/Z3fv9j5tZqNHqzEAn31WXZMKem3Lj/R0NQzMxIkiQ4bkfzv79on8+qv6f8yYqCTNVTQqECP18cciJ50k0r9/dLcb7bxIfh05ItKsmUjt2oF5Mb9f5Y9Xrw69nQULjO/03XdRT2ax8d9/1ufmcevtBg4UGTdOtU4/ng0WCjpBZo8e6lqsaWp4DzexvFfcdJO69nXsqLqD26Wni3zyicjevd6loTi16I4BApAI3+rV6mRfsUKd1PlpcnzwYMELf+YgmddjmSxbJnLBBap7z5dfWl/LbwDSnlnWL2Lr16tuW+3aRacW3+8PHcSzByBjkZHW2TN04bTEeOcdkcsvFznnHNXtzSvmTMcZZ6i/mlb4xqk8HjRNBQbvvlvkuutULeljjwV/z8yZIu3bi5x3XmQth+3BercCjD1QGYw5aBCtAGR2dv5mxdy///i2pDlyxBqw8FqwFuqHDoUfwM/NFWnVSrV2y08rHfu1wYuMc3p60a+Q+PprNTSB10Gz/PL7RYYOFWndOrz19WtVfuzcKdKihepq/dZbzuu4Bb4qVLBu53jJT35o3z5rQSqWQ4s89ZQal/eCC9S5dPCg+g06dw5e2eyWp/LKyJGqkH///eqa1KLF8b2uiliD8HpL3O3bVUvz0aPD3wfH8/i05/FCXS/Xrxfp1q1gLXuvu0597htvGJ8/ZowaHiGSCnf776vnTzUttjNiT5miymRbtqjxT83ee0/lj887L3RFsbmSrii2gvbac8+pY8ne4i5YAPKjj4z/I618L4iClOMyM1XFmy7YOVqQe8WePeocfPTR/F2vzb0H7eVYEdUIpVu36I/zrmmqF8SNNwb+9sf7HlDEEYBE+JYssT63Bwc0TY2t9ckn7u+vWlV1nc5vocCufPnobMeNPtaHiMirr1pfy28XbHvhV2/BMXasEZwtSI22iPotWrcWqVRJdQNzU5gCkPZMTziZIL1b9NGjIi+8EPUk5TEHvsyDLsdyf8VK167quNIL5Tk5IqNGBc+I6edRdnZkrSzstZdOrQ7uvlukYsXwA1PmQno0akcPHhQ580yRKlUCM6eaJjJtmnNXzWnT1H684ILjM/TBX3+p62/t2t7WCpu5VdKsWmWkJZzWS1u2iPz7r/p/3LjA17/5RhXE7JVb2dlSa948iXvtNevyffuiu8+//lr9lmecUXjGhMqPyy8XmTVL5NJLnV9fu1bkxRdVd73jYdcu9Xn6cfTddyLPPx/++3v0UL/LhAmRf/bzzxstSYYNU3/tLUvcCmClShn/mwNF0WavvIj0vH7uObV/zGNRm7+TVxMZuBk1Sv3dvl1dr+bMMfKKgwe7v89+DfGydZpTIXP3buP6dLzY85+aps6VGTNUgDTcbrTB7tvRZq9ADNV6eeBAVZ646678VTDbt79/v+q59fDDKl9sz2fn5qrhe6ZNC6yctOfb9fxp164q/2G/x0Tq77/VdcopmBKM+fez90rTx3U/elTiQ00wSQDS3ZIlIvfdp1rTDhxofS2WvcZ09mO1II0xzGM8ilivpfa8TUECkA88oM7Bxx8X+eEHY/mmTaosF0nZyn79P3LEyHP/8kvoRk+ZmWo4pvnzQ3/WggUizzyj0t63r/W1WFZEFEEEIBHo6FGVabbXSthr0Ow3qW+/VRnZbt2cT+SRI9UFbMsWkSefzF/a7BfAgna/2r49eA1wsMzAhg35q7lxyyyb0xFJSxpNU61Tzfvmr79Ut3G/X9XUuClMAchwW0Dm5KjvtnChdbk9Ix3NQog549yokfH/Rx8VnWb4o0er4Kne3SqU335TNecjRxrLDhxQN3an7xysIGPuNhtJ5iicFpAvvaT+hjuJUpzpthdpC1a/X51r5gzNQw+p8y0ry0iLbs4ckZ49Ra69NnASlp491X5cskS1YOjZU7Xy0zO0fr9afuyYus517apqc8PN5GRnq7TqQYp+/dT+27VLtTQqiB07wiu42gvJelpGjlTfaefO8H63YNfhP/4QuewyVeNtm1zG9+670vTll8VnDxpoWvSCsJqmAne5uerYLqytB0MJdc/x+9VYcYMHq1aIx0O/fsaELyIqj+GkSRMVfDE7elQFYzQtfxV6K1YY/5csqf7a80BOBbCcHOvxummTdwF/++enpanC1Nq14d2X7rtP/Z0xQwVnNm+23h/Ms/4ebzk57vm7zZtVBWuvXuq8sweHnALkGRmqZU9B79duv2WwoXWcPP+8Gs7om2/yl461a63Pd+wQefpp47l5fOMpU9TY2E5j0R3PAIo9Txaqq6i5Qi/YWHRu7O85cMCab7Tvj08/FendW92LmzWz3mudApCHDxv5oTvvDJ4WPe/gVvF11VXqOmXvKr5jR/B8ebBhFxIS8v71LVoUPH2FJQB5+LC63nfuXHgq89zG+hXJXwA/I0PdX6LV+8Vehv333/xXsNqPE/P1wZ4PK0gAcvJk439zAPKmm0TuuUedg+Gyp8seiHcr48+apa6LTZuK3H67mkXc3sXezpy/+/pr62vBGlb9+KNIs2YSZ75Gn+AIQMIqN1d1JznzTBXlNwsVgHz4YeN/faB2M/OJHe7AsbNnq9YH+kXQXqAtyFgXa9eK1KolUrOme0udYE2qjx0LzJSEk7l1C0CaMzvmLlyhjBqlCmBt2hg3NHsm2S1d9gu32zgly5er38Ge6Y0mpzEgs7NVgGLCBOM7dO2qusS3ahV8e6FuJMHY95eetoQE1eVY9+qrKsMYzSBkRoYK0ERjJjvd5s1qm8uWiVx/fXjvufpqFRwbPdo494N1XQ1WyC5d2vg/nDEjdfZCnf0YsY/9Eup3OHbMmqmNNAB5993qXLvuOvU8O9sadLRnyO66y/jf3E3dvt7zz6tWFwsXitx2m1r2wAMqY3TJJeozPv1UjY82enR4ab36apVWPfhinvG7IK1e9Otm7drurcA1TaXZHjDS7xnmManss8s7bcue3jvuMDKZ5sCTbezX+GCB1oJ2w16yRAXi7N0Do9HiLRaVGvZAhL0As2ePce96910V5BkxQh2XXvniC/V3wwZ1L3a7P61erQKV5pYg+f19c3JUgN6cR9GH3QgnALljR2DB0qvZQu2zlO7erVpUN2rk3FLYzH6Mvfee6p1ivj4eORL8WIzmcWrflnliGbsnnlAFunfeUS3W7HkqewAyN1cFlM44o+Djhru1/o2kVXBamrp2rFihCr75Yc+LbdggcvbZxnM9+KZp6rq4apUai86+n6PdAvLPP1Ve0WlGdnsFYiT59/wMd2MPphw4EJhnGDrUuI+Zu3WuWWNtbW3/fdPTIxvT8rbb1P3Y3k1aRJ1zehrMwy/99586J+vVcx9z3x70MJcjypXL+9e3YYMkBquUN19L5s0Tuffe4K16nc793Fx1fpl7c7mt62bkSNUKb/ZslYcI9d45c9R9KNxxYPNzzVq50v21bdvUtXb8eOO67/QZegWf368CXU2bGhV5WVmqUc7rr0eeNj0N9s/Kb3DQfo8zXx+CBSALci/Q8xqaphqXiKjj3W28b3tlqT1d9kpgp32Rm6vyyKtWGV3Oc3JUz66PPlITyTlV9gcLzgdrHNC+vcjvv0v8I49IQkHH6CwmCECeSDZsUDUNwWpd/vnHKEANH259LVQAsmxZ99dE1E1Ut2qVaiUZ7KK1a5cKNo0bp8baEQnMdAXLACxerAqJ5s/IzFQ3rLQ09f1yc9VF5777VADlq6+MoKPfH3qW7SpVRK64QmUCOnUSqVMn+M1KJPBGeeiQKoSbMxiR1F7pAYmlS42Cjv2C7FYDFG4LyAsvVL/DFVeEn65IOXXBHj1ada0dMkTdmHJyVMYkHJEEunQ5OWoMznr1rOOg6MdZuXJqvElzN95Jk1SGK1Jr1gS24hRR3Q9GjzYKDdFg/i7hDoZtvmlv3qzOvWDBBrcApKZZz6MdO1QAI5zaX/s29d9B01SrQnNXR5HQrQPt597OncG7Zxw9qs7revXU76UXXmfOVGmwZ3SqVg3++Tr7MWwudHz1lUrXc8+p54sWWbutP/986Na9R44YXWkmTlR/zd8z3LHi9uxRtbzmDN8dd6ht5eS4t2T//nsVrLXTC3F6izIRVcjKzVXX0Nmzra2ejh5VAZVrr7Vu5/XXVeYxK8uaSbUfD8G6kBYkAKlpKgj9/POB3zOcAf+D2bFDBUpOOUW1Eti7V92z8jH5TkTsmfQDB9Q9SW8ZY3/9mWfUda9rV2twW0QVqOfMiW4r9HLlAlq4BjAHUfNTOSiiAnEPPmhdpreaDicA6ZRnyE+XuNxcFcAPVpFm3+6qVcZYY3rrRjf2a+F99wXmOzTN/bjr3VukevXQFQjhcuoB4VaINg/z88knoQOQa9caAZ677lLjeed3GKBIApBZWeo8sKfP3D06v5NT2PPC69dbA/Dbt6uKdXvFgjkvIBL4utN9eds2FZBPT1eVAsH2Xa9eKq944YWBr4XbAvLAgcAx1+3pDodTANLeqOD551ULdpHAhgjmyVicWkDayx/BrjF6hfL06YH72L5tPUj6ySfq/9xckYsuEklJCdwv9kpa8/3Hlu9PdQoKi6jvYS8jjB8v0qWL8/q33SZSrZq1glHTVGX8wIEqIDhjhlo+ebKatNTck8bs6afVJEE33aSOWf19IqoStkYN9+Drvn2qTDJ2bHiTDE2apPah05jlO3cG5nVEVD4nWNfc999XAfd771UtaocMUd/njjus6+nH+tdfG99HHxrkxRdVT5o77rC2BgyX03XSXjkVLvs9bscO47i2lxf371f3h/79RVJTA7tvu7HfZ/Ryp/1YdmvwYi8XmNPl9we2KnfaP273rTVrVE/Op58OzAeIBJ/7wa38kZlpOa7KHM9xdwsxApAngmPH1MX1zDNVKzn7mICHD6vuAw8+aG2GL2INCtkzwvaAkbkrgFPBw77skkuCj0/45ZdGZuG999SFxd599MAB5wzyggWq4Hreeap7nn5hGzxY3bDat7dmCjdtUt3LOnUyMu6bNoVX6JszR40B89VXKjMZ6kZoz4yOHKk+22zHDnUjuvHGwExUMHrmxH6j+OYb54twOAHI3FzjdyhIq8JQ7MfHrl3W7pndu6vfMtzgbCQByAMHVEuExo1VpnPjRmtNtTkAWaOGCrCYM2ejRqlzJyND5M47Je7BB0X8fvFNm6ZuZubZgEXUTaxZM9WKc+ZM63d/6CHj/48/Vjd/PSizdq06JsJtdZSRofaX/fMjra1culTV2NorJcyCFczsXeluuUW1+NO5tbRxawH544/O3WJCjZ9kf93vDz4Ew6RJ6rz+919jHDjd/v2B+zXcgIt9fC57Qczeldte0AnVOtae+czOthZO3WbvNfP7VTfHyy+3ZsTMQfF33lHH9+bNxnfQuzo6SUtT2zUHTg4dUpU2V1yhul3dfrtxPLz9tvuQAXv3quPAfI02BzZFgl+/nQKQTz2lAit79wZvnbNpk3vgwF5psGyZGpbEbWxku7Fj1XG1caMa4zYlRe2bYGPg2WVkiAwYoAqC4QT6J05U92Oz225Thd6zz1bniP3+8eyzxv/28XdvvVWlWW8pHMyePep6YO9xYd//4UwYZU6j/XoU6txct04dy077WU+L/f63b1/gMeYUgIx0XDcRVdnRvr2q8LLntfT02AOQTrOB6ssHDrQGGe33R7feHk7nwbp1quXhjh2BeZdIvPCCOt927Ag8vpwCkPo9omFDY9mff4YOQNrvP1de6R5cCSVUAPKVV9TxvGWL6kp4xRVqTFXzeRgqiBTKkSOBebUNGwKPs19+CSzE24Mp9haQGRnW+/GxYyLNm6sJKCtUUF2Fr75arXP77ereYL5362PFZ2dbr7GaFpg+t2ts167qNzLTv8frr6tr1TXXqHJB9+7GrPM5Oaqyrl8/dX82D6MgovJ5Tp+5caP6DezBhV9/NY4d+/3i4MHA+/Jllznnzex5G3vQ135M6fcWe153797AFvf2YLB+/9G0gLxNDbfglluwavXqwLStXq3uyzt3WisG5861TtalN8S49VaV7tGj1e9q7pWgaer5gQMqkNeqVeDxuH27ESDevFkFKvXx+M3l1Zkznb+D2e23q9951ChrsCg7W6RlS/U55kDp4cOqQYLbddVuyBAVVExPD2zNqB939pbp+/db81fmfLGI+o49eoi8+aZKp9N12qkVs33OgnDZ7wvHjhn7yuk+9sMPaoKn3bvVOelG09zvo/pz+/W+efPAvLBI4DFpTteIEYHnvVPZ9733nNP5+efGeffqq4HnbrC5H9wqZmwTEBGA/D/tBJSenq6JiJaenh7rpERdVlaWNnPmTC0rK0stWLVK08qW1TR1GhkPs+efN5Y3bmxdb+5ctU5GRuA2Spe2bufaa91f0zRNa9gwcBu33eb+Za65xrrup59qWokSgdtITNS0efOs7x01yrrOM8+o5eZl9eoZ/1epErh/vvwy8LPCfQRj/15uj9RU4/9du5y3dfSo9T3NmqnlI0c6b7NLF+v7zznH+nqJEpqWlmZdZ+dO6zp+f/Dv5+affzTt9dc1be9e59fNx4+IplWsmP/9L6JpgwZpWlaWpk2ZomkrVgRP2z33BP8dS5c2zg+z4cONda+6StNGj857/vuAAdbzKtTnXX21pv35p3XZsGGa1rKlOsanT9e0OnXU8pIlNc3p+rVzp6a9+KKmbdqkaatXa1r58ppWs6batnm7W7dq2iuvqOuDm0j396OPOm/n11+d17/5ZvX6lCmalpCg0mg/tsz7UETTHnpILZ8xw3mbCxa4fx9N07Qvvgh8zyuvaNqbb2ra4cPWdXNyNK1uXffvu3atpg0ebF120kma9uqr6nfQNOP3EtG0Nm2MbQfbbjiPc85x/n5ffqmOE/v+Wb9eHUP681tu0bQ1a1Ra3e6DW7ZYt/Haa5r299/B09W4saYlJbm/PmuWpv33X+Dyxx+3Po+P17TLL9e0e+8NfY5fcYXxvHZtI/3Z2Zo/IcG6vvn3GDNGXY/+/FOtv3x54PaffNJ533z8cfB0TZqkabm5at0LLzSW79gR7OjUtH37NK1MGffthst8/Z8xI/i669aFPt4++UQdK+Zl1asb/9eoYT13Q6V5yxZ1zqWlaVrXrsa6f/yhrhdTpqj/3dLTo4emDR0auPyjj4zPePdd62t//x18P1x8sfvnnXGGWsd+HdXPLbNnnw1c5447gn+2E/P7P/zQWH7rrZrm82na00+r+3mw303PB5rTNGWKWjZtWujfXUTTNmwITNvPP4f+jX/5RdPee0/LOnLEmifVmc+3m29WeU3zNl94IfA3OXRIvbd9e+ty8zkmomnPPWf9LLe83LZt6vWvvlLHTqi8za+/atq55xrvN+dZhg2znkvm41pE01auVNvIzNS05GTra0uWBP/cAwc07Y031DmhaZr222+B36V9e3VcmJc9/LCmTZhgXXbttdZt2/fdpEnqGt6ypboH/vST87674ALjf/2+m5trXeeHH9TyrCxNa9o0cBtffBH4Xe35Tf2RnKxp27drWlyc8+vHjmlaz57G81GjAtedMEHTrr/e+f0zZqj7jn3511+rdD30kHV5Sor63k7bOnpUXTNnzFDf/fBh6+v2fMpXXzl/5oMPOm/f7JJLnK81+/YFvM8fF6dlbdoUuM/d8lMimvbOO9Z1P/zQOS32MtfNNweWT/TH8uXqPfv3u3+u03fu1ct4vmZNYN4yFPO6H3xgLF+50nk7r70WfvpCPZ58Ul1v7Mt/+MH6fMgQa5q7dbO+Xq2apu3ebV3njjucP1M//8J18KDzdvTrjql8k/ew59HcdOmizsc33tC0OXOs76lZU61jXy6irmn2Y3b+fOs6N9yglu/b53wOP/CA9f3Z2apsFM7vph+rmqaOZ/s11vx45RXn7z5+vGW9P3r2DLwfFhORxNdoAVlM+X7+WXWBaNIk9Dgr5sGq7eNX6a3vnFrGZWSoGplVq9SYfOaav4yM8GZodOualJEROE7ktdc6D5Sfna1aCpjZ0+vUldX82U41O/kd77BECevzrVuNWtT09MDJKNyYa0ncWp7Za3aWL1e1q24tLmbONGpfDx4MHJsqKyuw5s6+rUjGvdFpmqpB799ftQpwYm+hEmmrALuNG1Xrit69VY15sO65bjOrappqYaGPi2UaU0dE1Linerfbr76ybKferFnGemvWqC7kbdqoFk5OrTM//1ykQQPrsnffVd01srNVLaheU3jsmDFWii47W9XWDhqkag4HDVLH25Yt1i6+Iqp1wYABqvWKU41qJJMg6czn97Fjar9pmvW7mls1/PGHqk3s3Vu1XPj888Dj2W0WbLdu06FaGjmNEzRggJrN7okn1D694AL1O86fH7wV7a5dga/v369ak+uz45lbLi1YoI7DX38t+GRPv/0W2Mrw++9VC8IePQKHBNi40dqaYudO1SrnzjvdJxSxt/C7447A66zdmjWBx5O5W3pamnMXlnnzrM9zc9X5FGoQ+i++sNaGx8cb1/Vt28RnPk5OP93auuGhh9T1qEMH9XlO1+UHH1QTN9kHDg81pl+/fqol1J9/WscVe+UV9Vm33aZay9hbwkydGnxitXBb2JpbJDq1FP7vP3WO79ypBmIPZdOmwHPTnK/YutV5zDcR1YrSPCZ0VpZqWdu3rzr3zS1Dv/5aXSN79xZ59FH39NSrp8ZutjOn0d5iyfzcPJ6lzmk4DJ3+XZ2uB/b94jRW3a5dqiVHy5bBP8eN+Z799tvquvrAA6HzKN9/r66V5nEP331X/Q23h4BT/jFUHmDrVnVvuekmiW/bViqsXx/YmsvcEu/dd53Hi3WaZEcksKWJ+Rwzr+f2XLdggTpuL79ctdadPVu1Lr/gAnX9+ecfo/XT3r3quDVPbHLeedbPMKfD3uJZ/75r1gSex2754Nxcdb186CHVeqtdO3X+ON0/5s1Tx4XZ+vWB94lPP1Xb6d9fbd9+DerXT13Df/5ZtTB3G6rC3DNH/9+ex9KPz5kzA1oBiYjKDwwbplpVduum9rVb18iDB1Wa3Fp0v/++euhmzw5c98AB9zzCm28ax6h5ojq91WA4XbB1L76oWvvdcIPqHWWeuFBE/d5paeqY69Il8Fz89lt1rDkNcWLPg9rzyXoLbIfJhXx+v8Q/9FDgcWLv+Wamj8OrcxsX0n5O6kMAONHPhUjyQRdcoO6Puq+/jqwsYr+Omb+X/RzR9080x+49fDiwZZ6I+p3NzOOliwS27Ny+3drF+KOPrDOwm/Nz+iQpmqZ+i02bVH6nb1/nPLRbDze9haXTuWMepkD3zz/WngFpaep7+P3qOmZvRbh1q/u4lZoWuN/cumBv2mScw+Zrs77dfftUnuf338OfaMl8nISaeNatBaStFyMtIP/vOAREC50ToQWkv3790LVJOqdaff3RoYNax6lmQkS1YKhZ0/m1rVuNz/D7VSsnEVUTWqmS+r9GjcAvkZsb2BrO/HCrATXXklx6qfW1Zs1UrUe4tVUZGe61SqEeVauq1hYjRmjaY4+pZVWqqFpuc6uRSB6Jiarm3M5eEySiavKDtbL8+WdV82hu9Vm2rFGzk5qq9pXO3jJh40bng2/1avWd9doys7173Y8/XYsW+ds34T5mzw78zM2bA2u2zY8773Q+H8xc9nWW3mrS/vD5jHOhII9777Wm47nn8redv/4K/E5bt0a+ne7d1XtzczXtoovUsgcf1LSnnjLWmTFDtVJz24a9xtbe0qV3b7X8xRed3//ii87Hlu7JJ4N/B3OrW7dWxPrjgw807cwz3V8/ciT6x/Dddxv/P/yw9budfbb7+15/3frcXvvrdG2ZPj06aX7kEeP/Z57RtIkTA9cxt840Pzp2zN9nPvmk5dqYM3iwuge5tcbdsSP0+XPwoLFvOnQIfL1Jk9DpqlTJ+jl6a4etW9XxZm8ZZX/8+mvw41tnbkV5003W1954I/L9OWSIpvXpE3ydN95Q2z92LHja33nHfRunnx46LQkJqqXZlCmBr913n/E9R4ywvvbZZ2r5v/+qFuSJiaoV4cMPqx4G9m2ddZam6fmoihXV8VOunPOxZuZ0PzAfG5Uqhf797C2mkpI07eWXne/3oR4dO2raaacZz1u1Up/Rr5/z+pdcYm2hf8klxj3d71etPM4/3/oev1+1Thw1Su3njz4K2G7O7bdbv2Oo6+s99wS2pl66VL3X3HvF6dG3r/Wzxo1zXu+22zTtyiuN504t0888U+WHPv008LXPPzf+79zZ/XNE1OdMmOB8nX78cefj4PLLA9ft1y+8a42Iaq3ZqpX76/Z8sv0xeXJgC0qnx6uvqvTae3DccYe63tl7Vrk9pk/XtNtvd3/d3uPA/OjUKfT277lH0xo0CL1e9+7G/z17quPbqQXn2287vz/U8TlkiLX30cknh7d/9MeBA8YxYs9PNWmiln/3nbHsuus0v/lceust63HWu7f7ZyUmqrz9s89q2tSpqveE+XWdfbmItceB+TFwoHrPrFmRfW/zo29fda0xLzOXW8y+/VbTbrzRuu5JJ6kWvpqm7gHm1/r1U/er884zlpnzXvl53H23NS/s9hgxQv12jz6qem45rTNunEr3jBnWskTt2taW5b16qfXMeTD9MWFC4H4yX8/MeWG9Fay9NaZb2kTUOa/nK3//3bpOo0aB7/vnn8BWtPpj7FhrOu352YYN1fLZs41l5ntY27Yqj1WmjIof2FunB3uceabxuZ98Enxdc/5D09T9+vHHNa1CBct6exo1ogWkpmkSco1i6EQIQIY8qfSuLJoWvBtPqVIqGPfKK86vr1/v/t7HHze6oR04YCxv184INvl8qlmz2ddfG+s6BXHq1XPuptaokWqe/sQTmnbqqYHfY/v28C86//zjXvgNFUSsWzd4ps/pkZysgmH33+++jlOgyKkwN3SotVvNGWdYuw29915gcKF9e2tXxsREtY1DhwK7si1bZvxO556rCo3r1xuFnHPPNdKXmalpl10WmMaff9a0U05RN7SjR62f7dVD775r1rZtZNvo2jVwG/fdF5302YOdoR56d3tNU4G7YF1fgz2+/z7wOzl1Rw31aN9evdfe3c2cMV2yJDCoaH7YM8bNmllfv+giFRiI5Dc2C1aAsT+cChzmx4QJzsNb6A9zASBaj7Vrjf/btTO+18GDzl1P9Ef//sG3+8ADgV2xx46NTpqDBZxCPQrSVd1UOMx5/nn1nf7913ndVatCHxt6xYvfb1SgmR8//KBprVtHlsbq1dU27Rn7+vWdg3GTJ1t/o40bNW3RosDj3DxUiV4I0TkFT0M9rrkm9Pv0YOqOHe6/h98fPFAezmPzZvU55sKS/rjxRuN79u1rfe3119Vye2BSxDnoce21xjVAH5rEfFyau2JVq2Z0o9XfEx/vfn3w+zVt4UL3LvnLljm/75RT8rfPSpY0/j/vvMAKQfPjzjtV4de8rFw5VYh0CsKJBObHatUKfZy4BUD1h1O+9Kuv1HtDDc9SrZraVzffrPa1W1fWunVDB+FE1D3SKV9t7nJ9/vlqSAjz68G665kfesWapqmgSOfOKkASznvnzFEV+U6vJSc7X6vCfYwY4TzUgf3x9NMq7QsX5v+zREJfY4LlHYLdi/VHnz7h7VdzJVnHju6Bf6cuqV49zEGT1auN48WpUqR6detx/fzzWrb5PnzdddbrTcuW+U9XjRoq6GQO5Id6XHyx+lzzfg7nODM/GjcOzFu8956q+DVLS1PlP6dtrFun1nG61piDRqecEljpHW4lgPnY69Ej9HqpqcZ1w3zumo/vBx4IrBDs1k3dT8zXdr3BhNPn6HkPM3NlQ+fOxv9PPKFeb948dPqrVjX+nzVLlVvdAovmx9y57veEnj1VBUODBqpsbm9IULGiSt+bbxrLXnvNODdOOy10hVewx++/q/zdAw8Yy5waQvXrZ+zL5ctdG0tlVKpEAFKjC3axFNYU7+Zm9G6z14qoZtTff29tzl+7tvH/8uXu733kEaNLqvkzKlUyZsTWNGv3g8xM66QDEyaobktmp54a2A1BRHXp3L5ddYu1D6p89GhgN51gtm0z0lWqlLUbob2JvN2eParrSiSqV1ddys4+230dp246Tt29fvnFaJJeoYLaL+Yu3Bs2BHZv795ddTXUZWer7bz0UmCz+y5dVBP+yy5T3ZH++kt1UdS7WyxdajSDf+stoxuA2U03qWPw449VV5VwZ7Y2M8+6bmaebd3MPpmPpgWf3c6J03Hn9nmRuOoq1W3nlFPCf8/vv6uuDYcPq64+bpMIhOLU7cGpq3Io+jluH2Rb7xZVtqya5Of00923YT7Gc3IC0/HTT8FnmR8zRg0pcd99qvusudufpkU2Y6u5y1j58oGvr10bfHgLe7diJxdcEH56EhNVF/2TTlLPzd2bZs0KPjmT20QuuqefDj2MRX6deqrz8mAzVOvyM5O9w3u1OnXUPyef7Lzu7t3O11IzvXvh7t3O98yWLdXxZZ9MJZjTTlPHpT6Jgu7KK633WV2fPkaX6q1b1f3iggsCJ0gyd6+yd9HLz2yyTl2w7fTulm7dkHJy1L3RqRtauJo1M7pe6+eBWbBJaHbvVtdIp3P2jTcCl516qnGPycqydhtr105NxKHbvl11e8/MNI67mjXVfd3JxIlq2JpmzZyHGXDrWu3W/bFiReflOvMkCv/9p7rFuznllMB766FDzrPR6+zDBgSb2fmFF9TroWYGd9oH+iRWwYZTEVG/x7//qq7dP/7onsfduDG8e8Ls2c7HdWqqcRwuXqzu4WaaFnrbIqrbtz4h49y5kc3SfcYZ7hNUHTwYPH8fytq14d0H9C7lbl3dw2XPl9oFu3aFU+7ZvTu8/dqihTFRW1qadSIM8wRuBbk/RaJECevwPFu3qmtNdrZzN+Rt26xdY1NTRbvqKuO5PU8frAt2KFu3qhmgI5lVftUqdW6YrxOdOkX2uX/8EXjPvukmVZ4wmzfPfTI6fWgu+9BjItZrTJMm6lw3a9MmktSq41P/vMREkfr1ndfbudO4bpjPXXPX6j/+ULOL6264QeSDD4zrUVKSWr59u3u36m3brOV3e/64XTvj/2efVdeCcPIO5ljBo4+qyW9HjXJe15z/fest6/170CDj//ffVxM3/vmn+q72a9q+fepcME/GU7Wqcf/dts35Pqvvp1DOOUd1lTcPxWOftE/EOAf8fjXEhctwEaX27g1vgttijgBkMVTWYeyPAOYAnVMGJSXF+P+LL6w3LPOF0ym4ZPbBB4GfUamStVCqp+W779Rr5nG6LrxQZbDM6tVzDz4F061b+Otu2WJcuE85xXoxtt+s7QXFcDJCdvqFslo193WcZqpzmnFz+XLjxl65svqrF8BF1P7Vb17x8WrdW28N3M8iarwqe2Zl61brbHci1puhiHEjcAssmjNu9hmBw/XTTypwZy589ehhPXbNliyxFszdCnPBRDsAecEFRvAxIUFlwK+7zvlzdL17q7+apgIq5coZ44VeeGHgjLQi6gbqFty2Bxa2bQsc8y4ce/eq99qDunpg7NprVTD/tNPct6EXSr/7TuSss0IHhZzcfrvIc8+p2RXN49t+950RvDzzzMi22aFD4LJQQT37mGZOOncOPw0pKSI+n7H/Nm82MjFO42uZhRP0WbLEGqwKFkQIV0KCcyBNRI0pqV+fInHFFdYx7dyYxu7JC0CWKeP8ma+9FnqWar1AYs7kNmigCk4ff2wUTHv2dA5Y33tv4LISJZzHVerc2X2/9eypCvzvvGOMYzRunDG2X3a2NeNrH28onFmx7TZvLngAct++yAqpTsy/XbAA5M8/B46d9e67qkJu4sTwPsseiDMXUuvWDRyXedo0NQu7fpzUrStSpYrztvWA0Y4d1vG8dJGOP92qVfjr7tplLUhedZVIjRrGc7f8Vbgzwdpk//OP5NrHxV62zH3mXZ3T+HF79qiASyTH8OrVwYNwwSpudF9+6byN8uXd8xuhVKhgPT5uukkFKEIFZs3i4lSe8ZxzArdtVqKEMS5xJNwCkPZg0fz56vrp9dhm+ckPmLmNSWhXr54qi4ioAKSebyhb1rof7fleJ+bGC/lVqZJ1zNvx49WxZx8/0E1qqkjp0pJTsqR6br7nHDzoXuHsVnnoJNT5bD5m0tPVddgcHKtdO3D8+WDcKpS//tp6fbCPlW72+OMqnxDqnGvSJPB3DFaJ41SxvHevCqCJiDRsqMYcjYQ+E7iIdRzh885T9x49/+HzGWlds0bdh4KlU8/HjhxpVG6WKSPSq5fKa4mo3+v2242KJv3cCGXFCufx5MuUUbO5z55tXD9nzDDKgomJqvGSU9lq+XLnio5Jk6zBz2rVjHL1kSPOZeXu3d3TfvrpKv8q4ny/ads2cJl+71+0yDpWsJP8lD+LGQKQxVDZUAUFEWvg0J6xSklRA9vqtQNffGE9sc0BhFAByOXL1UlpvmCYW0CKqFYdrVqpIJ+5Jj0hQd0AGza0brNeveABGrNw17Nbtsy4cNata73YxMWJfPih2vZttwW/Ebm57Tbrc/1CGawFnNNN0nxR7dhR/c3KUoVQESOD63YTuuACI2PjFIDMyAg9sYdI4IDGeoCxIDWrOre0n3WWmrjk999FatVSwYAJE9xvjocPq5pDXX4GmHY6niLJpNm9+676DnqwoV49dWy9+qrz+q1bq4yBm4svDpzIpl07dTy7TX5kv15cfXVkLUP1muFNm4IH9m66Sf11q/kVUZnYzZvVsZzfSaDMnn1WHZubNlmDVg8/HH4mKiVFtVSyCxXUc5uUw0zP4OmCXa/0jJr5+jt9uqqJtbc6FbG21AiXOTARSQtI8+DwZhUqOBfQExNVDbdbgMbN4MEqGNCvnwr2BPP/3+dQ9erGPcTns2bkdfYWiOXKibz3nnUg8w4dAgdQv/56lYk2t7qoVk2dazNnGgGzs85Sx5zdrl2BgbKrrlL3w1q1nL/X0aMqWPzee9blegDSHCAVURnhyy9XhT1NMyZTaNIk+LXELC0tdKuzrVtVUNneY0G3c2fg5BtJSc7BfTehApDr16vrhlNA7u+/IwuiVaxoDcStXm38X7euOjZ+/tn9/cECkGbm38vvVz0P7L9tKJEEIM3q1FHn7hdfqOth8+YqUJCfCl4nNWqI1K4t63r2tC5ftMi5QBhKWlrkQeyNGwPzuA0aRBYY+usv5+u5z5f/AOSBA6qlvs7vF7nrrsj2S/Xq6lpqvz+Zr1siqoXvjTcGvr9BA7V/3ILyGzY4B+0++sh6z/nlF1XBf+ed4ac9mAEDorMdu3Dyo2XLqnNf/13T0ozAavXq4ecbRFSQMFie3twwIJiUFGslwbx5qgWkvVePm//n0TL1ijFznj7YPmnePLztiwQPPp9/vrpPmittBg9Wx5GuRg11X//iC9VTJhxueURzWr7/3v39a9ao+22olspOLSCD5WMvvjhw2Y8/GpUdTZqoa3awHoRmFSuq30KfHMk8gcpNN1knTRIJ3pDFLCtLBR1ffVUFY0XUNe3tt1Xe7YMPjHyW+V53/vnhbd/JAw+oY27AAHUPHzMmcJ1q1dR3ciqTijjnNwcOtDZmqVrVGjv48svA99jvS+b80F13Be+R6BSA1O9NbkHv/59PuSVKiC+ccnUxRwCyGCprL4A4mTRJNYvWNCNzdvbZ6sK2Y4dqXq4XDLZvt84EZQ64OH1Wnz5G82m/X826Z85o2QOQe/c6zwxZv76qubVfhMxdo0KJpIWRmfkCUreuqinRMxLjxqlWavv3q1qskSNVJjBc8fEio0dbl+kByJo13bs56TWMfr8qMD/1lNEqIyFB7Xc7vQB00kkiycmBr5tbdjrdUFevDi8AaTdwoKrRCrfG2U3DhqG7qdaqpTLR69apFoHBMojmQmS0ApA1a0b2++tKlnTPgDodA/37q4KEWwFfRGWS7LWGeoA5KcnoNmC+eZpbFezYEfl+MX+eW+GwRg3js+0BUrMNG1TwU8+onXOOyviEm6Gy27xZfW6dOkbtbqVKav+aM/TB1KzpnhHShVsItW/nzDOt773sMqMwae7iaf4Mcxf2226zBovj41Vr2oED1bEeqptQtWrWFrN6hn7aNOduSSJqfzRtal1mL/DqKlRQ13A9Q96hg0rbzJnqvLUHaC65xD3TN2SIEcTTK6fCsLpfP2sGPdQ94dxz1XHcs6c1Q5qdre6bPXoYy9yOywYN1O/32WeqUPXWW2pf2DO8K1ZYC+2TJ6sKifh49xaQIqq7vL07lF5B5dRK6OuvVeHv4EGjYq1yZXXv0ocUGTrU/d4TrmAtWOwByAcfVBWO33yjArThCBWAFFEzzuanladZSoo6F4MFIEVUi/P+/Z23UadOeAFI8+91xRXq+m7/DcuUUZ/jFHRv2DD/BcLx49VxefbZqhXUkiXqPmHPXzl1NwvH/+9vG66+WrLNgY6PP3Yu9L/xRmDrPfP5kZ8A5KpV1grwO+5QedJIg2VuLVrC7cZn16ePahV94IBxL1q4MHDW4WD0oIi9xbU5AFK3rsgttwReT/r0UdeQOnXc89N+f2ClgYi6ZpivgwVxww2Bactvvt1JqVKRBQ3r1rUGlo8cMXo1paZGVrFXrVrwQPeIEdahSMqXV4Gqa66xrmdvAenEHoQy+//xlamfWwcOGEP2mFsu2oeMsLeszY9u3YxZmrt0cV4nNVVd23w+9dvbh4Nx49YidsAANYv95s35G3JExAhelSunKv7tAchg92enRhPmRhr6+Rlu76k+fVSex+k4dupRFEnlyptvqjyZ7oUXVMWqiLou2GdwFylYAHLYMGv6Lr00cB39OAxWVtCZ8wF6pbnPp+695uPXqWei/b42cKAq399/v9rn9sZP5s9s0iRwuV5J6zbc28svS/bGjfLlBx+Ilt97ajFCALIYKmMOCr7/vtGM2G7GDJW50C+MKSkqSKWvby8siVhrBt2kpFhP7Ntus7Y8q1RJ1XCFGgNMP/kL0gX7yivdCwjBmIMwdeqoTMzSpaoWXO8+pWdE6tdXNTqXXRbetqtUCbyRmG/8zz9v7JtbblGfLaIKmPv2qRaX112nCnB6F4Zq1dQy+43BXACyZyRbtrTeeOzdpERUcDjYmHtu1qwJ3rw9mLvvVrWWX3yhWhI5FVTsv6k582Xft+ZA09q1KqC6aFH0ApDx8eHXZJs1aOCemS1VytoyatIklYk77TQV7HS6aYuoTJI9Y2TOuM6erYLrX3yhbtIiKkjStq3KaLvVqPt8quDmJJzg26BBxnetU0fknnucMxcHDlhrKp97ThXy89uSOScnsHLjwgvVNc6e2W7QQLUis4+nVaNG8ABkhw7O10pd6dIq0H/uuapbtp6hu/hiddya90NqqupWtGiRtfu4iHMLSLuaNdX589JL6voZqgBx+unWVqvr1qlaebfvM2iQCprZx/F0aw2gZw6/+UYFkr/4QqVN745lD9B07x7YGlFEZfaef956rJnHrHWh1a8ve+wBzVAt7mrWNI5VezDELlRG/8ILVVBF/x2efz54i3lzIM5e4Jk2LfhnbdqkgqRuLahmzLB2tatcWRWU/vxT3Z/HjQv8jHCC9G6ZdLudO60tN5KTjf0cqnBtTrNOvy/ml1vri4ED1XlQrpw1n/HDD8b/5gKm2zkWbgvIyZNVRcFJJ1l7lFSooO6ja9ao+9Zrr6nfePFiFTz47jt1Pv36a+CxonPq9m9mLkTFxRn3BHv+KtzA9IgR1kK1udVsrVrG+es2LlmNGoHBNPO1KFQA0ml4hVWrjEr2qlVVa5+GDUVuvtl9O07cummG04rp1lvVud2pk8qTNm1qVKaUL2/Nh0USMDH3GNIroMuXVwGY9u3VNfK779Tvaj+XzcdwOOPx6vRjwalCOz+qVAlMm1Ph3qx8+fCDILVquVdWONH3i1O+JjXVuTeEm2rVAs9N/d5ZqpSqcDAHi9PT1XP7cCDhBCDdKnGqV887nzPN97Pdu1X+yNyazH4tC7diKJiPPjK2c955zkPX2Fv75zeor/v8cxXIvPLK/L3/oovUPXHZMnV/TElR+3D0aJVfmzs3eN4g2PFWsaLRGyjcc0hv0ON0fXPKD4aqsDffl/buNcpYDzxgHXtRxPlcDNUoJFgjCXv5rFatwOC5XrkcKn9VtqzRsMCscmWVxw+W/x0+XOU/9HJNiRLqvjB0qBqCqkwZ93x/9erq9SeftObfN2xQaZo1y/l9zZur9warLDiBsBeKobwWkPHxqvbJrRZhz57AsRnNrrwyMCNapYrz+FZmlSqpGiO3k6xSJXXx/uor1arFjX7DtWdOTjkl/IDEqaeqjLu5BWak9AxJxYrqgqZn0s1q1w5+UTbfOHJzA2+w5mBIrVqqkPHssyoAo7e8/PNPdVN1ChLpTdZfe83ITCYkWMe9NAeiH35YBaLCCR4F61qRn26eOqcJIe6/X+Sxx1RArHNnayFVN3asyBNPuG/XfhybW4EtX64yQxdeaB2kO1xuGYZwaurMg0iLhC64X321Csa9/npg61angrOIyuzaW2Oaz5+SJVXmwD4W3oIFKvjmdGw9+KDK0Dm1GBk82LkVtIh1sqZ+/ayvjR+vClr33BP4Pj0AFR9vBJmiVdgRUb+9SOB1Zd06lTG0d9GtWdN9GIABA1RwzW1yExHV9W3ePNW6qGpVVbh44gk18YCI9dipXFld284/P3BiiXACkPZ0hhOANGey1q4NPrZlx44qXfZzzO1ar2fSS5VS+91eyWEP0DRu7HxNcqr579XLGAPNfm79n+ZUWExOdg+mi1hbKoQKQEbaMvfkk1VA3K3FqPmaYG7h2ayZc4XOY48Z1/jcXDWuULAunOZzVT//zS187fcley2907HXt6/KJyQkOFdi6XbssFaCmfMR4bZGNp9n9vtwuN32dOedZ4yna9ahg3EMOlV0nnSSNR0FDUDu2qWCm/Yu7j/8oCorGjUyCuiVK6t0lyihfpvOndX1wumc2bhR5SHcJCa6X9fs3zucIPPWrapAdtddxrJbbjH+9/lCX4+qV7eec2XLqmNf/61XrQoegNSv7Wa7dxvHvfk6EqzS8JZb1DX60Ufd19EnJgl2LdE1baoqbmbPVoXT5cutXXNDBdzcmPN0zz2n8kZffaWO0blz1T1H/43t56b5+4cTgOzcWf2+enft0qULlv/TVakSGFwLJ4Dy7rsqH2Sv/LIHP9q1CyyzhHMPdTqnqlZV5SKnMYgHD1b73r6+PQA5a5aqiJozRx3vThVS9mubXmYKVu5xO4ZMlYXHzOfWVVep4L6e5uTkwBaK+alYD6VFi8DAkr2VnX1Ip/zw+41JX+zcuvjPnavO+3ffNa5X5mPxkUdUPrF9e+dyoIjK7wXLN/TvH3oiUxGjIcHgwdbrv1lSknNg2r5/7fknp+O/RQvVq87O6bgKVfl76aUqmOnEvt8SEwPv/3r6QrVcvukm5xaa+m/WsKFzReUzzxjX9jFj1PP58wPve8ECkCKqwm3dOut9zVwpZM4/ValC4NGGvVHcaJoRgKxbV2U6zDffs882Cj9791q719pP9tKlA8coCycAWbasugDbuxDaP+fii9WN2C2TpxfAfD5jWy1aqAuK/UIxY4YKWpkvln36GBeGUF0ogwl3ZmK3mSirVrXWmjoNymtvjdW4sWqqfvLJ1oKoWws1/YJ71lmq28GyZSrTbQ6+6ROLlCnj3v3o5Zedl7txa4kXDnvLpMREdQO01x6ab2SzZ6vnwQKn9tfOPde4Cc2bl78u5Tq3DOBDD7nPeNqihSqc2cfpCyd4ccUVatw5e0b/vPNUbbk92OjUEsatpZB93W+/dT6+Ro9Wme4mTVTm7IorVIvfbdtUdw2n4GvJkuqcbNNGBRTdMmTjxqmAyW+/BWZMmjQxCkahKhwGDTJmEQ1Fryhwq6W2D+xevbra/9OmWYcsEFHdx0SCB0jtrQlPP10dL/p1xbz/zAEL+2+uH9fBuh5HGoDs3Fl9pv77rF0bfNgE/Zhx+j2dCuKhWp7YAzSNGllb4eucrq2tW6tKtPXrncdcEpcApIgqQLq1aDLv34K2gHTjlLHu0MHaxbZuXRVAuuwyNSagz6cKjbp77lH3TnN6GzRQlThuzPeDcCYAuuceI5N/2WXWMbt0556r7jm7dwc/3uxdsM3njNt4l3b2NM+apc7JOXPcx80980zn87NmTecAgfkznAKQr75qvVY1bux87a9bN//HxxdfRBaUKls2MMBUrpxK5/jx6nmJEtYgbXa2e4HI/r1r1gw9Hpx+Pxs4ULX4u/76wGtCqEkzqle3fo+6ddX9Sz9u1693nrRHF6pljv28e/995/XGjlXXaPv1XkTts+3bjVaLgwap83LYMFX4dKocDHUdcfqtL71U3WPnznXPZ5kDBhUrqrxRqH2gMx+b9t/7pJMCAxuPP64K3Prv7PNFp2KwSpXAc9DnUxXk7durFnr2+0GVKuq69+CDgS1Z7feCkSOtM0WffXbwwHKoFpDx8Sr/bH/9yScDjxenFpBVq6qGF/oxbQ6YulVYlCql9kmwmaLdhi4xBZssLSBXrFDjjes+/TQw/xBuy3SzTp2MPOeECc7r2Mtj9ooDcy+es8/Ofzdqnf33vu++wH2p91R56KH8B167dFHfOVi+x34NdAv+z5+vWoo//7yxzH7/q1/fuRLAXrawT/RZs2ZgueC005yDqvZx3Rs3Vud9sDx527ZqP153nfs6ZvbjLpwA5KpVKh+XkhLYAED//gkJga14u3RRv7/+/StWVM+dKq/cKt7s93v7kES6Nm3UZIGXXuqcdzrBEYAsbvx+WT5kiOSOGWNkkMyZTL/fehEzFzadTnZ7gaJKldCZDn2gd6dWKXFxgV1EnWrhTz/dOv7W22+rE1nvlmrPMF1/veq2u3ixqr367Tf1Hv2722945klg7LMDJiUZF9iOHcMvCNgLyWPGqILjjz9aA34PPRT4XrfglUh446GYM5N6S037Rfnuu1WG46ef3INft9+uLpThBiJHj1bpS05Wv49do0bu44LVqGFNo1sNUePGah/Onu08gYSd/TiuWtUI8hR0bDC3m+5556lzafp0kd9+E818zCQnG7+vOcAQ6QQcdsnJgTWZ+nGgd/HQ0+bEPJmGiLqhmwfaT0xUrVnMGZyHHlKtMk891TiGhg4NPPYzM1Vwa/586wQddnrXsGbNArvVmzMEbgGK+HhViHzyyfC7Rum1t2412PZx1vTnPXqoAPYHH6hrxDXXGIUd+zVx7Fj1Pn1CkWBuvFHtg1q13CttRIzjukwZY8IpO/u1NNQ4iR06qP2gXx+3bLEONm6feEE/vpzO02eeCZw8I1TB23wO1Kyp9qPTxA5ulTsVK6qMpMuENK4BSJ/PuWKpWjVrF6RglW36OEP5Yf8+bdsak8iYDRumWqjoGeH77zfGpNIHjQ93HCm7cAKQ9eqpdK1Zo9Lh1NogJUUVuE46Kfi4WOnp1sof8zlz3XVqX1apEny8Qft5duWV6py8/HLnfMTUqWrolPXrA2es1WeVtxdEzfvFfr3v39+odNCVKKFaK77zjnE8lCqlAg+XXqryD1WqqDG3wxXpGFs+X+D9Xk/74MHqvv/LL9Ygrb2rnZk9f1W9uspPuZ2HtWoZ19PERDXm6YwZgfvP3NVYJPDYrVjR2uNCv8eY72fmoSnshWi3gqDOnjfo0UMFsc15lC5djOucU4VeSoo1v1W9uuoh8OyzKojhVGgNdR2sXj0waHH66er7t2+vKgdvv9147dVX1X04nPyQmblLqvlctgdB6tWzBvJq1XIOcIUbgOzUyb01bpUqxqSJZi1bquDrLbcEHnfm6+7QodYgSZcu6r6WkKDu1SefbC3nNGsW/LquB5+cykPm48Gchrg4dSzaA6UpKYHHkP3catVK5ZVKl1bDdejM+RN9vEbzeWB3883OQ6eYA5Bu37tSJXXdtac/1ERvTurXVxXZH33k3tDBfo7Yg+a33WaMj/3uu+H1MHLTq5cKQpvTV6eOKk+YG9gkJLjnCd2Y80HPPqu6A6ekBD/f7de8OXOcz6PKldX91Jwm+z3brSWv/V5gDySnpASeU275AXv5V69gcTv3S5ZU969y5dR9J5yZ4u0BX73VbrAA5JlnGvvGfjyZr88tWlhfC1bWtnPrIWAvP7/wgrr/r1mjJkWtU0d9zq23qvPy229dK8lPaNoJKD09XRMRLT09PdZJibqsrCxt5syZWlZWlrGwdWtNU6M8aFrjxpp2663G8wceMP5/4YXADX79tfG6iKYNGqRpGzZYl4loWny88f8nn6j3+v2advnlatn552vabbdp2ltvBX7GggXWbT32mKbl5gb/okOGWN8TSnq6df2DBzVt4EBNGzdOvVatmlo+YYKm6fvOvA/DYd9XP/5ovOb3a9oTT2jaPfdoWkaGWmZeNyfHfbuHDlnXbddO01q1si4bMyaytIayY0fgb2x+NG5sPV70fVWxorHO1q3qe69Y4byN++/XtLPOMp6ffXZ00v7dd9bPWbBA03r2dE5D//7Oy6+/3nn5r7+GlYSsP//UskqXVu+ZNMl44YMP1LLkZE3bs6fg37VDB2v6/H61fNcuTbvjDutn2914o/vv2717ZMd/Vpam3X57ZOek3aFDmtatm/H+774zXtuwQV0/xo/XtI4djXWqVjXWOXAg8Htcdpmm9eqlaU2bqudXXWWs//77xnpt21rTMnu2Wp6YqGmbNjl/X7NPPw28voS6hpnl5jpfA8zbfPddY/natc6/29Spgdto1Mj5en/++cY6w4YFbqtsWU3LzLQuy85W6z/4oPtvbV4+bFjw7/3VV8a6l19uLG/c2Lqd4cODb2fZMsf9kbVnT+D90C2t991nfD/dtm3u50iJEsHTFMygQdZtffVV+O/1+63H1vz5wa/Vbo9Zs4Kn7bzznF8vX966nd27jdfMx5fTw3x+m++PmqbOKb9f0374wf39f//tvl9yczUtKclYNzU1cB3ztgYNUss++8y6/NAhY/2337a+9uST7p+vaZq2apWm9e6t8gI6v199t/Xr3b9XcnLBrp2aZr2XBjs2X3tN0/r1U/d4N7t3O6cnO1vTBgywvtanj6atXu26qYA86UcfaVpcnKaVLKlp770X+DlxcdZta5q6tpt/W/1x9tnW53/9Ffz469fP/Tu/8ILKD+zbZyyz571ENK1BA/dtaJo6ru3vsR/rTi66yPqe55+3vr5rl6bdeaemvf566G252bxZ7YP33rMu//NP62dff72m/fabOo4SE9U56aRJk/CuNZMmqftbgwaBry1Zor6T/tx8j9adfrr1PQMHWl9PS1N563Hj1HO/33otb9fOeO/HHwe/xvz2m3rP1KmBr5nP60suMZbHxxvLzeuPGqW2F865bb9HlSplvKd3b2Mde5pKldK0hQuN9x08aH39yy///9Ys7df773f+zhdfrN5rzleULBn4fcJ5jBrl/h11L79sfY9TXkm/bjrt11q1Aj+3Vy/ntOjb+PZbdT35/Xdjm1dfbaxbvnzodNvNnGn8Brt2Gct37XLfP055kawsTbviitDHyeOPW9d5+mnn9ZYvN9apXDnwuBk9OvDcHTvW/XvqMYRu3YwyRsOG1vfr+cybb7a+Nz1d004+2bgOOBk1yrqtI0fU8r//dt6Hzzxjfb+97GG+Rpr3hYgqh0fC6fMfeyz4e7Kzjf1k4xijKUYiia8FuRoWXydcALJtW+PEOeMMVZhzOqnMBVzd9u3WdcaMUTd7+3tXrFAXoKuvthakMzJU5ku/oDjZtMm6LadCtJ05ExwXF97OqV5drX/RRc7f8+efXS8aYVmyxEiTz2ctyDj58ENNq107+IVf9/DDxra//17TevSw7rO3385/up34/dYMkP3hFJTRNFWYq11b0x56yLrcKdD37LOqkKs/j1YA0h7wXLtW3XTsn//gg+pGYV42cqRa3x4UN28rDFlZWdo3kyZp2T/+aD2m/H51nGzZEp3v2qdP6EyLm5UrAzP2+uPxxyNPi3m/v/hi5O/XrVmjMg1uzJUP555rLPf7rd/h2muN1w4fVgFN83UoJ0fTrrxSXbf++Sfwc5YvV4HPcHz7rfWzC3IdMTNvU6/Y0b31lqbVrWtd5/+FDYu5c9U5eddd6vu3aqXONfMxuGGDteAvomnNmgWmQffMM9YMrluaQwUgN20yPtdcidKmTfAMp53fr86F+vUtGeKQmT3zZ0yYEPj6kSPu18BIzzezxx6zbidIACekzZud0zZkiLXy0f5YtMh5e9nZqoB+8KDz6xdeaGwjNdV6v7cXLO0Pc6FnxQrn7duDId9/r2mnnqppd98del+YzwfztUE3caLxul4QtQeZzOfuhx9aX3v//dBpcOMUzBJRFSr//GME2AYMyN/2zUGWSpXyn05N07SjR92P86FDIzoHHM/BVatU4XLLlsBtmYML5vO+ZcvAfde5s/V5Rob1+bRpmnbaacbz8eMj3xdlyli32bJl8PWdKodWrQr9OXffbX3P9u2RpzW/7L+DXuHz11+atm6d+/vsQdPHHlO/n17Rqj9mzFDr79+vgmXm1zZtUhVd7dtr2plnOueNLrjA+p5QFQF2y5ervE7PnirYZc8j6sGruDiVV9A0oxLS/DBfs+x5cN3TTxvL1q4NrMQK16uvGu/5+Wdj+dSpmlajhio3/Pqr2r6d+fP+X2mTlZWl/fjkk87XoP79jffeeae6j/7yS+C2wnk43Uft7Ps2HJddptZNSlL5NvP7q1QJTOu8eaG3aT4Wwyl32vn9KsC8ebN1ub3iVn+UKeO+LXuDACfjxlnXSUtzT1fv3up3XLpULTO/75VXAvNYTo2DdAcOqH1lvteff771/QcOqMpQvYGN2Y4dmrZ4sXu+2B7s1+3dG7gP7elw2i+ZmdbX7d89Ep98ovLPkR7jLghAGiK4GhYfJ1wA8tJLjROnYUOVCXO6ODq1wrAX6t98Uy075xxj2amnFizROTnWzzC3fHJz223G+qVLh/c5a9Zo2qOPqkyVF8wtHBo2jO62s7PV7/bxx+q5vcWSuWY2Wuw1XOaHvaVQOH75xbqNKVOshYrGjaOTbntmOi0tsIWaiFHoNy+bM0ctcws8hBk4PG43GXuLo/ywFxZEAoNdkWzr6adVAdYru3ap2uqEBCNzpTN/hzvv9C4NdubKh/z+Dk7M25w503kdPUhSt27B9nvXrtbP695dLdeD3Ob9eeCApqWkqAKbvXWMeRtDh4b+3JkzNe2pp4yCn6ZZW8rp951wrV2raY88omnr1kUWgJw8OfB1+/3P/sgvcyBMz7znV26utQeC/pg7V73uVGEoEn5w3e7PP9XvOnCgKlSYffll8P1VooTx/7//Om/f3IKnVKnI0ma+Z+mteswyMzXtuecCW4Ddead6T48e1uVz5gQWfgpCbxWvPx5+2Hjtm29USxC3QmUo3bsb261Tp2Dp1DSjdb29d0Ww1s8Ogp6Dfr8RXNILdd98o64rVauq1jM6/TcyP+w9GzTN+nzdOvWbv/mmCtiYrzHhqlfPus0rrwy+vr31qEhggMLJokXqe1eo4F454JX9+63pfeON8N7XqZP7saC3DqtZMzAoYX5POPcse+uwSFqMO1m92rq9XbtU8NR8L/v118DfcedO43W3XljHjqnAuR50tVdyhys7W7XKzU9gLDHR+Lz/59WzsrK0ea+84nxddur9prNXwogE5hXMj3feCZ2+o0eNyqLp08P7Tlu3qgYCv/4a2ApbL4Oaz9Vwr6OTJ6uyVX7KNME47ZtTTnFfP5weROb7UYcO+U/Phx+qCnrzsi++iGx79t5XBfHFF87bys21VozrgWa7LVs0rVw59XBqbb5woTonypZVx1F+fP+9Skvlytb7UoQIQBoSgnXPRjHx1FPGOAgTJ7rPauw06LJ9TAyfTz2+/16NefHtt2o6+4KwD6IbzsDH+pgoIoEzd7pp1EjNGuoVfUzDPXvUgP3RlJBgnTHYPo5FpLOxhqNuXevgzy+9pMZ16tMncKyYcNjHRTn5ZOskKk7jAOWHfdyQk05ynoTIaSwQ/XgvXVqNNTV1qhozU+c0KUEs5ed3sHMaozCcWU+d2MdH80LlymqswoyM4GPwhTPDe7REc5ZuszFj1LibyclqnEAn112nJgE5+eT8jdmke/RRNUO3Th+X5623RB5+2DoeTvnyaoD0Q4ecx0nT5eaG/tyrrw4c+9I+hlEkk4g1bKjGphUJfU0ZO1bdv8qWtY6Ppgs2JpTb+EDhsI+/FGpit2Di4tS1atIkNTnGpk1q/+mTG1SqpO7V775rnRU0nDEgnZx+euCEWrpgY0CKWCdgc/vO5cqpgfc//VTN7BsJc17CaSbVEiVE7r03cPlLL6mx5Ozjgtqv96G+Xyg1aljHozOP+9ehg3rkl/mcCTVpVzjmzFHXWfv4XP37q/Fec3LUtaEgfD41vvPWrcbndOigrmf6+K46+1hkVaqoscb0iWSc7llVq6rf3Dzmd6RSU60TVoWambViRXVsp6cby0KNASmivsvOnYETRx4P9jEgw5140ZxO+7Xy6qvV8VOpUuBYnd27q/EZGzQI755lHx8z1ORqoZx2mpFXv/dedS20T1TilH8wL3O7fiYlqUktdAkJamxHfdbucCUkqPFb8+Prr9W4h7a8eqbb5CjB7q96/qJCBXXuHzumJrYy5xXMQk08J6J+8z/+EElLC3+im+rVjXF0v/3W+pp+vXvvPTURU9euoc9TXe/e4a0XDcHySubx6d3KtO3aqTHDDx4Mb2xFN8nJgfsn0vyA+dwv6OzOF12kfsNDh4y8m77dihXVcSLifh2tUUPlfY4eDcw76tvfvFmVN8M9LuzatlX3qeRk94mDEBEmoTkRnHuuuiF9/rkaaNjpQnP++e4DeN94o/G/PhNicrIaBH/RouATJ4TLPCB2jRqh1zcXFgcMKPjnR0NSksiCBWqwdvNF1Av24Fl+Z9sMxl7AvvVWVVjo0yd/23MKQN5yi/HcPMh6Qdgzu3FxauBnc7CzVCkjPeaZC82DXfftK7JwociUKeq9PXqEV5A4nqIREDVP0qMLNXlJrJUrF3oCEKfZAb1in4E2WoYOVYNb//hj8CBnzZoFCz6KqAK+uaCuT4ShT9hiL2CWKeOcoTZXlLhNlhNK9+5q+9Wrq4JbuDO7RmrwYLV/f/ghvIzpgAFqEoMyZdR1Ib/cJvPIrz591CQjq1erwu78+aoSRTdsmMjKlUbGOS7Om0x0uLNZiwQPkg0Zoo55+wDyoZgLH5FUCsTFqWuevSBlv74WtKLPXtAPp7AeLnNwJBoByPh459lga9VS58v06db7d34lJAR+TvXqgfdxewCybVt1vTr9dFUY1gORb76ptnnTTdEJ5NmvcaHO3fj4wInXwr1Pn3zy8Q8+iqj8jfkeFm4A0nyNcQqa1KgR+DuKqEkO33xTlUvC4ZR3LAh94qjJk90nh0pNtVbwVq1qzVNEco7166euZ8drIopLLlF511tvtSzOKVVK/D16BOaNQlXw1aypvu+0aapiKNhEHuEe66VK5W+WbZHAiiD9tzj/fPW7BptgK5aC5VnNlXNuAcjERHWd++KLglWwJySEPwmNG/PxX9CGEBUqqN9tyhSVVzEz3yODlb/Klg1+XUhNzX/wUVe1KsHHKCqyAcht27bJTTfdJJUqVZJSpUrJmWeeKcvsM3bC0LGjmpHV5wu80OiFF7cC+4QJ6kb23HPhzwgdqQ8/VIHODz90zrDYdeumWuXcdZfIgw96k6b8OOMMtT+9bilnzwAU9MLqxB6ADOd3CcaesdYDkA88oDIM9hkyC0JvgXr99epvQoIxs5qI2n96QOXtt9VMeW+84Vzg6tVLtWaYNi166YuWW281CgEzZuR/O/ZWkOZgLUKrVcsI2j7ySPS2W7KkmkXvrLOit81gJk5UGcCHH1b3i/wYNUrNfjl6dP5bgrdqpVqnbNkSfObPgtL3b7gzqFevrmYG37Mn9OzmsVCunCrsOs1WLaIy+d27qwJMpDN+hiM52Qgatm6tfrsZMwLTU6qUN9cYc4vJSFobubHfxwtaqWFvpedVANKrFtm6Cy9Ux1E0WuCHq3Fj6/NLLlHH0dq1quWgXoF+223qfu00q3x+2PPL4QS/7NcsL861aNML1vHx4QeGzK2MI6mEq1hR/U7htijWW0BF+jnBNGyoWr+55dVLl1Yto/X9ctFFga8XQblTp6oWdHrDjTPPjLxiJT7eaGF/221qP4mofRlqJvpo0D9bF40Kl+PBnm4zc68+Lyq0x49Xf1NTVTrsAciCBPWjcR9o2lSVtezlTHM+geBfsVIku2Dv379fWrZsKW3btpWvvvpKTj75ZPnnn3/kpGhm5ooze4aqWbPgGaSUlIJ3tQnljDOMGuxwxMWpFpgnKnsA0osMbrTPJ/uN5eSTVUZm7Njofo6IyEcfifz8s7XG+YwzRNasUf+b91/NmqFbMxU0+OqVypVVq6cdO1ShML/MAZiifB0dOdIYZuGaa47f58bHq9bgK1aItGlz/D432kqVUt11CyI5WeSVV6KTlsKmVCl1rS1o2syFtOPZBeycc1TLNS99843IkiXqPNALUvPmqS53Oq9aeTVrps5BTRM5++yCby/c4V3C5WULyGh3wS5s7EFVfUiKuLjA1t/RDA7ZgzN6pWYwrVurYMzhw5G34o2VU08VWbpUnTfhBhTyMxRSfph/X71l/vHQv7/KRyxbpgLeZl5U+h8vpUurYTSuvFL1kMtP+WH2bJHFi9WxnpSkrm116x6fFrz2hgKFscJ85kxVEXvxxar3QbVqInff7b6+eb9F0pMgXIMGqXNbH/bAfvxGGtwzD6/jZUWUudIvnCF9UGQUyQDk008/LTVr1pTJpjEQ6hZkPKYTjb3pdiTja6Fw8KLLtZ35uIhGps+eyfGyBrls2cDun+bWJ8G6kBQ1p5wSfpcpNz16qID+tm2qe1RRdd99KsNSr553rbXdpKRYu/Oj+IlWy4QqVURmzVKBOnOX9eKgQoXAsQwvvFB1udR52UIvmq2Fa9ZUweLff1fjUhZUUeqCXRg98IDI00+rQn29esfnM6+8UlVslSwp8tln4d1r4+LU2NHvvada9RQFb72l0nvzzeG/x+tWW7r77zcaKLz+unef46RyZZFOnQKXX365CoT9919kjScKi5IlCzZWffny1jy22xjVXjnnHJHfflP/myu3CourrzZ6HYbjkUfUcDBZWd40+ImPt/5GBR0Gxjy+9vEKQDqN64wiq0gGIGfNmiUdO3aU6667Tn744QepXr26DBgwQPr16+e4fmZmpmSabpQHDx4UEZHs7GzJjtbEF4WE/n1CfS9zfVF2/frRmwAEx4fPJ3EvvCC+994T/5gxonnx+51zjsQNGiS+Zcsk9/XXo3KMxLduLXE//CBa06aSc5xvJr7TTsu74OWmporfw2M+3POw0ChVStXS7t6tWkIUlXTblShhTIpVVL8DoiYa52FC6dLiy8gQEZGcSpWid6297DKjAFjcj9XmzS15Dn+5cpJbVL7zjz+qiX1OO63gv1O9eta8V9my0fvtTztNEpKSxJeZKbmNGnl6f4tEVO+Fo0errt+nnnr8CqNnnKF+/7g41co03O9xxhkiTz6p/i8kv0VQDRqIPPGE+j/M9MZVqyZ6eMDfsKF35/Spp4r8848KdFSuXDj2p8+nWlvv2KGC4YUhTUEUuTxpCHEdOkj8/wOQ/po1i879xE2VKiL//quOo6pVPT+efGXKWAJAkR4X8VlZeWP4aQkJkuNReuPj4vI+x5+TU+R/5+J2HtpF8r18mqZpHqbFEyX/3xx/6NChct1118nSpUtl8ODB8tprr0kvh9rGUaNGyWMOsx9PmzZNShfRcTwKqtONN0ri/wtVn3/2WdEYowZFXsm9e6Xq4sWys0ULOVrQgcQjlJCRIW2GDJGkgwflpyeekPTCPtEKgJhLWblSzh8zRg5XqyY/jBsn2vGc3Ki48Pvl8l69pMShQyIisqdJE/nF64naCqmru3TJ+//L6dMlN4pDDZz0559SbutW2dqqlfi9bJEGiEiJ9HRpO3iwxGVnyw/jxklGsFl+gShKyMiQ1vfeKyX37ZNfHntM9tsnUkRQKatXS0vTeOWfz5wZ0ftrzJ8v50yYICIif3frJus8Gqu71X33yUn//CMiIvvr15cfCzpEEDyVkZEhN954o6Snp0tyiJ4uRTIAWaJECWnevLn88ssvecsGDRokS5culUWLFgWs79QCsmbNmpKWlhZyBxU12dnZMm/ePGnfvr0kBhkXw/fTTxI3YYL4b71VtMsvP44pBGIoJ0fk2DHPJwkK9zwE4J2onYeHDqkxkuyzJCNs8VdfLXFffSUiIv6rr5bcjz6KcYpiI+7uuyX+9ddFa9RIcpYvL/aVv9wLi7msLDU2W2Ecsxd5iuV5mJsrkpFRfIec8NKxY5Jw6qni271bcp98Uvz22adD8fslbsQI8R08KLnjxnk2pFbcoEES/9pr6iNvu01yX33Vk885XorleWhy8OBBSUlJCSsAWSS7YFetWlXOsI2l07BhQ/nkk08c109KSpIkhwGSExMTi+UBIBLGd2vbVqRt26I7DTqQH4mJxzWjXJyvMUBRUeDzsKDjJUGNA/n/AGRchQoSd6JeF8ePF+nUSXwXXCCJJ1ArRe6FxRS/aZFSrM7DxMTACagQnsRENenUH39IfLt2Ep+fY+L/M2t7Gkd48kmRhQtFcnMlbuzYYpNvKFbnoUkk36lIBiBbtmwpf/31l2XZ33//LbVr145RigAAAOCoZUvj/8qVY5eOWCtdWk1OAABArNSq5c2M29F00kkiq1er/4t5b4ETTZFsAHfPPffI4sWL5cknn5T169fLtGnT5I033pCBAwfGOmkAAAAwa91a5NZbRVq0EOnbN9apAQAAhZ3PR/CxGCqSLSDPPfdc+eyzz2TEiBEyevRoqVu3rrzwwgvSs2fPWCcNAAAAZnFxIm+9FetUAAAAIIaKZABSRKRz587SuXPnWCcDAAAAAAAAQBBFsgs2AAAAAAAAgKKBACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwTEJ+3nTw4EEREUlOTi7Qhx8+fFi+//57ERG56qqrCrQtAAAAAAAAAIVPvgKQFSpUkLi4OFm1apWcccYZAa9v375dHn74YfH5fPLWW2+5bmfTpk3SpUsXiYuLk5ycnPwkBQAAAAAAAEAhlu8u2Jqmub62f/9+mTJlikyZMqXA2wIAAAAAAABQdDEGJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwUKQPp8vmilAwAAAAAAAEAxlFCQNzdu3Nj1NT04GR8fX5CPAAAAAAAAAFCEFSgAqWlatNIBAAAAAAAAoBjKVwCyVatWdL8GAAAAAAAAEFK+ApALFiyIcjIAAAAAAAAAFEfMgg0AAAAAAADAMwQgAQAAAAAAAHgm5gHIjIwMGTduXKyTAQAAAAAAAMADMQtAHjp0SMaMGSN16tSR+++/P1bJAAAAAAAAAOChfE1CUxD79u2T559/Xl5++WVJT08XTdOYURsAAAAAAAAopgrUAnLTpk0yaNAgOeOMM6RcuXJSsWJFadasmTz11FOSnp5uWffw4cMycuRIqVOnjjz55JNy4MAB0TRNUlJS5IknnijQlwAAAAAAAABQOOW7BeS8efOka9eucuTIERER0TRNRERWrlwpK1eulHfeeUfmz58vqamp8vPPP0vPnj1ly5YteetVr15dhg0bJrfffruUKlUqCl8FAAAAAAAAQGGTrwDknj17pEePHnL48OG8ZWXKlJGEhIS8lo9///23DBw4UAYPHiwdO3aUrKws0TRN6tatK8OHD5fevXtLYmJidL4FAAAAAAAAgEIpX12wJ02aJPv27ROfzyfdunWT9evXy6FDh2T//v2yfft2ueuuu0RE5PPPP5ebbrpJMjMzpWzZsjJx4kT566+/pF+/fgQfAQAAAAAAgBNAvlpAzp07V0REzj//fPnwww8tr6WmpsqLL74ohw4dkqlTp8rWrVulQoUKsnDhQmnUqFHBUwwAAAAAAACgyMhXC8g///xTfD6fDBgwwHWdQYMGiYiIz+eTQYMGEXwEAAAAAAAATkD5CkDu379fREROPfVU13Xq16+f9//FF1+cn48BAAAAAAAAUMTlKwCZnZ0tIiLlypVzXads2bJ5/6empubnYwAAAAAAAAAUcfkKQEbK5/Mdj48BAAAAAAAAUMgclwAkAAAAAAAAgBNTvmbB1vXp00fKlClT4PV8Pp989913BUkKAAAAAAAAgEKoQAHIZcuWBX1d73odbD1N0+iiDQAAAAAAABRT+Q5AapoWzXQAAAAAAAAAKIbyFYD0+/3RTgcAAAAAAACAYohJaAAAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgmXyNATl69Ohop0MeffTRqG8TAAAAAAAAQGzlKwA5atQo8fl8UU0IAUgAAAAAAACg+MlXAFJERNO0qCUi2sFMAAAAAAAAAIVDvgKQ8+fPj3Y6AAAAAAAAABRD+QpAtm7dOtrpAAAAAAAAAFAMMQs2AAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxT5AOQY8eOFZ/PJ0OGDIl1UgAAAAAAAADYFOkA5NKlS+X111+XJk2axDopAAAAAAAAABwU2QDk4cOHpWfPnjJp0iQ56aSTYp0cAAAAAAAAAA4SYp2A/Bo4cKBcccUV0q5dO3niiSeCrpuZmSmZmZl5zw8ePCgiItnZ2ZKdne1pOo83/fsUt+8FFCWch0DscR4CscU5CMQe5yEQe8X9PIzkexXJAOQHH3wgy5cvl6VLl4a1/lNPPSWPPfZYwPK5c+dK6dKlo528QmHevHmxTgJwwuM8BGKP8xCILc5BIPY4D4HYK67nYUZGRtjr+jRN0zxMS9Rt2bJFmjdvLvPmzcsb+7FNmzZy9tlnywsvvOD4HqcWkDVr1pS0tDRJTk4+Hsk+brKzs2XevHnSvn17SUxMjHVygBMS5yEQe5yHQGxxDgKxx3kIxF5xPw8PHjwoKSkpkp6eHjK+VuRaQP7222+ye/duadasWd6y3Nxc+fHHH+Wll16SzMxMiY+Pt7wnKSlJkpKSAraVmJhYLA8AkeL93YCigvMQiD3OQyC2OAeB2OM8BGKvuJ6HkXynIheAvPTSS2X16tWWZX369JEGDRrIAw88EBB8BAAAAAAAABA7RS4AWa5cOWncuLFlWZkyZaRSpUoBywEAAAAAAADEVlysEwAAAAAAAACg+CpyLSCdLFiwINZJAAAAAAAAAOCAFpAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIAEAAAAAAAB4hgAkAAAAAAAAAM8QgAQAAAAAAADgGQKQAAAAAAAAADxDABIAAAAAAACAZwhAAgAAAAAAAPAMAUgAAAAAAAAAniEACQAAAAAAAMAzBCABAAAAAAAAeIYAJAAAAAAAAADPEIAEAAAAAAAA4BkCkAAAAAAAAAA8QwASAAAAAAAAgGcIQAIAAAAAAADwDAFIAAAAAAAAAJ4hAAkAAAAAAADAMwQgAQAAAAAAAHiGACQAAAAAAAAAzxCABAAAAAAAAOAZApAAAAAAAAAAPEMAEgAAAAAAAIBnCEACAAAAAAAA8AwBSAAAAAAAAACeIQAJAAAAAAAAwDMEIP/X3p1HWVHdeQD/NfTGjrI0IIKQRI2KS0CRYIIoAZVjJKJGRUQzLjEwCsyowQyiQxyMxBjBPYnLBFwDxOWAEwQBiYjSAiIoZkbUqCxBZNemoWv+MLx024vooXhp+HzOeee8rnur6la/9zs2X2/VBQAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFJTKwPIMWPGxLHHHhuNGjWKli1bRr9+/WL58uXZHhYAAAAA8Dm1MoCcPXt2DB48OF566aWYPn16lJaWRu/evWPLli3ZHhoAAAAAUE5utgfwVTz77LMVfn7wwQejZcuWUVxcHN/97nezNCoAAAAA4PNqZQD5eRs2bIiIiP3337/K9pKSkigpKcn8vHHjxoiIKC0tjdLS0vQHuAftvJ697bqgNlGHkH3qELJLDUL2qUPIvr29Dr/MdeUkSZKkOJbUlZWVxfe///1Yv359zJ07t8o+N9xwQ9x4442Vtj/88MNRv379tIcIAAAAAHuVrVu3xvnnnx8bNmyIxo0b19i31geQV1xxRUybNi3mzp0bbdu2rbJPVTMgDzzwwFi7du0X/oJqm9LS0pg+fXp873vfi7y8vGwPB/ZJ6hCyTx1CdqlByD51CNm3t9fhxo0bo3nz5rsUQNbqW7CHDBkSzzzzTMyZM6fa8DEioqCgIAoKCiptz8vL2yu/ABF797VBbaEOIfvUIWSXGoTsU4eQfXtrHX6Za6qVAWSSJPGv//qvMWXKlJg1a1Z06NAh20MCAAAAAKpQKwPIwYMHx8MPPxxPPvlkNGrUKFatWhUREU2aNIl69epleXQAAAAAwE51sj2Ar+Luu++ODRs2xIknnhitW7fOvB577LFsDw0AAAAAKKdWzoCs5evmAAAAAMA+o1bOgAQAAAAAagcBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkJpaHUDeeeedcdBBB0VhYWF07do1Xn755WwPCQAAAAAop9YGkI899lgMHz48Ro0aFa+++mocddRR0adPn1izZk22hwYAAAAA/F2tDSB/9atfxaWXXhoXX3xxHHbYYXHPPfdE/fr14/7778/20AAAAACAv8vN9gC+im3btkVxcXGMGDEis61OnTrRq1evmDdvXqX+JSUlUVJSkvl5w4YNERGxbt26KC0tTX/Ae1BpaWls3bo1Pvroo8jLy8v2cGCfpA4h+9QhZJcahOxTh5B9e3sdbtq0KSIikiT5wr61MoBcu3Zt7NixI4qKiipsLyoqijfffLNS/zFjxsSNN95YaXuHDh1SGyMAAAAA7O02bdoUTZo0qbFPrQwgv6wRI0bE8OHDMz+XlZXFunXrolmzZpGTk5PFke1+GzdujAMPPDD++te/RuPGjbM9HNgnqUPIPnUI2aUGIfvUIWTf3l6HSZLEpk2bok2bNl/Yt1YGkM2bN4+6devG6tWrK2xfvXp1tGrVqlL/goKCKCgoqLCtadOmaQ4x6xo3brxXfrmhNlGHkH3qELJLDUL2qUPIvr25Dr9o5uNOtXIRmvz8/OjcuXPMmDEjs62srCxmzJgR3bp1y+LIAAAAAIDyauUMyIiI4cOHx6BBg6JLly5x3HHHxa9//evYsmVLXHzxxdkeGgAAAADwd7U2gPzhD38Yf/vb3+L666+PVatWxdFHHx3PPvtspYVp9jUFBQUxatSoSrecA3uOOoTsU4eQXWoQsk8dQvapw3/ISXZlrWwAAAAAgK+gVj4DEgAAAACoHQSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQe5k777wzDjrooCgsLIyuXbvGyy+/nO0hwV5hzJgxceyxx0ajRo2iZcuW0a9fv1i+fHmFPp9++mkMHjw4mjVrFg0bNoz+/fvH6tWrK/R57733om/fvlG/fv1o2bJlXH311bF9+/Y9eSmwV7j55psjJycnhg4dmtmmBiF9H3zwQVxwwQXRrFmzqFevXnTq1CkWLFiQaU+SJK6//vpo3bp11KtXL3r16hV/+ctfKhxj3bp1MWDAgGjcuHE0bdo0/uVf/iU2b968py8FaqUdO3bEyJEjo0OHDlGvXr342te+FqNHj47ya8uqQ9i95syZE6effnq0adMmcnJy4o9//GOF9t1Vc6+99lp85zvficLCwjjwwAPjlltuSfvS9igB5F7ksccei+HDh8eoUaPi1VdfjaOOOir69OkTa9asyfbQoNabPXt2DB48OF566aWYPn16lJaWRu/evWPLli2ZPsOGDYunn346nnjiiZg9e3Z8+OGHceaZZ2bad+zYEX379o1t27bFiy++GA899FA8+OCDcf3112fjkqDWeuWVV+Lee++NI488ssJ2NQjp+vjjj6N79+6Rl5cX06ZNi2XLlsWtt94a++23X6bPLbfcEuPGjYt77rkn5s+fHw0aNIg+ffrEp59+mukzYMCAWLp0aUyfPj2eeeaZmDNnTlx22WXZuCSodX7xi1/E3XffHXfccUe88cYb8Ytf/CJuueWWGD9+fKaPOoTda8uWLXHUUUfFnXfeWWX77qi5jRs3Ru/evaN9+/ZRXFwcY8eOjRtuuCHuu+++1K9vj0nYaxx33HHJ4MGDMz/v2LEjadOmTTJmzJgsjgr2TmvWrEkiIpk9e3aSJEmyfv36JC8vL3niiScyfd54440kIpJ58+YlSZIkU6dOTerUqZOsWrUq0+fuu+9OGjdunJSUlOzZC4BaatOmTck3vvGNZPr06UmPHj2Sq666KkkSNQh7wrXXXpuccMIJ1baXlZUlrVq1SsaOHZvZtn79+qSgoCB55JFHkiRJkmXLliURkbzyyiuZPtOmTUtycnKSDz74IL3Bw16ib9++yY9+9KMK284888xkwIABSZKoQ0hbRCRTpkzJ/Ly7au6uu+5K9ttvvwp/k1577bXJIYcckvIV7TlmQO4ltm3bFsXFxdGrV6/Mtjp16kSvXr1i3rx5WRwZ7J02bNgQERH7779/REQUFxdHaWlphRo89NBDo127dpkanDdvXnTq1CmKiooyffr06RMbN26MpUuX7sHRQ+01ePDg6Nu3b4Vai1CDsCc89dRT0aVLlzj77LOjZcuWccwxx8RvfvObTPuKFSti1apVFeqwSZMm0bVr1wp12LRp0+jSpUumT69evaJOnToxf/78PXcxUEt9+9vfjhkzZsRbb70VERGLFy+OuXPnxqmnnhoR6hD2tN1Vc/PmzYvvfve7kZ+fn+nTp0+fWL58eXz88cd76GrSlZvtAbB7rF27Nnbs2FHhH1UREUVFRfHmm29maVSwdyorK4uhQ4dG9+7d44gjjoiIiFWrVkV+fn40bdq0Qt+ioqJYtWpVpk9VNbqzDajZo48+Gq+++mq88sorldrUIKTv7bffjrvvvjuGDx8e1113Xbzyyitx5ZVXRn5+fgwaNChTR1XVWfk6bNmyZYX23Nzc2H///dUh7IKf/vSnsXHjxjj00EOjbt26sWPHjrjppptiwIABERHqEPaw3VVzq1atig4dOlQ6xs628o87qa0EkABf0uDBg+P111+PuXPnZnsosM/461//GldddVVMnz49CgsLsz0c2CeVlZVFly5d4r/+678iIuKYY46J119/Pe65554YNGhQlkcH+4bHH388Jk6cGA8//HAcfvjhsWjRohg6dGi0adNGHQL/1NyCvZdo3rx51K1bt9Jqn6tXr45WrVplaVSw9xkyZEg888wz8fzzz0fbtm0z21u1ahXbtm2L9evXV+hfvgZbtWpVZY3ubAOqV1xcHGvWrIlvfetbkZubG7m5uTF79uwYN25c5ObmRlFRkRqElLVu3ToOO+ywCtu++c1vxnvvvRcR/6ijmv4ebdWqVaUFErdv3x7r1q1Th7ALrr766vjpT38a5557bnTq1CkGDhwYw4YNizFjxkSEOoQ9bXfV3L7wd6oAci+Rn58fnTt3jhkzZmS2lZWVxYwZM6Jbt25ZHBnsHZIkiSFDhsSUKVNi5syZlabHd+7cOfLy8irU4PLly+O9997L1GC3bt1iyZIlFf7jM3369GjcuHGlf9ABFZ188smxZMmSWLRoUebVpUuXGDBgQOa9GoR0de/ePZYvX15h21tvvRXt27ePiIgOHTpEq1atKtThxo0bY/78+RXqcP369VFcXJzpM3PmzCgrK4uuXbvugauA2m3r1q1Rp07Ff8bXrVs3ysrKIkIdwp62u2quW7duMWfOnCgtLc30mT59ehxyyCF7xe3XEWEV7L3Jo48+mhQUFCQPPvhgsmzZsuSyyy5LmjZtWmG1T+CrueKKK5ImTZoks2bNSlauXJl5bd26NdPnxz/+cdKuXbtk5syZyYIFC5Ju3bol3bp1y7Rv3749OeKII5LevXsnixYtSp599tmkRYsWyYgRI7JxSVDrlV8FO0nUIKTt5ZdfTnJzc5Obbrop+ctf/pJMnDgxqV+/fjJhwoRMn5tvvjlp2rRp8uSTTyavvfZacsYZZyQdOnRIPvnkk0yfU045JTnmmGOS+fPnJ3Pnzk2+8Y1vJOedd142LglqnUGDBiUHHHBA8swzzyQrVqxIJk+enDRv3jy55pprMn3UIexemzZtShYuXJgsXLgwiYjkV7/6VbJw4cLk3XffTZJk99Tc+vXrk6KiomTgwIHJ66+/njz66KNJ/fr1k3vvvXePX29aBJB7mfHjxyft2rVL8vPzk+OOOy556aWXsj0k2CtERJWvBx54INPnk08+SX7yk58k++23X1K/fv3kBz/4QbJy5coKx3nnnXeSU089NalXr17SvHnz5N/+7d+S0tLSPXw1sHf4fACpBiF9Tz/9dHLEEUckBQUFyaGHHprcd999FdrLysqSkSNHJkVFRUlBQUFy8sknJ8uXL6/Q56OPPkrOO++8pGHDhknjxo2Tiy++ONm0adOevAyotTZu3JhcddVVSbt27ZLCwsKkY8eOyc9+9rOkpKQk00cdwu71/PPPV/lvwUGDBiVJsvtqbvHixckJJ5yQFBQUJAcccEBy880376lL3CNykiRJsjP3EgAAAADY23kGJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgEkAAAAAJAaASQAAGTZQQcdFDk5OXHRRRdleygAALudABIA2KddfvnlkZOTEzk5OTFz5swvte+f/vSnzL5XXXVVSiMEAIDaTQAJAOzTLrzwwsz7CRMmfKl9f//731d5nGyZNWtWJhCdNWtWtocDAAARIYAEAPZx3bt3j6997WsRETFp0qT45JNPdmm/LVu2xJQpUyIi4vDDD4/OnTunNkYAAKjNBJAAwD5v4MCBERGxcePGePLJJ3dpn8mTJ8eWLVsq7A8AAFQmgAQA9nkDBw6MnJyciNj127B33n5dp06duOCCC1IbGwAA1HYCSABgn9exY8fo3r17RET8z//8T6xZs6bG/h9++GHMmDEjIiJOOumkOOCAAyr1+eMf/xhnn312tGvXLgoLC6Np06bRpUuXuPHGG+Pjjz/epXFNnTo1LrjggujYsWM0aNAgCgsLo0OHDtG/f/948MEHY+vWrRER8c4770ROTk707Nkzs2/Pnj0zz4Pc+XrwwQcrnWPbtm1x1113Rc+ePaNFixaRn58frVq1itNOOy0mTJgQZWVl1Y7voosuipycnDjooIMiImLlypVx7bXXxuGHHx6NGjX60s+irOoZlo8//nicfPLJ0aJFi6hXr14ccsghcc0118S6deuqPc6JJ54YOTk5ceKJJ9Z4vhtuuCFzvqrsbLvhhhsiIuL555+Pfv36RZs2baJevXrxzW9+M0aPHp2ZCbvT1KlT47TTTsv0O+yww2LMmDGxbdu2Xf5dvPLKK3HeeefFgQceGIWFhXHggQfGxRdfHG+++eYu7f+///u/MWzYsOjUqVM0adIk6tWrFx07doyLLrooFixYUO1+n/8MysrK4v7774+ePXtGUVFR1KlTx0rdAMCXlwAAkNx3331JRCQRkdx+++019h07dmym73//939XaFu3bl1y0kknZdqrerVs2TKZN29etcdfu3ZtcvLJJ9d4jIhIHnjggSRJkmTFihVf2Ld8/51WrFiRHHrooTXuc8IJJyQfffRRleMcNGhQEhFJ+/btk3nz5iXNmzevtP/zzz//hb/7nZ5//vnMfjNmzEguuOCCasf19a9/PVm5cmWVx+nRo0cSEUmPHj1qPN+oUaMyx6vKzrZRo0YlY8aMSXJycqocy7e//e1k8+bNSVlZWXLllVdWO+ZTTjkl2b59e5Xnat++fRIRyaBBg5Lf/e53SW5ubpXHKCgoSB5//PEar2vs2LFJXl5etePIyclJRo4cWeW+5T+DadOmJb169aq0/6BBg2o8PwDA55kBCQAQEeecc04UFhZGRMXVrauys71hw4Zx5plnZraXlJREr169YubMmVG3bt0YOHBgPPLII/HSSy/FCy+8EDfddFM0a9Ys1qxZE6eddlq8++67lY69devW6NmzZ2aGZefOnePee++NP//5z7FgwYKYMmVKDBs2LNq0aZPZ54ADDoglS5bE/fffn9l2//33x5IlSyq8+vXrl2nfvHlznHzyyZkZdf369YunnnoqFixYEE888UT06NEjIiLmzp0bp59+euzYsaPa38fmzZujf//+8emnn8bPfvazmDVrVrz88svxu9/9Llq3bl3j77I6I0eOjAkTJkS/fv1i8uTJUVxcHFOnTo2+fftGxD9m+O0J06ZNixEjRsTxxx8fDz/8cCxYsCCeffbZOPXUUyMi4sUXX4wxY8bEbbfdFuPGjYtTTz01Jk2aFMXFxfHkk0/G8ccfHxERzz77bPzmN7+p8VyLFi2KH//4x9GyZcsYP358zJ8/P2bPnh3XXnttFBQURElJSQwYMKDaWYxjx46Nq6++OkpLS+PII4+Mu+++O5577rlYsGBBTJw4Mbp16xZJksTo0aNj3LhxNY7l2muvjeeeey6+//3vV/gMdl43AMAuy3YCCgDwz+Kcc87JzPJ68803q+yzePHiTJ8LL7ywQtt1112XRETStGnTZMGCBVXu/8477yStW7dOIiI5//zzK7UPGzYsc/zBgwcnZWVlVR6npKQkWbVqVYVt5WevfdHMw3//93/P9P2P//iPSu1lZWXJgAEDMn3uuuuuSn12zoCMiKRhw4bJokWLajznFyk//ohIfv7zn1c5rt69eycRkeTm5iZr1qyp1Gd3z4CMiKR///6VZi9u3749Of7445OISBo1apQUFhYmQ4cOrXScLVu2ZGY4HnnkkVWea2d7/H1GaVWzO2fOnJmZGXnsscdWal+6dGlm5uOoUaOq/O7s2LEjM7O0YcOGybp16yq0f/4zqOq7AQDwZZkBCQDwdxdeeGHmfXWzIMtvL99/8+bNceedd0ZExOjRo6Nz585V7t++ffsYOXJkREQ88cQTFZ4fuH79+rj33nsj4rOZj7fffnu1zyfMz8+PoqKiXbmsSkpKSuK3v/1tREQcfvjhmWcclpeTkxN33XVXNGvWLCIi7rjjjhqPec0118RRRx31lcZTlc6dO8d1111X5biGDx8eERHbt2+PefPm7bZzVqd+/fpx3333Rd26dStsr1u3blx22WUREbFp06Zo0aJF3HLLLVXuP2jQoIiIeO2112LDhg01nu/WW2+NVq1aVdres2fPuPTSSyPis2dEfn4W5K233hqlpaXRpUuXGDVqVJXfnTp16sT48eOjoKAgNm/eHH/4wx+qHcfBBx9c5XcDAODLEkACAPxdnz59MqHexIkTI0mSCu1lZWXx8MMPR0RE27ZtKyz6Mnv27EywdNZZZ9V4nu9+97sREVFaWhrFxcWZ7TNnzswsLHPllVdWCrx2l+Li4li/fn1EfLaQTHXnady4cZxzzjkREbFs2bJYuXJltcccMGDAbh3j+eefX234Wj7cffvtt3freavyve99L/bff/8q28qHrmeeeWbk5eV9Yb8VK1ZUe6799tsvzjjjjGrbf/SjH2XeP/fccxXann766YiI6N+/f7W/u4iIpk2bRqdOnSIiagxwf/jDH6b2HQQA9i0CSACAv8vNzY3zzz8/Ij5bWXru3LkV2mfMmBEffvhhRHwWuNWp848/pcrPRmvdunWlFajLv4444ohM31WrVmXeL1y4MPP+O9/5zu69uHJef/31zPuuXbvW2Ld8e/n9ymvYsGF07Nhx9wzu7w499NBq28qHgZs2bdqt563KwQcfXG1b06ZNv3S/msZ8zDHHRG5ubrXtRx99dOTn50dExJIlSzLb33333fjb3/4WEREjRoyo8fuXk5OT+b6W//593pFHHlltGwDAlyGABAAop6bbsKu7/ToiYs2aNV/pfDtnPEZErF27NvP+qy7esivWrVuXed+yZcsa+5a/Fbj8fuWVD9d2l/r161fbVj74rWlxnD09lt0x5i/6PHJzczMBbPnPY3d8/z5vv/32+0rHBAD4vOr/9yoAwD7o6KOPjk6dOsWSJUviiSeeyDwvb8uWLTF58uSI+OwW4MMOO6zCfuVDpVdffbXaW3E/r23btrtv8F9BTbfq7iq36e4+X/XzKP/9u/766+Pss8/epf0aNGhQbZvPFQDYXQSQAACfc+GFF8bVV18d69evj6effjrOOuusmDJlSmbBmM/PfoyIzGItEREtWrT4SsFi8+bNM+9XrlwZHTp0+Aqj/2Llb2FevXp1jbcOl79Ft7rnIP6z2TnbsKysrMZ+5RcA+mexevXqGtu3b9+emflY/vMo//3Ly8urcJs/AEC2uQUbAOBzBgwYkJn9NWHChIj4x+3XeXl5cd5551Xa55hjjsm8//Of//yVzvutb30r837OnDlfev9dnT1XPpyaP39+jX1ffvnlKvf7Z9aoUaOIiPj4449r7PfWW2/tieF8KYsWLYrt27dX27548eLYtm1bRFT8PDp27BhNmjSJiK/+/QMASIsAEgDgc1q3bh29evWKiIipU6fG66+/HjNmzIiIiFNOOSVatGhRaZ9evXplngE4bty4Sito74qePXtmbokdP378l36+YWFhYeZ9SUlJtf06d+6ceW7jQw89VO1MwU2bNsXjjz8eERGHHXZYqs+l3J12zhx96623ql3wZe3atTF9+vQ9Oaxdsm7dusxq1lW5//77M+93fkcjPrtd+rTTTouIiD/96U/xxhtvpDdIAIAvSQAJAFCFnbdZl5aWxrnnnpsJA6u6/Tris4VYhgwZEhERL774YgwbNqzGW4BXr14dv/3tbysd4/LLL4+IiOLi4hg6dGi1QWZpaWmlhUfKB4T/93//V+25CwoK4pJLLomIz1a2Hj16dKU+SZLEkCFDMgvj7Ly22qBHjx4REbFt27YYP358pfbS0tK45JJL4pNPPtnTQ9slw4cPr/JW7NmzZ8d9990XEZ+FyMcee2yF9hEjRkTdunWjrKwszjrrrHj//ferPceOHTti4sSJNfYBANhdPAMSAKAKP/jBD6JRo0axadOmWLp0aUR8tirw6aefXu0+//mf/xmzZ8+O+fPnx+233x6zZs2KSy+9NI4++uho0KBBfPzxx7F06dJ47rnnYtq0adGpU6dMELjT6NGjY/r06bFkyZK44447Yt68eXH55ZdHp06dIj8/P95///144YUX4pFHHomf//zncdFFF2X2bdeuXbRt2zbef//9+OUvfxlt27aNQw45JHM7eVFRUeb25Ouvvz4mT54cb7/9dtxwww2xZMmSuPjii6N169axYsWKuOOOO2LWrFkREdGtW7e47LLLduNvN119+/aN9u3bx7vvvhsjR46MtWvXxplnnhmFhYWxdOnSGDduXCxcuDCOP/74eOmll7I93AqOOuqoWLZsWXTu3DlGjBgRxx13XJSUlMTUqVPjtttui+3bt0dubm7ceeedlfbt1KlT/PKXv4xhw4bFsmXL4ogjjojLLrssTjrppCgqKopPP/003nnnnZg3b1784Q9/iJUrV8aSJUuyvhASALD3E0ACAFShXr16cdZZZ8UDDzyQ2XbOOedEQUFBtfsUFBTE9OnT46KLLorJkyfH4sWLa5w52Lhx40rb6tevHzNnzoz+/fvHnDlzori4+EuFf9ddd1385Cc/iRUrVsQZZ5xRoe2BBx7IBJaNGjWKGTNmxKmnnhpvvvlmTJo0KSZNmlTpeN27d4+nnnqqVq2InJ+fHxMmTIhTTjkltmzZErfddlvcdtttmfa6devGr3/961i3bt0/XQB59NFHx5AhQ+KKK66o8ruTn58fDz30UHTt2rXK/YcOHRoNGjSIoUOHxoYNG2Ls2LExduzYKvvm5+dXuG0fACAtbsEGAKjGoEGDKvxc3e3X5TVq1CgmTZoUL7zwQlxyySVxyCGHRKNGjSI3Nzf233//OPbYY2Pw4MExderUap9B2Lx585g9e3ZMnjw5zjrrrGjbtm0UFBREYWFhdOzYMc4+++yYOHFilYvhXHHFFTFp0qTo3bt3tGzZMnJzq///zQcddFAsXrw47rjjjujRo0c0a9Ys8vLyoqioKE455ZT4/e9/H3PmzKk1q1+Xd8IJJ0RxcXEMHDgw2rRpE3l5edG6detMsHvllVdme4jVuuSSS+KFF16Ic845J9q0aRP5+flxwAEHxIUXXhgLFy6Mc889t8b9L7300nj77bfjxhtvjO7du0fz5s0jNzc3GjRoEAcffHD0798/7rnnnvjggw/i61//+h66KgBgX5aTfJUnpAMAAAAA7AIzIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDU/D83os4nWcyQEQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')" + ] + }, + { + "cell_type": "markdown", + "id": "92fb420f-907e-4417-ab34-6d12308bed0b", + "metadata": { + "id": "92fb420f-907e-4417-ab34-6d12308bed0b" + }, + "source": [ + "### 5) Создали и обучили второй автокодировщик AE2 с усложненной архитектурой, задав большее количество эпох обучения" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb9f83e2-fecf-4118-8376-a712726d12d5", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bb9f83e2-fecf-4118-8376-a712726d12d5", + "outputId": "31bcf5ff-071d-4cc2-c40a-560aa19cb2a5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mВыходные данные были обрезаны до нескольких последних строк (5000).\u001b[0m\n", + "Epoch 88/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 27.6297\n", + "Epoch 89/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 27.5561\n", + "Epoch 90/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 27.4826\n", + "Epoch 91/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 27.4093\n", + "Epoch 92/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 27.3362\n", + "Epoch 93/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 27.2631\n", + "Epoch 94/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 27.1903\n", + "Epoch 95/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 27.1176\n", + "Epoch 96/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 27.0451\n", + "Epoch 97/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 26.9727\n", + "Epoch 98/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 26.9005\n", + "Epoch 99/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 26.8284\n", + "Epoch 100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 26.7566\n", + "Epoch 101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 26.6849\n", + "Epoch 102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 26.6133\n", + "Epoch 103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 26.5420\n", + "Epoch 104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 26.4708\n", + "Epoch 105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 26.3997\n", + "Epoch 106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 26.3289\n", + "Epoch 107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 26.2582\n", + "Epoch 108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 26.1877\n", + "Epoch 109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 26.1174\n", + "Epoch 110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 26.0473\n", + "Epoch 111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 25.9773\n", + "Epoch 112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 25.9076\n", + "Epoch 113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 25.8380\n", + "Epoch 114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 25.7686\n", + "Epoch 115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 25.6994\n", + "Epoch 116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 25.6303\n", + "Epoch 117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 25.5615\n", + "Epoch 118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 25.4928\n", + "Epoch 119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 25.4244\n", + "Epoch 120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 25.3561\n", + "Epoch 121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 25.2880\n", + "Epoch 122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 25.2201\n", + "Epoch 123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 25.1524\n", + "Epoch 124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 25.0848\n", + "Epoch 125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 25.0175\n", + "Epoch 126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 24.9504\n", + "Epoch 127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 24.8834\n", + "Epoch 128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 24.8167\n", + "Epoch 129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 24.7501\n", + "Epoch 130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 24.6837\n", + "Epoch 131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 24.6175\n", + "Epoch 132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 24.5515\n", + "Epoch 133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 24.4857\n", + "Epoch 134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 24.4201\n", + "Epoch 135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 24.3546\n", + "Epoch 136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 24.2894\n", + "Epoch 137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 24.2243\n", + "Epoch 138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 24.1594\n", + "Epoch 139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 24.0947\n", + "Epoch 140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 24.0302\n", + "Epoch 141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 23.9659\n", + "Epoch 142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 23.9017\n", + "Epoch 143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.8377\n", + "Epoch 144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.7740\n", + "Epoch 145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.7103\n", + "Epoch 146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.6469\n", + "Epoch 147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 23.5836\n", + "Epoch 148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.5205\n", + "Epoch 149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.4576\n", + "Epoch 150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 23.3948\n", + "Epoch 151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 23.3322\n", + "Epoch 152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.2697\n", + "Epoch 153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 23.2074\n", + "Epoch 154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.1453\n", + "Epoch 155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 23.0833\n", + "Epoch 156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 23.0214\n", + "Epoch 157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 22.9597\n", + "Epoch 158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 22.8982\n", + "Epoch 159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 22.8367\n", + "Epoch 160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 22.7754\n", + "Epoch 161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 22.7143\n", + "Epoch 162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 22.6532\n", + "Epoch 163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 22.5923\n", + "Epoch 164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 22.5315\n", + "Epoch 165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 22.4707\n", + "Epoch 166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 22.4101\n", + "Epoch 167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 22.3496\n", + "Epoch 168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 22.2892\n", + "Epoch 169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 22.2288\n", + "Epoch 170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 22.1686\n", + "Epoch 171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 22.1084\n", + "Epoch 172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 22.0483\n", + "Epoch 173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 21.9883\n", + "Epoch 174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 21.9283\n", + "Epoch 175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 21.8683\n", + "Epoch 176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 21.8085\n", + "Epoch 177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 21.7486\n", + "Epoch 178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 21.6888\n", + "Epoch 179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 21.6291\n", + "Epoch 180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 21.5694\n", + "Epoch 181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.5097\n", + "Epoch 182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 21.4501\n", + "Epoch 183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 21.3905\n", + "Epoch 184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 21.3309\n", + "Epoch 185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 21.2714\n", + "Epoch 186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.2120\n", + "Epoch 187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 21.1526\n", + "Epoch 188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 21.0932\n", + "Epoch 189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 21.0340\n", + "Epoch 190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 20.9748\n", + "Epoch 191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.9157\n", + "Epoch 192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 20.8568\n", + "Epoch 193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.7979\n", + "Epoch 194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.7393\n", + "Epoch 195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.6807\n", + "Epoch 196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 20.6224\n", + "Epoch 197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 20.5643\n", + "Epoch 198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 20.5064\n", + "Epoch 199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.4488\n", + "Epoch 200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 20.3914\n", + "Epoch 201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.3343\n", + "Epoch 202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.2775\n", + "Epoch 203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 20.2211\n", + "Epoch 204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.1649\n", + "Epoch 205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 20.1091\n", + "Epoch 206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 20.0537\n", + "Epoch 207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 19.9985\n", + "Epoch 208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 19.9438\n", + "Epoch 209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 19.8893\n", + "Epoch 210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 19.8353\n", + "Epoch 211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 19.7815\n", + "Epoch 212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 19.7281\n", + "Epoch 213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 19.6751\n", + "Epoch 214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 19.6223\n", + "Epoch 215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 19.5698\n", + "Epoch 216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 19.5177\n", + "Epoch 217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 19.4658\n", + "Epoch 218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 19.4142\n", + "Epoch 219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 19.3629\n", + "Epoch 220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 19.3118\n", + "Epoch 221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 19.2609\n", + "Epoch 222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 19.2103\n", + "Epoch 223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 19.1598\n", + "Epoch 224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 19.1096\n", + "Epoch 225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 19.0596\n", + "Epoch 226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 19.0098\n", + "Epoch 227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 18.9601\n", + "Epoch 228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.9106\n", + "Epoch 229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 18.8613\n", + "Epoch 230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 18.8121\n", + "Epoch 231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 18.7631\n", + "Epoch 232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 18.7142\n", + "Epoch 233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 18.6655\n", + "Epoch 234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 18.6168\n", + "Epoch 235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 18.5683\n", + "Epoch 236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.5199\n", + "Epoch 237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.4717\n", + "Epoch 238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 18.4235\n", + "Epoch 239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 18.3754\n", + "Epoch 240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 18.3275\n", + "Epoch 241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 18.2796\n", + "Epoch 242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 18.2318\n", + "Epoch 243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 18.1842\n", + "Epoch 244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.1366\n", + "Epoch 245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 18.0891\n", + "Epoch 246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 18.0416\n", + "Epoch 247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 17.9943\n", + "Epoch 248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 17.9470\n", + "Epoch 249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 17.8998\n", + "Epoch 250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 17.8527\n", + "Epoch 251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 17.8056\n", + "Epoch 252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 17.7586\n", + "Epoch 253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 17.7117\n", + "Epoch 254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 17.6649\n", + "Epoch 255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 17.6181\n", + "Epoch 256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 17.5713\n", + "Epoch 257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 17.5247\n", + "Epoch 258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 17.4780\n", + "Epoch 259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 17.4315\n", + "Epoch 260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 17.3850\n", + "Epoch 261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 17.3385\n", + "Epoch 262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 17.2921\n", + "Epoch 263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 17.2458\n", + "Epoch 264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 17.1995\n", + "Epoch 265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 17.1532\n", + "Epoch 266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 17.1070\n", + "Epoch 267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 17.0609\n", + "Epoch 268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 17.0148\n", + "Epoch 269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 16.9687\n", + "Epoch 270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 16.9227\n", + "Epoch 271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 16.8768\n", + "Epoch 272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 16.8308\n", + "Epoch 273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 16.7850\n", + "Epoch 274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 16.7391\n", + "Epoch 275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.6933\n", + "Epoch 276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 16.6476\n", + "Epoch 277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 16.6018\n", + "Epoch 278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 16.5562\n", + "Epoch 279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 16.5105\n", + "Epoch 280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 16.4649\n", + "Epoch 281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 16.4193\n", + "Epoch 282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 16.3738\n", + "Epoch 283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 16.3283\n", + "Epoch 284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 16.2829\n", + "Epoch 285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 16.2375\n", + "Epoch 286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 16.1921\n", + "Epoch 287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 16.1467\n", + "Epoch 288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 16.1014\n", + "Epoch 289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 16.0562\n", + "Epoch 290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 16.0109\n", + "Epoch 291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.9657\n", + "Epoch 292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.9205\n", + "Epoch 293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.8754\n", + "Epoch 294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 15.8303\n", + "Epoch 295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.7852\n", + "Epoch 296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.7402\n", + "Epoch 297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.6952\n", + "Epoch 298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.6503\n", + "Epoch 299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.6053\n", + "Epoch 300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 15.5604\n", + "Epoch 301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.5156\n", + "Epoch 302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 15.4708\n", + "Epoch 303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.4260\n", + "Epoch 304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.3812\n", + "Epoch 305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.3365\n", + "Epoch 306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.2918\n", + "Epoch 307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 15.2472\n", + "Epoch 308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 15.2025\n", + "Epoch 309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 15.1580\n", + "Epoch 310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.1134\n", + "Epoch 311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 15.0689\n", + "Epoch 312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 15.0244\n", + "Epoch 313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 14.9800\n", + "Epoch 314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.9356\n", + "Epoch 315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.8913\n", + "Epoch 316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 14.8469\n", + "Epoch 317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 14.8026\n", + "Epoch 318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.7584\n", + "Epoch 319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.7142\n", + "Epoch 320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.6700\n", + "Epoch 321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 14.6259\n", + "Epoch 322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.5818\n", + "Epoch 323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step - loss: 14.5377\n", + "Epoch 324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.4937\n", + "Epoch 325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.4498\n", + "Epoch 326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.4058\n", + "Epoch 327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.3620\n", + "Epoch 328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.3181\n", + "Epoch 329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.2743\n", + "Epoch 330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.2306\n", + "Epoch 331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.1868\n", + "Epoch 332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.1432\n", + "Epoch 333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 14.0996\n", + "Epoch 334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 14.0560\n", + "Epoch 335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 14.0124\n", + "Epoch 336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 13.9690\n", + "Epoch 337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.9255\n", + "Epoch 338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 13.8821\n", + "Epoch 339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 13.8388\n", + "Epoch 340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 13.7955\n", + "Epoch 341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.7523\n", + "Epoch 342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.7091\n", + "Epoch 343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.6659\n", + "Epoch 344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.6229\n", + "Epoch 345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.5798\n", + "Epoch 346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.5368\n", + "Epoch 347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 13.4939\n", + "Epoch 348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 13.4510\n", + "Epoch 349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 13.4082\n", + "Epoch 350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.3655\n", + "Epoch 351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 13.3227\n", + "Epoch 352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 13.2801\n", + "Epoch 353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 13.2375\n", + "Epoch 354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 13.1950\n", + "Epoch 355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.1525\n", + "Epoch 356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 13.1101\n", + "Epoch 357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 13.0677\n", + "Epoch 358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.0254\n", + "Epoch 359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.9832\n", + "Epoch 360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.9410\n", + "Epoch 361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 12.8989\n", + "Epoch 362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.8569\n", + "Epoch 363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.8149\n", + "Epoch 364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.7730\n", + "Epoch 365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.7312\n", + "Epoch 366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.6894\n", + "Epoch 367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.6477\n", + "Epoch 368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 12.6061\n", + "Epoch 369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.5645\n", + "Epoch 370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.5230\n", + "Epoch 371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.4816\n", + "Epoch 372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.4402\n", + "Epoch 373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.3989\n", + "Epoch 374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.3577\n", + "Epoch 375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.3166\n", + "Epoch 376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.2755\n", + "Epoch 377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 12.2345\n", + "Epoch 378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.1936\n", + "Epoch 379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.1528\n", + "Epoch 380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.1120\n", + "Epoch 381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 12.0713\n", + "Epoch 382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 12.0307\n", + "Epoch 383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.9902\n", + "Epoch 384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 11.9498\n", + "Epoch 385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.9094\n", + "Epoch 386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.8691\n", + "Epoch 387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.8289\n", + "Epoch 388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.7888\n", + "Epoch 389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.7488\n", + "Epoch 390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.7088\n", + "Epoch 391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.6689\n", + "Epoch 392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.6292\n", + "Epoch 393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.5895\n", + "Epoch 394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.5498\n", + "Epoch 395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.5103\n", + "Epoch 396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.4709\n", + "Epoch 397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.4315\n", + "Epoch 398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.3923\n", + "Epoch 399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 11.3531\n", + "Epoch 400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 11.3140\n", + "Epoch 401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.2750\n", + "Epoch 402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.2361\n", + "Epoch 403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.1973\n", + "Epoch 404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 11.1586\n", + "Epoch 405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 11.1200\n", + "Epoch 406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.0814\n", + "Epoch 407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.0430\n", + "Epoch 408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 11.0046\n", + "Epoch 409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.9664\n", + "Epoch 410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.9282\n", + "Epoch 411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.8902\n", + "Epoch 412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.8522\n", + "Epoch 413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.8143\n", + "Epoch 414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.7766\n", + "Epoch 415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 10.7389\n", + "Epoch 416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 10.7013\n", + "Epoch 417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.6638\n", + "Epoch 418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.6264\n", + "Epoch 419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.5891\n", + "Epoch 420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.5520\n", + "Epoch 421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.5149\n", + "Epoch 422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 10.4779\n", + "Epoch 423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.4410\n", + "Epoch 424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 10.4042\n", + "Epoch 425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 10.3675\n", + "Epoch 426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.3309\n", + "Epoch 427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 10.2945\n", + "Epoch 428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 10.2581\n", + "Epoch 429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 10.2218\n", + "Epoch 430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.1856\n", + "Epoch 431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 10.1495\n", + "Epoch 432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.1136\n", + "Epoch 433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 10.0777\n", + "Epoch 434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.0419\n", + "Epoch 435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 10.0063\n", + "Epoch 436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.9707\n", + "Epoch 437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.9353\n", + "Epoch 438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.8999\n", + "Epoch 439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 9.8647\n", + "Epoch 440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 9.8295\n", + "Epoch 441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.7945\n", + "Epoch 442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.7596\n", + "Epoch 443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 9.7247\n", + "Epoch 444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.6900\n", + "Epoch 445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.6554\n", + "Epoch 446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.6209\n", + "Epoch 447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.5865\n", + "Epoch 448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.5522\n", + "Epoch 449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 9.5180\n", + "Epoch 450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.4839\n", + "Epoch 451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.4499\n", + "Epoch 452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.4160\n", + "Epoch 453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 9.3823\n", + "Epoch 454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.3486\n", + "Epoch 455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.3150\n", + "Epoch 456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.2816\n", + "Epoch 457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 9.2483\n", + "Epoch 458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 9.2150\n", + "Epoch 459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.1819\n", + "Epoch 460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.1489\n", + "Epoch 461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 9.1159\n", + "Epoch 462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 9.0831\n", + "Epoch 463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 9.0504\n", + "Epoch 464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 9.0178\n", + "Epoch 465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 8.9853\n", + "Epoch 466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.9530\n", + "Epoch 467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 8.9207\n", + "Epoch 468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 8.8885\n", + "Epoch 469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.8564\n", + "Epoch 470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.8245\n", + "Epoch 471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 8.7926\n", + "Epoch 472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 8.7609\n", + "Epoch 473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 8.7292\n", + "Epoch 474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - loss: 8.6977\n", + "Epoch 475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 8.6663\n", + "Epoch 476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.6349\n", + "Epoch 477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 8.6037\n", + "Epoch 478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 8.5726\n", + "Epoch 479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 8.5416\n", + "Epoch 480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.5107\n", + "Epoch 481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 8.4799\n", + "Epoch 482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.4492\n", + "Epoch 483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.4186\n", + "Epoch 484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.3882\n", + "Epoch 485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.3578\n", + "Epoch 486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.3275\n", + "Epoch 487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 8.2973\n", + "Epoch 488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.2673\n", + "Epoch 489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 8.2373\n", + "Epoch 490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 8.2075\n", + "Epoch 491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 8.1777\n", + "Epoch 492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.1481\n", + "Epoch 493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 8.1185\n", + "Epoch 494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 8.0891\n", + "Epoch 495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.0597\n", + "Epoch 496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.0305\n", + "Epoch 497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.0014\n", + "Epoch 498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.9723\n", + "Epoch 499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 7.9434\n", + "Epoch 500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 7.9146\n", + "Epoch 501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 7.8858\n", + "Epoch 502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 7.8572\n", + "Epoch 503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.8287\n", + "Epoch 504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.8003\n", + "Epoch 505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 7.7720\n", + "Epoch 506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 7.7437\n", + "Epoch 507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.7156\n", + "Epoch 508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.6876\n", + "Epoch 509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.6597\n", + "Epoch 510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 7.6319\n", + "Epoch 511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.6041\n", + "Epoch 512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.5765\n", + "Epoch 513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.5490\n", + "Epoch 514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.5216\n", + "Epoch 515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.4942\n", + "Epoch 516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 7.4670\n", + "Epoch 517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.4399\n", + "Epoch 518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.4129\n", + "Epoch 519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.3859\n", + "Epoch 520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 7.3591\n", + "Epoch 521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.3323\n", + "Epoch 522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.3057\n", + "Epoch 523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.2792\n", + "Epoch 524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.2527\n", + "Epoch 525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.2263\n", + "Epoch 526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 7.2001\n", + "Epoch 527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.1739\n", + "Epoch 528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 7.1479\n", + "Epoch 529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.1219\n", + "Epoch 530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.0960\n", + "Epoch 531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 7.0702\n", + "Epoch 532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.0445\n", + "Epoch 533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.0189\n", + "Epoch 534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.9934\n", + "Epoch 535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.9680\n", + "Epoch 536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 6.9427\n", + "Epoch 537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.9174\n", + "Epoch 538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.8923\n", + "Epoch 539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.8673\n", + "Epoch 540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.8423\n", + "Epoch 541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.8174\n", + "Epoch 542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.7927\n", + "Epoch 543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.7680\n", + "Epoch 544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.7434\n", + "Epoch 545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 6.7189\n", + "Epoch 546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 6.6945\n", + "Epoch 547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.6701\n", + "Epoch 548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.6459\n", + "Epoch 549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.6218\n", + "Epoch 550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.5977\n", + "Epoch 551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.5737\n", + "Epoch 552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.5499\n", + "Epoch 553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.5261\n", + "Epoch 554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.5024\n", + "Epoch 555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.4787\n", + "Epoch 556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 6.4552\n", + "Epoch 557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.4317\n", + "Epoch 558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.4084\n", + "Epoch 559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.3851\n", + "Epoch 560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.3619\n", + "Epoch 561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.3388\n", + "Epoch 562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.3158\n", + "Epoch 563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.2929\n", + "Epoch 564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 6.2700\n", + "Epoch 565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.2472\n", + "Epoch 566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.2245\n", + "Epoch 567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.2019\n", + "Epoch 568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.1794\n", + "Epoch 569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 6.1570\n", + "Epoch 570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.1346\n", + "Epoch 571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 6.1124\n", + "Epoch 572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 6.0902\n", + "Epoch 573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 6.0681\n", + "Epoch 574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.0460\n", + "Epoch 575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.0241\n", + "Epoch 576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 6.0022\n", + "Epoch 577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.9804\n", + "Epoch 578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.9587\n", + "Epoch 579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.9371\n", + "Epoch 580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.9155\n", + "Epoch 581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.8941\n", + "Epoch 582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.8727\n", + "Epoch 583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.8514\n", + "Epoch 584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.8301\n", + "Epoch 585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.8090\n", + "Epoch 586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.7879\n", + "Epoch 587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.7669\n", + "Epoch 588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.7460\n", + "Epoch 589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.7251\n", + "Epoch 590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.7043\n", + "Epoch 591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.6836\n", + "Epoch 592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.6630\n", + "Epoch 593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.6425\n", + "Epoch 594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.6220\n", + "Epoch 595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.6016\n", + "Epoch 596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.5813\n", + "Epoch 597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.5610\n", + "Epoch 598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.5409\n", + "Epoch 599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.5208\n", + "Epoch 600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.5007\n", + "Epoch 601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.4808\n", + "Epoch 602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.4609\n", + "Epoch 603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.4411\n", + "Epoch 604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.4214\n", + "Epoch 605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.4017\n", + "Epoch 606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.3821\n", + "Epoch 607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.3626\n", + "Epoch 608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.3431\n", + "Epoch 609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.3237\n", + "Epoch 610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.3044\n", + "Epoch 611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.2852\n", + "Epoch 612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.2660\n", + "Epoch 613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.2469\n", + "Epoch 614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.2279\n", + "Epoch 615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.2089\n", + "Epoch 616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 5.1900\n", + "Epoch 617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.1712\n", + "Epoch 618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.1525\n", + "Epoch 619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 5.1338\n", + "Epoch 620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.1152\n", + "Epoch 621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.0966\n", + "Epoch 622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.0781\n", + "Epoch 623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 5.0597\n", + "Epoch 624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 5.0414\n", + "Epoch 625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 5.0231\n", + "Epoch 626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 5.0049\n", + "Epoch 627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.9867\n", + "Epoch 628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.9686\n", + "Epoch 629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.9506\n", + "Epoch 630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.9327\n", + "Epoch 631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.9148\n", + "Epoch 632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.8969\n", + "Epoch 633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 4.8792\n", + "Epoch 634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.8615\n", + "Epoch 635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.8438\n", + "Epoch 636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 4.8263\n", + "Epoch 637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.8088\n", + "Epoch 638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.7913\n", + "Epoch 639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.7739\n", + "Epoch 640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.7566\n", + "Epoch 641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.7394\n", + "Epoch 642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.7222\n", + "Epoch 643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.7051\n", + "Epoch 644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.6880\n", + "Epoch 645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.6710\n", + "Epoch 646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 4.6540\n", + "Epoch 647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.6371\n", + "Epoch 648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.6203\n", + "Epoch 649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.6036\n", + "Epoch 650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.5868\n", + "Epoch 651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.5702\n", + "Epoch 652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5536\n", + "Epoch 653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 4.5371\n", + "Epoch 654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.5206\n", + "Epoch 655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 4.5042\n", + "Epoch 656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.4879\n", + "Epoch 657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.4716\n", + "Epoch 658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.4554\n", + "Epoch 659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.4392\n", + "Epoch 660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.4231\n", + "Epoch 661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.4070\n", + "Epoch 662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.3910\n", + "Epoch 663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.3751\n", + "Epoch 664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.3592\n", + "Epoch 665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.3433\n", + "Epoch 666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.3276\n", + "Epoch 667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.3119\n", + "Epoch 668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.2962\n", + "Epoch 669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.2806\n", + "Epoch 670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.2650\n", + "Epoch 671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.2496\n", + "Epoch 672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.2341\n", + "Epoch 673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.2187\n", + "Epoch 674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.2034\n", + "Epoch 675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 4.1881\n", + "Epoch 676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.1729\n", + "Epoch 677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.1578\n", + "Epoch 678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.1426\n", + "Epoch 679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.1276\n", + "Epoch 680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 4.1126\n", + "Epoch 681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 4.0976\n", + "Epoch 682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.0827\n", + "Epoch 683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.0679\n", + "Epoch 684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.0531\n", + "Epoch 685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 4.0384\n", + "Epoch 686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 4.0237\n", + "Epoch 687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 4.0090\n", + "Epoch 688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 3.9945\n", + "Epoch 689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 3.9799\n", + "Epoch 690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 3.9654\n", + "Epoch 691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.9510\n", + "Epoch 692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.9366\n", + "Epoch 693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 3.9223\n", + "Epoch 694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 3.9080\n", + "Epoch 695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.8938\n", + "Epoch 696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.8796\n", + "Epoch 697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 3.8655\n", + "Epoch 698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.8514\n", + "Epoch 699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.8374\n", + "Epoch 700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.8234\n", + "Epoch 701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.8095\n", + "Epoch 702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 3.7956\n", + "Epoch 703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 3.7818\n", + "Epoch 704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.7680\n", + "Epoch 705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.7543\n", + "Epoch 706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.7406\n", + "Epoch 707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 3.7270\n", + "Epoch 708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.7134\n", + "Epoch 709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.6998\n", + "Epoch 710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.6864\n", + "Epoch 711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.6729\n", + "Epoch 712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.6595\n", + "Epoch 713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 3.6462\n", + "Epoch 714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.6329\n", + "Epoch 715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.6196\n", + "Epoch 716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.6064\n", + "Epoch 717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.5932\n", + "Epoch 718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.5801\n", + "Epoch 719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.5671\n", + "Epoch 720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.5540\n", + "Epoch 721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.5411\n", + "Epoch 722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.5281\n", + "Epoch 723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.5152\n", + "Epoch 724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.5024\n", + "Epoch 725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 3.4896\n", + "Epoch 726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 3.4769\n", + "Epoch 727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.4641\n", + "Epoch 728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.4515\n", + "Epoch 729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4389\n", + "Epoch 730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.4263\n", + "Epoch 731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 3.4138\n", + "Epoch 732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.4013\n", + "Epoch 733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.3888\n", + "Epoch 734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.3764\n", + "Epoch 735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 3.3641\n", + "Epoch 736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.3518\n", + "Epoch 737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 3.3395\n", + "Epoch 738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.3273\n", + "Epoch 739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.3151\n", + "Epoch 740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.3029\n", + "Epoch 741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 3.2908\n", + "Epoch 742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.2788\n", + "Epoch 743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.2668\n", + "Epoch 744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 3.2548\n", + "Epoch 745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.2429\n", + "Epoch 746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.2310\n", + "Epoch 747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.2191\n", + "Epoch 748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.2073\n", + "Epoch 749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.1956\n", + "Epoch 750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 3.1838\n", + "Epoch 751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.1722\n", + "Epoch 752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 3.1605\n", + "Epoch 753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.1489\n", + "Epoch 754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.1374\n", + "Epoch 755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.1258\n", + "Epoch 756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 3.1144\n", + "Epoch 757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 3.1029\n", + "Epoch 758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.0915\n", + "Epoch 759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.0802\n", + "Epoch 760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.0688\n", + "Epoch 761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 3.0576\n", + "Epoch 762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.0463\n", + "Epoch 763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 3.0351\n", + "Epoch 764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.0239\n", + "Epoch 765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 3.0128\n", + "Epoch 766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 3.0017\n", + "Epoch 767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.9907\n", + "Epoch 768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.9797\n", + "Epoch 769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.9687\n", + "Epoch 770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.9578\n", + "Epoch 771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.9469\n", + "Epoch 772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 2.9360\n", + "Epoch 773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.9252\n", + "Epoch 774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 2.9144\n", + "Epoch 775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.9037\n", + "Epoch 776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.8930\n", + "Epoch 777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 2.8823\n", + "Epoch 778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.8717\n", + "Epoch 779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8611\n", + "Epoch 780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.8505\n", + "Epoch 781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.8400\n", + "Epoch 782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.8295\n", + "Epoch 783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.8191\n", + "Epoch 784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8086\n", + "Epoch 785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 2.7983\n", + "Epoch 786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.7879\n", + "Epoch 787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.7776\n", + "Epoch 788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.7673\n", + "Epoch 789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.7571\n", + "Epoch 790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.7469\n", + "Epoch 791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.7368\n", + "Epoch 792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.7266\n", + "Epoch 793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.7165\n", + "Epoch 794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.7065\n", + "Epoch 795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.6965\n", + "Epoch 796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.6865\n", + "Epoch 797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.6765\n", + "Epoch 798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.6666\n", + "Epoch 799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6567\n", + "Epoch 800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.6469\n", + "Epoch 801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.6370\n", + "Epoch 802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.6273\n", + "Epoch 803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.6175\n", + "Epoch 804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.6078\n", + "Epoch 805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5981\n", + "Epoch 806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5885\n", + "Epoch 807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5789\n", + "Epoch 808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.5693\n", + "Epoch 809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.5597\n", + "Epoch 810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.5502\n", + "Epoch 811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.5407\n", + "Epoch 812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.5313\n", + "Epoch 813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.5219\n", + "Epoch 814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5125\n", + "Epoch 815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.5031\n", + "Epoch 816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.4938\n", + "Epoch 817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.4845\n", + "Epoch 818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.4753\n", + "Epoch 819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.4661\n", + "Epoch 820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.4569\n", + "Epoch 821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.4477\n", + "Epoch 822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.4386\n", + "Epoch 823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 2.4295\n", + "Epoch 824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.4204\n", + "Epoch 825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.4114\n", + "Epoch 826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.4024\n", + "Epoch 827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.3934\n", + "Epoch 828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 2.3845\n", + "Epoch 829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.3756\n", + "Epoch 830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.3667\n", + "Epoch 831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.3579\n", + "Epoch 832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.3491\n", + "Epoch 833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.3403\n", + "Epoch 834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 2.3315\n", + "Epoch 835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.3228\n", + "Epoch 836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.3141\n", + "Epoch 837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.3054\n", + "Epoch 838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.2968\n", + "Epoch 839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.2882\n", + "Epoch 840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.2796\n", + "Epoch 841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.2711\n", + "Epoch 842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.2626\n", + "Epoch 843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.2541\n", + "Epoch 844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.2456\n", + "Epoch 845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.2372\n", + "Epoch 846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.2288\n", + "Epoch 847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.2205\n", + "Epoch 848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.2121\n", + "Epoch 849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.2038\n", + "Epoch 850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.1955\n", + "Epoch 851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.1873\n", + "Epoch 852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.1791\n", + "Epoch 853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.1709\n", + "Epoch 854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.1627\n", + "Epoch 855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.1546\n", + "Epoch 856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 2.1464\n", + "Epoch 857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.1384\n", + "Epoch 858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.1303\n", + "Epoch 859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.1223\n", + "Epoch 860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.1143\n", + "Epoch 861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.1063\n", + "Epoch 862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.0984\n", + "Epoch 863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.0905\n", + "Epoch 864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.0826\n", + "Epoch 865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.0747\n", + "Epoch 866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.0669\n", + "Epoch 867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.0591\n", + "Epoch 868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 2.0513\n", + "Epoch 869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 2.0435\n", + "Epoch 870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.0358\n", + "Epoch 871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.0281\n", + "Epoch 872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.0205\n", + "Epoch 873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 2.0128\n", + "Epoch 874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 2.0052\n", + "Epoch 875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.9976\n", + "Epoch 876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.9900\n", + "Epoch 877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.9825\n", + "Epoch 878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.9750\n", + "Epoch 879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.9675\n", + "Epoch 880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.9600\n", + "Epoch 881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.9526\n", + "Epoch 882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.9452\n", + "Epoch 883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.9378\n", + "Epoch 884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.9305\n", + "Epoch 885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.9231\n", + "Epoch 886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.9158\n", + "Epoch 887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.9085\n", + "Epoch 888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.9013\n", + "Epoch 889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.8941\n", + "Epoch 890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.8869\n", + "Epoch 891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.8797\n", + "Epoch 892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.8725\n", + "Epoch 893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.8654\n", + "Epoch 894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.8583\n", + "Epoch 895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.8512\n", + "Epoch 896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.8441\n", + "Epoch 897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.8371\n", + "Epoch 898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.8301\n", + "Epoch 899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.8231\n", + "Epoch 900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.8162\n", + "Epoch 901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.8092\n", + "Epoch 902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.8023\n", + "Epoch 903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.7954\n", + "Epoch 904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.7886\n", + "Epoch 905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.7817\n", + "Epoch 906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.7749\n", + "Epoch 907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.7681\n", + "Epoch 908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.7614\n", + "Epoch 909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.7546\n", + "Epoch 910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.7479\n", + "Epoch 911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7412\n", + "Epoch 912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.7346\n", + "Epoch 913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.7279\n", + "Epoch 914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7213\n", + "Epoch 915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 1.7147\n", + "Epoch 916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.7081\n", + "Epoch 917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.7015\n", + "Epoch 918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.6950\n", + "Epoch 919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.6885\n", + "Epoch 920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.6820\n", + "Epoch 921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6755\n", + "Epoch 922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.6691\n", + "Epoch 923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.6627\n", + "Epoch 924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.6563\n", + "Epoch 925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.6499\n", + "Epoch 926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.6436\n", + "Epoch 927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.6372\n", + "Epoch 928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.6309\n", + "Epoch 929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.6246\n", + "Epoch 930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.6184\n", + "Epoch 931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.6121\n", + "Epoch 932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.6059\n", + "Epoch 933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 1.5997\n", + "Epoch 934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.5935\n", + "Epoch 935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 1.5874\n", + "Epoch 936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.5813\n", + "Epoch 937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.5751\n", + "Epoch 938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5691\n", + "Epoch 939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.5630\n", + "Epoch 940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.5569\n", + "Epoch 941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.5509\n", + "Epoch 942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.5449\n", + "Epoch 943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.5389\n", + "Epoch 944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.5330\n", + "Epoch 945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.5270\n", + "Epoch 946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5211\n", + "Epoch 947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.5152\n", + "Epoch 948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5093\n", + "Epoch 949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5035\n", + "Epoch 950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4976\n", + "Epoch 951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4918\n", + "Epoch 952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.4860\n", + "Epoch 953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.4802\n", + "Epoch 954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.4745\n", + "Epoch 955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4687\n", + "Epoch 956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.4630\n", + "Epoch 957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.4573\n", + "Epoch 958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.4517\n", + "Epoch 959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.4460\n", + "Epoch 960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.4404\n", + "Epoch 961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.4348\n", + "Epoch 962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4292\n", + "Epoch 963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 1.4236\n", + "Epoch 964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 1.4180\n", + "Epoch 965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.4125\n", + "Epoch 966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.4070\n", + "Epoch 967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.4015\n", + "Epoch 968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.3960\n", + "Epoch 969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3905\n", + "Epoch 970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3851\n", + "Epoch 971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3797\n", + "Epoch 972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.3743\n", + "Epoch 973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.3689\n", + "Epoch 974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3635\n", + "Epoch 975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.3582\n", + "Epoch 976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.3529\n", + "Epoch 977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3476\n", + "Epoch 978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.3423\n", + "Epoch 979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.3370\n", + "Epoch 980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.3318\n", + "Epoch 981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.3265\n", + "Epoch 982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.3213\n", + "Epoch 983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.3161\n", + "Epoch 984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.3110\n", + "Epoch 985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3058\n", + "Epoch 986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.3007\n", + "Epoch 987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2955\n", + "Epoch 988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2904\n", + "Epoch 989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.2854\n", + "Epoch 990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.2803\n", + "Epoch 991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2752\n", + "Epoch 992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.2702\n", + "Epoch 993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.2652\n", + "Epoch 994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.2602\n", + "Epoch 995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2552\n", + "Epoch 996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.2503\n", + "Epoch 997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2453\n", + "Epoch 998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.2404\n", + "Epoch 999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.2355\n", + "Epoch 1000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 1.2306\n", + "Epoch 1000/3000\n", + " - loss: 1.2306\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.2306\n", + "Epoch 1001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.2258\n", + "Epoch 1002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.2209\n", + "Epoch 1003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.2161\n", + "Epoch 1004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.2113\n", + "Epoch 1005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2064\n", + "Epoch 1006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.2017\n", + "Epoch 1007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.1969\n", + "Epoch 1008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.1922\n", + "Epoch 1009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.1874\n", + "Epoch 1010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.1827\n", + "Epoch 1011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1780\n", + "Epoch 1012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.1733\n", + "Epoch 1013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.1687\n", + "Epoch 1014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.1640\n", + "Epoch 1015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.1594\n", + "Epoch 1016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.1548\n", + "Epoch 1017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1502\n", + "Epoch 1018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1456\n", + "Epoch 1019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1410\n", + "Epoch 1020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.1365\n", + "Epoch 1021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.1319\n", + "Epoch 1022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.1274\n", + "Epoch 1023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.1229\n", + "Epoch 1024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.1184\n", + "Epoch 1025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.1140\n", + "Epoch 1026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.1095\n", + "Epoch 1027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 1.1051\n", + "Epoch 1028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.1007\n", + "Epoch 1029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.0963\n", + "Epoch 1030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.0919\n", + "Epoch 1031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.0875\n", + "Epoch 1032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.0832\n", + "Epoch 1033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0788\n", + "Epoch 1034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.0745\n", + "Epoch 1035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0702\n", + "Epoch 1036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0659\n", + "Epoch 1037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.0616\n", + "Epoch 1038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 1.0573\n", + "Epoch 1039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.0531\n", + "Epoch 1040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.0489\n", + "Epoch 1041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.0447\n", + "Epoch 1042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.0405\n", + "Epoch 1043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.0363\n", + "Epoch 1044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.0321\n", + "Epoch 1045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0279\n", + "Epoch 1046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 1.0238\n", + "Epoch 1047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 1.0197\n", + "Epoch 1048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0156\n", + "Epoch 1049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0115\n", + "Epoch 1050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0074\n", + "Epoch 1051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 1.0033\n", + "Epoch 1052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9993\n", + "Epoch 1053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.9952\n", + "Epoch 1054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.9912\n", + "Epoch 1055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.9872\n", + "Epoch 1056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.9832\n", + "Epoch 1057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9792\n", + "Epoch 1058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9753\n", + "Epoch 1059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.9713\n", + "Epoch 1060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.9674\n", + "Epoch 1061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9635\n", + "Epoch 1062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9596\n", + "Epoch 1063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9557\n", + "Epoch 1064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9518\n", + "Epoch 1065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9480\n", + "Epoch 1066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9441\n", + "Epoch 1067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9403\n", + "Epoch 1068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.9364\n", + "Epoch 1069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.9326\n", + "Epoch 1070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.9289\n", + "Epoch 1071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.9251\n", + "Epoch 1072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.9213\n", + "Epoch 1073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9176\n", + "Epoch 1074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9138\n", + "Epoch 1075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.9101\n", + "Epoch 1076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.9064\n", + "Epoch 1077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.9027\n", + "Epoch 1078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.8990\n", + "Epoch 1079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8953\n", + "Epoch 1080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8917\n", + "Epoch 1081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.8880\n", + "Epoch 1082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8844\n", + "Epoch 1083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.8808\n", + "Epoch 1084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.8772\n", + "Epoch 1085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8736\n", + "Epoch 1086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.8700\n", + "Epoch 1087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8665\n", + "Epoch 1088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8629\n", + "Epoch 1089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8594\n", + "Epoch 1090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.8559\n", + "Epoch 1091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8524\n", + "Epoch 1092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.8489\n", + "Epoch 1093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8454\n", + "Epoch 1094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8419\n", + "Epoch 1095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8385\n", + "Epoch 1096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8350\n", + "Epoch 1097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.8316\n", + "Epoch 1098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8282\n", + "Epoch 1099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.8247\n", + "Epoch 1100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.8214\n", + "Epoch 1101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.8180\n", + "Epoch 1102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.8146\n", + "Epoch 1103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8112\n", + "Epoch 1104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.8079\n", + "Epoch 1105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.8046\n", + "Epoch 1106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.8013\n", + "Epoch 1107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.7979\n", + "Epoch 1108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7947\n", + "Epoch 1109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.7914\n", + "Epoch 1110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.7881\n", + "Epoch 1111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.7848\n", + "Epoch 1112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.7816\n", + "Epoch 1113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.7784\n", + "Epoch 1114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.7751\n", + "Epoch 1115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.7719\n", + "Epoch 1116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7687\n", + "Epoch 1117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7655\n", + "Epoch 1118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.7624\n", + "Epoch 1119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.7592\n", + "Epoch 1120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.7561\n", + "Epoch 1121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.7529\n", + "Epoch 1122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.7498\n", + "Epoch 1123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7467\n", + "Epoch 1124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.7436\n", + "Epoch 1125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7405\n", + "Epoch 1126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.7374\n", + "Epoch 1127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.7343\n", + "Epoch 1128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7313\n", + "Epoch 1129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7282\n", + "Epoch 1130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.7252\n", + "Epoch 1131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.7222\n", + "Epoch 1132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.7192\n", + "Epoch 1133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7162\n", + "Epoch 1134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.7132\n", + "Epoch 1135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.7102\n", + "Epoch 1136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.7072\n", + "Epoch 1137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.7043\n", + "Epoch 1138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.7013\n", + "Epoch 1139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.6984\n", + "Epoch 1140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.6955\n", + "Epoch 1141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.6926\n", + "Epoch 1142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.6897\n", + "Epoch 1143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.6868\n", + "Epoch 1144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.6839\n", + "Epoch 1145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.6810\n", + "Epoch 1146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.6782\n", + "Epoch 1147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6753\n", + "Epoch 1148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.6725\n", + "Epoch 1149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.6697\n", + "Epoch 1150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.6669\n", + "Epoch 1151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.6641\n", + "Epoch 1152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.6613\n", + "Epoch 1153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.6585\n", + "Epoch 1154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.6557\n", + "Epoch 1155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.6530\n", + "Epoch 1156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.6502\n", + "Epoch 1157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6475\n", + "Epoch 1158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.6448\n", + "Epoch 1159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.6420\n", + "Epoch 1160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.6393\n", + "Epoch 1161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6366\n", + "Epoch 1162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6340\n", + "Epoch 1163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.6313\n", + "Epoch 1164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.6286\n", + "Epoch 1165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.6260\n", + "Epoch 1166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.6233\n", + "Epoch 1167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.6207\n", + "Epoch 1168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.6180\n", + "Epoch 1169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.6154\n", + "Epoch 1170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6128\n", + "Epoch 1171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.6102\n", + "Epoch 1172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.6076\n", + "Epoch 1173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.6051\n", + "Epoch 1174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.6025\n", + "Epoch 1175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.5999\n", + "Epoch 1176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.5974\n", + "Epoch 1177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.5949\n", + "Epoch 1178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.5923\n", + "Epoch 1179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5898\n", + "Epoch 1180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.5873\n", + "Epoch 1181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5848\n", + "Epoch 1182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.5823\n", + "Epoch 1183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.5798\n", + "Epoch 1184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.5774\n", + "Epoch 1185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5749\n", + "Epoch 1186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.5725\n", + "Epoch 1187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.5700\n", + "Epoch 1188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5676\n", + "Epoch 1189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.5652\n", + "Epoch 1190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5628\n", + "Epoch 1191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.5604\n", + "Epoch 1192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5580\n", + "Epoch 1193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5556\n", + "Epoch 1194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.5532\n", + "Epoch 1195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.5508\n", + "Epoch 1196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5485\n", + "Epoch 1197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.5461\n", + "Epoch 1198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5438\n", + "Epoch 1199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5415\n", + "Epoch 1200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5391\n", + "Epoch 1201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5368\n", + "Epoch 1202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.5345\n", + "Epoch 1203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5322\n", + "Epoch 1204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5300\n", + "Epoch 1205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5277\n", + "Epoch 1206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5254\n", + "Epoch 1207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5232\n", + "Epoch 1208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.5209\n", + "Epoch 1209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5187\n", + "Epoch 1210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5164\n", + "Epoch 1211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5142\n", + "Epoch 1212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5120\n", + "Epoch 1213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5098\n", + "Epoch 1214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.5076\n", + "Epoch 1215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5054\n", + "Epoch 1216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.5032\n", + "Epoch 1217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5011\n", + "Epoch 1218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.4989\n", + "Epoch 1219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4967\n", + "Epoch 1220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.4946\n", + "Epoch 1221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4925\n", + "Epoch 1222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4903\n", + "Epoch 1223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4882\n", + "Epoch 1224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4861\n", + "Epoch 1225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.4840\n", + "Epoch 1226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.4819\n", + "Epoch 1227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4798\n", + "Epoch 1228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4777\n", + "Epoch 1229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.4757\n", + "Epoch 1230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.4736\n", + "Epoch 1231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.4715\n", + "Epoch 1232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4695\n", + "Epoch 1233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4675\n", + "Epoch 1234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4654\n", + "Epoch 1235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4634\n", + "Epoch 1236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4614\n", + "Epoch 1237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4594\n", + "Epoch 1238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4574\n", + "Epoch 1239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.4554\n", + "Epoch 1240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4534\n", + "Epoch 1241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4514\n", + "Epoch 1242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4495\n", + "Epoch 1243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4475\n", + "Epoch 1244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.4456\n", + "Epoch 1245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4436\n", + "Epoch 1246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.4417\n", + "Epoch 1247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4398\n", + "Epoch 1248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4378\n", + "Epoch 1249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4359\n", + "Epoch 1250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.4340\n", + "Epoch 1251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.4321\n", + "Epoch 1252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.4302\n", + "Epoch 1253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.4283\n", + "Epoch 1254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4265\n", + "Epoch 1255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4246\n", + "Epoch 1256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4227\n", + "Epoch 1257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4209\n", + "Epoch 1258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4190\n", + "Epoch 1259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.4172\n", + "Epoch 1260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4154\n", + "Epoch 1261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4136\n", + "Epoch 1262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.4117\n", + "Epoch 1263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.4099\n", + "Epoch 1264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4081\n", + "Epoch 1265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.4063\n", + "Epoch 1266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4045\n", + "Epoch 1267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.4028\n", + "Epoch 1268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.4010\n", + "Epoch 1269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3992\n", + "Epoch 1270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3975\n", + "Epoch 1271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3957\n", + "Epoch 1272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3940\n", + "Epoch 1273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3922\n", + "Epoch 1274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3905\n", + "Epoch 1275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3888\n", + "Epoch 1276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3871\n", + "Epoch 1277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3854\n", + "Epoch 1278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3837\n", + "Epoch 1279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3820\n", + "Epoch 1280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3803\n", + "Epoch 1281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.3786\n", + "Epoch 1282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3769\n", + "Epoch 1283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3753\n", + "Epoch 1284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.3736\n", + "Epoch 1285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3719\n", + "Epoch 1286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3703\n", + "Epoch 1287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3686\n", + "Epoch 1288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.3670\n", + "Epoch 1289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3654\n", + "Epoch 1290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3638\n", + "Epoch 1291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3621\n", + "Epoch 1292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3605\n", + "Epoch 1293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3589\n", + "Epoch 1294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3573\n", + "Epoch 1295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3558\n", + "Epoch 1296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3542\n", + "Epoch 1297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3526\n", + "Epoch 1298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3510\n", + "Epoch 1299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3495\n", + "Epoch 1300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3479\n", + "Epoch 1301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.3464\n", + "Epoch 1302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3448\n", + "Epoch 1303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3433\n", + "Epoch 1304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3417\n", + "Epoch 1305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.3402\n", + "Epoch 1306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3387\n", + "Epoch 1307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3372\n", + "Epoch 1308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3357\n", + "Epoch 1309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3342\n", + "Epoch 1310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3327\n", + "Epoch 1311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3312\n", + "Epoch 1312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3297\n", + "Epoch 1313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.3283\n", + "Epoch 1314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.3268\n", + "Epoch 1315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3253\n", + "Epoch 1316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3239\n", + "Epoch 1317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.3224\n", + "Epoch 1318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3210\n", + "Epoch 1319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3195\n", + "Epoch 1320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3181\n", + "Epoch 1321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.3167\n", + "Epoch 1322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.3152\n", + "Epoch 1323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3138\n", + "Epoch 1324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3124\n", + "Epoch 1325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3110\n", + "Epoch 1326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.3096\n", + "Epoch 1327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.3082\n", + "Epoch 1328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3068\n", + "Epoch 1329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3055\n", + "Epoch 1330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.3041\n", + "Epoch 1331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3027\n", + "Epoch 1332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3013\n", + "Epoch 1333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.3000\n", + "Epoch 1334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.2986\n", + "Epoch 1335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.2973\n", + "Epoch 1336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2960\n", + "Epoch 1337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2946\n", + "Epoch 1338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2933\n", + "Epoch 1339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2920\n", + "Epoch 1340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2906\n", + "Epoch 1341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2893\n", + "Epoch 1342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.2880\n", + "Epoch 1343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.2867\n", + "Epoch 1344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.2854\n", + "Epoch 1345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.2841\n", + "Epoch 1346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.2828\n", + "Epoch 1347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.2816\n", + "Epoch 1348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.2803\n", + "Epoch 1349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.2790\n", + "Epoch 1350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2778\n", + "Epoch 1351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.2765\n", + "Epoch 1352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2752\n", + "Epoch 1353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.2740\n", + "Epoch 1354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.2728\n", + "Epoch 1355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2715\n", + "Epoch 1356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.2703\n", + "Epoch 1357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.2691\n", + "Epoch 1358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.2678\n", + "Epoch 1359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.2666\n", + "Epoch 1360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2654\n", + "Epoch 1361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2642\n", + "Epoch 1362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.2630\n", + "Epoch 1363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.2618\n", + "Epoch 1364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2606\n", + "Epoch 1365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.2594\n", + "Epoch 1366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2582\n", + "Epoch 1367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2571\n", + "Epoch 1368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2559\n", + "Epoch 1369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2547\n", + "Epoch 1370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.2536\n", + "Epoch 1371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.2524\n", + "Epoch 1372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.2512\n", + "Epoch 1373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2501\n", + "Epoch 1374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2490\n", + "Epoch 1375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.2478\n", + "Epoch 1376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.2467\n", + "Epoch 1377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.2456\n", + "Epoch 1378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2444\n", + "Epoch 1379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2433\n", + "Epoch 1380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.2422\n", + "Epoch 1381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2411\n", + "Epoch 1382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2400\n", + "Epoch 1383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2389\n", + "Epoch 1384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2378\n", + "Epoch 1385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2367\n", + "Epoch 1386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2356\n", + "Epoch 1387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2345\n", + "Epoch 1388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.2335\n", + "Epoch 1389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2324\n", + "Epoch 1390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.2313\n", + "Epoch 1391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2303\n", + "Epoch 1392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2292\n", + "Epoch 1393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2282\n", + "Epoch 1394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2271\n", + "Epoch 1395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2261\n", + "Epoch 1396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2250\n", + "Epoch 1397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2240\n", + "Epoch 1398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.2230\n", + "Epoch 1399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2219\n", + "Epoch 1400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.2209\n", + "Epoch 1401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2199\n", + "Epoch 1402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2189\n", + "Epoch 1403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2179\n", + "Epoch 1404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2169\n", + "Epoch 1405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2159\n", + "Epoch 1406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.2149\n", + "Epoch 1407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.2139\n", + "Epoch 1408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2129\n", + "Epoch 1409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.2119\n", + "Epoch 1410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2109\n", + "Epoch 1411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2100\n", + "Epoch 1412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.2090\n", + "Epoch 1413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.2080\n", + "Epoch 1414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2071\n", + "Epoch 1415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.2061\n", + "Epoch 1416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2052\n", + "Epoch 1417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.2042\n", + "Epoch 1418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.2033\n", + "Epoch 1419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.2023\n", + "Epoch 1420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2014\n", + "Epoch 1421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.2005\n", + "Epoch 1422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1995\n", + "Epoch 1423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.1986\n", + "Epoch 1424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1977\n", + "Epoch 1425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 0.1968\n", + "Epoch 1426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1959\n", + "Epoch 1427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1949\n", + "Epoch 1428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1940\n", + "Epoch 1429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1931\n", + "Epoch 1430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1922\n", + "Epoch 1431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1914\n", + "Epoch 1432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1905\n", + "Epoch 1433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.1896\n", + "Epoch 1434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1887\n", + "Epoch 1435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1878\n", + "Epoch 1436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1869\n", + "Epoch 1437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.1861\n", + "Epoch 1438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1852\n", + "Epoch 1439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1844\n", + "Epoch 1440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1835\n", + "Epoch 1441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1826\n", + "Epoch 1442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1818\n", + "Epoch 1443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1809\n", + "Epoch 1444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1801\n", + "Epoch 1445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.1793\n", + "Epoch 1446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1784\n", + "Epoch 1447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1776\n", + "Epoch 1448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1768\n", + "Epoch 1449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1759\n", + "Epoch 1450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1751\n", + "Epoch 1451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1743\n", + "Epoch 1452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1735\n", + "Epoch 1453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1727\n", + "Epoch 1454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1719\n", + "Epoch 1455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1711\n", + "Epoch 1456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1703\n", + "Epoch 1457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1695\n", + "Epoch 1458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1687\n", + "Epoch 1459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1679\n", + "Epoch 1460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1671\n", + "Epoch 1461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 0.1663\n", + "Epoch 1462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1656\n", + "Epoch 1463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1648\n", + "Epoch 1464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1640\n", + "Epoch 1465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.1632\n", + "Epoch 1466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1625\n", + "Epoch 1467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.1617\n", + "Epoch 1468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1610\n", + "Epoch 1469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1602\n", + "Epoch 1470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1595\n", + "Epoch 1471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1587\n", + "Epoch 1472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1580\n", + "Epoch 1473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1572\n", + "Epoch 1474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1565\n", + "Epoch 1475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1558\n", + "Epoch 1476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1550\n", + "Epoch 1477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1543\n", + "Epoch 1478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1536\n", + "Epoch 1479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1529\n", + "Epoch 1480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1521\n", + "Epoch 1481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1514\n", + "Epoch 1482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1507\n", + "Epoch 1483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1500\n", + "Epoch 1484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1493\n", + "Epoch 1485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1486\n", + "Epoch 1486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.1479\n", + "Epoch 1487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1472\n", + "Epoch 1488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1465\n", + "Epoch 1489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.1458\n", + "Epoch 1490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1451\n", + "Epoch 1491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1445\n", + "Epoch 1492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1438\n", + "Epoch 1493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1431\n", + "Epoch 1494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1424\n", + "Epoch 1495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.1418\n", + "Epoch 1496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1411\n", + "Epoch 1497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.1404\n", + "Epoch 1498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1398\n", + "Epoch 1499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1391\n", + "Epoch 1500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1385\n", + "Epoch 1501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.1378\n", + "Epoch 1502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1372\n", + "Epoch 1503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1365\n", + "Epoch 1504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1359\n", + "Epoch 1505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.1352\n", + "Epoch 1506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.1346\n", + "Epoch 1507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 0.1340\n", + "Epoch 1508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1333\n", + "Epoch 1509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1327\n", + "Epoch 1510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1321\n", + "Epoch 1511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1315\n", + "Epoch 1512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1308\n", + "Epoch 1513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.1302\n", + "Epoch 1514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1296\n", + "Epoch 1515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1290\n", + "Epoch 1516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1284\n", + "Epoch 1517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.1278\n", + "Epoch 1518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1272\n", + "Epoch 1519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.1266\n", + "Epoch 1520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.1260\n", + "Epoch 1521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1254\n", + "Epoch 1522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1248\n", + "Epoch 1523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1242\n", + "Epoch 1524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1236\n", + "Epoch 1525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.1230\n", + "Epoch 1526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1224\n", + "Epoch 1527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1219\n", + "Epoch 1528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1213\n", + "Epoch 1529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.1207\n", + "Epoch 1530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1202\n", + "Epoch 1531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.1196\n", + "Epoch 1532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1190\n", + "Epoch 1533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.1185\n", + "Epoch 1534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1179\n", + "Epoch 1535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1173\n", + "Epoch 1536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1168\n", + "Epoch 1537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.1162\n", + "Epoch 1538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1157\n", + "Epoch 1539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.1151\n", + "Epoch 1540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1146\n", + "Epoch 1541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.1140\n", + "Epoch 1542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1135\n", + "Epoch 1543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1130\n", + "Epoch 1544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1124\n", + "Epoch 1545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.1119\n", + "Epoch 1546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1114\n", + "Epoch 1547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1109\n", + "Epoch 1548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1103\n", + "Epoch 1549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.1098\n", + "Epoch 1550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.1093\n", + "Epoch 1551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1088\n", + "Epoch 1552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.1083\n", + "Epoch 1553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.1077\n", + "Epoch 1554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1072\n", + "Epoch 1555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.1067\n", + "Epoch 1556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.1062\n", + "Epoch 1557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1057\n", + "Epoch 1558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.1052\n", + "Epoch 1559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1047\n", + "Epoch 1560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1042\n", + "Epoch 1561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1037\n", + "Epoch 1562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1032\n", + "Epoch 1563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1028\n", + "Epoch 1564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.1023\n", + "Epoch 1565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1018\n", + "Epoch 1566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.1013\n", + "Epoch 1567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1008\n", + "Epoch 1568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1003\n", + "Epoch 1569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0999\n", + "Epoch 1570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0994\n", + "Epoch 1571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0989\n", + "Epoch 1572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0985\n", + "Epoch 1573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0980\n", + "Epoch 1574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0975\n", + "Epoch 1575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0971\n", + "Epoch 1576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0966\n", + "Epoch 1577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0962\n", + "Epoch 1578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0957\n", + "Epoch 1579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0952\n", + "Epoch 1580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0948\n", + "Epoch 1581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0943\n", + "Epoch 1582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0939\n", + "Epoch 1583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0935\n", + "Epoch 1584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0930\n", + "Epoch 1585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0926\n", + "Epoch 1586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0921\n", + "Epoch 1587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0917\n", + "Epoch 1588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0913\n", + "Epoch 1589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0908\n", + "Epoch 1590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0904\n", + "Epoch 1591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0900\n", + "Epoch 1592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0896\n", + "Epoch 1593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0891\n", + "Epoch 1594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0887\n", + "Epoch 1595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0883\n", + "Epoch 1596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0879\n", + "Epoch 1597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0875\n", + "Epoch 1598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0870\n", + "Epoch 1599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0866\n", + "Epoch 1600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0862\n", + "Epoch 1601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0858\n", + "Epoch 1602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0854\n", + "Epoch 1603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0850\n", + "Epoch 1604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0846\n", + "Epoch 1605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0842\n", + "Epoch 1606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0838\n", + "Epoch 1607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0834\n", + "Epoch 1608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0830\n", + "Epoch 1609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0826\n", + "Epoch 1610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0822\n", + "Epoch 1611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0818\n", + "Epoch 1612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0815\n", + "Epoch 1613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0811\n", + "Epoch 1614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0807\n", + "Epoch 1615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0803\n", + "Epoch 1616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0799\n", + "Epoch 1617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0796\n", + "Epoch 1618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0792\n", + "Epoch 1619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0788\n", + "Epoch 1620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0784\n", + "Epoch 1621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0781\n", + "Epoch 1622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0777\n", + "Epoch 1623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0773\n", + "Epoch 1624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0770\n", + "Epoch 1625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0766\n", + "Epoch 1626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0762\n", + "Epoch 1627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0759\n", + "Epoch 1628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0755\n", + "Epoch 1629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0752\n", + "Epoch 1630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0748\n", + "Epoch 1631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0745\n", + "Epoch 1632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0741\n", + "Epoch 1633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0738\n", + "Epoch 1634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0734\n", + "Epoch 1635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0731\n", + "Epoch 1636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0727\n", + "Epoch 1637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0724\n", + "Epoch 1638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0721\n", + "Epoch 1639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0717\n", + "Epoch 1640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0714\n", + "Epoch 1641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0710\n", + "Epoch 1642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0707\n", + "Epoch 1643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0704\n", + "Epoch 1644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0701\n", + "Epoch 1645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0697\n", + "Epoch 1646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0694\n", + "Epoch 1647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0691\n", + "Epoch 1648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0687\n", + "Epoch 1649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0684\n", + "Epoch 1650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0681\n", + "Epoch 1651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0678\n", + "Epoch 1652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0675\n", + "Epoch 1653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0672\n", + "Epoch 1654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0668\n", + "Epoch 1655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0665\n", + "Epoch 1656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0662\n", + "Epoch 1657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0659\n", + "Epoch 1658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0656\n", + "Epoch 1659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0653\n", + "Epoch 1660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0650\n", + "Epoch 1661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0647\n", + "Epoch 1662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0644\n", + "Epoch 1663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0641\n", + "Epoch 1664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0638\n", + "Epoch 1665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0635\n", + "Epoch 1666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0632\n", + "Epoch 1667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0629\n", + "Epoch 1668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0626\n", + "Epoch 1669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0623\n", + "Epoch 1670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0620\n", + "Epoch 1671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0617\n", + "Epoch 1672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0614\n", + "Epoch 1673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0612\n", + "Epoch 1674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0609\n", + "Epoch 1675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0606\n", + "Epoch 1676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0603\n", + "Epoch 1677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0600\n", + "Epoch 1678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0598\n", + "Epoch 1679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0595\n", + "Epoch 1680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0592\n", + "Epoch 1681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0589\n", + "Epoch 1682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0587\n", + "Epoch 1683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0584\n", + "Epoch 1684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0581\n", + "Epoch 1685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0578\n", + "Epoch 1686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0576\n", + "Epoch 1687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0573\n", + "Epoch 1688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0570\n", + "Epoch 1689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0568\n", + "Epoch 1690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0565\n", + "Epoch 1691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0563\n", + "Epoch 1692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0560\n", + "Epoch 1693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0557\n", + "Epoch 1694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0555\n", + "Epoch 1695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0552\n", + "Epoch 1696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0550\n", + "Epoch 1697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0547\n", + "Epoch 1698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0545\n", + "Epoch 1699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0542\n", + "Epoch 1700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0540\n", + "Epoch 1701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0537\n", + "Epoch 1702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0535\n", + "Epoch 1703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0532\n", + "Epoch 1704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0530\n", + "Epoch 1705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0527\n", + "Epoch 1706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0525\n", + "Epoch 1707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0523\n", + "Epoch 1708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0520\n", + "Epoch 1709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0518\n", + "Epoch 1710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0516\n", + "Epoch 1711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0513\n", + "Epoch 1712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0511\n", + "Epoch 1713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0509\n", + "Epoch 1714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0506\n", + "Epoch 1715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0504\n", + "Epoch 1716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0502\n", + "Epoch 1717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0499\n", + "Epoch 1718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0497\n", + "Epoch 1719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0495\n", + "Epoch 1720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0493\n", + "Epoch 1721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0490\n", + "Epoch 1722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0488\n", + "Epoch 1723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0486\n", + "Epoch 1724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0484\n", + "Epoch 1725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0481\n", + "Epoch 1726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0479\n", + "Epoch 1727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0477\n", + "Epoch 1728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0475\n", + "Epoch 1729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0473\n", + "Epoch 1730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0471\n", + "Epoch 1731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0469\n", + "Epoch 1732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0466\n", + "Epoch 1733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0464\n", + "Epoch 1734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0462\n", + "Epoch 1735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0460\n", + "Epoch 1736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0458\n", + "Epoch 1737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0456\n", + "Epoch 1738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0454\n", + "Epoch 1739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0452\n", + "Epoch 1740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0450\n", + "Epoch 1741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0448\n", + "Epoch 1742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0446\n", + "Epoch 1743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0444\n", + "Epoch 1744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0442\n", + "Epoch 1745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0440\n", + "Epoch 1746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0438\n", + "Epoch 1747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0436\n", + "Epoch 1748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0434\n", + "Epoch 1749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0432\n", + "Epoch 1750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0430\n", + "Epoch 1751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0428\n", + "Epoch 1752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0426\n", + "Epoch 1753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0425\n", + "Epoch 1754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0423\n", + "Epoch 1755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0421\n", + "Epoch 1756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0419\n", + "Epoch 1757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0417\n", + "Epoch 1758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0415\n", + "Epoch 1759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0413\n", + "Epoch 1760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0412\n", + "Epoch 1761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0410\n", + "Epoch 1762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0408\n", + "Epoch 1763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0406\n", + "Epoch 1764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0404\n", + "Epoch 1765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0403\n", + "Epoch 1766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0401\n", + "Epoch 1767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0399\n", + "Epoch 1768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0397\n", + "Epoch 1769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0396\n", + "Epoch 1770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0394\n", + "Epoch 1771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0392\n", + "Epoch 1772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0391\n", + "Epoch 1773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0389\n", + "Epoch 1774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0387\n", + "Epoch 1775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0385\n", + "Epoch 1776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0384\n", + "Epoch 1777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0382\n", + "Epoch 1778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0380\n", + "Epoch 1779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0379\n", + "Epoch 1780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0377\n", + "Epoch 1781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0376\n", + "Epoch 1782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0374\n", + "Epoch 1783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0372\n", + "Epoch 1784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0371\n", + "Epoch 1785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0369\n", + "Epoch 1786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0368\n", + "Epoch 1787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0366\n", + "Epoch 1788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0364\n", + "Epoch 1789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0363\n", + "Epoch 1790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0361\n", + "Epoch 1791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0360\n", + "Epoch 1792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0358\n", + "Epoch 1793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0357\n", + "Epoch 1794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0355\n", + "Epoch 1795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0354\n", + "Epoch 1796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0352\n", + "Epoch 1797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0351\n", + "Epoch 1798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0349\n", + "Epoch 1799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0348\n", + "Epoch 1800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0346\n", + "Epoch 1801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0345\n", + "Epoch 1802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0343\n", + "Epoch 1803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0342\n", + "Epoch 1804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0340\n", + "Epoch 1805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0339\n", + "Epoch 1806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0337\n", + "Epoch 1807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0336\n", + "Epoch 1808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0335\n", + "Epoch 1809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0333\n", + "Epoch 1810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0332\n", + "Epoch 1811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0330\n", + "Epoch 1812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0329\n", + "Epoch 1813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0328\n", + "Epoch 1814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0326\n", + "Epoch 1815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0325\n", + "Epoch 1816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0324\n", + "Epoch 1817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0322\n", + "Epoch 1818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0321\n", + "Epoch 1819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0320\n", + "Epoch 1820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0318\n", + "Epoch 1821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0317\n", + "Epoch 1822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0316\n", + "Epoch 1823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0314\n", + "Epoch 1824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0313\n", + "Epoch 1825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0312\n", + "Epoch 1826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0311\n", + "Epoch 1827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0309\n", + "Epoch 1828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0308\n", + "Epoch 1829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0307\n", + "Epoch 1830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 0.0306\n", + "Epoch 1831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0304\n", + "Epoch 1832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0303\n", + "Epoch 1833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0302\n", + "Epoch 1834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0301\n", + "Epoch 1835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0299\n", + "Epoch 1836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0298\n", + "Epoch 1837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0297\n", + "Epoch 1838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0296\n", + "Epoch 1839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0295\n", + "Epoch 1840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0293\n", + "Epoch 1841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0292\n", + "Epoch 1842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0291\n", + "Epoch 1843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0290\n", + "Epoch 1844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0289\n", + "Epoch 1845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0288\n", + "Epoch 1846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0286\n", + "Epoch 1847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0285\n", + "Epoch 1848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0284\n", + "Epoch 1849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0283\n", + "Epoch 1850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0282\n", + "Epoch 1851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0281\n", + "Epoch 1852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0280\n", + "Epoch 1853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0279\n", + "Epoch 1854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0278\n", + "Epoch 1855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0276\n", + "Epoch 1856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0275\n", + "Epoch 1857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0274\n", + "Epoch 1858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0273\n", + "Epoch 1859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0272\n", + "Epoch 1860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0271\n", + "Epoch 1861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0270\n", + "Epoch 1862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0269\n", + "Epoch 1863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0268\n", + "Epoch 1864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0267\n", + "Epoch 1865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0266\n", + "Epoch 1866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0265\n", + "Epoch 1867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0264\n", + "Epoch 1868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0263\n", + "Epoch 1869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0262\n", + "Epoch 1870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0261\n", + "Epoch 1871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0260\n", + "Epoch 1872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0259\n", + "Epoch 1873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0258\n", + "Epoch 1874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0257\n", + "Epoch 1875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0256\n", + "Epoch 1876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0255\n", + "Epoch 1877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0254\n", + "Epoch 1878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0253\n", + "Epoch 1879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0252\n", + "Epoch 1880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0251\n", + "Epoch 1881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0250\n", + "Epoch 1882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0249\n", + "Epoch 1883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0248\n", + "Epoch 1884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0247\n", + "Epoch 1885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0246\n", + "Epoch 1886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0246\n", + "Epoch 1887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0245\n", + "Epoch 1888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0244\n", + "Epoch 1889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0243\n", + "Epoch 1890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0242\n", + "Epoch 1891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0241\n", + "Epoch 1892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0240\n", + "Epoch 1893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0239\n", + "Epoch 1894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0238\n", + "Epoch 1895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0238\n", + "Epoch 1896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0237\n", + "Epoch 1897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0236\n", + "Epoch 1898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0235\n", + "Epoch 1899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0234\n", + "Epoch 1900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0233\n", + "Epoch 1901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0232\n", + "Epoch 1902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0232\n", + "Epoch 1903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0231\n", + "Epoch 1904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0230\n", + "Epoch 1905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0229\n", + "Epoch 1906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0228\n", + "Epoch 1907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0228\n", + "Epoch 1908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0227\n", + "Epoch 1909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0226\n", + "Epoch 1910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0225\n", + "Epoch 1911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0224\n", + "Epoch 1912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0224\n", + "Epoch 1913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0223\n", + "Epoch 1914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0222\n", + "Epoch 1915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0221\n", + "Epoch 1916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0220\n", + "Epoch 1917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0220\n", + "Epoch 1918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0219\n", + "Epoch 1919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0218\n", + "Epoch 1920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0217\n", + "Epoch 1921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0217\n", + "Epoch 1922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0216\n", + "Epoch 1923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0215\n", + "Epoch 1924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0214\n", + "Epoch 1925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0214\n", + "Epoch 1926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0213\n", + "Epoch 1927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0212\n", + "Epoch 1928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0212\n", + "Epoch 1929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0211\n", + "Epoch 1930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0210\n", + "Epoch 1931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0209\n", + "Epoch 1932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0209\n", + "Epoch 1933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0208\n", + "Epoch 1934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0207\n", + "Epoch 1935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0207\n", + "Epoch 1936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0206\n", + "Epoch 1937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0205\n", + "Epoch 1938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0205\n", + "Epoch 1939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0204\n", + "Epoch 1940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0203\n", + "Epoch 1941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0203\n", + "Epoch 1942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0202\n", + "Epoch 1943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0201\n", + "Epoch 1944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0201\n", + "Epoch 1945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0200\n", + "Epoch 1946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0199\n", + "Epoch 1947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0199\n", + "Epoch 1948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0198\n", + "Epoch 1949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0197\n", + "Epoch 1950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0197\n", + "Epoch 1951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0196\n", + "Epoch 1952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0195\n", + "Epoch 1953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0195\n", + "Epoch 1954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0194\n", + "Epoch 1955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0194\n", + "Epoch 1956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0193\n", + "Epoch 1957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0192\n", + "Epoch 1958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0192\n", + "Epoch 1959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0191\n", + "Epoch 1960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0191\n", + "Epoch 1961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0190\n", + "Epoch 1962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0189\n", + "Epoch 1963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0189\n", + "Epoch 1964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0188\n", + "Epoch 1965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0188\n", + "Epoch 1966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0187\n", + "Epoch 1967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0187\n", + "Epoch 1968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0186\n", + "Epoch 1969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0185\n", + "Epoch 1970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0185\n", + "Epoch 1971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0184\n", + "Epoch 1972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 0.0184\n", + "Epoch 1973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0183\n", + "Epoch 1974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0183\n", + "Epoch 1975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0182\n", + "Epoch 1976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0182\n", + "Epoch 1977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0181\n", + "Epoch 1978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0180\n", + "Epoch 1979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0180\n", + "Epoch 1980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0179\n", + "Epoch 1981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0179\n", + "Epoch 1982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0178\n", + "Epoch 1983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0178\n", + "Epoch 1984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0177\n", + "Epoch 1985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0177\n", + "Epoch 1986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0176\n", + "Epoch 1987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0176\n", + "Epoch 1988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0175\n", + "Epoch 1989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0175\n", + "Epoch 1990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0174\n", + "Epoch 1991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0174\n", + "Epoch 1992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0173\n", + "Epoch 1993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0173\n", + "Epoch 1994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0172\n", + "Epoch 1995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0172\n", + "Epoch 1996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0171\n", + "Epoch 1997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0171\n", + "Epoch 1998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0170\n", + "Epoch 1999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0170\n", + "Epoch 2000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0170\n", + "Epoch 2000/3000\n", + " - loss: 0.0170\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0170\n", + "Epoch 2001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0169\n", + "Epoch 2002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0169\n", + "Epoch 2003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0168\n", + "Epoch 2004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0168\n", + "Epoch 2005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0167\n", + "Epoch 2006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0167\n", + "Epoch 2007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0166\n", + "Epoch 2008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0166\n", + "Epoch 2009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0165\n", + "Epoch 2010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0165\n", + "Epoch 2011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0165\n", + "Epoch 2012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0164\n", + "Epoch 2013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0164\n", + "Epoch 2014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0163\n", + "Epoch 2015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0163\n", + "Epoch 2016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0162\n", + "Epoch 2017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0162\n", + "Epoch 2018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0162\n", + "Epoch 2019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0161\n", + "Epoch 2020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0161\n", + "Epoch 2021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0160\n", + "Epoch 2022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0160\n", + "Epoch 2023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0159\n", + "Epoch 2024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0159\n", + "Epoch 2025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0159\n", + "Epoch 2026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0158\n", + "Epoch 2027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0158\n", + "Epoch 2028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0157\n", + "Epoch 2029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0157\n", + "Epoch 2030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0157\n", + "Epoch 2031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0156\n", + "Epoch 2032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0156\n", + "Epoch 2033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0156\n", + "Epoch 2034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0155\n", + "Epoch 2035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0155\n", + "Epoch 2036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0154\n", + "Epoch 2037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0154\n", + "Epoch 2038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0154\n", + "Epoch 2039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0153\n", + "Epoch 2040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0153\n", + "Epoch 2041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0153\n", + "Epoch 2042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0152\n", + "Epoch 2043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0152\n", + "Epoch 2044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0151\n", + "Epoch 2045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0151\n", + "Epoch 2046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0151\n", + "Epoch 2047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0150\n", + "Epoch 2048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0150\n", + "Epoch 2049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0150\n", + "Epoch 2050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0149\n", + "Epoch 2051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0149\n", + "Epoch 2052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0149\n", + "Epoch 2053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0148\n", + "Epoch 2054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0148\n", + "Epoch 2055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0148\n", + "Epoch 2056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0147\n", + "Epoch 2057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0147\n", + "Epoch 2058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0147\n", + "Epoch 2059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0146\n", + "Epoch 2060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0146\n", + "Epoch 2061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0146\n", + "Epoch 2062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0145\n", + "Epoch 2063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0145\n", + "Epoch 2064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0145\n", + "Epoch 2065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0144\n", + "Epoch 2066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0144\n", + "Epoch 2067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0144\n", + "Epoch 2068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0144\n", + "Epoch 2069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0143\n", + "Epoch 2070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0143\n", + "Epoch 2071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0143\n", + "Epoch 2072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0142\n", + "Epoch 2073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0142\n", + "Epoch 2074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0142\n", + "Epoch 2075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0141\n", + "Epoch 2076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0141\n", + "Epoch 2077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0141\n", + "Epoch 2078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0141\n", + "Epoch 2079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0140\n", + "Epoch 2080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0140\n", + "Epoch 2081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0140\n", + "Epoch 2082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0139\n", + "Epoch 2083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0139\n", + "Epoch 2084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0139\n", + "Epoch 2085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0139\n", + "Epoch 2086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0138\n", + "Epoch 2087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0138\n", + "Epoch 2088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0138\n", + "Epoch 2089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0137\n", + "Epoch 2090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0137\n", + "Epoch 2091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0137\n", + "Epoch 2092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0137\n", + "Epoch 2093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0136\n", + "Epoch 2094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0136\n", + "Epoch 2095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0136\n", + "Epoch 2096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0136\n", + "Epoch 2097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0135\n", + "Epoch 2098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0135\n", + "Epoch 2099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0135\n", + "Epoch 2100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0135\n", + "Epoch 2101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0134\n", + "Epoch 2102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0134\n", + "Epoch 2103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0134\n", + "Epoch 2104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0134\n", + "Epoch 2105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0133\n", + "Epoch 2106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0133\n", + "Epoch 2107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0133\n", + "Epoch 2108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0133\n", + "Epoch 2109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0132\n", + "Epoch 2110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0132\n", + "Epoch 2111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0132\n", + "Epoch 2112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0132\n", + "Epoch 2113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0131\n", + "Epoch 2114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0131\n", + "Epoch 2115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0131\n", + "Epoch 2116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0131\n", + "Epoch 2117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0131\n", + "Epoch 2118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0130\n", + "Epoch 2119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0130\n", + "Epoch 2120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0130\n", + "Epoch 2121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0130\n", + "Epoch 2122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0129\n", + "Epoch 2123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0129\n", + "Epoch 2124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0129\n", + "Epoch 2125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0129\n", + "Epoch 2126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0129\n", + "Epoch 2127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0128\n", + "Epoch 2128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0128\n", + "Epoch 2129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0128\n", + "Epoch 2130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0128\n", + "Epoch 2131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0128\n", + "Epoch 2132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0127\n", + "Epoch 2133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0127\n", + "Epoch 2134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0127\n", + "Epoch 2135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0127\n", + "Epoch 2136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0127\n", + "Epoch 2137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0126\n", + "Epoch 2138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0126\n", + "Epoch 2139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0126\n", + "Epoch 2140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0126\n", + "Epoch 2141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0126\n", + "Epoch 2142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0125\n", + "Epoch 2143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0125\n", + "Epoch 2144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0125\n", + "Epoch 2145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0125\n", + "Epoch 2146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0125\n", + "Epoch 2147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0124\n", + "Epoch 2148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0124\n", + "Epoch 2149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0124\n", + "Epoch 2150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0124\n", + "Epoch 2151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0124\n", + "Epoch 2152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0124\n", + "Epoch 2153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0123\n", + "Epoch 2154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0123\n", + "Epoch 2155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0123\n", + "Epoch 2156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0123\n", + "Epoch 2157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0123\n", + "Epoch 2158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0122\n", + "Epoch 2159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0122\n", + "Epoch 2160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0122\n", + "Epoch 2161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0122\n", + "Epoch 2162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0122\n", + "Epoch 2163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0122\n", + "Epoch 2164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0121\n", + "Epoch 2165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0121\n", + "Epoch 2166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0121\n", + "Epoch 2167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0121\n", + "Epoch 2168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0121\n", + "Epoch 2169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0121\n", + "Epoch 2170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0120\n", + "Epoch 2171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0120\n", + "Epoch 2172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0120\n", + "Epoch 2173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0120\n", + "Epoch 2174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0120\n", + "Epoch 2175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0120\n", + "Epoch 2176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0120\n", + "Epoch 2177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0119\n", + "Epoch 2178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0119\n", + "Epoch 2179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0119\n", + "Epoch 2180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0119\n", + "Epoch 2181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0119\n", + "Epoch 2182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0119\n", + "Epoch 2183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0119\n", + "Epoch 2184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0118\n", + "Epoch 2185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0118\n", + "Epoch 2186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0118\n", + "Epoch 2187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0118\n", + "Epoch 2188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0118\n", + "Epoch 2189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0118\n", + "Epoch 2190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0118\n", + "Epoch 2191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0117\n", + "Epoch 2192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0117\n", + "Epoch 2193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0117\n", + "Epoch 2194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0117\n", + "Epoch 2195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0117\n", + "Epoch 2196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0117\n", + "Epoch 2197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0117\n", + "Epoch 2198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0116\n", + "Epoch 2199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0116\n", + "Epoch 2200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0116\n", + "Epoch 2201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0116\n", + "Epoch 2202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0116\n", + "Epoch 2203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0116\n", + "Epoch 2204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0116\n", + "Epoch 2205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0116\n", + "Epoch 2206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0115\n", + "Epoch 2207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0115\n", + "Epoch 2208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0115\n", + "Epoch 2209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0115\n", + "Epoch 2210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0115\n", + "Epoch 2211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0115\n", + "Epoch 2212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0115\n", + "Epoch 2213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0115\n", + "Epoch 2214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0114\n", + "Epoch 2215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0114\n", + "Epoch 2216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0114\n", + "Epoch 2217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0114\n", + "Epoch 2218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0114\n", + "Epoch 2219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0114\n", + "Epoch 2220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0114\n", + "Epoch 2221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0114\n", + "Epoch 2222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0114\n", + "Epoch 2223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0113\n", + "Epoch 2224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0113\n", + "Epoch 2225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0113\n", + "Epoch 2226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0113\n", + "Epoch 2227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0113\n", + "Epoch 2228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0113\n", + "Epoch 2229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0113\n", + "Epoch 2230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0113\n", + "Epoch 2231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0113\n", + "Epoch 2232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0112\n", + "Epoch 2233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0112\n", + "Epoch 2234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0112\n", + "Epoch 2235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0112\n", + "Epoch 2236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0112\n", + "Epoch 2237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0112\n", + "Epoch 2238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0112\n", + "Epoch 2239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0112\n", + "Epoch 2240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0112\n", + "Epoch 2241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0112\n", + "Epoch 2242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0111\n", + "Epoch 2243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0111\n", + "Epoch 2244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0111\n", + "Epoch 2245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0111\n", + "Epoch 2246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0111\n", + "Epoch 2247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0111\n", + "Epoch 2248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0111\n", + "Epoch 2249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0111\n", + "Epoch 2250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0111\n", + "Epoch 2251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0111\n", + "Epoch 2252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0110\n", + "Epoch 2253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0110\n", + "Epoch 2254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0110\n", + "Epoch 2255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0110\n", + "Epoch 2256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0110\n", + "Epoch 2257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0110\n", + "Epoch 2258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0110\n", + "Epoch 2259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0110\n", + "Epoch 2260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0110\n", + "Epoch 2261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0110\n", + "Epoch 2262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0110\n", + "Epoch 2263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0110\n", + "Epoch 2264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0109\n", + "Epoch 2265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0109\n", + "Epoch 2266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0109\n", + "Epoch 2267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0109\n", + "Epoch 2268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0109\n", + "Epoch 2269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0109\n", + "Epoch 2270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0109\n", + "Epoch 2271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0109\n", + "Epoch 2272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0109\n", + "Epoch 2273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0109\n", + "Epoch 2274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0109\n", + "Epoch 2275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0109\n", + "Epoch 2276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0108\n", + "Epoch 2277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0108\n", + "Epoch 2278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0108\n", + "Epoch 2279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0108\n", + "Epoch 2280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0108\n", + "Epoch 2281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0108\n", + "Epoch 2282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0108\n", + "Epoch 2283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0108\n", + "Epoch 2284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0108\n", + "Epoch 2285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0108\n", + "Epoch 2286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0108\n", + "Epoch 2287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0108\n", + "Epoch 2288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0108\n", + "Epoch 2289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0108\n", + "Epoch 2290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0107\n", + "Epoch 2291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0107\n", + "Epoch 2292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0107\n", + "Epoch 2293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0107\n", + "Epoch 2294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0107\n", + "Epoch 2295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0107\n", + "Epoch 2296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0107\n", + "Epoch 2297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0107\n", + "Epoch 2298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0107\n", + "Epoch 2299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0107\n", + "Epoch 2300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0107\n", + "Epoch 2301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0107\n", + "Epoch 2302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0107\n", + "Epoch 2303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0107\n", + "Epoch 2304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0107\n", + "Epoch 2305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0106\n", + "Epoch 2306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0106\n", + "Epoch 2307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0106\n", + "Epoch 2308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0106\n", + "Epoch 2309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0106\n", + "Epoch 2310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0106\n", + "Epoch 2311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0106\n", + "Epoch 2312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0106\n", + "Epoch 2313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0106\n", + "Epoch 2314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0106\n", + "Epoch 2315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0106\n", + "Epoch 2316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0106\n", + "Epoch 2317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0106\n", + "Epoch 2318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0106\n", + "Epoch 2319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0106\n", + "Epoch 2320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0106\n", + "Epoch 2321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0106\n", + "Epoch 2322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0105\n", + "Epoch 2323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0105\n", + "Epoch 2324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0105\n", + "Epoch 2325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0105\n", + "Epoch 2326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0105\n", + "Epoch 2327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0105\n", + "Epoch 2328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0105\n", + "Epoch 2329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0105\n", + "Epoch 2330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0105\n", + "Epoch 2331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0105\n", + "Epoch 2332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0105\n", + "Epoch 2333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0105\n", + "Epoch 2334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0105\n", + "Epoch 2335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0105\n", + "Epoch 2336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0105\n", + "Epoch 2337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0105\n", + "Epoch 2338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0105\n", + "Epoch 2339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0105\n", + "Epoch 2340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0105\n", + "Epoch 2341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0104\n", + "Epoch 2342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0104\n", + "Epoch 2343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0104\n", + "Epoch 2344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0104\n", + "Epoch 2345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0104\n", + "Epoch 2346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0104\n", + "Epoch 2347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0104\n", + "Epoch 2348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0104\n", + "Epoch 2349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0104\n", + "Epoch 2350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0104\n", + "Epoch 2351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0104\n", + "Epoch 2352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0104\n", + "Epoch 2353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0104\n", + "Epoch 2354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0104\n", + "Epoch 2355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0104\n", + "Epoch 2356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0104\n", + "Epoch 2357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0104\n", + "Epoch 2358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0104\n", + "Epoch 2359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0104\n", + "Epoch 2360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0104\n", + "Epoch 2361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0104\n", + "Epoch 2362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0104\n", + "Epoch 2363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0103\n", + "Epoch 2364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0103\n", + "Epoch 2365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0103\n", + "Epoch 2366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0103\n", + "Epoch 2367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0103\n", + "Epoch 2368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0103\n", + "Epoch 2369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0103\n", + "Epoch 2370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0103\n", + "Epoch 2371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0103\n", + "Epoch 2372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0103\n", + "Epoch 2373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0103\n", + "Epoch 2374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0103\n", + "Epoch 2375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0103\n", + "Epoch 2376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0103\n", + "Epoch 2377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0103\n", + "Epoch 2378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0103\n", + "Epoch 2379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0103\n", + "Epoch 2380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0103\n", + "Epoch 2381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0103\n", + "Epoch 2382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0103\n", + "Epoch 2383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0103\n", + "Epoch 2384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0103\n", + "Epoch 2385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0103\n", + "Epoch 2386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0103\n", + "Epoch 2387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0103\n", + "Epoch 2388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0103\n", + "Epoch 2389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0103\n", + "Epoch 2390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0102\n", + "Epoch 2391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0102\n", + "Epoch 2392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0102\n", + "Epoch 2393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0102\n", + "Epoch 2394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0102\n", + "Epoch 2395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0102\n", + "Epoch 2396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0102\n", + "Epoch 2397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0102\n", + "Epoch 2398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0102\n", + "Epoch 2399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0102\n", + "Epoch 2400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0102\n", + "Epoch 2401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0102\n", + "Epoch 2402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0102\n", + "Epoch 2403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0102\n", + "Epoch 2404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0102\n", + "Epoch 2405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0102\n", + "Epoch 2406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0102\n", + "Epoch 2407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0102\n", + "Epoch 2408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0102\n", + "Epoch 2409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0102\n", + "Epoch 2410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0102\n", + "Epoch 2411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0102\n", + "Epoch 2412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0102\n", + "Epoch 2413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0102\n", + "Epoch 2414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0102\n", + "Epoch 2415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0102\n", + "Epoch 2416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0102\n", + "Epoch 2417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0102\n", + "Epoch 2418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0102\n", + "Epoch 2419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0102\n", + "Epoch 2420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0102\n", + "Epoch 2421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0102\n", + "Epoch 2422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0102\n", + "Epoch 2423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0102\n", + "Epoch 2424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0101\n", + "Epoch 2425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0101\n", + "Epoch 2426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0101\n", + "Epoch 2427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 2428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0101\n", + "Epoch 2429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0101\n", + "Epoch 2430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0101\n", + "Epoch 2431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0101\n", + "Epoch 2432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 2433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 2434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0101\n", + "Epoch 2435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0101\n", + "Epoch 2436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0101\n", + "Epoch 2437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0101\n", + "Epoch 2438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0101\n", + "Epoch 2439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 2440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0101\n", + "Epoch 2441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0101\n", + "Epoch 2442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0101\n", + "Epoch 2443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 2444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0101\n", + "Epoch 2445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 2446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0101\n", + "Epoch 2447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 2448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0101\n", + "Epoch 2449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0101\n", + "Epoch 2450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 2451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0101\n", + "Epoch 2452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0101\n", + "Epoch 2453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 2454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0101\n", + "Epoch 2455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 2456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 2457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0101\n", + "Epoch 2458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0101\n", + "Epoch 2459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0101\n", + "Epoch 2460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0101\n", + "Epoch 2461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0101\n", + "Epoch 2462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0101\n", + "Epoch 2463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0101\n", + "Epoch 2464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0101\n", + "Epoch 2465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0101\n", + "Epoch 2466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0101\n", + "Epoch 2467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0101\n", + "Epoch 2468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0101\n", + "Epoch 2469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0100\n", + "Epoch 2471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0100\n", + "Epoch 2473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0100\n", + "Epoch 2475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0100\n", + "Epoch 2476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.0100\n", + "Epoch 2477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0100\n", + "Epoch 2480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0100\n", + "Epoch 2481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0100\n", + "Epoch 2483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0100\n", + "Epoch 2484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0100\n", + "Epoch 2486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0100\n", + "Epoch 2488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 0.0100\n", + "Epoch 2489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0100\n", + "Epoch 2491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0100\n", + "Epoch 2492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0100\n", + "Epoch 2493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0100\n", + "Epoch 2496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0100\n", + "Epoch 2497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0100\n", + "Epoch 2499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0100\n", + "Epoch 2500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0100\n", + "Epoch 2501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0100\n", + "Epoch 2502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0100\n", + "Epoch 2504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0100\n", + "Epoch 2505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0100\n", + "Epoch 2507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0100\n", + "Epoch 2509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0100\n", + "Epoch 2510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0100\n", + "Epoch 2516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0100\n", + "Epoch 2520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0100\n", + "Epoch 2522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0100\n", + "Epoch 2525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0100\n", + "Epoch 2527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0100\n", + "Epoch 2529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0100\n", + "Epoch 2530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0100\n", + "Epoch 2531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0100\n", + "Epoch 2532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0100\n", + "Epoch 2533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0100\n", + "Epoch 2534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0100\n", + "Epoch 2535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0100\n", + "Epoch 2537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0100\n", + "Epoch 2538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0100\n", + "Epoch 2539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0100\n", + "Epoch 2541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0099\n", + "Epoch 2542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0099\n", + "Epoch 2543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 0.0099\n", + "Epoch 2544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0099\n", + "Epoch 2545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0099\n", + "Epoch 2546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0099\n", + "Epoch 2547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0099\n", + "Epoch 2548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0099\n", + "Epoch 2549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0099\n", + "Epoch 2550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0099\n", + "Epoch 2551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0099\n", + "Epoch 2552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0099\n", + "Epoch 2553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0099\n", + "Epoch 2554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0099\n", + "Epoch 2555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0099\n", + "Epoch 2556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0099\n", + "Epoch 2557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0099\n", + "Epoch 2558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0099\n", + "Epoch 2559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0099\n", + "Epoch 2560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.0099\n", + "Epoch 2561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0099\n", + "Epoch 2562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0099\n", + "Epoch 2563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0099\n", + "Epoch 2564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.0099\n", + "Epoch 2565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0099\n", + "Epoch 2566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0099\n", + "Epoch 2567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 0.0099\n", + "Epoch 2568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.0099\n", + "Epoch 2569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 0.0099\n", + "Epoch 2570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0099\n", + "Epoch 2571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0099\n", + "Epoch 2572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0099\n", + "Epoch 2573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0099\n", + "Epoch 2574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 0.0099\n", + "Epoch 2575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 0.0099\n", + "Epoch 2576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0099\n", + "Epoch 2577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0099\n", + "Epoch 2578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 0.0099\n", + "Epoch 2579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0099\n", + "Epoch 2580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 0.0099\n", + "Epoch 2581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 0.0099\n", + "Epoch 2582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.0099\n", + "Epoch 2582: early stopping\n", + "Restoring model weights from the end of the best epoch: 2282.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 14ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# обучение AE2\n", + "ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt',\n", + "3000, True, patience)" + ] + }, + { + "cell_type": "markdown", + "id": "03194c1b-c03e-42a5-93e5-f4d007ddb7c7", + "metadata": { + "id": "03194c1b-c03e-42a5-93e5-f4d007ddb7c7" + }, + "source": [ + "### 6) Зафиксировали ошибку MSE, на которой обучение завершилось. Построили график ошибки реконструкции обучающей выборки. Зафиксировали второй порог ошибки реконструкции – порог обнаружения аномалий." + ] + }, + { + "cell_type": "markdown", + "source": [ + "Ошибка MSE_AE2 = 0.0108" + ], + "metadata": { + "id": "6TBPoMskhCQp" + }, + "id": "6TBPoMskhCQp" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47cf147a-f97b-41d3-9d7c-b799da0115fe", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "47cf147a-f97b-41d3-9d7c-b799da0115fe", + "outputId": "fb9fcf28-01a2-4c3b-adfb-21e50ba09ea1" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe8FNX9//H3LRRBUJEIiCi2WDBWxN6iiKImJJooMQokllgSDTFRvj9jjxp711jRWBM1apTYUOyKDVRErPQiCFz6bbu/P9bdOzt3ZnZmduru6/l48ODu7uzM2alnPvM559Rks9msAAAAAAAAACAhauMuAAAAAAAAAAAYEbQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAABVj6tSpOvXUU7XtttuqW7duqqmpKfybPn163MWrSmPHji1sg5EjR0a6bOP2BwAAQLoQtAQAIOX233//QmDmggsusJ3OGMAx/6urq9O6666rLbfcUr/4xS905513asWKFb7K4PVfUIGsp556SjvttJNuvfVWTZ061VP5AeDFF18sOjdts802nudxwQUX+D4X9u/f33a+K1eu1NNPP60//vGP2m+//dSnTx916tRJXbt21SabbKJhw4bpH//4h1auXFnGGgAAIFkIWgIAAGUyGTU0NOjLL7/Uo48+qhNPPFGbbrqp/vOf/8RdNFdWrFihkSNHqrGxUZLUp08f/eIXv9Cpp56q0047Taeddpq6d+8ecyn9MwZCnALTQJL1798/0ZnP9957b9Hrzz77TBMnToypNG1+/etfa4MNNtARRxyh6667Tq+++qrmz5+vpqYmrVq1SjNnztSTTz6p3/3ud+rfv78ef/zxuIsMAEAg6uMuAAAAiN6wYcPUt2/fwutMJqNFixbprbfe0uzZsyVJixYt0lFHHaVHH31UP/vZz1zPe9ddd9WgQYNcT7/77ru7L7iNp59+WkuWLJEkDRgwQO+++67WWmutsucLoDosX77cMth37733ejqfGW244Yaezp3rr7++5fuPPvpo4YGMJK233noaNGiQNtxwQ2WzWU2dOlUTJ05UNpvVokWLdOSRR+rWW2/V7373O1/lBgAgKQhaAgBQhc444wztv//+7d7PZDK69957dcopp6ixsVGZTEannHKKhgwZoi5duria99ChQyPPBvzggw8Kfw8fPpyAZYKMHDky8r4s87LZbCzLRfo8+uijWrVqlSRprbXW0urVqyVJDz/8sK699lp17NjR8zy33HJL3XTTTYGUr0uXLho+fLh+85vfaPfdd1dtbXGDuSlTpujXv/61Jk2aJEk6/fTTtddee+lHP/pRIMsHACAONA8HAAAFtbW1GjVqlK644orCewsWLNATTzwRX6FcyGdZSrmm4QDghbFp+Nlnn61evXpJkhYvXqz//ve/cRVLkvT73/9eX3/9te68807tueee7QKWUi7D/KWXXtImm2wiSWptbdWll14adVEBAAgUQUsAANDOySefrM6dOxdev/rqqzGWprTm5ubC31Y39ABgZ/r06YVzXE1NjUaMGKHhw4cXPjf3dRm1K6+8shBEdbLeeuvp7LPPLrweN25cmMUCACB01OoBAEA7nTp1Kho5d+7cuTGWxppxcBpjUGHUqFHtRuUdO3as5TxWrFihG264QUOGDNFGG22kzp07a7311tN2222n008/Xe+8846rshiXlTd58mSdccYZ2m677dSjRw/V1NRo2LBhnn5jflT2Cy+8sPDehRde6GoU9pEjR7b7/UuXLtX111+vfffdV3379lV9fb1qamq0dOnSou9+++23uueeezRixAjttNNO6tGjhzp06KB1111XW2+9tUaNGqXnnnvO1W8YO3ZsyZHiJ0yYUJjG2G3BSy+9pGOOOUabbbaZOnfurPXXX1/77ruvbrrppqJAtR2r7WJmNTjM7Nmz9de//lU77LCD1l13XXXt2lVbb721fv/732vGjBmufnfeCy+8oGOOOUYbb7yxOnfurD59+mifffbRzTffXBjpOYyBlhYtWqSrrrpKBx10kDbccEN17ty5sA0HDBigo446Stdcc42++eYbV/MbP368fve732nAgAHq0aOHOnXqpA033FBDhgzRTTfdVGhObTZ9+vTCbzOuu0033dRyP54wYUIQP9+T++67r9CVwN57763+/fvruOOOK3z+v//9T99++23k5fJjr732Kvy9bNkyLV68OMbSAABQHvq0BAAAloz9Qq5ZsybGkoTj6aef1oknnqj58+cXvd/Y2KilS5dqypQpuvnmm/WrX/1Kd9xxh+s+PaVcEOqSSy5Ra2tr0MX27Y033tDw4cM1a9Ysx+luuOEGjR492rLsDQ0Namho0LRp0zR27Fj9+Mc/1r/+9S/bAUT8ampq0umnn6477rij6P3Gxka99tpreu2113TPPffoueeeU8+ePQNd9hNPPKGRI0eqoaGh6P1p06Zp2rRpuuuuu/Tvf/9bhx12WMnf8Nvf/lb3339/0fvz58/X/Pnz9frrr+vmm2/Wf/7zn0DLL0lPPvmkRo0aVdRtQl5+G3766ad67LHHdM011xQG37Iya9YsHX/88ZbBxHnz5mnevHl6/vnnddlll+nhhx/WPvvsE+RPicR9991X+DsfrNx55501YMAATZkyRS0tLXrwwQd15plnxlRC98wB+iSdgwAA8IqgJQAAsGTMrnTTNDFqgwYN0mmnnSYplwX22WefSZIOPPBAbb311kXTGrNGJemRRx7RscceW7ihr6ur0957760ttthCK1as0GuvvVb4/Q8++KC++eYbvfTSS0VN5u1ceeWVhczIzTffXIMGDVKXLl00ffp0dejQwdNv/NnPfqbttttOEydO1LvvvivJfnR2p1HYv/zyS5155plqaGhQt27dtO+++2rDDTfUkiVL2jX9nzt3bmG9bLbZZtpmm230gx/8QJ07d9bSpUv18ccfa8qUKZJymZAHHXSQ3n77bXXq1MnTb3Ny0kkn6d5771Vtba122203bb311spkMnr77bc1bdo0SbnBl44//vhAm8C++OKL+t3vfqfW1lZtvPHG2mOPPdS9e3d98803mjBhglpaWrR69Wr98pe/1CeffKJNN93Udl7Dhw8vGo26R48e2n///dWjRw/NmjVLr7zyiqZOnarDDjtMP/nJTwL7De+9956OOuootbS0SMo9fNh9993Vv39/derUScuWLdNXX32ljz/+uDDwjJ2pU6fqwAMP1Lx58yTlAmI777yztt12W6211lqaM2eOXn31VS1fvlxz587V4MGD9b///U8HHHBAYR7du3cvHKf33Xefli9fLkk6/vjj1a1bt3bL7Nu3byDrwa3XX39dX331laRchvkvfvGLwmfHHXeczjnnHEm5JuJpCFp+/PHHhb/XWmutwIP6AABEKgsAAFJtv/32y0rKSsqef/75ttPlp5GUffnllx3nOW3atKLpb7rppkDKEJYRI0YUln/PPfc4Tvvll19m11577cL0gwYNyn7xxRdF07S2tmavvvrqbG1tbWG63//+97bzNK6r+vr67DrrrJP9z3/+0266NWvW+Pl52fPPP9/z+jWuk/r6+qyk7GmnnZZdvnx50XRNTU3Z1tbWwuu77rore+ONN2Znz55tO+/JkydnBw4cWJj/xRdfbDvtPffcU5huxIgRltO8/PLLhWk6deqUlZTddddds1OnTi2aLpPJZK+77rqi9f3KK6/YLts4nZ1NNtmkaNldu3bN/vOf/8xmMpmi6T755JNs3759C9OOGjXKdp533nln0bL/9Kc/tdv2CxYsyB566KFFvzmI42fYsGGFeR155JHZxYsXW063evXq7DPPPJM9+eSTLT9fsWJFdptttinM69BDD81++eWX7aZraGjInnLKKYXp+vTpk126dKnlPI3r+ptvvvH9G4N0wgknFMp01FFHFX02a9asonPA5MmTS87PeKzut99+IZXa3uDBgwvLP+ywwyJfPgAAQSLTEgAAFGlpadEZZ5xReN29e3cdc8wxrr8/btw4LVq0yPX0F110kXr06OGpjOW46KKLtGLFCknSFltsoeeff17rrLNO0TS1tbUaPXq0ampqNHr0aEnSzTffrD/+8Y+O2XWSlMlk9NRTT2nfffdt91mQ2YhetLS06IQTTtBNN93U7jNz9udvfvObkvPbfvvt9eKLL2rrrbfW/Pnzdcstt2jMmDGqq6sru6yNjY3acsst9dJLL2nttdcu+qympkZnnHGGXn/9dT366KOSpIceeshyXfvR1NSkJ554Qocccki7zwYMGKB//OMfOvzwwyVJ//73v3X77bervr64Ot3a2qrzzz+/8Prkk0/WVVdd1W5+G2ywgZ544gntvffehSzaILz22muScvva2LFj263DvM6dO2vo0KEaOnSo5efXXHONpk6dKimX8fvoo49aDnLVvXt33XLLLVq1apXuvfdezZs3T7fddlvRgDBJtXr1av3rX/8qvDb2YylJG220kfbff3+99NJLknLZlldffbXr+X/xxRc6/fTTXU9/3HHHabfddnM9vdnTTz+tF154ofA6n+EKAEBaEbQEAADKZDJatGiR3njjDV1++eWaOHGiJKm+vl533323pz4L3333XU9BmLPOOiuyoOXSpUv1yCOPFF5fccUV7QKWRmeccYbuuusuTZkyRZlMRrfffrsuu+wyx2UcddRRgQXRgtK5c2ddccUVgc5znXXW0c9+9jPdeuutmjdvnj799FP96Ec/CmTel19+uW2wTcoFVvNBy/y+GoTDDz/cMmCZN3ToUPXu3Vvz58/XihUrNHXq1Ha/+dlnn9WcOXMkSV27dtXll19uO7+OHTvqqquu0n777RfMD1Bu8BVJ6tKli+M6dNLc3FwIcHfq1Em33XabZcDS6NJLLy0MaPPAAw+kImj5xBNPFNbX+uuvr0MPPbTdNMcdd1whaPnAAw/o73//e7tAtZ25c+fq5ptvdl2egQMH+g5azps3TyeddFLh9eDBgy1/DwAAaULQEgCAKmTsc87OVlttpauvvrrkgCNp8uabb6qxsVGS1LNnTx1xxBGO09fW1uo3v/mN/vSnP0mSXn755ZLL8JKVGpWDDz5Y6623nufvffvtt3r77bc1depULVmyRCtXriyMsizl+k/MmzRpUiBBy86dO5fcLjvttFPh7/yI30Ew9mdopaamRjvssENh8Kbp06e3+83GAWsOO+wwrbvuuo7z3HfffbXxxhtr5syZvsps1q9fP3399ddasmSJHnnkER199NGe5/Hee+8VRss+8MADtcEGG5T8zoYbbqitt95aU6dO1SeffKKGhgbHBwJJcO+99xb+PuaYYyz7nD3qqKN02mmnadWqVVqwYIGee+65xJ0Tm5qadNRRRxX6Hl1//fU1duzYeAsFAEAACFoCAIB2evXqpfvuu89ywJdSzj//fF1wwQXBFyoAH374YeHvQYMGucqY2muvvYq+n81m243Qa7TLLruUV8gQeC3Tp59+qrPPPlv/+9//XI8+7KVLACdbbbVVyQGLjJm/+Uy5ILgJupZa9qRJkwp/u82aGzRoUGBBy1/+8peF7M7hw4cXApcHHHCAq+CjJL311luFv2fPnu26ifPSpUslSdlsVrNnz0500HLu3Ll68cUXC6/NTcPz1l57bQ0bNkwPPvigpFyg023Qcr/99rMcdT1I2WxWI0aM0Jtvvikp193DQw89pA033DDU5QIAEAWClgAAVKFhw4YVjdL73Xff6auvvio0616wYIH22WcfPfbYY4U+/CrBwoULC39vsskmrr7Tv3//wt9NTU1avny5unfvbjv9D37wA9/lC4uXMj333HP66U9/WshIdSs/KnS53AS6jEHN/CjZcSy7ubm53efGfaxfv36ulrvRRhu5ms6Nc889VxMmTNDbb7+tbDar//znP/rPf/4jSdpyyy21zz776MADD9QRRxxhOXq3lAvo5X300Uf66KOPPJdjyZIl/n5ARO6///5CQH7LLbd0DDAfd9xxhaDlU089pSVLlvjKXA7D6aefrocfflhSLjP83nvv1eDBg2MuFQAAwXDunAYAAFSkM844QzfddFPh30MPPaSJEydq8uTJ2mGHHSTlAnTDhw/XV199FXNpg5MfgEfK9Tfohnm6UsG5tdZay3vBQua2TAsXLtTRRx9dCFhusskmuuyyy/T6669r7ty5WrVqlTKZjLLZrLLZbNGAM5lMJpCyOmWxhi2IZRv3sS5durj6jt++J6107dpVr7zyiq688sqigLuUGxjm7rvv1rHHHqvevXvrL3/5i1avXt1uHg0NDWWXI8hgchiMTcN//etfO047ePBg9e7dW1JuoChjv7hxGjNmjG655ZbC65tvvlnDhw+PsUQAAASLoCUAACjYfvvt9fzzzxeyMFesWKETTjgh5lIFxxgcWrlypavvmKezy06rBHfccUchYLXDDjvoo48+0jnnnKO99tpLffr00VprrVUU2Asqu7KSGPexVatWufqO233RrY4dO+qss87S119/rUmTJumGG27QMcccU5RdvWrVKl155ZU64IAD2gUujYH6P/zhD4UgtZd/+++/f6C/KUjvvfeePv3008Lr888/XzU1Nbb/6uvrC/2YSsUBz7j87W9/Kxrk6e9//7t+97vfxVgiAACCR9ASAAAU2WCDDXTjjTcWXk+YMEHPPPNMjCUKjrGZtNs+BI0DvXTs2LGig5bjx48v/H3uuec6NoOXpBkzZoRdpNTp2bNn4e/Zs2e7+o7b6bzKDxz0+9//Xg899JBmz56tDz74QKNGjSpM884777Qb4bpXr16Fv43BukpRbtDx7bff1ueffx5Qaby77rrrdO655xZen3vuufrLX/4SW3kAAAgLfVoCAIB2fvazn2mvvfbSG2+8ISl3U5y0EXP9MI46PXHiRLW2tqqurs7xO/kBLvLfj6P5clTLNPZlWGpQmtbW1sL+gTY77rhjIfj7zjvvuPrOxIkTwyxSkZ122kl333236urqdOedd0rK9dN41llnFaYx9u/45ptvlhx8yq04m/7nNTU16aGHHiq83mqrrUqO8J73xRdfaPHixZJygc+//e1vYRTR0e23364//vGPhddnnHGGLr744sjLAQBAFMi0BAAAlowjgE+aNElPPfVUfIUJyJ577qlOnTpJyvXfWCqDNJPJ6J577im8/vGPfxxq+ex07ty58LfV4C9Bqa1tqxqWatr8xBNPVGQWXrmMzaKfeeaZkv1Dvv7667FkrP7kJz8p/L1gwYKiz/baa69CIG/27Nn673//G8gyo9qPnTzzzDP67rvvJEn19fV69dVX9fbbb7v693//93+F+fzzn/8MrB9Xt+6///6iJuC//e1vde2110ZaBgAAokTQEgAAWDrooIO05557Fl5fcsklMZYmGOuuu66OPvrowus///nPjv0y3nTTTfr4448l5QJ6J510UuhltLL++usX/p4zZ05oy9lss80KfzsFqRcuXFiU7YU2hxxyiDbccENJuT5hjYEus6ampqIMx3I1NjYWDQTkZNasWYW/N9hgg6LPOnXqpDPPPLPw+tRTT/W035mDoHlR7cdOjE3DBw8e3O63Oxk+fHghsD9r1iy9/PLLgZfPzuOPP66RI0cqm80WynL77bcnInsVAICwELQEAAC2zjvvvMLf7777rp599tkYSxOM8847rzBYyueff64hQ4bo66+/Lpomk8no+uuv1+jRowvvnXbaae1GY47KdtttV/j7+eefD2R0ZytHHHFE4e/LLrtM999/f7tpPvjgA+23336aNWuW6xHYq0l9fX1RlvItt9yis88+W01NTUXTLVy4UEceeaTeeeedQvZvuebNm6d+/frprLPO0nvvvWc73QsvvFA08vuhhx7abpo//elPGjBggKRcgHHgwIH697//bZtduGjRIt1+++3aeeeddeWVV1pOY9yP//3vf7v6TWPHji0aFMfYx6xXixYt0rhx4wqvjz32WE/f33DDDXXAAQcUXkc1IM+zzz6r4cOHq7W1VZL005/+VPfdd19RZjQAAJWIPi0BAICtIUOGaLfddiv0zXfxxRfrkEMOcfzOuHHjtGjRItfL6NKli6644oqyyunF5ptvrjvvvFPHHnusWltb9dZbb2mrrbbSPvvso80331wrVqzQa6+9VpQJtvvuu0daRrNBgwapX79+mjVrlubNm6ett95aBx98sHr27FnItNp1112Lskj9GDFihK6++mp9/vnnamxs1HHHHadLL71UO+ywgzp37qxPPvmkEAzbYYcdNGTIkFjXS1KdcMIJeuaZZ/Tkk09Kkq644grddddd2n///dWjRw/Nnj1bL7/8stasWaPNNttMP/3pTwvNfMsNRC1dulRXX321rr76avXo0UM77bST+vbtq86dO+vbb7/VRx99VBSk/+EPf6gzzjij3XzWXnttPfXUUzrooIP0zTffaP78+frlL3+pnj17avfdd1fv3r2VzWa1ePFiffrpp/riiy8KAU27bhSOPPJI/eMf/5CUC+a+//772nnnndWlS5fCNKeccoo233zzstaBnQcffLDQLL1r164aNmyY53kce+yxhT5LH3/8cd1yyy1FI8YbffHFFzr99NM9zX/MmDFFo7wvWrRIP//5zwtB77q6Ov3gBz8oyoR1ctxxxxX1UQoAQJoQtAQAAI7OO++8wiA8b775psaPH68DDzzQdvp3331X7777ruv5r7POOpEHvo4++mh17dpVJ5xwghYsWKCWlha9/PLLls09hw8frjvvvLOoP76o1dbW6pZbbtGRRx6ppqYmzZ8/X/fdd1/RNCNGjCg7aNmpUyf997//1aGHHloIbE2dOlVTp04tmm6vvfbSI488ojvuuKOs5VWqmpoaPfLIIxo5cqQefvhhSdJ3332nxx57rGi6bbbZRv/5z3+KtmWpEduddOjQQZ06dVJjY6MkafHixUUjwpvtv//+euihh2wzZjfbbDO99957+t3vfqdHH31U2WxWixYt0tNPP207z3XXXdd2EKfBgwdr+PDhhYFw3nnnnXaDFR1++OGhBS2NmZHDhg3zlSl85JFH6tRTT9WaNWu0cuVKPfrooxo5cqTltHPnzm03MnspJ5xwQlHQcsWKFVq9enXhdWtra2EAJTcGDhxI0BIAkFq0KQAAAI6GDh2qgQMHFl5fdNFFMZYmOIcffri+/PJLXX/99Ro8eLA23HBDdezYUeuss4622WYbnXrqqXr77bf14IMPFmWCxVne9957TyeffLIGDBigbt26hdKf3Q9/+EN9+OGHuvTSSzVw4EB169ZNnTp10iabbKLDDz9cDz74oF555ZWiwAra69Spkx566CE999xz+sUvfqGNNtpIHTt2VK9evbTXXnvpxhtv1LvvvqutttqqMCK1JNcjWVvp27evvvvuOz311FP685//rB//+MfaeOONtdZaa6murk7rrruudthhB51wwgl64YUX9PLLL6t3796O8+zRo4f+9a9/6aOPPtL//d//ac8991SfPn3UsWNHde7cWb1799bee++tP/zhD3rqqac0b948jRgxwnZ+DzzwgB544AEdfvjh2mijjSJ7GPDJJ5/ogw8+KLz22jQ8r3v37kXdKIwdO7bcogEAABs12XxvzgAAAAAit9dee+nNN9+UJL399ttkxgEAAIigJQAAABCbGTNmaPPNN1dra6s6duyohoaGWLsiAAAASAqahwMAAAAxyGazOuOMMwqjQv/sZz8jYAkAAPA9gpYAAABAwM477zxdf/31WrRokeXn06dP189+9rPCCON1dXU666yzoiwiAABAoqU2aHnzzTerf//+6ty5s3bbbTdNnDjRcfqlS5fqtNNOU58+fdSpUyf98Ic/1Lhx4yIqLQAAAKrJzJkzdeaZZ6pPnz7aeeed9atf/UqnnHKKjjvuOO26667aYostCgFLSTr33HOLBrwCAACodvVxF8CPRx55RKNHj9Ztt92m3XbbTdddd52GDBmiadOmaYMNNmg3fVNTkwYPHqwNNthAjz76qPr27asZM2aUNTojAAAAUEpLS4s+/PBDffjhh5afr7XWWrrooovIsgQAADBJ5UA8u+22m3bddVfddNNNkqRMJqN+/frp97//vc4555x2099222268sor9dlnn6lDhw5RFxcAAABVZunSpXryySf10ksvacqUKVq4cKEWLVqk1tZW9ejRQ1tttZUOPPBA/fa3v1WfPn3iLi4AAEDipC5o2dTUpC5duujRRx/VsGHDCu+PGDGiUDk0Gzp0qHr06KEuXbroySef1A9+8AP96le/0tlnn626ujrL5TQ2NqqxsbHwOpPJaPHixVp//fVVU1MT+O8CAAAAAAAAKlk2m9Xy5cu14YYbqrbWudfK1DUPzz+h7tWrV9H7vXr10meffWb5na+//lovvfSSjj32WI0bN05ffvmlTj31VDU3N+v888+3/M5ll12mCy+8MPDyAwAAAAAAANVs1qxZ2mijjRynSV3Q0o9MJqMNNthAt99+u+rq6rTLLrtozpw5uvLKK22DlmPGjNHo0aMLrxsaGrTxxhvrm2++Ubdu3aIqemSam5v18ssv64ADDqAJPRADjkEgfhyHQPw4DoF4cQwC8av043D58uXadNNNXcXWUhe07Nmzp+rq6rRgwYKi9xcsWKDevXtbfqdPnz7q0KFDUVPwbbbZRvPnz1dTU5M6duzY7judOnVSp06d2r3fo0cPde/evcxfkTzNzc3q0qWL1l9//Yo8KICk4xgE4sdxCMSP4xCIF8cgEL9KPw7zv8lN14vOjccTqGPHjtpll100fvz4wnuZTEbjx4/XHnvsYfmdvfbaS19++aUymUzhvc8//1x9+vSxDFgCAAAAAAAAiE/qgpaSNHr0aN1xxx269957NXXqVJ1yyilauXKlRo0aJUk6/vjjNWbMmML0p5xyihYvXqwzzjhDn3/+uZ555hldeumlOu200+L6CQAAAAAAAABspK55uCQdffTRWrhwoc477zzNnz9fO+64o5599tnC4DwzZ84sGoGoX79+eu655/THP/5R22+/vfr27aszzjhDZ599dlw/AQAAAAAAAICNVAYtJen000/X6aefbvnZhAkT2r23xx576O233w65VAAAAAAAAADKlcrm4QAAAAAAAAAqF0FLAAAAAAAAAIlC0BIAAAAAAABAoqS2T8s0yWazam5uViaTibsotpqbm1VfX681a9aotbU17uJUvLq6OnXo0CHuYgAAAAAAACQSQcsQNTU16dtvv9WqVasSHwjMZrPq3bu3Zs2apZqamriLUxU6deqknj17qnv37nEXBQAAAAAAIFEIWoZk1apVmjVrlurq6rTeeutprbXWUl1dXWIDgplMRitWrNDaa6+t2lp6DQhTPvO2oaFBc+bMkSQClwAAAAAAAAYELUOyaNEidejQQZtssonq6uriLk5JmUxGTU1N6ty5M0HLCKy11lrq1q2bZs+erUWLFhG0BAAAAAAAMCA6FYKWlhatXLlSPXr0SEXAEvGoqanROuuso8bGRjU3N8ddHAAAAAAAgMQgaBmClpYWSbk+CwEn+cF4kt7nKQAAAAAAQJQIWoYoqf1XIjnYRwAAAAAAANojaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJWLVv39/1dTUaOzYsYX3xo4dq5qamqJ/tbW16t69u3baaSeNGTNGCxcutJ2n+bt2/yZMmBD+DwQAAAAAAIBn9XEXALDTtWtXHXXUUZJyo2vPmDFDb731liZNmqR77rlHr732mrbcckvb7w8ZMkS9e/e2/dzpMwAAAAAAAMSHoCUSq2fPnkUZmJI0ZcoU7bffflqwYIHOPPNMPfPMM7bfP+ecc7T//vuHW0gAAAAAAAAEjubhSJUBAwZo9OjRkqQXXnhBjY2NMZcIAAAAAAAAQSNoidTZfvvtJUnNzc1avHhxzKUBAAAAAABA0AhaInWWLVsmSaqrq1PPnj1jLg0AAAAAAACCRtASqZPvx/KQQw5Rhw4dYi4NAAAAAAAAgsZAPHEZOFCaPz/uUhTUSOqezaqmpqb0xL17S++9F3qZjPKjh99+++168MEHtckmm+iGG25w/M4BBxxg+9k666yjpUuXBlxKAAAAAAAABIGgZVzmz5fmzIm7FAU13/9LkhkzZlgGUQcNGqTnn39e66yzjuP3hwwZot69e1t+1qVLl0DKCAAAAAAAgOARtIyLTTAtLllJ2e8zLUsGLyMqe9euXXXUUUdJkhobGzV16lRNnjxZEydO1Mknn6yHH37Y8fvnnHOO9t9//whKCgAAAAAAgCARtIxLxM2rS8lmMlq2bJm6d++umtpkdHXas2dPjR07tui9xx9/XEcffbQeeeQR7bvvvjr11FPjKRwAAAAAAABCk4zoFODSz3/+c51zzjmSpPPOO08NDQ0xlwgAAAAAAABBI2iJ1BkzZoz69Omj7777Ttdcc03cxQEAAAAAAEDACFoidbp06aK//vWvkqTrrrtOS5YsiblEAAAAAAAACBJ9WiKVTjjhBF199dX66quvdNVVV+lvf/tbu2kuv/zydn1iGv3qV7/SwQcfHGIpAQAAAAAA4AdBS6RShw4ddMkll2j48OG68cYbNXr0aK2//vpF0zz33HOO89hxxx0JWgIAAAAAACQQQUvEavr06e3eGzlypEaOHFnyu8ccc4yOOeaYdu9ns9kASgYAAAAAAIC40KclAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaIlb9+/dXTU2Nxo4dW3hv7NixqqmpKfpXW1ur7t27a6eddtKYMWO0cOFC23mav2v3b8KECZ7Kmi/XyJEj/f1YAAAAAAAAuFIfdwEAO127dtVRRx0lSWptbdWMGTP01ltvadKkSbrnnnv02muvacstt7T9/pAhQ9S7d2/bz82f1dTUSJKy2WwApQcAAAAAAIBfBC2RWD179izKwJSkKVOmaL/99tOCBQt05pln6plnnrH9/jnnnKP9998/3EICAAAAAAAgcDQPR6oMGDBAo0ePliS98MILamxsjLlEAAAAAAAACBpBS6TO9ttvL0lqbm7W4sWLy57fBRdcUGgaLrXvE3P69OntvrNy5UqNGTNGW2yxhTp16qTevXtrxIgRmjNnTtnlAQAAAAAAqHY0D0fqLFu2TJJUV1ennj17lj2/HXfcUSNGjNC9994rSRoxYkTR52uvvXbR64aGBu25556aOXOm9tlnH2233XZ66623dN999+mVV17R5MmTtc4665RdLgAAAAAAgGpF0BKpk+/H8pBDDlGHDh3Knt+wYcM0bNiwQtDS3I+m2RNPPKEhQ4botddeU/fu3SVJS5Ys0Y9//GNNmjRJt9xyi8aMGVN2uQAAAAAAAKoVQcuYDBw4UPPnz4+7GEWy2WxRM2k7vXv31nvvvRdBidrkRw+//fbb9eCDD2qTTTbRDTfc4PidAw44wPazddZZR0uXLvVVlq5du+qee+4pBCwlab311tM555yjY445Ri+++CJBSwAAAAAAgDIQtIzJ/Pnz6f+whBkzZlgGUQcNGqTnn3++ZBPsIUOGqHfv3pafdenSxXe5Bg4cqD59+rR7f5tttpEktisAAAAAAECZCFrGxC6YFicvmZZR6Nq1q4466ihJUmNjo6ZOnarJkydr4sSJOvnkk/Xwww87fv+cc87R/vvvH3i5Nt54Y8v385mXa9asCXyZAAAAAAAA1YSgZUyibl5dSiaT0bJly9S9e3fV1iZjUPmePXu261/y8ccf19FHH61HHnlE++67r0499dTIy5WU9QMAAAAAAFCpiL4gVX7+85/rnHPOkSSdd955amhoiLlEAAAAAAAACBpBS6TOmDFj1KdPH3333Xe65pprAptvfiTylpaWwOYJAAAAAAAA7whaInW6dOmiv/71r5Kk6667TkuWLAlkvhtttJEkacqUKYHMDwAAAAAAAP7QpyVS6YQTTtDVV1+tr776SldddZX+9re/tZvm8ssvb9cnptGvfvUrHXzwwYXXRx55pK666ioddNBB+vGPf6xu3bpJkv7+979r/fXXD/w3AAAAAAAAwBpBS6RShw4ddMkll2j48OG68cYbNXr06HaBxeeee85xHjvuuGNR0PLiiy9WbW2tHn/8cT3xxBNqamqSJJ177rkELQEAAAAAACJE0BKxmj59erv3Ro4cqZEjR5b87jHHHKNjjjmm3fvZbNZXWTp37qy///3v+vvf/275ealy9e/f3/eyAQAAAAAA0IY+LQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAxRNpuNuwhIOPYRAAAAAACA9ghahqC2NrdaW1tbYy4Jki6/j+T3GQAAAAAAABC0DEWHDh3UoUMHrVixIu6iIOFWr16turo6dejQIe6iAAAAAAAAJAZByxDU1NSoW7duamho0OrVq+MuDhKqtbVVDQ0N6tKli2pqauIuDgAAAAAAQGLUx12AStWzZ0+tXr1aM2fOVPfu3dWtWzfV1dUlNjiVyWTU1NSkNWvW0FQ5ZNlsVo2NjVq8eLEymYw22GCDuIsEAAAAAACQKAQtQ1JXV6d+/fpp0aJFWr58uZYuXRp3kRxls1mtXr1aa621VmIDq5Wma9eu6t27tzp27Bh3UQAAAAAAABKFoGWI6urq1KtXL22wwQZqbm5WJpOJu0i2mpub9eqrr2rfffelf8UI1NfXq76eww8AAAAAAMAKUZMI1NTUJD6brq6uTi0tLercuTNBSwAAAAAAAMSKzgsBAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKKkOmh58803q3///urcubN22203TZw40XbasWPHqqampuhf586dIywtAAAAAAAAADdSG7R85JFHNHr0aJ1//vn64IMPtMMOO2jIkCH69ttvbb/TvXt3zZs3r/BvxowZEZYYAAAAAAAAgBupDVpec801OvHEEzVq1Chtu+22uu2229SlSxfdfffdtt+pqalR7969C/969eoVYYkBAAAAAAAAuFEfdwH8aGpq0vvvv68xY8YU3qutrdVBBx2kt956y/Z7K1as0CabbKJMJqOdd95Zl156qQYMGGA5bWNjoxobGwuvly1bJklqbm5Wc3NzQL8kOfK/qRJ/G5AGHINA/DgOgfhxHALx4hgE4lfpx6GX31WTzWazIZYlFHPnzlXfvn315ptvao899ii8/5e//EWvvPKK3nnnnXbfeeutt/TFF19o++23V0NDg6666iq9+uqrmjJlijbaaKN2019wwQW68MIL273/4IMPqkuXLsH+IAAAAAAAAKDCrVq1Sr/61a/U0NCg7t27O06bykxLP/bYY4+iAOeee+6pbbbZRv/4xz908cUXt5t+zJgxGj16dOH1smXL1K9fPx188MElV2oaNTc364UXXtDgwYPVoUOHuIsDVB2OQSB+HIdA/DgOgXhxDALxq/TjMN+S2Y1UBi179uypuro6LViwoOj9BQsWqHfv3q7m0aFDB+2000768ssvLT/v1KmTOnXqZPm9Stxp8ir99wFJxzEIxI/jEIgfxyEQL45BIH6Vehx6+U2pHIinY8eO2mWXXTR+/PjCe5lMRuPHjy/KpnTS2tqqjz/+WH369AmrmAAAAAAAAAB8SGWmpSSNHj1aI0aM0MCBAzVo0CBdd911WrlypUaNGiVJOv7449W3b19ddtllkqSLLrpIu+++u7bYYgstXbpUV155pWbMmKETTjghzp8BAAAAAAAAwCS1Qcujjz5aCxcu1Hnnnaf58+drxx131LPPPqtevXpJkmbOnKna2rZE0iVLlujEE0/U/Pnztd5662mXXXbRm2++qW233TaunwAAAAAAAADAQmqDlpJ0+umn6/TTT7f8bMKECUWvr732Wl177bURlAoAAAAAAABAOVLZpyUAAAAAAACAykXQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJEqqg5Y333yz+vfvr86dO2u33XbTxIkTXX3v4YcfVk1NjYYNGxZuAQEAAAAAAAB4ltqg5SOPPKLRo0fr/PPP1wcffKAddthBQ4YM0bfffuv4venTp+uss87SPvvsE1FJAQAAAAAAAHiR2qDlNddcoxNPPFGjRo3Stttuq9tuu01dunTR3Xffbfud1tZWHXvssbrwwgu12WabRVhaAACqSDYrTZwoLV0ad0kAAAAApFR93AXwo6mpSe+//77GjBlTeK+2tlYHHXSQ3nrrLdvvXXTRRdpggw3029/+Vq+99prjMhobG9XY2Fh4vWzZMklSc3Ozmpuby/wFydPc3Kw//elPOvXUU1VTUxN3cYCqk81m1djYqE6dOnEMIv1WrJAaGqS6OqlXLykl+zTHIRA/jkMgXhyDQPzyx+HGG2+sd955J+7iBM5LTC2VQctFixaptbVVvXr1Knq/V69e+uyzzyy/8/rrr+uuu+7SpEmTXC3jsssu04UXXtju/eeff15dunTxXOY0WLp0qb777ru4iwEAqBStrdLcuXGXAgAAAEilcePGxV2EwK1atcr1tKkMWnq1fPlyHXfccbrjjjvUs2dPV98ZM2aMRo8eXXi9bNky9evXTwcffLC6d+8eVlFj09zcrHXXXZcnakBMeKqNijJnTtvfPXtKnTrFVxYPOA6B+HEcAvHiGATiZ8y0HDp0aNzFCVy+JbMbqQxa9uzZU3V1dVqwYEHR+wsWLFDv3r3bTf/VV19p+vTpOuKIIwrvZTIZSVJ9fb2mTZumzTffvOg7nTp1UieLm6wOHTqoQ4cOQfyMxLn66qs1dOjQiv19QJI1Nzdr3LhxHIOoDMabnMcfl1Iy+B3HIRA/jkMgXhyDQPwq/Tj08ptSORBPx44dtcsuu2j8+PGF9zKZjMaPH6899tij3fRbb721Pv74Y02aNKnw7yc/+YkOOOAATZo0Sf369Yuy+AAAVA+yNAAAAAD4kMpMS0kaPXq0RowYoYEDB2rQoEG67rrrtHLlSo0aNUqSdPzxx6tv37667LLL1LlzZ2233XZF31933XUlqd37AAAgQAQtAQAAAPiQ2qDl0UcfrYULF+q8887T/PnzteOOO+rZZ58tDM4zc+ZM1damMpEUAAAAAAAAqGqpDVpK0umnn67TTz/d8rMJEyY4fnfs2LHBFwgAABQj0xIAAACAD6QiAgCA8BC0BAAAAOADQUsAABAegpYAAAAAfCBoCQAAAAAAACBRCFoCAIDwkGkJAAAAwAeClgAAIDwELQEAAAD4QNASAACEh6AlAAAAAB8IWgIAgPAQtAQAAADgA0FLAAAAAAAAAIlC0BIAAISHTEsAAAAAPhC0BAAA4SFoCQAAAMAHgpYAACA8BC0BAAAA+EDQEgAAhIegJQAAAAAfCFoCqHxvvCEdcYT0n//EXRKg+hC0BAAAQJDee0/6yU+khx6KuyQIWX3cBQCA0O29d+7/p5+Wstl4ywIAAAAA8G/XXXP///e/0i9/KdXVxVsehIZMSwAAEB4eFAAAACAsmUzcJUCICFoCAIDwELQEAAAA4ANBSwAAAAAAAKQPD8grGkFLAAAQHiqSAAAACAt1zYpG0BIAAISHiiQAAADCQl2zohG0BAAAAAAAQPoQtKxoBC0BAEB4qEgCAAAgLNQ1KxpBSwDVhYsaEC2OOQAAAISFumZFI2gJoLpwUQOixTGXXg0N0s03Sx9+GHdJAAAArFHXrGj1cRcAACLFRQ0A3PnDH6T77sv9vXKl1KVLvOUBAAAw4/6uopFpCaC6cFEDosUxl175gKUkffFFfOUAAACwQ12zohG0BFBdMpm4SwBUFyqSAAAACAt1zYpG0BJAdeGiBkSLYw4AAABhoa5Z0QhaAqguXNQAAAAAAEg8gpYAqgvNw4Fo8aAAAAAAYaGuWdEIWgKoLlzUgGhxzAEAACAs1DUrGkFLANWFTEsgWlQkKwPbEQAAJBF1lIpG0BJAdeGiBgAAAACVgfu7ikbQEkB1ifqitmiRNG9etMsEkoSKJAAAAMJCXbOiEbQEUF2ibB4+a5a00UZSv37Sxx9Ht1wgSahIAgAAICzUNSsaQUsA1SXKi9rZZ0uNjVJrqzRqVHTLBZKEiiQAAADCQl2zohG0BFBdoryorVzZ9vfixdEtFwCCVlMTdwkAAADaI2hZ0QhaAqguUTYPr6tr+7u1NbrlAklCRRIAAABhoa5Z0QhaAqguUV7UCFoCVCQBAAAQHuqaFY2gJYDqQtASiBYVycrAdgQAAElEHaWiEbQEUF1oHg4AAAAAlYGgZUUjaAmgupBpCUSLiiQAAADCQl2zohG0BFBdCFoC0aIiCQAAgLBQ16xoBC0BVBeahwPRoiIJAACAsFDXrGgELYGw3XWXtOGG0vXXx10SSGRaAgAAAEClIGhZ0QhaAmE74QRp3jzpzDPjLgmkaC9q9fVtfxO0RLWiIgkAAICwUNesaAQtAVSXuJqHt7REt1wgSahIAgAAICzUNSsaQUsA1SWu5uFRBksBIGjcEAAAgCSijlLRCFoCqC5xBS2BakVFsjLw4AUAACQRdc2KRtASQHWJ8sa7llMsQEWyQrAdAQBAElFHqWjcUQOoLnENxANUC/MxRkWyMrAdAQBAElFHqWgELQFUlygvajU10S0LSAoqjpWJ7QoAAJKIOkpFI2gJoLpE2TycPuBQjci0rExsRwAAkETUUSoaQUsA1SXKi1pra3TLApLCHKynIlkZ2I4AACCJqKNUNIKWAKpLlBc1Mi1Rjci0rExsR1SL+++Xfvtbafr0uEsCAHCDOkpFY5QIANUlykAimZaoRgTrKxM3BKgG8+ZJxx2X+/vDD6UPPoi3PACA0qijVDQyLQFUF5qHA+Ei07IyEYxGNfj667a/P/wwvnIAANyjrlnRCFoCUeKEGj+ahwPhok/LysR2BAAAScAD8qpC0BKIEifU+NE8HAgXQcvKxHYEAABJQF2zqhC0BKLECTV+ZFoC4eI8V5nYrgAAIAnItKwqBC2BKBHEih99WgLh4ul3ZWI7AgCAJCBoWVUIWgJRImgZvyi3gXlZbH9UAyqSlYntCAAAkoAH5FWFoCUQJYJW8Ysz07K5ObplA3GhIlmZ2I4AACAJqJNUFYKWQJQIWsYvzj4tm5qiWzYQFyqSlYntCgAAkoAH5FWFoCUQJU6o8WttlZ59Vnr11WiWZUSmJaoBFcnKxEM3AACQBGnsimj5cun++6WZM+MuSeoQtASixE1f/MaNkw49VNpvP+mDD8JdljloSaYlqkEaK5Ioje0IAACSII11zVNOkY47Ttpll3SUN0EIWgJRImgZPfNF4W9/a/v74ovDXbZ5e5NpiWpApmVlYjsCAIAkSGNd84EHcv8vWiStWRNvWVKGoCUQJYKW0XO6iIV9gSPTEtWI81xlSsMNAQAAqHxpzLSEbwQtgShxQo1enOucgXhQjahIVia2IwAASII0ZlrCN4KWQJTIQIpenBcxBuJBNaIiWZnYjgAAIAl4QF5VCFoCUSJoGT0yLYFoUZGsTGxHAACQBGmva6atvDEjaAlEiaBl9JKUaUnQEtWA81xlooINAACSIO2tetJW3pgRtASixAkqenEOxMPo4ahGaX/6DWsEowEAQBKkva6ZtvLGjKAlECVu+qoLmZaoRml/+g1rbEcAAJAEaa9rpq28MSNoCUSJoGX0aB4ORIvzXGWigg1YmzeP4wPp0dwsLVwYdylQKVaskJYti365ZFpWFYKWQJS4mY9ekgbioXk4qkHaK5KwxnZENfC6n59/vrThhtJvfhNOeYAgtbRIP/pRbp8dNy7u0iDt5s6V+vaV+vSRvvwy2mWTaVlVCFoCUeIEFb04+7Qk0xLVKO0VSVhjO6IaeN3PL7oo9//YsYEXBQjcE09I06blgpeHHRZ3aZB2//d/uSzLVauif3CT9gfkaStvzAhaAlEi0zJ6ZFoC0Up7RRLW2I6oBuznqGTLl8ddAlSSpUvb/p41K9plp72umbbyxoygJRAlgpbRo09LIFqc5yoTFWxUA85fqGScxxGkzp3b/l6zJtplp71VT9rKGzOClkCUqAxHL87m4ebtTdAS1SDtT79hje2IasB+jkrG/o0gxRm0THtdM23ljVm9ny8t+36EqO7du5e18BUrVuill16SJP3kJz8pa15AKnCCil6SMi1pHo5qkPan37DGQzdUA85XqGTs3wgSmZb+pa28MfMVtFx33XVVW1urjz76SNtuu227z+fOnatzzz1XNTU1uuuuu2znM2PGDA0bNky1tbVqaWnxUxQgXbjpi16SgpZkWqIapP3pN6yxHVENqKehkrF/I0hkWvqXtvLGzHfz8KzDil6yZInGjh2rsS5H0nOaF1BRqCxEL0kD8RC0RDXgPFeZqKuhGrCfo5KxfyNIxqBl1AhaVhX6tASixM189JKUaUnzcFSDtDfZgTW2I6oB9TRUMs7jCFKcQcu01zXTVt6YEbQEosQJqrqQaYlqlPan37DGdkQ1KGc/5xhB0rGPIkhkWvqXtvLGjKAlECWe4Afv3/+WBgyQ7rjD+vM4Rw8vN9Pyyy+l3XaTRozg4ubFm29KO+wg/fWvcZekOqX96TessR1RDcqpp1HHg9GSJdKPfywdeqi0enXcpclJwz76xRfSoEHSqFHpve787W/Sj34kfT/gcMUi09K/tJU3ZgQtgSilobKQNr/8pfTpp9JJJ1l/nuY+LY88Upo4UbrvPunpp4MrV6Xbay/po4+kSy6R5s6NuzTVh4pYZWK7ohqUs59Tx4PROedIL78sPfusdOmlcZcmJw3n8SOPlN59Vxo7Vho3Lu7SeLdihXTuudInn0gHHhh3acJV72tM52CQaVlVCFoCYTKfkKjQRi9JfVp6LctHH7X9/cUX5ZenGi1dGncJqk/an37DGtsR1YBMSwTltdfa/p44Mb5yGKXhPP7xx21/f/llfOXwa9WquEsQnTj3J4KWVYWgJRCmtJ9QK0GczcPNNzDc0ESPYy56nPcqE+cvVAP6tERQamra/k7KvpGUclSyalrHSWrNlrb1nrbyxoygJRAmMi3jl6RMy3K2v7HyC/eoFEQv7RVJWGM7ohqQaYlKlrbzOHXfZIvznJf2B+RpK2/Mygpa1nAiAbyhQhu9SglacnHzh/UWPc5zlYljCdWAPi0RlCRmWrKPhi8p2zoKZFr6l7byxqys3lO3224728/yAc26urpyFgGkG5mW8UvSBZXtHz0qBdFL+9NvWGM7ohqQaYmgJDFomZRyVLJqWsf0aelf2sobs7KClllWNuCMoGX8kpRpyTkzeqzz6KX96TessR1RDejTEkEhaFmdqmkdm+t7LS3RjShO0LKq+Nqr9t1330Q0Db/55pt15ZVXav78+dphhx104403atCgQZbTPv7447r00kv15Zdfqrm5WVtuuaX+9Kc/6bjjjou41KgqaT+hVgIyLasbx1z0OO9VJrYjqoGX6zQPpuGEoGX5EhBv8Cxt67gc5t+6erXUrVs0y077A/K0lTdmvoKWEyZMCLgY3j3yyCMaPXq0brvtNu2222667rrrNGTIEE2bNk0bbLBBu+l79Oih//f//p+23nprdezYUU8//bRGjRqlDTbYQEOGDInhF6AqUKGNX5yjhwfZpyX8oVIQPfbzysSxhGrgZT/nGg8nSQxaso8iSHEGLdP+gDxt5Y1ZakcPv+aaa3TiiSdq1KhR2nbbbXXbbbepS5cuuvvuuy2n33///fWzn/1M22yzjTbffHOdccYZ2n777fX6669HXHLEIpuVrr9euvhiqbEx2uUaUVmoLmRaohqlvSIJa2zHYH3+uXTmmRL10GTxcp3mGg8nSQxaJqUclaya1rH5nLd6dfHrNWukiy6Sbrwx+PVCpmVViajTgWA1NTXp/fff15gxYwrv1dbW6qCDDtJbb71V8vvZbFYvvfSSpk2bpr///e+W0zQ2NqrRENxatmyZJKm5uVnNzc1l/oLkyf+mSvxtklTz5JOqP/NMSVJrXZ0yf/5zNAtualIHw8uWpiZlK3Qdx8W4fi33X9M2MMpks2oNcXvUt7bK2LAl09pquzyrY9BY7taWFmXYd1xpt0+w3iJV09RUVLlI075b6ddCr4rOQc3NqdmOaVB/wAGqmTtXuv56NTc1xV2cRInzOKxpbi46fzmWYc2a4utNUxPXGxTUS4U6YCaTCbW+6VZtS4uMQ+Ta7d9xHoNF153W1vRdd0z3HZVcn2i3PzU0FJ0Da6+4QnXnny9JaunXT9nDDgts2eZzdUtzc+Lvsb1eLyq9Turld8UetFy1apVuvfVW/elPf3L9nUWLFqm1tVW9evUqer9Xr1767LPPbL/X0NCgvn37qrGxUXV1dbrllls0ePBgy2kvu+wyXXjhhe3ef/7559WlSxfXZU2bF154Ie4ihGLgddep7/d/N191lZ4bMCCS5dY2NuoIw+uJ77yjhdycBOqnhr/HjRvX7vPOCxfKrgOIhd9+q7ctvhOUI0xBy9mzZunDEsszHoPG3zZ16lR9FWJZK4lxvb3x2mtqmDcvtrJUow3ee097GF5P+eQTfZOyfbdSr4VeGY+lTz7+WNNTth2T7Kdz5xb+HvfMM+nsuy1kcRyHG334oXYxvLaqV+TVrVmjww2vx7/wghrXWy+0siFd9lu2TOt+//fixYv1RgLOn1t+9pm2Nbx22r+leI5B43Vnyqefpq7+sNa33+pgw+tS6zjNzPvTGy++qIZvvim8PvTKKwtBzbk33KAPA7zOrffZZ9rX8PqDDz7QvM6dA5t/GIz79isTJmjl55+7+l6l1klXrVrletrYgpbLly/XDTfcoOuvv17fffedp6ClX926ddOkSZO0YsUKjR8/XqNHj9Zmm22m/fffv920Y8aM0ejRowuvly1bpn79+unggw9W9+7dQy9r1Jqbm/XCCy9o8ODB6tDBLi8tveruv7/wd6fOnTV06NBoFmw6GAcNHKgsfaiGxnK7zpxpO/0PfvCDUPeFGlPThY369FEfm+WVOga32XZbbRXVfltB9t5rL2V32aX0hAiMuUo6YMAAbZOSfbfSr4Xl2G7AAG2bku2YNkMPPlhifyuI8zisWby46LVjHeH7Vlh5Bx5wgLThhmEUCylUb0h+6bHeetHdezio/eijotd2ZUrKtTBN9YcCQ9BOKnEOSbnaSZOKXu+9yy7K7rln4XW9YSTxjTbayPYeyI+addcter3zTjspm6J1vd+++0o//KHjNEk5DsOyzHQNdRJ50HLx4sW69tprdfPNN6uhoUHZbNbzSOQ9e/ZUXV2dFixYUPT+ggUL1Lt3b9vv1dbWaosttpAk7bjjjpo6daouu+wyy6Blp06d1KlTp3bvd+jQoSJ3mryK/X11bcnrNdlsdL+xvvgQq6+t5cYkRJbbtd7+NFdbU6PasLZHNtuuv5VaqeTy7I7Butpa1bHveFZfV8cxF7Xa4u6y07jvVuy10AtTf0tp3I5p0UHiPGUhluPQdP5yXH5dXdHLDlxvYGTYl9zU/yJhuucudXzFfS2sq6tL33XHfF5IW/m9MJ0v65uais+BhnpEbV1dsMeAaT2nrb7fob7edXnjPg7D4uU3lTUQz4wZM/SHP/xB2267rbp166YePXpo55131mWXXaaGhoaiaVesWKHzzz9f/fv316WXXqqlS5cqm82qZ8+euuSSSzwtt2PHjtpll100fvz4wnuZTEbjx4/XHnvs4fDNYplMpqjfSlSwuDrDZiCe+MXV0bHVcul0OXqs8+gxEE9lYDtGh25jkqOc0cM5RmDEQDzVqZru9axGD7f7POguUBiIp6r4zrR84YUXdOSRR2rlypWScoPbSNLkyZM1efJk3XfffXr55ZfVu3dvvfHGGzr22GM1a9aswnR9+/bVWWedpZNOOklrrbWW5+WPHj1aI0aM0MCBAzVo0CBdd911WrlypUaNGiVJOv7449W3b19ddtllknJ9VA4cOFCbb765GhsbNW7cOP3zn//Urbfe6ncVIE3i6iuKm774xbXOzTczUnVVZJKCYy567OeVgetXdAhaJkc5QUvOfTAiaFm+NPb1W03nAfNvNfdRGGbQMu11lLSVN2a+gpYLFy7U8OHDtWLFisJ7Xbt2VX19fSHD8vPPP9dpp52mM844Q0OGDFFTU5Oy2aw23XRTnXPOORo5cmRZaa5HH320Fi5cqPPOO0/z58/XjjvuqGeffbYwOM/MmTNVa0hZXrlypU499VTNnj1ba621lrbeemvdf//9Ovroo32XASlFpmV1cdreYe4LVtua7R89KgXRS3tFEjlsx+hU6MigqeTlOm2elms8jAhaVqdqOg+Qaelf2sobM19ByzvuuEOLFy9WTU2NjjzySF1++eXabLPNJEnz58/XpZdeqptvvllPPvmk3n33XTU2Nqpbt2669NJLdfLJJxd1ylqO008/XaeffrrlZxMmTCh6fckll3huho4KkpRMy2q6kCUFmZZAtNJekUQOQcvokGmZHGRaIigELatTNZ0H4gxapr2OkrbyxsxX9PD555+XJO2+++7617/+VfRZ7969dcMNN2j58uW69957NXv2bK277rp67bXXNGDAgPJLDJQrzpNENV3I4pDNtr8oxrW9rbY1F6josc6jl/aKJHJ46BYdgpbJUU6mJec6GBG0rE7VtI5pHu5f2sobM18D8Xz22WeqqanRqaeeajvNH/7wB0lSTU2N/vCHPxCwRLySMhAPJ6joVUqmJfuOP6y36BHcqgxJuH7Nny89+6zU0lL+vJYvl/7739z/SZP25uGLFknPPCNVwuCWZFqikqVtH62EPi1bWqTnnpPmzImnPGEqlWlplOTm4c3N0v/+J337bXll8oL7E098BS2XLFkiSdpiiy1sp9lyyy0Lf++zzz5+FgMEh+bh1SFJFwD6tEyGJO0T1YLso8oQd9CytVXabTfp0EOlSy8tf37HHCP95CfSyJHlzytoac60zGalAw6QDj9cOvvsuEtTPvq0RFDItCxfJQQtr7tOOuQQaZdd0n2ut2Len9KaaXnRRdLQodKee0Z3Hk/bsRgzX0HL5u+fCHfr1s12mrXXXrvwd+/evf0sBggHA/FULqttWymZlmmsuCUBlYLoxR3sQjDi3o5TpkgzZ+b+Pv/88uc3blzu/8cfL39eQUvzjeyqVdInn+T+vv76eMsSBDItERSCltXJfB74859z/y9YIL35ZvTlCZP5t5pbDRg/T3KmZX7ck6++kqZP9z8fLzgWPfEVtPSqhpttxI1My+rgNWgZ5gXDKmhZzvK4uPnDMRc9Mi0rQ9zbsZqO3bQ3D68k9GmJoCQxaFlN59W4OK3jSouJeHm4meRMyzikrbwxiyRoCSQKfVpWriRlWtI8PBlY59HjPFcZ4r5+hXnsBtFHZpDSnGlZaci0RFCSGLRMSjkqWTWdB0rVE9LSPDwOaStvzHyNHp43atQode3atezpampqNH78+HKKAjhLypOtarqQxSFJQcugm4fDH9Z59Mg+qgxx3xCEeewuXy6tt1548/cqzZmWlXZ8e9nvCFrCCUHL8iXl/s2LajoPlKrvhRm0THtdM23ljVlZQcv33nvP8fN8s3Cn6bLZLM3HEb6kjB5eTReyOCSpeTiZlsnAOo9e3MEuBCPu61eYy1u2LFlByzRnWlba8e3l9zAQD5wQtKxONA+3fx3lspMubeWNme+gZZYVjTQhaFmZ3FywkpRpyXkzeqzz6KX96Tdy4r4hCHN5y5aFN28/CFomB5mWCEoSg5bso+FLyraOgpegZW3AvRKmva6ZtvLGzFfQMsMJD3An7pu+SufmgkWfltWNdR491nlliPv6FXamZZKkuXl4pR3vVvu9XXZU2m+aEa4k7g9WD9QRrEo7JzoplW1On5b20lbemDEQD6oPmZaVI8lBy6D7tOTi5g/HXPTSXpFETtzbMcyb66QFLcm0TA4vgUgyLeHEuH8k5ThJW9Ayjc2pq+k8QPNw/9JW3pgRtER1iOui5ydouXIlJzK30tY8PMyKTFNTum98w1JNlcekIPuoMsR9Q1BNmZZpPndX2jnWy35Pn5ZwksSgZdj7KPcw9Glp9zotA/FEtf9W+3HiEUFLVJ8kZ1q++qrUq5e0yy7pexoahyQHR4JuHu50sZ8zR+rXT9pkE2nBAv/LqETcREYv7mAXghH3dqymoCXNw5PDSyCSTEs4Me4fSanTG8sRdBDp+eelH/xA2muv6j4Wqum3e7kPS0vzcIKWieSrT8uLLroo6HLovPPOC3yeQEFSOsMudSHbb7/c/x9+KD32mPTLX4ZfpjQrN9MyzH0h6IF4nL77+99L336b+/uPf5QefND/cipNNVUek4J1XhniDloyEE86VNqNl5f93nydr7R1gfIY94+WlvjKYWS8PgcdRBoyJPf/W29JL74oHXxwsPNPi2qqA3k5X6Yl0zKq7cf1whNfQcsLLrhANQHveAQtEaqkjB7uZdlJu6lKoiT3aRnlQDwzZ7b9PXt2OMtIq2qqPCZF3MEuBCPu7RjksWueV9Kur2RaJoeXTEuah8NJEoOWYWZaGi1fHt68k66azgNxBi3DqqMQtEwkX0FLScoGuKKDDoAC7aSpT8u8urpgy1KJ6NMSpbDOo5fkbhvgXtwDyVVT0JJMy+QoJ9OS6w2Mkhi0DDPTMgxpPKacylxp50svD24IWhartH0hZL6Cli+//HLQ5QCik+Q+LY1q6XK2pHIzLcPcF6LMtDTiIliM9RG9uDP0EIy4g88ELdMhjUEFJ2RaIihJDFpGlWkZlDTWH+K674gDzcP9q7R9IWS+gpb75fvdA9IijZmWBC1LS3Lz8KD7tHSShopnXLiJjB7rvDLEHXwOM2jZ0BDcvIOQ5ubhlXbjRZ+WCIoxUJmUYzyqTMug5p3G+oSXwbvSjubh/nG98ISoCBCmck6oBC1LS3LzcDItkyGNFd60iztDD8Go5KAlmZbBqbRzrJf9nkxLOEl6pmUa7jPSWH/wkp2ddnGOHk6mZVVJwdkKCEBSBuIh0zJYacu0LOdCGGVFoJJUWgUxDeIOdiEYcW9HgpbpUGnHt5dAJH1awkkSg5b0aRm+agpakmnpXtx1qpQjKoLqEFfQ0oygZbCSnGkZ10A8XASLVVoFMQ3ItKwMcVewgzx2zefjpAUtk9J01I9KO8eSaYmgJDFoSZ+W4aN5uLVqz7SMu06VckRFUH3SkmnJ6OGlJTnT0mpb06dl9LiJjB4VscoQdwWbTMt0qLRzbDmZlpz7YETQsnxpPL9UU6Ylo4e7F3edKuUIWqI6JGUgnkrp0/K556S995buvz/ecpSbaRnmBYNMy2QIa50/9VTuGHj0Uefp3n1X2m8/6dprwylHEpX79Pvuu3Pr9uWXgyuTX3fcIe2zj/TKK3GXJHpxV7CDzEhJetAyzZmWlXbNcbvfX3WVdNRRxe9VWkAiCV58MXc9uPfeuEviXRKDlmkbiCeN55dqClrGWU9IW9CSVkhl8TV6OJBqacm0THLQ8pBDcv+/8Yb061/HV44kXwCiHIgnDU/L4xLWOv/pT3P/v/GG8343aFDu/1dflUaOlNZbL5zyJEm5Fcnf/jb3/49/HH93HiedlPt7//2TdX6JQjnXryCEGbRcvjz3+5Jy7iTTMjncZA4tWCD9+c+lv4vyDR6c+/+NN6QRI+Iti1fGc1gmk/sXd90+bQPxpPGYonm4taD3N5qHV5UUnK2AACQl07JSgpZJUU19WnJx8ydJ662hIe4SRCONNxlW1qyJuwTxiruCHWbQ0u69uKQ5aJmkc2wQ3Oz3331n/d0k7VOIn/kcloSAVdoG4knj+cVLP7hpF+fo4WnLtIy7TpVyREVQfci0rBzl9mkZ5r4QZZ+WUS8jTSqtgpgG5Tz9TtL+u2pV3CWIV9wV7LCDlkkIIOSluXl4pZ1j3WRa2vU5nqTzF+JnbhKehCbi9GkZPjItrTEQj/NrOCIqguoQ1+jhldqnZVIkeSCeoDMtnS72ce3faZDGCm/alXPeS9L2Wr067hLEK+4KdpA3+HH1MewWmZbJ4Wa/twtaJmmfqkRpW7/m804Sgpb0aRm+au7TkoF47MVdp0o5oiKoDkl5mkimZbCS3Dw86OaIUT69rCSVVkFMg3Kefidpe5Fp6fw6bJWeaWkMfKU5aJmkYzYI5WRaVtq6SJq4j1mvkhi0jKpPy6QHkMJUTUFLL/W9oOsQYdVJCFomElERVJ+0NA9HaeVmWoa5PZKe2VMtkrTOq6WCUs7vTNL2qvZMy7gHOqv0oGWHDm1/p7l5eKWd19zcWNoFe5J0/qpEcR+zXiUxaEmfluGjebi7actF8/CqQtAS1SGNA/GkpfIb50m33EzLMMtuVTEpZ3luv8tFsFhajqNKUk5FMkkV+moPWsZdwa70oKUx8EWmZXK4ybS0Oxa4/oYrCUE/L5IYtIyqT0uah3v/LI3iDFrSPLyqELRE9UlLn5ZpOZnFWc4kZ1rG1Tw8LftNVJJUQayWbVMpfVrSPNz5ddgqPWhpXJ9pzrRM0jEbBDf7vd1vrrR1kTRxH7NeWO0L1RS0DEoaj6lqClp6eUgd9G8n07KqELREdUjKQDxeToRpOZnFeQEuN9MyTc3Do+zcupJUWgUxDSqlT0syLYtfR71twg5axr2vGddvmjMt01JXcaucTMu496lKl4Sgn1tW568klJ/m4eGjebi7aaNcthcELROJoCWqg/HEkJagZVoqv2GXc9486aKLpHfeKb3sJDUPjzLTEvaCWG+ZjHTHHdLtt6fnuIxTOes8SRV6gpbOr92aM0e68ELp3Xe9fS/IfcFqXnHva26DlkuWSJdeKo0fH9xy77tPuummYDI83Z4TP/ggtx/MmlX+MoPw+efSBRdIn31W/D6ZljnffSf97W/ShAlxl6RN3MesF1YByiQELY3rMMp65ddf5463KVO8fS+Nx1QaMi1bW6Vbb5XuuivYrqui/O125+rHHpOuucZ/HY6gZSLVx10AIBJxXSTItCzfL34hvfGGdP75uRs74+AFSW4eTp+WyRDENp4wQTrppNzfm24qDR5c/jwrWaVkWtI83Pm1W2PGSP/8Zy7wP3Om+xFraR6ec9pp0kMP5f5euFDq2bO85b74ojRiRO7v2lrp1FPLm5/b/WKXXXL//+c/0qRJ5S0zCLvtJi1dKl19tbR8edv7ZFrmnHSS9Pjjub+XLJHWXTfW4khKRtDPrTRkWoZZXzRnce67b+4B1kUXVea9kFFc9x1e/POfbef+DTaQjjjC33ziHD3catmTJklHHZV7vWxZLlBe7nyDQtCyLGRaojok5cRQiX1ahn0BfuONtr9XrCj+rNwLQJoyLd02D0/LfhOVIPbPr7+2/turatk2lRK0JNPS+bVbX32V+3/OHG837UHe4Cc9aOmUaZkPWErS5MnlL/eOO9r+/tvfyp+fm2PW+FuD+A1BWLo097+feoXdb66kc3w+YCnlslKTIO5j1oukBi3jyrScM8ffMpNUJ3ArDc3DL7us7e/bbvM/n6Q1D3/00bbXF17ob75h7XNh9cFZJQhaojpE9WTRjObh8S87SZmWNA+PXhDb2Ljuk1LhTLJygl1JWr9kWjq/dst4o+7leKymTEu3fVrW1YVTlnK42S/iXtdekGnZXn1CGuYlIejnVlKDlsZ9NA37axrrvmloHm7M7je2YPPKSz0hioF4glgGmZaJRNAS1SGuEwPNw8NV7kA8Ya5jgpbJEHQFJk0333EJK6M4amRaOr92i6ClNT+jhwcdtAxiIA432zTude0FfVq2l5RgeZr2o6QGLePKtPQrjcdUNQUt42webnWuDqof+zAQtCwLQUtUB/q0DE+U69Z8g5XkPi29ZGf4nV8ezcPtBZ1pWc5NR7Vsm3IqZkmp0EsELYOqYBtvjpIUtIx7X4sr0zLsfsWsJCFY45abTMtqC1qSaeldUoOWUbU8C2reaaw3paF5uHFfTGumpdWyybSsWAQtUR2SkmmZ1pt3J2nOtKyU5uEELe0lqXl4Wo7pcpXTb495/ca5P9M83Pm1W8abo7i6Ckji6OHG4ySu5uFBZFpWWvPwcuoVlXr9JWjpXVKDlsZyhVknCepYSGO9KW2ZluUc316Sc6IYiIegZcUiaInqQKZleKJct6XWZ5Kahwed2eM2aIliSWoenpZjulxBPqyJM9hBpmXxa7/HEs3DS8tk3JUnKcEjI5qHl34/7ZJSx0jTfpTUoGVUmZZBHQtprDelLWhJ8/BiBC0TiaAlqkNSTgwELcsTdNAyTZmWSanopA2ZltEr53ea12+SgpbVsv3y6NMyPFbr0k2/lklsHl5pmZYMxNNeUuqjSQj6uWVV1iSUP6o+Lcm0tJaUc2GlDsRD0LJiEbREdUhjpmVaLtRRlrNUkLJaMy39TFctgq7AkGlZWjnNw83fjfMmz9w8PAk3nFEqZzsaEbRsz2/QMuiMNwbiaY9My/aS8rvStB8lNdMyqubh1ZxpGVeyhBfGLkmiClpGkWlJ8/CKRdAS1SGNQUvzd1tbpTfeSF6TxUrKtMxmpYkTpaVLfRWviFWFtZwLlJ/m4ZmM9Oab0sqV/pebdDNmSNOm2X+exEzLhQulDz/0vz98+aX09df+yxG2Sm0enqYb5iC42Y6trblzjFP/n36DlkHe4CdtIB6rdemmX8sk3uSQaVn6/bRLyu9KQtDPraQGLdM2EE9SgnxepKF5uHH/dBu0XLUqd713CnzHPRCPn/0uqK5wvC4nKefVlCBoieqQxoF4zNP+8Y/S3ntLhx9efrmCFGfQMuhMyxtukHbbTdppp/JvsoK+SXb7XeNvOvdcaa+9pAMO8L/cJJs+Xdp8c2nrrXPBZitJClpms7kA8lZbSTvvLD38sPd5fPSRtOWW0hZbOAdr4xTkQDxkWsbHzfn1L3/JnWOGDLGfD5mW7fkNWgZ9PguCm+M9TUFLMi3bS8rvStN+lNSgZVTNw6s50zINzcON3AYtBw/OXe/HjGl7L85My1LNw2tdhrncPKgKAkHLshC0RHVIQ6ZlqZPmjTfm/n/ppfLLFaQ4m4cHnWn52mu5/6dPl2bP9ly8InGNHm502WW5/999tzJHQh4zpm09H3us9TRRDMTjtuKRyUiPPCItWZJ7/atfeS/LCSe0LfPMM71/PwrlVMTItEwONxXsa67J/f/66/bzIWjZntW6dBPQCPomJ4zRw5O2rr2iT8v2knJznYSgn1tJDVoa99G4moeX0/oiDdKQaWnkZoC3fKsKSbryyrb3vdznRt083G3QkkzLVCBoieqQlExLpxOhuTKTlpNZ0jMtvczPuA3KXf9RBi3dTJeU0T+DZOwDbs0a62mCzkxqafFfwclmy795Nwafk3ADZKVS+rQ0By2Tur7D4vX8anccJCFoaTWvpAUt3RwnSbzhrYRMS2OZybRsLym/K+n7kVFSg5ZJGIinnFZnaZC2oKWbTEu3D2qibB5utWzje27ve8i0TAWClqgOaci0NFdw0nIyq6RMS783127mXaosfuaX5+bCnJb9yQvjU9QwbyLNmZZ+g3KZjPsnv3aM54kgRhIOQzkVsySNHm7OTk7TDXMQwghalrMvlCNp2X9eAmFep/Gz7HK4ueFLQrDGiVP2mZeuXirxOislJ9CS9P3IKKlBy6j6tPQbuIsq6y1Mldg83G0/vlE2Dy/Vp2XSmoeX80AfBC1RJZJyYnAqh7kyk5YLddIzLeMKWto1I/a7L5abaZmW/ckLY7A2zN9t7tPSb1Aumw02aOmmSU8cyLSsDF5vHu1uxpKQaVkpQcs0NA9PY6alUyDHS72iEq+zUnLq0Enfj4ySGrSMavRwv8GrSshGS1umZTmJD162F5mWzq/hiKAlqkOlZVom6UQXZ9Cy3EzLMJuHB52J4adPSzflSbOogpZJyrQ07qNJzbQsZ50nqU9LMi2dX5sluXm4l2y5KMSZaRk0Nzd8ST92gsq0TOL2CUJSflcSgn5uWZU1CeVPeqZlVAGkMKUtaFnOtcdLfTjqTEuClhWFoCWqQxqCll76tEzSiY7m4dbsbtL8zjeM5uppZwwAun0K7EdSMy2TGrQMsnk4mZbx8bod7frxNX4vSUHLas20jOLG0SzpQUunfv6qMdMyKd0VmZeb9P3IKA2ZllH1aenlXqgSmtA6lTmJ+7CbMtE8vHwELctC0BLVISkVLi+Zll76fIlTmpuHO2VaBhkkdBNcK4Xm4e3F1TycPi2dBdk8PK4KfjbL6OFBZFqW0+1JkDf4SQta+s38DPo8HkTzcDIt2ySpblaOpqbi13HVH5LUXYhXaQhaSuHts+YWKm6XWel9Wibx95TzwKycgHS5aB5eVQhaojokJdPSS5+WUfYLUg4yLa3Z9T3od75um4cTtCwWRvNwv5XqaunTspyKWFJuUhsbnR9qVIMgMi3LCVpW2+jhcfRpGQQ358M0BS3JtGwftIxrv0vKQyw/khq0jCqT0euDALvPknjOK6USg5Z+moeHHaSjeXhVIWiJ6MVR6QjqxJDJuL+x8Brc8PIkMkkVuVLrI8iyRZlpGWSflsaR+cJoHu6nE+00Vf7tGH93mH2MGdddS0t5mZZeM5ucmktXYqZlUkYPN2dZSpVxzHgRd6ZlJTUPN9cHrNZlS4v/fkO9CPpGyc3xHsex42WZToOTRNmnZVLOMc3Nxa+rLdMyiO3gFLSMczu7udfI38OUw9xCxSiNfVpa3dPZ8XKvlwRBZlo6dQcTdaal2ySBILJ7/TSxJ2jpCUFLROuee6R11pH+/OdolxvEiXLBAmnLLaWtt5YWL7afrrlZ2nNPaaONpI8+cl8OLzd3+RNdNisNHSr16iW9/rpz+cPiVM5nn5XWX1865phgllXqwlKtmZZuGJf7y19KPXtKzz1X3jzjlraBeLxmWp58srTeetKjjxYvPy+pQctyKmZJybS0ClomIUsmSl738yRnWvptjh2EWbOkzTeXBgyQli3LvWe1LnfYQdpqq+L6Rdg3fWGMHh53gFiSLr1U6t5duvZad9MnIdPyn/+U1l1XOvNM//MISlKbh0exH73xRq5Ofcgh5dW77M6H+X3zmmv8z7scpc4pa9ZIu+yi+s0319pz5gSzHC/XkiRmWs6YIW26qfSjH0krVpSevpoyLb0ELaPItPQTtCz3Ovu73+Xq6v/+t/N0BC3LQtAS0frNb6SVK6Wrrop2uUGcGM48U/r6a+mLL6Szz7afbuxY6e23pfnzpdNOK/4s6EzLl1+W/vc/6bvvpH32cSp9eJx+06GHSg0N0iOPSFOnBr+scjMt4whaxt2n5Sef5C6sS5fmKuVpFlefln4rHpmM+0rU0qXS7bdLy5dLv/hF8fLzkhq0LKeimpQs8jVr2r+XxAyJMIXRPLycrNtyxBlIO+mk3E3v1KnSxRfn3rNbD198If3xj22vy1l/UXFzvEcd8P9//09atUoaPdrd9F6bsrq9gffi+ONzAZHrr48/sGHOtExK8/Ao9qN9983VqZ97TnrxRf/zsTsf5vfNP/3J/7z9stqvzNv22mulDz9Uzdy52vHGG/0vy2+mZRL7tPzNb3IPn6ZMkS67rPT01ZRp6XT+D7v/1CQ0D1+6VPrHP3J19V/+0nlagpZlIWiJ6hDERW/atLa/P//cfjqnJ5NB92m5aJH9NGHxW6Fw83Sy3GUH2Ty83H3G+P0gMi3dNg8vVbFoaPC3/CRK20A8XiooVkGz/PLzkhq0DDI7Ja7sxqT2RxYlr+f6MJuHl9sXbJxByylT2v7+5pvc/07HyBtvtP0dRjPdsJuHJyHT0iuvo4eH2R2J3TKjVM2ZlsZlOrWqKsWqrHFvVzcB+M8+K/zZbdasYJblJSiUxEzLyZPb/p45s/T0Sc+09HNddts83O9298NqXzGWJ4pMS/O50glBy7IQtER8ojxxB7EsNwGSUsvy8vTNy5PIKPkNWpZ702m1rHIrN05P8ctdx8btGUSflk7lcfM0MQkVpaC5GZU9jObh5WRaur3psptnGoKWlZBpmcbAS9DCyLT0G7QstxlznNvTKvPDaV3Ondv2d9gZb2E0D09Kn5ZeeL3RDvN6I8W/vpIyEI/Tg+UolFNvtSpr3PUwN4FUQ4JBa+fO/pflN+MuiUFL47Z0MwBi0oOWjY3Fr92cb9LYPDyKTEsv11CClmUhaIn4RFkpC+LE4DZo6Teg6SfTMo4Tnt+TexQ3R5Wcael1WyexiU3Q3AzEE8QxUirT0u26zWaDDVomdfTwIIOWZFrGx2sFO8mZlnGOHu41aGnsT7Wc9ReVpGVa+skaMn4nCZmWcW/npA7EE3Uwt5zzTloyLc1lWr688GfLWmsFs6y0D8TjNWjptJ3jfiAhtQ9aRtU8POpMS4KWFYWgJeITZyXWz4ki7KBlOU8ioxRnpmXQzcOdAiTlruOg+7T0EhiT7G86KukiGddAPFFkWtqVOw2jh5dTMUvK6OFxBrmSIu5MyyD3dTfNIsPi9bpkFEamZdjZLnEHLd001zOX2evo4W6bSvoV97kmKZmWcT/EKue8Y7UN4w7AuSmTIdOyrKClU8adl5ZkSaizVnqmZZDNw+POtIy6ebgXScwiThGClohPnJmWfk5IQQQtnT7zO3p41JLUPDwtmZZRNg/PT5eGARzKlcY+Lb0Gn53eT2rQspx1HvdNql05JDIt48y0THPzcKvman6DlkHfTAXRAsLN+TDK+p75htyK000qmZbV3aelUdCZll76vwuDmwC8MWhZTvNwp0xLL8kEcR8LEkFLp2mSFrSkeXjFImiJ+ER54g7iIpjE5uFxSFLz8DAzLcu9mNhlWkbVPNzuZjeI7ZAUVn1ahtEs3jjPlhb/FTEvmZZu5pnUoGU5FbO4b1LtyiHFn/0UtbgzLZ0GR/EqKdvTbdBy2bLc/2loHp60TEs3Qctym4eH+ZAsyPn4ldTm4Wnq09Jqn3ezb4bJY5+WgQUtvdw3JDEbzWu3PF5a1cWhkpuHG9+LItPSy/5J0LIsBC0RnzgzLf0sm+bhOWRaumP8ftijh1up1ubhYQQtg2oens0GG7SsxD4tEzJ6eA2ZlsnKtAzyfGw1/zBZ9bFVal3Onp37Pw3Nw9OYaVlu8/CwMy3jDmwktXl42jMtkxi0dGgeHtpAPF6ClnEH8M2qNdPSbfNwp2B12JmW5vfcHr/l3DeUE+CspPuxCBC0RHzi7NPSz0XDePLz0h+L2+WmpXm433VJn5aly+Ok3ObhSagoBS2qoGVQzcO9ZFq6KTeZluGhT8twMi39BrDTnGlpFbQsdXzbBS2T2Dw8jZmW5TYPJ9MyGpWeaRl1Hd5N83DjQDxhZVp6SSZIWmCnEoOWUY0eHnWmZRTNw8m0jAxBS8SHPi2L+cm0jOOEF0ZQyO+yy820zGSksWOln/5Umjw5vKBlHH1aVlvzcLtjIopMS7fL8JJpmZagZTYrnXWWdPzx0pIluffKWedB36S++aZ0+OHSv/9dXjmCKEvamPfzZ5+VTj/dfj0kuXl4VEHo22+Xhg2Tpkxpe6+cTMs09E3sJiAR5bFTbvPwcjItg9o+YdWrnnxSOuII6bXXnKcrlWn53HO58+oLLwRbPrO4H2KFHbSM+ve4aR6+Zk3b5J06Oc/vxhulI4+UvvzSeb5kWrZx2uaLF0u//rW0yy7SiSdKq1c7L+fii6VjjpHmzi1dJqO4moc//bR09NHey+u2TNms9fW2lHL2uTAyLSdPzt2X3nuv+3lXgYS2LUNVSFumJX1a5pQTsClXqe3oNWi5Zo00alTu7/Hjg+3TMsrm4VYX5qRkSoQpbZmWXoKWbqYLInu5XA8/LF19de7vjh2lO+9MVvPwwYOlVaukZ57JlcttJZZMS+vtdvPN0tZb54KXZmE2Dw8j0zLoc+LixdLJJ+f+fustacGC3N9+gpb5m7owzuNhNw9PQ6alU/NwNzeWaW0ePmxY7v+nn3beD0oNxHPIIbn/n3km3EB6mjMtrcpq3jdbWqLt5sXjebDGadt+8430hz/k/p46Vfr0U/v5erkHC7tJcbnCzLT85z+lBx7I/f3BB9KBB+aCklZef10677zc30uX5h4quhXX6OGS9K9/5a6VQTzwKBW0TGuflnvvneum4amncsFLSCLTEnGKMoiShqCllyeRcV7E/a7LMPriKjdoabRyZbB9qEWZaWmFoKX1az/MQUu/y8hk3G+HciqRUXrllba/H3ww93+SmoevWtX296JF/sshVV+mpd0++Pzz1u8HnWkZ1kOkvKADQw0NbX9/+23b31Y3UaV+Tz5oFEaflkZhNA+3KmPSg5ZeAyzV1jw8rmuNeblpClq6GT086t/jJtPS7WfG7MqpU52/m/bRw43cBC393gea6yhOdZb33mv7+7nnSpfJKK7Rw/NefLH08txIQvPwMDItDf3KFgblA0FLxKgam4cHnWmZpubhQTfTtSpLOUHLUssq5/tRjh6en67a+rSMsnl4UjItkxC0dJOFFGempdGsWf7LEXRZ0sDr/hVmpmWQ52Or+QfB7mbWT6ZlvrxhnMfJtHQucxIyLcO4XnuZZ6lMS6MoMy2jznYv57e5aR4e9TXFSwBeJTItvSyrnObhSajnGIXZPNy8P4S1v8fVPDxoSWgeHkampd/5VziClohPnM3DGT3cv7RlWvoVZKZlEAPxlNs8PL/cSgpeWh2TYTylD6p5eCbjvvJeTsfoUfITkHES5k1qvp9AN2gebr8d7W4EwuzTslxRBNLs5ufnYVp+XknJeHPi5kFR0oKWTs3Dy8m0DGr7hLG+vIxc7WX08JUr/ZXHjbibh5dzjbXahob+IiUlI9PS+Bu9JE+4ffBi/tvqtdN8k1DPMQqzebiXoGU555q4Rg8PWqlMy7Q2D/dblgpH0BLxqcZMS6fP/IweHodqybQMsjlilM3D89PZNQ+vpAtgVH1amiv1fps/W2Va2t20pKV5uFXQspyHCUHepJpvvL0ELWke7j1oGWampVN53IgikGa3f/gJ7NsFLYM+fwfRPNzN8Z70oGU1ZFp6CVp62e/CbL4Yd6Zl0EHLuJuHlwrAG0YOl6Sacu5DgmoenoR6jlFSgpbliGv08KBZLTvqoGUYzcP9zr/CEbREfCp1IB6/FysyLb3PI8zATliZln7n6zXT0i5YUEkXQKsKSRhBy1KZll4C9+bj3HxzaFyOl3LFxU1Appzm4eVcJ0w3YGRaepS0TMugm2oGfS4MI2iZhubhSc+0dBN0DCrTslKCll6ah0cZtExCkM+tJDYPL9WnpXlbeknC8JJx5+U+KWl1VjeBsCiahycl0zLJzcPdBi3LuW8g0zIyBC0RnygPxCACGcaTXxiBJ6dmGXYnujiCFn7XZRhByzAzLZMWtAwq07KSAi9WwZMogpblZFqay2MXtHRT7iRUZpKcaWm+ASPT0huv5043QctyAtjl7O9xZFrmbwyDzLQM+ppfDZmWbgYfiTvT0qm5elDCah5OpqW1NDYPN21LT5mWTq8rKdOy3EBTEpqHm/fDIJuHR5lpWap5eNIG4vGzb1fSPVuZCFoiPpWaaek3Q9LpBs2ugp2moGUYzcPdXADiCloavx9En5Zev1dtzcPzwm4eHnSflnY3LZWUaelFkDep5QQtybSkebhX5t+az/T1c4zkyxt28/AguKlflRO89spNFlG5WWFum0q6FUV2WSU0D097pmXSm4ebg5blPHD0m2kZRh0uSOU+UPYStHTaP6LOtHT7oCbu5uFW19tSyjn/hp1pWW0Pyx0QtER8qjFo6fSZU6U+Sc0lktw8PElBS+P+HUSflm4refm/aR6ek7RMS7fNw6s10zLI0cPNN9NeRg8n07KymofHEbTM739Jy7QMu3m4m0zLpAUtjeUrpwWH33NyGN0AmJFpWf7yvbC6XlRy83AvzYS9BPWS8HDWqNy6WaWNHu4lwzZoVvuKn+bhBC1TgaAl3FuyRLrpJunjj4OZX5wD8YQ5erjfJ2xOlfokXcSjzLT0GqQ0v548ObfP+pGf1zvvSLfd5n2ETLtMS7+V4HHjpPvus76AWe0PSWoePmOGdP313jLd3HCTaRnEsRJmpmUl9mkZZPNw43p48knpwQfdH0NWmZZuy0KmZfyZlkFm56U1aBl2MCuM5uFu1nVQv6OxUbrrLmnChOL3jG66SXr3XeflB5Vp6fd3BdmXr51yMi0fflh6/HHr/TbMoKV5eUnITHQr7D4t58zJ1au++cb9d0rty14yLUvVz831JqfvOs3npZekf/4zOcEbN9chv/eISQ1avviidPfd1p95yVq3smaNdOed0quvlp621LKdmoevWiX94x/SW2+1n4+bc/78+bnj7YsvSk/rpbylJGW/TwAXQ2AB3zvpJOnRR3N/NzZKHTuWN79qzLT0crFyU4mOI2gRZaZlqRO8U3BkzRppxx29L9M47+++k3bfPff6s8+k665z//38/l1TE0x/qK2t0ogRud910knFn1llWiapefi++0ozZ0p33CF98klw801Kn5ZejoEgRw9PQqalURAD8dg1B3ztNWnYsLblDB9eel7mm+k1a6TFi6X11/deDmNZqkWlZ1oGffx4CVqWWnZUfVoGwc35MKxMy2uvlcaMyf399dfSppu2vyH/859z/zc0SN27Wy/fWGYyLdtnWj71VO7f889LgwcXf1bJmZbl7KdhBy2HDpU++kj6+9+luXP9lymoTMtyu1xw+uz443P75G9/a/+9qETZPDwJA/FMndr+mHf6rtdMyyuukM4/P/f3jBnSxhuX/o7Tso3LNNZVzjtPuvrq3N/ffiv94Af287FaH7/8Za4e+te/Fh8nYWdaVtvDcgdkWsK9fMBSyj1xKFecmZZJDFp6ybSMM1gRZaal18xK4+vp070vz7zsN95oe3399d6/L0l1dcVBSy9Nia38/vf2yzKyy1KKY9+ZOTP3/5Qpwc43jX1amr9biZmW5Zzb7TKOrrmm7b18kKIUq5vp1av9lcPuvUpWav9yc6wFGbQMOuspDZmWYfRpGfR5w835MKxMS+O54LHHcv/bBec+/LDtb6fWN+VkWvpdt2GtH6NygpZ5l1/e/j36tLQWdtDyo49y/8+b5/47pbpKMG13TwPxBNU83O4Y+uMf7b8TpTCbh5vP92HVObxkdt97r/O8nO7D3KyrfMBSyrWm8cJq2cbfYrz3ygcspeLMfMndOf+113L/5/uqdprWjo+gZU21PSx3QNAS/gQdCAhbUjItnT7zM3p4HMrJMgt6WU6VpHL3r0wmmKfstbX+Mi3tll2qeXipTMtKCrzEkWnZ0uI/aGmVaeklaBnGbyuXm6BlEJmWbs+/RlY3027XmZuswUpXKtPSTRZUkjMtgz4Xmo/lcoKW+fKmoXl4nJmWVsuwC865fRCchEzLpDUPz7PaXyo50zLooGXcA/GUGj08yFYSTpmWfpI7gjhXBcHNOkl6pmW5ma9O5SjnPszrb7JatnEdhjUQj1MfyE5oHl4WgpbwJ4gKZ9oyLd1mywWVaUnz8PIyLcvdv8pdt3aZluWur1JPyvOS1Dw8LElpHu4l07Kc5uFRjsDrllUZ/AZ1rb5r7GbB6/zKCVpGEeRKulI3j2FmWmaz5e1HZlFsz7QMxBO0ODMtrebpJjhXblNWu/L7/V1xZFo6LcMu09IKmZbuv2ve75LwexyCTLFkWiY9aFlupmXagpZuH7BZTR/HQDxuAormfcnrfYPxXBp20NLuAVIVImgJf9IWtAw609LvCd7LxYrm4aV/d1oyLd3uO0blXAil6ghaWkly8/ByMy3DaCparrCbh8eVaekmAFfpwsi09BLgd1sev/OLKmhpVInNw5OSaZmfp13Q0ukcUo2jhzvt/3ZBSzIt3XNT1iRkWjq06vI0EE+5DwJKfVYpQcugRg9PStDSy3Yvxes2LtU83O2+5PUe23gu9fIbybQsC0FL+BNEhapSRw8PKtPSKQCX/6zSMy29ZFaaXyclaOm3T0sv5bdq3mN3ExR1pT/M5bm5mUx6pqVd0DKNmZZhNA8n0zI+XjMsgmweXqoZo1dJybR0e+22Gz086GM+jNHD3WRahnHuSkKmpd/fFcfo4V761jMy/8ZKyrQMsv6QxKBlqX3ZywPZcjIt/dxD1cYUsvDzkDqKTMtyhBm0jLJ5uN9My1LzSVKmJUHLAoKW8CeIAFSaMy39Bi2dPvMzengc4sy09FJJCiJoGcT3g+7TstS0+b+TkmkZZtMGN9lYUWRaetmm1ZhpWU7Q0irT0i36tCyP10xLN4H2ctZ/0JmWQR8/boKW+d8VZ6Zl0MLcD/yUw03Q0qnMbm4s7cqfpkxLp/OZU6ZlnEHLsO8bwh78yyzpmZZegllOx1SaMy39nIODyrR02j+SkmnpJVgdNDItqwpBS/jj50IeRjDBraQELYPKtExD0NLP08lS8yj1OsigZTYbTqZl2EHLvGoIWrrJtAwioyfITEu3mSNW2ymJ/dsFHbS0yziKONPS8maNTMucKAbiKTXgmFdJGT08//v9Bi2DPp8FIS3Nw52WH3fz8Dj6tExDpqV5WWHfwAcZPE5j0LKcAIyX4JWfoGVcmZbmAL6bdeT3PjCuTEun5ZT6vWG2eCvFb9DSjEzLVCBoCX+CCEClbSCesIOWXvq0dNvELAxuT+5B3KR4aQ5ufh1EpmQQTzLr6uLp09Juf4o68OKlQ3+v3NxMBlFpMle+/Qbky820jCIbxyuroGU55XKTaRlF83AyLUsHLd0ca0nOtIwjaOk20zJf3jSMHu7mfBhFUK7U6OFGYTUPDyrTMorm4X4zLc2/sZIyLYPsjsHNvpC05uFeMi29tITycj+Q9ExLmoc7fx5l0NJqH/QzEE9UQUs/9w7VVu90QNAS/ni9kDc1SZ9+WvxepTQPz2alqVPbLmxBZVq6qUTHEbQsdaPa1CRNmxbMTUqcmZZuv9/QIM2Y0f5940A8Ufdp2dwsffSR9TRe5tvSIk2Z4m0/mz69+CYmzKCl1W8Ju3m4Vbakl21aTp+WScy0NAqzT0s/8ws6aOnlmjVnjrR4sfvpo5bN5q7Jfjr6DyrTcs0a6fPPrZdRznb//HN3IyVXa6Zl0JKSaZlf7po1pad1KnM5mZZ+f1ecmZZz50qLFhV/5nTdLjdouXx5rp7ghtuWCVYaGqSZM91PbzV/q2t9qfNmXiVkWjrtz6X2Wa8PAkots6VF+uwz+++5sWaN9MUX3r7jJ9PSy72ekVXQsqUld48ZZCuiIIOWXjJsy2G+tzAvK/866kxLL8cMmZZlIWgJf7w2IdhnH2mHHYrfr5RMy0sukbbdVhoyxHpZTuUwSsvo4U5lyWalffeVtt5auvLK4umCyM5NWqblsmXSppvm/r34YvvvS9E3D89mc/viAw9Yl8fLcfezn0nbbSeddZa76Z99NrcuNt9cWrky917czcODzrSU/AcSrDIt7Sok1dqnZSWMHv7ee9Imm0j9+knffuvuO1E780xpwABp+HD7abwGLb1kWra2SjvtJG21lXTHHe2/53cgnn/8IzfPgQNLXw+SnGmZptHDk5JpmZ+nnz4tnW5048i0jCJo2dKSe7i58ca5c9WcOW2f2V237TIt3e5Tq1bl6gebbiqNG1d6er+ZlkuX5s7B/ftLr77q7jtS6e3wxz/mzptHH116XlEGLct5GG6uPxo4jh5e6pgOunn44sXSNttIV11l/10nmUzumvPDH0p33+3+e0EHLb1mWv7kJ7l7zHPPLb1ct8LMtHQKVvv1/PPSZpvl/i1fbj//bLZ4HbrN2g0y05KgZWgIWsIfLyeiWbOkiRPbvx9npqWfZdsFns47L/f/yy9Lq1f7v1g53egH+YStXE4XqHnzpHfeyf2dXy9W0/ldVqmAVJBP+LLZ0uv51lulJUty0x1xRPFndpmWYQctW1py+6KZ10zLpibp6adzf19zjbvvHHpo7v9Fi9oqhZXQPLxUtofbrBsvmZZustaSkHUVdNDS7lztJ2i5alXp+dspJ9Py6KNz065aJV1wgbvvRO2GG3L///vf9tOEmWn55pttWTMnndT+e34zLX/3u9z/n3wiTZ7cfrlWZQmK+bfmA9ZJC1oa5xFEk8ukZFrm51lu8/ByMi2DClpGNXr4yJG5/9eskf7yl7bPvPRp2dzsvrx33y0tXJj7+7DDSk/vN9Py2mtzmZbZrHT44e6+YzV/8/Kvvz73/2OPlZ5XlEFLt+u/1MMg0+91bB5eTqal3xZpkvTnPzt/buedd9quOb/9rfvvxd08/H//y/196aXey+G2DH7Km19+FM3Df/7z3Hy/+066+WbrZeVf+xk93Ot9g1OmpZfWK27KV219qTsgaAl/vBxEdk1HKiXT0jyN34uxn9HDk9Y83E9TQyelLqxOF4ByK4Nu9pF8NqHUvkmaMdMy7D4tnW64zNO4Xf68ee6XbyV/Ua+E0cNLZVqWqtQZX5unLad5eNIyLfPKObfb3aT6CVpanQOiyLRcsqTtb6vAaVqUk2GRZ3ddW7rUed5B9GlZKuMi7EzLuXP9X7vzZQvjQUXQ5420ZFo6XSfd1Lfs3tt7b+dp3YijeXhLS3H93JjBZHdsWGVaOk1vtnq1u+ny/CYcGM+7xt9VSloH4nFbzlIDnHkJqpR6EBF0pmW5/K7ruJuH+1lGKUFkWubfDzN5JM94r2XsysJv8/AwMy29rEsyLT0haAl/vJyIVqywfj/KG26vJ6RS3GZWlSqHkVMFwK78cQQtnNalU9ZGGM3DnT4PImhZzg1iuX1a+s20tDs28+vK7bE7e7b75VvJ7wuVkGlpnmeQmZblNA9Paqall6wKM/PvLifT0m8TY7vvVtsT7zAyLfPztKsXOM3L6/5e6rwYdtCyubl99wD5ZZbaD/Ofh51pGYSkZFqWClo63cw6ZeeUus6cdpr9fN2KK9PSrhWI12CJ2/qW1+3uN9PSr2oPWnrJtCx1X+X1QYBVeYLkd/TxuJuH2wny4bCf4GiUmZadO7f9baw7WNU1ow5ahpxpWUPQsoCgJfzxciIyPiExSttAPE5PI43ve+nPwsjP6OFxBC39BoXKXedW83AKjpSb4RdU0NJvn5Ze1pebSoLXQHe5Qcv8b66EoGWp7Ei3QUtzhcpqXnbLtJo2aZmWYTQPT2OmZRKCyUEIs3m4n6Cl1/291Hkx7KCl1P486jXTMowHFW4fNPqZn2Rdxij6bIwr07K+3n6+bsWVaWlXN3G62S/nWPL6u/xmWvoV5H7q5rtJCFo6HRdeMi29ZNyV0zzcL7/nujibhzvdxwQZtCzn/iyKoOXaa7f9baw7BNU8nEzLVCBoCX+CyLRMW/Nwpwu7cRq/FyunCkBaMi2dhJFpGWbz8HJvDvNlj7pPy1KZllEFLfMVxLibhwdxk1+qeXg5mZb0aVnM7ibVzw1HEjItgwgKBa3cBydBDMRTKmhZKiPIjSQGLb32aRlGsC/oeoOb/SBpmZZOdUI31xDj9HV11u97EUVQ19yFjZ9MS7sukNweS+UcwxKZlnl+72m8ZlqWE7T0m2kZ1n1NlJmWXtabkXn7OO0fUQUtne53rb4bRvNwu6BlEjItCVpGhqAl/Elb0DKIp0pug5Z+nyD6GT08jqBFlJmWpYKWTp8npXl41H1a2h1X+fnRPNw7u+w/p3JYvW+VaWm3n1ZSpqUXduvHa6ZlNls6Q8pJOZmWSWcOXtgptZ7Nn3vJtCzVz1zQzcOTErSsxExLP83Dgzp3WV1b/QQtnW50Sz0cCyJoadctRpC8ZFp6bS4aVtCy1LXXjt/9OsgHg2EGLf3e04TZp6VTmZLQp6XffSLO5uFJCFrafWaXaekmY9srv5mWfut7XoKWXrLBCVqWJdVBy5tvvln9+/dX586dtdtuu2mi1QjV37vjjju0zz77aL311tN6662ngw46yHF6lODlZGl3cxJnpqWfZbsJWloFJezmYealT8s0Ng/3U/nzEqQ0v447aJkvq7l5uNt5RpVpabccgpb283QbSCj1FNhqXnlp7tMy7ExLN/MrdRz4+b6fG/MkZlq6HQzDa/PwIDMtowhaBn39DCPTMuw+LYMOgtrNM6xMS6trq58+LcvJtDQ2D09ypmWpoKVx/YQ1EE+5Qcs4m4d7XXaUQUu3ZfPYPNxTpqXTcePl+A+rXuP3mKr25uGl6rdBNg+3W5aXoKVxHfptHl5q3ZJpGYvUBi0feeQRjR49Wueff74++OAD7bDDDhoyZIi+NXd6/r0JEyZo+PDhevnll/XWW2+pX79+OvjggzVnzpyIS14hvJws7UYPjzLgFmWmpZ+Tv+Rv9PA4gpZeKvtGfioicWdaluKmQuG3ebiXbevmd9vtM3bLmTWr7e9u3dyXJS8pzcOjCFqWehJtnM48bTnNw5OQaWkUxkA8fpsJe8lgdVMOp3mapS1o6TZTOC/oPi07dmz/vUrNtExa8/Awzo9RZlpaXVvjzLT0G3CJo0/L1lb7LNGwMi298ptp6ZfT8WZef26PYS/Lc8vv/hLkQDxpax6extHD05Bp6VTfS2rz8FLXrHIyLQlahia1QctrrrlGJ554okaNGqVtt91Wt912m7p06aK7777bcvoHHnhAp556qnbccUdtvfXWuvPOO5XJZDR+/PiIS14hvFxU7IKWae7T0u77mUw4mZZ25U9apmXQFZFSF4MwMy2z2dIXFKeMJbtMyyAyU522QakMM7fN0Iw328YbG7cqKdOyVKAxrubhZFraKzfTMsob86itWlX8Oqigpd9MS+MNSV7QA/EE1UepE6tj2fjwR7LPTjHLTxd28/Awzo9xZVpmMrn5ljsQj9dMyzD6tExq8/C0ZFoG1Ty8nKClm30haUFLL0EVL/XzJDQP97uu/WS7B5VpmYSgpdf6QTmZlnbHbdDNw70mxJg5ZVrSPDw09aUnSZ6mpia9//77GjNmTOG92tpaHXTQQXrrrbdczWPVqlVqbm5Wjx49LD9vbGxUo2GnXPZ94K25uVnNYWYOxST/m5x+WwfD3y2Njcq6XA+1S5fKKuTR2tSkTETrsj6TkfFU2NLU5Lr8eXWtrYUofzabVcv33zeul+amJtU1N9s+DchmMoXvSVLtH/6g2qefVutdd6m2qanoe5nWVrXmp21sLF7/zc3KNjertqWlaN2W2jdr77hDtZdcosw55yhzyimO09qpaWoqOnG0Nje3bUdTOY3yZfakqcnyd+fVNjcX/X7j5zWNjWWd4Fq/n5dxHub1W7type36r29tVY2kTE2NsplMYTq7fa/dMWj67UXTrlpVlJ1UtH/bXAQL+4xpnTU3NravKLS0qH7evMI8sy0tRfutHWN5W7NZZZqbVbN6ddE6zG6yibIHHKDWO+5wntny5ao75BDVNDWp5X//k3r2bDeJ8ZiUvl93pvVmPubaWbRI9UOHKltfr9Znn1XtFVeo9oEH1HrDDcoecURuOZlM0XJaGxtt97siprK0NjerpqWleF5r1hSfBxsbVXf44ap95ZWiWTVbrMtMS0vbOSJIkyer/phjlP3Rj9T6yCOON4BF58WaGrU0NamDqcKXyWZdl7POtH4yzc1qbW5WXTZref61tXq15fHT0tSkbFOT6kaOVM1bb6n1gQeU3XXXwuf54y9jOk6MZSmlPpstHDuZTCacbeRCzXvvqe7YY5UdNEit993Xth2XLSu+bjU2Fjdx/Z75+pJX2J7m/dvimm6+HuavF3XLlrVtz7XXbrc9rc7fzU1NJTO37a4X5v1KCv74qW1qare+srNnF9U98susMV1bzPLn3DpTvaDoeutT/tokSZo6Vdl+/dT6j38oO3iwr/nVtrYWnw+N17jWVtUNG6ba558v+k5zY6PjtnRTJ5Wk+trawm9pbWlRZvVqdbC7Bhrrraa6inG9muuLVuvceGy0tLaqrrZWNZlMrt62fLnqhg5V7euvK7vJJmr5179U8/nnqvvLX5Q5+WRl/u//2pXNvL+7rqNmMqr7+c9V8/nnannsMWmbbWwnrVuzpmhfamlsVG1NTeE9Y53TvA7aFpdRq0XdpHnNGudjc8YM1f/kJ6qZOrX4e+bvrF6tukMPVU1Dg1qeeaZdfdNtXcS8T7q9b6tZs8a+frtihavzZp7VOcestbHR3/Fs2n9LHU95taa6i1S8r5nrhzXZrLI33aTslVcqc+65ypx4Ytu8TOe7ZlOZjOdXp7q6mXmbW/FzH27etq73iVWriveJ1taS28zu+JGc66T1LS1F38s2NRW9bm5qKlzH263/5mbVvPii6k46SZmf/lSZa68tfFb75z+r9rHH1HrrrcoOGdJu38y2ttqWyVzPzmt54w3VnXRSu99prJ85Xefy67/oPNzSYrlu67p0aasvrFhRmL+5bJlMRrWG+qfdvbr5/GouZ9H99/eKyrlqVaGc5u86HYvt7p9tfm/RcfR94kclxp4kb78rlUHLRYsWqbW1Vb169Sp6v1evXvrss89czePss8/WhhtuqIMOOsjy88suu0wXXnhhu/eff/55denSxXuhU+KFF16w/eynhr/fffttfetyR9vp00+1scX7n378sb4eN85bAX06zHRS+eC99zTPobJhZY8FC7TB9383NzXpf9+X3bheXnz+ee00f75628wj29qqcd9/b60FC3TwbbdJkuqHDNGCnXeWcY+eM2uWPvh+2u7ffKMDDJ+9/+67ml9To82nTNF2hvfHlVifPz3tNElS3Rln6OlNNnGc1s56n32mfQ2vv/ziC332/XK7zJsnu9ueD99/X3PXWsvTsrrOnSvjEfrR5Mmatf76hdfbfvmltjR8PnnSJM1ebz1J0iaTJmlHT0srNm3qVK3+9lvtYnjPvH53/uIL9bP5/KffXziXLl+uudOmFbbTh++/r7mdO9suN38Mdlq8WIfYTPP8f/+rFsO63L+hQeuU+D2fTJ6sGePG6YfTpsl4W/Pc//6n1k6diqbtuHSpDjVc+FubmkruW1LxsfDJlCmaPm6cNnr33aJ1WDNzpmruvVevDxigJT/8oe28Btx9t7Z4911J0vxf/UofnHlmu2l2nDFDxr143Lhx7faZxtWr9ZxD2Xe+7jr1mzRJNZJm/PrX2vTZZyVJ9UceqSefeEJS8bEvSZ99/LEGGF6/9eabWtzQ0G7edatX63DD62mffaZeixZpfcN7X332maYayrf5E09oO1PAMv/b+r73ngYa3ps/b57eDeEcevBvf6sO332nmq++0sSLL9aCgQNtp91twYLC+W7lypUa//TTRfuBJC389lu97bKcO8+aVXRMLf3uO702bpx2nD27sK1bmptL7o8dli/XUIv3J779tlo+/FD7PvRQ7o0DD9S4hx9uN930b74pOrdI0pKFC/W6i98xtKWlUOmcNXu2JkV0nWtXjuHDVbN6tWq++UZvbL+9Fg/I7bXmc/j/nnlG2Q7tQ7ybfvKJtreY78xZszR53Dh1nTev6Fj74vPPNc30W/eYN6/o2Jn22Wf6Ytw47TF9euH95dmsXjZ9b71p04rKKEkTXn5Zq0xBDzPjvmc8LgfNn68+pmkbFi/WqwFum+2+/FKbm95rnTOnqO6xeOFCvTFunHp8+qn2cZjXioYGvTRunPZZuFDGR+vG661f5utFzezZqj/ssML5zqvtv/lGmxpef/D++5r3/UO1vq+8ooHPPdfuO69MmKCV06aVnLdTnVSSDstmC+t31vTp+uS//y065xpNev99zfk+Y2edr77S/obPPpsyRV9+v16HNjcX3TRa7dfbfPml8levd959V3tIqpG0bMkSTb3iCu3x+uuSpJoZMzTroou02TPPSJLqLrhAT++4Y7uymc/tH0+erJkutnPf117TwO+nW3PYYXrppptsp91v4UKta3j9zhtvaNtly7Te96+XfPdd4fw2ZNUqWdVSFixcqI9efFFDTO+/Mn68VvYxH2Ft9vzrX/UDi2PXfB7f6qGHtPWbb0qSFg4frrl77lm0XtzWRbb9+uui87eb70jS+h9/rL0Nr6dNnaov8nX2b7/VwYbP7M6beft8952s02LafDltmq/juX7FCh1meD3+hRfUaJOEY7TllCna1vSe8Ty57VdfFa23mkxGHUePliTVnXaanu7bt21en35aNK/XX3ut6D5l3ty5eu/737bFp58W1Zmc6sEbfvCBdrX8pI3b7Wm0wfvvaw8f8zDXYWdOn66PSnz3oBUr1NXms4xD/eWI5uaiIODyJUvU3fD6f//9r7Lf37vu8M036m/4bNy4cfrpsGGSpLqbb9aLO++sNeuvr47LlunQ66+XJNUfcYSefOKJonqbJK1euVIv2JRpp9mzLe/h64eYzwLf/z7DfW7/yZO1g+VUbevfeM3+9NNPLeMCOy5YUKj/ZZYtK3x33yVLCucvSVo0f35RfaNpzRo9a7GcD95/X/MM9z0bT56snQyfNyxZ0q5uYPz+11On6tPvP//Bhx9qT8NnL734otZYJFlIUp8PPtAg43y+/rowH7tlTf/yS2nPPUteC9Nqlbnlj4NUBi3Ldfnll+vhhx/WhAkT1NnmpDlmzBiN/v5ELeUyLfP9YHbv3t3yO2nW3NysF154QYMHD1YHh4tw3q4776zsUKtbwvbqbJrsb7vVVtra5TzKVVdb/Jxo5x13dF3+wjxuuKHwd4f6eg21+P5BP/6x6vI3wxZqstm2702aVPTZD0xN5PpuuKF656f98MOiz3bZaSdlhw5VrakSaFUmO16mNapZd92i11tsuqk2y8/riy9sv7fTjjtqR6/LNN3UbP+jH+lHhnnUvvpq0ec7bL+9tv/+89oZM7wty2SrLbdUtl+/ovfM66zu3nutPzcE/Nbt0UPrDGirrtmth3bH4Ny5tmU7eL/9ijIP6//615K/50cDBmjA0KGq/T4QmDfkoIPa91lp6oetzrjfurTdj36kbYcOVY1NP8N7rree4zFYZ7j52mjBgrZjwTiN6SZ76NCh0uefF73XqUMHx7LXGzL2N1mypP38JNXdeGPR+1tvsUXR6z12313ZfSxCEKauMbbackvVmI6RzTfZRJsaylf31FOW5Rw6dKhqvvuu6L3evXr5Po6ddDAsZ9devZRx2k633174u+vaa2uoRUX2Bz17ui5n3YMPFr1ed+21NXToUNU9+WThvfq6utLzs9nvBg0cKBkCzPVr1hTNK38c9t9oo3bfXa97d1e/o97wQKxfv37aMKLrnFkHQ/cVe/TvXzjeakwPjw4dMkSyqAvVfv215Xw33nhj9bU41rbcdFNtbj5HXndd0eutttxSWw4dqrrLLy+8t3bv3u3Wa8067R/D7L/fftLm5rCgPeNxadxP89bt1i3Q46f2+wceRnWmpl091l03dyyXqEeuvdZauf3+b38ren+LzTZru976VP///p/l+37XRa35YZ6hflX7ySeW39lvn30kh4dWbuukdYZjbeM+fdTXIVt0xx/9SDvkf+MHHxR9tvUPf6gffv9Zvam+uOXmm7fbr2u/D0pK0m67766aujopk9E63btr122Lw0L9TTewQw89tF32es3SpUWvfzRggLZzsT1qP/qo8He32bNdX+skabeBA1X79NOF1+uts07h+/U2D/V7bbCBfrz//u3e32/vvaWttrJf9vDhlu+3q1PddVfh7z7z5mmD7Ysfm7iti9S+9prjcuzUmB7g5s9Xktqd7+zOm4WyXnJJyeVtsckm/o7nxYuLXh54wAGSIaBop9Z0LyEVnyfNdWpzyx3jeqw13cPsveeeRa/7GOontR9/XPTZTjvsYHs/UGM3eKtNOdwy98/pep9YuLDo9SYbbaSNSny33mG/qLVbdjZblCUoSd1M8zn0wAOlrrlwqLFOJIt5/njnnaUBA6Tp09tNV3frrUXvrdWpk+36qPv3v+1+iiXj76udOdN2OqvlbbvttpZxgbrHHmv7u7m5rW5uOsZ6mgL3HW3u1XfeYYei+48a0/1WqbrBZn37qn++PmU6V/54v/0km6SgGlOAbrNNNy3Mp8B0zPXfaCN9KrmOz6TNMrsuBC2kMmjZs2dP1dXVacGCBUXvL1iwQL172+W45Vx11VW6/PLL9eKLL2r77a1yCHI6deqkTqaLlyR16NChIneaPLe/r76mRnK7HmxGCa2rqVFdVOvSdCGor611X/48w4mkJpu1XE8d6usd+6go+p7p+7Vr1hS/rqlRbX4aU5+C9XV1ue+bKr5e9k3f+7GpLEXb0aHvw0KZvTBdDEptt6JllNlnVl1tbbvf026dmfo4KnxubMJeX19U5lK/oXAMOqzLDplM8Txc/NbCdjLvMy62S01rq+f9pa6+Prc8m75h6hcscF6u4ffXyGZ/tdr/TfuM3bFaYFh3taW2d75o5vOJ3To0laWutrbdtqrLZIrPgzbbvUOHDu2+Wyu1nSNCUie5Pk/X1NTk9ieTcspZm8nkvmvcH0ptU6m4rzaD+tpaV+fNWosm8YWylGLcp2prQ99GbhSdd8zNnuz2X5t1WFtX126bSDb7iiloVzgPGeoFtZ07t19HFuvfzbnKqN507jWryWSCrc8Zzwu1tVImoxpT/1a12azlurMtm+n7dbW15debbK4XQa2Lon2tq3W+UYcS28ZYJsdyGfbR2tbW3PXWrlzGeqtTPcZ8jrZa54b9s75jx0I5arLZ3HKMRTQdAx2kkr/ddR3bVFbHdWXqX7peKloPhX1Tsu2Xrbaurt11UpI6+KlTy6K8hjLWdO6cu7YauK6LuLyWl5yNcb8wXfdLno9c9OdXl836O55N52bX69/i2C86Xs3nfA/7l/naX3QPY16m07qzue64LYdbrudhPoc7/K4Cp/tAu+uORd+FNeZzRzZre49jnmdhnzC/b1GXDPJaWFQ/c+hayGp5dXV1ro6HDjbroNa0rezqiu3uw8wPkUrUMeuam9vKaT4WnfZtp+tOnkWdQarc+JOX35TKgXg6duyoXXbZpWgQnfygOnvssYft96644gpdfPHFevbZZzXQobkbXAhi9PA4B+Lxs2ynjtqN07gdiMeiLx/bae06TY5jII5qGYgn36m/E3Nae36bmm9egx6Ix2uH8MZp3HTAbd433awLs/xxYDcQz5w5zt83ViLcdqYtee9Q281Iz6UG4vEyQqH5/OC2P5dstv0+HcXxX+pcaV5/5Z7X7QYq8joQj9MAR27KWM7o4UZJGT3cuM7M5y279VFqIB43x5rdwBbGbBqr5fgdNd5u+igGVjKW2WpEdOMy3Q7iEcao0kEPdOF0XbZ4+B9oGYzX1uZm94MdOg3w4uYaaXeNz2Ta77vmc7zVOd/vdvayD1uNHu51IB7J3UBLZm7Pg8Yydu7cfj1EPXq48bea11+pbRTm6OFeBlIptTyH82RNOQPxOO1PaRqIJ+jRw+3q01blczqXlNq/nK41QQzE42Z6r9dYt3Xw/DLMZXNbN/ey71pxGojHy7p0s20YiKcglUFLSRo9erTuuOMO3XvvvZo6dapOOeUUrVy5UqNGjZIkHX/88UUD9fz973/XX//6V919993q37+/5s+fr/nz52uFTRYgSvByUUlC0NLvBd7uO06jprm9yTffODqN6Gp3wg7r4u7EaV0GeeGz+k6pi0PQQctS29IcaM6/Nn6vrs5dAM4s6KCl3U2w2+CM1+M1yKCll9ELvQYt3R7XRuaKkdvvWZ0fzOvartKWzfobxbJcQQQtvRz7dsGEIEcPd7MvlxPkiuNhUinGMjk9ILP7jhWnwE+em9HD3a5rr+u1VBAmzKBlqWCd24BHGKNuB33ecDrn2q2HoI4Rc9DSbZDFqcxubizN5738+cnq/GK+BlpdE/2OHu5lW5YaPdzNqLvljh5eirHFUadOpQPGdqIYPdxL3cLt8tyKaPRwc5NqxzJ4SWjwEgwNSlCjh3upb9vxG7Q0njvSELT0ui2dEoKM8sdiqQCf2/kFGbQsd/Rwgpa2Utk8XJKOPvpoLVy4UOedd57mz5+vHXfcUc8++2xhcJ6ZM2eq1nAxvvXWW9XU1KSjjjqqaD7nn3++LrjggiiLXhnSnmkZVtDSzQ1xJpMLZNkFvKyWYXdCjSNoGWemZakTftBBy1JlNgeaV6+Wuncv/l5dXfGNgdsKQFhBSz+ZllJufXoZvCq//u0yCR367JTkLkhltX+Uk2npdjl+g5blZFpmMv4qz+WKO2hplWnpRpyZlm6yd6PmlGnpNWjpJWvbTdAy6kzL+vrc/JOcaWkXtAwz0zKb9be/Ol2n7fp2CyPTsqXFfaall3qMl0xLq4x4N0HLuDItjc0V3WZa+glaBpVpKeXWr93xVa4gg5ZpybT0G1wstc86ZdwFneDghlVAy81+GXSmZf5zczN4q23jlKXtNmjpJvDvNbPaSTmZlnbM5V22LHd+MJfN6fh1er+coGU5AWAXQUtzFwHVLLVBS0k6/fTTdfrpp1t+NmHChKLX000d0aJMaQtaBp1p6XQi9Jtp6ZT9YlfBrvRMS68XliCDltls6fVr3mb5bWrcB/w2D3eazmvl2TiN36Bl1JmWbgK9Vk84wwhalqoYlZNpaV7XTs1j4si0LHUcBR20tMsEjrh5uLkvQsuyuZHEoKXbTMtS7/vNtGxqcq70282rnExL498dOpQOcPmR9qDlqlW2fVA6SlKmpdugpdO+6yfT0tg8vNQ53u6hoFEUQUtzpqWboKXfTEu350E3mZZh3juEEbSsqbHf35OeaVlO0NLrgwA3n5XDKpvZzYN4P/UuN/uGedlhZVqWClRbvXb7mZVyMi3dlmHZMmmDDUpnJbqt23i9bwizeXip1lhVLLXNwxEzt5WGlpb2wTmv8yiXm/RrN9wE59w0D89/1y7gZZyX3fLyn8XRDNFvpmUYzcPDzrT02zzcKdPS7b6XtObhXtdnfnq7oOW8ec7fd9Ok3mpfDKN5uN9MS6uKYalKlh2rDJ4kZlqWW0l1k2npZhlhNA9Pc+UxyObhdtcft5mW5tFh3a5rr/uW3bUpf7MYZ/Nwv0HLMJuHexjF03F+xjLaBQWCupk1nhdKNQ93m2npNRumVJ+WfjItg24ens2mr09Lu6Clm/NwGM3DTYNlug5aOgXGkhC0dKjDe2oe7iXTMgnNw+3qpmbm6YJoHu52v3Yqc6l9J6igZZTNw+1YBS3Ny5LiaR7u5uGtXXloHu4JQUv447ZCZb45MYoqSzCMoKXTDbHbi5X5xtEpEGV3Qo0j0zLO5uFeLixxNQ+X2mdaJqlPy6gzLZ2aP5tvAozcZFpaVRbItAyWl+0eZp+WXoXRPLxS+rQst3l4OZmW2Wz74FhYmZZ2mXUlRkj2Le0D8fgNWnoJAJZ636u4moebH9Y49WlpPm+76dMy6ExLu+xOq6ClUysTuwdTQd1Yu2kenrZMyzCCln6vk1b7gVMdyEtwsdxjys1n5XCT8WwlrObhZmE1D486aGn8TpjNw43LyYujeXjQmZYELW0RtIQ/bi8qTpVgt/29jBkjnX22+wuMmZcboksukc44o7i/Lav5lJPFk5+PXQaq1fKiDFq+84503HHSyy+XLpf5dTn9ojQ357b1OedYj8JtNQ+nz6MIWrppHm7OtJw4Mbd+x493nreXoKWXSpTfoGXQmZZS+ybiU6dKI0ZITzyRrExL8/txjR7utU/Lq66STj1VWrrU3TKsXHCB9Mc/2p+vwm4ent+PvPYL6/cc3dKibe+7T7X//KflZ56loXm43foII2iZyVgHLadNk0aOlB57zPp7TuWxY3cNzQcUybQs5jVomc1Kl18umY8VN5k2mUzunPKHP0gXX+z/d3lpHu50rvfaPNwu09IqI958DTzxROm66+yXb56/E+P3nM415jpD/rtWA/H4CbhE2Tzc6Ty8ZIl02mnS1Ve7W16peeeX/9BD0rHHWn9mJ/950jMtHY7X0DItgw6SueEn0/LLL6Urrih+L4igpdsWTk4PPNIQtAw707JUgC+soOWyZdJZZ0l//Wv77fDrX0vjxhW/d/fd0gknSLNnF79P0NKTVPdpiRi5reyXG7S87bZcpViSevfO3Tx75TbT8skncycgKVdZcrpQ5YMj5opYOc3DncptVxkII2i5++65/++/v3RfTuYylPP09JZbirf1mWfG2zy81LbMZNpnClo1Dzf3aXn77bn/7davcfl2/GRa2j35DLt5uFNQbs4cafPN217vt5+0cKF0333SEUe0ve82mGiVaek2o8nLNEGOHm7elkFlWk6cKP35z7m/ly9vH1jw4rrrcn3dXXKJdbny7IKWXthV2CLq07L2ttu05eOPe5unWRIzLY3rtdzm4V4egLhtHj54sDRrlnTvvbnzatCZlsa/05BpaXfDmaRMy+efzz1odJq/0741Zox0442517vtJh18sLflm3lpHm6377qtL5of1jj1aWkOjrz+eu7f7ru31bf8jh5ufkBqxy670yrT0mkfi7JPS6uBNiTn8/Cf/iTdc4+7ZVmxOt6WLJF+9av207oNGkWRaVlO0NIhmF9W0NLpPJCW5uF/+1v796JsHu50LqmmoKX5t0bdPNw8n0mTcv8kaejQ4s8++UQ67LC2h0Jz5ki//a11OQhaekKmJfyJKmj58MNtfz/0kLtlmlmdNK3ee+aZtr9vvbX0d+zmG0XQ0m22Rhi8VEyMSpXVuK3zf5dzYQk709KqabObTEsjvxW3NDUPd6oYmj9buNC6DElrHh7k6OHz5zuXzzgv8z7ntN3feaft7/vvd7cMJ3fe6W66oJuHlwoYuCmH8aYxk7HOOvpejdN1JonBSLeCbB6ef98pWy3PKghgFXyfNavt9cqVwfRpaRekiqJPS7ugZSVlWr7wQun5O+1bN9zQ9tquZUcpxvUTRPNwNw9qjdNLpfu0tHtw98Yb1mUzz9+J26ClXUDEKmjppR9jq3JYCXL0cKcHoeUELCXr89WiRdbTus2mcwpa+m1BFlGmZa1TPdpL0NJLeaMKWrpZ91Z9r7spn9vzu5Gbe5awmoeXStDwKuzm4fnfVCqhIKhMS6ftac6qzPv229z/xrqNmZugZZjdYaQMQUv4E1XQ0mt2jRW3T85LsTqRWJ3o3F5Ikto8vBS/mZaltp/Vti514Qgz07JU0NIq6Gw3EI9dhd1pHwgi03Kdddr+LjdoGUbzcLf7i5egYBhByzAzLc3NRZwyLd1myElSnz72n/lhd0Ns/I21tcE3D8+/LifT0hhAssqQdlq+5D0zz5yFlQROzcOjzrQsdQPb2BhMpqXVtckcYAqSm+bhXjMtk9ynpZuHcW5vGv2er4zrx8vo4XYBd7cPuc1BS6c+Le2ugfnzihRMn5ZOQUu7Y9OqebjTec5vpqVb5mPIa9AyyOVLuf1krbWsp3UbtDRu51LLcyvITEuHOlCN03Yt9UDFb/PwJGVauj0feJ3GbaalmZdMy/z84si0DPoe1S6QF1WmpZ/fka/bd+tmP42bB0BkWhYQtIQ/QQQt3ZwE/Axg4mY5QQUtrS7abisySWwe7qYyGFbzcKugRKkAVNiZlk77uVXA0W4gHrubO6fjw0vQ0m7dGivLdlkUVr8xqoF43FaU3AZVrDItraazK4Pb4GM5FSPzewsXOgfRjMsw73NOv6tLl9Lz9MJN0NLuhracTEu/QUur5sD5+TtlWlqVP/99t+fbpAct4xyIx+q82tBQ/LqxMZg+La0yLWtr2/blNGZapiFo6TbT0ugHP/C27Dxz0NJt8/ByMy3tmodns+4zuowZeG6uy1bMD0jdTGdchvE7bjMt/QQt/Z4HrZbldtRnP6zOV26v72ZhNg8PMtPS4XgNLNPSS+ZaWC0a/GRa+q3PhBW0dMq0tKunlhu0LCfT0ut3vQYZS9XN7eYZZKalnXzQ0uncSPNwTwhawh+3J6JKzrRsabG+aAeVaemUARZWpqW5rzGvJ/tKyrQsFYC2Cjrnt6n5RiLsoKXdtFY3JH6yo+zecyqDm0xLt01SvFRkvB7vUTYPt8q0lIoHJAoq07KcZqVW+6vbLg6C7tPSb8adU6alQ9DScp3mbzrDygCJQpIzLc3ZxmFnWoYdtKypsQ9UuM20tAsgJal5eJCZln4Z51OqebhTXcWpTlXqPXP2blyZlnbbwzydcZlem4eHnWlpZPWQT4o209KuDPnPnOQ/99ps3w0310m3y/ObaVmqDJWQaWn1+92Uz21A26jcTEvzMvPHiZugZTbrvh7rRtjNw+0y4912K1Pq3tJLUNcOQcvAEbSEP2lqHh5UBcvqpGl1YnMbtCyVaemmgh30E0nz9nJz4+g2aFnqpG8VrPF6YUlK8/AgMi2dlu02aGnuy89qvm5vCtzu1+bXbpuHm6cLMtOy3KBlqUqE2/LZnR/MQRu7MnjJtDSXccmS0svIs7rJcptpGVbzcK+VRp+Zlo7Nw/1UXJOYaVnu6OF2D5X8ZlqapT3Tsr7e/njxErS0esgRxA19UEFLpwcspZZlzi73uy2Cbh5ebqZlJuM+OGI8L/ndzuU0D29t9T4Qj+SuSaOZn/OgXR0s6kxLv0HLtGRaOtS1ar00D3cqk5cgUJKClm4fYnidxm2ygJmxzKXqoV6CllI4QUuv29LNNcX42k2mpZttWOo1mZaJQNAS/ritYJqbfXmdh7FCFWTQ0s9F0eoGzerJotumNUlsHm6+afHarMBtcKiUtDcPN5bLqU/LsJuHu2n65bZ5eKn1af6Om9HDjeV2yvJ1W5nK3+g7Lcfps7gyLY1BS7t9JZstL9PSTWA0z+rm1y7wblxOEEHLoB7QxJlpGVbztnKE0Ty81PlZsu5KodR6tAtaer3eGafP75d1ddEELUs1nXZ741upmZbm81FQQctym4e7rS8a3wujT0u366OcoGWQmZal6gdpCVpaDeRRbtAyjD4tw2oe7iXTslRd0inT0uk4jSpoWWnNw82vvQYtvdYDnITdPNxLpmUQzcP97JP5a5zX+2KClrYIWsKfNGVaBtU83OoCEVXzcLsTqJff4Wb9mbeX1UXdb6Zl2pqHO1VWJefm4UFkWgbRPNxvpqXdSKNO7G663DYPN68LN/uVVUUmjKBlqUqEl6BqOZmW5n3OS6al0wiGZl4yLY3rJoygZdSZllbLqYRMS2PZw2oebnVj6jfTMojm4aUyLYO+OXYTtHSbaZmf1m+zYSdhBy3dnLtnzix+HXWmpZeHI+VmWtr1WRzlQDxW69cu09Ltg/dS8zcKMmiZlubhYWZa+g2qeMy0rHGqY5u3udM+7KW8YT30q7bm4V76tLR7T0pm83C783VYmZZ+rrv5OjeZloEhaAl/0hS09HJy9jKfcoOWQTQPLydoabU+wwxaliqrm6BlqddBBi1LZQS5HYgnKX1a2lUikpJp6RS0dBsULLd5uNtpysm0tCqLm4BiNus+Q06KJ9PSTRZdKXY3CV7nG2SmpdfRw5PIqXm415tyt0FLu2tvVM3Dra5NxodIcTQPdwqOmdm15ihXEoOWQWSclerT0k3zcLf1ReN7xn3KKlBv99ucmodHlWlpNY2fTMsgjiWruqXVstLWPDyMPi3Dah7uptsKuzI4BS29lDfoh0l5UTUP95uJWW7QstxMS7tjuJz75aC2pV1dw819bSbjvdVeqYQZN/w2DzdNX0PQsoCgJfwJImjp5mQWxOjhboMYpS7cboKWbm7ag8i09JN67ydoGWXzcPOT+FmzpH/+03keYWda2u3nra3SI4+0f9+qeXgYfVredpu0YkXb66AzLd32afn119IDD0grV7b/jptMS6egZZDNw83vNTTk9q05c/wFR90GLa3WdX69GEfLjSLT0s0ylizJrRer/dJt0NIuQ27iROnJJ52vHe+/L02aZL0Mp9/a3Cw99ljbdz/+WHr44bbPo860dBsI/9//pFdfdTdPSZoxQ7r//vZdKXgtU7nNw90+VLI6Bz/xhPTWW7bFlBR8puWUKdK0abm/zZmW5nkuWiTdd5/07bfeliW5y7RcskT697/d3TAH0UTeSjlByzVrcsfWtGnOXVmUWpb5QU1Smoe7zbS0u8a7CcrnGddf2JmWdkEKq/pbqfK7uNFux02mpVW/1lbLSmLQcvLk3HFt1XzXqYugJGRauq3DS87HtlMLFC9BoKiClmE1Dw8zaJmm5uErV0p33+39u1as7r9nznT/wN9P0PL116Vx4/w/jJ89275ObCybGZmWtghawh+3B3ClZ1o6BSXsuM20dNM8vJxml1brIM5MS/My9thDuvde98s2fx5m8/DHHssFD8xWrsz9b76RCLpPyxUrpP/3/4rLaiXM0cNbWqRdd5V+/WtpzBj77JIkNg//zW+k44+X9t/f3Q22+f0g+rTcaKO2G11jQNGp4hh2puXw4bn1YsVN83C7898330i77SYNG2Z93EjS3LnSwIHWn1mda41uu0066ihpp52kzz6Ttt8+dwOZ5yXT0qr85QQt7Y79Z5+Vhg6V9tvPOlBrNc9dd5WOO0467TR35bArU1DNw+2y1fKsziMLF0rXXmtfTikXGAsiYNfamjtX7rpr23vGoKXVPI8+WhoxQvrJT7wtS3IXtJSkX/5Suu660vOzuv6GGbR06oM876KLcueJ7be3P47cnLuDCFqab0ZLNQ93ekDllBlUKnBRU1Pcp6XbuodTU1u329kcPLVj1xzVKhvOadlBZlqaz41W1ze3D1WD4qUP3vz7CxZIu+ySO65vv73958Y+T0stzy2/mblkWrYJq3m4m/K7beFk5qd5uNvrSNBBy/POa7snKpdVXX/wYPffLbWuzK+XLZP22Uc67DDpv//1tw6amnIPQQlaBoagJfxJU/Nwt0+FvVys8/Pw0zw8P5+om4e7edLpJmjpdLJ3Ko+XTMuWllwWXKllh51pafd7Jk+2fn/hwrbv5oXRPFySPvqo9LRBDsRjnm7mTGnx/2fvu+PtKMr3n3PObQkQEggkQAKhI713RBQBCQqKiEgTKSqgKOgXsYCIUkSRIgqogD8UQRRRMJRIFSnSpUhRWgRCAiSQftv+/tjMPXPmTHlndnbPnnvf5/O5n3vOnt3Z2dmpzzzv+76Tfr7oIrPSMtQ8PKbSUn2P11+f/v/Pf+KYh1Mne3Kd6uoCllsu/Swr52wmOlmUlpTJ4623mn9zRUMGzP3fzJn1z5/9rD6dK68039vWFgHgy1+ufz700ObfbUpLdTGpu49vIB4ZpsXqF79Y/3z66e50Fiyo9y+qAp0Cua6oZJOpzrlIS9fEP7QPjqW0HBwE7rijsd2opKV6nzvuSP8/+KDfvQCaebiAS20K6BfVeZqHu+YkAHDWWen/3l7gscf051A2gtT+PoT00tU36kaObj4HFKu0lNNoRSAedZPPNEeQEUpa6vpB9ZhuM0V3r7IpLX/zm/rzH398429A+ZWWlPaq+901lwwl5WP0cToUZR5OeRdUsYCKGEpLU52OTVrKaxSf63RQ87ZwIfD887Q0dc/r036++MVwIn3+fP+6bhqbGExaMgJRFGlZZPRw1y6XboKsG6SpSksf83ATOZeFtNRdSzEPD1Va+pKWlDRsJGYMn5Y283CBK64ARo9OP+t8mOQRiEe9hw9pSakHFJ+WLlMbitKSSlpSJ1MhPi1t6hvT9aGBeNQFpiDT5PRM9VZHWlIX6LrvvqD4r6P0f77pA27zcBm6+mZTWqr3tSktTeaKKnzNw2zP7pOmDTIpQzVF9SUtKUpLCmL5tBwYAJZZpvGYS2mZBVSlJRW6uhwjv6Y0bApkHUxEDGVOoD5bSL/hu2lMMQ+nzhdVpaXNp6UJoUo0GVl9WureFXXj3ZQPHSikJVVpWTbS8vXXm39T34upPyiDT0vKHEh3ro/SkiKaMJ0bC0WZh+dJWvooLU2kpWlzx1XPfaDOBSdPpl1HzYNPu9HNS33qY6USPv/SiZtc9421+TsMwaQlIwytUFqGDmTUztk1Ydct0EKUljHNw33KxKZKFAgxD7epF2S48kohLV0DTVFKS/mZ1147NfUF6qSlusueB2kpP58pn3n6tHRNACk+LW3m4RSlpe5ZspCWVPIm1Dxcvk4mLW275wL9/fQATOJ8GVkXAlSlZeh9XJFvqenq6m5Wn5ZyO/KdvFL8/lH8vcUiLX3M3Vz12tWXlEFpqZKWan/su6CwoQjSMk+lpSnKtS8oG06m8cIHumuorh9M85iyKC2p/R1184NiHk4hLcugtCxb9PA33qgfW3HF9D/VRVAZSMu8zMNDlZZFkZY+5uFy24qhtDS1RxfkPLvU2abo4ab5VJ6kpezD3XUdJQ9yH7D77o1zNN21vubhrvtToRM3yWDS0gtMWjLCEIO0pHQCeZmH50laup6LSlrayBTx3adMKDtLZTIPp6Rhe6aiSMtarU5azpuXlqGqtAzxaUmtR0B883CKT0t1gWtSYpY9ejilnqhphiot5euq1fpESy4jU350/YXPcxWhtPRZsFPTB/xIS1+lpclEUoY8IfZ9PkrdoJCWWd+fzV2DL2lpGn/KqLRUyXCXebiaDx+IsqWYh1Ogu3/WBb2tDH2f14RWKS116ZrO99kI9lFaDg7S672cn1BlfFbz8BClpa4OuZ55OJuHy6TlKquk//MmLX1JF9v9YpmH+ygty0Ba+igtdQIA1zW+52Q1D8+qtKRYllGhzgXljWPXdZTj6lzaNofStWGf+mjaqKEgRGkZax41DMGkJSMM1E7ZFuXUV2mZt3l4DNKSah7e3+8eMG0TibzMw1VH/DHNw33yaiqboklLyiAuk5ZAqraU81WE0tJ0bp5KS3WBEVtpGUJaDg5mIy1Ddnl9rpPvZTIPN9U5nU9KWx2JbR5OUVqWwTw8RGlpIw9qNX9zYl+VMEWVl/X9+TrlB8rn09J34aDrw31IS4qPRxntoLS0lWGR5uExlJa+hJZtTLFtBFOUlnIgniKVlvK9XGojFUUqLU1pyShjIB4KaSmbhwvSkjoHLIPSkjLX0p2rWxPJsCkty2Ae7qO09LG2yJO0tJmHq99NpGUrlJbUTbyQObiLtKSYh7ueMXTcZaVlVDBpyQgDZYIyf372NMqutNR1fBTSkrIYim0ebiP4BMqutHQ9Q2yflqbncZGWqtKyDD4tqSadAM2npbrAaIVPS12b9CUtKQRTLPNwE2lJUVrqSEsqGes6l4J2UVrq6q4rerjN1YLafkOIM9fxIpWWPlG5h4NPyyykpcvvtIrYpGUe0cOLIC0pfbc6LoTUlSxKS5NKmLqYbzeflrqyMiktQ5RkRZqHl1lpqTMPzyN6uKvvNaEdlJYxXGDokCUQT2ylZQzzcFefYTIP9/VpGTL3kInCSiU+aTmclZZMWhrBpCUjDJROzEbIUNPIS2mpu3dR5uGDg7TFEGXA9+lIXSpFIMynZZGkZVnMw+W0OzrspGXZfFqGmoe7lJYmc+RQ83AKKUs1D8+64WHb5dX9brpvFp+WrVZamuqwanIZeh/fSacJIUpLW1tS228s0tLXPDxrf2Zrj6Z31krSUpenEJ+Wah7UBVReSssY5uFFKy115ZX1Hj4bTr6ISVqK/JTFp2WIebiNKDcpu3TvynXvvEhLdV6cJPqyLxtpKVuUifzmbR4eU2np49PSpp60kZY++S1KaZmXeTiljw5VWsaIHu6rtAwlLeXxkDLHseUhi9JS1ycXqbT0XRczaWkEk5aMMLQTaRmitKSoUXSkJaVziaG0FL/l7dOSUg5U0tI1KJRNaWlbfNiUljNmmBc0KkJ8WgrVmK/S0kQ06O5DUVq6zMMpSkubebicHpUUHBx0t3efCYRpIRtLaSkmwvJxH6Wlrf23IhCPTZ3sgqueZDEP91Fa6pR5vqSlr0q4CPNwG2npq7Q0jT+xJtt5Ki37+ujv04e0lPueMkcPd10fw6+lj3JLIBZpSQ3EYxoHY5CWZVRamohGXwLSNMYWqbQs0jzcNqYNDjbnWZRD3qSlL+liux91fqT+7lr/sHm43zlFmYcXrbS0CTd01+mQhbTUtWFWWrYlmLRkNGLWLDrxBqQdx+zZ+nN8ScskaTSzANykJSW/1M5ZnuwuWeJekLWStAxRWro66YEB4NlnG48VqbR03dd1b/X3VgTiAfRKy5BAPKbyEgQMxRdjTNJSresu83BBNIUqLeXrhOJC7R90ddhFxvtEjjYtZF2BeAYGgDfftF9XrWZXWtraW2ylZa3mfgdZlJYussH2rLKSUrcQyVNpKd61CRRCm83DGxHLp+WcOc39yoIF+ZiHq+r7kUxa+pAgAj7qxJkzzde0yjy8KJ+Wav+bxTy8v9+fgDSReCH903AwD3/ttcZjJtKySJ+Wvb3AW2/px+usSksbaTljhvlcH5IopI9bvBh45x37OSbScvZst1DCx681Jf8uCydTW/YxD2+10lImLU1zHNkfrC0PNiIvq9IySZrbsYpW+rTMc5OmzcCkJWMIEx94AB1rrAFssYW7kxoYSDvPDTYAVl0VmD69+RwXaak2zI9+NE3rggvqx2yLxT//OT1/s82ydwpA82TdZQKq64yopKVpMdTV1Tj5FTCRdVlIS3WisuOOzdfEJC1deZXfNZW0zFNpKQ+6KtQJ6eTJ9e8+gXh6e82LRBdpGaq0DDUPdyktdbu5PhsKan8hT86SBPj0p9P2/oMfNB5X09OVxcYb14kl26Kc2s5cbWmXXVKH/L/+deN5Jp+Wcl0rq9KyWgWOOip9B9/+dv14LPPwLKSlrKTUbQjF9Gmptrudd07f9VVX6fPWzkpL13FXu2i10vK884CPf7zx2Pz5+ZiHq6RlO5qHA36kJcWtQGzScvfd0/Z22WXZlJZ5mYcD9Hov54cyLp90Utr/Hn+8Ph82xFRahpCWlI0ZaiCeMpGW//tf47FWKy17e4H3vS9tI5MmpfXlu9+138+nvdrm+5ddZk7XR0ns28fNmwdMmZI+6z//aT5PZx5+441pWZnWkTJpqVub6RBDadnTo7/O5v/ctB6lKi0p6x0q5Lmgqf6feiqw2mqNx/JQWurasPz9M58B/vpX8/W6+1MRQloq51dsfdAIA5OWjCFsd/bZqAwMAE891UxC6iZ4V18NvPhi2ij32KM5QZMCU0A1DRWdxle+Uj9uU1rut1+axjPPANOmme9D7ZzVya76XacqCdkRGRhIdwV12GCD+jNTzMN9OjIb2fi//+kH+5jm4a6JSIh5eFmUliuuWM//W281/m4zDwf0ZBTgp7Q05bPV0cNdC2A5TbUcVJPd3/8+/SwTZjq1jKncfvzj9L8tT6ZJoI+fp6eeAu6/Pz123nmN56k+LeX3I+5dVqVltQpcfnn6WSaO1c2VvEhL2zuQlZSu33t77eSamn9b9PAnnwQeeCDN22GH6e9NUTEWqbTMM3p43krLrIQdkD5/EaRlOwbiAfxIS9N8Jy+l5YwZwJ13pp8//3l/Qit0I5iitKRsutrSpWwyifHk4ovrxyibl6b0fM1ExT1chAsVar+nm3NT5yex4Etavv124zGdYtdGqgwOhpGwJhJQXpcJFdvpp9fPc83psygtbefa5uq26yg4//x0U3rJkuZNKhk6peXHPlZfR+qIK/GM8juMYR7uEgt0d+uva4XSMmTMoZiHn3GG/jpKHnyUlrp5qbxJdc015muBNO3QuUcM83AsJS4Z6HCfwhiRoBB2775rT0PegRw1yuz7BTArD6k+LX19A1JJy+WWM6ej64yojp3l8z76UWD99dNnPeIIYJNN0uMU83CfjtQ2aTAtVFplHk71EVgW0rJSScnEJUvSMqMqLdW0ZJjKQBAwoUrLUNJSLU9K9HDXot82AfZxki5/N01exGTPh7S0LWRlyOVv2pBQ05eVlkD6vN3d5VVaUnbh5d11X7jM9m35d5GWLiWmKCudOwObT0sKwVM20jKGeXgRPi3zIi2BxvdpS7PV5uG6+lUmpaWJbMlLaUkJVkM1DzcR7jGUllQSyjb+UcuNsnmpS18c042hLqVlLJ+WahvRlUHRSktqHsRvps1BqtISSJWCIup4aD7F9/nz7dfFVFq63nmo0tJ3riKvRVVzYxmuQDy6/l5WWlar7rmIfI0NoaRljEA8rfBpWdZAPNQxPovS0nddrCMts87/hgmYtGTooXYAOkWTqxHJpOXqqwPPPdechoBpokxdXNgmMbrrdAN3iNIy1Dxczu/mmwPf+179e7XaPJk0EU060s62o2v6bio/itKDSlq6On3KoObarZW/Z92Nt03e1Qkp0EhaqkpL27OZ7qErr2q1fr9Qn5ah5uEhSkvXhCAraanrl0xmmRMnpv9DSEufnXVbPTdFD5d/K6vSklJPKRN6E2L5tHT9biMt+/tRUd+1zadlSJ/lOm5C1vcnnrFdoofryjaW2kBO25ZmGc3Ds5ZBTNLSdK6pP9xrL+CWW/TXUOq3i+Sy5Uk9P7bSUq5TMZSW1PZOJS2pSkuKOSNVCCCDEoiHShjmqbTUzW9tfbhpzqDOEW2bGO+9509aUjafdcjTp6XtXJ/8+vZx1L42JBCPyIsabItyjQ1ZlZa6dmjaNCyDT8vYgXh8fVqaysrlxg5ofSAeANVYc582B5uHM/RQOxjd4sTViGTSco01mn+XG7JJnURVWlJNgnT3FohBWlLNw+X8yiogIJt5uI/JBYXgo/gVoxI2Pubh1DRszxTDpyVlEBcTJkGM9Pb6TVh9VE7Vat2k2KYaEdBFPKRMHkOUlmobpigtbc8QQlqaVCAAsMIK6f8Q83BXX0dVKqhKS515eF5Ky6ykl6mPVYmAMpqHU5WWujy4AvG4QGnfPsHvQtFu5uExfFqaYNoMVZ+n1UrLsvu0NPUJpjmBjVyg1BUXyWXLk3p+nj4tQ0jLUKWlGrCOci/5nr6kpYnEK5K0bKXSUt0IjqG0pBAnlHwCbvLGVZd9CDkf0lI911ZXKX2cfA61rw0hLctqHk5pgyNJaUnNi5oete2FjrsxAvGAlZYCTFoy9IiptKxWG6MrC8gN00RuUElL2yQxhtLSZA4TqrSU86suuCmkpU1paYKN8DORqEUG4omttMzTPFxdoAL1clPNw10+LX1UTrJ/vVClZShp6VJaqqRaEUpLHWniIlryUFpSlQrq7nCRSksf4lUHUx9dhHm4a5NM3fhRQVVa6vJgMw/PorSUy5uyeMran8U0D6f2Je1gHm4bv1hpaYeveXiHxbiL0m/o5qHUPKnnmwj3EKVlDNIy1J2HfC+f8UDcsyilJQVqGSSJvs23krRU/YSbNgfzJi1DlJam/thHaeljSk5Zw+hAeZYYpKXPHFPevMw6lwKym4eb3D3o+qFWKS3FfTs66KQlKy2ZtLSASUuGHi6lJWVxKkjLVVbRLyrl6ymkpa3TsA0+lAmWbvImT95NacQwD1fLRjcwmsg6G2mnwkb4yfkZPbr+OaZ5eIwFZ9E+LX3NwwF/paUPaWlSWprKVheIh2I2TFFaqm1WJSjz9Glpqv820tJGTJnyEEJa+igtdaRlq5SWrkmZSQ2vtv+ilJby9yKVlvLzxTIP91F8hCKm0tLW/mS0g9IyL9JyJATi8TUPtxG5lPpNIfZcvnEFYiot1UA8VFJNfuZQdx5ZzMNDlZYhPi11v5uIY/l36qZqLOgUgSGkpc/GdVFKSwppWQalZVGkZah5eAylpe5d+CgtTe1J7mNN1ju+SsuQMUeeC/qYh4cqLUMD8bhic8hphICVllHBpCVDj6xKy97eNJobkKosdR2WfH3WQDxZlZa6ia6LtNR1/FTzcPm8EPNwH9WcKw2gMT/LLKM/LlAm8/CilZYifZd5uDphjeXTslKpT5rzVFq6JlRAc5sNIS1DF22ibfqYh1NIS51fTpGuDVSlQiujh/ssRnSgKC3zNA+31Vsfn5a6scaltDRFDw/ps3THqeNGFhRhHt4uSkvTZqh6TzYPDzvXNHfJSlpSxois5uHUxbxtjC+j0tI0zqvlQAkcEaK0pJRrO5iHq6Rlq8zDYyotbWS+7VzXO5fT8pmPUJ6F2q/IcJGWNjJebuNZ51Jyuqb89fTor7ORlgMDjWXhq7SkiDSoCDUPpyotfQPxtJPSUnM+k5YpmLRk6KFOuHWkpa0Rv/56/ZpJk/SDiq/S0jaY+vq0jEFahiotBwcb81uUeXiI0pJiSkglLV2dfohqyfRMWcgTOS0f0lI2D89LaVmpNJuH2955kebh6gI/q3m4DSJd3aInC2kZwzy8XZWWrt9NfbTa/kMnd77Rw+X8uszDy+jTUj5epNIyT/PwvJWWoXVLBZuHm5GnT8us5uF5kpbiN6rSUj6mKi1b5dPSZxNLHNNtNLiUliGkZUylZZlIS2ogHnV+O2ZM/XMMpaX4XlalpQ/J6uvTMpS0zMs8PE/S0jZPHBykkZam5zblOwZp2epAPKb+tQiflr51XXM+B+JJwaQlQw+1A9BNLmwdmRyEJwtpGaJgUkGZYMUiLWME4tENjCZFoQ9pSfVp6TIPL5PSkkIqhkI30FFIS1VpGTMQj6y0tC2y1LzJ94llHq4Skiqp5mse7jMoi3RjKy2pmwO262zntjJ6uOsZXG3GZB5elNLSZoocK3q4r09LCijtu9VKS5+NE4C+AVJWpSU1EE+rzcPLrrT09WlZhNKS6v7Dp693HcvDpyW1/y5L9HBXW2+1eTi13ejqhY20DFVajh1b/9xqpaWPT0sf0tKmtMxqHq62PwrKZB7uIi1DzMNNm4ZlIC3zDsTjMg83tZdWKy2J4w0rLVMwacnQg6K0NDWi558Hdtml/t1kHi52KfffH/jUp/Rp2XbGZYSYh//5z8BGGwFf+Qqw6abN5+Tp0zKWebiLxLP99r//ATvsAHziE42Ls7zMw12dfsxAPFlNw8W9TOWuIy1N0cNjBuKRlZZiILa1C51PS8pkV1d+eSgt5TRDlJaxfVqa8uejtLT1RerucNbo4W+8AWyxBfD44+n3xx8HNt8c+PKXi1Fa6vqCvEhLW70t0qfljBnATjul41ZIsCjd8axKy8FB4KCDgO22A15+2X59TJ+WRSstxX1nzwZ23RXYZx93wDwd5PfZ3w98+tPAuHHpfECGqf/6/e/Tc3/5y8Z0BGKRlt//fvOxu+8Gdt89jOgA4pKWvj4tW620fPBB4MMfBubPz+7T0qa0pCoBfZSWprakKi2vuy6tm7/4hT09cc8QpWWrfVqGKC2pfUNWpeVDDwGrrQZsu239mG7jOitpaaovIUrLv/wlrTMXXlgOpaUvaRmqtLzzzsbvoo6ccgqwySbA/fe3zjw8JBCPWldNSkuKQt6VVxfyNg8vWmkZSlqyT8uosMwgGCMaLqWlaTIBAJdf3vh9nXWAWbOazxsYAH7zG+D66835sKkNZYQoLffbL/38zDP664oKxNMq8/DDDwdefLGeJ4G8zMNjqGSoSstWkJaCGBkcbFbUhfi0dCktbdeqeZPTo0weyxCIxwaRru5ZYpKWtoWsDKovVdU8XOcHzVQOcllWq/W8Pf448MEPAu+8k/6fMwd44gngfe9rvD4P0lI3ESyKtAxVWob4tJQXnEceWScGV1jBfl/AvJMu5z8rafnHPwLXXJN+Pvhg4B//aD5HPGNMn5au/jgv0vKrXwXuuSf9/JOfAN/4hv7+OnR1Nba7++4Drr02/Tx3buO5pv7rwAPT/0cfDRx1VPpZHdNjmIebcPvtwKmnAuef739tEUpL05wgttJS9yyu/P/tb8D3vpfOS3Vpx1BahpCWLp+WusjalUozaSkEAMcck9ZPARNJos5NQpWWRZKWIUrLgQHaRoIvaal7rtdfb/yumwMuv3z9c0zS0gaV6BHX3HVX+v+EE4Add7SnQZ3vA/n6tIxhHq7DzJnA2Wenn3fcsf7efMzDQ/oyoHG8GTVKf51LaUkhLX2VliGEndw2Wh2IJytpWamEr19dSksmLb3ASkuGHlkC8cidwCabAFOnmgPxPP20PR/UATJrIB4dKKSlrSM1IcQ83ETOZSEtBWEJAP/+d/1zO5mHuwiqLNCZutrMw2ViRDalDVVa6spSVloCekf6MmJGD1fPc5mHDwzQScsk8ZsUmMzDYystTZsDKkKUlr4+LeV0VZJuzpzG/0BKYsqIoQ5wXVOkebhPfuU+Vhct0kdpKSsZ//Uv970pSqGs5uEvvFD/fN999ut9fEW6jueptLSRHGKRDQCPPlr/TOlD7rmn8X3aFi2UQDzinvPm1Y8tt1wcpaUNDzwQdl1M0tLXR55NaUnd8LV9Nx1T8eCD5s27UKWlS82tg23jwtWWxPyTurHvo7R0EUohpCXlmjyVltTxIqvSUgcdqdJq83CTH2jXWBRLaenjysqVdqh5uA6m4Dw+5uGh47lMdk+aZL/OND7q5qKtVlp2dLRWaZnVPFx3fypiKS1jucZpczBpyaDBh7SUO5Pf/MasOhgYMEvg5XNMeZAX7r6BeCidcF4+LVUlXkylZShpuNxy9c8u8/BQpaWr048ZiCdvpaVIXzYLkyeBMmkZOxCPqrT09WlJqTOU6OEUpSXVPNx3UmQyD1cnbXvu2ZgfoLXm4bbo4S6lpa3P0IGywPf5nXKNaZFJQZZAPK57yuWlm6S6SEuTksN3cSWg3oeyCLf1aSZVhoyY5uFFkJY2paUp+rerHlxzTWpCT/U/SCGfxDlyvVp++fxJS+oiUEVM0pJyjzyVli4TSxOqVfMmiK/SUrwH11xWB50qynRPnRLTJ+K4qax09ylKaSnSk++t/qbrg0JIS+r4FkNpqSIPn5ZZzcNNcwiT72oBm3pShY3gbKXSctNNgfXWc6crw8c8PJS0nDEj/T92bGOgJt11FKWlyeWQqf2Y3mcM8/DYgXiyKi3F9yKUlr7rck15V0Ln1cMMTFoy9HARG7aGqPp2AsxKS9dEz7aLrFMp6ZCn0jKGebjJp6VtMWZSBWR1bg24zcPLrLQs2jxcniyZSEuX0tKHMCiT0pLi05KqtPQdkE3m4SqJK/cRRSktfczDdfmjKC11iiU1j7LyS/e7ilikZVHm4T5klSu6uKtumNpvkaSlrVxNkUZ11+fp09JFtFDhCsQjjxW2zT0Vou+MSVqKRY+8+BkzJl/z8CwogrQMUVq2mrS0bVDZjom6lJW0DFFauohO128mpaXtXagbg6b8Un93EVu6fIeYh1PnGLqNcPmYPGZTlZY60kY2D9ep/33zSWk/MUhLH6UlRXjhugflHCqhJJ6/o8PcP5ueycc8PGQTMknqAWxNwWvl/GUxDy9Caalao8UOxOPr07LdlZZMWgJg0pJhgknBJqASdqpjewExSQ1VWtoGJnkhmjV6uA4u0lLXGVF32GyBeHQmCKb34XpPMmydntxx52UeHqPTLVpp6TIPl+u1yTw8b5+WtnINVVoWHT3cd1JENQ/PSlpSlZY2xYwuPcDfPFzXr8qYPbvxu/qceSgtde2vKPPwUKWlDra6MTiYTTVHIS2zmof7kJaUIFsCvj4tYykt+/rsY4+JtHS1Ux1pacsjxTzcRFoOR6UllRzIS2lJCS5GVb6VSWmZJM1EAkVpmZW0LIPSMoS0HA5Ky+WWqx+LqbS01QGKeXhMP+S2c7MKLKgbxTIopKXp3j7m4SGbkG+9Vb/ORlra5szqhkIrSUub/3Yb8lBa6ualIj3KhkEZfFqyeTgAJi0ZJlCUluoCXICqtBwcdCtgqObh7ay0LMo83PabHIAgL/PwdlNa2vyg+CgtQ83DdWXpq7SMSVqqJJG6I68u8JNEH/Fal2Ze5uGxlJaxzMNlqNHDXebhLtJS7NKbwEpLM/IkLXV1J7bSkqLqK8I8PJbSEtAThlnNw0U5ydfb8khRWopFz0ggLaltux2UlialGlVpKa6PobQ0ERAydIRtVvNw3WYQRWlZZtLS1C7yIi2pSks1Xx0ddbdMMX1aUi09YigtXX2JzZQ8y1pBvZ7ybuW5YUeHuX82pZW3ebg8f5s0ydxXujYfdWRulkA8pk0KF1RXSK0OxNPmSssoop9hACYtGXq4FHxqJ+AiLU1KS9eAb1NalsGnZcgiLcQ8nKoKiK20LLt5eN5Ky1DSUo30XCaflqELP/mYbmKrIxlUE2UVWZWWuoWni7R0Tcp1+fOZnFPrnq95uFxGugWHi7QsQmlZJGlp29BSkUVpOTBgbr+UiWReSktforwI0jKW0hLQb3io6jYgX/PwLErLvM3Dy0xamuYEsX1a+qiGZcTwaakS6DrS0rVZItLVzV+LMA83KS1d8zhTWrZrKAoqF2EoFOV5mofnobTUzQErlbrfwphKS1t+KKRlXkrLWAILAR/fmkDzulTXF9ksRWKbh7tIyxDzcBM5mUVpGarwy1tp6WsebmovVJ+WoaRhLKUlk5YAmLRkmOAiw2KZh7tUT7ZBj6q09J1gCcjkhom0DDEPHxxsjXm47Td5EONAPPW0Y5mHxyQt1Q0CW7nqfFpSJo/ivctmp3I+dRNbHcmQF2lZlNKSah4eorQ0mYdTyiIPpaXvpEg3wQ81D9eZR6p5y2IeTlVa6gjtwUE/1ZxrYwWIo7SU7+NzvU/08Fb5tAT0/YnqR1A+pn7WIU+flrKZ2XBVWlLfZ1FKS11eqco3UzuNqbR0Bcjy2UgIMQ93EfqmjffY5uG2Oidf5yIMRRkPB6VltZoPaUlVWprGRKrSkqLAsxGLWc3DfZWW6ro0i9LSNc5kVVpOnmw3DzfNs6ikpY/SMnQTWiUtWxmIx2Y1R217WchbXzEPk5ZGMGnJ0MO1GIlhHm4iLeWFvE1NQ/VpqesUYiktQ0jLmObhlAUy5TcZefm0jOGTo0jz8CxKSzUQT54+LalKSyrRAOhJS7lMdYt5nSpp/nxz3oBw8/CifFqGKC2zkpaUuhtCWsZWWuraRyhp6SLdspqH5+XTkkJw5EVayt8pdU48Y0ylZV4+LQH9u3D5tIyttMwSiGc4kpZlU1rqCJaizMMpSkt5LqWDTWnpIi11lkq2+ZGJ5PAlLXUbSKb0Kb/5KC0ppCXlPjbkobQ0kZYiGM+CBWHjr+57VqUlVT3pSyzGVlpmJS19lZayWraVSktxfwppGSN6eCzSMksgHhexF6q0TJL8zcNDlJaa89mnZQomLRl6yA303nuBL3+58Xe1Ic6bB5xwAvDMM9mVlvLkT87H4sXA178OzJyZfpcH3WnTgO9/n74gK5NPy5Do4b29wJlnAv/8Z+PxrLuXQH7m4T7EjyuNK68EvvWtRl+cchp5+7SUHXoLhPq09CEMiogeLi9KTEpLHUGpG5ipSkvfCYHJPPykk4AZM+rfY5GWLoSSlvL7EfnLS2mZB2kZa5Lreicu8/BYSksTaWlaQKht74QTgAceaL7+5puBE0+s102defj06cBXvwq88oo9j3K6AuoiZMkSM6FoGiOTBLjgAuB736vnz9c8XL0mRj+sSzuUtBTthurTciSah9uUVtT3aZoT2JSWmrQ7589H9ZRTgAMOSOsmhbTMYh4+OAicc07z+boyi6G0tJGWrrklRWnp6iOLCsQTi7TMYh4eQrjr8iDX4ZNPBn79a3eaOtJGNg8H9HOlF18EvvIV4Pbbm38zzeOy+rR04aSTgD/9iVaetne7aFE61lx4oZ/4QiCrebhuTm5Tj+rMwx98MB3zn3467f+/+c10bWIiBeU6cMklwKmn1i0K8iAt+/qAn/ykub1QlZbz56fPFAL5Hh0d2czDXfXBRVp++cvAc881p7l4MX3NnkVpaaufd9wBXHppc94UsNIyhWUGwRjRkBvILrs0/65bRF54IXDFFcD229ePuQLxuEhLtbH/6EcpMfrXvzYPut/5DrDiisAXv9h4vEilJbUDlDt09Tko5uFXX61POzZpWWQgHsqgkCTAo48CRxxhTyNkJ16FbUHuYx5erdoniKa6qLt/DJ+Wrh1v+Z37KC11cJGWoUpLk3k4AHzta/XPMczDfch0+T4uqPWir8+sYlGhq0+vvUbPow4xlJZA2ILSZZKmew95KC1Niieqau7CC9M/Ge+9B+y9d/r5vvtSUlOtg0kC7LFH+vnOO4HHH29O22QOCDSX+bx5wLhx+utNfgBvuildIAMpyfuNb4SRlgMD9T4qNmmpEkVAdvNwWx7FWG2rP6y0bIZp7uKptJxy882o/fa36Zc//CHdtJYRqrQ0mYdPnw785S/N59vmAuI9y2OlAJW0DDEPV+eRumsGBup1NxZpaer3Y5CWOuWo/J6ymIfnobR0zW8EdBvX1Wo9EA+Q9h9jxzaes9dewAsvpIR9X59+E1r9bitrm1sqKh56CPjEJ4D//td9rnh3SdL8bm+4If0DgLXXBqZObb7OhjyUljZVnM48XKx1f/lL4JBDgMsuS7+feKI+ja6uev86YwZwxhnp93POaZy/rbaau6+kkJamvFB9Wn7veynpGYJQ83DbBpEJLtLy8ceb51SDg3SVpY7voMKltASAL3wB2HFHYJNN6nlTwaQlAFZaMkxwDYCmnZ558+hKS0A/6TRFBhWYNi39r1tIXHSRPq8qqOSiLQ1dGYSYh5uUlj4KEsp51J2iVpmHU3dXb7vNfY8333Sn5YJucq62C0ognloNWHllYN99698nTqz/7mse7uPTMiZpKeeTSkYUHYhHRQylpe+uP5W06+pqJi2p5aCbALqI5NhKS9NkLIS0VN/JqFHAPvs03iuL0tKm8ALsQZB8SEsdXn+9/vnBB9P/tjr4xBP64zaFtLoIee89c3mZCJLf/a7+/bzz0v+hpKVA2ZSWvubhgPsZVNJy1Ki0XQ9H0jJPpaWmLxn19tuNB156qfF7qE9LndJyYAD4z3/059vUP60yDx8cdEcPdxE77aq0DHFDQj1fPU99XtdYooPJPFyeM+rq7Qsv1D+r/ZRpEytvpaWAaZzS5WnOHHu+VBEGZQ6Rh9LStK4F7ObhCxfWCUsg3XjUQddH/PCH6f85c+p5cyn1s869qErLc8+lpee6R9ZAPFlJSx0GB/V+s3VwWbS5rqXUT9nChpWWRjBpydBDNBDTQti2e0D1aQnoza+oJJhu8qDbPfRRWspmGK586AiNEKVliHm4CTGUlnIgHkrQBmo+Xfen5M+lRBO/uUxlKfAlLW1KSyDdVX7jDeCtt+qKJjktFTF8WsrtzkQQ2tTCslJEPt5q0tKmtJQRg7SkKoAFqBPH7u5m83CqSsjkI9iGGO1PPZ+62++C/E4+8xngnXeA/farH9ORlj79o4tAEnk29fM+Pi1V6BYfPnVQwKa0jEFayvkU55qeT1bQ6NISGA6kpStNlbQUJp+h5uFUsnMEKC2bFmrqJrcur5Q81mr6/kRW3vzud/W5mU35YjMPl+dSArIlgI20dFnxUJWWpt/EfXVzWNc8ztd6iTovdJGWchlTTHCpeZDho7SkQkeqVCqNbd1Vb10m1JS5VEzSktLOqPPxkHWU7ziTVWnpEz1ctXIQoCj2x4xpFidQ80kdb32ih4ciZiCevEhLqsVY3kpLwGnZyaRlCiYtGXpQSEtTI/JRWrpIS18yQzco+CgtZZLGtSjWdUbU6OG2QDwU83ATijAPb7XSkvJ7LNJSt+sOuJWWqk9LgYkTUxMgymQ1hk9L3e5wDKUltV26djJDzcNNgXhUxDAP962X1Iljd3eY0tK0a+26b2ylpUmFmpW07O5O651KuNuCvuRJWg4MZCMtdefEJi3Vfvrdd+OQlqZyLZPSUs4D1Tyc6tMSMI8BAibSMlRpSSUTRoDSsmmhpuYttnm4TFpOmFB/h7q+kRKIp7u7uR7IJsGuNikjxKclZW6mplG00tI2rzApLQF/F0ChSssYpKVJaanbVKbmy1dpqZpoh5qHm+6vg8iTr7/trEpLlwrRRFq6lJbU6OGm321lro4frr5S956p/bNP9PBQxAzE02rSMqvSklKuLtKSA/EAYNKSYYJoNCZH9BSlpbyTmIfSUteIdR29zwRLVbHZ0tANcHmZh1M7rCxKR4G8fFq2m9LSFognlLTUHXMRAzJ8lZZyG8xKWsqTEF+CywQb+WFDkebheSotVdIyi9LS5RcSsD9LWczDxeJfJdFsKiLXO6KSlrrnsSktKdAtrinvSkUs83CTet5HaWlrt+2mtIxBWibJyCAtC1ZaNpW1mrdQ83Bd2gMD5mBKoUrLWq35uDxPsCktXaSlr9LS9O7UvijUp6XLN6wtPdN5NtLSd5yhKgNNAZoEQklLnU9LyjzQ9Luv0nJwsHilJZCWp6/Skir+MOVF154o5uG2TWqf6OHz5+uPU5WWQL7m4a1QWpbRPJwSaA8oXmlJ2cAboWDSkqEHRWnpIi3lwT1UaelLgukGBV0naJpg6SaUpnvpSMsYgXjyMg+nEp8u8/C8lJZUcqhdzcNl6AgCFTF8WqoTLQqBL7/zrEpLF1wTbRPKZh5uU72ZoDMPp5SDaYJGmYCFqmF0yKK0tJERVNLSp3/UjT+y4sllHk6NHq6DboHQ7ubhrVJaivu10jxcfQ/vvZfOk8TxrObhZSYt20FpSenH+vrcSks5mJKuzChKy46OcNKSYh7u49PS9N7VMnQp/lvp0zJv83BT/5+H0lI1D/clLU2bWKY2qpKWWZWWPpsDeZuHU8QjRZqHmyyMdGVeraZ1WbRDyvhhUoRmVVrGmtereWl1IB7TfXyUlqGkIXVe7wr8y6QlACYtGSZQSEtTI4pJWlInOwJU83BTuvL1eZKWYsLV0aE3GwFaZx4um8jHNA+PobQsmrSMbR6uO+ZLWoYqLU2LDdsut8mnZazJDZuH179nVVpSnIrbniWEtAzd7Vevo5CWsc3DV1yx/jnUpyWlzIogLdUy15GW4hl172dgoL18WsaMHu6qry7Tw/feaya71Hv4gEqKtCNpaVuIa9LOzTxctwj1JS1DlZa6OWYs83BqH2najBT3cc27fX1aloG0pPTVJqV9HqSlr3m4i7QsWmlJXU8MDhZvHh6qtDTNaYBm83DbWGOai+nKvFJp9P2eRWlZJp+W7RCIh6q0LCIQD/u0JIFJS4YeooGYGrU6AMrQkZamCbyOFM1CgukmFKFKS4p5uI3wMUEmLXU7b3lFD6em0dVVL8eY5uExfFq6zhGTibyVlro6booenrfS0senpS9pWVal5XAwD+/pievTMqvS0ndSZCJ08yItsygtdW1whRXqn0PNwynPqjsnhLTUKa0EymQenqfSMqt5uOivfXxaUpSWOtJyOCots5qHx1ZahpqH65SWOvNwitLSRlrqlJY60jKWebhNeSmXry6vchqueVyrlJZZzMMp41tepKVKUOqO2cY3n+9UpWWR5uEzZtjPCVlH2eoNhbTMqrS0Pb/JPNy03nv33fr3IkjLInxaqj5EORCPHezTkgQmLRkpTAOgTWlp6viKMg/XNWLT7pmKViot5R1y084b5f46xFBadnXV81WkeXgspeXcufQdNNe9XLvZFPNwXd3PEohHVVrayk31aam7l22XuyiflnmZh6vm14A/aemrtGxV9PBWmIeHTpzVc1ykpe49ZFVa6khLX6WlbzAIIK0rrVBaDgfz8Dx8WsZQWuoWncPRp2WeSstYpGWoeXiS1N9jR0djMDDbZp/NPDyL0tI1t9QJB2wbGybyT0WoT8vQDTH5N90zyu+JorQ09VllU1q6ooerKuLYSssiAvGI+/oqLX1dzISYh4coLamkpY95eKXiv+nVDkpLDsRTv5ZSrqy0JIFJS0YK0w6taSE8dy7w+OP2tChKy9jm4YsXA3PmADfdZDchNS1U5Dy7yDjdwEEhLO65B3juufSzyccJEN88nNrpdnbWJ9by87z4InDnnfbFs4/S8913gb/8pW4a4es7UAfKri4Vusk51TxcfpZQpaXuWX2VlippSZkQqBNbMRnIQ2mZt3m4TPKGmodTlZb33gtcdhnwj3/Q0lbNw3t7genT3df5TABV2NpPCGmpS4/qIkP8v+024IUX6r+Jham6oAvdLFHTEohBWoYEHfrTn4BZs/yvs/W76iLkjTfSvlV3vYm0pFopyPd29Se+pKWNTJHTzho9PMSn5QsvAHfd1fxM774L3Hxz/Xu7kpai7EuktHQG4gk1D3/pJeCWW5qPC9JyzJjGsdOWN5fSUq3T8vsV6cZSWlLNw2W3LyqKjh4uNvFvvhl4/XX7veQy9vXLNziY1p/rrwd+9Sv9PNH0nvMgLV1KS3VtZOv/5e9lU1oODtbLesIE8zkyYigtlywB/vpX4K230mNZlZaqebjt+U2B9spCWsrla6qDIXN8kwWDj0/LMpqHl0BpGZVQbmME9L6MYQkTaWnbiRCDgQrZX6OAqQPW7UiFkmBAmt999gHuuw848kjgl78MV1pSzMNDSMunnqp/LqN5eGdns3n43LnAppum70te7Kvp+igtDzoonajuuy9www3xlJbyrm5HR7jaR0fKqMdMSksZodHDY/i0lAdzKmmpBomq1ZpVgLEUVDbywwYx2XBdJ8pLzn8eSstp04Dvf5+eLpAuwOSJ1pVXNiq2TNCZmlERU2lpmoypvoxsk+uLLwZOOKHxt5Do4bFIS5MSOSZpuf/+/teIfJi+q6THFVekf7rzKebhAiE+LbMoLbu77ZHV81BaUqKHz54NbLZZOr/46U8bf+/rA047rf69Xc3DR41Ky77dlZaUPIpNYxVz5qT/1XcYU2kZK3q4IPtsMJEQNvNwl5sSVf2oS9/3t9NPB37wA/29xDNUq41tw1RPTfV7YAA4+WTgggvS7+PHp2SaTCqb3nNeSkvbPFBde8VWWmYlLal9wdy59XXe6qsDb76pz5uMrD4t+/qA//s/4MIL03XL44/TlZam+qOah4eQSCaRii9paVJ6hkQP7+iof5efyWTibkO1qp9n1Gp00UwZlZYuktqGEJ+WlLFwhIKVlowUpgGQ2qhliGtiKC1DSMv77ks//+pX7jRkVKvmSQSVtPRdpJXNPFwEBlLNw6+6qj7xeOcd832p7ytJ6uqUP/+Znj8KaSkWHgCw8sruNE3QvV/1mElpKUP3jovyaRliHi6/3zFjmpWKtjz7wjXRNkFMznyUlmIxpqu/tvxRJluPPkpPU0A1D6cQlkC5lJau3X7TAk9cpxKWADB6dPo/b5+WMaKHh5CWofAxD7ddTzEPFwhRWsqko2/5uJSWsUhLX5+WF19cn9ccf7z9/J12Sv+3m9JStIeFC7OZ2AL5+bRUCe3Q6OEmqKRl1kA8VJ+WIebhAwM0wl29F2BvZ6Z+XSAPpaWOsBS/yeWsbtjq8ma7zwMP1L+/9Rbw8svufMYiLX19WrpISxOJaVNaymmKcTYU1HYmi1smTtSfk1VpqT5zb29KWALAv/6V9hOqj8UQpSXVPNwE03pPJi2XXz7979rg0b3nEKWlqU3JeaLCtBlY1kA8cnsYP95+fuhcL5LSkknLFExaMlL4mofbICaSFKWlaMzqgK6a4eqg69x0+aXu8KgTixDS0rdjo5qHU58hK2kp8qMzD7eBopiT86Yjjij5c5FISdI4EC2zjDtNW1pqntQdNwppqZscxowebiu3kEA8stnU5Mn1vJbJPFycL8rINAFXzcPffNPvXlTz8BCo5uFU+JjaqPB1twEAG25oPl93jaq01ME2udZN2nXvQX4W1zvSlZdsIlmkT8tQ+JiH2643kZa6ZwwhLeXFTmzz8FZFD6eqTn74Q2CXXZrv4YNWRQ8fN67+u8knW9mUlqHm4S5QSEuVQM/i0zLUPNwniBSVtHQtsk39vi0vIeOOei9VVEDZgFV/U4lAm3pdlwcgPBBPVvPwGEpLuW8eO9aaZSeo86i5c933dPlm1cEnenhvb2M/392t74tsZKT6DkPmwGUxD1eVlgJyHQshLeU8h0YPL1JpKbexq65KXYbccIP+/FDSMlb0cA7EA4BJS4ZA3kpLl6nUlCl1hYKcH1+lpa6jpe5QqGQAxTw8ZIdQRpHm4ZROz0RaugYEX9JS9Sekc4zvSsP0eyzSUvd+bUpLEwGl8x9FCcSjK0uVtPRRWpoUEuox2bx+0qRyKi3V/mGNNVLTIxUqaekbVd60QIuBLKRlUUrLLbYwk5aUibNrs0oH3aQ9D/NwHWlpWrTGNA8PhY95uA7iGXULG9Pmh2uDSHeNrBjOi7QsOhAPlbTceefme/miVUpLmVAwLVip/XRepKX6rkLNw13IU2kZ0zzcR2kpf3aRlq55nK/S0nceL//mQ1q60lKJQFvgIl0egPwC8WRVWorvpjoxMNDYN4vNwVBQ2xnlnuqzZvVpqesn5DbW2akf022Evbo+DBn7KUpLik9k04aFnKf3v998veoCSiAraWlTWmYR3hShtFxhBWDPPYEVV9Sfz0rLUoBJS0aKmEpL0elQzMMFurv1A3gM0tJHaZnVPNy3Y9MNYrqJMrXDyqq0FPlRiaoYpKX8m0oezZsXT2kp19mspGUM8/DYSkuXAk0GxaRFPaaSljGUlqb640taivqpKi1VMle+b1bSMk+lZSxTMyp8TfhM5QrQFDema20LHt2k3bSBoPusg67+yQv3IgPxhCJv83DdOwkhLfNUWor7mUjLvALxUElLua9vN/NwobQEzAtW6vsMMQ/3rX+AnrSM0V8XrbTMyzw8L6VlTJ+WVNJSN/fxSauVSkuKebh677IrLalWBhSlpfqsMQLxyFBJy66ubObhQNjmiI/S0kVaujaMbW28FUpLKloViEdsYpv8/WZRWlLWthyIhwQmLRkpYiotBXyUlibS0neyozMXojZ2m7mGaWfZNVi6ULZAPEWZh6vk0Xvv0fJH8Wkp19lll3WnaYKOKEkSMyljIi11k4dYgXhcA2JI9PA8lJYu34bU+i1IaJW0VP1dCWQlLV2qkyxohdLSd2GpqltkmEhwk78kaj5MSktqZFwdKpXmMpOVliLPvqRlkTBtLAJxzMNNAXpMMJEXsUlLnSm4KXq4qx6I+ujj09JHaSnXqXYjLdtBaanCFrQpC1TiwEaQZfFpKdItQmkZi7TMw6el7TcfpaUrDy6lpan/z0Np6evT0kWwupSWKmmZVWkZk7RUnzW2efiSJc3qQt9APCox1kqlpanty8d0Fl4CpjlaTNJSXSeVPRBPXqQlKy2jogQzcUYpEBI93IW8lZYx/DzKCDEPz6q0jE1a5uXTMm+lZUzSMpbSUjc5tyktdROSnh593W+V0tKHtOzpSU0mYigtbWo9n/QECa3Wt3ZVWoaQllmih7uUKCrU+qaer0uPQlpSlJYxA/EAzWUWwzy8SNgWra1QWpr6k9ikpdxGWhE9XFVa2ggfuU7lbR4eirIqLctIWtqih6v+VXURianRw01tUkZWpSXVPNy0GSX/HpO0pN7LFijTdkz+rZVKy6LMw6lKy6JIyzKah4coLdX1YSylpSl6eDsqLdvZPFxYSeShtPQlLXVjIfu0BMCkJUPAtGsXYh4uEENpmVU56HPecDcPp3R6qnl4kUpLSv5c5RDbp6X6fn0D8Zh2O2MF4skjerh4N5MmNZN+8n19EIu0FBFuBZnYrubhQhkaawFEha/iJURpmZdPyyxKS6B5EUA1D1fz0irYzMMpC0hRl02KyjxJS2o9z0paFhGIx7YYjGEeTkW7KC3la1xlouTNSVrqzMNjQJArFJ+W8ntQF7zU6OG69qtu0MZUWtpUWGVSWspl4DKndqXV399MclN8WqrPG1NpaSNhfc3DxXeK0rJWyzY3BvIzDzeNUSqyKC27usxKS5t5uI9CX4eY5uEupWVnp3ne0oro4WVUWhZhHs5Ky6hg0pKRogxKS90AHjrZEXCROjJCooerx30JjrKbhwuyIHYgnjKYh7uICN379VVamhYHWQLx+CotxbujKC3fe68+WZk0Kf2fp9JSpOOrtAQaCcV2Mw8XE6Oio4fHVFpmIS1tE37xjluhtDSlU0alpS9pKa5phU/LWKSlrLrS5TFEaUnxaSlH07YRPjHMw6mLo3bzaUlRiOs2CW3Ii7T08WkpP5O64M0SPVy9b4jS0kRamhbm4hrXPNLXp2XovNSmtPQ1D5fbsOn8vJSWurrvax4eU2k5Zkz2MS1EaUkxD8+6MQK4fVqaCD0fn5YhJFbePi3lPFWr5nZehNJS9WmZt9JSBcU/dlmVlrbxZoSjBDNxRimgNqolS4AXXwRmzw5PswxKyyVL/JSWWc3DfWHycQJkMw+fP7+5k6OkIfIj54uyUPF9X6GkJUVpSTUPpwxqPqSlbkKiC8KjXienlyR1VU8ePi1dE/3XXqt/njw5/Z+nT0tfpaX8zuTFFUVp2dcH3Hsv7T5y/vKYLGQlLWMoLRctchPRNqWlaXGbRWm53HL1+uoKxJNVaUk1D9dd2wpkNQ8X1+jOnTdPf9xW9+fNo/u0zEJayteKvjHUp2UMpaWNtJTzH6rONY23sergvHn64xTSMoRQkEknV7+lpN9y8/CilJZyHZTTk8sjRGk5OJiWUV8f3TzcV2mpBsczpWnLo+03H9LSlpbOL60oPzHvKrN5+IIF9vFaXE9RWi6/fPgcQiBEaWkyD1+ypN4vyefbIPdj6jO/805z+hTzcNuaLi/z8EqlTuxWKvU1S1alZaVCIy1N0cNlsjkElHmgDrHMw20bMyJN0cYqlfq7yUNpSeUq5LwpYKVlihLMxBmlgNoBfuc7wNprA7fcEp5mGXxa+pCWouOTlWlqfmTEIC1NPk4ExDP67FL95S/A+PHAhz7kT3yK/Mjvrq8vrtIySYAZMxp/y0tpaSMtXYOaagquOxbDPFx67m3POgsdEyYAV1/dGp+WahAeoF4X8lBaUuqNDNOz20hLMSlbtMifgMxbaVl09HDxLM88A6y2GrDuuvXFXCylpewH15RP04RfkAWAu57L74XyXttJaUlRMoUoLU2LnWuvBX796+Y82Mp1wgTg1lubj+eptPz+94ETTgg3Dxfv0UQM6TA4SCMtVf/FoXXG9C7VMgyZe9x5J/DFL+p/o5iHF6y0dPrxCiEOdFAtMnxIy9hKS7kNZFVaPvMMMHEisM46wJw59eNZzMPVeYR4HpPyWqRpS49yrzxISzGufPjD6Zz5+uvteQCKC8SjmofvsAOw3np1xWi7KC1lEtJ23zFjgM03B1ZaiZbuhz8MHHlk+ll95uOOa/xONQ93KS3zDsQzZkz9Hll9WtqUlnkF4jG5s2iFeTiFtBRtbNSo+vUUotcHkZSWlaxcwzABk5aMFHk0iFZED1exZImfeThA9ylJ9VVhg808HKjnnUqcDA4C++6bPveddwKPPdb4GzU/csdNUTO4Fv3yb4sXN0/IqD4tYwbiMakNRPmbiJIY5uG6yffMmVjln/9Epa8POPjg+D4tTYsKKmkpT3R8671JUehrHq72ET7m4SEoo9IyxH+PgCjnQw5JF7EvvQScfXbjb+q9bKSlrj6JemJThJoW3DbSMlRpucMO6X91ESCroMWEVJfON75RPGlJMX0MIS37++mLrb4+d91/443mY3mSlgBw4YVhgXjkduPzPlWlpalOq319aJ3ZYgv9cbUcQjZTPvlJ829y22sXpWUsbL554/d11kn/i3do8nUI+Cst5TmfSDcv0vLII1PF1KuvAjfeaM6nmm6I0lJca0rThJikpa95eH8/8OijwO23p3PmU0/VXyunmxdpqeZd55rrxReB887Tn+9SWi5eXJ/Ly+RYKGKTlgDwxBN+ebj88vSZXP2Sj3m4beMyr0A8om7K6xVbOZlU1lTS0qS0lK8PiWcRg7SMpbT0MQ+X54KxlJYiHSpP4CIt2TwcAJBhNccYTsiFxS/SPHzZZfU7qarSslIxd54yaal2NCG7PxTYzMMBf9JSfTZ54PAJxCMvYObNoy82KEpL3WDrYx7uugdVaWkijLq60npj2snPyzycYs6vU1q6Fuo+5uGyAlaQlmokefUaCmzEl096pmenmIfLOO004PTT3ffLm7QU71P3/Ntsk5o5/fe/jcdjKC3lNAXxpKtHJjIYcO/22/r8/n79okw2HwshLTfZJFVZvP12Sv7cfTdw/PH1Z5ExenS97EVepDQHfvIT1ObNA048MVWvF4mBAbeyLqt5uKneCSxeHFb38yYtgTDSUq5PvqSlvHFnKmu1r1fr/w47AJ/9bLoxdMYZ5vutuipwww0pWf7ss/XjajmEzNlUs0kZFNKSulA3kZauclfSL0xdcvLJwI47pu/mQx8CNt00PW6LHk5VWqrP7IoerrpAEQgxDzchZvRwlbTUtdcspuPyGG9TJpqOCZiUlhQzWLmcY1lHuJ7HRBq9/rr+fNdcSn7OGKQl1Z+sSlpmva+K11+nkZZZA/HEMA83jWUib3LfkFVpaTMPl6+VN9vkdxryfPJYHOrTslVKSwFT+w4hLZcsScuRUuflOYbm3bJ5eAomLRkp8iYtY5qHq0rINdcEDjywrhiSoSotOzvNO4RiglqrpR0UxTw8K2zRw8U9arVw0tK0a2+CGDQpCxgZFKWljbR89126ebhtMJVJS9tOo/hdB0FamgJTmCawPubhuh129d3lET08RGkpnksoryqV+ObhoaSlT/RwgW99C1hjDdr98jYPB9I+QPf8BxyQ+hU96KDG4zF8WurqX4h5uK5sZNLSprTULcpCzcNlAuHzn68f/8hH6p/V9t7ZmbbP+fPrfYaU5uBhh6G2wgrNeSkC/f3NfZcpWB4QZh7e1WUPtOdjpSBDXhzH9mmpA9U83Gc+IkOt46aydiktOzqAY45Jy9VGWgKptUS1CnzsY/VjMZSWNsRUWprMwz2VloUFH1hpJeCcc5qPZw3E09Gh73cE8jYPN8Hl09I1j1Pn1PK1pjRNaKV5ONV0Mytpqav76vOoeTf1zYI8MW1imeqEj+KRAt9APNVqurET22rhf/+Lq7RshXm4yBt1jDK1farSUkZM0tKUl46O4pWWFNJSPK9JXCLD933Lvn4p83UOxEMCm4czUsTyDSQjL/Nw2dwVSDsEU6ejKi1t5piqeThFaZmV7NV1hFnNw03fTco9GXmSljbzFR+lpYu0FGSIUFKZYPpN9tGku7+PebiP0pKyYGuFT0ud+Ugs0tLXPNy0aPExDx81ij5xzltpCZjLxqSozKK0FGUml6PtnbrMw227/TaSwqS0zGoebisXHYkkJuyiz1DrlOnavOFjHu7ayFHTEGOOa1IfSloWobSUyyJEaelD+qvlblq8UEhLNR82qM8dQ2lpg9z2TOqzvJWWrTIPN9WHrIF4dD4tdT7kQkjLvJSWeZiHUy2mbL9nNQ83KS2LIC1DfFqaSEvTeO3aAI6tePRVWop7loG0DFFaqu8rhLSs1Zr7/0ql/k7lthSitKRGD5dhIi1jrm1bEYjHxzzc5uNXwPd9i2d2BUsV4EA8JDBpyUjRTkpL1RS5WjV3OjqlpQni/lSfljFIS93EJKZ5uNzR6tJQy02Uj2ym+d577ufMqrT08Wnpyos8ENnqnWkg1SkmBXxJSx+flmq55KG0dE30BWnZ1ZU6phefBcTEz3exlIfSUjWFoZKWPrv9LncEoVCVlqZ7m0hL24LD5hJBPItO4eGrtHQpclxKSxdpqY4HlA0ZH9Kys7O+qaBRWraUtNS1L5OyxmcyLZOWrkm9L2kp6nE7kJY+71MlO0LNw2VLDgrUcShGIB414IyM5Zarfy5Saanz8bgUhfnxcpGWOl/aVKWlzWQ8i3l4nkrLLObhpjRt6dkgWwe0Smkpn9Nq83DTXNsmCgAaAzEVSVqKOaMY22Obh1NJS9U83FdpGcM8XLcJLJuH+5CWWaKHy8jLPLzsgXj6+up1Mw/SUg5gSuljmLQkgUlLRooyKi1NgUPEcXkyHFNpqfNjlBdpqQty4+vbU4avT8tqtTFqqLi3qrSMQVrGUFpSzMNlpaUPiSFgIy1t0cPlSNUCPtHDbT7r5Hv4+rQUg7mP0nLSpHr5yOVhMk1ywaW0pNbvGKSlj9LSpWQNBYW0XLRIP8F3KZaESbMOorzlMrGpXUOUlgIun5a6RZlMuLoUxVmVlsI8HNCTlqEkVwxQSEudSouSrrguttJSjCPyBlRepKVpM86W39D3KS/2AfP4Q1VaViq0hbtLaRmyiLGRlt3d9TpRpE9LuR62Smlpqg/ycZN7Ct9APDrSsp2VlrqxRJem7X42yMr9PJSWlDpWJqWlaQ7mq7TMOqZRSUv5nkA5lJadnWalpak+hJiHq/cwKS19SUuXlYu4vpVKy1YH4nE9uxyYKw/zcFlpyaRlNDBpyUhRRqWlrZOTJxsupWVe5uHUHRQbYist1UmsS2lZrQITJtS/C0f9KmnpmhzHUFpSzcNdE+qsSktbHbEpLXXX+piHq+Uyb17zdXn6tFywoL5AF6bhQOMziYlfLNLSV2lp2ukejubhCxaEKS1tpKVOaWlruy6fli7S0ldpKZ/vIud1xIitXIarebjPZFqeGNs2Z8S5IaRlX1/9Pnn5tJQXoK5xWkCuGz7vU17sA3SlpYm0BGhqyzyUlrpNUhli3C9SaVkG0tKltATM6l6b0lJnHi6Tljq1dKt9Wrr6dXVMzKq0dPVfJtLSV5HVSp+WIdHDYystY5uH+2yWiXsC8cfSGTOKUVqq74vS9nRtX0da6jaTQ5SWMc3DYystqYiltHRZksj5K4PSUj7PJNZiMGnJWIoyKi1tHZVM1lQqcczDVdKyVUpLHWlJ7bBUootCWq68cv37rFnp/zyUljFIS59APKNG+ZEYAqHm4bprfczD1TLW+RXL6tPSRoa89lr9mExaxlBa2kygfdIbSebhCxfq66+LtBw3zvybKGdK/QPsSsss5uEmpaV6ve1eIr8mAkGFzTy8v7/Z91C7mIf7LB5lopiitPSp+7JiX5BevqRlZ2dzndG1D/mZ5bKi5tdnwa4qLak+LU3m4YC9PETe1LEkq9IySdz+qV2kZRalpckXr4W0zKXv1cFUH0wkmdzn5Km0tJmHl0VpqfN5rUvTBJdiTyYtbSQf4E9aUgkFuc2HkJaDg811zGUenrfSsijzcPmeQD7m4a52QA3EY1vThZiHq324bj5lakshPi1jmoeHrG1jmIcXpbSUkbdPS2pZivLXnM9KyxRMWjJStFpp2dPTPIC7TEoo5uGLF+drHp61I4ltHq4SXa4Fnaq0NJGWMZSWMczDXfWir68+uBRtHg7QzcN1k2+1XEykZajS0uRuQRzTBeEB8lVa2ggzHUaSebhNaRlqHq5TWuZlHm5SVol72SJX6/JoMg/PQlrK7XPRIjNpWXT0cB+lpQ9pKY83eZmHA+GkZa3mNosGzEpLW36p9USFqrTMEj1cgFKfYgfiWbjQPcbKpKWuLKn3NJmH+yoty+LTEjDPB+VzVDJQp7SU+9Qs5uF5KS3lubWuXNR5b9ZAPD6kZWzz8P5+Wv+ZVWnZ39/cH7iUo65APKZNvLJFD5fvCbTGPHzxYlogHpfS0tc8nKK0lN9XTJ+WZVNalpm0zMM83FdpCdTLn83DjWDSkpGiHZWWVPPw0EA8LrOzGErL2ObhNlM2k09LWWn55pvp/1aYh1MD8djyIpdn0YF4dNf6mIerZae+SyDMpyXVPNxEWuoC8bTKPFx+dtUUJi/z8LyVlqayCVVaykG0VPgqLU1kMOAuG1uff8ABwG23mX8Hmol9nU+5W28FdtxRf40tPSB9Lrl9Llw4VAaJboFZJEQft2AB8MlPAgce2OiDCQgzD5dJy9jm4XK9+8hH0r5YZ/ZmQ63mVhgCeqXl734H7L477T5ZfFqa+ipqIB7dbzqEKC1nzwY++lHgqKOaf3epLIH6uN/f37yheu21wLe/7U4DMJuH68pdJtCUsb1UPi133hm48ML0cxalpeqyBai3YdUv9uc/b5435Ula6sYJAVf08OOOA9ZaK/3bZhvg7LOBww4z3y8WaXnXXcBOO5nTef755mMDAzTFYAzS0sen5aWXAo8/rk+r3ZWWscfSN990u73Iwzw8hLTUbQKb6lZWpWWrfVqq0cPLFohHBkVp6UvS+0YPB5i0JCCg92UMS+SttIxNWqpKSxtpKXc2to6sFebhH/hA87EspKWqzqOYh++yC42G41oAAKqDSURBVPCzn6XfP/rR9L9KWsoqGh2yKi3nz7eTLQKu6OHywl5HTm20EfD00+nnqVOBRx5pTsPl09I2gVXrl0cgnopaLibSMq/o4W+8UT+26qr1z3kG4vFREm+/fTzzcMoCXuSrVUrLLbcMU1q6SHeRhkAW83BbPXCRq6LPkbHFFo3Xq3lU77/XXs35NUE191bHDUlpmegWmHmgWtXXffG83/kO8Mc/6q8NMQ/PU2k5cWL983/+A/zpT/Xv1IV+tRqutPzMZ2j3EPeh4u23aeflrbSk+LT88peBm25KP++8M/DZz9Z/o/R5agRx+Zk+/Wn39QKxlJatNg+X3+Gjj6Z/n/1sY57lc1TXHGPG6NuZyTy8s7NxHnTzzcBDDwHbbtsa8/BaTX9fuV+Qx5sHHmjs1196CXj4YXteXOSXnBfbmLDbbvZ0dOjvL4a0HDeObh4+MACceKI7LybS0lQn5LXBcssV79NS9C2xzcOTJN2ssSFGIJ4Q83Cd0tLWj2dVWsrrPZ15+OjRzW558lJaqi4Vyqy0LINPS4BJSwJYaclIYeqgttwyPM2sgXhsDV31aWmahC1Z0kjGrLaaOc2io4d/+MPAGWc0H49pHk4hLQ88MJ2I77QTcMEF6XGZtHz33fyVloB7t1Skb8uLPCDrzMOvvz59zmOOAb773XSRt912jefYSEuXebi8cBd50KEVPi0BfRmLOiL/Jue7DObhO++cKqlMk8Z2Ng/X5XvffYEvfckcPdw28bcRIiFKS5t5uG3B19Hht0A56CDg0EPr302qWvn+KqikpajTJtKyKKWladwSdfsvfzFfG2IeLivRXSZRKmm588728486qvH7zJn1z1mUlvJYJCDXh5DFlU+9nDGDdp4rEE9WpaXNF5qATBQ/+GDjbxTS0rSAdfmfVeGjtIxBWh5zjP74mWemGyFf+xrw/vebr6eQlgLvvmt2NXDUUenm2sorAx//eDrH8yEtu7qAY49tPFdsXpZVaSmTrK+84p8XqmJv4kT3RpYv8iQtzzoL2HrrdONp9dXpSst58+ztzRWIx1Qucpo+cyATTOXmsmDyue/xxwN77OGXLx1U0jJUaSm/wxDS0qW0zBo9XJ7D65SW8qaUfE+RJ5PScu+9zXkxodWBeJZZhn5P25pPgEparrMO8Ic/ZPNpqXteDsQDgElLhoCpUZ15ZqpIk3HGGalizYUilZamXZUlSxrNXqdMMadZZPTwLbZIzSN1QTNimodTfFpWKsAVVwD33gusuWZ6vOhAPACNtMyqtFxnnfQ5L700fe4LLkjVAQImM2MBl3n45MmN330C8YT6tLSVubqbr3NHIO6rms/oPouJn+9iKYt5+D77AH//e9p2TUpLH/PwsgXi0bkYuOGGZj+/8vm2/Nvqr420NPUPoaSlS2kp47rrgKuvNhM7ugmjSRlqgo60NJmH56W0/OAHG793dOiVseLZVJNwGSHm4erC1QaVtPz734FDDjGfP2UK8Pvf17/LJJmP0lItD50CX1VaUsbhUJ+WVCLGFYgna/RwtU666r/NPPyb3wR++cvm6+V+SW7bcpA2CiIpLUl97y676Dd/AWDPPVN15LnnAnffDRx5pP48inm4QF9fY77kZ1p3XeD++1OT1euvT9+hjbQUzyvacGcnsPnm6YaqgGl+kJfSUp7jmIKVyM8vW+G89Zb73ldeWd8cB+ik5aRJ9vodgjzNw7ffPlXJfu976XfdRpjqAgXQz/tkuMzDTXVCDcKWl3n4448DRx/dfFyUm1oOF11k7g9XXjl1AaOuQU1Yd92U6NTlVR4nbUpL01iizrti+bQ0BXkKUVrK71i3Ljb1ReK4TmnZ0wP89a/A4Yeb8yNQJp+WPqQlZTymzrMeewzYf//6u4xEWrLSMgWTlowUpoFOt2h1ETsC1F0jILtPSwppWa02+upTUWQgHpsJZ17m4Safljosu2z9cxGBeAB3YA6RRhalpUtR0dHht8Optg21fvkE4slLaSk/s66MRR1Rd6IF5HasmzBTCIAspKWcftGBeIowD1fzJz+jibT0UVrqnP3HUFq6Fnw+ZnS6dmJ61wJZlJYib6ZAPHkpLVWyQOfzDqg/r01xE2IenoW0BOz1rlJpJIHnzat/zmIernNNovq0pGx4qfehQn4OG1zm4b5KS7Uc1PSykJYmn3Ym0lLe+KUgltKS0veqZJYM9bhJUUOJHi6gumShzG1N+dIpLdX7mkjLPJWWunFCwKa0pJCWKvlD7b8mTWqd0lK+l49qXAbVPNyliA5VWhZFWpo2VUW56cx4Te1SHKf217WaflyLpbT0NQ+nRA9XyVT5XBNM+VR97fqSlvI4qvqjptSXdiUtKW2aSlqK9+badNeBo4c7waQlIwV1dwlodhZuQlalpW1SEqK0XGUVu58LcX91Qql+pubRBkpAIPm+eZqHm/IgTAmKUlpSntGltHSZwLgWJy6TVpd5uEpa+piHq+Wim7xm8WkJ0ElLuX66AvG4AnoA2czDW0layv1MTNiUlvJ3UyAeH6WlXLa+5uFFKS117cRFWppIVhOymIfHih6uU17oxqSyKS1FubpIYTnNEKWlzjxcp7SUn3lggGa+HKq0pMJlHp5VaanCNZ67SEsXgZiFtCzSp6WNtFTvZ6qHPubhqnWDq4/TtW91Y1zUZx/SsgifliY1mtyW5E0Fiv9XlfzxUVrGJi3zVFqq5+nU+7oNRRdpaVJamuqJgEpaZu0DTfNO0xzapLS0kZY+hBlgJy1FuYly91Vaqv1XLKWljKw+LWXEUlqqFohUhJKWrTAPt83BBajzLJEPdZ1GASstnWDSkpHCh7TUqSF0yOrT0qW0FNDtKAnMn1+PiK1OelT4modnIS3zUlqGmIebIEzEi1JaUuCKHq6ah1MnO0UrLamkkYo8fFr6mIfrJsy+fYEMCilvIi1Do4f7mofnobSUF42xlZYmk2MgrtIypk9LXTtxmWLF8GlZtHk4lbQ0BVuQEeLTUu0fbchKWoYqLSmkpYz+fppKX0bsYBCA2zycqrQUeXNFC/dVWsobmnmTlkX6tMxTaalLt7e3sWxdfYOOIDQpLUX+dAvemEpL2+a9r09LX/NwdU1BVUm3UmkZQlrqLNTU7y6lpc4HYV5KyxVX1F/nC5fS0oe09FVadnToN0BlpaVI01dpmZd5uIys0cNl6Ii8ENLS9N50MAXiaTelZRbSUqe0pMJGWrJPSwBMWjKWoilysYBJaUkZuPP0aakSFqZJ2Esv1TvBSZPs+S4yEI+N6NGRltQOK5bSEmgkLYtQWlLgKnM10AR1stNK0tKHzM3Dp6VLaekKxJNFaelrHm4yz/FRWpp8RZryVzalpWnxL19vUviqJj/yMV+lpUul0gqlZSTz8NwC8fgqLW3Iah7uE4iHSlrmYR7uIi0HBmikZd5KSxdJIZeB7/wJMJMUpnuqc4YizcPLorSkkpbU64FmtwkhSssY5uGhSkuX6KBo0rKV5uGtVFpSzMN1rjFsPi1tlkhyOetIyzXW0F/nC5fSUkekmcpU1NMYSktbGxOwzffU/itWIB4ZPoF4XPevVJrrtg9pqfYBWc3DqRiOSksqbIF4WGkJgElLhkAZlZa2SYk8ANtIy//+t/7ZV2mZJ2lpI3ryMg/38WkJ1EnLefPcE8uiSEuX0lKGjxmwbB5uuyZP8/A8lJahpKUrEE8spWUW83D5Gh/S0kX6qfkr2qeliaQVoCgtTRM2ndLS1nZNClZxfp4+LSuV+nMWEYinCJ+WvkpLG1phHu7yaVmUebiM/n7/6NZ5kJaue/j6tFTLmqK0lK+JaR5OjaCuu7dLaSkrEdV6T+l7J08u1jx8yRI/pSWFtAwxDw9VWgq1l+mZ5XmtbcNKQG6fFPNwVW3WykA8RSotqdHDXaSlTWlJLROdebgtSKkPYiotfVR+4t4mpaUc7MqUZmyflnmah8v51D1ztZqNtAxRWspQAwyNFKWlyEdspSWTlgCYtGQI2ALxtLPS8j//qX+ePJmmtKSah1Mk+ia0g3m4PBl1RTQsyjzchyj2IS1lpaVtYa7ucKr1aZVVmvNgux/g9kUkw9enpdp+s0YPz8s83PZOTYv9UPNwcT4FeZmH5+nTkqK01NW/2ObhPkpLlyI5L/Nw+b5lMg+n9HEh5uEyuecKxiCTluL5W6G01JlIykgSu+9P033yhk1pGbKgUfuhLD4tl1/eTVrKZruxzMPLqrT0JS19VLu6e5qUljrT1dikpXgPprJwKS3lPAGNxNqcOe77q+MXhTTs6UnNl4eT0lKdm4nnyaK09JlDqvlR566hMG38m8ivnh63eXhRSsvY5uG6QDy2+hPq01JH0KmkpWmdrJKWom9rd6UlxQJMIKbSUl5L+oJJSycCSpUxLGHrqHU7hnkH4nn7beBXvzKfL3cgYmFdqzU/h0y2TZpkNyMT91fNw99+G/je95rPz2I6SjUPv+mmdCLoIg0FVMWJKKe//Q34/vebz6coLQHgnXfs96WQlk8/nb5TeRHa1eW36PZRWrbCPFz9TlVaXnUVqpdd5s6nSsK5AsUMN/Nwk8mwj9JSTdOGiy8G1luPdq4PskYPtxGpNqXla6+lfdnDD9eP5WUe7uPT0tZO+vuLMQ8/+eQh8qvl5uGzZgE/+IE9razm4d3d9nr0yCPAY4+ln4sKxFOtNvYnNtJcxvz57nN8THpjQCiFxX19lZYqKEpLndsRgRDz8N/+NjX5ffHF8Lz6kpaPPQZccQWqAGqUheLKK5sXlFnNw3XvSVVauuqSycUHkD7vtGn1d2lTWqrPmMU8XNxL13fIcwpTuZhISwpCzMMnTdJbmdx8M/D448Cxx/rlQaCVPi0p5uHjxpnzoiMtKUSu2KyiqpB9YdqszGIe7qO01JGWjz5a/yzamC5NWxmq/dePftR8Tk9P42ZPUT4tl1kGmD278RzVPLy720xaCrW7WF91dmb3aSmPya3waekzxuehtAxpT7fcArzwQvO7BJOWAkxaMlL4+LSsVoHVVnOnmcU8/EtfSv1RmqCqrEQaNjOx1VYDXn7Z/LvJPPzb39aTdkWYh3/+82HpC/T1pR3ghz/svpcKmVyMQVoCwFFHAZ/+dP37Msv4k5Z5KC3F5KizM5t5uC4POsjX/e1vwN/+RpO9qxP3GEpLH/Nwca7cX6h1uaOjuT+xDeCudtRK0hIATjiBfi4VVKWlibS0tbNaDVhrrXQxp+Lkk5uP2YjjrEpLKlyKZN34pDuWxTxcVuupE94QkkkHKmn5f//nVreFmIfLz2gLxgEAt95a/6yOjTqopGWI0lI1D6cGU5PvRUEeSkudIrRa1fuRzYu0tCkt5Y3P5ZZzKy2nT7dvHNvgYx6ukpaf/CTw4osgl5Bus1pArTutUFrqIN7/W28BH/1o/bgoi7zNwwHzHJSitJTv60taqvWAQhqK9YacnxdfBH784/QzdVNfRauVlrpNhlDzcGp9EHUsrzHOV2kZO3q4y1dzaCAeU/8lY7nl7KSlbRNYzps41wT1XZvMw1dYof59vfXcSksgbQ+dnWFKyxVWAF5/vfm4a84qIwZp6eO3XuRPxpQpzWveIszDr7zSnCwH4gHA5uEMAR+flpVKqgIZP96eZhalpY2wBJp9Woo0bBgzxs+npSiTSy7Rnz846Ee4yaCah2dFf3+jqkqFrWOXfU25fIZRSUsAuOaa+mcfvyMifepEvauLPnAdeGD6/9Ofzqa0BFJ1HgBMnWo2bQydIPqah6s76iHm4S6lpTrh1E1AXaSlrd7I70P+LNeDvMzDfbHbbsDaa7vPo0YPN5mHu3xaXnRRuuBZfnngm9+05yVUaUnxaUnty0z9oc08XLMbbX2vcl505uESclNaqpGEOzr04xbFHDerT0vXeCnjU59K/7t8WsrPp5KWN9zgXvCr5uE9PfFIyzwC8Rx6aJrfjTZqJJ8ETOpKav//la+k///v/2iBeGw+Ld94o35veTErQ64TvoSlLuK1nA+T0lJecM+Z46fq/Pa362nrQG3HPqTl4sV+SksA+MIX0v/f+U5zunJaBxyQ/qeQllmVljbzcNX/n+4cAZfPWRXqmoISPVxY/cjl8uc/1z+fcw79/rvuWv9sU1qaTNFj+bTMEohHR1D6KC1F2nvtlebj0kvjkZa+Sstll40XPdyktJThUlqa5qIutzxA83x/pZWa06CSli43VS6flpVKOm6svHL6+29+QyctAX+l5aqrAl//uv63os3DqfMGAbVNX3VV89q0CKWlDay0BMCkJUPAV2k5fnzqnH3nnc1pZlFaqvjMZ4Cjj65/NyktbejoCI8eroNr0W4D1Tw8K/r63Eo8E+Q8uiaWPqSlDF/S0kdp6VJNyrjootQk8/vf95ss6AbjY49NCZUbbzSnk4W0VCfTPkpL+T2KyZsoU5N5uCsQj0o4hZCWeSotdWWdF2m57LLAs88Cv/iF/Tx5kumrtHTt+Ndq6QTy9ddT8muttex5sbVdm9IyVvRw2z3Ecd34pCP2bPeT24nOPFw+tdXm4RSYzEZt8FFaCowfD1x+efrZVQ6yqZlcNzo6gH33BWbOBLbf3n69XBeoiolWKS333jt9pieecG+OhCgtf/KTdFw65xx/paU6Loj2suqqZnO90Lo4dmxaDuusk36X66RPIJ5XXqHdb8yYtFzOOKOetg7qcdNYmbfS8uc/T/Mr3Azprvna1+pmznn7tATMG0WDg82BgVSopqk+85kQ83CdOi5kEf/YY8AFF9S/28YweR5DUVrqLE5kUAPxyKpRk9JSt/lMJbHlNj5tWlovjzmmdUrLMWPyjx4uI9SnpWnTRcayyzZ+nzy5OQ2qebg4Xwe57ctjrnrtuHFpnzpzJrDxxn6kpaq0tPVzRx6ZCo1kl2IyijYP97GyE/mTseGG6Sbf1VfXj1H6KTkPuvecYW3PSssUTFoyUvhI4kXD6+mx77LGJC27u1NH3AKhpKWP0hKwd7RZSEuqeXhW9PXRVWwqykha+qgLOjv9BgmxKxrDPHz8ePu9Q9+xTmkZ6tNSnmD19cULxKObgNpIS1dAq6ykpa8ZcRaIjRG5r9JBnljbJqqhSktxj2WXdS9Gsigtbf0CVWlp28CxKS11pKVLJa2eZzAla3kgHgryNg8X2HRTmk9LAV2Zijq54opuwl0eU2Oah+ehtBSqRVMbMfVdtjapPq8YlyhKS/l+cntevLiuTFYX0jJC66Lo80Rblhd4NqVld3djWVBJy1qtUcVkqiPqcds8l3rc16elgJxfXbrbbVf/rFOtxlJaUszD1cBAunPk9HRkhWlup6rNKHPo0AjGKtZeu3kOEYu0VMvK5dPSRFpSlJY6yydfpSWQ1l1hMUfx60eBS2mpIy3zjh4uw6bedPm09FVaqn2tj9LSlEeg2YWDiYwE0nW6yFcWpaWtnxs3Lu1PTOfEVFqaAptlMQ/XtenllmvswyjzLNMmpYBPcCAF7NMyBZOWjBQ+Sku5c7B1DHKjtXV4oiN3LWbk9NRAPEB2paW4v2nir4LqD0eHopSWLlKL+v7KQlr6KC1dQXVMyGoenvUeNmRVWsqkpTogywtN+d0XYR4up2fztSR/pkYP1+2Qhpa/633b/CXJyKK0pPSVtu8qXKSlLYhSDJ+WFPU7VWlpKxddu3X50qSk64M8SEsf4iLEPFyuq5Ry0JWpTyAeuY+KaR4uI9YY66rj8u9yGYSYjmXxaSn7GZs0Kf0fU2kpylMsykSfqxLFav0JJS11KjZbwBsB0/zEV2mp2wDxge4a8V6AYpSWpjmoMD8GzIts1TWLL2kpPz9lDu0aV12uquQ8qYEMfUlLygYF4FZaqhvKuujhOlFITKWlDN95gwkupaW6fhw9Ol708I6O/JSWIebheZKWMqmoe6euoGfyPbIqLcW9bKRlLKWlyaJBXg9QNzvl/PkcN8GltKQEMDYlzaQlACYtGQI+0cPlzotKetkgOkxbWqriJ8SnJVVpSTVBUc2EfMDm4SlCSEsfpWVs0lK9fxa/JSGTQrE4E3mk+LSkKC37+xvVFXIddCktY5uH2yZuIUpL3Q5pKAnlet9U0tKmtIzh01KG61ltpGUW8/AYSku5nqvwVdDqSEuT0jIP0lI3lraDebhcVynv00VauhTo8liTF2kZU2lJvQ9VaWmCLlqw7X7y7zLBnwdpqZocizqpknuuyMG2QIkyqC4/spKWuvvECMSju0YmOFppHq5zIaNC3WTUkZaqqax8/9ikpcuyQb53VqWlKQ+uwDZU83BBWi63nH5sHBwshrQMnduaFIk61eSYMea5GxDm0zLPQDy+5uGqT8uY5uFUpaWMvJSW4l6mczo64pGWJqWlOm/IqrS0HTfBpbRk0jIzmLRkpPANxCNQJGlpUlr6kJYUVQ9VaambOFBBUXyGQvZvMhzNw/PwaSkjq09LKkJJS/naLEpLk3m4jYTMQ2k5MNBYb9T7mzZJVNJSd9/YSkvXpEM8p6vvk4mdsistbebhMXxahpqH6+BSSavnmXxa5hFZVbdpVrR5eIjSUi4jSruxmYcDbqsLuY8qe/RwH9Ky6Ojh8rgwY0b9c56kpWjLYpxU21wspSWVtKSah2dRWoZsMuv6gYkT9b/HDsQj0jb1u/Jcj2IeXqnoFYFUpWWoT0sZJoJUh6xKS2pdcRFQ6tiqkpZjxpj7KXnzScDlZkcgb6UlQDcPF2R3LKVlrZY9EE9M83BdmVLXXKY8AjSlZRbSUu7fKEpLnZWiDB+lpcs83KS0VC00fMb4PJSWun7Fl7Q0bUKOYLQtaXnxxRdjypQp6OnpwXbbbYd//vOfxnOffvpp7L///pgyZQoqlQrOP//84jLaLvAhLWMoLeXOgEJaqiqVokhLW9TsLKSlj08rX8ikZSzzcBfKqLQss3l46LVqZLosPi1N5uHqwOoKxBPbPNxGWpqUluqmhkBZlZYyseOrtHTt+IcqLU2BeEz3ihU9nDpOUOCrtDQtcPLwaZkXaelDXIQoLYs2Dw9RTLTKp6UrHZO6MqTvVxd9PtHDi1ZaAulYQVFamuZ1NsRWWpreo4m0jK20XGUVc/0oWmkpzxFcSkuRVt7m4aL/MLUbHzdNVKWlzq8ohbjR3Qfwjx5uIy3lYD3y9WUwDwfsSku5HFykJUXlJ8OHtDQpLbNED9e9Yxmu66mkpTxnNs0hspiH66zJbO+gSPNwitLS1zw8ltJSvufMmc2/+/q0lO7PgXhStCVpee211+LEE0/EaaedhkcffRSbbbYZ9txzT8yaNUt7/sKFC7HWWmvh7LPPxkR5N5NRR94+LVXIHU9WpaWPT0tf8/C5c83nh0wYBWzPmpW0lAftWObhLoiyoKogBcqotLRdQw3Ek/U+JmRVWsokvMk8XB1Ydebh4n3rTHtaQVpSzcNdO8IuuNpEiHm4r/uNopWWpo0bSvRwCihKSyp8SUtd1E3kZB5uIi0NeXAixDy8CKVlTJ+WeSkti/Jp2UqlZZGkperTEmi28qAoLakIVVrm4dMypC6p6cr+LIF8lZYu0pJiHq6SeD7m4f39jc/vsuIB3GbCPgICqtJSPk+0FZ95e0j08MHBel9mIy3nzGk+FhKIR0ZRSks5j1SlJXX8rdXcxFCWQDyuti6TycL0Xc2fbb4eEj08D6WlXAaUYEjityIC8ZiUllnMw2MpLeV7vvFG8+++SkvpfDYPT9GWpOV5552Ho48+GkcccQQ23HBDXHLJJRg9ejQuv/xy7fnbbLMNzj33XHz6059Gd+ikbLgjJHq4+N2E2KSl3IHceWdzHvIIxKObHMSArTPMukBWzcOpkZlVhJCWZVJa5kFa3nNP4+BYBqWly6el3F5jm4fr/PT5Rg9/6y3ggQfq36mk5YMPNp5DCcTjOwlW4SJfXIoQAbmN2pSWJtKySJ+WOlM0IJ7S0pe0VP1EyXCppNXzDPnLhbTs7Gx+N6YFBwW33w5cfz0gb9a6CFC5r8jLp6XLPNyGPM3D84oeboOp74pFWi5cCPzjH83KN/n8RYuAn/+8frwI83AgTGlJRajSMpZ5eGylZQhpOTDgt2Ghpm3qd12qJjlPotx8lJYLFjQ+35tvmvOq5sNUV2wWUSpCfFoKxFRaqmurZ58FHn+8/t1GWurEFO2itJTnE8KtgMunpY/S0nVuaCAe3VpYhfxeJkzQv3PbfD2P6OEyKKTlvHnAXXfVv/uYh8dWWi5eDNx7b2MbNbXLLObhZVVaMmnZhAxRJFqD3t5ePPLIIzjllFOGjlWrVey+++64//77o91nyZIlWCI1lPeWSvb7+vrQFzJRKDkqBr8yfYODqAKQu/f+JEGytAxqMDPf/cDQeQAgdzVJRwdE8066utDf14dqksA0TA4sJV+Gfr/uuqHfBgEM9PWh1tlpZeH7kgSVJDFW+oFKBYN9fahVKkPp9L/1Vi6NZADAoKEe1ZIk025C0t09VLaDvb0YXLzY+AyDlQoGDPmoyuXtwEBvLwb7+tAxOAgf3cFATw/5HgCQLN2NptyjDwAGBhrqHaXtWsv/d79r+Cq3BV901GpeZQXU67q4Nunvx0Bvr/H99g0MNLTRZPHi9LpqFUlX19DxvoUL0dHbm/7W2Yl+RcksynBw8eL0/v396bm1GhI09gGDHR1N5TdgqUvJxhujIk0Uk87OhnKR20pDX3TjjfV7JgkG0Tyg9Q8MoLpkSf35l/Y1ar2gQs2bioFaDYN9fdZ+Bkjfi5h0qu1ssFqtt8n+/qZ8DgCApa9U66QrL0l/P/r7+lDr729+bwCS997TXj/Q14fqkiXG8hioVFCBe2c06ehorG8SOqrVpvQHJ09GdfZs7fmifWjTGhio94tSv6etB5VKY18RWF9kJB0dGFDexWC1iqSjw6sPHMJddzUuLrC076colwD0VaukZxro7q63P0u9E+VV6+7Wtn+Rhq1/7RsYGOqHAGCwqwsDmjagIpk3z9mXJkC9nkV4n4C7/5f7eHk+JM8xVAwMDGjnBrqxdfBDH0L1gQcw8NWvYvCcc9CxtM0BwODAQDov2ntvVJf2NUm1iv7x44G+PlT6+hrqYl9fH0CsEyqSajXtQ6S+v2/hwob0BisVDCjlPtjVhUFH/2S7nwxdX9GnEHvVvj5t/VXPGzofaDp/cNEiDCxZUn+uJDH2OSao739g1VUb3rncZw/09mKwtxedCiE12Nc39F59MPSuHPNlQD+WA0CytC8VaVWXXba5nEaN0l7b/+67QE+P1zsf6j8GB7X1M1m4kDYnXGp5NPTu+vtRMYxh8hpl6NjS59XmQWp7QLp2aqh7aKxLff39qAwO1svhxhsb5zTLLotB+XcJA2+/3VTeyeAg+hcvdrbfwc5ObX1V86d7fgr6+vpQHRxsyp/o/zqkvnpw2WXTPqpW09aVviQB+vq07VAHMa7bymCwVsNAX19j2S9FMjiIRDMPAtK+vmIZ/wBgcMGCoWsHV1qpaezqGxxEbemaWof+SqVhPNH1acDSuZeYg3d0YLCzsylfA4ODTeNIpaOjeY48OIiKNAdJ9t+/wRRZlJfunar3qgwMaOtr3+AgagMDpHVtkiRDfXvtk59E9a9/bfxdUy/7BgbQsWhRvV51dzeNNTaYxnHX3Lkp79K41KGZk/i2qUSaP1QGB4cl9wTQ1uUCbUdavvXWWxgYGMCECRMajk+YMAHPPvtstPucddZZOP3005uO33bbbRjtik7Whtj81Vexhub49DvuwLovv4x1pWNPPvkkXp02DQCw5cyZmKy5DgDuf+ghvCPtgO6y3npY4fnn8eaWW2L5//4XQhMyd/Fi3DNtGtZ5/nlsZEjrxZdfxqKFC7Gp5rc3Zs3Cw9OmYat33sEkze8CN0+fjuVffhm7Wu7xzLRp2O6ttyCcCDx6553YVjpnsFZD/6hR6Jo/33InN/79wgv479IyVLH5//6nfRdUvNvbi7FLP8967TW8/sgj2NJw7ttz5uA+Qz7WeO45bE685yv/+Q+enDYNUy0Emg7PzphhfOc69Pf2Nkw6bbjz739Hx6JF+KB0bJrhWWVsPmMGufwffPhhvBU4kOw1MABfXcvdu++O96ZNw+61GpYB0DtrFp549NGGOirjjjvvxPveeAOrL/2ezJ+PCoCBjg787403MGXp8b/feSd2WbAAnQDm9/biDqmclnntNey+9PNrL7+MR6dNw25z52IMUlJr5syZDe1u7vz5WEHJx5P//rexLlWUhdf8JUsguzMX7RIA1nj6aW06r73+OmY8+ih2VI7f/8ADWLLddtj9yisBAP/80pcwc9q0hmfywYLeXthc/r/46qt4Zto0jHvuObzfcp5cDzd85ZWG/nXOu+/i3qW/LzdjRkP9BYBnnnsOXe+9h/UNaT/yxBOYKe2cT3j0UWxvyQt6ezFt2jTsOGsWVA3jy6++imd32gl7dnejY8kSzNx6a0x8+GEAwH+efRbrW+r+q6+9hjFz5mBF270BzFu8GHca2uUHFy1qqAsAMBvABN3JAF6dMQNPGNL68Pz5ECP3zNmz8dDS83bYbDOs/MQTDecm1SqmT58+9L17zhzs5XgOFxb39eHJJ55oaKuz3n4bb734IjbOmLbAEgBUY/M7/vEP7Ek4798vvzw0Vm3w4ovGeifq9JZz5jTNCZ55/nm8uPT3nebMwXhDGn//xz8w+thjsf0PfpDmcccdUbn3XnzIkcfFs2fD4ckMA/39Q3lc9rXXnGlS8MBDD+Fti8rrw0uWDNW5J55+Gv9bev9tZs/GqtJ5/z7oILxv6YbY9MmTsURTh+X6K1BdqlCv/eQnuGnXXfGBBQsgQqK8PWsW7ps2DR+9556h899Zf33ce9ttAIDJTzzRMC+YNm0aRs2ejT1cD63BwkWL8Ldp07D1W29htaXH7rz1VvQtswymLv0+++238dBtt2Ef6bp35s/Hy089ha097zdv0aKmPmNvzSJ1+t/+hj5JBdizwQbaOj/9b39DnxpEA8BGr7yCdZRj/3vxRbxw991D9ed/r7+OxwjzChk7z53b0C8+//bbeF5KY/wTT2CnpZ//+9xzeOG664bKUeC1l182zr1tWLBoEW6fNg3bvvMOVnGc+7833xyaO8hYsnAhegAMJAmmTZuG9V9/HRso57z69ttD8wuBvtGjcWtfH1Z46qmmsdqG/7zyCp6dNg0977yjfX+DCxY4Sa1nDj4YL0ybho758+t18o03sNLSjVwV7y5cODSPFhDPu6/m/CV9fQ1977Rbbmn4fZNXXsFa0ve7//53dM2bZ5wnvDp/Pt58/HFsp/ntPw8/3NQPD/b347577jGubwRee+stPKqpr1OefRabSd8X9fY29TcUTJs2Dev+97/YUDl+3z//iTnvvoup7747tEZ4de5cPDFtGracNUtbl+++7z4seOklbDpjBtYk3Pt/b7yBx6ZN047pAjNmzcLj06Zhxaeews7Kb4sXLMCit99umr8CwH0PPICJL76I9Qz3nrvmmnhq6lTsvLRPvmf//bFg+vSGdvv3++7DxrNmYWVDGo8++STekCyg9urv164RZrz8MlZZtAjdABYuWYL/zZjRVB+eeuYZvKy850n//je2Us578KGHMObVV7HJ0u+q78RZb7+NB6dNs479z//3v3h+2jSs9sQT2r78tttvx6jddsMHb7jBkEIdixcuxG1L8z319tubiM75ixc3zQnvuPtufGjBgnq9mj0bL993Hz7gvFuKBx95BG9pVMrLv/giOQ0gFUmIOcakY4/FVj/5ScPv7y5a1NSn2PDWaqthxTlzUB0cBJKkYU46nLDQRymftBlee+21BEBy3333NRz/+te/nmy77bbO69dYY43kJz/5ifO8xYsXJ+++++7Q34wZMxIAyVtvvZX09vYOu7++z3wmSVJhdsNf7+zZSf/XvtZwrO+Xvxy6buDgg7XXJUDSd889jfd5/fWk76qrkt7Zs5PB1VYbOm9gxx2T3t7epP+cc4xp9Z90UtJ/8cXa3wb23z/NyyGHGK9PgKR38eKk98EHzff4+tfTdPbZp/4MP/95/T7bb5/0PvRQMrjhhtb7UP76zz3X+C4GPve5TGkPbL99/fMeeyR9P/uZ+dzddjPXicsuoz/P5z+f9Pb2JoOjR/uVw4UXep0/OGZMMjhqFOnc3pdfTnoff7zxGKEtDBx4YGMZWepV3/TpwW1ucMIEejn96EcN7Wlgp53qefjVr6xloKtPg2PHJv2f/3z9vAcfHHp3gxtv3JjX55+vl8UBB6R532CD9NzllksGlL5jYJddmsvpl7+kv+NNNml89q99rV4nL71UX48PPTTpmz69+b533pled999Sd+0aUnvkiVpWs8841XvhvK23nr29/SNbwzdz5hGd3dD+fZ/4xuNz/L+99d/f+KJ5nv85CdJ/7e+Za6TN9zQ2I7/8hd3W1m0SPve+r/0paF89P3hD0nfjTfWfzvxRHtZHH98Qz1NgGTg4IOTwWq1sTw228zcRjR9rdw/N93z6KPNacljzic+Uf/tjTeSwZ6ehnTeXn/9ZMGCBfVzXnstqL40POeUKUnfH//Y+CxTpyb9P/pR5rSH7jF5Mvlc6jP1//Sn9br67W+b0xPnHHVUcxoXXFDvu3be2ZzGk08mvUuWJH1//WvSd9996TVPPul+7uWXb64nBxzQMBYOjhpVf59PPeVfth0dTcf67rrL3sevsUb93KuuqpfB/vs3Pvd//5u220ceMafleLe9vb3J4Kab1p//Ax9Iehctajxnxox6v6D0yb29vUnvjBnWewwcdljS95vfJH1XXNFYNmuvnT6XNBb0Pv100vvmm/Vr99or6X333cb0PvzhpO+aa/zfxSabNJfPuHHNZfLmm81l+eCDTXMI7Xm9vdo+buCAAxr65YHDDvMe+wfe//7G9nH22Y19tjSW9X/ta0nvo48250OpQ+SyW3/9NA8HHOA8V9eWEyAZXGml9P8yy6TldOaZzdd++cuN16y5Ztq+e3uTvltu8cpz/6mnkuqnNq+rr570XXtt0jt/fprGO+/Uy3C33cx1fdttm9Nadtmkt7dXf59VVmluT3JdOu64xt+ffTbpu/9+8zOfdlrTeDH02xe+0Hz/jo6k7+9/r+f/Yx9LBj7ykebnOuIIfV1X1leDa64ZVL96e3uT/rPOajred//9TWXX/5WvpHXx8MP1ab3wQpqeNFe1/Q187nNDY3rfVVclvTNmJH3XXtt4z6VzhL4772wuw4kTk4Gtt9am3fePfzTN1Ybue+SRad+6ZEnSd+ut9XFBqmsJkPQ+8UQy8KEPGfPf98c/NvZpK6+sv99nPzvU3w2us07Sf9ppzXXk4oub3nHf1Vc33/O225L+n/7UXKYf/Wj6Dixzzv7vfjdN/7e/1b/HuXPT3++91zlvHFxllTS/ytg19PvGGzen/+qryWClUs/P8ccnvQ89RK6zxnWcsn50/Q2OHVu/dvHipO+GGxp/33xzWj3eZZf0/b3+ejLY2ZkkQDJnrbUa56TD6O+tt95KACTvvvuuk5trO6Xl+PHjUavV8KbiB+XNN9+MGmSnu7tb6/+ys7MTnb7OVNsAg0miPd7Z09PkQ6Kjs7N+zOLzoUO9dpVVgEMOabqu2tODqpymBrWuLqM/iGpHR3q9LWpcpYLO7m6rz69aVxdqit+xDslXVvXgg1Hdeutsvl7EvTo703tpf8yWflUqh+rAQLpLYzq3VkvLTgcP/1a1wcH0eTz9btR0vpAsqHgE4ukcPbrJQTup7co+d9ZaC9V99gF+8xvtqU113AcePldqu+8ObLZZ/cDk+r50h853ylJ0dnVp32Olpwc16Xhnkgz5fqx0dTWWk+SbqjowkNaXpe+5UquhovQBVU077fCoSxXl3Ia2YuoDajVUNW17qK/aYYfGHwJ9t1UcPmlqPT1pXi3pV3p6GstXSXOoPzPks9bV5dfvEp61E9C23VpHR/o8m26a/t1xR/03R8TWmsanbHXDDYFPfQq45pqhY031reFhmp+zanmeofzqIPUb1c7OehlPnAgceijwi18M/Z5UKo1jfQRf2JWOjqZ24Br3sNtujf6bXffwyGenKVCGgtqyy9bL1FLvhspK48uu1t1dT8Pic6yzuzttD3vvXT9I8ANV0fi0rO67b+qDeKnypSLnMeB9Vrq7m3zGdXR1kX2yNrRL5Zk6e3qAffe1Z8AxtnZ2djbcr5ooZvi77opO2XeiMs/o7Ow0B08Raa64IqoHH9xUJyvVanq91Ad3Kveo1mpNY0O1p6dhvkJFpaOjuc/QjKed3d3N72fbbYF99mlwMdRpeo+aY9W+PlTl55L7ayqUsq+NHt3Yb0n1swagpvH7WA208KjUamnZEcq9ZpgvV5a2g8rSfhIalao6t6sccAA6N16qKacES5Geb6j/CAhaVll7bXR86lP1A1IaVYsrDd08Zqie6+6j1L+m85S+s9OypgGA2hprGH+vaaKHq+bO1XXXBTbZBLj55obzqqNG6eurcq9K4DrEVLd0c+XamDHW+VLnqFHpNcS8DI3rEyfW15qf+hRw4IH1e4q6pHu/AwNG34Edur5E3PeQQ1AVfeseklZd189b0CGedyhh/RqhmiRD85lKRwdqujFXNxfSnNfR1aX3Qy3uJcrUtj4X9zKcM/Qed9oJmD8fOO88Y1qVwcG0DhnUd7o5eGd3d0r3ifyMHp3Ok4kwruOIc6ShvIn+UGDffVPeY2lQnopjzixQPfFEYL/9UvV4rZa6c1laLsORf/J5prYLxNPV1YWtttoKt99++9CxwcFB3H777dhBXZgy6DA5cC5TIB5TepRAPJQAGa7o4WISFsOJvy0fsaOHG/yVAigmEI/tWfMMxNPREfau5AXwssva0ygqEI9aJ+TF56uvmq8ztRt1AtbXVy9X30A8avn4BuJRQQ3EI8MWPVyHvALxEMidpn7KFjhHl3+Xs3lbNHITenvNgXhMabkituoC8dRqzf2Krax079s2GfWNHm74Xmj0cFs/oCEDrPBZ1FPP9Y0e7grEY6u7lAjQOujGHVu015D3qat3sQLxhD6j7X6KT72mdqfbqHaRubo5knxfVyAeXfRw32AHuvvLeZBBff+m+lBUIB61LaqBeOTo73I+QkANXAm4A/GItHQEqNoPyO3HVWamOUisfljAFGROvqcMn0A8KlyBeFRMmuQfiEcd46jBWMT5MkLapYCur9SlJ8a30Ojhar0z9cfy9aLthgTi8Y2ObZs/6eATiCckerhuzFcD8agQ740yblPKx1UG4v0sjSPSBEq77OnxW0eb6rrv5qbunvIa1zVn1t136bNxIJ4Ubae0BIATTzwRhx9+OLbeemtsu+22OP/887FgwQIcccQRAIDDDjsMq622Gs466ywAafCeZ555Zujza6+9hscffxzLLrss1llH9VgzQmHqqHUDn/w9BmkpOlKf6OG6/NgWYSIvWaKHF0VaZk1fjR7eatKyq8vcWfuSlksD8ZAQGj1c9le63HLlJy1nzLBfp3uP6mJR3tVUJ5zyd0r0cN39fCbAtombrQ8oE2lpe7e2Bar6XZdP02LElEdKPVsanKgJtoioLj80OnK1VmvOn2/08DxISzVPvosNCkykpS1tX9LSZ5JN7d9l8oFSDjoCwyd6uIrQTTw1r1mJphDSUv5dLoOiSEt57FfzH0JamjZ/xX3VsYISPTxEORIaPdx0vW/0cPm5Quqnjrw15c9EWtrmdTaItCl9hamvdZGWOiWb/N3VbtQ6QRlXTVDrOXUMKwNp+cor+t90pCXQuElh2rQvIno4dQ4olGyh0cPHjWtcW5jyPGpUnaAW5+vKxmbJZXtfVNLSFUXbtoEtI8/o4SpiRA+ncgaAm7TU1RU1zVGjyBZ5AMzvz5e01D2brNYMIS2X5o1JyxRtSVoeeOCBmD17Nk499VTMnDkTm2++OW655Zah4DyvvvoqqlLlef3117HFFlsMff/Rj36EH/3oR9h1111xlxJ9c8TCpF7TLapaobTULXbV/MRSWsr5CFVa1mr2TjNPpWVnZ5qGUCXazIhC358KG2nZ2WnurD3l92SVpbhvDNLSR9XmA59r1eegkpbVqpm0lI/Lk3fTggGo1yV5l1fNW56kpel9FqW0dC2wKf2MSlraSEYTadkuSktd3nxIS13efc8XUAkUNV8SClVatoK07O6mjzOxlZY2+BBPLlQq5mcMGWPbXWlJIS3FeGGaM7iUlvI9lkZ7bjhHR9a1I2kZW2kZQloWobSkkpY6VaXNYsNXcZaFtFQhyPMksSstKeSIDFcbVn+vVNykpWluJ4spqtV6O5PbrWlsMYk7YpKWVKWlmP+73MOYymncOOD11+vfKaSlcAngq7S0zbt8lJY20jKm0lKX1xDSkqK0FL9RxltX2xd1OavS0oe0zFNpmZW0FM9mqzcjCG1JWgLA8ccfj+OPP177m0pETpkyBQm/cDtsHbVtERxKesm/Uc3DXUpLSsdLMUWMYR7e2ZkPabnSSsDs2fZ7d3Sk9+/tLY/S0gRfpaWPH6dQ83CZtGx383ATmacuFuXJu6/SMjZpqd7fttgXKAtpGVtpaTIPj620VFVRAjbyzjUBoyotfc3DxVhAUYbK8FBa5kZa6p49pnm4D2lJRWylZR7m4ZS0WqG0lO9ThNJSfsb+/saxn2IeDqR1wzTOmjZlRP5d5uE6pWUrzMOpGzu6+7S70tKHtDSNd2K+Z1Naqtf6mIebXIjEIC1FOv39cUlL1zPpxhTXhpXpeeV1yTLL1F0ayXWiHZSWVPNwm9JSho20FBCkpUlpaepnQ5SWus3RWKRlOyktXfmSEUNp6Uta5qm0zGoezkrLBkSYiTOGBUwqG91uYNmUlj6kpa/SUmceThnMXeRGqHm4FIDFCEFaAsWSlqbB2JaOxQF0JlQqbnLHhKJ8WvrkzUZaapyyN9wjq3m4TD6JxazNPLwVPi2r1fYlLX2VlrrFv+l6UxoqTObhOtJRQK4zur7X5NMyq3m46V2L30zIYh4eY7FchNKS6qfSZzIuL/goi5IymYfn7dPSlY5pwyUv0lKu4yppSVFaArQFrMmMcaSYh2clwNX72/wcDwzoFXehSsuY5uGi3NQ2r1Na+pCWpjEihnm4nH5M83BfpaVNiOG6n0xaykouub2bxpYy+rR0mYfblJYyTOUpj4uCOApRWvqSlr5KS6p5uOoGIE/S0qV2lX+j9IWudhJDaelrHm6qfx7BfAC4fVpSRTdMWhrBpCUjhc7s1rTD0s6BeHyVlqE+LV0T8dDJD6UTrdXq9+/ttU9uQ9+fiv5+86LKVhau6KuhcO3Q2lBG83A1DxMn0q63+bSUj8tErXq+nIZYiIr+QjeR0x0bKYF4QszDbSRjUUrLRYtoykWT0lJHVFGVlr6kpeldi99MYPNw//OA1puHh5KW6nVZiCZTP1o2paXchvv6/M3DgbDNXx1pqTMPLwtpaZvTuq5X+8q8lZb9/XWl5Qor1I+3Umkp6o5IS23zOqVlDPPwkH5YV89F+drcDeXt09JlHm5LU456biItfZWWVMKMgljm4S4FXwhp6VJahgTiMZWVr09LqtJSJaezmofbNjtFmWYxD1fvZ0OZlJaVih9x6SItqeBAPEYwaclIYVuw2hZwoaRXTPPwWD4tdc8bah7u6uhCzcNlQs0E2QzxhReA8883nxtTaWnqVG1lYdolzArK7qAJ8nOUxTxcR7KsuirtOop5+Ekn1T/r3pc49p//AGusAbzzTj0fFLOnvAPxlIW0LEJpafOtpLs35Vk33RRYGqzOeq2JtNRNeqk+LUPMw3NWWpYmerjvhLcdzMNt8CGeQtIS8CWaTASAD2lpU1pSnpGyaJHPUa0sfMzDTdBt7AL1/LvMw3X3KoN5uM848Z//ANtuaz/HBR/Scu7c+gJ+9dXrx1vp01JNK7bSMm/zcEqda3UgHkqagFnJlVVpabPgkaErp1jm4aLMTOUwdmzjdx/zcF+lpe19UZWWeZCWZVJaxiAtxZhhqn9FKi0Bv7mS7tmykpaibrGLQwBMWjIEYistR48Gll/efL9WmYdTFshyPsRksVKpD3yhSss996x/3mYb87Wm9DfbjEZaykpLF7KQlqoaIERpmRdpmWVn/rjj6p8/8pF4alQVWZSWQKOJuO06inm4DN35YsExf36jfy0d6aLbYPAhqtT6QCEtTURWO5iH23xJFaW0NIFqHp6X0tK0qx6btFSVlkVGD5cJEBWjR/u9v7zNw2OQlp/5TP3zpz/deF5s8/B99ql///KXG3/zgSmom+vdyL/LZeByR6BDiHm4TWm54471zwccUP8csvkr8u9SWqro6QlTWlL9DVJJBqoiM/Qc1zU20lKOIL3GGvXPrYweLmBSWrpIS592AzRazvj2B3J/Q70/4O8O4pOftKdH2dwVOPlk9/0EZKWlrE7r7s5GWq6zztDHZPPNzfeX269QPtqUllJQ3KE5rKsPML1z1wawwBFH1D8femj6X1cHbErLMpmHyxsWJqWlD2lpI9YoSsuYpKVLaWkiLeX19WabAeut586LgK0/8Jkr6Z7/4x+vfz7sMFo6rLQ0IsOKmzGckGy3HWYuXIiJjzxSP2giLW1Ky1VWAbbeGjj8cLu/whDzcBthIaejgxgMfFUEYmIoInK78img61h/8QvgnHPS8rF1qLqOb5ttgN/9DthuO/e9ZZ+WLmQh5ORgQzbS0qW4tb2Tf/wDuPxy4Fe/sudFlzcgbEFxxhlpvtZZB9hlF+CWW8zn+vo8kVEEaVmt0szDZeieyXSuSWnpIi07O82mWapJLEXZXRalJWVzxOa/DIivtMxCWlKVliaiSs1nZ6cfaamrizbzcNt7tREorsVCKHGm3kP3btZfv97H/eMfjb+PGpVeR1UNUPsjW58rIuvKeZB/k3HvvcAVVwBf+II9bbl8jzwSeOONlNTae2/gmmvqv/mo5VyoVNJNp3PPBd58EzjtNPt9bMhbaZmXebhNabnJJsBllwFPPgmcemr9eNFKS9MmmY2Ua6XSUkXIpmsoaWlSWlar5voxenTjBpOP0pJKJlEC8fiYh+vGDYFazW7WLbD55sDHPgYcdVTzb5TNZioRtOaa6T0+9jHgBz8wp0c1D99mG+Bb3zLfT4WwAAOAl1+uf15ttWyk5eTJ6P/lLzHjD3/ApB/+EJ2bbqq/rqMjnSP/4Q/AV7+aHrORltddB/zwh2nfbPJpecABwBe/WP9OJQtN/fHRR6djzsBAvT7o0kySRtdHcn9ardL7EwFf39gxlZY+5uGrrGLOE0VpaTMPv+ced75khJKWl18OfP/7wE471Td3rr46fd8237VAvkrLPfYAzjsvFXsceyzw//6fOx2ZjF9aZyqstATApCVjKQbPPBMPTpuGjx10ECqqo2IfpeU11wDvf7/7hiHm4TGUlr5R0sSgJd87lLScOBH46U/d1+rSv+IKYO21G30PmmBTpVLuJUBRlQlTCxtpaRukXKTljjumf08/DTzwgD0/at6AMHJq3LhGk/osZWRDUUpLinm4DJt5uIpQ0tJWP1WFtm2xLzBco4eb1EM+mw1ZVII2xaHLPFxHrsquKwRsZWqaZIeQlmreLN+blJZC4ZNl4mgiLYFUCbL11qmZvoxRo+j9hC59E2x9bk+PmZBWy3enndI/V9qqP0dBIMqbpLr0geyBeL72Nf1vPjCRlq505N+z+rSk1D0baanrw48+uvlYLJ+WWczDR41i0lLg7bfrn2WlpUxadnU1+jmUscIK4aRlq8zDdeOGAJW0/MEP0k0RHdT3v9NOzRtGVNLy3HOB/fcHnn3Wnh+qefhFF9XJPFc5dXc35vPFF+ufJ08GZs3SX6ODpk0khx2Gf40fj0k2UqtWS1VustLNZjK+9trApZfqfxO48spG0Qu1HZvGv1oNOP102rlCnd7V1TgO2uZdsZSWMX1a+iotx41rjOEgpw+EKS1/9atU+OHKl4zQQDyrrgr87GeNxw86KO0rXArHPJWWQJ3Ml/tyG1hpaUSG1QxjWEKnDLCZ0tiUODaEmIe7Bgaqebhr4NH9bltw6JBFgafr+MT9KSZBsZSWVIIGyI+0pKRhShfIRtgI2NLI8p598tZq83BTXdARJVlJS1k5INITGI7m4TaS0WQe3iqlpY95uO596EhL313uPEhLl09Ln7RN0D27i5AfPZq+ARWLtLS5ZwglcajvK7Z5uAlF+bQ0vd8ilJYu83ATsigtfc3DTZtnan9C6dN85qLUcyntKYS0VNO1kZYyTObhtncrB++R0y7aPNxHaaki5Frbu1P7I13AM91GnK0P8FFdi++6a3zWGqNHN5azTFpOmpRNaUnt93V9OzUQj4BNlWu7f5a5jilN0Wfq2qTpGupYU6vFMQ8P9Wlpc3lgWk/4+LR0WbC40gHCAvFkDZYaS2npGsdD5mfiGiYtATBpyVChG6h8lJbURtmq6OG280Q6rolEqNKSulDSneej6KvVivNpKa63kZauCQ9lUAid5MYgLW3vrSjzcN1zFGke7qu0dE1eYpOWZTMPz1NpaZs86/KYl9JSVrtQfVrGUFqGmofbzlOVlrp0sk4adaSizc8h4Ke0NPld1MGltDSBMoZlIS1jksUUZYgMlxsT3XvwISqyKi1jB+IxIYtPy1jm4WodpJB6PqRlOyktZZhIS9u7VUlLH6Wlq86ItHSkk3rMR2lpywe1P/QZI9U5B0AngihjPkA3D3eN/zJGjdKTlh0dwMorZyMtKbELdNcB/v5AXfNDavv0CU5FUVqq9/I1DweayzGG0lJ+Th/zcF00bBdpaRPzqPeyuXVQ72eCr9LS5eeW0l/EUlq6ni1kfspKywYwaclohI4g8CEtqY0yxDzcprIC6AEdXIO2a0GTN2mpS9+HtNQRAz73ktNxXSvOKZvSMiZpmYXYtaEo8/BWkJZFKy3b2Tzcpr4rm9LSVG6m6OHtYh5OWSRl9SlkMw/X5QnwU1p2dsYzDzeBMnH2IS0pAY/yUFpSVSgCw8GnJXWDjUJQmDZGQszDKUpLNe8U0jLrQlaXpg55kJam9iKTljJ8lJY+pKWrzpjWAlnNw1X4Wjq57qGmUYTSkmoe7rPWGD26sf0sWJD+X3VV8+am6b3bNjt91wm66O+29qgjokx5kaGWuXh+ClwqRp3FQYgi20dpmbd5OGC2pHApLUPMw0PWwb5KyxhEYdmUlpprmLRMwaQloxEU0tI2mFEnI3lED6eag5SdtLSZh1NQlNJSJorKprSkDLRUtDNpaSJ4bKSlj3m4zm1DnqSl6V2YnrNopWURPi1d9Sam0tKhSByCSWmpIm/zcGp7dxC7WqVlVrhIy6xKS5vrExWhpCXFl1w7mIcXRVqa3m8epGWS2M3DqWOVze+Wj09Lqnm4qd6r58mIrbQ0oUxKy64uYKWV9OnZ6u7Ysfq0Yyot5XTFdTaTX9/Fe8i1Wc3DfZWWrjZMJS2zKC0FxNywLEpL6rzJBJvCUc6bD2lpqh+iz9JtlGQlLYtUWsYiLSlKSxNpmYd5OLWMBNpRaSlDkJYciAcAk5YMFVmVlnmah9tUVq7rfUjLGObhpqi3FFDNw207pmUiLU3PLcxjyq60pE6YfGFrK2r90eVhlVVoE2Vfn5btqrT0ITzaXWlpm8DEVFpSFQ9FKi1jmIc76mdLSEvdexLRwyloR6UlhWgKJS1t1/m6YCmD0tKFgYE4SsvZs82/meZIOmuXmObhIUrL4UZaTppkHuds79ZkDmpr55R05bSAxjYeW2kZ2zxcTSOLebhIy0Uq6NZRWQUSJtJy8mTz9UX4tNQpLW2gWHXpUKulQWQEYigtBVphHh7i09KktDTlNQ+lZZHm4SNNabk0/6y0TMGkJaMRRSktQ8zD20lpmYW01KWv6/zVKMsCNlUq5V4CeZuHi2vLTlqa0sjiz9KWLtC882+qE7aojuK6GObhNqVl3qSli9gB6n5tqGRALKWlmo743ZZ+jOjhPhPfIszDi/RpSRkLXHBttsUgkVSEKC1Hj/bbCIyhtLT1azIp5pM29X3pyj20rfoqLUNIS58FU1alpQv9/Y3vZ3CwOcI0BTbS0uXTMq9APCFKy3YyD6dsNNnUcy6VsG7+GjMQj7iPfJ2NtPRVJebt0zKLebhIy0Va5qG0VM3DBUaS0jKUtHTVIx1paSoHylgjSE9TPdHNXymkZZmUluo5IaRl2ZSWlM0dgRzNwzkQTwomLRmN0BGSPoMZdYERM3q4qcOUQSEtbem4fOr4LMRdoJqH63aHxbllUlqa7uFDWvouXCnkERV5kZa2AWzZZRu/mwZDl4m4SZXmax5uU1rqJlomMs/0XUZo9HBdujaVbwjUCadpcWVSxABu/2Xy88ZQWmZpA+r9fczDqUrLmObhsZSWrSAtsyotdembYOtzbc8eSlqa+hoK0TRczMNtBHUspaU6Bh91VP0zdU6waJH5tzyUlrrjLp+WFLND3/evA6U9xYgeTvldjPW+SsuOjsb5REzzcNVfn3ydzTzcJ2AK4C8aUPPj+k03l/b1aemCjrR0rSVcaedpHp5FaRmbtLSRhXLk+oUL7enIcJWtmqdazbzGoSgtXfXWh+CT+2ghUqFaxZhIS6HOVZHFp6WPyyaBJEn/ilRaltk8nJWWDWDSktEIitIyhnm4vLMpJgxZlZbjx5uvz9s8XJ1kxyYtZTJEYM899dfXasWQlnkrLbfc0p2GCUWYh2d5x4C9rah12bTbt9pq5jREvmOYh+uUCEC40tL27KHm4br7xCYt1fdgm6SZ8rr22o3ffZWWtsmzmgdbPiigEgE61bepH22Vefimm9Y/O95BKXxaVqtpW/RRWsYgLXfYwfwbhbTUvc8sJDO1rarPRFlkyXARP7qydZW3WFBXKo1zhBCl5Y472n9XlZYqqJtstvfv49OSSlrqXJio/azav8jqKlP67aS0VKHL36qrmq/1IS3FhhdVabnZZubfTUrLSsWutHSpl1ZfvfF7OygtdXVShlofTebhMZSWtroSorS0taUizMNtSstdd61/33hjezoyfNtgtdroI9h2rgyRd3HO1lvrzwvx/yiuq1To45/al4pxSdQZFRSlZUzzcACYP9+8MR9baSkUsCbo2su4cfpzfRXkFCzNP/u0TMGkJaMRFNLStgNHXewdeiiw0UbAfvsB22xDu9alslprLeDLX04XpB/7WOM5eZuHqxMcF7lhgy590VHfdVf6fF/+MvCTn+iJS6oyx3QvajoupeUaawD/7/+5lZa6CffGGwO//z0tnzq0g3m4bTD9v/8DVl45nVCccEJzBFAB03HATVr6KC2PP16/E6tTIKmkpW5ybqtbNtN407swPWsWBZOqdgWAddcFjjkmbYP33decvlwndOV40EHNbdZGMpoWNa1SWurS2m03/UQ8L5+WoUrL3/8+HXM+/nHggAOa8yUhiLScMsX++3LL2VWm6nubONFO0KrwMQ8X9fRvf0vHzUMPBbbaCvjgB4GzzgK+9rX0+N/+1ngdhbTULaDyJC07O4F11gG+9CV62kUpLY87Lu0rvvrVxoAoIW30qqsaiXcVqk9LFdRNtl/+Enjf+4BPfrI5WrVLaRliHq7Lm7oJvMcead3s7ATWXx/47Geb0/KZi7YjaSnGoxClpUyoCTUapY12dQHXXWcmg0ykZX9/c57kd7z66vW5+jHHpPXsqKOADTbQj5F5+7TUjfW+Pi1XWgk4+eS035w+3X2tziIF8FOVTpxo32T26edC5w1FmIeb8lKrAT/+MbDddummzimn2NNRr/X5vVptNMumpqUqLc88E9h+++bzQgk+cW+T71oVJ55YX1t86Ut1gcTyywPf+lbz+VmUlqHP9O675t/UtXVWdaOrbur6gRtuADbc0P9eIRBKS6FAHeFg0pLRiKxKS2qjXW894KmngD/9qX6N7dr+fnPnIufngguA//wnneDKyJO01O0qZyEtdSaZ4tj7358+3wUXpAPCLbcAN97YfP7ixbR75UVaHngg8PLL6WLYpbRUy+7oo4Enn2xUQ/mSTzHNw1uhtPzUp4A330wXGOefbz7P5CIAqD+7r3m4blL7wQ8Cr77avCg2mYerZpGUyYyAzfzDtXFBCWBEwbHHAq+91ny8UgEuvTRtgzvsYCct1bw8/TRw9dVuk2uV8FXhUlra0lOx4452hQhFSX/zzWYVWlbzcJ3aJVRpuf766Zhz/fXu5/KtN7vvDrz0kv3+Y8b4KS1t5qA6+JiHi7r5oQ8B//1vurn08MPA7benZX7uuenxD32o8ToKaQkUR1qecEK6kHzhhUZlvuu6WIF4XPn/wAfSvuLHP248HlLf1loLeOIJ4KST9L/HUlpuuCHwzDMpWWVSTJnyH2IeLqcroJKWo0endbO3F3j2WT15WwRpuddezef4+DwzpUv5Xbw/26a2DqrSUvj9U9uoLo3OznSj7sknU5LRlk/5HQ4MNKen1j8xV7/00nSu+ItfAP/+dzpG2jY5qe/Odp6cns6UHaCTlvKxs89O+83dd28+Lw+l5aRJ+nZtc7lFJS2pY6Cub1fH/jx9Wo4bBzzwAPCPf9jnwyp8Nw5qtThKy7FjgfvvB845p/G8UILPtI4yldkBB9TXFhde2Pjb978P/Oxn+vSLVFrOnWv+TR0bfN+j7E5A97sKXT+w0UbpfP7yyxuPh643qFYBbCLOpCVDQValZUxTRBl9fW7CQobNPME0yQw1D9f5ZYpJWvqaTnR02P1SyXANRLZ7y4onlbSU03WRlhS5f6h5eAxfYXkpLWMQqrZJWkzzcAFde3cpLXWKAp9+gkJa6gJByMd9oQskoEvPh7R0tQMB16KlWrXvuPou3m0LBpfSUmzYmDZ68lJaUn0kUpFVaSnOt00qXaSl+ptQNueptPRFbNKS0j6p5JOPr6sYpGWlEt6/ZCHJTX2gS2kZ8s5NfZOpjwkxDwfc5uGU8cK2ua4ilLRUF7xAPkpLwNxPZlVazp+f/qcqLQVc/mZdSkuf+qeWT55Ky64u88YuJU1q29Wdl1VpOXmynXD1IS1D/ezq3ofq8iFP0jIUFLNh9XsW0tI1Bw41D/dVWrqg8+XpSs+ktAzxaQnkS1qqm/QhSkuT0CoP0lK+B3X+NYzBpCWjEUUpLV33VtHX56fWsJGWWQPx5E1a2iZslPNrNbpD6izSeZvS0kZsq2lTBlvfgakdSMssEy6BLKSlj3m4CRTS0qS487mH7rOM2ObhJvWFq7+Tr6H63rGZZZmUlj5mIrZ6Vqv5kdTq91GjaIoRgbzNwyORSN6kJaUt56209PFpGaoSL5vS0rah4atm8zUPj7lgzuo+BnArLUPeuWlhbdrMyMs8nFJPfOai1PbdStJSLXtRtiGkpay0NJGWJqWlgGteJuerv98eiMcF27ga+u5kqEpL3YYHVSWWJT+tUFqa+q1Q83DK5ndWn5bUuZMPfNcUlYrZPJzS17jKl1LfbIIaX1+PJphM+ynjMOWZiiYt1d9V0jJEaWkiokPLnLrBwqQlk5YMBTqyyTbBLpK09FFa2kwQs5qHq/nQkZZqx5pFaem7CxlLaem6dyylJYW0pPg1s33PglaYh1NhIy0FsRXDPNwEk3m42o/4EvEy5PIvyjxcBEBx7aS2QmnpS1q6JtS+yloZcqARFXkpLUPNw23wVZlQfH2qcJGWahqCtGxHpaW6aVcEaen7DtuVtLQpLW1K35hKSxWibPIyDw9RWlIXgja4TAuBfKKH686x+en2IS2FeThlzuRSWpraX3+/mXSlQH3GEPPwLErLWo2ufMtTael6Vl/SsquLrlrMorQEilFa5rXeBPTlYVJa2tKiKi0ppKXJFB+IN/cNUVr6mIdT5q42n5ZlUlpmdSukpqcDm4c3gElLRiN0BIFtMhhzIh+qtKSYevmQliHm4WoeWmkeXqsVQ1rGUlpS1HG+ilAfJZ8L7aq0FJODmObhKkKVlj7PLtdl07vIQ2kJuAl12ySNmhcbkRXi09KVvvpbFvNwMYE0katZfVrGDMRjg6/S0tcvEpC2Vdt4qZZVnj4th4vS0qbCdqVt23BQoSvbsikt+/rsC8KQ8Ypiwgjo3XNkMQ+PobQss3k4pf+OqbTUmYdT5plyui6loOrTUkUspSX13dn6KjmvJtIyttLSZF5vmxu50l5tNT/zcNs7GGlKSxd0aZuUljaoPi1N6VNIct37K5PSktKnFE1atoPSks3DyWDSkmFGmczDdTu3tuuykJau3U8daemj2nDBV5Wm240rk3m4aZCKqbT0UW/5YriSlqYyck0g5eemkJY6paUPqSwWWeJ+OuTh0xJwE495Ky3zNg/3VVqaFvGmPjMvn5Y5Ky0TV71RyQtKnzVmjB95385Ky1aYh/v4tNT9XqTSMsummum+rgV1yJiYRWmZxTw8xKelD+kSSlrq/KGHkJbyu6Ka69oC8YSYh6twmYe7fFqq5uEqfPrmGKSlLg8Ccr6zkpZZlJa6NH18Wvb0+CstTYittPQhLX0tG1z3jgFd2ialpQ1U0jLUPNyktIxFWlKUlibSUvdMlA2bkebTkpWWZDBpyTAjRGmZF2np69MyT/NwCmnZ0eGe8JmQ1Ty8KKWlTB4kSeMkUU7X1NGKtGME4vElen2Ql3l4lrYiYCMtRbn7kpauiZlKWuoWiyrx5lunZVBIS1GWsUlLV3rqBo5qdkbJi4u01LXvWObhvkpLtfzFBNJkHq5C5z+sDObhvioTivmqOjnWtVXboiskEA91EReDtLTdS31vpvIMUdDJkPOQ1TzcNxBPTKVljGtdpGWeSktd/0tRWopjLvPwkHqSB2nZ0dFcjiGkpTzGmuqdidQIUVrKpKVp7Mjq01I1D88CW1uLobSUy19HWpo2xrIoLal9oG19pUNepGVWpaWPebhvXy3QTqSla/ygkJa6+5vEH7HMwylKSx/zcArxVqTSMoS0NBHRofNPCiEMsNISTFoyVMgTmhClZZ7m4XkrLUU6MczDVTKgSPPwjg5g8WLavbKQlip5IC+aKB2tj9LSlU/fMvNBuystfX1aughvNdiCS2mZJNn6CR+lZSvNw10+wkLMw3XXVavlUVoOF/NwVWnpSoeitJSJAkDfVm3Pvsoq6f+ymof7kJYmxFRa+i4gspKWWTad8pgn/fjH9uuKUFr6BuIx5S2GT8s8zMNrtea6XRRpaVNauuquulDXQTdnlu/l69MyC2ybgzFIS3muWialpa9aHMjPPDyr0tL2XCpc85lWKC11ZR/TPJzybtRzdBZ0It28zMOzKC1DzcNtSkvK3EuGWu7qvCzEPJyVli0Dk5YMMygNsyil5ahRxfm0bLXS0lc1qJtYr7BC2L1U2CYbKnkgD+jy8/qSli4zJB2yKPlcMJVRGQLxLL+8+xxdPnt6wokfuf309ur7ANdg7prEyvWXYhrWKvNw+TnVe1PNdVwLFV379pm8uBbvNtLS5dNyuJiHqz4tfc3DKUpLXVu19QHivZTJPFye8K+0kvm8VpCWvgt+X5+WZVda/va39uuK8GmpzgdCSUvVDDu20jJUHReLtJRJvRhKSxdpaWur8nm2NF2E3cor1z+PG+e+nw15vDsZ8lxVp/73IS2p80AKaemz8aLbKBAog9LSh7QM9WmZZb3pgq6dqYSXTzoxfFrq4CP+oMDk05JSFylrV8p8puxKy9ikpTw3tI19rLRk0pKhQKe0tA1meZKW739/emzFFYHjjks7hI98xH0dkC9pqZaHjrSs1Rqv8enM1E45JHr4H/4QNtFXYbv31KmNz/jee/XP8qLeRLD4OJD2XYDKaR54YPr/61+3p0FNWyCr0jJksaPCprQU8DEPnzIF2Gsve3qqCaDLPFwcU++vwxlnpP9vuim9ZuxY4Pjjzemox/M2D7dNUlykZSylpY60PProxv8qTIvIatXtAsKWF5t5OFVpWQbz8KxKS90CRz1H9yzqdYcckv4/7jh72joUYR7+jW+kfU5HB3D99ebzqH0bpX2GBuLxNTlsF9Iy1mKUAl+lZaVSb88m0lL054cfXv8tD6UlVb1ig24ck+u2zj0KBbLS0tSXqcdtgXh0vjbldA47LA3aUqmkY6vP/QR07Wns2PrnCy9My6a7O/0MAMcem/7/7GfN+dMh67vbaCNgm23Mv7vMw8eOtZNIF1+c/t92W2Cttdz5AWjjv6u9feQjKTlcqQA335we81Fauvo4Sn5VuDaSdWmrWHvttCwB4Kc/tadFuXcM1GrASSelnw86KP3/ne/4E5d7753+nzq1OX0ZOjU0pa83+bSMZR4u0o9lHr722vW2ecop+vRcpKVcdr5Ky5iBeKhucGQcc0zzsS98Id1YqlaBv/7VnD9WWjJpyVBQJvPw3XYDZswAXn65Ts7ceCNwxBH264BsPi1dO9m63STd4jxUaakSUb7m4bVaWnavvqoneWX4kpbHHw/84x/AE08AZ53VmLd33ql/lp8hhnm4r9JSztfVVwMvvACcc449DRNMZZSVtFQXZiFQJ1C6ukI1D//tb4FnnnGT5PJzL1miXyy6CARdG7z2WuDb304/77AD8L//Aa+80ki4+ZqHhy7wTebhNrO1UPNw10JF18eqJjaXXgo8/3z6XwcR1EWFS2npKj+bebipLuZpHh46UVeVlr6kpe58yuJGfde//nX6Hi+6qH6MqrTUEWsmhKrEV1ghHZNnzKgvMnWIqbSkqq7yDsTj2lzwQSuuDXnnvj4tgXo5mszDL7wwreNXXGFOt13Mw0M3HmObh9vmEh0dKan5wgvpeKqSJ6Z8UMZS4XcXANZcE3jttXTcXmed9NhPf5q+68svN+dPhyyk5fPPA48+Slda6kjLyZPtSstjjwX++1/g3nvpYw5FLega+5dfPr3vq68Ce+xRz78MmUj3sdrKU2lJER3ce2/6bPKGnev6vEnLc89N281vfpMemzAhHftOPZWezuWXp3VSEPly+jJ0AgQfpWXe0cMp4zDFoqpSSdeQpncNuAPxyP1uVtIyi9JS7XcpfcEll6T1QcaYMcBLL6Xt+oMf1N8LYKUlgIiO3xjDAhTSsiilZUcHsOqqjcdqNWCDDdz3DFFamhwmq9frFju6yW0s0jIkejiQ7qy7zIdd70vt0Ht6gB131P9uIi1dSss8fFqqJLOYRIfAdO+s5uEq8REC3aJS9Sdl2olXr11/fRqRSjEPV31aUkjL9ddv/C58+skom3l4q5SWKmlZqQDrrqtPH0gXYU8+qb+3j3m4Cpt5eF5KSxtpGUlp6XzukEA8OugWiup7jKG0VPuFLBsuY8a4Fd7D0aelOo6x0rIOOU8upaWuryraPLwdSUubebiLtBTnyCSj636U8UvdDFtxxeZrbOOSCVne3TrruPtvl3m4i7QE6ApLgRg+LWu1dDNM3hCzBYby2ZiJ7dNSvp7ix7Cz01ymrVJaVirNa4exY9O1FRWmNhCLtDQpLbNu2KvpU8Zhqhso8a7feEP/u0tp2d1d9+/pO87HVFr6+tcU16r1oVpN86WbM8r5Y9KSlZYMBWVSWpo6PMrgGkJamtJXr6eQlrrFORW+pKVtoAj1FWO6t00lFaq0jBE9PE+flnmZh8dQWqrwUVqqz0UlUVWlJcU8XL2XzpyN0ne4Fs2xAvGEmIcXpbSsVv0C8QBmpaWvebgKV/RwHeE6HM3DYyktdYjh01KtxzH7Rx1ikpY22EwrY44ZZQrEU6TSkqqK1ikts/i0LIt5eJlIyyxKSwrUMYVCgthI0CwIfXe6jTIdXErLSZPCfQyaEMOnJUWgYSMtfcb6mErLrGatrVBa+vRXIchbaZl17qumb8uLyTzcdwwWMCkthQVjq5WWIt8hSksdqNYkbB7OpCXDAtFYfEjL2EpLHSiKCtvC2DXR9FVa6szDYyotQ8zDqdf6kpY2c7FY5uExAvGEEsY65KW0LIq0rFTMqo2Q/Kg+LV1KSx10bZDyzopSWoryKSIQj6s/o/i0dCHUPDy20lJHOMY0Dw8df7Kah7s2uoj3DT5H3M90rlqPs264uFAUaRlTadkuPi1Dr40RiIeiqhJ1zSd6uMs8PERpSVXo+qSpkpah7SgLaRmqtHRBnadRSBDTuJIV1EW8CuqcjEJaUgPxUGG61ldpqSKW0tKXcLLlSb237yarilYpLU2Isb5Q300oaSnOySsQTxalpQumPJqUlqKf8yEt81RaFkFastKyAUxaMswwmUvL38tKWmZRWvqSlialZavNw9XPlGtVuAiGGObheQfiyQqqeskXMczDVVAIVp3KEohLWrreFyUoiQ6mdPMyDy8iEE8Mn5Yu2JSWRfq01B1vR/NwitJSddOgQ2ylpSk9V92MjVaQlnn7tIxJWmZZ9MYy+6OgVUpLVYlfFqVltdpYt0PHlyzRw3XPZZtLUOuaOk+jkCCtIC1jkEkU0lJ3nzIqLWORlrZ82UDxL52X0jLr+GHDggXm38qktFy0KP2fl3m4eL8U0tL3nqbzhem3CtHPtVJpKd8vxDxcB6r/ZVZaMmnJUCAvhkVDspl6xpzIl4W0dKlmdDvgLjNIn8mt6ofS1zy83ZWWujyxeTgNixfrj1OUxiHm4dTo4Sp05uGUBYdr4h/LRKbIQDwuNZOuj42ptLS1FapvR915JlM9H9KyVtOPP61WWlLMV2U1lQmx1JiA3TzcVTdjoxXm4b4+2Uaa0jKkrKlKSx1p6aO0LKtPS93zh5qEy6BEDy9aaekiLXXtyce3nw9CgyjFVFpWKvGCmwC08T9EaRnLPFxFTKVlVrKlFUpLk79FoFykpSBX8zIPp5SxyTzcBd/2VAalpfyMRZuHs9KSSUuGAh1pWXalJWVhnKfSUrdYLFJpaTONdnXIvqSlrVzffrv+uUyBeLKCSgT4Ig+lpWmHklL/qSRqSCAeWxoCWSagWZWWJiWaa9EiP1teSktKIB4X8lJa2szDdT4txXEZrnak2+nO26elq95QSJUlS9z3LUppORLMw32Vlr4+LakEHgUxN3fzhG28N21euwLxUO7j2izVwaaCVxHLp2UosgTi0ZWjbhPQlb4Kl3m4et8VV8xn41V3L+pvMUlLwL9PsSFEaWlzRyNQVqWlfH1W83BTXpi0rM/58zIPp8w/xL18STvfgIcxlJZqX1kGpSV1g42VlkxaMhRQSEub0jJ0p0GXVjubh6sKJp9BW82fr1oyptLSRajkEYinXXxallFpaQJFaUkts1b6tDQhL9LSlZ68+AwlLV1qCl35xiItXUrLLObhVKVlyKQxZ6WlMx2K+aq8MDaRCjF9WlardDO6spCWWeYLgJ9ppe1aYPgH4olxL/m7/Pw6NxkLFwLz5+vPV+HaHG2V0lLXN8cofwppqZZB2ZSWeZmGA/Z3Z1u4U59VHbfV68aPT/+HkOcmUPpmV/6zKi19+v2sSsuY5uGtUFq+/rr5txjri9hKyzJGD3fBlccVVmj8rlNauuqWa5z3XavoNugEWGmZO5i0ZJgRorTMAippSZnQFhk9XBeIp6Oj8RqfzsZXNWgj7GKbh4f4tDT5dmt38/AyBuIxwScQlQvy9ZTo4VSlZQw/b6GTCJP5rA9pGWoersK1ERRCWi63nP54rRYnEA+FnDQd91Va2szDQyeNqtIyBmkp1w1b+XvmzQqKqR5QHvPwrKSlbYPO1zzcl7Qc6UpL0zxQ7k++8AX9OSpc84zYSktqGcZ85zLKGIjH16dlnqSl7d3ZSIpQpaVpw6MI8/CspKWP0tKn34+ptGzH6OEmqyUgzvipPlNWpWXe0cNtyMs8fMUVG7/rSEuXGx6b0Eb3XYXNPDw0eJUK9mlJBpOWjEboFsM+SsssiKm0DDEPX289WnoUpWVXV+MgQgnKYEIWn5bHHGO/1pe0VP2ByN9nz65/lhfppo6WaoKru6+KkRyI5/zz658/8hH9Oab6v9NO6f9116Xf72tfq3++4AL9poarXrWLefhGGzWmJfoIAbldh0YPV6GWw4YbNn8+6qj6sUsuoaW7/fbNx7Kah4tJpC6NGD4tgZYoLbXm4QcemP7v6gJ23LHxN/FePvvZej7OO6/++0UXke5LOmfTTdP/m2zSeDxJzBt46uS/LEpLoL5Y22MP8zkTJuiPx1Ra9vTU++SPfrTxNx1pmWWTZTgoLU2LN7nPlOHyGWr7HkJa5qW0jIGzzqp/PvVU/Tkm83BdvbO1N1s9PfPM+uf997enqfaJK69sTjcrbItz22/LLktL/5e/rH/+whfSZ1t//fS7PIdqtXm47VyBvMzDYyot84oenucGjm1e1Srz8M99rvmc445L/8dSWoa4QclLabn11o3fdebhIaSlT5tzmYDLdSEP83DptwqTlohoQ8kYFshqHp4FoaSlrqP0UVr+4hfpgp4aCZdCWi6/fDbSsqurvhvsq5aUz19vPeDOO4GLLwb+8Af3tSpMvn5M34G0k6eoTEXAoZAolR0djWU6ks3Djz02JSVWXx249lr9OSal5R/+APzpT8A++9Dvt9VWwK23AnPnpgudu+5q/J1iHh4aiMeEvEjLk05KCZMZM4DddwfWWKPxPB/SMnQRcPXVwG9/m97r059Oj22wQdqu33gDOOAAWrp//GM6ET/jjMZ7xQjEo5twt5N5OEVpecklwG67AR/4QLrAvekm4IEHUsJfvJfzzwd22AHYeeeUyLz5ZmDevGZCQCBEaTltGvCXvwD77tsYCCNJmtP7wQ/Sex99dOPxvJWWPn3jo48C06fb6/EDDwC33AKcdhowa1b9uE2l5KoLat3s7gaeeAK4/fY0LzLRqyMts/T/eSstV10VWGcd4J57wu8D0H1ayvPGc88FLr+8majQ9REC7WIeHmu+O3UqcP31aR3adVf9OSalpbqI7u62P4+tfz3xxLQPWXdd4KmnGn9TA0Kqz56HT24B2+LcRoBR1Z+HHZbOQVZZBXjf+9Jjf/0rcNttwCc/WT8vptKyDObhrLQ046yzUpKspwd48cX6mK5Dq8zDzzsP2G67VGzw1FOp+fTGG6e/xaqrIWspcS/fe9rml5tsApxwQjqWCOg2yV2kpW59XKvV66Tr+dSNEDXPPT31PORhHi7XEzYPZ9KSoYASPbzV5uGxfVrKqiVd+ur1uh1wtbMaMyYbaTlqVJ20dO1S2pSWQLrInj8/jLRUy5FCWqqTXdOERQzSFHJHvc+4cY3KzpFsHt7ZCRxySPpZ947FOQJy/Z84EfjiF/3vKauidAs71+AdW2mZl3n46NF2tbLcrmOZh6vlMGkScPLJzed94AO09ARWXRX40pcaScusSkuxcFUn3JWK+do8zcNjKS116YwdC3z+8/XvU6emfzKWX76xvuy1l9d9Seestpq+zeqUll/8YtpXmgiQvODTltdeO/2zYcqUVBH18583kpbyfSibmTJ0JOQ666R/KspEWlKu/djH0s2lrKQlde4nz1HGjQO+8x3ge99rvNaHtAxROPqYh1PLP2bwJRmVCvDxj/vdW5SROm/o7rb3e7ZFeXd3SuABwL//3fibrk+XkSdpaVuc2wgwKmnZ0QF85jONx9Zeu7lfLTp6eIjSUn2/ZVFamvqHmIhJWh58MDB5cvp5553t5+ahtFTXTYBeDCPmF6qiPXST3AVKGedhHn7ssc1udUTfJ5d/iNKyo6N+HaXNLbdcuvmsy3N3t/k3KohKSzYPZ/Nwhop2VFpmJS1d+VCvpygtx4zJthsnT0xtvlUA2s5Y6CI/hLRUJ7umCag4jzIxVO/jmlCPJPNwGaYBOKZPSxWxSMsyKi1diBE9XEWe5p+6RXgWn5ainxo1Su9fUDdW+Ko/WqC0jDbhdyGmT0ud0lKUhymoR17Iqw7bFHi+6jyfeqiLHp5ljMnbtLxWi7MpZsunLdCGjqD0IS0pUZNVtJN5OAUmwlSntAwlLW33U9+Xeo88fXLnTVpSUYR5uO1+KnT1T6cYF8hCWmZVWsYMxGNCzPbo827zIC11fq998hTLPFyFbi6nIg/z8J6e5nIWfZ8PaWlSWsrfXZD7Qp3S0vQbFay0JINJS0YjKKRlOygtQ3xaUtOjkpZZBjZ5YuoiLSkT69BFvnqdGs0tBmkZYh6uDvCtMA8vi9JShmkS51P/s95TLS/dLrvOPDzLBFRMikPVjWodDHm3eSktY0L3rmJED69UGtu9LuIkpW7qUBaflq0CtT7oSEvxPSbhRkFeddjW12T1aenyuVgWpSWljsciLW35tPms0xGUOiWRQAhZo2K4k5aivHVKyzxUpa6N4TKQlmobjE1aFqG0lNtOiNJSRSzz8JhKy+FGWsa4L+XdZCFSY63NW+XTsru7eVzQKS3loFo6mJSWpt91kPtC2+ZNKKnIgXjIYNKS4UY7Ki11HZVAEdHDdbtEPpBJy0WL7OcWqbRU7zVhQnPa6mTXZR5OGWxl3226e6gowjy8LD4tZZRFaelCbPNwMVkIVTeq9SXk3cZSWsbsU1XEVlrK/ZTcJnW786ERv4swD1euc0YPj4UY6hsBnXm4SWmZ9/MVpbS0KSZiRg+v1bIRALr08ry2aKUlhbT0UVqqCFFaljl6OAWmsvc1D49FWqr3KIN5uDo2CPPeWCjCp6XcdmKQ92VRWhZhHh5zHPNp2zH6gZCNGBvyMg/3iR7uS9q5SMsilJaUMpb7QrUuywKMJUvcaelANQ9npSWTlgwF7Wge7rvwy1tp2dFhX1hTIE9MfUnLmErLxYvtadRqqa88GVmVlrr3qU6QXUrLdjAPj6kGFaCoQstIWtp8IFIgfEsWbR7ukwb1+fJcGOvIqxhKS6BRSaV7htDnKkJpGWKOWhTyUFrmjVaYh/sqLdV37iLv20lpWa3GcQFgy6dNSRWbtCyL0rLIfsGUR1/z8NDNMlZaFmMeLj9P3krLVkUPbwelpQ/JF4MQzJu0bIV5uG/sBluaOtIylk9LX5NruS9csKDxN5m0lNfLPqCOVay0ZNKSoaAdzMNDJhJ5kpadnY3HBKHWKvNwXbmZ8uIqu5kz658nTtSf4/I36RuIh/I+XRHd2sE8PA+UxTzcVz2X9X2JiQebh/ul7VJautqiSWkp2jzFPNwFH9IykrqgVObheSgt80YrzMN9iWefBX21Wh7Skqq0jPHObWn4kJaVCrDMMmH3AcpDWrbSPFzAV2kZulnWSqWlbXE+nM3D81Za5hE9fM4c9/XDjbSMse6NTVqWwTzcVwnoIi0p5uG+SsvOzsZ0KUSr3Beq58vtLQ/SkpWWDWDSktEISvTwsiktfUlL12LDpVRUf+/qaiwTQahlIbXKorSUScsJE/TnuEhLU0crlFkhg60qw29F9PC8g1mEoIzm4TrToFqtMa9ZJ59ZzcNNCjUfjORAPEBjuxcbLT4qEhOKMA9XUJh5eEyMRKUl1eeiDj4Leh1p2SrzcErdjEVaxvJpudxy9nwXbR4eajLdjqRl6Lij+iAti9JSrmvq2OByG+SLsvm0LNI8nOpe4Y033Oe0Q/RwnzzGmB9QTImHu3m4DVTzcNd70wlasigtVbDSslC04cyckSvaQWmZlbT0Xcyo1+smAvJuj1Batso8PKZPyzffrH+OTVqK80Le59y5jd+ZtExRFtKS0sbk8su6wM5qHh5jgd8OpKXuXWUxD5cnbHK7F21ebvuhZawGbcrDPFxBqUhLn4lqWZSWed3PZ6yIrbTUbVaGYjgoLX1Iy6xk0khXWsr5yMs8vF0C8ci/6Ta0YqJsPi19zcN9XGCosJWl7GPeRFrGNA83EVNFb8YJxJgfqGbGWe+Tl3m4T9/rax5uA1Vp6Qs1EA8lz7YgcjFIS+oGASstmbRkWDBcfVr65kO9Xqe4kAegGErLffetfz74YPu5lIl16CL/kEPqnz/1Kf0566/f+F0lMV3m4SpM7/MLX9Dna5118iUtTWWXk3n44B57hF9cFvNw1+6nSpbFUlq20iQ7lnl40X7Tsigt5bzq2rM8IQwtY9UtxfjxuZOW0Re/MtZYo/7ZtBEkw7bg++xn65932cVcxkUv7t73vvrnbbeNl67OVYAJrneY1adlq5SWFOKhVmusZ/L78AHVp2XepGWI0jKGybRubrXPPvXvrrlZFpgsEXRKS1udWGEF//sBrTUP32KL+ucPf7jxN7k/lF0OxFZZAn7Kbhdi+LT0VVqqyGIeLt/785+vf546VX/9xz5W/2xaO2RF1nFNJqNUl1M2rLxy/bPq058KuX/efHP9OVnMw7PMYeT7UspY3Ete+62zTvj9gbQemzZKspKWZVBabr11/fMGG5jP883rMEfB2++M0kNHNrSKtDR1TFmVlgDw178Cv/oVcNJJ7vTV63UKjXnz6t9jkJaHHgo880zqL+ab37Sfm6fS8mtfS3dSV1wROOww/TmHHAI89BDw1FPARhs1T+RNi26TjytTns4+Ox0UJk4EPve59Nj06cAZZzSSvEBcFUBHB3DttcB11wF/+EP9eGSlZTJ+PP630UaYeNll4btJFP+bZQjEU6nEVVpmNQ8fKUpLFariVfe7igcfBH74w+b+QDexkydZ8nPdcQfw058Cxx7rzuPxxwOvvAK8/DKw667ATjul11PzG4BclZa33gqceiqw114pAeuCjbT88Y/TejV5MrD33sDjj+vPK1ppufbawMUXA/feC5x5Zrx0V1ml8TuVVKP87mse3iqlpVoGOlSr6Tj5y18Ct92WjpEhoCot1TqqBspzEUquvjFEaRnDPFw3th1xBPDvf6cb1d/6Fi2dEPgoLcePT8+X+9sDDkiJI/VdmKA+ayuVllttBZx7LvDEE8A55zT+Jq9RRo0CfvMb4E9/Ak47LX4+1D6BWpY6xDAP91VaqsiitHzoobQvP/DAdL49c2ba7o86Sn/95z8P/Oc/qRn0ySfT7+uDrOP03/+e9o377edXn5dfHvj1r4GbbgK++92we0+Zks6B7r0XOOss/TmtUlqKd33QQbR5q7jXxInAL34B/O1v4WOOgK4e68zDfRGitMyDtLzuunRtv9NOwLrrms9bbTUMbrst5r77LsaMHUtPf5iCSUtGI0aCeTiQLvD23puWD/V63eJl/vz69xjm4dVq82TNBEoAglDScvnl04WPDaNHpwOVL0z3Nh1ffnngiivq3488Mv0DmssgtgrgU59K/+T7RFZaDn75y3h0002xd+jOLdC+5uFZiTox8QjdbY5B6riUltS+smgTRFs91pXftts2kvcCPqTlbrulfxRMmgT87neNx/I2D89Tabn++ukmCBW23fUVVgAuv7z+vSxKSyAlpCmktA8mT278XpR5eOzo4Vn6G0qwEfG+5TEyBKE+LdXnc5GWFGW+C0WZh9dq6WZB3vBRWtZqqeJrxoz02BprAL//ffj9gNYqLYF0w1wHmSCvVtNN8rwUr+rYaDMTdcFUH+XniUHe2/olnzmr2ia32CIlWgQuush+fUcH8JOf0O8Xgqzj2iab+LcTgcMOMws5qDjuuPTPhCxKyyxzoS23bJ7jUU2YjzrKTGT7QLdOGU5KyylTgKuvdp93+OEY+Mxn8Pdp07D3LrvQ0x+mYPNwRiMopGXZzMNDSEuffKjX6xQaMmkZQ2npgyzPXybfbQIheSpSBSAQ26elKwoeBWUxD5dhUm/L7aPVSssYpM5IUVqa4CItY6r98u7PytQv+vgDo7T/doZK2BUViKdM5uGjRrlNfmP1IdTo4S7SkX1a+sM0z9aRlkAjoR/iW059NtUSphVzLB18SL6s8CXfbaAoLUP87fuc4zNnbYegH63yaVkUfJ4vr0A8FORxr3ZUWlKCKzEyoUQzc0YpQIkeXjalZWyfliHRw2XzcKG0LIq0zPL8ZVqcC4QMgExapmgXpaVqHt7q6OFlMg8v2qdllkA8MvLyaanDSArEEyOqqUm11W5QScssSksfn5ZlMg8H3Cbisd4xlRR2ERwuhVoeZE27Rw+X273LPBxobBum4Cg2uObVavm2irQ0lUseUMfGVpOWIeS9DCYt2wutMg/3RR73yktpKdTyAjGVluxzMneUaGbOKAXaQWmpHm+10rKrC+jtrX8vWmk53EjLGEpLNeJwHoj9fuU6FIqykJYyTErLPKKHl9k8nJoXH5IqK1xKS58NBB/z8Kwwva9IO/65mof7IobSUkYZ+3wqYpKWvubhatlm6f+z1i9XAKeilZauOprFFyAwMpWWpr7TpLSU20YI4eR6trxd8FAhl8twIy19+yzfc7KYh5cRTFrWEdM8XAeqeXgs5EVaVquN41pM0pKRO9p49sooDGUjLctoHi5DkJZFmeSxeXhjnezpKea5YistQ0y6VJieO0/SMqQ9qubhrVZalsk8vMjFgit6eEzz8DZSWpaqX/QhICh+08r0bL5YbbXG70WZh8dWWmZFUaRlqE9LFVnnQj7BIEzfqb/ZziuSJDFFlaaQliHwJczKYB6ed18W0zzchNg+LW1pDDelZTuPZRRkUVoOZ/PwrGNvXubhjNwxzFs8wxvDNRCPTz5DoofLYPPwbMhKWhalAIjxfuX3EkNpaSo7+T6xB1mfxaIAm4eXA6qpjIqYSss28mlZKvNwH5Mj07scLqSl2BAUyPIsWX1atpK0nDjR/nusd0yNHp73Rgsl/TzMw0PGtlgwKQop5uF5wMedQp5oV/NwE3yep0jSkpWWrcdINg/XjT0xlJZq2qy0bCu08eyVkQtaaR6uDrYxfVpm9QsWorTkQDxhyEpaFqUAiDFpl+pIJYZPS1NbKJtPS1VpmRVZzcNjEIou83AqijYPt93Ppy2qhBLQvj4ty0Qwx1BaFmlSWSSyvCeXzz71Nx+SM2+4SMtYbc1WJmUnLUeyeXgIFi60/+5DCueJIjdgYpKWpjrso7Qs0jyclZatR5nMw23I4166thCLtJT7U1ZathWGeYtneMNXaZnnJC6m0tJnUp1VaVm0eThl8mh6T2Uc9EMWQK0gLWMsWuW6E4O0bBfzcFVpmXWCLCYeoerGGBN0l9KyjKjV7O3NZ2GqUzi3qXl4qZSWMXxaDhelpYo5c8Kv9SmHsiktizIPt0Euj6ykpet6ShvwIdVCg6K1yjy8CKXlggX238uykdOu0cNNiB2IZyQpLYc7RrJ5uA4xoocD/kpLm09mJi0LxTCavTKigBI9PC+lpYqYpKUPkeVSWuqih8sDxuTJ6X82D0+x1lrNx7baynx+iG/HdjUP33bboY/JGmtkT89UF+QyWWaZ7PeR4VK4UALxZCUNp0xJ/4e+E51K0BexlJYx8kJFtWqfkPn0D2PHNh9j0jI75H7B1m8C5jIu0qQyb8j9VxbiUC4HXX2S+9KVViqX0nK99ey/x2prVOJP139LYxvWXNN+H9lXqeq3FKDN33yUltQN5VZGDzf1neoiWZCWrojyLsgR3nV1uyz9xiab1D+vv36+9zJZUcWED2lpegcymWrb0BhuSsvhjjIpLVdc0fxbUX2DGO9lS4OQPnnDDeufN9rIfb5tvJA3i7IGnGM4UZJRiFFKFG0eriIrafmXvwArrAAcc4zbnMqVnss8fPr0dGGz//7AzjvXjxcBqnn4SScB48b5X5sVN9yQduw77JAuutdYA7jmGvP5WQPS5Km0vOaatAxPPDGO0uaXv0xJ3c03x+CJJ2ZPzzTp/dSngNVXB7bfHnj/+7PfR0aI3y/VPNxngnzDDWm7/shH0rLbcsv0fQB+7+S224Dx44FDDgHWXZd+nQlZlJY335xOCo84ok7AFoFaLSUUDj88vf/NNzf+7rODPm4ccNxx6f8//jE91qY+LUuFL3whbbdrrAH87nf2c4d7IB4AuPvudDzffXfgQx9q/O3KK1Py/FvfcqfjIi3vuSclAD7+cWCnnfSblVlw5pkpUfSzn/lfu/32aZ9uQtFKS13//f/+X7qBu/32wFFH2dP65CfTd7nqqsBNNwEA+v/0J/QutxwGjzySRsj5jEOdnemYMW6cvU2VUWmp5kmQlh0dwCmnpHXqiiv87/eBDwBTp6Z1/p57mn8vi9LyoovS8XqTTYDTT8/3XuocPsv7p5iHh/q0vO22tE/ce29gzz3N17drIJ6Rqvosk0/LrbYCDjwQWHll4JvfzPdeMv7f/0vH9G98o94H7bxzOi6vvDJw113uNC68MO0Xzzkn/f697wEbb5z2Iz/5CS0fp5+epnHppY3H99gD+OhH037z1lupT8UIREH2q4y2gUkVZfqe50Qmq0/Lj34UmD3bv0MNMQ9///uBmTPdC6E8QH0HP/oR8MMfNj5fEQvYTTYBXnml7j8vSez39Qk8IbBkSf1znqTlgQcCBxwQr9xWXx144YX0HcaIHm6qC+utB7z0Uj7vO9Q8XG4fPhPkffett+vBwTQt8dw+GwUf/jDw5ptpOuefT7/OhCyk5V57AbNmFU8oiftdeWVallkDT/z0p+kEUVzXpj4tS4WuLuD++/XvRwXFPLzdgxdstRXw2mv6sjj8cODQQ+l9kICuPu28M/D66/W0YpuHn3IKcPLJ4T6cr702JT7XWaf59yLagcun5frrAy+/TMtLrQb87W8NdTyZOhU3//rX2HuffWjqCl+fiz/+MXDuuW5fprbveYJKZsnuXs48E/j+98Pr1E03mfuZsvStq6wCPPdc+jlvIrUI4UEMpeV225n7RBntSlqOVJTNPPyaa9J68dBDaV+T570EDj0UOPjgZt7h+utpcyIA+NKX0g11ce6YMcC//lVPi4JTTwW+/W39OPOXv9DzwsgEJi0ZjdANoGqjLmrH1dQBqAsMn0ln6H0pPi1bZT7m8z5aNQkX95EJJhNCfDsuXlz/nLd5eOwyi5le7LYQcs9qlTb5dil1KPfMqoTRkWuhyGoe3ooJj2sDI2v/mZd5uKlsI41NlTIqO6gKZh2GWyCeGP0cZYPRpnCLMb5nfRemPJTFp6Xv82WZn4Qq/n1+L4N5uArVXDxrnaKotVuNotYgRQgPfJSWWfs9nz6rjGPgSINPWw4JUBuCarXZt2vecwpT+lnGh5DyacX6itEALmVGIyikJWWyGgOmTiVE2eUDX9LSNLEpk3l4HtfmhRACadGi+ueiAvGUEa0w4XItFk3qbRO51QrkQVqWsW2pcOUxa30q2qdlrPrfrgu2kRaIJwvkcqDUzdhKyxgw5bsIcs3l07Jo5LEhq/YnZTAPVxE7sJ4JsjXLSEFM0tI0pvgoLbOClZbtBZ8+rMi5f9GkJYOxFFzTGI2gDKCt9m2TN2npax5uKo+ymYfrUMbBJoTAkpWWI5m0bLVaT+TBVSfVaLytniDHIC2Lau8x4VqEZ61PcrkW4dMyFtqVtKSopMrY57cCvq5cykhaUl3o5AGXeXjRiKGkUdFK0pK64VMUaSnPsUYKiiBqfUjLrHWao4e3F8o6VqukZas5AcaIQUlbBKNloAygre5I85bBu5SW1IlrGc3DVbT6XeoQQiAxaZmiFe8zhtKy1RPkPJSW7QBXX5a1by3ap2WketS2U3BWWtLh8mmpolXuX2xg0rKOIlzflJG0LIo8H4mk5cKF8dKiKC3z7ps5enh7oaxj9TLLNH4vaz4Zww5c0xj+aPVktWzm4SaweXgYspqHqz6eRhLKaB5uuoaVlq1HqON/Koo2D481HpWBhAkBKy3p8CUtY0cPj4FWmoeXadMJGH6kJbXNFlX2I5G0lOeVec2t5PdcJvPwMrTpkY6yjtV597XtHiyQkRtK2iIYLQObh/ubh5tQBiWGC2UcFEMIJLneMmlZLFztUZenSqXxuuFAWrZDe/dFTJ+WMUldU7810knLkRA9PBbkMhluSssixvWy+7TMYywscr5E3fApquxHOmmZlwWPj9Iya51mpWV7oYzrMx1i97Vl2BBklBJt0iIYhaFIp9ChaBelZVHKqyyTizIOilkJpJFsHl5GpeVIDcTTDnCRczF9WhZBlkVaaJUyejgFbB5Ohy+hXkaflmVRWpaB4BipSsuiyn4kBuKRzcNHj86WlmlMKVJp6dMmytCmRzraZayOnc92nEszCkGbtAhGYVh22fpnioPvMvjQK9qnZdmUllkW2GUcFLMuDEay0rIV71Ntf9Vq4ztQ/d+Ia8q06JXbqi6/FLSjeXjepGVe5uEmRBoLkrJu2LlgyrfcHuUxfiTDl1AvI2mZt09LW58m95NlGHOLUFoWSVrKm6+2MamoMV8uzzK87yIg1/+VVsqWVgyflkWOS2VS5Lfj3CoGyrg+KwJlGFsZpcQIbREMEwb+8If0w6hRwMknuy9Yd11go43Sz+eemz0Dn/50+v+QQ8zn6EiSmBg9unmQLDNpOXYssPXW6efvftfv2rIMirfemv5fdlng+OOzpTVSJtQ6tIJs0bXHU06pL7quvz79L/qTXXbJ16flccel/z/yEfo1J51Uz++NN9KvE+1tm22AFVZo/v2YY9L/H/sYPc0yIaZ5eOxFkPp+N9wQWGed8PQuuQQAkKyxBt7ZcMMMGWshKhVg113Tz1//ev34Oeek5V+pAFdc0Zq8lQ2+ke3LaB6et9LyYx8DJk5MP191VeNvv/hFffPpggvi3C8L1Pez/PLx71EkkXPRRfVxcmnfNITLL0//r7oqsMcexeTnhBPqY+Rf/1rMPVuN00+v9w1q/Y+FvK3bjj02/b/33u5zxdxnzJj63KUM2G+/ej8k8LnPtSQrhcJ3ffbFL6b/p06NnxcV3/lO+n/bbbOrkFUwackwYIRuXzBMSHbdFXjuuXTCR9lZrFSABx9Mr9lii+wZuOoq4KtfBbbckn5NHj4tV10VePXVxmO6zzYUtTtYqQD33AM8/TSw1VZ+15aFtNxjD+Df/wZWXBEYNy5bWmwe3lpUq2nf8dJLwLvvAuutlx4/80zgk58ENtmkfp5ATNLywguBww8HNtuMfs348Wl+584F1l+fft2pp6YTxI020pf9z34GHHlknL6xHZGXT0sAuOEG4PHH0z7viSfS95al/h9zDLDdduifPBnJvffGymXxuPVW4F//ahwL1lwTePlloLcXWGutlmWtVMhKWpZhYWUav2ORa93d6bj86qvApps2/rbRRsCLL6b3mjw5zv2yQC2LPPJUJGm5wQZp+QLAGms0/nbEEekcecqU4uph6BjZzpgyJX3mJUuAtdfO5x55k5YXXQR89rO0+dA++6TriJVXTonLvr74+QmB6IdmzEjbxWOP+a912hG+6zPxrjffPI/cNOK73003tYRoKSbKMLYySgkmLRnNECQDFcss40cy2tDRke7c+CAP4m3SpEbSUp5MlE1pCaREnVBb+qAspCWQTkZigJWWrYWoUxMmpH/ycbmO5kVaVqup8tEXan4pqFTs7a5W8+/PioTLPDyrb0dfYsgHXV31so0x/lQq6WS/LAu1UHR36+v/pEnF56XM8K2bKmFVBqWlCTHH9bFj0z8dpkyJd5+sKIK0LHq+pJKVMnw25WIhZIxsd8TqNyljqWv+FjK/850PldXKQO6Hyjynignf/qbI+aY6n48JJi0ZBpSIsWAwApEXaWkCdeJQ5kWNQJlIy1gYyUrLMrxPqhqlTD4tGfmgaJ+WDAYVwyEQjwntGkgqC9T3kwdJX4bxlTF8wfWLIWOk1od2WDszWoIR2iIYwwp5qMtsE15qpON2cB49HAfFkUxalklp6XMek5atQd7kBpOWjLJCVtQON9JyJPanRZCWDEaeyENpyWhfDMf1GQVlHlsZLcUIbRGMYYWilZZU0rIddouG46A4ks3Dy/A+qXmQSayRuMgeCcjTpyWDkQVZfVqWuT5T5yjDCer7UQN3MBitBGWDsAzzN0Z5MFLrQzusnRktwQhtEYxhhaJJS3mxY0M7dLzDUf3ESsvWgpWW7YO8fVrK1w/HvobRvshqHl6GvtYEJi3bY/7FYMgoc5/CKB4jlbRkpSXDgBHaIhjDCmVVWpZZiSEwHAfFkay0LMOkN4S0ZLQGRfq+Y9KSUSbIm4+UutlO/dVIJC1H4jMzhhfKMH9jlAftNObEBJOWDANGaItgDCvkMdDbIk+yeXi5wUrL1oJJy/YBk5aMkYqs0cPLjJFI4L35ZqtzwGCY0aro4Yz2xUidI7fD2pnREozQFsEYVsijY7f5Q6Kah7PSsjUYyUrLMrxPJi0ZOrRDf8gYOcjq07LMGImk5euvtzoHDEY2tFMfw8gfI5WkZqUlwwDuIRk0rLlm+n/06NbmQ4c8BvqODmDs2PTztts2/rbNNvXPRx5pTkPOl5pGWTBcJkn77lv/PJKjhsr1zFY38wS1Tn3mM/XPZ5+dT14YzTjuuPrnXXZp/n3q1PrnVVfNdq8f/KD++VOfypYWgxETw4W0XH315mM77lh8PlqNgw6qf/7Rj+KlO2VK+n/ZZeOlyRh52Hnn+ucvfKH+WR4jDzyw+bpjjql/3mGH+PliMMqG449vdQ4YJQVLHxg03HEHcPXVwP77tzonzchrMXH//cAf/9hIrgDA+PHAXXcBDz8MHH20PY0nngD++lfg8MPzyWNWlHUh5otf/CKd0O2228hWWsp186ijWpMHap3abDPghhuAGTPc7YgRD2edBay9NrDppnpS8sorgV/9CvjAB7K7WjjxRGDMmJRY2WSTbGkxGDGRNRBPWXDnncA11wB77ZX2/VtsMTIjZ2+6KfD73wOzZzcSPVlx553lnfsy2gerrJKuox57rHG+4xojzz0XWG89YMstgQkTissvo/UYaUrLk05K6/kee7Q6J4ySgklLBg1TpgDf/Garc6FHXh37BhsA3/qW/rddd03/XNh00/SvrCjrQswXK60EnHxyq3NRDlDrZl7wqVOyQpZRDJZbDvjqV82/jx8fry319PCuOaOc6Ourf25n0nKttepzsy23bG1eWo0DDoifZpnnvoz2wm67pX8yXGPkmDEpmcMYeRhppOVRR6XrbgbDgJLOwhgMD5R1MdEO4LJjxAbXKQaDUXYMF/NwBoPBYDAYjGEOnoUx2h+8mAgHlx0jNrhOMRiMsmO4mIczGAwGY/hhpCktk6TVOWCUHDwLY7Q/eDERDi47RmxwnWIwGGWHrLSs1dznc7/GYDAYjKIw0khLBsMBnoUx2h/csYeDy44RG7y4ZzAYZYevebiszGQwGAwGg8FgFAZeXTLaH0y8hYPLjhEbXKcYDEbZIZOQnZ1+5zMYDAaDkSdG2lyazcMZDjBpyWh/cEfHYDAYDAYjBBTzcFmZyWAwGAxGnhhppCWD4QCTloz2B5OW4eBBkcFgMBgjGWwezmAwGAxG68BreYYDTFoy2h89Pa3OQfuiq6vVOWAwGAwGo1jst1/987bbus+fOLH+eaWVomeHwWAwGIwhjARRyXLL1T/zuMpwgElLRnviwQeBD30IuOQSYPToVuemvXD//WnZ/eIXQHd3q3PDGA646y7ggx8Errqq1TlhMBgMN37+c2DffYETTmgkME2YNAn40Y+APfYA7rgj9+wxGAwGYwRjJJCWf/878OEPA+efD6y8cqtzwyg5CDYxDEYJse22wN/+1upctCe2357LjhEXu+4K3H57q3PBYDAYNEycCNxwg981J52U/jEYDAaDwciGzTYDbrut1blgtAlYaclgMBgMBoPBYDAYDAaD0WqMBKUlg+EBJi0ZDAaDwWAwGAwGg8FgMFoNJi0ZjAYwaclgMBgMBoPBYDAYDAaDwWAwSgUmLRkMBoPBYDAYDAaDwWAwWg1WWjIYDWhr0vLiiy/GlClT0NPTg+222w7//Oc/redfd9112GCDDdDT04NNNtkE06ZNKyinDAaDwWAwGAwGg8FgMBgMBoOKtiUtr732Wpx44ok47bTT8Oijj2KzzTbDnnvuiVmzZmnPv++++3DQQQfhyCOPxGOPPYb99tsP++23H5566qmCc85gMBgMBoPBYDAYDAaDoYCVlgxGA9qWtDzvvPNw9NFH44gjjsCGG26ISy65BKNHj8bll1+uPf+CCy7AXnvtha9//et43/vehzPOOANbbrklfvrTnxaccwaDwWAwGAwGg8FgMBgMBUxaMhgN6Gh1BkLQ29uLRx55BKeccsrQsWq1it133x3333+/9pr7778fJ554YsOxPffcEzfccIP2/CVLlmDJkiVD3999910AwDvvvIO+vr6MT1A+9PX1YeHChXj77bfR2dnZ6uwwGCMO3AYZjNaD2yGD0XpwO2QwWgtugy1Gfz/kUu97++2WZYXROgz3djhv3jwAQJIkznPbkrR86623MDAwgAkTJjQcnzBhAp599lntNTNnztSeP3PmTO35Z511Fk4//fSm42uuuWZgrhkMBoPBYDAYDAaDwWAwiBg/vtU5YDByw7x587D88stbz2lL0rIInHLKKQ3KzMHBQbzzzjtYccUVURmGku333nsPkydPxowZMzBmzJhWZ4fBGHHgNshgtB7cDhmM1oPbIYPRWnAbZDBaj+HeDpMkwbx587Dqqqs6z21L0nL8+PGo1Wp48803G46/+eabmDhxovaaiRMnep3f3d2N7u7uhmNjx44Nz3SbYMyYMcOyUTAY7QJugwxG68HtkMFoPbgdMhitBbdBBqP1GM7t0KWwFGjLQDxdXV3YaqutcPvttw8dGxwcxO23344ddthBe80OO+zQcD4ATJ8+3Xg+g8FgMBgMBoPBYDAYDAaDwWgN2lJpCQAnnngiDj/8cGy99dbYdtttcf7552PBggU44ogjAACHHXYYVlttNZx11lkAgBNOOAG77rorfvzjH2Pq1Km45ppr8PDDD+Oyyy5r5WMwGAwGg8FgMBgMBoPBYDAYDAVtS1oeeOCBmD17Nk499VTMnDkTm2++OW655ZahYDuvvvoqqtW6kHTHHXfE1VdfjW9/+9v45je/iXXXXRc33HADNt5441Y9QqnQ3d2N0047rckknsFgFANugwxG68HtkMFoPbgdMhitBbdBBqP14HZYRyWhxBhnMBgMBoPBYDAYDAaDwWAwGIyC0JY+LRkMBoPBYDAYDAaDwWAwGAzG8AWTlgwGg8FgMBgMBoPBYDAYDAajVGDSksFgMBgMBoPBYDAYDAaDwWCUCkxaMhgMBoPBYDAYDAaDwWAwGIxSgUlLBi6++GJMmTIFPT092G677fDPf/6z1VliMIYFzjrrLGyzzTZYbrnlsPLKK2O//fbDc88913DO4sWLcdxxx2HFFVfEsssui/333x9vvvlmwzmvvvoqpk6ditGjR2PllVfG17/+dfT39xf5KAzGsMDZZ5+NSqWCr3zlK0PHuA0yGPnjtddewyGHHIIVV1wRo0aNwiabbIKHH3546PckSXDqqadilVVWwahRo7D77rvjhRdeaEjjnXfewcEHH4wxY8Zg7NixOPLIIzF//vyiH4XBaEsMDAzgO9/5DtZcc02MGjUKa6+9Ns444wzIMXm5HTIYcXHPPffgox/9KFZddVVUKhXccMMNDb/HanP/+te/sMsuu6CnpweTJ0/GD3/4w7wfrVAwaTnCce211+LEE0/EaaedhkcffRSbbbYZ9txzT8yaNavVWWMw2h533303jjvuODzwwAOYPn06+vr6sMcee2DBggVD53z1q1/FjTfeiOuuuw533303Xn/9dXziE58Y+n1gYABTp05Fb28v7rvvPvz617/GlVdeiVNPPbUVj8RgtC0eeughXHrppdh0000bjnMbZDDyxZw5c7DTTjuhs7MTN998M5555hn8+Mc/xrhx44bO+eEPf4gLL7wQl1xyCR588EEss8wy2HPPPbF48eKhcw4++GA8/fTTmD59Om666Sbcc889OOaYY1rxSAxG2+Gcc87Bz3/+c/z0pz/Fv//9b5xzzjn44Q9/iIsuumjoHG6HDEZcLFiwAJttthkuvvhi7e8x2tx7772HPfbYA2ussQYeeeQRnHvuufjud7+Lyy67LPfnKwwJY0Rj2223TY477rih7wMDA8mqq66anHXWWS3MFYMxPDFr1qwEQHL33XcnSZIkc+fOTTo7O5Prrrtu6Jx///vfCYDk/vvvT5IkSaZNm5ZUq9Vk5syZQ+f8/Oc/T8aMGZMsWbKk2AdgMNoU8+bNS9Zdd91k+vTpya677pqccMIJSZJwG2QwisDJJ5+c7LzzzsbfBwcHk4kTJybnnnvu0LG5c+cm3d3dye9+97skSZLkmWeeSQAkDz300NA5N998c1KpVJLXXnstv8wzGMMEU6dOTT73uc81HPvEJz6RHHzwwUmScDtkMPIGgORPf/rT0PdYbe5nP/tZMm7cuIY56cknn5ysv/76OT9RcWCl5QhGb28vHnnkEey+++5Dx6rVKnbffXfcf//9LcwZgzE88e677wIAVlhhBQDAI488gr6+voY2uMEGG2D11VcfaoP3338/NtlkE0yYMGHonD333BPvvfcenn766QJzz2C0L4477jhMnTq1oa0B3AYZjCLwl7/8BVtvvTUOOOAArLzyythiiy3wi1/8Yuj3l156CTNnzmxoh8svvzy22267hnY4duxYbL311kPn7L777qhWq3jwwQeLexgGo02x44474vbbb8fzzz8PAHjiiSdw77334iMf+QgAbocMRtGI1ebuv/9+vP/970dXV9fQOXvuuSeee+45zJkzp6CnyRcdrc4Ao3V46623MDAw0LAQA4AJEybg2WefbVGuGIzhicHBQXzlK1/BTjvthI033hgAMHPmTHR1dWHs2LEN506YMAEzZ84cOkfXRsVvDAbDjmuuuQaPPvooHnrooabfuA0yGPnjxRdfxM9//nOceOKJ+OY3v4mHHnoIX/7yl9HV1YXDDz98qB3p2pncDldeeeWG3zs6OrDCCitwO2QwCPjGN76B9957DxtssAFqtRoGBgbwgx/8AAcffDAAcDtkMApGrDY3c+ZMrLnmmk1piN9kVyztCiYtGQwGowAcd9xxeOqpp3Dvvfe2OisMxojBjBkzcMIJJ2D69Ono6elpdXYYjBGJwcFBbL311jjzzDMBAFtssQWeeuopXHLJJTj88MNbnDsGY2Tg97//PX7729/i6quvxkYbbYTHH38cX/nKV7DqqqtyO2QwGKUGm4ePYIwfPx61Wq0pSuqbb76JiRMntihXDMbww/HHH4+bbroJd955JyZNmjR0fOLEiejt7cXcuXMbzpfb4MSJE7VtVPzGYDDMeOSRRzBr1ixsueWW6OjoQEdHB+6++25ceOGF6OjowIQJE7gNMhg5Y5VVVsGGG27YcOx973sfXn31VQD1dmSbj06cOLEpSGR/fz/eeecdbocMBgFf//rX8Y1vfAOf/vSnsckmm+DQQw/FV7/6VZx11lkAuB0yGEUjVpsbCfNUJi1HMLq6urDVVlvh9ttvHzo2ODiI22+/HTvssEMLc8ZgDA8kSYLjjz8ef/rTn3DHHXc0Sfe32mordHZ2NrTB5557Dq+++upQG9xhhx3w5JNPNgxY06dPx5gxY5oWgQwGoxEf+tCH8OSTT+Lxxx8f+tt6661x8MEHD33mNshg5IuddtoJzz33XMOx559/HmussQYAYM0118TEiRMb2uF7772HBx98sKEdzp07F4888sjQOXfccQcGBwex3XbbFfAUDEZ7Y+HChahWG5f+tVoNg4ODALgdMhhFI1ab22GHHXDPPfegr69v6Jzp06dj/fXXHxam4QA4evhIxzXXXJN0d3cnV155ZfLMM88kxxxzTDJ27NiGKKkMBiMMX/ziF5Pll18+ueuuu5I33nhj6G/hwoVD53zhC19IVl999eSOO+5IHn744WSHHXZIdthhh6Hf+/v7k4033jjZY489kscffzy55ZZbkpVWWik55ZRTWvFIDEbbQ44eniTcBhmMvPHPf/4z6ejoSH7wgx8kL7zwQvLb3/42GT16dPKb3/xm6Jyzzz47GTt2bPLnP/85+de//pXsu+++yZprrpksWrRo6Jy99tor2WKLLZIHH3wwuffee5N11103Oeigg1rxSAxG2+Hwww9PVlttteSmm25KXnrppeT6669Pxo8fn/zf//3f0DncDhmMuJg3b17y2GOPJY899lgCIDnvvPOSxx57LHnllVeSJInT5ubOnZtMmDAhOfTQQ5Onnnoqueaaa5LRo0cnl156aeHPmxeYtGQkF110UbL66qsnXV1dybbbbps88MADrc4SgzEsAED7d8UVVwyds2jRouTYY49Nxo0bl4wePTr5+Mc/nrzxxhsN6bz88svJRz7ykWTUqFHJ+PHjk5NOOinp6+sr+GkYjOEBlbTkNshg5I8bb7wx2XjjjZPu7u5kgw02SC677LKG3wcHB5PvfOc7yYQJE5Lu7u7kQx/6UPLcc881nPP2228nBx10ULLssssmY8aMSY444ohk3rx5RT4Gg9G2eO+995ITTjghWX311ZOenp5krbXWSr71rW8lS5YsGTqH2yGDERd33nmndi14+OGHJ0kSr8098cQTyc4775x0d3cnq622WnL22WcX9YiFoJIkSdIajSeDwWAwGAwGg8FgMBgMBoPBYDSDfVoyGAwGg8FgMBgMBoPBYDAYjFKBSUsGg8FgMBgMBoPBYDAYDAaDUSowaclgMBgMBoPBYDAYDAaDwWAwSgUmLRkMBoPBYDAYDAaDwWAwGAxGqcCkJYPBYDAYDAaDwWAwGAwGg8EoFZi0ZDAYDAaDwWAwGAwGg8FgMBilApOWDAaDwWAwGAwGg8FgMBgMBqNUYNKSwWAwGAwGg8FgMBgMBoPBYJQKTFoyGAwGg8FgMBhtiClTpqBSqeCzn/1sq7PCYDAYDAaDER1MWjIYDAaDwWB44vOf/zwqlQoqlQruuOMOr2tvu+22oWtPOOGEnHLIYDAYDAaDwWC0N5i0ZDAYDAaDwfDEYYcdNvT5N7/5jde1V111lTadVuGuu+4aIlHvuuuuVmeHwWAwGAwGg8EAwKQlg8FgMBgMhjd22mknrL322gCAP/7xj1i0aBHpugULFuBPf/oTAGCjjTbCVlttlVseGQwGg8FgMBiMdgaTlgwGg8FgMBgBOPTQQwEA7733Hv785z+Trrn++uuxYMGChusZDAaDwWAwGAxGM5i0ZDAYDAaDwQjAoYceikqlAoBuIi5Mw6vVKg455JDc8sZgMBgMBoPBYLQ7mLRkMBgMBoPBCMBaa62FnXbaCQBw6623YtasWdbzX3/9ddx+++0AgA9+8INYbbXVms654YYbcMABB2D11VdHT08Pxo4di6233hqnn3465syZQ8rXtGnTcMghh2CttdbCMsssg56eHqy55prYf//9ceWVV2LhwoUAgJdffhmV/9/e/cdEXf9xAH+eHHf8On/yQxDDmANTUYxITAtPyBBnkiCpJGBDzWQMXOqwEAubW+hIQEtTzALdQHDphi4BRVTUuIBOzLkS3SyUCHVgyQ/v8/2D+HTH3ecEOpW+PR/bbR8/7593n88f7sXr/X7LZFCr1WJbtVot7m/Z/fnyyy+Nxmhvb8fOnTuhVqvh5OQEhUKBkSNHIjQ0FLm5udDpdJLzi42NhUwmw5gxYwAADQ0NWL9+PSZMmACVStXnvTVN7cmZn5+PoKAgODk5wdbWFt7e3li3bh2am5sl+5k5cyZkMhlmzpxpdrxNmzaJ45nSXbZp0yYAwMmTJxEWFgY3NzfY2triueeeQ1pamphx2624uBihoaFivfHjx2PLli1ob2/v9W/x3XffYfHixRg9ejRsbGwwevRoLFu2DFeuXOlV+59++glJSUnw8fHBkCFDYGtrC09PT8TGxqKqqkqyXc9noNPpkJOTA7VaDRcXFwwaNIgnnBMREVHfCURERETUL7t37xYACACE7du3m62bnp4u1v3qq68Mypqbm4VZs2aJ5aY+zs7OQmVlpWT/TU1NQlBQkNk+AAj79u0TBEEQ6uvrH1lXv363+vp6Ydy4cWbbzJgxQ/j9999NzjMmJkYAIHh4eAiVlZWCo6OjUfuTJ08+8rfvdvLkSbFdaWmp8NZbb0nOa+zYsUJDQ4PJfgIDAwUAQmBgoNnxUlNTxf5M6S5LTU0VtmzZIshkMpNzeemll4TW1lZBp9MJCQkJknMOCQkROjs7TY7l4eEhABBiYmKEvXv3CnK53GQfSqVSyM/PN/u90tPTBWtra8l5yGQyISUlxWRb/Wdw7NgxITg42Kh9TEyM2fGJiIiIemKmJREREVE/RUZGwsbGBoDhqeCmdJc7ODhgwYIF4v22tjYEBwejrKwMVlZWWLp0KQ4ePIjz58+joqICH3/8MUaMGIHGxkaEhobixo0bRn3/8ccfUKvVYiann58fdu3ahbNnz6KqqgqHDx9GUlIS3NzcxDajRo2CVqtFTk6OeC8nJwdardbgExYWJpa3trYiKChIzNwLCwvDkSNHUFVVhYKCAgQGBgIAzpw5g3nz5uHhw4eSv0drayvCw8Px4MEDvP/++zh16hQuXryIvXv3wtXV1exvKSUlJQW5ubkICwtDUVERNBoNiouLMXfuXAB/ZxI+CceOHUNycjICAgJw4MABVFVV4fjx45gzZw4A4Ny5c9iyZQsyMjKQmZmJOXPmoLCwEBqNBt988w0CAgIAAMePH8cXX3xhdqyamhq88847cHZ2RlZWFi5cuIDy8nKsX78eSqUSbW1tiIqKksyWTE9Px9q1a9HR0YFJkybhs88+Q0lJCaqqqpCXl4dp06ZBEASkpaUhMzPT7FzWr1+PkpISvP766wbPoPt7ExEREfXa046aEhEREf2bRUZGitlkV65cMVmntrZWrBMdHW1QtmHDBgGAMHToUKGqqspk++vXrwuurq4CAGHJkiVG5UlJSWL/q1evFnQ6ncl+2trahFu3bhnc08+Se1SG43vvvSfW/eCDD4zKdTqdEBUVJdbZuXOnUZ3uTEsAgoODg1BTU2N2zEfRnz8AYfPmzSbnNXv2bAGAIJfLhcbGRqM6ls60BCCEh4cbZUl2dnYKAQEBAgBBpVIJNjY2QmJiolE/9+/fFzMpJ02aZHKs7nL8lblqKou0rKxMzMD09/c3Kq+rqxMzLFNTU02+Ow8fPhQzWB0cHITm5maD8p7PwNS7QURERNRXzLQkIiIi+geio6PFa6lsS/37+vVbW1uxY8cOAEBaWhr8/PxMtvfw8EBKSgoAoKCgwGA/xLt372LXrl0AujIst2/fLrnfokKhgIuLS2++lpG2tjbs2bMHADBhwgRxz0Z9MpkMO3fuxIgRIwAA2dnZZvtct24dJk+e3K/5mOLn54cNGzaYnNeaNWsAAJ2dnaisrLTYmFLs7Oywe/duWFlZGdy3srLCihUrAAAtLS1wcnLCJ598YrJ9TEwMAOCHH37AvXv3zI63bds2jBw50ui+Wq3G8uXLAXTtedkz23Lbtm3o6OjACy+8gNTUVJPvzqBBg5CVlQWlUonW1lYcOnRIch5eXl4m3w0iIiKivmLQkoiIiOgfeO2118RAYF5eHgRBMCjX6XQ4cOAAAMDd3d3g4Jvy8nIxGBUREWF2nFdeeQUA0NHRAY1GI94vKysTD9dJSEgwCpJZikajwd27dwF0HaYjNc7gwYMRGRkJALh8+TIaGhok+4yKirLoHJcsWSIZsNUPCF+7ds2i45ry6quvYvjw4SbL9AO1CxYsgLW19SPr1dfXS441bNgwzJ8/X7L87bffFq9LSkoMyo4ePQoACA8Pl/ztAGDo0KHw8fEBALNB3zfffPOxvYNERET038KgJREREdE/IJfLsWTJEgBdJ3KfOXPGoLy0tBS//vorgK4g3aBBf//3Sz/rzdXV1ejkbv3PxIkTxbq3bt0Sr6urq8Xrl19+2bJfTs+lS5fE66lTp5qtq1+u306fg4MDPD09LTO5v4wbN06yTD+A2NLSYtFxTfHy8pIsGzp0aJ/rmZvzlClTIJfLJct9fX2hUCgAAFqtVrx/48YN/PbbbwCA5ORks++fTCYT31f996+nSZMmSZYRERER9QWDlkRERET/kLkl4lJLwwGgsbGxX+N1Z1YCQFNTk3jd3wNseqO5uVm8dnZ2NltXf5myfjt9+gE5S7Gzs5Ms0w8Wmzsg6EnPxRJzftTzkMvlYtBW/3lY4v3radiwYf3qk4iIiKgn6T/JEhEREVGv+Pr6wsfHB1qtFgUFBeL+f/fv30dRURGAruXJ48ePN2inH4j6/vvvJZcJ9+Tu7m65yfeDuWXEvcUlxJbT3+eh//5t3LgRCxcu7FU7e3t7yTI+VyIiIrIUBi2JiIiILCA6Ohpr167F3bt3cfToUURERODw4cPioTk9sywBiAfWAICTk1O/gpGOjo7idUNDA5599tl+zP7R9JdX37592+yyZv3lw1L7Og403VmNOp3ObD39Q5AGitu3b5st7+zsFDMs9Z+H/vtnbW1tsAUBERER0dPG5eFEREREFhAVFSVmmeXm5gL4e2m4tbU1Fi9ebNRmypQp4vXZs2f7Ne7zzz8vXp8+fbrP7Xubpacf0Lpw4YLZuhcvXjTZbiBTqVQAgDt37pitd/Xq1ScxnT6pqalBZ2enZHltbS3a29sBGD4PT09PDBkyBED/3z8iIiKix4VBSyIiIiILcHV1RXBwMACguLgYly5dQmlpKQAgJCQETk5ORm2Cg4PFPQ0zMzONTh7vDbVaLS7XzcrK6vN+jTY2NuJ1W1ubZD0/Pz9xH8r9+/dLZiS2tLQgPz8fADB+/PjHus+mJXVnqF69elXy0JumpiacOHHiSU6rV5qbm8VTwE3JyckRr7vfUaBrKXdoaCgA4Ntvv8WPP/74+CZJRERE1EcMWhIRERFZSPcS8I6ODixatEgMIJpaGg50HUYTHx8PADh37hySkpLMLk++ffs29uzZY9THypUrAQAajQaJiYmSwc+Ojg6jw1f0g4o///yz5NhKpRJxcXEAuk4ET0tLM6ojCALi4+PFw4G6v9u/QWBgIACgvb0dWVlZRuUdHR2Ii4vDn3/++aSn1itr1qwxuUy8vLwcu3fvBtAVePb39zcoT05OhpWVFXQ6HSIiInDz5k3JMR4+fIi8vDyzdYiIiIgshXtaEhEREVnIG2+8AZVKhZaWFtTV1QHoOk153rx5km0++ugjlJeX48KFC9i+fTtOnTqF5cuXw9fXF/b29rhz5w7q6upQUlKCY8eOwcfHRwwedktLS8OJEyeg1WqRnZ2NyspKrFy5Ej4+PlAoFLh58yYqKipw8OBBbN68GbGxsWLbZ555Bu7u7rh58ya2bt0Kd3d3eHt7i0vdXVxcxKXTGzduRFFREa5du4ZNmzZBq9Vi2bJlcHV1RX19PbKzs3Hq1CkAwLRp07BixQoL/rqP19y5c+Hh4YEbN24gJSUFTU1NWLBgAWxsbFBXV4fMzExUV1cjICAA58+ff9rTNTB58mRcvnwZfn5+SE5Oxosvvoi2tjYUFxcjIyMDnZ2dkMvl2LFjh1FbHx8fbN26FUlJSbh8+TImTpyIFStWYNasWXBxccGDBw9w/fp1VFZW4tChQ2hoaIBWq33qh0ERERHR/z8GLYmIiIgsxNbWFhEREdi3b594LzIyEkqlUrKNUqnEiRMnEBsbi6KiItTW1prNUBw8eLDRPTs7O5SVlSE8PBynT5+GRqPpU8Bww4YNePfdd1FfX4/58+cblO3bt08McqpUKpSWlmLOnDm4cuUKCgsLUVhYaNTf9OnTceTIkX/VSdIKhQK5ubkICQnB/fv3kZGRgYyMDLHcysoKn376KZqbmwdc0NLX1xfx8fFYtWqVyXdHoVBg//79mDp1qsn2iYmJsLe3R2JiIu7du4f09HSkp6ebrKtQKAy2FCAiIiJ6XLg8nIiIiMiCYmJiDP4ttTRcn0qlQmFhISoqKhAXFwdvb2+oVCrI5XIMHz4c/v7+WL16NYqLiyX3VHR0dER5eTmKiooQEREBd3d3KJVK2NjYwNPTEwsXLkReXp7JA4FWrVqFwsJCzJ49G87OzpDLpf+uPWbMGNTW1iI7OxuBgYEYMWIErK2t4eLigpCQEHz99dc4ffr0v+bUcH0zZsyARqPB0qVL4ebmBmtra7i6uorB4ISEhKc9RUlxcXGoqKhAZGQk3NzcoFAoMGrUKERHR6O6uhqLFi0y23758uW4du0aPvzwQ0yfPh2Ojo6Qy+Wwt7eHl5cXwsPD8fnnn+OXX37B2LFjn9C3IiIiov8ymdCfHd+JiIiIiIiIiIiIHhNmWhIREREREREREdGAwqAlERERERERERERDSgMWhIREREREREREdGAwqAlERERERERERERDSgMWhIREREREREREdGAwqAlERERERERERERDSgMWhIREREREREREdGAwqAlERERERERERERDSgMWhIREREREREREdGAwqAlERERERERERERDSgMWhIREREREREREdGAwqAlERERERERERERDSgMWhIREREREREREdGAwqAlERERERERERERDSj/A2z4Llrna8IlAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "markdown", + "id": "fd14d331-aad6-4b98-9926-5ab6a055beb0", + "metadata": { + "id": "fd14d331-aad6-4b98-9926-5ab6a055beb0" + }, + "source": [ + "### 7) Рассчитали характеристики качества обучения EDCA для AE1 и AE2. Визуализировали и сравнили области пространства признаков, распознаваемые автокодировщиками AE1 и AE2. Сделали вывод о пригодности AE1 и AE2 для качественного обнаружения аномалий.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58fd0b46-1064-4f2f-b04f-88307bf938d2", + "metadata": { + "id": "58fd0b46-1064-4f2f-b04f-88307bf938d2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "959a4367-d0cf-4e34-b46e-52b1154438e0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m225/225\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAffBJREFUeJzt3Xt8U/X9x/F30rTlWijQW0opiICgolY3J4whA4aoeJuKzA1UYDjdvEyQ4Q3whtffvE3loqgT0TnFqROV4mWbOG/M1du4CIVCoS2XUq695fz+SE+ay0matGmTtq/n49GHJDk5+eZC5Z3P9/v52gzDMAQAAAAAAGLOHusBAAAAAAAAN0I6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAgpmw2m+bNmxfrYbQ7zzzzjGw2mwoLCyO+7wcffCCbzaYPPvgg6uNq6/r27avLLrss1sPwMW/ePNlsNu3atSvWQ2mUeHxNAaApCOkA0EiPP/64bDabTj311Caf66233iKotqDy8nJ16NBBNptN3333neUxl112mWw2m+VPhw4dfI696667dM455ygjI6PJXzqcfvrpQR/X+4fPS9OtWbNG8+bNU3l5eZPP9f3332vGjBk66qij1KFDB6WkpGj48OF6+OGHdfjw4aYPFgDQbjhiPQAAaK2WLVumvn376tNPP9XGjRt19NFHN/pcb731lv70pz8RvFrIyy+/LJvNpszMTC1btkx33nmn5XHJyclasmRJwPUJCQk+l2+55RZlZmbqpJNO0jvvvNOksd18882aNm2a5/Jnn32mRx55RDfddJMGDx7suX7o0KFNepxf/epXuuSSS5ScnBzxfX/yk5/o8OHDSkpKatIYYm3NmjWaP3++LrvsMnXv3r3R5/n73/+uiy66SMnJyZo8ebKOO+44VVVV6V//+pdmzZqlb775RosWLYrewAEAbRohHQAaYfPmzVqzZo1effVVzZgxQ8uWLdPcuXNjPax278iRI0pKSpLdHnqi2PPPP68zzzxTubm5euGFF4KGdIfDoV/+8pcNPu7mzZvVt29f7dq1S2lpaY0au2ns2LE+lzt06KBHHnlEY8eO1emnnx70fgcPHlTnzp3DfpyEhISALxvCZbfbA2YTtFebN2/WJZdcotzcXL333nvKysry3Hb11Vdr48aN+vvf/x7DESIS4f4OAYDmxG8gAGiEZcuWKTU1VWeddZYuvPBCLVu2LOCYYOt2CwsLZbPZ9Mwzz0hyT6v+05/+JEk+05lNBw8e1A033KCcnBwlJydr0KBBeuCBB2QYRsBjPv/88zr55JPVsWNH9ejRQ5dccomKiop8jjn99NN13HHH6dtvv9WoUaPUqVMnZWdn67777gs435EjRzRv3jwNHDhQHTp0UFZWli644AJ9//33EY+vsrJS119/vdLS0tS1a1edc8452rZtm+Xru337dl1xxRXKyMhQcnKyjj32WD399NOWr++LL76oW265RdnZ2erUqZMqKiosz2naunWr/vnPf+qSSy7RJZdc4vnCpSn69u3bpPtHylxD/O233+oXv/iFUlNT9eMf/1iSVFBQoMsuu8wz7TozM1NXXHGFdu/e7XMOqzXpffv21dlnn61//etf+uEPf6gOHTroqKOO0nPPPedzX6vPdiSfqy1btuicc85R586dlZ6eruuvv17vvPNOWOvc9+/fr+uuu059+/ZVcnKy0tPTNXbsWK1du9bnuE8++URnnHGGunXrpk6dOmnkyJH66KOPfF7DWbNmSZL69evn+XsX6Rr9++67TwcOHNBTTz3lE9BNRx99tK699tqg99+zZ49mzpyp448/Xl26dFFKSorGjx+v//73vwHHPvroozr22GPVqVMnpaam6pRTTtELL7wQ8WsTzK5du3TxxRcrJSVFPXv21LXXXqsjR474HFNTU6M77rhD/fv3V3Jysvr27aubbrpJlZWVPscFW5Lhv37c/Bx+9NFH+v3vf6+0tDR17txZ559/vsrKynzuaxiG7rzzTvXu3VudOnXSqFGj9M033wQ8RrivabDfIV9++aVsNpv++Mc/Bpx7zZo1stlsWr58eUMvJwA0GpV0AGiEZcuW6YILLlBSUpImTZqkJ554Qp999pl+8IMfRHyuGTNmqLi4WKtWrdKf//xnn9sMw9A555yj999/X1OnTtWJJ56od955R7NmzdL27dt9/hF511136dZbb9XFF1+sadOmqaysTI8++qh+8pOf6D//+Y/PdN69e/fqjDPO0AUXXKCLL75Yf/3rXzV79mwdf/zxGj9+vCSptrZWZ599tlavXq1LLrlE1157rfbv369Vq1bp66+/Vv/+/SMa37Rp0/T888/rF7/4hYYNG6b33ntPZ511VsDrUVJSoh/96Eey2Wz67W9/q7S0NK1cuVJTp05VRUWFrrvuOp/j77jjDiUlJWnmzJmqrKxscAr28uXL1blzZ5199tnq2LGj+vfvr2XLlmnYsGGWx1s100pKSlJKSkrIx2kJF110kQYMGKC7777b86XIqlWrtGnTJl1++eXKzMz0TLX+5ptv9O9//9vnCyArGzdu1IUXXqipU6dqypQpevrpp3XZZZfp5JNP1rHHHhvyvuF8rg4ePKif/vSn2rFjh6699lplZmbqhRde0Pvvvx/Wc77yyiv117/+Vb/97W81ZMgQ7d69W//617/03XffKS8vT5L03nvvafz48Tr55JM1d+5c2e12LV26VD/96U/1z3/+Uz/84Q91wQUXaP369Vq+fLn++Mc/qlevXpIU8UyIN954Q0cddVTQz09DNm3apNdee00XXXSR+vXrp5KSEi1cuFAjR47Ut99+K6fTKUlavHixrrnmGl144YWe8FxQUKBPPvlEv/jFL8J+bUK5+OKL1bdvXy1YsED//ve/9cgjj2jv3r0+X9JMmzZNzz77rC688ELdcMMN+uSTT7RgwQJ99913WrFiRaNeA0n63e9+p9TUVM2dO1eFhYV66KGH9Nvf/lYvvfSS55jbbrtNd955p84880ydeeaZWrt2rX72s5+pqqqqUa+pyf93yDHHHKPhw4dr2bJluv76632OXbZsmbp27apzzz230c8VABpkAAAi8vnnnxuSjFWrVhmGYRgul8vo3bu3ce211/oc9/777xuSjPfff9/n+s2bNxuSjKVLl3quu/rqqw2rX8mvvfaaIcm48847fa6/8MILDZvNZmzcuNEwDMMoLCw0EhISjLvuusvnuK+++spwOBw+148cOdKQZDz33HOe6yorK43MzEzj5z//uee6p59+2pBk/N///V/AuFwuV0Tj+/LLLw1JxlVXXeVz3C9+8QtDkjF37lzPdVOnTjWysrKMXbt2+Rx7ySWXGN26dTMOHTpkGEb963vUUUd5rgvH8ccfb1x66aWeyzfddJPRq1cvo7q62ue4KVOmGJIsf8aNG2d57rKysoDn01Qvv/xywOdo7ty5hiRj0qRJAcdbvRbLly83JBn/+Mc/PNctXbrUkGRs3rzZc11ubm7AcaWlpUZycrJxww03eK6z+myH+7l68MEHDUnGa6+95rnu8OHDxjHHHGP598Vft27djKuvvjro7S6XyxgwYIAxbtw4z+fUMNyvS79+/YyxY8d6rrv//vsDXoNI7Nu3z5BknHvuuWHfJzc315gyZYrn8pEjR4za2lqfYzZv3mwkJycbt99+u+e6c8891zj22GNDnruh1yYY8/N0zjnn+Fx/1VVXGZKM//73v4Zh1P89njZtms9xM2fONCQZ7733nue6YH8P/J+/+TkcM2aMz/t1/fXXGwkJCUZ5eblhGO7PYVJSknHWWWf5HHfTTTcZkhr1mob6HbJw4UJDkvHdd995rquqqjJ69erl81gA0ByY7g4AEVq2bJkyMjI0atQoSe5pnRMnTtSLL76o2traqD7WW2+9pYSEBF1zzTU+199www0yDEMrV66UJL366qtyuVy6+OKLtWvXLs9PZmamBgwYEFCl7NKli89a66SkJP3whz/Upk2bPNe98sor6tWrl373u98FjMusxoY7vrfeekuSAo7zr4obhqFXXnlFEyZMkGEYPs9l3Lhx2rdvX8DU3SlTpqhjx47WL6CfgoICffXVV5o0aZLnukmTJmnXrl2WDd86dOigVatWBfzcc889YT1ec7vyyisDrvN+LY4cOaJdu3bpRz/6kSSFNe15yJAhGjFihOdyWlqaBg0a5PPZCCacz9Xbb7+t7OxsnXPOOZ7rOnTooOnTpzd4fknq3r27PvnkExUXF1ve/uWXX2rDhg36xS9+od27d3s+PwcPHtTo0aP1j3/8Qy6XK6zHaoi5tKJr166NPkdycrJn/XNtba12796tLl26aNCgQT7vV/fu3bVt2zZ99tlnQc/V0GvTkKuvvtrnsvl33/z7a/7397//vc9xN9xwgyQ1ae39r3/9a59ZHiNGjFBtba22bNkiScrPz1dVVZV+97vf+Rzn/ztECv81NVn9Drn44ovVoUMHn6VM77zzjnbt2hVWnwoAaAqmuwNABGpra/Xiiy9q1KhR2rx5s+f6U089VQ8++KBWr16tn/3sZ1F7vC1btsjpdAaEALPLt/kP2A0bNsgwDA0YMMDyPImJiT6Xe/fuHTDtOTU1VQUFBZ7L33//vQYNGiSHI/j/KsId35YtW2S329W/f3+f4wYNGuRzuaysTOXl5Vq0aFHQbtilpaU+l/v16xd0fP6ef/55de7cWUcddZQ2btwoyR0Q+/btq2XLlgVMv09ISNCYMWPCPn9Ls3rue/bs0fz58/Xiiy8GvFb79u1r8Jx9+vQJuC41NVV79+5t8L7hfK62bNmi/v37BxwX7u4I9913n6ZMmaKcnBydfPLJOvPMMzV58mQdddRRktx/FyR38Apm3759Sk1NDevxQjGXPOzfv7/R53C5XHr44Yf1+OOPa/PmzT5f9PXs2dPz59mzZys/P18//OEPdfTRR+tnP/uZfvGLX2j48OGeYxp6bRri//ujf//+stvtnnX65t9j//cqMzNT3bt39/x9bwz/z535/pifO/Pc/mNMS0sLeC/DfU1NVn+PunfvrgkTJuiFF17QHXfcIcn9BW12drZ++tOfRvr0ACAihHQAiMB7772nHTt26MUXX9SLL74YcPuyZcs8IT3Y2t9oV9sl9z9KbTabVq5cadmxu0uXLj6Xg3X1Niya0bUks8L5y1/+MmjI8t96LNwqumEYWr58uQ4ePKghQ4YE3F5aWqoDBw4EvFbxzOq5X3zxxVqzZo1mzZqlE088UV26dJHL5dIZZ5wRVgW5KZ+NlvhcXXzxxRoxYoRWrFihd999V/fff7/uvfdevfrqqxo/frznOd5///068cQTLc8Rrfc4JSVFTqdTX3/9daPPcffdd+vWW2/VFVdcoTvuuEM9evSQ3W7Xdddd5/N+DR48WOvWrdObb76pt99+W6+88ooef/xx3XbbbZo/f76khl+bSAX7HdZQX4NQgv3+i+ZnJ9zX1BTsd8jkyZP18ssva82aNTr++OP1+uuv66qrrqLzO4BmR0gHgAgsW7ZM6enpnm7s3l599VWtWLFCTz75pDp27Oip7pSXl/scZ1VtCvaP3tzcXOXn52v//v0+1er//e9/ntsleZq49evXTwMHDmzUc/PXv39/ffLJJ6qurg6oxEc6vtzcXLlcLk913rRu3Tqf85md32tra6Newf7www+1bds23X777T77jUvuat2vf/1rvfbaa616KuvevXu1evVqzZ8/X7fddpvnerO6HA9yc3P17bffyjAMn8+9ObMhHFlZWbrqqqt01VVXqbS0VHl5ebrrrrs0fvx4z2yNlJSUBj9DTQmbprPPPluLFi3Sxx9/rNNOOy3i+//1r3/VqFGj9NRTT/lcX15e7mlmZ+rcubMmTpyoiRMnqqqqShdccIHuuusuzZkzx7MlXqjXpiEbNmzwqSpv3LhRLpfLs3uB+fd4w4YNPn+HSkpKVF5e7vn7Lrkr4f6/+6qqqrRjx46wXhd/5rk3bNjgMzOgrKwsYJZHJK9pKGeccYbS0tK0bNkynXrqqTp06JB+9atfNWr8ABAJvgoEgDAdPnxYr776qs4++2xdeOGFAT+//e1vtX//fr3++uuS3P+oTEhI0D/+8Q+f8zz++OMB5zb3t/b/R+2ZZ56p2tpaPfbYYz7X//GPf5TNZvP8w/uCCy5QQkKC5s+fH1B5MgwjYPutcPz85z/Xrl27Ah7bPGck4zP/+8gjj/gc99BDD/lcTkhI0M9//nO98sorltVJ/y2ZImFOdZ81a1bAezd9+nQNGDDAciu9aNq1a5f+97//6dChQ81yfrMa6f8Z8H+dY2ncuHHavn275++J5F47v3jx4gbvW1tbGzBlPz09XU6n07MF2Mknn6z+/fvrgQce0IEDBwLO4f0ZCvb3TnJv1Wd+2RTKjTfeqM6dO2vatGkqKSkJuP3777/Xww8/HPT+CQkJAe/Xyy+/rO3bt/tc5/93OCkpSUOGDJFhGKqurg7rtWmI/5ePjz76qKT6v79nnnmmpMDP0//93/9Jks9ykf79+wf87lu0aFGjZxKNGTNGiYmJevTRR31eL6vPdrivaUMcDocmTZqkv/zlL3rmmWd0/PHHB8zkAYDmQCUdAML0+uuva//+/T4Nr7z96Ec/8lRdJk6cqG7duumiiy7So48+KpvNpv79++vNN98MWCcsuYOF5G6sNm7cOCUkJOiSSy7RhAkTNGrUKN18880qLCzUCSecoHfffVd/+9vfdN1113mqhv3799edd96pOXPmqLCwUOedd566du2qzZs3a8WKFfr1r3+tmTNnRvR8J0+erOeee06///3v9emnn2rEiBE6ePCg8vPzddVVV+ncc88Ne3wnnniiJk2apMcff1z79u3TsGHDtHr1asvq6T333KP3339fp556qqZPn64hQ4Zoz549Wrt2rfLz87Vnz56Inofk3qP9lVde0dixYz0VR3/nnHOOHn74YZWWlio9PV2Se0/o559/3vL4888/3xPy/vznP2vLli2e8P2Pf/xDd955pyTpV7/6lacK+Nhjj2n+/Pl6//33dfrpp0f8PBqSkpKin/zkJ7rvvvtUXV2t7Oxsvfvuuz79E2JtxowZeuyxxzRp0iRde+21ysrK0rJlyzzvS6jq9v79+9W7d29deOGFOuGEE9SlSxfl5+frs88+04MPPihJstvtWrJkicaPH69jjz1Wl19+ubKzs7V9+3a9//77SklJ0RtvvCGp/u/dzTffrEsuuUSJiYmaMGGCOnfurMmTJ+vDDz9scLp1//799cILL2jixIkaPHiwJk+erOOOO05VVVVas2aNXn75ZZ99wf2dffbZuv3223X55Zdr2LBh+uqrr7Rs2bKAdeQ/+9nPlJmZqeHDhysjI0PfffedHnvsMZ111lnq2rWrysvLG3xtGrJ582adc845OuOMM/Txxx97tkw84YQTJEknnHCCpkyZokWLFqm8vFwjR47Up59+qmeffVbnnXeep5mm5N6q7corr9TPf/5zjR07Vv/973/1zjvvRFTJ9paWlqaZM2dqwYIFOvvss3XmmWfqP//5j1auXBlwznBf03BMnjxZjzzyiN5//33de++9jRo7AESsRXvJA0ArNmHCBKNDhw7GwYMHgx5z2WWXGYmJiZ7tw8rKyoyf//znRqdOnYzU1FRjxowZxtdffx2wBVtNTY3xu9/9zkhLSzNsNpvPdmz79+83rr/+esPpdBqJiYnGgAEDjPvvv99nGyLTK6+8Yvz4xz82OnfubHTu3Nk45phjjKuvvtpYt26d55iRI0dabuU0ZcoUIzc31+e6Q4cOGTfffLPRr18/IzEx0cjMzDQuvPBC4/vvv494fIcPHzauueYao2fPnkbnzp2NCRMmGEVFRZZbNZWUlBhXX321kZOT43nc0aNHG4sWLfIcY26f9PLLLwd9P7xfF0nGU089FfSYDz74wJBkPPzww57XQ0G2YJPftl3m9mNWP1ZbpzW0zZi3UFuwlZWVBRy/bds24/zzzze6d+9udOvWzbjooouM4uLigNc52BZsZ511VsA5R44caYwcOdJzOdgWbOF+rjZt2mScddZZRseOHY20tDTjhhtu8LxH//73v4O+FpWVlcasWbOME044wejatavRuXNn44QTTjAef/zxgGP/85//GBdccIHRs2dPIzk52cjNzTUuvvhiY/Xq1T7H3XHHHUZ2drZht9t9Xg/zPQ3X+vXrjenTpxt9+/Y1kpKSjK5duxrDhw83Hn30UePIkSOe46y2YLvhhhuMrKwso2PHjsbw4cONjz/+OOA1X7hwofGTn/zE83z69+9vzJo1y9i3b1/Er40/8/P07bffGhdeeKHRtWtXIzU11fjtb39rHD582OfY6upqY/78+Z7fCTk5OcacOXN8nqNhGEZtba0xe/Zso1evXkanTp2McePGGRs3bgy6Bdtnn33mc3+rz1htba0xf/58z2t1+umnG19//XWjX9Nwf4cce+yxht1uN7Zt29bgawkA0WAzjBh3CQIAAO3eQw89pOuvv17btm1TdnZ2rIcDeJx00knq0aOHVq9eHeuhAGgnWJMOAABa1OHDh30uHzlyRAsXLtSAAQMI6Igrn3/+ub788ktNnjw51kMB0I6wJh0AALSoCy64QH369NGJJ56offv26fnnn9f//ve/Zm/cB4Tr66+/1hdffKEHH3xQWVlZmjhxYqyHBKAdIaQDAIAWNW7cOC1ZskTLli1TbW2thgwZohdffJEghLjx17/+VbfffrsGDRqk5cuXB204CQDNgTXpAAAAAADECdakAwAAAAAQJwjpAAAAAADEiXa3Jt3lcqm4uFhdu3aVzWaL9XAAAAAAAG2cYRjav3+/nE6n7PbQtfJ2F9KLi4uVk5MT62EAAAAAANqZoqIi9e7dO+Qx7S6kd+3aVZJ000dfqEOXLjEeDQAAAACgrTty4IDuHn6yJ4+G0u5CujnFvUOXLuoQxgsEAAAAAEA0hLPkmsZxAAAAAADECUI6AAAAAABxgpAOAAAAAECcaHdr0gEAAAAA0ZNguJTkcskmI9ZDiRlDNlXZ7aq1Nb0OTkgHAAAAADRKSk2VBh+uUFIYDdHauirD0HcdU1ThSGrSeQjpAAAAAICIJRguDT5cobSuXdWlRw+pPed0QzqwZ4+0v0Kfd+nRpIo6IR0AAAAAELEkl0tJNpu69OihxA4dYj2cmOvSo4f2HTigJJdLhxMaH9JpHAcAAAAAiJhnDXp7rqB7s5n/adrafEI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAgHandOdO3Xz9dTr1mEHKTemqk/v31+QLztc/33tPkvTnJUt0wdixGpDWS1kdkrWvvLxFxkVIBwAAAAC0K0WFhRo37DT964MPdOuCe/TeF1/ohTfe0LCRIzXnumslSYcPH9Kon/1M19w4u0XHxhZsAAAAAIB25Q/XXiObzaaV//pInTp39lw/aMgQTZpymSTp17+7RpK05sMPW3RsVNIBAAAAADFXW9syj7N3zx69/+67umzGlT4B3dSte/eWGUgQhHQAAAAAQMxsXC+NPNGh3p2TNPJEhzaub97HK/z+exmGoaMHDWreB2qkdjvdfevWrUqy+NbEW9++fVtmMAAAAADQTk292KHvN9gkSd9vsGnqxQ59+GVNsz2eYRjNdu5oaLch/YzCUnXu2Cno7StSu6tQhZII6wAAAADQHGprpfX/s3tdtmn9/2yqrZUSEprnMfsdfbRsNps2rlvXPA/QRO12unvvgw7lHAj+M3r9Ok3YVKKavZUqLCyM9XABAAAAoM1JSJAGHuNSQoJRd9mou9x8j5nao4dOHztWzyx8UocOHgy4vaW2Wgum3VbSd2x7T52Tk4PePsA+REkdHRpdtk6rBw6iqg4AAAAAzeCpv9Ro6sUOrf+fTf0HGHrqL8031d204KGHdc5PR2n8j4dr1m1zNeT441RTU6N/rF6tZxct0j//W6DSnTtVWlKizd9/L0n67uuv1aVrV2Xn5Ci1R49mG1u7Dek1yftUnZwU9PYdWqPEou4aYB8irV+nlLQMzxR4gjoAAAAARMfRA6UPv6xp1inu/nKPOkrvfvxvPXzvPZo/e7ZKd+5Qz7Q0DT3pJN37yKOSpOcWL9aDd93puc/5Y0ZLkh5atFgTJ09utrHZjHhfNR9lFRUV6tatmy5+7iYldeoQ8thJazeqbPchDU0Zo6TsbH1zeLtWDxwkR2oyQR0AAABAu9aptlonH65Qdm4fJSaHzlbtQXXlEW3fslVfdEzRoYREn9uO7N+v204YpH379iklJSXkedptJf3Erj9Xh85dQh6zPO8ljVhdoIKKfDldTp+q+ht1xxDWAQAAAADR0m5DejjyUibqn6OlEasLVJ1croLd+RqqMUrq6NDITwp81qq3VnzJAAAAAADxg5DeADOoSwpaVW/NmBEAAAAAAPGDkB6GvJSJkhS0qt6aTdhUQkM8AAAAAIgTrTthtrBgVfXWLCdnLNvMAQAAAIiYIZv5B0ie18HzujQSIT1CVlX11qy4aBXbzAEAAACIWI3NJsMwVFtdrcQOdHevra6WyzBUYyOkx4R3Vb01m7R2o8/UfarqAAAAAMJRbbNrt92hTrt3y+5wyGZvWjhtzQyXoX27dmmP3aFqm71J5yKkN4FZVW/NQm0zZ1bV4xVfIAAAAAAxZLPp+45d1eVguQ4XFcV6NDF3xJC+79xdopKOpvCeEWBVVY/X7vVMywcAAABir8qeoM+79FAHV61s7XhxuiGbjtgTZDQxoEuEdKh+RoBVVT1eu9d7T8snqAMAAACxY9hsOpwQn7mhNeKVhIdZVffeZi5eu9d7T8tnr3cAAAAAbQUhHT78t5mL1+713tPy2esdAAAAQFtBSEcA723m4pX3tPwM+xCN7lFCVR0AAABAq0dIR1Dx3L3ef1o+VXUAAAAAbQEhHa2S/7R8s6qekzM2YK/3lsaXAwAAAAAai5COVst7Wr5ZVS8uWuXTVK6lUcUHAAAA0BSEdLR6ofZ6b2n+VXzCOgAAAIBIENLRJvjv9b4jcY0Si7q3+DgG2Ifo2KIDKtpbTlUdAAAAQMTssXzwvn37ymazBfxcffXVQe/z8ssv65hjjlGHDh10/PHH66233mrBESPeuavqQ7U872hVJ5e3+E9BRb6Ki1Yp54BDo9evU83eShUWFqqwsDDWLw0AAACAViCmlfTPPvtMtbW1nstff/21xo4dq4suusjy+DVr1mjSpElasGCBzj77bL3wwgs677zztHbtWh133HEtNWzEOe+qeksLtjaeqjoAAACAcNgMwzBiPQjTddddpzfffFMbNmyQzWYLuH3ixIk6ePCg3nzzTc91P/rRj3TiiSfqySefDOsxKioq1K1bN9294gt16NwlamMHJGlthfuLgUlrN6ps9yENTRmjpOxsfXN4u1YPHCRHanJMxsWXAwAAAEDsHNm/X7edMEj79u1TSkpKyGPjZk16VVWVnn/+ef3+97+3DOiS9PHHH+v3v/+9z3Xjxo3Ta6+9FvS8lZWVqqys9FyuqKiIyngBK/5r482t4eg4DwAAACAccRPSX3vtNZWXl+uyyy4LeszOnTuVkeEbcjIyMrRz586g91mwYIHmz58frWECYTE7zpvT3+k4DwAAACAccRPSn3rqKY0fP15OpzOq550zZ45P9b2iokI5OTlRfQzASl7KRB08f6KWV/hW1Vsaa+MBAACA1iMuQvqWLVuUn5+vV199NeRxmZmZKikp8bmupKREmZmZQe+TnJys5OTYrAMGpMCqekvzruJ7V9UJ6gAAAED8iYuQvnTpUqWnp+uss84Kedxpp52m1atX67rrrvNct2rVKp122mnNPEKgacygHgvB1sa/UXc7YR0AAACIHzEP6S6XS0uXLtWUKVPkcPgOZ/LkycrOztaCBQskSddee61GjhypBx98UGeddZZefPFFff7551q0aFEshg5ExGwq19KCrY0f+UkBVXUAAAAgzsQ8pOfn52vr1q264oorAm7bunWr7Ha75/KwYcP0wgsv6JZbbtFNN92kAQMG6LXXXmOPdCAE7yp+Q1X1aCL4AwAAAJGLq33SWwL7pKM9W1vXxK53aieffdyLutRE9XFWpHaXIzWZoA4AAACole6TDqD5Bauq5+SMjerj0KAOAAAAaBxCOtDOmGvjvdeqFxetiupj0KAOAAAAaBxCOtBOeVfVJ63dGNVz06AOAAAAaBxCOtCOmVX15XkvRfW8bPsGAAAANA4hHUDUt4cLtu3bhE0lWpHaXYUqjOrjhYMvBgAAANAaENIBRF2oBnWjy9xV9ZZGFR8AAACtASEdQLMI1qBugH2Ikjq2/K8e7yo+QR0AAADxipAOoFn5V9WLXcVyupwtPo4M+xCN7lHiaWInUVUHAABA/CGkA2h2VlX1lmaujT+26ICK9pZTVQcAAEBcIqQDaDHeVfWWZrU2nqo6AAAA4g0hHUCLinYn+XBZrY03t4ajqg4AAIB4QUgH0C54V/Enrd3oszWcf1U9Wgj9AAAAiBQhHUC7YVbxl+e95DP93buqHk1s+wYAAIBIEdIBtDuhqurRxLZvAAAAiBQhHUC7FKyqHk00qAMAAECkCOkA2jWzqt4cW8PRoA4AAACRIqQDaPeaa2u4hhrUEdYBAADgj5AOAGqereFCNagzq+rRROgHAABo/QjpANBMGtr2LZrd5JlKDwAA0DYQ0gGgGYXa9i2a3eSZSg8AANA2ENIBoAX4N6gr2B3dbvI0qAMAAGgbCOkA0EK8p79Hu5s8DeoAAADaBkI6ALQgc/p7tLvJj1hdoB2Ja5RY1J2qOgAAQCtGSAeAGIh2N/lQDerMqjpBHQAAIP4R0gGgDQjVoM6sqr8RwfkI9AAAALFBSAeANsSqQZ1ZVZ+wqSSsc3jv4U5YBwAAaFmEdABoY/wb1JlV9Qz7ECVlZzd4f3MPd9azAwAAtDxCOgC0Qd4N6iLd9i1VkrNjNl3iAQAAYoCQDgBtWGO3fSsuWkWXeAAAgBggpANAG9eYbd/oEg8AABAbhHQAaCci2fYtWl3iw0XwBwAAcCOkAwAChOoSP/KTAqWkZUTtsZhKDwAAUI+QDgCwlJcyUQfPn6jlFYFV9aSO0fvfBw3qAAAA6hHSAQAhWVXVw+kSHy4a1AEAANQjpAMAGtTYLvHhoEEdAABAPUI6ACAsjekSH45gDepW7K2UIzWZsA4AANoVQjoAICKRdIkPR7AGdVTVAQBAe0RIBwDEVKgGdWz7BgAA2htCOgAgLoTa9m3CppKoPhYN6gAAQLwipAMA4oZ/gzqzqp6TMzaqj8NUegAAEK8I6QCAuOLdoM6sqhcXrYrqY9CgDgAAxCtCOgAgLvlX1XundorauWlQBwAA4hUhHQAQt1p62zezQR1hHQAAxAohHQAQ91pq27cJm0o8TeXCRaAHAADRREgHALQ7oRrUjS5zV9XDQZd4AAAQbYR0AEC7FKxB3QD7ECV1DO9/j97r2SWq6gAAoOkI6QCAds2/ql7sKpbT5Qzrvj5d4qmqAwCAKCCkAwDaPauqejjoEg8AAKKNkA4AQB3vqno46BIPAACijZAOAICXSDrJh9MlnqAOAAAiQUgHAKCRgnWJz7AP0egeJT5V9XAQ6AEAACEdAIAmsFrP7l9VD4f3/uyEdQAA2i9COgAAURBq7/VwmPuzM00eAID2jZAOAECUBNt7PRzm/ux0iQcAoH0jpAMAEGXeVfVJazeGdZ+C3YFd4lfsrZQjNZmwDgBAO0JIBwCgGZhV9eV5L4V1vNV6dqrqAAC0P4R0AACaUbhbuh08f6KWV7zU4N7r0ULoBwAgPhHSAQCIE+Y0+aZ0iQ8XU+kBAIhPhHQAAOJIU7vEh4up9AAAxCdCOgAAcaYpXeLDRYM6AADiEyEdAIA45V9V753aKWrnpkEdAADxiZAOAEAc866qR1NDDeoI6wAAxAYhHQCAViDcLvHhCtWgbkVqd6rqAADECCEdAIB2KFSDOu/p7+Ei0AMAEB2EdAAA2imrBnWff/eshqaM8Ux/D4dZeZcI6wAANBUhHQCAdi5YVd3ZMTus+48uq+sSzzR5AACajJAOAACatO3bAPsQusQDABAlhHQAAODhXVWftHZjWPcp2E2XeAAAooWQDgAAfJhV9eV5L4V1PF3iAQCIHkI6AACwFO62b1br2TPsQzS6RwlVdQAAIkRIBwAATWK1nt2qqr5x77oGz+VITZZEoAcAtF+EdAAAEBWh9l6/5sCBBu//zeHtdIkHALR7hHQAABA1dIkHAKBpCOkAACDqotUlfsXeSjlSkwnrAIB2g5AOAACaRTS6xFNVBwC0N4R0AADQrMLtEn/w/IlaXvGSz3p29l4HALQ3hHQAABA3zGnyDe29Hi4CPQCgtSGkAwCAuBKqS/zoMndVPRx0iQcAtEaEdAAAEHesusR//t2zGprirqqHw3s9u0RVHQDQOsQ8pG/fvl2zZ8/WypUrdejQIR199NFaunSpTjnlFMvjP/jgA40aNSrg+h07digzM7O5hwsAAFpQsKp6OHy6xFNVBwC0EjEN6Xv37tXw4cM1atQorVy5UmlpadqwYYNSU1MbvO+6deuUkpLiuZyent6cQwUAADFiVVUPB13iAQCtUUxD+r333qucnBwtXbrUc12/fv3Cum96erq6d+/eTCMDAADxxruqHg66xAMAWqOYhvTXX39d48aN00UXXaQPP/xQ2dnZuuqqqzR9+vQG73viiSeqsrJSxx13nObNm6fhw4dbHldZWanKykrP5YqKiqiNHwAAtKxwt3OTFFaXeII6ACDexDSkb9q0SU888YR+//vf66abbtJnn32ma665RklJSZoyZYrlfbKysvTkk0/qlFNOUWVlpZYsWaLTTz9dn3zyifLy8gKOX7BggebPn9/cTwUAAMSZYOvZM+xDNLpHiXut+t7K0CeR5EhNlkTlHQDQMmyGYRixevCkpCSdcsopWrNmjee6a665Rp999pk+/vjjsM8zcuRI9enTR3/+858DbrOqpOfk5OjuFV+oQ+cuTXsCAACgVVhb8ZJGrC5Q79ROKtt9yN0lPjs7rPt+c3i7Vg8cRFgHADTakf37ddsJg7Rv3z6f3mpWYlpJz8rK0pAhQ3yuGzx4sF555ZWIzvPDH/5Q//rXvyxvS05OVnJycqPHCAAAWj+6xAMAWouYhvThw4dr3bp1PtetX79eubm5EZ3nyy+/VFZWVjSHBgAA2hi6xAMAWoOYhvTrr79ew4YN0913362LL75Yn376qRYtWqRFixZ5jpkzZ462b9+u5557TpL00EMPqV+/fjr22GN15MgRLVmyRO+9957efffdWD0NAADQikSrS/yKvZVypCYT1gEAURXTkP6DH/xAK1as0Jw5c3T77berX79+euihh3TppZd6jtmxY4e2bt3quVxVVaUbbrhB27dvV6dOnTR06FDl5+dr1KhRsXgKAACgFYpGl3iq6gCA5hDTxnGxUFFRoW7dutE4DgAARMRsPpfskpxdnOplH6INPeTee/2ojLDPQ6AHgPan1TSOAwAAaC3MafLB9l4Ph9l4TiKsAwCsEdIBAADCFKxLfE7O2LDuP7qMLvEAgNAI6QAAABGw6hJfXLQqrPsOsA8JWM8uUVUHANQjpAMAADSCf1W9d2qnBu+zQ2uUWNSdvdcBAEER0gEAABrJu6oerklrN9IlHgAQFCEdAACgiSLZ0m153ktB915/o+4YwjoAtF/2WA8AAACgPXFPkx+qSrvcXeIr8jVgj5RzwN0lvmZvpQoLC2M9TABAjFBJBwAAaGHBusRn2IdodI8SquoA0I5RSQcAAIiBvJSJVNUBAAEI6QAAADFkBvXleUer0i4VVOSruGiVcg44NHr9Ok9QJ6wDQPtASAcAAIgxq6p6cdEqDdgjjV6/jqo6ALQjhHQAAIA44V1V95/+TlUdANoHGscBAADEEXM7N3Orth2Ja5RY1N1nq7YVqd1VqMKwzkfjOQBoXQjpAAAAcci7A/yktRtVsDtfQzVGSR0dGl3mDuvhoEs8ALQuhHQAAIA45V9VN7dqG2AfoqSO4f0zbsKmEk/lnaAOAPGPkA4AABDnzKr6iNUF7rXqu91hPRw5OWM1umydVg8c5JkiT1gHgPhFSAcAAGgFvKe/m2E9HJ9/96yGpowJWM9OUAeA+ERIBwAAaCXM6e9mWA+H9zR5Z8dsquoAEOcI6QAAAK2MGdbD4T1NvrholWWXeII6AMQPQjoAAEAb1lCXeO+qejgI9ADQvAjpAAAAbVyoLvFmVT0cVN4BoPkR0gEAANqJoF3id33b4H2ddV3iU9Iy2HsdAJqRPdYDAAAAQMvJS5mog+ffpeV5R6vSLlUnl4f18/l3z2rAHinngEMTNpWoZm+lCgsLY/10AKDNoZIOAADQDnmvVQ+H9zR59l4HgOZDSAcAAGin6BIPAPGHkA4AAIAG0SUeAFoGIR0AAABh8e8SvyNxjRKLutMlHgCiiJAOAAAQA65ayZ7Q8HXxKFRVPRx0iQeA4AjpAAAALai0KFFL5ztVsjVZGX0qdfncYkkKuC49pzric7dkyA+297q3WpdNCXYj4L4D7EOU1NHdJZ6qOgD4shmGEfibsw2rqKhQt27ddPeKL9Shc5dYDwcAALQz907LVdm2JLlcNtnthtJ6V0lSwHWzl2wJ+5xWwb8xId9bqMDvf9vaCndQ753aSZK0bXem7nzlGhXtylZOr+265eePqHfPnZ7jy3YfkrOLU86csfrm8HatHjhIjtRkSVTVAbRNR/bv120nDNK+ffuUkpIS8lgq6QAAAC3EVSuVbE2uv+yy+Vz2vi6SqvjS+U6VbUuS5A77S+c7A0J+uOcLFfiD3ea/ndsb112pij09JUnb9mTpxr/P1ISHnvTcbnaJL9qSrwGOwXSJBwAvhHQAAIAWYk+QMvpUhlVJDzegBwv+ZiiPtMoeKvCHus2c/u6qlZ7fluY5n+Gya9+2NJ3YeaLnOb15TE/94/6LtG9bmpypRbrjvOd0bMds9l4HAEn2WA8AAACgPbl8brEnmKf1rtLlc4strwuXGfztdWu/7XbDfbkuEFsF62DMwO9y2dyXvQJ/qNsiGY8kffrgVO0v7iVJ2lnu1Lw3LnPvvb5HGr1+nSZsKlHN3koVFhaG/ToAQFtBJR0AAKAFpedUa/aSLQHTz62uC9flc4s91XLvkN9Qld1fsEq/WZFPcLhUW+Ou8djshtKDVPyDjcdyTEaCinZl60jiPhXstd57nYo6gPaEkA4AABADwUJyYwQL/qFCdzDBAvbS+U65am3157YbAeHbPG+w8YQa019O6e/TJd577/UVeyvlSE0mrANoF5juDgAA0EYEq2pHMpXeDNgPrFyv2Uu2KD2n2lP9Noz6kF5bY1cvZ7VKixJ177RczRw/UPdOy1VpUWLI8QQbk7v53FBV2qXq5HIVVORrwB4p54BDo9evY/o7gHaDLdgAAADagabuoW61ddzsJVt077RclWxNkhT59nHBxmRu6ZbskpxdnOplH6INPaSUtAy9cVSGJJrKAWhdItmCjUo6AABAO9CUgC5ZV7+/+aRT3fry0M3kIh1TqKo6TeUAtHWsSQcAAICk0NV2q3Xm98/IlWTIDOmSoYw+7jXvTa3ce++97r1WPSdnbMBWbeGg8g6gtSCkAwAAtHOR7KVuBu+aKnk6vdez6cypZXVT4MPblz0Uc+/1f452B/Xq5HL3Vm1eTeXCsSK1O3uvA2g1COkAAAAx0NRKczRZ7aXe0LpyR5LqtmSzyV1JN5TgMPTWU2kRn6sh/lX1YlexnC6nnB2zw7r/6LK6LvF1YZ2gDiCeEdIBAABaUCRV65YQ6V7q3q6YX6yn5zpVW2NTgsPQZXOL9dStvRt1roYEq6qHY4B9CHuvA2g1COkAAAAtqDFV6+bkv2+5ucb8/hm5DX6BMPgHh3T/WxtVU+WurEuR78seKe+q+qS1G8O6T8HuwL3X36i7jbAOIN4Q0gEAAFpIU6rW0Xr8YHupm9V9UyRfIJgB3f9cDe3L3tjnbVbVl+e9FNbxZuW9YHe+hmqMkjq6u8Qz/R1APCKkAwAAtBD/qnVzVJqt+E+xn3JrsTJz6yvk6TnVmrVwi2aOHyir7dSiNT7zXE2d8m+exwzrDbHqEp9hH6LRPUqoqgOIOzbDMIxYD6IlVVRUqFu3brp7xRfq0LlLrIcDAADamWisSY80ON87LTdgOrvVY3sfZ36BEOlUfKtzeFfXM/pUqqbapr0liRE/TlNfu7UVL2nE6gL1Tu2kkrIjOrH7T5WUna2iLjVakdpdjtTkhk9Sh0APIBJH9u/XbScM0r59+5SSkhLyWEI6AABADDSmQt2YkOqqVV2F3JfNZig9xzccR6PCbfVY/rMH3F8W+Hpg5foGXw//LwB6ZVfpD09F9iXC+9/l6x/3X6R929LkTC3SHec9p1NPOEHfHN4e0ZZujtRkgjqAsEUS0pnuDgAAEAPBAmmo8N6YpnOBjeHcDKN+Orur1r2uPD2nWrOXbInoCwTvY62m8/fKrgpYhy+5vyQwjPCn/Fut5y8tSta90xpucOft0wenan+x+zXcWe7UvDcu01M97vN0gA8HXeIBNCdCOgAAQBywqmL3clZ7wmuopnNS6FDt2xjOPd3dbjeU0rNasyccrdoauxIcLl0xv1iDf3DI8lz+wT1Y1d2/cdyUW4v17B1On+CemlEtR6IRsrmc/+MF60IfSYO7gNfQSFDRrmwdSdynHfY1KvvuUIPncHbx7RK/Ym8lVXUAUcV0dwAAgBYUrErtPZXbZjNkTzBUW2P3CcD+0729w67/9HSrx9m5JVHP3lEfrMu2J8pVa5O7WZyhBIeh+9/y3dbMO4yn51Tqinn1YyktSvKphnsHZe/H6plVJUnavSPJZ5xWYww15b60KFFPz3OqtChw7Xg40+X9X2dz3GP/7z65am2yJ4T+Z7G5nr1s9yENTRmjpOxsfXN4u1YPHERQBxASa9JDIKQDAIBY2LklUc/c7g6YVoHaai23JJ8A7B9grRqw+Tdp8+/kbj7ezq2JemBGv4DHu+/N9T5bqnmHcUlKcLh02dxiPXVr74D7egfle6bmatd23y8UEhyG5fP3Fqp5nRnqm9Lgzv81PGdGmV5fmBb2Onyz+Vyyy11V72Ufog095O4Sf5R7TTthHYC/SEK6vYXGBAAA0C6VFiXqril9dd/0fp4KcGmRe4q2yZzKbbcH1k7Mae07t/hWtKfcWqzdO+rXmZvHLbo5WyVb3Sm7ZGuS7pveT/dMzVVpUaJnarwkPT0323K83tVoc3q4GdAlqbbGrmfmO+Webm4y3OOv217NHeyTfca2e0dSwHr6gOda93j+z2nnFvc5Z44fqHun5eqcGWVK6+2uzltNl/d+nv7MdfcPrFyv2Uu26PWFaQ2Oy1teykT9c/RQVdrl3nu9Il8D9kg5B9x7r9fsrVRhYWHIcwBAKKxJBwAAaEZL5zu1e0eiz3XeTdvMUOxdAU9wuORy2WR4VYrNdd2SVLY9SQ/+Jtc8m7ynq+/Z6VUGr9vzvLQoWfdM7SvJpgSHS7U11nWa7mn1DdzMirOVwPvbNOXWYs/zLd2WFHinuuct1Yfvmir5VO39152bHeh9nvu2JL2+MM2ywV0k3entCaHX+YeaOu8O6u4/j1hdoC/L31NvV6Zycsb6NJWTqKoDiByVdAAAgGZSHwIDtxxLz6n0CYLpOdWatdBd4Z21cIvSvSrFU24t9qkwGy6bV1C2ef4bLHx7H1dbEzgW06/v3u75s3cnee+quc1uKMHh8lT97XZ3FT0zt7q+8m6xxZr7HIbnzwkOl248e2Bd1b3+S4zL5xYrNcMdrA3Dpppqm2V13SpIW3W/D2VXcaISHK7652arnxHQkLyUieq975e68Y3HdcXilzT12Rv1yX//qwF7pNHr11FVB9BohHQAAIBmYlaGfaeGu9d1XzGvfoq2OUV85viBun+Gu0LuPSU7M7e6rvlaqFZCRl3gbKjdULAALT17h9MzLd47GHvfJ713la6YX2w53bz++QZ7XO9p82aV3zdMp+e4m+GZXwLsLUmUVcD3D9LBpsqHmvq+dL7TZ1s6e4Jh2Wk+1P33F/eSJG3bk6VbXpusgop8pe76VjkHHBq9fp0nqBPWAYSLkA4AANCMLp9brJ5Z9VOue2ZVuSvlXtOwg1WAvYNobY33WX1Da/0xdlmHcO/j3P+12Q3ZE8wqsvs+JVuTdf+MXO0qTvRZI29Wy80q/6C8Q5q9ZIvue9P9JUIvZ30DvHNmlCm8LwrqZgUY9evOzXP4h23fgO+eMWDu727yX9dvjjnUfvT+Vf/aGrvnuTTEf5yGy64de3N0WHZVJ5eruGgVVXUAjcKadAAAgGaUnlOtm58tDLqfeTjrol21UnlZ4Fpz3z+b/zX8bve9nOAwVFtjU3rvKh05ZNO+Xb7rx2tr7Hp6nlPnXlmmp+c6JZdNNruhn1ywVwuu6KvdO5LqzuPy7K/u/9/g6tfP+4/x2Tvce537r0u32w3Z7IYMl82nU/z9M3Ib3KM9VFXc6nHSeleFNdU91P0/GnucPpI0ae1GFezO11CNUVJHh89addapAwiFSjoAAECUhJpabU+wbkYWaQXYW3pOpWy2+qq1dUD2DfH3vrFRNy7eLMNQQEA3lRYl629PpnmqzIbLplcfS/dpgGdOVw/8r1U131D3tCr1yDSr1P63138xUVqUqJpqm6dCnZpRHTC9vrbG5tPBfvEt2XWvh2/ndqumcd7v0eVzrafth8vq/nkpE5WXMlHL845WpV0qqMgPqKoz/R1AKFTSAQAAmiiSruJWvCvANruhkq3Jundaruc89gT3NHl3SHZXontmVeuKecW6f0auJyDXTw0PZFZ6dxUn6oErc+WqDVarMTz7mZtcLpsU0AzOv4IfbK27zTPd36zCBxubPUF6ep5Te3a6vwyw2Qw5Eg0N/sEhDf7BFk/A9t1T3r29m/fMA6svOIK9R1Zd4sMV6v5mB/gRqwvcW7V5VdVHflLg0wE+HFTfgfbDZhhGQ4uG2pSKigp169ZNd6/4Qh06d4n1cAAAQBtw77TcgGnPs5dsafB+/uHunqm52rXd+jz+IXPKrcVK713tF1hN3tPKJTNA98yqkmHIb5s23/t4b/9mXmezuaecu2qtvgSwml4vz7kum1usNxeneV4fKxl9KvWTC/bqlUfTLb88eGDlep+p/1bP2fsYf65a6f4ZjXuPomFtxUsasbpAyS7J2cWpXvYh2tBDSknLCOv+K1K7y5GaTFAHWrEj+/frthMGad++fUpJSQl5LJV0AACAJgi2ptx/D3BvVlXdXs7qgOq199p0s2q7c0uinrndqfum91NGn0r1zKrS3pJET/hM6Vmjij0JnkBtT3DVVaBt2rMz0bNXub+eWdW6fN52PTCjn9e19c3dgveCCzyfzS4ZLvc0+dcXpqlsW7LF/dzT8294wt29ftaZR9eN2Zt7xoB3+N5VnFj3nOxBjzF5v87ewt0PPVpCVdXDwd7rQPtCSAcAAGgC/wZiNpshe4KhG88eGHTqu1U399lLtgRtZGaGydKiRD34m1zPfuilRUnqkVmttN5Vnqny5WV1e3/bDMmw+VSm6wN6YPXbkWjI2a9a3dOqVV7mkH/4Dr73eeA0eKNuabzLZVPZtmR3db7WVvf49RX7K+YXKzO3WjVVCrLHu03+cz6XzncGjGX3jiTP8oBezvrAbr3Xe+RN4qLBDOqSO6wXVORLFQ3fz9nFqQH2IdL6dUpJy9CK1O40nwPaOEI6AABo16JRTfVeU25PMDxrxM2mZmZ3dzNwB+vmfvb0Mj0z37ej+r3T6ruY11TbfMKsYbjXYz+wcr3u+3Wuyra7A6l14JXqQ3Xwxm0VeyJ5MfxDv2Fxm9lUzvcxXbXuKvvgH2yRI8nsFh943J6dST7N3vyr4ubxpduS6tbn2z3LAXyPrT9vY5rERUNeykRJ8oT1cITqEi9RVQfaItakAwCAdqmpzd6s1FRJN54duF46PadSpUX1j2NWeL23FHMkGnWh0h14/bces9mMoFPVu3Sv0oHyIHPrJcly67PAP5vjDJ9VJT0yM5/cLOdR1frus05acqtThsv7C4b6qrsZvmuqQ0/bl+ob0UkKmJkwa+GWFq2gN1Wo9eysVQdaj0jWpLMFGwAAaJesppw3hneVN1j427Xd93H8t+7y3lLMDL0ul7tqbjZb852qLp8/HyhPtLy+nlUH9sCQ6w7ohsX9vdXfZk8w1DOrKuCxO3X1vy74uR64sp/umtJXrz6WLsNlV8+sKqVmVPkcZc5MKNuWJMNwP67VeEzm7IQjh+q3crPZDZ0zoyzigB5qW72W4J4mP1T5Y4e617NX5GvAHinngEOj169Tzd5KtnMD2himuwMAgHYn1JTzcENcsEq8/1ZpUn1QNB/n6XlOXTHPvX5asu5W7mbUNWFzV4JlM/yaqwXb/ix4tdxa6PAe7FhXrb1uWzXfoHxov/91wR7bfZ33/uv1r50C/uty2Sw607tvsye4ZLjc697NWQj7dvnu625Orw9Hc8y0aCxzmvzyvJc869mdLt+16m/UHUtVHWj9qKQDAIB2x2z2Zre7g6TdbrgvR1BlDVaJn37ndmX0cVeCExxmUPX9767t7uPDeTxzjL2yq+qawAVr4GZVuY4kfFuxOqf/cwr2OJEGf//7haro199mvndTby/2VNhtdqNuXb7vGMwvYsLRmJkWzV11N6vqlXYFVNUnbCqhqg60EYR0AADQLvlPOY+kkZhZifevkLtq67dKy+hTadERPfB4e4IspozXH19bY9d9b67XH55ynzN4GG9sCPcPw+G2K2raWnTrsfifP1Tl332b+d69vjDN8364A3rg8wr3i5hQ76+V0qJE3TstVzPHD9S903JVWpRofWAUmEF9ed7RqrRLBRX5Ki5apYx1JRq9fp0mbCpRYWEhYR1oxQjpAACgXTLD9AMr12v2ki0RTWVuqBLvH/LMQGmz+Vah75/hDnTT79zuVXWvv11ydz3fU+IOfZfPLVbPrGDj9A6lVtVuKzYFhuGGKuDRCufBKuV11XBb6LGn51R63rtezmqVbE32+1LE5rN2vWdWtc8XMaGq3pHOtIhWf4Nw5aVMpKoOtGGEdAAA0K41ttN3qEq8VcjrmVWl9BzfhmhmoOvlrPbbNs13+zIz9KXnVOvmZwvVI9Oq8m41ZdybdehNz6kfZ8sIPU3eDNa+zeF8JThcumJesee9M19vf65a9yyEB1au183PFio9p1qlRYm6Z2rDVe9wZ1pEWnWPpmBVdf+mcoR1oHVhCzYAAIAmCNZszqrxWC9ntWWTuAdWrtf9M3I924VZ6ZFZpV/ftT3oOZrC3OLM/G/L8t1j3W5X3Wtg3WwurXelps53N3Hzfu1LixI9+6R7n9e76Zv/MTabofScKs1eEryZXDjNBO+dlhuw1ZvVOSNpTBgpc6u23qmdlFjZna3agDgTyRZsdHcHAABogmChy5xOb1ZUzeMy+lT6BLpe2VWyJ0hTbi3Ws3c4ffZK97Znpzv0m+vd3Vu2RWfquRnQO3erUcXuUPutR0P9PvDuMO7fwV0+l71DfILD0OzFW7Sr2L0G3PsLEEnqmlqr8jLfLxnM2Qqzl2zR0vlOny8hDKPhrv7hhOrL5xZ7vpCxqrq3RKd4d1Xd/edJazeqYHe+hmqMkjo6NLpsnVYPHKRCFYZ9PgI9EDtU0gEAAJrJzi2JnuDtHSbNwOZfwc7oU6mzp5dpxZ/SLbYac5t6xza98ki6ysuaO0w3l/oKt/c2eP63+//ZZnepW89alZclKsHhkqu2frs1c1p6qC8u7ntzvW48O3AGQnpOpf7wVHjbsjVUCQ92e7iV9mgxq+rJLsnZxelTVQ8HlXcg+qikAwAAxJB35dScxu1d0Z29ZIvumZqrXdvdQbu2xuY55s3FabrlucK6SrF/6DT0zHyn5/hAZu3FFuJytLuyR8r9+MHLRIHr1G12Q4bLpvIy9/px72q4uQY8GDMUO5LcsxhKtyV5GsyZa9sbEm4l3Cqgm2vW/cfbnFPfQ1XVwzG6jL3XgVgipAMAAETZ0vlOlRSZlW7fhmI7tyRqya3ZfpXywKZjl88t1uJbsrV7h+9xwQN6/Xnqw7j1FnCx5R5baVH4MwECt7Kr51tJDwzr3tPPvaelRzLt3Kp7e7iVcLOpnX8lvbkCuikvZaIkaXmeu6peUJEvpyu8rvMD7EOU1NHdJX5FancVqpCgDrQgQjoAAEAU+VdO6xnK6FOlp27L1p6d/h3F69dde2+x5kg0fG632w3Z7EZdUA8nrAfTUhV1/0q+t6Y+vvs52OyGzplRptT0aj34G9/GcT0yqz1h2nsP+0iq2OFUwhs6X0Nr1puTd1V9xOqCBo/vndpJBbvdgT4nZ2zAenbCOtD8WJMOAAAQZWZTM38zn9ysB67sF+Ke7uZo9evUzTBev4777Olleu3xdK8Ku/8abik+KubhCvcLg2DP06ibDm9Xz6wqGYa0Z2eSp1LucimgL0CkTduCrSmPtCFcc05xjxa6xAPNI5I16eyTDgAAEGWXzy1WgsPldY2hjD6VysxtKBzaPJVg9399O5/XVNv01K29A6bA+/45HgK6oWD7sgcKd7zBnqdNhsv9mu3ZmajEJEMPrFzvqV7fN71f3dr++qnqke5hHmzPdKtp8KHEe0CXfPde33yoWAUV+Urd9S17rwMtiOnuAAAAUZaeU61ZC7do0c3m2nObaqpt2lWcqJ5ZVdq9I1HeVWGbzb0dWGhG3f0a4r3veKQV6oaOk8WxVo8XyRcFvlusNWWfdnNLNckdoEuD9AWYOX5gRFV1q2nysWgI11LM9ez/HO2eIl+dXK7iolUaYB8irV/nqaqzVh1oHjGvpG/fvl2//OUv1bNnT3Xs2FHHH3+8Pv/885D3+eCDD5SXl6fk5GQdffTReuaZZ1pmsAAAoN2JtOpqSs+pVmKSIbvdHW73lrinRk+/c7sy+lTVHVOp6Xdt91RpExwuyRasAh1uldzqmFBV7Ugq2aHWlkcS9APv3yPT/cXGzIWbZU9wNXCf4NJzKiW5A3TgFx/1Ff6SrUlafEt2ROf2Dt9mQzjz/bXb3bMlWntA9+ZdVa9OLldBRb4G7FFAVR1AdMU0pO/du1fDhw9XYmKiVq5cqW+//VYPPvigUlNTg95n8+bNOuusszRq1Ch9+eWXuu666zRt2jS98847LThyAADQ1pUWJereabmaOX6g7p2Wq9KicKrY9cxKq8vlW8Xt5ayuq+BWqrQoWU/Pdaq0yL2m+bK5xUqvC+xNF7iVmbVotScK5zzBx7G31KFFN2frgRn95KptaOzWj2VuqeYfoH1nAdR/qbB7R5JctdZfxITz5Yz/NPgpt7ZcQ7iWkpcyUXkpE7U872hV2qWCinx3VX2PNHr9Ok3YVML0dyDKYto47g9/+IM++ugj/fOf/wz7PrNnz9bf//53ff31157rLrnkEpWXl+vtt98OOL6yslKVlZWeyxUVFcrJyaFxHAAACClYs7BonMP7ev/p4j2zqrS31CFXbX2XcrOLud0e7nTw5mog19iu8NHuJh94vp5ZVZp+53bP9HX/pm6/urlYD8wIbNpnflliTn+XFPE2bTu3JDa5OV1r4N1Urmz3IQ1NGaOk7Gx9c3i7Vg8cRFM5IIRW0zju9ddf1ymnnKKLLrpI6enpOumkk7R48eKQ9/n44481ZswYn+vGjRunjz/+2PL4BQsWqFu3bp6fnJycqI0fAAC0TcGq4NFoOOZ/bv/p4rt3JFpWkrv1rFb3tBpJ8psObiWSBnKR1GvMLxMiFZ2AbrO7dPlt2yzPN+fpQp9gbK4jf2Dles1auEXOftXqmVWl+vEbsie4tGu7b+O3SJvBSe7u8ZHepzXKS5mog+ffRVUdaGZhh/Ti4uhP39m0aZOeeOIJDRgwQO+8845+85vf6JprrtGzzz4b9D47d+5URkaGz3UZGRmqqKjQ4cOHA46fM2eO9u3b5/kpKiqK+vMAAABtS7TWG3sHxdlLtig9pzrEVGyTVcA2tH+vQ3tL3FPu3SE+VFj2764ejTXpDR0fSXgP9twbuJfLrqW391aCwyVbGO9NaVGi7p9Rv2Thgt+WevoBZPSpkqvWHvBFTKRfzkTrC53WxFyrXmlXwFr1CZtKWKsONFHYIf3YY4/VCy+8ENUHd7lcysvL0913362TTjpJv/71rzV9+nQ9+eSTUXuM5ORkpaSk+PwAAAA0JNi2Ww2xCmf+AdL73AkO/8Bq3VyttsbuV30PFa79b/ffX1xel6O18rEx694b7mhv9efaGpvnS45g742rNnCLtNcXpvl8aWL1RUxGn0rPFwCSe537ruLg/QjaQwM5K95N5byr6mzVBjRd2Fuw3XXXXZoxY4ZWrFihhQsXqkePHk1+8KysLA0ZMsTnusGDB+uVV14Jep/MzEyVlJT4XFdSUqKUlBR17NixyWMCAACQrLfdCsV/DXSodcn+5/Ze0xy8UVrg+vXI+d+npdasN/ZxgzWQs6m2xqb73lwvR5LvPbzfB29WW6SZe6mXbE32Cfv3z8hVrVkZr7Vp6XxnyH4Ewc7T1rFVG9A8wg7pV111lcaPH6+pU6dqyJAhWrx4sSZMmNCkBx8+fLjWrVvnc9369euVm5sb9D6nnXaa3nrrLZ/rVq1apdNOO61JYwEAALASbkXUai1zQ43mzHNn5tZtPzZ+YAOPEqrTebQDdzChviBo7Bi8n0M4z8dQRp8qy/fG+33wPpfZuM/7PsH2P/duzmfuvR7qy5pIv9Bpa9xVdfefR6wuULGrWE6XU86O2Rpdtk6rBw5SoQolibAOhCHskC5J/fr103vvvafHHntMF1xwgQYPHiyHw/cUa9euDft8119/vYYNG6a7775bF198sT799FMtWrRIixYt8hwzZ84cbd++Xc8995wk6corr9Rjjz2mG2+8UVdccYXee+89/eUvf9Hf//73SJ4KAABASJEELnNdsueyRdU2FLP661Yfgu0Jrrou76Eq0S0VzqP5eP5BP9TzsfpSwKbKw3bNHD9QGX0qNeXWYmXmVge8D973C1Xhttr/3L8rfzjvY3sM6Caq6kD0RBTSJWnLli169dVXlZqaqnPPPTcgpEfiBz/4gVasWKE5c+bo9ttvV79+/fTQQw/p0ksv9RyzY8cObd261XO5X79++vvf/67rr79eDz/8sHr37q0lS5Zo3LhxjR4HAACAKZJp66amBDvJv/pbz7fLeyCb3ZDhapmQbrMZMoxoPVZjpvR7XzZUXub+N2jJ1iTdN72f573yfx96ZVfpxkVbIgrQ7XX6ejR4V9Unrd2ogt35GqoxSuro8KmqE9SB4CLaJ33x4sW64YYbNGbMGC1cuFBpaWnNObZmUVFRoW7durFPOgAAsNTY/dEbE+4ldxW+4Wnu1oE1weFSba0kozl21Y323ubNy2YzlJ5TpSm3FnvW9yc4XKqtsTd67/KWnr7e1qbLm/uqJ7skZxenetmHaEMPKSUtQ28c5d6tibCO9iKSfdLDDulnnHGGPv30Uz300EOaPHlyVAYaC4R0AAAQTLDA/MDK9WFPW396nlOlRdZBPVgIu2tKX+3ekajI9jZvSgO54Gw2Q916Vau8zHs8RpA/R4t7jblhuNfzuyv29c8xwWGol7NapUXetynoODL6VKqm2qa9JYlBv2yJp0Dc2C94WgMzqPdO7aSy3Yc0NGWMkrKz9c3h7Vo9cJAcqckNn6QOgR6tWSQhPey56rW1tSooKFDv3r2bPEAAAIB4FI1p67u2BzaPiyyEhROCbX7/DXX/yEJ1p27VqtjjUPB14s1RXbep8rB727j6KfX1/62tsflUyBt63vVh3s27R8Cu4vgLxI1pOtha+DeVK6jIl9Pl9FmrHg7Ws6M9CXtu1KpVqwjoAACgzWvK/uglW5M9e5l7B0OrEOZ9v907khQYvK33CA/NUM8s/8AZqiN84L7pB8uTGlwL3zihn0N5WaJnnbn3/u2efce9/tWa4HB57WUeWFWvD+j1xyQ4XLInuN+L0rr3omRrsu6fkaudW4Lvg97cQn1u2oq8lImefdUr7VJ1crkKKvI1YI+Uc8AR1g97r6M9aXzXNwAAgDaosdtpBavCS6E7v/vfr75BWzgdzwO7pO/ekaSUnlWq2B3O9PlgXeNDdVgPVZm3us28LpKx1P/ZZjc8YdrltXe5PcHw7GXe8Dnd1fiaKv/u7+7t1rwbz7VkVd2qq3+kszdak2BV9XDQJR7tSXN0GQEAAGj1GhOSrKrwZgi32/0qwwnW90vPqVLPrCrP8fUVY282pfSq9qqa+1bdK3YnKcERrFruvn/9baEq3KHu2xDz3JEe7/5zgsOl9JxKTzCvrbF7Otkbhs1rL3PrmQLer6H5mjuSpJ5ZVZaP7j/DoSVYdfVv693krarq4fx4V969q+pAW0QlHQAAIEr8q/ClRYm6d1qup9O4XDbLEOZ/v+8+66Sn5zoll02GS7KqZFfs8p6iHViFDh1ire4X6vaGjrOqlkc6Zd73vrU1NpUWhWoqFvwLgJ9fU6IPXu7hCfipGdV+r3ngfSPd276pgu3pPmthZNvFtVbeVfVwBFvPvmJvpRypyVTV0aYQ0gEAAKLMDFnelVLDZVN6TmXQhmDe4fD1hWmegBl8Snq4wqlmN3RMQ7c3tfO7/7ry+o7u/tPTAx/T9zwZfar0wcs96rrl1587Pafaa/1/oJaeZt7UJoVtQV7KxLCPZe91tCdMdwcAAAihsQ28rBqClRYFNgQzq+0zxw/UvdPcTcxKtiZ7pnb7CreBnDerNeINHRPqdv+GdkaQ44I9VrDz+1fS7Zpya7F7BkLYbKqqtAU04tu9I8nzJYh7urvvtHopNtPMG9uksD0yp8kvzztalXapoCJfxUWrNGCPNHr9Ok3YVEJTObQZVNIBAAAsNHXv6nArpf6d35+9w6kEh8trurq3aHRdD2fbtlC3uf+c1rtSZdsa2OPaZkiGTb2yK7Vre0NT133HluBwyW53T/++f0au1+vh3zSvvuGazW6ovDSyTu3d02o05+nCmFSwG9uksD0zp8mPWF3gXqvuVVWfsKmEpnJoE6ikAwAAWAi1bZqpoSp7Q5XSYNtvWQf0cBgKrG4HO86b1bZvbj2zqtUzq8qngV2Cw6UptxYro09l6Mcy7Jq5cLMSPAE02LGBXxDU1ti0dL5TvZzVfq9H4D7qktQru8rdXM4IrOb3zHJ/OWK13V2w6e/BmO95NLdII6BHxmw8519VZ6s2tBVU0gEAAPz4N/XybyoWbpW9oUrpruLEgKp5gsOl7mk1dWuqfddo19Y0tJVZuJV2dwXaZnevlbfbDclmyFUb+OWAI9HQOTPK9PRcp2fLs9oamx6Y0c99JrsryNR8t2dud2pPWEE4cO19ydZk3ffrXPXMqtLekkTPjASXy/s+7tfmD09t0b3Tcj0zF8wKe0af+i9HGprdEKqi7f2em+9ZLLZtg5u5nt27qv75d89qaMoYHVt0QEV7y6mqo9Wikg4AAOCnoW3Twqmy+5/PytL5TtXW+obT2hqbaqolqzXa9oTQFfIEhyvoFmOBbJ7nl9a7yjKgS+7n97cn04JUs+UX0H23UZMM7dqeHKIJXiju8+zanuQZo+SumPuuYXe/Nq5a35kLGX2qdOPizZq9ZItPiLaa3eDfF6C0KHDKvPd77v6yJDbbtsEXVXW0RVTSAQAALFw+t9hTOfWeqt5QlT1cgVtwmWzatytJ/tuuZfSpCtHpvH4skvyq84HrvU21NXbd9+Z6bfhvJy2+OdvyGLPhXXDhbLvWmA7z9UsAdu9I0gMr10tyv8ZWFfP7Z+Tq8rnFDa7xtprdYJ5Pqg/e3l34g22X1tLbtsGaVVW9uGiV71ZtVNXRilBJBwAAsGCGuQdWrvepxjZUZQ+XPUFKz6kMcYRvYJ1ya7EC15v7VtaNukB7/Z+2eJ07yBR5W/24n57rtD4m4DEa7tZe343dt9od/NzWXyJYvb7ma+xdDTd5V7XDeS+8p7hb9QXwXnNuvld2u/csgca/92ge3lX16uRyFVTka8AeBVTVgXhHSAcAAAjBKoBFa+usK+YFbjFmTln3D6m9sqpltVVZgsPlaepms7u3FHtgRr+AfcIDGO5wOnP8wAYa1YVTKa9nTgUPb/s16y8QbHbf53TOjDJJ9c3a0nOqNWvhFq9zWIfrcDT0pYs5Fb60KNkzpgRH/TIBtk2LL+Fs1bbxP+sI64hrTHcHAACIULS2zurldIdN/yZ0u3cmuqvbLpsnpDqSzGnsZrB1T/OurbHJnmDIqFtj7qqtb+7mFixYW+19Hs0t3hp/LsNlU62r/s+vPpYuR6IR0KgvnC3uwhFsaYPkuxbdcNmU0acyqtumMVW+eZhbtUnSpLUbfbZqG122TqsHDmL6O+KWzTCMcL7mbDMqKirUrVs33b3iC3Xo3CXWwwEAAHGuOUKUVXf4Xs7qgDXS3uFz9pIt+u6zTu4u6xaV7x6ZVdqzM7LtxKz5roVvfNgOdx26wnoMd1d339fD/3WccmuxMnOtO62H8z76H+OqlWaOHxhw3AMr1zf5MxHuDgFourUVL2nE6gIluyRnF6d62YdoQw8pJS1DbxyVIUmEdTS7I/v367YTBmnfvn1KSUkJeSzT3QEAACyE0/G7say6w4ezRnrwDw7p/rc21q03962z7Nnp3s7Nf9104J8b4ju93Z7gks1WP/U8/HOFE+6DbSkXOHar18Oc0XDj4s2SpPum9wt4ryJ5H/2Dd7T6D1iJdIcANJ65Vr3SroC16hM2lbBWHXGHkA4AAGAhmiHKe510Q43KwgmGl91WLKt9xWtr7HVblElWa8l917/XB2H39dbh2+WyebZ+S+9dpe5p1UGP9RX8GLvdUM+sKp/x2GyGX9O5+rFbrdE3X4+aKunZO4K/V5G+j/5r2qPVf8D/MRpqVofoYqs2tCasSQcAAPATrW3Wgk1pbmgttf8aaXdn93rpva2nRafnVOoPT7nXSy+4om9d8zj3+nV7Qv16dcnd/OyGJwqV3rtau4rrxxkwTd1wr3u/78312rUjUfdN72fxyJGtaU/rXaWaapvPeOwJhq6YX+w3nd9Qz6xqTb9ze8Ca8WBT//0Db7jvY7D3Klr9B7yZX8REYz09wme1Vdvn3z2roSljdGzRARXtLWerNsQFQjoAAICfaIUoqyru7CVbLBuVeYdAMxju3JKoZ+9w6r7p/XyCoz1B6plV5RXC3dXwK+YVe8bvz1XrG2Zra+xK711dt72Y7+P5hnV3UHYkuSvWVmvWe2ZVa/cO//XwgevaExwu3fDEFqX3rg5Y611bY9frC9O8Gt7VswrK98/ItegkH/hehfs+BnuvTNEO0KGa1aF5eTeVG7G6QAUV+XK6nMrJGevTVC5cBHpEGyEdAADAQlNDVLBqfE2Vb+j0rmL7NxCzmsZtBkfv6rL//Vy18gvN/oHZ/d/7Z+T63C8zt1rnzCjT4puz5V8V938+5nlnPrlZzqOqdc9Ud7M7wzDPr8BzuGx69g6nZi3cInuCq66S7j7eZjcsz797R5InnHtPcfetoNc/jv97Fc77GK2ZE5Fojgo9wmdVVS8uWqUB9iHS+nVKScsI6zxU3tEcCOkAAAAWmhqi/KvxNrshu93QjWcP9AnVwSq4DQXHUOOzmglgsxsBVWrz8dyh2X3d03Od8l8TbgZ+/y3gEhyGHIny7CPue3v9/U1G3XMI7Jhuk+Gy6ihvKKNPYOXbaju6BIehe9/YGHBsOO9jLKefE9BjK9RWbeEYXeYO9G/UXSasIxpoHAcAABBCU0KUd9Mx7z3MzXAcqoGYGRzNzuqSO5juKvbtTm61tvreabkq2Zpc141d6pVdVVd59t3D3OUVmu+dlqvizYmW27uZDd38z1FbY7fcR9y78Z07dFt1nG9Yz6xqz1IAybep2xXzi5XgMOrG517PHuq9auh9bI4GcWgd8lImKi9lYkBTuXB+zC7xIz8poEs8ooZ90gEAAJpZTZV049nW+237N3jrmVWtm58tlOQO3O611+7gbLMbSq/bIzxYZdh/j/Ve2VX6w1NbfK73n/buZqhHZrXKyxwB69fNsc6ecLRP9drdjC7w2BsXb/asbXdPa4+8LnTfm+u1p6R+KYC7cm4PmNpfU+WurFtpzCwIpp+3b2srXpLkrqqHo2z3IfZeR1gi2Sed6e4AAADNzJHUuOnUvZzVPpVtc7r4PVPd08ut1qL7T5EvLXJX5r3XZic4DMtp6Xt2JsmeYG7H5jvlXApcB+6qtSk9p1Jl25M809Xde7VLsxZu0f0zcj1V9sB16kbdOOxKcLjXpxtG/WvjSPJt5mZO1S/ZmqTFt2R7vsiwCujBOrWHg4Devplr1ZfnvRTW8eZ6du9p8hM2lbBWHU1CSAcAAGgBwTq6+zd4826UJlmvLd+13bqZXKi11d5rs1211pV9KbALvGQL2ALOW2mR2QnerbbW5lP99z6PN3NrtV5O3y3gvF8b30Zy9dPs/V8j/+p3Q53agYaYYb0h4XaJJ6wjEoR0AACAFhCsgZlVqPYOrT2zqpSa4d7izN38rT78WnUhD9XNvLQoUU/Pc4Zo8ubLZjOUnlOlzFx3Fdp32zfvynjgvup1FzzHmM9t1sL6LxQaaoKX0adSpUVmx/hAVhXzXs7qFu/UjvYrnC7xVNURKRrHAQAAtCD/oGjVsMy7Ery3JFGOREPpOZV+HdDdzegy+lT6nNMMvA+sXK/ZS7aol9MdsM317e7Kt3v6uNl4zfuc3n9Oz/EN+dPv3O6Z+h4Qzi3VH2M+N3uCe9u5e6flehrWlRYlBn1t0nPMx6tvPtczyz07wKpibs4mMBvXWb1GQLS5u8QP1fK8o93T3yvyPU3lRq9f52kqR2M5hIPGcQAAAHHArPS6amWxRZm19JxKXTHPer21f5W5ptrmN7Xe7Z6/rdee0kQ9+BvrBnXBxmquN/feXi7Y+nLvLd6kwOZ2aQ08Vum2RE8jOu+KudXr9MDK9SH3ngea29qKlzRidYF6p3ZSYmV3n6ZyK1K7y5GaTFW9HaJxHAAAQCtjhthg68olhR1sJd8qc7Ap4/YEl/5w7kD1yKyybFAXbIq4PcF3Wn16XZU82Ppy73M0tP+7KdhU9oaWCjS0hzzQ3ELtve69Vp2gjmAI6QAAAHEm2Lpyq+usgqh/EDYDus1u+EyZN6/fszNRVh3drQJuQ+vIezlDB2R7gvzWw7u7vPsfG07zt1Dr783HAmLBu0u8d1M577Xqb9QdS1iHP0I6AABAnAkWgL2vKy1yr+u2mtJtVY1PzaiWI9FwV75zKlValCzDZZ7Zv8puU3WVTaVFiZ5zBtvWzBxfuNueuWoDt3KrrbEFdGsPp9pOxRzxzqyqs1UbIkHjOAAAgDgVrBItWVeavfk3pJt+53ZPQ7k/PLXFp7mau4ru/WepvDTR55xL5ztVWvd4JVuT65rQJfrcHmo83uNvqLFbpM3fCOiIZ95N5SrtUkFFvoqLViljXYlGr1+nCZtKaCoHH4R0AACAVsasNLvqpq57V5pN/l3evavskm+I75lVrZ5ZZtU78Jzm49VPlXdXw5+e5wx7POZx/o9tNU093GOA1iIvZaInrFfaFdABfsKmEk8HeIDp7gAAAK1MsOZyVmvTg1WZraaK3zM1V7u2W58zo0+lzxR0SSotqp+CHmo8VlPhG5qmzlR2tEXeTeW816rn5Iz1aSonsVa9PaOSDgAA0AqFqjSb69X99yG34h2Ar5gX/JyXzy1WgsOziF02m+8U9FDjCTYVPpzwTUBHW2NVVS8uWqUBe+SZ/k5VvX1jn3QAAIBWzL/hmj0hsn3Iwz2n5A7/T89zqrQoeHM4/8p3sH3fH1i5vsUDOFV5xJu1FS9Jcm/VVrb7kIamjFFSdra+ObxdqwcOkiPVPXuFqnrrxz7pAAAA7YTZ6d17Onk4ndEjPacZyP/wVOgp6P7Xhzs1vzmF23keaGn+W7XtSFyjxKLuPlu10QG+/WG6OwAAQCvnP508weEKuzN6uOf07tYe6bli3QQu3M7zQKx4d4D3byo3ev06pr+3M1TSAQAAWjGrPcXlsnn2Qm9MKA53n/JwxbIJXLSfC9Bc/KvqZlM576r6G3XHUlVv2wjpAAAArZzVdPKmhOLmmqIei1AcD9PtgUiYHeBHrC5wV9V352uoxiipo3urNqa/t31MdwcAAGiFvDu411TblJrhXmPtXTlvShCN9RT1aGpLzwXtg/f090q7VFCRr+KiVcpYV+LpAF9YWMgU+DaK7u4AAACtkFUH91kLt0S9QtyWpoW3peeC9mNthXv6e+/UTj4d4Iu61GhFanc5UpOpqrcCkXR3p5IOAADQypjrrF0um/ty3Trr5tCWQm1bei5oP4JV1f2bylFVbzsI6QAAAK2Muc66qR3cAbQOeSkTPWG90i5VJ5eruGiVBuyRZ/o7HeDbDhrHAQAAtEKXzy327P3NOutATG1HW2Q2lZOkSWs3+jSVG122TqsHDlKhCsM+H9Pk4xMhHQAAoBWK5bZm8ay0KNHz5UVGn0pdPrdY6TnVsR4WEDX+W7XtSFyjxKLuPlu1hYMu8fGLkA4AANCKEdB9LZ3vVNm2JElS2bYkLZ3v1OwlW2I8KiD6QlXVwzG6jL3X4xUhHQAAAG2C2VDPc7muoR6zDdBW+VfVCyry5XQ5w7rvAPsQ9l6PUzSOAwAAQJtAQz20V/5N5cL5oUt8/KKSDgAAgDaDhnpor7ynv4djxOoCVSeX6/PvntXQlDGe9exU1WOPkA4AAIA2g4Z6aM/M6e/hMAO99zR5Z8fsgC7xhPWWx3R3AAAAtDkEdCA09l6PX4R0AAAAAGinzKC+PO9oz1r1AXsUsFYdLYfp7gAAAADQjgXrEu+99/qKvZVypCYz/b0FUEkHAAAAAARMf6eqHhtU0gEAAAAAktxB/eD5E7W8InhV/Y26Y6mqNw8q6QAAAAAAH6Gq6jSVa16EdAAAAABAAO+mcpV2qaAiX8VFqwKmvxPWo4uQDgAAAACwxFZtLY816QAAAACAkNxB3f3nEasLVOwqltPllLNjtkaXrdPqgYNUqEJJrFVvKirpAAAAAIAGUVVvGYR0AAAAAEDYvNeqs1Vb9DHdHQAAAAAQkbyUiZKk5Xls1RZtVNIBAAAAAI0Saqu2kZ8UUFVvBCrpAAAAAIBGy0uZqIPnT9TyCqrq0UAlHQAAAADQZKGq6jSVCx8hHQAAAAAQFd5N5SrtUkFFvoqLVgU0lSOsB0dIBwAAAABEDVu1NQ1r0gEAAAAAUecO6u4/j1hdoGJXsZwup5wdszW6bJ1WDxykQhVKYq26NyrpAAAAAIBmQVU9coR0AAAAAECz8l6r7t9UznutOpjuDgAAAABoAXkpEyVJy/PYqi0UKukAAAAAgBYTaqu2kZ8UtPuqOpV0AAAAAECLykuZqIPnT9TyCqrq/qikAwAAAABiIlRVvb02lSOkAwAAAABixrupXKVdKqjIV3HRqoCmcu0lrMc0pM+bN082m83n55hjjgl6/DPPPBNwfIcOHVpwxAAAAACAaGOrtnoxX5N+7LHHKj8/33PZ4Qg9pJSUFK1bt85z2WazNdvYAAAAAAAtxx3U3X8esbpAxa5iOV1OOTtma3TZOq0eOEiFKpTUdteqxzykOxwOZWZmhn28zWaL6HgAAAAAQOthbtX2z9HuoO6pqns1lVuR2l2FKmyTQT3ma9I3bNggp9Opo446Spdeeqm2bt0a8vgDBw4oNzdXOTk5Ovfcc/XNN9+EPL6yslIVFRU+PwAAAACA+Oa9Vt2/qZz3WvW2JqYh/dRTT9Uzzzyjt99+W0888YQ2b96sESNGaP/+/ZbHDxo0SE8//bT+9re/6fnnn5fL5dKwYcO0bdu2oI+xYMECdevWzfOTk5PTXE8HAAAAABBF5lp1/6Zy3mvV21pTOZthGEasB2EqLy9Xbm6u/u///k9Tp05t8Pjq6moNHjxYkyZN0h133GF5TGVlpSorKz2XKyoqlJOTo7tXfKEOnbtEbewAAAAAgOaztm5P9d6pnVS2+5CGpoxRUna2vjm8XasHDpIjNTlup78f2b9ft50wSPv27VNKSkrIY2O+Jt1b9+7dNXDgQG3cuDGs4xMTE3XSSSeFPD45OVnJycnRGiIAAAAAIAbyUibq4PkTtbwurBdU5MvpcvqsVX+j7th4DevhiPmadG8HDhzQ999/r6ysrLCOr62t1VdffRX28QAAAACA1s1/qzbvteptYau2mIb0mTNn6sMPP1RhYaHWrFmj888/XwkJCZo0aZIkafLkyZozZ47n+Ntvv13vvvuuNm3apLVr1+qXv/yltmzZomnTpsXqKQAAAAAAWph3Uznvter+TeVaY1iP6XT3bdu2adKkSdq9e7fS0tL04x//WP/+97+VlpYmSdq6davs9vrvEfbu3avp06dr586dSk1N1cknn6w1a9ZoyJAhsXoKAAAAAIAYaKtbtcVV47iWUFFRoW7dutE4DgAAAADaiLUVL0lyh/Vkl+Ts4pQzZ6xPUzkpdmvVI2kcF1dr0gEAAAAAiJS5VZv3WnX/rdpay1p1QjoAAAAAoE3wXqvu31TOe616PIurLdgAAAAAAGgKc6368rzWuVUblXQAAAAAQJsTaqu2kZ8UxG1VnUo6AAAAAKBNcgd1959bS1WdSjoAAAAAoM2yairnXVWPt6ZyhHQAAAAAQJvn3VSu0i4VVOSruGhVQFO5WId1QjoAAAAAoF1oDVu1sSYdAAAAANCu+K9VL3YVa6jGKKmjQ6PL1mn1wEEqVKGkll+rTkgHAAAAALQ75lZt/xztDuo7Etcosai7T1O5FandPWG9IdEK84R0AAAAAEC75V1Vn7R2owp25/tU1VPSMsI6T7S6xBPSAQAAAADtmllVX573UsBWbUkdw4vNEzaVeCrvTQnqhHQAAAAAAFRfVR+xusC9Vdtud1gPR07O2KisZyekAwAAAABQx7+pXHVyeVj3+/y7ZzU0ZYyOLTqgor3lja6qE9IBAAAAAPDi3VQuXN7T5P2r6lUHD4Z9HkI6AAAAAAAWzLAeDu9p8sVFq3y6xL+UnBj2eeyNGSgAAAAAAKjnniY/VMvzjnavZ6/I14A9Us4Bh0Zu3BD2eQjpAAAAAABEQV7KROWlTNTyvKNVaZcKKvJVXLRK/feGfw6muwMAAAAAEEX+e69/v+eDsO9LJR0AAAAAgCjzr6qHi5AOAAAAAEAzyUuZqDUjjw37eEI6AAAAAADN6MSuPw/7WEI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAAAAAAcYKQDgAAAABAnCCkAwAAAAAQJwjpAAAAAADECUI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAAAAAAcYKQDgAAAABAnCCkAwAAAAAQJwjpAAAAAADECUI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAAAAAAcYKQDgAAAABAnCCkAwAAAAAQJwjpAAAAAADECUI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAAAAAAcYKQDgAAAABAnCCkAwAAAAAQJwjpAAAAAADECUI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAAAAAAcSKmIX3evHmy2Ww+P8ccc0zI+7z88ss65phj1KFDBx1//PF66623Wmi0AAAAAAA0r5hX0o899ljt2LHD8/Ovf/0r6LFr1qzRpEmTNHXqVP3nP//Reeedp/POO09ff/11C44YAAAAAIDmEfOQ7nA4lJmZ6fnp1atX0GMffvhhnXHGGZo1a5YGDx6sO+64Q3l5eXrsscdacMQAAAAAADSPmIf0DRs2yOl06qijjtKll16qrVu3Bj32448/1pgxY3yuGzdunD7++OOg96msrFRFRYXPDwAAAAAA8SimIf3UU0/VM888o7fffltPPPGENm/erBEjRmj//v2Wx+/cuVMZGRk+12VkZGjnzp1BH2PBggXq1q2b5ycnJyeqzwEAAAAAgGiJaUgfP368LrroIg0dOlTjxo3TW2+9pfLycv3lL3+J2mPMmTNH+/bt8/wUFRVF7dwAAAAAAESTI9YD8Na9e3cNHDhQGzdutLw9MzNTJSUlPteVlJQoMzMz6DmTk5OVnJwc1XECAAAAANAcYr4m3duBAwf0/fffKysry/L20047TatXr/a5btWqVTrttNNaYngAAAAAADSrmIb0mTNn6sMPP1RhYaHWrFmj888/XwkJCZo0aZIkafLkyZozZ47n+GuvvVZvv/22HnzwQf3vf//TvHnz9Pnnn+u3v/1trJ4CAAAAAABRE9Pp7tu2bdOkSZO0e/dupaWl6cc//rH+/e9/Ky0tTZK0detW2e313yMMGzZML7zwgm655RbddNNNGjBggF577TUdd9xxsXoKAAAAAABEjc0wDCPWg2hJFRUV6tatm+5e8YU6dO4S6+EAAAAAANq4IwcP6KbzT9a+ffuUkpIS8ti4WpMOAAAAAEB7RkgHAAAAACBOENIBAAAAAIgThHQAAAAAAOIEIR0AAAAAgDhBSAcAAAAAIE4Q0gEAAAAAiBOEdAAAAAAA4gQhHQAAAACAOEFIBwAAAAAgThDSAQAAAACIE4R0AAAAAADiBCEdAAAAAIA4QUgHAAAAACBOENIBAAAAAIgThHQAAAAAAOIEIR0AAAAAgDhBSAcAAAAAIE4Q0gEAAAAAiBOEdAAAAAAA4gQhHQAAAACAOEFIBwAAAAAgThDSAQAAAACIE4R0AAAAAADiBCEdAAAAAIA4QUgHAAAAACBOENIBAAAAAIgThHQAAAAAAOIEIR0AAAAAgDhBSAcAAAAAIE4Q0gEAAAAAiBOEdAAAAAAA4gQhHQAAAACAOEFIBwAAAAAgThDSAQAAAACIE4R0AAAAAADiBCEdAAAAAIA4QUgHAAAAACBOENIBAAAAAIgThHQAAAAAAOIEIR0AAAAAgDhBSAcAAAAAIE4Q0gEAAAAAiBOEdAAAAAAA4gQhHQAAAACAOEFIBwAAAAAgThDSAQAAAACIE4R0AAAAAADihCPWA2hphmFIko4cOhDjkQAAAAAA2gMzf5p5NBSbEc5Rbci2bduUk5MT62EAAAAAANqZoqIi9e7dO+Qx7S6ku1wuFRcXq2vXrrLZbLEeTtyrqKhQTk6OioqKlJKSEuvhIEb4HIDPAPgMQOJzAD4D4DPQWIZhaP/+/XI6nbLbQ686b3fT3e12e4PfXCBQSkoKfwnB5wB8BsBnAJL4HIDPAPgMNEa3bt3COo7GcQAAAAAAxAlCOgAAAAAAcYKQjpCSk5M1d+5cJScnx3ooiCE+B+AzAD4DkPgcgM8A+Ay0hHbXOA4AAAAAgHhFJR0AAAAAgDhBSAcAAAAAIE4Q0gEAAAAAiBOEdAAAAAAA4gQhHR733HOPbDabrrvuupDHvfzyyzrmmGPUoUMHHX/88XrrrbdaZoBoduF8Bp555hnZbDafnw4dOrTcIBF18+bNC3hPjznmmJD34fdA2xLpZ4DfA23X9u3b9ctf/lI9e/ZUx44ddfzxx+vzzz8PeZ8PPvhAeXl5Sk5O1tFHH61nnnmmZQaLZhHpZ+CDDz4I+H1gs9m0c+fOFhw1oqVv376W7+fVV18d9D78myD6HLEeAOLDZ599poULF2ro0KEhj1uzZo0mTZqkBQsW6Oyzz9YLL7yg8847T2vXrtVxxx3XQqNFcwj3MyBJKSkpWrduneeyzWZrzqGhBRx77LHKz8/3XHY4gv/vgd8DbVMknwGJ3wNt0d69ezV8+HCNGjVKK1euVFpamjZs2KDU1NSg99m8ebPOOussXXnllVq2bJlWr16tadOmKSsrS+PGjWvB0SMaGvMZMK1bt04pKSmey+np6c05VDSTzz77TLW1tZ7LX3/9tcaOHauLLrrI8nj+TdA8COnQgQMHdOmll2rx4sW68847Qx778MMP64wzztCsWbMkSXfccYdWrVqlxx57TE8++WRLDBfNIJLPgOT+x3hmZmYLjAwtxeFwhP2e8nugbYrkMyDxe6Atuvfee5WTk6OlS5d6ruvXr1/I+zz55JPq16+fHnzwQUnS4MGD9a9//Ut//OMfCemtUGM+A6b09HR17969mUaGlpKWluZz+Z577lH//v01cuRIy+P5N0HzYLo7dPXVV+uss87SmDFjGjz2448/Djhu3Lhx+vjjj5treGgBkXwGJHeoz83NVU5Ojs4991x98803zTxCNLcNGzbI6XTqqKOO0qWXXqqtW7cGPZbfA21TJJ8Bid8DbdHrr7+uU045RRdddJHS09N10kknafHixSHvw++DtqUxnwHTiSeeqKysLI0dO1YfffRRM48ULaGqqkrPP/+8rrjiiqCzpfgd0DwI6e3ciy++qLVr12rBggVhHb9z505lZGT4XJeRkcG6o1Ys0s/AoEGD9PTTT+tvf/ubnn/+eblcLg0bNkzbtm1r5pGiuZx66ql65pln9Pbbb+uJJ57Q5s2bNWLECO3fv9/yeH4PtD2Rfgb4PdA2bdq0SU888YQGDBigd955R7/5zW90zTXX6Nlnnw16n2C/DyoqKnT48OHmHjKirDGfgaysLD355JN65ZVX9MorrygnJ0enn3661q5d24IjR3N47bXXVF5erssuuyzoMfyboHkw3b0dKyoq0rXXXqtVq1bR8Kedasxn4LTTTtNpp53muTxs2DANHjxYCxcu1B133NFcQ0UzGj9+vOfPQ4cO1amnnqrc3Fz95S9/0dSpU2M4MrSUSD8D/B5om1wul0455RTdfffdkqSTTjpJX3/9tZ588klNmTIlxqNDS2jMZ2DQoEEaNGiQ5/KwYcP0/fff649//KP+/Oc/t8i40TyeeuopjR8/Xk6nM9ZDaXeopLdjX3zxhUpLS5WXlyeHwyGHw6EPP/xQjzzyiBwOh0/TCFNmZqZKSkp8rispKWFdYivVmM+Av8TERJ100knauHFjC4wYLaF79+4aOHBg0PeU3wNtX0OfAX/8HmgbsrKyNGTIEJ/rBg8eHHLpQ7DfBykpKerYsWOzjBPNpzGfASs//OEP+X3Qym3ZskX5+fmaNm1ayOP4N0HzIKS3Y6NHj9ZXX32lL7/80vNzyimn6NJLL9WXX36phISEgPucdtppWr16tc91q1at8qmooPVozGfAX21trb766itlZWW1wIjREg4cOKDvv/8+6HvK74G2r6HPgD9+D7QNw4cP9+nYL0nr169Xbm5u0Pvw+6BtacxnwMqXX37J74NWbunSpUpPT9dZZ50V8jh+BzQTA/AycuRI49prr/Vc/tWvfmX84Q9/8Fz+6KOPDIfDYTzwwAPGd999Z8ydO9dITEw0vvrqqxiMFs2hoc/A/PnzjXfeecf4/vvvjS+++MK45JJLjA4dOhjffPNNDEaLaLjhhhuMDz74wNi8ebPx0UcfGWPGjDF69epllJaWGobB74H2INLPAL8H2qZPP/3UcDgcxl133WVs2LDBWLZsmdGpUyfj+eef9xzzhz/8wfjVr37lubxp0yajU6dOxqxZs4zvvvvO+NOf/mQkJCQYb7/9diyeApqoMZ+BP/7xj8Zrr71mbNiwwfjqq6+Ma6+91rDb7UZ+fn4sngKioLa21ujTp48xe/bsgNv4N0HLYE06Qtq6davs9voJF8OGDdMLL7ygW265RTfddJMGDBig1157jX0Q2zD/z8DevXs1ffp07dy5U6mpqTr55JO1Zs2agOlxaD22bdumSZMmaffu3UpLS9OPf/xj/fvf//Zsw8LvgbYv0s8Avwfaph/84AdasWKF5syZo9tvv139+vXTQw89pEsvvdRzzI4dO3ymPvfr109///vfdf311+vhhx9W7969tWTJErZfa6Ua8xmoqqrSDTfcoO3bt6tTp04aOnSo8vPzNWrUqFg8BURBfn6+tm7dqiuuuCLgNv5N0DJshmEYsR4EAAAAAABgTToAAAAAAHGDkA4AAAAAQJwgpAMAAAAAECcI6QAAAAAAxAlCOgAAAAAAcYKQDgAAAABAnCCkAwAAAAAQJwjpAAAAAADECUI6AAAAAABxgpAOAACCqq2t1bBhw3TBBRf4XL9v3z7l5OTo5ptvjtHIAABom2yGYRixHgQAAIhf69ev14knnqjFixfr0ksvlSRNnjxZ//3vf/XZZ58pKSkpxiMEAKDtIKQDAIAGPfLII5o3b56++eYbffrpp7rooov02Wef6YQTToj10AAAaFMI6QAAoEGGYeinP/2pEhIS9NVXX+l3v/udbrnlllgPCwCANoeQDgAAwvK///1PgwcP1vHHH6+1a9fK4XDEekgAALQ5NI4DAABhefrpp9WpUydt3rxZ27Zti/VwAABok6ikAwCABq1Zs0YjR47Uu+++qzvvvFOSlJ+fL5vNFuORAQDQtlBJBwAAIR06dEiXXXaZfvOb32jUqFF66qmn9Omnn+rJJ5+M9dAAAGhzqKQDAICQrr32Wr311lv673//q06dOkmSFi5cqJkzZ+qrr75S3759YztAAADaEEI6AAAI6sMPP9To0aP1wQcf6Mc//rHPbePGjVNNTQ3T3gEAiCJCOgAAAAAAcYI16QAAAAAAxAlCOgAAAAAAcYKQDgAAAABAnCCkAwAAAAAQJwjpAAAAAADECUI6AAAAAABxgpAOAAAAAECcIKQDAAAAABAnCOkAAAAAAMQJQjoAAAAAAHGCkA4AAAAAQJz4f5qZMKcZwFHwAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "amount: 21\n", + "amount_ae: 287\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlYVGX/BvD7zLAL7huCgguopaK5ZeaaZaak5W4piqXmQlqWmZmWbbZplktmolmamUvWm/pqqZlWaItrAblLKmKKKKA48/39wW/mZZgZ5gCHOQzen+uaq3w4873Pc84DPDwzc44iIgIiIiIiIiIiIiIijRn03gEiIiIiIiIiIiIqm7j4SERERERERERERCWCi49ERERERERERERUIrj4SERERERERERERCWCi49ERERERERERERUIrj4SERERERERERERCWCi49ERERERERERERUIrj4SERERERERERERCXCS+8dIKLS7dy5c/jxxx9x/vx5XLhwAWlpaXjmmWcQFham964RERERERERUSnHdz4SkUNJSUno3r07QkJC0L9/f4wfPx4vvfQSFi5ciJ07d+q9e0SkwokTJ6AoCmbOnOmWvJkzZ0JRFJw4ccIteUREREREVPpx8ZE0Z/ljV81jzJgxeu8uOZCUlIR27drh+++/x5QpU5CcnAyz2QwRgclkwrBhw/TeRSIqhvfffx+Kojj9Xr506RJCQkIQEBCApKQka3t4eDjCw8PdtJdERERERNoKDw9H586dSzzH8qL8jh07HLbfai/W82PXVGLq16+PRx991OHXTpw4geXLl7t5j0itkSNHIiMjA9988w26d++u9+4QkcbGjx+PdevWYcWKFejbty969+5t8/Vx48bhn3/+wXvvvYfIyEid9pKIPMGJEydQt25dVduOHj0aixYtKuE9Ij117twZO3fuhIjovStERKr99ttvaNu2LerVq4c//vgD/v7+dts88MAD2LRpE1asWOF0nYOc4+IjlZgGDRo4/ajfjh07uPhYSh08eBA//vgjnn76aS48EpVRiqIgPj4eTZs2xahRo9C+fXtUrVoVAPDll19i1apV6NKlCyZMmKDznhKRp+CLzkRE5KnuuOMOTJs2DS+99BKmTp2KuXPn2nx98eLF2LRpEx566CEuPBYRP3ZNpVJ4eLjTj2ovW7bMbvv4+Hi0bdsWgYGBCAwMRNu2bR1ut2PHDqfXP1MUxeHbrzt37gxFUezat2/fjtjYWDRs2NCa26pVKyxevLjIfcv/luzhw4dr9pbsQ4cOYcCAAahevTp8fX1Rt25dTJw4ERcvXrTZbs+ePQCAhg0bYvDgwahRowZ8fHwQFhaGJ554AmfPnrVuazabERYWhipVquD69esOczt27AgvLy+cOXMGgPPjafm4/vDhw23aC3ucHX0s9Ny5cxg7dizq1q0LHx8fVK5cGb169cJPP/1k93xnb48vytgBgAMHDmDQoEEIDg62HscJEybYHXdXlytYsmSJzfZqz2dBLOPLYDDg+PHjdl/ftWuXNT9/vwvqs7NjCKj/Xl2xYgUMBgMGDRpk8+4JZ+MkISEBgYGBuOOOO5CRkWHztYyMDMyYMQO33347/P39UbFiRXTv3h0//vijw/3PyMjASy+9hGbNmiEgIAAVKlRAixYtMH36dOTk5BTq0hKW713LMbE8DAYDgoOD0bNnT+v3XF7r16/H4MGD0aBBA+s+dOjQAWvXrnW4z0URHh6Od955B6mpqXjiiScAAOfPn8cTTzyBoKAgxMfHW79XLX0+efIkTp48adMXd11PkohKN8uLzo4e+X9mExERlTbTpk1DixYtMG/ePJt7HBw/fhxPP/00qlWrhg8//FDHPfRsXHykUqtChQqYMWOG9ZH/Y4EWcXFxiI2NRUpKCkaOHImRI0ciJSUFI0aMwJNPPlli+zd79mz88MMPaN26NcaPH49HH30UaWlpGD16NJ5++ukCn5u/b506dSqx/QSAH3/8EW3btsX69etxzz334KmnnkJYWBjee+89tG3bFmlpadZtL1y4AAB44oknsGbNGnTu3BlPP/00GjdujEWLFqFVq1Y4efIkAMBgMOCxxx7Dv//+63BRJDExEbt27cL999+P0NDQIu17cY4zAPzzzz9o3bo1Fi5ciMqVK+Opp55C79698f3336Njx45Yt25dkfZLjY0bN6JNmzbYuHEjOnfujIkTJ6Jp06b44IMP0K5dO1y6dMnuOVFRUTZjw/K44447rNsU5nyqYTAYHP4iXbhwIYxGY+E77kRhvleHDh2K2bNnY/Xq1Zg0aVKBdZOSktCzZ09Ur14dmzZtQlBQkPVr//77L9q1a4eXX34ZlSpVwpgxY9C3b1/8+uuv6NKlCzZs2GBTKzU1FW3atMHMmTNhNBrxxBNPIDY2FjVr1sTs2bNx7do1VKxY0e78VKhQwe77esaMGahYsaJN/ZiYGMyYMQPTpk1Dp06dsHXrVnTr1g1//fWXzXZTp07F4cOHcffdd+PJJ59E//79kZiYiH79+uH9998v/MF3YtSoUejevbv13Y6jRo1CWloa5s6da3NHe0ufHfXTHdfMIaKyjS8659LyRee8fVF7XEUES5cuRfv27VG+fHkEBASgVatWWLp0qcP6SUlJ6NatGwICAtCoUSNs3rzZ+rWjR4+ic+fO8Pf3x2233YY1a9Y4rHHy5EmMHDkSISEh8PHxQWhoKEaOHIlTp0457U92djaee+451KlTB35+fmjcuDHef/99u496L1u2rMD+Xrt2DRUqVHA4FpyNgz/++ANGo9GuZt4XRw8fPoyePXuiYsWKCAwMxH333Ydff/1Vs/5bHj4+PggPD8djjz1mt/2NGzfw/vvvo3v37qhduzZ8fX1RvXp1PPzww/j999/taluOlaPjBDh+cb+g8ersxWKgcC+gF/T9k//dZ2lpaZg4cSLq1q1r7e+AAQNw6NAhh31ypCTGDFDwz6Ldu3ejZ8+eqFy5Mvz8/NCoUSPMmDEDmZmZNtsdPHgQlSpVQuPGje2OlaPzc/HiRTRu3BiVKlXCwYMHbb5W2O91EUF8fDw6dOiAihUrIiAgABERERg9erR17BV0rhz97LEck7yPypUro23btvjkk0/s9uHXX3/F+PHj0aRJE1SoUAH+/v5o2rQp3njjDeTk5Djc78Ly9vbGJ598Am9vb4wYMQJXr16F2WzG8OHDcfXqVXz44YeoVq2a3fNOnz6NwYMHo3LlyggMDESnTp3www8/aLJPZYoQaez48eMCQLp37+50m+3btwsAGT16tMOvh4SESHh4uE1bfHy8AJD4+Hhr286dOwWANG7cWC5fvmxt//fffyUyMlIAyA8//GCXO2PGDLtMANKpUye79k6dOomjb5Vjx47ZteXk5Mi9994rRqNRTp486bBvoaGhdn2bMWOGAJDt27fbtMfExAgAOX78uMNaaphMJqlfv74AkM2bN9t87ZlnnhEAEhsba7cvAOQ///mPzfZvv/22AJBevXpZ21JSUsTLy0s6d+5slz158mQBIBs2bLC2de7cWQCI2Wy22dYybmJiYmzaC3ucw8LCJCwszPrvgQMHCgB55JFHbDJ/++038fHxkUqVKsmVK1fs+p//XBR27KSlpUn58uUlJCRETpw4YfO1VatWCQAZP368y/7nV9jzWRDL+Ordu7dUq1ZNrl+/bv1aamqq+Pj4SJ8+fRz229n3i4jjY1jY71WLSZMmCQB54403RMT+OP3zzz8SHh4u1apVk6SkJLvnDxkyRADIRx99ZNN+/vx5qV27tlSrVk2ysrKs7X379hUA8vzzz9vVOnfunOTk5Djsc/5xp+aYiIjMnz9fAMjcuXNt2o8ePWpXIyMjQ5o2bSoVKlSQa9euOc3Ky3K8HI1bizNnzkjFihXF19fX7vs7P7X9LM7PLCLyLFrM+8LCwqRChQoyY8YM66N379528z4RkQkTJggACQkJkbi4OImLi5OQkBABIHFxcQ5ztZj3de/eXerXry+PPPKITJkyRUaPHi1hYWECQJ566imnfXfUN0tGScz7HPVFzXE1m80yePBgASAREREyevRomTBhgjRq1EgAyNNPP22z/fnz5yU4OFgURZGHHnpIxo0bJ1WqVJE6deoIAImMjJR+/frJqFGjpHLlyqIoiqxdu9amRmJiolSrVk0ASHR0tDz33HPSq1cvASDVqlWTxMREh/2Jjo6W0NBQefLJJ+XJJ5+U0NBQh+fB8reD0WiUtm3b2h2fDz/8UIxGo8Ox4GwcdOjQwTpPznsMLd8HHTp0kAoVKkiXLl3kueeek8GDB4uXl5cEBATIzz//rEn/Lefyueeeky5duljPWd45ytmzZ8VgMEinTp1k1KhRMmXKFOnfv7/4+vqKn5+fJCQkODxW+ceFhaPf/wWNV2fz2l27dklAQIB4eXnJoEGD5LnnnrP2q379+nLhwgW73PzfP5ZH3vGUmppqnR937txZnnvuORk4cKAYjUYJCAiQXbt2OexXfiUxZkSc/yz64osvrPs4YsQImTJlirRo0UIASNu2bW3mqCK582k/Pz9p166dZGZm2hynvOfn2rVrcuedd4qvr6/s3LnTpkZhv9dNJpP069fP+nN3zJgx8uyzz8qAAQOkYsWKsn79ehERmTNnjs35iYqKEgDy5JNP2rT//vvvNsekU6dO1q+NHj1aqlSpIgBk2bJlNvsxevRoqVWrlgwaNEieeeYZGTdunNx+++0CQB5++GGHx92ZsLAwp3/HiIi8/vrrAkBGjRol77zzjgCQoUOHOtz2n3/+sf4O6t69u0ydOlX69OkjPj4+0r17d4c/62/V+TIXH0lzWkxCq1evLg0bNrRpc/RLMTY2VgDI6tWr7Wp89tlndgsxWk5CnVm7dq3DH5gWVapUkcjISJu2klx8/OGHHwSA9OjRw+5rGRkZUrlyZfHz87MuPFn2xdH5y8nJkbp164qiKJKammptf+ihh0RRFElOTra23bhxQ6pXry7BwcE2k6EBAwY47JPaxTcLZ8c57y/f7Oxs8fb2Fm9vbzl9+rRdjccff1wAyIoVK6xtWi0+vvvuuwJAPvnkE4f7f8cdd0jVqlWt/1bb/8Kez4JYxtemTZsEgHz22WfWr73++usSEBAg69ev12TxsbDfqxZms9m6gLh8+XKb45Seni5RUVFSrlw5u0m0iMiFCxfEaDRK165dHe7nvHnzBIB8/fXXIpI7UVcURerXry83btxw+Bxnirr4+N5771n7poZlArRjxw5V26tZfBQReeGFFwSAeHt7yz///ON0Oy4+ElF+fNG5dL3onNfdd99t1xdni0yLFy8WADJixAib34HXr1+X6OhoASD79u2ztsfFxQkAmT9/vrVt9+7d1hey3n77bWt7cnKyBAUFSWhoqNy8edPablk4+/DDD232xfLCXP7f35Zz07BhQ5vzf/nyZWnYsKEoiiJ79+6166tlwfW3336zqde8eXPri6xqFpI+//xzASAtW7Z0uvgIQJ577jmb523evFkASNOmTW3ai9r//Pr37y8A5I8//rC2ZWdny5kzZ+y2PXTokAQGBkq3bt1s2t2x+FiUF9BdzTssRowYIQBk6tSpNu3/+c9/BIA0aNBATCaTyzpajxkLRz+L0tPTpUKFCuLr6yv79++3tptMJuubJ15++WW7WuvWrROj0Si9evWyfj/lPU45OTnSs2dPMRgMdgv+IoX/Xn///fcFgNxzzz02C54iIpmZmXLx4kWHfXb188zZz+fDhw8LAOnTp49N+8mTJ21+fojk/p1g+Rvjxx9/dJjjiKvFx5s3b0rbtm0FgPj4+EhoaKhcunTJ4baWfr7yyis27R9++KH1ZwIXH3PxY9dUKl25cgV+fn4ut7N8bMDRx2a6dOkCIPfjESXBch25qKgoBAYGWt8u3rdvXwC5H/fNz2w2Iz09HQEBAYXKmjt3LmbOnImXX34ZCxcuxHfffQez2azquQUdI8tHhrKzs5GYmGjzNcvxy8vLywsdOnSAiGD//v3W9tGjR0NEbK5LuHHjRqSmpmLEiBHw8vrfva3atm0LAHj22Wdx/vx5l/tflONsuSadn58fcnJy0KBBA4cf+y7JMfLzzz8DAH755ReH17/Kzs5GWlpaoT8iXdTzWZBGjRqha9eu1juQms1mfPjhhxg8eLDdx4bzOnHihMO+ObrWY1G/VxVFwVNPPQUg9y7slo90Xb9+HX369MH+/fvRsWNHtG7d2u65e/fuhclkwvXr1x3up+UcWT7yvG/fPogIunTpAm9vb6f9Lo5ly5Zh5syZmD59OgYOHIjJkyfj/vvvx4ABA2y2S01NxVNPPYXGjRsjICDAOu4tlxpwNO6LKjU11fqx+5ycHHzzzTea1SYiUiMnJwe+vr4ut7PctGbmzJmoUKGCtb1SpUqYMWMGADj92GhxObqjt5eXF8aMGQOTyYTt27c7fF5WVhZ8fHxKZJ9cKUz2Bx98gHLlymH+/Pk2vwN9fHzw6quvAgBWrVplbf/yyy9RqVIljB492tp211134c477wQAm0vjNGjQAAMGDMCZM2esv3tPnTqF7du347bbbsPjjz9usy9jxoxBo0aN8P333+P06dN2+zp9+nSb81+hQgW88MILEBGHNzaKjo5GaGgoFi5caG37+eef8ccff1iveexKVlYWnnnmGdx2220YM2aM0+0qVqyIadOm2bR1794d99xzDw4ePGj9+HVx+p/fzZs3rdkWvr6+CAkJsdv29ttvR5cuXfDDDz9o9lFVtXbv3o2jR4+iR48edje1fPHFF1G5cmWsXLkSN27cKFTdGzduYNWqVahSpQpeeOEFm6898MADuPfee/H3339j9+7dqmtqMWZc+eqrr5Ceno7Y2Fg0a9bM2m4wGPDmm2/Cy8vL4c+zhx56CPPnz8c333xj8/1nMWrUKPznP//BBx98gIcfftju64X9Xl+wYAGMRiMWLlxodwdof39/VK5cudB9L4hlPFeqVMmmvU6dOnaXg1IUBePGjQMAbNu2TbN9MBqN1mNx48YNzJ071+HfRDdu3MDq1atRvXp1u8uBPfbYY4iIiNBsn8oC3u2aSp3MzExkZ2c7vJ5CfleuXIHBYHC4bY0aNaAoCq5cuaL5Pt64cQOdO3fGb7/9hhYtWmDo0KGoUqUKvLy8rHd0dHQDlvPnz+PmzZuoVatWofLee+89u7bIyEhs2LABjRs3LvC5lv7XqFHD4deDg4NttrMsFNasWbPA7dPT061t9913H+rWrYvly5fjlVdegZeXF5YsWQJFUTBy5Eib548bNw7r16/HmjVrnF7/x6Kox7lChQqYOHEirly5gjlz5rjse96+aOXff/8FAMyfP7/A7a5du2a9y7AahT2faj3xxBPo378/Dh8+jBMnTuDEiRN44okn7G7ektfJkyfx0ksvqd7vonyvmkwmjBkzBuXLl0e9evUwfvx4AMCaNWtgNpvRoUMHbNq0CRs2bECfPn1snms5B7t37y5wwnnt2jUA/xsHjibrWsn/R1HVqlXRsmVLm2sE/fvvv2jdujVOnTqF9u3bo1u3bqhYsSKMRiP++OMPfPXVV05v8FQUY8aMwYULF/DGG2/g7bfftt7pvk6dOpplEBEV5MqVK9bfXwXR+0Xnt99+Gxs2bMDRo0etvzssCnrRuXbt2oXKsvyha/m9GRkZiS5dusBgKNz7Ri5duqTqBe/MzEwcPHgQtWrVwuzZs+2+blmksrxYl56ejn/++Qft2rVTfW3opk2bAgAOHz6M9u3bW89Tp06d7K6TZzAY0LFjR/z111/4448/7I5fhw4d7Opb2hxdz9BoNGLUqFGYPXs23n77bZQvXx4LFixAgwYNcO+996ra/9mzZ+P06dP473//i5SUFKfbtWjRAoGBgQ7377vvvsPvv/+Oli1bFqv/lusGXr9+HT/99BP27NmDadOm2VyrGcj9XnjzzTfx448/4ty5c3aLjWlpaXbfdxs2bHB4DcfLly87fUHa0cLM5cuX7bZT8wL6f//7XyQmJlrHixp//fUXsrOz0aVLF4fjvUuXLti6dSv++OMPh2PHkeKMGUfXdXR0TAs6HnXq1EG9evWQlJSEjIwMm+uZA7nXRp8xYwY+/vhjm7/Zpk2bhvj4eFSrVg3Dhg2zq1vY7/WrV6/izz//RIMGDUpsIW3Hjh3WY3b27FmsWbMGkZGRmDp1qs12N27cwAcffIDPP/8cf/31F65evWpznVctX5gXEbzyyivWf69bt876xpe8EhMTkZ2dja5du9q9ccpgMKB9+/ZITk7WbL88HRcfqdQ5evQoANhdNNeR8uXLw2w248KFC6hevbrN11JTUyEiKF++vOb7+NVXX+G3337DyJEj7e5C/Pnnnzt81RX434Q4MjKyUHnHjx9HeHg4RAT//PMP3nzzTcybNw8TJkxw+SqPpf/O3mV47tw5m+0sr15Z2p1tn/cVZ0VRMGrUKEydOhVff/21dfJwzz33oF69ejbP9/X1xc6dO7Fp0yYcPHgQ2dnZAHInKfkXWYt6nCtWrIiZM2ciIyMDc+bMcdn3vH3RiuV4Hjx4EE2aNNG8rtrzqVafPn0QHByMhQsX4sSJE2jdujVatmzp8F2MFp06dXL49ZkzZ9otShb1e/Xdd9/Fvn37sGjRIvTp0wd33XUXjh07BpPJhLfffhtPPPEEmjRpgrFjx6Jz5842k19Lvaeffhpvv/22y2NgeW5Bf1QU1/bt262TzAsXLmDZsmWYMmUKjh49an2V+eOPP8apU6cwa9Ysu1fw33jjDXz11Vea7c+KFSuwfv169OrVC1OmTEF4eDgGDRqEkSNHYuvWrZrlEBE5wxed7RXnRWcLy5wx/zzMkUuXLkFEkJKSUuCLipYFV8sLk44W2ZyxbGs5P8V5MdXRcyxtzl5Qfuyxx/Dyyy9jxYoVGDRoENasWYNXXnnF6Q1C8jp16hTefPNNPPjgg7j33nsLfHets/7k37/i9D//OWrcuDEaNGhg07Znzx507doVQO6bBCIiIqyfINqwYQP279/vcMx+9dVXTucZzhYfHY1XR0rqBfSSqlvUMVOYF+aBgvc7KSkJV65csVt8nDZtGs6fP4+OHTvi1Vdftb4I8Nprr6Fjx4744Ycf8Pzzz9udm8J+r7vjhfmdO3fa3Fna29sb0dHRdgvJ/fr1w9dff43IyEgMHDgQ1atXh7e3t/VvSC1fmJ83bx527NiBoUOH4tSpU1i5ciX69+9v90YHy/HJ/7eNhbNze6vix66p1LF8HKNVq1Yut23RogUAOFwAsbQ1b95cq12zsiyQOroD965du5w+z7JQ2LFjxyLlKoqCkJAQzJ07FxUqVMC+fftcPqegY3Tt2jXs27cP/v7+aNiwIQBY76rsaHuTyYQff/wRiqLYHdcRI0bA29sbS5YswdKlS2E2m+0+RmJhMBjQs2dPPPfcc9aPwE6cONFuu6IeZ4ugoCA0aNAAf//9t8MFpZIcI5aPl//000+a1i3s+VTLy8sLjz32GJYvX45NmzZp9pESi6J8r/7999+YMWMGOnbsiFGjRqFGjRpYvXo1AKBnz554+umnERAQgMWLF+Ps2bOYPHmyzfNbt24NRVFUn4NWrVrBYDBg+/btbvkoUrVq1fDMM8+gadOmWLNmjXUhvrjjXq2UlBTExcWhcuXK1ru1Dhw4EP369cO2bdsc3gHdaDTCZDJptg9EREV90Tk/d73o/Ntvv2HhwoV45ZVXMHPmTNx///1On1ecF51FBGazGWfOnEFcXBySkpIwYcIE1TUs7wZTk205Zi1btoTk3hPA4cPy0fJy5coByH1XlFqWbS2LkMV5MdXRcyxtzl5QDg4ORp8+fbBo0SLEx8cDyJ27qvHMM8/AbDbj3Xffdbmts/7k37/i9N9yPm7evImjR4/ijjvuwIgRI2x+b7/66qu4fv06tm3bho0bN+Kdd97BSy+9hJkzZzr9dBOQeyd5R+c+/7sq87KM17yP48eP221XUi+gl1Tdoo6Zgr53tNjvX375BfPmzcOgQYPw/fffo3fv3jCZTDCZTOjduze+//57DBw4EB988IH17+r8mWq/1y3jtSRfmJ8xY4Y198qVK1i7di02btyIjh07IisrC0DupZS+/vprdO/eHUeOHMFHH32EV199FTNnzsSgQYM03Z+kpCRMnToVoaGheP/997F06VKUK1cOY8aMsbvLuOX4pKamOqyl5hJjtxIuPlKpkp6ejnnz5sHb2xsPPvigy+1jYmIA5L7ClPfVrPT0dOurOZZttGT5Bfzjjz/atO/cuRMfffSRw+ekpaVhxYoVqFy5Mnr06FGs/LNnz+Lq1at218JwpH379qhfvz42bdpk9y7JV155BRcvXsTgwYOt1wRq27YtIiMjsXnzZuv19Szef/99HD16FNHR0XYfFa5Rowb69OmDzZs3Y+HChahatardq0OFVZTjnN+IESOQk5ODqVOn2rw1/8CBA1i2bBkqVapU7P10lhsUFIRp06bh8OHDdl/PzMy0mxCoUdjzWRijRo1CpUqV0KBBA81/kRf2e1VE8Pjjj1uvJWp5ldky7vKOv27dumHEiBH4+OOP8f3331vba9asiQEDBmDPnj146623bM6/xS+//ILMzEwAuWO4b9++OHr0qMNXg1NTU63XodHKpUuXkJKSYvMqurNxv3LlSnz77beaZY8cORKXL1/GBx98YPOxqwULFlgXRk+ePGnznMqVKyMtLc26UEpEVFx80dm5orzoXJTsoKAgNG7cGH/++afDj8vmV6lSJdSoUQN//fWX6hekDh06BADWd25aztMPP/xg9/tZRPDDDz/YbJeXo2NuabOMEUeeeOIJHDp0CLNmzcKAAQNUXatu165d+OKLLzBp0iTUr1/f5fa///67w0XZ/PtXnP5bGI1G1KtXD++//z6A3E8zWBw9ehSVK1fG3XffbfOczMxM/Pbbby77URJK6gX0Ro0awc/PD3v37rXO6fIqzs+GoowZtQo6HqdPn8bRo0dRr149m3c93rhxAyNHjkSlSpUwb948GI1GrFq1ClWrVkXVqlWxatUqGI1GzJs3DxUrVsTIkSNtrqFZ2O/1wMBA3HbbbTh+/LhbPj4cFBSE6OhoDBs2DMeOHbNeNsnyM7hnz552l3rQ8oV5k8mEmJgYZGVlYcmSJahQoQLq1auH2bNn4/z589bLP1lERkbCz88P+/bts5sbm81m7NmzR7N9Kwu4+EilxiuvvIKGDRvi0KFDePnll1Vd+6djx46YMGECjhw5giZNmmDSpEmYOHEimjRpgr/++gtxcXEOJ12Wj3HmfQC514rI3265fsSiRYusk77o6GiEh4fjzTffRM+ePTFlyhT06dMH99xzj8OJ6bJly9CuXTtcuHABderUwRtvvOHwBh3Lli3Dhg0b7J7/2WefYdGiRVi4cCGmT5+Odu3awWQyYdSoUS6PkcFgwLJlyxAQEIAHHngAjzzyCJ5//nl06dIFb7zxBurXr4833njDur2iKPj444/h7++P6OhoDBo0CM8//zx69OiBSZMmISQkBB988IHDrDFjxsBsNuP8+fOIiYkp9gXWC3ucHXn66afRtm1brFixAm3atMFzzz2H2NhY6zFcsmSJw48Nbdy40WYcbNy4EYDrsWMZL9WqVcOqVatw9epVREVFoVevXpg8eTImTJiA6Oho1KxZ0+E1YVwp7PksjNDQUJw6dQqJiYl2F5QursJ+ry5evNh6DRg115h55513ULNmTYwaNcpm4rlgwQI0b94czz77LKKiojB69GhMmTIFQ4YMQWRkJO68806bxdAFCxagcePGePXVV3HHHXdg8uTJePrppxEdHY3atWsX6l0ejlhuODNz5kyMHz8ezZo1w8WLFzF06FDrtWKGDh2KChUqYMKECRgwYACeeeYZ3HfffRg6dKjDC4cXxYcffogtW7agX79+GDx4sM3XqlWrhoULFyIjIwOxsbE2fxR17doV2dnZ6NGjB1588UW88sor1j+QiIgKiy86q1OYF50BIDs7GwsWLICXlxcGDhyo6jlxcXHIzMzE448/bnc9SyD33W15r1vXp08fXLp0yeayOD/99JN1Mfmdd96xth87dgxffPEFatSogbvuugtA7jXtunTpgsOHD2Pp0qU2WYsXL8aff/6Jrl27Orxe5qxZs2w+Xp2enm79OGxB579r16646667EBQUhLFjx7o4Irni4uIQHBxsdxMZZy5fvmy9UYXFli1b8N1336FJkyZo2bIlgOL1P7+DBw/atYWFheHSpUs2L4CbTCZMnjzZ4TuH3aGkXkD38fHB4MGDkZaWhtdff93ma5s3b8aWLVvQoEEDtG/fvtD7XJQxo1bv3r1RoUIFxMfH25wnEcGUKVNw8+ZNDB8+3OY5r776Kg4fPow5c+ZYLz/h7++PcuXKoVy5ctb5e/Xq1TFnzhwcOXLEbjwW9nt93LhxMJlMGDt2rPWdiBbZ2dnWa6xrRUSsL1ZYOPsZfPjwYbtzXhxvvvkmfv75Z4waNcrmpkhjx45F165d8fnnn2PdunXWdl9fXwwYMACpqak2P/MAYMmSJUhKStJs38oEze6bTfT/jh8/LgCke/fuTrfZvn27AJDRo0db2zp16iTdunWTr776yuFz4uPjBYDEx8fbfW3p0qXSunVrCQgIkICAAGndurUsXbrUaW5RHzNmzLDWOnbsmPTt21eqVatmzfz888+tGXm37dSpk+qMmJgY6/NiYmLsvl6tWjVp3769rFixwvlJcODAgQPSr18/qVq1qnh7e0tYWJg8+eSTcuHCBYfb79+/32b72rVry9ixY+Xs2bNOM8xms9SpU0cAyJ9//lmo/bOMm7z9FynccRYRCQsLk7CwMJu2jIwMef7556VBgwbi4+MjlSpVkl69esmePXvs9mPGjBnFGiPbt2+3qffXX3/JyJEjJSwszJrdtGlTiYuLk4SEBJf9d6aw59MRy/g6fvy4022cHWcA0qlTJ4fPsRzD/MdCRN336pkzZ6R8+fLSokULycnJsflaQcfpyy+/FADy1FNP2bRnZmbKm2++KS1btpRy5cqJv7+/1K1bV/r06SOffPKJXUZ6erpMnz5dGjVqJL6+vlKhQgVp3ry5vPjii3Ljxg2HfXY07hwdk7yPSpUqScuWLeX999+324c//vhD7rvvPqlUqZIEBQVJp06dZNu2bQX+HHTEcrzy/+wKDAyU6tWrFzheBg8eLABk/vz51raMjAx5/PHHJTg4WIxGo11tSz8LGlNEVLYUdd43a9YsqVGjhgCQ119/3e45zn7eTZgwQQBI7dq1ZeLEifLkk09KaGioAJC4uDiHuT179pSFCxfaPABIRESEXXtERIQAkIULF8revXtFJPdnX3h4uACQBx54QJ599lnp3bu3GI1G6devn93Pwvj4eGnQoIEAkObNm8uMGTNsHpZ5YUxMjKxfv976PMvv5VdeeUUWLlwoCxYskBdeeME6t3rttddcno/169fLHXfcIQAkPDzcLrt3794CQHr37m1zbM1mszU/ODhYhg4dKlOmTJHhw4fLnXfeKYqiyKpVq6zbnzlzRqpWrSqKokjfvn1l/PjxUq1aNQkLCxMActttt0n//v1l9OjRUqVKFQEgn332mc2+/vXXX9YavXv3lqlTp8qDDz5one8mJibabG85btHR0RIaGipPPvmkzfnP//tf7e9MR3OavHP35cuXu6xr+T7o0KGDVKhQQbp06SJTp06VwYMHi5eXl/j7+8vPP/+sSf8t5/KFF16QYcOGSbly5ez28+uvvxYAUrFiRRk1apTExcVJs2bNpEqVKtK5c2e739WujpWjeU5B80hn87Vdu3ZJQECAeHt7y5AhQ2Tq1KnW/alfv76kpqa6zHUkNTVV6tWrJwCka9euNsc+ICBAdu3a5bKGiDZjxhFn8+kvvvhCjEajlCtXTmJjY2XKlCnSsmVLASBt2rSRrKws67YHDx4Ub29vuf/+++3qOztO3bt3F29vbzl48KC1rbDf62azWQYMGCAAJCQkRJ544gmZMmWKDB48WCpXrmzzMywvV39nWI5Jp06drGP66aeftva/UaNGkp2dLSIiN2/elDZt2li/x5555hkZOHCg+Pv7W38Gq/0bynK88p+/AwcOiI+Pj9StW1cyMjLsnnP8+HGH8+d//vlHQkJCBIDcf//9MnXqVOnTp4/4+PjIfffd5/Bvolt1vszFRyKVwsLC7H5hqNWpUydVPxDVblda/fPPP+Ll5SUdOnTQe1fczjLJcrTgRqQXR4uPJelWnUwR3cr4onPpetHZUQ1nD0cvIq5evVq6desmlSpVEm9vbwkJCZHOnTvLO++8Y/eC1eHDh6VLly7i5+cnDRs2lM2bN1v7fvToUenUqZP4+vpKZGSk3cKjxYkTJ2TEiBESHBwsXl5eEhwcLCNGjJATJ07YbWupnZWVJc8++6zUrl1bfHx8pGHDhjJv3jwxm80222uxkNS2bVtVdfMuth06dEgeeOABKV++vJQrV066desm+/bt06z/lofBYJCaNWtKt27d5JtvvrHb/ssvv5Q77rhDAgICpGrVqjJgwAA5evSow0Uhdy0+ihTuBXS1i48iIhcuXJC4uDgJCwsTb29vqVq1qvTr189m4c0Vdy8+ioj88MMP0qNHD6lYsaL4+PhIZGSkTJ8+Xa5evWrdxrL4FhgYKCdPnrSr4ew4nThxQgIDA6VNmzZy8+ZNm68V5nvdbDbLkiVL5M4775Ry5cpJQECAREREyJgxY+TUqVMO+6x28THvo1y5ctKwYUOZMmWK3UJ0amqqxMbGSq1atcTPz0+aNm0q8+fPl2PHjhV78fHGjRvSvHlzURSlwL/lPvzwQwEg/fv3t2k/efKkDBw4UCpWrCgBAQHSoUMH2blzp9M3ZNyq82VFxMFFsIjITnh4OIYPH16kj8p27twZ4eHhBd4drzDblVZTpkzBm2++iZUrV9p9lLOsO3HiBOrWrWtzN2MivVnG5YwZM4r0s6uwLHc6P378uKqbRxARlVaeOu8bPnw4Tpw44fA6ckXZrrA6d+6MnTt3OrzOcmmuXVyW37cxMTEeO48nulWEh4cjPDxc859/at2q82UvvXeAyFM88sgjqi6G7sjw4cNRsWJFzbYrTdLT07Fw4UKcPHkSS5YswW233YYBAwbovVtuFxQUhNGjR6NWrVp67woRERERERFRqcHFRyKV8l+stzDyXyy4uNuVJpcuXcLUqVPh5+eHu+++G4sWLbK7C9mtoEqVKtabzxAREZFn89QXnfv06aPqLrZqtyMiItICFx+JqFjCw8NL5cdfiAioWLEiZsyY4bZLAVhyPO0d3ERE+Xnqi859+vTRdDsiIiIt8JqPRERERERERERU5s2dOxcVK1bU7VOHO3bswI4dOzBx4sRb6gV7Lj4SERERERERERFRiTDovQNERERERERERERUNt1y13w0m834559/EBQUBEVR9N4dIiIiokITEWRkZKBWrVowGPhasifinJSIiIg8WWHmo7fc4uM///yD2rVr670bRERERMV2+vRphIaG6r0bVASckxIREVFZoGY+esstPgYFBQHIPTjly5d3W+7AgQOxevVq5jGvVObpkck8z87TI5N5zCvtme7Mu3LlCmrXrm2d15Dn0WNOWpa/J26FPD0ymefZeXpkMo95pT2TedopzHz0llt8tHyspXz58m5dfPT29mYe80ptnh6ZzPPsPD0ymce80p6pRx/5cV3PpcectKx/T5T1PD0ymefZeXpkMo95pT2TedpTMx/lRYKIiIiIiIiIiIioRHDxkYiIiIiIiIiIiEoEFx+JiIiIiIiIiIioRHDxkYiIiIiIiIiIiErELXfDmcIymUzIyckpdp0qVaogOztbgz1iHvPKRqYn53l7e8NoNGpSi4iIyBXOR5mnVybzPDtPj0zOuYnIES4+OiEiOHfuHC5fvqxJveHDh+P48eOa1GIe88pCpqfnVaxYETVr1uSdZomIqMRwPso8vTOZ59l5emRyzk1EjnDx0QnLRK969eoICAgo9g87RVEQHh6uzc4xj3llINNT80QEmZmZSE1NBQAEBwcXuyYREZEjnI8yT+9M5nl2nh6ZnHMTkSNcfHTAZDJZJ3pVqlTRpKbRaISfn58mtZjHvLKQ6cl5/v7+AIDU1FRUr16dHwchIiLNcT7KvNKQyTzPztMjk3NuInKEN5xxwHJNnYCAAJ33hIhKK8vPBy2uwUVERJQf56NERJxzE5UVXHwsAK8rQUTO8OcDERG5A3/fENGtjD8DicoGLj4SERERERERERFRieDiIxXJtWvXcPr0aVy6dEnvXSEiIiIiIiIiolKKi4+k2po1a3DPPfcgKCgIgYGBqFOnDt588029d4uIiIiIiIiIiEopLj7eog4fPoxHH30UISEh8PX1Ra1atfDII4/g8OHDDrd/7rnnMGDAAAQFBeGjjz7C1q1bsW3bNowdO9bNe05EREREnmzZsmVQFMX68PPzQ2RkJMaPH4/z58/rvXvkRm3atIGiKFi4cKHDr+cfK/kfP//8s3Xb1atX49FHH0VERAQURUHnzp3d1AsiInLFS+8dIPdbt24dBg8ejMqVK2PkyJGoW7cuTpw4gY8//hhffvklPv/8czz00EPW7Xfu3InZs2fj9ddfx3PPPafjnhMRERFRWfHyyy+jbt26yM7Oxo8//oiFCxfi22+/xaFDh3iX71tAcnIy9u7di/DwcHz22Wd44oknnG5rGSv5NWjQwPr/CxcuxK+//orWrVvj4sWLJbLPRERUNFx8vMUcPXoUQ4cORb169fDDDz+gWrVq1q89+eST6NChA4YOHYoDBw6gXr16AIC3334bd911FxceiYiIiEgzPXr0QKtWrQAAjz32GKpUqYJ3330XX331FQYPHqzz3lFJ+/TTT1G9enW888476NevH06cOOF027xjxZkVK1YgJCQEBoMBTZo00XhviYioOPix61vMW2+9hczMTCxevNhm4REAqlatig8//BDXrl2zuZbjzz//jCZNmmDQoEGoXLky/P390bp1a2zYsMG6zbVr11CuXDk8+eSTdplnzpyB0WjE66+/DgAYPnw4wsPD7bZTFAUzZ860/vvkyZMYO3YsGjZsCH9/f1SpUgX9+/e3m5js2LEDiqJgx44d1ra9e/fi3nvvRVBQEMqVK4fOnTtj165dNs+zfIxj37591ra0tDS7/QCAUaNGOdznX375Bffffz8qVKiAgIAAdOrUCbt377bbLiUlBbGxsahRowZ8fX1x++23Y+nSpXbbOWL5WMncuXPtvtaoUSMoioLx48cX2K+C+vb777+jR48eaNGiBQIDA3HPPffYfIQFAD788EMYDAasWbPG2nbixAkoioJly5ZZ25KSklC5cmUMGTLE5vmXL1/GxIkTUbt2bfj6+qJBgwZYvHgxzGazzXZmsxnvvfcemjZtCj8/P1SrVg3333+/tS8Ffewm78drLGPC8vD19cV9992H119/HSLisP/ly5d32n8iIiIqeV27dgUAHD9+HADw77//YvLkyWjatCkCAwNRvnx59OjRA/v377d7bnZ2NubNm4fIyEj4+fkhODgYDz/8MI4ePQrgf/MWV3MIi9TUVIwcORI1atSAn58foqKisHz5cpttjh07hq5du6JmzZrw9fVF7dq1MWbMGPz777/WbSxzki+//NJunwMDAzF8+HDrv9X2tzA1izovtMyLhg0b5nBe5GhuN3v2bLu5XUFWrlyJfv36oVevXqhQoQJWrlyp+rmO1K5dGwZD0f68zTt3/OOPP2y+lpKSAqPRaHfMhw8fjsDAQLtaX375pd3fJkDu9fMfeugh+Pv7o2rVqnj00UeRkpJis82QIUNQpUoVJCcnW9ss5zDv30Br1qyBwWDAhx9+aPP8v/76C/369UPlypXh5+eHVq1a4bvvvrPbx8uXL2PSpEkIDw+Hr68vQkNDMWzYMKSlpdnNox09LONm5syZNu1BQUHo27evzd+Jefe5ZcuWBfafiMouvvPxFvP1118jPDwcHTp0cPj1jh07Ijw8HP/5z3+sbRcvXsTixYsRGBiIuLg4VKtWDZ9++ikefvhhfPbZZxg8eDDKlSuHhx56CKtXr8a7774Lo9Foff6qVasgInjkkUcKta979+7Fnj17MGjQIISGhuLEiRNYuHAhOnfujI0bNzp93t9//43OnTsjICAAzzzzDAICAvDRRx+hW7du2Lp1Kzp27Fio/XDm+++/R48ePdCyZUvMmDEDBoMB8fHx6Nq1K3bt2oU2bdoAAM6fP48777zTukhYrVo1bNq0CSNHjsSVK1cwceJEl1l+fn6Ij4+32XbPnj04efJksfpw+PBhdOjQAeXLl8fjjz+OmjVr4sMPP0Tnzp2xc+dOtG3bFgAwevRoJCYmIiYmBuHh4WjdurVdrX///Re9evVC48aNER8fb23PzMxEp06dkJKSgtGjR6NOnTrYs2cP3nnnHeTk5Ngsqo4cORLLli1Djx498Nhjj+HmzZvYtWsXfv75Z7Rq1QorVqywbrtr1y4sXrwYc+bMQdWqVQEANWrUsNmn559/Ho0bN0ZWVhbi4+Px/PPPo3r16hg5cqRd/5999ll4e3s77D8RERGVPMtCYZUqVQDkLu5t2LAB/fv3R926dXH+/Hl8+OGH6NSpE44cOYJatWoBAEwmE3r16oXvvvsOgwYNwpNPPomMjAxs3boVhw4dQv369a0ZgwcPxgMPPGCTO3XqVJt/Z2VloXPnzvj7778xfvx41K1bF2vWrMHw4cNx+fJl64vtWVlZCA0NRXR0NMqXL49Dhw5h/vz5SElJwddff13o/qvtb0lxNC/64IMP7OZFzuZ2U6dOxdmzZx2+YJ7fL7/8gr///hvx8fHw8fGx/l3Rv39/h9unp6cjLS3Npk1RFOtY0Yplzv3ee+9Z25YvXw4fHx9kZ2cXue6yZcswYsQING3aFK+//jrOnz+P9957D7t378bvv/+OihUrAgCWLl2Krl27omfPnvjll19QqVIlu1oJCQmIiYnBpEmTMHr0aGv74cOH0b59e4SEhOC5555DuXLl8MUXX2Ds2LGoUaOG9bJaV69eRYcOHfDnn38iNjYWd9xxB9LS0rBx40acOXMGjRs3tplzL168GH/++SfmzJljbWvWrJnNPlm2T0tLw3vvvYf+/fvj0KFDaNiwoU3/W7duXWD/iagMk1tMenq6AJD09HSn22RlZcmRI0ckKytLs9ykpCTNahU17/LlywJAevfuXeBzH3zwQQEgV65cERERAAJAduzYYd0mMzNTGjduLDVr1pQbN25IUlKSbNmyRQDIpk2bbOo1a9ZMOnXqZP33iBEjpE6dOna5AGTGjBk2Gfn99NNPAkDefPNNa9v27dsFgGzfvl1ERPr27StGo1EOHTpk3SYtLU2qVKkiLVu2tLbFx8cLANm7d6+17cKFC3b7ISLSuXNnCQsLs/7bbDZLRESEdO/eXcxms80+161bV+69915r28iRIyU4OFjS0tJsag4aNEgqVKjgsJ95zx8A6devn3h5ecm+ffts6g4ZMkQAyLhx4wrsl7O+9enTR3x8fOTo0aPWzH/++UeCgoKkY8eONs83mUwSHR0twcHBcvr0aTl+/LgAkPj4eLlx44Z07txZ6tatK6mpqTbPmzVrlpQrV85uTI4aNUqMRqOcOnVKRES+//57ASBxcXF2xyPvMc7fz+PHj9t9Lf+YEBE5dOiQGAwGGTt2rMP+Wzjrf36ufk5ER0cX+HytuTtPj0zmMa+0Z7ozT818hko3V+ewpOajmZki774rMn587n8dTEM0zXPE8jt827ZtcuHCBTl9+rR8/vnnUqVKFfH395czZ86IiEh2draYTCab5x4/flx8fX3l5ZdftrYtXbpUAMjUqVPtsixzCMu85a233rLb5vbbb7eZq86dO1cAyKeffmptu3HjhrRr104CAwOtc2RH/Rs7dqwEBgZa/22Zk6xZs8Zu23LlyklMTIz132r6m5SUVKiaRZ0XWvz444928yJnc7vnnnvOZm5XkPHjx0vt2rWt5+e///2vAJANGzbYbGfZf0cPX19fp/Xzn1NnLH2wHNPBgwdLlSpV5Pr169ZtIiIirHPuvMc8JiZGypUrZ1dzzZo1NvPQGzduSPXq1aVJkyZy8OBB63bffPONAJAXX3zR5vnnz5+X8PBw6dKli9y4ccNmznvq1CmpWbOmPPjgg3Zj5Z577pGmTZtKdna2tc1sNssdd9whERER1rYXX3xRAMi6devs9t3RnDsmJsbm76C8ZsyYIfmXFCz7+8UXX9j1P+/PM2f9z+9Wn3OX9Tw9MpmnncLMR3X92HV4eLjDt3GPGzfO4fYfffQROnTogEqVKqFSpUro1q0bEhIS3LzXRXc9Kwcb5vyMRRM2Y8Ocn3E9K8et+RkZGQCAoKCgArezfP3KlSvWttatW6NTp07Wf/v7+2Ps2LE4d+4cfvvtNwBAt27dUKtWLXz22WfW7Q4dOoQDBw7g0UcftbZVr14dqampuHHjRoH74e/vb/3/nJwcXLx4EQ0aNEDFihVx5MgRu+3T09ORmpqKrVu3onv37rj99tutX6tSpQqGDx+OX3/9VZO7KP7xxx9ITk7GkCFDcPHiRaSlpSEtLQ3Xrl3DPffcgx9++AFmsxkigrVr1yI6OhoiYt0uLS0N3bt3R3p6uvX4FaRGjRro2bOn9R2FmZmZ+OKLLzBixAinz7G8Qmx55P0IEJD7LoH//ve/6NOnj/X6ngAQHByMIUOG4Mcff7QZAwaDAatWrUKVKlUQHR2Na9euWb/2xBNPICEhAd98843dx/nXrFlj/b7Nuz933XUXTCYTfvjhBwDA2rVroSgKZsyYYdcXRVFcHqOCjsGpU6fw0UcfwWw2Wz/SVdj+ExFR2XQrzUezsxW0bw9Mngx8+GHuf9u3B7Ky9Nmfbt26oVq1aqhduzYGDRqEwMBArF+/HiEhIQAAX19f68doTSYTLl68iMDAQDRs2NBm/rR27VpUrVoVQ4cOtcsoyhzi22+/Rc2aNW2uO+nt7Y24uDhcvXoVO3futNk+PT0d58+fx3fffYf//Oc/Dj9lk5GRYTMPyv8uvsL0tzA18+5jUeaF1atXt5sXOZvbdevWzWZu58zNmzexevVqDBw40Hp+unbtiurVqzt9x+j8+fOxdetWm8emTZsKzCmK6OhoKIpi/ZTVrl27cObMGQwcONDpc/KfA8vfXBb79u1Damoqxo4dC19fX2t7z5490ahRI5tPnAG5x/w///kPfvnlF4wdO9bafvXqVURHR6Nq1apYuXKlzUfM//33X3z//fcYMGCAzbi4ePEi7r77biQnJ1s/4rx27VpERUXZ3GDUoqhzbkven3/+iVWrVqFcuXK488477frv5+fnsv9EVDbp+rHrvXv3wmQyWf996NAh3HvvvU7fbr9jxw4MHjwYd911F/z8/DB79mzcd999OHz4sHWSUlrdyL6JZ9svw7H952EwKjCbBNtXHMSbu4fD19/bLftgWVTM/wsxP0eLlI0aNbLbrnHjxgByr6FTuXJlGAwGPPLII1i4cCEyMzMREBCAzz77DH5+fjbn9K677sLs2bPxwgsvIC4uzuaXUF5ZWVl4/fXXER8fj5SUFJtr9TnqQ58+faz/b3mLv7P9zf/x3MKyXIclJibG6Tbp6enIycnB5cuXsXjxYixevNjhdqmpqaoyR4wYgREjRuCdd97BmjVrUKlSJetCmiPdunUrsN6FCxeQmZnp9FiZzWacPn3aZhHXZDIhLS0N586dsy58LliwAHv37oWiKA7PS3JyMg4cOGC3KGlh6f/Ro0dRq1YtVK5cucD9Loy8Y8JgMOCFF15A3759ARSt/0REVPbcSvPRVasqYP9+wGzOfQDA/v3AokXApEnu35/58+cjMjISXl5eqFGjBho2bGizoGK5FvSCBQtw/Phxm/OU9+O2R48eRcOGDeHlpc2fNidPnkRERITd9QMtc8n8l73p3r07fvnlFwDA/fffj9WrV9vVjI2NdZmrtr+FqWmh5bxQ7dzOmf/+97+4cOEC2rRpg7///tva3qVLF3zzzTcwm812x75NmzYubzijBW9vbzz66KNYunQp+vXrh6VLl6Jv374oX768w+2vXbvm9DhYWMaLo2PbqFEj/Pjjj3btV65cQVZWFpYsWWK95mdsbCz279+P4OBgm7EB5F52SkQwffp0TJ8+3eF+pKamIiQkBEePHrXOh7WS9xgEBgbis88+Q+3atQEUrf9EVPbouviY/wf1G2+8gfr169u8wy6vvO+oA4AlS5Zg7dq1+O677zBs2LAS208t7Fl1FMf2n4eYBSZz7iLasf3nsWnRr+gz6U637EOFChUQHByMAwcOFLjdgQMHEBISYv0lm/cdiK4MGzYMb731FjZs2IDBgwdj5cqV1otIWzz44IOIjY3FW2+9hbfeestprQkTJlivc9iuXTtUqFABiqJg0KBBDi9m/fbbbyMiIgK9e/dWvb9FZcl/66230Lx5c4fbBAYG4uLFiwCARx991OlCZf5rpjjTs2dP+Pj4YMOGDYiPj0dMTEyBF9W2TOgtrly5UuyJxvTp05GdnY2NGzdaXwHeu3cv5s2bh1WrVmHs2LHYu3ev3R8O9957L5599lmbWmfOnEFoaKjNPmrt7bffRlRUFHJycrB582bMnj0bXl5eDt9dSUREt6ZbaT56+rQ3jMb/LTwCgNEIHDumz/64WlB67bXXMH36dMTGxmLWrFnWF7snTpxYqBublLT3338faWlpOHLkCF5//XWMGTMGn376qc02L774ot0116Ojo23+Xdj+qqlpoeW80NnczsLV3M7yPTRgwACHX9+5cye6dOlSpH3TQmxsLFq0aIHExESsWbOmwGvN+/n52b1bc9euXXj55ZeLnG8ymTB27Fi0a9cOAwcOtF5j9NChQ9i4cSOGDh2KF1980ebampbxMXnyZHTv3t2mnmXO3aBBgyLvkytbt24FkLsYGx8fjwEDBuCbb77BvffeW2KZRORZSs0NZ27cuIFPP/0UTz31lOq3e2dmZiInJ0fTd0qVlIunr8JgVKwLjwBgMCo4d+yyW/ejV69e+Oijj/Djjz/i7rvvtvv6rl27cOLECZuLF9etWxeJiYl22/71118AYHMX6CZNmqBFixb47LPPEBoailOnTuH999+3e+7HH3+MF198EUePHrX+ssz/y+nLL79ETEwM3nnnHWtbdnY2Ll++7LBvLVu2RKdOnRAYGKh6f4vKcuHy8uXLF/hKcrVq1RAUFASTyeTyFWdXvLy8MHToULz66qs4fPiwy7tl55/Q5/8oTrVq1RAQEOD0WBkMBusrlkDuR83nz5+P9957D9HR0ViyZAkeeeQRPP7445gwYQI6dOiAVq1aYcGCBTZ3365fvz6uXr1q1//k5GRERETYbLdlyxb8+++/mn1Pt2zZ0nr3ygYNGiA7OxuzZ8/G9OnTC91/IiIq+8r6fLR27Rzke8MUTCYgz6dsS5Uvv/wSXbp0wccff2zTfvnyZevN5oDcOcQvv/yCnBxtLmkUFhaGAwcO2L0DzzKXDAsLs9neciO+Hj16oHr16hg2bBimTZtmfackADRt2tRuLpT3Bo2A+v4WpqaFlvNCZ3M7Na5du4avvvoKAwcORL9+/ey+Pm7cOHz22We6Lj42bdoULVq0wIABA1CtWjV06dLF7qP2Fkaj0e445P9bxTJeEhMT7eaWiYmJduNpwYIFOHDgAH799VdERUXh0KFD+Oijj7BkyRJER0fjlVdewcSJEzFixAhERUUBgPWj8t7e3qrm3IcOHVJ5NNTJm3nbbbfhzz//xNtvv417773Xpv/5P7XlqP9EVDbpes3HvDZs2IDLly9j+PDhqp8zZcoU1KpVq8BffNevX8eVK1dsHnqoUjsQZpPYtJlNgpr1Krp1P5555hn4+/tj9OjR1nflWfz7778YM2aM9S7RFg888AASEhKwZ88ea1t2djYWLlyImjVromXLljZ1hg4div/+97+YO3cuqlSpgh49ejjcl7CwMHTt2hXdunVzeA6NRqPNR62B3FeW83/MIC9FUXDfffdhy5Yt+PPPP236tnz5crRq1arYH7kGche16tevj7fffhtXr161+/qFCxesfejbty/Wrl3r8Je8ZTu1YmNjcfDgQXTs2NHmejxFYTQacd999+Grr77CiRMnrO3nz5/HypUrcffdd1vf/SoiGDt2LKKiovDEE08AyP34fN7/Nm/eHOPGjcMLL7xgc13NAQMG4KeffsKWLVvs9uHy5cu4efMmAKBv374QEbz00kt22+UfB0WVlZWFmzdv4ubNm4XqPxER3RpKaj4KlI456eDB6YiKAgwGwNs797/NmwNjxrh9V1RxNBdcs2aN9dp1Fn379kVaWprduw2Bos0hHnjgAZw7d87m49M3b97E+++/j8DAQKfvigX+t6h3/fr1Queq7W9JcDYvSktLs5sXqZ3bObJ+/Xpcu3YN48aNQ79+/ewenTt3xtq1a4t0/LQUGxuLAwcOYPjw4UW+DqJFq1atUL16dSxatMjmmvebNm3Cn3/+iZ49e1rbzp8/j+nTp2P8+PHWhcX8c+4nnngCUVFRGDt2rHW8VK9eHZ07d8aHH36Is2fP2u1D3r85+vbti/3792P9+vV222kx5zaZTLhx44b1HObtf97z6qj/RFR2lZp3Pn788cfo0aMHatWqpWr7N954A59//jl27Njh9JqBAPD66687XMwYOHAgvL0dX2vRcnMSRVGcvnpYWC1618K+r07gnz8vWa/5WKtRRUR0q2C9fqCWMjMzndZ94403MHnyZNx2223o168fQkNDkZKSgjVr1uDSpUt49913YTabrc/v168fPvnkE3Tv3h3Dhg1DpUqV8NVXX+HIkSN45513cPz4cZs8y8WF169fjyFDhthMYFy5ePGitU7Hjh2xYsUKiAjq16+PP/74A3v27EHFihVx8+ZN63Znzpyx/jc5ORmPPfYYNm/ejLvvvhtDhw6Fn58fvvjiC1y+fBlz5861Ps+yQPbVV19Zr6ViWUj8/fffbV51TktLw9WrV/Hxxx9bLyI+c+ZMPPbYY2jYsCEefvhh1KhRA+fPn8cvv/yCwMBAfPjhhwCAUaNGYevWrWjTpg0GDBiA+vXrIz09HUeOHMGePXuwd+9el+fv8uXLSE5OhpeXF3755Rf4+fk5/Hrefp06dcrm4+6WC4vnPcaPP/44/vvf/+LOO+9E//794e/vj88//xzZ2dmYMGGCdbs1a9bgl19+werVq3H06FGb437+/HnrdsOHD8eqVaswevRo60fqH3roIaxZswa9evXCQw89hCZNmiAzMxNHjhzBd999h++//x6VK1dGaGgoevfujXnz5uGPP/5Ax44dYTabsW/fPrRt29buIvKWfh4/ftzunQ6WfVu9ejX27duHmzdv4rfffsPatWvRtWtX67Vn8vZ/yJAh8PLycth/R0wmE1JTU/Hmm2/aLeQDQEJCAh588EGnz9eau/P0yGQe80p7pjvztHqHF9kqqfkoUMCc9P574O3gWoVVqtfA8HFPQhEzjAVcZqUwzKZsLF/6F1Z9Xgmnz3ijdmgOBg+6hDMntXmRL7/M7Gwk//WnXfv5s/8AAE6dOI4KgeWcPr/dnW0xf8FC9H34IbRo3gJJyUn4+utvULt2bWRlZlprt2vTGm3btMHrr7+OAwcOoFWrVsjKysKePXswZMgQdOvWzTo3SEtLs/v9fuPGDWRlZVnbu3btivr16yMmJgbbtm1DSEgItmzZgoSEBEybNg3nzp3DuXPnMGfOHPz777+IiIiAj48Pjhw5grVr16Jhw4bw9/dHcnKyNffs2bN2uSKCK1euWNvbtWuH+fPno2/fvmjRogWSkpLw9ddf5/b3//cvMzOzUDWLOi+0zItWrVplNy9yNrdLSkrCli1brHM7RxYvXoyKFSuiWrVqDudZd999N7744gt89NFH6N69u3X/P/30U+zYscNu+xYtWqBOnToAci8FZJlXnzt3Dunp6Zj0/xczbd26tfUdqnlZ5tz5j2nnzp3x888/IygoyOl5vHLlCkTErh+WxT/L3yYA8NRTT+G5557D4MGD8eCDDyItLQ2ffPIJQkND8eCDD1q3mzx5Mnx9fRETE2N3DvPOeadOnYoBAwbgjTfesL6D9Nlnn8XgwYNx2223YcCAAahduzYuXryIffv24cKFC9aPhz/00ENYuXIl+vfvj759+6JJkya4fPkyvv/+e7z00ks279i19DPv3155WebAb7/9NoDcF/q3bNmCEydO4JFHHrHrf9u2bdGrVy+n/XfkVp9zl/U8PTKZp51CzUe1v9l24Z04cUIMBoNs2LBB1fZvvfWWVKhQQfbu3ety2+zsbElPT7c+Tp8+7fJW4FlZWXLkyBHJyspS3QdXkpKSJDvzhqx/9ydZOH6TrH/3J8nOvKFZfUd5BTlw4IAMHjxYgoODxdvbW2rWrCmDBw+WgwcPOtz+6NGj0q9fP6lQoYL4+flJ69atbc5X/rwHHnhAAMiePXtU7zMAmTFjhvXfly5dkhEjRkjVqlUlMDBQunfvLn/99ZeEhYXJQw89ZN1u+/btAkC2b99ubfv111/lvvvuk8DAQAkICJCOHTvKzp07bfLi4+MFQKEfef3+++/y8MMPS5UqVcTX11fCwsJkwIAB8t1339lsd/78eRk3bpzUrl3berzvueceWbx4scNjkfd4ApBx48YVeNzyft3Sr/zfHxcuXLA7xiIiv/32m3Tv3l3KlSsnAQEB0qVLF5vzdvHiRalataqMGjXK5nnHjx8XABIfH2/T/tlnnwkAm+OdkZEhU6dOlQYNGoiPj49UrVpV7rjjDnn77bflxo3/fR/cvHlT3nrrLWnUqJH4+PhItWrVpEePHvLrr7/a9dvSz+PHj9t9zTImLA8vLy8JCQmRuLg4uXTpksP+W8ZK/v474+rnRHR0tMsaWnJ3nh6ZzGNeac90Z156errL+QwVTknOR0UKmJNuXyeyd4vdI2vvVjny+6+SdTFV5OplTR5Jfx7RrFZx8uIXzc+dq/ywvcDnZ188L0/HjZfgmjXF399f2re7U376fqt0uru9dLq7vc22mRfOyhNPPCF169a1zrX69esnR48eFZH/zVveeustu3Nz++23S6dOnWzazp8/b52H+vj4SNOmTe3mPO+//760bt1aypcvL/7+/tKgQQN5+umn5cKFC9ZtLHOSNWvW2OWWK1dOYmJibMbI008/LcHBwbn9bd9efvrpJ+nUqZN1/5KSkgpVs6jzQsu86M4773Q4L3I0t7vrrrvs5nb5j6mXl5cMHTrU4ddFcv9GCQgIsM71Xc3X856TGTNmON0ufz8tLHPugo6ps6/HxMRIuXLl7LZds2aN3d8mIiKrV6+W2267TXx9faVy5cryyCOPyJkzZ6xf37FjhwCQlStX2jzP2Zz38ccfl6pVq8rFixetbUePHpVhw4ZJzZo1xdvbW0JCQqRLly7y5Zdf2jz34sWLMn78eAkJCREfHx8JDQ2VmJgYSUtLs+tPTEyMhIWFOTwu+Y+55ftgzpw5Yjab7frfokULp/135lafc5f1PD0ymaedwsxHS8Xi44wZM6RmzZqSk5PjctvZs2dL+fLl5aeffipSlpqDU1KLj+6kd16fPn2kfv36bssraUlJSdZJq7vy3E3vMeNpebf6REiPTOYxr7RnltbJHqnjzvmoSJ5zeAsuPpZYnofPLUpjJvM8O0+PTM65mVfaM5mnncLMR3W/5qPZbLbeudcr30dOhg0bhqlTp1r/bblRxNKlSxEeHm79yIOja+6Rfs6ePYv//Oc/dh+TJSIiIiqNOB8lIiIiKjm6Lz5u27YNp06dQmxsrN3XTp06ZXPB3IULF+LGjRvo168fgoODrQ/LNSZIX8ePH8enn36KwYMHw9vb2+aO2WWBv78/unfvrvduEBERkcY4HyUiIiIqObrfcOa+++6DOLmrVv6LChfmxiXkfjt37sSIESNQp04dLF++HDVr1tR7lzRVo0YNbN68We/dICIiIo1xPkpERERUcnRffKSyY/jw4Rg+fLjeu0FERETkMeavqY2Jgy8DABatC8WxlADUC8nEiL7/cKZOREREZQKnNEREREREOpm2IAKrtyqAAhxMDoLRKDCZFGz9vSrefve03rtHREREVGxcfCQiIiIi0olAwYHkIOv/m28qAIC/TpRDRqZRz10jIiIi0oTuN5wpzZxd+4eIiD8fiIhIK4qS+7BtE+SYFP6+IaJbGn8GEpUNXHx0wMsr9w2hN2/e1HlPiKi0svx8sPy8ICIiKiqR3EdeFy74wAAzMq9f12eniIhKgczMTACAt7e3zntCRMXBv5odMBqNMBqNuHLlCoKCgvTeHSIqha5cuWL9WUFERFRUCgRRERmQfNd8jAjJRKhPBlIv5K5KBvj6Qsn/9shCMpnNyL5+Q4vdLp15JhOys7PLbJ4emczz7Dw9MrXKExFkZmYiNTUVFStW5JybyMNx8dEBRVFQvXp1nD17Fr6+vihXrlzxJ3se+kOfebdGnh6ZnponIrh27RquXLmC4ODgYv9sICKiW9urY5Md3u16zMNn4OdlxrkcQep5k/3nsosg9VI65Ib73knp9rz0DLd+RDM1NdXtHwl1dybzPDtPj0yt8ypWrIiaNWtqVo+I9MHFRycqVKiArKwspKWl4cKFC8Wu5+k/9JlXtvP0yPTkPEVRULFiRVSoUEGTekRERI4oACpmX8eajVVx/oovatfMxqB7z8HP14zs6wZ8vrUmzpz3Q2iN3HYAdm15t13x7dsY+sALRapRFG/O/wALnxuv1eFwnbfsMyxcuNB9eW++6dY8PTKZ59l5emRqmeft7c13PBKVEVx8dEJRFAQHB6N69erIyckpdj1P/qHPvLKfp0emJ+dxIkRERFqZtiACq7cqQL6PXa/4tha2zd+HbuNaYX/S/9oXfx7qsH3RylC7Gvm3FWTg532NC11j95IE+PsVfgHyYup5+KFoC5dFcfHiRfj5+ZXZPD0ymefZeXpk6tFHIir9uPjoglbXdCvrP/SZ59l5emSW9TwiIiI1BAoOJAdZ/998M/fj1fuTghA763bsTwqCWVy3q6mRe4VJpdA1Fq0LxaQhp9xzQIiIiKjM4d2uiYiIiIh0pCj2l3Q0GgXHUgJgNIqq9pKuQURERFRUXHwkIiIiItKRSO4jL5NJQb2QTJhMiqr2kq5BREREVFRcfCQiIiIi0okCQVREBppFZsCgCLy9zDAoguaRGVg6/TCiVLarqaEoUqQaYx4+o/dhIiIiIg/Gaz4SEREREenk1bHJmDj4MgBg0bpQHEsJQL2QTIx5+Az8/czYvSRBdburGvNWZyNuYGKRahAREREVFRcfiYiIiIh0Mq7/afj7lQMAhzd18fczF6q9oG2377tq8/XC1CAiIiIqKi4+EhERERHpZP6a2gW+8zEr26C63VWNg0cDMWdlnWLVcFceERERlR26Lj6Gh4fj5MmTdu1jx47F/PnzHT5nzZo1mD59Ok6cOIGIiAjMnj0bDzzwQEnvKhERERGVQXrPR6ctiMDqrQqgAAeTg2A0CkwmBSu+rYVt8/eh27hW2J/kun35N7Vc1hD4YfLchsWq4Y683UsSuABJRERUhuh6w5m9e/fi7Nmz1sfWrVsBAP3793e4/Z49ezB48GCMHDkSv//+O/r06YM+ffrg0KFD7txtIiIiIioj9J6PChQcSA7CgaQgmEVBzk0DzKJgf1IQYmfdjv0q29XUEFGKXcMdeYvWhRb5fBIREVHpo+viY7Vq1VCzZk3r45tvvkH9+vXRqVMnh9u/9957uP/++/HMM8+gcePGmDVrFu644w588MEHbt5zIiIiIioLSsN8VFFyH3kZjYJjKQEwGkVVu7trlHQeERERlR26Lj7mdePGDXz66aeIjY2Fkn8W8v9++ukndOvWzaate/fu+Omnn9yxi0RERERUhuk1HxXJfeRlMimoF5IJk0lR1e7uGiWdR0RERGVHqVl83LBhAy5fvozhw4c73ebcuXOoUaOGTVuNGjVw7tw5p8+5fv06rly5YvMgIiIiIsqvpOajgPM5qQJBVEQGmkVmwKAIvL3MMCiC5pEZWDr9MKJUtqupoShS7BruyLPciIaIiIjKBkUk/+uN+ujevTt8fHzw9ddfO93Gx8cHy5cvx+DBg61tCxYswEsvvYTz5887fM7MmTPx0ksv2bXff//98Pb2Lv6Oq5SQkIA2bdowj3mlMk+PTOZ5dp4emcxjXmnPdGdeTk4ONm/ejPT0dJQvX94tmbeCkpqPAs7npI3CO6BeSA4A4ORZf1zLNqKcnwlhwVkwGgCTWX27qxrHUg6iXkjTYtVwV15RJBxORJvbGxbtyR6QBwAJScfL7M815pWNTOYxr7RnMk87hZmP6nq3a4uTJ09i27ZtWLduXYHb1axZ025Sd/78edSsWdPpc6ZOnYqnnnrK+u8rV66gdu3aWL16tVsn6w8++CA2btzIPOaVyjw9Mpnn2Xl6ZDKPeaU90515V65cQYUKFdySdasoyfko4HxOOuyBdzFx8GUAwKJ1oTiWEoB6IZkY8/AZ+PuZkZVtUN3uqsa81RMwsvf7xaqhZ56rGgePTkCXVgXnaXkX7QefmoGN79ovKJekB1/+oMz+XGNe2chkHvNKeybztFOY+WipWHyMj49H9erV0bNnzwK3a9euHb777jtMnDjR2rZ161a0a9fO6XN8fX3h6+ur1a4SERERURlUkvNRwPmcdNqCCKzeqgAKcDA5CEajwGRSsOLbWtg2fx+6jWuF/Umu25d/U8tlDYEfJs9tWKwaeuWpqeEqb8W3tbB7SYKmC5BERETkmu6Lj2azGfHx8YiJiYGXl+3uDBs2DCEhIXj99dcBAE8++SQ6deqEd955Bz179sTnn3+Offv2YfHixXrsOhERERGVAXrORwUKDiQHWf/ffDP3piz7k4IQO+t27E8Kgllct6upkXuFSaVYNfTKU1PDVd7+pCAsWheKSUNOFelcERERUdHofsOZbdu24dSpU4iNjbX72qlTp3D27Fnrv++66y6sXLkSixcvRlRUFL788kts2LABTZo0cecuExEREVEZovd8VFFyH3kZjYJjKQEwGkVVu7treOI+W9qJiIjIvXR/5+N9990HZ/e82bFjh11b//790b9//xLeKyIiIiK6Veg9H3UUbTIpqBeSicNHA1W1u7uGJ+6zpZ2IiIjcS/d3PhIRERER3aoUCKIiMtAsMgMGReDtZYZBETSPzMDS6YcRpbJdTQ1FkWLX0CtPTQ1Xec0jM6w3qCEiIiL30f2dj0REREREt6pXxyYXeLfr3UsSVLe7qjFvdTbiBiYWq4aeea5qqMnjzWaIiIjcj4uPREREREQ6Gdf/NPz9ygGAwxuh+PuZC9Ve0Lbb9121+XpRauidV1ANtXlERETkXlx8JCIiIiLSyfw1tQt852NWtkF1u6saB48GYs7KOsWqoWeeqxpq8rTsd/48IiIicoyLj0REREREOpm2IAKrtyqAAhxMDoLRKDCZFKz4tha2zd+HbuNaYX+S6/bl39RyWUPgh8lzGxarhl55amq4ytO633nzdi9J4AIkERGRE1x8JCIiIiLSiUDBgeQg6/+bbyoAgP1JQYiddTv2JwXBLK7b1dTIvb2NUqwaeuWpqeEqT+t+581btC6UH/EmIiJygne7JiIiIiLSkaLkPvIyGgXHUgJgNIqqdnfX8MR9Lul+ExERkWNcfCQiIiIi0pFI7iMvk0lBvZBMmEyKqnZ31/DEfS7pfhMREZFjXHwkIiIiItKJAkFURAaaRWbAoAi8vcwwKILmkRlYOv0wolS2q6mhKFLsGnrlqanhKk/rfufNs9yIhoiIiOzxmo9ERERERDp5dWxygXe73r0kQXW7qxrzVmcjbmBisWromeeqhpo8LfudP4+IiIgc4+IjERERERFRMWVlGxwuYDpqBxwvdhIREZVFXHwkIiIiItLJtAURWL1VARTgYHIQjEaByaRgxbe1sG3+PnQb1wr7k1y3L/+mlssaAj9MntuwWDX0ylNTw1We1v3WOm/3kgQuQBIRUZnExUciIiIiIp0IFBxIDrL+v/lm7g1O9icFIXbW7difFASzuG5XUyP3CpNKsWrolaemhqs8rfutdd6idaGYNOSU+sFDRETkIXjDGSIiIiIiHSlK7iMvo1FwLCUARqOoand3DU/cZ0/oNxERUVnExUciIiIiIh2J5D7yMpkU1AvJhMmkqGp3dw1P3GdP6DcREVFZxMVHIiIiIiKdKBBERWSgWWQGDIrA28sMgyJoHpmBpdMPI0plu5oaiiLFrqFXnpoarvK07rfWeZYb0RAREZU1ul/zMSUlBVOmTMGmTZuQmZmJBg0aID4+Hq1atXL6nPnz5+ODDz7AiRMnUKdOHUybNg3Dhg1z414TERERUVmh53z01bHJmDj4MgDHdz/evSRBdburGvNWZyNuYGKxauiZ56qGmjwt+10SeURERGWRrouPly5dQvv27dGlSxds2rQJ1apVQ3JyMipVquT0OQsXLsTUqVPx0UcfoXXr1khISMDjjz+OSpUqITo62o17T0RERESeTu/56Lj+p+HvVw4AHN5sxN/PXKj2grbdvu+qzdeLUkPvvIJqqM3Tqt8lkUdERFQW6br4OHv2bNSuXRvx8fHWtrp16xb4nBUrVmD06NEYOHAgAKBevXrYu3cvZs+ezcVHIiIiIioUveej89fULvCdj1nZBtXtrmocPBqIOSvrFKuGnnmuaqjJ07Lf7sqzOaYHgTlzgDFjcsfPokXAsWNAvXq5bf7+QFaW43YiIiK96Lr4uHHjRnTv3h39+/fHzp07ERISgrFjx+Lxxx93+pzr16/Dz8/Pps3f3x8JCQnIycmBt7d3Se82EREREZURes9Hpy2IwOqtCqAAB5ODYDQKTCYFK76thW3z96HbuFbYn+S6ffk3tVzWEPhh8tyGxaqhV56aGq7ytO63O/LsjykweTKwfHnu+Dl4EDAaAZMJWLEC2LYN6NYN2L/ftn33bi5AEhGRfnRdfDx27BgWLlyIp556Cs8//zz27t2LuLg4+Pj4ICYmxuFzunfvjiVLlqBPnz6444478Ouvv2LJkiXIyclBWloagoODbba/fv06rl+/bv33lStXSrRPREREROQ53DEfBZzPSQUKDiQHWf/ffDP3zsj7k4IQO+t27E8Kgllct6upkXt7G6VYNfTKU1PDVZ7W/XZHnv0xzb1T9oEDsP6/+f8vFbl/PxAbm/tfs9m2fdEiYNIkEBER6UIREdEr3MfHB61atcKePXusbXFxcdi7dy9++uknh8/JysrCuHHjsGLFCogIatSogUcffRRvvvkmzp07hxo1athsP3PmTLz00kt2de6//363vksyISEBbdq0YR7zSmWeHpnM8+w8PTKZx7zSnunOvJycHGzevBnp6ekoX768WzLLKnfMRwHnc1LgfgD2c1JFEQT6m3A1ywj5/0Wngtodsd82AUCbYtbQJ09djYLztO93yec5O6aFrREWnI2m9a8WuA8Oe3g4EW1ub1jo5xWV2/OSjpfZ3xN6ZTKPeaU9k3naKdR8VHRUp04dGTlypE3bggULpFatWi6fe+PGDTl9+rTcvHlTFixYIEFBQWIymey2y87OlvT0dOvj9OnTAkDS09M164ca0dHRzGNeqc3TI5N5np2nRybzmFfaM92Zl56erst8pixyx3xUxPmcFEgXJfe9bpL7Prbch0ExS+9O58SgqGtXVyNagxr65KmrUXCe9v0u+Txnx7SwNd6d9KfI3i2FfkR3uLNIzyvqw+15Zfj3hF6ZzGNeac9knnYKMx81lPxaqHPt27dHYmKiTVtSUhLCwsJcPtfb2xuhoaEwGo34/PPP0atXLxgM9t3x9fVF+fLlbR5ERERERIB75qOA8zmpAkFURAaaRWbAoAi8vcwwKILmkRlYOv0wolS2q6mhKFLsGnrlqanhKk/rfrsjz9kxLWwNy01uiIiI9KDrNR8nTZqEu+66C6+99hoGDBiAhIQELF68GIsXL7ZuM3XqVKSkpOCTTz4BkDsZTEhIQNu2bXHp0iW8++67OHToEJZbrrpMRERERKSS3vPRV8cmF3i3691LElS3u6oxb3U24gYmFquGnnmuaqjJ07Lf7spzdkwLW4OIiEgvui4+tm7dGuvXr8fUqVPx8ssvo27dupg7dy4eeeQR6zZnz57FqVOnrP82mUx45513kJiYCG9vb3Tp0gV79uxBeHi4Dj0gIiIiIk/G+SjdKrKyDaoXQS3bHjwaiDkr63ABk4iIikXXxUcA6NWrF3r16uX068uWLbP5d+PGjfH777+X8F4RERER0a1Cz/notAURWL1VARTgYHIQjEaByaRgxbe1sG3+PnQb1wr7k1y3L/+mlssaAj9MntuwWDX0ylNTw1We1v12R56zY6r1sVNzDncvSeACJBERFYnui49ERERERLcqgYIDyUHW/zffzL1L8f6kIMTOuh37k4Jyby3iol1NjdwrTCrFqqFXnpoarvK07rc78pwdUz3GzKJ1oZg05H/vACYiIlJL1xvOEBERERHd6hQl95GX0Sg4lhIAo1FUtbu7hifuM/td/BpERERFwcVHIiIiIiIdieQ+8jKZFNQLyYTJpKhqd3cNT9xn9rv4NYiIiIqCi49ERERERDpRIIiKyECzyAwYFIG3lxkGRdA8MgNLpx9GlMp2NTUURYpdQ688NTVc5Wndb3fkOTumeowZyw1qiIiICovXfCQiIiIi0smrY5MxcfBlAI7vOrx7SYLqdlc15q3ORtzAxGLV0DPPVQ01eVr22115zo6pHmOGiIioKLj4SERERESkk3H9T8PfrxwAOLyZh7+fuVDtBW27fd9Vm68XpYbeeQXVUJunVb/dmefsmLp7zBARERUFFx+JiIiIiHQyf03tAt/5mJVtUN3uqsbBo4GYs7JOsWromeeqhpo8Lfvtrjxnx9TdY0aLPL57kojo1sTFRyIiIiIinUxbEIHVWxVAAQ4mB8FoFJhMClZ8Wwvb5u9Dt3GtsD/Jdfvyb2q5rCHww+S5DYtVQ688NTVc5Wndb3fkOTumWh87d+St+LYWdi9J4AIkEdEtiIuPREREREQ6ESg4kBxk/X/zzdy7DO9PCkLsrNuxPykIZnHdrqZG7u1tlGLV0CtPTQ1XeVr32x15zo6pu8eMFnn7k4KwaF0oP8ZNRHQL4t2uiYiIiIh0pCi5j7yMRsGxlAAYjaKq3d01PHGf2W99+21pJyKiWw8XH4mIiIiIdCSS+8jLZFJQLyQTJpOiqt3dNTxxn9lvffttaSciolsPFx+JiIiIiHSiQBAVkYFmkRkwKAJvLzMMiqB5ZAaWTj+MKJXtamooihS7hl55amq4ytO63+7Ic3ZM3T1mtMhrHplhvXENERHdWnjNRyIiIiIinbw6NrnAu13vXpKgut1VjXmrsxE3MLFYNfTMc1VDTZ6W/XZXnrNj6u4xo0UebzZDRHRr4jsfiYiIiIiIqMRlZRswZ2UdTHirEeasrIOsbINN+8GjgTbtRERUNvCdj0REREREOpm2IAKrtyqAAhxMDoLRKDCZFKz4tha2zd+HbuNaYX+S6/bl39RyWUPgh8lzGxarhl55amq4ytO63+7Ic3ZMtT52pS1vxbe1sHtJAt8pSURURnDxkYiIiIhIJwIFB5KDrP9vvpl7k479SUGInXU79icFwSyu29XUyL3CpFKsGnrlqanhKk/rfrsjz9kxdfeY0WOMLloXiklDToGIiDyf7u9nT0lJwaOPPooqVarA398fTZs2xb59+wp8zmeffYaoqCgEBAQgODgYsbGxuHjxopv2mIiIiIjKEr3no4qS+8jLaBQcSwmA0Siq2t1dwxP3mf32vH4TEVHZoOvi46VLl9C+fXt4e3tj06ZNOHLkCN555x1UqlTJ6XN2796NYcOGYeTIkTh8+DDWrFmDhIQEPP74427ccyIiIiIqC0rDfFQk95GXyaSgXkgmTCZFVbu7a3jiPrPfntdvIiIqG3RdfJw9ezZq166N+Ph4tGnTBnXr1sV9992H+vXrO33OTz/9hPDwcMTFxaFu3bq4++67MXr0aCQkJLhxz4mIiIioLNB7PqpAEBWRgWaRGTAoAm8vMwyKoHlkBpZOP4wole1qaiiKFLuGXnlqarjK07rf7shzdkzdPWb0GKOWO2wTEZHn0/Wajxs3bkT37t3Rv39/7Ny5EyEhIRg7dmyBrxq3a9cOzz//PL799lv06NEDqamp+PLLL/HAAw+4cc+JiIiIqCzQez766thkTBx8GQCwaF0ojqUEoF5IJsY8fAb+fmbsXpKgut1VjXmrsxE3MLFYNfTMc1VDTZ6W/XZXnrNj6u4xo8cYJSKiskHXxcdjx45h4cKFeOqpp/D8889j7969iIuLg4+PD2JiYhw+p3379vjss88wcOBAZGdn4+bNm4iOjsb8+fMdbn/9+nVcv37d+u8rV66USF+IiIiIyPO4Yz4KOJ+Tjut/Gv5+5QDA4c01/P3MhWovaNvt+67afL0oNfTOK6iG2jyt+u3OPGfH1N1jxt15RERUNigi+a+84T4+Pj5o1aoV9uzZY22Li4vD3r178dNPPzl8zpEjR9CtWzdMmjQJ3bt3x9mzZ/HMM8+gdevW+Pjjj+22nzlzJl566SW79vvvvx/e3t7adcaFhIQEtGnThnnMK5V5emQyz7Pz9MhkHvNKe6Y783JycrB582akp6ejfPnybsksq9wxHwWcz0kbhXdAvZAcAMDJs/64lm1EOT8TwoKzYDQAJrP6dlc1jqUcRL2QpsWqoWeeqxpq8rTst7vynB1Td48ZTxyjRhcXGUs4nIg2tzcseCMNuTsPABKSjpfZ34XM8/w8PTKZp51CzUdFR3Xq1JGRI0fatC1YsEBq1arl9DmPPvqo9OvXz6Zt165dAkD++ecfu+2zs7MlPT3d+jh9+rQAkPT0dG06oVJ0dDTzmFdq8/TIZJ5n5+mRyTzmlfZMd+alp6frMp8pi9wxHxVxPidVcFmiItIlKjJdDIpZvL1MYlDM0qJhulzc9p20aKiuXU0NRelV7Bp65amp4SpP6367I8/ZMXX3mPHEMdqiYbpk7toqsneL00d0hzsL/LrWD3fnyd4tZfp3IfM8P0+PTOZppzDzUV0/dt2+fXskJibatCUlJSEsLMzpczIzM+HlZbvbRqMRACAO3sTp6+sLX19fDfaWiIiIiMoad8xHAedzUoGCA8lB1v8338y96+/+pCDEzrod+5OCYBbX7Wpq5N7eRilWDb3y1NRwlad1v92R5+yYunvMeOIY3Z8UhEXrQvkxbiKiUkDXu11PmjQJP//8M1577TX8/fffWLlyJRYvXoxx48ZZt5k6dSqGDRtm/Xd0dDTWrVuHhQsX4tixY9i9ezfi4uLQpk0b1KpVS49uEBEREZGHKg3zUUXJfeRlNAqOpQTAaBRV7e6u4Yn7zH7fmv0mIiL96br42Lp1a6xfvx6rVq1CkyZNMGvWLMydOxePPPKIdZuzZ8/i1Kn/vVo1fPhwvPvuu/jggw/QpEkT9O/fHw0bNsS6dev06AIRERERebDSMB8VyX3kZTIpqBeSCZNJUdXu7hqeuM/s963ZbyIi0p+ui48A0KtXLxw8eBDZ2dn4888/8fjjj9t8fdmyZdixY4dN24QJE3D48GFkZmbin3/+waeffoqQkBA37jURERERlRV6zkcVCKIiMtAsMgMGReDtZYZBETSPzMDS6YcRpbJdTQ1FkWLX0CtPTQ1XeVr32x15zo6pu8eMJ47R5pEZGPPwmeL8aCAiIo3oes1HIiIiIqJb2atjkzFx8GUAwKJ1oTiWEoB6IZkY8/AZ+PuZsXtJgup2VzXmrc5G3MDEYtXQM89VDTV5WvbbXXnOjqm7x4wnjlF/P3MJfecSEVFhcPGRiIiIiIiIyqSsbIPTBcyDRwMxZ2Ud60Klo225gElEVHxcfCQiIiIi0sm0BRFYvVUBFOBgchCMRoHJpGDFt7Wwbf4+dBvXCvuTXLcv/6aWyxoCP0ye27BYNfTKU1PDVZ7W/XZHnrNjqvWxK215pWnM7F6SwAVIIqJi4uIjEREREZFOBAoOJAdZ/998M/emGfuTghA763bsTwqCWVy3q6mRe4VJpVg19MpTU8NVntb9dkees2Pq7jHjiWNUq3O4aF0oJg353w2niIio8HS/4QwRERER0a1MUXIfeRmNgmMpATAaRVW7u2t44j6z3+x3UWsQEVHxcPGRiIiIiEhHIrmPvEwmBfVCMmEyKara3V3DE/eZ/Wa/i1qDiIiKh4uPREREREQ6USCIishAs8gMGBSBt5cZBkXQPDIDS6cfRpTKdjU1FEWKXUOvPDU1XOVp3W935Dk7pu4eM544RrU6h5Yb1BARUdHxmo9ERERERDp5dWwyJg6+DAAO77K7e0mC6nZXNeatzkbcwMRi1dAzz1UNNXla9ttdec6OqbvHjCeOUa3OIRERFQ8XH4mIiIiIdDKu/2n4+5UDAIc3tfD3MxeqvaBtt++7avP1otTQO6+gGmrztOq3O/OcHVN3jxlPHKNanEMiIioeLj4SEREREelk/praBb7zMSvboLrdVY2DRwMxZ2WdYtXQM89VDTV5WvbbXXnOjqm7x4wnjlEtzmFh84iIyB4XH4mIiIiIdDJtQQRWb1UABTiYHASjUWAyKVjxbS1sm78P3ca1wv4k1+3Lv6nlsobAD5PnNixWDb3y1NRwlad1v92R5+yYan3sSlteaRkzhc3bvSSBC5BERA5w8ZGIiIiISCcCBQeSg6z/b76Ze7fd/UlBiJ11O/YnBcEsrtvV1Mi9vY1SrBp65amp4SpP6367I8/ZMXX3mPHEMarFOSxs3qJ1ofzYNhGRA7zbNRERERGRjhQl95GX0Sg4lhIAo1FUtbu7hifuM/vNfruj30REZI+Lj0REREREOhLJfeRlMimoF5IJk0lR1e7uGp64z+w3++2OfhMRkT0uPhIRERER6USBICoiA80iM2BQBN5eZhgUQfPIDCydfhhRKtvV1FAUKXYNvfLU1HCVp3W/3ZHn7Ji6e8x44hjV4hwWNs9ygxoiIrLFaz4SEREREenk1bHJBd7teveSBNXtrmrMW52NuIGJxaqhZ56rGmrytOy3u/KcHVN3jxlPHKNanMPC5hERkT3d3/mYkpKCRx99FFWqVIG/vz+aNm2Kffv2Ffic69evY9q0aQgLC4Ovry/Cw8OxdOlSN+0xEREREZUlnI8SkVaysg2Ys7IOJrzVCHNW1kFWtsHadvBooLWNiOhWous7Hy9duoT27dujS5cu2LRpE6pVq4bk5GRUqlSpwOcNGDAA58+fx8cff4wGDRrg7NmzMJv5KhMRERERFY7e89FpCyKweqsCKMDB5CAYjQKTScGKb2th2/x96DauFfYnuW5f/k0tlzUEfpg8t2GxauiVp6aGqzyt++2OPGfHVOtjV9rySsuYKcm83UsS+E5JIrpl6Lr4OHv2bNSuXRvx8fHWtrp16xb4nM2bN2Pnzp04duwYKleuDAAIDw8vyd0kIiIiojJK7/moQMGB5CDr/5tv5t7EYn9SEGJn3Y79SUEwi+t2NTVyrzCpFKuGXnlqarjK07rf7shzdkzdPWY8cYxqcQ5LMm/RulBMGnIKRES3Al3f771x40a0atUK/fv3R/Xq1dGiRQt89NFHqp7z5ptvIiQkBJGRkZg8eTKysrIcbn/9+nVcuXLF5kFEREREBLhnPgoUPCdVlNxHXkaj4FhKAIxGUdXu7hqeuM/sN/td2vpNRHSrUEREXG9WMvz8/AAATz31FPr374+9e/fiySefxKJFixATE+PwOffffz927NiBbt264cUXX0RaWhrGjh2LLl262LxibTFz5ky89NJLDut4e3tr26ECJCQkoE2bNsxjXqnM0yOTeZ6dp0cm85hX2jPdmZeTk4PNmzcjPT0d5cuXd0tmWeWO+SjgfE4K3A/A8Zy0ZpXrOHfRV3W76xoJANoUs4Z+ea5ruM7Ttt/uyXN2TIteozD7oV9eaRkzJZV3e72rqBfi/AULrSQcTkSb2xuWeI41L+l4mf3dy7yykck87RRqPio68vb2lnbt2tm0TZgwQe68806nz7n33nvFz89PLl++bG1bu3atKIoimZmZdttnZ2dLenq69XH69GkBIOnp6dp1RIXo6GjmMa/U5umRyTzPztMjk3nMK+2Z7sxLT0/XZT5TFrljPirifE6q4LI0j0iXqMh0MShm8fYyiUExyx0N0+Xitu+kRUN17WpqKEqvYtfQK09NDVd5WvfbHXnOjqm7x4wnjlEtzmFJ5mXu2iqyd0uJP6I73OmWHGteGf7dy7yykck87RRmPqrrNR+Dg4Nx22232bQ1btwYa9euLfA5ISEhqFChgs1zRARnzpxBRESEzfa+vr7w9VX3ChYRERER3VrcMR8FnM9JXx2bjImDLwMAFq0LxbGUANQLycSYh8/A38+M3UsSVLe7qjFvdTbiBiYWq4aeea5qqMnTst/uynN2TN09ZjxxjGpxDksyj4joVqHr4mP79u2RmJho05aUlISwsLACn7NmzRpcvXoVgYGB1ucYDAaEhoaW6P4SERERUdmi93x0XP/T8PcrBwAObz7h72cuVHtB227fd9Xm60WpoXdeQTXU5mnVb3fmOTum7h4znjhGtTiHJZVHRHSr0HXxcdKkSbjrrrvw2muvYcCAAUhISMDixYuxePFi6zZTp05FSkoKPvnkEwDAkCFDMGvWLIwYMQIvvfQS0tLS8MwzzyA2Nhb+/v56dYWIiIiIPJDe89H5a2oX+M7HrGyD6nZXNQ4eDcSclXWKVUPPPFc11ORp2W935Tk7pu4eM544RrU4h6V9jBIReYQS/xC4C19//bU0adJEfH19pVGjRrJ48WKbr8fExEinTp1s2v7880/p1q2b+Pv7S2hoqDz11FNOr6+Tn17XSCrLn/Nnnufn6ZHJPM/O0yOTecwr7Zml9Ro75Jq756Mi/zuHCi5LlIPryrVwcv04Z+1qaliuN1ecGnrlqanhKk/rfrsjz9kxdfeY8cQxqsU5LO1jVM11I3nNR+aV5jw9MpmnHY+55iMA9OrVC7169XL69WXLltm1NWrUCFu3bi3BvSIiIiKiW4We81GBggPJQdb/N99UAAD7k4IQO+t27E8Kgllct6upASgQKMWqoVeemhqu8rTutzvynB1Td48ZTxyjWpzD0j5GF60L5ce4icgjGPTeASIiIiKiW5mi5D7yMhoFx1ICYDSKqnZ31/DEfWa/2e+y2G8iIk/AxUciIiIiIh2J5D7yMpkU1AvJhMmkqGp3dw1P3Gf2m/0ui/0mIvIEXHwkIiIiItKJAkFURAaaRWbAoAi8vcwwKILmkRlYOv0wolS2q6mhKFLsGnrlqanhKk/rfrsjz9kxdfeY8cQxqsU5LO1j1HIjGiKi0k73az4SEREREd2qXh2bXODdrncvSVDd7qrGvNXZiBuYWKwaeua5qqEmT8t+uyvP2TF195jxxDGqxTks7WOUiMgT8J2PRERERERERB4oK9uAOSvrYMJbjTBnZR1kZRts2g8eDbRpJyLShRvuvl2qFOZW4Foqy7dXZ57n5+mRyTzPztMjk3nMK+2Z7szTaz5D2rGcQwWXJSoiXaIi08WgmMXbyyQGxSwtGqbLxW3fSYuG6trV1FCUXsWuoVeemhqu8rTutzvynB1Td48ZTxyjWpxDTxyjBR3TzF1bRfZuKdFHWf7dy7yykck87RRmPsqPXRMRERER6USg4EBykPX/zTdzbzSxPykIsbNux/6kIJjFdbuaGrlXmFSKVUOvPDU1XOVp3W935Dk7pu4eM544RrU4h544Rgs6povWhWLSkFMgInI3vveaiIiIiEhHipL7yMtoFBxLCYDRKKra3V3DE/eZ/Wa/b+V+W9qJiPTAxUciIiIiIh2J5D7yMpkU1AvJhMmkqGp3dw1P3Gf2m/2+lfttaSci0gMXH4mIiIiIdKJAEBWRgWaRGTAoAm8vMwyKoHlkBpZOP4wole1qaiiKFLuGXnlqarjK07rf7shzdkzdPWY8cYxqcQ49cYwWdEwtd80mInI3XvORiIiIiEgnr45NxsTBlwEAi9aF4lhKAOqFZGLMw2fg72fG7iUJqttd1Zi3OhtxAxOLVUPPPFc11ORp2W935Tk7pu4eM544RrU4h544Rgs6pkREeuDiIxERERGRTsb1Pw1/v3IA4PBGEP5+5kK1F7Tt9n1Xbb5elBp65xVUQ22eVv12Z56zY+ruMeOJY1SLc+iJY9TZMSUi0gMXH4mIiIiIdDJ/Te0C3/mYlW1Q3e6qxsGjgZizsk6xauiZ56qGmjwt++2uPGfH1N1jxhPHqBbn0BPHqFbnkIhIM3KLSU9PFwCSnp7u1tzo6GjmMa/U5umRyTzPztMjk3nMK+2Z7szTaz5D2rGcQwWXJSoiXaIi08WgmMXbyyQGxSwtGqbLxW3fSYuG6trV1FCUXsWuoVeemhqu8rTutzvynB1Td48ZTxyjWpxDTxyjWp3DzF1bRfZuKfSjLP/uZV7ZyGSedgozH+U7H4mIiIiIdCJQcCA5yPr/5pu5d6jdnxSE2Fm3Y39SEMziul1Njdzb2yjFqqFXnpoarvK07rc78pwdU3ePGU8co1qcQ08co1qdw0XrQvlxbSLSDO92TURERESkI0XJfeRlNAqOpQTAaBRV7e6u4Yn7zH6z3+x34WoQEWlF98XHlJQUPProo6hSpQr8/f3RtGlT7Nu3z+n2O3bsgKIodo9z5865ca+JiIiIqKzQez4qkvvIy2RSUC8kEyaToqrd3TU8cZ/Zb/ab/S5cDSIirei6+Hjp0iW0b98e3t7e2LRpE44cOYJ33nkHlSpVcvncxMREnD171vqoXr26G/aYiIiIiMoSveejCgRRERloFpkBgyLw9jLDoAiaR2Zg6fTDiFLZrqaGokixa+iVp6aGqzyt++2OPGfH1N1jxhPHqBbn0BPHqFbn0HKDGiIiLeh6zcfZs2ejdu3aiI+Pt7bVrVtX1XOrV6+OihUrltCeEREREdGtQO/56Ktjkwu82/XuJQmq213VmLc6G3EDE4tVQ888VzXU5GnZb3flOTum7h4znjhGtTiHnjhGtTqHRERa0fWdjxs3bkSrVq3Qv39/VK9eHS1atMBHH32k6rnNmzdHcHAw7r33XuzevdvpdtevX8eVK1dsHkREREREgHvmowDnpETkWbKyDZizsg4mvNUIc1bWQVa2ocB2IqKCKCL5r/zgPn5+fgCAp556Cv3798fevXvx5JNPYtGiRYiJiXH4nMTEROzYsQOtWrXC9evXsWTJEqxYsQK//PIL7rjjDrvtZ86ciZdeesmu/f7774e3t7e2HSpAQkIC2rRpwzzmlco8PTKZ59l5emQyj3mlPdOdeTk5Odi8eTPS09NRvnx5t2SWVe6YjwLO56TA/ShfLvd6a1eueUFRBCIKype7ibuaXcaeAxVVt7uqASQAaFOsGnrmuaqhJk/Lfrsrz9kxdfeY8cQxqsU59MQxqsU5LMy2dze/BOP/r0EmHE5Em9sbOvw5WBISko6X2d/1t0KeHpnM006h5qOiI29vb2nXrp1N24QJE+TOO+8sVJ2OHTvKo48+6vBr2dnZkp6ebn2cPn1aAEh6enqR97sooqOjmce8UpunRybzPDtPj0zmMa+0Z7ozLz09XZf5TFnkjvmoiPM5KZAuCsyiwCz/uyWEiEExS+9O58SgqGtXVyNagxr65KmrUXCe9v0u+Txnx9TdY8YTx6gW59ATx6gW57Cwee9O+lNk7xaRvVskusOd1v93x6Ms/66/FfL0yGSedgozH9X1PdLBwcG47bbbbNoaN26MU6dOFapOmzZt8Pfffzv8mq+vL8qXL2/zICIiIiIC3DMfBQqekypK7iMvo1FwLCUARqOoand3DU/cZ/ab/Wa/S67fREQF0XXxsX379khMTLRpS0pKQlhYWKHq/PHHHwgODtZy14iIiIjoFlAa5qOW9xDlZTIpqBeSCZNJUdXu7hqeuM/sN/vNfpdcv4mICqLr4uOkSZPw888/47XXXsPff/+NlStXYvHixRg3bpx1m6lTp2LYsGHWf8+dOxdfffUV/v77bxw6dAgTJ07E999/b/McIiIiIiI19J6PKhBERWSgWWQGDIrA28sMgyJoHpmBpdMPI0plu5oaiiLFrqFXnpoarvK07rc78pwdU3ePGU8co1qcQ08co1qcw8LmWe6kTUTkjJee4a1bt8b69esxdepUvPzyy6hbty7mzp2LRx55xLrN2bNnbT72cuPGDTz99NNISUlBQEAAmjVrhm3btqFLly56dIGIiIiIPJje89FXxyZj4uDLAIBF60JxLCUA9UIyMebhM/D3M2P3kgTV7a5qzFudjbiBicWqoWeeqxpq8rTst7vynB1Td48ZTxyjWpxDTxyjWpzDwuYRERVE18VHAOjVqxd69erl9OvLli2z+fezzz6LZ599toT3ioiIiIhuFXrOR8f1Pw1/v3IAgElD7K8z6e9nLlR7Qdtu33fV5utFqaF3XkE11OZp1W935jk7pu4eM544RrU4h544RrU4h4XZloioILovPhIRERER3armr6ld4Dsfs7INqttd1Th4NBBzVtYpVg0981zVUJOnZb/dlefsmLp7zHjiGNXiHHriGNXiHJZkHhHdgtxw9+1SpTC3AtdSWb69OvM8P0+PTOZ5dp4emcxjXmnPdGeeXvMZ0o7lHCq4LFER6RIVmS4GxSzeXiYxKGZp0TBdLm77Tlo0VNeupoai9Cp2Db3y1NRwlad1v92R5+yYunvMeOIY1eIceuIY1eIclmRe5q6tInu3aPYoy7/rb4U8PTKZp53CzEf5zkciIiIiIp0IFBxIDrL+v/lm7p1k9ycFIXbW7difFASzuG5XUyP39jZKsWrolaemhqs8rfvtjjxnx9TdY8YTx6gW59ATx6gW57Ak8xatC+XHtoluQbre7ZqIiIiI6FanKLmPvIxGwbGUABiNoqrd3TU8cZ/Zb/ab/S4d/SaiWw8XH4mIiIiIdCSS+8jLZFJQLyQTJpOiqt3dNTxxn9lv9pv9Lh39JqJbDxcfiYiIiIh0okAQFZGBZpEZMCgCby8zDIqgeWQGlk4/jCiV7WpqKIoUu4ZeeWpquMrTut/uyHN2TN09ZjxxjGpxDj1xjGpxDksyz3IjGiK6tfCaj0REREREOnl1bHKBd7vevSRBdburGvNWZyNuYGKxauiZ56qGmjwt++2uPGfH1N1jxhPHqBbn0BPHqBbnsCTziOjWw8VHIiIiIiIiInKLrGyDw0VJZ+1EVAa44e7bpUphbgWupbJ8e3XmeX6eHpnM8+w8PTKZx7zSnunOPL3mM6QdyzlUcFmiItIlKjJdDIpZvL1MYlDM0qJhulzc9p20aKiuXU0NRelV7Bp65amp4SpP6367I8/ZMXX3mPHEMarFOfTEMarFOSwtY7RFw3TJ3LVVZO8Wp4+y/Lv+VsjTI5N52inMfJSLj25Slgcc8zw/T49M5nl2nh6ZzGNeac8srZM9Kp0s5xBIFwVmUWCW/92iQcSgmKV3p3NiUNS1q6sRrUENffLU1Sg4T/t+l3yes2Pq7jHjiWNUi3PoiWNUi3NYWsaoQTHLu5P+5OJjGc7TI5N52inMfJQ3nCEiIiIi0pGi5D7yMhoFx1ICYDSKqnZ31/DEfWa/2W/227P6bWknIs/HxUciIiIiIh1Z3ueTl8mkoF5IJkwmRVW7u2t44j6z3+w3++1Z/ba0E5Hn4+IjEREREZFOFAiiIjLQLDIDBkXg7WWGQRE0j8zA0umHEaWyXU0NRZFi19ArT00NV3la99sdec6OqbvHjCeOUS3OoSeOUS3OYWkZo80jM6x3zSYiz8a7XRMRERER6eTVscmYOPgyADi8y+vuJQmq213VmLc6G3EDE4tVQ888VzXU5GnZb3flOTum7h4znjhGtTiHnjhGtTiHpWWM8m7XRGUDFx+JiIiIiHQyrv9p+PuVAwBMGnLK7uv+fuZCtRe07fZ9V22+XpQaeucVVENtnlb9dmees2Pq7jHjiWNUi3PoiWNUi3NYWsYoEXk+Lj4SEREREelk/praBb7zMSvboLrdVY2DRwMxZ2WdYtXQM89VDTV5WvbbXXnOjqm7x4wnjlEtzqEnjlEtzmFpH6NE5GHccPftAp05c0YeeeQRqVy5svj5+UmTJk1k7969qp77448/itFolKioKNV5hbkVuJbK8u3Vmef5eXpkMs+z8/TIZB7zSnumO/P0ms+UVe6ej4r87xwquCxREekSFZkuBsUs3l4mMShmadEwXS5u+05aNFTXrqaGovQqdg298tTUcJWndb/dkefsmLp7zHjiGNXiHHriGNXiHJb2MZq5a6vI3i0ie7eU6d/1t0KeHpnM005h5qO6Lj7++++/EhYWJsOHD5dffvlFjh07Jlu2bJG///7b5XMvXbok9erVk/vuu4+Lj8xjngdmMs+z8/TIZB7zSntmaZ3sUcH0mI+K/O8cAumiwCwKzPK/+8OKGBSz9O50TgyKunZ1NaI1qKFPnroaBedp3++Sz3N2TN09ZjxxjGpxDj1xjGpxDkv7GH130p9cfCwjeXpkMk87hZmP6vqx69mzZ6N27dqIj4+3ttWtW1fVc8eMGYMhQ4bAaDRiw4YNJbSHRERERFSWlYb5qKLk/lfkf21Go+BYSgCMRoH5puKy3d01PHGf2W/2m/0uO/0mIs9i0DN848aNaNWqFfr374/q1aujRYsW+Oijj1w+Lz4+HseOHcOMGTNcbnv9+nVcuXLF5kFEREREBLhnPgoUPCe1vKcnL5NJQb2QTJhMiqp2d9fwxH1mv9lv9rvs9JuIPIuu73w8duwYFi5ciKeeegrPP/889u7di7i4OPj4+CAmJsbhc5KTk/Hcc89h165d8PJyvfuvv/46XnrpJbv2gQMHwtvbu9h9UCshIQEPPvgg85hXKvP0yGSetn7c8wvu7tzTbXkAcOTQPrdmujvv779+LdNjpqzn6ZHpzrycnBy35NwK3DEfBZzPSYGBCCqX+wf3lWteUBSBiIKggJu4fuMyAgMqqmsvd9NlDSABwIPFqqFbnooaLvM07rdb8pwdU42PXanLKy1jxhPHqBbnsJSP0W0Jl7B9X+5P0ITDiXiwYzuHP3dLgtvzko6X2bmMXpnM005h5qOKSP7XEtzHx8cHrVq1wp49e6xtcXFx2Lt3L3766Se77U0mE+68806MHDkSY8aMAQDMnDkTGzZswB9//OEw4/r167h+/br131euXEHt2rWRnp6O8uXLa9uhAjz44IPYuHEj85hXKvP0yGSetu7u3BNvzlvjtjwAeDauv1sz3Z33xguDyvSYKet5emS6M+/KlSuoUKGC2+czZZE75qOA8znpa2P3uu1u1/NWT0DcwPfddrdrrfNc1VCTp2W/3ZXn7Ji6e8x44hjV4hx64hjV4hyW9jFq8eBTM7DxXUcv7JQMt+e9/EGZncvolck87RRmPqrrOx+Dg4Nx22232bQ1btwYa9eudbh9RkYG9u3bh99//x3jx48HAJjNZogIvLy88N///hddu3a1eY6vry98fX1LpgNERERE5NHcMR8FOCclItKSZaHy4NFAzFlZx+XCJhHpS9fFx/bt2yMxMdGmLSkpCWFhYQ63L1++PA4ePGjTtmDBAnz//ff48ssvVV8cnIiIiIgI0H8+Om1BBFZvVQAFOJgcBKNRYDIpWPFtLWybvw/dxrXC/iTX7cu/qeWyhsAPk+c2LFYNvfLU1HCVp3W/3ZHn7JhqfexKW15pGTOeOEa1OIeeOEYLqr17SQIXIIl0puvi46RJk3DXXXfhtddew4ABA5CQkIDFixdj8eLF1m2mTp2KlJQUfPLJJzAYDGjSpIlNjerVq8PPz8+unYiIiIjIFb3nowIFB5KDrP9vudPr/qQgxM66HfuTgmAW1+1qagAKBEqxauiVp6aGqzyt++2OPGfH1N1jxhPHqBbn0BPHqBbn0BPHaEG1F60LxaQhp0BE+tH1btetW7fG+vXrsWrVKjRp0gSzZs3C3Llz8cgjj1i3OXv2LE6d4g8KIiIiItJeaZiPKkruIy+jUXAsJQBGo6hqd3cNT9xn9pv9Zr9vvX5b2olIX7ouPgJAr169cPDgQWRnZ+PPP//E448/bvP1ZcuWYceOHU6fP3PmzAIv7k1EREREVBC956MiuY+8TCYF9UIyYTIpqtrdXcMT95n9Zr/Z71uv35Z2ItKX7ouPRERERES3KgWCqIgMNIvMgEEReHuZYVAEzSMzsHT6YUSpbFdTQ1Gk2DX0ylNTw1We1v12R56zY+ruMeOJY1SLc+iJY1SLc+iJY7Sg2pa7ZhORfnS95iMRERER0a3s1bHJmDj4MgA4vEPr7iUJqttd1Zi3OhtxAxOLVUPPPFc11ORp2W935Tk7pu4eM544RrU4h544RrU4h544RguqTUT64uIjEREREZFOxvU/DX+/cgDg8IYI/n7mQrUXtO32fVdtvl6UGnrnFVRDbZ5W/XZnnrNj6u4x44ljVItz6IljVItz6Ilj1FkNItIXFx+JiIiIiHQyf03tAt/5mJVtUN3uqsbBo4GYs7JOsWromeeqhpo8Lfvtrjxnx9TdY8YTx6gW59ATx6gW59ATx6hWfSEi7XHxkYiIiIhIJ9MWRGD1VgVQgIPJQTAaBSaTghXf1sK2+fvQbVwr7E9y3b78m1ouawj8MHluw2LV0CtPTQ1XeVr32x15zo6p1seutOWVljHjiWNUi3PoiWNUq77sXpLABUiiEsDFRyIiIiIinQgUHEgOsv6/+WbunVr3JwUhdtbt2J8UBLO4bldTI/f2NkqxauiVp6aGqzyt++2OPGfH1N1jxhPHqBbn0BPHqBbn0BPHqFZ9WbQulB/bJioBvNs1EREREZGOFCX3kZfRKDiWEgCjUVS1u7uGJ+4z+81+s9/st5oaRKQ9Lj4SEREREelIJPeRl8mkoF5IJkwmRVW7u2t44j6z3+w3+81+q6lBRNrj4iMREQEAcrJzkLDiV2x5/TskrPgVOdk5eu8SEVGZp0AQFZGBZpEZMCgCby8zDIqgeWQGlk4/jCiV7WpqKIoUu4ZeeWpquMrTut/uyHN2TN09ZjxxjGpxDj1xjGpxDj1xjGrVF8sNaohIW7zmIxERISc7B5/EfI7UxAtQjArMN834+ZN9iOhUD1XCKqNF/2bw9vN2+Lzf1xzApTOXUSm0otPtiIjIsVfHJhd4t+vdSxJUt7uqMW91NuIGJharhp55rmqoydOy3+7Kc3ZM3T1mPHGManEOPXGManEOPXGMatUXItIeFx+JiAi/rzmA1MQLEBHIzdzPplxNvYo/1h4EBDj4zREMWz7IZmFRzGabBUsxicPtCosLmkRERESkh6xsg8MFSUv7waOBmLOyDhcqiQqJi49ERIRLZy7nLiDetL0ojphz/52aeAG/rzmANkNbWr+W/s8VpB6zXbB0tJ1F/kXFJtG34dDXR2wWGQE4XdAkIiqLpi2IwOqtCqAAB5ODYDQKTCYFK76thW3z96HbuFbYn+S6ffk3tVzWEPhh8tyGxaqhV56aGq7ytO63O/KcHVOtj11pyystY8YTx6gW59ATx6geP9d2L0ngAiSRSlx8JCIiVAqtCDGJ068rRgWXzly2acvJumm/YGkA/vouye5di/k/1i0mM3a8/yNuXr8Jg5fBush4W/eGdu/ATE28gH2rfsflM5ex5fXv+G5IIipTBAoOJAdZ/998M/cGCPuTghA763bsTwqCWVy3q6mRe4VJpVg19MpTU8NVntb9dkees2Pq7jHjiWNUi3PoiWNUi3PoiWNUj59ri9aFYtKQUyAi13jDGSIiQov+zVC9YTUoigLFoNh9XUyCSqEVbdq8/b3sFizFJDjzxz/4/csD+O6dnfgk5nPrOx4ti4rmm2aIADev3wSA//+3IDXxApJ/OArFaJuvGBX8vGwf0o5etKtLRFQWKEruIy+jUXAsJQBGo6hqd3cNT9xn9pv9Zr/Zb63ziEgdLj4SERG8/bwxbPkg3PN0JzR/uCmCqgdCUQCDlwGKoqB6o2rWj0VbVKhV3rpgafDK8+tEbBcULR+1zr+omF/u1xW7BU2zyYysy1kQ2NclIioLRHIfeZlMCuqFZMJkUlS1u7uGJ+4z+81+s9/st9Z5RKQOFx+JiAhA7gJkm6Et0WP6vRjzdSzuebozWvRrhnue7oRhy+xvIqMYDNYFyxb9miG0RYjtIiT+93FtVx/rBgAxmRHRqZ7NgqaiKPCv6O/w3ZD5PwZOROSJFAiiIjLQLDIDBkXg7WWGQRE0j8zA0umHEaWyXU0NRZFi19ArT00NV3la99sdec6OqbvHjCeOUS3OoSeOUS3OoSeOUT1+rlnupE1Erv0fe+8fHmV15/2/zz0TSSA/QAwCAVEwCYomTIv0sdpFH31WVyFuvaQIVnxqt08t3SIgX1uqLKCLtN0KympLlVKVLYXFUje1igssoOKPAEV+agik/iCAIJLJhJCYzH2+f8QZEjKTuYc5Ofd9Ju/Xdc1VczLzeZ3PfT7X6cnhnvu4/szHmpoa/PjHP8arr76KhoYGXHrppfjd736HUaNGxXz/m2++iR//+Mf44IMP0NDQgCFDhuD73/8+pk+frrnnhBCSvkQ2IpN5X8Xy7ah573C730e+rh0YX4LdL++LPvPRDn/5cO42+5G+8/wo/eaVGDUx0O5gmnBzGJsWvxkzLiGEqMDN9ej8KVWYNrEWAGKesLplaYXj9kQxFq9qxNQJlSnFcNOXKIYTn8q8dfniXVPdNWNijaoYQxNrVMUYmlijbsxrhBBnuLr5ePLkSVxzzTW4/vrr8eqrryI/Px9VVVXo06dP3M/06tUL//zP/4ySkhL06tULb775Jr7//e+jV69e+H//7/9p7D0hhJC2nL3BKMMy+nXtyNe6I5uKdUdDqNp0sN3nW5pa8OK0lzD8hqJ2B8o0NzZj32uVEB8gejhNrK+BE0LIueD2evSH4z9BVmYvAIh5cEFWpp1Ue2fv3bitvt3vzyWG277OYjj1qcpbpy/eNdVdMybWqIoxNLFGVYyhiTWqe14jhDjD1c3Hn//85xg8eDB+97vfRdsuueSSTj8TCAQQCASiP1988cVYs2YN3njjDW4+EkKIi5y9wXj2qdRt75J8bcEGWH4Ldkv7fzE+9N5h1Lx3BLtf3ofJz7d+1TsS991JLyBwVQlPuyaEKMXt9ejTqwd3eufj6UbLcXuiGLsPZmPRiotSiuGmL1EMJz6VeevyxbumumvGxBpVMYYm1qiKMTSxRr0yr/GOSEJiIF3ksssuk9OmTZN33HGHzM/PlyNHjpTPPPNMUjH++te/ygsvvFA+++yzMX/f2Ngog8Fg9PXJJ59IADIYDKpIwTHjxo2jjz7P+txw0qeWa8bcIrfsPKX1lYpz0czX5VjxqLwVj8R9LZr5ujLfubzSvWbS3eeGU6cvGAy6sp5JR3SsR6WMvyYVqJWlhUFZWhSUlrBlhj8sLWHLQHFQnli/QQaKnbU7iSHE2JRjuOVzEiORT3XeOnzxrqnumjGxRlWMoYk1qmIMTaxRr8xrgeKgbHhjnZRbX1PySue1jFtO+tSRzHpUSHn2eU76yMzMBADMmDED48ePx9atW3H//fdjyZIluOeeezr97KBBg3D8+HG0tLRg7ty5mD17dsz3zZ07F/PmzevQfvPNNyMjQ99dMxUVFRg9ejR99HnS54aTPrW8+da7uPyK2M8m6yr27dl2zk5p2/hkx2E01TfFfU/egFz0K8pX4jsXdPsOfLA9rWuU85pampubsXbtWgSDQeTm5mpxpis61qNA/DUpcDOA2GvS/n2bcPRED8ftiWNUABidYgz3fIljJPapzVuPL941PfcYyfTDPZ9Xaka3zys1o9vnlZpR4RsxtB5DC047ip2Iir2VGD2iWEksR779f+N6jT7HJLMedfVr17ZtY9SoUXjssccAtH6FZc+ePY4We2+88Qbq6+vxzjvv4Cc/+QkuvfRSTJw4scP7Zs2ahRkzZkR/rqurw+DBg7Fq1Sqti/WysjKUl5fTR58nfW446VPLtdfdil8sXq3NBwAPTh2fkrO5sRkv/fgvHZ79GKGweBjGP/mPynzJotv3s4fvTOsa5bymlrq6OuTl5WlxpTs61qNA/DUpsAqWyGntixTR32f4beT3OYUTwV5obrEStltCOohRBqA8xRju+JzF6NynPu+u98W7puqvnbd8XqkZE2tUxRiaWKNemdcy/DauH3UI//7/fQAVlM2Yg/KFsf7hqmsoe+Qprtfoc0wy61Er8Vu6jgEDBuDyyy9v13bZZZfh448TP8D1kksuwZVXXonvfe97mD59OubOnRvzfT169EBubm67FyGEEH00NzajYvl2vLZgAyqWb0dzYzOA1mdA5vbPgRCxP3fyk9p27yeEkK5Ax3oU6HxNKmXrqy3hsMDQggaEw8JRu+4YJvaZeTNv5s28u9oXaSeEtMfVzcdrrrkGlZWV7dr279+PIUOGJBXHtm00NcX/6h4hhBB3aG5sxgv3rMSGxzdjx4u7sOHxzXjhnpXRDcU+g3oj3rM/Tvzt8w7vJ4QQ1bi9HhWQKC0MoaQoBEtIZPhtWEJiZFEIy2bvRanDdicxhJApx3DL5yRGIp/qvHX44l1T3TVjYo2qGEMTa1TFGJpYo16Z10YWhaIH1xBCzuDq166nT5+Or3/963jsscfwrW99CxUVFXjmmWfwzDPPRN8za9Ys1NTU4IUXXgAAPP3007joooswfPhwAMDrr7+OX/7yl5g6daorORBCSLrQ3Ngc96Tqc2XH6l04VnkcUkrIltZtxmOVx7Fj9S6MvvurCIwvwa4/78WxyuMdPivt9u8nhJCuwO316PwpVZ2edr1laYXj9kQxFq9qxNQJlSnFcNOXKIYTn8q8dfniXVPdNWNijaoYQxNrVMUYmlijXpnXeNo1IR1xdfPxqquuwp/+9CfMmjULjzzyCC655BI88cQTuOuuu6LvOXLkSLuvvdi2jVmzZuFvf/sb/H4/hg0bhp///Of4/ve/70YKhBCSFkTuUDxWeRzCJyDDErtf3ofJz9+Z0gbkyUO1rfFa2tzfKIATH34OoPWr1/e8MBHb/rADVZurcfKTWpw6cQptb4cUPoGTh2rPuQ+EENIZXI8SQghRyelGK+aGZLx2QroDrm4+AsDYsWMxduzYuL9/7rnn2v38ox/9CD/60Y+6uFeEENK9SHSH4rnSZ1Bv2C3tF1XSljjwejWaG5uRkZmBjMwMXP2d0bj6O6NRsXw7Njy+GbLN7qMMS/QZ1Bs4cs7dIISQTnFzPfrQrwqxap0ABLC7Kgc+n0Q4LLD8lYFY//Q23PjDUdi5P3H78y8PTBhDIhMznyhOKYZbPicxEvlU563DF++aqr52XvN5pWZMrFEVY2hijZo6r21ZWsENSNItcH3zkRBCiPvEukPxXO44PPur21eMuxzvvLAN9cfq272v/nh9zI3Ntu8XloC0JfoNz8cV4y7H0j/V4rUFG5R9JZwQQryAhMCuqpzof9strYcX7Nyfg3sfHYGd+3Ngy8TtTmK0PmFSpBTDLZ+TGIl8qvPW4Yt3TXXXjIk1qmIMTaxRFWNoYo2aOq8tWTMI0yclPuCMENPh5iMhhJDWg1/C7Y9+id5x6JB4X90eds0l2PVfe6LPcAQA4bM6bGw2NzbjD99/EaeOn9l4zOmXjfFP/iP+8P0X8dnBE9jx0S5lXwknhBCvIL48LLXtKas+n0R1TU/4fDL6h2pn7bpjmNhn5s28mTfz9pIv0k5Id8DV064JIYR4g8D4EvQrzocQApbfghAC/YbnIzC+pN37mhubUbF8O15bsAG1h2rbnULd9qvbdosNKSU+rTzW4RmOQOyNzTOfP3PYTOhYPZZ/ZyU+/eAYJBCNG+sQmrZ9q1i+nSdkE0KMQcr2f6gCQDgsMLSgAeGwcNSuO4aJfWbezJt5M28v+SLthHQHuPlICCEEGZkZmPz8nbjhgTEI3FGCGx4Yg8nPtb+zMHJn44bHN2PHi7vw2cETeOGeldFNvshXt9shgUM7DyO/6IKEG5sxPw8gWFPXoe3sr4Sf3bcNj29u17e2cJOSEOIlBCRKC0MoKQrBEhIZfhuWkBhZFMKy2XtR6rDdSQwhZMox3PI5iZHIpzpvHb5411R3zZhYoyrG0MQaVTGGJtaoqfNa5IRtQtIdfu2aEEIIgNYNyM4Olzn7UBqJ9ofS9BnUG3a44wOzG4ON6HtxH1w6ZiiyL+iFvhefH/OZjbG++h2Ps++cjHVgzqcfHMO2FTtw9b2jo+/rqlO9CSHkXJk/pQrTJtYCQMxTULcsrXDcnijG4lWNmDqhMqUYbvoSxXDiU5m3Ll+8a6q7ZkysURVjaGKNqhhDE2vU1HmNkO4ANx8JIYTE5OzDY0589Hmnh9IExpdgy2/fxemTpzvEqtl5BBBAv6J83Pj/Xdfhjsodq3fhxEefo1d+r9bDaQQ6fFW7VQgIdLxz8uSh2tZ7+cPt3/7OC9swalIg6uuqU70JIeRc+eH4T5CV2QsAYh46kJVpJ9Xe2Xs3bqtv9/tzieG2r7MYTn2q8tbpi3dNddeMiTWqYgxNrFEVY2hijZo4rxHSHeDmIyGEkA5E7hD89INj0cNfzss+D3ZL+3+dtVtsfFp5HBXLtyMwvgT/a/IobHzyjdhBZetG37Y/7MCoiYHohmPV5mrUH6uH5bcgwzZy+mUj58JsHN59tEOIQSMHYvgNRbhi3OXtNkZz++fEvGvydO3pdhuLqk71JoQQVTy9enCndz6ebrQctyeKsftgNhatuCilGG76EsVw4lOZty5fvGuqu2ZMrFEVY2hijaoYQxNrtDvMa4SYCjcfCSGEdLjLMdwcxqcfHANw5vCXL+q/gOW3YLfYrc9m/PIuw8O7j+DQezXY8tt3cdWkAPoV5+P4/s8gz37a9pdUbqjC3lc+wLH9x9u1RzY2Q8fqY37Wf54Pdzzxj8jI9Hf46nR+4QXI6p2J07WN7T5jnXWqtopTvQkhRCUP/aoQq9YJQAC7q3Lg80mEwwLLXxmI9U9vw40/HIWd+xO3P//ywIQxJDIx84nilGK45XMSI5FPdd46fPGuqepr5zWfV2rGxBpVMYYm1mh3mNe2LK3gBiQxFm4+EkJIN6a5sRnb/rAD7zy3DadrT7duKtpAZu/MmF99tltsXDCsL04HG4HPzrQBwOmTp/H6028hq3cmhn3jEny07RM0N3Q8zOXEhyfRFGrqtF/1x091aGv5Iow/fP9FXH5zccevTlcdR96AnA6bj2dvLAbGl2D3y/uiG5d22EZm70yEm8Nobmzmcx8JIdqRENhVlRP9b7ul9eCtnftzcO+jI7Bzfw5smbjdSYzW421ESjHc8jmJkcinOm8dvnjXVHfNmFijKsbQxBpVMYYm1mh3mNeWrBnEr20TY+Fp14QQ0k2JfLV64xNv4HRt63MaZVhCStn6c5yzXz47eAKnTnTcHIxwurYRB16vRvPp2KdIp3K69LHK46jaXB3zVO3g4VD0x3inakdO9b7u/mvRI7sHIIHGukZsWvxm3NOxCSGkqxGi9dUWn0+iuqYnfD7pqF13DBP7zLyZN/Nm3l7ynUsMQkyFm4+EENJNaT185VjM3wlLdH4XoJNDqeO8R8RudoSEROhYqMOzJ89m4JUDcN391+Lyvy/G/yx6HRXLt0c3FjMyMwCJDhuukYNnCCFEN1K2vtoSDgsMLWhAOCwcteuOYWKfmTfzZt7M20u+c4lBiKlw85EQQropJw/Vdvxn1S+RYYmr/+kq5PTLBtC6GamKcHMKz6qRQLCmDv4enT81pO/FfbBvbSU2LX4TO17chQ2Pb47e2djc2Ix3XtjW8UMWOhw809zYjIrl2/Hagg3tNjAJIUQVAhKlhSGUFIVgCYkMvw1LSIwsCmHZ7L0oddjuJIYQMuUYbvmcxEjkU523Dl+8a6q7ZkysURVjaGKNqhhDE2u0O8xrkYNoCDERPvOREEK6KX0G9Y4eJnM2Wb0z4fP5cOnfDUX9Z6eQnd8LwcN1qN7yYZf1J3J4jBNamlpwXq/z8MWpL2L+vmbXEZyo/rz9cyHb3NkYueuxLWc/H1LadoeDbXa/vA+Tn7+Tz4YkhChj/pSqTk+73rK0wnF7ohiLVzVi6oTKlGK46UsUw4lPZd66fPGuqe6aMbFGVYyhiTWqYgxNrNHuMK8RYircfCSEkG5KYHwJ3n1hG0LH6jv8zpfhw6bFb0Y33S4Y1heff/y58j4IITCwpD+KrrsUtYeDqDsawsE3/+boa93xNh5bA3+5mdlyJpDwieidjZbP6vDV7aw+We2eDxk8XIdj1cdjbmCOvvurzpMkhBBCCCFEAacbrZgbmIR4HW4+EkJINyUjMwPfXT0ZS8e/gPpj9RCWgLQlcvplRzckI5tuxw981iV9kFLi5KEgdv7XHtQdDaGlsUVJ3ObTzR02F9ve2djhDksB/K97RrW7o7H5dEunG5iEEKKCh35ViFXrBCCA3VU58PkkwmGB5a8MxPqnt+HGH47Czv2J259/eWDCGBKZmPlEcUox3PI5iZHIpzpvHb5411T1tfOazys1Y2KNqhhDE2u0O89rW5ZWcAOSeB5uPhJCSDemZ+8s/ODP92LH6l04eagWfQb1xokPP8fOl/YkPNRFFQ0nGtBwQu0DtOuOnDn5WvgEYKPdyde7X97X7uvU/YbnY9TEQLsYGVn+DpuUZ381mxBCUkVCYFdVTvS/7ZbWZ+zu3J+Dex8dgZ37c2DLxO1OYrQ+YVKkFMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXbneW3JmkGYPuljEOJlXD9wpqamBt/+9rfRt29fZGVl4corr8S2bTEOAviSI0eOYNKkSSgqKoJlWZg2bZq+zhJCSBqSkZmB0Xd/FTfNugGj7/4q+l58vuNnL3qKNmfitH2WZUHJANzwwBhMfu5OAK2nfA+8oj8uHTMUpd+8Ivq7s5/jmDcwF/2K8yGEgOW3IIRot4FJCEkf3F6PCtHx/C+fT6K6pid8PumoXXcME/vMvJk382beXvKpjEGI13F18/HkyZO45pprkJGRgVdffRX79u3D448/jj59+sT9TFNTE/Lz8/Hwww+jtLRUY28JIcR8nJzeHBhfgvyiCzp+WHRs8hQx9kuFJXBhcb/oMxpfuGclNjy+GTtf2oMDm6txePdRBMaXxDxARlgWJj9/J254YAwCd5TE3aQkhJiNF9ajUra+2hIOCwwtaEA4LBy1645hYp+ZN/Nm3szbSz6VMQjxOq5uPv785z/H4MGD8bvf/Q6jR4/GJZdcgr//+7/HsGHD4n7m4osvxpNPPonJkycjLy9PY28JIcRsmhubo5tvO17chQ2Pb8YL96xstwHZ3NiMHat3ISMzxlM5JHDBsL64YFhfZOZmen4vEmi9A7LPoN5obmzGSz/+Cz794BiklLBbbEgp252AHYuz7wrlxiMh6Yfb61EBidLCEEqKQrCERIbfhiUkRhaFsGz2XpQ6bHcSQwiZcgy3fE5iJPKpzluHL9411V0zJtaoijE0sUZVjKGJNdqd57XI6diEeBlXn/lYXl6Om266CePHj8fmzZtRUFCAKVOm4Hvf+54yR1NTE5qamqI/19XVKYtNCCEmsWP1LhyrjH96c2Rz8ljl8Zift/wWBgcKcHjPUTTWNTo5kNp1cvpl44pxl+OFe1bi0w+Odfg9D5AhhOhYjwLx16Tzp1Rh2sRaAIh5gumWpRWO2xPFWLyqEVMnVKYUw01fohhOfCrz1uWLd01114yJNapiDE2sURVjaGKNdud5jRCvI6Q8+4ZefWRmZgIAZsyYgfHjx2Pr1q24//77sWTJEtxzzz0JP3/ddddh5MiReOKJJ+K+Z+7cuZg3b16H9ptvvhkZGfruYKmoqMDo0aPpo8+TPjec9KnlzbfexeVXjOr0PcerPkPwSB3OnvazcjNRUDoAwcN1+OzgiU43FTN6+NHc1HoidS0OoTcGpdp1xyTyRU7rbsv5Q/rAsiyc+FvsvARa7+bsHeMQmX17tiW8pio58MH2tK5RzmtqaW5uxtq1axEMBpGbm6vFma7oWI8CnaxJrx6FDL+e+wEq9lZi9IhiLS760sNJn9k+N5z00Ze0c//f0na9lu6+ZNajrt75aNs2Ro0ahcceewwAEAgEsGfPHseLPSfMmjULM2bMiP5cV1eHwYMHY9WqVVoX62VlZSgvL6ePPk/63HDSp5Zrr7sVv1i8utP3VCzfjg2Pb4Y8exuuDuh3LB8FgQHY+VGCU67P3LSDrfg9rsJdKfQ6ORL6YnX7IyAjKwPNVnPM3194Wb+4z3F8cOr4hNdUJT97+M60rlHOa2qpq6vj42cUoWM9CsRfk/5d4Ned3vl4utFy3J4oxu6DP8L1o/49pRhu+hLFcOJTmbcuX7xrqrtmTKxRFWNoYo2qGEMTa5TzmrN+dEbZjDkoX9jxH8q6krJHnkrb9Vq6+5JZj7q6+ThgwABcfvnl7douu+wy/PGPf1Tm6NGjB3r06KEsHiGEeI2m082oPVSL1xZsQJ9BveMeoBIYX4LdL++L+fXjY5XHkdsvx8xTrhPQfLrjoToAUHjdMPzjz2/lcxwJ6eboWI8C8dekD/2qEKvWCUAAu6ty4PNJhMMCy18ZiPVPb8ONPxyFnfsTtz//8sCEMSQyMfOJ4pRiuOVzEiORT3XeOnzxrqnqa+c1n1dqxsQaVTGGJtYo5zVn/diytIJf0yau4Orm4zXXXIPKysp2bfv378eQIUNc6hEhhJhF0+lmPHjNc/js4Ans+GgXZFhi98v7MPn5jnfzZWRmYPLzd+KZ259DsKbj82+P7DuKXvm9UH+sXlf3tSMsAUiJfsP7ceOREALA/fWohMCuqpzof9strcd57dyfg3sfHYGd+3Ngy8TtTmK0Hm8jUorhls9JjEQ+1Xnr8MW7prprxsQaVTGGJtaoijE0sUY5rznrx5I1gzB90scgRDeunnY9ffp0vPPOO3jsscdw4MABrFixAs888wx++MMfRt8za9YsTJ48ud3n3nvvPbz33nuor6/H8ePH8d5772Hfvn26u08IIa7z6pLtqN75KSTQ6QnOzY3NqFi+Hf+z6PW4sU6daED9sXr4zvN1ca/dQ9oS5/U6D+Of/EduPBJCAHhjPSpE66stPp9EdU1P+HzSUbvuGCb2mXkzb+bNvL3kcysGIW7g6ubjVVddhT/96U/4wx/+gCuuuAKPPvoonnjiCdx115lneh05cgQff9x+Zz4QCCAQCGD79u1YsWIFAoEAbrnlFt3dJ4QQ1zlaXQvL135lcfYJzpFTrDc8vhk7XtwV867HtoS/CHdFVz1DU/0XeO7bK9Dc2P7r2JEN2tcWbEDF8u2QNr+SQkh3wAvrUSlbX20JhwWGFjQgHBaO2nXHMLHPzJt5M2/m7SWfWzEIcQNXNx8BYOzYsdi9ezcaGxvx/vvv43vf+1673z/33HPYtGlTuzYpZYfXhx9+qK/ThBDiEfoP7Q37rOc0yrBEnzanN+9YvQvHKo9DStn5YTLdiPpj9e3uDj17g3bD45vxyY7DHTYoCSHpiZvrUQGJ0sIQSopCsIREht+GJSRGFoWwbPZelDpsdxJDCJlyDLd8TmIk8qnOW4cv3jXVXTMm1qiKMTSxRlWMoYk1ynnNWT8iB9EQohtXn/lICCEkNf7hvq9i4/Ld2LoDsPwWZFii3/B8BMaXRN9z8lAthE9AtpzZpLT8FnIuzEGwJuhGt11HWO3vDm27QRu5Tl/UN2HH6l0IjC/BjtW7cPJQbacH+hBCyLkwf0pVp6ddb1la4bg9UYzFqxoxdUJlSjHc9CWK4cSnMm9dvnjXVHfNmFijKsbQxBpVMYYm1ijntdRPuyakq+DmIyGEGEyPrAz8Ysv/xYYrn0PgqpKYm2N9BvXucIq1DEvk9MtG6NNQt7wbUtrt7w6NtUELIXDiw8/xwj0rcazyeOvvOznQhxBCCCGEEK9zutHipiTRDjcfCSHEcHpkZaD3oN64adYNMX8fGF+C3S/va7eB1m94PgrHDEXNe4c191YPls+CHY6/iMrul40TH32OiuXbERhfEnODFlKi/rNTHe6IjBzoM/rur3ZlCoSQbsJDvyrEqnUCEMDuqhz4fBLhsMDyVwZi/dPbcOMPR2Hn/sTtz788MGEMiUzMfKI4pRhu+ZzESORTnbcOX7xrqvraec3nlZoxsUZVjKGJNcp5LbV+bFlawQ1I0qVw85EQQtKcjMwMTH7+zg5fHQaAfWsrcazyOCBa7wZMF3L69ULwSKhDe9b5WfD7fag/Xo+df9oTvZNx4m/u6LBBe16vHsjO79XhjsizD/QhhJBUkBDYVZUT/W+7pfXQgJ37c3DvoyOwc38ObJm43UmM1idMipRiuOVzEiORT3XeOnzxrqnumjGxRlWMoYk1qmIMTaxRzmup9WPJmkGYPqn9wWqEqISbj4QQ0g3IyMyIeadeZFNy53/twWcHT6THBqQF9Log9uZjuCmM05+fBgDIL79ufqzyOPb8eV+HDdrP392CvkPOj/mV9dz+OahYvp3PgSSEKEF8eUhp25NJfT6J6pqe8Plk9A/Eztp1xzCxz8ybeTNv5u0ln9diENKVuH7aNSGEEPeIbEqW3nYFkAb7jgAAGziy79OYv/ri1BcdG63WZz5GrsVNs27A6Lu/CmFZCIwvQb/ifAghYPktCCGQX3QB9r7yQbuTsV+4ZyVPxiaEnDNStv8DEQDCYYGhBQ0Ih4Wjdt0xTOwz82bezJt5e8nntRiEdCXcfCSEkG5Kc2Mz3l5WgRf+7x/w/rpK9Lqg9V88hdW6IMnI9COjp5k3yHd4fmOC90YOn2lubEbF8u14bcEG1H751erJz9+JGx4Yg8AdJbjhgTEYcfNwHK/6DFJK2C02pJTR50ASQkiyCEiUFoZQUhSCJSQy/DYsITGyKIRls/ei1GG7kxhCyJRjuOVzEiORT3XeOnzxrqnumjGxRlWMoYk1qmIMTaxRzmup9SNyOjYhXYWZf1USQghJiebGZjx/9x9wbP/xdu3CEtGvXjc3trjRNe1k9clCYHwJmhub251s/VnLCbxwz0pMfv7Odl9Zf23BBj4HkhCijPlTqjBtYi0AxDx9dMvSCsftiWIsXtWIqRMqU4rhpi9RDCc+lXnr8sW7prprxsQaVTGGJtaoijE0sUY5r6XWD0K6EiHl2Tfjpjd1dXXIy8tDMBhEbm6uNm9ZWRnKy8vpo8+TPjec9Knl2utuxS8Wr3b8/orl27H+l5tScm7F73EV7kophus+AVx//zdw9XdGo2L5dmx4fDMi/7e4Fb/HaPFt3PDAmHabj2e/DwCEEB3elyw/e/jOtK5RzmtqcWs9Q9QRHcONa5Cb3UuLs2zGHJQvnKfFRV96OOkz2+eGkz76knY+8lTartfS3ZfMepR3PhJCSDfkxEefu90FV8jomYGW0y3RE637Dc/HqIkBAK3PfXRyR2NgfEmHk7H7Dc+PniBOCCHJ8PTqwZ3e+Xi60XLcnijG7oPZWLTiopRiuOlLFMOJT2XeunzxrqnumjGxRlWMoYk1qmIMTaxRzmv65jVCkoWbj4QQ0g2pP37K7S5ox8qwMPrur+Kjio8BCBSOGYpREwPRU6r7DOod42RrG3VHQ3htwYZ2p1qffTI2T7smhJwrD/2qEKvWCUAAu6ty4PNJhMMCy18ZiPVPb8ONPxyFnfsTtz//8sCEMSQyMfOJ4pRiuOVzEiORT3XeOnzxrqnqa+c1n1dqxsQaVTGGJtYo5zV989qWpRXcgCRJw81HQgjphmRfoOcrfl5AWMAlV1+M0LF6vPXMu9G7FZtPN0fvegQ63tEoWgDfeX5UbToIy29BhiV2v7wPk5+/M3oyNiGEpIqEwK6qnOh/2y2th37t3J+Dex8dgZ37c2DLxO1OYrQebyNSiuGWz0mMRD7VeevwxbumumvGxBpVMYYm1qiKMTSxRjmv6ZvXlqwZhOmTPgYhycDTrgkhpBvS9+Lz3e6CNqQN1B0NdTih+tMPjmHbih3R90XuaIycbN2rby+0NLUeusNTrQkhXYkQra+2+HwS1TU94fNJR+26Y5jYZ+bNvJk38/aSzysxzsVHSLJw85EQQrohgfEl6FeU73Y3tPHZwRMx2995YRuaG5ujP0fuaLxp1g3w9/DD8rf/v0meak0I6QqkbH21JRwWGFrQgHBYOGrXHcPEPjNv5s28mbeXfF6JcS4+QpKFm4+EENINycjMwIhbhgMi8XvTmdMnT8e9kzEjyx/jGZASfQb11tAzQkh3QUCitDCEkqIQLCGR4bdhCYmRRSEsm70XpQ7bncQQQqYcwy2fkxiJfKrz1uGLd01114yJNapiDE2sURVjaGKNcl7TN69FDqghJBn4zEdCCElDmhubEx6IUnc0BMtnwW5p/8BoYQlI+6x//kxj3l9XGfP65A3MRb+MfJ5qTQjpUuZPqer0tOstSysctyeKsXhVI6ZOqEwphpu+RDGc+FTmrcsX75rqrhkTa1TFGJpYoyrG0MQa5bymb14jJFkc3/l4+PDhLulATU0Nvv3tb6Nv377IysrClVdeiW3btnX6mU2bNuErX/kKevTogUsvvRTPPfdcl/SNEEJMpLmxGS/csxIbHt+MHS/uwobHN+OFe1a2+3oxEPt0ZwDdauMRAGp2HsGSccvw6qPrULF8e/Q6CcvC5OfvxHVTr8XAK/ujYORAXH5Tscu9JaR7w/UoIYQQ4j6nGy0sWnERfvRvw7FoxUU43cgv1ZLOcXzn44gRI/D0009j0qRJyuQnT57ENddcg+uvvx6vvvoq8vPzUVVVhT59+sT9zN/+9jfceuutuO+++/D73/8eGzZswD/90z9hwIABuOmmm5T1jRBCTGXH6l04VnkcUkrIltaNxMhBKW1PaG57ujNE+m46Wj4Ldrjzf6ENHavHe2t2AxLRE60j7HutMnr3Y817h7FvbWX0xGtCiF7ScT360K8KsWqdAASwuyoHPp9EOCyw/JWBWP/0Ntz4w1HYuT9x+/MvD0wYQyITM58oTimGWz4nMRL5VOetwxfvmqq+dl7zeaVmTKxRFWNoYo1yXnN3Xlv+ykBsWVrBuyJJXBxvPs6fPx/f//738ac//Qm/+c1vcP75qZ+U+vOf/xyDBw/G7373u2jbJZdc0ulnlixZgksuuQSPP/44AOCyyy7Dm2++iUWLFnHzkRBCAJw8VNv6NeGWM5uJsQ5KiZzuvGP1Luz8rz347OCJtNuAFJbAlWWX4/yL+uCvL+5EsKYu7nsjubc90drpRi4hRA/puB6VENhVlRP9b7ul9WG8O/fn4N5HR2Dn/hzYMnG7kxitT5gUKcVwy+ckRiKf6rx1+OJdU901Y2KNqhhDE2tUxRiaWKOc19yd13buz8GSNYMwfdLHICQWju+NnTJlCnbt2oUTJ07g8ssvx5///OeU5eXl5Rg1ahTGjx+Pfv36IRAI4Nlnn+30M2+//TZuvPHGdm033XQT3n777Zjvb2pqQl1dXbsXIYSkM7G+Th3voJTI6c6lt10BpNe+YysSOP+iPtj3WiXqDjub/9tu1EY2cuP9nhCiF1PXo0Dna1IhWl9t8fkkqmt6wueTjtp1xzCxz8ybeTNv5u0ln1diqPBF2gmJR1IHzlxyySX4n//5Hzz11FO4/fbbcdlll8Hvbx/ir3/9q+N41dXV+PWvf40ZM2bgpz/9KbZu3YqpU6fivPPOwz333BPzM0ePHsWFF17Yru3CCy9EXV0dTp8+jaysrHa/W7BgAebNm9chzoQJE5CRoe8rcxUVFSgrK6OPPk/63HDSp5Z9e7bhwanjAQDStvFJr8P4or6pdSUhJc7r1QOfv7sFL261IG0bwcN1aD7dgowsP/IG5gJA9DNO9yBrcQhb8fsuykiNr0evHqj+86s4UX3C+d5qC3Cwoi+OBA+g9tDP8FlL+8+KFqB6a19smLokqb4k4sAH29O6RjmvqaW5uTnxm9IUE9ejQPw1KTABtuy4Jm1uAY6fbEJzSw9H7bFuXO/43goAZSnGcMfnLEbnPvV5d70v3jVVf+285fNKzZhYoyrG0MQa5bzm7rzW3AJs3FaPshmnO4oTULG3EmV/d3XSnztXKvb/LW3Xh7p9yaxHkz7t+qOPPsKaNWvQp08f3HbbbR0We8lg2zZGjRqFxx57DAAQCASwZ88eLFmyJO5iL1lmzZqFGTNmRH+uq6vD4MGDsWrVKuTm5ipxOKGsrAzl5eX00edJnxtO+tRy7XW34heLV0d/jnfadeQwmmPVbU5wzsiPPuMw8pkDr1cjmOBOwa34Pa7CXV2aVyq+QYGBuOOJf8SL0/4LNeIwpDyzsrL8FgZeOQD5l/ZF1aaDqD9+qt1n+/nzUXn5f+GxX65svV5nnXg9+Tn1z3z82cN3pnWNcl5TS11dHfLy8rS4vIhp61Eg/ppUYCVKCwWkaP9srpFFIayL8VyteO0ll4YSxpAog8B/pRTDLZ+TGIl8qvPW4Yt3TVVfO6/5vFIzJtaoijE0sUY5r7k7r40sCuHNc3zmY9mMOShfGOsf57qGskeeStv1oW5fMuvRpFZqzz77LB544AHceOON2Lt3L/Lz88+pgxEGDBiAyy+/vF3bZZddhj/+8Y9xP9O/f398+umn7do+/fRT5ObmxvxX5h49eqBHjx4d2gkhJJ2JfJ36bBI9wzDymU8rjyfcfPQ6hWOG4Q/ffxGffnCsw+9kWGL4DYUYffdX0XtgHjY++Ua73x+v+gzBcF2752KevZFLCHEHE9ejQPw16fwpVZg2sRYAsGTNIFTX9MTQggbcd/shZGXa2LK0wnF7ohiLVzVi6oTKlGK46UsUw4lPZd66fPGuqe6aMbFGVYyhiTWqYgxNrFHOa+7OazxshnSG483Hm2++GRUVFXjqqacwefJkJfJrrrkGlZWV7dr279+PIUOGxP3M1VdfjVdeeaVd27p163D11fpu0yWEEFNxehjN0K9fjEM7ajT3Th3+TD/CzeHWk7zPRgD9hucjML4EAFD3aQiW34LdcmbBJHwCzadbAMTfyCWE6Ccd16M/HP8JsjJ7AUDMB/VnZdpJtXf23o3b6tv9/lxiuO3rLIZTn6q8dfriXVPdNWNijaoYQxNrVMUYmlijnNfOvR8qfITEw/HmYzgcxq5duzBo0CBl8unTp+PrX/86HnvsMXzrW99CRUUFnnnmGTzzzDPR98yaNQs1NTV44YUXAAD33XcfnnrqKTz44IO499578T//8z/4z//8T/zlL39R1i9CCDGVeF+3juDkMJrmxmZ8sG6/ri53CS2NLdjy7LuQMZ70WHDlAEx6dnz0usS7JhlZ5/41TkJI15CO69GnVw/u9M7H042W4/ZEMXYfzMaiFRelFMNNX6IYTnwq89bli3dNddeMiTWqYgxNrFEVY2hijXJe8+a8RgiQxObjunXrlMuvuuoq/OlPf8KsWbPwyCOP4JJLLsETTzyBu+4680yvI0eO4OOPz+yoX3LJJfjLX/6C6dOn48knn8SgQYOwdOlS3HTTTcr7RwghJhF9nmOb5xPufnkfJj9/5vmEgfEl2P3yvg7PMIzcBQi0fjX7eFWMOwYNI/xFOGZ73dFQu5/jXZPPL9D3XGBCiDPScT360K8KsWqdAM56NtfyVwZifYznasVrf/7lgQljSGRi5hPFKcVwy+ckRiKf6rx1+OJdU9XXzms+r9SMiTWqYgxNrFHOa96c17ac43MgSfrh+m0dY8eOxdixY+P+/rnnnuvQdt1112HHjh1d2CtCCDGPRM9zBBB9huG2P+xA1eZqABKFfzesXZyTh2qjp2SnI/XH62Nek7PvGH3oweQe1JzorlNCiHdxcz0qIbCrKif633aLAADs3J+Dex8dgZ37c2DLxO1OYgACEiKlGG75nMRI5FOdtw5fvGuqu2ZMrFEVY2hijaoYQxNrlPOaN+e1JWsG8evZBIAHNh8JIYSowenzHAFg39rK6J1+Ne8dxrY/7MClfzcUfS8+H7369oK003PjEQBgdbwmqT7X0cldp4QQEg/R+ndau3/z8fkkqmt6wueT0T/kOmvXHcPEPjNv5s28mbeXfF6J0dU+QgDAcrsDhBBC1ODkeY5A+zsk7RYbUgKhY/V4b81ubHh8M7b/53v6Ou0CMixx9P1PUbF8O5obm5XE7HhNZfSuU0IISYSUHW82D4cFhhY0IBwWjtp1xzCxz8ybeTNv5u0ln1didLWPEICbj4QQkjYExpegX3E+hBCw/BaEEB2e5wicuUPybKQtIaXEqeOngI6/Titqdh7B+l9uwhPX/RpvPvNOypuQsa5pvLtOCSGkLQISpYUhlBSFYAmJDL8NS0iMLAph2ey9KHXY7iSGEDLlGG75nMRI5FOdtw5fvGuqu2ZMrFEVY2hijaoYQxNrlPOaN+e1yEE0hPBr14QQkibEe3bh2V/7jXWHZFuEJdL7a9dtaD7djNef3oIP1u/HPS9MPOevSOf2z4Edbv8w7Vh3nRJCyNnMn1LV6WnXW5ZWOG5PFGPxqkZMnVCZUgw3fYliOPGpzFuXL9411V0zJtaoijE0sUZVjKGJNcp5zZvzGiEANx8JISStcPLswranO0Ogw0ajtCVy+mWj/ss7ILvDRuSx/e0P5kmG5sZm7H3lA+Csy5RfdEGHu04JIYQQQgjpTpxutGJuSkbadx/MxqIVF3GzMs3h5iMhhHQz2p54/c5zW3G6trHd7/sV52PSM+Ox80+78fbvtqIx2BgnUvogcO5fkd6xeheOV33WoX3EzcN52AwhJCEP/aoQq9YJQAC7q3Lg80mEwwLLXxmI9U9vw40/HIWd+xO3P//ywIQxJDIx84nilGK45XMSI5FPdd46fPGuqepr5zWfV2rGxBpVMYYm1ijnNfPnteWvDMSWpRXcgExTuPlICCHdkIzMDPj8PjQGmzr8bsTNw9GzdxZ8fh+a6jr+Ph2ROPevSMc6ZdzyW6j7NKSod4SQdEZCYFdVTvS/I6eH7tyfg3sfHYGd+3Ngy8TtTmK0PmFSpBTDLZ+TGIl8qvPW4Yt3TXXXjIk1qmIMTaxRFWNoYo1yXjN/Xtu5PwdL1gzC9Ekfg6QfPHCGEEK6KbEOSWm7aRbvYJp0pF9Rx4N5nOL0lHFCCImHEK2vtvh8EtU1PeHzSUftumOY2GfmzbyZN/P2ks8rMbzS50g7SU+4+UgIIWlIc2MzKpZvx2sLNqBi+faYpznH2zTLvTAHFcu349PKY7Bb0v9rD+f1Og+Tnhl/zl+RdnrKOCGExEPK1ldbwmGBoQUNCIeFo3bdMUzsM/Nm3sybeXvJ55UYXulzpJ2kJ9x8JISQNKO5sRkv3LMSGx7fjB0v7sKGxzfjhXtWdtiAjLVpll90Afau/QAbHt+MQzsPu5SBXr449QX2/HnfOX8+8gzNGx4Yg8AdJbjhgTGY/NydfN4jIcQRAhKlhSGUFIVgCYkMvw1LSIwsCmHZ7L0oddjuJIYQMuUYbvmcxEjkU523Dl+8a6q7ZkysURVjaGKNqhhDE2uU85r589rIolD01GySfvCZj4QQkmbsWL0LxyqPQ0oZfQ7hscpjeOnHf0Fu/xz0GdQbgfEl0U2zHat34eShWvQZ1BvhljA2PfkmpJQdTm9OVyy/1e6wmebG5ughMhXLt0evVWc4OWWcEEJiMX9KFaZNrAWAmKeBblla4bg9UYzFqxoxdUJlSjHc9CWK4cSnMm9dvnjXVHfNmFijKsbQxBpVMYYm1ijnNfPnNR42k74IKc++OTa9qaurQ15eHoLBIHJzc7V5y8rKUF5eTh99nvS54aRPLddedyt+sXg1AOC1BRuw48VdMb8ybfktyLBEv+J8TH6+4915ry3YgL+u3tnh69ix2Irf4yrcpSYBB6jw+c7zIfxFuF2bEAI3PDAGo+/+avSu0U8/OIZt+D1G4S5k98vGP62ejJ69s1JyJ+JnD9+Z1jXKeU0tbq1niDqiY7hxDXKze2lxls2Yg/KF87S46EsPJ31m+9xw0kef151ljzyVtutD3b5k1qO885EQQtKMWM9yjBDZkDxWeRw7Vu/qcLde7oU5jjYejUIAkEB2v2z83/+YhNVTX8KxyuOA1fqMy8zemQi3hKN3PH76wTEAZ278rD9Wj9+OfwH3/flefpWaEKKcp1cP7vTOx9ONluP2RDF2H8zGohUXpRTDTV+iGE58KvPW5Yt3TXXXjIk1qmIMTaxRFWNoYo1yXkvfeY2YDzcfCSEkzQiML8Hul/fhWOVxCJ+IeQek8Il2XzU+84uu759OrAwLV469HPnDLmj3VfNtK3bgnRe24XTtaTSFmrDpyTexb20lBl7RH8ISkHb7DdjQsfqYm7WEEJIqD/2qEKvWCUAAu6ty4PNJhMMCy18ZiPVPb8ONPxyFnfsTtz//8sCEMSQyMfOJ4pRiuOVzEiORT3XeOnzxrqnqa+c1n1dqxsQaVTGGJtYo57X0nde2LK3gBmQawM1HQghJM85+lmPd0RCqNh1s9x4ZlugzqHeHz9YdDWnqpR7sZhtH3z+Gv//J/47etZiRmQFfhg+NtY2AbH83aG7/nA4bjwAgrDibtYQQkiISAruqcqL/bbe0/ivQzv05uPfREdi5Pwe2TNzuJEbr8TYipRhu+ZzESORTnbcOX7xrqrtmTKxRFWNoYo2qGEMTa5TzWvrOa0vWDML0SR+DmA1PuyaEkDQkcgDKTbNuwD/+/FZcOLxfu1Ot+w3PR2B8SYfPxdqQNAV/D1/M9shXzNty8lAthK/9bZ7CJ9Dz/Cycl31exyAy9mYtIYSoQIjWV1t8Ponqmp7w+aSjdt0xTOwz82bezJt5e8nnlRgm9JmYj6ubj3PnzoUQot1r+PDhcd/f3NyMRx55BMOGDUNmZiZKS0uxdu1ajT0mhBDziNwJecMDYxC4owQ3PDAGk5/reNgM0PqV7ex8PQcfqMaf6UfewJwOXx2P9RXzWM/FtFtsVL/5Ib449UWH2P2G94u5WUsIMR8vrEelbH21JRwWGFrQgHBYOGrXHcPEPjNv5s28mbeXfF6JYUKfifm4fufjiBEjcOTIkejrzTffjPvehx9+GL/5zW/w7//+79i3bx/uu+8+fPOb38SOHTs09pgQQsyj7Z2Qo+/+atyDUzIyM/BPL95j5AZkY7AJwcOhMyfFfEmsr5gHxpegX3F+u7tBs/tlo/54fYfPF143LO5mLSEkPXBzPSogUVoYQklRCJaQyPDbsITEyKIQls3ei1KH7U5iCCFTjuGWz0mMRD7VeevwxbumumvGxBpVMYYm1qiKMTSxRjmvpe+8FjmIhpiN68989Pv96N+/v6P3Ll++HA899BBuueUWAMAPfvADrF+/Ho8//jj+4z/+oyu7SQghRhE5ufnkoVr0GdQ7etiK089cdddX8Mn2Ghx4o1pTjxUjAMtnQYZlzK+Yn/1czD6DeuPER59j55/2QLY5oMfyW8jtn9PptTuXa00I8RZurkfnT6nq9LTrLUsrHLcnirF4VSOmTqhMKYabvkQxnPhU5q3LF++a6q4ZE2tUxRiaWKMqxtDEGuW8lr7zGjEf1zcfq6qqMHDgQGRmZuLqq6/GggULcNFFF8V8b1NTEzIzM9u1ZWVldfqv001NTWhqaor+XFdXp6bjhBDiUZobm/HCPSujp13LsMTul/dh8vPx796L9ZnMvExYfqvdadlCdPw6hNcQPoGBI/pD+CwAEoV/NwzNjS0xNwjbnl5dsXx7h69ixzuYJ8K5XGtCiPfo6vVo5HNckxJCCCHJc7rR4qak4Qgp3fsz8tVXX0V9fT2Ki4tx5MgRzJs3DzU1NdizZw9ycnI6vH/SpEnYuXMnXnrpJQwbNgwbNmzAbbfdhnA43G4x15a5c+di3rx5HdpvvvlmZGTo+8OwoqICo0ePpo8+T/rccNKnljffeheXXzEKAFB7qBafHTzR7tvDAsAFw/qid5yNtFifSUQtDqE3Bp1rl5MmGZ//PD/CX7REd0uFJWDbEuLLn8/L7oHBgYEQ1pmnj0jbxic7DuOL+iZACJyUn+DC7GEd3teuT+dwreNx4IPtaV2jnNfU0tzcjLVr1yIYDCI3N1eLM13RsR4F4q9JgZuR26v1uVd1p/wQQkJKgdxeLfh6SS3e2tXbcXuiGEAFgNEpxXDTlyiGE5/KvHX54l1T3TVjYo2qGEMTa1TFGJpYo5zXute8du3Ik/Cdw4MEK/ZWYvSI4uQ/eI5U7P8b16Nw+c7Hf/iHf4j+d0lJCb72ta9hyJAh+M///E9897vf7fD+J598Et/73vcwfPhwCCEwbNgwfOc738GyZcviOmbNmoUZM2ZEf66rq8PgwYOxatUqrYv1srIylJeX00efJ31uOOlTy7XX3YpfLF4NAHhtwQbs+GhXuzsWLb+FwFUluGnWDe0+F/nK8M7De/CZdQLSPrONJnwCmbmZaKxtjN7Vl190AY5VHQdsYCt+j6twl54EkdgXuSvTd54P4S/CrY2RdCKX4sufxSmBG742BoHxJe3uiLziXy/Hnj/vw8lDtfjj1p/h6RWvdHoHYzLXOhE/e/jOtK5RzmtqqaurQ15enhZXuqNjPQrEX5MCqxA6FdnkFNG7y+sbJHqcdwz1Df0ctYdOyYQxgDIA5SnFcMvnJEYin+q8dfjiXVPV185rPq/UjIk1qmIMTaxRzmvdb167cXQlpk/6GMlSNmMOyhfG+sfArqHskae4HoUHvnbdlt69e6OoqAgHDhyI+fv8/Hy89NJLaGxsxIkTJzBw4ED85Cc/wdChQ+PG7NGjB3r06NFVXSaEEM8R6yTnWF8fbvuVYQi023gEANjA/5o8Cr4MH0589Dnqj59C9gW9cOr4KZz63Hunzl04vB+OVX12ZuOxE4RP4MSHn3f6lekNU5ck/Oq002tNCDGHrliPAp2vScWXB362/T6SzydRXdMTPp+E3SIStuuOYWKfmTfzZt7M20s+r8Qwsc+RdmIOrp923Zb6+nocPHgQAwYM6PR9mZmZKCgoQEtLC/74xz/itttu09RDQgjxPrFOco516MqO1btwrPI4pJTt73i0RPQzoyYFEBhfgsO7j+LA5mrsfGlP0huPlt/CwCv7Q1gi8ZtTIPRpfbs7EDtDhiXqPzsVzd9usSGlxLHK49ixepdjp9NrTQgxBzfWo1J2fJ5uOCwwtKAB4bBw1K47hol9Zt7Mm3kzby/5vBLDxD5H2ok5uLr5OHPmTGzevBkffvgh3nrrLXzzm9+Ez+fDxIkTAQCTJ0/GrFmzou9/9913sWbNGlRXV+ONN97AzTffDNu28eCDD7qVAiGEeI7ISc43PDAGgTtKcMMDYzD5uY4HoJw8VAvh67gh2LNPFoZ94xIMHNEfO1bvwrYVO9pt0kXwZ/iQmZeJC4b1xZVll8Pyx/6/FLvFRmZuZsc7KxXTWB//WWv+Hq03+rfdIMzO79Uhf+ETOHmo1rHT6bUmhHgXt9ejAhKlhSGUFIVgCYkMvw1LSIwsCmHZ7L0oddjuJIYQMuUYbvmcxEjkU523Dl+8a6q7ZkysURVjaGKNqhhDE2uU81r3m9cip2MTM3D1a9eHDh3CxIkTceLECeTn5+Paa6/FO++8g/z8fADAxx9/DKvNQ/4bGxvx8MMPo7q6GtnZ2bjllluwfPly9O7d26UMCCHEm5x9knMsYn1lGABOnWjAgderYfmt1lOve2e2/lNVm28zW34L2fnZmPHqDwG0nhS958/vx3V9tC3557EkS2ZOD5w60fFfQC8Y1hffXjYh+izHyGnXO1bvUvKVaSfXmhDiXdxej86fUoVpE2sBIOZJnluWVjhuTxRj8apGTJ1QmVIMN32JYjjxqcxbly/eNdVdMybWqIoxNLFGVYyhiTXKea37zWvEHFw97doNIg/E1H06ZDo/9J4+831uOOlTS9sDZ5wSeebjp5XH0Okx1wIxf//hsLV4Zs06AEBD7Wn8dvwLCB2rT6oPydDZgTP+Hn7804uTsfSOF9DS1NKu/Z//+/+hZ++sDp9p+8zLyDMf+w3Pj965+ODU8Ulf01TggTPmO914wDdPuzaX6BhuXIPc7F5anNofsk+f8U76zPa54aSPPq87eeCMOpJZj3rqwBlCCCH6iHxl+A/3vYhD7x2OuwEphICEbPd7fw8/ci5sPZ21ubEZf/j+i1268dgZPXJ7oO9FffDyv7yGr33nq/h033EEj9Shd0Eebp13U8yNR+BM/m1Puw6ML+FXpgkhWnl69eBO73w83Wg5bk8UY/fBbCxacVFKMdz0JYrhxKcyb12+eNdUd82YWKMqxtDEGlUxhibWKOc1zmudxSDuws1HQgjpxmRkZmD4DUWoee9I6wZjDGI9q7GlqQVH9hxFxfLtCLeEW0/MVozwC8iWxDfnN9U14fCeowCAQztqkF94Af7vf0xCRmYGmhubUbF8e9zNRX5lmhDiNg/9qhCr1glAALurcuDzSYTDAstfGYj1T2/DjT8chZ37E7c///LAhDEkMjHzieKUYrjlcxIjkU913jp88a6p6mvnNZ9XasbEGlUxhibWKOc1zmud9WPL0gpuQLoMNx8JIaSbExhfgt0v72vdQLQQ8zmQsThd14gNj29GZl5m69eWHWwUJkOn8eJ8FRwAjld9hm1/2IFREwMdvla9++V9mPw8D4QhhHgHCYFdVTnR/7ZbWg/C2rk/B/c+OgI79+fAlonbncRoPd5GpBTDLZ+TGIl8qvPW4Yt3TXXXjIk1qmIMTaxRFWNoYo1yXuO81lk/lqwZhOmTuv4Z9CQ+rp52TQghxH3antj8lfGlKCgdAGEJR5+VUuJ07WnY4Y7/kii64P9hBl45ANff/w18dcJIDAoMjPu+v67ehT/c90d8+sGx6CndUkocqzyOHat3qe8YIYSkgBCtr7b4fBLVNT3h80lH7bpjmNhn5s28mTfz9pLPKzFM7PO5xCDuws1HQggh0a8f3zTrBlz2f4o7P4DmLIRPIKt3FoQQsPyt/7eSnd8LPXr16PRz+YUXoNcFzg9ZEAAuv6kYV987GjfNugHDbyiK+95gTRA17x2O2deTh2odOwkhRAdStr7aEg4LDC1oQDgsHLXrjmFin5k382bezNtLPq/EMLHP5xKDuAs3HwkhhLQjML4E/YrzW3f7HCDDEldNCuDSMUNx/pA+OK/Xeag/fgqNoaa4n+mRfR7uWvotjP72Vxx7fOf5ceLDz1GxfDuaG5sRGF+CXvnxNy/l2SuPL/vaZ1BvZ0JCCNGAgERpYQglRSFYQiLDb8MSEiOLQlg2ey9KHbY7iSGETDmGWz4nMRL5VOetwxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5rbMYkYNoiHvwmY+EEELa4fQU7AjZ+b3wwfoqHN//GSBiH1BzNl+c+gJ7/rwPdUdDsHwW7JbOHwB9XvZ5aKlvwc6X9rR7duP3XrwHS+94HvXHT3UuFICAQL/h+QiML0nYP0II0cX8KVWdnna9ZWmF4/ZEMRavasTUCZUpxXDTlyiGE5/KvHX54l1T3TVjYo2qGEMTa1TFGJpYo5zXOK/xtGvvws1HQgghHXByCjYACEsgb2AuDu862nqnodOva1siegJ1vANuhE8AduvmZuhYPQBENymPVR7DthU74MvwofC6Yag/fgrZF/RC/WencGDzwfZftxDAoJEDMfyGog6nXRNCCCGEEELSn9ONFpasGYTdB7OxaMVF3JTUjexmBINBCUAGg0Gt3nHjxtFHn2d9bjjpU8s1Y26RW3aeUvra9G6tvHf4EjlWPCrH+f9V3opH2r36oViOFY/K7weWxvx9otcv79/YwTFWPCq/U/xr+cv7N8p/ubNcLpr5uvzp7Wuivrafv6P3L9p97t7hS+S6zZ91iHfvZUvkpndrk86/K65pZ690r1HOa2pxaz1D1BEZQ4FaWVoYlKVFQWkJW2b4w9IStgwUB+WJ9RtkoNhZu5MYQoxNOYZbPicxEvlU563DF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnntXMaw4Y11Um59rUtfXI+2wjsfCSGExCTy9esdq3fh5KFa5F6Yg71rP2j9erUFIAxk9s5EZnZmwq9NxyIcDmPH6l0YeGV/5PbPQc/zs9Dw+WlkX9ALvgwf/vf0v0NGZgZW3/9SzM+frm0EAMiW1tscj1Uex54/72vX5z6DevNuR0KIp5EQ2FWVE/1vu6X1Qbg79+fg3kdHYOf+HNgycbuTGK1PmBQpxXDL5yRGIp/qvHX44l1T3TVjYo2qGEMTa1TFGJpYo5zXOK+dyxguWTMI0yd9DNL1cPOREEJIXCKnYEcYNSmAbSt24J0XtgEngaZQEw6+WQ1/Dz9amlpg+Vuf35id3wvSljh1Iv7Jclv/469oDDZB+ARk2IbvvDMx2j7XMTvOidhCtD/NLnKS9dl9JoQQryO+PHir7Zzm80lU1/SEzyejf0B11q47hol9Zt7Mm3kzby/5vBLDxD6rjEH0wNOuCSGEOCYjMwO+DB8av7zr0G6xISUQ/qIFhdcNQ+COEtw48zr84OXv4urvjIYQIm6s07WNkFJGY7Q0tbSJKXGs8jh2rN6FvhefH/PzZz8pkidZE0JMRcr2fygBQDgsMLSgAeGwcNSuO4aJfWbezJt5M28v+bwSw8Q+q4xB9MDNR0IIIUlx8lBt62EwbRA+C7n9c3DTrBsw+u6vIiMzA4HxJehXnB83Tif7kl/GbL2TMTC+BBcO7wcBwPJbEEKgX3E++hXlQwhxpo0nWRNCDERAorQwhJKiECwhkeG3YQmJkUUhLJu9F6UO253EEEKmHMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXJe47x2LmMYOR2bdD382jUhhJCkiHVCday7DiPPjHzpx39B1aaDHeKc/a+SHX4flsi9MCf6XMhex3uh9Por0Pfi86ObjHy2IyHEdOZPqcK0ibUAgCVrBqG6pieGFjRET+HcsrTCcXuiGItXNWLqhMqUYrjpSxTDiU9l3rp88a6p7poxsUZVjKGJNapiDE2sUc5rnNfOZQyJHoSUif78Sy/q6uqQl5eHYDCI3Nxcbd6ysjKUl5fTR58nfW446VPLtdfdil8sXq3F1dzYjBfuWYm/fLAIo/13Q4Yl8osuwIibh6Pu01CHjcDI+49VHv/y+Y6t7w99GooeGtMOAQgI5BddAAA4vv8zCJ9ARcty3Dp8OiY/f6eWTcYHp47Xdk0B4GcP35nWNcp5TS1urWeIOqJjuHENcrNjP9tWNWUz5qB84TwtLvrSw0mf2T43nPTR53Wndt8jT3E9Ct75SAghJEkidzS+O+kFBK4qQW7/HOx95QNsWvxmdHMxclhMRmZGh1OzI5uT21bswMYn32gfXACDRg7E8BuKEG4JY9OTb0JKCdkiIYHocyB5oAwhJF14evXgTu98PN1oOW5PFGP3wWwsWnFRSjHc9CWK4cSnMm9dvnjXVHfNmFijKsbQxBpVMYYm1ijnNc5rquY10gVIF5kzZ45E65kB0VdxcXHc948ZM6bD+wHIW265xbEzGAxKADIYDKpIwTHjxo2jjz7P+txw0qeWa8bcIrfsPKX19fVv3CwXzXxdfj/wW3krHmn3GiselYtmvt7hM5verZWLZr4u/+XOcvnL+zfK7xT/Wo4Vj8px/n+VY8Wj8t7LlshN79bKLTtPyX+5s1yO8/9rNGY/FMtx/n+V/3Jn+Tn1t6170czXo554L93XNN1rlPOaWtxaz6QjbqxHpTwzhgK1srQwKEuLgtIStszwh6UlbBkoDsoT6zfIQLGzdicxhBibcgy3fE5iJPKpzluHL9411V0zJtaoijE0sUZVjKGJNcp5jfOaqnmt4Y11Um59TdmL69FWXL/zccSIEVi/fn30Z78/fpfWrFmDL774IvrziRMnUFpaivHjx3dpHwkhhLSnubEZn+w4jA1vbo75+8hhMWd/psPXrwsvwHX3X4u6ox2/ru302ZJO+3u2u+3dmYSQ7o2b61EJgV1VOdH/tltaT+PauT8H9z46Ajv358CWidudxGg93kakFMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXJe47yW7BjGe++SNYMwfdLHIGpxffPR7/ejf//+jt57/vnnt/t55cqV6NmzJzcfCSFEMztW78IX9U1o/TJ0R2JtEu5YvQvHKo9Hv0YNAMerPoPP78NNs27oECMwvgS7X94X3TAULTjnE61jufkVbkJIBLfXo6L1b552B3H5fBLVNT3h88noH0WdteuOYWKfmTfzZt7M20s+r8Qwsc9dnTdRj+V2B6qqqjBw4EAMHToUd911Fz7+2PkO829/+1vceeed6NUr/kO6m5qaUFdX1+5FCCEkNU4eqj3z/9htEYAQIuYm4clDtRC+9p+JdYdkhMizIm94YAwCd5TggmF9Mfm5c7tTMVk3IaR70dXrUaDzNamU7f/4AYBwWGBoQQPCYeGoXXcME/vMvJk382beXvJ5JYaJfe7qvIl6XL3z8Wtf+xqee+45FBcX48iRI5g3bx6+8Y1vYM+ePcjJyen0sxUVFdizZw9++9vfdvq+BQsWYN68eR3aJ0yYgIwMfV+1q6ioQFlZGX30edLnhpM+tRz4YDt+9vCd2nxHq0/ipPwEW/H7du1ZOZnIzu+Fzy/IxUMPtj9lrfZQLT5rOdHuXknRAlRv7YsNU5ckdB6uPYCHHpx0Tv09F7fua5ruNcp5TS3Nzc1aPN0BHetRIP6aFJiAnF6tfxDVnfJDCAkpBXJ6tqDpi1pk9+ztrL1XS8IYQAWAspRiuOZzECOhT3HeWnzxrqnia+c5n1dqxsQaVTGGJtYo5zXOa4rmtfUVJ7FxG5RRsbcSZX93tbqAiXz7/+bJ9aiQ8uy9Xveora3FkCFDsHDhQnz3u9/t9L3f//738fbbb2PXrl2dvq+pqQlNTU3Rn+vq6jB48GBHR4GrROdx5/TRZ4KTPrN9dZ834LIBoxH4YgKEJQAp0W94v07vTIz13MV+w/Md38344NTx+MXi1efU33Nx/+zhO9N6DNPd54ZTp6+urg55eXna1zPdga5YjwLx16SPTdmq7bTrxat+hKkT/l3bqbCqfYliOPGpzFuXL9411V0zJtaoijE0sUZVjKGJNcp5jfOaqnlNJWUz5qB8Yax/fOwayh55ypPrUdef+diW3r17o6ioCAcOHOj0fadOncLKlSvxyCOPJIzZo0cP9OjRQ1UXCSGk29N0uhmzb/w9Wr5ogbAEpC2R3S8bE5fc0ekmYuRr1DtW78LJQ7UdDpjpStx0E0LMoivWowDXpIQQQogpxNvsJCnQxSdvJ0UoFJJ9+vSRTz75ZKfv+93vfid79OghP/vss6QdyRwFrpJ0Pl6dPvN9bjjpM9f3p4Vvy7HWo7IfiuWteETeikfkWPGoXDTzdbll56kue10z5pYujX/2K53HsDv43HDq9Lm1nukO6FiPSnlmDAVqZWlhUJYWBaUlbJnhD0tL2DJQHJQn1m+QgWJn7U5iCDE25Rhu+ZzESORTnbcOX7xrqrtmTKxRFWNoYo2qGEMTa5TzGue1rp7XGt5YJ+XW15J+jfvG/zqnz53ry6vrUVfvfJw5cybGjRuHIUOG4PDhw5gzZw58Ph8mTpwIAJg8eTIKCgqwYMGCdp/77W9/i3/8x39E37593eg2IYR0a45W18LyCaDNP/7x8BZCiKm4vR6VENhVlRP978hJnDv35+DeR0dg5/4c2DJxu5MYgICESCmGWz4nMRL5VOetwxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5LdkxTNa3ZM0gTJ/k/EA60h5XNx8PHTqEiRMn4sSJE8jPz8e1116Ld955B/n5+QCAjz/+GJbV/kDuyspKvPnmm/jv//5vN7pMCCHdnv5De8MOt39csAxL9BnU250OEUJICnhhPSq+PICz7ZPYfT6J6pqe8Plk9I+fztp1xzCxz8ybeTNv5u0ln1dimNhnt/Im546V+C1dx8qVK3H48GE0NTXh0KFDWLlyJYYNGxb9/aZNm/Dcc8+1+0xxcTGklPg//+f/aO4tIYQQAPiH+76KoaUXQgCw/BaEEOg3PB+B8SVud60DzY3NqFi+Ha8t2ICK5dvR3MgTggkh7fHCelTK9n/8AEA4LDC0oAHhsHDUrjuGiX1m3sybeTNvL/m8EsPEPruVNzl3XN18JIQQYh49sjLwiy3/FxcM64vAHSW44YExjk+s1knkhOsNj2/Gjhd3YcPjm/HCPSu5AUkI8RQCEqWFIZQUhWAJiQy/DUtIjCwKYdnsvSh12O4khhAy5Rhu+ZzESORTnbcOX7xrqrtmTKxRFWNoYo2qGEMTa5TzGue1rp7XIqdjk3PDU6ddE0IIMYMeWRnoPag3bpp1g9tdicuO1btwrPI4pJSQLa3/rHms8jh2rN6F0Xd/1eXeEUJIK/OnVGHaxFoAiHmy5palFY7bE8VYvKoRUydUphTDTV+iGE58KvPW5Yt3TXXXjIk1qmIMTaxRFWNoYo1yXuO81tXzGjl3hJRn32ia3tTV1SEvLw/BYBC5ubnavGVlZSgvL6ePPk/63HDSZ7YPAK697lb8YvFqbb4Hp45Pyvfagg3Y8eIu2C1nFgqW30LgjhJHm6Y/e/jOtB7DdPe54dTpc2s9Q9QRHcONa5Cb3UuLs2zGHJQvnKfFRV96OOkz2+eGkz76vO5Me98jT3lyPco7HwkhhKQlfQb1huTBOIQQj/P06sGd3vl4utFy3J4oxu6D2Vi04qKUYrjpSxTDiU9l3rp88a6p7poxsUZVjKGJNapiDE2sUc5rnNe8NK+Rs5DdjGAwKAHIYDCo1Ttu3Dj66POszw0nfWb7pJTymjG3yC07T2l7Jevb9G6tvHf4EjlWPCrH+f9VjhWPynsvWyI3vVvr6PPpPobp7nPDqdPn1nqGqCMyhgK1srQwKEuLgtIStszwh6UlbBkoDsoT6zfIQLGzdicxhBibcgy3fE5iJPKpzluHL9411V0zJtaoijE0sUZVjKGJNcp5jfOal+a1hjfWSbn1NSm3vibHfeN/Rf9bx8ur61FuPmoinf8Aos98nxtO+sz2Sen9zcfIBuSima/Lf7mzXC6a+brjjUduPprvc8Pp1cUe8SaRMQSCUsCWArY8c/amlJaw5W1jjkpLOGt3FmOcghju+JzF6NynPu+u98W7prprxsQaVTGGJtaoijE0sUY5r3FeS3YMu9K3cPr73Hw8C37tmhBCSNqSkZnBw2UIIZ5HiNb/lfJMm88nUV3TEz6fhN0iErbrjmFin5k382bezNtLPq/EMLHPJuRN2mO53QFCCCGEEEK6M5H7JdoSDgsMLWhAOCwcteuOYWKfmTfzZt7M20s+r8Qwsc8m5E3aw81HQgghhBBCXEJAorQwhJKiECwhkeG3YQmJkUUhLJu9F6UO253EEEKmHMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXJe47zmpXktchANOQO/dk0IIYQQQohLzJ9S1elp11uWVjhuTxRj8apGTJ1QmVIMN32JYjjxqcxbly/eNdVdMybWqIoxNLFGVYyhiTXKeY3zmpfmNdIe3vlICCGEEEIIIYQQQogiTjdaWLTiIuw+mI1FKy7C6cZuvv2m4QAcT8HTrumjzxtO+sz2SWnGadepvNJ9DNPd54bTq6cLEm8SGUOBWllaGJSlRUFpCVtm+MPSErYMFAflifUbZKDYWbuTGEKMTTmGWz4nMRL5VOetwxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5zYR5reGNdd32tGtuPmoinf8Aos98nxtO+sz2ScnNR9XQZ77Tq4s94k0iYwgEpYAtBWx55tH1UlrClreNOSot4azdWYxxCmK443MWo3Of+ry73hfvmuquGRNrVMUYmlijKsbQxBrlvMZ5LdkxdKNGF05/v9tuPnbz+z4JIYQQQghxFyFaX23x+SSqa3rC55OO2nXHMLHPzJt5M2/m7SWfV2KY2GeT8+6ucPOREEIIIYQQF4ncL9GWcFhgaEEDwmHhqF13DBP7zLyZN/Nm3l7yeSWGiX02Oe/uCjcfCSGEEEIIcQkBidLCEEqKQrCERIbfhiUkRhaFsGz2XpQ6bHcSQwiZcgy3fE5iJPKpzluHL9411V0zJtaoijE0sUZVjKGJNcp5jfOaCfNa5HTs7ojfTfncuXMxb968dm3FxcX44IMP4n6mtrYWDz30ENasWYPPP/8cQ4YMwRNPPIFbbrmlq7tLCCGEEELSDLfXo/OnVGHaxFoAwJI1g1Bd0xNDCxpw3+2HkJVpY8vSCsftiWIsXtWIqRMqU4rhpi9RDCc+lXnr8sW7prprxsQaVTGGJtaoijE0sUY5r3FeM2Fe664IKc++SVQfc+fOxYsvvoj169dH2/x+Py644IKY7//iiy9wzTXXoF+/fvjpT3+KgoICfPTRR+jduzdKS0sdOevq6pCXl4dgMIjc3FwleTihrKwM5eXl9NHnSZ8bTvrM9gHAtdfdil8sXq3N9+DU8Vp9P3v4zrQew3T3ueHU6XNrPZOOuLEeBdqM4cY1yM3ulXIeTiibMQflC+clfiN9nvS54aTPbJ8bTvro87oz7X2PPOXJ9airdz4CrYu7/v37O3rvsmXL8Pnnn+Ott95CRkYGAODiiy/uwt4RQgghhJB0x8316NOrB3d65+PpRstxe6IYuw9mY9GKi1KK4aYvUQwnPpV56/LFu6a6a8bEGlUxhibWqIoxNLFGOa9xXjN1XusWd0R2+dnbnTBnzhzZs2dPOWDAAHnJJZfISZMmyY8++iju+//hH/5B3nXXXfJ73/ue7NevnxwxYoScP3++bGlpifuZxsZGGQwGo69PPvnE8VHgKtF53Dl99JngpM9sn5RSXjPmFrll5yltL92+dB/DdPe54dTpCwaDrqxn0hEd61Ep469JBWplaWFQlhYFpSVsmeEPS0vYMlAclCfWb5CBYmftTmIIMTblGG75nMRI5FOdtw5fvGuqu2ZMrFEVY2hijaoYQxNrlPMa5zVT57VAcVA2vLFOyq2vKXl5dT3q6teuX331VdTX16O4uBhHjhzBvHnzUFNTgz179iAnJ6fD+4cPH44PP/wQd911F6ZMmYIDBw5gypQpmDp1KubMmRPTEes5PgBw8803R/+1WgcVFRUYPXo0ffR50ueGkz6zfW446aPP606dvubmZqxdu5Zfu1aAjvUoEH9NCtwMIPaatH/fJhw90cNxe+IYFQBGpxjDPV/iGIl9avPW44t3Tc89RjL9cM/nlZrR7fNKzej2eaVmdPu8UjO6fV6pGd2+eDFGDK3H0ILTjmInomL/37y5Hu3yrdAkOHnypMzNzZVLly6N+fvCwkI5ePDgdv+y/Pjjj8v+/fvHjck7H+mjz5tO+sz2ueGkjz6vO736L80kObpiPSpl/DUp0HoHhCVsCcjoK8MflldeWicz/GFH7c5ijFMQwx2fsxid+9Tn3fW+eNdUd82YWKMqxtDEGlUxhibWKOc1zmvJjqFXajTDH5b//K2P0v7OR6vr90Kd07t3bxQVFeHAgQMxfz9gwAAUFRXB5/NF2y677DIcPXoUX3zxRczP9OjRA7m5ue1ehBBCCCGExKIr1qNA52vSyJ8gbQmHBYYWNCAcFo7adccwsc/Mm3kzb+btJZ9XYpjY53TKO9Ke7nhq87G+vh4HDx7EgAEDYv7+mmuuwYEDB2DbZx7GuX//fgwYMADnnXeerm4SQgghhJA0Rfd6VECitDCEkqIQLCGR4bdhCYmRRSEsm70XpQ7bncQQQqYcwy2fkxiJfKrz1uGLd01114yJNapiDE2sURVjaGKNcl7jvGbqvDayKBQ9uCadcfW065kzZ2LcuHEYMmQIDh8+jDlz5sDn82HixIkAgMmTJ6OgoAALFiwAAPzgBz/AU089hfvvvx8/+tGPUFVVhcceewxTp051Mw1CCCGEEGIobq9H50+p6vS06y1LKxy3J4qxeFUjpk6oTCmGm75EMZz4VOatyxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5zdR5rTucdu3q5uOhQ4cwceJEnDhxAvn5+bj22mvxzjvvID8/HwDw8ccfw7LO3Jw5ePBgvPbaa5g+fTpKSkpQUFCA+++/Hz/+8Y/dSoEQQgghhBgM16OEEEIIcZPTjVb6b0hqeAalp3DrAe3p/NB7+sz3ueGkz2yfG0766PO606sP+CbeJDKGArWytDAoS4taD57J8IelJWwZKA7KE+s3yECxs3YnMYQYm3IMt3xOYiTyqc5bhy/eNdVdMybWqIoxNLFGVYyhiTXKeY3zWrrNaw1vrEurA2e4+aiJdP4DiD7zfW446TPb54aTPvq87vTqYo94k8gYAkEpYEuB9qdlWsKWt405Ki3hrN1ZjHEKYrjjcxajc5/6vLveF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnkt2TH0eo0unP5+Wm0+eurAGUIIIYQQQrobQrS+2uLzSVTX9ITPJx21645hYp+ZN/Nm3szbSz6vxDCxz90l73SCm4+EEEIIIYS4SOReh7aEwwJDCxoQDgtH7bpjmNhn5s28mTfz9pLPKzFM7HN3yTud4OYjIYQQQgghLiEgUVoYQklRCJaQyPDbsITEyKIQls3ei1KH7U5iCCFTjuGWz0mMRD7VeevwxbumumvGxBpVMYYm1qiKMTSxRjmvcV5Lt3ktcpJ2uuDqadeEEEIIIYR0Z+ZPqcK0ibUAEPOkyy1LKxy3J4qxeFUjpk6oTCmGm75EMZz4VOatyxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5Ld3mtXRCSHn2DZ7pTV1dHfLy8hAMBpGbm6vNW1ZWhvLycvro86TPDSd9ZvvccNJHn9edOn1urWeIOqJjuHENcrN7aXGWzZiD8oXztLjoSw8nfWb73HDSR5/XnWnve+QpT65HeecjIYQQQgghLvH06sGd3vl4utFy3J4oxu6D2Vi04qKUYrjpSxTDiU9l3rp88a6p7poxsUZVjKGJNapiDE2sUc5rnNe6y7xmJF1+9rbHSOYocJXoPO6cPvpMcNJnts8NJ330ed2p0+fWeoaoIzKGArWytDAoS4uC0hK2zPCHpSVsGSgOyhPrN8hAsbN2JzGEGJtyDLd8TmIk8qnOW4cv3jXVXTMm1qiKMTSxRlWMoYk1ynmN81p3mdca3lgn5dbX4r68uh7l5qMm0vkPIPrM97nhpM9snxtO+ujzutOriz3iTSJjCASlgC0FbHnmzEspLWHL28YclZZw1u4sxjgFMdzxOYvRuU993l3vi3dNddeMiTWqYgxNrFEVY2hijXJe47yW7BiaWKOWsOXC6e8bufnI064JIYQQQghxESFaX23x+SSqa3rC55OO2nXHMLHPzJt5M2/m7SWfV2KY2OfunreJcPOREEIIIYQQF4nc09CWcFhgaEEDwmHhqF13DBP7zLyZN/Nm3l7yeSWGiX3u7nmbCDcfCSGEEEIIcQkBidLCEEqKQrCERIbfhiUkRhaFsGz2XpQ6bHcSQwiZcgy3fE5iJPKpzluHL9411V0zJtaoijE0sUZVjKGJNcp5jfNad5nXIgfUmAZPuyaEEEIIIcQl5k+p6vS06y1LKxy3J4qxeFUjpk6oTCmGm75EMZz4VOatyxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5rbvMaybCzUdCCCGEEEIIIYQQQgzgdKNl3qakhgNwPAVPu6aPPm846TPb54aTPvq87vTq6YLEm0TGUKBWlhYGZWlRUFrClhn+sLSELQPFQXli/QYZKHbW7iSGEGNTjuGWz0mMRD7VeevwxbumumvGxBpVMYYm1qiKMTSxRjmvcV7rzvNaoDgoG95Y5+nTrrn5qIl0/gOIPvN9bjjpM9vnhpM++rzu9Opij3iTyBgCQSlgSwFbnnnsvJSWsOVtY45KSzhrdxZjnIIY7vicxejcpz7vrvfFu6a6a8bEGlUxhibWqIoxNLFGOa9xXkt2DE2s0c7aF05/39Obj64eODN37lwIIdq9hg8fHvf9zz33XIf3Z2ZmauwxIYQQQghJJ7ywHhWi9dUWn0+iuqYnfD7pqF13DBP7zLyZN/Nm3l7yeSWGiX1m3rHbvYzrp12PGDECR44cib7efPPNTt+fm5vb7v0fffSRpp4SQgghhJB0xO31aOTehbaEwwJDCxoQDgtH7bpjmNhn5s28mTfz9pLPKzFM7DPzjt3uZVzffPT7/ejfv3/0dcEFF3T6fiFEu/dfeOGFmnpKCCGEEELSETfXowISpYUhlBSFYAmJDL8NS0iMLAph2ey9KHXY7iSGEDLlGG75nMRI5FOdtw5fvGuqu2ZMrFEVY2hijaoYQxNrlPMa57XuPK+NLApFT832Kq6fdl1VVYWBAwciMzMTV199NRYsWICLLroo7vvr6+sxZMgQ2LaNr3zlK3jssccwYsSIuO9vampCU1NT9Oe6ujql/SeEEEIIIWbT1etRIP6adP6UKkybWAsAMU+u3LK0wnF7ohiLVzVi6oTKlGK46UsUw4lPZd66fPGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXuvO85vXTroWUZ9/gqY9XX30V9fX1KC4uxpEjRzBv3jzU1NRgz549yMnJ6fD+t99+G1VVVSgpKUEwGMQvf/lLvP7669i7dy8GDRoU0zF37lzMmzevQ/vNN9+MjIwM5TnFo6KiAqNHj6aPPk/63HDSZ7bPDSd99HndqdPX3NyMtWvXIhgMIjc3V4szXdGxHgU6WZNePQoZfj33A1TsrcToEcVaXPSlh5M+s31uOOmjz+tO+tTR3NKCtW9vc7QedfXOx3/4h3+I/ndJSQm+9rWvYciQIfjP//xPfPe73+3w/quvvhpXX3119Oevf/3ruOyyy/Cb3/wGjz76aEzHrFmzMGPGjOjPdXV1GDx4MFatWqV1sV5WVoby8nL66POkzw0nfWb73HDSR5/XnTp9dXV1yMvL0+JKd3SsR4H4a9K/C/y60zsfTzdajtsTxdh98Ee4ftS/pxTDTV+iGE58KvPW5Yt3TXXXjIk1qmIMTaxRFWNoYo1yXuO8xnmto68rqas/hbzrb3f25i4/eztJRo0aJX/yk584fv8dd9wh77zzTsfvT+YocJXoPO6cPvpMcNJnts8NJ330ed2p0+fWeqa70NXrUSnPjKFArSwtDMrSoqC0hC0z/GFpCVsGioPyxPoNMlDsrN1JDCHGphzDLZ+TGIl8qvPW4Yt3TXXXjIk1qmIMTaxRFWNoYo1yXuO8xnmto6/hjXVSbn2ty17BjWscr0c9tfkYCoVknz595JNPPuno/S0tLbK4uFhOnz7dsYObj/TR5w0nfWb73HDSR5/Xndx8TA90rEelPDOGQFAK2FLAlmfOvJTSEra8bcxRaQln7c5ijFMQwx2fsxid+9Tn3fW+eNdUd82YWKMqxtDEGlUxhibWKOc1zmvJjqGJNZrsGC6c/r5nNh9dPe165syZ2Lx5Mz788EO89dZb+OY3vwmfz4eJEycCACZPnoxZs2ZF3//II4/gv//7v1FdXY2//vWv+Pa3v42PPvoI//RP/+RWCoQQQgghxGC8sB4VovXVFp9PorqmJ3w+6ahddwwT+8y8mTfzZt5e8nklhol9Zt7OY3gFVzcfDx06hIkTJ6K4uBjf+ta30LdvX7zzzjvIz88HAHz88cc4cuRI9P0nT57E9773PVx22WW45ZZbUFdXh7feeguXX365WykQQgghhBCD8cJ6NHLvQlvCYYGhBQ0Ih4Wjdt0xTOwz82bezJt5e8nnlRgm9pl5O4/hFVzdfFy5ciUOHz6MpqYmHDp0CCtXrsSwYcOiv9+0aROee+656M+LFi3CRx99hKamJhw9ehR/+ctfEAgEXOg5IYQQQghJB9xejwpIlBaGUFIUgiUkMvw2LCExsiiEZbP3otRhu5MYQsiUY7jlcxIjkU913jp88a6p7poxsUZVjKGJNapiDE2sUc5rnNc4r3X0RQ6i8QKunnZNCCGEEEJId2b+lKpOT7vesrTCcXuiGItXNWLqhMqUYrjpSxTDiU9l3rp88a6p7poxsUZVjKGJNapiDE2sUc5rnNc4r3X0eQUh5dk3Z6Y3dXV1yMvLQzAYRG5urjZvWVkZysvL6aPPkz43nPSZ7XPDSR99Xnfq9Lm1niHqiI7hxjXIze6lxVk2Yw7KF87T4qIvPZz0me1zw0kffV530qeOuvpTyLv+dkfrUd75SAghhBBCiEs8vXpwp3c+nm60HLcnirH7YDYWrbgopRhu+hLFcOJTmbcuX7xrqrtmTKxRFWNoYo2qGEMTa5TzGuc1zmvOx1A7Cc/DTjOCwaCEw6PAVTJu3Dj66POszw0nfWb73HDSR5/XnTp9bq1niDoiYyhQK0sLg7K0KCgtYcsMf1hawpaB4qA8sX6DDBQ7a3cSQ4ixKcdwy+ckRiKf6rx1+OJdU901Y2KNqhhDE2tUxRiaWKOc1zivcV5zPoYNb6yTcutrKb+CG9c4Xo9y81ET6fwHEH3m+9xw0me2zw0nffR53cnNR5IMkTEEglLAlgK2PHNepZSWsOVtY45KSzhrdxZjnIIY7vicxejcpz7vrvfFu6a6a8bEGlUxhibWqIoxNLFGOa9xXkt2DE2sUVVjuHD6+9o3H1097ZoQQgghhJDujhCtr7b4fBLVNT3h80lH7bpjmNhn5s28mTfz9pLPKzFM7DPzTj2Gbrj5SAghhBBCiItE7kdoSzgsMLSgAeGwcNSuO4aJfWbezJt5M28v+bwSw8Q+M+/UY+iGm4+EEEIIIYS4hIBEaWEIJUUhWEIiw2/DEhIji0JYNnsvSh22O4khhEw5hls+JzES+VTnrcMX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmvMxjBxQoxOedk0IIYQQQohLzJ9S1elp11uWVjhuTxRj8apGTJ1QmVIMN32JYjjxqcxbly/eNdVdMybWqIoxNLFGVYyhiTXKeY3zGuc152OoG24+EkIIIYQQQgghhBDSDTjdaMXckIzXrgQNh/l5Cp52TR993nDSZ7bPDSd99HndydOuSTJExlCgVpYWBmVpUVBawpYZ/rC0hC0DxUF5Yv0GGSh21u4khhBjU47hls9JjEQ+1Xnr8MW7prprxsQaVTGGJtaoijE0sUY5r3Fe47zWNb6GN9YpOe2am4+aSOc/gOgz3+eGkz6zfW446aPP605uPpJkiIwhEJQCthSw5ZlHxktpCVveNuaotISzdmcxximI4Y7PWYzOferz7npfvGuqu2ZMrFEVY2hijaoYQxNrlPMa57Vkx9DEGnVjXls4/X0lm488cIYQQgghhBAXEaL11RafT6K6pid8PumoXXcME/vMvJk3850XMdUAAFECSURBVGbeXvJ5JYaJfWbeevNWATcfCSGEEEIIcZHIPQZtCYcFhhY0IBwWjtp1xzCxz8ybeTNv5u0ln1dimNhn5q03bxVw85EQQgghhBCXEJAoLQyhpCgES0hk+G1YQmJkUQjLZu9FqcN2JzGEkCnHcMvnJEYin+q8dfjiXVPdNWNijaoYQxNrVMUYmlijnNc4r3Fe6xpf5CTtVOFp14QQQgghhLjE/ClVmDaxFgBinjC5ZWmF4/ZEMRavasTUCZUpxXDTlyiGE5/KvHX54l1T3TVjYo2qGEMTa1TFGJpYo5zXOK9xXusanwqElGffcKmPuXPnYt68ee3aiouL8cEHH8R8/5o1a/DYY4/hwIEDaG5uRmFhIR544AHcfffdjp11dXXIy8tDMBhEbm5uSv1PhrKyMpSXl9NHnyd9bjjpM9vnhpM++rzu1Olzaz2TjrixHgXajOHGNcjN7nXO/U+GshlzUL5wXuI30udJnxtO+sz2ueGkjz6vO+lTR139KeRdf7uj9ajrdz6OGDEC69evj/7s98fv0vnnn4+HHnoIw4cPx3nnnYeXX34Z3/nOd9CvXz/cdNNNOrpLCCGEEELSDDfXo0+vHtzpnY+nGy3H7Yli7D6YjUUrLkophpu+RDGc+FTmrcsX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj5f0ndEJjwPuwuZM2eOLC0tTSlGIBCQDz/8sOP3B4NBCYdHgatk3Lhx9NHnWZ8bTvrM9rnhpI8+rzt1+txaz6QjbqxHpTwzhgK1srQwKEuLgtIStszwh6UlbBkoDsoT6zfIQLGzdicxhBibcgy3fE5iJPKpzluHL9411V0zJtaoijE0sUZVjKGJNcp5jfMa5zV9vkBxUDa8sU4GN65xvB51ffOxZ8+ecsCAAfKSSy6RkyZNkh999JGjz9q2LdevXy979uwp//u//zvu+xobG2UwGIy+PvnkE24+0kefB5z0me1zw0kffV53cvPRTHSsR6WMvyYFglLAlgK2PHMGpZSWsOVtY45KSzhrdxZjnIIY7vicxejcpz7vrvfFu6a6a8bEGlUxhibWqIoxNLFGOa9xXkt2DE2sUa/Ma5aw5cLp7ye1+ejqMx9fffVV1NfXo7i4GEeOHMG8efNQU1ODPXv2ICcnJ+ZngsEgCgoK0NTUBJ/Ph1/96le499574zpiPccHAG6++WZkZGQoyyURFRUVGD16NH30edLnhpM+s31uOOmjz+tOnb7m5masXbuWz3xUgI71KBB/TQrcDKDjmlQIieysMOpP+yClSNgei47vrQAwOsUY7vicxejcpz7vrvfFu6apxUimH+74vFIzun1eqRndPq/UjG6fV2pGt88rNaPb55WaUeETQmLIgEYMH1KLtW9vc7YedfTPupo4efKkzM3NlUuXLo37nnA4LKuqquSOHTvkL3/5S5mXlyc3btwY9/2885E++rzppM9snxtO+ujzupN3PqYHXbEelZJ3Pnrhbg/eIcQ7hJIdQxNrlHc+cl5LLW8zapTzmnl3Plqdb03qpXfv3igqKsKBAwfivseyLFx66aUYOXIkHnjgAdxxxx1YsGBB3Pf36NEDubm57V6EEEIIIYTEoivWo0D8NamARGlhCCVFIVhCIsNvwxISI4tCWDZ7L0odtjuJIYRMOYZbPicxEvlU563DF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+38iiUPTgGqe4ftp1W+rr63Hw4EHcfffdjj9j2zaampq6sFeEEEIIIaS7oHs9On9KVaenXW9ZWuG4PVGMxasaMXVCZUox3PQliuHEpzJvXb5411R3zZhYoyrG0MQaVTGGJtYo5zXOa5zX9PmyMm0018dc2sTE1c3HmTNnYty4cRgyZAgOHz6MOXPmwOfzYeLEiQCAyZMno6CgIPovyQsWLMCoUaMwbNgwNDU14ZVXXsHy5cvx61//2s00CCGEEEKIoXA9SgghhBDSxST7HByVTJgwQQ4YMECed955sqCgQE6YMEEeOHAg+vsxY8bIe+65J/rzQw89JC+99FKZmZkp+/TpI6+++mq5cuXKpJxuPSMpnZ87RZ/5Pjec9Jntc8NJH31ed/KZj2bixnpUyjNjKFArSwuDsrQoKC1hywx/WFrCloHioDyxfoMMFDtrdxJDiLEpx3DL5yRGIp/qvHX44l1T3TVjYo2qGEMTa1TFGJpYo5zXOK9xXtPnCxQHZcMb65J65qOrm49uwM1H+ujzhpM+s31uOOmjz+tObj6SZIiMIQ+c4cEMycXgwQymHcxgYs2YWKOc1zivJTuGJtaoV+Y1Sxh+4AwhhBBCCCHdDSFaX23x+SSqa3rC55OO2nXHMLHPzJt5M2/m7SWfV2KY2Gfm7W7ekfZk4OYjIYQQQgghLhK5l6At4bDA0IIGhMPCUbvuGCb2mXkzb+bNvL3k80oME/vMvN3NO9KeDNx8JIQQQgghxCUEJEoLQygpCsESEhl+G5aQGFkUwrLZe1HqsN1JDCFkyjHc8jmJkcinOm8dvnjXVHfNmFijKsbQxBpVMYYm1ijnNc5rnNf0+UYWhaKnZjvF1dOuCSGEEEII6c7Mn1KFaRNrAQBL1gxCdU1PDC1owH23H0JWpo0tSysctyeKsXhVI6ZOqEwphpu+RDGc+FTmrcsX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj5fVqaN5vqYS5uYCCnPvuEyvamrq0NeXh6CwSByc3O1ecvKylBeXk4ffZ70ueGkz2yfG0766PO6U6fPrfUMUUd0DDeuQW52Ly3OshlzUL5wnhYXfenhpM9snxtO+ujzupM+ddTVn0Le9bc7Wo/yzkdCCCGEEEJc4unVgzu98/F0o+W4PVGM3QezsWjFRSnFcNOXKIYTn8q8dfniXVPdNWNijaoYQxNrVMUYmlijnNc4r3Fe0+fLyrRjrmvikvA87DQjGAxKODwKXCXjxo2jjz7P+txw0me2zw0nffR53anT59Z6hqgjMoYCtbK0MChLi4LSErbM8IelJWwZKA7KE+s3yECxs3YnMYQYm3IMt3xOYiTyqc5bhy/eNdVdMybWqIoxNLFGVYyhiTXKeY3zGuc1fb5AcVA2vLFOBjeucbwe5eajJtL5DyD6zPe54aTPbJ8bTvro87qTm48kGSJjCASlgC0FbHnmDEopLWHL28YclZZw1u4sxjgFMdzxOYvRuU993l3vi3dNddeMiTWqYgxNrFEVY2hijXJe47yW7BiaWKNemdcsYcuF099PavORp10TQgghhBDiIkK0vtri80lU1/SEzycdteuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JwM1HQgghhBBCXCRyL0FbwmGBoQUNCIeFo3bdMUzsM/Nm3sybeXvJ55UYJvaZebubd6Q9Gbj5SAghhBBCiEsISJQWhlBSFIIlJDL8NiwhMbIohGWz96LUYbuTGELIlGO45XMSI5FPdd46fPGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXOK/p840sCkUPrnEKT7smhBBCCCHEJeZPqer0tOstSysctyeKsXhVI6ZOqEwphpu+RDGc+FTmrcsX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj5fVqaN5vqYS5uY8M5HQgghhBBCCCGEEEJI16DhMD9PwdOu6aPPG076zPa54aSPPq87edo1SYbIGArUytLCoCwtCkpL2DLDH5aWsGWgOChPrN8gA8XO2p3EEGJsyjHc8jmJkcinOm8dvnjXVHfNmFijKsbQxBpVMYYm1ijnNc5rnNf0+QLFQdnwxrqkTrvm5qMm0vkPIPrM97nhpM9snxtO+ujzupObjyQZImMIBKWALQVseeYx8FJawpa3jTkqLeGs3VmMcQpiuONzFqNzn/q8u94X75rqrhkTa1TFGJpYoyrG0MQa5bzGeS3ZMTSxRr0yr1nClgunv5/U5iO/dk0IIYQQQoiLCNH6aovPJ1Fd0xM+n3TUrjuGiX1m3sybeTNvL/m8EsPEPjNvd/OOtCeDq5uPc+fOhRCi3Wv48OFx3//ss8/iG9/4Bvr06YM+ffrgxhtvREVFhcYeE0IIIYSQdMIL69HIvQRtCYcFhhY0IBwWjtp1xzCxz8ybeTNv5u0ln1dimNhn5u1u3pH2ZHD9zscRI0bgyJEj0debb74Z972bNm3CxIkTsXHjRrz99tsYPHgw/v7v/x41NTUae0wIIYQQQtIJN9ejAhKlhSGUFIVgCYkMvw1LSIwsCmHZ7L0oddjuJIYQMuUYbvmcxEjkU523Dl+8a6q7ZkysURVjaGKNqhhDE2uU8xrnNc5r+nwji0LRU7Od4j+nVZJC/H4/+vfv7+i9v//979v9vHTpUvzxj3/Ehg0bMHny5K7oHiGEEEIISXPcXI/On1KFaRNrAQBL1gxCdU1PDC1owH23H0JWpo0tSysctyeKsXhVI6ZOqEwphpu+RDGc+FTmrcsX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj5fVqaN5vqYS5uYCCnPvuFSH3PnzsW//du/IS8vD5mZmbj66quxYMECXHTRRY4+HwqF0K9fP6xevRpjx46N+Z6mpiY0NTVFf66rq8PgwYMRDAaRm5urJA8nlJWVoby8nD76POlzw0mf2T43nPTR53WnTl9dXR3y8vK0r2fSER3rUaCTNenGNcjN7pVyHk4omzEH5QvnaXHRlx5O+sz2ueGkjz6vO+lTR139KeRdf7uj9airm4+vvvoq6uvrUVxcjCNHjmDevHmoqanBnj17kJOTk/DzU6ZMwWuvvYa9e/ciMzMz5nvmzp2LefM6Xvibb74ZGRkZKefglIqKCowePZo++jzpc8NJn9k+N5z00ed1p05fc3Mz1q5dy81HBehYjwLx16TDL/4GhhY0AwA+OpKFU40+9MoMY8iA0/BZQNh23p4oRnXNbgwtuDKlGG76EsVw4lOZty5fvGuqu2ZMrFEVY2hijaoYQxNrlPMa5zXOa/p8PgtobmnB2re3OVuPJjwPWyMnT56Uubm5cunSpQnfu2DBAtmnTx+5c+fOTt/X2Ngog8Fg9PXJJ59IODwKXCXjxo2jjz7P+txw0me2zw0nffR53anTFwwGXVnPdAe6Yj0qZfw1qUCtLC0MytKioLSELTP8YWkJWwaKg/LE+g0yUOys3UkMIcamHMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXJe47zGeU2fL1AclA1vrJPBjWscr0c9tfkopZSjRo2SP/nJTzp9z7/927/JvLw8uXXr1qTju7VYT+c/gOgz3+eGkz6zfW446aPP605uPqYPXb0elfLMGAJBKWBLAVueOYNSSkvY8rYxR6UlnLU7izFOQQx3fM5idO5Tn3fX++JdU901Y2KNqhhDE2tUxRiaWKOc1zivJTuGJtaoV+Y1S9hy4fT3k9p8dP2067bU19fj4MGDGDBgQNz3/OIXv8Cjjz6KtWvXYtSoURp7RwghhBBC0h031qNCtL7a4vNJVNf0hM8nHbXrjmFin5k382bezNtLPq/EMLHPzNvdvCPtyeDq5uPMmTOxefNmfPjhh3jrrbfwzW9+Ez6fDxMnTgQATJ48GbNmzYq+/+c//zlmz56NZcuW4eKLL8bRo0dx9OhR1NcnccQOIYQQQgghX+KF9WjkXoK2hMMCQwsaEA4LR+26Y5jYZ+bNvJk38/aSzysxTOwz83Y370h7Mri6+Xjo0CFMnDgRxcXF+Na3voW+ffvinXfeQX5+PgDg448/xpEjR6Lv//Wvf40vvvgCd9xxBwYMGBB9/fKXv3QrBUIIIYQQYjBur0cFJEoLQygpCsESEhl+G5aQGFkUwrLZe1HqsN1JDCFkyjHc8jmJkcinOm8dvnjXVHfNmFijKsbQxBpVMYYm1ijnNc5rnNf0+UYWhXDf7YeSW+9IefaeZ3pTV1eHvLw87adDlpWVoby8nD76POlzw0mf2T43nPTR53WnTp9b6xmijsgYPjZlK6ZNrAUALFkzCNU1PTG0oAH33X4IWZk2TjdajtsTxVi86keYOuHfU4rhpi9RDCc+lXnr8sW7prprxsQaVTGGJtaoijE0sUY5r3Fe47ymz5eVaaOu/hTyrr/d0XrUU898JIQQQgghhBBCCCGEpBHndDyfwfC0a/ro84aTPrN9bjjpo8/rTp52TZIhMoYCtbK0MChLi4LSErbM8IelJWwZKA7KE+s3yECxs3YnMYQYm3IMt3xOYiTyqc5bhy/eNdVdMybWqIoxNLFGVYyhiTXKeY3zGuc1fb5AcVA2vLEuqdOuufmoiXT+A4g+831uOOkz2+eGkz76vO7k5iNJhsgYAkEpYEsBW555DLyUlrDlbWOOSks4a3cWY5yCGO74nMXo3Kc+7673xbumumvGxBpVMYYm1qiKMTSxRjmvcV5LdgxNrFGvzGuWsOXC6e8ntfnIr10TQgghhBDiIkK0vtri80lU1/SEzycdteuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JwM1HQgghhBBCXCRyL0FbwmGBoQUNCIeFo3bdMUzsM/Nm3sybeXvJ55UYJvaZebubd6Q9Gbj5SAghhBBCiEsISJQWhlBSFIIlJDL8NiwhMbIohGWz96LUYbuTGELIlGO45XMSI5FPdd46fPGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXOK/p840sCkVPzXaKv4vWUYQQQgghhJAEzJ9ShWkTawEAS9YMQnVNTwwtaMB9tx9CVqaNLUsrHLcnirF4VSOmTqhMKYabvkQxnPhU5q3LF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+X1amjeb6mEubmAgpz77hMr2pq6tDXl4egsEgcnNztXnLyspQXl5OH32e9LnhpM9snxtO+ujzulOnz631DFFHdAw3rkFudi8tzrIZc1C+cJ4WF33p4aTPbJ8bTvro87qTPnXU1Z9C3vW3O1qP8s5HQgghhBBCXOLp1YM7vfPxdKPluD1RjN0Hs7FoxUUpxXDTlyiGE5/KvHX54l1T3TVjYo2qGEMTa1TFGJpYo5zXOK9xXtPny8q0Y65r4pLwPOw0IxgMSjg8Clwl48aNo48+z/rccNJnts8NJ330ed2p0+fWeoaoIzKGArWytDAoS4uC0hK2zPCHpSVsGSgOyhPrN8hAsbN2JzGEGJtyDLd8TmIk8qnOW4cv3jXVXTMm1qiKMTSxRlWMoYk1ynmN8xrnNX2+QHFQNryxTgY3rnG8HuXmoybS+Q8g+sz3ueGkz2yfG0766PO6k5uPJBkiYwgEpYAtBWx55gxKKS1hy9vGHJWWcNbuLMY4BTHc8TmL0blPfd5d74t3TXXXjIk1qmIMTaxRFWNoYo1yXuO8luwYmlijXpnXLGHLhdPfT2rzkaddE0IIIYQQ4iJCtL7a4vNJVNf0hM8nHbXrjmFin5k382bezNtLPq/EMLHPzNvdvCPtycDNR0IIIYQQQlwkci9BW8JhgaEFDQiHhaN23TFM7DPzZt7Mm3l7yeeVGCb2mXm7m3ekPRm4+UgIIYQQQohLCEiUFoZQUhSCJSQy/DYsITGyKIRls/ei1GG7kxhCyJRjuOVzEiORT3XeOnzxrqnumjGxRlWMoYk1qmIMTaxRzmuc1ziv6fONLApFD65xCk+7JoQQQgghxCXmT6nq9LTrLUsrHLcnirF4VSOmTqhMKYabvkQxnPhU5q3LF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+X1amjeb6mEubmPDOR0IIIYQQQgghhBBCSNeg4TC/uMyZM0cCaPcqLi6O+/49e/bI22+/XQ4ZMkQCkIsWLUraydOu6aPPG076zPa54aSPPq87edq1mbixHpXyzBgK1MrSwqAsLQpKS9gywx+WlrBloDgoT6zfIAPFztqdxBBibMox3PI5iZHIpzpvHb5411R3zZhYoyrG0MQaVTGGJtYo5zXOa5zX9PkCxUHZ8Ma6pE67dn3zccSIEfLIkSPR1/Hjx+O+v6KiQs6cOVP+4Q9/kP379+fmI330Geykz2yfG0766PO6k5uPZuLGelTKM2MIBKWALQVseeYx8FJawpa3jTkqLeGs3VmMcQpiuONzFqNzn/q8u94X75rqrhkTa1TFGJpYoyrG0MQa5bzGeS3ZMTSxRr0yr1nClgunv5/U5qPrz3z0+/3o37+/o/deddVVuOqqqwAAP/nJT7qyW4QQQgghpJvg9npUfHmIpJRn2nw+ieqanvD5JOwWkbBddwwT+8y8mTfzZt5e8nklhol9Zt7u5h1pTwbXn/lYVVWFgQMHYujQobjrrrvw8ccfK43f1NSEurq6di9CCCGEEEIidPV6FOh8TRq5l6At4bDA0IIGhMPCUbvuGCb2mXkzb+bNvL3k80oME/vMvN3NO9KeDK7e+fi1r30Nzz33HIqLi3HkyBHMmzcP3/jGN7Bnzx7k5OQocSxYsADz5s3r0D5hwgRkZGQocTihoqICZWVl9NHnSZ8bTvrM9rnhpI8+rzt1+pqbm7V4ugM61qNA/DUpMAE5vVoX9XWn/BBCQkqBnJ4taPqiFtk9eztr79WSMAZQAaAspRiu+RzESOhTnLcWX7xrqvjaec7nlZoxsUZVjKGJNcp5jfMa5zV9vp4tWF9xEv/9TmssJwgpz97zdI/a2loMGTIECxcuxHe/+91O33vxxRdj2rRpmDZtWqfva2pqQlNTU/Tnuro6DB48GMFgELm5uSq67YiysjKUl5fTR58nfW446TPb54aTPvq87tTpq6urQ15envb1THegK9ajQPw16WNTtmLaxFoAwJI1g1Bd0xNDCxpw3+2HkJVp43Sj5bg9UYzFq36EqRP+PaUYbvoSxXDiU5m3Ll+8a6q7ZkysURVjaGKNqhhDE2uU8xrnNc5r+nxZmTbq6k8h7/rbHa1HPbX5CLQ+R+fGG2/EggULOn1fMou9tri1WE/nP4DoM9/nhpM+s31uOOmjz+tObj6mD129HgXajOHGNcjN7nWOPU2OshlzUL4w1t2X9Jngc8NJn9k+N5z00ed1J33qSGbz0fUDZ9pSX1+PgwcP4u6773a7K4QQQgghpBuiez369OrB2u583H0wG4tWXKTtDiHVvkQxnPhU5q3LF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+X1amHXNdE5eE52F3IQ888IDctGmT/Nvf/ia3bNkib7zxRnnBBRfIY8eOSSmlvPvuu+VPfvKT6Pubmprkjh075I4dO+SAAQPkzJkz5Y4dO2RVVZVjZzAYdHwUuErGjRtHH32e9bnhpM9snxtO+ujzulOnz631TDrixnpUyjNjKFArSwuDsrQoKC1hywx/WFrCloHioDyxfoMMFDtrdxJDiLEpx3DL5yRGIp/qvHX44l1T3TVjYo2qGEMTa1TFGJpYo5zXOK9xXtPnCxQHZcMb62Rw4xrH61FXNx8nTJggBwwYIM877zxZUFAgJ0yYIA8cOBD9/ZgxY+Q999wT/flvf/ubBNDhNWbMGMdObj7SR583nPSZ7XPDSR99Xndy89FM3FiPSnlmDIGgFLClgC3PnEEppSVseduYo9ISztqdxRinIIY7PmcxOvepz7vrffGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXkh1DE2vUK/OaJWy5cPr7SW0+uvq165UrV3b6+02bNrX7+eKLL4aUsgt7RAghhBBCuhNeWI+K1sOu0TaszydRXdMTPp+E3SIStuuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JYCX1bkIIIYQQQohSIvcStCUcFhha0IBwWDhq1x3DxD4zb+bNvJm3l3xeiWFin5m3u3lH2pOBm4+EEEIIIYS4hIBEaWEIJUUhWEIiw2/DEhIji0JYNnsvSh22O4khhEw5hls+JzES+VTnrcMX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj7fyKJQ9OAap3jqtGtCCCGEEEK6E/OnVHV62vWWpRWO2xPFWLyqEVMnVKYUw01fohhOfCrz1uWLd01114yJNapiDE2sURVjaGKNcl7jvMZ5TZ8vK9NGc33MpU1MeOcjIYQQQgghhBBCCCGka0jqWL40gKdd00efN5z0me1zw0kffV538rRrkgyRMRSolaWFQVlaFJSWsGWGPywtYctAcVCeWL9BBoqdtTuJIcTYlGO45XMSI5FPdd46fPGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXOK/p8wWKg7LhjXVJnXbNzUdNpPMfQPSZ73PDSZ/ZPjec9NHndSc3H0kyRMYQCEoBWwrY8sxj4KW0hC1vG3NUWsJZu7MY4xTEcMfnLEbnPvV5d70v3jXVXTMm1qiKMTSxRlWMoYk1ynmN81qyY2hijXplXrOELRdOfz+pzUd+7ZoQQgghhBAXEaL11RafT6K6pid8PumoXXcME/vMvJk382beXvJ5JYaJfWbe7uYdaU8Gbj4SQgghhBDiIpF7CdoSDgsMLWhAOCwcteuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JwM1HQgghhBBCXEJAorQwhJKiECwhkeG3YQmJkUUhLJu9F6UO253EEEKmHMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXJe47zGeU2fb2RRKHpqtlP8XbSOIoQQQgghhCRg/pQqTJtYCwBYsmYQqmt6YmhBA+67/RCyMm1sWVrhuD1RjMWrGjF1QmVKMdz0JYrhxKcyb12+eNdUd82YWKMqxtDEGlUxhibWKOc1zmuc1/T5sjJtNNfHXNrEREh59g2X6U1dXR3y8vIQDAaRm5urzVtWVoby8nL66POkzw0nfWb73HDSR5/XnTp9bq1niDqiY7hxDXKze2lxls2Yg/KF87S46EsPJ31m+9xw0kef1530qaOu/hTyrr/d0XqUdz4SQgghhBDiEk+vHtzpnY+nGy3H7Yli7D6YjUUrLkophpu+RDGc+FTmrcsX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj5fVqYdc10Tl4TnYacZwWBQwuFR4CoZN24cffR51ueGkz6zfW446aPP606dPrfWM0QdkTEUqJWlhUFZWhSUlrBlhj8sLWHLQHFQnli/QQaKnbU7iSHE2JRjuOVzEiORT3XeOnzxrqnumjGxRlWMoYk1qmIMTaxRzmuc1ziv6fMFioOy4Y11MrhxjeP1KDcfNZHOfwDRZ77PDSd9ZvvccNJHn9ed3HwkyRAZQyAoBWwpYMszZ1BKaQlb3jbmqLSEs3ZnMcYpiOGOz1mMzn3q8+56X7xrqrtmTKxRFWNoYo2qGEMTa5TzGue1ZMfQxBr1yrxmCVsunP5+UpuPPO2aEEIIIYQQFxGi9dUWn0+iuqYnfD7pqF13DBP7zLyZN/Nm3l7yeSWGiX1m3u7mHWlPBm4+EkIIIYQQ4iKRewnaEg4LDC1oQDgsHLXrjmFin5k382bezNtLPq/EMLHPzNvdvCPtyeCZzcef/exnEEJg2rRpcd/T3NyMRx55BMOGDUNmZiZKS0uxdu1afZ0khBBCCCFpje41qYBEaWEIJUUhWEIiw2/DEhIji0JYNnsvSh22O4khhEw5hls+JzES+VTnrcMX75rqrhkTa1TFGJpYoyrG0MQa5bzGeY3zmj7fyKJQ9OAap3jitOutW7fiN7/5DUpKSjp938MPP4z/+I//wLPPPovhw4fjtddewze/+U289dZbCAQCmnpLCCGEEELSETfWpPOnVHV62vWWpRWO2xPFWLyqEVMnVKYUw01fohhOfCrz1uWLd01114yJNapiDE2sURVjaGKNcl7jvMZ5TZ8vK9NGc33MpU1MXL/zsb6+HnfddReeffZZ9OnTp9P3Ll++HD/96U9xyy23YOjQofjBD36AW265BY8//rim3hJCCCGEkHSEa1JCCCGEkC5Cw2F+nTJ58mQ5bdo0KaWUY8aMkffff3/c955//vly6dKl7druuusuOWTIkLifaWxslMFgMPr65JNPJByexqOSdD5xkz7zfW446TPb54aTPvq87uRp12bj1ppUoFaWFgZlaVFQWsKWGf6wtIQtA8VBeWL9BhkodtbuJIYQY1OO4ZbPSYxEPtV56/DFu6a6a8bEGlUxhibWqIoxNLFGOa9xXuO8ps8XKA7KhjfWJXXatZDy7EdN6mPlypWYP38+tm7diszMTFx33XUYOXIknnjiiZjvnzRpEnbu3ImXXnoJw4YNw4YNG3DbbbchHA6jqakp5mfmzp2LefPmdWi/+eabkZGRoTKdTqmoqMDo0aPpo8+TPjec9Jntc8NJH31ed+r0NTc3Y+3atQgGg8jNzdXiTGfcXJMCNwOIvSbt37cJR0/0cNyeOEYFgNEpxnDPlzhGYp/avPX44l3Tc4+RTD/c83mlZnT7vFIzun1eqRndPq/UjG6fV2pGt88rNaPCN2JoPQZfGMLat7c5W486+IfgLuHjjz+W/fr1kzt37oy2JfpX5mPHjsnbbrtNWpYlfT6fLCoqklOmTJGZmZlxP8M7H+mjz5tO+sz2ueGkjz6vO3nno5m4vSYFWu8msIQtz5xBKWWGPyyvvLROZvjDjtqdxRinIIY7PmcxOvepz7vrffGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXkh1DE2vUK/Nahj8s//lbHyV156Nrz3zcvn07jh07hq985Svw+/3w+/3YvHkzFi9eDL/fj3A43OEz+fn5eOmll3Dq1Cl89NFH+OCDD5CdnY2hQ4fG9fTo0QO5ubntXoQQQgghhADeWJNGlvNtCYcFhhY0IBwWjtp1xzCxz8ybeTNv5u0ln1dimNhn5u1u3pH2ZHBt8/GGG27A7t278d5770Vfo0aNwl133YX33nsPPp8v7mczMzNRUFCAlpYW/PGPf8Rtt92mseeEEEIIISRdcHtNKiBRWhhCSVEIlpDI8NuwhMTIohCWzd6LUoftTmIIIVOO4ZbPSYxEPtV56/DFu6a6a8bEGlUxhibWqIoxNLFGOa9xXuO8ps83sigUPTXbKf6kV0iKyMnJwRVXXNGurVevXujbt2+0ffLkySgoKMCCBQsAAO+++y5qamowcuRI1NTUYO7cubBtGw8++KD2/hNCCCGEEPNxe006f0oVpk2sBQAsWTMI1TU9MbSgAffdfghZmTa2LK1w3J4oxuJVjZg6oTKlGG76EsVw4lOZty5fvGuqu2ZMrFEVY2hijaoYQxNrlPMa5zXOa/p8WZk2mutjLm1i4uqBM2dz9sO9r7vuOlx88cV47rnnAACbN2/GD37wA1RXVyM7Oxu33HILfvazn2HgwIGOHXV1dcjLy9P+gPaysjKUl5fTR58nfW446TPb54aTPvq87tTpc2s9013QuibduAa52b26IIuOlM2Yg/KFsQ69oc8EnxtO+sz2ueGkjz6vO+lTR139KeRdf7uj9ahrdz7GYtOmTZ3+PGbMGOzbt09fhwghhBBCSLdD55r06dWDO73z8XSj5bg9UYzdB7OxaMVFKcVw05cohhOfyrx1+eJdU901Y2KNqhhDE2tUxRiaWKOc1zivcV7T58vKtGOua+KSxGGAaYFbp0Om84mb9Jnvc8NJn9k+N5z00ed1J0+7JskQGUOBWllaGJSlRa2nXmf4w9IStgwUB+WJ9RtkoNhZu5MYQoxNOYZbPicxEvlU563DF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+X6A4KBveWJfUadfcfNREOv8BRJ/5Pjec9Jntc8NJH31ed3LzkSRDZAyBoBSwpYAtz5xBKaUlbHnbmKPSEs7ancUYpyCGOz5nMTr3qc+7633xrqnumjGxRlWMoYk1qmIMTaxRzmuc15IdQxNr1CvzmiVsuXD6+0ltPrp22jUhhBBCCCEEEKL11RafT6K6pid8PumoXXcME/vMvJk382beXvJ5JYaJfWbe7uYdaU8Gbj4SQgghhBDiIpF7CdoSDgsMLWhAOCwcteuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JwM1HQgghhBBCXEJAorQwhJKiECwhkeG3YQmJkUUhLJu9F6UO253EEEKmHMMtn5MYiXyq89bhi3dNddeMiTWqYgxNrFEVY2hijXJe47zGeU2fb2RRKHpwjVM8ddo1IYQQQggh3Yn5U6o6Pe16y9IKx+2JYixe1YipEypTiuGmL1EMJz6VeevyxbumumvGxBpVMYYm1qiKMTSxRjmvcV7jvKbPl5Vpo7k+5tImJrzzkRBCCCGEEEIIIYQQ0jVoOMzPU/C0a/ro84aTPrN9bjjpo8/rTp52TZIhMoYCtbK0MChLi4LSErbM8IelJWwZKA7KE+s3yECxs3YnMYQYm3IMt3xOYiTyqc5bhy/eNdVdMybWqIoxNLFGVYyhiTXKeY3zGuc1fb5AcVA2vLEuqdOuufmoiXT+A4g+831uOOkz2+eGkz76vO7k5iNJhsgYAkEpYEsBW555DLyUlrDlbWOOSks4a3cWY5yCGO74nMXo3Kc+7673xbumumvGxBpVMYYm1qiKMTSxRjmvcV5LdgxNrFGvzGuWsOXC6e8ntfnIr10TQgghhBDiIkK0vtri80lU1/SEzycdteuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JwM1HQgghhBBCXCRyL0FbwmGBoQUNCIeFo3bdMUzsM/Nm3sybeXvJ55UYJvaZebubd6Q9Gbj5SAghhBBCiEsISJQWhlBSFIIlJDL8NiwhMbIohGWz96LUYbuTGELIlGO45XMSI5FPdd46fPGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXOK/p840sCkVPzXaKv4vWUYQQQgghhJAEzJ9ShWkTawEAS9YMQnVNTwwtaMB9tx9CVqaNLUsrHLcnirF4VSOmTqhMKYabvkQxnPhU5q3LF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+X1amjeb6mEubmAgpz77hMr2pq6tDXl4egsEgcnNztXnLyspQXl5OH32e9LnhpM9snxtO+ujzulOnz631DFFHdAw3rkFudi8tzrIZc1C+cJ4WF33p4aTPbJ8bTvro87qTPnXU1Z9C3vW3O1qP8s5HQgghhBBCXOLp1YM7vfPxdKPluD1RjN0Hs7FoxUUpxXDTlyiGE5/KvHX54l1T3TVjYo2qGEMTa1TFGJpYo5zXOK9xXtPny8q0Y65r4pLwPOw0IxgMSjg8Clwl48aNo48+z/rccNJnts8NJ330ed2p0+fWeoaoIzKGArWytDAoS4uC0hK2zPCHpSVsGSgOyhPrN8hAsbN2JzGEGJtyDLd8TmIk8qnOW4cv3jXVXTMm1qiKMTSxRlWMoYk1ynmN8xrnNX2+QHFQNryxTgY3rnG8HvXM5uOCBQskAHn//fd3+r5FixbJoqIimZmZKQcNGiSnTZsmT58+7djDzUf66POGkz6zfW446aPP605uPqYHutekQFAK2FLAlmfOoJTSEra8bcxRaQln7c5ijFMQwx2fsxid+9Tn3fW+eNdUd82YWKMqxtDEGlUxhibWKOc1zmvJjqGJNeqVec0Stlw4/f2kNh89cdr11q1b8Zvf/AYlJSWdvm/FihX4yU9+gjlz5uD999/Hb3/7W6xatQo//elPNfWUEEIIIYSkK26tSYVofbXF55OorukJn086atcdw8Q+M2/mzbyZt5d8XolhYp+Zt7t5R9qTwfXNx/r6etx111149tln0adPn07f+9Zbb+Gaa67BpEmTcPHFF+Pv//7vMXHiRFRUVGjqLSGEEEIISUfcXJNG7iVoSzgsMLSgAeGwcNSuO4aJfWbezJt5M28v+bwSw8Q+M2938460J4Prm48//OEPceutt+LGG29M+N6vf/3r2L59e3RhV11djVdeeQW33HJL3M80NTWhrq6u3YsQQgghhJC2uLUmFZAoLQyhpCgES0hk+G1YQmJkUQjLZu9FqcN2JzGEkCnHcMvnJEYin+q8dfjiXVPdNWNijaoYQxNrVMUYmlijnNc4r3Fe0+cbWRSKHlzjFCHl2Xue+li5ciXmz5+PrVu3IjMzE9dddx1GjhyJJ554Iu5nFi9ejJkzZ0JKiZaWFtx333349a9/Hff9c+fOxbx58zq033zzzcjIyFCRhiMqKiowevRo+ujzpM8NJ31m+9xw0kef1506fc3NzVi7di2CwSByc3O1ONMZN9ekwy/+BoYWNAMAPjqShVONPvTKDGPIgNPwWUDYdt6eKEZ1zW4MLbgypRhu+hLFcOJTmbcuX7xrqrtmTKxRFWNoYo2qGEMTa5TzGuc1zmv6fD4LaG5pwdq3tzlaj7q2+fjJJ59g1KhRWLduXfS5OokWeps2bcKdd96Jf/3Xf8XXvvY1HDhwAPfffz++973vYfbs2TE/09TUhKampujPdXV1GDx4sPbFellZGcrLy+mjz5M+N5z0me1zw0kffV536vTV1dUhLy+Pm48KcHtN+tiUrZg2sRYAsGTNIFTX9MTQggbcd/shZGXaON1oOW5PFGPxqh9h6oR/TymGm75EMZz4VOatyxfvmuquGRNrVMUYmlijKsbQxBrlvMZ5jfOaPl9Wpo26+lPIu/52Z+tRx0fyKeZPf/qTBCB9Pl/0BUAKIaTP55MtLS0dPnPttdfKmTNntmtbvny5zMrKkuFw2JGXp13TR583nPSZ7XPDSR99XnfytGszcXtNKlArSwuDsrQoKC1hywx/WFrCloHioDyxfoMMFDtrdxJDiLEpx3DL5yRGIp/qvHX44l1T3TVjYo2qGEMTa1TFGJpYo5zXOK9xXtPnCxQHZcMb65I67dq1zce6ujq5e/fudq9Ro0bJb3/723L37t0xP/OVr3xFPvjgg+3aVqxYIbOysmIuDGPBzUf66POGkz6zfW446aPP605uPpqJ22tSICgFbClgyzOPgZfSEra8bcxRaQln7c5ijFMQwx2fsxid+9Tn3fW+eNdUd82YWKMqxtDEGlUxhibWKOc1zmvJjqGJNeqVec0Stlw4/f2kNh/9nd8X2XXk5OTgiiuuaNfWq1cv9O3bN9o+efJkFBQUYMGCBQCAcePGYeHChQgEAtGvuMyePRvjxo2Dz+fTngMhhBBCCDEbL6xJxZeHSEp5ps3nk6iu6QmfT8JuEQnbdccwsc/Mm3kzb+btJZ9XYpjYZ+btbt6R9mRw/bTrzvj4449x5MiR6M8PP/wwHnjgATz88MO4/PLL8d3vfhc33XQTfvOb37jYS0IIIYQQks509Zo0ci9BW8JhgaEFDQiHhaN23TFM7DPzZt7Mm3l7yeeVGCb2mXm7m3ekPSkcfS8kjeDXrumjzxtO+sz2ueGkjz6vO/m1a5IMbZ/5ODLG85e+Euc5S/HancSIPAcqlRhu+ZzESORTnbcOX7xrqrtmTKxRFWNoYo2qGEMTa5TzGuc1zmv6fF85h2c+uva1a0IIIYQQQro786dUdXra9ZalFY7bE8VYvKoRUydUphTDTV+iGE58KvPW5Yt3TXXXjIk1qmIMTaxRFWNoYo1yXuO8xnlNny8r00ZzfcylTUyElGffcJne1NXVIS8vz9lR4AopKytDeXk5ffR50ueGkz6zfW446aPP606dPrfWM0Qd0THcuAa52b20OMtmzEH5wnlaXPSlh5M+s31uOOmjz+tO+tRRV38Kedff7mg9yjsfCSGEEEIIcYmnVw/u9M7H042W4/ZEMXYfzMaiFRelFMNNX6IYTnwq89bli3dNddeMiTWqYgxNrFEVY2hijXJe47zGeU2fLyvTjrmuiUuXP9DGY/CZj/TR5w0nfWb73HDSR5/XnXzmI0mGts98LI3x/KVAnOcsxWt3EiPyHKhUYrjlcxIjkU913jp88a6p7poxsUZVjKGJNapiDE2sUc5rnNc4r+nzBc7hmY/cfNREOv8BRJ/5Pjec9Jntc8NJH31ed3LzkSRDZAyBoBSwpYAtz5xBKaUlbHnbmKPSEs7ancUYpyCGOz5nMTr3qc+7633xrqnumjGxRlWMoYk1qmIMTaxRzmuc15IdQxNr1CvzmiVsuXD6+0ltPlrJ3SdJCCGEEEIIUYkQra+2+HwS1TU94fNJR+26Y5jYZ+bNvJk38/aSzysxTOwz83Y370h7MnDzkRBCCCGEEBeJ3EvQlnBYYGhBA8Jh4ahddwwT+8y8mTfzZt5e8nklhol9Zt7u5h1pTwZuPhJCCCGEEOISAhKlhSGUFIVgCYkMvw1LSIwsCmHZ7L0oddjuJIYQMuUYbvmcxEjkU523Dl+8a6q7ZkysURVjaGKNqhhDE2uU8xrnNc5r+nwji0LRg2ucwtOuCSGEEEIIcYn5U6o6Pe16y9IKx+2JYixe1YipEypTiuGmL1EMJz6VeevyxbumumvGxBpVMYYm1qiKMTSxRjmvcV7jvKbPl5Vpo7k+5tImJrzzkRBCCCGEEEIIIYQQ0jVoOMzPU/C0a/ro84aTPrN9bjjpo8/rTp52TZIhMoYCtbK0MChLi4LSErbM8IelJWwZKA7KE+s3yECxs3YnMYQYm3IMt3xOYiTyqc5bhy/eNdVdMybWqIoxNLFGVYyhiTXKeY3zGuc1fb5AcVA2vLEuqdOuufmoiXT+A4g+831uOOkz2+eGkz76vO7k5iNJhsgYAkEpYEsBW555DLyUlrDlbWOOSks4a3cWY5yCGO74nMXo3Kc+7673xbumumvGxBpVMYYm1qiKMTSxRjmvcV5LdgxNrFGvzGuWsOXC6e8ntfnIr10TQgghhBDiIkK0vtri80lU1/SEzycdteuOYWKfmTfzZt7M20s+r8Qwsc/M2928I+3JwM1HQgghhBBCXCRyL0FbwmGBoQUNCIeFo3bdMUzsM/Nm3sybeXvJ55UYJvaZebubd6Q9Gbj5SAghhBBCiEsISJQWhlBSFIIlJDL8NiwhMbIohGWz96LUYbuTGELIlGO45XMSI5FPdd46fPGuqe6aMbFGVYyhiTWqYgxNrFHOa5zXOK/p840sCkVPzXaKv4vWUYQQQgghhJAEzJ9ShWkTawEAS9YMQnVNTwwtaMB9tx9CVqaNLUsrHLcnirF4VSOmTqhMKYabvkQxnPhU5q3LF++a6q4ZE2tUxRiaWKMqxtDEGuW8xnmN85o+X1amjeb6mEubmAgpz77h0h1+9rOfYdasWbj//vvxxBNPxHzPddddh82bN3dov+WWW/CXv/zFkaeurg55eXkIBoPIzc1NpctJUVZWhvLycvro86TPDSd9ZvvccNJHn9edOn1urWe6A9rXpBvXIDe7VypddkzZjDkoXzhPi4u+9HDSZ7bPDSd99HndSZ866upPIe/62x2tRz1x5+PWrVvxm9/8BiUlJZ2+b82aNfjiiy+iP584cQKlpaUYP358V3eREEIIIYSkOW6sSZ9ePbjTOx9PN1qO2xPF2H0wG4tWXJRSDDd9iWI48anMW5cv3jXVXTMm1qiKMTSxRlWMoYk1ynmN8xrnNX2+rEw75romLgnPw+5iQqGQLCwslOvWrZNjxoyR999/v+PPLlq0SObk5Mj6+nrHnwkGgxIOjwJXybhx4/7/9u4+KIr7/gP45+C8O6SAaDx74nkWAhIF0ZapBU2MAjojWmzqY1BUbBMTmjFJmUpHphhr1BhbrZPEWoLEiQr1gXZSgwo64hMWUQEpSYCgKWgc7DiiEOwh8Pn94Q/K8bi7t3tPvF8zOxOW3XvvwvL1ne/d3iEPeQ6bZ49M5Dl3nj0ykYc8R8+0ZZ69+owrs1cnVVEDhwU+5LCgh+ymauch6jZ2U7XzlPEP+f7pMzxlvLD1Qh5DpZpn9WPYK0/IYwyUJ/d52yKvr5+pra8ZZ7xG5fgdOuM1Ksfv0BmvUYxrGNcwrtkub8r4h9x8IZ8fns0R3Eft/srHpKQkio2NpejoaNq8ebOofTMyMmjp0qXk6dn3rSpms5nMZnPn1w8fPiSip7e62NKTJ09smok85Dl6JvKcO88emchDnqNn2jKvI4cd491zXIK9OilTI5VVe/3/2kZqb336X6WVTCvSxlJpJRMLWF9WzQM+BlErMTVa9Rj2yhPyGAPlyX3etsjr62cq98/O0fIc5ZpxxmtUjt+hM16jGNcwron9HTrjNeoo41ppJdOurGG0Ym49EQnso4KfnlVAVlYWh4SE8OPHj5mZRT3LXFRUxETERUVF/W6XlpbGRIQFCxYsWLBgweJyS11dnbV1DBidFAsWLFiwYMGCReoipI/a7QNn6urqKDw8nPLz8zvfV+fFF1+kyZMn9/nm3l29+uqrdPnyZbpx40a/23V/lrmhoYFMJhPV1taSj4+PVecg1KNHj8hoNFJdXZ1N3hQeechz9EzkOXeePTKRhzxHz7R1HjNTY2MjjR49mtzc3BTPc2WDpZO6+t+Eq+fZIxN5zp1nj0zkIc/RM5EnLzF91G63XV+7do3u3btHP/zhDzvXtbW10fnz5+mDDz4gs9lM7u7uve773XffUXZ2Nm3atGnAHK1WS1qttsd6Hx8fm386pLe3t00zkYc8R89EnnPn2SMTechz9Exb5tnqSVRXN9g6qSv/TQyGPHtkIs+58+yRiTzkOXom8uQjtI/abfIxKiqKysvLLdatXr2agoODaf369X2WPCKiI0eOkNlspuXLlyt9mAAAAADgwtBJAQAAAJRlt8lHLy8vCgkJsVjn6elJI0aM6FyfkJBAfn5+tHXrVovtMjIyaMGCBTRixAibHS8AAAAAuB50UgAAAABl2f3TrvtTW1vb477xyspKunjxIuXl5Ul6TK1WS2lpab3e9qIUW2ciD3mOnok8586zRybykOfomfY4R7AdV+ikyHPuPHtkIs+58+yRiTzkOXom8uzHbh84AwAAAAAAAAAAAK4NH48IAAAAAAAAAAAAisDkIwAAAAAAAAAAACgCk48AAAAAAAAAAACgCEw+AgAAAAAAAAAAgCJcbvJxz549NGnSJPL29iZvb2+KiIigEydO9Ln9iy++SCqVqscSGxurSN6TJ09o06ZNFBAQQDqdjsLCwujkyZOiz5OIaNu2baRSqejNN9/sc5uKigr6+c9/TuPGjSOVSkW7du2SlCUmMycnh8LDw2nYsGHk6elJkydPpk8//VSxvK6ys7NJpVLRggULFM1raGigpKQkMhgMpNVqKSgoiHJzcxXL27VrF40fP548PDzIaDTSW2+9Rf/9738FZWzcuLHH9R0cHNzvPkeOHKHg4GDS6XQUGhoq6tzE5qWnp9Pzzz9Pvr6+5OvrS9HR0XTlyhXF8qy9PsXmffLJJz221+l0gvOkZFo7ronNk2Ncu3PnDi1fvpxGjBhBHh4eFBoaSlevXu1z+7t379LLL79MQUFB5ObmJniMkJqXk5NDMTExNHLkyM6x/tSpU4rldXXp0iVSq9U0efJkRfPMZjNt2LCBTCYTabVaGjduHO3bt0+xvIMHD1JYWBgNHTqUDAYDJSYm0v379wXldfyb1n1JSkrqcx9rxjWxedaOa+D8BlMfJbJ9J0UffUquPiomU2ondfU+KiXT2Top+mhP6KPKZDpLJ0UfFUdtt2SFjBkzhrZt20aBgYHEzLR//36Ki4ujkpISmjhxYo/tc3JyqKWlpfPr+/fvU1hYGC1atEiRvNTUVDpw4AClp6dTcHAwnTp1in72s59RYWEhTZkyRfB5FhcX0969e2nSpEn9btfc3Ez+/v60aNEieuuttwQ/vjWZw4cPpw0bNlBwcDBpNBo6fvw4rV69mvR6Pc2ZM0f2vA7ffPMNJScn0/PPPy84Q0peS0sLxcTEkF6vp6NHj5Kfnx/9+9//pmHDhimSd+jQIUpJSaF9+/ZRZGQkVVVV0apVq0ilUtEf//hHQVkTJ06k06dPd36tVvf9p19YWEjLli2jrVu30rx58+jQoUO0YMECun79OoWEhMieV1BQQMuWLaPIyEjS6XT03nvv0ezZs6miooL8/Pxkz5Pj+hSTR0Tk7e1NlZWVnV+rVCpBOVIzrR3XxOZZO649ePCApk2bRjNnzqQTJ07QyJEjqbq6mnx9ffvcx2w208iRIyk1NZV27twp+Lyk5p0/f55iYmJoy5YtNGzYMMrMzKT58+dTUVHRgOcoJa9DQ0MDJSQkUFRUFNXX1yt2fkREixcvpvr6esrIyKBnn32W7t69S+3t7YrkXbp0iRISEmjnzp00f/58unPnDq1du5Z++ctfUk5OzoCZxcXF1NbW1vn1v/71L4qJienzGrd2XBObJ8e4Bs5tsPRRItt3UvTRp+Tqo2Iyre2krt5HxWY6YydFH7WEPir/ORI5TydFHxWJBwFfX1/++OOPBW27c+dO9vLy4qamJkXyDAYDf/DBBxbrXnrpJY6Pjxf8+I2NjRwYGMj5+fk8Y8YMXrdunaD9TCYT79y5U3COHJkdpkyZwqmpqYrltba2cmRkJH/88ce8cuVKjouLE3V8YvL27NnD/v7+3NLSIipDal5SUhLPmjXLYt3bb7/N06ZNE5SVlpbGYWFhgo9t8eLFHBsba7Fu6tSp/OqrryqS111rayt7eXnx/v37bZLHLO76FJuXmZnJPj4+0g5MYmZ3Ysc1sXnWjmvr16/n6dOnC87rTuyYZG1ehwkTJvA777yjaN6SJUs4NTVV1O9ESt6JEyfYx8eH79+/L/oYpeS9//777O/vb7Fu9+7d7OfnJzqfmXndunUcEBDA7e3tvX7f2nFNbF53Ysc1cE2u1keZbd9J0Uf/R44+KjbTmk7q6n1Ujkxmx+6k6KP9Qx+VJ9OZOyn6aP9c7rbrrtra2ig7O5u+++47ioiIELRPRkYGLV26lDw9PRXJM5vNPV7e7uHhQRcvXhSck5SURLGxsRQdHS36GKWSmsnMdObMGaqsrKQXXnhBsbxNmzaRXq+nNWvWiDo+KXmfffYZRUREUFJSEo0aNYpCQkJoy5YtFs9CyJkXGRlJ165d63yJ9M2bNyk3N5fmzp0rOK+6uppGjx5N/v7+FB8fT7W1tX1ue/ny5R7HNWfOHLp8+bIied01NzfTkydPaPjw4YrnSb0+xeY1NTWRyWQio9FIcXFxVFFRIThLamZXUsY1MXnWjmufffYZhYeH06JFi0iv19OUKVMoPT1d8LGKJUdee3s7NTY2CrpOpeZlZmbSzZs3KS0tTdSxScnr2Gf79u3k5+dHQUFBlJycTI8fP1YkLyIigurq6ig3N5eYmerr6+no0aOixrUOLS0tdODAAUpMTOzzFRxyjGti8rqTMq6B63DVPkpk+06KPvo/cvRRsZnWdlJX76PWZDpLJ0UflY+r91Gpmc7aSdFHBbDLlKfCbty4wZ6enuzu7s4+Pj78+eefC9qvqKiIiYiLiooUy1u2bBlPmDCBq6qquK2tjfPy8tjDw4M1Go2grKysLA4JCeHHjx8zs7hnWKQ+yywls6GhgT09PVmtVrNWq+WMjAzF8i5cuMB+fn78n//8h5lZ9DPNYvPGjx/PWq2WExMT+erVq5ydnc3Dhw/njRs3KpLHzPynP/2JhwwZwmq1momI165dKyiLmTk3N5cPHz7MZWVlfPLkSY6IiOCxY8fyo0ePet1+yJAhfOjQIYt1H374Iev1ekXyunvttdfY39+/8+ejRJ4116fYvMLCQt6/fz+XlJRwQUEBz5s3j729vbmurk6xzK6kjGti86wd17RaLWu1Wv7tb3/L169f571797JOp+NPPvlE0P5in2m2No+Z+b333mNfX1+ur69XJK+qqor1ej1XVlYys7hn/6XkzZkzh7VaLcfGxnJRURF//vnnbDKZeNWqVYrkMTMfPnyYv/e973WOa/Pnz5f0Cp6//vWv7O7uznfu3OlzG2vHNbF53Ykd18A1uHIfZbZ9J0UftWRtH5WSySy9k7p6H5Wa6UydFH20f+ij8mQ6aydFHx2YS04+ms1mrq6u5qtXr3JKSgo/88wzXFFRMeB+r7zyCoeGhiqad+/ePY6Li2M3Nzd2d3fnoKAgfv3111mn0w2YU1tby3q9nsvKyjrXKV30pGa2tbVxdXU1l5SU8I4dO9jHx4fPnj0re96jR4943LhxnJub27lOTNmTcn6BgYFsNBq5tbW1c90f/vAH/v73v69I3tmzZ3nUqFGcnp7ON27c4JycHDYajbxp06YB83rz4MED9vb27vNWLDkHRSF5XW3dupV9fX0tfj5K5Em9PqXmddXS0sIBAQGibvuyJlPquCYmz5pxjfnpNRcREWGx7o033uCf/OQngvYXW/aszTt48CAPHTqU8/PzFclrbW3l8PBw3rNnT+c6MWVPyvnFxMSwTqfjhoaGznXHjh1jlUrFzc3NsudVVFSwwWDg7du3d/5PRWhoKCcmJvab1ZvZs2fzvHnzBjxGucY1IXldyTGugXNy1T7KbPtOij7akzV9VGqmnJ3U1fuo0Exn7qToo5bQR63PZHbeToo+OjCXnHzsLioqil955ZV+t2lqamJvb2/etWuXTfIeP37Mt2/f5vb2dv7Nb37DEyZMGPBx//a3vzERsbu7e+dCRKxSqdjd3d2ifPRGyuSjtZkd1qxZw7Nnz5Y9r6SkpMf2KpWqc/uvv/5a9vN74YUXOCoqymJdbm4uExGbzWbZ86ZPn87JyckW6z799FP28PDgtra2fvP6Eh4ezikpKb1+z2g09rhOfve73/GkSZMkZQ2U1+H9999nHx8fLi4ulpwjJq8rodenXHkLFy7kpUuXSs4TminnuCYkT8q4xsw8duxYXrNmjcW6jz76iEePHi1of7Flz5q8rKws9vDw4OPHjyuW9+DBg17HtY51Z86ckTWPmTkhIYEDAgIs1n3xxRdMRFxVVSV73vLly3nhwoUW6y5cuMBExN9++22/eV1988037Obmxn//+9/73U6ucU1oXgc5xzVwfq7SR5lt30nRR+Xto1Iz5e6krt5HhWZ25WydFH30f9BHrc9kds5Oij4qjEu/52OH9vZ2MpvN/W5z5MgRMpvNtHz5cpvk6XQ68vPzo9bWVjp27BjFxcUN+LhRUVFUXl5OpaWlnUt4eDjFx8dTaWkpubu7W33sSmUK+ZlIyQsODu6x/U9/+lOaOXMmlZaWktFolP38pk2bRl9//bXFJ25VVVWRwWAgjUYje15zczO5uVn+qXZsx8z95vWmqamJampqyGAw9Pr9iIgIOnPmjMW6/Px8we9TJTaPiGj79u30+9//nk6ePEnh4eGScsTkdSf0+pQjr62tjcrLy0Udn9RMucY1oXlSxjWip39TXT95kejp35TJZJJ8zErkZWVl0erVqykrK4tiY2MVy/P29u4xTqxdu5bGjx9PpaWlNHXqVFnzOvb59ttvqampyWIfNzc3GjNmjOx5co1rmZmZpNfrB/x9yDWuCc0jkndcA9fgKn2UyPadFH1U3j4qNVPOTurqfVRoZnfO1EnRR63j6n1USmbHPs7WSdFHBbLr1KcCUlJS+Ny5c3zr1i2+ceMGp6SksEql4ry8PGZmXrFiRa/PlkyfPp2XLFmieN4///lPPnbsGNfU1PD58+d51qxZ/IMf/IAfPHgg6Xy7P8PSPc9sNnNJSQmXlJSwwWDg5ORkLikp4erqakl5QjK3bNnCeXl5XFNTw1988QXv2LGD1Wo1p6enK5LXnZRPFxSTV1tby15eXvyrX/2KKysr+fjx46zX63nz5s2K5KWlpbGXlxdnZWXxzZs3OS8vjwMCAnjx4sWCHv/Xv/41FxQU8K1bt/jSpUscHR3NzzzzDN+7d6/XvEuXLrFareYdO3bwl19+yWlpaTxkyBAuLy9XJG/btm2s0Wj46NGjfPfu3c6lsbFRkTxrr0+xee+88w6fOnWKa2pq+Nq1a7x06VLW6XSCbr2TmtlB6rgmNs/ace3KlSusVqv53Xff5erq6s7bSA4cONC5TUpKCq9YscJiv46x7Uc/+hG//PLLXFJSIujnKiXv4MGDrFar+cMPP7S4TrveEiL3+XUl5jYXKXmNjY08ZswYXrhwIVdUVPC5c+c4MDCQf/GLXyiSl5mZyWq1mj/66COuqanhixcvcnh4OP/4xz8WdI7MT29VGzt2LK9fv77H9+Qe18TmWTuugfMbbH2U2fadFH1U3j4qJNOaTurqfVRKprN1UvRR9FGxt10Phk6KPiqcy00+JiYmsslkYo1GwyNHjuSoqKjO4sX89B/VlStXWuzz1VdfMRFZbKdUXkFBAT/33HOs1Wp5xIgRvGLFClFvEtpd95LQPe/WrVtMRD2WGTNmKJa5YcMGfvbZZ1mn07Gvry9HRERwdna2YnndyV32essrLCzkqVOnslarZX9/f3733XcF3/IjNu/Jkye8ceNGDggIYJ1Ox0ajkV9//XXB/5AuWbKEDQYDazQa9vPz4yVLlljc/tPb+R0+fJiDgoJYo9HwxIkTBb9JvpQ8k8nU6zWalpamSJ6116fYvDfffJPHjh3LGo2GR40axXPnzuXr168LzpOSyWzduCY2T45x7R//+AeHhISwVqvl4OBg/stf/mLx/ZUrV/YYt3q7bkwmkyJ5M2bM6DWvv7HI2vPrSmzZk5L35ZdfcnR0NHt4ePCYMWP47bffHvC9dazJ2717N0+YMIE9PDzYYDBwfHw83759W/A5njp1iomo803Qu5J7XBObZ+24Bs5vsPXRjgxbdlL0UXn7qJBMazqpq/dRKZnO1knRR9FHxfZRqZnO1EnRR4VTMUu4bxMAAAAAAAAAAABgAIPiPR8BAAAAAAAAAADA9jD5CAAAAAAAAAAAAIrA5CMAAAAAAAAAAAAoApOPAAAAAAAAAAAAoAhMPgIAAAAAAAAAAIAiMPkIAAAAAAAAAAAAisDkIwAAAAAAAAAAACgCk48AAAAAAAAAAACgCEw+AgDIoK2tjSIjI+mll16yWP/w4UMyGo20YcMGOx0ZAAAAAAwG6KMA4KhUzMz2PggAAFdQVVVFkydPpvT0dIqPjyciooSEBCorK6Pi4mLSaDR2PkIAAAAAcGXoowDgiDD5CAAgo927d9PGjRupoqKCrly5QosWLaLi4mIKCwuz96EBAAAAwCCAPgoAjgaTjwAAMmJmmjVrFrm7u1N5eTm98cYblJqaau/DAgAAAIBBAn0UABwNJh8BAGT21Vdf0XPPPUehoaF0/fp1UqvV9j4kAAAAABhE0EcBwJHgA2cAAGS2b98+Gjp0KN26dYtu375t78MBAAAAgEEGfRQAHAle+QgAIKPCwkKaMWMG5eXl0ebNm4mI6PTp06RSqex8ZAAAAAAwGKCPAoCjwSsfAQBk0tzcTKtWraLXXnuNZs6cSRkZGXTlyhX685//bO9DAwAAAIBBAH0UABwRXvkIACCTdevWUW5uLpWVldHQoUOJiGjv3r2UnJxM5eXlNG7cOPseIAAAAAC4NPRRAHBEmHwEAJDBuXPnKCoqigoKCmj69OkW35szZw61trbidhcAAAAAUAz6KAA4Kkw+AgAAAAAAAAAAgCLwno8AAAAAAAAAAACgCEw+AgAAAAAAAAAAgCIw+QgAAAAAAAAAAACKwOQjAAAAAAAAAAAAKAKTjwAAAAAAAAAAAKAITD4CAAAAAAAAAACAIjD5CAAAAAAAAAAAAIrA5CMAAAAAAAAAAAAoApOPAAAAAAAAAAAAoAhMPgIAAAAAAAAAAIAiMPkIAAAAAAAAAAAAisDkIwAAAAAAAAAAACji/wCpdcsjvc9dzwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU1cDBvA37CFLUBRUwLqoo1qsdYt7V62jVq2IpVq1zlq3H9o66qh7L3BV6951IVhxiws3dSsqe8ge+f6I9zYhCSRAWL6/5+FRcsc5SS65b8659xyJVCqVgoiIiIiIiIiIiIiIiIiKHb3CrgARERERERERERERERER5Q47+4iIiIiIiIiIiIiIiIiKKXb2ERERERERERERERERERVT7OwjIiIiIiIiIiIiIiIiKqbY2UdERERERERERERERERUTLGzj4iIiIiIiIiIiIiIiKiYYmcfERERERERERERERERUTHFzj4iIiIiIiIiIiIiIiKiYoqdfURERERERERERERERETFFDv7iIiIiIiIiqCMjAwsXboUDRo0gKWlJSQSCSQSCbp37w4ACAgIEB8LCAjI17J1uW8iIiKi4ow5iYiKInb2ERVR8sFB058xY8YUdrUpBy1bthTfr3bt2mm8nbu7u9bHQ0xMjNJ+YmJicOrUKcyePRvdunWDg4ODuL67u3v+PVEiIqJiQF3eMjAwQOnSpeHi4oLmzZtj7Nix2Lt3L1JTUwu0ft9++y3GjBmDq1evIj4+vkDLLi6YrYiIiApfamoqduzYgYEDB6JGjRqwtbWFoaEh7Ozs4ObmhmHDhuH06dPIzMws7KpSPtq8ebOYe/T19fHq1SuNtvP19dU6hy1ZskRpP+np6bhx4wbWrl0LLy8v1KlTBwYGBuI2z549y98nTFTEGRR2BYiIPhbPnz/H2bNnxd/9/PwQGhoKBweHAqtDvXr1GHaIiIhykJGRgejoaERHR+PZs2c4d+4clixZgjJlymDUqFGYNGkSDAx0+1XqwoUL2L17NwCgc+fOGDNmDOzt7SGRSGBpaanTsjUxY8YMzJw5EwAglUoLpQ7MVkRERIVv3759+Pnnn1WeDyMjIxEZGYnr169jzZo1qFatGhYtWoTOnTsXfEVz8OzZM7i4uAAAfHx8MGjQoMKtUDGwefNm8f+ZmZnYtm0bJk2aVGDlz549GzNmzCiw8oiKOnb2ERUDw4YNw/Dhw3Ncz87OrgBqQ7m1detWSKVSGBsbIyMjA+np6di2bRsmTJig1X6Cg4M1Wk9VQ6B8Y5y9vT2++OILHDlyRKvyiYiISqKseev9+/eIjo7G7du34efnh9OnTyM8PBzTp0/H4cOHceTIEZQpU0Zn9Tl9+jQAQF9fH3/++afK87q7u7vOOtp0ue/8wmxFRERUuH777Tf873//E39v27YtvvrqK3z66aewtrZGVFQUHj58iMOHD+PUqVN49OgRpk6dWiQ7+7RRHHKSrr18+VIcwrRUqVJ4//49tm7dqnVn36xZs9CtW7cc1ytfvrzSY/LvgYmJCerWrYvw8HA8fvxYqzoQlRTs7CMqBsqWLYtatWoVdjUoj7Zu3QoA6NKlC5KSknDs2DFs3bpV6wapvBwLP/30E1xcXNCgQQNUrFgRACCRSHK9PyIiopJCXd7q2LEjJk6ciHv37mHAgAG4ceMGrly5gh49euDMmTMwMjLSSX1ev34NQNaBVBTu5CuKmK2IiIgKj4+Pj9jRV7ZsWezatQstWrRQWq9NmzYYMWIE7ty5g7FjxyI8PLygq0o6IFx0ZWhoiIULF+LHH3/EvXv3cO3aNdSvX1/j/Tg6OuY6izVq1Ahr1qxBgwYNULt2bRgYGGDQoEHs7KOPFjv7iIgKwKVLl/Do0SMAQP/+/ZGcnIxjx47hzp07uH79Oj7//PMCqcf48eMLpBwiIqKS5tNPP8X58+fRpEkT3LhxA+fPn8fKlSsxduxYnZSXkpICADA0NNTJ/os7ZisiIqLC8/r1a/z0008AAHNzc5w9exY1atTIdptatWrhxIkT+PPPPwuiiqRjwkVXHTt2hIeHByZOnIjY2Fhs2bJFq86+vGjfvn2BlENUXOgVdgWISDekUinat28PiUQCAwMDXLx4Ue26y5YtEyev9fb2VrlOfHw8/vjjD7Rq1QrlypWDkZERLC0tUa9ePYwcORLnz59Xu/+MjAxs3rwZXbp0gYODA4yNjWFra4umTZti0aJFSEpKyva5BAUF4fvvv0e1atVgbm4OExMTVKxYEW5ubhgxYgQOHTqkcviE5ORkLFu2DO7u7ihTpgwMDQ1RunRpVK9eHR07dsSiRYsKbI6VLVu2AABsbGzQuXNndO/eHRYWFgrLiIiIqGgzNTXF1q1bxTu3Fi5ciLS0NLXrv337FlOnTkX9+vVRunRpGBsbo2LFiujTp484TGdWQiYT5kB5/vy5+JjwIwgICBAfE4ZRUufYsWMYMGAAKleuLOYpFxcX9OzZE76+vkhMTFRYX92+fX19IZFIxPn65Oss/6PrjMVsRUREVHgWL14sZodff/01x44+gZ6eHgYMGKB2eWBgIL777js4OzvDxMQE1tbWqFevHqZNm5bjHYFv3rzBqlWr0KtXL1StWhXm5uYwNjaGo6MjunXrhr/++guZmZkqt5VIJOJ8fQDg6emplG3k54bLKYMNGjQIEokEzs7OAICYmBj873//Q82aNWFubg5ra2s0b94c27dvz/Y5CQ4fPowOHTqgTJkyMDMzQ7Vq1fDLL7/g7du3AABnZ2dIJJICm2fwypUrePDgAQBgwIABMDExQa9evQAAO3fuzDYfE5EOSYmoSPL395cCkAKQent752ofoaGhUltbWykAaeXKlaVxcXFK69y5c0dqYmIiBSD98ssvpWlpaUrrnDp1SmpnZyfWR92PKs+fP5d+9tln2W5XpUoV6cOHD1Vuv2jRIqmenl6OZcfHxys9908//TTH7X7++edcvLLaSUlJkZYuXVoKQDpkyBDxcQ8PDykAadmyZVW+7vJatGiR7eucF8J+W7Roke/7JiIiKspym7fatWsnbnf+/HmV62zbtk1qbm6ebQ75/vvvlTJATtlFPgvI19/f319lPSIiIqStW7fOcZ8+Pj5qXxv5ffv4+GhUx6dPn2r8emqL2YqIiKjwZGZmim1E5ubmKtuatJWRkSEdMWJEttnCyspKevLkSZXbp6ena9R21LZtW6X2I6lUs/wlnxVzymBCJnFycpI+ePBA6uzsrHa/I0aMyPa1GT58uNpty5UrJ71+/brUyclJCkDq4eGhzcuea8J7ZWVlJU1KSpJKpYqvycGDB7PdXj5PZs2geSW89rrOo0RFEe/sIyrBypcvjw0bNgAAnjx5glGjRiksT0lJQb9+/ZCcnAxzc3Ns27YNBgaKo/v6+/ujY8eOiIiIgL6+PgYNGoT9+/cjKCgI58+fx/r16/H111+rHGIqMjISTZs2xa1bt2BsbIyffvoJu3fvxtWrV+Hv74/JkyfDzMwM//77Lzp27IjY2FiF7W/fvo3x48cjMzMTLi4u+OOPP+Dn54cbN27gn3/+wfr169GvXz+Ym5srlT1y5Ejcu3cPgOwqo3379uHSpUu4evUqDh06hP/973/47LPP8vT6aurIkSOIiooS6yIQ/h8WFobjx48XSF2IiIgo79q0aSP+/9y5c0rLd+3ahe+++w4JCQmoXLkyFi1ahOPHjyMoKAh79+5Fp06dAAAbN25Uml8uODgYwcHB6NatGwDAwcFBfEz40VRiYiJatmwJPz8/AICbmxvWrl2L8+fP49q1a9i/fz/Gjh0LBwcHjffZvXt3BAcHY9iwYUp1lv9xdHTUeJ/aYrYiIiIqPHfv3kVERAQAoFmzZuKd9XkxadIkrFy5EgDg4uKCNWvW4MqVK/D398fYsWNhaGiI2NhYdOnSBbdu3VLaXvphtKdWrVphwYIFYu4KCAjApk2b0KhRIwDAqVOnMGLECKXtg4ODceLECfH3WbNmKWWb4cOHa/28EhMT0bVrV0RGRmLatGkICAjAtWvXsH79elSoUAEAsHLlSoWy5c2fPx+rVq0CAFSsWBErV67E5cuX8c8//2Dq1KmIjY1Fr169lEZo0KW0tDTs3LkTANCzZ0+YmJgAAFq0aCHOX8xRFogKB+fsIyoGwsLCcOfOnRzXq169ulKnW/fu3eHl5YUNGzbA19cXnTt3Fm+tnzJlCm7fvg0AWLJkCapUqaKwbXJyMgYMGID09HSYmZnh6NGjcHd3V1incePG8PLywsuXL5XqM2rUKLx8+RJOTk7w9/dXGBIBANzd3dG7d280a9YMT548wfz58zF79mxx+Z49e5CZmQlzc3NcvHgR9vb2Cts3a9YMXl5eiI2NhZmZmUK9Dx06BAD4+eefsXDhQqW6de3aFTNnzhQbinRJCDnOzs5o2rSp+HirVq3g4OCA0NBQbNmyBV26dNFof5ocCzY2NjptZCMiIvqYyc8HJ8wbJ4iIiMCQIUMglUoxePBgrF27VuFiqs8//xxff/01pk6dijlz5mDp0qUYOnQoqlevDkA2nw0AWFtbA5DN2Sc8pq1p06aJnYMjRozA8uXLFYYBdXNzQ/fu3fH7778jOjpao31aW1vD2toaZcuWFR/Lbf1yi9mKiIio8Mh3trm5ueV5f8HBwfjjjz8AyDLFuXPnxBwEyNqO2rVrh86dOyM1NRVDhgzB5cuXFfahr6+Phw8fKrVrAbJOKE9PT3h7e+PXX3/F1q1bMW3aNFStWlVcp1atWihVqpT4u6OjY77km/DwcKSmpuLixYuoWbOm+Libmxvc3d1Ru3ZtJCcnY9WqVUrzz719+1acaqdKlSq4ePEi7OzsxOXNmjVDp06d0LJlS6Smpua5rpo6evQoIiMjAShedCWRSNCvXz/MmzcPR44cQXR0NGxsbHLc3+vXrzXKYgWdN4mKI97ZR1QMrF69GrVr187x5/Xr1yq3X7JkiRhihg4ditevX+P06dNYvHgxgP86BLPasmULQkNDAQBz5sxR6uiTJ1y9I3j27Bn++usvAMCKFSuUOvoE9erVE6+q8vX1VVgmjD1erVo1pY4+eVZWVtDT++/jLCoqShwfvHnz5mq3A4DSpUtnuzyvIiMjcezYMQBAv379FBrY9PT00K9fPwCy8ddjYmI02qcmx8LUqVPz/bkQERGRjK2trfj/rJ1kq1evRmxsLBwdHbFq1SqlURMEM2fOhKOjIzIzM3Vy9XNMTAzWrl0LQNagtHTpUoUcIs/IyCjbrFWUMFsREREVLqGjB4DCxT+5tXr1anEuvQ0bNih09Ak6dOiAwYMHA5DNF3f16lWF5RKJRGVHn7z//e9/sLOzg1QqFS8QLwi//fabQkefoEqVKujevTsA2VyFWW3evBnJyckAZO168h19gsaNG6u8U1GXhNxaoUIFpXbC7777DoBsJDGhTTAn06ZN0yiLEVHO2NlH9BGQH6IzKioK/fr1w6BBgyCVSlG+fHmsX79e5XZHjhwRt//hhx+0KvPo0aPIyMiAmZkZOnbsmO26QodcaGgoXrx4IT5evnx5AMC9e/dw5coVjcu2tbWFkZERAGDr1q1IT0/Xqu75aceOHWLHo6pJqIXHkpOTsXv37gKtGxEREeWO/JXf8fHxCsuExqMuXbrA2NhY7T4MDAzEIaUuXryY73U8c+aMOKTTqFGjoK+vn+9lFAZmKyIiosIln31UTauirdOnTwMAatasiS+//FLtevLtUsI26mRmZiI0NBQPHz7EnTt3cOfOHdy/f18cOlPVUKC6INztpo5wZ2RUVJTSRUrCc7Szs8u2XW3gwIF5r6iGoqKicPToUQDKF10Bsvewbt26AGTtcURUsNjZR1QMeHt7QyqV5vjj7Oysdh8NGjQQb///559/8Pr1a0gkEvj4+Ki8OggAbty4AUAWPuSHydTEtWvXAMjGJzcwMIBEIlH7Iz/EknA3HwB8++23MDQ0REpKCpo0aYKuXbtizZo1uHPnjjgeuyrGxsb45ptvAMiGAq1SpQomTJiAY8eOaXyFd37ZvHkzANmQXa6urkrLP/vsM3EoAk2v6tfkWMh6lyQRERHlH/lGLktLS/H/GRkZuHnzJgBg7dq12eYfiUSCPXv2AFDMP/lFyHGAbJinkoLZioiIqHDJz9GXkJCQp32lpKQgJCQEALLt6ANkI0MJU9eoGvZRKpVi27ZtaNmyJUqVKgVHR0fUqFFD4e4wIacJcw7qmp2dncKIEFnJjzaV9QIy4TnWrVtXYTSrrGrXri1e8K5rO3bsEIcMVXXRlfzjFy5cwOPHj3Pcp4+Pj0ZZjIhyxs4+oo/I5MmTUblyZfF3Ly8vpTHB5QnhR7jDThthYWHaVxBQmFS4Ro0a2LFjB2xsbJCeno4jR45g2LBhqF27NsqWLYvvvvsO586dU7mfFStWoGvXrgCA58+fY8GCBejcuTNsbW3xxRdfYMGCBYiNjc1VHTV1//59sdNTXQgC/hvm4Pz583j69KlO60RERER5J99AJN9IExUVlasRBeTzT36Rr2NuslxRxGxFRERU+OQ7r969e5enfckPh57TkKCGhoZi2VFRUQrLkpOT0blzZ3z33XcICAhAUlJStvvKaXl+yenCeflOvIyMDIVlwmtTpkyZbPehr6+v8ylqBMKFVHXq1FE7tGa/fv3EESV0MVQ9EamnegIJIiqRjh49iidPnoi/BwYGIikpCaampvlelhBS7Ozs4O/vr/F2Wef269mzJ9q0aYO//voLJ06cwLlz5xAeHo6IiAhs27YN27Ztg4eHBzZt2qQQkiwtLXHo0CFcuXIFu3btQkBAAG7evImMjAxcu3YN165dw8KFC3HgwAFxCK38Jh9qxo0bh3HjxmW7vlQqxZYtW8Q7MImIiKhokr9rrnr16uL/5RtpvLy8MHr0aI32V1BXYxd3zFZERESF77PPPhP/f/369Xzbr7q5hTUxe/Zs/P333wCAFi1aYMSIEfj8889Rrlw5mJqaiu1FzZs3x7lz53inWC48fPhQnGLn9u3bGr1f27Ztw4wZM/L03hKR5tjZR/SRePfuHby8vADIOsLi4uJw//59/PLLL1ixYoXKbezs7PDq1Su8efNG6/KEq63i4+Ph6uqap3lirKysMGTIEAwZMgSA7KrugwcPYvny5QgNDcXmzZtRr149lQ1qDRo0QIMGDcS6BAQEwNfXF/v27UNYWBh69uyJx48f53uHZ2ZmJrZv3671dlu3bmWDFBERURF36tQp8f9NmzYV/y9/VbVUKhWHkywM8sO0v3nzRumCquKG2YqIiKhoqFmzJuzs7BAREYFz584hLi5OYVhzbdjY2Ij/z+kuwfT0dERGRgJQzlwbNmwAIBu6/MyZM2qHvcx6R2BRZmNjg7dv3yI8PDzb9TIyMhTukNSV3Nyl9+TJEwQGBpaoIeWJijJ29hF9JAYPHozw8HDo6enhyJEjWLp0Kfbu3YuVK1eiS5cu6NChg9I2n3/+OV69eoVr164hMTFRq3n76tWrhz///BMpKSm4du1ajmOva8PV1RWurq7o378/XF1dkZCQgF27duV49byFhQW6du2Krl27YvTo0Vi2bBnevHmDwMBAtG3bNt/qBwD+/v54+fIlAGDkyJFo3LhxtutfvnwZS5YswePHj3H+/Hk0adIkX+tDRERE+ePOnTvw8/MDAFSsWBH169cXlxkZGaFmzZq4e/cuzp8/X1hVBCDLcYJ//vkn3zv7CvoKbWYrIiKiokEikcDDwwN//PEHEhISsGHDhhzvtlfH2NgYVatWRUhICC5fvpztujdu3EBaWhoAKFxQFRUVJc5/3Lt3b7Udfe/fv8fDhw/V7r+o3X1Ws2ZNvH37Fjdv3kRmZqba5xUcHIyUlBSd1kWYDxGQDeE5efLkHNcfPHgwkpOTsWXLFnb2ERUQdvYRfQRWrVqFY8eOAQAmTpyIZs2aoWbNmrh06RJev34NT09PBAcHK1wBDgBdu3bFoUOHkJiYiHXr1mHMmDEal9m1a1dMmDABUqkUS5YswY4dO/LzKQGQNbBVq1YNN27c0Hpy5datW2PZsmUAdDMxs3DFk76+PqZNm5bj2PNt2rTBihUrkJ6eji1btrBBioiIqAhKSkrCwIEDxaGfxo8fDwMDxa9UX331Fe7evYsHDx7gxIkT2c6PrEstW7aEubk5EhISsHz5cgwYMCBPIy1kZWJiIv4/JSUFxsbG+bZvVZitiIiIio6xY8di9erVSExMxP/+9z906tQJNWrUyHG7zMxM7NixA/379xcfa9OmDUJCQnD37l1cuXJFHJ0pK+HuPWEbgfx8yQkJCWrL3rBhQ7ZzK2fNNoWtdevW8PPzQ0REBP7++2907txZ5XoFMS9eQEAAXrx4AQAYOHAg+vbtm+M2f/31Fw4ePIjdu3dj+fLlCq8vEemG6ksCiKjEePjwIX755RcAgJubG2bOnAlANuSBr68vJBIJ3r59Kw6RKW/AgAFwdHQEAEydOhVnz55VW86rV68Ufq9evTp69+4NANi5cycWLVqUbT2fPn2q1CF44MABxMTEqN3m5cuXePDgAQDFuf6ePHmSbV0B4OTJk+L/s17pHhAQAIlEAolEgkGDBmW7H1USEhKwb98+ALIhJHJqjAJkQ221aNECALBr164iESyJiIjoP/fu3UPTpk3F+fpatGiBYcOGKa03evRolCpVCgDg6emJu3fvZrvfo0eP4vbt2/leX2trawwdOhQAEBQUhDFjxqidnyYtLQ1hYWFa7b98+fLi/x8/fpztusxWREREJYujo6M4JUxCQgJatGiRYzvMvXv30KFDByxYsEDh8WHDhol3rQ0ZMgRxcXFK2548eRIbN24EIJuu5YsvvhCXlSlTBtbW1gCAHTt2qDznX716FdOnT8+2fra2tuI8yjllm4Lg4eEhXkw1ZswYlReqX7x4EStXrsxxX87OzmIWyw35DsWePXtqtE2vXr0AALGxsTh48GCuyiUi7fDOPqJiICwsDHfu3MlxPVNTU3zyySfi72lpaejfvz8SExNhamqKbdu2wdDQUFzepk0bjB49GkuWLMH+/fuxadMmDB48WFxuYmKCrVu3ol27dkhMTESbNm3w3XffoXv37qhQoQJSUlLw4MEDHDt2DIcOHVIKVKtXr8a1a9fw5MkT/Pzzzzh48CAGDhyImjVrwtjYGJGRkbh16xaOHz+OM2fOoEePHvj222/F7ZcsWYL+/fujc+fOaNWqFVxdXWFlZYXo6Ghcu3YNy5cvR1JSEgDgxx9/FLd78eIFWrZsiU8//RQ9evRA/fr1xU7Lly9f4q+//sKuXbsAAHXr1s3XIUYBYN++fXj//j0AzUOQsK6fnx9iYmJw6NAhsbM0K02OBQBwcnKChYWFwmM3b97EzZs3Va7/9u1b+Pr6KjzWq1cvscGSiIioJMuatxISEhAdHY3bt2/Dz88Pp06dEjvLGjZsiD179ijkKoG9vT02b96MXr164c2bN6hfvz4GDRqEjh07okKFCkhLS8OrV69w5coV7NmzB0+ePMHhw4dRp06dfH9Ov/32G06dOoXg4GCsWLECFy9exNChQ1G7dm0YGRnh1atXOHfuHHbs2IFZs2Zp1REnP4zm2LFjMXXqVJQvX15sRHJ2dla66zG3mK2IiIiKHk9PT7x69Qr/+9//EBYWBnd3d7Rr1w7dunWDq6srrK2tERUVhUePHuHo0aM4fvw4MjIy8Nlnnynsp3bt2vj555+xYMEC3Lp1C59//jkmTpyIevXqISEhAYcPH8ayZcuQkZEBIyMjrF27VmF7PT099O/fHytXrsTt27fRtGlTjBs3DlWrVkVsbCyOHTuGVatWoVSpUnBwcMCjR49UPh8DAwN88cUXOH/+PDZt2oR69eqhbt26Yt4rXbq0wlyBuubg4ABvb29MmTIF//77L9zc3DBp0iTUr18fKSkpOHHiBP744w84ODggISEB4eHhOhmKNDExEXv37gUgu4nA2dlZo+26du0KIyMjpKamYsuWLfjmm29Urvf69WuNspilpSUqVaqk8Nj79++xZ88ehcf+/fdf8f979uxRGMWsbt26qFu3rkb1JyqWpERUJPn7+0sBaPXz2WefKexj8uTJ4rKVK1eqLCc5OVlaq1YtKQBpqVKlpI8fP1Za5/jx41IbG5scy1flzZs30mbNmmlUf09PT4VtW7RokeM2enp60t9++y1Xr12NGjWkT548yfa19/DwyOZdUq1NmzZSAFKJRCJ9/fq1xtu9fftWqqenJwUg7dKli9avRdaf/fv3K5Xh7e2t1T6ePn2q9fMnIiIqLrTNW2XKlJHOnj1bmpaWluO+Dx06JC1durRGWebMmTNK23t4eEgBSJ2cnDSqv7+/v8p1wsPDpc2bN8+xHj4+Plrvu0+fPhplCGYrZisiIiq59u7dK3V2dtboPFizZk3piRMnlPaRkZEhHT58eLbbWllZqdxWKpVKY2JipHXr1lW7benSpaVnz54Vz/8tWrRQuZ8jR45IJRKJyn14e3uL6+WUkzTJcVKpVOrj45NtRsjMzJQOHTpU7fOys7OTXr16VVqxYkUpAOmPP/6oshwnJydxG21t27ZN3Hbu3LlabdupUycpAKmBgYH07du34uPyz1vTn27duint/+nTp1rtQ/49JCqJOIwnUQkVGBiIefPmAQA6deqE4cOHq1zP2NgY27dvh7GxMd6/f48BAwYgIyNDYZ327dvjyZMnmDNnDho3bgxbW1vo6+vD0tISn3/+OcaMGYMrV66o3H+5cuXwzz//4MiRI+jfvz8qV64MMzMzGBoaokyZMmjcuDF+/vlnnD17Fps2bVLYdseOHVi3bh369euHunXroly5cjAwMECpUqVQs2ZNDBs2DDdu3MC0adMUtmvWrBkCAgIwefJktGzZElWqVIGFhQUMDQ1hb2+Pdu3aYc2aNbh586bSEJ559fr1a5w5cwYA0KhRIzg4OGi8rb29vTifzPHjxxEeHp6vdSMiIiLN6OnpwcrKCpUqVUKzZs0wZswY7N27F69evcKUKVM0umOta9euePr0KRYuXIhWrVrB3t4ehoaGMDU1hYuLC7p06YJFixbh2bNnaNmypc6ei52dHc6ePYt9+/ahV69eqFChAoyNjWFiYoLKlSujd+/e2L59u8LoCpratm0b5s+fjwYNGsDKykocgis/MVsREREVbV9//TUePnyI7du3Y8CAAahevTpsbGxgYGCA0qVL4/PPP8fw4cNx5swZBAcHo127dkr70NPTw8qVK/HPP/+gf//+qFSpEoyNjWFpaYm6detiypQpCAkJUbktAFhZWeH8+fP47bffULt2bZiYmKBUqVJwdXXF+PHjcevWLTRv3jzH59K5c2f4+fmhW7ducHBwUDmKQ0GSSCRYs2YNDh48iHbt2qF06dIwMTFBlSpVMGrUKNy4cQP169cXhz61srLK9zrkZgjPrOunp6fjzz//zNd6EZEyiVSqZuIGIiIiIiIiIiIiIiIqkl69eoWKFSsCADZs2IDvv/++kGtERIWFd/YRERERERERERERERUzO3bsEP/fsGHDQqwJERU23tlHRERERERERERERFSEJCQkIC4uDuXLl1e5/MaNG2jRogXi4+Ph5uaGa9euFXANiagoyXmyCSIiIiIiIiIiIiIiKjDh4eFwdXVF9+7d0aFDB1SvXh3GxsYIDQ3F8ePHsXHjRiQlJUEikWDRokWFXV0iKmS8s4+IiIiIiIiIiIiIqAh59uwZXFxcsl3HyMgI69evx8CBAwuoVkRUVLGzj4iIiIiIiIiIiIioCElLS8P+/ftx/PhxXL16FeHh4YiKioKZmRmcnZ3Rpk0bjBw5Ek5OToVdVSIqAtjZR0RERERERERERERERFRMfXRz9mVmZiI0NBQWFhaQSCSFXR0iIiLKA6lUivj4eDg4OEBPT6+wq/PRY84iIiIqOZizihbmLCIiopJBVxnro+vsCw0NRcWKFQu7GkRERJSPXr58iQoVKhR2NT56zFlEREQlD3NW0cCcRUREVLLkd8b66Dr7LCwsAMheSEtLS52V88033+Cvv/7S2f4LshyWwTJYBssoLmUUVDkso+iUERcXh4oVK4rndypcJSlnsYyiVw7LYBksg2WwjIIthzmraGHOYhkso2iUwzJYBstgGXmlq4z10XX2CUMdWFpa6jQcGRoa6nT/BVkOy2AZLINlFJcyCqocllG0ygDAoYyKiJKUs1hG0SuHZbAMlsEyWEbhlMOcVTQwZ7EMllE0ymEZLINlsIz8kt8Zi4OuExERERERERERERERERVT7OwjIiIiIiIiIiIiIiIiKqbY2UdERERERERERERERERUTLGzj4iIiIiIiIiIiIiIiKiYYmcfERERERERERERERERUTHFzj4iIiIiIiIiIiIiIiKiYoqdfURERERERERERERERETFlEFhV6C4SUtLQ0ZGRo7r2draIjk5Wef1KYhyWAbLYBkso7iUUVDlsIyiU0ZqaiqcnJyQmppaIMfXx05fXx+GhoY62bdUKkVaWhoyMzNzXLckHLslqYyCKodlsAyWwTJYRsGWw5xVsHSZszRtywJKzt8Iy/j4yiioclgGy2AZLCOvNMlYuckFEqlUKs2PChYXcXFxsLKyQmxsLCwtLbXaLiIiAikpKRqtHxYWhrJly+a2mhoriHJYBstgGSyjuJRRUOWwjKJTRmZmJl6+fImKFStCT48DFhQEY2Nj2NnZqcxRuclZqampCAsLQ2JiosaNUCXh2C1JZRRUOSyDZbAMlsEyCrYc5qyCl985S9u2LKDk/I2wjI+vjIIqh2WwDJbBMvJK04yVXS5QhXf2aSAuLg6vX79GqVKlYGdnB0NDQ0gkkmy3kUgkcHZ21nndCqIclsEyWAbLKC5lFFQ5LKPolJGRkYGkpCQ4OztDX19fZ+XQf3fexcbG4vXr1wCg1YVTqiQmJuLly5fQ19eHjY0NTE1Noa+vXyRyFssoeuWwDJbBMlgGyyjYcpizCo4uclZu2rKAkvM3wjI+vjIKqhyWwTJYBsvIq5wyVm5zATv7NBAREYFSpUqhQoUKGgUjQHabpYmJiY5rVjDlsAyWwTJYRnEpo6DKYRlFpwzhTjATExM2QhUAU1NTWFhY4NWrV4iIiMhzI1RERAQMDQ3h5OSk1ftXEo7dklRGQZXDMlgGy2AZLKNgy2HOKli6yFnatmUBJedvhGV8fGUUVDksg2WwDJaRV5pkrNzkAo7DkIO0tDSkpKTAyspKq3BEREREVBJJJBJYWVkhJSUFaWlpud5Peno6EhISULp0aTYgEhERESH/chbbsoiIiIo/bXMBO/tyIPSy6mqSZCIiIqLiRshFms6xp0p6ejoA2Rj0RERERCSTHzmLbVlEREQlgza5gJ19GuKVUEREREQy+ZmLmLGIiIiI/sOcRURERAJtzuXs7CMiIiIiIiIiIiIiIiIqptjZR0RERERERERERERERFRMsbOPiIiIiIiIiIiIiIiIqJgyKOwKlAgzeig9VLWAis51OTP252c1iIiIiHSjkHJWnspgziIiIqLioLjlLGYsIiIitXhnH+ULZ2dnSCQSjX9mzJhR2FUmojyQSCRwdnZWetzb2xsSiQS1a9dGamqqym2lUilat24NiUSC77//Xqtyhc+aZ8+eaVwnIqLijBmL6OPCjEVEVHCYs4g+LsxZVNLxzj7KV02aNEGVKlXULj9+/DjevXtXgDUiooI0bdo0HDp0CDdv3oS3tzfmzp2rtM7y5ctx5swZODk5YfHixYVQSyKi4ocZi+jjxoxFRKQ7zFlEHzfmLCop2NlH+crLywuDBg1Su9zd3Z0BiagEMzQ0xJYtW1C/fn0sWLAA3bp1Q8OGDcXlISEhmDx5MiQSCTZt2gRLS8tCrC0RUfHBjEX0ccspYz179owZi4gol5iziD5uzFlUUnAYTyIiyle1a9fGjBkzkJGRAQ8PDyQlJQGA+HtiYiJGjBiBVq1aFXJNiYiIiIqP7DLWxIkTmbGIiIiIcok5i0oCdvZRkRIQEJDjGOmqPHjwAJ6ennBycoKxsTFKly6N1q1bY9euXSrXnzFjhtrx1n19fSGRSFRe1fXs2TO1YymHh4djy5Yt6NSpE1xcXGBqagpLS0vUr18f8+bNQ3JycrbPfdCgQdk+b1X1Ebbx9fXNdt+aEp57tWrV0Lx5c7XrtW3bVqxX1rJzqpPwGrZs2VLlcm3ey8zMTPTt2xcSiQT9+vVDZmamwvJly5apfJ8zMzPRr18/SCQSfPvtt0rbAUBQUBD69++PSpUqifVo3749jh07pvZ1SU9Px6ZNm9CmTRvY2dnB2NgYFSpUQJs2bbB8+XJxPW3mBJB/393d3ZWWW1hYoEaNGhg7dixevHihVKfw8HAsW7Ys18dlbk2YMAENGjTAo0ePMGXKFADAhg0bcPHiRVSpUgXz5s1Tu+29e/fQu3dv2NnZwdTUFLVq1cLChQuRkZGhk7oSEX0MinvGWrZsGby8vIp9xhIyizr5kbHUzfmRnxlrxowZqFatGjNWEclYCxYswI0bN5ixiIgKSXHPWSWlLYs5izkrr5izqLjjMJ5UJNnb26NDhw4Kj23evFnlukePHkWvXr2QnJyM6tWr4+uvv0ZYWBjOnj2LM2fO4MSJE9i4caPO63zixAnMmjULjo6OqFKlCho2bIjw8HBcvnwZkyZNwsGDB+Hv7w9jY+Ns95N1rPh///0X58+f13X1lZw7dw43b95E3bp1FR6/e/cuTp8+rZMytX0v9fT0sHXrViQkJGDHjh2wtLTEmjVrcixn2LBh2LFjB7p06YKtW7dCT0/xuoelS5di3LhxyMzMRN26dfHll1/i7du3CAgIwMmTJzFz5kz873//U9gmNjYWXbp0QWBgIAwNDdG4cWM4ODjg7du3uH37Nvz8/DBy5EgAgIeHh8K279+/x969e2Fubo5evXopLGvatKlS/du3b49y5coBAGJiYnDu3DksWbIE27dvx+3bt8VlgOy4HD16dI7HZX7T19fH5s2bUa9ePSxduhRVq1bFsmXLoKenh82bN8PMzEzldoGBgejQoQMSEhJQuXJltG3bFhEREZgyZQouXbqU7/UkIvrYFNeMNXr0aNjb26NGjRrFPmNdu3aNGesjylg5HZfaUpWxvL29mbGIiIqA4pqzSlJbFnMWc1ZeMGdRcVeonX3Ozs54/vy50uPDhw/HypUrlR5fv349tmzZgjt37gAA3NzcMGfOHDRo0EDndaWCIVzt4OrqqnQ1jaqA9O7dO/Tv3x/JycmYNWsWpkyZIl4xde3aNbRr1w6bNm1Cw4YN4e7urtO6u7m5YdeuXejdu7fC49HR0ejbty9OnjyJZcuW4ZdfflG5vXBFTtax4n19fQs8IDVo0ABBQUFYtmwZNm3apLBs2bJl0NfXR7NmzRAQEJBvZWrzXv7www/idoaGhti9ezc6deqEtWvXwtLSEvPnz1dbzi+//IJ169ahVatW2L17NwwMFD8GT5w4gbFjx8LW1hZ79+5VuMMxODgYnTp1gre3N1q0aIEWLVqIywYPHozAwEDUq1cP+/btU7jaKz09HUePHhV/z3psP3v2DHv37oWdnZ3Kq8hCQkIUfp80aZLC8ZyQkIAWLVogKCgIe/bswU8//SQuc3Nzw8WLFxXGGgeUj8vu3bure8lyrUaNGpgzZw7GjRuHESNGAJC9/o0bN1a5fnJyMvr164eEhASMGTMGCxcuhL6+PgDg9u3baN26NSIiIvK9nkQlFXMWydNlxpI/L+uCcC6ztbVF1apVxceLY8Zq0aIFAgMDmbGKSMbKShcZS91xmReqMpaXlxczFlEBYcairNiWxZzFnKW4TBXmLCLdK9RhPK9evYo3b96IP6dOnQIApROMICAgAN9++y38/f1x8eJFVKxYEe3atcPr168LstqkQ2lpaQBkJz1NrF+/HrGxsXBzc8PUqVMVhkaoX78+pk6dCkB2y7Wuubq6Kl05BAA2Njbibe+7d+9Wu71wC7qmz12XHB0d8dVXX2HHjh0KJ6SoqChs27YNX331FZycnPK1zLy8lyYmJjh06BC+/PJLLFiwALNnz1ZZxqxZs7Bw4UI0bNgQBw8ehImJidI63t7ekEqlWLNmjdJQprVr18aiRYsAQGEog1u3bmHfvn0wMTHB4cOHlYZ1MDAwQLdu3TR7IXLB3NwcjRo1AgClYRxcXV2VwhGg+XGZV8OHD4eVlRUAoGzZsvjtt9/Urrt37168fPkSFStWxPz588VwBAB16tQRjwEi0gxzFskr7hkrL+eyopSxnJ2d0apVK2YsDTPW/fv3mbHUkM9YDg4OGDNmjNp1mbGI8hczFmVV3HNWSWnLYs5izsovzFlUXBXqnX1lypRR+P3333/HJ598onCFgbzt27cr/L5hwwbs3bsXfn5+GDhwoM7qSQVHmPxU09uwhatxst5KLvj+++8xfvx4hISE4N27dwpXg+tCRkYG/Pz8cOHCBbx58wZJSUmQSqWQSqUAgIcPH6rdNiEhAQDU3hJe0EaNGoX9+/dj3bp14jjV69evR2JiIkaNGpVvY6sLtHkvQ0ND4eDgoLC8VKlS+Pvvv/HJJ59g2rRp4klZsHz5ckyfPh02NjY4duwYSpUqpVRGREQErly5AlNTU3Tt2lVlPYSrkC5cuCA+dvz4cQBA586d4ejoqNHzzS+xsbH4+++/sWXLFpiZmamsd0ZGBgICAnJ1XObV7NmzERsbCwDiMBbt2rVTua5wDPTp00flFwUPDw+MHTtWZ3UlKmmYs0ieLjNWaGhovtQxOxkZGbhw4QJ27txZ7DPWwIEDcerUKWasLFRlrHPnzgFgxlJFPmOFhobiypUrqFmzpsp1mbGI8hczFmXFtizmLOYs7TBnEelGkZmzLzU1Fdu2bcO4cePUTlybVWJiItLS0lC6dGm166SkpCAlJUX8PS4uDgDw119/aXQiMjIygouLC6Kjo2FkZKRyHVuNalu0REZGarxuQU4kKtTLxsZGo/WFK+FcXFxULre2tkbp0qURFRWFt2/f5k8l1QgJCcFXX32lNOSiPOH4U0V4Lra22h9Rnp6e8PT0BCAbX9rGxgb16tWDl5cX+vTpo/X+AFkQqFOnDlavXo0JEyYAAFauXIk6derA3d09x4AkXydNaPNevnr1SikgAbJx0qOjowHIOitr1KgBADhw4ABu374NQHbL/7Fjx9C/f3+l7Z8+fQqpVIqkpKQcQ3p4eLj4f2EIF6E8XWvZsqXSY25ubvDx8VF6/UJCQtCjRw/cvXtX7f6yOy7z4tq1a5g7dy4MDQ0xZMgQrFy5El5eXggODlYKsADw6tUrAOqPARsbG1hZWYmBi4g0p8uclZqaKv4ufJ7cvHlT5RdReVKpFAYGBkhMTMw2a5hrVNuiRWj0yInwRbUg6DJjvXr1SuP95kZez2VFLWN9+eWXxT5jffbZZwB0n7GEjmRmLEWqMtbUqVPx9ddfM2MRFTBdZSyAOUsVTTMWUHJyFtuytMOcxZyVV8xZVJwVmc6+AwcOICYmRmF855xMnDgRDg4OaNOmjdp15s6di5kzZyo9PmTIEI3KcHJyynGS1OLY2ff06VOt1n/w4IHCbchZpaenA5CNVZ1dQBCudoqMjFRYLzExESEhIeJJzMTERO1+5B8Xgm9oaKja9YVbwZOTk8V1hCCWtR7CcwBkJ42sy4QP8PT0dKVlXbt2RUhICFq2bAkvLy9UqVIFpUqVgqGhIVJTU1GrVi2l+svX8fHjxyqfY9b6CK+V8BgAfP755+JQBCkpKXjy5AlOnTqFU6dO4cKFC+IY0zkRyhKeX9++fTFlyhSsWrUKAPDy5UsMHToUISEhYtlZ33NVdZKXmJiIEydOIDMzM9fv5YsXL5RC9Lt37/DTTz/BzMwMa9euxYQJE3D//n0AsmE2HRwc8Pvvv+PHH3/EiBEj4OTkBHt7e4V9CJ125ubmau8+kye8H8IJOyoqKtvjX53sjivgv78P4e+nWbNmsLOzAyA7rh88eICgoCD06dMHa9asUQiPXbt2xcOHD3M8LuWPK02pqy8gez+//fZbpKenY/To0Rg+fDiuXLmCq1evwsvLC3PmzFHaRvjiFhYWluMx8PTpU3GolKx1ys1z0RbLKDplFOSX+OJMVzlL3XAz6q5slydkLFV/y/Lq51zVIkc4/2ji0aNH2TYOFoeM9eLFCxgbGyMkJERnGevhw4do3rw5hg4dqrOMBfz3eukqY8XFxSExMVGnGSvruVAXGevmzZsAdJuxgP+GRdNVxgJkr5suM1bW/K4JbTNWUFAQLl26xIz1kZVREOUwZ+VMVxkLYM5SRZuMBZSMnMW2rJwxZzFnMWdphmUUnTJ0lbGKTGffxo0b0bFjR5VXOKjy+++/Y+fOnQgICFA5VrFg8uTJGDdunPh7XFwcKlasiO9qV0D7qvZqtxMY2drDzswIjhYmMNIv1CkO85WNiSGik9NgY2IIaxP142q/T01HeGIqypQpk+1VOsLEsPb29tkOL2BqagpAdsWP/HohISGoWrWqeIJu1qyZ2v3IP+7i4oInT54gOTlZ5fqxsbGIiYkBIAu7wjrCc8laD+E5AIClpaXSMuF2bAMDA4VlDx48wMOHD2Fra4uTJ08qTZQrfyWKqnrevXsX79+/h729vdLY2lnrI7xWwmMAMHLkSKUvF2vXrsWPP/6IDRs2YMGCBRqNny6UJTy/sWPHYtGiReI42La2thg3bhxMTU3FsrO+59nVCZBN4Ovi4gI9Pb1cv5eNGjVSGmJg9OjRiI2NxapVqzBgwAA0aNAAjRs3RmRkJOzt7REQEICqVasiPj4eI0aMwNy5cxUmGgZkwQgA9PT0sGfPHujp5fw3HxISgtq1awOQndhzM7yGuuNKvoyqVauKfz+//vqr0iTd3t7e+PXXX7FgwQIcOXIEwH/HZdmyZXM8Ls3MzLSuu7r6ArLJo//991+4ublh4cKFMDAwwLx58/DVV19hz549+P7779GhQweFbapVq4Zz584hMTFR5X5jYmIQHx8PQHa8ZB1PXqhTbp6LtuT/DllG4ZaRkZGBGzdu6Gz/JYWuctYvv/wiXjEL/Jez1nWpCzcH62zLkFqVgUEpE1S0MYexQcnJWADgWsYix3WS0zLwNCYRjo6O4vlHleKQsRo1aiR+dusqY5UtWxZr1qyBq6urwnb5mbGA/14vXWUsS0tLmJmZ6TRjZT0X6iJjNWvWDGFhYTrNWABQqVIlALrLWIDsPddlxsqa3zWhbcbasWMHatWqxYz1kZVREOUwZ+VMVxkLYM5SRZOMBZSsnMW2LOYs5izmrPxSUjJQSShDVxmrSJzxnz9/jtOnT8PLy0uj9RcuXIjff/8dJ0+eRJ06dbJd19jYGJaWlgo/ANDM2Q79a1fM8adrtfIwN9SHjakhbM2MVP4UR9HJaXCwMMEnpc3VPi9bMyOUMiq4/uC0tDT4+/sDAJo2barRNsJJYvPmzSqXb9q0CYDsw79cuXJ5r6QaUVFRAICyZcsqnYQAYNu2bdluv3fvXgBA+/bt861O3333HQDZFSbyExNrw8TEBEOGDEFgYCACAwPh5eUlnqTzmzbvZdZwtH79evz9999o06YNfvzxRwCyk23fvn0BAEOHDhU/oIcNG4bWrVvj2LFj2LBhg8J+HBwcUKdOHcTHx4vz8GlCONEfO3asQOYtUuWbb74BAJw9e1Z8TDguHRwccnVc5tb58+exaNEiGBsbY/PmzWLZFSpUECel9vLyUhrCQLhCddeuXSqvdNqyZYtO6ktU0hVGzqpuVwqfl7fO9qdmWUsY6UtgZqgHc0N9tT/FUXbPR/gxKcDnpuuMpcs5PvJ6LmPG0k3GEv6v64zVrFkzAMxYAnUZy9nZWewQYMYiKji6zFgAc5YqmmSskpaz2JalPeYszTBnKWLOopKgSHT2+fj4oGzZsujcuXOO686fPx+//fYbjh8/jvr1i9uAA0WHg4UJHCyyv4qsIKWmpmLUqFEIDw+Hu7u72nGOs/rhhx9gaWmJ69evY86cOQq3wN64cQOzZs0CILsyQ5eqVasGfX19PHr0SJyYVXD48GEsXrxY7bYvX77E8uXLAchO3vnl2LFjAGRX+Ai3yefG8OHD0blzZ3Tu3FnjIRRyI7fv5fPnz/Hzzz/D0tISGzduVBiiQ/h/1sc2bdoES0tLjBs3ThzuQCCU4+npicOHDyvVUyqV4vLlyzh58qT4WN26ddGtWzckJSWhW7duePHihcI26enpOHTokFavh7Z27twJAArvtXBcBgcHa31c5lZiYiIGDRqEzMxMzJw5U2kC46FDh6J169Z4/fo1xowZo7CsV69ecHR0xIsXLzB58mRxmAMAuHPnjvjeEJF2mLM+biUlYwUHB+Py5csKy5ixNFOcM9ann37KjPVBThmrb9++zFhEBYwZi0pKzmJbVu4xZ+UNcxZR/ir0YTwzMzPh4+MDDw8Ppd76gQMHwtHREXPnzgUAzJs3D//73//w559/wtnZWZyktlSpUjlOTkyKilJH38aNGzF58mSEh4fD0dERa9eu1Xhbe3t7bN++Hb1798bUqVOxdetW1KtXD2FhYTh79izS09Ph6emJH374QeU4u6dPn0ZycrLCY8HBwQCAoKAgTJo0SWGZcPVGdHQ0Jk2ahN69e8PNzQ12dnb46aefsHTpUrRu3RrNmjWDg4MDHj58iOvXr2PatGkqP9zHjx8PHx8fREVFwdzcHGvWrFGaI/Lff/8FAAQGBmLQoEHo27ev0m3Eu3fvxoMHDwDIxjl/8OCBeAKfOHGiRsMeqOPo6CjeSq9L2ryXAqlUCk9PT8THx2Pjxo3iEAQ5qVSpEhYtWgQvLy8MHjwYp0+fFkNU165dsXTpUvz888/46quvUKVKFVSvXh1WVlYIDw/HrVu3EBYWhokTJyqMhe7j44NOnTrh0qVLqFq1Kho3bgwHBwe8ffsWwcHBCA8Pz7fxmH///XdxUunExEQEBweL7//06dPF9XJ7XObFhAkT8O+//6Jhw4YYP3680nKJRIKNGzeidu3a8PX1Re/evdGpUycAsqFRtm/fjk6dOuGPP/7AgQMH8MUXXyAyMhIBAQHo2rUrgoKClEItEanHnPVxK6iMpYouMpaHhwc2bNigs4w1adIkpTmqmbGYsZixiEgVZixiWxbbsgDmLG0wZzFnke4Vemff6dOn8eLFCwwePFhp2YsXLxTGGV69ejVSU1PRq1cvhfW8vb0xY8YMXVdVvSELFH59HpOI8MRUOFiYwN7cGCFRCUhKy0A121IwN8q/oQTky8mp8y40Phmh8clF7o4+QDYGrq2tLYYOHYpRo0ahTJkyWm3fpUsXXL9+HfPmzYOfnx/27NkDc3NzNGvWDEOHDhVvCVfl/PnzOH/+vMpld+7cwZ07d1Qui4uLw7x581CjRg24ubkBABYvXgx7e3vs3bsXQUFBuHnzJmrXro2dO3fim2++UXki2rNnj3h7ekJCgtrb/gHg8ePHePz4scpJvI8dOyZe/aSnpwcbGxu0atUKXl5e2T7/okbb93LFihXw9/dHp06dVH6GZOf777/H3r178ffff2PFihUYOXKkuGzUqFFo1aoVli9fDn9/f/j5+UFPTw/lypVDvXr10LlzZ/Ts2VNhfzY2Njh79iw2bdqEP//8Ezdv3sSFCxdQtmxZ1K1bF927d8/165LViRMnxP/r6+vDzs4OXbt2xciRI9G2bVuFdRcvXow6depg1apVGh+XuXXmzBmsWrUKpqam8PX1VWowFTg5OWHhwoUYOnQofvjhB9y9exfW1tYAZMMfXL58Gd7e3ggICMD+/ftRuXJl/Prrrxg/fjyqVKmSb/Ul+hiUxJwVmZiKpzGJcC1jobPhpwqijIJQkjJWnTp1sHjxYp1mrEGDBikNr8SMxYzFjEVEqpSIjAUwZ+VBScpZbMvKG+YszTBnEemeRJpf3fPFRFxcHKysrLCua1388Llzjusnl7LF0ybfwcWxHEwMNAshQidc+VImiE9N10lHn3w5OXXg5aWjTwhhLi4u4kTAulDcJtYUJub18fFRmLhX2zKcnZ3h7OysdFu6Kr6+vvD09MTWrVsxYMCAXNRac8Xt/WAZBV+GRCKBk5MTnj17prMytCXU6dSpU0Xu9WIZup/UuF69empDOeW/5ORkPH36FC4uLjAx+S9bCDnr7KCmaO6U/bA7uclYQMlphEpIy8D98Hi4urrC3NxcJ2UABfN3np/lqMtY2paRm4zl7+8PR0fHYv+5yDKKdxm5yVjalqEtZqyiWUZBlMOcVTiYs/KuJOUstmVpp7i9JyyjYMtgzipa78fHXIY2GUtdLlCl0O/sK8kik1KQkQmddPRpqijf0UdERERERERERERERER5w84+HRBulUzLkKKGnQU7+kogGxsbzJ07Vxz2ILcWLlyo8Rj9TZs2hY+PDypXrpynMomIiIiKqsLMWDVq1EB8fHyeyiUiIiIqqtiWRURUsrGzL59lZEoRm5wGALAzM2JHXwllZWWlNOFxbmQdsz87VapUQZUqVVROzkxERERUEhRmxgLAzj4iIiIqsdiWRURUsunlvAppKiNTipCoBKRnyu7tM9QvnJeXHX1EREREREREREREREQfB97Zl0+Ejr6ktAxYmRgi5sPdfQWNHX1EVBC8vb1hbW1d2NVQUBTrRERERKSNophnimKdiIiIiLRVFDNNUawTFV/s7MsH8h191WxLISIxpVDqwY4+IiooM2bMKOwqKBHqxOFBiIiIqLhixiIiIiLSDeYsKuk4jGceZe3o4xx9REREREREREREREREVFB4Z18eFJWOvvjUdMSnpLOjj4iIiIiIiIiIiIiI6CPDO/tyqah09AFgRx8REREREREREREREdFHip19uVBUOvoS0zIAABbGBuzoIyIiIiIiIiIiIiIi+gixs09LRaWjLzQ+GQlCZ58RR2MlIiIiIiIiIiIiIiL6GLGzTwtFqaMvND4Z5oaFN3QoERERERERERERERERFT529mmoqHX0OViYwIydfURERERERERERERERB81dvZpIFMKPI9NKlIdfZyjj4iIiIiIiIiIiIiIiNjZl4OE1HSEJaQgOT2THX1ERERERERERERERERUpBgUdgWKsviUNHiduIkf3frC2dpMbUdfq1lGWR7J+nt+MAJgmW/lnJmWmqfaZOXs7Iznz59rvL63tzdmzJiRr3UgoqJB+DyQSqUKj+/duxeTJ09GuXLlcPfuXZQuXVrl9p6envD19UXr1q1x6tQpSCQSjcsOCAhAy5Yt4eHhAV9f37w8DSIqIlTnrFI6LjVvZeRnzmLGIiKBuozl4+ODwYMHM2MRkdaKW85iWxYR6QpzFpUE7OxTIz4lDR22X0SsiQ3szY1hZsibIDXRpEkTVKlSRe3y48eP4927dwVYIyIqKnr27InAwEAcPXoUI0aMwI4dO5TWOXz4MHx9fWFpaYlNmzYphCN3d3ecPXsW/v7+cHd3L8CaExEVPmYsIlLH09MTW7ZsQUBAADMWEVEuMGcRkTrMWVScsLNPBaGj705YHE6NbA1j/Y+3oy8lI1Or9b28vDBo0CC1y93d3RmQiD5i69evR61atbBz50707NkTvXr1EpdFRkbihx9+AAAsWbIElSpVKqxqEhEVOcxYRJSdWbNm4auvvmLGIiLKBeYsIsoOcxYVFx9vL5YaCh193zVBHfusQ2d+PBJSM/DmfXJhV4OISpDy5ctjxYoVAIBhw4YhLCxMXDZ8+HC8e/cOXbt2haenZ2FVkYiIiKjYKVu2LDMWERERkQ4wZ1FxUaidfc7OzpBIJEo/I0aMULvN7t27UaNGDZiYmKB27do4duxYvtUna0dfA0ebfNt3cZOQmoFHke9hVMB3NQYEBKg8JuR/VHnw4AE8PT3h5OQEY2NjlC5dGq1bt8auXbtUrj9jxgxIJBKVY637+vpCIpGovKrr2bNnkEgkcHZ2VloWHh6OLVu2oFOnTnBxcYGpqSksLS1Rv359zJs3D8nJ2XecDho0KNvnrao+wjb5NZ6z8NyrVauG5s2bq12vbdu2Yr2ylp1TnYTXsGXLliqXa/NeZmZmom/fvpBIJOjXrx8yMxXvRF22bJnK9zkzMxP9+vWDRCLBt99+q7QdAAQFBaF///6oVKmSWI/27dtn+5mTnp6OTZs2oU2bNrCzs4OxsTEqVKiANm3aYPny5eJ6OR3j6t53d3d3peUWFhaoUaMGxo4dixcvXijVKTw8HMuWLcv1cakL3377LXr27ImIiAgMHToUALBz507s2rULpUuXxrp16xTWFz4Xzp49CwBo2bKlwmvA8cyJVCtqOYsKV3HPWMuWLYOXl1exz1hCZlEnPzKWqtcQyN+MNWPGDFSrVo0ZixmL6KPEjEVZFfecVVLaspizmLN0iTmLioNCHcbz6tWryMjIEH+/c+cO2rZti969e6tc/8KFC/j2228xd+5cdOnSBX/++Se6d++O69evo1atWnmqCzv6/iN09Jka6sPW1AjPYxMLvA729vbo0KGDwmObN29Wue7Ro0fRq1cvJCcno3r16vj6668RFhaGs2fP4syZMzhx4gQ2btyo8zqfOHECs2bNgqOjI6pUqYKGDRsiPDwcly9fxqRJk3Dw4EH4+/vD2Ng42/1kHSv+33//xfnz53VdfSXnzp3DzZs3UbduXYXH7969i9OnT+ukTG3fSz09PWzduhUJCQnYsWMHLC0tsWbNmhzLGTZsGHbs2IEuXbpg69at0NNT7NReunQpxo0bh8zMTNStWxdffvkl3r59i4CAAJw8eRIzZ87E//73P4VtYmNj0aVLFwQGBsLQ0BCNGzeGg4MD3r59i9u3b8PPzw8jR44EAHh4eChs+/79e+zduxfm5uYKQwEAQNOmTZXq3759e5QrVw4AEBMTg3PnzmHJkiXYvn07bt++LS4DZMfl6NGjczwuC9rq1atx7tw5HDhwAAsWLMDvv/8OAFi5cqVC/QGgXLly8PDwEOdJkH/+ALKdW4HoY1aUchYVHcU1Y40ePRr29vaoUaNGsc9Y165dY8b6iDJWTsdlfmPGItI9ZixSp7jmrJLUlsWcxZylS8xZVNQVamdfmTJlFH7//fff8cknn6BFixYq11+6dCk6dOiAX375BQDw22+/4dSpU1ixYoVGH4rqsKPvP/IdfVVLmyMmOa1AyxcCs6urq9IVDqoC0rt379C/f38kJydj1qxZmDJlinjF1LVr19CuXTts2rQJDRs2hLuOJ0F1c3PDrl27lAJ+dHQ0+vbti5MnT2LZsmXi8ZuVcEVO1rHifX19CzwgNWjQAEFBQVi2bBk2bdqksGzZsmXQ19dHs2bNEBAQkG9lavNeCmNhA4ChoSF2796NTp06Ye3atbC0tMT8+fPVlvPLL79g3bp1aNWqFXbv3g0DA8WPwRMnTmDs2LGwtbXF3r17Fe5wDA4ORqdOneDt7Y0WLVoofFYNHjwYgYGBqFevHvbt26dwtVd6ejqOHj0q/p712H727Bn27t0LOzs7lVf2hISEKPw+adIkheM5ISEBLVq0QFBQEPbs2YOffvpJXObm5oaLFy+iYcOGCvvIelx2795d3UumE2XKlMGaNWvw9ddfY8KECQCA3r17o2/fvkrr1qhRA76+vnD/ME9C1udPRKoVlZxFRYMuM5b8eVkXhHOZra0tqlatKj5eHDNWixYtEBgYyIxVRDJWVrrIWOqOS11hxiLSPWYsyoptWcxZzFmKy1RhzmLOIt0rMnP2paamYtu2bRg8eLDa29svXryINm3aKDzWvn17XLx4Ue1+U1JSEBcXp/ADAEcfvsWsfx5i+pl7qLnKD0Gh0fi2VgWcfByGWf88FH9WX32K2JR0hCWkIDQ+WeVPcaTqeTyPScSDiHjo6wEWRgZ4l5Aidva9f/8ekZGRan+Ek3tO66WlyfaXmJio8Hhqaqr4f0HWbVU9vnTpUsTGxuKzzz7Djz/+iKioKHGZi4sLxowZA0AWvuWvvNMFV1dXpSuHAMDGxka87X337t1qtxduQTc0NNRJ/bTh6OiIr776Cjt27EBERIT4eFRUFLZt24avvvoKTk5O+Vrm+vXrERsbCzc3N0ydOlXhc6B+/fqYOnUqAGDBggVK25qYmODQoUP48ssvsWDBAsyePVtlGbNmzcLChQvRsGFDHDx4ECYmJkrreHt7QyqVYs2aNUpDmdauXRuLFi0CAIWhDG7duoV9+/bBxMQEhw8fVhrWwcDAAN26ddPshcgFc3NzNGrUCACUhnFwdXVVCkeA5selLvXo0QM1atQAABgbG2PVqlWFUg+ij0FB56yHEe9x/U1Mtj93w+KQmiFFYlomEtIy1P4UR9k9H+En+cNzS05ORkJCgtofqVQKQPZaZ7eekHNSU1OVHk9ISEB8fDwA2ZXEWbcV6y332MqVKxEbG4t69ephzJgxSExMFJe5urqKX6znz5+vUE9dyOu5rChlLGdnZ7Rq1YoZS8OMdf/+fWasXGDGIio4uspYAHOWKppkrJKWs3SZsYCS1ZbFnMWcVRCYs6goK9Q7++QdOHAAMTExKsdyFrx9+xb29vYKj9nb2+Pt27dqt5k7dy5mzpyp9PjBR29x8JHidmuDnimt5+SUCFfPNBgkpGZTe8tslhVN2XVSpmZI8ea94vLw8HCEh4er3SY9PV1c7+nTp2rXE0JATEyM0npPnz7F8+fPxf2p24/848It+G3btlW5frNmzQAAT548EZfr6+uLnYeRkZFKd029e/cOABAXF6e07NWrV2L9si4DgPj4eGzevBk3btxAeHg4kpOTIZVKxXB2//59ldsBECd3jYmJUVgna30SExPF5ULYf/fundr9akMoKz09HX369MH+/fsxZ84cDBs2DACwbt06JCYm4uuvv8a+fftUlp1TnYTXMDMzU2G5MH54x44dVW4nXP0SEhKCwMBApc8CAFixYgXatGmDadOmISUlRexcjoyMxPTp0zFr1ixYWVlh+fLlePPmjdL2UVFRuHLlCkxMTFCjRg2V9ahUqRIA2TCnwvuxbds2ALKryOTfH03ldFwJ+0xKShLXF9aLj4/H2bNn4evrC1NTU9SqVUtpHxkZGbh8+XK2x2Vu6q2O8HmQdX9Zy9izZw8ePHgAQPblavXq1SqvhhKoev5ZCa+lqr/f/JSfrxfLyBtdf/ktKXSVs9R9KR1y5GaOdXJycsKaVoORFp2Qw5qmOe6rqLkfHq/xutnlJgDiuSw0NBT3799Xu15iomzY9YiICKX15PNHamqq2v3IP378+HEAQOvWrVWuL3z5/vfff/HPP/+gTJkyePTokc4yVkZGBv755x+sXLlSZxkL+O8zS1cZKy4uDn369MGpU6d0lrHS09MVPnt1kbGio6MB6DZjAcCZM2cA6C5jAbL3XJcZK2t+zwt1GUt4HsLjzFgfRxkFUQ5zVs50lbEA5ixVtMlYQMnIWY8fPwYgmy+NbVmqMWcxZzFnaaakZKCSUIauMlaR6ezbuHEjOnbsCAcHh3zd7+TJkzFu3Djx97i4OFSsWBFNKtrg36gERCWlomv18rA3Vz3Gr5W9A0oZGcDGxBAGeqqv0iqOypgZif9Py5QiNjkNBnoSWJkYQv5ZxqemIzk9EzYmhrA2UX+VjvDalDEzgou1mdr1TAz0AQDWJobiehGJqYhPTYeBngRxcbEAAAe70mr3I/94zIegU6+qi+r1rc1gY22F6JhYhIWFoUGDBrC1tYWtrS0AKA0HBUA88VpaWiotE65UMjAwUFoWEhKCvn37ZvtB8P79e6XtxOcSEwNAdsWN/DpZ6xMSEiIut7SUdTRPmjQJkyZNAiDrzLSxsUG9evXg5eWFPn36qK1PVkJZBgYGGDBgABYsWIDdu3eLQwn89ddfqFOnDgYMGCB2tNrb2yvUV1WdVNHT01MaigsAvvzyS7WvUenSpREVFQUjIyOV62zbtg2xsbJjaNasWeKVNufOncPt27cByMYjf/jwIfr376+0/dWrVyGVSpGcnJzj3AlRUVHi+yFcrVe/fn21dc9OdscVAPE9NzWVfRH77rvvlNZxc3ODj48PateurbRtr169cPfuXbXlv3//HmZmZrmquyrCcBKq/kaEx168eCGObT5mzBgsWbIECxYswMCBA9VeaSc8/woVKqit6+vXrwGo/vvNT/LPhWUUbhkZGRm4ceOGzvZfUugqZ/3yyy/i8CXAfzlrarNqcC1jke22Rrb2sDMzgqOFCYz0i8xgE/kiuywkeJ+ajvDEVLhYm8HEUF/teoYfMpaDhUm2r6nZh33YmRmJ68UmpyE0Phku1ma4nJkCAKhY1lbtfuQfj42SZawvXT9RvX4ZC5S2tkJUTCwMEmMBlIGjo6POMpYm57K8ZiyhrKpVq+osY1laWqJFixaoU6eOzjKWgYGBwnldFxnrs88+A6DbjAVAvNhQVxkLkL3nusxYWfN7XqjLWEJ9qlatyoz1EZVREOUwZ+VMVxkLYM5SRZOMBZSsnBUWFobmzZvD3NycbVlqMGcxZzFnaaakZKCSUIauMlaR6Ox7/vw5Tp8+LV5doU65cuXEqzUE7969U5oAU56xsbHKyTrfvE9BUnomAge3yHaOvuRStnhqaghHSxOxo6okcPoQkIQ5+syNDFC1tDn0s3RoPo9JRHJ6KkwN9WEr10GYld6H29RLGRlku56hvmw9M7n9xaemIz4VyMiUIvO97OTm4lhO7X7kHxcyq6Wx+nIlKJhO2l69eiEkJARdunTBhAkT8Omnn8LS0hKGhoZITU3NdtLYzMxM8YozFxcXrcuWnwg5OTkZDx48wKlTp3Dq1Ck8fPgQ06dPz9VzGj16NL7//nvs378fAPDy5UulyXw1qZM8YQLf/BYaGopRo0bB3NwcR44cwcCBA8Ur5G7duoVKlSrB19cXXbt2xciRI9GyZUulL2TCsAGlSpVCz549872O+UV+Ut/ExETcvn0bQUFB+O6773Do0CHxii0AYjjKzXGpK1KpFIMHD0ZcXBwGDx6MxYsXIyYmBr6+vvj+++9x6tQptUPgEJH2dJ2zVA0j0+6TsmjuZJdtecmlbPHUUB82poYlKmMByDYLyQtPTIWJoT7Ms2mEEj4PjfX1sl1PyHBGcusJQ1iZGOoj4sOX+Url7dXuR/5xIRKaZFvuhzJ1/P4J57KWLVti5syZzFhFIGPdvHkTADMWMxbRx02XGQtgzlJF04wFlJycpWtsy1JfJ3nMWXnHnEWke0Wis8/Hxwdly5ZF586ds12vUaNG8PPzE+dhA4BTp06J4/tq43VcEv7xbJ5tR19JJ3T0mRrqq+zoKwgZH+4qBGRXSP37+AkAoGY1zXrOHcuVw4N/n+DJi5cql8fGxSPqw1VGWSfRzk8PHjzA7du3YWtri/379ytNlJvTbb/3799HXFwc7O3tUbFiRa3LzzoRMgCsXbsWP/74I+bNm4dJkyblavz0fv36YeLEiVi2bBkA2dVjqq4i0rROwH8T+Gbl6OiIBw8e4MmTJyr3Fxsbi6ioKHFdVeVFR0dj1apVcHd3x+nTp9G4cWNERkbC3t4ep0+fRtWqVTF//nyMGDECP/zwg8JEwwDE114ikWDTpk3Q09PsCkghkAi38euaqkl9vb298euvv2L48OE4cuSIWJ/bt2+jbNmyuToudWXVqlXw8/NDxYoVsXjxYgDA4sWLcerUKfj5+YnHLhHlj8LIWVT03Hv0LwDdZCyHcvaIzZdaKpM/l61cuRKurq4Ky5mx/lOQGatZs2YICwvTecYqX748AGYsTTFjERUsZiwS6DJnsS2LOYs5izmLSFOFfi9/ZmYmfHx84OHhofTHO3DgQEyePFn8ffTo0Th+/Dj++OMPPHjwADNmzMC1a9fw008/aV3uuEZV2NFXBDr6QqISkJ75YYzazAz4X7gEAGjawE2jfbg3agAA2Lx7v8rlm3buAQBUdnZC2bJl81hj9YQTd9myZZWOYwDinG7qCIGhffv2+VYn4fb4hIQEhYmJtWFiYoIhQ4YgMDAQgYGB8PLyEm8/z2/CCX/z5s0ql2/atAmA7Hb6rAFp/fr1+Pvvv9GmTRvxxFqtWjVxzOyhQ4eKt14PGzYMrVu3xrFjx7BhwwaF/Tg4OKBOnTqIj48Xx9DXRIcOHQDIxmoPDQ3VeLv89M033wAAzp49Kz4mHJcODg65Oi514fHjx5g4caIYQoWhMqytrbF+/XoAsuFqnj17prStkZHsKk5hHHUiyllh5SwqWtLS0nSWsaq6OMOhnPLcI/klr+cyZizdZCzh/7rOWML828xYOXvx4gUzFlEBYsYigS5zVhUXtmXlBnOWZpizNMecRcVFoXf2nT59Gi9evMDgwYOVlr148UJh4tHGjRvjzz//xLp16/DZZ59hz549OHDgQI7jEaviYmOep3oXd4Xd0ZcplXX0JaVlwMrEEGlpaZg++3eER0bBvdGXcKmk2RVBP/T/BpYWpXA9+C7mLFutMLnljTt3MWvpKgDAT16eOnkegmrVqkFfXx+PHj1CQECAwrLDhw+LV3yo8vLlSyxfvhwAxMmD84MwSbC5uTns7LIf4iM7w4cPR+fOndG5c2eMGDEiv6qn5IcffoClpSWuX7+OOXPmKL6XN25g1qxZAGQnT3nPnz/Hzz//DEtLS2zcuFHhlnnh/1kfE07M48aNw/PnzxX2J5Tj6emJw4cPK9VTKpXi8uXLOHnypPhY3bp10a1bNyQlJaFbt2548eKFwjbp6ek4dOiQVq+Htnbu3AkACu+1cFwGBwdrfVzqQmZmJgYNGoSEhAQMHToUbdq0UVjesWNHDB48GO/fv8fgwYOVJqutUKECAGQ7ZjsRKSqsnEVFR1paGsbPmK2zjPXLMC+d1Fsgfy67fPmywjJmLM0U54z16aefMmNpIDMzExMnTmTGIipAzFgE6D5njR7yvU7qLWBbVt4xZ+UNcxZR/ir0YTzbtWun9EcgyPoHDQC9e/dG7969dVyrkq8wO/oAICopDUlpGahmWwort+7A/KUrEBkZCcdy9lg77zeN92Nfxg7bl/+B3j+OwtR5i7B17wHUq/UpwiKicPbSFaSnp8Pzm54Y+E1vPI1JVNr+9OnTSE5OVngsODgYABAUFKQ0Ka8wYW50dDQmTZqE3r17w83NDXZ2dvjpp5+wdOlStG7dGs2aNYODgwMePnyI69evY9q0aeKJV9748ePh4+ODqKgomJubY82aNVizZo3COv/+KxsOIjAwEIMGDULfvn2VJgjdvXu3eNt9SkoKHjx4IJ7AJ06cmKthDwSOjo7irfS6ZG9vj+3bt6N3796YOnUqtm7dinr16iEsLAxnz56VvZeenvjhhx/EbaRSKTw9PREfH4+NGzcqjO+dnUqVKmHRokXw8vLC4MGDcfr0aTFEde3aFUuXLsXPP/+Mr776ClWqVEH16tVhZWWF8PBw3Lp1C2FhYZg4cSLatWsn7tPHxwedOnXCpUuXULVqVTRu3BgODg54+/YtgoODER4ervazTlu///47fH19AcjGOQ8ODhbff/kx7XN7XOqKj48PAgMD4eLiggULFqhcRxgCwd/fH6tXr8bw4cPFZT179oSPjw8mTJiA06dPo2zZspBIJBg8eDAaN25cUE+DqFhhzvq4bdu9F7/9sVSnGeuH/t8g4cOcNfJ0kbE8PDywYcMGnWWsSZMmQV9fcd4cZixmrOKQsRYtWoSgoCBmLKICxIxFBZGzPL/tg/vh8Urbsy0rZ8xZzFn5hTmLipNC7+wrCc5MS1X4/XlMIsITU+FgYQIHC9lkyqHxyQiNT1Z4LK9UlZOdojB0p3B+SMvIRDXbUjA30sfT5y9QunRpDOjTE1OHDUYZW1ut9tmlbStcP34A81aug1/gRew5egLmZqZo1qA+hg7oi2+6dUZkYqrKbc+fP4/z58+rXHbnzh3cuXNH5bK4uDjMmzcPNWrUgJubbJiGxYsXw97eHnv37kVQUBBu3ryJ2rVrY+fOnfjmm29Unoj27Nkj3p6ekJCg9rZ/QDb84ePHj5WuIAFkVz4JVz/p6enBxsYGrVq1gpeXl3hLfHHQpUsXXL9+HfPmzYOfnx/27NkDc3NzNGvWDEOHDlV6LitWrIC/vz86deqk8orK7Hz//ffYu3cv/v77b6xYsQIjR44Ul40aNQqtWrXC8uXL4e/vDz8/P+jp6aFcuXKoV68eOnfurDTpsY2NDc6ePYtNmzbhzz//xM2bN3HhwgWULVsWdevWRffu3XP9umR14sQJ8f/6+vqws7MTJ2tu27atwrqLFy9GnTp1sGrVKo2PS124f/8+lixZAolEAh8fH5QqVUrlepaWltiwYQPat2+PCRMmoGPHjuJE3507d8b69euxevVqnDlzBomJsg78pk2bMiARlWBZc1ZkYiqexiTCtYwFzA311WyVNwVRRkF48uw5Spcuje/79cH4Hzx0krHUye+MVadOHSxevFinGWvQoEFKwysxYzFjFYeMNX36dGYsIsoV5qzcK4icpeqCKoBtWUUNc5ZmmLOYs0j3JNL86p4vJuLi4mBlZYV1Xevih8+dc1w/uZQtnjb5Di6O5WBioFkIydoJp4uOPlXlZCe3HX3adihmR5ijT7ijz9xIP9/LUEcIky4uLrDVMoCp8uzZM7i4uMDHx0dh4t6QkBClK5Wy4+zsDGdnZ5VX/mXl6+sLT09PbN26FQMGDMhFrTWn7fNgGSxDnrOzM54/f6509VdBPI+AgAC0bNkSHh4e4hVjulDc3pOSXEZGRgZu3LiBevXqKd2RQ7qTnJyMp0+fwsXFBSYm/527hZx1dlBTNHfKftid3GQsoOQ0QpWUMgAgIS0D98Pj4erqCnPzvA2Vry5jAdp9nuQmY/n7+8PR0bHYfy6yjJJbhrqMlZ9lqMOMVfTKKIhymLMKB3MWyxDkZ8YCSn5bFlByPuNZRsGXwZzFMgqyDG0ylrpcoEqhz9lX0umqo08bReGOPnUdfURERERERERERERERJR7HMZTh+JT0xGfks6OvhLY0WdjY4O5c+eKwx7k1sKFC9XeAp5V06ZN4ePjg8qVK+epTCIiIqKiqjAzVo0aNRAfrzwvDhEREVFJwLYsIqKSjZ19OsSOvqLT0ReTnJav+7OyslKa8Dg3evXqpfG6VapUQZUqVRASEpLncomIiIiKosLMWADY2UdEREQlFtuyiIhKNg7jqQOJHybQtTA2YEdfEejoC41PRnQ+d/YREREREREREREREREVBbyzL5+FxicjQejsMyqcl5cdff8R5ky0MTFkhx9RARkzZgxiYmIKpWxnZ2f89NNPaN26daGUT0RERKQrzFhEREREusGcRSUBO/vykdCxZG6oL3b4FTR29P1HeD8cLExgrK/Hzj6iAjJmzJhCK9vZ2RmjRo1C1apVC60ORERERLrAjEVERESkG8xZVBJwGM98It+xZGZYOJ1b7Oj7j/z7UVhDqRIREREREREREREREekaO/vyQVHoWGJH33+KwvtBRERERERERERERERUENjZl0dFoWMpLSOTHX0fFIX3g4iIiIiIiIiIiIiIqKCwsy8PikrHUkRiKjv6UHTeDyIiIiIiIiIiIiIiooLCzr5cKgodS2mZUgCAob6EHX1F4P0gIiIiIiIiIiIiIiIqaOzsy4Wi0LGUkJqB2OQ0AICtqTE7+tjRR0REREREREREREREHyF29mmpKHQsJaRm4FHkexh86OCTFHw/Hzv6iIiIiIiIiIiIiIiIigB29mmhKHQsCR19pob6sDIxLJQ6sKOPiIiIiIiIiIiIiIioaDAo7AoUF2EJKQhLSFXZsfTidSgioqLF39/EJyM6OQ2RZkZ4a26cb3VISsvA89gkGBvooZKlKR4npOS6HLvSNqjk6KB1HdjRR0RERAUpa86KSU5DaHwyUt6ZwdRANzkkr2XkNmcRERERFaTilrOYsYiIiNRjZ58GYlPSkZBNR59riw5ITEoqpNrljpmpKe6fPa5VSGJHHxERERWkjylnERERERWk4pizmLGIiIjUY2dfDlZffQrXWmn41N5IZcdSRFQ0EpOSsG35QrhWrQLgvzv7ypgZoUw+3NkXdOcBRk+bgUqVKmLtnBmwKGWep3Luh/yLASPHIyIqWuOAJJUi244+5y/d8fzVa43r4D1uJGb8PErj9QXs6NO9GTNmYObMmfDx8cGgQYPEx8PCwlCzZk1ERERg+/bt6Nevn8rtAwIC0KpVK5iYmODmzZuoVq2aRuX6+vrC09MTHh4e8PX11ahORJR7EokEjo6OePXqlcLj3t7e+PXXX1GrVi0EBQXByMhIaVupVIo2bdrgzJkzGDx4MDZu3KhV2cLfu7e3N2bMmJGr+vfo0QPHjx/HgwcPlJZJJBI4OTnh2bNnCo/r+rk5Ozvj+fPnePr0KZydndGxY0ccP34cT548gYuLi8ptPDw8sGXLFrRr1w4nTpxQuU5ycjI+//xz3L9/H7/++iumT5+ucZ2A7D9D27RpgytXruDRo0coV66cVvstCKpylnA1uIuN7q84z00ZuclZ2SmojEW6J/wt/v7775g4caL4uK4zlkD4jJJKpXl6HkQkoy7PJCUloX379nj69Clmz56NKVOmqNz+wYMHqFevHlJSUuDv748WLVpoVG5AQABatmyJFi1aYP369RrVSRtCxgoJCUH58uUVlhV0xnrz5g0cHR3RrFkznD17VuU6RfV7alHPWIBuctadB48wfIo3PnFyworZ/4O5mZnSOrktI78zFsCcRUQlS3bZpF69enj48KFOsonA3d0dZ8+eFdtECltRbuPeuHEj6tSpk9unphY7+7Ix65+H2PAkETuHGaJsDp1prlWr4PPaNQEAz2MSEZ6o+k5AbZ29cgPjvH9DjRrVcWaHD6wtLcRl+VlOTiKTUpCRiRzv6GvyhRuqOFdSu/x4wDm8C4/IVR3Y0Ve4ypYti9WrV6N3794YOXIkWrZsqfTlLz4+HoMGDYJUKsXcuXO1boQiosI3bdo0HDp0CDdv3oS3tzfmzp2rtM7y5ctx5swZODk5YfHixQrLsnZ46cLp06dx4MABjB8/HhUqVEB4eLhG2+X1uWmrZ8+eOH78OPbt24eff/5Z5TpLly6Fn58fTp48ibVr12Lo0KFK60yZMgX379/HF198gcmTJyssk0gkAJDrxvvff/9d3K+Pj0+u9lEQ5HNWZGIqLGMS4VrGAuaGuunsK4gytKXLjEWFK68ZK7svk0RU8ExNTTF//nz07dsXM2fORNeuXVG7dm2FdTIyMuDh4YHk5GSMGTNG68Y0XcmasTIyMjTaTlf5sXz58mjcuDECAwMRFhaGsmXLKu23qH5PLS4ZC8i/nHXlxi2MnP4rPvvUFce3b4RFqVIq12POIiIqWKampti8eTOaNGmSq2wif6FRQEBAAdc+/2mSHd6/f18s27j1CrsCr1+/xoABA2BrawtTU1PUrl0b165dy3ablStXwtXVFaampqhevTq2bNmS7/Wa9c9DTPe/j9FffgIr48LpEz175Qa6DPBE1apVlDr6CorQdJiWIdVo6E6vb3vDd8l8tT81qlTOVT3Y0Vc09OrVC3379kVUVBR++OEHpeVjx47F8+fP4e7ujlGjeLUbUXFkaGiILVu2wMjICAsWLMClS5cUloeEhGDy5MmQSCTYtGkTLC0tC7yOY8eOhYmJCSZNmqTVdgX93Lp37w59fX3s3btX7TrW1tbile3jx4/H06dPFZb/888/WLp0KUxMTLB582YYGGieSYSMNX/+fACyhrisGat+/fro0qULNm/ejFu3bhVIxqLc0VXGoqKBGYuoZPnss8/wyy+/IDU1FQMHDkRaWprC8rlz5+LKlSuoXr065syZU0i1VFYUM1bPnj2RmZmJAwcOqF2nMD5DX79+jX379gEAhgwZotSWlTVjAQXTllVYrty4hbbfDkKt6tWy7egrqpiziKik+/LLL/H9998Xu2yiKzllhzlz5hTL71+F2tkXHR2NJk2awNDQEH///Tfu3buHP/74AzY2Nmq3Wb16NSZPnowZM2bg7t27mDlzJkaMGIHDhw/nW72Ejr7fWrpi2Beqh93StaLQ0ZeRKUVssuwP387MiHP0EQDZF5Ry5crh6NGj2LRpk/j4sWPHsHHjRlhYWMDHx0e824SIip/atWtjxowZ4pVdSR/m8RB+T0xMxIgRI9CqVasCr9upU6dw584ddO/eHba2tlpvX5DPzc7ODs2aNcOlS5cQGhqqdr327dtjyJAheP/+PTw9PcW79ITfMzMzMWvWLLi6umpctnzG6t+/PwCgb9++KjPW999/D6lUimHDhuk8YxGResxYRCXLzJkzUatWLdy8eRO//fab+PitW7fw66+/Ql9fH1u2bIGpqWkh1vI/RTVjff311wCQ7cVTQMF+hgo5S19f1kYye/ZslW1ZQsZaunRpgbRlFZbi3tFHRPSxGDVqVLHKJrqWXXbYs2dPsfz+VaidffPmzUPFihXh4+ODBg0awMXFBe3atcMnn3yidputW7di6NCh+Oabb1C5cmX07dsXQ4YMwbx58/KlTvIdfdOaV8+XfWqrqHT0hUQlID1T1uBoqF8wh0rAhcuQOFZV+HGsURtffPEFHGvUhsSxqsrtHvz7GJ5jJ8KpQQsYu3yK0jXro3Wfgdh16JjK9WfMmAGJRKJyHgNfX19IJBKVc8M9e/YMEolE5dB04eHh2LJlCzp16gQXFxeYmprC0tIS9evXx7x585CcnJztcx80aBAkEonaH1X1EbYpyCGbSpcujXXr1gGQXSH58uVLREdHw8vLCwDwxx9/qB26Lz09HUuWLEHt2rVRq1YtlClTBj179kRwcLBO6rpp0ya0atUKFSpUEN8PV1dXjB07VunuGQB4/vw55s2bh1atWqFSpUowNjaGtbU1mjZtirVr1yIzM1PrOgjvnyre3t7icnXv4ZkzZzBq1ChUqFABxsbGKFOmDL744gt4e3sjMjJSXC+74/bUqVMwMzODubk5zpw5o7Kcli1bZnv8Za2fumMvLi4OM2bMQN26dVGqVCmYmJigatWqGD16NN69e6dUbnb1BmRD+kgkEqV5QQDZ8bRhwwa4u7ujdOnSMDY2houLC7y9vfHy5Uul9QMCAiCRSODu7q6yLEA2vrhEIlEalkDd4wDg7++f7d8pADx69AhDhw7FJ598AhMTE1hZWaF58+bYtm2b2npUq1ZNvPpZlRcvXsDAwCDbYywvJkyYgAYNGuDRo0fieO4LFizAxYsXUaVKFaXzrvBePn/+HADg4uICiUQiPo/8GuphxYoVAJCn+Tu1fW7y7t27h969e8POzg6mpqaoVasWFi5cqHaYq549e0IqlWL//v3Z1mnhwoVwdnbG2bNnsWzZMgCyO/2ePHmCpk2bYuzYsQrrC+cxQda/2SlTpogZy9HREQBQq1YtlRmrc+fOsLOzw6VLl+Dh4aGzjEWFS1XGyvqjSlHJWMuWLYOXlxczVpbXx9nZGZ6engCAzZs3i8+pWrVq2Z7vNBUVFQUPDw/Uq1cPZcqUgZGREcqVK4cmTZpgx44dSE1NVdrm9OnTGDlyJOrWrQs7OzsYGxujQoUK+Oabb3D16lWt65DdcZOSkiKeZ9SdCxMTE7FkyRI0bdoUNjY2MDY2hpOTE7p27Yo///xTYV1153upVIohQ4ZAIpGgYcOGiI2NVSpHyBmqfoQ6ZqWu3jdu3MCAAQMU8miTJk2wbt06lecbITeoOtfmlH9CQ0Mxbtw4uLq6wszMDBYWFvjiiy+wYsUKpKenK62f09+Gur/l7P7GAdkctsJrpS4z7NmzBx06dBCPRUdHRwwYMAD37t1TWw+JRAILCwvExcWp3Ofs2bNzzHG5ZWRkhC1btsDQ0BBz585FUFCQwtX0EydORIMGDdRuv2XLFnzxxRcwMzND6dKl0aFDB5w7dy5f6yivMDKWuvwo/AQEBMDJyQlubm7w9/dHTEyM2rLz63uqiYlJjt9Thbasbt26AQDKlCmjsi1LyFg7duyAj4+PTtuyCgs7+mSKe84q7m1ZObUrAOrbFu7duwdvb280adIEjo6OMDIygq2tLdq0aYNdu3ZpXRf5809OP+qev5+fH0aMGIHy5cvDyMgIZcuWRY8ePXDx4kWV68vnifXr18PNzQ3m5uawtrZGp06dlO62lqeuXWXYsGEq21UEr1+/xi+//ILatWvDwsIC5ubmqFatGgYNGoQLFy4orZ+UlIQ//vgDDRs2hLW1NUxMTFC9enVMmDBBoW1LkF0bTGFkm2rVquU62+iijSm3cpNN3N3d0bJlSwDA2bNnFY7h/Jq6Jbu2P6GzTd1nX14UZHYoKIU6Z9+hQ4fQvn179O7dG2fPnoWjoyOGDx+u8tZJQUpKCkxMFO/uMjU1xZUrV5CWlgZDQ0Ol9VNSUsTfhZB/9OFbvHuforBuwLNw+D2NQGsXOwCyjj/zMuXRqH46whJSYKCn3OEVnpAi/hsaLzsBJqbJvoDFp6aLj2nq6o1b6O81FFWrfIIdG9YiUWKIRDX7yG05quosTyqVzdGXliGFsYEektMzcywj40OnYPSHiZbVSU2XdZbEp6SrfL0iEmUNBmXsbNGkcWOkZWTCUF8PhnoS7D5wCACU9n864B8MHT0OySkp+MTFGR3btEFEVBTOXrqCM+cvYv/pAMya4Q1AdpcEIPvSL/yb9aQirJOSkqK0LDo6GgCQmZmptGzPnj2YNWsWypcvDxcXF9SrVw+RkZEICgrCpEmTsHfvXhw4cADGxqrnfxSO0y+//BIuLv/dUfr06VNcvnxZrE9qaqpYtrDN+/fvVZ4cc0N4bbLTtWtXDBo0CL6+vhg8eDDKlCmDN2/eoEOHDmr/fjMzM9G7d28cOHAARkZGaNCgARwdHXH58mU0aNAAgwcPzpf6yzt9+jSioqJQp04dWFtbIykpCZcvX8aSJUuwadMm8fZ0wdatWzF9+nS4uLigWrVqaNKkCd68eYOLFy/i/PnzOHnyJPbs2ZMvHSuPHz/O8YvdqFGjsHz5cgBA3bp10axZM8TGxuLhw4f49ddf0bJlyxwb8k6dOoVu3bpBIpHgyJEj4glanZ49e6KU3Be0wMBAPH78WKPn9O7dOzRv3hyPHj2CiYkJ3N3dYWVlhQsXLmDZsmXYunUrTp8+jc8//1yj/WUnPj4eX331FQICAlCqVCm4ubmhTJkyCA4Oxo4dO3Dy5EmcOnUK9erVy3NZ2UlLS8OIESOyXWf37t0YOHAgkpOTUaNGDXTq1AmxsbG4fPkyvvvuO5w5c0Zthx4gm99E1d/HihUrNJ5HJTf09fWxefNm1KtXD0uXLkXVqlXh7e0NPT09bN68GWZmZgrrV6lSBR4eHtizZw8SEhLEYykuLg6WlpYoV65cnuuUnJyMEydOwNDQEM2bN8/1frR9boLAwEB06NABCQkJqFy5Mtq2bYuIiAhMmTJF7ReoHj16YNSoUdi7d2+2x4pwxVirVq0wefJk6OvrY+3atTA3N4evry/0smSQunXrwsPDA5s3bwYg+yIh78yZM+jUqRN69+6NY8dkjQVnz55V+WXB0NAQ7u7u2LNnD169eqWwLLuMBcjOQ/KN/ULOehjxHqWMso+ZUitDGGRIkZiWiQw1Uw4mpWeI/yZ8yAspGbIskZymu+M/L2WoqnNeyhDu9EzJyMx2f0IWS5VbT74MoV5l7ezQtkVThW237z0AAEr7P34mAAOGjUZySgqqVnbBV+3bIjzyv4x11P8frJo/W3wOycnJ4vGQmpqKhIQExef8Ibekp6crLRPyh1QqVVp26NAhjB49Gvb29qhatSrq16+PiIgIXLt2DZMmTcL+/ftx7NgxtRlL+FLfqFEjVK783zBcT548wcWLFxXqk5GRgYSEBHGblJQUpfrklvDaZDfHprYZq1evXrh06RLOnz+PTz75BE2byt7buLi4bDsRNBUVFYVdu3ahdu3aaNKkCczNzfH27VsEBgbiwoULuHjxIv7++2+FbX788Ue8fPkSNWvWRJMmTWBgYIAHDx5g165d2LdvH3bu3ImePXvmuW6ArBMhJCRE7fKXL1+iQ4cOuHfvHszMzNCkSRPY2tri9evXOHfuHIKDg3Hq1Klsy5BKpRg6dCjWr1+Phg0b4sSJE9kOQWhvb48OHTooPCZ8Vmti165dGDBgANLS0lCxYkV0794d8fHx8Pf3x4ULF7Bv3z4cOnQIRkZGGu9TnX/++Qfdu3dHdHQ0nJ2d0bZtW6SkpODKlSsYOXIkDh8+jCNHjqj8/M9PgYGB2Q5nmJ6ejv79+2PXrl0wNjaGm5sbHB0d8ejRI2zfvh379u3Dvn37lF53wfv377Fp0yaMGTNG4fG0tDSsWrUqP5+Kknr16mHq1KmYMWMGBg4ciI4dO+L27duoU6cOvL291W43evRoLFu2DHp6emjatCkcHBxw+/ZtuLu7Y+TIkflez8LKWOryo0DIjz179kRQUBAOHTqEgQMHqi0/P76nuru7w8bGJtvvqUJb1u7duwHILuJMS0tTKkM+Y4WHh2vVlgUU/Zx17eZtfPXdYHxarSr2+q6DnrFptllFfF65zFmaZixtyijqOWvR7F9lZXzocNNVzpo1axYcHBxQuXJlneUsIWPJb5NfOUv+uWs7l/miRYuwceNG1KhRA7Vr14a1tTVevHgBf39/+Pn54dKlS1i0aJHWdTI3N0evXr1ULsuunWX8+PH4448/oKenh/r166NZs2Z48eIFDh48iMOHD2P9+vXihV5ZjRs3DkuWLEGTJk3QrVs3BAcH4++//8apU6ewa9cu9OjRQ2H99+/fo23btirbVdasWYPdu3erbFfx8/NDr169EBMTg7Jly6J169YwMjLCs2fPxAupGjduLK4fGhqKDh06IDg4GKVLl8YXX3wBCwsLXL9+HQsWLMDu3bvFizvyqrhkG3U0aWPKK22zSYcOHWBiYoITJ04o5Vw7Ozud1jU6OhoTJ07UaRnqskOzZs3yNTsUlELt7Hvy5AlWr16NcePGYcqUKbh69SpGjRoFIyMjpUYrQfv27bFhwwZ0794dn3/+OYKCgrBhwwakpaUhIiJCaTLFuXPnYubMmUr7OfjoLQ4+equyDL+nEfB7Kpt418kpEa6eaTBIUL5qFQDCP3ROhSemKnVCxaekIz5F+YoBde7evYsRI0bgk08+wZKlyxAv1Ue8Bp142paTXZ2zSpbrnMuujIwPJ9OYHDr7hDCkqvMwPiUdYe9lQ31UcnLG1On/U1iuqrMvMjISI8ZPRHJKCoYNGwZPT0+xI+bevXsYOXIkdu7dj8rVXdGjRw+Eh4cjPDxcvCIwJiZG6Q6v8PBwWX3i45WWCcOwpaenKy2zs7PDpk2blCY4jYuLw9SpU3Hp0iXMmzcP3333ncrXRgju7du3R9euXcXHDx8+jMuXLyvUR/g3Pj5erLOqO9VyQ3ht3rx5k23jyciRI3HixAmcPn0aAGBpaYkpU6ao3Wbbtm04cOAA7OzssGXLFjg4OMDMzAzp6emYNWuW+EU7Li5OaR9CR+a7d++yrVNWq1atgrW1tcJjGRkZmDBhAg4fPowFCxYonDRcXV1x5MgRpUlX3717hx9++AH79u3D8uXL0bFjR3FZYmKiRnXKuo6XlxdSUlLg4OCA0NBQpee2ZcsWLF++HNbW1liwYIHCxLiA7BZ7PT09cRvhrjn51+/8+fMYNmwYJBIJ1q5diwoVKqitqxC2f/rpJ/EuIACYOHEiHj9+rFQ/4XiVf/yHH37Ao0ePUKFCBfj6+qJSJdkE52lpafD29saePXvQrVs3HD9+XGygUlVvVfV6+vSpwnjiP//8szhB8Jw5cxSGGlq3bh0WLlyIr7/+Gn///bc4vI7QiZGUlKT2dRCGG3r16pXCOlkfF9739evX4/79++L7mPV5PHz4EAMGDIBEIsHy5cvRvn17cdnr16/x448/wsfHBzVq1FAI3kJ5DRs2xKVLl/Dnn3/iiy++UFi+bt06NGrUSLy6T5u/DUFmZma22+nr62Ps2LGYO3euGDi9vLxQpkwZpe3s7e0xdepUnD59GgkJCRgxYgQqVKiAxMREsWEn6/EaGRmpVb0vXLiAlJQU1K5dW3w/tf0yJ6hRowbmzJmDcePGic/tl19+UfhSIi85ORn9+vVDQkICxowZg4ULF4rH1u3bt9G6dWtEREQobefo6IiGDRvin3/+QURERLZhWGjAW7ZsmdiQN3/+fJV343Xv3h3du3cXG5CzXoVoYmIiZqwBAwZg3bp12L59O9zd3VVmrMaNG2PPnj04ceIEgoKCNMpYgKyhffbs2UqPDzlyU+3zFDg5OWFNq8FIi1b/Bf9pdKL4r3F4vOKymJwvTsmr3JSRXZ1zU0bah8al0Phk3M9mf8LFUxGJqUrrPY1JxNMo2cVMFZ2cMGbSVIXlQiOU/HaRkZEYNGp8thlry669qFCluvj59fTpU/HvICIiAvfv31coR8hRMTExapelpaUpLbO0tMwxY82cOVNtxhIu1mrbtq1Sxrp48aJSfe7fvy/modDQUKX65Jbw2iQlJeHRo0dqLx7SJmMNHToUZcqUwfnz51GnTh1MnSp7b4XPXvlthHOqNp+7GRkZuH79utJ8oaGhoejRoweOHz+OY8eOoWrV/+5YGDduHBo0aAArKyuFbU6dOoXRo0fDy8sL1apVU2r0ViUxMVFtVnj16hVmz54tnoOzPrfMzEz06tUL9+7dQ9OmTbFw4UKULl1aXJ6SkoKLFy8qZLms53upVIrp06dj165dqFu3LlatWoV3796pHK1AuDPJ2dlZfB8Ewme1utdeeDw0NBQeHh5IS0tDnz594O3tLTZGvXjxAoMGDcKJEycwevRojBs3TtxeXX4RHhPWkV8WHh6Obt26ITY2FjNmzEDfvn3FC0uio6MxevRonDx5EuPHj8dPP/0kvh+qMqCq8tLT05XeL1WPp6enw8vLC/r6+rC1tUVYWJjS81i0aBF27dqFzz77DIsWLULFihXFZcePH8fYsWPRt29f+Pn5iR2xQnkODg4wNDTEkiVL0KlTJ0gkEvE9P3LkCEJDQ8U8pS6PqpNdnpE/rvr06YPdu3fj7t27uHfvHgwNDfHbb7+Jx0xW/v7+WLZsGczMzLB+/XqFDLhmzRqx0TkpKUnpu0h+ZiwgdzlLm4zVtGlTNG3aFAEBAUhISBBHOsiqZ8+emDJlCvbu3ZttZx8ALFmyBH5+fuJnqLW1NTZs2KB2/dWrV+PAgQOwt7eHv7+/OGx6eno6Ro0apbJDWGjLEt6bli1bqm3LEjKWlZWVVm1ZQNHOWfLtV7//sRivkqRAUs65R5sytKlvbssoLjlLaO8p7jlL+De/c5b8c4+Li1OZs9S1LbRs2RLffvut2H4hePLkCQYNGoTFixejcePG+Oyzz8Rl2bUDCZ+h1tbWSnlAoK6d5a+//sIff/wBJycnLFiwAHXr1hWXXb16FUOGDMHQoUNRoUIFlZ+Vq1evhq+vLxo1aiQ+tmHDBsyfPx8eHh4oX768QtvJ1KlT1bar+Pr6Ys6cOUrtKm/evEGPHj0QHx+PIUOGiJ99gsjISDx9+lR8XgkJCejbty+Cg4PRq1cvTJkyRbyoIz09HQsXLsSmTZvQt29fhc4xbbKN8H7kJtsAqtu3VJWXn9lG1fNLTEzE1KlTs21jyklOOUB4rbTJJj179kSFChVw4sQJODk5KR3Xqp5X1r+znKj7+5wxYwbCw8PF10N4Xpq2xWranqzq+9e0adM0buOuUqWK+Dw0beMOCwvLsf65UaidfZmZmahfv7446WO9evVw584drFmzRm1n3/Tp0/H27Vs0bNgQUqkU9vb28PDwwPz585WuegeAyZMnK3wRiouLQ8WKFdGiUml8Wlb2ReBaaAyuhsbgCwdr1HewVtjeyt4BpYwMYGNiCAM95S/k70xkX75sTAxRxkz24Rafmo7k9EyYG+rDzFCzee6u3bqNESNGoEqVT7Bt/RpYmJvnuE1uylFXZwCQAohNTkN6phRWJoYw1JNoXIbeh5OohZGBwj6zEoYDNTPUV/l6mevL9mNgYKC2TPn979xyGO/fv0ftmp9i4k8/KqzXon5djBzqhdkLFmH7tm3o0aMHbEwMYf3hBwCsTQzhYm2mcv8SCWBsoIdy5iYQ3nr997Ixiw30JErbWVSvivjUdLEMkbUZlvw6HQ3bdca5gDP438ihql8bqSw8lrc0h4u1GTKlwNuEZAj5xMLIABZGBgplWHy4mq+MmZFSfXJLeM0tLCwUGm5UGT16tDh5+6xZs9CsWTO16wpX9/z222/o2LEjQkJCxP1v3LgRZ86cwdu3b2FpaalUrhA4hCv6NSVfhkAqlYodgLa2tgrL1e27atWqWLp0Kdq3b4/AwECFiVlVlaFuH4L9+/fjn3/+QdeuXVG6dGls3rxZ4bmlp6dj7dq1AGSvTe3atZXKyPq7vb09AIiv36lTpzB8+HDo6+vj6NGjSp2FWQl3iFWrVg0ODg7i40KDSdbXPuvj//77L86ePQsAWLZsGVq3bq2w/82bNyMgIACvXr3CrVu30K9fPwAQr9xKTU1V+ToKjYsuLi5imL1//z6OHDkCBwcHHDx4EBYWikMdDxkyBPfu3cOxY8fw77//okuXLgBknWuA7Apade+ZMC55hQoVFNbJ+nhISAhMTU2xatUqODg4YPLkyRg5cqTS8Tt9+nSkpqZi4cKFCmESkL2HW7duRYMGDbBr1y5MmDBBqbyxY8di4MCB2Ldvn/iaAbKGntjYWEyaNEkcPkibvw2Bnp5ejtt5e3tj1apViI2NhYODA1asWKH2qk5A+T1T9TciHK9Z/wZzcvDgQQCyvCBsl5GRgRs3bmi8D3nDhw/HzJkzxecmP2Z9Vnv37sXLly9RsWJFzJ8/X/yyA0BsYM861Kbg66+/xsWLF3HgwAFxOAh1Jk6ciBUrViAzMxNubm4YNmxYrp6bfMYShrpo0aKF2oxVs2ZNALJjT9OMBcga7+SPXSFnTW1WDa5lsh+G3MjWHnZmRnC0MIGRmuHC4z7M1etgYSKe596npiM8MRUOFiYw1tEw43kpQ1Wd81KGkD9zOtebGMiOSflsI1+GncmH87uJsdr9yD++b/sWvH//Hp/Vqonfxil+frk0ro9nw4fC+/cF2Pnndgzp/w3CE1PhYm0Guw85ys7MSOkYCPrw2libGCotM0uWZV9DPYnSMtcydRD74YIyF2szmAj5sIwFVs/xRr1WHXH+rD/mjBuu8nkZS2QXmzmVtlDYd9b6yJchZDkHC5Mcj2VN2cllWEdHR5hnk/e1yVhZMwCgOp8In8+5OV9kZW5uLjaiubi4aJynAgMDsWPHDrx8+RKdOnXKsZyQkBCVzw+QXfmenJyM5cuXi3cKyi8/ePAg7ty5g/Lly+Pvv/9WuFtIUKtWLYXXSv58X6VKFQwdOhS7du1Co0aNcPz48Wzv6BOu0FeVZeVfg+we37x5M5KTk1GuXDn4+voqzJdStWpVLFmyBL169cL27duxePFiscNUmCdMGD5dnrr8s3HjRsTExOCnn35SeRX3nj174OLigh07dmDJkiWQSCQICQlRmw0FQuekgYGBwnJ1jy9evBgPHz7EyJEjcfv2bYSFhSnksKioKGzevBkmJiY4evSowkVpwuvy4MEDrFq1ChcvXhTzllCeoaEhxo0bh9GjR+PRo0fo0qWL+J7/9ddfKFeuHAYNGoSLFy9m+96pkl2eyfo3OH36dPTt2xeArEHpq6++Urvf4cOHi+vJ5z9ANpzUmTNncPPmTZiamsLMzEyhnPzMWEDuc5Y2GUsT1apVQ82aNXHy5Em8f/9e5d+zwMrKCiNGjBA/Q3/99Vel40bekiVLAMgaFOXnRzYwMMCiRYuwf/9+vH2reKG4kLNat26NwMBAuLu7w9LSUmXOEjIWAHTs2LFE5Kzrt25j5E8/oWb1qvhr4zpYlMq5/UpebnOWphlLmzKKes7asV3WliXkH13kLAcLV+WMBeRrznKwMFEoI79zllCW0EamKmepalsAsj83z5w5E0OHDsWVK1cU7tLLrh1I3flOnqpzaWZmJlavXg1A9t0z6zmpatWqeP36NSZMmIATJ05g4cKFSvv98ccflS6ImDdvHs6cOYNr167hzJkz4hDL9+/fx/Hjx9W2q8yePRs3b95UaldZtWoV4uPj0bVrV7HdKuvr1rBhQ/H3jRs34vr166hbty527NihdAHZ+vXrceXKFVy6dAkpKSmoVasWAO2yjfB+5CbbAOrbvQT5nW2EugOKbU/nzp3LsY0pJznlAPljV5tsokl7mvzzyvp3lhNVf59BQUHYuXMn6tWrh86dO2PWrFni89K0LVab9uSs37+yfseRl7WNW56mbdxly5bNsf65UaidfeXLl8enn36q8Jirq2u2Ey+bmppi06ZNWLt2Ld69e4fy5ctj3bp1sLCwQJkyZZTWNzY2Vtko2f+zSvjhc2fM+uchroY+UztHX3IpWzw1NYSjpYl4cpcX+eGEUt7CBE4fTtzPYxKRnJ4Kqw8ntJycvXIDg374EdW0nKNP23Kyq7MwR1+mFKhhZwFzI32tyhACkp2ZkbhPVUwMZCHL2sRQ5euVnia769DCVP0JX37/Nz988fihb0+V5Y737I/ZCxbh+YsXsisBKleErZmR2KFlZqgP2yydk0KHpIGeHj61s4C+XCdvvKnsg1xPIlHa7n1qOmKSMnDt2k08unsHb8LCkZScDKlUCuGCyMdPnyltJ0hLkd2xaG9dCtYmhrI5EzOkKF9K9robG+jBxEAP8amA6Yd6G394PUsZGajdr7bUfRHIKiwsTCFc7Nq1CyNGjFD5ReX169f4999/AQADBgxQWm5iYoI+ffqI81Tlt5kzZ+Lp06eIj4/HtWvX8OLFC5QrV078Ii0vJSUFJ0+exNWrVxEWFoaUlBRIpVLxLsqHDx/mqS6JiYkYO3YsTE1NsXTpUpV3HgcFBSE8PBx2dnbo0aOH+NppShi6MykpCfv378+xow/4b1iQ7DpxVNmwYQMCAgLEsdytrKzQvXt3pfXMzMzQuXNnbN68Gf7+/mLDRY0aNQDIxlx/9uyZRmHg2LFjkEql6Nixo1IgFbi7u+PYsWO4cOGCGErz29ixY5GQkIANGzaonMcgMzNTHNrsm2++UbmP+vXro1SpUrhx4waSk5OV7nIoW7Ys+vbti23btokdTYCsQ7Vy5co6e27yZs+eLc5NFBoairNnz6Jdu3Y6L1cV4So1+SsO80Kb5yaMpd+nTx+VQ354eHio7ezr2bMnfvnlF+zbty/Hzr5JkyaJ84MGBwfj7t274hcebajKWOXLl4efn5/K9YXX1MTEBG/fvtUoYwGyzwxVd+e0+6QsmjtlP6RHcilbPDXUh42pocqMBUDh4hz581x4oiw3mGtxsZO2cluGujrntgzhgqqczvWGHy6YyppthDKEi4pKmRqr3Y/841euBQEAvv/ma5XrjxrYF96/L8CTZ88RHx0FGJeCiaG+mCOM9PWUnpexmLEkSsuEbCaRKC8DgITkVFy5cgUHHz9EZESEUsYKefJU7euY8uEKU5tSZgrrZK2PMNSXiaG+mG2NVTyP3NJFxioor1+/xtSpU5GZmYl3797h3LlzSEpKwrfffqvQOC4IDQ3F0aNH8eDBA8TGxopX6969exeALE9p0tmnztGjR8Vh9L7++muV6xw/fhwA0K9fv2w7BlSRH7qzYsWKOHHihNrMIRCuZNY2SwH/zZHm7+8PQHauke/oE3z99dewsbFBdHQ0goKC0KRJEwCyPHXixAls2bIFPXr0ULggRZ2jR48CUJ9RHB0dUbVqVdy7dw8hISFKI1/khzdv3mDGjBmwt7fHb7/9Jl7AJM/f3x9JSUlo3bq12g4bd3d3rFq1ChcuXFC6uAoAPD09MW3aNCxbtkzMTpcvX8bly5fh7e2dL0OiZicpKUmh0fHQoUP47bffVA4bnp6ejsDAQACqvzcBwMCBA3Hz5s18rWNhZixN9ezZE7/++iuOHTuGPn36qF2vIL6natOWJbym4eHhWrVlAUUzZ125cQu9PH9A7Rp5m6MvNzlLm4ylaRlFPWc9fS5ry3ItUxnmOspZyWkZyMjIwMUrV3Djxk2VbVl5zVnC/00M9WGug5wl7F9fxU0amnj//j3+/vtv3LhxAxEREeJwqW/evAGQ93YgTdy4cQOhoaH45JNP4ObmpvKOImEaF1Vz4gHKUzsIBg4ciGvXriEgIEDs7Mttu4qQr4YMGaLR8xK+R/fs2VOpow+QXYDcvHlz3LlzBxcuXBC/+5bkbKPOnDlzsm1jyk/aZJPCkJmZieHDh0MqlWLlypU4ceKETstTlR3U5ZbCbuPOSaF29jVp0kTpA/PRo0cajdFraGiIChUqAAB27tyJLl26aP0FeNY/DzHd/77ajr6CcPbKDXQZ4ImqWnb05Sehoy8pLQPVbEuJHX0FLT41HU/fyobQLG9ro9E2rz9cYedSsYLK5dZWlihtbY2omBjZ7bGVK6pcT5CQmoG3H+ZytDQy0CooPH3+HN//NAZPnjxRu05c/Hu1y16/ffehztYK78ctDRqGPMdNguc42dUH+vr6sLGyRL1an8Lr2z7o81XuG1KyM3ToUERERKB79+64desWAgMDsWTJEoU7aQXCre12dnZqG1vk5ynMb4cPH0ZQUJD4u7u7O7Zs2aIwBBAAXLp0Cd988w1evHihdl/C7f25NWvWLDx//hwzZ85U+5yF2+arV6+u9fyA165dw65du8QGp23btqnsfJOXlpaG9+/fQ09PT2nIrZycP38e58+fF38XJtVVRXi9hSuCANm8Y23btsWpU6dQt25duLu7Kwy9qmpYROFvbOPGjdi4cWO29ROG5ZUnTCicF4GBgdizZw9atWqFvn37qpzIOTIyUjxesh5rqkRGRqpsxBo9ejQ2b96MlStX4vfff8fJkydx//59cRx/Xbp27Rrmzp0LQ0NDDBkyBCtXroSXlxeCg4O1Plbyg9BolN2dFZrS9rkJn2Pq/m5tbGxgZWUl1lGeMI+rn58fYmNj1b52Bw8exNatW2FtbY3u3bvD19cXHh4euHz5ssovRtlRlbHevXunNmMJr2l0dHS+ZCwqeiKjYwAANhr+7WqTsd68fQsbpyr5Uk9VQp48w1eDh+FBiPqLXzTJWLY21lqXXdQzVkGJjo5WmHfO0NAQI0aMEOcWljdz5kzMnj0726F78pKnkpOTMWrUKBgbG6ssXyDkKeHCIm1MmDAB165dAyCb9y8gIEBhaDJVhCF5hCvRtZF1Tj915xqJRAIXFxdER0cr5Knhw4dj/fr1OHz4MGrVqoXPP/9cvDAl6x1JAiFPZXfXqCA8PFypQczT01PtnEGa+vnnnxEXF4fly5erPTcK9fTz88sxv6nKfYBsxBJPT08sX74c9+/fh4GBAZYuXQojIyP8+OOPYsOlrkyePBkPHz5Eo0aNIJVKcenSJUyaNEllI1BkZKTYwKfuONDF96bCzFiaEjr79u7dm21nX0F8TxVylpCXAPVtWfIZC8iftqzCcuXGLbT9dhBqVc9bR19JpMucFRYWBnxaWeV6+eHxs+foN/SnPLdlFYWctX3vAXHYVE0dPnwYnp6e4nlclby2A2lCeP0fP36c6/NdTucN+WGac9uuom2+Ei4Mnz59OqZPn65xOcOHD8eGDRtKZLZR5eTJkzh+/Hi2bUz5SZtsUhg2bNiAK1euwNPTE40aNdJ5Z5+q7ODr64u5c+cqrVvYbdw5KdTOvrFjx6Jx48aYM2cO+vTpgytXrmDdunVYt26duM7kyZPx+vVrcdzeR48e4cqVK/jyyy8RHR2NRYsW4c6dO1pNeg4ARx++wcFH79jRV0Q6+gDZnH3JsbIA7FBON7eyZichNQOPIt+LV0pp2xcwbMx4PHnyBG3cW+B/o4bi06pVYGlRCoaGhkhNTYWxS02122ZmZuLpyw8nXcvSWr8fTb5wQ5X/s3fvYVHW+f/HXypyEEVUUMEU6YDhZpqhZVhpWbalVlu239LSDv4qO9h5c7NdTbeysjW30nW3tLJ22zRb07TMTS3TFAvTJDQFTEAFBTmIw/H3xzgMyBnmnvkwPB/X1XUFzMz7Ht/c8Obzmrk/ve3XFz9pK9TPv+zT2o2btHbjJiXu269nH636CtemeO+99/TJJ5+oa9eu+sc//qGdO3fqyiuv1LRp0zRq1ChLXh3TFI7FmoyMDH311Vd65JFHdPnll+vzzz8vfzv1iRMndMMNN+jw4cO68847df/99+vss89WUFCQ2rRpoz179qhPnz6N3h9Msv/8mjNnjs4++2zLNpj96aef1K5dO3322Wd6+umntWzZMr311lu6++67a7yP4/r2oaGhDQ4UFi1apIkTJ2rZsmU1bj5dl+XLl+tPf/qT/v3vf2vFihV1/hs73vU0YMCAStfNd8jJySn/o/qiiy6q8vXTNxSuaM2aNdXuw1NRYWGhZs6cqbZt2+r111+v8zilml9hV1FN7wS44IILdOmll+qf//ynpk+frtdee02BgYG19tQVbDabJkyYoOLiYj333HOaNm2adu/era+++kqPPfZYnX8QWMERBDf1jy1PPLebbrpJP/zwgz799NNqX/2VmZlZ/urIefPmaezYsdqyZYu+//57vfDCC3X+YXS6ijPWsWPHJNlfVfn222+X36bijOVY5PPz89PevXubNGPBTI6FGE/MWE118/97SD/v/UVDhw7Vsw/fpwujoxo1Y0XW44UXp2PGsjvvvPNUVlam4uJiHThwQAsWLNDLL7+snJwcvfPOO+WLUh9//LGmT5+u9u3b6/XXX9cVV1yh8PBwBQQEqFWrVvrjH/+oF154oUnz1Isvvqj9+/dr2rRpLrkkaXXi4uJ00UUX6dlnn9X111+vu+++Wz/++KO6d+9e430c4VvFy6HXl+PfY/To0Vq5cmWD7x8VFaUPPvhACxYs0Ndff62ff/65zvs45pSbb7651kvKStW/2ys2NrZ8f5KK8vLyar1Sj8P69ev1r3/9S5deemmte7A5jvPss88ufydjTWpbeHzooYf0t7/9Ta+//rpuvfVWLV26VLfcckutPXWFDRs2aN68eQoICNDixYtVWlqqCy64QK+//rpuuummel2Bwx2aw4x1/vnn6+yzz9Znn31W7RUxJPf9DHXMWY53hW7evFlLliypdi3LsQVEhw4dtGTJkiavZXmKCUFf/gnr92turOY8Z931kP1F67+9cpimPvD/Gr2WZcKcdWZEL0Wf10/BwcFV1jaWLl2q/PzKe1impqbq97//vQoKCvTUU09p3Lhx6t27t9q3b6/WrVvriy++0MiRI5s0t9SX4/dd9+7dNXLkyErrGqerbR/42lR8HnWtq1RU3bpKfTnqDB06tNq96CuqeNnjqKgoffPNN5o6darXzTanKyws1EMPPVTnGpOrmD6bHD16VH/84x/VqVMnzZ492/J6Nc0Oc+fO1Z133mncGnddPBr2DRo0SMuXL9fUqVP13HPPKTIyUnPnztW4cePKb5Oenl7pXTYlJSWaM2eOEhMT1bZtWw0fPlzffvttg64DK4mgT+YEfY6Njjv4+ejXlGRJ0m+i6veHe4/u3fXzL/u1/8Cv1X79eE6ujp3a+LemS2NIzqAvoG0bdQts+KV3fv5ln37es0edO3fWW6/PVa9OlQffvUnVb77ukLB3n3Jy8xTSpYuCu4Q2uB/33DpWE39/U6XP/f29f+m+p/+k2W/+Q08/eG+1l52rzsniklq/XvEPlr///e8KCQnR8OHDNXnyZL3xxhu688479fXXX1d6daLj3UqZmZk17rGQnJxcr+NritDQ0PLLIo0ZM0Z/+MMf9PHHH0uSNm7cqMOHD2vgwIGVFsMdGrIhbk0efPBBFRYWat68ebVe4smxMfSePXsaPFS2a9dOn376qa644gpFRETowgsv1JQpU3TZZZfVuCC2e/duSZUHq4ZyvHMtOTlZZWVl1b4SzfHql9PfvRYYGKg5c+Zozpw5Ve7Tu3fvKhsEO2rFxsZWOwjVde3uc889t8ZXSQ0bNqzOsO/ll19WUlKSnnrqqWovXeYQEhKigIAAFRQU6JVXXmn0QC5JDz/8sMaOHavp06dr9erVuu+++yx/Z51jcebCCy/U1KlT1apVq/KN299++22NHTu2xtDUKo5rmtf2qsv6aMxzc3zf1vSzKjs7u9p39Tn87ne/07Rp07Rs2bJqw77JkyfryJEjuv7663X77bdLsm+KHhsbW375j/PPP7/ez7HijOXY9P62226rccZy/JvabDb179+/STMWzLR7j/1dcVbMWGHdusmqC838/Ms+/Zjws0K7dNHLL7+sfmGdKl3uqb4zVrfQEPXsEdbg+q6cserSmBnL3Xx8fHTmmWfqpZde0o4dO/Tee+/p5ptvLt/j4z//+Y8k+yX8qru8U1Pnqf3792v27Nnq3bt3+WWoauKYp+qzOHS6iy66SJ9//rk6duyoP/7xj5o5c6YmTpyo1atX1/hqe1fOU7W9uyIpKUlS1Xmqb9++5ZcPr2j9+vUaPnx4tbX27t2rP/zhD4qJiWnwsd5zzz3llx+tKDk5uc4FsaKiIj3wwAPy8fHRG2+8UettHf8mffr0adKr3M8++2xde+21evfdd5Wbm6uioqJK+3BbIS8vT3feeafKysr0/PPPly8WzZw5U08++aTuuusu/fjjj5UWJLt06SI/Pz/ZbDYlJydX+/1kxd9NnpyxGuJ3v/udXnrpJX3++edVLo3mzr9THXOW48V3n376aY1rWY5/0y5durhkLcsTTAj6cvPy9OAzz7m9bn1ZOWfVtpbVVD//sk8//Wxfy/rX319Xx4DK6xTNbc4aEjNQjzz9jKKjo6uEPevXr68S9n366acqKCjQjTfeWG2o4Ip1oPpy/L7r0qWLFi9eXO89ySpKSkrSgAEDqnze8XOs4ruR61pXqUmvXr2UmJion3/+udpg7HRhYfbvi+uvv15PPPFEvetI9iDSG2eb07388svas2ePJk2aVOsakyvk5+c3eDZxt6efflpHjx7Vm2++aenPP6l5r3HXxOPXChg1apR27typkydPKiEhQZMmTar09cWLF5df31eyXwf9hx9+0IkTJ3T8+HF98skn6tOn4YHd9VHdWnTQJ0kHcgo8HvSl5Z5UvmN/lFZl+urbLZKkoYMvrNf9hw0ZLEl656Pl1X797X8vlSRFRvSqcePLikHfOZ0D1ZhLfB/Lsi/whoSEVPvOqCUf/7fW+3+0yn7pmIsvvthl/bj95hsk2V/9lnksq173Scs9qZPFpbXe5u6771Z2drbGjx9f6fKQs2fP1plnnqlvv/1Wr776aqX7nHHGGTrzTPtlJxybmFZks9n00Ucf1esYXcHxy8KxAC6p/J0vjoWh0y1ZsqRJNT/66COtXbtWN9xwQ5XNW08XExOjkJAQZWRk6JNPPmlQnZtvvllXXHGFJPuizyuvvKL8/HzddtttNV5O64svvpBkf6VVY11wwQXq1KmTjh8/ruXLq56PBQUF5ddPdxxfYzn+/VasWGH5dcxPl5KSoueff17du3fXn/70p1pv26ZNG1111VWSnIufjXXjjTeqV69emj17tsrKyvTQQw816fHqsmnTJr366qvy8/PTO++8U/5zrXfv3nr55Zcl2Qfh6sItxyucHfszudLAgQMlORdUG6Oxz83x6rb//Oc/1Z5LjisQ1CQ6OlrR0dH6/PPPq/yR+a9//UsfffSRunTpUmmT84suukhPPPGEioqKNHHixGrrOv74re7f2zFjTZs2rdJzcKg4Y+3atUuSNG7cuCbPWDBPUVGRZTPWOZG9Fda9mwuOsnqOGat71+rffV7XjLXsM/uMNfLyui/nU1+NmbHqozEzlmTtz93adO7cWVL181R1l7I7cuSI1q5d26SaDz/8sE6ePKm5c+dWu6ddRY5A4V//+leVn7t1eeGFF8pfVPOnP/1JF198sT7//HO99tpr1d6+qKiofL+9psxTjhmp4iXZK1q+fLmysrIUFBTUqEWsihzzVFNnlMaYO3eudu/erQcffFD9+vWr9bZXXnmlfH19tX79evul7JpgypQpysvL03vvvaeLLrpIgwcPbtLj1eXxxx9XUlKSLrvsMk2ZMqX884899pguueQS7d+/v8rVPnx8fMrfwfj+++9X+7jvvfeey4/VkzOWVP+fYzfdZA8FHC/YrMjdf6eOGjVK999/vyT7Pks1rWU5ZqzY2FiXrGW5mylB3zXj7ta+lNqDJ0+xcs46s3dEjWtZrtDUtazmNGdVp7a5paysrNqfC1YZNGiQQkJCtHv37vI9jhuqpt8Pjs879vyTGr+u4piv/vGPf9Tr9pdddpkk+5qY1e+QbC6zTUWONaYzzjhDDzzwgIVHaPfiiy82eDaR3Pf3xtatW/XWW2/pwgsv1L333mtpLan22aFnz57NYo37dB4P+zzluj4Nf8WJK5gQ9OXm2f/YtRWXejzoS8s9qcC2bVRUVKRn//KiMo4e07AhFymyV/3e/j9p3O8V1KG9vt/5k56fN7/SL44fdv2kWa+9KUn6f3dOrPb+hSWllYK+xm7mG3VWb7Vp00b79u3Tt99tq/S1T79Yp7/+Y1GN900+mKZ5b9sXiR+7+3aX9eOzdeslSYHt2imkc917hzj64e9T84+FhQsX6vPPP1d4eHiV6zgHBgZq0aJFatWqlZ599tkqe0U98sgjkqTp06dXeoV1SUmJnnjiifJLSbrK0aNHq/1j9ejRo3r6afs14Stuqu549cy6deuq3G/hwoX68MMPm3Q8jz32mNq1a6e5c+fWeVsfHx8988wzkuybHm/btq3KbbZt21bpeusOp7/a/IEHHtB1112nuLi4asOpL774QgsWLFDbtm2rfbdRfbVt27Z8UHjiiSfKX3Uu2f/4mTJlijIyMnTmmWeW/5HeWBdccIFuuukm/frrr/rd735X7Stm8vPz9f7779f5Lr2GmjZtmk6cOKGpU6fW65VOf/7zn+Xr66snn3xS77zzTqVLezrs2rWr2gWLitq0aaOZM2fquuuu06OPPmrpq71OnDihiRMnqrS0VDNmzKjyivJ7771XV155pVJTU8vP64ocrxZs7B8otbnkkkvk5+enHTt2VLsIWpemPLebb75ZPXr00IEDBzR16tRKvdy1a5dmzZpVZ/2bbrpJBQUFlV6deOjQIT34oP3yNG+88Ya6dascmsyYMUN9+/bVDz/8oOeff77KY7rq39uxyXtTw3iYp6ioSE9M/4tlM9aT999jyXE7OGas3Xv2Vtp/V6p7xvo1NV1/e9u+uHH/Hbe67JgaOmPVR1NmLMfPgaYs0tckPj6+2nf6fPXVV/r0008lVT9PLVy4UIWFheWfP378uCZMmFDrO6Drsm7dOq1atUrXXnttlXf0VGfMmDG64IILlJaWprFjx1Z5HidPnqz21eJS5XnKx8dH77//vjp06KCnn35aP/74Y6XbFhYW6uGHH1ZGRoaGDRvWpD06rr/+ep1zzjk6fPiwpkyZUulFHklJSXr88cclqXzPwqZ48sknFRwcrFdffVVz5syp1K+KNZv6grfTHT9+XM8995zCwsI0Y8aMOm/frVs3PfTQQ8rPz9fo0aO1c+fOKrex2WxasWJFne/ivOqqq3THHXdo2LBhdb5oq6m+/vprLVy4sNL569C6dWstWrRIAQEBevPNNyu9uFly/t30t7/9rfz3s8NLL72k77//3uXH68kZS6r/PDNo0CD17NlTK1asqHR+mPx3anOesUwK+nYl7tGbz9f9M8PdrJ6zHrynafuH1aXiWtbGzd9V+po3zVk1ccwtS5cuVXp6evnnS0pK9Kc//anKz2ArtW3bVn/+859VVlamG2+8sXw7mopKSkr0v//9T1u2bKn2MebPn1/ld8pf//pXbd26VR06dKi0FcgFF1ygkSNHNnhd5bHHHlOHDh20YsUKTZs2rcoLUo8cOaJvvvmm/OMRI0Zo0KBB5fuvVbffYFZWlhYsWNDkIKm5zDYVOdaYXn31VbVr186lx3W6zz//XB9++GGjZhPH7+m9e/fWui93Uzlm3TfeeMPyq5nUNTu8+OKLxqxxN4RHL+PpTRL2/lL+/+m5J5V1skhH2/nqUIVLQm7f9bOmTJuuXr166q/TntL+lAPVPVS91VSnNrl5+Zrw2FRJUkTHAI8Ffbm2YqXlnlR4B38t+c9SvfTa6zp69Kh6dO+mv8+eWe/H6RYaovf/Nkdj73tYz8x+Ve8t+0QXnNdXRzKPacOWrSouLtadv79Jt469SRknqv6QX73+G2Xk5KtTQFu1PvVDbmeC/QTevvMnPf38y5VufzwnV5KUdfy4nn7+ZY0d9VtdeP55CuncWXfc+n9atOR9/f7Oe3TpRTEK79ZVifuS9P3OnzRtyuTyYa2ix2a8oLc/XKbjx48rsF07vfOvD/XOvyqHSr8k279Pvtm2XY//8Vn93/jbFd6v8n4UH61crZ/32S/3Y7MV6ud9+/XFBvsv1z9MnlTnZQ8cQV94B3/5+1T/PZGcnFz+Q3fhwoXq1Knq0HXZZZfpoYce0rx58zRx4kRt2rSp/IfzAw88oLVr1+rTTz9V//79ddFFF6lHjx767rvvlJ6ervvvv1/z58+v9Tgb4tdff9UNN9ygs846S2effbY6d+6sw4cP69tvv9XJkycVEhJSaXH+ggsu0PXXX6///ve/uuCCCzRs2DB17txZ8fHxSkxM1B//+Ef95S9/afTxHDx4ULNmzar2FWPVmTJlihITE7VgwQKNGzdOr7zyivr06aOcnBz9/PPP2r9/v7766qtKl2Goydtvv63zzz9fL730kq655hpdfvnlSklJ0U033aTt27erdevW+uMf/9jkfW/++Mc/avPmzfr888/Vt29fDR8+XEFBQdq8ebMOHDigzp07a9myZeWvCGqKRYsWKTs7W6tXr1afPn3Uv39/RUZGqqysTD///LMSExNVWFiohISEKuFJUxw8eFBXXXVVne/OdBg4cKCWLFmiiRMnauLEiZo2bZr69u2r0NBQHTt2TDt37tTBgwf1+9//Xr/73e9qfaw77rijQdd9b6ynnnpKv/zyiy6++OJqL7PRqlUrvfXWW+rXr58WL16ssWPH6tprnZun33TTTfrqq680fvx4XX311WrdurU6duyoJ598ssmvXvb399fIkSO1YsUKrV+/vt59cMVzCwgI0Pvvv69rr71Wc+bM0SeffKJBgwbp6NGjWr9+vUaPHq3t27dXuexsRTfddJNmzZpVaY/LSZMm6dixYxo7dqx+//vfV7mPn5+fFi9erCFDhugvf/mLbrjhhkp7Ktx000165ZVXNGLECF1xxRXq0MH+IqLZs2dXuw9BdYqKirRx48byf18TVZyzsk8WKS33pGyH2ymght9ZTdWUGhWP1dOWfLRMM+e8ZumMNWnc73W0mhnry6+/1UmbrdLnGjtjPThxvF576x1NnjxZSwZdqJ5h3eqcsZ547kUt+nCZjmVnK7BdOy14719a8N6/Kt2m4ow18ZGndN/dd8mnS+X9u5o6Y9VHU2esiy++WOHh4frhhx80cOBA9evXTydOnNDgwYP15JNPNunYFi9erDfffFMDBgzQGWecUb6PsSPwGjVqlK677rry2z/yyCN699139dlnn+nMM8/UxRdfrKKiIm3YsEHt2rXTXXfdVe3l0uvj4MGD8vf3r/LHeE1at26t5cuXa+TIkVq9erV69eqloUOHqkuXLkpNTdWOHTsUHBxcr3cbnnnmmXr99dc1YcIE3XbbbYqLi5O/v7/eeustTZs2TYcOHVKPHj0qvTu7Mdq2basPP/xQV111lf7xj3/o888/15AhQ5Sbm6v//e9/OnnypK699lqXBFVnnHGG/vvf/+qmm27SE088oZdeeknnnXeewsLCdPz4cSUkJGjfvn266KKLmvSCsNNln7os3YIFC2rci+h0L774otLT0/XBBx+U7y105plnysfHRwcPHlR8fLzy8/O1evXqWvftk6R33nmnUZdGa4js7OzyF+699NJL5a/+rigqKkp/+ctf9Nhjj+muu+7Szp07y19INnr0aD3wwAN64403dOmll+qyyy5TWFiYfvzxRyUkJGjKlCk1vsu0sTw5Y0lV50fHz8HT58dWrVrpd7/7nV577TX973//08iRI13+d+rw4cPVqVMnl/yd2hxmLKn6OeuHjal69NkZOisiQi/+8Yk6L+fYEPWds/JPnNCDzzynfSkpevP5GWrTxqz3K7hjzrrj92OVlF11r0JXzln3jL9Vf39niUaNu7Pea1kNnbMefOqPuum28YoOrfyOJ3fMWbUZPXq0LrzwQm3fvl1RUVG6/PLLFRgYqO+++05paWn6wx/+4JY9wxwefPBBHThwQC+//LJuu+02/eUvf9HZZ5+tgIAAHTp0SPHx8crOztb8+fN18cUXV7n/vffeqyuuuEKXXnqpevTooV27dmnnzp1q06aN3n777Sr71L7wwgsqLi6udl0lOTlZO3bsqLKu0qtXLy1dulQ333yz/vKXv+if//ynhgwZorZt2yolJUU//PCDbrvttvIrHbRu3VqffPKJrrvuOr3zzjtaunSp+vfvr169eqmwsFD79+/Xzp07VVJSookTJ1b7DtP6ak6zjYNjjWns2LGWXjY2Oztb99xjf5FmY2aTXr16KSYmRnFxcerXr59iYmLk7++vkJAQvfjiiy47zoMHD+qee+5p0j6R9VGf2WHQoEEemR2airCviUI6d1K7gACNf6j+1x1O3LNXw24eV/cNLRTg76+e3Rq/f1RT5RYWK7yDv8I7+CspxR4CjL/lJj1z/10KrefipMOoq67Q92s+0ew3FmrdN5u1dNXnCmwXoEsHx+je8f+n319/nVJOG44KS+zvyIjfsUPxO3ZU+7i7ft6jXT/vqfZrObl5mv3GQp171pm68PzzJEl/evpJnRF5pv778TJt//EnxbdJUL9z++jfb87V76+/rsqAVFJapg9Xri5/hXP+iRM1XsJBkvYlH9C+5AO66rfXVvnaZ//boM/+t0GS/Rdpp44ddUXsxbrn1lv0++uvq3L7iioGfeEdqm5yLtkvX3DnnXeW7ztRcVHndC+88II+++wzbdmyRa+88oqeeuqp8uP6+OOPNW/ePL311lv67rvv1KFDBw0dOlTLly/XDz/84NIfhGeccYZuv/12/fTTT4qLi1N2drYCAgLUp08fjRw5Uo888kj5tcMdPvroI7322mt699139c0338jf318xMTGaN2+ezjnnnCaFfeecc06DFtxatWql+fPn6/rrr9crr7yiXbt2adeuXQoODlZkZKQmTJhQ7/27unbtqsWLF+vaa6/V7bffrh07dig7O1sZGRn6v//7Pz300EMuuQ5227ZttXLlSi1cuFDvvvuuvv76axUVFalnz56aMmWKxo4dW+314xujQ4cO+uKLL/Thhx9qyZIl2r59u+Lj4xUUFKQuXbpo3LhxGjNmTJ0bQDeUr6+v/va3vzXoPmPHjtWgQYM0b948rV27Vps2bVJJSYm6deums88+Ww8++GB58ONp//vf//Tmm2+Wb9Tcpk31f3xHRETolVde0b333qtJkybpp59+UnBwsCTp/vvvV25urpYsWaLPPvus/JIg48ePd8mlih588EGtWLFCixcvbtBClCue2+WXX67vvvtOf/7zn7V+/XotX75cZ555pp577jk98cQTde5ZMGDAAJ155platWqVbDabPvjgA61cuVJdu3bVm29W/SPaYdCgQXrqqaf0wgsvaMKECdq2bVv5H74zZ84s//n6ySeflL96cdq0afUO+1auXKnMzEzdeeed5ZflM0Vj5iwTtAsIsPyVyPWxPzlFnTt31t233aInJk2wZMaqyaZt27Vp2/Zqv9bQGeuvM57RmWedrQXvfaD4XT9pZ8LPtc5YkrR01ZryvW7qO2PdeP0Y9Tgt7GvKjFUfrpixfH199fnnn+uZZ57R5s2btWPHDpWWliojI6PJYd+oUaOUnp6uuLg47d69WzabTZ07d9ZVV12lK664Qk8++WSlV91GRkbqhx9+0LRp0/T1119r5cqV6t69u2699VZNnz69ybPeU0891aDf7REREYqLi9Obb76ppUuXavPmzSosLFT37t11+eWX67bbbqv3Y91xxx1avXq1/v3vf+uJJ57Q66+/rr1796pbt26655579PDDD7tknrrgggsUHx+vF154QatXr9by5cvl5+enCy+8UBMmTNBdd91V4++whrrsssv0008/6fXXX9eqVau0bds22Ww2de3aVb169dL48eObfEWG6lx++eWV9jari+PdlePHj9c///lPfffdd9q1a5cCAwMVFham0aNHa8yYMeWXCvO0KVOm6NChQ7ryyivLL/NY0+0+/vhjffPNN3ryyScrzQKvv/66LrzwQr3xxhvasmWL/Pz8NGjQoPJ9lVwd9kmenbEaMj86wr5ly5bp6quvdvnfqevXr1f79u1d8neqyTOWVL8568eEn3XZ7+r/s9IqEx6x98uUGUtyz5xV3QuqJNfOWbOeeVpde0Vq5Scf12stS2rcnDVsZNWfK1bPWXXx8fHR+vXr9cILL2jZsmVat26dgoKCdMkll2jZsmXKzc11a9gn2YOYG264QbNnz9aOHTu0Zs0a+fr6KiwsTMOGDdOoUaNqfKHwX//6V/Xp00d///vfy/9mvOaaa/Tss8/qkksuqXL79u3b17iuEhYWVuO6ytVXX61du3bp1Vdf1Zo1a7RmzRr5+PgoPDxct99+e5XLGoeHh2vLli1avHixPvzwQ/3444/aunWrOnfurPDwcN13330aM2aM/P2rX5NsiOYy2zg0Zo2pMaZMmaKDBw9qyJAhjZ5Nli1bpqlTp+qrr77Shx9+qOLiYkVERLg07OvcubNLH686Vqxxu3J2aKpWZVZfMNcwOTk56tixoxaOHqBJA3vXefuT7bsoKfZ2RfboXuM7ng6kplW6jrTjHXeh7XwVGuingqISpRwvkJ9Pa/UKCmj0pSJPd3qd2pSUlulAToFsxaWK6Bignt1C1KtHeJ01UrJPKONEYa1BUENUFyy5ukZ1Ktbo6Ne2yZfuTP71oCIvHq5Fr75YvplwQ55HSWmZ9h7L1xXXXKuzep2hrz+u+zrgiz9cpjsfe1oLFizQ6GGxlvXjqRf/qpf/9qb+9re/lV9azgoNeUXt9OnTNWPGDC1atKjazXJdUaOxqGFWDXfV8YYarVq1Uo8ePaq9HKwrVfc8Fi9erDvvvFN//vOfNX369AY9XllZmc4//3zt3btXBw8eVKdOnfTDDz/oggsuKF9catWqlSIiIjy6KXJNnnzySb3yyiv69NNPNWrUKLfUrOtn6OjRo7Vq1Sp9//339Q7kT548qaSkJEVGRlb6o8wxZ22YOFSXRdT+oqL6zFhS1TnL8WrwyE7Wv7OvsTVCOneqc846eqJQSdknFB3aQYFtrXke7qjh6jrVzViNqdH7omHq3bOH1i+tfs+rihwz1idLFqlHn/Ms+/eaPmeeZrz6N/3pT3/SU089ZenG99X97O3du7dSUlJctl+KN/wupAY1mqK2ecZTc68rZ6yQkBCVlJRUmrNMmLFKS0sVHh6usrIypaenW36Zr9pYMWNJzFm1qc+MJXnPnOXqGtXNWY2p0Zg5a8GCBRp/zTBLZ9L8ohIlZOQqOjra7XOWJ2s4LsfY0BnPtOdBjabXqGsOsPp5DBs2TBs2bFBSUpJ69+5tWZ36Po/Gric3pEZDOY7prbfe0vnnn19pLasmNc0F1eGdfS7Qq0d4pWGjumBpYK+m7QlXnfqGS45g6cyuJUbs0WdlqFeXIhft0dcUjn4UFJWobetWHjkGyYx+AEBDtWrVSq+++qquvvpqvfjii25/pWVTTZo0SYGBgU3ea8lVtm3bppUrV2rixIkue+etq50+Zx09UaggNyysWF0DAACTnD5jvfLKK54+pGq1bt1a8+bN0+7du3X06FGXvKPWCs1hxpKYswAA8CaEfRYyLVhq6UGfJGWeKFSgr0+T+9GpY0e9MPWJ8sse1Nfp/Zjzp6fVvp6vNho6OEYvz3qu3nu+1caUfgBAY1x11VW64YYb9MYbb+ihhx7y9OE0SFRUVINfaW+lqVOnqkOHDnrhhRc8fSiApMbPWKd75dk/NGjGWvTqizrnzEhV3RUHAFqOijNWddsemOKWW27x9CHUiRkLJvLUnPW3F2e5ZC0LAFA7wj4LuSpYaiyCPqeiUvtb2du2aeWSfnQM6qCnH7y3Qfeprh83j6r/XghnR0ZobKdQZdRwzfb6MqEfANBUy5fb94UoKSlRRkaGh4+m+fryyy89fQhAJY2ZsarT0Bnr7MiI8stYAUBL5pixJPuchcZhxoKJPDVn3dotjBkLANyAsM8Crg6WGoOgzym/sETHTxZJkroE+NEPgj4AAAAAAACg2XPVfswAmj/CPhcjWHIyIVjKLyzRnqN58mndSkWlZWrlge3xmls/Yi8apOyTk3TeeU27rIMrDRs2TJKM3usAaG7+/Oc/q6ioyCO1BwwYoD//+c/l57ar/fnPf1ZwcLAlj90c8TMUMMOwIRepcEqpoqKiPFL/kUceUXZ2tkdqA97I6nmmMZix3IsZCwBgEk/PJhMnTlS/fv2MmRVM/D3tOKb+/ftbEtQT9rkQwZKTSUFfQNs28vdprcwmXv6yMZpjP4ZeNFg9+pynyMhINx1d3YYNG2bUH9GAN5g+fbr27t3rkdoDBgywdNgyaU88E/AzFDDDsEsu0qBBMUrIyPVI/UceecQjdQFvZfU80xjMWO7FjAUAMImnZ5OJEycqNjbWqLDPtN/TjmMqKSnRDz/84PLHb+3yR2yhKgZLHf3beuQYmmOwZJWK/Tinc6A8kLvSDwAAAAAAAAAAYDnCPhcgWHIyIVg6vR9cSpWgDwAAAAAAAAAAb0XYV5dT106t6RKqJgRLZWUiWDqFfjiZ0A8AgHdyybXl65ixAAAAWiLmLAAA4NCQuYCwrw5tik5KpSUqKq36j2pCsCRJRwtsBEuiHxWZ0A8AgPcqKiqSJLVp0/jfcz6FBVJJiWwlpa46LAAAgGbPFXNWbWtZAACg+WjIXEDYV4e2hSfkl31Ix08WVUpRTQiWHEdTVFLW4oMl+uFkQj8AAN6rrKxMx48fl5+fn9q2bfw+xT5FBQo8sk/H8k+qhIUoAAAAl81ZNa1lAQCA5qOhc4GPG46p2QtJilNqcHcdVKg6+rdVcUmZko+fkL9Pa/UM8ldRaamKKrwovfjUglVxaalOFpdYckwlpWXKLrCnusH+bdWmtSypVddzOZJv05H8QnUN9FXngLaNOoam/nudKCpVcnbN/XBFjbp4Uz8KT73DorCwUCdPnmzaAdeipKTE0senRsus4a461DCnRkmJ/efcyZMnm/TqZ9StrKxMRUVFOn78uPLy8tSjR48mP2ZIUpx+DQ5TUkl3dQwMUEDbNmrTqpVa1fKaHcfvKVtxqdpY9NoeaphXx1tq2IpP1bDZLP2Z5Q0/36lBDWp4vg5zlvtYNWdVXMtq27r2GUvynt+31Gh5NRyPLzFnUYMa1DC/Rl0zVmPnAsK+egjKTJJ+WKnMyBjta99VRwqK5dumtfwC/XTgRE6V2x8tKFJeYbGK89oq38/1/8SlZfZQx3HZq2L/tirMtaaVtT2X47ZiZZ8sUrB/W+UX+Sgp2/U16mIrKdXhfJt8W9fcj6bWqIu39SO/qESZJwolSdnZjXyQejhy5IjlrzCkRsur4a461DCnRmlpqTIzM5WcnKzWrblggTv4+fmpR48eCgoKavJjtcs9osit/9GRyEHKCo1Upn971bUK5fg91fZknnwtWi2ghnl1vKVGYUmZMvNOqm3btvL19bWkhuQdP9+pQQ1qeL4Oc5b7uXLOqriWlRrcXWpdd/jhLb9vqdHyakjMWdSgBjWaT436zlgNnQtalbWw9/Pn5OSoY8eOWjh6gCYN7N2g+25NzdLYT3frgt7d9daYgQr0rT7QmbE+Qf/alaopF52l+wdFuuConfILi3XPp/HaezRPl/TsrC/2HbGkjkNNz2X+tiS99t0+l9Ru7L/Xj4dzdNd/v9c5Xdrrn6MH1NiPptSoizf249M96Xryi5/08ssva/To0U095Brdf//9mj9/vmWPT42WWcNddahhTo28vDzFxMQoLi5O7du3t6wO7Nq0aVPrpSMcc9aGiUN1WURIgx67TFKRf5BK2/jUGvg5fk8tu2WwftO16Qth1Ggedbylxk9HcnTTf7Zq2bJl+s1vfmNJDck7fr5TgxrU8Hwd5iz3snLOKvJtp5K2/nW+qMpbft9So+XVkJizqEENajSfGvWZseqaC6rDO/vqaWtqlq56b5PO6xqk94b3UofC41Jh9bc9fjhNKSkpyj+znfzzXPdLLNdWpDHvb9auIzlae3usFsenWFKnouqey6yNiXr2qwTNHB6tR6ODpLyjLq9Rl4r9eHfYubX2o7E16uKt/Sg8elgpKSkqLCyUv791e/4dPXrU0senRsus4a461DCnRmFhoVJSUuTr6+uW7y9Yp5Uk35PVv0O/IsfvqVbHI+XfrsiSY6GGeXW8pUar49n2Gq1aMWdRgxrUML4Oc5b3aFt4Qm0LT9R5O2/5fUuNlldDYs6iBjWo0XxqWDVjcR2GeqgYLK0ZN0Qd/Bq/SXJj5dqKdE2FYGlwj05uPwapcrA07bI+HjkG+uFkQj8AAAAAAAAAAIDneDzsS01N1fjx49WlSxcFBASoX79+iouLq/U+77//vvr376927dopLCxMd911l44ebdq7mWpCsORkQrBEP5xM6AcAwFymz1gAAADNFXMWAAAwjUfDvqysLMXGxqpt27ZavXq1du/erTlz5qhTp5rDk02bNumOO+7Q3XffrZ9++kkfffSRtm7dqkmTJrn8+AiWnNYnZ3g8WKIfTib0AwBgLtNnLAAAgOaKOQsAAJjIo3v2zZ49Wz179tSiRYvKPxcZGVnrfTZv3qzevXvr4YcfLr/9vffeq9mzZ7v02AiWKluXlEnQRz8AAM2EyTMWAABAc8acBQAATOTRsG/FihUaOXKkxo4dqw0bNqhHjx6aPHlyra9sGjJkiP74xz/qs88+029/+1sdOXJES5cu1bXXXlvt7W02m2w2W/nHOTk5kqRViYd0OM9W7X0O5hRocXyKugb66YreIXrtu/0Nel5xadmS7O++aixbcYne2XFAR/JtmjggQl/sO6Iv9h1xeZ26rPj5kCTpzOB2kuyXjnS1up5HU/tRnxp1aUn92HHouCT7Kw+tlJKSovfff9/SGllZWZY+PgCYyh0zllTznJWYmaf2vtaMmUlZJyRJCRm5ljw+Ncys4y01HI+dkJBgWQ3JPgN9//33ltYoKCiw9PEBwFTMWdSghnk1Kj4+cxaAlqpVWVlZmaeK+/v7S5Iee+wxjR07Vtu2bdOUKVO0YMECTZgwocb7ffTRR7rrrrt08uRJFRcXa/To0Vq2bJnatq36bq/p06drxowZlj0HAGYbOnRorZdTaaqtW7dq8ODBlj0+NcysQw1zahQVFWnNmjU6fvy4goKCLKvT3LhjxpKYs4CWbsSIEQoICLDs8b3h9xQ1qNGc6zBnVY85C4A7MGdRgxreW8OqGcujYZ+vr69iYmL07bffln/u4Ycf1rZt27R58+Zq77N7926NGDFCjz76qEaOHKn09HQ9+eSTGjRokN56660qt6/ulVA9e/bU5b06q2/Xyv+Qh/Nt+jQxXZ0DfDUqqrt82zRuS8MNyZnanZmnQeHBigkPbtB9C0tKtXLPIR0rKNToPmHqFuhnSZ26xKVla1tatkIDfJVRUGhJDYeanoer+lFbjbq05H7cHB2uG6LDyj+/71i+Xvhmj3oGBeip2HMU0LZNo2ss+j5F65Izq9SoS0FRiV7atFe/5hRo6tAondU5sMbbbjpwVPPjkrVkyRKNGzeu0cdalzFjxmjFihWWPT41zKxDDXNq5OTkqGPHjixCncYdM5ZU85z1zKVRig7t4NondYrj5/vM4dGK7NSOGh6u4a463lZjyY0XWnaOfLb3sJ79KsHSGgkZuRq/fLu2b9+ugQMHWlJD8o7fU9SgRnOuw5xVPeYsalDDvBoV6zBn1Y+3/D6kBjWaYw2rZiyPXsYzLCxMffv2rfS56OhoLVu2rMb7vPDCC4qNjdWTTz4pSTr//PMVGBioSy+9VLNmzVJYWOXgwM/PT35+VQOacf17adLA3uUfO/aEG9Sjc5P3hJu8Kl67M/M0pk9Yg/ZUc+wJV1Bcqm/uurzOPeEaW6cuszYmalua/ZdwWm6B5sclu7xGRdU9D1f2o6YadWnp/ejfvaPG9espyd6Pyat2aGBYsEv6senAUa1LzqxUoy6OfhzOt2nDxEvrtWfi/LjkJh0nADRX7pixpJrnrKvP6qrLIkKa+CxqNj8uWdee000Dw4KpYUANd9XxphrRoR0sq5GQab+ElZU1AKAlY86iBjXMrOGow5wFoKVq/FulXCA2NlaJiZX3HNuzZ48iIiJqvM+JEyfUunXlw27Txv4Oo8a+SdERLJ3XNcglQUZjOIKMXUdytPb22HoFGVaYtTFRz36VoJnDoy0Lk+pCP5zoh50p/QCA5sKUGQsAAMDbMGcBAAATeTTse/TRR7VlyxY9//zz+uWXX/TBBx9o4cKFeuCBB8pvM3XqVN1xxx3lH48ePVoff/yx5s+fr/3792vTpk16+OGHNXjwYIWHhzf4GAgynAiW7OiHE/0AgObJhBkLAADAGzFnAQAAE3n0Mp6DBg3S8uXLNXXqVD333HOKjIzU3LlzK+2vlZ6ergMHDpR/PHHiROXm5ur111/X448/ruDgYF1xxRWaPXt2g+sTZDiZECwdzCmgH6fQDztT+gEAzY2nZywAAABvxZwFAABM5NGwT5JGjRqlUaNG1fj1xYsXV/ncQw89pIceeqhJdZOy8vXEF7sIMmRGsCRJi+NTdGF4J/pBPySZ0w8AaK48NWMBAAB4O+YsAABgGo9extOTXt38C0GfzAiWDufbJEldA/3oB/2QZE4/AAAAAAAAAAAwXYsN+3oEBbT4IMOEYGlrapY+TUyXJE3o34t+0A9j+gEAAAAAAAAAQHPQYsO+Ry46q0UHGaYES1e9t0mdA3wlSX4+bdx+DPTDiX4AAAAAAAAAAND8tNiwz79tyw0yTAqWzusapFFR3T1yDPTDiX4AAAAAAAAAANA8tdiwz91MCTJMC5bWjBsi3zbu/zakH070AwAAAAAAAACA5ouwzw1MCTJMDJa4lCr9MKUfAAAAAAAAAAA0R4R9FjMlyCBYsrMVl9CPU+gHAAAAAAAAAADNn4+nD8CbmRJkECw5vbPjgI7biukH/QAAAAAAAAAAwCsQ9lnIhCCDYMmusKRUknQk36aNd15GP+gHAAAAAAAAAABegct4WqBikEHQ5/lgKddWpJV7DkmSJg6IoB/0AwAAAAAAAAAAr0HY52KmBBkES3aOPROPFRRKks4ICnD7MUj0w8GUfgAAAAAAAAAA4C0I+1zIlCCDYMnO0Y9dR3I0uk+Y2+s70A87U/oBAAAAAAAAAIA3IexzEVOCDIIlu4r9WHt7rLoF+rn9GCT64WBKPwAAAAAAAAAA8DaEfS5gSpBBsGR3ej+4lCr9AAAAAAAAAADAWxH2NZEpQQbBkh39cKIfAAAAAAAAAAB4Px9PH0BzZkqQsT45Q+uSMgmW6Ec5+gEAAAAAAAAAQMvAO/sayaQgg2CJflREPwAAAAAAAAAAaDkI+xrBlCAjLi1bknRlZAjBEv2QRD8q+iQhzSN1AQAAAAAAAABwJ8K+BjIlyJi1MVHbToVLw3qHeuQYCJac6IedSf1YmpDukdoAAAAAAAAAALgTYV8DmBRkPPtVggaFB3ukvkSwVBH9sDOtHzdHh3mkPgAAAAAAAAAA7uTxsC81NVXjx49Xly5dFBAQoH79+ikuLq7W+9hsNj3zzDOKiIiQn5+fevfurbffftvS4zQtyJg5PFoxHgqXCJac6Iedif24ITrcI8cAAKZoLjMWAABAc8OcBQAATOPjyeJZWVmKjY3V8OHDtXr1aoWGhmrv3r3q1Kn2oOCWW27R4cOH9dZbb+nss89Wenq6SktLLTtOE4OMaZf10eRV8W4/BoIlJ/phZ2o/3t/5q0eOAwBM0FxmLAAAgOaGOQsAAJjIo2Hf7Nmz1bNnTy1atKj8c5GRkbXeZ82aNdqwYYP279+vzp07S5J69+5t2TGaGmR4AsGSE/2wox8AYKbmMGMBAAA0R8xZAADARB4N+1asWKGRI0dq7Nix2rBhg3r06KHJkydr0qRJtd4nJiZGL730kt577z0FBgZqzJgxmjlzpgICAqrc3mazyWazlX+ck5MjSVqVeEiH82xVbl/pvsUlemfHAR3Jt2nigAh9se+Ivth3pM7nFZeWLUlan5xR523rY31yhtYlZerKyBBJ9mDDijrVcdT478/pmrXxZ3UN9NMVvUP02nf7XV6jrufR2H40pEZ90A870/ux49BxSdKmTZuaXKM2WVlZlj4+ADSGO2YsqeY5KzEzT+19rRkzk7JOSJISMnIteXxqmFmHGmbVcDx2QkKCZTUkqaCgwNLHB4DGYM6iBjXMq+GuOsxZAEzWqqysrMxTxf39/SVJjz32mMaOHatt27ZpypQpWrBggSZMmFDtfa655hqtX79eI0aM0J/+9CdlZmZq8uTJGj58eKVXVTlMnz5dM2bMsPR5AGjZhg4dWuclW5pi69atGjx4sGWP70013FWHGubUKCoq0po1a3T8+HEFBQVZVqe5cceMJTFnAbDeiBEjalwIdwVv+F1IjZZZwx11mLOqx5wFwFswZ1GDGp6pYdWM5dGwz9fXVzExMfr222/LP/fwww9r27Zt2rx5c7X3ufrqq/X111/r0KFD6tixoyTp448/1s0336z8/PwqP6CqeyVUz549dXmvzurbtfp/yMKSUq3cc0jHCgo1uk+YugX6Neh5bUjO1O7MPA0KD1ZMeHCD7ltRXFq2tqVl1/g4rqpTm9W/HFZydoHat22j35/XQ75tWru8Rl3Po6n9qE+N+qAfds2tHzdHh+uG6LBG1ajL8t1pWvZzupYsWaJx48ZZUkOSxowZoxUrVlj2+N5Uw111qGFOjZycHHXs2JFFqNO4Y8aSap6znrk0StGhHVz8rOw2HTiq+XHJmjk8WpGd2lHDwzXcVYcaZtZYcuOFlp3rCRm5Gr98u7Zv366BAwdaUkPyjt+F1GiZNdxRhzmresxZ1KCGeTXcVYc5q2G85XcuNajhalbNWB69jGdYWJj69u1b6XPR0dFatmxZrffp0aNH+XDkuE9ZWZkOHjyoc845p9Lt/fz85OdXNYwY17+XJg3sXeXzjj3ICopL9c1dlzdqD7LJq+K1OzNPY/qENXr/sFkbE7UtLbnWPchcUac2W1Oz9M/vkyVJj1x8lmZe0bf2OzRSbc/DFf2oq0Z90A+75tiP/t07aly/no06ztpsTc3Sql8Ou/xxAcAV3DFjSTXPWVef1VWXRYQ04RnUbn5csq49p5sGhgVTw4Aa7qpDDfNqRId2sPx7CwBMw5xFDWqYWcNddZizAJjK9W8LaoDY2FglJiZW+tyePXsUERFR633S0tKUl5dX6T6tW7fWGWec0aTjcQQZu47kaO3tsY0OMppq1sZEPftVQq1BhtW2pmbpqvc2qXOAryTJz6eN24+BfjjRDyeT+tEzyLpLHQBAU5g2YwEAAHgL5iwAAGAij4Z9jz76qLZs2aLnn39ev/zyiz744AMtXLhQDzzwQPltpk6dqjvuuKP849tuu01dunTRnXfeqd27d2vjxo168skndddddzXpGsMEGU6OIOO8rkEaFdXdI8dAP5zoh5Np/XgqtuqrLwHABCbNWAAAAN6EOQsAAJjIo2HfoEGDtHz5cv3rX//Seeedp5kzZ2ru3LmV9r5KT0/XgQMHyj9u37691q5dq+zsbMXExGjcuHEaPXq05s2b1+jjIMhwqhhkrBk3xJI94epCP5zoh5OJ/Qho6/53WAJAfZgyYwEAAHgb5iwAAGAij+7ZJ0mjRo3SqFGjavz64sWLq3zu3HPP1dq1a11SnyDD6fQgo4NfW7cfA/1woh9O9AMAGs7TMxYAAIC3Ys4CAACm8eg7+zyNIMPJhCDDVlxCP06hH070AwAAAAAAAACAmnn8nX2ecrKIIMPBlCDjnR0HdNxWTD/oRzn6AQAAAAAAAABA7Vps2Df3u33KPFFIkGFAkFFYUipJOpJv08Y7L6Mf9EMS/QAAAAAAAAAAoD5a7GU8U3MKCPoMCDJybUVaueeQJGnigAj6QT8k0Q8AAAAAAAAAAOqrxYZ9jw05myDDgGDpmvc361hBoSTpjKAAtx+DRD8c6IeTCf0AAAAAAAAAAKA+WmzYF9kp0CN1CTLsHMHSriM5Gt0nzO31HeiHHf1wMqEfAAAAAAAAAADUV4sN+zyBIMOuYrC09vZYdQv0c/sxSPTDgX44mdAPAAAAAAAAAAAagrDPTQgy7E4PlriUKv2Q6AcAAAAAAAAAAI1F2OcGBBl2BEtO9MOJfgAAAAAAAAAA0Hg+nj4Ab0eQYWdKsLQ+OUPrkjLpB/0oZ0I/AAAAAAAAAABoLMI+CxFk2JkSLEmiH6IfFZnQDwAAAAAAAAAAmoLLeFqIIMOcYCkuLVuSdGVkCP2gH5LM6AcAAAAAAAAAAE1F2GcBggw7U4KlWRsTte1UT4b1DvXIMdAPJ/oBAAAAAAAAAIDrEPa5GEGGnUnB0rNfJWhQeLBH6kv0oyL6AQAAAAAAAACAaxH2uRBBhp1pwdLM4dGK8VBP6IcT/QAAAAAAAAAAwPUI+1yEIMPOxGCJS6nSD8mMfgAAAAAAAAAA4GqEfS5AkGFHsOREP5zoBwAAAAAAAAAA1iHsayITgoyDOQUeDzIIlpzohxP9AAAAAAAAAADAWoR9TWBCkCFJi+NTCJZEPxzoR2We7gcAAAAAAAAAAFYi7GskE4KMw/k2SVLXQD+CJfohiX5UZEI/AAAAAAAAAACwmsfDvtTUVI0fP15dunRRQECA+vXrp7i4uBpvv379erVq1arKf4cOHXLbMZsQZGxNzdKniemSpAn9exEs0Q/6UYEJ/QAAT2uOMxYAAEBzwJwFAABM4+PJ4llZWYqNjdXw4cO1evVqhYaGau/everUqe6QIjExUUFBQeUfd+3a1cpDLWdKkHHVe5vUOcBXh/ML5efTxu3HQLDkRD+c6AcAmKE5zlgAAADNAXMWAAAwkUfDvtmzZ6tnz55atGhR+eciIyPrdd+uXbsqODjYoiOrnklBxnldgxQd0l5v/XDA7cdAsOREP5zoBwCYo7nNWAAAAM0FcxYAADCRR8O+FStWaOTIkRo7dqw2bNigHj16aPLkyZo0aVKd9x0wYIBsNpvOO+88TZ8+XbGxsdXezmazyWazlX+ck5MjSVqVeEiH82zV3qc665MztC4pU1dGhkiyBxs1iUvLLr+PKx3MKdDi+BR1DfTTFb1D9Pm+I5bUqej052IrLtE7Ow7oSL5NEwdE6It9R/TFqeNwVY36aEg/GlujLvTDqaX2Y8eh45KkTZs2WVZDsr9yFAAawh0zllTznJWYmaf2vtaMmUlZJyRJCRm5ljw+NcysQ42WV8Px2AkJCZbVkKSCggJLHx+A92HOogY1zKvhrjreUoM5C/BOrcrKyso8Vdzf31+S9Nhjj2ns2LHatm2bpkyZogULFmjChAnV3icxMVHr169XTEyMbDab/vnPf+q9997Td999p4EDB1a5/fTp0zVjxgxLnwcAWG3o0KH1uixMY23dulWDBw+27PHdVcNddahhTo2ioiKtWbNGx48fr3RJpJbOHTOWxJwFwDuMGDFCAQEBlj2+N/y+pYZ5NdxRhzmresxZAFB/zFnUoEZVVs1YHg37fH19FRMTo2+//bb8cw8//LC2bdumzZs31/txLr/8cvXq1Uvvvfdela9V90qonj176vJendW3a93/kHFp2dqWlq1B4cGKCQ+u1/FsSM7U7sy8Bt2nNofzbfo0MV2dA3w1Kqq7fNu0tqROdRw1BnbvqNTcAh0rKNToPmHqFujn8hr1eR6N6UdDa9SFfjjRD3uN6/t01+6MXP2aU6CpQ6N0VudAl9XYdOCo5scla8mSJRo3bpzLHvd0Y8aM0YoVKyx7fHfVcFcdaphTIycnRx07dmQR6jTumLGkmuesZy6NUnRoh8Y/gVo4fi7OHB6tyE7tqOHhGu6qQ42WW2PJjRda9vMkISNX45dv1/bt22tcbHcFb/h9Sw3zarijDnNW9ZizqEEN82q4q4631WDOogY1PFPDqhnLo5fxDAsLU9++fSt9Ljo6WsuWLWvQ4wwePFjffPNNtV/z8/OTn1/VIGRc/16aNLB3rY87a2OitqUlN3gPssmr4rU7M09j+oQ1ee8yxx5kg3p01ppxQ9TBr60ldWriqJFxwqaC4lJ9c9flLt8Trr7Po7H9aEiNutAPJ/rhrPF9eraO24q1YeKlluyZOD8u2eWPCcC7uWPGkmqes64+q6suiwhpUK2GmB+XrGvP6aaBYcHUMKCGu+pQo2XWiA7tYPn3LwA0BHMWNahhZg131fGmGsxZgHdp7cnisbGxSkysvLfXnj17FBER0aDHiY+PV1hYmCsPTbM2JurZrxIaFWS4iiPIOK9rUJUgw10KS0olSUfybVp7e6wlQUZ90A87+uFEPwCgZibPWAAAAM0ZcxYAADCRR9/Z9+ijj+qSSy7R888/r1tuuUVbt27VwoULtXDhwvLbTJ06VampqXr33XclSXPnzlVkZKR+85vf6OTJk/rnP/+p//3vf/riiy9cdlwEGXa5tiKt3HNIkjRxQATBEv2QRD8cTOkHAFTH1BkLAACguWPOAgAAJvJo2Ddo0CAtX75cU6dO1XPPPafIyEjNnTu30r5U6enpOnDgQPnHhYWFevzxx5Wamqp27drp/PPP15dffqnhw4e75JgIMuxybUW65v3NOlZQKEk6I8i6jVRrQz/s6IcT/QCAupk4YwEAAHgD5iwAAGAij4Z9kjRq1CiNGjWqxq8vXry40sdPPfWUnnrqKUuOhSDDzhFk7DqSo9F9wvRxQrrbj0GiHw70w4l+AED9mTRjAQAAeBPmLAAAYBqP7tlnEoIMu4pBxtrbY9UtsOpm0O5AP+zohxP9AAAAAAAAAACgKsI+EWQ4nB5ksCcc/ZDoh4Mp/QAAAAAAAAAAoKIWH/YRZNiZEmTQDzv64UQ/AAAAAAAAAAComcf37PMkggw7U4KM9ckZWpeUST/oRzn6AQAAAAAAAABA7Vps2LcqMV3/3XOYIMOgIINgiX5URD8AAAAAAAAAAKhbi72MJ0GfOUFGXFq2JOnKyBD6QT8k0Y+KPklI80hdAAAAAAAAAEDz0GLDvuujuhFkGBBkzNqYqG2nwqVhvUM9cgz0w4l+2JnUj6UJ6R6pDQAAAAAAAABoHlps2HddnzCP1CXIcHLsmTgoPNgj9SX6URH9sDOtHzdHe+ZnFQAAAAAAAACgeWixYZ8nEGQ4OYKMmcOjFeOhcIl+ONEPOxP7cUN0uEeOAQAAAAAAAADQPBD2uQlBhlPFIINLqdIPiX5UZEI/AAAAAAAAAADNB2GfGxBkOJkQZNAPJ/phRz8AAAAAAAAAAM0VYZ/FCDKcTAgyDuYU0I9T6Icd/QAAAAAAAAAANGeEfRYiyHAyJchYHJ9CP0Q/HOgHAAAAAAAAAKC5I+yzEEGGnQlBxuF8mySpa6Af/aAfkugHAAAAAAAAAMA7EPZZgCDDyYQgY2tqlj5NTJckTejfi37QD/oBAAAAAAAAAPAahH0uRpDhZEKQ4dgzsXOAryTJz6eN24+BfjjRDycT+gEAAAAAAAAAaP4I+1yIIMPJhCDD0Y/zugZpVFR3jxwD/XCiH04m9AMAAAAAAAAA4B0I+1yEIMPJhCCjYj/WjBsi3zbu/1anH070w8mEfgAAAAAAAAAAvAdhnwsQZDiZEGSc3g8upUo/6AcAAAAAAAAAwFt5POxLTU3V+PHj1aVLFwUEBKhfv36Ki4ur1303bdokHx8fDRgwwNqDrIUJQYatuIQg4xT64UQ/7OgHgJaquc9YAAAApmLOAgAApvHxZPGsrCzFxsZq+PDhWr16tUJDQ7V371516lT3Ynx2drbuuOMOXXnllTp8+LAbjrYqE4IMSXpnxwEdtxW3+CCDfjjRDyf6AaAlau4zFgAAgKmYswAAgIk8GvbNnj1bPXv21KJFi8o/FxkZWa/73nfffbrtttvUpk0bffLJJxYdYc1MCDIKS0olSUfybdp452UtOsigH070w45+AGjJmvOMBQAAYDLmLAAAYCKPhn0rVqzQyJEjNXbsWG3YsEE9evTQ5MmTNWnSpFrvt2jRIu3fv19LlizRrFmzar2tzWaTzWYr/zgnJ0eStCrxkA7n2Wq6W60O5hRocXyKugb66YreIXrtu/2Vvh6Xli1JWp+c0ajHrw9bcYk+3JUqSerXtaO+2HdEX+w74vI6dT2X9ckZWpeUqSsjQyTZgw1X16hLXf1wRY260A8n+uHkin7sOHRckv1SL1ZKSUnR+++/b2mNrKwsSx8fgJM7Ziyp5jkrMTNP7X2tGTOTsk5IkhIyci15fGqYWYcaLbfGZ3sPKyHTmjrlNT77TAkJCZbUkJizAG/DnEUNaphXw111vK3GP79PVniHAEtqpOUW2Gv8858KDw+3pIYkJSQk1OtnalOkp6db+viAq7QqKysr81Rxf39/SdJjjz2msWPHatu2bZoyZYoWLFigCRMmVHufvXv3aujQofr6668VFRWl6dOn65NPPlF8fHy1t58+fbpmzJhh1VMAADTA0KFD63V5m6bYunWrBg8eTI0WUqOoqEhr1qzR8ePHFRQUZFmd5sYdM5bEnAUAJrF6zvKGucGbarijDnNW9ZizAKDliYmJUVhYmGWP7y3zCTXqx6oZy6Nhn6+vr2JiYvTtt9+Wf+7hhx/Wtm3btHnz5iq3Lykp0cUXX6y7775b9913nyTVOSBV90qonj176vJendW3a8P+IQ/n2/RpYro6B/hqVFR3+bZpXe3tNiRnandmngaFBysmPLhBNepSWFKqlXsO6VhBoXoEBSg5u8CSOg41PZe4tGxtS8t2Se3G/nvVtx9NqVEX+uHUEvuxMTlTP2XmKazveAWHxVhSIzs9Tum7lyj6yrkK7HS2JTUyU75S8rY5ltbIz/pFCese0ZIlSzRu3DhLajiMGTNGK1asoEYLqZGTk6OOHTuyCHUad8xYUs1z1jOXRik6tIPrnlAFmw4c1fy4ZM0cHq3ITu2o4eEa7qpDjZZX45OENC1NSG/2M5A3zVneMDd4Uw131GHOqh5zFjWoYV4Nd9XxlhqLvk/RuuRMdQjtr9yMHQo587cKjRzp0hrpP3+k7NRNCjnzWoVGXl3j7QpyUnTg+/nybd9dEQPuU2sff5fXqEtp8UmlxC9QYd4h9Rp4vwKCIsq/dvxQnNJ+WqKZM2dq2rRpja5RF2+ZT6hRP1bNWB69jGdYWJj69u1b6XPR0dFatmxZtbfPzc1VXFycfvjhBz344IOSpNLSUpWVlcnHx0dffPGFrrjiikr38fPzk5+fX5XHGte/lyYN7F3vY3XsQTaoR+c69yCbvCpeuzPzNKZPmEv36Mq1Fema9zeroLhU39x1uRbHp2h+XLLL61RU3XOZtTFR29KSXbYHWWP+vRrSj8bWqAv9cGrJ/fgpM0/BYTHqHnWjJTUkKX33EgV2OlsdQvtZ8vj5Wb9IkqU1ALiXO2YsqeY56+qzuuqyiBAXPJPqzY9L1rXndNPAsGBqGFDDXXWo0bJqJGWd0NKE9GY/AzFnAd6HOYsa1DCzhrvqeEONTQeOal1ypnIzdihy8OPqfeHDLq+RnR6n7NRNat8lusY1s5zD8drz9bNqH/ob9b/uXfn4tnd5jboUF+Zpx6o7VFRwVBdc/6GCug2ocpu0n5Y06rEBd/No2BcbG6vExMp7WO3Zs0cRERHV3j4oKEg7d+6s9Lk333xT//vf/7R06dJ6b4jcUI4g47yuQfUKMqzgCDJ2HcnR2ttjNbhHJy2OT3H7cczamKhnv0pwWbDUGPTDiX7YmdIPADBFc5mxAAAAmhvmLADeIuTM31oS9NVHzuF4xa8cr8DOUY0K+lzBEfTlH9ujAaOWVBv0Ac2JR8O+Rx99VJdccomef/553XLLLdq6dasWLlyohQsXlt9m6tSpSk1N1bvvvqvWrVvrvPPOq/QYXbt2lb+/f5XPu4qpQYYnECzZ0Q8n+gEAZmoOMxYAAEBzxJwFwFu4+tKd9UXQB1jDo2HfoEGDtHz5ck2dOlXPPfecIiMjNXfu3Er7DKSnp+vAgQMeOT6CDKf1yRlal5RJsEQ/ytEPADCX6TMWAABAc8WcBQCNR9AHWMejYZ8kjRo1SqNGjarx64sXL671/tOnT9f06dNde1AiyDgdwRL9qIh+AID5TJ2xAAAAmjvmLABoOII+wFqtPX0AJiLIcIpLy5YkXRkZQrBEPyTRj4oc/QAAAAAAAABQPYI+wHqEfachyHCatTFR206FGcN6h3rkGOiHE/2wM7EfAAAAAAAAAKoi6APcg7CvAoIMp1kbE/XsVwkaFB7skfoS/aiIftjRDwAAAAAAAKB5sOWlE/QBbkLYdwpBhpMjyJg5PFoxHgoz6IcT/bCjHwAAAAAAAEDzcShxKUEf4CaEfSLIqKhikMGecPRDoh8VmdAPAAAAAAAAwGRFJzIlSb7tQgj6ADdp8WEfQYaTCUEG/XCiH3b0AwAAAAAAAGgecg7HKzPlS0lSt6ibCPoAN2nRYR9BhpMJQcbBnAL6cQr9sKMfAAAAAAAAQPOQczhe8SvHq61/sCSpdRtftx8DQR9aqhYb9iVl5RNknGJKkLE4PoV+iH440A8AAAAAAACgeXAEfYGdo9Ql4kqPHANBH1qyFhv2vbr5F4IMmRFkHM63SZK6BvrRD/ohiX4AAAAAAAAAzUXFoK//de+qVWv3rycS9KGla7FhX4+gAIIMA4KMralZ+jQxXZI0oX8v+kE/6AcAAAAAAADQTJwe9LFHH+AZLTbse+SiswgyDAiWrnpvkzoH2K/d7OfTxu3HQD+c6IeTCf0AAAAAAAAATGZC0FdaUkjQB6gFh33+bQkyTAiWzusapFFR3T1yDPTDiX44mdAPAAAAAAAAwGQmBH2SdHjPMoI+QC047HM3ggynisHSmnFD5NvG/d+G9MOJfjiZ0A8AAAAAAADAZCYEfWWlRZKkwhOZBH2ACPvcgiDD6fRgiUup0g/6AQAAAAAAADQPJgR9xYV5OpqyTpLUvc/NBH2ACPssR5DhZEKwZCsuoR+n0A8nE/oBAAAAAAAAmMyUoG/HqjtUdDJbkuTXPsztxwCYiLDPQgQZTiYES5L0zo4D9EP0oyIT+gEAAAAAAACYzKSgL//YHoVEjHB7fcBkhH0WIsiwMyFYKiwplSQdybfRD/pRzoR+AAAAAAAAACYzLegbMGqJ2rYLcfsxACYj7LMAQYaTCcFSrq1IK/cckiRNHBBBP+iHJDP6AQAAAAAAAJjMxKCPPfqAqgj7XIwgw8mUYOma9zfrWEGhJOmMoAC3H4NEPxzoBwAAAAAAANA8EPQBzQdhnwsRZDiZFCztOpKj0X08t1Er/bCjHwAAAAAAAEDzQNAHNC8eD/tSU1M1fvx4denSRQEBAerXr5/i4uJqvP0333yj2NjY8tufe+65+utf/+rGI64eQYaTacHS2ttj1S3Qz+3HINEPB/oBAO7nLTMWAACAaZizAHg7gj6g+fHxZPGsrCzFxsZq+PDhWr16tUJDQ7V371516lTzpS8DAwP14IMP6vzzz1dgYKC++eYb3XvvvQoMDNT/+3//z41H73R6kLE4PsUjx2FCkGFisDS4RyeP9IR+2NEPAHA/b5mxAAAATMOcBcDbEfQ5ZSR97pG6QGN4NOybPXu2evbsqUWLFpV/LjIystb7XHDBBbrgggvKP+7du7c+/vhjff311x4ZkAgynEwNljyBftjRDwDwDG+YsQAAAEzEnAXAmxH0OSVvn6fM/as9UhtoDI+GfStWrNDIkSM1duxYbdiwQT169NDkyZM1adKkej/GDz/8oG+//VazZs2q9us2m002m63845ycHEnSqsRDOpxnq/Y+9WUrLtE7Ow7oSL5NEwdE6It9R/TFviOKS8uWJK1PzmjS49fFUWfRDynan31CV0aGSLIHG66uUddzOZhToMXxKeoa6Kcreofote/2u7xGXWrqhytr1IZ+VNYS+rH9VI2CnF+Vm7HTZY9bUUHOr5Kk/KxfLHl8d9VwPPamTZssq+GQlZVleQ3AdO6YsaSa56zEzDy197VmzEzKOiFJSsjIteTxqWFmHWq0vBppuQWSmv8M5E1zFjMWYMecRQ1qmFfDXXW8pUZGvv1nS0bSF+WziiTZ8tJ1KHGpfNuFKDj8Ev3649uNruFYJ8tO26Kkmq9yXEVpSaEO71mmwhOZ6t7nZh39daOO/rrRpTXqIztti7JTN6ldp3N0Imuv1q9f79oCp0lPT7f08dEytCorKyvzVHF/f39J0mOPPaaxY8dq27ZtmjJlihYsWKAJEybUet8zzjhDGRkZKi4u1vTp0/Xss89We7vp06drxowZLj92AEDDtA0IUVDXAZbXOZrypYYOHVrrZXSaauvWrRo8eLBlj0+N+isqKtKaNWt0/PhxBQUFWVanuXHHjCUxZwGAKdwxZzFjmVXDHXWYs6rHnAUAsEJMTIzCwsIse3xvmYG8oYZVM5ZHwz5fX1/FxMTo22+/Lf/cww8/rG3btmnz5s213jcpKUl5eXnasmWLnn76ab3++uu69dZbq9yuuldC9ezZU5f36qy+XRv3D1lYUqqVew7pWEGhRvcJU7dAv0pf35Ccqd2ZeRoUHqyY8OBG1aiPpT+lKaOgUD3a+2vMud0tqVHXczmcb9OnienqHOCrUVHd5dumtctr1KWufriiRn3QD7uW1I+NyZn6KTNPYX3HKzgsxpIa2elxSt+9RL0HPa6AoJ7NukZh/iGdf+1bljx+RV/Nj9CSJUs0btw4y2qMGTNGK1assOzxqVF/OTk56tixI4tQp3HHjCXVPGc9c2mUokM7uObJnGbTgaOaH5esmcOjFdmpHTU8XMNddajR8mp8kpCmpQnpXjEDecucxYxlVg131GHOqh5zFjWoYV4Nd9XxlhqLvk/RuuRMBfeIVUDHSBWdyFRmypdq6x+sLhFXqlXrpm8FlJ32nQqy96p9aH91CO1X5+3LSot0NGWdik5mKyRihNq2C3F5jfrIzdipvIwd5Y/pqBE5+HF16TXcJTVOl5/1ixLWPaKZM2dq2rRpltSQvGcG8oYaVs1YHr2MZ1hYmPr27Vvpc9HR0Vq2bFmd93VcD71fv346fPiwpk+fXu2A5OfnJz+/qmHDuP69NGlg7wYfs2MPsoLiUn1z1+XV7kE2eVW8dmfmaUyfMMv2B5u1MVEZBYWSpPsGRVpWp7bn4tgTblCPzk3aE64p/1716UdTa9QH/bBrif34KTNPwWEx6h51oyU1JCl99xKFRAx32eDiqRpHfllp2WMDqMwdM5ZU85x19VlddVlE3X+cNdb8uGRde043DQwLpoYBNdxVhxotq0ZS1gktTUj3ihmIOQvwLsxZ1KCGmTXcVccbamw6cFTrkjMVdu5YtesYqfiV4xXUrb9L9+j7ecMzKsjeq5DeIxQZ83Ctt3Xs0VdaYtOFNy6r9x59DalRH8nb5yl99xJFDn5cvS98uFIN/w49LZ3lAFdo+Nt+XCg2NlaJiZX3z9qzZ48iIiIa9DilpaWVXu1kFUeQsetIjtbeHltjkGG1WRsT9exXCRpk4bsG6+IIls7rGtSkYKkp6IcT/XAyoR8A4GnNbcYCAABoLpizAHiLgpwUxa8cr8DOUS4N+hrCEfTlH9ujAaOW1Dvoc7Xk7fOUtHVOpaAPaG48+s6+Rx99VJdccomef/553XLLLdq6dasWLlyohQsXlt9m6tSpSk1N1bvvvitJeuONN9SrVy+de+65kqSNGzfqlVde0cMPW3sSmhZkzBwerbTcAm1Ly3b7MRAsOdEPO/oBAGZpTjMWAABAc8KcBcBbHPh+vtqH/oagj6APXsKjYd+gQYO0fPlyTZ06Vc8995wiIyM1d+7cSnsApKen68CBA+Ufl5aWaurUqUpKSpKPj4/OOusszZ49W/fee69lx2likDHtsj6avCre7cdAsOREP+zoBwCYp7nMWAAAAM0NcxYAb+HbvjtBnwFBX/7RPR6pC+/j0bBPkkaNGqVRo0bV+PXFixdX+vihhx7SQw89ZPFROZkaZHgCwZIT/bCjHwBgLtNnLAAAgOaKOQuAN4gYcB9Bn4eDvpzD8Ur8eppHasP7eHTPPtMRZDgdzCkgWDqFftjRDwAAAAAAAKB5au3j7/aaBH1OOYfjFb9yvAI6NmzPV6AmhH01IMiobHF8CsGS6IcD/QAAAAAAAABQXwR9To6gL7BzlKKGPueRY4D3IeyrBkGG0+F8mySpa6AfwRL9kEQ/KnL0AwAAAAAAAED1CPqcKgZ9/a97V23aBnjkOOB9CPtOQ5DhtDU1S58mpkuSJvTvRbBEP+hHBfZ+HPJIbQAAAAAAAKA5IOhzOj3o88SeifBehH0VEGQ4bU3N0lXvbVLnAF9Jkp9PG7cfA/1woh9OJvWjy6l+AAAAAAAAAKistKSQoO8Ugj5YjbDvFIIMJ0eQcV7XII2K6u6RY6AfTvTDybR+XBfVzSPHAAAAAAAAAJju8J5lBH0i6IN7EPaJIKOiikHGmnFD5NvG/d8i9MOJfjjRDwAAAAAAAMB8ZaVFkqTCE5kEfQR9cJMWv1JNkOF0epDBnnD0g344mdAPAAAAAAAAwGTFhXk6mrJOktS9z80EfQR9cJMWHfYRZDiZEGTYikvoxyn0w4l+AAAAAAAAAOYrLszTjlV3qOhktiTJr32YR46DoA8tUYsN+04WEWQ4mBJkvLPjAP0Q/aiIfgAAAAAAAADmcwR9+cf2KCRihMeOg6APLVWLDfvmfrePIENmBBmFJaWSpCP5NvpBP8rRDwAAAAAAAMB8FYO+AaOWqG27EI8cB0EfWrIWG/al5hQQZBgQZOTairRyzyFJ0sQBEfSDfkiiHwAAAAAAAEBzcHrQxx59BH3wjBYb9j025GyCDAOCpWve36xjBYWSpDOCAtx+DBL9cKAfTib0AwAAAAAAADAZQZ8TQR88rcWGfZGdAj1SlyDDzhEs7TqSo9F9PLNRq0Q/HOiHkwn9AAAAAAAAAExmStCXnbaFoA9QCw77PIEgw65isLT29lh1C/Rz+zFI9MOBfjiZ0A8AAAAAAADAZKYEfZKUnbqJoA8QYZ/bEGTYnR4scSlV+iHRDwAAAAAAAKA5MCXoy83YKUkK7hFL0AeIsM8tCDLsCJac6IcT/QAAAAAAAADMZ0rQl7x9nvIydkiSgsMv9sgxEPTBND6ePgBvR5BhZ0qwtD45Q+uSMukH/ShnQj8AAAAAAAAAk5kU9CVtnaP2of3LAz93I+iDiQj7LESQYWdKsCSJfoh+VGRCPwAAAAAAAACTmRb0RQ5+XCfzDnsk7CPog6m4jKeFCDLMCZbi0rIlSVdGhtAP+iHJjH4AAAAAAAAAJjMx6GOPPqAqj4d9qampGj9+vLp06aKAgAD169dPcXFxNd4+PT1dt912m6KiotS6dWs98sgj7jvYeiLIsDMlWJq1MVHbTvVkWO9QjxwD/XCiHwDgHt44YwEAAJiAOQtAS0HQ50TQB9N5NOzLyspSbGys2rZtq9WrV2v37t2aM2eOOnWqOYSw2WwKDQ3VtGnT1L9/fzcebf0QZNiZFCw9+1WCBoUHe6S+RD8qoh8A4B7eOGMBAACYgDkLQEtB0OdUkJNC0AfjeXTPvtmzZ6tnz55atGhR+eciIyNrvU/v3r312muvSZLefvttS4+voSoGGY7Az91MCDJMC5ZmDo9WWm6BR3pCP5zoBwC4j7fNWAAAAKZgzgLQEhD0VXbg+/lqH/obgj4YzaNh34oVKzRy5EiNHTtWGzZsUI8ePTR58mRNmjTJZTVsNptsNlv5xzk5OZKkVYmHdDjPVtPdGmx9cobWJWXqysgQ5diKyz9nJcflQh11DuYUaHF8iroG+umK3iF67bv9Lq9RF1txid7ZcUBH8m2aOCBCX+w7oi/2HXFpjfqo2A+rapyOftTMW/ux/VSNgpxflZuxs8mPV52CnF8lSflZv1jy+O6u4S6bNm2y9PGzsrIsfXygqdwxY0k1z1mJmXlq72vNmJmUdUKSlJCRa8njU8PMOtRoeTXScgskec8M5C1zVlJSkr7//nvLHr+goMCyxwZchTmLGtQwr4a76nhLjYx8+8+WjKQvqp0jSksKdXjPMhWeyFT3Pjfr6K8bdfTXjQ2q4Vgny07boqSar3Jcq+y0LcpO3aTgHrEqK5OS4ua5vEZ9jkGS2vh2UFifscpMXuvyGidz7T1IS0tjzkKTtCorKyvzVHF/f39J0mOPPaaxY8dq27ZtmjJlihYsWKAJEybUef9hw4ZpwIABmjt3bo23mT59umbMmOGqQwYAQJI0dOjQWi/V01Rbt27V4MGDLXt8b6lRVFSkNWvW6Pjx4woKCrKsTnPjjhlLYs4CALjeiBEjFBAQYNnje8P84646zFnVY84CADRXzFlm1LBqxvJo2Ofr66uYmBh9++235Z97+OGHtW3bNm3evLnO+9dnQKrulVA9e/bU5b06q2/Xpv9DxqVla1tatgaFByvm1D5kG5IztTszr9LnrOCoEx3SXr8cy1PnAF+Niuou3zau24qxvs+lsKRUK/cc0rGCQo3uE6ZugX4ur1Ef1fXD1TVqQj+q8vZ+bEzO1E+ZeQrrO17BYTEue9yKstPjlL57iXoPelwBQT2pUc86N0eH64bosGpvU1BUopc27dWvOQWaOjRKZ3UObFCNTQeOan5cspYsWaJx48a54rCrNWbMGK1YscKyx/eWGjk5OerYsSOLUKdxx4wl1TxnPXNplKJDOzT6+GvjOAdnDo9WZKd21PBwDXfVoUbLq/FJQpqWJqQ3+/nEW2oU5Pyq5G1zNHN4tK49p5slNRIycjV++XZt375dAwcOtKSG5B3zj7vqMGdVjzmLGtQwr4a76nhLjUXfp2hdcqaCe8QqoKPzMsRlpUU6mrJORSezFRIxQm3bhTS6RnbadyrI3qv2of3VIbRfg+6bm7FTeRk76rxvU2rUpehEpjJTvlSr1j4qKzlpSQ2HguNJyk7dpPtjeuuegb0tqcGcZVYNq2Ysj17GMywsTH379q30uejoaC1btsxlNfz8/OTnVzXoGNe/lyY18eSZtTFR29LsP3ynXdan/POTV8Vrd2aexvQJq/R5V3PU2Z+Vr0E9OluyB1l9notjT7iC4lJ9c9flDd4TzlX/XjX1w5U1akM/Kmsp/fgpM0/BYTHqHnWjSx+7ovTdSxQSMdyyocKbajjq9O/eUeP6VV3scpwfh/Nt2jDx0kbvYTk/LrmJRwlYyx0zllTznHX1WV11WUTj/zCsy/y4ZF17TjcNDAumhgE13FWHGi2rRlLWCS1NSPeK+cQbauRm7FTytjmK7NTO8p8ngOmYs6hBDTNruKuON9TYdOCo1iVnKuzcseXrWY49+kpLbLrwxmVN3qPv5w3PqCB7r0J6j1BkTP332kvePk/pu5fUa4++xtaoS87heMWvHK+gbv3VLvhsHfr5Q5fXqOjQnuXKTt2k8A4BzFloEte9xaURYmNjlZiYWOlze/bsUUREhIeOqP5mbUzUs18lVBtkuMvhU9dX7hroZ0mQUR+OhfNdR3K09vbYRi+cNxX9sKMfTib0A2Yx5fwA3KE5z1gAAAAmY84C4G0cQV/+sT0aMGpJk4O+xkrePk9JW+fUK+iziiPoC+wcpf7XvatWrVlPRPPh0Xf2Pfroo7rkkkv0/PPP65ZbbtHWrVu1cOFCLVy4sPw2U6dOVWpqqt59993yz8XHx0uS8vLylJGRofj4ePn6+lZ5ZZVVTAgytqZm6dPEdEnShP69CJboB/2owIR+wCymnB+AuzTXGQsAAMB0zFkAvAlBn9PpQZ+Pb3uPHAfQWB4N+wYNGqTly5dr6tSpeu655xQZGam5c+dW2gMpPT1dBw4cqHS/Cy64oPz/t2/frg8++EARERFKTk62/JhNCTKuem+TOgf46nB+ofx82rj9GExZOKcfdvTDyYR+wCymnB+AOzXHGQsAAKA5YM4C4C1Ki08S9J1C0Adv4NGwT5JGjRqlUaNG1fj1xYsXV/lcWVmZhUdUM5OCjPO6Bik6pL3e+uFA3XdyMVMWzumHHf1wMqEfMIsp5wfgCc1pxgIAAGhOmLMAeIOU+AUqKjhK0EfQBy/h0T37mhPTgow144bIt43722fKwjn9sKMfTib0A2Yx5fwAAAAAAAAwTWHeIYI+A4K+0uKTbq8J78RqeD2YGGSwJxz9oB9OJvQDZrEVlxhxfgAAAAAAAJio18D7Cfo8HPQVF+YpJX6B2+vCO3n8Mp6mI8iwM2XhnH7Y0Q8nE/oB87yz44CO24oJ+gAAAAAAAKoREBThkboEfXbFhXnaseoOFeYdcntteCfe2VcLggynd3YcIFgS/aiIfsBkR/JtBH0AAAAAAAAGIeizcwR9+cf2qNfA+91eH96JsK8GBBl2hSWlkjy/cE4/7OiHk0n9gHkmDogg6AMAAAAAADAEQZ9dxaBvwKglHnuHJbwPYV81CDLscm1FWrnH/jZiTy6c0w87+uFkSj9W7Tns9rqonzOCAjx9CAAAAAAAABBBn8PpQZ+n9kyEdyLsOw1Bhl2urUjXvL9ZxwoKJXlu4Zx+2NEPJ5P6cfRUPwAAAAAAAABURdBnR9AHqxH2VUCQYecIMnYdydHoPmFur+9AP+zoh5N5/eju9voAAAAAAABAc5CdtoWgTwR9cA/CvlMIMuwqBhlrb49Vt0A/tx+DRD8c6IcT/QAAAAAAAACaj+zUTQR9BH1wE8I+EWQ4nB5ksCcc/ZDoh4Mp/QAAAAAAAABMlpuxU5IU3COWoI+gD27S4sM+ggw7U4IM+mFHP5zoBwAAAAAAANA8JG+fp7yMHZKk4PCLPXIMBH1oiXw8fQCeRJBhZ0qQsT45Q+uSMukH/ShHPwAAAAAAAIDmIXn7PCVtnaP2of3LAz93I+hDS9Viw75Vien6757DBBkGBRkES/SjIvoBU32SkObpQwAAAAAAADCKI+iLHPy4TuYd9kjYR9CHlqzFXsaToM+cICMuLVuSdGVkCP2gH5LoB8w1a2Oiliake/owAAAAAAAAjFEx6GOPPoI+eEaLDfuuj+pGkGFAkDFrY6K2nQqXhvUO9cgx0A8n+mFnSj9gFseln2+ODvP0oQAAAAAAABiBoM+OoA+e1mLDvuv6eGaxliDDybFwPig82CP1JfpREf2wM6UfMEvFPV5viA739OEAAAAAAAB4nAlBny0vnaAPUAsO+zyBIMOp4sJ5jIfCJfrhRD/sTOkHzFLx/PDUO8IBAAAAAABMYkLQJ0mHEpcS9AEi7HMbggwnExbO6YcT/bAzpR8wiwnnBwAAAAAAgElMCPqKTmRKknzbhRD0ASLscwuCDCcTFs7phxP9sDOlHzCLCecHAAAAAACASUwI+nIOxysz5UtJUreomwj6ABH2WY4gw8mEhfODOQX04xT6YWdKP2AWE84PAAAAAAAAk5gS9MWvHK+2/sGSpNZtfN1+DAR9MFG9w760tDRLDiA1NVXjx49Xly5dFBAQoH79+ikuLq7W+6xfv14DBw6Un5+fzj77bC1evNiSY2sqggwnUxbOF8en0A/RDwdT+gGzmHJ+oGWxYs7y5hkLAACgPljLAgDXMSnoC+wcpS4RV3rkGAj6YKp6h32/+c1v9MEHH7i0eFZWlmJjY9W2bVutXr1au3fv1pw5c9SpU80L7klJSbruuus0fPhwxcfH65FHHtE999yjzz//3KXH5goEGXYmLJwfzrdJkroG+tEP+iHJnH7ALCacH2iZXD1nefuMBQAAUB+sZQGAa5gW9PW/7l21au3+9USCPpjMp743/Mtf/qJ7771Xy5cv19///nd17ty5ycVnz56tnj17atGiReWfi4yMrPU+CxYsUGRkpObMmSNJio6O1jfffKO//vWvGjlyZJOPyRUIMpxMWDjfmpqlTxPTJUkT+veiH/TDmH7ALCacH2i5XD1neeuMBQAA0BCsZQFA05kY9LFHH1BVvcO+yZMn67e//a3uvvtu9e3bV//4xz80evToJhVfsWKFRo4cqbFjx2rDhg3q0aOHJk+erEmTJtV4n82bN2vEiBGVPjdy5Eg98sgj1d7eZrPJZrOVf5yTkyNJWpV4SIfzbNXepykO5hTokwR7kHFmp0C99t1+l9dwiEvLliStT86o9HlbcYne2XFAR/JtmjggQl/sO6Iv9h1xaY36WJ+coXVJmboyMkSSfSHd1TXqcjCnQIvjU+TXpo2KSku0+eCxGo+jqehH3bytH9tP1SjI+VW5GTubcrg1Ksj5VZKUn/WLJY/vTTUq1mno9299zw9J2nHouCRp06ZNjTzK+snKyrL08WEWV89Z7pixpJrnrMTMPLX3rfeY2SBJWSckSQkZuZY8PjXMrEONllcjLbdAUvOfT7ylhuOxk7JO6Pv0bEtqOL6fEhISLHl8h4KCAksfH2ZprmtZEnMWNahhYh1vqZFx6o0qGUlflM8RNclO26Ls1E0K7hGrsjIpKW5evWo41smy07YoqfarHNfJlpeuQ4lL5dsuRMHhl+jXH992eY2aOGocO/iN0hP+pcITmere52Yd/XWjjv660SU18o7aZ5+03ALmLDRJq7KysrKG3un111/Xo48+qujoaPn4VB4wvv/++3o/jr+/vyTpscce09ixY7Vt2zZNmTJFCxYs0IQJE6q9T1RUlO68805NnTq1/HOfffaZrrvuOp04cUIBAQGVbj99+nTNmDGj3scEAIAphg4dWuvlgJpq69atGjx4sGWP744aRUVFWrNmjY4fP66goCDL6riTK+Ysd8xYEnMWAKB5GjFiRLW/11zFHTOWO+p425zVnNayJOYsAEDz5A1zVnOdsRr8UqCUlBR9/PHH6tSpk66//voqA1JDlJaWKiYmRs8//7wk6YILLtCuXbtqHZAaaurUqXrsscfKP87JyVHPnj11ea/O6tvVdf+Qh/Nt+jQxXZ0DfNXJ31c/H83ToPBgxYQHu6zG6TYkZ2p3prNOYUmpVu45pGMFhRrdJ0zdAv1cXqM+4tKytS0tu973aUyNulTsx6io7tr86zGX1zgd/aiZt/ZjY3KmfsrMU1jf8QoOi3HBUVeVnR6n9N1L1HvQ4woI6kmNetap7/dWQ88Pyfm9dXN0uG6IDmvaAUvadyxfL3yzRz2DAvRU7DkKaNtGm8xMM/kAAIAOSURBVA4c1fy4ZN13330aN25ck2vUZMyYMVqxYoVlj++OGjk5OerYsaNlj+9urpqz3DFjSTXPWc9cGqXo0A4uq1OR4/yYOTxakZ3aUcPDNdxVhxotr8YnCWlampDe7OcTb6lRkPOrkrfN0f0xvRXbq4slNRzfV0tuvNCy3yEJGbkav3y7Zs+erYEDB1pSQ3LPjOWOOt40ZzW3tSyJOYsa1DCxjrfUWPR9itYlZyq4R6wCOlZ/GeLcjJ3Ky9ih9qH91SG0X4NrZKd9p4LsvY2+vyQVnchUZsqXausfrC4RV1bZo88VNeqSlbZZJ7P3SWqtkN5Xq227EJfXKDiepOzUTbo5Okw3RIe7/PEl5izTalg1YzVouvnHP/6hxx9/XCNGjNBPP/2k0NDQJhUPCwtT3759K30uOjpay5Ytq/E+3bt31+HDhyt97vDhwwoKCqo2Mfbz85OfX9VF/XH9e2nSwN6NO/DTbE3N0lXvbdKgHp21ZtwQ/eHLn/Tz0TyN6RNm6b5Pk1fFa3emvc6Ui87UNe9vVkFxqb6563KX7UFWsUZ9nsusjYnalpbcoD2vGlqjLqf3o4NfW5fXqA79qJ639+OnzDwFh8Woe9SNLnnM6qTvXqKQiOGWDS7eVMNRpz7fW405PyTn91b/7h01rl/TFtS2pmZp8qodGhgWXGWP1/lxyU16bDQ/rpyz3DFjSTXPWVef1VWXRbj+jyCH+XHJuvacbhoYFkwNA2q4qw41WlaNpKwTWpqQ7hXziTfUyM3YqeRtcxTbq0uT55/azI9LVnRoB8t/ZqFlaY5rWRJzFjWoYWodb6ix6cBRrUvOVNi5Y6tdz0rePk/pu5c0aY++nzc8o4LsvQrpPUKRMQ1/DMcefUHd+te4R19Ta9SluDBPWz64XJIUFv1/OnfYCy6vIUmH9ixXduom9e8ezJyFJql32HfNNddo69atev3113XHHXe4pHhsbKwSEyvvi7Rnzx5FRETUeJ8hQ4bos88+q/S5tWvXasiQIS45poZyBBnndQ2qslDrLrbiEl3z/mbtOpKjtbfHuizIaKhZGxP17FcJDV44dyX64UQ/7EzpB8zC+QHTuHrO8oYZCwAAoKlYywKAhknePk9JW+c0KehrKkfQF9g5qsagz2rFhXnaseoOFZ3MliT5tW/6lZ0Aq7Wu7w1LSkr0448/umw4kqRHH31UW7Zs0fPPP69ffvlFH3zwgRYuXKgHHnig/DZTp06tVPO+++7T/v379dRTT+nnn3/Wm2++qf/85z969NFHXXZc9WXKQu07Ow54PMhg4dyJftjRD5iK8wMmcvWc1dxnLAAAAFdgLQsA6o+gz84R9OUf26OQiBFurw80Vr3DvrVr1+qMM85wafFBgwZp+fLl+te//qXzzjtPM2fO1Ny5cyvtT5Senq4DBw6UfxwZGalVq1Zp7dq16t+/v+bMmaN//vOfGjlypEuPrS4mLNQWlpRKko7k2wiW6Ec5+mFnSj9gFs4PmMrVc1ZznrEAAABchbUsAKgfgj67ikHfgFFLLNmjD7BK43ckdpFRo0Zp1KhRNX598eLFVT43bNgw/fDDDxYeVe1MWKjNtRVp5Z5DkqSJAyIIluiHJPrhYEo/YBbOD7Q0zXHGAgAAaA6YswB4E4I+u9ODvqBuA5T280duPw6gser9zj7YmbBQm2sr0jXvb9axgkJJ0hlB1W/mbDUWzu3ohxP9gKk4PwAAAAAAACoj6LOrLugDmhvCvgYwYaHWEWTsOpKj0X08tzEoC+d29MOJfsBUnB8AAAAAAACVZSR9TtAngj54D8K+ejJhobZikLH29lh1C/Rz+zFILJw70A8n+gFTcX4AAAAAAABUlbl/NUEfQR+8CGFfPZiwUHt6kMGecPRDoh8OpvQDZuH8AAAAAAAAqF7Imb8l6DMg6MtI+twjdeF9fDx9AKYzYaHWlCCDhXM7+uFEP2Cq9ckZWpeU2eLPDwAAAAAAgOqERo70SF2CPqfk7fOUuX+1R2rD+xD21cKEhVpTggwWzu3ohxP9gMk4PwAAAAAAAMxC0OeUvH2ekrbOUciZvyXwg0twGc8amLBQa1KQwcI5/aiIfsB0V0aGtOjzAwAAAAAAwCQEfU6OoC9y8OMee4clvA9hXzVMWKg1JciIS8uWxMI5/XCiH06OfsA8w3qHeqSuCecHAAAAAACASQj6nCoGfZ7aMxHeibDvNCYs1JoSZMzamKhtp8KMlrxwTj+c6IdTxX4AkhnnBwAAAAAAgEkI+pwI+mAlwr4KTFioNSnIeParBA0KD/ZIfYl+VEQ/7OgHTGXC+QEAAAAAAGASW146Qd8pBH2wGmHfKSYs1JoWZMwcHq0YD4UZ9MOJftjRD5jKhPMDAAAAAADANIcSlxL0iaAP7kHYJzMWak0MMtgTjn5I9KMiE/oBs5hwfgAAAAAAAJik6ESmJMm3XQhBH0Ef3KTFh30mLNQSZDjRDyf6YUc/YKqDOQUePz8AAAAAAABMknM4XpkpX0qSukXdRNBH0Ac3adFhH0GGkwlBhgkL5/TDiX44mdAPmGdxfApBHwAAAAAAwCk5h+MVv3K82voHS5Jat/F1+zEQ9KGlarFhX1JWPkHGKaYEGZ5eOKcfldEPO1P6AXMczrdJkroG+hH0AQAAAAAAyBn0BXaOUpeIKz1yDAR9aMlabNj36uZfCDJkRpBhwsI5/XCiH04m9ANm2ZqapU8T0yVJE/r3IugDAAAAAAAtXsWgr/9176pVa/evlxD0oaVrsWFfj6AAggwDggwTFs7phxP9cDKhHzCL49LPnQPsl6Dw82nj4SMCAAAAAADwrNODPvboI+iDZ7TYsO+Ri84iyDAgWPL0wjn9cKIfTib0A2apuMfrqKjunj4cAAAAAAAAjzMh6CstKSToA9SCwz7/tgQZJgRLnlw4px9O9MPJhH7ALBXPjzXjhsi3TYv91QkAAAAAACDJjKBPkg7vWUbQB6gFh33uRpDhZMLCOf1woh9OJvQDZjn9/GCPPgAAAAAA0NKZEPSVlRZJkgpPZBL0AfJw2Dd9+nS1atWq0n/nnntujbcvKirSc889p7POOkv+/v7q37+/1qxZ48YjbhyCDCcTFs7phxP9cDKhHzCLCecH0BQtZc4CAABwJ2YsAC2dCUFfcWGejqaskyR173MzQR8gycfTB/Cb3/xGX375ZfnHPj41H9K0adO0ZMkS/eMf/9C5556rzz//XDfeeKO+/fZbXXDBBe443AYjyHAyYeHcVlxCP06hH04m9ANmMeH8AFzB2+csAAAAT2DGAtBSmRL07Vh1h4pOZkuS/NqHuf0YJII+mMfjYZ+Pj4+6d6/fHmHvvfeennnmGV177bWSpPvvv19ffvml5syZoyVLllh5mI1CkOFkysL5OzsO6LitmH7Qj3Im9ANmMeH8KCgqcXtNeCdvnrMAAAA8hRkLQEtkUtCXf2yPQiJGKDPZM++UJuiDiTwe9u3du1fh4eHy9/fXkCFD9MILL6hXr17V3tZms8nf37/S5wICAvTNN9/U+Pg2m002m63845ycHEnSqsRDOpxnq+luTRKXli1J+tvW/TpZXKKJAyL0xb4j+mLfEUvqrE/OqPE265MztC4pU1dGhkiyBxuurlGXgzkFWhyfoq6Bfrqid4he+26/y2vU5buDWZKktNyTumdgb/pBP8q/1pR+bD9VoyDnV+Vm7GzUcdalIOdXSVJ+1i+WPL431ahYp7Hfv3WdH5L154ituETz45IkSZs2bbKkhkNWVpaljw/P89SclZiZp/a+1oyZSVknJEkJGbmWPD41zKxDjZZXIy23QFLzn0+8pYbjsZOyTuj79GxLarjj+8rx2AkJCZbVkKSCggJLHx+eZ/WM5bgfcxY1qGFWHW+pkZFv/9mSkfRF+RxRF1teug4lLpVvuxAFh1+iX398u9bbO9bJstO2KCmuacfrUFpSqMN7lqnwRKa697lZuZk/ubzG6ap7HtlpW5SduknBPWJVViYlxc1rUo28o/a5JC23gDmrHpizataqrKyszFPFV69erby8PPXp00fp6emaMWOGUlNTtWvXLnXo0KHK7W+77Tbt2LFDn3zyic466yytW7dO119/vUpKSioNQBVNnz5dM2bMsPqpAADQLA0dOlSdOln3ztqtW7dq8ODBlj1+UVGR1qxZo+PHjysoKMiyOs0RcxYAAJ4zYsQIBQQEWFqDOcsz3DFjScxZAADUxOo5q7nOWB4N+06XnZ2tiIgIvfrqq7r77rurfD0jI0OTJk3Sp59+qlatWumss87SiBEj9Pbbb9eY6Fb3SqiePXvq8l6d1ber64fVwpJSfbDzoAqKSxUd0l7Deoe4vIbDhuRM7c7M06DwYMWEB1f6WlxatralZVf7NVfVqMvhfJs+TUxX5wBfjYrqLt82rV1eoy6FJaVaueeQjuQXqkyypIYD/aibt/VjY3KmfsrMU1jf8QoOi2naAdcgOz1O6buXqPegxxUQ1JMa9azT0N7W9/yQrDtHHOfHsYJC9QgKUHJ2gW6ODtcN0dZce37TgaOaH5esJUuWaNy4cZbUkKQxY8ZoxYoVlj1+Tk6OOnbsyCJUPbhzznrm0ihFh1Zd7HIFx/fuzOHRiuzUjhoeruGuOtRoeTU+SUjT0oT0Zj+feEuNgpxflbxtju6P6a3YXl0sqeHO790lN15o2e+phIxcjV++Xdu3b9fAgQMtqeHAnGUGK2YsiTmLGtQwsY631Fj0fYrWJWcquEesAjpG1nrbohOZykz5Um39g9Ul4kq1al2/rU6y075TQfZetQ/trw6h/Zp0vGWlRTqask5FJ7MVEjFCbduFuLxGTSrWkKS8jB0ur1dwPEnZqZt0c3SYbogOd9njVsSc1TDNdcby+GU8KwoODlZUVJR++aX6y4+Ehobqk08+0cmTJ3X06FGFh4fr6aef1plnnlnjY/r5+cnPz6/K58f176VJA3u76tAlSbm2Il3z/mYVl5ZKkm7r19PSPcAmr4rX7sw8jekTVqnOrI2J2paW7JI9yGqqURfHnleDenSuc8+rxtaoi6MfBcWlujE6TB8npLu8RkX0o3be2o+fMvMUHBaj7lE3NvWQa5S+e4lCIoZbNrh4Uw1HnYZ8bzXk/JCsOUcqnh/f3HW5FsenaH5csvp376hx/awLR+fHJVv22DCPO+esq8/qqssirHvB0/y4ZF17TjcNDAumhgE13FWHGi2rRlLWCS1NSPeK+cQbauRm7FTytjmK7dXF8tnEHd+70aEdLP+5iJbDihlLYs6iBjVMreMNNTYdOKp1yZkKO3dsretZjj36grr1b/AefT9veEYF2XsV0nuEImMav6edY4++0hKbLrxxmYK6DXB5jdo4avj4tld26iZL9ug7tGe5slM3qX/3YOYsNEnNb13wgLy8PO3bt09hYbW/i8Hf3189evRQcXGxli1bpuuvv95NR1gzx0LtriM5Gt3Hmndh1MesjYl69qsElwQZjeVYOD+va1C9Fs6tULEfa2+PVbfAqgOyO9APO/oBU5l4fgzuYd0lNdGyNec5CwAAwFTMWAC8kSPoC+wc1eCgz1UcQV/+sT0aMGpJpaDP3awK+gBX8mjY98QTT2jDhg1KTk7Wt99+qxtvvFFt2rTRrbfeKkm64447NHXq1PLbf/fdd/r444+1f/9+ff3117rmmmtUWlqqp556ylNPQRJBRkUsnDvRDzv6AVNxfsDbecucBQAAYBJmLADejqDPKTdjpyQpuEcsQR+M59HLeB48eFC33nqrjh49qtDQUA0dOlRbtmxRaGioJOnAgQNq3dqZR548eVLTpk3T/v371b59e1177bV67733FBwc7KFnUP1C7eL4FLcfhwlBBgvnTvTDjn7AVJwfaAm8Yc4CAAAwDTMWAG9G0OeUvH2e8jJ2SJKCwy/2yDEADeHRsO/f//53rV9fv359pY8vv/xy7d6928IjahhTFmrXJ2doXVImwRL9KEc/nEzoB8zC+YGWornPWQAAACZixgLgrQj6nJK3z1PS1jlqH9q/PPADTGfUnn3NiUkLtZ4OMlg4r4x+0A+Yi/PD6ZOENI/UBQAAAAAAZiHoc3IEfZGDH1eH0H4eOQagMQj7GsGUhdq4tGxJ0pWRIQRL9EMS/ajIhH7ALJwfTrM2JmppQrpHagMAAAAAAHMQ9DlVDPrYow/NDWFfA5m0ULvtVJgxrHeoR46BhXMn+mFHP2Aqzg8nxx6WN0eHeaQ+AAAAAAAwA0GfE0EfmjvCvgYwbaF2UHiwR+pLLJxXRD/s6AdMxfnh5Dg/Zg6P1g3R4R45BgAAAAAA4HkFOSkEfacQ9MEbEPbVk4kLtTEeCjNYOHeiH3b0A6bi/HCqeH5waVsAAAAAAFq2A9/PJ+gTQR+8B2FfPbBQ68TCuRP9sKMfMBXnhxPnBwAAAAAAqMi3fXeCPgOCvoKcFI/Uhfch7KsDC7VOLJw70Q87+gFTHcwp4Pw4hfMDAAAAAACcLmLAfQR9Hg76cg7H68D38z1SG96HsK8WLNQ6sXDuRD/s6AdMtjg+hfNDnB8AAAAAAKB6rX383V6ToM8p53C84leOl2/77h6pD+9D2FcDFmorY+Hcjn7Y0Q+YrmugH+cH5wcAAAAAADAEQZ+TI+gL7ByliAH3eeQY4H0I+6rBQq3T4XybJBbOJfrhQD+cHP2AeSb078X5QdAHAAAAAAAMQNDnVDHo63/dux55hyW8E2HfaVioddqamqVPE9MlsXBOP+zoh5O9H4c8Uht18/Np4/aanB8AAAAAAACVEfQ5nR70eWLPRHgvwr4KWKh12pqapave26TOAb6SWDinH/SjIkc/upzqB8D5AQAAAAAAUFlpSSFB3ykEfbAaYd8pLNQ6OYKM87oGaVSUZzYIpR9O9MPJtH5cF9XNI8cAs3B+AAAAAAAAVHV4zzKCPhH0wT0I+8RCbUUVg4w144bIt437v0XohxP9cKIfMBHnBwAAAAAAQGVlpUWSpMITmQR9BH1wkxa/Us1CrdPpQQZ7wtEP+uFkQj9gFltxCecHAAAAAABABcWFeTqask6S1L3PzQR9BH1wEx9PH4AnEWQ4mRBksHDuRD+c6AdM9c6OAzpuK27x5wcAAAAAAIBkD/p2rLpDRSezJUl+7cM8chwEfWiJWuw7+04WEWQ4mBJkvLPjAP0Q/aiIfsBEhSWlkqQj+bYWf34AAAAAAABIzqAv/9gehUSM8NhxEPShpWqxYd/c7/YRZMiMIIOFcyf64UQ/YKJcW5FW7jkkSZo4IKJFnx8AAAAAAABS5aBvwKglatsuxCPHQdCHlqzFhn2pOQUEGQYEGSycO9EPJ/oBEzku/XysoFCSdEZQgEeOw4TzAwAAAAAAQKoa9LFHH0EfPMOjYd/06dPVqlWrSv+de+65Nd5+2LBhVW7fqlUrXXfddQ2u/diQswkyDAiWWDi3ox9O9AMmqrjH6+g+nrnevGTG+YHmw5NzFgAAgLdixgIAJ4I+J4I+eJqPpw/gN7/5jb788svyj318aj6kjz/+WIWFheUfHz16VP3799fYsWMbXDeyU2CD7+MKJizUmhBknL5w/nFCutuPQaIfDvTDyYR+wCwVz4+1t8dqcXyKR47DhPMDzY+n5iwAAABvxowFAOYEfdlpW5SduomgDy2ex8M+Hx8fde/evV637dy5c6WP//3vf6tdu3bNZkAyYaHWhCCDhXMn+uFEP2Ci08+PwT06eeQcMeH8QPPUkuYsAAAAd2HGAtDSmRL0SSLoA07xeNi3d+9ehYeHy9/fX0OGDNELL7ygXr161eu+b731lv7v//5PgYE1v0vPZrPJZrOVf5yTkyNJWpV4SIfzbDXdrUni0rIlSeuTM8o/tz45Q+uSMnVlpH1z0lkbEy2pU5uDOQVaHJ+iroF+uqJ3iF77br/La9TFVlyid3Yc0JF8myYOiNAX+464vEZ1Tq9BP+zoh1Nj+rH9VI3s9LjGHmadHI+dn/WLZTUKcn51W43MlK8sreP493LF929154cnzhErzg9J2nHouCRp06ZNLnm8mmRlZVn6+Kidp+asxMw8tfe1ZsxMyjohSUrIyLXk8alhZh1qtLwaabkFkrxnBmruNRyPnZR1Qt+nZ1tSw1u+dx2PnZCQYFkNh4KCAstroHpWz1gScxY1qGFiHW+pkZFv/9ly/FDj1rNKi08qJX6BCvMOqdfA+3XieJJOHE+qdJuCUx9np21RkkXLZpnJ9ndY+3XopbIyKSlunstr5GbslCTlHU3QoT3Lq3y9ICdFB76fL9/23RXWZ6wyk9c2uIajD2m5BcxZdXDXnNVcZ6xWZWVlZZ4qvnr1auXl5alPnz5KT0/XjBkzlJqaql27dqlDhw613nfr1q266KKL9N1332nw4ME13m769OmaMWOGqw8dAADU09ChQ9WpkzX75BYVFWnNmjU6fvy4goKCLKnRXDFnAQDg/UaMGKGAAGv2W2fOqp47ZiyJOQsAAE9qjjOWR8O+02VnZysiIkKvvvqq7r777lpve++992rz5s368ccfa71dda+E6tmzpy7v1Vl9u1ozrG5IztTuzDwNCg+WJG1Ly9ag8GDFnPrYijq1PfbhfJs+TUxX5wBfjYrqLt82rV1eoy6FJaVaueeQjhUUanSfMHUL9HN5jdo4avRo76/UvJP0g36Uc0U/BocH68Im9mPVnsM6WlCo0X26V+rHxuRM/ZSZp7C+4xUcFtPoGrXJTo9T+u4l6j3ocQUE9bS0Rl3/VvZ+HFKXAF9dF9WtQf2QnP9eTfmequ38kNx7jkiyrI6jxs3R4bohOqza2+w7lq8XvtmjnkEBeir2HAW0bdOgGpsOHNX8uGQtWbJE48aNc8VhV5GTk6OOHTuyCFUP7pyznrk0StGhtS92NZbj+2rm8GhFdmpHDQ/XcFcdarTcGvfH9FZ4B2v+yF6flKF1yZlumYGsrFGQ86uSt83RzdFh6t892JIaOw5la2lCutd8X7mjxpIbL7Tsd6Fkf2X7+OXbtX37dg0cONCSGsxZ9WPFjCUxZ1GDGibW8bYaN0eHKfS0NQ9Xcaw5BPeIVUDHSJc+dm7GTuVl7JCPfxcVnzyq9qH91SG0n0trOBQcT1J26iYNCgtWTI9gS2rsyczTuuRMr/m+au5zVnOesTx+Gc+KgoODFRUVpV9+qf3yI/n5+fr3v/+t5557rs7H9PPzk59f1R9a4/r30qSBvRt7qLWavCpeuzPzFOTno3VJmZbtseSoM6ZPWI2P79iDbFCPzo3ag6w+Neri2POqoLhU39x1uQb3qPzuDlfUqIujRmreSfpBP8q5qh+jXdCPE8Ul+uauy6rtx0+ZeQoOi1H3qBsbVaM+0ncvUUjEcMuGI0eN2v6tnP3o1Og9Ex3/Xo39/q3r/HDUsPocGfyP9ZKkKyND9OUdQy2p4Xge/bt31Lh+VRcft6ZmafKqHRoYFtykPSznxyU38UjhKu6cs64+q6suiwhp9LHWZX5csq49p5sGhgVTw4Aa7qpDjZZZ456BvS2tsS450y0zkJU1cjN2KnnbHN0QHV7t73RXeH/nr1qakO4131fuqBEd2sHyn70wgxUzlsScRQ1qmFrHm2pMvbSPZTUcaw5h54516XpW8vZ5St+9RJGDH9fJvMP2Oav3CEXGWLNf36E9y5WdukljzrVuDej9nb9qXXKm13xfMWd5TsPeMmGxvLw87du3T2Fh1b/DwOGjjz6SzWbT+PHj3XRkjWNl0FcfjoXz87oGNWmhtikcC+e7juRo7e2x1S6cu4Nj/6srI0PoB/2QRD9MQz+cZm1M1LZT58iw3qEeOQYT+gHX87Y5CwAAwATMWADgHsnb5ylp6xxFDn5cvS+0JtwDmjOPhn1PPPGENmzYoOTkZH377be68cYb1aZNG916662SpDvuuENTp06tcr+33npLN9xwg7p06eLuQ64Xggw7Fs6d6IcT/bAzpR8moB9OszYm6tmvEsovA+0JJvQDruGtcxYAAIAnMWMBgPsR9AF18+hlPA8ePKhbb71VR48eVWhoqIYOHaotW7YoNNQeABw4cECtW1fOIxMTE/XNN9/oiy++8MQh14kgw87EhXNHX9yNfjjRDztT+mEC+uHkOD9mDo9WWm6BR84RE/oB1/HGOQsAAMDTmLEAwL0I+oD68WjY9+9//7vWr69fv77K5/r06aOysjKLjqhpCDLsWDh3oh9O9MPOlH6YgH44VTw/pl3WR5NXxbv9GEzoB1zL2+YsAAAAEzBjAYD7EPQB9WfUnn3NWcWF2hgPXX7NhIVaUxfOPYF+ONEPO1P6YQL64cT5AQAAAAAAUJkJQV9BTopH6gKNQdjnAizU2rFw7kQ/nOiHnSn9MAH9cDLh/DiYU+DxfgAAAAAAADiYEPTlHI7Xge/ne6Q20BiEfU3EQq0dC+dO9MOJftiZ0g8T0A8nE84PSVocn0LQBwAAAAAAjGBK0Be/crx823f3SH2gMQj7moCFWjsWziujH3b0w86UfpiCftiZcH4czrdJkroG+hH0AQAAAAAAjzMp6AvsHKWIAfd55BiAxiDsayQWau1YOHeiH070w86UfpiEfphxfmxNzdKniemSpAn9exH0AQAAAAAAjzIt6Ot/3btq7ePvkeMAGoOwrxFYqLVj4dyJfjjRDztT+mGalt4PU86Pq97bpM4BvpIkP582HjkOAAAAAAAAycygz8e3vUeOA2gswr4GYqHWjoVzJ/rhRD/sTOmHiVpyP0w6P87rGqRRUVx3HgAAAAAAeBZBH+AahH0NwEKtHQvnTvTDiX7YmdIP2JnSD9POjzXjhsi3DSMAAAAAAADwHII+wHVY6asnFmrtWDh3oh9O9MPOlH7AzpR+mHh+sEcfAAAAAADwJII+wLUI++qBhVo7Fs6d6IcT/bAzpR+wsxWXGNEPzg8AAAAAAIDKCPoA1/Px9AGYjoVaOxbOneiHE/2wM6UfcHpnxwEdtxVzfhhwfgAAAAAAADgQ9AHWIOyrBQu1Tiyc29EPJ/rhZEI/YFdYUipJOpJv08Y7L+P88PD5UVBU4vaaAAAAAADATAR9gHW4jGcNWKi1q7hwTrBEPxzoh50p/YBdrq1IK/cckiRNHBDB+WHApW1f2rTX7XUBAAAAAIB5CPoAaxH2VYOFWjsWzp3ohxP9sDOlH7Bz7Jl4rKBQknRGUIBHjoPzw87Rj19zCtxeGwAAAAAAmIWgD7AeYd9pWKi1Y+HciX440Q87U/oBO0c/dh3J0eg+YR47Ds4Pu4r9mDo0yu31AQAAAACAOQj6APcg7KuAhVo7Fs6d6IcT/bAzpR+wq9iPtbfHqlugn0eOg/PD7vR+nNU50O3HAAAAAAAAzJCR9DlBH+AmhH2nsFBrx8K5E/1woh92pvQDdqf3g0vbmnV+cGlbAAAAAABatsz9qwn6ADch7BMLtQ6mLNTSDzv64UQ/cDpT+sH5YWdKPwAAAAAAgDlCzvwtQR/gJj6ePgBPY6HWzpSFWvphRz+c6AdOZ0o/1idnaF1SJueHIf0AAAAAAABmCY0c6ZG6BH1oiVp02EeQYWfKQi0L53b0w4l+4HQm9YPzw6x+AAAAAAAAEPShpfLoZTynT5+uVq1aVfrv3HPPrfU+2dnZeuCBBxQWFiY/Pz9FRUXps88+a3DtVYnpBH0ya6GWhXP6URH9wOlM6UdcWrYk6crIEM4PA/qBmnlyzgIAAPBWzFgAYC6CPrRkHn9n329+8xt9+eWX5R/7+NR8SIWFhbrqqqvUtWtXLV26VD169FBKSoqCg4MbXPe/ew4TZBiyUMvCuR39cKIfTo5+tHSm9GPWxkRtO9WTYb1DPXIMnB9oCE/NWQAAAN6MGQsAzEPQh5bO42Gfj4+PunfvXq/bvv322zp27Ji+/fZbtW1rX9zs3bt3o+peH9WNIMOAhVoWzu3ohxP9cKrYj5bMpH48+1WCBoUHe6wvnB9oKE/NWQAAAN6MGQsAzELQBxgQ9u3du1fh4eHy9/fXkCFD9MILL6hXr17V3nbFihUaMmSIHnjgAf33v/9VaGiobrvtNv3hD39QmzZtqr2PzWaTzWYr/zgnJ+fU/7XSrI2Jrn46kpzvxFmfnFHlawdzCrQ4PkVdA/10Re8Qvfbdfkvq1MZWXKJ3dvz/9u49POryzvv4JyTmYCQEJIGAIQg1AUVAinURFRUPe4nUulsPFMVT7Vp9dtE+XKs+4gMoirUWbbdb16WeLrWybXW79YQgjwEB5aBAOTXhFCMhEIKEEIgTSO7nj5+TOwk5TJLfzNyTvF/XNX8QJ/P5jR8Yvtf3JjPFKjsa0O2jc7R4Z5kW7yzzNSMUwc+EG3haskqqvglLRlBLz4M+LPrwONdHzySVHAmoonSd7xlBwccu//JjHT20I6wZ4exDCl8nwT4mntlXlYETYcloqLnn4eefj5Yy2tLePjbuO9ypa0TnRWvOKiiv0mmJ4Rkzdx86JknaduBIWB6fDDdzyCAjHPYeqZaksM0/klRd+VXYM4KPvfvQMX1RWhGWjK7SeVfJiMTjo3XhnrEk5iwyyHAxh4zQHTjqvX4d3he+fVb14d2SpIqSVSr+4t+VeFp/ZeXdoPKiJb5lBK9/75Fq5qxukhHLM1acMcZEK/yDDz5QVVWV8vLyVFpaqjlz5qikpESbN29Wz549T7r/sGHDVFRUpKlTp+ree+/Vjh07dO+99+pf/uVfNGvWrGYzZs+erTlz5oT7qQAAgBaMHDlSOTk5YXns48ePa9GiRTp8+LDS0tLCkhGrmLMAAOj6LrroIvXuHZ53WmDOal4kZiyJOQsAgGiKxRkrqod9TVVUVCgnJ0fz58/XXXfdddJ/z83N1TfffKPdu3fX/+un+fPn6xe/+IVKS0ubfczm/iVUdna2Jgzqo7MzwzOsLisq19byKp0/IF1jB6RLkvYfDeidglL1SUnUtbn9lRjfIyw5ramprdO7hfv0dXWNJudlqV9qku8ZoVi3t0Jr91bUP2Y4MppqmkEfFn14XO/jewPS9d0w9bG8qFxbGmR4fezT6SmJmpTbz5c+ghnh7EPyv5OmfYQjozkNM7J7pfj+56NpRlvPo6N9FJZXaWlRuV5//XVNnTrVh6s+WWVlpXr16sUSKgSRnLMeuThXwzNOXnb5YWXxQT2/rkiPXzZcZ/Y+lYwoZ0Qqhwwywpnx07GDNaBnSlgyNu6r0J+2lUYko6v0QUZodh86pkc/3qbPP/9cY8aMCUsGc1ZowjFjScxZZJDhYg4Z7c/44fAsZYS4Q2iv4M4hEhldpQ8y2hbLM1bU38azofT0dOXm5mrHjubf4iQrK0unnHJKo7c5GD58uPbt26eamholJiae9D1JSUlKSjr5D/vUUYN095jBvl17Q/e+t0Fby6v0/bwszbwkr/4zls4f2MfXz1hqmtOa4GcsVZ+o04o7J4T8GUvtyQiF9xlk3h/I4OP5ndGchhlXDc2kj2/RhycW+pgc5j62fJth++jtex9bwtxHMMevTprrw++MlgQzxmSl683Ne3z/89Ewo63n0Zk+3tj0lZYWlftxufBBJOesq4Zm6pKcvv5dfBPPryvSNWf105isdDIcyIhUDhlkhCvjx2MGhy3jjU1f6U/bSiOS0VX6ICM0X5RW6NGPt4Xt8RG6cMxYEnMWGWS4mkNG+zIevjgvrDPQ0qLyiGR0lT7IaFssz1j+/HiAT6qqqrRz505lZWU1+9/Hjx+vHTt2qK6urv5rhYWFysrKanE4irbgQd+IzDTfF7WhCi5qN5dVasmt49u1qPXT3OUFevTjbSctziNpT2U1fXyLPjz0YdGH5UIfkvTKhi/pA77pinMWAABAtDFjAQAAF0T1sG/GjBlatmyZioqKtGrVKl1//fWKj4/XlClTJEnTpk3Tww8/XH//n/70p/r66681ffp0FRYW6r333tOTTz6p++67L1pPoVUszi0W5x76aIw+PPThoQ9r/7cfZJ2ZmtTt+0DHdfU5CwAAIBqYsQAAgIui+jaee/bs0ZQpU3Tw4EFlZGTooosu0meffaaMjAxJUnFxsXr0sOeR2dnZ+vDDD/XAAw9o5MiRGjhwoKZPn64HH3wwWk+hVa9s+FLfHeDvW+G1hyuLWhbnHvqw6MOiDw99WGtKDumdAu+zO24bNahb94HO6epzFgAAQDQwYwEAABdF9bBv4cKFrf73/Pz8k742btw4ffbZZ2G6In+wOLdYnHvow6IPiz489GEF3/q5T0qi9h+tUVJCfNvf5DNX+kDnddU5CwAAIJqYsQAAgIuc+sy+roDFueXa4lxSt16c04eHPiz6sFzqY0Rmmq7N7R+Va3ClDwAAAAAAAACh47DPRyzOLRbnHvqw6MOiDw99WA37WDR1nBLjI//Xsyt9AAAAAAAAAGgfDvt8wuLcYnHuoQ+LPiz68NCH1bSP7vwT4QAAAAAAAADaj8M+H7A4t1ice+jDog+LPjz0YbnQR+BErRN9AAAAAAAAAOiYhGhfQKxjUWuxOPfQh0UfFn146MNyoQ9JenVjsQ4HTnDQBwAAAAAAAMQoDvs6gUWtxeLcog8PfVj0YdGHx4U+amrrJEllRwNafsclHPQBAAAAAAAAMYq38ewg1xa1LM7pI4g+PPRh0YdFH54jgeN6t3CfJOn20Tkc9AEAAAAAAAAxjMO+DmBRa7E499CHRR8WfXjow3Klj79/41N9XV0jSTojLSXi1wAAAAAAAADAPxz2tROLWovFuYc+LPqw6MNDH5ZLfWwuq9TkvKyI5wMAAAAAAADwH4d97cCi1mJx7qEPiz4s+vDQh+VaH0tuHa9+qUkRvwYAAAAAAAAA/uOwL0Qsai0W5x76sOjDog8PfVgu9sFn9AEAAAAAAABdB4d9IWBRa7E499CHRR8WfXjow6IPAAAAAAAAAOGWEO0LcB2LWovFuYc+LPqw6MPjSh/5RQe0dHc5fTjSBwAAAAAAAIDw4bCvFSxqLRbnHvqw6MOiD48rfUiiD7nVBwAAAAAAAIDw4W08W8CitjEW5/TREH00Rh/u9LFub4UkaeKZfenDgT7+vG1vVHIBAAAAAACA7oTDvmawqLVYnHvow6IPiz48rvQxd3mB1n7byaWDM6JyDfRhzV1eoD9tK41KNgAAAAAAANCdcNjXBItai8W5hz4s+rDow+NSH49+vE3nD0iPSr5EHw0F+/jh8Kyo5AMAAAAAAADdCYd9DbCotVice+jDog+LPjyu9fH4ZcM1Nkqd0IfVsI8fDB8QlWsAAAAAAAAAuhMO+77FotZice6hD4s+LPrwuNgHb6VKHwAAAAAAAEB3xGGfWNQ25MKilj4s+vDQh0UfFn146AMAAAAAAADo3qJ62Dd79mzFxcU1ug0bNqzF+7/yyisn3T85OblT18Ci1nJhUUsfFn146MOiD8uFPvZUVtPHt1zoAydzYc4CAADoapixAACAixKifQHnnHOOPvroo/pfJyS0fklpaWkqKCio/3VcXFyHs1mcWy4salmcW/ThoQ+LPiwX+pCkVzZ8qe8O6E0fjvSB5kVzzgIAAOiqmLEAAIBron7Yl5CQoP79+4d8/7i4uHbdvyW7Dx3VjMWbWZzLnUUti3MPfXjoozH68LjQx/6jAUlSZmoSfTjQB1oXrTkLAACgK2PGAgAAron6Yd/27ds1YMAAJScna9y4cZo3b54GDRrU4v2rqqqUk5Ojuro6jRkzRk8++aTOOeecFu8fCAQUCATqf11ZWSlJenrFdg1IS9blg/vqV6t3+feEJK3bWyFJyi860PJ1najVqxuLVXY0oNtH52jxzjIt3lnme05b8osOaOnuck08s68kb3Hrd0bb11AuSUpOiA9LH1Lbz4M+Gl4DfQTRhydW+vArpzV7Kqv1522lkqQhvVPD0ofU+vPwo4+2MkIRSh8b9x2WJK1cubJDGaE4duxY2B67K4jWnFVQXqXTEsMzZu4+5HW+7cCRsDw+GW7mkEEGGWSQ0Vjw8bdt2xa2jKqqqrA9dqwL94wlMWeRQYaLOWSQQUbXz4jlGSvOGGPC8sgh+OCDD1RVVaW8vDyVlpZqzpw5Kikp0ebNm9WzZ8+T7v/pp59q+/btGjlypA4fPqxnnnlGy5cv15YtW3TGGWc0mzF79mzNmTMn3E8FAABE0eHDh5WWlhbty3AKcxYAAF1bv9SksL7Dw/HaOi3aWcac1UQkZiyJOQsAgGiJ1Rkrqod9TVVUVCgnJ0fz58/XXXfd1eb9jx8/ruHDh2vKlCl6/PHHm71Pc/8SKjs7W+Oze2tkv16+XXtDy4rKtbW8SucPSNfYAemN/ltNbZ3eLdynr6trNDkvS/1Sk8KS05Z1eyu0dm9Fm9/bmYy27D8a0DsFpUro0UPVJ+rCkhHU0vOgD4s+LPrwxFofnc1pTbCPPimJ6p2cqL8dDE/vQc09Dz/7aCkjFB3p4/HLhuuas/p16nob2lxWqXvf26ihfVL14/Ny9C+LNrGECkEk56xHLs7V8IyTl11+WFl8UM+vK9Ljlw3Xmb1PJSPKGZHKIYMMMsgg4+ScPZXf6C9T/i5sGZWB4+r11HvMWW0Ix4wlMWeRQYaLOWSQQUb3yIjVGSvqb+PZUHp6unJzc7Vjx46Q7n/KKafovPPOa/X+SUlJSko6eSF62+gc3T1mcEcvtVX3vrdBW8ur9P28rEafYRT8jKXqE3VaceeETp8Ot5TTlrnLC7R2b1FIn7HU0Yy2rCk5pCtfW6nzB/bR8L6n6cX1xb5nNNTc86APiz4s+ojdPjqT05qGfSyaOk4PfrRFfzvof+8NNX0efvfRXEYoOtrHmb1P1Zis9E5esWdNySH98wd/1aj+vbRo6jit//atQtG2SM5ZVw3N1CU5fTt8rW15fl2Rrjmrn2+/r8iIjRwyyCCDDDIa+6/NJWF9fIQmHDOWxJxFBhmu5pBBBhldPyNWZ6we0b6AhqqqqrRz505lZWWFdP/a2lpt2rQp5PtHU3BRu7msUktuHR/WHwNtzdzlBXr0420hL2rDIbg4H5GZpkVTxykxPvK/DenDog+LPjz0YTXto2fSKRG/BvqwXOgjlnXlOQsAACBamLEAAIALonrYN2PGDC1btkxFRUVatWqVrr/+esXHx2vKlCmSpGnTpunhhx+uv/9jjz2mxYsXa9euXfriiy90yy236Msvv9SPf/zjaD2FkLCotVxY1NKHRR8WfXjow3Khj8CJWvr4lgt9xJruMmcBAABEEjMWAABwUVTfxnPPnj2aMmWKDh48qIyMDF100UX67LPPlJGRIUkqLi5Wjx72PPLQoUO6++67tW/fPvXu3Vvf/e53tWrVKp199tnRegptYnFuubCoZXFu0YdFHx76sFzoQ5Je3Visw4ET9OFIH7GmO8xZAAAAkcaMBQAAXBTVw76FCxe2+t/z8/Mb/frZZ5/Vs88+G8Yr8heLc8uVRS2Lcw99WPRh0YfHhT5qauskSWVHA1p+xyX04cCfj1jU1ecsAACAaGDGAgAALorqYV9Xx+Lc48KilsW5RR8WfXjow3KhjyOB43q3cJ8k6fbROfTBQR8AAAAAAADQqqh+Zl9X1XBxzkFf9Be1LM4t+rDow0Mflit9/P0bn+rr6hpJ0hlpKRG/Bok+AAAAAAAAgFjCYZ/PWJxbLixqWZxb9GHRh4c+LJf62FxWqcl5WRHPD6IPAAAAAAAAILZw2OcjFueWC4taFucWfVj04aEPy7U+ltw6Xv1SkyJ+DRJ9AAAAAAAAALGIwz6fsDi3XFjUsji36MOiDw99WC72wU+Ec9AHAAAAAAAAtAeHfT5gcW65sKhlcW7Rh0UfHvqw6MOiDwAAAAAAACB2cdjXSSxqLRcWtfRh0YdFHx76sOjDyi86QB8AAAAAAABADEuI9gXEMpcWtUt3l3f7RS19WPRh0YeHPiz6aIw+AAAAAAAAgNjGT/Z1EItay4VFLX1Y9NEYfdBHQ/RhrdtbIUmaeGbfbt0HAAAAAAAAEOs47OsAFrWWC4ta+rDow6IPD31Y9GHNXV6gtd92cungjKhcgwt9AAAAAAAAAF0Bh33txKLWcmFRSx8WfVj04aEPiz6s4Gcmnj8gPSr5kht9AAAAAAAAAF0Fh33twKLWcmFRSx8WfVj04aEPiz6sYB+PXzZcY6PUiQt9AAAAAAAAAF0Jh30hYlFrubCopQ+LPiz68NCHRR9Wwz6681upAgAAAAAAAF0Nh30hYFFrubCopQ+LPiz68NCHRR8WfQAAAAAAAABdF4d9bWBRa7mwqKUPiz4s+vDQh7Wnspo+vuVCHzu/Phr1PgAAAAAAAICuisO+VrCotVicW/ThoQ+LPiwX+pCkVzZ8SR9yp495Kwo56AMAAAAAAADChMO+FrCobYzFuYc+PPTRGH14XOhj/9GAJCkzNYk+HOojOy2Fgz4AAAAAAAAgTDjsawaLWovFuUUfHvqw6MNyoY81JYf0TkGpJOm2UYPow6E+/nX8WRz0AQAAAAAAAGHCYV8TLGotFucWfXjow6IPy5U+rnxtpfqkJEqSkhLiI34N9GE17SPllMj3AQAAAAAAAHQXHPY1wKLWYnFu0YeHPiz6sFzqY0Rmmq7N7R+Va6APy4U+AAAAAAAAgO4kqod9s2fPVlxcXKPbsGHDWrz/22+/rbFjxyo9PV2pqakaPXq0XnvtNV+uhUWt5cKilj4s+rDow0MfVsM+Fk0dp8T4yP+1Rh+WC33AcmnOAgAA6CqYsQAAgIsSon0B55xzjj766KP6XycktHxJffr00SOPPKJhw4YpMTFR7777ru644w5lZmbq6quv7vA1sKi1mi5qH/xoS8SvgT4s+rDow0MfVtM+eCtV+sDJXJizAAAAuhpmLAAA4JqoH/YlJCSof//Qfjrm0ksvbfTr6dOn69VXX9WKFSs6PCCxqLVcWNTSh0UfFn146MNyoY/AiVr6+JYLfaB50Z6zAAAAuiJmLAAA4JqoH/Zt375dAwYMUHJyssaNG6d58+Zp0KBBbX6fMUb/7//9PxUUFOjnP/95i/cLBAIKBAL1v66srJQkvVewT8UVx/TqxmKVHQ3o9tE5WryzTIt3lnX6Oa3bWyFJyi86ENL984sOaOnuck08s68kb3EbjpzW7Kms1isbvlRmapIuH9xXv1q9y/eMlgQzPtpVpv/8fLfvfTTMCOV50IeXQR8WfVgu9+F3TkuCGf+2Zpe+OVHrex8NM9p6Hh3toz0ZbQmlj5XFBzuV0ZptB46E7bG7gmjNWQXlVTotMTxj5u5DxySFt3sy3MshgwwyyCCj+RxER7hnLIk5iwwyXMwhgwwyuk9GLIozxphohX/wwQeqqqpSXl6eSktLNWfOHJWUlGjz5s3q2bNns99z+PBhDRw4UIFAQPHx8frtb3+rO++8s8WM2bNna86cOeF6CgAAwAGHDx9WWlpatC/DKcxZAADAD8xZjUVixpKYswAA6Or8nrGietjXVEVFhXJycjR//nzdddddzd6nrq5Ou3btUlVVlZYuXarHH39cf/7zn096W4Sg5v4lVHZ2ttIS41V9olaT87LULzXJ1+exrKhcW8urdP6AdI0dkN7i/dbtrdDavRVt3q+zOa3ZfzSgdwpK1SclUdfm9ldifA/fM9ry8e5y/e1glXpI+sFw//uQQnse9OGhD4s+rFjow6+c1tTU1un3m/ao+kSdhvc9TZcO7ut7htT28+hsH6FktMWVPv64pUSVNbUsoUIQyTnrkYtzNTyj+WVXZ60sPqjn1xXp8cuG68zep5IR5YxI5ZBBBhlkkBH5nG0HjuiJTwqZs9oQjhlLYs4igwwXc8gggwwy/BCuGSvqb+PZUHp6unJzc7Vjx44W79OjRw995zvfkSSNHj1a27Zt07x581ockJKSkpSUdPJyPFBbpxV3TgjLZyzd+94GbS2v0vfzslr8/KS5ywu0dm9Rpz5jKZSc1gQ/Y+n8gX1a/Iylzma05UjguM76tyWSpLu/O1j/ce1o3zOktp8HfXjow6IPK1b68COnNcHPTDxRVydJ+tG52WH7jLzWnocffbSV0RaX+gjU1vn6uF1ZJOesq4Zm6pKc8ByGS9Lz64p0zVn9NCYrnQwHMiKVQwYZZJBBRmRzln9Zric+KQzLY3cl4ZixJOYsMshwNYcMMsggo7PCNWOd/M/wo6iqqko7d+5UVlZWyN9TV1fX6F86hepn474TloO+UMxdXqBHP97W6UVtZwQXtSMy01pd1IZTcFH7dXWNJOmMtJSIX4NEH0H0YdGHRR+eYB+byyo1OS/0v6P8Rh+ehn38bNx3Ip4fqyI5ZwEAAHQXzFgAAMAFUT3smzFjhpYtW6aioiKtWrVK119/veLj4zVlyhRJ0rRp0/Twww/X33/evHlasmSJdu3apW3btumXv/ylXnvtNd1yyy3tzj6zd6pvz6M9WNR6WJxb9GHRh4c+LNf6WHLr+LC8lWoo6MPTtI9o/X0eC6I5ZwEAAHRVzFgAAMBFUX0bzz179mjKlCk6ePCgMjIydNFFF+mzzz5TRkaGJKm4uFg9etjzyKNHj+ree+/Vnj17lJKSomHDhun111/XTTfdFK2n0C4saj1NF7WvbPgy4tcg0UcQfVj0YdGHp2kf3xvYOyqd0IenuT427j8c8euIFd1tzgIAAIgEZiwAAOCiqB72LVy4sNX/np+f3+jXc+fO1dy5c8N4ReHDotbD4tyiD4s+PPRhudpHNNCHx5U+Ykl3mrMAAAAihRkLAAC4KKqHfd0Fi1qPK4ta+vDQh0UfFn14XOkjv+iAlu4upw9H+gAAAAAAAABcxGFfmLE497iyqGVx7qEPiz4s+vC40ock+pBbfQAAAAAAAAAu4rAvjFice1xa1NIHfTREH43Rhzt9rNtbIUmaeGZf+nCgDwAAAAAAAMBlPdq+CzqKxbk7i1oW5x76sOjDog+PK33MXV6gtd92cungjKhcA30AAAAAAAAAsYPDvjBgce5xZVHL4txDHxZ9WPThcamPRz/epvMHpEclX6IPAAAAAAAAINZw2OczFuceVxa1LM499GHRh0UfHtf6ePyy4RobpU7oAwAAAAAAAIg9HPb5iMW5x5VFLYtzD31Y9GHRh8fFPviJ8Oj3AQAAAAAAAMQSDvt8wuLc48qilsW5hz4s+rDow0MfFn0AAAAAAAAAsYvDPh+wqPW4sqilDw99WPRh0YeHPqw9ldX0AQAAAAAAAMQwDvs6iUWtx5VFLX146MOiD4s+PPTR2CsbvqQPAAAAAAAAIIZx2NcJLGo9rixq6cNDH43Rh4c+PPRh7T8akCRlpiZ1+z4AAAAAAACAWMZhXwexqPW4sqilDw99WPRh0YeHPqw1JYf0TkGpJOm2UYO6dR8AAAAAAABArOOwrwNY1HpcWdTSh4c+LPqw6MNDH1bwMxP7pCRKkpIS4iN+Da70AQAAAAAAAHQFHPa1E4tajyuLWvrw0IdFHxZ9eOjDCvYxIjNN1+b2j8o1uNIHAAAAAAAA0FVw2NcOLGo9rixq6cNDHxZ9WPThoQ+rYR+Lpo5TYnzkRwBX+gAAAAAAAAC6Eg77QsSi1uPKopY+PPRh0YdFHx76sJr20Z3fShUAAAAAAADoajjsCwGLWo8ri1r68NCHRR8WfXgCJ2rp41v0AQAAAAAAAHRtCdG+ANexqPW4sqilDw99WPRh0Yf16sZiHQ6coA/6AAAAAAAAALo8DvtawaLWcmFRSx8WfXjow6IPT01tnSSp7GhAy++4hD7oAwAAAAAAAOjyeBvPFrCo9TRc1HKQQR9B9OGhD8uFPo4Ejuvdwn2SpNtH59AHfQAAAAAAAADdQlQP+2bPnq24uLhGt2HDhrV4/wULFujiiy9W79691bt3b11xxRVas2aN79fFotbjyqKWPjz0YdGHRR+e4Gcmfl1dI0k6Iy0l4tcg0UeQK310d67OWQAAALGMGQsAALgo6j/Zd84556i0tLT+tmLFihbvm5+frylTpujjjz/Wp59+quzsbF111VUqKSnx7XpY1HpcWdTSh4c+LPqw6MMT7GNzWaUm52VFPD+IPjyu9AGPa3MWAABAV8CMBQAAXBP1z+xLSEhQ//79Q7rvG2+80ejXv/vd7/TWW29p6dKlmjZtWqevhUWtp+mi9u1tpRG/Bok+gujDog+LPjwN+1hy63i9suHLiF+DRB9BrvQBy6U5CwAAoKtgxgIAAK6J+mHf9u3bNWDAACUnJ2vcuHGaN2+eBg0aFNL3Hjt2TMePH1efPn1avE8gEFAgEKj/dWVlpSTpvYJ92l9lv55fdEBLd5dr4pl9JXmL245at7ei/jHbY09ltV7Z8KUyU5N0+eC++tXqXWHJaU3gRK1e3VissqMB3T46R1+U+p/RVHPPw88+WspoC33QR1P0YbnYx+KdZWHJaappht99NJfRlvb20ZGMtkStj5JDYXvsriBac1ZBeZVOSwzPmLn70DFJ0rYDR8Ly+GS4mUMGGWSQQUbkcwrKq8L22LEu3DOWxJxFBhku5pBBBhlk+CFcM1acMcaE5ZFD8MEHH6iqqkp5eXkqLS3VnDlzVFJSos2bN6tnz55tfv+9996rDz/8UFu2bFFycnKz95k9e7bmzJnj96UDAACHHD58WGlpadG+DKcwZwEAAD8wZzUWiRlLYs4CAKCr83vGiuphX1MVFRXKycnR/Pnzddddd7V636eeekpPP/208vPzNXLkyBbv19y/hMrOztaEQX10dmaa1u2t0Nq9FTp/QLrGDkj35XksKyrX1vKqkB9z/9GA3ikoVZ+URF2b21+J8aF9lGJ7c1pTU1undwv36evqGk3Oy1K/1CTfM1rSMEOS7300zWjrcemDPpqiD8vlPvzOaUkwY+BpySqp+iYsWaE+j4720Z6MtkS7j61llVpW/DVLqBBEcs565OJcDc9oe9nVESuLD+r5dUV6/LLhOrP3qWREOSNSOWSQQQYZZEQ+Z9uBI3rik0LmrDaEY8aSmLPIIMPFHDLIIIMMP4Rrxor623g2lJ6ertzcXO3YsaPV+z3zzDN66qmn9NFHH7U5HCUlJSkpKemkr08dNUj7qwJau7fI989Yuve9DdpaXqXv52W1+bjBz1g6f2Cfdn/GUntyWhP8jKXqE3VacecEfW9gb98zWhPMSEtK0NLd5WH5zKtQnwd90EdT9GG53oefOa0JZpRUfRO2z+gL5Xl0po9QM9riQh8LvijSsuKvw/LYXU0k56yrhmbqkpy+nbre1jy/rkjXnNVPY7LSyXAgI1I5ZJBBBhlkRDZn+ZfleuKTwrA8dlcSjhlLYs4igwxXc8gggwwyOitcM1boPwIQAVVVVdq5c6eysrJavM/TTz+txx9/XIsWLdLYsWM7nPVeQake/Xhb2Ba1oQguakdkpnVoUeuH4KJ2c1mlltw6/qRFbSSF6yAjVPTRGH3QR0P0YQU/h27imX3pw4E+3isojUpuLIrknAUAANBdMGMBAAAXRPWwb8aMGVq2bJmKioq0atUqXX/99YqPj9eUKVMkSdOmTdPDDz9cf/+f//znevTRR/XSSy9p8ODB2rdvn/bt26eqqvZ/oOH/FO5nce7IopbFuYc+LPqw6MPjSh9zlxdo7bedXDo4IyrXQB/W3OUF+p/C/VHJjgXRnLMAAAC6KmYsAADgoqge9u3Zs0dTpkxRXl6ebrzxRp1++un67LPPlJHhLVCLi4tVWmr/xf7zzz+vmpoa/fCHP1RWVlb97Zlnnml39nW5/VicO7KoZXFOHw3Rh0UfHpf6ePTjbfWfnxgN9GEF+7gut19U8mNBNOcsAACArooZCwAAuCiqn9m3cOHCVv97fn5+o18XFRX5lj0pr+W3VwgnFrVWw8V58EAj0ujDog8PfVj0YQX7ePyy4dp7pDoqndCH1bCPfqcl8dN9LYjmnAUAANBVMWMBAAAXOfWZfV0di1qr4aJ2bJR+SoY+LPrw0IdFH1bDPviJcPoAAAAAAAAAXMNhX4SwqLVcWNTSh0UfHvqw6MOiDw99AAAAAAAAAO7isC8CWNRaLixq6cOiDw99WPRhudDHnspq+viWC30AAAAAAAAALuKwL8xYnFsuLGpZnFv04aEPiz4sF/qQpFc2fEkfcqcPAAAAAAAAwEUc9oURi3PLlUUti3MPfXjoozH68LjQx/6jAUlSZmoSfTjQBwAAAAAAAOAyDvvCiMW5x4VFLYtziz489GHRh+VCH2tKDumdglJJ0m2jBtEHB30AAAAAAABAqzjsCwMW55YLi1oW5xZ9eOjDog/LlT6ufG2l+qQkSpKSEuIjfg30AQAAAAAAAMQWDvt8xuLccmFRy+Lcog8PfVj0YbnUx4jMNF2b2z8q10AfAAAAAAAAQOzhsM9HLM4tFxa1LM4t+vDQh0Uflmt9LJo6Tonxkf/rmT4AAAAAAACA2MRhn09YnFsuLGpZnFv04aEPiz4sF/vgJ8I56AMAAAAAAADag8M+H7A4t1xY1LI4t+jDQx8WfVj04QmcqKUPAAAAAAAAIIYlRPsCYh2LWsuFRS19WPThoQ+LPiz6sF7dWKzDgRPdvg8AAAAAAAAgVnHY1wksai0XFrX0YdGHRR8e+rDow1NTWydJKjsa0PI7LunWfQAAAAAAAACxjLfx7CDXFrUszukjiD489GHRh0UfniOB43q3cJ8k6fbROd26DwAAAAAAACDWcdjXASxqLRcWtfRh0YeHPiz6sOjDE/zMxK+rayRJZ6SlRPwaJDf6AAAAAAAAALoCDvvaiUWt5cKilj4s+vDQh0UfFn14gn1sLqvU5LysiOcHudAHAAAAAAAA0FVw2NcOLGotFxa19GHRh4c+LPqw6MPTsI8lt45Xv9SkiF+D5EYfAAAAAAAAQFfCYV+IWNRaLixq6cOiDw99WPRh0YenaR/d+a1UAQAAAAAAgK6Gw74QsKi1XFjU0odFHx76sOjDog8PfQAAAAAAAABdW1QP+2bPnq24uLhGt2HDhrV4/y1btugf//EfNXjwYMXFxem5554L+zWyqLVcWNTSh0UfHvqw6MPKLzpAH6KP7i4W5iwAAIBYw4wFAABclBDtCzjnnHP00Ucf1f86IaHlSzp27JiGDBmiG264QQ888EDYr41FrZVfdEBLd5ezOKePevRh0YfHlT4k0YfoAx6X5ywAAIBYxYwFAABcE/XDvoSEBPXv3z+k+55//vk6//zzJUkPPfRQOC+LRW0T0V7U0kdj9EEfDdGHtW5vhSRp4pl96YM+IHfnLAAAgFjGjAUAAFwT9cO+7du3a8CAAUpOTta4ceM0b948DRo0yLfHDwQCCgQC9b+urKyUJL1XsE/7qwLNfs+eymq9suFLZaYm6fLBffWr1bvalRlcbuYXHejYRUsKnKjVqxuLVXY0oNtH52jxzjIt3lnme05b/vK3fZKkIemnSvLeqtBvbT2PzvYRSkZb6MOiD4s+PK70kV90QGu/zZHC04fU+nPxo4+2MtoSSh+dzQhFxPooORSWx+0qojVnFZRX6bTE8IyZuw8dkyRtO3AkLI9Phps5ZJBBBhlkRD6noLwqbI8d68I9Y0nMWWSQ4WIOGWSQQYYfwjVjxRljTFgeOQQffPCBqqqqlJeXp9LSUs2ZM0clJSXavHmzevbs2er3Dh48WPfff7/uv//+Vu83e/ZszZkzx8erBgAArjl8+LDS0tKifRlOYc4CAAB+YM5qLBIzlsScBQBAV+f3jBXVw76mKioqlJOTo/nz5+uuu+5q9b6hDkjN/Uuo7OxsTRjUR2dnNv4fuf9oQO8UlKpPSqKuze2vxPgeHXoey4rKtbW8SucPSNfYAent+t6a2jq9W7hPX1fXaHJelvqlJoUlpy3r9lZo7d4KZaQk6kB1TVgyglp6Hn710VpGW+jDZtCHRR8e1/o4f0C6jtacCFtOUHPPxc8+WspoS3v66GhGKCLdx9aySi0r/polVAgiOWc9cnGuhme0vuzqqJXFB/X8uiI9ftlwndn7VDKinBGpHDLIIIMMMiKfs+3AET3xSSFzVhvCMWNJzFlkkOFiDhlkkEGGH8I1Y0X9bTwbSk9PV25urnbs2OHbYyYlJSkp6eSF59RRg3T3mMH1vw5+xtL5A/t0+jOW7n1vg7aWV+n7eVnt+oyi4GcsVZ+o04o7J7T5GUsdzWnL3OUFWrvX+w2990i1nl9X5HtGQ809Dz/7aCmjLfRBH82hD4+Lfcy8JC9sOQ01zfC7j+Yy2tLePjqSEYpo9LHgiyItK/46LI/d1URyzrpqaKYuyenrW05Tz68r0jVn9dOYrHQyHMiIVA4ZZJBBBhmRzVn+Zbme+KQwLI/dlYRjxpKYs8ggw9UcMsggg4zOCteM1bkfPfBZVVWVdu7cqaysrIjmBhe1IzLTfFvUtldwUbu5rFJLbh0f0qI2HOYuL9CjH2+rX9RGA31Y9OGhD4s+LPrw0AdCFa05CwAAoCtjxgIAAC6I6mHfjBkztGzZMhUVFWnVqlW6/vrrFR8frylTpkiSpk2bpocffrj+/jU1NdqwYYM2bNigmpoalZSUaMOGDZ3611Msai0XFrX0YdGHhz4s+rBc6GNPZTV9fMuFPnAyF+YsAACAroYZCwAAuCiqb+O5Z88eTZkyRQcPHlRGRoYuuugiffbZZ8rIyJAkFRcXq0cPex65d+9enXfeefW/fuaZZ/TMM89owoQJys/Pb3c+i3PLhUUti3OLPjz0YdGH5UIfkvTKhi/13QG96cORPnCyaM9ZAAAAXREzFgAAcFFUD/sWLlzY6n9vOvQMHjxYxhhfsncfOqoZizezOJc7i1oW5x768NBHY/ThcaGP/UcDkqTM1CT6cKCP3YeORiU3FkRzzgIAAOiqmLEAAICLnPrMvkia/+kODvrkxqKWxblFHx76sOjDcqGPNSWH9E5BqSTptlGD6MOBPuZ/ytsfAQAAAAAAoHvrtod9A9NSWJw7sqhlce6hDw99WPRhudLHla+tVJ+URElSUkJ8xK+BPqxgHwPTUqKSDwAAAAAAALii2x723X/BUBbnjixqWZzTRxB9WPRhudTHiMw0XZvbPyrXQB9Wwz7uv2BoVK4BAAAAAAAAcEW3PexLPoXFuSuLWhbn9CHRR0P0YbnWx6Kp45QYH/m/OunDatpHNP4+BwAAAAAAAFzSbQ/7Io1FrcXi3KIPD31Y9GG52Ac/EU4fAAAAAAAAgGs47IsAFrWWC4ta+rDow6IPD31YLvQROFFLH99yoQ8AAAAAAADARQnRvoCujsW55cKilsW5RR8WfXjow3KhD0l6dWOxDgdO0IcjfQAAAAAAAAAu4rAvjFicW64salmce+jDog+LPjwu9FFTWydJKjsa0PI7LqEPB/58AAAAAAAAAK7isC+MWJx7XFjUsji36MOiDw99WC70cSRwXO8W7pMk3T46hz446AMAAAAAAABaxWf2hUHDxTkHfdFf1LI4t+jDog8PfViu9PH3b3yqr6trJElnpKVE/Bok+gAAAAAAAABiCYd9PmNxbrmwqGVxbtGHRR8e+rBc6mNzWaUm52VFPD+IPgAAAAAAAIDYwmGfj1icWy4salmcW/Rh0YeHPizX+lhy63j1S02K+DVI9AEAAAAAAADEIg77fMLi3HJhUcvi3KIPiz489GG52Ac/Ec5BHwAAAAAAANAeHPb5gMW55cKilsW5RR8WfXjow6IPiz4AAAAAAACA2MVhXyexqLVcWNTSh0UfFn146MOiDyu/6AB9AAAAAAAAADEsIdoXEMtcWtQu3V3e7Re19GHRh0UfHvqw6KMx+gAAAAAAAABiGz/Z10Esai0XFrX0YdFHY/RBHw3Rh7Vub4UkaeKZfbt1HwAAAAAAAECs47CvA1jUWi4saunDog+LPjz0YdGHNXd5gdZ+28mlgzOicg0u9AEAAAAAAAB0BRz2tROLWsuFRS19WPRh0YeHPiz6sIKfmXj+gPSo5Etu9AEAAAAAAAB0FRz2tQOLWsuFRS19WPRh0YeHPiz6sIJ9PH7ZcI2NUicu9AEAAAAAAAB0Jc4c9j311FOKi4vT/fff3+J9jh8/rscee0xDhw5VcnKyRo0apUWLFkXk+ljUWi4saunDog+LPjz0YdGH1bCP7vxWqt2V63MWAABArGLOAgAALnDisG/t2rV64YUXNHLkyFbvN3PmTL3wwgv6t3/7N23dulX33HOPrr/+eq1fvz6s18ei1nJhUUsfFn1Y9OGhD4s+LPro3lyfswAAAGIVcxYAAHBF1A/7qqqqNHXqVC1YsEC9e7e+BH3ttdf0f/7P/9E111yjIUOG6Kc//amuueYa/fKXvwzb9bGotVxY1NKHRR8WfXjow9pTWU0f36KP7s31OQsAACBWMWcBAACXJET7Au677z5NmjRJV1xxhebOndvqfQOBgJKTkxt9LSUlRStWrGj1ewKBQP2vKysrJUnvFezT/qpAS9/mfe+JWr26sVhlRwO6fXSOFu8s0+KdZW09Ja3bWyFJyi860OZ9Q5FfdEBLd5dr4pl9JXmL23DkNCeY8T9/K9Xc5X9TZmqSLh/cV79avcv3jLaeR0f7aE9GKOjDQx/00Zxo9tEw53dfFGlAz2Tf+2iY0dpz6UwfoWaEoqU+/MxoTUT6KDnk6+N1NdGaswrKq3RaYnjGzN2HjkmSth04EpbHJ8PNHDLIIIMMMiKfU1BeFbbH7gqYs8ggw52MSOWQQQYZZPghbDOWiaI333zTjBgxwlRXVxtjjJkwYYKZPn16i/efMmWKOfvss01hYaGpra01ixcvNikpKSYxMbHF75k1a5aRxI0bN27cuHHrwrfDhw/7PabEPOYsbty4cePGjZsfN+askzFncePGjRs3btw6e/N7xoozxhhFwVdffaWxY8dqyZIl9e9tfumll2r06NF67rnnmv2eAwcO6O6779Y777yjuLg4DR06VFdccYVeeuklVVdXN/s9zf1LqOzsbE0Y1EdnZ6Y1+z01tXV6t3Cfvq6u0eS8LPVLTWrXc1tWVK6t5VU6f0C6xg5Ib9f3NrRub4XW7q1o8XH8ymnNBzv2q6iiWqedEq+bRgxUYrz/7/za1vPobB+hZISCPjz0YdGH5UIf+48G9N/bSmUkjenfSxecEZ63zWztufjRR1sZoWirDz8y2hKpPraWVWpZ8dc6fPiw0tKa/3u9O4r2nPXIxbkantHT9+clSSuLD+r5dUV6/LLhOrP3qWREOSNSOWSQQQYZZEQ+Z9uBI3rik0LmrCaYs8ggw72MSOWQQQYZZPghXDNW1N7G8/PPP1dZWZnGjBlT/7Xa2lotX75cv/nNbxQIBBQfH9/oezIyMvTnP/9Z33zzjQ4ePKgBAwbooYce0pAhQ1rMSUpKUlLSycvWqaMG6e4xg0/6evAzlqpP1GnFnRM69BlL9763QVvLq/T9vKwOfz7S3OUFWru3qNXPWPIjpzVrSg7pd18USZLu/7uhevzys33PkFp/Hn700VZGKOjDQx8WfViu9HHlayuVmZqo/UdrdP3wAWH7fLqWnotffbSWEYpQ+uhsRlsi2ceCL4q0rPjrsDx2LIv2nHXV0ExdktPXvyfUxPPrinTNWf00JiudDAcyIpVDBhlkkEFGZHOWf1muJz4pDMtjxzLmLDLIcDMjUjlkkEEGGZ0Vrhkraod9EydO1KZNmxp97Y477tCwYcP04IMPnjQYNZScnKyBAwfq+PHjeuutt3TjjTf6ck3BRe3mskotuXV8pxa1nTF3eYEe/Xhbm4vacAouavukeIvapISW+wgX+rDow6IPD31YwT5GZKZpeN/T9OL64ohfA31YLvQBN+csAACAroA5CwAAuChqh309e/bUiBEjGn0tNTVVp59+ev3Xp02bpoEDB2revHmSpNWrV6ukpESjR49WSUmJZs+erbq6Ov3rv/5rp6+HRa3lwqKWPiz6sOjDQx9Wwz4WTR2nBz/aEvFroA/LhT7gcW3OAgAA6CqYswAAgIv8/4ApHxUXF6u0tLT+1998841mzpyps88+W9dff70GDhyoFStWKD09vVM5LGqtpovacHwGWVvow6IPiz489GE17aNn0ikRvwb6sFzoA+0TqTkLAACgu2HOAgAAkRa1n+xrTn5+fqu/njBhgrZu3eprJotay4VFLX1Y9GHRh4c+LBf6CJyopY9vudAH2haNOQsAAKA7YM4CAADR5tRhX6SxOLdcWNSyOLfow6IPD31YLvQhSa9uLNbhwAn6cKQPAAAAAAAAoLvqtod93xxncR7kyqKWxbmHPiz6sOjD40IfNbV1kqSyowEtv+MS+ohyH98cr414JgAAAAAAAOCSbnvY99zqnSo/VsPi3IFFLYtziz4s+vDQh+VCH0cCx/Vu4T5J0u2jc+jDgT6eW70z4rkAAAAAAACAS3pE+wKipaSymoM+Rxa1LM499GHRh4c+LFf6+Ps3PtXX1TWSpDPSUiJ+DRJ9BAX7KKmsjng2AAAAAAAA4JJue9j3s3HfYXHuyKKWxTl9NEQfHvqwXOpjc1mlJudlRTw/iD48Dfv42bjvRDwfAAAAAAAAcEm3Pew7s3dqVHJZ1HpYnFv0YdGHhz4s1/pYcut49UtNivg1SPQR1LSPaP19DgAAAAAAALii2x72RQOLWg+Lc4s+LPrw0IflYh/8RDh9AAAAAAAAAK7hsC9CWNR6XFnU0oeHPiz6sOjDQx8WfQAAAAAAAADuSoj2BXQHLGo9rixq6cNDHxZ9WPThcaWP/KIDWrq7nD4c6QMAAAAAAABwEYd9Ycbi3OPKopbFuYc+LPqw6MPjSh+S6ENu9QEAAAAAAAC4iMO+MGJx7nFpUUsf9NEQfTRGH+70sW5vhSRp4pl96cOBPgAAAAAAAACX8Zl9YcTi3J1FLYtzD31Y9GHRh8eVPuYuL9Dabzu5dHBGVK6BPgAAAAAAAIDYwWFfGLA497iyqGVx7qEPiz4s+vC41MejH2/T+QPSo5Iv0QcAAAAAAAAQazjs8xmLc48ri1oW5x76sOjDog+Pa308ftlwjY1SJ/QBAAAAAAAAxB4O+3zE4tzjyqKWxbmHPiz6sOjD42If/ER49PsAAAAAAAAAYgmHfT5hce5xZVHL4txDHxZ9WPThoQ+LPgAAAAAAAIDYxWGfD1jUelxZ1NKHhz4s+rDow0Mf1p7KavoAAAAAAAAAYhiHfZ3EotbjyqKWPjz0YdGHRR8e+mjslQ1f0gcAAAAAAAAQwzjs6wQWtR5XFrX04aGPxujDQx8e+rD2Hw1IkjJTk7p9HwAAAAAAAEAs47Cvg1jUelxZ1NKHhz4s+rDow0Mf1pqSQ3qnoFSSdNuoQd26DwAAAAAAACDWOXPY99RTTykuLk73339/q/d77rnnlJeXp5SUFGVnZ+uBBx7QN998E5mL/BaLWo8ri1r68NCHRR8WfXjowwp+ZmKflERJUlJCfMSvwZU+upNYmrMAAABiCXMWAABwQUK0L0CS1q5dqxdeeEEjR45s9X6///3v9dBDD+mll17ShRdeqMLCQt1+++2Ki4vT/PnzI3Ktri1q9x+t6daLWvrw0IdFHxZ9eOjDCvYxIjNNw/uephfXF0f8GlzpozuJpTkLAAAgljBnAQAAV0T9J/uqqqo0depULViwQL17t77wW7VqlcaPH68f/ehHGjx4sK666ipNmTJFa9asici1uraovTa3f1SuwZVFLX146MOiD4s+PPRhNexj0dRxSoyP/AjgSh/dSSzNWQAAALGEOQsAALgk6j/Zd99992nSpEm64oorNHfu3Fbve+GFF+r111/XmjVr9L3vfU+7du3S+++/r1tvvbXF7wkEAgoEAvW/rqyslCS9V7BP+6sCLX3bSfKLDmjp7nJNPLOvJG9x25J1eyvqv8dPeyqr9cqGL5WZmqTLB/fVhzvLwpLTUNPnEjhRq1c3FqvsaEC3j87R4p1lWvztdfiVEYr29NHRjLbQh0Uf9NFUNPqQGj+XcPTRNCMU7e2jIxltadrHr1bvCtvfVQ1FpI+SQ51+jK4sWnPW4p1l+qqy2p8n0cTK4oOSpG0HjoTl8SVp96FjZDiWQwYZZJBBRuRzCsqrwvbYXUG05qyC8iqdlhiedV5X+TNCRvfLiFQOGWSQQYYfwjZjmSh68803zYgRI0x1dbUxxpgJEyaY6dOnt/o9v/rVr8wpp5xiEhISjCRzzz33tHr/WbNmGUncuHHjxo0bty58O3z4sF/jSZfBnMWNGzdu3Lhx8+PGnHUy5ixu3Lhx48aNW2dvfs9YccYYoyj46quvNHbsWC1ZsqT+vc0vvfRSjR49Ws8991yz35Ofn6+bb75Zc+fO1QUXXKAdO3Zo+vTpuvvuu/Xoo482+z3N/Uuo7OxsTRjUR2dnprV5nev2Vmjt3gqdPyBdYwekh/TclhWVa2t5Vbu+pzX7jwb0TkGp+qQk6trc/vVvveZ3TnOCGWP691LJkWp9XV2jyXlZ6pea5HtGKM+jI320N6Mt9GHRB300Fc0+Guacdkq8ArW1vvfRMKOt59LRPtqT0ZaW+vAzozWR6GNrWaWWFX+tw4cPKy2t7b/Xu4toz1nX5fbX2DC9TWvwp2V/Onawxg86PSwZK4sP6vl1RXr8suE6s/epZDiQQwYZZJBBRuRzth04oic+KWTOaiLac9YjF+dqeEZP35+X1HX+jJDR/TIilUMGGWSQ4YdwzVhRexvPzz//XGVlZRozZkz912pra7V8+XL95je/USAQUHx8fKPvefTRR3Xrrbfqxz/+sSTp3HPP1dGjR/WTn/xEjzzyiHr0OPnzh5KSkpSUdPJiceqoQbp7zOBWr3Hu8gKt3VvU7s9Yuve9DdpaXqXv52V1+rOZgp+xdP7APlo0dZx6Jp0SlpyWBDMOHAuo+kSdVtw5wffPWAr1eXS0j/ZktIU+LPqgj6ai3Yck/fgvX2hreZWO14WnDym059KZPkLNaEtrffiV0ZZI9LHgiyItK/7a98eNddGesybl9W9zzuqMpbvLNX7Q6Zp6bnbYMp5fV6RrzuqnMVnpZDiSQwYZZJBBRmRzln9Zric+KQzLY8eyaM9ZVw3N1CU5fX1+VlZX+TNCRvfLiFQOGWSQQUZnhWvGitph38SJE7Vp06ZGX7vjjjs0bNgwPfjggycNRpJ07Nixkwag4P38/gHFucsL9OjH2zq8qPVDcFE7IjOt2UVtJNTU1kmSyo4GtPyOS8KyqA0FfXjow6IPiz48RwLH9W7hPknS7aNz6IM+ujXX5ywAAIBYxZwFAABcFLXDvp49e2rEiBGNvpaamqrTTz+9/uvTpk3TwIEDNW/ePEnS5MmTNX/+fJ133nn1b3vw6KOPavLkyc0OUx3FotbjyqKWPjz0YdGHRR+eI4Hj+vs3PtXX1TWSpDPSUiJ+DRJ9BLnSR3fm8pwFAAAQy5izAACAi6J22BeK4uLiRv/yaebMmYqLi9PMmTNVUlKijIwMTZ48WU888YRvmSxqPa4saunDQx8WfVj04Qn2sbmsUpPzsvT2ttKIX4NEH0Gu9IG2RWPOAgAA6A6YswAAQKQ5ddiXn5/f6q8TEhI0a9YszZo1Kyz5LGo9rixq6cNDHxZ9WPThadjHklvH65UNX0b8GiT6CHKlDzQv2nMWAABAV8WcBQAAou3kTwDupljUepouavulnvxh0JFAHx76sOjDog9P0z54K1X6AAAAAAAAALojDvvEojbIlUUtfXjow6IPiz489GHRBwAAAAAAANC9OfU2ntHAotbjyqKWPjz0YdGHRR8eV/rILzqgpbvL6cORPgAAAAAAAIDuqlsf9rE497iyqGVx7qEPiz4s+vC40ock+pBbfQAAAAAAAADdVbc97HuvoFT/U7ifRa1Di1oW5/TREH00Rh/u9LFub4UkaeKZfenDgT7eKyiNSi4AAAAAAADgim77mX0c9LmzqGVx7qEPiz4s+vC40sfc5QVa+20nlw7OiMo10Ic1d3mB/qdwf1SyAQAAAAAAAFd028O+63L7sTh3ZFHL4pw+GqIPiz48LvXx6MfbdP6A9KjkS/TRULCP63L7RSUfAAAAAAAAcEW3PeyblJcVlVwWtRaLcw99WPRh0YfHtT4ev2y4xkapE/qwGvYRrb/PAQAAAAAAAFd028O+aGBRa7E499CHRR8WfXhc7IOfCKcPAAAAAAAAwDUc9kUIi1rLhUUtfVj04aEPiz4s+vDQBwAAAAAAAOAuDvsigEWt5cKilj4s+vDQh0Uflgt97Kmspo9vudAHAAAAAAAA4CIO+8KMxbnlwqKWxblFHx76sOjDcqEPSXplw5f0IXf6AAAAAAAAAFzEYV8YsTi3XFnUsjj30IeHPhqjD48Lfew/GpAkZaYm0YcDfQAAAAAAAAAu47AvjFice1xY1LI4t+jDQx8WfVgu9LGm5JDeKSiVJN02ahB9cNAHAAAAAAAAtIrDvjBgcW65sKhlcW7Rh4c+LPqwXOnjytdWqk9KoiQpKSE+4tdAHwAAAAAAAEBs4bDPZyzOLRcWtSzOLfrw0IdFH5ZLfYzITNO1uf2jcg30AQAAAAAAAMQeDvt8xOLccmFRy+Lcog8PfVj0YbnWx6Kp45QYH/m/nukDAAAAAAAAiE0c9vmExbnlwqKWxblFHx76sOjDcrEPfiKcgz4AAAAAAACgPTjs8wGLc8uFRS2Lc4s+PPRh0YdFH57AiVr6AAAAAAAAAGJYQrQvINaxqLVcWNTSh0UfHvqw6MOiD+vVjcU6HDjR7fsAAAAAAAAAYpUzP9n31FNPKS4uTvfff3+L97n00ksVFxd30m3SpEmRu9AGXFrUsjinj4bow6IPD31Y9OGpqa2TJJUdDXT7PrqDWJyzAAAAYgFzFgAAcIETP9m3du1avfDCCxo5cmSr93v77bdVU1NT/+uDBw9q1KhRuuGGG8J9iSdxbVG7/I5LuvWilj4s+vDQh0UfFn14jgSO693CfZKk20fndOs+uoNYnLMAAABiAXMWAABwRdR/sq+qqkpTp07VggUL1Lt368vGPn36qH///vW3JUuW6NRTT434cMSi1nJhUUsfFn146MOiD4s+PMHPTPy62ls2nJGWEvFrkNzoozuIxTkLAAAgFjBnAQAAl0T9J/vuu+8+TZo0SVdccYXmzp3bru998cUXdfPNNys1NbXF+wQCAQUCgfpfHz58WJL0yZflHbre3YeOav6nOzQwLUU3nzNQC7eUnHSfrWWVkqR1JYe04IuiDuW05pvjtXpu9U4dOOotavcd+SYsOVLrz+W9glL9T+F+XZfbT/1OS+rwNXTm/1cofXQ2oy30YdGHRR+eSPYhtfxc/OqjtYy2hNpHZzLaEuyjpLJa52b00hf7D4ft7yopMn0E/z43xnTmUrusWJuzQrGu5JAkaduBI1oeppxtB45Ikj7fW6GqmhNkOJBDBhlkkEFG5HM2lHp/rzNnNS9ac1awl3DoKn9GyOh+GZHKIYMMMsjwQ9hmLBNFb775phkxYoSprq42xhgzYcIEM3369JC+d/Xq1UaSWb16dav3mzVrlpHEjRs3bty4cevCt6+++qqzY0mXw5zFjRs3bty4cfPjxpx1MuYsbty4cePGjVtnb37PWHHGROefaH311VcaO3aslixZUv/e5pdeeqlGjx6t5557rs3v/6d/+id9+umn+utf/9rq/Zr+S6iKigrl5OSouLhYvXr16tRzaEllZaWys7P11VdfKS0tLSwZkcohgwwyyIiVjEjlkOFWhjFGR44c0YABA9SjR9TfndwZzFlkRCojUjlkkEEGGWREPoc5q3nMWWSQ4V5GpHLIIIMMMvwQrhkram/j+fnnn6usrExjxoyp/1ptba2WL1+u3/zmNwoEAoqPj2/2e48ePaqFCxfqscceazMnKSlJSUlJJ329V69eYf0LRpLS0tLCnhGpHDLIIIOMWMmIVA4Z7mSEa9kRy5izyIh0RqRyyCCDDDLIiGwOc9bJmLPIIMPdjEjlkEEGGWR0VjhmrKgd9k2cOFGbNm1q9LU77rhDw4YN04MPPtjiYCRJf/zjHxUIBHTLLbeE+zIBAABiDnMWAABAeDBnAQAAF0XtsK9nz54aMWJEo6+lpqbq9NNPr//6tGnTNHDgQM2bN6/R/V588UX94Ac/0Omnnx6x6wUAAIgVzFkAAADhwZwFAABcFLXDvlAUFxef9J6lBQUFWrFihRYvXtyhx0xKStKsWbOafSsEv0QiI1I5ZJBBBhmxkhGpHDLcykDHMWeREUs5ZJBBBhlkRCcHHcOcRQYZkc2IVA4ZZJBBhsvijDEm2hcBAAAAAAAAAAAAoP16tH0XAAAAAAAAAAAAAC7isA8AAAAAAAAAAACIURz2AQAAAAAAAAAAADGKwz4AAAAAAAAAAAAgRnW5w77nn39eI0eOVFpamtLS0jRu3Dh98MEHLd7/0ksvVVxc3Em3SZMm+ZZx/PhxPfbYYxo6dKiSk5M1atQoLVq0KOTn9NRTTykuLk73339/i/fZsmWL/vEf/1GDBw9WXFycnnvuuZAfP9SMt99+W2PHjlV6erpSU1M1evRovfbaa75mNLRw4ULFxcXpBz/4ge8ZFRUVuu+++5SVlaWkpCTl5ubq/fff9z3nueeeU15enlJSUpSdna0HHnhA33zzTbP3nT179km/D4cNG9bq4//xj3/UsGHDlJycrHPPPbfN59DejAULFujiiy9W79691bt3b11xxRVas2aNrxkd+X3V3oxXXnnlpPsnJyf7mtGR15L2ZnT0taSkpES33HKLTj/9dKWkpOjcc8/VunXrWrx/aWmpfvSjHyk3N1c9evQI6c9sezPefvttXXnllcrIyKh/Hf3www99z2lo5cqVSkhI0OjRo33PCAQCeuSRR5STk6OkpCQNHjxYL730kq8Zb7zxhkaNGqVTTz1VWVlZuvPOO3Xw4MFm7xv8u6Dp7b777mvx8dv7etLejI68nsAtXXHGkpizXJuzwjFjScxZzFnMWW3NWcxYoc1YEnMWwoM5izmLOYs5qznMWcxZ3WnOisSM1ZGcWJqzEqJ9AX4744wz9NRTT+mss86SMUavvvqqrrvuOq1fv17nnHPOSfd/++23VVNTU//rgwcPatSoUbrhhht8y5g5c6Zef/11LViwQMOGDdOHH36o66+/XqtWrdJ5553X6vNZu3atXnjhBY0cObLV+x07dkxDhgzRDTfcoAceeKDV+3Y0o0+fPnrkkUc0bNgwJSYm6t1339Udd9yhzMxMXX311b5kBBUVFWnGjBm6+OKLfX8eNTU1uvLKK5WZmak//elPGjhwoL788kulp6f7mvP73/9eDz30kF566SVdeOGFKiws1O233664uDjNnz+/2e8555xz9NFHH9X/OiGh5T+iq1at0pQpUzRv3jxde+21+v3vf68f/OAH+uKLLzRixIgWv689Gfn5+ZoyZYouvPBCJScn6+c//7muuuoqbdmyRQMHDvQlo6O/r9qTIUlpaWkqKCio/3VcXFyr929vRkdeS9qb0ZHXkkOHDmn8+PG67LLL9MEHHygjI0Pbt29X7969W8wJBALKyMjQzJkz9eyzz7Z6/R3NWL58ua688ko9+eSTSk9P18svv6zJkydr9erVvj6XoIqKCk2bNk0TJ07U/v37fX0uknTjjTdq//79evHFF/Wd73xHpaWlqqur8y1j5cqVmjZtmp599llNnjxZJSUluueee3T33Xfr7bffPun+a9euVW1tbf2vN2/erCuvvLLF348deT1pb0ZHX0/gjq42Y0nMWa7NWeGcsSTmLOYs5qyW5ixmrNBnLIk5C+HBnMWcxZzFnNUS5izmrO4yZ0VixupITkzNWaYb6N27t/nd734X0n2fffZZ07NnT1NVVeVbRlZWlvnNb37T6Gv/8A//YKZOndrqYx45csScddZZZsmSJWbChAlm+vTpIV1LTk6OefbZZ0O6b0czgs477zwzc+ZMXzNOnDhhLrzwQvO73/3O3Hbbbea6665r8zrak/H888+bIUOGmJqamjYftzM59913n7n88ssbfe1nP/uZGT9+fLP3nzVrlhk1alTI13LjjTeaSZMmNfraBRdcYP7pn/6pxe9pb0ZTJ06cMD179jSvvvpq2DKMafv3VXszXn75ZdOrV692XUNnn0coryXtzejIa8mDDz5oLrroopAzmgrlz2xnM4LOPvtsM2fOnLDk3HTTTWbmzJlt/j/vSMYHH3xgevXqZQ4ePBjS/TuS8Ytf/MIMGTKk0dd+/etfm4EDB4b0/dOnTzdDhw41dXV1zf73jryetDejqVBeT+C+WJ2xjGHOcm3OCueMZQxzVkPMWc3rznMWM1bHZyxjmLMQPsxZ4ckIYs5qHnNWxzOMYc5qCXMWc1aQa7usUHKacnnO6nJv49lQbW2tFi5cqKNHj2rcuHEhfc+LL76om2++Wampqb5lBAKBk37EOiUlRStWrGj1se+77z5NmjRJV1xxRUjX0hEdzTDGaOnSpSooKNAll1zia8Zjjz2mzMxM3XXXXSFfT3sy/vKXv2jcuHG677771K9fP40YMUJPPvlkoxN9P3IuvPBCff755/U/1rtr1y69//77uuaaa1r8nu3bt2vAgAEaMmSIpk6dquLi4hbv++mnn550HVdffbU+/fTTVq+rPRlNHTt2TMePH1efPn3CktGe31ftzaiqqlJOTo6ys7N13XXXacuWLW1eT2f+X4X6WtKejI68lvzlL3/R2LFjdcMNNygzM1PnnXeeFixYEPLzCIUfGXV1dTpy5Eirv7c6mvPyyy9r165dmjVrVlieS/B7nn76aQ0cOFC5ubmaMWOGqqurfcsYN26cvvrqK73//vsyxmj//v3605/+1OrrSVBNTY1ef/113XnnnS3+C8COvp60J6OpUF9P4KZYn7Ek5izX5qxwz1gScxZzFnNWS7+3mLE6NmNJzFkID+as0DBnMWcxZ/n/PCTmLOYsN+asSMxYoeY05fScFbVjxjD661//alJTU018fLzp1auXee+990L6vtWrVxtJZvXq1b5mTJkyxZx99tmmsLDQ1NbWmsWLF5uUlBSTmJjY4ve8+eabZsSIEaa6utoYE9q/RggK9V9CdSSjoqLCpKammoSEBJOUlGRefPFFXzM++eQTM3DgQHPgwAFjjAnpX0K1NyMvL88kJSWZO++806xbt84sXLjQ9OnTx8yePdvXHGOM+dWvfmVOOeUUk5CQYCSZe+65p8X7vv/+++YPf/iD2bhxo1m0aJEZN26cGTRokKmsrGz2/qeccor5/e9/3+hr//7v/24yMzN9y2jqpz/9qRkyZEj9/wO/Mtr7+6q9GatWrTKvvvqqWb9+vcnPzzfXXnutSUtLM1999ZWvzyMo1NeS9mZ05LUkKSnJJCUlmYcffth88cUX5oUXXjDJycnmlVdeafN5GBPa7/POZhhjzM9//nPTu3dvs3//fl9zCgsLTWZmpikoKDDGtP2vzzqScfXVV5ukpCQzadIks3r1avPee++ZnJwcc/vtt/uWYYwxf/jDH8xpp51W/3oyefLkkP5F53/913+Z+Ph4U1JS0uJ9OvJ60t6MpkJ5PYF7usKMZQxzlmtzVrhnLGOYs5izmLNam7OYsTo2YxnDnAV/MWcxZzFnMWc1xZzFnGVM95yzIjFjhZrTlMtzVpc87AsEAmb79u1m3bp15qGHHjJ9+/Y1W7ZsafP7fvKTn5hzzz3X94yysjJz3XXXmR49epj4+HiTm5tr7r33XpOcnNzs/YuLi01mZqbZuHFj/df8Ho46mlFbW2u2b99u1q9fb5555hnTq1cv8/HHH/uSUVlZaQYPHmzef//9+q+1NRx15HmcddZZJjs725w4caL+a7/85S9N//79fc35+OOPTb9+/cyCBQvMX//6V/P222+b7Oxs89hjj7X4PQ0dOnTIpKWltfiWGn68oLWV0dC8efNM7969G/0/8CujPb+vOprRUE1NjRk6dGibb9nR0Yz2vJa0J6O9ryXGeL9Pxo0b1+hr//zP/2z+7u/+LqRrCuV1obMZb7zxhjn11FPNkiVLfM05ceKEGTt2rHn++efrv9bWgNSR53LllVea5ORkU1FRUf+1t956y8TFxZljx475krFlyxaTlZVlnn766fph+txzzzV33nlni98TdNVVV5lrr7221ft09vUklIyGOvp6guiL9RnLGOYs1+asaMxYxjBnMWedrDvPWcxYHZuxjGHOgr+Ys5izmLOYs9rCnMWc5UeGMe7PWZGYsULNacj1OatLHvY1NXHiRPOTn/yk1ftUVVWZtLQ089xzz4Uto7q62uzZs8fU1dWZf/3XfzVnn312s/f77//+byPJxMfH198kmbi4OBMfH9/oL/XmhDIcdTYj6K677jJXXXWVLxnr168/6f5xcXH199+xY4cvz+OSSy4xEydObPS1999/30gygUDAt/9fF110kZkxY0ajr7322msmJSXF1NbWNpvT1NixY81DDz3U7H/Lzs4+qef/+3//rxk5cmRIjx1KRtAvfvEL06tXL7N27dp2PXZ7Mhpq7feVXxk//OEPzc033+x7RmdfS0LJCPW1xBhjBg0aZO66665GX/vtb39rBgwYENL1hDIcdSbjzTffNCkpKebdd99t877tzTl06FCzrynBry1dutSX5zJt2jQzdOjQRl/bunWrkWQKCwt9ybjlllvMD3/4w0Zf++STT4wks3fv3ha/r6ioyPTo0cP8+c9/bvE+xnTu9STUjKDOvp7ALbE2YxnDnOXanBWtGcsY5qxwZjBnxdacxYzV/hnLGOYshB9zVngygpizmLP8ymiIOYs5q7MZzFmRmbHakxMUC3NWl/7MvqC6ujoFAoFW7/PHP/5RgUBAt9xyS9gykpOTNXDgQJ04cUJvvfWWrrvuumbvN3HiRG3atEkbNmyov40dO1ZTp07Vhg0bFB8f36FrDEdGa8+7vRnDhg076f7f//73ddlll2nDhg3Kzs725XmMHz9eO3bsUF1dXf3XCgsLlZWVpcTERN/+fx07dkw9ejT+Ixa8nzGm2ZyGqqqqtHPnTmVlZTX738eNG6elS5c2+tqSJUtCfk//UDIk6emnn9bjjz+uRYsWaezYsSE/dnsymgrlz1NnMmpra7Vp06Z2XVOoGZ15LQk1I9TXEsn7/V5QUNDoa4WFhcrJyWn39fmd8eabb+qOO+7Qm2++qUmTJvmek5aWdtKf23vuuUd5eXnasGGDLrjgAl+ey/jx47V3715VVVU1+p4ePXrojDPO8CWjo68nL7/8sjIzM9v8/9uZ15NQM6TOv57APbE2Y0nMWa7NWdGYsSTmLOaslnXHOYsZq2OvJ8xZCDfmrPBmMGcxZ/mR0RRzFnNWZzOYsyIzY7UnR4qhOSuaJ43h8NBDD5lly5aZ3bt3m7/+9a/moYceMnFxcWbx4sXGGGNuvfXWZv+VwUUXXWRuuummsGR89tln5q233jI7d+40y5cvN5dffrk588wzzaFDh0J+Xk3/NULTjEAgYNavX2/Wr19vsrKyzIwZM8z69evN9u3bfct48sknzeLFi83OnTvN1q1bzTPPPGMSEhLMggULfMtoKpT3OG9vRnFxsenZs6f5X//rf5mCggLz7rvvmszMTDN37lxfc2bNmmV69uxp3nzzTbNr1y6zePFiM3ToUHPjjTc2+3j/+3//b5Ofn292795tVq5caa644grTt29fU1ZW1uzjr1y50iQkJJhnnnnGbNu2zcyaNcuccsopZtOmTS1ec3sznnrqKZOYmGj+9Kc/mdLS0vrbkSNHfMvoyO+r9mbMmTPHfPjhh2bnzp3m888/NzfffLNJTk5u9S1R2psR1J7XkvZmdOS1ZM2aNSYhIcE88cQTZvv27fVvMfD666/X3+ehhx4yt956a6PvC76efPe73zU/+tGPzPr161v8/9WRjDfeeMMkJCSYf//3f2/0e6vh2wf49VwaauutDzqSceTIEXPGGWeYH/7wh2bLli1m2bJl5qyzzjI//vGPfct4+eWXTUJCgvntb39rdu7caVasWGHGjh1rvve977X4XGpra82gQYPMgw8+eNJ/8+P1pL0ZHXk9gVu66oxlDHNWe0RizvJ7xjKGOYs5izmrtTmLGat9M5YxzFnwH3MWc1YoGcxZzFnMWcxZfmW4OmdFYsZqb04szVld7rDvzjvvNDk5OSYxMdFkZGSYiRMn1g8uxnh/qd12222Nvudvf/ubkdTofn5m5Ofnm+HDh5ukpCRz+umnm1tvvbVdH/oYfMyGfxk3zdi9e7eRdNJtwoQJvmU88sgj5jvf+Y5JTk42vXv3NuPGjTMLFy709Xk05cdw1FzGqlWrzAUXXGCSkpLMkCFDzBNPPBHyWz2EmnP8+HEze/ZsM3ToUJOcnGyys7PNvffe2+JfZDfddJPJysoyiYmJZuDAgeamm25q9FYPzT2PP/zhDyY3N9ckJiaac845p80P8G5vRk5OTrO/r2bNmuVbRkd+X7U34/777zeDBg0yiYmJpl+/fuaaa64xX3zxha8ZxrT/taS9GR19LXnnnXfMiBEjTFJSkhk2bJj5z//8z0b//bbbbjvptaK53nNycnzLmDBhQrMZrb0edPS5NNTWgNTRjG3btpkrrrjCpKSkmDPOOMP87Gc/a/Y9zjuT8etf/9qcffbZJiUlxWRlZZmpU6eaPXv2tJjx4YcfGkn1H+jckB+vJ+3N6MjrCdzSVWes4OMyZ/mX0dk5y+8ZyxjmLOYs5qy25ixmrNBnLGOYs+A/5izmrFAzmLOYs5izLOaszmW4OGdFYsZqb04szVlxxoT4M9gAAAAAAAAAAAAAnNItPrMPAAAAAAAAAAAA6Io47AMAAAAAAAAAAABiFId9AAAAAAAAAAAAQIzisA8AAAAAAAAAAACIURz2AQAAAAAAAAAAADGKwz4AAAAAAAAAAAAgRnHYBwAAAAAAAAAAAMQoDvsAAAAAAAAAAACAGMVhHwAAAAAAAAAAABCjOOwD0GXU1tbqwgsv1D/8wz80+vrhw4eVnZ2tRx55JEpXBgAAENuYswAAAPzHjAXAL3HGGBPtiwAAvxQWFmr06NFasGCBpk6dKkmaNm2aNm7cqLVr1yoxMTHKVwgAABCbmLMAAAD8x4wFwA8c9gHocn79619r9uzZ2rJli9asWaMbbrhBa9eu1ahRo6J9aQAAADGNOQsAAMB/zFgAOovDPgBdjjFGl19+ueLj47Vp0yb98z//s2bOnBntywIAAIh5zFkAAAD+Y8YC0Fkc9gHokv72t79p+PDhOvfcc/XFF18oISEh2pcEAADQJTBnAQAA+I8ZC0Bn9Ij2BQBAOLz00ks69dRTtXv3bu3ZsyfalwMAANBlMGcBAAD4jxkLQGfwk30AupxVq1ZpwoQJWrx4sebOnStJ+uijjxQXFxflKwMAAIhtzFkAAAD+Y8YC0Fn8ZB+ALuXYsWO6/fbb9dOf/lSXXXaZXnzxRa1Zs0b/8R//Ee1LAwAAiGnMWQAAAP5jxgLgB36yD0CXMn36dL3//vvauHGjTj31VEnSCy+8oBkzZmjTpk0aPHhwdC8QAAAgRjFnAQAA+I8ZC4AfOOwD0GUsW7ZMEydOVH5+vi666KJG/+3qq6/WiRMneAsEAACADmDOAgAA8B8zFgC/cNgHAAAAAAAAAAAAxCg+sw8AAAAAAAAAAACIURz2AQAAAAAAAAAAADGKwz4AAAAAAAAAAAAgRnHYBwAAAAAAAAAAAMQoDvsAAAAAAAAAAACAGMVhHwAAAAAAAAAAABCjOOwDAAAAAAAAAAAAYhSHfQAAAAAAAAAAAECM4rAPAAAAAAAAAAAAiFEc9gEAAAAAAAAAAAAxisM+AAAAAAAAAAAAIEb9fx9XHktGST0zAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 12.666666666666666\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.07317073170731707\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True)" + ] + }, + { + "cell_type": "code", + "source": [ + "# построение областей покрытия и границ классов\n", + "# расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "ZG72thVfYMOy", + "outputId": "7e29f0bc-47f2-4b87-bed3-6f762eaad94a" + }, + "id": "ZG72thVfYMOy", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m225/225\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd3JJREFUeJzt3Xl4VOX5xvF7JpOENRAgCQmEsAgICCpaLSBFChRR3FBUtAVFKNYNraDFjc19qWtVFgX7E7W1ilXrBrhUBRWLiit7ICSQsIWAQJaZ8/tjOJPZM5NMMifJ93NduWRmzpx5ZyFyz/O+z2szDMMQAAAAAACIO3u8BwAAAAAAANwI6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QCAuLLZbJo1a1a8h9HoLF68WDabTbm5uVHf96OPPpLNZtNHH30U83E1dJ07d9bll18e72H4mDVrlmw2m3bv3h3voVSLFV9TAKgJQjoAVNNTTz0lm82mU089tcbnevvttwmqdai4uFhNmjSRzWbTTz/9FPSYyy+/XDabLehPkyZNPMf9/PPPuvnmm3XCCSeoZcuWyszM1FlnnaWvvvqqWmM7/fTTQz6u9w+fl5pbuXKlZs2apeLi4hqfa9OmTZoyZYq6du2qJk2aKCUlRYMGDdJjjz2mw4cP13ywAIBGwxHvAQBAfbVkyRJ17txZX375pTZu3Khjjjmm2ud6++239be//Y3gVUdeeeUV2Ww2tW/fXkuWLNFdd90V9Ljk5GQtXLgw4PqEhATPnxcuXKhnn31WF1xwga6++mrt379f8+bN069//Wu9++67Gj58eFRju+222zRp0iTP5dWrV+vxxx/Xrbfeql69enmu79evX1Tn9feHP/xBl1xyiZKTk6O+729+8xsdPnxYSUlJNRpDvK1cuVKzZ8/W5ZdfrtatW1f7PP/5z380duxYJScna/z48TruuONUVlamTz/9VNOnT9cPP/yg+fPnx27gAIAGjZAOANWwZcsWrVy5Uq+99pqmTJmiJUuWaObMmfEeVqN35MgRJSUlyW4PP1HshRde0JlnnqmcnBy9+OKLIUO6w+HQ73//+7DnGjdunGbNmqUWLVp4rps4caJ69eqlWbNmRR3SR4wY4XO5SZMmevzxxzVixAidfvrpIe/3yy+/qHnz5hE/TkJCgs+XDdGw2+0+swkasy1btuiSSy5RTk6OPvjgA2VmZnpuu+aaa7Rx40b95z//ieMIEY1If4cAQG3iNxAAVMOSJUuUmpqqs846SxdeeKGWLFkScEyodbu5ubmy2WxavHixJPe06r/97W+S5DOd2fTLL7/opptuUnZ2tpKTk9WzZ0899NBDMgwj4DFfeOEFnXTSSWratKnatGmjSy65RHl5eT7HnH766TruuOP0448/aujQoWrWrJk6dOigBx54IOB8R44c0axZs9SjRw81adJEmZmZGjNmjDZt2hT1+EpLS3XjjTcqLS1NLVu21DnnnKPt27cHfX3z8/M1ceJEZWRkKDk5WX369NFzzz0X9PV9+eWXdfvtt6tDhw5q1qyZSkpKgp7TtG3bNn3yySe65JJLdMkll3i+cKmuk046ySegS1Lbtm01ePDgkFPpa8pcQ/zjjz/q0ksvVWpqqk477TRJ0tq1a3X55Zd7pl23b99eEydO1J49e3zOEWxNeufOnTV69Gh9+umnOuWUU9SkSRN17dpVf//7333uG+yzHc3nauvWrTrnnHPUvHlzpaen68Ybb9R7770X0Tr3AwcO6IYbblDnzp2VnJys9PR0jRgxQmvWrPE57osvvtAZZ5yhVq1aqVmzZhoyZIg+++wzn9dw+vTpkqQuXbp4/t5Fu0b/gQce0MGDB/Xss8/6BHTTMccco6lTp4a8/969ezVt2jT17dtXLVq0UEpKikaNGqVvv/024NgnnnhCffr0UbNmzZSamqqTTz5ZL774YtSvTSi7d+/WRRddpJSUFLVt21ZTp07VkSNHfI6pqKjQ3Llz1a1bNyUnJ6tz58669dZbVVpa6nNcqCUZ/uvHzc/hZ599pj//+c9KS0tT8+bNdf7552vXrl0+9zUMQ3fddZc6duyoZs2aaejQofrhhx8CHiPS1zTU75BvvvlGNptNjzzySMC5V65cKZvNppdeeqmqlxMAqo1KOgBUw5IlSzRmzBglJSVp3Lhxevrpp7V69Wr96le/ivpcU6ZMUUFBgZYtW6b/+7//87nNMAydc845+vDDD3XllVfqhBNO0Hvvvafp06crPz/f5x+Rd999t+644w5ddNFFmjRpknbt2qUnnnhCv/nNb/T111/7TOfdt2+fzjjjDI0ZM0YXXXSR/vWvf+mWW25R3759NWrUKEmS0+nU6NGjtWLFCl1yySWaOnWqDhw4oGXLlun7779Xt27dohrfpEmT9MILL+jSSy/VwIED9cEHH+iss84KeD0KCwv161//WjabTddee63S0tL0zjvv6Morr1RJSYluuOEGn+Pnzp2rpKQkTZs2TaWlpVVOwX7ppZfUvHlzjR49Wk2bNlW3bt20ZMkSDRw4MOjxwZppJSUlKSUlJezj7Ny5U+3atQt7TE2NHTtW3bt31z333OP5UmTZsmXavHmzrrjiCrVv394z1fqHH37Q559/7vMFUDAbN27UhRdeqCuvvFITJkzQc889p8svv1wnnXSS+vTpE/a+kXyufvnlF/32t7/Vjh07NHXqVLVv314vvviiPvzww4ie81VXXaV//etfuvbaa9W7d2/t2bNHn376qX766Sf1799fkvTBBx9o1KhROumkkzRz5kzZ7XYtWrRIv/3tb/XJJ5/olFNO0ZgxY7R+/Xq99NJLeuSRRzzvVVpaWkTjML355pvq2rVryM9PVTZv3qzXX39dY8eOVZcuXVRYWKh58+ZpyJAh+vHHH5WVlSVJWrBgga6//npdeOGFnvC8du1affHFF7r00ksjfm3Cueiii9S5c2fde++9+vzzz/X4449r3759Pl/STJo0Sc8//7wuvPBC3XTTTfriiy9077336qefftLSpUur9RpI0nXXXafU1FTNnDlTubm5evTRR3XttdfqH//4h+eYO++8U3fddZfOPPNMnXnmmVqzZo1+97vfqaysrFqvqcn/d8ixxx6rQYMGacmSJbrxxht9jl2yZIlatmypc889t9rPFQCqZAAAovLVV18Zkoxly5YZhmEYLpfL6NixozF16lSf4z788ENDkvHhhx/6XL9lyxZDkrFo0SLPdddcc40R7Ffy66+/bkgy7rrrLp/rL7zwQsNmsxkbN240DMMwcnNzjYSEBOPuu+/2Oe67774zHA6Hz/VDhgwxJBl///vfPdeVlpYa7du3Ny644ALPdc8995whyfjrX/8aMC6XyxXV+L755htDknH11Vf7HHfppZcakoyZM2d6rrvyyiuNzMxMY/fu3T7HXnLJJUarVq2MQ4cOGYZR+fp27drVc10k+vbta1x22WWey7feeqvRrl07o7y83Oe4CRMmGJKC/owcOTLsY/z3v/81bDabcccdd0Q8rlBeeeWVgM/RzJkzDUnGuHHjAo4P9lq89NJLhiTjv//9r+e6RYsWGZKMLVu2eK7LyckJOK6oqMhITk42brrpJs91wT7bkX6uHn74YUOS8frrr3uuO3z4sHHssccG/fvir1WrVsY111wT8naXy2V0797dGDlypOdzahju16VLly7GiBEjPNc9+OCDAa9BNPbv329IMs4999yI75OTk2NMmDDBc/nIkSOG0+n0OWbLli1GcnKyMWfOHM915557rtGnT5+w567qtQnF/Dydc845PtdfffXVhiTj22+/NQyj8u/xpEmTfI6bNm2aIcn44IMPPNf5/702+T9/83M4fPhwn/frxhtvNBISEozi4mLDMNyfw6SkJOOss87yOe7WW281JFXrNQ33O2TevHmGJOOnn37yXFdWVma0a9fO57EAoDYw3R0AorRkyRJlZGRo6NChktzTOi+++GK9/PLLcjqdMX2st99+WwkJCbr++ut9rr/ppptkGIbeeecdSdJrr70ml8uliy66SLt37/b8tG/fXt27dw+oUrZo0cJnrXVSUpJOOeUUbd682XPdq6++qnbt2um6664LGJdZjY10fG+//bYkBRznXxU3DEOvvvqqzj77bBmG4fNcRo4cqf379wdM3Z0wYYKaNm0a/AX0s3btWn333XcaN26c57px48Zp9+7deu+99wKOb9KkiZYtWxbwc99994V8jKKiIl166aXq0qWLbr755ojGVV1XXXVVwHXer8WRI0e0e/du/frXv5akiKY99+7dW4MHD/ZcTktLU8+ePX0+G6FE8rl699131aFDB51zzjme65o0aaLJkydXeX5Jat26tb744gsVFBQEvf2bb77Rhg0bdOmll2rPnj2ez88vv/yiYcOG6b///a9cLldEj1UVc2lFy5Ytq32O5ORkz/pnp9OpPXv2qEWLFurZs6fP+9W6dWtt375dq1evDnmuql6bqlxzzTU+l82/++bfX/O/f/7zn32Ou+mmmySpRmvv//jHP/rM8hg8eLCcTqe2bt0qSVq+fLnKysp03XXX+Rzn/ztEivw1NQX7HXLRRRepSZMmPkuZ3nvvPe3evbvKPhUAUFNMdweAKDidTr388ssaOnSotmzZ4rn+1FNP1cMPP6wVK1bod7/7Xcweb+vWrcrKygoIAWaXb/MfsBs2bJBhGOrevXvQ8yQmJvpc7tixY8C059TUVK1du9ZzedOmTerZs6ccjtD/q4h0fFu3bpXdble3bt18juvZs6fP5V27dqm4uFjz588P2Q27qKjI53KXLl1Cjs/fCy+8oObNm6tr167auHGjJHdA7Ny5s5YsWRIw/T4hISGqxm+//PKLRo8erQMHDujTTz8NWKsea8Ge+969ezV79my9/PLLAa/V/v37qzxnp06dAq5LTU3Vvn37qrxvJJ+rrVu3qlu3bgHHRbo7wgMPPKAJEyYoOztbJ510ks4880yNHz9eXbt2leT+uyC5g1co+/fvV2pqakSPF4655OHAgQPVPofL5dJjjz2mp556Slu2bPH5oq9t27aeP99yyy1avny5TjnlFB1zzDH63e9+p0svvVSDBg3yHFPVa1MV/98f3bp1k91u96zTN/8e+79X7du3V+vWrT1/36vD/3Nnvj/m5848t/8Y09LSAt7LSF9TU7C/R61bt9bZZ5+tF198UXPnzpXk/oK2Q4cO+u1vfxvt0wOAqBDSASAKH3zwgXbs2KGXX35ZL7/8csDtS5Ys8YT0UGt/Y11tl9z/KLXZbHrnnXeCduz2D4uhunobQZrR1SWzwvn73/8+ZMjy33os0iq6YRh66aWX9Msvv6h3794BtxcVFengwYPVDtZlZWUaM2aM1q5dq/fee0/HHXdctc4TjWDP/aKLLtLKlSs1ffp0nXDCCWrRooVcLpfOOOOMiCrINfls1MXn6qKLLtLgwYO1dOlSvf/++3rwwQd1//3367XXXtOoUaM8z/HBBx/UCSecEPQcsfryJCUlRVlZWfr++++rfY577rlHd9xxhyZOnKi5c+eqTZs2stvtuuGGG3zer169emndunV666239O677+rVV1/VU089pTvvvFOzZ8+WVPVrE61Qv8Oq6msQTqjff7H87ET6mppC/Q4ZP368XnnlFa1cuVJ9+/bVG2+8oauvvprO7wBqHSEdAKKwZMkSpaene7qxe3vttde0dOlSPfPMM2ratKmnulNcXOxzXLBqU6h/9Obk5Gj58uU6cOCAT7X6559/9twuydPErUuXLurRo0e1npu/bt266YsvvlB5eXlAJT7a8eXk5Mjlcnmq86Z169b5nM/s/O50OqPeuqwqH3/8sbZv3645c+b47Dcuuat1f/zjH/X6669Xayqry+XS+PHjtWLFCv3zn//UkCFDYjXsqOzbt08rVqzQ7Nmzdeedd3quN6vLVpCTk6Mff/xRhmH4fO7NmQ2RyMzM1NVXX62rr75aRUVF6t+/v+6++26NGjXKM1sjJSWlys9QTcKmafTo0Zo/f75WrVqlAQMGRH3/f/3rXxo6dKieffZZn+uLi4sDGg82b95cF198sS6++GLPl0J33323ZsyY4dkSL9xrU5UNGzb4VJU3btwol8ulzp07S6r8e7xhwwafv0OFhYUqLi72/H2X3JVw/999ZWVl2rFjR0Sviz/z3Bs2bPCZGbBr166AWR7RvKbhnHHGGUpLS9OSJUt06qmn6tChQ/rDH/5QrfEDQDT4KhAAInT48GG99tprGj16tC688MKAn2uvvVYHDhzQG2+8Icn9j8qEhAT997//9TnPU089FXBuc39r/3/UnnnmmXI6nXryySd9rn/kkUdks9k8//AeM2aMEhISNHv27IDKk2EYAdtvReKCCy7Q7t27Ax7bPGc04zP/+/jjj/sc9+ijj/pcTkhI0AUXXKBXX301aHXSf0umaJhT3adPnx7w3k2ePFndu3cPupVeJK677jr94x//0FNPPaUxY8aEPG737t36+eefdejQoeo+jbDMaqT/Z8D/dY6nkSNHKj8/3/P3RHKvnV+wYEGV93U6nQFT9tPT05WVleXZAuykk05St27d9NBDD+ngwYMB5/D+DIX6eye5t+ozv2wK5+abb1bz5s01adIkFRYWBty+adMmPfbYYyHvn5CQEPB+vfLKK8rPz/e5zv/vcFJSknr37i3DMFReXh7Ra1MV/y8fn3jiCUmVf3/PPPNMSYGfp7/+9a+S5LNcpFu3bgG/++bPn1/tmUTDhw9XYmKinnjiCZ/XK9hnO9LXtCoOh0Pjxo3TP//5Ty1evFh9+/YNmMkDALWBSjoAROiNN97QgQMHfBpeefv1r3/tqbpcfPHFatWqlcaOHasnnnhCNptN3bp101tvvRWwTlhyBwvJ3Vht5MiRSkhI0CWXXKKzzz5bQ4cO1W233abc3Fwdf/zxev/99/Xvf/9bN9xwg6dq2K1bN911112aMWOGcnNzdd5556lly5basmWLli5dqj/+8Y+aNm1aVM93/Pjx+vvf/64///nP+vLLLzV48GD98ssvWr58ua6++mqde+65EY/vhBNO0Lhx4/TUU09p//79GjhwoFasWBG0enrffffpww8/1KmnnqrJkyerd+/e2rt3r9asWaPly5dr7969UT0Pyb1H+6uvvqoRI0Z4Ko7+zjnnHD322GMqKipSenq6JPee0C+88ELQ488//3w1b95cjz76qJ566ikNGDBAzZo1CzjePE6SnnzySc2ePVsffvihTj/99KifR1VSUlL0m9/8Rg888IDKy8vVoUMHvf/++z79E+JtypQpevLJJzVu3DhNnTpVmZmZWrJkied9CVfdPnDggDp27KgLL7xQxx9/vFq0aKHly5dr9erVevjhhyVJdrtdCxcu1KhRo9SnTx9dccUV6tChg/Lz8/Xhhx8qJSVFb775pqTKv3e33XabLrnkEiUmJurss89W8+bNNX78eH388cdVTrfu1q2bXnzxRV188cXq1auXxo8fr+OOO05lZWVauXKlXnnlFZ99wf2NHj1ac+bM0RVXXKGBAwfqu+++05IlSwLWkf/ud79T+/btNWjQIGVkZOinn37Sk08+qbPOOkstW7ZUcXFxla9NVbZs2aJzzjlHZ5xxhlatWuXZMvH444+XJB1//PGaMGGC5s+fr+LiYg0ZMkRffvmlnn/+eZ133nmeZpqSe6u2q666ShdccIFGjBihb7/9Vu+99161tyVMS0vTtGnTdO+992r06NE688wz9fXXX+udd94JOGekr2kkxo8fr8cff1wffvih7r///mqNHQCiVqe95AGgHjv77LONJk2aGL/88kvIYy6//HIjMTHRs33Yrl27jAsuuMBo1qyZkZqaakyZMsX4/vvvA7Zgq6ioMK677jojLS3NsNlsPtuxHThwwLjxxhuNrKwsIzEx0ejevbvx4IMP+mxDZHr11VeN0047zWjevLnRvHlz49hjjzWuueYaY926dZ5jhgwZEnQrpwkTJhg5OTk+1x06dMi47bbbjC5duhiJiYlG+/btjQsvvNDYtGlT1OM7fPiwcf311xtt27Y1mjdvbpx99tlGXl5e0K2aCgsLjWuuucbIzs72PO6wYcOM+fPne44xt0965ZVXQr4f3q+LJOPZZ58NecxHH31kSDIee+wxz+uhEFuwyWvbrkiPM4zKra6q2mbMW7gt2Hbt2hVw/Pbt243zzz/faN26tdGqVStj7NixRkFBQcDrHGoLtrPOOivgnEOGDDGGDBniuRxqC7ZIP1ebN282zjrrLKNp06ZGWlqacdNNN3neo88//zzka1FaWmpMnz7dOP74442WLVsazZs3N44//njjqaeeCjj266+/NsaMGWO0bdvWSE5ONnJycoyLLrrIWLFihc9xc+fONTp06GDY7Xaf18PcUi5S69evNyZPnmx07tzZSEpKMlq2bGkMGjTIeOKJJ4wjR454jgu2BdtNN91kZGZmGk2bNjUGDRpkrFq1KuA1nzdvnvGb3/zG83y6detmTJ8+3di/f3/Ur40/8/P0448/GhdeeKHRsmVLIzU11bj22muNw4cP+xxbXl5uzJ492/M7ITs725gxY4bPczQMw3A6ncYtt9xitGvXzmjWrJkxcuRIY+PGjSG3YFu9erXP/YN9xpxOpzF79mzPa3X66acb33//fbVf00h/h/Tp08ew2+3G9u3bq3wtASAWbIYR5y5BAACg0Xv00Ud14403avv27erQoUO8hwN4nHjiiWrTpo1WrFgR76EAaCRYkw4AAOrU4cOHfS4fOXJE8+bNU/fu3QnosJSvvvpK33zzjcaPHx/voQBoRFiTDgAA6tSYMWPUqVMnnXDCCdq/f79eeOEF/fzzz9Vu3AfE2vfff6///e9/evjhh5WZmamLL7443kMC0IgQ0gEAQJ0aOXKkFi5cqCVLlsjpdKp37956+eWXCUKwjH/961+aM2eOevbsqZdeeilkw0kAqA2sSQcAAAAAwCJYkw4AAAAAgEUQ0gEAAAAAsIhGtybd5XKpoKBALVu2lM1mi/dwAAAAAAANnGEYOnDggLKysmS3h6+VN7qQXlBQoOzs7HgPAwAAAADQyOTl5aljx45hj2l0Ib1ly5aSpFs/+5+atGgR59EAAAAAABq6IwcP6p5BJ3nyaDiNLqSbU9ybtGihJhG8QAAAAAAAxEIkS65pHAcAAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFtHo1qQDAAAAAGInwXApyeWSTUa8hxI3hmwqs9vltNW8Dk5IBwAAAABUS0pFmXodLlFSBA3RGroyw9BPTVNU4kiq0XkI6QAAAACAqCUYLvU6XKK0li3Vok0bqTHndEM6uHevdKBEX7VoU6OKOiEdAAAAABC1JJdLSTabWrRpo8QmTeI9nLhr0aaN9h88qCSXS4cTqh/SaRwHAAAAAIiaZw16Y66ge7OZ/6nZ2nxCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAANDoFO3cqdtuvEGnHttTOSktdVK3bho/5nx98sEHkqT/W7hQY0aMUPe0dspskqz9xcV1Mi5COgAAAACgUcnLzdXIgQP06Ucf6Y5779MH//ufXnzzTQ0cMkQzbpgqSTp8+JCG/u53uv7mW+p0bGzBBgAAAABoVP4y9XrZbDa98+lnata8uef6nr17a9yEyyVJf7zueknSyo8/rtOxUUkHAAAAAMSd01k3j7Nv7159+P77unzKVT4B3dSqdeu6GUgIhHQAAAAAQNxsXC8NOcGhjs2TNOQEhzaur93Hy920SYZh6JiePWv3gaqJkA4AAAAAiJsrL3Jo0wabJGnTBpuuvKh2V2UbhlGr568p1qQDAAAAAOLC6ZTW/2z3umzT+p9tcjqlhITaecwuxxwjm82mjevW1c4D1BCVdAAAAABAXCQkSD2OdSkhwTh62Th6ufYeM7VNG50+YoQWz3tGh375JeD2utpqLRRCOgAAAAAgbp79Z4W6dXeH9G7dDT37z4paf8x7H31MTqdTo04bpLeWLtXmjRu0/ueftPBvT2r0kN9Icu+j/v2332rLpk2SpJ++/17ff/ut9u3dW6tjY7o7AAAAACBujukhffxNRa1OcfeX07Wr3l/1uR67/z7NvuUWFe3cobZpaep34om6//EnJEl/X7BAD999l+c+5w8fJkl6dP4CXTx+fK2NzWZYfdV8jJWUlKhVq1aa8+06NWnZMt7DAQAAAIB6qZmzXCcdLlGHnE5KTG4S7+HEXXnpEeVv3ab/NU3RoYREn9uOHDigO4/vqf379yslJSXseZjuDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAgKgZspl/gOR5HTyvSzUR0gEAAAAAUauw2WQYhpzl5fEeiiU4y8vlMgxV2GoW0tknHQAAAAAQtXKbXXvsDjXbs0d2h0M2e83CaX1muAzt371be+0OldtqVgsnpAMAAAAAomezaVPTlmrxS7EO5+XFezRxd8SQNjVvLVFJBwAAAADEQ5k9QV+1aKMmLqdsjXhxuiGbjtgTZNQwoEuEdAAAAABADRg2mw4nEC1jhcZxAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIuIa0jt37iybzRbwc80114S8zyuvvKJjjz1WTZo0Ud++ffX222/X4YgBAAAAAKg9cQ3pq1ev1o4dOzw/y5YtkySNHTs26PErV67UuHHjdOWVV+rrr7/Weeedp/POO0/ff/99XQ4bAAAAAIBaYTMMw4j3IEw33HCD3nrrLW3YsEE2my3g9osvvli//PKL3nrrLc91v/71r3XCCSfomWeeiegxSkpK1KpVK835dp2atGwZs7EDAAAAABDMkQMHdOfxPbV//36lpKSEPdYya9LLysr0wgsvaOLEiUEDuiStWrVKw4cP97lu5MiRWrVqVcjzlpaWqqSkxOcHAAAAAAArskxIf/3111VcXKzLL7885DE7d+5URkaGz3UZGRnauXNnyPvce++9atWqlecnOzs7VkMGAAAAACCmLBPSn332WY0aNUpZWVkxPe+MGTO0f/9+z09eXl5Mzw8AAAAAQKw44j0ASdq6dauWL1+u1157Lexx7du3V2Fhoc91hYWFat++fcj7JCcnKzk5OSbjBAAAAACgNlmikr5o0SKlp6frrLPOCnvcgAEDtGLFCp/rli1bpgEDBtTm8AAAAAAAqBNxD+kul0uLFi3ShAkT5HD4FvbHjx+vGTNmeC5PnTpV7777rh5++GH9/PPPmjVrlr766itde+21dT1sAAAAAABiLu4hffny5dq2bZsmTpwYcNu2bdu0Y8cOz+WBAwfqxRdf1Pz583X88cfrX//6l15//XUdd9xxdTlkAAAAAABqhaX2Sa8L7JMOAAAAAKhL9XKfdAAAAAAAGjtCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACwi7iE9Pz9fv//979W2bVs1bdpUffv21VdffRXy+I8++kg2my3gZ+fOnXU4agAAAAAAYs8Rzwfft2+fBg0apKFDh+qdd95RWlqaNmzYoNTU1Crvu27dOqWkpHgup6en1+ZQAQAAAACodXEN6ffff7+ys7O1aNEiz3VdunSJ6L7p6elq3bp1LY0MAAAAAIC6F9fp7m+88YZOPvlkjR07Vunp6TrxxBO1YMGCiO57wgknKDMzUyNGjNBnn30W8rjS0lKVlJT4/AAAAAAAYEVxDembN2/W008/re7du+u9997Tn/70J11//fV6/vnnQ94nMzNTzzzzjF599VW9+uqrys7O1umnn641a9YEPf7ee+9Vq1atPD/Z2dm19XQAAAAAAKgRm2EYRrwePCkpSSeffLJWrlzpue7666/X6tWrtWrVqojPM2TIEHXq1En/93//F3BbaWmpSktLPZdLSkqUnZ2tOd+uU5OWLWv2BAAAAAAAqMKRAwd05/E9tX//fp/easHEtZKemZmp3r17+1zXq1cvbdu2LarznHLKKdq4cWPQ25KTk5WSkuLzAwAAAACAFcU1pA8aNEjr1q3zuW79+vXKycmJ6jzffPONMjMzYzk0AAAAAADqXFy7u994440aOHCg7rnnHl100UX68ssvNX/+fM2fP99zzIwZM5Sfn6+///3vkqRHH31UXbp0UZ8+fXTkyBEtXLhQH3zwgd5///14PQ0AAAAAAGIiriH9V7/6lZYuXaoZM2Zozpw56tKlix599FFddtllnmN27NjhM/29rKxMN910k/Lz89WsWTP169dPy5cv19ChQ+PxFAAAAAAAiJm4No6Lh5KSErVq1YrGcQAAAACAOlFvGscBAAAAAIBKhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIuK6TzoAAABqR25ubq2ct3PnzrVyXgCAGyEdAACgAcnNzVXFvlKdv69YJbsKY3belLQMLU1trVzlEtQBoBYR0gEAABoIM6APW79O2U07qGyvtNv1Y0zO3W6vNKxNoVLSMvTm0esI6wAQe4R0AACAes6c2n725kKV7CpU971SgWuZCg4WKK1ts5g8xto9y9VPw5XU1KGzNxdSVQeAWkJIBwAAqMe8p7dnH3SobK+0tmS50to2U+kh6aX+x8TkcQavWKu1JcuV5cpSdvYIDdu1Tit69FSuciVRVQeAWCGkAwAA1ENm9dx7entBnrt6XmqvDOf9Uy6OyeN9Mswd1MuTi1WQt0zd7b2l9etYqw4AMUZIBwAAqAOx7rbuXz3/quR5T/X8k2H9YhbOTf1TLtYnw9x/Hrdmo8/0d/+qeqwQ+gE0RoR0AACAWuY9JT1WSnYV1nr13J953pf6/0ODV6zVjsSVSsxr7VNVjyUa1AFojAjpAAAAtcS/oVt20w4xO3fZ0eZw5cnFtVY9DyVcVT2WaFAHoDEipAMAANSCYA3dClzLYnZ+s3N7bVfPQ/GvqptN5WKJBnUAGiNCOgAAQAyFa+gWq+3QJHk6t9d1OPdnVtXNpnKxRIM6AI0RIR0AACBGglXPvRu6xWo7NFO8A7rJe/p7LA1esVYFrgJlubKU1bQDVXUAjQIhHQAAoIbqejs0K6qN58a2bwAaI0I6AABACJFum2ZWz0t2Fap7HBu6NTSx3vaNQA+gPiCkAwAA+PHuyh4Js3N72V5pbcnyuDZ0a2hCNaiLdts3Ku8A6gtCOgAAgBdzXbk5bb0sP1+7XT+GvU+qpAL96DO9nXAeW/4N6tbuOdpNfnf490aSsugSD6AeIaQDAAAocE9zc9p6NF3Zlw/oJ4nqeW3xnv4eTTf5r356Xv1ShqtP3kHl7Sumqg7A0gjpAACg0QvWld2cth5NV3bCee0zX+Nousl7T5Nn73UAVkdIBwAAjRZd2euvaN4TusQDqE8I6QAAoFHyrp7Tlb1hi7RLPEEdgBUQ0gEAQKMSrHpOV/aGL5Iu8Uv3lcqRmkxYBxBXhHQAANBohK2e13FXdpdTsidUfR1ii6o6AKsjpAMAgEYhYGu1OFXPi/IStWh2lgq3JSujU6mumFkgSQHXpWeXR31uq4V8q43HFElV/c2jxxLWAdQ1m2EYRrwHUZdKSkrUqlUrzfl2nZq0bBnv4QAAgFoWbGu13a7KPc3reu35/ZNytGt7klwum+x2Q2kdyyQp4LpbFm6N+JzBgn91Qr63cAG7qvBdG+OpLWtK3EG9Y2oz7dpzSP1ShiupQwfltajQ0tTWTH8HEBNHDhzQncf31P79+5WSkhL2WHsdjQkAAKDOmdXzszcXKvugQ92PVs/N6e11HdBdTqlwW7JcLpv7ssumwm3JQa9zOSM/76LZWdq1PUmSO+wvmp0V9LEjUZSXqPsn5WjaqB66f1KOivISI7ot2vFEM6ba5J7+3k8v9T9GpXb356Mgb5myDzo0bP06VewrVW5urufLHgCobUx3BwAADY5/9Txjr1TgVT2PV3M4e4KU0ak0okp6pNPEzeDvuewV8u0J0Ve1gwVss6of7rZIxyNZr9Luvfe6uVXbVz89r34pw9Un76Dy9hWzVRuAOkMlHQAANCiRVs/j1b39ipkFnmCe1rFMV8wsCHpdpMzgb7e7VzDa7Yb78tFAHGlVWwpd6Xc5w98WzXiiHVNdoqoOwAqopAMAgAYh2NZqBXnL4l4995eeXa5bFm4NWNcd7LpIXTGzwFOZ9g75kVS1vYWq9JsV+QSHS84Kd43HZjeUHqLiH2o81RlTXQtWVS/IW+a7VRtVdQC1iJAOAADqvbBbqx2q+7XnkQgVkqsjVPAPF7pDCRWwF83Okstpqzy33QgI3+Z5Q42numOKB7ZqAxAvhHQAAFBvBauex2trNSuItqodTLCA7V/9liRnhV3tssrDri8PFbyjHVO8RLJV29J9pXSABxBThHQAAFAvha2eH53e3ljCeTjhqtrhRFqRd4ft8M3kYjWmeKGqDqAuEdIBAEC9YwZ0queRq2kYDlb9/uGLZjVaX14fAropkqr6m0ePJawDqAlCOgAAqDf8t1Yzq+fezeEI59UXLlwHq34/OCVHkiHJXKtuKKOTu8JeX6rk0TKr6mZTOe+q+tmbC2kqB6DGCOkAAKBe8J7enn3Q4VM9t2pzuPoimn3LzeBdUSZPp/dKNp155S7dPynHMnug1wbv6e/eVfXs7BE+098lquoAomczDMOI9yDqUklJiVq1aqU5365Tk5Yt4z0cAABQhWDV892uHz3V80+G9ZNU/6a3W6nSfP+knID15lWtK5ek6WceI2eFTe5KuqEEh6F2WeXVOld9tabEPf29Y2oz7dpzSP1ShiupQwfltajQ0tTWNJUDIEk6cuCA7jy+p/bv36+UlJSwx/p//QkAAGAZZvX87M2Fyj7oUPej1XOzOZxZPa9PAb0oL1H3T8rRtFE9dP+kHBXlJcZ1PGbndpfLPWXde115VSbOLlCCw13vSXAYunxmQbXPVV+5q+r99FL/Y1Rqd38+C/KWKfugQ8PWr1PFvlLl5uZ6vmwCgKow3R0AAFhOsK3VCvJ8155L9a96Lrm7oe/aHl039Nrk37ndXGP+4JScKqeq9/rVIT349kZVlEkO91OqF3ugx5r5OfReq16Qt8x3qzbWqgOIEJV0AABgKd7V82Hr17mbw+Utq9fVc1NNqtaxevxgrphZoLSOZT7XmV8gRMIM6P7nqmoP9IZWYfeuqpcnF2ttyXJ136uAqjoAhEMlHQAAWIYZYLybw+12/ajy5OJ6XT03hdtvvDb5N4abcEeB2udUVsjTs8s1fd5WTRvVQ2an9mi3U4uEea5oGtWFO48VeW/VZu6pnuXKUp/sEUrZVyztk94UDeUAhEYlHQAAWMqFOuL5827Xjzohp7vncn0O6KZoKs2hRFuB9p5iX7gtSQ9M7hKwHt78AsFud68xt9sN9+Uow3Cw6fz+6/AX3N4h4JhIxHI9f11U8XPHnqq0ts08lwd0OrH2HxRAvUclHQAAoA4F2288UtWpQJtT7CvZjp4rcD38FTMLPOevzhcI/o9lVuP9g7s53d/7mEheD//zPDcrS395Nrr1/DWt4gNAbaOSDgAAEAehAmm4Cm+wKnUkj+NdITcZRmU4rji6HN38AuGhd9brloVbIwqv3uMNVo1Pzy4NWIcvSTZbdBX7YOv5i/KSo66oV+c1BIC6REgHAACwgGBTub0DcLimc1VN3fZtDFcZjlunlemWs4/RzaN7aPqZx+in1e6p2cECs/9jhJp67j+d//I7CwKCe9vMMqVnh5/y7/94gV82uP8bTdCOd+M+AIgE090BAADqUKhp3d4V3qK8JD04JUfOCrvPlGz/pnOpGeV6cEpO0Knb3o9jVsh3bk3U83Mrp7Pvyk+Uy+kOrM4Km56bmaUH397oMy7v6eHp2aWaOMv9GO615oFbyfk/1gOTu6htZplSM8q1Z0eSJ5SnZ5cHfS3CTUe/YmaBnpuVpaK8ZFWnwV24xn1WbkYHoHGhkg4AAFAHdm5N1H1XBm965l/hNQybnBXuf6Z5V4r9q9Tm7d7H+Ve4d26tfJz2OZXT2f9wW4FcTrvMsCu5H7PCdyc2nzBelJesB6fk6IcvmqlwW7IMI3RFevGcyi8d9hW6x2BOfTfHWdWXFf5V8nZZ5frLs1tr1ODO/zU8Z8qumDWjA4BYoJIOAAAswdwfvXTffvf2a/n5KjhYoPKdxdq+71C8h1dtRXmJWnB7B+3ZkeR1nW/TNv8KrzczAHtXwdOz3duoPTC5S8Bx82/roL073UHT7ORuVsDbZZV7wuxzMzsEHa932A1sOic5K+xaPDtL7unm5lgNZXQq89lezV3trhzbnh1JnnXo3pV3n+caovGc93PP6FSqc6bs0hvz0kI2uAtXFfdv3Hf/pJyALwX8x1VdqzbtkWPfISW7Dkl5yyRJJYcLVZHaWrnKlcRWbAACEdIBAEBcmXujV+wr1bD165TdtIMK8pap4GCBSu2q9/ujL5qdpT07fKuz3k3bzDDp3Vk9weGSy2WT4TUl+/m5XhXm/CQ9/Kcc82xyh2VDCQ5De3cmeT2S2ck9Wfdd2VmSTQkOl6dK7691WuWe7WbYDibw/jZNuKPA83yLticF3uno85Yqw3dFmeTwOtT/ywqbzVB6tt9z356kN+alBe2QH03ndnOKe7AvBaKd+h7sePPz+skwafCKtSpPLlZB3jJ1t/eW1q9TSlqGlh4N6wR1AN6Y7g4AAOLGrJ6fvblQw9avU/e9UkHeMpUnF6vULn0yrJ/6p1xcbwN6ZQi0BdyWnu07RTs9u1zT57mnok+ft1XpXlOyJ9xR4Dsd3mXzCsq+09VDq1x7Hsof78n3/Nl72rnZpE2SbHZDCQ5XwHTz9jnlnudruII9huF1Hvc5bh4dOMX8ipkFSs1wB2vDsKmi3Bay2Zt/MI62c/vugkQlOFyVz80W3dT5SPZt759ysT4Z1k8v9T9G5cnFWluyXN33StkHHRq2fp0q9pUqNzfX82UVABDSAQBAnTNDiad6ftCh1N0/am3Jcm05VKCX+h/jCej1mVkZ9g65kpTgcGnirMop2t5h78Ep7gq591Zo7XPK1TazLOA8voyjgTPcMVKwLwzM+zw/N8vTVd47GHvfJ71jmSbO9l3XbU43r3y+oR638jzmlwXm1H/P+bPL5Ug0PF8CuNezBwZ8/yBdnc7ti2Zn+SwvsCcYUe0NH+mXAuYXTS/1P0aldmlH4kp3VX2vNGz9Op29udAT1gGAkA4AAOpUQ6+e+7tiZoHaZlZOuW6bWeaulHtNww4V9ryDqLPC+6y+obXyGO9GcP58j7fZDdkTzCqy+z6F29yN4XYXJAZtzmZW+Xv2P6RbFm7VA2+5v0Rol1XZUf6cKbsU2RcFlU3yzHXn5jkC91X3DvjuGQP+W88F26M9XFU8WNXfWWH3PJeqVOdLgUir6gAaN9akAwCAOuNTPW/aQWV7pbUly5XWtlm9X3seSnp2uW57PtcT3kJVgD2Xg0zndjml4l2Ba819/1zZxM33dt/LCQ5Dzgqb0juW6cghm/bv9l0/7qyw67lZWTr3ql16bmaW5LLJZjf0mzH7dO/Ezp4GeOba9mD/Da1y/bz/GJ+f627YFmybNJvdkOGyVbn1nPe6/lD7r5vCbccWiere3/x8v9T/Hxq8Yq3WlixXlivLZ636m0ePZa060DhRSQcAAHUiNzdXZ28u1Pn7itXnaHM474DeEKrn4aqo9oTgzciirQB7S88u9XRMlxQiIPuG+Pvf3KibF2yRYSggoJuK8pL172fSPFVmw2XTa0+m+zTAM6erB/43WDXfUOu0MrVpb1ap/W+v/GKiKC9RFeU2T4U6NaM8YHq9s8Kmwm3usRduS9KC2zscfT3KfZYJBGsa5/0e+W/HFs1U95re36yql9ql8uRi7Xb9qD5NOyj7oENnby6UJKrqQCNFJR0AANSpAZ1O1PYfv5MkpbVtptyxp0qb9sR5VDUTTVfxYLwrwDa7ocJtybp/Uo7nPPYE9zR5d0h2V6LbZpZr4qwCPTglxxOQK6eGBzIrvbsLEvXQVTlH90gPxt0l3n8LNQU0g/Ov4Ida627zTPf33oYu2NjsCdJzs7I8W8jZbIYciYZ6/eqQev1qqydgTxvVw2cce3Yk+cw8CPYFR6j3KFiX+EjV9P7uoC6NW7NRkrQ/a79aFbSSJF2oI/qXmkR/UgD1HpV0AACAGoq2q7jJDJ1m2EvPLvVUr/3PM/mufGV0cldtMzqV6co5+WqXVe7T0b1yfbX3+nP3n10ud6f0+bd1CBHQ3cclOAyvZmpH16/bzPXrwdaa+19X+ZgJDkNXzt0uR6JxtAFccGkdy/SbMfs0bdQxKspL9mzV5r1VnVS9ICy5X+dw71F1zxur+wOANyrpAAAANRBqTbn/HuDeglV122WVB1Svvdemm0F+59ZELZ6TpQcmd1FGp1K1zSzTvsJEz7rolLYVKtmbIJfTXVW3J7iOhlyb9u5M9ARgf20zy3XFrHw9NKWL17WVYTl0L7jA89nskuFyf2nwxrw07dqeHOR+7un5Nz3t7l4//cxjjo7Zm3vGgHcI3l2QePQ52UMeY/J+nb1Vdz90AKgLVNIBAABqwH9Nuc0Weg9wU7Cqbri16WYluSgvUQ//KccT5ovy3Ocw10Xb7IaKdyXKZpN0dK26O8x6hW33n/xG5J5WntWlXK3TyoPcblbpA0N0IJunou9y2bRre7ISHC6vtfNmld2libML1D6nXBVloday22T4PcSi2VkB+7Dv2ZHkea2915wH7vUe/bp/AKhrhHQAANCohWv2FinvBmL2BMOzRty7qZn5OOG27ho9eZdsZtg/2lHd3D/9/kk5WnB7B9/p7YZ7PbZ7S7dSzzmdFXYpaMXcTLyhG7eV7I0muYaaXu+brJ0VtoAKvsvprrJL7hkHofZ437szybPdmmfbNJ9zHd1vfXuSHpxS+Vrt3JoYZK9395+r0yQOAOoK090BAECjVNNmb97MqegVZdLNowObmt13pbv6bT6O/9Zd3luKmUHV7KhuVo2L8pJCTlWfNa6zDhaHmFvvPpuCV8F9t2174I/hGsqFO2+45nH+1/uuNy/YnKisru4O7gvv8K+Su89/y9nHyFlh90zvDzZt33DZ5PRaz//83KygW6RNn7eVCjoAS6OSDgAAalVubq5nf/SSXYXa/uN3KshbpoKDBdq+75BWxamze3WbvfnzrsSHCn+7830fx3/rLu8txcwQ63LZ5KyweyrBwaequ/98sDgx6PWVgoXowEDtnkYfWAn3VXmbPcFQ28yygMdu1tL/utDneuiqLrp7QuejX0jY1TazTKkZZT5HmTMTdm1PkmG4HzfYeEzm7IQjhyq3crPZDZ0zZVfUAT0WMy0AIBpU0gEAQK0xw/n5+4pVsqtQ3fdKBa5lKk8uVukh6ZNh/eKyN3qoZm/RNBILVYn33ypNsgVMbX9uVpYmznI3i5P8txTzZhxtwuauBMtm+DVXC1XB9q2QB/7ZX/jwHupYl9N+dFs136B86ID/daEe232d9/7rla+dAv7rctm0d6f/jAH3bfYElwyXe1q93W7IZje0f7fvvu5vzEtTr19treL5ucVypgUARINKOgAAqBVmQB+2fp2yDzrUfa+0tmS5ypOL9VL/Y+IW0KXAZm/VaSQWqhLvvVVagsO3WZr53935lc3iqhzr0TG261Dm0wTOV6jqdzThO5hwW65531bVFweRBH//+4Wr6Ac2gbtyToGnwm6zG0Ea0flu51aV6sy0oOoOIBYI6QAAIKZyc3O18et1OntzoYatX+eunuct09qS5Sq1Sy/1P0b9Uy6OW0A3+U85j6aRWLjmb+b69IxOpQFdyL0rwt6V+8Ap45XHOyvseuCt9frLs+5zhg7j1Q3h/mE4kmnq5mPGUrAp+uEq/75N4N6Yl+bbOC/I84r0i5hw728wRXmJPg3+gnX0B4BIEdIBAEDMhKueLx/RL67Vc39mmH7onfW6ZeHWqKYyV1WJ9w95ZqD034bswSnuQDf5rnyvqnvl7ZK76/neQnfou2JmgdpmhhqndygNVu0OxqbAMFxVBTxW4TxUpbxyK7tw0rNLPe9du6xyd9d3l+/Yvdeut80s9/kiJlzVO9qZFrHqbwAAEiEdAADEgNkczurV82Cq2+k7XCU+WMhrm1mm9GzfhmhmoGuXVe6ztZp3EHZW2DyhLz27XLc9n6s27YNV3qvqsh489KZnV46zboSfJm8Ga9/mcL4SHC5NnFXgee/M19ufy+mehfDQO+t12/O5Ss8uV1Feou67suqqd6QzLaKtugNAVQjpAACgRnJzcyVJZ28uVPZBh/o07aDdrh/dzeHs8WsOV9uqqsT7h7zJd+Vr+jyzaZlvoJN8Q70v9zF3je+sorxEuZw62jwtkop21evCi/KSPXuzu/cqr23B1p6b/zU8+7ubHd39pXUsPbovfLlPEL5iZoHf+N3nffjqHO0ucAfxorzEo7MXko9eDl31jnSmRTRV93DBveBggX754kvP5dLN+0MfDKBBI6QDAIAau1BHPH/en1UZLhpqQPcWqhLvHfLMUBks0KVnuwPdhDsqQ32wqvfenYmeZnOh16ZXj7PCrgSHS81bVcTsnKFVPnc379BuC1gi4B3iExwu3bLA/UVHsDXgLVMDU7D39PNFs7N8ZiyYe7VXNfW9KlVV3atas/5S/2NUancH9YK8Zco+6FDJrkJV7Cv1zFIB0HiwBRsAAEAt2bk1Uc/P9d3G64qZBZ6tvWx2Q0V5yZp+5jFyVtjdXcrnbtfSv6UH3WqscFuyfviimUoPV7dRXGjOCrtK9vg/Zu1J61jmsw1epeDbxtnshlqmOjVtVA8lOFyerei8Q3jxLu9/2vrOVqgoU9DHM78kiUSoLfrML2RC3R5szfotC91fNphfYn0yTBq8Yq3Kk4v11U/Pq1/KcPXJO6i8fcVamtpaucpV586dIxsogHqNSjoAAECMmZXTByZ3UeE233BmBrr07Mru7+bU7l3bk/TWgjTd/vfcENVyQ4tnZ6l4V6ju4cE6tVenc3ttcj9XI+RQAqfo2+yGDJfN87ydFXYZhm8IdwfwwC8uzOnnjiT3DASb15ICc217VSLt3h5qinska9b7p1ysT4b181TV15Ys91TVh61fR1UdaEQI6QAAADG2aHaWCvPMqrRvONu5NfHo+vLA7u/eAS54J3dbkP2/fW93/xh+l71vjzf32IryIq/au7/MCD52M4QHaxwn+U4/v2JmgdKPTkvP6FS5tr0qNeneHs2adbO54ifD+qnULpUnF6sgb5m675WGrXdva2iGdQANF9PdAQAAYsisnAYylNGpTM/e2UF7d/pXYs1p3YZPMHckGj632+2GbHbjaOU9XOCuKowbERwTC/7rzr3V9PHdz8FmN3TOlF1KTS/Xw3/K8VpzbqhN+3LPtHLvPexDTUsPxv/99N/j3jwm3Pm8lziE6xRvcgd195/HrdmotXuWq5+GK6mpQ8N2rdOKHj2Z/g40YIR0AACAGDIrp4FB3aY/3Fqgh67qEuRelYG1eJfDs+7av8N5WscyjZ68S68/la49O8xKtP8abt/zBVdXFfVIwnmkXxgEe57upQIL78iS4bKrbWaZDMPd/T6jkzsMB+sLEEn13GS+n7u2J8nlcn9RktaxTPYE9zR4M3yHO3d1vhww16q/1P8fGrxirdaWLFeWK0vd7b2l9euUkpahpftK5UhNJqwDDQzT3QEAAGIs2HZgGZ1K1T6nqnBo81SCfae1u/9bUW7Ts3d09AroUuB0dqtMaY90/Xuk4w31PG0yXO7XbO/ORCUmGXronfWe6nWwvgDR7mEeqnt7tNPgIw3o3szp72ltm+mEnO7a7fpRfZp20IBOJ+r8fcXRnxCA5VFJBwAAiLH07HJNn7dV82/r4NnTvKLcpt0FiWqbWaY9OxLlXRW22eRphBaacfR+VamcOh99hbqq4xTk2GCPF80XBZX3T3AYPlukRcvcUk1yB+iiEH0Bpo3qEVVVPVglPJJp8ABQHXGvpOfn5+v3v/+92rZtq6ZNm6pv37766quvwt7no48+Uv/+/ZWcnKxjjjlGixcvrpvBAgCARifaqqspPbtciUmGp2HYvkL31OjJd+Uro1PZ0WNKNfnufE+VNsHhkmyhKtCRVsmDHROuqh1NJTvc9PVogn7g/du0d3+xMW3eFtkTXFXcJ7T0bHcDucJtyUG++Kis8BduS9KC2ztEdW7v8B1NQzgAiEZcQ/q+ffs0aNAgJSYm6p133tGPP/6ohx9+WKmpqSHvs2XLFp111lkaOnSovvnmG91www2aNGmS3nvvvTocOQAAaOgi3XYrlFBbb7XLKj9awS1VUV6ynpuZpaI895rmy726j9dcpF3dY7UtWyTnCT2OfUUOzb+tgx6a0sWzB3ro+wR/LHNLNf8AHbzbvU17diTJ5Qz+RUwkX874T4OfcEfV27kBQFXiOt39/vvvV3Z2thYtWuS5rkuXYM1UKj3zzDPq0qWLHn74YUlSr1699Omnn+qRRx7RyJEjA44vLS1VaWnllhwlJSUxGj0AAGjIgq03NjuFRyJcw7FFs7O0O999brM5XOG2JD17R0e1zSyTPcEll7OyS7nZxdxuj3Q6eKQN5CI9xvu84bZ/q879jh7hsh9dGhDtmNzaZpZp8l35nunr3h3VMzqV6Q+3FeihKYH/znzgjzmeL0m815pH0mjOnAZvNqd7YHKXajWnAwBvca2kv/HGGzr55JM1duxYpaen68QTT9SCBQvC3mfVqlUaPny4z3UjR47UqlWrgh5/7733qlWrVp6f7OzsmI0fAAA0TKGq4LFoOOZ/bv/p4nt2JAatJLdqW67WaRWS5DcdPJhoGshFU0n33oM9GrFpZmezu3TFnduDnm/Gc7k+wdgM0A+9s17T521VVpdytc0sU+X4DdkTXJ4vS8wvYqqzJ/rzc6u/jzoA+Iu4kl5QUKCsrNj+wtm8ebOefvpp/fnPf9att96q1atX6/rrr1dSUpImTJgQ9D47d+5URkaGz3UZGRkqKSnR4cOH1bRpU5/bZsyYoT//+c+eyyUlJQR1AAAQVrgqeDRCbb3lfe7AKnPw6d0H9jlkmF8aOKtqDOdfSa9uBTya46PZez3a5nZH7+Wya9GcjkpwuORy2WRU8d74b5E25toivTEvzVNdD9b4zVskzeBoIAcg1iKupPfp00cvvvhiTB/c5XKpf//+uueee3TiiSfqj3/8oyZPnqxnnnkmZo+RnJyslJQUnx8AAICqhNp2qyrBqu3+Yc373AkO/3XTwZurOSvsftX3cOHW//bA/cUrL8dqTXp11r1X3dE+2J+dFTbPevNQ743LGbhk4Y15aZ7q+i0LtwZt/JbRqVQ2e+VjJThc2l0Quh8BDeQAxFrElfS7775bU6ZM0dKlSzVv3jy1adOmxg+emZmp3r17+1zXq1cvvfrqqyHv0759exUWFvpcV1hYqJSUlIAqOgAAQHWFqoKH4l+1jWQts3luc02zuyIbqlGaLch/o+V/n1jvqR5qXNV93FAzDGxyVtj0wFvr5UjyvYf3++AtWIXbe926d9h/cEqOnF6zFqrqRxDqPABQHRFX0q+++mqtXbtWe/bsUe/evfXmm2/W+MEHDRqkdevW+Vy3fv165eTkhLzPgAEDtGLFCp/rli1bpgEDBtR4PAAAAP4irYhWZy2zee72Oe7tx6oWKsDHqhoeiVhs5xbsnEaQP4c+PlS12vt98D5XsAq397r1WxZuVXp2udpllfs05zP3Xg/XjyDYeQCguqLq7t6lSxd98MEHevLJJzVmzBj16tVLDofvKdasWRPx+W688UYNHDhQ99xzjy666CJ9+eWXmj9/vubPn+85ZsaMGcrPz9ff//53SdJVV12lJ598UjfffLMmTpyoDz74QP/85z/1n//8J5qnAgAAEFY0a4prui7ZrP66VVajK7u8h6tEx7oaXpVYPF64dfjB9jYPfP6lh+2aNqqHMjqVasIdBWqfUx7wPnjfL1yFO9j+59XpR8AUdwCxEPUWbFu3btVrr72m1NRUnXvuuQEhPRq/+tWvtHTpUs2YMUNz5sxRly5d9Oijj+qyyy7zHLNjxw5t27bNc7lLly76z3/+oxtvvFGPPfaYOnbsqIULFwbdfg0AACBa0UxbN9W00Zxv9beSb5f3QDa74WkmV9tsNkOGEavHqs6Ufu/Lhop3uf8NWrgtyWfrM//3oV2HMt08f2tUAZrp6wDiKaqEvWDBAt10000aPny4fvjhB6WlpdV4AKNHj9bo0aND3r548eKA604//XR9/fXXNX5sAAAAf9XdH726wS5c9Td0d3b3ZbvdkNMwJKM2dtX1fczYBfRQgm9JF/jf4H8uynO/VxPuKPCs77fZDRXlJevBKTlR7V0ebT+CWKEjPAApijXpZ5xxhm655RY9+eSTeu2112IS0AEAAKykJvujp2eXHw2CpSrclqxFs7NUlOfbFTxU53ff/buDCR6QnRW2mAd0m81Q67Qyv2uDd1mPHfd68fTsUtlsgd3uExwud9d1W+h16+ba8Qcmd5Hkfk3NWQbBegRE8p7WVWAuykvU/ZNyNG1UD90/Kcfnc7Om5B8avGKtdu05pG+2blA7e2/9cDhfq7Z9rTe7ZoQ5K4D6KuJKutPp1Nq1a9WxY8faHA8AAEDcxGLa+u78wCp8dFPoI+ncHqy6HOr+0XWCb9aqXCV7HYp8zXgs2FR62L1tXGXFvvK/zgqbT4W8quddlJfkU/n3/rJld0H0yxlqW7DZGyP++oAkadyajdrlkvqlDFdShw764XC+VvToKUdqsjp37hzHUQOoLRF/9bps2TICOgAAaPBqsj96qCp8uM7vLqe0Z0eSAoN3darXhtpm+gfOUIE22HkN/VKcVOVa+OoJ/xyKdyV61pkH7cru9a/WBIfLay9z87/Bpub7VuPtCe73oujoe1G4zT0VfufW0Pug17ZQn5tBy77X8GVrlVjaWv1ShmtDGymvRQUBHWgEqt/1DQAAoAGq7nrkUFV4KXznd//7VTZoi6TjeWCX9D07kpTStkwlexKD3M9fqK7x4Tqsh6vMB7vNvC6asVT+2WY3PGHa5bV3uT3B8OxlXvU53dX4ijL/9f+Ss8Lu03iuLqvqwbr62+wudWyzQ03lClo9d0gEdKCBq40uIwAAAPVeddYjB6vCmyHcbg+9X7f3/dKzy9Q2s8xzfGXF2JtNKe3KvarmvlX3kj1JSnCEqpa77195W7gKd7j7VsU8d7THu/+c4HApPbvUE8ydFXbPGnPDsHntZR58poD3a2i+5o4kc/1/oEj3to+lYF39O7bZoVlnLw5ZPSegAw0flXQAAIAY8a/Cmw3BCrclK8Hhkly2oFPo/e/30+pmem5mluSyyXBJwSrZJbu9p2gHVqHDh9hg9wt3e1XHBauWRztl3ve+zgqbivKSQx4d7guAC64v1EevtPEE/NSMcr/XPPC+0e5tX1OhuvrP/8ODys4ZTvUcaMSopAMAgBr7l5p4/tyqoJXnz4NXrNWakn/EY0hxZYY870qp4bIpPbtUtyzcGnRKtXc4fGNemidg1jz8RrKevapjqro92Dr6aPhX9Cs7ulf9mL7nyehUqo9eaaM9OxI910nuL0IC1/9XCjbDoTaZMyxsdpf7ss2pTm13KDtnuPJaVCglLYPqOdBIEdIBAECNmAHiza4ZymtRoR8O56udvbcSS1sr2VUZ1OtrWI9kq65Q9/NvCFaUF7idm//2Wzu3JqpwW7Jnarev6oTgYGvEqzom3O3+De2MEMeFeqxQ5/evpNs14Y4C9wyEiNlUVmoLaMS3Z0eS50sQ3+3uDM/5o2kSGCtXzCxQStYeSVLHNkW6747VntuSu7YKdTcADRzT3QEAQI15grqkitTWStlXrOyDHdQuP19rS5Zr3JqN2r7vkD4ZJvVPuTiuY41UdNumBYp0Ozf/zu/Pz81SgsPlNV3dWyy6rkeybVu429x/TutYql3bw01Hl2QzJMOmdh1KtTu/qqnrvmNLcLhkt0vT523Vg1NyvF4P/6Z57v/a7YZsdkPFRdF1am+dVqEZz+XWWQXdW3p2uc5+9Bld9NUmNSlvpeZZp0gFhHOgsaOSDgAAYqZz585ypCZ7quob2rj3d/avqtcH4bZNM1VVZa9qO7dQ228FD+iRMBRY3Q51nLfQ09XbZparbWaZTwO7BIdLE+4oODodPcxjGXZNm7dFCZ4AHOrYwC8InBU2LZqdpXZZ5X6vR+A+6pLUrkOZu7mcEVjNb5vp/nIk2HZ37suRM9/z6s6wCCYhaHNAAI0VlXQAABBT/lV1rV+nPk1H+FTVX+rvDupWrar7N/XybyoWaZW9qu3cdhckBlTNExwutU6rOLqmujI8JzgMOSuq2sos0kq7uwJts7vXytvthmQz5HIGfjngSDR0zpRdem5mlmfLM2eFTQ9N6eI+k90VYmq+2+I5WdobURAO3A6ucFuyHvhjjtpmlmlfYaJnRoLL5X0f92vzl2e36v5JOZ6ZC2aFPaNT5ZcjVc1uCNc0zvs9N9+zeGzbBqDho5IOAABqhVlVX9GjZ0BVffiytZauqle1bVokVXb/8wWzaHaWnE7fcOqssKmiXAq2RtueEL7imuBwhdxiLJDN8/zSOpYFDeiS+/n9+5m0ENVs+QV0323UJEO785P9muBFyn2e3flJnjFK7oq57xp292vjcvrOXMjoVKabF2wJaNQXbHaDf1+AorzAKfPe77n7y5L4bNsGoOGjkg4AAGpN586dlatcvZmaUe+q6lfMLPBUTr2nqldVZY9U4BZcJpv2706S/7ZrGZ3KQhzvdc6jYdi3Oh+43tvkrLDrgbfWa8O3zbTgtg5BjzEb3oUWSef5SPZLD7723eVyT0l/6J31ktyvcbCK+YNTcnTFzIKwMxek4LMbzPNJlcH7loVbPfcJtV1aXW/bBqBxoJIOAABqlbmFlCM1WSlpGerYu6+SOnRQVgt3BXJAt7ZxHmFwZph76J31PtXYqqrskbInSOnZkW4xZtOEOwoUbKsyb8bRQHvj37Z6nTvEFHlb5bifm5kV/JiAx6h67XRlN3bfanfocwf/EiHY62u+xt7VcJN3VTuS98J7inuwvgDea87N98pu954lUPfbtgFoHAjpAAAAYQQLYFU1hIvUxFmBW4yZU9b9Q2q7zHIF26osweHyNHWz2d1bij00pUvAPuEBDHc4nTaqRxWN6qLbo92cCh7Z9mvBv0Cw2X2f0zlTdkmqbNaWnl2u6fO2ep0jeLiORFVfuphT4Yvykj1jSnBULhOo623bADR8THcHAACIUlUN4SLVLssdNv2b0O3ZmeiubrtsnpDqSDKnsZvB1j3N21lhkz3BkHF0jbnLWdnczS1UsA6293kst3ir/rkMl01OV+WfX3syXY5EI6BRXyRb3EUi1NIGyXctuuGyKaNTaUzee5PLGYvXHEBDQkgHAAAII1wYq25IC9Ydvl1WuU9jOrMhm+Gy6Y15aer1q62aOLvA3WW9wncquctpU5v2Zdq707uLejThzz+w24L8OVqRrkP3f3zfy+aadLPS7b1m3D9cu5cEBBftOnXzPrHoPxBM5Wfgdn3SLl+zzl6sY2t2SgANBNPdAQAAgoik43d1BesOH8ka6V6/OqQH3954dL2573TyvTvd27n5r5sO/HNVfKe32xNcstkqp55Hfq5Iwn2oLeUCxx7s9TDD9c0LtkiSHpjcJeC9iuZ99A/eseo/EIz3ZyB/T3vNfmNizU8KoEEgpAMAAAQR7TZr4Xivk66qUVkkwfDyOwsUrPrsrLAf3aJMCraW3Hf9e2UQdl8fPHy7XDbP1m/pHcvUOq085LG+Qh9jtxtqm1nmMx6bzfBrOlc59mBr9M3Xo6JMen5u6Pcq2vfRf017rPoP+D+Gz2fASNC2PZmefegBNG5MdwcAAPATq2nOwaa1R7KWuqpp3OkdyxVMenap/vKse9r2vRM7H20e516/bk8wfNY/JzgM3fR0rtI7lmt3QeU4A6apG+517w+8tV67dyTqgcldgjxydGva0zqWqaLc5jMee4LhNZ2/cvu4tpnlmnxXfsCa8Z9WN/M71s3/S49I38dQ71Ws+g94M7+IKdqeKMNll93mVMc2RWqzM8VzzL/UJDYPBqDeoZIOAADgJ1bTnENVcYNVZ70ruFVN47YnSG0zy+RfDZ84q8Bzuz+X0y7DqAzFzgq70juWH91erPLxMjqZlfjKafNtM8vkSHJXrINNRW/r6TzvLbDLe4LDpZsXbNH0eVu1Z0dSwHjemJfm1fAu8PXw3g6vcm2++RjBt2yL9H2squIey23W1pT8Q6fc9Kzat8qXJHVsU6RHz/tYPxzOV16LCr3ZNUOSe/tCAI0PIR0AACCImk5zDjWtvaLMN3SaVfNga6bDTeOefFe+J1BndCrV9HmVe7m7nNKeHUkK7LTuu179wSm+j9c+p/zodmeBTd8qZxf4TkWf9swW3fZ8rtKzSz1r1wP3c5fnNXAHfcme4D3F3pDN7gp6/j07knyWAkjuKe7uCrr383P/2f+9iuR9jGSv9FhZU/IPDV6xVlcVfqF7L/qzVt80X2/f8T81HdBEK3r01JtdM9S5c2cCOtCIMd0dAAAgiJpOczaruOa0dpvdkN1u6ObRPXymUwer4JqPG26qdrjx+T+23W7IZjcCqtTm402ft9VzjudmZilYUJYCt4BLcBhyJMqzj7jv7ZX3NxlHn8O0UT38Xi2bp5u9f3f5jE6B26oF244uwWHo/jc3BhwbyfsY7PWq7nZu4ZgBPdklJZa2Vr+UgdrQxlDK0eq5Q1TPAVBJBwAACKsmQc27iuu9h7kZjsNVcM3gWFmddgfT3QW+3cmDra2+f1KOCrclH+3GLrXrUBak8lz5eGYVv2BLYsAab/NxpcDqtbPCHnQfce8p5r5V9Wi6zLun0XsvBfCubE+cXaAEh3F0fO717OHeq6rex9poEGdaU/IPrSn5h8at2ahkl9QvZbiyskdoQxtRPQcQgEo6AABALTGruBVl0s2jK6vHZjiW3GvLvRu8tc2s3C/9ipkFenBKjqcC7nLZfCrtVa2tNlw2TzO5+yfleCrFldXqyqp14bYkPTezg+wJLrmcvkHdDO7+1Wt7ghG02n/zgi16fq67CZu7YZ15vki3ZZMeeGu99hZWNnNzP7bdMwvB3I6uosxdWQ8mmlkQtdEgTqqsnndMbeZVPZdSWlRoRXZPOVKTCecAfFBJBwAAqGWOpOo1omuXVe5T2Tani993ZfB9v4NV5ovy3JV570qxWYH2n5a+d6eZdn2bw2V0KpUUWEl3Oe3uteh232q/3S5Nn7fVfT/Dexq773nNCn2Co3IvdvO1cST5fuFgflFRuC1JC27v4DlLsIBekz3uYxXQ/avnmeUDA6rnBHQAwRDSAQBAnVma2lqrtn2tHw7nq529txJLW6vzK19o8Iq1WlPyj3gPr1aF6uju3+DNu1GaFBjuExwu7c4P3kwuXDdz72Z1976+MeQ43VVv3/DuvwWct6K8ZBle2687nTY9OMUdkL2/MPBu7ia5p7JPn+cej7vpXeBrE3j/4K+Rf4O3WO5xXxMDurWVJGW1yFJShw7q2LuvUtIqwzkBHUAwTHcHAAB1onPnzspVrt5MzVBFamtp/Tr1aTpCBXnLlOw6pMEr1uqTYe5j+6dcHNex1oZQ06mDNSzz3re8bWaZUjPKtWdH0tHmb5U1lmD7fvvvse69trooL1HPzcoK0+TNl81mKD27TO1z3F3j/afmHz3K9xxH91U/esFzjPncps/bKsk93qqa4GV0KlVRnu9Wbd6C7W3eLqs8JnvcA0C8UEkHAAB1xqweOlKTtaJHT+W1qFBW9gj1SxmuZJc0bs3GBl9V9w+KwSrs3pXgfYWJciQaSs8u9euAHnzavP+e4u2y3AG7KC/x6JZr7gDrrLB5TXuvPKf3n9OzfUO+97ZvAeE8qMCt0ewJ0u6C4NPRg702ZoXdf992e0Lwinms9rgHgHihkg4AAOqcd1X97M2FKmkj9dNw7S79sVFU1b35V5FDbb3myx1823UI3YXcuxqf0alUFeU2v87t7or3ff9er71FiXr4T5UN6mx2Kb1jqW5ZuDXkWB+ckhOwvZyzwq4Eh0sup02G4Vs99w7JobadC/baTJ+3VUXbEz2N6DI6+U6H93+dzPX3oWYTAIDVEdIBAEBcmOtx35RUkdpaKfuKlX2wg9rl52ttyXKNW7NR2/cd0ifDGn5QlyqryKH27JYUcF2wYGvyDsKhpozbE1z6y7k91KZ9WdAGdaGmiNsTfINw+tEg3C6r3OfLAe/quamq/d9NoaayV7VUoKo95AHA6gjpAAAgriKtqjeGoG4KVQkOdl2wIOofhM2AbrMbPlPmzev37kyU93Zs7o7uZUEDblXryNtlhQ/I9oTArdwSHEbAsZFU26uqmBPQAdRHhHQAABB3/lV1s6mcd1X9pf7udeqNIayHCsDe15nbjHlXmtOz3evPg1XjUzPK5Uh072uenl3q15Xdv8puU3mZTUV5iZ5zBqtsp2dXVrZD3e7P5VTQaffezzXSarvVK+adX/lCu/YcUlaL1pKkVdu+ju+AANQLNI4DAACW4d9UbkMbqV/KcCWWtm4UTeX8hapES1VvM+bfkG7yXfmehnJ/eXarT3M13z3M3f8tLkr0Oeei2VkqOvp4hduSjzahS/S5PZJtzyJp7BZt8zcrBXTv/dF37TmkfinDlZU9Qj8cztfS1NZ6s2sGW68BCIuQDgAALMUM6m92zdCKHj21oY2UlT1CmeUDPR3gzSDUWPnvIe5daTb5d3n3rrJLviG+bWa52maaVe/Ac5qPVzlV3l0Nf25WVsTjMY/zf+xQjd0iOcZq1pT8Q4NXrNXwZWuVWNpa/VKGa0MbKa9FhVb06OnZHx0AwmG6OwAAsBwzyOQqVyt69FTKvmKfteqNramcv1DN5YKtTQ9VZQ42Vfy+K3O0Oz/4OTM6lQZ0mS/Kq5yCHm48wabCVzVN3epT2b2ZXxiNW7NRu1zu2R9JHTroh8P5nnB+DOEcQISopAMAAMsKVVVPLG2tZJc8098bY1U9XKXZXK/uvw95MN4BeOKs0Oe8YmaBEhyeReyy2XynoIcbT6ip8JGE7/oQ0AevWKtxazZSPQcQEzbDMIyqD2s4SkpK1KpVK835dp2atGwZ7+EAAIAI5ebmqmJfqc7fV6zsgw6VHW0ql9a22dGqer9GWVX3b7hmT5Dun5QT1XZtkZxTcof/52ZlqSgvdHM4/8q3yylNG9Uj4DEeemd9nQfwWFblzS+GBq9Yq2SXlNUiy7P23AznkgjoACRJRw4c0J3H99T+/fuVkpIS9limuwMAgHoh0q3apMY1Bd7s9O49nTySzujRntMM5H95NvwUdP/rI52aX5si7TwfKbN63jG1mc/09rwWFVqRTfUcQM0w3R0AANQbnTt3VufOnQOmv/dLGe5pKtfYOsBLgdPJExyuiDujR3pO727t0Z4r3k3gIu08XxVzaYVZPfee3v54dgu92TWDgA6gxqikAwCAesesqn98aj+lhKmqN4aKerA9xeWyefZCr04ojnSf8kjFswlcrJ5L2Op5amvCOYCYIaQDAIB6yQxEb0qqSG0trV+nPk1HqN3Rterj1mzUS/3dFfWGHtaDTSevSSiurSnq8WgCF4vnElg9H6gNbaSUFhXu6rlYew4gdpjuDgAA6jWzA/yKHj2V16JCG9q4q5yJpa0b9PR37w7uFeU2pWa411h7V85rEorjPUU9lqr7XMzp7ePWbFTy0ep5VvYIbWgjrejRU292zfAswQCAWKG7OwAAaBByc3MlSRX7SjVs/Tr1adrB0wG+1C59MqyfpIZTVQ/WwX36vK0xr1bXh33KIxXNc/Gunme1yFI7e2939TwtQ0uZ3g4gSnR3BwAAjY4ZmHKVqxU9eiplX3HlWnXXj+q4ZuPRrdrqf1APtc66NjSUgC5F9lzMWRfj1mz0WXvuvbUa09sB1CZCOgAAaFC8t2rzXqtekLeswWzVZoVtzRoi7+Zw/mvP2VoNQF1hTToAAGhwzHXC3mvVG9pWbQ1pzXhtcDkjPzbY1mr+a88J6ADqCpV0AADQYHlX1c8Os1WbVP+q6vHc1szKivIStWh2lgq3JSujU6mumFmg9OzykMeH3VqN6jmAOCCkAwCABi2Srdrq81p1ArqvRbOztGt7kiRp1/YkLZqdpVsWbg04zpxFwdZqAKyGkA4AABoFs6r+8an9lBKmql4fgzrcQjXU859tELZ6Tud2AHFGSAcAAI1GJFX1l/q7K6yE9fonkoZ6/mvPqZ4DsBpCOgAAaHTMqnrAVm2lP9b76e+N3RUzCzxr0r0b6kWytRrhHIAVENIBAECj1Bi2amuMgjXU86met8hiazUAlkZIBwAAjZYZzHyq6u16q5+9t3a7flRHquqWZQbvSIzzW3vuXT1nejsAqyGkAwCARo+qev3h35U9q0VW1XcqFdVzAPUGIR0AAEDBq+rZ2Q1nq7aGIFRX9khQPQdQXxDSAQAAvHhX1c9mqzbLCNeVPRJUzwHUF4R0AAAAP5Fs1bZ93236ZFg/wnotM8N5uHXlkaB6DqC+IKQDAACEYFbVPz61n1Koqte5cNXzj/v1I3gDaJAI6QAAAGFEUlV/qf8/Yv64DTX4m43fIsGe5gAaI0I6AABABMyqumerNq+q+rg1G2P6WA2xQZ13V/aOqc0iuo9/9Zx15QAaA0I6AABAhMJt1RZLDW3bN/+u7ImlrSO6X1b2CLqyA2h0COkAAABRCLZVW0m73urTNLKtwCLRULZ989/T3KyMR7Jt2g+H8+Wkeg6gESKkAwAAVIN/VT1lX3HMzt0QGtSF2tM8r0WFpKq3TTPDOdVzAI0NIR0AAKCavKvqb6ZmxOy8VTWos3pYD9eV/c2ukb1OhHMAjRUhHQAAoIZiHSbDNaiz8vR3c3o7XdkBoPoI6QAAABYTrkFdsutQrW37VlOe6nmLLLqyA0A1EdIBAAAsKFSDun723tpd+qPGr9od3wEG0yxL7ey9A6rnTF0HgMgR0gEAACwsVFXdqn44nE/1HABqgJAOAABgccGq6lZFV3YAqBlCOgAAQD3hXVW3KsI5ANQMIR0AAKAeIQADQMNmj/cAAAAAAACAGyEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsIi4hvRZs2bJZrP5/Bx77LEhj1+8eHHA8U2aNKnDEQMAAAAAUHvivk96nz59tHz5cs9lhyP8kFJSUrRu3TrPZZvNVmtjAwAAAACgLsU9pDscDrVv3z7i4202W1THAwAAAABQX8R9TfqGDRuUlZWlrl276rLLLtO2bdvCHn/w4EHl5OQoOztb5557rn744Yewx5eWlqqkpMTnBwAAAAAAK4prSD/11FO1ePFivfvuu3r66ae1ZcsWDR48WAcOHAh6fM+ePfXcc8/p3//+t1544QW5XC4NHDhQ27dvD/kY9957r1q1auX5yc7Orq2nAwAAAABAjdgMwzDiPQhTcXGxcnJy9Ne//lVXXnlllceXl5erV69eGjdunObOnRv0mNLSUpWWlnoul5SUKDs7W3O+XacmLVvGbOwAAAAAAARz5MAB3Xl8T+3fv18pKSlhj437mnRvrVu3Vo8ePbRx48aIjk9MTNSJJ54Y9vjk5GQlJyfHaogAAAAAANSauK9J93bw4EFt2rRJmZmZER3vdDr13XffRXw8AAAAAABWFteQPm3aNH388cfKzc3VypUrdf755yshIUHjxo2TJI0fP14zZszwHD9nzhy9//772rx5s9asWaPf//732rp1qyZNmhSvpwAAAAAAQMzEdbr79u3bNW7cOO3Zs0dpaWk67bTT9PnnnystLU2StG3bNtntld8j7Nu3T5MnT9bOnTuVmpqqk046SStXrlTv3r3j9RQAAAAAAIgZSzWOqwslJSVq1aoVjeMAAAAAAHUimsZxllqTDgAAAABAY0ZIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEXENaTPmjVLNpvN5+fYY48Ne59XXnlFxx57rJo0aaK+ffvq7bffrqPRAgAAAABQu+JeSe/Tp4927Njh+fn0009DHrty5UqNGzdOV155pb7++mudd955Ou+88/T999/X4YgBAAAAAKgdcQ/pDodD7du39/y0a9cu5LGPPfaYzjjjDE2fPl29evXS3Llz1b9/fz355JN1OGIAAAAAAGpH3EP6hg0blJWVpa5du+qyyy7Ttm3bQh67atUqDR8+3Oe6kSNHatWqVSHvU1paqpKSEp8fAAAAAACsKK4h/dRTT9XixYv17rvv6umnn9aWLVs0ePBgHThwIOjxO3fuVEZGhs91GRkZ2rlzZ8jHuPfee9WqVSvPT3Z2dkyfAwAAAAAAsRLXkD5q1CiNHTtW/fr108iRI/X222+ruLhY//znP2P2GDNmzND+/fs9P3l5eTE7NwAAAAAAseSI9wC8tW7dWj169NDGjRuD3t6+fXsVFhb6XFdYWKj27duHPGdycrKSk5NjOk4AAAAAAGpD3Nekezt48KA2bdqkzMzMoLcPGDBAK1as8Llu2bJlGjBgQF0MDwAAAACAWhXXkD5t2jR9/PHHys3N1cqVK3X++ecrISFB48aNkySNHz9eM2bM8Bw/depUvfvuu3r44Yf1888/a9asWfrqq6907bXXxuspAAAAAAAQM3Gd7r59+3aNGzdOe/bsUVpamk477TR9/vnnSktLkyRt27ZNdnvl9wgDBw7Uiy++qNtvv1233nqrunfvrtdff13HHXdcvJ4CAAAAAAAxYzMMw4j3IOpSSUmJWrVqpTnfrlOTli3jPRwAAAAAQAN35MAB3Xl8T+3fv18pKSlhj7XUmnQAAAAAABozQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFOOI9gLpmGIYk6cjBg3EeCQAAAACgMTDzp5lHw7EZkRzVgGzfvl3Z2dnxHgYAAAAAoJHJy8tTx44dwx7T6EK6y+VSQUGBWrZsKZvNFu/hWF5JSYmys7OVl5enlJSUeA8HccLnAHwGwGcAEp8D8BkAn4HqMgxDBw4cUFZWluz28KvOG910d7vdXuU3FwiUkpLCX0LwOQCfAfAZgCQ+B+AzAD4D1dGqVauIjqNxHAAAAAAAFkFIBwAAAADAIgjpCCs5OVkzZ85UcnJyvIeCOOJzAD4D4DMAic8B+AyAz0BdaHSN4wAAAAAAsCoq6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOj/vuu082m0033HBD2ONeeeUVHXvssWrSpIn69u2rt99+u24GiFoXyWdg8eLFstlsPj9NmjSpu0Ei5mbNmhXwnh577LFh78PvgYYl2s8Avwcarvz8fP3+979X27Zt1bRpU/Xt21dfffVV2Pt89NFH6t+/v5KTk3XMMcdo8eLFdTNY1IpoPwMfffRRwO8Dm82mnTt31uGoESudO3cO+n5ec801Ie/DvwlizxHvAcAaVq9erXnz5qlfv35hj1u5cqXGjRune++9V6NHj9aLL76o8847T2vWrNFxxx1XR6NFbYj0MyBJKSkpWrduneeyzWarzaGhDvTp00fLly/3XHY4Qv/vgd8DDVM0nwGJ3wMN0b59+zRo0CANHTpU77zzjtLS0rRhwwalpqaGvM+WLVt01lln6aqrrtKSJUu0YsUKTZo0SZmZmRo5cmQdjh6xUJ3PgGndunVKSUnxXE5PT6/NoaKWrF69Wk6n03P5+++/14gRIzR27Nigx/NvgtpBSIcOHjyoyy67TAsWLNBdd90V9tjHHntMZ5xxhqZPny5Jmjt3rpYtW6Ynn3xSzzzzTF0MF7Ugms+A5P7HePv27etgZKgrDocj4veU3wMNUzSfAYnfAw3R/fffr+zsbC1atMhzXZcuXcLe55lnnlGXLl308MMPS5J69eqlTz/9VI888gghvR6qzmfAlJ6ertatW9fSyFBX0tLSfC7fd9996tatm4YMGRL0eP5NUDuY7g5dc801OuusszR8+PAqj121alXAcSNHjtSqVatqa3ioA9F8BiR3qM/JyVF2drbOPfdc/fDDD7U8QtS2DRs2KCsrS127dtVll12mbdu2hTyW3wMNUzSfAYnfAw3RG2+8oZNPPlljx45Venq6TjzxRC1YsCDsffh90LBU5zNgOuGEE5SZmakRI0bos88+q+WRoi6UlZXphRde0MSJE0POluJ3QO0gpDdyL7/8stasWaN77703ouN37typjIwMn+syMjJYd1SPRfsZ6Nmzp5577jn9+9//1gsvvCCXy6WBAwdq+/bttTxS1JZTTz1Vixcv1rvvvqunn35aW7Zs0eDBg3XgwIGgx/N7oOGJ9jPA74GGafPmzXr66afVvXt3vffee/rTn/6k66+/Xs8//3zI+4T6fVBSUqLDhw/X9pARY9X5DGRmZuqZZ57Rq6++qldffVXZ2dk6/fTTtWbNmjocOWrD66+/ruLiYl1++eUhj+HfBLWD6e6NWF5enqZOnaply5bR8KeRqs5nYMCAARowYIDn8sCBA9WrVy/NmzdPc+fOra2hohaNGjXK8+d+/frp1FNPVU5Ojv75z3/qyiuvjOPIUFei/Qzwe6BhcrlcOvnkk3XPPfdIkk488UR9//33euaZZzRhwoQ4jw51oTqfgZ49e6pnz56eywMHDtSmTZv0yCOP6P/+7//qZNyoHc8++6xGjRqlrKyseA+l0aGS3oj973//U1FRkfr37y+HwyGHw6GPP/5Yjz/+uBwOh0/TCFP79u1VWFjoc11hYSHrEuup6nwG/CUmJurEE0/Uxo0b62DEqAutW7dWjx49Qr6n/B5o+Kr6DPjj90DDkJmZqd69e/tc16tXr7BLH0L9PkhJSVHTpk1rZZyoPdX5DARzyimn8Pugntu6dauWL1+uSZMmhT2OfxPUDkJ6IzZs2DB99913+uabbzw/J598si677DJ98803SkhICLjPgAEDtGLFCp/rli1b5lNRQf1Rnc+AP6fTqe+++06ZmZl1MGLUhYMHD2rTpk0h31N+DzR8VX0G/PF7oGEYNGiQT8d+SVq/fr1ycnJC3offBw1LdT4DwXzzzTf8PqjnFi1apPT0dJ111llhj+N3QC0xAC9Dhgwxpk6d6rn8hz/8wfjLX/7iufzZZ58ZDofDeOihh4yffvrJmDlzppGYmGh89913cRgtakNVn4HZs2cb7733nrFp0ybjf//7n3HJJZcYTZo0MX744Yc4jBaxcNNNNxkfffSRsWXLFuOzzz4zhg8fbrRr184oKioyDIPfA41BtJ8Bfg80TF9++aXhcDiMu+++29iwYYOxZMkSo1mzZsYLL7zgOeYvf/mL8Yc//MFzefPmzUazZs2M6dOnGz/99JPxt7/9zUhISDDefffdeDwF1FB1PgOPPPKI8frrrxsbNmwwvvvuO2Pq1KmG3W43li9fHo+ngBhwOp1Gp06djFtuuSXgNv5NUDdYk46wtm3bJru9csLFwIED9eKLL+r222/Xrbfequ7du+v1119nH8QGzP8zsG/fPk2ePFk7d+5UamqqTjrpJK1cuTJgehzqj+3bt2vcuHHas2eP0tLSdNppp+nzzz/3bMPC74GGL9rPAL8HGqZf/epXWrp0qWbMmKE5c+aoS5cuevTRR3XZZZd5jtmxY4fP1OcuXbroP//5j2688UY99thj6tixoxYuXMj2a/VUdT4DZWVluummm5Sfn69mzZqpX79+Wr58uYYOHRqPp4AYWL58ubZt26aJEycG3Ma/CeqGzTAMI96DAAAAAAAArEkHAAAAAMAyCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAACAkp9OpgQMHasyYMT7X79+/X9nZ2brtttviNDIAABomm2EYRrwHAQAArGv9+vU64YQTtGDBAl122WWSpPHjx+vbb7/V6tWrlZSUFOcRAgDQcBDSAQBAlR5//HHNmjVLP/zwg7788kuNHTtWq1ev1vHHHx/voQEA0KAQ0gEAQJUMw9Bvf/tbJSQk6LvvvtN1112n22+/Pd7DAgCgwSGkAwCAiPz888/q1auX+vbtqzVr1sjhcMR7SAAANDg0jgMAABF57rnn1KxZM23ZskXbt2+P93AAAGiQqKQDAIAqrVy5UkOGDNH777+vu+66S5K0fPly2Wy2OI8MAICGhUo6AAAI69ChQ7r88sv1pz/9SUOHDtWzzz6rL7/8Us8880y8hwYAQINDJR0AAIQ1depUvf322/r222/VrFkzSdK8efM0bdo0fffdd+rcuXN8BwgAQANCSAcAACF9/PHHGjZsmD766COddtppPreNHDlSFRUVTHsHACCGCOkAAAAAAFgEa9IBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCL+Hz/e5ZHPp/a7AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "amount: 21\n", + "amount_ae: 28\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9KRJREFUeJzs3XlYVNX/B/D3zLDviKAICLhrbiRqRgouhaaYpbgrLrkrZlrKt0xsM03LLHcTl9LMNbPUytw3xNxNMHdxQUwWZRFmzu8PfnNjmBkYcIZheb+eZx7l3HPP59w7d4bD5y5HJoQQICIiIiIiIiIiIjIyubk7QERERERERERERBUTk49ERERERERERERkEkw+EhERERERERERkUkw+UhEREREREREREQmweQjERERERERERERmQSTj0RERERERERERGQSTD4SERERERERERGRSTD5SERERERERERERCZhYe4OEFHZdu/ePRw6dAj379/HgwcPkJycjHfeeQe+vr7m7hoRERERERERlXG88pGIdEpISEBoaCi8vLwQHh6O8ePHY+bMmVi8eDH2799v7u4RkQGuX78OmUyG6OjoUokXHR0NmUyG69evl0o8IiIiIiIq+5h8JKNT/7FryGv06NHm7i7pkJCQgDZt2uDPP//E1KlTcfnyZahUKgghoFQqMXjwYHN3kYiewddffw2ZTKb3s/zo0SN4eXnBzs4OCQkJUrmfnx/8/PxKqZdERERERMbl5+eHkJAQk8dRn5Tft2+fzvLKdrKet12TydSuXRsDBw7Uuez69etYvXp1KfeIDDV8+HCkp6djx44dCA0NNXd3iMjIxo8fjy1btmDt2rXo2bMnXnvtNY3l48aNw507d/DVV1+hXr16ZuolEZUH169fh7+/v0F1R40ahSVLlpi4R2ROISEh2L9/P4QQ5u4KEZHB/vrrL7Ru3Rq1atXC6dOnYWtrq1Xn1Vdfxc6dO7F27Vq9eQ7Sj8lHMpk6derovdVv3759TD6WUefOncOhQ4cwefJkJh6JKiiZTIaYmBg0adIEI0eORFBQEKpWrQoA2LRpE9avX4/27dtjwoQJZu4pEZUXPOlMRETl1fPPP4/33nsPM2fORFRUFObPn6+xfNmyZdi5cydef/11Jh5LiLddU5nk5+en91btVatWadWPiYlB69at4eDgAAcHB7Ru3VpnvX379ul9/plMJtN5+XVISAhkMplW+d69ezFs2DDUr19fihsYGIhly5aVeNsKXpI9ZMgQo12Sff78efTu3RseHh6wtraGv78/3nrrLTx8+FCj3pEjRwAA9evXR79+/VCtWjVYWVnB19cXY8aMwd27d6W6KpUKvr6+cHNzQ3Z2ts647dq1g4WFBW7fvg1A//5U364/ZMgQjfLi7mddt4Xeu3cPY8eOhb+/P6ysrFClShV069YNR48e1Vpf3+XxJTl2AODs2bPo27cvPD09pf04YcIErf1e1OMKVqxYoVHf0PezMOrjSy6X49q1a1rLDx48KMUvuN2FbbO+fQgY/lldu3Yt5HI5+vbtq3H1hL7jJDY2Fg4ODnj++eeRnp6usSw9PR0zZszAc889B1tbW7i4uCA0NBSHDh3S2f/09HTMnDkTTZs2hZ2dHZydnREQEIDp06cjJyenWI+WUH921ftE/ZLL5fD09ETXrl2lz1x+W7duRb9+/VCnTh2pD23btsXmzZt19rkk/Pz8MG/ePCQlJWHMmDEAgPv372PMmDFwdHRETEyM9FlVb/ONGzdw48YNjW0predJElHZpj7prOtV8DubiIiorHnvvfcQEBCABQsWaMxxcO3aNUyePBnu7u5YunSpGXtYvjH5SGWWs7MzZsyYIb0K3haoFhkZiWHDhiExMRHDhw/H8OHDkZiYiKFDh2LixIkm69/s2bNx4MABtGzZEuPHj8fAgQORnJyMUaNGYfLkyYWuW3DbgoODTdZPADh06BBat26NrVu3omPHjnj77bfh6+uLr776Cq1bt0ZycrJU98GDBwCAMWPGYOPGjQgJCcHkyZPRsGFDLFmyBIGBgbhx4wYAQC6X480338S///6rMykSHx+PgwcPonPnzvD29i5R359lPwPAnTt30LJlSyxevBhVqlTB22+/jddeew1//vkn2rVrhy1btpSoX4bYvn07WrVqhe3btyMkJARvvfUWmjRpgm+++QZt2rTBo0ePtNZp1qyZxrGhfj3//PNSneK8n4aQy+U6f5EuXrwYCoWi+BuuR3E+q4MGDcLs2bOxYcMGTJo0qdB2ExIS0LVrV3h4eGDnzp1wdHSUlv37779o06YNPvzwQ7i6umL06NHo2bMnTp48ifbt22Pbtm0abSUlJaFVq1aIjo6GQqHAmDFjMGzYMFSvXh2zZ8/GkydP4OLiovX+ODs7a32uZ8yYARcXF432IyIiMGPGDLz33nsIDg7G77//jk6dOuHSpUsa9aKionDhwgW89NJLmDhxIsLDwxEfH49evXrh66+/Lv7O12PkyJEIDQ2VrnYcOXIkkpOTMX/+fI0Z7dXbrGs7S+OZOURUsfGkcx5jnnTOvy2G7lchBFauXImgoCA4OTnBzs4OgYGBWLlypc72ExIS0KlTJ9jZ2aFBgwbYtWuXtOzKlSsICQmBra0tGjVqhI0bN+ps48aNGxg+fDi8vLxgZWUFb29vDB8+HDdv3tS7PVlZWZg2bRpq1qwJGxsbNGzYEF9//bXWrd6rVq0qdHufPHkCZ2dnnceCvuPg9OnTUCgUWm3mPzl64cIFdO3aFS4uLnBwcMArr7yCkydPGm371S8rKyv4+fnhzTff1Kr/9OlTfP311wgNDYWPjw+sra3h4eGBN954A6dOndJqW72vdO0nQPfJ/cKOV30ni4HinUAv7PNT8Oqz5ORkvPXWW/D395e2t3fv3jh//rzObdLFFMcMUPh30eHDh9G1a1dUqVIFNjY2aNCgAWbMmIGMjAyNeufOnYOrqysaNmyota90vT8PHz5Ew4YN4erqinPnzmksK+5nXQiBmJgYtG3bFi4uLrCzs0PdunUxatQo6dgr7L3S9d2j3if5X1WqVEHr1q2xZs0arT6cPHkS48ePR+PGjeHs7AxbW1s0adIEn332GXJycnT2u7gsLS2xZs0aWFpaYujQoXj8+DFUKhWGDBmCx48fY+nSpXB3d9da79atW+jXrx+qVKkCBwcHBAcH48CBA0bpU4UiiIzs2rVrAoAIDQ3VW2fv3r0CgBg1apTO5V5eXsLPz0+jLCYmRgAQMTExUtn+/fsFANGwYUORkpIilf/777+iXr16AoA4cOCAVtwZM2ZoxQQggoODtcqDg4OFro/K1atXtcpycnLEyy+/LBQKhbhx44bObfP29tbathkzZggAYu/evRrlERERAoC4du2azrYMoVQqRe3atQUAsWvXLo1l77zzjgAghg0bptUXAOKXX37RqD937lwBQHTr1k0qS0xMFBYWFiIkJEQr9pQpUwQAsW3bNqksJCREABAqlUqjrvq4iYiI0Cgv7n729fUVvr6+0s99+vQRAMSAAQM0Yv7111/CyspKuLq6irS0NK3tL/heFPfYSU5OFk5OTsLLy0tcv35dY9n69esFADF+/Pgit7+g4r6fhVEfX6+99ppwd3cX2dnZ0rKkpCRhZWUlevTooXO79X1ehNC9D4v7WVWbNGmSACA+++wzIYT2frpz547w8/MT7u7uIiEhQWv9/v37CwBi+fLlGuX3798XPj4+wt3dXWRmZkrlPXv2FADE//73P6227t27J3JycnRuc8HjzpB9IoQQCxcuFADE/PnzNcqvXLmi1UZ6erpo0qSJcHZ2Fk+ePNEbKz/1/tJ13Krdvn1buLi4CGtra63Pd0GGbuezfGcRUflijHGfr6+vcHZ2FjNmzJBer732mta4TwghJkyYIAAILy8vERkZKSIjI4WXl5cAICIjI3XGNca4LzQ0VNSuXVsMGDBATJ06VYwaNUr4+voKAOLtt9/Wu+26tk0dwxTjPl3bYsh+ValUol+/fgKAqFu3rhg1apSYMGGCaNCggQAgJk+erFH//v37wtPTU8hkMvH666+LcePGCTc3N1GzZk0BQNSrV0/06tVLjBw5UlSpUkXIZDKxefNmjTbi4+OFu7u7ACDCwsLEtGnTRLdu3QQA4e7uLuLj43VuT1hYmPD29hYTJ04UEydOFN7e3jrfB/XfDgqFQrRu3Vpr/yxdulQoFAqdx4K+46Bt27bSODn/PlR/Dtq2bSucnZ1F+/btxbRp00S/fv2EhYWFsLOzE8eOHTPK9qvfy2nTpon27dtL71n+Mcrdu3eFXC4XwcHBYuTIkWLq1KkiPDxcWFtbCxsbGxEbG6tzXxU8LtR0/f4v7HjVN649ePCgsLOzExYWFqJv375i2rRp0nbVrl1bPHjwQCtuwc+P+pX/eEpKSpLGxyEhIWLatGmiT58+QqFQCDs7O3Hw4EGd21WQKY4ZIfR/F/34449SH4cOHSqmTp0qAgICBADRunVrjTGqEHnjaRsbG9GmTRuRkZGhsZ/yvz9PnjwRL7zwgrC2thb79+/XaKO4n3WlUil69eolfe+OHj1avPvuu6J3797CxcVFbN26VQghxJdffqnx/jRr1kwAEBMnTtQoP3XqlMY+CQ4OlpaNGjVKuLm5CQBi1apVGv0YNWqUqFGjhujbt6945513xLhx48Rzzz0nAIg33nhD537Xx9fXV+/fMUIIMWvWLAFAjBw5UsybN08AEIMGDdJZ986dO9LvoNDQUBEVFSV69OghrKysRGhoqM7v+so6XmbykYzOGINQDw8PUb9+fY0yXb8Uhw0bJgCIDRs2aLXx/fffayVijDkI1Wfz5s06vzDV3NzcRL169TTKTJl8PHDggAAgunTporUsPT1dVKlSRdjY2EiJJ3VfdL1/OTk5wt/fX8hkMpGUlCSVv/7660Imk4nLly9LZU+fPhUeHh7C09NTYzDUu3dvndtkaPJNTd9+zv/LNysrS1haWgpLS0tx69YtrTZGjBghAIi1a9dKZcZKPn7xxRcCgFizZo3O/j///POiatWq0s+Gbn9x38/CqI+vnTt3CgDi+++/l5bNmjVL2NnZia1btxol+Vjcz6qaSqWSEoirV6/W2E+pqamiWbNmwt7eXmsQLYQQDx48EAqFQnTo0EFnPxcsWCAAiJ9//lkIkTdQl8lkonbt2uLp06c619GnpMnHr776Sto2Q6gHQPv27TOoviHJRyGEeP/99wUAYWlpKe7cuaO3HpOPRFQQTzqXrZPO+b300kta26IvybRs2TIBQAwdOlTjd2B2drYICwsTAERcXJxUHhkZKQCIhQsXSmWHDx+WTmTNnTtXKr98+bJwdHQU3t7eIjc3VypXJ86WLl2q0Rf1ibmCv7/V7039+vU13v+UlBRRv359IZPJxIkTJ7S2VZ1w/euvvzTaa968uXSS1ZBE0g8//CAAiBYtWuhNPgIQ06ZN01hv165dAoBo0qSJRnlJt7+g8PBwAUCcPn1aKsvKyhK3b9/Wqnv+/Hnh4OAgOnXqpFFeGsnHkpxAL2rcoTZ06FABQERFRWmU//LLLwKAqFOnjlAqlUW2Y+xjRk3Xd1FqaqpwdnYW1tbW4syZM1K5UqmULp748MMPtdrasmWLUCgUolu3btLnKf9+ysnJEV27dhVyuVwr4S9E8T/rX3/9tQAgOnbsqJHwFEKIjIwM8fDhQ53bXNT3mb7v5wsXLggAokePHhrlN27c0Pj+ECLv7wT13xiHDh3SGUeXopKPubm5onXr1gKAsLKyEt7e3uLRo0c666q38+OPP9YoX7p0qfSdwORjHt52TWVSWloabGxsiqynvm1A120z7du3B5B3e4QpqJ8j16xZMzg4OEiXi/fs2RNA3u2+BalUKqSmpsLOzq5YsebPn4/o6Gh8+OGHWLx4Mfbs2QOVSmXQuoXtI/UtQ1lZWYiPj9dYpt5/+VlYWKBt27YQQuDMmTNS+ahRoyCE0Hgu4fbt25GUlIShQ4fCwuK/ua1at24NAHj33Xdx//79Ivtfkv2sfiadjY0NcnJyUKdOHZ23fZvyGDl27BgA4Pjx4zqff5WVlYXk5ORi3yJd0vezMA0aNECHDh2kGUhVKhWWLl2Kfv36ad02nN/169d1bpuuZz2W9LMqk8nw9ttvA8ibhV19S1d2djZ69OiBM2fOoF27dmjZsqXWuidOnIBSqUR2drbOfqrfI/Utz3FxcRBCoH379rC0tNS73c9i1apViI6OxvTp09GnTx9MmTIFnTt3Ru/evTXqJSUl4e2330bDhg1hZ2cnHffqRw3oOu5LKikpSbrtPicnBzt27DBa20REhsjJyYG1tXWR9dST1kRHR8PZ2Vkqd3V1xYwZMwBA722jz0rXjN4WFhYYPXo0lEol9u7dq3O9zMxMWFlZmaRPRSlO7G+++Qb29vZYuHChxu9AKysrfPLJJwCA9evXS+WbNm2Cq6srRo0aJZW9+OKLeOGFFwBA49E4derUQe/evXH79m3pd+/Nmzexd+9eNGrUCCNGjNDoy+jRo9GgQQP8+eefuHXrllZfp0+frvH+Ozs74/3334cQQufERmFhYfD29sbixYulsmPHjuH06dPSM4+LkpmZiXfeeQeNGjXC6NGj9dZzcXHBe++9p1EWGhqKjh074ty5c9Lt18+y/QXl5uZKsdWsra3h5eWlVfe5555D+/btceDAAaPdqmqow4cP48qVK+jSpYvWpJYffPABqlSpgnXr1uHp06fFavfp06dYv3493Nzc8P7772sse/XVV/Hyyy/jn3/+weHDhw1u0xjHTFF++uknpKamYtiwYWjatKlULpfLMWfOHFhYWOj8Pnv99dexcOFC7NixQ+PzpzZy5Ej88ssv+Oabb/DGG29oLS/uZ33RokVQKBRYvHix1gzQtra2qFKlSrG3vTDq49nV1VWjvGbNmlqPg5LJZBg3bhwA4I8//jBaHxQKhbQvnj59ivnz5+v8m+jp06fYsGEDPDw8tB4H9uabb6Ju3bpG61NFwNmuqczJyMhAVlaWzucpFJSWlga5XK6zbrVq1SCTyZCWlmb0Pj59+hQhISH466+/EBAQgEGDBsHNzQ0WFhbSjI66JmC5f/8+cnNzUaNGjWLF++qrr7TK6tWrh23btqFhw4aFrqve/mrVqulc7unpqVFPnSisXr16ofVTU1OlsldeeQX+/v5YvXo1Pv74Y1hYWGDFihWQyWQYPny4xvrjxo3D1q1bsXHjRr3P/1Er6X52dnbGW2+9hbS0NHz55ZdFbnv+bTGWf//9FwCwcOHCQus9efJEmmXYEMV9Pw01ZswYhIeH48KFC7h+/TquX7+OMWPGaE3ekt+NGzcwc+ZMg/tdks+qUqnE6NGj4eTkhFq1amH8+PEAgI0bN0KlUqFt27bYuXMntm3bhh49emisq34PDh8+XOiA88mTJwD+Ow50DdaNpeAfRVWrVkWLFi00nhH077//omXLlrh58yaCgoLQqVMnuLi4QKFQ4PTp0/jpp5/0TvBUEqNHj8aDBw/w2WefYe7cudJM9zVr1jRaDCKiwqSlpUm/vwpj7pPOc+fOxbZt23DlyhXpd4daYSedfXx8ihVL/Yeu+vdmvXr10L59e8jlxbtu5NGjRwad8M7IyMC5c+dQo0YNzJ49W2u5OkmlPlmXmpqKO3fuoE2bNgY/G7pJkyYAgAsXLiAoKEh6n4KDg7WekyeXy9GuXTtcunQJp0+f1tp/bdu21WpfXabreYYKhQIjR47E7NmzMXfuXDg5OWHRokWoU6cOXn75ZYP6P3v2bNy6dQu//fYbEhMT9dYLCAiAg4ODzv7t2bMHp06dQosWLZ5p+9XPDczOzsbRo0dx5MgRvPfeexrPagbyPgtz5szBoUOHcO/ePa1kY3Jystbnbtu2bTqf4ZiSkqL3hLSuxExKSopWPUNOoP/222+Ij4+XjhdDXLp0CVlZWWjfvr3O4719+/b4/fffcfr0aZ3Hji7Pcszoeq6jrn1a2P6oWbMmatWqhYSEBKSnp2s8zxzIezb6jBkz8O2332r8zfbee+8hJiYG7u7uGDx4sFa7xf2sP378GH///Tfq1KljskTavn37pH129+5dbNy4EfXq1UNUVJRGvadPn+Kbb77BDz/8gEuXLuHx48caz3k15ol5IQQ+/vhj6ectW7ZIF77kFx8fj6ysLHTo0EHrwim5XI6goCBcvnzZaP0q75h8pDLnypUrAKD10FxdnJycoFKp8ODBA3h4eGgsS0pKghACTk5ORu/jTz/9hL/++gvDhw/XmoX4hx9+0HnWFfhvQFyvXr1ixbt27Rr8/PwghMCdO3cwZ84cLFiwABMmTCjyLI96+/VdZXjv3j2NeuqzV+pyffXzn3GWyWQYOXIkoqKi8PPPP0uDh44dO6JWrVoa61tbW2P//v3YuXMnzp07h6ysLAB5g5SCSdaS7mcXFxdER0cjPT0dX375ZZHbnn9bjEW9P8+dO4fGjRsbvV1D309D9ejRA56enli8eDGuX7+Oli1bokWLFjqvYlQLDg7WuTw6OlorKVnSz+oXX3yBuLg4LFmyBD169MCLL76Iq1evQqlUYu7cuRgzZgwaN26MsWPHIiQkRGPwq25v8uTJmDt3bpH7QL1uYX9UPKu9e/dKg8wHDx5g1apVmDp1Kq5cuSKdZf72229x8+ZNfPTRR1pn8D/77DP89NNPRuvP2rVrsXXrVnTr1g1Tp06Fn58f+vbti+HDh+P33383WhwiIn140lnbs5x0VlOPGQuOw3R59OgRhBBITEws9KSiOuGqPjGpK8mmj7qu+v15lpOputZRl+k7ofzmm2/iww8/xNq1a9G3b19s3LgRH3/8sd4JQvK7efMm5syZg+7du+Pll18u9OpafdtTsH/Psv0F36OGDRuiTp06GmVHjhxBhw4dAORdJFC3bl3pDqJt27bhzJkzOo/Zn376Se84Q1/yUdfxqoupTqCbqt2SHjPFOTEPFN7vhIQEpKWlaSUf33vvPdy/fx/t2rXDJ598Ip0E+PTTT9GuXTscOHAA//vf/7Tem+J+1kvjxPz+/fs1Zpa2tLREWFiYViK5V69e+Pnnn1GvXj306dMHHh4esLS0lP6GNOaJ+QULFmDfvn0YNGgQbt68iXXr1iE8PFzrQgf1/in4t42avve2suJt11TmqG/HCAwMLLJuQEAAAOhMgKjLmjdvbqyuSdQJUl0zcB88eFDveupEYbt27UoUVyaTwcvLC/Pnz4ezszPi4uKKXKewffTkyRPExcXB1tYW9evXBwBpVmVd9ZVKJQ4dOgSZTKa1X4cOHQpLS0usWLECK1euhEql0rqNRE0ul6Nr166YNm2adAvsW2+9pVWvpPtZzdHREXXq1ME///yjM6FkymNEfXv50aNHjdpucd9PQ1lYWODNN9/E6tWrsXPnTqPdUqJWks/qP//8gxkzZqBdu3YYOXIkqlWrhg0bNgAAunbtismTJ8POzg7Lli3D3bt3MWXKFI31W7ZsCZlMZvB7EBgYCLlcjr1795bKrUju7u5455130KRJE2zcuFFKxD/rcW+oxMREREZGokqVKtJsrX369EGvXr3wxx9/6JwBXaFQQKlUGq0PREQlPelcUGmddP7rr7+wePFifPzxx4iOjkbnzp31rvcsJ52FEFCpVLh9+zYiIyORkJCACRMmGNyG+mowQ2Kr91mLFi0g8uYE0PlS31pub28PIO+qKEOp66qTkM9yMlXXOuoyfSeUPT090aNHDyxZsgQxMTEA8sauhnjnnXegUqnwxRdfFFlX3/YU7N+zbL/6/cjNzcWVK1fw/PPPY+jQoRq/tz/55BNkZ2fjjz/+wPbt2zFv3jzMnDkT0dHReu9uAvJmktf13he8qjI/9fGa/3Xt2jWteqY6gW6qdkt6zBT22TFGv48fP44FCxagb9+++PPPP/Haa69BqVRCqVTitddew59//ok+ffrgm2++kf6uLhjT0M+6+ng15Yn5GTNmSHHT0tKwefNmbN++He3atUNmZiaAvEcp/fzzzwgNDcXFixexfPlyfPLJJ4iOjkbfvn2N2p+EhARERUXB29sbX3/9NVauXAl7e3uMHj1aa5Zx9f5JSkrS2ZYhjxirTJh8pDIlNTUVCxYsgKWlJbp3715k/YiICAB5Z5jyn81KTU2Vzuao6xiT+hfwoUOHNMr379+P5cuX61wnOTkZa9euRZUqVdClS5dnin/37l08fvxY61kYugQFBaF27drYuXOn1lWSH3/8MR4+fIh+/fpJzwRq3bo16tWrh127dknP11P7+uuvceXKFYSFhWndKlytWjX06NEDu3btwuLFi1G1alWts0PFVZL9XNDQoUORk5ODqKgojUvzz549i1WrVsHV1fWZ+6kvrqOjI9577z1cuHBBa3lGRobWgMAQxX0/i2PkyJFwdXVFnTp1jP6LvLifVSEERowYIT1LVH2WWX3c5T/+OnXqhKFDh+Lbb7/Fn3/+KZVXr14dvXv3xpEjR/D5559rvP9qx48fR0ZGBoC8Y7hnz564cuWKzrPBSUlJ0nNojOXRo0dITEzUOIuu77hft24dfv31V6PFHj58OFJSUvDNN99o3Ha1aNEiKTF648YNjXWqVKmC5ORkKVFKRPSseNJZv5KcdC5JbEdHRzRs2BB///23zttlC3J1dUW1atVw6dIlg09InT9/HgCkKzfV79OBAwe0fj8LIXDgwAGNevnp2ufqMvUxosuYMWNw/vx5fPTRR+jdu7dBz6o7ePAgfvzxR0yaNAm1a9cusv6pU6d0JmUL9u9Ztl9NoVCgVq1a+PrrrwHk3c2gduXKFVSpUgUvvfSSxjoZGRn466+/itwOUzDVCfQGDRrAxsYGJ06ckMZ0+T3Ld0NJjhlDFbY/bt26hStXrqBWrVoaVz0+ffoUw4cPh6urKxYsWACFQoH169ejatWqqFq1KtavXw+FQoEFCxbAxcUFw4cP13iGZnE/6w4ODmjUqBGuXbtWKrcPOzo6IiwsDIMHD8bVq1elxyapv4O7du2q9agHY56YVyqViIiIQGZmJlasWAFnZ2fUqlULs2fPxv3796XHP6nVq1cPNjY2iIuL0xobq1QqHDlyxGh9qwiYfKQy4+OPP0b9+vVx/vx5fPjhhwY9+6ddu3aYMGECLl68iMaNG2PSpEl466230LhxY1y6dAmRkZE6B13q2zjzv4C8Z0UULFc/P2LJkiXSoC8sLAx+fn6YM2cOunbtiqlTp6JHjx7o2LGjzoHpqlWr0KZNGzx48AA1a9bEZ599pnOCjlWrVmHbtm1a63///fdYsmQJFi9ejOnTp6NNmzZQKpUYOXJkkftILpdj1apVsLOzw6uvvooBAwbgf//7H9q3b4/PPvsMtWvXxmeffSbVl8lk+Pbbb2Fra4uwsDD07dsX//vf/9ClSxdMmjQJXl5e+Oabb3TGGj16NFQqFe7fv4+IiIhnfsB6cfezLpMnT0br1q2xdu1atGrVCtOmTcOwYcOkfbhixQqdtw1t375d4zjYvn07gKKPHfXx4u7ujvXr1+Px48do1qwZunXrhilTpmDChAkICwtD9erVdT4TpijFfT+Lw9vbGzdv3kR8fLzWA6WfVXE/q8uWLZOeAWPIM2bmzZuH6tWrY+TIkRoDz0WLFqF58+Z499130axZM4waNQpTp05F//79Ua9ePbzwwgsaydBFixahYcOG+OSTT/D8889jypQpmDx5MsLCwuDj41Osqzx0UU84Ex0djfHjx6Np06Z4+PAhBg0aJD0rZtCgQXB2dsaECRPQu3dvvPPOO3jllVcwaNAgnQ8OL4mlS5di9+7d6NWrF/r166exzN3dHYsXL0Z6ejqGDRum8UdRhw4dkJWVhS5duuCDDz7Axx9/LP2BRERUXDzpbJjinHQGgKysLCxatAgWFhbo06ePQetERkYiIyMDI0aM0HqeJZB3dVv+59b16NEDjx490ngsztGjR6Vk8rx586Tyq1ev4scff0S1atXw4osvAsh7pl379u1x4cIFrFy5UiPWsmXL8Pfff6NDhw46n5f50UcfadxenZqaKt0OW9j736FDB7z44otwdHTE2LFji9gjeSIjI+Hp6ak1iYw+KSkp0kQVart378aePXvQuHFjtGjRAsCzbX9B586d0yrz9fXFo0ePNE6AK5VKTJkyReeVw6XBVCfQrays0K9fPyQnJ2PWrFkay3bt2oXdu3ejTp06CAoKKnafS3LMGOq1116Ds7MzYmJiNN4nIQSmTp2K3NxcDBkyRGOdTz75BBcuXMCXX34pPX7C1tYW9vb2sLe3l8bvHh4e+PLLL3Hx4kWt47G4n/Vx48ZBqVRi7Nix0pWIallZWdIz1o1FCCGdrFDT9x184cIFrff8WcyZMwfHjh3DyJEjNSZFGjt2LDp06IAffvgBW7Zskcqtra3Ru3dvJCUlaXznAcCKFSuQkJBgtL5VCEabN5vo/127dk0AEKGhoXrr7N27VwAQo0aNksqCg4NFp06dxE8//aRznZiYGAFAxMTEaC1buXKlaNmypbCzsxN2dnaiZcuWYuXKlXrjlvQ1Y8YMqa2rV6+Knj17Cnd3dynmDz/8IMXIXzc4ONjgGBEREdJ6ERERWsvd3d1FUFCQWLt2rf43QYezZ8+KXr16iapVqwpLS0vh6+srJk6cKB48eKCz/pkzZzTq+/j4iLFjx4q7d+/qjaFSqUTNmjUFAPH3338Xq3/q4yb/9gtRvP0shBC+vr7C19dXoyw9PV3873//E3Xq1BFWVlbC1dVVdOvWTRw5ckSrHzNmzHimY2Tv3r0a7V26dEkMHz5c+Pr6SrGbNGkiIiMjRWxsbJHbr09x309d1MfXtWvX9NbRt58BiODgYJ3rqPdhwX0hhGGf1du3bwsnJycREBAgcnJyNJYVtp82bdokAIi3335bozwjI0PMmTNHtGjRQtjb2wtbW1vh7+8vevToIdasWaMVIzU1VUyfPl00aNBAWFtbC2dnZ9G8eXPxwQcfiKdPn+rcZl3Hna59kv/l6uoqWrRoIb7++mutPpw+fVq88sorwtXVVTg6Oorg4GDxxx9/FPo9qIt6fxX87nJwcBAeHh6FHi/9+vUTAMTChQulsvT0dDFixAjh6ekpFAqFVtvq7SzsmCKiiqWk476PPvpIVKtWTQAQs2bN0lpH3/fdhAkTBADh4+Mj3nrrLTFx4kTh7e0tAIjIyEidcbt27SoWL16s8QIg6tatq1Vet25dAUAsXrxYnDhxQgiR993n5+cnAIhXX31VvPvuu+K1114TCoVC9OrVS+u7MCYmRtSpU0cAEM2bNxczZszQeKnHhREREWLr1q3Seurfyx9//LFYvHixWLRokXj//felsdWnn35a5PuxdetW8fzzzwsAws/PTyv2a6+9JgCI1157TWPfqlQqKb6np6cYNGiQmDp1qhgyZIh44YUXhEwmE+vXr5fq3759W1StWlXIZDLRs2dPMX78eOHu7i58fX0FANGoUSMRHh4uRo0aJdzc3AQA8f3332v09dKlS1Ibr732moiKihLdu3eXxrvx8fEa9dX7LSwsTHh7e4uJEydqvP8Ff/8b+jtT15gm/9h99erVRbar/hy0bdtWODs7i/bt24uoqCjRr18/YWFhIWxtbcWxY8eMsv3q9/L9998XgwcPFvb29lr9/PnnnwUA4eLiIkaOHCkiIyNF06ZNhZubmwgJCdH6XV3UvtI1zilsHKlvvHbw4EFhZ2cnLC0tRf/+/UVUVJTUn9q1a4ukpKQi4+qSlJQkatWqJQCIDh06aOx7Ozs7cfDgwSLbEMI4x4wu+sbTP/74o1AoFMLe3l4MGzZMTJ06VbRo0UIAEK1atRKZmZlS3XPnzglLS0vRuXNnrfb17afQ0FBhaWkpzp07J5UV97OuUqlE7969BQDh5eUlxowZI6ZOnSr69esnqlSpovEdll9Rf2eo90lwcLB0TE+ePFna/gYNGoisrCwhhBC5ubmiVatW0mfsnXfeEX369BG2trbSd7Chf0Op91fB9+/s2bPCyspK+Pv7i/T0dK11rl27pnP8fOfOHeHl5SUAiM6dO4uoqCjRo0cPYWVlJV555RWdfxNV1vEyk49EBvL19dX6hWGo4OBgg74QDa1XVt25c0dYWFiItm3bmrsrpU49yNKVcCMyF13JR1OqrIMposqMJ53L1klnXW3oe+k6ibhhwwbRqVMn4erqKiwtLYWXl5cICQkR8+bN0zphdeHCBdG+fXthY2Mj6tevL3bt2iVt+5UrV0RwcLCwtrYW9erV00o8ql2/fl0MHTpUeHp6CgsLC+Hp6SmGDh0qrl+/rlVX3XZmZqZ49913hY+Pj7CyshL169cXCxYsECqVSqO+MRJJrVu3Nqjd/Mm28+fPi1dffVU4OTkJe3t70alTJxEXF2e07Ve/5HK5qF69uujUqZPYsWOHVv1NmzaJ559/XtjZ2YmqVauK3r17iytXruhMCpVW8lGI4p1ANzT5KIQQDx48EJGRkcLX11dYWlqKqlWril69emkk3opS2slHIYQ4cOCA6NKli3BxcRFWVlaiXr16Yvr06eLx48dSHXXyzcHBQdy4cUOrDX376fr168LBwUG0atVK5ObmaiwrzmddpVKJFStWiBdeeEHY29sLOzs7UbduXTF69Ghx8+ZNndtsaPIx/8ve3l7Ur19fTJ06VSsRnZSUJIYNGyZq1KghbGxsRJMmTcTChQvF1atXnzn5+PTpU9G8eXMhk8kK/Vtu6dKlAoAIDw/XKL9x44bo06ePcHFxEXZ2dqJt27Zi//79ei/IqKzjZZkQOh6CRURa/Pz8MGTIkBLdKhsSEgI/P79CZ8crTr2yaurUqZgzZw7WrVundStnRXf9+nX4+/trzGZMZG7q43LGjBkl+u4qLvVM59euXTNo8ggiorKqvI77hgwZguvXr+t8jlxJ6hVXSEgI9u/fr/M5y2W57Wel/n0bERFRbsfxRJWFn58f/Pz8jP79Z6jKOl62MHcHiMqLAQMGGPQwdF2GDBkCFxcXo9UrS1JTU7F48WLcuHEDK1asQKNGjdC7d29zd6vUOTo6YtSoUahRo4a5u0JERERERERUZjD5SGSggg/rLY6CDwt+1nplyaNHjxAVFQUbGxu89NJLWLJkidYsZJWBm5ubNPkMERERlW/l9aRzjx49DJrF1tB6RERExsDkIxE9Ez8/vzJ5+wsRAS4uLpgxY0apPQpAHae8XcFNRFRQeT3p3KNHD6PWIyIiMgY+85GIiIiIiIiIiCq8+fPnw8XFxWx3He7btw/79u3DW2+9ValO2DP5SERERERERERERCYhN3cHiIiIiIiIiIiIqGKqdM98VKlUuHPnDhwdHSGTyczdHSIiIqJiE0IgPT0dNWrUgFzOc8nlEcekREREVJ4VZzxa6ZKPd+7cgY+Pj7m7QURERPTMbt26BW9vb3N3g0qAY1IiIiKqCAwZj1a65KOjoyOAvJ3j5ORUanH79OmDDRs2MB7jlcl45ojJeOU7njliMh7jlfWYpRkvLS0NPj4+0riGyh9zjEkr8meiMsQzR0zGK9/xzBGT8RivrMdkPOMpzni00iUf1be1ODk5lWry0dLSkvEYr8zGM0dMxivf8cwRk/EYr6zHNMc28nbd8sscY9KK/pmo6PHMEZPxync8c8RkPMYr6zEZz/gMGY/yIUFERERERERERERkEkw+EhERERERERERkUkw+UhEREREREREREQmweQjERERERERERERmUSlm3CmuJRKJXJycp65HTc3N2RlZRmhR4zHeBUjZnmOZ2lpCYVCYZS2iIiIisLxKOOZKybjle945ojJMTcR6cLkox5CCNy7dw8pKSlGaW/IkCG4du2aUdpiPMarCDHLezwXFxdUr16dM80SEZHJcDzKeOaOyXjlO545YnLMTUS6MPmoh3qg5+HhATs7u2f+spPJZPDz8zNO5xiP8SpAzPIaTwiBjIwMJCUlAQA8PT2fuU0iIiJdOB5lPHPHZLzyHc8cMTnmJiJdmHzUQalUSgM9Nzc3o7SpUChgY2NjlLYYj/EqQszyHM/W1hYAkJSUBA8PD94OQkRERsfxKOOVhZiMV77jmSMmx9xEpAsnnNFB/UwdOzs7M/eEiMoq9feDMZ7BRUREVBDHo0REHHMTVRRMPhaCz5UgIn34/UBERKWBv2+IqDLjdyBRxcDkIxEREREREREREZkEk49UIk+ePMGtW7fw6NEjc3eFiIiIiIiIiIjKKCYfyWAbN25Ex44d4ejoCAcHB9SsWRNz5swxd7eIiIiIiIiIiKiMYvKxkrpw4QIGDhwILy8vWFtbo0aNGhgwYAAuXLigs/60adPQu3dvODo6Yvny5fj999/xxx9/YOzYsaXccyIiIiIqz1atWgWZTCa9bGxsUK9ePYwfPx737983d/eoFLVq1QoymQyLFy/WubzgsVLwdezYMQDAw4cP8fnnn6Ndu3Zwd3eHi4sLXnjhBWzYsKE0N4eIiPSwMHcHqPRt2bIF/fr1Q5UqVTB8+HD4+/vj+vXr+Pbbb7Fp0yb88MMPeP3116X6+/fvx+zZszFr1ixMmzbNjD0nIiIiooriww8/hL+/P7KysnDo0CEsXrwYv/76K86fP89ZviuBy5cv48SJE/Dz88P333+PMWPG6K2rPlYKqlOnDgDg6NGjeO+99/Dqq6/i/fffh4WFBTZv3oy+ffvi4sWLmDlzpsm2g4iIisbkYyVz5coVDBo0CLVq1cKBAwfg7u4uLZs4cSLatm2LQYMG4ezZs6hVqxYAYO7cuXjxxReZeCQiIiIio+nSpQsCAwMBAG+++Sbc3NzwxRdf4KeffkK/fv3M3Dsyte+++w4eHh6YN28eevXqhevXr+utm/9Y0eW5557D5cuX4evrK5WNHTsWnTp1wuzZs/Huu+/C3t7emN0nIqJi4G3Xlcznn3+OjIwMLFu2TCPxCABVq1bF0qVL8eTJE41nOR47dgyNGzdG3759UaVKFdja2qJly5bYtm2bVOfJkyewt7fHxIkTtWLevn0bCoUCs2bNAgAMGTIEfn5+WvVkMhmio6Oln2/cuIGxY8eifv36sLW1hZubG8LDw7UGJvv27YNMJsO+ffukshMnTuDll1+Go6Mj7O3tERISgoMHD2qsp76NIy4uTipLTk7W6gcAjBw5Umefjx8/js6dO8PZ2Rl2dnYIDg7G4cOHteolJiZi2LBhqFatGqytrfHcc89h5cqVWvV0Ud9WMn/+fK1lDRo0gEwmw/jx4wvdrsK27dSpU+jSpQsCAgLg4OCAjh07SrewqC1duhRyuRwbN26Uyq5fvw6ZTIZVq1ZJZQkJCahSpQr69++vsX5KSgreeust+Pj4wNraGnXq1MGyZcugUqk06qlUKnz11Vdo0qQJbGxs4O7ujs6dO0vbUthtNzKZDCEhIQD+OybUL2tra7zyyiuYNWsWhBA6t9/JyUnv9hMREZHpdejQAQBw7do1AMC///6LKVOmoEmTJnBwcICTkxO6dOmCM2fOaK2blZWFBQsWoF69erCxsYGnpyfeeOMNXLlyBcB/45aixhBqSUlJGD58OKpVqwYbGxs0a9YMq1ev1qhz9epVdOjQAdWrV4e1tTV8fHwwevRo/Pvvv1Id9Zhk06ZNWn12cHDAkCFDpJ8N3d7itFnScaF6XDR48GCd4yJdY7vZs2drje0Ks27dOvTq1QvdunWDs7Mz1q1bZ/C6Bfn7+2skHoG8cWOPHj2QnZ2Nq1evFrp+/rHj6dOnNZYlJiZCoVBo7fMhQ4bAwcFBq61NmzZp/W0C5D0///XXX4etrS2qVq2KgQMHIjExUaNO//794ebmhsuXL0tl6vcw/99AGzduhFwux9KlSzXWv3TpEnr16oUqVarAxsYGgYGB2LNnj1YfU1JSMGnSJPj5+cHa2hre3t4YPHgwkpOTtcbRul7q4yY6Olqj3NHRET179tT4OzF/n1u0aFHo9hNRxcUrHyuZn3/+GX5+fmjbtq3O5e3atYOfnx9++eUXqezhw4dYtmwZHBwcEBkZCXd3d3z33Xd444038P3336Nfv36wt7fH66+/jg0bNuCLL76AQqGQ1l+/fj2EEBgwYECx+nrixAkcOXIEffv2hbe3N65fv47FixcjJCQE27dv17veP//8g5CQENjZ2eGdd96BnZ0dli9fjk6dOuH3339Hu3btitUPff7880906dIFLVq0wIwZMyCXyxETE4MOHTrg4MGDaNWqFQDg/v37eOGFF6Qkobu7O3bu3Inhw4cjLS0Nb731VpGxbGxsEBMTo1H3yJEjuHHjxjNtw4ULF9C2bVs4OTlhxIgRqF69OpYuXYqQkBDs378frVu3BgCMGjUK8fHxiIiIgJ+fH1q2bKnV1r///otu3bqhYcOGiImJkcozMjIQHByMxMREjBo1CjVr1sSRI0cwb9485OTkaCRVhw8fjlWrVqFLly548803kZubi4MHD+LYsWMIDAzE2rVrpboHDx7EsmXL8OWXX6Jq1aoAgGrVqmn06X//+x8aNmyIzMxMxMTE4H//+x88PDwwfPhwre1/9913YWlpqXP7iYiIyPTUiUI3NzcAecm9bdu2ITw8HP7+/rh//z6WLl2K4OBgXLx4ETVq1AAAKJVKdOvWDXv27EHfvn0xceJEpKen4/fff8f58+dRu3ZtKUa/fv3w6quvasSNiorS+DkzMxMhISH4559/MH78ePj7+2Pjxo0YMmQIUlJSpJPtmZmZ8Pb2RlhYGJycnHD+/HksXLgQiYmJ+Pnnn4u9/YZur6noGhd98803WuMifWO7qKgo3L17V+cJ84KOHz+Of/75BzExMbCyspL+rggPD9dZPzU1FcnJyRplMplMOlb0uXfvHgBIY8WiqMfcX331lVS2evVqWFlZISsry6A2dFm1ahWGDh2KJk2aYNasWbh//z6++uorHD58GKdOnYKLiwsAYOXKlejQoQO6du2K48ePw9XVVaut2NhYREREYNKkSRg1apRUfuHCBQQFBcHLywvTpk2Dvb09fvzxR4wdOxbVqlWTHqv1+PFjtG3bFn///TeGDRuG559/HsnJydi+fTtu376Nhg0baoy5ly1bhr///htffvmlVNa0aVONPqnrJycn46uvvkJ4eDjOnz+P+vXra2x/y5YtC91+IqrARCWTmpoqAIjU1FS9dTIzM8XFixdFZmam0eImJCQYra2SxktJSREAxGuvvVbout27dxcARFpamhBCCAACgNi3b59UJyMjQzRs2FBUr15dPH36VCQkJIjdu3cLAGLnzp0a7TVt2lQEBwdLPw8dOlTUrFlTKy4AMWPGDI0YBR09elQAEHPmzJHK9u7dKwCIvXv3CiGE6Nmzp1AoFOL8+fNSneTkZOHm5iZatGghlcXExAgA4sSJE1LZgwcPtPohhBAhISHC19dX+lmlUom6deuK0NBQoVKpNPrs7+8vXn75Zals+PDhwtPTUyQnJ2u02bdvX+Hs7KxzO/O/fwBEr169hIWFhYiLi9Not3///gKAGDduXKHbpW/bevToIaysrMSVK1ekmHfu3BGOjo6iXbt2GusrlUoRFhYmPD09xa1bt8S1a9cEABETEyOePn0qQkJChL+/v0hKStJY76OPPhL29vZax+TIkSOFQqEQN2/eFEII8eeffwoAIjIyUmt/5N/HBbfz2rVrWssKHhNCCHH+/Hkhl8vF2LFjdW6/mr7tL6io74mwsLBC1ze20o5njpiMx3hlPWZpxjNkPENlW1HvoanGoxkZQnzxhRDjx+f9q2MYYtR4uqh/h//xxx/iwYMH4tatW+KHH34Qbm5uwtbWVty+fVsIIURWVpZQKpUa6167dk1YW1uLDz/8UCpbuXKlACCioqK0YqnHEOpxy+eff65V57nnntMYq86fP18AEN99951U9vTpU9GmTRvh4OAgjZF1bd/YsWOFg4OD9LN6TLJx40atuvb29iIiIkL62ZDtTUhIKFabJR0Xqh06dEhrXKRvbDdt2jSNsV1hxo8fL3x8fKT357fffhMAxLZt2zTqqfuv62VtbV1ojIcPHwoPDw/Rtm1bvXXU26Dep/369RNubm4iOztbqlO3bl1pzJ1/n0dERAh7e3utNjdu3KgxDn369Knw8PAQjRs3FufOnZPq7dixQwAQH3zwgcb69+/fF35+fqJ9+/bi6dOnGmPemzdviurVq4vu3btrHSsdO3YUTZo0EVlZWVKZSqUSzz//vKhbt65U9sEHHwgAYsuWLVp91zXmjoiI0Pg7KL8ZM2aIgikFdX9//PFHre3P/32mb/sLquxj7ooezxwxGc94ijMeNett135+fjov4x43bpzO+suXL0fbtm3h6uoKV1dXdOrUCbGxsaXc65LLzszBti+PYcmEXdj25TFkZ+aUavz09HQAgKOjY6H11MvT0tKkspYtWyI4OFj62dbWFmPHjsW9e/fw119/AQA6deqEGjVq4Pvvv5fqnT9/HmfPnsXAgQOlMg8PDyQlJeHp06eF9sPW1lb6f05ODh4+fIg6derAxcUFFy9e1KqfmpqKpKQk/P777wgNDcVzzz0nLXNzc8OQIUNw8uRJo8yiePr0aVy+fBn9+/fHw4cPkZycjOTkZDx58gQdO3bEgQMHoFKpIITA5s2bERYWBiGEVC85ORmhoaFITU2V9l9hqlWrhq5du0pXFGZkZODHH3/E0KFD9a6jPkOsfuW/BQjIu0rgt99+Q48ePaTnewKAp6cn+vfvj0OHDmkcA3K5HOvXr4ebmxvCwsLw5MkTadmYMWMQGxuLHTt2aN3Ov3HjRulzm78/L774IpRKJQ4cOAAA2Lx5M2QyGWbMmKG1LTKZrMh9VNg+uHnzJpYvXw6VSiXd0lXc7SciooqpMo1Hs7JkCAoCpkwBli7N+zcoCMjMNE9/OnXqBHd3d/j4+KBv375wcHDA1q1b4eXlBQCwtraGXJ7354pSqcTDhw/h4OCA+vXra4yfNm/ejKpVq2LQoEFaMUoyhvj1119RvXp1jedOWlpaIjIyEo8fP8b+/fs16qempuL+/fvYs2cPfvnlF5132aSnp2uMgwpexVec7S1Om/n7WJJxoYeHh9a4SN/YrlOnThpjO31yc3OxYcMG9OnTR3p/OnToAA8PD71XjC5cuBC///67xmvnzp16Y6hUKgwYMAApKSn4+uuvC+1PfmFhYZDJZNJdVgcPHsTt27fRp08fvesUfA/Uf3OpxcXFISkpCWPHjoW1tbVU3rVrVzRo0EDjjjMgb5//8ssvOH78OMaOHSuVP378GGFhYahatSrWrVsnHStA3h1If/75J3r37q1xXDx8+BAvvfQSLl++LN3ivHnzZjRr1kxjglG1ko651fH+/vtvrF+/Hvb29njhhRe0tt/GxqbI7Seiismst12fOHECSqVS+vn8+fN4+eWX9V5uv2/fPvTr1w8vvvgibGxsMHv2bLzyyiu4cOGCNEgpq55m5eLdoFW4euY+5AoZVEqBvWvPYc7hIbC2tSyVPqiTigV/IRakK0nZoEEDrXoNGzYEkPcMnSpVqkAul2PAgAFYvHgxMjIyYGdnh++//x42NjYa7+mLL76I2bNn4/3330dkZKTGL6H8MjMzMWvWLMTExCAxMVHjWX26tqFHjx7S/9WX+Ovrb8Hbc4tL/RyWiIgIvXVSU1ORk5ODlJQULFu2DMuWLdNZLykpyaCYQ4cOxdChQzFv3jxs3LgRrq6uUiJNl06dOhXa3oMHD5CRkaF3X6lUKty6dUsjiatUKpGcnIx79+5Jic9FixbhxIkTkMlkOt+Xy5cv4+zZs1pJSTX19l+5cgU1atRAlSpVCu13ceQ/JuRyOd5//3307NkTQMm2n4iIKp7KNB5dv94ZZ84AKlXeCwDOnAGWLAEmTSr9/ixcuBD16tWDhYUFqlWrhvr162skVNTPgl60aBGuXbum8T7lv932ypUrqF+/PiwsjPOnzY0bN1C3bl2NvgD/jSULPvYmNDQUx48fBwB07twZGzZs0Gpz2LBhRcY1dHuL06aaMceFho7t9Pntt9/w4MEDtGrVCv/8849U3r59e+zYsQMqlUpr37dq1arQCWcKmjBhAnbt2oU1a9agWbNmBq9naWmJgQMHYuXKlejVqxdWrlyJnj17wsnJSWf9J0+e6N0PaurjRde+bdCgAQ4dOqRVnpaWhszMTKxYsUJ65uewYcNw5swZeHp6ahwbQN5jp4QQmD59OqZPn66zH0lJSfDy8sKVK1ek8bCx5N8HDg4O+P777+Hj4wOgZNtPRBWPWZOPBb+oP/vsM9SuXVvjCrv88l9RBwArVqzA5s2bsWfPHgwePNhk/TSGI+uv4OqZ+xAqAaUqL4l29cx97FxyEj0mvVAqfXB2doanpyfOnj1baL2zZ8/Cy8tL+iWb/wrEogwePBiff/45tm3bhn79+mHdunXSQ6TVunfvjmHDhuHzzz/H559/rretCRMmSM85bNOmDZydnSGTydC3b1+dD7OeO3cu6tati9dee83g/paUOv7nn3+O5s2b66zj4OCAhw8fAgAGDhyoN1FZ8Jkp+nTt2hVWVlbYtm0bYmJiEBERoTUwy089oFdLS0t75oHG9OnTkZWVhe3bt0tngE+cOIEFCxZg/fr1GDt2LE6cOKH1h8PLL7+Md999V6Ot27dvw9vbW6OPxjZ37lw0a9YMOTk52LVrF2bPng0LCwudV1cSEVHlVJnGo7duWUKh+C/xCAAKBVDEXBwmU1RC6dNPP8X06dMxbNgwfPTRR9LJ7rfeeqtYE5uY2tdff43k5GRcvHgRs2bNwujRo/Hdd99p1Pnggw+0nrkeFham8XNxt9eQNtWMOS7UN7ZTK2psp/4M9e7dW+fy/fv3o3379iXqGwDMnDkTixYtwmeffabzatiiDBs2DAEBAYiPj8fGjRsLfda8jY2N1tWaBw8exIcffljsuGpKpRJjx45FmzZt0KdPH+kZo+fPn8f27dsxaNAgfPDBBxrP1lQfH1OmTEFoaKhGe+oxd506dUrcp6L8/vvvAPKSsTExMejduzd27NiBl19+2WQxiah8KTMTzjx9+hTfffcd3n77bYMv987IyEBOTo5Rr5QylYe3HkOukEmJRwCQK2S4dzWlVPvRrVs3LF++HIcOHcJLL72ktfzgwYO4fv26xsOL/f39ER8fr1X30qVLAKAxC3Tjxo0REBCA77//Ht7e3rh586bOWx2+/fZbfPDBB7hy5Yr0y7LgL6dNmzYhIiIC8+bNk8qysrKQkpKic9tatGiB4OBgODg4GNzfklI/uNzJyanQM8nu7u5wdHSEUqks8oxzUSwsLDBo0CB88sknuHDhQpGzZRcc0Be8Fcfd3R12dnZ695VcLpfOWAJ5t5ovXLgQX331FcLCwrBixQoMGDAAI0aMwIQJE9C2bVsEBgZi0aJFGrNv165dG48fP9ba/suXL6Nu3boa9Xbv3o1///3XaJ/pFi1aSLNX1qlTB1lZWZg9ezamT59e7O0nIqKKr6KPR318clDggikolUC+u2zLlE2bNqF9+/b49ttvNcpTUlI0JhCpXbs2jh8/jpwc4zzSyNfXF2fPntW6Ak89liw4q7J6Ir4uXbrAw8MDgwcPxnvvvSddKQkATZo00RoL5Z+gETB8e4vTppoxx4X6xnaGePLkCX766Sf06dMHvXr10lo+btw4fP/99yVOPi5cuBDR0dF46623MHXq1BK10aRJEwQEBKB3795wd3dH+/bttW61V1MoFFr7oeDfKurjJT4+XmtsGR8fr3U8LVq0CGfPnsXJkyfRrFkznD9/HsuXL8eKFSsQFhaGjz/+GG+99RaGDh0qXdWpvlXe0tLSoDH3+fPnDdwbhskfs1GjRvj7778xd+5cvPzyyxrbX/CuLV3bT0QVk1mf+Zjftm3bkJKSgiFDhhi8ztSpU1GjRo1Cf/FlZ2cjLS1N42UObj4OUCmFRplKKVC9lkup9uOdd96Bra0tRo0aJV2Vp/bvv/9i9OjR0izRaq+++ipiY2Nx5MgRqSwrKwuLFy9G9erV0aJFC412Bg0ahN9++w3z58+Hm5sbunTporMvvr6+6NChAzp16qTzPVQoFBq3WgN5Z5YL3maQn0wmwyuvvILdu3fj77//1ti21atXIzAw8JlvuQbyklq1a9fG3Llz8fjxY63lDx48kLahZ8+e2Lx5s85f8up6hho2bBjOnTuHdu3aaTyPpyQUCgVeeeUV/PTTT7h+/bpUfv/+faxbtw4vvfSSdPWrEAJjx45Fs2bNMGbMGAB5t8/n/7d58+YYN24c3n//fY3navbu3RtHjx7F7t27tfqQkpKC3NxcAEDPnj0hhMDMmTO16hU8DkoqMzMTubm5yM3NLdb2ExFR5WCq8ShQNsak/fqlolkzQC4HLC3z/m3eHBg9utS7YhBdY8GNGzdKz65T69mzJ5KTk7WuNgRKNoZ49dVXce/ePY3bp3Nzc/H111/DwcFB71WxwH9Jvezs7GLHNXR7TUHfuCg5OVlrXGTo2E6XrVu34smTJxg3bhx69eql9QoJCcHmzZtLtP82bNiAyMhIDBgwAF988UWx189v2LBhOHv2LIYMGVLi5yCqBQYGwsPDA0uWLNF45v3OnTvx999/o2vXrlLZ/fv3MX36dIwfP15KLBYcc48ZMwbNmjXD2LFjpePFw8MDISEhWLp0Ke7evavVh/x/c/Ts2RNnzpzB1q1bteoZY8ytVCrx9OlT6T3Mv/3531dd209EFVeZufLx22+/RZcuXVCjRg2D6n/22Wf44YcfsG/fPr3PDASAWbNm6Uxm9OnTB5aWup+1qJ6cRCaT6T17WFwBr9VA3E/XcefvR9IzH2s0cEHdTs7S8wONKSMjQ2+7n332GaZMmYJGjRqhV69e8Pb2RmJiIjZu3IhHjx7hiy++gEqlktbv1asX1qxZg9DQUAwePBiurq746aefcPHiRcybNw/Xrl3TiKd+uPDWrVvRv39/jQFMUR4+fCi1065dO6xduxZCCNSuXRunT5/GkSNH4OLigtzcXKne7du3pX8vX76MN998E7t27cJLL72EQYMGwcbGBj/++CNSUlIwf/58aT11guynn36SnqWiTiSeOnVK46xzcnIyHj9+jG+//VZ6iHh0dDTefPNN1K9fH2+88QaqVauG+/fv4/jx43BwcMDSpUsBACNHjsTvv/+OVq1aoXfv3qhduzZSU1Nx8eJFHDlyBCdOnCjy/UtJScHly5dhYWGB48ePw8bGRufy/Nt18+ZNjdvd1Q8Wz7+PR4wYgd9++w0vvPACwsPDYWtrix9++AFZWVmYMGGCVG/jxo04fvw4NmzYgCtXrmjs9/v370v1hgwZgvXr12PUqFHSLfWvv/46Nm7ciG7duuH1119H48aNkZGRgYsXL2LPnj34888/UaVKFXh7e+O1117DggULcPr0abRr1w4qlQpxcXFo3bq11m0z6u28du2a1pUO6r5t2LABcXFxyM3NxV9//YXNmzejQ4cO0rNn8m9///79YWFhoXP7dVEqlUhKSsKcOXO0EvkAEBsbi+7du+td39hKO545YjIe45X1mKUZz1hXeJEmU41HgeKPSU0xHlWpMrB69T9Yv94Zt25ZwscnB/36peL2beOc5CtI33hU31iloDZt2mDhwoXo2bMnAgICkJCQgJ9//hk+Pj7IzMyU2m7Tpg1at26NWbNm4ezZswgMDERmZiaOHDmC/v37o1OnTtLYIDk5WatPT58+1WivQ4cOqF27NiIiIvDHH3/Ay8sLu3fvRmxsLN577z3cu3cP9+7dw5dffol///0XdevWhZWVFS5evIjNmzejfv36sLW1xeXLl6W4d+/e1YorhEBaWprGdhS1vRkZGcVqs6TjQvW4aP369VrjIn1ju4SEBOzevVsa2+mybNkyuLi4wN3dXeex8dJLL+HHH3/E8uXLERoaKvX/u+++w759+7TqBwQEoGbNmjhz5gwGDRoEFxcXNG7cWOPOqfz1ClIfowX3aUhICI4dOwZHR0e972NaWhqEEFrboU7+qf82AYC3334b06ZNQ79+/dC9e3ckJydjzZo18Pb2Rvfu3aV6U6ZMgbW1NSIiIrTew/xj3qioKPTu3RufffaZdAXpu+++i379+qFRo0bo3bs3fHx88PDhQ8TFxeHBgwfS7eGvv/461q1bh/DwcPTs2RONGzdGSkoK/vzzT8ycOVPjil31dub/2ys/9Rh47ty5APJO9O/evRvXr1/HgAEDtLa/devW6Natm97t16Wyj7krejxzxGQ84ynWeNT4k20X3/Xr14VcLhfbtm0zqP7nn38unJ2dxYkTJ4qsm5WVJVJTU6XXrVu3ipwKPDMzU1y8eFFkZmYavA1FSUhIEFkZT8XWL46KxeN3iq1fHBVZGU+N1r6ueIU5e/as6Nevn/D09BSWlpaievXqol+/fuLcuXM661+5ckX06tVLODs7CxsbG9GyZUuN96tgvFdffVUAEEeOHDG4zwDEjBkzpJ8fPXokhg4dKqpWrSocHBxEaGiouHTpkvD19RWvv/66VG/v3r0CgNi7d69UdvLkSfHKK68IBwcHYWdnJ9q1ayf279+vES8mJkYAKPYrv1OnTok33nhDuLm5CWtra+Hr6yt69+4t9uzZo1Hv/v37Yty4ccLHx0fa3x07dhTLli3TuS/y708AYty4cYXut/zL1dtV8PPx4MEDrX0shBB//fWXCA0NFfb29sLOzk60b99e4317+PChqFq1qhg5cqTGeteuXRMARExMjEb5999/LwBo7O/09HQRFRUl6tSpI6ysrETVqlXF888/L+bOnSuePv3vc5Cbmys+//xz0aBBA2FlZSXc3d1Fly5dxMmTJ7W2W72d165d01qmPibULwsLC+Hl5SUiIyPFo0ePdG6/+lgpuP36FPU9ERYWVmQbxlTa8cwRk/EYr6zHLM14qampRY5nqHhMOR4VovhjUlONR0uTvnj6xioFZWVlicmTJwtPT09ha2srgoKCxNGjR0VwcLAIDg7WqJuRkSHGjBkj/P39pbFWr169xJUrV4QQ/41bPv/8c604zz33nFZ79+/fl8ahVlZWokmTJlpjnq+//lq0bNlSODk5CVtbW1GnTh0xefJk8eDBA6mOekyyceNGrbj29vYiIiKiWNubkJBQrDZLOi5Uj4teeOEFneMiXWO7F198UWtsV3CfWlhYiEGDBulcLkTe3yh2dnbSWL+o8br6PTG0XkHqY7SwfapveUREhLC3t9equ3HjRq2/TYQQYsOGDaJRo0bC2tpaVKlSRQwYMEDcvn1bWr5v3z4BQKxbt05jPX1j3hEjRoiqVauKhw8fSmVXrlwRgwcPFtWrVxeWlpbCy8tLtG/fXmzatElj3YcPH4rx48cLLy8vYWVlJby9vUVERIRITk7W2p6IiAjh6+urc7/MmDFDYz+rPwdffvmlUKlUWtsfEBCgd/v1qexj7ooezxwxGc94ijMeLRPJxxkzZojq1auLnJycIuvOnj1bODk5iaNHj5YoliE7pyIP9korXo8ePUTt2rVLLZ6pJSQkSIPW0opX2sx9zJS3eJV9IGSOmIzHeGU9Zlkd7JFhSnM8KkTR7yHHo4xXFmIyXvmOZ46YHHMzXlmPyXjGU5zxqNmf+ahSqaSZey0sNO8CHzx4MKKioqSf1RNFrFy5En5+ftItD7qeuUfmc/fuXfzyyy8lml2OiIiIqLRxPEpERERkOmZPPv7xxx+4efMmhg0bprXs5s2bGg/MXbx4MZ4+fYpevXrB09NTeqmfMUHmde3aNXz33Xfo168fLC0tNWbMrghsbW0RGhpq7m4QERGRkXE8SkRERGQ6Zp9w5pVXXtE7q1bBhwoXZ+ISKn379+/H0KFDUbNmTaxevRrVq1c3d5eMqlq1ati1a5e5u0FERERGxvEoERERkemYPflIFceQIUMwZMgQc3eDiIiIiIiIiIjKCLPfdk1EREREREREREQVE5OPREREREREREREZBJMPhZC37N/iIj4/UBERKWBv2+IqDLjdyBRxcDkow4WFnmPwszNzTVzT4iorFJ/P6i/L4iIiIzJ0tISAJCRkWHmnhARmY/6O1D9nUhE5RP/atZBoVBAoVAgLS0Njo6O5u4OEZVBaWlp0ncFERGRsSkUCri4uCApKQkAYGdnB5lM9kxtKpVKZGVlGaN7jGeGeOaIyXjlO545YhornhACGRkZSEpKgouLC8fcROUck486yGQyeHh44O7du7C2toa9vT0He4xXoeOZI2Z5jSeEwJMnT5CWlgZPT89n/m4gIiLSp3r16gAgJSCfVVJSUqnewsh45T8m45XveOaIaex4Li4u0nchEZVfTD7q4ezsjMzMTCQnJ+PBgwfP3F55/9JnvIodzxwxy3M8mUwGFxcXODs7G6U9IiIiXWQyGTw9PeHh4YGcnJxnbm/OnDlYvHixEXrGeOaIZ46YjFe+45kjpjHjWVpa8opHogqCyUc9ONhjvMoUzxwxy3M8DoSIiKg0GesxHw8fPoSNjY0ResR45ohnjpiMV77jmSOmObaRiMo+Jh+LwMEe41WGeOaIWdHjERERERERERFnuyYiIiIiIiIiIiITYfKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJJh+JiIiIiIiIiIjIJJh8JCIiIiIiIiIiIpNg8pGIiIiIiIiIiIhMwqzJRz8/P8hkMq3XuHHj9K6zceNGNGjQADY2NmjSpAl+/fXXUuwxEREREVUkHI8SERERmZZZk48nTpzA3bt3pdfvv/8OAAgPD9dZ/8iRI+jXrx+GDx+OU6dOoUePHujRowfOnz9fmt0mIiIiogqC41EiIiIi0zJr8tHd3R3Vq1eXXjt27EDt2rURHByss/5XX32Fzp0745133kHDhg3x0Ucf4fnnn8c333xTyj0nIiIiooqA41EiIiIi0yozz3x8+vQpvvvuOwwbNgwymUxnnaNHj6JTp04aZaGhoTh69GhpdJGIiIiIKjCOR4mIiIiMz8LcHVDbtm0bUlJSMGTIEL117t27h2rVqmmUVatWDffu3dO7TnZ2NrKzs6Wf09LSnrmvRERERFTxmGo8CnBMSkRERJVXmUk+fvvtt+jSpQtq1Khh1HZnzZqFmTNnapX36dMHlpaWRo1VmNjYWHTv3p3xGK9MxjNHTMYr3/HMEZPxGK+sxyzNeDk5OaUSp7Ix1XgUKBtj0or8magM8cwRk/HKdzxzxGQ8xivrMRnPeIo1HhVlwPXr14VcLhfbtm0rtJ6Pj4/48ssvNco++OAD0bRpU73rZGVlidTUVOl169YtAUCkpqYao+sGCwsLYzzGK7PxzBGT8cp3PHPEZDzGK+sxSzNeamqqWcYzFZkpx6NClI0xaUX+TFSGeOaIyXjlO545YjIe45X1mIxnPMUZj5aJZz7GxMTAw8MDXbt2LbRemzZtsGfPHo2y33//HW3atNG7jrW1NZycnDReRERERET5mXI8CnBMSkRERJWX2ZOPKpUKMTExiIiIgIWF5l3ggwcPRlRUlPTzxIkTsWvXLsybNw+XLl1CdHQ04uLiMH78+NLuNhERERFVEByPEhEREZmO2ZOPf/zxB27evIlhw4ZpLbt58ybu3r0r/fziiy9i3bp1WLZsGZo1a4ZNmzZh27ZtaNy4cWl2mYiIiIgqEI5HiYiIiEzH7BPOvPLKKxBC6Fy2b98+rbLw8HCEh4ebuFdEREREVFlwPEpERERkOma/8pGIiIiIiIiIiIgqJiYfiYiIiIiIiIiIyCSYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJJh+JiIiIiIiIiIjIJJh8JCIiIiIiIiIiIpNg8pGIiIiIiIiIiIhMgslHIiIiIiIiIiIiMgkmH4mIiIiIiIiIiMgkmHwkIiIiIiIiIiIik2DykYiIiIiIiIiIiEyCyUciIiIiIiIiIiIyCSYfiYiIiIiIiIiIyCSYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITMLsycfExEQMHDgQbm5usLW1RZMmTRAXF1foOgsXLkTDhg1ha2uL+vXrY82aNaXUWyIiIiKqaDgeJSIiIjIdC3MGf/ToEYKCgtC+fXvs3LkT7u7uuHz5MlxdXfWus3jxYkRFRWH58uVo2bIlYmNjMWLECLi6uiIsLKwUe09ERERE5R3Ho0RERESmZdbk4+zZs+Hj44OYmBipzN/fv9B11q5di1GjRqFPnz4AgFq1auHEiROYPXs2B3tEREREVCwcjxIRERGZlllvu96+fTsCAwMRHh4ODw8PBAQEYPny5YWuk52dDRsbG40yW1tbxMbGIicnx5TdJSIiIqIKhuNRIiIiItMya/Lx6tWrWLx4MerWrYvdu3djzJgxiIyMxOrVq/WuExoaihUrVuDkyZMQQiAuLg4rVqxATk4OkpOTtepnZ2cjLS1N40VEREREBJTOeBTgmJSIiIgqL5kQQpgruJWVFQIDA3HkyBGpLDIyEidOnMDRo0d1rpOZmYlx48Zh7dq1EEKgWrVqGDhwIObMmYN79+6hWrVqGvWjo6Mxc+ZMrXY6d+4MS0tL425QIWJjY9GqVSvGY7wyGc8cMRmvfMczR0zGY7yyHrM04+Xk5GDXrl1ITU2Fk5NTqcSsqEpjPAqUjTFpRf5MVIZ45ojJeOU7njliMh7jlfWYjGc8xRqPCjOqWbOmGD58uEbZokWLRI0aNYpc9+nTp+LWrVsiNzdXLFq0SDg6OgqlUqlVLysrS6SmpkqvW7duCQAiNTXVaNthiLCwMMZjvDIbzxwxGa98xzNHTMZjvLIeszTjpaammmU8UxGVxnhUiLIxJq3In4nKEM8cMRmvfMczR0zGY7yyHpPxjKc441GzTjgTFBSE+Ph4jbKEhAT4+voWua6lpSW8vb0BAD/88AO6desGuVz7LnJra2tYW1sbp8NEREREVKGUxngU4JiUiIiIKi+zJh8nTZqEF198EZ9++il69+6N2NhYLFu2DMuWLZPqREVFITExEWvWrAGQNxiMjY1F69at8ejRI3zxxRc4f/58oc/lISIiIiLSheNRIiIiItMy64QzLVu2xNatW7F+/Xo0btwYH330EebPn48BAwZIde7evYubN29KPyuVSsybNw/NmjXDyy+/jKysLBw5cgR+fn5m2AIiIiIiKs84HiUiIiIyLbNe+QgA3bp1Q7du3fQuX7VqlcbPDRs2xKlTp0zcKyIiIiKqLDgeJSIiIjIds175SERERERERERERBUXk49ERERERERERERkEkw+EhERERERERERkUkw+UhEREREREREREQmweQjERERERERERERmQSTj0RERERERERERGQSTD4SERERERERERGRSTD5SERERERERERERCbB5CMRERERERERERGZBJOPREREREREREREZBJMPhIREREREREREZFJMPlIREREREREREREJsHkIxEREREREREREZkEk49ERERERERERERkEkw+EhERERERERERkUkw+UhEREREREREREQmYfbkY2JiIgYOHAg3NzfY2tqiSZMmiIuLK3Sd77//Hs2aNYOdnR08PT0xbNgwPHz4sJR6TEREREQVCcejRERERKZj1uTjo0ePEBQUBEtLS+zcuRMXL17EvHnz4Orqqnedw4cPY/DgwRg+fDguXLiAjRs3IjY2FiNGjCjFnhMRERFRRcDxKBEREZFpWZgz+OzZs+Hj44OYmBipzN/fv9B1jh49Cj8/P0RGRkr1R40ahdmzZ5u0r0RERERU8XA8SkRERGRaZr3ycfv27QgMDER4eDg8PDwQEBCA5cuXF7pOmzZtcOvWLfz6668QQuD+/fvYtGkTXn311VLqNRERERFVFByPEhEREZmWWZOPV69exeLFi1G3bl3s3r0bY8aMQWRkJFavXq13naCgIHz//ffo06cPrKysUL16dTg7O2PhwoU662dnZyMtLU3jRUREREQElM54FOCYlIiIiCovmRBCmCu4lZUVAgMDceTIEaksMjISJ06cwNGjR3Wuc/HiRXTq1AmTJk1CaGgo7t69i3feeQctW7bEt99+q1U/OjoaM2fO1Crv3LkzLC0tjbcxRYiNjUWrVq0Yj/HKZDxzxGS88h3PHDEZj/HKeszSjJeTk4Ndu3YhNTUVTk5OpRKzoiqN8ShQNsakFfkzURnimSMm45XveOaIyXiMV9ZjMp7xFGs8KsyoZs2aYvjw4RplixYtEjVq1NC7zsCBA0WvXr00yg4ePCgAiDt37mjVz8rKEqmpqdLr1q1bAoBITU01zkYYKCwsjPEYr8zGM0dMxivf8cwRk/EYr6zHLM14qampZhnPVESlMR4VomyMSSvyZ6IyxDNHTMYr3/HMEZPxGK+sx2Q84ynOeNSsE84EBQUhPj5eoywhIQG+vr5618nIyICFhWa3FQoFAEDouIjT2toa1tbWRugtEREREVU0pTEeBTgmJSIiosrLrM98nDRpEo4dO4ZPP/0U//zzD9atW4dly5Zh3LhxUp2oqCgMHjxY+jksLAxbtmzB4sWLcfXqVRw+fBiRkZFo1aoVatSoYY7NICIiIqJyiuNRIiIiItMy65WPLVu2xNatWxEVFYUPP/wQ/v7+mD9/PgYMGCDVuXv3Lm7evCn9PGTIEKSnp+Obb77B5MmT4eLigg4dOmD27Nnm2AQiIiIiKsc4HiUiIiIyLbMmHwGgW7du6Natm97lq1at0iqbMGECJkyYYMJeEREREVFlwfEoERERkemY9bZrIiIiIiIiIiIiqriYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJJh+JiIiIiIiIiIjIJJh8JCIiIiIiIiIiIpNg8pGIiIiIiIiIiIhMgslHIiIiIiIiIiIiMgkmH4mIiIiIiIiIiMgkmHwkIiIiIiIiIiIik2DykYiIiIiIiIiIiEyCyUciIiIiIiIiIiIyCSYfiYiIiIiIiIiIyCSYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJsycfExMTMXDgQLi5ucHW1hZNmjRBXFxcoetkZ2fjvffeg6+vL6ytreHn54eVK1eWUo+JiIiIqCLheJSIiIjIdCzMGfzRo0cICgpC+/btsXPnTri7u+Py5ctwdXUtdL3evXvj/v37+Pbbb1GnTh3cvXsXKpWqlHpNRERERBUFx6NEREREpmXW5OPs2bPh4+ODmJgYqczf37/QdXbt2oX9+/fj6tWrqFKlCgDAz8/PlN0kIiIiogqK41EiIiIi0zLrbdfbt29HYGAgwsPD4eHhgYCAACxfvtygdebMmQMvLy/Uq1cPU6ZMQWZmps762dnZSEtL03gREREREQGlMx4FOCYlIiKiyksmhBDmCm5jYwMAePvttxEeHo4TJ05g4sSJWLJkCSIiInSu07lzZ+zbtw+dOnXCBx98gOTkZIwdOxbt27fXOGOtFh0djZkzZ+psx9LS0rgbVIjY2Fi0atWK8RivTMYzR0zGK9/xzBGT8RivrMcszXg5OTnYtWsXUlNT4eTkVCoxK6rSGI8CZWNMWpE/E5UhnjliMl75jmeOmIzHeGU9JuMZT7HGo8KMLC0tRZs2bTTKJkyYIF544QW967z88svCxsZGpKSkSGWbN28WMplMZGRkaNXPysoSqamp0uvWrVsCgEhNTTXehhggLCyM8RivzMYzR0zGK9/xzBGT8RivrMcszXipqalmGc9URKUxHhWibIxJK/JnojLEM0dMxivf8cwRk/EYr6zHZDzjKc541Ky3XXt6eqJRo0YaZQ0bNsTNmzcLXcfLywvOzs4a6wghcPv2ba361tbWcHJy0ngREREREQGlMx4FOCYlIiKiysusycegoCDEx8drlCUkJMDX17fQde7cuYPHjx9rrCOXy+Ht7W2yvhIRERFRxcPxKBEREZFpmTX5OGnSJBw7dgyffvop/vnnH6xbtw7Lli3DuHHjpDpRUVEYPHiw9HP//v3h5uaGoUOH4uLFizhw4ADeeecdDBs2DLa2tubYDCIiIiIqpzgeJSIiIjItsyYfW7Zsia1bt2L9+vVo3LgxPvroI8yfPx8DBgyQ6ty9e1fjthcHBwf8/vvvSElJQWBgIAYMGICwsDAsWLDAHJtAREREROUYx6NEREREpmVh7g5069YN3bp107t81apVWmUNGjTA77//bsJeEREREVFlwfEoERERkemY9cpHIiIiIiIiIiIiqriYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJJh+JiIiIiIiIiIjIJJh8JCIiIiIiIiIiIpNg8pGIiIiIiIiIiIhMgslHIiIiIiIiIiIiMgkmH4mIiIiIiIiIiMgkmHwkIiIiIiIiIiIik2DykYiIiIiIiIiIiEyCyUciIiIiIiIiIiIyCSYfiYiIiIiIiIiIyCSYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJsycfExMTMXDgQLi5ucHW1hZNmjRBXFyc3vr79u2DTCbTet27d68Ue01EREREFQXHo0RERESmY2HO4I8ePUJQUBDat2+PnTt3wt3dHZcvX4arq2uR68bHx8PJyUn62cPDw5RdJSIiIqIKiONRIiIiItMya/Jx9uzZ8PHxQUxMjFTm7+9v0LoeHh5wcXExUc+IiIiIqDLgeJSIiIjItMx62/X27dsRGBiI8PBweHh4ICAgAMuXLzdo3ebNm8PT0xMvv/wyDh8+rLdednY20tLSNF5EREREREDpjEcBjkmJiIio8pIJIYS5gtvY2AAA3n77bYSHh+PEiROYOHEilixZgoiICJ3rxMfHY9++fQgMDER2djZWrFiBtWvX4vjx43j++ee16kdHR2PmzJla5Z07d4alpaVxN6gQsbGxaNWqFeMxXpmMZ46YjFe+45kjJuMxXlmPWZrxcnJysGvXLqSmpmrc9kvFVxrjUaBsjEkr8meiMsQzR0zGK9/xzBGz1OMdPoRWz9UvvXgJ1yr2/uQxynjFUKzxqDAjS0tL0aZNG42yCRMmiBdeeKFY7bRr104MHDhQ57KsrCyRmpoqvW7duiUAiNTU1BL3uyTCwsIYj/HKbDxzxGS88h3PHDEZj/HKeszSjJeammqW8UxFVBrjUSHKxpi0In8mKkM8c8RkvPIdzxwxSz1e2xeEOLG71F4Vfn/yGGW8YijOeNSst117enqiUaNGGmUNGzbEzZs3i9VOq1at8M8//+hcZm1tDScnJ40XERERERFQOuNRgGNSIiIiqrzMmnwMCgpCfHy8RllCQgJ8fX2L1c7p06fh6elpzK4RERERUSXA8SgRERGRaZl1tutJkybhxRdfxKefforevXsjNjYWy5Ytw7Jly6Q6UVFRSExMxJo1awAA8+fPh7+/P5577jlkZWVhxYoV+PPPP/Hbb7+ZazOIiIiIqJzieJSIiIjItMyafGzZsiW2bt2KqKgofPjhh/D398f8+fMxYMAAqc7du3c1bnt5+vQpJk+ejMTERNjZ2aFp06b4448/0L59e3NsAhERERGVYxyPEhEREZmWWZOPANCtWzd069ZN7/JVq1Zp/Pzuu+/i3XffNXGviIiIiKiy4HiUiIiIyHTM+sxHIiIiIiIiIiIiqriYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITILJRyIiIiIiIiIiIjIJJh+JiIiIiIiIiIjIJJh8JCIiIiIiIiIiIpNg8pGIiIiIiIiIiIhMgslHIiIiIiIiIiIiMgkmH4mIiIiIiIiIiMgkmHwkIiIiIiIiIiIik2DykYiIiIiIiIiIiEyCyUciIiIiIiIiIiIyCSYfiYiIiIiIiIiIyCSYfCQiIiIiIiIiIiKTYPKRiIiIiIiIiIiITMLC3B0gIiIiIiIiInpWmVlyLNnijauJdqjllYHRb9wGAK0yWxuVzrq2NiozbwFRxWT25GNiYiKmTp2KnTt3IiMjA3Xq1EFMTAwCAwOLXPfw4cMIDg5G48aNcfr0adN3loiIiIgqHI5HiYjKv8wsOYLebIUzCY5QKASUShlW76gByIBzl/8rW/trDfyxMA6dxgVq1F37aw0cXhHLBCSRCZj1tutHjx4hKCgIlpaW2LlzJy5evIh58+bB1dW1yHVTUlIwePBgdOzYsRR6SkREREQVEcejREQVw5It3jiT4AiVkCEnVw6VkOHsZUecLVB2JsERwz56TqvumQRHLNnibe7NIKqQzHrl4+zZs+Hj44OYmBipzN/f36B1R48ejf79+0OhUGDbtm0m6iERERERVWQcjxIRVQxXE+2gUAiocmVSmez//yvEf/UUCqGzrrqciIzPrFc+bt++HYGBgQgPD4eHhwcCAgKwfPnyIteLiYnB1atXMWPGjCLrZmdnIy0tTeNFRERERASUzngU4JiUiMjUanllQKmUaZQJoZl4BAClUqazrrqciIxPJkTBj2LpsbGxAQC8/fbbCA8Px4kTJzBx4kQsWbIEEREROte5fPkyXnrpJRw8eBD16tVDdHQ0tm3bpvcZO9HR0Zg5c6ZWeefOnWFpaWm0bSlKbGwsWrVqxXiMVybjmSMm4xnXoSPH0ahx0c8mM6aL5+NKNWZpx/vn0skKfcxU9HjmiFma8XJycrBr1y6kpqbCycmpVGJWVKUxHgXKxpi0In8mKkM8c8RkvPIdzxwxYw8fQqvn6pdevAvxUjylCjh02hVpTywgkwkIIYOTfS4AaJQ52+eiTdMUHDnrolUe1PwRFIVcopU/XmmITbjGY5Txymy84oxHzZp8tLKyQmBgII4cOSKVRUZG4sSJEzh69KhWfaVSiRdeeAHDhw/H6NGjAaDIwV52djays7Oln9PS0uDj41Pqg/Xu3btj+/btjMd4ZTKeOWIynnG9FNIVcxZsLLV4APBuZHipxizteJ+937dCHzMVPZ45YpZmvLS0NDg7OzP5aASlMR4FysaYtCJ/JipDPHPEZLzyHc8cMbu3a4PtX2ifaDFZvLdnaMQz9WzXBeOZWvcPv+ExynhlNl5xxqNmfeajp6cnGjVqpFHWsGFDbN68WWf99PR0xMXF4dSpUxg/fjwAQKVSQQgBCwsL/Pbbb+jQoYPGOtbW1rC2tjbNBhARERFRuVYa41GAY1IioqKUJHF47ooDvlxX06DEYUn7UFi8kiQwiSojsyYfg4KCEB8fr1GWkJAAX19fnfWdnJxw7tw5jbJFixbhzz//xKZNmwx+ODgREREREcDxKBFRWZCZJUfQm61wJsERCoWAUinD6h01ABlw7vJ/ZWt/rYE/Fsah07hAnElwhIANpsyvr1VenDaMGW/trzVweEUsE5BEBZg1+Thp0iS8+OKL+PTTT9G7d2/ExsZi2bJlWLZsmVQnKioKiYmJWLNmDeRyORo3bqzRhoeHB2xsbLTKiYiIiIiKwvEoEZH5LdnijTMJjlAJmTQD9dnLjgAAgf/KziQ4YthHz0l1ARkEZFrlxWnDmPHOJDhiyRZvTOp/0/Q7jagcMets1y1btsTWrVuxfv16NG7cGB999BHmz5+PAQMGSHXu3r2Lmzf5wSUiIiIi4+N4lIjI/K4m2kGh0JyOQibLe+WnUAiddfWVF6cNY8RTlxORJrNe+QgA3bp1Q7du3fQuX7VqVaHrR0dHIzo62ridIiIiIqJKg+NRIiLzquWVAaVSM/Ona2pcpVKGWl4ZuHDFwaDy4rRhjHjqciLSZNYrH4mIiIiIiIiochv9xm00q5cOuUzA0kIFuUygWd10NC1Q1rxeOlZOvyDVlcmEzvLitGHMeM3rpUsT5RDRf8x+5SMRERERERERVV62NiocXhFr8GzX6roLNmQhsk+8Vnlx2jB2PE42Q6SNyUciIiIiIiIiMitbG5XOiVp0lanr7o17rLG8JG2YIh4RaWLykYiIiIiIiIiMKjNLrvOqwOKUA7qvRFTXPXfFAV+uq/lMbZgzHq+SpMqCyUciIiIiIiIiMprMLDmC3myFMwmOUCgElEoZ1v5aA38sjEOncYEGla/eUQOQAecu668rYIMp8+s/Uxvmirf21xo4vCKWCUiqFJh8JCIiIiIiIiKjWbLFG2cSHKESMqhy82axPpPgiGEfPWdw+dnLjgAAAf11ARkEZM/UhrninUlwxJIt3rxtmyoFznZNREREREREREZzNdEOCoXQKFMoRLHKZbK8V2m1Udrx1OVElQGTj0RERERERERkNLW8MqBUambhlEpZscqFyHuVVhulHU9dTlQZMPlIREQAgJysHMSuPYnds/Ygdu1J5GTlmLtLRERERFQOjX7jNprVS4dcJmBpoYJcJtC8XjpWTr9gcHmzuuloWkRdmUw8cxvmite8Xro0QQ1RRcdnPhIREXKycrAm4gckxT+ATCGDKleFY2viUDe4Ftx8qyAgvCksbSx1rndq41k8up0CV28XvfWIiIiIqPKwtVHh8IpYnbM7F6cc0D1ztLrugg1ZiOwT/0xtmDMeJ5uhyoLJRyIiwqmNZ5EU/wBCCIjcvHtFHic9xunN5wABnNtxEYNX99VILAqVSiNhKZRCZ73iYkKTiIiIqHzJzASWLAHOXXHAl+tq8oq+YsjMkjMpSRUek49ERIRHt1PyEoi5mg+pEaq8n5PiH+DUxrNoNaiFtCz1ThqSrmomLHXVUyuYVGwc1gjnf76okWQEoDehSURERERlT2YmEBQEnDkDCGGDKfPrY/WOGoAMOHfZEQqFgFIpw9pfa+CPhXHoNC4QZxKKLjekDYG8eM/ShrniFVZ+eEUsE5BUoTD5SEREcPV2gVAKvctlChke3U7RKMvJzNVOWMqBS3sStK5aLHhbt1CqsO/rQ8jNzoXcQi4lGRuF1te6AjMp/gHi1p9Cyu0U7J61h1dDEhEREZUhS5bkJR5VKgCQQUCGs5cdAQACMqhy8yZaOZPgiGEfPYczCY5QiaLLDWlDHe9Z2jBXvMLKl2zxxqT+N434LhGZF5OPRESEgPCmOLfjIpLiHwCy/654VBNKAVdvF40yS1sLrYSlUArcPn0Hd87d07hqUddt3bnZuQAAVW7eWd2k+AewtLXQSmjKFDIcWxWH5JSHOHXjrNFu7yYiIiKiZ3f1KqBQqJOPeWT/P7Fz/pmfFQqBq4l2UCiElGgrrLy02ygrfVaXE1UknO2aiIhgaWOJwav7ouPkYDR/owkcPRwgkwFyCzlkMhk8GrhLt0WrOddwgkd9d8hkMsgt8v06EXkJRSGEdBu2+rbuwuQtl2klNFVKFTJTMiGg3S4RERERmVetWoBSqVkmhGYCDgCUShlqeWVAqZQZVF7abZSVPqvLiSoSJh+JiAhAXgKy1aAW6DL9ZYz+eRg6Tg5BQK+m6Dg5GINXaV9lKJPLpYRlQK+m8A7w0kxC4r/btYu6rRsAhFKFusG1NBKaMpkMti62WolLXbeBExEREVHpGz0aaNYMkMsBmUxALhNoVjcdTeulQy4TsLRQQS4TaF4vHSunX0AzA8sNaUMd71naMFe8wso5YQ9VNGa/7ToxMRFTp07Fzp07kZGRgTp16iAmJgaBgYE66x86dAhTp07FpUuXkJGRAV9fX4waNQqTJk0q5Z4TEVVc6kRkcerFrj2JxNN3NJarb9fOf1u3TCGDSvn/9+XkvyXFygLNXm+CwH4BGhPTKHOU2LfgkM52iYiMgeNRIqKSs7UFDh/Oe/bjgrlZiOwTLyXPdM3ifHhFrMHlRbWxYMN/8UrahjnjFVZOVJGYNfn46NEjBAUFoX379ti5cyfc3d1x+fJluLq66l3H3t4e48ePR9OmTWFvb49Dhw5h1KhRsLe3x8iRI0ux90RElF/BBKNQCul2bfVt3eqkYtq9dFzed0Vj/dzsXGx6axsadKynMaFMTlYOLu6Oh+wSpMlpdN0GTkRUEhyPEhE9O1tbYNIkYO/WxxoTpeiaNMXWRlWs8sLq7o3TjFeSNswdT185UUVi1uTj7Nmz4ePjg5iYGKnM39+/0HUCAgIQEBAg/ezn54ctW7bg4MGDHOwREZlRwQRjwVmp818luXvWHsgt5NJkM2q3T99B4um7GhPKqNs93n8NAlo25WzXRGRUHI8SERkuMzPvCserV/Oe9Th6dF7iUV1+7ooDvlxXs9ArADOz5AaXF9VG/nglbcOc8Ypq49w54Msv/9vPROWVWZOP27dvR2hoKMLDw7F//354eXlh7NixGDFihMFtnDp1CkeOHMHHH3+sc3l2djays7Oln9PS0p6530REpJuht2vrfQakAAQE7l9KwqmNZ6W2LG0s4eLtgtCojsbuMhFVcqUxHgU4JiWi8i8zEwgKAs6cyZvdWqkE1q4F/vgD6NQpr1wIG0yZXx+rd9QAZMC5y45QKASUShnW/loDfyyMQ6dxgTiTUHS5IW0I5MV7ljbMFc+QNgSAKVPy9vPhw0xAUvklE6LgXEylx8bGBgDw9ttvIzw8HCdOnMDEiROxZMkSREREFLqut7c3Hjx4gNzcXERHR2P69Ok660VHR2PmzJla5Z07d4alZeldNRMbG4tWrVoxHuOVyXjmiMl4xnXoyHE0aqz72WSmcvF8XIljCpUKt07dQfbjbL11nD2d4FHP3SjxSqK04/1z6WSFPkb5vWZcOTk52LVrF1JTU+Hk5FQqMSuq0hiPAmVjTFqRPxOVIZ45YjJe+Y4HALGHD6HVc/WN0tbVRFtcuOqgVV7dLRv3HlqrIwLQv42adYsuL7qN/+KVvA3zxSu6jf/iPVfrMWp5ZRoUr6RiE67xe43xDFac8ahZk49WVlYIDAzEkSNHpLLIyEicOHECR48eLXTda9eu4fHjxzh27BimTZuGb775Bv369dOqp+sss4+PT6kP1rt3747t27czHuOVyXjmiMl4xvVSSFfMWbCx1OIBwLuR4c8UMycrB9um/qL17Ee1uiG1Ef5VD6PFK67SjvfZ+30r9DHK7zXjSktLg7OzM5OPRlAa41GgbIxJK/JnojLEM0dMxivf8QCge7s22P6F9omPkpjweQMs3eKNnFy5VGZpoUIDvye4dN3+/8u7A9gOuSwvzaASskLqFl5uWBt58Z6tDfPEM6yN/+KNeuM2vn7nEkyp+4ff8HuN8QxWnPGovNClJubp6YlGjRpplDVs2BA3bxb9sFV/f380adIEI0aMwKRJkxAdHa2znrW1NZycnDReRERUenKychC79iR2z9qD2LUnkZOVAyDvVmqn6o6QyXSv9+hWikZ9IiJTKI3xKMAxKRGVf7W8MqBUag7clEqZznIh8l6G1C0rbZSHPhOVV2ZNPgYFBSE+Pl6jLCEhAb6+vsVqR6VSaZxJJiKisiEnKwdrIn7Annn7cWrTWeyZtx9rIn6QEoqu3i7Qd/n9w2v/atUnIjI2jkeJiAwz+o3baFYvHXKZgKWFCnKZQPN66Vg5/YJULpMJyGUCzeqmo2kRdYsqN6QNdbxnacNc8QxpI3889UQ0ROWRWSecmTRpEl588UV8+umn6N27N2JjY7Fs2TIsW7ZMqhMVFYXExESsWbMGALBw4ULUrFkTDRo0AAAcOHAAc+fORWRkpFm2gYioosjJytE7U3VJndp4FknxDyCEgMjNSzMmxT+QJpMJCG+Ksz9fQFL8A611hUqzPhGRKXA8SkRkGFsbFQ6viNU5Y7O6fMGGLET2iS901uei2jBk5mhd8UrahjnjFdVGwXhE5ZVZk48tW7bE1q1bERUVhQ8//BD+/v6YP38+BgwYINW5e/euxm0vKpUKUVFRuHbtGiwsLFC7dm3Mnj0bo0aNMscmEBFVCOorFJPiH0CmkEEoBc7tuIjBq/s+UwLy0e2UvPZy813fKAMeXv8XQN6t1xFr+iFu/Slc3n8Vj26l4MnDJ8h/OaRMIcOj2ykl7gMRUWE4HiUi0paZJdeZKCPz4vtC5ZVZk48A0K1bN3Tr1k3v8lWrVmn8PGHCBEyYMMHEvSIiqlyKukKxpFy9XaDK1RwQCZXAPweuIicrB5Y2lrC0sUSboa3QZmgrxK49iT3z9kPkyz4KpYCrtwtwt8TdICIqFMejRET/ycySI+jNVjiT4AiFQkCplGHtrzXwx8I4dBoXWGi5gA2mzK+P1TtqADLg3OXit6EuN6QNdbxnacNc8Qxpo6h4a3+tgcMrYpmApDLP7MlHIiIyP11XKJbkisOCt243DmuEY2vi8DjpsUa9xw8e60xs5q8vk8sgVAIeDdzROKwRVmxNwe5Ze4x2SzgRERERaVuyxRtnEhyhEjKocvMmQzmT4IhhHz1XZDkgg4AMZy87AgAEit+GutyQNtTxnqUNc8UzpI2i4p1JcMSSLd6Y1L/oSdKIzInJRyIiypv4Rak59Yt0xaGB9N26XTvIH2d/Oi89wxEAZAq5VmIzJysH60dtwpMH/yUeHT0cEP5VD6wftQnJVx7i1I2zRrslnIiIiIi0XU20g0IhpAQXACgUoljlsv//b/5Zm8t6G+Wxz+pyorLOrLNdExFR2RAQ3hQe9d0hk8kgt5BDJpPBo4E7AsKbatTLycpB7NqT2D1rD1Jup2jMQp3/1m1VrgpCCNyPT9J6hiOgO7H53/r/TTaTnvQYa4f+gPuXkiAAqV1dk9Dk71vs2pOcIZuIiIioBGp5ZUCplGmUKZWyYpULoZk8Kw9tlMc+q8uJyjomH4mICJY2lhi8ui86Tg5GQK+m6Dg5GINXaV5ZqL6ycc+8/Ti16SySrzzEmogfpCSf+tZtDQK4feYO3OtVLTKxqXN9AKmJaVplBW8JL9i3PfP2a/QtPyYpiYiIiPQb/cZtNKuXDrlMwNJCBblMoHm9dKycfqHIcplMQC4TaFY3HU1L2Ia63JA21PGepQ1zxTOkjaLiNa+XLs2OTVSW8bZrIiICkJeALGxymYKT0ghoTkrj6u0ClVL7YddZqVlw83NFneBacKhqDze/Kjqf2ajr1m99Cl45qWvCnPuXkhC37hTaDGsl1TPVrN5EREREFYWtjQqHV8TqnFW5qPIFG7IQ2SdeSoiVpI385UW1kT9eSdswZ7yi2jAkHiebofKAyUciItKp4OQxD2/8W+ikNAHhTXH42+PIfJSp1VbimbuADPCo545O74RoXVF5auNZPLzxL+zd7fMmp5FB61btvICADNpXTj66nZJ3Lb9Ss/qxNXEI7B8gxTPVrN5EREREFYmtjUrnJCZFle+Ne6yxvCRtFFSceCVpw9zxCmvD0HhEZR2Tj0REpEV9heD9S0nS5C9WDlZQ5WqeWVXlqnA//gFi155EQHhTvDA4EHu/Oqi7UZGX6ItbfwqB/QKkhOPl/VfxOOkx5BZyCKUKjh4OcKzmgDvn7mk14d28Bhp0rIfGYY00EqNO1R11XjWZmZKpkVg01qzeRERERBVZZpZc5xV2RZWfu+KAL9fVLPQKwOK0XVQb+eOVtA1zxiuqDUPi8cpHKg+YfCQiIq2rHJU5Sty/lATgv8lfnj5+CrmFHKpcVd6zGf//KsM75+7i9ulEHP72OFr2D4BHfXc8SEiGKPik7P8Xv+cyLvx6CUkJDzTK1YnN9KTHOte1sFKg1/wesLSx0Lp12r1uVdi62CAzJUtjHXmBWbWNMas3ERERUUWWmSVH0JutcCbBEQqFgFIpw9pfa+CPhXHoNC6w0HIBG0yZXx+rd9QAZMC5y8VvQ11uSBvqeM/ShrniGdJGUfHW/loDh1fEMgFJZR6Tj0RElVhOVg7i1p/CsVVxyEzJzEsqqgAbFxudtz6rclWoWtsNmalZQPJ/ZQCQ+SgTBxYega2LDWq39ceNuFvIydCezOXh9UfITs8utF+PHzzRKst9qsT6UZvQqHN97VunLz+As6ejVvKxYGIxILwpzu24KCUuVUoVbFxsoMxRIicrh899JCIiokpvyRZvnElwhErIoMrNmwzwTIIjhn30XJHlgAwCMpy97AgAECh+G+pyQ9pQx3uWNswVz5A2iop3JsERS7Z481ZsKvM42zURUSWlvrV67/yDyEzJe06jUAoIIfJ+1jP3S/KVh3jyUDs5qJaZkoV/DlxFTqbuWaSfZXbppPgHuLz/qs5ZtVPvpEs/6ptVWz2rd8jEl2DtYA0IICstC/sWHNI7OzYRERFRZXI10Q4KheZAUKEQxSqXyfJe5amN8thndTlRWcfkIxFRJZU3+UqSzmUyuazwqwANmZRaTx2Z7mKDCAikJ6VrPXuyoBpNPBEy8SU0eqU+/vzyAGLXnpQSi5Y2loCAVsJVPfEMERERUWVWyysDSqXmiE2plBWrXIi8V3lqozz2WV1OVNYx+UhEVEk9up2ifVr1/wmlQJs3W8LRwwFAXjLSWJQ5z/BMGgGkJqbBwrrwp4a4+bni4q547FtwCKc2ncWeefulKxtzsnJwbE2c9kpyaE08k5OVg9i1J7F71h6NBCYRERFRRTX6jdtoVi8dcpmApYUKcplA83rpWDn9QpHlMpmAXCbQrG46mpawDXW5IW2o4z1LG+aKZ0gbRcVrXi9dmqCGqCzjMx+JiCopV28XaTKZgmxdbKBQKFCnXS08Tn4CB3d7pN5Jw9XD103WH/XkMYbIzc6Flb0Vnj55qnN54tm7eHj1X83nQua7slF91WN+BZ8PKVQqrYltzu24iMGr+/LZkERERFRh2dqocHhFrM5ZlYsqX7AhC5F94gud9bk4bRfVRv54JW3DnPGKasOQeJxshsoDJh+JiCqpgPCmOL4mDulJj7WWKSwV2LfgkJR0q1rbDf/e/NfofZDJZKjRtDrqhdRByp1UpN1Lx5VD1wy6rVtf4jGv4f9PZub+15BMIZOubJQr5Fq3btu62mo8HzL1ThqSrj7QmcBsNaiF4RtJREREVIZlZsl1Jr+o/ND1HjIpSWUJk49ERJWUpY0lhm8cjBXha/A46TFkchmESsDRw0FKSKqTbg/+STZJH4QQeHQ7FWd+Oo+0e+nIzco1Srs5mTlaycX8VzZqXWEpA16ICNS4ojEnM7fQBCYRERFReZeZJUfQm61wJsERCoWAUinD6h01ABlw7vJ/ZWt/rYE/Fsah07hAjboFywVsMGV+/Wdqozj9UMd7ljbMFc+QNoqKV1j54RWxTEBSmcHkIxFRJWbnYosxPw/DqY1n8eh2Cly9XfDw+r84s+18kZO6GEvGwwxkPDTug7LT7v4387VMIQNU0Jj5+tyOixq3U3s0cEdgvwCNNixtLbSSlAVvzSYiIiIqz5Zs8caZBEeohAyq3LxnfJ+97AgAEPiv7EyCI4Z99JxW3YLlgAwCsmdqozj9UMd7ljbMFc+QNoqKV1j5ki3emNT/ZskODCIjM/uEM4mJiRg4cCDc3Nxga2uLJk2aIC5Ox0QA/+/u3bvo378/6tWrB7lcjrfeeqv0OktEVAFZ2lii1aAWCI3qiFaDWsDNr4rBz14sU/LNiZP/WZZeTT3RcXIwBq/qCyBvlu8ajaujTnAtNHu9sbSs4HMcnWs4waO+O2QyGeQWcshkMo0EJhFVHByPElFldTXRDgqF5rhPJtOek1ChEDrr6isvj22Uxz4XVU5UVpg1+fjo0SMEBQXB0tISO3fuxMWLFzFv3jy4urrqXSc7Oxvu7u54//330axZs1LsLRFR+WfI7M0B4U3hXq+q9srGm/DaNHTkS2VyGarV95Ce0bgm4gfsmbcfZ7adxz/7r+LOuXsICG+qcwIZmVyOwav7ouPkYAT0aqo3SUlE5RvHo0RUmdXyyoBSqTnIEyLvlZ9SKdNZV195eWyjPPa5qHKissKsycfZs2fDx8cHMTExaNWqFfz9/fHKK6+gdu3aetfx8/PDV199hcGDB8PZ2bkUe0tEVL7lZOVIybdTm85iz7z9WBPxg0YCMicrB6c2noWljY6ncgigam03VK3tBhsnmzKfiwTyroB09XZBTlYOtk39BfcvJUEIAVWuCkIIjRmwdSl4VSgTj0QVD8ejRFSZjX7jNprVS4dcJmBpoYJcJtCsbjqaFihrXi8dK6df0KpbsFwmE8/cRnH6oY73LG2YK54hbRQVr7ByThxEZYlZn/m4fft2hIaGIjw8HPv374eXlxfGjh2LESNGGC1GdnY2srOzpZ/T0tKM1jYRUXlyauNZJMXrn71ZnZxMin+gc325hRw+AV64c/4estKyDJmQ2uwcPRzQOKwR1kT8gPuXkrSWcwIZIiqN8SjAMSkRlU22NiocXhGrc7ZrXbMn66qbv3zBhixE9ol/pjaK04/88YyxLaUdr6g2DIlXWDlRWSETouAFvaXHxsYGAPD2228jPDwcJ06cwMSJE7FkyRJEREQUuX5ISAiaN2+O+fPn660THR2NmTNnapV37twZlpaldwVLbGwsWrVqxXiMVybjmSMm4xnXoSPH0ahxYKF1HlxORurdNBT82rd1soFXM0+k3klD8pWHhSYVLa0tkJOdNyN1Cm7DBd7P2nWDFRVPPVt3flV8XSGXy/Hwmu7tkiHvak4XHZPIXDwfV+Q+NaZ/Lp2s0Mcov9eMKycnB7t27UJqaiqcnJxKJWZFVRrjUaBsjEkr8meiMsQzR0zGK9/xACD28CG0eq5+6cW7EM945TlewjV+rzGewYozHjVr8tHKygqBgYE4cuSIVBYZGYkTJ07g6NGjRa5vyGBP11lmHx+fUh+sd+/eHdu3b2c8xiuT8cwRk/GM66WQrpizYGOhdWLXnsSeefu1ko8A4FHfHV5NPIs1y/UJfI+WGFCi/pZESeNZ2loiJzsH0LFZ1Rp66H2O47uR4UXuU2P67P2+FfoY5feacaWlpcHZ2ZnJRyMojfEoUDbGpBX5M1EZ4pkjJuOV73gA0L1dG2z/QvvER36ZWXKDr97TVTd/+YINExDZ5+tnaqM4/cgfr6RtmDNeUW0YEq+w8mIfLx9+w+81xjNYccajZr3t2tPTE40aNdIoa9iwITZv3my0GNbW1rC2tjZae0REZU12Zg5Sbqdg96w9cPV20TuBSkB4U5zbcVHn7cdJ8Q/g5OFYPme5LkJOpvakOgBQN6Q2eszuyuc4ElVypTEeBTgmJaKyKTNLjqA3W+FMgiMUCgGlUobVO2oAMuDc5f/K1v5aA38sjEOncYEadQuWC9hgyvz6z9RGcfqhjvcsbZgrniFtFBWvsPLDK2J56zWVGWZNPgYFBSE+Pl6jLCEhAb6+vmbqERFR+ZKdmYN3g1Yh+cpDnLpxFkIpcG7HRQxerX01n6WNJQav7otlb6xCaqL2s8buXrwHe3d7PE56XFrdL3UyuQwQAh4NPJh4JCIAHI8SUeW2ZIs3ziQ4QiVkUOXmTSd49rIjAEDgv7IzCY4Y9tFzWnULlgMyCMieqY3i9EMd71naMFc8Q9ooKl5h5Uu2eGNS/5slOzCIjMyss11PmjQJx44dw6effop//vkH69atw7JlyzBu3DipTlRUFAYPHqyx3unTp3H69Gk8fvwYDx48wOnTp3Hx4sXS7j4RkdntXHISV8/chwAKncE5JysHsWtP4s8vD+ht68nDDDxOegyFlcLEvTYfoRKwsrdC+Fc9mHgkIgAcjxJR5XY10Q4KheadLzJZ3is/hULorKuvvDy2UR77XFQ5UVlh1uRjy5YtsXXrVqxfvx6NGzfGRx99hPnz52PAgP+e6XX37l3cvKmZrQ8ICEBAQABOnjyJdevWISAgAK+++mppd5+IyOzuXU2BXKE5Oik4g7N6Fus98/bj1KazOq96zE/5VGmKrpYZ2Y+fYtXAdcjJ0rwdW52g3T1rD2LXnoRQ8TYVosqA41EiqsxqeWVAqdQcSwqR98pPqZTprKuvvDy2UR77XFQ5UVlh1uQjAHTr1g3nzp1DVlYW/v77b4wYMUJj+apVq7Bv3z6NMiGE1uv69eul12kiojKiei2X/2vv7sOjqu69/3/2zIRMgIQgJkICYoOEKBqgpXhQWmzBwpGi1SNVRLFae0rlVKXlV+UWb0BbsT1aKUcrFkSRqliUeixFVLgFC6gBjOGpJgFUICBQhDwACclk/f6IEzLJJJlJZmbPTN6v65rrMmv2rM+amIxfv9l7L9U2uk+j8Rh1b7B7c/7ybTpSeFTGmIA3k4l3FUcqfM4ObdygXfv4eu3PP9ikQQkgPlGPAuioplx/QIOyy+WwjBJctXJYRoP6lyu30djg7HItfnBnk2Mbj1uWafccwazDm9eeOezKC2SO1vJaGvduXANEA1vv+QgAaJ9/n/INvbt0uzbnSw6XQ8ZjlJ6TpiETcuuPOX7ghCynJVNztknpcDmUfF6ySktK7Vi27SyH79mhDRu03u/TmYoq5S/fpiETcpW/fJuOHzjR4oY+AAAAsSbJXauNi/IC3rHZ37ENx+e/Uqm7byxs1xzBrKNhXijeS6TzWpsjkLyWxoFoQfMRAGJYYlKCfrfxR1p76fMa8s1cv82x7r1Tm+xibTxGyeldVX64vEOeDWlqfc8O9deglWXp2Gdf6oXblulI4dG651vY0AcAACCana500KACYAuajwAQ4xKTEpTaO1VjZozy+/yQCbnavnKXTwMtPSdN/UdmqeTjgxFebWQ4nA7Vepovprumd9Wxz79U3tKtGjIh12+DVsao4l8nm5wR6d3QZ9it3wjnWwAAAAiZ05UOXXHnMBUUJcvpNPJ4LC1dlaE1T23R6KlDfcaXrMyQLGl7cevHNh43cmv6vAHtmiOYdXjzQvFeIp0XyByt5bU0vnFRHs1lRA2ajwAQ5xLcCZq85KYmlw5L0q7VhTpSeFSy6s4GjBfJ6V1Ueqi8yXjSOUlyuZyqOFqhgr/uqD+TceIzNzRp0HbqkqiuaV2anBHZeEMfAACAaLdgRW8VFCWr1liqranbnKSgKFl3PDywyfi24mRJklHrxzYelywZWe2aI5h1ePNC8V4inRfIHK3ltTS+YEVvTbvZd7M0wC40HwGgA0hwJ/g9U8/blCz43x36155j8dGAdEhdzvXffPRUeXT6y9OSJPPV5eZHCo9qx992NWnQfvnhRvXoe47fS9ZTeiYrb+lW7gMJAABiwt6SznI6TX1zSpKcTuN33PrqHxvuuNzcsfE0RyyuubVxIFrYvts1AMA+3qbkoGsvkeKg7yhJqpUO7Trs96kzJ880HXTU3fPR+70YM2OUht36DVkOh4ZMyFX6gDRZliWHyyHLspSWfa52rvrEZ2fsF25bxs7YAAAgamVlnpLHY/mMeTyW33FjfBtfLR0bT3PE4ppbGweiBc1HAOigqiur9f7iPL3wo5f1z3cK1eXcur+OWo664iXB7VJC59g8Qb7J/RtbOda7+Ux1ZbXylm7VW3PX6sRXl1ZPXnKTRv1ypIbckKtRvxypgWNzdLT4XzLGqLamVsaY+vtAAgAARKMp1x/QoOxyOSyjBFetHJbR4OxyLX5wZ5PxQf3LlRvgsY3HLcu0e45g1uHNC8V7iXReIHO0ltfSuHfXbCAaxOb/VQIA2qW6slpLbn1ZR4qO+oxbDqv+0uvqyho7lhZxSd2TNGRCrqorq312tv5XzTG9cNsyTV5yk88l62/NXct9IAEAQExJctdq46I8v7td+xuXFPCxDcfnv1Kpu28sbNccwayjYV4o3kuk81qbI5C8lsaBaEHzEQA6oPzl25o0HqX42nQmIJb0b7cNVYI7QXlLt/rsbG3kf2drfztjNzx7EgAAIBoluWv9bkDS3Hgwx3rH391S4fN8W+YIZh2N80LxXiKd19IcgeY1Nw5EC5qPANABHfv8S7uXYIuEzgmqOV1Tv6N1ek6ahk4cIqnuvo+BnNE4ZEJuk52x03PS6ncQBwAAiEanKx1+z47zNy75P3uvtTm27+mqJ146v11zBLOOhnmheC+RzmttjkDygl0HYAeajwDQAVUcPWn3EiLOkeDQsFu/oc/z9kmy1H9kloZOHFK/S7X/MxprVfZFud6au9ZnV+vGO2Oz2zUAAIhmpysduuLOYSooSpbTaeTxWFq6KkNrntqi0VOH+owvWZkhWdL24taPbTxu5Nb0eQPaNUcw6/DmheK9RDovkDlaywt2HRsX5dGAhC1oPgJAB9T13C52LyFiLIf0teEXqPxIhTb96cP6sxWrT1fXn/UoNT2j0aqRnJ1cKl63Rw6XQ8ZjtH3lLk1eclP9ztgAAACxYMGK3iooSlatsVRbU7e5YEFRsu54eGCT8W3FyZIko9aPbTwuWTKy2jVHMOvw5oXivUQ6L5A5WssLdh0LVvTm8mzYgt2uAaAD6nHBOXYvIWJMrVT2RXmTHaoPf3JEW17Krz/Oe0ajd2frLj26qKaqbtMddrUGAACxbG9JZzmdvld4OJ3G77hl1T0COTae5ojFNbdlDsAONB8BoAMaMiFX6dlpdi8jYv6155jf8Q9e2KLqyur6r71nNI6ZMUquRJccLt//TLKrNQAAiEVZmafk8fh2ozwey++4MXWPQI6Npzlicc1tmQOwA81HAOiAEtwJGnh1jmS1fmw8O338dLNnMiYkudjVGgAAxIUp1x/QoOxyOSyjBFetHJbR4OxyLX5wZ5PxQf3LlRvgsY3HLcu0e45g1uHNC8V7iXReIHO0lhfsOrwb0QCRxj0fASAOVVdWt7ohStkX5XI4Haqt8b3ptOWwZGob/ak0jv3znUK/359uGSlKT0hjV2sAABDzkty12rgoz+/ux/7GJf87Jbc2x/xXKnX3jYXtmiOYdTTMC8V7iXRea3MEkhfsOgA7BHzm48GDB8OygJKSEt1yyy3q0aOHkpKSdOmll2rLli0tvmbdunX6+te/rsTERF144YV6/vnnw7I2AIhF1ZXVeuG2ZVr7+Hrlv7pNax9frxduW+ZzebHkf3dnSR2q8ShJJQWHtGD8Yr358DvKW7q1/vtkORyavOQmXXn3CGVc2lOZgzN08ZgBNq8W6NioRwEAAGJPwGc+Dhw4UE899ZRuvvnmkIUfP35cV1xxhb7zne/ozTffVFpamoqLi9W9e/dmX/Ppp59q3LhxmjJlil588UWtXbtWd955p3r16qUxY8aEbG0AEKvyl2/TkcKjMsbI1NQ1Er0bpTTcobnh7s6y4rfp6HA6VOtp+a+85Ucq9PGK7ZJR/Y7WXrveKqw/+7Hk44PatbqwfsdrAJFFPQoAbXO60qEr7hymgqJkOZ1GHo+lpasytOapLRo9dajP+JKVGZIlbS9u/djG40ZuTZ83oF1zBLMOb14o3kuk8wKZo7W8YNexcVEeZz/CFgE3H3/zm9/opz/9qf7617/qmWee0TnntH+n1N/+9rfq06ePnnvuufqxr33tay2+ZsGCBfra176mxx9/XJJ00UUXacOGDXriiSco9gBA0vEDJ+ouE64520z0t1GKd3fn/OXbVPC/O/SvPcfirgFpOSxdes3FOuf87vro1QKVlpQ1e6z3vTfc0TrQRi6AyKAeBYC2WbCitwqKklVrLNXW1N30u6AoWXc8PLDJ+LbiZEmSUevHNh6XLBlZ7ZojmHV480LxXiKdF8gcreUFu44FK3pr2s37gvrZAUIh4Muu77rrLm3btk3Hjh3TxRdfrL/97W/tDn/jjTc0dOhQTZgwQenp6RoyZIgWLlzY4mvef/99jR492mdszJgxev/99/0eX1VVpbKyMp8HAMQzf5dTN7dRind350HXXiLFV9+xjpHOOb+7dr1VqLKDgX3+N2zUehu5zT0PILJitR6VqEkB2GtvSWc5nb7FntNp/I5bVt0jkGPjaY5YXHNb5gDsYBnTeAP21j355JOaNm2aLrroIrlcvidPfvTRRwHP43a7JUm/+MUvNGHCBG3evFn33HOPFixYoNtuu83va7Kzs3X77bdrxowZ9WOrVq3SuHHjdOrUKSUlJfkcP3v2bM2ZM6fJPGPHjlVCQuQumcvLy9OwYcPIIy8q8+zIJC+0Nmz6UBdfMlSSZGprtT//oM5UVNVVHcaoU9dE9RmSIcvhkKmtVenBMlWfrlFCkkvdMlIkqf41gf5H4YQOKFW9w/SOQpOX2DVRyelddWzvsaB6q+dm9dCh0t3KSL2w7ozQBs9Zks7t10OpId71evcnW+P6Z5TPtdCqrq7W6tWrVVpaqpSUlIhkRptYqkel6KhJ4/l3oiPk2ZFJXmznSVLexg0aNnCA9pYkaeferk2e79mjSl8cSwxoruaO9R3Pk9T8ewxsjmDWcTYvFO8l0nmtz9F6XjDrGJhVoazM082nFX3K5xp5AQumHg16t+vPP/9cK1asUPfu3XXttdc2KfaCUVtbq6FDh+qRRx6RJA0ZMkQ7duxosdgL1owZM/SLX/yi/uuysjL16dNHr7zySkSL9WuuuUZvvPEGeeRFZZ4dmeSF1ogrx+l385fXf93cbtfezWiO7G2wg3NCWv09Dr2v2f3eXpW2cqbgZr2ob2pSWN9Xe/J6D8nQDfN+oFfv/V+VWAfV8G9tDpdDGZf2UtqFPVS8bo8qjp70eW26K02FF/+vHnlsWd33q9GO15OfD/09Hx+deVNc/4zyuRZaZWVl6tatW0SyolGs1aNSdNSk8fw70RHy7MgkL7bzJOmabw/XG7+f4/eej4Ozy/WOn/sF5l5YLtPofoHNHdt43OgaWfrfds0RzDq8eaF4L5HOC2SO1vKCXceGVu75eM1DT/K5Rl7AgqlHg6rUFi5cqF/+8pcaPXq0du7cqbS0tDYt0KtXr166+OKLfcYuuugivfbaa82+pmfPnjp8+LDP2OHDh5WSkuL3r8yJiYlKTAzsrwAAEC+8l1M31to9DL2vOVx4tNXmY7TrP7KfXv7pqzr8yZEmzxmPUc6o/hp26zeUmtFN7/7hHz7PHy3+l0o9ZT73xWzcyAVgj1isRyVqUgD2SnLXauOiPC1Y0Vt7SzorK/OUplx/oNlxSQEf23B8/iuVuvvGwnbNEcw6GuaF4r1EOq+1OQLJC3YdgB0Cbj6OHTtWeXl5evLJJzV58uSQhF9xxRUqLCz0GSsqKlLfvn2bfc3w4cO1atUqn7F33nlHw4cPD8maACCeBboZTdblF+hAfkmEVxc6LrdLnmpP3U7ejVlSek6ahkzIlSSVHS6Xw+VQbc3ZYsxyWqo+XSOp+UYugMijHgWAtkty1/rdbKS58WCO9Y6/u6XC5/m2zBHMOhrnheK9RDqvpTkCzQtmHYAdAm4+ejwebdu2Tb17h+7+XtOmTdPll1+uRx55RD/84Q+Vl5enP/3pT/rTn/5Uf8yMGTNUUlKiF154QZI0ZcoUPfnkk/rVr36lO+64Q//v//0//eUvf9Hf//73kK0LAGJVc5dbewWyGU11ZbU+eacoUksOi5rKGm1c+KGMnzs9Zl7aSzcvnFD/fWnue5KQ1PbLOAGEB/UoALTd6UqH3zPh/I1L/s+aa22O7Xu66omXzm/XHMGso2FeKN5LpPNamyOQvGDXAdgh4P+zeuedd0Ie/s1vflN//etfNWPGDD300EP62te+pnnz5mnSpLP39Dp06JD27Tvbrf/a176mv//975o2bZr+8Ic/qHfv3lq0aJHGjBkT8vUBQCypv59jg/sTbl+5S5OXnL0/4ZAJudq+cleTexh6zwKU6i7NPlrs54zBGOM54/E7XvZFuc/XzX1Pvjy3Y27iAUQz6lEAaBt/93xcuipDa/zcL3DJygyp0f0Cmzu28biRW9PnDWjXHMGsw5sXivcS6bxA5mgtL9h1bGzlno9AuNh+Wsf3v/99ff/732/2+eeff77J2JVXXqn8/PwwrgoAYk9r93OUVH8Pwy0v56t4/V5JRv2/3c9nnuMHTtTvkh2PKo5W+P2eND5j9IFfBXej5tbOOgUQvahHAcS7BSt6q6AoWbXGUm2NJUkqKErWHQ8PbDK+rThZkmTU+rGNxyVLRla75ghmHd68ULyXSOcFMkdrecGuY8GK3lyKDVvY3nwEAIRGoPdzlKRdqwvrz/Qr+figtrycrwu/naUeF5yjLj26yNTGZ+NRkuRo+j1p730dAznrFAAAwC57SzrL6TT1jShJcjqN33Hrq39s+Hfo5o6Npzlicc1tmQOwg8PuBQAAQiOQ+zlKvmdI1tbUyhip/EiFPl6xXWsfX6+tf/k4cou2gfEYffHPw8pbulXVldUhmbPp99TUn3UKAABgt6zMU/J4LJ8xj8fyO25M0wtgmjs2nuaIxTW3ZQ7ADjQfASBODJmQq/QBabIsSw6XQ5ZlNbmfo3T2DMnGTK2RMUYnj56Umj4dV0oKDmnNY+s078qnteFPH7S7Cenve9rcWacAAACRNuX6AxqUXS6HZZTgqpXDMhqcXa7FD+5sMj6of7lyAzy28bhlmXbPEcw6vHmheC+Rzgtkjtbygl2HdyMaINK47BoA4kRz9y5sfNmvvzMkG7IcVnxfdt1A9elqvffURn2ypki3vTCxzZdIp/RMVq3H9+bd/s46BQAAsEOSu1YbF+X53f3Y37jkf6fk1uaY/0ql7r6xsF1zBLOOhnmheC+RzmttjkDygl0HYAeajwAQRwK5d2HD3Z1lqUmj0dQaJad3VcVXZ0B2hEbkkSLfjXmCUV1ZrZ2rPpEafZvSss9tctYpAAAAEAlJ7lo2l0HUoPkIAB1Mwx2vP3h+s06fqPR5Pn1Amm7+0wQV/HW73n9usypLK5uZKX5Yavsl0vnLt+lo8b+ajA8cm8NmMwAAICqcrnToijuHqaAoWU6nkcdjaemqDK15aotGTx3qM75kZYZkSduLWz+28biRW9PnDWjXHMGsw5sXivcS6bxA5mgtr6XxjYvyONMRUYPmIwB0QAnuBDldTlWWVjV5buDYHHVOTZLT5VRVWdPn45FR2y+R9rfLuMPlUNnh8hCtDgAAoH0WrOitgqJk1RqrflfkgqJk3fHwwCbj24qTJUlGrR/beFyyZGS1a45g1uHNC8V7iXReIHO0ltfS+IIVvTnzEVGDDWcAoIPyt0lKw6ZZcxvTxKP07KYb8wQq0F3GAQAA7LK3pLOcTt96xek0fsctq+4RyLHxNEcsrrm1cSBa0HwEgDhUXVmtvKVb9dbctcpbutXvbs7NNc1SzktW3tKtOlx4RLU18X+pRqcunXTznya0+RLpQHcZBwAAsEtW5il5PL4dLY/H8jtuTN0jkGPjaY5YXHNr40C0oPkIAHGmurJaL9y2TGsfX6/8V7dp7ePr9cJty5o0IP01zdKyz9XO1Z9o7ePrdaDgoE3vILLOnDyjHX/b1ebXe++hOeqXIzXkhlyN+uVITX7+Ju73CAAAosaU6w9oUHa5HJZRgqtWDstocHa5Fj+4s8n4oP7lyg3w2MbjlmXaPUcw6/DmheK9RDovkDlay2tp3LvjNRANuOcjAMSZ/OXbdKTwqIwx9fchPFJ4RK/f93el9ExW996pGjIht75plr98m44fOKHuvVPlqfFo3R82yBjTZPfmeOVwOXw2m6murK7fRCZv6db671VLAtllHAAAwC5J7lptXJSnBSt6a29JZ2VlntKU6w80Oy4p4GMbjs9/pVJ331jYrjmCWUfDvFC8l0jntTZHIHktjQPRguYjAMQZfxugGCMVr9sjh8sh4zHavnKXJi+5qUnT7K25a+vOiffYsPAIcHZyynPG9801vD+j96zRw58cUalKteaxdfrghS26c/lkdU5NsmHFAAAAoZHkrvW7AUlz48Ec6x1/d0uFz/NtmSOYdTTOC8V7iXReS3MEmtfcOBAtaD4CQJzxdy9HL+89HI8UHlX+8m1NztZLOS+52dfGLEuSkbqmd9WP/nyzlt/9uo4UHpUcdY1Hd6pbnhpP/RmPhz85IunsiZ8VRyr07IQXNOVvd3ApNQAAiDunKx0Bn73n79iG49v3dNUTL53frjmCWUfDvLbOYWdea3MEktfSOBAtaD4CQJwZMiFX21fu0pHCo7Kclt9NYyyn5XOp8dknwr++SHIkOHTp9y9WWr9zfS413/JSvj54YYtOnzitqvIqrfvDBu1aXaiMS3rKclgytb4N2PIjFX6btQAAALHsdKVDV9w5TAVFyXI6jTweS0tWZkiWtL347NjSVRla89QWjZ461OfYxuNGbk2fN6BdcwSzDm9ee+awKy+QOVrLa2l846I8GpCIGjQfASDONL6XY9kX5Spet8fnmIaXGjdU9kV5hFYZGbXVtfrin0f0vfu/W3/WYoI7Qc4EpypPVErG92zQlJ7JTRqPkmQ5mmnWAgAAxLAFK3qroChZtcZSbU3dX6G3FSdLkozOjhUUJeuOhwc2ObbxuGTJyGrXHMGsw5vXnjnsygtkjtbyWhpfsKI3l2IjarDbNQDEIe+9HMfMGKUf/HaczstJ99nVOj0nTUMm5DZ5nb+GZKxwJTr9jnsvMW/Ie1/Mhiynpc7nJKlT105NJzH+m7UAAACxbG9JZzmdvn94tay6R0NOp/F7bHPjsThHLK65tXEgWtjafJw9e7Ysy/J55OTkNHt8dXW1HnroIfXr109ut1uDBg3S6tWrI7hiAIg93jMhR/1ypIbckKtRvxypyc/f5Pf+hUMm5KprWhcbVtl+LrdL3TKSm1w67u8Sc3/3xaytqdXeDZ/pzMkzTeZOz0n326wFEPuoRwF0ZFmZp+Tx+BZPxtQ9GvJ4LL/HNjcei3PE4ppbGweihe1nPg4cOFCHDh2qf2zYsKHZY2fOnKlnnnlG//M//6Ndu3ZpypQpuu6665Sfnx/BFQNA7Gl4JuSwW7/R7MYpCe4E3fnqbTHZgKwsrVLpwfKzO8V8xd8l5kMm5Cp9QJrP2aBd07uq4mhFk9f3v7Jfs81aAPGBehRARzXl+gMalF0uh2WU4KqVwzIa1L9cuY3GBmeXa/GDO5sc23jcsky75whmHd689sxhV14gc7SW19K4d+MaIBrYfs9Hl8ulnj17BnTs0qVL9cADD+jqq6+WJP3sZz/TmjVr9Pjjj+vPf/5zOJcJADHFu3Pz8QMn1L13av1mK4G+5puTvq79W0u0+x97I7TiELMkh9Mh4zF+LzFvfF/M7r1TdezzL1Xw1x0yDTbocbgcSumZ3OL3ri3fawDRhXoUQEeV5K7VxkV5Ae/Y7O/YhuPzX6nU3TcWtmuOYNbRMC8U7yXSea3NEUheS+NAtLC9+VhcXKyMjAy53W4NHz5cc+fO1fnnn+/32KqqKrndbp+xpKSkFv86XVVVpaqqqvqvy8rKQrNwAIhS1ZXVeuG2ZfW7XRuP0faVuzR5SfNn7/l7jbubWw6Xw2e3bMtqehlItLGcljIG9pTldEgy6v/tfqqurPHbIGy4e3Xe0q1NLsVubmMer7Z8rwFEn3DXo97XUZMCAICOyDLGvv+NfPPNN1VRUaEBAwbo0KFDmjNnjkpKSrRjxw4lJyc3Of7mm29WQUGBXn/9dfXr109r167VtddeK4/H41PMNTR79mzNmTOnyfjYsWOVkBC5/zHMy8vTsGHDyCMvKvPsyCQvtDZs+lAXXzJUknTiwAn9a88xn6uHLUnn9uuh1GYaaf5e05oTOqBU9W7rkoMWTJ6rk0ueMzX13VLLYam21sj66utOXRPVZ0iGLMfZu4+Y2lrtzz+oMxVVkmXpuNmv87r2a3Kcz5ra8L1uzu5Ptsb1zyifa6FVXV2t1atXq7S0VCkpKRHJjFeRqEel6KhJ4/l3oiPk2ZFJXmznSVLexg0aNnBAs897aqUNH3dX2UmXLMvIGEspXWokqcnY5bkntGlbaovjUp6kYe2aI5h1NMxr6xx25rU2RyB5zY2PGHxcziBvtJdX9Cmfa+QFLJh61NYzH//93/+9/p9zc3N12WWXqW/fvvrLX/6iH//4x02O/8Mf/qCf/OQnysnJkWVZ6tevn26//XYtXry42YwZM2boF7/4Rf3XZWVl6tOnj1555ZWIFuvXXHON3njjDfLIi8o8OzLJC60RV47T7+YvlyS9NXet8j/f5nPGosPl0JBv5mrMjFE+r/NeMlxwcIf+5TgmU3u2jWY5LblT3Ko8UVl/Vl9a9rk6UnxUqpU260V9U5Mi8wbVep73rExnJ6c8Zzx1g9634/1WfPW1ddLSqMtGasiEXJ8zIi/59cXa8bddOn7ghF7b/KieemlVi2cwBvO9bs2jM2+K659RPtdCq6ysTN26dYtIVryLRD0qRUdNGs+/Ex0hz45M8mI7T5Ku+fZwvfH7pn/48HripfO1etMASVb91S3lJ70F1NmxilNGiZ2OqOJUeovj0jWS3mjXHMGsw5vXnjnsygtkjtbyWhofPaxQ027ep2Bc89CTfK6RF7Bg6lHbL7tuKDU1VdnZ2dq9e7ff59PS0vT666+rsrJSx44dU0ZGhu6//35lZWU1O2diYqISExPDtWQAiDr+dnL2d/lww0uGZcmn8ShJqpX+bfJQOROcOvb5l6o4elJdz+2ik0dP6uSX0bd73nk56TpS/K+zjccWWE5Lxz77ssVLptfevaDVS6cD/V4DiB3hqEclalIA0WlvSWc5nUa1NWd3S7a++seG10g6ncbvsc2Nx+Icsbjm1saBaGH7btcNVVRUaM+ePerVq1eLx7ndbmVmZqqmpkavvfaarr322gitEACin7+dnP1tupK/fJuOFB6VMcb3jEeHVf+aoTcP0ZAJuTq4/QvtXr9XBa/vCLrx6HA5lHFpT1kOq/WD26H8cIXPGYgtMR6jin+drH//tTW1MsboSOFR5S/fFnBmoN9rALGDehRAR5KVeUoej2+NZkzTe3x7PJbfY5sbj8U5YnHNrY0D0cLW5uP06dO1fv16ffbZZ9q0aZOuu+46OZ1OTZw4UZI0efJkzZgxo/74Dz/8UCtWrNDevXv1j3/8Q2PHjlVtba1+9atf2fUWACDqeHdyHvXLkRpyQ65G/XKkJj/fdAOU4wdOyHI2bQh27p6kft/6mjIG9lT+8m3a8lK+T5POy5XglLubW+f266FLr7lYDpf//6TU1tTKneJuemZliFVWNH+vNVdi3Yn+DRuEXdO6NHn/ltPS8QMnAs4M9HsNIHpRjwLoyKZcf0CDssvlsIwSXLVyWEaD+pcrt9HY4OxyLX5wZ5NjG49blmn3HMGsw5vXnjnsygtkjtbyWhr37poNRANbL7s+cOCAJk6cqGPHjiktLU0jRozQBx98oLS0NEnSvn375Ghwk//KykrNnDlTe/fuVdeuXXX11Vdr6dKlSk1NtekdAEB0aryTsz/+LhmWpJPHTmn3e3vlcDnqdr1Oddf9qarB1cwOl0Nd07rqF29OlVS3U/SOv/2z2azPtwR3v5m2cCcn6uSxpn/hPbdfD92y+Mb6ezl6d7vOX74tJJdMB/K9BhC9qEcBdGRJ7lptXJSnBSt6a29JZ2VlnqpvWjUea+7YhuPzX6nU3TcWtmuOYNbRMC8U7yXSea3NEUheS+NAtLC1+bhs2bIWn1+3bp3P1yNHjtSuXbvCuCIA6DiGTMjV9pW7dLjwiPxtc+09y/H0idNNnq+tqVVC0tn/hFwy/mJ9+MIWlR+p8JvlqQpv8eNKdOnW52/SohteUE1Vjc/4LYtvVOfUpCYNQu/7b3jPRy6ZBjoe6lEAHV2Su9bvxiT+xpo71jv+7pYKn+fbMkcw62icF4r3Eum8luYINK+5cSBaRNWGMwCAyPFeMvzylFd14OODfhuQkmRZloyMz/OuRJeSz0uWVLdxzcs/fbXZxmO4JaYkqsf53bXy/76ly27/hg7vOqrSQ2VKzeymcXPGqHNqkt/Xed9/w92uh0zI5ZJpAADQoZyudAR89p6/YxuOb9/TVU+8dH675ghmHQ3z2jqHnXmtzRFIHmc4IhbQfASADizBnaCcUdkq+fhQXYPRD3/3aqypqtGhHV8ob+lWeWo8dTtmh5jlsmRqWr9PZFVZlQ7u+EKSdCC/RGn9z9WP/nyzEtwJqq6sVt7Src02F7lkGgAAdGSnKx264s5hKihKltNp5PFYWrIyQ7Kk7cVnx5auytCap7Zo9NShPsc2Hjdya/q8Ae2aI5h1ePPaM4ddeYHM0Vre0lUZ2rgojwYkoh7NRwDo4BpefiyH/N4H0p/TZZVa+/h6ubu56y5bDqBRGIwW57PU7JmaR4v/pS0v52voxCF64bZlPpdVb1+5S5OXsCEMAACAVHd2XUFRsmqNpdqauo34thXXXd1idHasoChZdzw8sMmxjcclS0ZWu+YIZh3evPbMYVdeIHO0lldQlKwFK3pzyTWiHs1HAOjgGl9+/MU/D+vg9i8C2p3aGFN3T8imm2bLckgmxH+Ezbi0lwZ890KVHS7X4cIjOpB/0O9xHy3fpuL1e3X4kyN16/yqkXmk8Kjyl2/jbEcAAABJe0s6y+k09c0sSbK++kfToBR0Oo3fY5sbj8U5YnHN3nEg2jlaPwQAEO+8lx+PmTFKF101oNmzCv2xnJaSUpNkWZYcrrr/rHRN66LELoktvi6t/7nqcm6XwHMkXTxmgIbfMUxjZoxSzqjsZo8tLSlVycdNG5OW09LxAycCzgQAAIhnWZmn5PH4/hXZGN/GlyR5PJbfY5sbj8U5YnHN3nEg2tF8BAD4GDIhV+kD0vyezeiP8Rh98+YhunBkls7p212dunRSxdGTqiyvavY1iV07adKiH2rYLV8POMfZyaVjn32pvKVbVV1ZrSETctUlrfnmpWlctX211u69UwMLBAAAiHNTrj+gQdnlclhGCa5aOSyjQf3LldtobHB2uRY/uLPJsY3HLcu0e45g1uHNa88cduUFMkdreYOzy+s3qAGiGZddAwB8BLoLtlfXtC76ZE2xjhb9S7L8b1DT2JmTZ7Tjb7tU9kW5HE6Hamtavj67U9dOqqmoUcHrO3zu3fiTV2/TohuWqOLoyZYDLcmSpfScNA2ZkNvq+gAAADqCJHetNi7KC3jHZn/HNhyf/0ql7r6xsF1zBLOOhnmheC+RzmttjkDy2GwGsYDmIwCgiUB2wZYky2GpW0aKDm77ou5Mw0Av13ZY9TtQN7fBjeW0pNq65mb5kQpJqm9SHik8oi0v5cuZ4FT/K/up4uhJdT23iyr+dVK71+/xvVTFknoPzlDOqOwmu10DAAB0dEnu2iYblpyu5CJJAKFD8xEA4FfDXbAtp+X/7ERT14AMdrdr4zFKOS+5SYbxGKVln6uBY3NUdrhc3Xun6ujef6lgxQ7f1xvpgyWbVVlaVf+69AFpmvjMDXr5p6/6zJeek6aJC26g6QgAABCA05UOXXHnMBUUJcvpNPJ4LC1dlaE1T23R6KlDWxw3cmv6vAFasjJDsqTtxcHP4R0PZA5vXnvmsCsvkDlay1u6KkMbF+Vx9iOiHs1HAIBfjXfBTjkvWTtXf1J3ebVDkkdyp7rl7upu9bJpfzwej/KXb1PGpT2V0jNZnc9J0qkvT6vruV3kTHDqu9O+rQR3gpbf87rf158+USnJdyfrHX/b5bPm7r1TOdsRAAAgCAtW9FZBUbJqjVW/s3JBUbLueHhgq+OSJSNL24qTJUlGwc/hHQ9kDm9ee+awKy+QOVrLKyhK1oIVvZucuQpEG5qPAIBmeXfB9hp68xBteSlfH7ywRTouVZVXac+GvXIlulRTVSOHq+7+jV3TusjUGp081vzue5v//FGDMxdr5ex0do6G93Xs2syO2JbluxOgdyfrxmsGAABA4PaWdJbTaeobXJLkdJqgxq2v/rFhrRbtc8Timr3jQLTjRg4AgIAluBPkTHCq8quzDmtramWM5DlTo/5X9tOQG3I1evqV+tnKH2v47cNkWVazc50+USljTP0cNVU1DeY0OlJ4VPnLt6nHBef4fX3ji7zZyRoAAKD9sjJPyePxreE8HiuocWN8m2exMEcsrtk7DkQ7mo8AgKAcP3CibjOYBiynQyk9kzVmxigNu/UbSnAnaMiEXKUPSGt2nhb6kl/NWXcm45AJuTovJ12WJIfLIcuylD4gTenZabIs6+wYO1kDAAC025TrD2hQdrkcllGCq1YOy2hwdrkWP7iz1XHLMnJYRoP6lyu3jXN4xwOZw5vXnjnsygtkjtbyBmeX1++ODUQzLrsGAATF3w7V/s469N4z8vX7/q7idXuazNP4L7pNnv9qUxrvfSG7HO2iQd+5RD0uOKe+yci9HQEAAEIryV2rjYvytGBFb+0t6ayszFOacv2BgMbnv1Kpu28srG+ItWWOhuOtzdEwr61z2JnX2hyB5LHZDGIBzUcAQFC8O1Rbn6j+/oxp2efKU+3RW3PX+jQCE9wJ+sFvx+mF25Y12dG6/HB5/aYxPizJkqW07HPrN7ixnJZO1pzUwR1faPT/d2V9k5F7OwIAAIRekrvW7yYmrY2/u6XC5/m2zNFYMHltmcPuvJbmCDQPiHY0HwEAQfGe0fjhzS9oyDdzldIzWTtXfaJ18zfUNxe9m8V4G5D+dqDe8lK+3v3DP3wnt6TegzOUMypbnhqP1v1hg4wxMjVGRqq/DyRNRwAAgMg7Xenwe+add3z7nq564qXzWzwDsLU5AjmL0F9eW+ewM6+1ORrnAbHK1ubj7NmzNWfOHJ+xAQMG6JNPPvF7/JVXXqn169c3Gb/66qv197//PSxrBAA0leBOULeMFHXvnapP1hbrSNFRSZKpqbuWunGT0LsDdXVltfKXb9P/e+I9pZyXrPQBafVnNhqPUXpOmiYuuEEJ7gS9NXdt3XjN2euzvfeBbAtvNpdpA2iIehQAAnO60qEr7hymgqJkOZ1GHo+lpasytOapLRo9dagKipJl5Nb0eQO0ZGWGZEnbi5s/trXxQObw5rVnDrvyApmjYd7GRXk0IBGzbD/zceDAgVqzZk391y5X80tasWKFzpw5U//1sWPHNGjQIE2YMCGsawQA+KqurNb+/INau6Hp/4BL/puE1ZXVTS+/7n+urrxnhMq+KG/SEAz03pKBrrdxdsOzMwF0bNSjANC6BSt6q6AoWbXGUm1N3c6BBUXJuuPhgfXjkiUjS9uKkyVJRs0f29p4IHN489ozh115gczRMG/Bit5cco2YZXvz0eVyqWfPngEde8455/h8vWzZMnXu3JliDwAiLH/5Np2pqFLdxdBN+WsS5i/fpiOFR+svo5ako8X/ktPl1JgZo5rM4b23pLdhaNWozTta+8vmEm4AXtSjANC6vSWd5XSa+iaZJDmdxu+49dU/NtxgsLljo2WOWFgzEKscdi+guLhYGRkZysrK0qRJk7RvX+Cd/GeffVY33XSTunTp0uwxVVVVKisr83kAANrn+IETZyujhizJsiy/TcLjB07Icvq+pqXLqL33ihz1y5EackOuzu3XQ5Ofb9uZisFmA+hYwl2PStSkAGJfVuYpeTy+9ZTHY/kdN8a3edbSsdEyRyysGYhVljGNf6wj580331RFRYUGDBigQ4cOac6cOSopKdGOHTuUnJzc4mvz8vJ02WWX6cMPP9SwYcOaPc7ffXwkaezYsUpIiNyldnl5eS2ukzzy7MyzI5O82M77Yu9xFezMV6p6+4wnpbjVNa2LumWkyHL4/n3rxIET+teeYz7nSlqSzu3XQ6kBXEq9a8cWXXzJ0Datty3Zuz/ZGtf/DuM9z47MSOZVV1dr9erVKi0tVUpKSkQy41Uk6lEpOmrSeP6d6Ah5dmSSF9t5oc70eKQNG6Sysrq/QRsjdesmDR8ubdpUNy7lSRqmlC41kqSyky5ZlpExlrp1qdHw3BPatC01oPFA5vDmtWcOu/ICmaM+r5t0xRWS0xmSf5XNivWfUfKitx61tfnY2IkTJ9S3b1/9/ve/149//OMWj/3pT3+q999/X9u2bWvxuKqqKlVVVdV/XVZWpj59+kS8WL/mmmv0xhtvkEdeVObZkUlebOeVfXlKF/UapiFnbpTlqKs+03PSWzwz0d99F9Nz0gI+m/FXd0/Q7+Yvb9N625L96Myb4vrfYbzn2ZEZybyysjJ169aN5mMYhKMelaKjJo3n34mOkGdHJnmxnReOzNOnpQULpL17pawsacoUKSnp7Pj8x67S3Tf+T8R2u57/ys/r8yKx23Wo81qbY/5ff6W7736j/vscbvHwM0pedNajtt/zsaHU1FRlZ2dr9+7dLR538uRJLVu2TA899FCrcyYmJioxMTFUSwSADq/qdLUeHP2ias7UyHJYMrVGXdO71u9S3RzvZdR27DhtZzaA2BKOelSiJgUQH5KSpGnT7F5F/Ety12razfv07m6+34gPUdV8rKio0J49e3Trrbe2eNzy5ctVVVWlW265JUIrAwB4vblgq/YWHJYkmdq6k+dPHj2pHX/b1ermLQnuBNs2eLEzG0DsoB4FgOCcPl13SXBBgWSMW9PnDdCSlRmSJW0vTpbTaeTxWFq6KkNrntqi0VOHqqCo9fFA5jCqy2vPHHbltTS+cVGekty1dv+rBULG1ubj9OnTNX78ePXt21cHDx7UrFmz5HQ6NXHiREnS5MmTlZmZqblz5/q87tlnn9UPfvAD9ejRw45lA0CH9sXeE3I4LalBPcTmLQBiFfUoALTPggV1jcfaWkmyZGRpW3HdPXONrPqdnAuKknXHwwNVUJSsWtP6eCBzePPaM4ddeS2NL1jRW9NuDnzzMyDa2dp8PHDggCZOnKhjx44pLS1NI0aM0AcffKC0tDRJ0r59++RotGFBYWGhNmzYoLffftuOJQNAh9czK1W1Ht/bBRuPUfcANo0BgGhDPQoA7bN3b91GKLUN/zD91QbODXeYcDqN9pZ0ltNp6httLY1Heo5oWbN3HIgntjYfly1b1uLz69atazI2YMAARdEeOQDQ4fz7lG/o3aXbtTlfcrgc9Zu3DJmQa/fSmqiurOY+jwBaRD0KAO2TlVW3E3ZD/j4iPR5LWZmntHNP14DGIz1HtKzZOw7EE0frhwAAcFZiUoJ+t/FHOrdfDw25IVejfjky4B2rI8m7w/Xax9cr/9VtWvv4er1w2zJVV1bbvTQAAIC4MWWKNGiQ5HBIlmXksIwG9S9Xbna5HJZRgqtWDstocHa5Fj+4U4MCHA9kDm9ee+awK6+lce+O10C8iKoNZwAAsSExKUGpvVM1ZsYou5fSrPzl23Sk8KiMMTI1dX+GPlJ4VPnLt7HxDAAAQIgkJUkbN9bd+3H+Y5W6+8bC+ubZghW9tbeks7IyT2nK9QeU5K7VxkV5AY+3Nsf8V87mtXUOO/NaGgfiCc1HAEBcOn7ghCynVd94lNgYBwAAIBySkqRp06R3/1rhs1GKv01Tkty1QY23dOy7W3zz2jKH3XnNjQPxhOYjACAude+dKsPGOAAAALY4Xenwe0ZfMOOS/7MIvcdu39NVT7x0frvmsDOPMxzRUdB8BADEpSETcrV95S4dKTxadwZkFG+MAwAAEE9OVzp0xZ3DVFCULKfTyOOxtHRVhtY8tUWjpw4NaHzJygzJkrYXN3+skVvT5w1o1xx25S1dlaGNi/JoQKJDoPkIAIhLCe4ETV5yE7tdAwAARNiCFb1VUJSsWmOptsaSJBUUJeuOhwcGPL6tOFmSZNT8sZIlI6tdc9iVV1CUrAUrenPJNToEmo8AgLiV4E5gcxkAAIAI21vSWU6nqW+0SZLTaYIat776R9PgLjrhnCPSed5xoCNw2L0AAAAAAAAQP7IyT8njsXzGPB4rqHFjfJt44Z4j0nnecaAjoPkIAAAAAABCZsr1BzQou1wOyyjBVSuHZTQ4u1yLH9wZ8Pig/uXKbeVYyzLtnsOuvMHZ5fUb1ADxjsuuAQAAAABAyCS5a7VxUZ7f3Z2DGZf87xztPXb+K5W6+8bCds1hZx6bzaCjoPkIAAAAAABCKsld2yE3U2nufXfU7wcg0XwEAAAAAAARcLrSoSvuHKaComQ5nUYej6WlqzK05qktGj11qM/4kpUZkiVtL27+WCO3ps8b0K45Qpm3dFWGNi7K44xGoBGajwAAAAAAIOwWrOitgqJk1RqrfufngqJk3fHwwCbj24qTJUlGzR8rWTKy2jVHKPMKipK1YEVvznAEGmHDGQAAAAAAEHZ7SzrL6fTdDtrpNH7HLavuEcixoZgjFHnecQC+aD4CAAAAAICwy8o8JY/Ht8Pn8Vh+x42pewRybCjmCEWedxyAL5qPAAAAAAAg7KZcf0CDssvlsIwSXLVyWEaDs8u1+MGdTcYH9S9XbivHWpZp9xyhzBucXV6/4zWAs2y95+Ps2bM1Z84cn7EBAwbok08+afY1J06c0AMPPKAVK1boyy+/VN++fTVv3jxdffXV4V4uAAAA4gz1KABETpK7VhsX5WnBit7aW9JZWZmnNOX6A82OS2rx2PmvVOruGwvbNUeo89hsBmjK9g1nBg4cqDVr1tR/7XI1v6QzZ87oqquuUnp6ul599VVlZmbq888/V2pqagRWCgAAgHhEPQoAkZPkrvW7IUtz4y0d++6WCp/n2zJHOPIA+LK9+ehyudSzZ8+Ajl28eLG+/PJLbdq0SQkJCZKkCy64IIyrAwAAQLyjHgWA2HK60qEFK3pr+56ueuKl8+vPOPSOB3I2YzDHAmgf25uPxcXFysjIkNvt1vDhwzV37lydf/75fo994403NHz4cE2dOlX/+7//q7S0NN18882677775HQ6/b6mqqpKVVVV9V+XlZWF5X0AAAAgNoW7HpWoSQEgVE5XOnTFncNUUJQsI7emzxugpasytOapLRo9dagKipLldBp5PJaWrMyQLGl78dmxYI/duCiPBiTQTpYxjfdzipw333xTFRUVGjBggA4dOqQ5c+aopKREO3bsUHJycpPjc3Jy9Nlnn2nSpEm66667tHv3bt111126++67NWvWLL8Z/u7jI0ljx46t/2t1JOTl5WnYsGHkkReVeXZkkhfbeXZkkkdetGdGMq+6ulqrV69WaWmpUlJSIpIZryJRj0rRUZPG8+9ER8izI5O82M6zIzMSeXv3Sjt31idKqsvr2aNKXxxLDGiOYI4dmFWhrMzTdWlFn8bd99POPDsyyQudoOpRE0WOHz9uUlJSzKJFi/w+379/f9OnTx9TU1NTP/b444+bnj17NjtnZWWlKS0trX/s37/fSDKlpaUhX39Lxo8fTx55UZtnRyZ5sZ1nRyZ55EV7ZiTzSktLbalnOoJw1KPGREdNGs+/Ex0hz45M8mI7z47MSOT9138Zk5BgjGSMNN5IxiS4PObSC8tMgsvz1Xjdw2HVGodV6zMW7LH/9cPPjdn8ljGb34rL76edeXZkkhc6wdSjtl923VBqaqqys7O1e/duv8/36tVLCQkJPpe0XHTRRfriiy905swZderUqclrEhMTlZgY2F80AAAA0LGFox6VqEkBIFSysiSPx3fM47GUlXlKO/d09Rn3d51nW44F0D4OuxfQUEVFhfbs2aNevXr5ff6KK67Q7t27VVt79n4LRUVF6tWrV7OFHgAAABAo6lEAiG5TpkiDBkkOh2RZRg7LaHB2uRY/uFODssvlsIwSXLVyWEaD+pcrt9FYsMd6N6IB0Ha2nvk4ffp0jR8/Xn379tXBgwc1a9YsOZ1OTZw4UZI0efJkZWZmau7cuZKkn/3sZ3ryySd1zz336Oc//7mKi4v1yCOP6O6777bzbQAAACBGUY8CQGxJSpI2bpQWLJDmP1apu28srN+VeuOivIB3sA7mWADtY2vz8cCBA5o4caKOHTumtLQ0jRgxQh988IHS0tIkSfv27ZPDcfbkzD59+uitt97StGnTlJubq8zMTN1zzz2677777HoLAAAAiGHUowAQe5KSpGnTpHf/WqFpN+87O+6u9fnay99YMMcCaB9bm4/Lli1r8fl169Y1GRs+fLg++OCDMK0IAAAAHQn1KAAAQHhF1T0fAQAAAAAAAMQPmo8AAAAAAAAAwoLmIwAAAAAAAICwoPkIAAAAAAAAICxoPgIAAAAAAAAIC5qPAAAAAAAAAMKC5iMAAAAAAACAsKD5CAAAAAAAACAsaD4CAAAAAAAACAuajwAAAAAAAADCguYjAAAAAAAAgLCg+QgAAAAAAAAgLGg+AgAAAAAAAAgLmo8AAAAAAAAAwoLmIwAAAAAAAICwoPkIAAAAAAAAICxsbT7Onj1blmX5PHJycpo9/vnnn29yvNvtjuCKAQAAEE+oRwEAAMLLZfcCBg4cqDVr1tR/7XK1vKSUlBQVFhbWf21ZVtjWBgAAgPhHPQoAABA+tjcfXS6XevbsGfDxlmUFdTwAAADQEupRAACA8LH9no/FxcXKyMhQVlaWJk2apH379rV4fEVFhfr27as+ffro2muv1c6dO1s8vqqqSmVlZT4PAAAAwCvc9ahETQoAADouyxhj7Ap/8803VVFRoQEDBujQoUOaM2eOSkpKtGPHDiUnJzc5/v3331dxcbFyc3NVWlqqxx57TO+995527typ3r17+82YPXu25syZ02R87NixSkhICPl7ak5eXp6GDRtGHnlRmWdHJnmxnWdHJnnkRXtmJPOqq6u1evVqlZaWKiUlJSKZ8SoS9agUHTVpPP9OdIQ8OzLJi+08OzLJIy/aM8kLnaDqURNFjh8/blJSUsyiRYsCOv7MmTOmX79+ZubMmc0eU1lZaUpLS+sf+/fvN5JMaWlpqJYdkPHjx5NHXtTm2ZFJXmzn2ZFJHnnRnhnJvNLSUlvqmY4gHPWoMdFRk8bz70RHyLMjk7zYzrMjkzzyoj2TvNAJph61/Z6PDaWmpio7O1u7d+8O6PiEhAQNGTKkxeMTExOVmJgYqiUCAAAgjoWjHpWoSQEAQMdl+z0fG6qoqNCePXvUq1evgI73eDzavn17wMcDAAAALaEeBQAACC1bm4/Tp0/X+vXr9dlnn2nTpk267rrr5HQ6NXHiREnS5MmTNWPGjPrjH3roIb399tvau3evPvroI91yyy36/PPPdeedd9r1FgAAABDDqEcBAADCy9bLrg8cOKCJEyfq2LFjSktL04gRI/TBBx8oLS1NkrRv3z45HGf7o8ePH9dPfvITffHFF+revbu+8Y1vaNOmTbr44ovtegsAAACIYdSjAAAA4WVr83HZsmUtPr9u3Tqfr5944gk98cQTYVwRAAAAOhLqUQAAgPCKqns+AgAAAAAAAIgfNB8BAAAAAAAAhAXNRwAAAAAAAABhQfMRAAAAAAAAQFjQfAQAAAAAAAAQFjQfAQAAAAAAAIQFzUcAAAAAAAAAYUHzEQAAAAAAAEBY0HwEAAAAAAAAEBY0HwEAAAAAAACEBc1HAAAAAAAAAGFB8xEAAAAAAABAWNB8BAAAAAAAABAWNB8BAAAAAAAAhAXNRwAAAAAAAABhQfMRAAAAAAAAQFjY2nycPXu2LMvyeeTk5DR7/IoVKzR06FClpqaqS5cuGjx4sJYuXRrBFQMAACCeUI8CAACEl8vuBQwcOFBr1qyp/9rlan5J55xzjh544AHl5OSoU6dOWrlypW6//Xalp6drzJgxkVguAAAA4gz1KAAAQPjY3nx0uVzq2bNnQMdeeeWVPl/fc889WrJkiTZs2ECxBwAAgDahHgUAAAgf2+/5WFxcrIyMDGVlZWnSpEnat29fQK8zxmjt2rUqLCzUt7/97WaPq6qqUllZmc8DAAAA8Ap3PSpRkwIAgI7LMsYYu8LffPNNVVRUaMCAATp06JDmzJmjkpIS7dixQ8nJyX5fU1paqszMTFVVVcnpdOqPf/yj7rjjjmYzZs+erTlz5jQZHzt2rBISEkL2XlqTl5enYcOGkUdeVObZkUlebOfZkUkeedGeGcm86upqrV69WqWlpUpJSYlIZryKRD0qRUdNGs+/Ex0hz45M8mI7z45M8siL9kzyQieoetREkePHj5uUlBSzaNGiZo/xeDymuLjY5Ofnm8cee8x069bNvPvuu80eX1lZaUpLS+sf+/fvN5JMaWlpGN5B88aPH08eeVGbZ0cmebGdZ0cmeeRFe2Yk80pLS22pZzqCcNSjxkRHTRrPvxMdIc+OTPJiO8+OTPLIi/ZM8kInmHrU9ns+NpSamqrs7Gzt3r272WMcDocuvPBCSdLgwYP1z3/+U3Pnzm1y/x2vxMREJSYmhmO5AAAAiDPhqEclalIAANBx2X7Px4YqKiq0Z88e9erVK+DX1NbWqqqqKoyrAgAAQEdBPQoAABBatp75OH36dI0fP159+/bVwYMHNWvWLDmdTk2cOFGSNHnyZGVmZmru3LmSpLlz52ro0KHq16+fqqqqtGrVKi1dulRPP/20nW8DAAAAMYp6FAAAILxsbT4eOHBAEydO1LFjx5SWlqYRI0bogw8+UFpamiRp3759cjjOnpx58uRJ3XXXXTpw4ICSkpKUk5OjP//5z7rxxhvtegsAAACIYdSjAAAA4WVr83HZsmUtPr9u3Tqfr3/961/r17/+dRhXBAAAgI6EehQAACC8ouqejwAAAAAAAADiB81HAAAAAAAAAGFB8xEAAAAAAABAWNB8BAAAAAAAABAWNB8BAAAAAAAAhAXNRwAAAAAAAABhQfMRAAAAAAAAQFjQfAQAAAAAAAAQFjQfAQAAAAAAAIQFzUcAAAAAAAAAYUHzEQAAAAAAAEBY0HwEAAAAAAAAEBY0HwEAAAAAAACEBc1HAAAAAAAAAGFB8xEAAAAAAABAWNB8BAAAAAAAABAWtjYfZ8+eLcuyfB45OTnNHr9w4UJ961vfUvfu3dW9e3eNHj1aeXl5EVwxAAAA4gn1KAAAQHjZfubjwIEDdejQofrHhg0bmj123bp1mjhxot599129//776tOnj773ve+ppKQkgisGAABAPKEeBQAACB+X7QtwudSzZ8+Ajn3xxRd9vl60aJFee+01rV27VpMnTw7H8gAAABDnqEcBAADCx/YzH4uLi5WRkaGsrCxNmjRJ+/btC/i1p06dUnV1tc4555xmj6mqqlJZWZnPAwAAAPAKdz0qUZMCAICOyzLGGLvC33zzTVVUVGjAgAE6dOiQ5syZo5KSEu3YsUPJycmtvv6uu+7SW2+9pZ07d8rtdvs9Zvbs2ZozZ06T8bFjxyohIaHd7yFQeXl5GjZsGHnkRWWeHZnkxXaeHZnkkRftmZHMq66u1urVq1VaWqqUlJSIZMarSNSjUnTUpPH8O9ER8uzIJC+28+zIJI+8aM8kL3SCqkdNFDl+/LhJSUkxixYtavXYuXPnmu7du5uCgoIWj6usrDSlpaX1j/379xtJprS0NFTLDsj48ePJIy9q8+zIJC+28+zIJI+8aM+MZF5paakt9UxHEI561JjoqEnj+XeiI+TZkUlebOfZkUkeedGeSV7oBFOP2n7Px4ZSU1OVnZ2t3bt3t3jcY489pkcffVRr1qxRbm5ui8cmJiYqMTExlMsEAABAnApHPSpRkwIAgI7L9ns+NlRRUaE9e/aoV69ezR7zu9/9Tg8//LBWr16toUOHRnB1AAAAiHfUowAAAKFla/Nx+vTpWr9+vT777DNt2rRJ1113nZxOpyZOnChJmjx5smbMmFF//G9/+1s9+OCDWrx4sS644AJ98cUX+uKLL1RRUWHXWwAAAEAMox4FAAAIL1svuz5w4IAmTpyoY8eOKS0tTSNGjNAHH3ygtLQ0SdK+ffvkcJztjz799NM6c+aMbrjhBp95Zs2apdmzZ0dy6QAAAIgD1KMAAADhZWvzcdmyZS0+v27dOp+vP/vss/AtBgAAAB0O9SgAAEB4RdU9HwEAAAAAAADED5qPAAAAAAAAAMKC5iMAAAAAAACAsKD5CAAAAAAAACAsaD4CAAAAAAAACAuajwAAAAAAAADCguYjAAAAAAAAgLCg+QgAAAAAAAAgLGg+AgAAAAAAAAgLmo8AAAAAAAAAwoLmIwAAAAAAAICwoPkIAAAAAAAAICxoPgIAAAAAAAAIC5qPAAAAAAAAAMKC5iMAAAAAAACAsKD5CAAAAAAAACAsbG0+zp49W5Zl+TxycnKaPX7nzp36j//4D11wwQWyLEvz5s2L3GIBAAAQd6hHAQAAwstl9wIGDhyoNWvW1H/tcjW/pFOnTikrK0sTJkzQtGnTIrE8AAAAxDnqUQAAgPCxvfnocrnUs2fPgI795je/qW9+85uSpPvvvz+cywIAAEAHQT0KAAAQPrbf87G4uFgZGRnKysrSpEmTtG/fvpDOX1VVpbKyMp8HAAAA4BXuelSiJgUAAB2XZYwxdoW/+eabqqio0IABA3To0CHNmTNHJSUl2rFjh5KTk1t87QUXXKB7771X9957b4vHzZ49W3PmzGkyPnbsWCUkJLRn+UHJy8vTsGHDyCMvKvPsyCQvtvPsyCSPvGjPjGRedXW1Vq9erdLSUqWkpEQkM15Foh6VoqMmjeffiY6QZ0cmebGdZ0cmeeRFeyZ5oRNUPWqiyPHjx01KSopZtGhRq8f27dvXPPHEE60eV1lZaUpLS+sf+/fvN5JMaWlpCFYcuPHjx5NHXtTm2ZFJXmzn2ZFJHnnRnhnJvNLSUlvqmY4gHPWoMdFRk8bz70RHyLMjk7zYzrMjkzzyoj2TvNAJph61/Z6PDaWmpio7O1u7d+8O2ZyJiYlKTEwM2XwAAACIX+GoRyVqUgAA0HHZfs/HhioqKrRnzx716tXL7qUAAACgA6IeBQAACC1bm4/Tp0/X+vXr9dlnn2nTpk267rrr5HQ6NXHiREnS5MmTNWPGjPrjz5w5o48//lgff/yxzpw5o5KSEn388cch/8s0AAAAOgbqUQAAgPCy9bLrAwcOaOLEiTp27JjS0tI0YsQIffDBB0pLS5Mk7du3Tw7H2f7owYMHNWTIkPqvH3vsMT322GMaOXKk1q1bF+nlAwAAIMZRjwIAAISXrc3HZcuWtfh84wLuggsukLFvc24AAADEGepRAACA8Iqqez4CAAAAAAAAiB80HwEAAAAAAACEBc1HAAAAAAAAAGFB8xEAAAAAAABAWNB8BAAAAAAAABAWNB8BAAAAAAAAhAXNRwAAAAAAAABhQfMRAAAAAAAAQFjQfAQAAAAAAAAQFjQfAQAAAAAAAIQFzUcAAAAAAAAAYUHzEQAAAAAAAEBY0HwEAAAAAAAAEBY0HwEAAAAAAACEBc1HAAAAAAAAAGFB8xEAAAAAAABAWERN8/HRRx+VZVm69957mz2murpaDz30kPr16ye3261BgwZp9erVkVskAAAA4ho1KQAAQGhFRfNx8+bNeuaZZ5Sbm9vicTNnztQzzzyj//mf/9GuXbs0ZcoUXXfddcrPz4/QSgEAABCvqEkBAABCz/bmY0VFhSZNmqSFCxeqe/fuLR67dOlS/Z//83909dVXKysrSz/72c909dVX6/HHH4/QagEAABCPqEkBAADCw/bm49SpUzVu3DiNHj261WOrqqrkdrt9xpKSkrRhw4YWX1NWVubzAAAAABqiJgUAAAgPyxhj7ApftmyZfvOb32jz5s1yu9268sorNXjwYM2bN8/v8TfffLMKCgr0+uuvq1+/flq7dq2uvfZaeTweVVVV+X3N7NmzNWfOnCbjY8eOVUJCQijfTovy8vI0bNgw8siLyjw7MsmL7Tw7MskjL9ozI5lXXV2t1atXq7S0VCkpKRHJjGcdpSaN59+JjpBnRyZ5sZ1nRyZ55EV7JnmhE1Q9amyyb98+k56ebgoKCurHRo4cae65555mX3PkyBFz7bXXGofDYZxOp8nOzjZ33XWXcbvdzb6msrLSlJaW1j/2799vJJnS0tJQvp1WjR8/njzyojbPjkzyYjvPjkzyyIv2zEjmlZaW2lLPxKOOVJPG8+9ER8izI5O82M6zI5M88qI9k7zQCaYete2y661bt+rIkSP6+te/LpfLJZfLpfXr12v+/PlyuVzyeDxNXpOWlqbXX39dJ0+e1Oeff65PPvlEXbt2VVZWVrM5iYmJSklJ8XkAAAAAEjUpAABAuLnsCh41apS2b9/uM3b77bcrJydH9913n5xOZ7OvdbvdyszMVHV1tV577TX98Ic/DPdyAQAAEIeoSQEAAMLLtuZjcnKyLrnkEp+xLl26qEePHvXjkydPVmZmpubOnStJ+vDDD1VSUqLBgwerpKREs2fPVm1trX71q19FfP0AAACIfdSkAAAA4WVb8zEQ+/btk8Nx9srwyspKzZw5U3v37lXXrl119dVXa+nSpUpNTbVvkQAAAIhr1KQAAABtF1XNx3Xr1rX49ciRI7Vr167ILQgAAAAdDjUpAABA6Ni24QwAAAAAAACA+EbzEQAAAAAAAEBY0HwEAAAAAAAAEBY0HwEAAAAAAACEBc1HAAAAAAAAAGFB8xEAAAAAAABAWNB8BAAAAAAAABAWNB8BAAAAAAAAhAXNRwAAAAAAAABhQfMRAAAAAAAAQFjQfAQAAAAAAAAQFjQfAQAAAAAAAIQFzUcAAAAAAAAAYUHzEQAAAAAAAEBY0HwEAAAAAAAAEBY0HwEAAAAAAACERdQ0Hx999FFZlqV77723xePmzZunAQMGKCkpSX369NG0adNUWVkZmUUCAAAgrlGTAgAAhJbL7gVI0ubNm/XMM88oNze3xeNeeukl3X///Vq8eLEuv/xyFRUV6Uc/+pEsy9Lvf//7CK0WAAAA8YiaFAAAIPRsP/OxoqJCkyZN0sKFC9W9e/cWj920aZOuuOIK3Xzzzbrgggv0ve99TxMnTlReXl6EVgsAAIB4RE0KAAAQHrY3H6dOnapx48Zp9OjRrR57+eWXa+vWrfWF3d69e7Vq1SpdffXVzb6mqqpKZWVlPg8AAACgIWpSAACA8LCMMcau8GXLluk3v/mNNm/eLLfbrSuvvFKDBw/WvHnzmn3N/PnzNX36dBljVFNToylTpujpp59u9vjZs2drzpw5TcbHjh2rhISEULyNgOTl5WnYsGHkkReVeXZkkhfbeXZkkkdetGdGMq+6ulqrV69WaWmpUlJSIpIZzzpKTRrPvxMdIc+OTPJiO8+OTPLIi/ZM8kInqHrU2GTfvn0mPT3dFBQU1I+NHDnS3HPPPc2+5t133zXnnXeeWbhwodm2bZtZsWKF6dOnj3nooYeafU1lZaUpLS2tf+zfv99IMqWlpaF8O60aP348eeRFbZ4dmeTFdp4dmeSRF+2ZkcwrLS21pZ6JRx2pJo3n34mOkGdHJnmxnWdHJnnkRXsmeaETTD1q24YzW7du1ZEjR/T1r3+9fszj8ei9997Tk08+qaqqKjmdTp/XPPjgg7r11lt15513SpIuvfRSnTx5Uv/5n/+pBx54QA5H06vIExMTlZiYGN43AwAAgJhETQoAABBetjUfR40ape3bt/uM3X777crJydF9993XpMiTpFOnTjUp5rzHGfuuHgcAAECMoiYFAAAIL9uaj8nJybrkkkt8xrp06aIePXrUj0+ePFmZmZmaO3euJGn8+PH6/e9/ryFDhuiyyy7T7t279eCDD2r8+PF+C0MAAACgJdSkAAAA4WVb8zEQ+/bt8/mr8syZM2VZlmbOnKmSkhKlpaVp/Pjx+s1vfmPjKgEAABDPqEkBAADaLqqaj+vWrWvxa5fLpVmzZmnWrFmRWxQAAAA6FGpSAACA0Gl6N2wAAAAAAAAACAGajwAAAAAAAADCguYjAAAAAAAAgLCg+QgAAAAAAAAgLGg+AgAAAAAAAAgLmo8AAAAAAAAAwoLmIwAAAAAAAICwoPkIAAAAAAAAICxoPgIAAAAAAAAIC5qPAAAAAAAAAMKC5iMAAAAAAACAsKD5CAAAAAAAACAsaD4CAAAAAAAACAuajwAAAAAAAADCguYjAAAAAAAAgLCg+QgAAAAAAAAgLKKm+fjoo4/Ksizde++9zR5z5ZVXyrKsJo9x48ZFbqEAAACIW9SkAAAAoeWyewGStHnzZj3zzDPKzc1t8bgVK1bozJkz9V8fO3ZMgwYN0oQJE8K9RAAAAMQ5alIAAIDQs/3Mx4qKCk2aNEkLFy5U9+7dWzz2nHPOUc+ePesf77zzjjp37kyhBwAAgHahJgUAAAgP2898nDp1qsaNG6fRo0fr17/+dVCvffbZZ3XTTTepS5cuzR5TVVWlqqqq+q9LS0slSWVlZW1bcBtVV1dHNJM88qI9k7zYzrMjkzzyoj0zknneHGNMRPI6go5Qk8bz70RHyLMjk7zYzrMjkzzyoj2TvNAJqh41Nnr55ZfNJZdcYk6fPm2MMWbkyJHmnnvuCei1H374oZFkPvzwwxaPmzVrlpHEgwcPHjx48OARd4/9+/e3txyDoSblwYMHDx48ePBo6yOQetQyxp4/me/fv19Dhw7VO++8U39fnSuvvFKDBw/WvHnzWn39T3/6U73//vvatm1bi8c1/ivziRMn1LdvX+3bt0/dunVr13sIVFlZmfr06aP9+/crJSWFPPKiKs+OTPJiO8+OTPLIi/bMSOcZY1ReXq6MjAw5HLbfRSemdZSaNN5/J+I9z45M8mI7z45M8siL9kzyQiuYetS2y663bt2qI0eO6Otf/3r9mMfj0Xvvvacnn3xSVVVVcjqdfl978uRJLVu2TA899FCrOYmJiUpMTGwy3q1bt4j9QnmlpKRENJM88qI9k7zYzrMjkzzyoj0zknmR+iNqvOtoNWk8/050hDw7MsmL7Tw7MskjL9ozyQudQOtR25qPo0aN0vbt233Gbr/9duXk5Oi+++5rtsiTpOXLl6uqqkq33HJLuJcJAACAOEZNCgAAEF62NR+Tk5N1ySWX+Ix16dJFPXr0qB+fPHmyMjMzNXfuXJ/jnn32Wf3gBz9Qjx49IrZeAAAAxB9qUgAAgPCyfbfrluzbt6/JdeOFhYXasGGD3n777TbNmZiYqFmzZvm97CVcIp1JHnnRnklebOfZkUkeedGeacd7ROTEQ01KXmzn2ZFJXmzn2ZFJHnnRnkmefWzbcAYAAAAAAABAfGN7RAAAAAAAAABhQfMRAAAAAAAAQFjQfAQAAAAAAAAQFjQfAQAAAAAAAIRF3DUfn376aeXm5iolJUUpKSkaPny43nzzzWaPv/LKK2VZVpPHuHHjwpJXXV2thx56SP369ZPb7dagQYO0evXqoN+nJD366KOyLEv33ntvs8fs3LlT//Ef/6ELLrhAlmVp3rx5bcoKJnPFihUaOnSoUlNT1aVLFw0ePFhLly4NW15Dy5Ytk2VZ+sEPfhDWvBMnTmjq1Knq1auXEhMTlZ2drVWrVoUtb968eRowYICSkpLUp08fTZs2TZWVlQFlzJ49u8nPd05OTouvWb58uXJycuR2u3XppZcG9d6CzVu4cKG+9a1vqXv37urevbtGjx6tvLy8sOW19+cz2Lznn3++yfFutzvgvLZktvdzLdi8UHyulZSU6JZbblGPHj2UlJSkSy+9VFu2bGn2+EOHDunmm29Wdna2HA5HwJ8Rbc1bsWKFrrrqKqWlpdV/1r/11lthy2to48aNcrlcGjx4cFjzqqqq9MADD6hv375KTEzUBRdcoMWLF4ct78UXX9SgQYPUuXNn9erVS3fccYeOHTsWUJ73v2mNH1OnTm32Ne35XAs2r72fa4h9HakelSJfk1KP1glVPRpMZltr0nivR9uSGWs1KfVoU9Sj4cmMlZqUejQ4LtuSw6R379569NFH1b9/fxljtGTJEl177bXKz8/XwIEDmxy/YsUKnTlzpv7rY8eOadCgQZowYUJY8mbOnKk///nPWrhwoXJycvTWW2/puuuu06ZNmzRkyJCA3+fmzZv1zDPPKDc3t8XjTp06paysLE2YMEHTpk0LeP72ZJ5zzjl64IEHlJOTo06dOmnlypW6/fbblZ6erjFjxoQ8z+uzzz7T9OnT9a1vfSvgjLbknTlzRldddZXS09P16quvKjMzU59//rlSU1PDkvfSSy/p/vvv1+LFi3X55ZerqKhIP/rRj2RZln7/+98HlDVw4ECtWbOm/muXq/lf/U2bNmnixImaO3euvv/97+ull17SD37wA3300Ue65JJLQp63bt06TZw4UZdffrncbrd++9vf6nvf+5527typzMzMkOeF4uczmDxJSklJUWFhYf3XlmUFlNPWzPZ+rgWb197PtePHj+uKK67Qd77zHb355ptKS0tTcXGxunfv3uxrqqqqlJaWppkzZ+qJJ54I+H21Ne+9997TVVddpUceeUSpqal67rnnNH78eH344Yetvse25HmdOHFCkydP1qhRo3T48OGwvT9J+uEPf6jDhw/r2Wef1YUXXqhDhw6ptrY2LHkbN27U5MmT9cQTT2j8+PEqKSnRlClT9JOf/EQrVqxoNXPz5s3yeDz1X+/YsUNXXXVVsz/j7f1cCzYvFJ9riG0dpR6VIl+TUo/WCVU9Gkxme2vSeK9Hg82MxZqUetQX9Wjo36MUOzUp9WiQTAfQvXt3s2jRooCOfeKJJ0xycrKpqKgIS16vXr3Mk08+6TN2/fXXm0mTJgU8f3l5uenfv7955513zMiRI80999wT0Ov69u1rnnjiiYBzQpHpNWTIEDNz5syw5dXU1JjLL7/cLFq0yNx2223m2muvDWp9weQ9/fTTJisry5w5cyaojLbmTZ061Xz3u9/1GfvFL35hrrjiioCyZs2aZQYNGhTw2n74wx+acePG+Yxddtll5qc//WlY8hqrqakxycnJZsmSJRHJMya4n89g85577jnTrVu3ti2sjZmNBfu5Fmxeez/X7rvvPjNixIiA8xoL9jOpvXleF198sZkzZ05Y82688UYzc+bMoP6dtCXvzTffNN26dTPHjh0Leo1tyfvv//5vk5WV5TM2f/58k5mZGXS+Mcbcc889pl+/fqa2ttbv8+39XAs2r7FgP9cQn+KtHjUm8jUp9ehZoahHg81sT00a7/VoKDKNie6alHq0ZdSjocmM5ZqUerRlcXfZdUMej0fLli3TyZMnNXz48IBe8+yzz+qmm25Sly5dwpJXVVXV5PT2pKQkbdiwIeCcqVOnaty4cRo9enTQa2yrtmYaY7R27VoVFhbq29/+dtjyHnroIaWnp+vHP/5xUOtrS94bb7yh4cOHa+rUqTrvvPN0ySWX6JFHHvH5K0Qo8y6//HJt3bq1/hTpvXv3atWqVbr66qsDzisuLlZGRoaysrI0adIk7du3r9lj33///SbrGjNmjN5///2w5DV26tQpVVdX65xzzgl7Xlt/PoPNq6ioUN++fdWnTx9de+212rlzZ8BZbc1sqC2fa8Hktfdz7Y033tDQoUM1YcIEpaena8iQIVq4cGHAaw1WKPJqa2tVXl4e0M9pW/Oee+457d27V7NmzQpqbW3J877md7/7nTIzM5Wdna3p06fr9OnTYckbPny49u/fr1WrVskYo8OHD+vVV18N6nPN68yZM/rzn/+sO+64o9kzOELxuRZMXmNt+VxD/IjXelSKfE1KPXpWKOrRYDPbW5PGez3ansxYqUmpR0Mn3uvRtmbGak1KPRoAW1qeYbZt2zbTpUsX43Q6Tbdu3czf//73gF734YcfGknmww8/DFvexIkTzcUXX2yKioqMx+Mxb7/9tklKSjKdOnUKKOvll182l1xyiTl9+rQxJri/sLT1r8xtyTxx4oTp0qWLcblcJjEx0Tz77LNhy/vHP/5hMjMzzdGjR40xJui/NAebN2DAAJOYmGjuuOMOs2XLFrNs2TJzzjnnmNmzZ4clzxhj/vCHP5iEhATjcrmMJDNlypSAsowxZtWqVeYvf/mLKSgoMKtXrzbDhw83559/vikrK/N7fEJCgnnppZd8xp566imTnp4elrzGfvazn5msrKz670848trz8xls3qZNm8ySJUtMfn6+Wbdunfn+979vUlJSzP79+8OW2VBbPteCzWvv51piYqJJTEw0M2bMMB999JF55plnjNvtNs8//3xArw/2L83tzTPGmN/+9reme/fu5vDhw2HJKyoqMunp6aawsNAYE9xf/9uSN2bMGJOYmGjGjRtnPvzwQ/P3v//d9O3b1/zoRz8KS54xxvzlL38xXbt2rf9cGz9+fJvO4HnllVeM0+k0JSUlzR7T3s+1YPMaC/ZzDfEhnutRYyJfk1KP+mpvPdqWTGPaXpPGez3a1sxYqkmpR1tGPRqazFitSalHWxeXzceqqipTXFxstmzZYu6//35z7rnnmp07d7b6uv/8z/80l156aVjzjhw5Yq699lrjcDiM0+k02dnZ5q677jJut7vVnH379pn09HRTUFBQPxbuQq+tmR6PxxQXF5v8/Hzz2GOPmW7dupl333035HllZWXmggsuMKtWraofC6bYa8v769+/v+nTp4+pqampH3v88cdNz549w5L37rvvmvPOO88sXLjQbNu2zaxYscL06dPHPPTQQ63m+XP8+HGTkpLS7KVYofxQDCSvoblz55ru3bv7fH/CkdfWn8+25jV05swZ069fv6Au+2pPZls/14LJa8/nmjF1P3PDhw/3Gfv5z39u/u3f/i2g1wdb7LU378UXXzSdO3c277zzTljyampqzNChQ83TTz9dPxZMsdeW93fVVVcZt9ttTpw4UT/22muvGcuyzKlTp0Ket3PnTtOrVy/zu9/9rv5/Ki699FJzxx13tJjlz/e+9z3z/e9/v9U1hupzLZC8hkLxuYbYFK/1qDGRr0mpR5tqTz3a1sxQ1qTxXo8GmhnLNSn1qC/q0fZnGhO7NSn1aOvisvnY2KhRo8x//ud/tnhMRUWFSUlJMfPmzYtI3unTp82BAwdMbW2t+dWvfmUuvvjiVuf961//aiQZp9NZ/5BkLMsyTqfTp/jwpy3Nx/Zmev34xz823/ve90Kel5+f3+R4y7Lqj9+9e3fI39+3v/1tM2rUKJ+xVatWGUmmqqoq5HkjRoww06dP9xlbunSpSUpKMh6Pp8W85gwdOtTcf//9fp/r06dPk5+T//t//6/Jzc1tU1ZreV7//d//bbp162Y2b97c5pxg8hoK9OczVHk33HCDuemmm9qcF2hmKD/XAslry+eaMcacf/755sc//rHP2B//+EeTkZER0OuDLfbak/fyyy+bpKQks3LlyrDlHT9+3O/nmnds7dq1Ic0zxpjJkyebfv36+Yzt2rXLSDJFRUUhz7vlllvMDTfc4DP2j3/8w0gyBw8ebDGvoc8++8w4HA7z+uuvt3hcqD7XAs3zCuXnGmJfvNSjxkS+JqUeDW092tbMUNek8V6PBprZUKzVpNSjZ1GPtj/TmNisSalHAxPX93z0qq2tVVVVVYvHLF++XFVVVbrlllsikud2u5WZmamamhq99tpruvbaa1udd9SoUdq+fbs+/vjj+sfQoUM1adIkffzxx3I6ne1ee7gyA/metCUvJyenyfHXXHONvvOd7+jjjz9Wnz59Qv7+rrjiCu3evdtnx62ioiL16tVLnTp1CnneqVOn5HD4/qp6jzPGtJjnT0VFhfbs2aNevXr5fX748OFau3atz9g777wT8H2qgs2TpN/97nd6+OGHtXr1ag0dOrRNOcHkNRboz2co8jwej7Zv3x7U+tqaGarPtUDz2vK5JtX9TjXceVGq+53q27dvm9ccjryXX35Zt99+u15++WWNGzcubHkpKSlNPiemTJmiAQMG6OOPP9Zll10W0jzvaw4ePKiKigqf1zgcDvXu3TvkeaH6XHvuueeUnp7e6r+PUH2uBZonhfZzDfEhXupRKfI1KfVoaOvRtmaGsiaN93o00MzGYqkmpR5tn3ivR9uS6X1NrNWk1KMBsrX1GQb333+/Wb9+vfn000/Ntm3bzP33328syzJvv/22McaYW2+91e9fS0aMGGFuvPHGsOd98MEH5rXXXjN79uwx7733nvnud79rvva1r5njx4+36f02/gtL47yqqiqTn59v8vPzTa9evcz06dNNfn6+KS4ublNeIJmPPPKIefvtt82ePXvMrl27zGOPPWZcLpdZuHBhWPIaa8vugsHk7du3zyQnJ5v/+q//MoWFhWblypUmPT3d/PrXvw5L3qxZs0xycrJ5+eWXzd69e83bb79t+vXrZ374wx8GNP8vf/lLs27dOvPpp5+ajRs3mtGjR5tzzz3XHDlyxG/exo0bjcvlMo899pj55z//aWbNmmUSEhLM9u3bw5L36KOPmk6dOplXX33VHDp0qP5RXl4elrz2/nwGmzdnzhzz1ltvmT179pitW7eam266ybjd7oAuvWtrpldbP9eCzWvv51peXp5xuVzmN7/5jSkuLq6/jOTPf/5z/TH333+/ufXWW31e5/1s+8Y3vmFuvvlmk5+fH9D3tS15L774onG5XOapp57y+TlteElIqN9fQ8Fc5tKWvPLyctO7d29zww03mJ07d5r169eb/v37mzvvvDMsec8995xxuVzmj3/8o9mzZ4/ZsGGDGTp0qBk2bFhA79GYukvVzj//fHPfffc1eS7Un2vB5rX3cw2xr6PVo8ZEvialHg1tPRpIZntq0nivR9uSGWs1KfUo9Wiwl113hJqUejRwcdd8vOOOO0zfvn1Np06dTFpamhk1alR94WVM3X9Ub7vtNp/XfPLJJ0aSz3Hhylu3bp256KKLTGJiounRo4e59dZbg7pJaGONi4TGeZ9++qmR1OQxcuTIsGU+8MAD5sILLzRut9t0797dDB8+3CxbtixseY2Futjzl7dp0yZz2WWXmcTERJOVlWV+85vfBHzJT7B51dXVZvbs2aZfv37G7XabPn36mLvuuivg/5DeeOONplevXqZTp04mMzPT3HjjjT6X//h7f3/5y19Mdna26dSpkxk4cGDAN8lvS17fvn39/ozOmjUrLHnt/fkMNu/ee+81559/vunUqZM577zzzNVXX20++uijgPPakmlM+z7Xgs0Lxefa3/72N3PJJZeYxMREk5OTY/70pz/5PH/bbbc1+dzy93PTt2/fsOSNHDnSb15Ln0XtfX8NBVvstSXvn//8pxk9erRJSkoyvXv3Nr/4xS9avbdOe/Lmz59vLr74YpOUlGR69eplJk2aZA4cOBDwe3zrrbeMpPqboDcU6s+1YPPa+7mG2NfR6lFvRiRrUurR0NajgWS2pyaN93q0LZmxVpNSj1KPBluPtjUzlmpS6tHAWca04bpNAAAAAAAAAGhFh7jnIwAAAAAAAIDIo/kIAAAAAAAAICxoPgIAAAAAAAAIC5qPAAAAAAAAAMKC5iMAAAAAAACAsKD5CAAAAAAAACAsaD4CAAAAAAAACAuajwAAAAAAAADCguYjAISAx+PR5Zdfruuvv95nvLS0VH369NEDDzxg08oAAADQEVCPAohWljHG2L0IAIgHRUVFGjx4sBYuXKhJkyZJkiZPnqyCggJt3rxZnTp1snmFAAAAiGfUowCiEc1HAAih+fPna/bs2dq5c6fy8vI0YcIEbd68WYMGDbJ7aQAAAOgAqEcBRBuajwAQQsYYffe735XT6dT27dv185//XDNnzrR7WQAAAOggqEcBRBuajwAQYp988okuuugiXXrppfroo4/kcrnsXhIAAAA6EOpRANGEDWcAIMQWL16szp0769NPP9WBAwfsXg4AAAA6GOpRANGEMx8BIIQ2bdqkkSNH6u2339avf/1rSdKaNWtkWZbNKwMAAEBHQD0KINpw5iMAhMipU6f0ox/9SD/72c/0ne98R88++6zy8vK0YMECu5cGAACADoB6FEA04sxHAAiRe+65R6tWrVJBQYE6d+4sSXrmmWc0ffp0bd++XRdccIG9CwQAAEBcox4FEI1oPgJACKxfv16jRo3SunXrNGLECJ/nxowZo5qaGi53AQAAQNhQjwKIVjQfAQAAAAAAAIQF93wEAAAAAAAAEBY0HwEAAAAAAACEBc1HAAAAAAAAAGFB8xEAAAAAAABAWNB8BAAAAAAAABAWNB8BAAAAAAAAhAXNRwAAAAAAAABhQfMRAAAAAAAAQFjQfAQAAAAAAAAQFjQfAQAAAAAAAIQFzUcAAAAAAAAAYUHzEQAAAAAAAEBY/P8rSXmhwYILLgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFGkKCigKKmiwxUqwxQr2ht1YI2AssfdugkZj1yj2CipGY++KqGDE3qLYSewVFEWlSZnvD76Zd5ct7AJL8/yeh0fZKffOzuzO4c7MvTJBEAQQERERERERERERERERUZ5jkNMVICIiIiIiIiIiIiIiIqKM4cU+IiIiIiIiIiIiIiIiojyKF/uIiIiIiIiIiIiIiIiI8ihe7CMiIiIiIiIiIiIiIiLKo3ixj4iIiIiIiIiIiIiIiCiP4sU+IiIiIiIiIiIiIiIiojyKF/uIiIiIiIiIiIiIiIiI8ihe7CMiIiIiIiIiIiIiIiLKo3ixj4iIiIiIiIiIiIiIiCiP4sU+IiIiIiKiXCg5ORlLly5F7dq1YWlpCZlMBplMho4dOwIAQkJCpNdCQkKytGx9rpuIiIgoL2NOIqLciBf7iHIp+eCg7c+oUaNyutqUDnd3d2l/tWjRQuvl3NzcdD4ePnz4oLSeO3fuYMGCBWjXrh2cnJxgamoKc3NzlClTBj169MCRI0eycGuJiIhyN3V5y8jICNbW1ihTpgwaNWqE0aNHY/fu3fjy5Uu21q9nz54YNWoULl++jE+fPmVr2XkFsxUREVHO+/LlC7Zt24a+ffuiYsWKsLGxgbGxMWxtbeHq6orBgwfjxIkTSElJyemqUhbatGmTlJMMDQ3x/PlzrZbz9/fXOYctWbJEaT3R0dHYunUrvL29Ub16dVhZWcHY2BhFixaFu7s7Fi1apDK/EeVXRjldASKir8WTJ09w+vRp6feTJ0/i5cuXsLe3z5byPT09sXnzZpXTHj9+jMePH+Ovv/5Cy5YtsX37dhQuXDhb6kVERJTbJCcn4/3793j//j0eP36MM2fOYMmSJShatChGjBiBSZMmwchIv39KnTt3Djt37gQAtG3bFqNGjYKdnR1kMhksLS31WrY2pk+fjhkzZgAABEHIkTowWxEREeW8PXv2YOzYsXj8+LHStHfv3uHdu3e4du0aVq9ejfLly2Px4sVo27Zt9lc0HY8fP0aZMmUAAH5+fvDy8srZCuUBmzZtkv6fkpKCgIAATJo0KVvKPnr0KDp16oSEhASlaW/fvkVISAhCQkKwcOFC/Pnnn3B3d8+WehHlJF7sI8oDBg8ejCFDhqQ7n62tbTbUhjJqy5YtEAQBJiYmSE5ORlJSEgICAjBhwgSd1hMWFqbVfGkbAl+8eAEAsLa2RteuXeHm5gYnJycYGRnh+vXrWLx4Me7fv4/AwEB4eHjg9OnTMDDgA+BERPR1SJu3Pn/+jPfv3+PmzZs4efIkTpw4gcjISPzyyy84ePAgDh06hKJFi+qtPidOnAAAGBoa4s8//1R5gc/NzU1vF9r0ue6swmxFRESUs2bOnIlff/1V+r158+Zo3749vv32WxQuXBhRUVG4f/8+Dh48iKCgIDx48ABTp07NlRf7dJEXcpK+PXv2TOrCtGDBgvj8+TO2bNmi88W+WbNmoUOHDunOV6JECYXf3717h4SEBBgYGKB58+Zo1aoVqlevjsKFC+P58+fYunUr/vrrL7x+/Rrt2rXD2bNnUaNGDZ3qRpTX8GIfUR5QrFgxVKlSJaerQZm0ZcsWAEC7du0QFxeHI0eOYMuWLTo3SGX0WChVqhTWrFkDT09PmJiYKEyrVasW+vTpg5YtWyI0NBShoaEICAhA3759M1QWERFRXqMub7Vu3RoTJ07EnTt30KdPH1y/fh2XLl1Cp06dcOrUKRQoUEAv9REvJNnZ2eWKJ/lyI2YrIiKinOPn5ydd6CtWrBh27NiBxo0bK83XrFkzDB06FLdu3cLo0aMRGRmZ3VUlPRBvujI2NsbChQvx888/486dO7hy5Qpq1qyp9XocHBwylMWMjY0xaNAgTJkyBaVLl1aY5uLiAg8PD9SvXx8jRoxAbGwsxowZg1OnTulcDlFewtsKiYiywYULF/DgwQMAQO/evdGnTx8AwK1bt3Dt2rVsqYOfnx8GDhyo1BglMjc3x6pVq6Tfd+3alS31IiIiygu+/fZbnD17Fi4uLgCAs2fPYsWKFXorT+ySyNjYWG9l5GXMVkRERDnnxYsXGDZsGADAwsICp0+fVnmhT16VKlUQGBiIcePGZUcVSc/Em65at24NT09PWFlZAYDaLs6zWvfu3bF69WqlC33yhg8fLl14PH36NN6+fZstdSPKKbzYR5RPCYKAli1bQiaTwcjICOfPn1c7r6+vrzTgrY+Pj8p5Pn36hEWLFqFJkyYoXrw4ChQoAEtLS7i4uGD48OE4e/as2vUnJydj06ZNaNeuHezt7WFiYgIbGxs0aNAAixcvRlxcnMZtuXr1Kn766SeUL18eFhYWMDU1RalSpeDq6oqhQ4fiwIEDKrtPiI+Ph6+vL9zc3FC0aFEYGxvD2toaFSpUQOvWrbF48WKVfcrrgxh2ihQpgrZt26Jjx44oVKiQwrTcoEqVKlJ3sP/9918O14aIiCh3MTMzw5YtWyCTyQAACxcuRGJiotr5X79+jalTp6JmzZqwtraGiYkJSpUqhR9++EHqpjMtMZOJY6A8efJEek38EYWEhEivid0oqXPkyBH06dMHZcuWlfJUmTJl0KVLF/j7+yM2NlZhfnXr9vf3h0wmk8brk6+z/I++MxazFRERUc75448/pOzw22+/oWLFilotZ2BgIN2go0poaCh+/PFHODk5wdTUFIULF4aLiwumTZuW7hOBr169wsqVK9G1a1eUK1cOFhYWMDExgYODAzp06IC//voLKSkpKpeVyWTSeH0A4O3trZRtpk+fLk1PL4N5eXlBJpPByckJAPDhwwf8+uuvqFy5MiwsLFC4cGE0atQIW7du1bhNooMHD6JVq1YoWrQozM3NUb58eYwfPx6vX78GADg5OUEmk2XbOIOXLl3CvXv3AAB9+vSBqakpunbtCgDYvn27xnyc3dzc3ACkjin46NGjnK0Mkb4JRJQrBQcHCwAEAIKPj0+G1vHy5UvBxsZGACCULVtW+Pjxo9I8t27dEkxNTQUAQp06dYTExESleYKCggRbW1upPup+VHny5IlQvXp1jcs5OzsL9+/fV7n84sWLBQMDg3TL/vTpk9K2f/vtt+kuN3bs2Ay8s7pJSEgQrK2tBQDCwIEDpdc9PT0FAEKxYsVUvu/yGjdurPF9zkqWlpYCAKFq1ap6L4uIiCgnZTRvtWjRQlru7NmzKucJCAgQLCwsNOaQn376SSkDpJdd5LOAfP2Dg4NV1uPt27dC06ZN012nn5+f2vdGft1+fn5a1fHRo0dav5+6YrYiIiLKOSkpKVIbkYWFhcq2Jl0lJycLQ4cO1ZgtrKyshOPHj6tcPikpSau2o+bNmyu1HwmCdvlLPiuml8HETOLo6Cjcu3dPcHJyUrveoUOHanxvhgwZonbZ4sWLC9euXRMcHR0FAIKnp6cub3uGifvKyspKiIuLEwRB8T3Zv3+/xuXl82TaDJrVhg8fLpV19epVvZZFlNP4ZB9RPlaiRAmsX78eAPDw4UOMGDFCYXpCQgJ69eqF+Ph4WFhYICAgAEZGikN5BgcHo3Xr1nj79i0MDQ3h5eWFvXv34urVqzh79izWrVuHzp07q+xi6t27d2jQoAFu3LgBExMTDBs2DDt37sTly5cRHByMyZMnw9zcHP/++y9at26N6OhoheVv3ryJcePGISUlBWXKlMGiRYtw8uRJXL9+HX///TfWrVuHXr16wcLCQqns4cOH486dOwBS7zLas2cPLly4gMuXL+PAgQP49ddfUb169Uy9v9o6dOgQoqKipLqIxP9HRETg2LFj2VKX9Fy/fh0fP34EAFSqVCmHa0NERJQ7NWvWTPr/mTNnlKbv2LEDP/74I2JiYlC2bFksXrwYx44dw9WrV7F79260adMGALBhwwal8eXCwsIQFhaGDh06AADs7e2l18QfbcXGxsLd3R0nT54EALi6umLNmjU4e/Ysrly5gr1792L06NGwt7fXep0dO3ZEWFgYBg8erFRn+R8HBwet16krZisiIqKcc/v2bak7xIYNG0pP1mfGpEmTpO7Ry5Qpg9WrV+PSpUsIDg7G6NGjYWxsjOjoaLRr1w43btxQWl74/96emjRpggULFki5KyQkBBs3bsT3338PAAgKCsLQoUOVlg8LC0NgYKD0+6xZs5SyzZAhQ3TertjYWHh4eODdu3eYNm0aQkJCcOXKFaxbtw4lS5YEAKxYsUKhbHnz58/HypUrAaSOFbxixQpcvHgRf//9N6ZOnYro6Gh07dpVqYcGfUpMTMT27dsBAF26dIGpqSkAoHHjxihVqhSA3NXLwunTpwGkdo3v7Oycw7Uh0rOcvtpIRKrJ3xEzePBgISwsLN2fL1++qFxX//79pXXt3LlTen3MmDHS6+vWrVNaLi4uTrC3txcACObm5mrvGBcEQXj69KnSa7169ZLuZHr48KHK5a5duybd9T5lyhSFab/88ot0p9jr16/Vlv3hwwchOTlZod7GxsZaPbn37t07jdOzQocOHQQAgpOTk5CSkiK9npycLL2/3bp107gO+bvPtTkWnj9/nqG6du3aVSpn165dGVoHERFRXpHRJ/tOnDghLdevXz+FaZGRkYKVlZU0Td0TZlOmTBEACAYGBsK9e/eUpsvfEa5N/VXltNGjRyvcNS6fQ+QlJCQoZa301u3j45NtT8alxWxFRESUcwICAqRz29SpUzO9vps3b0pP5VWpUkV4//690jxHjx6V5qldu7bS9JSUFCE8PFxjOb/++qsAQJDJZMKDBw+Upj969Ejrp820fbIP///0261bt5TmCQ8Pl3raat++vdL0V69eSdOdnZ2FyMhIpXnOnj0rFChQQCorO57s27t3r1TeqVOnFKZNnDhRACCYmJgIUVFRatch/2TfrFmztMpiGXHo0CGpnHbt2mVoHUR5CS/2EeVS8sFB2x913SV9/vxZKFeunABAsLa2Fp4/fy4EBQUJMplMACB07NhR5XJr1qyR1r1kyRKd6v/o0SPB0NBQACAcPHhQ47wTJkwQAAj29vYKrw8YMEAAILi4uOhU9osXL7TuOkDf3r59K114THsxUxAEYdy4cQIAwdTUVGWgFck3SGnzk5GAt2vXLml5V1dXtQ2CRERE+UVGL/Zdv35dWq5Tp04K03777TcBgODg4CDEx8erXUdiYqLg4OCgNiNk9mLf+/fvBXNzc+m8npSUpPX2pbduQci5i33MVkRERDlr6dKl0vlt6dKlmV7f4MGDpfVduHBB7XzyN7JfunRJ53KSkpKk7kcXLlyoNF1fF/t8fX3VrqdHjx5SW11ac+fOldZx6NAhteuQv7krOy72derUSQAglCxZUinb3Lp1S6rLqlWr1K5D227h5X909e7dO6l7U0NDQ+HatWs6r4Mor2E3nkRfAfkuOqOiotCrVy94eXlBEASUKFEC69atU7ncoUOHpOUHDBigU5mHDx9GcnIyzM3N0bp1a43zNmrUCADw8uVLPH36VHq9RIkSAIA7d+7g0qVLWpdtY2ODAgUKAAC2bNmCpKQkneqelbZt2yYNTKxqEGrxtfj4eOzcuTNb6ybv7t278Pb2BgCYmZlhy5YtkMlkOVYfIiKi3KxgwYLS/z99+qQw7cCBAwCAdu3awcTERO06jIyMpC6lzp8/n+V1PHXqlNSl04gRI2BoaJjlZeQEZisiIqKcJZ99VA2roqsTJ04AACpXrow6deqonU++XUpcRp2UlBS8fPkS9+/fx61bt3Dr1i3cvXtX6jpTVVeg+iCTydCrVy+1011dXQEAUVFR+PDhg8I0cRttbW01tqv17ds38xXVUlRUFA4fPgwA6NWrl1K2qVy5MmrUqAEgtT0upyQnJ6N379548uQJAGDatGlwcXHJsfoQZRde7CPKA3x8fCCkPomr8cfJyUntOmrXrg0fHx8AwN9//40XL15AJpPBz88Ptra2Kpe5fv06gNTwYW5urlOdr1y5AiC1f3IjIyPIZDK1P+3atZOWe/36tfT/nj17wtjYGAkJCahfvz48PDywevVq3Lp1S+qPXRUTExN0794dALBr1y44OztjwoQJOHLkiFJ40rdNmzYBAL777juV47RUr14dVapUAaB9n+baHAv+/v5a1/Hly5do06YNPn36BJlMho0bN3JMGSIiIg3kG7ksLS2l/ycnJ+Off/4BAKxZs0Zj/pHJZNi1axcAxfyTVcQcB6SOp5NfMFsRERHlLPkx+mJiYjK1roSEBISHhwOAxgt9AODi4gJjY2MAwK1bt5SmC4KAgIAAuLu7o2DBgnBwcEDFihVRtWpV6UfMaeKYg/pma2sLGxsbtdOtra2l/6e9gUzcxho1asDAQH0TftWqVaUb3vVt27Zt+PLlCwDVN13Jv37u3Dn8999/6a7Tz89PqyymiyFDhkjjN7dr1w6//PKLTssT5VW82Ef0FZk8eTLKli0r/d6/f3+0bNlS7fxi+BGfsNNFRESE7hUEFAYVrlixIrZt24YiRYogKSkJhw4dwuDBg1G1alUUK1YMP/74I86cOaNyPcuXL4eHhwcA4MmTJ1iwYAHatm0LGxsb1KpVCwsWLEB0dHSG6qitu3fvShc91YUgAPjxxx8BAGfPnsWjR4/0Wqe0oqKi0KJFCzx+/BgAsGzZMvTo0SNb60BERJTXyDcQyTfSREVFZahHAfn8k1Xk65iRLJcbMVsRERHlPPmLV2/evMnUut6/fy/9v1ixYhrnNTY2lsqOiopSmBYfH4+2bdvixx9/REhICOLi4jSuK73pWSW9G+flL+IlJycrTBPfm6JFi2pch6GhoUIe1SfxRqpq1aqhatWqKufp1auX1KOEtjdeZaXJkydj7dq1AFJveNuxY0e+6eGCKD1GOV0BIso+hw8fxsOHD6XfQ0NDERcXBzMzsywvSwwptra2CA4O1nq5MmXKKPzepUsXNGvWDH/99RcCAwNx5swZREZG4u3btwgICEBAQAA8PT2xceNGhZBkaWmJAwcO4NKlS9ixYwdCQkLwzz//IDk5GVeuXMGVK1ewcOFC7Nu3T+pCK6vJh5oxY8ZgzJgxGucXBAGbN2+WnsDUt0+fPqFVq1a4ffs2AGDmzJkYOnRotpRNRESUl8k/NVehQgXp//KNNP3798fIkSO1Wl923Y2d1zFbERER5bzq1atL/7927VqWrTcz3V3//vvvOHr0KACgcePGGDp0KL777jsUL14cZmZmUntRo0aNcObMGZ2fFCPg/v370hA7N2/e1Gp/BQQEYPr06dnWlfm8efMwd+5cAKm9QBw6dEgvbZ5EuRUv9hF9Jd68eYP+/fsDSL0Q9vHjR9y9exfjx4/H8uXLVS5ja2uL58+f49WrVzqXJ95t9enTJ1SqVClTd9FYWVlh4MCBGDhwIIDUu7r379+PZcuW4eXLl9i0aRNcXFxUNqjVrl0btWvXluoSEhICf39/7NmzBxEREejSpQv++++/LD/5p6SkYOvWrTovt2XLlmxpkIqLi4OHhwcuX74MABg/fjymTZum93KJiIjyg6CgIOn/DRo0kP4vf1e1IAhSd5I5Qb6b9levXindUJXXMFsRERHlDpUrV4atrS3evn2LM2fO4OPHjwrdmuuiSJEi0v/Te0owKSkJ7969A6CcudavXw8g9UmuU6dOqe32Mu0TgblZkSJF8Pr1a0RGRmqcLzk5WeEJSX3JyFN6Dx8+RGhoaLZ0Kb9y5UpMmjQJAFCpUiUEBgZm+Lgkyqt4sY/oK9GvXz9ERkbCwMAAhw4dwtKlS7F7926sWLEC7dq1Q6tWrZSW+e677/D8+XNcuXIFsbGxOo3b5+Ligj///BMJCQm4cuVKun2v66JSpUqoVKkSevfujUqVKiEmJgY7duxI9+75QoUKwcPDAx4eHhg5ciR8fX3x6tUrhIaGonnz5llWPwAIDg7Gs2fPAADDhw9HvXr1NM5/8eJFLFmyBP/99x/Onj2L+vXrZ2l95CUmJqJLly44ffo0AODnn3/G/Pnz9VYeERFRfnLr1i2cPHkSAFCqVCnUrFlTmlagQAFUrlwZt2/fxtmzZ3OqigBSc5zo77//zvKLfdl1h7aI2YqIiCh3kMlk8PT0xKJFixATE4P169en+7S9OiYmJihXrhzCw8Nx8eJFjfNev34diYmJAKBwQ1VUVJQ0/nG3bt3UXuj7/Pkz7t+/r3b92Z1t0lO5cmW8fv0a//zzD1JSUtRuV1hYGBISEvRaF3E8RCC1C8/JkyenO3+/fv0QHx+PzZs36/1i35YtWzBs2DAAQNmyZXHixAmFG9+Ivha82Ef0FVi5ciWOHDkCAJg4cSIaNmyIypUr48KFC3jx4gW8vb0RFhamdCL08PDAgQMHEBsbi7Vr12LUqFFal+nh4YEJEyZAEAQsWbIE27Zty8pNApDawFa+fHlcv35d58GVmzZtCl9fXwD6GZhZvOPJ0NAQ06ZNS7fv+WbNmmH58uVISkrC5s2b9dYglZycjF69ekndW/z4449YuXKlXsoiIiLKb+Li4tC3b1+p66dx48bByEjxT6r27dvj9u3buHfvHgIDAzWOj6xP7u7usLCwQExMDJYtW4Y+ffpk6Xglpqam0v8TEhJgYmKSZetWhdmKiIgo9xg9ejRWrVqF2NhY/Prrr2jTpg0qVqyY7nIpKSnYtm0bevfuLb3WrFkzhIeH4/bt27h06ZLUO1Na4tN74jIi+fGSY2Ji1Ja9fv16jWMrp802Oa1p06Y4efIk3r59i6NHj6Jt27Yq58uOcfFCQkLw9OlTAEDfvn21Go/4r7/+wv79+7Fz504sW7ZM4f3NSnv27IG3tzcEQUDJkiVx8uRJ2Nvb66UsotxO9S0BRJRv3L9/H+PHjwcAuLq6YsaMGQBSuzzw9/eHTCbD69evpS4y5fXp0wcODg4AgKlTp0p3K6vy/Plzhd8rVKiAbt26AQC2b9+OxYsXa6zno0ePlC4I7tu3Dx8+fFC7zLNnz3Dv3j0AimP9PXz4UGNdAeD48ePS/9Pe6R4SEgKZTAaZTAYvLy+N61ElJiYGe/bsAZDahUR6jVFAaldbjRs3BgDs2LFDL8FSEAQMGDAAu3btApA6HqKfn1+uu3uNiIgoN7pz5w4aNGggjdfXuHFjDB48WGm+kSNHomDBggAAb29vafw2dQ4fPoybN29meX0LFy6MQYMGAQCuXr2KUaNGqR2fJjExERERETqtv0SJEtL///vvP43zMlsRERHlLw4ODtKQMDExMWjcuHG67TB37txBq1atsGDBAoXXBw8eLD21NnDgQHz8+FFp2ePHj2PDhg0AUodrqVWrljStaNGiKFy4MABg27ZtKs/5ly9fxi+//KKxfjY2NtI4yullm+zg6ekp3Uw1atQolTeqnz9/HitWrEh3XU5OTlIWywj5C4pdunTRapmuXbsCAKKjo7F///4MlZue48ePo2fPnkhOTkaxYsVw4sQJODk56aUsoryAT/YR5QERERG4detWuvOZmZnhm2++kX5PTExE7969ERsbCzMzMwQEBMDY2Fia3qxZM4wcORJLlizB3r17sXHjRvTr10+abmpqii1btqBFixaIjY1Fs2bN8OOPP6Jjx44oWbIkEhIScO/ePRw5cgQHDhxQClSrVq3ClStX8PDhQ4wdOxb79+9H3759UblyZZiYmODdu3e4ceMGjh07hlOnTqFTp07o2bOntPySJUvQu3dvtG3bFk2aNEGlSpVgZWWF9+/f48qVK1i2bBni4uIApHaXJHr69Cnc3d3x7bffolOnTqhZs6Z00fLZs2f466+/sGPHDgBAjRo1srSLUSD1rqLPnz8D0D4EifOePHkSHz58wIEDB6SLpWlpcywAgKOjIwoVKiT9Pm7cOPj5+QFI7fJiypQpuHv3rsZ15ORYQ0RERNkpbd6KiYnB+/fvcfPmTZw8eRJBQUHSxbK6deti165dCrlKZGdnh02bNqFr16549eoVatasCS8vL7Ru3RolS5ZEYmIinj9/jkuXLmHXrl14+PAhDh48iGrVqmX5Ns2cORNBQUEICwvD8uXLcf78eQwaNAhVq1ZFgQIF8Pz5c5w5cwbbtm3DrFmzdLoQJ9+N5ujRozF16lSUKFFCakRycnJSeuoxo5itiIiIch9vb288f/4cv/76KyIiIuDm5oYWLVqgQ4cOqFSpEgoXLoyoqCg8ePAAhw8fxrFjx5CcnIzq1asrrKdq1aoYO3YsFixYgBs3buC7777DxIkT4eLigpiYGBw8eBC+vr5ITk5GgQIFsGbNGoXlDQwM0Lt3b6xYsQI3b95EgwYNMGbMGJQrVw7R0dE4cuQIVq5ciYIFC8Le3h4PHjxQuT1GRkaoVasWzp49i40bN8LFxQU1atSQ8p61tbXCWIH6Zm9vDx8fH0yZMgX//vsvXF1dMWnSJNSsWRMJCQkIDAzEokWLYG9vj5iYGERGRurlhqPY2Fjs3r0bQOpDBNpeTPPw8ECBAgXw5csXbN68Gd27d1c534sXL7TKYpaWlihdurT0+4ULF9CpUyd8+fIFxsbG+OOPP5CYmKhxXSVLlpQuDBPlSwIR5UrBwcECAJ1+qlevrrCOyZMnS9NWrFihspz4+HihSpUqAgChYMGCwn///ac0z7Fjx4QiRYqkW74qr169Eho2bKhV/b29vRWWbdy4cbrLGBgYCDNnzszQe1exYkXh4cOHGt97T09PDXtJtWbNmgkABJlMJrx48ULr5V6/fi0YGBgIAIR27drp/F6k/dm7d6/COhwdHXVeBxERUX6ma94qWrSo8PvvvwuJiYnprvvAgQOCtbW1Vlnm1KlTSst7enoKAARHR0et6h8cHKxynsjISKFRo0bp1sPPz0/ndf/www9q1/fo0SOV62K2IiIiyl92794tODk5aXUerFy5shAYGKi0juTkZGHIkCEal7WyslK5rCAIwocPH4QaNWqoXdba2lo4ffq0dP5v3LixyvUcOnRIkMlkKtfh4+MjzZdeTtImxwmCIPj5+anMTqKUlBRh0KBBarfL1tZWuHz5slCqVCkBgPDzzz+rLEc+s+gqICBAWnbOnDk6LdumTRsBgGBkZCS8fv1ael1+u7X96dChg8K6fXx8dF5H2rxLlN+wG0+ifCo0NBTz5s0DALRp0wZDhgxROZ+JiQm2bt0KExMTfP78GX369EFycrLCPC1btsTDhw8xe/Zs1KtXDzY2NjA0NISlpSW+++47jBo1CpcuXVK5/uLFi+Pvv//GoUOH0Lt3b5QtWxbm5uYwNjZG0aJFUa9ePYwdOxanT5/Gxo0bFZbdtm0b1q5di169eqFGjRooXrw4jIyMULBgQVSuXBmDBw/G9evXMW3aNIXlGjZsiJCQEEyePBnu7u5wdnZGoUKFYGxsDDs7O7Ro0QKrV6/GP//8o9SFZ2a9ePECp06dAgB8//33OvUTbmdnJ40nc+zYMURGRmZp3YiIiEg7BgYGsLKyQunSpdGwYUOMGjUKu3fvxvPnzzFlyhStnljz8PDAo0ePsHDhQjRp0gR2dnYwNjaGmZkZypQpg3bt2mHx4sV4/Pgx3N3d9bYttra2OH36NPbs2YOuXbuiZMmSMDExgampKcqWLYtu3bph69atCr0raCsgIADz589H7dq1YWVlJXXBlZWYrYiIiHK3zp074/79+9i6dSv69OmDChUqoEiRIjAyMoK1tTW+++47DBkyBKdOnUJYWBhatGihtA4DAwOsWLECf//9N3r37o3SpUvDxMQElpaWqFGjBqZMmYLw8HCVywKAlZUVzp49i5kzZ6Jq1aowNTVFwYIFUalSJYwbNw43btxAo0aN0t2Wtm3b4uTJk+jQoQPs7e1V9uKQnWQyGVavXo39+/ejRYsWsLa2hqmpKZydnTFixAhcv34dNWvWlLo+tbKyyvI6ZKQLz7TzJyUl4c8//8zSehGRMpkgqBm4gYiIiIiIiIiIiIiIcqXnz5+jVKlSAID169fjp59+yuEaEVFO4ZN9RERERERERERERER5zLZt26T/161bNwdrQkQ5jU/2ERERERERERERERHlIjExMfj48SNKlCihcvr169fRuHFjfPr0Ca6urrhy5Uo215CIcpP0B5sgIiIiIiIiIiIiIqJsExkZiUqVKqFjx45o1aoVKlSoABMTE7x8+RLHjh3Dhg0bEBcXB5lMhsWLF+d0dYkoh/HJPiIiIiIiIiIiIiKiXOTx48coU6aMxnkKFCiAdevWoW/fvtlUKyLKrXixj4iIiIiIiIiIiIgoF0lMTMTevXtx7NgxXL58GZGRkYiKioK5uTmcnJzQrFkzDB8+HI6OjjldVSLKBXixj4iIiIiIiIiIiIiIiCiP+urG7EtJScHLly9RqFAhyGSynK4OERERZYIgCPj06RPs7e1hYGCQ09X56jFnERER5R/MWbkLcxYREVH+oK+M9dVd7Hv58iVKlSqV09UgIiKiLPTs2TOULFkyp6vx1WPOIiIiyn+Ys3IH5iwiIqL8Jasz1ld3sa9QoUIAUt9IS0tLvZXTvXt3/PXXX3pbf3aWwzJYBstgGXmljOwqh2XknjI+fvyIUqVKSed3yln5KWexjNxXDstgGSyDZbCM7C2HOSt3Yc5iGSwjd5TDMlgGy2AZmaWvjPXVXewTuzqwtLTUazgyNjbW6/qzsxyWwTJYBsvIK2VkVzksI3eVAYBdGeUS+SlnsYzcVw7LYBksg2WwjJwphzkrd2DOYhksI3eUwzJYBstgGVklqzMWO10nIiIiIiIiIiIiIiIiyqN4sY+IiIiIiIiIiIiIiIgoj+LFPiIiIiIiIiIiIiIiIqI8ihf7iIiIiIiIiIiIiIiIiPIoXuwjIiIiIiIiIiIiIiIiyqN4sY+IiIiIiIiIiIiIiIgoj+LFPiIiIiIiIiIiIiIiIqI8yiinK5DXJCYmIjk5Od35bGxsEB8fr/f6ZEc5LINlsAyWkVfKyK5yWEbuKePLly9wdHTEly9fsuX4+toZGhrC2NhYL+sWBAGJiYlISUlJd978cOzmpzKyqxyWwTJYBstgGdlbDnNW9tJnztK2LQvIP58RlvH1lZFd5bAMlsEyWEZmaZOxMpILZIIgCFlRwbzi48ePsLKyQnR0NCwtLXVa7u3bt0hISNBq/oiICBQrViyj1dRadpTDMlgGy2AZeaWM7CqHZeSeMlJSUvDs2TOUKlUKBgbssCA7mJiYwNbWVmWOykjO+vLlCyIiIhAbG6t1I1R+OHbzUxnZVQ7LYBksg2WwjOwthzkr+2V1ztK1LQvIP58RlvH1lZFd5bAMlsEyWEZmaZuxNOUCVfhknxY+fvyIFy9eoGDBgrC1tYWxsTFkMpnGZWQyGZycnPRet+woh2WwDJbBMvJKGdlVDsvIPWUkJycjLi4OTk5OMDQ01Fs59L8n76Kjo/HixQsA0OnGKVViY2Px7NkzGBoaokiRIjAzM4OhoWGuyFksI/eVwzJYBstgGSwje8thzso++shZGWnLAvLPZ4RlfH1lZFc5LINlsAyWkVnpZayM5gJe7NPC27dvUbBgQZQsWVKrYASkPmZpamqq55plTzksg2WwDJaRV8rIrnJYRu4pQ3wSzNTUlI1Q2cDMzAyFChXC8+fP8fbt20w3Qr19+xbGxsZwdHTUaf/lh2M3P5WRXeWwDJbBMlgGy8jecpizspc+cpaubVlA/vmMsIyvr4zsKodlsAyWwTIyS5uMlZFcwH4Y0pGYmIiEhARYWVnpFI6IiIiI8iOZTAYrKyskJCQgMTExw+tJSkpCTEwMrK2t2YBIREREhKzLWWzLIiIiyvt0zQW82JcO8SqrvgZJJiIiIsprxFyk7Rh7qiQlJQFI7YOeiIiIiFJlRc5iWxYREVH+oEsu4MU+LfFOKCIiIqJUWZmLmLGIiIiI/oc5i4iIiES6nMt5sY+IiIiIiIiIiIiIiIgoj+LFPiIiIiIiIiIiIiIiIqI8ihf7iIiIiIiIiIiIiIiIiPIoo5yuQL4wvZPSS+WyqegMlzN9b1ZWg4iIiEg/cihnZaoM5iwiIiLKC/JazmLGIiIiUotP9lGWcHJygkwm0/pn+vTpOV1lIsoEmUwGJycnpdd9fHwgk8lQtWpVfPnyReWygiCgadOmkMlk+Omnn3QqV/yuefz4sdZ1IiLKy5ixiL4uzFhERNmHOYvo68KcRfkdn+yjLFW/fn04OzurnX7s2DG8efMmG2tERNlp2rRpOHDgAP755x/4+Phgzpw5SvMsW7YMp06dgqOjI/74448cqCURUd7DjEX0dWPGIiLSH+Ysoq8bcxblF7zYR1mqf//+8PLyUjvdzc2NAYkoHzM2NsbmzZtRs2ZNLFiwAB06dEDdunWl6eHh4Zg8eTJkMhk2btwIS0vLHKwtEVHewYxF9HVLL2M9fvyYGYuIKIOYs4i+bsxZlF+wG08iIspSVatWxfTp05GcnAxPT0/ExcUBgPR7bGwshg4diiZNmuRwTYmIiIjyDk0Za+LEicxYRERERBnEnEX5AS/2Ua4SEhKSbh/pqty7dw/e3t5wdHSEiYkJrK2t0bRpU+zYsUPl/NOnT1fb37q/vz9kMpnKu7oeP36sti/lyMhIbN68GW3atEGZMmVgZmYGS0tL1KxZE/PmzUN8fLzGbffy8tK43arqIy7j7++vcd3aEre9fPnyaNSokdr5mjdvLtUrbdnp1Ul8D93d3VVO12VfpqSkoEePHpDJZOjVqxdSUlIUpvv6+qrczykpKejVqxdkMhl69uyptBwAXL16Fb1790bp0qWlerRs2RJHjhxR+74kJSVh48aNaNasGWxtbWFiYoKSJUuiWbNmWLZsmTSfLmMCyO93Nzc3pemFChVCxYoVMXr0aDx9+lSpTpGRkfD19c3wcZlREyZMQO3atfHgwQNMmTIFALB+/XqcP38ezs7OmDdvntpl79y5g27dusHW1hZmZmaoUqUKFi5ciOTkZL3UlYjoa5DXM5avry/69++f5zOWmFnUyYqMpW7Mj6zMWNOnT0f58uWZsXJJxlqwYAGuX7/OjEVElEPyes7KL21ZzFnMWZnFnEV5HbvxpFzJzs4OrVq1Unht06ZNKuc9fPgwunbtivj4eFSoUAGdO3dGREQETp8+jVOnTiEwMBAbNmzQe50DAwMxa9YsODg4wNnZGXXr1kVkZCQuXryISZMmYf/+/QgODoaJiYnG9aTtK/7ff//F2bNn9V19JWfOnME///yDGjVqKLx++/ZtnDhxQi9l6rovDQwMsGXLFsTExGDbtm2wtLTE6tWr0y1n8ODB2LZtG9q1a4ctW7bAwEDxvoelS5dizJgxSElJQY0aNVCnTh28fv0aISEhOH78OGbMmIFff/1VYZno6Gi0a9cOoaGhMDY2Rr169WBvb4/Xr1/j5s2bOHnyJIYPHw4A8PT0VFj28+fP2L17NywsLNC1a1eFaQ0aNFCqf8uWLVG8eHEAwIcPH3DmzBksWbIEW7duxc2bN6VpQOpxOXLkyHSPy6xmaGiITZs2wcXFBUuXLkW5cuXg6+sLAwMDbNq0Cebm5iqXCw0NRatWrRATE4OyZcuiefPmePv2LaZMmYILFy5keT2JiL42eTVjjRw5EnZ2dqhYsWKez1hXrlxhxvqKMlZ6x6WuVGUsHx8fZiwiolwgr+as/NSWxZzFnJUZzFmU1+XoxT4nJyc8efJE6fUhQ4ZgxYoVSq+vW7cOmzdvxq1btwAArq6umD17NmrXrq33ulL2EO92qFSpktLdNKoC0ps3b9C7d2/Ex8dj1qxZmDJlinTH1JUrV9CiRQts3LgRdevWhZubm17r7urqih07dqBbt24Kr79//x49evTA8ePH4evri/Hjx6tcXrwjJ21f8f7+/tkekGrXro2rV6/C19cXGzduVJjm6+sLQ0NDNGzYECEhIVlWpi77csCAAdJyxsbG2LlzJ9q0aYM1a9bA0tIS8+fPV1vO+PHjsXbtWjRp0gQ7d+6EkZHi12BgYCBGjx4NGxsb7N69W+EJx7CwMLRp0wY+Pj5o3LgxGjduLE3r168fQkND4eLigj179ijc7ZWUlITDhw9Lv6c9th8/fozdu3fD1tZW5V1k4eHhCr9PmjRJ4XiOiYlB48aNcfXqVezatQvDhg2Tprm6uuL8+fMKfY0Dysdlx44d1b1lGVaxYkXMnj0bY8aMwdChQwGkvv/16tVTOX98fDx69eqFmJgYjBo1CgsXLoShoSEA4ObNm2jatCnevn2b5fUkyq+Ys0iePjOW/HlZH8RzmY2NDcqVKye9nhczVuPGjREaGsqMlUsyVlr6yFjqjsvMUJWx+vfvz4xFlE2YsSgttmUxZzFnKU5ThTmLSP9ytBvPy5cv49WrV9JPUFAQACidYEQhISHo2bMngoODcf78eZQqVQotWrTAixcvsrPapEeJiYkAUk962li3bh2io6Ph6uqKqVOnKnSNULNmTUydOhVA6iPX+lapUiWlO4cAoEiRItJj7zt37lS7vPgIurbbrk8ODg5o3749tm3bpnBCioqKQkBAANq3bw9HR8csLTMz+9LU1BQHDhxAnTp1sGDBAvz+++8qy5g1axYWLlyIunXrYv/+/TA1NVWax8fHB4IgYPXq1UpdmVatWhWLFy8GAIWuDG7cuIE9e/bA1NQUBw8eVOrWwcjICB06dNDujcgACwsLfP/99wCg1I1DpUqVlMIRoP1xmVlDhgyBlZUVAKBYsWKYOXOm2nl3796NZ8+eoVSpUpg/f74UjgCgWrVq0jFARNphziJ5eT1jZeZclpsylpOTE5o0acKMpWXGunv3LjOWGvIZy97eHqNGjVI7LzMWUdZixqK08nrOyi9tWcxZzFlZhTmL8qocfbKvaNGiCr/PnTsX33zzjcIdBvK2bt2q8Pv69euxe/dunDx5En379tVbPSn7iIOfavsYtng3TtpHyUU//fQTxo0bh/DwcLx580bhbnB9SE5OxsmTJ3Hu3Dm8evUKcXFxEAQBgiAAAO7fv6922ZiYGABQ+0h4dhsxYgT27t2LtWvXSv1Ur1u3DrGxsRgxYkSW9a0u0mVfvnz5Evb29grTCxYsiKNHj+Kbb77BtGnTpJOyaNmyZfjll19QpEgRHDlyBAULFlQq4+3bt7h06RLMzMzg4eGhsh7iXUjnzp2TXjt27BgAoG3btnBwcNBqe7NKdHQ0jh49is2bN8Pc3FxlvZOTkxESEpKh4zKzfv/9d0RHRwOA1I1FixYtVM4rHgM//PCDyj8UPD09MXr0aL3VlSi/Yc4iefrMWC9fvsySOmqSnJyMc+fOYfv27Xk+Y/Xt2xdBQUHMWGmoylhnzpwBwIylinzGevnyJS5duoTKlSurnJcZiyhrMWNRWmzLYs5iztINcxaRfuSaMfu+fPmCgIAAjBkzRu3AtWnFxsYiMTER1tbWaudJSEhAQkKC9PvHjx8zXVfSn3fv3gFIvVNDG+KdcGXKlFE5vXDhwrC2tkZUVBRev36dNZVUIzw8HO3bt1fqclGepuNP3BYbGxudy/b29oa3tzeA1P6lixQpAhcXF/Tv3x8//PCDzusDUoNAtWrVsGrVKkyYMAEAsGLFClSrVg1ubm7pBiT5OmlDl335/PlzpYAEpPaT/v79ewCpFysrVqwIANi3bx9u3rwJIPWR/yNHjqB3795Kyz969AiCICAuLi7dkB4ZGSn9X+zCRSxP39zd3ZVec3V1hZ+fn9L7Fx4ejk6dOuH27dtq16ev78UrV65gzpw5MDY2xsCBA7FixQr0798fYWFhSgEWAJ4/fw5A/TFQpEgRWFlZSYGLiLSnz5z15csX6XfmrNxLnxnr+fPnWq83IzJ7LsttGatOnTp5PmNVr14dgP4zlnghmRlLkaqMNXXqVHTu3JkZiyib6StjAcxZeQnbspizmLPSx5zFnEX6l2su9u3btw8fPnxQ6N85PRMnToS9vT2aNWumdp45c+ZgxowZSq93795dq0fMbWxs4OXlBZlMpvAYrjz93l+jH5pO4mnFxsamO39SUhKA1L6qNc0r3u307t07hfnEMsSTmKmpqdr1yL8uBt+XL1+qnV98FDw+Pl6aRwxiaeshbgOQetJIO038Ak9KSlKa5uHhgfDwcLi7u6N///5wdnZGwYIFYWxsjC9fvqBKlSpK9Zev43///adyG9PWR35/iCe27777TuqKICEhAQ8fPkRQUBCCgoJw7tw5qY/p9IhlidvXo0cPTJkyBStXrgQAPHv2DIMGDUJ4eLhUdtp9rqpO8mJjYxEYGIiUlJQM78unT58qheg3b95g2LBhMDc3x5o1azBhwgTcvXsXQGo3m/b29pg7dy5+/vlnDB06FI6OjrCzs1NYh3jRzsLCQu3TZ/LE/SGesKOionT6bIk0HVfA/z4f4uenYcOGsLW1BZB6XN+7dw9Xr17FDz/8gNWrVyuERw8PD9y/fz/d41Kbz3la6uoLpO7Pnj17IikpCSNHjsSQIUNw6dIlXL58Gf3798fs2bOVlhHvCIyIiEj3GHj06JHUVUraOmVkW3TFMnJPGeJdfaSZvnKWuu5mtMlZ2mQsIH/nrPySsZ4+fQoTExOEh4frLWPdv38fjRo1wqBBg/SWsYD/vV/6ylgfP35EbGysXjNW2nOhPjLWP//8A0C/GQv4X7do+spYQOr7ps+MlTa/a0PXjHX16lVcuHCBGesrKyM7ymHOSp++MhbAnKUK27LYlqUKcxZzFnOWdlhG7ilDXxkr11zs27BhA1q3bq3yDgdV5s6di+3btyMkJERlX8WiyZMnY8yYMdLvHz9+RKlSpfDXX3/B0tIy3XLi4+Px6NEjODk5aSwnr9GlC4Dw8PB05xcHhrWzs9M4r5mZGYDU4Ck/n1iGeIJu2LCh2vXIv16mTBk8fPgQ8fHxKuePjo7Ghw8fAACOjo7SPOIdR2nrIW4DAFhaWipNEwO1kZGRwrR79+7h/v37sLGxwfHjx5UGypW/E0VVPW/fvo3Pnz/Dzs5OqW/ttPWR3x/iMTx8+HClPy7WrFmDn3/+GevXr8eCBQu0urgtliVu3+jRo7F48WKpH2wbGxuMGTMGZmZmUtlp97mmOgGpA/iWKVMGBgYGGd6X33//vVIXAyNHjkR0dDRWrlyJPn36oHbt2qhXrx7evXsHOzs7hISEoFy5cvj06ROGDh2KOXPmKAw0DKQGIwAwMDDArl27YGCQ/rCm4eHhqFq1KoDUE3tGutdQd1zJl1GuXDnp8/Pbb78pDdLt4+OD3377DQsWLMChQ4cA/O+4LFasWLrHpbm5uc51V1dfIHXw6H///Reurq5YuHAhjIyMMG/ePLRv3x67du3CTz/9hFatWiksU758eZw5cwaxsbEq1/vhwwd8+vQJQOrxkrY/ebFOGdkWXWnzvcgysqeM5ORkXL9+XW/rzy/0lbPGjx8v3TEL6Jaz8mvGArTPWfklY33//ffSd7e+MlaxYsWwevVqVKpUSWG5rMxYwP/eL31lLEtLS5ibm+s1Y6U9F+ojYzVs2BARERF6zVgAULp0aQD6y1hA6j7XZ8ZKm9+1oWvG2rZtG6pUqcKM9ZWVkR3lMGelT18ZC2DOUoVtWWzLUoU5izmLOUs7+SUD5Ycy9JWxtPv069mTJ09w4sQJ9O/fX6v5Fy5ciLlz5+L48eOoVq2axnlNTExgaWmp8EO5U2JiIoKDgwEADRo00GoZ8SSxadMmldM3btwIIPXLv3jx4pmvpBpRUVEAgGLFiimdhAAgICBA4/K7d+8GALRs2TLL6vTjjz8CSL3DRH5gYl2Ymppi4MCBCA0NRWhoKPr37y+dpLOaLvsybThat24djh49imbNmuHnn38GkHqy7dGjBwBg0KBB0hf04MGD0bRpUxw5cgTr169XWI+9vT2qVauGT58+SePwaUM80R85ciRbxi1SpXv37gCA06dPS6+Jx6W9vX2GjsuMOnv2LBYvXgwTExNs2rRJKrtkyZLSoNT9+/dX6sJAHONix44dKu902rx5s17qS5TfMWeRvjOWPsf4yOy5jBlLPxlL/L++M1bDhg0BMGOJ1GUsJycn6YIAMxZR9tFnxgKYs/IKtmUxZwHMWRnFnEWUtXLFxT4/Pz8UK1YMbdu2TXfe+fPnY+bMmTh27Bhq1qyZDbWj7PDlyxeMGDECkZGRcHNzU9vPcVoDBgyApaUlrl27htmzZys8Anv9+nXMmjULQOqdGfpUvnx5GBoa4sGDB9LArKKDBw/ijz/+ULvss2fPsGzZMgCpJ++scuTIEQCpd/iIj8lnxJAhQ9C2bVu0bdtW6y4UMiKj+/LJkycYO3YsLC0tsWHDBoVxEsT/p31t48aNsLS0xJgxY6TuDkRiOd7e3jh48KBSPQVBwMWLF3H8+HHptRo1aqBDhw6Ii4tDhw4d8PTpU4VlkpKScODAAZ3eD11t374dABT2tXhchoWF6XxcZlRsbCy8vLyQkpKCGTNmKA1gPGjQIDRt2hQvXrzAqFGjFKZ17doVDg4OePr0KSZPnix1cwAAt27dkvYNEemGOevrll8yVlhYGC5evKgwjRlLO3k5Y3377bfMWP8vvYzVo0cPZiyibMaMRfklZ7EtK+OYszKHOYsoa+V4N54pKSnw8/ODp6en0tX6vn37wsHBAXPmzAEAzJs3D7/++iv+/PNPODk5SYPUFixYEAULFsz2ulPW2LBhAyZPnozIyEg4ODhgzZo1Wi9rZ2eHrVu3olu3bpg6dSq2bNkCFxcXRERE4PTp00hKSoK3tzcGDBigsp/dEydOID4+XuG1sLAwAMDVq1cxadIkhWni3Rvv37/HpEmT0K1bN7i6usLW1hbDhg3D0qVL0bRpUzRs2BD29va4f/8+rl27hmnTpqn8ch83bhz8/PwQFRUFCwsLrF69GqtXr1aY599//wUAhIaGwsvLCz169FB6jHjnzp24d+8egNR+zu/duyedwCdOnKhVtwfqODg4SI/S65Mu+1IkCAK8vb3x6dMnbNiwQeqCID2lS5fG4sWL0b9/f/Tr1w8nTpyQQpSHhweWLl2KsWPHon379nB2dkaFChVgZWWFyMhI3LhxAxEREZg4caJCX+h+fn5o06YNLly4gHLlyqFevXqwt7fH69evERYWhsjIyCzrj3nu3LnSoNKxsbEICwuT9v8vv/wizZfR4zIzJkyYgH///Rd169bFuHHjlKbLZDJs2LABVatWhb+/P7p164Y2bdoASO0aZevWrWjTpg0WLVqEffv2oVatWnj37h1CQkLg4eGBq1evKoVaIlKPOevrll0ZSxV9ZCxPT0+sX79ebxlr0qRJSuMaMWMxYzFjEZEqzFjEtiy2ZQHMWbpgzmLOomwg5LDAwEABgHD//n2laY0bNxY8PT2l3x0dHQUASj8+Pj5alxcdHS0AEKKjo7WaPy4uTrhz544QFxendRmCIAgPHjzQaf6Myo5ytClD3Dd+fn4a52vcuLHSPps4caJQsWJFYdq0aUJERITaZcX9rcqdO3cET09PoWTJkoKxsbFQuHBhwd3dXdi+fbvK7fDx8VF5LOn6I7+9KSkpwuzZswVXV1ehYMGCgpWVldCgQQOpDqrqr+6Y1vSzZcsWaXlPT0+l6QYGBoKNjY3QrFkzhe3Xhp+fnwBA6NSpU7rzimWn3efqXhc9evRIACA4ODionK7NvhT5+voKAIQ2bdqoXNewYcM0fke0bt1aACD4+voqTQsLCxMGDhwolCtXTjA1NRXMzc2FsmXLCi1bthR8fX2FFy9eCIKgeFwlJCQIq1atEho2bCgULlxYKFCggFCyZEmhefPmwooVK1TWQf49cXR0VDldLEP8/Mj/GBoaCnZ2doKHh4dw/PhxpWVTUlKEDRs2pHtc6vpdoqq+J0+eFGQymWBmZibcu3dP7XYIgiCsWbNGACDY29sL79+/V5gvLCxM6Ny5s2BtbS2YmJgIlSpVEubMmSMkJiZKn5lHjx6prVNu+V5kGdlTRlJSknD58mUhKSlJr+XkVfrKWerykS45K6MZSxDyx7GrbRl5IWPJb4u+MtaGDRuEKlWq6DVjBQcHS9uhr4zl6emZ7n7PbMZSdy7Myowl7md9ZixB+N9xpa+MJZahz4wlvx3ayEjGki+DGevrKSM7ymHOUk+fbVnMWdlXRl7IWWzLSh9z1v8wZ2nGnMUycksZumQsXc7pOX6xL7vxYh/LyAriCS1tCNC1DEdHR6Fx48ZazSuGF/mApC95bX+wjOwvI71AlxVl6IoB6essg41QOYONUCxDX+Woy1i6lpGRjCV/sU+fWAbL0CQjGUvXMnTFjJU7y8iOcpizcgZzFsvQVxn5vS1LEPLePmEZ2VsGcxbLyC1l6OtiX64Ys4+IiIiIiIiIiIiIiIiIdJfjY/YR5UVFihTBnDlz4Orqmqn1LFy4UOs++hs0aAA/Pz+ULVs2U2USERER5VY5mbEqVqyIT58+ZapcIiIiotyKbVlERPkbL/YRZYCVlZXSgMcZ0bVrV63ndXZ2hrOzs8rBmYmIiIjyg5zMWAB4sY+IiIjyLbZlERHlb+zGk4iIiIiIiIiIiIiIiCiP4pN9RESkMx8fHxQuXDinq6EgN9aJiIiISBe5Mc/kxjoRERER6So3ZprcWCfKu3ixj4iIdDZ9+vScroISsU7sHoSIiIjyKmYsIiIiIv1gzqL8jt14EhEREREREREREREREeVRvNhHRERERERERERERERElEfxYh8RERERERERERERERFRHsWLfURERERERERERERERER5FC/2EREREREREREREREREeVRvNhHRERERERERERERERElEfxYh8RERERERERERERERFRHsWLfURERERERERERERERER5FC/2EREREREREREREREREeVRRjldgfygyZCnKl41AaDq9ayWsXJOrSydpbVwcnLCkydPtJ7fx8cH06dPz9I6EFHuIH4fCIKg8Pru3bsxefJkFC9eHLdv34a1tbXK5b29veHv74+mTZsiKCgIMplM67JDQkLg7u4OT09P+Pv7Z2YziCiXyLmclfEysjJnMWMRkUhdxvLz80O/fv2YsYhIZ3ktZ7Eti4j0hTmL8gNe7KMsVb9+fTg7O6udfuzYMbx58yYba0REuUWXLl0QGhqKw4cPY+jQodi2bZvSPAcPHoS/vz8sLS2xceNGhXDk5uaG06dPIzg4GG5ubtlYcyKinMeMRUTqeHt7Y/PmzQgJCWHGIiLKAOYsIlKHOYvyEl7soyzVv39/eHl5qZ3u5ubGgET0FVu3bh2qVKmC7du3o0uXLujatas07d27dxgwYAAAYMmSJShdOmvv2iQiysuYsYhIk1mzZqF9+/bMWEREGcCcRUSaMGdRXsEx+4iIKNuUKFECy5cvBwAMHjwYERER0rQhQ4bgzZs38PDwgLe3d05VkYiIiCjPKVasGDMWERERkR4wZ1FekaMX+5ycnCCTyZR+hg4dqnaZnTt3omLFijA1NUXVqlVx5MiRbKwx6VtISIjKY0L+R5V79+7B29sbjo6OMDExgbW1NZo2bYodO3aonH/69OmQyWQq+1r39/eHTCZTeVfX48ePIZPJ4OTkpDQtMjISmzdvRps2bVCmTBmYmZnB0tISNWvWxLx58xAfH69x2728vDRut6r6iMtkVX/O4raXL18ejRo1Ujtf8+bNpXqlLTu9Oonvobu7u8rpuuzLlJQU9OjRAzKZDL169UJKSorCdF9fX5X7OSUlBb169YJMJkPPnj2VlgOAq1evonfv3ihdurRUj5YtW2r8zklKSsLGjRvRrFkz2NrawsTEBCVLlkSzZs2wbNkyab70jnF1+93NzU1peqFChVCxYkWMHj0aT58qj3kQGRkJX1/fDB+X+tCzZ0906dIFb9++xaBBgwAA27dvx44dO2BtbY21a9cqzC9+L5w+fRoA4O7urvAesD9zItWYs0heXs9Yvr6+6N+/f57PWGJmUScrMpaq9xDI2ow1ffp0lC9fnhmLGYvoq8SMRWnl9ZyVX9qymLOYs/SJOYvyghztxvPy5ctITk6Wfr916xaaN2+Obt26qZz/3Llz6NmzJ+bMmYN27drhzz//RMeOHXHt2jVUqVIlu6pN2cDOzg6tWrVSeG3Tpk0q5z18+DC6du2K+Ph4VKhQAZ07d0ZERAROnz6NU6dOITAwEBs2bNB7nQMDAzFr1iw4ODjA2dkZdevWRWRkJC5evIhJkyZh//79CA4OhomJicb1pO0r/t9//8XZs2f1XX0lZ86cwT///IMaNWoovH779m2cOHFCL2Xqui8NDAywZcsWxMTEYNu2bbC0tMTq1avTLWfw4MHYtm0b2rVrhy1btsDAQPG+h6VLl2LMmDFISUlBjRo1UKdOHbx+/RohISE4fvw4ZsyYgV9//VVhmejoaLRr1w6hoaEwNjZGvXr1YG9vj9evX+PmzZs4efIkhg8fDgDw9PRUWPbz58/YvXs3LCwsFLoCAIAGDRoo1b9ly5YoXrw4AODDhw84c+YMlixZgq1bt+LmzZvSNCD1uBw5cmS6x2V2W7VqFc6cOYN9+/ZhwYIFmDt3LgBgxYoVCvUHgOLFi8PT01MaJ0F++wFoHFuB6GvGnEWq5NWMNXLkSNjZ2aFixYp5PmNduXKFGesryljpHZdZjRmLSP+YsUidvJqz8lNbFnMWc5Y+MWdRbpejF/uKFi2q8PvcuXPxzTffoHHjxirnX7p0KVq1aoXx48cDAGbOnImgoCAsX75cqy9Fyv3EwFypUiWlOxxUBaQ3b96gd+/eiI+Px6xZszBlyhTpjqkrV66gRYsW2LhxI+rWrQs3PQ+C6urqih07digF/Pfv36NHjx44fvw4fH19peM3LfGOnLR9xfv7+2d7QKpduzauXr0KX19fbNy4UWGar68vDA0N0bBhQ4SEhGRZmbrsS7EvbAAwNjbGzp070aZNG6xZswaWlpaYP3++2nLGjx+PtWvXokmTJti5cyeMjBS/BgMDAzF69GjY2Nhg9+7dCk84hoWFoU2bNvDx8UHjxo0Vvqv69euH0NBQuLi4YM+ePQp3eyUlJeHw4cPS72mP7cePH2P37t2wtbVVeWdPeHi4wu+TJk1SOJ5jYmLQuHFjXL16Fbt27cKwYcOkaa6urjh//jzq1q2rsI60x2XHjh3VvWV6UbRoUaxevRqdO3fGhAkTAADdunVDjx49lOatWLEi/P394fb/4ySk3X4iUo05i+TpM2PJn5f1QTyX2djYoFy5ctLreTFjNW7cGKGhocxYuSRjpaWPjKXuuNQXZiwi/WPGorTYlsWcxZylOE0V5izmLNK/XDNm35cvXxAQEIB+/fqpfbz9/PnzaNasmcJrLVu2xPnz59WuNyEhAR8/flT4odwrMTERQOpJTxvr1q1DdHQ0XF1dMXXqVIVjp2bNmpg6dSoAYMGCBVlf2TQqVaqkdOcQABQpUkR67H3nzp1qlxcfQdd22/XJwcEB7du3x7Zt2/D27Vvp9aioKAQEBKB9+/ZwdHTM0jIzsy9NTU1x4MAB1KlTBwsWLMDvv/+usoxZs2Zh4cKFqFu3Lvbv3w9TU1OleXx8fCAIAlavXq3UlWnVqlWxePFiAFDoyuDGjRvYs2cPTE1NcfDgQaVuHYyMjNChQwft3ogMsLCwwPfffw8ASt04VKpUSSkcAdofl/rUqVMnVKxYEQBgYmKClStX5kg9iL4GzFmU1zNWZs5luSljOTk5oUmTJsxYWmasu3fvMmNlADMWUfbRV8YCmLPykryes/JLWxZzFnNWdmDOotwsR5/sk7dv3z58+PBBZV/OotevX8POzk7hNTs7O7x+/VrtMnPmzMGMGTOUXu/evbtWJyIbGxup32ZDQ0M1c2XvI8NZIe2TQprExsamO39SUhKA1DtaNM0bFxcHAHj37p3CfGIZ//33n7Q+deuRf13sc7p169Yq5xfvmAgPD8fjx4+l19+9e6eyHuI2AMDHjx+Vpj1//lxj/T59+oRNmzbh+vXriIyMRHx8PARBgCAIAFJPpOq2Sxzc9cOHDwrzpK2P/P4Qw35677u2xLKSkpLwww8/YO/evZg9ezYGDx4MAFi7di1iY2PRuXNn7NmzR2XZ6dVJfA9TUlIyvC9DQ0OVvgsAYPny5WjWrBmmTZuGhIQEKXC/e/cOv/zyC2bNmgUrKyssW7YMr169Ulo+KioKly5dgqmpKSpWrKiyHqVLlwaQ2s2puD8CAgIApN5Fps3nJa30jitxneLn5/nz59J8nz59wunTp+Hv7w8zMzNUqVJFaR3Jycm4ePGixuMyI/VWR/w+SLu+tGXs2rUL9+7dA5D6h+yqVatU3g0lUrX9aYnvparPb1bKyveLZWSOeByTZvrKWer+KNUmZ2mXsYD8nLPyS8YKDQ1FoUKFEB4erreMlZycjL///hsrVqzQW8YC/vd+6Stjffz4ET/88AOCgoL0lrGSkpIUji19ZKz3798D0G/GAoBTp04B0F/GAlL3uT4zVtr8nhnqMpa4HeLrzFhfRxnZUQ5zVvr0lbEA5ixV2JbFtixVmLOYs5iztJNfMlB+KENfGSvXXOzbsGEDWrduDXt7+yxd7+TJkzFmzBjp948fP6JUqVL466+/YGlpme7y8fHxePToEZycnFTeOZFKeSDR3E6+C6T0hIeHpzu/+Pi4nZ2dxnnNzMwAQKkbJrEMcdDSkiVLql1P2u6bAKBOnTpq57e2tkZUVBSio6OleWxsbFTWQ9wGALC0tFSaJgZqIyMjpWnh4eHo0aOHxi+Cz58/q63nhw8fAKTecSM/T9r6yO8P8RieNGkSJk2aBAAwNDREkSJF4OLigv79++OHH35QW5+0xLKMjIzQp08fLFiwADt37pS6Evjrr79QrVo19OnTR+rrPO0+V1UnVQwMDDK8LwsUKKBynoCAAERHRwNIvfNJvNPmzJkzuHnzJoDU/sjv37+P3r17Ky1/+fJlCIKA+Pj4dMdOiIqKkvZHTEwMgNS7tnT5bIk0HVfA/z4f4ufnxx9/VJrH1dUVfn5+qFq1qtKyXbt2xe3bt9WW//nzZ5ibm2eo7qqI3weqPiPia0+fPpX6Nh81ahSWLFmCBQsWoG/fvmrvtBO3X9P3w4sXLwCo/vxmJW2+F1lG9pSRnJyM69ev6239+YW+ctb48eOl7ksA3XKWdhkLyM85K79krAIFCkjnEX1lLG3OZZnNWGJZ5cqV01vGsrS0ROPGjVGtWjW9ZSwjIyOF87o+Mlb16tUB6DdjAUBkZCQA/WUsIHWf6zNjpc3vmaEuY4n1KVeuHDPWV1RGdpTDnJU+fWUsgDlLFbZlsS1LFeYs5izmLO3klwyUH8rQV8bKFRf7njx5ghMnTkh3V6hTvHhx6W4N0Zs3b5QGwJRnYmKS7YN1UsaJX276CMr61rVrV4SHh6Ndu3aYMGECvv32W1haWsLY2BhfvnzReBympKTg0aNHAIAyZcroXLb8QMjx8fG4d+8egoKCEBQUhPv37+OXX37J0DaNHDkSP/30E/bu3QsAePbsmdJgvtrUSZ44gG9We/nyJUaMGAELCwscOnQIffv2xd27dwGkdrNZunRp+Pv7w8PDA8OHD4e7u7vScSZ2G1CwYEF06dIly+uYVeQH9Y2NjcXNmzdx9epV/Pjjjzhw4IB0xxYAKRxl5LjUF0EQ0K9fP3z8+BH9+vXDH3/8gQ8fPsDf3x8//fQTgoKC1HaBQ0S603fO0tyARLlFXs9Yt2/fhru7O2bMmMGMlQsy1j///AOAGYsZi+jrps+MBTBn5SV5PWexLUt1neQxZ2UecxaR/uWKi31+fn4oVqwY2rZtq3G+77//HidPnsSoUaOk14KCgqT+fSnvu3PnDgCgcuXKWs3v4OCAe/fu4eHDhyqnR0dHIyoqCgBUPiqfVe7du4ebN2/CxsYGe/fuVRooN73Hfu/evYuPHz/Czs4OpUqV0rn8tAMhA8CaNWvw888/Y968eZg0aVKG+k/v1asXJk6cCF9fXwCpd4+puotI2zoB/xvANy1d9qWDg4PK8t6/f4+VK1fCzc0NJ06cQL169fDu3TvY2dnhxIkTKFeuHObPn4+hQ4diwIABCgMNA5Dee5lMho0bN8LAQLthTcVAIj7Gr2+qBvX18fHBb7/9hiFDhuDQoUNSfW7evIlixYpl6LjUl5UrV+LkyZMoVaoU/vjjDwDAH3/8gaCgIJw8eVI6dokoazBnEaDfjOXg4IDY2NisqWga8ueyFStWoFKlSgrTmbH+JzszVsOGDREREaH3jFWiRAkAzFjaYsYiyl7MWCRiWxZzFnNW+piziPRPu0+/HqWkpMDPzw+enp5KH96+ffti8uTJ0u8jR47EsWPHsGjRIty7dw/Tp0/HlStXMGzYsOyuNulBYmIigoODAQANGjTQahnxJLFp0yaV0zdu3Agg9RHs9O6aywzxxF2sWDGl4xiANKabOmJgaNmyZZbVSXw8PiYmRmFgYl2Ymppi4MCBCA0NRWhoKPr37y89fp7VdNmXaQPSunXrcPToUTRr1kw6sZYvX17qM3vQoEHSo9eDBw9G06ZNceTIEaxfv15hPfb29qhWrRo+ffqEY8eOaV33Vq1aAUjtq/3ly5daL5eVunfvDgBS9yHA/45Le3v7DB2X+vDff/9h4sSJUggVu8ooXLgw1q1bByC1uxr5cQlEBQoUAPC/ftSJKH3MWQToP2OparjIKpk9lzFj6Sdjif/Xd8Zq2LAhAGYsbTx9+pQZiygbMWORiG1ZzFkAc1ZGMWcRZa0cv9h34sQJPH36FP369VOa9vTpU4WBR+vVq4c///wTa9euRfXq1bFr1y7s27cv3f6IKff78uULRowYgcjISLi5uWn9+P+AAQNgaWmJa9euYfbs2QqDW16/fh2zZs0CkPqFq0/ly5eHoaEhHjx4gJCQEIVpBw8elO74UOXZs2dYtmwZAEiDB2cFcZBgCwsL2NraZng9Q4YMQdu2bdG2bVsMHTo0q6qnJKP78smTJxg7diwsLS2xYcMGhUfmxf+nfU08MY8ZMwZPnjxRWJ9Yjre3Nw4ePKhUT0EQcPHiRRw/flx6rUaNGujQoQPi4uLQoUMHPH2qOO5BUlISDhw4oNP7oavt27cDgMK+Fo/LsLAwnY9LfUhJSYGXlxdiYmIwaNAgNGvWTGF669at0a9fP3z+/Bn9+vVTGqy2ZMmSAKCxz3YiUsScRfklY4WFheHixYsK05ixtJOXM9a3337LjKWFlJQUTJw4kRmLKBsxYxGQf3IW27Iyjjkrc5iziLJWjnfj2aJFC6UPgSjtBxoAunXrhm7duum5VpSdNmzYgMmTJyMyMhIODg5Ys2aN1sva2dlh69at6NatG6ZOnYotW7bAxcUFEREROH36NJKSkuDt7Y0BAwaofMz7xIkTiI+PV3gtLCwMAHD16lWlQXnFAXPfv3+PSZMmoVu3bnB1dYWtrS2GDRuGpUuXomnTpmjYsCHs7e1x//59XLt2DdOmTZNOvPLGjRsHPz8/REVFwcLCAqtXr8bq1asV5vn3338BAKGhofDy8kKPHj2UBgjduXOn9Nh9QkIC7t27J53AJ06cmKFuD0QODg7So/T6pMu+FAmCAG9vb3z69AkbNmxQ6N9bk9KlS2Px4sXo378/+vXrhxMnTkghysPDA0uXLsXYsWPRvn17ODs7o0KFCrCyskJkZCRu3LiBiIgITJw4ES1atJDW6efnhzZt2uDChQsoV64c6tWrB3t7e7x+/RphYWGIjIxU+12nq7lz58Lf3x9Aaj/nYWFh0v6X79M+o8elvvj5+SE0NBRlypTBggULVM4jdoEQHByMVatWYciQIdK0Ll26wM/PDxMmTMCJEydQrFgxyGQy9OvXD/Xq1cuuzSDKU5izvm7ZlbFU0UfG8vT0xPr16/WWsSZNmgRDQ0OFeZixmLHyQsZavHgxrl69yoxFlI2YsYhtWWzLApizdMGcxZxF2UD4ykRHRwsAhOjoaK3mj4uLE+7cuSPExcXpVM6DBw8yUj2dZUc52pTh6OgoABD8/Pw0zte4cWMBgODj4yO9NnHiRKFixYrCtGnThIiICLXLAhDUHbJ37twRPD09hZIlSwrGxsZC4cKFBXd3d2H79u0qt8PHx0daX2Z+5Lc3JSVFmD17tuDq6ioULFhQsLKyEho0aCDVQVX9xfdNl58tW7ZIy3t6eipNNzAwEGxsbIRmzZopbL82/Pz8BABCp06d0p1XLDvtPlf3uujRo0cCAMHBwUHldG32pcjX11cAILRp00bluoYNG6Z0vMlr3bq1AEDw9fVVmhYWFiYMHDhQKFeunGBqaiqYm5sLZcuWFVq2bCn4+voKL168EARB8bhKSEgQVq1aJTRs2FAoXLiwUKBAAaFkyZJC8+bNhRUrVqisg/x74ujoqHK6WIb4+ZH/MTQ0FOzs7AQPDw/h+PHjSsumpKQIGzZsSPe4zMrvEvG4lnfnzh3BxMREkMlkQkhIiMblAwMDBQCChYWF8PDhQ4Vp69atE7777jvB3Nxc5ecwODhYACB4enpm1eaolFu+e1mGICQlJQmXL18WkpKS9FoOKVKXj3TJWRnNWIKQP45dbcvICxlLflv0lbE2bNggVKlSRa8ZKzg4WNoOfWUsT0/PdPd7ZjOWo6OjyjKyMmOJ+1mfGUsQ/ndc6StjiWXoM2PJb0dmqctYpqamzFhfYRnZUQ5zVs5gzsq+MvJCzmJbVvqYs/6HOSvjmLNYRnaWoUvG0uWczot96eDFPpahinhCSxsCdC3D0dFRaNy4sVbziuFFPiDpS17bHywjd5WhKiBldRnqMCB9fWWwESpnsBGKZeirHHUZS9cyMpKx5C/26RPLYBkZpS5jZWUZ6jBj5b4ysqMc5qycwZzFMvRVRn5vyxKEvLdPWEbuKYM5i2VkZxn6utiX42P2EREREREREREREREREVHG5PiYfUR5UZEiRTBnzhy4urpmaj0LFy5EwYIFtZq3QYMG8PPzQ9myZTNVJhEREVFulZMZq2LFivj06VOmyiUiIiLKrdiWRUSUv/FiH1EGWFlZKQ14nBFdu3bVel5nZ2c4OzurHJyZiIiIKD/IyYwFgBf7iIiIKN9iWxYRUf7GbjyJiIiIiIiIiIiIiIiI8ig+2UdERFlq1KhR+PDhQ46U7eTkhGHDhqFp06Y5Uj4RERGRvjBjEREREekHcxblB7zYR0REWWrUqFE5VraTkxNGjBiBcuXK5VgdiIiIiPSBGYuIiIhIP5izKD9gN55EREREREREREREREREeRQv9hERERERERERERERERHlUbzYR0RERERERERERERERJRH8WIfERERERERERERERERUR7Fi31EREREREREREREREREeRQv9hERERERERERERERERHlUbzYR0RERERERERERERERJRH8WIfERERERERERERERERUR5llNMVyA+ePn2Kt2/fKr326dOnbCk7I+XY2tqidOnSeqgRERERUdbJqZyVmTKYs4iIiCgvyGs5ixmLiIhIPV7sy6SnT5+iUqVKiI2Nzemq6MTc3Bx3795lSCIiIqJcizmLiIiISD/yYs5ixiIiIlKP3Xhm0tu3bxEbG4uAgABcvXpV+tm7d6/C75n52bRpEywsLFCtWjX8/fffmS4nICAAsbGxSndvZYaTkxNkMpnWP9OnT8+ysilrTZ8+HeXLl4e/v7/C6xEREShatChkMhn+/PNPtcuHhITAwMAA5ubmePDggdbl+vv7QyaTwcvLS2WdZDKZUp2IKONkMhnc3d2VXvfx8YFMJkPVqlXx5csXlcsKgoCmTZtCJpPhp59+0rls8fOemXNBp06dYGZmhufPnytNk8lkcHJyUnpd39smngsfP34MAGjdujVkMhkePXqkdhlPT0/IZDK0bNlS7Tzx8fH49ttvIZPJMHPmTJ3qBGj+Dm3WrBksLS3x+vVrndebHbIjZ6n7yWgZWZ2zmLHyD/GzuGfPHoXX9Z2xROKxRERZQ12eiYuLQ8uWLSGTyTB79my1y9+7dw9mZmYwMDDA6dOntS43JCQEMpkMbm5uWtdJF7kpY7169QoGBgZo3Lix2nly69+puT1jAfrJWZrar9iWRUSkX5qyScWKFVG+fHm9ZBORm5sbypcvL7WJ5DR15+nckB02bdqk9fp0wSf7skilSpXw3XffSb8XKlQI5cqVy/R6L126hOHDh6N69eo4duwYChUqpDA9q8rJKvXr14ezs7Pa6ceOHcObN2+ysUaUVYoVK4ZVq1ahW7duGD58ONzd3VGiRAmFeT59+gQvLy8IgoA5c+agfPnyOVRbIsqoadOm4cCBA/jnn3/g4+ODOXPmKM2zbNkynDp1Co6Ojvjjjz8Upjk5OeHJkyd49OiRysagrHDixAns27cP48aNQ8mSJREZGanVcpndNl116dIFx44dw549ezB27FiV8yxduhQnT57E8ePHsWbNGgwaNEhpnilTpuDu3buoVasWJk+erDBNbLgXBCFDdZw7d660Xj8/vwytIzvoK2dpwoxF2SWzGcvf3x/e3t7w9PTkjVFEuYCZmRnmz5+PHj16YMaMGfDw8EDVqlUV5klOToanpyfi4+MxatQojRezslPajJWcnKzVcvrKjyVKlEC9evUQGhqKiIgIFCtWTGm9ufXv1LySsYCsy1nptV/JY84iIso+ZmZm2LRpE+rXr5+hbBISEgJ3d3c0btwYISEh2Vz7rKdNdvj8+XOebOPO8Sf7Xrx4gT59+sDGxgZmZmaoWrUqrly5onGZFStWoFKlSjAzM0OFChWwefPmbKpt9rp06RKaN2+OKlWqpBuUcov+/fvD399f7U/FihVzuoqUCV27dkWPHj0QFRWFAQMGKE0fPXo0njx5Ajc3N4wYMSIHakhEmWVsbIzNmzejQIECWLBgAS5cuKAwPTw8HJMnT4ZMJsPGjRthaWmZ7XUcPXo0TE1NMWnSJJ2Wy+5t69ixIwwNDbF792618xQuXBgbNmwAAIwbN07pKcC///4bS5cuhampKTZt2gQjI+3v0xIz1vz58wGkNsSlzVg1a9ZEu3btsGnTJty4ceOryVh5ETNW/saMRZS/VK9eHePHj8eXL1/Qt29fJCYmKkyfM2cOLl26hAoVKmi8wz675caM1aVLF6SkpGDfvn1q58mJ79AXL15IT2oPHDhQqS0rbcYC8ndbVl5sv5LHnEVE+V2dOnXw008/5blsoi/pZYfZs2fnyb+/cvRi3/v371G/fn0YGxvj6NGjuHPnDhYtWoQiRYqoXWbVqlWYPHkypk+fjtu3b2PGjBkYOnQoDh48mI0117+8HpQo/1qxYgWKFy+Ow4cPY+PGjdLrR44cwYYNG1CoUCH4+fmxmyiiPKxq1aqYPn26dGdXXFwcgP/d6RUbG4uhQ4eiSZMm2V63oKAg3Lp1Cx07doSNjY3Oy2fnttna2qJhw4a4cOECXr58qXa+li1bYuDAgfj8+TO8vb2lp/TE31NSUjBr1ixUqlRJ67LlM1bv3r0BAD169FCZsX766ScIgoDBgwd/FRmLKLdixiLKX2bMmIEqVargn3/+UeiG+8aNG/jtt99gaGiIzZs3w8zMLAdr+T+5NWN17twZADTePAVk73eomLMMDQ0BAL///rvKtiwxYy1dujRft2Wx/YqIKG8YMWJEnsom+qYpO+zatStP/v2Voxf75s2bh1KlSsHPzw+1a9dGmTJl0KJFC3zzzTdql9myZQsGDRqE7t27o2zZsujRowcGDhyIefPmZWPN9etrDkri+AOaflS5d+8evL294ejoCBMTE1hbW6Np06bYsWOHyvnF/nFV9beuqV/dx48fqx2nIDIyEps3b0abNm1QpkwZmJmZwdLSEjVr1sS8efMQHx+vcdu9vLw0breq+ojLZGeXTdbW1li7di2A1Dsknz17hvfv36N///4AgEWLFqntui8pKQlLlixB1apVUaVKFRQtWhRdunRBWFiYXuq6ceNGNGnSBCVLlpT2R6VKlTB69GiVY2g9efIE8+bNQ5MmTVC6dGmYmJigcOHCaNCgAdasWYOUlBSd66DpuBXHttC0D0+dOoURI0agZMmSMDExQdGiRVGrVi34+Pjg3bt30nyajtugoCCYm5vDwsICp06dUlmOu7u7xuMvbf3UHXsfP37E9OnTUaNGDRQsWBCmpqYoV64cRo4cqbLbE031BpTHQJOXlJSE9evXw83NDdbW1jAxMUGZMmXg4+ODZ8+eKc2vaXwTkZubG2QymVK3BOpeB4Dg4GCNn1MAePDgAQYNGoRvvvkGpqamsLKyQqNGjRAQEKC2HuXLl5fuflbl6dOnMDIy0niMZcaECRNQu3ZtPHjwAFOmTAEALFiwAOfPn4ezs7PSeVfcl0+ePAEAlClTBjKZTNqOrOrqYfny5QCg9r3Whq7bJu/OnTvo1q0bbG1tYWZmhipVqmDhwoVqu7nq0qULBEHA3r17NdZp4cKFcHJywunTp+Hr6wsg9Um/hw8fokGDBhg9erTC/OJ5TJT2MztlyhQpYzk4OAAAqlSpojJjtW3bFra2trhw4QI8PT3zdcb6muX1jOXr64v+/fszY6V5f5ycnODt7Q0A2LRpk7RN5cuX13i+01ZUVBQ8PT3h4uKCokWLokCBAihevDjq16+Pbdu2qRyb68SJExg+fDhq1KgBW1tbmJiYoGTJkujevTsuX76scx00HTcJCQnSeUbdMRwbG4slS5agQYMGKFKkCExMTODo6AgPDw+lMTrUne8FQcDAgQMhk8lQt25dREdHK5Wj6TMm1jEtdfW+fv06+vTpo5BH69evj7Vr16o834i5QdW5Nr388/LlS4wZMwaVKlWCubk5ChUqhFq1amH58uVISkpSmj+9z4a6z7KmzzjwvzFs1W0HAOzatQutWrWSjkUHBwf06dMHd+7cUVsPmUyGQoUK4ePHjyrX+fvvv6eb4zKqQIEC2Lx5M4yNjTFnzhxcvXpV4W76iRMnonbt2mqX37x5M2rVqgVzc3NYW1ujVatWOHPmTJbWUV5OZCx1+VH8CQkJgaOjI1xdXREcHIwPHz6oLTur/k41NTVN9+9UsS2rQ4cOAICiRYuqbMsSM9a2bdvg5+eXL9uyvub2K3l5PWfl9bas9NoVAPVtC3fu3IGPjw/q168PBwcHFChQADY2NmjWrJna/aCJ/PknvR9123/y5EkMHToUJUqUQIECBVCsWDF06tQJ58+fVzm//DG2bt06uLq6wsLCAoULF0abNm2UnraWp65dZfDgwSrbVUQvXrzA+PHjUbVqVRQqVAgWFhYoX748vLy8cO7cOaX54+LisGjRItStWxeFCxeGqakpKlSogAkTJii0bYk0tcHkRLYpX758hrONPtqYMioj2cTNzQ3u7u4AgNOnTyscw1k1dIumtj/xYpu6777MyM7skF1ydMy+AwcOoGXLlujWrRtOnz4NBwcHDBkyROWjk6KEhASYmpoqvGZmZoZLly4hMTERxsbGSvMnJCRIv6sL+bkFg1IqOzs7tGrVSuE1dQNXHj58GF27dkV8fDwqVKiAzp07IyIiAqdPn8apU6cQGBgodZGmT4GBgZg1axYcHBzg7OyMunXrIjIyEhcvXsSkSZOwf/9+BAcHw8TERON60vYV/++//+Ls2bP6rr5OPDw84OXlBX9/f/Tr1w9FixbFq1ev0KpVK7Wf35SUFHTr1g379u1DgQIFULt2bTg4OODixYuoXbs2+vXrl+X1PHHiBKKiolCtWjUULlwYcXFxuHjxIpYsWYKNGzdKj6eLtmzZgl9++QVlypRB+fLlUb9+fbx69Qrnz5/H2bNncfz4cezatStLLqz8999/6f5hN2LECCxbtgwAUKNGDTRs2BDR0dG4f/8+fvvtN7i7u6fbkBcUFIQOHTpAJpPh0KFD0glanS5duqBgwYLS76Ghofjvv/+02qY3b96gUaNGePDgAUxNTeHm5gYrKyucO3cOvr6+2LJlC06cOKEwHkRGffr0Ce3bt0dISAgKFiwIV1dXFC1aFGFhYdi2bRuOHz+OoKAguLi4ZLosTRITEzF06FCN8+zcuRN9+/ZFfHw8KlasiDZt2iA6OhoXL17Ejz/+iFOnTqm9oAekjm+i6vOxfPlyrcdRyQhDQ0Ns2rQJLi4uWLp0KcqVKwcfHx8YGBhg06ZNMDc3V5jf2dkZnp6e2LVrF2JiYqRj6ePHj7C0tETx4sUzXaf4+HgEBgbC2NgYjRo1yvB6dN02UWhoKFq1aoWYmBiULVsWzZs3x9u3bzFlyhS1f0B16tQJI0aMwO7duzUeK+IdY02aNMHkyZNhaGiINWvWwMLCAv7+/jAwULw/q0aNGvD09JTOjZ6engrTT506hTZt2qBbt244cuQIgNRgruqPBWNjY7i5uWHXrl14/vy5wjRNGQtIzVnyjf25PWdR3s1YI0eOhJ2dHSpWrMiMJadr1664cOECzp49i2+++QYNGjQAkPpZ1HQRQVtRUVHYsWMHqlativr168PCwgKvX79GaGgozp07h/Pnz+Po0aMKy/z888949uwZKleujPr168PIyAj37t3Djh07sGfPHmzfvh1dunTJdN2A1IsI4eHhaqc/e/YMrVq1wp07d2Bubo769evDxsYGL168wJkzZxAWFoagoCCNZQiCgEGDBmHdunWoW7cuAgMDNXZBqMtnTJUdO3agT58+SExMRKlSpdCxY0d8+vQJwcHBOHfuHPbs2YMDBw6gQIECWq9Tnb///hsdO3bE+/fv4eTkhObNmyMhIUEad+vgwYM4dOiQyu//rBQaGqqxO8OkpCT07t0bO3bsgImJCVxdXeHg4IAHDx5g69at2LNnD/bs2aP0vos+f/6MjRs3YtSoUQqvJyYmYuXKlVm5KUpcXFwwdepUTJ8+HX379kXr1q1x8+ZNVKtWDT4+PmqXGzlyJHx9fWFgYIAGDRrA3t4eN2/ehJubG4YPH57l9cypjKUuP4rE/NilSxdcvXoVBw4cQN++fdWWnxV/p7q5uaFIkSIa/04V27J27twJIPUmzsTERKUy5DNWZGSkTm1ZQO7PWWy/UpZXc9bX0palyuLFi7FhwwZUrFgRVatWReHChfH06VMEBwfj5MmTuHDhAhYvXqzzei0sLNC1a1eV0zS1s4wbNw6LFi2CgYEBatasiYYNG+Lp06fYv38/Dh48iHXr1kk3eqU1ZswYLFmyBPXr10eHDh0QFhaGo0ePIigoCDt27ECnTp0U5v/8+TOaN2+usl1l9erV2Llzp8p2lZMnT6Jr16748OEDihUrhqZNm6JAgQJ4/PixdCNVvXr1pPlfvnyJVq1aISwsDNbW1qhVqxYKFSqEa9euYcGCBdi5c6d0c0dm5ZVso442bUyZpWs2adWqFUxNTREYGKj0HWdra6vXur5//x4TJ07UaxnqskPDhg2zNDtklxy92Pfw4UOsWrUKY8aMwZQpU3D58mWMGDECBQoUUGq0ErVs2RLr169Hx44d8d133+Hq1atYv349EhMT8fbtW6XBFOfMmYMZM2Yorad79+5afbBtbGykK/xiFw3ynj59Kv0rH2xiY2M1/uGpyo0bN+Dt7Y3y5ctj+fLleP36NV6/fq1xmYyUo67OmSlDvDPizZs3GucVu/J49+6dwnxiGeIdfU5OTpg6darCsmJAkl/u7du36NmzJ+Lj4zF69Gj8/PPP0oWYsLAw9OvXDxs3bkSZMmXg4eEhLSveNZK2HuI2AKlBOu00sRE0KSlJaZqNjQ02b96MunXrKrweHR2N0aNHIzQ0FL/++qt0d0Ba4l2KHh4eUlclALBnzx6cPXtWqo/8/hDDfnrvuy7E9ya9dQ4fPhyBgYE4ceIEAMDS0hJTpkxRu0xAQAD27dsHW1tbbN68Gfb29jA3N0dSUhJmzZol/aGt6n3Xtk5prVy5EoULF1Z4LTk5GRMmTMDBgwexYMEChZNGpUqVcOjQIaVBV9+8eYMBAwZgz549WLZsGVq3bi1N0/YzmHae/v37IyEhAfb29nj58qXStm3evBnLli1D4cKFsWDBAoWBcYHU7wsDAwNpGVXH7dmzZzF48GDIZDKsWbMGJUuWVFtX8TM8bNgw6SkgAJg4cSL+++8/pfqpOvYGDBiABw8eoGTJkvD390fp0qUBpIYVHx8f7Nq1Cx06dMCxY8ekBipNnzf5ej169EihP/GxY8dKAwTPnj1boauhtWvXYuHChejcuTOOHj0qfXeLn9+4uDi174P4HfX8+XOFedK+Lu73devW4e7du9J+TLsd9+/fR58+fSCTybBs2TK0bNlSmvbixQv8/PPP8PPzQ8WKFRWCt1he3bp1ceHCBfz555+oVauWwvS1a9fi+++/l+7uy8h3QEpKisblDA0NMXr0aMyZM0cKnP3790fRokWVlrOzs8PUqVNx4sQJxMTEYOjQoShZsiRiY2Olhp20x6uq72BNzp07h4SEBFStWlXan2KXl7qqWLEiZs+ejTFjxkjbNn78eIU/SuTFx8ejV69eiImJwahRo7Bw4ULp2Lp58yaaNm2Kt2/fKi3n4OCAunXr4u+//8bbt281hmGxAc/X11dqyJs/f77Kp/E6duyIjh07SufGtHchmpqaShmrT58+WLt2LbZu3Qo3NzeVGatevXrYtWsXAgMDcfXqVa0yFpDa0P77778rva5NzkovYwFZm7N0ldEydMlZ+SVjde/eXSpHXxlrx44dKF++vEJDcVZnLPn3S58ZKyEhIcsy1qBBg1C0aFGcPXsW1apVk/at+N0rv4x4LOmyPcnJybh27ZrSeKEvX75Ep06dcOzYMRw5cgTlypWTpo0ZMwa1a9eGlZWVwjJBQUEYOXIk+vfvj/Llyys1eqsSGxur9rh5/vw5fv/9d+kcnHbbUlJS0LVrV9y5cwcNGjTAwoULYW1tLU1PSEjA+fPnFT6Hac/3giDgl19+wY4dO1CjRg2sXLkSb968Udlbga6fMXni6y9fvoSnpycSExPxww8/wMfHR/ouffr0Kby8vKSL32PGjJGWV5dfxNfEeeSnRUZGokOHDoiOjsb06dPRo0cP6caS9+/fY+TIkTh+/DjGjRuHYcOGSfsjvc+Gus+yuteTkpLQv39/GBoawsbGBhEREUrbsXjxYuzYsQPVq1fH4sWLUapUKWnasWPHMHr0aPTo0QMnT56ULsSK5dnb28PY2BhLlixBmzZtIJPJpH1+6NAhvHz5UspT6vKoOpryjPxx9cMPP2Dnzp24ffs27ty5A2NjY8ycOVM6ZtIKDg6Gr68vzM3NsW7dOoUMuHr1aqnROS4uTuk8kpUZC8hYztIlYzVo0AANGjRASEgIYmJipJ4O0urSpQumTJmC3bt3a7zYBwBLlizByZMnpe/QwoULY/369WrnX7VqFfbt2wc7OzsEBwdL3aYnJSVhxIgRKi8Ii21Z4r5xd3dX25YlZiwrKyud2rKA3J2zMtJ+JY9tWWzLEuucFTlLftvV7Xd1bQvu7u7o2bOn1H4hevjwIby8vPDHH3+gXr16qF69ujRN07ElvteFCxdWOhZE6tpZ/vrrLyxatAiOjo5YsGABatSoIU27fPkyBg4ciEGDBqFkyZIqvytXrVoFf39/fP/999Jr69evx/z58+Hp6YkSJUootJ1MnTpVbbuKv78/Zs+erdSu8urVK3Tq1AmfPn3CwIEDpe8+0bt37/Do0SNpu2JiYtCjRw+EhYWha9eumDJlinRTR1JSEhYuXIiNGzeiR48eChfHdMk24v7ISLYB0j8e9ZFtVG1fbGwspk6dqrGNKT3p5QDxvdIlm3Tp0gUlS5ZEYGAgHB0dlY5rVduV9nOWHnWfz+nTpyMyMlJ6P8Tt0vYckpk27mnTpmndxi3e6KBLG3dERES69c8QIQcZGxsL33//vcJrw4cPF+rWrat2mdjYWMHb21swMjISDA0NBXt7e2HChAkCAOH169dK88fHxwvR0dHSz7NnzwQAQnR0tFZ1jIuLE+7cuSPExcWpnH716lUBgHD16lWF1x88eKDV+kUXL14ULC0thXr16gkfP37UejldyxEE9XXOTBmOjo4CAMHPz0/jfI0bNxYACD4+PirLOHr0qABAaN68udKyAIS0h+zMmTMFAIKrq6vK8hYuXCgAEMqVK6ewHT4+PirrIQiC4OfnJwAQPD09laY9evRIACA4OjqqLE/de3X//n0BgFCrVi2V0wVBELp16yYAEAICAjTWR74MT09Prd53XYjvjTbrnDt3rrRffH19Nc7r7OwsABBWrVolCILidsTFxQnFixdX+77rUid5qvZHSkqK8OOPPwoAhAkTJmi9rsDAQAGA0K1bt3TLkKfquN2zZ48AQPDw8FC5DxMTE4WiRYsKAITdu3dr9RlMe5wcP35cMDMzEywsLISQkJB0l7e1tRUACC9evFB4Xd0xlvb18PBwaVv37NmjtP6YmBipjK1bt0qvb9u2TQAgtG3bVmW9xO+WR48eSa/duXNHkMlkgr29vcrvywcPHght2rQRAAgHDx6UXg8ODhYACI0bN1b7PojfUcHBwRpff/DggfDs2TPBwsJCsLe3F5YtW6by+O3evbsAQFi4cKHK8i5duqTyO0ws76+//hJMTEyELl26KExftWqVAEDYv3+/ymNMGwAEBweHdOeLj48XrKysBACCvb29EB8fr3H+tPtM1fErHq+qvoM1WbBggQBA6Nu3r/RaUlKScPnyZSEpKUl6TdP3tDxdti0gIEAAIJQqVUr48uWL0vQ//vhD2hfyx6t8vdetW5dunV68eCEYGBhIx0VKSorG+dXtf/mMJX6HNmvWTG3GEr/jrK2ttcpYYj768OFDhnNWehlLELIuZ2VERsvQJWfll4wlX46+MpZ8GfKyMmPJl6HPjDV37tx059UlY2naDnnisZQVXrx4IVhbWwsAhDt37mi9XM+ePQUAwuHDh7Wa/8GDB2qPm/bt20tZSdUxvG/fPgGAUKJECeHTp08ayxDJn+9TUlKEAQMGCACE77//Pt3vNV0/Y6penzp1qgBAKF68uBAbG6s0/65duwQAQqFChRS+O1u2bCkAEHbu3Km0jLr8M3HiRAGAMGzYMJXb8/z5c8HY2FgoWrSodC568OBBup8NdZ9lda8vXrxYACAMHz5cZQ579+6dYGZmJpiamgrPnz9XWeaQIUMEAMKyZctUlrd06VKFXCju8zp16gjFixcX1qxZo/a7SRNNeSbtZ3D79u3S/h4zZozG9TZr1kwAIEycOFHl9Bo1akj7NG05WZmxBEE5Z+kjYwmC6syfVuXKlQVTU1ONn2dRZv5Olafu71QxZ8n/naquLUvMWNWrV9e6LSu356yMtl/pUoYqbMtiW5Y68mWp2xZtvmfSEs8P48ePV3hd07GlTaZVtf3JycmCvb29AEC4cuWKyjLmz58vABDGjh2r8Lp4jI0aNUpleTVr1hQACL///rv0WnrtKoIgqGxXGTVqlACktmdpY/369QIAoUaNGkJiYqLS9OTkZKFKlSoCACEsLEx6XZdsI75XGck2gpD+8ZjV2UYQVLc9/f333+m2MaUnvRwgf1zpkk20aU8ThP9tly6fM0FQ/fm8cuWKYGBgILi4uAjTpk1T2C5tzyGZaePWVEZGskPaOm3YsEGpLUsdbc7pohwds69EiRL49ttvFV6rVKmSdLeOKmZmZti4cSNiY2Px+PFjPH36FE5OTihUqBCKFi2qNL+JiQksLS0VfnIbdn3wP+IdAOl1DyAS+zZW9yToTz/9BCD1LgNVd+BmteTkZJw8eRIzZ87EkCFD4O3tDS8vL+luvPv376tdNiYmBgDUdh+X20RERGDhwoXS7zt27FA7pt2LFy/w77//AgD69OmjNN3U1BQ//PCDfioKYMaMGfDy8kKXLl3g5OSELVu2oHjx4hgyZIjSvAkJCTh48CB+/fVX/Pzzz9I+XLNmDQDN+1AbsbGxGD16NMzMzLB06VKV81y9ehWRkZGwtbVV6mZBG2LXnXFxcQgICFB6KlAVsR9+bT97ovXr18PLywuDBg0CAFhZWaFjx45K85mbm6Nt27YAUu9WFlWsWBFA6mdZVd/cqhw5cgSCIKB169Zqvy/F7k1V9RWfVUaPHo2YmBgsWrRIobshUUpKitS1Wffu3VWuo2bNmihYsCCuX7+uciyEYsWKoUePHti3b59Cf/m+vr4oW7Ys2rVrl0Vbo97vv/8ujU308uVLnD59Wu9lqiN+j8vfcZgZumybeL754YcfVN5Jre48BEDqrm7Pnj3p1mnSpEnSd2lYWBhu376d7jKqqMpYJUqUUJuxxPfU1NRU64wF5I2cRan0mbHEp6r0KTk5GefOnWPGyiEvXryAl5cX+vbti5YtW8LZ2RlRUVHo2bOn9BSMvJcvX2LdunUYO3Ys+vfvDy8vL3h5eUnfaZnNU4cPH5a60ZN/ikDesWPHAAC9evVSeZ7WRJDrurNUqVLpdt0J6P4Zkye+P1u2bAGQeq4xMzNTmq9z584oUqQIPn36hKtXr0qvi3lq8+bNWnfxffjwYQDqM4qDgwPKlSuHyMhIvT1J/erVK0yfPh12dnaYOXOmynmCg4MRFxcnjaWkSnq5z9vbG4UKFZLGxAWAixcv4uLFixg0aFCWdImqSVxcnEK3WAcOHEBsbKzKeZOSkhAaGgpA9d9NANJ9si0jcjJjaatLly6Ij4+XuidXJzv+TtWlLUt8TyMjI3VqywJyZ85i+5VqbMvKOzlLlc+fP2Pnzp2YMmUKBg4cKJ2Xd+/eDSDzuUUb169fx8uXL/HNN9/A1dVV5Tzpne/UHU/ieUN+fLiMtquI+WrgwIFqt0WeWGaXLl2UeooAAAMDA6n7aPly8nO2UWf27Nka25iyki7ZJCekpKRgyJAhEAQBK1asUPuEelbJS23c6cnRbjzr16+v9IX54MEDrfroNTY2RsmSJQEA27dvR7t27ZTGs8kLGJQUiY+yFilSRKv5X7x4ASB1IG9VChcuDGtra0RFRenUpURGhIeHo3379hpPGJr62Be3JSN/YHl7e0t9dhsaGqJIkSJwcXFB//799fYFM2jQILx9+xYdO3bEjRs3EBoaiiVLlih0KSQSH223tbVVe8JStw+zwsGDBxUaRNzc3LB582aFLoAA4MKFC+jevbvGGw4yO07CrFmz8OTJE8yYMUPtNouPzVeoUEHn8QGvXLmCHTt2SH9sBAQEqLz4Ji8xMRGfP3+GgYGBUpdb6Tl79qxCP/zioLqqiO+3eKwDqeOONW/eHEFBQahRowbc3NwUul5V1S3iw4cPAQAbNmxIdwyDyMhIpdfEAYUzIzQ0FLt27UKTJk3Qo0cPlQM5v3v3Tjpe0h5rqrx7905lI9bIkSOxadMmrFixAnPnzsXx48dx9+5dqR9/fbpy5QrmzJkDY2NjDBw4ECtWrED//v0RFham87GSFcRGo6xo6NB128TvMXWf2yJFisDKykqqo7wyZcrAxcUFJ0+eRHR0tNr3bv/+/diyZQsKFy6Mjh07wt/fH56enrh48aLKP4w0UZWx3rx5ozZjie/p+/fv803GIkX6zFjPnz/Xer0ZER4ejk6dOmm8+P21Zqzs8v79e4Uxh4yNjTF06FBpbGF5M2bMwO+//66x657M5Kn4+HiMGDECJiYmKssXiXlKbCzSxYQJE3DlyhUAqeP+hYSEwMPDQ+Myun7G5KUdz0nd504mk6FMmTJ4//69Qp4aMmQI1q1bh4MHD6JKlSr47rvvpBtT1P0NJOaphg0bplu/yMhIpW7u5T8bGTV27Fh8/PgRy5YtU3tuFOt58uTJdPObqtwHpI6L6+3tjWXLluHu3bswMjLC0qVLUaBAAfz8889Sw6W+TJ48Gffv38f3338PQRBw4cIFTJo0SeHio+jdu3fSDWDqjgN9/N2UkxlLW126dMFvv/2G3bt3a/z+zY6/U8WcJeYlQH1blnzGAvJ2Wxbbr9RjW1buyFmbNm3SaZxcILW9yNvbW9qHqmTHeJni+e6///7L8PkuvfOGfDfNGW1X0TVfiTct//LLL/jll1+0LmfIkCFYv359vsw2qhw/fhzHjh3T2MaUlXTJJjlh/fr1uHTpEry9vfH9998jMDBQr+Wpyg7+/v6YM2eO0rw53cadnhy92Dd69GjUq1cPs2fPxg8//IBLly5h7dq1WLt2rTTP5MmT8eLFC6nf3gcPHuDSpUuoU6cO3r9/j8WLF+PWrVs6f5nnBgxKysSQYG9vn8M10V3Xrl0RHh6Odu3aYcKECfj2229haWkJY2NjfPnyReMdXikpKXj06BGAjH0hyA+EHB8fj3v37iEoKAhBQUG4f/9+uidUXW3ZsgX79u1DsWLFsG7dOoSFhaFp06aYNm0a2rVrp3TCzGliY01kZCSCg4MxatQoNG7cGIGBgdIYM7GxsejYsSPevHkDb29vDB48GM7OzrC0tIShoSEePHiAChUqZHh8MCD1+2vRokVwdnbW2wCzt2/fhrm5OY4cOYJJkyZh9+7d2LBhg3RnoCriExlFixbV+YKCn5+fdMebusGn07N37178+uuv2L59Ow4cOJDueyzeXVOjRg2FfvNFHz9+lP6orlOnjtJ0VYOmi44dO5bunZNfvnzBzJkzYWxsjOXLl6dbT0DzU18idd8RLi4uaNiwIdavX4/p06dj6dKlsLCw0LhPs0JCQgI8PT2RlJSE3377DdOmTcOdO3cQHByMMWPGZMtg8WmJF4Iz+8dWTmxbly5dcP36dRw8eFDl3V9v376V7o709fVFt27dcOHCBVy7dg1z5szR+XtcPmNFRUUBSL2rcuPGjdI88hlLbOQzMTFBeHh4ns9YpCyvZ6zbt2/D3d0dM2bMYMbKAVWqVIEgCEhKSsLTp0+xevVqLFiwAB8/fsSmTZukRqk9e/Zg+vTpKFiwIJYvX44mTZrA3t4eZmZmkMlkmDJlCubMmZOpPDV37lw8fPgQ06ZNUxgrMCtduXIFderUwS+//IIOHTrgp59+ws2bN1G8eHG1y2TmMya+Hx4eHjh06JDOy5cvXx5//vknVq9ejTNnzuDevXvpLiPmlK5du8LCwkLjvKoacOU/G/I+f/4sPQmhSUhICLZt24aGDRtqfFJNrKezszPq16+vcZ2aGh6HDx+OZcuWYfny5ejZsyd27dqFH374QeM+zQqnT5+Gr68vzMzM4O/vj5SUFLi4uGD58uXo0qWLVj1wZIe8kLGqVasGZ2dnHDlyBPHx8SrH/cyu71AxZ4lPhZ4/fx4BAQEq27JGjBgBIPWic0BAQJ5ty8oN7VfiE2S5UV7PWfmlLeubb75BtWrVVN64sGvXLqVj6MWLF+jevTvi4uIwYcIE9O7dG05OTihYsCAMDAxw/PhxtGzZMlO5RVvi+a548eJo2bKlQrtGWprGgddEfjvSa1eRp6pdRVtiOQ0aNFA5Fr28ypUrS/8vX748QkNDMXny5HyXbdL68uULhg8fnm4bU1bJ7dnk3bt3mDJlCooUKYJ58+bpvTx12WHJkiXS2LR5SY5e7KtVqxb27t2LyZMn47fffkOZMmWwZMkS9O7dW5rn1atXCk/ZJCcnY9GiRbh//z6MjY3h7u6Oc+fOqRyYNDfLDUEpN7pz5w4AxS94TRwcHHDv3j3p7o20oqOjpUZOOzu7rKmkCvfu3cPNmzdhY2ODvXv3Kl0wSe/x8Lt37+Ljx4+ws7PT6gmgtMTukeStWbMGP//8M+bNm4dJkyalO4C3tuT/YFmzZg1sbW3h7u6OIUOGYMWKFfD29saZM2cU7k4Un1Z6+/YtPn/+rPLOB227cMyMokWLSt0itW/fHhMnTpS61fv777/x5s0bfPfddwqN4aKseMR/2LBh+PLlC3x9fTUGZnFg6AcPHugcKs3NzXHw4EE0adIEjo6OcHV1xciRI9GoUSO1DWK6fu5UEY/bx48fQxAElXeiiXe/pH16zcLCAosWLcKiRYuUlnFyclIaIFgsq379+iqDUHh4uMbGv4oVK6q9S8rNzS3di30LFizAo0ePMGHCBJVdl4lsbW1hZmaGuLg4LFy4MMOBHABGjBiBbt26Yfr06Th69Ch+/vlnvT9ZJzbOuLq6YvLkyZDJZNi4cSOqVq2KjRs3olu3bmovmupLsWLFAEDjXZfayMi2icetuu+qDx8+qHyqT9S5c2dMmzYNu3fvVnmxb8iQIYiIiECHDh3w448/AkgdFL1+/fqYOXMmOnTogGrVqmm9jfIZ6+7duwBSu7JTl7HE9zQhIQHVq1fP0xmLVNNnxnJwcNBbty9ixipWrBhWrFih9L37tWes7GZkZISyZcti/vz5uHHjBrZs2YKuXbuiffv2AFK7vAFSu/BT1b1TZvPUw4cPMW/ePDg5OWHKlCka5xXzlDaNQ2nVqVMHgYGBsLKywpQpUzBz5kx4eXnh6NGjau+2z8o8pe5zB0BqVE2bp7799lup+3B5ISEhcHd3V1lWeHg4Jk6ciJo1a+pcV1WfDSD1PJleg1hiYiKGDh0KIyMjrFixQuO84ntSoUKFTN3l7uzsjDZt2mDz5s349OkTEhMTpc+bvnz+/Bne3t4QBAGzZ8+WGotmzpyJ8ePHo1+/frh586ZCg6SNjQ1MTEyQkJCAx48fqzye9PF3U05mLF107twZ8+fPR2BgIDp06KAwLTv/ThVzlnjz3cGDB9W2ZYnvqY2NTZ5ty8oN7VefPn3CsGHDsr1cbbEtK3fkrAYNGmDq1Kkq2wNCQkKULvYdPHgQcXFx6NSpk8qLCvrq6lEV8f2zsbGBv79/uu0aqjx69Ag1atRQel38HpN/Gjm9dhV1Spcujfv37+PevXsqL4ylVaJECQBAhw4dMG7cOK3LAVIvRObHbJPWggUL8ODBAwwYMEBjG1NWiImJ0TmbZLdJkybh3bt3WLlypdpurrNKXm7jVifH+wpo164dwsLCEB8fj7t372LAgAEK0/39/RX6FK5UqRKuX7+O2NhYREdHY9++fahQoUI21zpzckNQyo0SExOlsbwaNGig1TJi/9Hq7oYTL9qUK1dOr3dtiiGsWLFiKp+MCggI0Li8eNJo2bJlltVJbCyOiYlR2RViRv3000/48OED+vTpo9A95Lx581C2bFmcO3cOixcvVlimZMmSKFu2LADgzz//VFpnQkICdu7cmWV1TI94shAbwIH/7UOxYSit9PZhenbu3ImgoCB07NgRrVu31jhvzZo1YWtri8jISOzbt0+ncrp27YomTZoASG30WbhwIWJiYtCrVy+13WkdP34cgPafO1VcXFxQpEgRREdHY+/evUrT4+LipP7TxfpllPj+HThwQOU4d/r05MkTzJ49G8WLF8evv/6qcV5DQ0M0b94cwP8aPzOqU6dOKF26NObNmwdBEDB8+PBMrS89Z8+exeLFi2FiYoJNmzZJ32tOTk5YsGABgNQgrOrilniHc1JSUpbX67vvvgPwvz+mMyKj2ybe3bZjxw6VnyWxBwJ1KlWqhEqVKiEwMFDpj8xt27Zh586dsLGxkcYHBVIbm8eNG4fExER4eXmpLFf841fV+y1mrGnTpilsg0g+Y926dQsA0Lt37zydsUg1fWcsdeNoZQXx/Gxvb8+MpSJjAfr93tXE2toagOo8paoru4iICAQFBWWqzBEjRiA+Ph5LlixROaadPPGCwrZt23R+GmTOnDnSTTW//vor6tati8DAQLXjLWfkM6aKmJHku2SXt3fvXrx//x6WlpYZasSSJ+apzGaUjFiyZAnu3LmDYcOGoWrVqhrnbdq0KQoUKICQkBBERERkqtyRI0fi8+fP2LJlC+rUqYPatWtnan3pGTt2LB49eoRGjRph5MiR0utjxoxBvXr18PDhQ6XePoyMjKQnGLdu3apyveLYjlkpJzMWoP33mKZxkLP779R27dph8ODBAFLHWVLXliVmrPr16+fJtqzc0H716dMntGrVCv/991+2l60NtmXljZyliqbcIgiCyu8FfalVqxZsbW1x586dDI/bru78IL4uHndAxttVxHy1bt06reYXx+PbuXOn3p+QzCvZRp7YxlSyZEkMHTpUjzVMNXfuXJ2zCZB9f29cunQJGzZsgKurKwYNGqTXsgDN2aFUqVJ5oo07rRy/2Pe1yQ1BKTd2ffDlyxeMGDECkZGRcHNz0/rx/wEDBsDS0hLXrl3D7NmzFU4c169fx6xZswAA48eP10u9ReXLl5e6epS/OA2k3in0xx9/qF322bNn0ngj4h8LWUEcuNzCwiJTTxTJW7t2LQIDA2Fvb6/Uj7OFhQX8/Pwgk8nwyy+/KI0VNWrUKADA9OnTFe6wTk5Oxrhx46SuJLPKu3fvVP6x+u7dO0yaNAkAFAZVF++eOXnypNJya9euxV9//ZWp+owZMwbm5uZYsmRJuvMaGRlh6tSpAFIHPb58+bLSPJcvX1bob12U9m7zoUOHom3btrhy5YrKi1PHjx/H6tWrYWxsrPJpI20ZGxtLQWHcuHHSXedA6h8/I0eORGRkJMqWLSv9kZ5RLi4u6NKlC549e4bOnTurvGMmJiYGW7duzfLBzKdNm4bY2FhMnjxZqzudfHx8UKBAAYwfPx6bNm1SOcDvrVu3VDZYyDM0NMTMmTPRtm1bjB49Wq93e8XGxsLLywspKSmYMWOG0t2pgwYNQtOmTfHixQvpcy1PvFswo3+gaFKvXj2YmJjgxo0bKhtB05OZbevatSscHBzw9OlTTJ48WWFf3rp1SzrfaNKlSxfExcUp3J34+vVr6S7lFStWKN25K3ZZeP36dcyePVtpnVn1fouDoWf2YjzlPvklY4WFheHixYsK05ixUonfA5lppFfnn3/+UfmkT3BwMA4ePAhAdZ5au3Ytvnz5Ir0eHR0NT09PjU9Ap+fkyZM4fPgw2rRpo/REjyrt27eHi4sLXr58iW7duiltR3x8vMq7xQHFPGVkZIStW7eiUKFCmDRpEm7evKkwb0Y/Y6p06NAB5cqVw5s3bzBy5EiFmzwePXqEsWPHAoA0ZmFmjB8/HoULF8bixYuxaNEihf0lX2Zmb3hLKzo6Gr/99htKlCiBGTNmpDu/nZ0dhg8fjpiYGHh4eCAsLExpnoSEBBw4cCDdpzibN2+Ovn37ws3NLd2btjLrzJkzWLt2rcLnV2RgYAA/Pz+YmZlh5cqVSn8/ihlk2bJl0vlZNH/+fFy7di3L65uTGQvQPs/UqlULpUqVwoEDBxQ+H7n579S8nLFyQ/uVeKHv1q1bWLlyZbaXn578krPye1uWOmJu2bVrF169eiW9npycjF9//VXpO1ifjI2N4ePjA0EQ0KlTJ2k4GnnJyck4deoULly4oHIdq1atUtqPf/zxBy5duoRChQopDAXi4uKCli1b6tyuMmbMGBQqVAgHDhzAtGnTlG5IjYiIQGhoqPR7s2bNUKtWLWn8NVXjDb5//x6rV6/O9IWkvJJt5IltTIsXL4a5uXmW1iutwMBA/PXXXxnKJuJ5Ojw8XOO43JklZt0VK1bovTeT9LLD3Llzc00bty5ytBvP/ET+jlYAePr0KT59+qTw2q1btzBkyBB88803mDt3bpY8Dq6qHE1iYmL0Ps6TrjZs2IDJkycjMjISDg4OCk81pMfOzg5bt25Ft27dMHXqVGzZsgUuLi6IiIjA6dOnkZSUBG9vbwwYMEDl+33ixAmlO1jEPyCvXr0qXRQSiQ0U79+/x6RJk9CtWze4urrC1tYWw4YNw9KlS9G0aVM0bNgQ9vb2uH//Pq5du4Zp06apbAgeN24c/Pz8EBUVBQsLC6xevRqrV69WmOfff/8FAISGhsLLyws9evRQepR/586d0pdLQkIC7t27Jz2tNXHixCzpXurx48fSl+7atWtVDjzdqFEjDB8+HL6+vvDy8sLZs2elL+ehQ4ciKCgIBw8eRPXq1VGnTh04ODjg4sWLePXqFQYPHoxVq1Zlup6iZ8+eoWPHjvjmm2/g7OwMa2trvHnzBufOnUN8fDxsbW0V9omLiws6dOiA/fv3w8XFBW5ubrC2tsY///yD+/fvY8qUKfj9998zXJ/nz59j1qxZKu8YU2Xk/7F37+FV1Xfa8L8BQoKchVgDRcA6CCqCiEwtdNSqlVGwdVo6VRisbX3qYVq1dWyZ2kdQK9rR1vHpVOt56mHsO1odpxVadTwU1AIqHimgchKiBSQJQQgR1vuHQySSQIC99imfz3Xt63LvrLXu3w45fN139loXXBALFy6Mm266KSZOnBjXXnttHHzwwVFbW9t4uo8nnniiyWkYWnL77bfH4YcfHj/5yU9i7Nixccwxx8SyZcviS1/6Ujz//PPRrl27+Od//ue9vu7NP//zP8ezzz4bv//97+OQQw6J4447Lrp16xbPPvtsLF++PPbdd9944IEHGv8iaG/ccccdUV1dHTNmzIiDDz44hg0bFgMHDowkSeLPf/5zLFy4MDZv3hwLFizI6GlP3n777TjxxBN3+e7MbUaMGBF33313fO1rX4uvfe1rcemll8YhhxwSFRUV8d5778Urr7wSb7/9dvz93/99/N3f/d1OjzV58uTdOu/7nrrkkkvijTfeiE9/+tPNnmajpKQkbrvtthg6dGjceeedMWHChDj55JMbP/6lL30pnnjiiZg0aVJ8/vOfj3bt2kX37t3jn/7pn/b6r5fLy8vjpJNOiocffjiefPLJVv87ZOK5derUKe655544+eST47rrrouHHnoojjrqqFi7dm08+eSTMX78+Hj++ed3OO3s9r70pS/FlVde2eQal2effXa89957MWHChPj7v//7HfYpKyuLO++8M44++uj48Y9/HF/84hebXFPhS1/6Ulx77bVxwgknxOc+97nGF2GuueaaZq9D0JyGhoZ4+umnGz+/+ag1c1am7WnGx9eaS9masZqTxox15plnxq233prajPWDH/wg2rdv32SbQpixPv3pT0efPn3ixRdfjBEjRsTQoUPj/fffj1GjRu31i4R33nln/OIXv4jhw4fHJz/5ycYXBLcVXuPGjYtTTjmlcfsLL7wwfvWrX8UjjzwSBx54YHz605+OhoaGeOqpp2KfffaJr3/9682eLr013n777SgvL9/hf8Zb0q5du3jwwQfjpJNOihkzZsQBBxwQY8aMiV69esXKlSvjpZdeih49erTq3YYHHnhg/PznP48zzzwzzjjjjJg3b16Ul5fHbbfdFpdeemm88847u/091pzS0tL49a9/HSeeeGLccsst8fvf/z6OPvroWL9+ffzP//xPbNq0KU4++eSMFFWf/OQn47/+67/iS1/6Ulx88cXxk5/8JA477LCorKyMmpqaWLBgQbz55pvx13/913v1B2EfV11dHRERN910U4vXIvq4q6++OqqqquLee+9tvLbQgQceGB06dIi333475s+fHxs2bIgZM2bs9Lp9ER++i2ZPTo22O6qrqxv/cO8nP/lJ419/b2/QoEHx4x//OL773e/G17/+9XjllVca/5Bs/Pjxcf7558e//du/xWc/+9n4m7/5m6isrIyXX345FixYEBdccEGL7zLdU7mcsSJ2nB+3/Rz8+PxYUlISf/d3fxf/+q//Gv/zP/8TJ510Usb/P/W4446Lnj17ZuT/Uwthxopofs569tlnM/761cczdjVnbdiwIf7xH/8x3nzzzfjFL36xw+/oXPNaVmG8lrUz48ePjyOPPDKef/75GDRoUBxzzDHRuXPn+NOf/hSrVq2K73//+1m5Ztg2//iP/xjLly+Pf/mXf4kzzjgjfvzjH8dBBx0UnTp1infeeSfmz58f1dXVceONN8anP/3pHfb/1re+FZ/73Ofis5/9bPTt2zdeffXVeOWVV6J9+/Zx++237/Au0enTp8cHH3zQ7OsqS5cujZdeemmH11UOOOCAuP/+++PLX/5y/PjHP45bb701jj766CgtLY1ly5bFiy++GGeccUbju1zbtWsXDz30UJxyyinx7//+73H//ffHsGHD4oADDojNmzfHW2+9Fa+88kps2bIlvva1rzX7DtPWKqTZZpttrzFNmDAh1dPGVldXxze/+c2I2LPZ5IADDoiRI0fGvHnzYujQoTFy5MgoLy+P3r17x9VXX52xdb799tvxzW9+c6+uE9karZkdjjrqqJzMDnstaWNqamqSiEhqampatf3GjRuT119/Pdm4cWOzH1+2bFmyzz77JBFRULd99tknWbZsWas+B4sWLdrlNv37908iIrnjjjt2ut0xxxyTRERy2WWXNT72/e9/Pxk8eHBy6aWXJn/5y19a3Hfb2pvz+uuvJ2eeeWbyyU9+MiktLU169OiRHHfcccl9993X7PO47LLLMvJ53P75bt26NbnqqquSI488MunSpUvSvXv3ZMyYMY1raG792z5vu3O76667Gvc/88wzd/h4u3btkl69eiUnnHBCk+ffWts+Nx9/bscee2wSEclZZ5210/03bNiQHHTQQUlEJNdcc02TjzU0NCTXXXddcsghhyQdO3ZMevXqlXzhC19I5s+fn9xxxx1JRCRnnnlmq9a0K6tXr07+4R/+IRkxYkTSq1evpH379kmXLl2SYcOGJZdcckmyatWqHfbZvHlz8i//8i/J0KFDk3322SfZd999k89//vPJH/7wh2TJkiVJRCT9+/dvss+uvj+2/bv81V/9VVJfX7/Dx7f9G7b03GbMmJEcf/zxySc+8YmktLQ0qaioSEaNGpVMmzYtWbt2beN2O/v8bTtOSUlJ0q9fv+S9995L5s+fnxxwwAHJV7/61WT27NktPo+W1tfS4w0NDcm//du/JX/913+ddOnSJSkrK0sOOuig5IILLkhmzZrV4uepJdu+R5YsWbLDx7Zs2ZLce++9ycknn9z4+enVq1cyaNCg5KyzzkoefPDBZPPmzY3bP/HEE0lEJMccc0yLedt+Rj3xxBPNPt6xY8fkz3/+8w6fr119/pcsWZJcdNFFyWGHHZZ07tw5KS8vT/r3758ce+yxydVXX5288cYbrVpHc3b2s3FX+/Xt27fJY48//nhSUlKSdOrUKfnzn/+80/1/+ctfJhGR9OnTJ1m3bl3j41u2bEmmT5+eHHrooUl5eXnj+rZ/Lts+X9v/LmitP/zhD0lEJF/5yleSJEmSDz74IJk7d27ywQcfNHluH/9ezcRzS5IkeeWVV5K/+7u/S/bdd9+krKwsGTJkSDJ9+vSkoaFhp1+v2xx44IFJ165dk02bNiW33357EhHJfvvtl6xevXqna5oyZUoSEcmwYcOafF1v3LgxueSSS5KDDjoo6dixY+Pne/s17Opn6G9+85tW/XzfXkvz0e7MWbuasZKk+OesYpmxtn8uac1Yt912W3LYYYelOmM98cQTjc8jzRnr6quvbvLcMjFjvfLKK8mpp56aVFRUJO3atWv29922z8nuePTRR5OvfOUryYEHHph07tw56dChQ7LffvslJ554YjJ9+vQmP3u3WbJkSTJx4sTkgAMOSMrKypL+/fsn55xzTvLOO+80fg5a+/N/0aJFjb8zIiL5v//3/za73c6+htevX59cc801yVFHHZV07dq1cU2nnnpqct999zX5PtzV79+vfvWrSUQk559/fpIkH36PDRs2bI+/x1p6fMWKFcl5552XDBw4MOnYsWPStWvXZPTo0cnNN9/c7Oc8SVr+ebKr+efdd99NfvSjHyUjRoxIunbtmnTs2DH55Cc/mXzmM59JLrvssuTll19ukrGr2bWlmXnb4ztby64+/4888kjyd3/3d0nfvn0bfx4NGTIk+epXv5rce++9yYYNG3a5jm3PY3u7muNa0tI8M3ny5CQikuOPPz7ZunVri/tv2bIlGTNmTBIRybnnnrvDx2+//fbkyCOPTMrLy5Pu3bsnJ5xwQvLEE080+Tdt6blkYsZKkh3nrLRmrNbMj9s89dRTSUQkZ599dir/n1pWVpax/0/dkxkrScxZmZixkqR45iyvZe3a9t+nLf27t/T/auvXr0/++Z//OTn44IOT8vLyZL/99ku++MUvJvPmzWvxd+jOvrZ29vtnm139Lp09e3Zy6qmnJv3790/KysqSrl27JoMGDUq++MUvJrfeemvy3nvvNdl++3+jG2+8MRk+fHjSqVOnpFu3bsnYsWOT2bNnN5uzaNGiFl9XOeyww5p9XWWbZcuWJRdccEHj561Lly7JoEGDkq9//evJs88+u8PnatOmTclNN92UHHfccUmvXr0aZ8rhw4cn559/fvL73/++xc/Xx3383+Xj/x67M9skya7/PdKYbT7+GtPHn0das8nRRx+9x7PJsmXLkjPOOCOprKxMOnTo0OznZNvz2tlrIs3Z9v257777JmvWrNnh4x//f4jW/Hzffr89eY170aJFqc4Ot9122w6vZbWkNb/TtylJkpRPmJtnamtro3v37lFTU9Oqtn3Tpk2xZMmSGDhwYJSXlze7zfLly3c4j/Ty5ctbvPZXJu1pTu/evVu9X9p/+ViIGUuXLo2BAwfGHXfc0eTirbubMWDAgBgwYMAOb49uzp133hlnnXVW3HXXXRn9C5SPmzp1akybNm2H55Zpu/O52tM1FdrXlYzCySmGjJKSkujbt2+zp4PNpOaex7afZ5dddllMnTp1t46XJEkcfvjhsXjx4nj77bejZ8+e8eKLL8YRRxzR+Ne+JSUl0b9//5xeFLkl//RP/xTXXntt/Pd//3eMGzcuK5m7+hk6fvz4+N3vfhcvvPBCsxd0b05L89HuzFmtmbEicjdn7U1Ga+esYvhZkumclmas3c3YkxnriSeeiL59+6b2+dr2vXj11Vc3ey2MTGruczVgwIBYtmxZxq6XUixfvzJk7KmdzTO5+tmbyRmrd+/esWXLliZzVj7MWFu3bo0+ffpEkiRRVVWV+mm+diaNGSvCnLUzXsvaO8X8WtY2hfZvkomMbadj3N0ZL9+eh4y9z9jVHJD28zj22GPjqaeeiiVLlsSAAQNSy2nt89ib17jT+lxtW9Ntt90Whx9+eJPXslrS2t/pEU7jmREHHHDADsNG165dszLcZysHAPJBSUlJ/PSnP43Pf/7zcfXVV2f1tCqZcPbZZ0fnzp33+lpLmTJ37tz47W9/G1/72td260WobMrVnGXGAqAt+fiMde211+Z6Sc1q165d3HDDDfH666/H2rVro6KiItdLalYhzFgR5iwAKCbKPtgDPXv2jOnTp8eRRx65V8e59tpro0uXLq3adsyYMXHHHXc0e15lgLbkxBNPjC9+8Yvxb//2b/Htb38718vZLYMGDdrtv7RP05QpU6Jr164xffr0XC8FIiK3M9bgwYNTvxYkQD7bfsa68MILo7KyMtdLatZXvvKVXC9hl8xY5COvZQEUN2Uf7IHu3bvvcMHjPfHlL3+51dsedNBBcdBBB6V6wVaAQvHggw9GRMSWLVti9erVOV5N4XrsscdyvQRoIpczVkQo+4A2b9uMFfHhnMWeMWORj7yWBVDclH0AAAAAAFBgMnU9ZqDwKfuAJo499thYu3ZtXl1X4Nhjj42IyKs1QaG77LLLoqGhISfZw4cPj8suu6zxezvTLrvssujRo0cqxy5EfoZCftj2vTh48OCc5F944YVRXV2dk2woRmnPM3vCjJVdZiwA8kmuZ5Ovfe1rMXTo0LyZFfLx9/S2NQ0bNiyVol7ZBzRx7LHHRt++ffPqYtnHHntsXv1PNBSDqVOn5uxUKsOHD0912Mqna+LlAz9DIT9s+17M1c/eCy+8MCe5UKzSnmf2hBkru8xYAOSTXM8mX/va12L06NF5Vfbl2+/pbWvasmVLvPjiixk/fruMHxEAAAAAAADICmUfAAAAAAAAFChlXyu52CkAwIcyOReZsQAAPmLOAgC22Z3f5cq+XWjfvn1ERDQ0NOR4JQAA+WHbXLRtTtoTHTp8eOno+vr6jKwJAKAYZGLO8loWABSH3ZkLlH27UFpaGmVlZVFTU+MvogCANi9JkqipqYmysrIoLS3d4+N06NAhOnfuHO+9915s2bIlgysEAChMmZqzvJYFAIVvd+eCDllYU8Hr3bt3rFy5Mt5+++3o3r17lJaWRklJyU732bJlS2zatCn1tWUjR4YMGTIKJSNbOTLyJ2NbSbRp06a9+utndi1JkmhoaIiampqoq6uLvn377vUxe/fuHStWrIglS5ZE9+7do1OnTtG+ffu8mLNk5F+ODBkyZMjIbo45K3vSmrN297WsiOL5HpHR9jKylSNDhgwZmTh+RMsz1p7OBcq+VujWrVtERKxZsyZWrlzZqn3+8pe/ZOWvp7KRI0OGDBmFkpGtHBn5k7F169ZYs2ZNLF26NNq1c8KCbCgrK4u+ffs2zkd7Y5999omBAwfGX/7yl1i3bl2sWbOmVfsVw9duMWVkK0eGDBkyZGQ3x5yVfZmcs/bktayI4vkekdH2MrKVI0OGDBl7q7Uz1u7OBSVJG3s/f21tbXTv3j1qamr2aHhqaGho1ammzj333Ljxxhv3ZIm7JRs5MmTIkFEoGdnKkZE/GXV1dTFy5MiYN29edOnSJbUcPtS+ffudnjpib+asbX+5tnXr1l1uWwxfu8WUka0cGTJkyJCR3RxzVnalOWe19rWsiOL5HpHR9jKylSNDhgwZe6s1M9au5oLmeGffbiotLW3VJ3nt2rVRXl6e+nqykSNDhgwZhZKRrRwZ+ZOxefPmWLZsWXTs2DErX1+kp6SkJDp27NiqbYvha7eYMrKVI0OGDBkysptjzioerX0tK6J4vkdktL2MbOXIkCFDxt5Ka8ZyHgYAAAAAAAAoUDkv+1auXBmTJk2KXr16RadOnWLo0KExb968ne5zzz33xLBhw2KfffaJysrK+PrXvx5r167N0ooBAPKfGQsAIB3mLAAg3+S07Fu3bl2MHj06SktLY8aMGfH666/HddddFz179mxxn9mzZ8fkyZPjG9/4Rrz22mvxn//5nzFnzpw4++yzs7hyAID8ZcYCAEiHOQsAyEc5vWbfNddcE/369Ys77rij8bGBAwfudJ9nn302BgwYEN/5zncat//Wt74V11xzTaprBQAoFGYsAIB0mLMAgHyU03f2PfzwwzFy5MiYMGFC7LfffnHEEUfELbfcstN9jj766FixYkU88sgjkSRJvPvuu3H//ffHySef3Oz29fX1UVtb2+QGAFDMsjFjRZizAIC2x5wFAOSjkiRJklyFl5eXR0TEd7/73ZgwYULMnTs3LrjggrjpppvizDPPbHG///zP/4yvf/3rsWnTpvjggw9i/Pjx8cADD0RpaekO206dOjWmTZu2w+Njx45tdvtMmTNnTowaNSq142czR4YMGTIKJSNbOTLyJ6OhoSFmzpwZNTU10a1bt9RyCk02ZqyI4p6zZORfjgwZMmTIyG6OOat55iwZMvIzI1s5MmTIkLG3UpuxkhwqLS1Njj766CaPffvb304+/elPt7jPa6+9llRWViY/+clPkpdeeimZOXNmMnTo0OTrX/96s9tv2rQpqampabytWLEiiYikpqYmo8/l48aPH5/q8bOZI0OGDBmFkpGtHBn5k1FTU5OV3+uFJhszVpIU95wlI/9yZMiQIUNGdnPMWc0zZ8mQkZ8Z2cqRIUOGjL2V1oyV02v2VVZWxiGHHNLksSFDhsQDDzzQ4j7Tp0+P0aNHxz/90z9FRMThhx8enTt3js9+9rNx5ZVXRmVlZZPty8rKoqysLPOLBwDIU9mYsSLMWQBA22POAgDyUU6v2Td69OhYuHBhk8cWLVoU/fv3b3Gf999/P9q1a7rs9u3bR0REkrszkgIA5A0zFgBAOsxZAEA+ymnZd9FFF8Vzzz0XV111Vbzxxhtx7733xs033xznn39+4zZTpkyJyZMnN94fP358/OY3v4kbb7wx3nrrrZg9e3Z85zvfiVGjRkWfPn1y8TQAAPKKGQsAIB3mLAAgH+X0NJ5HHXVUPPjggzFlypS4/PLLY+DAgXH99dfHxIkTG7epqqqK5cuXN97/2te+FuvXr4+f//zn8b3vfS969OgRn/vc5+Kaa67JxVMAAMg7ZiwAgHSYswCAfJTTsi8iYty4cTFu3LgWP37nnXfu8Ni3v/3t+Pa3v53iqgAACpsZCwAgHeYsACDf5PQ0ngAAAAAAAMCeU/YBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgcp52bdy5cqYNGlS9OrVKzp16hRDhw6NefPm7XSf+vr6+OEPfxj9+/ePsrKyGDBgQNx+++1ZWjEAQP4zYwEApMOcBQDkmw65DF+3bl2MHj06jjvuuJgxY0ZUVFTE4sWLo2fPnjvd7ytf+Uq8++67cdttt8VBBx0UVVVVsXXr1iytGgAgv5mxAADSYc4CAPJRTsu+a665Jvr16xd33HFH42MDBw7c6T4zZ86Mp556Kt56663Yd999IyJiwIABaS4TAKCgmLEAANJhzgIA8lFOT+P58MMPx8iRI2PChAmx3377xRFHHBG33HJLq/b5yU9+En379o1BgwbFxRdfHBs3bmx2+/r6+qitrW1yAwAoZtmYsSLMWQBA22POAgDyUUmSJEmuwsvLyyMi4rvf/W5MmDAh5s6dGxdccEHcdNNNceaZZza7z9ixY+PJJ5+ME044If7v//2/sWbNmjjvvPPiuOOOa/JXVdtMnTo1pk2b1uxxSktLM/uEtjNnzpwYNWpUasfPZo4MGTJkFEpGtnJk5E9GQ0NDzJw5M2pqaqJbt26p5RSabMxYEcU9Z8nIvxwZMmTIkJHdHHNW88xZMmTkZ0a2cmTIkCFjb6U2YyU5VFpamhx99NFNHvv2t7+dfPrTn25xnxNPPDEpLy9PqqurGx974IEHkpKSkuT999/fYftNmzYlNTU1jbcVK1YkEZHU1NRk7ok0Y/z48akeP5s5MmTIkFEoGdnKkZE/GTU1NVn5vV5osjFjJUlxz1ky8i9HhgwZMmRkN8ec1TxzlgwZ+ZmRrRwZMmTI2FtpzVg5PY1nZWVlHHLIIU0eGzJkSCxfvnyn+/Tt2ze6d+/eZJ8kSeLtt9/eYfuysrLo1q1bkxsAQDHLxowVYc4CANoecxYAkI9yWvaNHj06Fi5c2OSxRYsWRf/+/Xe6z6pVq6Kurq7JPu3atYtPfvKTqa0VAKBQmLEAANJhzgIA8lFOy76LLroonnvuubjqqqvijTfeiHvvvTduvvnmOP/88xu3mTJlSkyePLnx/hlnnBG9evWKs846K15//fV4+umn45/+6Z/i61//enTq1CkXTwMAIK+YsQAA0mHOAgDyUU7LvqOOOioefPDB+I//+I847LDD4oorrojrr78+Jk6c2LhNVVVVk1MhdOnSJR599NGorq6OkSNHxsSJE2P8+PFxww035OIpAADkHTMWAEA6zFkAQD7qkOsFjBs3LsaNG9fix++8884dHhs8eHA8+uijKa4KAKCwmbEAANJhzgIA8k1O39kHAAAAAAAA7DllHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABSonJd9K1eujEmTJkWvXr2iU6dOMXTo0Jg3b16L2z/55JNRUlKyw+2dd97J4qoBAPKbGQsAIB3mLAAg33TIZfi6deti9OjRcdxxx8WMGTOioqIiFi9eHD179tzlvgsXLoxu3bo13t9vv/3SXCoAQMEwYwEApMOcBQDko5yWfddcc03069cv7rjjjsbHBg4c2Kp999tvv+jRo0dKKwMAKFxmLACAdJizAIB8lNOy7+GHH46TTjopJkyYEE899VT07ds3zjvvvDj77LN3ue/w4cOjvr4+DjvssJg6dWqMHj262e3q6+ujvr6+8X5tbW3G1g+QDevWrYt77rkn9QygeGRjxoowZwGFb+PGjfHCCy+kngEUD3MWQOuYsyC7SpIkSXIVXl5eHhER3/3ud2PChAkxd+7cuOCCC+Kmm26KM888s9l9Fi5cGE8++WSMHDky6uvr49Zbb4277ror/vSnP8WIESN22H7q1Kkxbdq0HR4fO3ZslJaWZvYJbWfOnDkxatSo1I6fzRwZMmTkLmPdunUxa9as1I6/vTFjxrTq1DN7ys9FGWloaGiImTNnRk1NTZNTIrV12ZixIop7zpKRfzkyZGTaxo0b47HHHkvt+Ns74YQTolOnTqkdvxj+PWTkX445q3nmLBky8jMjWzkyWsecJUNGy9KasXJa9nXs2DFGjhwZzzzzTONj3/nOd2Lu3Lnx7LPPtvo4xxxzTBxwwAFx11137fCx5v4Sql+/fqkPq6eeemo8/PDDqR0/mzkyZMjIXcY999wTkyZNinNHDojRB/Ta6bYPLVgV9y+oii8PqYwvDunT6ozZy9fGjfOWxt133x0TJ07c2yW3yM9FGWmora2N7t27exHqY7IxY0UU95wlI/9yZMjItBdeeCGOPPLIuPu0I2NIRddUMhasXh+THnw+nn/++RZf0M+EYvj3kJF/Oeas5pmzZMjIz4xs5choHXOWDBktS2vGyulpPCsrK+OQQw5p8tiQIUPigQce2K3jjBo1qsV3vpSVlUVZWdkerxEgH4w+oFdMHNqvxY9f+fTCuH9BVVxx3JC49G8O3u3j3zhv6V6sDsg32ZixIsxZQHEYUtE1RlT2yPUygAJhzgJoPXMWZE+7XIaPHj06Fi5c2OSxRYsWRf/+/XfrOPPnz4/KyspMLg2gYFz59ML40RML9rjoA4qPGQsAIB3mLAAgH+X0nX0XXXRRfOYzn4mrrroqvvKVr8ScOXPi5ptvjptvvrlxmylTpsTKlSvjV7/6VUREXH/99TFw4MA49NBDY9OmTXHrrbfG//zP/8Qf/vCHXD0NgJxR9AHNMWMBAKTDnAUA5KOcln1HHXVUPPjggzFlypS4/PLLY+DAgXH99dc3uWZUVVVVLF++vPH+5s2b43vf+16sXLky9tlnnzj88MPjsccei+OOOy4XTwEgZxR9QEvMWAAA6TBnAQD5KKdlX0TEuHHjYty4cS1+/M4772xy/5JLLolLLrkk5VUB5DdFH7ArZiwAgHSYswCAfJPTa/YBsPsUfQAAAAAAbKPsAyggij4AAAAAALan7AMoEIo+AAAAAAA+LufX7ANg1x5asCruX1Cl6AMAAAAAoAnv7AMoAIo+AAAAAACao+wDKABfHlKp6AMAAAAAYAfKPoAC8MUhfXK9BAAAAAAA8pCyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyD6CNe/O9DbleAgAAAAAAe0jZB9CGzVm5LqbPWpTrZQAAAAAAsIeUfQBt1JyV6+LEu2ZHv26dcr0UAAAAAAD2kLIPoA3aVvQdtl+3uGT0X+V6OQAAAAAA7CFlH0Abs33RN3Pi0dGptH2ulwQAAAAAwB5S9gG0IR8v+rqWleZ6SQAAAAAA7IWcl30rV66MSZMmRa9evaJTp04xdOjQmDdvXqv2nT17dnTo0CGGDx+e7iIBioCiD9oWMxYAQDrMWQBAvumQy/B169bF6NGj47jjjosZM2ZERUVFLF68OHr27LnLfaurq2Py5Mlx/PHHx7vvvpuF1QIULkUftC1mLACAdJizAIB8lNOy75prrol+/frFHXfc0fjYwIEDW7XvOeecE2eccUa0b98+HnrooZRWCFD4FH3Q9pixAADSYc4CAPJRTsu+hx9+OE466aSYMGFCPPXUU9G3b98477zz4uyzz97pfnfccUe89dZbcffdd8eVV165023r6+ujvr6+8X5tbW1G1g4Q8eFfdd5zzz2pHX/27NkREfHQgqpYsu793d7/7dqNcef8ZbFf57L43IDe8a9/emuHbV56p6ZJVlrWrVuX6vGBj2RjxoowZwHpSnvOWrJkSUREPLL43ViwZn06Gf87vz3yyCOxYMGCVDIizFmQTeYsoBhUVVW16mfRnlq1alVERNz6wtLo07VTOhnrN36Yceut0adPn1QyIj78XEEhKEmSJMlVeHl5eUREfPe7340JEybE3Llz44ILLoibbropzjzzzGb3Wbx4cYwZMyb++Mc/xqBBg2Lq1Knx0EMPxfz585vdfurUqTFt2rQdHh87dmyUlqb37pY5c+bEqFGjUjt+NnNkyJDRvHXr1sWsWbNSO34xGjNmTKtOb7M3iuFrS0brNTQ0xMyZM6Ompia6deuWWk6hycaMFVHcc5aM/MuR0bYyzFm7L+05qxi+roopIxs55qzmmbNkyMjPjGzlFENGVVVVq68zyodGjhwZlZWVqR2/GL6uZLReWjNWTsu+jh07xsiRI+OZZ55pfOw73/lOzJ07N5599tkdtt+yZUt8+tOfjm984xtxzjnnRETsckBq7i+h+vXrl/qweuqpp8bDDz+c2vGzmSNDhozm3XPPPTFp0qQYcvz10bnnQalkrFn2RCyde10MOOp70albv1QyqqvmRdXrd6f6PDaseyMWPH5h3H333TFx4sRUMrYphq8tGa1XW1sb3bt39yLUx2Rjxooo7jlLRv7lyGhbGdmcswo9I1tzVjF8XRVTRjZyzFnNM2fJkJGfGdnKKYaMK6+8Mn70ox9F14phsX71S9H7wL+NioEnZTSj6s//GdUrZ0fvA0+OioGfb3G7jbXLYvkLN0bHLvtH/+HnRLsO5RnP2JWtH2yKZfNvis1178QBI86NTt36N36s5p15seq1u+OKK66ISy+9dI8zdqUYvq5ktF5aM1ZOT+NZWVkZhxxySJPHhgwZEg888ECz269fvz7mzZsXL774YvzjP/5jRERs3bo1kiSJDh06xB/+8If43Oc+12SfsrKyKCsrS+cJAERE554HRdeKoakce8O6NyIionf/41LLiIioev3uVJ8HkF3ZmLEizFlA+rIxZxV6BpBd5iygWKxf/VIMHPW9GHDkdzJ+7OqqeVG9cnZ06TUk9h90WrPb1L47Pxb98UfRpeLQGHbKr6JDxy4Zz9iVDzbXxUu/mxwNG9fGEV/4dXT7xPAdtln12t17dGzItpyWfaNHj46FCxc2eWzRokXRv3//Zrfv1q1bvPLKK00e+8UvfhH/8z//E/fff3+rL4gMAFDMzFgAAOkwZwHFoveBf5tK0dcate/Oj/m/nRSd9x20R0VfJmwr+ja8tyiGj7u72aIPCklOy76LLrooPvOZz8RVV10VX/nKV2LOnDlx8803x80339y4zZQpU2LlypXxq1/9Ktq1axeHHXZYk2Pst99+UV5evsPjAABtlRkLACAd5iygWGT61J2tpeiDdLTLZfhRRx0VDz74YPzHf/xHHHbYYXHFFVfE9ddf3+Q6A1VVVbF8+fIcrhIAoLCYsQAA0mHOAthzij5IT07f2RcRMW7cuBg3blyLH7/zzjt3uv/UqVNj6tSpmV0UAECBM2MBAKTDnAWw+xR9kK6cvrMPAAAAAAAoXoo+SJ+yDwAAAAAAyDhFH2SHsg8AAAAAAMio+roqRR9kibIPAAAAAADIqHcW3q/ogyxR9gEAAAAAABnR8P6aiIjouE9vRR9kibIPAAAAAADYa7Xvzo81yx6LiIhPDPqSog+yRNkHAAAAAADsldp358f8306K0vIeERHRrn3HrK9B0UdbpewDAAAAAAD22Lair/O+g6JX/+NzsgZFH22Zsg8AAAAAANgj2xd9w075VZS0K836GhR9tHXKPgAAAAAAYLd9vOhzjT7IDWUfAAAAAACwW/Kh6Nu6ZbOiDyKiQ64XAAAAAAAAFI58KPoiIt5d9EB8sHm9oo82T9kHAAAAAAC0Sj4UfcnWhoiI2Pz+mhjxxf9U9NHmOY0nAAAAAACwS/lQ9H2wuS7WLns8IiL2P/jLij4IZR8AAAAAALAL+VL0vfS7ydGwqToiIsq6VGZ9DZCPlH0AAAAAAECL8qno2/Deoujd/4Ss50M+U/YBAAAAAADNyreib/i4u6N0n95ZXwPkM2UfAAAAAACwg3ws+lyjD3ak7AMAAAAAAJpQ9EHhUPYBAAAAAACNFH1QWHJe9q1cuTImTZoUvXr1ik6dOsXQoUNj3rx5LW4/a9asGD16dOP2gwcPjp/97GdZXDEAQP4zYwEApMOcBRQ7RR8Ung65DF+3bl2MHj06jjvuuJgxY0ZUVFTE4sWLo2fPni3u07lz5/jHf/zHOPzww6Nz584xa9as+Na3vhWdO3eO//N//k8WVw8AkJ/MWAAA6TBnAcVO0feR1Ut+n5Nc2BM5Lfuuueaa6NevX9xxxx2Njw0cOHCn+xxxxBFxxBFHNN4fMGBA/OY3v4k//vGPBiQAgDBjAQCkxZwFFDNF30eWPn9DrHlrRk6yYU/ktOx7+OGH46STTooJEybEU089FX379o3zzjsvzj777FYf48UXX4xnnnkmrrzyymY/Xl9fH/X19Y33a2tr93rdQGFYt25d3HPPPakdf/bs2RERsWHdG6llbKxdURQZ24697XOWpnXr1qWeAfkuGzNWhDkL2rKNGzfGCy+8kNrxlyxZEhGFPwMV05xlxoIPmbOAtKU9Z61atSoiIlYv+UPjrBIRUV9XFe8svD867tM7evT5TKx4+fY9zli/+pWIiKhe9VwsafksxzvYumVzvLvogdj8/prY/+Avx9oVT8faFU9nNKM1qlc9F9UrZ8c+Pf8q3l+3OJ588snMBnxMVVVVqsenbShJkiTJVXh5eXlERHz3u9+NCRMmxNy5c+OCCy6Im266Kc4888yd7vvJT34yVq9eHR988EFMnTo1fvSjHzW73dSpU2PatGk7PD527NgoLS3d+yfRgjlz5sSoUaNSO342c2TIKMSMdevWxaxZs1I7PruvtFPv6Lbf8NRz1i57LMaMGbPT0+jsrWL4HimWjIaGhpg5c2bU1NREt27dUsspNNmYsSKKe86SkX85MvInY+PGjfHYY4+ldnx2XzbmLDNWfmVkI8ec1TxzlgwZ+ZmRrRxzFmkZOXJkVFZWpnb8Yvj+KJaMtGasnJZ9HTt2jJEjR8YzzzzT+Nh3vvOdmDt3bjz77LM73XfJkiVRV1cXzz33XPzgBz+In//853H66afvsF1zfwnVr1+/1IfVU089NR5++OHUjp/NHBkyCjHjnnvuiUmTJsWoPj3iO5/+VCoZd7y4LB5fsiYqD5kUPSpHppJRXTUvql6/OwYc9b3o1K1fQWds3vBOHH7ybakcf3tP3Ng/7r777pg4cWJqGcXwPVIsGbW1tdG9e3cvQn1MNmasiOKes2TkX46M/Ml44YUX4sgjj4y7TzsyhlR0TSXj1heWxo3zlhbFDFQsc5YZK78yspFjzmqeOUuGjPzMyFZOMcxZ0/+4MO5fUBU9+o6OTt0HRsP7a2LNsseitLxH9Op/fJS02/s/KKhe9afYWL04ulQMi64VQ3e5fbK1IdYuezwaNlVH7/4nROk+vTOe0RrrV78SdatfajzmtoyBo74XvQ44LiMZH7dh3Rux4PEL44orrohLL700lYyI4vj+KJaMtGasnJ7Gs7KyMg455JAmjw0ZMiQeeOCBXe677XzoQ4cOjXfffTemTp3a7IBUVlYWZWVlmVkwUHC+8+lPxcSh6bywMnv52nh8yZroUTky9h90WioZERFVr98dvfsfl7HBJVcZf3njt6kdG2gqGzNWhDkL2rohFV1jRGWPVI7dp2uniIiimIHMWVBczFlANqQ5Z1V0/vBnS+XgCbFP94Ex/7eTotsnhmX0Gn1/fuqHsbF6cfQecEIMHPmdnW677Rp9W7fUx5GnPdDqa/TtTkZrLH3+hqh6/e4YOOp7MeDI7zTJKO/aL9VZDjKhXS7DR48eHQsXLmzy2KJFi6J///67dZytW7c2+WsnAIC2zIwFAJAOcxZQLDbWLov5v50UnfcdlNGib3dsK/o2vLcoho+7u9VFX6Ytff6GWDLnuiZFHxSanL6z76KLLorPfOYzcdVVV8VXvvKVmDNnTtx8881x8803N24zZcqUWLlyZfzqV7+KiIh/+7d/iwMOOCAGDx4cERFPP/10XHvttfGd7/gmBACIMGMBAKTFnAUUi+Uv3BhdKg5V9Cn6KBI5LfuOOuqoePDBB2PKlClx+eWXx8CBA+P6669vcg2AqqqqWL58eeP9rVu3xpQpU2LJkiXRoUOH+NSnPhXXXHNNfOtb38rFUwAAyDtmLACAdJizgGLRscv+ir48KPo2rF2Uk1yKT07LvoiIcePGxbhx41r8+J133tnk/re//e349re/nfKqAAAKmxkLACAd5iygGPQffo6iL8dFX+2782PhHy/NSTbFJ6fX7AMAAAAAALKrXYfyrGcq+j5S++78mP/bSdGp++5d8xVaouwDAAAAAABSo+j7yLair/O+g2LQmMtzsgaKj7IPYA+9u6E+10sAAAAAgLym6PvI9kXfsFN+Fe1LO+VkHRQfZR/AHpizcl3898J3cr0MAAAAAMhbir6PfLzoy8U1Eyleyj6A3TRn5bo48a7Z0atTx1wvBQAAAADy0tYtmxV9/0vRR9qUfQC7YVvRd9h+3eKUQZ/I9XIAAAAAIC+9u+gBRV8o+sgOZR9AK21f9M2ceHR0bO9HKAAAAABsL9naEBERm99fo+hT9JElXqkGaIWPF31dy0pzvSQAAAAAyCsfbK6Ltcsej4iI/Q/+sqJP0UeWKPsAdkHRBwAAAAA798Hmunjpd5OjYVN1RESUdanMyToUfbRFyj6AnVD0AQAAAMDObSv6Nry3KHr3PyFn61D00VYp+wBaoOgDAAAAgJ3bvugbPu7uKN2nd07WoeijLVP2ATRD0QcAAAAAO/fxos81+hR95IayD+BjFH0AAAAAsHOKvo8o+si1DrleAEA+UfQBAAAAwM7lS9FXveq5qF45W9FHm+edfQD/S9EHAAAAADuXL0VfRCj64H8p+wBC0QcAAAAAu5IvRd/61a9ERESPvqMVfRDKPgBFHwAAAADsQr4UfUufvyHqVr8UERE9+nw6J2tQ9JFvlH1Am6boAwAAAICdy6eib8mc66JLxbCc5Eco+shPyj6gzVL0AQAAAMDO5VvRN3DU96JrxdCcrEHRR75S9gFtkqIPAAAAAHYuH4s+1+iDHeW87Fu5cmVMmjQpevXqFZ06dYqhQ4fGvHnzWty+qqoqzjjjjBg0aFC0a9cuLrzwwuwtFigKij6gLTBjAQCkw5wFtBWKvo8o+sh3OS371q1bF6NHj47S0tKYMWNGvP7663HddddFz549W9ynvr4+Kioq4tJLL41hw3J3Xl6gMCn6gLbAjAUAkA5zFtBWKPo+srF2maKPvNchl+HXXHNN9OvXL+64447GxwYOHLjTfQYMGBD/+q//GhERt99+e6rrA4qLog9oK8xYAADpMGcBbYGir6nlL9wYXSoOVfSR13Ja9j388MNx0kknxYQJE+Kpp56Kvn37xnnnnRdnn312xjLq6+ujvr6+8X5tbW3Gjg3kv4cWVMWSde/H27Ub4875y2K/zmXxuQG941//9NZeH/v5VdUREbGxdkWsX/3KXh+vORtrV0RExIZ1b6Ry/GxnANmRjRkrwpwFbd2C1etTO/aq9RsjonhmIHMWFA9zFpANac5Zqzd8+LNl9ZI/NDtHbN2yOd5d9EBsfn9N7H/wl2Ptiqdj7Yqndytj2+tk1aueiyUtn+V4p6pXPRfVK2dHj76jI0kilsy7IeMZrVlDRET7jl2j8uAJsWbpoxnP2LTeLEdmlCRJkuQqvLy8PCIivvvd78aECRNi7ty5ccEFF8RNN90UZ5555i73P/bYY2P48OFx/fXXt7jN1KlTY9q0aTs8Pnbs2CgtTe9dPXPmzIlRo0aldvxs5siQUYgZy5Yti5dffjm145PfDj/88Ojfv39qxy+G75FiyWhoaIiZM2dGTU1NdOvWLbWcQpONGSuiuOcsGfmXIyN/MtatWxezZs1K7fjkLzNW/mRkI8ec1TxzlgwZ+ZmRrRxzFmk56KCDYsiQIakdvxi+P4olI60ZK6dlX8eOHWPkyJHxzDPPND72ne98J+bOnRvPPvvsLvdvzYDU3F9C9evXL/Vh9dRTT42HH344teNnM0eGjELMuOeee2LSpElxVGWPmP9udezbqWOMG7R/dGyfuUuVPr10Tby2pi4qD5kUPSpHZuy426uumhdVr98dA476XnTq1k/GLmysXRFL514Xd999d0ycODG1nGL4HimWjNra2ujevbsXoT4mGzNWRHHPWTLyL0dG/mS88MILceSRR8YVxw2JgT33SSXjoQWr4v4FVQU/nxRLhhkr/zKykWPOap45S4aM/MzIVk4xzFl3vLAsHl+6Jnr0HR2dun90GuJka0OsXfZ4NGyqjt79T4jSfXrvcUb1qj/FxurF0aViWHStGLpb+65f/UrUrX5pl/vuTcauNLy/JtYseyxK2nWIZMumVDK22VizJKpXzo4rrrgiLr300lQyIorj+6NYMtKasXJ6Gs/Kyso45JBDmjw2ZMiQeOCBBzKWUVZWFmVlZRk7HlBYXlldG0f13TeVa/Sd97v58dqauuhROTL2H3RaRo+9varX747e/Y9Lbagopoz1q1+JpXOvS+34UCiyMWNFmLOgrTv5rz4RIyp7pHLsJevej/sXVBXFfFIMGWYs+Ig5C8iGNOes2cvXxuNL10Tl4AmNr2dtu0bf1i31ceRpD+z1Nfr+/NQPY2P14ug94IQYOLL119pb+vwNUfX63a26Rt+eZuxK7bvzY/5vJ0W3TwyLfXocFO/8+dcZz9jeO4sejOqVs1M5Nm1L5t7isgdGjx4dCxcubPLYokWLUj0tCNC29OvWKZWiDyCfmbEAANJhzgKKzbaib8N7i2L4uLv3uujbU0ufvyGWzLmuVUVfWrYVfZ33HRTDTvlVlLTzeiKFI6fv7LvoooviM5/5TFx11VXxla98JebMmRM333xz3HzzzY3bTJkyJVauXBm/+tWvGh+bP39+RETU1dXF6tWrY/78+dGxY8cd/rIK4JLRf6XoA9ocMxYAQDrMWUAxUfR95ONFX4eOXXKyDthTOS37jjrqqHjwwQdjypQpcfnll8fAgQPj+uuvb3INgKqqqli+fHmT/Y444ojG/37++efj3nvvjf79+8fSpUuztXSgQHQqbZ/rJQBknRkLACAd5iygWGz9YJOi738p+igGOS37IiLGjRsX48aNa/Hjd9555w6PJUmS4ooAAAqfGQsAIB3mLKAYLJt/UzRsXKvoU/RRJHJe9gEAAAAAANmzue6dOOILv1b05bjo2/rBpqxnUpza5XoBAAAAAABA9hww4lxFX46Lvg8218Wy+TdlPZfipOwDAAAAAIA2pFO3/jnJVfR96IPNdfHS7ybH5rp3sp5NcVL2AQAAAAAAqVL0fWhb0bfhvUVxwIhzs55PcVL2AeyhzVu25noJAAAAAJD3FH0f2r7oGz7u7py9w5Lio+wD2APr6xvid4vezfUyAAAAACCvKfo+9PGiL1fXTKQ4KfsAdtP6+oYYe8+zsXbj5lwvBQAAAADylqLvQ4o+0qbsA9gN24q+V/9SG+MP3j/XywEAAACAvFS96jlFXyj6yA5lH0ArbV/0PfoPo+MTnctyvSQAAAAAyEvVK2cr+hR9ZImyD6AVPl70jerbM9dLAgAAAIC8s371KxER0aPvaEWfoo8sUfYB7IKiDwAAAAB2benzN0Td6pciIqJHn0/nZA2KPtoiZR/ATij6AAAAAGDXlj5/QyyZc110qRiWszUo+mirlH0ALVD0AQAAAMCubSv6Bo76XnStGJqTNSj6aMuUfQDNUPQBAAAAwK5tX/S5Rp+ij9xQ9gF8jKIPAAAAAHZN0fchRR+5puwD2I6iDwAAAAB2LR+Kvvq6KkUfhLIPoJGiDwAAAAB2LR+KvoiIdxber+iDUPYBRISiDwAAAABaIx+Kvob310RERMd9eiv6IJR9AIo+AAAAAGiFfCj6at+dH2uWPRYREZ8Y9CVFH4SyD2jjFH0AAAAAsGv5UvTN/+2kKC3vERER7dp3zPoaFH3ko1aXfatWrUplAStXroxJkyZFr169olOnTjF06NCYN2/eTvd58sknY8SIEVFWVhYHHXRQ3HnnnamsDShuij4gX6QxZ5mxAIC2zmtZAJmTT0Vf530HRa/+x+dkDYo+8lWry75DDz007r333oyGr1u3LkaPHh2lpaUxY8aMeP311+O6666Lnj1bfsF9yZIlccopp8Rxxx0X8+fPjwsvvDC++c1vxu9///uMrg0oboo+IJ9kes4yYwEAeC0LIFPyregbdsqvoqRdadbXoOgjn3Vo7YY//vGP41vf+lY8+OCD8ctf/jL23XffvQ6/5pprol+/fnHHHXc0PjZw4MCd7nPTTTfFwIED47rrrouIiCFDhsSsWbPiZz/7WZx00kl7vSag+Cn6gHyT6TnLjAUA4LUsgEzIx6LPNfpgR60u+84777z427/92/jGN74RhxxySNxyyy0xfvz4vQp/+OGH46STTooJEybEU089FX379o3zzjsvzj777Bb3efbZZ+OEE05o8thJJ50UF154YbPb19fXR319feP92travVozUFgeWlAVS9a933i//oMt8e8vLY+/bKiPrw3vH3948y/xhzf/skfHfn5VdUREbKxdEetXv5KJ5e5gY+2KiIjYsO6NVI5fTBnZOD6kJdNzVjZmrAhzFrR1C1avT+3Yq9ZvjIjCn0+KJcOMRaEq1NeyIsxZ0NalOWet3vDhz5bVS/7QOEe0pHrVc1G9cnb06Ds6kiRiybwbWpWx7XWy6lXPxZKdn+V4l+rrquKdhfdHx316R48+n4kVL9+e8YyWbMt47+1ZUbXgP2Lz+2ti/4O/HGtXPB1rVzydkYy6tQsychwoSZIk2d2dfv7zn8dFF10UQ4YMiQ4dmvaFL7zwQquPU15eHhER3/3ud2PChAkxd+7cuOCCC+Kmm26KM888s9l9Bg0aFGeddVZMmTKl8bFHHnkkTjnllHj//fejU6dOTbafOnVqTJs2bYfjjB07NkpL03ur75w5c2LUqFGpHT+bOTJkFGLGsmXL4uWXX07t+OS3ww8/PPr375/a8Yvhe6RYMhoaGmLmzJlRU1MT3bp1Sy0nmzIxZ2Vjxooo7jlLRv7lyMifjHXr1sWsWbNSOz75y4yVPxnZyCm2OauQXsuKMGfJkJGvOeYs0nLQQQfFkCFDUjt+MXx/FEtGWjNWq9/Zt82yZcviN7/5TfTs2TO+8IUv7DAg7Y6tW7fGyJEj46qrroqIiCOOOCJeffXVnQ5Iu2vKlCnx3e9+t/F+bW1t9OvXL37961+nOqyeeuqp8fDDD6d2/GzmyJBRiBn33HNPTJo0KY4f0DsG9e4Sm7dsjd8ueife27g5xh9cGZ/oXLbXGU8vXROvramLykMmRY/KkRlY9Y6qq+ZF1et3x4CjvheduvWTsQsba1fE0rnXxSWXXBITJ05MLacYvkeKJaO2tja6d++e2vGzLVNzVjZmrIjinrNk5F+OjPzJeOGFF+LII4+MK44bEgN77pNKxkMLVsX9C6oKfj4plgwzVv5lZCOnmOasQnstK8KcJUNGvuYUw5x1xwvL4vGla6JH39HRqXvzpyFev/qVqFv9UnSpGBZdK4budkb1qj/FxurFe7x/RETD+2tizbLHorS8R/Tqf/wO1+jLRMaurFv1bGyqfjMi2kXvAZ+P0n16ZzxjY82SqF45O84888y49NJLM378bYrh+6NYMtKasXZrurnlllvie9/7Xpxwwgnx2muvRUVFxV6FV1ZWxiGHHNLksSFDhsQDDzzQ4j77779/vPvuu00ee/fdd6Nbt27N/iVUWVlZlJXt/Yv6QGE6a0T/OHXQ/jH2nmdj4wdbY9bXj8nYNfrO+938eG1NXfSoHBn7DzotI8dsTtXrd0fv/selNrgUU8b61a/E0rnXpXZ8SFMm56xszFgR5ixo607+q0/EiMoeqRx7ybr34/4FVUUxnxRDhhmLQlaIr2VFmLOgrUtzzpq9fG08vnRNVA6e0OzrWUufvyGqXr97r67R9+enfhgbqxdH7wEnxMCRu3+Mbdfo6/aJYS1eo29vM3blg8118dy9x0REROWQr8bgY6dnPCMi4p1FD0b1ytmpHJu2pdVl39ixY2POnDnx85//PCZPnpyR8NGjR8fChQubPLZo0aKdnhbk6KOPjkceeaTJY48++mgcffTRGVkTUFw2NmyJsfc8G6/+pTYe/YfRGSv6ADIp03OWGQsAwGtZALtr6fM3xJI51+1V0be3thV9nfcd1GLRl7YPNtfFS7+bHA2bqiMioqxLZdbXALurXWs33LJlS7z88ssZG44iIi666KJ47rnn4qqrroo33ngj7r333rj55pvj/PPPb9xmypQpTTLPOeeceOutt+KSSy6JP//5z/GLX/wi/r//7/+Liy66KGPrAorHT2YvVvQBeS/Tc5YZCwDAa1kAu0PR96FtRd+G9xZF7/4nZD0f9lSry75HH300PvnJT2Y0/KijjooHH3ww/uM//iMOO+ywuOKKK+L6669vcg2AqqqqWL58eeP9gQMHxu9+97t49NFHY9iwYXHdddfFrbfeGieddFJG1wYUhxW1GxV9QN7L9JxlxgIA8FoWQGsp+j60fdE3fNzdqVyjD9Ky51ckzpBx48bFuHHjWvz4nXfeucNjxx57bLz44osprgooFlPGDFL0AW2SGQsAIB3mLKCYKPo+9PGir9snhseqP/9n1tcBe6rV7+wDKESf2rdzrpcAAAAAAHlH0feh5oo+KDQ5f2cfAAAAAACQPauX/D7WvDVD0afoo0h4Zx8AAAAAALQhij5FH8VF2QcAAAAAAG1I7wP/VtGXB0Xf6iW/z0kuxUfZBwAAAAAAbUjFwJNykqvo+8jS52+INW/NyEk2xUfZBwAAAAAApErR95Glz98QS+ZcF70P/Nuc5FN8lH0AAAAAAEBqFH0f2Vb0DRz1vZy9w5Lio+wD2EPzVlXnegkAAAAAkNcUfR/ZvujL1TUTKU7KPoA9cOXTC2Ousg8AAAAAWqTo+4iijzQp+wB205VPL4wfPbEgjurTI9dLAQAAAIC8VF9Xpej7X4o+0qbsA9gN24q+K44bEiOVfQAAAADQrHcW3q/oC0Uf2aHsA2il7Yu+S//m4FwvBwAAAADyTsP7ayIiouM+vRV9ij6yRNkH0AqKPgAAAADYudp358eaZY9FRMQnBn1J0afoI0uUfQC7oOgDAAAAgJ2rfXd+zP/tpCgt7xEREe3ad8z6GhR9tFXKPoCdUPQBAAAAwM5tK/o67zsoevU/PidrUPTRlin7AFqg6AMAAACAndu+6Bt2yq+ipF1p1teg6KOtU/YBNEPRBwAAAAA79/GizzX6FH3khrIP4GMUfQAAAACwc/lQ9G3dslnRBxHRIdcLAMgnij4AAAAA2Ll8KPoiIt5d9EB8sHm9oo82T9kH8L8UfQAAAACwc/lQ9CVbGyIiYvP7a2LEF/9T0Uebl9PTeE6dOjVKSkqa3AYPHtzi9g0NDXH55ZfHpz71qSgvL49hw4bFzJkzs7hioFgp+oBiY84CAMg8MxbQ1uVD0ffB5rpYu+zxiIjY/+AvK/og8uCdfYceemg89thjjfc7dGh5SZdeemncfffdccstt8TgwYPj97//fZx22mnxzDPPxBFHHJGN5QJFSNEHFCtzFgBA5pmxgLYqX4q+l343ORo2VUdERFmXyqyvIULRR/7JednXoUOH2H///Vu17V133RU//OEP4+STT46IiHPPPTcee+yxuO666+Luu+9Oc5lAkVL0AcXMnAUAkHlmLKAtyqeib8N7i6J3/xNizdLcvFNa0Uc+ynnZt3jx4ujTp0+Ul5fH0UcfHdOnT48DDjig2W3r6+ujvLy8yWOdOnWKWbNmtXj8+vr6qK+vb7xfW1ubmYUDBeGhBVWxZN37zX7syaWr4/Ela+L4gb0j4sPib3c8v6o6IiI21q6I9atf2at1tmRj7YqIiNiw7o1Ujl9MGdk4PhQacxaQpkcWvxsL1qxP5dgvvVMdEYU/nxRLhhkLmkp7xtq2nzkL2q4Fq9OZsSIiVm/48GfL6iV/aJwjdqW+rireWXh/dNynd/To85lY8fLtO91+2+tk1aueiyXz9m6922zdsjneXfRAbH5/Tex/8Jdj/ZrXMp7xcc09j+pVz0X1ytnRo+/oSJKIJfNu2KuMurUL9naZEBERJUmSJLkKnzFjRtTV1cXBBx8cVVVVMW3atFi5cmW8+uqr0bVr1x22P+OMM+Kll16Khx56KD71qU/F448/Hl/4whdiy5YtTQag7U2dOjWmTZu2w+Njx46N0tLSjD+nbebMmROjRo1K7fjZzJEhoxAzli1bFi+//HJqxye/HX744dG/f//Ujl8M3yPFktHQ0BAzZ86Mmpqa6NatW2o5hcicJSNbGdnKkZE/GVVVVTFvXkqvqJDXzFj5k5GNHHNW87IxY0WYs2TIyNectDPWrVu3yz8GoDgddNBBMWTIkNSOXwzfH8WSkdaMldOy7+Oqq6ujf//+8dOf/jS+8Y1v7PDx1atXx9lnnx3//d//HSUlJfGpT30qTjjhhLj99ttj48aNzR6zub+E6tevX+rD6qmnnhoPP/xwasfPZo4MGYWYcc8998SkSZPi+AG9Y1DvpqcVmLeqOuauqo6j+vSIkX167HHG00vXxGtr6qLykEnRo3LkXq64edVV86Lq9btjwFHfi07d+snYhY21K2Lp3A9PhzNx4sTUcorhe6RYMmpra6N79+5ehGoFc5aMQs+RkT8Z2+asLw/pE8P2755Kxn8vrIo5q6rNWXmSYcbKv4xs5JizWieNGSvCnCVDRr7mpJ3xwgsvxJFHHhlXHDckBvbcJ5WMO15YFo8vXRM9+o6OTt0H7nTbhvfXxJplj0VpeY/o1f/4KGnXuj82qF71p9hYvTi6VAyLrhVD92q9ydaGWLvs8WjYVB29+58Qpfv0znhGS7bPiIioW/1SxvM21iyJ6pWz44orrohLL700Y8f9uGL4/iiWjLRmrJyfxnN7PXr0iEGDBsUbbzR/ipCKiop46KGHYtOmTbF27dro06dP/OAHP4gDDzywxWOWlZVFWVlZWksG8txZI/rHxKEfvehx5dMLY+6qpRm5Rt95v5sfr62pix6VI2P/Qaft7VJbVPX63dG7/3GpDS7FlLF+9SuxdO51qR0fCpk5C8i0Lw6pbDJnZdKq9Rtjzqpqc1aeZJixoGVpzFgR5ixo607+q0/EiMoeqRx79vK18fjSNVE5eMJO56xt1+jr9olhu32Nvj8/9cPYWL04eg84IQaO3PNr2m27Rt/WLfVx5GkPRLdPDM94xs5sy+jQsUtUr5ydyjX63ln0YFSvnJ3RY9I2tcv1ArZXV1cXb775ZlRWVu50u/Ly8ujbt2988MEH8cADD8QXvvCFLK0QKGRXPr0wfvTEgowUfQCFxpwFAJB5ZiygGG0r+jrvO2i3i75M2Vb0bXhvUQwfd3eToi/b0ir6IJNyWvZdfPHF8dRTT8XSpUvjmWeeidNOOy3at28fp59+ekRETJ48OaZMmdK4/Z/+9Kf4zW9+E2+99Vb88Y9/jLFjx8bWrVvjkksuydVTAAqEog9oa8xZAACZZ8YCip2i7yPrV78SERE9+o5W9JH3cnoaz7fffjtOP/30WLt2bVRUVMSYMWPiueeei4qKioiIWL58ebRr91EfuWnTprj00kvjrbfeii5dusTJJ58cd911V/To0SNHzwAoBIo+oC0yZwEAZJ4ZCyhmir6PLH3+hqhb/VJERPTo8+mcrAF2R07Lvvvuu2+nH3/yySeb3D/mmGPi9ddfT3FFQLF5aMGquH9BlaIPaHPMWQAAmWfGAoqVou8jS5+/IZbMuS66VAxrLPwg3+XVNfsAMk3RBwAAAAAtU/R9ZFvRN3DU96JrxdCcrAH2hLIPKGpfHlKp6AMAAACAZij6PrJ90ecafRQaZR9Q1L44pE+ulwAAAAAAeUfR9xFFH4VO2QcAAAAAAG3Ixtplir7/peijGCj7AAAAAACgDVn+wo2KvlD0UTyUfQAAAAAA0IZ07LK/oi8Pir6NtctykkvxUfYBAAAAAEAb0n/4OYq+HBd9te/Oj+Uv3JiTbIqPsg8AAAAAANqQdh3Ks56p6PtI7bvzY/5vJ0XHLvvnJJ/io+wDAAAAAABSo+j7yLair/O+g6L/8HNysgaKj7IPYA+9u6E+10sAAAAAgLym6PvI9kXfsFN+lZN3WFKclH0Ae2DOynXx3wvfyfUyAAAAACBvKfo+8vGiLxfXTKR4KfsAdtOclevixLtmR69OHXO9FAAAAADIS1u3bFb0/S9FH2lT9gHshm1F32H7dYtTBn0i18sBAAAAgLz07qIHFH2h6CM7lH0ArbR90Tdz4tHRsb0foQAAAACwvWRrQ0REbH5/jaJP0UeWeKUaoBU+XvR1LSvN9ZIAAAAAIK98sLku1i57PCIi9j/4y4o+RR9ZouwD2AVFHwAAAADs3Aeb6+Kl302Ohk3VERFR1qUyJ+tQ9NEWKfsAdkLRBwAAAAA7t63o2/Deoujd/4ScrUPRR1ul7ANogaIPAAAAAHZu+6Jv+Li7o3Sf3jlZh6KPtkzZB9AMRR8AAAAA7NzHiz7X6FP0kRs5LfumTp0aJSUlTW6DBw9ucftjjz12h+1LSkrilFNOyeKqgWKn6AOKgTkLACDzzFgAH1H0fUTRR651yPUCDj300Hjsscca73fo0PKSfvOb38TmzZsb769duzaGDRsWEyZMSHWNQNuh6AOKiTkLACDzzFgA+VP0Va96LqpXzlb00eblvOzr0KFD7L///q3adt99921y/7777ot99tnHgARkhKIPKDbmLACAzDNjAW1dvhR9EaHog/+V87Jv8eLF0adPnygvL4+jjz46pk+fHgcccECr9r3tttviq1/9anTu3LnFberr66O+vr7xfm1t7V6vGSgcs5evbdV2b763IabPWhT9unWKs4YfEA8vemeX+yxaWxcREdVV8/ZqjTuz7dgb1r2RWsbG2hVFkZGN40OhMWcBaWrtnLUnts1ZG2tXxPrVr6SSUSwzUDYyzFjQVNozVoQ5C9q6BavXp3bs1Rs+/NlS886evZ619YNNsWz+TbG57p04YMS58X7Nkni/ZkmTbTb+7/3qVc/FkpReNluz9MN3WJd1PSCSJGLJvBsynrFtDq1buyDeWfTgDh/fWLsslr9wY3Tssn9UHjwh1ix9dLcz9vTfAT6uJEmSJFfhM2bMiLq6ujj44IOjqqoqpk2bFitXroxXX301unbtutN958yZE3/9138df/rTn2LUqFEtbjd16tSYNm3aDo+PHTs2SkvTe9fOnDlzdrquQsqRIaMQM9atWxezZs1K7fjktzFjxkTPnj1TO34xfI8US0ZDQ0PMnDkzampqolu3bqnlFCJzloxsZWQrR0b+ZJiz2i4zVv5kZCPHnNW8bMxYEeYsGTLyNSftjI0bNzY5TTBtx8iRI6OysjK14xfD90exZKQ1Y+W07Pu46urq6N+/f/z0pz+Nb3zjGzvd9lvf+lY8++yz8fLLL+90u+b+Eqpfv36pD6unnnpqPPzww6kdP5s5MmQUasZnP/vZOOecc1I7/uzZs+PGG2+M4wf2jkG99vwt+pu3bI3fLXo31m7cHOMP3j8+0bms8WNPL10Tr62pi8pDJkWPypGZWPYOqqvmRdXrd8eAo74Xnbr1SyVjY+2KWDr3ujj33HNj9OjRqWRsc9NNN8Uf//jHVDOK5XukGDJqa2uje/fuXoRqBXOWjELPkZFfGWnPWUuWLIkf/ehHce7IAdGna6dUMp5csjoeX7om1RmomOYsM1Z+ZWQjx5zVOmnMWBHmLBky8jUnGxknnnhiXHPNNakdf8GCBTFp0qT48pDKqNjuNahMemrpmnh9TV306Ds6OnUfmNFjr1/9StStfik6lPeKDzatjS4Vw6JrxdCMZmyzsWZJVK+cHccff3wce+yxqWRERPzXf/1XzJ07N7XjRxTP90cxZKQ1Y+X8NJ7b69GjRwwaNCjeeGPnpwjZsGFD3HfffXH55Zfv8phlZWVRVpbODy0gv/Xs2TMmTpyYasaNN94YZx3RPyYO3bMXb9bXN8TYe56N9z/YErO+/jcxqm/Tv5Q+73fz47U1ddGjcmTsP+i0TCy5WVWv3x29+x+X2nC0fvUrsXTudTF69OjU/01+/etfp3p8KFTmLCCT0p6zXnjhhfjRj34U3xwxIEZU9kgt5/Gla1KdgSKKZ84yY0Hz0pixIsxZ0JZ16tQpRowYkXrOlM8enNqcdd7v5sfra+qicvCEjL6etfT5G6Lq9btj4Kjvxaa6dz+cswacEANHpnO9vncWPRjVK2fHscceG5deemkqGREfvpMM9la7XC9ge3V1dfHmm2/u8u2q//mf/xn19fUxadKkLK0MIPO2FX2v/qU2Hv2H0TsUfQCZZM4CAMg8MxZAdix9/oZYMue6GDjqezHgyHTKPShkOS37Lr744njqqadi6dKl8cwzz8Rpp50W7du3j9NPPz0iIiZPnhxTpkzZYb/bbrstvvjFL0avXr2yvWSAjFD0AWkzZwEAZJ4ZCyD7FH2wazk9jefbb78dp59+eqxduzYqKipizJgx8dxzz0VFRUVERCxfvjzatWvaRy5cuDBmzZoVf/jDH3KxZIC9pugDssGcBQCQeWYsgOxS9EHr5LTsu++++3b68SeffHKHxw4++OBIkiSlFQGkS9EHZIs5CwAg88xYANmj6IPWy6tr9gEUM0UfAAAAAOxaPhR9G2uX5SQX9oSyDyALFH0AAAAAsGv5UPTVvjs/lr9wY06yYU8o+wBSpugDAAAAgF3Ll6Jv/m8nRccu++ckH/aEsg8gRYo+AAAAANi1fCr6Ou87KPoPPycna4A9oewDSImiDwAAAAB2Ld+KvmGn/CradSjPyTpgTyj7AFKg6AMAAACAXcvHoq9Dxy45WQfsKWUfQIYp+gAAAABg1xR9kBnKPoAMUvQBAAAAwK4p+iBzlH0AGaLoAwAAAIBdU/RBZin7ADJA0QcAAAAAu6bog8xT9gHspY0NWxR9AAAAALALij5IR4dcLwCg0P1k9uJ4d0O9og8AAAAAWqDog/Qo+wD20orajfHU1z6r6AMAAACAZij6IF1O4wmwl6aMGaToAwAAAIBmKPogfco+gL30qX0753oJAAAAAJB3FH2QHU7jCQAAAAAAZNTqJb+PNW/NUPRBFnhnHwAAAAAAkFGKPsgeZR8AAAAAAJBRvQ/8W0UfZImyDwAAAAAAyKiKgSflJFfRR1uk7AMAAAAAAAqeoo+2Kqdl39SpU6OkpKTJbfDgwTvdp7q6Os4///yorKyMsrKyGDRoUDzyyCNZWjEAQGEwZwEAZJ4ZCyB/KfpoyzrkegGHHnpoPPbYY433O3RoeUmbN2+OE088Mfbbb7+4//77o2/fvrFs2bLo0aNHFlYKkH3zVlXneglAATNnAQBknhkLIP8o+mjrcl72dejQIfbff/9WbXv77bfHe++9F88880yUlpZGRMSAAQNSXB1A7lz59MKYq+wD9oI5CwAg88xYAPlF0Qd5UPYtXrw4+vTpE+Xl5XH00UfH9OnT44ADDmh224cffjiOPvroOP/88+O//uu/oqKiIs4444z4/ve/H+3bt292n/r6+qivr2+8X1tbm8rzANqu2cvXZvyYDy1YFfcvqIoDe+wTb1W/H9VV8zKesc22Y29Y90ZqGWkeG2iZOQsodAtWr0/t2KvWb4yIdOeUjbUrUs8wZ0H2pT1jRZizgPSlOWet3vDhz6+ad9J7PWtjzZKIiKhe+Uwsf+HfomOX/aPy4AmxZumjGctIc/2QaSVJkiS5Cp8xY0bU1dXFwQcfHFVVVTFt2rRYuXJlvPrqq9G1a9cdth88eHAsXbo0Jk6cGOedd1688cYbcd5558V3vvOduOyyy5rNmDp1akybNm2Hx8eOHdv4F1VpmDNnTowaNSq142czR4YMGc1bt25dzJo1K7XjF6MxY8ZEz549U80ohq8tGa3X0NAQM2fOjJqamujWrVtqOYXInCUjWxnZypHRtjI2btzY5BR57Frac1YxfF0VU0Y2csxZzcvGjBVhzpIhI19ziiHDnLX7Ro4cGZWVlakdvxi+rmS0XlozVk7Lvo+rrq6O/v37x09/+tP4xje+scPHBw0aFJs2bYolS5Y0/vXTT3/60/iXf/mXqKqqavaYzf0lVL9+/VIfVk899dR4+OGHUzt+NnNkyJDRss9+9rNxzjnnpHb82bNnx4033hjHD+wdg3qlcwqCRWvr4vEla+Lcc8+N0aNHp5IREXHTTTfFH//4x9SOv02xfG3JaJ3a2tro3r27F6FawZwlo9BzZLS9jBNPPDGuueaa1I6/YMGCmDRpUpw7ckD06doplYxV6zfGjfOWxhVXXBEDBw5MJSMiO3NWsXxdFUtGNnLMWa2TxowVYc6SISNfc4olI1tz1peHVEZF57JUMlZvqI/7F1TFueeeG3369EklIyLiv/7rv2Lu3LmpHT+ieL6uZLROWjNWzk/jub0ePXrEoEGD4o03mj8NSWVlZZSWljY5zcGQIUPinXfeic2bN0fHjh132KesrCzKytL5gQLQs2fPmDhxYqoZN954Y5x1RP+YOLRfKse/55UV8fiSNTF69OhUn8uvf/3r1I4N7Jo5Cyg0nTp1ihEjRqSe880RA2JEZY9Ujv1CVXXcOG9pnHzyyak+F3MW5E4aM1aEOQtIV7bmrCmfPTjVOev+BVXxzW9+M9XnMmfOnNSODZnULtcL2F5dXV28+eabLb4ldvTo0fHGG2/E1q1bGx9btGhRVFZWtjgcAQBgzgIASIMZCwDIBzkt+y6++OJ46qmnYunSpfHMM8/EaaedFu3bt4/TTz89IiImT54cU6ZMadz+3HPPjffeey8uuOCCWLRoUfzud7+Lq666Ks4///xcPQUAgLxkzgIAyDwzFgCQj3J6Gs+33347Tj/99Fi7dm1UVFTEmDFj4rnnnouKioqIiFi+fHm0a/dRH9mvX7/4/e9/HxdddFEcfvjh0bdv37jgggvi+9//fq6eAkDBe/O9DbleApACcxYAQOaZsQCAfJTTsu++++7b6ceffPLJHR47+uij47nnnktpRQBty5yV62L6rEW5XgaQAnMWAEDmmbEAgHyUV9fsAyB75qxcFyfeNTv6deuU66UAAAAAALCHlH0AbdC2ou+w/brFJaP/KtfLAQAAAABgDyn7ANqY7Yu+mROPjk6l7XO9JAAAAAAA9pCyD6AN+XjR17WsNNdLAgAAAABgLyj7ANoIRR8AAAAAQPFR9gG0AYo+AAAAAIDipOwDKHKKPgAAAACA4qXsAyhiij4AAAAAgOKm7AMoUoo+AAAAAIDip+wDKEKKPgAAAACAtkHZB1BkFH0AAAAAAG2Hsg+giCj6AAAAAADaFmUfQJFQ9AEAAAAAtD3KPoAioOgDAAAAAGiblH0ABU7RBwAAAADQdin7AAqYog8AAAAAoG1T9gEUKEUfAAAAAADKPoACpOgDAAAAACBC2QdQcBR9AAAAAABso+wDKCCKPgAAAAAAtpfTsm/q1KlRUlLS5DZ48OAWt7/zzjt32L68vDyLKwbIHUUfsDvMWQAAmWfGAgDyUYdcL+DQQw+Nxx57rPF+hw47X1K3bt1i4cKFjfdLSkpSWxtAvnjzvQ1x3u9eUvQBu8WcBQCQeWYsACDf5Lzs69ChQ+y///6t3r6kpGS3tgcoBtNnLYoRlT0UfcBuMWcBAGSeGQsAyDc5L/sWL14cffr0ifLy8jj66KNj+vTpccABB7S4fV1dXfTv3z+2bt0aI0aMiKuuuioOPfTQFrevr6+P+vr6xvu1tbUZXT9ANnQvK42zhh8QDy96J+PHnr18bcaPCeQHcxbAri1Yvb4gjw3kTtozVoQ5CygO5izInpIkSZJchc+YMSPq6uri4IMPjqqqqpg2bVqsXLkyXn311ejatesO2z/77LOxePHiOPzww6OmpiauvfbaePrpp+O1116LT37yk81mTJ06NaZNm7bD42PHjo3S0vTeHTNnzpwYNWpUasfPZo4MGTJyl7Fu3bqYNWtWasff3pgxY6Jnz56pHd/PRRlpaGhoiJkzZ0ZNTU1069YttZxCZM6Ska2MbOXIkJFpGzdubHIavjSdcMIJ0alTp9SOXwz/HjLyL8ec1bxszFgR5iwZMvI1R0brmLNkyGhZWjNWTsu+j6uuro7+/fvHT3/60/jGN76xy+0bGhpiyJAhcfrpp8cVV1zR7DbN/SVUv379Uh9WTz311Hj44YdTO342c2TIkJHbjM9+9rNxzjnnpJpx0003xR//+MdUM/xclJGG2tra6N69uxehWsGcJaPQc2TISMOJJ54Y11xzTaoZ3//+9+PRRx9NNaNY/j1k5FeOOat10pixIsxZMmTka46M1jNnyZDRvLRmrJyfxnN7PXr0iEGDBsUbb7zRqu1LS0vjiCOO2On2ZWVlUVZWlqklAmRdz549Y+LEialm/PrXv071+EDumbMAdtSpU6cYMWJE6hlA8UpjxoowZwGFz5wF2dUu1wvYXl1dXbz55ptRWVnZqu23bNkSr7zySqu3BwBoq8xZAACZZ8YCAPJBTsu+iy++OJ566qlYunRpPPPMM3HaaadF+/bt4/TTT4+IiMmTJ8eUKVMat7/88svjD3/4Q7z11lvxwgsvxKRJk2LZsmXxzW9+M1dPAQAgL5mzAAAyz4wFAOSjnJ7G8+23347TTz891q5dGxUVFTFmzJh47rnnoqKiIiIili9fHu3afdRHrlu3Ls4+++x45513omfPnnHkkUfGM888E4ccckiungIAQF4yZwEAZJ4ZCwDIRzkt++67776dfvzJJ59scv9nP/tZ/OxnP0txRQAAxcGcBQCQeWYsACAf5dU1+wAAAAAAAIDWU/YBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgcpp2Td16tQoKSlpchs8eHCL2//mN7+JkSNHRo8ePaJz584xfPjwuOuuu7K4YgCAwmDOAgDIPDMWAJCPOuR6AYceemg89thjjfc7dGh5Sfvuu2/88Ic/jMGDB0fHjh3jt7/9bZx11lmx3377xUknnZSN5QIAFAxzFgBA5pmxAIB8k/Oyr0OHDrH//vu3attjjz22yf0LLrgg/v3f/z1mzZplQAIA+BhzFgBA5pmxAIB8k/Nr9i1evDj69OkTBx54YEycODGWL1/eqv2SJInHH388Fi5cGH/zN3/T4nb19fVRW1vb5AYA0BaYswAAMi/tGSvCnAUA7J6SJEmSXIXPmDEj6urq4uCDD46qqqqYNm1arFy5Ml599dXo2rVrs/vU1NRE3759o76+Ptq3bx+/+MUv4utf/3qLGVOnTo1p06bt8PjYsWOjtLQ0Y8/l4+bMmROjRo1K7fjZzJEhQ4aMQsnIVo6M/MloaGiImTNnRk1NTXTr1i21nEJkzpKRrYxs5ciQIUOGjOzmmLOal40ZK8KcJUNGvubIkCFDxt5KbcZK8si6deuSbt26JbfeemuL22zZsiVZvHhx8uKLLybXXntt0r179+SJJ55ocftNmzYlNTU1jbcVK1YkEZHU1NSk8Aw+Mn78+FSPn80cGTJkyCiUjGzlyMifjJqamqz8Xi8G5iwZhZ4jQ4YMGTKym2POap00ZqwkMWfJkJGvOTJkyJCxt9KasXJ+zb7t9ejRIwYNGhRvvPFGi9u0a9cuDjrooIiIGD58eCxYsCCmT5++wznQtykrK4uysrI0lgsAUDDMWQAAmZfGjBVhzgIAdk/Or9m3vbq6unjzzTejsrKy1fts3bo16uvrU1wVAEDhM2cBAGSeGQsAyAc5fWffxRdfHOPHj4/+/fvHqlWr4rLLLov27dvH6aefHhERkydPjr59+8b06dMjImL69OkxcuTI+NSnPhX19fXxyCOPxF133RU33nhjLp8GAEDeMWcBAGSeGQsAyEc5LfvefvvtOP3002Pt2rVRUVERY8aMieeeey4qKioiImL58uXRrt1Hbz7csGFDnHfeefH2229Hp06dYvDgwXH33XfH3//93+fqKQAA5CVzFgBA5pmxAIB8lNOy77777tvpx5988skm96+88sq48sorU1wRAEBxMGcBAGSeGQsAyEd5dc0+AAAAAAAAoPWUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCgclr2TZ06NUpKSprcBg8e3OL2t9xyS3z2s5+Nnj17Rs+ePeOEE06IOXPmZHHFAACFwZwFAJB5ZiwAIB/l/J19hx56aFRVVTXeZs2a1eK2Tz75ZJx++unxxBNPxLPPPhv9+vWLz3/+87Fy5cosrhgAoDCYswAAMs+MBQDkmw45X0CHDrH//vu3att77rmnyf1bb701HnjggXj88cdj8uTJaSwPAKBgmbMAADLPjAUA5Jucv7Nv8eLF0adPnzjwwANj4sSJsXz58lbv+/7770dDQ0Psu+++LW5TX18ftbW1TW4AAG2BOQsAIPPSnrEizFkAwO4pSZIkyVX4jBkzoq6uLg4++OCoqqqKadOmxcqVK+PVV1+Nrl277nL/8847L37/+9/Ha6+9FuXl5c1uM3Xq1Jg2bdoOj48dOzZKS0v3+jm0ZM6cOTFq1KjUjp/NHBkyZMgolIxs5cjIn4yGhoaYOXNm1NTURLdu3VLLKUTmLBnZyshWjgwZMmTIyG6OOat52ZixIsxZMmTka44MGTJk7K3UZqwkj6xbty7p1q1bcuutt+5y2+nTpyc9e/ZMXnrppZ1ut2nTpqSmpqbxtmLFiiQikpqamkwtu1njx49P9fjZzJEhQ4aMQsnIVo6M/MmoqanJyu/1YmDOklHoOTJkyJAhI7s55qzWSWPGShJzlgwZ+ZojQ4YMGXsrrRkr59fs216PHj1i0KBB8cYbb+x0u2uvvTauvvrqeOyxx+Lwww/f6bZlZWVRVlaWyWUCABQccxYAQOalMWNFmLMAgN2T82v2ba+uri7efPPNqKysbHGbn/zkJ3HFFVfEzJkzY+TIkVlcHQBA4TJnAQBknhkLAMgHOS37Lr744njqqadi6dKl8cwzz8Rpp50W7du3j9NPPz0iIiZPnhxTpkxp3P6aa66JH/3oR3H77bfHgAED4p133ol33nkn6urqcvUUAADykjkLACDzzFgAQD7K6Wk833777Tj99NNj7dq1UVFREWPGjInnnnsuKioqIiJi+fLl0a7dR33kjTfeGJs3b44vf/nLTY5z2WWXxdSpU7O5dACAvGbOAgDIPDMWAJCPclr23XfffTv9+JNPPtnk/tKlS9NbDABAETFnAQBknhkLAMhHeXXNPgAAAAAAAKD1lH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCglH0AAAAAAABQoJR9AAAAAAAAUKCUfQAAAAAAAFCgclr2TZ06NUpKSprcBg8e3OL2r732WnzpS1+KAQMGRElJSVx//fXZWywAQAExZwEAZJ4ZCwDIRx1yvYBDDz00Hnvsscb7HTq0vKT3338/DjzwwJgwYUJcdNFF2VgeAEDBMmcBAGSeGQsAyDc5L/s6dOgQ+++/f6u2Peqoo+Koo46KiIgf/OAHaS4LAKDgmbMAADLPjAUA5JucX7Nv8eLF0adPnzjwwANj4sSJsXz58owev76+Pmpra5vcAADaAnMWAEDmpT1jRZizAIDdU5IkSZKr8BkzZkRdXV0cfPDBUVVVFdOmTYuVK1fGq6++Gl27dt3pvgMGDIgLL7wwLrzwwp1uN3Xq1Jg2bdoOj48dOzZKS0v3Zvk7NWfOnBg1alRqx89mjgwZMmQUSka2cmTkT0ZDQ0PMnDkzampqolu3bqnlFCJzloxsZWQrR4YMGTJkZDfHnNW8bMxYEeYsGTLyNUeGDBky9lZqM1aSR9atW5d069YtufXWW3e5bf/+/ZOf/exnu9xu06ZNSU1NTeNtxYoVSUQkNTU1GVhxy8aPH5/q8bOZI0OGDBmFkpGtHBn5k1FTU5OV3+vFwJwlo9BzZMiQIUNGdnPMWa2TxoyVJOYsGTLyNUeGDBky9lZaM1bOr9m3vR49esSgQYPijTfeyNgxy8rKoqysLGPHAwAoROYsAIDMS2PGijBnAQC7J+fX7NteXV1dvPnmm1FZWZnrpQAAFBVzFgBA5pmxAIB8kNOy7+KLL46nnnoqli5dGs8880ycdtpp0b59+zj99NMjImLy5MkxZcqUxu03b94c8+fPj/nz58fmzZtj5cqVMX/+/Iz/9RQAQKEzZwEAZJ4ZCwDIRzk9jefbb78dp59+eqxduzYqKipizJgx8dxzz0VFRUVERCxfvjzatfuoj1y1alUcccQRjfevvfbauPbaa+OYY46JJ598MtvLBwDIW+YsAIDMM2MBAPkop2Xffffdt9OPf3zoGTBgQCRJkuKKAACKgzkLACDzzFgAQD7Kq2v2AQAAAAAAAK2n7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAABDwBr4AACJaSURBVIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIAClTdl39VXXx0lJSVx4YUXtrhNQ0NDXH755fGpT30qysvLY9iwYTFz5szsLRIAoACZswAA0mHOAgDyQV6UfXPnzo1f/vKXcfjhh+90u0svvTR++ctfxv/7f/8vXn/99TjnnHPitNNOixdffDFLKwUAKCzmLACAdJizAIB8kfOyr66uLiZOnBi33HJL9OzZc6fb3nXXXfHP//zPcfLJJ8eBBx4Y5557bpx88slx3XXXZWm1AACFw5wFAJAOcxYAkE9yXvadf/75ccopp8QJJ5ywy23r6+ujvLy8yWOdOnWKWbNm7XSf2traJjcAgLbAnAUAkA5zFgCQT0qSJElyFX7ffffFj3/845g7d26Ul5fHscceG8OHD4/rr7++2e3POOOMeOmll+Khhx6KT33qU/H444/HF77whdiyZUvU19c3u8/UqVNj2rRpOzw+duzYKC0tzeTTaWLOnDkxatSo1I6fzRwZMmTIKJSMbOXIyJ+MhoaGmDlzZtTU1ES3bt1SyylE5iwZ2crIVo4MGTJkyMhujjmrZeYsGTLyLyNbOTJkyJCxt1KbsZIcWb58ebLffvslL730UuNjxxxzTHLBBRe0uM9f/vKX5Atf+ELSrl27pH379smgQYOS8847LykvL29xn02bNiU1NTWNtxUrViQRkdTU1GTy6exg/PjxqR4/mzkyZMiQUSgZ2cqRkT8ZNTU1Wfm9XmjMWTKymZGtHBkyZMiQkd0cc1bzzFkyZORnRrZyZMiQIWNvpTVj5ew0ns8//3z85S9/iREjRkSHDh2iQ4cO8dRTT8UNN9wQHTp0iC1btuywT0VFRTz00EOxYcOGWLZsWfz5z3+OLl26xIEHHthiTllZWXTr1q3JDQCgmJmzAADSYc4CAPJRh1wFH3/88fHKK680eeyss86KwYMHx/e///1o3759i/uWl5dH3759o6GhIR544IH4yle+kvZyAQAKhjkLACAd5iwAIB/lrOzr2rVrHHbYYU0e69y5c/Tq1avx8cmTJ0ffvn1j+vTpERHxpz/9KVauXBnDhw+PlStXxtSpU2Pr1q1xySWXZH39AAD5ypwFAJAOcxYAkI9yVva1xvLly6Ndu4/ONLpp06a49NJL46233oouXbrEySefHHfddVf06NEjd4sEAChA5iwAgHSYswCAbMursu/JJ5/c6f1jjjkmXn/99ewtCACgSJizAADSYc4CAHKt3a43AQAAAAAAAPKRsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKlLIPAAAAAAAACpSyDwAAAAAAAAqUsg8AAAAAAAAKVN6UfVdffXWUlJTEhRdeuNPtrr/++jj44IOjU6dO0a9fv7joooti06ZN2VkkAEABMmcBAKTDnAUA5IMOuV5ARMTcuXPjl7/8ZRx++OE73e7ee++NH/zgB3H77bfHZz7zmVi0aFF87Wtfi5KSkvjpT3+apdUCABQOcxYAQDrMWQBAvsj5O/vq6upi4sSJccstt0TPnj13uu0zzzwTo0ePjjPOOCMGDBgQn//85+P000+POXPmZGm1AACFw5wFAJAOcxYAkE9yXvadf/75ccopp8QJJ5ywy20/85nPxPPPP984DL311lvxyCOPxMknn9ziPvX19VFbW9vkBgDQFpizAADSYc4CAPJJSZIkSa7C77vvvvjxj38cc+fOjfLy8jj22GNj+PDhcf3117e4zw033BAXX3xxJEkSH3zwQZxzzjlx4403trj91KlTY9q0aTs8Pnbs2CgtLc3E02jWnDlzYtSoUakdP5s5MmTIkFEoGdnKkZE/GQ0NDTFz5syoqamJbt26pZZTiMxZMrKVka0cGTJkyJCR3RxzVsvMWTJk5F9GtnJkyJAhY2+lNmMlObJ8+fJkv/32S1566aXGx4455pjkggsuaHGfJ554IvnEJz6R3HLLLcnLL7+c/OY3v0n69euXXH755S3us2nTpqSmpqbxtmLFiiQikpqamkw+nR2MHz8+1eNnM0eGDBkyCiUjWzky8iejpqYmK7/XC405S0Y2M7KVI0OGDBkysptjzmqeOUuGjPzMyFaODBkyZOyttGasDpmrDXfP888/H3/5y19ixIgRjY9t2bIlnn766fj5z38e9fX10b59+yb7/OhHP4p/+Id/iG9+85sRETF06NDYsGFD/J//83/ihz/8YbRrt+NZScvKyqKsrCzdJwMAkEfMWQAA6TBnAQD5KGdl3/HHHx+vvPJKk8fOOuusGDx4cHz/+9/fYTCKiHj//fd3GIC2bZfk7mykAAB5xZwFAJAOcxYAkI9yVvZ17do1DjvssCaPde7cOXr16tX4+OTJk6Nv374xffr0iIgYP358/PSnP40jjjgi/vqv/zreeOON+NGPfhTjx49vdpgCAGiLzFkAAOkwZwEA+ShnZV9rLF++vMlfPl166aVRUlISl156aaxcuTIqKipi/Pjx8eMf/ziHqwQAKDzmLACAdJizAIBsy6uy78knn9zp/Q4dOsRll10Wl112WfYWBQBQBMxZAADpMGcBALm24xWAAQAAAAAAgIKg7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIAClTdl39VXXx0lJSVx4YUXtrjNscceGyUlJTvcTjnllOwtFACgwJizAADSYc4CAPJBh1wvICJi7ty58ctf/jIOP/zwnW73m9/8JjZv3tx4f+3atTFs2LCYMGFC2ksEAChI5iwAgHSYswCAfJHzd/bV1dXFxIkT45ZbbomePXvudNt999039t9//8bbo48+Gvvss4/hCACgGeYsAIB0mLMAgHyS83f2nX/++XHKKafECSecEFdeeeVu7XvbbbfFV7/61ejcuXOL29TX10d9fX3j/ZqamoiIqK2t3bMFt1JDQ0PqGdnKkSFDhoxCychWjoz8ydh27CRJUssoZOYsGX72ypAhQ0ZxZmQjx5y1c+YsGTLyKyNbOTJkyJCxt1KbsZIc+o//+I/ksMMOSzZu3JgkSZIcc8wxyQUXXNCqff/0pz8lEZH86U9/2ul2l112WRIRbm5ubm5ubkV8W7Fixd6OJUXHnOXm5ubm5uaWiZs5a0fmLDc3Nzc3N7e9vWV6xipJktz8idaKFSti5MiR8eijjzae2/zYY4+N4cOHx/XXX7/L/b/1rW/Fs88+Gy+//PJOt/v4X0JVV1dH//79Y/ny5dG9e/e9eg4tqa2tjX79+sWKFSuiW7duqWRkK0eGDBkyCiUjWzky8isjSZJYv3599OnTJ9q1y/nZyfOGOUtGtjKylSNDhgwZMrKfY85qnjlLhoz8y8hWjgwZMmRkQlozVs5O4/n888/HX/7ylxgxYkTjY1u2bImnn346fv7zn0d9fX20b9++2X03bNgQ9913X1x++eW7zCkrK4uysrIdHv//27v3oKjO+4/j3wVkFykgGrEEEQsRiYqXKVMLmlhFdCZosanX4N02NaEZk5SpdHSKsYkaY6t1mlhLlDhRsV5oJzWoGCeYqKmXiEpJAgRNjcYxHUcbKRYEvr8/OvDjtnB2OQu7+H7N8AeH5+znOevh4TM+yxIUFOTSHzAiIoGBgS7P6KwcMsgggwxPyeisHDLcJ8NV/9nhyehZZHR2RmflkEEGGWSQ0bk59KyW6FlkkOG+GZ2VQwYZZJDRUa7oWF222ZeYmChFRUVNji1atEhiYmJk+fLldouRiMi+ffukqqpK5s6d6+ppAgAAeBx6FgAAgGvQswAAgDvqss2+gIAAGTZsWJNj/v7+0qdPn4bj8+fPl7CwMFm7dm2Tcdu2bZNp06ZJnz59Om2+AAAAnoKeBQAA4Br0LAAA4I66bLPPiKtXr7Z4z9KSkhI5ceKE5OfnO/WYVqtVMjMzW30rBLN0RkZn5ZBBBhlkeEpGZ+WQ4V4ZcB49iwxPyiGDDDLIIKNrcuAcehYZZHRuRmflkEEGGWS4M4uqaldPAgAAAAAAAAAAAIDjvNofAgAAAAAAAAAAAMAdsdkHAAAAAAAAAAAAeCg2+wAAAAAAAAAAAAAPxWYfAAAAAAAAAAAA4KG63Wbfli1bZPjw4RIYGCiBgYESHx8vhw4dsjv+Bz/4gVgslhYfycnJpmXcv39fVq9eLVFRUWKz2WTEiBFy+PBhw9e0bt06sVgs8vzzz9sdU1xcLD/+8Y9l4MCBYrFYZNOmTYYf32hGbm6uxMXFSa9evcTf319Gjhwpb7/9tqkZje3Zs0csFotMmzbN9Iw7d+5IWlqahIaGitVqlejoaMnLyzM9Z9OmTTJ48GDx8/OT8PBweeGFF+S///1vq2NXrVrV4j6MiYlp8/H37dsnMTExYrPZJDY2tt1rcDQjKytLHnvsMQkODpbg4GCZOHGinDlzxtQMZ+4rRzPeeuutFuNtNpupGc6sJY5mOLuWXL9+XebOnSt9+vQRPz8/iY2NlXPnztkdf+PGDXnqqackOjpavLy8DH3POpqRm5srSUlJ0rdv34Z19MiRI6bnNHby5Enx8fGRkSNHmp5RVVUlK1askIiICLFarTJw4EDZvn27qRm7du2SESNGSM+ePSU0NFQWL14st27danVs/c+C5h9paWl2H9/R9cTRDGfWE7iX7tixROhZ7tazXNGxROhZ9Cx6Vns9i45lrGOJ0LPgGvQsehY9i57VGnoWPetB6lmd0bGcyfGknuXT1RMwW//+/WXdunUyaNAgUVXZsWOHpKSkSGFhoQwdOrTF+NzcXKmurm74/NatWzJixAiZMWOGaRkrV66UnTt3SlZWlsTExMiRI0fkRz/6kZw6dUpGjRrV5vWcPXtWtm7dKsOHD29zXGVlpURGRsqMGTPkhRdeaHOssxm9e/eWFStWSExMjPj6+srBgwdl0aJFEhISIpMnTzYlo94XX3wh6enp8thjj5l+HdXV1ZKUlCQhISGyf/9+CQsLk3/+85/Sq1cvU3N2794tGRkZsn37dklISJDS0lJZuHChWCwW+d3vftfqOUOHDpX33nuv4XMfH/vfoqdOnZI5c+bI2rVrZcqUKbJ7926ZNm2anD9/XoYNG2b3PEcyCgoKZM6cOZKQkCA2m01effVVmTRpkhQXF0tYWJgpGc7eV45kiIgEBgZKSUlJw+cWi6XN8Y5mOLOWOJrhzFpy+/ZtGTNmjIwfP14OHTokffv2lbKyMgkODrabU1VVJX379pWVK1fKxo0b25y/sxkffPCBJCUlyZo1a6RXr16SnZ0tU6dOldOnT5t6LfXu3Lkj8+fPl8TERLl586ap1yIiMnPmTLl586Zs27ZNHnnkEblx44bU1dWZlnHy5EmZP3++bNy4UaZOnSrXr1+XpUuXyk9/+lPJzc1tMf7s2bNSW1vb8Pk//vEPSUpKsns/OrOeOJrh7HoC99HdOpYIPcvdepYrO5YIPYueRc+y17PoWMY7lgg9C65Bz6Jn0bPoWfbQs+hZD0rP6oyO5UyOR/UsfQAEBwfrm2++aWjsxo0bNSAgQCsqKkzLCA0N1T/84Q9Njj355JOampra5mPevXtXBw0apEePHtVx48bpsmXLDM0lIiJCN27caGissxn1Ro0apStXrjQ1o6amRhMSEvTNN9/UBQsWaEpKSrvzcCRjy5YtGhkZqdXV1e0+bkdy0tLSdMKECU2OvfjiizpmzJhWx2dmZuqIESMMz2XmzJmanJzc5Njo0aP1Zz/7md1zHM1orqamRgMCAnTHjh0uy1Bt/75yNCM7O1uDgoIcmkNHr8PIWuJohjNryfLly3Xs2LGGM5oz8j3b0Yx6Q4YM0ZdeesklObNmzdKVK1e2+5w7k3Ho0CENCgrSW7duGRrvTMZrr72mkZGRTY5t3rxZw8LCDJ2/bNkyjYqK0rq6ula/7sx64mhGc0bWE7g/T+1YqvQsd+tZruxYqvSsxuhZrXuQexYdy/mOpUrPguvQs1yTUY+e1Tp6lvMZqvQse+hZ9Kx67vZ/WUZymnPnntXt3sazsdraWtmzZ4/85z//kfj4eEPnbNu2TWbPni3+/v6mZVRVVbX4FWs/Pz85ceJEm4+dlpYmycnJMnHiRENzcYazGaoqx44dk5KSEnn88cdNzVi9erWEhITIkiVLDM/HkYx33nlH4uPjJS0tTfr16yfDhg2TNWvWNNnRNyMnISFBPv7444Zf6718+bLk5eXJE088YfecsrIyefjhhyUyMlJSU1Pl6tWrdsd+9NFHLeYxefJk+eijj9qclyMZzVVWVsr9+/eld+/eLslw5L5yNKOiokIiIiIkPDxcUlJSpLi4uN35dOS5MrqWOJLhzFryzjvvSFxcnMyYMUNCQkJk1KhRkpWVZfg6jDAjo66uTu7evdvmveVsTnZ2tly+fFkyMzNdci3156xfv17CwsIkOjpa0tPT5d69e6ZlxMfHy5dffil5eXmiqnLz5k3Zv39/m+tJverqatm5c6csXrzY7isAnV1PHMlozuh6Avfk6R1LhJ7lbj3L1R1LhJ5Fz6Jn2bu36FjOdSwRehZcg55lDD2LnkXPMv86ROhZ9Cz36Fmd0bGM5jTn1j2ry7YZXejSpUvq7++v3t7eGhQUpO+++66h806fPq0ioqdPnzY1Y86cOTpkyBAtLS3V2tpazc/PVz8/P/X19bV7Tk5Ojg4bNkzv3bunqsZejVDP6CuhnMm4c+eO+vv7q4+Pj1qtVt22bZupGR9++KGGhYXpv/71L1VVQ6+EcjRj8ODBarVadfHixXru3Dnds2eP9u7dW1etWmVqjqrq73//e+3Ro4f6+PioiOjSpUvtjs3Ly9O9e/fqxYsX9fDhwxofH68DBgzQb775ptXxPXr00N27dzc59vrrr2tISIhpGc0988wzGhkZ2fAcmJXh6H3laMapU6d0x44dWlhYqAUFBTplyhQNDAzUL7/80tTrqGd0LXE0w5m1xGq1qtVq1V/96ld6/vx53bp1q9psNn3rrbfavQ5VY/d5RzNUVV999VUNDg7WmzdvmppTWlqqISEhWlJSoqrtv/rMmYzJkyer1WrV5ORkPX36tL777rsaERGhCxcuNC1DVXXv3r36rW99q2E9mTp1qqFXdP75z39Wb29vvX79ut0xzqwnjmY0Z2Q9gfvpDh1LlZ7lbj3L1R1LlZ5Fz6JntdWz6FjOdSxVehbMRc+iZ9Gz6FnN0bPoWaoPZs/qjI5lNKc5d+5Z3XKzr6qqSsvKyvTcuXOakZGhDz30kBYXF7d73tNPP62xsbGmZ3z99deakpKiXl5e6u3trdHR0frss8+qzWZrdfzVq1c1JCREL1682HDM7HLkbEZtba2WlZVpYWGhbtiwQYOCgvT99983JeObb77RgQMHal5eXsOx9sqRM9cxaNAgDQ8P15qamoZjv/3tb/Xb3/62qTnvv/++9uvXT7OysvTSpUuam5ur4eHhunr1arvnNHb79m0NDAy0+5YaZixo7WU0tnbtWg0ODm7yHJiV4ch95WxGY9XV1RoVFdXuW3Y4m+HIWuJIhqNrier/7pP4+Pgmx5577jn9/ve/b2hORtaFjmbs2rVLe/bsqUePHjU1p6amRuPi4nTLli0Nx9orSM5cS1JSktpsNr1z507DsQMHDqjFYtHKykpTMoqLizU0NFTXr1/fUKZjY2N18eLFds+pN2nSJJ0yZUqbYzq6nhjJaMzZ9QRdz9M7lio9y916Vld0LFV6Fj2rpQe5Z9GxnOtYqvQsmIueRc+iZ9Gz2kPPomeZkaHq/j2rMzqW0ZzG3L1ndcvNvuYSExP16aefbnNMRUWFBgYG6qZNm1yWce/ePb127ZrW1dXpL3/5Sx0yZEir4/7yl7+oiKi3t3fDh4ioxWJRb2/vJj/UW2OkHHU0o96SJUt00qRJpmQUFha2GG+xWBrGf/7556Zcx+OPP66JiYlNjuXl5amIaFVVlWnP19ixYzU9Pb3Jsbffflv9/Py0tra21Zzm4uLiNCMjo9WvhYeHt/h3/vWvf63Dhw839NhGMuq99tprGhQUpGfPnnXosR3JaKyt+8qsjOnTp+vs2bNNz+joWmIkw+haoqo6YMAAXbJkSZNjb7zxhj788MOG5mOkHHUkIycnR/38/PTgwYPtjnU05/bt262uKfXHjh07Zsq1zJ8/X6Oiopoc++STT1REtLS01JSMuXPn6vTp05sc+/DDD1VE9KuvvrJ73hdffKFeXl7617/+1e4Y1Y6tJ0Yz6nV0PYF78bSOpUrPcree1VUdS5We5coMepZn9Sw6luMdS5WeBdejZ7kmox49i55lVkZj9Cx6Vkcz6Fmd07EcyannCT2rW//Nvnp1dXVSVVXV5ph9+/ZJVVWVzJ0712UZNptNwsLCpKamRg4cOCApKSmtjktMTJSioiK5cOFCw0dcXJykpqbKhQsXxNvb26k5uiKjret2NCMmJqbF+B/+8Icyfvx4uXDhgoSHh5tyHWPGjJHPP/9c6urqGo6VlpZKaGio+Pr6mvZ8VVZWipdX02+x+nGq2mpOYxUVFVJeXi6hoaGtfj0+Pl6OHTvW5NjRo0cNv6e/kQwRkfXr18tvfvMbOXz4sMTFxRl+bEcymjPy/dSRjNraWikqKnJoTkYzOrKWGM0wupaI/O9+LykpaXKstLRUIiIiHJ6f2Rk5OTmyaNEiycnJkeTkZNNzAgMDW3zfLl26VAYPHiwXLlyQ0aNHm3ItY8aMka+++koqKiqanOPl5SX9+/c3JcPZ9SQ7O1tCQkLafX47sp4YzRDp+HoC9+NpHUuEnuVuPasrOpYIPYueZd+D2LPoWM6tJ/QsuBo9y7UZ9Cx6lhkZzdGz6FkdzaBndU7HciRHxIN6VlfuNLpCRkaGHj9+XK9cuaKXLl3SjIwMtVgsmp+fr6qq8+bNa/VVBmPHjtVZs2a5JOPvf/+7HjhwQMvLy/WDDz7QCRMm6He+8x29ffu24etq/mqE5hlVVVVaWFiohYWFGhoaqunp6VpYWKhlZWWmZaxZs0bz8/O1vLxcP/nkE92wYYP6+PhoVlaWaRnNGXmPc0czrl69qgEBAfrzn/9cS0pK9ODBgxoSEqIvv/yyqTmZmZkaEBCgOTk5evnyZc3Pz9eoqCidOXNmq4/3i1/8QgsKCvTKlSt68uRJnThxoj700EP69ddft/r4J0+eVB8fH92wYYN++umnmpmZqT169NCioiK7c3Y0Y926derr66v79+/XGzduNHzcvXvXtAxn7itHM1566SU9cuSIlpeX68cff6yzZ89Wm83W5luiOJpRz5G1xNEMZ9aSM2fOqI+Pj77yyitaVlbW8BYDO3fubBiTkZGh8+bNa3Je/Xry3e9+V5966iktLCy0+3w5k7Fr1y718fHR119/vcm91fjtA8y6lsbae+sDZzLu3r2r/fv31+nTp2txcbEeP35cBw0apD/5yU9My8jOzlYfHx994403tLy8XE+cOKFxcXH6ve99z+611NbW6oABA3T58uUtvmbGeuJohjPrCdxLd+1YqvQsR3RGzzK7Y6nSs+hZ9Ky2ehYdy7GOpUrPgvnoWfQsIxn0LHoWPYueZVaGu/aszuhYjuZ4Us/qdpt9ixcv1oiICPX19dW+fftqYmJiQ3FR/d8PtQULFjQ557PPPlMRaTLOzIyCggJ99NFH1Wq1ap8+fXTevHkO/dHH+sds/MO4ecaVK1dURFp8jBs3zrSMFStW6COPPKI2m02Dg4M1Pj5e9+zZY+p1NGdGOWot49SpUzp69Gi1Wq0aGRmpr7zyiuG3ejCac//+fV21apVGRUWpzWbT8PBwffbZZ+3+IJs1a5aGhoaqr6+vhoWF6axZs5q81UNr17F3716Njo5WX19fHTp0aLt/wNvRjIiIiFbvq8zMTNMynLmvHM14/vnndcCAAerr66v9+vXTJ554Qs+fP29qhqrja4mjGc6uJX/729902LBharVaNSYmRv/0pz81+fqCBQtarBWt/btHRESYljFu3LhWM9paD5y9lsbaK0jOZnz66ac6ceJE9fPz0/79++uLL77Y6nucdyRj8+bNOmTIEPXz89PQ0FBNTU3Va9eu2c04cuSIikjDH3RuzIz1xNEMZ9YTuJfu2rHqH5eeZV5GR3uW2R1LlZ5Fz6Jntdez6FjGO5YqPQvmo2fRs4xm0LPoWfSs/0fP6liGO/aszuhYjuZ4Us+yqBr8HWwAAAAAAAAAAAAAbuWB+Jt9AAAAAAAAAAAAQHfEZh8AAAAAAAAAAADgodjsAwAAAAAAAAAAADwUm30AAAAAAAAAAACAh2KzDwAAAAAAAAAAAPBQbPYBAAAAAAAAAAAAHorNPgAAAAAAAAAAAMBDsdkHAAAAAAAAAAAAeCg2+wAAAAAAAAAAAAAPxWYfgG6jtrZWEhIS5Mknn2xy/N///reEh4fLihUrumhmAAAAno2eBQAAYD46FgCzWFRVu3oSAGCW0tJSGTlypGRlZUlqaqqIiMyfP18uXrwoZ8+eFV9f3y6eIQAAgGeiZwEAAJiPjgXADGz2Aeh2Nm/eLKtWrZLi4mI5c+aMzJgxQ86ePSsjRozo6qkBAAB4NHoWAACA+ehYADqKzT4A3Y6qyoQJE8Tb21uKiorkueeek5UrV3b1tAAAADwePQsAAMB8dCwAHcVmH4Bu6bPPPpNHH31UYmNj5fz58+Lj49PVUwIAAOgW6FkAAADmo2MB6Aivrp4AALjC9u3bpWfPnnLlyhW5du1aV08HAACg26BnAQAAmI+OBaAj+M0+AN3OqVOnZNy4cZKfny8vv/yyiIi89957YrFYunhmAAAAno2eBQAAYD46FoCO4jf7AHQrlZWVsnDhQnnmmWdk/Pjxsm3bNjlz5oz88Y9/7OqpAQAAeDR6FgAAgPnoWADMwG/2AehWli1bJnl5eXLx4kXp2bOniIhs3bpV0tPTpaioSAYOHNi1EwQAAPBQ9CwAAADz0bEAmIHNPgDdxvHjxyUxMVEKCgpk7NixTb42efJkqamp4S0QAAAAnEDPAgAAMB8dC4BZ2OwDAAAAAAAAAAAAPBR/sw8AAAAAAAAAAADwUGz2AQAAAAAAAAAAAB6KzT4AAAAAAAAAAADAQ7HZBwAAAAAAAAAAAHgoNvsAAAAAAAAAAAAAD8VmHwAAAAAAAAAAAOCh2OwDAAAAAAAAAAAAPBSbfQAAAAAAAAAAAICHYrMPAAAAAAAAAAAA8FBs9gEAAAAAAAAAAAAeis0+AAAAAAAAAAAAwEP9Hy/1BS1m0/FAAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 0.3333333333333333\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.75\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# сравнение характеристик качества обучения и областей аппроксимации\n", + "lib.plot2in1(data, xx, yy, Z1, Z2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RJWYYYHQbUIN", + "outputId": "4690b6e4-1289-478b-8406-d23196cb5fbd" + }, + "id": "RJWYYYHQbUIN", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVc5JREFUeJzt3Xl8U1X6P/DPzdKUlraU0r21LVBWqVDcAPkC3+qgg3VEByvCAIKOo37FHYdBB1wQnRlndBYXQHChiuNPccQBESo4ZUALgoBIy9a9dKF0h6Ztcn9/pDdN0qRN2iQ3y+f9euUFubm5Oan24bnnPOccQRRFEUREREQ+QiF3A4iIiIicickNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDfkVQRCwatUquZtBRF6GscO7MLnxEq+//joEQcA111zT72tt27aNv6RuVF9fj8DAQAiCgBMnTlg9Z9GiRRAEweojMDDQ7NzVq1fjlltuQXR0NAMu9Yqxw3s5M3bk5+dj2bJlGD9+PEJCQhAbG4tZs2bh4MGD7vo6bqWSuwFkn+zsbCQnJyMvLw+nT5/G8OHD+3ytbdu24R//+AeDlJt8/PHHEAQBMTExyM7OxgsvvGD1PI1Gg/Xr13c7rlQqzZ4//fTTiImJwYQJE7Bjxw6XtJl8B2OH93Jm7Fi/fj3efvtt3H777XjggQfQ0NCAt956C9deey2+/PJLXH/99S77HnJgcuMFCgsLsW/fPnz66ae47777kJ2djZUrV8rdLL/X2tqKgIAAKBQ9d4Bu2rQJP//5z5GUlIQPPvjAZoBSqVSYP39+r59bWFiI5ORknD9/HpGRkX1qO/kHxg7PJEfsmDt3LlatWoWBAwcajy1evBijR4/GqlWrfC654bCUF8jOzkZ4eDhmzZqFX/7yl8jOzu52zp49eyAIAvbs2WN2vKioCIIg4J133gFg6ML8xz/+AQBm3ZeSlpYWPP7440hMTIRGo8HIkSPxpz/9CdY2j9+0aRMmTpyIAQMGYPDgwbjzzjtRWlpqds706dNx+eWX46effsKMGTMQFBSE+Ph4/OEPf+h2vdbWVqxatQojRoxAYGAgYmNjcdttt+HMmTMOt0+r1eLRRx9FZGQkQkJCcMstt6CsrMzqz7e8vByLFy9GdHQ0NBoNxo4diw0bNlj9+W7evBlPP/004uPjERQUhMbGRqvXlJSUlCA3Nxd33nkn7rzzTuM/Nv2RnJzcr/eT/2DsYOyQTJw40SyxAYCIiAhMnTrV5pCXN2PPjRfIzs7GbbfdhoCAAMydOxdvvPEGDhw4gKuuusrha913332oqKjAzp078f7775u9JooibrnlFuzevRtLlizB+PHjsWPHDjz55JMoLy/HX/7yF+O5q1evxjPPPIM77rgD99xzD2pqavC3v/0N//M//4PDhw9j0KBBxnPr6upw44034rbbbsMdd9yB//f//h+eeuopjBs3DjfddBMAQKfT4eabb0ZOTg7uvPNOPPzww2hqasLOnTvx448/YtiwYQ6175577sGmTZtw1113YfLkyfj6668xa9asbj+PqqoqXHvttRAEAf/3f/+HyMhIbN++HUuWLEFjYyMeeeQRs/Off/55BAQE4IknnoBWq0VAQECPP+8PP/wQwcHBuPnmmzFgwAAMGzYM2dnZmDx5stXzz58/3+1YQEAAQkNDe/wcImsYOxg7eosdlZWVGDJkSI/neCWRPNrBgwdFAOLOnTtFURRFvV4vJiQkiA8//LDZebt37xYBiLt37zY7XlhYKAIQN27caDz24IMPitb+03/22WciAPGFF14wO/7LX/5SFARBPH36tCiKolhUVCQqlUpx9erVZucdO3ZMVKlUZsenTZsmAhDfe+894zGtVivGxMSIt99+u/HYhg0bRADin//8527t0uv1DrXvhx9+EAGIDzzwgNl5d911lwhAXLlypfHYkiVLxNjYWPH8+fNm5955551iWFiYePHiRVEUu36+Q4cONR6zx7hx48R58+YZn//ud78ThwwZIra3t5udt3DhQhGA1cfMmTOtXrumpqbb9yGSMHYwdtiKHZL//Oc/oiAI4jPPPGN3u7wFh6U8XHZ2NqKjozFjxgwAhu7grKwsbN68GTqdzqmftW3bNiiVSixdutTs+OOPPw5RFLF9+3YAwKeffgq9Xo877rgD58+fNz5iYmKQmpqK3bt3m71/4MCBZuPBAQEBuPrqq3H27FnjsU8++QRDhgzBQw891K1dUte3ve3btm0bAHQ7z/JOShRFfPLJJ8jMzIQoimbfZebMmWhoaMChQ4fM3rNw4UIMGDDA+g/QwtGjR3Hs2DHMnTvXeGzu3Lk4f/681ULgwMBA7Ny5s9vjpZdesuvziEwxdjB29BQ7qqurcddddyElJQXLli2zq13ehMNSHkyn02Hz5s2YMWMGCgsLjcevueYavPLKK8jJycHPfvYzp31ecXEx4uLiEBISYnZ89OjRxtcB4NSpUxBFEampqVavo1arzZ4nJCSYjc0DQHh4OI4ePWp8fubMGYwcORIqle3/Je1tX3FxMRQKBYYNG2Z23siRI82e19TUoL6+HmvXrsXatWutfmZ1dbXZ85SUFJvts7Rp0yYEBwdj6NChOH36NABDEEpOTkZ2dna3rm6lUulzRX0kD8aOvrXPX2JHS0sLbr75ZjQ1NWHv3r3danF8AZMbD/b111/j3Llz2Lx5MzZv3tzt9ezsbGOAsgwAEmffoQGAXq+HIAjYvn17t2nKALr9olg7B4DVQkN30uv1AID58+dj4cKFVs9JS0sze27vnZcoivjwww/R0tKCMWPGdHu9uroazc3NPhlUSH6MHa7lzbGjra0Nt912G44ePYodO3bg8ssv79N1PB2TGw+WnZ2NqKgo4wwFU59++im2bNmCN998EwMGDEB4eDgAw6JPpqQ7ElO2gllSUhJ27dqFpqYmszuc/Px84+sAjAV6KSkpGDFiRJ++m6Vhw4bhu+++Q3t7e7e7N0fbl5SUBL1eb7yjkxQUFJhdT5oNodPpnN5j8s0336CsrAzPPfec8e5QUldXh1//+tf47LPP7Jr6TeQoxo6+tc/XY4der8eCBQuQk5ODf/7zn5g2bZqzmu153F/mQ/a4ePGiGBISIi5evNjq6//9739FAOLmzZtFURTF+vp6UalUio8++qjZebfffnu3osCnnnpKBCDW1dWZnSsV3b344otmx7OyssyK7k6fPi0qlUrxrrvuMhbsSfR6vVmB3bRp08SxY8d2a//ChQvFpKQk43NHigJ7a9/hw4ftLgpctGiRGBAQIB47dqzb51ZXVxv/LhUFfvzxx93Os2bJkiVicHCweOnSJauvp6amijfeeKPx+cKFC8Xg4GC7ri1hQTFZw9hhfk1H2ufrseOBBx4QAYhvvfWWXed7M/bceKjPP/8cTU1NuOWWW6y+fu211yIyMhLZ2dnIyspCWFgY5syZg7/97W8QBAHDhg3DF1980W3cFzCsdwAYiuZmzpwJpVKJO++8E5mZmZgxYwZWrFiBoqIiXHHFFfjqq6/wr3/9C4888ohxHHrYsGF44YUXsHz5chQVFeHWW29FSEgICgsLsWXLFvz617/GE0884dD3XbBgAd577z089thjyMvLw9SpU9HS0oJdu3bhgQcewC9+8Qu72zd+/HjMnTsXr7/+OhoaGjB58mTk5OQYx65NvfTSS9i9ezeuueYa3HvvvRgzZgwuXLiAQ4cOYdeuXbhw4YJD3wMwrJPxySef4IYbbui2dYLklltuwWuvvYbq6mpERUUBADo6OrBp0yar58+ePRvBwcEAgPfffx/FxcW4ePEiAOA///mPcXGvX/3qV8a7UPJPjB2MHaak2PHqq6/i9ddfx6RJkxAUFNTtfNMY4xPkzq7IuszMTDEwMFBsaWmxec6iRYtEtVptvNupqakRb7/9djEoKEgMDw8X77vvPvHHH3/sdvfV0dEhPvTQQ2JkZKQoCILZ1M6mpibx0UcfFePi4kS1Wi2mpqaKf/zjH7vdZYmiKH7yySfiddddJwYHB4vBwcHiqFGjxAcffFAsKCgwnmPv3ZcoGu44V6xYIaakpIhqtVqMiYkRf/nLX4pnzpxxuH2XLl0Sly5dKkZERIjBwcFiZmamWFpaarWno6qqSnzwwQfFxMRE4+dmZGSIa9euNZ7jyN3XJ598IgIQ3377bZvn7NmzRwQgvvbaa8afB2xM5wQgFhYWGt8rTZG19rCczkv+h7GDscNa7HAkxvgCQRRlrswiIiIiciKuc0NEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FL9bxE+v16OiogIhISE2lxInItcSRRFNTU2Ii4uDQuEd91iMHUTyciRu+F1yU1FRgcTERLmbQUQASktLkZCQIHcz7MLYQeQZ7IkbfpfcSJum/e6/3yOQOzITyaK1uRkvTplotomhp2PsIJKXI3HD75IbqTs5cOBABHpRYCXyRd40vMPYQeQZ7Ikb3jHYTURERGQnJjdERETkU5jcEBERkU/xu5obIldTinoE6PUQIMrdFFmIENCmUEAn8N6JyF6CKCJQr/PbuAEYYkerQgnRCbV4TG6InEUUkdTajIQOLRReVCjrCnpRRJlKg+LAgYCf/yyIeqPR65DWUo9A/qqgVQSOBA9Cm0LZr+swuSFykqTWZqTo2xARFQX1gAGAvwYqEWi/dAnq8zVAazOKB3BmEZFNooihl5oQrglAeHQ0BIW/Bg5A1Iuoq6zEsEtNOBEU1q8bIyY3RE6gFPVI6NAiIioKQeHhcjdHdurAQABAe3U1ysRgDlER2aAW9YjQdyAsIgoBAwbI3RzZhQ0ZgpaKCqhFPdqFvvfeMOIQOUGAXg+FIBh6bAgAoB4wAApBQIBeL3dTiDyWShQhCAKUarXcTfEISrUaCkGASuxf7RGTGyInMBYB+m+PcneC9If/FkgS9Yaxw4KT4gaTGyIiIvIpTG6IiIjIpzC5ISJUV1ZixaOP4JpRI5EUGoKJw4ZhwW2zkfv11wCA99evx2033IDUyCGIDdSgob5e3gYTkUfw1NjB5IbIz5UWFWHm5EnYu2cPnlnzEr7+/nt8sHUrJk+bhuWPPAwAuHTpImb87GdYuuwpmVtLRJ7Ck2OH304FLykpQUBwMJKTk+VuCpGsfvvwUgiCgO17/4ug4GDj8ZFjxmDuwkUAgF8/tBQAsO+bb+RoIhF5IE+OHX7bczPl4I9oKatFUVGR3E0hskqnc/1n1F24gN1ffYVF9/3GLDhJwgYNcn0jiMhp3BE3AM+PHX6b3AyqzcfDx8rRUlYrd1OIzJw+CUwbr0JCcACmjVfh9EnXfVbRmTMQRRHDR4503YcQkcu5M24Anh87/Da56dA04GjjLohtbey9IY+y5A4VzpwyLPZw5pSAJXe4bvRY7OdCWUTkGdwZNwDPjx1+m9x8fMVQaBXAjFMn0FGnlbs5RAAMXcon8xXQ6YTO50Lnc9d8Xsrw4RAEAacLClzzAUTkcu6OG4Dnxw6/TW7Gh9yO3Iw0NFUegLalGUVFRQ49iFxBqQRGjNJDqRQ7n4udz13zeeGDB2P6DTfgnbfexMWWlm6vc8o3kedzd9wAPD92+O1sKQBID82CJugoph8/gpi2sXa/b0v4ICDZZc0iP/f2Pzuw5A4VTuYLGJYq4u1/drj089a8+hpu+d8ZuOm6KXjy9ysxZtzl6OjowH9ycvDu2rXIPXIU1ZWVqK6qQuGZMwCAEz/+iIEhIYhPTET44MEubR8R9c7dcQPw7Njh18kNAORmpGHBbhWGFFTZ/Z7WkXoUFRVxGjm5xPARwDc/dECng0vvvCRJQ4fiq/3f4rWXX8KzTz2F6spziIiMRNqECXj5r38DALy3bh1eWf2C8T2zr88AALy6dh2yFixwfSOJqEfujhuAZ8cOQfT0qiAna2xsRFhYGF7c8j0CgwcCAIK3rEBCeJDd1xjYMg4bJo7C2OsmuqqZ5GWCdO2YeKkR8UmXQa0JlLs5HqFd24ry4hJ8PyAUF5XmOx63NjXh91eMRENDA0JDQ2VqoWOk2PHckQIEhoTI3RzyEYwd5pwVN/y+5wYw9N444uqteyG2DWXvDRERkQdicgND7Y0jNEFHMePUCewPH4wiFPV6PhMgIiIi92Fy0we5GWm4eusBZJwcgtDI6B7P3RI+CEVgDw8REZG7MLnpA2mWVUxlEyIGxPd4bkZNAXJGjOTsKiIiIjdhctNHuRlp0G7di9AT3/V4XkrgNdDGN7M+x8eJEKS/kESU/hDkbQeRB2PssOCkuMHkpo/SQ7OQl9n7eVNzvsP041rsD57C3hsf1qZQQC+KaL90CepAzngAgPZLl6AXRbQp/HatUKJedQgCRFGErr2dsQOArr0delFEh8DkRjb2FCLnZgALdquMqyDbwl4d76YTFChTaaA+XwMAUA8YAL/tsBANiU3t+RqUqTTQCUxuiGxpFxSoVagQVFsLhUoFQeGvgQMQ9SIazp/HBYUK7f2MG0xuXCw9NAv5zcswM1+J8LbhVs9h0bFvKA4cCLQ2o726Gop+3nV4O70ookylMfxMiMg2QcCZASEY2FKPS6WlcrdGdq0icCZ4EMCeG8+XlzkRC3brENds/cfNomMfIQgoHhCCMjEYAXo9BD8dRBchoE2hYI8NkZ3aFEocHDgYgXqd38YNwBA7WhVKiE64OZQ1uUlOTkZxcXG34w888AD+8Y9/WH3Pxx9/jGeeeQZFRUVITU3Fyy+/jJ///Oeubmq/SL03KK2w+no4AG18PIuOfYROUOCSkv+wu4q/xA3yL6Ig4JKS/Q3OIutP8sCBA9CZ7Mn+448/4oYbbsCcOXOsnr9v3z7MnTsXa9aswc0334wPPvgAt956Kw4dOoTLL7/cXc3uk7zMiciz8drUHMPmnSw6JuqdP8UNIuobj9pb6pFHHsEXX3yBU6dOQbDSLZWVlYWWlhZ88cUXxmPXXnstxo8fjzfffNOuz7C2t5TcDjV+hAW7A5B9zVjuV0V+wZl7S7kjbgDcW4pIbl65t1RbWxs2bdqExx57zGqAAoD9+/fjscceMzs2c+ZMfPbZZzavq9VqodVqjc8bGxud0l5nMi063tNDwqUK13DYisiEq+IG4B2xg4is85jk5rPPPkN9fT0WLVpk85zKykpER5tvdxAdHY3Kykqb71mzZg2effZZZzXTZaSi46WlzVZfP36pnEXHRBZcFTcA74kdRNSdxyQ3b7/9Nm666SbExcU59brLly83u2trbGxEYmKiUz/DGewpOm6NjGTRMZEJV8UNwHtiBxF15xHJTXFxMXbt2oVPP/20x/NiYmJQVVVldqyqqgoxMTE236PRaKDRaJzSTlfTBKlReNF6cgPAuBM5e2+IXBs3AO+KHURkziOSm40bNyIqKgqzZs3q8bxJkyYhJycHjzzyiPHYzp07MWnSJBe30D1aZq+2+Zqh6Niw0jERMW4QkW2yJzd6vR4bN27EwoULoVKZN2fBggWIj4/HmjVrAAAPP/wwpk2bhldeeQWzZs3C5s2bcfDgQaxdu1aOprtVemgWCvUrjEXHqnDzO0oOVZE/Ydwgop7Intzs2rULJSUlWLx4cbfXSkpKoDDZdG/y5Mn44IMP8PTTT+N3v/sdUlNT8dlnn/nNWhW5GWlYsFuHjJMF3V7LqdNi+ISRMrSKyP0YN4ioJx61zo07eOI6N45QZS/DqCFJZseGKMbgtXHxXCOHvIYz17lxF65zQyQvR+IG14j3MpogNdo19WaPo427ILa19bjrOBERkb+QfViKHNMyezU+bPzI7NjUnKOcSUVERNSJyY0XSg/NMnveMjsL2uxlaK0b3WPvDYuOiYjIHzC58RGaIDVmnDqBmB5GGrew6JiIiPwAkxsfYZhJpcKQgiqb52jH8T83ERH5Pv5r5yOkdXDa1UFWX6+pvQixbS63byAiIp/H5MaH5Gak2Xxtas5RLDl2FtksOiYiIh/H5MaHWBYam2qZnYUj2cvQWjfUatExe3OIiMhXMLnxI7aKjreED0IROFxFRES+gYv4+ZHcjDTEN6uQaPHIOFmAjjqt3M0jIiJyCvbc+BGp6LjixEGz4ymB10Abz93GiYjINzC58TPWio6n5nyH6ce12B88kOvgEBGR12Ny42esFR3nZgALdqugbWlmsTEREXk9JjeE9NAs5Dcvw8x8JcLbhpu9tiV8EKeOExGRV2FBMQEA8jInYkiDrluxsa3eHCIiIk/FnhsC0NV7g9IKs+MPl4/BawDAoSkiIvISTG7IKC9zIjQ5R82O5V8shti2gNs2EBGR12ByQ0bpoVlomW1ecBy8ZQVmnDqB/dy2gYiIvARrbqhHLbNXo6nyAFrrLuD04QKcPlzAGhwiIvJo7LmhXmmC1Fhy7CwiUgIAAH9saWYNDhEReSz23FCvcjPScKR+LypKd6KidCfEtjb23hARkcdickO9Sg/NgiZIjXZNPdo19Zhx6gT3oiIiIo/FYSmyi+m2DVdvPYDWutGcQUVERB6JyQ3ZxXTbBk3QUeMMqiIUdTuXCQ8REcmJyQ05LDcjDQt2q5BxsqDbazkjRnLKOBERyYrJDTksPTQLhfoV0BQBcQPjjMeHKMZgW0uzfA0jIiICC4qpj3Iz0qBVwFhk3K6pxzn1Pkw/fgSnD3fv0SEiInIX9txQn6SHZiE3o/vxBbsNm20SERHJhckN9ZlpkbEkv3kZxLZUq+vgsNCYiIjcgckNOZW0mvFFixHPLeGDUAROHSciItdjzQ05Vcvs1ThSvxfRBVVmj998W8CF/4iIyC3Yc0NOpwlS45x6n9mxmtqLaK2L5MJ/RETkckxuyOlMVzOWTM3pWviP6+AQEZErMbkhp7NWaJyb0TWTyrTYmL04RETkbExuyC2khf+mH+9ATNtYAIYiY/biEBGRs7GgmNwmNyMN8c0qJHY+LHtxiIiInIE9N+Q26aFZyG9ehooTBwEA0weNx/7gKey9ISIip2JyQ26VlznR+Pertx6AtuUKzqAiIiKnYnJDbmVabKwJOorpx49gf/AUFKEIAAuMiYio/1hzQ7KRanAyThYg82wVOuq0rMEhIqJ+Y3JDsjHU4OxH6gUgsTPJ4SrGRETUXxyWIlnlZU4Etm7HKH0SwgG0RnIVYyIi6h/23JCs0kOzoAlSo/BiBQovVmDGqRPsvSEion5hzw3JrmX2agDAocaPjKsYExER9RWTG/IY0irGM/OV2BM8sNvrwyeMlKFVRETkbZjckEfJzUjDgt06LC017705fqkcOWCCQ0REvWNyQx5FWsUYpRVmx1MVY7CNw1VERGQHFhSTx9EEqdGuqTd7HG3cBbGtjevgEBFRr9hzQx6nZfZqfNj4kdmxqTlHMePUCewPH8y9qIiIqEdMbsgjmW7TAAAts7OgzV6G1rrRZr03XA+HiIgsMbkhr6EJUmPGqRMIqqkBAGyLjweY3BARkQXW3JDXyM1IQ1PlAYSf/wnh539iDQ4REVnF5Ia8hrSasVRkvOTYWbSU1crdLCIi8jAcliKvkpuRZvz71Vv3Qmwbyr2oiIjIDJMb8iqmhcaaoK4ZVEUoAsACYyIi4rAUebHcjDTEN6uQcbIAmWer0FGnZQ0OERExuSHvZdiL6iBiKpsQXVCF33xbwBocIiJickPeLTcjDflt3+Gceh9XMSYiIgBMbsjLpYdmITcjDR+mD4dWAcw4dQIddVq5m0VERDJiQTF5PanIODcDuHrrAWhbruAqxkREfozJDfkMwzo4RzH9+BHEtI0FAGwJH8S9qIiI/Izsw1Ll5eWYP38+IiIiMGDAAIwbNw4HDx60ef6ePXsgCEK3R2VlpRtbTZ5KmkGV2PnQtjSzBscHMW4QUU9k7bmpq6vDlClTMGPGDGzfvh2RkZE4deoUwsPDe31vQUEBQkNDjc+joqJc2VTyEumhWchvXoaKE4Z/6KYPGo/9wVPYe+NDGDeIqDeyJjcvv/wyEhMTsXHjRuOxlJQUu94bFRWFQYMGuahl5M3yMica/3711gPGncRZe+MbGDeIqDeyDkt9/vnnuPLKKzFnzhxERUVhwoQJWLdunV3vHT9+PGJjY3HDDTfgv//9r83ztFotGhsbzR7k29JDs4wPaSdxaYE/DlF5P3fEDYCxg8ibyZrcnD17Fm+88QZSU1OxY8cO3H///Vi6dCneffddm++JjY3Fm2++iU8++QSffPIJEhMTMX36dBw6dMjq+WvWrEFYWJjxkZiY6KqvQx6Iqxj7HnfEDYCxg8ibCaIoinJ9eEBAAK688krs27fPeGzp0qU4cOAA9u/fb/d1pk2bhssuuwzvv/9+t9e0Wi202q51TxobG5GYmIgXt3yPwOCB/fsC5BWCt6zAVQOvR0B8PI5fKkfOiJEYPmGk3M3ya61NTfj9FSPR0NBgVgNjD3fEDcB27HjuSAECQ0IcajMR9Z8jcUPWnpvY2FiMGTPG7Njo0aNRUlLi0HWuvvpqnD592uprGo0GoaGhZg/yL7kZadhbvR0VpTsRfv4ntNZdYO+NF3NH3AAYO4i8mazJzZQpU1BQUGB27OTJk0hKSnLoOj/88ANiY2Od2TTyIVLtTeHFChRerOAqxl6OcYOIeiPrbKlHH30UkydPxosvvog77rgDeXl5WLt2LdauXWs8Z/ny5SgvL8d7770HAHj11VeRkpKCsWPHorW1FevXr8fXX3+Nr776Sq6vQV6gZfZqAMChxo+wYLdh/RvyTowbRNQbWZObq666Clu2bMHy5cvx3HPPISUlBa+++irmzZtnPOfcuXNm3c1tbW14/PHHUV5ejqCgIKSlpWHXrl2YMWOGHF+BvIxhJ/EVmH68A/tNaq5Yg+M9GDeIqDeyFhTLobGxEWFhYSwo9mOG3psAxKUatmj442AgOCGC6+C4UX8KiuUixQ4WFBPJw5G4wb2lyO9IqxijtAIAMLM6EXuCr+QqxkREPkL2vaWI5JCXORHtmnq0a+oR3wLW4BAR+RD23JBfSg/NwofpHwEApuZ8h+nHtdgfPJC1N0REPoDJDfmt9NAsAEBuBjiDioicxtY6Wqzrcx8mN+T3pBocsS2VG2wSUb+1lNXi5+XlZse2xccDjC1uw+SGCIYanAW7TyE7IIABiIj67PThAszMz0e4ttTs+MymJuzh0LfbsKCYCFLvzX6IbW3cmoGI+kzb0oz4FhgnLHDigjzYc0PUSROkxoxTJ7A/fDCnhRORw4qKiiC2teFI/V7kTZ1o9trVW/dCbBvKoW83YXJD1Kll9mpos5ehtW60We8NAxERWbLWw9tRp8WSY2eRH6Q2TliQ5GUC9+aexYaAAHR/J+OMszG5ITIh9d7EdI7YbgkfxF4cIuqmo06L2XX1Zsfqzp7Gkfq96Jj3h27np4dm4Uj9MszMB8Lbhpu9xjjjfExuiEzkZqRhwW4VhhRUAQBaR+rZjUxEZoqKitBadwHRBTVmx4PagKYgNTpsvE8TpEZ8CxDSGV8kjDPOx+SGyIS0sWa7OggAMOPUCNbgEJGZjjotZpw6gXPqk2bHy5ovIjcjDek23pebkQbkfIeE4CCz44wzzsfkhshCbkaa8e9Xbz1grMHhXRURAZ0zoppVeG/G8G6vWdbaWL6Wm9H9uLSIKOOM8zC5IbJgGpw0QUeNM6iKOssAGXyI/I9UQNxRp8X040dQqP8B6aGrHb6OteSnUL8C0493YH/wFMYZJ+E6N0Q9yM1IQ3yzChknC5B5tgoddVqug0PkZ4qKitBRp0Xm2SpknCxAfLPKrIe3vxhnnI/JDVEPDDU4BxFT2YTEzuDTUaeVu1lE5EYddVpknCxAYrMKqReA/Ob9PQ4/OUpaRDT1AhhnnITDUkS9yM1Ig3brXoSe+A4A0BoZybFxIj+ibWlGTGUTDra+i8bWduRlTrRZNNxXeZkTga3bEdqoBsA4019Mboh6kR6ahbxMw9+n5hzlKsZEfuT04QJMP34E+W0/IPcGw1CUM3ttJIwzzsXkhsgOUjDLzTCf2QCw8I/IlxlnRmWkuSSpMWUtzlDfsOaGCIBeZ995Ug3O9ONHkHm2Cplnq3D6cIFrG0dEspD2iuqpxsbe2OEIqQZnZn4+C4v7iMkN+bXqUjVevicJT9w0Ai8tSUJ1qdr4mq2gJc1sSGxWIa7RvBeHiHxHS1kt5h8+ZaiHsdCX2GHv64ChBmdIgw4tZbWONpvA5Ib83MZn41BdGgAAqC7V4I/3JeHEgSBj0Hr5nu5BKz00C7vLSvDz5yfiisduxq7HrsX5H/mrRORLeuu1cSR2SMlMZbHaZmyxJPXeiG1tvHnqA9bckN/S64CqEo3ZMV2HAhtWxkHUCwCAmrIAbFgVh8WrKrDx2ThUlWigVOmh6/gHABEAcK52MHa8pMGVN3N8nMhXSFsstFnZK8qe2FFdGoB1T8dDpRZN4oYCUtyoKQvAxmfj8NT6YpttkDbyZWGx43i7SX5LoQSiEruvJaHrUEDfGaD0esF4V1ZdFtD5utB5Zuc5ogINFSFYPTUU1WeVbmk7EbmOtDFmU+UBtMzuvgqxPbFDFAXUnguwHTf0AqpKNN2GtEy1zF6NpsoDaK27wN4bBzG5Ib+2eFUFlCq98bmgEKFU6aFQiJ1HDH/qOhTGOzIpOHUxnNN4bgDe+024axtMRC4n9dpogmwPG9mKHVI8kPQWN86XG3pwbJF6b7ion2OY3JBfi0psx5NvFSP6MkPgiEpow+JnKzAkvq3zDMuAZEo0O0fUK1B9Wu2S2RNE5D7S9O+etliwFjsWrayA7ZghWvxp3oPT2wQGTgt3DGtuyO9FJbbjqfXF0OsM3c0AMPqqYrx8TxJqygKg1wsQBBGiCJgHLgGCQg9AgKgXoBD0CIltMV6DiLyPtGifPRtjWosd0ZdpzeKGQil21tpIBAAiBIWhV0ehEBGZ0GYzbhiWn5A21hyI4RNGOuV7+jr23BB1sgwud6+sQGSCoQcnKrEN1u7IpOAEAFGhZZj+wH6OjRN5MXt6bSyZxg7LuPH4G1LBsMWNkWCIG5EJbbh7ZUWP12fvjePYc0Nkg+VdmWHqZgBE0TxI6ToE/OGLkwj79woENI3H/ropnNlA5IXMp3//oU/XsNWbYzm7Sq9T4A9fnIQqoPdrGqaFL4PYlsr9puzEnhuiXkgBauEzFVAoRStniLhQpe42s0F6EJF3aCmrxZJjZ3ssJLaXFDf0OnT2zFjGDkPcsFde5kTMP3yKi/rZiT03RIDZXZal6lK1cY0b6wRsWBWH375dbJzZEFRTAwDYFh8P8C6LyONJvTZH6veiY579vTa2Yodp3DBMG7cc1hbw9so4LN9ge50bU+y9cQx7bsivmS6hbmvF0I3PxqGmTOo7FtH9DsywQqleZxgbb6o8gPDzPyH8/E9cXZTIS9gz/dtUb7HDNG4Y/uweN2rKbM+SsobTwu3H5Ib8mmUAslxvQlqJVG+2VoX5HZggiIhK1EKhNNxdaYLUaNfUo11Tz0BE5CUcLSTuKXZYxg1DnZ5hllSXrrhhLy7qZz8mN+S3LAOQtfUmFEpYLMxlWKhr2bpC4wqlCqWI6lKN8e7tm+lX4MP04fgwfTgDEZEX6Jr+fdDm7t+meosdCiU6178xT2YiYtsRmWCIG0qVedyQrtsb9t7YhzU35LekACStSWG63oReBxQcCsLbv4+DXme+RoW0jLrQ2YEjPa8uDcAf70uCruNpRF+mxd0rK6AJOoppBfn4LnwwilAEABwrJ/JAQ1s1WJeRhnQ7zrUVOyQnDgShukwNy+nftecCjDdFUtyoKTPfg0qKHVGJ7VbreXIz0nBvrgb7+/d1fR6TG/Jrd6/s2hAzMqENN99bg5fvSeosHja/6wK6gti7z8ehqkSqw+nqejZNdNY9HY8O5etoKItEQtQFrFx6CAdGq1AEFgMSeTvT2BEe3Y6OdgFP3DTCkPSUq022XeiKHYJCNO4kbrpCce25AON6WT0lO2Q/DkuRX5PWpFi2rhAA8PYzCRZJi/m+MIJCxM331nQmP7a3ZpA2zWssHwIAqKgZhDV/Scdvvi1gdzKRD4hKbO9MOrSoPReA2nOGoaWq0oDO3l7z2DEoqr1zpWLre0yZDnHVngvosRaQesfkhgjA+mfiu/XEWKPXCXjHgUAjLfinFxU4WzsYP9R/zRocIh+xYVVct54YiKY9NjD+XacToFDq0Z3l+d2TnZ72niLrmNyQX6suVWPN4iRcqAxAz5tkGhiGnqRfG8thK2sL/BkICj3CEmrQrtKzGJDIy0nTwKtLe+rBNa+3aahRQ6+zdq5ocb5U02c4rlCIiL7MsVlVxOSG/NiJA0F4aUkyaspsLc7XG8Hi792niBtmWhl2DFfpwvDFqBncI4bIw2hbmqHtsL9r5M3fmvb0OsJacmMRNxQiImLbMDjGUGOj1wvoaBfM1tHRdugYQ3rB5Ib81oaVcbAebGz3wDhCFAXo9V3Xqz2nxr6X7kGh/iD+59hRnD5c4JTPIaK+M99Pyr5p4PU19vX09oWoB2rPBaCuWgXT2LHu6XgAwPjgLOQ37+cCob3gbCnySx1tMBlesuS8oCXqzaeR154LwJOfv47G8kiExTXh3vcuIWooB9OJ5CKtTNwWpEaHHee7vvals9ZG1z12vLTEMBQWlrAOfxc/x66AAG7vYgN7bsgvqQIsF+dzn6YKwwyqxspgvL1koNs/n4gMioqK0Fp3AU2VB9Aye7Vd7+keO9wXQ6QZVE0VQ/Dkv25g700PmNyQ31r8bAWUKlcHJtNCY8Of0gwqUa9AXXEQZ0EQycTR/aQk5rHD2cNTpvHCeuzQ6wVUNlyGaQX5nJxgA5Mb8lsj0y/ij9tOG5ZDF1yX5ETEGgoDoy9rQ0Rsm3GxLoWgQ1hsI0pKi1z22URkm6P7SUmk2BEe3QZX9dxExLbbjh0KEWEJNUi8qGRhsQ2suSG/U12qNq4sGn2ZFrfeX9O5zYIrCgS7lly/e2UFAHR99qAKPDTrCxTVjcbpOkNx8fAJI13QBiKyxVBI/Ae7zrWMHaLZsjWGlYj7z3CN2nMBiL5Mi2XrChGT1G722ZEJbbh7ZTPy/7MfwFgnfKbvYXJDfsd0N9+q0gBsWGm5f5SzdAW7mnLDKqNPrS/GU+uLjXvGqLJ34DffKhAQH4/jl8rxTbiGWzMQeSjL2NG1YB/gvOGpruGuqpIAvP37eKx4t8i4mrq1/aaoOw5LkV+x3M0XNhflc4auYCda2TUYMOzwe7RxFypKdyL1AtBSVuvkNhCRM1iLHa5hvu1L7bkAs7o8Jjb2YXJDfkO644m+TAvriYyrgpWBtVVGczPSoFUAhRcrsLd6O2c/EHkY0xsS27GDPA2TG/J50lLpT9w0Ai/fk4Sb762BqxMZS0qVHnevrOg2Myo9NAsts1ejZfZqaILU3JqByENYxo3qUjUWPlMB98YOw2rF5DjW3JDPMx0nrykLwGevR7m9DQMGdpgVIhp2E243O6dl9mpos5ehtW40ioqKWHtD5ELSysS2WMaNdU/HQ6V2f6+NrkPAEzeNsBk3yDr23JBPsxwn1+sNY9ju7lpurg8wC5QbVlnfWZy9N0Tu0VJWi/mHTyEvc2K312zFja4dwN1FQH2NoQ+ipswwKYHrYtmHyQ35NGmc3HR9CAP3DksBMAuU1aUaY1e3qdyMNG6sSeRive0nZStuiC4rIu5JV9yoKtGYDZORbUxuyOfdvbICkQmG7ufIBMNiWIILF+2zRqHUmyRWhj+lOzFT6aFZKNQfxPTjR7ixJpGL2LMysSfEDYPuKxZbix1kjjU35PMs14cwXQzLXUQRCB3cgYbzaljeiVmuW5GbkYYFu9l7Q+QKpvtJdcyzvXhfz3HDWQv2OaLr84yxQ8/+CVv4kyG/ISUQUtBatq6wcwM81xP1AprrlYhK1HbrwfnjfeZdzOmhWchv3m+cFi49iMg5bjx71u79pKzFjejLpEJkV/bkdF1bodSbDZNJr730+auoLwlgfLCCyQ35pepSNd7+fbzJAn6uZlgssLpUA0FhHhCtdTHnZU7EkmNnMe27o5j23VEWGBN5iLpqNc5XuKPepWshP71OgaqS7rGjqikBP/w5nYt/WsHkhvzSxmfjUHvOnQV5XePlor4raAHmw1OS9NAsHKnfi/DzPyH8/E+Y/v1B1uAQeYANK+Og63DvWje2YoeoV6D4whDoWrn4pyUmN+R3pGme7h0z71pSXZo1JRUnKhSi1dWLNUFqtGvq0a6pR3wLWINDJLOONnT29ponGa7Vc+yIDS9FxhkuH2GJyQ35Hbcvoy7oERHb1m28XKE0/GnY4bei29tyM9LwYfpwfJg+HEfq93JrBiKZqQIA054UVxMUhthhOhylVOkxOMawkF9kQhuuXLUVTZUHoG1pZnwwIXtyU15ejvnz5yMiIgIDBgzAuHHjcPDgwR7fs2fPHqSnp0Oj0WD48OF455133NNY8hluXUZdFKDrgHFaqfGwXkD0ZVo8tb7Y6qqj6aFZxkde5kTMP3yKY+udGDdIDoahY9ONLV1LGoZSmCQ3ep0AlVrEn7afxFPrizFj9PXQBKkxMz/fLW3yFrImN3V1dZgyZQrUajW2b9+On376Ca+88grCw8NtvqewsBCzZs3CjBkz8MMPP+CRRx7BPffcgx07drix5eTN9DogJqm9c6aUO+7ABNTXBGDWkhrjc8B6rY0tljOo/BnjBslBmhLuvrgBSLuCm058EEXBrctYeCtZ17l5+eWXkZiYiI0bNxqPpaSk9PieN998EykpKXjllVcAAKNHj8bevXvxl7/8BTNnznRpe8m7ma5TEX2Z1o0zpQzefT4O0ZdpUVMWAL1egEIhIjKhrVutjS3S1gz7wwcDyS5tqkdj3CB3kjtuGIexFYYbIkEQEZVof9zwV3b/V6qo6F4T0F+ff/45rrzySsyZMwdRUVGYMGEC1q1b1+N79u/fj+uvv97s2MyZM7F//36r52u1WjQ2Npo9yD9ZboTn3jswQyFic4NgHD8XFCJuua+ml3d1aZm9Gk2VB9Bad8Frem8aqiqdfk13xA2AsYMMrMUNy/o51zIMg+nFri0gOtoFbr/QC7uTm7Fjx+KDDz5w6oefPXsWb7zxBlJTU7Fjxw7cf//9WLp0Kd59912b76msrER0dLTZsejoaDQ2NuLSpUvdzl+zZg3CwsKMj8TERKd+B/IO1jbCM5/14ArdA19Lg9o4jVTUC/j8rUiHruhtG2v+eeYMHP7Xp069pjviBsDYQbbjxuBYqX7OjfFDFIzH6qrU3H6hF3YnN6tXr8Z9992HOXPm4MKFC075cL1ej/T0dLz44ouYMGECfv3rX+Pee+/Fm2++6ZTrA8Dy5cvR0NBgfJSWljrt2uQ9rG2EF32ZFpEJrkwSrAU+82md9tbcSLxtY82Zjz+FT55+Cu8/+GtcrK9zyjXdETcAxg6yHTd+u77YDaubW8aP/sUOf2N3cvPAAw/g6NGjqK2txZgxY7B169Z+f3hsbCzGjBljdmz06NEoKSmx+Z6YmBhUVVWZHauqqkJoaCgGDBjQ7XyNRoPQ0FCzB/kn043wwqPb0dEuoKZM2ifGlSyv3/P6Nj2RNtacmZ/vFYv6Tf7VIjy2LQcX6+vwp59Nx085X/X7mu6IGwBjBxlYixtP3DQCIeEdcG/s6JqC3pfY4W8cKihOSUnB119/jb///e+47bbbMHr0aKhU5pc4dOiQ3debMmUKCgrMA/TJkyeRlJRk8z2TJk3Ctm3bzI7t3LkTkyZNsvtzyT+ZboT3x/uSjOPorme969rW+ja9MWysqfOa3pvBiZfhvuyP8d/3NuC9++9B1LBUCILhZzJ16lQolUrGDfJYtuKG6Sa4rmN+faVKhK5D6HPs8CcOz5YqLi7Gp59+ivDwcPziF7/oltw44tFHH8XkyZPx4osv4o477kBeXh7Wrl2LtWvXGs9Zvnw5ysvL8d577wEAfvOb3+Dvf/87li1bhsWLF+Prr7/GP//5T/z73//uczvIf0jduOZTKeXZ3ffJt4r7dOdlmBa+DGJbKoqKipCcnOzc5rlAXXkZftyxHQPCwjD2hpnQ63Q4l/8TZs2aBY3GsWmtjBskh66VzQ1EUYob7tohXICuQ8AfvjjZuZgg9cShzGTdunV4/PHHcf311+P48eOIjHSsGNLSVVddhS1btmD58uV47rnnkJKSgldffRXz5s0znnPu3Dmz7uaUlBT8+9//xqOPPorXXnsNCQkJWL9+PadzUo8sp3NGxLahrkrdWSgodf26KkCJGBTZjsZatc0p4NIaGvbSBKmx5NhZZHvBtPDvNmfjixefRerkqXj8yz0YGBGB1qYm7H7jb/jtb3/r8HAP4wa5k2nsUKr00OsFiJ2/xyIA0aWlNyIEwZBISXHDMrFh3Y11giiKdg0a3njjjcjLy8Orr76KBQsWuLpdLtPY2IiwsDC8uOV7BAYPlLs55CYv35Nktr5MaEQ7mupUblqzQkREbDtUatGYXN29sgJRie3dki7puD1U2ctwcOoCDBwa67G9N+sX3YXSIz/glmeexcTb5hiPtzY14fdXjERDQ4PX1LJIseO5IwUIDAmRuznUR0VFRbhu13/RVPcdWmav7vV809hheiOkUOqh17kyfogYFNkBzQC91fhgGjtiwkpwzZP5iJ8c4rGxwBkciRt299zodDocPXoUCQkJ/W4gkTtZdifr9YYVg033a3Etwyqjy9YVIiqh3ayHxnINjY3PxuGp9cV2XdV0Ub/TdYYalOETRjq99f0h6nR4dNsuDIrltFXyPpaxw7R3V69zfb1NfY0akQlaLFtXiJgk85se09hR3ZiAPa+HY8Vd3lGH5w52p507d+5kYkNeyXI6p7SjrrRvi7v84d5kFBwKMj63toaGI9M7pWnhS0ubsbS02SM3zrv3/Y+Y2JDXsowd5twTP2rKNHjl/iSzRfu6xQ5RgYaKEA5RmZB940widzCdzhmV2IaI2LZe3uEKAjas7PqHXqFEZzu6VjuNiLV/WXVpWvjBE++ionQnHj5Wzo01iZzMNHYoVXo39vh20XUozBbtO1+hNltnRxD0iBrezqnhJmTdW4rIXUyncyqUhvHqP96XZFJz454ZD7oOBTra4LTZDrkZaZiacxSFFyuQf7EYYtsCr5lBReQNTGPH+Qo11j0dj9pzpr/A7okdUq+uQmkYkjIdFhOUwII3nbNIpq9gzw35FYXS0KUbldiOQZHuWITLnFKlNyY2eh06g6QUpAy1OY50LaeHZqFl9mq0zF7tdVszEMlJe9G+wn1TUYmGiQHujhsAjIv2SUNSXVPRAX2HAkOSOCZlij035DcsZyaZ3325Y/xcxOJnuxbeksbz+7pLuKXcjDRcvfUAtC1XsPeGyIbk5GTsGFWLeQ06vNf4EdJDs3o83zJumBcYA+6KHdKifZZxQ1DoETlUxyEpC+y5Ib/R8+6+7iBgZPpFdJiU+5iO5/d31dH00CxogtSYfvwIe2+IeqAJHojygR2YmnO013Pl3xUcAAQMjm439uqaxo3QmBYOSVnBnhvyC9amg0MvIDy6DXVV7lju07CQ31OZw6HrUECp0mPxsxUYfdVFs1qg/jJszeA9G2sSyUEVrsHu1NG4MvdAj+fZihsKpR6mG1m6lgiFUsSym0cAMExCuPeFcjy1vhiK93+LwzcsRtTQiW5oh3dhzw35Bakr13IjugCNNH7u6jsww5oVug5DMNR1dJ855QyGrRn2Y2Z+vsdNCyfyFMnJyQgMH4yQmKsQvGWFzfO6TwXv/FMUOmcruSJuWPYKCWbFw7Xn1MaZUwqFq3cm915MbshvLHymAuZ3WkLnXZmL78AE0+0duoqHpZlTzpaXORFDGnScFk7UA6n3prfCYtMhIOn3V68XOmdauiJuGK4pKESTaefd4xbXtOkZkxvyGzFJ7Yi+TGtcxE+hEBGV6MralK67PGuvmc6cciap90Zsa2PvDZENycnJEAJ6/wWUpoJHJXb14CgUYufQlKuIEPUKGwuNisaZU2QbkxvyK4a9WboKeBevqsCgyHa4pnu58w5MsF58aDpzytl3YZwWTuRci35vXvy/5LkKs4X0nMt27FCqumZO6fX8J9wWFhST3zCd0hmVqDUGCKXKchEuZy3KZdgwU6kSUV0qDX9JDDOn+rNxZk9aZq+GNnsZWutGc1o4UT9Y/o5K+zxVl6oxKLLDYkkJ51AoRIRHW48dug4F9HrDhp5VJZ8iLKcJke9dQtRQjlOZYtpHfsN0Suf5csMmlRufjcOFSrXFmc4aRzcsyqfrEAzbKph0aUvdytY2znQW9t4Q9Z/l7+i7z8cZj3ePHc6h1xsW+BQEWI0d7z7f1abGymC895twl7TDmzG5Ib9ga5NKy5U+XaH2nBp11SrjZ4dHt+PulRX93jizN9LGmpwWTtQ3tn5HX1qS5JbYUVUSYEhyOpObyIQ2LHymwqxNol6B6tNqFhhbYHJDfsFySqdCIVqZyumq6eAC9DrDr5ogiFCpRUQltlttkzMLBaWNNacfP4LThwtQVFTEAmMiB9iKG+fLpaEoexbz60tcEcz+FPUCohK1eGp9cdfEiM5p4IKCm2Zaw+SG/IbplM4h8W1WpnIKcPV6N6Jo3jvjzBWKrZF6bzJOFiDzbBU66rRMcIgcYC1u6PXmyUcXa/Gj/707er2A6lLzuBETVg4ACIu7xBWKrWBBMfkNy53BDQV5phtXAs4qJDa9jkKphygKEK3sH2XZJmczTAtfhusu3ISAASpk1BQgZ8RIINn5n0XkixyLG84appJiiOFPy7hRFrYJ794VgPevGotx/8PVia1hzw35HSlAdF/Uz1T/e3CUKj0WryrDsrXFiOqld8aVXcp5mRNxTr0PB0+8i5jKJtbgEPWBfXEDcEbsiIhtx5LnyxB9mfW4MTXnKMoHdmBAyMB+f5avYs8N+S1p7Nr8Lky6Y+rPHZjhjiskvAMbViUYp3gPiZNnXDw9NAsfpn8EAJia8x2mH9dif/BADJ8w0v2NIfJy1uOGqf7EDhEQRNSeC8AX6yJtxg3txXb8d+JoDAy33KGcJOy5Ib9298qKznVuJM6bBl5fY5gmKk3xlrPgLz00C+mhWZxBRWRh1MBJONT4kUPvuXtlBSJi+78eVXcCIBr+WbYVNw41foQrBl2HwPDBXL+qB0xuyK8NiWvvLCzuL9uFhM6e4t0f3JqBqIsmeCDKB3Zgas5Rh94XldiO5RuKejmrf8NTnhQ3vBGTG/Jr1ncLlzgSnKzNtHLNFO/+ysuciPmHT3FjTfJ7pptnOtp7Yzt2iHBslXPpfMByaQpPihvehskN+T3bBYKOBCdrDO8fEu/8Kd79wd4bIoPk5GQEhg9GSMxVDvfeALZih701e71NGxc6r099weSG/J7lbuGOL8hlOQ3UvMfmt28XO2W/KGfi1gxEBqa9N46SYod9vbyW55jGDeuxIybJs+KGN2FyQwTz3cK79JTI9BTMDOe4YlE+Z2mZvRpNlQfQWneBvTfk15KTkyEEBPSpsBiwVVzsu7HDWzC5IULXQl2GpdYtX7V31dGuuy5pqXRP67Exxd4bIoPghAhsmpCKq7d+7/B7oxLbseLdIrNtGrrYEzu6am7siR1Xb/0eb48bChWngfeIyQ1RJ8tN8qQgFB7dU4LSFbwUyq7N7Rav8vy7Lk4LJzLob++NrdjR002QZFBku7Hnp7fYcajxI4waOAlCQACngfeCi/gRdZJmP9SUBXQGKcOMhwCNiIjYNtSeU8N68aDhjisyvh1PvlXcbXaDq7ZW6C/DxporMDNfiT1c1I/8nOm08JbZWQ6911bsUKr00HVYFhh3/V1QiNAMEK1uwWItbkzNOYry0PHQBHNl4t6w54bIhOkmeZKaMsMOwNJS6Na6mqU1KUxVl6rx8j1JeOKmEXj5niRUl6pd0ub+yM1Iw5AGHXtvyO8NnzASe8ZegRTFlX2uvbGMHXq9YLJIaPe4IZqsZSMlMrbixqHGj5CiuBJ7xl7BGxE7MLkhMhGV2G4y/bJrEb7acwEQO2OTFKyUKj0Ehe21bDY+G2dMjKTVRj0Np4UTdenron6A9dgh6gXoOhQIj24zHutr3JD2k2KvjX2Y3BBZePf5OFgupqVU6XG+3BBwRL2AqEQtnnzL9oaYlmPwnrzaqCZIjSXHzrKwmPxef6aFA7ZjR0PnViyCIGJQZEef4ob2Yjt2p45mIbGdWHNDZEIKLuaEznHzznP0AqpLNRgS1251rBzoPgavUIiITGjzyNqbltmrcSR7GVrrhqKoqIiFiuS3kpOTcbpOi5CYq9C2ZQVaZq+2+732xA5RNPQC/2n7SQD2x42Qz1dg1KDr8CP3k7Ibe26ITCiUQERsG0yXQ4+IbTOb5mnZlWwrYTEdg/f0dSs4LZzIoK+9N+cr1FCq9MbnQmecsBU7HIkb2ovtnP7tIPbcENnh7pUV2PhsHKpKNHYnKtLaOZ46W8pUbkYaFuzmtHCi5ORkHC+rxaiBk/Be40dID7Vv5tTGZ+Og13X10igUojFOOBI7LOPGocaP8L8DJ+F7Tv92CJMbIhN6HVB7LsDkiKEbuachqN6u5+mJDdA1LXz68Q7s57Rw8nPBCRE4n6/E1Vu/R8e83pMba0NSug4FhsS1Q6GEw7HD9FxO/+4bDksRmZDGvB0dgrLkDdPALZku6ldUVGR8EPmb5ORk7Bg1yu5F/XqLG9I5vbGMG7tP7OL07z5ickNkwRm1Mt4wDdySNC18Zn4+Ms9WIfNsFWtwyG85Oi3cFXHj4KpMTv/uIw5LEVnob62MZRe13spCXZ4qL3MiFuzWYUhBFQBAO07FGVTkl6TC4itzD+CQHbU3rogb5+oSkTNsNEJZSOww9twQ2dDXRMSeLmpPZai9OYhz6n04p96H6cePsPeG/FJycjICwwcjJOYqhxb1c1rcEHSIi6hBUASnf/cFkxsiF/CmaeCWcjPS8GH6cHyYPpwba5Jf6++ifo4yjRtRoeW46tHDnP7dRxyWInIBb5oGbsm0+z2/eRnEtlQOTZFf6uu08L4qC9uEG/4M6HUCFv1HjezLxvL3ro/Yc0PkQt6W2FjKy5yI+YdPoaWsVu6mEMkiOCECmyak4uqt37v0cw41foSpOUcx99Bp/OzrI9g0IRXBCREu/UxfxuSGiGzixprk75KTkyEEBNg9LbyvpuYchUYPqLWDkBZ6PQQu2tcvTG6IqEfcmoH8XX92C7eX9mI70kKvR1ziDTg1GJz+3U9MboioRy2zV6Op8gBa6y6w94b80vAJI7Fn7BVIUVzpkt6bQ40fYdTASXhtXDz+mjgQOSNGctG+fmJyQ0S9Yu8N+TtX9t5cvfV7Y43N8AlMbJyBs6WIqFfcWJP8nemifsFbVnR7vWX2aoeuZ3qNFG6M6XRMboioV9xYk/xdcnIyTtdpMST+OgzRlpq9ln++2OHraS+2Y9SQJADAeY2SNTZOxuSGiOzC3hvyd6pwDXaMGoUnL4wyO67pyEf+lhV2994cavwI9w66DhGJhutkDwbG8obBqVhzQ0R24bRw8nfJycnQBA9E6cAOs0d5MBxaxfjqrd+jPBjG97PXxvnYc0NEdsvLnIh7c89iQ0AAwPoA8kOqcA22hkebHWsJUGFeg86uVYwPNX6EBQMnIXvUKOMiffyH2Pn4MyUiu6WHZuFI/TKIbUO5JQP5JWv/z5+u0+J8mBJTc44iN6Pn90/NOYry0PHQBA/k748LMbkhIodI08L3hw8GkuVuDZH8hk8YiR0tzVj8PaDZ+V2P56YEXoMNY0exxsbFmNwQkUNMC4vZe0NkoAkeiMqYEFw5YGGP5x2/VM4aGzdgckNEDjGfFj6FvTdEMNTi5IwYidC6+h7Py0kcCVW4xj2N8mNMbojIYZwWTmQuOTkZRSjqVmxsSQXrdTvkXExuiMhhhmnhyyC2pXJoiqgTfw88B9e5IaI+ycuciPmHT6GlrFbuphARmWFyQ0R9wkX9iMhTMbkhoj7jbuFE5IlkTW5WrVoFQRDMHqNGjbJ5/jvvvNPt/MDAQDe2mIhMtcxejabKA2itu+C23hvGDSLqjewFxWPHjsWuXbuMz1WqnpsUGhqKgoIC43NBEFzWNiLqnRyL+jFuEFFPZE9uVCoVYmJi7D5fEASHzici15JjWjjjBhH1RPaam1OnTiEuLg5Dhw7FvHnzUFJS0uP5zc3NSEpKQmJiIn7xi1/g+PHjPZ6v1WrR2Nho9iAi5zEs6ncQ048fwenDBb2/wQlcHTcAxg4ibyZrcnPNNdfgnXfewZdffok33ngDhYWFmDp1KpqamqyeP3LkSGzYsAH/+te/sGnTJuj1ekyePBllZWU2P2PNmjUICwszPhITE131dYj8Vm5GGuKb3dN74464ATB2EHkzQRRFUe5GSOrr65GUlIQ///nPWLJkSa/nt7e3Y/To0Zg7dy6ef/55q+dotVpotV0zORobG5GYmIgXt3yPQO7vQeQ0quxlODh1AQYOje11MbPWpib8/oqRaGhoQGhoaL8+1xVxA7AdO547UoDAkJB+tZmIHOdI3JC95sbUoEGDMGLECJw+fdqu89VqNSZMmNDj+RqNBhoN9/EgcjVNkBpLjp3FhoAAwI0rtboibgCMHUTeTPaaG1PNzc04c+YMYmNj7Tpfp9Ph2LFjdp9PRK7TMns1jtTvdfuifowbRGRJ1uTmiSeewDfffIOioiLs27cPs2fPhlKpxNy5cwEACxYswPLly43nP/fcc/jqq69w9uxZHDp0CPPnz0dxcTHuueceub4CEZlwx6J+jBtE1BtZh6XKysowd+5c1NbWIjIyEtdddx2+/fZbREZGAgBKSkqgUHTlX3V1dbj33ntRWVmJ8PBwTJw4Efv27cOYMWPk+gpEZMJ0WrirNtRk3CCi3nhUQbE7NDY2IiwsjAXFRC4SvGUFAkLHY//VUzB8wkir5zizoNhdpNjBgmIieTgSNzyq5oaIvJ87p4UTEVnD5IaInIq7hROR3JjcEJHT5WVOxPzDp9BSVit3U4jIDzG5ISKnY+8NEcmJyQ0RuYQ7poUTEVnD5IaIXKJl9mo0VR5Aa90F9t4QkVsxuSEilzHtvTl9uMBtu4YTkX9jckNELiNNC19a2oylpc3Gxf2IiFyJyQ0RuUx6aBYK9Qdx8MS7qCjdiZn5+azBISKXY3JDRC6Vm5EGrQJo19SjrfY7tNZdQElJidzNIiIfxuSGiFwqPTQLuRlp+DB9OLQKGGpw6tl7Q0SuI+vGmUTkH9JDswAAuRkwbKx5sUXmFhGRL2PPDRG5jVSD86vDJ+VuChH5MCY3RORWuRlpONawX+5mEJEPY3JDRG6VHpoFTZBa7mYQkQ9jckNEbrdv2li5m0BEPozJDRG53fiQ2+VuAhH5MCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RRZk5tVq1ZBEASzx6hRo3p8z8cff4xRo0YhMDAQ48aNw7Zt29zUWiLyBIwbRNQb2Xtuxo4di3Pnzhkfe/futXnuvn37MHfuXCxZsgSHDx/GrbfeiltvvRU//vijG1tMRHJj3CCinsie3KhUKsTExBgfQ4YMsXnua6+9hhtvvBFPPvkkRo8ejeeffx7p6en4+9//7sYWE5HcGDeIqCeyJzenTp1CXFwchg4dinnz5qGkpMTmufv378f1119vdmzmzJnYv3+/zfdotVo0NjaaPYjIu7k6bgCMHUTeTNbk5pprrsE777yDL7/8Em+88QYKCwsxdepUNDU1WT2/srIS0dHRZseio6NRWVlp8zPWrFmDsLAw4yMxMdGp34GI3MsdcQNg7CDyZrImNzfddBPmzJmDtLQ0zJw5E9u2bUN9fT3++c9/Ou0zli9fjoaGBuOjtLTUadcmIvdzR9wAGDuIvJlK7gaYGjRoEEaMGIHTp09bfT0mJgZVVVVmx6qqqhATE2PzmhqNBhqNxqntJCLP4Yq4ATB2EHkz2WtuTDU3N+PMmTOIjY21+vqkSZOQk5Njdmznzp2YNGmSO5pHRB6IcYOILMma3DzxxBP45ptvUFRUhH379mH27NlQKpWYO3cuAGDBggVYvny58fyHH34YX375JV555RXk5+dj1apVOHjwIP7v//5Prq9ARG7GuEFEvZF1WKqsrAxz585FbW0tIiMjcd111+Hbb79FZGQkAKCkpAQKRVf+NXnyZHzwwQd4+umn8bvf/Q6pqan47LPPcPnll8v1FYjIzRg3iKg3giiKotyNcKfGxkaEhYXhxS3fIzB4oNzNIfJLrS3N+N3siWhoaEBoaKjczbGLFDueO1KAwJAQuZtD5Hdam5rw+ytG2hU3PKrmhoiIiKi/mNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTVHI3wN1EUQQAtF5slrklRP5L+v2Tfh+9gTF2NDN2EMlB+t2zJ24IojdFFycoKytDYmKi3M0gIgClpaVISEiQuxl2Yewg8gz2xA2/S270ej0qKioQEhICQRD6da3GxkYkJiaitLQUoaGhTmqh5/PX7w3wuzvru4uiiKamJsTFxUGh8I7RcWfFDv4/xO/uT99drrjhd8NSCoXC6XeKoaGhfvU/q8RfvzfA7+6M7x4WFuaE1riPs2MH/x/id/cn7o4b3nHLRERERGQnJjdERETkU5jc9INGo8HKlSuh0Wjkbopb+ev3Bvjd/fW7O5M//xz53f3vu8v1vf2uoJiIiIh8G3tuiIiIyKcwuSEiIiKfwuSGiIiIfAqTGyIiIvIpTG766aWXXoIgCHjkkUfkborLrVq1CoIgmD1GjRold7Pcpry8HPPnz0dERAQGDBiAcePG4eDBg3I3y+WSk5O7/XcXBAEPPvig3E3zaowd/hE7GDfkiRt+t0KxMx04cABvvfUW0tLS5G6K24wdOxa7du0yPlep/ON/obq6OkyZMgUzZszA9u3bERkZiVOnTiE8PFzuprncgQMHoNPpjM9//PFH3HDDDZgzZ46MrfJujB3+ETsYN+SLG77/f5eLNDc3Y968eVi3bh1eeOEFuZvjNiqVCjExMXI3w+1efvllJCYmYuPGjcZjKSkpMrbIfSIjI82ev/TSSxg2bBimTZsmU4u8G2OH/2Dc6OLuuMFhqT568MEHMWvWLFx//fVyN8WtTp06hbi4OAwdOhTz5s1DSUmJ3E1yi88//xxXXnkl5syZg6ioKEyYMAHr1q2Tu1lu19bWhk2bNmHx4sX93njWXzF2+E/sYNwwkCNuMLnpg82bN+PQoUNYs2aN3E1xq2uuuQbvvPMOvvzyS7zxxhsoLCzE1KlT0dTUJHfTXO7s2bN44403kJqaih07duD+++/H0qVL8e6778rdNLf67LPPUF9fj0WLFsndFK/E2OFfsYNxw0CWuCGSQ0pKSsSoqCjxyJEjxmPTpk0TH374YfkaJZO6ujoxNDRUXL9+vdxNcTm1Wi1OmjTJ7NhDDz0kXnvttTK1SB4/+9nPxJtvvlnuZnglxo4u/hI7GDcM5Igb7Llx0Pfff4/q6mqkp6dDpVJBpVLhm2++wV//+leoVCqzAipfN2jQIIwYMQKnT5+WuykuFxsbizFjxpgdGz16tF90rUuKi4uxa9cu3HPPPXI3xSsxdnTxl9jBuCFf3GBBsYMyMjJw7Ngxs2N33303Ro0ahaeeegpKpVKmlrlfc3Mzzpw5g1/96ldyN8XlpkyZgoKCArNjJ0+eRFJSkkwtcr+NGzciKioKs2bNkrspXomxo4u/xA7GDfniBpMbB4WEhODyyy83OxYcHIyIiIhux33NE088gczMTCQlJaGiogIrV66EUqnE3Llz5W6ayz366KOYPHkyXnzxRdxxxx3Iy8vD2rVrsXbtWrmb5hZ6vR4bN27EwoUL/WIKryswdvhf7GDckC9uMEqR3crKyjB37lzU1tYiMjIS1113Hb799ttuU/580VVXXYUtW7Zg+fLleO6555CSkoJXX30V8+bNk7tpbrFr1y6UlJRg8eLFcjeFvJC/xg7GDfnihiCKouj2TyUiIiJyERYUExERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3JBX0Ol0mDx5Mm677Taz4w0NDUhMTMSKFStkahkReSrGDf/FFYrJa5w8eRLjx4/HunXrjMuXL1iwAEeOHMGBAwcQEBAgcwuJyNMwbvgnJjfkVf76179i1apVOH78OPLy8jBnzhwcOHAAV1xxhdxNIyIPxbjhf5jckFcRRRH/+7//C6VSiWPHjuGhhx7C008/LXeziMiDMW74HyY35HXy8/MxevRojBs3DocOHYJKxc3tiahnjBv+hQXF5HU2bNiAoKAgFBYWoqysTO7mEJEXYNzwL+y5Ia+yb98+TJs2DV999RVeeOEFAMCuXbsgCILMLSMiT8W44X/Yc0Ne4+LFi1i0aBHuv/9+zJgxA2+//Tby8vLw5ptvyt00IvJQjBv+iT035DUefvhhbNu2DUeOHEFQUBAA4K233sITTzyBY8eOITk5Wd4GEpHHYdzwT0xuyCt88803yMjIwJ49e3DdddeZvTZz5kx0dHSwm5mIzDBu+C8mN0RERORTWHNDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFP+f8NAkkvTCU4bwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "id": "d766b8f0-3ba7-4a73-94a0-7858eb2f5515", + "metadata": { + "id": "d766b8f0-3ba7-4a73-94a0-7858eb2f5515" + }, + "source": [ + "### 8) Если автокодировщик AE2 недостаточно точно аппроксимирует область обучающих данных, то подобрать подходящие параметры автокодировщика и повторить шаги (6) – (8)." + ] + }, + { + "cell_type": "markdown", + "source": [ + "Полученные показатели EDCA для автокодировщика AE2 нас устраивают." + ], + "metadata": { + "id": "XbnbvTima5dv" + }, + "id": "XbnbvTima5dv" + }, + { + "cell_type": "markdown", + "id": "cfa38b82-4c8e-4437-9c25-581d7fea0f2c", + "metadata": { + "id": "cfa38b82-4c8e-4437-9c25-581d7fea0f2c" + }, + "source": [ + "### 9) Изучили сохраненный набор данных и пространство признаков. Создали тестовую выборку, состоящую, как минимум, из 4ёх элементов, не входящих в обучающую выборку. Элементы должны быть такими, чтобы AE1 распознавал их как норму, а AE2 детектировал как аномалии." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d618382f-f65a-4c17-b0d0-3d2d0c4bc50e", + "metadata": { + "id": "d618382f-f65a-4c17-b0d0-3d2d0c4bc50e", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "14d12cfb-d8c4-411c-9f70-f18a92250d9f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[4.52855237 4.55922899]\n", + " [4.64838873 4.69473527]\n", + " [4.41414674 4.47819019]\n", + " [4.43922161 4.43454531]]\n" + ] + } + ], + "source": [ + "# загрузка тестового набора\n", + "data_test = np.loadtxt('data_test.txt', dtype=float)\n", + "print(data_test)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 10) Применили обученные автокодировщики AE1 и AE2 к тестовым данным и вывели значения ошибки реконструкции для каждого элемента тестовой выборки относительно порога на график и в консоль." + ], + "metadata": { + "id": "3Ce8wSVMdjBj" + }, + "id": "3Ce8wSVMdjBj" + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE1\n", + "predicted_labels1, ire1 = lib.predict_ae(ae1_trained, data_test, IREth1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Hq8A0LyMcKXk", + "outputId": "333360fa-342a-48ab-c226-027220719947" + }, + "id": "Hq8A0LyMcKXk", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE1\n", + "lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1)\n", + "lib.ire_plot('test', ire1, IREth1, 'AE1')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "Z_v2X4HvcQD5", + "outputId": "801796f4-d92d-4a5f-d140-e5cdf4f04ae2" + }, + "id": "Z_v2X4HvcQD5", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Аномалий не обнаружено\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAALXCAYAAACdJe4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXsxJREFUeJzt3XecVOW9P/DvbGGpCypSVASMvaIioiYKNiwpRDEWVDBX4414LfxiIrnWqNcYe4vRGEWjqLGb2MCCFRWMYIklGsFGlbqUZWHn9wdhsssWtsxh2N33+/U6rztzznPOfM/M48neD885TyqdTqcDAAAAACABebkuAAAAAABovgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAA1fjwww/jtNNOi+233z46dOgQqVQqs0ydOjXX5QEAQJMhgAQAMgYMGJAJ2S666KIa21UM49Zc8vPzo1OnTrHVVlvFUUcdFbfffnuUlJQ0qIb6LsOHD2/8lxARTzzxROy6665xyy23xIcffliv+qGlO++88yr9d/nzn/+83sdI6jqQTqfj448/jnvuuSfOPPPM2HvvvaNt27aZfXv16tXwEwcAaiSABACyqry8PBYsWBCffvppPPTQQ3HKKadE796949FHH811aXVSUlISw4cPj9LS0oiI6N69exx11FFx2mmnxYgRI2LEiBFRXFyc4yob7qKLLqpTyNwUDB8+PHMuo0ePznU568TUqVPX67AsnU7Hn//850rrHnjggcx/T7k0adKk6NSpU2y77bZxwgknxA033BATJkyIpUuX5ro0AGj2CnJdAADQtA0ePDg23XTTzPvy8vKYM2dOTJgwIb766quIiJgzZ04MGTIkHnroofjxj39c52Pvscce0a9fvzq379+/f90Lr8Hf/va3mDdvXkRE7LDDDjFx4sRo06ZNo48LLcGLL74YX3zxRaV18+bNiyeeeCKOOuqoBh0zW9eBkpKSWLhwYYNqAAAaRwAJADTKmWeeGQMGDKiyvry8PO666674+c9/HqWlpVFeXh4///nPY9CgQdG2bds6Hfuwww5b56P0/v73v2deH3vsscJHqIe77ror87pNmzaZ0YV33XVXgwPIbF8HNthgg+jbt2/ssccesccee8THH38c5557btaODwBU5RZsACAReXl5cdJJJ8Xvfve7zLqZM2fGY489lrui6mD16MeIVbdfA3VTUlISDz/8cOb9Nddck3n97LPPxsyZM3NRVsYuu+wS//znP2Pu3LkxduzYuOyyy2Lw4MHRtWvXnNYFAC2BABIASNSpp54arVu3zrx/+eWXc1jN2pWVlWVe5+X5Uwnq6uGHH47FixdHRETv3r3j1FNPjT59+kRExIoVK+Lee+/NYXWrRj5uueWWOa0BAFoqf1UDAIkqKiqK7bbbLvP+m2++yWE11as4MUvFW0hPOumkKjPs1jTZSUlJSdxwww0xaNCg2GyzzaJ169axwQYbxI477hinn356vPnmm3WqpeJnrTZlypQ488wzY8cdd4wNN9wwUqlUDB48uF7nuHpW4Ysvvjiz7uKLL27QLMKPPvpoDBs2LLbeeuvo2LFjtG7dOnr06BGDBw+Ou+66K1asWFGnmj766KP45S9/Gf3794/OnTtHq1atonXr1tGlS5fYfffd46STToq77rqr0qjUiIhevXrV6bfKxkQ7Da2xOmVlZfHnP/85fvKTn8QWW2wRHTp0iHbt2kXv3r3j2GOPjUcffTTS6XS1+44ePTpSqVT07t07s27atGk1zgSdCxV/j+OPPz5SqVSccMIJ1W4HAFoWz4AEABJX8TmKy5Yty2Elyfjb3/4Wp5xySsyYMaPS+tLS0pg/f3588MEHcfPNN8dxxx0Xf/zjH+v8DMyIVeHopZdeGitXrsx22fX27rvvxrBhw2Ly5MlVtn311Vfx1VdfxeOPPx6XX355PPLII7H99tvXeKzazmv27Nkxe/bs+Pvf/x6jR4+OoUOHxj333JPNU6mTbNY4fvz4OPnkk+Ozzz6rsm3q1KkxderUuP/++6N///7x0EMPVZrYqSmYNm1ajB8/PvP++OOPj4iI4447Ln75y1/GypUr4913343JkydnRkUCAC2HABIASFzFUY/r4/PW+vXrFyNGjIiIiOeffz4++uijiIg44IADYtttt63UtuJozoiIBx54IIYOHZoJqfLz8+O73/1ubLnlllFSUhKvvPJK5vzHjBkTn3/+ebzwwguVbkuvyZVXXpkZsfid73wn+vXrF23bto2pU6dGYWFhvc7xxz/+cey4447x1ltvxcSJEyOi5tmFq5tF+OWXX44f/OAHmVmECwsLY4899oitttoqCgsLY+rUqfHqq6/GsmXL4uOPP4699947JkyYUOX7ioi4/vrrK43E7Ny5c/Tv3z+6d+8eqVQq5s6dGx999FF8+OGH1YZ/w4YNi2+//Xatv1VE1Gv25GzWWNGDDz4YQ4cOzdze36ZNm+jfv3/06tUr8vLy4pNPPokJEybEihUr4o033oi99torJk6cWOm/le222y5GjBgRixYtirvvvjsiIjp06BAnnnhig84v2/785z9nRm/uueeesfXWW0dERLdu3eKggw6KZ555JiJWjYIUQAJAC5QGAPi3/fbbLx0R6YhIX3jhhTW2W90mItIvvvhircf8+OOPK7W/6aabslJDUoYNG5b5/DvvvLPWtp9++mm6ffv2mfb9+vVL//Of/6zUZuXKlemrr746nZeXl2n3P//zPzUes+J3VVBQkO7YsWP60UcfrdJu2bJlDTm99IUXXljv73f69OnpLl26ZPY78cQT0998802VdjNmzEj/+Mc/zrTbaaed0itWrKjUpqysLN25c+dMm8svvzy9fPnyaj/322+/Td9xxx3pK664otrt9fmt6iObNb7//vvpNm3apCMinUql0r/4xS/S8+bNq9Lus88+S3/3u9/NfOahhx5a7fE+//zzTJuePXs29BSzbquttqrxv/F77703s61Lly7psrKytR5vXV4H7rzzzvXyOwWA5sQISAAgMStWrIgzzzwz8764uDiOOeaYOu//1FNPxZw5c+rc/je/+U1suOGG9aqxMX7zm99ESUlJRERsueWWMXbs2OjYsWOlNnl5eTFy5MhIpVIxcuTIiIi4+eab4+yzz670PL/qlJeXxxNPPBH77rtvlW1FRUVZOou1+9///d+YNWtWREScccYZcf3111fbrmvXrvHggw/GwQcfHC+88EK899578dBDD8XRRx+dafPRRx9lftN99tknzj333Bo/d8MNN4yTTjopi2dSN9ms8YwzzoilS5dGRMTVV18dZ599drXttthii3jmmWeiX79+8Y9//COefvrpePPNN2PPPfdsxJmsG6+//nr885//jIhVI2Mr/t4REYMHD4727dtHSUlJzJo1K55++un4wQ9+UOfjr+/XAQBg7QSQAEBWlZeXx5w5c+K1116L3/72t/HWW29FRERBQUHccccdsdFGG9X5WBMnTszcLlwXv/jFL9ZZ8DB//vx44IEHMu9/97vfVQkfKzrzzDPjT3/6U3zwwQdRXl4et912W1x++eW1fsaQIUOqDR/XpdmzZ2eebditW7e44ooram2fn58fl112Wey1114REXHvvfdWCqRW38IdEbHxxhsnUHHjZavGKVOmxAsvvBAREbvuumucddZZtbZv165dnH/++XHsscdGxKrvrikEkBUnlzn00EOjc+fOlba3bds2jjzyyEy7u+66q14B5Pp8HQAA6sYs2ABAowwcOLDS7Lv5+fnRtWvXOOKIIzLh4zbbbBOPPfZYHHnkkTmuNntef/31KC0tjYhVzwdcW6CSl5cXP/3pTzPvX3zxxbV+Rn1Giyblueeei+XLl0dExBFHHFGnZ1fuueee0a5du4iIePXVVytt69GjR+b1iy++GJ988kkWq82ObNX41FNPZV4fe+yxdZqdev/998+8XvO7Wx8tW7Ys/vKXv2TeV5z1uqKKz6r861//GnPnzk28NgBg/WEEJACQqK5du8bdd9/doMlALrzwwrjooouyX1QWvPPOO5nX/fr1i4KCtf9Ztc8++1TaP51O1xpK7b777o0rMgsmTJiQef3uu+/G6aefXq/9582bF4sXL84Ekj169Ij+/fvHG2+8EQsWLIjdd989TjjhhPjxj38c++yzT71mCE9Ktmqs+N29+OKLMW3atLXuk/73RC4REV9++WX9i1/HHn/88Zg/f35ERHTq1KnGIH7AgAGx2WabxVdffRXLly+P+++/P0477bQ6fcb6fB0AAOpGAAkANMrgwYNj0003zbz/9ttv47PPPsvcMjlz5sz43ve+Fw8//HB8//vfz1WZWTd79uzM6549e9Zpn169emVeL1++PBYtWhTFxcU1tl8fblGuOIP5q6++2qBRefPmzcsEkBERf/rTn2L//fePmTNnRklJSdxyyy1xyy23REFBQfTp0yf23XffGDRoUBxwwAGRn5+flfOor2zUWPG7e/rpp+tdw7x58xpc/7pS8fbro446qsZnk+bl5cXQoUMzt/DfdddddQ4gAYCmzy3YAECjnHnmmXHTTTdllvvuuy/eeuutmDJlSuyyyy4RsSpsO/bYY+Ozzz7LcbXZs3rymYioFK7VZs12ixYtqrV9mzZt6l9Yli1YsKDRx1ixYkWl99tvv31MmTIl/ud//qfSczNXrFgRkyZNimuuuSYGDRoUPXv2jNtvv73Rn98Q2aixsd/dypUrG7V/0mbMmBFjx47NvD/++ONrbV/x9uy33norPvroo8RqAwDWLwJIACARO++8c4wdOzYzOrKkpCROPvnkHFeVPe3bt8+8Xrx4cZ32WbNdhw4dslpTEiqGptdcc02k0+l6LxVHfq7WtWvXuOGGG2LmzJkxfvz4uOSSS+LQQw+tNCL066+/jlNOOSXOOOOMdXGqWa+x4nf3yCOPNOi7W5/dc889lULS/fbbr9LzYNdcdtxxx0r7Vxw9CQA0bwJIACAxXbp0iRtvvDHzfvz48fHkk0/msKLsqXh79BdffFGnfaZOnZp53apVqyYRQHbt2jXzesaMGVk/flFRUey3335x3nnnxVNPPRVz5syJp59+Or773e9m2tx44431mgV5fakx6e8u1xobIN5zzz1RXl6epWoAgPWZABIASNTqiTtWO++883JYTfbsuuuumddvvfVWnW6Xff311yvtX5dZkbOtvp+55557Zl6/9tpr2S6nisLCwjjkkEPiueeeqzRi7q9//WuVtrn4/iLqXmMS312uznlNf//73+P999/PvN9jjz1izz33rNOyesKmr776Kp5//vlcnQIAsA4JIAGAxFWcwXby5MnxxBNP5K6YLNl7770zE27Mnj17rSM7y8vL484778y833///ROtryatW7fOvC4rK1tr+0GDBmUCo9dffz2mTJmSWG0VFRUVxcEHH5x5P3PmzCpt6nsu2ba2GitOuvTII49Uew71letzXq3i6Meddtop3nrrrXjjjTfqtBxyyCHVHgcAaL4EkABA4g488MDYe++9M+8vvfTSHFaTHZ06dYqjjz468/6cc86pdVKZm266Kd57772IWDUj8M9+9rPEa6zORhttlHn99ddfr7X9pptumplcJJ1Ox4knnhgLFy6s02eVl5dXmi08YtXMznW97fbLL7/MvO7SpUuV7fU9l7rKVo39+vWLAQMGRETE0qVL44QTTojly5fX6bjLly+vdhbsTp06RV7eqj/hZ8+enZMQsqysLMaMGZN5v7bJZ9ZUsf2jjz661smYAICmTwAJAKwTF1xwQeb1xIkT45lnnslhNdlxwQUXZCaj+eSTT2LQoEHxr3/9q1Kb8vLyuP7662PkyJGZdSNGjKh2YpZ1oeItw2PHjq3TTM2XXXZZdO/ePSIi3n333ejXr1+l2Y/X9NVXX8W1114b22yzTTzwwAOVtj3++OOx9dZbx1VXXVXpmZgVlZaWxk033RQPPfRQZt2hhx5a67k8/vjjdQ731iabNd54442ZPjJu3LjYd999480336zxsz/55JO45JJLolevXtXetl1UVBRbbbVVRKwKAh977LE6ndPw4cMzk8E0tu+tfg5mxKpbwo899th67f/DH/4w8/zTJUuWxIMPPtioegCA9V9BrgsAAFqGQYMGxZ577pkJXy655JJKt2JWp2LQURdt27aN3/3ud42qsz6+853vxO233x5Dhw6NlStXxoQJE2KbbbaJ733ve/Gd73wnSkpK4pVXXqk0Oq9///7rtMY19evXL3r06BFffvllTJ8+Pbbddts4+OCDo3PnzpnnC+6xxx6VRndusskm8fjjj8dhhx0Wc+bMiY8//jgGDRoUm266afTr1y823njjKCsrizlz5sT7778fn3/+ea01fPbZZ3HOOefEOeecE5tvvnnsvPPOmdGDM2bMiDfeeCPmzp2baT906NBKI2hXO/TQQ6NNmzaxdOnSmDx5cmy33XYxYMCA6NSpU+ZcDj744Eq3SddVtmrccccd47777oujjz46lixZEm+++Wb0798/vvOd78Ruu+0WG264YSxbtixmzZoV7777bp1Gch555JHxf//3f5nPHT16dGy55ZZRWFiYaXPVVVfV+5zrquJt0/vuu2/06NGjXvu3adMmfvzjH8fdd9+dOd5Pf/rTGttn8zpw8sknx6RJkyqtq/g7fvPNN9GnT58q+91+++3Rt2/fOtcAAKwhDQDwb/vtt186ItIRkb7wwgtrbLe6TUSkX3zxxTof/8knn6y073PPPVdrDfVdOnbsWP+TXsOwYcMyx7vzzjvrtM9f//rXdNeuXdda37HHHptevHhxrceq2D4pf/3rX9OtWrWqsc5hw4ZVu9/UqVPTBxxwQJ1/j65du6afeeaZSsd48MEH06lUqk775+XlpU877bT08uXLazyXW265pdbj1daPa5LtGtPpdHry5Mnp3Xffvc7fXa9evdLvvPNOtceaP39+etttt611/zVV7Nc9e/as93ey2pw5cyr1nT/+8Y8NOs7YsWMzx0ilUul//etflbYndR1o6HHrc50DAKoyAhIAWGcOO+yw6Nu3b2YE0m9+85s44IADclxV433/+9+PTz/9NO64447429/+Fh988EHMmTMn2rRpE5tsskkMHDgwTjzxxEqzIufS97///Zg0aVLcfPPN8eqrr8YXX3wRJSUlkU6na92vZ8+e8dxzz8WECRPiwQcfjJdffjm+/PLLmDdvXhQUFMRGG20UW221VfTt2zcOPvjgGDBgQGYCm9WGDBkS06dPj7Fjx8Zrr70WU6ZMiX/9618xf/78iIjo2LFjbL311vHd7343TjzxxNh+++1rrem///u/Y6eddopbb7013nzzzfj6669jyZIlaz2X2mS7xoiIXXbZJSZNmhRjx46Nxx57LF577bX45ptvYv78+VFUVBQbb7xxbLPNNrHnnnvGoEGDYq+99qpxxuuOHTvGxIkT4/e//308+eST8eGHH8b8+fPXyfMg77vvvsyt7kVFRTFkyJAGHWf//feP7t27x/Tp0yOdTsddd91VabIqAKB5SaUb89cZAAAAAEAtTEIDAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkpiDXBeRCeXl5fPPNN9GhQ4dIpVK5LgcAAAAAmpR0Oh2LFi2KTTbZJPLyah/j2CIDyG+++SZ69OiR6zIAAAAAoEn78ssvY7PNNqu1TYsMIDt06BARq76g4uLiHFeTjLKyshg7dmwcfPDBUVhYmOtyIDH6Oi2J/k5Lor/TkujvtCT6Oy1Jc+/vCxcujB49emRyttq0yABy9W3XxcXFzTqAbNu2bRQXFzfLTg6r6eu0JPo7LYn+Tkuiv9OS6O+0JC2lv9fl8YYmoQEAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAElOQ6wKamnQ6HWVlZVFeXp7rUmpVVlYWBQUFsWzZsli5cmWuy2nW8vPzo7CwMNdlAAAAAKyXBJB1tHz58pg1a1YsWbKkSQR66XQ6unXrFl9++WWkUqlcl9PsFRUVRefOnaO4uDjXpQAAAACsVwSQdbBkyZL48ssvIz8/PzbYYINo06ZN5Ofnr9fBXnl5eZSUlET79u0jL8+d9klZPSJ2wYIF8fXXX0dECCEBAAAAKhBA1sGcOXOisLAwevbsGfn5+bkup07Ky8tj+fLl0bp1awFkwtq0aRMdOnSIr776KubMmSOABAAAAKhAMrUWK1asiMWLF8eGG27YZMJH1r1UKhUdO3aM0tLSKCsry3U5AAAAAOsNAeRarFixIiJWPeMParN6Ipqm8IxQAAAAgHVFAFlH6/PzHlk/6CMAAAAAVQkgAQAAAIDECCABAAAAgMQIIAEAAACAxAggyYpevXpFKpWK0aNHZ9aNHj06UqlUpSUvLy+Ki4tj1113jVGjRsXs2bNrPOaa+9a0jB8/PvkTBAAAAKBBCnJdAM1fu3btYsiQIRGxaoboadOmxYQJE2Ly5Mlx5513xiuvvBJbbbVVjfsPGjQounXrVuP22rYBAAAAkFsCSBLXuXPnSiMjIyI++OCD2G+//WLmzJlx1llnxZNPPlnj/ueee24MGDAg2SIBAAAASIRbsMmJHXbYIUaOHBkREePGjYvS0tIcVwQAAABAEgSQ5MzOO+8cERFlZWUxd+7cHFcDAAAAQBIEkOTMwoULIyIiPz8/OnfunONqAAAAAEiCAJKcWf3cx0MOOSQKCwtzXA0AAAAASTAJTTb07RsxY0auq6gkFRHF6XSkUqnaG3brFjFp0jqpKeI/s2DfdtttMWbMmOjZs2fccMMNte4zcODAGrd17Ngx5s+fn+UqAQAAAMgWAWQ2zJgR8fXXua6iktS/l/XBtGnTqg1C+/XrF2PHjo2OHTvWuv+gQYOiW7du1W5r27ZtVmoEAAAAIBkCyGyoIRzLpXREpP89ArLWIHId1N6uXbsYMmRIRESUlpbGhx9+GFOmTIm33norTj311Lj//vtr3f/cc8+NAQMGJF4nAAAAANkngMyGdXgLc12ly8tj4cKFUVxcHKm83D7qs3PnzjF69OhK6x555JE4+uij44EHHoh99903TjvttNwUBwAAAECiTEJDThxxxBFx7rnnRkTEBRdcEAsWLMhxRQAAAAAkQQBJzowaNSq6d+8e3377bVxzzTW5LgcAAACABAggyZm2bdvG+eefHxER1113XcybNy/HFQEAAACQbZ4BSU6dfPLJcfXVV8dnn30WV111VVx22WVV2vz2t7+t8gzJio477rg4+OCDE6wSAAAAgIYSQJJThYWFcemll8axxx4bN954Y4wcOTI22mijSm2effbZWo/Rp08fASQAAADAekoASVZMnTq1yrrhw4fH8OHD17rvMcccE8ccc0yV9el0OguVAQAAAJBLngEJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYASVb06tUrUqlUjB49OrNu9OjRkUqlKi15eXlRXFwcu+66a4waNSpmz55d4zHX3LemZfz48fWqdXVdw4cPb9jJAgAAAFBnBbkugOavXbt2MWTIkIiIWLlyZUybNi0mTJgQkydPjjvvvDNeeeWV2GqrrWrcf9CgQdGtW7cat6+5LZVKRUREOp3OQvUAAAAANIYAksR17ty50sjIiIgPPvgg9ttvv5g5c2acddZZ8eSTT9a4/7nnnhsDBgxItkgAAAAAEuEWbHJihx12iJEjR0ZExLhx46K0tDTHFQEAAACQBAEkObPzzjtHRERZWVnMnTu30ce76KKLMrdfR1R9huTUqVOr7LN48eIYNWpUbLnlllFUVBTdunWLYcOGxddff93oegAAAABwCzY5tHDhwoiIyM/Pj86dOzf6eH369Ilhw4bFXXfdFRERw4YNq7S9ffv2ld4vWLAg9t577/jiiy/ie9/7Xuy4444xYcKEuPvuu+Oll16KKVOmRMeOHRtdFwAAAEBLJoAkZ1Y/9/GQQw6JwsLCRh9v8ODBMXjw4EwAueZzJ9f02GOPxaBBg+KVV16J4uLiiIiYN29e7L///jF58uT4/e9/H6NGjWp0XQAAAAAtmQAyC/r27RszZszIdRlVpNPpSrckV6dbt24xadKkdVTRf2bBvu2222LMmDHRs2fPuOGGG2rdZ+DAgTVu69ixY8yfP79BtbRr1y7uvPPOTPgYEbHBBhvEueeeG8ccc0w899xzAkgAAACARhJAZsGMGTM8M7AW06ZNqzYI7devX4wdO3attzkPGjQounXrVu22tm3bNriuvn37Rvfu3aus32677SIi/KYAAAAAWSCAzIKawrFcq+sIyKS1a9cuhgwZEhERpaWl8eGHH8aUKVPirbfeilNPPTXuv//+Wvc/99xzY8CAAVmva/PNN692/eoRkcuWLcv6ZwIAAAC0NALILFiXtzDXVXl5eSxcuDCKi4sjLy+3k5137ty5yvMYH3nkkTj66KPjgQceiH333TdOO+20dV5Xrr8XAAAAgJZAAkNOHHHEEXHuuedGRMQFF1wQCxYsyHFFAAAAACRBAEnOjBo1Krp37x7ffvttXHPNNVk77uoZtVesWJG1YwIAAADQMAJIcqZt27Zx/vnnR0TEddddF/PmzcvKcTfbbLOIiPjggw+ycjwAAAAAGs4zIMmpk08+Oa6++ur47LPP4qqrrorLLrusSpvf/va3VZ4hWdFxxx0XBx98cOb9kUceGVdddVUceOCBsf/++0eHDh0iIuKKK66IjTbaKOvnAAAAAEDNBJDkVGFhYVx66aVx7LHHxo033hgjR46sEhI+++yztR6jT58+lQLISy65JPLy8uKRRx6Jxx57LJYvXx4REeedd54AEgAAAGAdE0CSFVOnTq2ybvjw4TF8+PC17nvMMcfEMcccU2V9Op1uUC2tW7eOK664Iq644opqt6+trl69ejX4swEAAACozDMgAQAAAIDECCABAAAAgMQIIAEAAACAxAggAQAAAIDECCABAAAAgMQIIAEAAACAxAggAQAAAIDECCDrKJ1O57oE1nP6CAAAAEBVAsi1yMtb9RWtXLkyx5WwvlvdR1b3GQAAAAAEkGtVWFgYhYWFUVJSkutSWM8tXbo08vPzo7CwMNelAAAAAKw3BJBrkUqlokOHDrFgwYJYunRprsthPbVy5cpYsGBBtG3bNlKpVK7LAQAAAFhvFOS6gKagc+fOsXTp0vjiiy+iuLg4OnToEPn5+et10FReXh7Lly+PZcuWuSU4Qel0OkpLS2Pu3LlRXl4eXbp0yXVJAAAAAOsVAWQd5OfnR48ePWLOnDmxaNGimD9/fq5LWqt0Oh1Lly6NNm3arNdBaXPRrl276NatW7Rq1SrXpQAAAACsVwSQdZSfnx9du3aNLl26RFlZWZSXl+e6pFqVlZXFyy+/HPvuu69nEiasoKAgCgr8pwQAAABQHalJPaVSqSYxyi0/Pz9WrFgRrVu3FkACAAAAkDMeDggAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkpkkGkCtXrozzzz8/evfuHW3atInvfOc7cckll0Q6nc51aQAAAABABQW5LqAhrrjiirjlllvirrvuih122CEmTZoUJ510UnTs2DHOOOOMXJcHAAAAAPxbkwwgX3/99fjRj34Uhx9+eERE9OrVK+6777546623clwZAAAAAFBRkwwg995777jtttvik08+ia233jqmTJkSr776alxzzTXVti8tLY3S0tLM+4ULF0ZERFlZWZSVla2Tmte11efVXM8PVtPXaUn0d1oS/Z2WRH+nJdHfaUmae3+vz3ml0k3wwYnl5eXx61//On73u99Ffn5+rFy5Mi677LIYNWpUte0vuuiiuPjii6usHzNmTLRt2zbpcgEAAACgWVmyZEkcd9xxsWDBgiguLq61bZMMIO+///4455xz4sorr4wddtghJk+eHGeddVZcc801MWzYsCrtqxsB2aNHj5gzZ85av6CmqqysLMaNGxcHHXRQFBYW5rocSIy+Tkuiv9OS6O+0JPo7LYn+TkvS3Pv7woULo3PnznUKIJvkLdjnnHNOnHvuuXHMMcdERMROO+0U06ZNi8svv7zaALKoqCiKioqqrC8sLGyWHaCilnCOEKGv07Lo77Qk+jstif5OS6K/05I01/5en3PKS7COxCxZsiTy8iqXnp+fH+Xl5TmqCAAAAACoTpMcAfmDH/wgLrvssth8881jhx12iHfeeSeuueaa+OlPf5rr0gAAAACACppkAHnjjTfG+eefH6eddlrMmjUrNtlkkzj11FPjggsuyHVpAAAAAEAFTTKA7NChQ1x33XVx3XXX5boUAAAAAKAWTfIZkAAAAABA0yCABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABIjgAQAAAAAEiOABAAAAAASI4AEAAAAABJTkOsCSEb//v1j2rRp0bp161yXAolbtmyZvk6Lob/TkujvtCT6Oy2J/k5LsmzZsujZs2e8/fbbuS4lpwSQzdTMmTPj22+/zXUZAAAAAC2awF0A2Wx17drVvyrRYujrtCT6Oy2J/k5Lor/TkujvtCTLli2Lrl275rqMnBNANlNvvPFGPPXUU3HYYYdFYWFhrsuBxJSVlenrtBj6Oy2J/k5Lor/TkujvtCQV+3tLZxIaAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQJIAAAAACAxAkgAAAAAIDFNNoD8+uuv4/jjj4+NNtoo2rRpEzvttFNMmjQp12UBAAAAABUU5LqAhpg3b17ss88+MXDgwHj66adj4403jn/+85+xwQYb5Lo0AAAAAKCCJhlAXnHFFdGjR4+48847M+t69+6dw4oAAAAAgOo0yQDyiSeeiEGDBsVRRx0VL730Umy66aZx2mmnxSmnnFJt+9LS0igtLc28X7hwYURElJWVRVlZ2TqpeV1bfV7N9fxgNX2dlkR/pyXR32lJ9HdaEv2dlqS59/f6nFcqnU6nE6wlEa1bt46IiJEjR8ZRRx0VEydOjDPPPDP+8Ic/xLBhw6q0v+iii+Liiy+usn7MmDHRtm3bxOsFAAAAgOZkyZIlcdxxx8WCBQuiuLi41rZNMoBs1apV9O3bN15//fXMujPOOCMmTpwYEyZMqNK+uhGQPXr0iDlz5qz1C2qqysrKYty4cXHQQQdFYWFhrsuBxOjrtCT6Oy2J/k5Lor/TkujvtCTNvb8vXLgwOnfuXKcAsknegt29e/fYfvvtK63bbrvt4uGHH662fVFRURQVFVVZX1hY2Cw7QEUt4RwhQl+nZdHfaUn0d1oS/Z2WRH+nJWmu/b0+55SXYB2J2WeffeLjjz+utO6TTz6Jnj175qgiAAAAAKA6TTKAPPvss+ONN96I//u//4tPP/00xowZE7fddluMGDEi16UBAAAAABU0yQByjz32iEcffTTuu+++2HHHHeOSSy6J6667LoYOHZrr0gAAAACACprkMyAjIr7//e/H97///VyXAQAAAADUokmOgAQAAAAAmgYBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkJiChuy0cOHCiIgoLi5u1IeXlJTECy+8EBERP/zhDxt1LAAAAABg/dOgALJTp06Rl5cX7777bmy//fZVtn/zzTdx3nnnRSqVij/96U81HmfatGkxePDgyMvLixUrVjSkFAAAAABgPdbgW7DT6XSN2+bNmxejR4+O0aNHN/pYAAAAAEDT5RmQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiGhVAplKpbNUBAAAAADRDBY3Zeccdd6xx2+pwMj8/vzEfAQAAAAA0YY0KINPpdLbqAAAAAACaoQYFkPvuu6/brwEAAACAtWpQADl+/PgslwEAAAAANEdmwQYAAAAAEiOABAAAAAASk/MAcsmSJXH11VfnugwAAAAAIAE5CyAXLVoUl112WfTq1St++ctf5qoMAAAAACBBDZqEpjHmzp0b1157bdx8882xYMGCSKfTZtQGAAAAgGaqUSMgp02bFmeccUZsv/320aFDh9hwww1jt912i8svvzwWLFhQqW1JSUlceOGF0atXr/i///u/mD9/fqTT6ejcuXNceumljToJAAAAAGD91OARkOPGjYsjjzwyFi9eHBER6XQ6IiKmTJkSU6ZMibvvvjtefPHF6NatW7z22msxdOjQ+PLLLzPtNt100/jFL34RP/vZz6JNmzZZOBUAAAAAYH3ToABy9uzZceyxx0ZJSUlmXbt27aKgoCAz8vGTTz6JESNGxJlnnhmDBg2K5cuXRzqdjt69e8e5554bw4cPj8LCwuycBQAAAACwXmrQLdh//OMfY+7cuZFKpWLIkCHx6aefxqJFi2LevHnxzTffxOmnnx4REY8//ngcf/zxUVpaGu3bt48bb7wxPv744zjllFOEjwAAAADQAjRoBOTYsWMjIqJ///7xl7/8pdK2bt26xQ033BCLFi2Ku+66K7766qvo1KlTvPLKK7HDDjs0vmIAAAAAoMlo0AjIjz76KFKpVJx22mk1tjnjjDMiIiKVSsUZZ5whfAQAAACAFqhBAeS8efMiImLLLbessc1WW22Vef29732vIR8DAAAAADRxDQogy8rKIiKiQ4cONbZp37595nW3bt0a8jEAAAAAQBPXoACyvlKp1Lr4GAAAAABgPbNOAkgAAAAAoGVq0CzYq5100knRrl27RrdLpVLx/PPPN6YUAAAAAGA91KgActKkSbVuX33rdW3t0um0W7QBAAAAoJlqcACZTqezWQcAAAAA0Aw1KIAsLy/Pdh0AAAAAQDNkEhoAAAAAIDECSAAAAAAgMQJIAAAAACAxDXoG5G9+85ts1xEXXHBB1o8JAAAAAORWgwLIiy66KFKpVFYLEUACAAAAQPPToAAyIiKdTmetiGyHmQAAAADA+qFBAeSLL76Y7ToAAAAAgGaoQQHkfvvtl+06AAAAAIBmqMG3YAMACUqnI1asiCgtjVi2bNX/LSmJdtOnR8yYEbHhhhFt20Z4jAkAALCeE0ACwGrpdERZWeXQb83Xa3ufzW1rPG+5MCIOrLgilYpo3z6iQ4fKS3Xr6rKtTRuBJgAAkHUCSAByK52OWL482SCvPtuaknQ6YtGiVUs25OXVHFA2JNRs3VqgCQAACCABWqTy8lWhX65Cvorvly/P9beRO3l5EUVFq4K6oqKqr9d4X96qVXw9fXpsWlwceYsXrwoeS0r+E0IuWrTqt22o8vKIhQtXLdmQn5/dQLOoSKAJAABNkAASYF0pL183IV9d2paV5frbyJ38/FpDvnW6raB+/zO8sqws/v7UU9HtsMMir7CwaoN0OmLp0v+EkWuGkxWXum5b4zbw+hW8MmLBglVLNhQUNPz28uq2FRVlpy4AAKBWAkigeVu5Mtkgrz7bVqzI9beROwUF60/ol5+f628jOanUqolp2raN6Nq18cdLpyOWLGlYcFndtpKSxgWaK1ZEzJ+/asmGwsLag8v6BpqtWmWnLgAAaGYEkED2rVixzm7fzV+2LAbMnh0Fv/zlf54jWLHtypW5/jZyp7Bw/Qn98vJy/W3QEKlURLt2q5Zu3Rp/vPLyqoFmbcFlXQLNxigri5g7d9WSDa1aNfz28urWVzfKFQAAmiABJDQH6XTV0C+Xz/ZrzDPo6ikvIjqus0+rg1at6h7WJRn6tWol9GP9s3qSm/btI7p3b/zxyssjVj8LMxujNJcsaVw9y5dHfPvtqiUbiooaN6v5mtvqecs/AABki79EoaEqzty7rkK+2to25rbGJm5lYWHktW0bqVyM7Kv4ulUrE2TAupSX959wLRtWrqw+0GxoqLl0aePqWX19nzMnO+fXunXDRmLWtK05P84AAICsEkDStKTT2XleX7YCwZYqlcrt7bwVXpdFxFNPPx2HHXZYFLpdEWiM/PyI4uJVSzasWFFzoNmQW8+XLWtcPcuWrVpmz87O+bVp07hZzStua99eoAkA0IwJIFm71TP3rg+39i5fnutvI3fy8tab0C8KCtafkX4teTZnYP1WUBDRseOqJRtWrMjOzOarl8b+Q9rSpauWWbOyc35t21YKJ/PbtYs9ly6N/HvvXfUd1jfQ9BgKAID1hgCyOfrjHyNv9uzY+v33I+/111f9PyyNCQBbcsCTn79+hX4AtFwFBRGdOq1asqGsrPEzm1d839h/JFyyZNUyc2ZErHrGb7eIiLffbtjx2rVr3KzmFbe1ayfQBABoBIlGc/Sb30T+V1/Fdrmuo6EKCtafmXvdDgZAc1VYGLHhhquWbFi+vHHPzFxzfWP/AXTx4lXLjBmNP7fVM8JnM9BcX+4kAABYBwSQzVFRUf33KSxcP0K/Vq2EfgDQFLVqFbHRRquWLCgrKYnnHn00DtxzzygsLW38KM0VKxpeTDq96lglJRHTpzf+5FKp6kPKhoSa7duvun1doAkArMcEkM3RDTfEisWLY+K778Ye3/1uFLRvv/bQz21FAMD6pKgolhcXR/TuveofShtj9SR2jZ3ZvOK2lSsbV8/q42VDXl72As0OHVb9fSjQBACySADZHB12WKTLymJWq1aR3n//xv/RDgDQlKVSq0K11q0jNt648cdLp1c9LzubgWZ5ecPrKS+PWLhw1ZIN+fm1j7isb6hZVCTQBIAWTgAJAAD1kUpFtGmzaunSpfHHS6dXzSje2JnNK25Lpxtez8qVEQsWrFqyoaAg+4EmANCkCCABACCXUqlVz3Fs2zaia9fGHy+dXjWjeGNnNq+4vjFWrIiYP3/Vkg2FhQ1/XmZ161u1yk5dAECNBJAAANCcrJ61u127iG7dGn+88vLsBpqLFzeunrKyiHnzVi3Z0KpV42Y1X3Odxx8BQBUCSAAAoGarJ7lp3z6ie/fGH6+8fFUI2diZzVcvS5Y0rp7lyyPmzl21ZENRUb1HYqbatIku774bqby8VQFmKlV5iai6zra6bwMg5wSQAADAupOX95/wLRtWrlwVTDZ2IqDVy9KljauntHTVMmdOnXcpiIi9GveprM36EoZmY9v6UkcDt+Wn09F3+vTIv/feVZNerad12tZCt2X7eCtWRN7y5Y2bbK6ZEEACAABNV35+RMeOq5ZsWLHiP6Fkbc/FrGuguWxZduqicdLpxk3ORNbkRcSmuS4C1pHCiPhBRJRNmhSx++65LienBJAAAACrFRREdOq0asmGsrK1Bpor58+PTz74ILbecsvIz8v7T1i2OjCr+N422+q7Dci91aMkWzABJAAAQFIKCyM22GDVUoPysrL45KmnYsvDDot8k9iQhPUlDE2no2z58njxxRdj4IABUVhQsP4FtrbZlsVt5el0zJ0zJzq2axctnQASAAAAmrOKz6jLtbKyWNqlS0SvXmaNp9lbWVYWrz31VBy2xRa5LiXn8nJdAAAAAADQfAkgAQAAAIDENPkA8re//W2kUqk466yzcl0KAAAAALCGJh1ATpw4MW699dbYeeedc10KAAAAAFCNJhtAlpSUxNChQ+OPf/xjbFDLjHIAAAAAQO402VmwR4wYEYcffngceOCBcemll9batrS0NEpLSzPvFy5cGBERZWVlUVZWlmidubL6vJrr+cFq+jotif5OS6K/05Lo77Qk+jstSXPv7/U5r1Q6nU4nWEsi7r///rjsssti4sSJ0bp16xgwYED06dMnrrvuumrbX3TRRXHxxRdXWT9mzJho27ZtwtUCAAAAQPOyZMmSOO6442LBggVRXFxca9smF0B++eWX0bdv3xg3blzm2Y9rCyCrGwHZo0ePmDNnzlq/oKaqrKwsxo0bFwcddFAUFhbmuhxIjL5OS6K/05Lo77Qk+jstif5OS9Lc+/vChQujc+fOdQogm9wt2G+//XbMmjUrdtttt8y6lStXxssvvxw33XRTlJaWRn5+fqV9ioqKoqioqMqxCgsLm2UHqKglnCNE6Ou0LPo7LYn+Tkuiv9OS6O+0JM21v9fnnJpcAHnAAQfEe++9V2ndSSedFNtuu2386le/qhI+AgAAAAC50+QCyA4dOsSOO+5YaV27du1io402qrIeAAAAAMitvFwXAAAAAAA0X01uBGR1xo8fn+sSAAAAAIBqGAEJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACRGAAkAAAAAJEYACQAAAAAkRgAJAAAAACSmSQaQl19+eeyxxx7RoUOH6NKlSwwePDg+/vjjXJcFAAAAAKyhSQaQL730UowYMSLeeOONGDduXJSVlcXBBx8cixcvznVpAAAAAEAFBbkuoCGeeeaZSu9Hjx4dXbp0ibfffjv23XffHFUFAAAAAKypSQaQa1qwYEFERGy44YbVbi8tLY3S0tLM+4ULF0ZERFlZWZSVlSVfYA6sPq/men6wmr5OS6K/05Lo77Qk+jstif5OS9Lc+3t9ziuVTqfTCdaSuPLy8vjhD38Y8+fPj1dffbXaNhdddFFcfPHFVdaPGTMm2rZtm3SJAAAAANCsLFmyJI477rhYsGBBFBcX19q2yQeQP//5z+Ppp5+OV199NTbbbLNq21Q3ArJHjx4xZ86ctX5BTVVZWVmMGzcuDjrooCgsLMx1OZAYfZ2WRH+nJdHfaUn0d1oS/Z2WpLn394ULF0bnzp3rFEA26VuwTz/99Pjb3/4WL7/8co3hY0REUVFRFBUVVVlfWFjYLDtARS3hHCFCX6dl0d9pSfR3WhL9nZZEf6claa79vT7n1CQDyHQ6Hf/zP/8Tjz76aIwfPz569+6d65IAAAAAgGo0yQByxIgRMWbMmHj88cejQ4cOMWPGjIiI6NixY7Rp0ybH1QEAAAAAq+XluoCGuOWWW2LBggUxYMCA6N69e2Z54IEHcl0aAAAAAFBBkxwB2cTnzQEAAACAFqNJjoAEAAAAAJoGASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJAYASQAAAAAkBgBJAAAAACQGAEkAAAAAJCYJh1A3nzzzdGrV69o3bp17LnnnvHWW2/luiQAAAAAoIImG0A+8MADMXLkyLjwwgvj73//e+yyyy4xaNCgmDVrVq5LAwAAAAD+rckGkNdcc02ccsopcdJJJ8X2228ff/jDH6Jt27Zxxx135Lo0AAAAAODfCnJdQEMsX7483n777Rg1alRmXV5eXhx44IExYcKEKu1LS0ujtLQ0837BggURETF37twoKytLvuAcKCsriyVLlsS3334bhYWFuS4HEqOv05Lo77Qk+jstif5OS6K/05I09/6+aNGiiIhIp9NrbdskA8g5c+bEypUro2vXrpXWd+3aNT766KMq7S+//PK4+OKLq6zv3bt3YjUCAAAAQHO3aNGi6NixY61tmmQAWV+jRo2KkSNHZt6Xl5fH3LlzY6ONNopUKpXDypKzcOHC6NGjR3z55ZdRXFyc63IgMfo6LYn+Tkuiv9OS6O+0JPo7LUlz7+/pdDoWLVoUm2yyyVrbNskAsnPnzpGfnx8zZ86stH7mzJnRrVu3Ku2LioqiqKio0rpOnTolWeJ6o7i4uFl2cliTvk5Lor/TkujvtCT6Oy2J/k5L0pz7+9pGPq7WJCehadWqVey+++7x/PPPZ9aVl5fH888/H3vttVcOKwMAAAAAKmqSIyAjIkaOHBnDhg2Lvn37Rr9+/eK6666LxYsXx0knnZTr0gAAAACAf2uyAeTRRx8ds2fPjgsuuCBmzJgRffr0iWeeeabKxDQtVVFRUVx44YVVbj2H5kZfpyXR32lJ9HdaEv2dlkR/pyXR3/8jla7LXNkAAAAAAA3QJJ8BCQAAAAA0DQJIAAAAACAxAkgAAAAAIDECSAAAAAAgMQLIJujll1+OH/zgB7HJJptEKpWKxx57bK37jB8/PnbbbbcoKiqKLbfcMkaPHp14nZAN9e3v48ePj1QqVWWZMWPGuikYGujyyy+PPfbYIzp06BBdunSJwYMHx8cff7zW/R588MHYdttto3Xr1rHTTjvFU089tQ6qhcZpSH8fPXp0lWt769at11HF0HC33HJL7LzzzlFcXBzFxcWx1157xdNPP13rPq7tNFX17e+u7TQnv/3tbyOVSsVZZ51Va7uWeo0XQDZBixcvjl122SVuvvnmOrX//PPP4/DDD4+BAwfG5MmT46yzzoqTTz45nn322YQrhcarb39f7eOPP47p06dnli5duiRUIWTHSy+9FCNGjIg33ngjxo0bF2VlZXHwwQfH4sWLa9zn9ddfj2OPPTb+67/+K955550YPHhwDB48ON5///11WDnUX0P6e0REcXFxpWv7tGnT1lHF0HCbbbZZ/Pa3v4233347Jk2aFPvvv3/86Ec/ig8++KDa9q7tNGX17e8Rru00DxMnToxbb701dt5551rbteRrfCqdTqdzXQQNl0ql4tFHH43BgwfX2OZXv/pVPPnkk5U69DHHHBPz58+PZ555Zh1UCdlRl/4+fvz4GDhwYMybNy86deq0zmqDbJs9e3Z06dIlXnrppdh3332rbXP00UfH4sWL429/+1tmXf/+/aNPnz7xhz/8YV2VCo1Wl/4+evToOOuss2L+/PnrtjhIwIYbbhhXXnll/Nd//VeVba7tNDe19XfXdpqDkpKS2G233eL3v/99XHrppdGnT5+47rrrqm3bkq/xRkC2ABMmTIgDDzyw0rpBgwbFhAkTclQRJK9Pnz7RvXv3OOigg+K1117LdTlQbwsWLIiIVX+018T1neaiLv09YtUf+D179owePXqsdUQNrI9WrlwZ999/fyxevDj22muvatu4ttNc1KW/R7i20/SNGDEiDj/88CrX7uq05Gt8Qa4LIHkzZsyIrl27VlrXtWvXWLhwYSxdujTatGmTo8og+7p37x5/+MMfom/fvlFaWhq33357DBgwIN58883Ybbfdcl0e1El5eXmcddZZsc8++8SOO+5YY7uaru+eeUpTUtf+vs0228Qdd9wRO++8cyxYsCCuuuqq2HvvveODDz6IzTbbbB1WDPX33nvvxV577RXLli2L9u3bx6OPPhrbb799tW1d22nq6tPfXdtp6u6///74+9//HhMnTqxT+5Z8jRdAAs3KNttsE9tss03m/d577x2fffZZXHvttfHnP/85h5VB3Y0YMSLef//9ePXVV3NdCiSurv19r732qjSCZu+9947tttsubr311rjkkkuSLhMaZZtttonJkyfHggUL4qGHHophw4bFSy+9VGMoA01Zffq7aztN2ZdffhlnnnlmjBs3zuRJdSCAbAG6desWM2fOrLRu5syZUVxcbPQjLUK/fv0EOTQZp59+evztb3+Ll19+ea3/8l/T9b1bt25JlghZU5/+vqbCwsLYdddd49NPP02oOsieVq1axZZbbhkREbvvvntMnDgxrr/++rj11lurtHVtp6mrT39fk2s7Tcnbb78ds2bNqnSn3cqVK+Pll1+Om266KUpLSyM/P7/SPi35Gu8ZkC3AXnvtFc8//3yldePGjav1ORzQnEyePDm6d++e6zKgVul0Ok4//fR49NFH44UXXojevXuvdR/Xd5qqhvT3Na1cuTLee+8913eapPLy8igtLa12m2s7zU1t/X1Nru00JQcccEC89957MXny5MzSt2/fGDp0aEyePLlK+BjRsq/xRkA2QSUlJZX+Rejzzz+PyZMnx4Ybbhibb755jBo1Kr7++uu4++67IyLiv//7v+Omm26KX/7yl/HTn/40XnjhhfjLX/4STz75ZK5OAeqsvv39uuuui969e8cOO+wQy5Yti9tvvz1eeOGFGDt2bK5OAepkxIgRMWbMmHj88cejQ4cOmefAdOzYMTNa/cQTT4xNN900Lr/88oiIOPPMM2O//faLq6++Og4//PC4//77Y9KkSXHbbbfl7DygLhrS33/zm99E//79Y8stt4z58+fHlVdeGdOmTYuTTz45Z+cBdTFq1Kg49NBDY/PNN49FixbFmDFjYvz48fHss89GhGs7zUt9+7trO01Zhw4dqjy/ul27drHRRhtl1rvG/4cAsgmaNGlSDBw4MPN+5MiRERExbNiwGD16dEyfPj2++OKLzPbevXvHk08+GWeffXZcf/31sdlmm8Xtt98egwYNWue1Q33Vt78vX748/t//+3/x9ddfR9u2bWPnnXeO5557rtIxYH10yy23RETEgAEDKq2/8847Y/jw4RER8cUXX0Re3n9uXth7771jzJgxcd5558Wvf/3r2GqrreKxxx6rdSIPWB80pL/PmzcvTjnllJgxY0ZssMEGsfvuu8frr7/uGXqs92bNmhUnnnhiTJ8+PTp27Bg777xzPPvss3HQQQdFhGs7zUt9+7trO82da/x/pNLpdDrXRQAAAAAAzZNnQAIAAAAAiRFAAgAAAACJEUACAAAAAIkRQAIAAAAAiRFAAgAAAACJEUACAAAAAIkRQAIAAAAAiRFAAgAAAACJEUACAECO9erVK1KpVAwfPjzXpQAAZJ0AEgBo0U499dRIpVKRSqXihRdeqNe+Y8eOzex75plnJlQhAAA0bQJIAKBFO/HEEzOv77nnnnrt++c//7na4+TK+PHjM4Ho+PHjc10OAABEhAASAGjh9tlnn/jOd74TEREPP/xwLF26tE77LV68OB599NGIiNhhhx1i9913T6xGAABoygSQAECLd8IJJ0RExMKFC+Pxxx+v0z6PPPJILF68uNL+AABAVQJIAKDFO+GEEyKVSkVE3W/DXn37dV5eXhx//PGJ1QYAAE2dABIAaPG22GKL2GeffSIi4tlnn41Zs2bV2v6bb76J559/PiIi9t9//9h0002rtHnsscfiqKOOis033zxat24dnTp1ir59+8bFF18c8+bNq1NdTz31VBx//PGxxRZbRLt27aJ169bRu3fvOPLII2P06NGxZMmSiIiYOnVqpFKpGDhwYGbfgQMHZp4HuXoZPXp0lc9Yvnx5/P73v4+BAwfGxhtvHK1atYpu3brFYYcdFvfcc0+Ul5fXWN/w4cMjlUpFr169IiJi+vTp8atf/Sp22GGH6NChQ72fRVndMyz/8pe/xAEHHBAbb7xxtGnTJrbZZpv45S9/GXPnzq3xOAMGDIhUKhUDBgyo9fMuuuiizOdVZ/W2iy66KCIiXnzxxRg8eHBssskm0aZNm9huu+3ikksuyYyEXe2pp56Kww47LNNu++23j8svvzyWL19e5+9i4sSJceyxx0aPHj2idevW0aNHjzjppJPio48+qtP+n376aZx99tmx0047RceOHaNNmzaxxRZbxPDhw2PSpEk17rfmb1BeXh533HFHDBw4MLp27Rp5eXlm6gYA6i8NAED6tttuS0dEOiLS119/fa1tr7zyykzbu+++u9K2uXPnpvfff//M9uqWLl26pCdMmFDj8efMmZM+4IADaj1GRKTvvPPOdDqdTn/++edrbVux/Wqff/55etttt611n+9+97vpb7/9tto6hw0blo6IdM+ePdMTJkxId+7cucr+L7744lq/+9VefPHFzH7PP/98+vjjj6+xri233DI9ffr0ao+z3377pSMivd9++9X6eRdeeGHmeNVZve3CCy9MX3755elUKlVtLXvvvXe6pKQkXV5enj7jjDNqrPmQQw5Jr1ixotrP6tmzZzoi0sOGDUv/6U9/ShcUFFR7jKKiovRf/vKXWs/ryiuvTBcWFtZYRyqVSp9//vnV7lvxN3j66afTBx54YJX9hw0bVuvnAwCsyQhIAICI+MlPfhKtW7eOiMqzW1dn9fb27dvHEUcckVlfWloaBx54YLzwwguRn58fJ5xwQtx3333xxhtvxCuvvBKXXXZZbLTRRjFr1qw47LDDYtq0aVWOvWTJkhg4cGBmhOXuu+8et956a7z22msxadKkePTRR+Pss8+OTTbZJLPPpptuGu+9917ccccdmXV33HFHvPfee5WWwYMHZ7aXlJTEAQcckBlRN3jw4HjiiSdi0qRJ8eCDD8Z+++0XERGvvvpq/OAHP4iVK1fW+H2UlJTEkUceGcuWLYv//d//jfHjx8dbb70Vf/rTn6J79+61fpc1Of/88+Oee+6JwYMHxyOPPBJvv/12PPXUU3H44YdHxH9G+K0LTz/9dIwaNSr69+8fY8aMiUmTJsUzzzwThx56aEREvP7663H55ZfHtddeGzfccEMceuih8fDDD8fbb78djz/+ePTv3z8iIp555pn44x//WOtnTZ48Of77v/87unTpEjfeeGO8+eab8dJLL8WvfvWrKCoqitLS0hg6dGiNoxivvPLKOOecc6KsrCx23nnnuOWWW+K5556LSZMmxb333ht77bVXpNPpuOSSS+KGG26otZZf/epX8dxzz8UPf/jDSr/B6vMGAKizXCegAADri5/85CeZUV4fffRRtW2mTJmSaXPiiSdW2vbrX/86HRHpTp06pSdNmlTt/lOnTk137949HRHp4447rsr2s88+O3P8ESNGpMvLy6s9TmlpaXrGjBmV1lUcvba2kYe/+MUvMm3PO++8KtvLy8vTQ4cOzbT5/e9/X6XN6hGQEZFu3759evLkybV+5tpUrD8i0pdeemm1dR188MHpiEgXFBSkZ82aVaVNtkdARkT6yCOPrDJ6ccWKFen+/funIyLdoUOHdOvWrdNnnXVWleMsXrw4M8Jx5513rvazVm+Pf48orW505wsvvJAZGbnHHntU2f7BBx9kRj5eeOGF1fadlStXZkaWtm/fPj137txK29f8DarrGwAA9WUEJADAv5144omZ1zWNgqy4vmL7kpKSuPnmmyMi4pJLLondd9+92v179uwZ559/fkREPPjgg5WeHzh//vy49dZbI2LVyMfrr7++xucTtmrVKrp27VqX06qitLQ0br/99oiI2GGHHTLPOKwolUrF73//+9hoo40iIuKmm26q9Zi//OUvY5dddmlQPdXZfffd49e//nW1dY0cOTIiIlasWBETJkzI2mfWpG3btnHbbbdFfn5+pfX5+fnxs5/9LCIiFi1aFBtvvHH87ne/q3b/YcOGRUTEu+++GwsWLKj1866++uro1q1blfUDBw6MU045JSJWPSNyzVGQV199dZSVlUXfvn3jwgsvrLbv5OXlxY033hhFRUVRUlISDz30UI11bL311tX2DQCA+hJAAgD826BBgzKh3r333hvpdLrS9vLy8hgzZkxERGy22WaVJn156aWXMsHSkCFDav2cfffdNyIiysrK4u23386sf+GFFzITy5xxxhlVAq9sefvtt2P+/PkRsWoimZo+p7i4OH7yk59ERMQ//vGPmD59eo3HHDp0aFZrPO6442oMXyuGu//617+y+rnVOeigg2LDDTesdlvF0PWII46IwsLCtbb7/PPPa/ysDTbYIH70ox/VuP2nP/1p5vVzzz1Xadtf//rXiIg48sgja/zuIiI6deoUO+20U0RErQHu0UcfnVgfBABaFgEkAMC/FRQUxHHHHRcRq2aWfvXVVyttf/755+Obb76JiFWBW17ef/6UqjgarXv37lVmoK647Ljjjpm2M2bMyLx+5513Mq+/973vZffkKnj//fczr/fcc89a21bcXnG/itq3bx9bbLFFdor7t2233bbGbRXDwEWLFmX1c6uz9dZb17itU6dO9W5XW8277rprFBQU1Li9T58+0apVq4iIeO+99zLrp02bFrNnz46IiFGjRtXa/1KpVKa/Vux/a9p5551r3AYAUB8CSACACmq7Dbum268jImbNmtWgz1s94jEiYs6cOZnXDZ28pS7mzp2bed2lS5da21a8FbjifhVVDNeypW3btjVuqxj81jY5zrquJRs1r+33KCgoyASwFX+PbPS/NW2wwQYNOiYAwJpq/udVAIAWqE+fPrHTTjvFe++9Fw8++GDmeXmLFy+ORx55JCJW3QK8/fbbV9qvYqj097//vcZbcde02WabZa/4BqjtVt26cptu9jT096jY/y644II46qij6rRfu3btatzmdwUAskUACQCwhhNPPDHOOeecmD9/fvz1r3+NIUOGxKOPPpqZMGbN0Y8RkZmsJSJi4403blCw2Llz58zr6dOnR+/evRtQ/dpVvIV55syZtd46XPEW3Zqeg7i+WT3asLy8vNZ2FScAWl/MnDmz1u0rVqzIjHys+HtU7H+FhYWVbvMHAMg1t2ADAKxh6NChmdFf99xzT0T85/brwsLCOPbYY6vss+uuu2Zev/baaw363N122y3z+uWXX673/nUdPVcxnHrzzTdrbfvWW29Vu9/6rEOHDhERMW/evFrbffLJJ+uinHqZPHlyrFixosbtU6ZMieXLl0dE5d9jiy22iI4dO0ZEw/sfAEBSBJAAAGvo3r17HHjggRER8dRTT8X7778fzz//fEREHHLIIbHxxhtX2efAAw/MPAPwhhtuqDKDdl0MHDgwc0vsjTfeWO/nG7Zu3TrzurS0tMZ2u+++e+a5jXfddVeNIwUXLVoUf/nLXyIiYvvtt0/0uZTZtHrk6CeffFLjhC9z5syJcePGrcuy6mTu3LmZ2ayrc8cdd2Rer+6jEatulz7ssMMiImLs2LHx4YcfJlckAEA9CSABAKqx+jbrsrKyOOaYYzJhYHW3X0esmojl9NNPj4iI119/Pc4+++xabwGeOXNm3H777VWOceqpp0ZExNtvvx1nnXVWjUFmWVlZlYlHKgaEn332WY2fXVRUFCeffHJErJrZ+pJLLqnSJp1Ox+mnn56ZGGf1uTUF++23X0RELF++PG688cYq28vKyuLkk0+OpUuXruvS6mTkyJHV3or90ksvxW233RYRq0LkPfbYo9L2UaNGRX5+fpSXl8eQIUPiq6++qvEzVq5cGffee2+tbQAAssUzIAEAqvHjH/84OnToEIsWLYoPPvggIlbNCvyDH/ygxn1+85vfxEsvvRRvvvlmXH/99TF+/Pg45ZRTok+fPtGuXbuYN29efPDBB/Hcc8/F008/HTvttFMmCFztkksuiXHjxsV7770XN910U0yYMCFOPfXU2GmnnaJVq1bx1VdfxSuvvBL33XdfXHrppTF8+PDMvptvvnlsttlm8dVXX8VVV10Vm222WWyzzTaZ28m7du2auT35ggsuiEceeST+9a9/xUUXXRTvvfdenHTSSdG9e/f4/PPP46abborx48dHRMRee+0VP/vZz7L47Sbr8MMPj549e8a0adPi/PPPjzlz5sQRRxwRrVu3jg8++CBuuOGGeOedd6J///7xxhtv5LrcSnbZZZf4xz/+EbvvvnuMGjUq+vXrF6WlpfHUU0/FtddeGytWrIiCgoK4+eabq+y70047xVVXXRVnn312/OMf/4gdd9wxfvazn8X+++8fXbt2jWXLlsXUqVNjwoQJ8dBDD8X06dPjvffey/lESABA8yeABACoRps2bWLIkCFx5513Ztb95Cc/iaKiohr3KSoqinHjxsXw4cPjkUceiSlTptQ6crC4uLjKurZt28YLL7wQRx55ZLz88svx9ttv1yv8+/Wvfx2nnXZafP755/GjH/2o0rY777wzE1h26NAhnn/++Tj00EPjo48+iocffjgefvjhKsfbZ5994oknnmhSMyK3atUq7rnnnjjkkENi8eLFce2118a1116b2Z6fnx/XXXddzJ07d70LIPv06ROnn356/PznP6+277Rq1Sruuuuu2HPPPavd/6yzzop27drFWWedFQsWLIgrr7wyrrzyymrbtmrVqtJt+wAASXELNgBADYYNG1bpfU23X1fUoUOHePjhh+OVV16Jk08+ObbZZpvo0KFDFBQUxIYbbhh77LFHjBgxIp566qkan0HYuXPneOmll+KRRx6JIUOGxGabbRZFRUXRunXr2GKLLeKoo46Ke++9t9rJcH7+85/Hww8/HAcffHB06dIlCgpq/vfmXr16xZQpU+Kmm26K/fbbLzbaaKMoLCyMrl27xiGHHBJ//vOf4+WXX24ys19X9N3vfjfefvvtOOGEE2KTTTaJwsLC6N69eybYPeOMM3JdYo1OPvnkeOWVV+InP/lJbLLJJtGqVavYdNNN48QTT4x33nknjjnmmFr3P+WUU+Jf//pXXHzxxbHPPvtE586do6CgINq1axdbb711HHnkkfGHP/whvv7669hyyy3X0VkBAC1ZKt2QJ6QDAAAAANSBEZAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYgSQAAAAAEBiBJAAAAAAQGIEkAAAAABAYv4/L6zsVEZrB6MAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "predicted_labels2, ire2 = lib.predict_ae(ae2_trained, data_test, IREth2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fT75bpEnc7a2", + "outputId": "6523b469-d5df-4cb8-f3bc-9a47de13a7b6" + }, + "id": "fT75bpEnc7a2", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 212ms/step\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)\n", + "lib.ire_plot('test', ire2, IREth2, 'AE2')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 846 + }, + "id": "EpGtgYZVdAen", + "outputId": "b0f17d15-a252-47b8-b721-08292e1a92a9" + }, + "id": "EpGtgYZVdAen", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] [2.02] 0.4 \n", + "1 [1.] [1.84] 0.4 \n", + "2 [1.] [2.16] 0.4 \n", + "3 [1.] [2.17] 0.4 \n", + "Обнаружено 4.0 аномалий\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcxFJREFUeJzs3Xl4VdW5P/D3BEIYAyKSICCg4oCKOIO2Cg7gcNvSqlW0BWy1k14HfrdWeq1jW9qqda6ttYpDqa1zW3FAFNGKA1YsDjhVwIFR5ikEcn5/5OY0MdMJJGQn+XyeZz+es/fa67w7WZzSL2vvlUqn0+kAAAAAAEiInMYuAAAAAACgPKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAQD16++234wc/+EEMGDAgOnXqFKlUKrPNnTu3scsDAIAmQWgJAGy1oUOHZoK5yy67rNp25QO8z2+tWrWKLl26RP/+/ePkk0+O2267LdasWbNFNdR1Gzt27Nb/ECLir3/9a+y3335xyy23xNtvv12n+qGlu/jiiyv8ufz+979f5z4a6ntg4cKFcffdd8e3v/3tOPDAA2P77beP3Nzc6NKlS+yxxx4xZsyY+Nvf/hYlJSVb8RMAAMoTWgIAiVBSUhIrV66M999/P+6///4466yzol+/fvHQQw81dmlZWbNmTYwdOzaKiooiIqJHjx5x8sknxw9+8IM4++yz4+yzz478/PxGrnLLXXbZZVkF003B2LFjM9cyceLExi5nm5g7d27mmvv27dvY5VSSTqfj7rvvrrDvz3/+c+bPU2OZP39+HHnkkdGzZ88YPXp03H777fHqq6/GsmXLYtOmTbFy5cp455134q677oovf/nLsf/++8fs2bMbtWYAaC5aN3YBAEDLNHLkyOjZs2fmfUlJSSxdujRmzJgRH3/8cURELF26NE466aS4//7746tf/WrWfR900EFx8MEHZ91+8ODB2Rdejb///e+xfPnyiIjYa6+94pVXXol27dptdb/QEjzzzDMxf/78CvuWL18ef/3rX+Pkk0/eoj7r43vg008/jWeeeabCvj59+sSgQYOie/fusXbt2njllVfivffei4iI119/PQ477LCYOnVqHHTQQVtUNwBQSmgJADSK8847L4YOHVppf0lJSdx5553x/e9/P4qKiqKkpCS+//3vx4gRI6J9+/ZZ9X388cdv89mA//znPzOvR40aJbCEOrjzzjszr9u1axfr16/P7N/S0LI+vwd23HHH+Na3vhVjxoyJXXfdtdLxRx55JM4888xYunRprF69Ok4++eR4++23fQ8AwFZwezgAkCg5OTlxxhlnxK9+9avMvkWLFsXDDz/ceEVloWyWZUTpreFAdtasWRMPPPBA5v2vf/3rzOsnnngiFi1a1BhlRUREfn5+/PrXv44PPvggrrzyyioDy4iIr3zlKzF58uRo1apVRETMmzcv7rrrrm1ZKgA0O0JLACCRvvvd70bbtm0z76dPn96I1dSuuLg48zonx1+xIFsPPPBArF27NiIi+vXrF9/97ndj0KBBERGxadOm+OMf/9hotQ0YMCAuuOCCCt9F1TnooIPixBNPzLx/9NFHG7I0AGj2/I0aAEikvLy82HPPPTPvP/3000aspmrlF6cpf3vrGWecUWll4uoWfFmzZk3ccMMNMWLEiOjVq1e0bds2tttuu9h7773jnHPOiZdeeimrWsp/VpnXX389zjvvvNh7772ja9eukUqlYuTIkXW6xrLVmC+//PLMvssvv7zOqy+n0+l46KGHYsyYMbHbbrtF586do23bttG7d+8YOXJk3HnnnbFp06asapozZ05ceOGFMXjw4OjWrVu0adMm2rZtG927d48DDjggzjjjjLjzzjsrzH6NiOjbt29Wv6v6WGxoS2usSnFxcdx9993x9a9/PXbeeefo1KlTdOjQIfr16xejRo2Khx56KNLpdJXnTpw4MVKpVPTr1y+zb968edWuoN0Yyv8+vvGNb0QqlYpvfvObVR5PusMOOyzzeu7cuY1XCAA0A55pCQAkVvnnwW3YsKERK2kYf//73+Oss86KhQsXVthfVFQUK1asiDfffDNuvvnmOO200+L3v/991s/0jCgNVH/605/G5s2b67vsOvvXv/4VY8aMiVmzZlU69vHHH8fHH38cjzzySEyYMCEefPDBGDBgQLV91XRdS5YsiSVLlsQ///nPmDhxYpx++ulxzz331OelZKU+a5w2bVqceeaZ8cEHH1Q6Nnfu3Jg7d27ce++9MXjw4Lj//vsrLG7VFMybNy+mTZuWef+Nb3wjIiJOO+20uPDCC2Pz5s3xr3/9K2bNmpWZfZlk5YPfJPzZA4CmTGgJACRW+dmVBQUFjVhJ1Q4++OA4++yzIyJi6tSpMWfOnIiIOOqoo2KPPfao0Lb8rNGIiD//+c9x+umnZ4KNVq1axRe+8IXYddddY82aNfHcc89lrn/SpEnx4YcfxtNPP53VbapXXXVVZmbkLrvsEgcffHC0b98+5s6dG7m5uXW6xq9+9aux9957x8svvxyvvPJKRFS/KnNVqy9Pnz49vvSlL8WqVasiIiI3NzcOOuig6N+/f+Tm5sbcuXPj+eefjw0bNsQ777wThx56aMyYMaPSzysi4vrrr68w47Nbt24xePDg6NGjR6RSqVi2bFnMmTMn3n777SoDozFjxsRnn31W6+8qIuq06nR91ljefffdF6effnrm0QPt2rWLwYMHR9++fSMnJyfefffdmDFjRmzatClefPHFGDJkSLzyyisV/qzsueeecfbZZ8fq1aszz1js1KlTjB49eouur77dfffdmVmihxxySOy2224REVFYWBjHHHNMPP744xFROtuyKYSWs2fPzrzu3bt3I1YCAM1AGgBgKx1xxBHpiEhHRPrSSy+ttl1Zm4hIP/PMMzX2+c4771Rof9NNN9VLDQ1lzJgxmc+/4447amz7/vvvpzt27Jhpf/DBB6ffe++9Cm02b96cvuaaa9I5OTmZdv/93/9dbZ/lf1atW7dOd+7cOf3QQw9Vardhw4Ytubz0pZdeWuef74IFC9Ldu3fPnDd69Oj0p59+WqndwoUL01/96lcz7fbZZ5/0pk2bKrQpLi5Od+vWLdNmwoQJ6Y0bN1b5uZ999ln69ttvT//yl7+s8nhdfld1UZ81vvHGG+l27dqlIyKdSqXS//M//5Nevnx5pXYffPBB+gtf+ELmM4877rgq+/vwww8zbfr06bOll1jv+vfvX+2f8T/+8Y+ZY927d08XFxfX2l9jfg+sXr06vd1222U+/6qrrtqmnw8AzY2ZlgBA4mzatCnOO++8zPv8/Pw49dRTsz5/8uTJsXTp0qzbX3HFFdG1a9c61bg1rrjiilizZk1EROy6667x5JNPRufOnSu0ycnJiXHjxkUqlYpx48ZFRMTNN98cF1xwQYXnE1alpKQk/vrXv8bhhx9e6VheXl49XUXt/vd//zcWL14cERHnnntuXH/99VW2KygoiPvuuy+GDx8eTz/9dMyePTvuv//+OOWUUzJt5syZk/mdHnbYYXHRRRdV+7ldu3aNM844ox6vJDv1WeO5554b69evj4iIa665Ji644IIq2+28887x+OOPx8EHHxxvvfVWPPbYY/HSSy/FIYccshVXsm288MIL8d5770VE6Qzc8r/viIiRI0dGx44dY82aNbF48eJ47LHH4ktf+lLW/W/r74HLLrss84zSjh07xpgxY7a4LwDA7eEAQEKUlJTE0qVL4x//+Ef84he/iJdffjkiIlq3bh233357bL/99ln39corr2RuZc7G//zP/2yz0HLFihXx5z//OfP+V7/6VaXAsrzzzjsv/vCHP8Sbb74ZJSUlceutt8aECRNq/IyTTjqpysByW1qyZEnmWY2FhYXxy1/+ssb2rVq1ip/97GcxZMiQiIj44x//WCHEKru9PCJihx12aICKt1591fj666/H008/HRER++23X5x//vk1tu/QoUP85Cc/iVGjRkVE6c+uKYSW5RfYOe6446Jbt24Vjrdv3z5OPPHETLs777yzTqHltvwemDp1alx33XWZ9+PHj0/sOAWApsLq4QBAoxg2bFiFVYtbtWoVBQUF8bWvfS0TWO6+++7x8MMPx4knntjI1dafF154IYqKiiKi9HmHtYUwOTk58a1vfSvz/plnnqn1M+oyK7WhPPXUU7Fx48aIiPja176W1bM4DznkkOjQoUNERDz//PMVjpV/PuAzzzwT7777bj1WWz/qq8bJkydnXo8aNSqrVb2PPPLIzOvP/+ySaMOGDfGXv/wl8778auHllX/25t/+9rdYtmxZg9dWV/PmzYtTTz0184zSL3zhC/GjH/2okasCgKbPTEsAIJEKCgrirrvu2qIFUS699NK47LLL6r+oevDaa69lXh988MHRunXtfx077LDDKpyfTqdrDLIOOOCArSuyHsyYMSPz+l//+lecc845dTp/+fLlsXbt2kyI2bt37xg8eHC8+OKLsXLlyjjggAPim9/8Znz1q1+Nww47rE4rqzeU+qqx/M/umWeeiXnz5tV6Tvr/FrOJiPjoo4/qXvw29sgjj8SKFSsiIqJLly7VhvdDhw6NXr16xccffxwbN26Me++9N37wgx9k9Rnb4nvgs88+i+OOOy5zG3qvXr3iT3/6U7Rq1apBPxcAWgKhJQDQKEaOHBk9e/bMvP/ss8/igw8+yNzOuWjRovjiF78YDzzwQPzXf/1XY5VZ75YsWZJ53adPn6zO6du3b+b1xo0bY/Xq1ZGfn19t+yTcllp+5ffnn39+i2b/LV++PBNaRkT84Q9/iCOPPDIWLVoUa9asiVtuuSVuueWWaN26dQwaNCgOP/zwGDFiRBx11FGNFhrVR43lf3aPPfZYnWsoe65ikpW/Nfzkk0+u9lmrOTk5cfrpp2ceL3DnnXdmHVo2tDVr1sTxxx8fb7/9dkREbL/99vHEE09Er169GrkyAGge3B4OADSK8847L2666abM9qc//SlefvnleP3112PfffeNiNKAbtSoUfHBBx80crX1p2wBnoioEMjV5PPtVq9eXWP7du3a1b2werZy5cqt7mPTpk0V3g8YMCBef/31+O///u8KzwHdtGlTzJw5M37961/HiBEjok+fPnHbbbdt9edvifqocWt/dmW3KSfVwoUL48knn8y8/8Y3vlFj+/K3jr/88ssxZ86cBqstWxs2bIgvf/nLmUdZdOrUKR577LEYMGBAI1cGAM2H0BIASJSBAwfGk08+mZmFuWbNmjjzzDMbuar607Fjx8zrtWvXZnXO59t16tSpXmtqCOWD1l//+teRTqfrvJWfYVqmoKAgbrjhhli0aFFMmzYtrrzyyjjuuOMqzDz95JNP4qyzzopzzz13W1xqvddY/mf34IMPbtHPLsnuueeeCsHqEUccUeH5tp/f9t577wrnl5+l2RiKi4vjxBNPzDxftl27dvG3v/0tDjrooEatCwCaG6ElAJA43bt3jxtvvDHzftq0afHoo482YkX1p/yt2/Pnz8/qnLlz52Zet2nTpkmElgUFBZnXCxcurPf+8/Ly4ogjjoiLL744Jk+eHEuXLo3HHnssvvCFL2Ta3HjjjXVaPTopNTb0z66xbW3oeM8990RJSUk9VVM3mzdvjtNOOy2zWFJubm7cf//9ccQRRzRKPQDQnAktAYBEKlu8pMzFF1/ciNXUn/322y/z+uWXX87qVt4XXnihwvnZrCZd3+r6mYccckjm9T/+8Y/6LqeS3NzcOPbYY+Opp56qMDPvb3/7W6W2jfHzi8i+xob42TXWNX/eP//5z3jjjTcy7w866KA45JBDstrKFq36+OOPY+rUqdu89pKSkhg7dmzcf//9ERHRqlWrmDRpUhx//PHbvBYAaAmElgBAYpVf+XfWrFnx17/+tfGKqSeHHnpoZtGRJUuW1DqDtKSkJO64447M+yOPPLJB66tO27ZtM6+Li4trbT9ixIhMyPTCCy/E66+/3mC1lZeXlxfDhw/PvF+0aFGlNnW9lvpWW43lF5568MEHq7yGumrsay5TfpblPvvsEy+//HK8+OKLWW3HHntslf1sK9/73vfinnvuiYjSEPj222+Pk046aZvXAQAthdASAEiso48+Og499NDM+5/+9KeNWE396NKlS5xyyimZ9z/84Q9rXFjnpptuitmzZ0dE6UrK3/nOdxq8xqpsv/32mdeffPJJre179uyZWWAlnU7H6NGjY9WqVVl9VklJSYVV1iNKV8TO9pbgjz76KPO6e/fulY7X9VqyVV81HnzwwTF06NCIiFi/fn1885vfjI0bN2bV78aNG6tcPbxLly6Rk1P6V/8lS5Y0SnBZXFwckyZNyryvbQGezyvf/qGHHqp1Qar6NG7cuPj973+feX/zzTfH6NGjt9nnA0BLJLQEABLtkksuybx+5ZVX4vHHH2/EaurHJZdcklmQ5913340RI0bEv//97wptSkpK4vrrr49x48Zl9p199tlVLk6zLZS/nfnJJ5/MaoXrn/3sZ9GjR4+IiPjXv/4VBx98cIVVoz/v448/jmuvvTZ23333+POf/1zh2COPPBK77bZbXH311RWe8VleUVFR3HTTTZnbdyMijjvuuBqv5ZFHHsk6EKxNfdZ44403ZsbIlClT4vDDD4+XXnqp2s9+991348orr4y+fftWeUt5Xl5e9O/fPyJKw8OHH344q2saO3ZsZkGcrR17Zc/1jCidqThq1Kg6nf/lL3858zzXdevWxX333bdV9WTr0ksvjWuvvTbz/le/+lV8//vf3yafDQAtWevGLgAAoCYjRoyIQw45JBPYXHnllRVuE61K+XAkG+3bt49f/epXW1VnXeyyyy5x2223xemnnx6bN2+OGTNmxO677x5f/OIXY5dddok1a9bEc889V2EW4ODBg7dpjZ938MEHR+/eveOjjz6KBQsWxB577BHDhw+Pbt26ZZ6XeNBBB1WYRbrjjjvGI488Escff3wsXbo03nnnnRgxYkT07NkzDj744Nhhhx2iuLg4li5dGm+88UZ8+OGHNdbwwQcfxA9/+MP44Q9/GDvttFMMHDgwM0tx4cKF8eKLL8ayZcsy7U8//fQKM3XLHHfccdGuXbtYv359zJo1K/bcc88YOnRodOnSJXMtw4cPr3ALd7bqq8a99947/vSnP8Upp5wS69ati5deeikGDx4cu+yyS+y///7RtWvX2LBhQyxevDj+9a9/ZTVj9MQTT4yf//znmc+dOHFi7LrrrpGbm5tpc/XVV9f5mrNV/pbuww8/PHr37l2n89u1axdf/epX46677sr0961vfava9vXxPTB58uS44oorMu8LCgpi3rx5cc4552TV5xVXXBFdu3bNugYAoJw0AMBWOuKII9IRkY6I9KWXXlptu7I2EZF+5plnsu7/0UcfrXDuU089VWMNdd06d+5c94v+nDFjxmT6u+OOO7I6529/+1u6oKCg1vpGjRqVXrt2bY19lW/fUP72t7+l27RpU22dY8aMqfK8uXPnpo866qisfx8FBQXpxx9/vEIf9913XzqVSmV1fk5OTvoHP/hBeuPGjdVeyy233FJjfzWN4+rUd43pdDo9a9as9AEHHJD1z65v377p1157rcq+VqxYkd5jjz1qPP/zyo/rPn361PlnUmbp0qUVxs7vf//7LernySefzPSRSqXS//73vyscr+/vgTvuuGOL+4uI9IcffrhF1wkApNNmWgIAiXf88cfHgQceGDNnzoyI0tlLRx11VCNXtfX+67/+K95///24/fbb4+9//3u8+eabsXTp0mjXrl3suOOOMWzYsBg9enSF1aQb03/913/FzJkz4+abb47nn38+5s+fH2vWrIl0Ol3jeX369ImnnnoqZsyYEffdd19Mnz49Pvroo1i+fHm0bt06tt9+++jfv38ceOCBMXz48Bg6dGhmEZ8yJ510UixYsCCefPLJ+Mc//hGvv/56/Pvf/44VK1ZERETnzp1jt912iy984QsxevToGDBgQI01fe9734t99tknfve738VLL70Un3zySaxbt67Wa6lJfdcYEbHvvvvGzJkz48knn4yHH344/vGPf8Snn34aK1asiLy8vNhhhx1i9913j0MOOSRGjBgRQ4YMqXal8M6dO8crr7wSv/nNb+LRRx+Nt99+O1asWLFNnm/5pz/9KXMbfl5e3hYvYHPkkUdGjx49YsGCBZFOp+POO++ssGAXANB8pNJb8zczAAAAAIB6ZiEeAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJErrxi6gqSgpKYlPP/00OnXqFKlUqrHLAQAAAIAmJZ1Ox+rVq2PHHXeMnJya51IKLbP06aefRu/evRu7DAAAAABo0j766KPo1atXjW2Ellnq1KlTRJT+UPPz8xu5moZRXFwcTz75ZAwfPjxyc3MbuxxoUMY7LYWxTktivNOSGO+0JMY7LUlzH++rVq2K3r17Z3K2mggts1R2S3h+fn6zDi3bt28f+fn5zfIPBpRnvNNSGOu0JMY7LYnxTktivNOStJTxns2jFy3EAwAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAidK6sQtoCdLpdBQXF0dJSUljl1Kj4uLiaN26dWzYsCE2b97c2OU0a61atYrc3NzGLgMAAAAgkYSWDWjjxo2xePHiWLduXZMIAdPpdBQWFsZHH30UqVSqsctp9vLy8qJbt26Rn5/f2KUAAAAAJIrQsoGsW7cuPvroo2jVqlVst9120a5du2jVqlWiw8CSkpJYs2ZNdOzYMXJyPDmgoZTNvF25cmV88sknERGCSwAAAIByhJYNZOnSpZGbmxt9+vSJVq1aNXY5WSkpKYmNGzdG27ZthZYNrF27dtGpU6f4+OOPY+nSpUJLAAAAgHIkUw1g06ZNsXbt2ujatWuTCSzZ9lKpVHTu3DmKioqiuLi4scsBAAAASAyhZQPYtGlTRJQ+sxBqUrYYT1N45ikAAADAtiK0bEBJfn4lyWCMAAAAAFQmtAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSWNqm/fvpFKpWLixImZfRMnToxUKlVhy8nJifz8/Nhvv/1i/PjxsWTJkmr7/Py51W3Tpk1r+AsEAAAAoM5aN3YBUJ0OHTrESSedFBGlq2vPmzcvZsyYEbNmzYo77rgjnnvuuejfv3+1548YMSIKCwurPV7TMQAAAAAaj9CSxOrWrVuFGZgREW+++WYcccQRsWjRojj//PPj0Ucfrfb8iy66KIYOHdqwRQIAAABQ79weTpOy1157xbhx4yIiYsqUKVFUVNTIFQEAAABQ34SWNDkDBw6MiIji4uJYtmxZI1cDAAAAQH0TWtLkrFq1KiIiWrVqFd26dWvkagAAAACob0JLmpyy51gee+yxkZub28jVAAAAAFDfLMTTWA48MGLhwsauooJUROSn05FKpWpuWFgYMXPmNqmpTNnq4bfeemtMmjQp+vTpEzfccEON5wwbNqzaY507d44VK1bUc5UAAAAA1AehZWNZuDDik08au4oKUv+3JcW8efOqDFAPPvjgePLJJ6Nz5841nj9ixIgoLCys8lj79u3rpUYAAAAA6p/QsrFUE6Y1pnREpP9vpmWN4eU2qr1Dhw5x0kknRUREUVFRvP322/H666/Hyy+/HN/97nfj3nvvrfH8iy66KIYOHboNKgUAAACgPgktG8s2vr06G+mSkli1alXk5+dHKqfxH3farVu3mDhxYoV9Dz74YJxyyinx5z//OQ4//PD4wQ9+0DjFAQAAANBgGj+Zgjr42te+FhdddFFERFxyySWxcuXKRq4IAAAAgPomtKTJGT9+fPTo0SM+++yz+PWvf93Y5QAAAABQz4SWNDnt27ePn/zkJxERcd1118Xy5csbuSIAAAAA6pNnWtIknXnmmXHNNdfEBx98EFdffXX87Gc/q9TmF7/4RaVnYpZ32mmnxfDhwxuwSgAAAAC2hNCSJik3Nzd++tOfxqhRo+LGG2+McePGxfbbb1+hzRNPPFFjH4MGDRJaAgAAACSQ0JJGNXfu3Er7xo4dG2PHjq313FNPPTVOPfXUSvvT6XQ9VAYAAABAY/FMSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASJQmGVrecsstMXDgwMjPz4/8/PwYMmRIPPbYYzWec99998Uee+wRbdu2jX322ScmT568jaoFAAAAAOqiSYaWvXr1il/84hfx6quvxsyZM+PII4+Mr3zlK/Hmm29W2f6FF16IUaNGxbe//e147bXXYuTIkTFy5Mh44403tnHlAAAAAEBtmmRo+aUvfSmOP/746N+/f+y2227xs5/9LDp27Bgvvvhile2vv/76OPbYY+OHP/xh7LnnnnHllVfG/vvvHzfddNM2rhwAAAAAqE3rxi5ga23evDnuu+++WLt2bQwZMqTKNjNmzIhx48ZV2DdixIh4+OGHq+23qKgoioqKMu9XrVoVERHFxcVRXFxcY03FxcWRTqejpKQkSkpKsrySxpdOpzP/bUp1N2UlJSWRTqejuLg4WrVq1djltChlf45r+/MMTZ2xTktivNOSGO+0JMY7LUlzH+91ua4mG1rOnj07hgwZEhs2bIiOHTvGQw89FAMGDKiy7cKFC6OgoKDCvoKCgli4cGG1/U+YMCEuv/zySvuffPLJaN++fY21tW7dOgoLC2PNmjWxcePGLK4mWVavXt3YJbQYGzdujPXr18f06dNj06ZNjV1OizRlypTGLgG2CWOdlsR4pyUx3mlJjHdakuY63tetW5d12yYbWu6+++4xa9asWLlyZdx///0xZsyYePbZZ6sNLutq/PjxFWZnrlq1Knr37h3Dhw+P/Pz8Gs/dsGFDfPTRR9GxY8do27ZtvdSzLaTT6Vi9enV06tQpUqlUY5fTImzYsCHatWsXhx9+eJMaK81BcXFxTJkyJY455pjIzc1t7HKgwRjrtCTGOy2J8U5LYrzTkjT38V52J3M2mmxo2aZNm9h1110jIuKAAw6IV155Ja6//vr43e9+V6ltYWFhLFq0qMK+RYsWRWFhYbX95+XlRV5eXqX9ubm5tQ6azZs3RyqVipycnMjJaTqPDS27JbysdhpeTk5OpFKprMYVDcPPnpbCWKclMd5pSYx3WhLjnZakuY73ulxTs0mmSkpKKjyDsrwhQ4bE1KlTK+ybMmVKtc/AZNvp27dvpFKpmDhxYmbfxIkTI5VKVdhycnIiPz8/9ttvvxg/fnwsWbKk2j4/f25127Rp0+pUa1ldY8eO3bKLBQAAACArTXKm5fjx4+O4446LnXbaKVavXh2TJk2KadOmxRNPPBEREaNHj46ePXvGhAkTIiLivPPOiyOOOCKuueaaOOGEE+Lee++NmTNnxq233tqYl0EtOnToECeddFJElM5enTdvXsyYMSNmzZoVd9xxRzz33HPRv3//as8fMWJEjbNpP3+s7Jb4sgWJAAAAAGgcTTK0XLx4cYwePToWLFgQnTt3joEDB8YTTzwRxxxzTEREzJ8/v8LtzYceemhMmjQpLr744vjxj38c/fv3j4cffjj23nvvxroEstCtW7cKMzAjIt5888044ogjYtGiRXH++efHo48+Wu35F110UQwdOrRhiwQAAACg3jXJ0PIPf/hDjceruu335JNPjpNPPrmBKmJb2WuvvWLcuHHxv//7vzFlypQoKiqq8tmjAAAAADRdzeaZlrQcAwcOjIjSFbWWLVu21f1ddtllFVZL//yzL+fOnVvpnLVr18b48eNj1113jby8vCgsLIwxY8bEJ598stX1AAAAALR0TXKmJS3bqlWrIiKiVatW0a1bt63ub9CgQTFmzJi48847IyJizJgxFY537NixwvuVK1fGoYceGvPnz48vfvGLsffee8eMGTPirrvuimeffTZef/316Ny581bXBQAAANBSCS1pcsqeY3nsscdGbm7uVvc3cuTIGDlyZCa0/PxzND/v4YcfjhEjRsRzzz0X+fn5ERGxfPnyOPLII2PWrFnxm9/8JsaPH7/VdQEAAAC0VELLRnLggQfGwoULG7uMStLpdIVbpatSWFgYM2fO3EYVlSpbPfzWW2+NSZMmRZ8+feKGG26o8Zxhw4ZVe6xz586xYsWKLaqlQ4cOcccdd2QCy4iI7bbbLi666KI49dRT46mnnhJaAgAAAGwFoWUjWbhwoecf1mLevHlVBqgHH3xwPPnkk7Xegj1ixIgoLCys8lj79u23uK4DDzwwevToUWn/nnvuGRHh9woAAACwlYSWjaS6MK2xZTvTclvo0KFDnHTSSRERUVRUFG+//Xa8/vrr8fLLL8d3v/vduPfee2s8/6KLLoqhQ4fWe1077bRTlfvLZl5u2LCh3j8TAAAAoCURWjaSbX17dTZKSkpi1apVkZ+fHzk5jb+wfLdu3So9X/LBBx+MU045Jf785z/H4YcfHj/4wQ+2eV1J+NkAAAAANGfSF5qUr33ta3HRRRdFRMQll1wSK1eubOSKAAAAAKhvQkuanPHjx0ePHj3is88+i1//+tf11m/ZSuSbNm2qtz4BAAAAqDuhJU1O+/bt4yc/+UlERFx33XWxfPnyeum3V69eERHx5ptv1kt/AAAAAGwZz7SkSTrzzDPjmmuuiQ8++CCuvvrq+NnPflapzS9+8YtKz8Qs77TTTovhw4dn3p944olx9dVXx9FHHx1HHnlkdOrUKSIifvnLX8b2229f79cAAAAAQNWEljRJubm58dOf/jRGjRoVN954Y4wbN65SsPjEE0/U2MegQYMqhJZXXnll5OTkxIMPPhgPP/xwbNy4MSIiLr74YqElAAAAwDYktKRRzZ07t9K+sWPHxtixY2s999RTT41TTz210v50Or1FtbRt2zZ++ctfxi9/+csqj9dWV9++fbf4swEAAAD4D8+0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaNqB0Ot3YJZBwxggAAABAZULLBpCTU/pj3bx5cyNXQtKVjZGyMQMAAACA0LJB5ObmRm5ubqxZs6axSyHh1q9fH61atYrc3NzGLgUAAAAgMYSWDSCVSkWnTp1i5cqVsX79+sYuh4TavHlzrFy5Mtq3bx+pVKqxywEAAABIjNaNXUBz1a1bt1i/fn3Mnz8/8vPzo1OnTtGqVatEh1MlJSWxcePG2LBhg9uVG1A6nY6ioqJYtmxZlJSURPfu3Ru7JAAAAIBEEVo2kFatWkXv3r1j6dKlsXr16lixYkVjl1SrdDod69evj3bt2iU6XG0uOnToEIWFhdGmTZvGLgUAAAAgUYSWDahVq1ZRUFAQ3bt3j+Li4igpKWnskmpUXFwc06dPj8MPP9wzFhtY69ato3Vrf/wAAAAAqiI12QZSqVSTmE3XqlWr2LRpU7Rt21ZoCQAAAECj8eBCAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoTTK0nDBhQhx00EHRqVOn6N69e4wcOTLeeeedGs+ZOHFipFKpClvbtm23UcUAAAAAQLaaZGj57LPPxtlnnx0vvvhiTJkyJYqLi2P48OGxdu3aGs/Lz8+PBQsWZLZ58+Zto4oBAAAAgGy1buwCtsTjjz9e4f3EiROje/fu8eqrr8bhhx9e7XmpVCoKCwsbujwAAAAAYCs0ydDy81auXBkREV27dq2x3Zo1a6JPnz5RUlIS+++/f/z85z+Pvfbaq8q2RUVFUVRUlHm/atWqiIgoLi6O4uLieqo8Wcquq7leH5RnvNNSGOu0JMY7LYnxTktivNOSNPfxXpfrSqXT6XQD1tLgSkpK4stf/nKsWLEinn/++WrbzZgxI957770YOHBgrFy5Mq6++uqYPn16vPnmm9GrV69K7S+77LK4/PLLK+2fNGlStG/fvl6vAQAAAACau3Xr1sVpp50WK1eujPz8/BrbNvnQ8vvf/3489thj8fzzz1cZPlanuLg49txzzxg1alRceeWVlY5XNdOyd+/esXTp0lp/qE1VcXFxTJkyJY455pjIzc1t7HKgQRnvtBTGOi2J8U5LYrzTkhjvtCTNfbyvWrUqunXrllVo2aRvDz/nnHPi73//e0yfPr1OgWVERG5ubuy3337x/vvvV3k8Ly8v8vLyqjyvOQ6a8lrCNUIZ452WwlinJTHeaUmMd1oS452WpLmO97pcU5NcPTydTsc555wTDz30UDz99NPRr1+/OvexefPmmD17dvTo0aMBKgQAAAAAtlSTnGl59tlnx6RJk+KRRx6JTp06xcKFCyMionPnztGuXbuIiBg9enT07NkzJkyYEBERV1xxRQwePDh23XXXWLFiRVx11VUxb968OPPMMxvtOgAAAACAyppkaHnLLbdERMTQoUMr7L/jjjti7NixERExf/78yMn5z0TS5cuXx1lnnRULFy6M7bbbLg444IB44YUXYsCAAduqbAAAAAAgC00ytMxm7aBp06ZVeH/ttdfGtdde20AVAQAAAAD1pUk+0xIAAAAAaL6ElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEqV1YxcAAAAAQAuXTlfcSkqqft0cjtXQLrVxY+z42msRgwZF9OnT2L+VRiW0BAAAgG0pSeHJNg5ktuRYatOm6PP665H69NOInJwmfz1qruYYEVEa1B0UEZsOPVRo2dgFAAAAkKV16yLmzInU7Nmxy7PPRs6cOf8JcVpSuNGUr4c6ax0Rgxq7CNjWBLlCSwAAgMRZvjzi7bdLt7fe+s/refMi0uloHRF7N3aNQNOQkxORSv1nK/8+22P10ce2PtZE69pcUhJvzZkTewwY0Ngjp9EJLQEAABpDOh2xcGHlYPKttyIWLWrs6pqepAUTzTBMaaxjm0pKYvYbb8Q+++4brVu3TkxdTeLnTJNTUlwc/548OfbYZZfGLqXRCS0BAAAaUklJxNy5/wkly4eUK1dm309+fsSee0bsuWds3m23eO2zz2LQgQdG69zcphmm1Ocx4Uyzli4ujvmTJ8fexx8fkZvb2OUA24jQEgAAoD5s3Bjx/vuVZ06+807E+vXZ99O9e2k4OWBAJqSMPfeM2HHHTDhXUlwcn0yeHPsKcQBopoSWAAAAdbF2bcScOZVnTn7wQcSmTdn306dPxVCyLKTs2rXhageAJkJoCQAAUJVly6pfDCdbrVpF7Lpr5WBy990jOnZsuNoBoIkTWgIAAC1XOh2xYEHFULIspFy8OPt+2rYtDSI/f0t3//4Rbdo0XP0A0EwJLQEAgOZv8+aKi+GUDylXrcq+n86dq76lu0+f0lmVAEC9EFoCAADNx8aNEe+9V/ViOBs2ZN9PQUHVi+H06GGlagDYBoSWAABA07NmTfWL4WzenH0/fftWPXNyu+0arHQAoHZCSwAAILk++6zqW7rnz8++j9atq18Mp0OHhqsdANhiQksAAKBxpdMRn35a9WI4S5Zk30+7dlUvhrPrrhbDAYAmRmgJAABsG5s3R3z4YeVgcs6cui2G06VL9Yvh5OQ0WPkAwLYjtAQAAOpXUVH1i+EUFWXfT2Fh1YvhFBZaDAcAmjmhJQAAsGVWr656MZx//zv7xXBSqaoXw9ljD4vhAEALJrQEAABqtnRp1YvhfPRR9n20bh3Rv3/Vi+G0b99wtQMATZLQEgAAKF0M55NPql4MZ+nS7Ptp1650lmRVi+Hk5jZc/QBAsyK0BACAlmTz5tLbt6taDGf16uz76dKlYjBZ9nqnnSyGAwBsNaElAAA0R0VFEe++W/mW7nffrdtiOD16VL0YTkGBxXAAgAYjtAQAgKZs9eqKsybLL4ZTUpJdH2WL4Xx+5uQee5TOqAQA2MaElgAA0BQsWVL1Yjgff5x9H7m5VS+Gs9tuFsMBABJFaAkAAEmRTpeGkFUthvPZZ9n307591Yvh7LKLxXAAgCZBaAkAANvapk0VF8MpCynnzIlYsyb7frbbrurFcHr3thgOANCkCS0BAKChbNhQ/WI4Gzdm38+OO1a9GE737hbDAQCaJaElAABsrVWrql4M58MP67YYTr9+VS+G07lzw9YPAJAwQktKFRX5V3oAgJqk09UvhvPJJ9n3k5tbuvBNVYvhtGvXcPUDADQhQktKnX56tP773+OY/Pxo1adPRI8eEQUF/9kKCyu+79xZyAkANE/pdMRHH1UOJt96K2LZsuz76dCh+sVwWvtrOABATZrk35YmTJgQDz74YMyZMyfatWsXhx56aPzyl7+M3Xffvcbz7rvvvvjJT34Sc+fOjf79+8cvf/nLOP7447dR1Qm3aFGkioqi/ZIlpTMIapOXVzHErC7cLCiI6NJFwAkAJM+mTREffFD5lu45cyLWrs2+n65dq14Mp1cvi+EAAGyhJhlaPvvss3H22WfHQQcdFJs2bYof//jHMXz48HjrrbeiQ4cOVZ7zwgsvxKhRo2LChAnxX//1XzFp0qQYOXJk/POf/4y99957G19BAu26a6SXL4+NH38cbVatilQ6XXP7oqKI+fNLt9q0aVN7uFn2XsAJANS39eurXwynuDj7fnr2rBxM7rlnxA47+PsLAEA9a5Kh5eOPP17h/cSJE6N79+7x6quvxuGHH17lOddff30ce+yx8cMf/jAiIq688sqYMmVK3HTTTfHb3/62wWtOvDvuiE3FxfH45Mlx/PDhkbtyZcSiRRELF5b+t2z7/PslS0pvoarJxo2lt1h99FHtdbRpU7oKZnWzNsvv2247/wcBAPiPlStju3feidSSJRVDyg8/rP3vK2VyciovhrPnnhbDAQDYxppkaPl5K1eujIiIrl27VttmxowZMW7cuAr7RowYEQ8//HCV7YuKiqKoqCjzftWqVRERUVxcHMV1+Rf5JqTsuorT6Yjtty/dBgyo+aRNmyKWLi29vXzx4or/XbQoYvHizH9jyZJI1bZ65saNER9/XLrVIp2bG9G9e6TLQszu3SPdvXtEYWHpfwsKMv+Nrl0FnFSQGe/N9M8zlDHWaXbS6dK/X8yZE6k5cyLefjvzOvfTT6Pqf76uops2bSL694/0HnuUbnvuGek99ihdDKdt26pP8ueIBPH9TktivNOSNPfxXpfrSqXT2f6zczKVlJTEl7/85VixYkU8//zz1bZr06ZN3HnnnTFq1KjMvt/85jdx+eWXx6JFiyq1v+yyy+Lyyy+vtH/SpEnRvn37+im+pdm8OfJWr468FStKt+XLI2/lyshbsSLalu0r21atqj3grIOS1q2jqHPn0q1Llyjq0iU2bLddhfdFXbrEhi5dorhjR8+fAoDGVlIS7ZYujU4ffRSdPv44On78cXT6+OPo9NFH0WbNmqy72dS2bazu1StW9+4da3r1Kn3dq1esKyyMdKtWDXgBAAB83rp16+K0006LlStXRn5+fo1tm/xMy7PPPjveeOONGgPLLTF+/PgKMzNXrVoVvXv3juHDh9f6Q22qiouLY8qUKXHMMcdEbm5uo9ayafPmiM8++8+MzRpmcsbixbUGnDmbNkW7zz6Ldp99Vutnp1u3Lr1FvdwszgozN8vN5IyuXQWcTVSSxjs0JGOdxCsujvjgg8xsydT/zZyMd96J1Lp1WXeT3n77KNljj/ioQ4fY8aijImfvvUtnTvbqFR1TqejYgJcAjcH3Oy2J8U5L0tzHe9mdzNlo0qHlOeecE3//+99j+vTp0atXrxrbFhYWVppRuWjRoigsLKyyfV5eXuTl5VXan5ub2ywHTXmJuMbc3NKH3ffsWXvbkpLSgLO252+WhZybN9fYXWrTpohPP4349NOo9Yby1q1LH75f2/M3CwpKb7cXcCZOIsY7bAPGOo1u/fqId96pvBjOe+/V7bbrXr2qXAwntcMOUVJcHK9Pnhw9jz8+WhvvtBC+32lJjHdakuY63utyTU0ytEyn0/Hf//3f8dBDD8W0adOiX79+tZ4zZMiQmDp1apx//vmZfVOmTIkhQ4Y0YKVsEzk5pcHhDjtE7LNPzW3LAs7aws2FC7MKOGPTpogFC0q32rRq9Z9FhmpbSV3ACUBTtWLFfwLJsu2ttyLmzq3bYjg771z1YjjN9I4XAAAqapKh5dlnnx2TJk2KRx55JDp16hQLFy6MiIjOnTtHu3btIiJi9OjR0bNnz5gwYUJERJx33nlxxBFHxDXXXBMnnHBC3HvvvTFz5sy49dZbG+06aATlA8699665bUlJxLJlNQeb5WdwbtpUc3+bN9ct4Nxhh+qDzfL7tt++tD0AbCvpdOn//pUPJcteZ/O/c2XatInYfffKMyf7969+MRwAAFqEJhla3nLLLRERMXTo0Ar777jjjhg7dmxERMyfPz9yys1UO/TQQ2PSpElx8cUXx49//OPo379/PPzww7F3bcEVLVdOTkS3bqXbXnvV3LakJGL58trDzbItm4Bz4cLSLZs6ywLOqmZtln/frZuAE4DslZREzJ9fMZQsCylXrMi+n44dq7ylO/r1K33UCgAAfE6T/FtiNgueT5s2rdK+k08+OU4++eQGqIgWLyendMbj9ttnH3DWFm6W3aJe23O+Skr+c86//lV7neVncNY0k3OHHQScAC1FcXHE++9XDibfeSeiDovhRLdulW/pHjCg9BnVqVqfFA0AABlNMrSEJq18wDlgQM1t0+mKAWdtMznrEnBmU2e3brU/f7NsBqeZMgDJt25d9Yvh1HYXQHm9e1c9c7Jbt4arHQCAFkXKAEmWSkV07Vq67blnzW3T6dJb9bK9RX3jxpr7Kykpnem5eHHE7Nm111kWcNa2kvoOOwg4ARra8uVVL4Yzb17dFsPZZZeqF8Pp1Klh6wcAoMWTHEBzkUpFbLdd6ZZtwJlNuLlwYe0BZzodsWRJ6fbGG7XXuf32tYebBQWlq60LOAGqlk6XfkdXtRhONs9ELpOXV/1iOHl5DVc/AADUQBoALVH5gHOPPWpum05HrFxZ+/M3y14XFdXe39KlpVu2AWdtz98sLCydwZmbW7efA0BTUFJSOkPy84vhvP123RbD6dSp+sVwPMMYAICEEVoCNUulIrp0Kd12373mtul0xKpV2T1/c9GiiA0bau+vLOB8883aay0fcNY0k7N792yvHmDb2bix+sVw1q/Pvp8ddqh6MZwdd7QYDgAATYbQEqg/qVRE586l22671dw2nY5YvbrmWZvl99UWcEZEfPZZ6fbWW7U2bd21awzr0CFaXXddxYCzqlvU27TJ7voBsrF2bdWL4bz/ft0Ww9lpp6pnTm6/fcPVDgAA24jQEmgcqVREfn7plm3AmU24uWhRVjOSUsuWRf6yZREffVR7rV271v78zcJCASdQ0bJl1S+Gk61WrapfDKdjx4arHQAAGpnQEki+8gFn//41t02nI9asqTXcTC9aFJs//TRa1/YMzojS4KEsfKjNdttlf4u6BS6g6UunIxYsqHoxnEWLsu8nL680iPz8Ld277uq7AgCAFkloCTQvqVTpYhOdOpX+n/1qbCoujsmTJ8fxhx8euZ99VvvzNxcujFi3rvbPX768dJszp/a2XbrUHm6WbUILaFybN1e/GM7Kldn3k59f9S3dfftaDAcAAMoRWgItW8eOpbMjawg4M8rP4KztFvW1a2vvb8WK0u2dd2pvWxZw1raSekFBRNu2tfcHVG3jxoj33qt6MZxsnq1bpnv3qhfD6dHDYjgAAJAFoSVAtjp2LN122aX2tmvXZhduLlpUGobWpi4BZ+fOtT9/U8BJS7d2bemM6KoWw9m8Oft++vSpeuZk164NVzsAALQAQkuAhtChQ8TOO5dutVm3Lrtwc9Gi0gWJarNyZen27ru1t83Pz/4W9Xbtau8PkmbZssq3dL/1VsT8+dn30apV6WzszweTu+9uMRwAAGggQkuAxta+fUS/fqVbbcoCzmxuU88m4Fy1qnR7773a23bqlF24WVBQek2wraTTEZ9+WvViOIsXZ99P27bVL4bTpk3D1Q8AAFQitARoSuoScK5fX/viQmWvV62qvb/Vq0u3bAPO2oLNsn0CTrK1eXPE3LmVg8m3385uDJfp3LnqW7r79LEYDgAAJITQEqC5ateudEXivn1rb7t+femMtGxuUc9mpeSygPP992tv27FjduFmQUHpbfc0f0VFVS+G8+67dVsMp6Cg6sVwCgsthgMAAAkntASgNODs06d0q82GDZWDzepuU1+xovb+1qwp3T74oPa2HTpkf4u6Zw0m35o1VS+G88EHdVsMp2/fqmdObrddg5UOAAA0LKElAHXTtm3dAs7Fi7NbST2bgHPt2tJAK9uAM5tws7BQwNnQPvus6sVwPvoo+z5at65+MRwzcAEAoNkRWgLQcNq2jdhpp9KtNkVF/wk4a3r+5qJFEcuX197f2rUR//536Vab9u2zv0W9Y0e3FlclnY745JOqF8NZsiT7ftq1q3oxnF12sRgOAAC0IEJLAJIhLy+id+/SrTblA87ablFftqz2/tati/jww9KtNu3aZRduFhSULkjU3ALOzZtLf05VLYaTzYr1Zbp0qX4xnJycBisfAABoGoSWADQ9dQk4N26sHHBWd5t6NgHn+vWlK1jPnVt727KAM5tb1JMWcBYVlS58U9ViOEVF2fdTWFg5mNxzT4vhAAAANRJaAtC8tWkT0atX6VabjRtLb2Wu7fmbixaVPqexNnUJONu2zS7cLCiIyM+vv8Bv9erqF8MpKcmuj1Sq4mI4ZSHlHntYDAcAANgiQksAKNOmTUTPnqVbbYqLSwPO2sLNRYsili6tvb8NGyLmzSvdapOXV324+fn37duXnrN0acR771WeOfnxx7V/XpnWrSP69696MZyyzwEAAKgHQksA2BK5uRE77li61aYs4MzmFvXPPitd1KYmRUUR8+eXbrVonZcXx7VuHblr12Z5YVF6W3v5WZPlF8PJzc2+HwAAgC0ktASAhlaXgHPTpooBZ00zOZcurTXgTBUVRZvqnkG53XZVL4az004WwwEAABqV0BIAkqR164gePUq32mzaVBpcVhVu/t/79MKFsW7x4mi3116Rs9deFWdPFhRYDAcAAEgkoSUANFWtW5c+w7KwMGLffatssqm4OJ6aPDmOP/74yHFrNwAA0ES49wsAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgERpvSUnrVq1KiIi8vPzt+rD16xZE08//XRERHz5y1/eqr4AAAAAgOZhi0LLLl26RE5OTvzrX/+KAQMGVDr+6aefxsUXXxypVCr+8Ic/VNvPvHnzYuTIkZGTkxObNm3aklIAAAAAgGZmi28PT6fT1R5bvnx5TJw4MSZOnLjVfQEAAAAALYtnWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKJsVWiZSqXqqw4AAAAAgIiIaL01J++9997VHisLNFu1arU1HwEAAAAAtDBbFVqm0+n6qgMAAAAAICK2MLQ8/PDD3RoOAAAAADSILQotp02bVs9lAAAAAACUsno4AAAAAJAoQksAAAAAIFEaPbRct25dXHPNNY1dBgAAAACQEI0WWq5evTp+9rOfRd++fePCCy9srDIAAAAAgITZooV4tsayZcvi2muvjZtvvjlWrlwZ6XTaSuQAAAAAQMZWzbScN29enHvuuTFgwIDo1KlTdO3aNfbff/+YMGFCrFy5skLbNWvWxKWXXhp9+/aNn//857FixYpIp9PRrVu3+OlPf7pVFwEAAAAANB9bPNNyypQpceKJJ8batWsjIiKdTkdExOuvvx6vv/563HXXXfHMM89EYWFh/OMf/4jTTz89Pvroo0y7nj17xv/8z//Ed77znWjXrl09XAoAAAAA0BxsUWi5ZMmSGDVqVKxZsyazr0OHDtG6devMDMt33303zj777DjvvPNixIgRsXHjxkin09GvX7+46KKLYuzYsZGbm1s/VwEAAAAANBtbdHv473//+1i2bFmkUqk46aST4v3334/Vq1fH8uXL49NPP41zzjknIiIeeeSR+MY3vhFFRUXRsWPHuPHGG+Odd96Js846S2AJAAAAAFRpi2ZaPvnkkxERMXjw4PjLX/5S4VhhYWHccMMNsXr16rjzzjvj448/ji5dusRzzz0Xe+2119ZXDAAAAAA0a1s003LOnDmRSqXiBz/4QbVtzj333IiISKVSce655wosAQAAAICsbFFouXz58oiI2HXXXatt079//8zrL37xi1vyMQAAAABAC7RFoWVxcXFERHTq1KnaNh07dsy8Liws3JKPAQAAAABaoC0KLesqlUpti48BAAAAAJqBbRJaAgAAAABka4tWDy9zxhlnRIcOHba6XSqViqlTp25NKQAAAABAM7FVoeXMmTNrPF52W3hN7dLptNvHAQAAAICMLQ4t0+l0fdYBAAAAABARWxhalpSU1HcdAAAAAAARYSEeAAAAACBhhJYAAAAAQKIILQEAAACARNmiZ1peccUV9V1HXHLJJVm3nT59elx11VXx6quvxoIFC+Khhx6KkSNHVtt+2rRpMWzYsEr7FyxYEIWFhVtSLgAAAADQQLYotLzssssilUrVayF1CS3Xrl0b++67b3zrW9+Kr33ta1mf984770R+fn7mfffu3etUIwAAAADQ8LYotIyISKfT9VZEXQPQ4447Lo477rg6f0737t2jS5cudT4PAAAAANh2tii0fOaZZ+q7jm1i0KBBUVRUFHvvvXdcdtllcdhhh1XbtqioKIqKijLvV61aFRERxcXFUVxc3OC1Noay62qu1wflGe+0FMY6LYnxTktivNOSGO+0JM19vNflulLp+pwy2QhSqVStz7R85513Ytq0aXHggQdGUVFR3HbbbXH33XfHSy+9FPvvv3+V51x22WVx+eWXV9o/adKkaN++fX2VDwAAAAAtwrp16+K0006LlStXVniEY1VaRGhZlSOOOCJ22mmnuPvuu6s8XtVMy969e8fSpUtr/aE2VcXFxTFlypQ45phjIjc3t7HLgQZlvNNSGOu0JMY7LYnxTktivNOSNPfxvmrVqujWrVtWoeUWP9OyqTv44IPj+eefr/Z4Xl5e5OXlVdqfm5vbLAdNeS3hGqGM8U5LYazTkhjvtCTGOy2J8U5L0lzHe12uKacB60i0WbNmRY8ePRq7DAAAAADgc5rkTMs1a9bE+++/n3n/4YcfxqxZs6Jr166x0047xfjx4+OTTz6Ju+66KyIirrvuuujXr1/stddesWHDhrjtttvi6aefjieffLKxLgEAAAAAqEaTDC1nzpwZw4YNy7wfN25cRESMGTMmJk6cGAsWLIj58+dnjm/cuDH+3//7f/HJJ59E+/btY+DAgfHUU09V6AMAAAAASIYmGVoOHTo0alo/aOLEiRXeX3jhhXHhhRc2cFUAAAAAQH1osc+0BAAAAACSSWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoTTK0nD59enzpS1+KHXfcMVKpVDz88MO1njNt2rTYf//9Iy8vL3bdddeYOHFig9cJAAAAANRdkwwt165dG/vuu2/cfPPNWbX/8MMP44QTTohhw4bFrFmz4vzzz48zzzwznnjiiQauFAAAAACoq9aNXcCWOO644+K4447Luv1vf/vb6NevX1xzzTUREbHnnnvG888/H9dee22MGDGiynOKioqiqKgo837VqlUREVFcXBzFxcVbUX1ylV1Xc70+KM94p6Uw1mlJjHdaEuOdlsR4pyVp7uO9LteVSqfT6QaspcGlUql46KGHYuTIkdW2Ofzww2P//feP6667LrPvjjvuiPPPPz9WrlxZ5TmXXXZZXH755ZX2T5o0Kdq3b7+1ZQMAAABAi7Ju3bo47bTTYuXKlZGfn19j2yY507KuFi5cGAUFBRX2FRQUxKpVq2L9+vXRrl27SueMHz8+xo0bl3m/atWq6N27dwwfPrzWH2pTVVxcHFOmTIljjjkmcnNzG7scaFDGOy2FsU5LYrzTkhjvtCTGOy1Jcx/vZXcyZ6NFhJZbIi8vL/Ly8irtz83NbZaDpryWcI1QxninpTDWaUmMd1oS452WxHinJWmu470u19QkF+Kpq8LCwli0aFGFfYsWLYr8/PwqZ1kCAAAAAI2nRYSWQ4YMialTp1bYN2XKlBgyZEgjVQQAAAAAVKdJhpZr1qyJWbNmxaxZsyIi4sMPP4xZs2bF/PnzI6L0eZSjR4/OtP/e974X//73v+PCCy+MOXPmxG9+85v4y1/+EhdccEFjlA8AAAAA1KBJhpYzZ86M/fbbL/bbb7+IiBg3blzst99+cckll0RExIIFCzIBZkREv3794tFHH40pU6bEvvvuG9dcc03cdtttMWLEiEapHwAAAACoXpNciGfo0KGRTqerPT5x4sQqz3nttdcasCoAAAAAoD40yZmWAAAAAEDzJbQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkSpMOLW+++ebo27dvtG3bNg455JB4+eWXq207ceLESKVSFba2bdtuw2oBAAAAgGw02dDyz3/+c4wbNy4uvfTS+Oc//xn77rtvjBgxIhYvXlztOfn5+bFgwYLMNm/evG1YMQAAAACQjSYbWv7617+Os846K84444wYMGBA/Pa3v4327dvH7bffXu05qVQqCgsLM1tBQcE2rBgAAAAAyEbrxi5gS2zcuDFeffXVGD9+fGZfTk5OHH300TFjxoxqz1uzZk306dMnSkpKYv/994+f//znsddee1XZtqioKIqKijLvV61aFRERxcXFUVxcXE9Xkixl19Vcrw/KM95pKYx1WhLjnZbEeKclMd5pSZr7eK/LdaXS6XS6AWtpEJ9++mn07NkzXnjhhRgyZEhm/4UXXhjPPvtsvPTSS5XOmTFjRrz33nsxcODAWLlyZVx99dUxffr0ePPNN6NXr16V2l922WVx+eWXV9o/adKkaN++ff1eEAAAAAA0c+vWrYvTTjstVq5cGfn5+TW2bZIzLbfEkCFDKgSchx56aOy5557xu9/9Lq688spK7cePHx/jxo3LvF+1alX07t07hg8fXusPtakqLi6OKVOmxDHHHBO5ubmNXQ40KOOdlsJYpyUx3mlJjHdaEuOdlqS5j/eyO5mz0SRDy27dukWrVq1i0aJFFfYvWrQoCgsLs+ojNzc39ttvv3j//ferPJ6Xlxd5eXlVntccB015LeEaoYzxTkthrNOSGO+0JMY7LYnxTkvSXMd7Xa6pSS7E06ZNmzjggANi6tSpmX0lJSUxderUCrMpa7J58+aYPXt29OjRo6HKBAAAAAC2QJOcaRkRMW7cuBgzZkwceOCBcfDBB8d1110Xa9eujTPOOCMiIkaPHh09e/aMCRMmRETEFVdcEYMHD45dd901VqxYEVdddVXMmzcvzjzzzMa8DAAAAADgc5psaHnKKafEkiVL4pJLLomFCxfGoEGD4vHHH4+CgoKIiJg/f37k5PxnIuny5cvjrLPOioULF8Z2220XBxxwQLzwwgsxYMCAxroEAAAAAKAKTTa0jIg455xz4pxzzqny2LRp0yq8v/baa+Paa6/dBlUBAAAAAFujST7TEgAAAABovoSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARGnd2AWQHIMHD4558+ZF27ZtG7sU2CY2bNhgvNMiGOu0JMY7LYnxTktivNOSbNiwIfr06ROvvvpqY5fSqISWZCxatCg+++yzxi4DAAAAoEUT0gstKaegoMC/XtGiGO+0FMY6LYnxTktivNOSGO+0JBs2bIiCgoLGLqPRCS3JePHFF2Py5Mlx/PHHR25ubmOXAw2quLjYeKdFMNZpSYx3WhLjnZbEeKclKT/eWzoL8QAAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChCSwAAAAAgUYSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAAAAAQKIILQEAAACARBFaAgAAAACJIrQEAAAAABJFaAkAAAAAJIrQEgAAAABIFKElAAAAAJAoQksAAAAAIFGElgAAAABAoggtAQAAAIBEEVoCAAAAAIkitAQAAAAAEkVoCQAAAAAkitASAAAAAEgUoSUAAAAAkChNOrS8+eabo2/fvtG2bds45JBD4uWXX66x/X333Rd77LFHtG3bNvbZZ5+YPHnyNqoUAAAAAMhWkw0t//znP8e4cePi0ksvjX/+85+x7777xogRI2Lx4sVVtn/hhRdi1KhR8e1vfztee+21GDlyZIwcOTLeeOONbVw5AAAAAFCTJhta/vrXv46zzjorzjjjjBgwYED89re/jfbt28ftt99eZfvrr78+jj322PjhD38Ye+65Z1x55ZWx//77x0033bSNKwcAAAAAatK6sQvYEhs3boxXX301xo8fn9mXk5MTRx99dMyYMaPKc2bMmBHjxo2rsG/EiBHx8MMPV9m+qKgoioqKMu9XrlwZERHLli2L4uLirbyCZCouLo5169bFZ599Frm5uY1dDjQo452WwlinJTHeaUmMd1oS452WpLmP99WrV0dERDqdrrVtkwwtly5dGps3b46CgoIK+wsKCmLOnDlVnrNw4cIq2y9cuLDK9hMmTIjLL7+80v5+/fptYdUAAAAAwOrVq6Nz5841tmmSoeW2MH78+AozM0tKSmLZsmWx/fbbRyqVasTKGs6qVauid+/e8dFHH0V+fn5jlwMNyninpTDWaUmMd1oS452WxHinJWnu4z2dTsfq1atjxx13rLVtkwwtu3XrFq1atYpFixZV2L9o0aIoLCys8pzCwsI6tc/Ly4u8vLwK+7p06bLlRTch+fn5zfIPBlTFeKelMNZpSYx3WhLjnZbEeKclac7jvbYZlmWa5EI8bdq0iQMOOCCmTp2a2VdSUhJTp06NIUOGVHnOkCFDKrSPiJgyZUq17QEAAACAxtEkZ1pGRIwbNy7GjBkTBx54YBx88MFx3XXXxdq1a+OMM86IiIjRo0dHz549Y8KECRERcd5558URRxwR11xzTZxwwglx7733xsyZM+PWW29tzMsAAAAAAD6nyYaWp5xySixZsiQuueSSWLhwYQwaNCgef/zxzGI78+fPj5yc/0wkPfTQQ2PSpElx8cUXx49//OPo379/PPzww7H33ns31iUkTl5eXlx66aWVbouH5sh4p6Uw1mlJjHdaEuOdlsR4pyUx3v8jlc5mjXEAAAAAgG2kST7TEgAAAABovoSWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0bCGmT58eX/rSl2LHHXeMVCoVDz/8cK3nTJs2Lfbff//Iy8uLXXfdNSZOnNjgdUJ9qOt4nzZtWqRSqUrbwoULt03BsIUmTJgQBx10UHTq1Cm6d+8eI0eOjHfeeafW8+67777YY489om3btrHPPvvE5MmTt0G1sHW2ZLxPnDix0nd727Ztt1HFsOVuueWWGDhwYOTn50d+fn4MGTIkHnvssRrP8d1OU1XX8e67nebkF7/4RaRSqTj//PNrbNdSv+OFli3E2rVrY999942bb745q/YffvhhnHDCCTFs2LCYNWtWnH/++XHmmWfGE0880cCVwtar63gv884778SCBQsyW/fu3RuoQqgfzz77bJx99tnx4osvxpQpU6K4uDiGDx8ea9eurfacF154IUaNGhXf/va347XXXouRI0fGyJEj44033tiGlUPdbcl4j4jIz8+v8N0+b968bVQxbLlevXrFL37xi3j11Vdj5syZceSRR8ZXvvKVePPNN6ts77udpqyu4z3CdzvNwyuvvBK/+93vYuDAgTW2a8nf8al0Op1u7CLYtlKpVDz00EMxcuTIatv86Ec/ikcffbTCH4JTTz01VqxYEY8//vg2qBLqRzbjfdq0aTFs2LBYvnx5dOnSZZvVBvVtyZIl0b1793j22Wfj8MMPr7LNKaecEmvXro2///3vmX2DBw+OQYMGxW9/+9ttVSpstWzG+8SJE+P888+PFStWbNvioAF07do1rrrqqvj2t79d6Zjvdpqbmsa773aagzVr1sT+++8fv/nNb+KnP/1pDBo0KK677roq27bk73gzLanSjBkz4uijj66wb8SIETFjxoxGqgga3qBBg6JHjx5xzDHHxD/+8Y/GLgfqbOXKlRFR+hf96vh+p7nIZrxHlP6fgj59+kTv3r1rnbkDSbR58+a49957Y+3atTFkyJAq2/hup7nIZrxH+G6n6Tv77LPjhBNOqPTdXZWW/B3furELIJkWLlwYBQUFFfYVFBTEqlWrYv369dGuXbtGqgzqX48ePeK3v/1tHHjggVFUVBS33XZbDB06NF566aXYf//9G7s8yEpJSUmcf/75cdhhh8Xee+9dbbvqvt89w5WmJNvxvvvuu8ftt98eAwcOjJUrV8bVV18dhx56aLz55pvRq1evbVgx1N3s2bNjyJAhsWHDhujYsWM89NBDMWDAgCrb+m6nqavLePfdTlN37733xj//+c945ZVXsmrfkr/jhZZAi7f77rvH7rvvnnl/6KGHxgcffBDXXntt3H333Y1YGWTv7LPPjjfeeCOef/75xi4FGly2433IkCEVZuoceuihseeee8bvfve7uPLKKxu6TNgqu+++e8yaNStWrlwZ999/f4wZMyaeffbZaoMcaMrqMt59t9OUffTRR3HeeefFlClTLCCVBaElVSosLIxFixZV2Ldo0aLIz883y5IW4eCDDxb+0GScc8458fe//z2mT59e6wyD6r7fCwsLG7JEqDd1Ge+fl5ubG/vtt1+8//77DVQd1J82bdrErrvuGhERBxxwQLzyyitx/fXXx+9+97tKbX2309TVZbx/nu92mpJXX301Fi9eXOGOvs2bN8f06dPjpptuiqKiomjVqlWFc1ryd7xnWlKlIUOGxNSpUyvsmzJlSo3PFYHmZNasWdGjR4/GLgNqlE6n45xzzomHHnoonn766ejXr1+t5/h+p6nakvH+eZs3b47Zs2f7fqdJKikpiaKioiqP+W6nualpvH+e73aakqOOOipmz54ds2bNymwHHnhgnH766TFr1qxKgWVEy/6ON9OyhVizZk2Ff3n68MMPY9asWdG1a9fYaaedYvz48fHJJ5/EXXfdFRER3/ve9+Kmm26KCy+8ML71rW/F008/HX/5y1/i0UcfbaxLgKzVdbxfd9110a9fv9hrr71iw4YNcdttt8XTTz8dTz75ZGNdAmTl7LPPjkmTJsUjjzwSnTp1yjzXpnPnzplZ8aNHj46ePXvGhAkTIiLivPPOiyOOOCKuueaaOOGEE+Lee++NmTNnxq233tpo1wHZ2JLxfsUVV8TgwYNj1113jRUrVsRVV10V8+bNizPPPLPRrgOyMX78+DjuuONip512itWrV8ekSZNi2rRp8cQTT0SE73aal7qOd9/tNGWdOnWq9DzuDh06xPbbb5/Z7zv+P4SWLcTMmTNj2LBhmffjxo2LiIgxY8bExIkTY8GCBTF//vzM8X79+sWjjz4aF1xwQVx//fXRq1evuO2222LEiBHbvHaoq7qO940bN8b/+3//Lz755JNo3759DBw4MJ566qkKfUAS3XLLLRERMXTo0Ar777jjjhg7dmxERMyfPz9ycv5zY8Whhx4akyZNiosvvjh+/OMfR//+/ePhhx+ucTETSIItGe/Lly+Ps846KxYuXBjbbbddHHDAAfHCCy94JiCJt3jx4hg9enQsWLAgOnfuHAMHDownnngijjnmmIjw3U7zUtfx7rud5s53/H+k0ul0urGLAAAAAAAo45mWAAAAAECiCC0BAAAAgEQRWgIAAAAAiSK0BAAAAAASRWgJAAAAACSK0BIAAAAASBShJQAAAACQKEJLAAAAACBRhJYAANAE9e3bN1KpVIwdO7axSwEAqHdCSwCAOvrud78bqVQqUqlUPP3003U698knn8yce9555zVQhQAA0LQJLQEA6mj06NGZ1/fcc0+dzr377rur7KexTJs2LROiTps2rbHLAQCAiBBaAgDU2WGHHRa77LJLREQ88MADsX79+qzOW7t2bTz00EMREbHXXnvFAQcc0GA1AgBAUya0BADYAt/85jcjImLVqlXxyCOPZHXOgw8+GGvXrq1wPgAAUJnQEgBgC3zzm9+MVCoVEdnfIl52a3hOTk584xvfaLDaAACgqRNaAgBsgZ133jkOO+ywiIh44oknYvHixTW2//TTT2Pq1KkREXHkkUdGz549K7V5+OGH4+STT46ddtop2rZtG126dIkDDzwwLr/88li+fHlWdU2ePDm+8Y1vxM477xwdOnSItm3bRr9+/eLEE0+MiRMnxrp16yIiYu7cuZFKpWLYsGGZc4cNG5Z5vmXZNnHixEqfsXHjxvjNb34Tw4YNix122CHatGkThYWFcfzxx8c999wTJSUl1dY3duzYSKVS0bdv34iIWLBgQfzoRz+KvfbaKzp16lTnZ2tW9UzOv/zlL3HUUUfFDjvsEO3atYvdd989Lrzwwli2bFm1/QwdOjRSqVQMHTq0xs+77LLLMp9XlbJjl112WUREPPPMMzFy5MjYcccdo127drHnnnvGlVdemZlxW2by5Mlx/PHHZ9oNGDAgJkyYEBs3bsz6Z/HKK6/EqFGjonfv3tG2bdvo3bt3nHHGGTFnzpyszn///ffjggsuiH322Sc6d+4c7dq1i5133jnGjh0bM2fOrPa8z/8OSkpK4vbbb49hw4ZFQUFB5OTkWOEcAKi7NAAAW+TWW29NR0Q6ItLXX399jW2vuuqqTNu77rqrwrFly5aljzzyyMzxqrbu3bunZ8yYUW3/S5cuTR911FE19hER6TvuuCOdTqfTH374Ya1ty7cv8+GHH6b32GOPGs/5whe+kP7ss8+qrHPMmDHpiEj36dMnPWPGjHS3bt0qnf/MM8/U+rMv88wzz2TOmzp1avob3/hGtXXtuuuu6QULFlTZzxFHHJGOiPQRRxxR4+ddeumlmf6qUnbs0ksvTU+YMCGdSqWqrOXQQw9Nr1mzJl1SUpI+99xzq6352GOPTW/atKnKz+rTp086ItJjxoxJ/+EPf0i3bt26yj7y8vLSf/nLX2q8rquuuiqdm5tbbR2pVCr9k5/8pMpzy/8OHnvssfTRRx9d6fwxY8bU+PkAAJ9npiUAwBb6+te/Hm3bto2IiquCV6XseMeOHeNrX/taZn9RUVEcffTR8fTTT0erVq3im9/8ZvzpT3+KF198MZ577rn42c9+Fttvv30sXrw4jj/++Jg3b16lvtetWxfDhg3LzOQ84IAD4ne/+1384x//iJkzZ8ZDDz0UF1xwQey4446Zc3r27BmzZ8+O22+/PbPv9ttvj9mzZ1fYRo4cmTm+Zs2aOOqoozIz90aOHBl//etfY+bMmXHffffFEUccERERzz//fHzpS1+KzZs3V/vzWLNmTZx44omxYcOG+N///d+YNm1avPzyy/GHP/whevToUePPsjo/+clP4p577omRI0fGgw8+GK+++mpMnjw5TjjhhIj4z0zCbeGxxx6L8ePHx+DBg2PSpEkxc+bMePzxx+O4446LiIgXXnghJkyYENdee23ccMMNcdxxx8UDDzwQr776ajzyyCMxePDgiIh4/PHH4/e//32NnzVr1qz43ve+F927d48bb7wxXnrppXj22WfjRz/6UeTl5UVRUVGcfvrp1c6WvOqqq+KHP/xhFBcXx8CBA+OWW26Jp556KmbOnBl//OMfY8iQIZFOp+PKK6+MG264ocZafvSjH8VTTz0VX/7ylyv8DsquGwAga42dmgIANGVf//rXM7PJ5syZU2Wb119/PdNm9OjRFY79+Mc/TkdEukuXLumZM2dWef7cuXPTPXr0SEdE+rTTTqt0/IILLsj0f/bZZ6dLSkqq7KeoqCi9cOHCCvvKz5KrbYbj//zP/2TaXnzxxZWOl5SUpE8//fRMm9/85jeV2pTNtIyIdMeOHdOzZs2q8TNrU77+iEj/9Kc/rbKu4cOHpyMi3bp16/TixYsrtanvmZYRkT7xxBMrzZLctGlTevDgwemISHfq1Cndtm3b9Pnnn1+pn7Vr12ZmUg4cOLDKzyo7Hv83c7WqWaRPP/10ZgbmQQcdVOn4m2++mZlheemll1Y5djZv3pyZwdqxY8f0smXLKhz//O+gqrEBAFBXZloCAGyF0aNHZ15XN9uy/P7y7desWRM333xzRERceeWVccABB1R5fp8+feInP/lJRETcd999FZ6HuGLFivjd734XEaUzLK+//vpqn7fYpk2bKCgoyOayKikqKorbbrstIiL22muvzDMby0ulUvGb3/wmtt9++4iIuOmmm2rs88ILL4x99913i+qpygEHHBA//vGPq6xr3LhxERGxadOmmDFjRr19ZnXat28ft956a7Rq1arC/latWsV3vvOdiIhYvXp17LDDDvGrX/2qyvPHjBkTERH/+te/YuXKlTV+3jXXXBOFhYWV9g8bNizOOuusiCh95uXnZ1tec801UVxcHAceeGBceumlVY6dnJycuPHGGyMvLy/WrFkT999/f7V17LbbblWODQCAuhJaAgBshREjRmSCwD/+8Y+RTqcrHC8pKYlJkyZFRESvXr0qLHzz7LPPZsKok046qcbPOfzwwyMiori4OF599dXM/qeffjqzuM65555bKSSrL6+++mqsWLEiIkoX06nuc/Lz8+PrX/96RES89dZbsWDBgmr7PP300+u1xtNOO63awLZ8IPzvf/+7Xj+3Ksccc0x07dq1ymPlg9qvfe1rkZubW2u7Dz/8sNrP2m677eIrX/lKtce/9a1vZV4/9dRTFY797W9/i4iIE088sdqfXUREly5dYp999omIqDH0PeWUUxpsDAIALYvQEgBgK7Ru3TpOO+20iChdkfv555+vcHzq1Knx6aefRkRpSJeT85+/fpWf9dajR49KK3eX3/bee+9M24ULF2Zev/baa5nXX/ziF+v34sp54403Mq8POeSQGtuWP17+vPI6duwYO++8c/0U93/22GOPao+VDxBXr15dr59bld12263aY126dKlzu5pq3m+//aJ169bVHh80aFC0adMmIiJmz56d2T9v3rxYsmRJRESMHz++xvGXSqUy47X8+Pu8gQMHVnsMAKAuhJYAAFupplvEq7s1PCJi8eLFW/R5ZTMrIyKWLl2aeb2lC9hkY9myZZnX3bt3r7Ft+duUy59XXvlArr60b9++2mPlw+KaFgja1rXUR821/T5at26dCW3L/z7qY/x93nbbbbdFfQIAfF71/yQLAEBWBg0aFPvss0/Mnj077rvvvszz/9auXRsPPvhgRJTenjxgwIAK55UPov75z39We5vw5/Xq1av+it8CNd1GnC23ENefLf19lB9/l1xySZx88slZndehQ4dqj/m9AgD1RWgJAFAPRo8eHT/84Q9jxYoV8be//S1OOumkeOihhzKL5nx+lmVEZBasiYjYYYcdtiiM7NatW+b1ggULol+/fltQfe3K3169aNGiGm9rLn/7cHXPdUyaslmNJSUlNbYrvwhSUixatKjG45s2bcrMsCz/+yg//nJzcys8ggAAoLG5PRwAoB6cfvrpmVlm99xzT0T859bw3NzcGDVqVKVz9ttvv8zrf/zjH1v0ufvvv3/m9fTp0+t8fraz9MoHWi+99FKNbV9++eUqz0uyTp06RUTE8uXLa2z37rvvboty6mTWrFmxadOmao+//vrrsXHjxoio+PvYeeedo3PnzhGx5eMPAKChCC0BAOpBjx494uijj46IiMmTJ8cbb7wRU6dOjYiIY489NnbYYYdK5xx99NGZZxrecMMNlVYez8awYcMyt+veeOONdX5eY9u2bTOvi4qKqm13wAEHZJ5Deeedd1Y7I3H16tXxl7/8JSIiBgwY0KDP2axPZTNU33333WoXvVm6dGlMmTJlW5aVlWXLlmVWAa/K7bffnnldNkYjSm/lPv744yMi4sknn4y333674YoEAKgjoSUAQD0puwW8uLg4Tj311EyAWNWt4RGli9Gcc845ERHxwgsvxAUXXFDj7cmLFi2K2267rVIf3/3udyMi4tVXX43zzz+/2vCzuLi40uIr5UPFDz74oNrPzsvLizPPPDMiSlcEv/LKKyu1SafTcc4552QWByq7tqbgiCOOiIiIjRs3xo033ljpeHFxcZx55pmxfv36bV1aVsaNG1flbeLPPvts3HrrrRFRGjwfdNBBFY6PHz8+WrVqFSUlJXHSSSfFxx9/XO1nbN68Of74xz/W2AYAoL54piUAQD356le/Gp06dYrVq1fHm2++GRGlqyl/6UtfqvacK664Ip599tl46aWX4vrrr49p06bFWWedFYMGDYoOHTrE8uXL480334ynnnoqHnvssdhnn30y4WGZK6+8MqZMmRKzZ8+Om266KWbMmBHf/e53Y5999ok2bdrExx9/HM8991z86U9/ip/+9KcxduzYzLk77bRT9OrVKz7++OO4+uqro1evXrH77rtnbnUvKCjI3Dp9ySWXxIMPPhj//ve/47LLLovZs2fHGWecET169IgPP/wwbrrpppg2bVpERAwZMiS+853v1ONPt2GdcMIJ0adPn5g3b1785Cc/iaVLl8bXvva1aNu2bbz55ptxww03xGuvvRaDBw+OF198sbHLrWDfffeNt956Kw444IAYP358HHzwwVFUVBSTJ0+Oa6+9NjZt2hStW7eOm2++udK5++yzT1x99dVxwQUXxFtvvRV77713fOc734kjjzwyCgoKYsOGDTF37tyYMWNG3H///bFgwYKYPXt2oy8GBQA0f0JLAIB60q5duzjppJPijjvuyOz7+te/Hnl5edWek5eXF1OmTImxY8fGgw8+GK+//nqNMxTz8/Mr7Wvfvn08/fTTceKJJ8b06dPj1VdfrVNg+OMf/zh+8IMfxIcffhhf+cpXKhy74447MiFnp06dYurUqXHcccfFnDlz4oEHHogHHnigUn+HHXZY/PWvf21SK0m3adMm7rnnnjj22GNj7dq1ce2118a1116bOd6qVau47rrrYtmyZYkLLQcNGhTnnHNOfP/7369y7LRp0ybuvPPOOOSQQ6o8//zzz48OHTrE+eefHytXroyrrroqrrrqqirbtmnTpsIjBQAAGorbwwEA6tGYMWMqvK/u1vDyOnXqFA888EA899xzceaZZ8buu+8enTp1itatW0fXrl3joIMOirPPPjsmT55c7TMVu3XrFs8++2w8+OCDcdJJJ0WvXr0iLy8v2rZtGzvvvHOcfPLJ8cc//rHKBYG+//3vxwMPPBDDhw+P7t27R+vW1f+7dt++feP111+Pm266KY444ojYfvvtIzc3NwoKCuLYY4+Nu+++O6ZPn95kVg0v7wtf+EK8+uqr8c1vfjN23HHHyM3NjR49emTC4HPPPbexS6zWmWeeGc8991x8/etfjx133DHatGkTPXv2jNGjR8drr70Wp576/9u5YxsGgRgMo45ER3sjIJa4MWiywA3CFkxHxxxkgxSREv1S3utduP1k+fl2foxR53nWvu/Ve6/WWk3TVPM817qutW1bHcdR13XVsiw/2goA+GeP+5OP7wAAAAAAX+LSEgAAAACIIloCAAAAAFFESwAAAAAgimgJAAAAAEQRLQEAAACAKKIlAAAAABBFtAQAAAAAooiWAAAAAEAU0RIAAAAAiCJaAgAAAABRREsAAAAAIIpoCQAAAABEES0BAAAAgCiiJQAAAAAQ5QVjgtxlbO66dgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "id": "7acf3a7f-4dd8-44df-b201-509aa4caa7f0", + "metadata": { + "id": "7acf3a7f-4dd8-44df-b201-509aa4caa7f0" + }, + "source": [ + "### 11) Визуализировали элементы обучающей и тестовой выборки в областях пространства признаков, распознаваемых автокодировщиками AE1 и AE2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2fbf3a9-5e11-49d0-a0db-f77f3edeb7b7", + "metadata": { + "id": "a2fbf3a9-5e11-49d0-a0db-f77f3edeb7b7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "outputId": "9754e63f-1a64-44d1-ab92-334570f7019e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVpxJREFUeJzt3Xl8U1X6P/DPzdKUlraU0r21LVBWqVDcAPkC3+qgg3VEByvCAIKOo37FHYdBB1wQnRlndBYXQHChiuNPccQBESo4ZUALgoBIy9a9dKF0h6Ztcn9/pDdN0qRN2iQ3y+f9euUFubm5Oan24bnnPOccQRRFEUREREQ+QiF3A4iIiIicickNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDfkVQRCwatUquZtBRF6GscO7MLnxEq+//joEQcA111zT72tt27aNv6RuVF9fj8DAQAiCgBMnTlg9Z9GiRRAEweojMDDQ7NzVq1fjlltuQXR0NAMu9Yqxw3s5M3bk5+dj2bJlGD9+PEJCQhAbG4tZs2bh4MGD7vo6bqWSuwFkn+zsbCQnJyMvLw+nT5/G8OHD+3ytbdu24R//+AeDlJt8/PHHEAQBMTExyM7OxgsvvGD1PI1Gg/Xr13c7rlQqzZ4//fTTiImJwYQJE7Bjxw6XtJl8B2OH93Jm7Fi/fj3efvtt3H777XjggQfQ0NCAt956C9deey2+/PJLXH/99S77HnJgcuMFCgsLsW/fPnz66ae47777kJ2djZUrV8rdLL/X2tqKgIAAKBQ9d4Bu2rQJP//5z5GUlIQPPvjAZoBSqVSYP39+r59bWFiI5ORknD9/HpGRkX1qO/kHxg7PJEfsmDt3LlatWoWBAwcajy1evBijR4/GqlWrfC654bCUF8jOzkZ4eDhmzZqFX/7yl8jOzu52zp49eyAIAvbs2WN2vKioCIIg4J133gFg6ML8xz/+AQBm3ZeSlpYWPP7440hMTIRGo8HIkSPxpz/9CdY2j9+0aRMmTpyIAQMGYPDgwbjzzjtRWlpqds706dNx+eWX46effsKMGTMQFBSE+Ph4/OEPf+h2vdbWVqxatQojRoxAYGAgYmNjcdttt+HMmTMOt0+r1eLRRx9FZGQkQkJCcMstt6CsrMzqz7e8vByLFy9GdHQ0NBoNxo4diw0bNlj9+W7evBlPP/004uPjERQUhMbGRqvXlJSUlCA3Nxd33nkn7rzzTuM/Nv2RnJzcr/eT/2DsYOyQTJw40SyxAYCIiAhMnTrV5pCXN2PPjRfIzs7GbbfdhoCAAMydOxdvvPEGDhw4gKuuusrha913332oqKjAzp078f7775u9JooibrnlFuzevRtLlizB+PHjsWPHDjz55JMoLy/HX/7yF+O5q1evxjPPPIM77rgD99xzD2pqavC3v/0N//M//4PDhw9j0KBBxnPr6upw44034rbbbsMdd9yB//f//h+eeuopjBs3DjfddBMAQKfT4eabb0ZOTg7uvPNOPPzww2hqasLOnTvx448/YtiwYQ6175577sGmTZtw1113YfLkyfj6668xa9asbj+PqqoqXHvttRAEAf/3f/+HyMhIbN++HUuWLEFjYyMeeeQRs/Off/55BAQE4IknnoBWq0VAQECPP+8PP/wQwcHBuPnmmzFgwAAMGzYM2dnZmDx5stXzz58/3+1YQEAAQkNDe/wcImsYOxg7eosdlZWVGDJkSI/neCWRPNrBgwdFAOLOnTtFURRFvV4vJiQkiA8//LDZebt37xYBiLt37zY7XlhYKAIQN27caDz24IMPitb+03/22WciAPGFF14wO/7LX/5SFARBPH36tCiKolhUVCQqlUpx9erVZucdO3ZMVKlUZsenTZsmAhDfe+894zGtVivGxMSIt99+u/HYhg0bRADin//8527t0uv1DrXvhx9+EAGIDzzwgNl5d911lwhAXLlypfHYkiVLxNjYWPH8+fNm5955551iWFiYePHiRVEUu36+Q4cONR6zx7hx48R58+YZn//ud78ThwwZIra3t5udt3DhQhGA1cfMmTOtXrumpqbb9yGSMHYwdtiKHZL//Oc/oiAI4jPPPGN3u7wFh6U8XHZ2NqKjozFjxgwAhu7grKwsbN68GTqdzqmftW3bNiiVSixdutTs+OOPPw5RFLF9+3YAwKeffgq9Xo877rgD58+fNz5iYmKQmpqK3bt3m71/4MCBZuPBAQEBuPrqq3H27FnjsU8++QRDhgzBQw891K1dUte3ve3btm0bAHQ7z/JOShRFfPLJJ8jMzIQoimbfZebMmWhoaMChQ4fM3rNw4UIMGDDA+g/QwtGjR3Hs2DHMnTvXeGzu3Lk4f/681ULgwMBA7Ny5s9vjpZdesuvziEwxdjB29BQ7qqurcddddyElJQXLli2zq13ehMNSHkyn02Hz5s2YMWMGCgsLjcevueYavPLKK8jJycHPfvYzp31ecXEx4uLiEBISYnZ89OjRxtcB4NSpUxBFEampqVavo1arzZ4nJCSYjc0DQHh4OI4ePWp8fubMGYwcORIqle3/Je1tX3FxMRQKBYYNG2Z23siRI82e19TUoL6+HmvXrsXatWutfmZ1dbXZ85SUFJvts7Rp0yYEBwdj6NChOH36NABDEEpOTkZ2dna3rm6lUulzRX0kD8aOvrXPX2JHS0sLbr75ZjQ1NWHv3r3danF8AZMbD/b111/j3Llz2Lx5MzZv3tzt9ezsbGOAsgwAEmffoQGAXq+HIAjYvn17t2nKALr9olg7B4DVQkN30uv1AID58+dj4cKFVs9JS0sze27vnZcoivjwww/R0tKCMWPGdHu9uroazc3NPhlUSH6MHa7lzbGjra0Nt912G44ePYodO3bg8ssv79N1PB2TGw+WnZ2NqKgo4wwFU59++im2bNmCN998EwMGDEB4eDgAw6JPpqQ7ElO2gllSUhJ27dqFpqYmszuc/Px84+sAjAV6KSkpGDFiRJ++m6Vhw4bhu+++Q3t7e7e7N0fbl5SUBL1eb7yjkxQUFJhdT5oNodPpnN5j8s0336CsrAzPPfec8e5QUldXh1//+tf47LPP7Jr6TeQoxo6+tc/XY4der8eCBQuQk5ODf/7zn5g2bZqzmu153F/mQ/a4ePGiGBISIi5evNjq6//9739FAOLmzZtFURTF+vp6UalUio8++qjZebfffnu3osCnnnpKBCDW1dWZnSsV3b344otmx7OyssyK7k6fPi0qlUrxrrvuMhbsSfR6vVmB3bRp08SxY8d2a//ChQvFpKQk43NHigJ7a9/hw4ftLgpctGiRGBAQIB47dqzb51ZXVxv/LhUFfvzxx93Os2bJkiVicHCweOnSJauvp6amijfeeKPx+cKFC8Xg4GC7ri1hQTFZw9hhfk1H2ufrseOBBx4QAYhvvfWWXed7M/bceKjPP/8cTU1NuOWWW6y+fu211yIyMhLZ2dnIyspCWFgY5syZg7/97W8QBAHDhg3DF1980W3cFzCsdwAYiuZmzpwJpVKJO++8E5mZmZgxYwZWrFiBoqIiXHHFFfjqq6/wr3/9C4888ohxHHrYsGF44YUXsHz5chQVFeHWW29FSEgICgsLsWXLFvz617/GE0884dD3XbBgAd577z089thjyMvLw9SpU9HS0oJdu3bhgQcewC9+8Qu72zd+/HjMnTsXr7/+OhoaGjB58mTk5OQYx65NvfTSS9i9ezeuueYa3HvvvRgzZgwuXLiAQ4cOYdeuXbhw4YJD3wMwrJPxySef4IYbbui2dYLklltuwWuvvYbq6mpERUUBADo6OrBp0yar58+ePRvBwcEAgPfffx/FxcW4ePEiAOA///mPcXGvX/3qV8a7UPJPjB2MHaak2PHqq6/i9ddfx6RJkxAUFNTtfNMY4xPkzq7IuszMTDEwMFBsaWmxec6iRYtEtVptvNupqakRb7/9djEoKEgMDw8X77vvPvHHH3/sdvfV0dEhPvTQQ2JkZKQoCILZ1M6mpibx0UcfFePi4kS1Wi2mpqaKf/zjH7vdZYmiKH7yySfiddddJwYHB4vBwcHiqFGjxAcffFAsKCgwnmPv3ZcoGu44V6xYIaakpIhqtVqMiYkRf/nLX4pnzpxxuH2XLl0Sly5dKkZERIjBwcFiZmamWFpaarWno6qqSnzwwQfFxMRE4+dmZGSIa9euNZ7jyN3XJ598IgIQ3377bZvn7NmzRwQgvvbaa8afB2xM5wQgFhYWGt8rTZG19rCczkv+h7GDscNa7HAkxvgCQRRlrswiIiIiciKuc0NEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FL9bxE+v16OiogIhISE2lxInItcSRRFNTU2Ii4uDQuEd91iMHUTyciRu+F1yU1FRgcTERLmbQUQASktLkZCQIHcz7MLYQeQZ7IkbfpfcSJum/e6/3yOQOzITyaK1uRkvTplotomhp2PsIJKXI3HD75IbqTs5cOBABHpRYCXyRd40vMPYQeQZ7Ikb3jHYTURERGQnJjdERETkU5jcEBERkU/xu5obIldTinoE6PUQIMrdFFmIENCmUEAn8N6JyF6CKCJQr/PbuAEYYkerQgnRCbV4TG6InEUUkdTajIQOLRReVCjrCnpRRJlKg+LAgYCf/yyIeqPR65DWUo9A/qqgVQSOBA9Cm0LZr+swuSFykqTWZqTo2xARFQX1gAGAvwYqEWi/dAnq8zVAazOKB3BmEZFNooihl5oQrglAeHQ0BIW/Bg5A1Iuoq6zEsEtNOBEU1q8bIyY3RE6gFPVI6NAiIioKQeHhcjdHdurAQABAe3U1ysRgDlER2aAW9YjQdyAsIgoBAwbI3RzZhQ0ZgpaKCqhFPdqFvvfeMOIQOUGAXg+FIBh6bAgAoB4wAApBQIBeL3dTiDyWShQhCAKUarXcTfEISrUaCkGASuxf7RGTGyInMBYB+m+PcneC9If/FkgS9Yaxw4KT4gaTGyIiIvIpTG6IiIjIpzC5ISJUV1ZixaOP4JpRI5EUGoKJw4ZhwW2zkfv11wCA99evx2033IDUyCGIDdSgob5e3gYTkUfw1NjB5IbIz5UWFWHm5EnYu2cPnlnzEr7+/nt8sHUrJk+bhuWPPAwAuHTpImb87GdYuuwpmVtLRJ7Ck2OH304FLykpQUBwMJKTk+VuCpGsfvvwUgiCgO17/4ug4GDj8ZFjxmDuwkUAgF8/tBQAsO+bb+RoIhF5IE+OHX7bczPl4I9oKatFUVGR3E0hskqnc/1n1F24gN1ffYVF9/3GLDhJwgYNcn0jiMhp3BE3AM+PHX6b3AyqzcfDx8rRUlYrd1OIzJw+CUwbr0JCcACmjVfh9EnXfVbRmTMQRRHDR4503YcQkcu5M24Anh87/Da56dA04GjjLohtbey9IY+y5A4VzpwyLPZw5pSAJXe4bvRY7OdCWUTkGdwZNwDPjx1+m9x8fMVQaBXAjFMn0FGnlbs5RAAMXcon8xXQ6YTO50Lnc9d8Xsrw4RAEAacLClzzAUTkcu6OG4Dnxw6/TW7Gh9yO3Iw0NFUegLalGUVFRQ49iFxBqQRGjNJDqRQ7n4udz13zeeGDB2P6DTfgnbfexMWWlm6vc8o3kedzd9wAPD92+O1sKQBID82CJugoph8/gpi2sXa/b0v4ICDZZc0iP/f2Pzuw5A4VTuYLGJYq4u1/drj089a8+hpu+d8ZuOm6KXjy9ysxZtzl6OjowH9ycvDu2rXIPXIU1ZWVqK6qQuGZMwCAEz/+iIEhIYhPTET44MEubR8R9c7dcQPw7Njh18kNAORmpGHBbhWGFFTZ/Z7WkXoUFRVxGjm5xPARwDc/dECng0vvvCRJQ4fiq/3f4rWXX8KzTz2F6spziIiMRNqECXj5r38DALy3bh1eWf2C8T2zr88AALy6dh2yFixwfSOJqEfujhuAZ8cOQfT0qiAna2xsRFhYGF7c8j0CgwcCAIK3rEBCeJDd1xjYMg4bJo7C2OsmuqqZ5GWCdO2YeKkR8UmXQa0JlLs5HqFd24ry4hJ8PyAUF5XmOx63NjXh91eMRENDA0JDQ2VqoWOk2PHckQIEhoTI3RzyEYwd5pwVN/y+5wYw9N444uqteyG2DWXvDRERkQdicgND7Y0jNEFHMePUCewPH4wiFPV6PhMgIiIi92Fy0we5GWm4eusBZJwcgtDI6B7P3RI+CEVgDw8REZG7MLnpA2mWVUxlEyIGxPd4bkZNAXJGjOTsKiIiIjdhctNHuRlp0G7di9AT3/V4XkrgNdDGN7M+x8eJEKS/kESU/hDkbQeRB2PssOCkuMHkpo/SQ7OQl9n7eVNzvsP041rsD57C3hsf1qZQQC+KaL90CepAzngAgPZLl6AXRbQp/HatUKJedQgCRFGErr2dsQOArr0delFEh8DkRjb2FCLnZgALdquMqyDbwl4d76YTFChTaaA+XwMAUA8YAL/tsBANiU3t+RqUqTTQCUxuiGxpFxSoVagQVFsLhUoFQeGvgQMQ9SIazp/HBYUK7f2MG0xuXCw9NAv5zcswM1+J8LbhVs9h0bFvKA4cCLQ2o726Gop+3nV4O70ookylMfxMiMg2QcCZASEY2FKPS6WlcrdGdq0icCZ4EMCeG8+XlzkRC3brENds/cfNomMfIQgoHhCCMjEYAXo9BD8dRBchoE2hYI8NkZ3aFEocHDgYgXqd38YNwBA7WhVKiE64OZQ1uUlOTkZxcXG34w888AD+8Y9/WH3Pxx9/jGeeeQZFRUVITU3Fyy+/jJ///Oeubmq/SL03KK2w+no4AG18PIuOfYROUOCSkv+wu4q/xA3yL6Ig4JKS/Q3OIutP8sCBA9CZ7Mn+448/4oYbbsCcOXOsnr9v3z7MnTsXa9aswc0334wPPvgAt956Kw4dOoTLL7/cXc3uk7zMiciz8drUHMPmnSw6JuqdP8UNIuobj9pb6pFHHsEXX3yBU6dOQbDSLZWVlYWWlhZ88cUXxmPXXnstxo8fjzfffNOuz7C2t5TcDjV+hAW7A5B9zVjuV0V+wZl7S7kjbgDcW4pIbl65t1RbWxs2bdqExx57zGqAAoD9+/fjscceMzs2c+ZMfPbZZzavq9VqodVqjc8bGxud0l5nMi063tNDwqUK13DYisiEq+IG4B2xg4is85jk5rPPPkN9fT0WLVpk85zKykpER5tvdxAdHY3Kykqb71mzZg2effZZZzXTZaSi46WlzVZfP36pnEXHRBZcFTcA74kdRNSdxyQ3b7/9Nm666SbExcU59brLly83u2trbGxEYmKiUz/DGewpOm6NjGTRMZEJV8UNwHtiBxF15xHJTXFxMXbt2oVPP/20x/NiYmJQVVVldqyqqgoxMTE236PRaKDRaJzSTlfTBKlReNF6cgPAuBM5e2+IXBs3AO+KHURkziOSm40bNyIqKgqzZs3q8bxJkyYhJycHjzzyiPHYzp07MWnSJBe30D1aZq+2+Zqh6Niw0jERMW4QkW2yJzd6vR4bN27EwoULoVKZN2fBggWIj4/HmjVrAAAPP/wwpk2bhldeeQWzZs3C5s2bcfDgQaxdu1aOprtVemgWCvUrjEXHqnDzO0oOVZE/Ydwgop7Intzs2rULJSUlWLx4cbfXSkpKoDDZdG/y5Mn44IMP8PTTT+N3v/sdUlNT8dlnn/nNWhW5GWlYsFuHjJMF3V7LqdNi+ISRMrSKyP0YN4ioJx61zo07eOI6N45QZS/DqCFJZseGKMbgtXHxXCOHvIYz17lxF65zQyQvR+IG14j3MpogNdo19WaPo427ILa19bjrOBERkb+QfViKHNMyezU+bPzI7NjUnKOcSUVERNSJyY0XSg/NMnveMjsL2uxlaK0b3WPvDYuOiYjIHzC58RGaIDVmnDqBmB5GGrew6JiIiPwAkxsfYZhJpcKQgiqb52jH8T83ERH5Pv5r5yOkdXDa1UFWX6+pvQixbS63byAiIp/H5MaH5Gak2Xxtas5RLDl2FtksOiYiIh/H5MaHWBYam2qZnYUj2cvQWjfUatExe3OIiMhXMLnxI7aKjreED0IROFxFRES+gYv4+ZHcjDTEN6uQaPHIOFmAjjqt3M0jIiJyCvbc+BGp6LjixEGz4ymB10Abz93GiYjINzC58TPWio6n5nyH6ce12B88kOvgEBGR12Ny42esFR3nZgALdqugbWlmsTEREXk9JjeE9NAs5Dcvw8x8JcLbhpu9tiV8EKeOExGRV2FBMQEA8jInYkiDrluxsa3eHCIiIk/FnhsC0NV7g9IKs+MPl4/BawDAoSkiIvISTG7IKC9zIjQ5R82O5V8shti2gNs2EBGR12ByQ0bpoVlomW1ecBy8ZQVmnDqB/dy2gYiIvARrbqhHLbNXo6nyAFrrLuD04QKcPlzAGhwiIvJo7LmhXmmC1Fhy7CwiUgIAAH9saWYNDhEReSz23FCvcjPScKR+LypKd6KidCfEtjb23hARkcdickO9Sg/NgiZIjXZNPdo19Zhx6gT3oiIiIo/FYSmyi+m2DVdvPYDWutGcQUVERB6JyQ3ZxXTbBk3QUeMMqiIUdTuXCQ8REcmJyQ05LDcjDQt2q5BxsqDbazkjRnLKOBERyYrJDTksPTQLhfoV0BQBcQPjjMeHKMZgW0uzfA0jIiICC4qpj3Iz0qBVwFhk3K6pxzn1Pkw/fgSnD3fv0SEiInIX9txQn6SHZiE3o/vxBbsNm20SERHJhckN9ZlpkbEkv3kZxLZUq+vgsNCYiIjcgckNOZW0mvFFixHPLeGDUAROHSciItdjzQ05Vcvs1ThSvxfRBVVmj998W8CF/4iIyC3Yc0NOpwlS45x6n9mxmtqLaK2L5MJ/RETkckxuyOlMVzOWTM3pWviP6+AQEZErMbkhp7NWaJyb0TWTyrTYmL04RETkbExuyC2khf+mH+9ATNtYAIYiY/biEBGRs7GgmNwmNyMN8c0qJHY+LHtxiIiInIE9N+Q26aFZyG9ehooTBwEA0weNx/7gKey9ISIip2JyQ26VlznR+Pertx6AtuUKzqAiIiKnYnJDbmVabKwJOorpx49gf/AUFKEIAAuMiYio/1hzQ7KRanAyThYg82wVOuq0rMEhIqJ+Y3JDsjHU4OxH6gUgsTPJ4SrGRETUXxyWIlnlZU4Etm7HKH0SwgG0RnIVYyIi6h/23JCs0kOzoAlSo/BiBQovVmDGqRPsvSEion5hzw3JrmX2agDAocaPjKsYExER9RWTG/IY0irGM/OV2BM8sNvrwyeMlKFVRETkbZjckEfJzUjDgt06LC017705fqkcOWCCQ0REvWNyQx5FWsUYpRVmx1MVY7CNw1VERGQHFhSTx9EEqdGuqTd7HG3cBbGtjevgEBFRr9hzQx6nZfZqfNj4kdmxqTlHMePUCewPH8y9qIiIqEdMbsgjmW7TAAAts7OgzV6G1rrRZr03XA+HiIgsMbkhr6EJUmPGqRMIqqkBAGyLjweY3BARkQXW3JDXyM1IQ1PlAYSf/wnh539iDQ4REVnF5Ia8hrSasVRkvOTYWbSU1crdLCIi8jAcliKvkpuRZvz71Vv3Qmwbyr2oiIjIDJMb8iqmhcaaoK4ZVEUoAsACYyIi4rAUebHcjDTEN6uQcbIAmWer0FGnZQ0OERExuSHvZdiL6iBiKpsQXVCF33xbwBocIiJickPeLTcjDflt3+Gceh9XMSYiIgBMbsjLpYdmITcjDR+mD4dWAcw4dQIddVq5m0VERDJiQTF5PanIODcDuHrrAWhbruAqxkREfozJDfkMwzo4RzH9+BHEtI0FAGwJH8S9qIiI/Izsw1Ll5eWYP38+IiIiMGDAAIwbNw4HDx60ef6ePXsgCEK3R2VlpRtbTZ5KmkGV2PnQtjSzBscHMW4QUU9k7bmpq6vDlClTMGPGDGzfvh2RkZE4deoUwsPDe31vQUEBQkNDjc+joqJc2VTyEumhWchvXoaKE4Z/6KYPGo/9wVPYe+NDGDeIqDeyJjcvv/wyEhMTsXHjRuOxlJQUu94bFRWFQYMGuahl5M3yMica/3711gPGncRZe+MbGDeIqDeyDkt9/vnnuPLKKzFnzhxERUVhwoQJWLdunV3vHT9+PGJjY3HDDTfgv//9r83ztFotGhsbzR7k29JDs4wPaSdxaYE/DlF5P3fEDYCxg8ibyZrcnD17Fm+88QZSU1OxY8cO3H///Vi6dCneffddm++JjY3Fm2++iU8++QSffPIJEhMTMX36dBw6dMjq+WvWrEFYWJjxkZiY6KqvQx6Iqxj7HnfEDYCxg8ibCaIoinJ9eEBAAK688krs27fPeGzp0qU4cOAA9u/fb/d1pk2bhssuuwzvv/9+t9e0Wi202q51TxobG5GYmIgXt3yPwOCB/fsC5BWCt6zAVQOvR0B8PI5fKkfOiJEYPmGk3M3ya61NTfj9FSPR0NBgVgNjD3fEDcB27HjuSAECQ0IcajMR9Z8jcUPWnpvY2FiMGTPG7Njo0aNRUlLi0HWuvvpqnD592uprGo0GoaGhZg/yL7kZadhbvR0VpTsRfv4ntNZdYO+NF3NH3AAYO4i8mazJzZQpU1BQUGB27OTJk0hKSnLoOj/88ANiY2Od2TTyIVLtTeHFChRerOAqxl6OcYOIeiPrbKlHH30UkydPxosvvog77rgDeXl5WLt2LdauXWs8Z/ny5SgvL8d7770HAHj11VeRkpKCsWPHorW1FevXr8fXX3+Nr776Sq6vQV6gZfZqAMChxo+wYLdh/RvyTowbRNQbWZObq666Clu2bMHy5cvx3HPPISUlBa+++irmzZtnPOfcuXNm3c1tbW14/PHHUV5ejqCgIKSlpWHXrl2YMWOGHF+BvIxhJ/EVmH68A/tNaq5Yg+M9GDeIqDeyFhTLobGxEWFhYSwo9mOG3psAxKUatmj442AgOCGC6+C4UX8KiuUixQ4WFBPJw5G4wb2lyO9IqxijtAIAMLM6EXuCr+QqxkREPkL2vaWI5JCXORHtmnq0a+oR3wLW4BAR+RD23JBfSg/NwofpHwEApuZ8h+nHtdgfPJC1N0REPoDJDfmt9NAsAEBuBjiDioicxtY6Wqzrcx8mN+T3pBocsS2VG2wSUb+1lNXi5+XlZse2xccDjC1uw+SGCIYanAW7TyE7IIABiIj67PThAszMz0e4ttTs+MymJuzh0LfbsKCYCFLvzX6IbW3cmoGI+kzb0oz4FhgnLHDigjzYc0PUSROkxoxTJ7A/fDCnhRORw4qKiiC2teFI/V7kTZ1o9trVW/dCbBvKoW83YXJD1Kll9mpos5ehtW60We8NAxERWbLWw9tRp8WSY2eRH6Q2TliQ5GUC9+aexYaAAHR/J+OMszG5ITIh9d7EdI7YbgkfxF4cIuqmo06L2XX1Zsfqzp7Gkfq96Jj3h27np4dm4Uj9MszMB8Lbhpu9xjjjfExuiEzkZqRhwW4VhhRUAQBaR+rZjUxEZoqKitBadwHRBTVmx4PagKYgNTpsvE8TpEZ8CxDSGV8kjDPOx+SGyIS0sWa7OggAMOPUCNbgEJGZjjotZpw6gXPqk2bHy5ovIjcjDek23pebkQbkfIeE4CCz44wzzsfkhshCbkaa8e9Xbz1grMHhXRURAZ0zoppVeG/G8G6vWdbaWL6Wm9H9uLSIKOOM8zC5IbJgGpw0QUeNM6iKOssAGXyI/I9UQNxRp8X040dQqP8B6aGrHb6OteSnUL8C0493YH/wFMYZJ+E6N0Q9yM1IQ3yzChknC5B5tgoddVqug0PkZ4qKitBRp0Xm2SpknCxAfLPKrIe3vxhnnI/JDVEPDDU4BxFT2YTEzuDTUaeVu1lE5EYddVpknCxAYrMKqReA/Ob9PQ4/OUpaRDT1AhhnnITDUkS9yM1Ig3brXoSe+A4A0BoZybFxIj+ibWlGTGUTDra+i8bWduRlTrRZNNxXeZkTga3bEdqoBsA4019Mboh6kR6ahbxMw9+n5hzlKsZEfuT04QJMP34E+W0/IPcGw1CUM3ttJIwzzsXkhsgOUjDLzTCf2QCw8I/IlxlnRmWkuSSpMWUtzlDfsOaGCIBeZ995Ug3O9ONHkHm2Cplnq3D6cIFrG0dEspD2iuqpxsbe2OEIqQZnZn4+C4v7iMkN+bXqUjVevicJT9w0Ai8tSUJ1qdr4mq2gJc1sSGxWIa7RvBeHiHxHS1kt5h8+ZaiHsdCX2GHv64ChBmdIgw4tZbWONpvA5Ib83MZn41BdGgAAqC7V4I/3JeHEgSBj0Hr5nu5BKz00C7vLSvDz5yfiisduxq7HrsX5H/mrRORLeuu1cSR2SMlMZbHaZmyxJPXeiG1tvHnqA9bckN/S64CqEo3ZMV2HAhtWxkHUCwCAmrIAbFgVh8WrKrDx2ThUlWigVOmh6/gHABEAcK52MHa8pMGVN3N8nMhXSFsstFnZK8qe2FFdGoB1T8dDpRZN4oYCUtyoKQvAxmfj8NT6YpttkDbyZWGx43i7SX5LoQSiEruvJaHrUEDfGaD0esF4V1ZdFtD5utB5Zuc5ogINFSFYPTUU1WeVbmk7EbmOtDFmU+UBtMzuvgqxPbFDFAXUnguwHTf0AqpKNN2GtEy1zF6NpsoDaK27wN4bBzG5Ib+2eFUFlCq98bmgEKFU6aFQiJ1HDH/qOhTGOzIpOHUxnNN4bgDe+024axtMRC4n9dpogmwPG9mKHVI8kPQWN86XG3pwbJF6b7ion2OY3JBfi0psx5NvFSP6MkPgiEpow+JnKzAkvq3zDMuAZEo0O0fUK1B9Wu2S2RNE5D7S9O+etliwFjsWrayA7ZghWvxp3oPT2wQGTgt3DGtuyO9FJbbjqfXF0OsM3c0AMPqqYrx8TxJqygKg1wsQBBGiCJgHLgGCQg9AgKgXoBD0CIltMV6DiLyPtGifPRtjWosd0ZdpzeKGQil21tpIBAAiBIWhV0ehEBGZ0GYzbhiWn5A21hyI4RNGOuV7+jr23BB1sgwud6+sQGSCoQcnKrEN1u7IpOAEAFGhZZj+wH6OjRN5MXt6bSyZxg7LuPH4G1LBsMWNkWCIG5EJbbh7ZUWP12fvjePYc0Nkg+VdmWHqZgBE0TxI6ToE/OGLkwj79woENI3H/ropnNlA5IXMp3//oU/XsNWbYzm7Sq9T4A9fnIQqoPdrGqaFL4PYlsr9puzEnhuiXkgBauEzFVAoRStniLhQpe42s0F6EJF3aCmrxZJjZ3ssJLaXFDf0OnT2zFjGDkPcsFde5kTMP3yKi/rZiT03RIDZXZal6lK1cY0b6wRsWBWH375dbJzZEFRTAwDYFh8P8C6LyONJvTZH6veiY579vTa2Yodp3DBMG7cc1hbw9so4LN9ge50bU+y9cQx7bsivmS6hbmvF0I3PxqGmTOo7FtH9DsywQqleZxgbb6o8gPDzPyH8/E9cXZTIS9gz/dtUb7HDNG4Y/uweN2rKbM+SsobTwu3H5Ib8mmUAslxvQlqJVG+2VoX5HZggiIhK1EKhNNxdaYLUaNfUo11Tz0BE5CUcLSTuKXZYxg1DnZ5hllSXrrhhLy7qZz8mN+S3LAOQtfUmFEpYLMxlWKhr2bpC4wqlCqWI6lKN8e7tm+lX4MP04fgwfTgDEZEX6Jr+fdDm7t+meosdCiU6178xT2YiYtsRmWCIG0qVedyQrtsb9t7YhzU35LekACStSWG63oReBxQcCsLbv4+DXme+RoW0jLrQ2YEjPa8uDcAf70uCruNpRF+mxd0rK6AJOoppBfn4LnwwilAEABwrJ/JAQ1s1WJeRhnQ7zrUVOyQnDgShukwNy+nftecCjDdFUtyoKTPfg0qKHVGJ7VbreXIz0nBvrgb7+/d1fR6TG/Jrd6/s2hAzMqENN99bg5fvSeosHja/6wK6gti7z8ehqkSqw+nqejZNdNY9HY8O5etoKItEQtQFrFx6CAdGq1AEFgMSeTvT2BEe3Y6OdgFP3DTCkPSUq022XeiKHYJCNO4kbrpCce25AON6WT0lO2Q/DkuRX5PWpFi2rhAA8PYzCRZJi/m+MIJCxM331nQmP7a3ZpA2zWssHwIAqKgZhDV/Scdvvi1gdzKRD4hKbO9MOrSoPReA2nOGoaWq0oDO3l7z2DEoqr1zpWLre0yZDnHVngvosRaQesfkhgjA+mfiu/XEWKPXCXjHgUAjLfinFxU4WzsYP9R/zRocIh+xYVVct54YiKY9NjD+XacToFDq0Z3l+d2TnZ72niLrmNyQX6suVWPN4iRcqAxAz5tkGhiGnqRfG8thK2sL/BkICj3CEmrQrtKzGJDIy0nTwKtLe+rBNa+3aahRQ6+zdq5ocb5U02c4rlCIiL7MsVlVxOSG/NiJA0F4aUkyaspsLc7XG8Hi792niBtmWhl2DFfpwvDFqBncI4bIw2hbmqHtsL9r5M3fmvb0OsJacmMRNxQiImLbMDjGUGOj1wvoaBfM1tHRdugYQ3rB5Ib81oaVcbAebGz3wDhCFAXo9V3Xqz2nxr6X7kGh/iD+59hRnD5c4JTPIaK+M99Pyr5p4PU19vX09oWoB2rPBaCuWgXT2LHu6XgAwPjgLOQ37+cCob3gbCnySx1tMBlesuS8oCXqzaeR154LwJOfv47G8kiExTXh3vcuIWooB9OJ5CKtTNwWpEaHHee7vvals9ZG1z12vLTEMBQWlrAOfxc/x66AAG7vYgN7bsgvqQIsF+dzn6YKwwyqxspgvL1koNs/n4gMioqK0Fp3AU2VB9Aye7Vd7+keO9wXQ6QZVE0VQ/Dkv25g700PmNyQ31r8bAWUKlcHJtNCY8Of0gwqUa9AXXEQZ0EQycTR/aQk5rHD2cNTpvHCeuzQ6wVUNlyGaQX5nJxgA5Mb8lsj0y/ij9tOG5ZDF1yX5ETEGgoDoy9rQ0Rsm3GxLoWgQ1hsI0pKi1z22URkm6P7SUmk2BEe3QZX9dxExLbbjh0KEWEJNUi8qGRhsQ2suSG/U12qNq4sGn2ZFrfeX9O5zYIrCgS7lly/e2UFAHR99qAKPDTrCxTVjcbpOkNx8fAJI13QBiKyxVBI/Ae7zrWMHaLZsjWGlYj7z3CN2nMBiL5Mi2XrChGT1G722ZEJbbh7ZTPy/7MfwFgnfKbvYXJDfsd0N9+q0gBsWGm5f5SzdAW7mnLDKqNPrS/GU+uLjXvGqLJ34DffKhAQH4/jl8rxTbiGWzMQeSjL2NG1YB/gvOGpruGuqpIAvP37eKx4t8i4mrq1/aaoOw5LkV+x3M0XNhflc4auYCda2TUYMOzwe7RxFypKdyL1AtBSVuvkNhCRM1iLHa5hvu1L7bkAs7o8Jjb2YXJDfkO644m+TAvriYyrgpWBtVVGczPSoFUAhRcrsLd6O2c/EHkY0xsS27GDPA2TG/J50lLpT9w0Ai/fk4Sb762BqxMZS0qVHnevrOg2Myo9NAsts1ejZfZqaILU3JqByENYxo3qUjUWPlMB98YOw2rF5DjW3JDPMx0nrykLwGevR7m9DQMGdpgVIhp2E243O6dl9mpos5ehtW40ioqKWHtD5ELSysS2WMaNdU/HQ6V2f6+NrkPAEzeNsBk3yDr23JBPsxwn1+sNY9ju7lpurg8wC5QbVlnfWZy9N0Tu0VJWi/mHTyEvc2K312zFja4dwN1FQH2NoQ+ipswwKYHrYtmHyQ35NGmc3HR9CAP3DksBMAuU1aUaY1e3qdyMNG6sSeRive0nZStuiC4rIu5JV9yoKtGYDZORbUxuyOfdvbICkQmG7ufIBMNiWIILF+2zRqHUmyRWhj+lOzFT6aFZKNQfxPTjR7ixJpGL2LMysSfEDYPuKxZbix1kjjU35PMs14cwXQzLXUQRCB3cgYbzaljeiVmuW5GbkYYFu9l7Q+QKpvtJdcyzvXhfz3HDWQv2OaLr84yxQ8/+CVv4kyG/ISUQUtBatq6wcwM81xP1AprrlYhK1HbrwfnjfeZdzOmhWchv3m+cFi49iMg5bjx71u79pKzFjejLpEJkV/bkdF1bodSbDZNJr730+auoLwlgfLCCyQ35pepSNd7+fbzJAn6uZlgssLpUA0FhHhCtdTHnZU7EkmNnMe27o5j23VEWGBN5iLpqNc5XuKPepWshP71OgaqS7rGjqikBP/w5nYt/WsHkhvzSxmfjUHvOnQV5XePlor4raAHmw1OS9NAsHKnfi/DzPyH8/E+Y/v1B1uAQeYANK+Og63DvWje2YoeoV6D4whDoWrn4pyUmN+R3pGme7h0z71pSXZo1JRUnKhSi1dWLNUFqtGvq0a6pR3wLWINDJLOONnT29ponGa7Vc+yIDS9FxhkuH2GJyQ35Hbcvoy7oERHb1m28XKE0/GnY4bei29tyM9LwYfpwfJg+HEfq93JrBiKZqQIA054UVxMUhthhOhylVOkxOMawkF9kQhuuXLUVTZUHoG1pZnwwIXtyU15ejvnz5yMiIgIDBgzAuHHjcPDgwR7fs2fPHqSnp0Oj0WD48OF455133NNY8hluXUZdFKDrgHFaqfGwXkD0ZVo8tb7Y6qqj6aFZxkde5kTMP3yKY+udGDdIDoahY9ONLV1LGoZSmCQ3ep0AlVrEn7afxFPrizFj9PXQBKkxMz/fLW3yFrImN3V1dZgyZQrUajW2b9+On376Ca+88grCw8NtvqewsBCzZs3CjBkz8MMPP+CRRx7BPffcgx07drix5eTN9DogJqm9c6aUO+7ABNTXBGDWkhrjc8B6rY0tljOo/BnjBslBmhLuvrgBSLuCm058EEXBrctYeCtZ17l5+eWXkZiYiI0bNxqPpaSk9PieN998EykpKXjllVcAAKNHj8bevXvxl7/8BTNnznRpe8m7ma5TEX2Z1o0zpQzefT4O0ZdpUVMWAL1egEIhIjKhrVutjS3S1gz7wwcDyS5tqkdj3CB3kjtuGIexFYYbIkEQEZVof9zwV3b/V6qo6F4T0F+ff/45rrzySsyZMwdRUVGYMGEC1q1b1+N79u/fj+uvv97s2MyZM7F//36r52u1WjQ2Npo9yD9ZboTn3jswQyFic4NgHD8XFCJuua+ml3d1aZm9Gk2VB9Bad8Frem8aqiqdfk13xA2AsYMMrMUNy/o51zIMg+nFri0gOtoFbr/QC7uTm7Fjx+KDDz5w6oefPXsWb7zxBlJTU7Fjxw7cf//9WLp0Kd59912b76msrER0dLTZsejoaDQ2NuLSpUvdzl+zZg3CwsKMj8TERKd+B/IO1jbCM5/14ArdA19Lg9o4jVTUC/j8rUiHruhtG2v+eeYMHP7Xp069pjviBsDYQbbjxuBYqX7OjfFDFIzH6qrU3H6hF3YnN6tXr8Z9992HOXPm4MKFC075cL1ej/T0dLz44ouYMGECfv3rX+Pee+/Fm2++6ZTrA8Dy5cvR0NBgfJSWljrt2uQ9rG2EF32ZFpEJrkwSrAU+82md9tbcSLxtY82Zjz+FT55+Cu8/+GtcrK9zyjXdETcAxg6yHTd+u77YDaubW8aP/sUOf2N3cvPAAw/g6NGjqK2txZgxY7B169Z+f3hsbCzGjBljdmz06NEoKSmx+Z6YmBhUVVWZHauqqkJoaCgGDBjQ7XyNRoPQ0FCzB/kn043wwqPb0dEuoKZM2ifGlSyv3/P6Nj2RNtacmZ/vFYv6Tf7VIjy2LQcX6+vwp59Nx085X/X7mu6IGwBjBxlYixtP3DQCIeEdcG/s6JqC3pfY4W8cKihOSUnB119/jb///e+47bbbMHr0aKhU5pc4dOiQ3debMmUKCgrMA/TJkyeRlJRk8z2TJk3Ctm3bzI7t3LkTkyZNsvtzyT+ZboT3x/uSjOPorme969rW+ja9MWysqfOa3pvBiZfhvuyP8d/3NuC9++9B1LBUCILhZzJ16lQolUrGDfJYtuKG6Sa4rmN+faVKhK5D6HPs8CcOz5YqLi7Gp59+ivDwcPziF7/oltw44tFHH8XkyZPx4osv4o477kBeXh7Wrl2LtWvXGs9Zvnw5ysvL8d577wEAfvOb3+Dvf/87li1bhsWLF+Prr7/GP//5T/z73//uczvIf0jduOZTKeXZ3ffJt4r7dOdlmBa+DGJbKoqKipCcnOzc5rlAXXkZftyxHQPCwjD2hpnQ63Q4l/8TZs2aBY3GsWmtjBskh66VzQ1EUYob7tohXICuQ8AfvjjZuZgg9cShzGTdunV4/PHHcf311+P48eOIjHSsGNLSVVddhS1btmD58uV47rnnkJKSgldffRXz5s0znnPu3Dmz7uaUlBT8+9//xqOPPorXXnsNCQkJWL9+PadzUo8sp3NGxLahrkrdWSgodf26KkCJGBTZjsZatc0p4NIaGvbSBKmx5NhZZHvBtPDvNmfjixefRerkqXj8yz0YGBGB1qYm7H7jb/jtb3/r8HAP4wa5k2nsUKr00OsFiJ2/xyIA0aWlNyIEwZBISXHDMrFh3Y11giiKdg0a3njjjcjLy8Orr76KBQsWuLpdLtPY2IiwsDC8uOV7BAYPlLs55CYv35Nktr5MaEQ7mupUblqzQkREbDtUatGYXN29sgJRie3dki7puD1U2ctwcOoCDBwa67G9N+sX3YXSIz/glmeexcTb5hiPtzY14fdXjERDQ4PX1LJIseO5IwUIDAmRuznUR0VFRbhu13/RVPcdWmav7vV809hheiOkUOqh17kyfogYFNkBzQC91fhgGjtiwkpwzZP5iJ8c4rGxwBkciRt299zodDocPXoUCQkJ/W4gkTtZdifr9YYVg033a3Etwyqjy9YVIiqh3ayHxnINjY3PxuGp9cV2XdV0Ub/TdYYalOETRjq99f0h6nR4dNsuDIrltFXyPpaxw7R3V69zfb1NfY0akQlaLFtXiJgk85se09hR3ZiAPa+HY8Vd3lGH5w52p507d+5kYkNeyXI6p7SjrrRvi7v84d5kFBwKMj63toaGI9M7pWnhS0ubsbS02SM3zrv3/Y+Y2JDXsowd5twTP2rKNHjl/iSzRfu6xQ5RgYaKEA5RmZB940widzCdzhmV2IaI2LZe3uEKAjas7PqHXqFEZzu6VjuNiLV/WXVpWvjBE++ionQnHj5Wzo01iZzMNHYoVXo39vh20XUozBbtO1+hNltnRxD0iBrezqnhJmTdW4rIXUyncyqUhvHqP96XZFJz454ZD7oOBTra4LTZDrkZaZiacxSFFyuQf7EYYtsCr5lBReQNTGPH+Qo11j0dj9pzpr/A7okdUq+uQmkYkjIdFhOUwII3nbNIpq9gzw35FYXS0KUbldiOQZHuWITLnFKlNyY2eh06g6QUpAy1OY50LaeHZqFl9mq0zF7tdVszEMlJe9G+wn1TUYmGiQHujhsAjIv2SUNSXVPRAX2HAkOSOCZlij035DcsZyaZ3325Y/xcxOJnuxbeksbz+7pLuKXcjDRcvfUAtC1XsPeGyIbk5GTsGFWLeQ06vNf4EdJDs3o83zJumBcYA+6KHdKifZZxQ1DoETlUxyEpC+y5Ib/R8+6+7iBgZPpFdJiU+5iO5/d31dH00CxogtSYfvwIe2+IeqAJHojygR2YmnO013Pl3xUcAAQMjm439uqaxo3QmBYOSVnBnhvyC9amg0MvIDy6DXVV7lju07CQ31OZw6HrUECp0mPxsxUYfdVFs1qg/jJszeA9G2sSyUEVrsHu1NG4MvdAj+fZihsKpR6mG1m6lgiFUsSym0cAMExCuPeFcjy1vhiK93+LwzcsRtTQiW5oh3dhzw35Bakr13IjugCNNH7u6jsww5oVug5DMNR1dJ855QyGrRn2Y2Z+vsdNCyfyFMnJyQgMH4yQmKsQvGWFzfO6TwXv/FMUOmcruSJuWPYKCWbFw7Xn1MaZUwqFq3cm915MbshvLHymAuZ3WkLnXZmL78AE0+0duoqHpZlTzpaXORFDGnScFk7UA6n3prfCYtMhIOn3V68XOmdauiJuGK4pKESTaefd4xbXtOkZkxvyGzFJ7Yi+TGtcxE+hEBGV6MralK67PGuvmc6cciap90Zsa2PvDZENycnJEAJ6/wWUpoJHJXb14CgUYufQlKuIEPUKGwuNisaZU2QbkxvyK4a9WboKeBevqsCgyHa4pnu58w5MsF58aDpzytl3YZwWTuRci35vXvy/5LkKs4X0nMt27FCqumZO6fX8J9wWFhST3zCd0hmVqDUGCKXKchEuZy3KZdgwU6kSUV0qDX9JDDOn+rNxZk9aZq+GNnsZWutGc1o4UT9Y/o5K+zxVl6oxKLLDYkkJ51AoRIRHW48dug4F9HrDhp5VJZ8iLKcJke9dQtRQjlOZYtpHfsN0Suf5csMmlRufjcOFSrXFmc4aRzcsyqfrEAzbKph0aUvdytY2znQW9t4Q9Z/l7+i7z8cZj3ePHc6h1xsW+BQEWI0d7z7f1abGymC895twl7TDmzG5Ib9ga5NKy5U+XaH2nBp11SrjZ4dHt+PulRX93jizN9LGmpwWTtQ3tn5HX1qS5JbYUVUSYEhyOpObyIQ2LHymwqxNol6B6tNqFhhbYHJDfsFySqdCIVqZyumq6eAC9DrDr5ogiFCpRUQltlttkzMLBaWNNacfP4LThwtQVFTEAmMiB9iKG+fLpaEoexbz60tcEcz+FPUCohK1eGp9cdfEiM5p4IKCm2Zaw+SG/IbplM4h8W1WpnIKcPV6N6Jo3jvjzBWKrZF6bzJOFiDzbBU66rRMcIgcYC1u6PXmyUcXa/Gj/707er2A6lLzuBETVg4ACIu7xBWKrWBBMfkNy53BDQV5phtXAs4qJDa9jkKphygKEK3sH2XZJmczTAtfhusu3ISAASpk1BQgZ8RIINn5n0XkixyLG84appJiiOFPy7hRFrYJ794VgPevGotx/8PVia1hzw35HSlAdF/Uz1T/e3CUKj0WryrDsrXFiOqld8aVXcp5mRNxTr0PB0+8i5jKJtbgEPWBfXEDcEbsiIhtx5LnyxB9mfW4MTXnKMoHdmBAyMB+f5avYs8N+S1p7Nr8Lky6Y+rPHZjhjiskvAMbViUYp3gPiZNnXDw9NAsfpn8EAJia8x2mH9dif/BADJ8w0v2NIfJy1uOGqf7EDhEQRNSeC8AX6yJtxg3txXb8d+JoDAy33KGcJOy5Ib9298qKznVuJM6bBl5fY5gmKk3xlrPgLz00C+mhWZxBRWRh1MBJONT4kUPvuXtlBSJi+78eVXcCIBr+WbYVNw41foQrBl2HwPDBXL+qB0xuyK8NiWvvLCzuL9uFhM6e4t0f3JqBqIsmeCDKB3Zgas5Rh94XldiO5RuKejmrf8NTnhQ3vBGTG/Jr1ncLlzgSnKzNtHLNFO/+ysuciPmHT3FjTfJ7pptnOtp7Yzt2iHBslXPpfMByaQpPihvehskN+T3bBYKOBCdrDO8fEu/8Kd79wd4bIoPk5GQEhg9GSMxVDvfeALZih701e71NGxc6r099weSG/J7lbuGOL8hlOQ3UvMfmt28XO2W/KGfi1gxEBqa9N46SYod9vbyW55jGDeuxIybJs+KGN2FyQwTz3cK79JTI9BTMDOe4YlE+Z2mZvRpNlQfQWneBvTfk15KTkyEEBPSpsBiwVVzsu7HDWzC5IULXQl2GpdYtX7V31dGuuy5pqXRP67Exxd4bIoPghAhsmpCKq7d+7/B7oxLbseLdIrNtGrrYEzu6am7siR1Xb/0eb48bChWngfeIyQ1RJ8tN8qQgFB7dU4LSFbwUyq7N7Rav8vy7Lk4LJzLob++NrdjR002QZFBku7Hnp7fYcajxI4waOAlCQACngfeCi/gRdZJmP9SUBXQGKcOMhwCNiIjYNtSeU8N68aDhjisyvh1PvlXcbXaDq7ZW6C/DxporMDNfiT1c1I/8nOm08JbZWQ6911bsUKr00HVYFhh3/V1QiNAMEK1uwWItbkzNOYry0PHQBHNl4t6w54bIhOkmeZKaMsMOwNJS6Na6mqU1KUxVl6rx8j1JeOKmEXj5niRUl6pd0ub+yM1Iw5AGHXtvyO8NnzASe8ZegRTFlX2uvbGMHXq9YLJIaPe4IZqsZSMlMrbixqHGj5CiuBJ7xl7BGxE7MLkhMhGV2G4y/bJrEb7acwEQO2OTFKyUKj0Ehe21bDY+G2dMjKTVRj0Np4UTdenron6A9dgh6gXoOhQIj24zHutr3JD2k2KvjX2Y3BBZePf5OFgupqVU6XG+3BBwRL2AqEQtnnzL9oaYlmPwnrzaqCZIjSXHzrKwmPxef6aFA7ZjR0PnViyCIGJQZEef4ob2Yjt2p45mIbGdWHNDZEIKLuaEznHzznP0AqpLNRgS1251rBzoPgavUIiITGjzyNqbltmrcSR7GVrrhqKoqIiFiuS3kpOTcbpOi5CYq9C2ZQVaZq+2+732xA5RNPQC/2n7SQD2x42Qz1dg1KDr8CP3k7Ibe26ITCiUQERsG0yXQ4+IbTOb5mnZlWwrYTEdg/f0dSs4LZzIoK+9N+cr1FCq9MbnQmecsBU7HIkb2ovtnP7tIPbcENnh7pUV2PhsHKpKNHYnKtLaOZ46W8pUbkYaFuzmtHCi5ORkHC+rxaiBk/Be40dID7Vv5tTGZ+Og13X10igUojFOOBI7LOPGocaP8L8DJ+F7Tv92CJMbIhN6HVB7LsDkiKEbuachqN6u5+mJDdA1LXz68Q7s57Rw8nPBCRE4n6/E1Vu/R8e83pMba0NSug4FhsS1Q6GEw7HD9FxO/+4bDksRmZDGvB0dgrLkDdPALZku6ldUVGR8EPmb5ORk7Bg1yu5F/XqLG9I5vbGMG7tP7OL07z5ickNkwRm1Mt4wDdySNC18Zn4+Ms9WIfNsFWtwyG85Oi3cFXHj4KpMTv/uIw5LEVnob62MZRe13spCXZ4qL3MiFuzWYUhBFQBAO07FGVTkl6TC4itzD+CQHbU3rogb5+oSkTNsNEJZSOww9twQ2dDXRMSeLmpPZai9OYhz6n04p96H6cePsPeG/FJycjICwwcjJOYqhxb1c1rcEHSIi6hBUASnf/cFkxsiF/CmaeCWcjPS8GH6cHyYPpwba5Jf6++ifo4yjRtRoeW46tHDnP7dRxyWInIBb5oGbsm0+z2/eRnEtlQOTZFf6uu08L4qC9uEG/4M6HUCFv1HjezLxvL3ro/Yc0PkQt6W2FjKy5yI+YdPoaWsVu6mEMkiOCECmyak4uqt37v0cw41foSpOUcx99Bp/OzrI9g0IRXBCREu/UxfxuSGiGzixprk75KTkyEEBNg9LbyvpuYchUYPqLWDkBZ6PQQu2tcvTG6IqEfcmoH8XX92C7eX9mI70kKvR1ziDTg1GJz+3U9MboioRy2zV6Op8gBa6y6w94b80vAJI7Fn7BVIUVzpkt6bQ40fYdTASXhtXDz+mjgQOSNGctG+fmJyQ0S9Yu8N+TtX9t5cvfV7Y43N8AlMbJyBs6WIqFfcWJP8nemifsFbVnR7vWX2aoeuZ3qNFG6M6XRMboioV9xYk/xdcnIyTtdpMST+OgzRlpq9ln++2OHraS+2Y9SQJADAeY2SNTZOxuSGiOzC3hvyd6pwDXaMGoUnL4wyO67pyEf+lhV2994cavwI9w66DhGJhutkDwbG8obBqVhzQ0R24bRw8nfJycnQBA9E6cAOs0d5MBxaxfjqrd+jPBjG97PXxvnYc0NEdsvLnIh7c89iQ0AAwPoA8kOqcA22hkebHWsJUGFeg86uVYwPNX6EBQMnIXvUKOMiffyH2Pn4MyUiu6WHZuFI/TKIbUO5JQP5JWv/z5+u0+J8mBJTc44iN6Pn90/NOYry0PHQBA/k748LMbkhIodI08L3hw8GkuVuDZH8hk8YiR0tzVj8PaDZ+V2P56YEXoMNY0exxsbFmNwQkUNMC4vZe0NkoAkeiMqYEFw5YGGP5x2/VM4aGzdgckNEDjGfFj6FvTdEMNTi5IwYidC6+h7Py0kcCVW4xj2N8mNMbojIYZwWTmQuOTkZRSjqVmxsSQXrdTvkXExuiMhhhmnhyyC2pXJoiqgTfw88B9e5IaI+ycuciPmHT6GlrFbuphARmWFyQ0R9wkX9iMhTMbkhoj7jbuFE5IlkTW5WrVoFQRDMHqNGjbJ5/jvvvNPt/MDAQDe2mIhMtcxejabKA2itu+C23hvGDSLqjewFxWPHjsWuXbuMz1WqnpsUGhqKgoIC43NBEFzWNiLqnRyL+jFuEFFPZE9uVCoVYmJi7D5fEASHzici15JjWjjjBhH1RPaam1OnTiEuLg5Dhw7FvHnzUFJS0uP5zc3NSEpKQmJiIn7xi1/g+PHjPZ6v1WrR2Nho9iAi5zEs6ncQ048fwenDBb2/wQlcHTcAxg4ibyZrcnPNNdfgnXfewZdffok33ngDhYWFmDp1KpqamqyeP3LkSGzYsAH/+te/sGnTJuj1ekyePBllZWU2P2PNmjUICwszPhITE131dYj8Vm5GGuKb3dN74464ATB2EHkzQRRFUe5GSOrr65GUlIQ///nPWLJkSa/nt7e3Y/To0Zg7dy6ef/55q+dotVpotV0zORobG5GYmIgXt3yPQO7vQeQ0quxlODh1AQYOje11MbPWpib8/oqRaGhoQGhoaL8+1xVxA7AdO547UoDAkJB+tZmIHOdI3JC95sbUoEGDMGLECJw+fdqu89VqNSZMmNDj+RqNBhoN9/EgcjVNkBpLjp3FhoAAwI0rtboibgCMHUTeTPaaG1PNzc04c+YMYmNj7Tpfp9Ph2LFjdp9PRK7TMns1jtTvdfuifowbRGRJ1uTmiSeewDfffIOioiLs27cPs2fPhlKpxNy5cwEACxYswPLly43nP/fcc/jqq69w9uxZHDp0CPPnz0dxcTHuueceub4CEZlwx6J+jBtE1BtZh6XKysowd+5c1NbWIjIyEtdddx2+/fZbREZGAgBKSkqgUHTlX3V1dbj33ntRWVmJ8PBwTJw4Efv27cOYMWPk+gpEZMJ0WrirNtRk3CCi3nhUQbE7NDY2IiwsjAXFRC4SvGUFAkLHY//VUzB8wkir5zizoNhdpNjBgmIieTgSNzyq5oaIvJ87p4UTEVnD5IaInIq7hROR3JjcEJHT5WVOxPzDp9BSVit3U4jIDzG5ISKnY+8NEcmJyQ0RuYQ7poUTEVnD5IaIXKJl9mo0VR5Aa90F9t4QkVsxuSEilzHtvTl9uMBtu4YTkX9jckNELiNNC19a2oylpc3Gxf2IiFyJyQ0RuUx6aBYK9Qdx8MS7qCjdiZn5+azBISKXY3JDRC6Vm5EGrQJo19SjrfY7tNZdQElJidzNIiIfxuSGiFwqPTQLuRlp+DB9OLQKGGpw6tl7Q0SuI+vGmUTkH9JDswAAuRkwbKx5sUXmFhGRL2PPDRG5jVSD86vDJ+VuChH5MCY3RORWuRlpONawX+5mEJEPY3JDRG6VHpoFTZBa7mYQkQ9jckNEbrdv2li5m0BEPozJDRG53fiQ2+VuAhH5MCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RRZk5tVq1ZBEASzx6hRo3p8z8cff4xRo0YhMDAQ48aNw7Zt29zUWiLyBIwbRNQb2Xtuxo4di3Pnzhkfe/futXnuvn37MHfuXCxZsgSHDx/GrbfeiltvvRU//vijG1tMRHJj3CCinsie3KhUKsTExBgfQ4YMsXnua6+9hhtvvBFPPvkkRo8ejeeffx7p6en4+9//7sYWE5HcGDeIqCeyJzenTp1CXFwchg4dinnz5qGkpMTmufv378f1119vdmzmzJnYv3+/zfdotVo0NjaaPYjIu7k6bgCMHUTeTNbk5pprrsE777yDL7/8Em+88QYKCwsxdepUNDU1WT2/srIS0dHRZseio6NRWVlp8zPWrFmDsLAw4yMxMdGp34GI3MsdcQNg7CDyZrImNzfddBPmzJmDtLQ0zJw5E9u2bUN9fT3++c9/Ou0zli9fjoaGBuOjtLTUadcmIvdzR9wAGDuIvJlK7gaYGjRoEEaMGIHTp09bfT0mJgZVVVVmx6qqqhATE2PzmhqNBhqNxqntJCLP4Yq4ATB2EHkz2WtuTDU3N+PMmTOIjY21+vqkSZOQk5Njdmznzp2YNGmSO5pHRB6IcYOILMma3DzxxBP45ptvUFRUhH379mH27NlQKpWYO3cuAGDBggVYvny58fyHH34YX375JV555RXk5+dj1apVOHjwIP7v//5Prq9ARG7GuEFEvZF1WKqsrAxz585FbW0tIiMjcd111+Hbb79FZGQkAKCkpAQKRVf+NXnyZHzwwQd4+umn8bvf/Q6pqan47LPPcPnll8v1FYjIzRg3iKg3giiKotyNcKfGxkaEhYXhxS3fIzB4oNzNIfJLrS3N+N3siWhoaEBoaKjczbGLFDueO1KAwJAQuZtD5Hdam5rw+ytG2hU3PKrmhoiIiKi/mNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9Ryd0Acg2lthVpX2xGWGUpGmIScfTmO6HTBMrdLCLycKrWS7gi+30MKi1GfWISjsz7FToCB8jdLCKHMLnxQUptK7IenYvIMycgKpQQ9DqMzvkXPvrLh0xwiMgmVesl3DXnF4j86SeISgUEnR5jP/t/+ODjfzHBIa/CYSkflPbFZkSeOQGFKEKp64BCFBF55gTSvtgsd9OIyINdkf0+In/6CQpRD2VHBxSiHpE//YQrst+Xu2lEDvG7nhtRFAEArRebZW6J6yhLz6BBUEAp6ozHdIICytIzaG3x3e9N3kP6/ZN+H72BMXY0++7vkOrMKTQoBCi7Qgd0CgGqM6fQ2tQkX8OI0PW7Z0/cEERvii5OUFZWhsTERLmbQUQASktLkZCQIHcz7MLYQeQZ7Ikbfpfc6PV6VFRUICQkBIIg9OtajY2NSExMRGlpKUJDQ53UQs/nr98b4Hd31ncXRRFNTU2Ii4uDQuEdo+POih38f4jf3Z++u1xxw++GpRQKhdPvFENDQ/3qf1aJv35vgN/dGd89LCzMCa1xH2fHDv4/xO/uT9wdN7zjlomIiIjITkxuiIiIyKcwuekHjUaDlStXQqPRyN0Ut/LX7w3wu/vrd3cmf/458rv733eX63v7XUExERER+Tb23BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jc9NNLL70EQRDwyCOPyN0Ul1u1ahUEQTB7jBo1Su5muU15eTnmz5+PiIgIDBgwAOPGjcPBgwflbpbLJScnd/vvLggCHnzwQbmb5tUYO/wjdjBuyBM3/G6FYmc6cOAA3nrrLaSlpcndFLcZO3Ysdu3aZXyuUvnH/0J1dXWYMmUKZsyYge3btyMyMhKnTp1CeHi43E1zuQMHDkCn69pJ8ccff8QNN9yAOXPmyNgq78bY4R+xg3FDvrjh+/93uUhzczPmzZuHdevW4YUXXpC7OW6jUqkQExMjdzPc7uWXX0ZiYiI2btxoPJaSkiJji9wnMjLS7PlLL72EYcOGYdq0aTK1yLsxdvgPxo0u7o4bHJbqowcffBCzZs3C9ddfL3dT3OrUqVOIi4vD0KFDMW/ePJSUlMjdJLf4/PPPceWVV2LOnDmIiorChAkTsG7dOrmb5XZtbW3YtGkTFi9e3O+NZ/0VY4f/xA7GDQM54gaTmz7YvHkzDh06hDVr1sjdFLe65ppr8M477+DLL7/EG2+8gcLCQkydOhVNTU1yN83lzp49izfeeAOpqanYsWMH7r//fixduhTvvvuu3E1zq88++wz19fVYtGiR3E3xSowd/hU7GDcMZIkbIjmkpKREjIqKEo8cOWI8Nm3aNPHhhx+Wr1EyqaurE0NDQ8X169fL3RSXU6vV4qRJk8yOPfTQQ+K1114rU4vk8bOf/Uy8+eab5W6GV2Ls6OIvsYNxw0COuMGeGwd9//33qK6uRnp6OlQqFVQqFb755hv89a9/hUqlMiug8nWDBg3CiBEjcPr0abmb4nKxsbEYM2aM2bHRo0f7Rde6pLi4GLt27cI999wjd1O8EmNHF3+JHYwb8sUNFhQ7KCMjA8eOHTM7dvfdd2PUqFF46qmnoFQqZWqZ+zU3N+PMmTP41a9+JXdTXG7KlCkoKCgwO3by5EkkJSXJ1CL327hxI6KiojBr1iy5m+KVGDu6+EvsYNyQL24wuXFQSEgILr/8crNjwcHBiIiI6Hbc1zzxxBPIzMxEUlISKioqsHLlSiiVSsydO1fuprnco48+ismTJ+PFF1/EHXfcgby8PKxduxZr166Vu2luodfrsXHjRixcuNAvpvC6AmOH/8UOxg354gajFNmtrKwMc+fORW1tLSIjI3Hdddfh22+/7TblzxddddVV2LJlC5YvX47nnnsOKSkpePXVVzFv3jy5m+YWu3btQklJCRYvXix3U8gL+WvsYNyQL24IoiiKbv9UIiIiIhdhQTERERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNeQWdTofJkyfjtttuMzve0NCAxMRErFixQqaWEZGnYtzwX1yhmLzGyZMnMX78eKxbt864fPmCBQtw5MgRHDhwAAEBATK3kIg8DeOGf2JyQ17lr3/9K1atWoXjx48jLy8Pc+bMwYEDB3DFFVfI3TQi8lCMG/6HyQ15FVEU8b//+79QKpU4duwYHnroITz99NNyN4uIPBjjhv9hckNeJz8/H6NHj8a4ceNw6NAhqFTc3J6Iesa44V9YUExeZ8OGDQgKCkJhYSHKysrkbg4ReQHGDf/CnhvyKvv27cO0adPw1Vdf4YUXXgAA7Nq1C4IgyNwyIvJUjBv+hz035DUuXryIRYsW4f7778eMGTPw9ttvIy8vD2+++abcTSMiD8W44Z/Yc0Ne4+GHH8a2bdtw5MgRBAUFAQDeeustPPHEEzh27BiSk5PlbSAReRzGDf/E5Ia8wjfffIOMjAzs2bMH1113ndlrM2fOREdHB7uZicgM44b/YnJDREREPoU1N0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+ZT/D5fBoIrZ7ZebAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# построение областей аппроксимации и точек тестового набора\n", + "lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, data_test)" + ] + }, + { + "cell_type": "markdown", + "id": "bd63edf4-3452-41db-8080-d8a2ff4f09a4", + "metadata": { + "id": "bd63edf4-3452-41db-8080-d8a2ff4f09a4" + }, + "source": [ + "### 12) Результаты исследования занесли в таблицу:\n", + "Табл. 1 Результаты задания №1" + ] + }, + { + "cell_type": "markdown", + "source": [ + "| | Количество
скрытых слоев | Количество
нейронов в скрытых слоях | Количество
эпох обучения | Ошибка
MSE_stop | Порог ошибки
реконструкции | Значение показателя
Excess | Значение показателя
Approx | Количество обнаруженных
аномалий |\n", + "|-----:|------------------------------|----------------------------------------|-----------------------------|--------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------------|\n", + "| AE1 | 1 | 1 | 1000 | 19.5568 | 6.53 | 12.67 | 0.073 | 0 |\n", + "| AE2 | 5 | 3,2,1,2,3 | 3000 | 0.0108 | 0.4 | 0.33 | 0.750 | 4 |\n" + ], + "metadata": { + "id": "df2BIryKfkpk" + }, + "id": "df2BIryKfkpk" + }, + { + "cell_type": "markdown", + "id": "b8e54861-e2c2-4755-a2d8-5d4b6cace481", + "metadata": { + "id": "b8e54861-e2c2-4755-a2d8-5d4b6cace481" + }, + "source": [ + "### 13) Сделали выводы о требованиях к:\n", + "- данным для обучения,\n", + "- архитектуре автокодировщика,\n", + "- количеству эпох обучения,\n", + "- ошибке MSE_stop, приемлемой для останова обучения,\n", + "- ошибке реконструкции обучающей выборки (порогу обнаружения\n", + "аномалий),\n", + "- характеристикам качества обучения EDCA одноклассового\n", + "классификатора\n", + "\n", + "для качественного обнаружения аномалий в данных." + ] + }, + { + "cell_type": "markdown", + "source": [ + "1) Данные для обучения должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение, кол-во скрытых слоев 3-5.\n", + "2) Архитектура автокодировщика должна постепенно сужатся к бутылочному горлышку,а затем постепенно возвращатся к исходным выходным размерам.\n", + "3) В рамках данной работы оптимальное кол-во эпох 3000 с patience 100 эпох\n", + "4) Оптимальная ошибка MSE-stop в районе 0.01, желательно не меньше для предотвращения переобучения\n", + "5) Значение порога в районе 0.4\n", + "6) Значение Excess не больше 0.5, значение Deficit равное 0, значение Coating равное 1, значение Approx не меньше 0.7" + ], + "metadata": { + "id": "1s5_ye8vkleI" + }, + "id": "1s5_ye8vkleI" + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/labworks/LW2/notebook с полными выводами/LR2_задание2.ipynb b/labworks/LW2/notebook с полными выводами/LR2_задание2.ipynb new file mode 100644 index 0000000..1799e9f --- /dev/null +++ b/labworks/LW2/notebook с полными выводами/LR2_задание2.ipynb @@ -0,0 +1,1054 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "58e787ca-562f-458d-8c62-e86b6fb1580a", + "metadata": { + "id": "58e787ca-562f-458d-8c62-e86b6fb1580a", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "04ef3efa-30a9-4178-a620-8e17d23b4b81" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:444: SyntaxWarning: invalid escape sequence '\\X'\n", + " hatch='/', label='Площадь |Xd| за исключением |Xt| (|Xd\\Xt|)')\n", + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:452: SyntaxWarning: invalid escape sequence '\\X'\n", + " facecolor='none', label='Площадь |Xt| за исключением |Xd| (|Xt\\Xd|)')\n" + ] + } + ], + "source": [ + "# импорт модулей\n", + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')\n", + "\n", + "import numpy as np\n", + "import lab02_lib as lib" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Задание 2" + ], + "metadata": { + "id": "rqdVflKXo6Bo" + }, + "id": "rqdVflKXo6Bo" + }, + { + "cell_type": "markdown", + "source": [ + "### 1) Изучить описание своего набора реальных данных, что он из себя представляет" + ], + "metadata": { + "id": "rSvJtTReo928" + }, + "id": "rSvJtTReo928" + }, + { + "cell_type": "markdown", + "source": [ + "Бригада 6 => набор данных Cardio. Это реальный набор данных, который состоит из измерений частоты сердечных сокращений плода и\n", + "сокращений матки на кардиотокограммах, классифицированных экспертами\n", + "акушерами. Исходный набор данных предназначен для классификации. В нем\n", + "представлено 3 класса: «норма», «подозрение» и «патология». Для обнаружения\n", + "аномалий класс «норма» принимается за норму, класс «патология» принимается за\n", + "аномалии, а класс «подозрение» был отброшен.\n", + "\n", + "| Количество
признаков | Количество
примеров | Количество
нормальных примеров | Количество
аномальных примеров |\n", + "|-------------------------:|-----------------------:|----------------------------------:|-----------------------------------:|\n", + "| 21 | 1764 | 1655 | 109 |\n" + ], + "metadata": { + "id": "gf-0gJ7jqTdk" + }, + "id": "gf-0gJ7jqTdk" + }, + { + "cell_type": "markdown", + "source": [ + "### 2) Загрузить многомерную обучающую выборку реальных данных Cardio.txt." + ], + "metadata": { + "id": "N2Egw1pho-F_" + }, + "id": "N2Egw1pho-F_" + }, + { + "cell_type": "code", + "source": [ + "# загрузка обчуающей выборки\n", + "train = np.loadtxt('data/cardio_train.txt', dtype=float)" + ], + "metadata": { + "id": "G8QTxAFapASY" + }, + "id": "G8QTxAFapASY", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 3) Вывести полученные данные и их размерность в консоли." + ], + "metadata": { + "id": "zj2WXPNco-Tz" + }, + "id": "zj2WXPNco-Tz" + }, + { + "cell_type": "code", + "source": [ + "print('train:\\n', train)\n", + "print('train.shape:', np.shape(train))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W6hTlfk6pAo9", + "outputId": "6494b55a-d7f6-400c-8cfb-cf1b2aff34cf" + }, + "id": "W6hTlfk6pAo9", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train:\n", + " [[ 0.00491231 0.69319077 -0.20364049 ... 0.23149795 -0.28978574\n", + " -0.49329397]\n", + " [ 0.11072935 -0.07990259 -0.20364049 ... 0.09356344 -0.25638541\n", + " -0.49329397]\n", + " [ 0.21654639 -0.27244466 -0.20364049 ... 0.02459619 -0.25638541\n", + " 1.1400175 ]\n", + " ...\n", + " [ 0.85144861 -0.91998844 -0.20364049 ... 0.57633422 -0.65718941\n", + " 1.1400175 ]\n", + " [ 0.85144861 -0.91998844 -0.20364049 ... 0.57633422 -0.62378908\n", + " -0.49329397]\n", + " [ 1.0630827 -0.51148142 -0.16958144 ... 0.57633422 -0.65718941\n", + " -0.49329397]]\n", + "train.shape: (1654, 21)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 4) Создать и обучить автокодировщик с подходящей для данных архитектурой. Выбрать необходимое количество эпох обучения." + ], + "metadata": { + "id": "0T11A0x4o-gr" + }, + "id": "0T11A0x4o-gr" + }, + { + "cell_type": "code", + "source": [ + "# **kwargs\n", + "# verbose_every_n_epochs - отображать прогресс каждые N эпох (по умолчанию - 1000)\n", + "# early_stopping_delta - дельта для ранней остановки (по умолчанию - 0.01)\n", + "# early_stopping_value = значение для ранней остановки (по умолчанию - 0.0001)\n", + "\n", + "from time import time\n", + "\n", + "patience = 4000\n", + "start = time()\n", + "ae3_v1_trained, IRE3_v1, IREth3_v1 = lib.create_fit_save_ae(train,'out/AE3_V1.h5','out/AE3_v1_ire_th.txt',\n", + "100000, False, patience, early_stopping_delta = 0.001)\n", + "print(\"Время на обучение: \", time() - start)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rPwtBtdRPztp", + "outputId": "a89c34e5-38fd-4d77-c9b8-a73ba7cff7d1" + }, + "id": "rPwtBtdRPztp", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 7\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 46 26 14 10 14 26 46\n", + "\n", + "Epoch 1000/100000\n", + " - loss: 0.0574\n", + "\n", + "Epoch 2000/100000\n", + " - loss: 0.0360\n", + "\n", + "Epoch 3000/100000\n", + " - loss: 0.0261\n", + "\n", + "Epoch 4000/100000\n", + " - loss: 0.0217\n", + "\n", + "Epoch 5000/100000\n", + " - loss: 0.0204\n", + "\n", + "Epoch 6000/100000\n", + " - loss: 0.0185\n", + "\n", + "Epoch 7000/100000\n", + " - loss: 0.0189\n", + "\n", + "Epoch 8000/100000\n", + " - loss: 0.0176\n", + "\n", + "Epoch 9000/100000\n", + " - loss: 0.0165\n", + "\n", + "Epoch 10000/100000\n", + " - loss: 0.0159\n", + "\n", + "Epoch 11000/100000\n", + " - loss: 0.0158\n", + "\n", + "Epoch 12000/100000\n", + " - loss: 0.0150\n", + "\n", + "Epoch 13000/100000\n", + " - loss: 0.0147\n", + "\n", + "Epoch 14000/100000\n", + " - loss: 0.0146\n", + "\n", + "Epoch 15000/100000\n", + " - loss: 0.0142\n", + "\n", + "Epoch 16000/100000\n", + " - loss: 0.0138\n", + "\n", + "Epoch 17000/100000\n", + " - loss: 0.0138\n", + "\n", + "Epoch 18000/100000\n", + " - loss: 0.0140\n", + "\u001b[1m52/52\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n", + "Время на обучение: 765.1605446338654\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 5) Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать порог ошибки реконструкции – порог обнаружения аномалий." + ], + "metadata": { + "id": "8ALjaY8lo-sa" + }, + "id": "8ALjaY8lo-sa" + }, + { + "cell_type": "markdown", + "source": [ + "Скрытых слоев 7, нейроны: 46->26->14->10->14->26->48\n", + "\n", + "Ошибка MSE_AE3_v1 = 0.0126" + ], + "metadata": { + "id": "b4sk_fhYY6Qb" + }, + "id": "b4sk_fhYY6Qb" + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3_v1, IREth3_v1, 'AE3_v1')" + ], + "metadata": { + "id": "a4sR3SSDpBPU", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 724 + }, + "outputId": "8f487b44-e128-4e72-b3ff-e400431401f3" + }, + "id": "a4sR3SSDpBPU", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe8FNXdx/HvbdJBERXs9bHXWGLHijXBqBEsiInRWBKNMUaeJ3aj0agxxh4LNiyxoBGiYEFFRUVBRQmKCtJ7u5Rb9/lj3b27e2dmp+6c2f28Xy9e7N2dnTk7e2bmzG9/55yqVCqVEgAAAAAAAAAYojruAgAAAAAAAABALoKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAIBKTJ0/W+eefrx122EHdunVTVVVV9t+0adPiLl5FGjp0aPY7GDx4cEm3nfv9AwAAAMUQtAQAIER9+/bNBmauvvpq2+VyAziF/2pqarT22mtrm2220cknn6wHHnhA9fX1vsrg9V9YgayXXnpJu+++u+655x5NnjzZU/kB4LXXXss7N22//fae13H11Vf7PhduvvnmlutsamrS+++/r9tuu01nnnmm9tlnH/Xp00edOnVSXV2devXqpT333FPnn3++3nnnnYB7IX7fffednnnmGV122WU65JBD1L17d36AAACUTG3cBQAAAPlaW1u1bNkyLVu2TFOnTtWzzz6rIUOG6P7779cJJ5wQd/GKqq+v1+DBg9XQ0CBJ6tOnjw444ACtt9562Zvc7t27x1nEQK6++mpdc801kqSrrrrKMTgNmGrzzTfX9OnTJaUDU3ZBurg88sgjeX//97//1Ycffqi99947phKlvfjiizr55JNtX1+0aJEWLVqkjz/+WPfcc48OO+wwPfTQQ9p0001LWMrg5syZo5133lmLFi2KuygAgApG0BIAgJj1799fG220Ufbv1tZWLVy4UO+//75mzpwpSVq4cKFOOukkPfvss54Cl3vttZenm/wf//jH7gtu4+WXX9aSJUskSTvuuKM++ugjderUKfB6AVSGFStW6Pnnn2/3/COPPOI7aLnhhht6Oneuu+66RZdZa621tP3222vrrbdWz549lUqlNHfuXI0bN04LFy6UJL3++us64IADNHbs2EQFLhsaGghYAgBiR9ASAICYXXTRRerbt2+751tbW/XII4/ovPPOU0NDg1pbW3XeeeepX79+6ty5s6t1H3PMMSXPBPzkk0+yjwcOHEjA0iCDBw8u+ViWGalUKpbtInmeffZZrVq1SpLUqVMnrV69WpL01FNP6W9/+5vWWmstz+vcZpttdOeddwYuW58+ffSnP/1JRx11lPbcc0916NCh3TLNzc169NFHdeGFF2r16tWaMWOGzj//fL388suBt19qXbt21R577KG9995be+21l9asWaMzzzwz7mIBACoEQUsAAAxVXV2ts846SytWrNBFF10kSZo3b56GDx+uU089NebS2ctkWUrpG3wA8CK3a/gf//hH3XPPPZo3b54WL16sf//73zrxxBNjK9v++++v/fff33GZ2tpa/eIXv1BtbW02wDdy5EjNnDlTG2+8cSmKGdgGG2ygSZMmafvtt1d1dds0CGPGjImvUACAisNEPAAAGO7cc89Vx44ds3+//fbbMZamuKampuzj3JtdAChm2rRp2XNcVVWVzjzzTA0cODD7euFYlybLzTRPpVKaOHFivAXyoFOnTtpxxx05hwMAYsVVCAAAw3Xo0CFv5tzZs2fHWBprubP05gYVzjrrrHaz8g4dOtRyHfX19brjjjvUr18/bbzxxurYsaPWWWcd7bTTTrrwwgv1wQcfuCqL1cy2n376qS666CLttNNO6tmzp6qqqtS/f39PnzEzK3tmEh5Juuaaa1zNwj548OB2n3/p0qX6+9//roMOOkgbbbSRamtrVVVVpaVLl+a9d/78+Xr44Yd15plnavfdd1fPnj1VV1entddeW9ttt53OOussvfrqq64+w9ChQ4vOFD9mzJjsMrnDFrzxxhsaMGCAttxyS3Xs2FHrrruuDjroIN155515gWo7bmYc3nzzzbPLTJs2TZI0c+ZMXXHFFdp111219tprq0uXLtpuu+30m9/8JjuRjFujR4/WgAEDtOmmm6pjx47q06ePDjzwQN11111auXKlpPy6HNbQCgsXLtQtt9yiww8/XBtuuKE6duyY/Q533HFHnXTSSbrtttv03XffuVrf66+/rl//+tfacccd1bNnT3Xo0EEbbrih+vXrpzvvvDPbnbrQtGnTsp8td99tscUWlvU4jqy6Rx99NDuUwAEHHKDNN99cZ5xxRvb1//znP5o/f37Jy+VHXV2devTokf17xYoVoW/j+eefz35f2267rev3zZw5UzU1NaqqqlJtba3mzp0betkAAAiK7uEAACRA7riQa9asibEk0Xj55Zf1q1/9qt2Nc0NDg5YuXaovvvhCd911l0499VT985//dD2mp5QOQl1//fVqaWkJu9i+vfvuuxo4cKBmzJjhuNwdd9yhSy65xLLsmRnmp0yZoqFDh+rQQw/VM88842oCES8aGxt14YUX6p///Gfe8w0NDXrnnXf0zjvv6OGHH9arr76qXr16hbrt4cOHa/DgwVq2bFne81OmTNGUKVP04IMP6l//+peOPfbYop/hl7/8pR5//PG85+fOnau5c+dq7Nixuuuuu/TCCy+EWn4pPdv0WWedlTdsQkbmO/zyyy/13HPP6bbbbstOvmVlxowZGjRokGUwcc6cOZozZ45GjRqlG2+8UU899ZQOPPDAMD9KSTz66KPZx5lg5R577KEdd9xRX3zxhZqbmzVs2DBdfPHFMZXQvYULF2rBggXZv6OYof3YY4/V2muvraVLl+qrr77SRx99pL322qvo+4YNG6bW1lZJ0mGHHabevXuHXjYAAIIiaAkAQALkZldusMEGMZbE2t57760LLrhAUjoL7L///a+k9M3wdtttl7dsbtaoJD399NM67bTTsoG5mpoaHXDAAdp6661VX1+vd955J/v5hw0bpu+++05vvPFGXpd5O3/961+zmZFbbbWV9t57b3Xu3FnTpk1TXV2dp894wgknaKeddtKHH36ojz76SJL97OxOs7BPnTpVF198sZYtW6Zu3brpoIMO0oYbbqglS5a06/o/e/bs7H7Zcssttf3222u99dZTx44dtXTpUn3++ef64osvJKUzIQ8//HCNGzfOcnIQv8455xw98sgjqq6u1j777KPttttOra2tGjdunKZMmSIpPfnSoEGDNHLkyNC2+9prr+nXv/61WlpatOmmm2rfffdV9+7d9d1332nMmDFqbm7W6tWr9fOf/1yTJk3SFltsYbuugQMH5s1G3bNnT/Xt21c9e/bUjBkz9NZbb2ny5Mk69thj9ZOf/CS0zzB+/HiddNJJam5ulpT+8eHHP/6xNt98c3Xo0EHLly/XN998o88//zw78YydyZMn67DDDtOcOXMkpTNX99hjD+2www7q1KmTZs2apbffflsrVqzQ7NmzdcQRR+g///mPDjnkkOw6unfvnj1OH3300Wzm36BBg9StW7d229xoo41C2Q9ujR07Vt98842kdIb5ySefnH3tjDPO0OWXXy4p3UXc9KBlKpXSZZddlj1+N910U1fBRK8y+ynzo8ITTzzhajtPPPFE9nFuJisAAEZJAQCA0Bx88MEpSSlJqauuusp2ucwyklJvvvmm4zqnTJmSt/ydd94ZShmicuaZZ2a3//DDDzsuO3Xq1FTXrl2zy++9996pr7/+Om+ZlpaW1K233pqqrq7OLveb3/zGdp25+6q2tjbVo0eP1AsvvNBuuTVr1vj5eKmrrrrK8/7N3Se1tbUpSakLLrggtWLFirzlGhsbUy0tLdm/H3zwwdQ//vGP1MyZM23X/emnn6b23HPP7Pqvu+4622Uffvjh7HJnnnmm5TJvvvlmdpkOHTqkJKX22muv1OTJk/OWa21tTd1+++15+/utt96y3XbucnY222yzvG136dIl9dhjj6VaW1vzlps0aVJqo402yi571lln2a7zgQceyNv273//+3bf/bx581JHH3103mcO4/jp379/dl0nnnhiavHixZbLrV69OjVixIjUueeea/l6fX19avvtt8+u6+ijj05NnTq13XLLli1LnXfeednl+vTpk1q6dKnlOnP39Xfffef7M4bp7LPPzpbppJNOynttxowZeeeATz/9tOj6co/Vgw8+OKJSt2lqakrNmjUr9dxzz+Wdh+vq6lIjRoyIbLtvvfVWdlsbbLBBqrm52XH5zz//PLt8ly5dUvX19a63lXt+4FYSABA1Mi0BADBYc3NzduZwKZ0pNWDAANfvHzlypBYuXOh6+WuvvVY9e/b0VMYgrr32WtXX10uStt56a40aNSpvDDgpPZnPJZdcoqqqKl1yySWSpLvuuku/+93vHLPrJKm1tVUvvfSSDjrooHavhZmN6EVzc7POPvts3Xnnne1eK8z+/MUvflF0fbvssotee+01bbfddpo7d67uvvtuDRkyRDU1NYHL2tDQoG222UZvvPGGunbtmvdaVVWVLrroIo0dO1bPPvusJOnJJ5+03Nd+NDY2avjw4TrqqKPavbbjjjvqvvvu03HHHSdJ+te//qX7779ftbX5TduWlhZdddVV2b/PPfdc3XLLLe3Wt/7662v48OE64IADslm0YXjnnXckpeva0KFD2+3DjI4dO+qYY47RMcccY/n6bbfdpsmTJ0tKZ/w+++yzlhOkdO/eXXfffbdWrVqlRx55RHPmzNG9996rP/7xjyF9ouisXr1azzzzTPbvwuy/jTfeWH379tUbb7whKZ1teeutt7pe/9dff60LL7zQ9fJnnHGG9tlnn6LLbb311tnsUCt9+vTRk08+qYMPPtj1tr068MADtdlmm2n69OmaN2+eXnvtNfXr1892+dxhEk444QR16dIlsrIBABAEQUsAAAzT2tqqhQsX6t1339Vf/vIXffjhh5Kk2tpaPfTQQ57GLPzoo488BWEuvfTSkgUtly5dqqeffjr7980339wuYJnroosu0oMPPqgvvvhCra2tuv/++3XjjTc6buOkk04KLYgWlo4dO+rmm28OdZ09evTQCSecoHvuuUdz5szRl19+qZ133jmUdf/lL3+xDbZJ6cBqJmiZqathOO644ywDlhnHHHOMevfurblz56q+vl6TJ09u95lfeeUVzZo1S5LUpUsX/eUvf7Fd31prraVbbrkl1ODS8uXLJUmdO3d23IdOmpqasgHuDh066N577y06o/MNN9yQndDmiSeeSETQcvjw4dn9te666+roo49ut8wZZ5yRDVo+8cQTuummm9oFqu3Mnj1bd911l+vy7Lnnnq6Clk5++ctf6u9//3vkQcGqqiqddtppuuGGGySlg5J2QctUKqVhw4Zl/z799NMjLRsAAEEQtAQAIGa5Y87Z2XbbbXXrrbcWnXAkSd577z01NDRIknr16qXjjz/ecfnq6mr94he/0O9//3tJ0ptvvll0G16yUkvlyCOP1DrrrOP5ffPnz9e4ceM0efJkLVmyRCtXrszOsiylx0/MmDhxYihBy44dOxb9Xnbffffs48yM32HIHc/QSlVVlXbdddfs5E3Tpk1r95lzJ6zJTFji5KCDDtKmm26q77//3leZC22yySb69ttvtWTJEj399NM65ZRTPK9j/Pjx2dmyDzvsMK2//vpF37Phhhtqu+220+TJkzVp0iQtW7bM8QcBEzzyyCPZxwMGDLAcc/akk07SBRdcoFWrVmnevHl69dVXYz8nnnHGGdnJdtasWaPZs2frgw8+0OLFi/Xggw9q5MiRuummmyIfN/L000/PBi2HDx+uVatWWU5Y9vbbb2cnAOvdu7cOP/zwSMsFAEAQBC0BADDcBhtsoEcffdRywpdirrrqKl199dXhFyoEEyZMyD7ee++9XWVM7b///nnvT6VSqqqqsl3+Rz/6UbBCRsBrmb788kv98Y9/1H/+8x/XM6B7GRLAybbbblt0wqLczN9MplwY3ARdi2174sSJ2cdus+b23nvv0IKWP//5z7PZnQMHDswGLg855BBXwUdJev/997OPZ86c6bqL89KlSyWlM+tmzpxpdNBy9uzZeu2117J/2wX4unbtqv79+2czBR955BHXQcuDDz7Yctb1oHKHH8hobGzUY489pt///veaM2eOBg0apGnTpumKK64IffsZ22+/vfbYYw998sknqq+v1/Dhw3Xqqae2Wy63a/jAgQNDGUYCAICoELQEACBm/fv3z5uld9GiRfrmm2+y3brnzZunAw88UM8991x2DL9ykMlOkqTNNtvM1Xs233zz7OPGxkatWLFC3bt3t11+vfXW812+qHgp06uvvqqf/vSn2YxUtzKzQgflJtCVG9TMzJIdx7abmpravZ5bxzbZZBNX2914441dLefGn/70J40ZM0bjxo1TKpXSCy+8oBdeeEGStM022+jAAw/UYYcdpuOPP95y9m4pHdDL+Oyzz/TZZ595LseSJUv8fYASefzxx7MB+W222cYxwHzGGWdkg5YvvfSSlixZ4itzOUprrbWWfvnLX2rnnXfWAQccoKamJl111VU69NBD8354Cdvpp5+uTz75RFK6+3xh0LKhoSE7lENmeQAATOY8IA4AAIjcRRddpDvvvDP778knn9SHH36oTz/9VLvuuqukdIBu4MCBjhM+JE1mAh5Jrsd8K1yuWHCuU6dO3gsWMbdlWrBggU455ZRswHKzzTbTjTfeqLFjx2r27NlatWqVWltblUqllEql8jK+WltbQymrUxZr1MLYdm4ds+oqa8Xv2JNWunTporfeekt//etf8wLuUnpimIceekinnXaaevfurcsuu0yrV69ut45ly5YFLkeYweQo5HYNLxZIO+KII9S7d29J6SBc7ri4ptl77701aNAgSemM17/97W+Rbi83c3LUqFF5QXtJGjFiRDYDd4cddtAee+wRaXkAAAiKoCUAAIbaZZddNGrUqGwWZn19vc4+++yYSxWe3ODQypUrXb2ncDm77LRy8M9//jMbsNp111312Wef6fLLL9f++++vPn36qFOnTnmBvbCyK8tJbh1btWqVq/e4rYturbXWWrr00kv17bffauLEibrjjjs0YMCAvOzqVatW6a9//asOOeSQdoHL3ED9b3/722yQ2su/vn37hvqZwjR+/Hh9+eWX2b+vuuoqVVVV2f6rra3NjmMq5Qc8TXTEEUdkH7/77ruRbit3jMrm5uZ2Ad0nnngi+5gsSwBAEhC0BADAYOuvv77+8Y9/ZP8eM2aMRowYEWOJwpPbTdrtGIK5E72stdZaZR20fP3117OP//SnPzl2g5ek6dOnR12kxOnVq1f28cyZM129x+1yXmUmDvrNb36jJ598UjNnztQnn3yis846K7vMBx980G6G6w022CD7ODdYVy6CBh3HjRunr776KqTShC+36/qiRYsi315uMDJ3/MqlS5dmrx2Z2cYBADAdY1oCAGC4E044Qfvvv382S+dPf/pT7DPmhiF31ukPP/xQLS0tRSeFeO+99/LeH0f35VJtM3csw2KT0rS0tESexZVEu+22Wzb4+8EHH7h6z4cffhhlkfLsvvvueuihh1RTU6MHHnhAUnqcxksvvTS7TO74ju+9917RyafcirPrf0ZjY6OefPLJ7N/bbrtt0RneM77++mstXrxYUjrw+ec//zmKIgY2Z86c7OOePXtGvr0TTjhBXbp00cqVK/XBBx/om2++0VZbbaVnn302O9TEQQcdpE033TTysgAAEBSZlgAAJEDuDOATJ07USy+9FF9hQrLffvupQ4cOktLjNxbLIG1tbdXDDz+c/fvQQw+NtHx2OnbsmH1sNflLWKqr25ppxbo2Dx8+vCyz8ILK7RY9YsSIouNDjh07NpaM1Z/85CfZx/Pmzct7bf/9988G8mbOnKl///vfoWyzVPXYyYgRI7LZh7W1tXr77bc1btw4V//+93//N7uexx57LLRxXMP28ssvZx9vv/32kW+vS5cu6t+/f/bvTLZlbtYlXcMBAElB0BIAgAQ4/PDDtd9++2X/vv7662MsTTjWXnttnXLKKdm///CHPziOy3jnnXfq888/l5QO6J1zzjmRl9HKuuuum308a9asyLaz5ZZbZh87BakXLFig3/3ud5GVI8mOOuoobbjhhpLSY8LmBroKNTY25mU4BtXQ0JA3EZCTGTNmZB+vv/76ea916NBBF198cfbv888/31O9KwyCZpSqHjvJ7Rp+xBFHtPvsTgYOHJgN7M+YMUNvvvlm6OUr1Nzc7GlipJEjR+q5557L/n3iiSdGUax2zjjjjOzjJ554QjNmzNDbb78tKR2sPvnkk0tSDgAAgiJoCQBAQlx55ZXZxx999JFeeeWVGEsTjiuvvDI7WcpXX32lfv366dtvv81bprW1VX//+991ySWXZJ+74IIL2s3GXCo77bRT9vGoUaNCmd3ZyvHHH599fOONN+ZlSmV88sknOvjggzVjxgzXM7BXktra2rws5bvvvlt//OMf1djYmLfcggULdOKJJ+qDDz7IZv8GNWfOHG2yySa69NJLNX78eNvlRo8enTfz+9FHH91umd///vfacccdJaUDjHvuuaf+9a9/2WYXLly4UPfff7/22GMP/fWvf7VcJrce/+tf/3L1mYYOHZo3KU7uGLNeLVy4UCNHjsz+7XWMxQ033FCHHHJI9u9STMhTX1+vLbbYQldeeaWmTJliu9ySJUt0/fXX62c/+5lSqZQkaeutt9avfvWryMsopX/kysyw/vXXX+t3v/tdthzHHXecevToUZJyAAAQFGNaAgCQEP369dM+++yTHZvvuuuu01FHHeX4npEjR2rhwoWut9G5c2fdfPPNgcrpxVZbbaUHHnhAp512mlpaWvT+++9r22231YEHHqitttpK9fX1euedd/IywX784x+XtIyF9t57b22yySaaMWOG5syZo+22205HHnmkevXqlR0ncK+99srLIvXjzDPP1K233qqvvvpKDQ0NOuOMM3TDDTdo1113VceOHTVp0qRsMGzXXXdVv379Yt0vpjr77LM1YsQIvfjii5Kkm2++WQ8++KD69u2rnj17aubMmXrzzTe1Zs0abbnllvrpT3+qv/3tb5Lyu+j7sXTpUt1666269dZb1bNnT+2+++7aaKON1LFjR82fP1+fffZZXpD+f/7nf3TRRRe1W0/Xrl310ksv6fDDD9d3332nuXPn6uc//7l69eqlH//4x+rdu7dSqZQWL16sL7/8Ul9//XU2oGk3jMKJJ56o++67T1I6mPvxxx9rjz32UOfOnbPLnHfeedpqq60C7QM7w4YNy3ZLL+zS7NZpp52WHbP0+eef19133503Y3yur7/+WhdeeKGn9Q8ZMiRvlncpHZC87rrrdN1112nDDTfULrvsovXXX1+dO3dWfX29pk6dqk8++SQvMN67d2+99NJLoQXEi6mpqdGAAQN0++23S1JetmduFmYxV155Zbss78Ls4d12263d+6699tq8IQ8AAPCLoCUAAAly5ZVXZifhee+99/T666/rsMMOs13+o48+0kcffeR6/T169Ch54OuUU05Rly5ddPbZZ2vevHlqbm7Wm2++adndc+DAgXrggQfyxuMrterqat1999068cQT1djYqLlz5+rRRx/NW+bMM88MHLTs0KGD/v3vf+voo4/OBrYmT56syZMn5y23//776+mnn9Y///nPQNsrV1VVVXr66ac1ePBgPfXUU5LSszjnBnKk9HiDL7zwQt53WWzGdid1dXXq0KFDdvKTxYsX580IX6hv37568sknbTNmt9xyS40fP16//vWv9eyzzyqVSmnhwoV5YyYWWnvttW0ncTriiCM0cODA7EQ4H3zwQbvJio477rjIgpa5mZH9+/f3lSl84okn6vzzz9eaNWu0cuVKPfvssxo8eLDlsrNnz243M3sxZ599dl7Qsrq6WrW1tWpubs6uM3fCLCs/+9nPdMcdd7QLfkbt9NNPzwYtM9Zdd13LTF4733//vT799FPHZaxez0yQBABAUAQtAQBIkGOOOUZ77rlnNsPu2muvdQxaJsVxxx2nqVOn6qGHHtLLL7+sL774QgsXLlSnTp2y3UAHDRqUN5NynI477jiNHz9ed911l8aOHavvv/9e9fX12S6YYfmf//kfTZgwQXfddZeef/55TZkyRY2Njerdu7d23nlnnXrqqfr5z39edNb1StehQwc9+eSTOuuss/TAAw/o/fff1/z587XOOuto66231oABA3TWWWepS5cueQEXtzNZW9loo420aNEivfHGG3rnnXf08ccfa+rUqVqwYIEaGxvVrVs3bbbZZtms3MMPP7zoOnv27KlnnnlGkyZN0pNPPqkxY8bou+++06JFi1RdXa21115bW2+9tfbYYw8dfvjhOuKIIxwD/E888YSOO+44Pfnkk5o4caIWLlyoNWvW+P7Mbk2aNEmffPJJ9m+vXcMzunfvruOPPz7bvX3o0KG2QcswdO/eXYsWLdJrr72md999VxMmTNC3336rBQsWqKGhQV26dNE666yjHXfcUfvss49OPfVUbb311pGVx8mPfvQjbb/99nk/cvz85z9XXV1dLOUBAMCPqlTYrWsAAAAgofbff3+99957kqRx48YZEygHAACoNAQtAQAAAEnTp0/XVlttpZaWFq211lpatmxZrEMRAAAAVDJmDwcAAEDFS6VSuuiii9TS0iJJOuGEEwhYAgAAxIigJQAAAMralVdeqb///e9auHCh5evTpk3TCSeckJ1hvKamRpdeemkpiwgAAIACTMQDAACAsvb999/ruuuu06WXXqqdd95Z2223nXr06KH6+nr997//1YQJE7IZlpL0pz/9SXvuuWeMJQYAAABBSwAAAFSE5uZmTZgwQRMmTLB8vVOnTrr22mvJskTkHn/8cY0bNy7QOrbZZhtddNFFIZUIAADzMBEPAAAAytrSpUv14osv6o033tAXX3yhBQsWaOHChWppaVHPnj217bbb6rDDDtMvf/lL9enTJ+7iogIMHjxYjzzySKB1HHzwwRozZkw4BQIAwEBkWrrU2tqq2bNnq1u3bqqqqoq7OAAAAHCpurpaJ5xwgk444YSiyy5fvrwEJUKla2pqCryOlpYW6isAIHFSqZRWrFihDTfcUNXVzlPtkGnp0syZM7XJJpvEXQwAAAAAAAAg0WbMmKGNN97YcRkyLV3q1q2bpPRO7d69e8ylCV9TU5NGjRqlI488UnV1dXEXB7BEPUVSUFeRBNRTJAV1FUlAPUVSUFcRt+XLl2uTTTbJxtmcELR0KdMlvHv37mUbtOzcubO6d+/OiQvGop4iKairSALqKZKCuookoJ4iKairMIWboRedO48DAAAAAAAAQIkRtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAotXEXoBKkUik1NTWptbU17qLYampqUm1trdasWaOWlpa4i1P2ampqVFdXF3cxAAAAAAAAjETQMkKNjY2aP3++Vq1aZXwgMJVKqXfv3poxY4aqqqriLk5F6NChg3r16qXu3bvHXRQAAAAAAACjELSMyKpVqzRjxgzV1NRonXXWUadOnVRTU2NsQLC1tVX19fXq2rWrqqsZNSBKmczbZcuWadasWZJE4BIAAAAAACAHQcuILFy4UHV1ddpss81UU1MTd3GKam1tVWNjozp27EjQsgQ6deqkbt26aebMmVq4cCFBSwAAAAAAgBxEpyLQ3NyslStXqmfPnokIWCIeVVVV6tGjhxoaGtTU1BR3cQAAAAAAAIxB0DICzc3NktJjFgJOMpPxmD7mKQAAAAAAQCkRtIyQqeNXwhzUEQAAAAAAgPYIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtEavNN99cVVVVGjp0aPa5oUOHqqqqKu9fdXW1unfvrt13311DhgzRggULbNdZ+F67f2PGjIn+AwIAAAAAAMCz2rgLANjp0qWLTjrpJEnp2bWnT5+u999/XxMnTtTDDz+sd955R9tss43t+/v166fevXvbvu70GgAAAAAAAOJD0BLG6tWrV14GpiR98cUXOvjggzVv3jxdfPHFGjFihO37L7/8cvXt2zfaQgIAAAAAACB0dA9Houy444665JJLJEmjR49WQ0NDzCUCAAAAAABA2AhaInF22WUXSVJTU5MWL14cc2kAAAAAAAAQtkQGLW+88Ubttdde6tatm9Zff331799fU6ZMcXyP1eQuHTt2LFGJEably5dLkmpqatSrV6+YSwMAAAAAAICwJTJo+dZbb+mCCy7QuHHjNHr0aDU1NenII4/UypUrHd/XvXt3zZkzJ/tv+vTpJSoxwpQZx/Koo45SXV1dzKUBAAAAAABA2BI5Ec8rr7yS9/fQoUO1/vrr6+OPP9ZBBx1k+76qqipzZozec09p7ty4S5FVJal7KqWqqqriC/fuLY0fH3mZcmVmD7///vs1bNgwbbbZZrrjjjsc33PIIYfYvtajRw8tXbo05FICAAAAAAAgDIkMWhZatmyZJKlnz56Oy9XX12uzzTZTa2ur9thjD91www3acccdLZdtaGjIm+Ql0yW5qalJTU1NjttpampSKpVSa2urWltbLZepmjtXVbNmOa6nlKp++OdGSlLK5nP5lbuvMv9Pnz7dMoi6995765VXXlGPHj1s968kHXnkkbZB6s6dOzu+t1RaW1uVSqXU1NSkmpqauItjvMyxV+wYBOJGXUUSUE+RFNRVJAH1FElBXUXcvNS9xActW1tbdfHFF2v//ffXTjvtZLvctttuq4ceeki77LKLli1bpltuuUX77befvvjiC2288cbtlr/xxht1zTXXtHt+1KhR6ty5s2OZamtr1bt3b9XX16uxsdFyma7rrafqVKrIpzNT63rrqf6HIG7gdf0QOFyzZk02MLxmzRpJUpcuXfSTn/xEUjqI/NVXX2nSpEn68MMP9ctf/lIPPfSQ47p/85vf6IADDrB9fXlInyGIxsZGrV69Wm+//baam5vjLk5ijB49Ou4iAK5QV5EE1FMkBXUVSUA9RVJQVxGXVatWuV428UHLCy64QJMmTdLYsWMdl9t333217777Zv/eb7/9tP322+u+++7Tdddd1275IUOG6JJLLsn+vXz5cm2yySY68sgj1b17d8dtrVmzRjNmzFDXrl3tJ/v5+GPHdZRaKpXSihUr1K1bt6JdxKslOe8B96qr08OqduzYMbtfM/usV69eevzxx/OWf/755zVw4EC98MILOuyww3TeeefZrrtz585Fv6u4rVmzRp06ddJBBx3ExFAuNDU1afTo0TriiCMYzxRGo64iCainSArqKpKAeoqkoK4ibl4SyBIdtLzwwgv18ssv6+2337bMlnRSV1en3XffXVOnTrV8vUOHDurQoYPl+4od2C0tLaqqqlJ1dXU2KGe6TMZjptyllruvcrdfWJaTTjpJn376qa6//npdddVVOv3009WjR4+i6zRVdXW1qqqqXNUrtGF/ISmoq0gC6imSgrqKJKCeIimoq4iLl3pndkTHRiqV0oUXXqgXXnhBb7zxhrbYYgvP62hpadHnn3+uPn36RFBCRGnIkCHq06ePFi1apNtuuy3u4gAAAAAAACBkiQxaXnDBBXr88cc1bNgwdevWTXPnztXcuXO1evXq7DKDBg3SkCFDsn9fe+21GjVqlL799lt98sknOv300zV9+nSdffbZcXwEBNC5c2ddccUVkqTbb79dS5YsiblEAAAAAAAACFMiu4ffc889kqS+ffvmPf/www9r8ODBkqTvv/8+r2vwkiVL9Ktf/Upz587VOuusox/96Ed67733tMMOO5Sq2AjR2WefrVtvvVXffPONbrnlFv35z39ut8xf/vIXDR061HYdp556qo488sgISwkAAAAAAAA/Ehm0TLmYdXvMmDF5f//tb3/T3/72t4hKhFKrq6vT9ddfr4EDB+of//iHLrnkEq277rp5y7z66quO69htt90IWgIAAAAAABgokUFLlI9p06a1e27w4MHZjFknAwYM0IABA9o97yaoDQAAAAAAAHMlckxLAAAAAAAAAOWLoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUvEavPNN1dVVZWGDh2afW7o0KGqqqrK+1ddXa3u3btr991315AhQ7RgwQLbdRa+1+7fmDFjPJU1U67Bgwf7+7AAAAAAAABwpTbuAgB2unTpopNOOkmS1NLSounTp+v999/XxIkT9fDDD+udd97RNttsY/v+fv36qXfv3ravF75WVVUlSUqlUiGUHgAAAAAAAH4RtISxevXqlZeBKUlffPGFDj74YM2bN08XX3yxRowYYfv+yy+/XH379o22kAAAAAAAAAgd3cORKDvuuKMuueQSSdLo0aPV0NAQc4kAAAAAAAAQNoKWSJxddtlFktTU1KTFixcHXt/VV1+d7RoutR8Tc9q0ae3es3LlSg0ZMkRbb721OnTooN69e+vMM8/UrFmzApcHAAAAAACg0tE9HImzfPlySVJNTY169eoVeH277babzjzzTD3yyCOSpDPPPDPv9a5du+b9vWzZMu233376/vvvdeCBB2qnnXbS+++/r0cffVRvvfWWPv30U/Xo0SNwuQAAAAAAACoVQUskTmYcy6OOOkp1dXWB19e/f3/1798/G7QsHEez0PDhw9WvXz+988476t69uyRpyZIlOvTQQzVx4kTdfffdGjJkSOByAQAAAAAAVCqCljHZc889NXfu3LiLkSeVSuV1k7bTu3dvjR8/vgQlapOZPfz+++/XsGHDtNlmm+mOO+5wfM8hhxxi+1qPHj20dOlSX2Xp0qWLHn744WzAUpLWWWcdXX755RowYIBee+01gpYAAAAAAAABELSMydy5cxn/sIjp06dbBlH33ntvjRo1qmgX7H79+ql3796Wr3Xu3Nl3ufbcc0/16dOn3fPbb7+9JPG9AgAAAAAABETQMiZ2wbQ4ecm0LIUuXbropJNOkiQ1NDRo8uTJ+vTTT/Xhhx/q3HPP1VNPPeX4/ssvv1x9+/YNvVybbrqp5fOZzMs1a9aEvk0AAAAAAIBKQtAyJqXuXl1Ma2urli9fru7du6u62oxJ5Xv16tVufMnnn39ep5xyip5++mkddNBBOv/880teLlP2DwAAAAAAQLki+oJE+dnPfqbLL79cknTllVdq2bJlMZcIAAAAAAAAYSNoicQZMmSI+vTpo0WLFum2224Lbb2Zmcibm5tDWycAAAAAAAC8I2iJxOncubOuuOIKSdLtt9+uJUuWhLLejTfeWJL0xRdfhLI+AAAAAAAA+MOYlkiks88+W7feequ++eYb3XLLLfrzn//cbpm//OUv7cbEzHXqqafqyCOPzP594okn6pZbbtHhhx+uQw89VN26dZMk3XTTTVp33XVD/wwAAAAAAACwRtASiVRXV6frr79eAwcO1D/+8Q9dcskl7QKLr776quM6dtttt7yg5XXXXafq6mo9//zzGj58uBobGyVJf/rTnwhaAgAAAAAAlBBBS8Rq2rRp7Z4bPHiwBg8eXPS9AwYM0IABA9o9n0qlfJWlY8eOuummm3TTTTdZvl6sXJtvvrnvbQMAAAAAAKANY1oCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0DJCqVQq7iLAcNQRAAAAAACA9ghaRqC6Or1bW1paYi4JTJepI5k6AwAAAAAAAIKWkairq1NdXZ3q6+vjLgoMt3r1atXU1Kiuri7uogAAAAAAABiDoGUEqqqq1K1bNy1btkyrV6+OuzgwVEtLi5YtW6bOnTurqqoq7uIAAAAAAAAYozbuApSrXr16afXq1fr+++/VvXt3devWTTU1NcYGp1pbW9XY2Kg1a9bQVTliqVRKDQ0NWrx4sVpbW7X++uvHXSQAAAAAAACjELSMSE1NjTbZZBMtXLhQK1as0NKlS+MukqNUKqXVq1erU6dOxgZWy02XLl3Uu3dvrbXWWnEXBQAAAAAAwCgELSNUU1OjDTbYQOuvv76amprU2toad5FsNTU16e2339ZBBx3E+IolUFtbq9paDj8AAAAAAAArRE1KoKqqyvhsupqaGjU3N6tjx44ELQEAAAAAABArBi8EAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBREhm0vPHGG7XXXnupW7duWn/99dW/f39NmTKl6Pv+9a9/abvttlPHjh218847a+TIkSUoLQAAAAAAAAAvEhm0fOutt3TBBRdo3LhxGj16tJqamnTkkUdq5cqVtu957733NHDgQP3yl7/UhAkT1L9/f/Xv31+TJk0qYckBAAAAAAAAFFMbdwH8eOWVV/L+Hjp0qNZff319/PHHOuiggyzf8/e//11HHXWU/vCHP0iSrrvuOo0ePVp33nmn7r333sjLDAAAAAAAAMCdRAYtCy1btkyS1LNnT9tl3n//fV1yySV5z/Xr10/Dhw+3XL6hoUENDQ3Zv5cvXy5JampqUlNTU8ASmyfzmcrxs6F8UE+RFNRVJAH1FElBXUUSUE+RFNRVxM1L3atKpVKpCMsSudbWVv3kJz/R0qVLNXbsWNvl1lprLT3yyCMaOHBg9rm7775b11xzjebNm9du+auvvlrXXHNNu+eHDRumzp07h1N4AAAAAAAAoEKsWrVKp556qpYtW6bu3bs7Lpv4TMsLLrhAkyZNcgxY+jFkyJC8zMzly5drk0020ZFHHll0pyZRU1OTRo8erSOOOEJ1dXVxFwewRD1FUlBXkQTUUyQFdRVJQD1FUlBXEbdMT2Y3Eh20vPDCC/Xyyy/r7bff1sYbb+y4bO/evdtlVM6bN0+9e/e2XL5Dhw7q0KFDu+fr6urK+sAu98+H8kA9RVJQV5EE1FMkBXUVSUA9RVJQVxEXL/UukbOHp1IpXXjhhXrhhRf0xhtvaIsttij6nn333Vevv/563nOjR4/WvvvuG1UxAQAAAAAAAPiQyEzLCy64QMOGDdOLL76obt26ae7cuZKkHj16qFOnTpKkQYMGaaONNtKNN94oSbrooot08MEH69Zbb9Wxxx6rp556SuPHj9f9998f2+cAAAAAAAAA0F4iMy3vueceLVu2TH379lWfPn2y/55++unsMt9//73mzJmT/Xu//fbTsGHDdP/992vXXXfVs88+q+HDh2unnXaK4yMAAAAAAAAAsJHITEs3E56PGTOm3XMnn3yyTj755AhKBAAAAAAAACAsicy0BAAAAAAAAFC+CFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMApBSwAAAAAAAABGIWgJAAAAAAAAwCgELQEAAAAAAAAYhaAlAAAAAAAAAKMQtAQAAAAAAABgFIKWAAAAAAAAAIxC0BIAAAAAAACAUQhaAgAAAAAAADAKQUsAAAAAAAAARiFoCQAAAAAAAMAoBC0BAAAAAAAAGIWgJQAAAAAAAACjELQEAAAAAAAAYBSClgAAAAAAAACMQtASAAAAAAAAgFEIWgIAAAAAAAAwCkFLAAAAAAAAAEYhaAkAAAAAAADAKAQtAQAAAAAAABiFoCUAAAAAAAAAoxC0BAAAAAAAAGAUgpYAAAAAAAAAjELQEgAAAAAAAIBRCFoCAAAAAAAAMEpt3AWAGd566y29++67WrVqlWprDa8Wra3S119Lm28udegQd2lQQs3NzZowYUIy6ikqGnUVSUA9RVJQV5EE1FMkBXU1Ofbff39tuOGGcRcjVtRQSJKuv/56vfXWW3EXAwAAAAAAoOK9+OKL+slPfhJ3MWJF93AAAAAAAAAARiHTEpKkc845R1tuuaW233571dTUxF0cZ7//fdvjW2+NrxwouZaWFk2ePDkZ9RQVjbqKJKCeIimoq0gC6imSgrqaHDvuuGPcRYhdVSqVSsVdiCRYvny5evTooWXLlql79+5xFyd0TU1NGjlypI455hjV1dXFXRxnVVVtj6m+FSVR9RQVjbqKJKCeIimoq0gC6imSgrqKuHmJr9E9HMlG0BIAAAAAAKDsELREshG0BAAAAAAAKDsELZFsBC0BAAAAAADKDkFLJBtBSwAAAAAAgLJD0BIAAAAAAACAUQhaItnItAQAAAAAACg7BC2RbAQtAQAAAAAAyg5BSyQbQUsAAAAAAICyQ9ASyUbQEgAAAAAAoOwQtESyEbQEAAAAAAAoOwQtkWwELQEAAAAAAMoOQUsAAAAAAAAARiFoiWQj0xIAAAAAAKDsELREshG0BAAAAAAAKDsELZFsBC0BAAAAAADKDkFLJBtBSwAAAAAAgLJD0BLJRtASAAAAAACg7BC0RLIRtAQAAAAAACg7BC2RbAQtAQAAAAAAyg5BSwAAAAAAAABGIWiJZCPTEgAAAAAAoOwQtESyEbQEAAAAAAAoOwQtkWwELQEAAAAAAMoOQUskG0FLAAAAAACAskPQEslG0BIAAAAAAKDsELREshG0BAAAAAAAKDsELQEAAAAAQHlqaZHOO0869VRp2bK4SwPAg9q4CwAEQqYlAAAAAMDO/fdL996bftyzp3TnnfGWB4BrZFoi2QhaAgAAAJXnyy+lJ56QVq+OuyQw3ZgxbY+ffz62YgDwjqAlko2gJQAAAFBZ6uulHXeUTj9duvrquEsDAIgIQUskG0FLAAAAoLJ88EHb45tvjq8cAIBIEbREshG0BAAAAADYqaqKuwQAfCJoiWQjaAkAAABUFu4B4AX1BUgsgpZINi5AAAAAAAAAZYegJQAAAAAgOUhcgBd0DwcSi6Alko0GCwAAAADADe4fgUQhaIlk46IDAAAAAABQdghawlpjY9wlcIegJQAAAADADbqKA4lC0BLtnXuu1KOH9OijcZekOIKWAAAAAAA3uH8EEoWgJfKtWSPdf3/6/zPPjLs0xXHRAQAAACoL9wDwguxKILEIWiJfS0vcJfCGBgsAAAAAAEDZIWgJAAAAAEgOEhcAoCIQtES+pDUAklZeAAAAAEA8uH8EEoWgJZKNiw4AAAAAwA5jWgKJRdASyUbQEgAAAABgh3tGILEIWiJf0n6F4gIEAAAAAABQdghaIl/SgoBJKy8AAACAYLgHgBdJS8wBkEXQEvmS1gBIWnkBAAAAAABQFEFL5EtaEDBp5QUAAAAAAEBRBC2RjyAgAAAAAKAccb8LJApBS+RL2kk8aeUFAAAAEAz3AABQEQhaIl/SGgBJKy8AAAAAAACKSmTQ8u2339bxxx+vDTfcUFVVVRo+fLjj8mPGjFFVVVW7f3Pnzi1NgREdgpYAAABAZeEeAAAqQiKDlitXrtSuu+6qu+66y9P7pkyZojlz5mT/rb/++hGVMMGS1gBIWnkBAAAAAKVTVRV3CQD4VBt3Afw4+uijdfTRR3t+3/rrr6+11147/AKVk6QFAZNWXgAAAABAPLh/BBIlkUFLv3bbbTc1NDRop5120tVXX63999/fdtmGhgY1NDRk/16+fLkkqampSU1NTZGXtdQyn6mpsVF1Fs+bJK98jY2SgWVENLL1lO8chqOuIgmop0gK6ioKVTU3593ImlA3qKfmqmltzXYxTUlqrvDviLqKuHmpexURtOzTp4/uvfde7bnnnmpoaNADDzygvn376oMPPtAee+xh+Z4bb7xR11xzTbvnR40apc6dO0dd5Ni8NWaMcnNYR44cGVtZ7Pw05/G7776rZXPmxFYWxGP06NFxFwFwhbqKJKCeIimoq8hYf/x47Zvzt0n3LNRT8+wxe7Y2+eFxQ2OjXjWovsSJuoq4rFq1yvWyValUsvOjq6qq9MILL6h///6e3nfwwQdr00031WOPPWb5ulWm5SabbKKFCxeqe/fuQYpspKamJo0ePVpH7LqrOm+xRdvzjY0xlspa3VprZR83ffCBtPvuMZYGpZStp0ccobq6uuJvAGJCXUUSUE+RFNRVFKoaOVK1Ofd/JtyzUE/NVTNokKqfekqSlFpvPTXPmhVzieJFXUXcli9frl69emnZsmVF42sVkWlpZe+999bYsWNtX+/QoYM6dOjQ7vm6urqyPrDravOrhOmfta6mRjK8jAhfuR+HKB/UVSQB9RRJQV1FlsH3LNRTA1W3zT9cJbPqS5yoq4iLl3qXyNnDwzBx4kT16dMn7mIgqGQnCgP44ANp222l886LuyQAACApuAcAgIqQyEzL+vp6TZ06Nfv3d999p4kTJ6pnz57adNNNNWTIEM2aNUuPPvqoJOn222/XFltsoR133FFr1qzRAw88oDfeeEOjRo2K6yOYK2kNgKSVF0C+/feXWlqkr76Szj9f2nnnuEsEAACAclJVFXcJAPiUyKDl+PHjdcghh2T/vuSSSyRJZ555poYOHao5c+bo+++/z77e2Nio3//+95o1a5Y6d+6sXXbZRa+99lreOvCDpAUBk1ZeAPlaWtoez58fXzkAAABQ/rh/BBIlkUHLvn37ymn+oKFDh+b9fdlll+myyy6LuFRlImkn8aSVF4A9fgUHAAAAAPygYse0hI2kBQGTVl4AAAAAQDz4kRxIFIKWyEcQEEBcaEQCAAA3uGeBX9QdIFEIWiJf0k7iSSsvAAAAAKB0+GEcSCyClsiXtCBg0soLwB4NSgAAAADADwhaItkIWgIAAAAAAJQdgpbIl7QgYNLKC8AemZYAAMAN7gHgF3WnuKeeku6+W2pqirskgGrjLgAMk7STeNLKCwAAAACAid59Vxo4MP24pUX6zW/iLQ8qHpmWyJe0IGDSygvAHpmWAAAAQHwefrjt8f/+b3zlAH5A0BL5CAICiAtBSwAA4Ab3LEA0OnRoe7xmTXzlAH5A0BL5ktYASFp5AQAAAAClww/j7nXs2Pa4uTm+cgA/IGiJfEkLAiatvADs0aAEAAAA4tOpU9wlAPIQtESyEbQEAAAAACC43O7hgAEIWiJf0oKASSsvAHtkWgIAADe4BwCikds9HDAAQUvkS1oDIGnlBQAAAADEg/tHZwQtYRiClsiXtJN40soLwB6ZlgAAwA3uAYBorLVW3CUA8hC0RL6kNQCSVl4AAAAAAEzU2hp3CYA8BC2Rz/QgoOnlA+AfmZYAAMAN2gzwgvriXktL3CUA8hC0RD7Tg4KF5TO9vADco0EJAEB0Uinp/POln/5Umjcv7tIEwz0A/KLuOCPTEoapjbsAMEzSTuJJKy8AewQtAQCIztNPS/fck35cUyM9/3y85QFgHjItYRgyLZEsZFoCAACgFBYtku67T/rmm7hLEo6PPmp7/MIL8ZUjDNwDwC9+JHdWGLTkWEPMfGVaLl++XJLUvXv3QBuvr6/XG2+8IUn6yU9+EmhdCInpJyWClkD54ngGAJhk0CBp5EipWzfph/ufRCNYA9DeLKYwaLlmjdSpUzxlAeQzaLn22mururpan332mXbYYYd2r8+ePVt/+tOfVFVVpQcffNB2PdOnT1f//v1VXV2t5uZmP0VB2JJ2Ek9aeQHY43gGAJhk5Mj0/ytWpK9RBP0AlLvCoOXKlQQtESvf3cNTDjeXS5Ys0dChQzV06NDA60KJmf5dkGkJlC+OZwCAqZicAkAlKDzXrVoVTzmAHzCmJfKZHjQwvXwA/OP4BgCYqhx6hZEpikpF3XfPqns4ECOClsiXtKBB0soLwB7HMwDAVMyoaxbaDEA0mIgHhiFoiXymn5ToHg6UL45nAICpyiHTEgCKIWgJwxC0RLIQtATKF8czAMBU5ZBpWU5dZGkzANEoHNOSYw0xI2iJZOMkCpQPjmcAgKnKIWgJgPZmMWRawjAELZHP9JOSl0zL1lYGDgaSxPTzDwCgcpVD93AyLVGpyqnuR42gJQxD0BJ5qkw/KbkNWjY2SrvtJvXuLX30UeTFAhAC088/AIDKRaalWWgzANHgXAfDBApaVvGLRflJWgPArrxDh0qffy4tWyYdc0xJiwTAp6SdfwAAlaMcbuTL6d6NNgMQDca0hGFqg7x5p512sn0tE9CsqakJsgmUmuknJbflW7Cg7fHChdGUBUC4TD//AAAqF93DzUKbAZXugw+kv/5VGjxYOu648NZL93AYJlDQMkUFLj+mf6fMHg6UL45nAICpyiHTspzQZoBf5VJ3fvzj9P/PPRfuZyJoCcP4CloedNBBdA0vV0k7KSWtvADscTwDAExFpiWASkDQEobxFbQcM2ZMyMUAXCLTEihfHM8AAFORaWkW2gxANBjTEoZh9nDkM/2k5DZoyS/JQPKYfv4BAFQugpZmoc0AL7g3dI9MSxiGoCXyJe2klLTyArDH8QwAMBXdw81CmwGIBkFLGCb2oOWqVat06623xl0MZJh+UqJ7OFC+OJ4BAKYi09IstBlQyaKs/5zrYJjYgpYrVqzQn//8Z22++ea67LLL4ioGCpneACBoCZQvjmcAgKnItDQLbQZUsjVrols3Y1rCML4m4gli8eLF+tvf/qa77rpLy5YtUyqVYiZyk3BSAhAXzj8AAFORfQSUh3Job65eHd266R4OwwTKtJw+fbp++9vfaocddlC3bt3Us2dP7bHHHrrxxhu1bNmyvGXr6+t11VVXafPNN9cNN9ygpUuXKpVKqVevXrr++usDfQiEyPSTEhPxAOXL9PMPAKByEbQ0C20GVLJVq6JbN0FLGMZ3puXo0aN14oknauXKlZKk1A+V+dNPP9Wnn36qRx99VG+++aZ69+6td999V6eddppmzJiRXW6jjTbSpZdeqnPOOUedOnUK4aMgFKaflOgeDpQvjmcAgKnoHm4W2gyoZGRaooL4ClouWLBAAwcOVH19ffa5Ll26qLa2Npth+dVXX+mCCy7QRRddpH79+qmxsVGpVEpbbLGFLr/8cg0ePFh1dXXhfApULruTKCdXIHk4bgEgXqlUeQW2wkSmpVnKsc3A8RedctuvBC1RQXx1D//nP/+pxYsXq6qqSieddJKmTp2qFStWaMmSJZo9e7YuvPBCSdKLL76o008/XQ0NDeratav+8Y9/aMqUKfrVr35FwNJUpp+U3GRajhsn/d//laY8AMJj+vkHAMrZ669LG2wgnX563CUxUzlkWpaTcmsz/N//ST17So89FndJkARRdg9nIh4YxlfQctSoUZKkH//4x3rmmWe05ZZbZl/r3bu37rjjDg0aNEitra2aOXOm1l57bb333nu64IILVFtb8rl/4IXpJyU3Qcu+fUtSFAAhM/38AwDl7PDDpQULpCeekL78Mu7SmKccMi3LKdus3NoMN9wgLV0qDRoUd0mQBGRaooL4Clr+97//VVVVlc4//3zbZX77299KkqqqqvTb3/5WO+64o78SorSSdlKyKm9DQ+nLASC4pJ1/AKBcFUyoCZVH0BJAeShl0BKIma+g5ZIlSyRJW2+9te0y22yzTfbxgQce6GcziIPpQQPTywfAP45vAICpyqF7OJmWQHnUncLu4WF+JjItYRhfQcumpiZJUrdu3WyX6dq1a/Zx7969/WwGcTD9pMTs4QAAANGifdUe2UdmKac6Wk6fBaVRmGkZZh1iTEsYxlfQ0quqcvpVr9wl7aSUtPICsMfxDABm4HzcHkFLs5RTHS0MEgHFRBm0JNMShilJ0BIIDZmWQPnieAYAmIru4WYppzZDOX0WU5VT3ZcIWqKiBJrK+6yzzlKXLl0CL1dVVaXXX389SFEQFtNPSgQtgfLF8QwAMBWZlmYppzYDmZbwijEtUUECBS3Hjx/v+HqmW7jTcqlUiu7jJknaSSlp5QVgj+MZAMzA+bg9Mi0RFYKW8OqHiZEjwZiWMIzvoGWKylueTP9eybQEyhfHMwDAVOWQaVlOQctyajOU02dBaUydmv93lJmWQMx8BS1b+TWofJl+0SRoCZQvjmcAgKm4kTdLObUZuLcurXKoO19/nf833cNRxpiIB/nK9aTU2ip99JHU2Bh3SWCSpUulzz+PuxTIKNfzDwAgGVpa0u1Fq67gSesenkpJH3+cP2EHmZZmImgZvXKq+62tpc20LKdjDYlE0BL5TD8p+c20/O1vpb33lk48MfwyIZnWrJF23FHaZRfp0UfjLg0k888/AFApKvV8/ItfpNuLgwa1fy1pmZZ//rO0557SgQeW5/dZTp+JoCW8mDUrfR+TK8zjgTEtYRiClshn+knJb9DyrrvS/7/8crjlQXK98II0e3b68ZlnxlsWpJl+/gEAlLfMj5hPPtn+taRlWl5xRfr/jz+W5s9PPy6nbLNyajOU02dB9BYvjnb9ZFrCML7GtLz22mvDLoeuvPLK0NeJCsBJFH4tXBh3CcAYtQCApEhapiWSg0xLeGFVX+gejjLmK2h59dVXqyrkX+oIWhrCKohg0q+yBDkQliVL4i4BOJ4BwEycj9sjaGmWcqqjBC1LK+l1h6AlKoyvoKUkpUKsvGEHQBEAQUtUiqVL4y4BGDMHAMzE+bi9pHUPt2JSmz6ocqqj5fRZEL2og5a0z2EYX0HLN998M+xywBRJCwqaXj6YKzfTslu3+MpRyZJ2vgEAVC4yLc1STm0GMi3hRakzLYGY+QpaHnzwwWGXA6YwvQFgevmQHLmZluusE1sxKhq/5AIA3Jg5U3X19fGWgUxLs5RTm4GgZfTKve7TPRxlzHf3cJQp0zOfTC8fkiM303LttWMrRkXjeAYAFPPBB6rdbz8dudZaSh16qNSnTzzlIPvILOXUZiinz2KqctrHUQe5CVrCMNVxFwCGSVoQwfTywVxkWsaPTEsAQDEnnaSq1lbVrlmj6htuiK8cBC0RFTIt4QUT8aDCELSEM9NOUkkLqsJcuZmW3bvHV45KxvEMAGYy6Xycc72uWrUqvnIkuXt45vss9y6ySUXQMnrlVPeZiAcVhqAl8pl+UiLIgbCsWNH2uJwaMklCowgAUEyprtHFrkFkWpqlnNoMBC1LK+l1h0xLVBiClsiXtKCg6eVDMtBYjEfSzjcAgPJVLChJ0DJcjY3SPfdIw4f7e385tRnK6bMgegQtUWGYiAf5TA8imF4+JEdu5gZBy3iQaQkAMEWxoGSSu4dn2jwm9Sz5xz+kSy9NPx4/XvrRj7y9v5zaDLRD4QWzh6PCkGmJfKYHBU0vH9ybPVtasybuUqRVUmNxwYL8rvFx4ngGADOZdD4uVVnItCytTMBSkh57zPv7TaqjQVVSOzQuJgXsg4q6vlAfYRiClshHEAGlMGKEtMkm0nbbpbsHxaESMy0/+UTaaCNp002lRYviLg2ZlgBgKlPPx1EGHoplFyU509LE7zP3uzSxfKVU6Z8f3tA9HBWGoCXymX5SIqhaHo47Ln3BnT5deu65eMpQiUHLk06SmpqkpUulv/wl7tJwPAMAzFHsRj3JmZaZz2LSdTZo0NKkzxJUpbRDEY6og5a0z2EYgpbIZ/pJKozymfaZKl1cmQuVGLScMaPt8apV8ZUjg0xLAIApCtsjBC2jFTRr1qTPElSltEMRjiiDllGPlwn4QNASzkw/SRG0TL4OHeLZbm5jOck3Il7k3pDFtd9zmf4jCQBUKpPOx3GNaVmO3cNN+l5zVXp7vpw+SxIkfX9HGVgkaAkDEbREPtODCGRalp+11opnu5WYaZkrrv2ei0xLAIAHqTjHtEzyNcrEoCXdw9tUYju01JiIxx2CljAQQUvkM/2kRNCy/JiQaVmJjUUyLQEAaFMYtCxsGyS5rWDi9ZWgZZsk1y2UHt3DUWEIWiJf0oIIppcPxRG0jAeZlgCAhKmK8jpRbEzLJLcVyjHTspwk7f4L8SJoiQpD0BL5TL9ohlEe0z5TpTMh4y/JNyJ+mbDfTT/fAEClMul8XKpuncW6hye5rWB60NIPkz5LUOWU1YvolTpoCcSMoCXymR5EoHt4+amO6TSUe8GvxMahCUFLMi0BAMWYMhFPObQVTL3OVnp7nqAlvCDTEhWGoCXyFTspzZ0rnXCCdPHFZpzAKr2RA/9y68FHH6V/8f/lL5M9O6gXJgQtTf+RBAAqlaHn41gn4klyIMnETMvcH60rvT1P0BJelHr28J//XJo/P5z1Az4QtISzwhPXuedKw4dLf/+79OKL8Zen0hs55SCu78Nquw89JN1zT+nLEgcTx7QEACAuBC1Li4l42vAjbmklff/GcS4699zSbxP4AUFLOCs8qb/0Utvjiy6S1qwJtv7ly9OBoqlT/ZWn0hs55cCkoKUkvf12acsRFxOCljTSAQCmKOxpUU5DmJgYtMxV6e15Mi3hRRxjWg4fHs76AR8IWiKflyDC999L110XbHvnnpvukrvzzu1/4Xaj0hs55SCu78OuQVhTU9pyxKVUExs4KacbQgAoJyadj+Ma07Lw7yQHkkwMWprQDjEFQcvomVT3g2IiHlQYgpbI5zXz6YYbgm3vqafS/69Zk866LIZMy/JjWqZlXBMDlZoJxwFBSyAcbq6fgBemno9LOaZlOQWSTA9aVnp7np4n8IKgJSpMhdydwzXTT1QELREWgpZxl4BGOhCGc8+V1l5buuWWuEuCclKJ52MyLUsrN2jpZ9+a9FmCKqcAuanKqb6UeiIeIGYVcncO1wgiIGqm1LFKD1qagExLILj7708fO3/4Q9wlQTmpxPNxsTEtkxxIMj1o6YdJnyWocqprSZD0uhNl/Uj6vkFZ4u4c+UwJKNkpx0zLVEq6/HLpjDOkRYviLk30Ghvz/zYtaFkpY1qacByYfr4BgEpViedjuofHpxza80GU00z1pkp6fZkxQ/r5z6W//IXu4ag4tXEXAIYxPYhQjkHL4cOlm25q+/uxx2IrSkkUzjhv2kQ8lZJpacJxQKYlAJipEs/HBC1LizEt29AeQjGnny69/bb0r39J55zT/nWClihjFXJ3jrJVDo2csWPbHj/+eHzlKJWGhvy/Tcu0JGgZXxlMKBOQJEkOosBslXg+Lha0TPI+KcegZTkppwC5qZJex95+u+3xhAntXydoiTJWIXfncKvK9CBCOWZaVprCTMu4VFr3cBNvvkwsE5AkhUEWICyVeD4u50zLDJO+VzIt25RjXTNNOdWXpqb2zxG0RBkjaIl8BC0RNTIt42HKfncqgwllApKEoCWiUonn48KJeJg9PFpJmIinVD+0hzWmZUODWd8xohFl0BIwUJnencO3pAURyiFoGbTRljSMaRkPU/Z7LjItgWAIWiIqJgXoSnVtKDyeCFqWjont+T/8QereXbrttmi3I4XTHnrjDalXL+mQQ8z9nuNUTvvEKmgZlnLaTygbZXp3Dt/iPFG52XYY5eNkHC9TMv4qrXu4KfvdqQwmlAlIEoKWiIqp5+Mof+gt5+7hJgYtTe8efsst6eDQ738f7XakcOraYYdJ9fXSW29Jr78eTrnKlUnHgR90D0eFIWiJfHEGEfwELU1s5MBZYcbfu+9Kp5wivfZaacuRlO7hN94onX22tHBhsPWYMpZoLjItgWAIWiIqXs7HLS3SH/8oXXihtGpVdGWKGkHL0jI5aFnqc2tY3cMzli4N9v6Me+6RBg2SZswIZ31xMqnuB0XQEhWmNu4CwDCmBy3jek+UTCtP1Aoz/q6+Ov3/M8+YUd9MClqOGiX97/+mH9fUSPfd539dZFoC5YegJaLi5Xw8dKh0883px+usI113XSRFilzhmJYELaNl8uzhK1eWdnsm/oj73/9K55+ffjxrFtmbJiFoiQpj0N05jBR3EGnKlPRFMnMxJ8iRfIU3BXFJQvfw//yn7fH99wdbV2Fww4Rjx8RGOpAkBC0RFS/n43//u+3x44/HW5YgimVaplLS+PHSBx+UpjxhMj1o6UeUn6W+Prp1WzExQD5hQtvjN96IrxxhManuB0XQEhWGoCXymZRpuWCBtMMO0uGHS089Zb1MOWRaVhpTbrKTMBHP4sVtj9deO9i6TAxa8iMEEIwp51OUHy/nY5Mz5rwoFrT88ktpr72kH/84eYFLE4OWuUxrz69YEd26rYTdPTwMJg4rFISpdd8PJuJBhTHo7hxGMGkinvvvb7ton3aau/f42U7cKm32cFNuspPQPXzJkrbH66wTbF0mZjWaWCYgSUy4sTVVayv7Jwgv5+Pc62bU5/FSTsTj1F7JdJtNChODliaPaUmmZbLHpy13ZFqiwhh0dw4jmJRpadUwJdMy+UwJWtoxqXt4mEFLMi2B8mP6+TQuc+dK22wjbbddfsY63PObaRl1sKWUk684HV9Ju16ZWF6Tg5alzrQ06Ufc1lbp0EPTE2uVExOPAb8IWqLCELREPpOClm6WMa2Rg+JMuMl2qgMmZVrm3mz37BlsXSYGLU1qpANJZML51ES//a307bfS119LQ4bEXZpkMql7eKl6pBSbiCfJyLT0ptSZlmF3Dw+yb4YPl958M9j2TWfSceCH1bWfoCXKmEF35zCC6UHLJG0H1ky4CXAqQ1IyLRsapMsvl665xt0+DTtA2NIiXXllenZzv2PrkGkJBEPQ0tp//9v2+Jtv4itHkpkUtDRlIp5cSb1emVRuk8dCreTu4fPnx7ftKJlWx8JW7p8PFa027gLAMCaNaelmGdN+mUVxJtxkJzHTsjBoeeut0k03pR9vtpk0eLDzusLe7/fdJ113Xfpx797pzCavyLQEgjHhfIry5CVoUsrgUynHtDThR9awmJ5p6Qfdw+FFue9TMi1Rxgy6O4cRTM+0LMegZblNxDNvnjRmjH1j34Sb7KQELRsa2h536JD/2sMPtz1+7rni6wq7e/hjj7U9HjbM3zrItASCMeF8ivLkdyKeJAf6yjnT0vSgpWnt+aRnWgbZN3Hcl0yfLr3/vln1s1LxHcBABt2dw0imBS3jeg/caWqS9thDOuQQ6Y47rJcx4SbbqQ6Y1D08V9AAX9i/4jc2tj1eay1/6yCzAAjGhPOpiTiXBFeJQUvGtCwtk4OWpc60DHtMy7D5bee5sXixtP320n77Sc8/H912TKr7fhRLqiDTEmWMoCXykWmJIN5+W5o9O/34d7+zXsaEm+wk1gGnMrv5VTzsTMswgpZkWgLBmHA+NVHuuaTcejOUCmNamhc4CsLEoGUu09rzSc+0DMLqnNmpU3Tbu/deafXq9OOTTopuO0lXLKmCoCXKGEFL5DNpTEuriyZBDrMVZilYcbrJLtX36dQYNPUmJWjdNzFoSaYlEAxBy+IIWvpjUtCyVAqPp3I6vkwMWpqcaRl30DLoZwt73xQOURQmJmJ1h6AlKhhBS+QzKdPSzY2GaY2cSuemge+0TKkChk51wNT6EbRcYTeIc8fbJNMSiEc5BVVgFr/dw8tpIh4TfmQNi+lBS9OsWlXa7ZnUPdyqG3LHjqXdXtRMOg7cMiFoSZsDMUlk0PLtt9/W8ccfrw033FBVVVUaPnx40feMGTNGe+yxhzp06KCtt95aQ4cOjbyciWRS0NLvMqVYB6wRtIxO4b7x2tiPMtPS7y/wZFoCwXADgaj4zbQ0tbeCG3QPLy2TMy1L/d1H1T3888+lCy+Uxo1z/x6r9mU5BC1Nqvt+lGrMfaf91NRUmjIABRIZtFy5cqV23XVX3XXXXa6W/+6773TsscfqkEMO0cSJE3XxxRfr7LPP1quvvhpxSRPI9MwnxrQ0WzkELU25SSkW0CuH7uGmn28A0xG0tMa5JLhK7B7uZSKepH1OgpbelEvQcs89pbvukvbdN9h6ouweXqqMW5Pqvh+1tc6vlyLTkqAlYlKk9pvp6KOP1tFHH+16+XvvvVdbbLGFbr31VknS9ttvr7Fjx+pvf/ub+vXrF1Uxk8n0TMu43gN3go5pWapGYhJuRAr3ZdCJeMLet4xpCcSPoGVxJndBNVklBi3JtIyPae35Uu+nqO6/cttqblmdM6OcPTyO7uFJZEL3cIKWiEkig5Zevf/++zr88MPznuvXr58uvvhi2/c0NDSoIWfMtuXLl0uSmpqa1FSGB2zmM7W0tKim8Pmcz1vn8F4/ctfX1NiYt61qi7JUNTXlVdqWlha1Fmzfqoy5CrcTt+rW1vb7PKGqGhvzvh+rz1Ld2Ci7y25TQ4PjL4mZ9QXeR42NtvWkpbm5XZ2KxerVeWVsbWlRS065aiVlmpWtra15r1mpamjIP3YCfs7axsbs9ltqa32ty83xnFSh1VXAQeFx7bW+lWs9rW1tbTs/SkXPj0jLveY0Nzcr5XK/1ait61YqlVJzyPu78HoX1XWiuqkpr33SXNCmyZVqbQ39c4Yt7/tsalKqqUk1LS153eziPPZrq6ravteCNo4bVvcJYalpbva1n/yeU63qntvjL8Pq+M27z3K5vqqWlnb1Psr6Xqr7oNy6n5KMP34L1dbUyOknuMwx7pZtXXW4R2patUrq1s31NgAnXo71ighazp07VxtssEHecxtssIGWL1+u1atXq1OnTu3ec+ONN+qaa65p9/yoUaPUuXPnyMoat6lff60dcv5++623VP/tt9m/f2rxnpEjR/reXu763hozRiunTMn+vc2UKXllGTlypNb9/HMdkPPc99On67OC7VuVMVfhduK2w7ffapucv4Psz7ht9PHH2jPnb6vPsvUXX2hHm/ePeuUVNVscj4VGjx7tr4A/qK2v17E2r3391VeaYsB3ULtyZV4ZZ0yfrok55Tp85Up1+eHxvPnz9WGRMm84frz2yvl78pdf6psgx27OjzrTZs/WJB/r6jN+vPbO+Xvat9/6Wo/JgtZVwMl6EyZov5y//V4/yq2eHlpfr8xt1YIFCzSuzM4rUcltP0369FNNd7nfdp05U5v/8LilqSn0dsxxOUGNmTNmtGv3hWWnb77RVjl/f/LRR3nXqFwrVqzQm4bXq9zv8/3339fi5cu1+4wZ2jTn+ZEjRsSWjXzYqlXq+sNjN+2YQrtOn56td1K47ecfzZ6tjQOs2+s5dYvPP9cuOX+Pe+89LVq2zNM6cr/viRMmaFbXrnnPuf0Mm37+uXYveG7Z0qV6K6L6vuWUKdo55++o7oP2nDNHG/3wONXamrj7rSObmuR0h/Tu2LFaOn++5/UW1tUuc+bocJtl33j1Va3p1cvzNgArqzxMeFYRQUs/hgwZoksuuST79/Lly7XJJpvoyCOPVPfu3WMsWTSampo0evRobb311nnPH3TggdIOO9i8K+2YY45R9eWXq/q559Ry991KHXGErzIcfNBB0jZt4bvqSZPabaeqS5e85zbdZBNtfMwxgbYTt+q33877+xiPn8ckVYsX5/1t9VmqP//c9v1HHn641KOH7euZenrEEUeorq5YTq2DJUtsX9pmq620lYfvoPrCC1U9erRaHnpIqf33b79AS4tqTjxRVd9+q+bnnnNf9xYtyvtzk4031oY55arN+fFkgw02KFpvqurr8/7efrvttG1IdW3z//kfbepjXVW5M5BL2nyLLXytx0Ru6mr1vfeq+uab1XLFFUqddVaJS4hyUFXQrc7r9SO0c6phanPaCuutt16ir6tx2XmnnbSjy/1W/fLL2cc1VVWh7+/qnHq+sY92n+vtjBqV9/ceu+1mu2y3bt0SVa/2/fGPlTrwQNU891ze88ccfXRs3XNru3bNPt7Ax3Fa8+9/5/0d5vdR89hjvtbt95xa/d13eX//eJ99lDroINfvL7Tbbrtp14Iyu/0MVQsXtnuuR5cukdX36m++yfs7qu3kfqdVEZynolbbtWu7e4Nc+++3n1J72/3M0p5tXf36a9v3HHrggdIWW7jeBuAk05PZjYoIWvbu3Vvz5s3Le27evHnq3r27ZZalJHXo0EEdLAYdrqurK6uGfaGagl9b62prpSKft27pUum22yRJtcce63tMjXbbKugmXFdX1248j5qqKtV4/D7cfKaSKvhMia5fhfXH63dTU+Pquwl8HDp0QfdUp774Qrr//vQqDz3UevyrYcOkH37NrTvjDOnjjz0XV5Kqq6pUnVuunOOsuro6/zUrBd9NTXW152PHTk2nTv7WVXCj5Od4Np1jXf3tbyVJteeeK51zTglLhbIR8Jyb+75EX3sK5eyXdudOuOLpGpHTjqlKpcKvSwXXu1JdJ2odMhCrqqoSdczUZtpXVu38Us1KXCj3OJW8H6chnf+iWLfnc2rB9mqrqwPdq9Ra3Ou4Lo9FfahqbY2uvvstp1c5+7gqyu1EpchxavWdu9GurjrcI9Wl3+B5G4AVTz/sRFgOY+y77756/fXX854bPXq09g06k1o58hNwXLkymm1bNRaZPdxsSZk9PKyJeGbPLv6+qVPbHn/yift1e5mIx42wZw/P5XeA9sKxTDg2AW+YiKc4JuLxx835uLVVuv126b77vL3PVF5mcE7a57SbiCfOyYaCHpvMHm4vyL6x+l6ivNZwjnanEibiGTdOuuwyKWdoukCeeUa65hrJQ0YfzJTITMv6+npNzQkEfPfdd5o4caJ69uypTTfdVEOGDNGsWbP06KOPSpJ+/etf684779Rll12mX/ziF3rjjTf0zDPPaMSIEXF9BHMlbfZwmCVo0LJUdcBpO17KsGZN8WX8NjyLBS29NvKinKnb76+uBC2BYAhaWss9l3BD7I+b8/ETT0i/+13+c1EHe6L8PsMOHJnELmhpynXXtCSEUu+XUtS9VMr/8RPltaZUwxOYUtf9qoSgZSah7Nlngwcuv/xSOuWU9OO5c6V77gm2PsQqkZmW48eP1+67767dd08PE3zJJZdo991315VXXilJmjNnjr7//vvs8ltssYVGjBih0aNHa9ddd9Wtt96qBx54QP369Yul/Ebz05gJqwHpZltkWpotKZmWTnXASxlWrw62LSeFDYOgQUcTgxthZ5P69d//8issksnE49oEXOeDc7MPrW4Ck7zvybQsrSRlWkb9fZcimOx2nVZBRDIt4+fQbVuS+++3tTXd86uwDe5mPaU6XxSM8erLa6+1Pb733uDrQ6wSmWnZt29fpRwOqKFDh1q+Z8KECRGWqkwQtEQQ5RC0DDvT0m998xLQc3MMRtkADyswG8ex+fTT0oABUu/e0rRpksVYxpEopwwexIegJaLit/2X5DYWmZallVt/TGvPW+2nJGX5Wu2blhZ3WY2l7h5OpqU7YWVannuu9MADqjnxROmMM7ytp5yGZECiJDLTEoYpZdAyrvfAnaQELcPKniiY/drztpwUC+gFzbQkaJk2YED6/7lzpeefL912GxtLty2UL4KWiIpJQctSXRsKr9cmDGcTFtODlqYFLEqdkVqKgHmQdUb5+ePItEza8SuFN2HWAw9Ikqqfe8769XIJWibxO4YtgpbIZ/qYlmRami0pQcuwuj7EOaZlLjcNviiDll4/Y329dNhh0m9+E12Z/LDrKhMFgpYIA0HL4uh66I9JQcti2wxL4fFkWiAtCLqHtzn3XGm33aTPPrNfptRZt6X4XtxeL0qdaVkqcbcxg4piTEurelYuQUuUlUR2D0eE6B6OIMohaOmlfkQ5pmVhAC3ovjGpe/g110hvvBF8PUlG0BJhKIcbySgwEU9wbs7HVt06Sz32X5i8ZFomjYmZlrlK1Z4fO1a6//7042OPlWbMcLfuqPdTKcbQDNKOjPJYiKPtn8TrQgRBy1qr+5i4gpbldL5F6Mi0RD4/F+moZitzc0EhaGkWN5lq5RS0jDLTMuyu0yZ1D3///XDW89hj0p13Rj+bYRQIWiIMNPKtcZ0PrpQ/WpuyHS/ZdYsXSzfcIL3+erRlCovd92lKpmWp2vO5MxLPnGm/XKkzLU3qHl7qTMs46mASrxERBC3rVq3y9oYkZVom8TuGLTItkc/0oGUY2+IkFh03FxzTg5Zhdw8vxUQ8bpgUtPQzY2Gh116TBg1q+/vCC72VIW4ELREGgpbFJTGjxgRuroXlNoGGl8DRvHnS//1f+vHChdK660ZXrjCZlGkZR9DS7TAwpe5Gb1L38LDfW4wJbf8kiCLTcuVKb+shaImYkGmJfGGNhxHVtukebrYwuofPnSstWRJemey2Yyfs7uG52/Jyg1csaOm1HofZ9Sho1/XJk62f91KmBx9se/znP3vbvp1SBjfcTOIEFEPQElExKdOyVPxmuzmNjWgKE7uHxxG0nDbN3XJxZ1oG/V6s3m9qpiXXMXdKlWlpSvfwFSucs6FRUQhaIp9JmZYmvSdK5dToD9o9fMIEaZNNpI03lubMCa9chaLoHt6hg/UyuY1EL9911N3DgygMuHkp2y23SMuXW7/m9zOadky7QaYlwsDNHqLid0zLqEXZZvIbqEpCO64cJ+Lx6rXXpOuuc7dsqfdTKYKkpk7EQ6alO2HNHp7Dc9Ayyu+qcN2bby5ttpn01lv+1pf07xt5CFoin+lBS5N+IUZ7QTMtBw1KBz5XrZIuvzy8chWKont4p07Ft+Wlge4lm7HUs4cHCaj+4Q/2r3lZTxJuEp0QtEQYohz2IcmSPuGCCci0LK8fBUzMtMxViiSEY491v2wpJsZx2l6cY1paKbdMS1PqvRfFylxu3cMXL04/5+W4zZXE7xi2CFrCmZsDvthF8JtvpAMPlH796+AnQrqHm83NhChOjZPcIOCjj0rHHSdZXVCDCuuCnNs9vGPH4usLkmn5wgvSAQdIX3/dfr1uhNkAj6oxT6Ylkuj226Uf/Uh6883Sb5ugpTX2Q3CVGLQsPJ7izEIMm4lBy9xM3VK0571cd8txTMsgmcOlzLCLStKvCxEELY3uHp4RxX0gEoegJfJF0Wg4+WRp7FjpvvukUaNKu+2w3gN3ggYtC40YIV1/vf/y2AlrTMvcIKtd0DKsMS0l6d13pZ/9rP3zpc60jOqmJ+5My1LegBO0LA+NjdLvfid98ol06KGl3z5By+LKLbBWKiZ1DzdxIp6kMb17uGnt+XIc09LU7uGlyrRM+vWx3IOW5XS+RegIWiKfn2BEsZPMhAltj7/6yv223SxjWiOn0gUd09LK2LH+yuIkiu7hbjItgwYtJWnSJOdt2IkyaFnKybjCfF+cmIinPMQdfC7nzLAgknhOMI2pmZalvGkOEuQxjYmZlrlMa8+X45iWQTMto9rfXLfciaJ7eDkHLU05tyEUBC2Rz6QxLa0umuUYtExCY9etsDMtoxLFRDxuMi2DdA8PKsxf8cs107KU4g52IRxxX0/ItERUTMq0zFVO2XWlZHqmpR9e64KXiUxKHdyN4nvxu0677yWqukKmpTsRlL/OpDEtTbg/hLEIWsJZGJmWfkUVlDDtohXlLNmllhtos2sclqqBPGuW/QWwlJmWYXYPt1Pq7uGMaRkcQcvyEHfdI2hZXNJ/4IgLmZaVEbQ05ZwRRjmKrWOttdyvqxy6h4c9sZTX9zc1ubvHKafjLE4+6kyV1XdKpiUMRNAS+eLMXKzE7uHPPJOecKZc5Aba7IKWTo0eq/f4uSm6915p442lQw6x/r6jyLTs0KH4+rwELYtlWnqtx4xpGc867RC0LA9xX08IWlpjPwRHpmXwzDSTmBi0DHsinmLrqKvzv+6kdQ+3CloGrc9egpYtLdJuu6Xb4s89V3zZUkj6dSGC7uFVUd4jeUXQEg4IWiJfFGNa+t22m2WSHrQ85ZS4SxAuN5mWTo2TsG6Azjsv/f8770jTp7d/PYqJeNx0p/FyYxN2pmWYjQHTxrRMIsa0LA9x11mClsUlIaBkIjfn9Tj2bSlnMS6n7oqmdw8vRXve5EzLsL+XuDMtX39d+vLLdBlOOsl52ah67xTKXW8Sr5URBC09v4fu4YgJQUs4i3NMS5PeE7YJE6S+feMuhbXXXpMOOMBfBmgUQcugN0W5gcWMsLqH52bL2a0z93m3n2XoUOnCC92Xw41yy7SMYvul0toqDR4cdykQhrjrHhPxWIv7eykHhmZaWmYGhaWcu4dnmJRpmctrOebPl5591ts6gmRaRr2fTMq0tPusXoJKVm1vO1zH3CHT0htTzm0IRW3cBYBhyLQsjYMOkurr4y6FtSOOSP//7rvSoEHe3pubHVhrc3rxGrQM+n1ZdbMO64Kcmy3nppHn9gbvrLOKL+N1vzARjzn+/e+4S4CwxH1zRaYlolKJY1qWU/DE7jpdLpmWF1zgfXtegpZJH9OytdV/fbbbtpd94OUHjcL1Njd7mzTJraRfH0uVaRlWYodXST7fInJkWiKfn2CEl5Nk0GCRqb8Qe2VqwDIoU7qH54oqaPnhh9Ls2cXflxvILcUN3jffSNddJz3xRP62mYjHHF98EXcJwtHcLA0bJo0eHXdJ4hN3I5ugZXErVkj33Sd9+mncJUmWSgxahp2ZFie3Qcs4yx4kaPnCC+2fK7aOwu7hToGxUgd3TeoeHkampZf2fOF6vQyPVEkiOFaNyrSkezgckGmJfH5ORnGOZ5fUTMtylRsgtGuwlLp7uFXQ0qnOuqnPixdL++yT/5xdvXKzT8L005+2BcXq6qSf/zz9uNy6hyd5Ip511y3NdqL28MPSOeekH3/6qbTLLvGWJw4ELc33+uvpf5K0apXUqVO85UmKUva0KaZUY9H5DfIk4Wa73IKWfq7XhUFLux5BUvyZlknvHu7l+7HKtIxC0q+PJmRa0j0cMSHTEvmizrR0uogVrsdq2XLpHl6ugnYPj6I7SBSZlu+84/59uduPasKc3PXmZvH997/26w0zaBn3RDy571u2LJoG76JF4Z07uncPZz1xyx139d574ytHnOIOWlbCGHx+2B2rX31V2nIkmZvzXRzBOhMzLU087pLWPTyM93od09KkTMuwz+WtrfFOxOPluyXT0p0ogpZe10PQEjEhaIl8UQctvayHoGXymDgRTxRBS6tMHTfdw91kWoZ50c7d15WQafnOO1Lv3tL22+dPkhTUP/8prbeedPzx4ayvXBrkQWd+LQdxByvItLRmtx+8jGlX6dzUpTjOZSYGLU3MtExC9/Bcpci0LDz+vWRaRr2fwt5e3JmWQca0tGq3h8GUuu5XBEHLKqs6QfdwGIigJfL5aczEmWXlZ9tJv2iZLIru4UF5DVq6qVMdO7pfp9fu4UHHHMqV+1kqYUzLww9Pz1g5dar0yCPhlElKd4FOpaQRI6QFC4Kvz2udhLkIWiYLQUv3yLR0//niPg9YSVqmZRhBS69jWjoFLctxTMukBC3pHm6NTEtvkv59Iw9BS+QLM3Px22+ln/zE/fr9ZHWSaRktr/vKzaQzJgYtb7jB/jUrVkFLu4ut14l4/NwEutnXYTYGTM20zM2uXLbM+/aj+n4KWWWBmnjTi+Li/t7cBi3vuEM65pjymQTKryiGIClXJmVaxjWmZSV0Dy+nMS29dg9fvFg69tj8oXTs1lVJ3cNLPaYl3cPdKfdMSxPPozAGQUs4C5JpedJJ0r//He62wmhEELR0z+u+amhoe2z33Xgd0zLqiXguvFA67bS2v9185sJf653e5zXTMsgv4U7HR5Tdw00a0zIJrIKWSfsMEt3Dpfgb2W6O61mzpIsukv7zH+mII0pTLiRfkEzLKM8HJgYtTezWWIlBy2Ks2m4jR1oP/RL3RDwmdg/3sg+YiCd8UZTfzb1E1GXIMPE8CmMQtES+Yo0ZN79sZga6nzAh2LZNek+l8tpImzev7bGfX2r9/HJeTLFMy6qq/O26+cxeLvJex+YJctEuLEOpxrQcMyb9A4XVvlu8OD3L9KxZ3tcbRFTHeRjZwOXSPZygpXlBy9zyZI698ePbnpszpzTlilsYN92Vzs2+sgsuRHnzWcqb5krItDSle7hXVtdir5mWGVOnFl9X2O2Tl16SXnvNfv1RdA8Pmmn50kvSffdJjz4q1dc7r6NYW2nNGumxx6TPPyfT0q1SdQ+Paxt0D4cDh8E8UJHCGNNyl12k5cuDb9vNMgQto+XlAtLcnD/en59Myzi6h1dV5W/XTz10el9u48tNgzHMoGXudxDmr/iF65oyJT0UxPPPSyeckP/aaadJr7wi/c//pJfr2DHdWLWShKBl0MxfqTwzLStV3MEKpx8jBgyQRo8ubXlMQdAyuCCZli0tzuMFelVV1VaeKL9DMi3jU4pMSy9j2kaZafnyy9JPf5p+PHGitOuupekeHjTT8tJL2x6//750zz326yjWnr/5Zumqq9Jtwn798l8j09JaGEHLgmXoHo6kINMS+cIIAjY0SN99Z72sUyOjVN3D4Z6X/TtvXv73Y0r3cKvGT9BMSy8X+dygqZsbG791ur7e+Vf1KDMtMy68sP1zr7yS/j+TgR3WjWyxepG0oGXSz2VJvxnwK+7vzem49hKwXLnSrO9wzZpoblzj/r6SJMiYlknNtCzniXjsFJY9qmPPStwT8TiJ8n7jlFPaHt99t/X6TZyIJ9e993ovU66rrkr/v2ZNuot+LjItrYURtPTbm8zL+/3KHWIsDCa1aRAYQUvk89M93OoE5ufGnu7h5vGyr+bOdffeUmdaFgsQVVd7bzj77R4eVablM89I66yTHlA+V6nGtMwIGtCrlDEt6R5ePuIOVoRwXPf69FPVbrSRtM8+8X8eKf0Dx0YbSVtu6W9CLScmfL6kCJJpedtt0ZWFoKU/bjItv/pK2nBDaautwj/2rJR6TEsvP5pGmWm5enXb4/XWS/8fdgZsFN3DvW7frcI2EZmW1jLlt7tX8pNpacqYlgsXSkceGe46k/59Iw9BS+Tzc9G0WsauMeHlROjmV1Qm4omWl/1bOFaan0xLq+88aCCsWFfccuke3tzcPrPKafbwKIKWbt6XaaAHXW8UmZZu6loYNy50Dy8fcQcrQgha7n/VVapatUr66KP0ZD1xO+OM9HicM2ZIN9wQ7rqTeJzFJUim5RVXhFuWXKUMWlZa9/DTTpOWLJG+/1666aZoyyeVPtPSi1J1o1933fT/Sege7kWxdXToYP+a17Hg3Ur6+T9Tfi/DHBRycy8QR9Dy//4vmvWibBC0RJ52v7j4TTUPI9PSTYOETMtoBQla+sm0jKLh7yZoWaqJeMLsHu712Awz09JvY7qpybmhmoRMyzC2VS5By1xxlX/iROlnP5Oeeiqe7ZsWtAxaHj/jUYdtypS2x/Pn+1uHXX2M+/tKkiBByyiZGLQ0sV65DVrmln3y5LbHuWOUR6XUmZZevqeoMi2tuuNbPZ/0TEur/fXII9JJJ0lffJHO5o1y++Uos1/8JAbZLWNK0HL2bPvX/P5ATj0qK0zEA2d+Aol2y3ndlhtkWkbLy74qvLn0k2kZRcPfa9DSb6A+zu7hbtYV5nr9HkNNTeE1huLK8osqaGniTW8xJnQP32ef9P584YV08NLLmGVhiPt7C/PHCCmaITq8yj1n+h0Dl6BlcEG6h0fJxKBluWRa5o4p17FjNOWy27ZXfjItvWwvjJ5dVgp/4M90FTdpTMswFG5r2TJp8OD047fekvbaS/ryS+v3RnWMl8v9X4hBS2O6h0fR9iiX7xuSyLREobACh1FlQDo1tjI3rmFspxItXSo9/XT+c14aOIXdOZKSaVldnczu4V6Dq6XoHl4skNjYGE1jyMv38e670pgx3n9d9rJMMYxpGZ7c4zvsQdzdiDsIVo5By9xzptducKmU9Prr7QMDGXF/X0liUqZlblmiPNf4zVw2sV75CVrmfp9OvSLCEuR7tTpXhRm09BvwmztXG44dm54c0UomszIjE7R024Z2K+7u4YXbWrSo7fHChdYTb4a5/XIURv02tXu4U31gKCKITEsU8tP92moZuwuj002un23lbueWW9yNicHF0Nppp7Wfwc9LQ9ztr9Jeg5ZBbwasAhm560xq93A3Sj17eDGlzLS0Wtf48dIBB6Qfjx0r7b+/9+3TPdxccezDuIMV5R609Jpp+cor0jHH2L8e9/eVJGRaVkbQ0q7spQha5jKte7ifexRJtUccob2mTFHr3LnSY4+1X6DwmFm1Kv1/Ybsg6d3Di63DqSxkWlqLoHt4WWdaoqxQQ5DPqZFjNzCy1QnM7mLk9Ktq0OxMt4P4Jv2iFZXCgKUUTVcap4aKVdZG0AG5o+ge7iVQ77WLdpg3gaWePbyYpibnmwar78pveaye+/3v2x7/5jftX/cbsPaqXLqHR8FvHZAIWkrBy2PCjUPuZ/CaaXnmme7XDWdBMi032sjdNvwc76UMWrq9HpdL9/BcpmdaRtU9vKUlXa/9dA9PpVT1w5i81Y8/br/+XJlMy8If2OPsHh5FpqWX/RnVeTrp939hBC1NzbR0anuU+5iWra3RTT5VRgxoncIoVo2ZxkbpRz+S+vRxnwnnpgHXv3/xbRcrH2NaRivIoOVhdQ8P2v0sitnDvQyJkPt8a6u3X5/32ivYLIFRzR7uJpPaSrHu4a+9Zj/GkddtWcntltWpU/vX/X73XtE93Nqzz0prry2deqq/9xO0LI9My1x+x7S0E/f3lSRBMi3dfG+nniqts076uA+7XH75DVqaWK+CZlqWekzLUmRaOm2jtTU9c/o220ibbSbNmNH+9WLcBB4K27SZoGXYmZZW3cPjnojH7etJbA+VQrGgpZd1/MCYTEun7uHlbNUqaaedpE02yZ+EEO0Y1jpF7KxORo89Jk2YkD8eSbH3FLtYffml9O9/ey9L2NmZcBZF93CnRl1cQcsou4d7bTTmLr/rrsGCCCZmWhZ772mn+Vt3Iavt5AYtrbJI6B7uTdjjDJ18cvoG7sknpZkzvb+foGXwfWDa2FFeg5bFyh/395UkbvaV3fW52HVu9uz0cb5qVfq498LE7uFkWvoT5Lv0k2np9H2uWSNdc4303XfWMxmHFbSMs3t4nJmWXl6ne7i1UmVauilD2Cp1Ip7bbpMmT5bmzZMGDoy7NEYjaIl8Vo0Zu2Blhp9My+XLi2/bjSSckHJNniydckrw9aRS0lVXSb/9rbRyZfD12Ql7/J+WlrYGmpVSBS1zP1d1dTjdw8MKWua+Xlg2N9uzW1dhOe69V/rf//V3sxVl0HLy5HDKUyxoaZVFQtDSP7/lHzo0PaPotGn5z2eyT7zIreOzZkm/+IV0333+yuVnm3Go9EzLW26RfvUrafHi9N9BghbIFyTTsth1xakdUEyU32E5jWlZyMSgpZty2Ak703LNmvbXoVwDB6bHwnbiZrgDu+7hSQxaesnIC7N7+PTp0llnSQ895LxcuckNWk6YIJ1/fn7PFB9tWGMyLSs1aJn7A4nbnmYViol4kM/qIlOsi4hV47RYg9VvFmXSu4dfcYX03HPB1/P009K116Yfd+wo3Xxz8HVa8bKv3Hw3xQKsVgFKP0HLurq2X7ytJuIJ2j3cy0W+8HkvQcuammCZT06ZlpJ0443SFlukb/q98HsMFeseLrnvDh+0e7jVea1UY1paZWMk4aa3UNDu4bNnp288JOnTT/Nf87O+3H04aJD0xhvSww9LfftK227rfX1etxmHcg9aOp0PPv1U+sMf0o8XLpReeKH4+uL+vpLETV2yuz4Xu27HkenvRjkFLd22SezKXorummF3Dy+2jmJBS6fzzfz50oEHOq8jzKBl0DpViu7hzc32+yzKTMsTT5Q+/jj9o+eRR0obb+y8vNv1mi43aLnbbtJdd0l//7s0bFj+627WYfd3sfVEda6LYkzLJPDa06+CGdY6hXFSKeux33J5ybTMHJxhBS2Tlp05dWo46xkxou1xkF8ap0yR3nnH/vsKMqal1Xvr653XEVamZW4jKoru4V7GtAzSPTxo0NLNJEDFbvS/+056/fX8crkd07JwOTeZln7G8Fy1Kl2Pi8kNYJNpGVzQoGXu+XDixPzX/DTect/zxhttjzMB0VWrpJdflpYt875uN9uMQ9gT8Zh2c+B0Pvj887bHw4e7W1/c31eSBAla+vnh2i0Tg5bl2D28FNekIEFLqyBHkEzr1auDjSEu+QtaZrKOC39gT0KmpdPnjTJo+fHHbY+//dZ52XJi1T3cazss6I/zcWRalvNEPGGPDV/GCFoin9UB4yfT0u6kGKQrgZWkZVr66fJoJYwby7lz04P/HnSQ9Mwz1suE3T08CUFL07qH213IvR4ffo7J5cvT42oefng6Y83LtqX2n7XY7OGS/0zLgw7K/9uqjLnHn9+gZRhBj3IMWoYtaNAyV6YennOOdPzx0s9+5r9cbrdZKmFnWppWD526h/fp0/45uof756cN5rd7uGn1LMPvjwAm1iu3QUu7spfiM4Wdaelle4WKZVq6YdJEPFZBy7AzLa16MmUECVp6qXteMoJNPe+4VSxo6WUdmbd7ScIo9loQldo9nKClawQtkS9p3cOTlmmZ2z01LH4/z623tjWe7GbrDbt7+IoV7teXEVbQMrc8uWUtDAyGPRFPnN3DW1raPo/ddp2+42efbfvOzj7b3XsKt58rzO7hxVhtp1j3cDd1LapMSxNver0I+7watHt4rkw9fOKJ9P+5WZhBxf29hR20jPvzFHIKWno9t0rmfT6TVUKmZbFMtErOtCx10NKrUncPd8P07uFWzwXhFLQsVs+cjhkv9YKgZfvXnSQx09KvJFzvCVq6RtAS+awuMmut5fwexrR0L8jg87lK1YWv1JmWVtz8cl0ot+HZ0JDuOrzBBtJPf9r+12fTMi3D7B4+fry00UbSYYfZ70enzxsky1Nqf0MbZvfwYvvFaju5NwVWQctzz23fTdnNer2y+i6S2FiJsrEVRaZlFOJuFIcdtDQt+OJ0Q1pY1hkziq8v7u/LZF5/FE6l4sm0DOtcc/HF0jrrSE891fac38w0E+tVEoKWbsphx0/bqNjs4XF2Dy9FpuWvfy2tt540alTx97oRVaZlVEHLINsxQRhByyRmWvq9DzLxvFyIoKVrTMSDfFaNmWIHvZ+gpdtte32Pn+2Ukp9MwziFHbQsVaZlbnZOY2Nb1+GXXpLefrt993CvE/FEOaal29nD3Zg7N/9/K07fsV2Wk9sxLa26hxfbv8VmCw6L3cyoxx0nzZxp/76oMi0rsbHi9JkJWroT9piWcX8eLwqvDU7HbUaSPl+peW2DOe1L04OWq1enJ7CQ0rNCDxiQflyJQUs/Q8eEJXcbXvdh2JmWq1cHn3zI9NnDJWnxYqlfv3ACU16Cll6STugebs0qaGn1uhNTMy2dvsdyDlp6vf+sYGRaIp+foOWrr7Z/rtIzLcePT8/I/N57bc81NTlf4P2K8vN4WbebQJ6fTEs/QUunX67mz28ftPQ6EY/bTEur54p9njC7h7vh9B0XBhDfeqv4e3IVflY33cOLZXZn+Mm0zGU37MWsWcHW6wZBy+Ki6B4ehbgbxeXePdyuPLffLl1ySf5zbq4Vpn0+k3gNWjodV6YHLVeutH6+UruHr1gh/e53+c+Xunt4GEFLL9srtGaNv/ZmLpPGtAzSFdzttnPLPHZs+r7nk0/atu+0TjItvYsg09JTzzG32/CD7uEogkxL5LM6GRVrjA0b1v65YicKrydJu2VMzbTca6/0/w880LY9PwE7O2Gc5NysI0imZeb9uQ2KUmVaOgUhW1qcg5Zhdg/3czwVdg8P2kW7GC9By75908u73bafTMuwxrQsxm1wtFBU3cOT0LgqFGW3FoKW7vgJWqZS9ud/04IvVvv3tdfaB1gkgpZhK1aXnPZ3lPUorExLK36DlibWKy+Zlldemf4hoPD5qOWWJYzu4UGyg+vr3SUWtLbat8v8ZFo2N6ffV9guCLr/3SSdOL3Xjdz9deCB6f8z9z2F6yg8X8QRtAzjHjJOUXQPJ2iJhCDTEs78XvSKjQtnty2nv62YmmlpxW3Q0ms2ZpSfJ4ygZa44Mi0Ly9DcnP9cYRdsv/XO7XOl7B7uhtPntWsM2r2nsKxWY1oGmT28pUUaM0Zatiz4fvF73DB7eBur46alJZ2Ru2RJ8fdH0T3866+lzz/Pf56gZb6wuuWVglV5/vMf62Wbm4MFLSqd154sXn6AK7YtL8I4V9qNL15OmZaFnDItCwOWkvmZln6CHE51Z9o0d5NlOrVJ/QQtJevM36i6h7t9rxteuod7CcqW6jxtUrtrwYJ0tqqbgGGQ2cOLZcAWY1LQcvFi6emnpcmTrV9PwvU+imBtmWJPIZ9VY8ZPY+zyy71tx27bfpYxlduA3VlnFV+mVOnkXvavm++rVJmWTg3hYpmWYXYPDxq0jLt7uF3Q0m1DwE/3cKcxLa+8UjrkEOmAA4qvJ6rgBd3D21jVzeuvT2fk7rtvsAajn/3x9dfStttKu+yS/3wlBi2d9l9cGXJ+eNm/ZFoG47V95WWoEy+vFRNV0NLtNdyKifXKS/dwK6ZPxGN1sx+kXfD11+6SBpy6gBO0bGOVMOD0up/tF1tPkPWWUmOjtOuu6WzVu+6yX66cMy29dvNvaZH22Sc9HvEOO0iTJrVfxsTzciG6h7tG0BL5rBozURz0cQYtg3RHCcJtwO7JJ6MthxdJzbR0CloWZuNkLhiZ/03rHh5n0NLuM8XVPfyGG9L/T5okLVzovJ5i5wq/x34Y5wyrOmBqY9qtTPmvvjr9/5Qp0vff+1+fn+vOkCHuj7mwrmtxN4rtJuJxKpfTOTXuz1PI6vu0OycStAzG6zmyWIDH6VoX5HsI4zu0ChIFOU+YWK+8dA+3YnqmpddgS7FtfP21u0xLp6ClnzEtJev6GMakaqUc07LYOrxkWgZNmHC7rCntrjFjpDlz0o9/8xv75cIIWrrJtAy7F4wbTvc6Vq/Nny9Nndr2d+4cEhmmfL9OCFq6RtAS+fwEWaLadtTdw3/3O2nDDaURI7yvw48wx7TMZUr38Kgm4vETOPeaaSm1/WofZtAy6d3DrcpauP+cWHUPL/Zet2NNFptlPHc7Cxakf8XOFWempduhBExXrLFcrNtL2A1juxvGSgpaZvap36AlmZaVy2sbzG5cyIyo6lkY52C3QSK35TTtuJHc76c4My2DBC397PMwMi1N7R5+7bXt32+3T7t3d15XFJmWhfsmrO7hQc4Hm20mnXxy/MGtsCahSnKmpVN70erzFh4zVnUxCdd7gpauEbREvkrJtFy0KD2Gz9y50nHHeV+HH366RttJ0kQ8uexm7CzGa7Zl7naLZVpmLpSZ/eHmM7sJ0Not57V7eJwT8Vjtd6dx4wrrVOFnddM93O1EPF66klx6aftxDuPMtPSTIWKiYueQIGP1+Lnu2G3PLvgehrgbxX6CllFlwEWBoGV8ggYto6pnUXUPDxK0NLFeJaF7eJCeT356LDi9Pneuuzaqqd3Dr7qq/fvtvsO113ZeV9CgpdW2C/eb07FVqu7hc+ZIzz4rvf66+3VEIcgPDKXOtDSlezhBy4pD0BL54gxaXnJJ/gD7bk6kfjMt7QZhj1KUmZbjx0u//a306afhrzvIsoXP+enqLWUbO1UffqidHnhA+uIL92WxyrTMfc6ue/icOelg14svOq/f63OmdQ/3mpHlJlvS7v1u3lssgzKj2H7J3Y7VxGB+z2thnA/dBr2TxE+mpRM/QUUvQUsyLd2tr9TcXOPpHh6NsDMt7erSSy+1n/3dbnIlK6XMtEzyRDzl3j3czz4vto2gQUs33cOtym11fxC0njt1D486aFk44aVkRvdwO7NnB19HKRTrHu5lHXZ/2z3n5rUgvLYXC+/jrYZ2SML1nqClay7vDlExrE5mpWqMzZsnHXOMtHSp1KOH/266UbzHC7v9FWbQsvAkt9de6f9HjJC++Sa87YSdaeklaLnddtJ//5t+/ENjp/aAA7SVpNQ776TriZuyuB3TsrB7+JlnSqNHS7femh47Zb31rNfv9JzV/vMyeYFT9/C4Mi3dzACeYTWmZbH3us209PL5rX7BNS3TMgmNq0LFfuEPcu3w8167Y8VqSAOClvnLZ8T9ebxM1lDIzdAVcX8+k3kNWhb78dfqGJ4/X/rpT9s/f8wx0vLlUrduzut0Uy433GZaVsKYlqlU+twZ97kg7kxLyV3QMmj38CjGtLRrk9qtw81x5kYmaFm4nTVriicthNU9PIyu5En50bhY0NJHpqUx3cO9jmlJpmXFIdMS+aK+mf7yy3Rw0mmdM2favxZWpmWUFyi7RovfLMNick/c334b7rqDNhysshzdys24K3hf1bJlzu8tlmlpFbQs7B4+enTbMl99Zb9+p+es9knuzdLy5dLHH+e/1+3s4aUIWlp9X07dw62WzRVm93AvNyemBS3LMdPSSrHzh9e6V4xT0LJwfeXaPdzrRDxR7Re/Cq+fxbrD5SLTMphSZFp++aX98m6znci0dKeUmZYtLdK4ce4msrEqk9ftZbbpVRhByyi6hy9Y0P65MHo6RT12d2b9hZ+poaH9tguHyDJhIh43ZSkFr93DQ5w93JhMS6/rLTxWybQsewQt4SzsTMv77pO22io9pqSdzEnGzYk092+3qeVRdXnP8DIZRBj8rtfNiTLO7uG5E7J4mfxF8jampZ/Zw4OMaZnJuG1pkXbbTdpzT+nOO63f4zSmZVh12E+mpd17io1pGXT28FxBMy3jnIjHayPRVMXOIaXOtHTqHh4kg89J3I3ioJmWXrrslUJhtgRjWsYniqClU8DH7XdjYtDSxHrlJdPSipfPdNFF0r77Sscf7/49hdsOI2gZNNO6FJmWVuU+//z2z/lt8+Y+Z/d5i11fowhannaa9XuDbL/Yekq5jlKwClpave5mHT8wJtPS63oLs+XJtCx7BC2Rz6oxE/ZBv3KldNtt9q87BS3tlpXcj4WXSkWX9SjZN8rD3I+lOsnF2T08N3jV3OztvcUyLXOfywQ6Mv+7+cxuL/JWz2V+bR4/Xvruu/Tj3/42v3y5ZbP7rk0MWhZ7v5v3BhkHMVexHzS8Nsq9vs/LOsNab5xM6B7uFLSslEzLzPfg9Plyj8vCYzTujDEvM8wWImgZTCkyLZ2+o1IGLa26hweZsCsJ9SrKoOVdd6X/f+01/+3GMLqHe9melbDHtAxyXQza08np/i1ILwir9RR+pjVrim8jrO7hZFp6W4/fexwv2/DDqVx+u4cnoV0d1j1PBWBPIV8pgpaS/eDNkrdMy++/l7beOt1QMjVo6SbzxVRhjKmTy8t+L+we7lRnnLbrtXu4m+6IQbqHZzItC9e5//7SfvtJixe3PefUPbwUQUu7m06/XebcdA+3e/3ii90tV/j6iy9K77/f/nW/GTRBG0GmNpr9KNZYXrNG6tdP+tGPrIf9KGX3cDIt2zgFLeP+PAQtw/Pxx+mxoc8+293ybrsNZ/gZ09Ip4OP1xj0Iuoe3aW21Pnf6PVaKDd9jpxSZlmHUHS/dw60+k9u64qWsdvsirEzL886THn20/XJOmZZBsl6j6h7upywmiaB7eJXXH9HjCFpaoXt4xSFoiXxhZ8vYcVqnl6CllJ545ogj3ActpWiDlnaNljD3Y6lOckEbDkHGtCzMtHTT7caqLG67hxdOxON2/XbbsXsuE7Qs7LL83nvp4Npll7U9F/eYlkG7h/vJtLTaZ999J/39787vK5TZTv/+zq8XU1ieoI0gu+0m4RfhQsXOQ3fcIY0aJX3yifSrX3lbt5/97CXTshyClk7nHL/dw+MOvri56WdMS3cOOUSaMkV68EHpww+LL1+KTEs/3cO9lssNtxPxJDnTspTdw3M5Df9UyLTu4W546R5utT239x9Rdg/3mmnZtat0xhn2yxWuL2impZegWRhZmUlpfxULWroRVRs2KK+ZlnQPrzgELZGvVJmWbroFeD0xWo1bZ6XUmZaZhlUSTp6FgnZPCat7uNdMy9ztes20bG1NBxDdrj/Da/dwuyB77j5KevdwP7OHZ15ftUr6y1+kxx/Pzz4tXM6vuLqHJ73RbMeq/J9/3vZ47Fhv6wsz07K1Nbpu0HGe151u2p3Kdccd0j/+EW0Gql9BgstuJgmL+/OVUu7EF24nucmVhKDle+9J//d/0owZ6Uywm292NxkMmZZtws609Bu0NKF7uBteMi2DDDkQNGgZZqZlse26GdPSSxmc3mvXuyCIuK8LpeweHjTTMqp95fV7JNOy4nhITUNFsGrkmJ5pmWFq93A3mS9eJWVMyyDdwwszLcPqHl54Y5vJzsrs0+bmdFdtu/VZ/W33nJdMSyulmIjHbUZW7nNuGxd+Zg/PlOf229M3o1I6wFIoaEM1ru7hfjMfTFSssZx7nrc6Z4XdPdzuWLEaE7dcMy3dBC0ffDD9f7du0gEH5L8Wd/DFzfEWJNMy6T8ORMlrRmPY3cO9Bi1bWtqu1TfckL+NzLXDTm7ZM5P+BQlamnj+jivT0upHRjulzrSMOmjpZmKzJI5pWezH87DHtPTyY3oYmZYmHr9WwghauvmsSeweTqZl2SPTEs6iyrSMImhpSqalXfeQoA2QXEkJWgbJtCw2puVnn7m7ybHKtMx9rrB7uFUGhpvB1d0GLT/+OP2/myB7Kca0tLN0qfTVV+2fd5MtmWGVNeU2aHnFFW3PPfVU++WC3pyQaRmcl6ClV2FmWjY3t1+fn8wzK0nMtMy4447yy7QsJu7PZ7Kwu4dbfR9O73EbYMn8bZdRed11zuWS8ttpmR9Iy717uN3zqVTlZFqWunt4nJmWTt3D/WZa3n+/9XajGtNy+nRp4cL819y0x4ut10tZSsHt9q2CllavNzRIkya5u1fxeq9tavdwMi3LHkFLOIuje3jUmR5xZVp6+VylyHZxc6IM2hgofC7MMS133VX65S+Ll6VYpmVh93ArhfXF7UXe6rk33pCef97d/o+re/iKFdKWW0oPP9z+tSBjWroJWmZe79q17TmrQHLQoKRpmZZJD1paCdIFLcxMy6am9nVxn33SN0RBJTloWVNTfkFLuof7F3bQ0qp+OmVnes20tDv/uLm25rbTMj8gBglaxp2hbCUJ3cP9bs/vdbTU3cOtyul0/7HVVm2PTewe/qtfSQ891H67frqHO73e2iqNGydtsYW02WbS/Pltr7nJZvUq7uuC13FOnTItUynp4IOlnXeWbrrJfh2Zt3vtHm5K0JJMy4pD0BL5rBobSeke7uWXKqdGR1BhjGkZJNMyzAtKnJmWbrqHDx1q/d7c7ba25mfhFhvT0m7GbLv1Z7jNtJSks85y9z3FNXv4vfdKS5ZYL++le7jV2ENugwpdurQ9l+lSb7WcX34zLaPabhKDlrmsvtti145S/XjV1GS9vnPOCb5u04KWXjL7a2rMm4gnyPHmpuxJuIkxRRRBS6f32H1/boNvGV6Dlpn2QblnWpZT93C/56kwrrNRZlp27972OM7u4U7WXjt/G1I03cNPPjn9/6pV+cM/uEkicFqv17KUgtfsW6eJeBYskD74IP14yJD26zC1e7jX9bqZiCcJ7WqClq4RtESeqqlT858YNEi6+urwNxR30NJvpuX//m86w2/cOPtlwugeHuTGMcyLbxiNplylmoinsCGcG7QsNnu43eQzdut3es5u/61e7T6o4HUsQK+s1uV0Y+llIh63mZa33Za/jCR17tz23PLl7d/jdUwmr69nhD3oexQ3EaYo3FfFxrQMO2hp92OUVaallJ7ZPCjTgpZ2N5FWqquTmWnJ7OHRcBPMOv98abfd0sOz+BnT0unaYvf9FWYGFavjdhnXdtvKLO/mB0s7cQf7rSQh09Jv93C3Ae5CYRz/UY5pmTtsUJTdw6dOTWfivfOO9etO2849vqLsHp6bXZl7XxWke7jT9uIUVtAylfKeRZuE7uFWkj4Rz003STvtJL3+etwlSQwm4kFWXX29qvx26/DK6aSaec3riTHqoOX330s33ph+vO++9uULYyKeIA3g5mb343sWE/QXzMLP7OVz5TberLqHuy1La2t6XZn3F45paTURT6Ewu4dL6a7XbvZtdbX1DVjUQUunuuplTEurgIjVe7fcsv22c7uHL13a/j1BZ7+Mq3t4OWVaFt7oeu22Vax7mFd253W7TMswmBq0dPmjSFVUs6r75eZHAoKW0Sh2Mzt+vHTPPenHP/2p9KMfOa/Pa/dwl0HLonXca6ZlZvlyy7QsVKpMS6vrtZ2wMy1N6x7uNdPSb9DS7lrgtE8nTZIOOshd2zX3mHITtAyaadnaaj3urBSse7ipmZZhdg/32MOlysu9S7HXgvD6HbjJtIz7e7XT0CBdfnn68RdfxFuWBCHTElldwpqYwA2nE0nm5O31ROpl7KFMw9sLtwHdUoxp6dQoD/Om05Tu4UEzLQsDoF67h7tpJHkJ/m2xRbBMyzAvxF4bIFdfLU2YYP1aYVndjk+X+/1YdQ+3CliXqnt4YSZCVJmWSQxa5rIadiNIYPnuu72fy7xmWhYrgxtJDlqamGkZpHs4QUt7bup5sWDWzJltj6dNC797uN33Z/fDkd136SbTMvdc4bS+pAUtp0+Xrr/eehKOqIKWVpmbboWdafnJJ9bPP/+89Pe/20/e5IXTecZNm8fp/VZBy9Wr02V/8UX793ntHl5MGJmWQbuH5ypswzst60fcx2+QTMtcTzzhvRdSEoKWVp+38L4gSZmWXpJwkEWmJbK6zJlTuo05naD9Bi3dnpyGDZPeesvdsrncNIQl+19aS5Vp6fa9brIRggYtw+oebjempZ3cchd2D7cb09JLF7Gg3cPXW8/dhT+uoKVT2T76KP3PDbcBEaugZW6mpZWg+8DN++vrpRNPzH+OTMs2hb/wFwYNc79/r/X444+lRx9Nj//qlp9My8Lzg1flFrQ0LdPSa9CyFN1Dy1Wxm9nCfVeqoGUUmZa523LqDZO0iXiOOEL6+mvpiiukzz/Pf82pe7gVt8dKkGO2UCrl7vuz298nnJB+Lbe9PmlS++t4EE6Zlm7Op24zLTP78aabpGuuST/+/PN0l9JCXruHF+N0Hs39fkoVtFxrrbbH5ZhpGVb38I8+kl57zXkdpmZauq1zGYX32knKtGQcS1/ItERWndUMvVFxM5ZZVN3D/QQsJfdBy1J0D/cy03UQYYypkysJmZZ+u4evXu2+8V7YRd2O3ezhcQYtvXAa4zBXbtAos+3cTEsrXn9Ntnq92DoKx/h1s91igt4g5lq1Spo1K1h5gigWtAwyEY8kXXedt/L4ybQMer40LWjp5XpjNRFP3I38ws/07bfu30umZbgK91XhBCvFJjQ0OWiZW3anY8bvMCJx+frrtsdeMi2DtDPCnBilcJvTplnXMzdDTGU8+6z78rjhVO/dtAG9dg/PBCyldMaoFdMyLdesKV4PnPZD4XsLkxiclnViatDSazvEaSKev/3N+b1uM63dvj8sXr+DwuOwWNDSpEBhEpMUDEDQElk1pUxXjiLTMsgv3W7HF3Qj7jEtTeoeXvicl7IVNlKCjGnplGlZOKalm+7hdvWlXz/75Q49tO2x2xm4a2qs612YDSynbC2vChsFbrO4rLILcifisRJG0PKUU5yXiWISpLAyLVevlrbZRtp0U+nVV4OVya9iY1oGHXfUK6egpV1Zgp4vTQtaesm0rKkxL9OysNyvvir985/u3kvQMphiN7OFQUs/mZalGNMyzO7hbsV93FgpVffwIBOjOJXlwQfTQ+nsvbe3tmRhubt1c18eN7x0Dw97TEu7uh0kaGn1eQq3bTemZWY5P5mWXnrOhTWmpdvtlZrXTMtche2whQs9rcOYTEsvmbdSsruHE7T0haAlsowLWloJo3u41/Jk+O0ebvdLZNDyBH1vKbqHB8m0zG28OWVaFtuuVaal1a9vTt+v227Or78urVhhvVxh5miQ7uFh3iCFGbQstm4vQcsgv9K70dpaPAMjiizUsMa0fPRRafbs9PqOOipYmcIQRaalV2Raeg9aLl+e/1zcjXyrz3TOOfl/MxFPNIoFswrH9S42DnpcY1qG2T3cLRPrldugZWtruJmWQdqNue89++z0/xMnSp9+mr9cnEHLoJmWTuep3Hai1XvthjIJ0j3cauIkr5mWVkNHBB0mIJdT9/BKyrQs1j1cKh60tDufFnvO7v1h8RooLbzXtpokNO7v1Y6p5TIcY1oiq8ZL99ugnA5Yu0zLww6T3njD3zqLaW7OD5xY8Ztp6WdMy2LLmtg93M2FL4oxLa3GpHPKtCzWPdyKl+4ohQHTjMKgZZDu4WF+x2Guq9CFF+b/7SVoWaxcQbP4/H7uqDItvZ6/nDKWSqVY9/BiXXOCZssWsusq7xS0rORMy+pqVc2bV3ydpRRk+wQtg/EatCw2Dnrm+5g5Uxo0KJ0153TecjsjdNiZlpUetAya/R9l9/AMN7Ny260jzqCl10xLq6FyckWRablokdSrV/v32nHTPXz16uL3VE4Kt89EPGlWQctChftnwABpyZL0JD29erk7/pOYaSml7xM7dbJ+n0ndw+OubwlF0BJZxmVaFp6knAKWxdZZjJubHbqHOwuSaVlb2/41t0HLlpbiQUs3Y1o6fb9eftnNfS33ceHnCZJpGXXQMoxGidUsnnZ1c4MN2h67zUwOGvDyG/QzJdPSBFF3Dw9rnzh1Dw96LBWuN5UqXePYaUxLt70HCgNPcTem3WyfTMvSKNY9vJhMHTznHOnNN9P/nLjtHl6sTeV3TEtT2l1hcRuMDJppGSTzrZDbMnsZ07LYUDNeOZ1n3GSdmtY93Oq4DiNoWWwyRSeF5c5dfxQT8cTd/gprIh4rTz+d/v+Pf0wPuVCwvyzfbVrQ0uo1qx8PCoOWpo5pSTvEF7qHI6va9KBlMUFOpG4uGG7XH3fQMsyAVtDsUKeGRy6rRmVhZqJd/SwWdGtokL75pu3vpqZoMy0zr02enJ71MSPMTMswb5DCDFrmlnXJkvav55a7a1dp//2lG26QNtyw/baL1eOgQUs3E49F0XXe1Eazk/p66a67pHfftV/GKtMyyOzhbng5J5cq09KqTLNmSbfdZj2xUxAhdA+vmju3+DpLKWjgqFidqNSbBTfHitdMy2Iy3+V//uNuea9jWtrVlcy5prFReuAB6zF/K6F7uJtzk9PzfruHf/SRdMcd1t2Oi23bbptu25JO6wiLl0zLv/61fQ+AIEHLKLqHWx3XTucLN7OHr1oVbvfwTB1bulS69VbnZb2sNyPu4zfM7uF2Ro3KX0eGXcC7WBnC5jVoaXVPaDc8m2lMLZfhyLREVq3p3cOj5OaC4bY8dt1YwhzT0qksJmVauu0e3rVr+7HVCrMj7eqn164iheOeFE7EY/eeXG4urv37S1991fa83zEtrX5ZT0KmZffu7Z/LrZt77tmWeeMn66UUQUurfRO0sZHETMsrrpBuvz39eP58ab312i9jFbSMekxLL0HLqDIt3QQGjj02PSbbtde6u5F3K4Tu4SoMWsbdmKZ7eHyKBS39ZlpWV7vb72GNaZm5Zv7jH9Kll6Yff/GFtMMObctUwkQ8Vlnguf8XPl/Ib6blzJnSRRdJH3yQ7pLqxG9ZvAQtwz7mvUzE89BD0qRJ6X1ht0yuYmNa2mVa2l0L/AYtC3mdiCfsMS0z+/w3v5Fefjn/tTC+37ivC1FmWmZkMhBNzbR0O+xWhlXQ0usQRXExub1vMDItkVXSTMtiQcvVq703kIMI82anFJmWTusKs/Ec9BdMt93Dc9P5M3IH3naaiMdP0NJr93Av28js/9yApdS+e7jLTKhEZVrmKpZ5a9cIdjumZSm6h1tlVESVaRl3o9lJJmApSe+80/a4WPfwoN9RWN3H4860zEwisWxZsG0VCiPTcsKE4ussJbqHF7dokf310M6CBc4ZYlLxAJLdOdPu+8jUpY4di5dPCm/28Ex5MgFLqX3wrBLGtHQbtFywwPr9fjMtM4YNK/7eKDIt3U4A6KRDB/vXvGRaStKHH+b/7XSeCntMSzc/zlqdS5zOBW67h4d5PGWyVR9/vP2yZFq6e2/mPiuJmZZW27SKWXz/fX5djPt7tWNquQxH0BJZJR3T0snixdLmm0uPPVa6bYaZaRl30NLtxa8Us4fbjUNUuO3a2vY3Nm7HtAwraBlW93C7785PpmUpJuIpdiPrhVW3oVy5+ya34eumEey0LivF6q7fTMtKH9PSqct32N3Dw+rqG3emZVSCBi2fe05V8+fnPxd3Y5pMS2fvvJMeTmPrrb2Ny/vrX0vbb28/zIoVtz0lcn9gzJX5Lq1+lLQSdtDS7bYqPWh5/fXWs7oHDVr64fb6GHWmpdN4jE5tJjf7olRjWq5ZI/3lL21/P/qotO227soTxpiWQa6Fhe+9/377e0IyLd29N3OPVZhp6ebeze1rQeSW62c/s39Nsh9ia7/9pH33tb5GmJRpGXd9SyiClsgq6ezhTm66Kd0FsZTCvNmxG1MjiZmWQYOWue9vbW1bJjeAJ6UbaoW/bOc23ryMaRlF0NLLQPN2AclKm4jHqu7YBbGsgp1BMy3DCFqWMtMyKUFLuxs207uHx5lpGRWniXjc7NtiPyzEgaCls6OPTl8LZ85M38h78c030pNP2r9eLNPS7tjv0cP6+agyLTOKdQ+3k0pZZ+OU20Q8boOWdvz2LvLCb/dwp+B7GEFLp8l7vHQP97qM3+7hVsu+917+3717Wx+rbtqAxXrGhD2mpdV7Bw2yXrYcMi3DnD3cTqZOu9lfcQcte/a0f01yPud89JE0cWL795nUxo67viUUQUtkGZNpWV9f+m36ybS8++78v7/9VjrqqPSv1rmiGNPSxO7hxboY5O7j2oLhdK0yLf2OaVnsYlAYtMw0wLx0Dy+2/4sFLd1OxBNH0HLqVOnmm4Ovt1hApPBzZf52ewMZNGgZcffwqnff1f7/93+qeughd+VKSiPGLvBsFbQMK1My6PujyrRcsyY90UKuuIOWQcfni7Mezp8vDRjg//1ufgxKynFmJ/fHlhUrvL/faoK0jGLdBu1uFNdaS/rkE+nGG9PjtmbE3T3c7jm783qQ4JuJ9apUQcsg51C/3cOd7hNaWqTPPpMOPzx9fvbz3RT+sF64fj+vuVkmzEzLwmVXr7aeyMdrpqWbiXiCdg+3yvy1E8axF3dAK8bu4VUmdA8fP156/vm2vwvHxPfyo4WUbptJ+WWN+zvOZeL1IgEIWiLLmEzLKGy2mfPrfjI0Lrggv+H0s59Zz1LpJ9MySEAmrtnDi2VaOgUta2ryMy2rqqLNtLTqMhBm93Cr13MDkF66h1s1UsPs0l14o3/iieGs12vQMvM5M2UxYfbwABPx1B5yiHp98YVqf/3r/M+d9ExLL0HLYoKOWeklaBlFpuV117V/zpSgpd/PFWfG2AUXBHu/m7GCK/1mwelmz2+mZW2ttPvu0uWXp7uuZ4TVPdwum9lLpmXuucruvB7kumpipqVdu6UcMi2dAvatrdIhh0ivvy5ddll6nDuvCtuoTmXJ5aYeBBnT0svs4YX3dD16hBO0LEX3cC9DX1R6pmXAiXg8i6KNs++++X9bZQTnbrfYOcfqvtukNnbc9S2hCFoiy5hMyygU6y5k1YiYM0e69950NyzJ+oSX+2tgZrKFQknuHv7KK+6XLRa0tJtJW2qfaVlVld+4am62b+iZ1j28tdX+V+9MQzjoRDx+Mmyc5Jbls8/8r6fYmJZO48tkjtGwuofPnSvdc4/9606N4sy6w+oenrstt2N2mcopsODUkPQzpmWu2bPT5+PZs9ue89I9fOxY69eC/Mjz6KPtnwsaiPWi3DItn33W3XJ2ZWxu9n/tXLAgXb+mTXNXhqQKMqal3fGde63OfWxSpmWuKDItM2XKtBszE4eE5b//TQ8H4GUyr3LKtCxczinTsrU1fyLP3GuGW05By6RkWhYe6wccYP3+IEFLux/JgnYPd/OjcmEZgiwbdxDJ7X1MkKBlJjHEzQ8Fxe5xwlb4+bt1a79MbpmKXccy9cfUoKVJZUkQgpbIKutMSz9By+OPl847TzrmmPTfVidqL5PZlCpoGWam5ZNPptP23Sh24cv9Ja3YmJZWmZZuu3cWuxgUZhb6mT28WNDYrq5kbujcZlraBS2XLy/+Xi/CrDMZfjMt3XYPL/b6yy9L559v/3qxbFkpmqBluWZa+slU8nJOPOqo/POxl/evWmU//l+QH3kyP2jlKmX35KBjWlqJ++bNjSiClqeckq5f++wTrGymc2rnBcm0zChl0NLuu/YTtAyaaZmpV8cck65HRx/tf12FmpulnXeWzj3X+ZpWKAlBS7fb9No9PJefa6vf7uFBJ+IJc0zL3Pp83XXpY9Mq0zKKMS2Ddg/30sYN45oV93XP64z3foKWmXUWfFZjJuLJVdg9XMovd7GgZeb8YGrQMu76llAELZFVTaZlvo8/Tv//+efp/4tlEtpJ8piWknTrre6Wc8qsa2lpG2NEsu4enttYs8q0dBu09DqmZRTdw+0am5nPtHCh++7h5Rq0LDwmvWZaRtkdL7Nuq6wWPw2f3KyBch3TsrXVez3ykpWYOQ/nZrSH0QgNu+7HHbQMmmkZZzdXtzdfUQQt33wz/b/XSQCdxog0kd/u4U6ZiHaZlpljq9SZln67hwc5F2TKkpkAInO+CsP8+W1lGzbM/fvKeSKe3N4mhbPX2w0n4IWfoOXSpfFlWhbbbubzhJ1pafcjWdCg5dtvu1/WzfebSqW/H7tlo2gDe+EmaGl13+JF5twfNNOyFME/q+7hQYOWUnyByxUrpO++Sz9essTM4UQSgKAlsugeXkSxIEyx95nWPdztRc/tck4XvsLsDquJeHK/o9yu1JK3oKXXMS0z2w1z9vBi3cNnz3aXMVFTY113kxq0tAt45f7tNtMyyiBfS0u6O96vf93+tUrPtMw9FrxkWvrpHl6KAKDfuu+3m3+YjdVy6x5e7Dqd4RS0LOWYlldemZ7l9KKLwlunF0FuXK043cw61duou4cXfmfF2lR+JuIJK9MyCk5dlZ3YfWcmZVq67R7ulGlZ2JXUa6CiMPuwqir/XLTvvtKIEc5lfOQRqVcv6+z7Qk77q1jQ0suYlrkygd1SjWnZ3OxtKIpCXsYhdVNPf/rT9PfzzTfWr8cdRCqsE16Clm6vA5nvoxwyLYudqzM/apgQtPzsM6lPH2nLLdPf1brrhjd3QIUhaIm0VEq1dA93ZnWyMzFoGXYAKkjQMlPO3CxLybp7eG5jqjDTMszu4XaZll66h/sJWhZ+ptwxPu3U1Vnvfy/jWrkR1sQ+YYxpmdm3Qce0DKKlRfrFL6xfc9PoKSy7m0zLpAQt/Y5pafeeIMLYZ35vVuwy7JIetExypqWb+hfmeSMzEdMdd4S3Ti/81H8v7Ty3Ex8U6x7udiIet0E2P5mWuaIIWkZ5/rYLVBUq3B9JzLR0+kEiV26mZWHQ0mv38MJMzcIfi1Mp6X/+x379kjR4sPtzp9tMSy/nqmLLes20dOJm9nDJ27iUQRT7fufNk/797+Dd+qMUJNPSa9AyCZmWVkFLL2Na2mVaxvGj7Asv5B8LqZT0xRelL0cZIGiJtHIOWEreg5Zuu4J7ydA0rXu42wtPkKDlhAnSccdJd96Z/7xV0LKwkeg30zKK7uGFjXI/Y1oWZo+60a1bsrqHF3YnLBTmmJZRNj6am6UZM9xtN5VKz5p7wgltXUsLx9sqbLC4Wa9fH30kHXus9Pjj4ayvkFPQ0utnCNr4jTPTsvCHmIykdw+PM9MyaNDSTTvGzedLyg8IfvjNtHQKTOUG1QrHoi58zonL7uFVM2emx3e0+yzFMi3txvAzNdPSbX0sFvgwcUxLt93DC7cRZqZlYXu0cCzx1lbrYLxfQbqH+x1eJvMZ/Y5pmcvNRDxS6YKWxT570C77pVCKoOVrr6XHbl6wwH69Ts+5eS0sQce0jDLTcvz4dBvbaiJGK0uXelt/Obc/AvLZ5wBlJ+zZiE1TLGhZeIFwOwGHm/EqbQY/liRtt126G2qhIN0mTQpa/u536f9zu9ZI1mNa5jamCoOWTpmWXn9VjyvTMndMS7e6dClNpmVYQcvcz11sOIWgs4dHPaZlYfZFRuF3P2mSdNNN6cezZ0sffNA+aFnK2cP33jv9/8iR0sCB3utcMU6BBa/fSdDu4XFmWtoFyOLOtPST2V9snaXitnu43T4OK2hZGKTwu62olbJ7uJ+gZeY9QYNfVt/3/ffbB0Ximognqmwtt/svrkzLUkzEE2XQ0k2mZZhBy0yW/lprtT8eiwUt/f7oGbR7uNeJeCRzMi3dXFfiDlq66R5ux8t14Jln2sZWzLw96UHLrl3bt7kzf7v9UcSLvfZK/z9ypDRggP29QobX+zU37Y8KRaYlJElV334bdxGiVeykXnjBKMyiaW11Dlo6Zb5Z3UTusou0337SLbdYvydIllljo/TSS9K4cf7XkSto9ouVwn1Z2D28sJEY9piWucu4GdPSyzYee8y663dh9/BiOnZM75ekZloGDVrGPaal3UD8hd997hhWH36Yfr3wRyA3mZZeG1Nulo+iIZ57Y1/4fTttz8+YlsV+FIoz09Jv0DLMemtV9vHjpeef9zSeWKrYsA6lYkqmpZtlFi0qvoyJ/M4e7rZ7eNeubY8zN45uz0PNzdL776e7cuZ+B3bH1CuvWD/vt3t40Il4ogpkuz0mrcYVzOU1CzuO7uF233XhZwuze7hVpmVhYC637RbkHPnvf7eNq7jXXu3PeVFnWkY1EY/JQUs315Wnn26bfDVXfb30xBPtAn2h+//2zjtciiJ928/MnMQ55JyTCAiCCCoiIgZWEXPOGHFNaw4f7iq6urI/dXVNa9g1rWnXuG7ACGICUVAUxSzBACggSDxp+vuj6Jnqmqrqqg4TDu99Xec6Mz0dqrurKzz9BvH6LV6cu05YS0uX77/3fC1J0ZJvc/g+x0VlaRn1+MZknGUrWhZaQC9iSLQkGF9+WegSxIute/imTd7vYvIWcTtb0fKNN4C332ZB/GWEEWwef5wFnR41CtCJ0fmwtFQhe7uscw+PMqal48gTwkSViOfOO4Fdd81dbuse7g7ESykRj42lZdjs4cUiWlZXe79//nlhLS154hj88PdFFC1190T2fPmds9tOqCbFUdSBoNcoqHt4lPdE9ozceScL8v7II8a7SfN1vRQGzHGLlibXYPVq/3WKERtLS9PEB7ygw2d9dSdrps/pp5+yl7kHHww89ZS8HDyq/jSIe3gUMS2LTbRUiXdRi5b5SMSTT0vLZDLXPZwfrwRpI92XmQcfnF12wAHypJT8cUXicA+PS7QUx0FxEdXLy9GjgWXLvMsvuww48UTmwRJn3yjW7zFj9IJ+ECt7F9n8wcYiMR+ipcx6UWVpWVOTu26+soeb1D0SLSODREsCAJD46qvslzvvzHachx9emAJFja1oKU5IGxr0lpa6RknWqbvlUZUrjGj57LPZz3fcEWwfPPkQLUX3cPHNdpQxLcXjB3EPDzJIsnUPd98e5tPSkhfXeCorzfYTxj28mLKHNzSYu4eL5fjuu9zBOp+0Je6Yljz5Fi2jdg/3Ey2jGICWsqWlTmQRQ3JoSNskf1C1EVEQNnu4+LLRZlvbdXSWlvX10SU3ixqbjL5BLC3DiJavv579fPLJ8nLwqF4syeoRf0/icg9XvcgIS9Tu4abtdKmIlqJoIbbNpoKeSxzu4el0rrXescfqRcs43MNlz4YsPJiuHzNNxJOvEBpR9bm1tcADD3iX3XMP+79yZTZmeRyIVqmbNukFtzCWljIx2WYslQ/RMplkor7quEFFy6jH2SZtge18rZDeLkUOiZYEACDBW1rusw/rXL/6ir31bgr4iUV+oqXK0tJEtJTFtPRzSY5KsNFNArdWS0vx+CaWlrpjmF4fW/fwfIuW//sf0L69/Pd8iJbFlj1cNSH2GwStX587CbjkEpbBUra+SxQDQb9Ja1BUVko2lpYyTEVLsb0IG7eRp6lZWgagkRfodeU79ligTRvmLhcHcYQiEYkqrIJKtPz+e6BnT6B37+wzX0zYuIdHZWkZVORRlUt2XB5ZPfrDH4ABA1jfGZdoubVaWubDPVyVPbxZs1zhb/Ro73e/+pePRDzptLcfO/hgoE8fe9EyDkvLBx4A/vY377IoLC3z9eLG79xt+gvdiy+bFz42fPghi48oogtzEEa0lGFjaZkPUS2ZZAY4HTvKjyvGtBSJMxEPj0lbQJaWkUGiJQEga2npJJNA375A9+7ANtuYixXFTlhLSzEOoovbuOhit8gm2O7AIQ5LS55SEi3FwVRcMS0B7+QirHu4qRCZTJpbEgFZl6d8JeI58ED1gM20HdgaY1qK5Vy/Xv4m+09/km+v2m8QxONGdY1kyTXE/cdhadnQIBcT3ONs7ZaWEYmWHvdwVfl++onF/aqrY+5ycZAP0TIqS0uVe/hvfgMsX86Scl12mV3Z8kHc7uF8LDJbS0vVsW1f0qnq0aJFTKCJK3t4KYiWNvciH5aWpscUz8Udq1RX28esF7FNxBOkPjc2ep+9bbZh/2VJKXXHMb0+IrqYlgAwaZL3u2kiHp31br5ES5OQUKboPAniEi0nTpQvNzWWiEK0tBH38mVpWVHhDbWl6o9klpbufYxbtDRp+0i0jAwSLQkAQPrII/HdmDFwJkzwduCiWPHII8CVV6o7vjvvBDp3jq+gQYnCPVw2WHC30w1iZKJlMVhaRu0ebjOQk7mHi2XlB3NRi5b88f1c9f2OYSpEJpN218h9e5iPmJZ+g8uqKrP9+Fla8suKPXu4qWgpnue6dXLR0r1ncVpaioOjqK4Rfy2CuocHiWkJyF1tZdbrQSllS0vTSeFFFwEXX6z8OS1atcuIa8LGE9Y9PKptw1ha8nGkv/3WrEz5JA7Rkq8/5eXM+g2QW1qefjpwxRX+5eSPrYq5roqZp6tHdXXxJeKJyz3ctG8olGgZpaWl6pjnnOP1YHDvlUmccL/7apKIJ2xMy8ZG73Vy51ky0dLtK6O0tNRlD3fhj6ezvDO1tPzpJ32ZoiJKS0veAOX++72/xfV8f/SRfHmxWlrmQ7SUGZOoLC1loqVqbh61sQOJlnmFREsCAJC+7DLMu+QSNPLxEIFc0fKEE5ibDe8CxLPnnsCtt8ZSxlBEkYhHZ2lpIlrmK6YlT1OxtLRxDze5NjJLS9210sVIsrG0tOkwdZaW+U7Ek0/3cFNLy7hFy6AxLVWWln375m4fddbmuERL8QWCS9zu4QB79sT2wi1DKVha+lnmhsG07P37M0vfLl2kPzupFPOyAAobTymOvkYkKtGSj1Or2r+NZX2+sBGf+eugq2tiH+iOD2WWlrfcoqyHHvh7rBItVf2grh717BmPe3gxJOLxCw9SjJaWNmLJNdfkHrOszL/dCOIersseHlS05J8995iiaMknAYoypqXOPdyFD2chHqdPH28ZxeMWUmiJ0rvBfRm1YgVwxhne30xiJgdBJbxHEZbKlGIVLWVWvYC/e7jblhfa0rKuzl7sppiWSopwREUUFeLEXUyWIWIbty9f+E0ennzS6xZgG9NS18gEiWkZ1ZvDfFpaRhnT0l3mErWlJX+v3TqusqwDcgNwB7G0TCSCWVrKrn/Ugye/jjcqS0td9nD3PH/4AXjxRf8JYJwde5hEPOvXyye/rgitEryL2dKSfxafeIJl9l2zxs49XFaPTe6hzDLKxMLdlLgtLeN8028qsrjPmqJOp/lJeiEnn7q+pq4OeP55YMmS4nAPN8loL+sb1qwBnnkm+hAfPO+9B7zxhvw33QTK1NJSFB3FSbdOtEwm5ZNMHSrRUnUPdPUomYwne7jM0jKqCXJU7uGqZWGPm49EPADw6KPZz+55xGVp6RfTcsMG9hybWhOKoqXO0lKM780T1NLSzz0cUD9nnTsDp5yS/S4TLQsptEQpWn75Jbuv77+f+5s77v7pJ+Dpp+UJjIKgmjPn09Ky2NzDXWR1DfAXLd1nXgzdlu+YlkH6ebK0VEKiJaFHZWGly9pYiqLl//7HXOhcTLOHh3UP31otLcXzE7OHu8v49aMULXlLOLeO66wJV6zwXvOg7uE2nZFOtIwa20G9Cr+Ylibu4QCw//7RuvzYEiam5bp1+smiKh5qHKJlVNeIn1ht3gwcfTRw3HF27uEyTOPPlnJMSz/rpzCYlt2tZwrR0uEnynGGL/BD15ZOnQoceigwcmQ4N72oLC1Vkzw/0fLII9nfccf5H8MPWd/w8cfALrsAY8fKt9G98DIVLU86ybueytJy3brcdiGZVHvqqNgSc90Yv5e1+UrEE1X7G1S0lI2Nis09XETXzvDtl3tuosAow+95dsMZuIjxx8WYlo2NwHnnsed4/Hj9vvltTEVLnXFInO7hvGjJ34eXXvJuZ5o9PF9EOVb86CN2Xw85JPc319jhoIOAo44Czj3XfL86wlpaNkX3cBeVaOkX09Kds8cV550/jg6VR4YOEi2VkGhJ6FEJOU8+KV9eqpaWAHDffdnPUVpaiqIlX5a4Y1rqOrOoLS3DdAYy9/A4LS1tRcuGBm8Ms3zEtHQt8/KBX8drYs0AqIVdGTrR0vZYplx7rdl6YbOH60RLlaVlMbuHy67Fiy/mxsCKwz1cjAUGlIalpePIYyHz3xsbw52DqWjpPluKOp3m21/V9ciHJY2ur3FdQ1esYNlWgxKVpaVJZmZZmzZ9Ovv/wgv+xwjC5Mn633UCk6loKbNM4+FFSVe45Ne1FS1VSY9U+I17ZNcgjkQ8cYmWqv2axLSMw9IyTLxbG0tLvt5FZWlZUQFcdZV3mczSUhRPHnqIfX7/fbMxZ1QxLcO6h+vGWWvWyI+jG6vpEvHkiziS38naAveFz5w57P8jj9jvV4Zqzry1iJa651MVQomfw8n6k/p6dr8K7R4+a5b9Pkm0VEKiJaFHJeTstRebtIoUq6WlbaMeZ0xLvsOP29LSJui+inzEGZNl1haTQ0QZ05Lv8NzBo8od2GXZMvkxTOt7UPfwfHRgcYiWfucaVrS0vS7NmgGXX26+7zDu4bLrKbMOVMXrCUo+3MN5wibiMRWHxHYsykQ8cVha1tezrJfdugEffOD93S37Tz+xWJN9+3pjidkQkXu4kaVlPtoh076mGC0tZR4VxTgWCmpppxMtVe7hAGuTwlpa2oZD8RMtVe7hYd2cxXoZl2hpEpoACBbTslOnbL01LX+YWJ42omVQS0vZfW3blrXNX37J2mkeWfZwXSIek3bYJqZlnO7hujaJPw9T0bKpWVrq2LQpnvNUja+2Bvfwv/8daNlS/bvK0pIf63bokLtdQ4M8tny+3cOnTbPfZyFDLRQ5JFoSenTWZzvumLuslC0teaLMHi5OsFVuFrJtVEQxmCykaDlxove7TOzmv0dtacnHOdFZWlZXZz/zomU+3MPdjjxK1ysVfpM102fazz2cJ9+WlmPGmJ9Hfb16XZPs4UEsLW0HU7L1xfg9cYuWokgdh3u4zDIqykQ8cVhaPvww8O67LBbuAQd4f3ev2VVXsUzTS5YAv/lNsDLYWlrqYlr6CRVbk2gZRNiUTd4LkYgnjNWRLvSFjaVl69bZzz//nGt9aita2t5v3TVIp+Uvc0vJPVxVziiyh++9d/aFqWn7GuZ5tLHw4uudTfZwWdvlOMCwYSwxky6uJMCuWSKhjvtrcv5B3cNNRV1T93Bdm6RKslfsomUclpYyNm2KJ9mWqnxbQyKek0/Wv5RSvdjnk7CpREtZzNF8u4erMsPrIEtLJSRaEnp01meySX2xWlqGFS2jsLSUuYfHbWmp62CjbrxNO7Lhw4HLLvMuC2NpqXsbqcLUPbx79+znKERLm2veuTP7H8b6w5RStLS0rb+JhPlAr7ZWvX+/mJZ+7uFRxbTUxdh1ieoZN4m5lE7nzz282C0t+bZCdG11y754cXbZggXByhCRe7jH0pKvuw8+yDKofvddftoh0+czjDtqXJaWGzcCl1zChGiXYswebjMZDWpp2bZt9vPq1fkXLf1eIssmyVGIlnFZWor35Ztv2HPpuii7mMS09KvbJlbXIlFaWj7+OHDqqcDXX+euy89H3PMIammp6odl+xQNDoKKlkHcw00t4EwzpOvmZ0FEy8WLgdNPz62L+SRflpYbN+bW9bAipuOoE/rk09Ky1GJa8paW7dvnbldfnx9LS79xUZA+hURLJYYzUWKrRWdpKRuQJxLmAkc+Ed0//GgqMS1tMoWqMJ14me7vllu8FozuMfJpaWkqWnbrBnzxBfu8fHl2eT7cw90MrfmwtPQ7RhyipSp7eFwkk3aWXKr6FpelZRSCn/gsxBnTEvBadgaxtDS1ehNFqigtLaMQLTt1yrp4m1p98Mkf3AD/tti6hyueY4e3tHTv4aJFwGmnsc9ffQXcdVewMtpg81IhKFFZWorr3HAD69t44hYtg9R/G0tLnWjJv4QT+0BRtHTrlPviqJCiZTotf95KydLyuOOAhQuB++9noZp69WLLVda/LiaWlkFEyzCWliLuMzR/fu5vQS0t/URLP0tLd13VdTEJX6CytNQJpm5cZJ5icA/nv3/6Kfvzo6Ym1xMkKvJpaSnW9bVrgY4dg+9zw4Zgc5u43cN1FJtoWUj3cL/xY5DxZT5eEJcoRfgamCgqdKJlqVha7rMPcMwxdtuIgxBV9nAT0dJdxyampWx/9fUsi9/Klfm1tDRt5E33V1mZ28mKg0QgeCIek3LwkxZdTEte7M63pWU+RctStLS0RWbNq0InWornJX7PV0xL3UsU2ffPPmMB5IMM2lT3n3+O/ETLMDEtxWdgyRJgxoxoRNko3MOrqrKf/a6vezz+xU1Q0dLW0nLwYOnP6bKy7Dm458Vbf77+ut112rSJxXISY6yaltOPqN3D/ayngdznR1znr3/N3abUREvduqJoyT/P4pivXbvs51WrcsVN/nnxo74+2pch6XR0lpa8+Oo4+RMtFy6UfxbXC5KIJ2pLy4YG4JVXvC99xTLJ0ImWvPhqMt+QnTN/bibu4fyxonAPN41pGZVoGZd7uCldu9pvY0q+LC1l7uG2fZxbnhkzgKeeUj8XQPFaWkbtpadDlYjHz9IyX+7hfu1pkPlb0PHgVgCJloQeW9GyGGNavvqqfZlMLS1NYlqKlpZBY1pOmQKMHw/svrv5ID4KS0vTibHp/mQTlnxbWvLoLC35gZZKtDQdMNjGtHRFy2JwDy/GmJa22FpamrqHh7G0jFq0VFlaLlnCBKtdd81mL7ZBdf/5AVkQ9/CgMS1/9Sv2Muovf7E7nuqNfBD4yQtvNRlEtLRNNOJia2m5777Sn51UKnsObln84uPpOPtsFsvz4IPNtwHMn0/xnsnajquvBvbYI3d5ENGSf35mzJDvR3bf427TVLH6dERpaamCFy1593B3G5tJdhCBOohoKROIdPTpw85t2LDsfvOViIeHF8KiiGkZtaXljTeydmeXXfwtHv1whTf+vMrK/Pfhd1xZjNa4RUvTmJam49soLC1LVbTMl6Xlxo2595qPrWjKAw+w8cvRRwOHHaZer5CWlsXoHs4f1xUtq6vlc8picQ8PMr6UlZsAQKIl4YcupqXKPbzYREvAfjIUZUxLcZ2gMS2nTmX/P/8c+OEH9fF4orC01E1W+Wti2hnILC1lVnC8iFhbayZaOo5dp5RMZgeNKvdwF5VoaXMsm8GTK2roOj3dSwUbtgZLS/d4Jm2Brr75CRwqdx+/mJZRuIer3AOnTMl+PvZYu+MAZtfMxj3cvQamlpaqGIb33GN2PJf+/eX7D0JYS0tb93BZ22Y6IHbr2f77S9uMdCqVPQe3LGFEy4cfZv/feMN8GyD45ItP/OIi62cAu+fG5ZprssuOPlq9H5G427Qgk/E4REtxO949fNUquZeJKXGIlir3cJtYqW5iFl7gy5elJY9OtJSJHn5l2mWXaC0tf/tb9v/bb+VuxFGIln7ltHUPF19wRiVaBolpGbV7uO4ZDJI93BTbEF02+NUhkzo2bpz/OlFZWs6Zk/388cfq9Uw9V0z7zY4d5Ql0gfhiWoYVCf3cw1u2BFq0AAYN8m7X2FgciXiCWFqqYpwSJFoSPjQF93DAPiupLIaabrKjawjPPdc76YkipmUUWVbDWFrW1zOLz969mYhqs7+qKvkgSKw3vMuiynqNL9/xx7PYcjaWZHz9ltX1mpqsCxgvWvL32/Re2Ma0dNF1erxFSxi2BtHSxsonTEzLjRvzkz3cxtIyrBu1qUWkySB74UIWg23sWLMBXdhYczz9+uUui8PSUlfHxowBJk+2s85cvJiVfZddvFZiQbKHv/12zs9OKgXHfUmyebPcjTRoHbK5d0HbAFnZKirk+5M9N35utbLfTK5HISwt/bARLXXZw1Vue4Da0jLI2DCIFXIQS8tddgFee838GGJ/UihLS/6+mFha+tWZ006LL6alzAgiiGjJt3upVPyWln4xLU1iNdpYWsbhHm4iWsZpaRmnaBmFe/iTT/qvE5Voadpvh/Ui4+nXD3j/fXU84ThEy7feYh5jRx4ZvOx+omWrVqx+vvEG8MILrB13+fnn3P2RpWVJQ6IloacpuIcD9iKf2DGpLC1N3MMB4Npr7WJa+g0sTRte3Rtw033IynL//Wzyu3QpcNRRbJnpALeiwky0BNgbNECdkRlg92DBAuCJJ4CffmKuiabwg2jZgDqZzLpp87Fnglpamk4y+Rgtukm/zMIoCFG5h4cRLfORiMf0OGFEy/p6+aQ46uzhNjEt+eVB2mdT0dKkDTj8cGZ188YbZhlHZTEtgyITLfNtaQkAf/xjbjIyHaecwjIGz50L/OlP2eW27uGAdPKYLivziqiy+m96ncS2xCY+U9A2QBarU9bPAMEsLfn9qKyEi8U93I9isbQ0feEWtaWlKnu4bXInt07wApP4sjvflpYm4rtuX7165VqPmmB67cIKBq7wFrWlZdjs4SYig01MS517eBDRkhdCddbEqv4kCtGyUyf7bXTI2mQVfvWjXz+gTRv/Y8rcw4OIlqb9dtCYlj165O5r331Z36+a08fhHj5mDEtQ+MwzwLvvmm0jInsO0+msNaIrwrZrx8Kn8eOqNWty9xe1aOnXB5NoGSkkWhJ6bLOHNxVLS5loGdTS0mXxYvY/aExLHtOGMC738G+/zX52EzaYdgYyqz1VkpTmzdn/9evV5W1okL9RM4Evs6yu86Llhg3ZjjJO0fLEE4GZM7Pfdfc6qs4tKktLm5iW4v3Ol6WlyXHCiJaA3i0lTtFSZWmpiqMZ5lgiflY8338PfPhh1jIbMBvwl5qlZTptdi9NnykA+OCD7OdFi7KfbS0txc9bcJJJ7zncdltw0XL1au93m4yxQUXLAQPYBIlHFdomiKWlbIIcxNIy6gmTSXxOk21M1tWJljpLy+efzz7nfHtnGjogX+7htoiipeylTRgL902bgN/9jr2kiDKmpa5M7v2JS7SUrWfzTLhCn2hp6Ydt7FeVpWWUomVQ9/AgMS15S1JdWVWWliJB2mmbl3Q8vXoBJ50E7Lyzdzl/TmEtLU3PR2ZpuWQJcOml8kRsKqKwtNSJlq+8krsvt+6q+sW43MNdZAKiCbJ+hh9fi5ajfL24/vrc/ZF7eElDoiWhR3Sb4Ekk5NZSpSxaum/gxY4pTPZwXVmCWlqadnpxuYfLJtym+xPfYrvLZPXGFS117uH19cEnu/w+VaJl587Z7661ZZBO29Q9/JFHvJZDunsdVXDzONzD/a5RKbmH33tv9rPJxFQWnN3PPTzOmJb5srT0a7d41x1TbGPN6WjZMndZISwtAXvLLhlBLC1loqVoaTl5MnMl4wkqWubD0jKVAi680LtMNXYxES3jsrT0O44thbS01LmHV1ZmvSSAbAxu/noMGsSSUfiRr0Q8PCb9nShaAv4Wuzb86U/AH/7ABJFnn1Wvp3MPt41p6Z53XO7hsna8UIl4/CwTQ1pafjNhAhp/85vsgrhjWuragrCiZRRjNb5/sWHYMODvfwcOOsi7nL9uYV/UmJ7PqlW5df2aa9izeuaZuX2mirgtLQcMACZO9C5zz1FliBS3aGnzkpZHJlry42tRtPSrF/l0DzcJxyGDLC2VlLRoedddd6F3796oqqrCyJEj8a7G/Pihhx5CIpHw/FXJMk4RXvwmEeIEuFgtLU3ZtAl45x2vJSEAfPWV3rLJZnDKN3JBLS1NO724LC3DiJZlZWaJeIDsxGfzZrVwsXlzcMGLvxeyzpzPqgtkyzBvXnaZTfZw3TWvqQGefjp3uepet2rF4qWqsBEA/CxVm0JMS9kkU4UoWuosIk0tLWXu4fnKHq4SSsMcS7aO33pBxMco3cN1IT5s4YUPm/iULlGIlkEsLSXtQlps54BcSzjTY61a5f2eD0vLVCq3/a6oALbbLnddm7AKsnKFES2jihPqEkQUy4d7OMBCGogEsTzlnjOnbVs06pJDuujOceZM/0mhydxAltjNVGAy4Y47sp//8Q/1erYxLeMQLU3bsrCipcrS0q+cUVtaisf77rvc3YtzIVP3cDGmpakQrrsG/DOjq/umiXiCtNNB59vuNRSvUyEsLefMyX0px6OzHl+/nv3e2KjuS88/3/s9TPZwsa11r2MQ9/DRo9W/mRJ0zih7sc/XYdewRXcc22MC7Jk2EaF146KgY0t+/vDjj8CsWdFbiJYoJSta/vOf/8TFF1+MKVOm4P3338cOO+yA/fbbDz/++KNym5YtW2LZsmWZvyVLluSxxE0UsWEsdUvLe+4BRo0C3nvPu/z665l7o0gQS0t+YKASUPz2ZzqJj8vSUmbFEsbSUiV28x2SSvDYtCn4ZNdPtJQNPP/zn9z6YUIyqb5GDz/MhMMjjtCXkeenn/RxeFQxZ2XI3Cj89iXDxj28mC0txezhure3svOUuT3nIxGPSUzLINc5KkvLIETpHq6zlrfFFVMqK4OJz4USLWWWljLRUvxezO7hKtFy/PjcdU2srkwsLYO4h0fpPhx0exvRkt8/f938LC0B4PbbmcUPT5CxITeGSZ99Nv73+ONoPO88/Ta6c/zPf6TJqDyIoqwM2UuwKEVLXmjStRW6mJYyIUJXZwphaWmDTLQMamlpI1q618FdJl7D667L3b34Ij6Ie7gspmVY93Cd66mppSVgP47QhRrT4bYZskSdLvmytKyrY8leVOgEs3HjWPLByy9X99vbbQdcdVX2u6mlpQyZQREQzNJy6lTgyy/V65oguzYm/Rd/Hu5148cUNTXe9WVzU10oExkrVwL9+wMjRrD+QofuHIKKlq4ou3kzsP32TDS+775g+2pilKxoecstt2DSpEk49dRTMWjQINxzzz2orq7GAw88oNwmkUigc+fOmb9OUQcGbqrsvjv7f+SRub/JGsagZuBxYjoZuvtu9W833ZS7LKxoqSpXVHEy4krEI7vH7jXwG5yoREtdTEsdYURL/txUiXhE0fLgg4MdS1fGZFLtzii717vtxtbXWZ3YiJZ+2DzTKkskv7KoBo7uxDeRYC44QbF1D+fLbyta6tzDCxHTMqx7eFSWlkEQJ3tBefRRs2tmiitaVlfbJQVwEdtm0+349Uz7ge23z36WWVqWlWWzh7uIljGmAploaWnjHh70xUUqldsWVlSw5AO9enmXL1yYW5/8LNRkkx6Tui4+a8VuaalblxemKiv9RUsAOOww73fb+5tOe4/brBkLZaALW6Qrjynl5f7tZNzu4fw4SufOzl+fsJaWcce0DGtp6SL2Z37lDCJaXnll9vujj2aXi8dX4GtpqRIt+UQ8Nu7hUcS0NLW0dMtpg4mFtAyVpWWUoqXNuJgX70RU4+TGRmalCQC33KLut6uqvM99lJaWfqKl7holEt77F5VoaTJ+EZ8hwDumEMctsuPwYbRMyn7nndk295BD9OvGaWn57rvMOAWwSzDbhClCdcmfuro6zJs3D5MnT84sSyaTGDduHGbPnq3cbv369ejVqxfS6TSGDx+OG264AYNlWScB1NbWopbriH/ZMgmtr69HfVRWH0WEe07Sc3vqKSRmzoTzq1/lNDJlqRT45rK+oQFIp+EzpMwr9fX1SDQ2hq/sbuPB0Vhbi3R9PZL19TCVApz6ejS417GxUXqtGuvrkRaudZBr6tTWZo8lkGpoMHprkW5oQKOwj2Qi4Tnf+vp6lDkOEgCc6mokNIPYescB6us959O4pSMR95mqqfEtY3rjRqRD3F+3zidSqZx9NKTTSHDlaqitzVnHAWAy5GlIp5VlbGhshKO4T2UNDZn9pw8/HOkjjoCz555AfT0SiYRyn47wbAJsIJ0IMJFqTCaN63d9bS2QSvk+E42O46njKcjfojUecwyc0aPhtGqF5OuvG5dDJA32XJUlk773K71xI8A9Hw3IdpaNDQ2ecifr6nLK5Kxbl3OMdH09Guvrkairy+wrnUxmjiF75nUkGxpyn5e6Os81bKirg1Nfj1RjY2a5k0go2wQVZVueAx1OOg2nvj7yN6ENdXVIbN4c+L4DQMO//w1n332R+N//cp4X9764JKdORfKee9B4441wjjlGuc+yjRtZe9esGRzHyZx3fV0dko2NvuVNb9rkuVb1v/yiTFZQlkhk24B0OlPelMH1Tu+5Jxo7dMj23ZI+x0kmka6o8JQ5XV7urUtC26caByV/+smzn4a1a5Vtm0gZzNpSkcZEAo7QfjckEnASCeDVV5GYOxfJZ55B8umngfXr0fDaa3D23ju7cm2t55o01NZ6ypx0nMw5OY6Dhvr6nP7T2dL/ecoltHHiceo3b/adzCfefRepE0+Es9tuaHzoIW+/KWkzUlxdVFFfVyed6Cbq6z3X0EmnM21Fcv36zDWor6jwtKPpxsacMQIAJPr18+4vlfK0Pal0WlvW+o0bkVi/Ptv2bhFf0qmU9vlyyx10HOqUlwNlZUho6q3bjqYSicw5pIX2t762NrCVeFlZWeb6Ops3K5+LxvXrM3UgITyjYnnSjY1oFOogTzqVYn3klvaGv//asmrKx9OwYUNOW1AmeW5UNDY0IF1bi7IJE7J1b0uCQ109chobc8dCW57jTDm4sVEaQGOvXsCcOUisWZMZb7l1Xra/HJJJpLlxcuOCBUhxbv71iQRQX48UNwYAgPp0Onscx0HD5s2+zzwA7XjLqajInGvZL78oy873hfyYob6hIXfux/VJJjRIxtcmpBMJNG7p5/jzc8rLM8f3GzvxYy4Z7rNs0l44muvXkEjI+7q6Os++04p+uyGVQoKrMw2bN3v3x+0n7TiZeyXOb+vr63PmaI3uccvKpPWkbMcdkd5+ezS++CJQXe0ZwzQ0NsLhxg2yOaEMT5/a0JB7bTZsUF5zd3zB33e3X06sXZvtE6qqvPMI4XkCgHSXLkhuCeFQX1enbZMT772HsmuvzS5wnJyxjm6s4GHjxkB9UPqXX9hcoazMaMxV6ticV0mKlitXrkRjY2OOpWSnTp3w2WefSbcZMGAAHnjgAQwdOhRr167FzTffjN122w2ffPIJunfvnrP+1KlTcS1fcbfw8ssvozpoFrQS4BVZ1jGAuYq99VbO4gmCQPnyq6+ibONG7BdP8QIxbdo0tP30Uwi5ReEkEkiEDMr7+cKF+HLaNGzzySfY3n91Rl0dpk2bBgCoWLsW+0tWWfrNN/hoyzouPu97pKQ3bswcS2SnH35AN4N9rFq+HLOEffT5/HMM5b5PmzYNv9qwAdUAah0Huug10156CZVr14J33Pvks89QsXYtBgr7HLJqFfr6le/bb/Hp7NnYw+BcpOXZcm7tP/oIQuQWvD9/Ptp/+22mDG+/+SbGCuts2rQJJi3CBx9+iJ0Vv83/6CN837q19LcDa2sznfaSjRvxUU1Nxj29zWefKc+7wXFyxQkEEwUWL12KbQzXfeF//4NTVob+n38OSUS5DEuWLsUCrl6N/vlntJes9/Hy5Vi8aROwaRO2+ewz8+dM4LsffsAH06ZhguJFAc+yRYvQbNUqtN3y/f0FC+CmkPns00/xFVfufgsXQnz1lZC4YH27ZAnmT5uGLvPmZfa1dt06uA7+ny5ciK8Vz6qMwV9/DT4X9rRp0zD822/Rg1s2d84crGhsxK7Ll8PtLddv3owZFscBgL3XrUMLv5Xq6vDj99+js996lrw7ezbaf/45+gfcvrZFC7yYTgMvvojOc+dipPD790uW4H3uehwyZQoAoOykk/B8C/VZ7//LL6gAsCGdxurvv0fPLcvffOMNdPniC23dB4DvFy3y3KtXn38edWJQ+S1M4CZU3373HeZvKe+Yn37K1FEV37RsiU+480tt2oQDhXXSZWX46ocfPGVeuWwZOnLf5737rufaqfqV7ebM8dyr+bNm4XtDS+19Nm6EgW19Dt8sXYrv3n0Xe3HL3p0/Hz+5wlyzZujRrRuGb/nt8yeewFechVrV6tWeMcu777yDn7jfhy5dij5bPqcbGzFt2jTsumIF+BFoo+TF2dJvv/X042Xr1+MA7veXX3wRDT7eBAcedRQS9fVILF6MN4cN8/Q/3y5ahA+F+7Drjz/Cz4do2n//K7UkbPPFF57+JJFOZ+7zjl98kanjb8ydi93r6+Ha7Hz/3XeeZyizv5UrPfvbVFuLV7j1dlu1Ch005Xz5P/9BlzlzMvft00WLgAED8PW333rGCiKbN27Ey9OmBRozAcCmujpUOI5XAEwmkeRe+P2yfj1mTpuG3VavzpzDD99+C3428fprr2HDF18EKsOetbVwWwPdOHXxp5/i4y3XtLPwjC7//nvwqfp++OEHfC0Zw7isWbcOb06bhr02bkRLAI3cWFXHQYai5ftz5mCZUO8OthiDf7tkCX68+mrs8umnmWXfLV+ORGOjpy0Vadi0KbfPdxzPuR3EiZbLfvoJc/nz3uISvPemTWgBoHHzZt/JczqVwtdLlmTqaeqCCzy/v/r666hr3Ro7LFuG3tzy1996C6Nra9EMrB6/+/rrnvv1zTffYKHknvT/7DNln7O+tjbT5/ffYQdst3ChdL2fli3DO1vW4+cHr82ciU0dvE/qgYDVi8TZ77+fMwcz4bvly/HBtGk5c46NdXVwHYO/+fpr6TVx6TB/PnbTHMN9lk3ai9pVq5Tzm48++QTfSsqRrK0Fn0Zo9Y8/Sse67y9ciOrlyzNj3PfnzsUy7qVW1U8/ZfqpZStWZOpoq6++wp7cfqZNm4ah336b6bMA4KtFi/DZtGkY9N132FZy7MT69Ui88w4+vvRSLDrwQAz+5pvM+HLWO+9g09dfZ469fNkyvGfQLvDXc9Zbb+HnlSs9v6vmv+45AMB2ixdnxhNzZs3CyvXr0WXWrOx4fOlSz3h8xxUrMv2Uy/JUKtMOvvn661j3zTfKMu9/4onKsgAA0mnPeX08fz6WKK5FxZo1yvPTsWrJEsyaNg1tP/nE88y88J//sFA+TYyNFt44JSlaBmHUqFEYNWpU5vtuu+2G7bbbDvfeey+uk8QjmTx5Mi6++OLM919++QU9evTAvvvui5ayDKQlTn19PV555RX86le/Qrmf6w1HWWWlx1R73/32K7rMVxMmTEBCFvuvoiJ0XLEB/fph2wkTkBTEcqdDByQklpkAG4BOmDCBfRFd6bbQs1s3dHfXCUGSP5ZA6uGHjfbRrk2bnH0khcDjEyZMQNmWGGiVPgG3Jxx4ILBihWfZ4CFDcixZJ0yYgORbbwE+nWO76mrsxj3btrjnlpCIhsN32gkJzjVr9K675qzTrKZGaoUrsuPw4crfhu24I3ZQ3Cd+otSzb19PvUh07CjbBMCWZ1NwK0ukUoFcFnpvYypZAvuPHw9UVCA5d652vV59+qAHdy6pP/9Zut7gPfbAoC3rJXWuOT5079EDXSZMQFlFhW/22C5t2njexg7faafM54H9+6M/V+7kJ58YHb9Hly7oOmGCpz61apuVnLYbOBADLJ755PTpnu8TJkxAynVj28JOO+4IZ8IEpLikDs1btlS2CSrKDF7UJdJpdAwafkDDLjvthITM3d6QioqK7DMueaPbrXNndHavh2CFPGHCBOCjj5B85BGkTziBZTLdQtmW56imfXtU98hOmcfsvjuSinbdc9z23mnLuD33BLp0ka5bxvXJPbp3R9ct5U1Jxi4iffr1Qy/+fktiTDqpFPoN9MpA7YVxzgju3AGo+xUh0/Gw/v2VbZuIST2T0bdfP/TmLScB7LL77nDGZqf7icZG4LbbAACD3nwTA3v0QPqyy9gLWSHx3i4jRsDZLytjJl98Mfs5kWDP2p13erZJSdwle/bu7e3HhXif++6zD9CunfbcUlydHb2td7rZs3t3dBOubUoX4mYLE8aPl7pYJyRlmbD//kAigdQjj2SW7TF+PLNG2fJcduvSJfsM8ey8M/D//l/ma7OaGk+9UbX5LvvuuSeS3DUbuOOOWAygrxgrU6CKe+aD0KxVK9b+c8J1oqzM497bcks7mrr99syyroKwM3bMGGCgTl5Vk7r+emDxYt/1+nTqhJ5b2qkyQRjrLJSna+fO6CwZw7i0bt+ejeV+9ztWhmTS/zo2NHjGKDqGDx4MR9ifjeFAz5oa9LrlFs+y7r16+fbnZZJnMyGMjRPcOl26dZOed9mWNjFlUGYnmUTfbWXyEGPchAlA69ZI/u9/nuVj9947M5auqqzMGXP27d0bvSVlS/LJIQWat26dPZ+xY9HYvDlQU5Pz/HXg1kv9/e+Z5XvtvTfQwysLJ8vKrKyIR+25p/G6PN179kSXCRNy5hzVLVuyJCUA+vbpI70mLgmfl2YtW7Uybi8qNec8dPhwDJHtR5gTt1W8DB0+ahQS3Bh3+JAh3udl6dLMxy5dumTL/MEHnv1MmDAByZdf9izr178/+k6YgOS77wLPPac8h8Ft2mC7CROQnDEjs2y33XaD0zMrBXbu1Mm6fd1t5Eg4YkIfWZ4I7hwAIOm61QMYudNOcMaNQ4IbXw0cMcIzHk89/7xnP05VFToPGMAS7ALY84UX0Hj//cp+t1yiX3jOVZg/DdluOwxWXYsffpAv96FdZSXTLYQ+ev9BgwCLuVip8IvF+L4kRcv27dsjlUphhSB8rFixAp07m9l5lJeXY8cdd8RXX30l/b2yshKVktgP5eXlVqJeqWF9fsJgoLyiIniWuJgoLy+XD9AjEC1TAFJiUPpnn0WieXMWT0tXJkDpGpZKp9l+Q5JobFTfT0OBIZlOIynuQ7jH5eXlmVghCV2sm1SK1RHhvFOS+Izl5eWAwvrQU77Nm5EMIZZkro9kwlxWUeGpO2UylzrD45RVVAA9e3oGHqrjeOAmBKnKSm+90EzyZQO1RMDrlLJ4u1eeSuUmalDs03MuimOUdeyYvTYhnolkWRmrxwbXIFlXl73uqZRHNEolk95ymz5HjsOOz51nkrtHqUQi1DPPP4MuZYkEu2bc8kQqZd+HGU4skwEHaTrKEongsYHAJqeZ822ba5eYbGzMtm9Cf1BeXs4Ss9XXI3Xbbdnr4DiZiXKiupq9DHC3KSszihuaFF2O3Hvlt10ymS2vG+OpslLZl6UqKrz1SjKucVIppISJVFKIPye2feVisgoXYVxWtnmz+XMbMMZjqqICKcFisay62ntcrn9JfPMNUtdfj1RtLXDjjTn3q0yMMcz9nqlPglAjawUy4wMXcbyki2UsoUxYN9OmeAri3x5l2uicA+T2GeVunHJOwCtv1cpznCSQWw6AifCtWmUSk9m2PeVbQsm4pLYkXUj5jDET6XSocXpCEtMyIX5PJtkx+PZcaCeV19kEw8Qlydpadu0PPjhnkiyWJ5lIIKkZnyXLyz19lNF1tIg3XJZOm1+PsrKcdj/5r3/lrJY0eAmZUPQf5YpnM3MdZGUCczf2wxHHCeKxa2qkccnLuXixCcfJaXdz2hQXzXOfqKzMnmvr1tmkHoJo6ekLuf2Vy8anljEtg76QytwL4XngBR3fsZNPWTPPsgEJjVFOWbNm/olgwK6zdPvmzT3nWSaOCbj2OZlKZe+VcEzZnDdVXs6ukc99SPXpkzOnLRPqaTKRkD8fGnLOxQfZHDmzD26sk2rZUju+SXTu7JkLJadNQ/LuuwGJJ62URMJbN4R+P+U4kczVeZIbNrDrK7Rb5YsXB34JVszY9NUlmYinoqICI0aMwHTO0iSdTmP69Okea0odjY2NWLBgAbooLBsIQ2SJeIrRfFnWoQfNZsfjNip8Q6ZKKiNDtV5UWXjT6WDZBnlkAz5Zud396SZNbt2IMhHPxo3RXC9V9nBdoH0bkkn1G05TMVFs3HWNvew5DJrowmY700QVpol4+DeiYSz53P2bnAufPVxMHKXLsKsjH9nDVUH7wybiMS2b5s15YNLpcC+X+LLvtVc2sZwLf81kk1GZZYWQHCSSRDxB4hW525SVAS+9JF9HlUWUI51KsTh+PH7JalRvx5ct8363ScQTtH2VZQ83mWTfdBPwySfA8uX6coj3t6Ehm1hBh182Z9vzlWUj/+UXZmlj036o2mbZPtx1xeQHJhlZEwmA93Kx7X/q6rzPmitWFiIRjyjo5jN7uA73vsheGMkSeejK5Jc9fNky4Ouvvcts2mabhGqm559KBcseLsI/46o+0l1u8qz5zYV02cPd6y/L9h42EY+O+npgwYLMS4YMcWcPv+oqlgW6myRglXsc8TpphKQc/O5X0HGxiC4RD4+qr6+slGfLdrHJHq5KxOP3XLm/i8cyHeNs2gTMm2c2TjZpD2SJeHhvEb9EPK1b514r3nBk8WKpIYn0+EBuXYsjEY9bP/i+DwCWLAm2vyZESYqWAHDxxRfjr3/9Kx5++GF8+umnOPvss7FhwwaceuqpAICJEyd6EvX8/ve/x8svv4xvvvkG77//Pk488UQsWbIEZ5xxRqFOoWkgPtCJROmIlkGz2fHIhAgb0TJo9nAbVBOjMNnDZdu6y3SdqapTVw3wNDHlMmzaFI1oqXpDypdLNjgyFdKSSWD4cOC3vw2+D/H66eqw7FoHFf1stguaPVx1jKhFS9Ps4bxoyT/PJtnDZciyh+v264fsuKrssWL7ZEscWcFNaWyMTrRMJIA33vAO/oRA90bwlj1RiZZB2nx3m7IyZtkvExJlfbSAI0s64ida7rijvF6IoqXEHV1J0HomEy3FtlE1Ltl+e0B0mRXLId7fE0/MPS+d4OcSNnu4eO9qa4EddmD9ioFbuLJcLrpzcM83kWDioWnbxd8H27FhXZ33WdOJls88A/Tr5y1zULYk4vGgeo4KLVpu2pTNNisiq1+6OqcTLX/4Aejdm13jLa6WAHIn1jrENs+03ugoK/Nvc02eM/4++omWBqRVlujivmT1zK1b6bQ8A7wM3TmaipazZwNDhwKDBvn3uVGKlgceyFy9Z83K/c29TrqXCPnMHh5kP6ZCV2Wl97x0994ve7h4vdzvfsY67jggiGjpOMAeewA77QSIoWuiFC35F2g1Nd71xeeppia3rrr7WbiQuVv36QNwcXK1+7Ppw4MmznH3yfd9f/wj8OtfB9tfE6Ik3cMB4JhjjsFPP/2Eq6++GsuXL8ewYcPw4osvZpLzLF261OMG8fPPP2PSpElYvnw52rRpgxEjRmDWrFkYNGhQoU6haSB7m0OiZXjRMipLS3dfMgHLdHIt62B1QmYQS0vVAG9LbB8tUYmWqo5f1mmG2b/YyQLm9UW8j716MWFXNmmJ0tLSHbSY1JmoLS15l94wg0t3W1PR0i1/Mundxs96SkUhLC2jEi1DJiwLRTptNzH2I5EA+HiNQnZnD6rJBT+YrK4uvGjpTkplbYuhpWXOANuvfIsXs4H+YC4NVX19bnxfG9EyjKWl2J+L323qvc7SMp0G/vnPYPsJa2kptl2zZmXjcZ57LnDOOXZttIiJpaVb33VtIg9/H8R74FfWjRtzrZrXrYMjG7s1a6a2ELRFFuJBJVry16FQoqVoKewiEz10ZXLPUXYdp0zJigzHHpuNtxnG0lJ3/03nESaWlqaWkbLPqnV8cPzmQm690YmWUVla2s51fvgB4JOmyMZMNmOxoUP1YlmzZrnW2y4qcZcXYsOKllFZWqqOI95DVV9fVRXM0tLEEtb9HqdouXYt4May35LQMIOsrzMR9WwtLUWBvqYm9/q4+7nqquw9O/10vWjukg9LS7d8fN+nyV+wNVGylpYAcN5552HJkiWora3FnDlzMHJkNm/ezJkz8dBDD2W+33rrrZl1ly9fjv/973/YcccdC1DqJob4QMvcaoqVON3DTa+BqrNUiQ9BUDWctmKL37IwoqXqmplknY1TtBTLFdY9HJCfZxj38A8+ACZNUh8vyHFk+zLdViZa2gyqRPgQAflyDxctLXUDtjCWln5WvDpsLC3DuoeXgqXlNtswV9+//x044ojsctkAm3+OdJaWomuz7A14VJaWgwcDZ53lvx2/f949HDCzuJBZWpqIlib9wJbECB7y4R5eVubvHm5T78X6btJmFMLSMqiYb/M8y0RLwNzSUhPT05f1683dw/mXxYVyDxfv58EHB6/TNu7honWzqjwyEYxHZ2nJt3m8aGBTB21ES9MJv4mlpQkm4Q4s2hBf0dJFrFd8PZaJzOk0ezE0ahQwblz2vkThHq4ijHv4brsBL76or89um6Lrv2RzTRe/5z1flpaqZ8vGPTyIpaUM8f7kw9JSh+wemFhayq4H3/74WVpWV+e2Ue5++HNSJT0T652pAO33mw6ZaFlkuUIKRUmLlkQRILPiMBGa8o2sgY9iIp4vS8sw7uJxuIfLrh1vmaZC5aKrumYmdWnjxuDXZ/z47Gch02amXH6ipY17OBDOAlI2+NxmG+Ckk3KXy65dWEtLE9x6wNcvE1d1Vdn49cK8EVfVvREjcte1ES1LIaal6pimlIKl5YknMre2k07yWlKGES1FK0FXyOOFuKhESwC4996cTNYA/MOI8MkTxHVlk2KBdCoFZ/hwfflM6vknn+QusxEtw7iH58vSUoWJaBnW0lI8RtCwCTr3PhGVaHnkkdl19tlHfSydpaUfgmjpuBNuVd/Gi21h2iwT93DZSzCx/f32W4DLum6FqWi5ebOdaGkT0xLwD4kTV0xLU9fKVCqasXyxiJZ8EhSVe/iFFzIX/enTWVxeXZndfdrCi1thRMszz2QJufwsLVXHUVlaRukeXuqWlrLjqtqrIKKleLwgIQoK6R6uevnMWy+KHiKy4wN2lpZ8G2YjjJNoqaQI1SWipOAb+7Ky0oppKZsc2hJWtDS1tAwaGwNQdyS2iXh++onFzRozxt/Scs4cgLN8zqBy0Q1jaQn4Zo9U8te/Zj+3bcvO7+yzveUyGcya4J5zGEtL1fUwsbCyOY5sO9NtZTEty8py67CJaPmf/+i3sUFlaSm7Tps3Z691nJaW+YppyS8vtZiWN91kNmBTnVeUouXmzUy0ES0t+X2EES0BdYIbGaKlJcCug86yVmFp6ey5J9C1azahh8o6QbevF17IXcf0hdIXX3hdEm2QhRcxjWkpI4hoabIfU1dP0/3Z1BWT48rqrjhRdEXLa69l96u6Wh9ri78Ptue7bp08pqVM0BNFyzBtVlSJeADg88+Dl8GExsbo3MPdcxStm5JJdbtmI1raxLQ0HfPGYWmp2p9FG9IoJlXh4RMyivWqZUt/9/A338x+//DD7HIVQUJh8eUKI1q6IpmJaKlzDydLSzvRMmginjCWlraipa17eEMDG5c8+GB2mZ97eHU18PPP8rLwoqVqnGIS03LlSuCuu4BFi1gohHPPZfeS32dlpblVuns/xXEmQaIlERK+QeEn+cWGrFMyaUD23ps1IDNnyn8Pmz3c1NIyjGipaoxtLS1PPz0rIl1zjXp/iQSwyy5A377AN99411Gdr+qamQ7cVYHodTz7LNC9u3fZWWflipb5cA/X1Zfy8uz95+M7+m0fdfbwMO7hQSwtX3wR2G8//TY26ARzkdra7CAhatFSZfUYhXu4KqxEWPfwQlpazptntp5N3XBfrjU22rmHu32GGNOSF4/CipY2L2D4RDwufqIlkBOfNu2+cLzxRmaxKiuHiXv4jBn+66jYYw+z9WTIzjGMpaUuEY8KE2+OsJaWJuOAfMS0BFjYjocf9j8W34ebJhVxEd3D3TbZxD08TF8ts7RUiZa6mJZhsLHgtxEtdfuVWbU1NOjHYXG5h9uIllG8VDOJ0WrRhjSKVnMuV14JHHpo9rusXvmJlrL2PWpLSz8rMdNroXvR4GLiHp4PS8uePfWZpP0IK1r6WVry+ImIYRPxiMcyMd7QlTcqS8snnvD+bmJpuX69vCy8R47J8QG5peUFFwCPP+7d5oILvNfSRrQkS0sl5B5OhEMmWkb11ipKgpZJ97YUUFta2roMi4iNfxzu4aYDve+/Z7HKeKu3L77IXU+MaakL3i1LxBPG0lLslFRUVrLB03bbsYyFfhRDTMtXXmEd1sCBWUHBZPtCWVp+8QW7H34uyeL+TMTEKCwtZXVPJF/Zw6N2D1dZdoVNxFNIS0tT+PMysQpwJ3K6RDwyS0sgnpiWLkFES13cQIOXF47MmkWcvJhMOtasUZfRjxUrzNaTITvHMDEt43IPDxvT0mSSZ7JPW9Gyvj57H0XLFj94scL2fH/5xfvSwiamZZgxk00iHl1MS349W0yvVTqtTnYV1NKSP9eNG4HPPvOuF5V7eBQvw6IykojYPbyxsjLbrvKI4p3OSk7lHs7X7bhES/5ehUnE44pkqvUTiew1KXRMy2eesW/fTI4jLlc9MzaWln7HLUQiHl2bGzSmpSjinn++93fxftm4h5uMa8XrKN6TDRu8giWQNerhr4eN6EiipRISLYlwiO7hxUrQgWM6HUy0lCUksClXEEtLv7hnIqYDxo0bgR49vMtknam7P5OEJ1G7h5uKlvvsw+7NggVmA7koY1oGdQ8fO5ZZUnz8sbrMsu0LFdNy9GgmCvMdbhBLyyhFV37/Jseprc0+N6KlpYW1VFpWdwoR07KULS1N4e+RST1x66TO0lJsV9w6HVdMS8BOtFS5h/MYPHuZybWuvTURLd36xk/Mo7Q+UxG3paWJgKRzrQ6zXx4/gWjzZrPrbZuIR5et1Q++z7KtCxde6PXWsHEPP/10u2PxROkeHrdo2dionvzLYuKZJOLhz3X33Vl/Lk7MXeKytDSlSN3DG1QGD+IYbtWq3HWitrQM4h7uJ1raWlqq4PtP2T7dZfmwtNxpJzbWvuIK/fpt2siXm1paqvr4ior4YlrmIxFP3JaW55yTOyYT3aZl7uHiSx2ZBxIgn2eLy8Rrfeedudu4ZRLdw01xy0Xu4TmQaEmEQ2ZpWYzIOt2LLvLfbvVq/UBF5R4+apRZIxVlTEtVoxY2EQ+Q27nIAku710BnaekiE6xMhTcZpqJlIgG0amWX3d0mKL0O93oHcdv2K7Ope3g+LC0B4LvvgDfeyH43EVCDipaie4jLttvKtzWxtASywpRYNy0sLdOyt+aFsLQMK1puLZaWYjsnhp1wRSPRPTyIaKkasNskronI0jLtJ1omEmYxqdx18i1aysodpaVlUAv7qC0t/UTLtWvDiZYqS0u+TtqKlkEsh1TYuIf/4x92++YxScRjKloGJQrR0tbSUtYOiFaWQHSWllEQVSIeE/dwG0vLqir5uEwUEPkEIK1aecuiEi1lLz519aWQ2cP95kF8exLUPTyspSV/Li1asPBWOvr0kS83FS1l7URlJTv/IDEtZcdVja/799fX42KOaSlra/xe0urcw8V6sXp17rMSJCGh20/x52fz4oAsLZWQaEmEg29QijGWpYvYGd53HzBliv92fqKlytKybVvg9deBnXe2K5e4XxeTwbCtaBlmoCfus7bWzj1cJKxoedttZuvZWhqKbuth3MNFS1SesCEVTAeVYWJa2sIPRoNYWpqWX3Xtpk/3flddfz/RMkRMy7QsnlshYlqGdQ/Pt6VlkDLabmMiWoqJTorBPdzdP+8mqLO0NHEPl1lYifswsZRw1+EnqmHaTFNMXgQVwtIy6piWfgLRL79EL1o2NuqztfphGqPNZD9u/ZSJMHwYj7AiVpSWlkEx3VfcoqUfNpaWNol4TInD0jKKmJYqS0udaNmhg/c4svslCplxuYfz2IiW4nITS0vdcUzcw8NaWorHPfTQ3NiJPK64bHock3bevU78eU6ZAtxwQ/Z7mEQ87n47d2Zz06uvBnbYIXe7Yra0FHn22dxlYSwt167NvW5u+7Z8OYu7ffjh/mWWWVrauocvWQL8/e/Btm/CkGhJhKNU3cMnTTILwhtUtARY9mxdVk1ZuVyCWFqqGrWw7uEyTERLW/dw2fqmdUoV08nvuH5EGdMyjKWlH6aDyqDiqE2cVheTZCDiMXhMLS1l59mxY25IA7F+6o4DqN3DbURLWd2JK3u4GOuKP2apWVoG6Uv4e7TbbtnPfNIDHpOYliaipWhRY3ofVeuZuofz99RWtBSegbQu3q67PJ/u4QMH2q2/3Xb+6xTC0tJvP3FYWsYR0zKMpWVU/Sdfx/3cw8OKWDaWln6JeArpHh5FIh4ZxRbTMor+KeKYlkr3cLHujh2b/XzUUey/e31lMS3z5R7OYyNaipaVfpaWvGip8xgK4x7u97vsBdexxwL9+snXb95cvtzU0lKGe53E8/ztb7PzG5VoaZKIhz/H0aOBa68FxozJ3a6YY1qKDBqUu0xmaWkjWortWV0dO99zzwXefBP44AP/Mrt9pJiIx5TGxtwQBSRaAiDRkghLKbuHmwwmf/45uGgJ+L/hVAk3pWZp6TbsQPBEPGEsLU2xFQejjGmpEy3DWlqauofnI6alCz8gMbG0NBETTZ9jWd22FS3533WilG5AmkzCEZ/puGJaqlzJdMc0Jd+WlkHKyN+jk09mL6YOOQT485/l64extOTXq6gIZmmpQuYeLqvjpqKlQWgGI0tLWR90113e5VG5hzc0eMNL6Jg8mYVjAVjSsjFjgEceyV0vbktLk/2I3199Fbj11twwBCridg9XrZsP93DXykwFt62jqtNhX/65mCTikcVIjtKq2CYRj6peyPahu/duOxOXpWWpxLSMyj3cJKbl+ecDRx/NRLKrr2bLoo5pGdbSUoapaJkPS8uoEvGYUlPj3yebLOdxhVBVjHUgnKWlqRFDsbmH69oimRAoEy1VLt5imVaulB+nttabiNaPsDEtGxqAf/5Tvs+tnCJWmYiSgG9g+UaxstLuDWyx0qWLvtFUxbR0sX3D6b41jjKmZRyWlrJseKL7rY1oqZpw+A22+vUDvvrKv7zi8U0xiWlpSpyiZVBLy5Ytc4UZ1f7jFi2DDrJky3R129Q9nP9dN0DU1AnHFb35iUZcMS1l7YZscBZkYl9qlpbJJAsBosNEtBSzYbsTdDFWkTigD9O2mlpayjLIAoEsLX0T8agsLV96ibkwnXYa+x6VaFlfz8TH3/0OuP56/bq8+9y4cexPRtyWlkGyh7sixddfywP6i5RiTEtT9/BOnbyusiL8tn4xLU0pL5ePrZpKIh5bS0tT0bLYYloWYSIeY/fw6upcgcImpqVJSIQ43MNV9VqsOzaWljYxLaN0D1e1G6pzrK6Wv8gL4x7eogX7L3v2ZGPHoIl4eGTnXUru4TJBXOYe3qGDt29RxbRUJdCtrbUbA4cVLWWQpSUAsrQkwsI3evxnE9frfBJk4FhezjImxmlpKeJ2WPlIxBNGiFixwvudb9TzmYhHFVtGRRyWlqYUg3u4uKxbN/P9hxEt43QPtxUt/Y4rEtY9XAyUH1dMS5krmeqNsi35trQMIlrGEdNy0SLvd3eCzm9TXp5bP8K0rUFEy5AxLX0T8SST6jrkCm+A3D08SN1zr2+UcbJt6kdjI7uP33zDyhJXTEuXu+5Sl4PHTyCqrQ0mWjY0AEuXqs8hTPZw0/6zogI48kizffq5h5uiGp9FnYinvh749lu7ssUR0/LHH6O3tCy0e3hUlpYRJ+Ixdg+XwQuRfsJzGPfwv/7VvyxA/mJa6jyGisnSslkztbi4aJHVi+0MOkvL+npg8eLit7S0FS1NwnrpnjlTS8tnnpGPScQyqV6a2YqWbp0P6h4uIw5r6RKEREsiHHyDwjdq7lujYsGmU0okgO+/Z3977plf0VKVCTAO9/AwA7333/d+N41pGXUiHtt6VqwxLeNwDzcR+Lp3N9u/TrR8+23gsstyl/MddlSipel5ylzBbRPx8L8HFC0dvv7EHdNSZ2nJrxukDpeapaUJbtvMXzNxUv3pp97vMvfwqEVL0+zhqjilASwsMu62tjEtAbn7L580Jah7uKScobARQNNp4OabgW22YWOAuGJa+iG+rPQTiEwFVr5+Og6zau3VC/jLX3LXFRPxxJk9/Mknge++8xc6orK0VIk5MkvLoDEtARa+oGdP4IEHzMsWh6XlvHnAJ5+o9+Vev1JKxJPPmJY29UtM4uhiIlrmyz38jDOAH36QxzaUlYdHdS3Ec/YTa/jfbSwtbWJaBrW0VKESLS+7DOjbl7n784S1tJwwgWUs/8MfsstsRUvTeYdMtBTXjSqmJZ/VW9U22lpaykTLMWPYfN5FJVqqLC03b7Zrq9wyB03EIyPsHLGJQKIlEQ6VaFkslpb9+7P/Ng3OoEFA167ZGEu6RjOIe/jJJ6v3Z2NpKQaDzmciHhHTmJYupu7hfoNn23qWj5iWEybI9+XWkWKytNxlF7P96xLxdOkCtG+fu9zPPdzvTXAY93DZb2FiWuoGbD4xLY0tLaMQLU1iWgaZ4G0tlpbipFolWvq5hxeTpaVBaIa0n1ihEy1lFgx8vQ9i+VcMlpaXX84+z5oFLFvmv00YS0sVohhlIlraXu/Fi4F33mGfn3tOvm4+3MPdF2Pduvn361G6h6uWi8+CuG/Zy1nZM/Lpp0wsBIDTTzcvm01MS5VoKbveMmHaxVS0DOoeLo5jo+hXwobjcInYPVy5vokhg59oKTtGUPfwLl38hdSoRMvx43PX5+ctuuOI++XbobgsLf3cw1U884xXzLeJaSl79j78kP3nwwjwZdt55+znSZPYf10iHt0y2VwzkTB7PmxjWvKxnPlkevwcytbScsAA7++9erHP7dtn63kQS0sb3GsYlXt4mzbBt21ikGhJhEPlHl4slpavvsr+2zQ6ohgYxtJS7ID+/Gd1Ygh+/S++AP7xj+xyWUciDuzz6R4uUl9vFtPSJapEPH6Tm7599cf1Q5wImQw+7r9fvlxl6RekXCbbmxxn3DgWAsFk/7qBXbt2ucvDxrSMwj08CtFSFGzDWFo2NAAXXig/dhTu4SYxLYM898ViadmiBZt077RT7m9BLS35GGF+MZZkomXUlpa33w4sX+6/nsrSMoDFslEiHlXbJ3PT4y0tTdpM1Uu6KEVLm3199JH3uy7WoovsnrvP5MSJwAEHqC05VNiKlg0N9qKln6VcIbKHy/oTnqjcw1VijSwRj4loKbv2QV9I2lhauvUimQSOO85+Hy5B3MNtLC39LG2DkE4XpXu4cn0b93CZaKmygAuTPdxGpBbLKKJz437kkdz2gxdzdO7hYhm7ds1+zndMS5WlJc8332Q/21hamtYxvmxt2rCXa3fcAfzpT2xZnO7hqutp6x7OW1q2bs3E2VtuAR5+OLtcdz1k5zR4MPDvfzOr11dfZfsV96USLR96SH6cxx5Tl0GG229H5R7+/PPBt21ikGhJhCOf7uG21jfl5UCPHuyzjWgpNi5hREuxM73gAm8jKsIfix98yjoDUaTMp3u4SF1dbkzLvffOXU9lhRnUPdxvAnXMMbnHsUF08fEb/Oy2m9zqEIg3pqXpW1SZoHHccdnsu7r977+/+jfZJJN/5uIWLfm3tEAwVw7d77pn2iampRhDKl8xLUvN0lJ1T/bfHzj7bHn/EsbKyh1cFoNoCQDXXqv+zb0XccS0VF13XUxL/joGdQ9XhUOJ0j3cZl9i5nIT0VJGYyNze3vkEWDaNODcc+22z4d7uF8iNlG0rKnx3z+PTrRUtStt2+r3KZsAiu20CTpLy6hES9tkjLp9yeDdw2tqgF//2vubiC4LbdhEPH4ZbuN4+eXGnw2LiXu4rWgpu4427uFi0h1Z2dx7rKsvftadftb9Nh4uqjAKABsbX3yx93c/S8t8iJZRxbTk+fLL7OewlpYyxDKPGgWcd55a/AzjHh5XTEtetGzRAhg6FLjoIu8cKsiLy4MOAm68Edh9d+9yndeTDp11ugy3PY7K0nLw4ODbNjFItCTCoQoMHId7uG18SL5sNqKlOKgI4x5u0ij+7W/Mcuh//8vtsG67jWXHlllamoqW770H/Pa37I+PRRnlAFLmHn7ttcCBB8rXz5doqcr4aYqte7joRsGT7+zhJsvcsvhN9hIJZgG2777Ajjvm/iabZPJ11kS0FJ9vG/dw0a1RZ2kpDqxs3cPvuMP4OcqxtHTdMF34Z9bWBWVrtLR0B35RCP9hREt+PZl7eNjERy+84P0uq/f8MWxFS2F/vtnDdefk9pe8m6ate3ixWVqKSVNM3MNlpNOs/3WxFT8XLPB+92sjHn2UxagzKZfL2rX+60YV09I0QZqfpWXLlrlJ+PLtHi7zKJHVddU5/+c/wJVXAu++K/89SEzLykpvOdesyV2fd55D7M0AAHWXSURBVMkUsbW0nDEDuPfe7He/uG3FbGlp8gLRtn7JroeNaAn4u4e7v+vaBr+5k/iSRlceF1NLS7/tTGNaivvlk0iGdQ+3va/V1fGJlkEsLWWYWFrKlrltWNSipewe8G2R6OHoEscYwCRBpcpIwwR3/BKVpWXQF19NEBItiXCokkp06RL9sWytN/0GviqitLQ04fTT2cRmwoTcY114IXuDZiJaqhrFSy4BbriB/f3qV9mMbXHHtGzenA3M+Yygqo5WNeHwG2z5vdn3m3j4ESSmZbGIlqaWlibHr65mMV5fegl49tncY/s9aybnbPLcqUTLAQOA007LLtOJlqIwZStaNjYCI0ZkJ/K2MS15eAHAxs0OsItpGVa0LJaYlu4k0EQE90MmWppkZ+bXd/cTtaWlG4dJBz9B0LmHG8ST9c0eLqtbLrybPV8eG0tLldheKEvLqEinw0049tvP+92vfs6ZY7bffIqWQSadfpaWiQSw7bbeZVGLlkEsLWXPiGzZhx8CBx8MTJ3KPFJkQmKQmJYVFf7XQGdV556T3z1LJIDPPwf22ce73G88Fodo2dgYzUu1GNzDHZloaRPTEshtG8Vr5v6uaxv82iDxBYCuPC5BRUtxX/w1snEPd3MOAPFZWqq8ppo18z/Pr77Kfg6biEeGrWiZD0tL25iWvKVlsYmWgwZl42PaGhREbWkZNvN4E4JESyIcKkvL3/3OvyO0oXNn4NRTzdcvK/NaX+2xRzYpj18Mvzjdw/2QdVgrV8onflVV3mOZTNpXrwZee419jiumpUksy6gsLW1FyzgsLU33Xwzu4SpLS52Y3KULi8nmIj4fJqKlicgkDqxtz8kvfqW7THwBkEwCp5zCPsvqkyre6uzZ7L+NpaW4H14A8HPR+uknb+zFVau8v5tmDy8FS0tVm/vzz+rfm5J7uIloGaWlpV9MS1ndcnGvI2+NGDamJb+fqIhyX6Y0NgYXLWV1yHbyZLJvP9GysTH7ohPIj2hp8sI5CtHSJnu46rny86yR1f/PPst+3rABWLLEbDsZ6XS2XlRUhKvnpol4AOCee3KX2YiWK1ZEJ1oWQyKeigpgr71YkW64gS2TPSs2MS2B3LZRrGPu77qXnn5C6S236H+3FS3dEAWyxFO6l9U2lpY2oXWCWlr+7W/sfsm82vyekc8/z9Yjk/FA1JaWQcfT+XQPd1/W6ETgQomWFRXZuuk3LhSJWrQMkpiyiUKiJREOlaVl27bMxWrMmGiO8/XX5rGUPvwQWLrUG6cvlWLB9Rcv9saKlCE2LroGI2rRUtVAqywteetTfmKh43//C1Y2HbylpdgRyo6TL/dwlXWEKaK7d5jYOLrs4YW2tJSx3XZsMvXVV95Bm/h8JJP+ljEm2cNNwjLoztNkUAXkPkupFIs798UXuTEn3d9lxx03Dvj4Y7uYliL8ddVNOh57jL24GTOGvZ3u2xeYP184mCamZVOxtHTdZW1ibKmI0z08rGipsjrgMbW0NEnE4xfT0s/S8pxzsvGj3f2HiWmpKCcAeQZaEwplaWkb1sZF1ufbWmOrCBPTMox7uIiqXcmXaKm6N2VlueUWnw33d79jyqwLxWdCJhybxrQEsvXCxNJSh01MSz7RiIufe7hb737zG9af+Y0bTIhKtAxradm8OfDyy8BXXyF96aVsmUzEtXUPz4doedppbI711lv+ZXPRiZZ3360eT4nbmca01Hk0xWVpOXAg8N13wPffe5ebiJYzZ2Zj6pu8gHDriunYwW+8I9a9KBPxmIiWBx8M/PGP2e86S0vdeCdKwc69BiYxLSsrs3Md23436kQ8YeeHTQgSLYlw8A+9+GC1aOGNOxKG6mrzNy6tW8vd0ysrzSxYooxpyWe5NbEUVR1LZoXVrJm3sdfFKuKZNs0bf4znxBOzn0eONNsfIHcP1yGz+IvD0tIkrosOx7GPaalit93Y/zgsLXWDPd16OkvLZBLo3j13kio+H4kEW2Y78PCztLRxD/f7DdC7h7vuhipLS9X9OeMMO0tLEVP38BNPZMeZNYtZMYiDaHf/qnhXhba0tI1xrHruL7iA/Td1w9RRzJaWJhZ1cSTiCeoefvfduccME9PSRTbQ58VRG0rNPVxWF20tPlQUo3s4/wzJxKwrrvB+L7Slpfus+I13RPF58+bcZ0l2D2zaM/f+hBUtbSwtv/46d5mppeWdd9qVS0dUMS0vvzz72e1nRHTXtnlzdt222Sa7THY94nIP140fTNqgvn3V3nE2lpauwLXttmYvF00tLfmy7buvmcjs4lc/dPe1QweWnZvHxD0cAJ56yjzGtdu2d+5s9vz5tTviC4Sw7uE8Ju7h++zjjX+vEy11od+KwdLSFtl40q9tJIwgm1MiHGE6A1tM9xW2kYvSPbxDB2D6dBazks/qqELV+fKTBhfR0tJUtFy6FJg0SX6sSy8Fdt6Zib7vvGMeI4tvnIO6h5u6L/D4dQTicWzfWJmIln77HzUK+P3vs0J6HJaWpm9RbWJaqsokcw8HgLffBo46ir1hFzE5ZxN3FtNyytollXs4f09lliIqK2CAiYcdO8p/wxbRUny7yxMkpqWYJMRl331zl0UR0zKKCWF1tb9FF49q0O668cus0EwtzV38RMuamtx9PvQQiz0ct2ipE6fmzGFx8Pr2zS6zjWkpuodHEdOSJ2xMSxeZ2G1ihSqj2N3DHcd7X2R1YNasaMpVjKIlj2hp2b8/CznEE6elJW8pzC/jMbW0FO9jTU1umxpWtHSfHzERjy2mlpaA3NLSNqZlFEQV0/KYY1h7n0wChx4qX0dXl2XCSxTu4WJfJ57re++xvv+jj7LL7ryTZZJ2MbX2Vq1nMz60dcX2s7R016+oYCF5pk9nL4v5Zyjf2cMrKswtABsb7UTLZs1Ygqs99tCvbytahnUPd/+rDF6A3Bepfl5q7pxV16fnS7Rs356FYnMpLw//wpEfP8aRnHgrhCwtiXCo3MNdojRrVjVefEBm3XqmRJ2IZ++9mZVA69b+x1ZN3mQT8qoqO9GSf1t4//3yTKZVVcD55zPxyebNEG8ZZPpWjsdwwuGIVja2omUclpa64wHs3o8bpy9DHJaWJst0dVtVJlWc0KFDmTgrI+5EPOJvNol4+Lore7OqsgIG2KBGNyD2i2nJ11+/mJYuqjbi449zl7muc2EsLaMQLW3fMssmBMcdl92P7BpEIVrywrEqHMnRR8fvHq4TLT//nMUlvv/+7LIQlpYOX7+DiJaq9iyKmJYyy5+g7tbF7h4uWtfKhPmo4J/pfGYPF+G9OfhwPqJo+bvf5U5s4xQtEwl/S0t3W79jivdV1p7KXugEEfhUMS3PO89sXGzjHi72V/yLChVRuXLzbLttsH0OGeL9nkwyMey009T9ve78ZP1FHO7hYr347DPglVey3zt3Bs4917uOqcCmKpuNpaXfvfAb9+nGqLvuCvz2t0CnTtG6h9u2GyZ13cVUtOzXL/t5zBh2nmEwsbQMIlqKv/GIoqVu7tTQkB1v5Vu0lL3M79rVu255eXBLS5loaZtImJBCoiURDp17OBCvpeWee7Lsmldd5V2eT9HSzz3cFlXnxmdZc5FZWj7+OItFKA7IAO+bV8CbOMGFL3scoqXO0tJE4BbvTdwxLR3Hu4/vvtOvb2PdGKZcQY4rW09Xt1Vl0gnBqoFcVO7hunOSvdWVnYM4CeCFKpmlpU60rKz0PvvCefq6hyeT2To9Zw7w6KP+rsE24lxjo39MLD+isrS0QVZf+H3EZWnJiwe6uHqFtLSUYRvTki8vfx2CxLSUWQjbWlqq9i2zTigrA+66i/Vzzzzjv2++TPnGRrQUvSmicgWXYWNp+eabzLrJJUpLy9//nr3Q22cf4Prrs8v79PGuJ2uXRRfyIKKlalJqIloGtbSUETampYvKPbyy0iwmvKl7uKz9FRNDyuAznYehvJx5BB1/PHDYYXZ91Mkns7BNTz9tf1xdzE6Z8JJM5o5rbEVLsW30e5khK6Opl4ONpaXqXttaNYrlNR2j2riHR21pKYt5q6KhQd2/7bADq4snnAAccEDuMXREEdNS1v5FJVryIWIA7zV4/31vSJlCuYfz9UJsH8vKwruH8306WVpGArmHE+HQxb0A4hUt3SzYDz7oXV5slpY2hBEt169n1kjHHcfcQ37zG+/6nTsDl10G3HST+vh82W0mJ7zQYnL+QUVLccAXt6WlOHl5+GH9MUyeAdlkJA73cJmYYOMebnqt+G2jFC1t3cP9AoWrBlpRipbl5Z77m06l5G91XZJJdkz3+TnpJBa+4cor5ccD7NysGxtzJ4m2gloUrndRCB38oFI2cZOF0NAhEy158aB9e/W2+RYt/dqHMDEt+esQxNJSVh+jimkps7RMpVjin3PO8d8vT5B+ediw3IRXNti4h4uWa8UiWvJtkYkwJeLnUstbibmIHhV+CV6A3BeMJuj2G5d7uIyw7uEuKtGyosIsRIeppaXMS6ey0r+damw09yjQ0b8/8O672e827e1DDwU/rm682bmzfHl1tbcO2Ma0FPs6v+snq9OmbUk+REtxO1liR34fqvajkJaWlZXm80ydpWXXrizHgIywoqWJe7isruhE8WRSH46BP0+VpeWaNczCnu/zi8E9XLwWZGlZlJClJREOP/fwKEVLVePll+XRFptEPPkSLWVWRLqYlrIOr6bGP1tjoSwtdcIQj9iJxBHT8k9/Yv933BHo3duuPpkM7mSDzjjcwwcO9F8viKWlbj3VoNfEajLKRDw693CRMKJlRYX3mRXOIcfSUlYfxTrs5xZkI1qm07mWm6XqHu4nWkZhaemKBzU1ekGDnwSWlUUvWpok4uEJkz2cv9Y60VIVfkQmuPi5h9fXe0VmW9EyCEG2C2sdkU6bt+2FEi1tMqPavnwAgl13cRvV5NF9ATt0aK7LqAmqZ5xvt/llPKaJeIpBtDS1tDQVLWXPq/jyRkZjo/3LJRli+aJ2OVeh6scqK72ZknXb2Ma0FK+1n2jpPiuuFXqHDsBBB/kfU1e2YnEPV62XD0vL225j/7ffHhg82M49XHX8Sy5Rbxe1aCm7jrL6HKV7uMz7acaM3DpdDIl44hAtydIycki0JMJRSPdwl6hFy0K6h6smbzJLS11MS1mZq6v1Lo9APKIlj+o305iWtu7hQSwtL7oIWLCAJT2QuYnZHE92TNmgPWr38H//20woLCZLy3zFtBQxES1V10KMaSmKtslkNsmJztLSBltLS1EAs50MBxHgxPtdKu7hrnjQqpV+cukOSt2JuqloefjhZmWzFaz46yU+N37Pnol7eG2t3CIOkAsuvHu4GMfu55/Zy6CuXVk8NiA/omWQflmVTdeUdNr8+RHFiDhjWvJlsqlrQURL08m9DpllH8Am/R99xJIGJhLRiZaJRGlaWgLy58O1tPTDVLRUHdfvWkRlaSmeY75ES9k1PP545h0hWge7iOPosNnD/V4yuHX68MNZ/OMvvzR/bgudiAfIrffFYml5/vksbvi773pfyvmhsrQ8+2wWFkNFoS0t44ppKbOqLEZLy7Iy/xcM55/PXPxF3GvojkkTiWB9J5EDiZZEdMQtWqoaL3F5U3QPl1m5NGvGYqG4XHNN9rPKvdLP0pK/hzaNrC57uGkiHhPhTuzIVQNF1X5NjpFIsLepbidmcz9NnoHhw/3XsUXcXnWfVW+xbQalumMXi3u4bn0RfhKgCpxv4x7Ob7p2bfYay7IuJhL2oqVNrDOZaJkPS0ux7bDN+CyrL/x1kgk6EyfaHUMX07JVK/3k0p14u+uYipZDh5qVLe6YlraWljpUoqUqntW11wI//MC2c128xX5v0iT2v3lztVhkS5A2Nqx1hGkSBqBwMS3jFi1/9avsZzFBiA7e/X/0aPk6iQSL3+2221GKlqJgLdYFU9HSxGo6qpiWq1erM1ZHGdNShom3TDpd2qKlbHzQowfQsaN6G/5+iNZnKnSipcyAgYev0/372714icI9PKylpdh39urlv598xbQcPDhbB0znmaqYlmPG6LeLOqalrLxRi5b8earGALJnKIhoeeqp6m389iWbt4v10MTSskcPoFu33OVuv++KltXVhYmp3QQh0ZIIR9js4QMGmB+rUJaWus6j0DEtR48G/v534IYbgAsvzP6mslSKy9Ly5pvl+zDFVLQU992hAzB2rHr9RMI7EAsyuA1bn8Tz6tKFWXPq1gl7DFV8KRNBQ7WuybHjTsRjKkzaxLTkJ5WyQVy7dur7k0hoRct2n33mPQ+xDMmk/3MWRrwIE9PyoYdYcPj337c/rjgI1cWHlCGrL/y1FSdyd98N7L+/3TFE0bKxMdvO+omWrsDk1llT0dLvzb17zDCWlmES8Zi2wzyyF2qiJcoOO7DMrw8+CHz9dXb5kiXsv3g/b7wxW05RLArTHtv2TVG4h5uKllG6hz/xRO6yY47xlivIcYKIlgMGsKQnv/89G6eY8n//x17E/vOfzDLXhKgS8QDA3nvrvxejpeWqVcyCWTwvU9EyjKWlGCZDRlzu4VHEXTZB1lf7HZvfxjQpF1+nxBd0KqtjF9uXoDym5QOiEy115e3enQmvfvvJd0xLG1Qvrrp00W8X1kI935aW99wDXHpp9rvK0lL2MkbnHi67Drvumg3jZYOtpaWfaKmrN3wInJqa/LVRTRwSLYlwhHUPnzzZ/FiqfRXS0jJf2cNVMS0Blrxj8mTvhCKopWVQ0ZInRvdw6Xkde6z+eLxQEMTlzq8+BUlGdeih/uvYIBsImgh8UVhamoiWJgJk2Ozhfu7hKvzcw9u2Ve9n82bvMysM+lcOHqy2OHPL5zfJCDPJCxrTsr6evcmeNg3YfXf/9cV7JU6QoxAtVc/xYYcBZ51lL7aJoiXvdu/nHh7U0tJvEOz+nk9LS3GiGoU7L+8eDgALFwJz5jDruZUrs8vdPoufyFx2GdC6dfa7aCkUpn+33TafoqX4nAd1D7/hBtYnjh+fXTZggDfGMV8/bY4T1MXtiCOAq66yu57NmwNTpgBHH22+TZSWliNGeJeNG+f9bhrT0sTScs2a3GVBRctkEujXz7s86piWMrZW93Ab0dJUuNBZWvrVizCipc3zE1ciHp4zzzTbT1hLyyDjb9MwPUFFS7++yu858gtvAahFeLHM7rYq0fLLL5m7u3h82T2SjW1sLS2nTgXatFFv47evqGJa6u5RXV123l5TY56Qj9BCoiURjrDZw3fayfxYpol4wgpAtol4Zs8GXnopmuPbxrRUoUpkEZelJU8Q93DTRDymHS9fFn5SHsR6JQ7RUrw/YS0tTQeCNjEtg5QpSktL0zKJAyrALqZlGEvLzZu9A2LhHBaedJJetDSJaWkbq5EnqHu4bSIYv1iztqKl7JmTuXOLy23gt/vmG6+1U8uW4dzDVRNLv4Gr+3uUlpayZ49fJ+qXfu4+ZMfdvJlNcFzceiJmHeWJUrS07ZubNw/XNuuSMIiIz5xfHbjiCmbBuuOO3uVuHeLrWl2depJvU9dMhK9CYivYqPpJNz7mAw8wy8WpU4O7h5tc359/zl0WRLRcvZr933Zb7/KKCrNJvnsuQZMnFcrSspDu4Taipek95a+jbT0II1r6lYUnH5aWupckUVpaBmnjw4iWp5zi72Xo9+LAL0yAykCBR3XtN2wAfvwx+92dN6pEy+eey92Hyj1c1h7aJuIJmiBHDNXkJ1r6jdd0bf9PP2Xbuupq5i1wzjnANtsAb71lXXSCEcErdWKrJkz28GHD5PEgVJhaWoYVgGxEy7Vrgd128y7Lp3u4ClUiHhtLy6BigE601A2ATN7um2bA4/erEjtM8bufxSBamg4ETQYyLqb1WAy+LcNPOAH8s0j6LQsqWorusRUV3oFV27bqa7F5s/cacufp9OmDnwcO9CYwEYUJE0vLQoiWtvHUqqq8k1FR3PB7WSIiqy/8Mv45DmoZyN/3Cy/0hplo1Ur/TMblHu7+bisaR+UeLu5LpLqa9UWuqKN6pmTZl11Wrcp+duuJrg0ppKVlZSX7s8mw3b07O86SJXaWlraiZb9+wPz5TPDi+/U4RctiTyZgK9io1nfr4KmnqmOnuc9NFDEt+WfCJYho6fahMtHSb+wHZM+JYlrKCSJa8s+Mab/KX0fbMWtQQceWoKKljaWl7iWJTSIe2zKZIAvpIKOhwVtHnnwSOOoo/+38nkHbcaGpezjA+vhly9jndu1yxzni9Xzjjdx9qNzDo7C0DGq1KJZHF9PSxD1cN544/nivezgA3HWXeVkJKWRpSYQjjHv4TjuxCcmQIWbHMo1pGZawlifFKlrW1LBtdOXTWeCYEkSASyZZfE436LaqcVeJsbqyFKOlpbjPqN3D47a0vPpq9n/4cK8rp0roDuIeLsM2EQ+PauD64IPe7+JAztTSUhTe3WvB3wsx/p9JTMswlil1df6i5ebNbB1+ua1oKdY30SrJVkywiWkZtP3fYw/vd3eQDvi7h7t1ydY93M/iVGVp6Ve38+Ue3qWLmQupytJSROYe7hdqIIybVZCYh7YiAC/Y2oiWrjDa0MD+/Poqt1zi/SPR0hzZve3UCTj4YP9to7S03LjRK4yn08GEODeWqWgMUFHh/+KoZUvgjDPY56AxLck9PBc+BqUuYQ8Pfx2DvEAMw4EHer+rrq2qjthaNerKqxMtC5GIh0cW0kGGaF1s2geFtbQUsTH4WLkyOx7i3dhVouUPP+TuQyZabt4sF+ELJVqGdQ/XxQB/993sdSp2D4USgkRLIhxh3MNbtmTbzJ4NPP88C9DvNxGyWR4Uk0lfFBZqMlSdq61oqUrEA+gtKKMQLcXzt7G0/PBDYO7c3Pgouu393MOLMaZl3O7hUcS01NXjKVOAd94B3nzTP6ZlIlE40dLvuk6ZkmspbSNabtqUHfiI1mXu+fADMtENMG5Ly82b9Yl4/u//2PNTVcVi3rmiatiJkmgdZ2u17SdaRuEePmKE10Vr+fLsZ79EPOKxTUXLli31E9c43MN9nj1HvNZ+oqXJeqaipVtvdCK02C6EES2DWFraigB8bD+b7OG1tWyi2KsXcyX7/nv/sgHq6yU+LyrRMh8xLfOFbCxwxRXArFny9cV7+6tfAZ9+aiZUm8a0NMV17QaCWVl27ZqNlS2KACai5VdfZV82xWlpubUl4pkzJ/t5zz3NjqOLaelHWNHymWfMPCNUz0jY7OE8uvbGxtIyjpiWptb3bjxfF9M+SJZglhe/4rS03GGH7MtuE9FS5iovvsR49FHmBu4aPPDYuocXi2hpei9N+82oQzs0QUi0JMIRRrR0B1Y1NezNdt++5u4APGEsLUXBQnYcv/hqfttHgWwQq2vgdG/VTMtumrFTJGgiHoCJBSNGqNdrqqJloS0tTfYp7mfkyNzOWCVayvYlCjMmAxHTRDwyZAPb7bfPXSbWJ79EPLylJX893eeMH5DxE1N3m7hFS52l5f/7f9nPX37JMkAC9hMlsU0Rr2EUouUuu2Q/X3ZZ9rNNog4R3so/iGhp6x6eSukHwnEk4pFdS74/sQmHYipamob7cNtjXUzLKEVL23a2oiKYpaV7nHTaXFDZvBm45BJmtfL99yxkgQ4/S0s+W/jFF2+9lpaVlcCoUWbrjxhhnuDB1NLSFN5FPIhoOXx49rMoWlZW+ruHd+iQ/RyXaAmE68/4Y/GYWloGSd7BIxtrHnaYfhtesPJ7pl0KKVpWVAD77GO2ngxbgVBnZVfMlpamLFzo/R5UtNxuO29ysDhFSx6+z+f7NR6Zq7wY0xJgdZmPae1ia2kZNqYlkCtaytzDTWJamtQdU0tLWaK6004z23YrgWJaEuHwcw/XPdCytys1NepYIaYxLW345z+BW24Bbr1VvT+VaKl60xaHaCnDxj38tdey5dI1xHzZW7UC/vtfYPp07/XxI2ginqD4vY2N2z08SIiEuGNaqu5xVJaWKlSxK2X7Eq2Hw1pa+q0vq4cyYUpmackHJefhRUshe6prweaEtbQMY5niJ1qKXH45cw369a/tjsO7wAHRi5b//Kf3Jcrll7P72aEDsO++dvvm4a89b9nWrh2wYoX/9lFnD8+XpSXvoikOqE0tLXX3VDZhkcG7RPPb8pSapWVQ9/DaWu+Ezm+i7V4HVYy48eOBO+5gz/Oll3pDrrj7dpymL1rq6rO4vo1YF7VoOXQoi0U5aRJL2GAL/zyKY2sTS0ueuLKHA/ZurTJ0iXgGDWJ9Qtu2uVZdb74Z7rhiv/bnP/sLfOeeyzwYtt9eLZ6L8NfR9kV7FNZaJiKLqi+zFQhlQo1JOaJMxJOvORsQXLRs3twr7kXhHm5SVzp3zn6WWVo6jnzOLrqH6yi0e7ho3AIEs7Rs2VJudWoqWrZo4Z1rHHcccPPNZttuJZClJRGOKCwteYIMisNYWnbvzkRLnmK0tJRh4x7Ou6XYlP2AA9j1scn+GzSmpQmywYdN9vBiScQTdUxLcXuVdaNsPRVB7qONaCm+KTZ5exrGPVw2sJUNfviBXEUFa5NMLS35+umeMz9gEUXLOGJaplLZSeumTfaJeG68kbny2CCeVxgxAMh9PkRrymbNgGuuYRPCMPDXXhQtTQbGtqJlVRUwbpx6f7xoaROnzTamJS9aivVPd6/4CYyfezgvRKqebZlo6WdpGSbRhKqdVT2DQWJahnEPt+kH3HKpXlglEsB557HnRIxl7dZPWyuuUhQtdRNn8d7aiNpRi5YAE60vvzyYuMY/N0Hcw1X7MsXU0jIK0VJnadm7N3vJvv/+3nVuvx0YPDjcccX6f/75/tu0bcv61IkTzY8TxtIyikQ8Js95UPdwm5impu7hhbC07N7dfhsguGhZUxPOPdx27uTiJ1qq4lTaiJaFcg/nx+7ivNg0piVPhw7ehI4uJtcZyL0Ot94a3jq8iUGiJRGOMNnDVZaWtkQd01Lcn18mW5E4XQ14bBPxuOhESz/3bRN0k7Sw+5cNiHTXobw8vGhp4x6uc1/midvSUrfsiSdY5yqLLcMTt6WlOOgKa2lpeu15/CwtXddw1bXgs3Mnk96679Yb3YAskfAmMuL362JbZ6urs4P9zZtz47mZuKv+979mx1Ehiw9kQ9TJ1VTw5eSDybdrF497eGUlcMMNucs7dmSxxIKGsojS0lLXB9u4h/Pl79hR/gwFES3jsLR88kmWjVskqKUl70ZnKlquWcOC95uimlCprg9//RsbgZkzgfffNz8eUPyipWwsELelZRzjvRdftN+GL7vM0lLmHn7aaeyFtBsWRLYvm+Pny9JSfI5l3i5iWYLGPuYRn624xvr8fm1DBURhaWkisgR1D//mG/NymFpazp6t328clpbPPgv06GHmSs9TKEtLmUW9SV3h2w2ZaKnyjCwlS8tUSp6QMEgiHlmdNX2RIFodR/ECoolBoiURjqgtLU07KZ6oJ7iyAMgiqgFQPt0MdB2O7pqYuoebLJchdo789VOVK4xoqZtIVVTEH9OSP6egA5I4REsZySRw7LHM9fXaa/XbR2lpKdtX1KKl7Df+OZXVMdkx+QG72x7proV7HirRUjcgSyblFjC8daStpUVFRbZtWLIkd0JqIlqaDGb79zffvhRES97Ssm3beBLxVFYyy4UFC7zLly8HDj88N+OzKTpLS1m911la6uqrTSIevq1VxdRzy6GLaSkO3OOIabnttsAXX7C42uKx+OOLv6uOESSmpejx4UcY0fK//wX22gvYdVe7Y4a59vmg1C0tXW67zX4bvr0ytbS85BLmjiiGA4nT0tJN9hYGnXu4ajwQhWiZL4ME/jiFcA832UdQS0te5JK9KOLRje3FezF8uLpuxWFpufPObHz1r3/l/nbIIertwlha8qKWjScGoLaG9INPqmgjWpqGiwD877MqBIotNqJl0EQ8snMxbXtkL5sIDyRaEuEodfdwF3eQ2KULMGaM97diFS3jsLSMQrQUO8ebb87WjYceCrd/WxeHior4Y1o+8gj7n0gwNyAR2eAibvdwFaoBfVQxLWV1K1+WlrLf/vnPbBl+//vc32Xl5e+X2x7p3qa67tuplNQ93NGJQImEXswB7C0tKiv1z0RUouVJJ2WTN4jXVhbT8u9/Z591MaxcCi1axukeDrCg+m7m8quuym6vEi39JlU6S0vZtlz9cuISLfnyqyy9iiWmpSu4iC9NRfdwkxcIfDxPG/dwW1TXwUS0fOyxYMfMl2gTlLAxLW1ES/fZz+eYT4fO0rKyUh7mRCU0xilaivGPg6BzD3fvRxyWlvmCL3u+E/EAZpaWQWNaXnpp9vM//qFf18/zjq9va9eqPUTiimmZSMjbDJ13jemxxP02b84SJ7rX3e/aAcAf/8j+9+4dPDRCUNHS1NJy9Gj/dkPcT9Bn2dbS0m+sIeoVjiOvs6btqfjckaVlDpSIhwhHENdYF1v3cNW+onAPP+88YMcd2UTSJJtqMYiWttnDXeIWLcUYettuC3z2GVvOZ+vlMb2HtqJlFO7hfue+667ARx+x+7HNNrm/y0TLQlpaRr1PnjCJeEw6dtvs4XvsAXzwAWtrevbM/V32LPAxJFWWlm3bZkXXNWuyZYvK0pJP8hXG0lIGX8bycvkzYTJpad6cXdtFi9iAmA83IBMDTjyRWVb07OkfDypfoqXsPFOp+LKHu4PQVAp4+23WbuyxR+7vQHBLS5O2lG+TxHsVhWiZTOaKlvzkxyXf7uF+yfzESYjoHm7SfwR1D7dFNaFRLS92wTEKwlpaFiIRz8svh0sm5uJnaenG9+afS1XZ40zEw78cCopOtIzTPTxfFDJ7uOk+glpaDhkCfPwxaxtV8wEXP9FSHHOpjh1n9nBZndeVO4ylZefObC61ciWw007++7j0UjY/2X774PNkP9FSlngGMBMtr7ySCbF+8J4bpmEoVPtxCRLTslkzr0FBu3Zm7uFRiKwEALK0JMISJnu4bHLUq5d9GaKY4CaTzMKyY8fc32QNR1g3ZxWnnWa+ru5YuoFDvt3DAeZKqhug6PbPZVxMn3FGdvlZZ/lvmw9LS4Cd27bbyn8zES3D1hubmJam20cZ01JW5444wqxsfuu45VRtP2yYV0zeeefs5z59ctfnRUuVpaVrJSeWgx9Au+XSiUCA3gIN8J+07LKLN7O2n2jJZw5WiTCm975bN2D33XMHd+LxGxvZNRw1im3DM3Ro7n4LYWnp0qZNbgIvFe6LN1tLS4ANePfay9u+BHUP11la+iEKtzpvB15gt3EPLy/X13Ode3iUiXh0lpaA3NKSn7QtW+Z/jEKLliaWlkEpduEzbEzLQriH9+8PjBwZbh98eYDcZ9itE2KbpjrfoDEtTerHd9/Z71t2LJ58uYfni1IQLVXtjInb8uDB/oIl4N/Wm7ZHcWYPlz1DcYmWABvrmQiW7rHGjrVLwiXC93+8B4GLzj3c71z3319vlSoeF4jO08LEPVzsT8QXr23bepNEnnGGuXv4oEG5y1RzSCIDiZZEOMK4h8saq8suAyZNAnbbLfe3OC0tdeTT0vKmm6IxCddNlOK2tAwiDOr2/49/MIHyH/+Ac8QRWHD66Wi84IKs64OOuGJajh8PnH468MYb/tvnw9LS1MrZRrSM0tKyUyfvssMOA447zn7/UZTzqadYDK+nnpIP5mSipXh9r7oqdztV9nDdoKyxMbylZbNm3me6okJvKbl6NUvAoWsjTDKW89ddHEiKx9cdSzbAz9cbZtnkzL0fJoPjPfdk//lrMXEis0CV4de288ecNAm46y7/MgD6mJZ+2Lgk8fv260f4fqC8XF7PXauFYrG0FOtiRUX2HpsiTtZsRQcZsjaERMtcbC0tiyERTyoVjdCke3GhEi1VdSVO9/DVq+32e+WVwMCBucfiyVciHgCYO9d87BcUvuy2Y9Yo5g9xuofb4FefgoiWe+4JPP10sP3IyJdo6ffyOy54oc6tF7y1oc493K/PMe3LCyFalpXlhjISv7drx+Yx113HLEYvvtjcPfy//2XzkNtvZ/PbJ54Auna1P6etDHIPJ8IxeDDw5Zfss+wtQY8e6m1ljXD37sB99wFLl+ZaXeYrEY9IPkXLtm2BO+9kE9YwBBUto8geHkS01A0aevYE7r6bfa6vxzcHHYSBEyYgZZooI47s4bvs4k1koyMfMS1NB1025x+kTLJrlUx63UoBYOrUYMKUbUxLGb165San4eFjbarcw/v1Y29KFy7MLhNjWm45P0c3gG1o0Is5gL+lVnW1tw30s7QEgBEj9MKkiWjJ12vxXtq4HIeJARQW2XVyLQLF9mXUKJallGf8ePZftIz5+efc/ZpYb/ID8pdfZn8mVhVRWlqaCij5immZj0Q8OvfwCRPsjxFGdJDRokVukokwMS2DIrbjxYZtTEuTUEAqorK0NMlSa4KubXH3b/oCIE73cBsmTgT+8Adg2jTvcp2lpcrzIirRcsQI4G9/i2ZfKkrB0jKoe3iUBEnged99uXPVMPVWrGeioYRIWEvLfMMLdTLR0g2PJGLiHh5EtIzK08LE0lK0rJRZWiaTwO9+l11m6h7ep0/uPOQvf9GXnyBLSyIkd93FMmput51cxDn5ZBZoV4ZuImszeGxKlpa6fdugEzqCTPrCxLQ0IS4LDtE9PKqYlmHvUdSWluXlwPnnswHG44+r11MJylFZWsq2qa/PneyqBsV/+ANrF1TZU6MQLf0wcQ+vrs4dwKjcw3WWlg0N8kGOraUlX0fFOHwqdM+CmCTJD/H6VFUBL73EXK2PPZb1DyoKKVrKLErc+yU+4+JguWXL7Jtxk7pXWem/nqw8L73kPxEMYWmZk4gnKtGSr1+q7MUNDdk/1X7zlYgHkLuHd+vGYl5XVwMPPmh2nKhFS9kzkm9Ly+23Bw49NNw+4kYVo1aFqbu0jKhEyzgsLUVUlpaqcUyQkAamlpam9O8P3Hor+yxe40JaWuYD/jra3otSFy3/9Cc2BjTxpBKfd5WVp8wDhicKa2mXqip9OxJUtGzTxr5cBjTccw8aqqrQyCdI4uH7E/d6b9yYvc8rVsi3i0u0jNLS0q0XKtFStKwUx/yyNkXmHm46nqUYlr6QaEmEo2tXZmn5ySfyQPtlZcBbbzFhU0Q3iJA9vFuDpSUQzfkEtbRUEbelZVyIbz2DuOrJ7r9Nx5kP93CACX2rV2fdrmX7tBEto7KaWLvWXLS88kr25vb88+W/2ybiCYv7YiWIaGmSiKehQV5uXjg1ES35OmZiaQl4xRRxAmIiWuqud1UVSy7x00/M7UWHbJCXL2sN2XVyBSK/WIqyAPU6TCwEZKLLmjX+LndhLC3Fa2BqyWCTiEcV0xJgL7nyFdMyiKUlANxxB7N0POUU/2Ns2uTtM6IQLWX1wjYRT9j2/M03iydTtgpbS0uxby9EIh6dpeWoUeYilG5cZ+seHuTFc5Si5SefsIQjbpvhJ1o25UQ8tu1HoWNahnUPv/hi1uddcYX/umJ7raq3fqJlFC8eXPxES9NjiW1RmLiUGpzTTsP/HnsM6Rtu8F/Zvd6Ok+3fVXGeTWJamj6TcbuHyxLxlJXlPgcyjUMkTCIeEi19KfIRCFESJJP+gxVxUDZ2rP8+TYn7QZcNZItdtNx992xSoZtv9v4Wt2gZZMAbltNPly+vqACmTMmW309AkWEjWsuQCTDi9YxqMuj3LNgIylFNQA44AGjd2rtMFzNJdw75sLR89FH2v7wcuPxy+b5lriOtW8sHx7pM1O6gSUxK9N572c8moiV/XL+Yli68W48Yt8/W0lJWJsCsbeaTJLmIrrBxIZucuQNz8Z7pBrAmdc9kIii7b2vX+k8Eo4xpGcTSUiYqiJaWKovjTZv07uGFtLTkj2V6XTdsiN7S0ibBTFBLS9GqRKQURB9b0VJ8boNYWsYZ07K6Orjl8znnsP/DhmXPy/RZGjDAvz7Ijh/VOKZrV+91Ffcrnutjj2U//+EP7H8pJ+Lhz1fV/x98sHx5FKJloWNamj6HYnu9ebN8vO0nWpqEw9HB7zMuS0vVS78oMC0TXy9cF3GVaNmihX/baNqX88fNZ0xLEZM2kUTLWCHRksgP4kP73HP69YMMHuMin9nDgWgGV5WVwLx5wAsvABdc4P0tbvfwQlha3nEH8O9/5y4vL2cxDD/6iFmK7Lef/b7DuoebWI3FYSVYDJaWjzzChGKZ+3AQ8iFaHnwwMHMmMH8+i7EL5F6LRCJXtNx2W7mlZSoltzQHshOSBx9kAbld/ve/7Gc/97CqqlxLNZPry7v1tGgBvPhi9nvYQbzN/ZVNvmQxIeNAZ2np5x5erJaWPCZxsEwT8eiEA/GlhCymparf2by5eBLxqCwtbdi4MT+iparOBX2h6ud+GOa65wvbRDziNSw2S0vTUB98eVxuvpmNiV55JbvMZGLuLlclE1MRpaWlzItBPBbP2LHArFlsnOfGK2wqlpYy0XLyZODJJ4H//Cc3HFCh3cOjTMTjh9he/+EPrC+68Ubvcplo2bt3dtnMmeHKwdfHZs3srLtV5MnS0oNr6KKC74fatGGJY1WipVt+3fma9im8WBhV/+8nWgZty8g9PFZItCTyA//QjhnjP0C2iTtSTDEtoxi0mTRwfp0LwASX8eNz9xe1paXoMlcI0bJZM+Cgg3KtedwObvBgZn0a9P6osnGq2GGH7Oc+fez3Hxdxx7QUOfHE7D3hBzxBJxA6cTWqCVMiwSZBgwbpjyu+dVWJlu5vMvr3Z/9btAB+8xuW4Adg2b1d/Cwty8tzEwCZTDqWL/fugy9jWEtLm4lT9+5A587eZbxoGWfGYp1oKYY06NbN+z0OS0vZgNfE0pJv49evz34WxUQZpqKlrl+SiQynnpr9ftBB6mc+n6Kln6UlnziwvDy4aMmLxUuW2O9DxC9zLD+eCuoe7ldX8hVnNgy2oqX4vNmMJd36HIVrqeqeVVWZWb3x5XFxx0Tt28vXKS/Xt1tiIkw/ohQtxf2I17hTp9z1R40ChgxR76OUREv+WePjW7vstRerMwcemH2x6hJFUqcwouWZZ4Y/viniS7lly4BffmGu5byxgEy0vOqq7DKTsB868hHTMh+ipWjgIibSFdvLyy/3jiNdrrsu+zkK0dLELdsEm5iWMtzxOQAMHy5fJ4ylZZxj3SYCiZZEfuAbYJO4gjYxLYtJtAwSwFxE7KzEAdoJJ4R7Mxi1aCm6n0dxDYISZaZZHrEO+F3D555jSagefDCbrENHvjqruLOHA8D06Sz5yttve5fPmsXibT7/fPDzlW1nOqkLg+y4MktLlRuSTLT861+9b/uB7MuI2tpsO+nXXpaV5R7X5JrwlpaiQBP2xYPNPamuZlmyeX7+Gfjvf4Hjj2cW43EhK6c7MN9+e5YMYK+9WEIIV2B2yZel5VtveYVIGXz7xLv9mwTvN3UPF9u8777LfhYFjlSKxac97zyWWfP449VtZl2dPqaleN3C9Pd+lpbHHMPKvO++wFNPBWsDN25kL2ZdPvnEfh88NTW5or7IG2+wa/zss8G9QHSiZUVFaUyoZGWUCf5HHQU8/XS4uhXE0lLltaN65nSWlqK7qImozI+H/MYwts+ZbfbwwYPN1xXv68kn+29TypaW/Mt3Wf3lBSy/MCZBMOm/xbH1tdeykASue34+0HkSrFyZ/Swbl516KivzmWeyl+th4OtnVKKluJ5tuIYgXHYZcOGFQM+ewNFHe71vAHm9WLWK/R8+nMWiv+QS4P/9v+zvNonQVPD3mc9cbotNTEsZ7dsDDzwAnHQS6z/8yupiep5Bci5sZZTAq1OiSWCbwdnG0rKY3MOjsDIUG7jp09kE2sWNuReUIEKebsLSrh3rpEyy/cWNOAmJaqAqxmjz22+fPsBDD5nvPw5LSxv3cNPtTdh7b/YnMmyYPrO5CbLr5A7S45xUm4qWppaWu+wCnHFG7j75N9kbN7KBqt9LANHSMpkMZmkZhYWGi83EqVkzZiFz+OFMdAGYleMBB7C/ONFZWgLMYsNNCPC3v3nX4ycRcca0NIkRzPdHvJWqgaWl06aNd4Kneski9nmLFmU/9+3rfZGWSjHrwDvuyC5T9Tt1dd621S+mZRj8LC2rq71lllFeni3v+ed7wzoA7HwmTABU2Vht6dfPf6K7/fbeuH4ywoiWpST4iMgmgo8/Lh/DBXEPlz37HTqwJGQi/fsDn37qXZZM6i0tVe1G584s8Z6LyT3i1wn7sv+ww7xhnsrK7BKo/fa37MXZRRf5r8vfw113NbMg94uDWcz4WZbxoqV4XoVyD7/66vDHtUXmmeDy5ZfsOQTkomUiEV2Z+frZrFk8lpb58MYqL2cvaG+9Vf67Tszu3ZslAxWJwtKSr49xiJamlpabNzORm/ciEQnjHk6ipS9kaUnkB75BCGppqdv3mWeyTvTBB+3LFqQsOquRsIgDv0GD2ACxWTP/WKAmxJGIp1jiXUXpSsgT50QayJ8Vi039LMZMsbLr5A5o4iyviWg5bJja0lK00hNdjV14wcx10TZxD+fbDFPR8sMPs591cdWCYDNxctujv/yFubr16MEsIPKBLhGPiNhuxmFpqZuE6bC1tHz2WXasI4/MFdQPPhgYPZqdHx/aQhx4822JGALDJg5wXZ23zOJzFWVbq2ojbNqO115jZdxtN3UyjIEDo/MA6dw5d19BrJnCxLQslv7dhCuv9H6XvST3E69N0FlaqsI53HRT7rJEIlhMS9H61mRizD+DYcccYrl07uGyJFzV1bllrqlhcdhFeBdp076llN3D/URL3so2DkvLMO7h+URXhvvvzwpc/PMYx1ib7wurqvTPoqkwVYwiu258onqRoLMQNX0mebFUFi7BlLCipckL5DCWloX0UiwRinBWSjRJ+AbYxNLSdsB/770slknY2CSmZYlTtBQbxkSCTTJ//hk49NDw+2/KomWxuIfbkq9EPKpON66YllGjEy3jLK+szRKvZfPm5paWqhiX/IDHTYZj4h7OH9dUtHz++ezn8vJon2GbCY173zp1AhYvBr75JjckRlz4WVryiJOIfLmHm2BraXnYYcxK66mncn9LpVjSsh9/ZFZNsmOIiKKlTZ9ZW+u1GBPdXvNhaWnTdoweza7NW2+pr0kiEV22V5nbrSjMmWBraTlwYPazX3iCYkIUdGVtdxShhoKIlp07y0P7qOqRLqalGHPX1j08LGK5dO7hsnZIlrBk1SoWh12E72tNRblSdg/3Ey35GLemyZVsKBXRUve8PvAAi/kJ+GcPDwvfxvi5h4cR3QqNbnyiEjR1/WCYrOVB4I+XTtvHtIxbtCRLS19ItCTyg21MSxv3cJe4hDPZfuMcAKmEz6gGCVFmDz/6aPa/GAYwQHzu4WIQ7KjvfxwDKZn7cb6zh0eNLqZlnKJlmzZZYeacc9j/X/0qe40efpj9Vw2OxWD5KtGSH/jZWFqKx1VZcur2YdsuHHGE9/tZZ7H//fr5Wwwefjj7v8su3uWpVH4tDGSD8LhEy6Du4SaoLC11bpS6NjuRYPWBn4yJ5z91Kvvfti1L+KEqj4vOPdyNi+Xuz2S7IETVprkxHnX7C5M4Ya+9sp8vvDAaq01b0XLChOznKDKgFwq37CecwP4PGKBe16btce+JjWipS7ojQ2Vp2alTbttp6x4etr+UxQNV7VMmwslES9W14YUe0+vXVEXLXXbxXuc4+ssgMS0LgV+7OGMG80KJW7TkkYmW7lipS5dcrxsVbdqwsCsAS9JYDOjqhWrcFEUCoThES9OYlm44tvJy4PTT/Y9B7uGxUoT2x0STJE738LiRDRrjnFjHnX07KkvLJ57ITmyKYQADeAe0yWR0A5SXX/YKTaXgHt6lC3MBPvjgbAbbfMS0jJNCWVomkyzZxaxZ2bf3vXsDs2ezuFzuMs7i0eHbMLEeuoNREZmlpZ/LiJiIJ5ViMUVTKXN3EzeTbEWFvo5MmsTOtV+/XHHp5puZ2DJ6tP+9eOABlgxjn33MyhcXsoG2SnDNh6WlqXt4ixbAunXqsrmYJOLRocvqfcklrE3cfvtcFzAb9/Bx47Ln3ayZeTbzIJhYStig61+CWlpecQVwzTXAu++yCdq4cXKXWVtsRcsDDgBuuSX8cQuNK1recw8T18eOVa9rM+5015U9+6rYjrYvZWQxLe+7j7WbM2Z4l9u6h4dFHAPZipbV1eblIfdw1lf97W+58cLjOC+TfRaDoYLJ+P6XX/IrWspiWv7hDyw55U47md+vZJJZZc+enR1fFpoglpZRiJb8Mx/GhTqIe/ixx7K+sXv3XOt2GbJrRO7hkVGEpjREk8TWPVw2+OHdlYYPD18mU2SDpDgHQHxWxT32iH7/QcQd2WD+2GOzk9ViGMAA3ntlExTej379vN9LwdISAIYO9YYUUD17xShQyiiUaAmwQcvRR3sHZ7vswibC7rFV7uEAMHJk9jPflvEEjWkpDspbtfIezw+3Pvs9x+XlTAQfNCj3t5oadn1MrDxbtWLthxsov1DILJ+CWFqaPL9RWlry7oGAt64dc0z28557mu1PBV/3xDavvJxZkMgs12zcw4GsQC+b4ET5gihqN+c4LC1/8xtWV/bYA9hvP9a25MPSki9vixbA7rtnv2+3Xfjj5xPexXjHHdn/5s3Zs6HLxJ4PS0ubY8gsLY8+mr30CpJoJk7RsqxMXcdUlpY77JD9rhvr8i8btlZLy86dWZ/ZsaN3eRznFdVLuLiR1TfRknH16tyY31HDH7NTp9xnsWVLFj+6d2+7/fbokTvmLCS6cqjGTVGESYkiTivgvS91ddl6oRMtUyn2Ao9vq3Qkk7njONM2v5Q9GvIEiZZEfrDNHi6jf3/gz39mFjpPPx1JsYzIt2g5dChw441sgB02U7gM1YBaR6nEtOQtfqIULUWitoaNU3AzuTey4xfjWz9d9vBiQPdG/6GHmID8l7+oMzRH4R7u3ktxcuO3D8C/rhRjyICwiANxU0tLXuTJd0xLMbEFf19uvRU4/njguuu8bsZB0Fla6rBxD+eJW7TkrVOjIA7RUhbPNYrnzm8fnTuz8cYhhwCvv86u+/PPMyufu+8Of/x88sADwHHHAddfD4waZb5dEEtL2VggnWYxT2Xb2Fpaim2Cex+DxNnmn6WwYw7xeKmUesylEi2HDWPJifzGukFEy1K2tJQlL3HFd5FCJWwphjG/7HkVM1ivWhW/peXddzML2KOOAs49N/4Y+IUiCvfwiRPZi/7//S+a49rAj+34F5imMS1NEa8FxbSMDHIPJ/KDbUxLFRdcwP7ySb5FSwC47LL49h1EjPLr6Nu3D1aWqNFlqouSqAW9QouWMhGtGDtQXUxLvg76BbKPi379gM8/Z59F8WHgQOC55/TbB0nE065dbiIeIFgGb78JYalY5NpQU+NNXmNqaWkrWprcD1OLCtHSkp+UdekCPPaY2X78CCpa2riH88isMorZ0lJ334NamMiuM28d2KtXsP2aWFqOG5eN/Qgwq2pVhvRipksX4PHH7bezad9cYYKPIeuSTrMwGdOmeWOD6oQ9GTJLS5VoafJ8RilwydzDVX2V2F4B2bbu0kv9j0WWlmqr+UKdVzGIlrI2bfBg4He/Yy8sAGZpyRvKxCFa7r23121/3jzv78VwraIgikQ8v/oVcOKJdsflvXfCWG7yYzv+BWaUocTc46xcmf1u+ozy55avZJQlRhM0myCKkqhEy0KQSMSX4KUQBLn+fg36AQcwV9lmzYBXXjHb5+TJ7NpedZV9eVTEKVbNnMkmEEOGAPvuG99xosZkwHTttbluvcX4nOrcw08+mbktt2gBvPhifsvl8uSTrA727Yt0kJcr/KBqxgzg/ff192HHHVlSG5klQRyiZVO0tBRFSlNLS36AmW9Ly+bNWUzh8nImivTsabadLbpEPDps3cNdZNaJUca3zoel5fPPs/9RxPJyOessFj+0RQvgmWeC7cPGPZzwx72e/AsPF1eYFNuWVMquPstiWrrtU76tuQ44wPtdHFckk7l9VSoFHHaYfAJuYz3Fv5QLmj28UBaJQRDHsQMGAKecIl83rvv+u9+xfu3KK+W/N2vGXnCkUsC998ZTBj9kbVqnTt6+edUqYOlS9rlFi+is9nSIz2ZTES2DuIeL/UqQa3HCCWzeVVOT7V+DwJfxl1+yn937dcYZrE7dfnvwYwC518m07Tn9dPast2gB/Pe/4crQRCmhVpwoaaJwDy8kVVXet73FlCjIFlHgMHEX95vwJJPAO+8w6zBV5yVyww1sQCR7Cx+UOEXLsWPZ2zNZdsBixmSQ0KYNsHgxEz+WLWPLSk20rKgAFixgQfsLFQNo6FDghx+YQBUkDANf7r/+lf2peOwx5gKZSMhjNpGlpRliXVG1X+LkkE9yUwj38GOPZa67pu1tEIJaWsrqvkk7JLOiiLLOxZ2I55FHspaJUYqAzZoBn37Kyh+0bRPLeuGFLNyOSxSxx0odGytIdwwgEy3d+i8TLW0oL8/dxn0ewopyts/V3/7mTUQhPs+JhHds36oV8O23bHx3zTW5+wsqHgV1Dy+lvkvsuxcuVI/B43qReN11LCmYbnz+6KMswVWUY3gbZOdeUeFte5ctyyai3Hbb/NQDcg/PIvYrQUTL8nJg/nyWmC7MeIfvOy+/PPvZrUd//SsLrxO2Pgd1D6+sBD75JFw/38RpgmYTRFFim4in2BAHEeLkp08f9p9PglCsiMlC3ADDo0ertxEHB4cdlrtOImHfoUQ92InbLbimJjrB8qCD2H9VfMOoMB0klJV570cxxrTUuYcDrJ4WurOvrg5eR2yenzZtstdDzB4O2E0Kt+aYluI1F+NFuoiiAP/dRAwzEZFNhWY3DEbz5vFOwnSJeHTI2g6T7WVJUjp2zLbrp51mXoZ8ID4PfEIGm77IFcCnTFGvk0qFa9vEeiK6mccpfjcVJk5k/5s3z07Gzzordz23PRbvlyqmpbtfkXXrsi8Rxf0FcQ+3jfN96qnsf8uWuSGAxOc5kch9ydGihTyRVFlZcCEnqHt4KZFIZBPpHXSQ/lyqq7MJ7fjQDlFgMj4vlGAJsBcvPPvsw/7zQtncudnncdtt81KsnGexlIwcdOj6CFXfJPbpQa1Ok8nwfZRq+48+yn6Ooj4HFS2B8P18E4csLYn8wD+0xWjB5YcoAIiT1JkzgVdf9WZqLlZE0fLFF1nspQMPVG8jDpoeeCCesoWlULEMg/Dww8C//pUdaMWFzSCh2F8uFHsinrDYDFb4NjVf7uGlZK1iijjAVA1adaKAzNpKxGSybXp98+XKG6WlpcnAXTapTKXYxPOtt1i28mJCFGdHjMh+tplgvf468MEHLMNsXIgJY8Q61BSfbVv8RL0772TJrcaMyQoRffsCb77JLJ+//967H5mlpawP696deaosWeJ98b16NbNWdOHDQASx5uLPz+R+33Yb8zAZPTr3+ZeNK1TthVjWMC66QS0tS42nnwZeesk/pqzr5fTGGyxUzNZE//7s2fvwQ1b/3fkX37Y98YR3/XzQVERKEd38StXfiX16Ia1OVWXk409GQVD3cMIXupJEfuAf2mK04PJDFAA2b85+TqXYYLLYrEBUiEk7Onf2L/u++wIvv8w+X3450Lp1bMULRSmJlm3aZC0Z4oTPOjl2rH7dYo89q3MPbwrYCB384C+qRDx+k8lStl5RIQ4wVZNd3bmvXu1/HNP70bq1PLkHT75ceYOKlrI+3uTlicoSpl8/9lds8JPj3r29k1WbZ3nIEPYXJ+KLVnIHz8VPtGzRQh5bcPfdWeZg191eZ2mpYuRI9vfkk9m4pcOGsbZ55kz2/aST1PuKY2LcogWLFS1D9jzzLzr5/ilK0TJoTMtSo3t3FuPOhL592d/WyO67sz+ejh3l6w4eHH95gK1TtFS9cI8ipmVUqMq4//7RHieMpSWhhURLIj8EeWifew646654M2mbonMPLzVTbn5CaTrQPf98FlNr8+ZoE+dETSmJlvli9Gh2zz780D/AdLG/XCDRMgs/+Atraenedz5Oo4xSt16RwV9z3YBal3k6KktLgFmxT50KvPeeep18WVoGTcQT1D08X+57ALOMW7kSuOSS4Pvo3Zu1re+9x2K78ZiOC3r0CH58G0RLy1IbtxQ7srZRbM9NnqF77mHiaffuLPnNnnuyvruqyjsWLnTcPNnxVOEkRAExTN3bGtzDiXD07cvir/KhFRKJ/Fmibo2ipWrsKraLhZxXqMp4ww3xHodEy8gg0ZLID0HeAh96aPG4W4sCwKZN2c/5yEYXJXxsot69zbYpL2eB2Isdissl5/e/N1uPH2yViqVlqT1/OoK6h/fqBXz9NfvsPt9BsrP6WV81xYkgX+d1E2KdYMu7lA8d6o2R5GIqIh92GPv7wx9YBlcZpege7ld32rbNr/XfqacyD4KwqNpW074oTpdwHlG0pL4ylzAvwExCl6RS/i9+2rf3Zohv3hx4/PHc9cTnMQ73cB1+lpZxuYeb3qOm+IKNMCORACZMAO6/P7vsq6/yJx41VXdg3fjItD8R+6F8IhtfT5rELNrjPE5TrQ8FoAnOQIiipNQfWjHZB+8eXmqiyeTJQKdOrJN57LFClyZaSu1eFBvkHl5Y3AQrJvAD8CefZAOlrl2zlmM218WdbPqJYU1xIsi35bprNmYMG9yWlQHPP+/97fLLmdhQU8PuxaRJudubWgiZrF+K7uF+dOpkv40tzz3HzmPECGDcuHiP5TeJq6xkLxuuvjrecriIk8WddmLuyKkU8I9/5KcMxchTT7FrMHIksPPOwfcjEy3F9lKViCcIo0cD3bqxz4MH58/11UWWPdw0piWfhdwWsrQkTDj77GwdPfDA/LrPN1VLSx26F+4vvsiuyYAB8cfw1yHrk8O0RSrE8GlkaRkZJa4kESVDqT+0/GS2pqa0LS3btGEB32tr7USSUqApCViFgETLwmLzPPKTxuHDgR9+YG2Ru9zmuriCxtZoaWkqWiaTLCHM2rW516lDB2DpUmZhWFMD3HcfE5CvvdZs3zJ06xe7pWUQ0VKVtT1KDj0UWLGCTSrirst+VtM//MDOOV9jIzGmZTIJzJrFQhvkqz4VI0ceyepEmzbhXsqY1CdVIp4gNG8OfPMN8MUXwHbb5V8o8UvEo4tpGSYMBFlaEiaMGMGe6+XLmViWT7Y20TKR0D+X++0H/PQTa7OKLRFPHKKl2J+WutFWEdEEZyBEUVLqDy3/dre6mlkruvzxj/kvT1gqK5ueYAl4Bydnnlm4cpQqxS5aNvXs4TYvQESLk1atvBPJIKLl1ihemIqWAJuMqITdZs28g2I+0y9QmpaWQWNaytzD/VBlbY+atm3zI77rLC3vuIOVI58TuEMOyX52XdqTya3zmRdp1y58nTARyVIpds/dZ3vChHDHrKgAtt/eXCQJ6x7Ox3/dbbfc31XthXhtbUVLPpbnHnuYbdMUX7ARdrRuDQwcmH8Be2sTLU1e+LRpU3jjpYqK3HahQ4fojyOOzwp93k2IEleSiJKh1EVLXsCprmYDp2efZRYlBx9cuHIRXqqqWND6t98Gjj++0KUpPYpdtGzqMS1tBtd+lmk218WdbPqJYevWme+zVIgr1Ie4L1vRkiwtSxvR0rJLF+DRR4HvvgOOOy7/5enWDXjzTeDLL6lvjANTS8tEgo1RXn2VJYPKJ37Z0f249lr2YnjYsNykbYmEeUxLW9FyyhS2zbBh5i9syNKSKBSlPt+1JQ5rxThIJNjLRH4cK7pyR4E4PtvaROwY2cqeLKJglPqbhg0bsp9raljjd9hhhSsPoWboUPZH2EPZw0sHP8s08bpsuy0TLGS48dD8xDCTLNmlxrhxwOuvs88HHBDdfkXRyrae6kROXRbPKDnwQODBB9nn0aP16+6+O/DWW+zzoEH2x8qXpWW+SKXYPXTdspNJYO+9C1um3Xdnf0T0mIiW7joDBuTfZTUKamrk8XqB3JiWOvfwfv2iO64KEi2JQrG1iVSlZK1fXe0VLeMYS+UzoeBWBomWRH4oddFy48bsZ5sMvwRRSpRi9vCmGObABD8RTPz9+eeBc88FXnvNu/ycc7JuirLBZ1lZti40RdHy4ouB+fPZZ1W27iCEtbRUiSB//Wv+XB9vuglYuZJZVf361/p1H3uMCQsDBgTLyt3ULC0BJra4ouXWNpHd2lA9k6+9xtqVk0/Ob3n8iEPUM03E07179MeW8de/Ag89BFx/fX6ORxBAeIvmUqOUREsxbEsc84dSuh4lBomWRH7Il2VIXPCWliRaEk2VUnMPLy9vepaWyaRZTEC/Sacomm23HTBjhne7c88F7rwz+13WTnfoACxbxj43RdGyuhp4+uno9ytef9t6yrta8pxxRrDyBKFdO+Df/zZbt2dP4KWXgh+rqVlaAqxurV7NPpNo2bRRtcd77pm1QC40vAVQ587R759vs3hDBVHQzdcLijPOyG97SRBAsJjOpUJ5ee7YpH//wpQlCKJoGYc2QaJlbFCkYiI/HH000KcPG7hPm1bo0tjDW1rqAuwTRClT7KKlOPlp1arpuYFFFQ/JRCQTrf969gRGjvQu4wOVuwIM4Y/4csvW0lIlWjZVmmK/yp8TiZZNm1JI/HL11SyGW2Uli68aNaaWlk2tzyYInqYsWr70kvd5btfOmyir2BFdt+MQLcV4v0RkkKUlkR8qKoDPPmOT3jje8MYNiZbE1kCxi5biZKfULbhllJVls3mHIYhomUgwqyDeSoYf5DVFS8u4iMvSsqliK+qWAvxYoRRELSI4pXB/O3QAvv2WhSyI2hpIjGnJjyW2traM2LopxnjwUbHXXsD33zO36nXrWB9XSnNiMWlQHJ5apR4Or4gpgV6WaDJUVJSmYAkA//d/2c/nn1+4chBEnJBoWXiiGvCYiEAVFbnLysqAgw/OlmXKlOxvU6dGU7atgbAxLffbL3fZuecGL0+x0xQH+ry1bVO2viGAI4/Mfr7uusKVw4/mzeNzX1S5h//4YzzHI4hiZNtts5+PPbZw5YiLTp3Y+KZjx9ISLIH8ZTrv2ZP9D5KUkFBClpYEYcLxxzPrpzZt/LOoEkSpUmrZw5uiaBmVe7iJCKQS0u6/nyUw2HNPYKedgGefZQlZTjghmrJtDYQVLbt3B159FVi4kMWM+uwz4LTToitfsdEURUt+Qrd5c+HKQcTPwIHACy8AixYBp55a6NLkH52lJYmWxNZETQ3wzjvA229vnW1BMZMv0XLGDBYr/aij8nO8rQQSLQnChLIyCuhNNH1KLXt4UxQtDzwQePjh8PsxSWwis7QEgPbtgUsvzX4/7LDw5dnaEGNaBnFD2mcf9gfILS+bElGJ9cUEn3Bk+fLClYPID+PHF7oEhWWffYBHHmGfd9klu5y3Njr88PyWiSAKwciRufHBicKTL2/PbbYBrrgiP8faiiD3cIIgCIJB7uGF509/ygpVYaipAW68ERg+HJg5U75OKcRhK1XCWlo2dc47z/tdJaCXMrvumv1cjO0pQUTJLbcA48YBRxwBXHBBdvnEiUys3Gsv4N57C1c+giC2bprinGErgmYsBEEQBKN1a/nnYkEU2Vq2LEw54qRdO+YWHIVwedllwLx5wNix8t8pi2t8iO7OJBB7Oess73feKrGpcMABhS4BQeSH6mpmof/KK8wtkm//KiqAZ55hLpPt2xeujARBbN0U47yGMIZG0QRBEATjiiuYEJhMsolHsSG6PIvWbE2Ju+5S/xZV/D8S0oh8cvfd7P8OOzCX0WeeYd979GiaIQgGDGDWZQBw5ZWFLQtBRM1LL7EXXx06AKefXujSEARB6NltNxZ/GAD+9rfCloWwpgkGESIIgiAC0bYtsHQpsG4dSwRSbCSTzM22tpZ9X7q0sOWJkwEDgLfeAnbfPfe3qFyNydKSyCdnncXcR3v2ZHXv8MOBb75h2Uibovt8IsGSs3z9NbDddoUuDUFEy777AosXs3FDqWURJghi66OsDPjgA+C774B+/QpdGsISMrMgCIIgsrRqVZyCpcsDD2Q/H3dc4cqRD1T34frro9k/WVrGS4cO7H/btoUtRzHRr583fmWfPrlJi5oSlZXMqpReEBBNkZ49zZK+EQRBFANVVSRYlihkaUkQBEGUDscdB6xfD9TVNf2YcaIb+COPAKtWAeecE83+SUiJlzffBB5/HDj22EKXhCAIgiAIgiBKEhItCYIgiNIhkQDOPLPQpcgPYnKSE0+Mdv8kWsbLgAHAtdcWuhQEQRAEQRAEUbKQbxhBEARBFCMtWjDRa+BAlpU1asg9nCAIgiAIgiCIIoZmLARBEARRrFx9NfDppyyBSdQ0xeQnBEEQBEEQBEE0GUi0JAiCIIithSefZP87dACOOaawZSEIgiAIgiAIgtBAMS0JgiAIYmvhqKOAhQuBrl2BZs0KXRqCIAiCIAiCIAglJFoSBEEQxNbEdtsVugQEQRAEQRAEQRC+kHs4QRAEQRAEQRAEQRAEQRBFBYmWBEEQBEEQBEEQBEEQBEEUFSRaEgRBEARBEARBEARBEARRVJBoSRAEQRAEQRAEQRAEQRBEUUGiJUEQBEEQBEEQBEEQBEEQRQWJlgRBEARBEARBEARBEARBFBUkWhIEQRAEQRAEQRAEQRAEUVSQaEkQBEEQBEEQBEEQBEEQRFFBoiVBEARBEARBEARBEARBEEUFiZYEQRAEQRAEQRAEQRAEQRQVJFoSBEEQBEEQBEEQBEEQBFFUkGhJEARBEARBEARBEARBEERRQaIlQRAEQRAEQRAEQRAEQRBFBYmWBEEQBEEQBEEQBEEQBEEUFSRaEgRBEARBEARBEARBEARRVJBoSRAEQRAEQRAEQRAEQRBEUUGiJUEQBEEQBEEQBEEQBEEQRQWJlgRBEARBEARBEARBEARBFBUkWhIEQRAEQRAEQRAEQRAEUVSUtGh51113oXfv3qiqqsLIkSPx7rvvatd/6qmnMHDgQFRVVWHIkCGYNm1ankpKEARBEARBEARBEARBEIQpJSta/vOf/8TFF1+MKVOm4P3338cOO+yA/fbbDz/++KN0/VmzZuG4447D6aefjg8++ACHHnooDj30UHz88cd5LjlBEARBEARBEARBEARBEDpKVrS85ZZbMGnSJJx66qkYNGgQ7rnnHlRXV+OBBx6Qrn/bbbdh/PjxuOyyy7Dddtvhuuuuw/Dhw3HnnXfmueQEQRAEQRAEQRAEQRAEQegoK3QBglBXV4d58+Zh8uTJmWXJZBLjxo3D7NmzpdvMnj0bF198sWfZfvvth3/961/S9Wtra1FbW5v5vnbtWgDA6tWrUV9fH/IMio/6+nps3LgRq1atQnl5eaGLQxBSqJ4SpQLVVaIUoHpKlApUV4lSgOopUSpQXSUKzbp16wAAjuP4rluSouXKlSvR2NiITp06eZZ36tQJn332mXSb5cuXS9dfvny5dP2pU6fi2muvzVnep0+fgKUmCIIgCIIgCIIgCIIgCGLdunVo1aqVdp2SFC3zweTJkz2Wmel0GqtXr0a7du2QSCQKWLJ4+OWXX9CjRw98++23aNmyZaGLQxBSqJ4SpQLVVaIUoHpKlApUV4lSgOopUSpQXSUKjeM4WLduHbp27eq7bkmKlu3bt0cqlcKKFSs8y1esWIHOnTtLt+ncubPV+pWVlaisrPQsa926dfBClwgtW7akhosoeqieEqUC1VWiFKB6SpQKVFeJUoDqKVEqUF0lComfhaVLSSbiqaiowIgRIzB9+vTMsnQ6jenTp2PUqFHSbUaNGuVZHwBeeeUV5foEQRAEQRAEQRAEQRAEQRSGkrS0BICLL74YJ598MnbaaSfssssu+POf/4wNGzbg1FNPBQBMnDgR3bp1w9SpUwEAF1xwAcaOHYs//elPOOCAA/CPf/wDc+fOxX333VfI0yAIgiAIgiAIgiAIgiAIQqBkRctjjjkGP/30E66++mosX74cw4YNw4svvphJtrN06VIkk1lD0t122w2PP/44fve73+HKK6/Etttui3/961/YfvvtC3UKRUVlZSWmTJmS4xJPEMUE1VOiVKC6SpQCVE+JUoHqKlEKUD0lSgWqq0QpkXBMcowTBEEQBEEQBEEQBEEQBEHkiZKMaUkQBEEQBEEQBEEQBEEQRNOFREuCIAiCIAiCIAiCIAiCIIoKEi0JgiAIgiAIgiAIgiAIgigqSLQkCIIgCIIgCIIgCIIgCKKoINGSwF133YXevXujqqoKI0eOxLvvvlvoIhFbEVOnTsXOO++MFi1aoGPHjjj00EPx+eefe9bZc889kUgkPH9nnXWWZ52lS5figAMOQHV1NTp27IjLLrsMDQ0N+TwVoolzzTXX5NTDgQMHZn7fvHkzzj33XLRr1w7NmzfHEUccgRUrVnj2QfWUiJvevXvn1NNEIoFzzz0XALWnROF44403cNBBB6Fr165IJBL417/+5fndcRxcffXV6NKlC5o1a4Zx48bhyy+/9KyzevVqnHDCCWjZsiVat26N008/HevXr/es89FHH2HMmDGoqqpCjx49cOONN8Z9akQTQldP6+vrccUVV2DIkCGoqalB165dMXHiRPzwww+efcja4T/+8Y+edaieEmHxa1NPOeWUnHo4fvx4zzrUphKlAImWWzn//Oc/cfHFF2PKlCl4//33scMOO2C//fbDjz/+WOiiEVsJr7/+Os4991y88847eOWVV1BfX499990XGzZs8Kw3adIkLFu2LPPHd5iNjY044IADUFdXh1mzZuHhhx/GQw89hKuvvjrfp0M0cQYPHuyph2+99Vbmt4suugj/+c9/8NRTT+H111/HDz/8gMMPPzzzO9VTIh+89957njr6yiuvAACOOuqozDrUnhKFYMOGDdhhhx1w1113SX+/8cYbcfvtt+Oee+7BnDlzUFNTg/322w+bN2/OrHPCCSfgk08+wSuvvIL//ve/eOONN3DmmWdmfv/ll1+w7777olevXpg3bx5uuukmXHPNNbjvvvtiPz+iaaCrpxs3bsT777+Pq666Cu+//z6effZZfP755zj44INz1v3973/vaWd/85vfZH6jekpEgV+bCgDjx4/31MMnnnjC8zu1qURJ4BBbNbvssotz7rnnZr43NjY6Xbt2daZOnVrAUhFbMz/++KMDwHn99dczy8aOHetccMEFym2mTZvmJJNJZ/ny5Zlld999t9OyZUuntrY2zuISWxFTpkxxdthhB+lva9asccrLy52nnnoqs+zTTz91ADizZ892HIfqKVEYLrjgAmebbbZx0um04zjUnhLFAQDnueeey3xPp9NO586dnZtuuimzbM2aNU5lZaXzxBNPOI7jOAsXLnQAOO+9915mnRdeeMFJJBLO999/7ziO4/zlL39x2rRp46mrV1xxhTNgwICYz4hoioj1VMa7777rAHCWLFmSWdarVy/n1ltvVW5D9ZSIGlldPfnkk51DDjlEuQ21qUSpQJaWWzF1dXWYN28exo0bl1mWTCYxbtw4zJ49u4AlI7Zm1q5dCwBo27atZ/ljjz2G9u3bY/vtt8fkyZOxcePGzG+zZ8/GkCFD0KlTp8yy/fbbD7/88gs++eST/BSc2Cr48ssv0bVrV/Tt2xcnnHACli5dCgCYN28e6uvrPe3pwIED0bNnz0x7SvWUyDd1dXV49NFHcdpppyGRSGSWU3tKFBuLFi3C8uXLPW1oq1atMHLkSE8b2rp1a+y0006ZdcaNG4dkMok5c+Zk1tljjz1QUVGRWWe//fbD559/jp9//jlPZ0NsTaxduxaJRAKtW7f2LP/jH/+Idu3aYccdd8RNN93kCbFB9ZTIFzNnzkTHjh0xYMAAnH322Vi1alXmN2pTiVKhrNAFIArHypUr0djY6JmYAECnTp3w2WefFahUxNZMOp3GhRdeiNGjR2P77bfPLD/++OPRq1cvdO3aFR999BGuuOIKfP7553j22WcBAMuXL5fWY/c3goiCkSNH4qGHHsKAAQOwbNkyXHvttRgzZgw+/vhjLF++HBUVFTmTlk6dOmXqINVTIt/861//wpo1a3DKKadkllF7ShQjbt2S1T2+De3YsaPn97KyMrRt29azTp8+fXL24f7Wpk2bWMpPbJ1s3rwZV1xxBY477ji0bNkys/z888/H8OHD0bZtW8yaNQuTJ0/GsmXLcMsttwCgekrkh/Hjx+Pwww9Hnz598PXXX+PKK6/E/vvvj9mzZyOVSlGbSpQMJFoSBFE0nHvuufj44489cQIBeGKrDBkyBF26dME+++yDr7/+Gttss02+i0lspey///6Zz0OHDsXIkSPRq1cvPPnkk2jWrFkBS0YQcu6//37sv//+6Nq1a2YZtacEQRDhqa+vx9FHHw3HcXD33Xd7frv44oszn4cOHYqKigr8+te/xtSpU1FZWZnvohJbKccee2zm85AhQzB06FBss802mDlzJvbZZ58Clowg7CD38K2Y9u3bI5VK5WS3XbFiBTp37lygUhFbK+eddx7++9//4rXXXkP37t21644cORIA8NVXXwEAOnfuLK3H7m8EEQetW7dG//798dVXX6Fz586oq6vDmjVrPOvw7SnVUyKfLFmyBK+++irOOOMM7XrUnhLFgFu3dGPSzp075ySKbGhowOrVq6mdJfKKK1guWbIEr7zyisfKUsbIkSPR0NCAxYsXA6B6ShSGvn37on379p7+ntpUohQg0XIrpqKiAiNGjMD06dMzy9LpNKZPn45Ro0YVsGTE1oTjODjvvPPw3HPPYcaMGTkuCDLmz58PAOjSpQsAYNSoUViwYIGn43UHkYMGDYql3ASxfv16fP311+jSpQtGjBiB8vJyT3v6+eefY+nSpZn2lOopkU8efPBBdOzYEQcccIB2PWpPiWKgT58+6Ny5s6cN/eWXXzBnzhxPG7pmzRrMmzcvs86MGTOQTqcz4vuoUaPwxhtvoL6+PrPOK6+8ggEDBpAbIxEJrmD55Zdf4tVXX0W7du18t5k/fz6SyWTGFZfqKVEIvvvuO6xatcrT31ObSpQEhc4ERBSWf/zjH05lZaXz0EMPOQsXLnTOPPNMp3Xr1p6soQQRJ2effbbTqlUrZ+bMmc6yZcsyfxs3bnQcx3G++uor5/e//70zd+5cZ9GiRc7zzz/v9O3b19ljjz0y+2hoaHC23357Z99993Xmz5/vvPjii06HDh2cyZMnF+q0iCbIJZdc4sycOdNZtGiR8/bbbzvjxo1z2rdv7/z444+O4zjOWWed5fTs2dOZMWOGM3fuXGfUqFHOqFGjMttTPSXyRWNjo9OzZ0/niiuu8Cyn9pQoJOvWrXM++OAD54MPPnAAOLfccovzwQcfZLIu//GPf3Rat27tPP/8885HH33kHHLIIU6fPn2cTZs2ZfYxfvx4Z8cdd3TmzJnjvPXWW862227rHHfccZnf16xZ43Tq1Mk56aSTnI8//tj5xz/+4VRXVzv33ntv3s+XKE109bSurs45+OCDne7duzvz58/3jFvd7MqzZs1ybr31Vmf+/PnO119/7Tz66KNOhw4dnIkTJ2aOQfWUiAJdXV23bp1z6aWXOrNnz3YWLVrkvPrqq87w4cOdbbfd1tm8eXNmH9SmEqUAiZaEc8cddzg9e/Z0KioqnF122cV55513Cl0kYisCgPTvwQcfdBzHcZYuXersscceTtu2bZ3KykqnX79+zmWXXeasXbvWs5/Fixc7+++/v9OsWTOnffv2ziWXXOLU19cX4IyIpsoxxxzjdOnSxamoqHC6devmHHPMMc5XX32V+X3Tpk3OOeec47Rp08aprq52DjvsMGfZsmWefVA9JfLBSy+95ABwPv/8c89yak+JQvLaa69J+/uTTz7ZcRzHSafTzlVXXeV06tTJqaysdPbZZ5+cOrxq1SrnuOOOc5o3b+60bNnSOfXUU51169Z51vnwww+d3Xff3amsrHS6devm/PGPf8zXKRJNAF09XbRokXLc+tprrzmO4zjz5s1zRo4c6bRq1cqpqqpytttuO+eGG27wCEWOQ/WUCI+urm7cuNHZd999nQ4dOjjl5eVOr169nEmTJuUYJlGbSpQCCcdxnDwYdBIEQRAEQRAEQRAEQRAEQRhBMS0JgiAIgiAIgiAIgiAIgigqSLQkCIIgCIIgCIIgCIIgCKKoINGSIAiCIAiCIAiCIAiCIIiigkRLgiAIgiAIgiAIgiAIgiCKChItCYIgCIIgCIIgCIIgCIIoKki0JAiCIAiCIAiCIAiCIAiiqCDRkiAIgiAIgiAIgiAIgiCIooJES4IgCIIgCIIgCIIgCIIgigoSLQmCIAiCIAiiBOnduzcSiQROOeWUQheFIAiCIAgicki0JAiCIAiCsOTXv/41EokEEokEZsyYYbXtyy+/nNn2ggsuiKmEBEEQBEEQBFHakGhJEARBEARhycSJEzOfH330UattH3nkEel+CsXMmTMzIurMmTMLXRyCIAiCIAiCAECiJUEQBEEQhDWjR4/GNttsAwB45plnsGnTJqPtNmzYgOeeew4AMHjwYIwYMSK2MhIEQRAEQRBEKUOiJUEQBEEQRABOOukkAMAvv/yC559/3mibZ599Fhs2bPBsTxAEQRAEQRBELiRaEgRBEARBBOCkk05CIpEAYO4i7rqGJ5NJnHjiibGVjSAIgiAIgiBKHRItCYIgCIIgAtC3b1+MHj0aAPDSSy/hxx9/1K7/ww8/YPr06QCAvffeG926dctZ51//+heOOuoo9OzZE1VVVWjdujV22mknXHvttfj555+NyjVt2jSceOKJ6Nu3L2pqalBVVYU+ffrgiCOOwEMPPYSNGzcCABYvXoxEIoG99tors+1ee+2ViW/p/j300EM5x6irq8Nf/vIX7LXXXujQoQMqKirQuXNnTJgwAY8++ijS6bSyfKeccgoSiQR69+4NAFi2bBmuuOIKDB48GC1atLCOrSmLyfnkk09in332QYcOHdCsWTMMGDAAl19+OVavXq3cz5577olEIoE999xTe7xrrrkmczwZ7m/XXHMNAOC1117DoYceiq5du6JZs2bYbrvtcN1112Usbl2mTZuGCRMmZNYbNGgQpk6dirq6OuNr8d577+G4445Djx49UFVVhR49euDUU0/FZ599ZrT9V199hYsuughDhgxBq1at0KxZM/Tt2xennHIK5s6dq9xOvAfpdBoPPPAA9tprL3Tq1AnJZJIynBMEQRAEYY9DEARBEARBBOK+++5zADgAnNtuu0277k033ZRZ9+9//7vnt9WrVzt777135nfZX8eOHZ3Zs2cr979y5Upnn3320e4DgPPggw86juM4ixYt8l2XX99l0aJFzsCBA7Xb7L777s6qVauk5Tz55JMdAE6vXr2c2bNnO+3bt8/Z/rXXXvO99i6vvfZaZrvp06c7J554orJc/fr1c5YtWybdz9ixYx0AztixY7XHmzJlSmZ/MtzfpkyZ4kydOtVJJBLSsuy2227O+vXrnXQ67Zx//vnKMo8fP95paGiQHqtXr14OAOfkk0927r//fqesrEy6j8rKSufJJ5/UntdNN93klJeXK8uRSCScq666Srotfw9eeOEFZ9y4cTnbn3zyydrjEwRBEARBiJClJUEQBEEQRECOPvpoVFVVAfBmBZfh/t68eXMcfvjhmeW1tbUYN24cZsyYgVQqhZNOOglPPPEE3nnnHbz55pv4wx/+gHbt2uHHH3/EhAkTsGTJkpx9b9y4EXvttVfGknPEiBG499578fbbb2Pu3Ll47rnncNFFF6Fr166Zbbp164YFCxbggQceyCx74IEHsGDBAs/foYcemvl9/fr12GeffTKWe4ceeij+/e9/Y+7cuXjqqacwduxYAMBbb72Fgw46CI2NjcrrsX79ehxxxBHYvHkzfvvb32LmzJl49913cf/996NLly7aa6niqquuwqOPPopDDz0Uzz77LObNm4dp06bhgAMOAJC1JMwHL7zwAiZPnoxdd90Vjz/+OObOnYsXX3wR+++/PwBg1qxZmDp1Km699Vbcfvvt2H///fHMM89g3rx5eP7557HrrrsCAF588UX89a9/1R5r/vz5OOuss9CxY0fccccdmDNnDl5//XVcccUVqKysRG1tLU444QSlteRNN92Eyy67DPX19Rg6dCjuvvtuvPrqq5g7dy4ee+wxjBo1Co7j4LrrrsPtt9+uLcsVV1yBV199FQcffLDnHrjnTRAEQRAEYUyhVVOCIAiCIIhS5uijj85Yk3322WfSdT788MPMOhMnTvT8duWVVzoAnNatWztz586Vbr948WKnS5cuDgDn+OOPz/n9oosuyuz/3HPPddLptHQ/tbW1zvLlyz3LeCs5PwvHSy+9NLPu7373u5zf0+m0c8IJJ2TW+ctf/pKzjmtpCcBp3ry5M3/+fO0x/eDLD8C5/vrrpeXad999HQBOWVmZ8+OPP+asE7WlJQDniCOOyLGSbGhocHbddVcHgNOiRQunqqrKufDCC3P2s2HDhowl5dChQ6XHcn/HFstVmRXpjBkzMhaYO++8c87vn3zyScbCcsqUKdK609jYmLFgbd68ubN69WrP7+I9kNUNgiAIgiAIW8jSkiAIgiAIIgQTJ07MfFZZW/LL+fXXr1+Pu+66CwBw3XXXYcSIEdLte/XqhauuugoA8NRTT3niIa5Zswb33nsvAGZhedtttynjLVZUVKBTp04mp5VDbW0t/va3vwEABg8enInZyJNIJPCXv/wF7dq1AwDceeed2n1efvnl2GGHHQKVR8aIESNw5ZVXSst18cUXAwAaGhowe/bsyI6porq6Gvfddx9SqZRneSqVwplnngkAWLduHTp06IAbb7xRuv3JJ58MAPjoo4+wdu1a7fH+9Kc/oXPnzjnL99prL0yaNAkAi3kpWlv+6U9/Qn19PXbaaSdMmTJFWneSySTuuOMOVFZWYv369Xj66aeV5ejfv7+0bhAEQRAEQdhCoiVBEARBEEQI9ttvv4wQ+Nhjj8FxHM/v6XQajz/+OACge/funsQ3r7/+ekaMOvLII7XH2WOPPQAA9fX1mDdvXmb5jBkzMsl1zj///ByRLCrmzZuHNWvWAGDJdFTHadmyJY4++mgAwMKFC7Fs2TLlPk844YRIy3j88ccrBVteEP7mm28iPa6MX/3qV2jbtq30N16oPfzww1FeXu673qJFi5THatOmDQ455BDl76eddlrm86uvvur57T//+Q8A4IgjjlBeOwBo3bo1hgwZAgBa0feYY46JrQ4SBEEQBLF1QaIlQRAEQRBECMrKynD88ccDYBm533rrLc/v06dPxw8//ACAiXTJZHb4xVu9denSJSdzN/+3/fbbZ9Zdvnx55vMHH3yQ+TxmzJhoT47j448/znweOXKkdl3+d347nubNm6Nv377RFG4LAwcOVP7GC4jr1q2L9Lgy+vfvr/ytdevW1uvpyrzjjjuirKxM+fuwYcNQUVEBAFiwYEFm+ZIlS/DTTz8BACZPnqytf4lEIlNf+fonMnToUOVvBEEQBEEQNpBoSRAEQRAEERKdi7jKNRwAfvzxx0DHcy0rAWDlypWZz0ET2JiwevXqzOeOHTtq1+XdlPnteHhBLiqqq6uVv/FisS5BUL7LEkWZ/e5HWVlZRrTl70cU9U+kTZs2gfZJEARBEAQhon4lSxAEQRAEQRgxbNgwDBkyBAsWLMBTTz2Vif+3YcMGPPvsswCYe/KgQYM82/FC1Pvvv690Exbp3r17dIUPgM6N2BRyIY6OoPeDr39XX301jjrqKKPtampqlL/RfSUIgiAIIipItCQIgiAIgoiAiRMn4rLLLsOaNWvwn//8B0ceeSSee+65TNIc0coSQCZhDQB06NAhkBjZvn37zOdly5ahT58+AUrvD+9evWLFCq1bM+8+rIrrWGy4Vo3pdFq7Hp8EqVhYsWKF9veGhoaMhSV/P/j6V15e7glBQBAEQRAEUWjIPZwgCIIgCCICTjjhhIyV2aOPPgog6xpeXl6O4447LmebHXfcMfP57bffDnTc4cOHZz6/8cYb1tubWunxgtacOXO067777rvS7YqZFi1aAAB+/vln7XpffPFFPopjxfz589HQ0KD8/cMPP0RdXR0A7/3o27cvWrVqBSB4/SMIgiAIgogLEi0JgiAIgiAioEuXLhg3bhwAYNq0afj4448xffp0AMD48ePRoUOHnG3GjRuXiWl4++2352QeN2GvvfbKuOvecccd1vEaq6qqMp9ra2uV640YMSITh/Lhhx9WWiSuW7cOTz75JABg0KBBscbZjBLXQvWLL75QJr1ZuXIlXnnllXwWy4jVq1dnsoDLeOCBBzKf3ToKMFfuCRMmAABefvllfPrpp/EVkiAIgiAIwhISLQmCIAiCICLCdQGvr6/HsccemxEQZa7hAEtGc9555wEAZs2ahYsuukjrnrxixQr87W9/y9nHr3/9awDAvHnzcOGFFyrFz/r6+pzkK7yo+PXXXyuPXVlZiTPOOAMAywh+3XXX5azjOA7OO++8THIg99xKgbFjxwIA6urqcMcdd+T8Xl9fjzPOOAObNm3Kd9GMuPjii6Vu4q+//jruu+8+AEx43nnnnT2/T548GalUCul0GkceeSS+++475TEaGxvx2GOPadchCIIgCIKICoppSRAEQRAEERGHHXYYWrRogXXr1uGTTz4BwLIpH3TQQcptfv/73+P111/HnDlzcNttt2HmzJmYNGkShg0bhpqaGvz888/45JNP8Oqrr+KFF17AkCFDMuKhy3XXXYdXXnkFCxYswJ133onZs2fj17/+NYYMGYKKigp89913ePPNN/HEE0/g+uuvxymnnJLZtmfPnujevTu+++473HzzzejevTsGDBiQcXXv1KlTxnX66quvxrPPPotvvvkG11xzDRYsWIBTTz0VXbp0waJFi3DnnXdi5syZAIBRo0bhzDPPjPDqxssBBxyAXr16YcmSJbjqqquwcuVKHH744aiqqsInn3yC22+/HR988AF23XVXvPPOO4UurocddtgBCxcuxIgRIzB58mTssssuqK2txbRp03DrrbeioaEBZWVluOuuu3K2HTJkCG6++WZcdNFFWLhwIbbffnuceeaZ2HvvvdGpUyds3rwZixcvxuzZs/H0009j2bJlWLBgQcGTQREEQRAE0fQh0ZIgCIIgCCIimjVrhiOPPBIPPvhgZtnRRx+NyspK5TaVlZV45ZVXcMopp+DZZ5/Fhx9+qLVQbNmyZc6y6upqzJgxA0cccQTeeOMNzJs3z0owvPLKK3HOOedg0aJFOOSQQzy/PfjggxmRs0WLFpg+fTr2339/fPbZZ3jmmWfwzDPP5Oxv9OjR+Pe//11SmaQrKirw6KOPYvz48diwYQNuvfVW3HrrrZnfU6kU/vznP2P16tVFJ1oOGzYM5513Hs4++2xp3amoqMDDDz+MkSNHSre/8MILUVNTgwsvvBBr167FTTfdhJtuukm6bkVFhSekAEEQBEEQRFyQezhBEARBEESEnHzyyZ7vKtdwnhYtWuCZZ57Bm2++iTPOOAMDBgxAixYtUFZWhrZt22LnnXfGueeei2nTpiljKrZv3x6vv/46nn32WRx55JHo3r07KisrUVVVhb59++Koo47CY489Jk0IdPbZZ+OZZ57Bvvvui44dO6KsTP1eu3fv3vjwww9x5513YuzYsWjXrh3Ky8vRqVMnjB8/Ho888gjeeOONkskazrP77rtj3rx5OOmkk9C1a1eUl5ejS5cuGTH4/PPPL3QRlZxxxhl48803cfTRR6Nr166oqKhAt27dMHHiRHzwwQc49thjtdtPmjQJ33zzDa699lqMHj0a7du3R1lZGWpqatC/f38cccQRuOeee/D999+jX79+eTorgiAIgiC2ZhJOkIjvBEEQBEEQBEEQBEEQBEEQMUGWlgRBEARBEARBEARBEARBFBUkWhIEQRAEQRAEQRAEQRAEUVSQaEkQBEEQBEEQBEEQBEEQRFFBoiVBEARBEARBEARBEARBEEUFiZYEQRAEQRAEQRAEQRAEQRQVJFoSBEEQBEEQBEEQBEEQBFFUkGhJEARBEARBEARBEARBEERRQaIlQRAEQRAEQRAEQRAEQRBFBYmWBEEQBEEQBEEQBEEQBEEUFSRaEgRBEARBEARBEARBEARRVJBoSRAEQRAEQRAEQRAEQRBEUUGiJUEQBEEQBEEQBEEQBEEQRQWJlgRBEARBEARBEARBEARBFBUkWhIEQRAEQRAEQRAEQRAEUVT8f1D+3iUehuAcAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 6) Сделать вывод о пригодности обученного автокодировщика для качественного обнаружения аномалий. Если порог ошибки реконструкции слишком велик, то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (6)." + ], + "metadata": { + "id": "DGBM9xNFo-4k" + }, + "id": "DGBM9xNFo-4k" + }, + { + "cell_type": "code", + "source": [ + "# **kwargs\n", + "# verbose_every_n_epochs - отображать прогресс каждые N эпох (по умолчанию - 1000)\n", + "# early_stopping_delta - дельта для ранней остановки (по умолчанию - 0.01)\n", + "# early_stopping_value = значение для ранней остановки (по умолчанию - 0.0001)\n", + "\n", + "from time import time\n", + "\n", + "patience = 4000\n", + "start = time()\n", + "ae3_v2_trained, IRE3_v2, IREth3_v2 = lib.create_fit_save_ae(train,'out/AE3_V2.h5','out/AE3_v2_ire_th.txt',\n", + "100000, False, patience, early_stopping_delta = 0.001)\n", + "print(\"Время на обучение: \", time() - start)" + ], + "metadata": { + "id": "ZvM1VbKEgalO", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "d5e2632a-b541-47ec-dcc4-434aacfecaf5" + }, + "id": "ZvM1VbKEgalO", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 11\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 48 36 28 22 16 10 16 22 28 36 48\n", + "\n", + "Epoch 1000/100000\n", + " - loss: 0.0554\n", + "\n", + "Epoch 2000/100000\n", + " - loss: 0.0276\n", + "\n", + "Epoch 3000/100000\n", + " - loss: 0.0217\n", + "\n", + "Epoch 4000/100000\n", + " - loss: 0.0195\n", + "\n", + "Epoch 5000/100000\n", + " - loss: 0.0179\n", + "\n", + "Epoch 6000/100000\n", + " - loss: 0.0166\n", + "\n", + "Epoch 7000/100000\n", + " - loss: 0.0157\n", + "\n", + "Epoch 8000/100000\n", + " - loss: 0.0151\n", + "\n", + "Epoch 9000/100000\n", + " - loss: 0.0144\n", + "\n", + "Epoch 10000/100000\n", + " - loss: 0.0139\n", + "\n", + "Epoch 11000/100000\n", + " - loss: 0.0135\n", + "\n", + "Epoch 12000/100000\n", + " - loss: 0.0131\n", + "\n", + "Epoch 13000/100000\n", + " - loss: 0.0131\n", + "\n", + "Epoch 14000/100000\n", + " - loss: 0.0128\n", + "\n", + "Epoch 15000/100000\n", + " - loss: 0.0117\n", + "\n", + "Epoch 16000/100000\n", + " - loss: 0.0119\n", + "\n", + "Epoch 17000/100000\n", + " - loss: 0.0108\n", + "\n", + "Epoch 18000/100000\n", + " - loss: 0.0103\n", + "\n", + "Epoch 19000/100000\n", + " - loss: 0.0100\n", + "\n", + "Epoch 20000/100000\n", + " - loss: 0.0100\n", + "\n", + "Epoch 21000/100000\n", + " - loss: 0.0094\n", + "\n", + "Epoch 22000/100000\n", + " - loss: 0.0090\n", + "\n", + "Epoch 23000/100000\n", + " - loss: 0.0090\n", + "\n", + "Epoch 24000/100000\n", + " - loss: 0.0098\n", + "\u001b[1m52/52\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n", + "Время на обучение: 1065.6178832054138\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Скрытых слоев 7, нейроны: 48->36->28->22->16->12->16->22->28->36->48\n", + "\n", + "Ошибка MSE_AE3_v1 = 0.0098" + ], + "metadata": { + "id": "9BrPUb_8fX5R" + }, + "id": "9BrPUb_8fX5R" + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3_v2, IREth3_v2, 'AE3_v2')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 724 + }, + "id": "kh1eMtvpf6F-", + "outputId": "f4226ec6-4667-4280-ef13-f87c28dc13f6" + }, + "id": "kh1eMtvpf6F-", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4FNX9x/HP3kIVUCQINrDFgiUSoyYWsKKJNTawgbEktqjEqPxixBaN3Rgxxoq9xg5RIIpiRaSoiAgKCApIhwvcvr8/1t07u3dmdmZ2Zmdm9/16Hh727k45O3umfed7zkkkk8mkAAAAAAAAACAiKsIuAAAAAAAAAAAYEbQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAIGYMWOGzjvvPO20007q1KmTEolE5t/cuXPDLl5ZGjlyZOY3GDJkSFHXbfz9AQAAgHwIWgIA4KP+/ftnAjNXX3215XTGAE7uv8rKSm244YbabrvtdMIJJ+iBBx5QTU2NpzK4/edXIOuVV17R7rvvrn/961+aMWOGq/IDwLhx47KOTTvuuKPrZVx99dWej4W9e/c2XWZDQ4M++OAD3X777Ro8eLD22msv9ezZU+3bt1d1dbW6deumPfbYQ+edd54mTJhQ4FYI14oVK/Tcc8/pvPPO069+9St1795dbdq0UefOnbXNNtto4MCBeuKJJ9TQ0BB2UQEAJaoq7AIAAIBszc3NWrVqlVatWqXZs2fr+eef17Bhw3Tffffp2GOPDbt4edXU1GjIkCGqq6uTJPXs2VP77ruvfvKTn2Sy7Dp37hxmEQty9dVX65prrpEkDR8+3DY4DURV7969NW/ePEnSnDlzLIN0YXnkkUey/v7yyy81ceJE7bnnniGVKOXll1/WCSecYPn5smXLtGzZMn3yySf617/+pYMOOkgPPfSQttxyyyKWsjA1NTUaNGiQxowZo/r6+lafNzQ0aM2aNfrmm2/0zDPP6Morr9Qjjzyi/fffP4TSAgBKGUFLAABCdswxx2izzTbL/N3c3KylS5fqgw8+0IIFCyRJS5cu1fHHH6/nn3/eVeDyF7/4haub/L333tt5wS289tprWrFihSSpT58++vjjj9W+ffuClwugPKxZs0YvvPBCq/cfeeQRz0HLTTfd1NWxc+ONN847TZs2bbTjjjtq2223VdeuXZVMJrVo0SJ9+OGHWrp0qSTpf//7n/bdd1+9++67sQlc1tTU6LXXXst6b5NNNtEee+yhHj16qKGhQVOnTtWnn34qSZo7d64OOuggvfjiizriiCPCKDIAoEQRtAQAIGQXXXSR+vfv3+r95uZmPfLIIzr33HNVV1en5uZmnXvuuRowYIA6dOjgaNm//vWvi54JOHny5MzrQYMGEbCMkCFDhhS9L8u0ZDIZynoRP88//7zWrVsnSWrfvr3Wr18vSXr66ad1xx13qE2bNq6Xud122+nuu+8uuGw9e/bUlVdeqcMOO0x77LGH2rZt22qaxsZGPfroo7rgggu0fv16zZ8/X+edd16rQGDUbbTRRjr99NN1xhlnaLfddmv1+bvvvqvTTz9dc+bMUWNjo0455RR99dVX2mSTTUIoLQCgFNGnJQAAEVVRUaEzzjhDN998c+a9xYsX66WXXgqvUA6ksyyl1A0+ALhhbBp++eWXZ4Jgy5cv16uvvhpWsSRJ++yzj6677jrts88+pgFLSaqqqtLvfvc73XvvvZn3Ro8encmcj7o2bdroqquu0ty5c3XnnXeaBiwlad9999Wbb76Z6e5j9erVuvPOO4tYUgBAqSNoCQBAxP3+979Xu3btMn+/8847IZYmP+OgDBUVXGoAcG7u3LmZY1wikdDgwYM1aNCgzOe5fV1GmTHTPJlMaurUqeEWyKGuXbvqmmuucdT3cO/evfWHP/wh8/eoUaOCLBoAoMxwJwEAQMS1bds2a+Tc77//PsTSmDOO0msMKpxxxhmtRuUdOXKk6TJqamp01113acCAAdp8883Vrl07bbTRRtp55511wQUX6KOPPnJUFuO60qZNm6aLLrpIO++8s7p27apEIqFjjjnG1XdMj8qeHoRHkq655hpHo7APGTKk1fdfuXKl/vGPf2j//ffXZpttpqqqKiUSCa1cuTJr3h9++EEPP/ywBg8erN13311du3ZVdXW1NtxwQ+2www4644wz9MYbbzj6DiNHjsw7Uvz48eMz0xi7LXjzzTc1cOBAbb311mrXrp023nhj7b///rr77rsdjR5s9rvk6t27d2aauXPnSpIWLFigv/71r9ptt9204YYbqmPHjtphhx104YUXZgaScWrs2LEaOHCgttxyS7Vr1049e/bUfvvtpxEjRmjt2rWSsuuyX10rLF26VLfeeqsOPvhgbbrppmrXrl3mN+zTp4+OP/543X777ZozZ46j5f3vf//TH/7wB/Xp00ddu3ZV27Zttemmm2rAgAG6++67M82pc82dOzfz3YzbbquttjKtx+PHj/fj67vy6KOPZroS2HfffdW7d2+ddtppmc//+9//6ocffih6ubyorq5Wly5dMn+vWbPG93W88MILmd9r++23dzzfggULVFlZqUQioaqqKi1atMhzGfbZZ5/M6/R+CwCAH+jTEgCAGDD2C1lbWxtiSYLx2muv6eyzz25141xXV6eVK1dq+vTpGjFihE4++WTdf//9jvv0lFJBqOuvv15NTU1+F9uz9957T4MGDdL8+fNtp7vrrrs0dOhQ07KnR5ifOXOmRo4cqQMPPFDPPvusowFE3Kivr9cFF1yg+++/P+v9uro6TZgwQRMmTNDDDz+sN954Q926dfN13S+99JKGDBmiVatWZb0/c+ZMzZw5Uw8++KCee+45/eY3v8n7Hc4880w9/vjjWe8vWrRIixYt0rvvvqsRI0boxRdf9LX8Umq06TPOOCOr24S09G/4xRdf6D//+Y9uv/122ybE8+fP1+mnn24aTFy4cKEWLlyoMWPG6MYbb9TTTz+t/fbbz8+vUhSPPvpo5nU6WNm3b1/16dNH06dPV2Njo5588kldfPHFIZXQuaVLl2rJkiWZv4MYof03v/mNNtxwQ61cuVJfffWVPv74Y/3iF7/IO9+TTz6p5uZmSdJBBx2kHj16eC6D8UFElI6zAID4I2gJAEAMGLMrozjIwZ577qnzzz9fUioL7Msvv5SUuhneYYcdsqY1Zo1K0jPPPKNTTjklc7NbWVmpfffdV9tuu61qamo0YcKEzPd/8sknNWfOHL355ptZTeat3HLLLZnMyG222UZ77rmnOnTooLlz56q6utrVdzz22GO18847a+LEifr4448lWY/ObjcK++zZs3XxxRdr1apV6tSpk/bff39tuummWrFiRaum/99//31mu2y99dbacccd9ZOf/ETt2rXTypUr9dlnn2n69OmSUpmQBx98sD788EPLvva8OOecc/TII4+ooqJCe+21l3bYYQc1Nzfrww8/1MyZMyWlBl86/fTTNXr0aN/WO27cOP3hD39QU1OTttxyS/3yl79U586dNWfOHI0fP16NjY1av369TjzxRH3++efaaqutLJc1aNCgrNGou3btqv79+6tr166aP3++3n77bc2YMUO/+c1vdNRRR/n2HSZNmqTjjz9ejY2NklIPH/bee2/17t1bbdu21erVq/X111/rs88+yww8Y2XGjBk66KCDtHDhQkmpQFHfvn210047qX379vruu+/0zjvvaM2aNfr+++91yCGH6L///a8OOOCAzDI6d+6c2U8fffTRTObf6aefrk6dOrVa52abbebLdnDq3Xff1ddffy0plWF+wgknZD477bTTdMUVV0hKNRGPetAymUzqsssuy+y/W265paNgolvp7ZR+qPDEE084Ws8TTzyReW3MZPXis88+y7zeYostCloWAABZkgAAwDf9+vVLSkpKSg4fPtxyuvQ0kpJvvfWW7TJnzpyZNf3dd9/tSxmCMnjw4Mz6H374YdtpZ8+endxggw0y0++5557JWbNmZU3T1NSUvO2225IVFRWZ6S688ELLZRq3VVVVVbJLly7JF198sdV0tbW1Xr5ecvjw4a63r3GbVFVVJSUlzz///OSaNWuypquvr082NTVl/n7wwQeT//znP5MLFiywXPa0adOSe+yxR2b51113neW0Dz/8cGa6wYMHm07z1ltvZaZp27ZtUlLyF7/4RXLGjBlZ0zU3NyfvvPPOrO399ttvW67bOJ2VXr16Za27Y8eOycceeyzZ3NycNd3nn3+e3GyzzTLTnnHGGZbLfOCBB7LW/ac//anVb7948eLk4YcfnvWd/dh/jjnmmMyyjjvuuOTy5ctNp1u/fn1y1KhRyd///vemn9fU1CR33HHHzLIOP/zw5OzZs1tNt2rVquS5556bma5nz57JlStXmi7TuK3nzJnj+Tv66ayzzsqU6fjjj8/6bP78+VnHgGnTpuVdnnFf7devX0ClbtHQ0JD87rvvkv/5z3+yjsPV1dXJUaNGBbbet99+O7OuTTbZJNnY2Gg7/WeffZaZvmPHjsmamhrP625qakrusMMOmeWdf/75npcFAEAuMi0BAIiwxsZGXXTRRZm/O3furIEDBzqef/To0Vq6dKnj6a+99lp17drVVRkLce2116qmpkaStO2222rMmDFZfcBJqcF8hg4dqkQioaFDh0qSRowYoUsuucQ2u06Smpub9corr2j//fdv9Zmf2YhuNDY26qyzztLdd9/d6rPc7M/f/e53eZe36667aty4cdphhx20aNEi3XPPPRo2bJgqKysLLmtdXZ222247vfnmm9pggw2yPkskErrooov07rvv6vnnn5ckPfXUU6bb2ov6+nq99NJLOuyww1p91qdPH/373//WEUccIUl67rnndN9996mqKvvStqmpScOHD8/8/fvf/1633nprq+V1795dL730kvbdd99MFq0fJkyYIClV10aOHNlqG6a1a9dOv/71r/XrX//a9PPbb79dM2bMkJTK+H3++edNB7nq3Lmz7rnnHq1bt06PPPKIFi5cqHvvvVeXX365T98oOOvXr9ezzz6b+Ts3+2/zzTdX//799eabb0pKZVvedtttjpc/a9YsXXDBBY6nP+2007TXXnvlnW7bbbfNZIea6dmzp5566in169fP8brd2m+//dSrVy/NmzdPixcv1rhx4zRgwADL6Y3dJBx77LHq2LGj53Xfc889mcz6iooKnXvuuZ6XBQBAK2FHTQEAKCV+ZFo2NTUlFy9enHzhhReSe+65Z1aG3vPPP++qDG7/+ZFx5TTTcsWKFVlZbS+88ILtcpuampJ9+vTJTH/FFVeYTmf8PieeeGIhX8VUoZmW7dq1s8y4K4Qxw+7TTz81ncZtpqWk5H/+8x/b9Y4ePTozbd++fS2nMy7TijH778gjj7Rdb3Nzc7JHjx623/m1117LyihbsWKF7TKNGWtufl8r1dXVSUnJjTbayPMy6uvrk927d89kgS5evDjvPN99910ykUgkJSV32WUX02milmn55JNPZsqz8cYbJ+vr61tNY6y/m2yySbKhocF2mcZ91e2/fFniadtss43lMs4888yCshjd+L//+7/Mek899VTL6Zqbm5NbbLFFZtrXX3/d8zo///zzrEz5s88+2/OyAAAwQ6YlAAAhM/Y5Z2X77bfXbbfdlnfAkTh5//33VVdXJ0nq1q2bjjzySNvpKyoq9Lvf/U5/+tOfJElvvfVW3nW4yUotlkMPPVQbbbSR6/l++OEHffjhh5oxY4ZWrFihtWvXZkZZllL9J6ZNnTpVu+yyS8FlbdeuXd7fZffdd8+89nPkYGN/hmYSiYR22223zOBNc+fObfWdjQPWpAcssbP//vtryy231LfffuupzLm22GILffPNN1qxYoWeeeYZnXTSSa6XMWnSpMxo2QcddJC6d++ed55NN91UO+ywg2bMmKHPP/9cq1atapXBHDWPPPJI5vXAgQNN+5w9/vjjdf7552vdunVavHix3njjjdCPiaeddlpmsJ3a2lp9//33+uijj7R8+XI9+OCDGj16tG666aaC+43M59RTT9UNN9wgKTWA1bp160wHLHvnnXcyA4D16NFDBx98sKf1rVy5Usccc0wmU3677bbT7bff7rH0AACYI2gJAEDEbbLJJnr00UdNB3zJZ/jw4br66qv9L5QPpkyZknm95557tmraa2afffbJmj+ZTGaNXJvr5z//eWGFDIDbMn3xxRe6/PLL9d///tfxyLxuugSws/322+cdsMg4Wvnq1at9Wa8kR0HXfOueOnVq5rWTpr5Sqi76FbQ88cQT9fe//11SajCgdODygAMOcBR8lKQPPvgg83rBggWOmzivXLlSkpRMJrVgwYJIBy2///57jRs3LvO3VYBvgw020DHHHKMnn3xSUirQ6TRo2a9fP9NR1wtl7H4grb6+Xo899pj+9Kc/aeHChTr99NM1d+5c/fWvf/V9/Wk77rij+vbtq8mTJ6umpkYvvfSSTj755FbTGZuGDxo0yFM3ErW1tTr66KM1e/ZsSaluCZ5//nnL7g8AAPCKoCUAACE75phjskbpXbZsmb7++utM33qLFy/Wfvvtp//85z+ZPvxKQTo7SZJ69erlaJ7evXtnXtfX12vNmjXq3Lmz5fQ/+clPPJcvKG7K9MYbb+joo4/OZKQ6lR4VulBOAl3GoGZ6lOww1t3Q0NDqc2Mdczqq8eabb+5oOieuvPJKjR8/Xh9++KGSyaRefPFFvfjii5JSmWn77befDjroIB155JGmo3dLqYBe2qeffqpPP/3UdTlWrFjh7QsUyeOPP54JyG+33Xa2AebTTjstE7R85ZVXtGLFCk+Zy0Fq06aNzjzzTO2yyy7ad9991dDQoOHDh+vAAw/MevDit1NPPVWTJ0+WlBodPDdoWVdXl+l/Nj29W42NjTrppJP0zjvvSEplY7/yyivaddddCyg5AADmWvfgDQAAiuqiiy7S3Xffnfn31FNPaeLEiZo2bZp22203SakA3aBBg2wHfIibdLNCSY4HgsidLl9wrn379u4LFjCnZVqyZIlOOumkTMCyV69euvHGG/Xuu+/q+++/17p169Tc3KxkMqlkMpmV8dXc3OxLWe2yWIPmx7qNdcysqawZP7PFOnbsqLffflu33HJLVsBdSg0M89BDD+mUU05Rjx49dNlll2n9+vWtlrFq1aqCy+FnMDkIxqbh+QJphxxyiHr06CEpFYR75plnAi1bIfbcc0+dfvrpklIZr3fccUeg6zNmTo4ZMyYraC9Jo0aNymTg7rTTTurbt6+r5Tc3N2vIkCF65ZVXJElVVVV67rnnAh1kCABQ3ghaAgAQUbvuuqvGjBmTycKsqanRWWedFXKp/GMMDq1du9bRPLnTWWWnlYL7778/E7Dabbfd9Omnn+qKK67QPvvso549e6p9+/ZZgT2/sitLibGOrVu3ztE8TuuiU23atNGll16qb775RlOnTtVdd92lgQMHZmVXr1u3TrfccosOOOCAVoFLY6D+j3/8YyZI7eZf//79ff1Ofpo0aZK++OKLzN/Dhw9XIpGw/FdVVZXpx1TKDnhG0SGHHJJ5/d577wW6LmMflY2Nja0Cuk888UTmtZcsyz/84Q+ZZVRUVOjRRx8tqex/AED0ELQEACDCunfvrn/+85+Zv8ePH69Ro0aFWCL/GJtJO+1D0DjQS5s2bUo6aPm///0v8/rKK6+0bQYvSfPmzQu6SLHTrVu3zOsFCxY4msfpdG6lBw668MIL9dRTT2nBggWaPHmyzjjjjMw0H330kUaMGJE13yabbJJ5bQzWlYpCg44ffvihvvrqK59K4z9j0/Vly5YFvj5jMNLYf+XKlSsz545EIqFTTjnF1XIvueQS3X///Zm///3vf2vQoEEFlhYAAHv0aQkAQMQde+yx2meffTJZOldeeWXoI+b6wTjq9MSJE9XU1JR3UIj3338/a/4wmi8Xa53GvgzzDUrT1NQUeBZXHP3sZz/LBH8/+ugjR/NMnDgxyCJl2X333fXQQw+psrJSDzzwgKRUP42XXnppZhpj/47vv/9+3sGnnAqz6X9afX29nnrqqczf22+/fd4R3tNmzZql5cuXS0oFPv/2t78FUcSCLVy4MPO6a9euga/v2GOPVceOHbV27Vp99NFH+vrrr7XNNtvo+eefz3Q1sf/++2vLLbd0vMy//OUvuvPOOzN/33HHHSWV9Q8AiC4yLQEAiAHjCOBTp07N9CkWZ7/61a/Utm1bSan+G/NlkDY3N+vhhx/O/H3ggQcGWj4r7dq1y7w2G/zFLxUVLZdp+Zo2v/TSSyWZhVcoY7PoUaNG5e0f8t133w0lY/Woo47KvF68eHHWZ/vss08mkLdgwQK9+uqrvqyzWPXYzqhRozLZh1VVVXrnnXf04YcfOvr3f//3f5nlPPbYY7714+q31157LfN6xx13DHx9HTt21DHHHJP5O51tacy6dNM0/G9/+5tuuOGGzN/XXnutLr744oLLCQCAEwQtAQCIgYMPPli/+tWvMn9ff/31IZbGHxtuuKFOOumkzN9//vOfbftlvPvuu/XZZ59JSgX0zjnnnMDLaGbjjTfOvP7uu+8CW8/WW2+deW0XpF6yZIkuueSSwMoRZ4cddpg23XRTSak+YY2Brlz19fVZGY6FqquryxoIyM78+fMzr7t37571Wdu2bbOCROedd56repcbBE0rVj22Y2wafsghh7T67nYGDRqUCezPnz9fb731lu/ly9XY2OhqYKTRo0frP//5T+bv4447LohitXLaaadlXj/xxBOaP39+1mjfJ5xwgqPl/OMf/9CVV16Z+fuyyy7TX//6V38LCwCADYKWAADExFVXXZV5/fHHH+v1118PsTT+uOqqqzKDpXz11VcaMGCAvvnmm6xpmpub9Y9//ENDhw7NvHf++ee3Go25WHbeeefM6zFjxvgyurOZI488MvP6xhtvzMqUSps8ebL69eun+fPnOx6BvZxUVVVlZSnfc889uvzyy1VfX5813ZIlS3Tcccfpo48+ymT/FmrhwoXaYostdOmll2rSpEmW040dOzZr5PfDDz+81TR/+tOf1KdPH0mpAOMee+yh5557zjK7cOnSpbrvvvvUt29f3XLLLabTGOvxc8895+g7jRw5MmtQHGMfs24tXbpUo0ePzvztto/FTTfdVAcccEDm72IMyFNTU6OtttpKV111lWbOnGk53YoVK3T99dfrt7/9rZLJpCRp22231dlnnx14GaXUQ670COuzZs3SJZdckinHEUccoS5duuRdxkMPPZT1MOT888/XTTfdFEyBAQCwQJ+WAADExIABA7TXXntl+ua77rrrdNhhh9nOM3r0aC1dutTxOjp06KCbb765oHK6sc022+iBBx7QKaecoqamJn3wwQfafvvttd9++2mbbbZRTU2NJkyYkJUJtvfeexe1jLn23HNPbbHFFpo/f74WLlyoHXbYQYceeqi6deuW6SfwF7/4RVYWqReDBw/Wbbfdpq+++kp1dXU67bTTdMMNN2i33XZTu3bt9Pnnn2eCYbvttpsGDBgQ6naJqrPOOkujRo3Syy+/LEm6+eab9eCDD6p///7q2rWrFixYoLfeeku1tbXaeuutdfTRR+uOO+6QlN1E34uVK1fqtttu02233aauXbtq991312abbaZ27drphx9+0KeffpoVpP/pT3+qiy66qNVyNthgA73yyis6+OCDNWfOHC1atEgnnniiunXrpr333ls9evRQMpnU8uXL9cUXX2jWrFmZgKZVNwrHHXec/v3vf0tKBXM/+eQT9e3bVx06dMhMc+6552qbbbYpaBtYefLJJzPN0nObNDt1yimnZPosfeGFF3TPPfdkjRhvNGvWLF1wwQWulj9s2LCsUd6lVEDyuuuu03XXXadNN91Uu+66q7p3764OHTqopqZGs2fP1uTJk7MC4z169NArr7ziW0A8n8rKSg0cODDTD6Ux29OYhWnls88+09lnn50JdHbs2FHJZNLx9rvooou03XbbuS84AAC5kgAAwDf9+vVLSkpKSg4fPtxyuvQ0kpJvvfWW4+WPGjUqa95x48bZlsHtvy5durj/0jkGDx6cWd7DDz/saJ5XX301uckmm+Qt36BBg5Jr1661XZZx+qC8+uqryTZt2liWc/DgwVnTe9kmyWQyOXPmzOTWW29tu0322Wef5IIFC5LDhw/PW/cefvhhyzKmvfXWW5lp+vXr56icTra5k2l69eqVmWbOnDl51+t0u9bW1iYHDhxoux133HHH5Jdffpn8v//7v8x7d9xxR94yWFmwYEGybdu2jve9/v37JxcuXGi7zGXLliVPOOGEZCKRcLTMDTfcMDly5EjL5Q0aNMh2/txjk7H+OP2NrPTt2zeznFNOOcXTMlatWpVs166dZR0w7hNe/k2ZMqXV+qqqqlwt47e//W1ywYIFHreSd5MmTWpVlo033jhZX1+fd17jMcDLPzfnNAAA7JBpCQBAjPz617/WHnvskcmwu/baa3XQQQeFXKrCHXHEEZo9e7Yeeughvfbaa5o+fbqWLl2q9u3bZ5qBnn766VkjKYfpiCOO0KRJkzRixAi9++67+vbbb1VTU5PJTPLLT3/6U02ZMkUjRozQCy+8oJkzZ6q+vl49evTQLrvsopNPPlknnnhi3lHXy13btm311FNP6YwzztADDzygDz74QD/88IM22mgjbbvttho4cKDOOOMMdezYMTMitSTHI1mb2WyzzbRs2TK9+eabmjBhgj755BPNnj1bS5YsUX19vTp16qRevXplsnIPPvjgvMvs2rWrnn32WX3++ed66qmnNH78eM2ZM0fLli1TRUWFNtxwQ2277bbq27evDj74YB1yyCFZA+7keuKJJ3TEEUfoqaee0tSpU7V06VLV1tZ6/s5Off7555o8eXLmb7dNw9M6d+6sI488MtO8feTIkRoyZIgfRbRc37JlyzRu3Di99957mjJlir755hstWbJEdXV16tixozbaaCP16dNHe+21l04++WRtu+22gZXHzs9//nPtuOOOmjFjRua9E088UdXV1aGUBwAALxJJv6+uAQAAgJjaZ5999P7770uSPvzww8gEygEAAMoNQUsAAABA0rx587TNNtuoqalJbdq00apVq2wzFQEAABAcRg8HAABA2Usmk7rooovU1NQkSTr22GMJWAIAAISIoCUAAABK2lVXXaV//OMfWrp0qennc+fO1bHHHpsZYbyyslKXXnppMYsIAACAHAzEAwAAgJL27bff6rrrrtOll16qXXbZRTvssIO6dOmimpoaffnll5oyZUomw1KSrrzySu2xxx4hlhgAAAAELQEAAFAWGhsbNWXKFE2ZMsX08/bt2+vaa68lyxKBe/zxx/Xhhx8WtIzttttOF110kU8lAgAgehiIBwAAACVt5cqVevnll/Xmm29q+vTpWrJkiZYuXaqmpiZ17dpV22+/vQ466CCdeeaZ6tmzZ9jFRRkYMmSIHnnkkYKW0a9fP40fP96fAgEAEEFkWjrU3Nys77//Xp06dVIikQi7OAAAAHCooqJCxx57rI499ti8065evboIJUK5a2hoKHgZTU1N1FcAQOwkk0mtWbNGm266qSoq7IfaIdPSoQULFmiLLbYIuxgAAAAAAABArM2fP1+bb7657TRkWjrUqVMnSamN2rlz55BL47+GhgaNGTNGhx56qKqrq8MuDmCKeoq4oK4iDqiniAvqKuKAeoq4oK4ibKtXr9YWW2yRibPZIWjpULpJeOfOnUs2aNmhQwd17tyZAxcii3qKuKCuIg6op4gL6irigHqKuKCuIiqcdL1o33gcAAAAAAAAAIqMoCUAAAAAAACASCFoCQAAAAAAACBSCFoCAAAAAAAAiBSClgAAAAAAAAAihaAlAAAAAAAAgEghaAkAAAAAAAAgUqrCLkA5SCaTamhoUHNzc9hFsdTQ0KCqqirV1taqqakp7OKUvMrKSlVXV4ddDAAAAAAAgEgiaBmg+vp6/fDDD1q3bl3kA4HJZFI9evTQ/PnzlUgkwi5OWWjbtq26deumzp07h10UAAAAAACASCFoGZB169Zp/vz5qqys1EYbbaT27dursrIysgHB5uZm1dTUaIMNNlBFBb0GBCmdebtq1Sp99913kkTgEgAAAAAAwICgZUCWLl2q6upq9erVS5WVlWEXJ6/m5mbV19erXbt2BC2LoH379urUqZMWLFigpUuXErQEAAAAAAAwIDoVgMbGRq1du1Zdu3aNRcAS4UgkEurSpYvq6urU0NAQdnEAAAAAAAAig6BlABobGyWl+iwE7KQH44l6n6cAAAAAAADFRNAyQFHtvxLRQR0BAAAAAABojaAlAAAAAAAAgEghaAkAAAAAAAAgUghaAgAAAAAAAIgUgpYIVe/evZVIJDRy5MjMeyNHjlQikcj6V1FRoc6dO2v33XfXsGHDtGTJEstl5s5r9W/8+PHBf0EAAAAAAAC4VhV2AQArHTt21PHHHy8pNbr2vHnz9MEHH2jq1Kl6+OGHNWHCBG233XaW8w8YMEA9evSw/NzuMwAAAAAAAISHoCUiq1u3blkZmJI0ffp09evXT4sXL9bFF1+sUaNGWc5/xRVXqH///sEWEgAAAAAAAL6jeThipU+fPho6dKgkaezYsaqrqwu5RAAAAAAAAPAbQUvEzq677ipJamho0PLly0MuDQAAAAAAAPxG0BKxs3r1aklSZWWlunXrFnJpAAAAAAAA4DeCloiddD+Whx12mKqrq0MuDQAAAAAAAPzGQDxh2WMPadGisEuRkZDUOZlUIpHIP3GPHtKkSYGXySg9evh9992nJ598Ur169dJdd91lO88BBxxg+VmXLl20cuVKn0sJAAAAAAAAPxC0DMuiRdJ334VdiozEj/+iZN68eaZB1D333FNjxoxRly5dbOcfMGCAevToYfpZhw4dfCkjAAAAAAAA/EfQMiwWwbSwJCUlf8y0zBu8LFLZO3bsqOOPP16SVFdXpxkzZmjatGmaOHGifv/73+vpp5+2nf+KK65Q//79i1BSAAAAAAAA+ImgZViK3Lw6n2Rzs1avXq3OnTsrURGNrk67deumkSNHZr33wgsv6KSTTtIzzzyj/fffX+edd144hQMAAAAAAEBgohGdAhz67W9/qyuuuEKSdNVVV2nVqlUhlwgAAAAAAAB+I2iJ2Bk2bJh69uypZcuW6fbbbw+7OAAAAAAAAPAZQUvETocOHfTXv/5VknTnnXdqxYoVIZcIAAAAAAAAfqJPS8TSWWedpdtuu01ff/21br31Vv3tb39rNc3f//73Vn1iGp188sk69NBDAywlAAAAAAAAvCBoiViqrq7W9ddfr0GDBumf//ynhg4dqo033jhrmjfeeMN2GT/72c8IWgIAAAAAAEQQQUuEau7cua3eGzJkiIYMGZJ33oEDB2rgwIGt3k8mkz6UDAAAAAAAAGGhT0sAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELREqHr37q1EIqGRI0dm3hs5cqQSiUTWv4qKCnXu3Fm77767hg0bpiVLllguM3deq3/jx493VdZ0uYYMGeLtywIAAAAAAMCRqrALAFjp2LGjjj/+eElSU1OT5s2bpw8++EBTp07Vww8/rAkTJmi77baznH/AgAHq0aOH5ee5nyUSCUlSMpn0ofQAAAAAAADwiqAlIqtbt25ZGZiSNH36dPXr10+LFy/WxRdfrFGjRlnOf8UVV6h///7BFhIAAAAAAAC+o3k4YqVPnz4aOnSoJGns2LGqq6sLuUQAAAAAAADwG0FLxM6uu+4qSWpoaNDy5csLXt7VV1+daRoute4Tc+7cua3mWbt2rYYNG6Ztt91Wbdu2VY8ePTR48GB99913BZcHAAAAAACg3NE8HLGzevVqSVJlZaW6detW8PJ+9rOfafDgwXrkkUckSYMHD876fIMNNsj6e9WqVfrVr36lb7/9Vvvtt5923nlnffDBB3r00Uf19ttva9q0aerSpUvB5QIAAAAAAChXBC0RO+l+LA877DBVV1cXvLxjjjlGxxxzTCZomduPZq6XXnpJAwYM0IQJE9S5c2dJ0ooVK3TggQdq6tSpuueeezRs2LCCywUAAAAAAFCuCFqGZI899tCiRYvCLkaWZDKZ1UzaSo8ePTRp0qQilKhFevTw++67T08++aR69eqlu+66y3aeAw44wPKzLl26aOXKlZ7K0rFjRz388MOZgKUkbbTRRrriiis0cOBAjRs3jqAlAAAAAABAAQhahmTRokX0f5jHvHnzTIOoe+65p8aMGZO3CfaAAQPUo0cP0886dOjguVx77LGHevbs2er9HXfcUZL4XQEAAAAAAApE0DIkVsG0MLnJtCyGjh076vjjj5ck1dXVacaMGZo2bZomTpyo3//+93r66adt57/iiivUv39/38u15ZZbmr6fzrysra31fZ0AAAAAAADlhKBlSIrdvDqf5uZmrV69Wp07d1ZFRTQGle/WrVur/iVfeOEFnXTSSXrmmWe0//7767zzzit6uaKyfQAAAAAAAEoV0RfEym9/+1tdccUVkqSrrrpKq1atCrlEAAAAAAAA8BtBS8TOsGHD1LNnTy1btky33367b8tNj0Te2Njo2zIBAAAAAADgHkFLxE6HDh3017/+VZJ05513asWKFb4sd/PNN5ckTZ8+3ZflAQAAAAAAwBv6tEQsnXXWWbrtttv09ddf69Zbb9Xf/va3VtP8/e9/b9UnptHJJ5+sQw89NPP3cccdp1tvvVUHH3ywDjzwQHXq1EmSdNNNN2njjTf2/TsAAAAAAADAHEFLxFJ1dbWuv/56DRo0SP/85z81dOjQVoHFN954w3YZP/vZz7KCltddd50qKir0wgsv6KWXXlJ9fb0k6corryRoCQAAAAAAUEQELRGquXPntnpvyJAhGjJkSN55Bw4cqIEDB7Z6P5lMeipLu3btdNNNN+mmm24y/TxfuXr37u153QAAAAAAAGhBn5YAAAAAAAAAIoWgJQAAAAAAAIBIIWgJAAAAAAAAIFIIWgIAAAAAAACIFIKWAAAAAAAAACKFoCUAAAAAAACASCFoCQAAAAAAACBSCFoGKJlMhl0ERBx1BAAAAAAAoDWClgGoqEht1qamppBLgqhL15F0nQEAAAAAAABBy0BUV1erurpaNTU1YRcFEbd+/XpVVlaquro67KIAAAAAAABEBkHLACQSCXXq1EmrVq3S+vXrwy4OIqqpqUmrVq1Shw4dlEgkwi4OAAAAAABAZFSFXYBS1a1bN61fv17ffvutOnfurE6dOqmysjKywanm5mbV19ertraWpsoBSyaTqqur0/Lly9Xc3Kzu3buHXSQAAAAAAIBIIWgZkMrKSm2xxRZaunSp1qxZo5UrV4ZdJFvJZFLr169X+/btIxtYLTUdO3ZUjx491KZNm7CLAgAAAAAAECkELQNUWVmpTTbZRN27d1dDQ4Oam5vDLpKlhoYGvfPOO9p///3pX7EIqqqqVFXF7gcAAAAAAGCGqEkRJBKJyGfTVVZWqrGxUe3atSNoCQAAAAAAgFDReSEAAAAAAACASCFoCQAAAAAAACBSCFoCAAAAAAAAiBSClgAAAAAAAAAihaAlAAAAAAAAgEghaAkAAAAAAAAgUghaAgAAAAAAAIgUgpYAAAAAAAAAIoWgJQAAAAAAAIBIIWgJAAAAAAAAIFIIWgIAAAAAAACIFIKWAAAAAAAAACKFoCUAAAAAAACASCFoCQAAAAAAACBSCFoCAAAAAAAAiJRYBi1vvPFG/eIXv1CnTp3UvXt3HXPMMZo5c2be+Z577jntsMMOateunXbZZReNHj26CKUFAAAAAAAA4EYsg5Zvv/22zj//fH344YcaO3asGhoadOihh2rt2rWW87z//vsaNGiQzjzzTE2ZMkXHHHOMjjnmGH3++edFLDkAAAAAAACAfKrCLoAXr7/+etbfI0eOVPfu3fXJJ59o//33N53nH//4hw477DD9+c9/liRdd911Gjt2rO6++27de++9gZcZAAAAAAAAgDOxDFrmWrVqlSSpa9eultN88MEHGjp0aNZ7AwYM0EsvvWQ6fV1dnerq6jJ/r169WpLU0NCghoaGAkscPenvVIrfDaWDeoq4oK4iDqiniAvqKuKAeoq4oK4ibG7qXiKZTCYDLEvgmpubddRRR2nlypV69913Ladr06aNHnnkEQ0aNCjz3j333KNrrrlGixcvbjX91VdfrWuuuabV+08++aQ6dOjgT+EBAAAAAACAMrFu3TqdfPLJWrVqlTp37mw7bewzLc8//3x9/vnntgFLL4YNG5aVmbl69WptscUWOvTQQ/Nu1DhqaGjQ2LFjdcghh6i6ujrs4gCmqKeIC+oq4oB6irigriIOqKeIC+oqwpZuyexErIOWF1xwgV577TW988472nzzzW2n7dGjR6uMysWLF6tHjx6m07dt21Zt27Zt9X51dXVJ79il/v1QGqiniAvqKuKAeoq4oK4iDqiniAvqKsLipt7FcvTwZDKpCy64QC+++KLefPNNbbXVVnnn+eUvf6n//e9/We+NHTtWv/zlL4MqJgAAAAAAAAAPYplpef755+vJJ5/Uyy+/rE6dOmnRokWSpC5duqh9+/aSpNNPP12bbbaZbrzxRknSRRddpH79+um2227Tb37zGz399NOaNGmS7rvvvtC+BwAAAAAAAIDWYplp+a9//UurVq1S//791bNnz8y/Z555JjPNt99+q4ULF2b+/tWvfqUnn3xS9913n3bbbTc9//zzeumll7TzzjuH8RUAAAAAAAAAWIhlpqWTAc/Hjx/f6r0TTjhBJ5xwQgAlAgAAAAAAAOCXWGZaAgAAAAAAAChdBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABECkFLAAAAAAAAAJFC0BIAAAAAAABApBC0BAAAAAAAABApBC0BAAAAAAAARApBSwAAAAAAAACRQtASAAAAAAAAQKQQtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUsAAAAAAAAAkULQEgAAAAAAAECkELQEAAAAAAAAECkELQEAAAAAAABESlXYBUA0vP3223rvvfe0bt06VTU2SvPmSdttJ1UQ10Z0NDY2asqUKal6WsXhC9FFXUUcUE8RF9RVxAH1FHFBXY2PffbZR5tuumnYxQgVNRSSpOuvv15vv/122MUAAAAAAAAoey+//LKOOuqosIsRKtLoAAAAAAAAAEQKmZaQJJ1zzjnaeuutteM226jyyitbPrjttvAKBeRoamrSjBkztOOOO6qysjLs4gCWqKuIA+op4oK6ijigniIuqKvx0adPn7CLELpEMplMhl2IOFi9erW6dOmiVatWqXPnzmEXx3cNDQ0aPXq0fr3//qru2rXlA6oHIiRTT3/9a1VXV4ddHMASdRVxQD1FXFBXEQfUU8QFdRVhcxNfo3k4AAAAAAAAgEghaAkAAAAAAAAgUghaAgAAAAAAAIgUgpYAAAAAAAAAIoWgJQAAAAAAAIBIIWiJbIwWDgAAAAAAgJARtAQAAAAAAAAQKQQtAQAAAAAAAEQKQUtko3k4AAAAAAAAQkbQEtkIWgIAAAAAACBkBC0BAAAAAAAARApBS2Qj0xIAAAAAAAAhI2iJbAQtAQAAAAAAEDKClgAAAAAAAAAihaAlspFpCQAAAAAAgJARtEQ2gpYAAAAAAAAIGUFLAAAAAAAAAJFC0BLZyLQEAAAAAABAyAhaIhtBSwAAAAAAAIQslkHLd955R0ceeaQ23XRTJRIJvfTSS7bTjx8/XolEotW/RYsWFafAAAAAAAAAAByLZdBy7dq12m233TRixAhX882cOVMLFy7M/OvevXtAJYwxMi0BAAAAAAAQsqqwC+DF4YcfrsMPP9z1fN27d9eGG27of4FKCUFLAAAAAAAAhCyWQUuvfvazn6murk4777yzrr76au2zzz6W09bV1amuri7z9+rVqyVJDQ0NamhoCLysxZb+Tg319ao2eR+Igkw9pV4i4qiriAPqKeKCuoo4oJ4iLqirCJubupdIJuOdWpdIJPTiiy/qmGOOsZxm5syZGj9+vPbYYw/V1dXpgQce0GOPPaaPPvpIffv2NZ3n6quv1jXXXNPq/SeffFIdOnTwq/iR03bFCh12xhmZv1/O018oAAAAAAAA4MS6det08skna9WqVercubPttGURtDTTr18/bbnllnrsscdMPzfLtNxiiy20dOnSvBs1jhoaGjR27FgdsvPO6rDtti3v19eHWCogW6aeHnKIqqur888AhIS6ijigniIuqKuIA+op4oK6irCtXr1a3bp1cxS0LKvm4UZ77rmn3n33XcvP27Ztq7Zt27Z6v7q6uqR37Oqq7CpRyt8V8VXq+yFKB3UVcUA9RVxQVxEH1FPEBXUVYXFT72I5ergfpk6dqp49e4ZdDAAAAAAAAAA5YplpWVNTo9mzZ2f+njNnjqZOnaquXbtqyy231LBhw/Tdd9/p0UcflSTdeeed2mqrrdSnTx/V1tbqgQce0JtvvqkxY8aE9RWiK969BQAAAAAAAKAExDJoOWnSJB1wwAGZv4cOHSpJGjx4sEaOHKmFCxfq22+/zXxeX1+vP/3pT/ruu+/UoUMH7brrrho3blzWMvAjgpYAAAAAAAAIWSyDlv3795fd+EEjR47M+vuyyy7TZZddFnCpAAAAAAAAAPihbPu0hAUyLQEAAAAAABAygpbIRtASAAAAAAAAISNoiWwELQEAAAAAABAygpYAAAAAAAAAIoWgJbKRaQkAAAAAAICQEbRENoKWAAAAAAAACBlBSwAAAAAAAACRQtAS2ci0BAAAAAAAQMgIWiIbQUsAAAAAAACEjKAlAAAAAAAAgEghaIlsZFoCAAAAAAAgZAQtkY2gJQAAAACglDQ2SrW1YZcCgEsELQEAAAAAQGlauVLaemtp882lWbPCLg0AFwhaIhuZlgAAAACAUnH11dL8+dKyZdKQIWGXBoALBC2RjaAlAAAAAKBULFzY8nru3NCKAcA9gpbIRtASAAAAAFCKuN8FYoWgJQAAAAAAKE2JRNglAOARQUtk48kTAAAAAKBUcI8LxBZBS2TjgA4AAAAAAICQEbQEAAAAAACliebhQGwRtEQ2Mi0BAAAAAKWI+10gVghaIhsHcQAAAAAAAISMoCUAAAAAAACASCFoiWxkWgIAAAAAACBkBC2RjaAlAAAAAKBUMBAPEFsELZGNoCUAAAAAAABCRtASAAAAAACUPpJ0gFghaIlsHMQBAAAAAKWC5uFAbBG0RDaClgAAAACAUsE9LhBbBC0BAAAAAAAARApBSwAAAAAAUJpoHg7EFkFLZCN1HgAAAAAAACEjaAkAAAAAAEofSTpArBC0RJYEB3EAAAAAQKmgeTgQWwQtkY2gJQAAAACgVHCPC8QWQUsAAAAAAAAAkULQEtl4CgUAAAAAKBU0Dwdii6AlshG0BAAAAACUIu53gVghaIlsHMQBAAAAAKWCTEsgtghaAgAAAACA0kRiDhBbBC2RjQM6AAAAAAAAQkbQEtkIWgIAAAAASgXNw4HYImgJAAAAAAAAIFIIWiIbmZYAAAAAgFLE/S4QKwQtkY2DOAAAAACgVNA8HIgtgpYAAAAAAKA0kZgDxBZBS2TjgA4AAAAAAICQEbRENoKWAAAAAIBSQfNwILYIWiIbQUsAAAAAAACEjKAlAAAAAAAofSTpALFC0BLZOIgDAAAAAEoFzcOB2CJoiWwELQEAAAAApYJ7XCC2CFoCAAAAAAAAiJQqLzOtXr1aktS5c+eCVl5TU6M333xTknTUUUcVtCz4hKdQAAAAAIBSQfNwILY8BS033HBDVVRU6NNPP9VOO+3U6vPvv/9eV155pRKJhB588EHL5cybN0/HHHOMKioq1NjY6KUo8BtBSwAAAABAKeJ+F4gVz83DkzY7+4oVKzRy5EiNHDmy4GUBAAAAAAB4QqYlEFv0aYlsBJABAAAAAKWCe1wgtghaIhsHdAAAAAAAAISMoCUAoHS9/rq0887S7beHXRIAAACEgebhQGwRtEQ2Mi0BlJLDD5emT5f+9CeObwAAAAAQIwQtkY2begCliuMbAABAeeN6ML9Zs6QpU8IuBSCJoCVycRAHUKo4vgEAAJQfmoc79+230g47SH37Sm+9FXZpAIKWAIAyQdASAACg/HAN6NwNN0jNzanXxx0XblkAFRi0TPDEovRwQAdQqji+AQDKxbRp0tFHS488EnZJAMSJMcazdm145QB+VFXIzDvvvLPlZ+mAZmVlZSGrQLFxUw+gVHF8AwCUi1/+Ulq/XnrlFen446WOHcMuERAekq2ca9u25XV9fXjlAH5UUNAyyQ0gACAuOGcBAMrF+vUtr9esIWgJwJl27cIuAZDFU9By//33p2l4qeKmHkCp4vgGAABQ3rgetEfQEhHjKWg5fvx4n4uByOAgDqBUcXwDAJQjkk0AOGVsHg5EAKOHAwAAAAAAlDuClogYgpbIRiYSgFLF8Q0AUI44/wFwiubhiJjQg5br1q3TbbfdFnYxkMZFDYBSxfENAACg/NBFgnPV1WGXAMgSWtByzZo1+tvf/qbevXvrsssuC6sYyMVNPYBSxfENAACgvHE9aK+5OewSAFk8DcRTiOXLl+uOO+7QiBEjtGrVKiWTSUYiBwAEj4tUAACA8kO8wTmCloiYgjIt582bpz/+8Y/aaaed1KlTJ3Xt2lV9+/bVjTfeqFWrVmVNW1NTo+HDh6t379664YYbtHLlSiWTSXXr1k3XX399QV8CPuKmHkCp4vgGAABQfrgGdK6pKewSAFk8Z1qOHTtWxx13nNauXStJSv54IJg2bZqmTZumRx99VG+99ZZ69Oih9957T6eccormz5+fmW6zzTbTpZdeqnPOOUft27f34avAFxzQAZQqjm8AAACANTItETGegpZLlizRoEGDVFNTk3mvY8eOqqqqymRYfvXVVzr//PN10UUXacCAAaqvr1cymdRWW22lK664QkOGDFE1nbwCAIqFoCUAAED5oXm4cwQtETGemofff//9Wr58uRKJhI4//njNnj1ba9as0YoVK/T999/rggsukCS9/PLLOvXUU1VXV6cNNthA//znPzVz5kydffbZBCyjipt6AKWK4xsAAABgLbd5eENDOOUAfuQp03LMmDGSpL333lvPPvts1mc9evTQXXfdpTVr1uiRRx7RggULtOGGG2rChAnq06dP4SVGsLipB1CqOL4BAACUN64H7eVmWq5fL5FwhhB5yrT88ssvlUgkdN5551lO88c//lGSlEgk9Mc//pGAJQCELZmU3n9f+uKLsEsSDi5SAQAAyg/Nw50zC1oCIfIUtFyxYoUkadttt7WcZrvttsu83m+//bysBmHgph4oXWPHSvvsI/XpI82bF3Zpio/jGwCgHHH+Q7ljH3Aut3n4jwMvA2HxFLRs+LFfg06dOllOs8EGG2Re9+jRw8tqEAYO6EDpOv74ltfXXhteOcLC8Q0AAACwlptpSZ+WCJmnoKVbCdKxASBayvG4TNASAACg/JTjda9XuZmWXD8jZEUJWiJGOCgBpavc9+9y//4AgPLE+Q+AU7mZlkDIPI0ennbGGWeoY8eOBU+XSCT0v//9r5CiwC+5FzXJJE+mgFJUjvs1N20AgHLE+Q9owf5gLzdoyfZCyAoKWk6aNMn283SzcLvpkskkzcejhIMSgFLF8Q0AAACwRvNwRIznoGWSylseyLQESofxuM1+DQBAeeC+DYBTZFoiYjwFLZvp56B0cVACSle5By05vgEAyhHnP5S7crzu9YqgJSKGgXiQzaxPSwAoBRzPAADliPMfAKdoHo6IIWgJAOWi3C86yv37AwDKE+c/oAX7gz0yLRExBC2RjUxLoDyUYzMZjmcAAADlpxyve70iaImI8dSn5bXXXut3OXTVVVf5vkx4QNASKF3lvj+X+/cHAJQnzn8od+wDztE8HBHjKWh59dVXK+Hz0wqClgAQMAbiCbsEAAAUH+c/AE6RaYmI8RS0lKSkj5XX7wAoCkCmJVAeyvG4y/EMAFCOOP+h3JXjda9XBC0RMZ6Clm+99Zbf5UBUcFACSle579/l/v0BAAAAOzQPR8R4Clr269fP73IgKsi0BNw55xzpjTekxx+X9tsv7NI4V45PnDmeAQDKEec/oAX7gz0yLRExnpuHA0DZ+/JL6f77U6/335+TetTx+wAAyhHnPwBOEbRExFSEXQBEHAcpwNrSpWGXwJ1y35/L/fsDAMoT5z+gRTm2NnKD5uGIGIKWyMZBCShdjB4edgkAACg+zn9AC/YHe2RaImIIWsIeBymgNBG0BAAAQDkox+terwhaImIIWiIbByXAubjtL3Err9/K/fsDAMoT5z+gdLzyirTPPtLZZ0v77is9+qi/y6d5OCKGgXiQjdHDgfJQjk+cOZ4BAMoR5z+gRdz3h6OPTv3//vup/997Tzr9dP+WT6YlIoZMS9jjIIVyMXeutHBh2KUIVrnvz+X+/QEA5YnzHwCnyLRExBC0RDYOSihHkydLW28t9eolzZ8fdmmKg0xLAAAAAEZkWiJiCFoiG83DUY5OOSVV1xsapCuucD5f3PaPuJUXAAAUjvM/yl05Pqz3iqAlIoagJQCsXdvyurbW+XxxO4kby1uOF29x+70AAPAD5z8ATtE8HBFD0BLZyLQEygNBSwAAygPnP6AF+4M9Mi0RMQQtkSXBQQnlyGsGIvtLvPB7AQDKEec/lLtyfFjvFUFLRAxBS2Qj0xLljoua0sXxDAAAoPxwDegczcMRMQQtAaAcT8blGJwtx98ZAADOfwCcItMSEUPQEtlKIdNy9Wrpppuk118PuySIo3JpHk7QEgCA8sD5D+Wu1K97/dzHCVoiYqrCLgAiphQOSpdeKt1/f+r1t99KW2wRbnkQfaVQ75EfvzMAoBxx/gNKWzLpX2CW5uGIGDItYS+OB6l0wFKS3n03vHIgnkr9SWxauXxPozgezwAAQHC4Nig/pfibk2mJEkbQEtk4KKEcea337C/xwu8FAChHnP/MPfus1K2b9Oc/h10SoDAELVHCCFoiWyn0aWlUjtlkKEy51Jly+Z5GcT+eAQDgBec/cyedJC1fLt16q9TQEHZpUCyleA2cG2gsBM3DETEELWGPgxTKAfW8PPA7AwDKEee//NhG5aMUf2syLVHCCFoiGwcllDtGDy9dcf69AADwivMfyl2pX/cStEQJI2iJbDQPRzmKez33ohz3jXL8nQEAQH5cI5Q24+9bir+1n9+J5uGImFgGLd955x0deeSR2nTTTZVIJPTSSy/lnWf8+PHq27ev2rZtq2233VYjR44MvJyxxEEJ5a5cMi3LEb8XAKAccf7Lj22EOPOzT0syLRExsQxarl27VrvttptGjBjhaPo5c+boN7/5jQ444ABNnTpVF198sc466yy98cYbAZe0BHCQQjmgnpcHfmcAQDni/Jefn0EfRE8p7QMVJiEcmoejhFWFXQAvDj/8cB1++OGOp7/33nu11VZb6bbbbpMk7bjjjnr33Xd1xx13aMCAAUEVM544KKHclUumJc3DAQAoD5z/8mMbIS4qK70HFhsapIkTpd12s56G5uGImFgGLd364IMPdPDBB2e9N2DAAF188cWW89TV1amuri7z9+rVqyVJDQ0NamhoCKScYUp/p6bGRlUa36+vTx3cYqTa8LqxqUnJmJUf1tL11O99sEpSOoTX3NysJofLTzQ2Zh1Eo35sMO4bTU1Nao54ef2QdTxobCza8SCougr4iXqKuKCuuhfW+S9OjNuoob5eatOmoOVRT6Orsqkp08Q0Kakxxr9RVSKh3NQDp/fslb/7nSoef1yJI4+UzjzTtK5WNTVlLb+xoYHjB3zn5jhZFkHLRYsWaZNNNsl6b5NNNtHq1au1fv16tW/fvtU8N954o6655ppW748ZM0YdOnQIrKxhm/nVV9rF8Pe4ceNU36VLaOXx4mjD6ylTpuj7jh1DKwuCMXbsWF+Xd1hdndr++Pq777/X5NGjHc33k6lT9SvD36MdzhcW477x9Zw5mhHx8vrB+J0/eP99LV+xoqjr97uuAkGgniIuqKvOGc9/77/3nlYsXRpaWaLKuI3GvPGGGk3uCb2gnkbPbt9+q94/vm5ubo78NbudI3OCitKP9dfBPe/Rjz8uSap69VXpzDNN6+rBa9bIuKRPJk3SosrKVtMBhVi3bp3jacsiaOnFsGHDNHTo0Mzfq1ev1hZbbKFDDz1UnTt3DrFkwWhoaNDYsWO1/XbbZb1/8EEHSd27h1Sqwu1x771qvOQS6Sc/Cbso8EG6nh5yyCGqrq7OP4NDVYYn65tttpl6/PrXjuZL5JTh1w7ni4JtttlGW0WhvHPnqnL4cCX33VfNZ58d6Kp+uffeSu6zT6DrSAuqrgJ+op4iLqirhfnVL3+p5N57h12MSDv0kEOkAu/xqKfRVfnKK5nXFYlErK7Zc5l18HTowQdLG23kellmdbUqJ3j/8759lYzx9kI0pVsyO1EWQcsePXpo8eLFWe8tXrxYnTt3Ns2ylKS2bduqbdu2rd6vrq4u6ZNQZU7HvtXV1VKMv2+ipkbVl1wiPfNM2EWBj3zfDw19tVRUVKjC6bKrsg+hcTo2VFZWqjIK5T3xRGnqVOmpp1T5m99IvXoFtqqqysqiH89K/ZyB0kA9RVxQV70J4/wXN9VVVb5tI+ppBBn6ck8oXtfsrZgMGuW1/prW1Zzlc/xAENzsg7EcPdytX/7yl/rf//6X9d7YsWP1y1/+MqQSxUgpdLz77LNhlwBxUi4D1ETle06d2vL6m2+CXVcpHM8AAHCL819+bKPSZvx9o3IN7JVZXfWz/jIQDyImlkHLmpoaTZ06VVN/vNmdM2eOpk6dqm+//VZSqmn36aefnpn+D3/4g7755htddtll+vLLL3XPPffo2Wef1SWXXBJG8aMt96DEQQrlwGs9Z//wV0XApyR+LwAAYIZrhPIR59/aqux+fievI5MDAYll0HLSpEnafffdtfvuu0uShg4dqt13311XXXWVJGnhwoWZAKYkbbXVVho1apTGjh2r3XbbTbfddpseeOABDRgwIJTyRxoHJZS7uD99dSqK35OgJQAA/uP8lx/bqLSVyu9r9T1Mmox7RtASERPLPi379++vpM3OM3LkSNN5pkyZEmCpShQHKZSDcsy0jGLQMuiRCeP8ewEA4BXnv/zYRqWtVH7fYmRa0jwcERPLTEsEiIMSyp2bYB77i78IWgIA4D/Of/mxjcpHnH9rq4xKmoejhBG0RDb6tEQ58lrP/WyKgeCbhzc2Brt8AACiiOv5/NhGpa1Ufl/6tEQZImiJbByUUI68jigY5/0lis3Dgw5aDhggnXNOsOsAAADxw4Po0lYqo4fTPBxliKAl7HGQAqyxf/gr6KClJN1/v7RyZfDrAQAgKrheyY9tVD7i/FtbBdcZiAcljKAlsnFQQjny+vQ1zk/li/WUeelS6b77pG+/zT9tsY4/HOcAAE4sX5562DVnTtglKQznvfzYRqWtVH5fmoejDMVy9HAEiD4tUe5oHu6v44+X3n5b2nxzaf58+2njvD0BAKVnyBDp1Velrl2lZcvCLo13nF/zYxuVNuPvG+ffmubhKENkWgKA15MxJ/H83n479f+CBfmnLVbmau7FGAAAZl59NfX/8uXxbl2B/LimQxwwejjKEEFLZCPTEnCO/cNfxboh5MYTAOBWQ0PYJfCO65X82EalrVR+X5qHowwRtEQ2DkqAc3EOfkVx5EQyLQEAUVVfH3YJvOP6Pj+2EeLAz4F4rOo8QUtEDEFL2OMghXJTLn1a+mHGDGn6dP+WR6Yl4F5NjTRuXLwDKkAclEqm5dy50qRJoRUlssr9mq7Ulcrv62empdn1sNlySmXbIbYIWiIbzcNRjujT0r3p06WddpJ23lmaOtWfZRZre5JpiVLym99IhxwiXXhh2CUBSlucHwykz6+LF0vbby/94hfS6NHhlilqyvmarhyUyu/rY9DSNE2jVLYTSgpBS2TjQIVy5ybTMs4Ze4Xu6+ed1/L6D38obFlpZFoC7r3zTur/++4LtxxAqYtz0DLt1ltbvscRR4RblqjhHqh8xPm39nMgHjItERMELZGtkEzL6dOlY4+V7r/f+TxTp0pHHy099pjzeQC/lWOmZaFl93Lzlm+dhQYTFy2SBg2Srr7afjoyLQEAbpVC83DjeTbO1zBByN0er7wiHXlky4OhMPzwg3TKKdKVV/J7FapUtp/TfigdcJxpWSrbDrFVFXYBUEIOOEBaskR66SXpuOOkrl3zz7PnnqmLwFdekU44QWrXLvBiArbKpU/LQsve2Njyurra2TxNTVKVzWmn0KDlmWe2NHfr3z/1L4j1AADKT5wzLeN8vVIsudvo6KNT/7/2Wnjb79xzpRdeSL3ed1/psMPCKUcpMP6GURyM0ik/My2dBig5fiBkZFoiWyGZlkuWtLxeutTZPMan1uvXO18X4CevJ+M4B78KvQAx7rt2gUij3O2Vm/FYaJmM/XNNmmS9PDItUSrifAwC4oagZWmL4vE0HbCUpI8+Cq8cpSbO+4OffVoStERMELRENr8OSnF+goXy4/XpazmfxI2Zll6Dlkceaf95UAhaolRQl4HiiXPzcLRml6hRztd3papUflM/Rw8naImYIGgJe14PUl6ClhwQEQXlErT0s3m4l6BlQ4P03/9af+4HH/v9ASKJoCVQPGRalha7oGUUA9QkhBSmVPYBH5uHk2mJuCBoiWx+HZQqqFqIEbN6v3ChdOmlqf5WrRQz+PXEE9KwYdKKFf4sr9B93RgscRq0NM5jdkPg5/ZMJmkejtJHAB4oHoKW0bFunTR8uHTvvd6XkXv8NG6jujrvy0X0xXl/8POBPEFLxAQD8SBbIX1aGvE0EHGVrruDB0tjx0q33ZYavfEnP2k9bbFO4jNmSKeemnq9cKE0cmThy4xCpqXd50Ei0INSQQAeKJ4oZt85VWpBh+uvl268MfX6pz+VDjzQ/TIIWpaXUtkH/GwebnY9TNASEUQ6HIJB0BJxYnYyHju25fWXXzqfLwjvvNPy+pFH/Flm2APxmGWs+Lk9ybREOaAuA8VTCpmWpRJ8uOmmltcvv+xtGXZByyj+1txbFaZU6r6fzcOdLqdUth1ii6AlspFpiXJnVnetAgNxPomXQ6YlfVqi1BG0BIonioGscuXH9ReZlogjMi1RhghaIhsHJZSjfPXeGKAzKufgV9SDlmRaohxQl4HiiXPQspSv770mShC0LC+lsg9YXSt7uIYm0xJxQdAS9rwepLzMxwERUUWmZWtRH4jHTjkHm1FaCFoCxUOflqUlbkFLWrH5J877A5mWKEMELZHNr+bhfh04gSggaNlaEH1akmkJuMN5EygeMi2jg+bhcKtU9gEfg5ZkWiIuCFoim18HJTItEVdu+rQsVsAgiKfrUezT0u9jAH1aotQRgAeKJ85By1JG83A4Yfx945y16uNAPI4DlNyjI2QELZHNr0xLL0EBDogIS766R6Zla3Ho09IKgR6UCuoyUDw0Dy8tcRs9PAxnny3ttJM0eXLYJfFXnPeHQjItc6ZJRC1oedNN0jbbSC+9VJz1ITYc3mkCLpFpibgye/pqNRBPnOtsOfRpSaYlSh1BSyA4ueeQOAey4ny9kg+ZlsGYOFF64IHU6wMPlFauDLU4BSuVfaCQgXicJCeFGbS84orU/8ceWzq/F3xBpiWyOc20TCal996TvvjC2XK8rBsoFq+ZlgS/UqLYp6VEn5YofdRlIDi55ySCltHkV9DS+DdBS2nhwpbXq1aFVw6/lMo+4GOmZaQG4uGeCjYIWiKb04PSmDHSvvtKu+wizZvX+nOahyNO8vVzQ/Nwe3FrHs6FEUoFQUsgOLnnCpqHl5a4ZVoWux/GOPf7mE+c9wc/m4c7XU4xthfXM7BB0BL2rA5Sv/1t6v/mZumGG5zPZ4dAAqKA5uHuxW0gHi6MUCo4bwLByT1XxDnTEq3FLWhZbBUlFiaI8zW7USED8UQ509LqXgsQQUt4ZTywVFa2/pzm4QjTlCnSYYdJ//qXs+mj3jw8iqOHG0WxT8tkkj4tUfoIwCPqFi2SjjtO+tOf4nedR/PweAiiT8s4/9Z+KbVMy1IZPbyQa1syLRFTDMSDbE77tDQeWMyCljQPR5j22Udav1564w1p4EBpo40KWx6Zlv4odp+WVrgwQqmgLiPqfv976ZVXUq/795eOPDLU4riSu3/RPLy0xC3TstiBtlLLtDSK8/5Qqn1akmkJGyV8NEKg8o0cTKYlwrR+fcvrFSvyT2+se2b10OqJO3U2xWmwsdh9WpJpiVJH0BJRlw5YStKkSeGVw4tSah7O9UprcQtaFlucsxHNlMo+4GPz8EhlWhK0hA2ClsjmNNPSiObhiDK39cpN0DLOwS8/9zenyypm0FKiT0uUPuoy4iRuQZA4Nw8vp2vqIJqHE7QsvUzLUtkn/My0dBqgpHk4QlZiRyMUzEvQ0izT0kvwIc4BIESX25O42fRWTcLifAEUxaBlscrEhRFKBXUZCA7Nw0tb3IKWjB4OqbBMy5x5E1EKWpJpCRsELZHNy0Gpqiq7+Y/X5XBBhSAEmWnpdNkjRkiXXiqtWuWuLEEKI2hZzIF4JJqHo/QRtASCU0qZllxjt8ZAPPZKLWhZKvuAjwPxkGmJuGAgHthzcpCqrZWOPtr9fF7WBbjlR6ZlIUHLCROkCy5Iva6tle6+O/88xRB2pmXQA/HY9WnJhRFKBQF4IDi554rVq8MphxflFLSkeXgwSu1aqVT2AR+bh5Npibgg0xLZvByUzAY6YfRwxJWb5uFO6vnrr7e8HjHCW5mC4Of+5rSpSrEH4rFCoAelotRuKlHa4pa5lbt/vf9+fPa5cgpaehW3oGWx95+41PVy4+NAPJHKtCRoCRsELZHNy0VOmzb5l+Nl3YAf3NYrs4uBQjIt/TgJRz3I5rSpCgPxAP6iLiNO4ha0zD0nrVghTZkSTlngv7gFLYut1M4vpXKf6edAPGbX3TQPRwQRtEThqqtbv0fQElERdp+WfpyEgwhaFqN5eO77+fq09LtM9GmJUsdFPhAcs/3rq6+KXw4vyinT0q/m4fkerJYbzi/R5GfzcKfLIdMSISNoiYwNZ81SZW5/e14zLRk9HFERZNDSSZ01noS9XlibXTg2NUkPPyw9/bT1d1y/PtWH5pgxrT8rRtDS7oYg6D4tJetyPfQQxxuUBm4qESdxy7Q027/icu4op6ClV3aZlmH8ztOnSzfdJH3/vfnnNA8vTKnsA1Z108tAPFHOtCyV3wu+YCAepNTWqt+f/+xt3srK1u+RaYmo8CNoafXE3W3zcLN9xQmzi4onn5R+97vU665dpUMPbT3N9ddLN9yQev3119mfFbK/Ob0ZimqflhMnSs8/L514on/rA8JQajeVQJQ4vaGPg7iW24kgBuIJY3vtvHPq///8J3WdErZSO7+Uyj5QLpmWzc3e75tQcsi0RMq335q/7+QgZXaxQNASURF283DjSbjK43MiswvHa69tef3Pf5rPlw5YStJrr2V/Vsj+lhtwdPrUNyp9WkrSjTf6uy4gDHHJ+gLiyOzcG5dr1biU0w9BBC3DPLZ+/HF46zYqtaBlqfBzIJ4oZ1rSXBwGBC2RUsiJqcKkGjF6uL233pK23FI6//zUQfmQQ6Qdd5S++SbskpWeKDUPdxu0bGqSfv1raejQ1p8V+r38DFq67dNy5Urp9ttbT+93pqXdd/QaQAaihJtKxEncmofHOdOS5uH5RSnT0muSiNHHH0tbbSWdcoo/5Y/q+eW996TevaWzznI3X6nsA+WSaRnV+odQcNeGFKunGV6e2jidz4954urAA1P/33OPtMEG0rhxqb9PPln68MPwylWKotQ83G2g7PHHpf/+N/90Tm4E/dy/vAYt0zcI//iHs+mDRJMTlAIu6oHgxDnTMle63HEtfxDcZFomk8EG3f04lh9wgLR2rTR3rnTuudK++4ZfpiCkv9eDD0oXXSTtsouz+Uql7hcyyKRdnXf7nt9yYxFkWsKATEukFHJiMjuokGnpnLEZyEcfhVeOUuU1aGm8OA2refisWdafuf1eTi5U/F6WVfNwq4ziYmZaErREKYjqTSVgJm6ZlgzEEw9e65VdX99Bb79161J9ay9cmPrbj2P52rUtrxcvLnx5cTi/LFsWdgmKz3gMMtZ9L5mWUQpa0jwcNghaIqWQ/jHMDipeDm5xuRBEvHgNWhqDWoU0DzeehN0GLZ2esJ1csIcRtLTKtOzVy9lyC0XzcJS6ONxUAnFF8/DSVVcnnX569nt2QUu/r0+GDpVOOEHab7/Uuvw+lpdy83CvSmUfMH4P472Kl9aRUQpakmkJGwQtIUlKFNI83K/mM6VyMnGrXL93sXgNWhqDWmE1D7c7YYfZp6XdADtOpttkE2fTB4lMS5SCUrupBKIkzs3D41LOsHzwQev38jUP99O//536/+uvpfXro3kszy1T3OtU3MufZqybQQQtw3pYQ6YlbBC0RArNw51Zs0Y67jhp0KDUU1o/xOF7u3Hddal+dT7/POySpLiti+nfwzjAVCHNw40BT7eBMi+Zls3Nqc7Jjzgie5ogg5ZuB+IpJLPbKQbiQTlwenz7+9+l/v2ladMCLQ5QUuIctMwV13I74aV5uNk1QDGbh+cuO4qZlk4fUBcqmZQuvFA6/HBpwQJ388atywk/GH9b471KkM3D//Y36c9/dlhAjxiIBza4a0NKIZmWfjUPj8MF1bXXSi+8kHq9887SX/4SbnmiZtYs6aqrUq8POaSlr54weQ1aGoU1erhVhqedxx5LdU6eKwpBy/R8VsebYjYPJ9MSpcDJRf1330nDhqVe77+/tGpVsGUCrMQtwEDz8NKVL2hZrICdlDqOOzmWF3v/yS1TQ0Mw106vvSbdfXfq9RlnSGPHOp/XzTYplX3AKmjppI466fbAajvdeqs0cKD085/nX48XNA+HDTItkeIlOJJWTs3D33ij5fX//ufPMuPwvZ2aP7/l9aJF4ZXDyGszamO9dhqUMxNUn5ZW67Yafd7PC+5CB+Kxujj3eyAeOwQtS8v8+dnHn3LhpPmecaCC1auDLU+UfPttKmCL6PA76FJbK02eHNx1VJwzLQla2otSpmVzczSzyorVXHfq1JbX48YFsw6pdPYBH5uHmx6R7ZYT5Dk1t74tWmQ/ICnKCkFLpPg1OnJaqTYPr65uee3XyTsO3zvOvGZaGufza6AqY/1xwkvzcKcBxDAzLY0XJhdeaL3cQtE8vDzMnCn17i1ttVXqdTlxErRs27Y4ZYmSzz9P1YdevVqPEIzScdBBqayfq68OZvlxzrTMFddyO+FX83C7674oZFoWm1mmZRAqCghHxC172w8+Ng93fYzr1i3/OrzKvef51a+kn/402EA2YoOgJVIKORGV0+jhTgZncauULySjwGvQ0nix5lfQ0s8+LZ0GJ63eD2MgnvQ2NW5bYyDX70xLmoeXh/POa8lUOe+8sEtTXE6CluUYoD/77JY6cdFFYZcGaX4GGNatk95/P/X62mv9W65RKWVaIlu+vvyKmWkZRPPwIEYPDyrTsliBx1LZJ3wcPdx1pqXb5As3rPaBww8Pbp2IDYKWSCkk07Kcmocbb/7ItIwHt4Gw9PT5Mi3vv1+6/fb8y3PaPHz27FRfPs8+2/KelzpmVZ/8HAWykEzLL7/M7gvWeAFUzH2hHAM5paqmpuX1+vXhlSMMTvbrcjzHGOtEbW145UC8lVLQMi7lLpZ8v23Qo4fnloVMS2/KsU9Lq+bhXvq0dHvNEOQ2tLrnoW9LiKAl0qyClmZyD1jl1DycoKW9KDbT8JJpma/5xNy50jnnOFue8SLPLlB2+OHSyJHSSSe1DJThpY6FkWnpJmh5yCHZ75FpiUIZf+coHoOC5GRfjOLNcNDKuU7AP3FuHk7Q0l6+oKWTZrR+liWKo4eXWqZlqSikeXhOPXY8eribdXhFcBI2CFoixerpmZMboGKNHr56tb9P+ZJJaflyd/PQp2X8eAla5stectNHmtPRw2fPbnn9ww+t57XjpU/LQhQyEM+CBdnvBRW0tCuX1Dpo2djIqMpxVc4Bqtxjldk+lPtebW2qaW0pK+c6UWzr14eT4VyMLoXinGmZK67ldsJLXVi5svV7Uc+0jMLo4UEg09IdHwfiiVSmZTk+YIVjBC2R4uZElDttMZqHf/yx1KOHtN12/t1sHXmk9JOfSA895HyeIPq0zHXllcEst1x5CVrm67Oxa1fny3MatDRKX4SVYvPwXEEGLe0Yf4u6OmmnnVLHmHffLV4Z4I9yDlA52a9zp9l8c2mzzaR584IrV9jKuU4U04IFqbq02WatH0iZ8fO3IGhpLy7l9IPbujB1qnTYYa3fL6VMSz8UK2hZyHGhHI/vPvZp6TpoGeR+QKYlbBC0hCQp4SbTMrcpuV/Nw+3mOfLI1JP8efOke+91v+xcCxdKo0al1nnmmc7nC6J5eK6//S2Y5ZYrPzItc5fhpmmx0z4tzfg5EE/usgq5oXGS3WX2vtlFeVjNw42/xWOPSbNmpTLQDj7YvzKgOMo5QOUkaJm7Xy1blsoyKuVBi4zfudzqRDFddJG0YkXq34UX5p8+bkFLmofHg9vvdsIJ+ZcTxUzLYiu15uGlsg/4OHp4pJqHR3EfQGQQtESKm4F4cgOcxWgevnhxy+s1a9wvO5fXjvmDCFrGYdR0v61ZI918s/Taa8GvK4hMSzfL9DJ6eL5My9x9xUvz8ChmWt51Vyrr0S9Om4evXt3y2s/1ozgIWrZw06flwoX+lyeKyq1OFJOxDgVZn+rrVXH33drs7bdb3itGACLOmZa54lpuJ9xe582ZY/6+Xaaln9svt141NTn7DsVsCr1+vXTLLdnvRTHT0o1SCeT7ORCP2wcz9GmJkBC0RIqbgXjCaB5u1Lat+2Xn8vo0J4g+LcsxaPl//yddfnkqg9bq4tEvQfRp6aZ+G+uJ27JY1bHmZveZlmEELZ0Ee437lCT94x/ey5VbJqdBSwbliTeCli2c9GlZDsq5ToTFyTnF628xYoQqhw7VHnfcocSECan3yLS0VyoBGifcfjcnD1oLeVidT+49VxQzLW+91VmSih/Cah4e133Cz0xLB9M4/qxQUdsHECkELZHipnm4k5NYkKOHhxm0DKJPy6gepPMFfQpx990tr998M5h1pEUp09LpfPkyLXPrjJNMyzj0aSlJf/mL93K5YbzQI2gZb+UcoPLSPLwclHOdKCbjcTTIenbVVS2rfOKJ4NeXFudMS6ugZZDlD2vb+FUXipVpWYygZaHlNexzGaU2EE/U9mWn5fFzIB63D2bo0xIhIWiJFDeZlk76tCTT0rko3lAuWCBtv720xx7S2rXBrivogFEQQUunQTqpsKCl1QWil0xLPy+IvW4PszK0aZP9t9t+P63kC7pbdWSO+CnnAJWTfdFq3y/lbWWViQJ/hVmHCFrac3uNUKhBg6SePaV33glm+Xa8XOflez/IPi3NWqz5+WDZj/nNRDHT0o0oBy3T+086k9yOjwPxRCrTkqAlbHAlhxQ3fVrmHlTKqXm4USkHLc85JzUwyeTJ0k03OZ/Py4VH0DeUQQzEY7VMv4KWZvMaxSXT0kvzcD8DiE6fFvsVKEU4yjloSaalOQbiKb5iZ/DRPNydIDMtJ02Snn461f98v37+Lz8fv76TXaZlsZuHF3pvFUQrrrj3aZkrKvuycf/Zf//80/vYPDxSfVpGteUhIoGgJVLcBOByD3DFGD3cyI+gpdeLD+N39Sto6cdB+ocfpEcflZYuLXxZUipYmTZ7tj/LtBJ0wChKmZZOf+v0+uyCloX2afnGG5JxUAM3vAZxzabL/f39Clrmu7Cyal6D4po5M3Wx7nVwNImgpZHZPsaNAILi5IGZ1fSFCjvTsrY2deyaMSP4cnhhlVUWxHZbtMj/Zbrh13cyLifITMu4Bi3d3vd88YX0zDP5BzgsVjZ8VIKUuZYtcze9jwPxkGkZkm+/lR5/3J/BhcsEQUukuMm0dBK0DDLT0o8gl9eTufEpo19PHP242PrNb6TBg6Xjjit8WYXw8rtHsXl4vuwlN5mWxmU5LUu+oKXdcpxmWq5eLfXvL338sbMy2a3fz0xLP4PYdvXRuD1oPhqO9eulnXZKNYu6+mrvyyFo2cJNRlopb6tyrhPFVKygpdl8xQhA2AWObr45dezadVeppib4srhVzD4t3XQxFYQgmoeHnWlZaJZv2JmWNTXSz34mDRyYv8VWsQbTiXLzcDcKybR0cv1OpmWwmpuln/9cOu006fzzwy5NbHCnhhQ3Fxy5B7xiNw/348LBa8AxiExLP77PpEmp//3qS8jrScnLd4li0NLrQDzFClraNQ9326fl8OHOymRUCn1akmkZvkmTWn4HN91Q5CrnAJWToCV9WoZXjlLnNmjpVZSah6ffS587Gxul998Pvix+CWK7hR20LEbz8GL3aRl2pqXZ+cHNfc/bb7d8z3zXmYUcowv5XaIStHR7LvaxT0vXQUsG4inc2rUtLSMfeyzcssQIV3KQJCXcjB6ee8CaPj3/NE44PXn48STGj6ClXye7KD5Z8hoE8PJd4hi0dNM83K65kZVCmoe7bTbupR4HOXp4sQKIBC1LRzkHqOjT0hx9WhZHOTcPN1q/PviyuEWmpXvGbRP35uGFbhOzc6mbZbZr53zacs+0dPv9fRw9PBGlTMtyCVrCkzK7uoelQjItzQSZaRmVoKVf4jw6Za5SybT0cyAe47L87NPSyMtAPPmmt1NqA/EQtAxHENkx5RagcrKP0Tw8vHIgOFEaiKeQPnmDUsygZVADtDgVRNAy7ObhZtdsbspQ6L2SWdDSzTLdBC0L4WabRDVo6ZbVg1ov9+dRClpGMYkHkUHQEilO+rScOjU14Es5By1z5/PyPXM73XVzkxkGNzd8cQxamp3Ao55p2dzsPqPSar8x+26ffGLfMXhcBuLxGrQMO2sE7sT1xsMPhTQPLxfJpPTRR9KqVWGXJDz19dK77/ofXCpW83AzZFraswpOBLHdwg5a+vkAbM4c6auvgs20dNI8PIg+LVesSB0LnSwnLkHLcjz/k2kZb+VYZ31A0BIp+S44nntO2n136ac/TQ3gkU+Qo4d7GYQkl1+Zlm6DG8mktO++2e9FcbTXYvZpGXRzznzfxSyw5udAPEE1DzdycuPotMyPPirtsUdqgBSrER/9zLQMqk/LfIzbMDdoOXBgccoAf9A8vIWb5uGlnIFo3A4vvijtvXeq4/soPRAsplNPlfbbTzr9dH+XS/PwlCgGLXPRPDy/2bOlbbeVtt8+9fA2iHVIrbeX2XWn331aNjRIffumjoV33ZV/frMHyG7uTdw8gC5k25ZC83C3rK55vPRp6TY4HuRxN+x732KJa70LWZld3cNSvj4tTzwx9f+qVdJDD+Vfnp+ZlmZPJAtdr9enOYUGLRculD79NPu9KAYtjUo909IsAOdnpmUhzcOt9ku7Pi3dZlrmLmfIkNT/P/wgvfKKs3U43R5mZQhq9HA3mZa5dfzFF/0pA4qjnJsCk2lpzuw4+PXXrc+/5eK551L/P/20v8sNI9Myvc5irK+UmoenleJAPH59p+uu87f/byvF6NMyd/733pPmzk29vvji/PMXmmlZrP43SyFoGeJAPKZrJtMyWFGpdzFD0BIpTpqHp1llX+WbL59Bg1JZXrnWrcv+24+gpV+Zlm6/p9kB+bvvWr8X9k1mMTMtgw4yeGke7mefll4yLdPLsWsebjRzZsv+Y/XbvfCC/brMOG1S/uKL0rnnSjU19suOap+WXECEI4g+LcsNmZbmrOpEKX/nMJBpmRKHoKWTTMuamtS5fNgwd9s37KBlMc4BcW8ents1VT5mQctzz5X+/Gdn9yhu6k+xgpZ+zhsmH5uHu65nQW2zhgbpwQeDWXbUxLXehYygJVLcBPGcTOvlBFRTIw0e3LovvSgFLXPnc/s9nT5FcvO0KYgLd6+ZS0F2C+BVmJmWudl+QTUPnzo1lUEzeHCqzyI3/PrN7r1Xuvlm++mKGbTMdywgaFk6aB7eIuqZ+8VitU+XW/0IWqn3aen0hj5OzcPtttvVV6fO5X//u/Tkk86XHXafln7VBbuWHlEYiKeQ7MW1a53PK5kfK9etk2691VlwqVhBSwbiaXntYcyJyGRajhkTzHKjqFy7qSkQV29IsQqOmB2cnFycFHJQW7Qo++/coGWU+rR0e+BxevPo5ibTjxvS+npp6dLCl+PlQBz0RYMfA/F47dPSaYZmLrdBS6Ply52tI83LxYnV93jqKfv5nQQt/WoebjdYUW5ZuICINzcPWRobU10flIp8mZaNjaluScoNQcvicBu09Hq+d5NB7CcvzcOjsr95ybR85JGW12+84XxdYWda+lUX7BIG4t483I+gZdprr+Wfn0xL59wkhyST2S30Cu3T0myeMPq0nDAhmOVGUVTqXcxw9QZJUtNbb2nFdts5mzjooGXuvLlPsKPUPDyoTMtiBi3r6lKdjm+6qfTWW60/L8dMy3zZS07rWe58bvu09BK0dBv08/M322AD++mi1KelsSwELePN6f7Y1JQaUG7TTaWXXgq0SEVjF7RsakoNPnPhhebzlnJTaYKWLYLMtHUbtPTzWBt20NJYl9LXqUOHpo4vF1wQfNny8dKnpXEeN9fxYQctw+rf1CsnzcP9Dlrmdt+Tj12rFw8ZfYEFwgrp0zKOzj9fuv76lr/dNg/P2daRGT18hx2CWW4Ucc/hSRlevcFKs9kJyuzg5CTw5meqf25fQVEKWvrRp6WZYgYtH3ss1Tl3Q4N04IGp97yelLyUJQ6Zll77tHTSdNNMejq7PiWttpvbjqz9zLTs2NF+/qCbhxtvoN0Eq0vhQracOW0ePnas9Pnnqf3q2GODL1cx2J2T3nzTfuCZcgxalvJ3tuKkH3KvChlAolBeWzK4YXdD3759y3vp69Q77kj9P2KE/2Vxy0umpVfGoGUY+1gxggDFzrT0u09LPzMtvTygsAtsF3IfU0jQMirXfm72mX/9K/vvQvu0jErQspwCeVGpdzFD0BItnB40i51p6Sbw4/Sg53WEsij2aVloINXs6Wu592np10A8Xm+qPvhAuvxy69/S7gLPbcaDl33Vav35Mi3Nvn9uZqWXoOUjj0g33tg6SyTKzcMfe0y64YbW3V/Avdzj1cSJ0hVXpEaLNnI7EEEc2B2r3PZvW0q4KWgRZNDSKL3NH3441Sei2eA0fv4uTrttsfLee6kBZ+bNs57GLnDUrl3Le3E4jjvp09J4vefm2s943dGmjbty+aEUg5bFyLRMJlN9mN56a+sy2V2LeQla2u0j5d48vBDG38mvDFiClsEqp+/qI5/a4aEUJM2eqnnNtCykbyOzPrmMopRp6fbA4zSgVEimZXOzu8BPvmnLMWjp10A8XoOWl15q/3lTk3UZ/Axaus20zA1aOrmpzD3uuG0ePmGCNGRI6/fdBC2LfeH64YfS6aenXjc0SMOHF3f9pSb399trr9T/zzwjzZnT8n4pXijaNQ/PN6JxKWcdOj1Gl4NiZVomk9Lbb0u/+13L38OGZU/vdfub1VWz7kecnj+amqR99029fuMNafJk8+nsbuiNQUu3WWzFEFamZRhBS5qHt2YXtEzvT//5T2pEcEnq0UM69dSWafzOtFy/XtpoI2fTulEKA/EUci4usE9L183Dg7qOKqcBA0vxWrQIyLREhmnQ0oxfo4fbBUSM2W75TuTGv6MetMx3E5lWSNDS7YHfrz4EpXgOxGOWqZpvcAuvzcP9OinbfSe3N6hB9mmZb3tIhQctrUY4jfJAPM891/L66quLu+4o8Wvft2oePndu9nSleFFsl2nv5HxTittE8tafnxdx2H7FDFoaB2O79trW03vd583m89pntJQdZJwyxXo6u0xLY/Nwt/0FFoNVgCaI853xmppMy/x1sRjNw3PnN9b5dFc+N9/c8t5dd2VPX2jQMncaq0zLpqbw+rSMStCykHIUeyAeMi0LF5V6FzMELdHC7EmP2Y7lV/Nwq2nWr08NHtCrl/TVV/aZlmeemXpy98ILztcrhRO0XLhQ6t/f2bSFZlq64bQvUyfilmk5a5a02WbZ75llWqbfN3ttNY3Zuv36rn5mWnrhdSAeJ5mWbpuHW10I56vDXh52+MV4HCnlbLdicdqdRSleFNs9YMkXrHr/fVX17Kk9b7zR/3KFrRhBy3/8Q+rcWbruOv+WGYRiBi2Nx/NCM8XyKSRo6fQ8aXdD37Zty3tRzLS04vQ3cPNbhZ1pGdagTCYqrrhCvznlFCWMI7HnCnv08HTQ0vhgr3fv7OkLPZc6aR5++eVSly7Sv/+df3lWSiEAVEj9LbBPy8gMxFOK12dWyum7+oigJTKSTm+eg24efuedqSff330nnXKKdVBuyRLpoYdS/ZQdd5zz9Ureg5a587k5eP/pT86nLaRPS7eZH/mClkE3Dw8z0/KMM1rf0FkFLZ1k5hUzaGmlGH1a+jkQT1BByyhnWhr3WT8zncuV0zpciheKdg/SHGRaJlauVM+PPrJuHhtXVnXCz8zIiy9OHX+uusq/ZQYhyAdZUQpautm/nbZ6sXuAafwu6dHDo8RJpqVfD82MdSx3cL1iKEbgyuE6Km+/XVW1tao6+2zricJoHm4MWqYfMC9Z0vJebtDS7j7Ea/PwXDffnCrXggX5l1dIWaymjUrAM8SgpeuM3qC2WRxaLfglKvUuZghaIiNZ7NHDrXZaYx9kn35qfSI3C1aEmWn5zjvS7bdL99wjLVrUet6vvnK+nmI2Dy+HPi3Xr08N1pJ7Y/7ee62nN2senl6OcRozxWoe7mfQ0m77u81Wyr1ZcXJTmVu/3AbxrG4Wo9ynZZBByxUrpPvvbz0IjV++/166775U5nhUOD2GlGLQspA+LQ0SURqkaNo0aeTIwgY3KVbz8DgoZqZlvkEhfNj+mQfsTrofseI0yGiXhRRmtr4TTvu0XLw4dUz/7rvs991c+xmvqYsRtHTaZY+ZH37wZ51ep5HCGT3c2IVBbqsYSeraNftvu/skL0HLoAarImjpbjm5mZYOpskS1Dm0nM7N5fRdfUSKBzJMMy29Bi0LObkbl19ZaZ1JWMgFsd9By6++kvr1a3n/iSdaB8SMTYnyiVLQ0o2oBi1vuaVlsJOlS6WNN7aePg6ZlnZZhG7X4WemZb4LwiAyLa1uPt0MwFTsCwjjPup30PLMM6UXX5Q6dZJWrfK/+fnhh6ceJt1zjzR1qr/L9oNdfS7FJ/k+BS0j003B6tXSz36Wev3FF9l9rrlhtU+X481CWM3DzUSlebgfmZbG9cWhXln1aXnkkdLHH0s//an3ZRe7eXghQcsTT/S2Ti9Noq2E3Ty8Q4fWZc1ddqGZlrnTBPVgrJBjSikELQvt05JMy+KLSr2LGTIt0cLpTUvQfVoaT5QVFdYncrf9cFitww2roOV992W///77reeNatDS6ajxXspipthPOpubs0dnHjPGfnqrTMuo9WnpFy8XJ04DAk4yYQodiMeuT8s4ZFr6+dBASgUspdQNgteHM3Y+/TT1/7Rp/i/bK+PvZ7ePBbE9wlboQDxpTgfiC5rx3HnLLf4vPw7BJb+FlWlpJipBS6eZlk6DllG8CXV6nfLxx6n/c1sDuflOxR6IJ9+1hp233/a2TifrcFoHg2genu96K/c4kPt37jb1O9Ny4kT7z71ys5y4Z1qalbfQ0cOdrsfNOrwop3NzOX1XH0XkKhVRYDp6ePrgZPxs/vz8CyukebjxCWRFhXWgsJCmE15uXpNJ6xtEJxdpbi7k3Fx8F9qnpVmQKMg+LQsdgd2t3OWnm8isXm09vV+Zlk4HSXJ7EWA3EI9bQWZaehmIx23Gl9c+LcPMkgky09IoKhfkVvwo37hx5t1xmHETxIsLvzItoxK0LLRODB0q7b67dVZPOd4sBBm0zBVmpmUQfVo6bR4exXrlpE9LvxQ70zLfb//RR6mM7WHD/Funl0CdlSAyLfNtE+N9T3Nz/utTv/u0HDcu+2+7e5VCmny7mTYq10hO643ZNnPbp6WTgD+ZlsGK4vkiBmgejgzToGVaZWVhT7PcTGM8mVdWBpNp6SVoadfPoZOLNDeZlm4yQYMYPdzI76BlIYMZeWEVtMztv8lYnnx9WnoN2lmdlL0ELf3iZ5P+fBdDToKWbstj16elnXy/ZzIZXJPZIDMtjaJ+YeTHvn/IIc6XWczgTbEUOBBPRikELadPl+64w36acroxSgtrIB4zZFoWj9M+La24Of8VO2iZ77p3771T/0+bJp1zjrTVVoWv08n51GkdDKJPy3xBT+M6zR7OB51p+ckn9uXL/czpA90o7ntuOf0OfgQtnQRu6dMyWKVQZ0MQkatURIJdn5Zub2j8ClraNQ8vdqalWSAxXQYnHY/7nWk5a1ZqlPU49WnZ3Cy99Za7eQplFbS0upFz0qel1+bh69eb3yy5/c3yZRG6EWTzcCeZMLnHHbffy22mZbq+5/s9g6yXxRo9POoXgUFcuNkts9wyLd0MfFAKQUurB1FGUd8nglCs5uHNzcEFLZ0co/3q03LNGumNN1Lnarv15gYto34jWqxMyyDPaWlumocvW+bPOoNuHu6kPrsJJqXnr6uTxo6Vli/P/swuSGrWssxpOaymaWzMXke+oKVT5Z5paTzmemjlmCDTsvjK8TrEBxG5SkUUmA7Ek+Y2sFVI83DjydyueXghnVR7CVqazRNUpmW+g/e8edIOO0h9+0pvvulu3lxOB2ByIt/vfu+90hFH+LMup6yCllYXZE6Cll6bh0vSqafmL2M+cc20dNKnpZ+Zlnb9/zjJtAwKQcuUYpevFDMt7YKWxoEX4qKQ/c5JZljU94kgFCtoKeU/N/m5/Z1k8luxy7Q89VTpsMNSA7Y4zbQ0a24btkIzLd3si0Fm85px0zWAXy0mnNSvoJuH2y3fav5zzpEOPVRasSJ7OXZBS+NnZg8ivG4L47WPm+9ip5BzRikELYudaUmfloWLSr2LGYKWyHDcp6WjhRWQaZkbtLQ6EdtlPubjd6Zlsfu0vOqqlnUPHepu3lx+Bmzybf/zz3c/T6GSyezAUDpoaVUHrJqHG7eJ0+1j9t1eeKH1e25/s2INxGPFz+bhuTcUbuuD3UA8ZsyClsXOtDT+fuXcPDyI8pVbpqXdQDzpY50TUakrQd+A+vU943TTUaxgfTKZP3gVlebhVseCFSukV15JvX7tNed9WlpdN4TJbUsJu3nyMV5PFWPfCCNo6WemZe5+4qSPyXxlsNofHn3UfFq79RnPK2YJF16PtcZ6Yret3HSRVUjXZVE5jvuVaenh3jsymZZRuQYphnL6rj4iaImMvH1aulpYAUFL4wW2XZ+WhWRaehk93Gye9PqK3ael3eeFBi032ig7EORmeW6a7KSdcYb0ww/O1+FWc7O0wQYtf5tlWm62WcvrQjItH388+2+n287tCaxYzcPt1u/kfTc3Fm6mMbK6+bTaRunjXL5BFHzYvr3eeEOVxx0nffFF9gdkWqYUO2hZDpmWxm3qJtMyKgEXL/vdm29KRx4pjR6df1q/6lzU9y0jv+v9Bx+ktvfzz9v3m2cmKkFLq0xLJ93XmDWztrpuiBInmZZev4Nf/Xved5907LGtz5m53Fxr+tX1RZBBSz8G4nHTVVS+oKUxuGh27/Lee6kMTrsHgfkyLWke3sLpfmc2XalkWkblGqQYolLvYoaBeNDCzz4tg2webpdpGVaflsVuHu7nvLm/1cqV3pdnFqRyEvA+6ijpww+dr8eNdNAy/b3MgpannirddVdLH1b5snit6tnll0sXX9xSHwp5eurn9Hb87NMy38VQIccFt9w0Dw8i03LRIv3sX/9Kvf7669QgIWmlkmnppA87O/RpWTi7TEs3fVpG5YbBS5046CDn0/r1Pb08+AyL30HLX/0q9f9rr6WCl2mlkGn5wQfZfzvNtDQLAiWTwQ3m5oTV+dhps1w3ZfcjaLlkifT736def/yxtGCB9bRRbR5eSJ+WQY8envuZ3fT5Mi0l6f77pe22k/78Z/PPzcoaRKYlzcPdLafQTMugriuj/tDHT+X0XX1EpiUyIpNpmduXitXTwGIHLe2y75wMxONn0NLPE0q+beZmeV4HBfroI+frcCs303LNmtT/xvpTXd1yYZtMSqtWmS/H7HWu3BEanZbRjbj0aenlpjLoTCizgXgCyLRMzJnT8kepZloWGriheXjh7Pq0dPP7xDVo6SYwK/lX58IMWi5c6O57B9nfYO5xNMyg5erV0uLFzua1yrQ0DlZitg7JefPwsAMiXvq09Fqv/QhaGgfSyjeoVlSbhwfdp6VfmZb19dI332S/Z5Vp2a6d9XJGjbL+LA6ZllERYvNw19e/ZFoWjqClJwQtkRGZPi2NopRpaRe0dBJ48LNPSzcXLvnkO3gWmmnp1LffOp/WDavm4cY6UFWVHbQ0dlie5qVPS6fbrlQyLb30ael02W6FnWlp15+g8YYlzpmWcQtalkPzcOP3d3OciMoNg5sbonXrpG23dbd8v+qcl2sIP4wfL22xhbT11s6b/wdZ73PrTb51BRm0/NWvpM03lyZOzD+v1QOM1auz/y6kT8uwAyRe+rQ0HtPdlN+PoKWbfdNN8/AoZlo6CVr61aelmdmzpX79rOfP1zw8rWNH5+XJXW4UgpZh76NpfmVaeunT0sE0jj8rRDkF8qJS72KGoCVaRGX0cCO3A/E4PRB4uYi3u4Bwsl43F075ggGlGLT8+mvn07rhpE9LJ0FLp5mWVvP4MZ1xevq0zL8cp0HLIPq0XLLE+rNiZfwFfRFYaOAm7ObhpXDhmHuu8HKccjttVDz0UCrr0I24Z1oOGJA6Jy9eLN17r7N5cq93/Kz3ucEqswFG7P4uhNn3aGyUjjsu/7xWx+B0S4w0p5mW+foIjIIgMy2ddJ/jZhlup7Wb120mmhU/+7QMonm415ZOaVbNw+0yLY3X1nbLM1uu0+B5PoXsZ1G5BggxaEmmZQiidm6ICYKWyEja9WlZzObhRm4H4nF6IMjNgvJa3vT6/Gw2IpVnpmVQ2SDNzdlPg82ClrnNw/MFLZ0+7S7kQsTP6e14uTixWr/XTMvJk52Vxw2r5TgdiKfAi4qE3eBSxqaJQWZslWOmpd0yc48xpXCR7FOmZeXll0tPP+1ToYoktymvE3EPWhqDgl4zLf286czNzMsNWgbxoCB9rrb6Le0eGKVZNQ/PzbQspHl42DemXvq09Bp8zHc+dcLN+rw2Dy/kmO9n0DKI5uFeuuOxmt9ppmVu0PKhh6S//CW1HxXSp2W5ZVoW0nrLbdCy0KSioI5rYR8viykq9S5mGIgHGbFpHp4+sBWSaZl7sd/cnD8waxfY8DuDLMyBeNx+bjetHx3jF6q5Obv+Bp1pafwsqNHDm5r8O+l5uVDwu3n49tsXVh6rshTSPLzQ7WsXtDTWdT+DH0FmNZmJYtDSbp/LPcY0NATbp2gx2A3E42L7JqZPlwYNkn7xC2mbbXwqnAdu9jsvfTUGNRBPMln8QVecbqvc7eTnDZMxCFGsoGWaVf128js4bR5u9lAp3fVIbpcxbposF4NVgMbv7m0k783Kva7P67Yu5Jzl53V+EM3Dg8q0dNo8fMIE6cwzU6/btZN69249vR8D8RQSeIxq0LKQVlnG+xsPAUnXA/HQPLxw5fRdfUSmJVr4ORBPFJuHG7MNzIKW+dhlWvr1fdPItPRPc7P5E2S3fVp6CVpaTZf7+3n5zfy6+c53cZJMtv5tnH4vp0FstxddVuvL/czsc6cD8cQx09Kq/9+gxCFoaawDufU4rH4J/eRXn5ZpQQ6K5kTuPmt1XkgmWzfldcKvOpdbd6J8E5KvyXYh8mVa5mY0RiVoaZVpmVunzALjVlmVUcu0zOU2aOnm+O5H0DKo5uHG8hRyznLyYD0uo4fnm9/pQDzGoOWjj7a8vu66/M3D3WZaps8FUQ08FqKQVlmFDsQTlaBlENerdXXRrB9ROzfEBEFLZES2ebgfA/H84x9Sp07SZZel/s5tHu71CWpQmZbF7NMy3+9QrKBlkJmWZtlHbjMtc7Mq7NZn9tqo0Jubpib/Tnr5Av177y395CfSO++0vO93pqXx2ONXRnLUMi2NyzPWdT8DZ8UOpESxT0u7IJ5ZpmXc2X1fL79/kANDOZFbJ7p2lV56Kfu92lppl12ku+5yv/ygmoeHcWMUhUzLYjUPt3tonKsYmZZm+13UgpZW29ppuUolaOml9YuZY4+V/vY3+2nCbB4edqblvHktr3v1Mv9NvDYPf+IJacMNpTPOKO9MyyAG4olK0NLv4+X770ubbJIaoC1qXQFFpd7FDEFLZJg2D08Ls3m41YWgm6DlxRenTpa33JL620umpV1TDb/6EUkrJNOykKerhS4vCkFLs0CZ2UVrbp+W6TpejObhhWbEmV3gemVXl+6/PzUS65o10rBhLe87DVrm+3u33VL/e+0o324bWC3H6UA8hV5A5dYhY2aPMXsszkHLKGZa2u1buTeKXpoXR43dQDxejhFRC1quW5cKFhjdfbc0fbq35QcVtAw7QGWnWM3DpdaZsXFqHm6WvVtIpmXYN6ZOmofblTFOQUunQZZCz1lXXmn/uZ/Nw/3o09LrNnUatKyubnk9d27L6169zMvqNNMy93c69dTUPjtypLRqVfZnhbTOicpxO8SgpeuH9kFtM78Di4cckqorH34ovfyyv8suVFTqXcwQtEQLu0xLt0HLYjQPz33/1Velxx/Pv8z6em83926bhxdycoxSn5aFZFq6mdesGeD06alsmmXLnC/HbLubNZm0yrRsbg5+IJ64ZFpOmdLy+ssvU/9Pniz985/m0zvJtDQeZ9IZVF6bh+fr98gu0zJ3EAWz+aXU97377tYXynkkcm+KjdndVs2wClUqQcvVq6URI6RJk9wv0+7GL7e8cc+0zHfeKYVMSzNuRww3KqVMS6eCPC7kjgZsFowx8nM7WS3LSdAy9/d7/fXUaOy55S2lTMv034UESKzWk+986kShD8iTSenZZ6X//Kd1+dKCzrjys3m4k/sKu3U3NXkfhdv42hiYtCrPunXSrFkt7zvJtLT7ve2242efmZfBi3//W3rvPe/ze7F+vXTffdK777a8V8g+2b69u+XENdPS7XrXrWt5bXZPF6YoXy9EWMx7oIefbDMt49A8/KijnJXNbMTNIJqHJ5PBNHtNL9vrvLn8DFoWctGeG+Rpako1AUwmUx18P/ecs+V4ybQ0Bi0bG1s3EUsvx+y1l+n8aMbj18W3099or71Sgbef/9z5snJ/C+MAQnvt1dJRu9egpV/Nw6327XXrWr7vtGmpzFOncuuz8bhjLFc5By2tjmNDh0oPPpj6rdaskTp0cL5Mu33LSUAiTvK1NvByjCj2YDK5gq6zfh03c+tOlG9CitU8vKkpf9DSz9+3kEzL3N/v8MPNp3OaaZlMFtbSpBjctAySnB/f/QpMF3qt+cor0kkntZ7WKoPQq9pa634ew2webpY04DVoaVyP3WB16Xnuvjv7/fbtzeu/10xLo/79s/8upHn4Lbek/n3/vdSzp/PlFOLvf5euvTb1Or1ep8cKs+mMdbEYmZZBnevy7TvNzd4fqkZtwMWonRtigkxLZESyT0u3A/E4UaygZSEXsPm+m9cnlG6X5XZ5hXzn3EzLFSta6sjzzztfTr5My3SZrAbiMQtYGuczW4fVdE6bh4eZaen0962ulj7/3H6afL+/cV3G400QwX2r38hsIB6ri7YZM1r+fuAB5+WSWtdn43EnrpmWudup0LJble/BB1s+nz3b3TLt9q1Sy7TMd1Pr5fcPe5sEnQlVSs3Do9CnZW4fdUFlWppdn1ptcyctg5zWc6eZlnFoHp7mtK46vcb2K+u4kGvNZFIaPtx8Wj+bh0v2WVuFBC2ddBvkJmGhudmfTEu7gE96ncZrpfT8+TIt8z10dqqQoGXaf//rfBmFSgcsjestJNOywKBlbDItCznHRi1oGfa5IaYIWqKFn31a+tU8PJEwvzm46CJpyBB3ZUrLHYQnvcx83DYPz5d1ZidKzcMLbbLjVG5mmtf+5rz2aZm+KbJqBuw0GFCMTEs/Lrzdrru21v0AUWaZlmm5xxTjQEhOBZ1pWciI9rnzWjUP9/O3LHbQshh9Wnbu7G6Z5ZRpaVb/nTw0sVNInfdDXIOWUb4JCTIr1G2mZe66x4+XfvpT6fLL7ddjd/2Vy0vzcCtuMi3j0jzc70zLIIOWN9wgbb1168G43Fxrpj+7775Us+VC/fa3Up8+2d3nOCmHkVnzcCfn72I1D3ebaWm27kL6tAwqaGklty/bYkmfbwsJWhr7HPWSMOS2ngV1XMt37i/k2iDsbm9yhX1uiKmIhZ4RKrunLWENxGPWZGL69NSFrlf5mv5asTuwm32XQi5gi9k8PN/vEFaflsaBS9zIl2mZZtenpRmrC7pOnbIveJwELQvN0vEz2OL0onb9+vzrzXcjYVxX7o1lOqvar4zkfH1aOsm0LGSgFjfNw3O7kvAq6Owvu9/TC7/OE0Zu+rSM+0A8+ZqHe/n94xC0LGRfIdPS37IWmml5wAGp/2++WbrkEqlHD+frLuR7+J1pGcWgZS63fVoWO2iZu5zGRukvf0m9PvZY+2Ob3XdKz/f733srV64PP0z9f+ih0pIl2Z85OX6ZXeeYBS3DbB5ufG3Xp6VV0LKYmZZ+BDjNklmKIX2+NXvAYHaeCyDT0vU0YWVaFjOZJ2hROzfEBJmWyEjY7dRubxKCDFrmXiS4ZZZJF7Xm4YUELd0eDIvVPDzf750b5DF2ouxG7npGjZIWLGg9nVXQ0orVBV3uEzwnfcoVmmkZRtDSSaZlvuxi4/y5D0LMgomSNH9+apAEs+/s5aLXbCAeq/23kKCW0+bhuWUpRClkWhZy3JTcjaZd7EzL2lrptdek5ctTf0+eLH3yiffl5bupJdOyNb/2Cfq0TDHub42NreuPmybTK1e6W3chzcP9zrSMQ/Nwt5mWTvfFQoKWyWRqQJIvv2y9T9ld6+euc8YM6/J62efbtMk/zdKlrd9zcu3+1lvm85kFLZ30P2i17mJmWpo1bTfb7k4zLd2cB/zYz8y6DSuG9PHF6XWP2XZxOxBPzjRl0Tw89/4ybGGfG2KKoCUyKuxugNzuYH41D3d70nXCa9Cy0ObhfmWQWZUlLap9WuZbTu5Jxa9My8WLs0c1TE9j1aelFaugZe4Nkpfm4XHJtPQzaJm7vc0yXWtrpd13Tw2ScNddrdeXr0/LQpqH+51paXyS73ffkFbLCTrTMog+LZctyz+NnSg3D7/kEunII6XDDksN7PTzn0t77OE9cBlEpmXY2adBBy39Wn6cMi2L1TzcrEsNN4E8p9swX1ciXgbicTNdXDItrQJeUcq0HDVK2m+/1KCL8+Zlf7Z4sbuyWfW57ba+b721/YCDdvIdX15/XTrkEPP5Cg1aBpVp6bV5eLEyLf3o0zLsTMtCgpblMhBPIefusB/G5gr73BBTBC2RYZtp6XYH8yvTsrHR/5sYP5uHh5Vp6ee8fj7dsvvO+W6Gc08qfmVammlstO7T0slyja9zMy29NA93+5v5GVjws0/LfHXeuC6z5uFS9radNq0liHXppa3X56VPS6cD8ZjdgDvV2KhE7ne3agYkxSdoWYxMy9wbVT+DlmEPxHPvvan/P/5Y+uMfW94/5xxvy6NPS/eCah4e5cyJYg3EY7YuN4E8vx6OB92npVVWZaFZ4n6z2p5R6tPy6KNblnHDDdmf/fBD4WWT3P8OfnY/kbstjjrKfD6zAKPZNYybhIUlS4LPtEyv02w/z3etY/e7ELQ0n97s/WIPxBPUcS3I5uFkWpYEgpbIaHWTLXnPtDSbfvFi6bjjUtkmVllQuYqVaemkLHbbJ0rNw50e2JPJ1G9hFgzysjzJPkiVL9D2+OOpPofS8xQzaGmVaWnsy8dp83AnQYNyybS86qrsv43f20nz8I4ds6c5/PDsbIp8fVqacZNp6TWAY3aBlP7u+bIPChG3oKXZb5R7o1pon5Znn526Mf7LX1p/9vDD7padT3OzdOGF0gkntM4YzVVoRqRk3zzcLIjiRByCllHo0zIKzcOj0KdlvmNAEJmW+TIGw8i0jErz8LfeSmXyPfNM68+KlWnppn4ZrwNy66ndAyy3wbihQ1u/f/bZ0htvSK+80rpMXo8x+a7trMrd0GB+/s4XBLVb17Jl0rnnWk+f69lnW85dxmV56dPSKtPyn/9MtTSYMiVaA/GE1TzcKmjp9N5Byg4ql3KmZSF1Isyg5fLl0oknSuefb5/ohLwYiAcZppmWbi9y0symP/dc6cUXU6/33z/V7DOfIDItzUaJK7R5uN1nbtaRVoyg5YsvSnfeWXhZ7KY1fmcnNwn33SeddJJ04IHem4c72c5Og5ZdurT0W2T1FNpL8/BCMy39Dlomk/kv0mtr86/XuF0mTpS+/771utKsMi3tgr6vv55qSpsObPnVPNxq//VaB80ukNLfPc6Zlk5vwLwuT/I/0/K//039n3tjKqUelDz6qD+DIEnSk09Kd9+det2hg/TII9bTOjlO5GPXPNzrjUUcgpaF3DQFlWkZ5ZuQYjUPd/K5Xw9cpfAyLc0eCESlefiBB6b+HzdO+uij7M/cHhuKkWlpvH7KPfbkngtqaqTOnd2VTUpd695xR+v327dPDabz9tuty+Rn0NLJyMWNjebn79xtaVenzPafMWPyr9vo+edT567TTmt5z6786fKYHQ/Nyvrxx6n/J0xIrSvfcp3wI8BZzEzLRKKlHH70aWnch4qRaRlWn5Zu7pNyjyVhXtcMHSo991zq9d57p/YtMi09IdMSGaaZlml+NA9PByyl1InLyTLNBuIplFkGX25ZVq+W5s61n8b4npNMSzcHqUL7tEwmpS++sN92uRe0VorVPDxtwoTUk94gMy1zn2pbNQ/fcMOW104zLWfMaPmucRiIR3L2G69fn//Eb1zOl1+2/txuIB6zPi3Nvqexc34vzcPNBuKZPbv1dMmk96Cl2XZKf3ezbe1XNnmxMy291sN581LHWLPy5d5AFhq0zMePJ/AzZ6Z+8wkTWt6zuyGTCm/GbTVf+jfyusw4BC0LUUrNw71mWkY1aOnweJLwI2jp9NjldCCeqAQtjQrt07IYA/EYr5/yBS2NCQduzpnp0b5zpTPUzPrX9hK0nDmz9fnE6ba2yrQspE9Lr55+OntZFRXWgUu3mZZp69Y5G4hnwQLzAY+M4tY83DjIkx99WhrrqpcEnKgELf3MtMz9PcPMtHzqqZbXH3yQ+j/3u3z6afDXPiWAoCUyfM209KtPyyCah5sdvIzfr6Ym1RH3VlulMrvMpsl9L0rNw5ubpcsuk/r0STXHt+L0osyvgXicBi2vvlrafHPzQJITfjYP79Kl5bXTTMvjjpN++Uv75plRah4uOfuNa2vzn/iN38Ns9E0nmZbGbeu26aFRvubh6UzM55/PfqCS1tzsPXBul2kZ5+bhfmRajhuXOrZutVXr/oXvuEP697/t15mP2ws/s8x7N+66S9phh9Q+b9z++bJr/Ahamm3/QpsfMRCPM3HKtAyyeXg+brI87eqeWXcKxci0jFvzcCOrbR/VTMtcuV2FGM8Xbs49VuVJH6OtrkXcuOOO1Hkg95rbTVN8s4F43CQ/+HVsy82STCTcBy2tHhob5XvoPHGi1KuX1L27/XL82M+KGbQ09kHpd9CSPi1Tcpv7h/kwNvdeU2r9XXfbTfrzn4tXppgiaIkM09HD09yeFPIdfJz2aRlE8/B8QcuRI1v6Izv88Jb37ZqAm33fQgJThQ7Ec+utqdcvv+x9OV7KYtcvi5vATG2tdO21zqc38jNoacy0tOqDzuxibvJkac6ceDQPl5w9hWxuzn9hZ/y+Zv0gue3T0m0WT25ZzOqC8fdKJlN9OJlJJr0HLe0yLYNsHh50IMWPPi0POyy1nOXLW5pSp5n1O+b23OO2TGYDs7lx0UWp/6dMkaZPb3nfbvACKfg+LUs505I+Ld2t08+yFro/eg1ami3DallkWqZYtRRwE0jzMp3XTMtcucdmv4OW6WO02bWI22OM2blLimemZe567TItrQbiyZdpaTZPbhlOOslZ8DNumZZt27a89qNPywKDlpHJtPQzaBmlTEvj90ofc8y24R13+J+kVWIIWiKjqJmWToOWQTQPN7spy9ckNXeaNLuL50IyLZ0Efa34vb2KnWlp5ZZbVPF//6fKfDfVYWdaGsVhIB7JeSfkK1faf75oUSqI8+ij3jMt3QQtC+nTMnddufzOtCyFgXj8yLQ0/mZOtm/UMy2tlpUvaBl083Cvv30cgpaFCKp5eNgBKjOLFqVGqV++PPv9YgYt3QRMnR4H/ci09HsgHrOWFWHXidygZRQzLZ30l5jmtXm420xLr83DzbgJEHsZPXzOHOm881IJCmPH2q9j002dlcUs09LqOjc9ndM+Lc3mtfos97hlxY+gZTEH4nEStLTaNmbvO+nT8p13UgOdfvppdIOWfjYPj1KmpZFVpmXaz3+eegAOUwzEg4zA+7TM/dxLcMkPZk+f82WI5U6T+57fzcOLEbR0elFWSLn9DFpedpkqJW13wgnSscdaT+dnn5bpTt+l7O+SL9NSSl1IBJVp6XcTTr+Clp99lvonpUaJzOVHn5ZGhfRpmbuuXEH1aWlWJr8CZ6UweniuoIOWhWZaGhmf7ofVPLwcMi0LEVTQMuymwGbOOCO7i5u0Qsrq5PfZZJOW/gjdBHfdZloWo3m41Q19HJqH5z4UcvtAI+zm4bnlDCrT0uwBarGDll5HDz/qKOnzz6V//Sv/Ok49NdW/5zvv5J/WLtPSOJCMVfNwPzItg7hHsRJ2n5a5v6vX5uFW8/Xrl/r/0Uele+7Jnt0uIcdMMTItq6oKu0/KvacJM9PSKL0fWW3DTz9NBS7DfuAVUWRaIsP2wBVW8/AgMi3zNQ83yxCT3DcPLyRoWUifln43WwujebiNrV97zX4Cr5mWZhfPHTu2vLbKtLS6sEoknF94uD1B+R20dHrBli9oaTRtWuv3otSnZb75/c60tOvT8t13va0nl1mfWH7KLXuh+7STeh+F5uFO9w/jhbKbTMsgmod7XWap92npdZ/OFYWgZb51mgUspcJuiJzMa8zosrseyS2/07pXzExLM3FtHu72er7YA/HkCjrT0i5o6Rfjd7B7OOy1efjnnzsvi9V1rpncTEvj72RM7LAKWjpp1u1X0NKPTMtiNsstJNOy0ObhtbWtlh2Z0cON383s+snNtUHuNXjYD2PT8mVaSuE/7IowgpbIMG0enuZ3pqXTacIYiMd4QrGaJvc9J0FLNweiQi52032s+bEsKTrNw39keoI18rN5uLEuuA0y5N7EbLxx9vqNipVp2aWL1KlT6/edZlquWOFtvWnG7+lH83AvfVq6ybTMDXBY9X+Zy+3o4fmadTkVt0zL3PJttln+afLxu3n4VVel9pu//CX/stwELf3o09JuIJ5SzrQsJAvquutSo/wWKuh9LUiF3BQ5+Z7durW8tgta5raYKFbzcCdNV+3ENWiZFqVMSzdBy2INxBNE8/CPPpJ69LCezmogHjd9WubjJmiZm2lpnM9J0LLQTEs35y8/gpbFHLnZeF+Rvpa3S/jI936+oGWeOuQ60zKo41q+Fo9u1pt7HROXTEvYImiJDNOBeMLu0zKMgXisbjbj0jw8V6HbL2JBS1+2jZegpVWQwe4iyDhdhw7Znxm53b+8Bhasmj351TzcyGy72A3E43fzcLNjzAEHZN8k5esSI/em7/nnWwbpsmOXaWm2XfwIokjx6NPSbnlbbJF/GqN8dcyJfJmW112XKsMNN+RflnG/pE9Lb4px8zh4cOHLiEOmpd/zSc5+H2PQ0mo7LVjQeqBAv5qH5wvM+NGthdl2iFrz8Dj0aemmebjxOsXNb2hVT4rZPPyaa+wz9r02DzfTvr35+4VkWhq3h7E1mtVAPE4eDISRaWmlmJmWZs3DC8m0NF5rmH2PPPtnZJqHG79bvoE888m9jgn7uibNSaYlLBG0RIZppmW62aLbHeyhh+ybPEa5ebjV+uyeYNk1Hbf6246fHRIXuv2crqu+XnrpJet5fWoenvcyxq8+LSsrsy8GrAKVToOWxguV3Js1t7+R1xOw1YVgTY20apV0++3287sJWuarN0EPxDN1qvTKK9nvPflkYZmW+daZ5nYgHr8umKOaaTlzpnTTTdK339ovzyzrJl9guVC5mZZffCFdfrn0738XdswKO2hZypmWhfrmm8KXEYeBeKwE3Tz8Jz9peW2VaWmWBZgOWn71Vep4MW+efRmszr35gh1BBS2jViesgpZxzbR003WMm3UXI2i5cKH9dGaZlk6ah5ux6uKqqip/X8tm66moyP7buPz09zNrPRSloOUnn0i33CItWeK+LH4zbpf0PlpI0NIYpDY7rubrMiwqQct8yUP5rteffFJ68MHU69xr8KhkWqaDsWGfG2Iq1kHLESNGqHfv3mrXrp322msvTZw40XLakSNHKpFIZP1r165dEUsbffVmzUZHjJCWLvV2kNpvP/sslqg2D7d62u8207KQbDo/D2hWJ+N8FwTbbms/f64HHrBft10WxcknO1uHlL/eONl2TjItq6utA1xO1pEbcDde6I0YkQqOuFmekdesVasLwbVrpUsukf70J/v5/Qxa5j7x97tPSym7w/Hhw1PNswodPdzJRb/b5uF+HeOCvmnO3fecBvV+/nPpiiukAQOy33dyoR5EM6UuXVpe556jjjlGuvlm6Q9/SGXWelWMPi3tBuIh09Ka0xt3O2RaWnOSaWlWhvTxZI89UseLQw4xX36+Op7v2qbQB6hxD1q66dPSacsVs/U44SZo6eaBppPyWGVa+hWwlFrK/POf20/X0OCsX8hCg5ZeMy3zBS2D6NPSqXzTNjSkjimXXWY9TTGP38bvnb7GdNo83Oy7GltxmV2z5t4vRDXTMl2O3O4I0uzqy4cfSqecIp11ljRyZHQzLWkeXpDYBi2feeYZDR06VMOHD9fkyZO12267acCAAfrhhx8s5+ncubMWLlyY+TfP6ilumfr8d79T0jjwSNpbb3m/+Joxw/x9p5mWkv8DA+QLWlpd0JZb8/D0wdXp/Jde2vo94/ewO2lYXWSZKFqflm3aWAe4nAbc7fpoMQZEitWnpV2m5cMP55/fzSjXxci0dHPjkl6f04F4kknzOuvkt3fbPDwuQUuvzcPTzfq+/NJ+eU6Oo04/s7Phhi2vc4OWs2aZv3YrX2DMWA/8zLS0uol0Kg4D8RQaVPAjaOn3gHfFFGaflnZZkum6lz7PWO1/dtddUnQyLcOuE4WOHm6cx05QzcPtmtvHbfTwfMszy5Dz2jzcj6ClXaalX31a5ju3+5Vp6eZhezGYJXMEmWnpd9AyqIcx6e/mJWj5r3+1vL7wwuj2aUnz8ILkSQWIrttvv11nn322zjjjDEnSvffeq1GjRumhhx7SFVdcYTpPIpFQD7uOkA3q6upUZ6j0q3+8sWloaFCDT81co6ShoUHru3fX+tmz1fa++1Q5fHjLhyee6H25VVWZi1ZjyKapqUnN9fUy6bWilWRtbf4mwS6YLa+xvl7JH8tZUVsr4y1N+vdONDS02mEaGxqUbGhQRWOjcm+DGmfMUOVxxym52WZqevVVVTY1OX5K0NzQoCaLepYYP15Vb77pcElSQ21t9pO4H1U0NbUqs1GyokIJScnmZjU6qPNVHTsqkXPCNG7XRE2N5QGnqarKtixZmpvt90EH9aqxtlYVDQ2Z36MhmVSVspueJ9u0UXMymSlX+reWlPV7J5NJ0/rZ8OM60tM1V1dn/f5NlZVqTm+b+npXB+NkXZ2nfSL544kyd96m1asdbf9kTY3j9Tbnqe/NUlYdr0okWtW3RG2t6XbJ7JN1dY63W1NTk5p//D3S5UpuuaXl92msr1elyXZuqKvLm6lTsW5dq+3ZVF+f+r3r6lrVz2Rjo6N9LJ+Kurqs9Rr3P1/k7FtNdXWZOmzHan/M3XfM6ozVd0g884wqL7zQ236w0UZK/PjQsnnVqpZ6mExmfz/D/itJDfX1rW6krL5bc2Vl9jG8uTlr2mRTU6bsTo+xucz2j8xxyqSeOZGsrfWlLnpVkbPN04zHfLPzrRvJysqCv2PuvpY5LixfrqrDD1eyokJNr7+endXrg6z62dhou/9Z/f4N9fXesw1ra/OfXzt2zNTLppzrqeamptR+sW5dq+U0rV+v5oaGrPfTv7vx/Nzc3KymhgbLupJMJOx/X5N1u9Hc1KRmk3NP7nctaDt7lFU/1q7N3vY/brcqi2sWMw11dXmzxnOPQ5nj2erVqjzsMCXq69X4+uvZwewfpc/7ZnLPB00NDZn6nrv/2Uk2N5uuo1FKHSubmrK2W/OPx3gn1+vp+ml5jjvoIKmpSclu3eyXZxJsam5oUFPOOTez//zIbL3J6mrT79v047Z28r0aDdekTc3NqlDL/pesqmrZFxsbU3XKcD5Lv5+02D8z5amvt/y88cfPnNTTfMdBNTY62t+t7isqLr9cFc8+q6bbb1fFnXcq8dFHSp56qprMWpc5UNXY2LItGxrUaHIPaXWdWWGyzRokVVVVKdHYqOTata2PfTnHu6acdSVM7qnszrF5t3d6uR99pMpTT1Vy333V5CApIl2HkpWVUmVl6/v02tqsa8HEyy+r8qKL1Hz66dIWW7SUd+1aNeVcg4d5XZO17ZXar83iCUalGGey4ua7xjJoWV9fr08++UTDhg3LvFdRUaGDDz5YH3zwgeV8NTU16tWrl5qbm9W3b1/dcMMN6tOnj+m0N954o6655ppW748ZM0YdTAJApWLsRx9pq/nztatPy3t//HitXLBAknS04f05c+Zo/oQJOsDBMtauWKENfCqPJNWtXKncjgHemzBBKxcvliRt8+mn2tnw2ejXXpMqKrTJxInaO2e+zz/7TPNGj1af2bO1be6KTjlFifp6JWbO1KeXXqoeixfLWchc+m7BAk0ePdr0s6OPOcbhUlLGvfGG6k1unHb85hv91Ga+NWvXqrNSFxajLcpidEgiodw94+OPPtIPPz4R3/KTT7S7xbzzFi7U1nnXkJKQNNZmtOV2y5drgOWnKRPfe0/b//CD0uN5jx47Vgf8+H3T6pqa9M2sWdrpx78nTZyoxT8+fdx5zhxt8+P7a9euNa2f773zjrpNn56pSyvWrs2sT5JmfP21vv5xu24+ebLyNB7KUrt6tSy6WrfV3NSkpsZG5T6HnzV1qnZwMH/CRXbDdwsWyGRYlYyFixZpkqFeHbx+vTpKqq+t1es/vt9r6lT9zGTedH3s+fHH2tNheb6aPVtfjR6tPZcuVc8f38sNshu9/9572n3FCuV2mvG/sWNVt9FGtuvadto05Z5Z5s+Zo2mjR6vt8uU6LOezpro6R/tYPj+dMUM7Gv6ePGmSFrrIYs6n/ZIlOtTw99czZ2qGg3IfbfVBztPm1StWaMOcST764AMtNRnA4OjTTsu7XitLGxuV7nVv4axZLfWwqSmrrLNnztT2hr//++qrSubcwFt9t5U1NZpg2DaJxkYdZfh8bU1N5rjh9fc3OydNnTJF322wgTosXCiLxrW21q1YoXE+1EWvdp0zR1uZvG/cPjvPmpU5/nqxrq6u4O+406xZ2s7w99vjx2vtrFn62T//qV5Tpighae7gwfrsnHMKWk8uY3375ptv9IXN97Cqm2+/9ZbWehz8q+2KFa2OX7mmfPaZfvHj66+//DLrOmPh999r0ujR6vL11+qfM9/Mzz7TrNGjs8qd/t2PMDxk/WHhQn08erR2nDXL9Bpm7bp1+p/Ndmm3ZEneawQ7ixcv1rcTJ2qvnPenT5uWde38/oQJWpmvL0OfGbfdd7Nna0vD3/O//VZTR4/WYbW1aps7o4X/jhqlpNmgGAabTZqkPQx/165frzGjR+unzz2nHSdNkiQt+e1v9bFJQsmBtbWtzrFpK5Yty7pmmjVzpmb++Ltu+/nnrc6xVlavWiWzRwefffGFvh09Wl2++SarLq5YsUJNa9equ4Nlp+un1b6W+HE/S8ye7bC0LebPm6cZ48Zl7W+LFy/WREPdNlvv2vp602vSz7/8Ut2XLMlc/9iZOnly5jf94ssvtX1DQ+a6cXVdXWZ7LlywQJNGj9Yhq1dnXf+vWr5cS7/+OusYmeuLzz7TLhaffT5tmnZsaHBUT7+aOVNf2ezvbVeuzHvMklru9Yyq16zRr++4Q5JUddJJmfcTjz6qcfvtp/XG/nsdOnDVqkydr1+3Tq+PHq1d5szJugd6Z/x41Xz9dat5t/r001b356NHj9av27RRdWOjapYs0Zs526LD4sVZ1wKff/aZdjP8nWhubnVPtc0XX2TdBxt98/XXtuedtCOPO06JpiYl5s3ThN1318pt/7+98w6Xosja+Ds3XzKSc5SgJEFFMKCCgGBas6KIAV3FNeAqH6yIiru6Ys45hzVhWjEQRFAQBRNmUdRVAQOIBIUb+vuj7Ds1NRU7TLic3/PwMHemp7unu7q66u33nJM2S05h719/RUMAVZ6HrX/8kTafXLxwIdauXVvz98FHHAEAKLziCnxwyikpx+Xz5ctTxsJV33+PF597Lm38lgn4a/Sjjz/Gylmz0O6999Bf850o5gP5wmZZSgMFeSla/vzzz6iqqkKLFi1S3m/RogU+FcPP/qR79+6455570KdPH6xfvx5XXXUVBg8ejI8++ght27ZNW37y5MmYOHFizd+//fYb2rVrh+HDh6NBgwZpy+c7FRUVmD17Nvbbbz+Ufv21cjmvuBgJB1V89wED4O2+e9r7nTp2RAfJ+zLqGgZMrpRKbO+7DxoEbyAbghZ8+GHKZ6P23huoV08q2PTeYQfsOGoUCl59Ne2zIs6S37tuXSQkT5lVtGnZEi1HjbJeXsewffZhufwECjQCPwDUb9QI+PZbFAIYZbEvRU2bpiW53qV/f3h/frdA0646dO8OvPCCcRsAAM/DfjvvjJLXXoM3bBggCkjff29cxa79+6OAuymMOuAAFE2dmrJMaYMG6N4jKeXtzP+WV16peb+u4iHGHoMGIcG5tRu3aJESHtuzb190/3N9iZ9/Nu4zT1nA0KUCz0OBRMTavnXrQOvT0cbgam/Vpk1KuyqqXx9YswYlxcXs/epqFCqeZPvfSzjc7Lp164auo0ah8JFHgCVLjMsP3m03FPIhJ38ydJ99AMPxKli+PO299q1bo82oUdL2aXuNmSj4c4Lo079fv5o2GwlCSpUu7dujU4j1i6keGkrSk+y2ejWqDzoI6Nkz7bOgNGnTBvizn2/VrFny2Av3tq6dUuWz/ffdF6hn9witUZMmqedUEMjrciFdhQUFgc6/7F7cr29f9B01KnBoe52ysnBt8bPPkPjiC3gjR5rzekoo+O9/pe/z+1SgeWhlQ5369UNfb+I9f8ieewI9eqDo4otr3uu4cSPaRXn9CXTu3BkdA6x/yF57Ad0Ujyy3bkVi1ix4ffoAnSWPEn/4wbj+nXZOSlhdOnRI+axVy5YY1aMHChYsSPte986dsb3we/zzVMCJCc2bN8eoUaNQ8MYb0u3XrVtXf35XrjT+Bh0tmjVDs3790t7fsXv3lL93HzwY3s47py2XKdput13K3+3atkXrUaNQ5DCm3n/ECMCQ/z+xbl3K32WlpRg1ahQKuUJ4rZYtk56TIs18qrHwsH37Ll3QxW8PH3xg3HefBrJ8/QB69+uHXqNGsaJ9/HabNjX+Zp8o7tsq2rVpg9b7pFo7WvD3KwV1GzeWXqc79uuHgtWrrbbdr29S1tqhVy8UPPVUzd/1mzSpGQu0atECo0aNQlFpqrzYsH59NOgke/yUZAfheuHpveOOKCi1k9a7bb89uuqOiUWfBQCj9tsPELf5p+lGxj79+wO9VbKrmiLu3l+SSLC+7KWXUpbZa/fdgV7psmGBRPweNWoUu442b0a9wsL09iE8oOolmLUS1dXYb7/9UMz1CwWah1q2950CLpx79+7d4Yk5zQWKpkwBABSWlKC8Xr20+eSgXXaBt/fe0u/uuMMOKX93E8Tkoj/+wKhmzeANGmTcb2e2bkXixRfZPdPQ5nfs0QM9e/VC4R13aJeLs1/JNX7T1T4RyEvRMgiDBg3CIK6xDh48GD179sTtt9+O6dOnpy1fWlqKUkmHWVxcnHJh1zaKi4tRqMn3lCgudgp3KaqqSs/lB6AwkUCh5YQmEXEC3YQkt0VRQUFyP4W8GcVbtjBhTHJcChMJFFq0h8KSEqc8PwWeh4KI2lkx/9tSdkofXJP48/wkqqrs2rxkMp9yXDUuvUKHolgJz0PZiSeyieuoUelip0W7KgKS57moCMVi/koAiZKSlHOb8ls40TChEBCLEomU5USxsLC8PLl+RxEyETDvnDR3DYBCjeMwKAWG31RQWJjaxv88/onqatbennwSUAgYQfrgwsJCdrzL7TyqRYWF0vx+yuuJR3KcC6qr2e+VXHeJyspo7itCH1Nks68uCPteWF1t7v8c+r2EJGdR4c03o/Dhh5kI5/DgR0cB19+k9LXC9sUzVex51sezoLg4tX0L9x1esLXuY0Uk7azmnNvmLhMIvC8Ayw86aBDLkXvzzcAZZ7ivQ9FeUvYpZK7ARGFh5OO44qKitLZRkEhEdh+XYTv+EJHtaw3//jcwdSqrAP7NN+n9pUW74gWMQqGNFmzdioIhQ4A/I1t4Cquq0n6P7DzVXLOKfUkUFMQ6Ti9IJKT3t8K4+19HCoQ+p6Y9Olw/xYWFzr8h4Xns+HMT+ERFhfycaMahBcJ+FhYUJNuHy31F8X5RWRn7bcJcr6Cw0Lr/jLWdASgQxrM2fUpCIfYVFRZaP0gq4n5/YVFRyr2RH8sWgN3rxHuneO5k6GYghQ5jYmM/aHsugfS2rjlexRUVwa5vrk9Ujf2U153kuBQXF9ekAEts3mxsk4XiXOfPMXfK9zTHrBBwvu8UlZZaj5sTipyWRYByHYXC/LLwuuvSv79gAbDXXja768a//gVcfDHQoAHw44/pwje/X1VVKBw6NM0AIFKbdSYRl9+al4V4mjZtisLCQqwRBj1r1qyxzllZXFyMnXbaCSsCWPZrPbqbhatzgh80ieu1HXREXfVLJvjoCvH4RSRcC/HwFBXlX/VwfzBpuy+yIk78d3WJkB1DWGucNjILvWshHpVwqCvEY3NMqqvV1cPFv10LAwS9JlQFsPw2HiWu1cP94+9/78/QDy0uxUb89dsK5NXV5r5Chex8mgrxRFG0QVbBM0rEfbQRu132QXUd/PorcOON9usxwQ8q+W2ajp/LwwLxXqlbd9DzJDiEAKiLbdi2+zBFSp5/ngmWADBhQrB12FzTYSuMR1GIR3U++WskyirEMoK2G933/IiDn34CZNEYpm1ecEHq8RXHU4sXSwVLAPbXV9jq4ZkqxJPtYguq/jnqsaiqEI/NQ6ZMVA9X/QZd9fC4r10boq4eXlUVvBAPX4SxPZd0IEwhHlP18KgK8djeL2SGHN13gz7s59fpbzNoIZ4nnmD/+w+XbKqH2xR3irp6uI124O/Xnzkt09Bd8zaFdiwdt8740RW//QYI0U5pfP21UbAk1OSlaFlSUoIBAwZg7ty5Ne9VV1dj7ty5KW5KHVVVVVi+fDlatbLJ7kHU4Kr+b9nCLtIRI1I7Opfq4VGLljJsREvZ/uazaGmCr+Zsc65MomVE1cON2OxrRUXyBqgauIpODn+9552XWqlOhTho04mWrs7JMNXDZW1LkjMwNKbzYFM9XIUvYAURLS1DjuB58YiWqu+7XvOeB5x7Lutb/UFQnJPmhx8GBg9Ofe/224H//Ef/PZfJpe58zp9vvx4TtqKl+LesPagG4+L74nHg+8OgffScOenv+dcdv85ddmHh8DbCZRhBMAp3QL6IlqqJXz6IlrZjL/G+8N//AgPFTI5/0rcvsGABc53wx1ds97pUKBUV6n3jj2XY6uFhixx4nr6P55fjueEG5vSxSE8SCaKoImujJmza2Hnnybdj8xBNJ6JFJVqqzrffTlVjERvuu89+WVdkwl9Y0dK27+O3Kx6f/fZLX052rsNUD3fp4+MSLf/9b0CXxswhPZFyfyor2UMcMVzYRrScOhU47DD22k9TtXlz6vGorASOPTZ1HWGrhwcRLW3anal6uO6at9EJgp4vkTfeYPfBwYPNIqWIbVuMwsRQC8lL0RIAJk6ciDvvvBP3338/PvnkE5x++unYtGlTTTXxsWPHphTqufTSS/HKK6/gq6++wjvvvIPjjjsO33zzDU455ZRs/YTcRTfgc52U/PEH6zC5HIAA3ETLGEJX09CJln6+BV3HbvothYVuE4ywkzKbddk6LQG7fZeJlvxNRvckzFZIssHWaekLECrRsqQkfaL02mvANdfY7UdVVeqxF68d/u9MVoqTnctsOC1VEwWb83fWWWwAEuQ6yZbT0t9X2yfoJubMAa67jvWtY8bI1xGlaHnccXKH1DHH6L/n8rt0g9J33km+Djug4/sbfv+CiJaqvstFtAxynqqqgGXL0t+XCQY77QR06WI3GQ9z74ni4VO+iJbiPmRDtAx6HIKIlp4HHHig2iXZsCGw557pLhmXe9vWreprQXzoDWTXaSlbh/hb+f1bvx44+2xg4UJgN7F8VkSYnPCm4ybDtOwHHyTHyOJ2xPYpE6wz4bRUtUHV2K+gwP7a/XPOGQtROy0rK+0FWf6YFRQAzbmyRPvum3ztn2PxfFRVhRMTs+20/O474P/+T+/Oi0K0rKoCTj9dv4zq/V12SR4jPrc+P7a4++60nJbiucoZ0dLfjyCipY3TMirR8uKLgbfeYlEDV17p9l3buVaUGkAtIm9zWh511FH46aefcNFFF2H16tXo168fXnrppZriPN9++21K4u5169Zh/PjxWL16NRo3bowBAwZg0aJF2EFI3koYcA0P37JFHmIE2Hd8mXjiwG9DHOD4yYDDhIe7ipa54LTkbzLffCNPys8jEy39Y+l5rJNXkQ3R0r+B+fttEx4uK/Sl2t7vvwNvv526Ph7+HAd1TgZBtr9xiKam8yAOSlyclkCqW9aGTDotZcdTFx7uf+4i+vDFfvyCFLkQnuh5SSfRwIHRiZb8emwGqDpUTkvxeInnUfY0XzWxMomWYa/5ykr9gzT+M78vt5mwhhF0ohAtFcUUU8gF0VImqKxcCfCFLmqT09JUbZxvW1GKlkuXAkLRm8T777PfoBMtq6pY+oR+/dLPd9j7XXW1ndOS379ffw23TRvE45EJp+WPP6a/56/fps/TXYuqBwOydetwdVq6hoeHFcFVZFO0FFN73XsvMHkycPLJqcUvwzgtc0205M+jRUHPSERLAHj66fRlbB5u89cOL1pu3px8OL9oUfo6hOvBWbQMct+xaXd8eHgcomVUBij+wR1XzdwK26i2JUvYw60oxiq1iLwVLQHgzDPPxJlnnin9bL4QSnbttdfi2muvzcBe1QLiymnJ4+K0zAQ6AcnvoMKEhxcWRh+SY0vQCR5/rrt0YYUwunZVLy8bKPnH8qabmEvR5bu2VFerc0+qqKxM3jxUoqUYHl5d7bafYvW3XBEtZccnju2b2p1sogDYt31/YmqLa07Ligr5+m22GSQ8PIqJTy6Ilv/6F3Dhhez1xRczd5EtumPAt5ewg09bp6V4XciuE1V7MOW0DJv2RHWsZJNIvx+L22kZVgyaNy/VUasiF0RLcR/efhs49dTMjmuCHgfbfoGfYHHpmKTwx1QXHq5D1ufusktaeGPihx+AW25R/46CAuCkk4AHHmDfffjh1M8z5bTk20Im+mLx2EXhtDS1MVllbpXTUraubIaH+++HcVoC0Tm4RGTCn825iyKnJd92CgrYeNYf065fn74/ceS0tCXMdnj4dmKz/ShyWqpwFS35gmmbNwPbbcdey853WNEyyD3O5njy4eFx5LSM6jrl+wbXe7CtaLnHHiyC6qGH3NZfy8nb8HAiSwTJaSkjl0VLcYDjP0kO47RUuWJUZDs8XMxLBbCQXB06Mcz03TBOS1FIsM1p6dv0fdFSvLnLnJZhxFXxu7Jk3JlAdnziEC1NkwqT09I0aaiujjenparvCpvTUue0DEtc4eEuffXMmcnXs2dHl9OSbw9hB5+2OS3F69JFtBT7T/E4hD3fqu1m02kZVog1pRrwyQXRUry2xo9Pv07y3WnJF9/49lv9slE5LWXn9pFH0t8780z973jgAfV3M5XTkj8/mRjviu1BNZGPUhCSHQcX0dLFaRlUtFSNb/z2HSanJRCvaJktpyUvyOmOT21yWvL9gs13gp53m+vPJvc5fx54pyV/7mRGo2yEh7sItUGclpnMacm3S3GfTG3WpX6A+LCNINGSkBB1TksVufQEQSdazpoFjB2bnpcTsH9yrcvVZNqfsLis67HHWGGN885Lv9mZniqGcfCFEQPFm5XNDXXTpuTNpl499r8pPNzz5O3f9gaey07LOERT0zpNOS1Ng2sxZ6gttk7LMBO+IE7LKB5UxOW0NE0Qx44FXn6ZvebFjcrK6MLDCwqAdetYVerp0+3XKaOoKNm+dKKljdNStc8m0TIsqvXJBINMOS3Dipa2zhVxH7t2ZeFUTz7JhHITixcDf/sbC+c+/XQgSBSOzXHKRE7LBx5gIZsuFUlt71m8o8p0j4rCaRnVOMn0++JyWupEtmw4LVXh1VFU3vaR3edV23EVLXX3M5ffoArN93Nxhg0PP+II+2VFdH2yLC+kjXtXNU8L47TkkYmWceS0tCUO0dJm+1GFh7ssYxseLlvGx9Vpedtt7H4p+8wWl9+c64V4+L7BNM8Rfzf/IJBwJq/Dw4ksEFV4+PffA888E3p3IkMnWi5Zoq726H/P1Ilv2ZIfOS379QO6dWOvXd0osu3YTmLDiJY6p2UiIT83/GRMFx4uFuIJUx1X/G4uiZZxbN90M4/CaRkkp6WtaBnGaSn77aZCPLnstDSdywcfZP9++y212ILKOaXC5LS84ALgrrvs16fCLxYiunVdnZY6N4nY72RatAzqtIxStPQ8t8l/3bp2g3pxH48+Gth1V/bPts3fdBP759O/PzBkiP2+2mwnbtHyf/8DTjiBvf7002RuWxO68UpxcbLdr1uXfN90j4jCaalKyaHCxo2k2k4YcjU8XNyGrJq5at9t1ykS1mmp65N01dj5zwoKgh3fpk3Z/2Gdlq+/7r5tn7IytZgiu7/Y5PVUjadbtzY7pn34fdIdH1+clIWxm86J7vOqqtrrtMxEeLhsGR9X0bJNG3ZvvfFG/b7piNtpqTNI1avHHI5R5bR0iZIT75suTksiDXJaEulEmdNSNfF/7z239cRNUAHJNjzc1UGQifBw2f7w51682dmISCK2xzJMeLjOaalqrzaipSw8PMwkNFfCwzMlWpomRqacltkOD4/LaRlneLiNsyUItu1z5crUv11FS1NOyygES4D1C37f4BIeLvY1Lk6RqEVLU78e1GmpK3BiQuxHbCtl+siKuckQfzvfz7sKDj6zZrkl1Q/jtHRN3q/i44+Trxctsl+v7vz6kQdAqmhp6gP4c8ePHfxChjbo+guXomimc5ON8HDZPq1bF+8DapnT0nV7QUTL6mrWFm1SYkThtAwyftxrr6RDMmxOyzDoHqKawsNV7VgmWu6xB3vAEbR6OA9/zlTipJjTUnaO+Pa5//6pn2U7PNzmfp1LOS1V4eEWOS21qc+AdOdxXE5L/14RJKelziDTsCH7PyqnJYmWWYNESyId3Y3CdUKgmvjzbhxb/KeicaBzWtp8L5fDw11ES/78ugrUsu3kqmjJhwu5iJay32h7AxevnWw5LTNVPTyo09Lfv6hFS5+wTstcKcQjO4/Zclr6rFiR+vfWrW6/y7YQT1gKC5N9A3/MxONlCg93ES2jfBAFxOe0BILvq3jN+OGXttiKluJvd71XybjySqBJExZqbUPQa+u889h2Jk8O9n0esT02a5bM5ahDd8/iC6u4OC0bNEi+5iecb71l3h9+G1GMk4IIbS5EIVrOnAk0bw4MHhxdvkubPsf12g5yLH/7jf22Bx80bzsbouU117DCkH6/oXqAGgfivoYRLW2dlgMHAgsXst9rG0HFX++m8PDjj0//vihm8qKaD98eLroIeOGF1O/bEiZ3Jk8uhYeHES35/ZLdG12dlpkQLe+9N/k6SHi4SmsoK0sem0yIlmLfQaJlpJBoSbjhKlqqJv5BLtxOndy/Y0smRMtcqx5uCtXJpNMyrpyWNqKl7yz5/PPUZcTq4Z4XTtzTTSgyKVqGEZddCJrTEmDH2tTX5KvTMh9zWtq2+++/T/07SqdlUAedDH7yFianpW5/s+W0DJvTEgi+r2Jf7Jq/SSda8v26zmkZlnvusVsuqNPymmvY/1dcYb9PKsTjXV2dDBfXoRuL8Pd9fpxmukfwYmfQ8+HaX+RTeLj42WGHsXUsWcJcslEgHjtZeLXrtR30WFZVpedZDRseHpVoKY43M+m05MN4Ab2IaAoPt3Va8qmJbO8B/PVuCg9/9NH074s5LWV9uyjA8f1GNpyWfJuyuU5yKaclL37zTssowsMzIVqedFLy9f/+ZxYtxX1QjddLS5OiZVTh4fx+mO4l4j06bN7vbRzKaUmkkwmnpStNmgB9+wJvv21edrfdgDffdFu/32k/9BDw0kv23/M7TlMnHkV4+OrVwK232q9Dty7V+9lyWmZatHz22eRrfzDFu0r8fRKfKIcRHmQ5f3wyGR4u44cfol9nGNHSZsAaVLTMRCEe2W/PRnh4pkVLcRC/ZYtbwbVM5H0DUidIQUTLykqWnF7Xv7nmtHz3XeC++9jDudNPN0/EVeubOZOJTV27Jt+rDU7Lqiq5OxaIVrS04dNPgaeeMi8Xh/DB52kO+rBJd52p8rqZ+gCV09KFqiq3iqmqvlQWFp1IAPPns/yDfAh8EII4LXXXf1TuG5PTMg7R0mV9rk5LMbWA5wGffMKKRX70UfJ9V9FS7C9kTsK47kXl5akPzXVzB1Mhnvnz5d8Tx9P8MY4iPJzv1xYvln9fDA+3ES357axYAXz3nd2+muZftueS/802fWucouWSJcCIEenv87+FP168MF1Vxc7L7NnpD5IB4M47U/60Ei1lxZdccBlT/P67WbQU90EnWvoPCv74gxVxPOusZMh4EHT3RVO0DhEKEi0JN8SO5Oij2QBCRVRPFfbd117YuuIKYO+93dZfXc2ETlmYg+l7/P8qoijEc/jh9on2eYKGh7tOPGTrsz3/YcLDdYV4bCazqolySUl6IZ4wwpIu31RtvLHxN3NZQSTdQLi62s5pqTofTZoAv/wi/yxbTst8LsRju2/ik+zVq4FLLolmH6KcRPqFeIBghXiefTa1mqYMV6flgQcmJxhNmpjvRapCFLNns38775z6Of+/iVwULXWhtlGLlqYCQvyx1RF3Xryg9w3dJF8lWgYND3fhzTfdHjjbOi2rq5kwuM8+wfZLJEj1cBdXdlBM/X8uipau+3L44am5XAH7B5E+Yn8Rtnq4C6LTUnct6sLDN29WVy2PQrTUOS3942PadxfRUgwJfuQRu/0E4slpaTN3CeLcs73Wp00Dpk5NP/YqpyXfpjduZGknLEnIjl9Yp6W4jOu1b8ppaco37sM7LQGWhgBgxzYo/G8xGQVq49wui1B4OJGO7mYtfmaaLETltOzSxb5yc5ABc3U1c84E+R7/v4qwuZoqKoIJlkC84eG6kD0gMzktxTbmKlqqXBdieHjUoiV/jmtjyAB/rGTXrslpGSY8XLe9TFQPz0QhHtl6dAMov3JsEGydllH19zKiFC2DFuLx+zOb0F5X0ZJ3RHz1lXn9/L7K+rmlS5OvXZ2WQfs5sb937deCipZBRTIVpt9vW2AoauFDFFODXhO2oiV/HFzCw6M+HypsRcvKSuCLL6LbbhTh4TxR9W2m9XheuJyWsntIWNHSdVwsCpaA/dzAxzS2jTM8XMztqPv9uvBwXRVw8X4QtdPSZj2i09KU05J/kOhKHKKlzdwliEPa5fqT7QN/7+GPKX/Ov/zSaZcSplz9QUTLsEUhdU5LWf+rEy3FBwU24ysdOqel+DujyqNJACDRknBF7EhMolBUYgw/yTQRJPdZdTULOwnyPf5/FWHDw12S2ZvWpXufvzHpjndFBbDnniyU8bPP2Hu6nJamQWVRUfBB4t57A5dfnvyb3w+bwaxqolxUlC6kySYetkKQSrR86inguefs1iHj2WeDpQ2IG/5Yyc6DLrm7yekE6EVLWduNKjzcsRCP5wvyURfikaFqY7//zpLxb7898PXX7uu1FS2jyhkkI8pCNqpCPKbwcP9+1r69eRv8eb7rLmDoUPv9cy32ZOrnsuW0dG3Tsomtj+48RS0wRJ1/NAqWLQPato1G4NLds1QifibCw12xzQ9cWekubOlQiZZif2HrtIyqbwtaJE6H/xs2bwZ23RXo1i1VMHNJbROmkCG/LyKu7c1UeCeTOS1NoqXKaak7j1GIljqnpbhOGeK+y8wB/G8Xw8NdyJZouWCB+8MQl2u9bl2WKoaHj17g+1z+nK9Z47RLseS0dClaKEMlWn75JTMxidEOuvBwUVwOew/VOT7FdVPhnUgh0ZJIxyWnJf+37HtROW9cRMugTssPPwz2Pf5/FWGdlsuXu+0XTxzh4ffcw3JDffMNcNRR6u34Ny7dZNTfbpgQvylTkq+Dhof37p36/pYt6UJamMnsbrul/u0fr8MPD75OgE3GmjULt4444G/mOhHRJ8qclrq2a+vqDeO05H+7L5JmsxDP1VezfMBffgmccor7enNBtIzaaSkrxGMK7fH/btfOvA1+XePHu+2fzW81OS15MuW0FK+ZKHP16pyW4u/iXX9BiEq0jFL42H//6HIPB8lpmYnwcFdsxzaZEi11E1hdm4rq4b6N0zKoaDljBnNvr1iReg/JpNNSdb7DFmnLZPXwqMLDdWKIeP3lgtPSNaelC6Y2FJdoCQCPPWa3nOu++Mvedluqu5Ivbsf3uXz/FodoKc6FTMQlWp5wArByZdIs46MTLVetCrcvIi5OS9uoDMIKEi0JN3T5NWQTp5Uro9luJkTLILknXArxhHmibDP5U/3uOArx8E/a33+f/S+78a1bxxLrr1+vXpe/3ajykrmKlv6EQayAuGlTtOHhgwcDQ4akri8Kwgz24sTkBDPltLQRLVXnQ3YtxFmIp7KSFUBZtiz5t4+/Pf96y0Yhns8/T7737rvu661toqVtIR5VeHijRuZthNlfV8eUKd9ztgrxuIqWuu3qREuxr3j9dWDMGDtxWQZ/bOfNA2bNYulZ/vtft/MapfghFiUJQxw5LbMRHq4S+2ROS5d9Mo0bgoSH6/r3ICGEP/wAPPhgalEX03UbRrTkHWX8PSSToqXqOIVtb9kMDzcV4lGFh+vyBeuclrbHyuS0tEnfkynRMiqnJZ9P13Y+6HrtBrm38v2cf94LCtTh4Y4Pt5ydljbXrNg3R5XTUhV1qLoXlJWx3Oph9kXEpRBPWNFy0SLgssuY8YAfx2+j5OBMl8g6ug5JvKnwy8oGemFzR/gUFsaf0zJIR2brtHQtxKMr2qJCfIJr+q6r05K/acmOsWw7L74IHHecfPvidsM6IWQCsotoueOOrACGz8aN0RbiqVMHOOec5N9RhYSFCa2PE1N4uMlpaVMR0sVp6W8vjkI8998PHHYYC1n54YeaduIlEklBKerwcNnxUYWH89sMMjHIBdEy6vBwm0I8KqelzfEII1q65k3N1fBwV9HSFCrpYxIt+/RhVesPPdRt+z7+fr/9NgvrHz0a2GMPVixp1iz79eRivwyo+1ZR1NKFwYlkw2mp6m/EvrSy0u2hsekeEcRpqTt+QUTLffcFxo4FTj45+V6coqWKsKKly3lRCQBROy3zITxcJ1rmotPSJqdltkXLG29MCn4693O3bsnXrmaXIPdW/hrznZb166vTeckqhuvIp/BwFTqnpUseWRtcnJZhw8Pnz2dFg/7+d+Cjj8KtqxZAoiWRjq5jcBUto8LFaRlkP6qqghWpyFR4uE2Hr3KQRVWIh0d2jMPcCHjnU1D8m4eraHn00cnXfN6dqJ2WdeqkHtOonGNi7s1cwdVpKYafmCbJ2cppKTtvfLjc/ffX/PZqmaMvG05LMXdU2PWqyBenpW0hnmyJljb9fW0MD9f9bp24rCLoPcX//bLK9y7pFXJVtLR9cJLrTkuV2Ce2u8pKt0mzqjifT9Th4UH6TT88cuZM+fZUhCnE48O3a5drXHYMwjotg1T6Fu/B2aweHlS05MOERaIQLaNwWvL7LnNa8i7h+vWzL1oCwH33sf91/R0vgmVatPTFajEFCn+vc3Tlx1I93FW01JkYfCor1W1EtU+lpcCdd7rtiwn+fIjbjdppyX9fZUzahsjBmS6RdXQXtNhhuEycwhB3eHjQ3Fu1WbTUHW9bp6UtUYSH+xNmF9Fy9Wpgu+2Sf/MDK5loGSZHW3l56vouvBA44ojg6/OpjU7LPfYwu0+yldPS1M45cdvjHX2ZyGlZm52WcYWH68Qw8Xf7baKWOS2XnXsuqo89NvlG0LYoTlSidFouWcKKSV1yiX0hnrCipawPCjNxCPJgNA5U+6FzjYTJaXnggfb75oKLaOlyPZpyoi5ZkhQ3eMRjFFd4uMuYTtwf1wcSpnVmMjxcJgAUFbn3tSbRMk6npTj+MOW0jCI8nP87KqelaZ4lVqqXiZY//phc13bbZb96OJA8rraiZZQP5lTIREu+vwVCRarlRE5L8UGRKjzc9bosLQUOOACYMyf5XpROS9NnUYqWtoaLWgyJlkQ6ugtS7DBy0WkZ5MYXJJ8lkOy8oxYtZTmZTEQRHq4LATdVFrf5fS1byt+PQrT0nXH8DVV3I2/dGmjRIvU9fnK11152hXhsJ6IFBenH9Mkn7b6ro7Aw90VL2bnV5bS0KYoVNKdlHOHhPFVVNb/dSbSM02nJ9wH5KlpGiW0hnjCiZRiBytUxZZqwGJyWa7t1S82LmYtOywMOYPmsLr44Pe2Mqv8LOpHTXaumonI8uvFSNgkiWprOpc5pyYdTRklcTkuZwMJje/xsnZauomXQInFhwsOjiBCIIzy8qCj8wwAbl1dUiPmHhw1TL5vPTksgtW3Irik/12CzZmx92S7EA9iJlvxcKxNOS79fqapKXgOiaBli/hRLTktX0ZI3j4giqU9Q0RIAevWy3xcTtrm3AXJaRgyJlkQ6LuHh/MVbUgLcfDMrOBI1LqKlzY1vjz2ACROSf4u/eeDAdEFLhmlA55MJp6WraBl1eLjNPhYVAQ88wPJHitsNm9PS1Wkp3vQB4KKLWB60v/wFOO88u/BwlwFzHIPhXA0PF/sGkbAThaA5LQsKgFtvNa8/6MRQdFqKjr6owsNl64krPNxWfFIJvbkGf174iaEpPNxvEzbnKpOFeEI6LT3xgUpUOS2jzp/nI04EonZa+u1drDoKuLkd/P369lvg44+jzcuqQ+bQ4rHtg1yclnwfL/YxfK5o3Xuu8GLf5Zerl1OJlk2bypdXCdOmCXPQnJY2D3s2bAAWL2brVPWzmcppyR+HfHRaimQyPFwcC114oXrZqqr0Yxa2EI/I7rvL3w+b0xJIbRuya8oXLf25Vi6Eh3/zDfv/vffUy2QrPJy/H+nCwx1xFi3jcFry89eFC93Dw1X4omUU4xub70ed05K/x5HTkkRLQoJLeLg4GT7jDFZls3//aPcp6kI8CxcCAwYk/+Zv0MOHsypyNqG7cRXiycXwcFMhHn6fVeeqsBA4/vjUKn3+duNwWurWKXvyW6cO8NRTLE9UnTqpv7mqKrwbLo5cX2HCwzPl0HQND7dBJ1p6nv7c//WvwN1369cf1GnJiZbSnJYqd3oUTkub8PAg57y2OS1VIl0+hYdH6LREQQE8vi1mqxBP1KJemPDwqirg66/TP3MVLb//HujalT2omz8/9fO4wsUrKtzcIPz3ePg+STc5LynRR2LwLhqfvfZihcvCwE/oTj4Z2Gkn+XKq8PDtt5cvr8pp6SpaRhUe7nnMDDB4MHDppcHvTWLIrg2mdbpc43FUDw/itMxmeLgoWjZsCDz2mHxZ2YPysE5LUUR5/XX5/YO/3qMQLWXjbf/cN29uv06fTp2Sr6MULb/6is0PX3lFvQwvsGUyPHyvvZLvZTo83FW0dK0e7u9D48ZMSI/Kaenfr0UDSlBsxv88FB4eKSRaEunoBleJBHDwwez1gAFqB49LCJUNcYSH88vxHaz/vswdJuKS09JlYJWL1cN5TE5LVefqf0+8IUVRiMfVaWkKAQOSgymAOWXC5LQE7AdlfEVQEy5Oy5tuSv3bVHAgKmzCw4OIlrrJmziIcxVJVU4GR6elpxMt+X2MQrCh8HA7NmyQC8amc+C3t1woxMOfa1Pf6eq0zFZ4eNBjFkdOy3Xr5EKdq2g5Y0byOPhjJ5+4nJdbtujXHXV4uJhyQxw7yETLMOGgPrwAo7sPqpyWKtFSNTYI47QMI1quWZNMmXLJJcHzLZv2Q0ZtDA8XlxfbayZFS50hQ/ZgNmz1cP57fl8mO4dRhIfz14NuvB3Eacn/pihFy5Ur2UNtHdlwWn79Nds3H7EdhZk/mURLsa+Ow2npf+5vR5XT0pWonZamfQiT01L2myk8PAUSLYl0xIuOv6EWFLDquP/5D/Dii+rJcD6Ilvz6+BCNuERLlwnZ//4H/OtfwJFHAi+8YNdZZ7IQj2xw4f++REKdN9A/tjIBSbU92yeIvqBg4/gE7AS7AQOSy82ZE160tGmbjz0GXH+9/LOLLpKv0zTALiwEnn0WOO201PczJVraOC1dJwnV1XphUecUBsznYu1a+fs2T4z9nJa8GFRVxQZ7qpyrmXJa5mv18Cj55Rc7p6VILjktXcLDDU5LT+x/s1WIJ+h248hpuW6d/DPbnLg+/L6JD1niynEZpWh52WXsIRpf6VfEJFo2bpz+nSiEITF0TtW3qUTLrl3ly6sEFpOoElf1cPE4hXFa5nN4uOw4lZSEdyyLY/04w8PFPqmoKJhoqXNa6sLD169PvvbderLjF7YQD2B2Wvr4oqXL2IT/jVGKllu2yB32PEFyWs6cCRx1FLBsmf2++FRWAnPnpr4n5n3P95yW/ue6sUpU4eE2/eSllwInngj8/LN8P1WI63YJD5dpDuS0TIFESyIdcRAiVp5r2JB1vs2aqavSRv1EIG7RUvZ9G9HS79hNN01VeHjfvurv/OMfwBNPsAIE2QgP1x1H2Xf5J2Um0VLmslMN3GwF8DiclsXFwJAh7PWaNcAXX6QvE3VOyyOPVO9bw4ZAx46p79k4Lbt1Aw46KP14ZFO0tHVaHnWU/P3qavXA3fPs8/ypUIkWNknfZeHh/mcqUT2KyaRNTktyWrJ7V747LV3Cw8lp6UZFRfDrnyeR0N9nct1pWVEBTJ0K3HOPfnvi/V5sZyrRsl8//XpdKC3VOy1l581VtDQJWbrq4bprweS0VKWpEIkzp6WN09I09g4rWsooKXFfR+vWqX+L/WcuOS1V9/SgTktetGzYUL2OqAvx6MbxzZrZr9OH79ujLMQDmK9H1/BwzwMOOwx4/HH1eFZHRQWwaFHqe3x6MyCUaFmQC+Hhomgp0xDCFOLh25ZpX558Epg2DbjvPuC22+T7qSKM09IkWpLTkkRLQoJ40fEXkthh8MvGGR4edU5LQN3J++9H6bTcvDl5c2vWjN1w+vQBrrvOaldDhYerhJ0w1cNlA19/fYWF6mPnH1uZ01IldNq2pShyWspo1Sr5WjdQtCGKgjni8bDJaamaqNgeg7CEyWmpahcmp6UpPDxoflEbV7UfHi4+bPHdlj5hKjbL9iMup2W+ipYHHJCa4gEA9tkHOPxwubPQJjcxkH2n5apVqftg6pdsnJYug3oVMtHLhaidlmHDw2W4tPHqan0fa9tGfvzRfpsAa6e6/sQ2p6UtYh8tng+VaHn55dEIl8XF+nBzldNSFrYOqMdSrvfZqMLDxfOSbaclD79vpjF62PBwGa5Oy7/8BRg5MvU9mWgZF7KwXtVYRVaIZ+1a1gfpHFy2TkudaBl1IR5dP+gXlQkqWkbptLTBNTw87PYrK9NTYUyenLpM2EKm4nUeVrQU75O2DkW/DZx0EtCmTeoya9a436OChIffcEPy9S23pH5m+u4vv6T+7SJays4hOS1TINGSSEcc1Ijh4Tz5ktNyjz3k69R93yYMzFa0BJITy0aNgKVLWXU6cUKtwmagqRpoX3BBusUdCBceLtsf3mmpEi11TkvV/tsKa3E4LYHU9hS2OnLYQjyJhFy0NIXvqG60+eC0zAXR8sorU9etY/PmpGgpht2Kjp8woqXsnKqq/2bKaZmp6si2XHBBskKpz7x57JzInIW54rTUffeGG5hT6Ljjku99+61+ff45V4gu0nYaBPF7cVUPtyUO0dIkMPGYREub62XmzNQHZzZs3RrMaRn0vJse8KpEy8aNgXfeAfbcM9h2ffzJnC48XNa2VMurJodx5bQ0CeGiMBImp2XUhXj432VqB3E4LYuL7dfRrh27nkxjgUxWD5cZMvwxnsxp+e23QPv2rMCXiiiclnxbjjunpT/2z5Zo2bcv8Nxz9tvmx+A2Y4EoREt+O998w6KneMLWBFClIQAyI1qKTsvddmNp0n76KbnMG2+43X+BYOHhfKHYXXdN/cx0j5w4EXj33eTfUYmWLsatWgyJlkQ6upyWOqdlLoeHDxyYfO0XOYkiPNxFtPSPlX8MXQZGqkEqj+4pzPTp6e+5Oi15gjotVTktCwvV+x+X09JWsItStAz7BD+RSL+2VDktbUKP/SfccSM7D7Y5LVXnXxceLhMtRWzPRVlZ6j44uKrTwsMrKqIrxGMjWma6EE+u4Yf5+WGgfu4sIFh4uIvTMoyDSLcfZ5+d/t6xx+rXZxAtldXUXcmW03LoUPn7ceS0dHFaVlWFFy0PO8xd2IkqPNwW0wNemTjCt8mwkzFZCCCPzGkpPrjgCSpa6sLDoxQts+20VEXdmM6jbtwYFBenpW07y2R4uGxu44/xZDktAWZCEB/G8ehEy6lTk6///nfz/gLxOy2DiJZRFuIpKAB69LDfdmlpsn1kymnJb0fW38YtWrpW3xbFRVfR0t+uzTxch6x6uGlf+HYrzrdsziWfAoAXXU3owsPJZQmAREtChi6npdhZqRw82XRaym58zZsD8+cDV10FXH11cp0yXEXLn39mT4Bs4ffP9iZtI5bphGJZEn1Z58sP1HSFTII6LVXVw3VOy7hES9ubAL8OG/FYR1inZUGBvdPSxsUXNDz83HOBhx6yX17WHmydlio3clVVZpyWjRu7DXh+/z2leniaOBakEM+aNaxY2OzZyfeChodva6IlwIrGXXYZsHBh8rMghXj8PsZm4h93IR6e3r2BY45Rf274XZEV4gkrWgY5Zq+8whxUMnRhkjrEnJZ8ATQXp0dVlX6b2SrEI253zhwWbmhy7KowiZayPkc31nBFNjHlkYmWdeqolw8aHq7qfwH9tWC6TsTPVW0wzpyWKlxEy7jCw22vI9vrP9OipXjc/GVUoqUJ8Xri/z7iCODOO4GHH04Pk1chOxauhXh043j/estWIR7+wabttv1zZCNahu3nKypStyO7zlz7ULHYZ9Th4TLRcvNmVuBGNnfgTS88Ye8Nrjktxbm26JS0uR5/+IH9//vvydc26JyWlM8SAImWhAwxTyV/k9WFv/CdgmuFTRO6Cnsishtf06asoMp55yWf+keR09LzgNNPt9svH/44iYOBHXaQf8fG3aHr1GTHxNT5hnFaBqkerhIRbQcyruHhtuvll5OJlh062K0HCO+0bNzYPqclfw5UE5Wg4eFnnAGMGWO/fJiclrw7jmfTJvVg0PPS12e7PRFRtJRtk/9848aaZdJES9FpaRsePm4c8M9/AsOHJx9AuDgtt3XRsmtXVths++2Tn8XttNRNVFzFDxNFRcAJJ6g/9/dbFx4eRSEe8XtxOy133BHYbz/152L/b9v2Raflvvsm1+UaHq77TblQiOf339kxvOIKtz6dJ8h4zzYVjcv2XcLDy8ujd1qK2IaHm643URhZuzb1b/98xum0tHHnBhEtowgPtxU+bdtZXIIlYBce7l8bsvBwG3ROy8JC4JRTzO582f6Y3hOxDQ/3x7TZKsTji9S77GK/bf88ZiM8XDY3dXWrn3UWMGxY8u+4w8Orq5nLd9o04PjjgU8/Tf2cN73wRHVv4Netay9ihIWYO9blXK5cab8sID+H/r6S0xIAiZaEDLEaIH8hiYMnVSGeqAfj4uTftCzPjjuyTlIkKqflk0/a7ZePzmmpumnbiJa6Tk32W003ehfR0vPsqoerjrnOacnnB9Hh6rS0bU/8cjLHq6myKpA8ryah9IEH1J/5birxOKlESxsXX1DR0vUGKjvWYZ2WMvewT3U1K7iiw8VpacqHw+87F7JeLfafuvBw3eTkpZeSr1esYP/L+tggTkubvjqoiBWUsANVH90kSOYszFROS1UBEJvvyigs1E8KfdHSr9IqEJlomWmnpekeHUa05BPqN26c3Jar01L3m+JyWrrktOTDTINGEsjOw9lns/uSLDUNEK1oGcRpWV6uXj4q0dI2PFx1nfiF28Rxt1jswbb/iiM8nG8z2chp6eK0tB23ZLt6uN8uZYV4bAjqMFdhm9OyYUOgZ8/k33zb0JkqbMLDxXtXlE5Lf7s33qhfjt+2f85Mfa3N9nlkhcnE8PAonJaAfs4eh9PymmuSf8+bl/65uE9AtKKlv27d+RBFS95pWVVl13/6x+qrr+z20UfXf5LTEgCJloQMUYgUJ926ZX2inuSGyWn5wQdunXyQnJa2+wLonZaqm7ZNeLhuQCb7/aYbqXh8dK4B3slg47QUSSTU+8/d/Dx+QCQic1rqnj4GaU+y89C1K/DCC/p1qMLieY47Ti6uA8B997HCTUVFuREe7uqssXFaqiYJKqcln1BepLqaOet06w8aHm665rmQdU/Wf6qqh8eZ01JVMO2GG4AGDVjIjo5MOy0zIVrK7lemcxtEtJQN8E2iZRCnpe4BhN83KlzhaeHhhx4abLKcaaelqR8KWhX466+Be+9N/t24cXJbtc1p6VrYQIbsPFx3HXuwdOGF8u9kW7SsUyd3nJay62TFClZwpVev9Orxomhp238BwQvxiP3YH38Au+/OCtv45Hr1cNtUQ5kULWU5XV2cljah21GkJTK999lnLBSWF93WrNGvw8dGtLzvvtS/4xAtBw4E9t9fv6y/bf88rljBCuPtsYf6XNlec5MmAXffnf4+L1qKDxj5fXLFRbSMOqelWFxOJVqGvRZloqWL09IXLb/4go2fevc2bzMO0ZKclgBItCRk8J2LGJZtGx4e9WDcRbS0FQKjrB6uQjY51TktVTffsDktZb/VNTycX168OfOTpKCh3qr9P+20mpfVI0aov+/qtAwSHq46Dybx75xz2P+6QZluwF+3bvK74sBbVYjHRrTUVY/U4V8bffvaLW9TiCdKp6XnyScHNtsTadhQP2ATn77yomVBQTROSxmyvse1EM/ZZ7PB5bRp+m3VRtEyU+HhsvPUpIndd20pKtL3QX6/1bFj2kee76IQ+0PXCALfFcaTbdEyqOPotttS/27aNLktl300OS2zJVry+6TKC+yC6jw0aKD+zkEHJV/nWnj4brvJ3w8jWrrmtLz6aiYCffwxS2vEoxItM5nT8rrrgEWLUt/LRnh4HKJlIgEcfHDwfdJRUpK+H+Jx48UV0zmVjeGy4bT0CxYGST9jI1qKn0VdiMdHEY2QAi9aAuyhwhtvAI89Jl/eto03bSoXrioqkn2EqV6AC7o5exxOSx2qnJZAuPuDLDw8iNNy7Fjg++/Tw8Vl+Mdq1Sr7/QTIaWkBiZZEOrrwcFvRMg6npXhjb96cTbbFAabtwNKU09JmPabOu3Hj9Pf49dqGamYjPFz8jk60/OMPO6dlkMI4U6YAp54KPPpouoDF56jzBQWVKOSyL6rlVMdMN9j6+9+ThRx0g0fbyuSy8HCT01LVrtq2tdumiH9+n3kmRVRWEqYQj8ppaQoPj6oQT1mZfnAnhlRyxSyMTssgoqX/fVkouNgf5WtOS921+cgjwMkn27U7W6elS3i45yWPR/367NoePjx92ShFy6oq4Kmn0kOqfAoL7ZyWnTqlf+YfI/GYi8KICVn7jbroh0hc4eGff558feONrM8NkrfRFN6ZrUI8fD8Rp2ip4qCDgAMOSP4dVrT0+1HV+Z0zx74Qz733At27y9cTNDzc84AnnlAvJ+tf+XxoYoEkVXh4HDktVe3o8cfT38v1nJa2E/+CAtZG//1v4IILgu+bjJIS4M03WV7JOXPYezqnpemeVL9++nuZcFqqwniDbCuIaBnUadm5MzB+vHrdNsK2qsaCqqK77cOp0lL5b+Gdlqp7nmtOS0A+BvrtN+COO4CPPkp+Zita/vYbK/L08cfpc1YxMkocN6tyWgLRiZZBwsN9kdI2TRmQPFaqOV2jRvL3deeQnJYASLQkZLg4LVXh4ZmoHn755cDFF7OqsDxhRUv/d4TNWwbInZb8/on7qlpf2EI8cTst//gjvNNS9Z327YHbbweOPjo9oTjviHF1Wtrmc7QZhOncvDNmJF1QNiEyJsRrSxU+YeO0VFXdNeGvu2NHdg5GjdIvH6YQj+q46MLDZU5LEdvBdWmp3mmpyQNXXVQEL4pCPDwq0VI3IYxDtAw7EdKhu2533RW46y5g773N64naaelP+v3jUVoKXHIJK2IiInO5+phES/E7jz0GHH44MHSofHmT09L/rZ07p3/mn0fxfLoOkmVtJNeclq5tv3t34Mwz7bYlo7o6O07LzZvtRUsuB29gXI/N5MnRVg/3UZ3fu+5iaYJ4WrSQhyKOG6def1Cn5Zw5qaGyIrLrpFs39fJBnZaVldEU4kkk5JP4IDktM1k93DU8/IILmHAZJSUlLMT0zjuT/XmY8HCZmzkb4eE2KZBU2FQP14mWLoV47r4bOOqo1M/569pWtJS1dVVbVl2XYjEkcazpw4uWKmHLpQ/1xwqyXO1TprAHwgsXJj+zFS2nTmUGk0GD0sU/Pxe7j6o+RtROS34cE6QQj++0dOmn/GOlqiyvSg+kEy3JaQmAREtChovTUhV2eO65wfPlyZAV4lFNtmyJQrQ05YOSOS3542vrtAwbHi47Rq75OPn9loWHh3VaWuQQrT7xRFT4g4qXX07djkv18BYtmAhqg80N0zYFga6tmkJ0ffbbL3lT9B1esu3z123UTkvbfJQ+NoV4ZMvozpHu2quuji48vKREX4hHc22mhYeLYYo250hF1KKlblAm6wujEhpk2BTQCnNdit+3dVoC7Hz7x8Nfh6zvitJpefrp+uVNhXgmTGD/9+wJDBiQ/l3+fx9X0VI2uY67EE9cOS19dtjBflsysuW0fPvtzIaH2+T/5om62ILfd+nur+LD7auuchd3goqWfnoYFbLrRPegWqwebpvT8t131RNpFS5tNNcL8biEh8eF7BipHq7YFOKxCQ8P+3tswsPzxWlZWKiP8rERh1SipQpV+xSNE6Wl7B7dq1fq+/yD0qDh4aNGJQXu559n/8ucljffnP5d25yWN9zA/v/tN2DZstTPfvop9W/+Yb/nxRcezh+vIE7L3393H5v714vK0CDTBQDKaWkBiZZEOqLTkr+QdOHhfGfTrBkLaRk9Opp9kjktVU/2onJa2gzuTCF0sicqvNgi7msY0VLXqcluMq6FeBYvZpO4RIKFD/DcdVd4p6VNeEOjRph9xx2o+Owz9pSa38733wNDhqS6/sTtjR7NEip/8YX9ADas09JmubPPZo5SGwYNYqFj8+cnCwCZnJYq2rSx26Zpsm/63MZpKS5z2mnAQw+p16m7Jqqr089b0PDwEE5Lp0I8l1/OBCU+LEe6Uk++HzLRyFSIh0fX38nWHafTUrdul8mR7l4gK8RjMzjdsiW5vH9uZe1bdZ4Ad6eliaIi9fG48cZkOFJBAfD666mf//k9T+yrysqY2LLTTnahUfngtHRts/z9xVWYA8I7La+91n2bgDwcmidoeLj4AMfHVdB1FS1NYwP/99iK0tOmsaIKtilKfFzFnwsuYOfBtP+y/lWXOy2o03LdOiZou+AiKmajEI9LeHiuipYyxy9g57S0CQ8Pi43T0pSiQUcmRUtZZFJU4eE22+cRBWd/rPn228yN7lNRYQ4PN/WhzZqxAnMrVwL77MPe0xXi4QmS01IUKXXh4fz6og4P56t/BynEAwQvVqcaU6tES3JaGiHRkkhnr72Srw8+OPVCEi9C3WR4u+3kObSCUFSUftH624tLtOzRw7wO8Ym3iGxyyj9BF/dd1ZmGFS1lnadreDgAfPKJfNlbbw1XPRywnhRW1KuXbFf8dh57DFiwIHWQJ3MEdu0qH+ipCCNa2jo5Wre23x+ATbiGDNGH5NgcT9sbock1bRqoytqD+B1xfwcMCJ4D1PPM/YDt4NokWmr2o1p82CKGh4vH5Z13zA96VBNUnWipcsTz6ETLXHRa2lyXusGpLDzcZoLOOy11oqUuPNxUPdzVfaQ7FuI9qKwstYq4ymn58cfA9dcD773H3N0mctFpGTY8nO+TgoiWJqeU6R48caL7NgHgyy/1D1SDhof37St3v8ctWpqOvato2bKlfD+iFi0BlovbJHDIxG1+si0Spnr4G2+YlxH3TUR1HIKIs1E4LW2L5tiOd8IKqTpkx0gcu7sU4pGFh4vHNJedlnw0iur622GH6ArxmJyWYcLDbbbPI4qW/jrLylKrVNuEh8uK6fEUFTGxjC/GJxMtZb8/iGgpIj4c40VLVZo5H9d8nXxOYn5uZVOIR5Z2StcXyzA5LVU5LXVtyqZA1DYAiZZEOn/9K3DSScCRRzL3j2xy52MKO3SZJIj5PXiKitIrn9qEBOkwFeLZdVfgH/9QVy8GzE7LVq3S3wvitAyb01ImSLiGh+tYvz7ZseuclrrJSZBE0qbJTtCQYJdt6NZrO2kOKwDJBpWqieSCBcC++wL332+/flP+T9NxNeV2BdJv2KZjonE4Wk20gjotTYV4OKpKS/XVw2VPXL/5Rr8/lZXsifmbbwobCxkerhMtZeuOU7TU9QUuaUF0g9MghXgANvj++Wf22ka0lLVF00MTcT9s0y/IKn7LjpOsGJy4HN8Of/lFX/gKyA+npWv/z69f5sAwYVM9/O230/N9+Z+FQefU+/rr5GsXp2WdOkzIFh36uSJa2vbpfjuI22kJAJ9+aidwiNeKbqKsStNk02a+/968DI8sp6XKeW86PnGFh//rX3YmA1vRUnccTzzRbh0qZG2htJRFLw0dyu7rYXNaivfysKKlSyEe3TW0ZEn6e+Xlyf1Tfffpp8M5LUVzTVzh4arj7OK09BHTCpnCw/39cvlMNgaSzd2iEC3FOSzfRk2ipYvJBGDh7yNGsHzjfL+gCw//5BMWUSJzVW7aFG1OS5UJRHVu27YF/vY3++3XYki0JNIpKmLJih97jN0QdeHhJgeP7c3ygguAhx9Wfy670fiV2oIIUYDZaQmwPEivvKJeh8lpKRMldE7LuKqHyyaPruHhJnzHWVCnZSZEyyCDtyidlnGJli5Oyz33BObOBcaOtV9/WNFS5jg2hYeb2oMpPNy0vajCwzX7UVlWpg8PNznuZPzwAxuIffihsDHL8HAVruHh+eC01E34ghTiAVLzS/rnVpfTUrZOk5vD1Snj/5bDDkt/im8SLVUisHjPkFVI1y0P5G/1cB/+PuYq9gBmp9QLL7CHoz17pq/fNfegiE70mjIlKby7iJbl5awvf/rp1PfjzmlpEkVdnZaqNh+HaClLbSRDvH50orOIi9MyCvez7J5XXBxMtIwiPLxhQ311dh9bcV3Xbw0dmiqiuI5bVdfK+PEsrcPAgW7VwzMhWto4LW0eJu66KzPE8PAioey7F1zAilKpwtEBt0I8MnE97vBw1f7pREtxfGIKDxe/IyLbX9m4VnbfEHNaqq5Zl4dX/MN+U/oinWjZqBFLT8az/fbASy8BF12U+r6qEM/nnwM77gj078/mRiIufTFgFi1VbUzVpubNY7+JINGSsEAXHn7PPcnXM2akf9d2EGkroD37bPK9gw5i/8dViMcniJim+y4/4LOtHi67SYhPBDMRHm5DUKdlkPC7fHNaqo6paRumgb1sUDlhQrL9/ec/6u9eeKF+3YB5IBdEtBTbpHj+w4iWNhOhqArxmJyWuvDwIKLlv/8t36bOxcJ/JnPOALnltIwqp6WujwtaiGfBguRrMbclj04wll1Pp52W/l1b+GNhk5JCJlqK51NsD2+/rX94FkV4eNROS/G8uN7T+PUHqbJtclpOmcL+r6xMHUsB9sfuiCPk75tC2m66if3v8rv8div2nbnitLTt01Xu4qgL8fjrtAkvdHFairg8dHFF1n5l95+iouw4Lf1rvEcPoF07/bK2Y0xTSgebYo8+jz7qvg8uhXjEh1Tl5Ux8ceGKK9j/qvNnE0Xn/+2nXuAZMkT9PX4eo8tnGGd4OP+7bfqyqKqHBxEtdeNi3Wc2TsstW+TXtui0VF2zLuNZVXi4rA3IhHmf336zn6OrnJZXXZU8d7LoyT/+COa0VM0NVG7eIAVstzFItCTM6KqH7747sGgRy8XGV9r0sR1EmgYu/kV70EHAq6+y7XXp4rYN1TpFohQtTZ2NbU5LGaL7TTcYChIeHrSj1DktdeSz01K13kw5LWXbb9kSWL6cPTk88kj1d21ES1PIjO64JhLywYwoOrqKltkKDxfXrREXKsvLU3/HIYcAt9yS/Lu83D3BtiopuK3T0h+wicvnkmgZldPSNjw86KTfDxl2FS3Fc/7MM8DVVyf/DlKIx0c3ufOxcVrK2tM117B78Pvvp3/mC3A8+Z7TMsh9jMfGKeUjhoyZjl3//sypecEF8s9NFef9/tM1PBzIvGhpW4jHtk9X5UOPw2lZWGiXWiAK0TKsADhjBuuL/v3v5Huyh1y5JFr62ywqSk+ZImI7xtQ5LSsrrUTLTS1aoHLuXOCAA1I/cBEtbcLDmzZN/fu999K3YTov550HzJqlLrhm47T08Yu8+Pz976xNqb7H3wtl21GJlmGqh+vMDDb3CJXT8vzzgf/9T799HlFwVomW992X/I1xhoerHmDZhIfffjuwapV6+yIuOS11omV1dXjR0vR916iHoE7LIGafbQwSLQkzOtEykWDVjHfaSf5d20Gei4C2996p24srp6VPWNFSdxO0zWkpw0W0DBIeHofTUjcRC+K0NO2j66QkyDZ06w3jtORTC5gK9aiehHfvzvJX6q7D0lJzoQ3TpFR3XAsL5WkSxIlPlOHhskFVUNetSbTUDGjScloCwNKlqfugqiSoQiXWyiY3ssmsSrTUicD5KlrqnvwHLcTD46cHcS3EI/aPBx+cKlrF7bTk27PqOMr66gsvZPmixGIsc+YAM2farUNHruW05O9J/kNSF0xOSx5xAms6dj16AKNGuef78vH7rXxwWor5zEWCipaZCg8PIloGCQ8P67QsL2d9ES+Eydqv7P4aVLQMGx7Ob7N161RXn4it4CPeG3kHZ9u2qcdEMU5Z36kTvD33TP/cZpwre6CmQhQtO3c2r1+kqAjYf3914VSXegW77JL697/+ldq3mURLsQ1lwmkZRLRUnUdZ2iXb8HB+nXy74XMeRxkeLkYQBRUtf/yR1cJwwUW01N3j+ve3n6OrwsN1dSuA4KKlakytEi3JaWmEREvCjE60NBF1eHiYbdiuM2qnpe4mk8tOy6Cipc5pqRuA5arTUrWNDh1YUQIgnkI8c+Yw0XHcOOZo1uHyJNz2+zymtqBzC6qEOfGGrnNaPv00m7i2bZt8zzWnpUhUhXh0oqWY01IkkXAXLVW/WzZA8ie+/PHwX4t9uWtOy6D9gw1RFOKZMCG1iqRqPYBbeDiPWEWcx8Vp6aOqbmmb0xIIHh4uth9de/j0U+bQ+/FH9vfChfLlgjotCwuBAQPMy2fSafnII27fBezCO33E69o0UfJ/i6tTW1y/izjmb0tsU3GLlrvvri+A4k+idY4cnqCFeGSfm0JxEwlzESsgnNPSb2OuVW5V6B7SqQia0zKs01IkaN502f3A54UXWN7Zo49mD3gtnJbV/vvi5y5OS8DcD4iipam/16G6DmXf1z2Av/lmJiDfcEP6MRevIVHAUYmTUTotdde9zbhGN6+bPz+9/ajuAWJ/pXJa8riGgOs+435roqpK7bo35bSUuUtN8O3alNNSdY/r1InNwWxFPZXT0tQHhXVaivdHcloGhkRLwkwmRMswAlptEi3DOC11+xkkp2XQjlLntNSJlnHltOTPZ1ROyz32YBVYzzpLv17bnFmy39G/PxMH7r3XvI8uT8JlmAa1pnXpcl4WFqY/UQbcRMtDDgFWrgSmTk2+lyuFeHTh4WVl8HTXZRCnpYto6T8556/1TISHhw2r1Z0b/zzqlrnjjmTOPhVBC/HIkF0fOqelSbR0LcQTJqelv03x/Jvu9W3bsn/vv69uk0Gdlm3aMEeyn2tNheme4ZqzUIRvx7vuCowc6fb96mp7UUbMF2o6dv55sykcIcNfv4vQ5d/XxfYedyGegoL0nJ88/iTati+Nymk5b14yt7qKjRvt3IR8f1xdbVd8kf/u1q0sFDcMstygtu032+HhPrprPKjTsndv4OOPWX7KRMLKaemp2piraGnqB8R84WGK7qiuQ9fx5RlnsMJisorHOqclkN5GVE7LuArx2Bw/UyGev/xFvX2eIKKlrv2EzWmpEy11OS11Y3EVLjktZePJE04AvvqKzcXCOi1N90CVY9J0LfvfE5dTjf9ItDRCoiVhJoxo5+q0PPVU+ee6izaXC/EUFaXmsBMJEx4u5sAKGx4u5qIJ47S0ES1915wfziKGldjgKlpG5bQUQ/nicFq6kOtOS9n3g4SH879JF84cdXi4rhCPRuyrlIWHi/sQVXi4bODoD0L5686/7l2clq6iZVD3l826fYI6anz4hz5+mHeUhSz8NiibULVvn3x97LHJ1yongIkwTss/r4OE2H5Mk+UNG9gy48apBZYwTkv+fxUmcTxsITZx/bpidzJcnJbZEi1dnJb+dSUeR1uHo494fZuud1M78KvEhhUtXQvxlJeb753LltntE3++VXmLVVRWspyEUSETLU3Cay6EhwP6NhDUaSniR9gAyrDYatv5hQwXp6XNtRfWaWkrJNlgEi1V+5Sp8HBTVJO/T7rf//zzwOrV8u3ziHO4sKKlq9NSvM6DhocHKVLnEh4u+838vThsTkvTPXDrVnkbU7WBoE5LCg83QqIlYSaMaOea0/Kqq5hD5oUXUj+PIzzcVkAK4gD0KSxkISWjRtntQ5Th4U8/nXxtCg+fMYMle+YJk9PSJjx84UJW2OHVV9nfjRqxROqynDAqsuW0FAfGcTgtXYjbaWn63OS0lGFyWpoGWa5OS/E9cb/OPRe4++7075WU2Dstheu8qqzM7BqMU7T0B5P8Pvr7H6fTMtuipc33+fxdK1eyglXXXGP+ni06p2VpKSt6cP31qY5QlRPARBTh4a6ipc8vv6hFS1M+NhH/WKnCd0VyXbTMhNPSdZ98li8Hzj6bOaJsUYVquubRE9tkGKf/zTcDo0ez17Z9adDwcHE/y8rM3+HFRF2/xJ/vJUv06xS5805g0iS378ioDU7LvfZSL2srWpr6rZNPZhEwL7wA7LyzdBFPdX+ymRO5iJZRpmlRtWXZPosP7oNuI6hoGVchniZNWHHZm25Sp34oKjL3u3PnJl/L2rhsnhRneLghp2XhsccC06fLv2sSLW1y9oqEFS15sT6saGlyWgYVLVVOSwoPDwyJloSZNm2Srzt0cPuuq9Oyfn2Wi2zQoNTP43Ba2q4vjGi7ZQtbn6qSp3jzDCNaisdo332Tr3Xh4V27srAi3v0j2zdbdE5LfmDesSMTivjtDhzIJlIu29IRhdMyjGiZL05L07K6giZAPKKlyWmpm9TLriNxIiL+5vPPl/dvLoV4hEqhlaaclkGclipk7hzfackfqyBOS9kkTtdmgwopNuv2Ceu05IWWFSuAI480f8cFXU5LAOjXj6WX4M+//5vCFOLROVJky/z5uSdOQm1DvoqK3FIW6BCdlmFFS/HzMIV4AHcxPhNOy6APbd9+m+Wcc0F1XlQFPEzr8TG1Nd21PnZs8v6X6fBwG6clP9nVFbzjz7cq4kjFgw8Cn3/u9h0ZYUTL4mLz8ZPdR6IWLcWIIR4x/yOPLjxcpLiYOcxHjVK2TaXT0gZ+nbb9gI4wIeOqbQQdt4jHKxecluLxGTSIzUN1aVxM+71ggXz7PvXqpW9XVYiHR9c2w+S0/P57ZhqR4e+n/38UoqUqp6WsrUUlWgYND1eNjaN2WpJoaYRES8LM+PEsp0vjxvIKoTqC5rR0SaAfdNCuIkrR0nc6mXKY+biEBYoVpWUuAP846sLDVccvaNiOrdNShYsInQmnpamyt269tpOiOJyWLg8YTIPaPfdkk4G6dYGXX07/XCda+vt2662p74cVLXXI2q54Dciuc9lxcCnEI4T7WBXiCVr9V0QmWm7ezK45MV8akH4t6kJ8ctFp6eoqEGnXLtkGli9Phoi78Mwz6s9MoqUMv51loRCPd8wxqcvY5tQrKlIvu3mzW76rqJ2W220HHHccW+7BB8PltASChYcHdVqaHFauYk+vXm7Ly1AJCOIDVBPieTCFQ/+5vaqbbkJ1URG8evXY/WLs2NRtuzotw4qWZWX2glB5efqDYZ6KCnZPXLOG5WrLBjLR0r8mTe0tqNMySD48HnGbPXsCRxyRvly/fvrK4nwf6jIOV/QpXph5SdROy7Cipez7QUVLV6dlpgvx8KjmK1VV5nsBL+TJ2pMYGg7YOS11DwLD5LTUIYqWYl+QDaclP26OOzxcdcxN44+oclpGbczKY0i0JMyUlLBk+6tWmSsliriGh/u4XKRxi5ai8OWCLwSoRJ0wTkuTKFVcnOzMdeHhYTpE2aDdNqelCtdzr2tj4rkLIsTmo9Ny5ky3garNsnPnAj//DAwfnv6ZbuDpH7+//jVVaA+b01KH7DoyiZZFRercTbbh4cIgxiqnpWzCH6Sdqib+GzfaOS2PPlrtcnYVLcXr/8wz1cvKyITTsrg4KSKsWGG3XzyzZwMHH6z+XBcerkLltHQRA4KGhxcXA48/nnzfVrQsLtYv61cYt8E1p6VN6pYHH2TVm487Lnx4uKsYX10dn9Pyhx/s92PxYuC88/TL2BxL/3y4OmhV6/ExtbU/l68+9VS88MgjqFy7Fli/Hrj//tTlZEKKbrIeNjy8vNy+TdWtq1/29deBli3Zv2wju9/ZFG50FS0vv9yt4JANiQTrx8Rcoq++qt+/iEXLUE5Ll0I8mRAto3RaRhUeHlchHtX3eCorzfvNi/Gy/ZOJlnwfrGo/OpE/hNNSSxxOy2yEh2fKaelvJyqnZdQaRx5DR4KwI5EIlnh5//3tllNVjLMh6qcQsm27uC3Hj0++9vPrdOuWfI8PXwmT09IkWiYSyc5eHPisXZt8uuTqkuApKkq/eRcWhnNatmuXfL3bbnb7oEIULYMU2gjjtLRtx1GLlq6OIJsQt0RCvV6d05IfcJx/fvI1X4BEXA6I32kpGwSrnJa2hXiEfa4qLzeLlrLBaxD3iUq0XL/eTrQEWLiorA8K67R07WMyIVoCqX2NK6ZJm8ppqas2rHJamuDTNziKlimOIP64uzgt169Xf75mjd16gHSnpV+sTYXtmERV9dpENp2WJrHi66/t96NlS/Nvb9bMvB6/ffDC2p572u+HT0CnJQBU+/cJ2bmQXZOy96IqxOPitKxbV7/+889n4jpP3752644K/74pu9/F4bScMsVt/2SotimOSUzn1iWnpcV6lTktbbB1Wh58cGYEjWw6LVWiJT9ejMtpqboPt2ljvhfw/bmt05I/zkFES92xNOS01BK3aMn3LbJ9kqXV4J2WtvMn1Tjexmkp6//C5LSUGcDCplXaBitwr64AAFsaSURBVKBAeSJedt2VJQnnhTwZuey0BFiHbyskzJjBJpHdugF9+rD3mjQBnnsOmDcv1fEQ5gmoTfivymn56qvJG0+QSYeP707jJx0FBeGclg0bAv/9L3MymdwhADtfqgleIhH8CTq/fhFxwKY6j7btOOrw8KhFSxM60bJ58+TrCRPYAKG0ND2HYLbDw4M4LX//PbWQivAbjE7LREItWvoDUFvXpWri//PPqX+rwsN9fvklXcAIm9PSNcVG2OvBdnthwthNVZtVDqU771R/x29nmzcDd93F8g3vvbd82eefB+bMAYYNSx3A24S8ypyW4msX0VKctGy3XTLc3la0/N//ktv090NVwM7H9UFqbcpp6SJaNm5s7uObNTMX5fGvSz9V0GuvBSsAE9BpaUQmpMiu06gK8bg4LevVc29/rVqxKKc4aNAgmfPYR5fT0tSOVQ/9ePh1uFZIV6HapmsRLpecljw2TsulS1nhnpNOslunSbT8979Z5Nv550fvtFy8OL2mQC46LfkHdboxUnU18NJLyb+Dhod368ZMOEOHsiJELk5LVU5LHaoxjG4e2rEj65NlhDHj6ERLzwPuucduPTwqp6XsXPTty66fE09MvhemEI+/TX9bMqdlnTrJPkrVV+nGH/wDS5nT8umnWSoLft1hiv5uI5BoScTPKacAl1wCfPedehmxU3cZ3MVdiAdwm3Q3bAhccUX6+wceyP7xhBFcTS4UINkJigOf+fOTr4cNk3/XNq+c2CEXFqrPie1gcPToZEVQm31QUVAQ3mlpI1qqBk3Zclq6TuZdignI0A3gWrRIvi4uBi68UL5clOHhMoI6LXXVw//9bya28MtyeHyKBhmq8PDff0+2MVunFj/4ado0KVaKopHOaekvL4qWsutG1+/aCNA6bK6HoGFSPGEGibaiJX/+zjgjVcQX8Y/pqlXJB33ffitftkuXtMJPKetQ/a1bPqjTUhQt27RJipa24eF8qL1/vRUXA4ceqs6l7drPZTqnpUv1cHFiZMplx0/adBQUMFHbRrQ0wfdVf/kL+xcE8TyYriXbfr+kJHWyqVp3FOHhBQV27kIfk9NShqkAXhhGjACeeEL+WSbCw1euVC83fjwTa996S78+QC3+2BQk44k6pyX//oAB7F+Qdcru0yeckBxX6VzuQdhtN5bK57bbku/lotPSVrScMyf1b5fwcP439ukDXHdd8m8Xp6VteDhPEKelriCabH224x//eMnCqx95RP/dggL57+fvb6bwcIAVvgorWqrG8TLRsmHD5H1EfLjjo3Na8qKs7OFny5bA9denGrood6URCg8nMoNpEumaw4snU05LniCh8jLCONxkNz0/d9zYsex/VXg4777q3l2+/h49zAOtoqL0m3dBARNUZd91eYJtSy6Eh6vWW1uclibR0tZpqSNKp6UMk9OyoMDOacmf60suSV22uLjGeVR9yCHsPZOobgoPt71m+Ik6L0CIopG//6r1ykQm1/BwsUqrqzhocz306pUsLnL33cG2F6YfNwktALtubAbkPrL299xz6rQFMmxES/7c88eKX9YkmvkUF8tFSx9bp+W778r3Q3cuXfsD1fIqx1LYnJZxOS0TCeY88fnnP9n/smPVqJG6b+MxiZbl5ekpPYIitueLLmL9oOq6d5nMiQUKZefMX18ikXpcXERLv3K4i2jp2l7jFC379Ut/L4zT0qbP5tehKzZkaq8jRrDPmzdnpggZrk7LiMPDQ2FyWvKCTRw5LWVjepFMiZaqgqG2ouUnn6T+LbsOVcfntttYn1peDlxzTepnYZ2W/rhvwgT2/7hxqZ8HES35+65IXE5LXTFC1XYBt5yWMsIU4hG3KQsPb9gw+VpVpFInWvLXrSw8HHB/aEaQaElkCFOn4loJkycbOS2jsnGHES1l+3nDDcDnnwP33cf+VoWH83/rOt7Fi9MnAeI+yHJaJhLAokXAl1+m5iMxhbwFIW7R0sZpqVpvvjgtw94sdQKOrSNIvKZkxyRO0RKwqx6u66tKSlhxgc8/R9V//sPeCxIezgsYthMo/mkxLxSLIqS//zqnpYiraNmlS+rfcTgtCwpY2N1XX6WH3dluz+Y6+ec/5W5HGwHL81Lbi8vE2UeVN091D7JxGPETBn6CGqQfqqxMn0gFES15bEVL1xBT1fHfe2/mmPbTufhk0mm5aBGbKF16KftbdX22bs1Cw/nQ+SlTgC++YGlfRPx7lWmsIT5oEPnqq/hybrVuzY6/KjzdZYzXuXPq37LrVCVUuoiWrnlSg+QODypa2vRNMtFJJlpOncoKls2bp19fUZG5rc+ezUKPe/Y05/bVtdeRI4FvvmFtUuVYc3VaBh0nKtbbMEwFeFMhHv46DJvaR4Z4/5Rtgxd1XHAVLf0+XvxekybJ1wsWMPepTLzkx0+PPsr+txW0e/ZkEYLff5+e/1q13357+OgjNhYE9OHhN97I5mxiiHUQ0VI3V5ONicKKllVV5n5BjOTwxwb+GOS//03N72jb10cRHg4AL78sFy0bNUq+Duu0VD38dH2wQpBoSWQIU6cSREzyyYbTMtu5J0pK5AOJRALYfvvkZ6rwcN1TIJ7iYpZXTYXKaemvt3Pn1DBv330WJbngtFQ9dbZtm9l2WsoSXfOEcVra7ku2w8MBefswFeLh8a/L7bevWb9nclrKJrNhnZa8aKkKD1etVyYyuea0FIWD4mJzG7NdN09pqTwkyuX7Jjp0kLvQbIQBUbQytV+V01dGGKelKnQpyANAmQuBnzyJOVVliP0Lf28T70/8ZMW1kJLq95WUsPyBotieSaclwCZH06ax+7NKtCwpSVa95+naVS7g+JMvk7hhcsTzzpY4aNxYvQ8u/b7Y9+jCw3WvZYhOS/E9HXXrurWFRCK4MGQT6m8rWgKpKVBUFBfLxwniNfPmm8Cnn+rXZRIti4tZNI8uxNZVEOBTHYwcqV+WR9FmfpI5WW0xOS3538aPk/j39903+dp1X8Q+1+S0dBHkoxItRUH/gQeAN95I/z7fj6oeNOjaRrNm8mtFNa7lH/5MmZIebeHjt11xzuajOi5HHKHeV/GhG08Yp6V/fkXR8ttvk2lgVPC/o0OHZH/sj0GCpkwLUohHZj6YOlW+rI3TUtUGTE5L/7iT09IZOkJEZojTaZkLouUTTzDnw4IF0e6LjNGj2cAPAJ56iiWHViVf9vdz0ybghReA1avZ3zZOSx/dQF7ltOSZMIHlyBk3DvjHP/TbCoLu/MfhtCwtTf/NjRsDd9yRfgO2bdfZdlqeckoyTEVGmJyWthP9oOHhtgMvG6clL+bw67d1Wro+zbZxWtq2WV605Kv7rlqVupzJaRlFeLhMtLznHuCww9hxNzmIwrrno3RaFhSw5fhrTBSyVVRXu4U+yT5/+235OQkjWvL9Pz/wjkq05CcUNrkxxeuOb5tiv/DCCyz/5VVXpYuMJlT3Cr+98Pl3Zdt2fRgkc6HasG4dO++qdaqQtQm/fzGNk5o0YREao0cDp5+e/nnYe1QYMuW0NPUbMqeli2jpEnZcXu7uUPexaae8k0gkyJha5bS0TQ/DI8s7KG7LhG0IsM///R9z7I8fD5x9tnn9qn1p1w7VY8bguyFD7NchohItd9klPRy3pAS4/3523fJ9xgMPAIcfzlLYDB7stn0bp2VpKdvuqFFyh7cK8byIDxVefjn1b//+IX5PFsFz993pgjh/zUUpFqnGteLDncrKYDkty8pYMb5OnZg7saAAOO449lBLRdu2wM03s1zXEyemfuaa03LwYJbi6+abkwKef5w2bGCFAH/4Qf8bgNR79B9/JPsm1X0xSHi47fkT54K//gosWyZf1ka0VD1Uqq5Od1q+8Qa7VvwILCD9uqKclkaoEA+RGYIOvmzIRiEevrMvKmKDg8MPj3Y/ZPTqxez0Poceyv6p4Pf7gAOYG+PTT+2dloBZtDTlvykqAm69Vb+NMOgEtThES5Wrcvx49q97dxbuAWROtAzrtCwsZFWwf/oJePzx9M/DOC2DhofbipYlJWoBrqgoOWi1cVrKREsx75nJaSkStBCPTxCnJS9aigPLIE7LKETLtm2BJ59Mvhd2UqrD9n4jO1933ZWaJ82fQJeXJ4+xrRAfhdPyhhvky0YlWvLrCXLcZaFV/PG3Ee3ERPi6h2o9epjzaKlQHX+/HYgCS1inJcAeLLqyaJH6vOtSrMj6fb9vNok2desCxx/Pwizvuy/9np1N0TKM01KX0xJIvbeZxkIyp6VLeLhtnliALRt03CzrG4qLU9uOLidhlKJlq1YslNsF0/ZtjkuQPI5ibmQbxP515kxU9e2Lylmz3NclWyd/zl55RS42jx2bzGPv06aNutCSCfH4qs6HbLsmTE7L4cNT//Z/v43QeN99bIzx6afJMGT++Pl9WBRhuaoxtvh7KiuDVQ8HgJNPZv9cOOMM9u/++1Pfd3Va3n03u9fy+Mftm29Yegfdgw9//X37JsX0+vWTx+f33+XzCtv5PL+c7fkTx/Gvv57ss8QCbmFEy6qq9Dn24MHsgatqf2R/E2nQESIyg2nAe9VV6e/5IRrHHKP/bradlnEKsiKuAq1YYXzFCpajhRdnTPuvG9zKXIeZfloUt2gptl1TAnJV0RaXbbgS1mkZ9ns60VJMMK5CbIeydqRyWt51l3mdQZyWe+2Vvl3dOQ0iWsqeuP/6a/J1ENGyVavka5VoqRI/xKIq/Hd4xDZ7zjns/969U0VTQH5cnn1Wvn0gWJ/qOxC6dtWntOCRtfc6dZKVU5s0Sbqn+TZuU4QHcHdautzLVAJLGNEySN8ty/fEnz8bp6UofOoeqoXpK02i5fbbp74vtg/b8x6WM85Qf+bqtLQVLU2O27DjrOOPZ/8PG+b+XZd2KRajMImW/PXpIlrqnJa8m8bHNTy8sjJ4W5f9DlEEFyfcdeokBZIoRcs77ghWMCtqp2VciG0ziLNUROW0zNTY2la0DIJNeLj/UKqkBDj1VPn3VO1j48bU+SQ/zonbaTl6dPr7FRX68PC4EO9VrlFAsj5EPOb8OFW1jilTksdk+vRkv+l58jGo7lz4heBEYbtxYzbuBFhRPRViv8+PjXfeOXVZvn9U5bRUiZaVlfZ1I3hItDRCR4jIDKqb7ejRwMcfA926pX/25JPASy+lJygWyYZoyXdCcSTCVuE6iOXz2vj88kuyQy0sNA+EZDnjfOrVs6s0mC0y6bSULW+7vbCD0bBOSx/VzTVoePhTT6UmTNchDpJk15XKaXnSSayYhgh/3YouFxunpe9q5pd94AHguuvSvytuz8eUc1U2eOXdjrai5SuvJF/bhIer1isboNnktLzyShbaNW9e+rmTHZeDDmKOskceMa/bhqlTgTlzWPEw2z5I1t7Ly9lEaf584IMPkm07iGg5enQyJQcQrBCPDFVOY9k6DOK8F9ZpaRK0TU5Lz0tPTRGXaKk6vn77FO+XYvuwdY2HRcwTxvevrqKlbe5FnXhdVBR+nHPHHWw89/TT7t91GVOI4Zkmx74sfFQFP8lWHdc99gCOPDL9u+Xl7uOPoG2dFw8bNAA+/BDYaafUZcTj9PHHybFNkDGcLKfl8uVMTHB9CGWT09JEpsblcYuWMqdg3NiMxYJiI1oedBC7j3/yifp46vaJD/nlr2+V0zLI7xPH2AcdBDz2WHoffPPNzL0uErdoKc5TXJ2WNqKliZISNn985x2WOu2ww1KPm+yBpm4MdPfd7B7CR+z4+/Xaa2wM/K9/qb8vzs34a0vsD8OIllVV6rzhPOS0dIaOEJEZVB1Rr16sQpuMunWBESPMAkzUTx9lHbPOaRllRzNggP5z1986dGj6ez/+mJwU2hQUEsOteOrWTT8/JoEranLNaRlke1E7LYOuT5zY+Jhyx6naZffu9tu2aYsq0TKRAGQ5pHhXj/8kVgfv0mnbNjmQEX/fuefKHYlBnJay7wQRLXl4p6XoYjM5LWWhMLJ2LB6T4mL2BFxWhVh1DAYNSq0cqVq3DYWFrL8zVUHmUTnT/PbEF5ThJxmyiZZsXfPnA2PGpO6jDtt7ie5asamay7epsIV4ZFRXJ9drclouXJgeNpUtp6VYfVVXBChOxAcstqKlLjzc1LZ04nUUYklZGRvPmcIixbyigFu7tDlHQcLDt9suVYBXFfUYMkQ+hvzjD/fxR9AoHn47/fsDO+6Y3meJx6lDh+TroE5L/lh27szG94D774gjp2VciG0z6ANj1Tp58WNbcVomEsBuu6XOPVzaEJ/XMlNOy+OPl7upp0yRf9+leFEQbERLUxFWEdfj5K+/Rw9gzz2TaXZ8XEVL/x4iKwrXuDEr9mgqfOlTXZ16nxVFZD70PWx4uG0qHxItjdARIjKDqiMJMiGXrfuKK5j4+eKL7L077mCCyaOPuq9PJoLpRMuwTyFvuol16k89JQ8r4nEdtMgcrA8/zJ6AA+FFy3r10vMVvfOO/f5FQa7ktJQtn61CPEHb5KmnsiqaAwcCc+cyEf3441MrwKu47rp0cdOmffnYDEp1hXhkn91yC7D77iwB9plnmte/xx4sRK5fP/ZEV7fdn35S74vpPR/VeeILrwRpszq3h6kQj+ypcpB94NEdA5lrMVOOEl04rQgvaPOh+D4LF5qF8aiclro0DjZOSx4xP3MUVFbKE+7/9BMLyfI8NrHcuBH46KP079tU3gyCSbQEmLu6Wzfgn/9MPx5xV9BWYSta1qkDXHZZ+nuA+Z6gE68zmc/ylVdYHjSeME5LGboq8irmzEkVkFROS1X73LQpXqflQQexdnvnnanb8dchimk6p1cUoqWqwrUN+ey0jAL+eucFk2yJlpl2Wspo2BC46CI2zzMV/vnpJ3a9eV5yrgMkr4UoREvxevIftuhyDvPUNqflv/6VbhyQrYM/brIH/3G2cXEuyI8zRBGZFyRVuYhVOT0rK+2clmJBShItjdARIjKDqiOKQrQEgEmTWHiLnwdz/Hg2KTr6aPd12YiW/KQxbEczYQILgzj0UJaL7YEH1Mu6dugyJ9dDDyVf2+Qw5J/Ai9Stmy5afvml/f5FgU60LChIvVlnQrTMRk7LqG52RUXAzJmsOv2++wJLl7L2aDNoPfvsZAEiHxfR0qZtq5yWgHwfW7RgybZfeMFuXxIJlh/z3XeZO0W3XTGEk98XHpPTUkZYp2WdOuoBlawQz513JkU5W6elrSAP6I+9TCTM1ORMtl8q0ZJ34fEh3z677MLCyfffX729IIV4ZMQlWkZ13Csrk5NRX7T86ivmXu7QgVU27dmTiVMykUknWobp60zVwwH2gOazz+QOmUw5LUX4NmnqD/7xD/l380W07NMHeO+91Pdc2qXYnmTjA5t2wDNlCotCkDktbaMcNm6MV7Q87zzWbk85RR4SK4pDuusoipyW/HFxGQf42w8rWmZKAIhqDsPDCyi8+JGp3xSn01K8ll2Km11yCZvnyVIBiaxcyUTOuXOT7/m/K4pcguJ++w+Kc1W0jCOnJU/LliyyhDc4yNbBH7eff07/PM42Ljot+XMlipamIkNAeKelGFVAoqUROkJEZohbtIybTIWHA+Zq3a7obo42g8lOndTOrbp10yd3otMjm8QRHm66mdlWmtZtw5VM5lXVIe6H62TFhE60DHId+mHUfsEdl+2KuSL5feGxcbTstlvq+2FFy7IytbguCw8vLk4KMrZOS5drydVpKXOxxoEuB6AInydUrHbNo2uHUYWH57poefjhSVHHDwE76yw2kK+sTOaE/eoreWVh3YA/TF+nupZs+ynbQmV/+5vdcrbw14jrPcy2yrWuuGA2K4cDbn272Ib32ce8jI+pHcicluK+qfq6c85xO3fXXGN/3EtLgR12SP4tK/7lErYcNKclP97h15GN8PBMjYlatUrea22LDpqQjRlMxyRKMpnTUiX8hOWrr9LnIlGGh4tt2tVpGXd4uHhcXZ2Wss907cC/R/EPza65Jn05vh/65Zf0z7PltBSvOZt2qXrAbeu0FOfVJFoaoSNEZAbVIMO2g88kruHhmRQtg3ToYUXL4mL2BO2UU9I/q1ePDdTuv5+F6N91F5ucZpJMh4eb3DbZyGmZKze7bIiWuvBwE4sWAbfemp7Y22a7MtEySCEegLlbb7kl+T4fHh5EtCwtVYuWskI8RUVJh9KGDeliu2wfXJyWusGxbDItE7LiwCU8XKyIriKMgykb4eFhC/Hw/OtfzNncrl260/Lrr+XfkQnAOqdlGP73P/n7ttuwnbxH/eDOxY0konJa6lJ5iO0r26JlmDzZTZqwAmE8NmkCZPDtUuW0lPV1zz7LnPuyflSWwuiee4DTTzeLfW3aMDfZ/PmpuXxloqVLG6oN4eGZdCUuXAjcfjtw/fXRrFMmaGXyGsxkTsu4HIdffZX+XpTh4WL79EUu2zltFLlPdYi/Ke6clv59ZtAg4Pnn2Zj6wAPTl+P7oRtvTP88V0TLunXN+6Lqh2ydlmL+9VyZx+UwdISIzKC6+Nu2zex+2JDpnJYiusGJKreGjj32UH9mO1nr2VPuHqlblx2bsWNZiP7JJ8d/M3YhDqdlLoqWueK0FLF1JtmiEy354jNiQQ0VHTsCf/0r0KyZfjlZ/yUTLVX93CGHyN/3f0+rVmyS6hcl452Wrm3WL0wU1GkJpAtJYcPDde1T9pmtQBgWF6clXzBOV+wnE05LXb8dt9NSrLDNc8YZLIcskO60/PVX+Xdkea1UhYLCohJOw+TJlNGgAZu8RQUvMKoKF6pQiZZiRVv+OIv38GyLlmFy6hYUsBzNPKYq8iKyMaGqEI9sHQcdxP6X/Q5xYt+sGXDiiWz9puM+YgQLmRWd+rLwcJdxWRDhQAwPD+O0NPWDueS0BJggfeqp0aWPUDktM0WcOS15B1qcyETLKMPDRfx12s7Ror7nBNmea7513XHix00HHMAqhcvWwfdD8+alfx5nO9cV4hEfFJSXm8ceqn7Itnq461iNINGSyBDixdi6NbvRT5yYnf3xefZZuxxIupt41IMjXce1eLH7+q6+mjlfZLhMCGUddNSiVBB0Lozy8uidlqZE/6ZCPDfckC6M1BanpYir4HDJJezYyMJKAPnv9NvgccexyVuzZuxJb5TItisbFKu4/XZW0Eq8DsX1+uEimzYlhUNXp6U/KFSJb57H1i1ObPkJlx8ivmULG9iFDQ93ZdKk+NbNI+u/VNf38OHsX8OGwOOPq9eZbaelTfVwHtdCPMXFTJyUwQ/8/fa3dSvrB11ES9X+hUWW+iDqbbzyCvs/jDtSZMIEVhStRQt925OhEi3Fc823qdomWorjN9fwcNkYw1SI58Yb2TL/93/Jz8Tf8cAD6e2E31fTcVeJDjLRsqiItaM6dYB772XvTZ/Otn/VVanfDzKeKCyM1mmp24dcclrGQa6JllEey2+/jW5dEyeyfuvKK1n/yOPitAw6h7v4YtZXzpiRfM/GaTlqFMvdm0lk7cf1utSFtKsiVERM90WXh+GuiHNB/lyJ15yNaKm6JqurU0VL23lyrppPcog87tWJvIK/uFu3ZuF/y5fHn4zYxEEHyQtqiAQpphEHQUJFW7dmDpPKSjaB5J0aYas7Rx3+GwSdaCla/DMRHm4qxPO3v6VPnvN5gK3DdVB00UXs2Jx7rvxznWhZVMTCvX/4Aejf3227JmTbfeQR++83bw6sWJE+kBYHKXxibj9E3PWa94+H7tps3pwVW/IpLk4V6zZsYG7PDh2YCCy7xlyuJZfB2Ny5qa7ZOBGPUVGR2pFUUMDCTH/6SZ4nj19ORTZyWhrW6bk6LaurgZtvTj929eqlfp8/jn/8oc4DmknRUkVQ18tFF6X+vWkTsN9+7HWUomW9esDbbwPffQf06uX2Xdvci7kcHh5GtNyyxV6EcWlrpvDwM89k97LLL09+xv+OTp2A449n+8JP+F0eIujCE334a/Kmm4D165O5Fy+8kO3jeeelfj9ouKzKael6DedTTss4yHZ4eJw5LXm3e9j7/NVXswJX55/PikZu2ZK8LjPhtJw2jY2V/v735Hsm0fKxx1hhyEy3T76ImI/rfU9XhNRWtDQ5vjdvtt8fV3ROS5loaRIbddck/zts+z9drnQCAImWRKYQhaOiotwZVBQVAQcfnPxbNinIpGipe9J0+unB1llQwM5BcXFqR1zbnZZRiJZhwsNV57KoiIUm+4S9Fvj26Ro+GCdBfpduIKATLf3txTG4jyp8SNw3cb28aOmHiAd1Wuqu7c2bgaefTv4tc1reeivbB5U7LarwcJGmTTN3bxD7rwYNzNs2DfR1389GTsswVaNljB/P/hdFOdGhyn8umzD5qByYPlGKliqHaND2Jk5Q+d9sK1rauluD9m2q/dCJluLEMtOhjCJhRMtNm9KPm014OO+Q5MeHPioxmN+WuF3+d/DXMC9S8ftgOu6qzy+4IPn6uOPU+yf7GwguWvJjsbDh4bIc6i7ry5X5RRByzWkZ5bHkixVNmxZ+fXz7LSlhDwMAVj1ctWwUOS1l2weAyZP1y2dyzjR0aPJ1mzbpn0cpWtre70zLxSnc6XJaysLDTaaqKETLkSOTr1URkUQNWX58Smwz8Bd3nGGFQbnzThauPmhQqnDgk0nRUhTh/vlPYMkSoEcPVoEyLPy5cBmMyI5BrouWovsniFPVNTzc5LT0mTOHhQ0feqj7Psm2uXAhC4sOKmznAybRMpPbjQLx+uOrCfqipWt/6R8Pl+MiOi1/+425unTEJVo2bpw557F4jEzXtg255rR0WZdJFLv+elYZXLas+DCHF778vJYyTKJllNf3JZcAjRoBu+6qzjPrgugK4du57SSuQQNztEeQ+5aPf98W+xHx/OmclrYumrgI8/s3bbJ3VvHH4MIL2aS1ffv0nJGAWyEeH/4c8MefnxxHER5+5plMUG/UCNh/f/06ZIjHp2NHdT5YHv6eoAsP/+QT4J13gDFj1Ns/4gh2D9yyBfjPf4Bly5Kf24j3+Ry9IhNLslmIJ0rRcvRo5pAEkg/AoqRzZ9a+dM7CKEVLkdNPV0cKAZkVnx96iN2zhwyRmy1cHwhmwmmZSdHSFB7eqZNc/PaxFS11Y5j77weuvZbVntAdXwIAiZZEpggrHMVNs2ZMHFThmrA4DKIYMGVKtOsPei5cq89lilx2Wuq216ULy8UTFXvsoS+6VBvIlmgZFzqnZdDwcBunpYjMaalyWPq4iJYu56hhw+yJllEUUgiT0zKOQjwu69J9d8wY4Kyzkn+L/aLOaakTJjMZHt60qf4+74pu0hKlaBmmera/j+K9yMVpmW3RMsyDbtk5sslpWbcuEy5VmHJaythuu+Rrvq8PKlqq+ujS0lSnqCtiPzR9OgtlN33HxmnZpg17AN+jBwvpvfZa+boSiWTxx5kzUz+v7U5LWXh4Np2WUVJYGG8tg86d1Z/515PYNqJsK6WlrN+47DL555k8jy1bpqanEMlGeHg2nZYu4eHFxawtyYoF+Yj98+DBLEUVYO+0bN5cf46IFPL4URSRV4QVjrKN2LmrBmdREGciYiC4aJmPTssoREvx/IbNaUkER3atZUI4b9gQGDZMv0wQF3Qc4eE2OS1FxFCYzZvNhYZM/dSDD7LJwIAB5hyjfiGIkSPZ9bWtipa2ExqdIzSMaOni5hHvBzqn5aefqteTyfDwKHjhBXYeO3eWhw37uIiWOnbe2T2PJY9KtNQ5LfNdtHzlFXYddOjAHHsiroV4ZLhUD/e56iomSNWpA9xxR/J9XqTi9810Pf7vf3b76or4m2xyz4s5LVVOS368pjoPpry822IhHp0YFzW51ue60K+f+jOV01JXYCYIrimOskUu5rTMlfDwREJ9zSUSbHyri8Ljo0tc5sl+IT9CSg5dPUStJt9FS3GCrhqcxbGtqAkaqp+rTksdYnh4FG0vbPVwIjjZdFq+/DILO5Jx/fVyx4gJXXj41KksUf3LL+vXIYaVBHFa+hNpHxvR0nQtHXcc8P33rOCPqY887zw2AX/hBfZ3plwy4jHKl/Bw3eQhLqelqfq0zmn58cfq9ZoKF+TaPWbUKFbs65NP9H2PrWjZsKH+c5vrR4et05I/n+LvirKoUBBc79v77cfO0Wefyc+R6jpzmcQHCQ9v1471iT/8kDoh5o8v/5DKtD+5JFoC6of5qmtY1d+YqjvX9kI8suMd5sGFK9nOYRsG3cNlldMy6rBc3fHLpNPSRJSipUmM9JHdS/ixQ6aclmJ4uEy4lomW777LUicdd1x6P8QfzyCFeAB274oyGqSWQaIlkRlyPTzcxKpVyddNmuS305LvaMM6LTM5kFIRt9NSxCSSHXBA8vXRR4ffHpEkm6JlQQHQrZv8s+7dg61TVz0cAFavZhVfdbRvn3ptqkRL3SSubt1U0fKHH8xhuzvskHytSkvQqpW9e69t2+T5zWYhnrBkwmkZRUJ8H/4YuEyoXHJafvSR2z4NH558nWuiJcCu05ISfTuNymkZZJLbu3fytV+YwuS05BGPeTaclnwuRpNTW0bz5up7Q5ROSxfREmDnWxSq+e3y7h9T33nUUfrPgxLEiSYW4tHltPRR/T5TzsHa7rSUHe8jj8zc9vNZtGzfnqUBkeFf92LbiFq01F23uSRaRpXTsm5d+zGbTNycNCn5mp8/RY1oKNGFhwPJeydPnTpA69bsta7Am21OSxmq9ktQTksiQ+S7+4x/ot2uXepvyGfRMozT8sYb1SJOrlBennmX78knM4fHpk3AP/4R//ZyjZdfZgWGzj47+nVnO6dlQQFw773AiSemvh80vEi81mVFwEz57EpLU5dRhYebxH1emLj5Zv02AVal/rrrgLfeAq64wry8C9kSLWuD03LQILt1+PDtxOVeZhItedFu8WK7dY4bx9wP//63fP+iZPZs4NZbk3nzgqB76GcrWtq62FyYOZPlVdt332TVWJPTkke8/rIhWt5zD6uCveOOwMCB0a7bpnq4Cb/v0FUPt4Vv41u2JF/r+sE2bcK1XR1Bw8NdRcug4eG13WkpXm///Cew996Z234+i5YAK9ykc1zGLVpmsnBrGKJyWnbsaL8OMbLi6adZ9MKqVeyaPe00t31yQRceLuvjWrZMf48XXcV+iP/7hx+Sr13HMGFyWNdySLQkMkOuVw83we9zly6plemivgnFfVOLKqflmWdGsz9h0XXwiUTqTSYTg7HCwmR1xG2R4cNTnVJRkm3REgDGjk0XLYMKD2JfWKcOW5dLiExJSar46bd3l+NSr16qyPLzz+bvVFfHI0xnktrotBwyxG4df+LxA+pEgu2DzT1a7EtFwZfvd7/91m5n/u//0l3LcYmWw4aZ89SakFWo9bEVLePov7p2ZRN3HhenpUg2RMuWLYEHHohn3arr0MUFFdRpKUPltNS1r5kzo3nIIiPqnJb8a5ucltu601Lc96iLcZrIRXe7C/vuq/887vDwfHFaugr7quPkkm+V798A4JBD2P+miKIoEAvx8AKqzAHKp2vy4e/X4nXKn9s33pB/x3U/iRToyBCZgb+Y8/Epgl/luaQEmDEj3pyWf/kLC0EHgPvvj3bdQHDnYSLBqqMBwYqOxIWpPV10UXKQ+/jjwbbhh6qNGxfs+0Q05IJoWVCQPokPKlrKHhq4rquoyM5pqcIX9l2Fibj78T33ZP+PGZMUgJ5/PtptiIPwKEQA39kmIxNOy0aNgEMPZa8POki+jO+M7do1PcWHasJlqrgqiqX++XNBdi3n0iRPhE+2LxKFaDl5stv+6HBxWopkO6dl1Ng6/HT45y1O0bJHj2SI4pVXJqvMdukSLGTeFrGtBAkPV/VlQUTLbS2nJQCMGMH+P+GEzG87352WpnNPOS2DoQpbdhEthw1LrufOO8Pvkwsqp2VxMWsT/pjFd7CXlaU/yObv1+XlyX540iT1w1nXhwDHHMPGcQDwyCNu363lkNOSyAz53FEDbEL2wQdMUOjUKV7Rsk4dluT/669Z5dCoCZrTEmCVzd55Jyle5gIm8aR1a2DFCmD9+tRcXy7MnMnCYHfbLdj3iWjIVvVwkXr1UnPWBA0Pj8J1LoqW/oDZ9rj4+YhcRcu401i89BKwbBkLd/73v4GfftJXBg2COPmNorDFvvsC06fLPzOJklGIlgBzqP3tb+pQ8QsuYAP0HXbQuwV08G7gFi1Y5XeePfcEli8HPvyQ/V1cDBx+uH6dLkVTcoE4nJaffMKO7ebN0d5nxes1152WcaIaswVxWgZxAYqoRMvCQtYHfvIJG3v4E+uePYOFodvCh6gD9g/SbJyWPHE6LfNdtHz6aTbmdE33EQX5Llq6kkmnZS7fz0zI0hcBbqJleTnLcb1yJbDrrtHsly38sfcfCgDJ/vfFF9n8lr/mWrQAfvst+Td/v04kgNdeA957j31Hdd5djRX16gGffsrGowMGuH23lkOiJZEZ4hxgZQpe8IozpyUANGvG/sVBGNGybt1gDppM0bw58OOP6e+3bx9uvWVlwF57hVsHEZ5ccFoC6ZO4KJ2WroiipT9ZsxUtfcHVVZjo0sVteVfq1En2NW3a6B2MYTj1VOCOO9jrnXYKvz7dJDMT4eEAa4+6HGi8a17MMWW7Dxs3Jl+rQtJ79XIr1ia7luMKgY2Ctm2Trzt0SP3M9nrik/03bcrcdXEQxmlJomU6KqdlkPsR/x0xfLJx41Txevfd3dfviugusjn/tk5LnqCi5bbgtCwvd071ERnbmmgZ9T0m352WquvLjwAUcREtATZPk4Vex42qb/b7Ldn8tkUL4Isv1OuoVy9ZiPKgg4DnnktffxBjRYsWapF4GyaPJX8ir8iHjtqFOKuHx02mC9PEDX8uqOpa7aa2iZZRuBWLiuQOFxenJSB3hvXtm/r34MHs3xlnAPvs476vucjVV7P0D8OHRxOKV1oK3HUXq5wukonw8LDYPmDcsCH5OqpJn6zNNmjAwtn792euhlxi112Bs85iLrhZs1I/s3VadurEcnnusguLZIgL8QHJthYe/tJL7KGELndaFE5LXsi2hT8XossxG7RuDVx8MYv0WbKEHZfrr9d/xzanJY+qrxFzOgd1g994IzvnL71ktzzByPeclq5ELXDnq2h5wQXsmn/9dfnnqus1XyLQVK5FPmpKRBRXdWO0yy6Tv5+NOUotpRbY34i8IJc76iDE7bSMk3wviiTCi5a57MohwpMroiUfDl5SErx/k11/rq70OJ2Wd96ZGsLTsycT5GoT9eqlC05hOflk4Mgj0x1LmXJahkG1D+LEjh/oR9Xvqq7lSZPYv1xEJebYCn1r1iRzFcZJmEI8tUG0HDEiNSRQRhROy4YN3fYLSO2r4067Ycu0aeyfz1lnAXPmqPMKR5nTcv369HUH4cwzc6dgZD6xrTktoyZfCvGITJ/OUvG4ki9mEd8R6YKL27F3b+CGG1hfybOtPQSIkTxTW4i8JZc76iDwT1SuuSZ7+xGE//u/5Gs/LDKf4QfBO+yQfDL2979nZ3+I+MgV0ZJ3Vro+tPjHP5KvZTnrXK9J0Wnp7494XC64QP59/7fIRMvttkv9u7b143ESpKiMTVtq1y5eEUm1j7r+NArRMpGoHWlkfGzOUVERcPDB8e8LABxxRPL11Ve79VvbyqTLdH2ecgr7v1GjZPoeMb1CEPLFiWM6Pq653lXr43PIAflnDMh38j203gY/imTUqOjXrRN9c7ktB7n/qvJ35yJ16iSrldsycGDytU1qjgMOSH9vW7l/ZoBaNEIkcpraNtkdNAiYPZsNWIcOzfbeuNGrF7BgAbBunbyDzTd40bKsjP22JUuAww7L3j4R8ZArhXh40dK1ivaFFwI77gj06SMXe0aNAp591l7MsHVaXnABG6iPGZP6vl8B2Q935BHD3mtbPx4nsolLFIV4Fi4Mtj+28G1pjz1Yu2nUSF/ELEghqgsuYBWRfUpLa9dk2SRaPv44y7XcunVm9qdFC1ZkYMUKNnFbtsz+u7k80Y4SU/92zTUs59keeySXjaJ4V75ManXtoKBA7bR0DQ8XnZbbSvsjMsd//8ucwwcdFP2689Vp6XqdDR6cuxEQKu66C3jmGfvlx4xhYuf33wNHHWVevlMnNq7hTQK5fM7zDBIticxQGy/aYcOyvQfByeViOq4MGAAsXsxed+oEdO/O/hG1j1xxWjZqlHztWjCrrAw45hj154kEG0gPGWKXw08ULf1jJE6EGzQAjj0WmDiRhaT6+IWrCgrYvvEVkUUxqjY54eJGNlE33QdNYXmHHppe8CVq+LZUUgIceKD5O0Gclj17MtHu22+T26pNmERL3vmYKXbaKVlsyuVhy7YiGpmuz/r1gbFjU9/jU0DssEOw7fLFmHJ57CIen06dWBVggBVKi8ppKeYF3VbaH5E52rYFxo2LZ935mtPShg4dgG++Ya/PPjv/Ugk0aQK0bAmsXm23fFGR+7360EPVkU1EKOhOQGQGmuwScfHgg0DHjqyQgZhLhKhd5IpoedJJLI9PeXlq3q8okTkfZajCw0URyO+DxXBGXsAUQ8Tr1EkdZOdKvrV8RZfwHTBX2n733ej2RQUvVNvet4OIlg0apAo++RIia0uu54F0uZa3FdEoiKBw7LGseEXbtvLKsTYcdxyw995M+Hv88WDryARiO3jmGbbPe+/NjoNNrnddTsvOnVk0wDnnpL5fmxzYRO1Hd9/Msb608o47UFGnDqqmTLH7wvPPs+iAPfdk4lw+ErfQSlW/Y4OUJCIz5PvTJSJ36dIF+PLLnBsMEDGQK6LlkCHAqlVskhaXQ8xW9CgstAsP998XRUu+qnCdOsDatcntFxQwYWndOvYeXzGacMd3KKgwufd9V1OcbLddcju25zuIaFm3bur3atuDzVwXLclpmU6QcWpZGfDWW+x1UHGtqAh49VV2P8nlY80fn0SCpTj59tvkPsvuQyI60XLFCvl3bULNCYKnoCB7D1nzyGnpjRuHWU2bYtQBB8Bqz3r3ZikxcrmfyjZiWiUiMqjVEZkhxzpqopZBN9Btg1wRLQE20YwzpDWo09JUPXzr1tS///nP5Gveaek77ng3nFgggdAj5oE0Jf3v2TPZnmUVwvkiTnHBF1/yBWwZJ5+cfL3bbu7bEa/bbUm0vPTSzO2HCj6UWZb/2S86A8gLhtUW+DxlffoEW0ciEY2YluvjGD6M3c/lzu+zSrRUHZshQ5KvTz1VfRz5bdBcIjP4wkuQfMW5QDavpXzLael6rHK9n8o2iUQyhVT79lndldpGLRslEjlLbZuQEASReWQTmtoWVurjIlrKJouq48I7K4HUlAq80OJPWng3HImWbjz+OHD33cBPPwEjRwI9euiXTySYa+uxx4ATTgA++QT48EOga1fgs8+Av/0t/n22FS2vvJKl5dh112DhUGVlqeHufq7F2oJfWMi/Nnv1YkW4/vc/YMKE7O4bwM7znDnAokXAGWekfz5jBju//ftnrlhQNrj5ZnZudtuNpfwg1Jx3HnsY9ttv8jbjWoinQwfghReA99+Xr0+2LhJMMsPSpcAjj+jzb+cy2Wwn+Vo9nIiORYvY9XPssdnek1oFKUlEZuALVxAEQURFbSvg4WMbXtq4MXPA+KF1fmEg1XGpqkq+PuecVCcF77T0HQG805LCw93o0YOJPy706ZN0fHXrZl9FPip40dJPC6Ba7sILg2+nfn3Wbj/5hP2dz4XtZCQSTJj9/Xf2d0GBXfXRTDJ0aNIxJ9KoUWacvdmmSZNw7XhbonFj4KKL1J+7FuIBmPvc5EDnyUWnWm2kR4/ccIQHJZvtRGfSEdPzELWTnj2B6dOzvRe1DpL8icxw+OHsJlhSAsyene29IQgiH2ncmDnWeGqraGl6Il9SwgZGhx/OnHl16jBH1MSJyc9NiMtsv33y9Zdfsv8pPHzbghctRVduWB58kLXrvfZi4clXXcUmeN27p4ab1xb4Bw8kthC1HZXTUrWMLcuXJ1937er+fWLbI5eclmVlyftex45Z2SWCQ+yD7r03O/tBOENOSyIzFBezgceGDfJcXQRBEDbMmpU6II1aWMkVdK7G4mJWCKhBAyb69O8P/PADE0l8IdJGtBQH14MHAw88kPoeiZbbFrxoGTXHHQfsvz8bAyQSzGG1ahVz9dXGFDK8aElhgURtJ4jT0oaPP06+3nff6NZL1F5ySbScMAGYPDl53yNyhz33BMaNy/ZeEJbQKIrIHEVFJFgSBBGORCK1iESQfHr5gE4gLChg4hIv9DRsmCpUBnFa8mF6Rx/N/j/00OR7J51kXieR3+y9d/K13waipEmT1All06a1U7AEUieotTX3LkH4qJyWBx6YfB3EUX3mmcnXxx/v/n1i2+Ovf039u1+/zG1bvJ/Vr59+3yOyB39fpjzGeUUtHSkSBEEQtZbnnmP5loYPj9cZlk10oqXN03pdMnjVMu3aAQ89BLz4IjBtGnvvyCOBTz8Ffv4ZmDTJvE4iv+nfH7jpJlYk57LLsr03+c2aNcnXFBZI1HZUTssjj2RuyXXrgKlT3dd7/vks8mDwYGDAgPD7SdR+pk1j+YRffBHYfXfg4oszt21xXMVHqxDZh3+4EiRdBZE1SLQkCIIg8osuXYD778/2XsSLzilpI1raPNWXbWPMGPaP35YvYBLbBrlQ3bo2wBdd6NQpe/tBEJlAVz38kkuCr7d9e+C++4J/n9j2qFsXuPHG7Gxb5rQkcodGjYDvvmOv+UKURM5DXmWCIAiCyDWuvFL9mY1o2bgxsPPO7LVKdLRxYxIEEZ7WrbO9BwQRL3HltCSIfKJVK6BbN/a6sDA15QqRfe65h/1fVETRJHkGOS0JgiAIItfo3Rt49VVgn33SP7NxUSYSwIIFwEcfqUPqamsuQYLINVq1yvYeEES82FQPJ4jaTkEBsGwZMH8+0KcPcwoTucMuuwArVrCq7m3aZHtvCAforkIQBEEQuYhKbLSdEJaXM7cl73oZODD5ulev4PtGEISeHj2Sr+laI2o75LQkCEa9esABB5Bgmat06UKCZR5CoiVBEARB5CL16wPXXccKEPjhRkC4CeHDDzP35sSJwF57hd5FgiAUPPIIsMcewPTpwPbbZ3tvCCJeyGlJEARBxATFhhEEQRBErnL22ezfuHHA55+z98JMCLt0AebNi2TXCILQsNNOwMKF2d4LgsgM5LQkCIIgYoIehREEQRBErjNlSvL1Aw9kbz8IgiAIQsQvcAEAF16Yvf0gCIIgah3ktCQIgiCIXKdbN+Ctt4B164D99sv23hAEQRBEklGjgNmzWVqTHXbI9t4QBEEQtQgSLQmCIAgiH9hll2zvAUEQBEGkk0gAw4Zley8IgiCIWgiFhxMEQRAEQRAEQRAEQRAEkVOQaEkQBEEQBEEQBEEQBEEQRE5BoiVBEARBEARBEARBEARBEDkFiZYEQRAEQRAEQRAEQRAEQeQUJFoSBEEQBEEQBEEQBEEQBJFTkGhJEARBEARBEARBEARBEEROQaIlQRAEQRAEQRAEQRAEQRA5BYmWBEEQBEEQBEEQBEEQBEHkFCRaEgRBEARBEARBEARBEASRU5BoSRAEQRAEQRAEQRAEQRBETkGiJUEQBEEQBEEQBEEQBEEQOQWJlgRBEARBEARBEARBEARB5BQkWhIEQRAEQRAEQRAEQRAEkVOQaEkQBEEQBEEQBEEQBEEQRE5BoiVBEARBEARBEARBEARBEDkFiZYEQRAEQRAEQRAEQRAEQeQUJFoSBEEQBEEQBEEQBEEQBJFTkGhJEARBEARBEARBEARBEEROQaIlQRAEQRAEQRAEQRAEQRA5RV6LljfffDM6duyIsrIyDBw4EG+99ZZ2+SeeeAI9evRAWVkZevfujVmzZmVoTwmCIAiCIAiCIAiCIAiCsCVvRcvHHnsMEydOxLRp0/DOO++gb9++GDFiBH788Ufp8osWLcIxxxyDk08+Ge+++y4OOeQQHHLIIfjwww8zvOcEQRAEQRAEQRAEQRAEQejIW9Hymmuuwfjx43HiiSdihx12wG233YY6dergnnvukS5//fXXY+TIkTj//PPRs2dPTJ8+Hf3798dNN92U4T0nCIIgCIIgCIIgCIIgCEJHUbZ3IAhbt27FsmXLMHny5Jr3CgoKMGzYMCxevFj6ncWLF2PixIkp740YMQLPPPOMdPktW7Zgy5YtNX+vX78eALB27VpUVFSE/AW5R0VFBTZv3oxffvkFxcXF2d4dgpBC7ZTIF6itEvkAtVMiX6C2SuQD1E6JfIHaKpFtNmzYAADwPM+4bF6Klj///DOqqqrQokWLlPdbtGiBTz/9VPqd1atXS5dfvXq1dPnLL78cl1xySdr7nTp1CrjXBEEQBEEQBEEQBEEQBEFs2LABDRs21C6Tl6JlJpg8eXKKM7O6uhpr165FkyZNkEgksrhn8fDbb7+hXbt2+N///ocGDRpke3cIQgq1UyJfoLZK5APUTol8gdoqkQ9QOyXyBWqrRLbxPA8bNmxA69atjcvmpWjZtGlTFBYWYs2aNSnvr1mzBi1btpR+p2XLlk7Ll5aWorS0NOW9Ro0aBd/pPKFBgwbUcRE5D7VTIl+gtkrkA9ROiXyB2iqRD1A7JfIFaqtENjE5LH3yshBPSUkJBgwYgLlz59a8V11djblz52LQoEHS7wwaNChleQCYPXu2cnmCIAiCIAiCIAiCIAiCILJDXjotAWDixIk44YQTsPPOO2PXXXfFddddh02bNuHEE08EAIwdOxZt2rTB5ZdfDgA4++yzMWTIEFx99dUYPXo0/vOf/2Dp0qW44447svkzCIIgCIIgCIIgCIIgCIIQyFvR8qijjsJPP/2Eiy66CKtXr0a/fv3w0ksv1RTb+fbbb1FQkDSSDh48GI888gguvPBCTJkyBdtvvz2eeeYZ9OrVK1s/IacoLS3FtGnT0kLiCSKXoHZK5AvUVol8gNopkS9QWyXyAWqnRL5AbZXIJxKeTY1xgiAIgiAIgiAIgiAIgiCIDJGXOS0JgiAIgiAIgiAIgiAIgqi9kGhJEARBEARBEARBEARBEEROQaIlQRAEQRAEQRAEQRAEQRA5BYmWBEEQBEEQBEEQBEEQBEHkFCRaErj55pvRsWNHlJWVYeDAgXjrrbeyvUvENsTll1+OXXbZBfXr10fz5s1xyCGH4LPPPktZZu+990YikUj599e//jVlmW+//RajR49GnTp10Lx5c5x//vmorKzM5E8hajkXX3xxWjvs0aNHzed//PEHJkyYgCZNmqBevXo47LDDsGbNmpR1UDsl4qZjx45p7TSRSGDChAkAqD8lsseCBQtw4IEHonXr1kgkEnjmmWdSPvc8DxdddBFatWqF8vJyDBs2DF988UXKMmvXrsWYMWPQoEEDNGrUCCeffDI2btyYsswHH3yAPffcE2VlZWjXrh2uvPLKuH8aUYvQtdOKigpMmjQJvXv3Rt26ddG6dWuMHTsWP/zwQ8o6ZP3wFVdckbIMtVMiLKY+ddy4cWntcOTIkSnLUJ9K5AMkWm7jPPbYY5g4cSKmTZuGd955B3379sWIESPw448/ZnvXiG2E1157DRMmTMCbb76J2bNno6KiAsOHD8emTZtSlhs/fjxWrVpV84+/YVZVVWH06NHYunUrFi1ahPvvvx/33XcfLrrookz/HKKWs+OOO6a0w9dff73ms3PPPRfPP/88nnjiCbz22mv44YcfcOihh9Z8Tu2UyARvv/12ShudPXs2AOCII46oWYb6UyIbbNq0CX379sXNN98s/fzKK6/EDTfcgNtuuw1LlixB3bp1MWLECPzxxx81y4wZMwYfffQRZs+ejf/+979YsGABTj311JrPf/vtNwwfPhwdOnTAsmXLMGPGDFx88cW44447Yv99RO1A1043b96Md955B1OnTsU777yDmTNn4rPPPsNBBx2Utuyll16a0s/+7W9/q/mM2ikRBaY+FQBGjhyZ0g4fffTRlM+pTyXyAo/Yptl11129CRMm1PxdVVXltW7d2rv88suzuFfEtsyPP/7oAfBee+21mveGDBninX322crvzJo1yysoKPBWr15d896tt97qNWjQwNuyZUucu0tsQ0ybNs3r27ev9LNff/3VKy4u9p544oma9z755BMPgLd48WLP86idEtnh7LPP9rp06eJVV1d7nkf9KZEbAPCefvrpmr+rq6u9li1bejNmzKh579dff/VKS0u9Rx991PM8z/v44489AN7bb79ds8yLL77oJRIJ7/vvv/c8z/NuueUWr3HjxiltddKkSV737t1j/kVEbURspzLeeustD4D3zTff1LzXoUMH79prr1V+h9opETWytnrCCSd4Bx98sPI71KcS+QI5Lbdhtm7dimXLlmHYsGE17xUUFGDYsGFYvHhxFveM2JZZv349AGC77bZLef/hhx9G06ZN0atXL0yePBmbN2+u+Wzx4sXo3bs3WrRoUfPeiBEj8Ntvv+Gjjz7KzI4T2wRffPEFWrdujc6dO2PMmDH49ttvAQDLli1DRUVFSn/ao0cPtG/fvqY/pXZKZJqtW7fioYcewkknnYREIlHzPvWnRK6xcuVKrF69OqUPbdiwIQYOHJjShzZq1Ag777xzzTLDhg1DQUEBlixZUrPMXnvthZKSkpplRowYgc8++wzr1q3L0K8htiXWr1+PRCKBRo0apbx/xRVXoEmTJthpp50wY8aMlBQb1E6JTDF//nw0b94c3bt3x+mnn45ffvml5jPqU4l8oSjbO0Bkj59//hlVVVUpExMAaNGiBT799NMs7RWxLVNdXY1zzjkHu+++O3r16lXz/rHHHosOHTqgdevW+OCDDzBp0iR89tlnmDlzJgBg9erV0nbsf0YQUTBw4EDcd9996N69O1atWoVLLrkEe+65Jz788EOsXr0aJSUlaZOWFi1a1LRBaqdEpnnmmWfw66+/Yty4cTXvUX9K5CJ+25K1Pb4Pbd68ecrnRUVF2G677VKW6dSpU9o6/M8aN24cy/4T2yZ//PEHJk2ahGOOOQYNGjSoef+ss85C//79sd1222HRokWYPHkyVq1ahWuuuQYAtVMiM4wcORKHHnooOnXqhC+//BJTpkzB/vvvj8WLF6OwsJD6VCJvINGSIIicYcKECfjwww9T8gQCSMmt0rt3b7Rq1QpDhw7Fl19+iS5dumR6N4ltlP3337/mdZ8+fTBw4EB06NABjz/+OMrLy7O4ZwQh5+6778b++++P1q1b17xH/SlBEER4KioqcOSRR8LzPNx6660pn02cOLHmdZ8+fVBSUoLTTjsNl19+OUpLSzO9q8Q2ytFHH13zunfv3ujTpw+6dOmC+fPnY+jQoVncM4Jwg8LDt2GaNm2KwsLCtOq2a9asQcuWLbO0V8S2yplnnon//ve/ePXVV9G2bVvtsgMHDgQArFixAgDQsmVLaTv2PyOIOGjUqBG6deuGFStWoGXLlti6dSt+/fXXlGX4/pTaKZFJvvnmG8yZMwennHKKdjnqT4lcwG9bujFpy5Yt0wpFVlZWYu3atdTPEhnFFyy/+eYbzJ49O8VlKWPgwIGorKzE119/DYDaKZEdOnfujKZNm6bc76lPJfIBEi23YUpKSjBgwADMnTu35r3q6mrMnTsXgwYNyuKeEdsSnufhzDPPxNNPP4158+alhSDIeO+99wAArVq1AgAMGjQIy5cvT7nx+oPIHXbYIZb9JoiNGzfiyy+/RKtWrTBgwAAUFxen9KefffYZvv3225r+lNopkUnuvfdeNG/eHKNHj9YuR/0pkQt06tQJLVu2TOlDf/vtNyxZsiSlD/3111+xbNmymmXmzZuH6urqGvF90KBBWLBgASoqKmqWmT17Nrp3705hjEQk+ILlF198gTlz5qBJkybG77z33nsoKCioCcWldkpkg++++w6//PJLyv2e+lQiL8h2JSAiu/znP//xSktLvfvuu8/7+OOPvVNPPdVr1KhRStVQgoiT008/3WvYsKE3f/58b9WqVTX/Nm/e7Hme561YscK79NJLvaVLl3orV670nn32Wa9z587eXnvtVbOOyspKr1evXt7w4cO99957z3vppZe8Zs2aeZMnT87WzyJqIeedd543f/58b+XKld4bb7zhDRs2zGvatKn3448/ep7neX/961+99u3be/PmzfOWLl3qDRo0yBs0aFDN96mdEpmiqqrKa9++vTdp0qSU96k/JbLJhg0bvHfffdd79913PQDeNddc47377rs1VZevuOIKr1GjRt6zzz7rffDBB97BBx/sderUyfv9999r1jFy5Ehvp5128pYsWeK9/vrr3vbbb+8dc8wxNZ//+uuvXosWLbzjjz/e+/DDD73//Oc/Xp06dbzbb78947+XyE907XTr1q3eQQcd5LVt29Z77733UsatfnXlRYsWeddee6333nvveV9++aX30EMPec2aNfPGjh1bsw1qp0QU6Nrqhg0bvL///e/e4sWLvZUrV3pz5szx+vfv722//fbeH3/8UbMO6lOJfIBES8K78cYbvfbt23slJSXerrvu6r355pvZ3iViGwKA9N+9997reZ7nffvtt95ee+3lbbfddl5paanXtWtX7/zzz/fWr1+fsp6vv/7a23///b3y8nKvadOm3nnnnedVVFRk4RcRtZWjjjrKa9WqlVdSUuK1adPGO+qoo7wVK1bUfP777797Z5xxhte4cWOvTp063l/+8hdv1apVKeugdkpkgpdfftkD4H322Wcp71N/SmSTV199VXq/P+GEEzzP87zq6mpv6tSpXosWLbzS0lJv6NChaW34l19+8Y455hivXr16XoMGDbwTTzzR27BhQ8oy77//vrfHHnt4paWlXps2bbwrrrgiUz+RqAXo2unKlSuV49ZXX33V8zzPW7ZsmTdw4ECvYcOGXllZmdezZ0/vX//6V4pQ5HnUTonw6Nrq5s2bveHDh3vNmjXziouLvQ4dOnjjx49PMyZRn0rkAwnP87wMGDoJgiAIgiAIgiAIgiAIgiCsoJyWBEEQBEEQBEEQBEEQBEHkFCRaEgRBEARBEARBEARBEASRU5BoSRAEQRAEQRAEQRAEQRBETkGiJUEQBEEQBEEQBEEQBEEQOQWJlgRBEARBEARBEARBEARB5BQkWhIEQRAEQRAEQRAEQRAEkVOQaEkQBEEQBEEQBEEQBEEQRE5BoiVBEARBEARBEARBEARBEDkFiZYEQRAEQRAEkYd07NgRiUQC48aNy/auEARBEARBRA6JlgRBEARBEI6cdtppSCQSSCQSmDdvntN3X3nllZrvnn322THtIUEQBEEQBEHkNyRaEgRBEARBODJ27Nia1w899JDTdx988EHperLF/Pnza0TU+fPnZ3t3CIIgCIIgCAIAiZYEQRAEQRDO7L777ujSpQsA4KmnnsLvv/9u9b1Nmzbh6aefBgDsuOOOGDBgQGz7SBAEQRAEQRD5DImWBEEQBEEQATj++OMBAL/99hueffZZq+/MnDkTmzZtSvk+QRAEQRAEQRDpkGhJEARBEAQRgOOPPx6JRAKAfYi4HxpeUFCA4447LrZ9IwiCIAiCIIh8h0RLgiAIgiCIAHTu3Bm77747AODll1/Gjz/+qF3+hx9+wNy5cwEA++67L9q0aZO2zDPPPIMjjjgC7du3R1lZGRo1aoSdd94Zl1xyCdatW2e1X7NmzcJxxx2Hzp07o27duigrK0OnTp1w2GGH4b777sPmzZsBAF9//TUSiQT22Wefmu/us88+Nfkt/X/33Xdf2ja2bt2KW265Bfvssw+aNWuGkpIStGzZEqNGjcJDDz2E6upq5f6NGzcOiUQCHTt2BACsWrUKkyZNwo477oj69es759aU5eR8/PHHMXToUDRr1gzl5eXo3r07LrjgAqxdu1a5nr333huJRAJ77723dnsXX3xxzfZk+J9dfPHFAIBXX30VhxxyCFq3bo3y8nL07NkT06dPr3Hc+syaNQujRo2qWW6HHXbA5Zdfjq1bt1ofi7fffhvHHHMM2rVrh7KyMrRr1w4nnngiPv30U6vvr1ixAueeey569+6Nhg0bory8HJ07d8a4ceOwdOlS5ffEc1BdXY177rkH++yzD1q0aIGCggKqcE4QBEEQhDseQRAEQRAEEYg77rjDA+AB8K6//nrtsjNmzKhZ9oEHHkj5bO3atd6+++5b87nsX/Pmzb3Fixcr1//zzz97Q4cO1a4DgHfvvfd6nud5K1euNC7LL++zcuVKr0ePHtrv7LHHHt4vv/wi3c8TTjjBA+B16NDBW7x4sde0adO077/66qvGY+/z6quv1nxv7ty53nHHHafcr65du3qrVq2SrmfIkCEeAG/IkCHa7U2bNq1mfTL8z6ZNm+ZdfvnlXiKRkO7L4MGDvY0bN3rV1dXeWWedpdznkSNHepWVldJtdejQwQPgnXDCCd7dd9/tFRUVSddRWlrqPf7449rfNWPGDK+4uFi5H4lEwps6dar0u/w5ePHFF71hw4alff+EE07Qbp8gCIIgCEKEnJYEQRAEQRABOfLII1FWVgYgtSq4DP/zevXq4dBDD615f8uWLRg2bBjmzZuHwsJCHH/88Xj00Ufx5ptvYuHChfjnP/+JJk2a4Mcff8SoUaPwzTffpK178+bN2GeffWqcnAMGDMDtt9+ON954A0uXLsXTTz+Nc889F61bt675Tps2bbB8+XLcc889Ne/dc889WL58ecq/Qw45pObzjRs3YujQoTXOvUMOOQTPPfccli5diieeeAJDhgwBALz++us48MADUVVVpTweGzduxGGHHYY//vgD//jHPzB//ny89dZbuPvuu9GqVSvtsVQxdepUPPTQQzjkkEMwc+ZMLFu2DLNmzcLo0aMBJJ2EmeDFF1/E5MmTsdtuu+GRRx7B0qVL8dJLL2H//fcHACxatAiXX345rr32Wtxwww3Yf//98dRTT2HZsmV49tlnsdtuuwEAXnrpJdx5553abb333nv461//iubNm+PGG2/EkiVL8Nprr2HSpEkoLS3Fli1bMGbMGKVbcsaMGTj//PNRUVGBPn364NZbb8WcOXOwdOlSPPzwwxg0aBA8z8P06dNxww03aPdl0qRJmDNnDg466KCUc+D/boIgCIIgCGuyrZoSBEEQBEHkM0ceeWSNm+zTTz+VLvP+++/XLDN27NiUz6ZMmeIB8Bo1auQtXbpU+v2vv/7aa9WqlQfAO/bYY9M+P/fcc2vWP2HCBK+6ulq6ni1btnirV69OeY93yZkcjn//+99rlr3wwgvTPq+urvbGjBlTs8wtt9yStozvtATg1atXz3vvvfe02zTB7z8A77LLLpPu1/Dhwz0AXlFRkffjjz+mLRO10xKAd9hhh6W5JCsrK73ddtvNA+DVr1/fKysr884555y09WzatKnGSdmnTx/ptvzP8adzVeYinTdvXo0Dc5dddkn7/KOPPqpxWE6bNk3adqqqqmocrPXq1fPWrl2b8rl4DmRtgyAIgiAIwhVyWhIEQRAEQYRg7NixNa9Vbkv+fX75jRs34uabbwYATJ8+HQMGDJB+v0OHDpg6dSoA4IknnkjJh/jrr7/i9ttvB8Acltdff70y32JJSQlatGhh87PS2LJlC+666y4AwI477liTs5EnkUjglltuQZMmTQAAN910k3adF1xwAfr27Rtof2QMGDAAU6ZMke7XxIkTAQCVlZVYvHhxZNtUUadOHdxxxx0oLCxMeb+wsBCnnnoqAGDDhg1o1qwZrrzySun3TzjhBADABx98gPXr12u3d/XVV6Nly5Zp7++zzz4YP348AJbzUnRbXn311aioqMDOO++MadOmSdtOQUEBbrzxRpSWlmLjxo148sknlfvRrVs3adsgCIIgCIJwhURLgiAIgiCIEIwYMaJGCHz44YfheV7K59XV1XjkkUcAAG3btk0pfPPaa6/ViFGHH364djt77bUXAKCiogLLli2reX/evHk1xXXOOuusNJEsKpYtW4Zff/0VACumo9pOgwYNcOSRRwIAPv74Y6xatUq5zjFjxkS6j8cee6xSsOUF4a+++irS7crYb7/9sN1220k/44XaQw89FMXFxcblVq5cqdxW48aNcfDBBys/P+mkk2pez5kzJ+Wz559/HgBw2GGHKY8dADRq1Ai9e/cGAK3oe9RRR8XWBgmCIAiC2LYg0ZIgCIIgCCIERUVFOPbYYwGwityvv/56yudz587FDz/8AICJdAUFyeEX73pr1apVWuVu/l+vXr1qll29enXN63fffbfm9Z577hntj+P48MMPa14PHDhQuyz/Of89nnr16qFz587R7Nyf9OjRQ/kZLyBu2LAh0u3K6Natm/KzRo0aOS+n2+eddtoJRUVFys/79euHkpISAMDy5ctr3v/mm2/w008/AQAmT56sbX+JRKKmvfLtT6RPnz7KzwiCIAiCIFwg0ZIgCIIgCCIkuhBxVWg4APz444+Btuc7KwHg559/rnkdtICNDWvXrq153bx5c+2yfJgy/z0eXpCLijp16ig/48ViXYGgTO9LFPtsOh9FRUU1oi1/PqJofyKNGzcOtE6CIAiCIAgR9SNZgiAIgiAIwop+/fqhd+/eWL58OZ544oma/H+bNm3CzJkzAbDw5B122CHle7wQ9c477yjDhEXatm0b3c4HQBdGbAuFEEdH0PPBt7+LLroIRxxxhNX36tatq/yMzitBEARBEFFBoiVBEARBEEQEjB07Fueffz5+/fVXPP/88zj88MPx9NNP1xTNEV2WAGoK1gBAs2bNAomRTZs2rXm9atUqdOrUKcDem+HDq9esWaMNa+bDh1V5HXMN39VYXV2tXY4vgpQrrFmzRvt5ZWVljcOSPx98+ysuLk5JQUAQBEEQBJFtKDycIAiCIAgiAsaMGVPjMnvooYcAJEPDi4uLccwxx6R9Z6eddqp5/cYbbwTabv/+/WteL1iwwPn7ti49XtBasmSJdtm33npL+r1cpn79+gCAdevWaZf7/PPPM7E7Trz33nuorKxUfv7+++9j69atAFLPR+fOndGwYUMAwdsfQRAEQRBEXJBoSRAEQRAEEQGtWrXCsGHDAACzZs3Chx9+iLlz5wIARo4ciWbNmqV9Z9iwYTU5DW+44Ya0yuM27LPPPjXhujfeeKNzvsaysrKa11u2bFEuN2DAgJo8lPfff7/SkbhhwwY8/vjjAIAddtgh1jybUeI7VD///HNl0Zuff/4Zs2fPzuRuWbF27dqaKuAy7rnnnprXfhsFWCj3qFGjAACvvPIKPvnkk/h2kiAIgiAIwhESLQmCIAiCICLCDwGvqKjA0UcfXSMgykLDAVaM5swzzwQALFq0COeee642PHnNmjW466670tZx2mmnAQCWLVuGc845Ryl+VlRUpBVf4UXFL7/8Urnt0tJSnHLKKQBYRfDp06enLeN5Hs4888ya4kD+b8sHhgwZAgDYunUrbrzxxrTPKyoqcMopp+D333/P9K5ZMXHiRGmY+GuvvYY77rgDABOed9lll5TPJ0+ejMLCQlRXV+Pwww/Hd999p9xGVVUVHn74Ye0yBEEQBEEQUUE5LQmCIAiCICLiL3/5C+rXr48NGzbgo48+AsCqKR944IHK71x66aV47bXXsGTJElx//fWYP38+xo8fj379+qFu3bpYt24dPvroI8yZMwcvvvgievfuXSMe+kyfPh2zZ8/G8uXLcdNNN2Hx4sU47bTT0Lt3b5SUlOC7777DwoUL8eijj+Kyyy7DuHHjar7bvn17tG3bFt999x2uuuoqtG3bFt27d68JdW/RokVN6PRFF12EmTNn4quvvsLFF1+M5cuX48QTT0SrVq2wcuVK3HTTTZg/fz4AYNCgQTj11FMjPLrxMnr0aHTo0AHffPMNpk6dip9//hmHHnooysrK8NFHH+GGG27Au+++i9122w1vvvlmtnc3hb59++Ljjz/GgAEDMHnyZOy6667YsmULZs2ahWuvvRaVlZUoKirCzTffnPbd3r1746qrrsK5556Ljz/+GL169cKpp56KfffdFy1atMAff/yBr7/+GosXL8aTTz6JVatWYfny5VkvBkUQBEEQRO2HREuCIAiCIIiIKC8vx+GHH45777235r0jjzwSpaWlyu+UlpZi9uzZGDduHGbOnIn3339f61Bs0KBB2nt16tTBvHnzcNhhh2HBggVYtmyZk2A4ZcoUnHHGGVi5ciUOPvjglM/uvffeGpGzfv36mDt3Lvbff398+umneOqpp/DUU0+lrW/33XfHc889l1eVpEtKSvDQQw9h5MiR2LRpE6699lpce+21NZ8XFhbiuuuuw9q1a3NOtOzXrx/OPPNMnH766dK2U1JSgvvvvx8DBw6Ufv+cc85B3bp1cc4552D9+vWYMWMGZsyYIV22pKQkJaUAQRAEQRBEXFB4OEEQBEEQRISccMIJKX+rQsN56tevj6eeegoLFy7EKaecgu7du6N+/fooKirCdttth1122QUTJkzArFmzlDkVmzZtitdeew0zZ87E4YcfjrZt26K0tBRlZWXo3LkzjjjiCDz88MPSgkCnn346nnrqKQwfPhzNmzdHUZH6uXbHjh3x/vvv46abbsKQIUPQpEkTFBcXo0WLFhg5ciQefPBBLFiwIG+qhvPsscceWLZsGY4//ni0bt0axcXFaNWqVY0YfNZZZ2V7F5WccsopWLhwIY488ki0bt0aJSUlaNOmDcaOHYt3330XRx99tPb748ePx1dffYVLLrkEu+++O5o2bYqioiLUrVsX3bp1w2GHHYbbbrsN33//Pbp27ZqhX0UQBEEQxLZMwguS8Z0gCIIgCIIgCIIgCIIgCCImyGlJEARBEARBEARBEARBEEROQaIlQRAEQRAEQRAEQRAEQRA5BYmWBEEQBEEQBEEQBEEQBEHkFCRaEgRBEARBEARBEARBEASRU5BoSRAEQRAEQRAEQRAEQRBETkGiJUEQBEEQBEEQBEEQBEEQOQWJlgRBEARBEARBEARBEARB5BQkWhIEQRAEQRAEQRAEQRAEkVOQaEkQBEEQBEEQBEEQBEEQRE5BoiVBEARBEARBEARBEARBEDkFiZYEQRAEQRAEQRAEQRAEQeQUJFoSBEEQBEEQBEEQBEEQBJFTkGhJEARBEARBEARBEARBEEROQaIlQRAEQRAEQRAEQRAEQRA5xf8Dhq0gKqlk12UAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 7) Изучить и загрузить тестовую выборку Cardio.txt." + ], + "metadata": { + "id": "vJvW1mOtpgFO" + }, + "id": "vJvW1mOtpgFO" + }, + { + "cell_type": "code", + "source": [ + "#загрузка тестовой выборки\n", + "test = np.loadtxt('data/cardio_test.txt', dtype=float)\n", + "print('\\n test:\\n', test)\n", + "print('test.shape:', np.shape(test))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GrXQ5YymtD2u", + "outputId": "47e6519f-3133-4eb0-c955-64df75880f72" + }, + "id": "GrXQ5YymtD2u", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " test:\n", + " [[ 0.21654639 -0.65465178 -0.20364049 ... -2.0444214 4.987467\n", + " -0.49329397]\n", + " [ 0.21654639 -0.5653379 -0.20364049 ... -2.1133887 6.490482\n", + " -0.49329397]\n", + " [-0.3125388 -0.91998844 6.9653692 ... -1.1478471 3.9186563\n", + " -0.49329397]\n", + " ...\n", + " [-0.41835583 -0.91998844 -0.16463485 ... -1.4926834 0.24461959\n", + " -0.49329397]\n", + " [-0.41835583 -0.91998844 -0.15093411 ... -1.4237162 0.14441859\n", + " -0.49329397]\n", + " [-0.41835583 -0.91998844 -0.20364049 ... -1.2857816 3.5846529\n", + " -0.49329397]]\n", + "test.shape: (109, 21)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 8) Подать тестовую выборку на вход обученного автокодировщика для обнаружения аномалий. Вывести график ошибки реконструкции элементов тестовой выборки относительно порога." + ], + "metadata": { + "id": "6iqO4Yxbpgob" + }, + "id": "6iqO4Yxbpgob" + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE3\n", + "predicted_labels3_v1, ire3_v1 = lib.predict_ae(ae3_v1_trained, test, IREth3_v1)" + ], + "metadata": { + "id": "Vxj1fTAikDuU", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "595470a6-9824-43d6-90af-89d584c971e3" + }, + "id": "Vxj1fTAikDuU", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('test', ire3_v1, IREth3_v1, 'AE3_v1')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 727 + }, + "id": "21DdnIKYtmtM", + "outputId": "2de5d71c-bd32-4899-c902-7af454334fd1" + }, + "id": "21DdnIKYtmtM", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzzlJREFUeJzs3Xd8VFX+//H3pEIICU0IShWwgGJBKRZAVIo/3VWx4yqubVdUlK8N14YNde19XQu4irrY1wZYABUQQRFERECqFKkJAZJMkvn9cb1z76ROzZ175/V8PPLgzMy9d86E3Cnv+ZxzfIFAICAAAAAAAAAAcECa0x0AAAAAAAAAkLoIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAgCcsWbJEV1xxhbp3766mTZvK5/MFf1atWuV09wAAAADUgoASAAAXGzhwYDCEu+OOO2rdzh7WVf1JT09Xs2bN1K1bN5155pl6/vnnVVxcHFUfIv0ZOXJk7L8ESe+//74OO+wwPfPMM1qyZElE/QdS3S233BJyXv7973+P+BiJeB4oKirSJ598onHjxumMM87QIYccopYtWyorK0uNGjVSQUGBBg4cqFtuuUXLli2L8bfgrIqKCi1cuFAvvPCC/v73v+uII45QVlZW8Hc0cOBAp7sIAEBCEVACAJDiKisrVVhYqOXLl+vNN9/UpZdeqs6dO+udd95xumthKS4u1siRI1VaWipJatu2rc4880xdccUVGjVqlEaNGqW8vDyHexm9O+64I6wQ2g1GjhwZfCwTJkxwujsNYtWqVcHH3KlTJ6e7U00gENB//vOfkOveeOON4PnkpJtvvlnDhg3THXfcobfeeksLFy7Utm3b5Pf7VVpaqk2bNmnGjBm65557dMABB+jKK69USUmJ092O2Lvvvqu8vDwdcsghuuSSS/Tss89q/vz58vv9TncNAIAGk+F0BwAAQMM69dRTtc8++wQvV1ZWasuWLZo9e7bWrVsnSdqyZYvOOOMMvfnmmzrttNPCPvaRRx6p3r17h7193759w+94LT744ANt375dktSjRw99++23aty4cczHBVLBF198oTVr1oRct337dr3//vs688wzozpmIp4H8vPzdeCBB6pz587Ky8tTWVmZVq5cqTlz5qikpESVlZV66qmn9PPPP+uTTz5RRoZ7Pubs2LFDu3fvdrobAAA4yj2v3AAAIC5Gjx5d43DByspKTZw4UX//+99VWlqqyspK/f3vf9eQIUOUk5MT1rFPOumkBq/y++6774Ltc889l3ASiMDEiROD7caNG2vPnj3B66MNKOP1PHD44Yfr4Ycf1uDBg9W9e3f5fL5q2xQVFemOO+7QI488Ikn67LPP9Oijj+q6666L+f4bWps2bXTkkUcGf6ZMmaLHHnvM6W4BANAgCCgBAIAkKS0tTRdddJF27typ0aNHS5I2bdqkd999V+edd57DvaudWT0pGcO7AYSnuLhYb731VvDyww8/HJx/csqUKdq0aZPatGnjVPf017/+td5t8vLy9PDDD2vHjh166aWXJEn/+te/XBVQDh06VKtXr1aHDh1Crv/mm28c6hEAAA2POSgBAECIyy+/XI0aNQpenjlzpoO9qZ99nra0NN7aAOF66623tGvXLklS586ddfnll+vQQw+VJJWXl+vVV191sHeRsYeZy5cvd9VCWQUFBdXCSQAAUg3v4gEAQIjs7GwdeOCBwcvr1693sDc1sy8cYx+ietFFF1VbIbi2xViKi4v1+OOPa8iQIWrXrp0aNWqk5s2b66CDDtKVV14ZdvWS/b5MP/zwg0aPHq2DDjpILVq0kM/n06mnnhrRYzRXRR43blzwunHjxkW8GnogENA777yjCy+8UPvtt5/y8/PVqFEjtW/fXqeeeqomTpyo8vLysPr0888/64YbblDfvn3VqlWr4GrKrVu3Vq9evXTRRRdp4sSJIVWtktSpU6ew/q/isRBQtH2sid/v13/+8x+dddZZ2nfffdW0aVM1adJEnTt31rnnnqt33nlHgUCgxn0nTJggn8+nzp07B69bvXp1rStZO8H+/3H++efL5/PpL3/5S423J7u99tor5PLOnTvjfh9XX3118P/r8ssvD3u/SZMmBffr0aNH3PsFAIAXMMQbAABUY5/H0Y2r4tbngw8+0KWXXqqNGzeGXF9aWqodO3Zo8eLFeuqpp3Teeefp3//+d9hzcEpGeHr33XeroqIi3t2O2MKFC3XhhRdqwYIF1W5bt26d1q1bp/fee0/jx4/X22+/re7du9d6rLoe1+bNm7V582Z99913mjBhgkaMGKFXXnklng8lLPHs4/Tp03XJJZdoxYoV1W5btWqVVq1apddff119+/bVm2++GbLwlBusXr1a06dPD14+//zzJUnnnXeebrjhBlVUVGjhwoVasGBBsKoymf3000/Bdk5OTrXAMh7OP/98PfHEE5KkyZMn64knnlBWVla9+9n/zszfMwAACEVACQAAqrFXTTo5B11tevfurVGjRkkyFsX4+eefJUnHH3+8DjjggJBt7dWgkvTGG29oxIgRwRArPT1dxxxzjLp27ari4mJ9+eWXwcc/adIkrVy5Up9//nnIsPfa/POf/wxWPHbp0kW9e/dWTk6OVq1apczMzIge42mnnaaDDjpIc+fO1bfffiup9tWRa1oFeebMmTrllFNUVFQkScrMzNSRRx6pbt26KTMzU6tWrdJXX32lkpISLV26VEcddZRmz55d7fclSY899lhIJWerVq3Ut29ftW3bVj6fT9u2bdPPP/+sJUuW1BgOXnjhhdq6dWu9/1eSIlr9OZ59tJs8ebJGjBgRnD6gcePG6tu3rzp16qS0tDT98ssvmj17tsrLyzVnzhz169dP3377bci5cuCBB2rUqFHauXOnXn75ZUlS06ZNdcEFF0T1+OLtP//5T7D6s0+fPtpvv/0kGcONTzzxRH3yySeSjCrKZA8ozYVyTKeeempCVvHu3bu39ttvP/3yyy/avn27Pvroo3orozdv3qxp06ZJMqqtR4wYEfd+AQDgCQEAAOBaAwYMCEgKSArcfvvttW5nbiMp8MUXX9R5zKVLl4Zs/+STT8alD4ly4YUXBu//pZdeqnPb5cuXB3Jzc4Pb9+7dO7Bs2bKQbSoqKgIPPfRQIC0tLbjdVVddVesx7b+rjIyMQH5+fuCdd96ptl1JSUk0Dy9w++23R/z73bBhQ6B169bB/S644ILA+vXrq223cePGwGmnnRbc7uCDDw6Ul5eHbOP3+wOtWrUKbjN+/PhAWVlZjfe7devWwIsvvhi4//77a7w9kv+rSMSzjz/++GOgcePGAUkBn88XuO666wLbt2+vtt2KFSsCxxxzTPA+hw0bVuPxVq5cGdymY8eO0T7EuOvWrVut5/irr74avK1169YBv99f7/Ea+nmgpKQksGzZssCzzz4b2HfffYP3XVBQEFizZk3C7nfcuHHB+xo+fHi92z/++OPB7QcMGBDRfdnP/Uj3BQDAbaigBAAAQeXl5cEVvCVjhdxzzjkn7P0/+ugjbdmyJezt77zzTrVo0SKiPsbizjvvDC6e0bVrV02dOlX5+fkh26SlpWnMmDHy+XwaM2aMJOmpp57StddeGzKfYE0qKyv1/vvvq3///tVuy87OjtOjqN8//vEP/f7775KMefMee+yxGrdr06aNJk+erMGDB+vzzz/XokWL9Oabb+rss88ObvPzzz8H/0+PPvpo3XTTTbXeb4sWLXTRRRfF8ZGEJ559vPrqq7Vnzx5J0kMPPaRrr722xu323XdfffLJJ+rdu7d++uknffzxx/rmm2/Up0+fGB5Jw5g1a5aWLVsmyaistf9/S0YFYm5uroqLi/X777/r448/1imnnBL28RPxPLBu3Tq1b9++zm369OmjyZMn17tdLM4//3zdfvvtkoypIgoLC6s9h9jZFxqyz+8JAABCEVACAJDiKisrtWXLFn399de67777NHfuXElSRkaGXnzxRbVs2TLsY3377bfB4cjhuO666xosoNyxY4feeOON4OUHHnigzmBh9OjReuGFF7R48WJVVlbqueee0/jx4+u8jzPOOKPGcLIhbd68OTjnXUFBge6///46t09PT9c999yjfv36STICFXtgZQ4Rl6ovRJIs4tXHH374QZ9//rkk6bDDDtM111xT5/ZNmjTRrbfeqnPPPVeS8btzQ0BpX/xm2LBhatWqVcjtOTk5Gj58eHC7iRMnRhRQNvTzQOPGjXXffffp6quvjvoY4dp333111FFHadasWSotLdWbb76piy++uMZtly9fHlxsq1GjRjrjjDMS3j8AANyKVbwBAEgxxx13XMjqwenp6WrTpo1OP/30YDi5//77691339Xw4cMd7m38mIGCZMxPWF/gkpaWpr/+9a/By1988UW99xFJtWmifPrppyorK5MknX766WHNndmnTx81adJEkvTVV1+F3GavRvviiy/0yy+/xLG38RGvPn700UfB9rnnnhvW6tqDBg0Ktqv+7pJRSUmJ/vvf/wYv11bVZ58r83//+5+2bduW8L7VJTc3V6NGjQr+XHDBBTr22GPVqFEj7dmzR6NHj9bhhx8eUTAaLftCN/YKyarst5188sl1fiECAECqo4ISAACEaNOmjV5++eWoFiu5/fbbQxarSCbff/99sN27d++wFtE4+uijQ/YPBAJ1hla9evWKrZNxMHv27GB74cKFuvLKKyPaf/v27dq1a1cwsGzfvr369u2rOXPmqLCwUL169dJf/vIXnXbaaTr66KMjWuE8UeLVR/vv7osvvtDq1avr3Sfwx0IzkrR27drIO9/A3nvvPe3YsUOS1KxZs1qD+oEDB6pdu3Zat26dysrK9Prrr+uKK64I6z4S8TzQrFkzPfnkk9Wu37Ztm+6//37985//1Pfff6/+/fvr/fff14knnhjX+7c766yzNHr0aPn9fs2YMUPr1q1Tu3btqm3H8G4AAMJHQAkAQIo59dRTtc8++wQvb926VStWrAhWHm3atEnHHnus3nrrLZ188slOdTPuNm/eHGx37NgxrH06deoUbJeVlWnnzp3Ky8urdftkGAJtX4H9q6++iqqqb/v27cGAUpJeeOEFDRo0SJs2bVJxcbGeeeYZPfPMM8rIyNChhx6q/v37a8iQITr++OOVnp4el8cRqXj00f67+/jjjyPuw/bt26Puf0OxD+8+88wza50bNS0tTSNGjAhOETBx4sSwA8qG1KJFC91///0qKCjQmDFjVFJSohEjRmj58uV1nquxaNmypYYNG6b3339flZWVeu2113T99deHbDN37tzgPJ/m9gAAoHYM8QYAIMWMHj1aTz75ZPDntdde09y5c/XDDz/okEMOkWSEceeee65WrFjhcG/jx1wcR1JI+FaXqtvt3Lmzzu0bN24cecfirLCwMOZjlJeXh1zu3r27fvjhB1111VUhw1TLy8s1b948PfzwwxoyZIg6duyo559/Pub7j0Y8+hjr766ioiKm/RNt48aNmjp1avCyfahyTexVf3PnztXPP/+csL7FavTo0erWrZsk48uIl19+OaH3Z//dmHO+2tmvO/vss5WZmZnQ/gAA4HYElAAAQJLUs2dPTZ06NVhdWVxcrEsuucThXsVPbm5usL1r166w9qm6XdOmTePap0Swh6oPP/ywAoFAxD/2ylFTmzZt9Pjjj2vTpk2aPn267rrrLg0bNiykSu23337TpZde2iCLldQk1j7af3dvv/12VL+7ZPbKK6+EhKgDBgwImY+26s9BBx0Usr+9+jLZpKWl6fjjjw9e/vrrrxN6f6ecckowCF+4cKF+/PHH4G0VFRUhC3LVFwQDAAACSgAAYNO6dWs98cQTwcvTp0/Xhx9+6GCP4sc+/HrNmjVh7bNq1apgOysryxUBZZs2bYLtjRs3xv342dnZGjBggG655RZ99NFH2rJliz7++GMdc8wxwW2eeOKJBlmsJN59TPTvzmmxBoyvvPKKKisr49Sb+GvevHmwvXXr1oTeV3Z2dsiq3PaKyalTp+r333+XJHXt2lX9+vVLaF8AAPACAkoAABDCXFjEdMsttzjYm/g57LDDgu25c+eGNRx31qxZIfuHs6pzvEV6n3369Am2E11FJkmZmZkaOnSoPv3005CKu//973/VtnXi9yeF38dE/O6cesxVfffddyFVfkceeaT69OkT1o+5oNS6dev02WefOfUQ6rVhw4Zgu0WLFgm/P3tl5GuvvRasoLUvjjNixIiE9wMAAC8goAQAANXYV+BdsGCB3n//fec6EydHHXVUcEGQzZs311sZWllZqZdeeil4edCgQQntX20aNWoUbPv9/nq3HzJkSDBQmjVrln744YeE9c0uOztbgwcPDl7etGlTtW0ifSzxVl8f7YtCvf322zU+hkg5/ZhN9urJgw8+WHPnztWcOXPC+hk6dGiNx0kmZWVlIfNrHnjggQm/zwEDBqh9+/aSjKrsmTNnateuXXr33XeD2zC8GwCA8BBQAgCAak444QQdddRRwct33323g72Jj2bNmunss88OXr7++uvrXPTmySef1KJFiyQZ89tddtllCe9jTVq2bBls//bbb/Vuv88++wRDkUAgoAsuuEBFRUVh3VdlZWXIaueSsTJ1uMN6165dG2y3bt262u2RPpZwxauPvXv31sCBAyVJe/bs0V/+8heVlZWFddyysrIaV/Fu1qyZ0tKMt9ybN292JKT0+/2aNGlS8HKkoZl9+3feeafexaLiobCwMKJFh2699daQVdhPP/30RHQrhM/nC6mQfPXVV/Xuu+8G567t27evunbtmvB+AADgBQSUAACgRrfddluw/e233+qTTz5xsDfxcdtttwUXy/nll180ZMgQ/frrryHbVFZW6rHHHtOYMWOC140aNarGhWMagn1I8tSpU8Naafqee+5R27ZtJRkLePTu3TukuqyqdevW6ZFHHtH+++8fsriHJL333nvab7/99OCDD4bMyWlXWlqqJ598Um+++WbwumHDhtX5WN57772ww7/6xLOPTzzxRPBvZNq0aerfv7+++eabWu/7l19+0V133aVOnTrVOCw8Ozs7uLq03+8Pqa6ry8iRI4OL1cT6t2fOwykZodq5554b0f5/+tOfgvOv7t69W5MnT46pP+H44osv1KNHDz3zzDPVQnO7X3/9VX/5y1/0wAMPBK87//zzdfDBBye8j+Z9md588029+OKLNd4GAADqluF0BwAAQHIaMmSI+vTpEwxn7rrrrpChnjWxByHhyMnJCQkWEq1Lly56/vnnNWLECFVUVGj27Nnaf//9deyxx6pLly4qLi7Wl19+GVLd17dv3wbtY1W9e/dW+/bttXbtWm3YsEEHHHCABg8erFatWgXnNzzyyCNDqkP33ntvvffeezrppJO0ZcsWLV26VEOGDNE+++yj3r17a6+99pLf79eWLVv0448/auXKlXX2YcWKFbr++ut1/fXXq0OHDurZs2ew+nDjxo2aM2eOtm3bFtx+xIgRIRW4pmHDhqlx48bas2ePFixYoAMPPFADBw5Us2bNgo9l8ODBIcOwwxWvPh500EF67bXXdPbZZ2v37t365ptv1LdvX3Xp0kWHH364WrRooZKSEv3+++9auHBhWJWgw4cP17333hu83wkTJqhr167KzMwMbvPggw9G/JjDZR+W3b9//+Cw5HA1btxYp512ml5++eXg8f7617/Wun28ngeWLl2qK664QldeeaW6du2q7t27q0WLFsrMzNT27du1ePFiLV68OGSfo48+Wk8//XTY9x2rHj166NBDD9WCBQu0fft2ff7555KMeU/t52R9TjrppJAKUCl0oaZ58+bp0EMPrbbfRx99pL333ju6zgMAkEwCAADAtQYMGBCQFJAUuP3222vdztxGUuCLL74I+/gffvhhyL6ffvppnX2I9Cc/Pz/yB13FhRdeGDzeSy+9FNY+//vf/wJt2rSpt3/nnntuYNeuXXUey759ovzvf/8LZGVl1drPCy+8sMb9Vq1aFTj++OPD/v9o06ZN4JNPPgk5xuTJkwM+ny+s/dPS0gJXXHFFoKysrNbH8swzz9R5vLr+jmsT7z4GAoHAggULAr169Qr7d9epU6fA999/X+OxduzYETjggAPq3L8q+991x44dI/6dmLZs2RLyt/Pvf/87quNMnTo1eAyfzxf49ddfQ26P9/PARx99FNExsrKyAmPHjg3s3r07qscXiwcffLBaf0455ZSIjtGxY8eofncrV65MzIMCAKCBUUEJAABqddJJJ+mII47QvHnzJEl33nmnjj/+eId7FbuTTz5Zy5cv14svvqgPPvhAixcv1pYtW9S4cWPtvffeOu6443TBBReErOrspJNPPlnz5s3TU089pa+++kpr1qxRcXFxcNXg2nTs2FGffvqpZs+ercmTJ2vmzJlau3attm/froyMDLVs2VLdunXTEUccocGDB2vgwIHBBXZMZ5xxhjZs2KCpU6fq66+/1g8//KBff/1VO3bskCTl5+drv/320zHHHKMLLrhA3bt3r7NPf/vb33TwwQfrX//6l7755hv99ttv2r17d72PpS7x7qMkHXLIIZo3b56mTp2qd999V19//bXWr1+vHTt2KDs7W3vttZf2339/9enTR0OGDFG/fv1qXbE7Pz9f3377rZ5++ml9+OGHWrJkiXbs2NEg81G+9tprwaH02dnZOuOMM6I6zqBBg9S2bVtt2LBBgUBAEydODFlMK96GDRumtWvXaurUqZozZ44WLVqklStXaseOHaqoqFDTpk3VunVrHXLIIRowYIDOPvvskDlOG9J5552nG2+8MWTOTIZ3AwAQGV8glneDAAAAAAAAABADFskBAAAAAAAA4BgCSgAAAAAAAACOIaAEAAAAAAAA4BgCSgAAAAAAAACOYRVvAAAAAJ51++23a+vWrTEd46STTtJJJ50Upx4BAICqCCgBAAAAeNbEiRO1evXqmI7RqlUrAkoAABKIgLIWlZWVWr9+vZo2bSqfz+d0dwAAAABEIRAIxHyM0tJSFRUVxaE3AACklkAgoJ07d2rvvfdWWlrtM036AvF4xfagdevWqX379k53AwAAAAAAAHC1tWvXql27drXeTgVlLZo2bSrJ+AXm5eU53Jvw+f1+TZ06VYMHD1ZmZqbT3QFch3MIiB7nDxAbziEgNpxDQGw4h5AIRUVFat++fTBnqw0BZS3MYd15eXmuCyhzcnKUl5fHEwoQBc4hIHqcP0BsOIeA2HAOAbHhHEIi1Td9Yu2DvwEAAAAAAAAgwQgoAQAAAAAAADiGgBIAAAAAAACAY1wZUD7zzDPq2bNncH7Ifv366eOPPw7ePnDgQPl8vpCfv/3tbw72GAAAAAAAAEBNXLlITrt27XTfffepW7duCgQCmjhxov785z/r+++/V48ePSRJl156qe68887gPjk5OU51FwAAAAAAAEAtXBlQnnLKKSGX77nnHj3zzDOaM2dOMKDMyclRQUGBE90DAAAAAAAAECZXBpR2FRUVmjx5snbt2qV+/foFr3/11Vf1yiuvqKCgQKeccopuvfXWOqsoS0tLVVpaGrxcVFQkSfL7/fL7/Yl7AHFm9tVNfQaSCecQED3OHyA2nENAbDiHgNhwDiERwv178gUCgUCC+5IQixYtUr9+/VRSUqLc3FxNmjRJJ510kiTpueeeU8eOHbX33ntr4cKFuvHGG9W7d2+9/fbbtR7vjjvu0Lhx46pdP2nSpIiHh6elpSktzZXTeyIBAoGAKioqnO4GAAAAAABAg9q9e7fOO+88FRYWKi8vr9btXBtQlpWVac2aNSosLNSbb76p559/XjNmzFD37t2rbfv555/r+OOP1/Lly9WlS5caj1dTBWX79u21ZcuWOn+Bdjt37tS2bdtUVlYW3YOKg0AgoJKSEjVq1Eg+n8+xfiBUWlqacnJy1LJlS2VlZTndHdTB7/dr2rRpOvHEE5WZmel0dwBX4fwBYsM5BMSGcwiIDecQEqGoqEitWrWqN6B07RDvrKwsde3aVZLUq1cvffvtt3rsscf0r3/9q9q2ffr0kaQ6A8rs7GxlZ2dXuz4zMzOsE7OoqEibNm1Sbm6uWrdurczMTEcCwsrKShUXFys3N5cqziRgVk/u2bNHhYWF+u2339SuXTsWbXKBcM99ANVx/gCx4RwCYsM5BMSGcwjxFO7fkmsDyqoqKytDKiDtFixYIElq27Ztwu5/y5Ytys3NVbt27RytXKysrFRZWZkaNWpEQJlEcnNz1aJFC61evVpbtmxRhw4dnO4SAAAAAABAUnBlQDl27FgNGzZMHTp00M6dOzVp0iRNnz5dU6ZM0YoVK4LzUbZs2VILFy7Utddeq/79+6tnz54J6Y/f71dpaalatWrFsGrUKj09XS1atNCGDRtUXl6ujAxXnn4AAAAAAABx5cqE5Pfff9cFF1ygDRs2KD8/Xz179tSUKVN04oknau3atfr000/16KOPateuXWrfvr2GDx+uW265JWH9MRdAoQQa9TGnESCgBAAAAAAAMLgyIXnhhRdqva19+/aaMWNGA/bGQvUk6sPfCAAAAAAAQCgmKQQAAAAAAADgGAJKAAAAAAAAAI4hoAQAAAAAAADgGAJKNJhOnTrJ5/NpwoQJwesmTJggn88X8pOWlqa8vDwddthhGjt2rDZv3lzrMavuW9vP9OnTE/8AAQAAAAAAEDFXLpID72nSpInOOOMMScaq6KtXr9bs2bO1YMECvfTSS/ryyy/VrVu3WvcfMmSICgoKar29rtsAAAAAAADgHAJKJIVWrVqFVFZK0uLFizVgwABt2rRJ11xzjT788MNa97/ppps0cODAxHYSAAAAAAAAcccQbyStHj16aMyYMZKkadOmqbS01OEeAQAAAAAAIN4IKJHUevbsKUny+/3atm2bw70BAAAAAABAvBFQIqkVFRVJktLT09WqVSuHewMAAAAAAIB4I6BEUjPnnRw6dKgyMzMd7g0AAAAAAADijUVyGsoRR0gbNyb8bnyS8gIB+Xy++BywoECaNy8+xwqTuYr3c889p0mTJqljx456/PHH69znuOOOq/W2/Px87dixI869BAAAAAAAQDwQUDaUjRul335L+N34/vhxm9WrV9cYqvbu3VtTp05Vfn5+nfsPGTJEBQUFNd6Wk5MTlz4CAAAAAAAg/ggoG0ot4Vm8BSQF/qigjEtQ2UD9btKkic444wxJUmlpqZYsWaIffvhBc+fO1eWXX67XX3+9zv1vuukmDRw4sAF6CgAAAAAAgHgioGwoDTRMOlBZqaKiIuXl5cmX5p4pRlu1aqUJEyaEXPf222/r7LPP1htvvKH+/fvriiuucKZzAAAAAAAASBj3JFhIOaeffrpuuukmSdJtt92mwsJCh3sEAAAAAACAeCOgRFIbO3as2rZtq61bt+rhhx92ujsAAAAAAACIMwJKJLWcnBzdeuutkqRHH31U27dvd7hHAAAAAAAAiCfmoETSu+SSS/TQQw9pxYoVevDBB3XPPfdU2+a+++6rNoel3XnnnafBgwcnsJcAAAAAAACIBgElkl5mZqbuvvtunXvuuXriiSc0ZswYtWzZMmSbKVOm1HmMQw89lIASAAAAAAAgCRFQosGsWrWq2nUjR47UyJEj6933nHPO0TnnnFPt+kAgEIeeAQAAAAAAwCnMQQkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQIkG06lTJ/l8Pk2YMCF43YQJE+Tz+UJ+0tLSlJeXp8MOO0xjx47V5s2baz1m1X1r+5k+fXpEfTX7NXLkyOgeLAAAAAAAAMKS4XQHAElq0qSJzjjjDElSRUWFVq9erdmzZ2vBggV66aWX9OWXX6pbt2617j9kyBAVFBTUenvV23w+nyQpEAjEofcAAAAAAACIFgElkkKrVq1CKislafHixRowYIA2bdqka665Rh9++GGt+990000aOHBgYjsJAAAAAACAuGOIN5JWjx49NGbMGEnStGnTVFpa6nCPAAAAAAAAEG8ElEhqPXv2lCT5/X5t27Yt5uPdcccdweHdUvU5LFetWlVtn127dmns2LHq2rWrsrOzVVBQoAsvvFC//fZbzP0BAAAAAABIdQzxRlIrKiqSJKWnp6tVq1YxH+/QQw/VhRdeqIkTJ0qSLrzwwpDbc3NzQy4XFhbqqKOO0po1a3TsscfqoIMO0uzZs/Xyyy9rxowZ+uGHH5Sfnx9zvwAAAAAAAFIVASWSmjnv5NChQ5WZmRnz8U499VSdeuqpwYCy6ryXVb377rsaMmSIvvzyS+Xl5UmStm/frkGDBmnBggV6+umnNXbs2Jj7BQAAAAAAkKoIKBvIEUccoY0bNzbIfQUCgZBhzLEoKCjQvHnz4nKscJmreD/33HOaNGmSOnbsqMcff7zOfY477rhab8vPz9eOHTui6kuTJk300ksvBcNJSWrevLluuukmnXPOOfr0008JKAEAAAAAAGJAQNlANm7cyJyFdVi9enWNoWrv3r01derUeodRDxkyRAUFBTXelpOTE3W/jjjiCLVt27ba9QceeKAk8X8KAAAAAAAQIwLKBlJbeJYI8a6gbAhNmjTRGWecIUkqLS3VkiVL9MMPP2ju3Lm6/PLL9frrr9e5/0033aSBAwfGvV8dOnSo8XqzorKkpCTu9wkAAAAAAJBKCCgbSEMNk66srFRRUZHy8vKUluaeRdpbtWpVbT7It99+W2effbbeeOMN9e/fX1dccUWD98tNv0MAAAAAAAA3In1B0jr99NN10003SZJuu+02FRYWOtwjAAAAAAAAxBsBJZLa2LFj1bZtW23dulUPP/xw3I5rrgheXl4et2MCAAAAAAAgcgSUSGo5OTm69dZbJUmPPvqotm/fHpfjtmvXTpK0ePHiuBwPAAAAAAAA0WEOSiS9Sy65RA899JBWrFihBx98UPfcc0+1be67775qc1janXfeeRo8eHDw8vDhw/Xggw/qhBNO0KBBg9S0aVNJ0v3336+WLVvG/TEAAAAAAACgZgSUSHqZmZm6++67de655+qJJ57QmDFjqoWIU6ZMqfMYhx56aEhAeddddyktLU1vv/223n33XZWVlUmSbrnlFgJKAAAAAACABkRAiQazatWqateNHDlSI0eOrHffc845R+ecc0616wOBQFR9adSoke6//37df//9Nd5eX786deoU9X0DAAAAAADAwhyUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQAkAAAAAAADAMQSUAAAAAAAAABxDQBlHgUDA6S4gyfE3AgAAAAAAEIqAMg7S0oxfY0VFhcM9QbIz/0bMvxkAAAAAAIBUR0oSB5mZmUpPT9eePXuc7gqS3M6dO5WZmanMzEynuwIAAAAAAJAUCCjjwOfzKScnR4WFhVRRolZ79uxRUVGRmjZtKp/P53R3AAAAAAAAkkKG0x3witatW2vVqlVavXq1WrRooezsbEdCqMrKSpWVlamkpIRhxEkgEAiooqJCO3fuVFFRkbKzs9WqVSunuwUAAAAAAJA0CCjjJCsrS+3atdOWLVu0YcMGx/oRCAS0Z88eNW7cmCq9JJKZmalmzZqpVatWSk9Pd7o7AAAAAAAASYOAMo5ycnLUoUMHlZeXq7y83JE++P1+zZw5U/3792eewySRlpamzMxMAmMAAAAAAIAaEFAmQEZGhjIynPnVpqenq7y8XI0aNSKgBAAAAAAAQNJjkkIAAAAAAAAAjiGgBAAAAAAAAOAYAkoAAAAAAAAAjiGgBAAAAAAAAOAYAkoAAAAAAAAAjiGgBAAAAAAAAOAYAkoAAAAAAAAAjiGgBAAAAAAAAOAYAkoAAAAAAAAAjiGgBAAAAAAAAOAYVwaUzzzzjHr27Km8vDzl5eWpX79++vjjj4O3l5SUaNSoUWrZsqVyc3M1fPhwbdq0ycEeAwAAAAAAAKiJKwPKdu3a6b777tP8+fM1b948DRo0SH/+85+1ePFiSdK1116r//3vf5o8ebJmzJih9evX6/TTT3e41wAAAAAAAACqynC6A9E45ZRTQi7fc889euaZZzRnzhy1a9dOL7zwgiZNmqRBgwZJkl566SUdeOCBmjNnjvr27etElwEAAAAAAADUwJUBpV1FRYUmT56sXbt2qV+/fpo/f778fr9OOOGE4DYHHHCAOnTooNmzZ9caUJaWlqq0tDR4uaioSJLk9/vl9/sT+yDiyOyrm/oMJBPOISB6nD9AbDiHgNhwDgGx4RxCIoT79+TagHLRokXq16+fSkpKlJubq3feeUfdu3fXggULlJWVpWbNmoVs36ZNG23cuLHW440fP17jxo2rdv3UqVOVk5MT7+4n3LRp05zuAuBqnENA9Dh/gNhwDgGx4RwCYsM5hHjavXt3WNu5NqDcf//9tWDBAhUWFurNN9/UhRdeqBkzZkR9vLFjx2rMmDHBy0VFRWrfvr0GDx6svLy8eHS5Qfj9fk2bNk0nnniiMjMzne4O4DqcQ0D0OH+A2HAOAbHhHAJiwzmERDBHKNfHtQFlVlaWunbtKknq1auXvv32Wz322GM6++yzVVZWph07doRUUW7atEkFBQW1Hi87O1vZ2dnVrs/MzHTlienWfgPJgnMIiB7nDxAbziEgNpxDQGw4hxBP4f4tuXIV75pUVlaqtLRUvXr1UmZmpj777LPgbUuXLtWaNWvUr18/B3sIAAAAAAAAoCpXVlCOHTtWw4YNU4cOHbRz505NmjRJ06dP15QpU5Sfn6+LL75YY8aMUYsWLZSXl6errrpK/fr1YwVvAAAAAAAAIMm4MqD8/fffdcEFF2jDhg3Kz89Xz549NWXKFJ144omSpEceeURpaWkaPny4SktLNWTIED399NMO9xoAAAAAAABAVa4MKF944YU6b2/UqJGeeuopPfXUUw3UIwAAAAAAAADR8MwclAAAAAAAAADch4ASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4hoASAAAAAAAAgGMIKAEAAAAAAAA4xpUB5fjx43XkkUeqadOmat26tU499VQtXbo0ZJuBAwfK5/OF/Pztb39zqMcAAAAAAAAAauLKgHLGjBkaNWqU5syZo2nTpsnv92vw4MHatWtXyHaXXnqpNmzYEPx54IEHHOoxAAAAAAAAgJpkON2BaHzyySchlydMmKDWrVtr/vz56t+/f/D6nJwcFRQUNHT3AAAAAAAAAITJlQFlVYWFhZKkFi1ahFz/6quv6pVXXlFBQYFOOeUU3XrrrcrJyanxGKWlpSotLQ1eLioqkiT5/X75/f4E9Tz+zL66qc9AMuEcAqLH+QPEhnMIiA3nEBAbziEkQrh/T75AIBBIcF8SqrKyUn/605+0Y8cOffXVV8Hrn3vuOXXs2FF77723Fi5cqBtvvFG9e/fW22+/XeNx7rjjDo0bN67a9ZMmTao11AQAAAAAAABQs927d+u8885TYWGh8vLyat3O9QHl3//+d3388cf66quv1K5du1q3+/zzz3X88cdr+fLl6tKlS7Xba6qgbN++vbZs2VLnLzDZ+P1+TZs2TSeeeKIyMzOd7g7gOpxDQPQ4f4DYcA4BseEcAmLDOYREKCoqUqtWreoNKF09xPvKK6/UBx98oJkzZ9YZTkpSnz59JKnWgDI7O1vZ2dnVrs/MzHTlienWfgPJgnMIiB7nDxAbziEgNpxDQGw4hxBP4f4tuTKgDAQCuuqqq/TOO+9o+vTp6ty5c737LFiwQJLUtm3bBPcOAAAAAAAAQLhcGVCOGjVKkyZN0nvvvaemTZtq48aNkqT8/Hw1btxYK1as0KRJk3TSSSepZcuWWrhwoa699lr1799fPXv2dLj3AAAAAAAAAEyuDCifeeYZSdLAgQNDrn/ppZc0cuRIZWVl6dNPP9Wjjz6qXbt2qX379ho+fLhuueUWB3oLAAAAAAAAoDauDCjrW9enffv2mjFjRgP1BgAAAAAAAEC00pzuAAAAAAAAAIDURUAJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAJIOVK5W3apXTvQAAAGhwGU53AAAAAEh5v/6qjEMP1XF79qh8//2loUOd7hEAAECDoYISAAAAcNrkyfLt2SNJ8s2e7XBnAAAAGhYBJQAAAOC0zz+32qWlzvUDAADAAQSUAAAAgJNKS6Uvvwy9DAAAkEIIKAEAAAAnffON9MfwbkkElAAAIOUQUAIAAABO+uyzkIs+AkoAAJBiCCgBAAAAJ9nnn5SooAQAACmHgBIAAABwSnGxNGdO6HUElAAAIMUQUAIAAABO+eorqbw89DoCSgAAkGIIKAEAAACnVJl/UpJUVtbw/QAAAHAQASUAAADglKrzT0pUUAIAgJRDQAkAAAA4Yds26fvvjfbBB1vXE1ACAIAUQ0AJAAAAOOGLL6RAwGgPHqxAerrRJqAEAAAphoASAAAAcIJ9ePegQVJ2tiTJV1LiUIcAAACcQUAJAAAAOMFcICcjQzr22GBAySI5AAAg1RBQAgAAAA3tt9+kpUuNdu/eUtOmVkDJEG8AAJBiCCgBAACAhmYf3n388ca/BJQAACBFEVACAAAADa3q/JOSlJVl/EtACQAAUgwBJQAAANCQAgFr/slGjaR+/Yw2FZQAACBFEVACAAAADWnFCmntWqN9zDHBYDJgDygDAYc6BwAA0PAIKAEAAICGZFZPStb8k1IwqPQFAlJ5eQN3CgAAwDkElAAAAEBDqmmBHMkY7m1imDcAAEghBJQAAABAQ6mstALK/Hzp8MOt28wh3pJUUtKw/QIAAHAQASUAAADQUBYtkrZsMdoDB0rp6dZt5ireEhWUAAAgpRBQAgAAAA3FPrx70KDQ2+wVlASUAAAghRBQAgAAAA2ltgVyJAJKAACQsggoAQAAgIbg90szZhjtNm2k7t1Dbg4QUAIAgBRFQAkAAAA0hHnzpOJioz1okOTzhd5OQAkAAFIUASUAAADQEOqaf1IioAQAACmLgBIAAABoCHXNPymxijcAAEhZBJQAAABAou3ZI82aZbQ7dzZ+qqKCEgAApCgCSgAAACDRZs2yQseahndLUqNGVpuAEgAApBACSgAAACDR7PNP1jS8WwqtoCwpSWx/AAAAkggBJQAAABCpnTulX36RAoHwtrfPP3nccTVvwxBvAACQoggoAQAAgEgUFUndu0v77y8NGyb9/HPd2xcWSt9+a7R79JAKCmrcLEBACQAAUhQBJQAAABCJyZOldeuM9pQp0sEHS2PGSDt21Lz9zJlSZaXRrm3+SYlVvAEAQMoioAQAAAAi8eqroZfLy6VHHpH220/697+liorQ2+3Du2ubf1JiiDcAAEhZBJQAAABAuH77TZo+3Wh37SrdcYe1+vbmzdJll0lHHil9+aW1j7lATlqaNGBA7ccmoAQAACmKgBIAAAAI1+uvWwvjjBgh3X67tHSpdNZZ1jbffy/17y+de640f760aJFxfa9eUrNmtR+bgBIAAKQoAkoAAAAgXPbh3SNGGP926CC98YY0Y4Z0yCHW7a+/Lh1xhHW5rvknJQJKAACQsggoAQAAgHAsWWJUR0rGMO5u3UJv79/fqJh89lmpZcvq+9c1/6RkDRWXCCgBAEBKIaAEAAAAwlFT9WRV6enS5ZdLy5ZJo0cblyUpP186+ug6Dx9gFW8AAJCiCCgBAACA+gQC0qRJRjstTTr77Lq3b95cevRRaeFC6ZZbpA8+kHJy6t7HPsS7pCSm7gIAALhJhtMdAAAAAJLe7NnSypVG+/jjpYKC8Pbr3l26667wtmUOSgAAkKKooAQAAADqY1ZPSrUP744VASUAAEhRBJQAAABAXfx+Y5VuyVjI5rTTEnM/BJQAACBFEVACAAAAdZk2TdqyxWj/6U9SXl5i7oeAEgAApCgCSgAAAKAu4azeHQ8ElAAAIEURUAIAAAC1KS6W3n3XaDdvLg0dmrj7yshQIO2Pt+cElAAAIIUQUAIAAAC1ef99afduo33mmVJWVkLvriIjw2gQUAIAgBRCQAkAAADUpqGGd/+h0gxACSgBAEAKIaAEAAAAarJ5szRlitFu31465piE32VlZqbRIKAEAAAphIASAAAAqMl//ytVVBjt886T0hL/1rnSHOJdUpLw+wIAAEgWBJQAAABATRp4eLdEBSUAAEhNBJQAAABAVb/+Ks2ebbQPPtj4aQAVBJQAACAFEVACAAAAVb32mtU+77wGu9uQCspAoMHuFwAAwEkElAAAAIBdIBA6vPvccxvsroMBZSAglZc32P0CAAA4iYASAAAAsFuwQFqyxGgfe6zUsWOD3XVwkRyJYd4AACBlEFACAAAAdg4sjmMKVlBKBJQAACBlEFACAAAApooKa/7JzEzpzDMb9O4JKAEAQCoioAQAAABMM2dK69cb7WHDpBYtGvTuK7KyrAsElAAAIEUQUAIAAAAm+/DuBly928QclAAAIBW5MqAcP368jjzySDVt2lStW7fWqaeeqqVLl4ZsU1JSolGjRqlly5bKzc3V8OHDtWnTJod6DAAAgKRXUiK9+abRzs2VTjmlwbsQMsS7pKTB7x8AAMAJrgwoZ8yYoVGjRmnOnDmaNm2a/H6/Bg8erF27dgW3ufbaa/W///1PkydP1owZM7R+/XqdfvrpDvYaAAAASe2jj6TCQqN9+ulSTk6Dd4E5KAEAQCrKqH+T5PPJJ5+EXJ4wYYJat26t+fPnq3///iosLNQLL7ygSZMmadCgQZKkl156SQceeKDmzJmjvn37OtFtAAAAJKsdO6QbbrAuN/Dq3aYKAkoAAJCCXBlQVlX4xzfdLf6YxHz+/Pny+/064YQTgtsccMAB6tChg2bPnl1jQFlaWqpS25vAoqIiSZLf75ff709k9+PK7Kub+gwkE84hIHqcP3CtQEDpF16otBUrJEmVRx6piv79pQb+W/b7/SEVlOW7dinA+QSEjdchIDacQ0iEcP+eXB9QVlZW6pprrtHRRx+tgw46SJK0ceNGZWVlqVmzZiHbtmnTRhs3bqzxOOPHj9e4ceOqXT916lTlODC8J1bTpk1zuguAq3EOAdHj/IHbdHnvPR30/vuSpLLcXE2/9FLtmTLFkb7sZ1skZ97XX2tTWZkj/QDcjNchIDacQ4in3bt3h7Wd6wPKUaNG6ccff9RXX30V03HGjh2rMWPGBC8XFRWpffv2Gjx4sPLy8mLtZoPx+/2aNm2aTjzxRGXahwgBCAvnEBA9zh+4kW/WLKW//HLwctorr+i4k05ypC9+v18r3347ePmIgw9WwKG+AG7E6xAQG84hJII5Qrk+rg4or7zySn3wwQeaOXOm2rVrF7y+oKBAZWVl2rFjR0gV5aZNm1RQUFDjsbKzs5WdnV3t+szMTFeemG7tN5AsOIeA6HH+wDU2bzbmmqyoMC6PHauMP//Z0S7Zh3hnVFRInEtAxHgdAmLDOYR4CvdvyZWreAcCAV155ZV655139Pnnn6tz584ht/fq1UuZmZn67LPPgtctXbpUa9asUb9+/Rq6uwAAAEg2FRVGOPnbb8blAQOkO+90tk+SKrKyrAsskgMAAFKEKysoR40apUmTJum9995T06ZNg/NK5ufnq3HjxsrPz9fFF1+sMWPGqEWLFsrLy9NVV12lfv36sYI3AAAApLvuksw5tgoKpNdflzKcf2tcae8DASUAAEgRzr8Li8IzzzwjSRo4cGDI9S+99JJGjhwpSXrkkUeUlpam4cOHq7S0VEOGDNHTTz/dwD0FAABA0pk61aqWTEuTXnvNCCmTgH2INwElAABIFa4MKAOBQL3bNGrUSE899ZSeeuqpBugRAAAAXGHdOmNot/l+8p57pCpfejspJKAsKXGuIwAAAA3IlXNQAgAAABHz+6Wzz5a2bDEun3yydMMNzvapCiooAQBAKiKgBAAAQGq46SZp1iyj3bGjNHGiMcQ7iRBQAgCAVJRc78gAAACARHj7benhh412VpY0ebLUooWzfapBBYvkAACAFERACQAAAG9bvly66CLr8sMPS0ce6Vx/6kAFJQAASEUElAAAAPC2Cy+UioqM9jnnSFdc4Wx/6kBACQAAUhEBJQAAALyrqMiad7JTJ+m55ySfz9Eu1YWAEgAApCICSgAAAHjX7t1W+5BDpKZNnetLGCoIKAEAQAoioAQAAIB3lZRY7UaNnOtHmKigBAAAqYiAEgAAAN61Z4/VbtzYuX6EiYASAACkIgJKAAAAeJebKyjtfQcAAPAwAkoAAAB4FxWUAAAASY+AEgAAAN7lsgrKQHq6Aml/vEUnoAQAACmCgBIAAADe5bIKSklSdrbxLwElAABIEQSUAAAA8C6XVVBKIqAEAAApJyOanYqKiiRJeXl5Md15cXGxPv/8c0nSn/70p5iOBQAxW7NGaS+8oLzmzZ3uCQAgXqigBAAASHpRBZTNmjVTWlqaFi5cqO7du1e7ff369brlllvk8/n0wgsv1Hqc1atX69RTT1VaWprKy8uj6QoAxM/VVyv9vfd05N57S6NGOd0bAEA8UEEJAACQ9KIe4h0IBGq9bfv27ZowYYImTJgQ87EAoMEsXSpJyl2/XuJ5CQC8gYASAAAg6TEHJQCYdu2y2vYPtAAA92KINwAAQNIjoAQAkz2g3L3buX4AAOLHhRWUAXtASUU/AABIAQSUAGAioAQA73FzBWVlpcQ87QAAIAUQUAKAJFVUhA6ls3+gBQC4lwsrKIMBpcQwbwAAkBIIKAFACq2elKigBACvcHMFpURACQAAUgIBJQBI1QJKH4vkAIA3uLGCMivLahNQAgCAFEBACQASFZQA4FVUUAIAACS9mAJKn88Xr34AgLOqBpTMQQkA3uDGCkoCSgAAkGIyYtn5oIMOqvU2M7xMT0+P5S4AoGFQQQkA3uTCCsqAPUgloAQAACkgpoAyEAjEqx8A4CwqKAHAm6igBAAASHpRBZT9+/dneDcAb6lSMekjoAQAbzCfz32+0MVnkhkBJQAASDFRBZTTp0+PczcAwGFUUAKAN5kVlI0aGSGlG7CKNwAASDGs4g0AEnNQAoBXmV84uWT+SUmhFZT2IeoAAAAeRUAJABIVlADgVfYKSrdgiDcAAEgxjgeUu3fv1kMPPeR0NwCkOgJKAPAmAkoAAICk51hAuXPnTt1zzz3q1KmTbrjhBqe6AQAGAkoA8Ca3D/EmoAQAACkgqkVyYrFt2zY98sgjeuqpp1RYWKhAIMCK4ACcVyWg9DEHJQB4gwsrKAMElAAAIMXEVEG5evVqXX311erevbuaNm2qFi1a6PDDD9f48eNVWFgYsm1xcbFuv/12derUSffee6927NihQCCgVq1a6e67747pQQBAzFgkBwC8x++XKiqMtpsqKFnFGwAApJioKyinTZum4cOHa9cfH+oDgYAk6YcfftAPP/ygl19+WV988YUKCgr09ddfa8SIEVq7dm1wu3322UfXXXedLrvsMjV20xtGAN5UNaBk1VQAcD/7c7mLKihD+kpACQAAUkBUAeXmzZt17rnnqri4OHhdkyZNlJGREayc/OWXXzRq1CiNHj1aQ4YMUVlZmQKBgDp37qybbrpJI0eOVGZmZnweBQDEigpKAPAe+3zCbvpCnCHeAAAgxUQ1xPvf//63tm3bJp/PpzPOOEPLly/Xzp07tX37dq1fv15XXnmlJOm9997T+eefr9LSUuXm5uqJJ57Q0qVLdemllxJOAkguLJIDAN7j1gpKAkoAAJBioqqgnDp1qiSpb9+++u9//xtyW0FBgR5//HHt3LlTEydO1Lp169SsWTN9+eWX6tGjR+w9BoBEYJEcAPAeKigBAABcIaoKyp9//lk+n09XXHFFrdtcffXVkiSfz6err76acBJAcmMOSgDwHi9UUPJ6BAAAUkBUAeX27dslSV27dq11m27dugXbxx57bDR3AwANhzkoAcB7XFpBGWAVbwAAkGKiCij9fr8kqWnTprVuk5ubG2wXFBREczcA0HCqBpLMQQkA7ueFCkoCSgAAkAKiCigj5fP5GuJuACB6VFACgPe4tIKSgBIAAKSaBgkoASCpBQLVF8kpLZUqKx3qEAAgLqigBAAAcIWoVvE2XXTRRWrSpEnM2/l8Pn322WexdAUAoldSYoSUVe3ZI4XxHAcASFJUUAIAALhCTAHlvHnz6rzdHNpd13aBQIAh4ACcVXV4t4mAEgDcza0VlPa+ElACAIAUEHVAGaip2ggA3Ki2gJJ5KAHA3dwaUFJBCQAAUkxUAWUl87IB8BICSgDwJrcO8c7IkNLSjLmQCSgBAEAKYJEcAKhriDcAwL3cWkEpWVWUBJQAACAFEFACABWUAOBNbq2glKyA0h6yAgAAeBQBJQBQQQkA3kQFJQAAgCtENQflnXfeGe9+6Lbbbov7MQEgLLaAMtCihXzbthkXqKAEAHfzQgUlASUAAEgBUQWUd9xxh3w+X1w7QkAJwDH2CsqWLSUzoKSCEgDcjQpKAAAAV4h6iHcgEIjbDwA4yl5Budde1vVUUAKAu1FBCQAA4ApRVVB+8cUX8e4HADinagWliQpKAHA3N1dQmv0loAQAACkgqoBywIAB8e4HADjHXilJBSUAeIcXKigrK6XycikjqrftAAAArsAq3gBgH+JNBSUAeIebKyjNgFKiihIAAHgeASUA2Id4U0EJAN5h/6KJgBIAACBpEVACABWUAOBNZgVldrbk8znbl0gRUAIAgBRCQAkAVFACgDeZXzS5bf5JKTSgtA9VBwAA8CACSgCwB5StWlltKigBwN3MYM9tw7slKigBAEBKIaAEgNqGeFNBCQDuRkAJAADgCgSUAGAGlBkZUn6+dT0BJQC4m1eGeBNQAgAAjyOgBAAzoGzSRMrJsa5niDcAuBsVlAAAAK5AQAkA9oAyO1sBc6VXKigBwL0qKiS/32i7sYLSHqoSUAIAAI8joAQAe0Dp86kiK8u4TAUlALiXfeVrKigBAACSGgElANgDSskKKKmgBAD3sn/J5MYKSgJKAACQQggoAaQ2v98aAmgGlOaHQiooAcC9qKAEAABwDQJKAKnNrJ6UggFlJRWUAOB+VFACAAC4BgElgNRmDyH/CCjLqaAEAPfzUgWl/bEAAAB4EAElgNRWVwVlWZmxCiwAwH2ooAQAAHANAkoAqa2GgLLC/qGQKkoAcCcvVVASUAIAAI8joASQ2moKKM0KSol5KAHAraigBAAAcA0CSgCpjQpKAPAmKigBAABcg4ASQGqjghIAvMntFZT2UJWAEgAAeJwrA8qZM2fqlFNO0d577y2fz6d333035PaRI0fK5/OF/AwdOtSZzgJIbvaAMidHUpUKSgJKAHAnKigBAABcw5UB5a5du3TIIYfoqaeeqnWboUOHasOGDcGf1157rQF7CMA1GOINAN5EQAkAAOAaGU53IBrDhg3TsGHD6twmOztbBQUFDdQjAK7FEG8A8Ca3D/EmoAQAACnElQFlOKZPn67WrVurefPmGjRokO6++261bNmy1u1LS0tVanvzV1RUJEny+/3y+/0J72+8mH11U58BJ6UVFSn9j3Z5drb8fn9IBWX5zp0KcD4BYeE1CMkkbdcu6/k9I8MVz+Uh51BamjL/uL5y925VuKD/gNN4HQJiwzmERAj378mTAeXQoUN1+umnq3PnzlqxYoVuvvlmDRs2TLNnz1Z6enqN+4wfP17jxo2rdv3UqVOV88e8dG4ybdo0p7sAuEL3RYvU7Y/2Nz/+qC0+n/a1VVAumDVLv2V48qkSSBheg5AMDli0SPv/0Z67aJE2u+i5fNq0aWq0bZuG/HF505o1mvvRR472CXATXoeA2HAOIZ52hzkq0T3v1CJwzjnnBNsHH3ywevbsqS5dumj69Ok6/vjja9xn7NixGjNmTPByUVGR2rdvr8GDBysvLy/hfY4Xv9+vadOm6cQTT1RmZmb9OwApLm3q1GC7z6BBKjv0UP0yZUrwukMPOECHnHSSE10DXIfXICSTtJkzg+3e/fsrcOyxDvYmPCHn0B+jeSSpTfPmOonXIqBevA4BseEcQiIU2d7T1MWTAWVV++67r1q1aqXly5fXGlBmZ2cr2z7Xzx8yMzNdeWK6td9Ag7PNUZaRn69AZmbIHJQZpaUS5xIQEV6DkBTKyoLNjKZNXfVcnpmZqczc3ODltLIypbmo/4DTeB0CYsM5hHgK92/Jlat4R2rdunXaunWr2rZt63RXACQbVvEGAG9iFW8AAADXcGUFZXFxsZYvXx68vHLlSi1YsEAtWrRQixYtNG7cOA0fPlwFBQVasWKFbrjhBnXt2lVDhgyp46gAUpJ9PgxW8QYA73D7Kt4ZGZLPJwUCBJQAAMDzXFlBOW/ePB122GE67LDDJEljxozRYYcdpttuu03p6elauHCh/vSnP2m//fbTxRdfrF69eunLL7+scQg3gBRHBSUAeJPbKyh9PqvfBJQAAMDjXFlBOXDgQAUCgVpvn2Jb4AIA6mQGlD6fUWFTXq5Ke0BJBSUAuJPbKyglY5j3nj0ElAAAwPNcWUEJAHFjBpQ5OUZIKancPsSbCkoAcCe3V1BK1jyUBJQAAMDjCCgBpDYzoPxjeLckKigBwAvsXzARUAIAACQ1AkoAqa2GgLKCgBIA3M+soMzMlNLTne1LtMzXI3s1KAAAgAcRUAJIbfYh3n9giDcAeID5/O3W+SclKigBAEDKIKAEkLoqK60KSYZ4A4C3mFWHbh3eLRFQAgCAlEFACSB12asj7QFlRoYCaWnVtwEAuIcZUHqhgrKyUiovd7YvAAAACURACSB1mcO7pZCAUj6f9YGWCkoAcCfzCyYvVFBKVFECAABPI6AEkLpqCygla05KKigBwJ28MMTb3ncCSgAA4GEElABSV10BJRWUAOBelZVWoOeFId4SASUAAPA0AkoAqSucgJIKSgBwH3uY5+YKSgJKAACQIggoAaQue3UkFZQA4B32L5eooAQAAEh6BJQAUlcdFZQBcw7K8nLJ72/ATgEAYmbOPylRQQkAAOACBJQAUlc4Q7wlhnkDgNt4sYLSHroCAAB4DAElgNRFQAkA3kQFJQAAgKsQUAJIXeEGlMxDCQDu4sUKSgJKAADgYQSUAFJXXQGlOQelRAUlALgNFZQAAACuQkAJIHWFs0iORAUlALgNFZQAAACuQkAJIHXZA0p7ICkxxBsA3MwrFZT2vhNQAgAADyOgBJC6WCQHALyJCkoAAABXIaAEkLpYJAcAvMkrFZQElAAAIEUQUAJIXSySAwDeRAUlAACAqxBQAkhddS2SQwUlALgXFZQAAACuQkAJIHUxByUAeJMXA0r7YwIAAPAYAkoAqcsMKLOypIyM0NuooAQA92KINwAAgKsQUAJIXWbwWLV6UmIOSgBwMy9WUBJQAgAADyOgBJC6zArKmgJKKigBwL2ooAQAAHAVAkoAqauugJIKSgBwLyooAQAAXIWAEkDqqiOgDNg/0FJBCQDu4pUKSvtrEQElAADwMAJKAKmprEwqLzfaVFACgLdQQQkAAOAqBJQAUpNZPSkxByUAeI1XKigJKAEAQIogoASQmuoLKO0VlASUAOAuVFACAAC4CgElgNRkDyjtYWRN1zHEGwDchQpKAAAAVyGgBJCa6qugzMyU0tONNhWUAOAuZgVlerqUkeFsX2JhDyjtVaEAAAAeQ0AJIDXVF1BKVhUlFZQA4C7m87abqyclI1z1+Yw2FZQAAMDDCCgBpKZwAkrzgy0VlADgLma1oZvnn5SMcNKsoiSgBAAAHkZACSA1UUEJAN7llQpKiYASAACkBAJKAKmJCkoA8C6vVFBK1mMgoAQAAB5GQAkgNUVaQRkIJL5PAID48FJASQUlAABIAQSUAFKTvSqyvgrKigrJ7098nwAAsQsEGOINAADgMgSUAFJTJBWUEvNQAoBblJVZbSooAQAAXIGAEkBqimQOSol5KAHALexfKFFBCQAA4AoElABSExWUAOBN5vyTkrcqKCsqpPJyZ/sCAACQIASUAFITFZQA4E1eraCUqKIEAACeRUAJIDVRQQkA3uTVCkqJgBIAAHgWASWA1BRpQEkFJQC4AxWUAAAArkNACSA12QNKexBpxxBvAHAfKigBAABch4ASQGoyA0qfr/YPsAzxBgD38VoFpf01ioASAAB4FAElgNRkBpRNmhghZU2ooAQA96GCEgAAwHUIKAGkJntAWRsqKAHAfbxWQUlACQAAUgABJYDUFE5ASQUlALgPFZQAAACuQ0AJIDVRQQkA3kQFJQAAgOsQUAJIPRUVVoUNFZQA4C1UUAIAALgOASWA1GOvrqGCEgC8xcsBpf2xAQAAeAgBJYDUYw7vlqigBACvYYg3AACA6xBQAkg94QaUVFACgPt4uYKSgBIAAHgUASWA1EMFJQB4FxWUAAAArkNACSD1UEEJAN7ltQpK+2MgoAQAAB5FQAkg9UQTUFJBCQDuQAUlAACA6xBQAkg9DPEGAO/yWgUlASUAAEgBBJQAUo89oLRXSVaVkSFlZhpthngDgDtQQQkAAOA6BJQAUk+4FZSS9eGWCkoAcAcqKAEAAFyHgBJA6okkoDQrLKmgBAB3oIISAADAdQgoAaQeKigBwLvMCkqfz5qmw83sAaW9OhQAAMBDCCgBpB4qKAHAu8zn68aNjZDS7aigBAAAKYCAEkDqibaCMhBIXJ8AAPFhVhl6Yf5JiYASAACkBAJKAKknmgrKQEAqK0tcnwAA8WGvoPQCe9BKQAkAADyKgBJA6rHPJxluBWXV/QAAyYkKSgAAANchoASQeqKpoJSYhxIA3ICAEgAAwHUIKAGknmjmoJSooASAZBcIeG+INwElAABIAQSUAFKPPaC0V0jWhApKAHCP8nKpstJoe6WCMiPDWo2cgBIAAHgUASWA1GMGlI0aSenpdW9rDyipoASA5Gb/IskrFZQ+n1VFSUAJAAA8ioASQOoxA8r6hndLoR9wqaAEgORmzj8peaeCUiKgBAAAnkdACSD1RBJQUkEJAO7hxQpKyQoo7QEsAACAhxBQAkg9ZkBZ3/yTEovkAICbUEEJAADgSgSUAFJLIBB9BSVDvAEguXm9gpKAEgAAeBQBJYDUUlpqrfAa6RyUVFACQHLzagWl+VgIKAEAgEe5MqCcOXOmTjnlFO29997y+Xx69913Q24PBAK67bbb1LZtWzVu3FgnnHCCli1b5kxnASQXs3pSooISALyGCkoAAABXcmVAuWvXLh1yyCF66qmnarz9gQce0OOPP65nn31W33zzjZo0aaIhQ4aohInFAUQaUFJBCQDu4dUKSjOgrKgwfgAAADwmw+kORGPYsGEaNmxYjbcFAgE9+uijuuWWW/TnP/9ZkvTyyy+rTZs2evfdd3XOOec0ZFcBJBsqKAHAu7xeQSkZVZThLPIGAADgIq4MKOuycuVKbdy4USeccELwuvz8fPXp00ezZ8+uNaAsLS1VqW3YTFFRkSTJ7/fL7/cnttNxZPbVTX0GGlRRkTL/aFY0bqzKKudK1XPIl5kZfKKsKC6utj0AC69BcJqvuNh6zs7MdN1zdm3nUHpWVnDYk7+4WMrMFIDqeB0CYsM5hEQI9+/JcwHlxo0bJUlt2rQJub5NmzbB22oyfvx4jRs3rtr1U6dOVY4Lv6WeNm2a010AklLLxYt1zB/tXzdu1E8ffVTjduY5lL9ihQb+cd2an3/Wwlq2B2DhNQhO6TB3rg77o71o+XKtdulzdtVzqPf27Wr7R/uzjz5SafPmDd8pwEV4HQJiwzmEeNod5lRpngsoozV27FiNGTMmeLmoqEjt27fX4MGDlZeX52DPIuP3+zVt2jSdeOKJyuTbdaAaX5o19e6+Bx+sTiedFHJ7tXNoyZLgbR332kvtqmwPwMJrEJyWtnp1sH3QEUeoh8ues2s7h9JfeUWaO1eSdPwxx0gdOzrVRSCp8ToExIZzCIlgjlCuj+cCyoKCAknSpk2b1LZt2+D1mzZt0qGHHlrrftnZ2cq2z+/zh8zMTFeemG7tN5Bwtqkc0vPylF7LeRI8h/Lzg9ellZYqjfMKqBevQXCMbQhRRm6ua4dCVzuHbPNpZlZUuPZxAQ2F1yEgNpxDiKdw/5ZcuYp3XTp37qyCggJ99tlnweuKior0zTffqF+/fg72DEBSiGWRHFbxBoDkliqL5AAAAHiMKysoi4uLtXz58uDllStXasGCBWrRooU6dOiga665Rnfffbe6deumzp0769Zbb9Xee++tU0891blOA0gOkQaU9g+4rOINAMmtpMRqN2rkXD/ijYASAAB4nCsDynnz5um4444LXjbnjrzwwgs1YcIE3XDDDdq1a5cuu+wy7dixQ8ccc4w++eQTNfLSG1UA0YkloKSCEgCSm1crKO3vYQkoAQCAB7kyoBw4cKACgUCtt/t8Pt1555268847G7BXAFwh0oAyPV3KypLKyggoASDZUUEJAADgSp6bgxIA6mQPKO3zS9bF3I4h3gCQ3LxaQUlACQAAPI6AEkBqibSCUrI+5FJBCQDJjQpKAAAAVyKgBJBaogkoqaAEAHegghIAAMCVCCgBpBYqKAHAu6igBAAAcCUCSgCpJdYKyjoW6AIAOIwKSgAAAFcioAQQvSlTpEsukRYvdron4YulglIKrc4BACQX+3O0PdRzO/tj4XUIAAB4UIbTHQDgUhUV0nnnSdu2SevXSx995HSPwmMO005Pl7KywtvHvtr3nj3eqsoBAC8xKygbNZJ8Pmf7Ek9UUAIAAI+jghJAdDZsMMJJSVq61Nm+RMKsoGzSJPwPr/ZAknkoASB5mdWFXpp/Ugp9PASUAADAgwgoAURn1SqrvXGjY92ImD2gDFfVCkoAQHIyn6O9VulOBSUAAPA4AkoA0bEHlLt3S8XFjnUlIrEGlFRQAkDy8moFJQElAADwOAJKANGxB5SSe6ooowko7ZU4VFACQPIyA0oqKAEAAFyFgBJAdFavDr3shoCyosL6YEcFJQB4j32RHC8hoAQAAB5HQAkgOm6soDSrJyUqKAHAa8rLjR+JgBIAAMBlCCgBRKdqQLlpkyPdiEi0ASUVlACQ/Mzh3RJDvAEAAFyGgBJA5Cor3TnE2x5Q2kPH+tg/6BJQAkBysgeUVFACAAC4CgElgMht2CD5/aHXuS2gjLaCkiHeAJCc7M/PXq6gtAexAAAAHkFACSByVYd3S94OKKmgBIDkRwUlAACAaxFQAohc1eHdUurMQUkFJQAkJy9XUNoDVwJKAADgQQSUACJHBSUAINl4uYIyI0Py+Yw2ASUAAPAgAkoAkbMHlBkZxr+bNkmBgCPdCRsVlADgXV6uoPT5rGHeBJQAAMCDCCgBRM4eUB5yiPFvWZm0Y4cTvQmfvfqRCkoA8BYvV1BKBJQAAMDTCCgBRM4MKHNzpe7dreuTfZg3FZQA4F1erqCUCCgBAICnEVACiExlpbRmjdHu1EkqKLBu82pASQUlACQ/KigBAABci4ASQGQ2bbI+HKVKQEkFJQAkPyooAQAAXIuAEkBk7PNPVg0oN21q6N5EJh4BJRWUAJCcqKAEAABwLQJKAJGpGlC2aWNd9moFpf2DLhWUAJCc7AGllyso7Y8TAADAIwgoAUTGHlB27JgaQ7zT0qyQkgpKAEhO9i+QvFxBWVFh/AAAAHgIASWAyKTiEG/JqsYhoASA5OT1Id72x8QwbwAA4DEElAAis3q11e7USWreXMrIMC67qYLSPq9kOMztGeINAMkpVRbJkQgoAQCA5xBQAoiMWUHZpInUsqUx/Nmch9LLASUVlACQ3LxeQUlACQAAPIyAEkD4AgGrgrJTJ8nnM9rmMO/ff0/uebHMgLJxYyNYjQQVlACQ3KigBAAAcC0CSgDh27TJqlDp2NG63gwoKyulrVsbvl/hMgPKSOeflKwPuyUlxuMEACQXKigBAABci4ASQPiqLpBjMod4S8k9zDuWgNI+JNz+IRgAkByooAQAAHAtAkoA4astoLSv5O3VgNL+YZd5KAEg+VBBCQAA4FoElADCV3UFb5M9oNy0qcG6E5FAwAoWY62gZB5KAEg+qVRBSSU/AADwGAJKAOFz8xDvkhIjpJSooAQAL6KCEgAAwLUIKAGEz81DvM3h3RIVlADgReZzc1aWlObBt7j20JWAEgAAeIwH370BSBgzoGzcWGrVyro+1QJKKigBIPmYFZRerJ6UqKAEAACeRkAJIDyBgBVQduok+XzWbW6YgzLWgNI+xJsKSgBIPuZzsxfnn5QIKAEAgKcRUAIIz++/W9Up9uHdktS0qVWxQgUlAMAJVFACAAC4FgElvOGDD6Q//1m6+Wbp889Z3TIRalvBWzKqKc0qSq8GlFRQAkByM1/7qaAEAABwnQynOwDExaWXGsHY++9L48cb1RPHHiudcILxc+ih3pwwvyHVtkCOqaDA2GbrVsnvlzIzG6hjYaKCEgC8zfzyiApKRKqwUKqokFq0cLonAACkLBIb1K+4WCovd7oXtdu2rXrVXkmJNG2adOONUq9eUuvW0llnSc89J/36qzP9dLtwAkrT778nujeRsweU9rAxXPaKHAJKAEgulZVSWZnRJqD0tqeekkaPlubMif1Yy5ZJF19sLPzXvr3xRTcAAHAEASXqNnGiMb/g8ccbVXHJaMUKq33ssdJFF0nt2oVus3WrNHmydPnlUpcu0jHHMAw8UvaAsmPH6re3aWO1k3GYdzwrKBniDQDJxf6azhBv71q8WLrySunxx6V+/aQ+faRXX7XC6XD9+KN03nnSAQdIL75ofBG/e7d05pnS1KmJ6TsAAKgTASVqt2ePdP31RnvmTGnSJGf7Uxt7QPn//p/xRnPNGmnpUuNb9tNOk/LzQ/f5+mvp008btp9uF0kFpRcDSiooASB52QPKVKigTNUvWZcsCb08d650/vnGF6d33ilt2lT3/t9+K516qnTwwdJrrxmVt5KUnm78W1Zm3D5zZrx7DgAA6kFAidq9/LK0ebN1efx4Y36eZGMPKLt0Mf71+aT99pOuuEJ6+22jgvKbb6SRI2veD/UzA8pGjYwh81XZA8r6PiA4gQpKAPAu+/MyFZTe9dtvVrtVK6u9caN0++1Shw7ShRdK8+dbtwUC0owZ0uDBUu/e0nvvhR7j3nuN9y2nnWZct2eP8YX3N98k9rEAAIAQBJSoWUWF9NBDodctXSq9807sx160yBiGHa8KxuXLrXbXrjVvk55uvCn961+t65iLMnyBgLWKd6dORgBcldeHeFNBCQDJKxUqKO2Pi4BS+u9/jUrH4cOthRDLyowv2I84Qjr6aOmJJ4zpfwYONOYmN+29t/TII8aXr2PHSi1bGhWVw4YZtxcXS0OHSgsWNNADAwAABJSo2fvvGxOHS9I++1jX33uvEVZFa88e6eSTpQkTpBEjYjuWqaYKytrsu6/VXrky9vuO1M03G294nbjvWGzZYoVyNQ3vlrw/xJsKSgBIXlRQpoZ166z2PvsY4eObbxrvq264QWre3Lp91izp6quNaX1M++4r/etfxpfU11wT+n4gO1t66y3puOOMyzt2SCeeWH1YOQAASAgCStTsn/+02s8/b6yELUnffy998kn0x33kEWN+SMlY6XnDhuiPZTIDyr32Mhb0qUvbttYb/IYOCRcvNobJT5livGF2k/rmn5SSf4i3veqRCkoA8JZUqKAkoAytoLR/gd6hg3T//UaA+dxzUo8eofsdeKD0n/8Yo4Euuyz0d2nXuLHxJX2/fsblLVuMhSKZFggAgIQjoER1X38tzZ5ttA8+WBoyRPrHP6zb7703uuNu2FB9319+ie5Ypj17pPXrjXZ91ZOSMQTIXIH611/jU8EZrh9/tNoffBD7Y29I9a3gLXl/iDcVlACQvKigTA1mQJmfX/NreU6OdOmlxnRCn30mjRljzEX+44/GYjoZGfXfR26u9NFH0uGHG5c3bDBCSvMLdgAAkBAElKjOXj153XXGfIN//rPUvbtx3VdfRbe64T/+ERoSScY32bGwzyMZTkApWcO8d+8OXQQo0aoGko8+2nD3HatwKihzcqwKVq8HlFRQAkByoYLS+wIBK6C0V0/WxOeTBg0y5lM/7TRrjspwNWtmjHgxKzFXrzZCyniM/AEAADUioESopUuNoS2S8ebvnHOMdlqaMYm4KdIqyu++M+adrCrWKsJI5p80de5stRtyoZyqj3XCBGnbtoa7/1iEE1BK1jBvLwaU9oocKigBILlQQel927dbQXR9AWU8tGplLKzTrZtxefly6YQTjGHfdQkEjEV2Vq/mC00AACJAQIlQDz1kDXu+5hopK8u67ZxzrHBvyhRp3rzwjhkISNdeax332mut22INKMNZwbsqpxbKqVotumePMVG7G5greEvhBZRFRckX4sUaUNorcvjAAQDJhQpK77PPP9muXcPcZ9u2xlBxc3qbn36SBg+WXnzRmPPy//5PuuACY/XvI44wtmvSxBhR0qmT8b6ZRXYAAAgLASUsmzZJL79stJs2NebwscvIkG680bo8fnx4x337bWtIeNeuxn7mcNlUqaAMBKzHmp9vDD2SpCeflMrKGqYPsTArKBs1Cp1rsir7bcm2UI4ZUGZmGj+R8vmsqpxkC18BINVRQel9tS2Qk2jt2xsh5d57G5e//166+GLpppukhx82Ft/55BNp/nxjnkr73+Lvv0unnOKeETMAADiIgBKWJ56w3vBefrkRpFU1cqTxbbJkBI8//VT3MUtKpOuvty4/9JDxBnu//YzLv/4q+f3R9zmagNKJCsrNm6XCQqPdp48xp6dkLPDz3/82TB+iFQhYAWXHjla4WhP7St7JNszbDCijqZ40mcE6FZQAkFxSoYLS/uWa/fGmCqcCSsl4j/npp9Jee9W+TVqa1Lq1MW/lwIHWF+IrVkhnnRXb+10AAFIAASUMxcXS008b7YwMafTomrfLzjYWzjHdd1/dx338cSsEPP5441tkyQooy8tjCwnNgLJJE+NNYTjsFZQNFVDaK0X3289YVdL0yCMNu5p4pLZutcK92lbwNtkDymStoIwloDSrcggoASC5pEIFpc9nVVGmYgXlunVWu6EDSkk68EDpm2+MxSSfeUZ6801pxgzjy/rNm40ActMmY8XwL74wfsz3pp99FjrFEQAAqIaAEoYXXzQmH5ek886re26fyy6TWrY02pMm1T5MetMm6e67jXZamjEMxqy+MwNKKfph3uXlVmVfly51V/bZNWtm/EgNN8S7akB5zDFSr17G5e++i25V9IYS7gI5kjsqKO2rcUfK3Jch3gCQXFKhglKyHlsqBpROVlCaOnc2vqj/29+k4cOl/v2N4LJVq+orhXfsaIw2Mitfn3pKevbZhu8zAAAuQUAJI+h75BHrsr1Csia5uVaFZUWF8U1yTW69Vdq502hfconUs6d1WzwCyrVrjb5L4Q/vNpnDvNeubZghN1UDSp+vehVlsookoLTPQZmsASUVlADgPakSUKZyBWUyBJSROvpo6bnnrMtXXSVNn+5YdwAASGYElDCGqJgh1NCh0sEH17/PlVcaC+lIRvXl+vWht//wg/TCC0a7aVPprrtCb99/f6sdbUBpn38y3BW8TeYw74oKI6RMtKoBpSSdeab1Bvv990NXJE8m4a7gLSVvBaXfbwXR8ZiDsqzM+NsBACSHVBjiLRFQSkZFYl1zQSabkSOtL6XLy43Ky4YawQMAgIsQUKa6QCC0AtK+oE1dmjeXrrjCaJeVGcO37ce89lqpstK4fMst1eeH7NbNai9dGnm/pdBAL9oKSqlh5qE0A8qsLKlDB6OdmWl8ky4Zv7PHHkt8P6IR7RDvZJqD0qyelOJTQSkxzBsAkgkVlN5nBpRt21YfTp3sHnjAKAKQjBW9TzlFKipytk8AACQZl726I+6++MKYA1GSDj9cOu648Pe99lrrQ8CzzxqLqUhGNeAXXxjtffetecGd5s2tb7/jUUEZaUBpXygn0d9iV1RYYWrXrlJ6unXbZZdZVXn2eUCTiT2grG+RHHsQnUwVlPEKKO3zVxJQAkDyoILS20pLpS1bjHZd86Qnq/R06fXXpQMOMC7/9JM0YgSjMQAAsCGgTHVVqyfDXWhGMuYbvOQSo71rl7Fid1lZ6ByW//yn9Wa6KnOo8/r1xirikYpXQJnoCso1a6wPEvah7ZIR1F50kdHevVv6978T25domAFlVlZohWRNsrKkFi2MthcDSvuHXuahBIDkQQWlt9mnEnLL/JNV5ecbX+I3b25c/uAD6eabne0TAABJhIAylS1aJH3yidHu1Ek644zIj3H99VJGhtF+/HHp3nutasEBA6TTTqt9X/tCOcuWRX7fZkCZkSG1bx/Zvg05xLum+SftRo+2guHHH2+YRXvCFQhYAWXHjuENqTJDzE2bjP2TgT1MpIISALwn1Sooy8utqXRSwbp1VtutAaVkTHE0ebI1muaBB6T//MfZPgEAkCQIKFPZgw9a7WuvtYLGSHToIP3lL0Z7xw5p3Dij7fMZK1PXVZEZy0I5gYAVUHbqFHnfO3a0+pboId71BZTduhlzEUnG/EpvvpnY/kRi2zarurW++SdNZkC5e3d0lbGJkIgh3lRQAkDySLUKSim1qijduIJ3bY4/PnTe8UsukebMca4/AAAkCQLKVLVunTRpktFu3lz661+jP9ZNN1UPIi+6SDrssLr3s4d1kS6U8/vvVugU6QrekvEG33yD63QFpWSt7igZCw4lS+VhJCt4m9q0sdrJMsybRXIAwNtSrYJSCg1lvc5LAaVkLDR5+eVGu6xMOvVUae1aR7sEAIDTCChT1WOPGcODJONNUm5u9Mfabz/pzDOty7m50t13h7efKdIKylhW8DaZ81Bu3pzYSr9wAsr+/a1Ad9486auvEtefSESygrfJPk+l1wJKKigBIDmlSgWl/bFRQelePp/0xBPSwIHG5U2bpH/8w9EuAQDgNALKVFRYKP3rX0Y7O1u66qrYj3nLLda3+rffLrVtW/8+XbpYlZeRBpSxLJBjaqh5KM3Hlp9vrVxelc8XWkX5yCOJ608kIlnB22QPKDdtimt3okYFJQB4m/mcnJER3ZQ1bsEQb28ElJKUmWlM62N++ZksX04DAOAQAspU9NZb0s6dRvuCC0KH5Ebr4ION+XM+/lj6v/8Lb59GjayqvF9+iWxYczwCSvtK3omah7KkxBomvd9+dc/JedZZVrD77ruhj9EpVFCGooISAJKTWUHp5epJiYBS8k5AKUktWxrvoSXjy3Lz/TkAACmIgDIVXXSR9Pnn0kknhR8mhuPQQ6WhQ+sO4aoyhzwXFhrzSoYr3gFloiooly+3gtfahnebsrKsatZAwFjR22nRBJQNNQflb79Jf/ub9N//1r8tFZQA4G3mc7KX55+UCChbtvReCN2zp9X+8Ufn+gEAgMMIKFORzycdd5z04YehK2k7Idp5KO0BpX2odiQaYoi3/TGF87u+/HLrw9ULLxgrozvJDCgzM8Mbti813BDvMWOMqQrOPluaPbvubamgBABvo4LSuyorpfXrjbaXqidN9oBy4ULn+gEAgMMIKOGsWAPKffaJvlqiIYZ4h7NAjl2LFtLIkUZ71y7p+efj15ennzaqG++/P7ztAwFreHrHjlJamE8XDTHEu6JCmjrVunzllcZ1tbEHlPaQMVL2vzUCSgBIHlRQeteWLcZK15I3A0pziLckLVrkXD8AAHAYASWcFU1AWVRkrLwtRT+8WzIqAs03+g1RQRlOQClJo0db7SeeiGxuztoEAtK4ccYw+ptvln76qf59duwwftdS+MO7JalVKyvMTFRA+d13odWl331nVJzWJhEVlAzxBoDkQQWld3l1/kmTPaCkghIAkMIIKOEs+7DncAPKeMw/KRkhmhm8rVwZnyCwKvtj6tYtvH3231864QSjvWZN6DyQ0dqwwZrjs7JSGju2/n2iWcFbktLTrdXKExVQfv559etuvlnatq3m7RMxByUVlACQHAIBAkov83pA2aKF1K6d0V64MDHvRwEAcAECSjirfXvrzfbSpeHtE6+AUrKGee/eHdkiPeEyA8q995Zyc8Pfr18/q71gQez9+OGH0Mvvvy99+WXd+0SzQI7JHOa9aVNi3mh/9pnVPvpo49+tW6Vbb615eyooAcC77EEdQ7y9x+sBpWRVURYWSuvWOdsXAAAcQkAJZ6WlWZWFy5fXPY+gKZ4BpX2hnHjPQ7l9uzUUPdzh3aZDD7XaiQgoJemGG+oOD+MRUPr9xu8hnkpLpa++Mtrt2klvvGGFjs8+W/PviwpKNKTycuPcpwoGaBhm9aSUWhWU9sftZakQULJQDgAA3gwo77jjDvl8vpCfAw44wOluoTZmeOf3W4uy1CURFZRS/OehXLbMajsdUNqP0aqV8e+cOdLbb9e+TywBZZs2Vjvew7znzLGqFwcNMj6smJWTlZXSVVdVD4bsYSIVlIiHHTuMuU/ffFN64AHpb3+TBg+WunY1guzWrY2KmO++c7qngPfZn4+9XkFpD2BTsYLSHArtNQSUAAB4M6CUpB49emjDhg3Bn6/Miiskn0gXyrEHlF27xnbf9grKeAeU9iHr9rk2w9Gpk5SXZ7TjWUGZlSU995x1/dixRjBcE3tYHG0FpWQM844n+/yTxx9v/HvNNVYl7ldfSZMmhe5jVlD6fLF9eLUHlFRQppY9e6Q775SOOMKYL6x5c6lXL+nMM6Ubb5T+9S9p2jTj+am83Nhn8WJjuoZHH6WaEkikVK2gTMWA0qsVlKzkjVTB+yEAdfBsQJmRkaGCgoLgTyuzagzJxx7ehTMP5fLlxr/Nmxs/sbBXUMZ7iHc0K3ib0tKkQw4x2mvW1L74Szh277b60qOHdOqpUv/+xuVly6Tnn695P7OCMjPTWPE8EvaAMt4VlPb5JwcNMv7NzpYee8y6/vrrpZ07rctmQJmTY4SU0bKHm1RQpo5PPzU+PN5+uzR/ft3TFuTmGueuec6XlUnXXiudcoo15QOA+EqlCspUDiizs40viLxo//2N91sSFZTwrpISaehQqWVLafZsp3sDIAllON2BRFm2bJn23ntvNWrUSP369dP48ePVoUOHWrcvLS1Vqe2NXlFRkSTJ7/fLX1uFWRIy++qmPvv23Tf4h1jx88+qrKvvpaXKWLtWPkmV++6rilgfZ/v2+uPtoCp//TX249mk//xz8BsAf+fOtVcq1iKtZ0+l/7GQTfn8+QoMHBhVP3wLFiijslKSVNmzpyrKy+W7915lHHOMJCkwbpzKzzmn2iI+GatWyScp0L69yisrjeHT4d5ny5bW/+lvv9X9fxqJ4mJlfPON0a9u3VTepo31ez3hBKWffLLSPvhA2rBBFXfcocr77jMey65dxj5Nmqi8nr7UeQ5lZlp/L7t2xfXvBUlo82al33CD0l59NXhVwOeTOnZUoHNnqVMnBTp3Ntr77mv827KlEYKXlSnt1luV/sgjxo4ffqjAIYeoYuLEqM9lN3DjaxA8oLg4+NxckZUVv9ccB9R3DvnS063X1927Xf1Yw5Wxbp3xGr7PPio3K9S9xudTxgEHyLdokQI//6zy4uLQMBph43UoeaU9/LDSp06VJFXec48q3nnH4R6hJpxDSIRw/548GVD26dNHEyZM0P77768NGzZo3LhxOvbYY/Xjjz+qadOmNe4zfvx4jRs3rtr1U6dOVY59WKdLTJs2zekuhC2rqEjD/mhvnT1bsz/6qNZtc3/7Tcf/MTRgfePGml/HtuEalpurrOJilSxerGlxOJ5pwPz5aiapMi1NH//8swJm5WeYOvh8OuyP9pLXX9evUQ4p7jh1qg79o704I0O//vEYjzjqKO0za5Z8mzZpxRVXaOk55wT3ySgu1v8rLJQkbWnSRLMi/L20Wr1af6ytrV9nzdJP5vDrGLWeP1/9/vhwsqpLFy2s0q+ck0/WoClTlO73y/f445rZpYuK99lHQ7dvV7ak3T6fPg3zsdR4DgUC+pPPJ18goMKNGzUzjn8vSCKBgNp//rl6TJigTFsl7pbu3fXD3/+u4vbtq++zeXP1CskBA9Q6N1eHP/64sgsL5duwQelDhuiXM87Q0nPOUSA9PazuZO/YoTbz56vFkiWS/ghgMjONf7OyVJGVpYrMTFVmZxv/ZmWpuKBAOyOdmiGO3PQaBPdrsWSJjv2jvXLDBi32wHNzbedQm0WL1PeP9i+LFukXDzzWuqSXlurkHTskSVsbNdLXHn68h7doofaSfBUV+ur551VkH+WDiPE6lFyyCgt1wj33yHznUz59uj7+3/+kMN8LoeFxDiGedoeZZfgCAe9PBLFjxw517NhRDz/8sC6++OIat6mpgrJ9+/basmWL8sy5AF3A7/dr2rRpOvHEE5VpDhVJdoGAMgoK5Nu+XYEOHVReR5Dn+/hjZfz5z5KkihtvVOVdd8V89xl9+sj3/fcKpKWpfOdOa4hNLAIBZTRvLt/u3Qp07aryn36K/BjffafMvsbHkMrzz1fFiy9G1ZW00aOV/swzkqTyadMUGDDAuGHZMmUccoh85eVGZeGSJdbQ7AULlNm7t3HfI0eqwj5vZTh++kmZfyz0U/mXv6jihRei6ntVaTfdpPSHH5Yklb/2mgLDh1ff5o47lH7vvcZ9n3iiKj74wPq/6NFD5d9/X+d91HcOZTRvLt+uXQp0767yeMwPiuTyyy9Kv/JKpU2fHrwq0KyZKsaPV+Cii4zpFyK1YYPS//pXpdmmJ6js21cVL79c8/yugYC0cKHSPvxQvo8+ku/bb+WL4qW68thjVXnddQoMHRrb1AYRcOVrEFzP9/nnyhg6VFL83hs4pb5zyDdtmjL+3/+TJFXcfLMq77ijgXvYwJYtU2aPHpKkyrPOUsUrrzjcocRJe/BBpd98sySp/MUXFTj/fId75E68DiWntKuvVvqzz4Zc5587N3RhUCQFziEkQlFRkVq1aqXCwsI68zVPVlBW1axZM+23335aXkfwlZ2drewahlJkZma68sR0Xb/331+aM0e+NWuUWV5e+xxStoVb0vfbT+nxeIxdukjffy9fZaUyN24MXTgnWr/9FlxExbf//tH9XxxyiPGtYkWF0hYuVFq0j9U2l1FGr15WANu9u3TZZdLTT8u3a5cyx4+Xnn7auG39+uA+afvuG/l92yrM0n7/Pfq+V/XFF8Fmxokn1hwm/+Mf0iuvSGvWKG3aNKV9+KH1f5GbG/b/Ra3nUOPG0q5d8pWUuOscQ93KyozVuO++O3Ret3POke+RR5Rhn1c1Uh06SFOnSv/8p3TLLVJ5udLmzFHakUcac8CecYYxL9Pnn0sffGD8rF0b80NK+/JLpX35pTF/5g03SGefHZ8vYMLgutcguJtt2FB6bm583hs4rNZzqEmTYDO9vNwTj7VOv/8ebKa1bx+/9xPJ6LDDgs2Mn35qsOdrr+J1KIksWSL9+9/Vrs6cNUs68kgHOoRwcA4hnsL9W/LsIjl2xcXFWrFihdpGutAHGo59EZlly2rfLp4reJsSsVBOLAvkmBo1kg480Gj/9FN0k+FXVloBZYcO1RcVuu02a+7J556z+m0ukCNFvoK3ZNyP+SQUr0Vytm61VjQ/9FBjrr+a5ORIDz1kXb7qKqtt+2AXNXPKB1bx9o6vvzY+GN56q3WedewoffSR9NproYs+RSstzVjt+8svrXOqsNBYBbxfP+Pv+f/9P+mZZ6qHkwcfLN18s7Hvjz9K335rtKdOld5/X3rjDWniROnZZ6VHHpHGjQtdfGzRIukvfzGeMx9/3Fo0CvAKVvH2LvsK3u3aOdePhtCzp9VmoRx4yQ03SBUVRvvMM63rZ8xwpj8AkpYnA8rrrrtOM2bM0KpVqzRr1iyddtppSk9P17nnnut011Abe4hnD/eqslfBdukSn/u2V0yuXBmfY8YjoJSsYQ/l5UZIGalVq6zVrM1Vwe3atJGuu85oV1QYIYi5nymagNLnM44tSZs2Rb5/TaZPN4a+StLxx9e97fDh1jb2DzfxCCjN6l4CSm944gnpmGOs8ys93TgnFi+Whg2re99o9O1rBO1nn21dN2dO6N9TVpaxyuWTTxrn4sKF0j33GP3s0UM64gijfeKJxurgZ50lXXCBdPnl0jXXGF88/PST9PbbUp8+1nHXrJFGjza+rLj9dmnLlvg/PsAJrOLtXfbX8H32ca4fDaFtW2uV8kWLnO0LEC/m6BDJ+JLhxRelZs2MyzNnRrQIJwDv82RAuW7dOp177rnaf//9ddZZZ6lly5aaM2eO9tprL6e7htqEG1CaFZSNGhlv5OIhERWUS5dabXslU6Ts87JEM9+hfZ/a5nj5v/+zwsS33jLCEntA2bFj5PcrWVVnv/9ufWsaC9v8fRo0qO5tfT6jUiyjyiwW8VjwyjyG/QMx3Omxx6Srr7YuH3GEUZ34z3/GJ8yuTX6+UZn5wgvW31ObNtLFF0vvvGNUC3/8sTRqVPTnX1qadNpp0uzZRoXCSSdZt23bJt15pxFUXnUVQSXcL1UrKO2P26tSKaD0+awqyg0bqi+8BrhNRYXxOcN0773GyK1j/1jWbOvW6AowAHiWJwPK119/XevXr1dpaanWrVun119/XV3iVW2HxAgnoKystCoc9903usUqauKGCkopuoDyhx+sdk0VlJLxRsE+yf4NN1i/h4wMae+9I79fyQooKyvjE4B8/rnVp/7969++e/fQ4d1SfCso/X6jshXu9OijRrWh6aabjHDeNgdYQvl80l//apxrCxca874+/7x06qnWtAvxup/+/aUPPzTu5/zzrRUz9+wxqjTPOy9+9wc4IZUqKO0BbCpUUK5bZ7W9HlBKocO8qaKE2/3nP9bnl169pBEjjLa5YKfEMG8AITwZUMKFunWz2vbqQ7vffrPejMczcO7QwVrhNt5zUObkRB/wSaGhoj1sDFc4FZSSUbllBqlffmndV/v21asQw2VWZUqxz0P522/W30WfPuEHOLffHtqPeM5BKVFF6VaPPCJde611+bbbjG/1zeCuIbVubcwxGa8vXOpy8MHGh4UVK4zKUbMS66uv4lPlDDglVSsoUyGgtFdQpsJc8gcfbLUJKOFmu3YZC1eaHnzQeq8zcKB1PQElABsCSiSHnBxr5efaKijtC+TEM6DMzra+lY9HBaXfbwWd++1nhZ/RaNXKmhR+wQJrDsZwmUFjbm7oUPaqMjOl8eOrXx/N/JMm+8Iisc5DaVZPSvUP77bLz5fuv9+6HI/qC3t1DvNQus9DD0ljxliXb7/dWFQmlvPUbTp2NIa3m8O+9+yJ35czgBMIKL3LDChbtzbm5/U6FsqBVzz0kDE6RJL+9KfQUPLQQ6W8PKM9Y0bkn28AeBYBJZKHWcG3bZsxJ0lViVjB22QO896yxVpUJlorV1rVSLEM7zaZlY+FhdLq1eHvt2OHtX3PnvVXaJ12mrGasF28AspYKyjt80/Wt0BOVRdcYMwpeMUV0qWXxtYPiQpKN3vwQWtRKMmY2sA+vUGqoVIHXpFKQ7xTKaCsqDDmYpRSY3i3ZCyEZn5hRkAJt9qwQXrgAaOdkWG1TenpxmJ/kjFXfW2j54BUcfPNxsKXjzxifOZPYQSUSB71zUOZiBW8TfbqwlirKOM1/6Qp2nko7UPC6xrebfL5qr+BiCWgjNcQ70DAqqBs3NhYBTkSPp8RSj31lLU6ZizsASUVlO7xz39K119vXb7zTqN6MpURUMIrqKD0Jvsie+ZoEq9r0sR6j7t4MdNvwJ1uvdUY4i1Jf/tbzQuGMg8lYHn3XWO1++uvT61RXTUgoETyqC+gTNQQbym+C+UkY0BZ2wI5VR1zjDEMw1TXsPD6xKuCcvlyae1ao33MMaEfzpxgr86hgtId7r/fWPzJdNddxpvnVEdACa9IpQrKzEyr7fWAMpVW8LYzh3nv2RP63hdwg4ULpRdfNNr5+bV/GUxACRg2bJCWLDHaRxxhTX+QoggokTzs367VVOpvvklLSzPmUIsnexAX61xsbg4oJWN14wMPNO7XHlZGKl5zUEY7/2SiUEHpLvfdZ6zQbbr7bumWW5zrTzLp2tWqNiOghJulUgWlz2d9UUdA6U3MQwm3CgSMUUvmnJL/+Icxn35NDj/cWrySeSiRyuyfdSOdysyDCCiRPOqqoAwErICyQ4f4T5SezEO8O3eWmjY12pEElOa2aWmhlVLh3N9PP0nff2988xmteFVQxjL/ZCJQQeke48dLY8dal++9N3RFyVSXni517260ly/n7xnulUoVlBIBpddR3Q63+uQTado0o92pk3TVVbVvm5kpHX200V6/nmphpK5k+6zrMAJKJI+OHa2hS1UDym3brAlj4z28Wwod4h1rBaVZ/bnXXlLz5rEdSzICRrMCcvVqafv2+vcpLzfmLpKkbt1Cq/4aSm6u9UEx2oCyslL64gujnZ9vfNvqNCoo3eHRR40Jp01Vw0oYzA/ClZXGFxOAG6VSBaWUOgHlunVWO5UCSioo4Ubl5aELEd53X/3PxwzzRqoLBKyAMju7+oK1KYiAEskjI8MKH5ctMz4wmxK5grdkVPuZb/hjqaAsLja+BZTiUz1psg/ztg/drs3SpdYHl3AWyEkEn8+qoox2iPeiRcbK6pI0cKBR8eU0KiiTX1lZaKXk/feHDvOGhUodeEGqVVCaH/rtwawXpWoF5b77Wl+GElDCLV54wfqis29f6ayz6t+HgBKp7tdfpTVrjPbRR6fGe5h6EFAiuZjzUJaUWAujSIldwVsyqhTNYd4rV0Y/D8qyZVY7UQFlOMO87dtEMv9kvJkB5datRmgUqWQseaeCMvktWWL93wwfHrpADkIRUMILqKD0plQNKO1T8/z6q/HlN5DMioqk226zLj/0UHgrER95pBXIEFAiFSXbWgtJgIASyaW2eSgTuYK3yQwo9+yJvuIv3vNPmiINKKNdICfe2rSx2r//Hvn+yfikTQVl8rP//ffp41w/3ICAEl5gPhenpYWucu1VqRZQ5uTENie2G9mfm3/80bl+AOH45z+t9/lnnikddVR4+2VlWUNa16yRVq1KSPc866efpBNOkO66i0WG3CoZi3EcRkCJ5OJkQGmfhzLaYd6JCih79LCGN0caUDo1xFuKbaEcv9/6NrVNG2sxD6dRQZn8kqWC2A0KCqSWLY02ASXcyqygbNQovKodt0u1gLJdu9T4f7VjHkq4xe+/S488YrQzM425JyPBMO/oXXyxEXDddpuxQBHcJRCwinGaNpWOOMLZ/iQJAkokl3ACSnuQGE/2lbyjXSgnUQFlo0bSAQcY7Z9+qn+4tBnQtGoltW0bv35Eyh5QRlqVOm+eNaxp0KDk+XBir6AkoExOyVJB7AY+n1Wps3GjNecr4CZmBWWqzN1kBpTl5aHzdXvJzp3Gj5Raw7tN9oCSL4+QzO67T9q1y2hfdlnkn9MIKKMzd640Z451+YYbpIoK5/qDyP34o7R5s9EeMMBYjwMElEgy9QWUrVsb3zAkgj2gjLWC0ueLf6WnWQnp99e92u7GjdYwi0MOcTbYi6WCMllL3u0VlAzxTj6BgBVQtmkTOs0AasYwb7idvYIyFZgBpeTdKspUnX/SZH9epoISyWrdOunpp41248ahCxSGq08f6zmNgDJ8jz0WevnHH6WJE53pC6KTjFOZJQECSiSXNm2kvDyjvXSp8e+uXdKGDUY7ESt4m+zf+EVTQRkIWAFlx47xr+QIdx7KZBneLYWGQ5EGlMn6pE0FZXJbv95YlEmiejJcBJRwu1StoJQIKL2qRQvrcS9cyPxySE533209B115ZXSjtho1suYL//XX0EVSUbP166X//tdo2wsnbr2VzyZukqzFOA4joERy8fmsKspVq4wXPXtYmKj5J6XYKyg3b5Z27DDa8RzebQo3oEym+feiHeK9Z480a5bR7tw59P/GaVRQJjeGd0eOgBJuRwWl96xbZ7VTMaCUrGHeO3aEBrZAMvj1V+mFF4x206bSjTdGfyyGeUfm6aeNKT4k6ZprpD//2WivX2/NB4rkVl5u/a3vtZd00EHO9ieJEFAi+ZjhXiBgDO1uiAVyJGOFyBYtjHY0AWWi5p802cMWt1RQRjvEe9Ys60NXMlVPSlRQJjsCysj16GG1CSjhNoEAAaUXpXoFpcQwb6/aulV68EFj9eUnnnBvdewdd1gh2Zgx1oJ70SCgDF9JifSvfxntjAzpiiuMeUDNxVTvv9+a6gvJa/58qajIaB93nJRGLGfiN4HkU3UeyoYKKCWrUm/tWmOux0gkOqDcay/rTfqCBbW/oTEDmqwsa2Edp0Q7xDuZS96poExuBJSRa9rUeu778UfvLroBb/L7rb9Zhnh7BwElK3l7SSAgffONdOGFxt/z9dcb73WvvloaPlwqLHS6h5H56SfplVeMdosWRkAZi379jBXAJQLK+kyaZC1oeMYZxt/TAQdIl15qXLdzp3TXXc71D+GxT2WWbJ91HUZAieRjD/eWLnUmoKyslNasiWzfRAeUklURWVgorV5d/fY9e6Sffzba3btbL/ZOadzYmlM0koDS/qR93HHx7VOs7AElFZTJxx7Q77+/s31xE7NSZ9cuY3oNwC3M6kkpdSoo7Y/T/vi9xB5QtmvnXD+cxEre7rd7tzEM+ogjpL59pZdfrv6lwjvvSEceaXxB6Ba33WYVStx4o/VeP1o5OcbvQJKWLbPWHkCoQCB0cZzRo6327bdLTZoY7WefDf1ciuRjL8ZJttGCDiOgRPKxhwoNXUEZy0I5DRlQSjUP81682KokcXp4t8kc5h3uHJSFhdK33xrtHj1Ch4knA3uFDhWUyWXPHus87NHD+YDeTZiHEm5lfx6mgtI7zIAyLS10NEYq2X9/YwinRAWl2/zyi3TttUZ12yWXSN99Z93WvLlRcThhgtSsmXHdsmXGQjGvveZEbyMzf7701ltGu6DAWBwnHhjmXb8ZM6zngt69jdDbVFBgVOZKxtD7m29u+P4hPCUl0tdfG+0OHRKfb7gMASWST7duVtseUDZtagxzTqRYFsoxg5GsLOPJJhHqCyiTaYEckxkwFhWFV3E4c6YVsiZjyXtmpjXPCxWUycU+PDlZAnq3IKCEW6ViBWUqBZQFBVZIl2qysqQDDzTaP/8slZU52x/Ub8oUafBgI1x+9FFr8UxJ6tVLevFF42/7oYeM4d7z51vvV3bvls47zxj2ncz/17fcEtq2jyyKBQFl/WqrnjT93/9Zn7veekuaPbth+oXIzJ5tvXcZNMhYJBhBBJRIPk2bSm3bGu2ffrKGG3bpkvgTONoKyooKaflyo921qxVgxVt9AWUyzr9nr3wIp4oy2UvefT6rSocKyuSSjH//bkFACbeigtK5fiSK329NC5Oq80+azGHe5eXWFD5IPkVF0kUXSUOHStOmWdc3aiSNHCnNnSvNm2dsY3+e2ndfY2HIkSOt6554wpjeaP36hup9+L76SvrkE6PdsaM172E8HHWU9fmJgLK6lSul994z2m3bGvNPVpWbK40bZ12+7jr3LsLkZcw/WScCSiQnc4j0tm1G+Cc1TPlztBWUa9daHxISOe/dvvsaLz6SewJK+xDtSALKtLTQb1OTifltsVcqKHfvNt7QjBhhfJvvVsn49+8W3boZ1ToSASXchQpK5/qRKBs3Wh+qCSitNsO8k9OXXxrvOSZMsK7r0sVYqXvdOumll6z5FWvSuLFRWfmvf1mvw7NmSYcfnlxBXSAg/eMf1uXbb7f6Gw9NmxpVppK0ZAkrUVf15JPW8+IVV9T+u//rX63K61mzpHffbZDuIQLJXozjMAJKJKeaQr6GCCg7drSqNCMJKJcutdr/v737Dm+qbP8A/k13gQ5mS4UCBdllWKZFEUWWgmyRAgVlvAIyqrJ+L0tQFFSQJSKCvoIoyBJfQNmCMsuQjQxlSFndRUrH8/vjfpOTtGmbjjRJ+/1cV64mZyRP0nOSc+5zP/djrfqTgATt9IGXv/4CYmK0eUppAZrKlWVUPXtgHKDMaaCcjz/WioSHhGi1eexNUcqg3LVLsuemTZORAZs1A954w/FGlAQYoMwPV1ftgPbixaIZ9KCiiRmUtmuHtXAEb41xdjsDlPYlORmYMEEuput7e3l5SbDx4kXpblu2rGXPpdMBQ4dKhmLlyjLt9m3JrvrwQ/vIgtu+XcowAXKe1r9/wb+GcWKC/rUISEyUwZYA+f4fNizrZV1cgA8+0B6PHy9Z6WQf4uMloxqQ0dcDAmzbHjvEACXZJ3NBvsIIULq5aaNF5qaLd2EMkKNn3M3bOCDz55/ypZdxGVuzJECplPyAvvmmNm3QIOu2Kz+KQgZlbKwUbn/uOdNtPT1drtLWri3F2u3hoNgSGQP0pUvbtj2OSH8inJYm2QtEjoAZlLZrh7UwQKlhBqV9On1aBrX54APtOOmpp+R/NGiQJBTkRdOmMqDO88/L47Q0GfikZ0/bdvnOmD05fbp1asOyDqV5X32lJQ6EheU8JsOLLwJPPy33//gD+Pxz67aPLLdvn9Y7lN27zWKAkuyTrQKUgNbN+/59LeCXE1sFKI27edtr9phxDUpzAcrUVOC114DZs7Vp06YB//qX1ZuWZ/osHUcNUG7cCNStq12NBYBWreSAUx98jYqSYu3t2plu3/bKOEBvT9u/I2EdSnJEzKC0XTushQFKTUCA1iOG38u2l54OzJ0LNGmiHXe7ukqgcvduoGrV/L9GuXLA1q2mAcH166UUy5QpQEJC/l8jtzZtkhqagBxj9eplnddp1UoL7jJAKdLTgfnztcfmBsfJSKcD5szRHk+bZpvthjJj9+4cMUBJ9slckK9GjcJ5beOBcizt5m0PAUp7HMEbyL4G5YMHQPfuUp8HkB/UTz+Vujb2PKKZPoiXluZY3SaiouSgsls34NYtmVaqFLB4sRwITpkimXNdu2rr7NghgaspU+y7S7u9BugdiXGmDk+EyVEwg9J27bAW4wClvldLcaXTaReP/v4buHfPtu0pStLTgaQky3uKXL8OtG0LRERo+129esCRI8C4cQU7QKazMzBzJvDDD1q5owcPgBkzJGFj8eLCO/5MSwMmT9Yez5iR9wzRnPj4AI0by/1TpyRZJCfnzsmgQo8/LiOjr1gh52+O0gMoJz/9pJ1nPvOM6bFadpo1A15+We7fvWuaCEK2ox8gR6eT/ydlYoXcbKICUK2a/DjrU6BdXQvvIDXjQDmWBDv0Pxw+Pjmn3edXvXraZ5NVBqUjdPGOiQG6dJF6O4B0r1+1yvyodPbGOEvnwQP5v1tDSoocEF+5Ynq7elU+v1q1ZPts2FAOWGrWNH+ArJR0D4mIMK1b+sILEhDW1zsCgMBAYMMGYPNmqUX511/Ao0dyQLpqFbBokYxSaW8YoMw/ZlCSI2IGpe3aYS3MoDTVoIGWTXbqlARjKGdxcXLcee2a3K5fN71/44YcZ7m7y7G78a1CBdPHd+5IV2vj+twREcC771r3wkjnztJFd+ZMLSh59y4wYgQwbx7w/vty0dmaF/W/+06rD9+8uXQftqbWrbUBG/ftM71obiw9XY5Jx43TLlRdugT85z9yPzBQnuuZZ+RWrZp9Jz9k5ZNPtPuWZE8ae/ddyb5NSQE++gh4/XXWPLSlu3e185XGje1nvAg7wwAl2Sc3N8lk/OMPeawPWBaG3GZQPnwoQRxAAkTW/vHz9JT6gGfOAGfPSvDIzU37witVyvQ92FqFCtp9fYDy77+B9u21A55SpaT7iKOkuuszKAE5OS6IAGVqqgQAf/1VC0Reu6YF6c25fBnYskV77OEB1K9vGrQsU0Zqe27fri1Xrpwc8LzyStbba+fO8v+YOVMKtKemSps6dpQgcufOsu3/80/2fytVkq7jXl75/4yywwBl/gUESO3OmBgGKMlxFMcMSuP3afz+iwoGKE1lzG5ngDJrly/DefhwdNq/H66WluFJTpZg5Y0bli1fubKM2F1Yx6zlykkw8o03gEmTgDVrZPoffwA9egBPPindeZ98suBfOyVFejXpvfee9c9zWreWQTMBCcybC1DevCm1Po2PbTO6dg34+mu5AXI8+swzsv+EhZle6LFX589LBiUg58KdO+du/erVZcTvTz6R4/IpU4Bly+Tc8d49CZjdvSsBeP39u3fhHBuLGp6eMniitXsGFid79mj3WX8ySwxQkv2qWVMLUBZW/UnANIPSkoFyLl/WuhEU1pd4w4YSoExJka4NVatqwdTgYOt1vcgLV1cZxfD+feniffGi1DXUB3XLl5daOyEhtm1nbmTMoMyvtDTplvLNN5Yt7+QkbUhKMp3+8KHUCNLXCTKnb1850LUk07dkSWDWLBmpcfhwLYPj++/lZqnLlyUr05rbpT5AWaJE4X5fFCX6roS//CIH/zExHGyI7B8zKG3XDmvRByi9veUCZnHHkbwtk5QEdOkCp7Nnc65hVqaMNqBedLQEaO7dk4ux2QkLk4EE9d2uC1P16pLNGBEhWYP6Ua5/+w0IDZWSSbNmyTlBTEzWt+hoGShRKbnY4emZ9d/ff5esREACsoURlH3qKTkeUcp8Hco1a6ROvXGPoNGj5WL4qVMSBNqzRz4X49+HGzeAlSvltmyZfH7WGOinIBnXnhw5Mm/JOpMnS0A9Lk5GmP/+e9NMYDOcANQDpPdVSIiUh+rVy74SYBwR609axM73SirWatYE/vtfuW+rAKUlGZTG9Sdr1Sr49pjTqJEWzDpxwnQwH3vq3q3n7y8Byhs35CBKX0OpalXg55+lbowjyZhBmR9KSfAvY3DS21u2+6CgzLfAQAn8Xrsmgbnff5e/J0/KgaS5ujuVKgFLlki37tyqW1eKv3/9NfDWW3KFNTd++AF45x0p0m0N8fHaxYTg4MLLti6K9AFKQA709aNAEtmr4phBWZQDlEppmWzMnhT16mkBGwYoszZihPQsApDs5QXXkBA4Vakix0yBgRKQ1P81F/hWSgJ3ZjLKEBcnmXcdOxbuezKneXMJwP34IzB+vCQqANKVd/16673uu+9a77mNlS4tWcMnT8o5TmysBIRjYyVIt2qVtmxAgATf9KOet2olt3//W7IEjxzRApa//qodsx84IN3Dc9tlujDFxEiAEJCEgVdfzdvzlC0LTJwITJgg23gOwclMIiPlNmEC8MQTWrCyIM/Nk5KAQ4fkf3TwoASOGzSQW8OG8lpF4dheX3/S1VUC8WQWA5Rkv2rX1u4XZgDL319Och4+tCyDUl8nBSi8DMqMA+UYj8xmj91b/f21jE99cLJBA2DbNqBiRdu2LS+MA5T5yaBUSg4uly6Vxy4ucqDVsaMcoOXUjaZKFbl16aJNS0qSrvP6oOWlS3JAMWGCBD3zSqcDBgyQ7iUbN8pBnv4qu7kr7x4e0o7evaVO0PTpst1mVUsoP4y7I9vj9u9IMmbqMEBJ9s44QMkMSscXG6sFERigFKVKyQn6pUtyLJWWVjRO1gvSihWGYI4qWRL7Z83C00OHwsnV1fLn0Onk2Kt0afvv1qrTyfFYx47y3qdMMa3zXtC6dgVatLDe82fUurUcwyoltepLlJCeRsbd8F9+WepyZlXHz81NkiJCQ2VE9EePJPGle3eZP3myBNrstSbjsmXaOcbAgfnL2h09WoJ/+/dLwDK7eqvlyyNFKfwxbx7qnD4NnfF4B8eOyW3iRKmh2KuX9Irz95d13dwsa8+tW1p7fv0VOH48c0mrH37Q7pcokbmEVYMGBT8GgD7D2BqJUdevaz1DW7SQoDOZxQAl2a/evYHPPpOgVt++hfe6Tk6S2Xf+vDYKnLlA0dmzEvTZvFmbVphdvPUyBijtMYPSz8/08dNPS81JW3SRKQjGJ8H5yaB87z2pGwTINvb110CfPvlrW8mScnW9efP8PU9WSpeWuj+WqFVLCriPGyeP+/eXK6R16xZsm1h/suBwoBxyNMbfwcygdHysP2lecLAEKB88kIvnjtbzxJpOn5bsyf9JW7wYidYavNDeuLgAQ4bIedLcuXJO4uamBVqzuvn6SpDbXO3wjNM8PeX4rTC1bq11b46I0AI7gASlPv1U6qjnhpubDCg0ZAjw+edy7vTWW5aXVypMqalSSkDvjTfy93weHqYBv5ykpOCPnj3x+PLlcL12TbqFr11rmpRz/LjcJk3SpukHizU36JSrK3D4sFZrPzcePJB1Dx82nR4UJAN3dusm20xuLkjoJSbKOenq1VLvMzVVAq8LFmQ+f80PffYkwO7dOWCAkuyXr6/pF2FhCgqSAOXDh3JF0jjL79YtKRj9xReSGabXqpVpIXNrqlBBrvj9/bdpgFKnkytM9sY4cPvSS/Ij4MiZLgWRQTl/vnRB0VuyJP/BSXv01ltytfXbb+Ug4KWXpMtNQQanGaAsOMbfHwxQkiNgF2/btcMajAOUlSrZrh32pkEDqeUMSHY7A5QiMVGCCfoLFUOHQr3yiukAgsVByZJyTGl8XOnIjHtvGAcnn31WehpVrpz35541S7rC378v5yOvvWZ/A5Zs2iRlnADJki2sEmLmVK8uvb3Gj5fAoj5Yaa7efVyc3PR1Sy1Vr56W7RoaKuezxuWrfv9d6tlndOWKZNEuXiznFS++KMHK9u2zz1BMTpbxD1avlqB+xmSTtWuBHTukZn///gUzMJRx/Ul7297sDAOUROZkrENZsaIEAefMAT76yDQo9dhjMtJx//6F2+WmUSMJUMbGSgAIkANWe0wZHzFCArtBQXIl1N6LUuckvxmUX35pWvdmzhxg6NB8N8su6XQSzD9/XoLply7Jlf7NmwtufzEOUBbWRYKiyttbygb89ZdkpWSVQU5kLzhIju3aYQ3MoDQv40jePXrYri05OX1afvd79wZatrTe6yglg6WcPy+PGzaUgAI5vnLlJGh15ow8dneXHjmjRuV/wMWyZYHZsyUwCcg5ysmT9jGqd3q6ZBi+8442zZ7qZAYFSa+ocePk/HjDBtn/MtZtjY3N+jk8PICmTSWxJzRUviPMddMPCjItC5WQIN99xoHLyEjpug/Ia+oHQfLwkK7n3bpJ0LJcOelCvnu3ZMyuX2++FmelSnJMcf++dPcOD5eap599Jr0r80opLYOyRAnr9XIrIhw8SkBkJcajlF28KIGV6dPly1fP21tqcIwebZuTokaNtCvE+kFR7LF7NyA/DEuW2LoVBSc/GZTr1mkHRYDUwHnrrYJpl70qUUIOYpo0kR/9rVvlfb/3Xv6fOy1Ny/SrXh3w8sr/cxZ3wcESoExIkL/5OSgrLpKS5Ap+WprUBatbl4HdwsIMStu1wxoYoDTPUUbyvntXBiyJipIukgsWAK+/bp3XWrZMGzDFy0uynjw9pTQUOb6xY4Fhw6TW4YoVBdtDbOBACaL/9htw4YIknxh3VS5sf/whZZ6+/hr4809teu3aEmizR9WqSdKJOfoxB4wDl4mJ8j32xBOW16o05uUFPPmk3PQSEuScYuNGqS+qHzT24UPp0v7DDxLQbtlSEiRu3878vGXLShZ2374SML1/HxgzRuv6//PPsu29954Es/OSXHHxovbb9tRTeXv/xQgDlETmGGdQDhumXZ0BpL7F8OHSjaJcucJvm565YCS7txYO44D06NFSE+XVV3P+/H/6SWrm6EsDjBolge/ioGpVYM0aOdBKS5MuNo0aSYZFfly+rAWJuf0XjOBgGR0UkOAvA5TZ27lTalpdvSqPJ04EatSQK/f6gQXym/Fh72yZacsMStu1wxoYoDQvKEgu9j14YL8BSqWkN4h+sJa0NDlePnNG6iPmpT5cVk6eNK3Lt2wZu70XNa+9JqWPrNEzzMlJ6lg+8YRspzNmyPG58fmftd2/D3z3nQQlDx7MPN/HR2plOuLFTldX6X1o7YFQvbzkPKJ3b/kt3L1bgpWbNmnfQ/qsVGOlSskx2iuvAG3bmn43lS8vFz5eeUUytG/elIvQo0dLl/Avvsh9LX3Wn8yVIn7ETJRHxj9QxsHJ3r2Bc+ekC4ktg5MAA5S29MQT2gHD/ftST7JRI5m+cKGMAJfRvn3yY6i/sj9woBywO+KBR149+6xcpdYbNCj/J1qsP1nwOFCOZWJi5ASqbVstOKl36ZKUbggNlXrBw4YB27aZ/p4UBTExcgDv5SWZo8a1wgpLccygNH6fRS1AaTxKLwOUGmdnLYPs8mU5Bn38caBZM6m31qePZCpOmiTfPcuWSQ01fQ+bwrBihQQHANNtdNEiqaNn7tgoL+LjJeNJv+2PGJH/i51kn6xZtqpBA0kUAOR3JK9dqZWSY4A//pC/169LcOzePel2nJgoz5+WJtvs+vVyPlCxomy7xsFJJye5kL9ypQTGWrXK99ssNtzdZcCcJUvks/vtN+Dtt+WCMaANkrRmjWR1/uc/8r2U1YWTF1+UAXGNM8APHpSM3nfeyd3xHOtP5o4is+Li4hQAFRcXZ+um5MqjR4/Uxo0b1aNHj2zdFMcWH6+Uu7tS8rOj1NNPK3XwoK1bZSotTamSJbU2AkrduGHrVjk8i/eh335Tqm9fpTw8TP8HgFJubkr17q3Utm1KpaYqFRmplLe3Nr9HD6VSUgrnDdmb9HSlBgzQPotq1ZS6dy/vzzdpkvZcGzcWXDuLs1OntM+0T59crVpsfoPWrVPK3990v2/dWqmPPlLqmWeUcnLK/L0AyPdAnz5KffedUg8e2Ppd5F16ulLffquUn1/m775Jk5RKTCy8trRvr71+TEzhva6VWLQPxcdr77lt28JrXGFo1Ejel4uLHOeQZsQI898r2d3Gji2ctl26ZHpMumGDUsuXK+Xqqk2rUUOpc+fy9zrp6Uq9/LL2nCEhSj18aLJIsfkdovyLi1MqIEDbnjZtyt36ly8r1bRp7vfLjLcGDZT68EOlbt60zvvMpSK1D6Wny/lxfHzen2PvXqUef9z0f1a/vlLbt+f8O5WWplSZMrKOr6+cFxZTlsbXmEFJZI6Xl1x97tVL6lfs2WN/BW2dnEwzxsqWlUwdKhwtW0oXgFu3pJtI06bavEeP5Apdhw7SPfb557W6KB06yHqOPlBQXul0cnUzJEQeX70qmR+pqXl7PmZQFrxatbQrysygNBUVBfTsKQNU6LsPeXvLNr1rl9Rj2r1b6hytWCGj1htnEsXHy4j2L78s39ejRjneZ/zXX5JZ0KdP5npOjx5JnaY6dWSkz8LI3iqOGZTFoYt3xYpFvzRCbk2cKN0On3hCevr4+ubcC2PuXBmYz5pSU2WgyKQkefzaa1LeYtAg+T4sX16mX7okJS9++invr7VkiXSLBaQL7Jo19jG4CTkmb2/ZR/RGjdK245xs2iT74pEjeXvtihWlBr1+wJc33+R5nDXodJKNn58a9U8/Lf+jCRO0GpSnT8v5XY0aUiJAP+p6RidPatnjbdoU7oC6Doq//ERZ6ddPDnw6d7bfbrjG3bwbNbLfdhZlvr7SxfHwYQk0RERoB+OAdFfT/zA99ZQMklPcD6Y9PWXQHP3ntGOHnHjlhT5A6eMjo09T/rm6SmF2QIrHF6VuyUoB+/fLPtujBzBligTS/vhDqw2b1XorVkjgbd06bXrnzlJfbdgw02BKuXJSxmHjRunmtW6d/Kb4+mrLxMbKABINGkjR9y+/zP2gW7mllARW89LVMjVVSjTUrasN0AYAXbpI6ZOJE7XA9vXrcoGvXTtthF1rMa5BWVy+W427pBWlAGVysgymALB7tzmPPSYDN0RGAleuSImF1FTZny9fBo4eBbZvl2PX8eO19YYNAw4csF67Zs3Snr96ddORtENDJYCjH4U8Lg7o1An45JPcX8A4dkwGr9BbscJ0UEuivOjVSwJNgFyAe/fd7JdPSZGuw127aiNBV68uQfpXXpGLmF27yoW8Dh2kS2/r1rIvNG8ODBggQfrr16Ucg37fIPvm6SnfdUeOmJ5/X70qx5JVq8oxz7ffml44Zffu3CukjE6Hwy7e5BCWLtVSzSMibN2aIqFA9qHkZOne1LmzUs7OWjek2NgCa2eRsHevdOPTb8OrVuVu/fv3tXWfeso6bSyu+vbVPtuTJy1ezW5/g27cUOq99zJ30TG+lSypVIsWSg0dqtSiRUrt3y9dgi5flm60xsuWLy9dnNPTc9eOR4+kS1B4uPnyEN7eSg0frtSJEwX/GZw7p9Tzz8vr6HRKNWmi1IQJSu3YodQ//2S/7tGjSjVubNrWgADp6m78GVy4YNrlGpAunuPGKZWQUPDvSSnpGgfI51kEWLwP6cvQNGxYKO0qFFevattNz562bo3jGz5c+zz9/a1TBujQIe04x8lJyt+Yk5CgVNeupt8NgwfL8ZIlYmOVCgrS1h09OstF7fZ3iOzXhQtSokT/m3X2rPnlbtxQqlUr0+24Z0/pKl6EcB/KQUqKHAO2ayfHUxmP5Xx9pSTH0aNKdeigTc9quyom2MWbqDjo3Fkyclxc5Kod2Qc3N7l6+sMPkkG5bZtkbfn42Lpl9uXppyWLQu+NNyzvWgOwe7c1FYWBcpKTJTuyUycgMFAGj8huEJekJCmAvnSpFK5v1Uq6f9WqJVm+ev36SeH0l1/Ofda6q6sMqvPll8Dff0sGpfFnHR8PLF4sV+ebN5fRIhMTc/caGSUmSjZVgwaSXQXIofLRo8D770t7fH3l7/vvy/S0NG3dsWNlII7jx2WaTiefz9mzQPfupp9BzZrA1q2SIa3PaE5JAWbPlqzc774r+G7f+gzK4jKCt54+W7QoZVByBO+CNW+eZG4BkjndtatpxnF+JSXJ96H+++Lf/5byN+aUKiWZ5JMmadOWLZPMtRs3JCP011+BtWtl4MEJE4DwcJlfv758h1+5Ius1aybfKUQFpWZNLes4JUV+4zL+Vu3YIQOk7N8vj11c5Bh2zRo5VqDiw8VFjgF/+gn480/p4m2czR0bK4ODNWki54CAdOnX906ibBXTImhERYS/v3QRePjQ9qOKk3n+/nIj815/XWpUff+9dFNbvlwClZZggNJ6HDlAefKkbEerVgH372ee/+yzUhutaVPpnv3771oNqIyjcQNafdTKlYHPPpNRHwtC6dLAyJFyInTokARGv/1WCyAcPiy3sWOBsDBgyBCpd2UppeTE6c03TQM/gYHy2sb7T3KydEPauVO6apcuLbWSjh41rasUHCztbNEi69fV6SQQ0q6dBDxnz5bnv3lT6lbOmCF1tkqVkppQXl7m75crJ13i3Nyyf5/6rlTFpf6kHgOUlBNXVwn4NW0qXVePHgWGDpXRawuiJNBbb2kXfZo2lQBldpycpPtsvXrAq6/KtvvLL/LdailfX7nQkdP3AlFuTZwoo2dfvSrHpatXA337SvmXmTOBadO0oGXlyvL7mt1vIRUPgYHy3TdpErBvnxx/rl2b+WLQs8+yFJuFGKAkcnSlSsmNyBHpdMDkyRKgBKTG3euvWzaIEAOU1uOIAcqDByXYd+xY5nmBgVITcuBAGVxCr1YtyQLUi4+X92sctLx7V7LV33knf0XWs6LTyUlOixZSrP+bbyQQqt++ExJkYAj94FJDh0rGfHZtOXNGAv27d2vT3N2BceMkM6lECeDOHRnYZ8cOyaw0DkTGxADr12uPPTyAqVMl2Glc/zA7JUrIZxYeDoweDfz3v1rbzpyx7Dm6dJE6ntkd1Bf3DMrYWKmDVhQy9BmgLHjly8tgHk8+KTVuV66U38u33srf8/74o3wnAbKvr1xp+XdD374ysMRLL2mDjWXHw0MuagQGSpCoatW8tpooa56ewMKFwAsvyOM335SeDMOHAz//rC3XoQPw9ddMDCFTTk6Ssd66tfSOWbNGgpX6+rxhYbZtnwNhgJKIiGyrQQM54Nu2TbI81q61rGSBPoDj5CRdwKjgVK4sAY+4OMcIUO7eLQXpjQeZcXeXgXAGDZIr15aMCOztLVl7oaHWa2t2fHwkQP+vf0m209KlksWhL30QGSkDXkREyEn+0KHShUgvPh6YPl26SOozPwE54frkEynkr1ehgmQ09ukjWSGXL0uwcscOCVzGxMhyzz8PfPqp6bq5Ub26BDN+/FGCo5YGJwEpk7FmjXSlykpxzaAsX166xsbEyEn0pk0ScHdkN25o9xmgLDgNG0rWZM+e8nj8ePnN7NAhb893546M1K03d650kc2NZs1ksImpU4GLFyUAWbGi+b8+Psw8osLRqRPQrZuUKYmKki65+t9SJye56DZxomXHE1R8eXsDgwfL7fJlGWyyTh1bt8phMEBJRES2N26cVqdlzhwJmmR3QpKSogU6atYsftlT1qbTyQnsr79KGYnYWNMRqO3J9u2SiaPPpGvQQAJ8ffpIV2VHpNNJl8mmTYGPP5Yg5dKlEqAEJGD5+edya9xYApUlSkjgwTgjKShIApMvvpjz69WoIbd//Utqyp04IcG/J58smODAiy/KLS1N2p+QILfExMz3L1+W7wFAsi/bt896+9MHKIvbd8CCBZJhGh0NXLggAZ/Vq+UE21Exg9J6evSQ3gozZkiX1T59pIREbgOLSslJ95078vjFF6X8RF5UqiR1donsybx5UlvwwQMtOFmhgny/PvusTZtGDiivF3eLMYb/iYjI9p55RssEO35cauFl58IFuSIJyIAiVPCMu3mfPm27dmRn61bpfq0PTnbuLCfdr7/uuMHJjLy8JAB59Kjchg0zLetx/Li83/BwLTjp4SGZlGfO5BycNMfZWbqTh4YWfOaSs7NkFzz2mGSnNGki9S67dJGs0GHDpG7lSy/J8rdvmw6sYSw1VTuBLG4ZlKGhkoGm30/j4+V//cEHBT8QUWFhgNK6pk2T+rCAZMd36SJ/c2PZMmDzZrlfoYIEGJndSEVJYKBk9uo99ZT8zjI4SVQodEo56lGMdcXHx8PHxwdxcXHwdqCRuVJSUrBlyxZ06tQJrtnUgmnSpAmiLKn7QlQMPXz4EB7F7WTXHvzzj2QDAdI9N7v6Pg8eaF1Qvb2tUxuwuEtKksxJQLLXSpa0aLVC238ePjQdBMfDAyhb1vqvaw+Ukv0lMVGyiY15eMj/y9nZJk0rMGlpEpzUH6aWL595YAylZDR0IOfvDAeSq31IKfkuNC7I7+kpAXpHCxxFRcn/XaeTrr1U8JSS7EfjwL6l35upqbKufp8sW9ZuLwzwOI7yTV9axcJjn6KG+5Dt+Pv74+jRo7ZuRoGzNL7GLt7FVFRUFG4aX6kmIrIn+lF/LREfLzeynthYLVhprx4+tHybKcoePrRs4AlHc/du9vNz851R1P3zT+YRRB2JUvxfFpb8fG8aXyAiKqrs/diHqIhhgLKY8vf3t3UTiOwWrxrakHHWnqcnUKaM+eXu3ZOABAD4+zt+tpg9Sk8Hbt2S+25uksFmAavvP8aZtkD22wk5vjt3tCxRHx/T7u1paVowtghtB3nehx4+lH1Dn+Hm5CRZbhkzT+2R8fdNEcqGtVvJyfI7qufhIf+DtDS5ZcfFRbp323GGLo/jiPKH+5DtFPc4DQOUxVRRTBsmKgiWlkkgK3nwAKhSRU6cHj0C9u8HqlbNvJyfnwQuypWTLp52fKLk0CpXlpF1PT1lsJwcPmer7z+rVgEDBmiPw8OlBhoD1EXX4cNAixYSdEtJkYGbqlSReRcvaiNX9+wpIxU7uHzvQ2fOSP3Oy5cl4BQTAyxcKLU97dnJk1o94X79pNYhWdf8+TIIFaANNpWT8uWl9m9IiPXalU88jiPKH+5DZEscJIeIiOxHiRLAG2/I/bQ0YO7czMtERWkjiDZsyOCkNekH4IiLk0ClLX31FdC/vwRdABlJdvlyBieLumbNgOHD5f6DB/L9oM8QNA6qMNND1KsnQd3nn5fHqakyMvuwYVpNNXvEAXIK3xtvyABcxsqUkUBxly7AiBEy6NLq1XKx8No1yXK14+AkERE5NgYoiYjIvowYIYFKQLJoMta5OnlSu9+wYeG1qzgyHsn71CnbtePzz4FBg7TA1OuvA599Jl1Yqeh7912gYkW5v3kzsHGj3M84MAyJMmWALVuAN9/Upi1dCtSpI59dfsfH3L8fePll4K23Cq4+m/EFEAYoC4dOByxZIiMUnzsng27dvy+PN22SzNtx44A+fWTU+MqVeUGIiIisikf2RERkX8qWBV57Te4/eAAsXmw6nwHKwmMPAcpFiyTLRx9UGT1apjE4WXz4+ADz5mmP33gDSEhgBmV2XFyADz+Ubu/6z+b6daBbN8mO+/PP3D/nyZPAiy8CTz0FrFkDfPQRULeuFjDOD2ZQ2oZOJxmTtWsX29GKiYjIfvDonoiI7E9EhJapMX++aaYUA5SFx5YByrQ0yQAbOVKb9tZb0u2f3fqLn169gA4d5P7Nm8CUKcygtET//rLvtmunTfvxRwkszpoltX5zcvkyEBYGNG4M/Pe/pvNu3ZKgZ+/ewO3buW+fUsCOHcDatdo0BiiJiIiKJQYoiYjI/lStKie8gAyY8+WX2jx9gNLVVboskvXUrq0FigszQBkXJ1leH3+sTZs0CZg9m8HJ4kqnk8xZfTbg/PnAb79p85lBmbUaNYBt24DvvtO6yv/zj+xTjRoBe/aYX+/WLSm5Ubs28M03WhZz5cryv+jYUVt27Vr5Pv7qK8u6kCsFbN8OtGol9TLPnZPpbm5AUFBe3ykRERE5MAYoiYjIPr39tnb/o48ko+7hQ+D8eZlWp46czJL1uLtroySfOwccOSJBhTVrpKbdBx8AEybIABy9e8O5Y0e0eOcd6L7/Pu917i5fBlq2lBp6gHRV/fRTqUPI4GTxFhQETJ0q99PTgfff1+YxgzJ7Op1c9Dl/Xsok6EsknDsHtGkDDBigDT4WGyvByxo1pMRGaqpML1tWLhpcvCgDF/33v8DKlTIdkBHDBw6UTNesupArBfz0k9Q0bNfONMhcp47UPvT2tsIHQERERPbOxdYNICIiMqtxY8ms2b5dglYbNkiAIi1N5rN7d+EIDgbOngVSUmRE5Ww4AfADgL59ZYCFuXNzXMfE7t1Az55AdLQ8LlMG+P57CaAQAdLtf+VK4MwZ2Sb1mEFpGW9vqecZHi6DTR06JNO//loGIAoLk2zJmBhtnZIl5XN/803T4KFOJ8u3aydBz9WrZfrPPwP16wPvvScZmM7OWmBy+nTg4EHTNtWtK132e/bkICxERETFGDMoiYjIfo0bp92fPZv1J22hZcu8rffbb0Dz5kC/fsC1azkv/9lnEujQByfr1AEOH2Zwkky5usq2khEzKHOncWPZR5csAXx9ZVpsrHTd1gcn3dwk8HjligQWs8psLF9egpqbN2v1I5OSZN1WrST42bKldAk3Dk7Wqyfdzk+dklHBGZwkIiIq1phBSURE9uu556RG2okT0r1Ynz0JyHSyvqFDgb//liBj6dLazdfX9HHp0kgpVQqR8+ah+dq10F28KOuvWgWsWycD3IwfD5QqZfr8qanA2LGScanXqZMEPHx8Cu1tkgMJDQUGDwaWLdOmMYMy95ycpDxDt25SUuM//5HpOp10+Z42TeoBW+rFFyXbesIEKcsASEAyY8Zk/fqSMdmjh9bVnIiIiIo9BiiJiMh+6XSSRdm3rzw+dkybxwzKwuHpKbUmLZGSgttNmyJ10iS4fvGFBDiio6V26MyZElCaOVPq1Dk7S6ZW794yiq/em2/K6zGbirLzwQdSr/DuXXnMAGXeVaggg9sMHQrs2iUBy/r18/Zc3t5St7JPHwki//GHNi84WGqIduvGwCQRERFlwqMDIiKyb716AVWqmE4LCADKlbNNeyhnrq7AG28Aly4BERHyGACioiRoERIidQSbN9eCk66uwPLlwIcfMjhJOStTRroj63RAiRJAkya2bpHjCw0FJk/Oe3DS2NNPS0mO6dOBLl0ki/rECWZNEhERUZZ4hEBERPbNxUWy6owxe9IxlC4tI7CfPQt0765NP3kS6N9fy64qX14ytwYNsk07yTH16iWjUl+8KBctyL54ekpX7k2bZP9nYJKIiIiywSMFIiKyf6++KhlTegxQOpYaNSSDas8e4IknTOcFB8tgOK1a2aRp5OBq1tQGZiEiIiIih8UAJRER2b+SJYGRI7XHzZrZri2Ud61by2BHX30l/8PBg2Uk4dwMxEFEREREREUOB8khIiLHMGECcO8e4O4uNc3IMTk5yQjBAwbYuiVERERERGQnGKAkIiLH4Okpg2IQERERERFRkcIu3kRERERERERERGQzDFASERERERERERGRzTBASURERERERERERDbDACURERERERERERHZDAOUREREREREREREZDMMUBIREREREREREZHNMEBJRERERERERERENsMAJREREREREREREdlMkQ5QLlq0CFWrVoWHhweaN2+Ow4cP27pJREREREREREREZKTIBii/++47REREYOrUqTh27BgaNmyI9u3b486dO7ZuGhEREREREREREf1PkQ1QfvzxxxgyZAgGDRqEunXrYsmSJShRogSWL19u66YRERERERERERHR/7jYugHW8OjRI0RGRmLixImGaU5OTmjbti0OHDhgdp3k5GQkJycbHsfFxQEAoqOjkZKSYt0GF6CUlBQ8ePAA9+/fh6urq62bQ+RwuA8R5R33H6L84T5ElD/ch4jyh/sQWUNCQgIAQCmV7XJFMkB57949pKWlwc/Pz2S6n58fzp8/b3adWbNmYfr06ZmmV6tWzSptJCIiIiIiIiIiKg4SEhLg4+OT5fwiGaDMi4kTJyIiIsLwOD09HdHR0Shbtix0Op0NW5Y78fHxqFy5Mq5fvw5vb29bN4fI4XAfIso77j9E+cN9iCh/uA8R5Q/3IbIGpRQSEhIQEBCQ7XJFMkBZrlw5ODs74/bt2ybTb9++DX9/f7PruLu7w93d3WSar6+vtZpodd7e3vxCIcoH7kNEecf9hyh/uA8R5Q/3IaL84T5EBS27zEm9IjlIjpubG0JCQrBz507DtPT0dOzcuRMtW7a0YcuIiIiIiIiIiIjIWJHMoASAiIgIhIeHo0mTJmjWrBnmzZuHpKQkDBo0yNZNIyIiIiIiIiIiov8psgHKl19+GXfv3sWUKVMQFRWFRo0aYdu2bZkGzilq3N3dMXXq1Ezd1YnIMtyHiPKO+w9R/nAfIsof7kNE+cN9iGxJp3Ia55uIiIiIiIiIiIjISopkDUoiIiIiIiIiIiJyDAxQEhERERERERERkc0wQElEREREREREREQ2wwAlERERERERERER2QwDlEXIokWLULVqVXh4eKB58+Y4fPiwrZtEZJdmzZqFpk2bwsvLCxUqVEDXrl1x4cIFk2UePnyIESNGoGzZsihVqhR69OiB27dv26jFRPbr/fffh06nw5gxYwzTuP8QZe/mzZvo168fypYtC09PTwQHB+Po0aOG+UopTJkyBRUrVoSnpyfatm2LP/74w4YtJrIfaWlpmDx5MqpVqwZPT09Ur14dM2bMgPHYr9yHiDS//PILOnfujICAAOh0OmzcuNFkviX7S3R0NMLCwuDt7Q1fX1+89tprSExMLMR3QcUBA5RFxHfffYeIiAhMnToVx44dQ8OGDdG+fXvcuXPH1k0jsjt79+7FiBEjcPDgQWzfvh0pKSlo164dkpKSDMuMHTsWmzdvxtq1a7F37178/fff6N69uw1bTWR/jhw5gs8++wwNGjQwmc79hyhrMTExCA0NhaurK7Zu3YqzZ8/io48+QunSpQ3LzJ49G/Pnz8eSJUtw6NAhlCxZEu3bt8fDhw9t2HIi+/DBBx/g008/xcKFC3Hu3Dl88MEHmD17NhYsWGBYhvsQkSYpKQkNGzbEokWLzM63ZH8JCwvDmTNnsH37dvz444/45ZdfMHTo0MJ6C1RcKCoSmjVrpkaMGGF4nJaWpgICAtSsWbNs2Coix3Dnzh0FQO3du1cppVRsbKxydXVVa9euNSxz7tw5BUAdOHDAVs0ksisJCQnq8ccfV9u3b1etW7dWo0ePVkpx/yHKyfjx41WrVq2ynJ+enq78/f3VnDlzDNNiY2OVu7u7Wr16dWE0kciuvfDCC+rVV181mda9e3cVFhamlOI+RJQdAGrDhg2Gx5bsL2fPnlUA1JEjRwzLbN26Vel0OnXz5s1CazsVfcygLAIePXqEyMhItG3b1jDNyckJbdu2xYEDB2zYMiLHEBcXBwAoU6YMACAyMhIpKSkm+1Tt2rURGBjIfYrof0aMGIEXXnjBZD8BuP8Q5eSHH35AkyZN0KtXL1SoUAGNGzfG559/bph/9epVREVFmexDPj4+aN68OfchIgBPPvkkdu7ciYsXLwIATp48if3796Njx44AuA8R5YYl+8uBAwfg6+uLJk2aGJZp27YtnJyccOjQoUJvMxVdLrZuAOXfvXv3kJaWBj8/P5Ppfn5+OH/+vI1aReQY0tPTMWbMGISGhqJ+/foAgKioKLi5ucHX19dkWT8/P0RFRdmglUT25dtvv8WxY8dw5MiRTPO4/xBl78qVK/j0008RERGBSZMm4ciRIxg1ahTc3NwQHh5u2E/MHddxHyICJkyYgPj4eNSuXRvOzs5IS0vDu+++i7CwMADgPkSUC5bsL1FRUahQoYLJfBcXF5QpU4b7FBUoBiiJqFgbMWIETp8+jf3799u6KUQO4fr16xg9ejS2b98ODw8PWzeHyOGkp6ejSZMmeO+99wAAjRs3xunTp7FkyRKEh4fbuHVE9m/NmjVYtWoVvvnmG9SrVw8nTpzAmDFjEBAQwH2IiMiBsYt3EVCuXDk4OztnGiH19u3b8Pf3t1GriOzfyJEj8eOPP2L37t2oVKmSYbq/vz8ePXqE2NhYk+W5TxFJF+47d+7giSeegIuLC1xcXLB3717Mnz8fLi4u8PPz4/5DlI2KFSuibt26JtPq1KmDa9euAYBhP+FxHZF5b7/9NiZMmIA+ffogODgY/fv3x9ixYzFr1iwA3IeIcsOS/cXf3z/T4LupqamIjo7mPkUFigHKIsDNzQ0hISHYuXOnYVp6ejp27tyJli1b2rBlRPZJKYWRI0diw4YN2LVrF6pVq2YyPyQkBK6urib71IULF3Dt2jXuU1TsPffcczh16hROnDhhuDVp0gRhYWGG+9x/iLIWGhqKCxcumEy7ePEiqlSpAgCoVq0a/P39Tfah+Ph4HDp0iPsQEYAHDx7Aycn0NNbZ2Rnp6ekAuA8R5YYl+0vLli0RGxuLyMhIwzK7du1Ceno6mjdvXuhtpqKLXbyLiIiICISHh6NJkyZo1qwZ5s2bh6SkJAwaNMjWTSOyOyNGjMA333yDTZs2wcvLy1A7xcfHB56envDx8cFrr72GiIgIlClTBt7e3njjjTfQsmVLtGjRwsatJ7ItLy8vQ71WvZIlS6Js2bKG6dx/iLI2duxYPPnkk3jvvffQu3dvHD58GEuXLsXSpUsBADqdDmPGjMHMmTPx+OOPo1q1apg8eTICAgLQtWtX2zaeyA507twZ7777LgIDA1GvXj0cP34cH3/8MV599VUA3IeIMkpMTMSlS5cMj69evYoTJ06gTJkyCAwMzHF/qVOnDjp06IAhQ4ZgyZIlSElJwciRI9GnTx8EBATY6F1RkWTrYcSp4CxYsEAFBgYqNzc31axZM3Xw4EFbN4nILgEwe1uxYoVhmX/++UcNHz5clS5dWpUoUUJ169ZN3bp1y3aNJrJjrVu3VqNHjzY85v5DlL3Nmzer+vXrK3d3d1W7dm21dOlSk/np6elq8uTJys/PT7m7u6vnnntOXbhwwUatJbIv8fHxavTo0SowMFB5eHiooKAg9X//938qOTnZsAz3ISLN7t27zZ77hIeHK6Us21/u37+vXnnlFVWqVCnl7e2tBg0apBISEmzwbqgo0ymllI1io0RERERERERERFTMsQYlERERERERERER2QwDlERERERERERERGQzDFASERERERERERGRzTBASURERERERERERDbDACURERERERERERHZDAOUREREREREREREZDMMUBIREREREREREZHNMEBJRERERERERERENsMAJRERERGRA6hatSp0Oh0GDhxo66YQERERFSgGKImIiIhyMGzYMOh0Ouh0OuzatStX6/7888+GdUePHm2lFhIREREROS4GKImIiIhyMGDAAMP9lStX5mrdr7/+2uzz2MqePXsMAdM9e/bYujlERERERAxQEhEREeUkNDQU1atXBwCsW7cO//zzj0XrJSUlYcOGDQCAevXqISQkxGptJCIiIiJyVAxQEhEREVmgf//+AID4+Hhs2rTJonXWr1+PpKQkk/WJiIiIiMgUA5REREREFujfvz90Oh0Ay7t567t3Ozk5oV+/flZrGxERERGRI2OAkoiIiMgCQUFBCA0NBQD89NNPuHPnTrbL//3339i5cycA4Nlnn8Vjjz2WaZmNGzeiV69eCAwMhIeHB3x9fdGkSRNMnz4dMTExFrVry5Yt6NevH4KCglCyZEl4eHigWrVq6NGjB7788ks8ePAAAPDnn39Cp9OhTZs2hnXbtGljqEepv3355ZeZXuPRo0dYvHgx2rRpg/Lly8PNzQ3+/v7o1KkTVq5cifT09CzbN3DgQOh0OlStWhUAcOvWLYwfPx716tWDl5dXrmthmquhuWbNGjz33HMoX748PD09UatWLYwbNw7R0dFZPs8zzzwDnU6HZ555JtvXmzZtmuH1zNHPmzZtGgBg9+7d6Nq1KwICAuDp6Yk6depgxowZhkxavS1btqBTp06G5erWrYtZs2bh0aNHFn8WR44cwSuvvILKlSvDw8MDlStXxqBBg3D+/HmL1r906RLGjh2L4OBg+Pj4wNPTE0FBQRg4cCCOHj2a5XoZ/wfp6elYvnw52rRpAz8/Pzg5OXGkcSIiIsodRUREREQWWbp0qQKgAKhPPvkk22XnzJljWPY///mPybzo6Gj17LPPGuabu1WoUEEdOHAgy+e/d++eeu6557J9DgBqxYoVSimlrl69muOyxsvrXb16VdWuXTvbdVq1aqXu379vtp3h4eEKgKpSpYo6cOCAKleuXKb1d+/eneNnr7d7927Dejt37lT9+vXLsl01atRQt27dMvs8rVu3VgBU69ats329qVOnGp7PHP28qVOnqlmzZimdTme2LU8++aRKTExU6enpatSoUVm2uUOHDio1NdXsa1WpUkUBUOHh4eqLL75QLi4uZp/D3d1drVmzJtv3NWfOHOXq6pplO3Q6nZo8ebLZdY3/B1u3blVt27bNtH54eHi2r09ERERkjBmURERERBbq3bs3PDw8AJiOzm2Ofn6pUqXQvXt3w/Tk5GS0bdsWu3btgrOzM/r374/Vq1fj4MGD2LdvH959912ULVsWd+7cQadOnfDXX39leu4HDx6gTZs2hgzNkJAQfPbZZ/j1119x9OhRbNiwAWPHjkVAQIBhncceewynTp3C8uXLDdOWL1+OU6dOmdy6du1qmJ+YmIjnnnvOkJHXtWtX/PDDDzh69CjWrl2L1q1bAwD279+Pzp07Iy0tLcvPIzExET169MDDhw/xf//3f9izZw8OHz6ML774AhUrVsz2s8zK5MmTsXLlSnTt2hXr169HZGQktmzZghdeeAGAliFYGLZu3YqJEyeiRYsW+Oabb3D06FFs27YNHTt2BAD89ttvmDVrFubOnYv58+ejY8eOWLduHSIjI7Fp0ya0aNECALBt2zZ8/vnn2b7WiRMn8K9//QsVKlTAggULcOjQIezduxfjx4+Hu7s7kpOTERYWlmUW5Jw5c/D2228jJSUFDRo0wKeffoodO3bg6NGjWLVqFVq2bAmlFGbMmIH58+dn25bx48djx44d6NKli8n/QP++iYiIiCxi6wgpERERkSPp3bu3IUvs/PnzZpc5efKkYZkBAwaYzJs0aZICoHx9fdXRo0fNrv/nn3+qihUrKgCqb9++meaPHTvW8PwjRoxQ6enpZp8nOTlZRUVFmUwzzn7LKXPxrbfeMiz773//O9P89PR0FRYWZlhm8eLFmZbRZ1ACUKVKlVInTpzI9jVzYtx+AGrmzJlm29WuXTsFQLm4uKg7d+5kWqagMygBqB49emTKfkxNTVUtWrRQAJSXl5fy8PBQY8aMyfQ8SUlJhgzJBg0amH0t/Xz8LyPVXHborl27DJmVTZs2zTT/zJkzhszJqVOnmt120tLSDJmppUqVUtHR0SbzM/4PzG0bRERERLnBDEoiIiKiXBgwYIDhflZZlMbTjZdPTEzEokWLAAAzZsxASEiI2fWrVKmCyZMnAwDWrl1rUr8wNjYWn332GQDJnPzkk0+yrI/o5uYGPz8/S95WJsnJyVi2bBkAoF69eoYai8Z0Oh0WL16MsmXLAgAWLlyY7XOOGzcODRs2zFN7zAkJCcGkSZPMtisiIgIAkJqaigMHDhTYa2alRIkSWLp0KZydnU2mOzs7Y+jQoQCAhIQElC9fHrNnzza7fnh4OADg999/R1xcXLav99FHH8Hf3z/T9DZt2mDIkCEApEZlxizKjz76CCkpKWjSpAmmTp1qdttxcnLCggUL4O7ujsTERHz//fdZtqNmzZpmtw0iIiKi3GCAkoiIiCgX2rdvbwj6rVq1Ckopk/np6en45ptvAACVKlUyGZRm7969hsBTz549s32dp59+GgCQkpKCyMhIw/Rdu3YZBr4ZNWpUpoBYQYmMjERsbCwAGegmq9fx9vZG7969AQBnz57FrVu3snzOsLCwAm1j3759swzOGgd/r1y5UqCva87zzz+PMmXKmJ1nHJTt3r07XF1dc1zu6tWrWb5W6dKl8dJLL2U5/9VXXzXc37Fjh8m8zZs3AwB69OiR5WcHAL6+vggODgaAbAO8L7/8stW2QSIiIio+GKAkIiIiygUXFxf07dsXgIyMvX//fpP5O3fuxN9//w1AAnJOTtrhlnE2W8WKFTONoG18q1+/vmHZqKgow/3jx48b7j/11FMF++aMnD592nC/efPm2S5rPN94PWOlSpVCUFBQwTTuf2rXrp3lPONgYUJCQoG+rjk1a9bMcp6vr2+ul8uuzY0bN4aLi0uW8xs1agQ3NzcAwKlTpwzT//rrL9y9excAMHHixGy3P51OZ9hejbe/jBo0aJDlPCIiIiJLMUBJRERElEvZdfPOqns3ANy5cydPr6fPmASAe/fuGe7ndXAZS0RHRxvuV6hQIdtljbsaG69nzDj4VlBKlCiR5TzjwHB2g/cUdlsKos05/T9cXFwMAVrj/0dBbH8ZlS5dOk/PSURERGQs60uvRERERGRWo0aNEBwcjFOnTmHt2rWGen1JSUlYv349AOliXLduXZP1jINOx44dy7Krb0aVKlUquMbnQXZdgS3FbsAFJ6//D+Ptb8qUKejVq5dF65UsWTLLefy/EhERUUFggJKIiIgoDwYMGIC3334bsbGx2Lx5M3r27IkNGzYYBrTJmD0JwDCYDACUL18+T4HHcuXKGe7funUL1apVy0Prc2bcRfr27dvZdk027gKcVR1Ge6PPVkxPT892OeMBiuzF7du3s52fmppqyJw0/n8Yb3+urq4mZQSIiIiIbIldvImIiIjyICwszJA9tnLlSgBa925XV1e88sormdZp3Lix4f6vv/6ap9d94oknDPd/+eWXXK9vafadcfDq0KFD2S57+PBhs+vZMy8vLwBATExMtstdvHixMJqTKydOnEBqamqW80+ePIlHjx4BMP1/BAUFwcfHB0Detz8iIiIia2CAkoiIiCgPKlasiLZt2wIAtmzZgtOnT2Pnzp0AgA4dOqB8+fKZ1mnbtq2hBuH8+fMzjQBuiTZt2hi63C5YsCDX9RU9PDwM95OTk7NcLiQkxFA38quvvsoy0zAhIQFr1qwBANStW9eqdTELkj7z9OLFi1kOSHPv3j1s3769MJtlkejoaMNo3OYsX77ccF+/jQLSHbtTp04AgJ9//hnnzp2zXiOJiIiIcoEBSiIiIqI80nfjTklJQZ8+fQzBQnPduwEZKGbkyJEAgN9++w1jx47Ntovx7du3sWzZskzPMWzYMABAZGQkxowZk2WgMyUlJdPAKMYBxMuXL2f52u7u7hg8eDAAGZl7xowZmZZRSmHkyJGGgXv0780RtG7dGgDw6NEjLFiwINP8lJQUDB48GP/8809hN80iERERZrt67927F0uXLgUgQeamTZuazJ84cSKcnZ2Rnp6Onj174saNG1m+RlpaGlatWpXtMkREREQFgTUoiYiIiPKoW7du8PLyQkJCAs6cOQNARjXu3Llzluu888472Lt3Lw4dOoRPPvkEe/bswZAhQ9CoUSOULFkSMTExOHPmDHbs2IGtW7ciODjYECjUmzFjBrZv345Tp05h4cKFOHDgAIYNG4bg4GC4ubnhxo0b2LdvH1avXo2ZM2di4MCBhnUDAwNRqVIl3LhxAx9++CEqVaqEWrVqGbqr+/n5Gbo/T5kyBevXr8eVK1cwbdo0nDp1CoMGDULFihVx9epVLFy4EHv27AEAtGzZEkOHDi3AT9e6XnjhBVSpUgV//fUXJk+ejHv37qF79+7w8PDAmTNnMH/+fBw/fhwtWrTAwYMHbd1cEw0bNsTZs2cREhKCiRMnolmzZkhOTsaWLVswd+5cpKamwsXFBYsWLcq0bnBwMD788EOMHTsWZ8+eRf369TF06FA8++yz8PPzw8OHD/Hnn3/iwIED+P7773Hr1i2cOnXK5gM1ERERUdHGACURERFRHnl6eqJnz55YsWKFYVrv3r3h7u6e5Tru7u7Yvn07Bg4ciPXr1+PkyZPZZh56e3tnmlaiRAns2rULPXr0wC+//ILIyMhcBQcnTZqE4cOH4+rVq3jppZdM5q1YscIQ0PTy8sLOnTvRsWNHnD9/HuvWrcO6desyPV9oaCh++OEHhxrR2c3NDStXrkSHDh2QlJSEuXPnYu7cuYb5zs7OmDdvHqKjo+0uQNmoUSOMHDkSr7/+utltx83NDV999RWaN29udv0xY8agZMmSGDNmDOLi4jBnzhzMmTPH7LJubm4mZQGIiIiIrIFdvImIiIjyITw83ORxVt27jXl5eWHdunXYt28fBg8ejFq1asHLywsuLi4oU6YMmjZtihEjRmDLli1Z1kAsV64c9u7di/Xr16Nnz56oVKkS3N3d4eHhgaCgIPTq1QurVq0yO1jP66+/jnXr1qFdu3aoUKECXFyyvmZdtWpVnDx5EgsXLkTr1q1RtmxZuLq6ws/PDx06dMDXX3+NX375xWFG7zbWqlUrREZGon///ggICICrqysqVqxoCPyOGjXK1k3M0uDBg7Fv3z707t0bAQEBcHNzw2OPPYYBAwbg+PHj6NOnT7brDxkyBFeuXMH06dMRGhqKcuXKwcXFBSVLlkTNmjXRo0cPLFmyBDdv3kSNGjUK6V0RERFRcaVTeanOTkRERERERERERFQAmEFJRERERERERERENsMAJREREREREREREdkMA5RERERERERERERkMwxQEhERERERERERkc0wQElEREREREREREQ2wwAlERERERERERER2QwDlERERERERERERGQzDFASERERERERERGRzTBASURERERERERERDbDACURERERERERERHZDAOUREREREREREREZDMMUBIREREREREREZHNMEBJRERERERERERENsMAJREREREREREREdnM/wPit9bmkpXvTQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE3\n", + "predicted_labels3_v2, ire3_v2 = lib.predict_ae(ae3_v2_trained, test, IREth3_v2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ql1JMAM6sf7Z", + "outputId": "28a32237-a652-410a-d768-4088d74ac238" + }, + "id": "Ql1JMAM6sf7Z", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('test', ire3_v2, IREth3_v2, 'AE3_v2')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 727 + }, + "id": "jczBRWjTt35R", + "outputId": "d63185b5-9904-4e31-c77e-afc23b63f7dd" + }, + "id": "jczBRWjTt35R", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2l1JREFUeJzs3Xl4VOX5xvF7spAQQoIQISCrgiIoqMjmAogCgktVsIqooNZaxZVfW6V1w6WotVoXSmtrxb0uFXcRVBBREFBZpAKyLwKyJSFAkkkyvz8OZ84ZyDrbmTPn+7muXLwzc2bmTchMZu553vfxBQKBgAAAAAAAAADAASlOTwAAAAAAAACAdxFQAgAAAAAAAHAMASUAAAAAAAAAxxBQAgAAAAAAAHAMASUAAAAAAAAAxxBQAgAAAAAAAHAMASUAAAAAAAAAxxBQAgAAAAAAAHAMASUAAAAAAAAAxxBQAgCApPDDDz/ohhtuUJcuXdS4cWP5fL7g17p165yeHgAAAIBqEFACAOBiAwYMCIZw9957b7XH2cO6g79SU1PVpEkTderUSRdffLH+9a9/qbi4OKw51PdrzJgxkf8QJL377rs68cQTNXnyZP3www/1mj/gdXfeeWfI4/L666+v923E4nmgqKhI06ZN04QJEzRixAh1795dzZo1U4MGDZSZman8/HwNGDBAd955p3788ccIfwrOWrdunf75z3/q8ssvV/fu3XXYYYcpPT1dTZs2Vbdu3XTdddfp888/d3qaAADEDAElAAAeV1lZqcLCQq1atUpvvvmmrr32WnXo0EFTp051emp1UlxcrDFjxqi0tFSS1LJlS1188cW64YYbNHbsWI0dO1Y5OTkOzzJ89957b51CaDcYM2ZM8HuZMmWK09OJi3Xr1gW/5/bt2zs9nUMEAgG9+OKLIee99tprwceTk/7whz9o6NChuvfee/Xf//5XS5Ys0a5du+T3+1VaWqpt27bp888/14MPPqjOnTvrxhtvVElJidPTrpfvvvtOvXv3VocOHfTrX/9aL7/8spYsWaKCggKVl5dr9+7dWrp0qZ555hkNGDBAZ5xxhjZs2OD0tAEAiLo0pycAAADi64ILLtARRxwRPF1ZWakdO3Zo7ty52rRpkyRpx44dGjFihN58801deOGFdb7tnj17qlevXnU+vk+fPnWfeDXef/997d69W5LUtWtXLViwQA0bNoz4dgEvmDlz5iGB1+7du/Xuu+/q4osvDus2Y/E8kJubq2OPPVYdOnRQTk6OysrKtHbtWs2bN08lJSWqrKzUpEmTtHz5ck2bNk1pae54m7NixQrNnz8/5Lyjjz5axx13nPLy8lRQUKCvvvoq+Nw8a9Ys9e3bV1988YWOPPJIJ6YMAEBMuOMvNwAAiJpbbrlFAwYMOOT8yspKPf/887r++utVWlqqyspKXX/99RoyZIiysrLqdNvDhg2Le5Xft99+GxyPHDmScBKoh+effz44btiwofbv3x88P9yAMlrPAyeddJIee+wxDR48WF26dJHP5zvkmKKiIt177716/PHHJUmffvqp/vrXv+q3v/1txPcfTx07dtSvfvUrXX755SEfIEnGc/OUKVN00003ad++ffrpp580atQoffXVV1X+TAAAcCOWeAMAAElSSkqKrrrqKj3yyCPB87Zt26a3337buUnVgVk9KRnLuwHUTXFxsf773/8GTz/22GPB8ccff6xt27Y5Ma2gq6++Wrfddpu6du1abRCXk5Ojxx57TFdddVXwvH/84x/xmmLEWrZsqeeee07Lly/X7bfffkg4KRnPzVdffbVeeuml4Hnz5s3T9OnT4zlVAABiioASAACEuO6665SZmRk8PXv2bAdnUzu/3x8cp6Tw0gaoq//+97/au3evJKlDhw667rrrdMIJJ0iSysvL9fLLLzs4u/q5+uqrg+NVq1a5plFW//79NWbMGKWmptZ67IUXXhiydP6DDz6I5dQAAIgrXsUDAIAQGRkZOvbYY4Onf/rpJwdnUzV74xj7EtWrrrrqkA7B1TVjKS4u1pNPPqkhQ4aodevWyszM1GGHHabjjjtON954o77++us6zcV+X6bFixfrlltu0XHHHaemTZvK5/PpggsuqNf3aHZFnjBhQvC8CRMm1LsbeiAQ0NSpUzV69GgdffTRys3NVWZmptq0aaMLLrhAzz//vMrLy+s0p+XLl+v3v/+9+vTpo7y8vGA35ebNm6tHjx666qqr9Pzzz4dUtUpS+/bt6/R/FY1GQOHOsSp+v18vvviifvnLX+rII49U48aN1ahRI3Xo0EEjR47U1KlTFQgEqrzulClT5PP51KFDh+B569evr7aTtRPs/x+XX365fD6frrjiiiovT3SHH354yOk9e/ZE/T5uvvnm4P/XddddV+frvfLKK8Hrde3aNaI5nHrqqcHxunXrIrotAAASCXtQAgCAQ9j3cXRbV9y6eP/993Xttddq69atIeeXlpaqoKBAy5Yt06RJk3TZZZfpn//8Z5334JSM8PSBBx5QRUVFtKddb0uWLNHo0aO1aNGiQy7btGmTNm3apHfeeUcTJ07UW2+9pS5dulR7WzV9X9u3b9f27dv17bffasqUKRo1alTIctR4ieYcZ82apV/96ldavXr1IZetW7dO69at03/+8x/16dNHb775ZpVLcxPZ+vXrNWvWrODpyy+/XJJ02WWX6fe//70qKiq0ZMkSLVq0KFhVmcj+97//BcdZWVmHBJbRcPnll+upp56SJL3xxht66qmn1KBBg1qvZ/89M3/O4bKH2YnwHAMAQLQQUAIAgEPYqyZbtGjh4Eyq1qtXL40dO1aS0RRj+fLlkqQzzzxTnTt3DjnWXg0qSa+99ppGjRoVfHOfmpqq0047TR07dlRxcbG++OKL4Pf/yiuvaO3atfrss89Clr1X589//nOw4vGoo45Sr169lJWVpXXr1ik9Pb1e3+OFF16o4447TvPnz9eCBQskVd8duaouyLNnz9Z5552noqIiSVJ6erp69uypTp06KT09XevWrdOcOXNUUlKiFStW6JRTTtHcuXMP+XlJ0hNPPBFSyZmXl6c+ffqoZcuW8vl82rVrl5YvX64ffvihytBk9OjR2rlzZ63/V5Lq1f05mnO0e+ONNzRq1Kjg9gENGzZUnz591L59e6WkpGjlypWaO3euysvLNW/ePPXt21cLFiwIeawce+yxGjt2rPbs2aMXXnhBktS4cWNdeeWVYX1/0fbiiy8Gqz979+6to48+WpKUn5+vQYMGadq0aZKMKspEDyjNRjmmCy64ICZdvHv16qWjjz5aK1eu1O7du/Xhhx/WWhm9fft2zZgxQ5IRLo4aNSqiOSxdujQ4btOmTUS3BQBAQgkAAADX6t+/f0BSQFLgnnvuqfY48xhJgZkzZ9Z4mytWrAg5/umnn47KHGJl9OjRwft/7rnnajx21apVgezs7ODxvXr1Cvz4448hx1RUVAT+8pe/BFJSUoLH3XTTTdXepv1nlZaWFsjNzQ1MnTr1kONKSkrC+fYC99xzT71/vlu2bAk0b948eL0rr7wy8NNPPx1y3NatWwMXXnhh8Ljjjz8+UF5eHnKM3+8P5OXlBY+ZOHFioKysrMr73blzZ+Df//534OGHH67y8vr8X9VHNOf4/fffBxo2bBiQFPD5fIHf/va3gd27dx9y3OrVqwOnnXZa8D6HDh1a5e2tXbs2eEy7du3C/RajrlOnTtU+xl9++eXgZc2bNw/4/f5aby/ezwMlJSWBH3/8MfD3v/89cOSRRwbvOz8/P7Bhw4aY3e+ECROC9zV8+PBaj3/yySeDx/fv3z+i+16/fn0gNTU1eHtvvPFGRLcHAEAioYISAAAElZeX65ZbbgmezsnJ0aWXXlrn63/44YfasWNHnY+/77771LRp03rNMRL33XdfsHlGx44dNX36dOXm5oYck5KSonHjxsnn82ncuHGSpEmTJum2224L2U+wKpWVlXr33XfVr1+/Qy7LyMiI0ndRuz/+8Y/6+eefJRn75j3xxBNVHteiRQu98cYbGjx4sD777DMtXbpUb775pi655JLgMcuXLw/+n5566qm64447qr3fpk2bhnRTjpdozvHmm2/W/v37JUl/+ctfdNttt1V53JFHHqlp06apV69e+t///qePPvpIX3/9tXr37h3BdxIfX331lX788UdJRmWt/f9bMioQs7OzVVxcrJ9//lkfffSRzjvvvDrffiyeBzZt2lRrxWDv3r31xhtvxLSy8PLLL9c999wjydgqorCw8JDnEDt7oyH7/p7hGDduXLD6t23btvX6PwEAINERUAIA4HGVlZXasWOHvvzySz300EOaP3++JCktLU3//ve/1axZszrf1oIFC4LLkevit7/9bdwCyoKCAr322mvB04888kiNwcItt9yiZ599VsuWLVNlZaWeeeYZTZw4scb7GDFiRJXhZDxt3749uOddfn6+Hn744RqPT01N1YMPPqi+fftKMgIVe2BlLhGXDm1EkiiiNcfFixfrs88+kySdeOKJuvXWW2s8vlGjRrrrrrs0cuRIScbPzg0Bpb35zdChQ5WXlxdyeVZWloYPHx487vnnn69XGBbv54GGDRvqoYce0s033xz2bdTVkUceqVNOOUVfffWVSktL9eabb+qaa66p8thVq1YFm21lZmZqxIgRYd/v888/r//+97/B0xMnTozrhx4AAMQaXbwBAPCYM844I6R7cGpqqlq0aKGLLrooGE4ec8wxevvttzV8+HCHZxs9ZqAgGfsT1ha4pKSk6Oqrrw6enjlzZq33UZ9q01j55JNPVFZWJkm66KKL6rR3Zu/evdWoUSNJ0pw5c0Ius1ejzZw5UytXrozibKMjWnP88MMPg+ORI0fWqbv2wIEDg+ODf3aJqKSkRK+//nrwdHVVffa9Mt977z3t2rUr5nOrSXZ2tsaOHRv8uvLKK3X66acrMzNT+/fv1y233KKTTjqpXsFouOyNbuwVkgezX3buuefW+IFITRYuXKjf/OY3wdMjR47UZZddFtZtAQCQqKigBAAAIVq0aKEXXnghrGYl99xzT0izikTy3XffBce9evWqUxONU089NeT6gUCgxtCqR48ekU0yCubOnRscL1myRDfeeGO9rr97927t3bs3GFi2adNGffr00bx581RYWKgePXroiiuu0IUXXqhTTz21Xh3OYyVac7T/7GbOnKn169fXep3AgUYzkrRx48b6Tz7O3nnnHRUUFEiSmjRpUm1QP2DAALVu3VqbNm1SWVmZ/vOf/+iGG26o033E4nmgSZMmevrppw85f9euXXr44Yf15z//Wd9995369eund999V4MGDYrq/dv98pe/1C233CK/36/PP/9cmzZtUuvWrQ85LhrLu9euXavzzjtPJSUlkqRu3brp73//e3gTBwAggRFQAgDgMRdccIGOOOKI4OmdO3dq9erVwcqjbdu26fTTT9d///tfnXvuuU5NM+q2b98eHLdr165O12nfvn1wXFZWpj179ignJ6fa4xNhCbS9A/ucOXPCqurbvXt3MKCUpGeffVYDBw7Utm3bVFxcrMmTJ2vy5MlKS0vTCSecoH79+mnIkCE688wzlZqaGpXvo76iMUf7z+6jjz6q9xx2794d9vzjxb68++KLL652mXBKSopGjRoV3CLg+eefr3NAGU9NmzbVww8/rPz8fI0bN04lJSUaNWqUVq1aVeNjNRLNmjXT0KFD9e6776qyslKvvvqqfve734UcM3/+/OA+n+bx9bVlyxYNGjRIW7dulWTtexqr7wsAACexxBsAAI+55ZZb9PTTTwe/Xn31Vc2fP1+LFy9W9+7dJRlh3MiRI7V69WqHZxs9ZnMcSSHhW00OPm7Pnj01Ht+wYcP6TyzKCgsLI76N8vLykNNdunTR4sWLddNNN4UsUy0vL9fChQv12GOPaciQIWrXrp3+9a9/RXz/4YjGHCP92ZkNTBLV1q1bNX369OBp+1Llqtir/ubPn6/ly5fHbG6RuuWWW9SpUydJxocRL7zwQkzvz/6zMfd8tbOfd8kllyg9Pb1et79z504NGjQo+BzcsmVLffLJJ2rZsmWYMwYAILERUAIAAEnG0sHp06cHqyuLi4v1q1/9yuFZRU92dnZwvHfv3jpd5+DjGjduHNU5xYI9VH3ssccUCATq/WWvHDW1aNFCTz75pLZt26ZZs2bp/vvv19ChQ0OquTZv3qxrr702Ls1KqhLpHO0/u7feeiusn10ie+mll0JC1P79+4fsR3vw13HHHRdyfXv1ZaJJSUnRmWeeGTz95ZdfxvT+zjvvvGAQvmTJEn3//ffByyoqKkIactUWBB+sqKhIQ4YM0bJlyyQZe+Z+8skn6tChQxRmDgBAYiKgBAAAQc2bN9dTTz0VPD1r1ix98MEHDs4oeuzLrzds2FCn66xbty44btCggSsCyhYtWgTH5tLQaMrIyFD//v1155136sMPP9SOHTv00Ucf6bTTTgse89RTT8WlWUm05xjrn53TIg0YX3rpJVVWVkZpNtF32GGHBcc7d+6M6X1lZGSEdOW2V0xOnz5dP//8sySpY8eO6tu3b51vd+/evRo2bJi++eYbSVJubq6mTZumLl26RGnmAAAkJgJKAAAQwmwsYrrzzjsdnE30nHjiicHx/Pnz67Qc96uvvgq5fl26Okdbfe+zd+/ewXGsq8gkKT09XWeffbY++eSTkIq7995775Bjnfj5SXWfYyx+dk59zwf79ttvQ6r8evbsqd69e9fpy2wotWnTJn366adOfQu12rJlS3DctGnTmN+fvTLy1VdfDVbQ2pvjjBo1qs63V1JSovPPPz/4u5eVlaUPPvggIZpvAQAQawSUAADgEPYOvIsWLdK7777r3GSi5JRTTgk2BNm+fXutlaGVlZV67rnngqcHDhwY0/lVJzMzMzj2+/21Hj9kyJBgoPTVV19p8eLFMZubXUZGhgYPHhw8vW3btkOOqe/3Em21zdHeFOqtt96q8nuoL6e/Z5O9evL444/X/PnzNW/evDp9nX322VXeTiIpKysL2V/z2GOPjfl99u/fX23atJFkVGXPnj1be/fu1dtvvx08pq7Lu/1+v4YPH67PPvtMkvG7+s4774R8WAQAQDIjoAQAAIc466yzdMoppwRPP/DAAw7OJjqaNGmiSy65JHj6d7/7XY1Nb55++mktXbpUkrG/3a9//euYz7EqzZo1C443b95c6/FHHHFEMBQJBAK68sorVVRUVKf7qqysDOl2Lhmdqeu6rHfjxo3BcfPmzQ+5vL7fS11Fa469evXSgAEDJEn79+/XFVdcobKysjrdbllZWZVdvJs0aaKUFOMl9/bt2x0JKf1+v1555ZXg6fruiWg/furUqbU2i4qGwsLCejUduuuuu0K6sF900UWxmFYIn88XUiH58ssv6+233w7uXdunTx917Nix1tupqKjQZZddpg8//FCSlJaWptdff11nnXVWbCYOAEACIqAEAABVuvvuu4PjBQsWaNq0aQ7OJjruvvvuYLOclStXasiQIVqzZk3IMZWVlXriiSc0bty44Hljx46tsnFMPNiXJE+fPr1OnaYffPDBYLffJUuWqFevXiHVZQfbtGmTHn/8cR1zzDEhzT0k6Z133tHRRx+tRx99NGRPTrvS0lI9/fTTevPNN4PnDR06tMbv5Z133qlz+FebaM7xqaeeCv6OzJgxQ/369dPXX39d7X2vXLlS999/v9q3b1/lsvCMjIxgd2m/3x9SXVeTMWPGBJvVRPq7Z+7DKRmh2siRI+t1/fPPPz+4/+q+ffv0xhtvRDSfupg5c6a6du2qyZMnHxKa261Zs0ZXXHGFHnnkkeB5l19+uY4//viYz9G8L9Obb76pf//731VeVp1AIKBrrrkm+HuZkpKiF198Ueeff370JwsAQAJLc3oCAAAgMQ0ZMkS9e/cOhjP3339/yFLPqtiDkLrIysoKCRZi7aijjtK//vUvjRo1ShUVFZo7d66OOeYYnX766TrqqKNUXFysL774IqS6r0+fPnGd48F69eqlNm3aaOPGjdqyZYs6d+6swYMHKy8vL7i/Yc+ePUOqQ1u1aqV33nlHw4YN044dO7RixQoNGTJERxxxhHr16qXDDz9cfr9fO3bs0Pfff6+1a9fWOIfVq1frd7/7nX73u9+pbdu26tatW7D6cOvWrZo3b5527doVPH7UqFEhFbimoUOHqmHDhtq/f78WLVqkY489VgMGDFCTJk2C38vgwYNDlmHXVbTmeNxxx+nVV1/VJZdcon379unrr79Wnz59dNRRR+mkk05S06ZNVVJSop9//llLliypUyXo8OHD9ac//Sl4v1OmTFHHjh2Vnp4ePObRRx+t9/dcV/Zl2f369QsuS66rhg0b6sILL9QLL7wQvL2rr7662uOj9TywYsUK3XDDDbrxxhvVsWNHdenSRU2bNlV6erp2796tZcuWBTtdm0499VT97W9/q/N9R6pr16464YQTtGjRIu3evTu4RDs9PT3kMVmdyZMnh/z/HHXUUZozZ47mzJlTp/t/+umnw5s4AACJJgAAAFyrf//+AUkBSYF77rmn2uPMYyQFZs6cWefb/+CDD0Ku+8knn9Q4h/p+5ebm1v+bPsjo0aODt/fcc8/V6TrvvfdeoEWLFrXOb+TIkYG9e/fWeFv242PlvffeCzRo0KDaeY4ePbrK661bty5w5pln1vn/o0WLFoFp06aF3MYbb7wR8Pl8dbp+SkpK4IYbbgiUlZVV+71Mnjy5xtur6fe4OtGeYyAQCCxatCjQo0ePOv/s2rdvH/juu++qvK2CgoJA586da7z+wey/1+3atav3z8S0Y8eOkN+df/7zn2HdzvTp04O34fP5AmvWrAm5PNrPAx9++GG9bqNBgwaB8ePHB/bt2xfW9xeJRx999JD5nHfeeXW67j333BP2zy2WzzkAAMQbFZQAAKBaw4YN08knn6yFCxdKku677z6deeaZDs8qcueee65WrVqlf//733r//fe1bNky7dixQw0bNlSrVq10xhln6Morrwzp6uykc889VwsXLtSkSZM0Z84cbdiwQcXFxcGuwdVp166dPvnkE82dO1dvvPGGZs+erY0bN2r37t1KS0tTs2bN1KlTJ5188skaPHiwBgwYEGywYxoxYoS2bNmi6dOn68svv9TixYu1Zs0aFRQUSJJyc3N19NFH67TTTtOVV16pLl261Din3/zmNzr++OP1j3/8Q19//bU2b96sffv21fq91CTac5Sk7t27a+HChZo+fbrefvttffnll/rpp59UUFCgjIwMHX744TrmmGPUu3dvDRkyRH379q22Y3dubq4WLFigv/3tb/rggw/0ww8/qKCgIC77Ub766qvBpfQZGRkaMWJEWLczcOBAtWzZUlu2bFEgENDzzz8f0kwr2oYOHaqNGzdq+vTpmjdvnpYuXaq1a9eqoKBAFRUVaty4sZo3b67u3burf//+uuSSS0L2OI2nyy67TLfffnvInpn13ecTAACv8wUieTUIAAAAAAAAABGgSQ4AAAAAAAAAxxBQAgAAAAAAAHAMASUAAAAAAAAAxxBQAgAAAAAAAHAMXbwBAAAAJK177rlHO3fujOg2hg0bpmHDhkVpRgAA4GAElAAAAACS1vPPP6/169dHdBt5eXkElAAAxBABZTUqKyv1008/qXHjxvL5fE5PBwAAAEAYAoFAxLdRWlqqoqKiKMwGAABvCQQC2rNnj1q1aqWUlOp3mvQFovEXOwlt2rRJbdq0cXoaAAAAAAAAgKtt3LhRrVu3rvZyKiir0bhxY0nGDzAnJ8fh2dSd3+/X9OnTNXjwYKWnpzs9HcB1eAwB4ePxA0SGxxAQGR5DQGR4DCEWioqK1KZNm2DOVh0CymqYy7pzcnJcF1BmZWUpJyeHJxQgDDyGgPDx+AEiw2MIiAyPISAyPIYQS7Vtn1j94m8AAAAAAAAAiDECSgAAAAAAAACOIaAEAAAAAAAA4BgCSgAAAAAAAACOIaAEAAAAAAAA4BgCSgAAAAAAAACOIaAEAAAAAAAA4Jg0pyeQjPx+vyoqKhy777S0NJWUlDg2B4RKSUlRenq6fD6f01MBAAAAAABIOASUUVRUVKQdO3aotLTUsTkEAgHl5+dr48aNBGIJJDU1VVlZWWrevLkaNGjg9HQAAAAAAAASBgFllBQVFWnz5s3Kzs5WXl6eYxVzlZWVKi4uVnZ2tlJSWMHvtEAgoIqKCu3fv1+FhYVat26dWrduraysLKenBgAAAAAAkBAIKKNkx44dys7OVuvWrR2tXKysrFRZWZkyMzMJKBNIdna2mjZtqvXr12vHjh1q27at01MCAAAAAABICCRYUeD3+1VaWqrc3FyWVaNaqampatq0qfbu3avy8nKnpwMAAAAAAJAQCCijwGxGk56e7vBMkOgyMjIkiYASAAAAAADgAALKKKJ6ErXhdwQAAAAAACAUASUAAAAAAAAAxxBQAgAAAAAAAHAMASUAAAAAAAAAxxBQIm7at28vn8+nKVOmBM+bMmWKfD5fyFdKSopycnJ04oknavz48dq+fXu1t3nwdav7mjVrVuy/QQAAAAAAANRbmtMTACSpUaNGGjFihCSjK/r69es1d+5cLVq0SM8995y++OILderUqdrrDxkyRPn5+dVeXtNlAAAAAAAAcA4BJRJCXl5eSGWlJC1btkz9+/fXtm3bdOutt+qDDz6o9vp33HGHBgwYENtJAgAAAAAAIOpY4o2E1bVrV40bN06SNGPGDJWWljo8IwAAAAAAAEQbASUSWrdu3SRJfr9fu3btcng2AAAAAAAAiDYCSiS0oqIiSVJqaqry8vIcng0AAAAAAACijYASCc3cd/Lss89Wenq6w7MBAAAAAABAtNEkJ15OPlnaujXmd+OTlBMIyOfzRecG8/OlhQujc1t1ZHbxfuaZZ/TKK6+oXbt2evLJJ2u8zhlnnFHtZbm5uSooKIjyLAEAAAAAABANBJTxsnWrtHlzzO/Gd+DLbdavX19lqNqrVy9Nnz5dubm5NV5/yJAhys/Pr/KyrKysqMwRAAAAAAAA0UdAGS/VhGfRFpAUOFBBGZWgMk7zbtSokUaMGCFJKi0t1Q8//KDFixdr/vz5uu666/Sf//ynxuvfcccdGjBgQBxmCgAAAAAAgGgioIyXOC2TDlRWqqioSDk5OfKluGeL0by8PE2ZMiXkvLfeekuXXHKJXnvtNfXr10833HCDM5MDAAAAAABAzLgnwYLnXHTRRbrjjjskSXfffbcKCwsdnhEAAAAAAACijYASCW38+PFq2bKldu7cqccee8zp6QAAAAAAACDKCCiR0LKysnTXXXdJkv76179q9+7dDs8IAAAAAAAA0cQelEh4v/rVr/SXv/xFq1ev1qOPPqoHH3zwkGMeeuihQ/awtLvssss0ePDgGM4SAAAAAAAA4SCgRMJLT0/XAw88oJEjR+qpp57SuHHj1KxZs5BjPv744xpv44QTTiCgBAAAAAAASEAElIibdevWHXLemDFjNGbMmFqve+mll+rSSy895PxAIBCFmQEAAAAAAMAp7EEJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0CJuGnfvr18Pp+mTJkSPG/KlCny+XwhXykpKcrJydGJJ56o8ePHa/v27dXe5sHXre5r1qxZ9ZqrOa8xY8aE980CAAAAAACgTtKcngAgSY0aNdKIESMkSRUVFVq/fr3mzp2rRYsW6bnnntMXX3yhTp06VXv9IUOGKD8/v9rLD77M5/NJkgKBQBRmDwAAAAAAgHARUCIh5OXlhVRWStKyZcvUv39/bdu2Tbfeeqs++OCDaq9/xx13aMCAAbGdJAAAAAAAAKKOJd5IWF27dtW4ceMkSTNmzFBpaanDMwIAAAAAAEC0EVAioXXr1k2S5Pf7tWvXrohv79577w0u75YO3cNy3bp1h1xn7969Gj9+vDp27KiMjAzl5+dr9OjR2rx5c8TzAQAAAAAA8DpXBpSTJ09Wt27dlJOTo5ycHPXt21cfffRR8PKSkhKNHTtWzZo1U3Z2toYPH65t27Y5OGOEq6ioSJKUmpqqvLy8iG/vhBNO0OjRo4OnR48eHfKVnZ0dcnxhYaFOOeUU/f3vf1eXLl00dOhQBQIBvfDCCzr11FNVWFgY8ZwAAAAAAAC8zJV7ULZu3VoPPfSQOnXqpEAgoOeff16/+MUv9N1336lr16667bbb9MEHH+iNN95Qbm6ubrzxRl100UX68ssvnZ466sncd/Lss89Wenp6xLd3wQUX6IILLtDzzz8vSYfse3mwt99+W0OGDNEXX3yhnJwcSdLu3bs1cOBALVq0SH/72980fvz4iOcFAAAAAADgVa4MKM8777yQ0w8++KAmT56sefPmqXXr1nr22Wf1yiuvaODAgZKk5557Tscee6zmzZunPn36ODFlnXzyydq6dWtc7isQCIQsY45Efn6+Fi5cGJXbqiuzi/czzzyjV155Re3atdOTTz5Z43XOOOOMai/Lzc1VQUFBWHNp1KiRnnvuuWA4KUmHHXaY7rjjDl166aX65JNPCCgBAAAAAAAi4MqA0q6iokJvvPGG9u7dq759++qbb76R3+/XWWedFTymc+fOatu2rebOnVttQFlaWhrShMVcWuz3++X3+2ucg9/vVyAQUGVlpSorK6s8ZuvWra7ds7C67ymS2zNv0/x3/fr1VYaqvXr10rRp05Sbm1vjPAYPHqz8/PwqL8vKyqr2urWdf/LJJ6tFixaHHHfMMcdIkjZv3lyvn09lZaUCgYD8fr9SU1PrfD3Ej/l4r+1xD+BQPH6AyPAYAiLDYwiIDI8hxEJdf59cG1AuXbpUffv2VUlJibKzszV16lR16dJFixYtUoMGDdSkSZOQ41u0aFFjBePEiRM1YcKEQ86fPn26srKyapxLWlqa8vPzVVxcrLKysiqPOfzwwxUIBGr/xhLM4YcfHgxrI2UGeSUlJcHbLCkpkWRUKp5//vmSjLB45cqV+v777zV//nxdc801+ve//13jbd9000067bTTqr28uu+huvPNeeXn51d5TEqKsX3rvn376vXzKSsr0/79+zV79myVl5fX+XqIvxkzZjg9BcC1ePwAkeExBESGxxAQGR5DiKZ9+/bV6TjXBpTHHHOMFi1apMLCQr355psaPXq0Pv/887Bvb/z48Ro3blzwdFFRkdq0aaPBgweHLO+tSklJiTZu3Kjs7GxlZmZWecw333wT9tzqIxAIaM+ePWrcuHHUlnlHixnqZWZmBn+m5s8rLy9PL730Usjxb731lkaOHKmpU6fqzDPP1PXXX1/tbWdlZdX6/1SV6q5jzisjI6PKY8xmOikpKfW635KSEjVs2FD9+vWr9ncFzvL7/ZoxY4YGDRoUlX1PAS/h8QNEhscQEBkeQ0BkeAwhFupa1OXagLJBgwbq2LGjJKlHjx5asGCBnnjiCV1yySUqKytTQUFBSBXltm3bql0CLBlBVEZGxiHnp6en1/rArKiokM/nU0pKSjCEc4pZpWjOJxHZf072OR483xEjRmjx4sV64IEHdM899+jyyy9Xbm5urbdZ37nUdH51P8ea5l3b/fl8vjr9XsFZ/B8B4ePxA0SGxxAQGR5DQGR4DCGa6vq7lJgJVhgqKytVWlqqHj16KD09XZ9++mnwshUrVmjDhg3q27evgzNEOMaPH6+WLVtq586deuyxx6J2u+YDhGXWAAAAAAAAznJlQDl+/HjNnj1b69at09KlSzV+/HjNmjVLo0aNUm5urq655hqNGzdOM2fO1DfffKOrrrpKffv2dayDN8KXlZWlu+66S5L017/+Vbt3747K7bZu3VqStGzZsqjcHgAAAAAAAMLjyiXeP//8s6688kpt2bJFubm56tatmz7++GMNGjRIkvT4448rJSVFw4cPV2lpqYYMGaK//e1vDs8a4frVr36lv/zlL1q9erUeffRRPfjgg4cc89BDD2nKlCnV3sZll12mwYMHB08PHz5cjz76qM466ywNHDhQjRs3liQ9/PDDatasWdS/BwAAAAAAAFTNlQHls88+W+PlmZmZmjRpkiZNmhSnGSGW0tPT9cADD2jkyJF66qmnNG7cuENCxI8//rjG2zjhhBNCAsr7779fKSkpeuutt/T2228Hu6/feeedBJQAAAAAAABx5MqAEu60bt26Q84bM2aMxowZU+t1L730Ul166aWHnB8IBMKaS2Zmph5++GE9/PDDVV5e27zat28f9n0DAAAAAADA4so9KAEAAAAAAAAkBwJKAAAAAAAAAI4hoAQAAAAAAADgGAJKAAAAAAAAAI4hoAQAAAAAAADgGAJKAAAAAAAAAI4hoAQAAAAAAADgGALKKAoEAk5PAQmO3xEAAAAAAIBQBJRRkJJi/BgrKiocngkSnfk7Yv7OAAAAAAAAeB0pSRSkp6crNTVV+/fvd3oqSHB79uxRenq60tPTnZ4KAAAAAABAQiCgjAKfz6esrCwVFhZSRYlq7d+/X0VFRWrcuLF8Pp/T0wEAAAAAAEgIaU5PIFk0b95c69at0/r169W0aVNlZGQ4EkJVVlaqrKxMJSUlLCNOAIFAQBUVFdqzZ4+KioqUkZGhvLw8p6cFAAAAAACQMAgoo6RBgwZq3bq1duzYoS1btjg2j0AgoP3796thw4ZU6SWQ9PR0NWnSRHl5eUpNTXV6OgAAAAAAAAmDgDKKsrKy1LZtW5WXl6u8vNyROfj9fs2ePVv9+vVjn8MEkZKSovT0dAJjAAAAAACAKhBQxkBaWprS0pz50aampqq8vFyZmZkElAAAAAAAAEh4bFIIAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDEElAAAAAAAAAAcQ0AJAAAAAAAAwDGuDCgnTpyonj17qnHjxmrevLkuuOACrVixIuSYAQMGyOfzhXz95je/cWjGAAAAAAAAAKriyoDy888/19ixYzVv3jzNmDFDfr9fgwcP1t69e0OOu/baa7Vly5bg1yOPPOLQjAEAAAAAAABUJc3pCYRj2rRpIaenTJmi5s2b65tvvlG/fv2C52dlZSk/Pz/e0wMAAAAAAABQR64MKA9WWFgoSWratGnI+S+//LJeeukl5efn67zzztNdd92lrKysKm+jtLRUpaWlwdNFRUWSJL/fL7/fH6OZR585VzfNGUgkPIaA8PH4ASLDYwiIDI8hIDI8hhALdf198gUCgUCM5xJTlZWVOv/881VQUKA5c+YEz3/mmWfUrl07tWrVSkuWLNHtt9+uXr166a233qrydu69915NmDDhkPNfeeWVakNNAAAAAAAAAFXbt2+fLrvsMhUWFionJ6fa41wfUF5//fX66KOPNGfOHLVu3bra4z777DOdeeaZWrVqlY466qhDLq+qgrJNmzbasWNHjT/AROP3+zVjxgwNGjRI6enpTk8HcB0eQ0D4ePwAkeExBESGxxAQGR5DiIWioiLl5eXVGlC6eon3jTfeqPfff1+zZ8+uMZyUpN69e0tStQFlRkaGMjIyDjk/PT3dlQ9Mt84bSBQ8hoDw8fgBIsNjCIgMjyEgMjyGEE11/V1yZUAZCAR00003aerUqZo1a5Y6dOhQ63UWLVokSWrZsmWMZwcAAAAAAACgrlwZUI4dO1avvPKK3nnnHTVu3Fhbt26VJOXm5qphw4ZavXq1XnnlFQ0bNkzNmjXTkiVLdNttt6lfv37q1q2bw7MHAAAAAAAAYHJlQDl58mRJ0oABA0LOf+655zRmzBg1aNBAn3zyif76179q7969atOmjYYPH64777zTgdkCAAAAAAAAqI4rA8ra+vq0adNGn3/+eZxmAwAAAAAAACBcKU5PAAAAAAAAAIB3EVACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAAAAAADHEFACAAAAAAAAcAwBJQAAAJAI1q1T43XrnJ4FAABA3KU5PQEAAADA89atU1q3bhpYUqLyzp2lIUOcnhEAAEDcUEEJAAAAOO299+QrKZEk+b76yuHJAAAAxBcBJQAAAOC0+fOtcWmpc/MAAABwAAElAAAA4LQFC6wxASUAAPAYAkoAAADASQUF0ooV1mkCSgAA4DEElAAAAICTFi4MOekjoAQAAB5DQAkAAAA4yb7/pEQFJQAA8BwCSgAAAMBJ9v0nJQJKAADgOQSUAAAAgJOooAQAAB5HQAkAAAA4ZfNm6aefQs8rK3NmLgAAAA4hoAQAAACccnD1pEQFJQAA8BwCSgAAAMApB+8/KRFQAgAAzyGgBAAAAJxCBSUAAAABJQAAAOCIykqrgrJVKwUaNpQk+QgoAQCAxxBQAgAAAE5YuVIqKjLGvXpJmZnGmIASAAB4DAElAAAA4AT7/pO9ekkZGcaYLt4AAMBjCCgBAAAAJ9j3n7QHlCUlzswHAADAIQSUAAAAgBPsAWWPHlKDBsaYJd4AAMBjCCgBAACAeCstlRYtMsbHHCM1aWJVUBJQAgAAjyGgBAAAAOJtyRJrr8levSRJAXtAGQg4NDEAAID4I6AEAAAA4u3gBjlSsILSFwhI5eUOTAoAAMAZBJQAAABAvNn3n+zZ0/jXrKCUWOYNAAA8hYASAAAAiDczoExPl7p3N8YElAAAwKMIKAEAAIB4KiqSli83xt27S5mZxtjs4i0RUAIAAE8hoAQAAADi6ZtvrCY45v6TEhWUAADAswgoAQAAgHiy7z9JQAkAAEBACQAAAMRVVQ1yJAXMpd4SASUAAPAUAkoAAAAgnsyAsnFj6ZhjrPOpoAQAAB5FQAkAAADEy5Yt0qZNxvjkk6XUVOsye0BZUhLfeQEAADiIgBIAAACIlwULrLF9/0mJLt4AAMCzCCgBAACAeKlm/0lJLPEGAACeRUAJAAAAxEt1HbwlAkoAAOBZBJQAAABAPAQC1hLv/HypdevQywkoAQCARxFQAgAAAPGwapVUUGCMe/WSfL7QywkoAQCARxFQAgAAAPFQ0/JuSQECSgAA4FEElAAAAEA81NQgR6KLNwAA8CwCSgAAACAezP0nJenkkw+9nApKAADgUa4MKCdOnKiePXuqcePGat68uS644AKtWLEi5JiSkhKNHTtWzZo1U3Z2toYPH65t27Y5NGMAAAB4mt8vffutMe7USWra9NBjCCgBAIBHuTKg/PzzzzV27FjNmzdPM2bMkN/v1+DBg7V3797gMbfddpvee+89vfHGG/r888/1008/6aKLLnJw1gAAAPCspUut0LGK/SclEVACAADPSnN6AuGYNm1ayOkpU6aoefPm+uabb9SvXz8VFhbq2Wef1SuvvKKBAwdKkp577jkde+yxmjdvnvr06ePEtAEAAOBVte0/KUmZmdaYgBIAAHiIKwPKgxUWFkqSmh5YKvPNN9/I7/frrLPOCh7TuXNntW3bVnPnzq0yoCwtLVWp7YVgUVGRJMnv98vv98dy+lFlztVNcwYSCY8hIHw8foDqpX79dXDpUvlJJylQxeOkIjU1+OK8Yv9+VfJYAuqFv0NAZHgMIRbq+vvk+oCysrJSt956q0499VQdd9xxkqStW7eqQYMGatKkScixLVq00NatW6u8nYkTJ2rChAmHnD99+nRlZWVFfd6xNmPGDKenALgajyEgfDx+gEOd8dlnypFUmZqqj7ZsUeWHHx5yTM7atTrjwHjjypVaXMUxAGrH3yEgMjyGEE379u2r03GuDyjHjh2r77//XnPmzInodsaPH69x48YFTxcVFalNmzYaPHiwcnJyIp1m3Pj9fs2YMUODBg1Senq609MBXIfHEBA+Hj9ANfbsUdrGjZIkX7duOvvCC6s8rPz774Pjti1a6Ihhw+IyPSBZ8HcIiAyPIcSCuUK5Nq4OKG+88Ua9//77mj17tlq3bh08Pz8/X2VlZSooKAipoty2bZvy8/OrvK2MjAxl2DcmPyA9Pd2VD0y3zhtIFDyGgPDx+AEOsnSpFAhIkny9e1f/+GjUKDhM8fuVwuMICAt/h4DI8BhCNNX1d8mVXbwDgYBuvPFGTZ06VZ999pk6dOgQcnmPHj2Unp6uTz/9NHjeihUrtGHDBvXt2zfe0wUAAECyefFF6dZbpe++q/3YBQuscXUNciS6eAMAAM9yZQXl2LFj9corr+idd95R48aNg/tK5ubmqmHDhsrNzdU111yjcePGqWnTpsrJydFNN92kvn370sEbAAAAkVmxQho92qiKfOIJaehQ6Y9/lE49terj7R28e/Wq/nYJKAEAgEe5soJy8uTJKiws1IABA9SyZcvg12uvvRY85vHHH9e5556r4cOHq1+/fsrPz9dbb73l4KwBAACQFN55J7hkW5L00UfSaadJAwZIM2aEXiZZAWWjRtKxx1Z/uwSUAADAo1xZQRk4+EVfFTIzMzVp0iRNmjQpDjMCAACAZ3zwgTU+4ghp82Zj/PnnxlfPntIf/iCdf760Y4e0fr1x+cknS6mp1d8uASUAAPAoV1ZQAgAAAI7YvVv68ktjfPTR0tq10nPPGWPTggXShRdK3bpJ999vnV/T/pOSlJamgM9njAkoAQCAhxBQAgAAAHX18cdSRYUxPuccKT1dGjNG+t//pNdfl7p3t45dtkx6+mnrdE37T0qSz6dKs9MlASUAAPAQAkoAAACgrt5/3xqfe641Tk2VLr7Y6Or9/vtS376HXre2gFJSZdqBHZgIKAEAgIcQUAIAAAB1UVFhNMSRpMaNjcY4B/P5jMrKL7+UZs6UzjrLOP+cc6S2bWu/iwYNjAEBJQAA8BBXNskBAAAA4m7ePGnXLmM8ZIhkholV8fmMrt4DBkiFhVJOjnFeLVjiDQAAvIiAEgAAAKgLe/fuc86p+/Vyc+t8KAElAADwIpZ4AwAAAHVh7j/p80lDh8bkLoJ7UJaUxOT2AQAAEhEBJQAAAFCbDRukpUuNcc+eUosWMbkbKigBAIAXEVACAAAAtbEv77Z3746yCjOgrKyUystjdj8AAACJhIASAAAAqE24+0/WU7CCUqKKEgAAeAYBJQAAAFCTffukTz81xq1aSSeeGLO7IqAEAABeREAJAAAA1GTmTKtpzbBhRpOcGAk2yZEIKAEAgGcQUAIAAAA1idPybokKSgAA4E0ElAAAAEB1AgHp/feNcYMG0llnxfTuCCgBAIAXEVACAAAA1fn+e2njRmM8YICUnR3Tu6sgoAQAAB5EQAkAAABUx6yelKRzz4353VFBCQAAvIiAEgAAAKhOHPeflAgoAQCANxFQAgAAAFXZuVOaO9cYH3usdOSRMb9LAkoAAOBFBJQAAABAVaZNkyorjXEcqicl9qAEAADeREAJAAAAVCXO+09KB1VQlpTE5T4BAACcRkAJAAAAHKy83KiglKTcXOmUU+Jyt5VpadYJKigBAIBHEFACAAAAB/vqK6mgwBiffbZkr2yMIfagBAAAXkRACQCmigr55s1TSlmZ0zMBADgtzt27TQSUAADAiwgoAcB0661K69dPfe6/3+mZAACcZgaUPp9RQRknBJQAAMCLCCgBwDRzpiQpb9kyKRBweDIAAMesWyctW2aM+/SRDj88bndNF28AAOBFBJQAYCouliT5Kislv9/hyQAAHOPQ8m6JJjkAAMCbCCgBwLR3rzXev9+5eQAAnPX++9b43HPjetcs8QYAAF5EQAkAJgJKAMDevcEtP9S6tdStW1zvnoASAAB4EQElAEhSZWVoKElACQDe9OmnVjB4zjlGk5w4qmzQwDpBQAkAADyCgBIAJGnfvtDTBJQA4E0O7j8pSRXsQQkAADyIgBIApNDl3ZJUUuLMPAAAzgkErIAyM1M688y4T4El3gAAwIsIKAFACnbwNvmooAQA71m8WNq82RifcYaUlRX3KYQElHxYBgAAPIKAEgCkQysoCSgBwHveftsax7l7t4kKSgAA4EUElAAgEVACgNcVFEhPPmmMfT4CSgAAgDgioAQAiYASALzu0Uel3buN8RVXSG3bOjINAkoAAOBFBJQAINEkBwC8bOtW6fHHjXF6ujRhgmNToYs3AADwIgJKAJAOCShpkgMAHvLAA9K+fcb4+uul9u0dm0qAgBIAAHgQASUASCzxBgCvWrNG+sc/jHGjRtIf/+jsfHw+BTIyjDEBJQAA8AgCSgCQpOLi0NMElADgDXffLZWXG+Nx46TmzZ2djyQRUAIAAI9Jq/2QQxUVFUmScnJyIrrz4uJiffbZZ5Kk888/P6LbAoCIUEEJAN6zeLH0yivGuFkz6f/+z9n5mAgoAQCAx4QVUDZp0kQpKSlasmSJunTpcsjlP/30k+688075fD49++yz1d7O+vXrdcEFFyglJUXl5ifXAOAEmuQAgPf88Y9SIGCM//AHKTfX2fmYCCgBAIDHhL3EO2C+mKvC7t27NWXKFE2ZMiXi2wKAuKCCEgC8Zc4c6YMPjHHr1tINNzg7H7vMTONfAkoAAOAR7EEJABJdvAHASwIB6Y47rNMTJlihYCJo0MD4l4ASAAB4BAElAEgs8QYAL/nwQ+nLL41x587SlVc6O5+DscQbAAB4DAElAEh08QYAr6islMaPt04/+KCUFta27DETMAPK8nKposLZyQAAAMQBASUASFRQAoBXvPqqtHSpMe7ZU7rwQmfnUxUzoJSoogQAAJ5AQAkAEk1yAMALysqku+6yTj/0kOTzOTef6hBQAgAAjyGgBACJgBIAvOCf/5TWrjXGgwZJAwc6O5/qmE1yJAJKAADgCQSUACDRxRsAkl1xsXT//dbpP/3JubnUhgpKAADgMREFlL5EXBIDAOFgD0oASG5PPCFt22aML75YOvlkZ+dTEwJKAADgMRG1LDzuuOOqvcwML1NTUyO5CwCID7p4A0Dy2rlTeuQRY5yaGlpJmYgIKAEAgMdEFFAGAoFozQMAnFNRcWjFJAElACSPhx6SioqM8dVXS8cc4+x8ahEgoAQAAB4TVkDZr18/lncDSB779h16HgElACQHv1+aPNkYZ2ZKd9/t7HzqgoASAAB4TFgB5axZs6I8DQBw0MH7T0rylZZKlZVSCr3EAMDVCgut5/kzzpBat3Z2PnVBF28AAOAxvPMGgCoCSkk0ygGAZGCviM/Odm4e9ZGZaY0JKAEAgAcQUAJAdQEly7wBwP3s23g0bOjcPOqDJd4AAMBjHA8o9+3bp7/85S9OTwOAlxFQAkDysj+XZ2U5N4/6IKAEAAAe41hAuWfPHj344INq3769fv/73zs1DQCQiourPp+AEgDcz+0VlGw3AgAAPCCsJjmR2LVrlx5//HFNmjRJhYWFCgQCdAQH4CwqKAEgedmfy10SUAaooAQAAB4TUQXl+vXrdfPNN6tLly5q3LixmjZtqpNOOkkTJ05UYWFhyLHFxcW655571L59e/3pT39SQUGBAoGA8vLy9MADD0T0TQBARGwBZcDetZuAEgDcz41LvOniDQAAPCbsCsoZM2Zo+PDh2nvgjX0gEJAkLV68WIsXL9YLL7ygmTNnKj8/X19++aVGjRqljRs3Bo874ogj9Nvf/la//vWv1dAln2YDSFL2CsqmTaUdO4wxASUAuJ/bl3gTUAIAAA8Iq4Jy+/btGjlypIqLixUIBBQIBNSoUSPl5uYGT69cuVJjx47V7NmzddZZZwXDyQ4dOugf//iH1qxZo1tuuYVwEoDz7AFls2bWmIASANzPjRWUBJQAAMBjwgoo//nPf2rXrl3y+XwaMWKEVq1apT179mj37t366aefdOONN0qS3nnnHV1++eUqLS1Vdna2nnrqKa1YsULXXnut0tPTo/qNAEDY7Eu88/Ks8wkoAcD9qKAEAABIeGEt8Z4+fbokqU+fPnr99ddDLsvPz9eTTz6pPXv26Pnnn9emTZvUpEkTffHFF+ratWvkMwaAaLN38aaCEgCSiwub5BBQAgAArwmrgnL58uXy+Xy64YYbqj3m5ptvliT5fD7dfPPNhJMAEpd9iTcVlACQXFjiDQAAkPDCCih3794tSerYsWO1x3Tq1Ck4Pv3008O5GwCID/sSbyooASC5uHCJd4CAEgAAeExYAaXf75ckNW7cuNpjsrOzg+P8/Pxw7gYA4sNeQXn44da4pCT+cwEARBcVlAAAAAkvrICyvnw+XzzuBgDCQwUlACQvF1ZQElACAACviUtACQAJjT0oASB50SQHAAAg4YXVxdt01VVXqVGjRhEf5/P59Omnn0YyFQAInxlQ+nzSYYdZ5xNQAoD7scQbAAAg4UUUUC5cuLDGy82l3TUdFwgEWAIOwFnFxca/jRopkJlpnU9ACQDu5/Yl3uyHDAAAPCDsgDIQCERzHgDgHLOCMjs79M0rASUAuB8VlAAAAAkvrICysrIy2vMAAOeYAWWjRgSUAJBs7BWU9ir5RNaggTUmoAQAAB5AkxwAIKAEgORlPpdnZkopLnnp6/NZISUBJQAA8ACXvEoDgBipqLD29yKgBIDkY1ZQumX/SZO5zJuAEgAAeAABJQBvsy/9I6AEgORjPpcTUAIAACSssPagvO+++6I9D919991Rv00AqJXZwVsyAsrUVFWmpSmlvJyAEgCSgflc7pYGOSYCSgAA4CFhBZT33nuvfD5fVCdCQAnAEeb+k5IRUEqqaNCAgBIAkgVLvAEAABJeWAGlJAUCgahNItphJwDUmT2gzM6WZASU6fv2EVACgNsFAlRQAgAAuEBYAeXMmTOjPQ8AcEY1FZSSCCgBwO3MJmiS+yooMzONfwkoAQCAB4QVUPbv3z/a8wAAZ1QRUFYSUAJAcrA/j7stoDQrKP1+qbJSSqG3JQAASF680gHgbVRQAkDysj+Pu3WJtySVlTk3DwAAgDhwZUA5e/ZsnXfeeWrVqpV8Pp/efvvtkMvHjBkjn88X8nX22Wc7M1kAia2qgNJ8U1hRYVSuAADcyWyQI7m3glIKXaoOAACQhFwZUO7du1fdu3fXpEmTqj3m7LPP1pYtW4Jfr776ahxnCMA1ioutsbnEOz3dOo8qSgBwr2SpoGQfSgAAkOTC7uLtpKFDh2ro0KE1HpORkaH8/Pw4zQiAa1XTxTto/34pJyfOkwIAREWyVFASUAIAgCTnyoCyLmbNmqXmzZvrsMMO08CBA/XAAw+oWbNm1R5fWlqqUtuLv6KiIkmS3++X30VLPM25umnOgJNSioqUemBcnpEhv98fElD6i4qkpk2dmRzgMvwNQqLx7dkTfLFbkZGhygT/3bQ/hlLT04NLnfzFxWw5AtQBf4eAyPAYQizU9fcpKQPKs88+WxdddJE6dOig1atX6w9/+IOGDh2quXPnKjU1tcrrTJw4URMmTDjk/OnTpyvLbUuCJM2YMcPpKQCu0GXpUnU6MJ63dKl2SjrRVrUy++OPVdymjSNzA9yKv0FIFC0WLlSfA+OVGzdq5YcfOjqfupoxY4ZO+PlntTtw+otPPtGeH390dE6Am/B3CIgMjyFE0z77ipYaJGVAeemllwbHxx9/vLp166ajjjpKs2bN0plnnlnldcaPH69x48YFTxcVFalNmzYaPHiwcly0vNPv92vGjBkaNGiQ0u376AGoUsr06cFxnzPPVFn37to2eXLwvH69ekknnujE1ADX4W8QEo3Ptgfl0d27q+OwYQ7Opnb2x1DGRx9Jn34qSTq9d2/ppJMcnh2Q+Pg7BESGxxBiwVyhXJukDCgPduSRRyovL0+rVq2qNqDMyMhQhn2vnwPS09Nd+cB067yBuLO9eU3LzVUgPV2VtiXe6X6/xGMJqBf+BiFh2JYUpTZurFSX/F6mp6cr1bZnZnpFBX+LgHrg7xAQGR5DiKa6/i65sot3fW3atEk7d+5Uy5YtnZ4KgERTRRfvkCY5JSVxnhAAIGpokgMAAOAKrqygLC4u1qpVq4Kn165dq0WLFqlp06Zq2rSpJkyYoOHDhys/P1+rV6/W73//e3Xs2FFDhgxxcNYAEpK9i3dVAaWtwhIA4DL253C37SlOQAkAADzElQHlwoULdcYZZwRPm3tHjh49WpMnT9aSJUv0/PPPq6CgQK1atdLgwYN1//33V7mEG4DH2QPK7GxJRqfXIAJKAHAvN1dQZmZaYwJKAACQ5FwZUA4YMECBQKDayz/++OM4zgaAq5kBZUqKUa1SXh6yByUBJQC4mP053G0BJRWUAADAQzyxByUAVMsMKBs1knw+SSzxBoCkwRJvAAAAVyCgBOBt9oDyAAJKAEgSbl7iTUAJAAA8hIASgLeZXbwJKAEg+SRLBWVJiXPzAAAAiAMCSgDeVlUFJU1yACA5UEEJAADgCgSUALyrosJ603egg7ckmuQAQLKgSQ4AAIArEFAC8C6zelJiiTcAJKNkWeJNQAkAAJIcASUA7yKgBIDkxhJvAAAAVyCgBOBdBJQAkNzM5/AGDaTUVGfnUl8ElAAAwEMIKAF4VzUBZSVNcgAgOZgVlG6rnpQIKAEAgKcQUALwruJia0wFJQAkH/M53G37T0oElAAAwFMIKAF4F0u8ASC5UUEJAADgCgSUALzLHlBmZweHlenpCvh8xgkCSgBwL/M53I0BZWamNSagBAAASY6AEoB3VVNBKZ/PemNIQAkA7hQIsMQbAADAJQgoAXhXdQGlZFXbEFACgDuVlUmVlcbYjRWUBJQAAMBDCCgBeBcBJQAkL/vzNxWUAAAACY2AEoB3VdPFWxJLvAHA7cwGOZI7KyjtDdtKSpybBwAAQBwQUALwrpoqKAkoAcDd7M/fbgwoU1Kk9HRjTAUlAABIcgSUALyrmi7ekhQw38yWlBiNFgAA7uL2Jd6StcybgBIAACQ5AkoA3lWXPSglltYBgBu5fYm3REAJAAA8g4ASgHcRUAJA8qKCEgAAwDUIKAF4V132oJTYhxIA3IgKSgAAANcgoATgXXWtoCSgBAD3oYISAADANQgoAXhXcbHxb0qK9SbQREAJAO5GBSUAAIBrEFAC8C6zgrJRI8nnC7koQEAJAO5mf+52e0BZViYFAs7OBQAAIIYIKAF4lxlQZmcfehkBJQC4WzIs8bbvh1xW5tw8AAAAYoyAEoB32SsoD0aTHABwt2Ra4i2xzBsAACQ1AkoA3lVTQEkFJQC4WzJUUBJQAgAAjyCgBOBN5eXWmz0CSgBIPlRQAgAAuAYBJQBvMqsnJQJKAEhGydQkR5JKSpybBwAAQIwRUALwploCygB7UAKAu7HEGwAAwDUIKAF4kz2gpIs3ACQflngDAAC4BgElAG9iiTcAJDcqKAEAAFyDgBKANxFQAkByo4ISAADANQgoAXgTASUAJLdka5JDQAkAAJIYASUAbyoutsY0yQGA5GNWUKalSenpzs4lXASUAADAIwgoAXgTFZQAkNzM5263Vk9KBJQAAMAzCCgBeBMBJQAkN/O5260NciTJXs1PQAkAAJIYASUAb7IHlNnZh15OQAkA7mYu8aaCEgAAIOERUALwJiooASC5JUMFJQElAADwCAJKAN5UW0BJkxwAcDcqKAEAAFyDgBKAN9UWUKanS6mpxpiAEgDcxe+XKiqMcbIElCUlzs0DAAAgxggoAXhTcbE1riqglKw3tbwpBAB3sX+wxBJvAACAhEdACcCbaquglKyAkgpKAHAXc3m3lDwVlASUAAAgiRFQAvCm2rp4SwSUAOBWVFACAAC4CgElAG+ighIAkhcVlAAAAK5CQAnAm8yAMjVVatCg6mMIKAHAnezP2wSUAAAACY+AEoA3mQFlo0aSz1f1MeabWns3WABA4mOJNwAAgKsQUALwJrOLd3XLu6XQqhuqKAHAPVjiDQAA4CoElAC8yV5BWR0CSgBwJyooAQAAXIWAEoA3mQFldR28JQJKAHCrZKmgzMy0xgSUAAAgiRFQAvCe8nKprMwYU0EJAMmHCkoAAABXIaAE4D1m9aREQAkAyShZKigJKAEAgEcQUALwHgJKAEhu9udsNweUKSlSWpoxJqAEAABJjIASgPcQUAJAckuWJd6SVUVZUuLsPAAAAGKIgBKA9xQXW2MCSgBIPsmyxFuyAkoqKAEAQBIjoATgPVRQAkByS8YKSgJKAACQxAgoAXiPPaDMzq7+OAJKAHAnKigBAABchYASgPdQQQkAyS1ZmuRIBJQAAMATCCgBeA8BJQAkN5Z4AwAAuAoBJQDvIaAEgOSWrEu8AwFn5wIAABAjBJQAvIcu3gCQ3JKxglKS/H7n5gEAABBDBJQAvIcKSgBIbmYFZUqKlJ7u7FwilZlpjVnmDQAAkhQBJQDvoYs3ACQ38zm7YUPJ53N2LpGyV1ASUAIAgCRFQAnAe+paQWmvWiGgBAD3MCso3b68WyKgBAAAnkBACcB7wlniXVISu/kAAKLLXkHpdgSUAADAAwgoAXgPe1ACQHIzn7OpoAQAAHAFAkoA3kMXbwBIbuYS72SroKSaHwAAJCkCSgDeQwUlACSv8nLJ7zfGVFACAAC4AgElgPCtXy+99JJUVOT0TOrHDChTU6UGDao/jiY5AOA+9ufrZKugJKAEAABJioASQHgqK6UhQ6QrrpBuvtnp2dSPGVBmZ0s+X/XHpaRYbwwJKAHAHQgoAQAAXIeAEkB4Vq2SVqwwxgsWODuX+jIDypqWd5vMN7cElADgDvbna5Z4AwAAuAIBJYDwzJ9vjXfudG4e4SCgBIDkZTbIkaigBAAAcAkCSgDhOTigDAScm0t9EVACQPKighIAAMB1CCgBhMceUJaXS3v2ODeX+vD7pbIyY0xACQDJhwpKAAAA1yGgBFB/paXSd9+FnueWZd5m9aRU/4DSTVWiAOBVydYkJzPTGhNQAgCAJEVACaD+liyxqhBNbgwos7NrP958cxsIHPo9AwASD0u8AQAAXIeAEkD92Zd3m9wYUNanglJimTcAuAFLvAEAAFyHgBJA/RFQAgASFRWUAAAArkNACaD+CCgBAImKCkoAAADXIaAEUD8FBdLy5cbY57PO37HDkenUW3GxNSagBIDkk2xNcuwBZUmJc/MAAACIIQJKAPWzcKE1Pvlka0wFJQAgEdgrKFniDQAA4AquDChnz56t8847T61atZLP59Pbb78dcnkgENDdd9+tli1bqmHDhjrrrLP0448/OjNZINnYl3cPHWqNCSgBAIkgmSsoCSgBAECScmVAuXfvXnXv3l2TJk2q8vJHHnlETz75pP7+97/r66+/VqNGjTRkyBCVsCwGiFwyBZTZ2bUfT0AJAO5CkxwAAADXSXN6AuEYOnSohtqDEZtAIKC//vWvuvPOO/WLX/xCkvTCCy+oRYsWevvtt3XppZfGc6pAcgkEpK+/Nsa5uVLPnlJKilRZ6c6AkgpKAEg+NMkBAABwHVcGlDVZu3attm7dqrPOOit4Xm5urnr37q25c+dWG1CWlpaq1Pair6ioSJLk9/vl9/tjO+koMufqpjnDRTZtUvrWrZKkypNPVkVlpdKaNZNv+3YFdu5UuQt+71KKipR6YFyekaHAQXM++DGU0qCBdfyePYccD8DC3yAkgtS9e4NLhPzp6ZKLfh+rfAylpCj9wLBy/35VuOj7AeKNv0NAZHgMIRbq+vuUdAHl1gPhSYsWLULOb9GiRfCyqkycOFETJkw45Pzp06cry4XLg2bMmOH0FJCEWn71lXodGP/YtKmWf/ihBmZkqLGkim3b9OGHHzo5vTrpsnSpOh0Yz1u6VDsrK6s8znwMtV+9Wt0PnLd0/nxtaNw49pMEXI6/QXBSzzVr1OrA+LO5c1WycqWj8wmH/TGUvmePhh0Yb9+8WfNc8LcWcBp/h4DI8BhCNO2zr26pQdIFlOEaP368xo0bFzxdVFSkNm3aaPDgwcrJyXFwZvXj9/s1Y8YMDRo0SOnp6bVfAaiHlC++CI6PuvRSHTlsmFLbtpU2bVJaSYmGnXWW1KCBgzOsXcpHHwXHvc88UzrppJDLD34M+XbsCF7WrVMnHTdsmABUjb9BSASpf/97cDzwnHOkpk0dnE39VPkYsr2oPzwnR8P4OwRUi79DQGR4DCEWzBXKtUm6gDI/P1+StG3bNrVs2TJ4/rZt23TCCSdUe72MjAxl2Pf4OSA9Pd2VD0y3zhsJ7ptvgsO0vn2l9HQpLy94XnpRkWR73CUk2z6S6bm5xvdQheBjyFYxmer3K5XHFVAr/gbBUbamiDU9zyeykMeQraFbSlmZUlz4/QDxxt8hIDI8hhBNdf1dcmUX75p06NBB+fn5+vTTT4PnFRUV6euvv1bfvn0dnBngchUV0sKFxrhNGyuIbNbMOsYNjXLq28U7M9Ma0yQHABKfWXHo84U2mHGr1FTjS6JJDgAASFqurKAsLi7WqlWrgqfXrl2rRYsWqWnTpmrbtq1uvfVWPfDAA+rUqZM6dOigu+66S61atdIFF1zg3KQBt1u+XCouNsa9elnnuzmgpIs3ACQf87m6YUMjpEwGGRlG8EpACQAAkpQrA8qFCxfqjDPOCJ42944cPXq0pkyZot///vfau3evfv3rX6ugoECnnXaapk2bpkx7JRSA+vn6a2tMQAkASFRmBaX9+dvtCCgBAECSc2VAOWDAAAUCgWov9/l8uu+++3TffffFcVZAkps/3xr37m2N7QGlraFMwjIDyrS0ujX0IaAEAHexV1AmC3Opum1/TQAAgGSSdHtQAogRM6BMSZF69LDOd1sFpblMvS7VkxIBJQC4jVlBmZXl7DyiyQwoqaAEAABJioASQO3275eWLDHGXbqENpdxW0BpVlASUAJAckrmCkoCSgAAkKQIKAHU7rvvjC7eUuj+kxIBJQAgcVRWWiEeFZQAAACuQUAJoHb2/SeTJaC0V4HWhIASANzD/jydrBWUNezDDgAA4FYElABqV10Hb8ldAaXfb3xJVFACQDKyP08nYwVlICCVlzs7FwAAgBggoARQO7OCsmFD6bjjQi9r0EBq3NgYJ3pAaVZPSnUPKNPTjcZAEgElACQ6s0GOlJwVlBLLvAEAQFIioARQsx07pDVrjPFJJxmB3cHMKspkDCh9PutNLgElACS2ZF/iLRFQAgCApERACaBmCxZY44OXd5vMgHLXLqNBQaIqLrbGdQ0oJQJKAHCLZF3inZlpjQkoAQBAEiKgBFCzmhrkmMyAsrJSKiyM/ZzCFU4FpURACQBuwRJvAAAAVyKgBFCzmhrkmNzSKMceUNa1i7dEQAkAbpGsFZQElAAAIMkRUAKoXiBgVVDm5UkdOlR9nBsDSiooASD5UEEJAADgSgSUAKq3dq0VOPbqZTSMqYpXAsqyMqmiIrpzAgBED01yAAAAXImAEkD16rL/pBQaUO7YEbv5RCrSgFKSSkqiNx8AQHTZKyiTdYk3f4cAAEASIqAEUL1wAspErqCMtIu3xDJvAEhkVFACAAC4EgElgOrZA8qePas/zi0BZTQqKAkoASBx0SQHAADAlQgoAVTN75e++cYYH3mk0SSnOvbLCCgBAE6hSQ4AAIArEVACqNr331v7XPXuXfOxbqygzM6u+/UIKAHAHVjiDQAA4EoElACqVtf9JyV3BpRUUAJA8vFCkxwCSgAAkIQIKAFUrT4BZXa2lJ5ujJM9oKR7KgAkLiooAQAAXImAEvFVXCw9+qg0cKD08stOz8Zbnn5aOvxw6eqrpV27aj/eDChTU6UTT6z5WJ/PqqJM5ICSLt4AkNxokgMAAOBKBJSIj127pPvuk9q1k373O2nmTGnsWKmyMjq3v2aN9Nhj0rffRuf2YiEQML73M86QVqyI/33fe6+0Y4f03HNSly7S1KnVH79nj7RsmTHu1q1uVShuCCjDraDMzLTGBJQAkLiStUmO/e8QASUAAEhCBJSIrW3bpNtvN4LJe+4JrdwrLJR+/jk693PhhdL//Z/Uo4d06qnSf/5jdKFOJAsWGNWjs2ZJo0ZFL5yti7VrQ4PDbdukiy6SLrmk6v+Db74xQk2p9uXdJjOg3L8/cUM89qAEgORGBSUAAIArEVAiNjZskG66SWrfXnrkEWtpbWqqdMQR1nFr10Z+X/v3S0uWWKe/+koaOdIIRe+7zwjjEsFXX1njb76J7xJ3+36SzZtb49dfl7p2NQJdM5A8+PjaOnib3NAoxwwo09OlBg3qfj0CSgBwh2StoCSgBAAASY6AEtG1cqWxx+FRRxl7HpoNRRo0kH7zG+Py226zjl+3LvL7XL/eGqelWeMtW4yqzTZtpCuuCA3dnDBvXujp8eND30jF0oIF1vi556SXXpKaNjVO79hhBLoXXmj8zKT6NcgxuSmgrE/1pERACQBuYX+Oti+LdjsCSgAAkOQIKBEda9YYy5aPPdYIwMrLjfOzsqRx44xKycmTpSOPNKoqTdGooLTfxu23S599ZoRtKQd+vf1+I5Dr3dv4euklZ17cHxxQbt4s/eUv8blve0DZs6fxf/W//0kjRljnv/OOsTfllCnS118b52VnS5071+0+7AHljh0RTzkmCCgBILmZz9GZmdbrgGRAQAkAAJJcEr1ygyN27jQCyM6dpVdesfZVbNJEuusuo7rxL3+RWrWyrmMPKKNRQWkPKDt0MJrQvPWWEZrefrtVKSgZlYFXXCEdf7yxB2a8bNliVXp27GgsdZekhx6SfvoptvddXm4sKZeMn/3hhxvjFi2kN94wvsxl3wUF0lVXSZs2GadPPtmaa22ooAQAOM1cmZBMy7ul0IDSXJ0CAACQRAgoEZ6SEunPfzbCtscftxrS5OVJEycaYdx99xmnD9ahgzWORUBpatfOCAA3bZL+9S+pe3frsh9/lD75JPL7rit79eSIEcZyd8l4I3XXXbG97x9+sN6wVbVce8QIo2P3qFGHXlbX5d2SOwJKcy9UAkoASE7mc3QyNciRqKAEAABJj4AS9VNZaTR36dxZ+v3vjYo7yVhK9Yc/SKtXS3fcIeXkVH8bhx0mNW5sjKO9xNseUJoaNpSuuUb67jvpiSes81eujPy+68oeUPbpI917r5Sba5x+7jlp0aLY3bd9P8mePas+Ji/PWPr+7ruh1a5nnFH3+7GH0YkYUJaVWVsPEFACQHLyQgUlASUAAEhCBJSou5kzjYq6yy+3liv7fNKYMUZF4oMP1hxMmnw+a5n3+vXWsvBwmQFlSorUunXN99u/v3V6xYrI7rc+7AFl795GmGdWTgYC0v/9X2gX7Wg6eP/Jmpx3nlFNef/9RmXskCF1v59Er6A0l3dLxt6a9UFACQDuYD5HE1ACAAC4CgElave//0nnnisNHGjtZSgZ4dWiRUYFYE3BYFXMSke/3+ocHS4zoGzTRkpPr/nYjh2tcbwCyvJyKyRs317KzzfGN95oNA2SjMY+770Xm/s37zslRerRo/bjmzSR7rxTuvVWI9StKzcFlFRQAkDyCQRY4g0AAOBSBJSo2QcfGA1lPvjAOq9bN+njj6Vp04xxOKLVybuwUNq92xhXtbz7YI0aGUGmFL8l3kuXWm+Y+vSxzs/IkB55xDr9298ay5CjqaREWrLEGB97bP0rB+uDgBIA4CR78xgqKAEAAFyFgBI1u+suawn2EUcY1ZLffisNHhzZ7UarUU5t+09W5ZhjjH937ZJ27Aj/vuvq4P0n7S66SDrtNGP844/S3/8e3ftetMjad7G25d2ROuwwa0xACQCIN/vzMxWUAAAArkJAiept2GA0lpGMSsmVK439JlNTI7/taFVQhhNQHn20NY7HMu+aAkqfT3rsMev0vfcawWm02PefrE9H7nCkpRnLw6XEDCjNDt4SASUAJCOzQY6UfBWUaWnGVi0SASUAAEhKBJSo3rvvWuMRI6JbjWAPKCOpoLRft74VlFJ8lnmbAWWDBtIJJxx6ec+eRuMhyViu/sAD0bvvunTwjiZzmXciBpRUUAJAckvmCkqfz6qiJKAEAABJiIAS1Xv7bWv8i19E97ajFVAmegXlzp1WCHrSSaFLtOz+9CcpM9MYP/20sdw7GswKygYNwt8vtD7MgLKgQKqoiP391UckAWVKivEzlAgoASBRJXMFpURACQAAkhoBJapWUCB9/rkx7tDBaJQTTU2aWMuB473E215BGeuA0l7BePDybrs2bYwmOZLR2fz22yO/74IC6/s74QQrYIslM6AMBKzmRYnCHlCG0yzIfLNLQAkAicn+/ExACQAA4CoElKjahx9azVV+8QtjaVG0mYHixo3WfdWXGVBmZEj5+XW7Ttu21ov8WC/xrmn/yYPdfrv1PUydagXE4frmG2scj+XdUmgn73g0IKqPSCooJQJKAEh0ybzEWyKgBAAASY2AElV75x1rHO3l3SZzmXd5ubR5c/2vHwhYAWX79tbm8bVJTZU6djTGq1bFdilyfQLK7GzpwQet0+PGWR3UwxHPBjkme0CZaPtQElACQHJjiTcAAIBrEVDiUKWl0kcfGeOmTaXTTovN/US6D+X27dabkbou7zaZy7zLyiLbA7MmlZXS118b4/x8o3KzNqNHS927G+Nvv5VefDH8+493gxyJgBIA4ByvVFCWlDg7DwAAgBggoMShZs6U9uwxxuecI6WlxeZ+7KFiOCGhff9Je9hZF/Ho5L18uVRYaIz79q3bMvnUVOkvf7FO//GP4S9/NysoGzcO/X5jKS/PGidaQFlcbI0jDSgDgejMCQAQPVRQAgAAuBYBJQ5lX959wQWxux97qBhOo5xwGuSY4tHJuz7Lu+3OPFMaOtQYb95sBMb1tWWLtGmTMT755Lovf4+UFyooKyuNRkYAgMTilSY5lZXhf3gJAACQoAgoEaqyUnr3XWOckSENHhy7+4p0iXckAWU8KijDDSgl6eqrrfFrr9X/vu37T8ZrebfknoAyki7eEsvrACAR2Ssok3mJt0QVJQAASDoElAj1zTfSTz8Z47POCi/IqatECShjXUGZmir16FG/6w4bZv3s//tfY6/M+iCgPFS0Kigl9qEEgETklQpKiYASAAAkHQJKhHr7bWscq+7dpsaNrUAr3ku8mza17jsWAeWePdL33xvjbt3qH4hlZVk//4ICafr0+l3f3iAnXh28JQJKAIBzvNIkRyKgBAAASYeAEqHM/Sd9Pum882J/f2awuGlT/ff1M6suGzc2Asf6MqsoN28ObaASDQsWWI1U6ru823Tppdb4P/+p+/UCAWnhQmPcvLnUpk149x8OAkogNvbuld54Q/r6a6miwunZAInJK01yJAJKN6ispKkeUJXKSqdnACBBEVDCsnq1tGyZMe7TR8rPj/19msu8KyuljRvrfr2KCmn9emPcoUPdOmQfzN4o58cf63/9mkSy/6Rp8GCpSRNj/M47oW+8arJmjbRrlzHu1Su8n024srKkzExjnGgBpRlCp6cbX/Vlfl8SASXi79JLpV/+0ng+adFCGjVKeukl6eefnZ4ZkDiSfYm3/e8QAWXi+vln6Q9/kPLypE6dpKlTCSoByWjudfbZ0uGHS7NnOz0bAAmIgBIWe/fuWC/vNoW7D+VPP1kVl/Vd3m2K5T6U0QgoGzSQhg83xsXF0ocf1u169uXd8dx/0mRWUSZaQGlWUIZTPSlRQQnnfPml9P771umdO6VXXpGuuML4IKlnT+nuu6W5c6muhLfRJAdO2rhRuuUW47XtxInS7t3Gh/8XXSSdc460apXTMwScNXu29PHHRiHF0087PRsACYiAEhYnAkp7uFifgDKS/SdNserkHQhYAeVhhxmfnocrnGXeTjXIMdkDykSqGCCghFtNmGCN+/QxtrUwmVs63H+/dMopRlXCpZcazbUS6fEHxEOyV1ASUCamVaukX/1KOuoo6cknrd9D+wqWjz6SjjtOuuceXkPAuz75xBovXuzcPAAkLAJKGHbskObMMcZHHy117hyf+7VXUNanUU40Akr7Eu9oVlCuXStt326M+/SJbIn1gAHGPpKS9MEHRvOd2iRKBWVZWfT39oyEGVCG25megBJO+OoracYMY3zkkUb1wc6d0qxZ0u23S927hx6/e7f02mvSiBHS66/HfbqAo2iSA7vSUqNa65NPpKVLjaXX0awyX7pUuuwy4wPvZ5+1VvY0bCjdequ0YYP05ptS69bWfO67T+raNbQqHvAKe0D544+h+8MDgKQ0pyeABPH++9aGxfGqnpSiU0FpDznro2NHKSXF+L6jGVBGY3m3KS1NuvhiadIkqaREevddY++56pSXS99+a4w7dDD2P4q3gxvl2Ku9nEQFJdzIXj35xz9a+6f27298PfSQseXFtGlGhc6MGVJhoXXdiy82nucAL6BJDuzGjDl09UlKivHaqEUL46t5c2t82GFGsN2wYc1fq1YZS7jffTf0tnNypBtvNMLJww83zmvdWhoyxKhyf+wx43Xa2rVGI8rzzpOeeCL8D9oBN9m9W/rmG+t0IGCE/JG+VwKQVAgoYbAv777ggvjdb7t21jjeFZQZGUa4uWaNscQ7EIhOQ5m5c61xNP7oXnKJEVBKxgvtmgLK//3PCs+cqJ6UQkPRnTvDD5CjqazMeFMgEVDCPebOlaZPN8YdOhh7TlalVSvp6quNr/Jyo/L6yy+lH34wlnpffHHcpgw4yktLvEtKnJuHG8ybV/XWOJWVRiXlzz8b4Ug05OVJt90mjR0r5eYeenl2tvTww0ZgOnasNHOmcf577xkfKv3xj9Lvfhf6/wskm1mzDu3evXgxASWAEJRVwHhBb74Jbt5c6t07fvedlWUtYY73HpSStcx7zx5p69bwb8fOXkHZq1fkt3fqqdIRRxhjc2Pp6tiXd0fjvsNxcAVlIrAvNSeghFvYqyfvvLNu3efT0oyGOaYHHjj0DQGQrMwKygYNpNRUZ+cSC1RQ1k0gYHTRNl18sXTVVdKwYVKPHlKbNsbvSKSOOEJ6/HHj9esf/lB1OGl37LHSp58aTc5atjTOKymR7rrL2J+SPfmQzOzLu038zgM4CBWUMP5gmC/qzzsv/i/qO3QwPsn+6SfjBXddPkE2A8q8vPD3FJSMfYOmTTPGK1ZYLxjDtX+/tGiRMT72WKlJk8huTzKWI11yibE0yO+Xpk6Vrrmm6mOdbpAjJWZAad/jhoASbjBvnvGBhFRz9WRVBg0yPqCYP19assRYhhjPynjAKeZzczJWT0oElHX1ySdWlWLHjtLLLx/6AU8gYGyH8fPP0rZtxldhofE7VN3Xvn3Gvykp0vnnS1deWf+qR59PGjnS6Op9771GU52KCmPZ+J13GlWVQDL69FPj39RUay9Y8z0TABxAQAnp7betcTz3nzS1by99/bXxYnHDhtq7XpeWSps3G+NI9+2xN8pZudJYGhmJb7+1lhJHc8nCpZcaAaVkLFmqLaBMSZFOOil6918fBJRA5Krbe7IufD6jivLcc43T999vPLdHYwsLIJGZz83J2CBHIqCsi4OrJ++7r+rnT5/P+BC5SZPQ14LxkpNjvK676iqpb1/jdcoPP8R/HkA8bNxo7fffp4+0aZO0fr3xIWplJXtlA7/5jVGN37699Ne/SpmZDk/IOTwbeF1FhfVpbVaWdNZZ8Z+DfY/Cuizz3rDBeAEqRR5QHnOMNY5Goxz78u6+fSO/PdPJJxsdfCXps8+MT/oPtn+/8Ydekrp0iayyNBKJHlDSxRuxVlFhVGaHu23E119bld3t2xtVOvU1bJj1IcW33xoNdIBkZ64GoYLSu6ZOlRYuNMbduhkrUBLZ8cdbH8yvX291AgeSiVk9KRnvNU84wRjv3Wv0AgC87vPPjZVTL7zg+f2ICSi9bt48aft2YzxkiDMv6uvbydt+TCIHlNGsoPT5jCpKyfik8c03Dz1m0SJryYRTy7ulxA8oqaBELJWWGuHg0KHGm077c0JdRVI9afL5jOWCpvvusz7YAZIVFZTeVlER+rz34IPuqMw66ijj3/Jy40N4INnYA8ozz5S6d7dOsw8lvC4QMD6gkowGwh5f8eSCv9qIKXv3bieWd0uhFZR16eQdrQY5ktH91nwjs3JlZLclWWFEdrZRxRhNZkApVd2ZMhEa5EgElPAuv9+o1jGbjhUXG0FlffZY+vprq9qxXbvwqidNv/iFUZ1j3m5VG9QDySIQoILS6156yVomfcopxj6PbmAGlJK0erVz8wBiIRCwXn80amQ0Y7UHlOxDCa/bvt16b2nPRTyKgNLLAgFr/8mUFOdeyNW3gjKaAWVKirX30Jo1UllZ+Le1aZPxJRkBYbSbDR13nBV6zplj7OdilwgNciQCSnhTRYU0enTohz6SVFBgNK2p695iB1dPRtJpNiWFKkp4R1mZ9fudrAGlfU8qAspQpaXSPfdYpydOdE8VCgElktn//mdtedO/v/G6hgpKwGLPPwgoCSg9bfly6ccfjfFppxkdsZ3Qtq01jncFpWQt866oqNv9V+frr61xNJd3m+zLvCXpjTdCLzcDygYNrKopJzRpYi2pSpSAsrjYGhNQItoqK6XrrpNefdU4nZFhBJWnnGKc3rHDWNJU2xvP+fNDqydHj458bsOHS507G+M5c4w9boBkZFZPSizx9qJnnrGWyA0ZIvXr5+x86qNjR2tMQIlkc/Dybsl4/9a4sTEmoITXmX+7JOP1v8cRUHpZIizvloyKgJYtjXF9Kih9vtBwM1z27o2R7EMZq/0n7eybvduXeRcUWEvUTzwxsqqrSKWkSIcdZowTJaCkghKxEghIt90mPfuscTotzdgj9vzzpQ8/tBrVbNlivDA/uPLZzl49+Yc/ROdxnJoaWkV5//2R3yaQiOzPy8laQUlAWbW9e6UHHrBO/+lPzs0lHFRQIpnZt5cxm7GmpBhNrCRj39Xdu+M/LyBRUEEZgoDSyxIloJSsSsitW2sPf8yAslWr6HS5ilajHHtA2bt3+LdTk6OPNgJIyaiYNF/Imh0rJWeXd5vMZd47djg7DxMBJWLlzjulJ580xikp0ssvS+eea5zOzTU68nXtapxev954cb5t26G3s2CBEWhKxgcvY8ZEb46XXGJV6Hz2mfTll9G7bSBR2J+XqaD0lieekH7+2RhffLH1wZBbtG5tNUMjoEQyKS+XZs0yxs2bG9tVmVjmDRgIKEMQUHrVli3WkuTjjgv99NYJ9gejvcz5YMXFVtfxaCzvlkIDynAb5fj9Vkh45JHGH+FYsS/zfu01499EaZBjMgPKPXsi29czWuwBZXZ2eLdBQImD/elPoZU6zz4r/fKXocfk5UkzZlgB4cqVRkh5cHVxLKonTWlpxm2aqKJEMrIv8aaC0jt27ZIeecQYp6S48/ktNdV6TbtmDXsFI3ksWGC8F5CkgQOtLaAkAkrAxBLvEASUXvXee9YLIKerJ6W6N8qxXxatgDIaS7yXLJFKSoxxrJZ3m+wBiLnMO1Ea5Jjs+5nu2uXcPEzRqKBs0MDacJ+AEk8+aTSxMU2aVH3VY8uWxh5M5pYU338vnX22VFRknF64UPrgA2Pcpo101VXRn+/ll1sfBH38ceiHGkAyYIm3N/35z1JhoTEeMyb0Q2c3MQsF9u6tusoecKOqlnebTjjBGhNQwsvMfCMjQ2rRwtGpJAICSq9KpOXdUmgFZU2NaqLdIEeScnKk/HxjHG5AOXeuNY51QNm+vdS3rzFeulRatswKKHNyQgNXpyRaJ+9oBJQ+n/Wml4DS2559VrrlFuv0I49IN9xQ83XatjVCSvO5ZuFC6ZxzjN/NaHburk56ujR+vHXajVVGQE281iTH/FDUy7ZsMZZ3S8bzpr2Lt9uwDyWSkT2gNBvkmI47zqqoJKCEVwUCVkDZrl1olbFH8RPwouJiq6Naq1ZSjx7OzkcKDShrqqCMRUApWaHezz8bDWfqKx4Ncuzsy7wff1zavNkYn3xyYjyxJVpAGY0u3pIVUPLG0LtefVW69lrr9N13S7/7Xd2u27Gj8WLdfHzMmSP17y+9/75xOlbVk6bRo429ziTjPr/7Lnb3BcQbFZTe88AD1v/7DTdEp3GiUwgokWz27rUKOI466tC99bKypE6djPH33xvbZQFes2uXVUjD8m5JBJTe9PHH1gvb889PjECrrku8YxVQRroPpRlQZmSE7qkSKxdfbC03fu456/xEWN4tJV5AGY0KSokKSq975x3piius7THGjZPuvbd+t9G1qzR9utFAR5K++ca6LNp7Tx4sI0O6/XbrtL3rLeB2NMnxljVrpGeeMcaNGoVWiLsRASWSzRdfWKHjwcu7TeZ7prKyyBqVAm5Fg5xDJEAyhbg75xxjv7Nf/zq0Es9JbdpYgVu8l3hLkXXy3r7dejHZo0dsAwZTy5bSgAHGuLLSOp+AsmoElIjUrFnG/q8VFcbp666THn3Uet6qj5NOMjp2238XW7eObfWk6Ve/Mp4/JOmtt4xtIoBkQJMcb7n3XqNDsGR8WBTL5oTxQECJZFPT8m4T+1DC6wgoD0FA6UWZmdKwYdI//mEsL0wEDRpIRxxhjOvSJCc93To+Guz7Nta3gtLshi7FZ3m3qapwORE6eEsElEguixYZe/WaHekvv1z629/CCydNp5wivfuu9Tv1pz+Fhg+xkpkZuiT9wQdjf59APFBB6R3ffy+99JIxbtpU+r//c3Y+0WD/0J2AEsnA3E7M55POOKPqY+jkDa+jg/chCCiROMwXZ9u3hwZKpkDAqqBs21ZKTY3efUdSQfnVV9Y4ngHlRRdJaWnW6RYtrP3lnJaoAWWDBka4HS77HpTmMl8ktzVrQjtun3OO9O9/R2drjIEDpR9/NPaCvOKKyG+vrq67Tjr8cGP8+uvS8uXxu28gVrxQQWn/++XlgPKuu6y/wXfcYW2Z4WYNG1ofvBNQwu22bzc+3JWkE0+U8vKqPs4eUJrHA15CBeUhCCiROGprlLN7txUSRPsB3KGDFfbVJ6CsrJT+8x/r9KmnRndeNcnLkwYNsk736hVZRVc0JWpAGUn1pGRUn5lolJPYdu40GsHYGyTV17Zt0uDBxr+S1LevEehFEnIf7IgjQpc4xUNWlvTb3xrjQEB66KH43j8QC15okuPzWVWUXg0of/xRevttY9yqlXTjjY5OJ6rMZd7bt1uvdwE3mjnTGle3vFsyHsPmewYqKOFFBJSHIKBE4qitUU6s9p+UjMDhyCON8Y8/hu7rWJPPPrPmNWiQ8Yc2nuzLvONZvVmbZA0o7W96WeaduAIBY0P2886TunWzukjWR1GRNHSoVcnSpYsReCbL0tEbbpAaNzbG5jIswM3sFZTJ8jitivlBmVcDSnuV1XXXJVcYzT6USBb2/Sera5AjGR+6mB/S/vyztHVrTKcFJBxziXd6urVHvMcRUCJx2D81qKpRTiwDSsla5r1/v7RpU92uY3aQlIymQ/F22WVG04tf/EL6zW/if//VSbSA0qyiI6D0hsJC603s2rXS6aeHNlSoTWmpsYXCd98Zp9u0kT7+2NjrLFlkZ1vPeT/9ZHXaBNzKCxWUEhWUq1ZZ42OPdW4esUBAiWRhBpQNGkinnVbzsexDCa8KBKyirLZto7N9VBLgp4DEUdsS73gFlFLdlnlv324tMzr8cOn886M/p9qkpUn//Kcxj0QKTzIyrDDQ6YAyEKCC0msO/oChokKaMEHq18/YU7ImFRXSlVdaVYVNmxrhZKLs7xpN5mbclZV1/1AGSFReaJIjEVDagzt7oJcMCCiRDNassd6znXJK7c/H7EMJryooiN32dS5GQInE4eQSb6n+nbyff96qOrrqKuNTQljMDbF37HB2HmVlRugkEVB6xcaN1rhrV6uh1ty5xlKiF16ouslRICDdcouxz6Rk/H9/8EHyVemY7N0C7V0EATfyQpMciYDSXkFJQAkkHvu2MTUt7zZRQQmvsr/2JqAMIqBE4mjd2goSnFziLdVeQRkIGJWLpl/9KvrzcTtzmfeuXc52vLZ3hM/Ojuy2CCjdwR5Q3nSTNGeOtcfsnj3S6NHSyJFG4y27Bx+UJk0yxqmp0ptvJtbertFGQIlkwhJvbzCDu7y85OjebdexozUmoIRb2fefrKlBjunYY63mgwSU8BJ7QZb9NbnHEVAicaSlGXu9STVXUGZlSc2bR//+61NBOXu2dcwZZ0idOkV/Pm5nBpQVFcaegE6xB5RUUHqDPaBs08YIGRctksaMsc5/7TXjU/vPPzdO//Of0l13WZf/+9/SsGHxmK1z2ra1xgSUcDuvNMnxckBp3yPcHuYli8MOM74kAkq4U2Wl0UBUknJypJNPrv06DRoYjQglo0CE19fwCjp4V4mAEonFfHDu2mXtySAZf/DMB3H79kbXt2hr0cL4YyrVXkFpb45z7bXRn0sySJRGOQSU3mPfT9HcO7JxY+m554xgskkT47yNG40PGEaNCm0y9ec/G/tQJjsqKJFMvFZBWV5ubV/iFfaVNMm2vNtkfl8bNxpb1ABusmSJtbXTGWcYxSd1YS7zrqiQli2LzdyARENAWSUCSiSW6hrlbN1qVQvEYnm3ZISe5jLv9eurD6B27pT++19j3KyZdOGFsZmP2yVKQGl28JYIKL3i4ApKu1/+0ngBPWCAcToQkF55xfgQRJJ++1vjywvsAeWGDc7NA4gGrwWUkveqKO37TyZjBaVkBZT2D+YBt6jv8m4T+1DCi+zFASzxDiKgRGKprlGOfRyrgFKylnkHAtUvr3nxRetNwZVXSpmZsZuPmyVCQFlcLN1xh3XaXDoVLgJKdzADykaNrGpJuzZtjBfRDz8c+un+FVcY53nFYYdZ+7JSQQm3M5d4p6VZ+5klIy8HlMncwdtEoxy4WX0b5JhOOMEaE1DCK8x8Iy1NatXK0akkEgJKJBZ7BaV9KY99HMsS6Noa5RzcHIfl3dVzOqDcvVsaPNh6sZSVZQRQkSCgTHyBgBVQtmlT/XYQqanS738vzZsnXXSRdPvt0rPPSike+rPo81mf2G7YYFWRAm5kPicn8/6TkrcDSi9VUEoElHCX0lJjj37JCFs6d677damghBeZAWWbNnXfDsED+EkgsVS3xDvWHbxNtQWUX30l/e9/xvi004zOc6iakwHlzz8b4aT5IqdJE+nDD0P/f8NBQJn4du+2/m8OXt5dlR49rC0bvKhdO2O/p9JS43GTn+/0jIDwmBWUyby8W/J2QEkFJZC45s2znofPPLN+/QKaNZOOOELavNl47R4IxKbfAJAoCgulggJjzPLuEB4qFYErVLfEO14BZW2dvO3Vk7/+dezmkQycCig3bpROP90KJw8/XJo5U+rbN/LbJqBMfPb9J80GOagejXKQLMznZALK5GVWUDZubPxtT0YElHCrcJd3m8wqysJCXo8g+dl/x2mQEyIpA8p7771XPp8v5KtzfcrM4ZxWray9o6pb4h3LgLJTJ2t8cAVlQYH0+uvGuEkTacSI2M0jGTgRUP74o1HZaobLrVtLX3wRurdNJAgoE19NDXJwqLZtrTFvCOBmZuVOsi/xtu977aWA0u+3nqOOOip5q6tatbJCaAJKuEm4DXJM7EMJL6GDd7WSMqCUpK5du2rLli3Brzlz5jg9JdRFaqr1hrmqCsomTapuehEtjRpZVVcrVhhLDEwvv2yFUldckfxVGpGKd0C5ZIlROWl2I+7YUZozJ/Jl3XYElImPgLJ+qKBEsqCCMrlt2CCVlxvjZN1/UjL2QT7ySGO8Zg17A8Mdioqk+fONcefOxnLt+mIfSngJHbyrlbQBZVpamvLz84NfeXl5Tk8JdWV+ilBYaOwnV15uhQ6xrJ40mYHW7t1WsBYISM88Yx1Dc5zaxTOgnDdP6t9f2rbNOH388UblZLSf8AkoE9+mTdaYgLJ2BJRIBn6/VFFhjJO9gtKrAaUX9p80md9fSYm0ZYuzcwHq4vPPrefgcJZ3S6EB5aJFEU8JSGhUUFYraZvk/Pjjj2rVqpUyMzPVt29fTZw4UW3tS9kOUlpaqlLbC72ioiJJkt/vl9/vj/l8o8Wcq5vmfLDUtm2Dybn/xx+lJk2UfuCPXmW7dqqI8feW0qmTUg/so1K+bJkCp5wi34IFSluyxJhD796q6NzZeEOE6jVsqLS0NPnKyxXYvl3lMfp5+WbOVOpFF8m3d68kqbJXL1W8+67UtGlY/0c1PobS0nRgAwJV7N2rSn4HEk7q+vXW80eLFjxOa9OqVfB3unLduoifX5PhbxBcqLDQ+j3OzIz564RYqu0xlJKWptQD4/K9exVw8fdaHykrVljfd4cOSf19p3ToYH2vy5cr0Ly5o/NxG/4OxV/Ku+9av7MDBoT3+GzXTmkNG8q3f78CixfH7H0DasdjKPZS16yx3q8ccYQn3q/U9fcpKQPK3r17a8qUKTrmmGO0ZcsWTZgwQaeffrq+//57NW7cuMrrTJw4URMmTDjk/OnTpyvLhZ/Gz5gxw+kphO3osjKZvbG/mzpV/qwsnXrg9JpAQMs+/DCm93+k36/jD4yXvvmmNhQUqPukSWp/4LzFPXtqQ4znkCyGZGcrs6BA+zdv1owY/Mzy58/XyX/+s3wHnvC2H3+85t92m8rnzYv4tqt6DGVv3ixzV53Nq1frO34PEs4pixfLbJ0w/YcfVE5VYM0qK3VeWppSysu1Z9kyzYrS77Sb/wbBfTJ279bZB8bbCgs1Pwmem6t7DB2zYYPMXdUXzJmjnz1Szd/1k09kLuz+evt27UiC/+PqdNi/X90OjJe+/bY2FBc7Oh+34u9QfKTt26chL70kSSrPzNTHZWUqD/PxeXqbNmq6cqV8a9Zo+ptvqtyF78GTCY+h2Om/dKmaSAqkpOijJUsU+N//nJ5SzO0z9wqvRVIGlEOHDg2Ou3Xrpt69e6tdu3Z6/fXXdc0111R5nfHjx2vcuHHB00VFRWrTpo0GDx6snJycmM85Wvx+v2bMmKFBgwYp3Ww24zK+ggJjv0dJPZo2VSA3N3hZh4ED1W7YsNjef2qq9OyzkqRumZk67vTTlTZqlCQp0Lixjrv/fh3XqFFM55As0lq2lAoK1HDfPg2L8v+b7403lPrww/KZ1bXnnKMmr76qwfYGAmGo8TFk7m8pqXXTpmoZ499F1F/a//2fJCmQk6PBNLKqE1/bttKaNcrZvTvix2ky/A2CC61ZExy26NAh6n9v4qm2x1DK998Hxz27dVPAxd9rfaT+61/Bca/LLkvqLTx8Pp904Pvt1qiRjvPI/3G08HcovlImT1ZqSYkkyXfFFRG99kp5//1go8shrVopcMopUZkj6ofHUOylmZlU69Yaev75zk4mTswVyrVJyoDyYE2aNNHRRx+tVatWVXtMRkaGMuz7+hyQnp7uygemW+ctKaSTdurGjcZelObpjh2VGuvvq2tX6/5WrVLqm29KB5YP+0aNUnosm/QkmwN7v/r27TOW6UcYHgZNnSpdeaW1381llyllyhSlRPF3o8rHkO3DipTS0qjeH6IgEAjuQelr08a9z4Hx1q6dtGaNfIWFSt+3T7J9KBQuV/8NgvuYzVMkpTRqlBTPzdU+hmwVRWkVFVISfK91YjZLzMhQevv2RjOZZGVr7pe6bl3sX/cmKf4OxUEgIP3978GTqTfeGNnv64knBodp339v7C8Px/AYipHi4mB/Bl/79p75Gdf1+0ziv+6W4uJirV69Wi1btnR6KqgL+0axa9eGbiIbjyY5bdtam9CvWBHaHOfXv479/SeTWDTK+eAD6ZJLrHDymmukF1+Mz5s0muQkth07rKYRrVs7Oxc3oVEO3M7+fJzsSwLtH6YfqFpKepWVVpOcI49M7nBSMl4Hm9+jvTkQkGg+/1z64QdjfNppUrduNR9fGzp5wwvo4F2jpPwL/9vf/laff/651q1bp6+++koXXnihUlNTNXLkSKenhrrIz7degK9bZ31qLsXnQZyaKnU8sNPR8uXSN98Y4x49Qj7ZQx1EO6CcPl0aPtzaSPjKK40AOV5vVrwWUO7bJ333nfTqq9Ldd0sXXywdd5zUpIl0/fXGJ+eJZONGa5zEy/+izt5AjoASbmTf18j+PJ2MvNjFe8sWK4xN9g7ekvF/bP4NI6BEIps0yRqPHRv57dkDTgJKJCs6eNcoKZd4b9q0SSNHjtTOnTt1+OGH67TTTtO8efN0+OGH135lOC8lxQgiV640HsBmY6MWLeJXGXHMMdKyZaEBDNWT9RfNgHLWLOmCC6w3ZJdeKv373/GtpEhNNSo1/f7kCyi3bpXef9/4JNz8Wr+++hDy73+Xhgwx/k8SBQFleKighNvZn48JKJOPfYsm8wPkZHfUUcbz8e7dxtdhhzk9IyDU5s3GlkuS8R7toosiv83GjY3f/dWrpaVLjdVSqam1Xw9wEwLKGiVlQPmf//zH6SkgUu3bGwFlcbHxJcVnebfp6KNDTzdqJFGBW3/RCii//FI691zrTeiFF0ovvODMi5aGDZMvoFywQDrzTGnPntqPTUuz9nu77TYjpEyUQODA/pOSCCjrwx5Q2hpBAa5hr6D00hJvrwSU9ipCL1RQSsb3+dlnxnj1aunkk52dD3CwZ56xtlu69lqpQYPo3G737sbv/P790o8/Sp07R+d2gUTBEu8aJeUSbySBqj5NiGdAadugXJIRTpqVnKi7aASU8+dLQ4cGGxXpnHOk//zHucYAZqOfZAkoV6yQhg07NJxs3Fjq1UsaPVp66CHpnXeMDw3275fOOss4Zt066dFH4z7lalFBGR4qKOF2VFAmN69WUJpY5o1E4/dbe/SnpkrXXRe922YfSiQ7KihrlJQVlEgCVYWRTlZQXntt/O47mUQaUH73nVGhZ4ZngwdLb74ZvU9pw2G++U2GgPKnn4yf744dxunTTzf2mjz2WKlVK8nnq/p6Tzxh7BNUUSFNnGiEmPZ9DJ1iDyhpklN39jCXgBJu5NUmOV4JKL1aQWkioESimTrV2BpIkn7xi+i+5jrhBGu8eLHRGBNIJmZA6fNRUFEFKiiRmJyuoOzc2drbsFs3qWfP+N13MokkoPz+e2nQIKmgwDg9YIDxgsisYHRKsgSUBQXS2WdbgVS3btK77xrVkUccUX04KUldukg33WSM9++Xfve7mE+3TqigDE9GhtSypTEmoIQbealJjv1voFcCSrOCMjXVO8vhCCiRyKLdHMeOCkokO/O1dqtWzhbdJCgCSiQmpysomzY1lrX26SP94x81hzWoXrgB5fLlxp6I5nVOPVV6773EqIxJhoBy/37p/PONDcgl4wOBadOM7tx1dc89ktl47PXXjSZGTjMDysMOM/aNRd2Zb/q3brW65QJuQQVl8goErICubVvvvJkjoESiWrpUmj3bGHfuLJ1xRnRvv21b6/XookXRvW3Aafv2ST//bIxZ3l0lAkokJqcrKCWjKmzuXCOkRHjy8qyxuYy4NqtWSQMHWk/evXpJH34oZWdHf37hMAPK8nKrWYyblJcbe6p+8YVx+vDDpenTrQq6umrSxFjebbr5Zmd/HpWVRkdJierJcNiX6NsrUQE38FIFpdcCyp07pcJCY+yV/SclKSfHeg1FQIlEMnmyNb7hhugXcfh8xqoeydiKqK7vHwA3sK9UIqCsEgElElPz5qFvMlJSCB3cqGlTa1yXCsriYmOfyS1bjNMnnmhU9uXkxGZ+4bD/XrqtijIQkK6/3mh4Ixmh70cfSZ06hXd7V11ldRZdutSoNnbKzz8bm7ZL7D8ZDhrlwM1okpO8vLj/pMn8fjdtct/rDSSnoiLpxReNcaNG0pVXxuZ+Dt6HEkgWBJS1IqBEYvL5Qh+0bdo417UZ4UtLk3JzjXFdAspHH5XWrjXGxx9vVPYddljs5hcONweUd98t/etfxjg9XXrrLalHj/BvLyVFeuop6/Rddzn3STf7T0bGHlBu2ODcPIBw2CsoWeKdXLzYwdtkD2TN10aAk154wSgmkKQrrrBe40cb+1AiWdk7eHtlT+V6IqBE4rIHlHzC4F7mPpS1BZQ//ST9+c/GOC3N6NZtXyKeKNwaUD71lPTAA8bY5zNeZA4aFPnt9uljdPGWpN27pTvvjPw2w0FAGRmvVVAGAlbFLdyPCsrkRQWlgWXecFogIP3tb9bpG26I3X3ZA0r2oUQysQeU5BtVSnN6AkC17HtOxnv/SURPs2bSmjVGeFVRYXThrMqdd1pVMNdfr/9v777jm6q7P4B/0l02tNABlCWIbGQvEUFZosgSZBQQcBRZCgiy/KEgIBsUUEEfWYIMhQcQKENAZhkyRQRlFoRSKGV03d8f57m5SZu2SZv0Js3n/Xrx4ubmJvmmyU1uzj3fc1ChQs6N0RauGKD84Qdg8GDt8uzZQNeu9rv/yZMlGzMuDli0CHjrLZmen5OuXtWWGaC0nbsEKGNjpRTB3LlSs7RgQSAoSPtXrFja5ZAQOYhkszTn5a5NctyhoRUzKAUDlKS3XbuAs2dluUkTmenkKJUry++F5GRmUFLuwinemWKAkpyX6U7LAKXrUjMoFUWCA6advVUnTgDffivLBQvKVGRn5WoByu3bZRqOosjl0aOB996z72OEhMhrNny4PM5770kTnpwM6JhmULIGpe1ye4Dy2jVg1iwJTsbFaevv3ZN/589nfPunnpJM4Z49OSXHGbFJTu5lGpgrW1a/ceiBAUpyJvPna8sREY59LD8/6RB++rT8++9/gbZtHfuYRDnBNIOSCRUWcYo3Oa8mTbTl557TbxyUPaYBSUvTvBUF+OADLYA2ZoxzTu1WuVKA8sgR4LXXtKmsb76pTfO2t0GDtKzXffuAFSsc8zjp4RTv7ClQQDqzA7krQHnmDNC3r5zk+vxzLThpMADPPiuBx/z5M7+fCxekxmrp0kDz5lIiIT7eoUMnG3CKd+6lZlCGhub+7NjUGKAkZ3H1KrB+vSwHB8uxpaOpj5GcLMtr1jj+MV3NhQvA0KHAunV6j4SspQYoQ0IkEE9pMEBJzqt+fWmSsmkT8Pzzeo+GsiqzAOXmzZLlB8iP/4EDc2RYWeYqAcpTp4CWLbVi5q+8AixY4LisRh8fmTquGj5ce+ycwAzK7AsLk/+vXJEfBK5s7155z1euDCxZogXpfX2BAQOAc+eAqCjgzz+lK+nDh3LQePAg8PPP0kzq008l8N6smfl+s2OHZFMGB0sn+927gZQUXZ4m/Y87Ncnx8dGWc3uAMi4OuHVLlt2t/iQgnzHq+5kBStLTokXaccGAAeafQ44ybpxWjigxEejSBVi61PGP6woUBVi8WLqdz5oFdOwoSQnk3B4/BqKjZZnTu9PFKd7k3OzRxIP0lVGAMilJAlmqzz5z/rNJrhCgPH8eaNECiImRy02aACtXSvMhR2rVCmjXDtiwQZoeTZok/3KCWoMyMDD3Z1A5SqlSwO+/y35544brBXoVRYKLU6cCv/1mfl2hQlLQ/7335Ed/av7+8vzTm759+TLw/fdSikLN6HrwQC5/+60caIaHS7amGuilnKN+Fnt4AN7e+o7F0QwGCQ4kJOT+AKVpUM7d6k8C8lqXKwecPCldvDOq403OIyVFPotyi4QE4KuvZNnTUwKUOcHbWwKSfn7yPZuSAvTqJSekcmoMzigmRp6/aUapWl5p377c9d7LbS5f1pZZLihdfAcTkWNlFKD85huZggkA9erJ2VFn5+wByr//limoN2/K5Tp1gI0bcy5oN2OGdmZ9+nTzBgeOkpwsNQYBTu/ODtODJdODKFcxYQLQvr15cLJECXkfXr4sGZGWgpPWCAsDPvpIgv/79smPgwIFtOv//hv4+GOgWjUJ8lLOUj+L8+Rxj2ZG6jRvdwpQumMGJaA978RE82Zw5Hx++02+AwIDgTlz7JNZf/aszAZ46SVg587s319WrFunZX21bw8UL55zj+3pKb8V1I7hiiKNGE1n7LiTHTvkPWYanFSPRQ4ckPIzriw5WZ7DtGnyuq9fD/z6q8wKu37d9b/z2MHbKgxQEpFjpRegvH/fvBnOjBmu8cPSmQOU169L5qT6I6ZqVWDLFvNAiqM99ZTUFAXkrPvQoY5/zOhobeqRq2X9ORNXb5RjWve0cmXgu+8kwDFsmHV1Jq1hMAANG0qznehoYPlyKaWgZizcuwcMGaLV1KWcoU7xdpfsaXcJULpzB28V61A6v8ePZTZQ48aS7Xr3LjB4MPDCC5L5mhVJScDkyTKFd8MGYNs2ub927bQT+zklJ5vjWOLhAcybpx1bAvI9O3lyzo9FLwkJwIgRcoyvnpAvUkQClabBypEjpSGpK1IU4O23ZTbKiBFAv35Se7RpU/k9U7y4ZNPmzSvJCNWrAy+/7Fpd3tnB2yoMUBKRY5k2vDENUE6dqtWW6tRJfvS7AkcGKH/5Bdi1K2vBjX//lZII6g+Yp5+WA9oiRew6RKuMGqWdYd+4UcbhSGyQYx+uHKC8fVvqSQJA3bryI7FXL8fWyfL3B7p1k5MAly9rgYSdO6V2MuUc0wxKd6CWQsntAUpmUDJA6ewOHQJq1pQmbKmP3XbvlsDKggW2HdedOCGzikaPlsCUqY0b5T7fektKsTjayZPAnj2y/Mwz+vUEMBjkd8P48dq60aOleZ21f9voaKkv/cEHrhXUOntW+jJMm6Y91+bNZbZGhw4StOzYUdbfuiWzSVzRuHHy+mTm4UNJxPj9d+nu3rOn69QBN82g5BTvdDFASUSOZZpBefu2/H/liky7BKTGzGef5fy4sso0QPn4sf3u94svpIZjs2ZAgwYSqLRWbKxkcaln1UuXlsZDQUH2G58t8uWTA0nVF1849vFMp70xQJl1rhygPHBAW27cOOezsYsXN8/mGDFCMmAoZzCDMncyzaBkgJIBSmucPQvP555DkxEj4DFiBLB2rVbyxp6ePJGyHw0bStM1QE6ITZkiDT7V79P4eOCdd+QYzfRkqiUJCRKAq10bOHpU1nl4SHbm4sXaDJGUFGlaU768BKMc2ZDQ9Pjt3Xf1nelkMMjznTJFW/fJJ8D771sOUiqKBCI/+UQCviEhQP/+8vvj5Zed/ztaUSS4XasWcOyYrPP2lmD41q3mU+2nT9e+/+bNkynRrmTuXHmdAHmdJ02S5z5pkgSU+/QBXn1VaupXriyvpVpX/+RJCdy7Ak7xto5CFt27d08BoNy7d0/vodgkISFBWb9+vZKQkKD3UIjEP/8oinzNKkrHjrKuZ09t3dCh+o4vlUz3oXXrtLFPnmyfB42LU5TAQO1+1X8tWyrK0aOZ37Z+fe02oaGK8tdf9hlXdiQmylgARfHyUpSbNx33WDNmaM9/6VLHPU5uFx2t/R1bt87SXej2HTR6tDb21atz9rFVKSnm++KiRfqMwx15e8vfvGZNvUeSbVbtQ5UqyfPNly/nBqaHsDB5nkWK6D0S/Vy4oH2mdOqk92icW3y8olSsmPZYClCUcuUUpVcvRVm4UFFOnVKU5OSsP87Ro4pStar5/deqJferundPUQYMMN+mQAFF+eYb+a5I7fBhRalSxXz7ypUV5eBBbZuHDxVl0iRFyZ/ffLvgYHleiYlZf06WrFmjfbbmyyfPyVnMnWv+N3j7bXlNHz9WlC1bFCUiQvv8SO/fpk16P4v03bqlKO3amY/3mWcU5dix9G8zcaK27fPPW36fWSlHj+VWrlQUg0Eb+5w51t1uwwbtNnXrZuv55phGjbQxP3yo92hynLXxNWZQEpFjpa5BGRUl3XABoHBhYMwYfcaVVY6Y4j1njpZdatrF/JdfgGeflWmklprNPHokxdPV7LGiRYHISKBsWfuMKzu8vGSKLSBnqZcuddxjmWYlsAZl1hUtqmVmuXIGZf36+ozBYJDMBtW4cY7NbCGRlCQNRAD3meLtDhmUT55on+3uWn8SkAZdauduZlBmbOhQLZsxtb/+kuYbb70FVKki5Ydeflmap/34o2TaZfZ5nZgozdDUMiKAZLRNnAjs3y+ZXaoCBaRW8ZYtWqbb/fvAm29KHcnr12Xd48fAhx9Khp+a9eblJVOXo6LksVT+/lJC56+/gIEDtQyy6Gh5XtWrSyaZPWogf/cd0Lmz9tn67rs5W888MwMHShMVNaNzwQLJPA0MlNlI8+enbfZXrRrQtat2Wf0t4mx+/FHeoxs2aOsiIoAjR6QmaXo++EA7/t+1C1i1ypGjtI/t22WKtvqeHT1aupFbo21bec8DUmohMtIxY7QnNYOyWDH3mfGRBQxQEpFj5cmj/Zi6c8e8yPW4cfrUSMwOewcoY2OlrgwgU3mOHpUDQ9PptitXSu2fd9/Vag4lJEjtTrWrY6FCUuuxYsXsj8le+vTRlhcvdlzjENagtA8PD/kxDEiA0lUavSQny8EpIAFqPYPUjRpJTShAfjSaBizJMUw/h93lgF/9Tk1MdJ3aW7a6dEn7DHLX6d2ABMDU44G//nKdz+WctnatTHsGoOTJg18/+wxJa9dK05DGjbV9RnX3rtSvGzNGAnE1akgztZAQ4LnngL59ZXrp6tUyvfbIETn5NWGCNjW4WjXg8GG5D29vy+Nq2VICj+Hh2rr//lcCUFOnyuNOmaLtxzVqyH3+3/+lHbOqaFGZEnv6tPZ9A0iZn3btZCqsWuM9K+bOBXr31sYUHi6BXGfTty+wbJkWwD92zDzI7O0t3c/nzpXA0IkTcnytJk6sXw/ExeX0qNN386Yc13furL1+RYtKoHLevMxPwPn5mXc3f/995z5JGhUlTXDUIPibb2rTvK1hMEhAU+WM71FTCQnaiQlO784QA5RE5FgGg3YwcOqUVluxXDkJuLkaewcop0/XOu6Fh0sgslcv4I8/gFmztCZDSUnAl19KJslHHwFvvKE14siXT87Sq2cSnUWFChKwAeRA+sgRxzyOaQ1K05o8ZDvTulkxMfqOxVqnTmkH4Q0a6DsWQGrqqpkt06blTCMDd2b6OexuGZRA2iYauQU7eGvUAO39++bNBklcuSIdf/8necYM3K1YEcrLL8vn8Z49wL17wG+/SVDw1VfNGziaio6W7ZcskWOtLl1kJkudOlpdSE9PCUoePmzdcVehQsC33wI//QQEB8u6u3clePrHH3LZx0eCM4cOZZwlZ6pCBengvHev+Xffhg0SPN2yxbr7USmKjGHQIG3de+/JCWb1O83ZdOsmQWS1IV5AgBxDr14tM5N++UWyLdVjGx8f4PXXZfnRI/MO2HpRFJllVKmS+Xjat5dGMC+/bP19vfwy0KaNLF+7JkF2Z/Tnn0Dr1tqx26uvShasrTVOO3aUpqCA/L7ct8+uw7SrK1e0E0wMUGaIAUoicjw1QGl65n/KFMd22HUUewYo//1XgpCAnOkdN067ztcXGDwYuHhRiqbnyyfrHz6UAw71IMbfX6b01KuXvbE4imkW5ZIljnkMNYMyKCj9jAOyjmnmburpUc5q/35t2RkClOXLA2+/LcsPH5p3HSX7UxvkAO6XQQnYt1mbM2EHb43p87dU7sWdJScDPXpIwA8AOnWCYnrcofL1le+H4cMlc+7WLQkO/vCDZF717i2Zlpk1F6xUSb5zJk60/Rj2lVfkhFq3bubr69aV4OdHH6WfiZmRRo0kMLNqlWTcAZKN17q1HEdac6yqKNLcbexYbd2YMZKR5+Hk4YLXXpOA15Ej8ry/+04yEdObkt6zp7as9zTva9fkfdGzp3ZSODBQZk6tXasFtG0xa5b23vz8c+D8ebsN1y5u3JDM4n//lcuNGwMrVmQtCO7pKSUSVM6cRckO3lZz8k8cIsoVTOtQAvJlZDotxZXYM0A5dap29rBfP8tn1PLnlylFf/0lB5qmB6/e3sC6dUDTptkbhyN16aJlNS1fbr+6naqkJC1DjfUns88VO3k7Q/3J1MaN034cffONZBCTY7jzFG8g99ahZAalhp280zd5MvDrr7JcsqRM87YmC8tgkAzELl1kmuiSJZI5GR0tmarHjknAb9IkmUrcsqUEJaOiJJsyqwIC5FhozRrJdps1S4KLpvUrs8JgkKnBJ09KYFI1Z455zUxLkpPlpJppSZJp0+T56tm12xZhYdLtWp3unZF69bTPlJ07zWfh5BRFkWODSpXMO1B37SpT9V9/Pet/+/LltXJaiYny28FZSkPcuyfvz0uX5HKVKsDPP2fvu7t7d+3YdfNmLdPZ2bCDt9UYoCQix0sdoPz8c9c56EnNXgHKGzekpgwgdWMyaxZUrJgcyJ4/LwfLtWvLdKGWLbM+hpyQP78cNANyYLJ+vX3v//p1rU4S609mnysGKNUMSh8fmYrnDIoWlWYGgLw/R4zQdzy5mWkGpTtO8c6tAUpmUGoYoLRs/345gQtIlt+yZdJ8Mbvy55dp1p07y+f4N9/IdOkxY8wbGWZHhw4yFXvwYPtOnw4KkhqXc+dqnxOnTklQdfbstDVrExMlA/V/9TthMEhzH9N68bmNwSDPGZDA3bJlOfv4//wjx+79+kkwHJBMyXXrJJNQzYLNjtGjtZP2W7aYN9zRy+PHMm39xAm5XKqUjC27+6y3t/kxlrNOazc9pmaAMkMMUBKR45kGKLt2dd7pyNawV4By0iRtat677wKhodbdrnRpOVg+fNj8LLkzc+Q0b9Mz3wxQZp+rBSjv3NGmLz37rHNN8R88WHtPbtoE7Nih73j0FhsrP3yXLLFvYxdmUOo3DkdSMyjz5s182m1uxwBlWvfuSS3u5GS5PGYM0KSJvmNyFgaD1F2MipJalIB8TgwZIseN6qyTR49kevTKlXLZy0uCdQMG6DLsHKUGKAGZ5p0TGYYpKcAXX0jW4LZt2vrwcJll0b69/R4rb16pca8aMsS6ciBJSUBkJDymT0fRY8fs93dJTpZMR7UPQUCA1Ae1V934vn216fBr1wJnz9p+H4oCzJghNUyvXbPPuExxirfVGKAkIsdr3lz+L1JEpuO4MtOz51kNUP7zj/xQB+QgYuTI7I/LmT33nPYDa/t2+9Y2ZAdv+3K1AKUzTu9W+fubd6T84IPc23E5Ixcvyo+jkiVlGmHfvlJrzV7cvUlObgxQJiVpP+bKlXPdGRf2UrastswApQQS3n5be480amReO5FE5crSdGfYMG3d1q1A1aoSlGzTRrItAflMWbcubX3M3KpcOaBhQ1k+fRo4ftyxj3f1qnQUj4jQSjuVKCEnL7/9Vn4f2VvnzkCzZrJ86ZJM27ckOVkCh+++KwHDFi3gOWoUGn78Mbzq1JGSBGqnbVslJ8sU7hdflMAhIL97Nm3SmtvYg5+flvWrKFn7rTlhgnQ+//57Saax9/EaA5RWY4CSiByvSxfpRHfqlOuntdsjQDlxovZlP3iwTN/OzQwGKUAPyIHDd9/Z774ZoLSv4sW1gviuFqB0hgY5qfXooXVkPXbMtqlkKSnSddYVXofUFEXqqnXsKPWwZs/WfpQB0ll33Tr7PJa7N8nJjQHKK1e070h3rz8JSJM8NTuIAUo5hlCz/goWlM9VZ+0yrTdfX8mk27oVCAmRdXfuSCBSzWbLl09q99nSLTo3yIlmOYoiAb6qVYHISG39gAHym8iRM6EMBpnqr9blnDRJC5KlpEjN1ffek0Bps2bAl19K8yjTu/j9d8l8LF9e6pnGx1v32DduyAnaMmWkQ/fOnbLey0vqr9ata5/naOqtt7RA7/LlcnLUWgsXAv/3f9rlvXtltpo9qcdygYFa41OyiAFKIsoZVatqB0euzGDQgpRZCVD++aecLQXkwDo31/kxFR6uZcHYc4qnaYCSTXKyz9tbKzfgCoExZ+vgnZqHh3njgY8+yvxzIylJfixVqSKZQVWrOma6kSMkJkrgoH59aYa2dq22r/v7Ay1aaNuGh9unu6g7TvE2PVGWGwOUrD+Zlvp3iI62PkiQG/35p0xfVi1axGwka7z4oiQKpJ5GXLiwzGxRM+3cSZcuWrfr5cvlu9eeYmIkE697dylxAshJ4K1bJSBWsKB9H8+SypWBQYNk+fFjCeKpMxqee05q4UdHa9v7+QEdOyJ55kzEVKigrf/nH0moCAuTJoBqB25TiiJB2M6dZbuxY82P0UuVkuCko2rn58snzw2QzM0pU6y73U8/SfZoaiNGSFd4e0hM1EpS8fMqUwxQEhHZSv0RnJUA5ccfazWTPvjAPgXdXUHJknKADMhUE7XrZnaxBqX9qQdPt2+bZ6c5m+Rk4OBBWS5e3Hlf/+bNtSyJK1ckC8GSJ0/kR0uFClIDSa2hFBfnuOwOe4mNlUBsuXKSmXPokHZdcDDw6afy3Ldule6kgDyvDh3MMyuzgk1y9BuHo7CDd1qmgVpbMoNyk4QE+XxRA7R9+kiQiawTGCgnjb76SjLNypcHdu927brw2VGkCNC2rSzfvCmBWnv55Rc5ubhqlbbujTekm7p6LJxTxo/X6vhu3SozGq5f16739ZXA9fLlEnj88UekRERgz5QpSIqM1P5GgARdJ06UAGREhHwWxcQAM2cCFSvKScgff9SCvQaDZOb+979y4umVVxz7XAcOlCZXgCSDZHZyd/9+8+nc77+vZdbGxpqXR8iOq1e1x3D1mYQ5gAFKIiJbZTVAefq0HAAAUiB68GD7jsvZOaJZjnp21mCwvtEQZcz07K4964Xa2+nTWnDL2epPpjZ1qjZ1ftIk8+yD+Hg5uC9bVuqqXbqU9vZLl+ZMEX9bpaRIYLJkSWD4cPNsierVZSrm339LR9GAANlPv/4aqFRJtjl9WjqZZue5uWMGZW4PUDKDMi02ypFGOFFRslyhQvoneyh9BoN85t66BZw7J0E0d2bvad4PH0qQrFUrLQhYuLDMLLBXl3lbFSyYNpvQ2xto106e861bWv1R06nHBgOUJk2AjRsl+7ZXL62UwuPH0vCnfHk59h42zHxGRFCQzBi5dEk6iLdpo001d6TChSVwCsgJDdMZLKmdOyfBU7V50BtvyLHa9OnmU8W3bs3+uNjB2yYMUBIR2SqrAcpx47Qf4h9+qJ3lcxft2wOFCsny6tXA/fvZv081IBISIgdclH2u0ijH2etPmqpSRZrDAPK+nzhRzs5/+qkcrA4bZp7R0LKlZLaYFvH//fecHnXGoqMlM3T4cPMsyJdflo7lx47JD5rUndXz5ZMsHvXz74cfshdoYJMc/cbhKMygTMvZA5RxccCWLXJs06CBBApeeAFYsMDydFBbJCXJ54Ta5MPbG1ixgnXcssPTUztp5s7atNGChuvWyfs4qw4dAmrWBObP19a99JJkTaozB/TSq5c0junWTTILb92S5jU9egAFCmR++6pV5YTjxYtyvKLueykp5t9BzZrJvnr5stSg1GM689Ch2u+0hQstf/5cvy5B5JgYudy8uSROeHgARYuaBzbfeSfrPQdUpg1yGKDMFD+ZiIhslZUAZVSU1sEuONhyvZPczs9PzlAC8rcznfqSFQkJWn0Y1p+0H1cJUDp7/cnU/u//tADal1/K33nMGJlKr3rtNeDwYfmh/9xzUrtKZUuDHUf75RfJkFQzCwwGoH9/yUjYsEF+pGTUefnpp82bZX3wgRTszwo2ydFvHI6iBuC8vfnZrnK2AOX9+9JYZeRImSJcuLCcsJgyRU4excZKY4x33pETiC++KNnTd+5Yd//XrwOLF0s9u8BAmYapmjwZePZZhzwtcjO+vlrw8NEj7TjdFomJ0gG6YUMti9DfX+o7btkiJWj0ZjDIyYPly6X+s5osYKuSJSXD8PJlmQ0SHCz7/uDBUpZmxw7z2p56KFZMmhAB8prOnGl+/b17EphWj29r1JDX3XTMvXvLMRggQdlPPsnemNjB2yYMUBIR2co0QGnt1MRx47TlMWPcJ9MnNdNp3osXZ+++rl/X/v7OWn/QFblagNLb2zV+rIaEaE2xkpK0DGIPDwlEnjolB8m1a2u36dJFm1K1YoX9mktlVUKCZEy2aqV1+wwOlkDlokUSeLTWa6/JDyZA/h5dukjnT1sxg1K/cTiComgBuLJlc2ZaoCtwhgBlVJQ0jqhbV4ISbdrIlMhDh7Ta2qrAQG05OVnq+/XvL58XrVtLttLdu9o2iYmSNf7hh3Lyo3hx4M03pZ7dvXvadm3aSIYUkb1kZ5p3QoK8n03ry9epIzMIIiIyPlHnygoXBkaNkhqPt28Ds2ZJDUpn8cEH2qyq+fO1JkVPnkjt6xMn5HKpUsCmTWmzSA0Gyb5U72PqVDlGyypO8bYJA5RERLYyzdKx5sfhb7/JFyAghaX79XPMuFxBrVpazaP9+yXjKqtM690xQGk/YWHasrMGKGNigD/+kOWaNc27Gjuz4cO196qPj5zlP39eakxWrpx2+8BArePl1av2ay6VFRcuSFdx06lPrVvLgb5pd25bTJwoU6sAmTLepYsEKmzBDEr9xuEI0dHaa8r6k5rAQK0sgh4BypUrJfAybZpkeac+WVKpkswMWbVKXsNbt4CjRyXgWKaMtl1SkmSV9e0rdepefhno2FGe3/PPSwZm6nIWhQtLltt330nHXU5NJntq0ED7rNmxw7z5YkYURb7DIyPlsqenZFLu22fbyTpX5uHhnPtjiRKSBQnIyeB58+Qzq3dveY0BqTP5yy9y8tiSihUlCAvI59Zbb2X9JDEzKG3ihO8oIiInZ/oj2Jpp3mPHasvjxqWtyeZODAbzLMpvv836fTFA6RiukEGpdu8GXGN6typfPgnML10qQYaFCzMPwjjDNO+lSyUQfOSIXPb2lmlTGzfKdKqs8vKSzFB1Gu/evRLEtYW7N8lRC/znFqw/aZnBoH1W/P231Hk7eFDKnDi6gda2bVLDzvRxKleWDLHVq2UMp09LplLnzhJ4NBjkM2PyZPmsO3xY9m3T75fEROnuu3Zt2prUtWvLbJN9+yTYuXKleZMOInsxGKQWIyDvcbWZZWYmTdJKlfj5SUmD8eNZD91ZjBypBU9nzQIGDZLPEUCOFTZuzDyQPGqUNAICJNnk66+zNhY1QFm4sHU1P90cA5RERLayJUC5Y4d2tu6pp+QA29316KH9yPjuOzkzmRWmAUrWKbOfvHml4zLgvF28Xa3+pKnixSXoaO179tVXtYL0q1fnbEAqLk7qVfXsqTXCKV9easwNGWKfzImiRYE1a7T6T7NnS9DSWqYZlJzi7frYwTt96t8jOVlqMtavL1Om8+QBnnlGSi+8/Tbw2WfyQ/zMmew/5pEjUo5BzWzu21cChqdOSVZSp06Zn6QwGCTgOHWqdPU9cECmaZt+BgYESAOP//xHAp6HD0uGdcOGDEqS46kBSkCmeWcW9P/hBwmgm96mSRPHjI2yplw5+UwBpPat2rzIw0M+H605dvTzk0ZfqpEjJUPcFklJWlYup3dbhQFKIiJbWRugPHxYai6pJkzgmVVAAhLt2slydLRMscgK02k4zKC0LzXL5dq1rAeQHck0QFm/vn7jyAl58kiAAJBabGq5CEeLipLanv/5j7YuPFymbdq75mfduuadvPv1s77ek7tnUOa2ACUzKNPXsaPl9Y8fS7mUX36RrOxRo+SHeeXKcgyS1ffI+fNSxiE+Xi63by/3X7Ro1u4PkGBlvXrAjBmSoR8VJf9u3pTMtZ49s5eVTZQVTz2lBaxOndJqFFqyf798F6omT5ZAPTmf0aPTrluwAHjlFevv44UXtOSS2FjpYm6L69e142gGKK3CACURka0yC1AmJkrB7AYNpPsbIHUXTbtQujvTad5LlmTtPjjF23HUAGVysgQpnUlysjbFOyTEvGZmbpXT07x//12yQdRgUf78Ms3722+1bE57GzBAqxn18KEUsjdtjpEeNsnRbxyOwAzK9HXrJoHIH36QWo3vvCNNYypVSv+9//XXQNOmtn+OX78u9W9v35bLTZpIANGe2YweHnKy49ln2QyJ9GdNs5xLl2RWg/q527evZNWRc6pUSY4lVOPHmyeOWOvzz6VmJSAzPGxJrGD9SZsxQElEZKuMApR//CGNJCZM0Dr61a4NrF/PA3BTrVvL1DQA+Pln7UeQLdQApadn+kWuKWucuQ7l2bMy9RiQkwC5tUumqebNtayijRu1jpSO8PChnExRP9vUjqSmQVJHMBiAL76QunUA8OefEoDJDJvk6DcOR1CD4gYDs00sefppaSY1YoTsL//9r9R/fPBApl4fOiSNaiZM0PaHgwelQd3evdY9RmysfEerP6yrVpXvaXfZv8g9demizXJavjzt7JHYWKBtW+Dff+Vys2bAl1+6xzGIK1uwAHjzTalDOX581u6jaFHzBoHvvGN+7JER0wAlv9OswgAlEZGtTA/S1XpwiiL1TWrWlKndgATOxo+Xwsply+b8OJ2Zl5d2tjoxMWtZYWqAMjSUwV97c+YApTtN71Z5eWm1lBISpGajowwbJkFgAKhRQzqH51Qmm7+/PLfCheXyihUScMmIGkg1GNynAVluDlCqGZRhYe7zetqDwSA/ouvUkUY148dLgxn1s/zmTS2gklF9vUePJENM7aRdurR03S5UyNHPgEhfAQESgASk/JDanRuQ49TOnbXvxqefNq+dTM6raFHJJB88OHvB5N69geeek+VLl6RGrjVMj6EZoLQKA5RERLZKnUF57ZoUpx84UPuxXKGCBCZZdzJ9ptO8Fy+2rRPp48faWWw2yLE/02nTzhygdLUGOdlhmsG4dKljHmPdOqkxB8iU0RUrpEh8TipTBvj0U+3yhx9m/NmgZjH4+7tPJovpa5KbApQxMcDdu7LM6d3ZV7OmNLlp3lwuJyUB774rNV4tNdtKTgbeeENOSgBAYKBMZQwNzbkxE+nJ0jRvRZGO9du3y+WAAMlcVk+kkXswGOT4SP1N9/nnwMmTmd+OU7xtxgAlEZGtTAOUP/wg05+2btXWRUTIlMi6dXN+bK7kmWe0DLjff5e/mbVM62mx/qT9OXMG5YED8r+Xl0xbdBe1a0sHbQDYvdu8SZQ9XL0qgQvV7NlAxYr2fQxr9eunNUjZudP88zU19aSQO00/za0ZlGyQY3+BgZIB+f772rrFi9PWpVQUmba4fr1czpsX2LxZTrYSuYu2bbXA47p1Ujph+nTgq69knY+P7CM8geKeKlaUJmSAnPBp21YyKU1rJ6fGKd42Y4CSiMhWpj+EFy/WMj5CQuSHwLx57tOsIbuy2iyHDXIcyzRAefmyfuNI7e5dbYpVzZruFZQyGLQsSkWR7EZ7SU4GevSQDDZAOpK++ab97t9W3t7AJ59ol0eOBFJSLG+rBijd6TM3twYo2SDHMby8JNtn2TLtM/PQITnBs2ePXB4/XgvCeHtLcKZ2bX3GS6QXX1+pRQlIdv6AAVLvVbVkCdC4sT5jI+cwapR24ubKFWDcOK0L/Lx5UgvYlHqSv2BBlsqwEgOURES2shQUef114NQp6XpJ1nv9de3vuWyZ5WlnljBA6VgBAVrAx5kyKNXu3YD71J805ahu3p99JlmZgOxPixbpP126c2ctQ/bECWDlSsvbmU7xdhe5NUDJDErHeuMNKT1jWpfyhRdkvWk9tf/8B3jxRX3GSKQ302neK1ZoJUYmTJB9hdybnx+wYQPw/PPm6w8cAN57T0pitGkjx2j372sn+Tm922oMUBIR2cq0Y3ShQtLtb+VKoEgR3YbksgoWBDp2lOW7d4GffrLudqbTW1mD0v4MBu1g6vJl2+qDOpK71p9UPfUUUK+eLJ84ISdFsmv/fq2zpYeHHFQ7Q20tDw8JnKrGjJEGQakxg1K/cdgbMygdr0aNtHUpTbOxZ88GunbVZWhETqFhw7SNLbt3l0w5IkAyKHfulBP4n30mpb5UyclSHqNHDyAoSBosAZzebQMGKImIbNWqFTBoEPD221IgWe2uS1ljOpV08WLrbsMMSsdTA5SPHmkNifSm1p8E3DNACdg3i/LePckISU6Wy2PGAE2aZO8+7alFC/kHSNdMtYGPKjlZC9Axg9L1mWZQMkDpOGpdyg8+MF8/erQc2xC5M4NBgkuqxo2Bb77Rf1YBOZ+wMClB8/vv8m/kSPPfJKazwhigtBoDlEREtvLxkSyDL79k9p49PPecdrZ62zbrah4yQOl4ztYoJyVFm+IdFOS+02Vefx3w9JTl5cvTr82YGbUphlrAvVEjYOxYuwzRrkyzKCdOBOLitMumB/8MULo+NYMyKAjIl0/fseR2Xl7AtGnS6K9BA9m3TOu+ErmzYcOAdu2ADh2kHqvpZy6RJVWryvHK339LyZwBA8xno7jrSfUsYICSiIj05eGhNctRFOC77zK/jRqg9PKSH7Nkf2Fh2rIzBCjPnpWMP0AO9Nw1m6FYMeCll2T58mVg376s3c/332tTOwsWlGxMLy/7jNGeatWSoCwgmbwzZmjXqfUnAfea4u3joy1bW7fX2T14AERHyzLrT+acLl2kLuWYMe77mUqUWsGCwM8/A2vWSMYxkbU8PCTxYuFC4MYN4L//BTZu1I5jKFMMUBIRkf7Cw7UfR0uWZJ4VpgYoixeXgwGyP2fLoHT3+pOmsjvN+8IFICJCu7xwoXNnpH7yiRY8/fxzrUumWn8ScK8MSg8P6bQM2C+DUlGA+fOl8P/06RIwtIc7d4DDh7WTC+m5eFFb5vRuIiJydb6+0jCnbVueALIBf9UREZH+SpbUssIuXdI6Clvy8CEQE6PdjhzD2QKUrD+pefVVLWNw1SrLzWPSk5AgdXPVAFSfPs5/Zv+pp4D+/WX5wQNtKqppgNKdMigBbcqhPQKUiiLT+wcOlM/eDz6QelkTJ0rzsqw4ckROPIWGAnXrSkO5p56SjL3PPgO2bgVu39a2ZwdvIiIit8cAJREROYe+fbXljJrlmHbwZoDScUwDlNbUBXU0NYPSy0um/bqzfPmA9u1l+e5d6RhprbFjJXgESCfKOXPsPjyHGDdOC0IuWCAZd6ZTvN0pgxKwX4BSUaSw/6efmq+/c0f+5qVKAR9+CNy8mfl9JSRIXdQGDYA6dYD//Mc8eP7XX8Dq1cCoUUDLlkDRolJKon17qemsYgYlERGRW2KAkoiInMOrrwJFisjyjz+mPyWQDXJyRmioNq1W7wzK2FjgzBlZrl7d/bLlLLF1mveDB9IUY+pUueztLcEkV2lGEhwsjQsAIDFRgmfuOsUb0AKUDx4ASUlZuw9FAYYOlfeF6uOPpYOt2ogpLg6YMkUyKgcNMv/8Vd24AUyYIMHM7t3Ns50LF5ZO8fXrW36NrlwBfvoJ2L5dW8cMSiIiIrfEACURETkHX18t6PL4MbBypeXtGKDMGZ6eWpd6vQOUavdugNO7VS++KBloALBhA3D/vuXtbt6UBhhhYcCIEdr6SZNcLxN1+HAgIECWly2T5h4qdwta588v/9+6BTRpAvz5p223T0mROqSzZ2vrFi6UwO/33wPnzwNvvaU15Hn8GJg7V7Ib33xTHu/AAfnMLlVKAptqkxtAOpouWiQZ78uWSQb0/fvAqVOSWTlkiDQSUJ+HqnBh4JlnbP5zEBERketjgJKIiJyHNdO8Tad4qwE0cgx1mvfdu5JJpRfWn0zL21urHfn4MbB2rfn1Fy4A77wjr+Gnn5rXEuzXT8tGdCUFCkiwVaXWogTcL4Py/fe1BmEHDgA1asjUd0XJ/LYpKRJ8VKdVGwzyeTtggLZN2bLaVPqhQ7UAcGKibFuhguyLy5fLOkBOanTsCOzaBZw4IXVDTQPHXl5A5cpAz57AzJlS7zI2VoKhK1fK+3TLlrRBSyIiInILDFASEZHzqFEDqFlTlg8dkmyb1JhBmXOcpVGOaQfv+vX1G4ezMZ3mvXSp/H/4MNC5swSQFizQahR6eUnTkpMnga++0oJbrkYNugLmZSDcLYOyf39g715tOvTDh/K3adtWplynJzlZTgR9/bVc9vCQjMY+fSxvX7w4MGOG7P8ffQQULJh2m4AAqSt56ZKU52ja1PqOpR4eQPnyEmwfPVoa6hAREZFbMiiKNada3c/9+/dRsGBB3Lt3DwUKFNB7OFZLTEzEpk2b0KZNG3h7e6e7Xe3atRFtOhWHiIweP34MPz8/vYfhvuLjJasGkPp4qX8Q376tBV1CQlw30OIK7t/XMicDAgAr9guH7D/Xr0tmmIeHvOakiY6WoBMg03FTd/Q2GIC8eWVfUusKurqHD9N2ly5USJ5nLmDTPqQoEqiNj9fWeXjI38NSVmlMjHntziJFbMs+VRSpexkfL4+TL5/c3tqAJFEO4HEcUfZwH9JPcHAwjqjNDHMRa+NrXjk4JnIi0dHRuHbtmt7DICLK2IMH8i89GWUKkX3duaP3CGRqKr+70pc6OAloAaWM9qPcIDZWO7Hh7lJSJBBpDWu3syQ5WQLFqYPFRERERFnAAKWbCg4O1nsIRE6LZw2dgGmWT+oMHzWbztNTOvuS4zx5IhmrgOVsVgvsvv+YZssVKMD6dKklJUkjHJWXl7xWefLk7qy2x4/Ng+a2ZgI6sSzvQykpEqQ1zZD09JTGMw8eyN9MZWVGNJEr4nEcUfZwH9KPu8dpGKB0U7kxbZjIHqwtk0AOtnUr0LKlLDdoAGzcKMsPHmgBqsaNpRkDOc7588DTT8vyyy8DK1ZkuLlD9p/+/bV6eT//LPXtyNyCBUBkJNCtG/Dqq7lnKndGFEXeC3v2yOVly4BWrfQdkx1kex9SFPlbRERIiYbkZO0kAwD4+gLr1+eKvxWRJTyOI8oe7kOkJxbuIiIi59O8udYAZ/NmyZoE2CAnp4WFact6NclRG+R4egK1a+szBmf39tvA6tVAhw7uEZwEJDt0/nxp4lKtGtCkid4jcg4GA9CjhzRDatbM/Dp/fznZw+AkEREROSEGKImIyPl4egK9e8tySop0mQUYoMxpfn5AUJAs6xGgvHgROHNGlqtXzzVNUMhOqlYFrl4Fjh/neyO1sDBg+3Zg5kyZ7h8QAGzaBLRooffIiIiIiCxigJKIiJyTGqAEgMWLZeri1avauhIlcnxIbqlUKfn/xg3LTVgc5Z9/gBdekNcdAJ5/Pucem1xLbq61mR0eHsCQIVKr8/Jl7kNERETk1FiDkoiInFPZsjJFcedO4M8/gX37mEGph7Aw4NAhCRT26SPBoEePpHnNo0dm/7wePUIzDw8YYmJk26y6fFleezVrs2JF4MMP7fN8iNwNGx0QERGRC2CAkoiInFffvhKgBCSL0sMk8Z8BypyhZlACwPLlGW5qAFAAkNft6FFgxgzA1gLrV69KcPLSJblcoQKwYwdQtKht90NERERERC6DU7yJiMh5degAFCggy6tWAWfPatcxQJkzOnY0Dwxb4ucHFCkCJSREWzdvnjQ7unnT+se6fl2CkxcvyuXy5SVAbXq/RERERESU6zBASUREzitPHqBbN1mOjwd++02W/f2BIkX0G5c7adAAuHYNOHAAOHECOH9eshzv3JFp3ikpMsX7zh0k/fMPjkVEQPHxkdvu2SOdtw8fzvxxbtyQ4OSFC3K5XDkJToaGOu65ERERERGRU2CAkoiInFvfvmnXlSjBxhg5KTgYqFcPqFZNshqLF5cAsb9/mtfh8osvInnHDtkGkGBmkybAt9+mf//R0dIQ5/x5uVy2rAQn1fsgIiIiIqJcjQFKIiJybnXqAJUrm6/j9G6nptStCxw5AjRuLCuePJGmOQMHAomJ5hvfuiVTwc+dk8ulS0twkq8xEREREZHbYICSiIicm8GQNouSwSvnFxwMREYC776rrZs/37wu5b//SubkmTNyOSxMgpNhYTk/XiIiIiIi0g0DlERE5Px69gS8vLTLDFC6Bh8fCUp+840sA1KXslYtYMsWCVaePi3rS5aU4GTp0roNl4iIiIiI9MEAJREROb+iRYFXXtEulyih31jIdn37SmBSrSl57RrQujVw8qRcLl5cgpNly+o3RiIiIiIi0g0DlERE5Brefx/w9JRMvBYt9B4N2Sp1XUpVaKgEJ8uV02dcRERERESkOwYoiYjINTRsCFy4APz1F4NZrkqtSxkRIZdLlQJ27JDO4ERERERE5LYYoCQiItdRujSnd7s6Hx9g3jzgxg3g/Hng6af1HhEREREREenMK/NNiIiIiOwsOFjvERARERERkZNgBiURERERERERERHphgFKIiIiIiIiIiIi0g0DlERERERERERERKQbBiiJiIiIiIiIiIhINwxQEhERERERERERkW4YoCQiIiIiIiIiIiLdMEBJREREREREREREusnVAcr58+ejdOnS8PPzQ7169XDo0CG9h0REREREREREREQmcm2A8ocffsCwYcMwfvx4HD16FNWrV0fLli1x69YtvYdGRERERERERERE/5NrA5QzZsxA//790adPH1SqVAkLFixAnjx5sHjxYr2HRkRERERERERERP/jpfcAHCEhIQFRUVEYNWqUcZ2HhwdatGiB/fv3W7zNkydP8OTJE+Ple/fuAQBiYmKQmJjo2AHbUWJiIh4+fIg7d+7A29tb7+EQuRzuQ0RZx/2HKHu4DxFlD/chouzhPkSOEBcXBwBQFCXD7XJlgPL27dtITk5GUFCQ2fqgoCCcO3fO4m0mT56Mjz/+OM36MmXKOGSMRERERERERERE7iAuLg4FCxZM9/pcGaDMilGjRmHYsGHGyykpKYiJiUFAQAAMBoOOI7PN/fv3UbJkSVy5cgUFChTQezhELof7EFHWcf8hyh7uQ0TZw32IKHu4D5EjKIqCuLg4hIaGZrhdrgxQBgYGwtPTEzdv3jRbf/PmTQQHB1u8ja+vL3x9fc3WFSpUyFFDdLgCBQrwA4UoG7gPEWUd9x+i7OE+RJQ93IeIsof7ENlbRpmTqlzZJMfHxwe1atVCZGSkcV1KSgoiIyPRoEEDHUdGREREREREREREpnJlBiUADBs2DOHh4ahduzbq1q2LWbNmIT4+Hn369NF7aERERERERERERPQ/uTZA+frrr+Pff//FuHHjEB0djRo1amDLli1pGufkNr6+vhg/fnya6epEZB3uQ0RZx/2HKHu4DxFlD/chouzhPkR6MiiZ9fkmIiIiIiIiIiIicpBcWYOSiIiIiIiIiIiIXAMDlERERERERERERKQbBiiJiIiIiIiIiIhINwxQEhERERERERERkW4YoMxF5s+fj9KlS8PPzw/16tXDoUOH9B4SkVOaPHky6tSpg/z586NYsWJo3749/vjjD7NtHj9+jIiICAQEBCBfvnzo2LEjbt68qdOIiZzXZ599BoPBgCFDhhjXcf8hyti1a9fQo0cPBAQEwN/fH1WrVsWRI0eM1yuKgnHjxiEkJAT+/v5o0aIF/vzzTx1HTOQ8kpOTMXbsWJQpUwb+/v4oV64cJk6cCNPer9yHiDS//vor2rVrh9DQUBgMBqxfv97semv2l5iYGHTv3h0FChRAoUKF8Oabb+LBgwc5+CzIHTBAmUv88MMPGDZsGMaPH4+jR4+ievXqaNmyJW7duqX30Iiczu7duxEREYEDBw5g27ZtSExMxEsvvYT4+HjjNkOHDsWGDRuwevVq7N69G9evX0eHDh10HDWR8zl8+DAWLlyIatWqma3n/kOUvrt376JRo0bw9vbG5s2bcebMGUyfPh2FCxc2bjN16lTMmTMHCxYswMGDB5E3b160bNkSjx8/1nHkRM5hypQp+PLLLzFv3jycPXsWU6ZMwdSpUzF37lzjNtyHiDTx8fGoXr065s+fb/F6a/aX7t274/Tp09i2bRs2btyIX3/9FQMGDMipp0DuQqFcoW7dukpERITxcnJyshIaGqpMnjxZx1ERuYZbt24pAJTdu3criqIosbGxire3t7J69WrjNmfPnlUAKPv379drmEROJS4uTilfvryybds2pWnTpsrgwYMVReH+Q5SZkSNHKo0bN073+pSUFCU4OFiZNm2acV1sbKzi6+urrFixIieGSOTU2rZtq/Tt29dsXYcOHZTu3bsrisJ9iCgjAJR169YZL1uzv5w5c0YBoBw+fNi4zebNmxWDwaBcu3Ytx8ZOuR8zKHOBhIQEREVFoUWLFsZ1Hh4eaNGiBfbv36/jyIhcw7179wAARYoUAQBERUUhMTHRbJ+qWLEiwsLCuE8R/U9ERATatm1rtp8A3H+IMvPzzz+jdu3a6Ny5M4oVK4aaNWviq6++Ml5/6dIlREdHm+1DBQsWRL169bgPEQFo2LAhIiMjcf78eQDAiRMnsHfvXrRu3RoA9yEiW1izv+zfvx+FChVC7dq1jdu0aNECHh4eOHjwYI6PmXIvL70HQNl3+/ZtJCcnIygoyGx9UFAQzp07p9OoiFxDSkoKhgwZgkaNGqFKlSoAgOjoaPj4+KBQoUJm2wYFBSE6OlqHURI5l5UrV+Lo0aM4fPhwmuu4/xBl7OLFi/jyyy8xbNgwjB49GocPH8agQYPg4+OD8PBw435i6biO+xAR8OGHH+L+/fuoWLEiPD09kZycjE8//RTdu3cHAO5DRDawZn+Jjo5GsWLFzK738vJCkSJFuE+RXTFASURuLSIiAqdOncLevXv1HgqRS7hy5QoGDx6Mbdu2wc/PT+/hELmclJQU1K5dG5MmTQIA1KxZE6dOncKCBQsQHh6u8+iInN+qVauwbNkyLF++HJUrV8bx48cxZMgQhIaGch8iInJhnOKdCwQGBsLT0zNNh9SbN28iODhYp1EROb+BAwdi48aN2LlzJ0qUKGFcHxwcjISEBMTGxpptz32KSKZw37p1C88++yy8vLzg5eWF3bt3Y86cOfDy8kJQUBD3H6IMhISEoFKlSmbrnnnmGVy+fBkAjPsJj+uILBs+fDg+/PBDdO3aFVWrVkXPnj0xdOhQTJ48GQD3ISJbWLO/BAcHp2m+m5SUhJiYGO5TZFcMUOYCPj4+qFWrFiIjI43rUlJSEBkZiQYNGug4MiLnpCgKBg4ciHXr1mHHjh0oU6aM2fW1atWCt7e32T71xx9/4PLly9ynyO01b94cJ0+exPHjx43/ateuje7duxuXuf8Qpa9Ro0b4448/zNadP38epUqVAgCUKVMGwcHBZvvQ/fv3cfDgQe5DRAAePnwIDw/zn7Genp5ISUkBwH2IyBbW7C8NGjRAbGwsoqKijNvs2LEDKSkpqFevXo6PmXIvTvHOJYYNG4bw8HDUrl0bdevWxaxZsxAfH48+ffroPTQipxMREYHly5fjp59+Qv78+Y21UwoWLAh/f38ULFgQb775JoYNG4YiRYqgQIECeO+999CgQQPUr19f59ET6St//vzGeq2qvHnzIiAgwLie+w9R+oYOHYqGDRti0qRJ6NKlCw4dOoRFixZh0aJFAACDwYAhQ4bgk08+Qfny5VGmTBmMHTsWoaGhaN++vb6DJ3IC7dq1w6effoqwsDBUrlwZx44dw4wZM9C3b18A3IeIUnvw4AEuXLhgvHzp0iUcP34cRYoUQVhYWKb7yzPPPINWrVqhf//+WLBgARITEzFw4EB07doVoaGhOj0rypX0biNO9jN37lwlLCxM8fHxUerWrascOHBA7yEROSUAFv8tWbLEuM2jR4+Ud999VylcuLCSJ08e5bXXXlNu3Lih36CJnFjTpk2VwYMHGy9z/yHK2IYNG5QqVaoovr6+SsWKFZVFixaZXZ+SkqKMHTtWCQoKUnx9fZXmzZsrf/zxh06jJXIu9+/fVwYPHqyEhYUpfn5+StmyZZWPPvpIefLkiXEb7kNEmp07d1r87RMeHq4oinX7y507d5Ru3bop+fLlUwoUKKD06dNHiYuL0+HZUG5mUBRF0Sk2SkRERERERERERG6ONSiJiIiIiIiIiIhINwxQEhERERERERERkW4YoCQiIiIiIiIiIiLdMEBJREREREREREREumGAkoiIiIiIiIiIiHTDACURERERERERERHphgFKIiIiIiIiIiIi0g0DlERERERERERERKQbBiiJiIiIiFxA6dKlYTAY0Lt3b72HQkRERGRXDFASERERZeKtt96CwWCAwWDAjh07bLrt1q1bjbcdPHiwg0ZIREREROS6GKAkIiIiykSvXr2My0uXLrXptt9//73F+9HLrl27jAHTXbt26T0cIiIiIiIGKImIiIgy06hRI5QrVw4AsGbNGjx69Miq28XHx2PdunUAgMqVK6NWrVoOGyMRERERkatigJKIiIjICj179gQA3L9/Hz/99JNVt1m7di3i4+PNbk9EREREROYYoCQiIiKyQs+ePWEwGABYP81bnd7t4eGBHj16OGxsRERERESujAFKIiIiIiuULVsWjRo1AgD88ssvuHXrVobbX79+HZGRkQCAF154AcWLF0+zzfr169G5c2eEhYXBz88PhQoVQu3atfHxxx/j7t27Vo1r06ZN6NGjB8qWLYu8efPCz88PZcqUQceOHfHtt9/i4cOHAIC///4bBoMBzZo1M962WbNmxnqU6r9vv/02zWMkJCTgiy++QLNmzVC0aFH4+PggODgYbdq0wdKlS5GSkpLu+Hr37g2DwYDSpUsDAG7cuIGRI0eicuXKyJ8/v821MC3V0Fy1ahWaN2+OokWLwt/fH08//TRGjBiBmJiYdO/n+eefh8FgwPPPP5/h402YMMH4eJao102YMAEAsHPnTrRv3x6hoaHw9/fHM888g4kTJxozaVWbNm1CmzZtjNtVqlQJkydPRkJCgtV/i8OHD6Nbt24oWbIk/Pz8ULJkSfTp0wfnzp2z6vYXLlzA0KFDUbVqVRQsWBD+/v4oW7YsevfujSNHjqR7u9SvQUpKChYvXoxmzZohKCgIHh4e7DROREREtlGIiIiIyCqLFi1SACgAlNmzZ2e47bRp04zb/uc//zG7LiYmRnnhhReM11v6V6xYMWX//v3p3v/t27eV5s2bZ3gfAJQlS5YoiqIoly5dynRb0+1Vly5dUipWrJjhbRo3bqzcuXPH4jjDw8MVAEqpUqWU/fv3K4GBgWluv3Pnzkz/9qqdO3cabxcZGan06NEj3XE99dRTyo0bNyzeT9OmTRUAStOmTTN8vPHjxxvvzxL1uvHjxyuTJ09WDAaDxbE0bNhQefDggZKSkqIMGjQo3TG3atVKSUpKsvhYpUqVUgAo4eHhyjfffKN4eXlZvA9fX19l1apVGT6vadOmKd7e3umOw2AwKGPHjrV4W9PXYPPmzUqLFi3S3D48PDzDxyciIiIyxQxKIiIiIit16dIFfn5+AMy7c1uiXp8vXz506NDBuP7Jkydo0aIFduzYAU9PT/Ts2RMrVqzAgQMHsGfPHnz66acICAjArVu30KZNG/zzzz9p7vvhw4do1qyZMUOzVq1aWLhwIfbt24cjR45g3bp1GDp0KEJDQ423KV68OE6ePInFixcb1y1evBgnT540+9e+fXvj9Q8ePEDz5s2NGXnt27fHzz//jCNHjmD16tVo2rQpAGDv3r1o164dkpOT0/17PHjwAB07dsTjx4/x0UcfYdeuXTh06BC++eYbhISEZPi3TM/YsWOxdOlStG/fHmvXrkVUVBQ2bdqEtm3bAtAyBHPC5s2bMWrUKNSvXx/Lly/HkSNHsGXLFrRu3RoA8Ntvv2Hy5MmYOXMm5syZg9atW2PNmjWIiorCTz/9hPr16wMAtmzZgq+++irDxzp+/DjefvttFCtWDHPnzsXBgwexe/dujBw5Er6+vnjy5Am6d++ebhbktGnTMHz4cCQmJqJatWr48ssvsX37dhw5cgTLli1DgwYNoCgKJk6ciDlz5mQ4lpEjR2L79u145ZVXzF4D9XkTERERWUXvCCkRERGRK+nSpYsxS+zcuXMWtzlx4oRxm169epldN3r0aAWAUqhQIeXIkSMWb//3338rISEhCgDljTfeSHP90KFDjfcfERGhpKSkWLyfJ0+eKNHR0WbrTLPfMstc/OCDD4zbjhkzJs31KSkpSvfu3Y3bfPHFF2m2UTMoASj58uVTjh8/nuFjZsZ0/ACUTz75xOK4XnrpJQWA4uXlpdy6dSvNNvbOoASgdOzYMU32Y1JSklK/fn0FgJI/f37Fz89PGTJkSJr7iY+PN2ZIVqtWzeJjqdfjfxmplrJDd+zYYcysrFOnTprrT58+bcycHD9+vMX3TnJysjEzNV++fEpMTIzZ9alfA0vvDSIiIiJbMIOSiIiIyAa9evUyLqeXRWm63nT7Bw8eYP78+QCAiRMnolatWhZvX6pUKYwdOxYAsHr1arP6hbGxsVi4cCEAyZycPXt2uvURfXx8EBQUZM3TSuPJkyf4+uuvAQCVK1c21lg0ZTAY8MUXXyAgIAAAMG/evAzvc8SIEahevXqWxmNJrVq1MHr0aIvjGjZsGAAgKSkJ+/fvt9tjpidPnjxYtGgRPD09zdZ7enpiwIABAIC4uDgULVoUU6dOtXj78PBwAMDvv/+Oe/fuZfh406dPR3BwcJr1zZo1Q//+/QFIjcrUWZTTp09HYmIiateujfHjx1t873h4eGDu3Lnw9fXFgwcP8OOPP6Y7jgoVKlh8bxARERHZggFKIiIiIhu0bNnSGPRbtmwZFEUxuz4lJQXLly8HAJQoUcKsKc3u3buNgadOnTpl+DjPPfccACAxMRFRUVHG9Tt27DA2vhk0aFCagJi9REVFITY2FoA0uknvcQoUKIAuXboAAM6cOYMbN26ke5/du3e36xjfeOONdIOzpsHfixcv2vVxLXnxxRdRpEgRi9eZBmU7dOgAb2/vTLe7dOlSuo9VuHBhvPrqq+le37dvX+Py9u3bza7bsGEDAKBjx47p/u0AoFChQqhatSoAZBjgff311x32HiQiIiL3wQAlERERkQ28vLzwxhtvAJDO2Hv37jW7PjIyEtevXwcgATkPD+1wyzSbLSQkJE0HbdN/VapUMW4bHR1tXD527JhxuUmTJvZ9ciZOnTplXK5Xr16G25peb3o7U/ny5UPZsmXtM7j/qVixYrrXmQYL4+Li7Pq4llSoUCHd6woVKmTzdhmNuWbNmvDy8kr3+ho1asDHxwcAcPLkSeP6f/75B//++y8AYNSoURm+/wwGg/H9avr+S61atWrpXkdERERkLQYoiYiIiGyU0TTv9KZ3A8CtW7ey9HhqxiQA3L5927ic1eYy1oiJiTEuFytWLMNtTacam97OlGnwzV7y5MmT7nWmgeGMmvfk9FjsMebMXg8vLy9jgNb09bDH+y+1woULZ+k+iYiIiEylf+qViIiIiCyqUaMGqlatipMnT2L16tXGen3x8fFYu3YtAJliXKlSJbPbmQadjh49mu5U39RKlChhv8FnQUZTga3FacD2k9XXw/T9N27cOHTu3Nmq2+XNmzfd6/i6EhERkT0wQElERESUBb169cLw4cMRGxuLDRs2oFOnTli3bp2xoU3q7EkAxmYyAFC0aNEsBR4DAwONyzdu3ECZMmWyMPrMmU6RvnnzZoZTk02nAKdXh9HZqNmKKSkpGW5n2qDIWdy8eTPD65OSkoyZk6avh+n7z9vb26yMABEREZGeOMWbiIiIKAu6d+9uzB5bunQpAG16t7e3N7p165bmNjVr1jQu79u3L0uP++yzzxqXf/31V5tvb232nWnw6uDBgxlue+jQIYu3c2b58+cHANy9ezfD7c6fP58Tw7HJ8ePHkZSUlO71J06cQEJCAgDz16Ns2bIoWLAggKy//4iIiIgcgQFKIiIioiwICQlBixYtAACbNm3CqVOnEBkZCQBo1aoVihYtmuY2LVq0MNYgnDNnTpoO4NZo1qyZccrt3Llzba6v6OfnZ1x+8uRJutvVqlXLWDfyu+++SzfTMC4uDqtWrQIAVKpUyaF1Me1JzTw9f/58ug1pbt++jW3btuXksKwSExNj7MZtyeLFi43L6nsUkOnYbdq0AQBs3boVZ8+eddwgiYiIiGzAACURERFRFqnTuBMTE9G1a1djsNDS9G5AGsUMHDgQAPDbb79h6NChGU4xvnnzJr7++us09/HWW28BAKKiojBkyJB0A52JiYlpGqOYBhD/+uuvdB/b19cX/fr1AyCduSdOnJhmG0VRMHDgQGPjHvW5uYKmTZsCABISEjB37tw01ycmJqJfv3549OhRTg/NKsOGDbM41Xv37t1YtGgRAAky16lTx+z6UaNGwdPTEykpKejUqROuXr2a7mMkJydj2bJlGW5DREREZA+sQUlERESURa+99hry58+PuLg4nD59GoB0NW7Xrl26t/m///s/7N69GwcPHsTs2bOxa9cu9O/fHzVq1EDevHlx9+5dnD59Gtu3b8fmzZtRtWpVY6BQNXHiRGzbtg0nT57EvHnzsH//frz11luoWrUqfHx8cPXqVezZswcrVqzAJ598gt69extvGxYWhhIlSuDq1av4/PPPUaJECTz99NPG6epBQUHG6c/jxo3D2rVrcfHiRUyYMAEnT55Enz59EBISgkuXLmHevHnYtWsXAKBBgwYYMGCAHf+6jtW2bVuUKlUK//zzD8aOHYvbt2+jQ4cO8PPzw+nTpzFnzhwcO3YM9evXx4EDB/Qerpnq1avjzJkzqFWrFkaNGoW6deviyZMn2LRpE2bOnImkpCR4eXlh/vz5aW5btWpVfP755xg6dCjOnDmDKlWqYMCAAXjhhRcQFBSEx48f4++//8b+/fvx448/4saNGzh58qTujZqIiIgod2OAkoiIiCiL/P390alTJyxZssS4rkuXLvD19U33Nr6+vti2bRt69+6NtWvX4sSJExlmHhYoUCDNujx58mDHjh3o2LEjfv31V0RFRdkUHBw9ejTeffddXLp0Ca+++qrZdUuWLDEGNPPnz4/IyEi0bt0a586dw5o1a7BmzZo099eoUSP8/PPPLtXR2cfHB0uXLkWrVq0QHx+PmTNnYubMmcbrPT09MWvWLMTExDhdgLJGjRoYOHAg3nnnHYvvHR8fH3z33XeoV6+exdsPGTIEefPmxZAhQ3Dv3j1MmzYN06ZNs7itj4+PWVkAIiIiIkfgFG8iIiKibAgPDze7nN70blP58+fHmjVrsGfPHvTr1w9PP/008ufPDy8vLxQpUgR16tRBREQENm3alG4NxMDAQOzevRtr165Fp06dUKJECfj6+sLPzw9ly5ZF586dsWzZMovNet555x2sWbMGL730EooVKwYvr/TPWZcuXRonTpzAvHnz0LRpUwQEBMDb2xtBQUFo1aoVvv/+e/z6668u073bVOPGjREVFYWePXsiNDQU3t7eCAkJMQZ+Bw0apPcQ09WvXz/s2bMHXbp0QWhoKHx8fFC8eHH06tULx44dQ9euXTO8ff/+/XHx4kV8/PHHaNSoEQIDA+Hl5YW8efOiQoUK6NixIxYsWIBr167hqaeeyqFnRURERO7KoGSlOjsRERERERERERGRHTCDkoiIiIiIiIiIiHTDACURERERERERERHphgFKIiIiIiIiIiIi0g0DlERERERERERERKQbBiiJiIiIiIiIiIhINwxQEhERERERERERkW4YoCQiIiIiIiIiIiLdMEBJREREREREREREumGAkoiIiIiIiIiIiHTDACURERERERERERHphgFKIiIiIiIiIiIi0g0DlERERERERERERKQbBiiJiIiIiIiIiIhINwxQEhERERERERERkW7+HztHJGvIKtp7AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels3_v1, IRE3_v1, IREth3_v1)" + ], + "metadata": { + "id": "2kF1XknIpg48", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4a05ee5a-54d0-4995-b7b7-8190fa974b23" + }, + "id": "2kF1XknIpg48", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] 0.59 1.75 \n", + "1 [1.] 0.61 1.75 \n", + "2 [1.] 0.69 1.75 \n", + "3 [1.] 0.71 1.75 \n", + "4 [1.] 1.57 1.75 \n", + "5 [1.] 0.6 1.75 \n", + "6 [1.] 0.68 1.75 \n", + "7 [1.] 0.66 1.75 \n", + "8 [1.] 0.7 1.75 \n", + "9 [1.] 0.62 1.75 \n", + "10 [1.] 0.51 1.75 \n", + "11 [1.] 0.82 1.75 \n", + "12 [1.] 0.75 1.75 \n", + "13 [1.] 0.63 1.75 \n", + "14 [1.] 0.59 1.75 \n", + "15 [1.] 1.13 1.75 \n", + "16 [1.] 0.66 1.75 \n", + "17 [1.] 1.12 1.75 \n", + "18 [1.] 0.57 1.75 \n", + "19 [1.] 0.78 1.75 \n", + "20 [1.] 0.57 1.75 \n", + "21 [1.] 0.29 1.75 \n", + "22 [1.] 0.48 1.75 \n", + "23 [1.] 0.99 1.75 \n", + "24 [1.] 0.66 1.75 \n", + "25 [1.] 0.86 1.75 \n", + "26 [1.] 0.59 1.75 \n", + "27 [1.] 0.77 1.75 \n", + "28 [1.] 0.69 1.75 \n", + "29 [0.] 0.45 1.75 \n", + "30 [1.] 0.4 1.75 \n", + "31 [1.] 0.87 1.75 \n", + "32 [1.] 0.54 1.75 \n", + "33 [1.] 0.29 1.75 \n", + "34 [1.] 0.93 1.75 \n", + "35 [1.] 0.3 1.75 \n", + "36 [1.] 0.17 1.75 \n", + "37 [1.] 0.74 1.75 \n", + "38 [0.] 0.28 1.75 \n", + "39 [0.] 0.34 1.75 \n", + "40 [0.] 0.35 1.75 \n", + "41 [0.] 0.5 1.75 \n", + "42 [1.] 0.82 1.75 \n", + "43 [1.] 0.36 1.75 \n", + "44 [1.] 1.12 1.75 \n", + "45 [1.] 0.34 1.75 \n", + "46 [1.] 0.34 1.75 \n", + "47 [1.] 0.75 1.75 \n", + "48 [1.] 0.56 1.75 \n", + "49 [1.] 0.37 1.75 \n", + "50 [1.] 0.3 1.75 \n", + "51 [1.] 0.3 1.75 \n", + "52 [1.] 0.65 1.75 \n", + "53 [1.] 0.5 1.75 \n", + "54 [0.] 0.21 1.75 \n", + "55 [1.] 1.06 1.75 \n", + "56 [1.] 0.4 1.75 \n", + "57 [1.] 0.6 1.75 \n", + "58 [1.] 0.6 1.75 \n", + "59 [1.] 0.67 1.75 \n", + "60 [1.] 0.55 1.75 \n", + "61 [0.] 0.24 1.75 \n", + "62 [0.] 0.64 1.75 \n", + "63 [0.] 1.75 1.75 \n", + "64 [0.] 0.89 1.75 \n", + "65 [0.] 0.38 1.75 \n", + "66 [1.] 0.56 1.75 \n", + "67 [1.] 0.73 1.75 \n", + "68 [1.] 0.49 1.75 \n", + "69 [1.] 0.47 1.75 \n", + "70 [1.] 0.26 1.75 \n", + "71 [1.] 0.51 1.75 \n", + "72 [1.] 0.83 1.75 \n", + "73 [1.] 0.71 1.75 \n", + "74 [0.] 0.4 1.75 \n", + "75 [0.] 1.28 1.75 \n", + "76 [1.] 0.42 1.75 \n", + "77 [1.] 1.34 1.75 \n", + "78 [1.] 0.55 1.75 \n", + "79 [1.] 0.92 1.75 \n", + "80 [1.] 0.65 1.75 \n", + "81 [1.] 0.82 1.75 \n", + "82 [1.] 1.23 1.75 \n", + "83 [1.] 0.4 1.75 \n", + "84 [1.] 0.49 1.75 \n", + "85 [1.] 0.47 1.75 \n", + "86 [1.] 0.45 1.75 \n", + "87 [1.] 0.69 1.75 \n", + "88 [1.] 0.58 1.75 \n", + "89 [1.] 0.76 1.75 \n", + "90 [1.] 0.57 1.75 \n", + "91 [1.] 0.33 1.75 \n", + "92 [1.] 0.57 1.75 \n", + "93 [1.] 0.48 1.75 \n", + "94 [1.] 0.31 1.75 \n", + "95 [1.] 0.42 1.75 \n", + "96 [1.] 0.43 1.75 \n", + "97 [1.] 0.51 1.75 \n", + "98 [1.] 0.46 1.75 \n", + "99 [1.] 0.43 1.75 \n", + "100 [1.] 0.54 1.75 \n", + "101 [1.] 0.63 1.75 \n", + "102 [1.] 0.47 1.75 \n", + "103 [1.] 0.51 1.75 \n", + "104 [1.] 0.49 1.75 \n", + "105 [1.] 0.25 1.75 \n", + "106 [1.] 0.16 1.75 \n", + "107 [1.] 0.2 1.75 \n", + "108 [1.] 0.7 1.75 \n", + "Обнаружено 96.0 аномалий\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Для AE3_v1 точность составляет 88%" + ], + "metadata": { + "id": "LXHt7-gxuJIy" + }, + "id": "LXHt7-gxuJIy" + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "lib.anomaly_detection_ae(predicted_labels3_v2, IRE3_v2, IREth3_v2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5ow1D88nsrir", + "outputId": "cc278276-2b8e-4ae0-b723-81718aed5542" + }, + "id": "5ow1D88nsrir", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] 0.69 1.6 \n", + "1 [1.] 0.81 1.6 \n", + "2 [1.] 0.51 1.6 \n", + "3 [1.] 0.62 1.6 \n", + "4 [1.] 1.6 1.6 \n", + "5 [1.] 0.34 1.6 \n", + "6 [1.] 0.51 1.6 \n", + "7 [1.] 0.49 1.6 \n", + "8 [1.] 0.5 1.6 \n", + "9 [1.] 0.45 1.6 \n", + "10 [1.] 0.4 1.6 \n", + "11 [1.] 0.3 1.6 \n", + "12 [1.] 0.7 1.6 \n", + "13 [1.] 0.54 1.6 \n", + "14 [1.] 0.59 1.6 \n", + "15 [1.] 0.64 1.6 \n", + "16 [1.] 0.4 1.6 \n", + "17 [1.] 0.73 1.6 \n", + "18 [1.] 0.86 1.6 \n", + "19 [1.] 0.45 1.6 \n", + "20 [1.] 0.71 1.6 \n", + "21 [1.] 0.33 1.6 \n", + "22 [1.] 0.49 1.6 \n", + "23 [1.] 0.83 1.6 \n", + "24 [1.] 0.65 1.6 \n", + "25 [1.] 0.92 1.6 \n", + "26 [1.] 0.41 1.6 \n", + "27 [1.] 0.48 1.6 \n", + "28 [1.] 0.51 1.6 \n", + "29 [0.] 0.42 1.6 \n", + "30 [1.] 0.35 1.6 \n", + "31 [1.] 0.4 1.6 \n", + "32 [1.] 0.42 1.6 \n", + "33 [1.] 0.29 1.6 \n", + "34 [1.] 0.48 1.6 \n", + "35 [1.] 0.28 1.6 \n", + "36 [1.] 0.14 1.6 \n", + "37 [1.] 0.55 1.6 \n", + "38 [0.] 0.26 1.6 \n", + "39 [0.] 0.32 1.6 \n", + "40 [0.] 0.23 1.6 \n", + "41 [0.] 0.43 1.6 \n", + "42 [1.] 0.46 1.6 \n", + "43 [1.] 0.26 1.6 \n", + "44 [1.] 0.92 1.6 \n", + "45 [1.] 0.34 1.6 \n", + "46 [1.] 0.34 1.6 \n", + "47 [1.] 0.69 1.6 \n", + "48 [0.] 0.49 1.6 \n", + "49 [1.] 0.44 1.6 \n", + "50 [1.] 0.31 1.6 \n", + "51 [1.] 0.54 1.6 \n", + "52 [1.] 0.66 1.6 \n", + "53 [1.] 0.45 1.6 \n", + "54 [0.] 0.26 1.6 \n", + "55 [1.] 0.44 1.6 \n", + "56 [1.] 0.45 1.6 \n", + "57 [1.] 0.48 1.6 \n", + "58 [1.] 0.68 1.6 \n", + "59 [1.] 0.75 1.6 \n", + "60 [1.] 0.5 1.6 \n", + "61 [0.] 0.34 1.6 \n", + "62 [1.] 0.33 1.6 \n", + "63 [1.] 0.54 1.6 \n", + "64 [1.] 0.57 1.6 \n", + "65 [1.] 0.36 1.6 \n", + "66 [1.] 0.48 1.6 \n", + "67 [1.] 0.66 1.6 \n", + "68 [1.] 0.36 1.6 \n", + "69 [1.] 0.53 1.6 \n", + "70 [1.] 0.25 1.6 \n", + "71 [1.] 0.58 1.6 \n", + "72 [1.] 0.47 1.6 \n", + "73 [1.] 0.45 1.6 \n", + "74 [1.] 0.46 1.6 \n", + "75 [1.] 1.04 1.6 \n", + "76 [1.] 0.25 1.6 \n", + "77 [1.] 0.99 1.6 \n", + "78 [1.] 0.37 1.6 \n", + "79 [1.] 0.52 1.6 \n", + "80 [1.] 0.39 1.6 \n", + "81 [1.] 0.52 1.6 \n", + "82 [1.] 0.59 1.6 \n", + "83 [1.] 0.38 1.6 \n", + "84 [1.] 0.44 1.6 \n", + "85 [1.] 0.45 1.6 \n", + "86 [1.] 0.41 1.6 \n", + "87 [1.] 0.55 1.6 \n", + "88 [1.] 0.61 1.6 \n", + "89 [1.] 0.75 1.6 \n", + "90 [1.] 0.4 1.6 \n", + "91 [1.] 0.23 1.6 \n", + "92 [1.] 0.36 1.6 \n", + "93 [1.] 0.39 1.6 \n", + "94 [1.] 0.22 1.6 \n", + "95 [1.] 0.43 1.6 \n", + "96 [1.] 0.44 1.6 \n", + "97 [1.] 0.43 1.6 \n", + "98 [1.] 0.41 1.6 \n", + "99 [1.] 0.54 1.6 \n", + "100 [1.] 0.48 1.6 \n", + "101 [1.] 0.45 1.6 \n", + "102 [1.] 0.34 1.6 \n", + "103 [1.] 0.4 1.6 \n", + "104 [1.] 0.46 1.6 \n", + "105 [1.] 0.33 1.6 \n", + "106 [1.] 0.19 1.6 \n", + "107 [1.] 0.21 1.6 \n", + "108 [1.] 0.62 1.6 \n", + "Обнаружено 101.0 аномалий\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Для AE3_v2 точность составляет 92%" + ], + "metadata": { + "id": "LDsC5WyeuRHS" + }, + "id": "LDsC5WyeuRHS" + }, + { + "cell_type": "markdown", + "source": [ + "### 9) Если результаты обнаружения аномалий не удовлетворительные (обнаружено менее 70% аномалий), то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (9)." + ], + "metadata": { + "id": "fPPbYwnQpqS3" + }, + "id": "fPPbYwnQpqS3" + }, + { + "cell_type": "markdown", + "source": [ + "Результаты обнаружения аномалий удовлетворены." + ], + "metadata": { + "id": "IVmw2aeduXml" + }, + "id": "IVmw2aeduXml" + }, + { + "cell_type": "markdown", + "source": [ + "### 10) Параметры наилучшего автокодировщика и результаты обнаружения аномалий занести в таблицу:\n", + "Табл. 2 Результаты задания №2" + ], + "metadata": { + "id": "u3cAX_IgpvWU" + }, + "id": "u3cAX_IgpvWU" + }, + { + "cell_type": "markdown", + "source": [ + "| Dataset name | Количество
скрытых слоев | Количество
нейронов в скрытых слоях | Количество
эпох обучения | Ошибка
MSE_stop | Порог ошибки
реконструкции | % обнаруженных
аномалий |\n", + "|:-------------|:-----------------------------|:----------------------------------------|:-----------------------------|:-------------------|:-------------------------------|:---------------------------|\n", + "| Cardio | 11 | 48, 36, 28, 22, 16, 10, 16, 22, 28, 36, 48 | 100000 | 0.0098 | 1.6 | 92% |\n" + ], + "metadata": { + "id": "tryfJdjTvgU8" + }, + "id": "tryfJdjTvgU8" + }, + { + "cell_type": "markdown", + "source": [ + "### 11) Сделать выводы о требованиях к:\n", + "- данным для обучения,\n", + "- архитектуре автокодировщика, \n", + "- количеству эпох обучения,\n", + "- ошибке MSE_stop, приемлемой для останова обучения,\n", + "- ошибке реконструкции обучающей выборки (порогу обнаружения\n", + "аномалий)\n", + "\n", + "для качественного обнаружения аномалий в случае, когда размерность\n", + "пространства признаков высока." + ], + "metadata": { + "id": "eE7IYyGJp0Vv" + }, + "id": "eE7IYyGJp0Vv" + }, + { + "cell_type": "markdown", + "source": [ + "1) Данные для обучения должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение\n", + "2) Архитектура автокодировщика должна постепенно сужатся к бутылочному горлышку,а затем постепенно возвращатся к исходным выходным размерам, кол-во скрытых слоев 7-11.\n", + "3) В рамках данного набора данных оптимальное кол-во эпох 100000 с patience 4000 эпох\n", + "4) Оптимальная ошибка MSE-stop в районе 0.001, желательно не меньше для предотвращения переобучения\n", + "5) Значение порога не больше 1.6" + ], + "metadata": { + "id": "67p7AeSWwVXE" + }, + "id": "67p7AeSWwVXE" + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/labworks/LW2/out/AE1.h5 b/labworks/LW2/out/AE1.h5 new file mode 100644 index 0000000000000000000000000000000000000000..240b18cba624cf297ba002ed6038b71ddf40dcf4 GIT binary patch literal 35264 zcmeGlZEPGzbuJ&xHE~-fv`SJ{V2+PkkT~bFAs-~M4M}rFX=|ma2n4!WpEvfBy^rqg z#dd?i5Y)O7ib7SPNc4x1_~9S?u&635wM`5XVEE-f6#)s=h)P%jLH;0&s8r_7ymz-d z>)mrMwsX$yO7ZN>ym|BH&3kX=y_=o9l0Npt16v>6%HWB|*(TO3Ug^(=_{_W_ODIqE z=kO(l={Tm78{|uj-N&GA7nV08{+5lhpcfmSK6U&!lPI;UI_U5^vne# z*IyNnP+Y_Vtft(!SBH=rTP zYWO}6L?OOS{58lPB)9NN{>;jRRkH`vk4eB@gpZQO;sDu$DIE47ri&-#ON>hz=pC&W zq{qppWqmISP7qx4DG8T6EmQhS>sNZWETR6J*rX_kagBMH_iE`Q+~(x;tN~UiMDMtr zfJfK^SGpMrQEx!U-FkjM&kJ?IdPti1KZ1w0?s~xOu18ga7VN~Ao;fKfXck$)Gk7C< zI@;RX+d3E{Gb=X=j5$WGn77Yc`61a3mvbiU2QRvm$XI%@C^(Qf)RK7Cc%fwE98dK%;7Y+{GJ{%i zP#3hGZBHhXds9HX)V81M>VvDLoaq2lQ+&L7#xXDI4qr2QLBcX~hAuc-DjHg!sRI~JKcDIxU)lNM z140BVIDkOS0*jJasy za^>i`!P>M&YX>Q*k1>(nv~!BQ;DVhkIZ z5^l_3#rdY`aGyV0FvZTB;49%3*T%rR^Y7``)vXq7Om(cX_^wX`6>Qys-EguknS`A) zJe~VH5AN^$TzdznL5@c2H!?a9jbqGMW+4arxpK*XmG9Fn&0hf}7j>%yonUL&X&PCb z7tok^PRr)A+*>ID&ScxcgS>Aj&GY!qkZn4KcHS253imI{h{TK(GrGlVxhU{yDpw8I zdcVo>X?iA8%JLl?@KqDMt^oBJj?NbX(IJQoWK%LL2`CgzOYD=|jlIeJ97N9+0W*gY zq>q9i3BQrckMQ?+S`kXEooCB_9r=L5H_%ejUtGFf3fiHoS%#DC+8Oww@Q`0v>CanE zbcuGn3c^hAP&?J1B>Gi9^a0t7J%VY)ZQLhN?}ObiuX_;dcLu@9odJ8O3Y^w1F`|3S z(CuexzZ?!RN`%|1;Y~@rI}k1qZ_11JBMARErl3OmD#UQz;C`UiuHnY#qG9DTrZa-j zm3RmhJp1%B$70;Or}-_QA(BxE#;#$08YhC{DPv!k7zl0>^Rv$r=Eh1XzNGRiIIbHW zhjqt$Kvybp*r0fGI6g6bILV+}F}BeYAEUSy`>33^L7YArhh@RP%OG5oG$scq4oknw zkR3UP@peK+ge#yUU50B{WB*=qMe_NEp2 z8rd6_V^Mx74g}eoxfU-p=`HDtxAyjPq$jGqSSvm0MY|H|$?eZwBen?AlSN#=h$pM1 zC+d2+R(djw>+U!Xu-Z9-na@bTI58wj8;S#}p3pwAg&b_;M#aUJ1*A9KHFAsA6Lr7X z#H59fv8DH2f#+>--$lREQ!3&gDBKVe5pfgDLo6le{6lN299SClqnaMgwn=zIEi=*I zhT(v!M-(p`MEM~`Q2dYdCruSKrqU0DQ*-#B+!B6OjtMMEy&MR#1IaxSt{3&YnjL5n zQRYg#*xO5#yVp6O+5uWm3n)J{ehQXjxW0VuteXICGga+C9OahmfGWqgiN0aLWBeB+ z!82rBj7ftU+aL>QUlEjUstS*u3x^db-nkSp&LV2{&l_M)8>uc3sX0GU%k-vlmDITTELiMe#hlQ)9tat-~Zbi z?@azEc6jg)Z@hD=u%BEE+mgUw(m;U**AZ7=uiL7zx~vYUqAHc*$)oCI`-D} zZU6bj(NmqXU9bK3*IiS8ee39^AI^2X|MSb;!+W#cH(07?^q-IPygTyJ%=NwY%_mRW6kEER#jcS};>LLyL zJ@mj)Ngh#K&EFow9g8~Jx)@|c#Hw>3$lspFa|J}eYQ?YBa||mTzZS|RjZY60~qj`~qekH(KnPDOe|64O|zsz>DSw<;bXp0AWK63(LZ9kNM{Tg{-{#t^S6 z$9LG>J=;9U4&3^p9C9=2cQrdOe?r1XcHo{BmC%8yc7Wp7Nt7RIyxQ^WS(IC{1F9So z9Z~A#fZxw(6##1dn)ph72jy$`JH`V1j{1sUw?66RmzpEHH}`~E)7W{xTzUOhk{?QI zm!ol%BmD59%=Yo}TRpr4`LB~tN$QB&YU}N6uY@PLtB0{gG^`y5g4Wv!Jnv4FthE11 zc-8OKDtY<6oGUN%lFqM?A0X2dbMghvGWh3K{L?}A4OC~S4YIC>n+)z8Ra`~vfIiwyXKLQzo~v#zE5v%w|eln)A4hnh<_Q#7{q2M z-^AZP<;rhW@^F6)eD+K5Ta-N56!_ec>fuf&@%bYf8@O}GjUNW)&cmASZV$({-Fb*) zyWux0d2rQ(?jeSD@C4m+BrZRt+qyU$?Jt(q&UHHy9yOQa4(u;Q_bQcpq$s`MSM_$~ z9)Sn&gwvT4m*AFfBjfNG)>vMW!7}1q7#(-H^K26>*R(1vYK@h zAm*ba;y}cKhyxJ^A`V0xh&T{&AmTv8frtYU2fQ2zI=?+tkZ^OhOl2H!L*RY16D0{Z zFB3NWUHP(7aZyAYC3VUHiUZDIAZQT-eRG#rmtgh$$vDa_cF$BfUR`R|FLwX$h%yLC zeB8+Y=R$aI=Ebt6TMRb%UXj-WelMI5?dtuHl&ky7_gh_c!YQWn7z-D};o`{9!Le|- zB*M*nFC1G$J{#Q zhu7ZG{(|hCny=m7-3s8(y=CwG^5*4l5MPPUwe$C8UGn$t@ne3S@WX4LNe(EjT^<&2 z{OW$JzU;Hy*T>l;4tV0_@U>wM;ijq#;|#(rd@CH^7{XnBDIAWh)a;AlaM!T<=B02r zX%!e-914e{c+K=kIGkV4R!gq_u`c9_xTPLVP>(cJzNf?gGR%LZLZAwQa~+{r8csP% z;=?2AD_DH>{-YsF_fv+e-~zxU@F^4tbb)YQY)jzt9|c;PzA~H_qmMrSQJ)}u3g_fF zP@UPV%&yzNetnh}gZxq&XV8A4_H|=%U9OwN2TE%nKkJY}6IWzsT*=?vtY1F7_MZ4a MY3=-ouM2+sAAK@!f&c&j literal 0 HcmV?d00001 diff --git a/labworks/LW2/out/AE1_ire_th.txt b/labworks/LW2/out/AE1_ire_th.txt new file mode 100644 index 0000000..9f0db73 --- /dev/null +++ b/labworks/LW2/out/AE1_ire_th.txt @@ -0,0 +1 @@ +5.95 \ No newline at end of file diff --git a/labworks/LW2/out/AE2.h5 b/labworks/LW2/out/AE2.h5 new file mode 100644 index 0000000000000000000000000000000000000000..4f40c4617226f5257b8a2fc67e298fb54e19fae7 GIT binary patch literal 65744 zcmeG_4R{>Ibu0f0u#HSiEX5XX(o6?zlVI z5{^>^NPA90B9ai40Qr>P&ow16O|XUISmJ|FlbA%Q)1U@gRGN>7hBj`}fYR2cGyC4V z+nw7V`Kpsvx*dI=-oBYPGjHC$_h#SB?A}5D=35qDyy9Ysr{ZF1o>Zb-(!X~w4NFBz z7U5Lhj2BQUNh!n+&4G&|X@OF+6!S~4{j#}`(TEjq-+uGW5~HN{31T%#a={g~lg@W8 z3PJ+@n>RJ`fi~f2-3U*io*^oAL|cR5z`kIptv#7wnbBA>)DgNT7+2+STGCfkE2^Fa zm!iIkdc8>UE3`$@5^0%KEZr51%Zb3=U_23uMp(%eMMX+YZcWfvG14o5Sp`dwrIas{ z8kB+}mdV@OEw|hijI>&|qZlr>!$pzdYq8P}$fG41*%NBx9bCbf;XE1fbu~9IY>%60 zro9rSy<}VtMM9Cb05)mWUNvV5+ndKOi=_F=c*%~*ANX%zg)EI~{J~s9f8f6f=sf_W z{vB}9g}DEVaB&222h1)BkUwZfeL0208+#Zoiln)^dN#TV%G;6NkZv;&q>zq)5q<9( zprCe%zb33$jIe7VwFD5^mm0O%Ib(+Wt%D|sKk8u1`)=E+@K6Rh#E;^iSXRZFb?eqt zND{eOcui1R`=ru)Mac{6oRJJA;vANDi0Z zSXK_sgXQlpCxS$pAh3>;D2_(n9p<%@@y;O2YE5>>IJ&=_d9_ZZq+Id4N|T!IHs8)j z8>8V+OSeIPjCDC#vA+BOYd9Wk3nh}lc(9fDjdX^?yd*4lGndZ#+#wF={gGH_aw{(u zI@m2ITiOGOc3I(d$2zy$ePh}Bohtszsc)8-h{^E;AJiT>oZy3u%WZAJR#gTGD8xGq zC=4+P9bnvvENy1@Bq(r0wOe^vpn{j$L$aNbP?8IFJ>y7jNrv{yNj7t`jPh_O5|kCG zb~2WChh$EMD!^`cgw5}43gW87=XF+=r4MUVe8b7tF|V6pXE4n&a9hrY@}tAW;q`FS&kFu z%sR`lk(N!G<#_F9InJCj>nz7cTBfxeT(v!LU?*RU>&5MO0qr9j#x<9XCV5_cCu;- zRJ+r$sZ|yim1z-P#-cD=-&QtJ<8qR({kzw=-F%;br^=d2Z%t*@IzH>cXacRl7MU}R zV{8eBViCS_oz7_sM|aENKz0Go*(--Tc_&z#uc-$+WR^i=VpyOf+QD{bI(eJ!HC`|4 zo99N^e)hh2C>adwi7VSPY&Rv{ka9;7EpnKZGF4!=DP7bSms>-uy@1@((%He*s<~VP zimWq4yMsxYZDc4Na+TredO(4JSRxcwb_CW1Z*tc#61gM6TV^y0>j$_Z%~!OD?^8p{ zC}p6U=g>YDZM(rfNR33ePQ4mlkM`?`4(fTNi+CYRI`x#TXxbms*7Hi2KsCL3UUhrg zdR5Y5<9b!RXbF~U>s3pa>gHGCX$D>XD|wZrSWjnsY!^_HF2izde-+ZZFrUUR?hh`* za=IV1uXs7;Ux84)4Y(FJt=96r4J>~*!Yj?_VaG$ESdMfi?N_SXFSTyJa;>U;YL}o6 z|5fVtS6H`SrEZ_bY0`eRy8WxH+pku)f3>xIYSistW8Hp@y8Uad+xMv3FSBmnqi+8? z>-N3s_RFo?_o~~!9_jITio{*`TJ=q4-kI;LRtIpKZEr9fZ3!j2vEE9As}UO4S2pm- z4@;{qte()TB)PG^75LD$+cp=m-F@SlkI!9jK2dC zKRPVXjjsW^QarEaLYa;uPX4xRJrp!3Pi>NGrhq{?^jKw1&{QE|wQJ&O`?aJ2-C&To3q4vCiRak9>D zlKzW+V6ye!=$z;P`jd7XpkpU=ryZy#0V6wUMm?fB`LYvn9-JyW8O8b3u@kz(4m6X1 zk)5Q3=dyg+iTE5iRd!Nb2U2nD#7sM!GLnFiogAqp3V`{tlNbh4z1ZJW*~w@D_+p*G%&#l%u>HRW-%DzW2v|Yx4vj2fN z-%}`3{v@^%0EyzJ-Y)@u^8{q(52^iUHYLk{cU-s(vK|k%- zUw-u8`1=hmKlG0#tR1w2&3Xxl`cHm4wOKoK_0}pcA$w@hl1&(+dBOi)sM3!8<#WE` zXB5=)6+h!(IA5`^p73;J3qY7hjP1z173ds00yz}gf65 zD!yO{`&<0$B#_!sZ^=G;1wFpt4hp1#kss)LKL}vp0|2f3Kx!M%(fue8@j1gp35b4x z=F<_>9}*NDRih(xWUmcGaDhB^G9 zH(gr?*FV?cTYb5^{)b0jt^eA8K6x_wgXiiuch~zCeEX)8=Wg9HSpN96^=E#z`Q%&C zU4xZhxVL`M4Ue5HlMf7zpZl0^wEV%7j~+NN_}j!$-!IPpw*D&*uNaKK{fWUpG#ni~ zeJ<|X_BTg;{Y|O*`yS~Se16w&PQK*#5B}gsxA@-P_2a>+Ezb__-2KGh({C&sTJ^;1 zzEzda_yR9H=G)S|$2Y(afUy+4?7rIQzSin(Pn@Y5{PA7Ym!CURRrUJIwM}mgd9VB3 zE48;=_kHhIA1SG7kMvaDxnQ$r_4ylWR;)f$y|?r9Qx9x7U%lYfB{jD$TYL2U@EtV^ z#t(bm`1?lBL(9Hfd)2cKdS7_znCH%&SJj>S@X}*li`G{!KDg`Hy-jm#FCBij_eD>* zZr}q8k9~A*xTg0#{+eIT|JJd?-j|Q=xV*k5wN0)&{F|j4TF184KD5_U_w{vG)%i|; zv#z0g*D+V;Gc`|t>2TePoqIOi*|W(rSm_#Q?%u!Q(Vf?9IMW~S-2ESOH{P=EFTKBd ze%aHD@A%$^U7z`VZREuVo<9G*E4_oC{N%>fl3aJdul)O+COZ#`g1RDeDkB9+gN+JZNv6Id}ib7GVjJU(j~Q?pM1LZmFT_4SNzda z8yiaM>K~gwzVU^5gByN*YJ2V9t^NLn>z{3`J#@{<6R-X7gU4SDe!=(5{lz}l!MlC8 ze);+O(~Uj8N51&;`bV}8o%n|L_T&2={gH1`rHrcta37rijszSDI1+FqFmoi3{agu= z0iA;spC@yFjvU43NO}?@8KvmL7SQON+t{7J9&u|GZ@Zg;UL3702I(-7cL^B9+x{Ke zt|xo_n$DH`u^Yb!E-2m>&nq+`T@3d-iB8=AY)85ge6NS-#C@W4R4ANN7uVCVIokr- z2Ppmsu;{}3md||v?s?Vw0LvL}xc;{j_!?=?g2W-4-|&ph@%w! z0H1Ss8b$p9Oya*!z&@NTN%`6b=t8|EKOpKc@!>$N1hV5bmqH-!1K{gy>F=-;o_qW@ zhVdI|4DpqI;-icyh2lQINSk^0--1UflxU#Pwjn)AU-37c6w^sA**$B{+-cA3=91f;Z0!H&~BkB?HGTG|@6u*{)pa(bhm(Tch z1?x&3zw&FN=hi0nY{63(+J}`LjmLrBu_KT}q5T)_h~n2i)E|-u#IIF(i(lQSxAfd9 z>M`-*K&=Ff{6KRI=z7q;t^7b^C(t{7Kr7!u!9+hm(MUh)56L0l@v8^*mi&OI$Ha#N zwGzmVGh7M*#jg}+(7t0fp6fZbMUB7-X$Jc%JulRL% zAM|jx8(==;SN<(jb^LlI!;PL>OZNjm9<&cDI~w>n&^vYnawxR_q8*i>0Gd#LNFMlg z*u2HBXVGryxmDC-;=_Sj2^jf-GJJue0qxt$50u;w?K*xyE8jxFL_a{$NHgjW$synI z>-fi@C-MWL9upr9)Jh;b&TuIN6u(k@L2?!G+~bZL4dM=a#jj1D(8^21(thtgv81r^ zY`xOPucS`|bJwFv)T4QVz*7P~y{J+A>N*H~5w}+JZR}G(pVqtS9hTGk6idKpz8xk7 zLVofUzxMtGbZ`Xw%V+$`e``Y>zh2F7qvzHUw4?FA0{*P*sH+#~96JIz6xx5$jwpUD zMgL0jfcUj0Z}IC9)LWVdMLi}y9H^Cmksla+0O`=at^C07XMx`F16uhO3MTpiieJl6 ze@G7bj$a2*Z^;jcdQ5ycP%DA#IK!n7Q2a{r6ysLHbB{YbjlhZMIqVg`mVRC{xJ!&w}qm->~fKmMF#_u*0w^sA5>oFJ>>7A_x=`fRb2^h_{ zz4#qvVqmi4S87-F`=}K>PlYSL*rCFeUyf4Y%I~SF@EW1MN5H)thxnlaVI{&Ugw+UZ z5PA@LrDQY~2nX5E8nU0JZDs%A_ns2zIHZp^ZleV6tt^y!kf+fmxS;u0eD9e2#aO$R zPCVaDk70*!-<;YL_t8ln?YKTcbmDqNKl10o?{^cO_&x7KNH_WoEq}$|1l)xLN06@n zyIQ(ah>smbf(ZgE|LOh;G*mpn_8hX=B>~ZYmf-M)@q6zyTJSrbw7>9EL5@&-?|A^{ zeX<|%yYo4AGwZ7vty}bc8HPU4575dFq`n4pjvoLy6xx5$50s(+M*6jq$oINM4E2`$ zfT+h>ZXApxkR4yTlp)E@3|TEXptb|lz>k!YP4?Ae+c*@Zms6qvB!a)^lo}b<@7$)5-^%?{isL8 z&t$J#(0k8f+?mgP_i{EE^}hRc3^#giZTxE(c?|8t%8t%{8|WQ70yz}gf6djmH>O#Gx=T=dVi4O;AC1B(Snw|i?Cy@SofpDuzD`-{Rz;Md~zPRQ*lO0K(rHz zPu-|TG$^@M?%>yCFMcY>5t5ypMSCp4{uW6tMRRlgUGZy>AA(C5K70Z)`S$=WQ{gMv z^$jYV&%A1!uL-SIl`j);{yVQ~dj31GYJ9mszgWOIZ)*BW1)Sdtb^l8RoR39a|6PdF zk9J;<^n|Yz@Kr*6es9(7@f)G;pFiWOasCFHntr~3FA(S#3OM&U>iQQ6_{9SKB?8V@ z;opiJ*D0Q?#+$C6?iuQF9puT1Z?7<3+BKSBy>zeKXYgcIuTtob z`xc%iSTEfl_dz^a$*0OdzBGSKxPH24=$HFAo~-z;62{AYAx{&mm+qDOOrEUxtu`1h zpA&ep>bFARm(LwMO|V{?Up~k1WW{f#0l$1s;%UP5(>+5yTDP*QUt!R{vd=Ps{?qk^ z{`s8E6WwpczlMWyJQ9ku1>$lt2<3dP=ZWkY~iGbLB|Dk$@us zM*@xn90@oQa3o-V2^j6qkDmtKOL2V@)G5k zjwR}Gez}>st!M9}!U_|~ajsONtX-F|Y$$0^20Nc&oMz6PISOg91QG7sqE9t~G-#y? zFiGmC3tL0bt9i8aD~$}BvrBQk`;0kV7Z#ViWKP$Q#bqPrbapSb)~j64b$lN6OPmn; zY%P*(dAJmQ=^PBLpBus4&oA_$yh;T5kVXpG4yr4G>AQc2Yc4L>73^&t*Ql76mV zPPwHRC>?o)a`YjshZMi6Up`ZEv+XQjdNmLIxV`l%TOL|JOmQ^%V-e5Y564hG#e(Wg z?>v_+53PQX90=w<{w{;@+sp3=H^+8p_Wjc8FU=2``vpVD;JMBlE?YjQWy>R9`r9xg z^q1z%Q>eMUzc5$fvsm2!vN_!VI>NDkHK(I}gNE15>Fi!Qb$aEW5qgy^53S!J|02$p zgy%kQG#bdqZu90;$)jn8$V2OgNe>9-t`E&PesMiHWh<9Lez+Y6?EXh{_Iiqp~`$ zMx>A4s$Y#Tqf;Nz)uq!O{a08src<{jNjh}8N1M&))Gg}LO^iQ0Vy|vZmp|R3@jCsc z>C`Ri(oKv%JQA;NO_x92qwG5Urs>oz>e5Y&ziK!FuWn73zZ$)x<2wDO>C`Ri(oKxN znhEl!`zno2ziB!P{=`>fjO+vH)UD~tFa7F@h5e@K)Gg|aLwuFRh(DxLx0ZQdaGV@c zfk1lBDaHw>@mJ;pcOzZ%m^s}z(z*V{oQ}?+9r-VFI=h!<&+FRf9GcGw=01=27|i4L zdVbE9hxR!qBL}#%BA&Z^QYasge@1V*GMCeEHGT5vpCR(l+6%3NW?-)Co&z|3d+%$I zA3lVJF!H9kk`5zX>8Lqf9|~~vZF4$0|Lgg0b2_`1X4_f5^y;}8p;y`R(E4GrFVX*I z@LcU~c!v0$sglRo43US{UPuoJ<~}b=+rf7f3oaxj;M0qOA6_8&(J+R7Z_ZB)>4x7j vr}N-)XZtyGx@M#sddHk@4Ey!}k2xK^$ILa+W0nil7# literal 0 HcmV?d00001 diff --git a/labworks/LW2/out/AE2_ire_th.txt b/labworks/LW2/out/AE2_ire_th.txt new file mode 100644 index 0000000..1615779 --- /dev/null +++ b/labworks/LW2/out/AE2_ire_th.txt @@ -0,0 +1 @@ +0.45 \ No newline at end of file diff --git a/labworks/LW2/out/IRE_trainingAE1.png b/labworks/LW2/out/IRE_trainingAE1.png new file mode 100644 index 0000000000000000000000000000000000000000..637e06a9fda000edd2c3083fa39523dbe9a67e28 GIT binary patch literal 52732 zcmeFZbySplxGz2!sDz4zN=gVw2}rksbOh`Go=aM5j7ja|<^``akvjxO-zX08BGzHE`c;C2Mv86xc#XLDY?mZ1g@&J^{xp34 z!NVV=q~u2O?{BCxA*kd3{&Jl55aYi;Gd@1<|L@QKpRb?}{rk(I=l}Bt#(x*%e^%-L zj?lpBlT-6VCpy&X>XkfVjgOB%Ll!_rjO8^>!Th8Pza4V<-ZstV(rDRT>Ct`sVPtnn zAYuFo9ZGD;cZXWUt-di%&SFBoEZ6n--~DhuH-Xlv<%&~}JawzSLk+9A`!bi-rJn?q zyXo81#@<)#MoVLKj6CJ{cNg=^+fJcyW6ojILoSQCWlaQnwS*fS>jl?)*TkizjrX^w zPkF-MXPRgnqOnV(Diuz%WX9-TCARZ~U^ow2nchf4Ygbn+24kyRX!hb2 zo%sFb8l2H3zK73}+$TI+d5rE>xh+LX`Ruk#)S%_%GVI4Io%Yt6RdV%8$k0Tc4_d78 z@?5d9Pf1&Ue0eG_H#7B|A#_NSEczZcLL|_HrGRCMjEroCfSYue5VGjFcuC0ib;i4Q zY#;7E`ugmI)3AA5>+*P2l-@~L7Dh&-96UyetWehIb z1O?fSmEYkh|8Zz%dpayrA&j1{&i(mGx|v_;VWFNo>d9h_Mvoa%{q`$thYRK9UUJAdsQ-iL(t;#IYTyB-(;yNPPu+P(F5rejYuB)9Hb4;PwuwBzZ7%j`yPufp;$ z${rLcTGTFXWhI_JGc8T#b{IXk@PtSD%*>3Utn8C9kLi%!5*wWl4+mF;+C$*S9UrEAoKGbnr_ow!@e_S!W0iu6W@KySXWG!@m(dONQ!VWK2%^zuB|F)GoWf;yJKPf{bNkfuY%d9r=%1u)>t?>Ik~psQ2uYH9#O%e zv}(OQMKPc1$yV}pi>|)NToZzLKM`;fl7x1_Ca-$E?Q3&qU27B@y0*D1S$sBt+9*8F zuuAzUDP;yMmD4xbV@ityxtYdwzI?b(rGBy2%VQP2b$))diA0|6o*83Gt~?^5}bpd3&tWY>ZA@!;7<~yC>6chpcm_ zTd&Ww2DA@p7ZFzLPdT-+#1vHblSE z?+@?V-rq?lt9v@=aL*w7es1KKr^nink8u6nAMxrHMQcY#be39TTaN+*H`Ikp@6|8I z3a$IH-mjQn41C2PZM3_&z|5^z9RBfMwlZvKrb&IE(}d@I>#v@4^T}GDl>8E6shiR0 zCxS4$8g^O%A`%i9q6Ozo58H!S+|SiJ?^r=? ze-QliF2$)c-!>TjAW?TpM@U7!&jDSC1u9qN14V z_SS`zi?*-hU(T~Sd{ z=sd5kTkBoX@tW@zlyTN(I`<^ic>YFQ4N_Vc`rd_g#0#)tDv(|M{XKiOPeVF}Eyd$z zQwR;)a|U0Jw{_|-^h#~xkrNKUb)s6#;|#Cj#@$oTojcc(qg!OQzqb>ReiK&t6Oriv z1W`GL?!Gsyayz5)a|zZi7HKMSa!{~X{D_3Ipr9nL-yeDl%~hHUw-yK8$A}PqvxV(E zoVGI>YHBglVbVqk!VWypGNO%rcQRM;VV4AM$8zgmmEK!@%FO*b^Q9iPy>)^ z84DrTwm#d=Dk&+Mw=$Hja04ZaO~1^ZQpKUvqBG&^mJ>u@yUBC9tB^X8aOn0@yV03$X=3!w#(Z#4 z=r@t2;y$yHV(Z9=2&zH%;2CIQad*;hD=90#bioYWfz{$Tdh{s2-N+5y^2cw2el_59 z3>*Wzx4!F~z>g_KU2WYOH0Ise+39_Mhgo#)wP}WO%(X(>Vg7gt&qB;-nFba!%uH?Q z648+;tdSsO_j^Yw(4e4yo-2EKRdN~E8f2-)Gof+IF-U9|G}Cixzf*U8MV}3oY|3{RVuD)A zUTW?>)Bq+w+*^lTu!8X=O|0in^+HhKla!dcU?t%%fq570p8w z@PCYsy2P5?EjbD*K6>A6lgZf*bGe4?wPpt9+WAR8;?jftMrvbK#Y@V{sZu^<(ta~7 z5ma%8(A@6;3ivuZTIS%urB~cipz7;e%V#@uotc$2^Kpf~eMKWqa%u4zH+ScIy^@c7 zzI)rBX0glT`qBB85__xlj`_xTF<1=&xrXwcxx^6YG$OI>ot=W~8yn;+bz1}aO~Jgi zRyjsBBeN&=h?p zHy|e5y|I8U9A@U`#A0Phx`BOjC|#2RgOAym z4{kiAJKwNs;5}^26ng9T_jc#R2W9rjJ?RQzUuQ!_ejYbP3gpVA_LVy$34%8FA7sTD z`wp*-Aq6=#TPHtd1y@+)pwUR+PA_1fh7D;rL*Rnem-g2Y;60y7czAg=>}$3LzTyED zB7LG^Zx`zOwJgu0s<#3uA|QL3?=}6r$Zr;e8LQBib9q+pKIy~u{o_4nuBgaJro+ch zMr*ROz(41xmTIK_`iz=1B4+LFdGBC~x@Vr9RX>jAiAZPpS>P}!RWX-fGm{x-M27B? zyf*tWJMZPLuL8YihBuLbLrR7&To^Q4PN$U`obsbbj|$oopq@Ubbqa!QJ*8FQWZvxj zMpF^M4zG5WDu*iF7W6cayv4UIot-f!&R%V~WSK;TMLN(7talvXwcsH2B*}*j$CXr^ zjcx+a(SVS>>p_gww~v7Jy@4TI7P4hG_9K)O+YGA5@)#zBudl#W&UGd0Z}0O~ul~KV z#}>n>6PqH5R_;!bluWH7?&Hm2W0{zoIt2$?XdJ4iDh!gvT+J{;1x~vQ@7keKv-|Du zyz>U^>9p2J&Gv&PCWk{i>s%gwb93_(zwzTQN1giAgb_4p-kBh{4l$uJm}h9}OTk91s#~j0|`+(hfMSlh{pIM){_536yx$lsn>-T#BB;g*V zC03R0E6bPmuDdP{s1+6#nn9aI`p^!3r7jcx7HVF*Ge@Ia<(3;{75;^D+oTOD@s(SF zNN^gy!F%+6dyYtnk&{F4_$2Qk zMr>qQJ)(pg8cdQ05~Bz`ek{mMdKvl03N9)mVue{i*h5&eE!K~2nV}^?q05j-&OeXD(EkS+erSMk; za8c?oY4m#|8kT_3@qiM@{OD*BMtgl0D@GOYw`9w(D%sMqWe zPMSh72q>FYv$h{)KF;!$)Di zWm*qX9G(vFWAI*mf z-p?OTm3#G3$?UIdJsl@H)qEH7RiRsXPTAob7T{Wjh^JAok0Snbo-+~aOJ$Q6LQf7? zI9sN9iI2|n4*`u;&3ELDgGTj@KZezzdhNE!v^#Xn87R8pRm+tsp_14KA0XxKzSsOh z#iH2%K8&&8m;hV|U7yXv@e8K+poMsDPdzt>tm8LrqCiMKq8=cO^Q(EO{rEMg!TAPI zqC-6m<&q{%wpXVDNb)`QG0gAU65zRRs%_D=hO?~a$aeNi>_!LHcH!OcqE!Iy_{$xL zgpd8R4XaA4w|@o);Mg=$xB%pupHYbx!QR#6)X96bAjo+?hrQYma!KacLGkjyKRHGp zB(_uHGcGgylmc3I=z<`08HX3qtgNi^BV`V}NRM5cZf-{ybz3wCLXFPzY%IJ>ZG&k3 z>0t={hs=T3sJdLPEmpOW@~>+Aa+QfJGps0v;h$;%={WUz5BVg;ht_BQsaEeaQtA7S zOd{Joz16DNb5}3bIu-xsUiN*exX$iw_Z%8_ywww+5DJFA(EIouCaTYHMIh%CD!wdo zN!UKg1rl;~ty>D;QD6X&h1@|SNu=Oz+kHL2*{mD$-MrO)n>`9D@RaGUic(MeED+UJ z-nzZWoP0Pp|Az-M3W|#A(hV!ksU=b8xfTGqDb-(DS^$dbiwv&;OGyv4<)f(Q(_QCy zm!$P}cEdC^XT;{`k{ln6hy2@j4hh#y{zi&yLt9~;*g{4WnS&oR-9o4dLG59{EFlB6 zzh*j-1>8h3?fe7)+nVVeguLtNB?JX==@!ZXTMT~YZEtPY95IBOcUu~1g@(ifIz;e7 zcP(*r@)(>e{?viYahfWkPhDIM!ffa(K1^a=@r+8;MTn&+0F>pc`^oMTmmKMXA*6MY z6lA(gTMjH#rTUc-w7WYVRT;gkFM?>H5(Jb<6E?LcXOZrAn3RIOzzNgcC9$E}+SYc4 zD*4tt)QL?)H(0mzZ?{gdVv5``Lsx+8@p0Q|kXUL^vN37Z`T8_B{16^{e5+&B5Of~U zn|d}XdPhPDGqba;#~8ddJ&3@%f)}^2uKZBeUe9|V6nR({bp$Ra025M#=uOZQge5)rzB1b{WO8) z>dn;`)~$50o_e406EJJ+4g0YN2t!avV5@?L;R!8}Ze!17ae&*lqM5 zQst)?VP`&-7rO6hDoUXc2I<-dv&gzEsHhxx0-A0R)Az(&f3v{;p9M|>SRgJaf9H30 zJ{ip=(>nzZ)4(G;0aJ!f)1c`h)hnPy_}8qGJK!X&_gh4a#C9e8L5u zNvOizGBVJF4-^E@R$HN6m_h#c7FlY1fQpAuV+3Pl0cG+WecXM2SG^dpQZaAwE4JEF5Yqz6ARTPgYB7Z6j z5GGXQ0|@_?+nDMCenXmN3uZ5QOnT_^mOtKP`}l5q4q*(7q6u3c~$n zVbv-0OLg*%kZl&5<7Kzw;NVz?P-sJ92(VH?B;lZS?Z8#fb_jHH z(Vj1Y4ygO-uP3Gz)1l((QhTenJf}m1Uv7EIo+k^K0VO0B@E`(6n3xiTY=J<8&W4K4 zT|^|~*)H)FE^jUYfufdF{Wmv{BIF)w+KZsBB@LDTw6BCV)ZIB3qCNzba@LMO>yz_wG@`Iv{TvOw9if*4gD1xkKP{Y-pMW$V;9(~5~ zUbtn$i>UY;){(%9^)BDA`cZ+&P>LcO)aQb*o2EhSEaumlHNHGwn?DX+*rZab>VfuK zNE}*r#U}^~c@7bw1OhkN$}tn3(^P7>VzbsWh)O)W*{2cbwe?#GD18QiU8f(4XP@9pc$ycs}-h%ur&Gf~JMMuQ@tem~!c z8~DMNcRmzDPz2vrLsvk^qRRdIvC)7ES|)|*0W5Q<-inQgxI%64STmn1ZHRN@1x{1 z#eM2g5Z1v#$R5pRCE8!>WCG-gIz~H(pfu>;zemgRU(rkIA-WP2qXS(j=Gr|oSXMv_ z5<9RP4ZaJ4z`qeSHtNAcco*aLA4dmu{3UE?E21$D4F78|B`Jd#O0AhnIn~t?JCKP8mXAzH0Xq$Kj0Jm( zacAh%lbMGMMQ&MAKvt6>mAM9h@ZQI}CuUmD z4>5dVIMmwgdz^(D&lv8Fc`ma~$Bw_UFdM5=2VBX%TjYj+lSoi)MU2QFG?I=Se zjN!q!3ZV2vWNIoe;uRz%(S86K?{1!fF1)DS%>NC@9d65G9Ek1`eU5)BhNb>G3w#pt zH$>l%L}L{pX;1w9&(Tn z@t@cF%P^x3vB^jmUr(?!5azO6xtJG}Z#`1{;n~eA-O_&}G8;TTKVjnrHhuEq(r9pw zejG+CC`eIJ?&HNki1}aSmgX-yl5~HX>wy_*=?V53i-t6z7=WVS&qYXUUT8=u-E?4x zpWtBr=Xm~vVrCUc>;p0P%MGp6h5@Iw1k7p9URmGf}+{l&&ER2=93?E zi?UpP_jCMSgu2Oz*yB@Lf8uh;7}87`+C-s>X3J@+X`+I^9ObiUt%@R0-GB)O;M^f8 z5PArP)-AwtR}m-xo<^Lq?muUO!Vn?ZGBeNhDmJ!3DFh8v1xhqaw3g7jLmv$)3afX2 zXY<<(aK%faOC`XHUH^Re6id~EKkvq#H7}Yyi;`pcqsmcHdCtXKvWSa|x3c~@$4_-o zX46y`K^i+ik3~hZAn_{yn=U8}8=L_92CO^}Fg+>na?C`Hcx&c=?BZW1VXusUV9wU! zm!lAd7(~U4csLsdSDBgXagr$>KTj--RXCrBJ@e05$>`n$r6)cvA>mrtq;J*c;-Cgp z)~mwfE>X};y9zow*rPgttyZuE|A~mSS4gb%gW(~8DS(((2F*OZ77MTrv9E^L9)N?< zaQ)Sh7;yKIhfMhOV}IU?Lj7Mi6+{mrHwzRA_$M0k_Ma<4u_H#kvKm|{l#Euy9bljl zd=w37&}{mfye^)80Z_~Z6JjN2*T9^MJh!?mtR1@#~2nJ4R*?^Pc1TEPzFN` zSDzj`6$^d5-L7mr_S4FrQ%%DhL{v*#TOnGj8eAC0v|R3r)PkZEl`gScDH z4eQ>FXDWY6+h2aNWLzlo`@mokiiJ|0+_`(EPpErLDNh>U)QILAT$gx&3USb^PKmeb)NspDlV>XU$rEJbQm);GsTU$ z&e;eB`Ut3ytQo3*PW?>Sxd+EH0Mct2p_c?NNqQ9{*aSp<4#f9HGG+V0gEf?lx|vV3vz0+wQPbZb$`$=uDf&ab$Psvqc;*>ivR@S)IULCX_tJ2U7v z>o6O0BZ**^`DL`zXwP}f{)@BO!IipUlQH@m5z)7$Zrd= z)?cTX6y?Prjs*-HoB;36i=UXd;aDyRq&&rYT}hO%*;hZ1OYnsu7FMV|8yjF%FFzPq zDNQ!H$n^GX!61CDZ3R^D_HxH*Ggx59PHsde`3FG32{!GC9SQR^c;V(vqUrRXA)qY5 zXvpt0ET0cZkn0oZmDbmMrWv5O@mqG$RxFi{W*F6Y^}f?!=pF=>{4Br6>W@#&bp-6_ z`wb0*jzGIbEI7b4l5vQ;0?_&DK5vv+pvgJXr!U(n&SA!@%2p-8I^bktf~FL}EQp{u z&`81%40BTK7b8NvEiVC*()GXt;fVwsvEy4x*qU2Jma8uD5{1pTv?ufY0B4w(3c<@M zAJDM3&qHhn-~AoSt9PCU1$jd+ZRI)i__L|>k;q`5(~43E-u=6hA;G!oP%D(?CoaH= z+az&g%y9-zFM@(-9UG_$A2yPC{(QmaeV7rESSe^lz@vhNL`FRjzXgDnazpnh0GAxS z66I?;dB~^=&L9hTC0|H6JNMcv)C(-ZG$!(`F0KuHmhF_e-8Lu?lfL-e$HTze+CVPm zaj4zNLIyapK-w&|2WEvSr?V0590UZrUE4&frd8wR+HKyE_CQZh&tTCK=18;veO41vr6VEy6W@V|obqdwBAci-uyy+7{H7!IyPXZE&>5sUS3}PXEh;8p{^<^DV@L@XzM2UkJIjGW-6bbT#seJdlmZC65OB#&y)-r zMInF*7I${oGBxHHy$2)4r+Pvlwi{PzXG!|JWAgioCvh%F{XmdgdmeODKJy80A_JvaG(gpXB$v59ww%4iH%og zh>PRX-mCZrm7`dnLV;WWOa8#9v9DaXip)gKfY=)j?B9qUG>O2^;-snNHf@4wfS zm6HRdH7XqUCwn!qNSvEnShRsxZVvnr@ohlz`yc`Nh!{z5B>BgKhVC#Y2Cq2F?+G-k zghfC=TgY~Zk^BM|I~M;3A+V!gABJu}2s%>*lrA%vf#XLQCFF}l+*(3?<0j}vieRV6 z%W3}whKcrsFWye{_xtn=2wz0kp`rpf>!jrUhq|CLfiL*;^8%u=uOqlE4Cbd&&6l@HJ4b)Z5Z^zYiekBZ7<@vF*x`=z;QGe93&5zPv!QxsUk zKutv$3xNJLN*!lmz+VaXmYqB`ZEbv5`4D&NpJI>tZ<@C~VRrF$VX!}csNDhoMxog0 zj>z~QQB+YmOBIonl*AHu#5}nocRxfTGmS870qGNc2O$^c z?HAzBXZ|IsY0r8N9b-`hy9=>l3Slzlfd4@d0sjMMg|*7c1ga4W_;E=2;^1hIRfz;% z349Ue79(J#5hEJ`yZ^#enIBZZMl&8Zz66O{d-#*dQy4b92h21Y!?eRsaSK9|86;o! zD3Sz5NY@zXbjl!|WExaBwetLde5XB-D}=(6bi?YK3{XMnBJeqiZV?i*uu;e$4O`OV zzmbv9Dv>8~F!`{suy7>t&-H7`p^mVVywQBGid#ptOKP+!5^CBs+2&{34(zpPf~1Y#}tM{GR|x zy8#9BFGPB9^aGy*5$O@5G3qYUpBKnj10Fhg99*CSQB-p(7_RbiU%wE zPh%n9^}X1?5q2p4*mHV_5WgI z|9fr!O}*#O$Nf*0{O^yY<2gXtbifSa21XQ)bV(qL=Ah2E@?7|{EotWv$}gid1k+H+ z0Fl#rD_i@Zu^%_sgs~ukDonV$Zt%y*W1HtO?519in2t3XSZXZzw!^Xg| z@q9`?GDZymQGY$s@Hk^nTMQ=~ zLdOwqv04B(xZFc#jbQ+D%eym8_Nm$Gk1r-+$k;L{_YWSL|0xcCTLJV#Zgx<1b1S_I zxO2Gi3rP?{&H<{lfpM|y0dV>xOxWx+-~|6G5)}8DE^Xs~LqQJ8*oo0&zm`D^K2Ue=wI!e(fMKR=Z<E+NKSJWQDu21h=YwbicQ4?si}P+OcZ1-$K03B43~CRf~k44?Fg;aAy=LwSZ!pc z8L{!JF3K?Soe=wB3Y1<8VpB%FH##nk&Dduv2IdPw-UP`+B9;qvIpG`q>Vq=%XTes{ zj*Sz?6keUK*!No8e|qXA40nUr^MaG*^y4Su)Q9kIz|E1hH?H4*68{sGR(?PCOlzl_ z8wX6tW5(h!XHcy9X`elb5ejl$5(4|UU*q~2&X&1-5Xg+0poGdezM|*ueIKES$4*gC zfjxJ@oiPPJ?+#*X=$xX@s@aWFGjp5H) z{7;4oQdAH*u!Nr3S=Oo}tpye#`@$3v0p#_m?zrMt^AD@uV=+_}%VH5v4%bWjtv!qg z=Dpy#(HY6BP(6@OExPX!VN@e$$}CF=gG>qlfxO4Jdu zB!kq5`-#Dz!LP!M zg4rD=hw3ZqW6n%4rRANc!2oxSoT6k6CB*~c>r4H~j(m3(ZeTDfgxKd&CaTl?5Z`-{GAu729g z($E|Hi^&}dnVVoR{OG*X-%{)I!e`}OO7Estm3wfKd&<6{cY#!$Ln^5u zDW$TJx()hzlg)#5X`;wV74N#r*P?E{vO40#PLkwSj?T{7RzeCbGPJ3 zFksl^(N+b97fI+mnE#DYZ3{Wv*qiAUfnRvn%A+*QXP40OUFZ3`1l>|q8ZEb#0lPC_ z?)AbOU!oM9Se(&ApT2lXr>L_?@1<=7HaLYE)EbEEc(2MDGy)T~8%@HUtufpcya+{S z;ON5w=`fV&(hapn_fflox~AIB*zeQ2N&*yy?hyZDjtUPa%Zf20ndS^aIWE%fIQylc zV#~0W^Ez@yr4GhRv~WM8JW-Ul!i|H#!p!eo-V!GLd-^Qf@5b%y z{72u+SO1DQC9OI(U&(FE170~3aYtiY-ldp|ak-yOo{j`QF63ju=I$rl$&dPjeia^G zQWqLuU1FlV{7YVqi<%O9;^!$*mc1QGv>f<+Ge4eAlTS$ClJ<>@TfD~SI`tyv zW$KcOyQ3O%j6Jq$rRHgqg=hM;)BU=_uOt|4^s2~bX@uq42EMW8r4e$GGSVXnmk%!1 zR^!^bf_LO(X6Bo{Mp@;qKmSH}f?er3dNyUp3I?N;$sWSo0&E zkCznRUBqwoxq8h+cu~BZ^*Eo6o9J8YXr}M;GAxYAV#H*)YsA4q+7G%fM!a2_Pj!9hR#nJ7ATE^0VSZ9=xjq3(O&ch^O^+o8qu3?kP{3)ND%)+dR9 z(kZ{rG4xFE#zv?4a(pVa?U|VB`7QcF$SGq$`>kL@#Z&R+{v6+%R~E6Sq=SlWsC|fg z3v7~2(Iw}y7Y7!semK;=SaDr;#qBQY9s8iGEq=SiKG(I+Bgru^cD`h=_=(?!MJ{iN z14Bw44;4MSqjE_-Slr_i43)mTVfS&8n>3`3a9=C%WQebA$kye0!#Lqd_i-^wTH?I) zMDy{!1VJX=I$Gb8YW;jO-*s|F^Q$9YNn?LKYAbeItvEQSlfz2@r*-o1A346edWzf6oRwFvj4qti9krZsZ) zWwkg;tAC;tmYpa~Jf~aH>nG}d?UN#P)7p*lrE!{+F3tpFzY=?m6inS%9r1TSNwUr< zVhBw#E|~xM-xWTUXa|SUEb7Wc;oxHHbV@O}#gpHwSc_ry=9-Mf8=CZ?-K8tFSY01Z|FFBbR=r;eR{RRbmODN zftC>WZYdi&Tutf9z3fe#8^dB9UOfzME_o1^YnWZveOBXv?EcQi*2Vs^e4;P)VyQKt zJ*WMhsj#>hRLfGCO?|t0+B6i6M5;{HX zg6Lw-uk^OJf`RsvdDfv~F5gJ+Q6&pZf4k+HBJLg!AfuUK@b(&ML;53gDoAe5=ZwLFO(G#<1oad%LQ*j}yYJN8Z4ptwhMu0&HkG$sA#aGXWQCwu(S z7Z6hwJk`IO-6wO28yh7j>Bx0t3Ji2VRFRN?uqqPHZInap=1Xn8O#To(n^w*g65G<{ zcHfC#Ah~;G>_doe#N~ zZ^F7Wp>aaIQ&O2#Yr3!8aU^>LZnj$`rNp^A3g19G);+KA@yg8Ct-L$aNS!R3y;9qE zWk<*04YeF@LLcj7Ld4bSHBI_a12w``Nr@om37s-AG1W!L_*8rh>xn1UtZ0iQMHk;F51BrbJ4TmdxlcN zT&}Kw=Wt48iaA**Jmdv<;|y< zyw)CamfK!z?4I235ExkUBYwXj$d+nQjpMq8{#Nv`@n@Z}Td5G~KB0`1?jaQ6w(3D?`>4Ypzt7ga%}S+W)3KI_%OZ)Q zeF=M28Vr)SalblW9rV*QlV3Y4FW7FN%w7&SkL>TNC%YJ9A1O{0DRlQ7W57s8_D*On z51t*Kv2XBOm9@)Ice!>GoeXoC^{J`XzkD>7+h}IE{6Me#I-faunv#$jb#|vR&B2(i zK+rykKGjqyq}24e`;Q+}&s`-|lRq|>?Gx&sZqNve4c;qmTGH0|o;G$?LykADRq9hTVv9@FpxBburtT}7U zC$xUSAiB)H#ryjld*N{{+}gSej~h#mNw6Q!c{vIA?B|t%6ZtFE zedsgOzJy|hxWS_-HFwPoE;LEV@5g@EtQ8rjgX^b9+Ve?)ot|voDp5flN{M7waap85VLq#TSw4!&bO5MGv z1W-TiQLBpt16pyn2b71F{r|3!b*?9+^SS;w4eK3R#@9i=SBTrY(6cl@pkLBMY&g3` z7_a%#X*Zu+R$LwUrg`2pw8zx-o%)1q&Y)4>Ih$O4aW>vkT(NP9a-TBD5Z;q8A?w1> z-96|WM2&ZBnkc$2hvTmQ7L0jwiy+-h+iAgD)S5Cn%xM^0VF!2f5i4x#N#`A{aQ4Km z6GoJsslFc<>&h42*Y4a#|4OX6;=a5ol|M=oF8{E7XBmrM8F`Q2+n5NETssn6EkUf# zi%RtiU2(swsoU?Z?D8jRq~W$F zP7v|N+k(#r*G6qN-Q7y}h1|!eJdbpyhy50F?H)DDZC`oi`i3zKoSP=Tl z(I?&w3uLyR%kbjwVE z7e*UhHHuNf2V_p-g&pk2-H7{;_d;sg=grJLaY1el!J?wOG@daIQ(sq&CT#|u;WW3Z zTHqGiWEZI(QOk5koZ<$V%!tBJIc`{ZvY)K7hObqU1^r8N++xy4=kQzKm01g;;^pCV zNn66)o7K^*aq4f_7fzkQuSA`TsoJtlzB|n5sfQYkHSyo%(qbH_p&KqM8!5>h^(6^E z&$%h+P)9exUS#$n5BDxLR5BOb@=9LlFg0x$>tAw7D*~Q{TjRd_qU%Qssqy<(#5|_1 zrubC9fgb~cgCcQ!Wpp?xak~WiY(Ju5-^Jm>&_74YKRte9ui`%TCZD+CSEKL@?v=8Y z{WNAUUfLOWii#M>i+)-H`{Zyv=$z(A`JJ#uY}4BuE`q~~$wj+~3;DOhKnDBW-_xW^ zRkQ6dF(!R+=6kvKglFYGZ_N!a8DU-x8e+AVsF8azsSyD5)b6%kD(&S!4zz}G#J0Bl z(s*`yH_)=OQ*}+RtU}lmg>BL^@e-AGiKJiQB(^$hxfP9NvC69h>|<{&|1gy^D10UUv0UVP9swvFZUsqZIXW zjPR8jU~Kb?=|_9^e)rxAl#{A!6c_7|j08o4GJ*TSUxMMmR*$QF(Bne(l^lCMZcBw? zBAC&6+NDCvFw)O91Fs~GMJ1z0U$|zNC@W(IuPj$K)%tYVb@8HLq;8`^kuLqMT|LAq zv%ou5$AMc*%raxm6ILYQYKg_^uZBm*36jg@xAI+iDi!_0UQrO&caG*(VR57us({6>pidvP>lMz&&zD19FOFOH<+%9!Zm8T=u3xkq6QL7@JGi<| zS`H73F=gMTR6BOThK&yAno7_cTzNgWU$a+^lf{)BN&fqn9YD(b#QaDLEULO)uZI zhdyG(3ow2!l!o-7iik->z#u*h6pcqbV2LojKOknjL*ZwlHL zel*PKh;6ESaELK$&wGhu)*ceDiQB-+uwe+j;l1Z*n;yD%Ij!UNWVbZVIIiHOWpWix zIDc;^;<931&HcXma)moPmxMZY?cN@hxu!D^9Ghq8%1-?7&g-4*CkGlq8@;klSHf(Z zSoe#XCp++s77yp1o!$J}cP{sNY!J3l&{eVYdc;>DI;k#a~y&(HaK$6$@iFj=XD5 zIUJ!v_Wi-W==e@@XFOKg!DuFe+{jv|L#a!8|AAkehIGi-=^6Xek5f;jtG(VEvAJv@ zx@$Gho(F_Af9acSdy#9lv(^M9&DStya_XkI`MpN!+-`mfV$);y@y|33zzoXUPfh`{Hk@?nf2m% z9QJo%YW?_D5+w~&H*Su)W4yT4?}nVc{hqb=SO_jmI?uXcq?FPDb)#W`oDhwoX!{w<)fja5#lDV(Q9 z4Oi)KKIyr9SFZTx>F(BXBU!>v@_FaE$B)DX%+)&+ysj(>dY11}GDj11SjTG(-B;|#OW#qfCU6bSoJTnte@>LF zn(zAFgk769)u6<62#87SekEtdQSh*TQ!cLJYv5eHuvAoL7tFg->-pv!H%hDEt-bLa ze1G27grx7%XrNDIPY6ve=?(YpiWttCzQaTFOKaqBNBT%YXx@1y>g4vW%uY-Yc=DW` zbA8s{rx!I~s9_(c*G+5^Xka)wx@=T?*~C+4O#EF}da}HIIvZA5)jUVqBxsZrtWbMyoHymOfAHjRz`mj}C|W+|^_0 z3Duc99^kiM5Ss2hFE)RUk6V9^fkJvsj*@h1X;H#gHU6jMH9LZrBq=l(`}{ep4`8u; zxUWW|dR1c}kO^l=?-DMQHSG7!Dp|9zXe$Z%Zh~4{V+CKzJd2m_A1qplyZz$(O7|@2 zhI?aIa%j)FD|oLe;{NKAMGuo?px+vd4I4zmaSAY#ex@`Z1S~^CZG(i?JA8~_#!caN z&@ac&DJfbFx^a%j&~u%ApX+>%B-Ti*)L4!a*Axics=k!5YZbEFb4=hb|E-~7>ydD;ddfNo zPn`Q!rwYQPR+T@P@fEAejn0R%PX-jm zQtN!GQktM_b#>`;M_}zWJ zzwf!ub)ECO&NK_M_S53SZ4 z+7Ir%lT@Nk*zEjL6DoyB=tPyO$Agaq& zehCJ%X>%#IP}p%B(vZgQEgDW#0c^tGgZ9?%&)qm7Ma$k=Vk);02H!jjrGa47G8y}a zI?c+CteOVRdc7i#XN1^i9O=J5s`Un)Ih%9B9iAUT_aMKnMARH%`>XC6PVpJM$ar@9 zHJl$cc@Z<+;85cW25AnNChWTGv9^m z9x;4@5sc@__-De*4<7&Zmg!$pnBV7b{~;8GB24@PIGd6<9TCj-OdDxjk;Pbi?V5K$ z*CE8L<`MiiFM3~`_1e2O#gT=7lCN1+EDE{9i+jC1_{l?omg;I-qw2k$$u;yCds)$+ zM!(^s4`4g(QO4XJ+FhTrS%xB(q&6C@_O)2JxS@@a~X547H^u1eQWWf z%eDtkv1UI=_87<`Qh9GM&!H2qV>w@(7bfi${8YW3iJ8Kl`L+BLyQkA(%~}R}r2JDd zT$22g`)5HcauTx_r)ipSO?CWOCjNmQ{^g^n!>1&&U+i+%a)0NYz}Uy5$hAhtZ%s($ zw|y1S9&H$h@(LpjC!e@5QK4_~Sd0F?4C@rnSI5~Jws6ur7+y=5nMt6394<;?KDZ>w zAx;Nc@RZsSx0~jPV7Qq~BBA~DtU(hd-Uj&u+Jue$%!^pZZ~BaVK7-Jzd~Z z`Z)0-{0263jJ`!?kSlk&+SPd67`<;5?YF$}B(E51PdaxV3kw86Yqs#giMDuaVjT=` z)3}u3BJor7Z7mR|txxMb=u}2Fi3yIA@ZDPI*}28lyiXF1w0n(Gx?S|?lwd{6`5+1k zUZvAtSIOKj&8$vlZL1-hnDk*A*G2Vq(s+Ykk+(Q8Lm*7MBG7l8&L^|t3aKf5P?Wn5 zr=zLm-#=73IhMsbg|93eYG#+2b&+wCPq(Kc6L+VAp^jvIW}zvbt2J7B$!C_LRPB>h z*)#8dcx#GB+hO!&DFzYgzzQ5(1f71nLn)zM+WZ~3H$qd+0X!Bb<@zLEhH8#9s)yK> z-0!Rx^$b?mWCnN!e0_%R2is3t|Hf)Cv#2Q~00_o`?CW1$AOLky`wb6j`0YoQ zebSX}n`yO4NWIakzr9<+6jHjAqL7dwy~!lZ9MXug#$5GoQs1tVv-^qodC7LR@q3k( zFtyGQb~ybAWZYx;QcM7OJ1hOl4Oy?ktTMr~pxV`H%MqO4(vH_feiei(tQd;(I<(rS zRv}wqI2$JUgaZxcIW!Od!UKFcc@%RuSN0E zMr+*Y1;Ns54rfFB2L17id%v+Ahqc58K2J5e4cGRnZ%=klBD(#ySBJ>p(d!WMNK|T^ z*9yezpUoyt3C>b(ez&U`BG)64Ce8w#rzO18Rot83;J=B6C5XUalNn@i}TR zTC)R=iRv%v7qwDB(x3aUdzje;0vV`1qxx|U^@ygWV zMZNWn8I7R=Jes=f|M6W84d+L)tm;*e92ys&cdf6f1Y$#lu)#*%pjOWvlrVBsTQL$| z#buPoC$YIX^;{i>s>8_zFzP-p6XTjfOUJ-nMM}7P#?ZTL-)I&RDx&QW(knFF-5wP( zelq$rmoJ_V8hq0bt$(X}%3nU-pZ`gNVo%iML(jECx~)>Gcn7k+7>_0n7yYY0{Hg0a<}%3n2~<@skGeC?-nx3O#A6p#3u#*8}oupN6`A%!+G zUdJJkQe7L7Z8%8Hk_;v2prBlg)~>T@vSoi}G9E2_eu#~K8YZRN_-)WooDN~8k$SbS zPWnuqNnBy~0XfVY1@&yA-3dIXs7X_+hoh0~twAdk>T6?|0#;%!$ut7*ECn|6Z7++L&!ZT2$pr7IZ4i`RZY`JG^{q>{0iC~czV9wc^c4}Vu#|@`WI0B?{#=- zvG>Lrl0As5@UDDjjs|IX6Vi}-!j~T}OU1~PTWO(pjx=nC5MO(iR8&^?%?%nYDDP^S zFmjzYCp4&P`QJ}EZ|P$Lp*&a#Fce$d8ShH9{c)w!>C_aj4OCzcc!$K6SA;Qq=v2jA zhc{`w*JZ6V5M8NQcki-lFEH4xBbX4g#C5K>HGVWT@rPbYBOvhd-JVnmig+%0(vZRx z#oAT?}Vy+O{EJb(h3>#N~EQkW=e|t351k@aeo@;8)Yr z3OQ{DSjV=D(cgyfvgp9Vms{%=Y@egS4fsfzp}IK6axWpfR!Y}#bz?@@&$Hj4MjGB+ zYL(kO-<>G3s=v+@)~IrGzRD&-hP)K9-zFM^ga<@)#vxq%#t(n{HS=ykhW@kgWUV4p zpOrl*B6)B5?ch^+&jJ?)&9mxB5oXZj-{7bcq+gIo*O}Mar3q2{EEKtNq4XvXEkIQ@m{kiTtXryat(Ni3-y&ahEEi7-3+xm+u4}-S!nKs(ulXs`;`1{zC?wGB- zB*`oRIOVW7ubUO7zTmm~(gh6mNh%GVscK5vrYOk;P+Av#ntDCMjc8v3ui!MJ4~AcI z5UZ0ie7SGPi)MYyz2}9fW=_IVB~AwHid9z9iAAH;C~k`N$nFb?Pli9yzurMr^$yuP zY|o4A(C^n(FzZzN7FhbRj^cbXuCqoH-y}t2{~g8lraQc3Ee(!lcZ(j6{qytSQr@`^M$)cVvVoo=Cnwft5_$vpyu}+c>WP}N0RYzc&v(gC<#0w1K{4~jZ z`c&fVg3mbGVL5kUoU~DiD`8fSRd+TB+(tvUCV(7F(!*ZVoS>iT|qJ6rUv^bBNE zK!A|ipNm=AC$ik9u2Zk3dP&aHcgpO04g2faG}9K^E)X!E1&i;9AEipz8?2Wn%ZMcz za<;nLTT98zpwUool#om*b{zPbj_sL2&j-PbsHHL04rD zHH8>`rB8wf)h$kqgzkjSLLI^^%LZZ#8nsHJAX}eR44|RaWi{Npe+swXNRl>=u~MjW z`w^MqFm(JBjmR>+U~}4Y$eO$8<&l`C?VHjzyk+MrrP&qELk!1#{9R}0tLqzR3&Wby zb-&`?AEckYW8XH;r>fQ|q>;G~RJvB#=ijoFa9w*WI_HcH3})Dfs`zAKAJSZ0o5Mrn zg=w^81-#M$Fnmxaq$~GRm+{S8jkKTQm8$zs`@Xuf@MO*7_!W`J?pV&cAMX>ZQsJg2 zm!99UxRhkC04>49g1F-7{$qTy`PaS6;*DUcWr50%spCRpjcVmxhmJ*SqZ=?h*<%=H zL{`>NX}^;}-agTW=A-zB#ZgGE7EHXL+_N&YsAkpF*yTptjI5Q%_pZaUA6Zpk+B2#P zyoQ69!4qE6pA?bRKxwof?WH6>WcXi!m+jlF88G0rv_)!$Sm;?qgmCK0B4ZVXW@VdHr`>VNd!cSIdPP^-!@W^W%sXL5_wVH5CzPv_}`Ph z@#c2r*Awi@dwgAluj*O6jd`VdOi-GO-yPC4eXzL6ky5CSs{Gq3;-5!6Vf6~)qw>+k zIjGQ@?wIBICnU70elUX9QX-H^S@}c*Q~Yq!F9k0C4nYT_3zO?DP)d{LTGUt7$)|VP zz0f?roWLo!?vzwqNr388MD+XVuF34*hr{&_CVxaxV`A=WO;kEho!ay5>@w1l)VCla$McNR7KBX!GiZIPej6EQ1%A^nd>iwt`YL zIQbx&x`{IE=8D3|NkW0mYg>L1OlJ8(8Hm~+P|Ho@l(%V6nTs=r!vlSphiM*aV95D6 z_o&Xo1mcfzSQG8~@MMx7SfRHH8U&+8_D>Jq$TgFqM(BX;;G^@ERt+gYLa`8U;pgJ( z&2&*{{6r{qfXJTmWloek_@zehRvOfWu&a--AnSM86v}ZfHj5PetWX@daJF}0ZVK3| zLSeqOb-N|NR5q&xUHip~c_ch)gGV>Vx`Bb?0gFIle+#v!ZBzAJD!itn8r1QJn6 zWx2K9ZV4Hg$sc-F9=eeSPh?2lO;^P~jJ8@j()>rF^~GL|pJ1$G&l#{N-4xLKDQ!g_ zw_##@XEKUzWFqc}vlgUyJ*XoBV+8{iQf^ELxYu~(w`~_$D4zn| zRl-kHQn`;|kEqUdMrNhN%tT3LFeju?Z3#@ISKj&)$?}A?rT#Xg4J*vs=c6J{z1XVl z+r-H3oJ8|`Tbr{2|&y1UI~V=+0ELa@4FKR~<>7^iBKE`?RH!W^Kkt|FOg2!!PO0 z5sP$U9nnC3W-8JSFBvvevMSE~E=iz?9k^Hbh{lEO+BwVOWVnRf@rtG8!VLb&ULRHf z=|P28dc20_nvwPnm~DJJbXZiF6;SJGwE=%t=*8h6c0A{Eg4zCTapR}A_3*KXJw|4F z2R|N?(hYz2&t&u`zaRz}OD91Okpf5}SXq1po{$~SfheEM!{}IyLs+?dOFRUMhyqK9 zvG18G>-FuzJ40mW&K%Prca@*P_S?U%?gDLn>@3fru2kB%_uTK5eT7E37UN(Z zS$Af8mpoKhWuR5RlD{#abg;Oq*ot5%zWA%ML2_yEuFpIqbnWJZi)2UFKumy^bHe=# zvzSnWgW-C{_J8XA1JR$C26I(^ZYeiywXf8xt=u~LwOZ z2i1YRK=)G>CyQ#dc?2$(ro0zHb_bj$r0@m$E?kb;B1>sQc zw{C5=ta9L01FtuBb`nz!4{OvWmNi}tsmgIUMoTno6i3^S1;t1E>qO?LiN)*&Vubh;oI|JIC|Fm;qE3189Px_xYSaMhms~}V}}{tSw5%+o}&y(b(34-VDq;} zH%i4@elELBDLbC++ulzewTW{IpwO4@G`kYT7GblAX|2uc?NVu+j@$iikdy~cpL?U> z6ZyR7%HMD;4x4H6>rHzvCjiI{9qI7}rj(*7n#>N%OZ?_?@k}M<5kdNhw$j$>2q&aF zZHn6w{#`19D@vNCHc*t*URtx1*WM=P={4rm8g;LDKCAV`YuzFc6f zd1crT22?@eBd0!%`IjvAPlnkc`}grqn{o#Zn2joGX-}vV(}TQ$f~xt8*cdeWS;Uho z&)c53aEnir&sn^bJ?7Kf?+{#`WhFT%z}_VxXn(xPG{ZmHpG82@ABcD%M!x>g{GRw> zZX(cI-2MK0E~BgWiVLnSndMfMoya#E#@G7?haBtGSj|E%IhERZ&TzuHgU3k1E3X7H zxVc!H(?fR3!{e2OJ%ad#nrd-2yM|K3Fgqk@pV#Jwre#d{w&@=Yzhp0*8S#{C%R3tw z_eC**h+tUf-mtA&IWj%cFWR&k!7QIDDl7@j4)&+^hPjANMN5}x&=hekVHp(-#LSg= zUdsCy#>r|-5!UAAlggeE@YBb730IQY=alciygIL5sV1entTlQH%x=#8<7as-2eSRW zLOOrj zGIl%friY>;J!crYdgnOy-X47+Zpj>N)cM={aVQaEbgA{Qd|zkK{rU-kbFqO|qsGmP zg`PLapUpIch^mBF%;_=mKWyX6=bZ}n38?03^-233HKOO-fa)sF5f9=jwFTk zf6Z1LOgDORW5*;S`}vO)Xy0V(JTW-m`m+8l!AJXam*)U+;1>Gn@S}Rvh{zWv8K%+| ze|mAbj*_o`2=kF~YwT{(yAyjVOvMy(#wzM|D5G#RUu9$k*ZwFI$>v*roiITQpK`zU)Z=@AH_g+EYk<`%gMPLPBV zWP^-_UtShrp*mWinwiUb;33}onBg~GgFBcZ4!iw?m{adx8VWIQz6+#K-mWmwUE>%t zGD|^!Ijv}b@G(sDX-;6*1n}sBV@7DR zPE6bSsOMIwRDP}P*Y6%ry!-Ta_q#MteScn09mRtZlGdzx;}#p$bq_6-ph3;<-f2cF zpr9xR`gq5}h^@&d7YIm<#RX+IiN0LJjTy-HLoda1qFnBiTHoe!_CmVZixr*gT7FAK zQ}kLl;IAZfLEGw9u4}iB)f75+{k67Onjf@J0ok1tVz)6a|-bI;&1=ezZi-e z(X2});7MA{76Ds@uC9S2H+sv?sdyizzWVBoiqD}7N4r6dM@cW_Yy-s&0Yk;G#3bW0 z>e6^;$XfK^l|FDgo07Q%%*|M=jjOzgYeqJaYHd)Io~BHrWPJ5?0xN+>yu@oi!wlV> z?rErygugIp{UF45_{LnoveEWJ7?&idVgVLA#|Lox*@#Rxf!AZD_MZ8_E?)Q(Gc;Tt zjJ1?2enIj+9ixPg2;I|uCej*RZF*5eMmnIspl5PWRKsnz(}m-qdq5vvPsD?Um=nzi zB7*)AgJPEyY}^cK92!!F(@R{w*s|!Q1gs zymA4Q+jdhnd;?g_guk)t8XIK9Mc6QnxTtfRBdwatiP`X8agfF zkfT1m-;3*l1JuIjbZAvF^-FO^=U`E;pn(;%=vsZMBIadk`M=^szcQA`UlMDqR&t*v_YPp9_oWy;v{P3nJibo4{ih&~ zsS%|TLjj}NHjXFSX6#YkzQts@W|6MO;QE+Xc*AXt3sJ9_WlDG;oJ?vPv4dTFMvvR& zKBdjCqNK)Iwf1fC!G{<7r9;Z91HtwK_$-<{mCI^t%$QdU^j?mMYI+>&W={aS$nOvR zt<6Ss#hORW+xRI(T%dRgf_@O$rM;^~`$a!$ZP07wp_d;hh`~?=|6IC=RzH8cH#kw% z?Jx2$+Wg$J&@TC80w^wZI`ngt^pjE1onFXYYvi7lEML9rB%`Cvgt6{7k4O+JWzBwl z6bv8)6Wd)mU&Zm$qTG&R(q!(K0|He#9y&EHar-1p*jqsktgej3#-?&u!e#ey>l%NU z!(^p2=O$@}&(rWcI<&8+_>QKZTc9n@sOxW|_ERvdP()>QXuqI$NLOdNnR-4Zp5Us4 zzu98>6mx?9TpJ1?eOOw3qv*#12U1d7*y0r_n}#7|{B_vbe9Z0~!v42QgZ?e$>NSxF zA+&#QZTY@wGJUBIMjsuvcct;mov=C^%8J16?eb!mx8>mVZ+E9H(x-V<)x?oIp+w(5 z#U>B`d|ILNA9UAc;vmW^$BTA5ot3k7`%MDv=I9-ZHJWkQE6CGu&;u%=LJ4W>t@14V zkSlQK&zaQ%7PTfgu~ybTam^)Na2KzL20~?Q!as%f0uMbEwO|BJ@m}?p${&H>!&hcf(%D+duma}(n>1SE zWal`QZQwBeEVjqhuSb2zDKWTO)$?SN{l?rdWu$*=+Y|znG9e*ht*auzIdPx)S8)UY zczd$gKHcqv959<2>qs>8Xugy8K88Xa$21^`2l%wnsblSU2fKtZ;yr;?9g2Nm_MOw7 z`?{CM+icKYoPzWW-r@OY&>vWnbfv#Dh34lHZzff(f-Y!!2Ix>M;PHov!$EDXzS3L% zBAxq~dT-bH;Mj9q{HCtihZNR#w&O*m5@Njn=)OESzdEG-vokbg{a}n3JcA<-6)?;~ zl!a02{j0s%-KrXWs{E|-F=zlf{vfo7e0%=1Sy-3TvkS9YE~owP1^(>{4FPEp)!4SvSR&#xoyeuHXL?|FscA9Nv#{8`vw`Josckj}*kgQNO5L-b?q0mYZefjk35ATF7hq;FPMQdvm=g@a z0KxkbNPiAFG3o*(<6PoYa^&8DoE$E6UP!jxV<>y9I#$aUV_)eKJRU^9&#U%v9QG+N zUxOhc1eC{4!$a1F=9L9vilBx)h+)%#o!Vy;*sK4G`h@4Z0LTcJN5d%*AU!+Xr;|^^i!EBtTUNv@9JZzkrzH;KqI=}g|T z%M7b8E53vJNrR@_R#$vW7`P{z4`?ZYxo@$gUJSdFQ`52 z@gL28IjAOR%+(ThhMFmI#(eZx!;Pc#rj57(yK(u^J(2gnEbL890cX-SvC4=>{O4@J zw-m7iU?^na!@0LuU1@U}3q#$QgoYYIxs!4fKpX`>iLdgB{bxz4EP$IrnABrM%o(p5 zo6Sc365Z;CN4=u^V~5hmeD<{S8R|9tS#Ma0EASc{-X)R!R*cZ?KbskOT`vK&#ViD@ zOhpDCsZdp^V|Lh9SFM)XYw}Ja;{3j5xw>?%h;u*tv3HVt9}J5mic$?=XbBpKg*SVQ zeH-09*dxm|jdue&s7f&Ce^6-!Mzu6m{LGYV)*>@D-)v`k5;<{qfwv;;Qq;K# z4=|(+1l2vlZua%}5a%H);hX>$F(g8xv7}_BDp}4}kE6w;@*9shPC(5q=&C{*_jZn+ z{tP?vu?ON{c;ymwIaL0OgM(&WS86WZ2>$f<#OJ1m*EYs4yM&IjwU27wGX$3S9NOeS zNfGVD1j1)_t5BQE5rPZedxS}*A+sWQmBas9`OwD{t|~Soo#4{1D|`AL&e!{ENPa&( z;Zz}B19qVA)uF^&2-HNWqdr@kEE=|LFx+;v9xrw|XywNWA8LLT@56c%Adj|DWPCSG zIxjp>OVKEeoe0bob0vh01)VN4*MGT82+1A$lb;fSwaQZub~I7-6od5jH4;mFvs{{&7>L8IqgM8F+7+@V+e8bU>)8RK ztJS~*=x0{t>6pY0oIWBs8YJoyYkTy~dF4Sc0wg#b1YP8uruDv!7mFZH#I^Dsh4PAu zN<^Vh%Q2 z0%$L5987B*Odg=tsHUDkFn)CS)ZcL?cDrwLD}bEA1m1)iL2Rf5gmC$y<(o#z5$%D? z46@=I%hHSlCdu{Gp_47&I9Sf;4q^oF^ZH;9KEF^i#aFyIfO-Te&MMb!xg4+Yn?-{L z{j!~ZZ;^rHJ@q#v!B8yv0V4}}WT(fz-Wul+>OV^dqRmtSsC{|Vm3D%&aV|v-f?#?R zXom$GxnSSqtHXCm?7Q4_?_01N&)R{C$~hR`2w}^<3;U?qQ8t~eJoatT z2ly#%3BZH0;vdv+($f}k^e7TX9z%8BD>;QZJ<))m5)*&3+QhepJ<%t0k_pwGPY9Zp zbDefsa7taoYQO1!X7{IfMYeWSI+N82)QV2Yo#dKv$5S^VHXww$O8*9z?v*vlcoBAD zp|_`v*mVHXlprp?*>F_ULk_X}YiNc^Kqn~sc%MQrmz;LCXF{k~oVE!}$d0c(VqAAwC$ zN0qmSS9j8o1Ey2+Z;=HR(lFlj9Xl9FdsCpva?rMe zmsPy|nm~;Ov4V;rY90BAEVfj408OM*oli!OL(2w>ONmEyh7sZ*pAL^XW$<#})+Cte zlebHf?)0@~g^g}*098!xulyLBY1lNcwyH;}TyERN*Su2C$Wk^YJ(yQESHkI#LU2_| z7$|4vXmc%DB@{dUKwGS7EhaM^5O2}I9EEmjTWEVBmGGuii=pvm(-o}{d#Y6dYu(w9 z5X8XNOoEeEC}!4m+1kG8)(O|K7X%0L=p!GqJe4%I(c3ZnSLEBrf?OAhUxb9q_jOc% z(iOQdR5ln3!zOM1{$Sf%ZFN|oR)T?3-w7f4Q(`_vS;`-l+Lk14(`M`r1TYLzet)3v zTEsh4KbJeHjj%;Sh^M{O7 z7?3@+n?f6O=DqhYD;!@lugclkCZr0=K?%P|=vyb6hbyJGo=Nt6`nZUKXLR~eN(3J# zR{8kIA;-KpovGLE&=ep9L>(0imlq_3IgVBu){I2(^3DueHSfL%F7@I4fI`L*qkM{H zQ!`-eFD8L;V%?;?WCytuM`kIx^K(STP(cOs2h|>v)GML&H0>Tu9CE^cDX+~6J~O_< zAvXTmnN4b+o2>1b*w$(O-0&^;I(m8D5 z46pfUihb?nHD;CSMX}H-=G8b6&4k_MV9SP$tpiW+A0Rs`B42Pv8DPo%)X}Y)@MGg) zlz8VIU-6f!UVZg1g0Ro#hMSTeoodZO2Jf7YcDtLUrM?#Sbkuzd|1~?gS;;9v@vSpw z@N+h=?cf(1UW|RcT1x8WGv6vkYPiuePjAK0hFu{;jD;!W8&wg1{lmF;Pz!Uz)y6f& zZlYk>_GD^r4L5}vaDs?J2t~y>Eo>_>CwSYJL~CO8T;_1b>M{=<%!vC&fzY%Z>*r1q zX%Nom=TW28^x^j@h1brpuA;GJSo+JO9#4Bi8iQyX*aUVca!Y2d!mdWRmCw*E@+7P2 zV-_0w0W%edmnV$_IT~w!${^4%y2yea=-K5}ykjuW1w{{bY`_7%g*Q<=>rz2L16Zi1u@L z5(NvUodg_bn}Cc=>E#f0nt(NFBkbWR1Hjg9twA?=%o;46eTKK^5LP>+OXqZU#t}j+ z1V|3=Ae>!2A7X7PS0sjC?5*!%_grx?{4#Kl*H6jq7)N^?&w!#@8pHZuyjUTr@-^4e zEs4(>;H0|dWwkjKco~g;RO?d$F2h}W2%V*qoRlkiX_?*td}6*>!s2Ve4CgE2Xa@ok z)#lW}Pb7*4STCcyJ9;0!(j2DHnTv(xm_kf0-p17(H5xk6;1XB8-4x0Zb!p;^26>+- zFB8p`x$vh)+!G(c6Wz!;0?}HQ`=^P=9=GOl6gcP}^StCzVyAqid1E8{8?0`$+W*wL zICA0XEQigOKE?!{G6g+CimjUL*XnP^wKLTE_E36bKnM?WZb>lJz?r1BA{4_$Zb5V}-04QhZRectNPiFAN zBQ+{(E(ugF<+HQn-6&!eKN)d6-JeN2uy+>5tT$)dtKCr?pz26D(GI)J( zODIk_x^Xq4;5^8Ebo2PE8PhCsBMQ#iRvOG=cj#G9`xUCk{{GNFKex{t5SJW!{9SS= z?5_)f>S$tRS^XtUkXB70%WK=?u#1an<{cq~2;Sy?$J!bM)919@AWCzuKA7^pkLsQ0 z{z@}`KBsIG&^Y=nPOAoNVGG6{l>bcC1nE7K8}3;Ts-2CsnMg)zd$L@;SJW$UoTG^i z0Q{tFEp#ei5}Nx9+?V(ieYS&$i&`$s$zq~Dmg)@gZhZ&MbJU+G%gI*@n&FkB3OZOX z%7AX&9l*^@hfnfJWfHVb;vLZbC_#q-jbsD?=r#gU4M-klT?ZR@YZf)^YwjeNxVuYY z5O%EYF(1z_pXBWHA`bI`qP1YJDyMKk#b2h~X^9r4X;cWj?9RXwhlMU*N>2a-qY(T1ZZ zkLV1u(th4f8OnKG9lzbT4z4mhO{H=f@Vy&ILxY6w64s<|By7aU-NUE$8u4o2*5U$< z9j#ZUX<3xBIFWqmKo-~7ZRKTnleo(51ca2~QhAprrWTj#zx2vy42pHXkmr7TVtmZx z^+DUhHO;X4PVXKnBWq`2i-gCG5;{NhuZPiyo)a6rhSd~@vIiUWe7)>u9j43cgOZi5 zq^2v+^58+!b2^5<(rhjDIzzWtZIN%@dy_zUTaS(=NSGIDmfgGAPl>o*FQ#9m{i8`d zuOPxS!uxmoe$(iao}#kH`v_-cWrHzRd9&u8+$$-|`w!o>+^c>a^>%VEa;H>#X^qy5 zusipAzI#ersY^_q(R)TlCQT>r^CXfGtbpbd>>Wn=4ECB z<=LdFVMi^vQx|O1&+-$GEzn6)%;1Uyx4Px4JJ0lmM;=n+W-TiVsx!dN21RL|d`UvV ze-fJ6q5#3YL%Z!cZrO|xXMmKkkbN-rA%)Wrdaa)ns~fjoWK`+K9`G$JvzD7O&=<4w(AQ?HwR z%+z+}1;MEJdIX0~B4RQyOl%5ZI(L1^h z1zHlo7(hx|ZkqE*Isxx5_B@u6a|AzYja9 z@NKCrfU*A7CAcmSBxTwg<~nDPUXrPV?CY=FrNqaJ;CFOJHXB1Cd!oWi&WXvdpt+Y+Q|3%HP$f{&v zS;(Qte5zBFH8omo>pIbZ-wc~+Jwa^{oNI)*#>2IxEGg@6Qd1{8M+`+qER2G#^m9^? zK21UnspGi38j3W%iRXr8!jOj z3m`S~1rGdo?6z&YdL^wvxLG4JlcxRq!y)m_`9#c%e{o&MJ^RCR)YtElQHk#)*JwD6 zTYqB}_*p`O#hyNrppertAww2DAl3-Fuaa`=5YfM8-WmHnt1d>L1h9+^2Op}CWBkRZ z%(E5D!^+hj`6RjIXdCjl_Ru(nA7c<6<(BXnxb6hgF!;CzW@-bz|50Rg<5~>kLh#D9 zoo62ueCW3t|L!8fD4FjA7<5-gs~_{5&{aKzjy<9j_TsSxd9;VM!y)Yi6#(@%#WoLG zY-2OJyJNCpA=$2q_@`Ud)6}4$N{KuH%HhDR(uheJ@*z@0C$evBI00uu^iZd*9wH_c z9GH=Hxd}rZ9~3b63?(*wO)oh-pqTBM*U(tLEZ1PA&@-a6BikVG_FDv;SIy!pV(6Bdw6;ld&Ks^PH8#v(2dvH- zLVu}Oq~n0}!a|IUMU`QeL&9C=>hKLtF*+DB1wC3rpiFpP8Epz&{RJuwhtB3F0#1Pc z*y(eBT^wAYNr&5V>@|z67EM&6wK%mq6%?^7N}^0+{A!q3n6;rMuTT!tbFl9~sa0u= zR?g)#U@Ip+t?GE~bi)1d^(umPU(~fE)@d>KzSX{m)b0!vs`1(TS7y0--+XEeic+<6 z`uo;Tq4syD+tHmgS!cTw&zCThGRrW`nME&q{sL1xUqr5fzS!p9NuTkyw>5;J;JF5B z4B*;A-m!l0R8KP7r7TT1jYhu>M%TyYd=^k{laezbapv2rjihwz{Z_*oLxM`vM-9K! zlOkQSN^=*=uddr7`Fg#oFAz=n>?7yfpCu96BlHk+CrIBy--l=| zW1U?J0F!DgBp zNMFd7IayIr5?gji{+N(byKSp>M!?ELw$5t7QT_wi&jD7Swn3z4k{3Sr+kIv{QanbB zRl+2BH=6C_Y_40F@POjUv}eDM7fAxez|tu^b+i?;eT_%o`@LZAfaAP=taiS2j`QQF z4dvw4-;8vjx!*TGdrz!HD4|;$a`xzIz=v)%J#zD?Fgx3vKzpZWV6I8@H9dT$n$}ivhuml`K77B}C4W5TtXwy8$2h|1dD)F4 zy;L%XyxdkmDiaX8a@|Kf)DLK7!9^-6fG7fg(A(+m^L6b|_(vH-$;)@tu7NJRb!vV} ziS#&ch)G%$$OfzIN^>{Tb8L7USM6JBEC`A+@m?Khv&+d5bZaH=)9m4k{MvFBW-qNN z{_iYXjFa~9>VZ`ISe%F;MhjZ+SN=lDyEhEZqRt9_z8GhK4;;1t7~Vwip*_ypq6~K4 zN)$A?b7xhj#?y*?0ZQAF;ZSAxV3Ua+X24(8To6K z!?HbEYH6a$_v1iX6J;h~O=0-TY?VngVA(v8PSH;!NxoDodHIqOJj;V40+}!ylQ)8Og^D9q2 zGUR>6)fhn$Ijg^mL&??UqLAxn$o8mA3NYXTR~Vvibhm`QS1nW4m`O=Yx!JP+ZJ-`$ z%7f~kdN?bzAQx5-KPt{={lHMXbZjV1dDM7d@|1{|UIrV!HdeSyd|B~Hjn|BoK5);o zWeEo{gfiY4SLMDo>U}Yoeb-S~lPM@8Q!ke~2Dc%TwfsKsyT-5VcnM00zw3j^7tIT1 z#``!Z5e2}8`ipVw!h<)+?QDN3*qv8_z{WIG^W}alHf(mNATEBtoRvI7H-Z%`F?qFC zB-N?tC}?4lP`Jf)R@T^XUixR8sz+!|Fui5pPOkdQn`w-W8TVTj760jx#}`GIo|*sh zXXml%;)Ps0J*9TUY$69IZbY>G^yVL7YgyJ4BZa9&9DjXXa;7adWV;;tz}5Mjy#B|~ zzB`F4pY+Yl!5{rP8djUiEs@y1c>AJd)%jwjI)(jCLI+Wa*+s{HzX0mmfg~`$XwtQ= zELbT3BllN&j)%f)6`o9smcG4^eRo>;PzL66ICl%6~1-;#7{+k#}ZJLPm}`?3|VXBlkrJ5<4ic&4ek8$crQfnC#gX?<8Bqq>Q_wgn>3BVx=>4W8TN+n*=OvQ zq*0^14WccaYxd8LSY}uOF|)rapFAe0;OvyMoRE89nTVU-?t$VHeO06WtXnf z!*X`sk(G!4-K--jy6UT8@^_`BC)F#WZDFS@0ex z0wF(YzSX3aPmYrEdvz0~(E}ZD5rab*UVT2SPgN`T9-T#Wx zy!`evI0vyv8TYXq+wH_FJYO2MNC8znd-A)-Q~0%SHHT6DYVCTjVGz#soiooEQ+7q% ziI2Z}p_u#ae7Ansj`kJmhp00o=bLEgJFGXV%f7)f{xa}v33JuaE&r7p2C4lX-Fri_ zMda=N*Gm2!8>^C54x&3me^Nm%-%x3+SJ@F&=I56c6+0(VQYp?f7txNB2VXNYs*p_U zXA3D+%}4q-lR>YUThifJx0m14vs%)9wiE;px_i@cIsyPBn-gm3`yiye;FPh+V8;{V z(H}gqw?9g(5wm&*916f@EvRk?tzet>f!!gMu;BK5XIpwJ0227M$3H1u77*GdJM#)- z--x7aJUcmfCUU_?+Xw2{7rks6qbPp5akIO7&wX@e&)zGZmMaM;eSgM?hJvNpE@lDa!Khpt8L_iJb}{pm5+_&f%9kIOIC|a~2ctF#6a2y}$55 zcZr8&Ta5Von=fUpPTDkDWARgw2nE<$M;aWo@V76P-7@z0vhUnUxr15Zs+M!V7xO;I zT1HiQiw2Dx5nWdhGBA4=#yR(f zd2&SqF?ox}Co3d}_VM^!BSnl?z)MH=edg{fTz#eK?Z7)P8E@vRTLdEfTr4RB&J&(M z`?RiGbI6vfB^D8Ol-YQdF*jPHu(@{D`0Bi++QO&ld{d9!pCI@J&G>lr!`|K@;|sGH zN3$<|zIT)O@Mg<&_;+))$ZKO3P!DXY`}l@LRAaQ*evX~5r^^e?wC{qw zP?|TNuK7RI;~o?6OKMZ`^8`EZ16c`wb?=Thwy^{dM=@+)miFv1Qb0h!+V6ibg8SJo z+B4KO(715!4td_?BQ1OqT<>Clr4{@W7ZWjv*e7EJH2c#RKrm#SLkLM)e)qmCD~x|} z(3rUTG~v~VxYkOza_XaF(%}FmH7q_@Tu7T2H4=?w@cg5nRSG0+H*)35Qq-Zyy0d*CFor zRRAo0v(lw|wyc5j?)h$>;Qtdwk00NEy|8fI{{^FGck4g+PItO$3gD3q(t^-@61*ZR z?*aaDFNF&QUKSygiOLAuTKvBxT&F2}@^fA5d%Nop&nrM5vibV(xgTYG1fKf;oX;Zx zjOn6l{icu(01%r6Z%)b~g~q%8cx$0s>o)^>|K}URl^_0(u>p!*jL}fcW5D$^FSe9h z1m69B3{qiL?~LVtp!)xO-Qwmxwx}h@M^^K;`};=}BU70BJvqVNQZZd;lv^KI8n~q_I6BQo45?N56T= z8jAYAzhqO8&KaAvfz?j$7r{G|6;r##nFG_@;;(o#Jd@6zp zYX~5}>i}uY3&$@q5dVG69=7fOe*+!=UtOA{RWH)N<5LsdTUzgC^J zaQ?A)GX!b=-{0-o4QcG}e-=Zf{rhVo0o^+Y zhvBauuG+a2&lxV+p?efsp(n~HdM^W5MW!k}Nf2+@bh7Wzb!GPiNNdWxYMb--bs_xx zqwt8VL#qVs33g2eY_ z0m;Dq`97?K&+gx+yirnd)(@*4%BYkq=LY$C=X8ir?@Qe`Ey>z$T4NHM4OcVBs#HRPqM z-|yfT`L?D#U01{WrbFb_`3!|q*K&pqE>D&^y{UA^`O{`4S}J{#?UvfrZ)C>@{WYq$ z4HOl(JsokZVn}v+FgRAd?++M;H8(dm`gO&(m&{C-w4)TZB$ziJUr(Fy>x7~WOCV|g zx-#gBwKGE%9&WD3_*EdQ-F{BQnwmI0bT9Kn$7|l_@zG0|lCFb_yw5*)H0!J|BDum2 z-7@@FYj@nced==3((}*h#Cg(HUwo4%yK#>1tndLdvt<+tgh~UFJRyb~!EC>^{d~5s z0q;64l0Qg2iK%iAX2gVxs|!nxLSB^S%=2)EC#Cp4ZO8CFTYd9*7Z#o3eTMJV@n|3Z zJFII5_8lMGbjU(I1Gj+Qj<&dOk?`_5{<(5))7)``aQFNn;{%*5Sc19y^P4feqJ00d|9s&gxXAns1V>x(AdZNcu?PpP zZyx9i1sB1@37^xsWfrlXk9VoV&U3Yo8JR_GZOOc$zL)naDXUqyz!^c!7@uz%&@T7L z&3`IA-}Uz$wmeYs``Zp`T7Qt@jZyo=4^l27@&$caQ0r5)e|@b`pLeyJLUXluF%WRX zH#@wc2917DX8p$dz_Hb{7DZ!e$l+i)s}I>oYws2Ry16HDEIdx+aUR8v9%;WUo9myHMBZ4B}H2Lc5?C>CnqQK zJLQEgYKiaZ3$j;FEE>EgxWdMt_ao%N=#i8zT6WT9d$TAXN=++7rJpX{baYp%Pg{^8 zZD0JWn~kWeZe)9@9Zk?fmT%@xPy)@3)TA;eL!J4N1Uw9si7yYpg_)h+3E1(+?KFB z&#unD7eBph{JEU=ZQX^GO3Yg&APc7U7g8vj=p@}DxwnU z3w3K-R?#T^!3N&-%&~7jyEZ;r0hQsALy*$>NnC9U>%_P3`Vk&w7?p?enp@l3KlrqT ziTkuFI#k^dlALU;SRQX`1?~ zFJA4bR~{MCy7yqJ@ zpc6@u!C2W^O$t=y!xJdxJ@4E|odV20Zd?>G(fgnqzl4$(k z!Ev^l#k*wA?*78V7PtS=_LBXrUDW5BMcMm_@XH+^{QSzJT4S_qWyH3{lH)J+md7i* zHb2Sjz8%`*nyBjO;MMc~!D@Yyg`E1FW>uh6j!GEF61d7JA61w0xaod)tZ)JuwhL-3 zfhx8E-SyayyGnwmY@v1iYHGF>9F>re5HYuP>({?35NnkGvi)VE=Gnk6zmgx^yNvVj zXpo~9 z!1u3?7Un#6v;ANdy1MV*zt=@XwYGms zHR!t9?Dsrd_aE`~-r>T=lS{H>D+lFgnVa9*Pc?h&K!bm3>5c;xN!uY}b;4^oBxg@r0x~nT66EGrCrL($||fpqP_}F=h0UFUEBXDeE)oAgPdF#Lb-p7{+>ON zT>d3jM)IC#>-_gY*Jhs)xzxY?5gk8 zL%j_O1p0r+mgn$PKfYu0dQpG;5$B|oOUA3zTJ*w}3q^qTKQnpoyR{<$(bX*+uD1ZP ze|Lh`c@sPUXirfYlQe2%WMpCG>HbJWOT^A-3EmHzo}gT(x)dt)WtME$o<{3=+PmHk zc2wGx{`qrls%eH=OTciCkbbnh>+gw`@&&T;`Q5kuTPiCnE$-|j=FliXP;bi?)j(3WO6I>g&tF9}6M7cK1qjg-bFfH%K^#buu!Q|KDhC z7DY=jP9<*9FZ#vFJ$yQmfaw&le(5>Qc1>CK!zSlkels^;e)sNO?`&^4qPu&z`*Ah> z!SgczBa0c>E~EAGYV6IccSibKD#&^POn7ITBExttAQ^YSm}lBggk@m=?;jkndvSK2 z;?b9vm#TRkdlRF$l4Lwr*BHDm*us0Cc?{p#qe1LYn@d76CS_om#Pp+NFZ_CD4viH& zTF~8A62iFK@es8g`NFR+{G++E%p?BWoCB{!8DqXH3%+^mQ=OkBqp8v3%z0VIDkHt$-c*kArhIOQ_5=fB*kaODzwZw2c_l_f$Syo&&6!A z-{TQ0aW)Eym>Crp)+Q{)8b%LN4guYM_1$x1jM)2Rt3WOvx+{V@=86#LFJJi53 zk@7O*B)K02*zJ-tD#?b45{6n+UPA*P)OUu9ElV{?-$1{Pn|pI(s|-o{d_P~&vmNfK z^LTHhM*~|ms3O<6Mgze*Qqr|M~oA1jyb?k+MQgK%vy8TjWrwz8!y= z+J1R^*W3RQ3<;9$)_u?6`3Q=MR}GpR34^(PIncQ0>RQ8aq#c_UYH`1+wG2x=DJ&Ss zm-+LjWsB`9!ox_8H9g6aY_Rk+@UWEBsT5UmIn)|5GsVW5>FJh9V!xA>XFg7xa?!=| z8C2D|M`%s^lKr@F+t+8zI8;W~VQ1c6dt^a#hZSFqf0Tla1TI6hF7mHyV!%fp%J(|H z&-m9HS+b$$^M(;SQ zdA9z&8gZ)0o9=S z7I$>MT%)zhM$r{@$N)UKmZL!vOHiQ&#^DBE5YN--RPb7_Ql(_=6cZb?!})p5A1ig2_5)Q zfMX3Gn5~}GVaUPnF@BCeov-FIU|HBjU!&glXuB7SQIu;Xs8c!7V_LEt1-suZ{lDDx zKn=0tfT4yEsgf+)?4YYVW;QqdFe0!AIw8t{<`;ui_2Gp9;?(!yXce{Qd`+uKhP8Oe zc%{w7Y8&|2Lr;zwdG*%Ioy3AVe91xU0*)DqQ5@qub`q+QN~LbD-nKbht>-=tMHiXR z+&N+q$=?#6IMwH9HZwg1F`yPl;us!dQ*~G^UbRAcIX8cLqBqnN)u+d371-E|AZTK4 zenZ^9`&JW{&Z0|&RmjO|R_?Q2@_ z4N`>uF8I&aDo(jRLxO}_4vMKO2jzd{5jTZrUl(=D zUBRQX%`fpG70$+igoPJCWot-F59GFo`{MCy*-j;(W!476n&HL)B!vVdd=H1#;S01; zy2E(p$C{ib*c6YPq^CDKBCpOQICt##v}sI7V*<(I4$JI~*|-9AP+gZP`$tMuGE3%r zfOX40OXUp+X6Rl*swub+IH;gr`nQ`8Gldw zlUeqQ;ibO;(6zt*q9JW>7i}Bc30ps!+T%Y|tJgmC&M=~Aq*(?uxNU{F&n5oZbIJ$@ zsQkg}z(HeUp)Pb1BCAl))atl);Ns})rlGAM()=@wEG$GzCh9VHaf)D=<{WoPbylG# z$!5bzD9%K_yR#SdHFI_&g@Q1_j%Nj~9cc@h>27}7J6SBUd;93d2dJ?D&*;MXk`Ps2 zS5~%T8BTCvOvi>))+Pp?0OV`*Zm^0CEW#q(8uQO6o^UE+Tlsw0N~*#3NCzDu~6Et;_dC66;0#3SfC(F4;b%=evCPJ%9tkP>(#c(s-nTyGTtLt5zg{-XY5b9HIU() zh|R=IrL*9&mB;vr(1(&0Is8UaBqSgfk2GFWaf+1t2 zY5Ui0QDI?me6z82=QuCZ4D=PI@bFpN)PPSD3YIk=6`Rq!U==*xVUWG^YN91xBs7#YA9mS&fr}|_zf%788U(Yc|(3@2T zGRn3-%?xA|Q{QIdw^krt#gJ((S)_KY8IG16oYMt#h*Y47iev!yefrS2pwby*$BeRY zyFjI46q|zwuO^n23Tlbr4b-;jksJ>cxv)3-j2ufG6N8k3(J3X87&2PW7KVRj(;G~S z2mexgDgmd-?oNu>Syuj+Y^+le0R(760Qx{{i6ZXz(V-%L@2hQB6#_pkV3U-j$uUu! z5W^T@Zby`bEs%`UiIQ?sOJ`59LbQM!B?vSb=X6y_PJcbmoHCzA4psi(Uc$ub@TuS_ zc0|Y}l6jMMhuneuUM3pW!r@GA`hIyFZ4<0Y$L+*ybvEGvhuMPLHo6s$cgBE7A|)ct z$);+IRcIAikJ!L;Wrpuc0_F)M!Dior8_x9Y%dB8V>dRjMLv}wsJuD-r-#P3dlhnJD zA~e-Z9$GE~WOWY2j6}eJjMd;4hR*SW{>qCp|+ghl?E#xD-zlj-5G_z zi#?N5!mt2NrTS^OD_0!BirdeX87(&v**3%F&{W&Y!%{boBuP%K3#FzZYk`3UH+-CS zFB&$<9%Tez7h=)V7-K@FmPXrf7=ARb53bhrs|qmgOY4xSVYL=U!5_ERqsvKwuJPs0 z)hw*Gzo*hn?~Hq3yXbJavJL-Rx9t%{j`MSShXEerfaav|hM71-cnp6pGlL z*8GbpO(fY)H+!7Sh|9FAaG+dy>e`|NXlHS<)uX~5No2-mN7MkDeiabEwnMib05B~% zIho<1l+Jg7ng$l)=iq6ero6PYG+EpYxB)Y8obhbzMo08azLu62MNV;M*ugBSDn>DB z%p67}*%RhIEkQbm!h+}U^GO++oZ{nqHu>nd_piF`soF|y#p7HQJaV~%l`Ey02v&ro zQO=#&r{2Fri~C6szr2En%#?6D6lj^ab!KA;x3Z+nK>5QGP!B&#+(R#8ZH{|ex@!6y zAP6l43bZMd4SjhRiUV-1gdISPr&7aYHlaO3RD*#Q9I=&p;oN7#g{Ek-V!oEiaC!95 zvsxo(Yz*1FTXuuX>!%IYqVa0pXtsEla)THp>ZGCs6=l1&)L(yxze(rMN@-i#MIknP z(w1>^Vq|t7pPe4gMx~hH@fu!>M5dGn^NCG@wufKeo{`RhZXhfo4=XGX#)%M8F5#U@QNlD+2rw!;I z0s}cy3}=qiO;s0jzqc{*C!5zxOQQ+6E-jFq6UGgqo(2X}5Y=0use>2haAT{xpjU=87y@@PSA&YbGDfUTne^HIZofT|;GC)*)0 zXyn54GXfO^B?FMD+oC#A3yUVmjM-2!?XBxl7*`uGqZZ7uajM2rqaCl@8Bn5I(IPV1r3*$!zpYtmb}WT;luy^sQSu|eQ|aHUd- z;f@2*+83!LqZ4gqmAbrh3WX)F=_0OZ>uWz7rI}!5hj&g%Rc(aN)g=iHJUHp66C4_! z4X=7ZAHC|&1U919aje0uz3ms*{Jy&68MolX%T@j8x};SAPP7U5e~1X-w$myEHHK;? z86nQ5VJ_2^Y~ZS_S9!!z&P)cyxaL2YjFO)>jHLRh&Q?}6saJrVJ?6y)jB_lU=t-p* z%}g~8Eeix-j4ga3#K(6>oAeAwYNN%`7St9cll|vg#0E>n_dE(^($-}Y$N;9zXPcnm zI$E7Hs{+t7$)+TjLgDpipg7XjFpbv8b(#+!KE#u0+KPjStH6Ix_U9=39~dAm=4UAB zQAAk+nSR=wBPKw-6j662#-W!4Su$5wY3>ET5$l%!pq5Rbq3^sjg!e*vBVi3GqNdqg z_&(=6G^&5x{%yE5$+5RGa5Q+I%BQo3N`ixQw*-!-Qo}x#B5xF>h$_f}mIe!7-dcj>mf_nTrq+UuB+=iJgIaFM^l*kjLfhw8 zS6AA$U;G1ESi$qjJ(gazJBUNn)h%1*7)ODJHjv}0ueF$Im~A%tu4fI}`PR7A{{m5+#v8z1UyOAxR+R|h zvUAzxqV24ZnSi}0aHC9}b13WRZcCpJ-t5>m?iy)n0@)q%9-MS;!r z3NYd|B$!(J*(>%n-$5KFZO=BtrfTkT{u(%h+; zjmHrzxY!Y41h+|G@p+v>@#;AYHsP4aKIwxyw6H2Y|9rT?MiN72#=*I-yu$+bLep*n;YL4^Oa`}*_dFV|jCtt|vs*XTKv@#RJ(gPEG z8^<}wW^HsYnPQT16SAO{)`4u=oCwm*nL9Po(tcV%f;tcKGB_*Z)z_#9#)gMoNUclJ zv-1tJBTI=ez~xBnB`d@{_oAkdlRJ^L0-Q%ET2IymgM;C5EdXN|QEuvH6a`#bswhp^ zcS2|(>v3lnYPo>LUPK5`GCq<%AA>{cL!Rz|=I}D$?ROvVW@^fYZyS6`fOg!8*XwD` z;4_zzy@6k@WIxRaN`Ez_#kpQxM!L{qG=u!b@Znl?;*)C;lOp*c;g(4g-88pL%e~GK z2bnZ4%{SXFGKesSKaGEy@&CIk>!0mN>zd(L(V=Jzt(p^0CUy6YeYy{I4*&5VE`>x! literal 0 HcmV?d00001 diff --git a/labworks/LW2/out/IRE_trainingAE2.png b/labworks/LW2/out/IRE_trainingAE2.png new file mode 100644 index 0000000000000000000000000000000000000000..3cb28b0e3049b532c16cbaf87c0ee4b458699595 GIT binary patch literal 102683 zcmeFZ1yq&ox-L9HkWdK`Q6#21(NB?*lvY$qKsuxmq$H$!T7W@_iim_L-5}j63W#({ zmvpD}xgXFKd#rW#KIh;6KgK`Co@1>~n9TQ`Puy|c*L6SdqwDgL2gvEkF&NANX{pOf z7|dRA3}z3ObT7Q)R+g#-{|MS&(XdyxHnDdyxMPfwGqAU@w6?c2GsHR?-?1~Zw&G^z z;$-JMhc&ggx3LrC;JE#_Pq16xxyA9~j>a9h3z?0SrX2=DX@LGu5HA*Ih9SUUq%U7o zaSog8b}6D+TH2m-n*LNg`MB}~_U*gt*Q4-{Tf?s?CgruJyt|&A*VJmBL9X$tHKuuq zwUzwwtc13W1hwX&%PNOyi4+gr?CsahakI7x>Sdnu#_?C^<)+9OadymXax0RK#QQJ*3`=)26R1j9qAB zodj9>K`i`-!mh(C?jgO44<$2`Q^D-lzEQ7-4<8El;rBF0Ns#Ecj>Wk4KcvfYTba%> zlv;|^^c$EdSx+r+oJzbE;c`{>6}#LSPfXrKYT*fgx!fLCi*F02ZK*mP6`w9w%%~=* zjjfJEwyCP?#25vLsF5%^zkU4VNlUae4Wr$6u7ZB=V~cYY%(rI8z$54PApgS)53Q`L zs;R}&vZ|RjMoZHRJEv0!O>)Xb2>%$b-~Z#ot$@`0VR}^+6{#St9Loe*_Wa8d-uoNS zwBJ}2Nc++AW(s^;Jisj4b^YWS{acQym2>Nxu0LO@pU^!f=2=vvn|6hom`y87s)E_8 zs3X@pZ6d8yH?3&?amniNv8k?n<(8I~jtnE8!yLNF4euo-IeuCdLhT;tzQ*l ziJ6&7o~3$T8-vU(X?kKX)w=qk^_7{(g|iPI?xXW&((_#Xi4(KD*;jV=0`vO&t5~Y^ zoB1{o8AcV}Os|52y%Vdx`ZK<9BpgaiN;X-Y}EqpLIwRii@p{-ZDe*LXQTCv*p#)z0i+U<_4s%0I6 zsrHPMi+RS?!H2IBmYF$Db;R)Zx^pjXG)OWZ5b=Z+%5s=cWBn9#NI0VS*T9pt>B5=C zw$iO^wRs70rd*N(^wGA1Umxne;kS+u-I)EX?F|XBk8~%#zddG^cQGa=CTb+oeg4tI z1{__Fg4acYxGc=mH#}xR%hTPg(t>b}Lz5hTg55}M(7lRaGMZBwhdUGEA`y z>Ba#S?=?S|dC&cYPAb(G8V|l<)let4 zZ8>V!7INPBF?+%2yZYspL{-*sm*Lm++$PsXxy#p5&u5#|(EAr?v>82tjS{#03jb_vEOp+<#tKYGttSl9gI$ zv>jMC!YwqJv?VAdOx}VjrEWU?u2@XExUW8GM zzr9a!p0_nI@oe{A5Q^$H}WU#mdR)EDu#Z=e6k* zhreGbDsf-E!=_iF%~3Ra@046i*38Q%Cfd^4)|MuCjlS;p zV-nFyD_#ywn3HX^s}qS6n$DA0U!Hp6T%4FFQ|L6)ny8wz2$9JgjSW_X=T>c4-ohHJ zuYC<~+h|f+N#as&wndvc?5->L_F}yR<(MCTPkox_66*&sd9@Vne5DV!>L^6gr19D= zKVPnO_HLaj?M)-zcX+hZy7YkR!*)&QcUAHg%&^FXSQMZz($7?xYeIQHa0a#e3r!1j z+c(JtMUOSbO%%?QJjWrk7;n!oD$i=z999SuP*m4-F^<2Ro}PZabhXCXzMNXpbY;35 zmdbH-A%Iy-msLHr`RP&a69vRiM!+D*R4o}ifAtGa=MAc)>58OiWy^f|^5u-jSAsoz zG(@YPTZiI}CjMAFrqb{4z z2f)6cl9Q9$Z_HIB8CCetuWzCc1as)IpAnedoblRrlY4#sOV&^MNKqaBE}Q%AqLCCL zi`SRNTVx^2HGX@^%4^YjPE}pqqPN7OV6jm)`)1X_Z0lapVRyp2c=qB&rQ*%y&ZssD z(O>!~Mi z>YW-294x{;*TzCcJqn`rX)8;&meRt$2K#?`Lg&MjYu5DjlN6YT>~@ zthQob7r6eJwBA_l zUYkp8cj2oZ40~;Fu2h6CL&DxK=LDWp9%eH9{dJTXm;%f|#BF*1xf?m>3UpzMXPRcttHLHy96Eg1J6O!DF*=MLT)K=b9@P+)cDiZm2pNvL zeD*%DRM@*&JG<?X{t)_FejulKv{sPsu4g=AwZgn;{pn5VJDG%Dsu*Lm_}Q483=c z@BpKr3ZyFuABvZUirh9KD)_p!c^!zXi_7ixya6deCZ+VXCd;$OB0jCn!~Oc8^;LRkG?(1Z4!U+ z{$6UY1!v)cshmy}>8`gaLQe6`Pi<0ERgFOolKi0-0v=%N30U$b_&@6z0h{H~hWDx} zhg`^1b#zktKl}JZ^g_^Hs}S2#wD3fEXMLtL4WQi^z)c>Ot?ojn2>_fFHQSF)NB9bD zN#Ealz`ly*)o73``=iwr0PSWF*Mp)z-Y1!WR1$DOXJNR8*Q^n@G}a`^eXF*4;LDSx z4vVz0%xZS-ej4MpunTsVCQ9=1^3=W~#Ob~N=(}RK74yxtr8Ss!GoZQ83(WjhVZ(Ki z*3N4h>$lEA?DN0A)Eec(ln9>8@qQKdD3AJY*gG506mnxqu??H}!Wi&zgsRT?eV7FU z@$RuMj|6lU#v+d3<|CTZ-VtK+l_#@7jOv&$7NTM%H1mLGsP{86RfPJhl0gT@GzJbTatp z%oG;8>HLwe*F2j?drM2TvP`4=j`5pAd`B3sIY#!CubJqtzCE|w(=RGeYkl38*9+L-i6Zb&6x*HbcYX*eX7<58l)ocj22i0c+*^Y#qxvmc{e*mR3D0QgF4RpkYUuKkr283vyud#=dqFSg|jMSubn zeR2Zv1v-mF@bFTV@zj^|OZzDy_Xm}%PZu6}SZK&(V<3?&gE*-SE2 z2W}=8O)e&KvFQ}3cx_JTEkXM6DQK2H_0p>D;Dzz{_bPGn;SZV~^d{)3shNDc!*W!n z4|ii(UC)Eo)$-Q{Pp3IzuC`kF9m0c7E}}!kDtjqAhyzFr>S!a%9`iTcEaEuI&GV~ zTG{5bt|hlS`8FZOM_p}~d&4(2^jx78%qe2g%Kh|@Ok>$mTPXbw6vyclI!0AMOz(h@ z{Yj{d5^OzdusT@9FjUYXu~uw*<2o^35ps|WZ*mCat1$b}SzFn}q$D{_E5Yhz*W&Cg zrU+70QbhgCF>m>nm0Gj~sKTQE(?jGxLrbo_2A_!JLO3r%bOkGGt~wo=T;j1l9%fgo zXl7>i-6dJCRCH0Gg?-8#T;OvnS>Wt+8hidwP+s>HTJRm%>Use5hg~BZh@^6m7kaEM zlBwbt9or4i5TmA!U@%xcT8-c3a!#jJld^&c?HWIPuLmsL+S){#!(>K<3_0I2sxV^@ z)LWA9-j9?$-z9KNL?_dGtH5C*mPsS{sGnJNFk8W7X7#12faR&q35Y>)qMM7#DSD;4 zV5Bd5XVkG&*RfRf9xL5+u4%n9{4A~Z6)EY}nV)kr0M8tC4S4jDq<6{0f^gJgM2B`avWfEPEB{M2`O_m z%D>({G$J~X1?BvzTy#IUzon?FOO(sHF)%B#L(7gkNVk z&FD(Za22r8x4gZ$ryFpH)&~>6l8t#;k>z%yg1&qEnzPKB>Uo45C+p#_DNoo7{xa02 zJ2TJyl%DtOi&>eUdd@#zbU!`D&wgUg4$8A{gLCDZZ2;VTS4sgjUho%Ca&gJ86`VMS zDw&{r-I-vOa!_35^033KPVWHoz>!d1i&%hv=NH|f21Lxnxu=!F{W=#@bc;Lc-8{Ee zN9qRw|K&era#`I(pYS*w4&^vKKGjbzK~dijwddhnY7+ zwugkvpkwoqILfTYb%L#UYi)vh#-gXlWpobGP~gk<Kp!ohOvNb`cX-jEg7_Iy+qf5`JFJ9i)3qBa|upuPwMy^#kSSw~%VTbYNu<~HmeTUDHs>(}!ygLri+F4?ooc!LaYE*el{`g?W zgQB7CE?#QALH)=aRvIU{!<`33 z!)zviz}PQR3ZRD9bVz2p>om~ox5ROOzTv@b|YsLAYP>wgS;bD4@p;^91gl?G`aziD?n%}Rj1G% zEH5-?5`tqwV&b>@tbU!chfW7hOGAq+nfrDci?!A-ESTVR0=^oTC zu%;EAk6H0adoKO_)KR8E7G=>$1$AxPhq2dQpO8L#_G}|6X<;@aH&cf8;4 z0|ciS;Ep8rz2~Yx5r)2V0AQUuWC}?4VppyWuBuZk-KP5-iiHck4il|oV%w_$f{v5%fY!c-opKlQgzR;|BNlKJ;`Qe6iKqYrQj>;}`&a zzsI{`%W?zQR=CY4G6Y_rh?4?GqA9rrCLeY6>dEnzq&Sq)kA8Xm_%nsjH2`5=4nWL) z8(A3pP$$}?D9IQD^^+!ofy7X$C%05hEch}R57UJ{^BHqA^N&#!s(o9E`5 zW`XYHIM_?G+e|UtxZ%`Y5~g}U^A6xh3Bd0_s(vZD^~=bmSeMajV-E3vyq+7*($BgB zV~k(~2xngPXGj1BEeTf7yy4x$$B!QaGjx?rBV8PjEvcN>eAVfSYeXnfSQjq^udU3a z0b(eZUqB#7L&_HqvTxII8Us?{ zIuOMt4~oOZO)%1s20`D`MV*O|P*o9)F}4ZVq}gR8oKB|aDWedd0c};D?ck;LC)Dtb ztvXKKv~wM>$VpsAUmrw(9rlNE-|~kt^trt!38Q`B)u%@coRQV9;)#%mb^QFSrpOCW+WEX--IZrsd#r(@aPmCx#d`NiC|hA4RGXb2fF7Hs*- zH76)z%?8RJxk7H?){3~{BFuzp-h%POq(y)ZvgD4(_@LPI9Yc&oo35Lj*J`!ir8J-h zIj4RC(pA55 zRv88DeOGgV+%@0$H5YopE|&1F_;-(KfQYp+gf}7kQyXnXcWkQqC8ZXeeSvumd_`-j zP7-`yMVRB-;#ky@NjX^94OW6oxT)`m*v9OASZ@-E1&hucww*fbFZ;VtGvG-#*H_d5 z6-d-|a~}3RG&ybd;!` zFE3+q(nq1tgm@zPD-uFinbq+VjoOu zWLBqF-Ial$M$3i-9jM5tI!X}6<*pTwKnx{HC`&Ky*X@;FUvcLQGw>8}uh ziGcyb7T6?YpGaUqxgwPBb|_j*@Xjw`hE-PJO)(n zQ*fO1%o)f{Ixkw?0lg&GYn<{d6*J+t1^Z3sP{3+-pNF3?Wjx>?jliL>NF%2_@DAz1 zW!fru^ha@jcgRgqLy{A%Dbk+k9nH(TlJK3fi6!&V`lzUpS9+fL4;#?mrgu{w<~&M5 z<0x8#(;9Ah0BT1SLdmazebP$Bu1h>OD+9H?ksl2)ensFPgWrFELEt(RLaHz+f01Pk zMu%oab0FK0o`Jj`(zW8Rm^O$%OFm*7A3yn`t5#Su1>qk63QvICK${Iv!*_M%svrFr z`gYzn?dOA)@OS)%1Tp$L%uQ2>5&#J@LGFu!3fUZRb4RA}6CeabdCcA+VGt@IB&xx$ zh7NgfiMTERyz>5)^=!{gS7a?r0Ttsm=w|SeBqJh(`r{SFg&`{1L!1n}cLLbc@dChj zrt#hG&|uuV`>{S#i`HaCSi=;GJubdPq*Rg+rdWt6>v!ZhdOL`r9>4m1#yfM*OMYk@Yb zd?}WSr%7ktz2b`~sYbviRl07;q>nuZWm5ed{qAUBy%=|Z)y}VF4pR6(?_=7I?^LBb zzia#Kgu0!d|NRALU<=CpVEsTjgect-RSuOC$dA#FACs@Tiza=xEe4VbG?VJVISoeC zYyq!8e)!H)^Q-P11rABD#Vl!U77hZo#DoOdrVW>1t)dh~C1E96(hVedZ+EDG;;QDe zXZPAXCNior96%Gaq(D$XX_vhB0DXLVdVMh2UZBr`LrMa+>g-={PZwE|6A_}XDR#?6 zgbV<_1OV^2i@UeNp99q|)x+f^{$5r#3qrd<3<02su=QBnUVV~l3 zzu)iW!+XDf#Qbl2GXl9mfOuXp*Z>mMr8FdYF$J6+(1R+2LU>jj(dEEy!~?!FthEMh zDZA&`OfN_qcNUH#AA?u>rDrV!7(DLfix=^d0Zc(S;1&_gfC2;onN!z7-U5-50Nj#o zZ!d&Y_+0s>8;D+GT)+1$odfL6G77*dq*eKH3(#j;Pyz?>biCh(xpfbvFxAQ?B08a7 z&tzcP{a#GmThKjokmQQuVo)@M^3MaNzyBye2Du`q^}{U%X~X@Lzu!Cq_FLAvBTOc$ zr$u~u_WOOCgJ=L#z-7F`IZSo5bcp}C3pu*W;KFLwou4uQ5w3BRZe$|W0rKrBcLmUU ze$F`?Zk=>N;tRZnB2Ogk!OTNR-1yZ`P4c+(yp;JN(#pX(Tx8yreP&x5$rXzWbz&7y zM}YfkIT;}Q4q`QnyH@~{h>DWZ!3AqbpPVdLcW;KNg*~i%>31x~VItZ8k`gC@A$IAR zGNhyNhW9==Gk}L{usl1)1zrHs_@%}bg-{-8*wE@bFMi)7>>d$mAS;`e2IEC3aizXj z!FBekSSjpRc9@ow>ay+^Oe`G(E5R z3)nadTb|u3F=2Qv^hcIg+V4s?r>wQ|@5CS`0t!r#VIEi`+mSh>s6k;-Yxrj^CLch| z>SR54t~qjR@pQNQLX9gBD3EWcP-Zj?U6tPZx;N+c4L*tAzN60#BN+M)_HJIx2SgR5 zAw>XUNLr&#gSuS)u6SAW=mcSnsPRPV6f=R8wi&ImX6mgb{&IqO%?Fs_fVt} zRYyHQB}aS_B%k<6PyOF36O57q$ih$$BLOUE2;2*zCqzyKU~ZcpkkRmfGKYfS^tu}` z9YH}sd0rgA*^2alDhOCR3e|E@E%Hxs|Gs59C34{Z*CNQ{BcD&w>>;600f%Ri2JX-< zCF7Fe8CKS&sodUF2}%(aFgQVI+pq_*Dyg8L<3-5tfrUWA$Fz4qSdl?Q%D7k&1#VDcSMJab5o zcVs7>SpZ^WD;DZ;=?<}Jsb8h0pb};w!E$qBp$-`TXKJb12}tLG47mo9XcA!6+7}46 zpjXHfgZ2 zKJRsy?$UgJ)vpnVR|cmw&9>MFn3R0 z1Kk{!v@pVD_-Htg@2()Spwi1?tT9Fq6dR+Gkw#gL7O3bJKkeff^*!ld4>d06Tj7J1 zD;7}Z8dv+Xyd)3Qjz1dk{wv&{*M9W6$o9qpA}l~>N^5Lv3@bmF3W-MfC?-K=a1vM>x>w zu(bK3SHJxQ0BC;x4$_dD1FiXyN`o$gmI6~Cwp~F;a;Oto(O^8hJ7bIwfZNWb#KcAj z@u-r%Qq%)73$z~b54-hvuHQ!fyS>&{x;S6Wfy$1xDQmAJuunbMNWawx*c50+^Nx7+ z>XmE|AiyGB>rY3Db<+S30+8A8^g7F2caT?gA1~L4)-P9bJx}{{z_x8ePgOINXFK@> zlwzpi21Al zZA9maM6M^h00|jYdk@r@KNnV;p$znGgMKC^r|WZ(o@>%}!{33hPv~)9kV60tRf=FB zOQ3Rb47)M8jvj~JnRl%dU@%d@!Mx)93Zfpup+HWnsj9yGs9;hI(ebCf3-6x;jK7TX^%n$F(y9k5 z_n=oKLN+Hef^LO+C@Px)c*=fFkWvLL0La2-z}FIk_>h>`!W6K|dchP;J%|ssZ3}wa zYw9}Cld@y{U>6S$DuFGL$~C>cct5&V*$<*gA^<*AJHe`h<|Nn>8XFyrTl7j^Z7tW) z*0yxcSF*W*^d{5|B5BE5$&}WX1nO;qLZs+fcJ>@W1}sMglq!bIM9FB@byMpGXZigI ze~1$j<+Np)DFdizOPztwZFFH{FpFbX!iDo9I9$2SOR z+uGVTGGim_PDAS$lpLM@3Dl{v2j8C>*50S5&|e)uS8e=CCl+XTNyI&SZLjNfd#+Dq z$CiR_V(96`i!34BeZC4RTJ1ZJwpL2F69DawgZ^roz5oDMx+Bu&Nv^-SuB-#&;X{WY zLmuf!4P8ABA<57w9KKon%1Rwe)?w?*MYhIBMC-`i_E%RhI^Iym%Lsp?m_pp)f`^%%D1k+~{Ds1_0C)?6?4WPnw~!V6?Blh&p+e0=zapCkFhEVVKI} z$UR_{{^~m_e?BJkZsvEcfey$2)(&<~MdkaeuGpklF= z5(+U|6#X-bV_uZ5~8o)OD2vKonK# z2wXsa2w(p?3J{0cv>t3hz8?PTZ(sQmzH%AjQkMQl!lkKB{(&XHBIeUw`DDGFDL44D zLGytF60s(=VXtdAf0v>dKBb!u81eH+Y^xhlhFbBYt~IDXP;wku5CH_x3@NOo*v$zr z=QxtsUf+sHfGLl?P?mr6ufS-UbmUhibJ2iKQMx|dzhG4BQzG}(_5+7YkaQn&P!k&O zLDhLjb#=D6QC7M-?w>CQm~>vmo4()&?~vK*v34vFPm%o^WWQ z@E-YK+He9E{QPvUtc(oMP)ZX^a7XnmjP&%DC0_YI62=iXRwVd6PYLWJqZ0U3A0>fg z!XyNR030I*2Dm@e4g2Cya*qboTp(4kNH@kSzDLCss@Z@#Mg2CqUYic6RYA>j|8Hv& z_lFYiq_*P^V`$ubgTz57;ZR?3C^WajTddMxg7?+ZbQwcSpvT&4Yaue*s#_4LAmKtz ztxz$?ZEddKSfc)YKg z%Zr+i(OIZA05L|| zOwKnGkT8@5u3Bz@&oZRw@UGEQcV~ z8~L{c!F*8LM9Yga${_pf`%_W8YVaJLoAiPp)cE7pn_~=tr$4PoV1|vT?EftMe=m~V zz3bS5bFx3kW+8v1A*{z;d<(c86%7(-cVGX7FCIhV#LMk8`0ZZwuTPXlbHFYF2WGh2 z6uI-!zq@8*1s3SnH~;c)|KB1-smKZ=2VjoNe~X|P%-BAne_kmV`+x2UQq1???!j0- z{?FX%-z|IJkvidpr|5JZ*tEk;j}9Cofd)+=2UUQh1?JGganBCHjb-K{1${2|Kh6JX z$;sDH+poj$>s!Nr!CB~?7oHIXY@}+_^Oy$irDRG5mokIAX5JL*7Xil?9?TTNAw_#Q z*%J>L^TOjp=rX+UXLK$IZP*`bsX5oW*S8I7jwDE~Up;!EoiLu+YeNyWyyon1@%j&$ zJp*H}Jp;+`B*FYKFf+UyI!PG#{Xeiesn8+x)x8cH-`*BZ7s$fQ)fAs))D*!PJ@Edh z5p?tdm)6Fb*7n9^aam=-rE57Ka~jp5h-F|M^hi&>cBORfrEp8jJRJL)-<}INb(Lhu z=i2h;f%FPE-AF#`MjriTY9!ifQ`?3DD$D%}&2P=`iob2OKuk88tZBI~wIK9$AE?`g zo|{Hr>XYWhTcFe=0#lwqGKqn@^MfD}b_RJd5^rBli#m@kj*YA7ut}dSfo*VHTD8sgKs=yK9yBLSZ>A7%#0x~XYFm6N**J-_u zowuRCAPpT2mAqC8C#+CcG}MFpi-&h8GZhVucvzn6x58|%ru-~V#6b1vhYnzZSZv(? zToaY(fZxWO;sQWpeO^j{AA^vyLt=chXI^~DnDkC;!(e+OG4cC;%F2DOCw;y+j6Yyf zSBOX!-`+CuAsHghjeH&qLJ`~;%3C{~b^5ToIoR19e^LexP1o%eApV1M%x3Nz@C&zmClPl&zsYv) z?70{1BzK?YErm7vMUvG*1DZc4aH~2VOD#w+Lo7QSNwok#RxtPV7>hJ?@8u$P3Z0|@ zS_@G*&_PcJCycJ#_8J>;+GQlN zzbNi7^?|68-SJ-rBcL4U&)<~#jt&!^>UV>4!l}?Y_J(=K6~G(Hg8zQhp5iLBAs}yr z_u+;0fLa>EcjZq7Jcf`-`kCLg|HvE)!r}+eum3vuHA?;;+zunfyyH~AgRubRfm9fR z6o`lL54;*BFCE0_E29y?s}`yC1bF)Y-2nf?9nocf5AS2|VOD>;9VSrppQeFdM8jx5 z^e3A{2f#4?zA$j7KS9(6wOf#4nt?O=uig&7P~S)1PO^UTAMW@cml~*$zdg?&I)EHS zn?G4feC^NXq8XJzS5?wU%ynRF{&qVnXkKiDzU%-|a|av-?~ZzE|4fyCv`KPp_}CbS z*R#aLWdFVB9_M!ZVr-5@*1=RTs}KI+`?|cn|H6o~&lT?Z`_BJaSQP&zXQ1`v84j^o zsLjbu6zHNh;LCB+aAqj!Oa_!r*uC`cFqr)E844I-Jm#Vju+=STUYiyv8W|^sd)47g z8){mDa?9k?swMQHBXz@@f-%$&6<*gr1ADV$)#(hhSWaAEpOrtff0;rTGYEo5>yXrY zs?UAjYFXbB37()6%ss`fZoce!~hU4K=_h|HuOjAr5ksih{1m1tN(e_qlEjU zQ*;W|+Vs4NftQd*^r_!1Kkr84NaV1!%g7OXAllFlTNEb zIY@ssS4?4Mz7LUoanoyyM0_717=oi;7^D^6iw0f;I?|avox9BZ1qOWU2LbXJi=2W> zaN-h&FxWRJ8Zbas2_k3S5RL#g*_(+U)cy%B6sZW%_U{~f6hDX)*B7LuL$!SCfV?(x zwlYB!SJ1`qW*?sltP4aA4b+ELb{zFk*V@8?`%{y9t4HlYMr?{x;OFLnk3KjFZX|x6 zRez_g4N01xL1&Geo#EBdV+m!aBCWpydZ%~}G7oWL(!kKEPB`Toytep^o~P1M7v(sL zi*y>CI4aVRdDKdD0X{WPKt_e-9SJ+B;~d3fdVP2S)gL>H_ibk7&05{ag68Hk_-vP- z_g`r6Sl)$U;%%>`mhU59wn%n934cYg55~6VoIdj;=oP>7xPXrRXQ-sgjuey;HcHTG z?5r({!2*m26e}g4qDiAbA#n(00PCU3XR&n)J#I6+9?0rkSPKU3|91bKr}YRx1i8+1-;AY({R{ZJ`x2|6Sc$<(;CA0mMhT(p_%6PYmy|e^u6MRm z48CZr-)S$V4|V&%D-NK+>R-Bh&XG~Q<@-Q$7}rAp>%RknYy|1w1qQ(NUv~o6E)>Ey zp)h$U?c>WS=6F9a2CM?;^gFEr=Dj7w@I(m23D!i22u){!*4rR`Iz0M5g`gBj)T-#D zA$YTpPXjFP5EVqqliX*;@$Lr8GlU2Z?X0kVdHEw62RPg_0fget<jaXZ@SK2^tsXFO7Z@$F z*rrRsX8mdhH1+DGX`hjv53}{|frraHIe96uE1fymsyEfspsrLmOUmLHf6h53EbZ9z zeaRG!D1R>9$hD6o^Dl$xLnVFSu`x;MBg(PYq*)J_JC!}A6VDdh0I z6;{2jnXvFFLehF7VcLhKGj}36eMBrxE9MK#>uQ&cJbg7Z0;Nz8xcC#1GJK{{jbI`r zGA}-S8}b_JL4`h%I8?MsGT1(Vv^5{n)bno?``2EWV{`vV01pgVWAp`=C01rFI}f{R zYv`mPD)h(!rT)ZCo9+VNxC$n_r~U>v9@H2YP#$)lyYjtleQE3@ucfIalWg#1;gKU& zqIF>xsOvN<4*&RYdcdq^C2-j@&(ov4DF=>?@VV#iZj6K+CF_n}ungpL;-^oav|5-T zOQx#Q9!!CTp`d6uE3O5L-UuA{;3;wF@A+4Ra)Ee~8nwczXm|zfx`Dw>N%1Sh#6eAB zH1k(G*7Yw=9%p;<0Q@g zFn|vA0w|VIr#~{7_mTlf?{FCOF6a<-`wyIn|rdqtc6$NE_^}Y8v=IQt%4ui z6TZ3|lP>I;XlHu2LI;@~FZ>Y*nn2%YG%oVXQzxnV*2Sm4$l%+Lu0IljP-FRF(Dw6F zaw__fXB>ts;@`vc_yVXMg|{FzqbjI;q2EX8gGpoA-MP5e7nIF=v?GokN5Dao*%wx4tUw zqB8q6tG}marB~Lrpn6Z{i2{O;wPbmP(?KPhYFZ`Q(2E13FnPy%@MhD65vhq*X>Jp# zv|zr{z1Dqs+gp?0nK3)McA4+|9lO|z%kJBoTNSdw8gwM{3if;M zg-`qYAC8FMoEDlGz^_7u#Rsr*doEV4^$WEhdwSSi2TRHyTj5wpraRTU{)1;UYXbw5 z6$D0k7zy?Z3H|w*cedg5XY!Lh!?2IRb*FpfLc2K}PkmK>^uk!Knls^p8N&RbX!5{WB2u^rh?o2U z=(MH9E`OSP^Fy@Wwia}qozRQp+LI5J++>;b zBY}{?iL{vM?iiDrXx6mv-A)m(g%8M-+EN=?({8eag(zv#g>m0xt~lw&8Hzb7#FtlB zvaDsY5TK@bJlw0KIX5lK?w0uiUjaC@Awt4e+s_cp4?S;$qf*?rWW3gtt%A+e<09GF zv~ZhCX^lO_>v|&tq%d#qTW7_)o{$G_EO>37X4C!)jL?sn!(&;~D)`NK$Srkk>T9jq z4lh?TLKF!MM~rfAr29{OG$n+`f%S>HRk0-0aJ-gede-B4Bb1NLc{+k3hXo@}5BrCw zc9g+C;J5i6^6ZVV;KvdVHA%et&uAjj`)>4d&coO2g2^y=0<`R;LM-B+j;&3!*3_I2$8HD>>(N=ywN ze2{gUYp*Xi8r(RS_@{~q*;nEI&~Z_L7Q^H?fgu}vssU{rpYU_ow1Tp4VmNUryuico zoY(Fq4urUFvl?e+3^olRvy<_d45&@?Uye@IoT0@gP~6<_W@mnaV(i0syHVWjC*Twx zyp-&V=W3nP~j)(b+!*wE%_h`z>UF z_Hn#}9)MKQk@2U#4w;OiA?cS1%gy^IBA=Wb3R14XL|y!*6Bg<#v6d{j+&;!1Oip#H z&-o^$+P3_IUS|XQQf?u$J(x<_-(TE`6Q5*p-?X!Rpq*K8@wg7pTK+y-?5YoY`hd}X zDmU9te9tK-RR|1K?4M4iVemZYA($r(dCy)xEq=%0k~|@fFRsgha>dr1SgM9=VlW_P zAA4YrS8t;Y!_U{ZqGj2isU>r6ML0}ES983AC-Y2}4>ezAK*GiTdl9nC?o=BoA-qY; zy%Elr3Ko^%Q3&lb*-d=U>yqX1(aHn|J+$qbaux>zK5h<=#ijTYVYJgK$1#{PYQu0# zb+uEGr;bVC%MW|ry==7iP8F;huWf{**6em}k6|y@z({1w8!K|rt>qhLV@gId>zgw% zN4cZ7SGJ?MYXe;uIr-V+tbC;OQV(JsdvZnzS)FP{g?@Q0T7RJwlgjNr>|SK}Fw4eZ zY9$ld1(B5Cy8sKTj$k;F-FKlpTDlQp=TwI#BQ+-PFfA6NPo$&&BT{*~z-PTZ-fobZy-$y>GkYz)H0ys*Ppr08rAnuvYd!E&>(Ryf6d?N7nK`r$xzV>~ zh=h2Q1c5t^k5`VsH+`~x>#Ht8jNv5SiGose8W0jF10E7pdIEkvD?di~K?q& zX?eNw;~x2f%Nh&+Snnw=hm)MjT5ql=^PtK)^EFdD=$)+K4Qw9 zF86u+Ql2ca)K*nXMg_%)&|E!nFn7Dzo2pxCPItc`z2eEvo`Vq_^nbFv36zIwm=b}K zBK2z6)d!31yaWR;E;D?8p2VI$X;VT&NsDde&fJ>Jsu|)wNfvl**+=Cd_NpQ{5+~G+ z5X|L`@EXO}3NtOpHvuwu$sEM197FnlygiXSO-F6Awqz%ruMP{9w;anqm4w0-(+U-HKDBqN1W zBSJrVC=xJLewQZzDA*m5esL?)OPL@@6#8N@>12@a^&jZ4iVJA=aDW3u`Dx$z7QUi_ z5BZ$xWF}}V^uQ$ymO{1S=t1nT%wqU4O)o%Wm5#(xr!vZwbr@H}dii#vm6TP>*)e}1 zc-mNsf4N`+PQ1rmxnM!wY{6t<(3h#aU7C)7=Cq7cH_PqL;PBPXrBt^`bsaX5jr7HK zquLI~=e9DRxyh*Pz@yYsg1jlRxA=n~q#A*hIF9Q+zF5!A?OC*#TPiK&h>Kt^pcVu+ zvesb8=^iqXPC>B9Q~H?jg#iyAwezh9!$SY;`A zHV|eP9U~h9h2pQm>v8h)E;k2{{6zbWhL>Pj+Q7A!aF}ngfmm%Vn5}bLsK~RJ$K=|E znGx@$HunIWc-Va|$m1@LfwZiGN6c;8F6!V{KbaC&^7l@9ZA}*rS7bO@&*x2=PIqkv zoW53Bdw#NG^yy}VhvW9((FqH-?&VC`L|A!Pm-)aX{2sw9& zUP0Ntqsilh)wdzQx^~I35F8AjCH0Dsr_*4FOg6yfKl|qNa=c`RDnNMwmt(FvwBRl> zmSsWgtIUqIdlm*{znZNw{N{f~O(x4fnW6jzd-^=`8RN!c6^LYDzO0JGFx`<#M?&1O zM-`((Z*Jr=0;Iwx19ySVi1hMzpKg6#d-JJ3LD19^jSjf)6Gs@?n+q`p6_rP@lR{PC zt%a4U^DU2b^ttv*-61~1Lwr+;jXa?tXkfZ9RXerB17O2TI|IPdfMbs z!s-NCY`!nI`_a{c@K5wR9$C1Di{^JadA~1t=sW!$;P^+RZc*7Mv5Fr7Emofp{P5rt zdHm3XbX)@jtoMZF?dQWXb^9pf&Dyz?2n^fWr*I8|nRhlXAfH6*M@EZ%4cpH#LZ#*p ze?LatRXa{j^%e679XY`!L9CNHSFrC~Zn*uLdt;t0JR1WSQEN(Ao=6@j_a@qhIoSKa z^TX#Vt@e+-Jx=i>(|_G^kPP(k!rgjdP(2+y0Nv{?JQsyDFM;yG^~ z+jrcxyo3Z}HT*GTG|4yG)Ew^qe844sKA*;8$sEMr4t@gT8(6BYEj=%h>|g3>!CRZw zgLAE6>%ia68DA$DaF299;m5?dsufF%Z3w!(uiuM5v)g?$dogl5nmORPK)+MnwX10# z3CeI+fIli5?ux)171LeYoVgz`Qv1?%>9I(-PC?n@R7^rXY2H*$-<1zIk@e&(&tes= z&~6Q-XA?r3T{+<=azxysr@QY5lx`@|bAJsLFyuWdg>t$hv{z3e$0x6#+FBTt?H^sM#R59=IGBsJ61_?R|d;oh}~ zbDPsnA1j(-i3d3cCO^bLY*5#GDY|}cb&;d=oQ~UV^NcI%_-MgtdNL}D6wQ<2uI5v1 zHPeKwuT}gNU%muP`kI4g`H&~W+9dbb1Da$%68r?18#ZHp9&%oxJ{-hf7V{i<^sDJd z3?Z(7`kjeO^{W}L+Z7aM6Rne9pPkLU&7baLT#dZFwLsvh{c!^lUF#t`epP(3cK-H) z$BK^QD`TL5RPfEqv!BzC}c};t{_jFyy`Tg+lrBiarqA^WTI zQ||ig=J99Z*pQ9DXqSbj#UpiI@@(v9Y>9oJIZQ1MK5zO`SS{M7qaPC_a3hy}dBUpO zaniBrTFygep9q()1p=5Mq(vUAj_%xZnpEr&yOfR8Q-_KmTC%`Vp;_~R-1UbnwAf1T zPnVKTl0MEZ{gL5icXH38j;VG7m0zOF9+rG>jyiodF%l6fCM>T?HqXmU1mji5Yp`qx zH;=k@WU?&%j9ze|@gp$2S%^T{waEA$j}-4E!92H#CJ59x)y*Vu z@t3syyS+~#9JLlyEw4RtBFXKh!8$%6nbv=`?^GP_;M4s$^NKt_(g2|~f!8(0G4r`L zKTJ11tj~y_moHpz8C{j&yO6Q(oRAv6J?0{>yU=-h<v85M#cdBSqDiqmnj#$r{f z#8T(ytnL_e+WO4SG?H--~$9E+`nd{Gz~SDT3_nQv)VBrUYR zdxcnPEpHExgZv~Rt9ogj{55=Z6S0~gEq2UZ7s{5ZN%Fv(N=NsUKOJXpr-S@(;p?-# z;_fXitvY$bkADCPG2TyA*zF-tNEEc%`y`xIeA4+Ygz8}q*3g%72X$W>?R3FZY-*LId16zM` zPKhAME3BPZt>|ZgL#J(rwIc|dyQ@-8$4W4e^IRS>RzTfpk6%%62I_09!s&>|E&)-Dccoj7wP=;ySWr;c-a`MO{TMdkGu6@*CClzC?bVyn3ln`oJQT{Bi97+9(1HuBDLcNwpi`Dxt`JNun|-SLE@6n z3K>PGh!8?3iKEc5vo~cVJ9~55_8!S9$=-X95=F?~BO`n7eP2G``*;6!-}hgAdi414 zey!_zUeD{go)<1DJXe#}*$J%45N#As6=rLJjnUn5b%Hg zM0a%O5>Mnj%lF1JGLs=D;ja8$9movWSc5)2eC<8jy*C65ZlQ-x#V#2>C~Hl`Vkw)~su8eFN9)E2_v%g-KV(6QYVUmjfDN+nnp@Fu#r_uhgIPWrx?C zj1FohO=qB324iiAP7(#VcD;9Z5-czMECuiGm2;l?)k&`2r7WlT`|c+cmO>*D)zhp% zoM3}&laZ7LqN;d0uG&DyFs23Tc}t-?KP=whrVW2sN-cY|Zaxs|MMH^@WO5rfMU}b+ z{*7#rLVzm%j$Jd={3dogiFz!BR5}KA4lv8D|cdZFNR zKk))4M%7j`62WUhPMLWDGsol)ILV(E8`si&N)v_J6)Wx@ZOh*2=VC(SG@Kfs{E9le zA!$=qk`PT=;sFJ`gh9V{4_duUmj%0imHvJAfXSs>g`DYfUpwzyu^7HqnboCga*GH@ z2&6*l&v0LX#a-2)Fev}m&7C(4OaNe9DN*mF zr634WB5dGS0V12VqslizHCUhie-oDQ%OQ%zsk36ej)AuddJpLTZr$nP_HGgR41i-` zB4E)+zn(e;MRsBxqi*m9(c2lr1sogUI7ZYJ-o>ORsxZH6%jcz+le|nW;g(0w(=NDe}RSBgO#uA z>)p{-?=m>%GINJZPd>0yhD32kI;{vEC#d$BVlbXZ#d{Rm&s6bQ`dn6{ajrMXUs+qB zeLA+H1Gg48iKJ48d99%GVJ_C@)j>`V4F-yFCw`=l{D{varDSt@8EKC8(Q8CVvuPQ@ zj(pp>UU+xfCCVC&t8$DsN3nEln>W_P|9(f&IavI!m51t7Gf3;lf4kp{R?ncpzAOgAQ9z^G@R#N%>0k2Kkj_1$=p9z!6iGymyIb{!FB=gfW?(+1FTDBK?8t4y$d^_n%laVBEuejx z4&#)KuysSR#8H(z%rsma(E*aeYzk-5gdibI?ouFQD!k%$qj={d`w$IA-I4vHHQcU= z;v`f<(64Q;qgMx=o;zBM(%Uh5NM-xW47}g^?acerQB$djuV(a?2GKTk`5z-mLLxcs z3m0AD!fp|cKZnSvfi@H1i*BB=KNYxbI4MCQ@!%k_aPGYA#Zc~=JG(AjtY#AuMl1YX zn{)LiSKM#zv^e>R9bVl%X^yPtpkP)WX@i>2@spLB*ujHNU*^buuakrEO*n|Wr!hYs zpmEJ4A$aRBtPXw8Y&#*9trWK0YQWlsM2_O>xfg&EqUErXGE z8?E)z2OgdBLNWa9a#QAsK8_nLL5!yl_S8QhPyIv7`%@zX92Q(;2-xW93GcfNwIq{e zRl74M&QzcpmMMNa`9BJq?-LS?hkGBRj(_9a8YM&fM9L@~(jEC@=FdAvsOG^q#-W(Qx7&vppVr$ zIx#?NNQRXHKc~NGa-lMY_T%Ztv7z}#L{-uiZe^kx&QeH2K+oPlO+4mgFF*tqvv^=B zXil~4KJtP^xl}1ns`Jap7DAlMWd#NTmiWn(9wWT*fye-R)0hJXw)6fdWN$RJkQcnH zlv0E4Zv2)IWy8iD9-OP=g&@&~XN&{;O)OTgvaY}gytc_(gK;1o!=xebK(X}Ej&#^+ z-~aQZNH-_gr73u|a+PIr%!)N|=b51S06WqUici!H?#R+RqN%}6n*FzjWqZ2JRKLP> zPYqoB&cA|0_b-cK2oi&+5wPljU`nEGwr2cc^EC%D5WbG_#wKXoZn2c;b*y>C5vl3c zwhWpWO382pm>Q2u1T2Tfe{f%3g(Ba!K5HVSWTvh8YkTSLufWmmI9=og#+eMYay>6T z^|80?Jqo1sf$VN0DV?j~zpw+pCPI{Ta?3Liymr6&AfWbZT$nXU>77_{%_^#F1(YW>LlvsqV5gL~=WC|v6fR3QS&x%9%odXpH?qI_~ z;BQHz*CPycD$_+S*>|qUII)#bH6niXU}hCoP%S@sZ$`tuWgw(y%FGne_YYm1mq@LJPM>SD9>{*fQaPFmRad-9sS20% zDF_X(3uMgdbcd<1+IAj?uDKL68v2;UZ)I$~z`I<0uxZeq>jfUI2tZoOT`x`ws zILW-kp1~n3%X3J<%W3DC;7a|+|MePW+L62Q79FMo5*uvTVQqMumHuoUHev`BAc!ap zxH+*fBEq~=qGD%s@%NaI1h5W;s44H0@Q;F#++~=(BBw04s`*RF;(wsX>-)Lrv!a^X zRsH>Z7o@+EWu0LnUOwY}X!Nf|fTLsIWleH&=vf9Wk1z0obOgo+PU%)Ua~icU)hFUv zTR@!P2x-W@6>_gf&ZG2VXW4h@K?~8mS8l$8dCkaDRLPEhF0*l5uYTUN$X zY{~9<@we_Vg%Iux6W!iN#;~$0p41{|=6bn~^REIz6E&ES7!07V zcd2xe_b99%uZOum>4960119xG3tfsU-mT5N*yF>Q!6CVvZC}lW-ua`Bvj?(*x*oQx z!qB2lrMLssF=*Ais$6cC*Tp8BvVb*mje5AAG^P5Jm0GcT8$#E5NGS_1U|tiU$9A@d zI-|IJQv=nIhEostW9@+2jBIB?V zEf*>4!-;$jWLO&=rrP~X-%RJ%dSmgdo$i}3bR${7;uXnjSsr;NcUHbMM7pEgU}36L z6|F9%hbIv3Vkf*zj{-fi5amlHPsnqt3@sC#w9!70Ey&jSS~^Oa16pT>il;QS)bi9> zLKx-~c16Wb4S5YsRU#YJ?RC_v^Lpiyn5e6>zEciD+8N@9WC*UoaCCerym#WTHAf|K zMypEmBj5Gy+i=~L?<(S=5Yi66g*Sdbq4^hfy))K^RljY0x_&b7y!(z!I4e5ZbEEaZ zptOK23xqBzhYl|*+E6z7zxxkpJrDyS#bHw__@8_z% zeOAhwRb5N^S35=uJBA*Y0N(e?t`a#uuoob9%bL{A7<#ySSZWh|lud>Kh-n%+379|JXb0q@R>SzVTbmi54dckBK`Q|FB}>dXxy}+YZEQi zmKg_;1V9Lg1?K`dLoEgrerp}=CH3T9IoNWj$pmL*Xw|hA#LN`zx^Qc>AGAXW?}PCl z$VN5HPn*7`YBR!%JcPi}qx>>K!`TZI^A<(dScceMoW^n5;3ox*pV4Y|(9r%G)lfFH ztdaVmt?!`B8uhW!v2gktFnR-k-JS&?!xooIzz-yGhMRL|@LMgCD4sR0SYb6kYz8uA zRPYq!IFP4rQds{Rj|F$!pA7+Ky1LMv&%7*`jPNYsmes}<)%5fP$x@Jc_*JrD?5%hk zTV!m7V$oVWh2Vy$hTj>Ff9W?FupgIO36Di~v_G4w;vC&JXF(cnmRT6TnDfX*I@^j{1UrE8yw&Y9PrN1}6+$>vf}4(hybe)J0(;pU@5E%$+s4uzz#E0jxqSUW97E zg|X9u@2hBT-j-*O3W3CYW*<9V`~Q6R?;5g}G*v+TeYLiNJhO&+-TO!RiXbTY)NIP| zo(BW-P)I0uUO>XlM{L+ID}#;=y~4(Ry9rw`%6w7`h)GyZHKih|N zmU@13=Rvq5J$!>u4 zO2O|!#)DIbqV^Zdyw~?xMDW060+wFMS2~>7-|%1iIY+9OsMWLiN-lrd2+x8~E4|tq z;5qgjjjP}_0g@52uj+x|%+WqNkUBWN%s$+D$)3`oa3U?#zme$PDOXSALj_kb@f`iY zPC6pJRUT-878$3@EheW=&8NfKFkC)d7UFS}+jH?2Qr=XBTF8lHLZ6;74Q``TD0r6S zMj^m{ODIRi?;1KDh0l?Mh2B%Oh`O|}JY`9GVmTLgXnGHMfrn(gh|njrKdH1@E+ce% z(YNZJkXE#M$Hvi~sZk5BaP7wrVZVwNvRzJZl2I%le7yubN!VlGC&gc^2G@g z;pD$R&2p6(yQ;4VG+m+E-)Lz-)2@|`O zTpBF6PlV&n3>(ozDi>Pw-xW2P)UL~dLI=+vUA@`{9fi$3KN`S-K)U|sg|JaGz6EIL zcplB_Lsj~{oW(qOqz`EDU_G8`;N{{u1Z=n|7^tf%kKRxvpJhyr9{c z3cB0a?`t7^K>&BkNkdR2OyPRUR|(xpb$bNKfc&v&pU}$jY@l~+RD{NE3RrQ-CtUV+ zjZwv`YRH-bPf?(%~_Byfvr9ZPtDYM-dbDv%(^BO4| z`0;F-^YfHW>r9^@6JX-zF6o$C4(eH7ZQXDsHyi?lE0q~_u7aZoVhI({F028 z$Xn=OM`-8Xi-+i+!D2FxE?AlrGt^36L z`&*q|in2qcvIIm82KuZt7?l(p|1&}=WVQRF8OD!o$EXCJvDsQ+B;~dsCRs^TwdR|;YsNL$(RpUhe$&He*c~ zNKUojo}CI<-G7w_>$0FZJq7z%ut%?D`s?4?zu0RAxw>{k! z&BE>;ERL`IJ6Msmsf}0uNfHx@@GZSEl_b6cWObrf806Dj&Qfu^jjy<<{V0e0MeklI z&FfE1`__xA?$W4+Vi^&J8jJWY|kaCMRiERSebr7u`m@jA*3PmrexF< zEXJUt?=X?^FKO_nXqo%Yag$D|)G=2Fel=aDsJc-&D2DfzRYucu<{|Hl#oI(Um(C*A z^AS+t1S_7{=EVZmf*3;MZxqkiNm&ZtuQYIPC6>H`xpMS#6C9zMBlQghmN9D|I!$JH zvC3e1T$wz*uC&cM<+*MgH!bwiy9b}QP6KMm`($#~-0cfk`!M8bnB@nYTuaeIBgdRD z%6u?y-d>qhx1`=`ym()#))3ahdl5-@$|rk3P?s!~L{{YI_p|YhWjq~=xkE8z*4R$5 zN`DEUv{^!21_fzMj%+2IFM#q+#B(QFO^7SPuB&}JNyrMQmI74J(Qh)SxWj*lUtTdv$aCD#1oum0MlevP7QMX zv?^oGgdfVhQcdqb1~-|Zl8OV%Cy%GoV(Xw~Jtc$2{>DQbI)K9iiMP#(4O8QID<P@M2j^p&DB~{HN#3u_>T#zeHsmc8z@>)HN_pP{KqdpeFJ~^mrP!M-E2$H2uOyW79r>)Ii(r@-9+fCreA91z-=X~~9#^dn0wn~J(B{uGqMjyt?GS@iU67+Nj_SCu5=H%qp%I`dcW zNwFE#f6hU|yHPE3TTHMJXx;PiBFB=~yQybpv8%6dBr0H>bP zGw}yUzr-#|#dxfsIREd{hgvRmmw=81!2z4F7$f{009~tNzLt5=WaQgR0Myq%mGASD zHV$9BtCp_C6Z&+(t6u0oH8rPfPIGI)WWL)T7#TeD`~M$D_W!E@@S!Uhk7MvxJEHs`;Hb7cs zWg+r2Ac3(Upl_lgydifTsk|XVd22K;5-`uE6K&1!Rn4w)GJz`pQg{W{QV>Lb`ktN# zB|@QAAG!0)?IG*|bmyBQy&Y@(46H+C-6_swf$?C;z#7?pZ3ccxZaY@BO*|eRJye^k zU-ABO>1a|qmF(shAX5QW_%zFa;__hbv^#`68|Zsud7-#no9n07KyJ1P@$+<&;i<+v zjLp+%Sb$!Lp5bzPiq`KdJ22E(@3b3n*bKVi)#!V%YR4^-K_HAKbjdkWJMG`bZd0Jj zxG&q(L5l%(*;JTz7mb=a$9`DN;DQ>abxY~;_MP#KxBnQ439m(|RGS8q7KuGv0GY>@ zM&~>m0|~j~`T3)k^bEg%z7-8e7jhb!^WM=cCp>Hme`8E+OiVi8g|6s z?4qZyJ$R~}mn7fB1&u4I;tMqAL zMv(|i0v-{(uW!>J_*hTrys#*Zs+y!n@XL%0pUHsS0=_aY=f%ginqSmERR}L{E0tMj zG&s@s!>nrkT))F(?Isz6O(*JN`2(+g_RXVS85c&v)=Sy!vQ96J%^v`xvpu{ivL=f^Q)R)+FlH4W)X z=awDNfDu3QBR(-TDXG^<#e#vL)_v5^?@#_9d_Aex-KLE<@ri^~R0sbpJi`=P4yU`0)hG$Jy6wVCsJqT(pbF80!AHe~c>jw*%g z=e2Xstc!IIR1?fQuGtM`r9FNc=GwiQqj{Cl)1h;Yl*!|9g7avoclQl+5EO2$J)$|w zkc^#aTNm3>UEKJlS^L&~hjrM-(CQq>I3>?`uLYToHaC|wO@D)u-!ZXVAqS82;+12& znvmHtvrQ3!iK?GmJ)N z9_^x>j&p`C9g@n=s}By3eH>NFJS+3>=^1#c)j(!%Cwjp$w@=4nq@`R z*@r1yQHir+jkG9Ll{6?t&v*NZJPN82%q-^~DpRV-H~JdI)k^Vm#{aM;&?7pGl*v;y z0fzsabUdQjZMFIBZ`#F5b9}r5`os0@mr^VHd_EAo9OPXYrax@uVGlh?iJdq}IXL3D zd>f}-sb2HwO5iXP3fWhDzvsom%qx57?pZn&tA#lStzWo*gUS-h4%be zkRT4c*9yIf$>*7+y4{YxpA%CBkxyl^!K*Skl?q|14j|qNioHL@h)}{}jlta-WVGgb zn?*$NSGLRS+L?ODsldcAD}0OM)=d*MF%e#ko;e+n7RRpAsr~F4MQ=_|%+vN3=fyuw zwKr4O6vgI>@@kics&%@)89vW@Cg0$G-Rz(@J1jZnX|BBIiRYf-)|o4;9@QSg?j_B= z+5UG&#QkYG_f>N<3X~I}FHck{*ZX9|d4IG{*dosYXx&am_O z>p*ezQ;KQ#mgY^RS1#vt3MBrvUWyg6R`oaFwj-tG>a4UHV$huTIs>!3RKDmB!BoM0 zyTRMioka%6(br1f(!gkuN;=yF?|O8-rge?hN{My6^35<+=Z$Au6z<1As$2(^wbG+D z{>_!q8bq*I)sCY)_s3tKU;7Om-H}k=;ap?7Jn-eC`)5I$(X93_hCFE*ovu&Y33_@? zHO>6Cm(@0}Pfft!vTe@;hkv!l*QM9Dm$T35yQTN?4S8%udNCf?NctD;M@u+I({MVt z^p80$^?#On+72XZpjRB9B!xz9Fa6Wp=;%l@^|+-k2Yxi929pWZ?pw$AR?@sxuStbP zaqC~sXIvUAkPQ5uV5433*xYW+S+ZQOfJBpoJ`Q}#g3cKgffr0Qmc|4imvvg^T*?kD}T|5G|9 zb-6Zkd#URT>rsxYhv?CEyLS%AIZM7ZYr#F*6+U=YkIKF~j&JCCG(sX`KX`lV==&8G zX-OEPm7OAQRNcyFx;UEsk*TiKav;f-w|DD2%xr55XOj)<)pz}Ram3AHcu(>qMe;;J zrc)faZsBu2g76O1T%W9xXZ+iF02jWc<5A|b_HA|5G=+Y5(WBLek=dH(-SktdbWNdR zk|lk-TSd)w{N-nRL1_+X@N22veZbbBc}$z=nZgBHUA*2kLBVS~xfi*@PGGF}u=|R1 zSdIJa)w#_sW-l@oTWwd@hJ1m+phs7F>Sd#FVS;)d`8B&kW7kSr+h^K(Ix3wc4@DdJ zPqIskTu(=vM=TDf7rr|e%|a9BQ7{TcVW}|GM|c&uhjRNZ$(E?W!v%vrH-ix_ooimP z*UjqT`h6I0n~mC-Stv{E>jm}K+_1$RFsD~wB%5~};m`D;k~w_djC*s7z)|${=4i3( zUk#$f-ygq@aH_M2SbLRP#;DWX5tWRig(v!L(v9QnE(~_IFO*D#lQ3hMHuAIyyM5x% zGo@D`!3NUuEM_n;?c-XvN^y$CVV9z?Rrd{PWs^kF`Z0^wZDg`?$5rN$7vE>cQh}^? zt5I!s)VG6`KDMPHs4Y6x={4Wj>N`K9KE|z|75Q|-y2$RULNI?WT&*{4`Cq(uqP(^u zle*r^*6vA(9r1bYI#*l%y0GW(=OFj0tX8k$_O%?%d7J)Eqe{7++iOi>W4S8d^mS^V z1zw~ZVDc^}$#`CesNQPHzpwTKM!a|j^hI;&Wn3xTjAg8`?#tHCp09B15nU88=q?`k z+?AR+#M5UI%Ts|%9J3EjU!!)ZKHo=}3EwRn=CPdwud!|H_@c)Ny=ijwvC-UKyZ3xZ zyJ$EImvyH^CUnUBbNIWkHUrs%{u!3J)3Im$@2|*&m4KGYYT?}K*3kZBaL-Ys28(nh zcR9)3A58H3`ix}X>2wGoXu|*b zvjL*Yr@i2SCDp!2NpbtfeP7t>-G90?CN{5nQ-R&G&nUPjzoRSVGt1(&FPM4vMUUOT z>u&=4?8cF2x`W!uYjr96o)3SjKc1Edq*W^t$j4Z)xH?FS(6qX zp9H{^a)$CdGywWuC@$WZ8MqcXeQCy)b z2R*sn)6sLJNkO(0va-wx&hvl7A8oA|SQyx-)_M(ZY447m^tvrAb}4E+4H!!@kQ|vC zxM6-`)sZay{H`Pbx3$t^&;14_+`XVz6BCbxF0{r9_S8RJ$XPD2s-JF{)y~u(sSv(9 zf3^aeo`s9f8nI{S2o;>0x*ZQPX<@##*=T>-MAFx``&F zU1FbSxqJ32i-NPOqn}^F#!$>VBVotR4qrpxHO4qELu0?n6Oi=l>WPr{`&QHS+K6$3 zg(isclG`v4W<7lM!aky@fv&$Zb%e}xO%uE-9DZIc))%{Rb95q&aKQ#>PV~3F9hk0o zSj{r;(p~oS;g-*a`wOTLBi&r#QH;y6s$jC0lZeLaX_xjgurJ#@<&%_V`1kSM(Z6EN zqO@MO`!(*)G{>Ekk#g-hdNjBaMJ@xTwIc76V~!kY32EUR(AAl_6K0-mFFo(|o0lYd z#<$}`cZ!KDW7t10Z}qVn*9xnjqPoR0Fegw{TjHN)vfP2;X+QN^Ic z(z~bexru7c^;`SrSRUQy$K?{;`I&k{CBnA{_ zYuk6FIT!?QZkCyKZ`n2MA5De-nQT;Qq6|(RH9KY+)N>WA3?(FohRPv}!J>3fnz2xG zw*<*Ybv0ZO445FEP!G+-gB-Asa)9J3Nxeoxy(Ewqpi!oTB> z?&Z|P`Pu4Ds!05e)xGW9FSCv-JE_%yG`k)gK3jT?&jU8$rLSP*p1b=rJ(=K*nJ{jV zR_orO+xH6ev3>8Dw8S5p^y<~%n5nq<(&Up(8yVIK$5^@rO^eVZ;~|FtLcO(j6rt^$ zoEAswnjDMw0^JiX2nIfq4jNDz!r49rn|co7rL{KZZ#IIy3JTPc&Ysl8iH{OfX$Vmq zK2)-y)NvYBwU1UZYa7C{HIav5KDr*)IdX=S zjPzQcyx-*4ZWafBe}9W5s^T2>3vp*84wog`*?P;BF_atkxB}LWwY#V~Tt|C(FWFDc8X0K@NPAayl3ts4#u9BW&5q&tjri8xnLHWK zTMSXi4!S1gUI{N^esj34*FSyODrbEt_u?Xv`1_?(>2?^AmaCS3>r|kR&e8cv83`5Z z^YOZur>aeD(xt&|&{K&V{KgX%2Fc~@mmNtwXTOQr7u5fqpm2+875`%-U}plUCSm8U z6!;@)OP9Gq=HE%-&d8b*_4Gme-I=J{4{$eL;vNv|xt$@=%fM4S_VYrk5|T|Qni(R` zi%VctvEmX+kC8MKxJMz^l)vI2r^bbKv%X&|CKw*iZ`ypXu+V*b_&_wV{b<;Jd$Fyp zO~EtKbyP#(-5lznN@9L)?wYPfh?z#7p~1;l6S7y<87(faDo}8tV*Q(0& ze62|7V9Wj0i*$B$DD3)E@jugtX|AgjZ@9x{kB;^i9H+-JFtb>fIxVVh5BG@A(#Q)D zO>WiYS+rcuLd0%buUDI2M1IW?fgY)~dje@TN+CmMP1>dyYgmBXuZLj4H^|;)&BkKI!EL& z2k$l&UAJTNUw;}J^a;Sll71XN5LxeE{zwbMu(A!hr+@VZH_&}|Fx%V~+_5zwewCoX zs1|uGVtx89nV%&^D zYe>_}H8%B0Bj4kTf3%+HeB#o25bM*>_Bt>^spX-Ds4EqQ)d+VH)xg|_=e^=ei4io) z=VEL=>M7Ejd#1;-FwgVj498nUdf$=sO_dR+`x>EyK67Q9ilT%*y9#DQsEVBuW8Y)O z%(=9!wkQpQ*Pn)iJc%jwPL!yTVLx!GulLV-45pg}%q^jB=bVW*n+s@hWw^A?lxtL{ zmg=}A{s^B{<5qOj<6^@(fP?s8@Lz1-~t z1e+xfc^?3PS(BpPw*m|;c_o_Hi=kUiMk2qz6^}+M;COPwN zi6z^H%-W8weAOziD@u?Nd%4_!2?_u1Y9%x}(zx32IecA^#ZUcpD_|s{bfkKhvn)JZ za(4w8VX;B_nzx~jkoXJN3z#ly)E0O5&Qej=E%$9p%d)@kVEi6Y%1sI>5%~LWkPjNz zqc!m0-9I?6UCeKq=r;=1b2{uwJidJ@43ktimhjWv*-ymmhCfOoL9@6L^+s4a;4{LO z3)eH|xS}GEkwMmRlhDU+RR5ms9|h77N>qbt^fXi!#W-HoE<#CEk0vA5%nGw0<3`!0 zgPaJhnNN8_|A5@Eq9T(StBLF+)^okF_TgO>>J48>BW##McTKCnxk7qpPZ~^)JPG$M zB}RC6@pf>BwfvD^PSt}!d3{1$CN+kU(JW?K8c!~O_F36AQIVnfjOb{cS%+3h+^C4s zZDi8W%_;LjSDR17bNuTpSmOy{9yGCS>$A9UKDvP4Pf%|<1n>O&VD#cQZ_{&c73six z%Vo?b{PnpC+at_ax8U^ALG;7qu7ww){O@pXWaU4EwCiSFv|v3Amq0vw>Cd5VtzAwe!9$^r`woO zP*!K&M2D%^Nmnpe`)(9PhY{{4kIi{&pidg|7}Y?_N~^i<-WmE39-Efllf4E6FTG6x z2lgUQZ=waWDZY%9vi$No|Rc1B77xNXeIFtP-*%xG4toToS=}0 z*1wE=Y78~1Vd`CE65?}_jvmAP`%ejRS-i#1dsrorC~6CrbG9#g&Jy~_BOh2UWFem3 zS|^~wkT<@NoPCw=BVMjX8WOFKI(whmWveIem-jsm?1NF$^Q4rHPcOjc>&#aC%%vmz zIq_pzIFc4=Sdn|ED~SGi&I@tbiSCwr$sQBfsm>^U*X#GAdeFU0?ua34GRxZgFOK*2 zO)=2oOYmX?;BmbEAdO7YS!`lZOmB>^ z$VH3pD}i=l!Po}WD;6Cenhx$=<;8Yyt6xMJ|C1XJPqbutUJ&qTOZdfvZ=I=Vmx~BA zga|i18c7Kfn_rSH@+aAGc^poD*O0V9mYkvr1TNap6J z6Z!-a`Ui$=6{IWpd(Fxkkg`epVX&g>=f^)|Cc~gG`O z_`~R1^E>CRVjncuNv!@f86HSCSQXv5{GwC(*G_RSs%C?6!_#Z0@{JrdH%Z|IjL=w| zSItVzo7u;S1~+fQNTWBmLZ2!>c})A%({sP-BWkd6@U1*@V!=(i&EC6KR54}5t0sr5 zIRmkF6&qn6Sh@5-_el&qG`H)O4}YRE?ga*W-rVyZaU5vsu_`T2otDKZ&8ukGL%8lE%X;@8zQ zzBZ}r(d_n?F3$A_3`CeF*W}jMznMjb?fp623-t6GtTm3wtRN0~jP~JHR1}Lpgc)^{ zwtgsVTDH$q5yrcXQ5roXM>UvSRte;N*owY5&iYP! z2_>s>)}}hr%X^Yyr+T@naLtWI5Y?cbJMTCi@4VQ)(wz7UHXH!q)@N`vGG2&*=KWrst)_U39WqexR zR!5EaANi$4KhDnfSHpr|qtT-IL=OyAkbz!*J^xW&wckpj#%#G23}D~CdsHo2FS7IIt<$te@puAj># z=cU2ei8(A4Ki&J>&)6MkQBl(?h5tEM2pjdBnxGamo+ZCC<*%%wd~@9Vo4^K+kt|Sa;L+L>G6dz{mUCl@6z`2 zw;pj%7Uz=P>~fE$c%KuWk+NCPh)|-z2s`t#b~>dsAlBwoB23dhCa^~!l*UrIiF{bE z)PD--a}B#15ubeZ-hf)fTSUiIe^i4*l^iLho~WE_N9g=~v7Nr$yY)VOS+U%TjJrHF z8_If%X;m~BL0V0%WepZ&Qj353vNAO$pO}&!n!)T&9)FXay3UH67&@7zCyd`;F0jNX z(_qGS-`(?+VZtX3{%ODR=Q#KQ{!N*DSN$5~RR511z9mV8 zd>}AP%X@cz&MX^6NUVXUW+X^vq`~0Dz%Jr0O5&%!B5dy~DiQj$p`&~ep}~7m520kY z!oqXNpL`56OO28cv@=n{H#oe!zTc@y8d7ipBf6w|x75%rMUy-4A{QU$Cqq1+{>)vc zA=J=dTWE&@DJ5e;giTN0Wio-s01|#N5ROQtko~kxQP*irpuI9HSVm1xAmKHd#eK$z z3R7}0*D265@`2DN*tSrP5SNB}!{A-__U0w_X3!e?ky7|l22Y)i$Pazyig|cgj;#3A4-9}rWHjnrc| z8iZO1JDSky>N^sj35kE~GAI*i0VwcAuxle9*uJDmLUi1J1Pfocw!YdFJYB*Q)giiq znPp-z?TLtnh02kJR0XnM6XRX^O7KJSX#gE2<7A2NC7&q+Hz}nIIpv1&mBVTl@!=?|n^A`_jI@Q<6qoS@{RNJGV7Zs?>~26@5%^m5tV|1|a8 zNg)%eAPA6QLJyk9ZmTz7u*Q6S5wxVp2TS~xyx3v(TXX@~TYwLUm!N6F`f?sxJQ%4XEJ=x>rhWTR4;f~X zV90lkHXT6%E`SCzUo2cOW*QU%bzM+-Cbeh&Wg~vIpw(xG!)O3EzZ` zWH$%;H6lcYQ8m3<8hV95ng)U^h*dd#a&Ew#m<7dFp} z9TY!Bf>*`=Jfy)yU}kNqdv-_Ey$x?*)0UXuomxrT>C79bhU8~AJ|fK6Xf?NlTgP)p znIjOPp^mR#TIl~-hIi43pl>4$0edNTt8@^35#&DtlwXrj5*d9+n*V}WXh;xZgjj{6wfRSD}mNCbi`|c>%qx;UwKBN=|8SBVL+4 z&E&v3>~M6VFaCI9o;i~tuK4yB?h#xlVoLMMKlijme=u3 ze<4OSnCfn&lSSAU(*0oHpc}dWfP`{Sk1#-w;?ksH>-|DX%=~4Z2t>zpaVlF7ilu1G z6qW1&D4UqFi-?<6cLln0$)&9SJSU-t^Tb>96>{9W7#;-fAe$B24B8$&o$lqV`K4oL z50`A}qH74V@}(wSYlzC&5)d_qCiXR|n_I}Sy`cNv6C$(?cl!*^4SPC&IX_4{b}X0& z1a>8#ysHWYk0d)5pUkD}b$4~SvhL)-yY(I4y!E(!yFBYo(-oW1Eh&;$++T9f0TGOs zZM zkF4yy*=K%j#$l7f_8Ns4f_?3dektPJmys#*vTa&kdu9H7V_ru>wa5fdL9;UzE(m~X zbmuvVaG9q!YpW~_w&z#4S*o?qHbtl{nc02WWr^uOE7 zl`jugY((1o5T!%btt;Q78n2uX54-2y^+t8mVW9ALv9|U=mv*^YNb8NqdiZh`%``xs znVibAceeYd?6afj_HUTA>>jPCFz@WH)eTxKYPjWBsiipFZK|tS z7~FWuhcLa0E!cdNLU(z6$DfBtL4TNVtb>k=yf-gUERI)_lh>^+;ln!@!Dr&s`{cc>jYMe|0u$QL_5$EM*7*I2g zI=WlI`{TA?kv|y_FudSXAwEn@Y9RV@EdsIk{R&=1QC`%*)3Gx*rZakht2jQkxs{FB zt*#>7Zpf;CYQjI9hvV1M7mvL1I`cj{3{1&=(f@Q`WSXR(5i#A}&V(F!k$Agj&pE7byj2&NYC7vKocD#Sh>}`a%K1Bh1h^KnjwlH-t z5B$jM&`bU3i?4a*{?ZUgBn;E=-q_iRHb5Hg-&aKY#FdB)6w*tNy0YEhUhy94N*)gs zI_z|rI)Ahlf|)%!stZ@FX#es+Adfgg8fiE8b#CU$@vSVcqxI;y88U8S=a*j@s`mFU ztiSf_=f!#is0%-)#*7{4@9)vp;>21AeJ)!xP|x<#Zp^$lSonhIc={r5;OMtM&;D2O zmx{IA%jfa4hWJN54OJmtLPsNu2p@b{sE*Cnul%6Uw^a5&kjx3)dT1i9zf{+oLCkyPNhm z(LN+vhK%IoyX;uiS!!~_jy?{w&$6rPZb*hC6(*%7lNjw&W)l@(#^=yjGdkK}5>(Tah#&KX=O&j&6TZ=FRfyY%6Ma6*iW|;-%lB8z1BJ;IlOF0e2vXJ~@Z~9VKSN&F-pDO-mqhtJ2Vb;@cFk!|% zAQu2^IsFxJekb~b;5HmP+&j@6ZikQqMRDrLKnNo&ZV>vMOP5)SeyI0kjyOalkRoEF z>}qo1Sz%OiZZ1d&_0Rxv&pu~z9eab6lFG0F@wq`duh^hC=pSI`>$#4O9j24wp@3LA zR~GoiY?uH!&}qr{W%yn0vu$Q2O5~OP^c*D-{ivAx<2)-EF9sX6pN^8W-i_~Xbk@H| ze1?K*N{k7>Lv#KbqdQa>_6NN!Df`T&g^y7Z$APCt>pj^j0abC3X#%b^_< zw2j!YH=tTm;OLb`O|6Y3wF(S%B&Y1+-P1Qw$Im{|UYvgdr@)Zt*$fdF9Vw-`R)Z=& zq7|)9TuyMi@)1E;K~#@&I4gx7+K0!M`-;$cM%FI@=a3V2{v>5hisdykuqkT6vx6~% zUK`NB%Z5zauC*H|xkl{vQ^7eL2rLH9l>egLIhBVq=Tx0-=S5gkfM0Eyr{p`K6KFn+ z4MsIM>0Lx6NAhC*l<`xN*dhSqKhPH)yOLWYqYq=#FL#&F&!=>vPa}=tQ(ML>r!)^~ zgayE~+<6XE{CzBqrYLJ=d_TEGjsHT3WO({z+W(8G_YS1`egA;ZInJ>QWtHTl5)o06 zeX`5S-XkNKWhMKFWQJ@)Br`Il?U36b^uBuM_)g~rYBIp$xV`!{_Y-Q2_dRE{MIu7YEd%9&30gE3!~`uL zY;(ey@t{WD9Qsdm*qQh@)aan@4_li(OqSJdCLEX`E*gnI#-*E#QuqYu8AZ!--@iR+ zfFw+Ke%;i#Vrv8*#9q(rf#(UXSJ52PnYrTXyM6$J8YZ)I{<(;Qj?a+y{fHhiBUz_R z6ltdJL9dK&3PYaQ?aJkSzqHvhX$B`|YzkKwHG|C$yHf=K!%p9a9oL0nv^>*4+e4-| z)~j~wl#rKJu4M#L$~D<2fQkqB2j;h=|26MAv@Y8C>uhgMVCz??U=r$UF55i>oVZQ& zS+5tEhFH^kvIooqMnP%X8Tyrzi->Q_%0YKBj30KHpMod6l%0ptd;fZ^ z=1NX!d*lerW(HqKSZDU^HSn9h`%!! zTSQA@2m_H=SFAGf#3&~2xCB3L#u?x&LM`^M7{i~?V;VBlk-9M18+Ya*xIz%f4R4z$ zfEnZKvm9~YAiLc9I2fru<7s*|@YH|U#GN8U`tJIdr#$eFglCjt@1Wp^_O+W+W5}N& z^vsXd)DF2!@|%C}<{#56WkIsDFu902aQ#+ujm1GRsg4gvP&g__#Uk3dN!uE6AEI

kU%g%tvOB`fG_^Ha{$w^dU4wUF9_$J7El^zZ-K%6j)-^K)q3|37+eWKxFsUkJ4 z2`b<_&D~>f%J=RXnpR;4gT;(Ytw$7^86tR8nRMN`aUqZWW<65hq1!4Q7w2J+q2c1Y zONt6uLMcKtn};zaQoU$i6~Eo|HRCeQD<<(Wywj!-q&kSQ%luSvIuA#+kW%*1ee(~% zI_XSFP5K#4+${Gf`QVW*URS1^@TA#ZRP{SL6uNVG`t>L)GfDaF5Zn2;4&UE&ngc4# zhLRcg&Ns;6(?=V6@jsgMZgd?)>X;~Z$5RXI7Um(+VN9i<9ev?&S(8bZ*!Mg>{bzg? z)h!->rn}_5VdYh>8VK?fzmLUTZrC}d?epiB=1Miy&BY5pYS)u`ovRuthY#-C?C~<` z=JkY}CYgCkh0jhS<*j|cQvo(P_%=BoQ!P=MAFdTB!ue+GBh1B@?D(ZM@@fn{R#iN< zkL#x~d`+e<@rvP_G~d$BYg5y*a%FV3j#V{w`;dz5zn>K63QUHstIS?(&u)4PX8tjk zlaHDie5`ljqxZ(8snssapA9~VHoAyQ^*O!WuDUUwgk5Ud9K19*YMR%J_l0W{Z)_Tx zJWHo>0l>lkb*JTxtBC#ew8o3^h!0kKZ!PzXQq9#A)Y2wr9@p#>7Oj$Z&&ePO-M*-J z}n+NOmG+VSQ zGM4A=`eN^k^)O_Hv!50zMj=c&P;+YRIimPyoB`hCpraw;xL!A`7-XaGVRY$1#iWB+ z7bT3fL(lI8 zhFvHePvt;a{FE|%#_)YrygS%t6g?oAA#Uq|jq+_E`AY&*jX_zj%v4;`zKOp3EgS4Hfwpp)!HV zfxr0kd33{aA&EnSxOibc)ulA*SH3>xcn5raCAHdZD6=uo2y3k*@kVi8#-(j5(c^J1 zlGt_{a7s+NPsJEvKx;FPKzgnu!k?1g+ z-IR&1r)M<(qoafI`TJ`42MV7;xU)1xTM<2F&r=>#Dk?sE<)EW8qO-NRc&ugVM&Bd= zi3TF|=(bM2>{&t!%k86rRCz6^j2yrB`gNimr$%g}mGxWM()JHGdUsA@^8i0PQqXZ& zGL+~P>qj#o34;wNGS(O`NrHlYlAh)qK)hb&czRhp{UVB+6iL|VZ6uRS@G>qzZ+~K1 z7!2ej9@Plb-Hn+eWuc1!^$2i|aV_`lCP$+J{9j*V-ti-L2UlgA<(?qsjD)go=|!^P zJ`{725`sv~IlW$+|$-h3H9w#v8G1VTt zw677l)$~|*FuPZgzq-z4uq$y;L^^97B9@x$*ZgP2CUrT?ANmLnVfbC>pgU-i6rL@-~z>O zGooak0~8P(^QTG@@g;e1dmQ#W7fuQ~F+i3L5{NM*E(rlY{-{`R)DsHHJ2e2(et~O z*B>>L;x=aefLgPP7Rzy-!gcFGDkbgcr#LBm(}rG=biO(MUAg|$)D?P(oor?o?=YsU z5?xCM)2XJ78fG%Dc80S39DvU5DPD?T#xB+L(qXg2EP;`6`ONWS-N&1P7WNzpDB6-W zQ7UA~h)t=py|)F9)&;EMs;H*&DzkA{zZHju4ObRLf;zsfoBbg(1xyUTX+8=U6V9+r@VGf6d3w31nAtIQ55$8Ja!=dU@^v9CBSBa(>X8nA1FPO2OEsB zIbaCg_UYNzk3ANZfL>m@SxBG^N1n(dLc}GpAMB@cMn7^Gh7}ac5hmxr+{X-^963&d zVVjp{{Q{12Hhm!1ZPI?f@EYern1NvYrS!Hb6n7k|sT5yaCL2xlF8wv4r#Y#I4qK*Q zUa2IpQ&DyP8@7+Gobm|r$F0~Iuf>YUeT(}jdK-fXaS5wDb(vE0;Lq4lNSVdSFy^G4M7%VER0cdws1QWDt>^i9|mo5eq4?4)f z{Pu$GY_&>#ydAzYJnbClAt-5=0$(trgO&(_p{M{GyZ*1{fE|aRAeHQO+B+!7ZEXTp zU!;*Gb4jJ^ISo4!Y0Gs@SG|@ANpM&|@0pLF82%QU4X8g25j{Ug^}qVYfCT|WaroKt zZ8qEv^hB!{6lq=JM=3_DvTBjxvx;i?Qg+fHYXJjoluX4n$$)>9UD>l22!QL`4Unh= zx4A&*;rEX5UoEOMn|4bUP2%||WB-i~JC*PPL2>a`3F$4Jd-+r%@tPtz=%A~{J7Lz) zq}%;&mruXfX%YmlL^K<)2xj$uTct=XVfQ9P@J|#s;5mJaaPYvA+u2yl@@gf2T39pS z(g5=-3m1$YkuY>|Hd%7Rg85soIHn=4tQP*`Aqr^(H%fY3ZL-aGn3_z2vLB<{z z&J4aJu>Esodbe`9i&rLXP?^Sq+yzRD>eGfLL?ox=za^71M9;PaoV~(XiE49hV7MZ+ zxp7LFG3^T9CuzQQd_?+l{%Ac@JmvhJl!x#{ZPW&OdBrED`ncLd@}GYL6skH?bS&* zBuUfmW@*AJ}#~bZGv{+)q^JUuq|V(0;NqcF@FiB~Q5a@Z&r@_B#eQ#OUF7 zq5?`zoev!qBuw63E?U0^$B4fLp;& z?SCE%loUn5V?WtNs~Ld^$hD+RI!AmIZO4>g?EFk`OiAm$7B36)x`~$^Ca9KK-+Oaz z(!3e5v!0fGoBUKYt6_u$CBVqykBT}m13$1=9~!T(ePhPLBtUo=%80Z|iS=>g!r2vH z1WHDGT89VIcCbZ4BW5beSB{dIQ4LhsYro`Iv#PQp{P66fgU!aLn6F!83s7E`SL#_H zQr2!q=icZkRp1e&0a1}G_b?4XvNuddN+@#d%N#2GxqUQZo7`{8F+@(Qg+v9M#6l0` z#9Ca(w@eme{|^fou*kEUm0dqi0J?Q8WE*d zMB=;0^0m=HfTv-H}R=dD`778M)9^rRY%Q3g8~GdHFW-c zr7nX>9bDb;bukJL`TlG*Tv{E8sgFQ)$LcTu_fbp{Nekm2K#kQI^+Ld@rR_b3Fjdz? z>5DkKmx_34nj1%j_0O|YQG(<2Lq48A3TwV>Wy2SN?axmcY5oG4>MLIG^>lLMRYLmbwXKUDP0e?x0ZEISEFACx)H&0CefE%-(tg!<-PfJ4N(_@8tdr06eGZG&T= z%)25O`$~n5AE&fhLJgNNiMI4RMTU1|IU^u0fCiQM0A4gFF0bE3c`9044LXk&q2Bvd zets6ehTKekl=eQb2C6?n@X6Q2=r47TM~?xM(mQQqKz^LBmJH#==mmn1>(%8s3rpJj~|Y~f#%k}(Ln4oXDjs>GJ~ zx;EbHXm4>X!t27hTX>7X1`l5Z2+HQJYnkW2K(vzxn%5k6+G)OvPoUP|b$a{ZLoqK! zK&4_-@uW|9%SD6HHg4w9#gv>CM>yDr`fyI-j$Aku(JSKfVb?b1gRSUDx9)=CA>n)> zYpu=XJA*zG7d66> zWvY_C3`fLlU*jNoaW?{Po+|Mia1sAz%=`ZOG!++VP;S@m3zEKYwv32tn~VPbjfqwq zX(0PzHE>;g{vx|@CurX@l^-W_blvGff%tLi$~}sd^t6|ks_GIZ-g-RLLJnVM(uE0% z_kf)qTRwmK3^mJgXBHw?JJ~2){W}z4M=pM;f%dFpVW2qj5WOqZr`GGl8b5y}OT=xh z+1fzz*H!1F7^^`#Y@tBeY)_^(Z zQZ*}$A2Ln;lN;^r*sWjSc+O1V#}dbzbV^zf=OW9v zk`0p0#U*oxzs@|(BTr+P94feCoC(P;tA`D%hEa){k?Ab5SM+mps?Fptfs#df1;n4? z2;}oKFMXJ1mH0~*2^X;}L*5XLSB?^#6gw!q_HA^@e^KuP_Axc>Wv{26owO~R>_(>E zi;9gR%L(1xQh4Z3XLAwhIm!qjWX7C)A6JUm$84I#UrKxIY?vTJGP}*bxGY7afJdo& zSTuts9AHcPTrx^t zZ;cdc{-pTNrGskam*(~faYEqL-Vap}eb@0}dEhc}^mN-9mL`u3`T^HP{U2Kc*$9xG zTC5?;VTca2{duCZAgaKyk9CfpoVGtf;RZTKuBYy=jb_&Zd8C&1?L##11Fn7-j4FH!UsNN#-5Q8ZfL5cDS!{+u90RVYroias;f7COK>B<_aK#0Usca? zN24wTAoP5_KOke1e3SVH<&h_(@Z{3*MJO4e)Fnc8i^|KN0wo2tC5PL_p2*HCgI+Xj zuw5oCrt>;~y#Cu?^Lt>yMqS<}_7+m=)&Ooyg7?URykQDtqjIN5zKxD19IA*8hsU^+ z-s;vsN}V%6_@ZR6`KZhq(Yowqk)16fG%Z>uAO1a`O~+W+vEuyX=l*$h3fj%eSB1F~ zm1Z5pGt48t8539N#kKwifK(R0+Ck$*t9Xc{h2u)6AvGS=l(mqNnLgJ;CVK*V&N?ww zV~}ldIlSX?h`Np(4*&{E_LQ{IN$;A`G2L057l<%YMgSCX39S-<-_-1< zgl`LUh^FEh&%CNl9r@z;2NqsOlQKhP=rW}8NC!2|Q!G**4A?xzC=63T8~ybTz7*!}@gZM@I-KJkDk{+6uv7!Z#ThL=W`HCcs^KYDN z#n~E}YUPKoxO*{REkUDl7Z38E>YCm|$v7$=*ALG^5-20t&G9*lux1lGaQ4zLY#13W z)_EJ6GSHDUWg-?A9=uqeTXLT7ekk@FlCP^8PfYf^y-Q_+&=;$-r}JQ$I(Jle$l%*% zawu)aN! z2dIHu{GwRnSoYjiCMyh3xorPceqH1VXiSQNE&GmN#2LaHN zm043TvI3bq^7J-xYGg+-7|H&*bfHLl)B8gNN@mN!;(QVxQa!)QTytoI&tsRPSod@O{g0k2-LMi_^1Dy!ynR!K=$a zM0I{|%~8^V7W`**?Fc!oaGKL(zEqOAkbRg&FK-e8d3w@df|3@m@`(ZjlL239ltDOA z+%bp2U14!0Nmv}7sR~&d(5-v^@DMn`ggHaViU0V3`@abpO?E4rx+5mInh*Ng1r8Ao zi~=K*E|?>3R_MR|M~}hi;lXxe=-M;j`Vd@@Vxk`eEGBuWKT1X(U+Pcw?%ly1)rhKt z(oYy|H2?+AhO*;E&XFp>d;-cJ%`|vNX^p7@a6a*X!VMEg)Yrn4lGhQS-2#hZga0G2 z?i@I&aTj1(VO+V32bx;3paHsIe0_ru9Trd-323|T;@dXOHXe9;Qmf$+;m$d*_DVw# z6p*s_?}thmH3W2(8Lo3O%@Dv~fJzuONHj7{6ucT3rd3`nT^CV($Zy2mJ#PtuDZ}D( za52DRzh+Zv&;K676X-MB*=5J0o>RSpL9+U`E3_d5pr2p_S0M_y`LFb8>!zAB2Tw3{S?gm)a94HwrXha&F znt?R|Iv7v?8Aq7Bi3N}{Uk&hw5tajYATVFH{9-zqu<3z zMF;b8i0Ht#c`HL7qAY9Maq=0!7sA|65j}POU<;rFT$1@rX~ZUng%%(#bka!m+@ZAL z_yta|3PfeovWrm>Ye4LC&{2I*;9=5rN;V^ERsXjP;PVY}{48JgdaWXt`UJJzDv5WS z#7wx8J^A^}g0MMc?&Ekzsm4!)vK5Q;uGO5~-h#C<;Lj0{4?*$?qF10hhY>ZR~RbDZmXl;y*X$ZRR%=$OBg=?K@?}*|@ zLI|9sxV~yBa0_&$<6B&mopnKkYEuU#%t}WblH}j6XbfnPkTfzHAZk{RgX3$_5g7Np zJP<7w_nX{lSjk5SZ)%#p3CDZ?weF(&0q{%B&rB`e_oQUeZgn3?8=o;PtgKrMlaCz%M$=d6B`!v|ESTu%==_5hfH|LF!a-ixxF zo1%QGvNoOQdNqF4@$<32&X(s>C`J{8dGnAZ(c@ zz>nQ*mPclY3c)mf&59!g!B7xHe3NkU)1zj>uDv{}7|TfWf8K(i(EGed3t+`(n(Wox zSI(z>xi166<-jrFhi?Zg@p+HNO_uRKWOVXr4ZAH#wMt7z zS1IoQ(UkUotxhFKR#fbF&c?8s^H!46j(=({pVn^a5*11_zlKf#%%AhtH?B}V8*18q z)AZB$=7)l2ZJCIuNqZfpN2_&2`cZP{_J@v45b|_C&B|`AZTt3{6k4C0Ep@;THv4~= zmVD5agF&XSR^VVC(15K3U4=ci&(c`yB^P@w`9*TN}?2yV>1w;5@Qm4+sH z^F*C}f$x2!06g5oK<-0j@=wq!)Q1L@VOM)g5Lp^xF0BoR1sW+2$T%TIW6cM z9eJ`BJF=m!ydW}MGxKqmiY{BLmxAnMT*@z3V(D?3TKIHUilYds>F>CUQcELl`nam2 z@>$VHnLmGSN55R>J5N_M9U}?B^V??e$`R)H8Pu2&*mpyf+dbP{ z2I@=|`4>9CL#PR&p?+I9C`ND~lL$QgYM6 z2w(*gseORBaGn<=yVVUJGUwz|1X6uEqzI~&+uKhw6G6ak0q<9hT>wx{>gntJHc|Ln zOvFQQGDPw%w$95%JcffVHiBiKtqt5C*cswCNpxX0$Yv2Ng zCc*ES??7PX1>ciXbON#dRLkgF-|}B(Y>ez-D4!r(XD@~^a)mvXE(2k$MeAa^a2dDc zniQpzdC${Iki-Uz21K;FoEG|CK8WH+HNnyP^1<&J6v$26?w-Sqz`bHYD0!W&&_{l= zZxD369DYyGZ2T zT76oh?b|8kNss)snkPa9Fl|jl=a7{DRX&HC z`+`h$Cw=m}?D`e=>8DU#e;)#YKPX8E8rNN6$3Zgan$XY7o8xX@x0n{^enTm#k}~~> zTCa^ODa;tSHu_2k3|3IpVmv#O`+-MuGGT)wyKk^=kJsBf+35FhNQ>1(=PGOy(8oFR~yTO6?}1nh#k18#b>4?d;75 z9J&-N%tUrcOE*8)jh^0=fms{3fW6{e8~TiK+yw!)F$$CZWRa;raY z@M_UZ!&7u7(t;;$`dk23kvg)Di8M0DiYVF;y;OJVg2cZn{+VYm~Qs>PR=-rhN3dH6=O%7=Q$2o za5^9vT;y*>c&?6bkG>LaOtMAA8{MyOP!M{^q$?6+Rl8+u8momrCipFX$LuoBj1DUS zSPdO#K5Awr8aRp@*_ZskuTp7k9T!D#7ohEG9ly_ePqT#24-eSXql3ocjL>bWzDb;w z$HimnPvLwVqJ+lv>y1@AoIas{2sIREp9gK@YzR@s->7eU!^BDhpR;U2)R5Yf{9n@q z=OVw?CQ0eIZ_I4~gcMTIZOu%VqCcHf{gMUiwh!2lsBlfQY;|yxE=gSpMa`T{dmu3| zZf`=JSHG-$lhD?(3O?#}Vc1uO zs=WIB3f`RTR@zNEW>Ib5v#}t`wGUbE7s-;yCdZwTMoP(2!;!v51%2}T7i3{w+{9Mw zM@(FjglsJPyvFY%7;6(IatjR^c@%=?nB{^&QK-~SJhVBO>`9r;@eA~)E~O^;9CyD| zPKa;KqVc(UpyX)6)xo$$tJQlZXi~3i|g=V!l(|r!t z=O$CV%YzMj!OKB$k*~k>@6h?h^)z>m_75S@`-&*NV(un37Lm~N#Uq00NG=G%#o$6? zxbrPsGkSH$$DCCOgQHY1RJX6O9Y&_Itx;>1sH}{F78q>X7Y-(mQdJgmtPvilnco%B zC1;osK6|4;qEj0z$y%!W+{bE7JpjXB|`Prf|mT5;o?;Klq1|ku>2D}_cFyyr#i-(SM*s*Vz;*}%m zqq)SdTWr@jl2J2%KKrpeL_Z#9fCvppTQcK4Vsd|j2MNhXt0>lJ=g7)#-st$M!O*ds?-@*R5-33_HW4SED2ugm|q&$<#4Mjbh=Tc zgZ?#`myBs%XG})~C!O~H82Ry^SiR>lQDBRHq$+2L3P=*_wNR~>0IG)!4kk)u21K!C z^O9Hpq8W*YUB&2Bz4YmV4ASY_E$|+VRklob@}-GAhaTp43NUevsh%8Zk_U?$mG*9_ z!Ahm+4CuD_hF1gm+O*h|l;)E}V>84mfW^UHsD_u6C=4-3Y(oP*A@vvRI*oij>D~E! zAU%JR800egNqr@HT^+v-5<5&m{N7D?H&l*mcJ-vjFpQ2e=U$`KyzC?Tc-AdC7GYfm z)}~k4v@!hT)j?HL`H13=y;uvlXtLHxsws)q0I)d3sC|6cCV_({?FoiRs4uxf(-$W> zdPZSIr=$r%M;Yn;_jW|$+?ncHpw5r>(uBP!^=DC``a&gz`9SLqqf6U4!X0KbW5mg; zacXFVwkH(dQkz>baa8c*VARiDVX^NvA89nxz_)D;9H=;My=$Q%`DJT-8Oa`DMeGJf zPXC8W!EMs=NOd%lor6geocg9jS0)^ji>EZ-WLWobs{XQo^lxg~VYbq%w17YhMA_qX zLHonzdW)Sr3PuNE-$J)YSa}X7Xtrw_Gk6Jbz+J$4g^@_Sk0MJ+DfowQy0~7fPv{q0 zAP+3$tsuTjb&yl;!==yaYstS;fX)pfJbVV^FC1MZQTjg5m$un=)hFknJy$Pk4TbR& z*C*Hq8T24TNv~;R;<;*)%!Hg;@3MSyIv|WVzOx7!$KZw6}vAqr2Av=pI0=jdJY=+N^&;jj<8&~%|vDsQ7&cw zKOCcsOQLU;V4)@?%#%#T(`awX2_IoJ3Aeg8RWP+7xP%TJEq1HhdvRsOpd7|m$ob2 zFTaFyt+9lQTZtT6#Ew8I{1D-`{iG$FECfrSK+HVn?xF$+#?a4kZVG^^UQw7sk_56( zT9IpZg=Mu}vW&9GjPs!N23Jur^g+x5{}e-o4|G5oKwfRvw+^P^_4`T8d7$5lqCG*< z^rJ22ma^RVTWqm0oGC;ROT-ty1?EA-?MFD(Yj0W8RFEntesc& z^`%PiOxnBEU;+y+PJjN<^ud2+kq(xjEK*$tM($TstQHkWVCG`)eCUw`Rp0fh(q=@I z`ON_ItqSD?tvBe%(;Ob2euE|teK88YzG6U^Gh<;vxHlu{ETi41Y47RsLgO}J>^&N@ ztY1c{loWHw@w5o$O(MYo2yg`w)+|)pYp*-D9&_PH$rjN;3mRUi{5;MPOq^FCEW{$> z@zr@B(RT{7v}p&%efJUoTT1tU4zYCf!z94}&f~xsr#?>ymHXBZ$(sM`nX}{ySFF)uf*igKe0+{ZgoHvYmC=e6;F8eC z?(UX=_py7Btw{61ol~qcJAPwxhAmPoW>t;fi3CQD68yEQ#-)`kxJ95Dfh1hS=>z5* zQUb-d2~qs@`8o`*>%4F@rxjO29)QdSP(TYUPkP<6B)*of49vcb{RcM^XFcJpuXl(* zgk<&d{MT!f4Gof4oQVytH0gh515t2MBX&DQlnHFvrU#qRtVcL^Ah0Hv%4@fq5IxEY zeZi%nh{aX1$D>#DzDcghoB^%}+qYaw6be&m;Ss@6oDgGROi9ZCNhiVwE<`L}XhI=^ z0a9SR&-Na;0v-lEXrSYugE>>x56|%Sx~S76G9btTAg1I>y**{5&;&wo2r=ZfZqXAb zi!|$eQ=9MwI<00zq5x*d-AcUbww`AF#)+%$0*@Mzi+cpe-gGIk=zoKG`;Usb3$Qvv6p_+k9AOSuYQmkM{N#NBy5DTVQk^ zdP%2|-O&fM#Ox#%;EGpX0`I@yX^hob>UA1deBR2YIxoUI)S<_#*l{|(+BkBas_@2Z z!z25Hob9gwW)BjwB;x;xkx%UO#3tTWqd-9H+WU^njmknd$Zio??Vj@gG?w6*9doyu z^4wa?_FMJ31cN^GA`Zvk&Gt8cme>oJ&)3JixXFG{KkD!pH3K044mHOTgiqewxVv}Z z`DwI~yb>ZDO$oqX^u^_s_4=*1t@pc+!-Ne@F#|Z+%d0QXKcC8&3cdt^0=FBiK(l?q z@DWF(&jfKADYeda%1ay|Q0v>g2}&5m|OWnC6#8 z%KjLnz=!i+ta35$);6$&PbP#sp$G?SlTxi0?-83oW&e}1g#sujPLdz2fUJm8< zA4E%swXyOu)$#40G#a067>Qubg-qjCz$FDCeYTp@u|eW^cE< z12*mKv+HSOU1BGPyxk7i?~bi6X7`#$NF=49&<|eitDA!uJGUYG46|N+#52^EE_H2=?9`;+JcW7N^-+EJw#U;@%1`H>pT&`-TmeMJ65ryM2*8c)e~W_WWa3>Z7&!B`A@DTKrj zS7nOSl~#CPpAyt!sCbNwVa7A72?X?H28L=fNY%J;b@BV#%Emlxzq&0Iat#L9UZ+ju zE0{I+QfYjdZ!TuGm=~s06TD}((g)g^`ElsW3z(-C*z>*s)10p0ZKykhMO-Pg3(ejD8* z-TWKXB{7r9tGxE7QqklHZ&6y;9hi1D^}9Thz2!vg3aRx z{GWvIe;m9DDj)-)=h!?WDT_Q|qr~vt{$5Tg9Sc-DL8n$Xvv57QaJ8m)$trBN{dbB$2FA| z-vgc!&S>DH{2z1zpeX{vUHApnEHcrUXFbN zZT>0LZIfB`c^EUlzh#28aq5Ip=wlYJC(mr%Fa%}%qV8{lLwEcge88`p1^p+EHnJuu z)$xdL-K#Uz*ri+A|9orJC5$^S*O{i`l(aP9l#ZI5?c`f7a(oM6JV5Zdtk-ymgUeRm zZAPrk^-@#g;xey%t+WYBrqHcWnUWrs2dFnhM3P32LDN2&&B?Y?>7XKYD+kq7;j3=0 zpRn>%e|ndb36wLWu|yG&+PH4;mgPDl_Vo!Ot5Gg&tPK+6c!19J1{~d+CCsie|LZ0g z)W~Uz?`8st;C8Jo^qp)d0i-OS2l20y8#NfPZ{(iEhT6njg)a4ENg;3DEe41I3)--Q zshpa&%4e7!i+h6#Fblg3iBwXIF~HZI#}S5h#-JfAzuu2Y!P|xL8?iw^g&dK^X|tvT zL7tucTVR6iWZs@mmf6!;S8-IGTSh5bjb+kep@?uj%04C$_(;PyZ{UXCT_)YjT+@p9 zyQx-{;8uVE8VJes7Ab5PqKD3pP{ZWjey8g>ptw%o`fsOzo-gfa7{oAB%gOzpL@WLrH5#;l zGqMApo-Lvk;Pk?m$pLb&P9w_swS-1Z=c$qaUgOLKSz`+5=6V>6}6j z#LpWrJ$j`ahp%*Jq5LHxU986X)t}%aWK$?O`h79rP$>85dye1_=K`w_%p@UTDwfm$ zrk`N&FIwb(*14bz1YLBxm^m?sp!yjZ49yUK2F^himQ%3Ol^{vxB@?w-$~U8_fsI_K)YgMmp)I3HB24&B7=!D^*t$g5ij=x87A|A_;gI52rN@ z@P*igr2{koUmk_aLdi&3D|)JMWCrQ@jgOfKuKyTTXTRCe1Eig8l|RcQ~L^qu~Oukj|T%sTp=QH%tjLGao=>{D5{NJrg?p zP0hA>2Jla;euG|=^q;1xCqixPNxQrHI#VbjJ?u)Bvy%O{0FM;F1?0Za9G{cMHw7Ux zps}XIE-}Nb$_bpySa3&z@U;Um8_o4IM)4J(%Jcs}&k92_5*1WL^by(q{N(aI(}2AB zkzZ^DO2&9Q>@f4Zj!xeuINR)RR8ZXLMFRNJSOz5r|W+Z=*u1OPAXyppedmtgjTo_rSI-$f+E%9?hI zYxvF*R+LUj9K3w>uxwRrvP^^&w20L}rX<_ruXTMpI*jl|7&uTEg1=z=#-&p#l(esh zkAZTS;+$U2BQE0X2@L&R@<{UtjKo@S%Y0BeqKa_GH1rByazA~?kX4PZL2>-Ji@|uq zFM%JvN4-Zt!nXy{tTh<@j;WFMYE z%teM1PbNA0%d@RXwwr%&Kd4L)9LgxcQR?l#6@JqZ+2e}!m*8OlKt=;ss#bUctt^vc1qfK zs&@~)xp$6=e34{q)OK}c6234h0xAIC<**h?@}>|H#v#}EsixpY+oHwZx8OPoMna30 z0Fr4QC8~?#D;^972R`VaN~TS5Mr8;PDYv7NJm(kRS(4)adbNz{(R6tG{FMsyN=?z) z7Tx(IrYoR}Mk#7_E!-{On7z1ElCxSUO9NjA8c3&8ZxuBPDgfSbO1r4}1d2R3L96$K z%BkL^o^8M`Nc{W67ZpE2N3kUep$k9ApdG(B*)77o!@KlKKM;~?UU>^%wL1O>BCbsK z&92=mA2e=1B4b0pkQlN5Le$ZNsw<-qV#=r2;4z`@_H4RxFxmP0w{H>A1blvx!@kOm zrv;VlfBufP&-ZKF@>ubwiEo?!csF!Y&P~-LchH13&=^~1hh*2|q+d&f5Cq#a= zQ@?$ay3xRkv*R~;>5(Z^@9ta-8}s;yIkLUqJ7iaNyLYzj(-hew$cWXl!OwC}lbhkq+9D#joBm^VCcY{XX;E-6$%VpZSu z{#}Xt)X>al+Godtt^?YgqP^j6JXoM0F#6^aT%YLb{md}l@^k1FRVSaO&0-h;Cj4)A zrB$G24);!4jt^U1A{7XCR;`AsS0_j?TGZr`qYqalB9>583d?ulL`Rg0=;c=K1-&@_Bh?dc;DF3hB~y`P zO%UmSXeIIONxfM8Vpt4ldjM+BM=}`?d8O!+etLhULDe<-*f&V|(*CT;L_g;Bq3Xqw zp=oaMrdeZYpkD1w2<5pmYE>v~%XnbOWH+q|X;bA?JZpua7d~3b`cr~E;VJ`9u5q~Z+rzLGKLv+gqcNr-b7J1oTdVm0{8!E^@)NsY7J2KC`C83gH(`R zv2q@v&Q<%W(E47c$^`(&T&RvMSqOkS^!K0sE1a-R&DK_(MA^@iBFzZaM6lpI?(ewJ zPBa~0NbDpICogcP%<<#|Rd0D#)^Jzz+1Qf=DnzPB zo-ivDC~WXSdmRMNwKIYV01C?nCk1xt4o*%cF=GuJ5>L0=Z^ig_W`J({Vl?d7Hrux^ zSFRgZejB?~`MtO5ahRH4jfGA9}%x{|=z;<^fh{o+zb`DcUYbmuojw}3_!u*d$f?&gmb z0{1YW{4YlfBcw_ygmNE(W2G3j;>~MLRWHumUbVH$?6A&8+7=!2T5)dQnwYStRi6x2 zfu8p1iib`~KA%By7y}6y9d@rl#`UwN|BSFi+9{B0go8Bb%r?x?eZeYkr6$k40y0#j zYGsik0)XGEkT47&e_7IaLOk?75QG+oT`2b?pSg|S=D7}d|4;`nuta*$%rO=TN^Vv+ zrxcEN*aragS|?Zf4BB|Y76j_LyuXqP9eg7=Sx#Ufj4FbP2W!6yWwlx?pVX(ntnD&f z@jdCu2id`p*~juQbJ7UH!(e~s9k(kKZd!$-qj>igYw;T?v22k67uTv|4a8qLRhYBN zexXv>)nQVZh1zw}?ujLRucFGgnP+^^V6trm`C*Vj6e;3)>8g>3NFabIJ zNrQ=byV5ht`^T^6*=zCW&+vK*tB#M)m4e*ijogi`Bi?3f#6KbD|8h1$l-H2oK;srl zK0bBX;wn?kS&Swaz2d)CzUJ*4F(QgDIvLP)+MSSS2$A|BLeap+K)6-YEUI&pchnF3 zC4~Tc!r04D4{67!rh!Xs5W0t08~!*7ae2pqDygE!YM##nbe{!U8KV6RvEJX1PC?VMz`zD_P$0Y)njV%rf} zaQIY2hdT#A-FH~H!Ed5nqBYSrFIDGowgL2wGsl=B2Q=Wt#t3(q6Xu3i6sn0o85DEIICdxnw@QMxP?L^`BF5Ku`; zX+=a@V(1iu5)dQ=0cns@=|-iL?q-ngksRq~kLUUPuJ3>6I>#f-J@-5I-fO)U;M}Th zAKDlSkEdLM0V0^Kp`ZCdV^FSW$h+S`loUn+vO4GP1b|L_6GkOX&~br_glsttM;d6G zeS>YDYWb#EL5~Dx{u{f-1S(l)H~iXnyn!L3gG!JX%1x4Yg#ty77>qbwQIG$d`cq^t z>Vk}pM#PaY*kPnDF2$s)edao=t--pV0XE8yID{3cP(U!HC7%j6}K<0fqm?-0#| zdcgj0b?;x~3kn)N&k+>l_VpGg1t5i+{uXrEE_4kps_7Ykn1CLLB2cMPA;0r}24L|2 zFEa!&p>G9a2OVEFm)tEnV|Zq8i)D(^^A%;h%`JCLiGkG)bmfnXZosVr=0*2Jo`kG= zd5yt~m&5^(W?+TEx-0-gj59L@T&ZyWK(iE3{F&XBBnDTvq{m=$0R$uDi`gWFf-p-@ zrn;V62Z;GZ!9YLnokCf#h-g3^4*a9P(i0Bh1C1 z1HsUK8y#1Im-$oahdF=xe;wZMpf#l%lHf5`(T02$oC^kat)?f!*J0c?*@TlhRFp8O zq+A6rk`cA*Bp%}*_xMLbDkF5~s|mv^| z2D5VzO1=bUyeFpG8@k6Y0><1>>#C?MPUqYbF|b#8_I z`{55B5@N*#jWM-ANU4W$=*UM~$LvzBUElrr$;H3ll_*!Bn*GVD)e1>e3cpdQ6hm%TzxkV>M)*Bm z5?mjX*zgriIn4Z}|GbUNM03G>77mX0Ns{z{gnGL8ix?J-kxFh;(7L!KZhHVT76^HR z-34!s)LJ}Hqi@Sbe7V6L8UZF#!gQCn=`JFdG$BN#h&K^xY>1>$dI=}VF8cN_k~ZHk zXor3%4>14(RstSP1r(m-cmzGP5?i+>^^xh?DV2Ru?ROn8kbK!q1-`*=x4?HWofY4Q z5kv~Q7x_!>2)vLz^_g`?wc5fPMjnGVw>J*>uyd80Ejz~A$2(Q-P^t|Z_SNi5^U? zSXmdg^dE*Hou>mE_r~$jN7<=(kE`aH{NvkyfQAHm2k_=FwJri?1AgYQF$|vJB!2ZJ z1gA3g3$8^4elss6s|6RNXQleTc??DE>2YI@Oso&p8>HY9)q~^p3TA(3C$Ba5&$@?# zw#5PFDc9^?=sd-lRci#gvk^aGOIYN-{i+ywA&#uTu<%Pbd^h*=n{^+)lLszE5}f5Q zy5NPr@i>ba2;)L@scbMCgaZC|cV|GQ! zqXJQ_tUps5fm)WzMH&Uyn->i8lX*lLuy`LQ5J#D~tDTs+n|L`WD_bzWn2>x$#)G&C z(@C`NGPdkn*-yC-_)8!=hTHQ=O`lrR9oYQxC*4q4n0v#;KM8KbRxxP67K8YCiKuPb zJY!2I9tQqje^Bn#R(_P(CSpct$N*#wbaIuTq`77xk{ve2DSJ5Dg3%#tJ0nYM?DOSN zO57xn%7^1Z=;OBiXp4Y%BE;1W#$$Fu<}Kk1v+wq#Jq7nC<7f9)nUO{q9uZ3N3z9>rETy3zp9v(jF$M{;Kg- zc&L3Q!Poa&j3*h264>}FBul5@$mMA%<;=E4;wTQgw?N17y2fN@cUU>^pK?4$oG zM?JI2l$0)&-}mvtS>6vY2GHR*J!Z(Ml|=nc0hLizgYYgND=TocIa|61^)-H`fsB8U z!&1=PXHl~8V70%G+MZW~F!*UdG(5q;*{=Zr@`RN7FvQzKtFlzdKaENmbsE$=y847} z@;#{8iJw=mt{~69lQFTs zBtQ)(g~i@l3kE#enh#x|OP+~Gln6a(?h5u}Vw`bs+@4k>q=?dI`5uYZMck5Ip=o@F zYkNF)MInvs30eF+`rI_61da=fsbIXibC_uRYEmKmhck0b`~2y#ta)KswBJ&ztomWv z4=QXm#sBe}%ew_$;S_}p{bMij1+?Q#(_^u>wh#M8->bMct?ujj+u{~D-Vr1md= z-tJmJbG5;>2-Gci#GxW`(2u-_oG~PSKkdAl`Mo@#oXY@Q#v>}NnoD$k<$t*ZOw1?U z*`KZCy=i^airDY40^$mO{a#rM+Es~kvIYkG0=U8cZO6)zw;J#?nQG(%z)lO2g~>x9 z#)diUG_(r|;Rk`x=%QSy`M+q_N3vTMc3W%mo$H(jW}z=R9UYT(Ms$s#!a6QyQpD;Z=a5AipSajqPNH z-g?=an&bTYD9JVcX)6DxcHK4|#LT9?A{X+EHQObiD>DMkL|I~J^Zv-Zv+?H6icoP4 z@1LFi5HiV_L%BxdGdhq3@%k%GV5D?hWmTbGAo`fn<2Rvs&H9>ks4L-+vC#V*w3n@f zX|N9kdFF0F`me9@VraMw%D^xvnOTHetK8V>_N>z{V-BSPT9Z?VwSh8&`;{P!#Xlk5 z^QUcM!TD3}3K&0rAqji8)VPUWj1RadG9v(aXZVUI#{w zju|tkNz{*x3uCp`b+!8o;NTU;D(D*{Cp@q2i^dlGQX&d^NC51)4Z2!)1R~1&j-tE{ zI3`C4;}Q}Q=w8CM8-j4kyGzhSps?t#mjl@~!l?a@OCY?gQhJllyrmip9&Yg2@1MoQ z;L44iD)|1!@eGSf3NOp~&{;p|E3KkxcUinf4GT6i{L8NPpiRkzu`EPd3vS@BvTs|E z<~|t>Vh=+WE#o$T3yu8BQT?aKa%P3H)OlYCPF+`bF&H>m1n0?S)JlR9+C%}TxJ5N& z)#Mm!7{O>(zVy;vqdvx9yTxU=JpWTM?k1B2TV-$fxtAG;F-oQCTz)JvL#`(jp?Pr0O7axMkArr9)Ba2&- z1oBW0v{?|NHlO~pFTzIqBJ3QkDgm)BvajD_kM9Of%ozbwLj@kt2T%Sy&aw-Sdibj% zl7-UKXR$+WrAT}nmqeA0(-S(VsZ8oQlBN{z%r_PxWkEC%1`6)tS7;*w#u zASsRbd^rP$j5UUZ+JHeWeYK;r50a?o;IFQDFtFf8@dPJP0R@mbLL z-{VsnpSF@cWXx7i4yC!I1g+`vMici*ODXrgwb7e%Q3{_os#ntu3ukVIhCP4y>M3c| zOEQ=kXD7epZkoGo^>}5&;e*Z?`QMo-i40uql?*}KQtut{7EK(A4)oq-L=al&a%~HH3QF#h*E0Rs;r2`E+j3*lNz5?%ZHW|+_>fAr&NyLb*fMw_u zD$Jf{1wQ1*c7@S@2CByy41<54{L*0K{ruu>BLU2c#uNGm2NO2N9mg>=+PE*~s+=*V zQTSEv#(O}ijr=RnX(4rRIRn?>SSf*e^p_-&3dlz@VQH#x0dpPxn6CvC_Bv=T0ieCN z!p=qtEi}7r9g~xi@P{*%*IYbJdj{uo5L)Ab4tD&~NwBAeWjuav-*xq4Jw)CGI}{F* z!h7ZAup%^$Tl_+L+{>>>k)+6rMVng4aVXp-^(=6Q{S}TytIe5#^@Vp_JDc}j!l>jj z-V0o!8&2G!WHh~!U)H9JH;$y)iscU?(YwZ)iWf?`QS_{ zI{G-~xyv{k&@NTc0I|9qc4QF{OyZ#jZ;ODC+9OmLJ@S`2hZ$UoIcB1}?$f}E%K~Zp zGv+fuKG~Oe$OA)VUHB%-!+M?^^_$Gj#!Og6Ys97;HtHk$;KLLN3eqURpu1iYoSm{Y zAlJDK{=j_~GqXeJ8a*y7;w7hCC`LeEtz9vo5{RsCq1o09`wTG8Srb~K;8H4sjic!& z)PsV&dex*wFZOZzcYWl=F?~t`mD{|w@pzZ%py`tiO+o?I_;K8rA`%F6Ew>gg^FBHU z^IW^0`N(Lieo2rI<}p8(ka)ViZ&Oy~I8a8WZMv-!u#|$MAULp1CvGo-kxHyWRN73k zrtz%ra;{dV?*}TJ@Zn1{g6kGCyak9 z4hR?l5fRKu=}b{N7SEw=r_BsL_sW&jH-M0mQK(! zfj448RKdM#5!`(X`Op=h0I4_#;Y`ABhLUFLwW~vbT!3ac8Y+7qSQw<#y>4n#XH~vuDd$KivmazzPBG%X>L+W0HZWYHWLofY9P!`oDY(&S=?ozo;;F(hPziqxx_Fx&K4L|K%k;Q^(TWJNhQ^j zaOPJw`NulwUV@|^*Q`*URJ}0lUsbq@OJ}|FfzoUQ1lj*Mb$M@`$U!x~6U?6uTgA+J z1-hlN5ux|MGWOMMe!*8#Q~%@Lr`YA?W%)?qYu!m=REVD8;n(#El4>aX1E5q53Z zrUbY;XMrq`V?|9Tr{GcF) zwN-^O)7SPkA_n;nKNeFN*q3D=?dj*|4z0EuOnB8roZQXYuR`o#_tNVJ-h>| zkM*v{W=m1HxiXB-oJ2%iUVo){rgWcyMT8XJ*EiSA)gX2J<%t(71IvKhG`^hn82%tP z(dw?HC)3(`vz!?__r17G3;`l|pJ{F7?o|8z0SU>ZUpZ5~U)Cncbcl%h4tIBNT*q3X z)LbYK1Kj7Y8_9yQ>PV&sjsByKT4E5fd5~PF&)x1eKH%-uH(O??P`9zVVq=&v@M+Kz zyJ1wSayUh}GRS>!cu=s&Q#0I%u(2(Evy$X^wktc0(p)nS?Te33(XFE(BYEjSxMu8A znW2Sg+?0`wUa=nYfQ@fZ&{D2m(gCwpIp+Y_89a(k3=8v)$yIj!KUcVq?gz;!_{R4N z+^po`+w$C!++db0PfH=+!(Lt2u%W89T3T9DwA_3IzZ!p~d0@Hy&{b7A%dQVQRYXLI z2N|SHSH0nBtn5lyA7;@yYt_iaV^NzV_vDZ?I?10w_U_bH@-byh{b|Uae47vY-oAc z@>rb!`>=7)FItVu%Ws%pe>**Fc!d@I>>=>!UTd=E4t_4}0=P>eKN(I*_S|H*UQ!@B zlf0|-&Z$$-toPyP`*+67vihRxJ+SAqikH|~6zhtqVmD{Y_VXfHLP8Zser*%3*XGtp zb`~oJkn7~D?aHO3?(XhfwlAyDPjWCbW9R7fR%KY)aPYYL$nR6SsP+A^*BbAiS3fDr zO*hT^h<*m=EuI-}Zbtsr84x4lKfVzumL&-mFeP=GFdt5{mW0h6bksdfx(_ z3Zgh3r?^GAx`>03FD-5#ldLpX0<2FsBFA@G-Q?!$uyMztBfWuv_4Ti+G6jya6oIF% zP-jLudBln!0@}>MVNw_S+G>A&F)RR2ldtE_Tdw!yJSZNhsb<=ekjq`=9f&>gM(}qj zD4sAc1moi`UFu4W|6S~_c9JQzgWW|21yL*y#JZQP#f8yZe1>OnJ4}$VgD79ud`ws; z)lZ@dooJiB^_^_YW%V9O6pw|rFBkGYQj;ClP;#;wrZz448tNl_aQ~*@IhL$~Qf$mv z+XRx>sC zNDz!-ldiN%`vldt_yb;Ee=f9Rx=o)UhYUU=G7vjEyT93mo|qTc%PhH)@yQ+wbJid7 zx?U-Lx?wyaXhDQ9@B2Yz(Vo?sdW1gx^F5r=VD{(LhhaT}-d!w5RxRWoO zInKGu$Yt@-`K3+F=?T3fSB0v%z(gEcPo5O8=efPcoorChks|CkK_HS4S8NaE$lu{-glb>EjHhbqG3KFSs~_(-;otHanTPPbDHYF#(4^6&ef{&>=d9S7v? zYV8(j_T5$@3CZ3IH2q?eUe~kv3}1Y?dysCYHe$13T)^quaN4W9iJbpHZ|d*+VEjFH zZ@hi#c-65!n-0qRJrF$ZMEIc$Y;s4NGtVIRQ?zN-Uq34## zdphAV@&NK?t{0n|DxVP@l%e5w+(v zWBzR3^pY6_9qS6-2B^s%+?6V=(#5)~H zuWR57VK+WFE)zpH1@#@8ozBO9iI_hiJU;GOe&kSh?6wom{Mtlu+@!K+Y36qb zwcX9U+R#{g<=(SaSY+6&_|GZxwK*xiZlgYrSFB{iDER8m3Av9`L{2@!Z;{=HP5otSoW(Hp{mGxLgV*z$5=$W(OTjHo3GmkWD7WC7h0?XrRY4^#O*eBgBxuYfV zgZhj@upEOcroN{vD4#({ZFLBZ+&Va!Amf|%PdpedTP+&dKUmdbWoTq&-zV1dT)JSv z&du-t`__ctcIS}5X||Dr{Aq%KTI;aS!SX9V?ddKf$L8;Y(Y>lgw0yjVFIwXlym#`8 zAAwWD%yapQlpU9UU~?GV!*4Yh-lXnah60_q-5cjr#TOXtd^VdsPzSC%-5;v#jM>+g z4C1;z!AC5NXY=2GZ&hmXA^d8J7b%~5N_cX%+K&W%v*rd336gRD!|`^%hW)+qUa@i~ zH;(w1B+_+te_t<*x+O@`)5iJ5{iH%9h4{w%g;-ZxBv*sEG|axgccZz^9_Om&@WvD^1>-Ey0hF;aT}@)O3X!KT;j zrlOcL0nFg9SS$XpZK|R1V`OvU9-sK(P38^R<;w-$yMq+-J008Ivu_SJY?oXJHV(V} z`Ezp4Fhlk8!|Mr=(}~^p=|15B84E29Dka-4|AmIrW+B+F$Kb{NL5}tH?P8JgYoZxh z-l)+k9{huj^d&bs{_}dw#hZ?gXa%)CqSzcwNXGBXMRIIv#%>CEoJ4?IczohDx&j~@DOeLEB1 z>4@8S!&8NF(r)bNa~q6|uiEKzE5XW1iMITkZqwZW_|ri-R#uq(bcNfqy62f+hHsCMvlpO zT?2s!)0{~IhYee?Er-{R#~a@&KdF!0^MoX;DjAjCV#)z;tIkhY|KDV9JWU_IY;l?L zt&pkgRqE^(wNE_uWp^{MV6KMNx!YDUCUf}?mf`P6Yxwf7W2;jwWs#GUF3IKNicwBA z$JN4^#fHt67ON50{uU`rxsg|={24~H^$!;ll&*`+=`p5d@n|c4)tBBRQ>_?NRMY2G z@$7=N)UxcZ&a5}4W+~n4v}#e5t!95=;p^$d;tD?dX=NQ{-JwHWMNZDt;YQ8wNlBMr zirD97y7sN1XJ|&D0*eQ%xmcMUO+#6cbyO1gB@B-JB*_aN{_d5>&= zele$I@qqrM*{OzKx}$B9{lc*n>Z8o(*8XkSPZr({B_qBoXlm*RBK<9@6$CL=xQIE z#O0)LtZb2DA^hmevcg^+#W~ z_YaGzKW)}uO|{#=(D4>vc@3i8wKvn(pbuM^C0l(^bx3r(at8WbUTur~0~i z9iN`W$H6_Vd;zsJchJb@o#4+d^h%g*X$8|rqnx=M&X&AznrPd1#EyDbA{D<&AuavW zryxgpoQUZp^DDp1c;=l0&!Ezlr@z{Jm9H+^HPlHSJIy98#NZ!d&>t4C4XJVCNBhfF zk{h|}-D=0y==peNbcpc+>f=<+Q!N*ncZ=n3Hs9?H;+85HBwK_Vu+r;^1(XAa8=)O+IJRHc)WJ&SN-ux@Ex`f{BL)|?UXnkCb`6@owSEYcquXw**`HOq^+vaSE z^kScgE^98;TB&v&#=XIor!{MK^J_!JlufPQuXj5YR;ehoV~kp~3q6ktM$*^Ice)Y3 zA2aTd6t_BRm6O_iGvgtv?wOUK>qQ3aBR1DhtKHVi-gNKw-8K42}&d|mt7DTWTmr@YBA=38A;(_0wQ*)uvCqK^I;Z6DBly*NAqH6(Aj^;mB7 z+i>q-Sx19&mZ4e-`eS+CE|&SYU*F5S|7(no*^q>U=IWYj%ZFSy_YCeLcCn%h40f%# zS`?n2bhwv<3DoijSAQO_Ku!Yy0?`D*o}UaKxw(cj_OFo*Jo7{CEX{e|dS3GryS5=3 zXQJkUF?1KRi4M(^;E$S97_)zn#4m3o!~H3SGYg|Aw=FdY;@|F=E#rKhK4-H}Yk97& zOXGhn{0j8|&>gjwj4CIc+}>L5{xuvSU2>?b~JPc@yD5f37{P!D-&K^jv9)>gvSy z2b*_{`;#x>o{9LAD6%*gNnvZ$(!sSaYbBFU=Gug#s@&R~V!veuibqIzFYc z&`qY%1XpfyVs((yY^lX#wORIhizZ?hwx*j(;k3HTD>e@O10J;1J6_(sT++&A`T1XX zSgrLaPX5HlUQhGSL%FXWVjAo7s>f_{xiQ(I{2zDo(BcnoMR&&z)D3kS4CT;l!QXOs zD(nZwqcA^zb9CN-KSE064Wputa)j#Cm#vMsUGKZcHa7jvY)GAVesvNy@2XA-H2X`1 z5V>y{dX1?vF|321%8n#MTnZ`YPt=Ypf1kV)HOw3QVBy!#P*4-^Q+fZ6zxRBsWvgv} zcGmt-CzeIPkz1vOV;1wm%KCXObDxLd+hLvij6=i@T1*S8i2`zx-5h@p#JW0p=D!rA zUTi|-4cMr;Fq)WE6?8>15A(C>c>|w4kKvKFYdDMb#u--^IT4er$)%z5I`NQE$DzLWaIV3i8XIAH;?FedFI`BzmFWwR%arkVl2iiIzxsxoVr( zuDHBA(gDO$d*c0u<_X=DMP5{D*;t_osT->X@)OeWsh_w;K`2hk4SjPIvi+iwErOOzK~0qsQOdFO&b(95mG(h@ z(_PieB}^su@;z$u94L7K%R8r)PS!nA%&wj}Y(j+c^qAJtk$3nRD<4gjIh>g|cXz#_ zmHhoJdSrI%YVcHBDWCIRYI&hWPmp|;T!6@R_kQ6e6O&G?{&+lBaM^YA%0&gMb8qjQ zwfSQ|n)}#D^QU#Nt+6E^4Tr~uxNr4}izUT#wyhK2ppUC#`;7rL$8FsYg(Q+v-rNG+ z+~AF)dG|*(dU93)>r4D+=+;;6ZfQ{bot(7i4Ws_fVN2~A^F`5kkydl?-77vl(<<>1 zZ%4;%fqk}fL8%(lt|n0itajbGU4c5mUKmNe;JuHgR*8pI_4$^If^zPzA7vg9K!Z@2 zEs};HxsNCp7ns|1HelSf(Ad$;PyCn%t5!YTTYaG38J3vMH@B(dSG*Phk7 z+`(Cn>Ma(AXUt1;t9F>C+mtYLSlX}^bbha6f6-CrhlaksG3eX7O|c3j)LKP_9C85* z)r0*RXc~>YOL!Mk-^s*$nk$jcXz$_P`h7TM0>Z5h&4zr`)NOEA|11HmYEgmf@l!ic zw-Ft5QTcSkAn8r$mX{J6pDVMeF@cbIvHydy)QOxnjIN&&*HAnSP~Yk=pNonUxT5s9 zaL70nwSFsylO6_mljiUi*wX1A4$c=o1(775D1dx_s~yn4e@Y(MeUnKZ*%zRd zv2|5$ZfkXIfR@AgIR4Np`87%U*RLeiYPu3lfT@2GW-C+RCzh=7pjD6|oCBPQPnlU< zIs|SmBv_O-nE36_tF^93dGti-BDXeb7D@pek>CLi%s8|9O|kwaC9wxE56jbArxgGn z2#5jpD`D1nse~X`($uvTCi?<+L}N=XFAiPI$5YJg?e90R@^$xUxh!Xxg&;9GS1E@J zv;fZ(B@A`8zP|z8uUf!J_&T1A^w7LK_<(PjKVecuEms(TjeiLRE6j{sSP>cy&a&h-=D`t$B+#~SuGXF``<K5WewhP!HCPX*Hyc6;FWU79O5rzF4PM^Jkh7%Bp1QE3?58g zljJagkocyguvLRwgp$kRVK83PU}Q~7FEt;&oD-yMeELQW z6!>IvLNJO{KeVCEo_%y8dNZMgGeIy*0PQ>)vJJ1&+jcee5_pgLM--d_A*u*GZtrK} zc^;&9XDla=9Uveay?q?qm73dq{V^uT$iMcte$JfSjgY(=1t=ZMx=&|0I_2D~J*xmwGQnw0_&KffzeG^&7P9f%14w|@*G zil#tH-0TZb`!Sp*rp-b>`yPMP+Wc~~RT|>3#=xKWbG&9S=$=oxKh63^3m$cqF9dON9+A3Qzd)H$qa-sSo0 zHThehGRkiN=L~NBc>10P|9xM%4!s$0n{if^cUnli%LHxXj;sFdpgJtZWijOqYO+f+ zsbwv}>=P6z$uL-rhDd`HwrNO<@}u8=R%XTxBTqp0mIFZ*DR)MD6ttIk5Y+YdC=ceY zOTSdOhP_}u30PjiJoI80p}Iug<^eV8RkspejJGN&r<#pvj1?;Iwzce*czVhqFkz~W zC`Na(>Y2qkL&ACBHys0EheB!#;IS^r{&O(9FL5T2(TjpG|LV02<(wFv7)P(b+hJ#C zz2Jocvp48U9&OQrkMjkB3xv=pvDi;Icpc}@cRm0Y0zP*enMS{&_sjEZVR*a8nsnDd zm`ome;W8fxs4sC}ceTk*hcq70Eo{5)UQ+B%H!@!S zV+Ou~FACgYoy(N;U=cxn+aXW)k3stu4prXNbH5PDHaUVF(GiyckUH5sq&vWVqM}Dg zd_@Czxu1|Aw4k|W0g9NZ))(Azirzh3TdtnY&D5GCgrQn06=72V_Xc#XVxSff`BSS{ z5Jx*XjUvOsY}$ueUqRgn0QBP0Xc;w96Q-_?;1n?8;Rg89s zxQ!mvP$wJ+#~dsjtTHzgS8+lJ!U=YlRaqhJdN&MSv(h6AxqbjRrq#dJs*urFv$LH~CNXQT!V|zI zPs@prT#NFNIkfYYpdpU(Qa`LffJGy_xu!(2dW(VvoiL$II+QkpvkuG zdY}aFo|-bV1F>DT^|r`GFkgPiWkO7M`%`uY1z594EOD4OpO5L*H?geu>z4kpVMKs* z{!Vh>+8TkP1z)z3i6dDXHg>Wc2QGUN10MsEXca^e?U_O4Op4|>E^Ah zG3Ke`_Bp50d~ibIXhI$fjMJ-T!#Oc;5&IY#<&US$^nq%kUs8?EA^U6~PVqVwH*)5= z!^3o5QosU=G9mW_-^)mE(j0HKyUqTEcrF;xK*EB}lfDNoKdg%J>ZL7}GO8&J5khws9>dN>0V!YLY z3=JV+qBdyKbd=4DgopD$7-u)nFG%pnc}f_JNo>xV35EQiz_RAeyM&deCyKfPem>jB zO5rLCXudiEmS=JvYy?d%pD?I3gX#Unm;?#-gQ$}+tCTwv(ZBvK%35PPV-Vugi0QnX z0HN-I97%@{Nr+yPOFyo<#TpphFisePyfXpEF#4QSaPE!S@=d3`-s!fq)gCsZf+&r~ z<(#W?En$3|mU%@~-O^&>8dq8eMAw~P=P*k?0HftON?hU%f5012ydhJ`;|CZVGN8Ne^Wp zjr#U&08?@M6n!t|5;Y4`Z?P*>x2$p>sgJw0N z1rUk4tFwLNQ4M&a&xU*L+>4A7T;1`v7q6zi#JjsAuLHrJQOxJs$b3wyb)r>>Kug7o zuu=s?Vv}}%2PB(JITn^NHMFB_tf%M;t3OqBkJ((`uCv1u?qD?Le2@NSn$ZS^2bQV< z1w|m)2&|`^KVm3>E?ra=R^-SekUok!BeyElEL1gCvg-aIOVnTH^L!k<8V@g;0P1;2jqJ&W`@Pt10WiNBIEb51)h-;4*C+Mhyl~lm*%k3cAjLd-S6<)KiJm)ri37PT zRF$tXod+k|OTfha)f6Nv1IH6phP#$yYR+8jdfrkd$ER4q3;ut=sLGO?cx`Fc<)o zorW+9gB6k3yR)9zr54A@8(fC(S?Hv(#a zH;E!7>vQMftigfBNuKkX|1t~yXGj|M_W)p^jQxdkxNEV}l}RD^P{x=EKr63M86AdD zgs#SdXA4&?gVNiJNSk`9pyzE|_0IgFe*5>~H(KuQK6r|hJ#0aUw|74C5U4C|FM(%} zIO=Y*{pWN0X$&1;%p9JO(+kLb<+E$5ld!=x6K7nPa6I- zF+&6QlzVW?a`!CcV<3M;gVU3S6KwHHf%@?d@>cR+5E8$;bItrJjyOtRKT`s?EK7s1 zI|0EVX|~Sui5~}T7H-SxA}<0^9e0<7531Os!wYnhL_LrMCo$bs0#++znz{B!$E>tV zf%(ArjN*7E!9+M0%^h3c9sJ` z`XNUkD7KkWU2ay?A_&gMz=>_@0YSIUpK2)dP&f5N;~>|z1vkh{8MaMWT~{CM zSN>I7f8ER}AksbHvjF(aZS#xpnwO^BAJc?a#o3IPmIFuyK)cg9d<7-O|2uw&F1_T( zgFZT2323b4=<%CMnQ^!lMqgLj3l9z2K`>4QK2v?*aX*v zt;-CNGyQb8vFz}|5#>cW27Ep;JC;2|t>KYx}$8eDmke?Ja+dS*n+#mStzW(p$M8!>o_ zFB9o^O+sp4ceVS9o&DPgitqC$U{EE;Y2*QL-6ZNjcLx{tHNybbDO`u-n|UU+lH6~4 zc9k<$p8S+hDT3v7uDKlX0~b2gWcWAa=iBSj`lEXJPw*-KVUB<+cpc)dEf-ZE5L17` z%bWyPqTGY&wp|?#Mclg31$8V4(jlu}6aeI4&;t-DY~Z(9T@)vnSVNx$W|cn#XS*kF zzj)g0=Pp7zC`Xx)5LpS9X5e^$BS!%CSq2UW^Dv&RlnZCzco1yNSnhEaWRxJ~ox)`d zQ0t=~GEu<>GvJl#klavO1Q@KFoIBLMbdE-;sSS#U>vJ4)89lgTAA(x_4Mebex(*+(uu%HX0Ef}IS z{wO5l%}u)ZqnqbazD`F#GJ+y_1)jD5+vmF2uZveMA@4&szz}TSZQzyiR(l`qH&o>X zZoH)wBlXtO@ljVEqEKMQT;d2Ne_k}zFbGObV{?e69SOe43MRZ6CO(U6a=-3^4F5Jf z8v!{m8Ni2|XUg|!jVb`9m8LMV?=H}o0eb~s#B(qLUchc^LHFt*Y;D_#@aSxk?5`lB z^^d3;C&XaON!!iUC8ef0#aCIiZmUxO`~nc}fEK&r2LtCPy`V&5D4 zFfh#{06|m0otTc{O1F1|HjRFVBKLk#i8s{;nV1Ghop>C0X2q^yW751a)r982MK1Qa z?O#ld_jtW5ux#kAjQ^@pGdGaXFaKO1y*|BbUv90g?2dt&4IqTxek~D%qGQ+gdB#W( z|Kfs;&^GnzR_8v}ZsSaa{s;Y?%fX97gWueo18 zvZmtlFVn+E!St_fR(|dk zGTzVVFjA=Updxpc<>SAZixy8(rgmiw%v^|{2_^ZX9q_@=Ys-H{$2^Fl16w}dPBh6< zHVM`6JLpi2bt*Am!3@Sm6v={=I~LaUZz$88{JbfT)oeKe~HLZ;0p;VaJNgcvlV(8whw*hV;d>N5DkYWTfRRi0)dsp z=End7OkqcEJ6MS{&P~A!Bm?ib8f8zAJ{a%L<-D8Q9di@ojvA@OCA1!Yz725Xe-{b) zG#D)i@iKnT3tH zkZ8i2?^(ZEV_wcHT8=GozyaUHwq1f3Ozu>H>S5!#gr2fXHwa)y{6TdFqOr{vlS>wJ z?%!F#$ez3{r48&9JHzIA*?QQ>e$dAR$|6MNMs;Q~@mC$?`l@&L1ZaLh$adWQNoJ73 z&#y)R{JF`kTdx_>`!)_3D}YnjAy3P+&Ihvz1wxqxIpJm`*v0CZDandVh7L@-8PuD* z#W6B-pYr==fgU#~JZOblS7#MJ>#>xU$r2&0=dTW}C0^&L*9e;J3yhq2O%P=SWs{Xv z38|vUt@$*B_@?6YLQ>!%#?dYw7wPqj>U{O#dU+Ch|J;j(ee;4T)Fm02%+L>v{yr+zTBT2zwb{+*=p zMg`(E+e#`uDC|*cmqnABU2%rnM)b*(`X{Hy*4FJ7(01G(?T+56JMr?B0ENibA)o)~ zkr8ycps>Ce(*c)p9A`o48+1D0Iwq!3d7JXi-6p)?N~j$y^$c^+h_|a^P|5lARdq2sMPwMs2C#E zfbnfqm%LKLgdJ;V`E0@xV?uU(h+ejWFg5Iy$>wlSLVyODN zu=XW7S|}8%j<#2OYzTul*uXY2)&fCfq5BS~8U~06e+TThF>E_3Ao^-dVETQe+vt@G zx0*H{lX`hu*PwNmjEBI%C zb?E)6U4qm({6A>Kzck}-DsSONlk|6qm|9@^aDyk41CpgyT$%+F-*ei7k%0tm9F4&= zdG{zt0pOwN3;zA3K4kP_%+;O?w5=BbhjhFR_IAUz>XZj_*I!+Hi8tvDZrt1`ijA2n zlU-3xKvx+1=28M{I?enUe+nKhD-!-4oG-5Kt@{70O0s10Rgaji1!S60UXaW6`{VoQ zb~6Mf;-X`GKdmO$5Yy0yf{o=Y$Hn5Unl3)qY?zrtCR*Gv5DF z$1!(8bAYCXqfFxX_y5}_!LN~S^rG(IlXxdj(K*#%R(!=AM94hZ=sUOu-a1xe>8Ih) z&i=c8FjVKh5^-VjI~q^~*_Vp?^X~cd*x+SCX<&?!cbnBCfFrYjAoyB5K-rz^uu(E4 zPvQ1>fnJD6CEwV*>>^Q{rfcAB0nNWm>DT1Dbu}p>-$^{a7@cQ5s!)D5#${cQ?qU=71qFt4H$1WZ0 zwKRY#tTPPmzb2=4n4jm#?t_K*I+-y_-A@J>D~uB7p?%UcL1m=D1+-set*9i$CEKMN{>p1hflaMZO?v=mKsPd^-|& zmo+j%cx9ob|7#6W5IziCfK>HVFZ){^@GVGuh$jP~L7ukTsPQeJU2r9l6+mTLsMKEJ zDE&qrXsR>k`Dt1|NpLFp?)YM0Z%WtL)m?#L<4Vyh(4t>K)oJnb;nDzHRYw2{;Cg-l zZYH-;`p{+FRoh0_&w|m0K`zxrMs^ z@OjaMk8u)WpIh#iDug0a-it@~K>rdVq}^Ns2ceW91(2~Dte6Atad$JIS3{~V6VNvH zsW}APt$qKIUAgd){||x?^*1>TLFZWEV~K4VY-ced85yDod+Un z;EsUv?#-VH>mctJiel_SZwKUBW=a-cBUF)upTJF|qKBvGP;)Udo3%+GDhH}~r3oCC z%@w=(zyohy8|TkVPaUcYa)Ya|Z3%QmoZ{0VKp6+G`MG3J3ezmOzn5vsi{RZSKR?5| zOrC-F<)9aO`JU=|d&Lk-;mGfZZ5R+sr2 zzR96ZWL2;ix7~b&xx7Il-UUnZl_cY)z$GE@wSNhepc^|^SY6LcfQwyN{)B0Er0z~cQ{HSk%j4~{rQC%}Gg z#8GfwdSj@>tKbX^)Gj=}e@~tqm)O#l4ucYMYHZ-#% zt1*JcD1(ipNA*TAHuwCBzrb}|KyE-#aNU@Nn=}d+03^lbOJ%v}RNyyIpHvz>OR&I0t?=Ss6Op?9QJq;x=;^L}CwLh)|G34WpqJ+ci$7@aEFP`Y^353ip&>SuZAQm_jFJ{PLvbBIcCY@xu+XqQf_gF+Nl7=sEuajwRU>r-S`>+R>+lkm_(5={)lA01Z>S|F_Bn$l?XS8-<3p`hX;7|h?xp(75pYV}^m68yl%o=;- zk3I~D)!V9BJUJBe*m*#?LI%%^FUm?-D|X)g_Uau#My@B8KzIw`KQHLL9z-;vO&34bA%Z zXmQ;vdPMf zGBdJERx-1)_nukFPEnbOC_7|tGBdIX*_-U_oz45X{O|jHp67nvx1-|-U4G*`KJ)yZ zCmdJ&8ixuTd=oAo&d$N>wpT1t{tl$N9uTe_Zk(cuLgRs6v9Ixaj#eqG8PsZ12v8tE zRdx6_$$w9S9}f5mZz8I2b3p?aK%(4#C!YmR@8^rOfdOS@jLIvpjK;kUgg!mKm_8RL zX|@FS(zb8x-+MUaMNBu>0{jb6r5^$a>}%`rfn5-@*Q(zSAf;kGQX*O2pW#@&dLSIA zt^Lafc?FU-1h`K`6M^UsXWq?q+)l0zx=pB%ThW9sfaraY_{BZYSZja2*`bs7aVQwf zJ+ap!Z@Y;3>_bS|{Amo1cp=4+aZrj|Y3dEmBfa>eiAegt zq8v=1iJaJ)cn&PIemq!+!J_dZe7>gw>Un)v5kh~CA8Yuf9YUMSqtA1bDJg3OZQo}p z{zE1(MIJn%hq!S$iVPKqJC^CvHQnvL?123DQ=2@~-NzcP52n!D2z+C6CEX{uy?r!K zMtnSfSIk9z`#W6swN-MA1Va6ADjC{@Ju1%H*nwW^Db}uiA!kPBJTmdJ8`{XMlZa(4M7lN+}HjG;E z$?U0rRfn^=F@slG`$RPOCX@tP&N8bq2`#fBL!a-DBnE5q5JBmmkDpWW?(zNDg!*jLXh zVI>{SEyl6<0?mQA(y+xhNj$=9401j}(5s$n%~;tPw?{iaQW|ru^4aN6ax=)F8Xx?t z2jJ+}eR3Q$_K%flAXH{zKs*iSrTmbjiBb)vu7TH1K2{q3v!gHH#_UOh_`Xs?8@ zeqFa0P%A+%iCC|7HGs( zQ`GZZ{KI>SEQ6BYauF7ANqYlIbWp?0@24h^f>Jrz|dI_{cp*?5&ZA3 zb#rYW4_^>tf^L$46$C^83*u^P>*>UaFwfk7DA4YLao-^ws7186Q&=(H*t}G-66OZY z_)RIwdOuL+*oMd#`eDS3Y|xeG)J5@joz6N^>F2zO`Q|EccvMZh6b^>Ni$Z)85YXja z2YR_s@QkwD;q5$%z=k^eD@rtw6MI-Y6tlKhsoA!O3bg!bJy)dk!EStk4sUz%a2QTR ze*Uv-bk_Qrc2Ph<+J!qQsaf0|_;cT3y`Ae$}oq-XYZWp>RS+TYd{7 zH?RKNKcwDkE4koeB=|acs7yV=kOi5>OuGj`T7YGsv~a;~zIoLUNmU3u?~?aXW`k>> zPzzP!uc+wBWme<%(y;Av2e{Hx^fUfiL5bqCJ_M9qS5qNz;tRydG>Z#D1zkmoX9W>O ze83i+0$rkX`?}PLAYPYbZ|twatzz905ih z91xg+%K4;}S)Ta7(Y7OtgbPGq_u#F>%m@L5#CK<0tK$-o^3U1_4KcG=;F8vIlG^ot z%uz^s+i~I7RUN`TKoE^`&GEQAc@NLjxsi8UdG)QNd7bUE12`p91U1>rY#fvrf6y#$ z`s)c~mc&;RR7914Ru~YGQ0E^M6dJ^#7`Y$|yP4yOGwLqTyB=b=B2|BP}m}Ldz*+ai(e;;MD z)}~Gd(&_dE6*n?1n3imH0d6^UKhuO&==Oa1_^Aq?l?}7)6?Uo36V{*dy6>*48>6pvrdoxc>sJx|6mq}A4oxY zM9MFg*-m(kPzjg=U*D;y+rLw{>$?B&_32|E;=rOFIP?UeJ~;TA;7giKeDG*x<1-7d8@B?4Jpw5Uw#kwht8N?cxo2o4$I(ms15 zEUGuXWFqS%+Bj0Q9M;?ZVR`v@3aLg6OuX6bY5;khIuJYXfI?PoA)J0W*=NuFbtsC9 zQaq#`It}zsk8vWDe2TY$jE&!C_}W7W=jqh((3*b5V;i7pDw_#hULx=v;arEqYvOQ5 zY^M$a2_RVU_z9p7y6_x&a`D=u*dEWcFdc3nNzU|s$li7*8d9pS?ZJq9TM}oLfIw{{ z#5saV0#ak4)n7X)0TVqo$4q&+x7h}2`IJ!S*$w2xJE^j4+pN{Tb|;kpcvXa*3i^xk zWhBV*)03WK+jFPr!3M01B!Q_BpL~M(?Z&$;OQA0 zoC|yF4`@NZx^t4}Tlar=8n|U-jHhh&hgVK%TCg~F@zpB`H0Q;^m_ku$`jmOgpI~J2 z9{3Iy6M0#}J>X667WSvIx8yL`ukHWJ=R?3Gp(u!gRBkqbLXq{^n4{$HR9ZWGrRq(5 zT}Ko^7y;uTYSMAk`BZkwETEHo_Sp?Lzkhf(Vwr0GOqz~>Op84)D(bB6Jo=k}^;j!S z+`QG=NK{)$%JpENgP%vEmBmwmpVC0RFI)^q*Mn(mS;?ZaNA!Sk^EkI;@1UO^+SNcE z`)XsOXJ7dfHgDIO@{lq`5e_M0o?!MLgSOn2c zI^t-7+%+3^@ZG*;7gRi{Muv@sY_oTg#ztd}iLXL`84*Pv&8i6~O&yLB+; zu{5s~6I6rj2MS#G5o?L#Hn|>olmFqQ*Lqo#1UBAPj4Q8^IMPrSq1YWEpw~RxtnLX< zK|D1h`MuXq6~10>up{H&ow?cHa;vAXUvW9?yB3EOvY1n*UgqVxrS9kA#yofS=lvPL3H3^QuTTA6%j5zj zb1QN$==r<|(=87`04asmfPqfIs|xnKaN$1KEpiYB@;JWU7R2 zQ<<P+Qb41J|;~u23LuSNU#B{(@33169YH)+$-3JL3fOZ7~a4j`J9rvJsW`3IoVB2nW zus#HmI_*D4l$^#jJtOGv!;qpc?YMcMVEN(Oy1=#`wE?*3(cd>Ej5o~r;J2|Oa@U1} zk8eX6PwJxuq~Q(ueO9eHVX1tGMhtu+20t#!bItq8b5DsM|vfP%%&> zNBJ2S_F(G606|$O>O%}OB7pR$LX3?yc%}wL+blEC^^(<$NkUC~yn3A$DJEfweHopE zDzk7vT)*-vQ#<{RaVCmf7N}H#_!xBL_jazlwBN0}0Th+0R$hU*(j;t1ZIBV&)T^#g zE;fDYqLJeQ0F+_~62*>wda6VQrDUx^0EsnnM=0|)2J~q(?gR!y%l$zc{v$G|8QHj^ z1q9av7kgntFe+{m}tXsqADRpK3zaJPj3rfgL!7 z1i#(t&l_nS9UCTWS|X&0*M3Rg7XZ*FOJx@RDmk;fAzM~8mQ#MHu>*t-;|<+?U9LNS zcj+W-Thf(LL3fbQBH_jpGCb(s$dRCzY5?{VH4U7Xrf@mEgXB}1<(Nqf4O@&WM0DG~ zZxXlyUFL)P*C45)01&(N?|tY1$|+oDSNw>SPb9?!!oK;2NUhB4 zm*r;46v|@P4|gE$a>s{2Pz5?9K2v6mkD*AulBSx7ZcY#KysVEv>`4~@QP-<>4a9=9 zHS%4&-do^BxB)I2*9^3q0K<=g0bGEix<_Rl62ipLzzjq;D6Wq|sO-kZ0LyVu?miO$ zPKzmBJD{EmSf-TDIIr9*plls&st@k6;VJq&|8EevY-IiOLHbJ8)jtBSmg$CNbo3&o z<+}k$dE3?SHA(Rj6LFM+);cNLLx4r8qU+Mo!bvX+6~8Fg+&v5=M&e^~+IT2vf^{Y< z>biW0&<_1ZwsD{S^Lyb)z1{-Z)GIr|D7>2ut8c6WNd_#z=)Q~K?n}GzD(0D zWuT6i(eGG9mA~U_KxWPn^&UaN$94;MRI3*sSrwLr#z`$0I`fwa)@?+N6tN3hH-t)G z!V!r#v;aVZm+MRUi9={T*)ETAUD#ar%H@ki55B(kTLZ71wFHE&w+O6~ie4sHb<@Pze}BxT^e*63Oz(qsgKp1&B1a*l9i>1n zo&t`kl{|@ms{8&gKrMOc%EB3mEXO+?dUbU>@6HZxLYHRt^WjZWnDP8?l%QF*b281c z?^<`(XCldWpebfa}^Ru%-I~t07^tQgGfAV`I=)S=c-R%0)JpM>3sP>3k0ETlIH@C|A z*keUao5t?f9p#U=QE0rlbgF;{!AEST&DIKggt?MglF;lv5I`1Bx-Bn3g*!>WO7+-d z(zR$j*=80NusFBynurIWD~?`=l`aB=mWAfXks6G_bV(P9sjiWvlM8U zc@23g0t9Jakv}Y-=sS&5_G`100d_ZaDFBUmU2#LA*+j$%P0B?$+U8#4>)1v6h^=wC z*FGLGkK5Zt!TQs~ZC4MFahsF%{vKcwm@dn6^WX0cKQ`!pgaHQ|0hk@j$9|S?a}q@J z8JI#MYb5w0kLl9vmGRQq^DXPbMOZp>*5DY|XHI`OYd+m0gK`~qI(RunE8CmTb+Qmv zW{)WhFxtM2e@#-bQO6Mj1WXC}wC#!y&cL$|dcn<8cV+#xH(3;IPxHf&qLtbO^Odjc zciS98QGOs>OYTUkZFm5r<#H0nGsfPi2 zJ4jvCJDZ3u%f0bwRDez2aC&uq;CqTz0m@YsbA2YXC*)gs4k!+_S-w+*&|3nDDByQG z%7`0$^VgpM0a7g@yLdn#wYaOHMei{zFoEzo8UK6NcN_P&jQArr6Y6JI9EbJlORegM zbozJHqEKIrk-9vGLVJ%lNBj704~rRjBt8Zt>JXFV*HQ{@H!V63ydL}0TfY#41{i;6C$M^50o}UXF@#{w|(3HgO zXc=51+!@I#b*ggMKgAp^lKm<_&~don0g65O9^`=91hcmm|PZ$edV;S zYCaw%3-s&{TIj}4&45tgS>=Y%iMOH{Ma9X+tDjvqk^!I)RWVCt=0o;!-E6G45DKi+x7sC|B!C<%gLmJK-KaoX%>c77 zySF?kNOQu7!MWk%v*0T)IabDl#N$s@cDSvH3&*UnN9CFiYGX=^YTiQt0YMcY8V*0o zH>r_HF+;vsWdD>Hk(#bjQ)Sd6IS%Ef**BsRhdRe~sgzNB{z4WbL`)I+W z=}E4xK22AEF?6@{15VQRO^q!xYTMnIocu>_->WZAKjLz1)s+)Kp@)uMhfe$gXJqZjXMEV7hOXYQnjz&e(SWB+$O$N zB--RryQJKatWJ&(L+YOV4eEUonwv7=-K6p5w?S5B97vO|^Gd%G!Us814~B3=!HQ>F z0OGCx&DNFMc4>g*bUE_b{J!VRzN_(71o8L0Rc+X~I%rqwnv-KOl!0o;L3)H8oA6dw z)#m;)9{>b^io7U4EJn2hrM#OGy1#Bo*m{(W;s)~E<|q`zgcqT`j5*J@_|mean?+dc z^4p2bH0>!O%&wE`0KzwOpGDgH9S9`$5w6dnb{^b#M3KpAJ)0PmA}8~z3{;-QOl;wn zXGdtq7D(|E+bdtLV}GM=;eW=+4)uo=S>XEA${W&>31mQtOb;zB?t$sutc~;GKs$<% z!HXaqX|aFeI|c#V8~z9>lm}9PVgXUPz5Vp0&JENYJy7$hBvG%erP^_c!?*Q_9>+CH zWEie=3xrhfztEdoG8zCy#+4Xva-Ibr4tG0<$i9$%idv%JfO?SqhPD~H_x|7>Z?t7OhCFo`98N_YB&(XtEKac(yiS*k zXeY=ozSB{-kOP5u$+aGC<)*WDaHKN?$wdEP>{~A4t(+h6XhyUgN~Ej4S&sV-FG$8h z0?E|)%}6yU<+0zTC@}S9-&tCjG$KmM-%Ig59OWb`b93^=Fx3&n6TpzgD;>koAZ=7g zk4(bNCB$e`W{`j>RGC>J)4mTu2S7(PMEie!TDEwEaH&5RvqR}CF&sv{7ex<=D>~!Py1|B^3ZV=OP|AG@%PnENpbdbp3zHW3`Ad}8= z+{ayqc`D&OvXLRvDltz_G64=>IE;%Er@_t`{0in zV0}+@_hubujM3dRJCHn2?@kH?P*`qZbeu>XN46K>fo)e&nI%4lAt6iuRH^ZNp=Q(v z46y5Ih__~I#u!(wHu@t{9%qifMYN~VA`fqpn1!HR@5lIP>HPFc1kdfTU1h&{iW@F7 zKjwXNfCrt83<-P0ju_I7BdPK%r$SLBwlyiw7ay#wXFJx5fi^}u;w|vyz6Q`SXxrww zq-eZCO=Cqi;WkIoo`9^@Qy}X%i=AusdwqF!_g}jw6cnfTcBecul7_X}&qVA#pN}c< z!+FbU`{PR3*4ZlAc(H=qXE$a8WdT}rH#1P6h-mUP4@g?Gak=H5h;+Qt)~kpa#TY^s z1>HyJ6+Z(SpbrNYgoz$$YUNwUPGecCXnBT8eET}lb!3y{%DrUIy17=Ciws4DaD~{2 z(;i9x8MIM8_1i%2ezFnglTn)^LO1Q%cs01%K_ezO?`1yi^IZi9*d%=1S93pHoViVK zpVh49A3M7|5<=|Pe16JT z2zAo;oD-?8cObK#uEEL4wYQK%^lh#Pawge)UTX6o?|@LW7?}+Hdw352$oQv*p}LJ< z1wYp}=X+*T{6}a89f;ERhR>Ik>br%}T4|>(@z^3kGAH@f`;5njod$k+<(T<3#oLG3 zIj9zipU7o5YWg`9JZ7742q~e9TKt8L*7!OdXnfk1Ty<=`>NBj)_SUnUNKsZ+>{C+| zH$b9J*3fQv+V*Ll{VjLuTl7w^jFNX}pp)qpBz)w$iU-q~BMBu`aj8P>O!3yLwj>AY8v69-knCEjjX zz1tv>_SDz=chbdPbqmDy#lltE3ZY_2$HZH!1{rmEC1GN9GB@6zlDwvN$1A8K{&V`C zvpjyBOC24~RAOh{?9IRbOYg{DJ-!@(5gQc&ZuTKZn-xyj%d|#r30;!t z`cird^ewVu25L;7#(3NWwtNyPwqIb{p7qJKC*eZ!aavi}$S$tJJ}> z2MUi3VtibkS|?t*gPXar1t=sC#t|3zi2BgYioG!?0EdfC>$U{U zjBRp7edMJ1{@=i*oVCkcEBt7}87Lj-0{{W5GxpdI?<#bFuUWoEWh7P$7*Gy|>W`Xl z>pE11$nx|hT5(=-aE1lJx$@Mh_D%N+%5&HIzbIx{)?Yjep=Tn}`OVOJANt!<7TV;1mIzo^A{%p!}2ZMO7@Ba*<17=JBv*8={(8(iI#tY}Qle z11b^<9Ap3nW#`xa?nko$Lh|FGc?hcmHwqjLzq=-^l$wFyPyH1ADq0+3RE=0$5ZhTN zDc+0V&zIUiSb13OYt;}lf}p*V{CQp*cg7?M9b62Bhz@ZXr?LFsNr6!;oOqU3>Cnsi zHcCujUfp+I&J~2JGY^n15guI1BfN-ADsO{5uo~KwVkYEhpAc3XjoNxkoqj1=WPwCT zfu{vw9|A0(AsEk6zGS=^Hz9kaBgn&J}s~i_==uQnBzp;?+`9bUmwbnCRr@s^DOmP9jc(+=srN zoIL63ues#BU$;-*Tx*_)F@8=i%)cS3Gf5V=5;vBwYgPiiwqpQCo1 z%JsvFS>Am+ptJM&R+i-!bmgTOajPX}Dx)DgBhn<~O{uq#YiFwYIe6o0LEB&@XD*$c zQzBFNwy=;Nk&>-gqC0in`nM*nt;!x0n>?v%X6T;tnj@ZMpq{K_t<{OIe=eSd796R= zAe&>;wfd&F%@f0>A(i_>dwQ+>J7raz8m*W{2pw1T6Av~;Q9f>a>EB6_wH2MlV*W% zGzi6E3;Aw0cY&c->j&Y1f^VIwx^Dg#JS49!KINCb|5&>H^Yu9_@ z5=@|bhC%b3?nrlWY4n8+hzeSIMD@HENLsHI-s)gq-n=-q@a*39st21MGI3dzV5P~6 zt-*^y{AtAY7-Cq#mq!`=rTl89{@~~q(aLQzp(s+OJUUF<^?uH5+u&TCTJ$$P9`wUe>3T=x z*><~g8rAhYq3LF~EQm7EuPC2eTuWZ;hhlenFGmjz4ieurkN;N^WG~-g5z&PdHx4`g z!a;2!0~Vu}U(z|#?zbV0dKlu)kio5M0$ErZg=BNZkIfR{Om#frY9oXho$J3H6H2(r@1?#XrNjhtg#sPBnShx` zez%`S`ihai!24G|sHxT9HRTv$a7_n==SC+XxjrTd8{EQdzD;APo>uDb?hUjwipPGY zGSGrqADZSy;qju6k*Xfl!Aw=)Lbu?@!wg7iD7DJ#MoC?ZxLTN#JL_%-jT<87iXMuv zBGQhR8ymBmqbo1i$}88u@g`}KN@-KXoBwaG^VcK>4PkYM4s*)5!7!1|* z#$3-@3FAkhN2NL&?;PoW7HhIoH(cNoP5x~9!pCqz(6EE}_xy+5I?mMZ+vRmkk5Ufm zXa(1}>TE!s6_|M5ZadF~5*;|K=AwC>?{2IP8PJY+A21Tm@D0x=^~{8^7d$5Q#k%o} z64un}@~sR6z=?A!Zf*q|+&$+vk$!+`abOq*(b?(l2X2dn zX#d@A8&~@=BH>Luuit3xHSR4TEz{k?oVUgSmYrkc@rC-h8tTL?VG4^YU^jD|pWJqv zjIMh1D@XI~3sz9;-VhXwj7m#(sBxkPKd&(IQil z1MO1QPqui?uWvALe4D0uezxC~7g%7VrLI^yR_FzsD;Z)7)0k`|zrV)$y~Z82)4e7* zPiS~?rlUEOm!I*08HKYhen4SxzhTM~&7m%#3C+q?OvitOTOtrR2k5w)65J>ctWei& zwT=J^vYn?ly)aT#@7%+b{jEmtxvMJ*P}1Dik6+{0FRa(KZ-gK`O|Bkze|Ozn%Y+2h z-vVFCD#w|K(`-{ync4R#O7$H4^}-K6!FM8KEg7Woy4)-pE1c?aIT@X!Qt~f*?)t(n zN^5(*?>yS;N(vX=s38(|zGyO>hl&Ms$(&f9HLz`@WA>YI*_~~?3gdlHr7CADOp|D85TA>p`ekoT+^aqUnRt?CV(H^ z%r)Iz*hSQ7USStgAJoczu(EfN8`S9p~^w`^d zg>7V&TlnDkQ|rr_tCjenH%6(~XYbV6b1oSH@op07StNz847B)=sj=ac-?;G>tqIBA6$F>5n1;F>U zD9LmYAbtslr=`f6yJ%Ct1F}a>kCK-;O9!uo!UB;h&D79cP{VWY?|uQx1%Y6)>ya^6 z@oWnf(d*U2?fPDsav=eDl?GO9p@|ISFs0@dLjIWh6dSvE_FZ0g*H#0V0W6v;kK=|` z;Do7{tv>m;IFWCwjXuegZ`AEj{zaq$Dte+9-NKtqq&l|#NNv3? zzTqaR8;Gd?yfRndRVZYaV&vBzTia1vaIda|_zA}Pmv%Ojqf-?^O^AFm&A)*jyc zJ8D7uI7y5eDGaA5c4X>x)M?PdH>~@_u^YK;|L28!ao~Y1apOU83lLZgP6H}3MrZrO ztsYAWL4%qG)Z!OMJ!MMOpdz_-=f@D_rou4G{Em0-z9qQyzpmO~i6Nw& zfP&fhdTL5v1PDx_6Guc9wpr9lQ?ZojSvoucPds80E=n1;Ub&Q5vDYWx3rbYo-Q8bp zUc7kmtG~Zw?PQ|T83nOfvx|Rxd|WIhorTn@k^*wI?)ZCS#W3zi0ps)my)PVvO}Vsj z?E~Td(<+^@!c6RpsWWBs-B|C>-&-qfoX8O#&e>>|*hIyOle+(IS4Y%*P*X_E~oxE;L z6Y`hHiA`3`y6aUiysFTuyR;gH8}HI5ha~=u@ut0Tqe*zPCIFj=S!=UDELOnbQZnx6 zXFgn$)-XF)H&6%0wh#LE!{4d6%0r%qRW6B{x=+5cUZ`JSa(;RQf?9*x2_zsH3K3wR zNi&J&!#oWeRZq|wjZgwv5kqW1|AG}kTb*Mcux2-$-J7xp? zZq;9R9jca@Z7UZ(O7<>HvX1cm}pLi{1 z|D=XvMpP6W4`hgyt(~TZi&1jco$`crt2t$yhjD`O!-pv5DO3)Aaonvsu z=5ySiWL!3=(TG8&>lg05W|H^fm1;_LHP!U_-|{$JA8zuH+4{@XQ$YdLR82aK7NRvPA>(T-F1uwpGhtfjI&z=ByhAu8j=# z(BYy$-CNi*#`A6OwVb>7oW`s&j2s;uNADpA@i}m?UA#Sml5tMnH%hi>oO94k6gZ{H z`TiZ069iAU8iDGw)8uF&rgbKWHtb-^lXEGp2i= zb9*1VtbynyOtyJWNsD2r=tj-1;tkKWqKeJh6UW^yfz-M>TKE==ltZ^-Exx2jj0$WI z2S?4;0}%j~#tJ&!6gzAnFoq4**?n)LV$N~Wb$BK_C;!K!`*bJy(M*n=Lon<=}G^OWSLUr8m zVY@LH#JdhXt@!gL*m34H*=$xu;*U{_q)^)Pt)Rnp057lIKyH4K+qxBmakjVRx9+W6j!~ z=ojC+?IIdjQCZ?0A9x2*yK$XgE(BT_6Nj^la`&bCD$@tFtp>PlB=^vz($t$6B%&z8 zhn!#L1#&0K5#}U+kgDUp<>i~Z#$kwX-Szspb~w4YbXeJ29IK6$=63qmguE01Pdl6bmdefB>Whc2eO`2InKNsB;VWGQg(4Ey@z?QIbBfg zzNtNkjg76cyVymMA#pF1f>&Df1*BE^dU@TvnEu)2Mva(dR{hdWPEI&DII5i=@9=@| zD2aEvqV`=eLCEUl@4Ar3P8#F#uN29#@1EsV?wcHM;XgAvC>=&eM|XC2pNxOA>k?WY zEBla?L~C-LHDJ6EA0e?{`E21GTv4suUN2|Yb#-X)H7*&As+ylO51wRud;7{j)`!mm z4jgief+c*I;IVB=!oVk34`!=p13oHuW-R901GCnrmkn0NL0p`bBt z9}s3L!Z^c5ONKwHXIK~*+|2$w5eO8Ym$ylS2b~+a9wne{%`q}DEyG6a--z_ju;FYmAoN} zIDMJT@W-4Sn=At?-71%?fr4uYk%}UdR_n&Vt7DbU89wK`NpVX70Rc?yGvs*q_!>Sw zwfTD0=H>W^@xL(H@-ZA)Fw)PQoj=6I#ksAIrTd=F(ZaX9t%N3onL_(3gZ)pGM9o|| zcz9GTy5rwBO+QE$di?pWobO>H?LeKcuauOO)vx6HFTh0a!Sg@8KKIYCy$lF&-JWe$ zJu|5F`oxVL<&S=4i)eOZBY!AQhn<0;am7noI#9^v&sM}2)c7DH@<)#z^^KL;l$o^R zzkdDtX>`!**S7=(N38J{mzHc`?SWj?WL254TEjITJ$m<< z-!A*BLL3{+{?ydeyYO&<)mn%VKXVzqL`6d*AtX$OkcW+pEqfra8jg7w;kw*(m-uG| z1ONU;F$n$2zrS`AVwCvz*M9x{{9T`@EO}rDV`cwM;nAb)FIO&aaKLbRjVPn7-wlh~#b%vs18zq<3ya&y_XF7O ze8qA--m~JRFL}N_8$^wdyqOxsg9WQr?$(dXqFW;Z?+?0!i zi5>iAH_jG(4f!jEp_eb9jNe=$VLw%qwZA$XlhXw&!ew_+K`y*yjR5(n!(0EnPE;e@ z+O$ZEG1`|RclHG=aWpLa+~N`BXAtS{FUO^W{`T$12|})sj7Sp*yY!jX#cXqMM_XG2 zqm+yc``x>xY6&4Bcvo)-DjOLY?dot<62F^E9(`SS`d zZ*TPya|Nk~5C0s&3Aes&^3ocXdG1~ZDf>!G@@XS z*#!l)Ha0f0pJasjoUIzHCS9Cnfd5%<5in`ND{+wP=;|6=EvU=?ct@vWdb;k1=lhYd zMn(n(N!UuNj*f+}iit@{zxJletU|6;Hr^9KF9|O`P-r9>G^|teyvXBwe}+;Fo5M(9 z3b=$oJc^rgLXN-vu3x{dR_EjG;o*@b_kkJdeZZpUj)4!B0k3KOE7@N}RCKVy$wc83 zPjfuC8V!qL{I9n63?!ta%t}g1gE^W?@VSoeZVt^8*kxA8y)s?<-Fi6x4s49quU=&; zC5dUnYHs{?FwF_Mkg~3B{K{}a0oc8$qgv#e8~lNs4P}nqr5*uBipY@iX`gYUNk}4M zUCB6fE!989#8}ioBf`8gPp0cLUuYHQ*wKiwG#5rEmCeMi(Sw>jjn zJFSgy$DJ`UGgC$)Z3m26spb38X$YtvMF#~2!cUu;9-1uor3Zp5@6t*H*F6WbA8170 z66a8BrFEM$ZeP31+H9i6qu=~?Z*OlPBZH987^L3>AWr!FhdC_=2S*DeOw_gc3UT}t z=jZ46;=?qeFGfPs=g)XtR|Zt=I$s#TPV!r+$3yP%8OKS%YOtOhuJ*c5)E2Qe9Z6 z?0vk~o2{P1CJl#swd-v{*eY1yf)wd;j^IA7YHZeDH+S`#x>YAa+MVo!_H5p zFS0!kHX`4dNBoSx*FRGR#w+9S@Hx1{Tj0Gs|E~2WihAC)8M=LRe4Gu#K*apGP&k+Y zxoYk)1-CA7W0tzqWyeg7kUd!|Zi;5OvU zBeoZi*-*d==4GS+d&8!F{&(CV?yL@$b_-OC3`>$;zC@ja1){OEk#v7X*4jGzsXLfb zuo6aDLQKAA;vPHmstZgOeiaoJ-o`ybq>cl}nK)0dh+d5b;XDKYlo@iF$OSNf@d-UhT*3n^S}Ec1&{c=fy_l zlI^zw^_-7WUb_l%eP99io5>7f%^=7zAMNq^%X2t(xDF@ZdFOPjKPoX%#(C?IqjOt9Ik-{JTDG zVQ)WGU?3he3`GTtpL3CM+O#6il`VP_qt*79Tw(F}Hsus;LU9hc`O>~44ud;-#mTgKiGz&pC@E zZw*)zZYQjZtmeVZvyN8Tvt8>}J~N3^OZI z{7>WosDYJi*l==vP+=;y8Rp2@`T6s)H)N`jY4GD5gX5+7`Pf!)<}uC2MJKGEMk*kW z^Eh43Nc!B$^no#Y9el~66Wot_=+0C9;>oi|%&2UV+dqjsAzNaStMb@2PuCy*$dcsM zXaA|L&iD1|y?6J(VM8|YO-DaNk(&3G)5VgC7lHj~ar4ZXMUmFtkdA{~aqY#1=4jF_ zcvR(2|9Vulo#BH6&HyuqBX&73TYYGHo8Uwix5454oSXf`sy%$Il8-R z!bW2Env9gEg-BF!W@d(f(0laJ#*-OKY(}}N=i6Vp+`@}zM@eBb;;(vxhZwx3_&Um~ zZv9rGo!ZXs*4|!Jd3m}0WK}vmhxo5EEaZw%)Ivo@sm~E$`<^+oAB(DN7i%_Oe4JoO zOM|H8b1PUZ@8s2Q)`J})=TJIlpQx=Vk$&WJ?|i$JRyemBGTyj#8nfoOs+cmy0ob$I z^q=3|gZLjA9+#i)EOZKaAD5=}CCO}y#zsdkI9jp8?dmE1iEe2mCaYXYh=>@nEG3s2 zWWr+QLZOt9V}Qur4Yp+BGNazA=(V zcK!O7wl-P0KG^^3_8of4%E`^aWY9h%_+t8UQH2y@o-E4}Cr`Ps(^D^Jxe}STM&#O% z%uepW$KvD-UDwA3vva}DfkXQCGftpjc>qNbax?!jFUGZ%@{EJOTTrv81c3dl&qjTpt8PISm0=?Be3n<|jXXJb+2- zUePr)OrDsWWRf%RIZAIF7BK%wE+@r{(*lxs&IWJA&$q*o7L3uV>CLsBtu4oqrPP}c zjfj9dbjy0y$OS2Xh3e*X>g@ioLHVbOdtgn>yFN3?A?*`{OD5`KP-Jwbfa=LtD_AY~ z1s|fL_a%5k;dT6EP(1zMUj#uWyz0)u!7!{aP>)oRgTUA!i!(v~vxrCWH;3tb*!DK? z%P&^4GVa3Vps1k_QO{z?E3grHI^~Lx9YHc(ykY{1YGV~nsXRP9QHhE9uvflAEfSf) z)_ni&I`ac#eX?3JM zH}P6?iJEjMWjYDF2CJ~J4#*kz4jcI9LE;O(SX#*Uyawsb!Gb)Bq!h5%y%lGz83QXc z8*K1cwR^#0Pf`KQFVrzQdU}*DAja6+sNQ7b<$VJ0qv_`Mw-JB%QU6y3*X2GYxQHU? zy{Rm9Cosu<`t<3z6Lfx&b*nxw(OssR+y({)dD>-<;JADI#zbW*3_lw`zeZ6}k@ZAH z5#urhkYjbebr9O@Lt)YiKJo(We)c{e(u+nzB?A80@`DhZgp4fXXm=@YX?AvYeqq6^ zJTxaKhu?kz`9@X{lnOa7hI~~_urBveR#wh(hEP+x+&%%UL790MWrB!@D&+Q@?h^&I z$JsCTSJJ^bejLj&MFz${nxM9@S$9$U;$R~$H}|%gxjDRRiJC9?y|EgP5^KoGHppo( zf=TbFLg|e|uPO}`qAfv>Sz`feUGLt#doh2Vj-HpcDMV;lRBEwSHmgLh08DnchkzAFPUgt|Ycb~KqF zC9#5=AOlG#kPqfQ- zJCyoGCY%QO$l#8Aa$OuelF{r5}E*S0wNRq`s4g!*s zk~2tHWVk(X|L2^0-#PD8y{cDrZ`Gx07jv&QyJyetF~0GQZw!2^rXq)TjqDl(L3r{H zr5{1ihAbP4hf-S|gI5N_}_R+13r5PjAa1Pv2{t-n%Uqrbl><_kvQPOyz+xBuV#@w;*DHnWM+9Jb;74487s>bc655i4aQ|NF(fMNi zy(%L33~vVn`3_xqjB#-#ZVhi2{FBamN%!y74>An4zgN$~AmYDQ6|(<#y8pX(7q;-f ziJ`padh+F!xDS=*TA6N|)1=FA`>U(B5e?|FRw|ADH-&q`@|yFdg!j=vT1RGtsNUXQcsRbLl~wSG0B6$)s{UlVbNg(+ zNo>~|2OB#pH@+X=`IoCmJ{$-l)HNK!gQsn$QWIQC56H^N zY2o`(VbM#KAnfk=t2g1k$(yeC_vs#yCnY8#uo}Uw9l^IG!2m(V8y?wlONrSfQ=9J+cl?ubFa`WzJ z?jC+A?}M+@9er}t?CN4xJVv>UojYV8T<-ug1%8Q?LuAJ za*N)$x3?KP{BWq4a7j2~jyLK`R@{3AhcWhD0C`jHxeXo>}HhFJeNFv;;N)6{hSIA-9hHY{mJNf|59`0&RKaus@y+B*rh* zRm4u6YryuKb;K~EEC=q^EaxQ6C0L}A>bzN+dre{#39rAn0j(!67b!KjYJ6U6@VptT ze{76}`s5dmh;g0UrqN-WoG60C;JKfH%b?c9?vgZaVOiSQ#r67}?H~{+&wV?AKi_W8 zyEPrBOgIlH!^6c+e&3j1EAPd3p3pIJ&z^AV6>k!mjc8tY>f_BO;~vpto6&NM2sYzJ17c1iwgT;<=w5Ghx#PHP zbvt}Y2n0JjyWbdq-<#Ml&Z;Ri9ZznWb|>;~f4JfGab-2_cw$lZ+%Qkmv@b)Ze`<=O zmD;D?W~5YNp*L;wu(71+tX6pMr^a@VTcd`wwCF+ejgF@C-IkSN5{uzr$>9+zi;^HN=vH<%oD7<~R;z7EZ-1W`r$)g6pthw=iuKcup&sbQ_#q3vaRc57*Q@2IoBp(rJGRjVhI$qa3@5)l z>@HJP9nO|K+WKZ)j*XM{af!iXy9zA9a%<$>=Ysj*vuV+2$&yH68 zL_x?FCxYW}ddwPmX-JUp(NgAi2Wv^2NrcFQL>C6c_VM(&==V5xu#iOIoi6U##xvkQ z*dC`b%o=k?t0nQ^?2U{(*DL#M3b}iQH6GZG(Qm$J6_S=Vo$rY49~_)Npt7~K?YjZq zpXSm<#6R!6ZpHiHfwq@O+tedVfwP0z`MT-T;zHvlBNd_bioTL*01h9fS0knHqhLhA z<*cWvp7JPI1Gq3YHU^*k_7_~vwtTGuVPku=M&ue7U>N)t4CAC^He5&r*a1{C7p*wA zd49H;-PmZv1nRaKfHy#t8U);mfb3WB`BMNMa_FdIfHiYcwjfw%4cN(f9T5+7l96sBOJ_y*W zvZ||f&Su5Vq=pKSU@|!hhgU&C698vX=V!;A-`?IfL$8g7o5g_5a43B%1VNwA6T!w7 z>Q}44^D4%3#KK^V9=8{B|K*2+vK#xztdY|O!UYSA+y-8IgWF{hUP@K=(;UX9D>^dL zrT|1!OU{1;iqhW@J1I?en{vPKD3YcF8Dy1B!prmHX=<;Yw~VPwy}~=8N-2U`98D*V z0?S$N=1R_1O6Gu@yiIoQm(T1?67j5>@K`On*xaj($uyf@o1O(zAmE6{UX4}Aj&`8~ z>%Q3w_I=JN?Ks(Hy3x?Q>wT09AgNGH#;cp)ge@AkV@ra9+UnhROgE<*wwE#^I^vs7 z%#gLt%+0I-d>&rVKSy(5%@>DIWjk*A{JGlHVUJq}@2~+K3`QtBGVn|U6YXU%F-#su zzENIWLH{YW1mAY7k5{W2xz7__#1-Ji7jY6i?s=?&%#_C}yTDrM*Q}g31}O-HFV;MK zXM%u}`B3-8v@u=wKF9hXYRV3Ei(k6(Sfb{1f7)0&6jx3|L!+hWg18b+e*Wy+l`P=o zED}6J3+CuTHRt5q{Yznef0l+RJE-4*lLGMb-_YI%4sr|VjY(EIIyxjDCYF}5F=u6E zCAfsg-o(Tx^dB!X2{dr(=0$m*dcgR?f&zV*+cs_0?X#rFVlU^u1l zKKSkU=Q~L!z|jx&wwRch+rTwDfBj0|-p5wDeOD=RVZj{6!Wz1(@I&SZF$ynv?sW5+ z0mOHldCS;ww6{7BxJDeiepTDgJPku*ZnF-;!!8R^I@kwb8+@lK$_#>KnNk9m%-J^Q z`6J{wHa50tYd9rp+WWX&XzCAsUP%e#Cup7}Hh68SLH}&g=S=Rda^jr8{>2U+C936V zvLN{`wSNLoG@qB78l85!W>GekTTq~wqm+QypKwx5U%YYs`a>tD^0l!_#l*x!inMZ< zRc$bFJOHJ3s7&gMiLZaf9c62iP1QKEB&Z;w<1XrlzK^8iwGlp~=1S zm}q3ENPiwUVLW(B8(oAjBHqC9t%2*PndAPX+i|07ODJjo$jAjLQRHmUUK@1uCTu@TKk~O)7q)ews715g_<9;E{O#IC9s(6M3Lq>8^+fGA|Z9Hm#Hx= zdlxUf;x<06(rY$=wDtG(sqa;y(XOM7UUi$+7QLzLa#ZeF2F`slj^BxNV0OBAG!e_H z(@|_#CwqQ^u5Jn&cZR2ceAO?5IpFX=Jgl=<*`37K`8$xBYQ+nj<#l}g+A|*$lT037 zUaeE+f~&XhUOw6xF^Twol)PG8$Kj~m2XHYb3lF)vyc`8SQ2{<3=b~{j@zu;%rJsvG z&0G`M_%v%en6I@>;`4`OyNkQGjnZv`)(v3el9P6^0ke?n+MP*~)v9s3cWwZ!x$LKe z2?*S`+ZoOFRtC5Ee0KN}D5R!NW=NVo{;xdR#naqCm&EABhnIkuhVPESmd4 z4ylwXEU>i*IJgu5NP@gDWo6~Y^$RZ$XN|wvNx9&LfSln(FhfZmUGnh4V`Sl6&=H zV_`HsJ6sG2x`_X|$&SHFX`+U}`RLcz*B#d@hdaPb1yf)1UOfkq$+3mhq79HqDFG1e z&HA(C;oYtQCzqePs44mB<)Py!SXWk4lko+G0oSGrT?vkZS~_8@)Lw`4@$&$aKCLyK zpK-aYXkJjBrlY|UQ-HhMfP#1KjO?$C(y?k6Mgnkxqu%^y%o{PUaY;J7_9u1r>Mhc| zv_-e0BHCbP4^uEKT;evsizoZe&xfiT832bTAc(rHD(q0fGqAaHv2Tac*u;^3{|ki= z!@gqt@{f$b>F&Th$Sf{!Dn~hKE+@$@+9K86+<-LW9WV@u;@TCK8W?n7N>So-y6V`B zMe@+vy5Qwj0QK(6^{EEWc{=LDAeh#}uh|ZsO>2Dcg(Rz{1}O?~18gkVzaMrZ(r@4uWLHuf=0^;ltcUlf{VMj+taWq$hnbb5Zub8`>xF&-XXJHQsP z#L-;~AGF0b$V)l^#TO#`d<2k!9VWQmr$>DvpZ-6PcnMSLpzN;C$t-ojSrf2-z-D=BRmZoswwBTcRK*NkHzou&dJ^HI@SUN<#C_dA z$V*(YvdT?mKk?o+DH(X3*TnD{FpD-E(JhPweus>S=U?%-+%^nAYL0>-H@3LA*rAz< zaUe&Te7~}#rA53X1$+hgy2FGuh@|U%t@ibQ-cSH;KWntQ%gbndwjFN%?4FxUuN+JYXc_8znf z#@!y{dkk`z-9EYbSRJFNRw_>$o>c|ux&5YduVD5a_;uYu0@UJlI;dlew|fK!eqa-v zz;qhm1R`@(7x-0<%~*x})SqxSK=e9dS+ffYI{%0OW}ZO}Zwy2e4~+Dlm9>nZU}zUB z_p`yF9OJEyFw&n^Ha3Mv9+3^%{f;2B>I5Ed2ovvQ*D=dXV}K^dQcc6OffR_&c+Pm( zZS5NNv|)NvQCZmznAb%r4ib0w#;LVjno%?OS-vmnd|yj0Z#?M0_Vft-rRC-}#C{Eg zn(%ipZ|A6)yLEWnbnXcgh|QOaLNK*8ovct_O!X|D0Q?i>y!@!<_Z#x8%1W)F5@XH? z;cf6vOOu3?6d(z>z{!)toq1nO{78^E)_`GiAn?VuzhevuA}9sP%D~)D4b@mUOG!Iv zPiq4@gwXQ(dhGc@#CasI^$?hhK#qbIfdGLn@B%O$W~AXTV?xRReakj^zzK+M0>}ie zWfygi>{z`RIS^7EGzYfv&SiC|eXjkT*>Zn24DA zknc738i6Zd@qNl4fy`A%?)Q}R&K;O$j#gU71Evsmd|o~6tq(^{@V@9z%3q^YFQf^8 zQ7Ert*S~C=G*AGChK2i?8N2fEp9LC_Mx;y&5+2H3rS(<&uQQ3fIFL#Nv8eLlfY87s z2spST>|GZJYCHabl!77#<`9nEyu)paqWd+4N!XCW{3$#?Bm-n>ai+yIpT=aLvqPA4 zKZ;sR3IN{_UcFGENfuIdV(@_Tn1M~kpBG*zR5vBb8oDTiZjOVcj43CA}}MgU=od!#R-YV^is@+}4Bf<@?|>-}@K$iTgA?l=?a{ zJEj*Ej*tEVPn~@8^CgG|)6ft|BqkBo)-ttq<<_t^kj}j!c?A;h=yH@O_&^&qG-NXd z=R-^3*MV~K$efcT>m|r9p)I&9;CtQKEu^B7^xV!m^Y5pUS7{-L^qKYT(NBF$jPyHj zBDN(9%YLK?`1qiM|I=#{;~xr*4D z$VISz8MSy9_~g^WYg*rl%rbZW3QKU1!6t;DpkR1}uYVuIYnS>2g7#?sA|RCUS2IG5TprP#1ArDy2rv? zw?5!fZhBmWm@e{p+p>F?@}r`zOulz(;OW#_kHCP`UW2-nxISB`uazmiq+IRP-YrOt z4K{K;lP8z&v^{)P+*N0Ue}mj7Y1jtLo!?mtpy|bZ64{AVN;3;{8uVUR$_-mvj}(&R z-1(Lf%zv#Ftm?>|9>qrjM9eX`vesTpz!c}_hXKpGhIOv;K!F(Q#(>hFJ9j#B1!xa- zm4=a*+Yv$OO1go>)TH3pAc0Jct>A_l;GSd`8W;`N1~G7eesS0kpt7Y}cy=ay*uNlO z-B0>V;8|oBBh~!jZG3nQ-XP+UEmCm1FF7y;U!}eOhwnqRK=pvyH2TM z6f1Rw7z}+70X)O?!J%Mh=TO@d8=vd&hY0vi($x)OOKa}4$su#$i(3n73(3LSs;eGE zg^`D$B)Cd;Tke3JqhU3DOf(TrDP#)59~WRHFuqf`{8Zlt8hMRqQ(c|Dis+#!ECgo( zj0+b*>$=ZH$vv{U?~6j*%i!D~1UiRrA;D*sQoiYz8pP~+^Z@u^Ib|8-s7dyXNPw0r zM~R?JAPG-&*nGpA2C( zYZhW5d!i{RDURq-i_S%$FNpV2|4%{i`;iSKUL`9FXi(kn-)rRyOqRgH?+$(VE{CoC z|E5;}iD0g%dMX;Ixj*&<0s;cK?%h+{!-0Z<`K=OXv91cq2=4JQz_q1$DX8FcmE9x@ z2)A`Gp{8=5Be)PhQJoy`>NXpNwmc_Z?sUTih{KSk1Ki=o2~bi1jw*a)0oWr;;tfcT z+35#;h>(oOzs-5|i61WyPurK*xbyIfEe&(jt#KU=mUuHX9en3}Y3wuYwcid(BTPW7 zKWBlN!|D#G@R&V+{(Se(U#0BbPi5%!Q*8Av6z|T)TeE2M_EdeJRfB$Dg(#`3PyR&t zX+0juRgDi156>^Dtgh|^1jftw7-qRxBnC8aZX*I~^kHFP{Xc(d!f$U12N{dP`!@`{h9eL z|9}8;^h=ko?K-Q}M}0dG3W=75+L^{VL2T-St%bGtlVqy*ktMRyDt32&AFgq*!raZk zV>vss7g^(&&8A;vv-<}mvWzg5f=y}a{A|Ay&@h&g#-n@?>sdpjAjtM6kNj{V?`)H~ zxmm*etFK>MrWZazZ4q3XtXH6*HzK9iHm1+kr(uzNdnSal1Bl!6KzEM`;i!GKdmax& zWl%_b2MD?nsG9KqzU&Sdb8AB{prEXP9^`tbnm5I5+ycwg7)2;=gxe6mNToY8d%b6_{bM4ai zZ;k$tFB6O)YFvhfCK9aNo$?lJR(>;2j3pp(UHtYs0LmYMF-Hp@n@o0I#UKnxc+y^p z1KlKq!6fENwh-j}<>LS0fT8fFpYjDMX?rbJ-+awFP`b(ge%jslo1Qc2Sg74;T#NPv z&R_lp#Smr-HODaAi>&TGE!v(yf4VY-0d@Gp-2lD;Tv*tJNryrrL&((eV#$O6H^|o! z1|#TKx{{xtu>D5bVpXda`WGdXZUC=85`*}Cd&od53nr#J>FPhhnT^#Ti42wKCV@stRF*yb{wR%a{rT@<)~eXO11 zEI4d!nFHHzCz<^y&vfz%VJC1;pnP@$5fES}^XkIqF9uz^yLXyosyURPC0o;1U94JN z>9M1^=B4zT;Jnk5C%2xT)Oh8E{;zm@7#Vn1|Vj7vgBMvV9^&)LaA{N!mao zM>>6Q{WHv8?Ca42DMVhz_Z3tCVNnN!MImD;tN)>x=LN27||51)w#T#=9(43WMV z61vv;r{m@vb0;Tb8^>iRU6`Wk=(3vTLPl8k3%~7qNY>mOq!8Q3B zkqjlyP3B9^Q-DD8`<-0at~C9L`R2nwd_Vtt3D?w7WM8n!GkUbRIDYmYCVu$pj_F14 z>+-hce|cz-xMf(Vw0@zCmto)1&l~2h;;Ip4SE{k``yXR_c8T7%zkYMS#=)4xH8i6N zZ^~Ivrw}D-pUzi|^Zlz}#Q|K1On*FMp0M=krt-URq@ctmeZniS5C;@lhUv~hx7O-n zv_lkyVF@WRmG4Jd59uo?877@z(8j7d8q4d}amL4$0k%t6PZY{#Vr=uSKj6orWoBmO zY`LRy<@u#UDcGnly?tkvVX~k;rfIQE-B zVi%}G0wysG=JN%3Kra#UwO<1ZBiyXJe zA^NNyo1Iy!>T>1Y&``L2lYSkl!|KW{cy7q|Vynf&1+b*x0i|M*#=a~?Pnr)NOlIch*;tL%tcXLHptwk`&g06WO3{f{4tXyvb@E z&5J3o($31xK5}Pgmqo`4;4Jjsc!1+P5-J+}cVPOfn;lWLSJRoCIgq%IRN|cTG#;Hw zz14R85_c_8A|>64=3(B)@a-`>i0SsfhZeQV?#NO>EYJQCR%XuAfUT2D?-qtLd;G%j zqq>v!u3z`;6G*p39N?yR!CaN$6$J7B$X4o&(D3YMa_LY!rx9*?q*8r)N@mPYo`)XQgbemBpU5WQr5@t*?_HBlM{u29yrhoQQyg5s2MbmkW)l_ZpMojV% z?(L;=?40DIxI?j2a3ET$QRM})o@WsKF%S3BQQ%*Wyh$0#f?P0!R~k@Y}lF9KXF|Qe-QZqJ&QYjL*j@r@7E)3Qn~!aSH{@c!*AAyP|dD6N^?2it>pSSY%`XKn?-R}LmSUl{jO7muC zm;UMUP>|L7LD#dGJ@|%S0()}b=23##EH9PB5$(Ew+2SCH1E#XwX~OsWfmfB5MSU=! zDkk7zlL1SD5W+OT6V z`3TWNu{CbZQecAb8L#fI^RMl0&ob1T+jY0BkkE>xUESvAd=fxvHxt_07DP2~rQ${4 zf`9qyOEa&o%Q+BaCUuoIhR)?Sgd)kZVFJ&~?NzMBd(v67=FA+SsQCWR^Of--?b9QM z6^bi*9?v$p70?h3`M>hcYxG@j1})i9-GxLK;~cnS{tlaU>`)pgGtTJoODEM{xWD?G zQ5J%NL*W>Vm7!6Sq=I|I?-yIB_}w{c8$ZbMDi==S`VI1f{^f}PQD;#`h{pbcVQ8RV zN7+fd7G_%t*bU3~$_dVTmSAbrJe2OonbIR-%4q|o)m(zkz`eegPJX@RsbLRwzQ(fD zm>v;L88`e(>5+4{QV3V;47R?D;C^~wx|2e#k{0xX5^$&>KWgD9tdiGJ#%i=hQ1k}w zk+5mtvPyMV#mC{l8*7RSO&U@4?i%7TDV+ep{qI_ zm+pABBA{r&Viz6Um86rB63shV{`IEO$ZFXs8Oo#54XycpC(xbHh@ix?%-n12XcYVyTkl`p%r(Igha{zeg*22v+I)C=l7mPYZ;trVALOepnUn!+2k z<{mA|HGTaFiIC-4TvOH1746YI^h$i?qbm1IR-y!ciIP_JVp_XJ)hO!9&NjS9yF zo&dQMF5s-hV1vas2t{_fSsxO)HB*>6d}JXv|N5p(sStrf_U;z_d$m_Ku{_)kCmTb{ ztsZBD%mGXVN+=XOI34ci@&=0<=B@{Z9|kxqczds>A$j)zcE`Y zh|ZSRh-9ln#1@af7I>5Hm%($?d1T~XHx(KhbRAF2$MzYM7zRHi?hbSFXYzv?+!3QJ zLo`}$)n$-&jax*lj(J2-S){G4*0DfsXKj%LY7I4ZBDmUErdL1mz68-S9YRtk##eOK zF}v5YI+hp+Q2>GouLmJ-B9Zg7kCfqNPUq9|ss}YT__=Gb^juoonkw0ysn%eo{;3na zY6l8Zf>BiVk+pu+r+s(5)7arP{?*DMmK*=JtXI(slG7F0##pd_+z3!-5;g6X4;Xcb2gN41WaV zu`nja$jm4FA7a6Nlrh=KhzE5GdjsYS*f_eMKu^<(> z8Rr`&1`qWkmG4H{$ga%7Mfo3p+G|sg>c~g>KOG0@`z$VmeGtG1-K7jD!pEOWimXk|5o2>ZkB*G zvboK(jm^2qO>Z}kFsw*@nXasRn4~EwEnoD$9eDnku^D?O{UDNKmN5PkrsewqeQPb=`8Ci1Fc__mer?M;!HBd!&9i-#&D5*27ZYYgbSVZwJEDJm^-< zsRvCJ?~vu@?P;f@Y4VDSA*?P*m0?vm^C=wtWOup`F&r$SlmBE5bA! zhTgxi-v4*4L9D0AV8=lr?Bfw84W%I4L^2oi_DMjP&aaGYhEv}+r-9$Sj(?tPee9HN zkr@Ag_-q=7S9^M|STXHmbf8S&^Z`~)OW8x57P>8nD0sV*5>#&sFO7o+6bi51KDb{9 z?iMn5`RBW1pA1R+di8Yiu9IE;A6Xz4Q=M`(4Ri4(Ko^^1;-|`~d4CA^!#(T6_-E>;izmM}vsrt3PZBe3cB7O*u zHI2#hd&j=A(PF|m4euQ~KVI#}*TT5lbjH?kiE~*-u7A-g(%L{TWS6Z(QP6Y@k#U^tyfi=;{*FCwm@p{PyM}?Ha0P!n2;|9Mdyy&>&#;RbT-IB9zRf& zIr^m2C8 zzv%n+@oAa>9mv^B98h64CSfD}Ykos`1#D`sE z!D|j9w4YYvVea*iPZ+$!mS@{%UrqXv0Z*nGH%~1WT~G2OxO-~ITtod0;AL2N8TPXe zXvfx9i`fUe7HNbXUYUar(-Slsuv!ln$AV^d)o}iqD~Df58ZWwAU#@7Rk$Ls>qzJXf z5_0I4iW9TxUP#jLTH#hUxXWe0PBfjJ(wok{pZzPsO1$V}2#==IHLC|aLA(2{p2jIX z?eqsJIF?jCKb?4$$cr|K7RVMWA4WK`_x-NT($BFqkP*{~;_Q;6@%c|!RfwY`Vf3L? zPus)2mR^}#`**sBvkw#60)c-X?#R4(6WYqli`ZHCPQIGaL&-gxo7;LtPZ#r>wk5Ss zOfT+sVtOmN?8N@hCw7OFQZcKx+RjU=pObyMT4$aB7`_bB3le<7(YByJNrFHOKVhRe zF?9)*XEP#Dj>dgDxWgK;n5A>Bch1>1!}9iQ*VE8At!?HzLci)xguY&=kaKNHiNyH( zZ%?^4JXf3zQ4wJ(wz!ChMV8?29z7M+A-m{sAN-yB)Bj|eHzoTz1d{39LyfZeY#t;v ze3~beP$_*LAPNL0t*_&SqeAdsaP35<~HwMq%;6|I%JezJ@X*Kd1nPlg3EA}MU!s3&aZ5dP7 zw>Aw#R#r&YweUBz*iSJELiXT@5w()Jai!%rYdny8%lnZ&>iC{kdf~swxsJ=EfDl6joba$9iNFC z5KFb^$n#%RW)4cvS;^IjztwJ7-!_#AO=53qq(FZg<@H>I4d}NPmZvOaX_30*6^oN46)qdR?CoI;=GOEho?LOQ`9E{37^^BcANL$o6~ zA#5Z%-k!3fiy!Tp2Jy>jR9O#*D?&MzzOdvuF}zKenGnTyES#JiB(JKj2=%giYZhJW-leF?REYb_eV=5?T+WV%V-%59>A+OUWAFe8O!Xoor!r%#im| zY{#L0mS9hhC_7>@ys~N9y*M#xX7%$Fey&N`Mqjq%#3tR7@#sMpp*)ds2=ajUJ@KIx zZDcO>#Lg`n#o!Ja^BD2>f zh-zs!u~{OjMRu{*(!OMhzK$uHgHaRt#?rQ+!|};#<;M>arq4beC1$PY5#^M0FRrLb zlIq9>mXRdpKQdT-@!r$Vb~JipKZ?t^8e_@tA3q?I7t&XV@8`^|`x+Y?Y=fP9Jt2;m z?)i)xBcJs&AJ3g^J(Y!SZj@YM!ac-MR~}RJr?>vMW6jBAA^}M+RF{me`JmraO%xtIZniFrj`4pq%o=>`KyvjHj+n z;HP}N_H+#M38Hyp&OF8Q>sN$goaXeTvUFCX(cE{Eg6V=QCJ8NPCi1b+4ogXMWyyAp5q$TijZt9QA0oAIt&x7Av&Tjn^N#m&Hm^cJXwJ# z;}$vVRo$wvpteS@mK`eZ7d8Wb(5_Jpo~=#8NQ-5@xF^J!mK$P2leTLCX5Kx&(i6pl z^BaODF0pv~#iciY`0!!N%ht!9z{I<{I-;Q`uVj5Qp@o;R&En$(AIn4W!YddH^nGGb zGTHn$BIfplcdXHiT`AV4pGVAiJO-2_^%RwwH^#77GoNrgZNjQ{#S~ znV=i*afhSV3%n^7PX4fJgmxx2^YJek_mj~FbPI9}`Gy-Cd&aia>{Sj>Je*Cujpo+$ zsuC~?2$*e^-#dHeS{pn0+E%sy6cbVl1foDphqDZA2$x zS{gW^J{2b{%9)sW92YNZyOLCjoN!@5+X1&EndDaPMpEZ@=*+|!KR!b>EZu$tAbr6%dz~?QZv)-2|7L3~%$X znF_|YXBd&9|1R@(ylyDmeatZyZ4hL}JM=`1uj5Qv{o@!ntHQJyLFtu__4k^gia*X+ zG{g}hzBzWoURvwFD0qt)LA5xW@cm>n6U7 z!^bf`Myu(=*gW^xJ9oV%l^hNH(K6TY!O^r3=h3??95Pk-)YECzXS@?e_oW! zc)V)fKl?O(_r=n71JnABqv^M{^l~z?jt7yg`?L@fSSPIIJ`Aw)wErxAC{sJpVQys= zs*DOqCRbN1LXoZBOCw(pB$$8U%%R~V=t>|`oFr50z3R#)xLy}a)OZ799!^m~StU|v zVp|aDa1DH)Sl10$eENz>MM!@M{Vo<2MLnIkN9vX>ANLsOET~#t?$_B5{Z9p)a!) z)T_{H9dSA$BsgQtrxljc!3KLWWR$y3mNh0cN8kxE zZ>xx?yXaaqscQWUIuXl_*{oUN0T=2tdYKx#yCSX*CG%+adXLJsV4~%9)wrMg8CeUt zdtTO7p=Fe0+nWV6t;lbior0TgIFGOY4Ljn+MC*Zbg=%p~BT(mA=I=%IEOa3<=@fhz zd0q3lLf1y0P@g`lP4JdCd&dw(`^+cJ>$qiuX=zADq9w1*Y{`@f)0Ya?Z=~suUkjsR zwQtH-yT=WRin<%DG2VA&xrC|Wm-^wu)0j7R33zrrsH+>VajD4QZO450c?a6||HozQ z(c2OAu>o^M4Q5(shYqLZjNy^jq&l%?Z&Ola)tcp}j)wJ$hx(tswCyCW%(fotefI2L z%NIcsKASt_0W`B&ChnyQ?xMziTrkB20-|pq*V&sv1DiQosc(X!?$0<|2%o5vYfW(r zCbw{O9Ok0f9J06u#g;jmznAUV?Q0u#!vPnp?aDX~GyIrAK z8tO)SIr7Fo=vvzD=^k-SFg}1kOx3>Rp=Vv{y3Em+S*qig zdSB3%BabDBo2{yQDaaHW+2yg@oNJ9t9g19&Jk^hcJH?Y#X0JfLl>fY)Ur#oZ{%-Zp`wA|bytjuDuqG7RGE)lsiHb%C=pZOg3bFr?v*95EfWuM+C0^Vl9l+6WF zo=d`omui)RT03*gvUtZhO6II<1fe5KnXkpF^)>9zK-Q`elc4MF`(AC4$2=C(7L8lXd&%GYdI6>JL=UOh7sd>MfeN%T@VyyL!`2j`BpL<{YDU9{ffkCnj|*^?p2 zWNcWZj^~KJ$9-v6kkM{4c7Fd3H2N=b@+s~k|JcDP9^hZa+NPG+H)qy<{~R>CTvXpd z91zEq$7F(ggtWDl-LeJU;RDl~O@4JOXveRE1%vBv=Uq?COYbl7XSEw0)joaQmZLn_ z+rFZbZMmUC>~dDuz_H|Mb}E7mMZ!(Gz9ar@x~Q=v*;lWX`<+)>KY8*Cm>s_mF_sbX zuj*E`E%M2UTY=tad~PY}me_AAr#_$gZnB;xX1w{hB7xF;@^wwB9s#Gynl$^f zwY+WdJ-wbk#eS1aU$d{RIV8%LC#vedYfXF{ixd;;uy_$0?$LLcc$vl>h8T!AX7-C; zy0c*nT`J9N;`fmPqY?TBwQF^p8pPX;)1eKgAddh^{ORP6$81~s>mgMM6-nt%#%9x? zJz&eqX+&hZ(8{XCf-9jv(M`P=iMIZh$lEf_f|bJPE~fLf<7hFYP)sZz)WYxmLt3&p zx*PZ-8)?K&%>Q7b8YY zLf&p*ySL`TX?Hb4OD|i?&Ndt+mpWMQ-mp!!@DKx*lMDtAlM?Nw=}AzFK51p?t13XDXD%)is&IVEh_pwRmZf58XdNC z6ECOMk70ZL(JPyU4$yF-UdU^lSOO7+TK5<>#S05lnE3E-^C5PV!Hm@ zHezrhH@>TDo9ULC(k|UNd2%$p`d~Ysgb0lu1}H7JzK*aS#@63@ZOD}9hcH~s)KB}y zeje;J8RB#%J1NI>H6PukSbpk$;Qc*Sb=Hh1wEgQ#hiLEwm4B3%N8b(o`=#W4$?Ou; zycq=4kEWMT9%g8EsDppkF(Ia>K-fl##AyDJz z4pWBR>cN~n*;Q7BxR z3DJ0yk#YV`RID&t4iC?SR9E{+$JNOfu`>C|5%Rk_w-(iZ)H!1x8dTqsh_%IcqIyLc zkUnoOpMon-l|ZlKQ0&npCpC(?euQ%k|+mEV$xbyK4mRy&SIcF5n9gz zcS%h7(`!Te(q-U_t?a`&*I;J|+v6h~8x zkHRJY@;Ji5pLa%YEf_9Mbf}$lXhpNwYD5t{wXY5;^Q%Lud_2N8%HNcHZ=PrKQ#3+I z8$BE-U|!veukn<~)LV`cv*cDIPs@;p4NHgFde>}!cGmk%tmTX*zg^fLK^UgV^^eQi z!gRiez8>jy94ZbHP&d+GWAoP?XFA9?b3ZqVIZV`T^NX~S95nR{s>J%cGOiw{=C^d5 z)jSCwE$V)P@;m7$n+f&P$$3A1oNwxF?pf!suWa4)?FseqnfIdTRmW;oqMe}a@6LVG zP$UHxkSn9?X($~YkOr2QdL^RG5A$0ltW8{mCi%|5KU6T+dv0L5X*Bz%D**xiIg?T) zGV3?5R<6g>_o|i@exxBy$X~RXP%aNJ4NhSAs9*JQ^1aYo2S<pGdCK&oI{aCzeK5uKfH#TbFT2J!XT&H;*LZ5h zC^vpZ>lml0+nEx%b)}4@~k5IbFX zyLajzhlSpITYp-mj$lP_S!>rjR8{pE-O6?BOO;lm$*WVUZO9!y7YIuWMlYiq5bQ|X zMB|||Y~P=n(05Q+&?1O}|3DdKcTMeC(gQ6PO3K*apg;RL%A=LpnVFA(C^Ys+-&z>| z=?nf**KFplvRCVzt2^Cd;C%8X-O1w7=oRn#$1UAkTL+8d=Qa~}PIe}z>}OjJ7A=0b z&kSK7^V^MS=JD`^p86;&Z^1hGyH5{f8d?tIGm4Bhmv?=PW^*&VSR(EhSWCU{#q$uQ zm&x7i79WM1htQw>9e+|`S}l9WH#2#zT%P1+Ts2XY963|)Oe@ODtG)ff1%GfjB9@@4 zBB)TG&s(%+U3ESylWroF*V}C%#AE-6CDMlk)BKP14FRfVW9}1(TRe8>0H= zo|EC+>vgY>)?Ikr>|9(wjC;PebW1kT>^rygF2+ArBl>epk}d?367csf&saF!NJAfS z{nnXMkBOFMd~&Qf934|SukYn$;;EeAshU?CGSlcK`@{6b$fwyP7r#}W_`;B1ZVlEa zo^`RgHIzFmgM+i>9(yC_GL*Tcvl}{R0$ei`^;Y%~!?LTZ-K`A`E1jnqG5d-B2CC8g zY4uYBXFfxJ3W|7-evD}!?_?U#%~F_XGq|gZ=>$416_)ftYSMqBmoJ&%3AVt;drb^C zqLI#=)%qn2ws zW*a_(KOWn#QJHZd$A^ByilD{r2FX(bS zjrI?R!rTR2o7^*M_cy$}5FsQHwz}uVZg0U~$M*dX!rnS6%I*#S9Z)b35G14#De00< zrBO;cMHmn%k#-zXMd|L6knR|IL?xs{7}XgGV+-}#=i)>-TP%Nm|N^TdAk zzVGY$To*oAakxnnSr}UAFOYrhNoZvHjh_9<%g$!yc06*2Wu%gW8n1Hu1 z%i+gv!wt=Hg2hfDYdQIk6eQ~{3m+H7m*I#n1l9oL2VON;L|q`JR7ja6$=!Ez!JD?N zuJ2jvvQdnmgJq+1q7ry5C=rf#Q+o+qs+vDXpuN#^2yjS7?)f(dV#s?=IPdANm-EbYUskBo)Uh; zy_|a@WS)S&x)XA8Q1&`2>uD-ei7!<7Vych*udjE))$E)@+{e3@B$8W2jQefp8{NyO zM(@aQZob-U-mw|(r$=B+FA#ZP=!2Lmr4~_J&CsqC01#T(iuU(B@yI=4%c&ic^5ytx zt$mYghxe&D78+t|#Sr|wMRoB5)|;m_4T_Hb<%bzmg9SFPk%&^x} z3T{uiPg>2}nvW#y2m3c02c`QI4(#Xe>Uj-!IsSfjKK-+^BY4!6fY9mFw|;;3we>0z z$3%v4HQ>Bx_Z(hzvQa=yCu{e=xMx{W-n_-Kve%}u-_W9GxMrPTEltgT{gNVHbe!{e zyZQPjUssZLLI3KPuZ$}PDl^2zcjbc4X(#R^jt8}_?E-zE94L< zW#C>*gFQupZW~K_?~e@hKIhzioChV>jS=Zf;oDk;xfg#zR{kjo6~%b=+lO5O=#?>b zf)VfJVV#oLa=Xp@Vq%MJv`I5(!fdNV7Ufupf~i8+(;r`F5xu2w`_$sZRHT;sj7AK;us?3LjN|-rasY|udIgC_g;BEsV9)9K^6^yP{UK@INvXvI3ab2wx_^4}g3K%F-%~oN7h#X+f|;yP z*aq?2rQ&V{zIFi@)bY-`9+S8``zJqA6mWqb)%Suc^X_M>1e^cjcpzn!G&_wRi+3GH zF>`|so>U`hY=I>~91~ifAleVs)ED_T+SRm@lxMd390Mc^4<~2LE$7!J)T}yaD$hKp zWq1WS+}Tz)@=S1B4_!Ub8BV-Li?vjO(a;>oHr|tPG2ts=1}Vx0Lo-|_aL`I~#c_zK z@JG0Hpo`ttgIcK89xU}(w!rV2HdZH{jvKgYNfN+2&Aa243TZzx?v-C(YRO#G^@rbtkFnkAk@dPt_;u+!4FZy0AGw1uz9iDG*d43( z(Of(p7u@G`d#9_bdLe2|fVw+j;%?9UL=N3sSCn=kr9$E1&4%dUEMC9nkFZ3&6;`U}Q2_q-BOTwEkV4ReY-mwk+8GrkS6dV9%>Mg&~au zCmkQ3s?%OiRnCVmGnQEilp)W%EJ0=2CqOYa-_JO+%7;O7T|30e=ZcnAl8gGWfUaKG zxLcO=+?`>*ajjB?(@kmL#aP=8-a^|R8HAL@YZ;%^?nQB*yey>6=DidH>-q+xOFuwO z`RI5q+YK86mOA<>D;(rL2YvS$2r~c4n?K!8D?YJ7i>~$yQOJS4Q3G3o!%@#!zJxRuZTQG8Y#uO5b_J*4#9$jmBy zB7bRsxwghCS;B3?X$PB|{P@z6XR?;%@mpZ{Fu-^DF|ORYQ<<;e=8F5A-Sp> zBd(KqRQcgnx-jXqDn(wTl7xXZa(+^w_oUXpZQ8qAt}>%5r=WB4Qdz~|WNTa3_Km4u z&#MlTzDIHd*JR(G_z|_2wn&{|2)|~U#ISz-mrqJbwyi~fWh%zT>WCQ9 zi`V5I47&@)h=oW?U;H)d8d5=`Cup_veLjF(E@2>r*u@qGYiwzN@8;P~8Q;I(WlQ~2 z;G}$~Q=WMFIQ(7fZd}iNo9)mXVhGm0w?~I*=~eNWOovEj-e$86k}PzJ+e7mlPiR7a zOl^^cX%7ua|JY(*fBfpE2JuYU>0=R5{edB)5eeylY)D|MEjb^z8df+ast)%_WVMP` zEzMuf3kq#RM5X$6Lw^w32)49LMbNaG39UYTp1|5ObIY;C>eKJ6ZcZ zcrJ_O*30BqSSM?(;(Ewubs5nIp)5vYPeW1(hG%4Oe$5F{UC=EBrmpV->~@U6)ES z+Bqo&L_hPB2&yl~qb-Rt0RUz_q<+1uwq*ZEWCnVgb~n7Be*9n|*>ow$pH~wK4(t-xYSD5?z!O~nRjo#otfp+S2bep(<7iF z`G4@K^Z_3W58TVjVs1KIPRCOtD=Pg~3z8Ri$8?g(U;VhSeX=vu=b&(G+O$#Aw+Lt+ zRxe2}T@Q;=dM8^ea1ZDuUx+i&lyp)+H8~vz2* zvgqB7UxV?oiFt(FoSK(OHt>WeKu6I8aKmgOf50rTxQ!>d?V9=DYsWL}@Bm6{06q$u z4*`x!zr@fN40DGH>_ zLH~3k9$Hc?%nZsq9YTfPNA**sV#3Sd=T2dU z{$4#EO_Bx2nNB&K@BKQb2QY@9pdg^%icxEJ{mhr^w)%EYVmn>@5Iw^C?Eyccrb7s- zF;QvW*U?Yp71Kn)xzK5`NIbx}w#nRgQ}|pw#MJ(+5v;|drFD9Cdd(tDQsieF0sK2( zL{WjaKfLtIL#|OO&f8thEM}BjZtXr9BA>)Gh2{n$8#hc7Cp;v{B?y1#?d+>TmX!W~ ze6llpcku>JJb1;>S_Y6l?EujM4_W9&{l5&en$e(1pTACM(mhIgoa>C1-}5db(H zBZOR09F@2U6^=22GD4qvvBy@I{n;lO9naIV%Q>>#xA>~wz9lwoeE#9&1f#%mIt@*> za+*E(EMuDOp&QkB$i}li5elRSaQ2s#2!KRC?w^7CKVd`cV zrl99EXKY{XQyArE;7uz1^id~UfQgC8(Ao)Lh5&r8rG0t$K6#?CHN1Y!2{47u`Mtcn z@W$L`g37K}&nT*A`&e=wI*IUvB+E|-u z2YavLLH6)8seF+I?iCo(x6eHu#Rl{Sdpg4rDMgsa2@&ZH;tR5m5{Z&gO$Lk3ika;S zgxs|MxBvIluFY@9UJAhAEUi5@s=Irm0newT@^nQ_Ar3I8G~vUrR~NYJS_L?_2UijM zCB3^pBZ}Kv`&a~&%}d@v&UD zlTDUE@lzU9CcFG2uk(wfamxHy5{B2+%-QCFa@>~trzGKz$st8}XEvUFh6lMp0sCwe zjTQt(u|ojoUPRO*x^M{maX>GZC9oDIi@Ol zH6~?4I%CaVsxkL~%y+K&_t5)kP6Q>}ID!0n#>$Gi+g4qEg_j1AV#q~}pBvUxVwdx_ z4?Ji0$pP&I_lc)5;204QkC#S<3$}CPK`^|Pt@;AZE4d@**6pvFoM##y;$g@mm2v># z`G+vq70Iwv^@S|nsiH|0uy^7CB^lhi794~s8NlSN4r+UMH zcIoIi1go}yKxn0io9%ycd@3Z~IP^r2vCvk(4U=>zRkHuAcFT5R_=g2?iGJLUkmh;O zyc>7%X}CcYa`5%+&pTlEk4WE3N9*U zcTqKCnu_b!Lf!jTfev($5f?hv@@+rB*JP#A=S`cpqd~aH>C(7IdSPX5S2`Y)Ay9dE|8Mdwk z0p~b3(Al*On5dLELp$|{Y+hM3vbyPT0cObY&Rz4?sTFPEgMo^F_7bCjk8AoS2*0A- z^DnzPS(+k)7O~0s}nOML~Ec| z(`>L`3D24fK)NT3waCGgIdz!N_qc60>n|BOIsMuvk;zgTEY87X!ugJllxYNMrfNEU zXGfnnlV#gEnuG4`YGJtZob;J!ysX-Q?f%+1d!;oHK?+5VjuhFZq1JtM{dn#Y#dZC2 z*}cv^x^%`KAj*tzW{)n2*AtP*y_gdGO4Y@su3a-X0GleP#w_KJE(N6qjric`ChM+{ zJ<&^-A^}q(Qi|DA8@KzKMF-*0dqj_Tz`7&liqSStk0pJygH%v*ok@Bnu4SGMmQJ>| zU?yiD(yMhIEZ4z4RH)ut0HzhfyJqb;S4HTk6(-kf z-d*Dve8T?}S!!`TDngmXt?;zq#AN0GEK8K|o9*g%=P9A25oX7CHZm+~>`qXvN7LAh zwUy_tm51^;Ti|7pyF4)_+907vU*O`8dJnz4+OSB>(H5URRClNUAx1%;H&1Q<$AAa9KtsQn+qy z>Rw;2`Yy>*zE?i{>XkL4<+ssVb}j^fPvg`mm7YCv?2LuN?fz)7CqXm7?$Bb zFH2v_T&@cXELU$NojjeMK{+@-b(@c^ZZNW&;IpmdtsLrMOXui!D3LrLc%dkBd{Wa; z${nY|g+5@mtL~^i zq|;s=+MjpoE^Z?wU2RYpWHzjsh zc~jiJQCff3OlEA+tKVG$vAHf@?wvY~T*^*s&1l(=FejhXnFn|1>(h-@Y#g z#teP6ESen);AUWhT)T+JAYWp6r3-+z>0UcmgUrb;92zEU5NFoazjvOD*$i$ef0&Q7 zwtHT6w5~@eQkc2SEc9-NganCd2C9ff%Z{IR{Zew>tKd@Xky#MYjWwpe0d%Nz2^nM| ziueeJ!DQC69Qa*<#DKVnG(0T%1dBc^mpwn(!Ba&4KpX*4Kj{mZ%!5DgT7bc=b$#OM z-e<##4vU-1A#oD=RQXEq3MuItp@??n`yG;S?n*<`xK$kd&a>+hJ;&n{^i$%}4qTU* zk|j?UcRiG1dsl)_`o9cmK_GMBch3Sz{*s!)QS1qR1u;Esh8N;P7rMawGjan-sqi+RD_tp7}dr&M5&P+rsl z8;gv*Wv$ES2(9mr5#~l_Iyz?;mTg2R2TqsD%8mi?Cq|smgnqikr}7oB48-HP`*@@Y zu+~IcxOY<5cwn>-@mNNMqmk%EJexY;AT*$-xwuK?ivI8FA-bA`;TV69d-b_2ERe;ie}tkUT$E4ieZXts0$AFpKY&@V!Hk3r0vyU6JhQTO zcT{UtVpuK9)w-8IG(3DJ;I^X`D!R2FKj1q%;4a>%7alkhrd^ejQ_cB8pQ659uUE_* zFSM1M?3dovm;(RdnN@l+b*l$fEIrTd!8@4IGc#mjnz04>-a95uH4+n4@WI@*Nd-@G zZo)RqFycuuml&T1CUumyej6h6z}t|-`;9I zL*A{lHEb(>nG#XZYRARZM4okevbp7Rj+9JIw3*i$k95ejt5iw7;rC6ket}p4lB4jq zCAh*Wn0ir{HxhjyGf=*{xrUx4Cku0)Ns2y9R+&&T9U97kyTGmPhv+p>+dFSylwyYJ z+q>=@_iWAfnm0r;R5lgAm?wr;O49jh+fwemA{T8p%|`1jKQWprf_#7SS4GC1-)cum zrJ_G2s)Uv(M<296$uqr-_S`mAJ`W)IYHMp6OKtHZ(J|{u82ZSNZ`gvJ(P`S*S#@Q7 z1AV~kV0o+kjO6cLGJ{m96`a-b099G8-9x`fjf_a_0;4%Ss!`G-mf-}VC?5mFxbI%w z=TiB0b=XjUN=6BdVnmAtEV!MQHF-o1RAPaS40%eEX1diBwx<0p{O-6C0+umQ|L)h){&GSN2Lx9{w64mBE#&juZspRwzYLs+%S#S zFv@1x_wZ_DzVI&euka{mxVJ`fP*WfF_MokDPXf!tw0hQsUfr~FMK&@F^>XLe0VliZjw;tdu>7!3mW0a zlTyHu3|oGjf&-NuXqUG(+`)<#?;4Or=7f>KenDex=r~IUP6Ar^YV-*H7?mN)ao_LV z*|_&=$KEzOr%qELgGS1R)>+yaSHb3M^m@BmELy4a^E`i!Oo0C$Y6BBA_G%qV4d9ag zmiI%>4{QBuM~IJ!cQi6!{tJ2AujuHC2iqwrrdoW;n2as&p3O#!1T;5C05Qt!(V&0% zj*N~M_nSVp>vqhAb8#Hw(WkDTZQ5!7QubKYJe%V!^+`C8`(9@6$Vur69^zL(66b92MjhEv|Y zRh}rLb28To?`fG|ntdBZcKfn@y8|UAYvzER!gp8t5_ZbLAM3H;T``a;)4r9PRoJ{C zob1i|bRg}w^-kYCF&2#6b#e$4uS|cTh+?UVH{ z*vXyc!Mh^$8%ys>E(ExCbH-Wx7@1bnR#F5OPgOs&gu?|Y^=m*aVNE$%E9-R#RWoaD zQ30CYGbS;T5ow>=NzrSN>x@3Y@;ZA;pv&7k*AvFG1-C(JC5^Ft^XJ3K>=n0rSOa*= z_2?HE{>m2b&ZfNNvAM6!Ennu|5A-_C@9wV$V1(CSxzod_eRN2g&!eZ_)@_P8C^U?h zMk-c%d2Hryc{(I%N>4QkA06IUwjev2E!$Eo3KznJjb%#qO*$x2{BK#5!yFzb+>BF+ zA^HgaEhhQYd3nQ=&x*t+F^Goxbk%di292W6cfTqQE`X^5+sO1Pin-8Mo$XUhev!*N zO2{J$F^`42G!yP(98A6&tHScALB3NDCy(iE<{vuoUafH%eUMSS6dH6z0~v>*kF1zh zCTMMNT(!y1%gr(1_r@Wj{SDxB#U*k%8NsAr!kG^^JzeN~wYJ_JY^*o4D&bbveck?n z*L1ePvluqb_b(`yzF5H>i6ufd_Y2~h5TmcJ*jhV1EfP5GlUAf!)K0j0V~LZ|PwDV> zARC~j^imuW$K`!-JM{XXWz8Pjv6!S`Q^;1!Rvgigv$bv{@YG&81@?W?wAT9bWf8Z} zyYDOLf|OPh>Tl!=)~>lZC27N8ds&aAbyHJ6_SIAW7o$N8&fSH-ZRNlk^%uY0tcyT5 zq=a@;ga2i4>(+3Ly6wUND(%#PpJAp>!wziN&Kc)1Mxmc&V&0-#KWt4Jwo06145zxio4G`k7n7V};IU8~34c za?@$BIlDhk zVzR$yS>WCrITmuXJdbV`+FzF`+^-i%C|_I4I3Aj&m6Q8+iT`uNYTDhG*l#o{896a< zG!L>yyAlp+fh}u_`t!6$u5enx z*Z+Bs6dhMR_l4~4L%%&p4K`*QIUXz*<8wZ=q{mbmn{RX@?cN^^Ax4F7bn$C-yT~^} z4^6g&?)+4^l#6>awjO3A?jXo;E#5G3kIBj_W5MqUG2_fk_fgGd4|+%$(6Vrs=ki-z zC*u$u>BP#c-)s8NaUio1EY-IoG0=2FTsL|7@Ri)}`g>!MN4PQq>LpcN3u&0|e(B!k8=y2xRq)5S zO)5T&seYI@%k%VGrg|f5U~iKX@ofoL#+eKKr3(ERax(hvYB%e>>ZVA;@7B@>Z35*r zP3#xutQP3FN_jNXLt4A0=cCB{Q}fLx3UVMZ?BedBFPyVNTe+u~+n~8G<1yS@-EX^z z$8G-`uf&~~mha6MNv=sT+dIe4KbP$hZgGj&YPjVe=OOVR;I)g|ckfGcl2*#6CLe#p zRrh>V9X(P|k^`%;6cq&}iP$c-z{~5yB0z!$3N);42e$+jJg-QsZ9LOJ8Gu3NiK3}qi^o9bEC=NeM4e8;` zulRvx4^i{38*^U;;~`%={%=4)&uwHUlrGr9Pf|6rCd>1g)=iCQk3Sl473&D%flnfS z(C^BYlc58<+qpcFB4Tz4+S94s3;R+N?kJbdx0&&Jn5vm|X=!C~HzPEQBN2&VltY4e zX)mPz%RVdQC0?inEKE7yPjJC^zR0WjNvY0>&kxPW-*%iGsK7UUU)}bF%9FL+sx?M> z1F183qh`A9eDV)%1r>+0v*#|CTSgi)OGryjaafO;^&ZDruk;q15E`2hOV>)URyqWg2rv zqpQ<8AT8WCb6DMhy2iZ}-03cB%}!#(4bu-8<(gO4;;2 zr`a75pS(Iz^=0#vi1s3v@buW5Z`=5B-Ac6t@$(n@%Hh(()ej-T|Kw@h{K$x`d=Y=o z<`(@?(}yL|hKPQO*bN#Pn(dq z`7X;C9F88NGzybRU09uHV4VuQeS2in;^xv_=>cS`9oq%PDNtn5HS-VG8ed|OJ`2n+ zc(0}3O^-?XWh6~R@g-~&q0~La|HFO4^o+!MM-IyYb3(mUP*nhzrTCQ1)}@9SQO{y- z9;pD32%wxjsMY7y}RM*#SoqIIRh=7bwjUDFyx|h=F!KtIbW-obvzTX(2*M7qeS!Kr<`yOW2P1oz7TIgk;^ZgT@Ly*d zq0}|yqQ~MHowMn>P!Y)1wJz?g&b9Eh^pu}}u-gTzR`@va#_{iqR}#KnX)d`ebR5}I zfl%bCM`fsack<7g!AN7FwgRppIP;|Ao<=O)_`JN)%aw^}*V!mPyRVaV zR(lyWxa^Xao6V6eQJB|vv}aC^29C}rnm*LHXzZ8I_$}j_T;aLf&2h#!`SiPe+^9&{ zJc0V3QY_$>eLcUl)u@o7_AOuiSOQr>!=jPM(Us_}`Wk)AX$q7}Nc6EsIo*BxF1<-U zxkOtg?^k75H)kA(9C>aO|1Y33hPQ6CVb1xhHay#lN#YO^PA^Q zuGzw}jGMI^pIhZO-2vRUvi@9n<}v&{iDn`C(3C;qB?5@me&Qm5p!6qhexeff-GGOb z^x2R(^=a-;xs5H%T?qrkL$BiyycYx^R#EIo&uk>45bSS1zgRuMed%vW8E;(pwQT(C zgNKHWNpoUi5l{CvrQJyl_tfgTsJN|9^P`+o55u7j?$e4~Ql;+CvN%?Fn!$VLxB`UL z)*MEIcCaFs2GPXl z2hlNU37!L~l!%3B;2SZfTGO5!7&^D}>Eeym>j zBVF4?Pb1mddxbOFMfH#34piMBkt@vs1|#g_**0B*{b!Qy`>QWzwwyL+e`lAzBvYM& zJuqZ2z_LJ-zt5{`w7JFXyFR@qII~&Kz4nQHW=78dH>A8zdNe4*i_-_t(GkfK2G=@7M)9LL7 zilgH)xNKIxC$SebdruB!o}HbX)`VGC5eyUjt(_{8&f%hYYPpx#dAf9JD)#Bzp7byjLaoaOWy8U2(=$&4M`nd9k zkg9*pgHHlm$M$w}XRV1&i!NKth_=jN#`{*9tpD9!q;d+xdybr0b`U%M{Hd%oh<^9H$fzIUzs+S}d; zp2CfHpc1s?MoK!~9aA{dTbl8uzJ3#Ke}?37rE_IsdWJEHL3K7oElH*8*Vk2$OWUid zPObN1({hi!s3CER#54)Fw@DWt>6@zh^>y7TZ8W`#LpfyD)4YLy@yisc^6X`+)@-)4 zI!#|@eB{M6=EXSn@yW)?Q4P1L8*brOa|@U5A0q}}DemD6jk_>-hGK!&hv|_I0=_rIxEICTu<&%x>l~}w z=7}Unv9Z6mXt^M?Vowu{gjz3mXwDHz>U9b9Na^KUXGmJwZu0o1xzGcA(;2OLB&w z>RcQx=nBy;{Na-olGyC9O+>w%G3>Zmq&R#PGI@dIN)GO3PoeClX?`Bxe&hQZjMgmt zN!+wUm&?!xoVRUMiN7_nEuv;xhpTwV@UT5IbDlJ`z&8Fp;(S>pvOrqFh zRdSDfGYG?$Q71>zD-JYLkP(!F9j#e$e=z^3zb@N}GLpy)g&RV)ujVbq83 z&4}qao;z9so2-?gklR1Xn`<`}ZYP&7a3N_@6&ue^*vF&wb^tY-OHFbd64LR&+d^#A%5Q;k8>VsGbj0!=5@d``3R zGjp`DHK4NdS@G3C!+$pxsMyUlukF_&+v~kH4ws#dj`LWeD^8Y8%ur;SUkMTj{?`}f zzMV-(HK9`5dukobXgf>PWDaX<&$9m|^fX|)TQL+;2-X^tETLCkrKI}#cT+VeY&VAL zrTA;@OviS&UkuFoXY7G+=ZrB`K64sReo8c_#`UZz&KfpnmF?|kkgzaZ@Vd`&=yols z>nY1eF%Y;3pU}1HyY^+*JPk#L=R3;&+nVdzH`__F$Bt9%%H<{Sb~;vSFX_2&=%eFJgleuCFDG-&Fk`A!Av=1c@>J-<%1V(k!v#cfQW~peZv9_mK(m zoCoP49Tmx-lEf!WsE)+~v(<$EBc{MwB>G1V&{l5-u~wdCD=4J0#-W8V#T%m)3lrR6 ztn%K{jKmHxDvnq%sj=IT0{S6Au1D}oTIO3F#tJq@c^+uw zX>)X%_Il89L;lKjU$+L!I}*MADd22!vx$L@f{woAYK8A&(`7%7UYYHsHo~6iDT#Kt;;D>+H+cw z!AT9K(O;bSq-7${s-C&AoYxC&WJ@?DsoUEAlDV=raV}k_5gMn;bad+))6uoRN_$|+ z$x&|gXUJN1>z&(t>L92@a{RLQN_SDe)o&imzg1Q|vre*Y&pT69mEowkUy=zpozUGhMF{aPCJBhF;03 z7V3RFmQrS-*XDQ-Mm<=G-4qW_wA#unq|6h-dXn5U!Bme)4Wn7g>WsQ;re$4zxPY|N zPugiaqQ%w%`EufZQiTMNm;YX(D?_Eu?4>VQG#_r?=~W$IV(QAgR=$*X|9&U)J}dMw z&g1dkvsfT&--wF)!*Oa#j$Sn|N>3(j#lqz!xocd~nc*uFU5yxZt1e>5=YPEj#VdaN z`ZZ>sV)PPq{OQ=V=@gw%Mh?d=le!!3`@K=yy)j4q4qc#lqw1Y*Y?P=Ct#5Yuft_%e zc#!`vUAe(|gg5-5@@c&uqM880$_+&Fkn*Z`y)1>F-W%UZ8VhdiS+Fwa9Uav_txpwI zSstp~WPzEYCdwDkeXE;MoO8jSq%VGNUH%}a2;J=b==4|(D&u(*L`Ho6=RJTdJxMY* z?bGq%aTrr_Dvh19Evb|sg4~+4&!hzRoq1;s-tB_uJw8WOL&AI*({j??tkmATcyR zn&ka2FTCW8@#V^gtV(>(D!;AmPedPx$HnJL7JfH_m@b5FJv}+%e}-JXrMuwGRm+Z> z{Px2C2y3|1U912knETOiHzCoKC-cRknnE0#bIU&&eROmhPzm5GSb5)hQdeIse2(gn zog>nxMy@Nzp~gjU5|I2zfF|_v_U;9(Otte95X@P)?g3)`yzzks7C>oKRYZ#_+mE5HB&`;gP6fS5Us}xvQF)O3>AQN0*h-Y zbEGx$4HgAZueMvQ8%)%8*}T-p9d>sW$_Z{hQd6t?EkrwnYfIQTjotN^(%WYXuMJJz ztM@jwd=$LvF;Wo%oe3RuIvH)ONGeAXF#YuwUft}ZwNAkIkL^KXX7<5XF1yk({>U>F zNC*X~Y}IQ{_?&YPd!~x-aeF=@uzNRCqPBo?Q#u|`V~W{z`)$~69J4_~?ZN$2p=6T_ z_Dhrfz}Gj?*o*@nrSk1{c>KekxY@Kc=gK=u@`$IXj+!~gVV4u-(Qi>a=D>DGgQx7_ zQvpF%1p*&J`~ryjdhvM@08p3F3Syq4hVVhzOMp$+EDJ(X^@|Puq-=u|s0F?fFFv4q z9Rp%I|Hh9(4!@A2M-KMPWBluhWy%Z$a^kr^xbymH1sf}rNQtv9TQXOfp>r#J9-tkO;N;k56;H;%%N~^Y&@o`bvjOlbGEFzPN|5_E zx8nyQW<+eet`(P;C;mxhmt44p`jPk!yhZGknzsvlY3&#{zw~bLdAAG z_!H;?dqBXWfMDBh+{tz_G6Ao11UWIR;Hp%BI6#1D1UZZ1M<@6+SL8__vIno@!-qh> z`gtQe27R(D0aPR6L>E)$y|9*%pP)EEt_%9ShW`fxU zdW^&74YAPC{R!Qf2bnH?-?*~*z}(Y-7qlh=JpT$ z`YvRfIL7|Vk5_A}!o5VWmnHk3M7oFE&KZx-Ww7N-Vh;VN&Z&b;slq5%cxp0`Kf{sV z`hF7*lmFW_Ughg+iw=uxdn~8}Te$_U5}ShzwW(V7WFskARAlx$AJc?KQwiq8v&S^i1}6a^g}ZmcA=nMW zLX=HHlL$c2itckqhYPE5Z8>T1-)UZta~|Z{+ZXjd{ym-EyIw5^1G|x}eJu7a4an>K zFG>m1@?aVJGDpk0YwiYrsekm*=|_;#R_m7iTXJ&%gnM;@$SnMxHX#|bL%E}hQn}ql zOg^_pqt9EQIz%AEbwzk3WiW_enbkQCsrnRzA0{d0d<5PbOukA-8(Jxc@SzkJ;OQr}yFf z(Od?~+i4;nO#=y>$J2Zg!kSm^`MtivreYZZYZGw3-Y1wt!SQ1R*!Nx1eOkUS!@&0F zvk=IX&EH!K@=0S- z4sI}aIPxm9M6TN4`Ln*ar1L)XyV5wI?vcaB&F`xxpXO$;3(rsNmlac_N(iP)8GLWa zq1kJMyo3X zSq8qI9fN4ZsT>Z=&;qkEtLcI4p=2tLK1pEocG%6Bqc8O%%heqXJ* z(hx@EXPrIb09=pP=6#9Y8xUClHKmz(q+x5h0Y&R$}8dBuK6h zhy?|5X1A%I=lG+JW&R%RT^!>N*DZXU#-k$33E>7(ygxo^Nb3RCBYxM)P-WJk+eMJa z5I!{`Ow(EeWXqTB_I5$A?M>?$p!PgVyZa2cL{BG7_*^@df+ko%`Ff#L`rBMvdsYf?zC9FcHn5NI&u@5!`64YSsG zyX@^`1VaIp>q?`iPc+o`{mt`19^d%IlkbPMSkEgTiw(Zo5(ct;_^W$`92$Hbm5w)m zZ#hyd?Ye$khhXU7JwEnLL=>l)+Xt2v?TAH(`Oe`-h5nx)2-aXW=ytvzhF?5GJGmr+ zY5jP2R}vX*j0-Dytmxw69rT7RbBBjoc=*wuk^Y20TvllvcuC)p$#?t^(Sm>~K_TBF zwU=CYsDEc%g0M#a1F&$5SZ)%2)HL&%?`=lcoV{A4^|%Dt{y!u`MMahVMU90)bLm}% zbkQ%pj+;$z{`IEPd-KyEtmOuNaemR@`%D=Z)9lCxbeP%v+vgp0g)bB>)DRr(G6?f={zcHjc|`UVSEZnC&Gv)x5Y9*XF=7#+IPa zJisr~2l)f|P*nPL0p1L5F%6jzw$)CsTK2;{i-R-N>BO%b^VQ&o1^+A~t^ABnfkFaL z!j(Z^B)E^ou|gC1>AU?{(k5#L6&xr_^_}`F>8%BpZmtGFde1`)I&B zWAQN0Ed*D*=l2(JyM8Q&DY8uPTNI;VV*`)CHB!3s!I_NRwNSAkr}5e4i61%mwtr=z zFb1-MZ{<^f8{R@Pa2MM2PPu0EDlUId3Yt->vF|c0?**Ihid21myQGXT&OKPv-h3cH zEi-;%|J%Kk>Y;_hC2>SA&BaUC@mw^plY?B%xm>{ZJgJL#)NwQMQA1OjDw-JkXlLD9 zE9v4nU!k`{{Wrgiw&F7Q4XE~-J~4y+#!iom>yn=>9HQunw*#{t1huD(PAW=cbMz^; z7FRgS+bwH3O|mOYMbDg+2%lLIq?buZ8IL3bJ*qZLi287POB_*?zm4!&^F?RRwDjiwJCIK||28}zU-SE{xD~Ja7d&acczGi? z%fWGTYe~%utt!`0wPb9%W&UyDZbJ_g2I4>Qb01%2-9H~tO3q~*DvHSOlsBU=%LGk3*% zd>!Pt{+IBWb2*%1zqVLzM!mXRfvMDks?%F=hNx976P1}z% zR(e*F661Yi2V4d3;GdcZ5B@cZAy><-M%3=zUl$W&(Y`^3TYt_$scwJ=uhJ4zSyjPz)#ngy2!gsamP ztcP%G0==zany612Y48}%_Gp5@AaH-={Mv4mxc+?|9|B!II%xMUO@jhTkRIB3l6H5{ z8eOLW{*R~p8dGLSuF8=9&*Phrs!KGKidbQYCAGUX)oavK4hNW^aQ1VJa}$xhUNbZ?5%Qfp6F1GeO$5b>!z#hZ~lrHA>5??E1~at zrt7Ed|NK%9i5A&JMlU?+%=omvZo1S%RnJ7jVP)~wm*Q)tn$lTcKw04L>JXyHY?t{h zW)~CsZE{peC%Pw&W3>VCj!s5nu(Wm8cmg9H==?wV76fwCGxJ2g9JdTedbEBdVZiwW zo+`{Q7f=*|sKg>3KQP1I?W4ldsWjt~$%52H7c@f~AducrIZ)v!$QhI8hu%kH%wxL+ z$zhzUjXJa)yb$~rlmK#-zqHdjK_y^>kVsmfmBNA!^zyn6Ojp^fM@ zdxyFN2!H>lH)FEQIj|f&b7oS{Jw>T9P^I3o^?_!gFj{tF3}mw5b4(S3mgFu|hWc$d z3Y_Kg9fdP;KmIS%EyCJY!@^^yN(V%mI{qOW8GM&Z46b5nQEv`Ma)+Pg5??j(#V{;j zhOU_uxDW8((*?m;lAzVls|UMgSJ@Byxbk9S8N+o-PxWXD6TI2&=K2ghW^4C=?2nB1 z)aw#(75}@cM33;t9$uZy<7@Y_s=Cbt9n7NoHuQUDYq${_&WvLEmki|Fvp|^N1LHZo zvs0aSb0a9WqQZG5zCo4|`6$OiIe$4Ipk%rE0z^>+{H(x`Ry%^mJ8M~*N(qOPv2N1P z>-M(j!Sk9|C z=?WRY*nMkV0>xCk!6Y3V^x}tw&w~6=dGAHzDbdS2FHT&8UR1~&^&JZqL2~-nYFxo| z+I3QnJk|E*dl0y|>c1~_(;y;#43-k~p|wARZ#pHpeI)jf@MG z^Kp)UlYX8z7Hov^D|nJo!@S;_i~imx{g_ly?%&%4a*NtAFM!F;aw6~1RMy~9A5Yhv z_3A<1qla=wWRPt|kv|7kGc1pitTaS7{`8p^4 z5$V57ly^a$`7(38JF{P}sN(kM=q$XvY*Q_~o0$Y5;7P|{E6Dp{$I2>JrF?GecCQc# z6}!wk@rF~66Ik_AengnRHO<)m)|hJU*aOf25XEZz1e^1z zH{;HYyYHwtB^MHHXbN75kTak$A3%(3jxT-+(0vRYO1Q$H97dnvel<+xPWE@l1(<~2 z)7v0Q@lQS;6;-Ope3CUD%q%wtL*rvT3L}d&~GF0T4Lo$XO8TJkh=J9CT zhHzwW(>A{MdUVcv-tS!Rb-mvo-#_2=uD|x?dDdRTz3z42_qx~b2c+&8`RV0cH>-QB zC^f4OY#1W|J*pU08OtOmJSMR;ssvyMMxi#>7W3Vk#ZUe`>oWMv-?Ow|xrY^8GS@Zs z2=TQ5+XcOZSs$*@?ID)5Wd-*9@5^-x;dQ3U4s!^b#Ky)l!sF+yCY&;=vozwp8OKfD z*hM4ud7L>ISc~D>wrm)eT#0^jrg_XU7dFju`;iBGMhc$9t`j-Wb15Rf&Oox|P4OBom*sV6-yMYeW z9xx4smCS#oNTFA=C-A#3NQzheO+Uoh7F77nb?FZkS$*M2d3lBoWeZbIOVdMoqzm1? zbM_FPsvB&HgDGZ}uRbiCRl>NBLVe?^wdL$NmmWn;PHa2EJsc-qBL}rn*Ih7CknSni zH*A!meV31%0~e)d3b_6V5&}|z(2e;eRj(s152DKElf36?LQy~zt_Trf zEltEDj9(-kh$r?(f9~p%L3Ge|T}6g*p5ON1xClODUhx8Mt(Q!8a9~1OCU>6k)7HvG zykBK-H^G&i5055g2s>zCig1T(rxdt|Fir3?nEI9=d`| zlk1VHBUgxQdng2n3UJZa)wQa}$Hycen5hSGwIQ+YmI&)hll;Nc5Wu<&?<%8O6ZUf6 z?W5KN=;$?^uX?%wy#j<*v;DqgY85%G;dxHKcxSD-QB>zP-3J)AXqrxk3w_}lMuKi0{?oC zlpGepu^mhatZy^woxaCkI)GimLmPfAP4Zh_e;eK}xWYtq`$mj>19f`iX09`Dg8~C4 zCIW-P7xsmU=diH>88zwzPxi(-|Mm-Ea5Nm$H5zjBK-hXnPRB1C2L$+C^##=4*Li$P z4z^I^H8E7gU!PGQ^%z)UQx0!Z|*LrGE`*Mo@!2Z*AGVHJxOCc|jnLY6IFGVmQ5K9ZYJqfk+| zMSC+U32+5*`O{y73;z827@8kcF5uIQKK-}4|6uGk?O$G)>O8pUl3{23AFHyD4`0h0 ztTt-Fs{A3>Km>ve1+1KnPxI5VP_J4V34uwgz^C(9^1A1P*KM_wlmg3Q1!0!&EI)pC z-SZi^qSM|UNXpOSL(e}?r52&NF50*M?(A$}f*~Xe-4VGhQSjzqSkU(BSs>{a=Ejwb zKBmyoi7b(H{ zPHDO+5HLF7eZ_bOzwvWjfD3BS4l+MJSmeh5i{R;5MOi%xe^gib@khKTRRXvO983TS`#CZ^C2rv(5R`L- zkcBgm<7Nu+in)orf`YD#3v-a>FX*Y$?ae%;I99@ZcwG>dOYcTVR##UAXq&$ttirB+ z({e7z(OcuR($G$X(V-fz0G7du6)Ox$FltcFiI5F1RtvZUcKS?r!D(nnO{{zO9vqp) zz0-+NwcT;1)D56da(ov&3%^%z`NVtCf)s+UI6{-CaIj~10MscIbxqCRT@xj@v2GbC z&XY~X)JS8CAy(&h$C5J+rK~Fewqcz3?AbeJAs8owLx&E{dR)Ayex?5D9>^Ge`0}Or zE_<*@LCEU5f?3G`v!PwVW0&aX)>et2prF(z zYtXxxzTc*bO$dyoyW1lAuustd6Ybnv(O%tC zj=0QJLEqG${GRxQzWtwTyo4Laj^#M8VUa)d?%EewdWpFPiJA2?#aVL0TiEnbtOrWM zUW7nzgzwBi8i(s#eNHhkQB~E;^xIR_h=_6d!Hxf1{WWsSs+(Lf_@^B?l;monfa-+g zkM?%WgANBM9JM9v_irN-;~%1YA3^2e<^P+4&nrsbPX3y5PEu49j*UZ|bn#wVU(8gi zo0PZ@eshG^a7MnSCNkIg@#{YsjX7T`q5AKW+gep@hJT@nFjHGObwTw)`Pcnf zy%z9>C_Ml{qpgI*8cT%Hj>>}Zv0&=BkbmXy7Q~wM42*#OBHug)j;e0Jj{%e zvpoD83w+7Y`ucia)1aR#g7X7v+)J4|h||SAGU2=R9u0j-rVyt zO_vO)5}dwj5?hM9cUjK0x17B$^L4FqH?qj}d>P@No14Yu<>j4W?I*XKuiWBRQe0e2 zNBI%Axs`Na4*FUzheT=%5_i7eA{P9LwgCU4K(>ul`|E3jYoB*UD>%j>4;DPZk9x=y zO)#>tNd~%7H9j9RQ`6zuPC1_;T}H^#OvsB6e}8{Ekcs9?o8;{Lbns~G-sS25V7>2= zsYBTQ1{DLhkya4|X=LWn>z4zd&Ig`6cw7-U4V0C#QpTAP%3~!4-E-a36nIu_tNBl1 z0yoOpkoWxZlUe0Ne~cq)TVLg7y@<)-7AmBZAf*?UVvt-^+K>D?aE{FZiAa1f)-#e|a)mlmx#TZ9!uTf-QXQ z%goGr1*u;eJ3FQ8>gryE2zd^Q5SeufD2kw)O4OJB-~pQV3&FNo8hK%`n!t;829OHs z*0P!RJ7YNgU|3YAJH?P||I}xyO;nVT>HbzX&Uf}&;n2$%&WrTQQwm)>_uJG*IQlYU zURcJ++ddkwEuG5Cs)f+S>B7loQ!P!DONKz#Ox}9Rvq{%M=Mf2ORO!Sn9-cxl6du|M z@;)GR_Y>_eK(^lka`)i9Y!lep7t#lk9DZZ~X<&1*rs%FM5~b3Des@|p%7f=B*MLe;bKUpA;ob8VH4*rofZ22D2C7U@tBkuOYn7$dp9 z2!qopv+XI#agq&(=cH+w(Bz=`v-`Rsw?_5}8crI|7*`Ow;24MjD3@t?O z=SVVQSYPG*VPAC(tTUMq6-GcOEJwz-v@8lVceWz<4XWo}o{p6Se|MoQ!ZcW-B6u3L1|_c1AqgrRx(h8!M>aqX z%0gP0Y%y?9ecoE+n%3z%H%hRn7a&650uKv8pyGpzTrMD`8FDN3g{Efh0Khqdipqxq zTUm;SSQ&JpPN7G-*nR9#+0277ombGNdXI+3`!paV;B;wUgM#wlrOX^oIl1v>c^rODXR9KhIZv)(>(w&l_C@$sR97Ri`x@0qXb zIoG|kI9*%{rjlYL`dOb*SR?5HI@VyD-Fv z23aLA&^Rs{LVUS<_in_6)lKtNb6^ujXg%0cyEMJDKq8P9y%kZqT$<%VDn26+vWhT$ zP%vNR^*QmlGi0UJ#;JN)b-c09@tJdr2B{w@TUulQqKO#2S@b?=Y+Y?_?WUIYjt-Q) zl$oVC@lk^gV*wo}Elrbj&CO#^#vGIhb2}P@1o8gJZ`$aD?yF@y!y@ce@-0>QClpSn4YGt+G-YhmKwUU zY`i!FH7|nPcYQZ9$68lgo`2lm{|r%qLTkqgs3WjXd8Z%!ngO)>Kt&5P6{&3>U-u9JwUe`SyWU+vCr=^YAbXZ7>w@$NjDK-KN>*jwq#L^ zB>|rEhBXXyBxKeZ!<1$sd_y|o*v>h$Qk`q%D>Azx1ZkzdB;V+_WJZ z`s#pm6Bytq&6bjQJX{jgjW#7i%M5G-*oB;d2EPMp&+f;-{XRgYaqUJa7~ftpSRH@3nvv(&$+NPL({7RaI4#5+bw8JT11KSuN<5 z4g|utPH1RoSU0DeM0PlqsUkB#f+izMTNLn}=^c{i5A)kG2J5xksiXn6qo1}1>wuPn zKqLKxjg1YyXn}^A0>s*qmJ8pErNqR<_T&qEtiE%?uLvUgs0=q5}%|nbyxV*Yrdk44w?7~7uLqkKe3v{3W+In?lU?5pM{J1&blw3WKT3uc3 zNg`$S-e~pYU#>JEd*~;Ch0@FG85скрытых слоев | Количество
нейронов в скрытых слоях | Количество
эпох обучения | Ошибка
MSE_stop | Порог ошибки
реконструкции | Значение показателя
Excess | Значение показателя
Approx | Количество обнаруженных
аномалий | +|-----:|------------------------------|----------------------------------------|-----------------------------|--------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------------| +| AE1 | 1 | 1 | 1000 | 19.5568 | 6.53 | 12.67 | 0.073 | 0 | +| AE2 | 5 | 3,2,1,2,3 | 3000 | 0.0108 | 0.4 | 0.33 | 0.750 | 4 | + +### 13) Сделали выводы о требованиях к: +- данным для обучения, +- архитектуре автокодировщика, +- количеству эпох обучения, +- ошибке MSE_stop, приемлемой для останова обучения, +- ошибке реконструкции обучающей выборки (порогу обнаружения +аномалий), +- характеристикам качества обучения EDCA одноклассового +классификатора + +для качественного обнаружения аномалий в данных. + +1) Данные для обучения должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение +2) Архитектура автокодировщика должна постепенно сужатся к бутылочному горлышку,а затем постепенно возвращатся к исходным выходным размерам, кол-во скрытых слоев 3-5 +3) В рамках данного набора данных оптимальное кол-во эпох 3000 с patience 300 эпох +4) Оптимальная ошибка MSE-stop в районе 0.01, желательно не меньше для предотвращения переобучения +5) Значение порога в районе 0.4 +6) Значение Excess не больше 0.5, значение Deficit равное 0, значение Coating равное 1, значение Approx не меньше 0.7 + +## Задание 2 + +### 1) Изучить описание своего набора реальных данных, что он из себя представляет + +Бригада 6 => набор данных Cardio. Это реальный набор данных, который состоит из измерений частоты сердечных сокращений плода и +сокращений матки на кардиотокограммах, классифицированных экспертами +акушерами. Исходный набор данных предназначен для классификации. В нем +представлено 3 класса: «норма», «подозрение» и «патология». Для обнаружения +аномалий класс «норма» принимается за норму, класс «патология» принимается за +аномалии, а класс «подозрение» был отброшен. + +| Количество
признаков | Количество
примеров | Количество
нормальных примеров | Количество
аномальных примеров | +|-------------------------:|-----------------------:|----------------------------------:|-----------------------------------:| +| 21 | 1764 | 1655 | 109 | + +### 2) Загрузить многомерную обучающую выборку реальных данных Cardio.txt. + +```python +# загрузка обчуающей выборки +train = np.loadtxt('data/cardio_train.txt', dtype=float) +``` + +### 3) Вывести полученные данные и их размерность в консоли. + +```python +print('train:\n', train) +print('train.shape:', np.shape(train)) +``` + +### 4) Создать и обучить автокодировщик с подходящей для данных архитектурой. Выбрать необходимое количество эпох обучения. + +```python +# **kwargs +# verbose_every_n_epochs - отображать прогресс каждые N эпох (по умолчанию - 1000) +# early_stopping_delta - дельта для ранней остановки (по умолчанию - 0.01) +# early_stopping_value = значение для ранней остановки (по умолчанию - 0.0001) + +from time import time + +patience = 4000 +start = time() +ae3_v1_trained, IRE3_v1, IREth3_v1 = lib.create_fit_save_ae(train,'out/AE3_V1.h5','out/AE3_v1_ire_th.txt', +100000, False, patience, early_stopping_delta = 0.001) +print("Время на обучение: ", time() - start) +``` + +### 5) Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать порог ошибки реконструкции – порог обнаружения аномалий. + +Скрытых слоев 7, нейроны: 46->26->14->10->14->26->48 + +Ошибка MSE_AE3_v1 = 0.0126 + +```python +# Построение графика ошибки реконструкции +lib.ire_plot('training', IRE3_v1, IREth3_v1, 'AE3_v1') +``` + +### 6) Сделать вывод о пригодности обученного автокодировщика для качественного обнаружения аномалий. Если порог ошибки реконструкции слишком велик, то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (6). + +```python +# **kwargs +# verbose_every_n_epochs - отображать прогресс каждые N эпох (по умолчанию - 1000) +# early_stopping_delta - дельта для ранней остановки (по умолчанию - 0.01) +# early_stopping_value = значение для ранней остановки (по умолчанию - 0.0001) + +from time import time + +patience = 4000 +start = time() +ae3_v2_trained, IRE3_v2, IREth3_v2 = lib.create_fit_save_ae(train,'out/AE3_V2.h5','out/AE3_v2_ire_th.txt', +100000, False, patience, early_stopping_delta = 0.001) +print("Время на обучение: ", time() - start) +``` + +Скрытых слоев 7, нейроны: 48->36->28->22->16->12->16->22->28->36->48 + +Ошибка MSE_AE3_v1 = 0.0098 + +```python +# Построение графика ошибки реконструкции +lib.ire_plot('training', IRE3_v2, IREth3_v2, 'AE3_v2') +``` + +### 7) Изучить и загрузить тестовую выборку Cardio.txt. + +```python +#загрузка тестовой выборки +test = np.loadtxt('data/cardio_test.txt', dtype=float) +print('\n test:\n', test) +print('test.shape:', np.shape(test)) +``` + +### 8) Подать тестовую выборку на вход обученного автокодировщика для обнаружения аномалий. Вывести график ошибки реконструкции элементов тестовой выборки относительно порога. + +```python +# тестирование АE3 +predicted_labels3_v1, ire3_v1 = lib.predict_ae(ae3_v1_trained, test, IREth3_v1) +``` + +```python +# Построение графика ошибки реконструкции +lib.ire_plot('test', ire3_v1, IREth3_v1, 'AE3_v1') +``` + +```python +# тестирование АE3 +predicted_labels3_v2, ire3_v2 = lib.predict_ae(ae3_v2_trained, test, IREth3_v2) +``` + +```python +# Построение графика ошибки реконструкции +lib.ire_plot('test', ire3_v2, IREth3_v2, 'AE3_v2') +``` + +```python +# тестирование АE2 +lib.anomaly_detection_ae(predicted_labels3_v1, IRE3_v1, IREth3_v1) +``` + +Для AE3_v1 точность составляет 88% + +```python +# тестирование АE2 +lib.anomaly_detection_ae(predicted_labels3_v2, IRE3_v2, IREth3_v2) +``` + +Для AE3_v2 точность составляет 92% + +### 9) Если результаты обнаружения аномалий не удовлетворительные (обнаружено менее 70% аномалий), то подобрать подходящие параметры автокодировщика и повторить шаги (4) – (9). + +Результаты обнаружения аномалий удовлетворены. + +### 10) Параметры наилучшего автокодировщика и результаты обнаружения аномалий занести в таблицу: +Табл. 2 Результаты задания №2 + +| Dataset name | Количество
скрытых слоев | Количество
нейронов в скрытых слоях | Количество
эпох обучения | Ошибка
MSE_stop | Порог ошибки
реконструкции | % обнаруженных
аномалий | +|:-------------|:-----------------------------|:----------------------------------------|:-----------------------------|:-------------------|:-------------------------------|:---------------------------| +| Cardio | 11 | 48, 36, 28, 22, 16, 10, 16, 22, 28, 36, 48 | 100000 | 0.0098 | 1.6 | 92% | + +### 11) Сделать выводы о требованиях к: +- данным для обучения, +- архитектуре автокодировщика, +- количеству эпох обучения, +- ошибке MSE_stop, приемлемой для останова обучения, +- ошибке реконструкции обучающей выборки (порогу обнаружения +аномалий) + +для качественного обнаружения аномалий в случае, когда размерность +пространства признаков высока. + +1) Данные для обучения должны быть без аномалий, чтобы автокодировщик смог рассчитать верное пороговое значение +2) Архитектура автокодировщика должна постепенно сужатся к бутылочному горлышку,а затем постепенно возвращатся к исходным выходным размерам, кол-во скрытых слоев 7-11. +3) В рамках данного набора данных оптимальное кол-во эпох 100000 с patience 4000 эпох +4) Оптимальная ошибка MSE-stop в районе 0.001, желательно не меньше для предотвращения переобучения +5) Значение порога не больше 1.6

r{wJyEd%{l^7~%-)Y~|qLcPb zr+qu^>;HaFF&M*)@%{aOzw7$WHP_5Es&mf!KJW9~_vijB|6=$8_1aK{p5TppruRC_ z3lSs|q49v5Clc|>H1;h4DQ}?+LRH-r)vO{_8^MFnaN_-}ehrf&g@Tbab@{tkbvIFg z>qn<#X&0r1bIRN6d@?G5>B1q1jmL?LOPpasa1v6EQl}Ts+vOhKHS{gmhE?` zh=?GxmOjk7j}=iZr2tekD!hajo~~S)mz)2{VJ~0DAwtUOXQ`g-(FThidJo%I`q?pu zEY`ETv)7LeqajS$Ga(&%OcKP zUmW5U*2l02M1Xd~UC-CEU;KD$z2>Q_8r|FSzdh96V=MGfv9+K1I2C#=A=splPLn;7 zv+c7tX^|Kz;5T(HE7Mi#Q~PtR&!S(qQ5YPh*oc9 z{1(IbhUWp$FApw}NpIa~|A(~>B*zfG$FsM+c$!t0TN_GxLhZPRX$ugtM5H|rC7J_8 zpE)~uJE6t|>bc8i8O+a7*s5aHC`XE|$37VJ}0nmaL4Yms~>AlSQ?b;BRyi$63%9pe{l7YgGS>EatKoh>R`XT0ZW-{ z=hTIn~^RH%?kT}8%{4@-l7vn9Y^$lKk$G# z&&Is{gZiAinbTEeN2cmIJ?u?5l-;nHmfPfY!-YZ|(t^0yQ#hbh(&{fA9=vD~x>cm; zLmB4m`(9lvOhtM15&m~uWX2Z zf`!j_(%*@o7c{(w@F(InOX{ZU?ijutWE!C^UwFqVq+{IINQBhI=_k!? zMm6q~fTSGZ1L>Xu6bp#Ag?by0J<^z&d>F-7*m$%w^DqgJJ34DhG+!xKFX@pZAihu7 zPWuXVZ*%JsUf^$umeeUK|1C`BN3GUt5)m2!$2HIsj)s4~mou+-a7)znM_{;^1tO%; z1Abh(?=7_~-U(tr30wK>QDbD~UjStf=bJ)pTlO;KZTZj7&xjn8#)3UeF{)GM#4Z@g%-M&gD9^s;OJyt^gN4x*wV?r~`5x%st2C|9= zv)>QB3hXZE?qN8Buwr7*YxDA51OBB3r~T>ePi0;bJ3NfKrT;G>ac(@0o9>uT7Ab3G z7T>W<7|V&OsnOkjyT{nXB+;t0q~wg6nk+p!Y&^9+LXI7)X2E6`XUR>}2JFvQo%yPq z*+*{9uot~L36Q6>T~=qaRV;hGLv~EdhxUG$SKM#yJkS)$yo%)6$V>&EVO}gnHJD;G zkKo~Tz#F(e9#bVJ%zN+Vw2*lFp{rA+1;Wu`Zef}6XN_4pw8>io>$pp-WZ3niwVnB& zXr>r#GLE;=HS#C$!|@3zJyPT>XstOAFGygpq1QYG{gV1cn~||+2GSx{yIrg_cBA;< zg|L4GE)4e>CaVqIN!Ala(F-MR$A5)NSf>zZXswl z`<9bPTYvtg@CDCS5BpV93o~kVenAvZLVmGgkZQGZe@KoD2=jYu)h zRwNN4F6QdoC_L!gF|seoHY$2#(#+%@(wRDszsY9a7D|=WZaS!Y^ls3r-eMl;*qPR; zRng~c^)jE^RR1n+_F-@$EUW{+d1Fc(4_#)*UETEt0p%pQD(w6`Q|!XcupE|m z`1yk&0cf?tJx3bKA3*Xda`%3euD$HLL~Ih z3NXDAEpI|#?&3MI9e=ShKSBA%x$GGR*qy|j>KE=!xu#x{BITs#0I|)FLBA^^7?+t8 zI|9OF2vmli{&JpHx49OW2~s0i%gFH3;&6Sk0sT<=Fv=Dm+?ofb6h|i?Qizm=4~BXn z&tuaag(F9}M&vkJG`rSa)qJ)7ZSG?(mV8^um$45?2nC5jV^VQU(Q&pUsdXhckBYIp2He z-d|}uKDW@*nw=d!1tzXEV$i$WC4Y}RO8pM|!!Gsn&g%`uw(j`e5#JBLJ&Mfbk z0@n5SYbsUDu!7Rw)#YvClp?~qmAB0Q=@M{PCTLEM?8CHo=<=Ywn zHwK*Z8xw(KVKy6EBO@cDbN%{#gn<$Dv=dN6c_o9DR3pjQ+_qlNCfx*ByAZ7B=pA%~W$K3;ayvPc>mdJT#E_Nd$VlncRHOkhe*n6YHO9g41Zpu%c}M0iV{@t37kMubweoo@+5&16RH>B!@Lu-Bq*Gt zo^a9vcv+Vlw|10bDoclMy}fmdqAoDX^HgI2i@@ei*IDM{q#?eTww!@0v@O^eIhcG@M zotHP=THXgh@#ArxmgL4|HapK3h5=z~z3Zt`*=j7p$lEz`qTRhs83W*w=d<40opo#- zR3U>y&KVu*9ED-R!?~c7neME^wD)e0HMJ(uJc8xl^5?*7xmpO@p_mrF%;Q=8f`Whh zhc3#h^wR#_`>aDO$R;)|&?Gv^7CUk}93lGn^X9YJKrP+Klws0wBa z-^4r~@QzBMyGxQ~-s}&qgyGMgk&e(Q++O{hOsA!3|kt^q>*o>+{5jOcG}TPl+{T zw#g={LX|gz-s3#lT&pu~o1% zu6nnpe`^kmB1A7Tjs`328P`Rp3s4A%-ec+$7T8|isvieUBh)zcan=EvQG~Zn!UIG` zbK5Zeztf;(Y=x1MM1u<-NP2m}1ssXJqqm!8XtC~RM-C6iN?a~n@Kr>R`C9&ae}i!Sa4ehxxEO-tJa#*rx>{gq$Y z&KQpmH8)0*kuu~3hoB#r9MnKxqb33x)0l9*bw38MU&IcQCDcf!QF!SNz zXdn5igfK{qHVrR!df`SdA z=uib7Z3X7+UEOVZtM+tDhW*>#J9@5MFONn=Xs}@uBY9pen*S=l@OT&sPmqjCHLlSP z*=p6@8Rb{_u9p+Ln$v!%{Z*o+RyjY>anV8DdGq;=q_i*O{va=Y_u&@TBAwlQjjK=G zxChm{>e}j<1VgmZ1y+4kBr`BbK}=rFBE z`YKjO2ge&zHumJg#)obQg(gBMy$}{4w z&w^YybRV^hcE0O0kK#f0z;$ID;wm1GRFj>|SY7zgLFwj`7 zGo$X3@bWA^ZE@%LJ{0f^fmob}ZV0QN_ZyAezn_-q%6bWm-`Ngmlj_?&mLBX+Yg@X4 zj54sTOPg%Xa!!$LAak3`g0A$gaMP58?d;pQ9@gfwr)gdYdO*AVe3%*rZ4N&{G^7Xc zsd+2+l%Xn?zV>I+aQL`vSra-3J}z_PnqFpzhUt^iuKzkZcH9PxOqN%-p4Vge9&Z zzeGWFDEm3JVynO|gfpLOu>byC%Vik~04Y5_U;!+p6#zjA$q%XJgd+sE^-ju0(JNcb(SWj5QD#G1HK(Z2q8Exc7Hb8=n+@)dpQd1Xz0q_-O0(>4i<62pHnzAK zBVe(uK$E~YyR9}e%ER&T1DhwuTmuMHwM9fos~j9o>Rusb5@Wb1!kBB2yLIbcSCNay zY&cHSCJDGOI7;(A@ObL8#p0h-pOoqIIs z&zKxj51CzUvzS2+9FteJI|lqK=!wv3lU6#<4c>x6BEiPIb4o3PL~7WQ4pCDbqI7UL zp4~nJ?XzUPFucwDUlJIHV0mLl6ZD1&&n5${q49=eM5I!C3@#tqJj~x<9rd^-R!^DH zdbL@`8huAOBJ=)kt)7cQL??MzJADv+_y_N5R;DN%KrSmQKB^okkA7Av??pZQS;$JY2euCu~ZmoaI z3Ez;dFt0aLI>%FDpBk@n2)r8Rdk6KNWF=vsd*Wz754E&Qb)}VK%$zNTuSs=1wb1ja z$YzVt)s8idML6cml%<`bx0Eg^QTs-UozPvctTmlmy)}u9lH{Yy#O|w)>MtQwFgKZh zaN7q}3SPClo1N81M@y-zcqZitAWJoG-`GU|3ar(o_V7-op0Lh>bt3T|va6F7C$-GA za$;o)8EH0a0@ah+@|u0uWaWuUeEhqS8QrVu?>0h#wm3DOEegBfh1R9BWtEtin`?+t##BF<4?i04kE{NhxfH#W4C`Vc{nj3%p|AaHa}sW3)emZ0Wl zbyxvqRqB_-LEml0xL9ngywn-1Lw4-M^xCWS_l7gL zI2%w{PJs%SdXWU-@jRcc+eDMvmBTkF zP#aShOblyY?nW47jPRxiG^P-G9$A*T2kHekfNBJr6xHTol2vcUlqp1ziN@^qkD{bT zPu-ChCOi3GiAS9o=7%(?`DlYph2{~ardNcsnTXlT^v!!K-E0wP6$aU~9U%*`4`}V^ z{fjaWv&^a#sTJBh9-n1<2XwCRU^m+&fO<`VgOrotl1StLBc;cnVgxewNxAl>e><>+ ziRU#k7dl5@m&JK0j=sJ=uYdrj%ZHttnpAGK{GIn)nn|AeXks$^O7qRf-Vu-8AL7lj~{j z+^QmF{nY$8E^4yVKen}*m@sHMNL6mDY9~CRY{f>WJGG0A&d*gVtEHVQxFs6-uR}{8 zD~t)7=`iJz60+SIE!z8O=7*29l=>IR4A+&g3&<5C8?6U^N$;qZFl8z74NJz_K#E9? zwgKCm@Gwh`X6(^sf>}(HQf0(meL(I6x$dn_e4TK3zm)53*jmd*oFbWS?A*V(WLrN^ z(eb!=#N~rJ_$MN)5-WFn&>vRO%NwlB2iN|p3o6-oqdey=7qjiq7aO~gcET(DKYgB3pbD5s0nsR1W6?(Az_SR6rn> zq-s7)$6d)+ELSrlXEU@r(w`n!&c)SJ0d@sV3WMF&Jv$EE=g+1`G}D&_>?TJ- z8*C+B$aO@_uLT~J`QRnKKp^qot>h@m7bQ;;z7{=sh8?BHS2d(2S+)9{!JsRGdzjM2 z2st>>g_z1N2vH>u=>-iD<}>BxzQ1B}8@Hp@-x9LYWU5s0zLN-H8+1S>lX#`^qoV zsS?v1Tx{o-x{D{Cd5sNZs!ctMj?M=`)GNbw5dzFMo=M;qPBt27f(>wJR_ycV>j7h} z!u0p`9kv{~EFp30#YvnIZoEqSwht;EZHD1#d%Y@r%e2O7Mn_LFR(g|7srn+*HLQxn5_H-lL2w3QYa@%3xESI+qFAchSvu$^2=s{Y6s z8ef(=1Fu^e+Q_7U^Vr94)GL2se(b^}#)M&awOnNRSciRJ=RQ}k#2-}|+F$yjUtV$8 zHUy%A3*2`*Ar5&X?YR%Rv^U$L=$U0hNQsa@y$u^Syt@4MwmD{Q(7@i+e!kHDBuLJh zdw@A^s^@V5n=`ilQ8^IDMs|oeKL>B76`JU9kz~kU%1H+Y$5Y=}?R>8rV*kJ?U6%}W zFlkKJ{BizjI?!{G)ABpQ7Tp1GQc-1PAs7I=B0)7XGc!aEFyEl|f4_KqsHEg{#!Pqc zG>mQxc+#Xv8JfcuMQw67C)=yMB3J}9hHl;>a%zL+6`=!Jf)4S6KJ|Y}T0Ak|N?H^( z!0{$|j2Y+QH_fhE2y4m+f@P0#bGHLriiGNdebSDFg{LyXBOr@SoRc;(;*9W}7GAJ!JX|f{Lo9qHVX=GYpRASf7L9 za-QhN#bvr551)lfGtBWRH0Xq09~p6FU!tNS>vvtzu6W43tds0=><9dzz=O)-3Zhzr zK}qT=Nzzfu|BCP}FDJnGd`xl`2(26E9lA?9dxW0x=m(kIX;gJ7{fxnSu}3exv|6d6 zK?48&V+&k=wm&t>ue<-9Mwx(byvOh2vvBm)Zq*5DseS*RfrEqm?PZG8)YOKIuLZf< zN#sN^nL`)mHAb)B%z`pcu4D@QDC$Q$4%M@3@7UnqDgr%#MDSArL{FD%I+fa9+iUU< zWGNX#(l${0Ss4qJ5PG%w3%UNa2b9MYTx?Hsfflcf41#+vUUiR~218{OrAe zeiQF(5B_E4CS-IU;X4+@nOp=#m97m_f8#f8FH(Qma40kKWGeUf;CoT`dWTGMpV#2( ztnWSBd*pW&Q~}+I_ju|gQzy7tle3r$(Vg~UOUi}FR-%u(&KSBx^rX@jVc3>UO7!P1{^27#6qif9f2W;Q^TJiALxxe4bZw*q zJMj&x?y8BiN;&???tBN>+g~bXk8nk4X-^|a?M?7ph?4Bki?LcPxNXr7A@HC?L$OyDq=;tC|q)QR* zbTt_i^PhItH_$+wfeD-F#$AT3gHB+&g&@}dN+D>Z#&t!lKL#N?NuHwz5=Xu(N0u{0 znMpLx+X){^X}kS!cnQoo49mH(kJPj6rh(Uc|Mudj|s%_%4%mC)aA$37k@Fr031YcJp~Dj)JQrjy+t%t`WbBaX>#?=sb@@&>Z$ z^x)ID2GO2^AED@dVS!p5?V7&0FehL=43p!L862iFI=MvzA`*z&;5`rJz*z)W&C9e9 ztbBjTSr*xYxXjf0cUYV>pZU-jdRV)H=0m);93S{7SQRq`6hZV#F`|+mnpY$fx-N5p1qI?e$<~F(LQ$DFD&KaX%BqPEJs#K=0iVqG ztQuGM4k#B{Z*nwenbNPEQybUaiFv7Ay#+c6*3MYT-%~1bE8r5rkM>wboNP&SEUT53 znNS~CWJ1{3`C2SCJSBx%!h_~*h86ydg2Ejko5?*aEK#|0PUQ3+V}Hq@lq$wK>a@Q=BZi@ZIei4-J+l8cVGisdR&5(eL*0T8%}N zm6!WLNSXW0TuzP%pXErK`O@q8=}ym5SU835#RBy3&Vs*~rDe`?l<(t9(-1mv4RkQ? ztVtZ1ZmcirVauiWS5#AC;hMi9F<7DDra+NPi;1TWovXz)PkdKf4?SD4$799oN8u-z z=A%8U7b_%Q^iPR|)}&h)P;TGe{^r&iPJ3ZkN$|y693E_y!IOhV$eI!imBq>`p{ZE| zCC{MR@-Cl;^eUibsxHFp`FnQ+q@u-{mIzdb4Ow2t$7N;Fk&x5nL6U~X;$o0q%v(r* zx!kBtSCDGIWJiX?jE7o;#pok!7+{QvOU&gW5`zeJ|m_v;w68Zt8(r8LC zqCRq!bTd85jnAa}4Gw<=%6uXRF#8FA^oVHVj)O!*^KB%;ZxrN&?m|!yJz^Dl26TUj zNed+SnQ?6*oO2rc^<#gPjZ|P&UTYOC5Mn+EMi-AooempyoDAVLS`Gb0%4CBcVj8>$ zoVkfcAl5JUbwyJMES1X{@F$3c?&;H~&w#5B;jMv!rupTh7CteVM$FH7B;jJozqC+)bk`=O9UJEfbbmDw_U z+_c>y30VytpWu1g@4-mTOv9$P5#l~_-%?I>sW~NqIU$@=6q`5xRro7CU}8}$5K3^N zKz`y7!++(@LFJeX71smvw6;FP?+Aw}%LgCTeooFfo{@a_vdS#YH zUKGntMCHmCF5DX%Glt_SV!4oC;o$P4{~1?TcNmPFK6ZyQSI>~|`O5?F zP4!nM#R}HwjRiD*{)Tl!2Mc(KIh#iLT&q&$&@HON-?6VkT0;O%!CW62iJacy-KjH0 z1bk4}eys_Vd0AD_05yMWO|WMS9WR%~kP0b7L*_kldb+6vM857crLCoPeSnkj z_(-y3yrSFwBL_|brmWQx*O=+nAEoL^&AA$i9+#{ZTYR}}D<(L&acF@aJ?{N9Z24p~ z%^L*TXv^InZ(>|{kLICkDy=JQUHfsfx5QMYvvv$8)2GxyyccAB8nz)I;&0*k?=&m` zX@&$5U8tB``Q!m$(W%0D38yfQP z>aa$ha|%IJt)QSVjspw($OSNOf(5Bn1CTsuR!tXu4@d`J+(^VJ7xN1xskEc^vjLQW+4H zfk;@_ZQ4ay!wL5q*toHxa|nIg&5i6MUw-)4y(s>pp|cqyA$jQGHwDO zwsMX(*-Dcm=^8LLJbq?FJs?Wj6&b!TILx?NCa=3*``;AgF5E!_)KJu9X&<9k6&kdL z_N5*Iw^8#Wq8Sr)%G2FE+3PWtP5?!(CSsNga|1JdvDPI-#){Zg%B!lnXD?2~PERIh zyTc79T^g5L>bd~N`p9;E`5*2(6`GdBe?s0*pyz6xtxJ9fexry<9KhcsM7EGG%?pnH z;|qu<##GjnkP2ixAnZvPx;Z7cSZ{?f|ZQ)Oc9rN8&Ifv_ZhLeLKL) zkU7bO6yr~yG9%&AY>F{?V8i(&yA=}RVYrssQ|Y>cJqKdc9g**Vj>LYZR2|F`ReJcA zH&_zHob@ULM4G}Sd zadvmeC#-6*5vYLEVGS!N<5?k2U-DZY-~wr!iiBTkkvx1-cv2j(y%t z0kwNT_62~e7Wu1ZxBPj{6u@vBc#sDUamR;dbI9YT^g=GYtk6Auf?^U@hO_I*AqgF+ zAM&%ghHEu@?tSh%9RE9S58zfjryI?g@NEQ=CGtLg9l3@3j?;X$8}ULW6avUUsyFdA z>*P0ixnX10ZgQHj+5oRZk8b($KGeiW9{Fu`8?Z;YvjE^{r(PQd0J?M9Zvmsfi9nZ zBW43K;4*yfxuP8!Yyj!e=vxx{JliEOL>Z~q^h6LM9esWAD_0l@&K~HgW{=P>ZQS%v zFUZ~dnnktZs+KWC7;}A%tD03H-@eo2OqQWq2T%2~Q_5!&d9Q+m>H=$*s(pI+#It@2 zlm}GB{n%K~#eu29;c5U^J)P*RNg=?w5GWu{aQf_QovE+@9}Qu|uz^4A6F?2ctz0Z! zQ*Wpzm_8w3^vX~IeB^#&U{!z+dQj@s7AKhn$@uw4dnmjBe0*YU&{Wzd9xbuZds_Au5J1#kmZtmai$pKtE7>l1|q|V zKMl#&{rVmYnPJOqF-zi1PahZkj{sekZfy`W!{Gm2ZS7hpcGMU86cI0xPJRucLJ}f< zf{5+v{!*qbKSgpYZO{FQdW@hxxyayn3F0>M8xu z^k)DUvD?u9CI)Pqh(?ivI2rv}SEMXYqB9$>ObhxF(47l2`40!^M4`?B+4;%-L)uh-BxUPf6 zgOvqJDbzrwFVbST1w7t!pr7iY!Q?p?uq}C~({~Q|{~UH-fa_CS(T?)@(cmmf~rz6bVIVMEWBeA^u;pe}yt61Uo+S z`pC_r*g}SIYYq_@&racN4HVx%R31^%0V?!ZA zyIY;VZ;pn>Px|5E6Pu|I9}fdk$LmLrj?2Q=bi9UpX6HCH3yPrTWSPZ_k_+wQfY3Hj zfU(Yv_wEG;xa+CLA4?)a^o91ahGGQ7Ff)j$_vf-~EYMS{qW~BcT)(eAs=;lfB)OKm zyZ?c8cQ^=}^+E0pz}|NbNb->Ow`9fnZEwk*(w1G;Kn$>u&7DaA2_{tR=9Z$iYa=7n z%M8t%ehN=%cMs~fcu!va69wIx8t~|Ea@R7u@TUohBF*Ih^^+ln4}=EfKc*NFh-S!& zK+@Bqv;^{(^Pk{X_g28XnxLT~0-d=Cq((v3$QyJry~u^9?*AT3CG7L?lijlqrGg(K z)5rEBKek%<45TYWRYp&c$xE1$@x+|aH|JolSU%Chc2J>vzX05QP-eC7F(NG!$pT8A zV-*Nd8?KQ`NALSP0>C3Q4gZK3C9miZelB=LO6M9}X-R@+j9$ls5y63@dx2rgE4V?0 z>5J6J&&Bia23h}l4*dJ#j_Z|4^?cCypIjIu)X+`%iQcWYYZuH(HwNjN$fe~$i_ zH8yAL9V{mJBoHq8K4Xp(KWk0XgDoP2c7Cq*rT()KFY+w*;t_<5JjQ6lZ-89CUbG{h zmK0%Kox(n9KP>zu+v1ZnuYp_gUJ><%+LG#=M+ezAoCbm)36wp(-m#ur&r2X3^z&Y}3Gz&<9g=E!BIsO}?vN5&Ydp~nm zTuG~Due*Mt-I#up)<#fAa2Z(OJrY>%eCrIcG!S3evAcD8-RyYp9kBImE7)ytQcUb_ z0Ubdh*7ci8}85cYuT^}hvwg~M~!7L;IB3h|*G!cpfRhyY_^c4~OICo>x&d>a=s zz{?DYSjYnwAz0LP#q=Oam|z`Z(xmcPlKMZjot`C-IkFcTvk~?joTw?YeJ|oJzg?|j zS|#RzqTg^AsoYtD4Purv^hS14`dRaD%NWE~)CKYRZCZJ3aa zmyeIn2wvf-^jp2y%zK$OQvhpob=yFcsjC&9Uu}9hhGZuzuFd!U{S9t(LP6hoeB85C-W(LLc^lG7mzw%nAjWlR!6RHO^0j!0bDJiy{nLI#eNw#{DV`2 zifo5V-vz#vLG zOi#Qh_g!S*DY+^zfXB*~=gKhB;k$DdwzRP%PKijSkVFAjPT3P=7Pb`{rb7xC3+&u? zO%T7Vk?M`x$ESQ6Y)uyu`jdcw(g`6!)Q2x0ZfOSDY1I%XYfm$+AB>d8FLH4qOSy!H;$=5#(;{jMpl^pS6S&UgFcL z40FF$>fesU5mkjt7>)PH*J4?W@-`D5Tn6=yyD$e*yZy5{kU7urDVrnU6kyr&jzKzv zcMHPts!Ptgn}we12(@TAVP}UT0uw}GWFYcncnNWo1(C{XNUbIT!%hnH!dO7IDH}1N zX3;ndtOw%%lur5i?0~usVTwIa9)>w~n6|Y7V99XP2cty&|L!rzDEIGt;!#A6I(Cf> z@zf$Z2s%Kp@aBZ5&Z%ZQ(o2EIfPA=|LewYmkiWh4=f3ntFv)#d8Q`ZI9gl_^u8&+0Uvw7@F$JpzsZNbD60-V|JyNUSNC4z3@1=2 zkSQkFFHbR%Wbe;idQt3(EcXA!no6$R{C>7;o&56M@>=`9?ZN-H2e3*0zqpkDPqhcx zDR2-;tk#)2aOjZ7+#+x*iy95GRX6WEa&om74BSpP6#q%q{@gw!1_Ct}IdT6-S_pGA zK`%K*sGva_*_oC7BLy{CZM3u zeBm6{I$gkn1j}`Gb?rAgc<~hxzPr5t9qLNX+N)Qu?gz7S;4grX<&#me{oVr57*mY)~?D!yLBcM0@{=wmOXI4Er7)c#7Lz8!^M1 zNYX&!3ja!0?_9xPRy2Y?54VHQf%IHZarE`cF$~W((ncdp0@4JO1P=PhJaCrdN2?!k z%}h%9Vg34&dRYqMXOPGp$3F#tJk)~y75kId|z+0IZ1f<)3&Ky^t@k}8&h@cPVUCcV_5T#lpf%)>DjV0(IOaaPgevx-iTvDP0p1`$x z!Uut<0F$$@i`ggE-49I^aAC-+|9O1YGHOSB|ITZm3`vHXmzPV(MBwR`(Xs zgz?BwoPzZ9D&-CJV`Z9ckw8*1*llu7Dd$ppJas2!-q$G=?^Qo1Dx7zF>;ghuYN9j_g1#6nGElw-@)i@v;HT_vcEv1zd>Av+%to# z^82l?Cn?OUCU`Is?v~@e%b!Sm7hh{pK=g?Q$m@sF7bsxd0~s{`Dkt#ULD5Ns1|9Ib zY0%@(|Lg||Nnpr>*|GJ%O_TrJYom6)y?iF89ke$)dGu+33SIXV?I9GET*q~i_J3j> zA4xHC@0{4rL(lD9VNX=0o%Iz<9HuwL6gx%t>?gj#dbyNK`^@QIJV)9)0V;O|tN4j=(ko5{zVGBl>Z}Vo_j^d+2x>zGE-k$K!c{q$Ys=L*EsL3Tj&3Zk!LBrp>4I6JJGtg`ffBu}cTYDMN?KacN z23fzixA)^Cp|amZOMjmB_KkD%@MsP;B$BSXQ&e95zC&8ONyTS1&l=}U=E2tF^%8R9 zhD~9-;)sE5fnj9;ueb)LA!A~?L$$`l(_31&3IDZh>}%FR4v&V8&^mSMoMk|lf7+?- zP&+_${tL4cJ^~g)Zb?kDirr9?6*uaq%P9FXp;4HF2M#;{klGvIbtB>2zevffaN&U| znaspW!_2Q733Uu|EXHOe$bzGo$G@&*l;DS#W|Zlf%y8j)m9|Y;XaT7H?jfx1k+}u< z8{x6;;7}vWZuJCT;&v|3Hd*#Y1{n6$vLbp-L}ls~8tM+}r-F%Z)MZ317k$M2@&9n_ zauYv#Z@2!Nq2}~aNGKLl2OK#^)uQ<>P)Nv87>*%rKBM0 z>Z{?4o&~Bvqvokh=%OIh;RB7ya_UZmGWb-oC@yIHw+zYit~lu4QjQXRigyYAwtRze zEOO?3a@mWHQq%rrlRd&*c3F!OP^*h=vaLPIzqIP)H(U{8y!SrQt7N~usW2x5;=%^L zmf{~MPW~^e7!BPO1kFBufMyrSn&k&d{J$5Ge}eNY|lL5zP}56H{oGLH_;i)5UUjw?W+9wlLLNh#1AaR7%`{)V|ykzRLqWHvMSH zyE^E^e4Nj-nBMgmIsU)o^!|yGyqzd71XuVb@Kdmy{GeSGC5Mr1ovTweXh&4+5t2TJ z09AG(2_Bpv^apzi&$p8s!C1HhAVlfu7DUoj zpM|zDy`l(OA4m@*hC^AZsS?-`k7HtDnq3K>#tR@u=Iy_OTV8|PeTniuok}MqC|7L4 zW)a(|?n;a&v^0p8536cHD-PO3mM}}kA#JGc+<>4da@qw-t0s$9G!jNiJGFoqcYtLB ze?luL7>kOE&UoM3d*HxwJlKf;F>ZvCXIj$CG{pN| zh8h0FWPR1~RDPEo)(B4rCgCpj3t0PnY}O<<4X+^)G&{msQ<=k8CI>!n3fBNS|Mcn8 zPfEI1llj(Phn9cQ89**8@LW8DJvTskIa}`={qR`a4x+y%PJ-BiU|c@>2mO^kM|-({ z%1H;V;)(!ByI;OgVvMz0&VJTs?H)8reVq9C28M`AoDXQ&Xi+AEiP#djMM-+fS+=QV zB_$8q4ePxFzK5A{LB)CCcgcGGq^24`whHX}ixB zql2w`p~x{l*vQj>f~J>}k`ip_h>0A)1o}#Q&RuBKt722i!i07M!SYTet|n{^;R)y5 z&G8ZcxI>-KNgI_mnfM9Z75Ghv1wnoi zxZhHjbHpdY81NE`jEtlf zwzE~VfV4$;z9abbUrJ)sgi^j#^Aje;zCTTTT^ZWHlosetV?G2r;UNu?$6f~y9`x<6 zi}qOohO;{>4=E*_>h9_)f?Bx{vwq#3t(!epD;B31buKPV4xu1bV{y$it}R0#!a+yS zro(E->aE08{?CbJ+*b4NRl3oqdFI@WZQFu4B?C`OJf+sFrB;si$y2(W=dxkqmigH` z8~8i6?T}x^D(UcuRflGP_X))S!^q4+J9)`yN_w)5T!uQAz&8J8o8g?XiO}KZ76x*w z&B5B9(p`KOVM0f|odhK+6Rw42&bqP1E3%xIU*klK>U#CaY2fK~97EqRbA?2_?GmG3qrR zi_tAfMg9HS2c{}3s>WzO1{oFTo%3jY%%v8Nyl0mM1d1tNKcwyYlr zzl{kyfBeFQ9ZrspBb|kwfq`N|r7Gvn<(nM^S1YObq_o}J-X>#pOq)*yxtK$pYhrQdZDngN)&rn&#<;}vuiLTX8R#i_ocL$tU0_m~@ zu!)I@RWo>8?;Uc~p7;;aLqkKELvzg*t@7sP$8N&-=nYNu1u3QIq(W_RmRFx{DAk$o$T71;Ms6~+y1M>)=RM%TGGG!6ocr0CN_$x-%=h}87E3oDeBjH( z%*Ddul#`pQTmR}x7hF2{T~FnN7tY0H#JrA=myA4H1txeXel-qnTN6HPhJ_?~g*mB8D&1;<{P?3VDQd6P0$sPV&Z^EsuWf#v0zK1fG>aHL z`g9EH0JFk%7PAS|0j8P{{H(J&ay{WCSNWyjPq$0lOul;8Z70{gq??W6w{G3aD@y<$^xg=SVLuE+*(yF?h`GGjA94x5-*Sdja`!7F-N4TAgf^YXmZVxwR)d4R#tFU++r zJ-w29kM)5C(BV%@NWX!KlD;f-T8@HHzpw;v2IS*J51x+0%eCctQhE6*pgv%QH4woE@)<>go&EI1)V=5z``(uf?wkt0d78bzq5aE1w*)Vq8d8sjI6m zLeoop6IQ+Kl6U`^VOyd~MukA#_eczROJPrJLj(@;|v!N5>Zvw%!3SwHmA z0<7xcrc?z(51K$)u>8z<{`~py4Yy`<%u+{oWkSg~Fg$D!rw<6o01n5( zj|sGDPBWvSpm+l}B-5_7!ARzY8uBWJGBI@$fj3(vt0a~rJWvOY)db1*^`XysNNW`i zMf8L(h|>G9)C3B^qq(Fql++*7(9p17Kp;44Zb$&OREh*S@SbH?P4g8L653wO63f)tr^^70J4QrEQ<&lYfVB0CiFHtsq()jSb%Jr#?s@nu!mFC?To5_g|TLe0iT zfcx074QaBG-Pg3Vs*(2sb`7<0lEwY?+H;eG5D6&(+o^9zh_olY@P&OGjEuLD>IB~K z!$8n|_4ZVSKPgDu48WOb+nZIVr6E#oJB_iMp2k?3&ykp0{f6&Rr?1Y*-bc*}8;{G! z1=g9LRU8hlTiz1=JYP)7KM$;EfV)Nfs?;|sN53iMZCF^?z|c?ytettVtk~EP`|O#s zi?i$f`;?{1NjG-NJv@91JOfgqquudiWA(YYcer=CKYID{<-yJC*S8mX(sRY9XkUy# zl^$e@hvG;`Na#}Zh4>3EK7#RB{@5Xvls8Za%wv}3odPe7bCql03q0v7m7@K(ZQC}} z_x?plXlOa?mpJ#`JO>^Wmd!^AFSt07?aaBJ806v%w~TGSYakzdd?-N6fBa0ITvQe+qG?oNqH?1cpd#`5x8 zfPaF!aU{_4{U7J=cX4vjqii2$15j(`p@+v+28?eALrk%d3vV&h)N8U^4|!snU1+gy zxKoVjuO%S|T;kQ6^nMSD4`%wLS=0Lk^-70Qq7(kV)~-Ap%C(KFPU>j+F4ajX5;bK> z6e=;UI;0SvrKA{+WeC}4m@u?CT973QktNHOOrwa9n%~r^0Gd>s`Wd;bG-mY1HM zh!($gucfiEau<_T@>S&5kPx|e2s3EH=-BPsw~y}YJ8fERks1WYR;D? z)l^rjx5-+Kr&9~^^F3)aRSXjk=OhS|01zba-+__#gMLUNWd4c_4c{ei4;4UUvuNUj;em||Hsp;jSMT=71X7Wg;p9@K(`gqT&;N^cR%pR57bOCqx&Kv1CIqlp*A_)>&63}%%e5SC*k)l_s=p9En z_ky=q3%S~rSWfSwRRhhOGZODMx6EWU7&sEPEw(}TVZA-Q13#-P#U%y|D*`=RGx}~Z zpPqGgwgqVH$ajf5{#8 z+uKtE#*b9@rsdy}K;T~S*s(rVla-#HUL^qD^qygr&7T(V{kyM-?U$3QwzYC|Q(P;W zP)B{o&oD~nayXpzL*%(}Qvr|HRZvjCYe^HiuO) zZQa;)azx0WsHhm5C_`e&r?h2SGH|fH_r89d9(QfL>_8!Dn^AS)t6B~E@F~h;YFOnn z$hU>+Mo8{*3Sv9d$Ctnc5H~~cB_BJ1EJR9GemKpMn;5AYap%C+trwOoUaZg>h;1hW zZOaoUw)=NL@qz)Kdi@Y#7PNosWX_x`V^{@31beu@|5eb!OefCN=XxG@qAWWA-@?po z`qQ`cjij0E?fXJF?kiM!pDPx^c+eli&&BY|-Ow)^u=^DQyeFY<&dnR;$noU~ismNt ze)3UAV3*d~dQzP}ya7mI)nuWuv9TG2VhHGWSKrTXe`Qsb>DjZgMa9Ku0*Cb+M5gW> z<*Zn}`U`swTNbAACeoGmJ{n9ruW zR@Kh+f6K_uzKWwWs8=yQJr^3fT;03>M&&cq_$?nb-L4i9>I73i4vd#%n51#6ySqEe z>$hIoj`8Uj85Ybe0x%tk77stdr|VIx$lO-KcjOH< zXD&7|F`0xUf51@duIHW~g)`IBAL-riL2e|KN@3gTuUbDP$vOF83W0nd{5$u<(bb#x zHxwO*31^*RzqBn2XOHM=O^cRctHsj9M0#*QZu=-!7;z2GYCb76Ebdq%JuyYw-mfMm z%K#W94kb|vJ+_*gnemW7yzz>qE`&4HnjVzN&Cc!y#`eOLUqGSo^*-UX zM(!sz9i%I;tjnHPP4r6s0rW5MH@ODJy!&f1Z2J?_>18~onT#6)Ry?)(R|v7}5^Ii= zNhDGp$KE#VNCh~8-mI)FZcpXx_?8yr4V)h4x0qWii(0s5no;0)wI+V|&S`OGpxj)E zZKa5@`kNp7%~ZgdpKwH>d~DBN=dLD(|zPmch15N6NUSkK#z&Ed%f z8=jsob~7MFOEdOTYX?h8+9uM1kNK??iEvI{X+M(e^DDkHbR$rG`A4U&G*j>fzs6fz>oZs zi(cP@O_P?9!MRFG-l+v%_s@I8!=B(RAC%Zg^kJp&V46@@mRW7BfQ+t~L&jc*U_!>n zeXd1B?2t~qeEA1CdHJ-S9@{1-6*~Daagm1uaZxDI52>{FV&6B&;vwSLT+5=vNDNHH zpG8)zcs!9pJn0LmV6uo%xG=%@?6IXnD{eh(y(u>CO2=MpiiwYR9<3nApWs7_1J?;{ zUPZ$A*b6Xq8@=l_byHGOeCDQUpfCjFZN$AdXgBCCdJ);R#8F7dzQDbcEUxae6XDTy zx6bG1Mk|Or1|Je8TKbXly?;QT@yd3>V740j>k_Vp4&tmcsG;Eid!jj|4fi4z2d9awjRZe4%}-u%9sQZ$wSo@`5lxGJZ#o*<1IEAs2-h1C z>|YIa8to`0q6ged1?reHl2XJi3RT99g*>!x2mBy(vmDj|N?q5WW#$A)k@cMksBVTJ zwTCW7{Po`}r*{hNm-`zV#!LFIMA<)?2t@Pv1WW&)FX~wk%BI!Gl-66-6YU?2L6(aLcL{#ca<`kJqC=KQ@v!o1VPRh_A^HfAdieyg4OsULMnj}Ld zL^7+$Y#*!p`MvM`?05gO_a9r&{kiWatnXUaIZC%~YoI5Ke zDj_Z^F2aA>-QC$uPE5?{fBl5$IafQe7*``#T!q&8kg*#8&1C{=Bz*R z#bb++ODO#w4`Is1hRt)!L4Rbn&~8;Ws(k*vSKGB-_ONK_xz^G@Ji&UD*egN*{tDrJ zR`r-*{`c1a*?`U2@KL5JJ!GpDI|8pZD_rt>0iI9fPfgvnm4z1nD?2~I zNUU48j){+c-MWU4`5vX`aKYrhFxlXs5CPmXyY|nQ``;%?*wnFk7VTWS>qIeIPp;=! z*O`jM^78WbdX=L`!`}H?TU$F1x9x1Xr?BaBna5Rpl~k6OUtCtu#>K3a&Av#Ai!1+l zm)hIccV+O^U7OL4ypHnoVmi9I^o71Xz6-nR!nm(y8RiNoDpo2ti;BkQ;KAuE?CmL@ zqaBwouUea|7QXRGQBlBy2U|u*N52jZUbm{g-uwH<`-YYlkXzmd@s#n9! z=1CJ2q{#6)NvXcGz^=AuX>pNh<3_r*YXhmXRGxWHb9v%!T%)3+FAoi!KB%tVkDuCm zew^o)i18Ik+a}AlbnSTQGc4=ZyD#VuR|U{_JiEAuxbOD8l}qZ>`q8nmEzyT8&z#A4 zpT8T+xV|MpmX+X-)u2yhY%##g3OLtO=`%a`JxTxG20=kVW^V4_k&n4HukP$lH^|w@ zvCHIIYvMl6OR8>@qn%PEB_#xL>Cz?f({JuqyfRHf=w4N6&Hq z&$UVFRLhPhKZ8Q#$TzsE`Z`1PWN)>b>Fd_k$ArB~X_3c>!J$+gu1%Zpfvd1Se}DUE z{QVEUSFT>&ZKA2Ka{rP|!n0=zm9u^HJhH9_vwj8#1!*K_Ul>_h_!ATnQ8(88wD z!1rmIg7We__*Z>zb)d_)2IiQZx@vaQvOe?DgtCPNpWpIaTGOvG#7e7NmwV~NVwI!n z!Gn4wz6)b}7AO2xSpCj*7w@W^9~Qne|0C^5aj}}79@}QcOF`9v8~X9CynYWcKRTXh zvUT4=p*D}}jmOU}&FSz|73yW^c&#ie6rcT^>0#HCZCvms=fqQWy6M}tZBNnE7YXOp51fzj!6769WnGSmHx(!8_uI05{{qC z^hefYRPfL%E&XOSH8p*6fB!1IY$IlZKl+gCGbP0GjRR(1hCA{Ew;xXky7*_@>V-cQ z8C#D{ORsEJ@c!CzTS{C~^4(z{^XI+{%I%l+*v7vJhx`-Gk@)I(Ygp`PJla)6zssah z%Ov;MT^TM3>(%3*O0VYG)C^D2D1e@`ub$7Z=GnzR&SPD>+j1=| z`j_^~$qmYd?zV4R=g^+L|LPhBt#VH%E-o%h-0SFQN+bul-|1eY9*LVAdMijMuPiS` zCnSW~)JOCpj7of$WW+dq z`+mK7=T#Jtbu7WFTU%QR|M++=au=&0TUlXU9UL5_&wb(PetPcpj4Ul9pJEu+_Wse^ zlHyWQDp>o;X0hjAkva&%&d%=8)*IA!?IsawUXx#`2utiGaS4h2x#rIZV&D1k78yR) zXvV|A>4$#)`4dMSMIGgR@#1%Tz6TE;=$trlVkdD1;gIU$;-WF~snku~-r8D#hJWd2 zvsmhxGiNkL668EI?CtD?+SNZtQjpr?d}liCI?o!WYOw!6ZqYyc{PbIajC=RYBW&yI z>xC8mXeup9*N^!w&wV$o$nQFQ_;Bs`;Kn)kRxd z+ik}*G;V05hU7NByt=mFv$>+?saN+eY^#_lYfU+*$~=Me`LZcaERtc93_;wJzi>r6 zMQx{u=HbKppZhLFB_ymzI>2KytXUJ1vM|4}kbIr;sknw=<24ix!5ur+k=bQ_ zdSq()qeT{vHAPaA1xc_Li(%>L7?$KaPg{O|qV7YMVeiC5WaCYt>Xw%EE6WRFa-O4P z4ha}TwG5x?uNRb(Vigq?o$ZfQ`ieTVY0ufONq);OapkwU7E1AV?+V8%xPCkIsr>u~ z|4~Yc&%#XayVN5k-qRFBUn*c>Ze|>-5k9g^L?x$22!Ark( z?b`4^ozE_wU%hs%O~(@}4UbzZF7EDaUP)cn#RwOQ{P~G5sGO^b`^E*Q`VyxvNSt}M zHQTh5h4>0kwcDZnD>l;PpFj0TAXcazSSzR zL&vC{ev^uvIQprSm3UKNrx_m~PY~EfTUsqzv^j$4)_y08b5&K9^Y_+7o{w4P&&qVt zPW&1F+&eH3fPj1P@gryAzVjUCa*`x%>CX04G7v`jCuuYFGLoM-xw=Xs-TD9i?H+&o zcJI*J6zB8j4UN)V`s*ft{;X<_6N?>|vTxf_acPd_`0?XdBSS70D&o`U&u`1mpObcI zU$1#j{^jD_FNupYjxKZe6fQ>HzDxDJ>`t_^-n>Sjhd^9LdZ%_N(;h~q2 zk&$yc3G6=~-}rj1P|GGE#M+CfEh@l-5?+&**=FSiz1EpnKprxm1N?-@x(!+aJ#)#q z@5nUFWmJ|)!sDMfu`23Sr;z-koHOqq1t(s`E`RZJpqc$Tm4};~3YKmP1y4{;&LqXh z2>j9|3?cyvhYbbbxEU+=$n#(wnINN zX0|*f#isJxT|lshj~?~))rO`U7d)CRLHuLswEP^1w5&ZgK>EkH%=x-DFLZxFVmF(TlxbkDpZ8qV2k$f&`lxJXM$ccquk5$BVxph5O(1hx%t)8!yj04 zGk;D`>l%`=_h?k!|eC<#TbvE`XMV zGIAu_#*W{=f0H*(jw<51Ru0jPpTlZ;gf=bt9lf6 zF($Ef&zENI9#BuZkGC=O<=H->(=@=?3Gk}1v5`1A=KYh`=Sp4prmPBG?YL{7OdcGd zN%gEEQ=`A*R*474#D(5JI`)1?D6@7e8rt8?QGCf#6bc`$GOnn5eb$v?a;q-v|8#iy}Ath7iY{E(mL@dVkOifMEHD9Ys z5j87&fvh;DxPJZmnk}iK<`wZ19`bI3VS69GPuEVlpPQRBVavAWACS8($w%*4R&owH zn^lB;dv>tc^F}-04+&bdyrxGe<4#jVQjcqlEZla-1 zXpgwK|3Lxm1wo~n8_s+9h)WA&PXXHxYG}~ikv?9!w@_eZflb1C4wZ)e2?DWWsV?D6Br8qG=zqf#zAsE_3ifBa_D;2pP> zTvNU|HPItSj!dm^b90wm__dv|9P29T9OMf=ctzpj458JcG^g6&;_n!rcH_!lAmiNl z`fXfPR8*Qz>cfZpTeq$z^2df&ofK4|)%}>haYmaGYu#P!bhc$Gys2I4YCClv3_z;H%K_S6^^)r2o2;y?x(u1L z;`K_vFQ9O)MH-2^cP~OvJ;D-2INhvVhHMzg=tf=AElpwi+fX*R4CXwYBM*5!i3h zbzJ)M`8*1-vW|{U@j}y?3%-p%sxHhOuRsqJU|Z#&`{?Lx$3IBaxxaSWudWKv^B8W^ z-dA`E>8FNyo4bUb0&_;1H#MyQB|2iWLWq#&y`bmdLj-p2q<5I7C%iy;VA{MHux=fR^zhcMqQ8@I>Uzj@16`TR(3>r$rLHvP zo?{1;m5H-oDuQuarsbXtA0L}lgBfx8`hv=3UC!cmK6|8)KvZbk@=85Q?X6uWYW9hP zVn{!I_(y?>t$pE1-jwBbDe4_z`*@LG{|#SaPPQg?1yX~1r> zY%ebT=^^}q$}DSwm}eJ%z1DtgDjR?2PRN+*tGj#Zaob*LMxyeUX0;Nmzt4XHOUUkOBR{WY z<@ELU_YM!=NxNX3ot-U?7GXWN{DYI?6H%T(W}># ztzNyFgfa^=V=6{QT;4OI!S#`R-!BH*ojSF>_*~E9Y0nc+&)QyPV`kQ7J`YB1Y6a++ zeMQVqzX;hm@TSQ6pVfuWaT7nTWcFSEySq-KtZv8cp@3Wl=d?vs^thFgn^Q+eN6^aa zAEGY-i-6y#wOUO#$v6`Ho5~i!QrHJRYw=dM)IMcnbM@)D9xxB`-P4kil5FEqZLyy| zrT+QW$hvyXnp^2x27*H*!6Nx=U9(|x7;5>@j~~52%tmGIJ7>l}hsFvUCLf6t9eVTN z>N^=Aa9Q(b-T~MlTO=g3vo0(Qf5-|{T3KY>xpQZU=a@-^O|C=rhY##XE<-)fl}ydd zqNAex&B{FoyrwGx0%*!S$3nElU%XH*bn2Gr8D2{)FE4w|{oF=a zert$64W^=a#G>*N_mNv7FR|ra&~`}!5?hR@V4KbL1G`NA`nBpWC`Ik(j6=41aO%~a zl8b*tTa%P5jPzIYH@jQ`KPA+&Z-H)}&gpOBPu?#O{i3>hmEYpjS{4?TC!iU5CW;N~ zJ36@ZvkX)Z9a<-9QJFASw&(08WfPN)#12y}c6Rn{t$ye<&K2?cO!PdjM|=5U{CWCk zAA^EZ$0|Sq>^b-4;HguOy1ujX@Px(0uqC#u#&2MbV(68<@beqbM?QHkak6aLHgk}C z9TU0StAU~dkdvthl0CtF|GjtjA1oxZ1muM_LD-avk-*y3K2QmaijNQS7-_d^iI>zZkBMDk|=Ply@?*}FD=mV z%c-mICEyO31wnQ^*-v(&>ohbps$N`PRr?^RE|PDPEPzR;gc+F03@tqss{M)FVYE7V3micx$H&+Z~ z`Ikx`VaDj4=Rj0AySuL@jwZ^n+r7T0f1(w5jm;N*j-2 zZHpJOUQJC+`sYEQ=)YV?ZRs)^=o?OER9{h<`c?|ee{5!AB0zzmh=SF#E$7oGSMgkr zB9XsktE+t&^+^?{qSJ4wi6_`x0?Z=Fl|xDZ`6@tLwR7`mr7j~>cjoLtzKo&h(~*o# zFk0zTJEYLq$b2Kx|G1j6JvoAdMmk-Lz%iD|I=yB6Ffw4(cbZdSQk@e@tKQ+22 z=<4cT`q?PdHv!s*Oe*MEt?cbXoVtr&qV+QU^61#6u+0h^$(^vgw2*h^{r2^n<&8|w zT3cTM>yV5Mgb+M*%0=2g%F!^x{+>4LE{e&`@j&-oKSm-)fKJM=bhspD$M-DG~(Y z`_;!SYE+gWP)YKec%>5cv3m=Q1A)H-ZuLJ}HRM{Z!)S&$7KVF#` zJ25*yPmym2+n4w92KMyU<~vUjVobce;h^iPU%%dfZi{7K^F|rRAi%gC-zb;C|I3{F z5{8W4i>sttJpaq%Ae|&12%tN3?>JhBO~(`E0=|B= z%r?rS<`grpLFkY@9~U=wFW4PYJ|U$YkPT-(FbgS#4FY{hcns^sh*_9B9(48eG$r23Yd;ON>0fesM+7E#0 zt-lDHl@(T*UM?H_`jt3$?i@%^8j{HR^y!m0$`sgqJ`}~hE`6&>c6;yMz5KYN-rin0 z?ht7S31-A04S#v?i_T8tlrfY=I@}@pU~4erBy!h#{0A*Tcz!&TJc@qi!^w_?KNER& zuQvzOFE9PEm|D3wGpfy1n~gh3Kk@Xj+O!bm*29B(Tjv%Qj!>PR{`GfxY<_-g?8`?5 z&lC}ol{GfWGS~%QG`rf^_C{d^LGgRad9t{$A&82AOIyQLdS!xY2gqDPgjnQ%V6+ggrbx z+lSp{CvkJw`V7qSNRlMX?+-+iPobkzk603o3{2}(2ez_BfmQ-YQ_SY+c&*c0I`Pp^=g5ckfupcqf%rM05Hlzf#wMNw7*^f!@eG358+3l#~?L#*N8{ zP2edBaNl;Mo`YPd)8UDp+UV(7UNEYGPy~`ue#If;B099Nj_WtctOt^KQF!J(TQQU< zZfa_3@e4ms7CLsa=x6F(29|?>Vs-9ZB(|Ux*?C_0_2?bby$jO_+XPv+H3UgNBI-|9 zC4=ITu}|>=!Hy+rZTnlUT9(>F9IqQEbs%vTyrwP zlOho+065bW5UU-PKIK(Iba%R-q7J@JiUeQ%0xUbv6=5Zbzl@3#NyU+}B;J}0>VG4)Z34~5lbu!S4IECn@1W8uyF_tm&O$%NkbTUk!m%U~ft^vs!HET?r- z%+7VRwA!V+2qRtYH_f{z9Fe+9HtLSo`u5-LDc z1W6oVrY}ID{y!WUKJIQaw*QbnQ2wG0Z4EHv#qBq(%Fqj$o%KRID{E@zKFRv^)~1zw zEZO*i5RO3+Qf1w5$UTxWGD^?DpjsQkPG7ze%M}v|ZY!9Mox&een>y4>S(3cjs%Ugd-Te`{WpHEu6(Zd~j^)c(ett$V2*FnwfKxO+ry)(%5?*ogZl*DLj4Lk`;)>VVMBq1Ro>dqY#{`!yg$6;1L3X$u4sz*^p zX9uR$&GhM3p7L!OVOJ>s>xp09!V^Dnzg-~h)J(0>+Ow{CcD89p`hTu2m@D0ARN6?x zlA%X=6-mdz32^)*KmP!*1L%>WE>QsiYE=D=Ii%18=rLG)XQS}{!>xf0AR`0s@_=UK zDh{^QHa0dLot+si+NF)g85tSt=;>9gt&{7*wYK$k>^l7S{o^H*FNLm{XE6IpT#xLL z?qZSq-xkB4ghl55?;RDz%Vw)qicwjEaaXY|)wb{F zuGwC?^uHH0+VIZF>`&jQBdVjWLcn_X@F7_kvYg3er^j-5D+|*17WB4gK1#o6dV9+O zQ)@x&m*HnY{BK!t<>=1GZGDkC8Cq-H+jXa zH~C~ko&M&5t1_kji9Q?qVztO`NY333jnBh{f|jevxBRlc#4H(8Z#7m}j{LyuJf0b;eW(*9_wh z9qO+NQ$48X9A6NmDB5DI_in0HvB~h*9ci*^wTUVLyo3ET^xrLzd_@|95|5nwIy5oY zo<7|(*qWGC*b0G*EV6rLWv!|@D6k|gJnZCs6A)2qgj}kqWZahWXgL@68G-iBbzn=JB>KeaFUw= zVM_T3+uil9srG+7AA05=rr`i9ve_9J7-)k&V5lvFG$~oy+tZ;okPXGJ!B;A-uCB$e zec%S_R6M6Y&0IV+J^jkF=MKxgi|}8(skq=)G*aZ$ZIEr)p6`}mpQi|jnFo4l z;1yxL5&2ked-fQJE6}B6b0u!u#74Zh&alaOs!tV|hz8H6TRuke5Fp#g&uD97!&6m( zSw>=daI=hs*=K#o#X9uS+#qs8eCk*vL*?e8^V(j`MJI7P;BAqfIw=F@Mk9I-kr&~c z_K=&3?y$>i<87(CLS;i`g>&Nz(o6cq@9Ayr?Cwrc31p;;g!pAVP=*GRl(J!T2m`Cx zKa%@g4HPa3E79_k6j(=zOG@j=C5Y%PcXrc9L`0-RS|QtMJe?_s%A4DdRY87(v0;Oa zO~2!xn;zM-ek)6ykP<$6OvfhdJI_cGg$PUb&CkJ79#2xtxhYxXBR2i}_Y*kwfU7J4 z%AXV#)_`_!6|sXtL24Ex+y#?yKvQ$7ED**oYd}BrCFF&s2I4IG09i@p9vy;&+u%{s zuA|$rT}Fljiu8UMgpeBFmblmeyO7SD5}yT`#l=N&cqa&d1X@)w$!KCz!rl`BbhuN* z0phmK68exx*MTM~g5(~?Kgo(1=dZ@!)#DPiw*I3fJPO|K5%spd?>~O5{|^sNnorR^ z*P`y-PfH6#%La4D(E(31L!ggWk%ELR zd-B29LcMVozS^bFoK=sv=k;MP)64VkKK+K+zkff;ag*Z76Bq<+Q8Lxh>o6fLoU^t6 zWxhOFy`j$&kc708l06{OO%<9t7)K0Gv_g)&f`0V@7L@${`t@u|Ycvz~UIwdL)!xnl z`ar*=S^{2_L^+QuNS`D@2u?DnnWXW-skdbrZh#7*Thb-0pumgRX7_vT?WlBdW<7p2 z0Fql%Rs)DvHs2)aGdHTH5BZnKidehtB%3Q__sMNOo#hVk?B6C`D^xU}R# zCKWhVAYN9ZW1!FPdZ>abPMj1{I0k)sGbl%AJR#J1_UmdS`2{Biow8?h(c{vxGK!h( zY64DpsL(x%l%4S%eDgUK<$K!N2+hRuXB)4kqyF*8pjqrnD5WI+%`nu2gb&- z6Za8lWTV;k78e$-5)}Z^WbzV(CDP)eM5_q>B??8B*TUhLSesWA6*%xK%3!f5U zkZK2Gb33ms>a`IgBO|=cVO<{BbU(5Fw)&sk3=W@Zwr;gNR9H@9XOeM*e>5@L?MD_(i?<-A@9tT=KtYh|a<>C*iy3 zb?w@(X$ilgCmKjX8KQ9S&`|o@U$4XvF68w{ z5eF`$jO_EcV~`@Q9;SmIK#($T+C)$EiE|*@bW0yQuZQwQRQ zq_L*yf4z&^Vv#}o856f-{-G9qyFd&U9#ZUtQMv87>0Ny+$h&v%NRV1I0zAvVZJX+% z0$KrL5>}ow?gF4suYg5KPD!ykdGetv?}>2x6NQiv?JLgiKfaaH)?8PomNFe6+zarb zC;AkYZBS+;1q&f@P;=V{@ER`-Eqqd?za`7}&g!aqi53@k@o59&O#c48ntzi;S6$s2 zC_h)Rb?1NoNSR(HjG5AP(-;kM&BJL~w-bcHW7A+{yceH8E7bdMwGcXX`j>g7_q4`N zeyV(zchDuM8svl>+R~|rz0O|=(hY`vxq{U9=DD9=>KIfPIyB^XHXapkFRzkWKdW_| z59G}pKnA_Df$4X0YD(LC3F+-kiu#660GwmX`TInF^}+KLzwf*#Dxw4wUD8|!*Vj5m zMgzJh1gZWK!;w^*Hf;jr55624B%Rir5PRniWm)vny-yVvbO$)KFF%C<=;rjPNEv%O;l_ZG9b`e}4ba&1v_W{Cc^{slhlkEp1g) zxPGFUGSg$vkgza4BQY?~K*N29TWV?!j`@D$3|b2Z{ECF>v4_$R?+4v zHzdjM?B;75@Iu{FZBdL#VU%<@!d^iFwN#DRD-RxQ!F-1{NafV|=8se0aVSYP?ept$ zV<)+YOR(AYX{|;t?Dg{-Eh!biDBTMj*T?l7~r!m(G&Js`w7LHLKS>fwEHL&N_W3S;%J2M*XPeS^iHHf zpMW!J75~1+5NZAI-{;4^T?@WbdtD@+x)yoWOcv zytJ1b3xGyag+_$5m367j_JKCK)h{uL_u!HqlkL&;%Iz(BV>w&4Z*jAIM-63U&pC_q|O~@04NW2n?I znFV1qi+{X-P;6>zYf1S%jazu6REv{)1o(?^znka3a$WVkejWA6+`C9K?Te3Toumu^ zZslgqlpPis4dP;kgy~FoVjkxmMG~Sn-_A_t_Riq zZJv#Ktl{4DpIBEL=B-0z{mJ=v95JdF5jxOU7!3u*a z8-j$usbZXDB!SEif`^WD_-qVM5{=m=|D05>K}PoN?SP<(2j&6QQJY^-`MvW4ZPc-^ zBYl0;3JT9mpU0sZ>uj{PL`1+GR13qsxaA81Sd#!OQagEaE9QfknV9_X4GceRCQY31 z8?$fUxaQ=`bp-5!Pax_H{TNu>!^gsM1qo_ZRAPslRK@kOevQg7{8osc63jVS@3wvh zV3fWeY}_OG~f$igo%%DgR*DENnTC!bltP}LW{qxFdD1%-Xh5$h`vLPE87Ad zyS4+80v*#Y#uc=CWYF(fJL1?JWfFUN|4vrDLW#h<{f&)A#8;C#fqIV{?YG!K?TgCWxZ8fKujdHG1_Krx*j|^jva+f?=WZir&Bc%e(chw|{*bn@Rp1;Juz}lo zJydJCS4M9LbtqvfNy#q)B6W3h^O2NkILU%~{8o4oUI&4p^UXe@p@kqtr$oGI>114T zFl?Dhb13>LzNalPJY$RFt1!J~HublSXPlpizZ6P+^+8eWgp^>6B&B5eD~O}ng@skb z9T}(0w=z|St23EO{<gz*)O`bWh_buN(&urzvT{;7I z&s9+B%bV%J>M^k0X|+($~7F_!KGCYJ0v`pOx78;`^hKu+(N* z#h>1yHg)fg)v+w+j)Z;4HkKkvXm zk_waIx(yowF`3ro5>YS@8!CqM{*Kf>{&Go`IBbbEXx-$!e;-PS z*LR+sv;uQsG*&ETQCR~{imKuGm$?C~Dsj?qcHPs)?{!dvNVgtoLh0Ya<|_DfVgQZX z6oevDm?K98xRO<7{o3pQp`4CDWj@X`uFN0P58noIl<)^#N^Bo4z4yY;hqFe2vu|@w z>;cC_3P4^{eF0T6nA<}q5oM4YSPYa%OVCXeIh(FoyVk+SbkG1Gj~u!{gN=DZ-80nv zFbO52Vf0#>-whfhe82l5bPk^#0@ASs21-F*-;CT1-Qu)%t|NxP;vRgByqTGUd0GJW6tJfBz~# z+te@fnBA;;`<5B$goYsP+N6d*2}f%cUTea`Vt@tNug*Ze9QxY-G^ zR3E(~ec0-@^Ryc5;TVm)hBROO>J@{hr|0aCw4^66P8Xj2yb;houNku(HvXMroS${k7>1R2BbhV)2jiNU`64=jdQ5zVe91K zmPm8S>~L1D7Uq;l6%6KbL}@+v9XKDZL%pVi1&sIiUj<|$2U<`LDWvARcI{fyXog3} zPrrUT6%S(Ryo=5cz&Hq!p%W{>Ew$6G7flCASTqT8HW>~cE+yZJcdj67QHzoxAx=(D zt4@4*_7);Fk^ev&hQtW+b5Q=!f2^H^$(0}TI#g6tLtRC}SFT)%Ik1a4qdsBUML0by zHAGbM7HI}`?6_YLwi_0QRN2hidGYuYbcp?wi1i8JS7K1aNgQAzdYs+ct_O-YNL+f- zj&r6HamZH34TfnqP~%(JR05_!>W~AoW`_FDw$QWr`fR=#G+Cp!*C_tQmrq<a5e6Q`ckBb=ts zeR+|)uEI7mGupWdBnCMFLZ-)aw1xv{g<<5VXtIU3=q0?}dZMABq1C98S}AG_sGC#- zChgWED#->G3=U-N?eHOo<460DF|{uUbQRb|dR_EBaNtT;_cGO2z+SJ#*}SI16_LFA zwwo^j9j-+SQHW_q^cJ0pE6Hlze_WvmVk|`+EQOx$^^@NLsYuFg3azsZzQrZ$`mn?i z`HJ)q-4e54^z-wB6ue(ka|1@;$O&a~91(+px>kN<^NOv3ta6R?U6KwU%#mtg>a;EA z1Sh)b*V7|6J|K>2Rz_eFXl-RAaV#tWZ!tv{-~p#j7&DJ8;z73&s@_u)cj&;(yOGb ztm@MzQz2V|=GXaqNdxK4MqRg}?}iObOl(kBueV+)ZIBE(&y8Q|y7ge!sqAE9wf&^z zx;MVy=i{vdBE`06(n_8Qks_95E5&4@zTWh@4EGV}d#P_GMui&%Zt6ru(0Xz! zCwU8$_Q4fGiadJ9TaQA%(qmyeRY(2e@9_ncynn9nW1xcW3`I~kBr1LNL%XK&F{w7O zgt$1~|2oltZ|#@PIL&Jjl@ANo8{Os-7_9#6Llcgl(PKiouyS%T>-eCh#rD^0|1dl` z-Y&#Ck(9Rz_1UD3X=k&tTa1o2uf+_@2gf5@1SC?mhF?Y~3Q%^C6Z4~#9n8Zuz5DUw z=_S^6csPM~3{aDP>)SM;1Ylb-JJTNZgT?7xqL;MK0kX zYQ~!z=P&w-Q(N9XH;{1q)}6GjlaMCEAZs{ORDybjXc(RA!JnMGe^wrp9bM!EawqyP zH5igeV{Z(`YzJmYdI;qQLp>zX1+gi-nGs_S(7E8zpt7*&sgP$7pa|%F&(@I>-F?pX zn_VmUiY}Lh4WJxCR{>!X-5zoRaD;>T2b~*7?CQ}`T|vcd47|k_2eX42MqhU8<--~9A0V9Z-yK>1V)e-w0S!_t>ml@39ic~@AH=B?H~SvP&uDE0KNyaWot0v3xH$3M%|7*OpDbdh%=tXn1w-h_SVEDsn&~g`hD}ug6_X> zZyc^}Z(H};hLyg85gZLU{843dch5P4(s9sKBzVJUX9}FKvp@jMz^za@`e5E9-L5ic zKc)YY15Tz!b9DtHjX(!ipz&e^g$Hiux`&5vI!}JxkAAtjqhoLP(n((7Wgu_zfC>*Y zpKV~8s-YZeKRs&}P!FsciiUmU;ZdiaBXI8G01tLd1(2dB;v)}+Ri0*U8AmSCX$+Q& zoEUubUU#(39K$Q5K!xszL`4?9bKBtU5B2va65wNpocnhoA;8Jn#^x;`BQSr}n>S1V z$=A^-kU#k!$26>=s|hbJuN{sH%S(SDA=pGZ43R3sl^;8d#`|K7upuMC#L9XV9gtPy zjcsrm?gL@HOLW!A`T_WrLC?^4;cd7;L*?1)OpvlP&^aSvRO*^~V2SEJ*n!E(Nv7|I zqx_bM{KONNhinXDTshczYj@j(!`F`WM}Vmz4$wi^)XfJ;8XSl2YEvihPT`b@PFl%e z_KmiGgs~$?NNw!)b{4lKZP|Rm1oe>W$9-5ODIYDcB;^}Fr7r=%beNy8K z8Ge#7p@fpDf8?&sYcXF1uJ=++vZHQNG8|11tkInWu zg5dyfcC9=@Xg`LMtFhH%sD06nVG4s};H<$<^-bN4{eLTs(%D$8@&~`{Iq@YN4T=>+ z6;c%kc>i$g7mk>)M7vC4Wqh9j!zz(4!4z9!rUWMl)gsc_$DP+RGO7V>e;peOM<=%9 zk^uu6F$mG*`54&ZY0gE4u;pMvjHY_LHFKY^tu&68^Z86r>=H zk@j@$RREmME8?05+P`Za%w&&EP*uGuDs^k|f-&bcx7+ArG7WMlisn302B93gn7Fta z!t@VH8W@x{7!5}pF|+#TWjBR58Mok1NVA?5gg8i`l5R63)d4n%OWx~AS9iCVc|{P? z)DHP}#OB|#R(y4JbeK3f(U@>8*?ya?=Wkz3FKybe|H0eYVgs6lOFY+&SLE6J z3@m&?I%59f18GI$0Zo^O!x!Wu57%4`@){bU;!s=T6&Hmgqn`P#Yz8xE?|1Fy#p5HX zsf{z>>eDB^;18Ph+u!b_uTY6Tw+5y$4DwZz)GB0Bm)lUBz)P%B=BOOVt$0skXlR%! z97w!?)>JX(16!#5Q_i#d_uwF!!%KzG+=6l|=jq@>RX%v|+N>AO3@Uc&zE1uf%$sv2 zgOHj@#cj`?Js8r_?{&NHyEGp!=RqMz4p*c5PJH}V3?$5AypNV<%<`jqv-u; zKm!fgRN{mlBIddaOs)EK>i&cEsiM zAE^!_r&Uj7oBl(wHT{cXa|i!=T|E!ntMOXR5luMorL{95@dF{oJ-IiF5 zT4zr@acnmglhFC_;9zYdAqO7}4b=`D=L@R&=uU~`V?`FXLmbebk9X)!K6=C z+)-c$*~5!ao*A%*=t{}G&XVrEY)qS*n)$qEF(xUOv$W;zHXpY3F>N}5Q$FtH)`8MZHm30nmC;Cc7F#P^!qQ|h@+&bB@V;cA+b^6;c zb?k6bl=1y5jic7;KNh<*w+s^FuLm9s3=Z>(Zk05EG7kBV5BjQ(9XI{#gwzp3Zea+} z9nlChzB0XdTx61Bn1ylEV_u!HYwdJpa+UYo1>Ta5VB zxoNZ+-3(eGPJv+3FC<&+24l>ytl_^a7Vc!6`5y)A(ZiGXZ)jbAENKw^W3;=(MG!{~ ztivg9mp)Hm3Qywfr@d2uN=o*UrjTQluCG1ms}F8VO?H_6`DBlwLS1g`vsD`0+%M{C znAUh_=DwpuG{tiVuV^;M2*}7Xtnp?+J9=Q*xGwFHpsWI`%=YU~WVHQaBPP3IB&4o{ z7TxZeKDz!l716%^dY?CQa0Xb3z{~eAJ(ouiYs=r+{}EjAY6-lro0}OrJe~8((#9!Z zDBkE=K)?e~BIMC`C<4R|hP5=x@>3=zCX`*QkM(e>o|Xv*;tk<=YGMB*KuGFX&36{o zRnW`A7v+pcSXo#EM4uMMct~sBk*0+MjhcU?r7$mVKiZ40I9f%~XFfeg)8K$HRBQ6s zDGm`Me{@8lDzuBJQ=}-5lU4XV3sE|R+YI#+_1?aJue&jXo*?}zMY-DlDE~AVPWpS~ z5kp>HzRhXifWBB65~(34P&L#E`eCLLhQZvzC2UOWK%7XH(Eo`RQQx<)#WcqdK)%T1 z^>NR7c4A6l&+b?s=7sU{iI{d5H@B;xA3(6>6gt7nLw1Wr1J6-l0N+b9%PCdPESbw{ z*Xqf0A|jj=F(yJbN+gB?Vfn%QjF9{a-1X@>BY?0}>B|eRG=IJhuw^@oox%+}#P!x0 z3!Nc~9eHY0-{iIzezFes1@_>kqQ{EWif2G$TuBL_4f`G1V#zuuP%g67E9p)ID993{ zyDw|BEXKUA^GV*i8gRHcH={Gqr{gwG?yKFNwgr8=X#1&>gxl0ax>36UsiQ}R->}UV zGgH!j=F3eVQ(SyN@2JRn78|OV%WyNaO5WQ3J-_0V$b)R?48tNe#wI2(`*2|SBk(=I zlBx@4&~Z^OSKaRpqfxHt(1J=E_3S$o5#wJM%|RO-@Bu;qJJ0-olX3qMyx4)k(F|38 z`jp^gY)>+<5On{w9fn3PE-%W$aJb9d?7?yL@zz4*KQ!0m6|v2x@|}N z@h*^QTX0qcT#7GA${LhC>3)MB?$EJguRPy%0K89yNa2LEoaS3e>ttnRxk-5!`GY)( z5|jQ+UA7e{-Z^Zhjvq&8mKopDp%in?c!W8+4W940w_oJH~yF;gr2 zjjZhO{=CGP{{K*;ID;lt>}1sws#J~G1CUC8J&TxA_0{PCyZ))tXA^kfS;Q+jf;knk zi?H6?^vWee7*-HS18U$XNy{CKa)R5puK~;>bykw%C{p>#6g}gfSfIxs_F-a~cC#( z0@5WQT?zsc0+P}KBGS?g?>fEjXXbtW`M&vPK4)b_4U+zSQ#BYN_0JD4!?n{^8f z(-_M?I*K<|mgcuoyw&6SYG1=pqlis6zL$lvdmGV4kERsx_rN|hzKdU0NRwJz#x2A5Sogi z8Y5F9{EsuvtBx-Yo>?!n{O3vWwGxWYEgDc8p^JlxYlQN~;g?&oCWZs!MV-JAm_Pw= zXZ}ymMf0EkDutmHjKtJ2hnK@j7e9yy&;hWd0?nrQ2+t$(q=D7Dm2>Rr_bUFPEH~ZZ zFwIHPsl(=KKKt)ie-##QA^#*WjbMpDS@kA$RrV!K0-zlzJR0oESTqayDfHMR&VURA zKK|a{XZ2J6(v(3}z9H-KfYTXD5kRq!Qio5M^WFb(>1HUu^0E`y21E!;l%<4T4seqg zcM)=of%;hXb$R$u{=>U?C1UT(&;_j*ZPnZ7HM9SrxZCzoBGM_F+mM3dd%i^x|lE^claL{fM7>a###%5EjCgBZ{ku&nhrdGOHfJgwj1rV;4#-0teUE~q!zu^kxFH)el`{raN$sK#OGct2@js^ zIJ$5=W#FtH8y-;4T5gR}@p5~$5)Tn)6P78!wnrQm3RKjYy8W9h{PY6S&*RdR3WwXw zh6p;*qPzO|eVf zd^Tr{23aURN@;}h+A%%`*WohcOJ0luuw8jroQC=Fb4AD4NzkU)Gz;k|K36=MdU9Iy zJ-iu4M$(vikMiLwL~y;yh#JTKNKt&uPvDGT%N$SEEb@fk*r`H)Zj;-{seD~+9z3!iDn53bgJ2t|NjiGhpym2lfg9(6v4#cMj@@#1*#Dl zloBR7`FKwxBtgMRp~I)gw}+V}5xueq1Y2db0ZHjEW~xqehBT@ka^}c$Tu3X%ll;1W z;KdBG$60Lyu*LQP3eW+W;8L~HKfeX_Js2koB!}2Qc>lzbgn2V1@+@Gzd!uYRbDk${eyo4#ghp1fJD!PFil9CFxY@lir zUxs(*nNv<{nf!koS@*grc0nzQvHKGQJh&ec`(Q#HF6LcZWu@DB1Q!xgm@7b}d{1oY zEO5xOZFhn-6dHp=p&w!F6Of>_>mS0$Nt({pfod0_ndo9k%M6!XcOsaF;R2*Qz6JiF zq4OY1d^Uz}E706MOek*XxLIC|hlC()YJn6*T=(#t%oe8&&Riqrcrb`5#qoJT`g1Y| zLLWkW5YYG$RX(QqxUEOPZ8|yDfYgIwU@;)jTN#G(=S?~e;!@i#&9cLo82aGk*>p+O zqP0~%pz^3Jd3NpGd7#^Q;moLogW8ZgYDGeb0V!h5MD)(xOzl3(@Ri_do>n$EqI0PwjzTP1br!8adKe$o# z<=Wrjc71un04HJVZvWk|Pu6wEbsAOGq}kReV^%ex2NY8Z$xk$Y2#@gCum7bNeYg3o z;Io~-pPS}dUDvq-Jr*vm7w%_*nl&*ggH39G8af<;ngfY|73IBvXQ)g{kO)Eh7Y2+) zJe%+&2&3<>&p_zE0Je^Hg@(R-`F1wb`O<~u9!yPqlMk)aQ54*&NX)fAfzFG;#bbYe ze_L@!v%3GMA-lXi2dhHj!=fS~Oqt(Jx>t@k0*54C;KZ_pctrqH-A_n!l=zXw7*`Ov z416;o2oDDoO7J;eo3X_6gQ<`g67dZn_#P5t0ScRe9qt1H8E7sURe*$2h3B%`t3pV0zqm6e2Kll zNPY_=p5ANS81k0^SW1Pd9+9xSxuxw~hT!S!p*_C0l`Rx>?y!WG9V^awv9Wr`Ow&DI z?v2vdFWXLz@DNSc_|nX$c_x0#*Qt#a<1ggFxgrFj7#bsxNyJK6&uE{~rgDA3<+Nyt zaZ)AKufz`4e}kij9VE%o_h+)_v@U@VsL7+KBXrT5Gj=%S=(_#sJrTx$QEzRrr$T6 zeHb_SA5-y<<>ew;y21=o=dQm^)1=+HkA*)hji#bt9t&5ug_VELxUVOp?H z`T8gSPr;>UDbuzapY_XCdn*=R+p1VU7#}G`C*0#HX!XB`oIVcpWwNflvJHE}Ue|aQ z?*0BvANE-A4s$PI{Mig>u&HZ(s62{75@&(44aD8VP&OhW{`5HooY>t=Dg2x}F*B1E z{g}xH$+t&{6Ypow!ia`%)ZW2T~TBQRU1 z_>boN_+Qzm*oB>aaU0y2PSj=o7Sok;u zs*|tkQguvXIj!fZ&Rb8fh}a6zv)#O%m{JbUo%Lri$-Tnb-r7n771k9LyW5g>{{7~U zplaY}(P6%@_x{0J$0OaTI(kYMLsUn8FL^C5Nh@8ABWl?H`7=n1Uvydex6&PvZfE!6 zrOV`p{P&OCZj7Ntgu}I&*^god&9vWT?g^RS|MySq+xO|5yWGXfWv<;};aj|A*|qC` z=Hld0JT9&&RAZrJ5I1-uL-8=Y@F|0n@Q;;4|JRqW+{OIgC893X2NTNgKhIM;-%*H(Z}ER#2>H7^1->jCU$&LODf-#s z`?F`*e0bmguc3PE-P2Iq?x)t;%DhGVhJ0)4bg$JZ9GTMY?$0NW^78C>rFY%d$Rya* z3S_2_Q{Rsrr28HII*OU`xXT+BU}IKrG!YB(es@*Zi=zIYwP!X6URIjCXg(D zRB^wsMKZ^L4 zfO>`B6zpiFwj5Y@T`K4ilK!31V4C-*bVFmz$6S}6uRB_fdAds9!(+Zj+C2paI6Ehn zn~Xe$e+ZZy(_7{j>zmm)^1Gn`r}8$sQ)n?h!5H*&c}a0GaTdWjxDCoHrm|s`qZ`(* zuY>pqQ|2FN|DfFryxxysUW{owLJjx=O|g>Kd>o)zMeSlcGvr&`2MQ8lK@;5p2DhKS ze7Rwu3NZ+V9>krWWP37!ly5EW&igMnAz^V2$UG>2<>=Ra{GjOu$%&YUP}4~R1AR*oceZgAMQfFURoc-gGcQenwv zArD7{uC@aRh7rpTOh`|GPouEJz9rt=?><-dbC0o%Wo6- ziFtF#X0OwZ?%aZA=Ed%S`u)$bJ$$Y-5%+e67$nOl{FrLvT1QcAFya-$#rZ8YgZ7k^PvCU4pHBTxP| zuP^er5{lWxn-hp4sZ_y{JBD`~H{H((8a-;=$FP+|!INR~6e|n3|KGLblvQcgwu8k$ z2Z%}K3nn2(qF#o2=z4qqOpZYU-XLkIF&uP-t&Va(FN#_hkO+y$6TS5v48g^QiOCZ{ zjB;vC$47u5SlPU99HV$ST(*P>wt7d3mzPxXtn}`me`^Ic?Y%uJW$S-E%N-nH{rBvL zsHzvjF03guta+T?*W~^{Pe4EkBFV-;`WlA2#6HW#3hFF$`;R~|gO2k0aM^kFiojI- z$MbEHiVLZ5aU)JXsDjDZov_JAvtl1ev2)OD`%)Ba)nCT`B6yWmaH)~1Jj?W{aGVTF z3vnu8Q3Av7JDgwP75h5j-Vx_;=}VU`t!oinGkDDauOUsg_UswTy!CL4D0{eW!)+s@ zzf%Xy!|=MQtb^boRSa84{19S{17+>&@tMGx+N(F`ioCvQK3LD%S3I~+z@dLr?)E>| zkT_tbOzB={8Q^!g>F#gI6jO&1n+nGaA+C728hHUc+4IvwP1|tDg)!J8G{dNVRA6Kh z1hK8Bbfj$towS(_OwPdx`3S=o0{Eh1*zX5`UD+wwi}oq#5`f&u)l z$$H~T2U&RoDmMt6ile;XF82D4qM|KFM?mGb27Weiw!|QYY*smV@NTH+(-&NL4ist6 zvJ+_%fIN|fA;cC9JZ!2PWf2|Ur%Cwn79PGSE!1t0;h-n?dTS+i4;i{d~E!*KKU@lUGXa z$acx>-gzZys0p6AtnsiQh<&#NxOxK9d+NM<5v)AAu4vcySB-1Bw6#*h%?)q#BiITc z0CR(+;|l0(14yBUS<0Z+o{$Q~snPp^{}I4rae^2X00|gSEdZgeTP63-cj|c8&iagq zx^Mokn1%19jqK{Kss7hudJjb_wGZUp#9On3;xzx%Nxqj-_n5apmF0aai69rg{ zpnaqsB$iRAY>Aqfs9mjt@Ow#6AYByEwUdiXjMTv;o{W+No1!65vDV+oFaZofmutrl z3CK48xErf^+EwhMOV!JZ3i9)2iPChMjuRW{jT)bQPK~b|Wn5l57^;1;IPUVcgL#hb z^<2Y|R$-66Tm25GoYAiiSm$;v!klpfd|3#S%Ay4A?)JTI*ZS)$!JzvNe{-~4{{SzC zEiOUQVcAlS7Xv?o;86>v^LKY2+w0cGL@XnizZ?!CJq!A%buZNqBVUML6A^(dW*fyH zDClAtaybPA7+|P)8Sj>S*zn}qgx_}U{{8ooL%DERB=lyY4e8#6IX)4%4vx`KK!eXi zKwMCX!eQz{wvA+Da6uE}j`(>5W7J{ZE#qMn4TeYI9ag$`|P~DNMfOdmjx~Y$fOf^-%&FtL9qSj2Som9 zY?m$+X2WEg*6&hh9|aO^*l0I11vDXBKp!u~Q(q4U8q9UWVcUj{NK(Fl>iCk#FrNQ=(no9noA?UnHPw@ldF&O6wdM(oqY2kQL zyo_1k%WyK8B=;GwpRl$`sFhDRKzO>=0SQ1hufRonZFQx!*#Puxc(atDfJwdAdX^%M zZ-p%DK%;sG6d20kZ3Aa6Hy5>{Zupm`3PKBtTX=%LGzlOmp-Cop5&0!N9mz;szN~UF zQcSwyzhpD&a|(Vf|8 zECHsxEN+?x+;|PKq0yuWRU+|;#EHF%sVPy~!SRDbbNE!sY4oPcrzYy z5Gl7Gz(Lsz&q??plfw8k1l^b(6D9&CS_bOW3sX{(LPMcNC|^hl0LoH=EJ{W`fRKsV zitljMfExk?(aV6(MAmYFE#)(o=@*l%t_x&@rCt6XQVb9q3WR;s?(6Y W1dw{Ukj zl@#XV^OPhXLIA@(C)|btdn@=7Uk*1Gf2mG)Q%ffZce0h?FA*feR*V+j+T>e-HGUm!iN}CKKC*h8uC#6JYw3$IPy7&@6pQcIZ~lIVT~Z%0zHT^Y!FIIoYRv6vS2w>VQ3-!5KTyLH91D)@ z)!ng4cjVr;cV^n}bajevY3_Pvzjs9NK4?O-&b&XEwlfIqtYBuI|6EGL(Ej1_HM#vY z8o7_p4RGFB8>FZX?19GJ|DQuk^_S(2^^2k!~gBySPw4A&kIPat^kkRJ+|2g~Tzp_4FMnA9c8 zR-!=J3IR=!pPnFcUy_! zH_*9WBEzwpJO=2|o0EYROpcm~=bfNA5{m{364Xi4LMUWCC9b5~!?CHNr<=r>$OX3q zMuEiSvUjUW2m)h-PY3k}5OT;KxX1zG=mJAUdK~n}s0wl92ojA0dmEFj@3~g27=n8M zPgILs(LISyf_Qhp#^Dx{2;@IRMzm$;POy3T?qdTJc1%$M%dWCeZY92gsCClR^${P4 z(KNV5gdk09tua6cFXt@T#0A{&y0I(cp`h+-P2J`2cRL>{a-17$3sX^Ul81(_f>@rw z7Ig<9w1T??ssrV)B1HA*cnO&Y{G!j=%*b!RDA7o&g$`qi`vP%>1RezC+L;F*oJ z$?|vIy8rGgA{<}Pbnx>S?+$nR0*qUhzJn2q1s64r@6UZ;dnir zrt=b$E7+@U0JnG3p`{~-$5CAo+bP&wduW&Icx=QClwZ(=(eiGrO(U-kU18LFw!9Y` zztmiv^jNu4V}EdhG3rH{*Bcqus|R&%ybADh+s-As^F);XziTHPzieZsNn?8z9G%xE z#Hkw_Z=q4Sdu;k<#g}Sp=PL)qeO09jw})%!j*ir23d_0}XN?O`P>3xFJvc$J;hD#E zb1}+z1?x|WqwPodCyQQKHLfuw1`4Sb)Kn!xxX3tKX1#OGzY;ZZ7=yxe_Sjo2F_Pg4zfL-ULu zY8C_=_o&66et+6@xXYt6X)t8a$c8;Tbf;cYf(!ph1XXsm<7D6C+e4D03j%LAi1Or+ zSAYFF0Y7H2ihF@6l7%+}`*tyY0KG1;WP!T*8eR$U7R4z0Hae{DS*A>oc)H;<|H?6W zn79wbh-;&hxK0tcj@dTjjMdfEb&xfDZ)+n~e8gQD^AgOS1nw_|~4{KjElgbO*nJkbj6P2mH@?EZq1F`ivWs4yls zFR!Gm>_q!`+!fVkWXyG6IC^i2i_5ZHg|UjOt5K8R#{Db7R-?a+9cMakJE|nH%q}KB z2~9P~R2FvB$f;Hi)MGQQJT=5)^ld~_SJ(0P{Ra6OFnkXXQ8g<5kbbtq+7+hWnmppG zIYxZ`3*hvSo(VT^11erp{1RLG|A_gBm{SR^%FR}1xw%Eab&}(#N)FLoo}VC_nTTH& zCJ&Jy20;6}kvP7hZ_@^>)9a$4jPct}QjO!#)IlT+!Dk;R45-F2Gf-6`&H4 zAWtH1W2XBAPcY%0;sm$~_)UbJj`&H`!Kf69!PWn~Ee<0wwqz#oWAKq3!fX;{VHr@3 zbtrm>f|As&_{d71^G(KQ>(E)9H_)zRHBJ}BbpAFt0EkAX`qfb8g*0;^Md4o?4QPha zu7bEZ$;G$d=gR1a1AIS-;R|+vXd$#Ub?G*VHMlcPvXjG;9p!?$-) zQHPHlxnl5lO%a^f-2CZ@3t4?y}=4Fk8YqCno@#&n9!X7P?x`rTxd$kEelGLNW zP@R*DU_I99RoSGD8h;n4t=N#NmVe|loLUBVreNr)?9|)m>$kP!Jq%b_+0#*Uqd50D zanS=(Q}i@ugZ0PBgbtGbkjj?pTgEVq6~P56Eyu#47qEn9Z4{a378KM-OpoVlGDogP z+VnQ=t3b{pE8KzwooFeDmYqO@oq8aD6PFxp2q8cv*c2a8_+o5_YQb+_m=Ehh44AHn z`~r_ZElE}Znc#6oMnjbZAk;PbGPBKuvVL>0RW96%PBUq|jQYDa>J znkmDM^tx4Lt|v@=2nzY1#b;3infRTAg8-mK>HY0T#ht=L4$vg`!<4E-f zA<=;OBH4=fm#vquJJWe_@Zv5_2pfU|1%-pa_s`_LXscZzL$(KDo9y!;25cmFe5m{T$k&uCca(gGpL zx|r`-=l06S=iRK;?q_s}HonEY%1qQ?v>xDr-^kCE3M$%h8HqfzeGn-YZ5V8Z zk`G>l2JBY!O`51tFrJ9{J$Z6S*kmUu(G!7Qma27fc!HLOCQiP9Q!V=;l1^i?x~ij4 z#>&}~L|246@B}x=t#*`{%+1Rj;RFv3Vc{y)HUNrwf&lJb-i!nEE!PT8&eu*E4}c*> z@&K+CnY(0aDc$`DT;$F7m)wB4d~N!yaOV&osOes&Yq;EnkAPkxoW^gX=pxz`6io7Z zi6FLU6EX|*Jh+P=i*XXaAL)V1w2GQH=JrMy-5`kd|Izw&ZYm# zQJ-aNl(GlU8#-pv7*!<~#NLX^onM$i={hlv(aw6pL_Q_*MH-}ZLx1?aFtewB_)vXD z`zwqOjLY_NG#g^-D^r$hI}st{G}c|j`70cYA^wxR0jBrhmKt(0)}PSc0m2DUX#nn* zM$vjRgvG(srB-9X_^Czwg|Ixr8O7$zddG150T8yCcuN3X3^#0A8&e`4Ftq3IQn0eJ zx)_r}6hD?gCMf1)4W|{3!%W3k0V4`3fcEU6PtpamKwu;=C+bDA#DlC7BuYrN(ATdY zqXuTt$w~a%=K_%?=@T~o96(N7fOW^wCtb=uR{;kFN2Y&@^)qr?G;H}n$wq+)m*}go zzk;rX{layykk+I3EQZ>ftWhEs6CE1r5B4zbYks9kBz35j55owO03~3Clx`CT-TDl^ zlBl2vCQ5An3Yp^1zKx#*Bipx&Q{D>(;^bW|VxkUnJ|(4q`YEKXJt%ElY6X|JLmqJj zh()O`8K*#p^)1U(lhEH7Qm@#7$Z;ADtY`r0U@!peWkNv6{O1;Q>Y=ZM zlF^co^wfv!LJAvraZNyt(!4%1}1g|)`XVa2lnUt ztSnco6u5W~^#m`nQB>MhrMp#oyMll$#T!@cJ?rP|>#Ja_eCb<_^5m#u(OT-kl-KVr z$<*YC1fBg5XKDg3ZXWTwz13KR8S*uSlDW zf-(}9mnto*%<#s_{rUO-R& z4Rd;o@feiqa*i4ZJH)aQRU?t_kv<_m_9#$3bVi?vsVknNOU)VMG><4wM(aDBW1QQdE-Xl5Nt5iW8*Va-pQUk8FfUz|7DRAF9|~lpY+rv=od| z4lPA#%T-&Az|2y^w$Q|(r55ZFIB(LIEEDBE&wt*yZ|AmcRjI2vM0SdWn=oH2yf{eg z(+GeJuf*%d`rUw&NEJ;i6T!4aEf1C4Miux2U*Z(UadDT98zru-UryITR zsy*v+^^SFU^{7}deebgkT<01U7wq2*SIuhQzWp}y=EBN&hdCj$iHrt@-RYGQVo7X? zc%c4*e#oVD+X1bmOk)yU@H(_sdNxxeN^I}BV;pV1ws-68dv9IMf1TLfWxq0)cINqx z>0@H;%5o|0ke{b+f0aSwx6I41qur`3=i#~e?l0l-nsjk&{C-*IU7u&roQ?X}{#0kn z!sp^I6p(6B>MA*A2d2Du^Ge3aT-^36I~&`6S`#@M0s9XZ?Uu+obu`!+!<341%MgVA z#>R8F<$Yc;?a1DvUlaTZq*rL7ZLFVR*U&k)*fp$`jG%7Qx{@vQ*`-N|po%zzY8~ar*wz`hFsvK^mq>L%bfto)C4{0dDd^cS zk%DHNLMO!N;RvOQ)%cs!9CkR<`+hk!5fhBP_ZfyW+d5$e&L={ za%hla+1_WlSli&z_Cg*bd5Sb`DUij#(2oD~Qa`LOVXUwtSvQU8S;v=VMr*z6_dlF| z^eV8YxKFUUY52C*kiLfLhZ!$ z0tE)M)kL9RFX)md?P$bxsDpTXGjDyjX&a~Ty% zFrRwM8@45^Hit)3N7uxJ<3dDEcJ|%i7z|eN2zQb;9SpL{RQTfV_O0FZQhgy5APkJ} zpW9GYatdKP6xO{wLA6LaF@)CAN|n5|?-B4{-C(c#@2|Gh7{PSIDl zU-QWbV>iaI1U$k5Lqu+tYJV9JA&IO7@vj)oFQJyFmdFL1ym?SiJv4VY9W5oci~WE* zlZ+kJ9O_`q4<2Lf)@{g*F$pDWMuK*1yfW|(EqSrIl^0mb2g&ME(k`G|hQx^Z=X+vR z3$O{I$BXvUvBkm$#lw?WfJMw-Fud45<##I-f?Fb*MqSf~zc2=UJ|DUU@C_goJxOOM zTJ)B>;$EwVRxEN~#8n_8uZM}32jNm6lh+NX?)h-VfY7B2!Ht;h+@Ja-K_*eCg2IEB ztCcQ|S@^-aWFJmG*(PrWcnv2)qrW>HhWnH-9oQ{&)p=z`F{Oa{wZ&U1lvGJ!-jrsf2(x;9hncwoO zyB^J=A7`jaktW1l8_cthjC}w!?;oqLN@lpxxgZ%DZ(#reGy2*cmu5T94fDhy5)#WT zGW9_hd>fHLY-wepoXMBt-vDk?M&#uuaJuTj&F$S?MW_Sdt|MndkxB=&RnAaRIm3_& z+f&FI?$l0};o)Y;Qzz!o^7jG|AVnd>?ctW|TJdjY*u|xmYq=G!nq)RaG5SB*dZ@kN zpM?LG|qiFj$izrfP@62%zd0efq{2W z(kkUyv!fw)#Wf&)yzk$?zXavEPc!$03kt2LTG!IW=6fvks}~0jCqEOE^k`&I2dG+ClBWLG<^t;lxjCmOGrO0 zq8YtER!e`K#ZjlE%H8WRT(g^b&?@SHl0bsdZ1)1)`AzK84T#qMfn3-P|<`tDIEqhLn*!$P%_rulIr zPt>H2NVknS8S>tFefIunn*@KZ!)DXs;#WSw+o8+tdHkhZDva6q|pLWK=c6O zYEvV3&6_H{9N{&SYXu1w@b~A`j-S2I9A;B_#WB<)j;#C{-C0IJCLK3+~msvZ`u1=gKY zSAqskyolFv%nRMK3j@acrd$POocN zSXkwZOG_i<+~5{8or2J`cDuaIz=x%GY=L~bLhnTWo=sx)7+whlUQaLm!jzhA1RHmN zky)yDra9=SyaSordmhIJ*UUU);s~e=G=6&a>2r6nH?#?z5HBkxZ(K)Fxc1A)ci4;e zJ9SqP=SOe-+C5AR8xQ(Fb_*{IIQn9G#wXMterdJ=JDKeNtMNSAN=oWjx zg1UkIoy5(g?ji@-sf6%7f#8k-io4=4ZYcFbHYtPp)|eXnk5aAa!qr8*NHYEkQkmYAY46B}Us4&K` z!S8r}G*}ZV8M^C)&*`h@m~AWIcfK@AYZnyB$xYhKC<7W{0et}{4x=h_c3GNVyp_ro z1~l+g`B=)Tc)zbq0xS}{ugb-165D6AlAi=0AJNn-m7onI)D{Bwcfef|tj*s0acIic zy_~Z?BtiZYkcIi5-cmn){feISJfcNQEpO4gu2Pn73qik;C=MSwbO{7j<2?75DTFHY zZEA0!$Q+#C;v!LmJOt~-0*`w$%u9C{E&2Vt7l{O8k%rbxs!hkc7?VObq+zTWztdmo zOCF|Vm8>sAW4~XqNnedqXcn8G=r_4sB4h7|xg3JNlNfPc!}m5sK|Lc7j% zt`)X<7Cyc|Te-uM=7(FniuH8=$?!-{X7&wm)pBES+Q=@*#URyP`K*r3)F|@Xg%lw* ztpSsU_lJFU`pubtn7d5d(O zq}sAWMwLd9(_DB>Gv#Q#L?T|&+i#> z_f=rP249kbgN2+K;kH2SOnstBUf8z4h4nE-YrZzVxD+kTEm+qeF0yVfh&NQa)?<1P z8Y-*~(axON_pIOd?&qUNpIA|z7 zdXXo}(eIkU)4+`0SsgS9TKIo&!{nQ+qz2>kDIi(&^%;T+lTYgI`gDd+1=i2zYz@;M zS~W4o4m(}l~SZfYI~lO<5X0#m>UGp&;IdaJZ=Dndrg z1?{aV29}nVg*t33_D3SMDJU+`u8tadr*`E#ZKI1}S&)&EzY@w{qWHuWj%tg~HL)2h z^Fp(Vzk1_2h0AW9o(cgrHJBTc%5LC*A2(K$py=Ui4|kY+9fKTj2HYQzL=xCE5B+5B zDL!IMHX7rT-*6~sjuW>)>+V_kr-$vHvVO~WWhE(OH9!kW1}5KNDzW~I!zm}zk&E!} zLIvhR2D1(Lu5BZ7_rE}4s^#|_dUHT9HqIZ75%> z3Q_I5s$eL#H#w?cf$>7mMEbyQ?&%o*EL|#>;0&knb!Ok?B(T2nAi`R&otkfc<_3c+ zwku?J@9>nm<&O?waqlXxgZ*J zPX=w@_lGzsAHl0eHm|qS4~rl90c#DA7g>^2zZ-Y(FgMl|qVtIWUPab>5R?wzKu}>U zi44iE!B3pPYDcq6<7PGT_g>66Gf2%gt?7b#kUohnk( zC`N8ca%ZLKojlC7!Rtu(b44+OcIwmjs%`o0CjT++Q2pT?`K-4gUjDX$H06K9-!7@* z5*h74(|ZT2cAZqOs#hsuk|?}?)psr3W?W0Ud10+wlf`_uu-vUr`v)KP=mm!BDj6te zMk%OfcGuVMTxH?=ZfB9ME|Ha%#+6lXmGvRby8XOr!-r}K_J;l28jhXcc=OW6jXeLB zOw5&E-2R2;SLniNex{ZttBuvwON`wee|}8`<_HyxwonThur}5fjWo1*1bwjXJ8^uh zJw=}>X_2xe+IGBPZW`uFv547=0Z@^fEDN*F(BY0O9ku~2V*io04tbjR?UTFL#-{LG1%#NM=!3lqd z-(d*O1DA=Qx<3y7u$1$n_v*^Hvk@ROt5rI_u9@?&z7%WuYV)O{f_W`+G2%H#{Nzjn z_x|L&XwaI*N@S(Aw8Dwo3%qxR&r z1TR^m&xyWAwX`a{#lNqcED=z_82QOK6BSj|F2VV~uL3JNk^rIQ)GS^6<%8Ner&+vG ztf{D-^}>ZrN9Wh>larH%1u|YGD5z&roL9vCHS7(N9NzPIPT~A;IG@y(FjTd5{2lH( zomI3V0gyS@q+mt?`*r2AI?TnB1gu<8onxbb9p#oSb2dQgrRy zw_es<-8wvHWRm!cU%zwa<%;ldQGt0twBVmL+5$h_;$SPiYn;MiEmE*CmT$g*P#eFz zTwjdjjUaV}-7eN1V3uwpBj>>1KFpA{{xeWT_r=UZbst8Mq@ zqii0m>V`e&N*6(3X;w|Cl~0lM-P~Ou+GJWd_VT?=n7R4XejqfD^PXPFW}55ZRoLh3 zEE`q3vQpqYSQxYRuGMt)s+5qeX@-ADLQO^QYn396iCun0Yb)cBh5Lh`vrS!0}vTsUQujrSuuO*VWZcRvqyGYr}cIglQVMhWKkDuR*Rc0?g@q zpoD=o?XZaiqvM~;$Y_Q*R~Z_;6{%;Y0aMZP%Viq1NWwHNE;+lG5)!iC#oIU=K_<3r z)%9=6K9uP&XCmsmIpLXkz6Cp0Jit%3sc`Sti6Q@n?t%jc55|J{eisF<{8$5~*DQ4Z z@EKwkr2^lUCacjgi&}xKGDT6G=ER!!8^M0XL8EK=>?|Jzql z!(jRnhv+V$<@exqC7`)B0;el?yl{!lSwBSE>=$`aWRe0J`=m!Zd3qiUe3@l+jVzu< zfi1J~Rf~74Ei4?no2S!R`1tbLY-V_t$83rk5b81XNi!@dM0qxh6PmlaIBbO#dg5uO z?u>MFst*>t5buk+YEu!WzE7`awwolFm6LmrMBvZI4U-cS-{?&9rH73f z)=t3x$)G-=19QZC>JFnB_H&&!zCl3=;1G%}-B&%#$th*iWfxOfSvd`pbbrnRWWWoq z)w{9WVU86PWWEQED+)0CtHWTYTwN*i{?|4(?8DD<`kGXDf8$zW%@PA39Y4J z9C}Z)YO$qTQ?dME+I)y4%XSj5D{>OoMBckG(5NbJpfHLRi-CyHr>4~+82=iPRD#8OLZ zcKkWOdJQT5iE9PJH)apj)9D8_6f93x5sPt9tL27iy;*+_3~<|CFv|k`rh>|=2`Rx~ zuvRF}F2$_nb6*Q3bPGOc-{Q!=lf#DzMJRrH2Kc|fX18LR=H?YJD(XnJ0naX{$%>Oh z4KY2BI%lLiRV?dHif%TiJODG)OPk!&|MsAXMg=J{0V1b%Zlp`8a7e;fyjQu zs8MH5-($kpr{m4~s@yMk^Mq_@3J`Z>s!HSh^X%zUxuu%e<4kK=%}dT7Djy66AYOmh zUCCbgMTbPa;%CQ}pfM*}B@pLb8kN!Y3r0E$*4CM2UQC*UlP`hsG{4agjRPd0fC9lV zYAM*PjD~mW=92D7`k(*>o%Gh}Zz4=h!w1zrO;i=9QgFmAhj4njgg3A&r@a&95?cIy zG)X;Afx83s;a62D>V5kn0ojA9{Tu8bgIgi^yp$Ey%v_EwMbxsUg_JSyo+5V`N9d`$yZd>tgA9jxSLc()y4%laLph&R zZ*f2NA{oDlzlPUB_K8}h(^AsXuXN8f^SmmcYAy)c=9y;iNt58vGSuy)(eff=5SHPwvkO2GBZU1v78OKS%X-qp^&W3! zRVj4LNlQ!Hzkh#YtZXvrq^eNFwyQi{k09C;&WCElEkTAo7H8NiYAbMI((QBh@+Ai`#4 z_a|c0q_~ugIzF_@tI7MEpWIrQHg~7au8s7Z-xI%dI>&g@a*3h&E;_a(D9)9n%cGZw zVV-}YZcY&M)m{959=eF!odezIg6)M@9dmPKD2Pz+n+}qsRWR3OWWXLb+ZqlA#Me6>OO}kg zmiYT~1$Q`?y0HfAp6>tEy7oPT%HN*U1~$4p~6Ik|WGYm*UYJsBI`AEstbQ(Wm< z6*A};r)mr@DC}PF4h`cjs^|1%vR-+ooKnCny69{pnK--Zay-iSabcOsFFGp)(+q=# z>)?hpWOW-SOlL?HDa916YD;^}NeBi++nKggyD{Z0S^LlQrCSXj7kxC^#{ABr)4}!P zV$Znjl$Q%AOG8MDiokDuhc9m4vR~mBAG4jQ28B7k!xV#;MJ&_|vg9XE8oXKW8 zRX9EfOjVzIJrcxd3Yt)*F?tz=LHpsIF-2|5k2W*bS+%IgfX8cC631CMe+7-eEfDGw zoU){yutqo2@fLpj$x2Ntj@Gq#3^&}N#3VV_Z|zl=61Cd>M<%(0CsyEsyx2MZKyj2+ z5BGcqC#z+Fqu?3od?bS}h65C89`==VUY!bq-9iF{L^5bUB%{O~crg=5XxsSQopgPG z{)cjhlN%zv1Puoh3dnaNa>sx8AO`|Z?490^Ol<58shexh5j?!-y0t6J z_%7-tb~?-|v^gurJCrSQaj82yv=?TZtubWfjs(#1YB!0<>amsAK8j|mZ#gC?SlDK> z=!kB35f%l<<%Oi!)v|B7xVZF(!BR3C9pkNGzPH0^Al1PdL=63;v9Hav9E5LYa?x!1 z`1wVn_fxQA#1tfPwy9U9->wqUM9g0cVQl=CBuKPb+EMKg{S3jt1~!z>fQK}{6W~oQ zTD1?csNvytoPUoUuQG$ei~yePmnX`P$2ry(N82JZQqj{VVymG%7P-YWrnqwjEk4d_ zU;x{&R$wl;xVZQ{q>sF&-Jl=}AhuW5*0$gvW}q8j$x3a#r-DIz$aru5P<(=AIfKnz zNNB7I?621ZAl0CW-)`Dzh^VLq$rX?-UrI(0v7QDlI>FO^Z zuAmW*U*kUq_jsV!vhY)hwR{k;Y-4BOS#26?cY76!z{#HJC0<0@-!vy#Qovb>c|)9j#_0J zZGjXxf^oBFe$|F)_S;mFAa2~5D-U5*><6kZ8>!XazB(#$!B)LLwVY9w^n6fMk^EA* zO~#9!C&ILFA$qwF^cg5cF842`$Y*umR#5PR+hpC(LvcCP7pQoe12mjw7gE+;B; zt(?MZqf<`i9a84lZgys0sFf+0ZX4#s7~I}+Ji4ehRC&C7@BnSZ+}Z^Z?QsXC+Uf`L zwgtyDhz*Ua1K?Z(R9vQY$HQ=?nS8LHDM>9UY_64aPCK1yXuxS{rgYO1XN%CyP`Lr!UG$eV@s<~s z$*Hz_)dq1ArOr^D6#I7?mG#Qp|nowz{%v_}F1ya$pgS+ExdJV5QK!QwS+k?Jv7;L^KG(=Q;_sSTU ztv=qyQAbdawbi*Ia*e^~I&Fng0s;iFn>QPo*5*Z4`Z=8qrYFGCfj`98_*p9LCK74U zQD?xr8Iy3yl>A9|Ad-=QXI4-JwG}xR6{4mR^Vf>4z^_X}I??1Tn0}p{^NUs;(?Bs% z(Qgvmo$tVlO#rcupf%rrI+?D{mkSwUG(;+?CJ^38vyORqTfSZTPWp>)fns8VsBVAC z7DIQSn#_EBsu&0;0AX!}0XkMS#3v@+By3~6GI=GXSa_JR^oYum*R7~-B_A?gV@dYi z!fGgjU~f=jkOY7sX9DP`2+lXLjk*y=4l`JhrBSrhId15b$TyZ9dAY^OG%+UBUaV+& z@;L`Yu!fxJWF;>F_8?vfLsyZA$T!qx6cQBEZP_4!x1Mqy@UA+bMMF%_Nc)DQl2(zT zF*`Tcf=)C8*E318sIbfFeyPPaAU$|+DMl#;3W#pshi;e%4l z8M!CS-D&Af(u9Fm6(*^JnCH@BU)%#M^-|37!VHzX6fg^ab2=|PH_7gKCg#A>ffr=o z@2hzJ&gU)aW~Ed^b)Qy`L_p!En78Y)6{^w?fRrblHTTH}r>99BU}m3tch9w*`R%iA zWr-#qS}L!m20zCSH_r{^>kVS9RL8j0hd`R)s+6K8(V(RI0a`w7(2(;r9EKSrV0|dQ zNj)}Ht8*wgHPm)Yn0@j78&6$*a!=T8$2C>{bQQ650u$t#cok#W-Dy)1Bi_G~7x*_3 z=_jJzSHjGXY=S!vmp;tkrC{k%2Pd-`jN~p1ekbpayW3F~L-{%y{b1=ruhgS|K)v)y z&Kt{}Y!^adLVDI2AbW$==V}|VFDns!uJQNxL@3>$Zqq40+Fw81ho3k(H|v!dqNxz!_IxwHX4AMc_OC<&ZYGwZ$#+ z3}b+AKix{h%X;Jr=jwzTFXzDb-7_KSlTyKTPipyNoS2#Irxs`o8_E*rShKZja{K1A zeSOreQm!c0D9^npl6Q92cf0P9m)>Qhydxx?(Q(KtcQA9peP`0L=SiDtg&ET_IK{KqFvxZtefi*e%3Z4+&!0&J(oMdIdEnJkjI_x~7A3GJjUa+Z_DP8HVtCq>14^Q_FJjO$+% z^`8*1SW~A=8t8pj5}S}*H)kaHZG`)PVJCM`hGo+LMm#xofh%QKLL8dk3IQQ;L!+AIiz7MDJ2e=5ThgSasXSrBQtO_3Uw`y276u za)+{76c*a_*V^CKu4Y|+y+UmeD>&WyTt92l9IAIn^na1TM$Z& zCKyRU+{;f8pP&oIGUyJ`{YAq!TNU$@+jf8Y43MhUrU8QbnKpJrOUyVsiU4*72Ku(5xI6h2Y%)bQZe{6v3uM9p*Kz0f%N889H zzypq%M(2JP`#})KRTr2F!98GGTUf*>(Wl7X3~k`d&Lylzj{|M8({3Q7-@pHyu=X#u zeIK@MdB5!YWhPaKN0^KRIPQv{_r!2lA+PFQ#pncY`sJV`2IOSaEw>SDBNgKzV z-p;EF8R!?+X4ELX{$SY@I9Xsa#HZb9yK->mBKwF@2>@xWU_l&!5_s#0qKmtZ$~T~`xPLO!vvBNrHQXd( z!*E<}!0*3+X$!y|LuRQOxNVytQuWDADbEpIz>Gn&r&AvGcL%{m&<51VM~ky&)yVuEjq!C*NINbbgbZxRs88o;RNO*tf20TWdsFj{dp z+Wy1j$j|I1_FW8FbJdUc%h}XNsC92mW^Sv~%8qi<)^m}<4X`q{S#ZkXx+3_l8nr|p zSFhKyhpnX%se|Y`12_u^Boh2uc2z7P=s(}r*4kUNvwpY}df!p+1^u=#(Mr3>F-vsut0ZFcJAiROH3O)s z-44C3aL4;BE~Q)wyn6o&cPBruiEq*=sMVjrUV?+jAm6A9(4-R&R0^E3;wHG>5<$BK zO(~yuY_zK&TaGb9P(9W9rOgeqWOZZpODEe-LS+01*cA8pF%Yn8UD})$0>@t-W1GDp zH9Mr=FBC-`8?RRA_oAQP;pzBITDqYGk7qmM4xR{zR?^pQ5j6w-j>qzdsiUSth~a=92v@Kt%us&@&sI`wEa(8z>g1T3Q>NEK`Bg)t zh(De^BiCpuw+K{!!+ot(fHt6vEI!!glWpq+ou6IAeqh~A-yw1PTACBXL}K5FU`ws0 zZ&KsJGlP-tY_HZ6X>Ro?-UoSFS>^U5$wW_cEX;+AnnsxvkhRzcm zx3G*3%~OV0fNn|kJ}gf45d$N1Ewx&32%!QNXyE&;+LLmoO^eTVvKW147ZmImw+&{s z;ODAnZ`fb|Vo<_2zAe#$I+N@KGh*ZqoW6PysAY&pxTY0J7WFSrXFU@uEh*qPoR-(q z1gq#JbIz2be6{Oa`XXJq8sJKaGl(g?Y<@W-etfe=B-vBW@A7a>I*asJqp5MCM#z!9 zs?H#=p~}Y%BQ6PNT^8h!P?5>yGMJVUDQZeDqLg^(3`eS_-dYSMFhbN2{hm>xvA7&Sez4XygVoEPG^7+# z6w|t;)}S08nvKDHJ$l!54>zYKZdf9k**NN$Dj`ELaG^2DQ0CRinFmwV48*qKrO@ew zgqGr{jMH?2{L&}tozr_{GT*smZW#wR zYclNg&Y%PcyB>3oEw9&1a2fa@#%ortO&WP9I9PLDt($fuM%&MuN8P@YA@ozQ&h>Ak z!^8*sw;r7$M$F{xH7zjW+={s<^hR`R0lOxS!$UOTneu|pht6E{0lb^twh=-CV^N;O zTv9sY8UN&;`kPE;q|L4-Tr?(H)y|T+pE6<^06BHe-8;s{rUZnbmw)^`8JtTZuA9VJ zK;KAihAnff^8Qq{<{ELiFW}7uBVf5fxyJ)xKGW_FPM`f-Fv15UOc0EoPUZ&nT4%)Rm-lu02V|M)q$UP~EiIq$_8@KHv!2VM|FqoUN zG+%#99l#2UfA_&}JiAYp0cD?LC7T3_sj%|TM=}gb0R3ceYkMk3oZ?S~W_3M;!@ayy zvHmFZBB++QE%}7e$}ftH^T$K0v(8T9uGxa^uknFciA&<0r>Ex3(`t_D|9E~X+)&I@ zpI1|a9FYM1f@kRUx`8(}Au=|)p9vLpEd-r+^ic;C#hG^P+~$hHyS`EmMUJb9AaP2z zvU2A9k_>~>TPFK8mc}!}&HHLJC*Jw2$DDkSU>XRu1pDdJt%;fSFM6B(4B6S(8WD({ zs<0fNlDYbneS;kRQm6Chec^_gMnT?7{0X)M;eeM-G|T4|gSjjKr}PlzlnTCL)Rhe) z{Q8rnRJ%rqN}EF3@Xq9;>*S1$k7x?sbK?(dpuxC1*i_{VjE2JK9gOyoFB}-m$A*9c z_sk6HYu*a7aV+fYX=H!g*-U1v%+{;xS6SlH z1>xoHCiS$o>eno^Fc`wTS*5OcyM|ZpJ=V`5uIJ%uP?J@!&*`$eC$SFD&)Oul>X7#v#&aJ6a1YcTF#VxHRG_CMg4 z^kFO3TLow3K(Cr8NX}EU#)jejqXSA{OWHQ2p=6%q&0ciu)pw$Ynzeb7!k!RK8+jNk z@SZC(q44#OYc26P97$?zwgPy|=0}TX?Wss=gYLP$f}Zg|Tq2LLtJ&PBU9yt$Ep${7 z+oJfY>=~4Oz@=a9Skv|_Huh~(MS^s7YG1k_@nnKD_QBF%7qECwNF%01Xbq5;l9Cbx zmLBX!MDTb+588R<2sbKf6=kf0{kClv;d;U~CkJV_Ooh`|OtR@%Cv|9&Iv8-F8WlRY zc5lU&%nuw(VFOfRy-5;OILBgY+u#LFK2tT_YFuaG?0&hasNOuHnG@eZ{}ZQ7mG00H zPnJmQ@u(XP{`IEVdDDA&yqjiHP369Ei(WOEE#3p2@i~isE!llMrx4W1$azdz-yq9- zx`Vy9e&*-fIOExi71ke8uKdhpugQrI$`J|a&%I(C&7qumOJ`v3{4uu98NQJ#$Jtu? zZa%rG)7Ir5-556}8oYC};fsB)}($y&|=L8xexp{bkA|g^- z(+V!%23OBK;zq%>gqt$VsTO%wnf9~sQKiKDExxMpw_I9swhVk1X_+;Oy2+`{N$_;C zFN%{kz=m;8D zr|3(r)1->rsvVS*IX6A{`Ew$aMB4n$?nkM{x(N%{FVr@*D>{sN^mNa(hTh&nN)v4e z%Mz9N*%6e?wl^|vVWU*x$Hd5~tq<+%6TWr0@G6Fo#!^qr(r3l`NnWTo{*lZ4YPMT6 zgm`_dq|M*U)~@YVNt=LP$7poSMq;~vJTdX%nc4nkkzwblhtVWhLoL9-c0uGbT{i?R zgp1uOHuhKa4c02tvrjZo@GUA5e)sn6F-V^PZZR*FdJIY%mC-n+gSM@n4Pfc33rZWj>ySSw8 zsYuXNPIxvFRh{blz7EOO6ih1v#@ZS$rd((w2@1J8Qz5 z0f>HFQeyA&gI>g$__uos%#?s%KEp`6;K>u32|>)gfh{GHB}XbIlhiAi271#g@rF;A zFO!u153>O8R&E7!x6GO8IG(+>RgvfbBALu-0Z=fr&+ zY5UKdqhF*e!P*!Oba>lcxOdsy%3tBS*oGvVOy2S5q5v>fR;T3!)_u@XcuWqMNT`Hb zAlDz+8!wf(L6w#=BZ`zY#1KL6KO0mA4&C-4ehk+-UWUQS`Pt}f<~gwl`Js)NQr-A^ zO?bOnTH8Gs%t>FFvf|WK4lrt=s~nYbNW=#x7litRmjwcwIqWAi(EyM?4Xim>$ErQ>vg5B;A9tnxvfIr1rgz~6^00T$VdwFeOH|JK*5)7ZW0S== z4jt=L49BYd+q7h!TjtB}3OPDQg^$Ejju`**f?=J`z z7Uio+?dODbG%_IIvKCd9=vsu{gIkXsJC;fMwx(1SEhe5$eC(p4wtL)zlhxoY!xFp~ z78d023@&4*!1|^RBu+E9^j?7aav}8O)A9vZ@Zf+l{n8GaHfi_nMK?ZVF^6^Jrjf5_ zAVVEA_5_P;#F!iqv@=T!Q87=3wrt$jkFSG8(D6u8+2VH7(wc*-80{fYjdG+kcjX%* z2n}=9l=eHAL?YRV%zqAqxQ+l|(9_uSGA4p9qKjtW zm0*fx+xwpZUenjeyr=Xc*WTn~Pkwo`llQt@8C6wSM`T!nMBi)g%{12=T(`=}=GfF9 zrayj+I3#K?vS-K?8(9e3i-nGM?%B0BgOo0sVX3^rqr6hcN;U2Lo2O3&H^Ga{5&<;6eSZ)Sa>F=}nd3n+2I2&2MdGBv|_^w{#=|!L^#OUs-WU2YibUBEUm9sbaPW%8*aViV%}8RGr%Y`d-nh_ z#x`*7?vo;R{g*t`yzz>fcV<;>$2MzR)J?XWC@iWI>7&z0;L1LI6sHru6k?@){q~m% zmX}4+QY|7h8nZF+aBmDR4fVc?DW4f-tLpKuO1WWnSu<0PoHbmklqOe~sv5)P=XS6z z&%Erd+-Q#Jr^WowN9kEHyc!dsS+U`RsVVg%$<;^BhJWY4ofhNLYKv;Vu(r%2$v_-c z)$w$VPw6>Q9tD_}+zkri!w^^u(K1_;+Lu@sv7QizThxiuJp>J|4;}=~9qa_B9+c3y zqIv+j#6tUlvg^&|Kd58Mi?NM6I3nBlDp@3?4f#EM^ki&a%+9tuuivj8nsZ92-Ytj_ zRu;p#HE`stSj3Q5B-;`!a&I03e8-e_o-|#9!R&J49dm*EE(ZdZMBwC-frKQ17Gnkq zuJgy+8{b>AT68pgHcH_?IE+hW1?Hu$qYy`%H1{xt1@)}I7ZvtAlF_!OEms>?V3S5E6 z#Fp>KpQth41zzk}F9zpCtbO3~shPKXUvA$?KA;uimOoK5?7lyQK z48~Ci0r|^xa4|Lq>US@0m58p{6ihwX$&A%oyEL?MDZoep7W(DKNxg?u3(o7-zxaNr z?Cxc>{fl0Z4`IGA)ceq_fyNMyaQPu_+i<0z_;qp`ukx_4D6nANM6Y$Z zZ6lREa9epMreX0#duDyfwQ4GE`7OZ+Nhm3Gi`e}AIl?*coNoEe-11w4TYU~3={-I1 z^K>ku0_g zKY^z7N!U)K?HmHHvisfrI=zQCF0KB#^!WB!t;)NH?p&@)&x}>Y+cEdX`#R`Li~W8F z{oB=!+Jq|s5)Fg%m)QX41i4US@kgoe6BvIT8zw`deeg>By8Y|qZup7p@~7P`i?7?X z#cJWyc~aSHsP|VMA2~NI=vF>PA6M7t50^G?p<-y~sL;x9zx*usGl$1)cc^%5^I&=D zy`%|ns&GBIU}+ySx$m;AS96mt_MaGL0OZ#n1^^{g6_f9kYCo*d#W*#?voZ zJ^OW*9K{$F8O3c)WCOB91tdrD+?#`kWCVWypw*>93v^YnaBvUYRL}kTATxnY3v{m^ zA7bL-)WO>s8*O^Mb1C4Q7(1Eya4l4>E1zn``lfgTH%leDM>`en$(1>KL2(MG1a496 zl4f|o#G{VY1I*uLaA|GmZX@9ZHIEJVHoC+XpUYI;v6RV^#&|}?%PDq+8^B;DK7Y$R z!N;ct%(6xZm)`E}+tIXYNcc=|U1-008rjpl@81uAG7)&CG$2enoBDYf1-qCkFqn8Vu4Nk%NC{{E^@u!p0C7}QV@WpVdBJ#jG53~U~=gpa_e zG(xi+#WRRHjGUbdfgs})QrLCJ$2?@F@w3`DfQKF|tYiaIoLEoqe2R?UT8w;yt_cNq zd9L6tgI)+hZh>HQ#6vFHLS9!+k16cu9hnAqW+!_yKsuD8&|)7>h0_^1{`DHaYbi5^ z5py~I%Sm+e^2*de?Ob|}focH-o`9JMhx&Wq)ky4wLerut7Ms(<3Zf!1a)6UvWIZ?o zfpJHkbWpdFyLwErt4y+kZbbwJGGVoY9M5}AUsbz)X}I_ui?eCP8v3d{^H1)ZT(c(c z7q>ga)(z5z1ao4wqa&0CuZ~TK+>V{ST;?srtg%gyj})#Ob9x1Q@p=k@)ci%@_$eO6ao4o{ zJb}*@&f|A-+i*JF#D!{k(V4VZ3EzNe-o|{)Nd!V^Q^iL2^2?M>1XYr79^_lWNs?Nl z@@{Eqi3N-NiU@-OS~dsqTN_gJkmfe-irg$<;?Rc<$_6kTvl^S2;9&RxGT+B(s0qkN zi|T0-h@ita0Vj|2e(?QisV5Xz zSNO2N;-A?Afwnl^O%CfVzw4bxr5n9{Xm)Z%#QIVl3i66dGHCG`Xw0l{YtsPbkPIzX z)naoXz*qo61lNph&RhX_QBe2DDCi-GY-b*Z-JuoK##9hJ*u@CRE-b1LBxmoGQ8&_= zL%vn{2CtmfWqZD2%N9OZG+;^K8*;jKzK%FiBTTi0MqS>~>du6YlCE}cZk%!3cmDKb zl_xDF2i0wE-0sM`7SkKuCRuz<8_h}2!)zWv1OZo1FYMG~HD@LaD_=1w<}EJ-zuJLh#HbJ1lh zM!qaUiV7}yIH$lR!;k{YtvGk^NV6P0s!r~L4xrsID{IshVrL(RglG(lLQ&8PzM96^ ze(QDnU;2GE8z0Z|rREODwU(a~Sx`HhCgItV8*eh4Ja;5ja>yggraPNfdpjMwxRw*l~&37j8gZXd5ah6TgHKb50*BWjs9@Z{7c+5l$-K3 z53GF6i4Uw;=t6En;@lz`I`>j;PC!dq3uu&j%F&0)hDnEF?p)HzV_b`NO9VLR>YC9; z;huM;?l0Ijz6}X22>Tu?tGaurOkMY^n8MRPVM(~tVx()7&GY+*V5dLSA4$K_u1j5B z>~CA^xc1fdGjlIp-wP|94=@l9P|{Rp#|i@3ST1xThLI$>^VjB05Y-+t7FMy{vWdKH z6SvJZDeZ#60A{p4BUIP;i^CmBc?UlqmB5ojW$u@U!{^S7YDzq19`+$%@)+-&6FUe$ zz~(>S^lJOw4{Qxg_M5rK4!&*znue~MwPt*Ve#i?j0%H4D9z+d*f5Nv9m8DvV<{70 zU@DvWVi|t`4m)Ow2;b$083$+;JB-@Hc5+~!F|JU{D}M|301yUeIN~zfDhyd7Fyd=| zf9?gTcGEQ;+k{j+;?Qk9uBzxcLp@V@s)2^}7sPQN-9B5ePr@@2`?@Ln5{ubI$4r?K zIa17#-_Nkv0ZczU!~Asa!!pF0BU8ECjEkOXRp)%VlB>w4kx*?_|cx^D_bznhG4)Wk3J zs(xh5f*D?1Hh&tc+$JvO!9qR^;EckOFTX`*ctu$;k*Mm+D5ej0C=4fZ2MHVb^64x= z#&8BbEcyK{aKYJho_ey~2rXI(4~Frvo0nX6a5U18m2RWUMA5=;85x!SpU7w;;0OeE zg86fR(P6x!<-H`Qsce9Ci^~(DK&gh;^wxpF=JN3h@zt{s`c$Bf!f~y!MI6^7;JAQd zLNlYZUzjP)4<2D+8ny3*%m~PfYk$U+5`~p0chbAFo4!fka>=Un&v%L`pe!S`>wmoy zY)xk14@6E&lvc?g;%o-nJWOg*j+~=EdD$K8By~cQ!r-OQgQWSEp1S`6gj#wM1V;mT zUU0FgXh?gWf4=bm-vha7t`h&_P?j}(`o4P=<;)i|1rw8oNP}07b2SPHQ4gIjzOZZK zxuJ)yGNgA&{Z?weWV7>PbUHCyq_U*AS;LB_{rFfQ?X=V-pO@I|#?Za_pVX5i5R+x! z+97Q+xFsOg!{aYGMn?BJgJ0;UNBNGx)~^a_&>{6+Sgi{zNqFQBq%?cOL=`0XLmDyi z$F%gY!Y_o35iltOPQee*!bX7GYX+}C0<5j-1xqW^xLou`jOI0PWXu$D$QvTtI(P}}9$;fBHjUOyhd}gsY4oI=p9UOD<7TU(8 z)zH38wEzwoTIef-9<|&>Tad3Zk@^Z5gl!AfTqTP(&`l}_ZAAJ(8ESK~iLmXBOzB6q zA%t--a8LiNvnIev?jvQ*<*< z48FrMk`_dew;E|&d`B1T+9rH-m%>#DNs=*k>Vx7TE$wz66M-kO05=sxdq-3=%-KQ1 zLL*Ed;BdL=&|;-Qj|){{Vr7*9^tdY*bg+T@!=j-d#yo362+M_>OVG3*7=5Ybkdf|B{czq)hctg73&Ur* zaV%#X{|0cJCb=sZjP5wwwT4?u5?^PevDo82B|fr#6Yud!+10jffU9>`dU1VB){@zI z-$Jxb_N9JvbgELm5L-E$WBk zZyUTOo+Nm_9Jv@{+q(mgZX&XC%6S=Nt5F;)KR_XZ)XwyOMGC|?t$sh*| zgMq#c0;y39%gfK9u!F)DU-)IIR#5%oF{~g{WudRCg{0UD;ZzvLPeC$ke*rc;ipYQ< zlH~FX2rJBQs!$YxXe{RuHaWk0ur2K{8WY6FG`hYaS)VQJ^p|+XNKM&<#h1c(Dett4 z@=kRA6CX@>dTe{?Em7XlY1qP#4Wi!xxhTJh8}tuESpg7R{Ufg_@L5MHt$)R zOh71L8p}oqWwS&%$gs>w76e8Fg?>GuR0t?7cM4iH{0DpY3+8;K1F#|;0CIakUpr6M zKTC#Pzn*CJ0{{=;E(CoW{ih2zn5(Kf_#a$G%1CEgete`~#zpY7m@8td^qqPF;AD8| zFN{4@l|;fj;}O|zBiIQ^TR*5(RBDw&}jk!s(`(vCZ+_uzD=<=;KjzZ)$E zV?!H3j47b32k|R-{hQIZWg!js{c9f*(jZAY2SP-ErJcKS6PzCt`Tf*-P6I)xt?htc zF8eNzZCDBwl1H2O{m>ms-9%nPV8KlwSmd6B3_tD z#rMz~)WWa2x^{Iq4jOX`Rua&u@N>hMRfSK3#RGGh``0}UZE7f`gYU+eCTfU4-G{I& zLEc!b_GF$};}K}Sy#%o#FxV#>_bRQ{B(T=x_)mV=knk_qzXebae!vy#r2VIe7F5iz z!s9e1R%FnCjwad_#EuJ5T!7)x_sIJpR&1pXg%4rgAusSC~V!_DD>1AL+j@(9}yL1o5R zE|p$YseoB{c;2tN3QA;4UShFAR01wvcW$c2O8Tb$Sg|Gx}1{- z4M~MCso9`K1$ebmAYMl8ou0(QY@?J7Gz{{-dz53KQPZL|wGpC5!BTCc75N3JMF4p) zN3)#kraTK?Kl!zHV+aF~9jOHS7f?o=)0_E5D*m_H#-4WqOgyOd1qIu{Rus+LB5>&M z$fxYbVVc2ClKGWF!HwT>aIekhn(K{^pJq12IhaHNS$h1aaJ~fJh_a?~GVsvDQ1k&; ze@x(IDPEA8Pb4J&#no$a)iz$@D zlaPqQ@XL^6`Ot3>n9kecdvLgkZdmMA z>=^L^{15GW()xP+<6CT$?LIEdPhIQP+p%^+#e(rx2wbz~->`9SPh2$UIXpw>Sn`+0 zk@qDx7B5CLxoJN`9Mhzs{g?!(;Dds5hklE5p>lIW?{jETX`VvJ zSMBYxF927B8L&dtqY$}c8-|GTCcIwmMlHi1ujrcm%Uct-E?MEKmcFy`D84p0HNs#Y z!@|eR<~p}?{S84K`m+mKQ{U&cO3vfs_%Qh)%lF>sNOs}K^ZVQP3I~qV`pdQE4B9o9 zW?shayND2c<8vIdab!c&U6P5|THq~vyaXPCK`0yGnxmxeg^hkVJ)3wNo*Tz(zV?r} z_LXsEJc?vUfU}M3WhpG@%Z@1f)-gSkjbkJqm?@dioBy8c;N)Ald+!(Xiew>GRV&rK zx<8+K6jCMHJb4iv%sY~`#$np5eJ^Cwy?qPmMB^W_Wx%=K(j$88*m-E-OC=ScCNb1# z@B-#ZI$PfFy12|6&1~UL{kVzy27Of{;1Rxj8CFg|Me7A?w6B|%$XaP-689k>(;fx} zx06z~VaT5rjtHKfBcE$}wRe(QWa|1H-(?)kD6LcS-9pxVy@NEs*cr1XCRp_VX-(|| zs5@mCT~$MLZ5~A3`r*`VQ_YEN)M!d1wABaqngHpK8q46;OhM5}MbmXDqA5mjY3ofgMg^VwuBXA1Wu6m!0DU}8D4%nr1|;Ez&lldYR?QfPZo%)R@KQ z{ri#Ogt^h*``{|TxF`ZobH3}EaJbScd|9yBzbx1wvLllxYn2X4J~Fhn>rQ6IUvS94 zs?3aOY^K}IF!qQ{`Rw*pI*QqpV1he=Q+>KSZVa8xX zU2&XeKn|;%m-vM8#Kx5;mcNepi)_7xqM)pNW`Hff{Aqp z&w*JMcHfPEmER&bS*>%u9T`Jp`6LTq2cG^Mp8l$Eey_*2upLIA zkb{kN0~zQOU}KiQ8>Uw39U6Oe~7BTnYvP=qw8Gpc8>Mj9-`u${A0Ff;Ft7%-2@fk=g#t_ zUQcva{p0DzaZ>o$H@m{txw>y!=<+}W=`!23iVAsY;7#A%a}o@Hu7D@Ls;{LylS2mK z$xNf;Tu+gh&H4*OhSoeLSfT~Pj#~%+xlOcYyaE$?KePTU(8gdt#gpp%){-QFh5O?b zv4j&p+Zpbi^RaSqEj6N`;Y^;xn(Q2GLCm06A>yj;7p^?Y!#Q-|BK|J$?gWKVxdolB@eudDQw*-F?vU@V%Rv&=3kN+!&x`Md@dN>xS=EO*b_+Qah@GZg1+vcTU^}S&s!IC zA@v8f5xo}!V|*T^g$EjN8TJRDdWI@k_%`KDzizXn*ofuP8u=8qK*>gww)Rozo;v*`ZLuG;Cu~#lTS>tP)0A1!8RP###1%79R=qUE zI(XMA#xV`jrC2;wMsu13NV;h0amE+D{LphVPNEXA5cpZm%(r&7) zJIPr~s=gi(mx7*TH5>cuC`r`8Fq_5HOB_y!5E7mRS(78BFCZw$*omstZiNtfTO*t^ zmt#^R|6cGg7R=o_pT8v;n9$>16w#R%tjCA{-1hl`?H-;zmn$gR4+Z?jNlO1OA>WBiLdm&pB{zUh6Mtknvg&tk(fY;>i}u}`Tdwc_F49O)S} zp1 zl!yWwV3V0alDEst6^j~|*bR($*$b*oN*CMK1h)xdZ4^m&Cq&g2N*nw*9C>S8 zCs^1`>Qb$L!wQV9#;u@eFzY2L-CAz2VtRNn0V&EY!loj&=8vCA3gv&PiZE%u9TN`h z8loLOB+>H;>r$ZH6z(QIARZ_U{Znh5sw3X{7(*}9zoF>$bNAK6E6&qKR;rr355bKx zrgH7jNLCw-w_N`?ayD|y^SNYKvs-|*H3rA4Wgpt{8b^97m>g%mau=vP3`MOy66hfkB9`0-vSw+-P%oUk#nDV6i7eF03XRk~13S6<2^cclx z{c(3l+hG+eNj50U|M7~~{PN@m#%x2H=PP_<%Y?*fC$*v*reDnEqfb`PZhQjRWdHhm z_}GOFQrhYXxr3kDcU`~eUw5HnS328I{h47I6$|3VrA&(l{{=MPJGaf@!^clabTV#Q z<{u2#Ce|$T@AflVdf=k&z7@gO3gwEPi^3VIZCm3#*HFZ2&J=0o*3D3^%z5v>4}?1x zMU@7LTCL&$?kX4!!G}nDV?r}$bYIfM8+%EnKOy`02`fEGo^`)FQ! ztsLk{GcL4uJoJdzy@HClsK|70exYKb(2#A;=ke*sFYFcK2sCEbg~@gQ-w63Q7G)5? zP~H=fu$SRu!F4%;I)%$5nG+dUY|zRqGHiRd+uwc04ckhFEOzcKTl-a7JklZdKSDf&zB^woL|0^nf2LzRhFt#595jUVz_y9)6xUV^9k5l&>#MHjyKsU4ALUMdMn>2FK6*A6+*sC`bnMz2M`Mi#{4J zhd)Z1l!8KFNM`-4+rg>x*Ot*FLEzAkt)R%z^xLQhU-j?0(gHnq4Mak<$!p4km`hlE zwBmtPW&G$&Om)&K-c3w>5gS05-0dN%>6;1v*v2XoV6ESF$k%&h;*lYR?y7p>rn|SL z7Fn+-kI;#)QO4_Bj||;$**^Q=P|P!+pI3qC5eg7pEhtKF{sy7zT&)84lqg>a=mP|U z3I?F(ekswVMt{ellqb^zHH|3Oc5k_%3N{J>zI*^*j&s#C`>8o34jJV#S7o?{%J|(O z&~Pe&e_ZT?3Rfgat#{+*K>lZ@pqlO#uPra$Tez;`^I^^ zN7;$l%2V4(uX+D3M?hfMZW7D2$e7uuOVw+|9GHggJlM3ragJgkV157v+aE%BVAviK zT3cDCsa=@I;HgRZJ_+|Wao21P{?zoG1q=AE0m`-Cg8fmRQ$vRSq6Bt-FISL;=)~NL zAQuv4-=cUM$mihe5fu^9%j>@J1eylHp=^QT^(KVcosU#z@~~(w*Ud9Vnv)k-_;Ace zh8~Ju6Y4IoRa_4IqURbmHiH?t`u%(5t5;J|{0!v7T0q-A$~}f`Wr4eyAFghpqJqhc z%_u4948yf0ILA<8fT?HI8Y#vOm&kv-wQ4}%*@lh%PImSGp{HBCQUnv@4CGB<@sNOW zP0l|9+6DLfm4dx?6SCKuQ2VQcIb6mWIjA>c^8NED!g~DWy1yEBZYQbT0D28^J|3d` zYGGkUv)FAupGW--sEZdY)4Y&?3_Z0~#(W?z|3^nhb2r`9->$)dcJFF2Qv-I}= zNm4^M(BA*v;bHDePHd-1!A1DF5o>f7ek1biDu0bg0Ou@NAj34LzE7n0aY3ZTbJDl$ z=g&D@ZxWJL%vcY?oN$vCwV`2;?a$&L2RyQ<>Q^bN5k$>$O*UJZo$9xJ=CnoG$0#Vh znxO<7htDfE=-#7nWEqGflk@etxlkYM6MG^#l1Wx>i#^oQv{99+bE0QPhcXV>liGZ# zlK({LDPu1<-z#*-eq_jEKOTtx^rfIk+SN}2-|_v%Ma}4}_wxFqQ*^Ah<03GP)UfVs z;QtRYclv2i=4oE)z9wAA;ks{L*fNLRmn^vfBaY{VN%q<&TAEdn+zIJPoB*bilpv}S zCUguzYZA2BJx^7z?f2U+hqRG=WLyLr?d1>sE@g}T$Wz&Z#7tg|8Z8rICaxSb%|QrS z3=Q4q3USN>(Jo+yhwQu4Fi07K)!R(PlmFHa68}@Oe7UUyQPW?DqDBYsJYcZPXc|oY zn79i}93=;pQV4{`zexZ=v*! z4hMuIVa01X{NmD`i6>98RGjt;jTBj`;D~WU=i-5re500Y)I&qX{1uo^)w8Qk?WaE9Oj!^gPEw5Bg6&WAEywus8L3-t z_s&yY&!4_|g5w_{P4+1DlhyRbY$6!JyU}s-Ta)ypfq)oS!2_Ain$>?p<^4ZTrdIz? zR6hUq0PeHNm@0@B(6CcC70v2COfgdMSb&k@3=!EmT3Jll$GWlxMz#Dz$g*-*3%`~d zU+9UM9HgpGJmivb*4h7}k^ItJhg^@SBB&rl3;$wZ-{n>qWWx2O7OwAC>B;kwpezhE zL=B*G{FQo5jh5NYwpZ`scEBu{pwLjwVOy8kF{N|o?t1wp{xG>FPXtey>H(wt>OPe= zjR`vFdJ0ft^t(5`(!wHrBH|1!VvNxCZE|X05!3ZlfTCL-g?sShHHaMiktITR5{C`E zQ(P_!$A;AzBpx5i_GTK|I(9JbN82lyL9V5EZo040VOE4Z6jKQKr6}=x6nWKwwFa}p zS(KT%cp3}|YB*eS4`i`S)xWE#ki$d&@#9C2o__!C2ze#yPR2oMuo)oFX!Bb;Y}4Hz zuQmlkCrD!HUAIz>_y|V#m%MGr>`-b4w(FwJ64A|&bKr030)VCgIeTENVJwPg13d0L zQ82h0263Y(cpqi$C+AV+taM#6bvF^@5!k0 z1bX;@K+Pr?`>KcBC*JK~b4q1T-SCRP@#I6c!Hpj`*P2smBL!3&-Ff_dJv%$UYy%MP zC;A#i7Q%Nmd-(A6dsgQ8E_9l{eAB%$RPF?_o$wPFlM{(1q!0Q>CC*R^6MMC#c zEE3DO%p{98WS{j4N)AnID_z)37CuO#-TQ@&#qDgQ`@6DV+6`9kXg+nH*eJ zexOzGdd4Khg%aqrG&C{0axTPe0}x_W1Z+?9rdS0I4bY5*rN3I9xY(-M^_QhG+#lqt zb%3I+cKxe;MLrl-Rs8NQreIWjUT^wT29gXIN4Ft^#xLt;gD^7?mOz5wV?Ta<2)2@S zu4WHz3cF&WC%VTO3Jl>Petv)FnKZxe9{}%LyHi_aH`^p z5BM@HxqJ>!!Y%&r;9|bQ7y8-r?J^Bs!Kv@`%L57Z5x?7RmQ5ZteBkwht;mIZa`~k` zN)#OHA?hd%g-N>qh%_=7pF)nX$SoniJ+R=r6}!BrA}-p}k9wN)bos^mZWHSL2sBZx z$V)?ZG|37EE?Ex@GG==Kip5>%)0Nazm04iuP7-26a(}$W z$F^R(+3f~D>Pe+nWyLRE@XApi`j=LtRA?nZy?oGTgr*5`>KC=+4K3K=$Y6olTLEGR zu=XnCHQAvyZUp13D|J&}D2tbK#~f)4-vJvc(6YANu&D&WNIHZ*a_gsR?7kdi(jcA}OQf z$4mw^fg1(-SJ5KgUz5K#JUmWuS2GKC7kTa(BdIKO@zv1n-r^Vy z7E%jnehv~n1BD5y%UXK=Tay!bd)c7o7z$kH5@2nTAPy-FZXs<}_mM6N3PB>t>0fIP z&FF}y_SmpOZtin<*TdZ{d?Pj|6U4!#{kbjP*IQQZ#r(%CI{%oYA(`%?G{#QFmSdIk zY6bg+p4jB`vBSUO9|Kp)f_jPATg`{&EM4nqupOu^-5gp>eTCnXtKPqdlEq+;M!nXb z0z%qc=!ZjpZ%RkbU?$Eyapmb~#iBUR{w!#l8d@M-1#3oe^v<0-L6z`Y_6wVsr(0<4 zq_`@s&|4-wvL5ke-;cfYxPAv;6^IDPMlrD?* z_E4hYAc8#^`kd##t1_H~x@y5$%n#C7nTH|$x*0-oQ7r+Z1*A}P*WJy#l3yvRsy?28 zNO#c7a~5r*U1!5k%w{CNHS!k+T^EC4$+e-UVtOjpVcgj$n!|wmADY9YA06bYXlI-F zq7f7X!lCMs{J`U1IKZ6(=K(`-qC0ivTuw=w?mK{)LL-iy5iJp|&zV6g7oYx2Wvgxr zk#dX51egiy3MNeeGl7tJPG(=LED5RU?9fvOH(L?&Fv?;Ek2;P%fDSQ`&SO~>@5Sn> zs+4|pXtmh?*&5$c)vF=KSldkadimYmjW1Knhba!8_-q9OY?AtfKrApi(10P|{nwJN zevBwE6wrtCvS-d*-nUS7tRgXSqGNINR7e{?{Ze9B-mIaaO}yLt8WqjnZ(FDzTEAA( z2m+r5plqT`L;sddBUoSO)}+Zfb;){~s`*#;ws!f~?^9cJtdZ+*;J9?+X10vToxez` zV**>uI;Ee~$n(sDn~fTKPC|9ru|o-wJ9Aw((1K_LeS?t5eh(~7ek)Z{4E+1`^ziJJ zs=8j6E^erSnkz-+QU4<9wEUyfi!-B~b+fs4ctFqC;4Y{`1Ey2(d9{s8r(V%^raWZf zJJ_oscfF|LdGFzsRxlV@o3`9eZ&U9x;3wF_Ys#0G!|{Mpf@k^V5j9D!-U!X-%cTA# zsD5kzr!Jq!_touBR|_NyqXgFkkFi(2#U;#tS3A@{#MIOBjo^cFwOF&~u(-5<9*q=W z0{Hwah59^40la}fd)=9+$qc$Pq66#sfu9WZ;Fu`{bL^9~KW4IFL zP@58zB-BfZQF(Ly2{pptADkf~eF$pc-JL0NfrHT}^0k?P{D|V8?O}F6eyk(V zY&&-ypM3bjw4Oog+&Q9SGz#5@G?Elj0i?5|JVY*mcu$*k`v>i*lAm83<;wlEQ*Zi* z3DWd)@+t~BD$NpCG!`m-euv+H=FR+?=6vJbPaE=sER;i2^Evi%OsHy%N- zfjKcziOC>U9G@3VVm|#v{-(* z%D1O(94Th*N&G7%2|LqJb_&Wvf=dY|Yt*!N{lBUJcntt$mN&&) z&}Xn!IzoaJ^f=F+ccml~fU+lV4EH1DoL%0jqc14Y%eKxnlg^-*4ZZ)e0J)Fm-hT9} zq5I|=MbTA#(dS1=DB(6AUX~tT7{Z| z)F-ig5tXv7h=CpCjdFPHyl?iPm4a;y2evU~by10OHpr8R(g$KB2=r4ZFKkzRXFEvC zU%hfaY5fg9<&gWwm#fn%=x~@D`Em)Rfdm-5S@}^A+4SKLXbzS>%8BFD|HH5rf-K~HD@qr>;&PurDFz47D6544`OrfT(LKrcLm7ZD4}t4uig~)ox-6Aqb0r?(5D$6#k-kx%{sN<*=Qk zaZP(KaAwHi7dyOA1PGLF75xU$Ab%G+Wb`r^pdnl^0bxIy3J5j{7%~C}5{Fi37P(+e zr%+#L@GyG+W*+q`=BI_aHTc`CeAcmJ?A9(999b=+ptk`dd~ZKURz}JVA-AsjpFJXd zjOPQ-L;ovllPTDs3*B`3WrW+Gqd-61!U3T4>0(|>Qk1d~<>++ErSqo1YUb}M}5 za9@AndI>mj243FL!pFYo3M@3eY>6b-lGev=SH;v~4h?Dyn2cQ|TDQi*zhaf$T2BNE z7oTZK)J(|gEwPVe#Lo=gPs=|CDN)Q=Bo@VbNyhQp5BNtUsriGTaOoFPvv37jzTCdv>(aAJw{E^{?G#$BzSz>u zD@HGBD<_t@1Sfqx7hgD6pj8kiR!~$vob1Bz!CVK_SL|z%D{AUTS>DxJDEk)0%oZ?n z=D7=`Fob5~R`W36_eg`_KomL+ooC^v3_Zby2%9{YJ@i7nAGd@-3ghirl4y(p@=ZXV zfC5aRc?DJqb}DgN)F6ujF~~_!qjR9l{76Bqxw?*DS!8Z7`3`QA7zkoHe(YG~bHUmj zP+ei7cwlr1B;RRj-w~+hK?MTJDj~id5lAVhLoBgENMvN%{rj8H96vN^IpwAZ6O$y2 zT5N(a`D8SkA~n0N2{b7ZBxJOO4ypgy2AVSJ)dHaxu9?#WNN}J9F$wmT{36dX&(HGX zbu}x+l?GXRIrBneflmWMEWjZFfkhg>G^aF(CgB456ZO&iecqca55N7|rNk$BGk>qD z%puJ4&~jHq;vAuZb~`bUZYH(4p{I3jF(6e)=HOrj0En4QTP{MP#&tjHHmb%}T^F|% zvliTKD53xyQL(?G$J`VY{9wRL!^JE!}AWKXVRFuOv<3d2_Lf#H@Y}&3Fd&)1`2`qW=)1@{6P| zu(t-p0s+dEp5Lafig)wsSY9}p$Zzqi&Wy0mG)LdX+TSBx@~<5NHz~+7}vjxD?BAA z&&V2!lFmpmH+nk!qq(PdAKVi&p>*c-On?Ov4$mI()H$6GjVCgZo;NM|KEqEcAoKqi zdlPu5_x62Ur#f}oREiX)LRu_EQi}r5uyVTJC~o%S z#|u;dDNgiCWf*58zo+};c|^dJS?Y{jh1VYfLzVRPGxI&)LVGy$k)5`-PD9!6FbSab zq`bOV@!>%%`Jp(_LBFP$5zXnpi1U7zy0{GV+~%^EC!J2iVchzg_=V3=E)}5I07thK zL;5ZJc=B_6j|38h&Vj4y^+QaSs{ImHq4HC@iVCY}NnA!{Q3EA;@;#f932=9y`_w@= zQvw=i3)8a5kodh*A*aJz3QgGi-sBFgP-u2Xru&>55lXonh|50*!?j_s(xyFjDB-Gvm`UhXN`a{z@ zUb79#>}K@>#wI#vw}E#H6a$n1TKaD4nqPQ!1uU8@+b$IS^(6_AuTNHma#fv#8Llz^ zz{tWA#x)_tvbze)GecI1s*9(1K?vIu&#{6&XsROBz;%FsjJEXJ+AJbIyn$2msC0v* z(y%>PWY?`mXa`fM@_o1kGzZ8SiT!}&wIJLn6cK28I0y2tvA=J-nj)dHg4z(lTDB6B zxdJjyzZyLEWKW_)ti1QNTeft(yR)2CpqR(+mw>L_3o-9epcJZ@ES_DVr)dZVsbNi- zCkm(9JH=(dYf`t8+ztnY{nQty#S#G3W5E8i2?~@)cb8{EQkR&zxC7ST5&d=AD&En} z%2W&cwC0P2Z50B&U~q!YQ9bF@(*y6{Wn=MJyVv)4urca|*biAm2TYR#vm>eI7V^q1 zT%LJq{-FUw-j`|dTZ|GQNch4V(1&_#qC+bI4mTq zJ)$eOcNR=Kb#6e8y!f|=lQ0t>dpS@G5R}7(v^dIe;nbl@x(2f1U}ev_J-q|&Ew6Z- zK#gP5Z!=YowQpn~_%w!wmy7c_aCVdZ7$EYA!1=NiT=u~{6sHRnM;%3=dSd*&gx03W z@&$Q5>HxH%&XJeN3F=?+hEYGA)-YAr^0R(|ivTUpSflS_<9$n`Fl0XO<4b3jN9T|g z<~m^w<*oEm+WW&6vg>a!mD7A#%!?Y1+r5TyB@P_-!AWzrW!8-sS*ceNbB=(af?vUHu;73V z7n1BWze)XvyYJ0WhIQ`+yE~)gLqp{0O(!D_){IK5t$7&Cgde<6@eTP1M`g~3Yim6O z2A59(;%LKVLm7m?*)B{!HER-n&s%&5)9-E*<0KY?;SPu0U&nLslrTg+hu82+*}{4`wvotU-vyj3S|!g#>7-D>FI> zq)8p*F3w-p>I%|ZX-TI}u08G32ghoBurGDchdQVV>L3NET2GBSHe^8;H$aLK*x!!a zUO|SbHDNGOt9BsIGI!i>c6e@9>Do1XzGB6H1ij!}k`yp2AQT&)WU}ZHMD~V}MB6GL z{Dk6^pZ;gfQK+gN4r+VlL)WLEnOAbqya5^6pGrA|q;zEitX1S2ozebVpq}*e7;^_h8xB zsyJ{3*nf5OImM+EZ};@NGR`>0;*5`MiBZ7E2?uqWeQy*d4uzDMgT>}CUl;eu%4gCg z39h-D1!R}xg^ILIw5+c)P85AqzwhPk2v+E8Db=vIst>BwHcnJEgnvSI=0T2PS65e@ zQYZmsc|qI5V~Dxh{ zO>s!m5(LgkY;+|Iw>Hm(d387YKc~kC57%lCUulXZUY<|T^Wy`*dL2@1f~XDmBr~Na z{(nn}_3O;+LU*HhEDW1bOomfxUOxgy?_*n8nZG@j47}SmVNe@VAgOsemQ2i1>n|?q zJTdb)ASN}hV?7spb??T^kEck=)FJ+U>0ax_i^elD7pG8lHqc-W#%!8mg z-IG%x@q^P3nq9n)Jx}zGC@Lej=WLNoY;5`_<(I;d_cqLn~^!^lo!j;QKr@9QkJs`Pr ztPed9PnUH<70t!haVebzth;jAa@7;0^NMEQK9*KPdw9xJp4kvaDj#s;thjgm#tqcu z4|ysx-+8B|rl^zob4ft-B$pRc=xPj3vx7QW6?rXplS^zSbO)g5ebR8l4KTKr--mPw0z}d`jKworw*Q`togP}H1_}NVa%Qaxh;zt}$3^H=lGqCQ zsolvX@q@+4skqAX%w+7QO)3$DDhH7>$KG3&+~$?P-#D8TG}BwtE6v6|r+a^9Hfdnm zswS1n#W_tH_lbnW1xgq95vbuDd1hWY)Vy?4;lO3hi!{xV(t=Qm>>oYWz7y^oGkb@U zR%iIHXhDde>_7&iPY9X-)zIf>B-s#lD)v}sfcW~HF&C$Il1&KHKHnpMHHQbGF zzlY}TzOf!<8=xRU&EltKCvr1LhIlUXRr)>N_I=K(-zS_Rgh6@c<(0iN!TG3(9G-_APD=E8C8Q9wZ-n@ zeFMWvHDrkcfPpuC_F@Ou@*YNg$MQ2m=18!dulSaH7^VlgT_Lo1EV)l99U=PMPy>lfmvd;kj>Eo zdFDQmkY{)V%yCIJ`A{P$?r*lb0j}?_Lr0RKwO5M0JQ!V4M#VUFs^`z`f%QGnbnTY0_a`&g!oGFAUCDg!KI#_aMn=u}6Guv4vuF3LB# zOQ~0>qfk=82+vn_DJd|a_EQfU>L#voKqgwJP97x2 zSKzPfU7}smgl(y8kScqX2IiV^tg_H3yw$jYRmZIiNd+9`(pY9Bu+8X*-ZLR$01%&t zPTiC5|LZ>F9RDR)(})3OlVUJZhg7f1>8)^`S?GQLVu=QbJ-|PJGN)G6aacy##JVrz%OyJd9ns85cMIdV+ zI<4yv0APgz%CYuqCJjy!qdRQqDEn&BX2{HAHyix*dfaq-V(s=@_8o&lCy5GSP#ZPq zJnUfE2)*uW)MGON(bMC8;6eoYwX!Oglb9fyPbPF9kHjkMkXb&KhE)`2<7sJslRi2JMM}QW7lev`Ee+|1{^UrW9gkf(WvohRIS3g0geErxc zWx*5g-#=%?h`zCP+rY&4;_!gfZT^<97^|b2km!NIbhTfCD?6q~MyAf3KKFGZ5IfvA zC!i19{-u}kO1OdvFRe~Nw-Mw}!Xt7OIRcrD*l(xw-$YsHHD=Tg($k}_I>CWK?xM<# z-w!L*_FI7CPq=(ztN=2z^=y|l>u$n+?+J9Vr1D_p(XTgbft0)q3X%XjA&=Cma#qOD zej>T|)8IHJnp~BDADe_Tqd!|euT??=!nN^QVWH3zG*&P~aSN)IsDxH^?4QyH4=ED# z^JjjyY*8ZCo4yl$^343La@K{^Yk^KSi2N8)g_ZZb@O47QMILwK zHcPj$O+=VM*@dJ1sBt|81w~GOd_qm8xf&X-izuk$$I&jmNqaKiWfj}S4bM-PyvxR7 z$w4j5u#2V`K!mM@RP7^rbQiEJOO?tHAJU2jh?O3JQmULOcns^NG=YfH1f=Q{B&K9q znCmrv11CmAzb>v80$SmoGPF*s_y&?+X`~x7Vmwg z9>*^WW&l*6r5&3_+|KHL8U%#+T++`Vrk>nZdrZ( z=IT3a$A)@Hp^v2gkvQSgR@(gNwO&2meYL>Y)P3BBy!y#)Vud@UHdYQs*k(8y2e1zd zj^TONy{)*p$x-w9@%X%d6y;7UR@@*6Qb)w=>}m=7 z9?qXUdy0|R_FXQ6jQ-{~7D zA?DzaM4io$()`Y6O#-+OSbC|#IlWuQhqyx=G|!it>GILbldC583ORShdk{~moIAH2 zlDo!wDj+(!#lFfNB8O^`of4kn`niD^G)kCWMjSf77V<$Rl4|ljMtQv3GJ)ZVDR$B|2U5VeS`*z$7 zeB4ywPq>b5_4oWo(Zrj)5fUrKp1VZ-nC*!$mD8$-h#;=>Q!_O^ldbDMV-L=~T8{*R z29P{3*Sv7;&P5M{(s{DQ)e6K;>0X)AHyk}Aou7P+q_TwcYsWPLCC$?*c}v z({A9yjE}2}?i)&|41M7%#}|=6IV5Lt1t%FTFVh;0gj0y({73O`TUC>Hn7VZFLHmVO zoP!lV+D8NpZ@xTYlJcc|%UVvIC|1!%cDU&^ZAIzNV2BM&+%PNl?r!_aw`-STOpwj- zh%AW>1lO04!xT@ zizHc+Jp|aPPq?}XFI=DM(|QM8a9Z!0<#!jSoC+K$820j8Bvy1WYM`vl#dU6sygMSP zha5m?ZJ_x2vHQ}jvqui`f$nhIsNW|jZ&t^Zts({7E5_s1PZI4!xjx)Ew~F)P&0QVE z27h}9b=*Ix*QeBUoY#k}Lfy=}SMRZEFPW5eYjAW;jumEr=j;FPuoL5LWjZIEYo;8QH9HM5;ti|uW z_;RT2PU+q@j?8Dvgw6K*tC)RE>S)T09j|WgTI@{eun-U`=QUL_#1maT2?r?pWRI@H zI3LQV+ai4n^ZM=~(0nihKr;&q$IGKb;_IXV zpY+ zrt@{;ogTV4!ZL#MAP&9>ulx1VbZO!gFLS53#VM@Grwbb_EVCV{B1Z+yu*Z^lt%WDv z8Z*yBXNd=K%OA%U&b(3WeyazUTXFw-FdfHnQ?g4k>>MPB;#Kq#iRJ1@duq!1Uw?$O zi+C)YHM{ob2P_U~y$OG@hrNeFUQOI9hZ~}#UADXh5%K}VzJhCn+1D19=WOT(qN_tU z3-XLoV>5p~gvpdW4o=tV+?qZ{-4F}6SxM0^)6or+vDkJ0_&)k|s|>bks9*Hkk)Fko z++LsTVLe7Vo_7?taxo2-=fv1f#szHo$Ah@?_a7M_{b5*u-*-G1p0ZRDZUt_&uQ}tc zg|XRocT?UAk#q$Mn92LFlHA9!Urs1G95_PNFl zuj)OC^QK(umbFEIxi=pBKJ#$52LA^S!a#BKaGisA_A4#<{I6KKYrP7eY6O)8%L;kg zvcl^Uv4=YHva)zKVu8Y0BeS(c@yaEd97$*a2-{_V?2gHIsrqfOjp5I~Vc{1LFbCH` z;C{;x=*O%1I+G9|{}>_~b8;l_LueyRnU5@&=m}yU#w}g6Zt0?acO4Cl9SY9Qg;!P{ zQ>^Q{LF-pbaG09B$(PimwMF5Rh-Bq=`{3BxgiW3*SN4WA$@iFymWv9tYIM7t()#YX z%A{||=H!9&6h2Gq0SCFJ`qRP+$4}j1Rm7cb0^GP!cOh{R?0u@#kzFx(mz@dYJr)p- zuq9Wypvt3$IyMqPdLepv&2ikONp5Jr(9V8-g!7sBm2c_|Jg;`$sS8p$ts7Onwm{5i zh|p=DH~8jZ>Hz}h+fUG_;nq|?%{=y43tW@bMiOVMuxA^eTZBL1d4-U!I zSKR61+*Q88;NABRTOhiT^_+@I6cACq5E)V)B!Q;q!srMX!&C8SXb$`cW-x^v`Bzur z2#LlaPI9OP29$EUB2MGIPxrv{Qx+g5(5wXd>QOWV2)>4Wu*7N^TGn;6@@pbf^9mpv zQBtT;qbR8M=se83Tl-%yueN)J1lhh63q8Xh$zmSee}+!+Rxr)SH=}f*{5wy0bVb@ z$!x5YS{!w}mwcpFpdV0ZP1RT!ef@r~i3=_>J()@(?6}(>92A?+y+UdDP?g?jj?t3a1A*yO`+nz5joPYlE^SS*&xmKoJH~7%BA)xwZZ1PeL|(YOcEszEzmA)_ zhU;krMmqdg)(7M&@$-J-eE4b0jTNFFHg|LeN&B|-iYU(tU*hz=*3my+<5H?&u@sw@ zGk=dJKiq-K({I`F`83Q@vaz+zgej~KhTK2xi0Os6Mf34lIv{h};@s5B)go+9 zBrm3~aJ(?jcyCQJ@>XsqvF4gNkyb@33ahoJ-%WaozEQV97 zeUeByrJH7a^5d47u_f-cv9q}uCjH_`a}!C2$uEwTYXHux;g=vvxh7dSx#>JimPiP- z%uo4n=ROx)47eg2X(?s=`b5{8+qf`>^>5B(>^atv;Z-$Gz5Nq+-Lji&Y}5o_ z#Ewpyyt37qSJ{bYVROON;TBqyF#y&U5wn6VFU4^W1EOV>i+AiHe9vFm$3zYI!3g83 z9k3Ar3h3qav+u&-f+n`?EJw?sLD34JB+(#Z%}g_2XmD|cb~5xR`b0uEQXdS2OwOM} zfx0kV&b&TZ2L++ql?Y|^mWbrnkld#`Or&o;fCXGzy{78tu1io z#)n$8+Gd6vz^S=27{C$Pd6~rp>&w}xv4+-{$?%&1wzPYX_~^E%Cl*{|qqHBxrA132 zvl+`nq&u=`ud6M{gCNfr)HaC6-!w!0Y#dq(%*LjoUEeu8ZA*OV>#O>I01Zm}n^2N^ zO)WBBUNr&ZB@2u2y?%W?wc@YM9k9z3X3ql|(yyR{@|I!bWvPshbu-datF^K&Kcq+D z0H7j-upyv{UBu~`O`-h*{Tsn~Zi?>FT>^cdyQ=<9KeR%9eh&cv1R%tp+5m6jM<cX0^)otZkCICyjQ$Pp>j0QLAxp)=> zodO0?x@pTqUKxNw2GYZ174wcXJYYt zQGfPKMF)Qenye5U5&h^98fTncLy^*i{c2Cml3UoHlQ$46<&RMGv3(}c(Wvcm3j?sM z9uWUFz`~x1&Tbx1(?LgO+ZCI>FJ7_QHRYaV)(lRF39{7x^;u`y_-*ne>49Z!(@y* zX7h}M=l7tTIuys(_u|Zr-hyX@S^H^?d8DlWPG64=1Ckg>2PouANOrY|qDJx^_wiZ# zmDdfRAAXRx>+y$4I#^_}Q$$u3cVF*mouh!KeKHxfFuT=%06ww46i{|S& z2=q&WUe28m4}ju!V3w1v%OGAa`Ic-_7ahxCuMAvw_LJN(?|*!l%ap^x>hi|M6oXMa z{|78{RUlF+WM0yNaEM9S0fSG5^JvK^-yMd&_4g;F42|I7dIt)d;igR#-=|zd#S(fq zRjUb(yHu!eK58T4h9zes*vVMF1jgbfAa^|0eXi0?vb#!A#DX$_BE)Oe^lBjoNAket zwEwvdhB=WjFLln=`LDtvLH=HG+Q#O2(fv&^Fml(lGVG9rTj(CSx#77P83-Bgh4B+k zo|DTL{k3e-U*q}7iHVQ-a@A6m3fC7?`in03a*PA7NaxTE1p($s{5i2#qSybJMO_!^FL%OS_yZJ^T>^q%J(! z?r=)+I_KOABmX>!GXpNTm12#~Jlum3(wr9mM3H<8mq_`N11*+#-yBSPb={;)V{w;? zq|lxN2HitPiurD3xrjEG&>=v?6xUJtm&VA4x4jeKr{;j( z+MSny=Wu}sD^68YQ!_)PU{Zy+?Tz8Mj->r?w<}xgT1c)oUH6E8ylOw?z65f zFrKWeH6}Uv)T=9lXMqIt6V{1Gy?v;8Ny%C3W*CECt6JNkLJU`ZH1@nk1pl$VCoK`^ zu#yD3*{gQwJv*)@qLS;IIo1y(~yn?=46Ps;jA~>zjN!5lcN9e0x&*r2nd+0hik~6Jx!X zaL+Dg6#5coUq&7E#b*jWJG}a%#K1#OTl|5DDMK~mBtb%KPyPBn1lCGhV|>EuTQsfu zwbPg;*8?9PpU02wzS|r)trfH0;ndO+W5E_$>)#eaDOHnW&o!r~BN;F&hG4McaZueN z8H2v*YeY>zW93E}UB|w>ET?Ai`$WFVmr|dz9yDnai+mBf1Xcgxth=Bf;Eln*tvGSu zjGBM~m7M)qpXT+tF2n;z%S)XpUn5+%6|2Su?%9=T%UOmZM{l*=6Y<@TLPM1PW3k+jjpR9%PB92U6(P~Ydn%e-rXuz7n6t#@U zcl2%?#T}w=fg$H{PfK>=HB|+N%Q%|yD$$X3ervc{PU-y&|-)} z$p^~`=??Lh6%o?vHO>GJ7+Y&SRo!ObN9t=|v+cbF)fps{86wZ}aQd&SV81SVhPbH$ zCUu(tu9I{e2@@3+1=PiXx!ZhkFJG!lJ2#Adh>#~?TsQRiqw(mlYGRGsC-=9k zONyz4l2-a8M<%dcqF?JbljT>_clQ`mT-&Awshv=;$7BP`FT*uDaA$ps1zMW#EW*~i z@K~M+6h2cs7ZMuU)>{u_c51=&Rp2PwUJzbafS4YP`SBV_4-GaUd+(@AdVb0K@e1IiN!(UG=gG zS_2JJa?mddTPxg=^CZaMI;D;X7DvSYm-WWi%2H)yA9Cq zAGrO=f@XcNLBbV7z(apfX5#}s!{}}HH0JiMUZk(LB<){6_bcAWv1h`?#E#UIh43tE zYe4ZZf9R?sVr;aZP$QXnoOX-poZN2@L2tpbi9K7zPQr3a`h(H7%Jd1zGc`WsRoclQJ)7-0q!dT~j?Z7IU=G%Gji7kUlP|fqjeKR>&GW_x;fqD0P zzdLTK0GKzvSG&gM0kj%o;QkiDdy)4*%R8b^B#BhvafpM5Q6I6<)!9 zna>Wu7{z8}WX!&}P6Y&D`l zbdo(F14J#{RFXMHgsZ*5YBaX-if@X?j-8&HojH;-4BY_a-uir6%P^%*%hI&3Dk^ZF zg=S0&0K%BQ@QFc-D6Cw%&S1xZwze5?%zfToLSLHU+e@NQr5l!j)olNp7h6{~$s={; z1c)1IFaSpLwbJI*r#G(#8V?jJzP{Y+#6~^C{1836gHX?y153*9$m>0(hLX?ORuohaG(VXvhf+tG zqMzMR{59ARJ{)g)yN$TlpX@g=L4N4<;%E}d=ZL<`x8%*5wyKAmd`~H^sCbeM@~1-8 zi-q#98MLv@w12X4k_b0IhInvx8*pokBvj z5FT^x?AdS#NI^3eE!^f{@LvL?sh>tY5CDwQCj%hR9U25XCZm8e_2447sspb{&RY?) z8|`H>yN&Vecj;+?VF_a{MW_^329w>Vj~~g?Q)6i4Yo>D>^ky7~c!Z4aV`F%m&JXOv z_09P=Kb4o)-8@9JyJ8f`KunVE2Xl&69h>ZO62zp-_y;&!C}CQ6Y*z_=d{pOYliuCY zXT--BTx>O!m9=6VmQVIUt$eb)5#pvE%-$$Nqv0vGlbDap`RQ*|1z7`ytYO}TUDSM8M*CN7_A*X;6S?Vqxj zb%v!^GJP`c;!z3SvxqhXL~)d0+;olC`Rk*@-HH2d!kD`!=^r*16w-+tnVaTC_oz*d z`%o)N%6S zD;qU+qlSA7GpAm@tx%VAKOcI_S!G50?rW*F6-+Gvlb$z@GVRsj!*+#b|qzGXox9!mq%a4~)cY zq^t$st%1$F=TOCp)%=TPJT5b|ht^%&?;pP`c&`&R@Koy1<+1;FNf5#hQ1-z%lx4^| z+?ZtBGG@C1&MbiaAKb{%!kU`LL zW)S+?OdTfdvuD(Uq!1oCgD*Z`f{U(GUMuQ2mWVt48t@%mA z{in=9|H?0-t7z{K90KCV)ApyFjA^Xb&ni?|MEp%&!rT!LCcu`x@FzEh?X>^FWH10eiX_C?^`Jd@LS1EI5@tQ-S1{u2aXjsA0+Z}T6e{dECu8iOyRUr1^ygYRs~ zV}4MTj?w<0=V0v=P(a?E?^42jbxgF7=JkIHr!6_mFRp_xUhtFmV*oX_>C*QgKkz9S zM@Ai;-pIF~`Sj%cwTjjVc#=WgFyZ?3pX%w7Y$oN%#A(cfW_)*bDv3YKTMfh%*w8!W zm{(p6h^ae&Ja}Xes6Se!lFrfZ3I21b8oQZWM=i1cQHJVIMT+ zFQ?(3&yzXW^N-P-;iMs9_HIN5s~2FfXKlakA7cxLlLEg=qi^hlBWFl!WifT%7 zZhDMgfmNDvT3p0a)`E?!TT>-(KskgKlFWJK_6A|I1O030d^g*8K_0YwnnNxyYOj20 z-LcoQ^}x!Fdp~3qv;N5?!LC&1RsruWz$Zn3@_pam62}v2Up4x2YG3Z=;O=dZRa_SI zKZL*8?^%FDxAesv|K1v3X=x!%DxX+$TuzID%aSP%;k?cB%O1X~2AR)x6v=#zYmbBa zv{d#zb-Tnmzv982;dtZqkJb7z-j8?%fa>{(&qB(IPmrW^`|12X9253>=Oq&Nz&mNw zMou^Sz#e@Y2PJ(Wr@;wz9*IRLCMO;=PJjOx7|jM6ojmNmjjx^3VM5L4{z;G<)F<2A z^M~^1W>trg3=AJBE=~Z6K3Rh9)CwnZp2BoqH}Gc(uB8w6JE+z(>9rmdgy@|+cOn55 z*{~po%xpaG*{Wk@Gm5bQdrxktkvBHpH;c=jGdVcC?r}UgHNbC?^8N=8w=>W0;@u#% zHLy`KSL>yco?5+$jjkUxYTGUT7@>g)Rg=NiWrmS_{Riz&s*7INbmnmzCu^dsX@p8% zo_eY{U?%Unpru-;PTN)#VvthNh1zQ(w|#3%aozLdLc3-I`Ohr{>OtDZI{CJ7M&7sn zSYYbLr*pPSyM49_{!BY38XmMJjv+>E4NV_>vqpMUVT-Nmre9rD%!?~KV{u>;^y;Wx zzMOpJTSI%3!8QbG`Z{m*FpN>-`K#QDs-_mw?5JXXLqy9PFZ|T{Xige~RIl)#o~Vo| zPDSoA(-PQZHDA@!R_0C~%M8&|>vWMj!jK&!gy69*d&WxgB$mGB6S*X@5??m*iqwr+ z2PJ*h+%uu1eev81XDBI1YN-Vfmt$rUE&Q=>K9C|@*{FL{1xAM z1Xqily;u3Ndav4Sob-qW@PAi^n&T1^6Yq5YjZr?XS~V}!e(G&i;rqC{g+(eOaFz*r zHF674WzY1&EIGXXR}EhHPQQK|bT(yN`Ya02*cAHpa$p+GdK?bbO2>R)K2Wp=&h6#w zEFO<RiIhmpDHRW9SE@V z{;{26?yT{a1-X3%4+&P!O|TYZoiz*rkCg^lR1N*^mXZ`ScDiVT-g7W<#&de^PZ#%R z@FXLZut>FAKO@b^FZ78lt>FVsh1BBVEyur~{phdG2T$Z!Iu8 zuPA^C0xp1ZMlkq8O9Ug@FC+l{P_8zB*h%_{lIU_F#%Vf^E1taf1AmOku)N<&r@ELB zjZPV&3tK)fxAFjEh8%FeUNJ;2GJmX4Ur*o-}a2^xRf0B3rR{8t)&kFqfPX2PP326w5yXWayJu}(X_LYd@FpGIy zPC(P83aC$V_cunt1UK1E>Q89JI8LY|hNe~HTYLvFt|k$ip)73mHPsUG-kjTSalr70 z53rlscAv-{dAFRJ%w~U#a6O4 ztTfoWA@kv!kb3IDT$il8Ma03(dW!pO#T*%5uN{G+`eI~e;*ztwH_m+b&tK6r{>N=> zRMt3&YXgKRKeqo2KI`;}Z8I^J0RomRW=9EBWYGC|(m_Sk7&a4af?WmLiE1-JNGzhZ%c zviW^n`Lyo(7sW%%Fp46WsRRAka!JhZZaA38tGzbtd3R1tZIgjlz;6BPFe$>>b21cc z7!tH^=_mE|pT#95;bD~MKHw|1?b(x7I2?dC_j~vr#y4FC8`;3StO5^KnsoI01Kon? ze}E3sr?~yyiI4UeqyHa$O40>ULSjW5WZ$ak5u;Ez??)g0@nH+Mz9@e)N-r6O!3WNS zKyF|!+>tua@giQn6h|Q(=*H+e_wlQ!sqLpp{|2g}@ib|Crakg=<|QYSJ6{XJs$f=c ztEGA_ISCX;I*VjkKe;ah0CC+=lF6v`^e5A@B~lX!vEiCA!D~~V%B?te;q~0`bYmS| zRJ(bd&hvr-Pb2+JX=^%e$alZ5O_3vLO-NSRrNQhUWO*&lXC^?70bGqEyzo;o(-^I% z8~Ow1TymxEO$3d9D9qj%Lav_d;aB*7B$2jZcPIDf-2q~yrnP7cm;*Hkst5D4@?0hu zeuVV$v{4K+`101_aBaOVAlOhq3)X0J9lMWwGYb~}-HV1%LFATZDHzqyo~`;=QWqET zci+&S8%k8?5i!4br5e-1U^Yn#r{XU*sa5WTDhz{V#nx7+e+TUi70>VtD) z6F3Fa)1Pi64th%sRf1oD0uH{Ay&Le4gMtzvAGRO5N1=N&%MPZFQEg7Xl^yH`9Gq?M z8pEC$jQpyIl6vadXa)9kTBM_AW8_Ug+ER{rKgnBy+{I{9$F^$9SL)Y0dI0TU>D*7J zVqjJeV!q)hKs>8~D5{M_A;sW!mR!h~@r&ha;UHTaMufk@3Y&-QnW5jz zPXVKpkRJlez>CW*{pQ>L*hV<0OM!kMSwfNC$bKLD+fp!UfrW+KU8AoTnf8;dz*rJt z$`*x`%Yt?7Z~mcLF$JTrSN(v{+PI9Zc{+a;raBJe;AQrS1a@2~zhf=+jt#DjE9Ji9 zHu}c;#pkk1!(?-R@J<<3PzA5ic^=Gh4)3b`U&Z5>+X)I)(5BQ2cI6PQT(Pg&jGbN4 z85a8RsL1DmHwg0cvKsISYSbUJ{e;^3T0G3jsyd5#q82TtZI4Uzc4XL==|7up-KI}x z2_=v!2sre2ymDYA?Z@Yr!$%J=P@I(lz(T2X2eWfF8voK`=dsJ08cdO8G=*aLQx-OE zRzzUYPwWD2`lvV)ek8Z2iX8q!J3*un19%J_2ZNQ}l0Sqk>nPH6_(IK`S3v}>K8D-b zYK;d`ANZ`_bU~m!eR_{vrnfu7qkRVyOYp8+n*#9sZ%a7icl}2Li2CopHZ#1)bg!H* z0o6o}mQvYvR&wW(ug!z3xB7Y;QvVcTYl@+Is-9X{72zX7W;(n82#;}k+9FABzH5SH zK96FUaOXV_AV2u|-%kczI7bSNafle=gd6yq{ECV+#skt&s2|GuuPa-JSWD(NZ15lk z|4Rro`R2P)kEtuJE&xl~BKAzA+(HRRDneU1JSos^b<78Zpd2ETs}cll^Txk_F3{(Q zb4=JdAG@a5L%%R=61EMKkmb8WSojo>6z&O=knhris0>IShuDgNYfE@4VHal$@SJA< zLxltd)XnI^&zk40FCpiVI;Ngq_yaYty z(*E&!z4}1BIVE?Ps08kwDoDOefiC>a!r_1ZgZvUAHYxn>UvKgOA9a6zu@dsBL!%Px zdyyqeCTl&UO2A}&y1Hkr_?ZN?{p<-K*k+N+$p8s8rw8qS_^!D(K_P?D7?Cv;^0~d# z2ODMlttjNZyz2%BBX~J2OdE?+REL)}wW+L>jRdJL*v%_hP}8;!zJVJ5yfIXO{QlF| z8$OZ9RMj=gZ#wzR;G($SABvyOp^Wat>(J@vw;{w{S8Yn{u-s$`*87DKV*3mNwmXlN z?JtAv>V&<0=ANP_|FCU)0!Fngs&qcJHl=h&Owa`w4dBHGS*Md3&T|^+Mw|+CNVh3V z*i{P1Fue{1|F=Pf4DdJBQ50kk+cN|AX&GC(Rj6ARZHUaS8_6X$Rr( z5;OJ#rKC>=hsXLd!p82PE5~2|m6@40iM7>LkqM2D$bNp*5wQsT!(Ib(P^i|sCjrLY zC6qLnU;oMzXpj1?iTZ}!xhKs>Vhr6SucQ{SN=gfI{)zR(AI#q%faT%fKDtgpOX>;$~BJ%F2jh@Ma5>w`A!T5^Q^_@mJ2qof1h?>JM$r^Y-O2CWO${jrB~ zTuQ&FrdSVs|0}6Qt7hmosnMRA9&kN0&2IJ$K@+;XoVNw9^$P+6;3}@=$a|*REb$h! z$z|hCb{V9Jiy60IdkP~(hqrj}&HND2GckAa^{&4a!@47*rz(JOxXeV+ocP0+?01aG z%Qa3G-?s;wAGOWX2(uc%igc(=;FK8bpEYi!?9qkJ+QqcTwEuKm1z7h-hM% z=ZS8rs=q(ja>lnnZf(?Wdw-WL6O8F{daqDMAmo8dLq~_eN;x09Zw+aW{to*xGd;VY z5FBZg-r^?7*RkVAtj9Td zKN)gB17(?52K)g9{+URF9s#f`QYKzhG2IZ?UdWbSE5^J89QqZ?<(5+@O>YCU*MT2pfXotd|wC|?8CpBQh3y;A4DX> z;3+~pBx4gFir2zT{2%_V78Sr{E-7K>=9FKC$|fB_(Bi+r4W>B@)4%%5z00%!A{Qk) z{Ws@WF{+km76SgO%I|!_S9&1kW;Vvk{oHc~IjCmWRFF4dLrW8PxCqK&5Md+cWfLAB zg$EF9qKLMkkWZ(Q;4`xPOz4Oh#ix(`*ZXR-XR@R2E;^#hB=F>4dRZhF$3{)vII$)v zzv9K|I2yzGj86f- z_6|JdO!ADu!~)%DSm00D;=sg7$Yi$xl>r*S1wu2Y2Vr9bD+#`i;RYjn%zNU5q45#( z+A(-WOy3lyq(yf=0HcR5U&}tT)x`PM&kS(DgM)6qw*ylHwfj0g)vF>!g>T1>ErhQ> zh1g3V#2SMH`BcMT%arKz+kx3lV$>N{=Q>w-U6bLcrm9WV6D$Z|m)0N3WapZpZ#ofxRSUnt2XP9B_xtiED0pMS-D zo|D;>Dn+RM9I7k;*gSky`8N=e&p|c3%~bl^p@;twA6UQbXoQ>_>X=jE!U7EEU1O8^ zoONYT6H#$!{1Tu@$T(6_R#u)HxUq!Q3??b$wBO$Jj(AtV+TzSBSOs&&f9sU|)mdgY z@aNad*0?`U0XGpuB-LJDyu9X>!$3(9fk*{I{OouZq#XAGg1!I4>SqrICb#yb zoJOsEK@a_)=6%rI8zFV45W%?3>=fykZd?2-9obaL&Z)n&w3nW7Ya@vpGbRtkBl##;j6kbx}SDr zI$s_?1t}4LXt}4h2}+zDsOZYQes)Hw-A%{8NonSkV*d!cZd=f%@Ot&*>#_Nm8kwS{cu`x z=L0@da1CklL?Z|GF&`MV@+>}(?cy&mVc%nC_Y^T>ya>3wQvI!Zce=}c=yhXu%#9pr zFcM^wwalA}=G=4PW?XXezM>6c`tKHrK{LaHJcsfAS~(w$Txa`)$)|r%bST*_-9W*= z;QxYdM|(m|h~u?t8>Ox!!W`7IbFJO}y3TQOBpxgwt!#KM#+@oar1r&72lVC|`)2}Y z6=Uz+Th`Ut84F(FTnKZhu{BWulic(4bod^<9YR7vg3L3x61`RPqJv+S6f>IqFqOgsS@4{>vv78Xf< zB6`Vf)7|@_69OUuEGJxG)^I#@b@jvaD04A^9Xp^wP(gs03u)*2Gt1?CQ1V6yL+JEU z|A+wc(8ZhPpVz?l`r(cp^Y=d7xwOi*?juIbwJ?b}J5_O`#8~c$lR@HVAkf8(l8K_h zK%J|G$dHDw=lK+%@eQ|r=_1q#catUx%glvU*v{yPJaft^>}BB zN$y0Wd7jbU447+*OdCsNeq0;o1jRK6ntUGn`bI@Y@xArZmR3=m>VUz*8szam_?|KvdVfYTfP2=hc<ZPXZ)D=k+5D=gRk{{OlOc>cwG9!Tr%xbprJS8(@2Zzy%V0(`JfaYs=Q`0y%N(64l z{{3o@f3&o(;*yJ4s~gQi$EnK~6x&#LZZzJ8SYc|?^~v}6v166Jz%!K}7q&?3r0W%54{LtFeWh8~%4bfl0Ff=o0h z4V(%=wJEsiFH2A_?A{CS@37~mNOMBMBK?Rg2B|F|8dAwZPB8ko1WN`bk6=c5t| zfN|)Rec?RAU8bJrnw|Xm`*G>1&POOs6&i9AAz0rW_J=%ze;BORC!g*+iRg346(ACY zeGo%#2L5Vi*jC4bhh62PqN3sx62^oK;9&!Qbzlf_LIV{R;G4;TpiDc+ULSx9L+G1@ z&R-P^3yYbQ{g$nXyHZ|1FKi=mJ4u_u(d#LF@lM`{Y&pqg8tp--EE$1?!3g+-Ejo%YOu-2}4@Yt=<;AX- zOAQ|o13^+x>{O7rKDr-cui9qHo3Aukbmt5tn~zC0J{pC=$WK91d=eNKxDS^lCIP1! znhgQSn}~zPGPD3r88_GT$xzr{Iq_!aKGfU5r3-|03{PzYCgc2UU+8RH;V_)OvcRdJ z-LQu2h1bEXLDb8XHmTwwrV9gKsuR>wuIL;w4wc`Y!arEn`@#GpY#t`y&j^1Y7Pzdd z;*v2OD~t?+v#NVXJzi zRHJO5+?HKTwb)qD;7R&wLa9dk$E6p_&3J58i^brxW#u8%+}=wvCDgRxpE9fLvHGet+-19qOu)Mj z!5EeN{@P#7i%=suytAnLZi}9hi|8yUxo9>9TC;0X^knXD*mD??DK18^5oK)9ts~A( z^^D8Zy@F{axiB#j#s6zghcL`-D1;53i+CuK*@tPcjfU89gYuY3n4wgwrX)ynoaR)@~k^baVUK6&y!S{Pek6%?9X{>D2mBtrmh zAiPo0>Y?aGs_#y;!g8C@y;021dXgrIy=hBXyAvyS8}EUCr{)e|ZyZRm$6zJz-rGe9 zTAyi9v>O38GuSFmy1KsZt4;8Cg6y)x)I1QXHYpgPHNxmbfM{V5c!i=H?v| z|0&STkDfef_&WJ|s{5%C5FXJvIgK0G8uR6rE*sZ7Y|j@F9{w&eIyw++ijN*YzKB4K zo)}@OlT8eOjqR5=3kC-!$xt~`=q=Jv1KLAwT>O`%qazX8vl@MQETpA+XRL^DL zHC3D9W_U`XYu%#<56<%iz&;;SNJCRWyII|T-1z*`Izl7Ee~j30t9+r78MgCmYDP-UjV1*#bYyb3-d)AX|(uUPFS)<(GI1N@0JTwMfTV0 zx+EzmDvIe5$9+>Oc(>PJTXkn9l$0OQQNpIw;0o(vH&EfbKYsk!?W?A1I_3mtK0H=# zw85aX!hP1Z8hU8bVGsr6OfFx3(#R-!$M)^Ji!x?XDkOcZ0R=yW-C4}EiZ2~vuE!uU zE+8m~%N908nxDSc9`_#wxKh)YVAVNiQK#>n4`yY1+-K_D17PU7GRU`IiIU&ZMjd_F zN&1>g&O7wl`kC9RLfb67ujpURr|H=J=PU?X?2c|d`WKH@R>KpMLFrrf7~Bf1eq3U! z>VM!HbPO9oiiuH6j(s=i#G*vn1Rk0^Ovh+$-yelO0dP}4=>_qyw(trB@JKs9funfz z^r`t!?xgOcprGb&GvI1RX9)MfV5WYW$6GS+jFy)93(L04bt!t5Xsi@0a3W(6oK5pN zqoHB?H!IJjR`t z$p-8NHYrsvLa%CYqErQ7E$*jiWxk$Izo$>q8{feV?2^B|XQ)Es;ght(Wu_m-B@z^Q zCh&OcuSds#>5Z(VL10Y)Oraiw-@PRS2|kVAKBpJg)Yb-|CkPK|WmnQCX%KL4$@}qr zadCYcUjSekHsl--8SlO+%4NTgw->OQsG5$wuL$QreTq!qthKfE_+(p}frm&%hmWH0 z9smlLD48HWwH*_^cJNKsoF0dc-NS%A267Q82x^1xvk+E^eNU@vU~w!v!YWWD1T&0NH=yLRMq(cwu73nK3q8rTyCw=ueWv1I%%OL9bn~R+B z|JT{|M>SbSVNR#i(n7wBT5G&{5hD?L~K&b!xn04Z(_{ zndgh3A6lQ$PLI~PGhz)jY@WVkOMWUJ4`p&yacg?08WyAi*SnXtMCPp6YP^jAEidm9 z7$_A({a2(hT?T=#HAd7ZlqhM}iWkXJ-?3%^4h`Xp_ zPCR`lS+SwZ>%KyaoUfp$LsI3ZbZHI~$KrvrsLKwc-jDPI$JmWj{Ze$R0{{eGrxU0H z!$@WplPLsPgc5;~iIs(>OTZM*4SD7Jr}}V6MrHTwQwZ1NNYprgcGQ*MODTwzeL5^n zR!i@e8xa{o{EHr{C#?xGDr=Qb+{0ilmpj~u@BBTm&V>t$nk-V{?R>YnTc%Gsdx&=I zM$QXDGDN@+A_G4KW_S+h@C5itmRN)7&K+=?4QSsh1piBj1iBLo%SD2d<&kt!k3gn9 zj=MaMaxlT|RgdZQjc-;B4zCIht})mY0IRBmz2^RdU2WN-`-Gf2Y<3 z^swpvXgwn&*Ez+_FY$7#!PQWLi;6xXkAYm+9Ruc!nh+Wnxndm7FEHo&A*){Am=?_V zQCpsS&KFDbG_b6-^>QPu+;Y)-A0FWRW z5%1YquKVwpP~wzFRHw_Kp_xs_lH1H7_PziEMOBXBF{S1Pf%W_IA5Z4;V@f)Xo#ZDW zkZi*gB04(6-68$N%-~7Rc%!XLbL68vev(y-tsZ_?WeeX~P3$1~MK_chd|&l|`GE#4 zN6FRkkE>iYcPsa4vT%|*nwdK{XFXfsT@NZ zx{?3NLTtp?`Y4Pi7HF~}z*`sICMXrbk0QQnE%th_7=ftgU_5!^M5wQc;*7VWIfY@u z!s5HHUHwhOTh8G$JZvcnJ5%TE?3@YpD%A%4X^lF|qdI5v<(UGMEZkO!6B)VN?$3mu zUk4#YmK?BsK%Y9@KdIVq$(a8{0FZGpsqfAnLA&-~8>mT46rL3UK|wKQx23x53H7-n zzLSr#fs2#V`T1QJ9Ei6ui)bdOGB!4~6PE+~8Fkb+wk$WP_xC0b)2^Y7?K_nE`qUjLxL9-j2xr3qqaZDmp|rac10X96Sz+5kG~EK64k zZZ9N-7yJ3`>?h^|v~3~h#Aj<%2c|}q^_CiyePP(Qn!_J{p+>YFUnlKuG5=Uf0an=& zT5{hO3nwmGt9_iPqVIkRc9mp5B{R}#>JSq~^ocn$@N7T*kwg^FBUojyn-NC%jfem_d2*X*w0bLOOM|Iy4YXVE|Lyrr`8)J62ZOp_H2lHk&r-)G+H(( zKy#@Bj!Ej>QVLUZ9TdmZ*t%$7n6ilZ7*gNn)6{y+^b9&4P?yVO$ z)`zJu^F>X72TFZvaK6+IOXg2_9O}C(ON_J%1HBAnZ@_VHKv=6mSEv3ikI%dnn}$L1 z^u2rc3YyRDXgii2v%ZI8uklSGhS-J4Y;<;U$r5Y5f7aNWVnpnqpddwg5jGycm%oIk zWVToajm$4by-u!h3`46Bdl%ApNnKwSQB=QLmE^W2yCHVnswSo8Wy`*$cy7q-zXI3G zwho`x$M|$8e>ihnym>Qn0CU&)DJTV{(_(whxYxtm*2*AmAfH`W{0EXHnGCI0#n8h@ zR@4(;txsAPNjZ|hl(-y>L6Jj&Hwzf+*UT=+QN0~trW$U3LoIS8pz6V^H|su)Jki`j zM+al=4ex5B&14gtd3pqaB7ACQkr#qt9mo&<)J7D0Jzv>Ps$G4I>(3KlIdyIe6wgy& zhOfOIj*x0_%-V^2{vzX`lqUPvxw1{yM>sFI29daY_IBGHE7y#ah49+=qjFZw+-GN34&iP>v;6$z z>K%YZvjPaFhoWd6Wa%>#wJD);uUZZF2mg{s{#x)N@q0@d`Ph6FfGs{tO+64 z|JL&4w{l^h>CQZmg3Xnac{7}xoOBs4qsj9;2{d%$b5Tj+Hb<&SxY(v*q4 zF=)DU)n(w$*F?N+)@ytV595HI-xU=oFsg9QuAoZFZK&F=#ZBss7(hf669-M z5l}})3Q-t>bugo#v22X}U_8l!+IYs~TWqJ=*6w}isUezLA(503w9mG7f+f)aTM<7N z-+KESHZGls%9vzVzVUCH;>At(k9pVsvX`Fiv;Vtsho#h&(*oH6z6^4yfRBR~75c5- F`6p^x2?+oI literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_7.png b/labworks/LW2/images/picture1_7.png new file mode 100644 index 0000000000000000000000000000000000000000..51808c132cb01ef49a97f32a2e9512c300f62e5b GIT binary patch literal 30726 zcmeFZcT`i~`z{zo#RgbDSdgM0K@KpoCVK7ac{@)}HxD^6G3WpO4pCQkTd~jX#_r%MhurQx@PNTM9zlQiWGZFY z!(b?PwL7;AykqAmKHdi7>%SH-mp;9eJa+!jp_lmw4;~aU5jlVN@IQJ3x(0>&?_Ta= z%Srqh+>Fg~M4Z~cd9tYJEn?Ji9O6olj+fUOYVh z(sTD0SD$}ihh7BSJ=VSldXazdwjA^mcIwu>-K%{27hEKuw4m21TGG+5BB*Whszrsd zRE$5`U0-S*ZJiMT!ygZzF-Fw?p*qM@m&^MP$#T3*!#&csT7d$~hdF_*!S5E*S+=ALHL z9Gx~YGQySM*paRkeZ%@K(Q6KONh|uYfWX}s2iV%JLgDGPK^)z_`LF<$+T-*+u$$PT zC-oE=+{N?c!})wvA80uBU&6DQ|eH=cqnlUKPKovs;`ET9o#H_;Tez-yR-8vA`* zKtQ10g+obi_SI>N)+pQftk_uY%C(Vq7nF&$!>x3G=4L*POWGwC+UQdvCf>O*GEbAy zE7NHY2sU?l+Ew458TKes`*aDtwNNMd_{YIGzm2I2bOt!nOrNER<4W4MZ$BqRvbE*+ z&nXfPaS=pJizmZ0MD?__LloDBSgdVq&@SZ@(T;^rM^(0IO3XK-2agBe^ACdEbRLmD z1~aG)6VUh^9gQQj$Z4Fm@J@=j`rw3{W+t*67$vY&lM3&z{EWis>g_q#urcwt-evI3 zlj$)o_r1J|!IqK?k?U$wXFO@AE^xsv+EM*$)VvDXJWj_U(6~qN2FOZQe^c_x-c7 zrmmrZ91WHh5)sh?ch)IOi%ps9FJZ-EmzI_!pN`zIe)8n9tn35q#&Vkn34VHc1-m{T zi3E;-R}Nx_zD8YL{ds&xp>w|!cClWNI2NYiSuYUjUFDXQ`$=1_UNBMPet)sEr1zhp z5BgJ%4Q9$)V2#u58e#|s2b{M2oP=6?Uy&mcTosdUUIGmEq@Z?ZJRIZOa@2ph zL@(Q6H>NV=#y{(KrmCGp&h;U{sSaZ2&&?8enrRL*T{&{JSdY#MACI(*jG15OTstxJ z%F}If3>H@Q$-r|iy5K6|v9a09%bvk!uHSa-%3hG2e%xA2;tu-%LS7r&MjeVXS*Xy`bvh*_oE11+ujHGj) z#L8U1k%&p5uDbeLm0+$k*XnJlp&r3_@7rL{^awW1(BXg5QG6g)wf49(PwR3yir#hi zw0Y|1&;JxT_Z#YGXp=u)RP_zX%FJvXDDxoam`VfRz{g}|}t18+s{tkWF3bIlbQl1G(M6lA2F*K8)RbbDX}8^b|-dwDOmcT05A zKe$${tAIcls<3$PTbWU=*%c7fA}!EaxX6<*T(CL_b&#D(*fgC1{$xK;`VJG zusv;5{dU7lKV4Jr)~#m|BBtrg&1&XSS@X4{aULzQ8-Hp!kmKP-(=ShIw}M^InCi$7 zR#F>+%kzEs!navtBp!r zD9K!dscN5=zaJ5s1U5zf_KanvhLvwJo6vID8-Do6k(C)srU|(7ZVOCKdwctGi#&a@ zK{(GqP3?_K>F|MsQD7VR)Kq@07%8o^v^0cvjo(ySBxFm$yl@lnTLk!$LJ)A-xMi+Q zF4RQZgAKX@{?3lh4wUK7^%Wh#Xle!X$Qx41QQdIH!07t@C%pyMeHA{0+|rT5AOusz z$s0j@eyy|w|M{i;y4TK0yL5tJl_{K8asT8c%~s%78BhuljPncwws&&1>Z5P2-}?CJ z?bVWMatM#S1ajH{3gy6pk`=f9)V_{iLKvB+`ESoy5?A{i$>k{5xn6>5g5O3Khy#Kv z^g+w8Wv~l&otb)aQ>mXMJSH@I=e&TC-h;x-O1)shCU-`!Rf6m_4V>~fNe3b2O3m)J^f$Mv3qeGRnj07!Lt)YW_lFA`ARB~-hYP5g zD%-i>+UjA+7)7`T&K z8^T#|#1cnquep181cPKdI$us-l?DG)iF30Dkyexgk6!0L3&k*acX&hu7YMl0qNPK7 zNk|f$5qqJ24cIK#HLwUy@>QmO>PvhOs=r^QR24f-15Z+;oznwO)JJc zMX}BTIEM<}Fy}o8%4Y-h);EB&kv+`$H&*8y&AfW8;~Pt;Xnb3)xqM1R#Q?4J(8)_@ z!k+KE=a#)OYqiCwW=aD1^R$i!bw?pr7l4QG08(31lsKE(uhOTZdqX%@O)9`~2J(+q zGq>|-#JlfKfz1N>!aKLIzW$I*Zf551d)nGkF2t!zBxH?Z|3|-EUca?RVB0ok@-Vsb zzH9kUXTR1R*xnq;L*Na6Np_o^T=a@;wDzP^DQ9HeQ)wO!XXd-pG$KWRy*_?Xp&Pz7 z^kPrmEs0h7pzFOGEx@l{(?5OsWTpA#T8+p0?~fM)JEoRpZ5ks)RNUPQuG_Y7laRD{ zOm16-PC`B{ce?1%&n*QgKq+=xVpqsu<^8VJl1Eb(=?frS_=dztIY)zy9(uu{(7n#A zlv-EvU-FRgU2{udKnXcL1<_#?#FItY`7TpeNq)qPBpXBi3AMrp zToqXAqM4DQp-rJj0wfm4w2nTZ}pP)pjd z&FIL2V^%YPT~7BBGDw?bBGS=$u*w{7l*jIqi?fKqnRzrzDn>R}Z%zzaE>-*QEG1w= z%E8|AXQ?>SnQL`Q8%>L66uk3ewKIxcC_-u`Rla2n4Go?YWcNBZjVXWU?UtnE{!JeD zw!5dZ09;hmh@xWX@HuK_d4nP+OjlnM#Tsx~CQchVXD&I<%wnhBk+PjmeI0Twhf+4D zu;C=Cdegj#*A>7OaN)xT_t-?bF7f4`lXCj-=*%<#6Rk`9mo9CX&G&q@`c_B-F)zow zyvxG}@B-+jxI9a^5#HL3D6lfV?3{8 zP5dT=Z7{1&(9P`0Bkyc);uUN&wBz>XYG`SZtFW863RnIFe2!@e4ymC^*QMWKXwrlY-mFSYTWrM`ZCwJKP2SFdeC z&S^_uJpi)6;+_|Su(>hk>VIyogC!sn(983O`F#I8^P25RinR250PN5G+Z-TL3on;- z9sRA$og)XBmy3Fx(6l(zbFbM|j(15!^toHnZDaw$_w~&|rs9*|i-YK^?Lx#yXMop4 zLZChqMW^m5InBvAHB|G0%-&^fZ4JTju3U3GgNo4s!Pl&)M&*+BEbYaGfI0sr!}8olW$g8dfB8n=w<=ZPAgb zm!d#g005x#kYMbwW$v#Vi~N92K6vn8V`q~NoCY&rrivPP8gxlJHnYrwh66CCpnr}y z9C*%`ng__8J=j@Zq44= zh>pI!&3;zNuL5G85L?4;u9DBWRwRKS72QIIIq(2lpPUcEB7o=^;#Uj?B=JJ9c=%G2 zI7DYMi27z`vmR#o4*Hq?%M)W`cI%7da&AKbIz<}*IIRwd)_45K0r_FNEk(5`KBn4* zLYx8^UKjA6n*xe`3*%#BzsKEua7*dPnXdI%((Kl}r(6n^m@UNTzxB1)bud@fV`6Pq zTC@z0^xqogTLGEL$WaIn>~C#h6hfHWO9{-*4;PdlOU`D__Lt}g8)mo8_7afbkkPr) z_(sDIfZ>9R=>r-bEC=pjnGke?f7Qsou$Zr?fNx!poniv-uzb1U%qvt4JS?efsMxU=JMt?t4yWWlXmwDR0#B z?daw#u-ueb6FLU_*K_U9qe_4)x!~wR0L{J!B!IkR$jZ*$3J&x_{dQ;rz%<(cG_1&y zfMIaDxp??HGW|Q_0RRIT4h?7^HrF2j$|ro=Zuz|2_9!2-6|&CjR=-{ zfD|PJXvq@ej(c95W&Xok;S8i)+#dbaj*bohV#j;;&Zd6Sz7L`*;MyFJhwh>M**W@Z z10z^gGA&;1beJ{~<7x;f7hur*oTpA57^t%ExCCGAvARG{`0(M_AHPa~$Qno_Mp+A! z?gkPynlUd@d(FVYg0~F{R$_b!-Xn+9!u|b8ATp{wOUS4ObSG?#V3rDnP>`5N36^tF zcYxSq^!RadJa}_Lw{VZGe0z7H5POjF=&#@o!2EPXfTRVSi|tE23#{lFU~YFNgQcmh z&sbP}xh#A(0fU;$BAWRw{B$7W!hePE;33Wh2oP}T4pY}k&U|fSch)2I6l3SH-yhY% zRtrR$B@;-BrXU8Aol7X`0|RC}{#y%Z5KUHqd}1m+;PxWJp$E`XkPFSDuUiEISc?RJ zB@3YCz5?ra5u)ZerJaRP04hujNGKrcY=97$3(?e##YQne{U2_FpHMW1gr+zUeU69H zA;Jj2_xGevmTW80ko- zR_ehy>MK<@ApmszqKdar$WDtajT<@)At9mrXf%w7r~}po+ME|Ne5!;Fb!9!k>VK#zqLR zKmk^9`{amo!{;lIbxXPo$Y{mMA%Ku#0>}gnd&r2Q2tpM^zCp^>t>g2rFe$W4f>ygS zO-8Q`2MMTom758TCXs1k}-jA+@| z34u$Orh(?LYjb{E-dLbdA+$^8yK-VId>8JTgA<-6<0F5C^5u<&$ZG?qHvw`Y6n+!1 zHQNw*^_XaC<1{i$0;VwyxCi9%d%Hd|=TX)Ao2zq@cCF_DM4g1V7LX^hAbkoTdV{A= zpN8jYApm?y1~^UCHuh;Ch+E^mHx_`4M)E_Z5e*O|u+}^PklD`OxC6fzw*eqeJce_FgQE= zD)jkD0O1w@5!i52eu4%(E4V{jzS)jiQPu`TfYBbSP|4h~2`($(Kk-(9N6(({6wZL? zldLS@7CdsEze|Bc`X0zdXWqPdqXITI7??n7Pocej=jbl)*BEOxb5 z#lpg(H76Qq6TyzTWxsy6w5%%3=Rc}_4`feF$n_E(G|*FSSMgEv-tmtDpu*$7PxEfwhjM1a$6Yjv(ac!{JmXa^8=8xA3C zHQV!5<<_lR-)6WSjue9<79NU)*eAG;kuvC4_mqrcq+O+2*mtC>n3zOA?a-3; zp{4-GQ5bX7Gcj?{Oi-lA?5vFj13tjj93w3qqO{{Z3cT~M%qk$iQor7xwF3HI7sLSF z-QC{<`tsZO>*H6XrvP3_0vYmQ&zx66ckRG^(fc#qdD543;+;I_2YT#kYyMjDB_d~R zpk?(``}=q11uHErLCPl=q_4IWSZiFAlq8pe3>FN6=_a?Sg@sE~JiLEN{(`)GKM*|v zNgjZmyUE4<5-AyY3^6yzaIU+L-LnEw_Cm=+(@Jy^Y5N8C7hnU|0SqQNB7q!sZqT2J zEwbzY;_mWPM;#D^e}VnR`-<#2f66KFI8F2x43^l2ffNd$s5$^sfRbxP5Q}##xIKrC z^k68!(UV|y{KlU^DPy{GxHbqY$|vi72jmrfkh=~|=6?pPO?}XJDHwPHAN1Zk|9LN1 zcW0KqAOr~es{N}ifD{Z>8ptjKtUvk~gZ_EUZMr`cYQm$UvH&oWp(^ifeGQdLZpLu| zhJ6a?{XjbZJ>`i50Tm7O)b5@T4RtFI<}V!9rIzadvjrn`5_* z)B1aCd^`)tNRLA8Jug&(+!2;)sLS)5qNB=V_SOgDxX3o_>Z8I zIKKA(EcbP^EgRY@HxWaKVrKRB`TnmeSI|BFSNW@T@}IeZtbUh@TN%9l`m$FhRhbs2?T4NhU%+dqFIZ;1ZAW};qwV>9{pGnVBkRlcbZ484Pu zxtU<$yQIa&edCU}%NHRvIp4Jpfjjdk;?9KWw5O9(4OC`?*%|EISV4oTQRUKBJy9b!;R!yUV4$eA(yIBwELP5h&Tg zGhO5smd<10yOqM5X8ip3;33E>7iwhCy)x*sRbKHTt#fgTk6)f5VN`%DXrD_hi4Y}E1fMJ1p(Palan*5H z{xEpYou0C@T{7sbxoHO^x+@oK2yiX zT`B2INv*b|mv<8SLx5f`A4-SBA7Mzg_W3gZf2WKJT|V<{L6m>Mm=BLao`&S{zeQI) ze10#`t76B;7kJ+a$TT*N-#CisaX8i9E4W*?Jyzr%V~&|+m+U8~dIc#Sx`yC9A2>x}`WLtv0en*7Eg2q>N+W1e5#8cFd4^on@BL8J!%2DuJz~53X ziDozjdp{*!hzaRA`K0q&qQ-yhi|ve547=bl5vy0fo9Na)7MHQqBCi8w4|Dc&&@ux|9)TM8YsPs^2wYRqGa}AC`L{p` zd1w_xZevK3fqqFsLKFe2BTs_D=9|gupw`w2vU>BnS6p< zE)Wj&~(gBb|e!%_&Sdcq7; zi2_`@bK(#5PFUv2ryNtFks9w#iL}2wbaKpX?bK==z>;UhZM;Qw09L10ZSG3aP|gJ1 z0TERj)57LJgh0Zbb}#T)bp8SsNDh6)&M`n1IpYS3mi>iRb?l^Z2tWTkZP~fCzJvrI z9EkH9krw{jNFE@eAZ0=I0Q_-ymA0yucVrgI>tHn+EA9z@yB4_Q|F1&*|DLV>ztt`Q zE%(2Y&i}s>*lr8S|F`z!-}wu0B_&HBuG7iI&ZeNGZ2*aPKz-p{Tm!WE9u${sL75aO z;{fdp>@n#$iFFW^ZUHn;O;Qe;2J{W^glH+Jp2W`1P9b`^3q=mZA#c%)jEwFH-M`@y z3Bo0SsnrDpLeXyh%$(@?X0mE(Y6{5zNRi;9(4_;2r@N=-T`Lv>wH4Q&Kvh-n|8fgI zP8L0^dH#AH147|tadG{ND(_oCCH&N4X?y#9kQ&#vpbx_y-UZ(Q=u8(7vU7mCG*ii- zb|ma93z~z#h6bf_WvU?fG|*q(TVPiZl^fIehL)DDsf>hNNyn~z@ExG&gCv`ypw!#j zTeR}mfisWCJUXLN!K-lPike`8Z-HU1*;Ls)5D&Wn{VoF0@HI*N$?s#x=}t8!!=HKD z&D7pL3kYoRNDX!M&v9`%vV*z$pCUvYS9fC?Ec5&S5Umra4mCfD!r}pB2a5ZqSvTHD z3~)se+)}K2!xf;}TebFsCXn#3u#u(RSRcUoQ!l_@ zh>KgvO6=~$w3%6X`Jne`FeIzYm(h5kBK)ox*J}INR}*YGisvVwY>=}bh_B3a>oi7+bps|ey715Lm0m}cN`<@&3JW^{w(srV z%pD-7=gL*LYbgQh{|_3zMu<945150hi;GK6YzZKoMeY``fO8N&Pux@A+>H2Hbw92; z&sd=Ru$33}bKy}DE$1Aw@e`eU5>M?y8m@!li5#ZY+PzxxnNE3y{VP_QEfkkLiEOQ; z`|UTDC)#EX&cKdgpfv@cTVnhCRwr(U&k7kZD(^pYj5^GI>T-@V;funrK6oQpr#8H^ zGl?L5`aXg+z~nYWH!|xgGD>XuJfUkBKPhYPlhU8MFqO7b_hanofjnb;kw9bkc*A|K z)q`yPMcTsXWrJLI0X^_>;|mZ<>QuH_8Ni@1x8lpu77lqwY1{guA@!r!8%;c&ji25j zK9p!u<|@-xW{mOducwn53 zNXiR&xEQVR$8QcGVO$rXoOtu-E62%G__kldW^{`JlaIau&<=m5{F zJV%f!&k=t*$V=!~un_Ap81cOb zGV`5RzqAk?HhlzIWWZ_AyeR8jc~!}>+*~QJQU{m1cY9L2GR}?Hbcb!aYhJcb%MZ22 zPzfuTJi(F3yL)Jt-E=%W`p^>Qy^$P~f^VjMoEPGEc(tV0^Zd{j+xG+UI@DX^bHeF3 z_HXUbmL|3x=?bUB7V~Nud42bp6So|-1NW-)$(D|U8LC2O8hpyUcP7t{dXo5qB~xej zGkS};@g3onkKPq(DBR)+;M`^UDJQbg+D5B^Vqu~S8jSFUkI|aOtjCO?LvFQunG@gr z)W|DRzd+Cc%k%ghP7a2@2o5Vi<-$Y9A{hkf-QtNNJFketB?7`J`dPVO9-LR()177; zsfu;Mzw*Tg*Zrf0*ltd#JJGeLQ*t*dvg$?tA22C>7=pK_oE(cNxef5<8T8!x_9yp3 zM@*QRXw0mavOP~D|CJ%4=_!}swb+{H{>a-^C2o7laevIujb@2Bst??%v~m!i>+`q= zHcB{4nRUD3w7IJ5(L96(yB4F9t2;ylYeehn$4dwj5$s7~$fQ zOKaqXWjcexFKF8h@n2D}$}<>3z(b8ZWH8S^w`EBrtD{ppel!o!%Vs$j=MJ?Q6}{N+ zM8NUQ7vHP9_#m%+zLG&KL-ZRd!SnpC)RG11iHob81jM-jIb{K0{t}lz8j?oImD_Kl z_QyYr@A|4~)O7VA+B~&s$hD;0=vv=g;O1i6O>TRH>0$FJlx*$bsb=qF9)0s$)EwU+3s3Dg3$^$D^4a zFlV_P!EgJ@e6FCOHdl;;vm%8@zv4~-qQ4!R<{7|xOn>)NVy|-I`QoTl4dL34ka#~w?jdne)86GfpoezVf*fG3Xj5pREn-Eezn_??ZUiKPYKUgDK7+(wLQ zs6aN$Zc8sLQ+lh!P#jOAHV+@9kwF(ME8b5@MnE;}LcJN@<#NiW^6wUwxUsey_-Pw` zSvqc`H|B`F5NqPEU9YqF6HkrDwhrsVOB_5(H~x*rHZ~8L>s`{xV5m#Q`HYKFl&;j> zz$A7bpij}Mh?Uvd(po&f@u_8(j@3g-q}^XegaiIU3)Coky) zu6#0Jrk9vzwfiztV*^$u5IMq;sZ+MR7j0i@&8riW_5~$*Js2m;8DWdkf55l@*Zv|A z&T?K&&V49gUZE-jbkXE}{`@(=Zo_{Y_{+nyHY;1R&9531Cv_PqWDkOD>;rh7&YsH4 zVtNdnhPFaIxF<7}n{!;?7gE872Ksd1))b7n58_gbsP6MxbGn+_8KSSvts)Y_vJ5}H zy?mc(W#EAFS3I&9aRvBbZC9Q?NW0?`6X+_Zy#Y9=B?e}!ou5NKyy)8NtagSz#|mZO7#rjZ@U>MH#Ah{jhCc2zCb2GhU3S?5Z}Fj|35A#H z!m+&Gm3basp^}##&2*Q=)Q*ebyU8Bf&*Q#mx$lte$dTSNZFJX86r1jYwvIp zs%s|VmFdO9dDKxh!(bhfD4TJRn3|NSC+FtFne}&zVJW$pMl{KN0mM5{vdRy5s9#pe z;#QjOfzYC?Iv+JU8)BLfJ{3U-ZEH@!*lk4BO=ghivwCax5|~ymqtWw9am+>eBYU4? z`kQW~*#;#n(wW}RETu}B=d@ZwP@{^l*ZVps031&1X4+GzoYdqBemHR1mc!+w&rZyA zkF2xfXg783)~tSNsFmSwl#5p9l80~xf!?6=xp9g;yXA09d`wgt>mYSfT$DaFJk^^P zEz`JtX1-|RnQ8sHQWwjo@=Rx&sQcm#MYgJ8f}b;NBU!N`-?db$AKN^Oj|oppu6TmT zs4*}7g*9|hVNHCR1nrtGs~7kttkD5i^n~TGPZ%>z8 zXA&#rDYrUi$6O4*^;?HyzR!Ay%kSgKL-nvZ$qC8|&zdO6Ys^ngOc=9SdkQV}S~Q!_ z<#PAO^QgrmC#m761R7WJLM+3BG--hINS|##x72=Hs`Q8vC&P6B1%)uN{abYibG+2t zN2|dL0_E&#K8^fp0zpR*ANx$o8p3}VI>Gkt#&EMJOp4L0Fgbr^<};=6#o@(>tf7a` z)aP)F%@mNW)8O*Hcmh?czv!Tr>!$)yOP zTGZXBu|IO1%*Mkp&ARB~L65=sROyMd{c|7qv}j%)Z!!5|`;+4~cxSzrmNx3I+5dT4 zB%~v1c#C=iS;B|_QBU0@FoKtDW*-tp-IZBKer3leRF>&N5fKmu@Wyb#)A&wN?2YV% zjSMq0R~EGO!NUCm5%F{Kcje*bW*xM$jAWgJ62z1RfN2AIL-IUS>!rgDRUKqyycveK zfsbC#*y_dfmG!1-g*kbFJ2m>|xwI-f9#3;DeGU&CM)ERbU3ht9er^HSpx*4p>R6kf zl{|2&pf|?k%&h!NLuZm~8c5w~>^Ckc@Q5fpItUO%B zesMyp;X=~V-AmS-u)n1wapgA|XusB^PKuHP2&K-l28odye4~dZSE3%AU1cu|`#j`k zKavf|EANjG*NsPbnpgMyV- zQI}d)&AXkorSp8Nl6XrN6(%D0Pjvc|)(MT{_aqc7_m*}OSP%Fz&zr}!%)PU*UB4=p zFL*|8j*V|Ba__`xt-mnMUUftrg}~-PC@rqCto3Bqo`7AyUZo# z!9?z7j8-i>=W4}^Ov3lg?5d=q#WQpjw;kWml3upnlTAVen~Jac2ZD#aPV*mdZm}_3 z$E+%)0t7{7aV@L9V;70&)!T`^QvOfx>HXnai%m${gzR1hg2BEvf0kv(l(fG;1#X5= zFeVQ^c*IbM#2L^up54Pw!?>iOl16~ss6O1a@0K+t4WfWu#SbbiF}&(%uQC^mV)sev zZA1V(@`WbNOEzu9{F!4jmTA`eqnY6~*a&PJ#Itt!h^gNfVpi#^=1TL~`7>n?9>_6p z=4cn2h_Qlt8|mek>zkhRA1(0*yeIlrA2Qi;+_x*3XA%--TzXD9#Yn_ZJ`5Ki%2r|- z#2wwuyqNFKb*J7;QwO(vt2>!|TosRVx+1O`MF==R-{wpnQWa}#0 zxxV?9OtbTlp$AZp;b_CS%+;4e&A*d#U>FUO=!&Oie>cR_M0v3J9B8>kdbq^i7Fx;u(0>9cg39LEV|c8%6f6hFROLd0UT@0T$sLm(qD9 zCz+z~5M4?54lw-u*V8T$$T@WA+lP>{)t%aSI8K@Ak`>6ty$?m;L}F#X-@6v+K15WPM90ln>j7ksF5 zj$CWYjq&1NZ&En8x?eSuaoIR>?H+k~XFgFh*p#3bR;c7yZNga?#&4c^aU(MNj{kkw z3NKXP3gCKMj4!P}8fVi3ZL~q&Hc5Ov*Vo$9-N;#7E_|v%cHJQoG2hWv>5eU8Y+R%U9tqBkv#*1rIoGHRiSswO`z++*ejI2vR= z63(61g&H(goyZfFh&Y4F^H<9(X>N2qB4!*Bz1gPid@|PKjX59LVU8#fEDZ@Xi&>r5 zT;BK4-&wp7`7_%WE|K=GyD0pTtfyG%x24|Muwi$9`#--bBA-yq}Uje9tRPzts%d)-7yjF{Tag_*^k|!+lhyhfua`@)2Rn~k8&Eck>k8>$4 znz9in1BS)Hyi#{^;@#o^?OONU{@K8{D1io>PoADRMENH4D`!T+mdaSXVLUm_ET^O4 z#ej?96pOOw`IwAkx_d96vIQr&Me~Z5Y{DsNZwN;^6*J5@t&_S6`k$=9e*k*9XEUD; zGOkZfWp^y={0i?j(I1xSxXZyaUpcOxx0C+pZ1APBz-SA4Om-Y+alqlK z#;M!_jrp^zNvqz2<>K`OO0;diM1lto#TAPQ z%@l(U8&_&m)+DEOdvgj)Of&_RR=(k^7{cr_r<%Tvx<#JNbTJGD`0lngB0(~jzwUdDnu7jwDD8TE247oqo z8cO~^%>xqKNP#pu)5f(;;=~ce8^)lJR>6KvXMY#Nh)XT*((gWPmHe}0!|nWiB6nY- z&6=dq5k$>u&Ii_=Udy#Vywk>!9e$psl7or9lL1U*5^p~?jLDuelc z55swNU*yq9j7cTM<+qJ=p??XzYTmU;LqE^bIcH?O?5BJBe%PHCpdS#H$!T+w59Dqj zR&-)_RmX-;?^Xau8#&dQ_RYqXY|noRcYD zuf-^H8YM9-|HaKT*Jsd>e46#+J}|BF3O~sz^{m`o`&q_!7s9z)Ty5(vG{f-erozN& z_VcG8etbS1^ad6!%pm139!Y^YmbBb>nn*`q*tk%U29%&7_0sgF^tz60X!=Lv(h1jz zjpg^+X?x6nR|p>ev1JD;vW? z%qp!R>X*ogei^afOK+FoeQ~3^UISQHk!|NWa+x*Y-Y%GIdWnx0<7*SkC42bWeDRx% zTOnExcV(vEFajsU;bW7yJQz3&5DHjMu5TU=Gd>qqKC@1}jhg%m69Tz1P?y;Z=h%Ox zf4gRe*sowXtYDB<;VxY6)=toX)6L7X-BI1BNP16YcWz1ZRmS?im(0lWeNm^rPP@Wj zCm>bwM?f!k%QSiEA+CQ)-b_Hz__t%sgY;#m!9Y8kL`M*%2}RMUV_t?m3Q1xB{guEI z07`y=pyHh4cyoQi+-r&WFi*}qh# zP7*cJvq+vVFPO%mQpH7*bBHWA5xatg3OEn}HIM}jR&NDuNX#Vym4VVcJiFk?Zq$#% z{n!kus7H-EZYU7!qg)d|`6^e6F|MP6>DkE@cgkYr`V>UM-g=Q|zJn+L#}LXHLV3675G)Uv^&6~=6M-y-DN|0RTx~dBP)C9y?Q7(s@49Grt7Mpa>UTsaY zEoY&;lowLQ=HnRDxHs`O9!cHlMxli7xj?XLHbwlHjZH!*qNM4qE=P?29pV`|$t_AL z__lplHD7W_M4v@JpRv4jmq75fx%vfDWF)y#DTF{!@Fs+vzp@4E%JT|qND8UXy$yuD zm8Sc9TD|l4gF^jHk=`;%JrZe!@@odt;BqPf;J)iqAMH1B-QBQ29x1W2HD` z1ODc>mK>$dVN{}LW(Sz5`s$jJ&79hd@dSa*B5kPuSMO|~NxGb*vjGQy-|;z<70TWV zqICbhjTXbq%lfT#;??|b?qrH=G>JXAP2qKF-VixLv6T8^`51dc6T)MV6O(mFc*_R2 zm3sNi3hYmlXox={Kxyvcxyu1)Xp9qf^L4iJ}T8|LW~o%81XpO(9x zOHg(g1INhj%I|D#v%HNm=Z9u;D$`#kxiGo0_-!6cL5O+_qD((*S7TjK%rkzGm9C-EjGniP|K|0T zS2rD0^b&u`>c}m)uB`;o@Agn_4L~i+iYtXAr>MNm(MUqsh+yqTR;MULrhqC-q=yIQ zpj;j80+BGb)4NK+YQm*yN>3GWvkJ@3EcnBr_fHOCQ zGoIa|q$>@WBnIV9pBS?Ue^%rjSxcDjtFHAisk;#zU!jqw6rKy0Z&EL0a=8pH?Kd*w zT)Fq%C)M)IK1}?4+TJ7d-(kZAc%V}pt)*-$rhJk=$~tr8nA*y~ld6RBV!`@xcYnPw zAQMBt)mz**NFIf(;=b06`=1fL#@~X`=dg&Rv`zK#ds>&WS=f&L-L2G6k>MdeIWJ(msw%5(Yfkc3R0%#FKy&V6gZyZ3Rgv*~8H|H$w9kYLVD*EZNA0jJOjt~2ah#UQ9 ztmk3q>1IH^7&>le6irj_HV)j^a%Y`PK8D?s9z1;| zYW)U9^|nx@olGz}Y@C&qb%9O*v!`*$t_RTE2s9N+ajRv6=Bh!_x>Al?7Buip{!8%^ z{;X^2TGS|{WKtu7(6cCjbgyIuM)X8uB{8(yEY+N1RU~4{Pdfw;!QN$WuFiSE8{Phs zz>1#S+~|Sp z*~b2b|Jtk=F80T_Y=`g;7x0;L9h>_y&}S22zi7T5KQ%+;Awvv^ql9xZ>B=)^i|l;zymN!Nl4I>3|g-6&w2ep(>i!z7@q)oTE7JIf%=SQ5^m_Loy>&43v+4&Y}kPu z{t^e%+%9|0urX;Kg)eqozwhd+F{m%#Twm>NYzgI_KjZpe#Jm3TC{wKIIoirmNwDak zIU@`s-N6m(kFNpQ!7N@(qe<*Bjv%UR{a~0VNeRqk#5aON016fC zm|>}qx5RDd%5m)cHzAKdQxw)!*(YBtxn%GTM`@O7c`o}EqDNDDG4Q?#FID<@fn!^2 zh`L+pn0xONg9YlE>qn`HzJDvPi#6+;b9AjWoANgg*_~%S-}P^9Dr2fc6`Fe0Kk=31B+|a4-A3@Ip1Xxt&MNn*)c~ znaGZs7(CD){m2Zr;V$Otx9y+8Vs#E$Xk=HV5v5JBCn1hgiiBR$r3W{jEqyW^>|-B4 z4bo=G0q3oVwk!iF%(xZEwSDHthI%6pBFC`!A0F zsR0A(3%Nk=sKR2voX>`t5g2&~#ghObD7zwG;hqPLSQZ685h3`vcxVyI|2>D(ix&Cq zpEB;BU`)^Abuc4i2Xw`cIst^R{LOS`{N7?^5My&l#Q0S|hC)R3_`9ix#99ze;igrO zO)G%tblj*NG<`dOX-`8iBc%uCTUNlVQP)}xE9kF*hS|(Yz?43iZvzd9|EK;pZv~KN zcmB+nqpnmEIPqdW9`j}I)7m^?jCP187y1@nZvqb}fy5MYEwgFT3T1q|SvTv&Ih zSWp4aLeOOlc!Y`)C;x?>2LcVZfq@XZtPPk205eeCgUlV2T08WR0?;yZUwY7&0F4@Q zD6ZXPZqbxh5|~?p(HVOo6O?d#>qr#s&E6p*3{!;5D}wNM>WEwx;l>IUrO36KRVfbN zowT62XenIK4Y_cK?>ze*67+fhD0&ZynZ1(l*`blARKNX$f_*)@w|Qjx)|S~{4W zg{F-5T!3>`Z;gVMK!bwJmNx`TIIbk5-Pz$|Q}`;0HKJxK(w-)PHYOcuY&6)E$D?K+(x~KrV z@>X&Rn&ojR8$SgHArB4aFCU+11sX|q>ZQ#TQ1IYmd!8mV5Rna{vB76rKc|8L4K=u3 z{^Aht2Ou+iVf6%>IFRV79bcdxgz_-Z3(K?jd!3$9<^kSDbt6qDkuwv03jlh49P`s^ zesG`$z37)OXoE&4=mC%b$QP=P(mV+1W4j8Y*PLvsYq5*2JjQj~O~w*mjLnfQ zw|OZm9IzoYqD}*EGZq&EkCJnq|=-})xx>#09^acY1!o5(%A(}sNR z+J!R{!0^2FZT7y}V}S0dbT+g8S+!UVWKx}16*!vt=g2Yrb;eGCHR{%K<5>sO{N8gH zcQyj}?FXWR`^LjI(vBM42NS@)2C?u{su+L_LwMF-tRF4na_Wf9cag(*_LriXPxrvandzU)u^DuH5E+6)}y;xHK zbK=DS$ucu{VOTCZ2;an7-drIX{ncQn*G5|5QQvqGstjK9XV%(cMV3NddwYYq!VDvP zpYQO_6~#~25I6c~MUhSfWv%hUCUDffeV&QW@WG-NffcS;AiFNI;=jjS7;xdJv@Bt4 zw-XvWr3g(PzSci`VzjQzHB{mzst}AYxSG1#OI$=b-O|Uj^f0P))9|MPs<5t{89U?# zpj79{CO|7lTpqRgK6BQ*zUcuBN4u(t5Ppws|HONY;?T5*=G*ecy-5#j#n>Of1ru4= z_;w}FGYfg&W7uk-&J=*S%!(8BC%5U0j%o1hrCq(-O|3?#SD?Hy!;aN3sWzzRA>#-N zgQ(k&k5HAjrZTF4B>?GJnU`n&NWhU?u};;z!i9ZXo$uYNyA}Rawaq(Q>L(F5NX*(7 z4J~K2SGetd?6yyEZAM0W?+oA)!)YX_A1XS`|A*DRr`CZAboH#^0&qtLC07TyJk^U( zGQL(8(Si@V6t+|f;wy1hI3m19Zo_WPXjxdEXte#`+B@&4rnc?h2RR}t#iODk&BC#u zVnM0|5DrHWDGH%UQIQ&Y@1O{HR6tNb=_pbXI#NRw6$L_(CLKhI0TPfB>A$(+z4x8_ zd-uKH9pjDh-XHJB7!Dbl?Ch+)_grhu`JJEdv&!+0P#z02vU~|^T5Ojx^|bt^t__`S zVztR)&qYpJyGF0%lQYz8+>Tu^FZr&ob?moO0TjuWpQ((HXG~wn+1&N`tH}Z!GGd0HPIVruO!=an#Z1?VWYiV0;w|H9&_w%^Qj=^avTl3OO%boj9fY?Oi zawos?wK_4yGFoUyLT?1AXq$^ThMkv@J`C}=TbA;my%UPwnNtCL?ZUFgc$FwTdZZwA zC&PVYLA_KW+ayHGxi@w51Lq6k8%?z4X7aVWwWFej{nt;HWnap-xn9!S=chKQOEB!M zRlO8_TSTxn)s^pZ;e{$f#$=_5iharLVii~;bp&WSmP7eE)q}bLx)<1ozf){=v9gQT zPUdbN?bO@ce;uZ?Cf|8(!}*RQqQ~uCjp?N+ZNBG}l*h<1-bw{&pkvArF9L<9r-bgd zm_z8=GF+r8g2S2SSY0UA=(XF-IT3zlw{Aa&OI&eFTLeH-oTwC{4MnM-Eyz$zejc&@H_~a~7x>Ck|zi~^(Q}FCXqJT6p*^=VJmxEXi=LWnM z&qbRTQy}%6@O-;jAoiu^X!Kzm*_O5IeA5b6e6YaXx|bzs_-DR0P!DI^`qEqu=kp`K zFe;m%Q)r_vh;!YT+gt$q{W!HjdrBtM91XS={n4ASqw-74kbPj^t&@+*bE}`EqBgTn zM64{Wtvr9dqr-Y>v-6-$yPyJT?#WurkYc@0LjRI-!r9Bz2c@+Au5|o}<8qV1hY77z zC?RdNXy0q?8sKN_|DwG5_}l=kbfqEU$6wA%6*3`_M1zXwF;{5>3f#XlT51((1Rb1d znAXr9gCkHaQ;XOr!gI&h%k$D)nqJ=gTr4F}GSCZ&?nUQ!jdycJ_NELK@HEaTN7k%>KmtqOT4<)E}nUoVD<*cE--EFg@Tyc>D|4nOl)ov@nVEaTp^Sf zy)XOYw()l_;%lnpa=U#J+axtzl?m3JQ6MS%HV3D8*u5n5cbswAGtFU?C^WfjuO+-I zebS~EbKaYwkGp>j$3A?hL%4xYY%R8By8HP=wk^pz;W0(&Tv}diO(&Mzt9KK&e2*QR zLrNR;y8Fndv~oF$=pHAF-HGd^Y|*M}I-`lkUgr!$e?Odb)mZR)pW>nRPb?qZPL)9* zeyM4BWx(r61NXx&UO5GZ@Rs$k!9Jp`()LciN<-~ZbrY$AgR#T;-(ZhGSs-S`NRX=g zO)K8G36(ZjYQ`>__K@004?WKhH_PVs-d&Z{56@Ph`*{yGjKw$?e44H>>ytGgMgQ{4 z-f1b9Ihni(*&SC#&4*llJ_#EaG#O=@;9W0c*nf&t?%q!sadX)`$szD@|2Ly5sT7c% zxI0&r(wx78&Z4(;DJPa=)d}aFR@}SGAirBEE#Z=Hw$dA)^i!jo>iDM?&eSfDp)ogt z|5@K}LlqCkeC9a^@+h)99?{JY_^Er5eNAqW)wd;GWN27_`E^WiT`EiZYhIw^j1Grugqo6AF@Hs=G96qMcC&FJ`+smZ5fwz zW*5=2sV24XQhrn!!Lkny%yq@nHDmpIrdQ8m#jXniHvHp8RkrG9ygOwfaP`kSXG75% z?{;xif;lyVhw4J(EH5-7xd~G4d^Ef(?dXi}X_JZqsREpk*WF>!_$tShlA`CMG2S}9 z)iJY)+TwE;I>{RE_8Z;c7m%B*S{o_3e$7)TZ`^U6knzAYodFRwv)h;N;$&xg{ z(C7>u)ozPZz&Qlq%qvcm;8aJ7jw(T^@vAX=q6D$pi6k4{CS04&_6{<(aCQRyMw#Dd z&q+Ox{84W?hhC@TsFN9>s%SU)O`3Kpx54Xf?JEdHt@9q&K`C^t+8xy)I%b4t7G?%G zavW_cm-f{ZTR)ul$s~N?Z?Ng?e7dTT);FKoQ(PY{=whvza;bSmSC+R)$LQgPdYa!kk-}Ps%QxBU^m2jr z;CW-a!C6^RzLwuXoZcR5D1u;ao1|LqpGB&^1L&m1h$UmMT|rUMZ#yy8iuF#_+(I0R z3FEOPxR%T=$rdpxR+|XzVu?GkH#0k~s}Z%S*k8qdpQB)XL0AcGI+8BVeJQaP zw1=xkr()A$EBxG+9;w~wC2Z~u6|T8Cu`Vvo!prk3WsRh?RrPs$;je&@?V9OUyt_U8EFL z$?ih$B0DJc1Q(PT6E6su+A3TcS9!6Yjk?}}_qzM*>mI+kyQe&Tvq@WHNjKv?DwT>& zpYXfmD;D=?i#a*L*o$nh=?l$%(P*g0c_c<}M`7y$H9}^B+ZCHJ95(uzzLtfetGeX1 zCtJrc-i)D3Hw{gph`vC@Da~%Nw15;*miFA$C$<&@ zVUfFamE9z#sf80TCsp+eqigIVTkEx-MDrkT^SS%d@wDq)p@ZO(@9+)Zt5-quxZRdE zB&m|?Z}bF9HQ{PmBaS~GWo9Of|Kg0P`KdC}gUSZl4*rkTE^+RJu?6U@V4%a?IdilF zDHGJeAu{P|%L#^5zR}A7kZlm6u3-MxD ziFbUDE2_@S*iw&_rsbcMz;iuLyyGYTf8!Nsmv^;7>Q5h%_n#uLs+P;#b$!5o}q$|@- zeTE}zX=4J|dOGhVI!@NJ#_7>gUutu&&`0b5A!Z1M9d|W>rfoBDciLt^m?(Y3tB+Z( zoN)nN-e>YlU3*ga;*vUO=QXq!Sr=5evu{VAw(#dSY9Fk3uEA$c|}PI=wop6;v(M zyF+cQ0Tp6qf&G4iu3qvp4?Hp#OSbsCGlDK9&JDK)0%IY|!wYTp)52?cSG77SmUO}u zY%0bY_`G{vSo;I}Nc$5ZNe3dIs-|h`1G>+KQBH;8pPoO|BiSj|uE#4(GHmrqM8E0^ z#6|4Nt%&2`7B~5! z*EEpx!{WW_tiGMRe^lp%YxNQd&vvyiwO>MoqaALrO(@7fOu)Qm>ImSdZ6oh z?;{VL7?5#JHV5EFG)3x1m7Hn#gakuMS7d)xy{)Flb5*E_CpfVXt<%hPw2Kt_sm-HW zEtd3wX3d9~@y1K?q($Cq+7CM;QgFSMp)`L?`}Xsp&~+3wJg8->z>@)`Mu@Ps zyH!V50|~#Y;Os=k1|Qp^TzinCpNA_^-AQy1+t|NxO8D};davp$ zZzUE|Lb5XAsx-)>ce7MEai$z%xYf!NPOmS>{*Z*~0*mwW)Ahu-yZpA&HK}iOL{fFhjpg5J^?VXks%%h&3F%y1|w!EWd3$%$j;Ki=NRI*E~ z_RJ#!Ctl)Tb=|On;GS^HIHPG0ZOAzy`D}!uJBzwo37%Dd=;7#gC1&c6sfkZ_b-3Du z$7wnSZ;YFnW*j^1>?E;KU)*pU= z!8(BvRQ{iua8gMiXY@SyDXS;tz3AqFsd*|kUOJ*_qBWt7?JG#lS9d#aOdgJpF^)Yn zEiG`oz;obi;q&JC#qvE|`r)bzymDklgFrhE5ZSe13&)&VMOWdbS_*Z2ma0~{)An%} zZ}$BQFE4qj(QKz%6HW}M4#9zpfdLt)hovVBth>8zhqY9IKS$DgM%u=+E|cKrZ6*8a zUIsjf4?J_R??&@I7Ugr)j)giWeph-|u+<y!JJ0FZ-6|qr- z6@$ia)9^W3-&-jj5Ug!14rfiYYQlpsbFv2GubWJQThw9)L&m|ia#<9FtqYbtHEm3l zKV`%zL7F(u&KjTP@~pEt+Fiju^@q90PP5qw<}iOjX4P#$`ji5|Dme~Zc1E2_A)(yQ z93zQbSWh8SV~0_Fm##2MiP=bNRu9EbgR`)yOziwqe__Q%gGRl*a9Z~3QZomXPeiUhCPIsy7KlmThE;i1#f%u#@g)!HCXX8SrD>!J7RpBvDU=BK_tt_$wh z51~ljiMhodjofY^`6+9Hh{KEaiynpYzYu{I7g@1Gx4xW)v{NWZ} z6chFH*iqb#-UQ0DCo!?2*p=j~b%{WUGG(DDJ(|1jMK#2ldtSg08Ta2GVFb^$;lW5O zQBk|YO^B<*3A4b0_62e^L`ruzyE(Ba=zx~aqLK!7i-s{;CSl6mVF1mDVhyZak=UKE z_HEyb<_wH%xOGR7&!ElnZC%+no~J}=JxW|g!;?HYk}4US#(OukJ7i@F6R)Kcx=QUk z=E7DM4!bj3JpP#@`28BrFJnXY)_MuM=#SWt!9z6(V}Ea`{H2jlW=<5#AuN}O@|Y~^ zvgcilchgx6%^)8t3-eoua~Z|#XGX&&ckhi&#~u}Sn_lsa>?wEx4wo6j&0UtyY~jrK zn5(Qsxa-QK0ZQBX{H*Fjtr|r>bAxStnU5eT*uxn-H<|*c`zxcDR4c#_hlP8!v8jK@ z{`SD0Ht8J2z!XBUsz|LQj8X_Y8l|L|aw5ep)$Hw5IZiaaz*CpAD{_sT9bTb!4_?B> zcuCMLz9Y5ppWo-*oIEcWb~7a{GtOntuI!73`I8!1HY?hi2^5cqC*eHheiBbk9@7da z^IaV1FM~GxpGHQ$0=gP1m$d;9;|;&x z%+N(BMIy>8;w?iRD>%0<`kzT65AaH|3+o^@F57WrH=;&ymuoxkP@mNzl&-^ol1c-|A6pnuS6rH70rD58UQ`g^HPoV>0 zesTI*&D8JVt&aRIjvqgMGc05!#@P;_u-ak#STJ#Te?L_H%9Zv%k0$I}`~h@fVDZ;k z-DkYFJ*Ff_neGZBVAJzj8R&n%^3j~77W&-=6}?dz7K72=)Ad*eJOL1_ubxcq0E#O@ z^q)9*@FI}KfDi*fToJRz8D3c+RwJw+!o(x6A&dmQ2jD1xx7(eQ#yFN-<6D<9fQa=X z+#uq+TUuI5O}}oN2f*bCuxp4wo(tX6k%Na3tn|rI^-jQoMk2ETH7R9)&}cy+d1PTX z<5>5(RYXIH+oA9ezyhw25yn5d9Ey4G5T*YUSt4h`h*y~Z9|;)$p0NxXv;QWg{Il84 z|J5;hE1Cl69u=`z^7uGl8QHxOAp$7Y@q1+=mN-bKDAUD**)Ll`R{-&k^u}^KI%1{3OTG%OO1CYVfvKmFvrRkXU(0(aPuM*XV=)z&h~(NCa>h&xKFOqyxBvsEY0)aSMGI@F)5d{zbTy=Otj9VTi%E81Pl!PRrmtoCs^7X5c@zOF_BVZyvItRuPeptg8NL8 zm`zVgV`F1dF(*(}0hc^eY75pE`_J5vGh}06pZxW?{@s8GUJH!L0w$CNKv;rFiyji_ zIfG8&{p4}R2k#JZh^NAJc10HvNo4>!gB)ahAjAT3<%u9@IaFP}M(M0TGj9iyRysic z4UzLfnHwz|xmX~`c6kEh2Em*)`QJ2T!<579_Mc~p!uA-nyn3$^O@IUcR&+s<&Yqb|dw!`lk2{>V!{2(a(h%4_v-}KnSyK4N zh6c^LP`+CJwh8&NhS6(aaRWqBFvr~Mtz_aMMg)bf&R;#bBn_pNRqNtn`3q+ zGS6^h67NvXu_?fcMnhXWYHD$Y*u>NC>_+N08WrEm`ZOZqjj{ZUBqot*hTC6IX3LNW zMuxcqpsd9Ep)Vbv=O2Fldi$^f_)Jg4yh#g|H|4>1CB8Vp>)}m*HZ%QT^KX_jv~d30 zyqzn==)C%`ZniL3dZ`2W84z;{pGOcFm=BhUR^aOZt{_A(p&;3^+}Gdx(fr2jmv`Vq zB_oTLkEDx-#=t;`YbF73vw1gZwX{1yzx6a@s}v#sy@Ryc zs;xkiqA^wP*UmA@0%MsB<0{{qVaON_Vo@3>TXm2=3O&jQp$9>s6Cw%S$Wn# zO1RwrFfBM%i z0TWfu)RZ+i`FwCP1SuQHmw^n(5Ve63lS%~gHA7Bn;Pb?Ku!5h^WM2I=AptqBb$$Av zp#xvqTX+!2@)V#*BbM>J`?{*e1xQ;M!sU1FA2UK>hQJ4`cKDn0)e7&P&fMzF zBIuUh{PE*e5dMN4i@_RvUZJ#ndl7)?kDWN70yYmFrqPC}5P}1xqyBo%$OQoTUm*t} zKy#}}&;EW&H}}Al&kvuLT&;1D8&bpfc0C0G7NEQ*07On44SyjF`;KqO(CzJ?yA+zD zzPQOvA4m~*1S5ugv|5JyLj1*u8?`Uv(Id9R$#dt<>AGo!DXwr&fFVYL7gcf%0OXy( zVLkw`e8Bf17H^^Swe~0=#p6KW-3cO4B7m>;!EvG$Snn=F)py{+c_j`1xhPT%cf2J4 zdC|6|qr%G#AYxw2fDuapn4=NGiGNtRx9p>F?b-|E%eVOWSCftrj2gY^Oq{O8s|1WW-lt4AYnZC|Xh z&3GlEPOf!L`XCP1l7# zC17Zz-o}c6;y7L12`9swHxEwkoXntjv#cT&J5p4`lRSCjZTj}V?Xl!5(^mN{eh`+~ zevHuNY9IfFeU_7}A|Sseqok~S6W`<*tRyA${*4|9_A7zdP`_R6 z9P*xrfjV~vdDtw2W>#7j5!!@FQ|El<$l?IEXD#_B#q5~o)r)Ia;Zc?a!x$h!s=*WP za^_ZhAh^{4pIP`JukAnn01zhEjEdOTMh@0H0vzXI}uMJm~Qo0Jxh&4YNjMu-Et^&uKn^=(kIB03*G95QxsAUADxd zJ$d$k=H`Zo8lDH+=@EEVM1nX4Y!Sfvn2^vpwtzwAkc+PqnczEIK~VN#dx=MIr}uu& zy%~@P)*CM&XYd}LiXq9d(|$`2XVLjNLC_`t0XB7yz`2bF82C?S!9$X)q@;9a0EX3F zdULx5d}9bG_mP(q5BN!(sa&C6Frl<(1ohjB1I?2^EX{u((6s*mgP2FxZA*U}5`(BB zuKOf37g7dCNEME6-XUK$aQC7hfGU!$BRU_D-^~TyvNUdp0TJA&v(>x}E~_FbH4HJ(g+TV0lQlu6+Z~>FJ*{Q>ro8)ajQwXCRF`*nFge zoR{Gg)@>T?5!#(+65QNA4v6*%(7%Tv0W-1+pn$^{K(Rk8;uo~w8v;PT4E%r)6AvC* zG!G%ef*=mQ{pjoI!td~9Qvcj_l%?-|)mBOn7~mZq2w+U(n7{L~&oRxB&%yfh$WQtfQt#qnv5z9?Yfu*>4qrsd z>`2`tEPOkFPY7(p-Q&M*!nD{k>Z+0aeya}PexM?|IulR{6n(T=Knz>3as${n6Q(8U z=j+&NTkQN+uKy+|H~}|M8}eX-BVq??H(`=$80pIUs{m3(1_Wp^0rbQV!}f2zl%Od> zf>A;G)dQ%5?ZE%D>CRV#yiORxgj+mjr00c@KMXu2tuSrokf>!U5hzF1ZCxZ0#)k0^ z3Pj~{)=2;cmVx`wLYnNFGP0&XGXunb#$;I@%z}{%VBmZ1iK30e+G6iA+*$}YsQjti zW9~f4!N8+MfxVjd7FJlyGc-ZKW1g+sFJ}ErW_jXpylao8OmPUWFxVwv&*X#LwUgve5$9Wvbd3j$rC%2KBnVLeOY&?BR zR*6Dc!$zU3yh*hd-#NP>rxE`XwLYO{ebM~7wcXX5`joR*tu1btTi-C!-DRtP)5^%) zOqgHr0RI8LU53`y7FMDH0;d1<3V!pO1_F<6s@=r9thYF&ZbhMNzDoXE5ij-9h(ei+ zJuQ1o+5Xv3+buQahUIl*GoN0KdOfG2$~7_DV|<}qgwKBD zv!j1p_vv6p{fE}WWvyoq*jXM^*sf1^y?S)Bi^01Hs62t%+Id<*1F>2;$I`o|9RJ7%fg8u zFKhWzr=$%H_Z1cv(z3D!jCWV+{rVK9R%kCcJ=$SDGC~)$B2}kkQ<#EhUtgb+HvN=WMA#C5&r)B_wTzMGX4IeMrygNKH;L}+=PC- zG7lB|b7dYu`>`ulc0pbdZ<};n@lG#hGXC_{?zX>m>uq)QruFOBE9FH-viK< zsyb2HMGn^o_R$#>x9F9+ zufIORO&81{-mf4l+tcv7Mk;Wo-Ep(9LA9*1^44E9k!k5p-(KrC=UH)SyDr*rvYzqE z(YhG+v$yx<%%x$Kq)SE(f!^N71{+g4fBc}VTel9Etzl5)yfEGGycDLu`SsSE&8bsV z*M!0@&9xUf3f^cwP@krwrGw{kb(c(zb(@mGxD2 zwr5F+RJ+6AesQPS3o-3MyX7d9slg_>5|_mbDH;dW)YacMH8JQ__`Pi_u#3y*38qHm zSy)*ex3$f#&c!m^_3&6@)=|7sdU;8?BUK6?;XlzeVxX1d(OzJ;8H?wE4@gcwv-=3-!l4IaskGsETnP`06%qqUGTp+j2!!)DVnTl~qU8}%$|IeF8=ck90ET`OyyZ0PAw0+a2 zP4-K3y+IKXsp)(Y5-h^kKfST4kyv;6^5xvz++89fTkmaRsr$A(Icfdr*-`qlPY-#7 zhqF8j52vH0bwdd3=Hhy(78r8D)wW?lcJaZ-p0UYE*``#jxEf8D%Q^_?fXpdj75dz&lAI^P9_hI%0+b-T*EIR`uN zR4sqJS&@0;+m`Oiz{)qbR|O$$D8`(;I`Om0BlWUH%bmM-&o-W?9I@`B)yOgPPq~~E zjis_*7|!V&9P~{qo~OpQPTsuvT6yN}-E|Z(U$-miHbu^`m$l&*oxhF^w!^kKvY_-Fx<|HZPjm{zSy+j(PFi zTGQ{DZ)4;FGaHQ>lfx>~qg*7G|NK@8?<$P+y#KLB)HR47Z%yqHJ-Z`S&Qdbz?%Iu| zcn;}T->p@6B9idMmVV2YFIgt4_V)Hyuz|5Uk3tp~MoSF8zSt=FXY6=xe!eb}9?2@_ zBE-GPu5HOSWj5WrcW)H-pI1PDr%cqFP(i%|*jvhJ+AJ9cH5CuJ&j0A@ik@0JA|__y zoNDkXbOi$gga7ny4vqtQ6&nh%$Eh}Lsu(R<4mcMs+F2KOhIuMFI@+SMbWP!8-I>rM zmK>$;-qGQKA#ZgKrj_t7RX6GVd>@2_7o2Ll^XSbz4<0@gbX{`tXBuv3Nj4EX(;aqH zRyln<){0dx!n(R-zvqZ5`|3-nn%>W!?>chyD9OE87PY*aan;l0mJ=>=HGlgSb?oli z<}8!PnL{6fd9jMOQ&RRbA2fDHU=G~C!tP*{bUK2KLtj3h~q)RD0){c?lw^kY$7=%~eDenF;+5h#zzO5Rj zzod>j;0~>azi;E`=eMx1c*C1kcn8ml*>s^nfR~qdc5bc{@lv0-JlTKIX>qCvx9brY zxH&l`rL(j1_ThH>RWHwl*BM_fO0yp3lAftrEDca~=JLJW6)r6>^!wu2K*rCX*9xZ^ zFOSX4JkHLs8*M-0x>Q(gT35cca>IpLyV}lo_iC}&$_Ywq4jnpV_~rQuY@XYGejEH9 zu=sbAl6aX9-H6Xhvo4a_%qA)O&U0huz<>`T)`*W6$&2bX5_+a-%XVDZaOa+PUU*5XB@Pr(gffoFe&5{1(}2a(I-TLqi*oZb&(Zbe?9qdGn_A zbU`lP{{7^YY8o24eP5#N|I7+1^KA3nz;vfFkWH_@F3!Tvu1RCGG39b!QyN>Ma>7dF z_|@yybz|?I?7!&2;pI1kZL-o0PpaXv!DxHYN;k%X#*eCdw6(QMYiiEN@NsgUq|gcq z3MzeDT3lE|A$v6F!2^!qWdwON!fU155sM#gms**GuN#)H-h~X1_2KT_yB?{59~zQW zvp(QL%RUN}@NK2`z^3-BHvK(4-S|BlFQ=mD;scp`fHqdT<=PHEsm|UIrOa~z*?$cs z-K2@%Uw^dlcK~IV=f)i`8W<>Dk9AyX^#+Xn{!Nb*%)!on%w!P{l!l@^H_^k~0~p32DJfan)~0ps`gQpp3CHQJl(OZe z8L5=)k+uRZvfO4?Z@a7SJ9D_x(lGGjr+?;tAN-J}nHSw~(!n9$urAiy!q#^C`3Uja z9lTOgOLaD_iEYKsq(D)bn3$y0*d6mU>&K_dFFl zr$Xp13YCC>038z(H^=VX9*-YCrtHFBY$^^`K$yE+mv0L=OdC8 zmvQ^0U%y^_e@$q7elX3~vb$pa;lqa&Gp?UqAzh!OdVX@C;f&wTqe|FqC-9>5TfeXS zAL{Dv_9!SQpzJCwEiKD5`YM}a*0!3`IWoeJpV*k4S5pf`b=XeNb#5#9uf4rpv}4^= z$0lkI8G>z0mie^umG^C>{+n8!qukaVIl3&V?7HcDwka~9v;}H z^gxQjAEuK!J{o;}K{EK6QS~Lk4*)J6n*0oJ-@esFX4M_2Pv8(2*HpWFnFbk+ZpV%! zE1hlP{Pot0O9Dgo4Tn=D?8lyycSFQR1M=y9&orvDZNSqMw;z+{HG5kVI3K)hFE20u zprR6hlKedSe59mI)CDRrF)_=rAIHL5RPJ*JFtJa%GAzz^2P&}vbnv`57tXVC<;vBR z+I$-mf5AlBTir&ufZ7*lcLW6mMWshhlt>{a=mZMK?f{o<2aISkjLD6(iBsZsm>SsY zJQ~0%p;5RnQV@-NS6W_v;znD(3Ke@9c3Z;ul88y80)-ZjvVNbG&A_7y$@QByg@pKH z;dAry)>CvF5>=QN$?C={#&`mArP=p}+m&IbmjNGfQM{0JkN3JXRW>!Lj&=yjPzjne z@~x02%lhf*;qw$))YCfk835zD(dS>jT%g;wjcg-!AUjz@!}#ja`46Jn*C&Gfsu}NI z*t~hOVu_2hzmQhR)_WUwa8kTB?l@$aHNH60VX{}(?+9kIn*g(<0H-+}wQ1o6APWy2$nD(W9ju9Xg1wphu7P1eXB2%WyvQ z{`gqnj6RJq+RMWXU26Aus7NUe2)6O)cZPfAx|S5Jj|cLta}>wheOVquhJrzt^2+l zGmv87Q`<%HigaC4rwTfJ;c?ZqXxriMT>zY-O|>s$t15xGx;8r)y#pFSGtiDckb@9sdU#(g>f>yzPc ze(JHd+n&`|($HYOapQ(h^2=gV=_XTQ;MsNe?Ht{?<0E%BC94Y`IdbIGW8ayfZ}igb z!^LY7lzC!byeO@%PE|`sGZ@&{XXrHBdGBxUKJ;x>u)O}4e2?MXQ~Qqtk9h?KHmSX6 zcb!vLQzMCyR^|tJ9CO&%yWGFn^LHZiVUM_@A1E#DD#=R$!rw@-pJ}tRL@MW4(0Qt4Xh^iQs24;1dsN$ly;fBxjJUwK32MF?{Kl9$;qS-EA z`%VuAigb7F5u1VfW4Khyg=y1%yV1{252xFWYKs`xQ|&(K_oeS+Uu{h7^JA<2%=Jd* z+6;zV(s_A4GIe|jMWY*;@gA*AZ`sMKSFfThR&e0l@H(mg$KDl>V#5yz2K zNJALYmS`N0j`tVka^o5NsaE15fy_L%v@mMI=Q!1% zI*tw5jqLRnxO$`6SH?;OMVI-0F2t;E^Q)_d-!l`G`5%82G^pOGrl!{SN750PKHZ{I zW~e#+c=zv@hi?8n^#^Y;`|GLsSj7%=!~Fsy2F|t7C$MD^O&!0CUFzWmQ@;R^Mxh_lIw6a3u?5|tCFp!j%`C*_T=^pl6 z6xwf()TH($REvJik^cS!#q;6&k^!@$rY>H*824IL`_`JJr6q7#2PKzg_3&7(l>2PE zkDHNn%B`3uloh~!x@GstqMBtz-hLNbTic4u=0zUBw@!0Ck58C6E}063xGpa;P+p;5 zlo^z`H6i;%znQk&S!(0K>z^3i@7?Pz^`OahSri4W7l01k@ND~o4s>(}tbQrnUC??^ zlcPK;}kdiTqaH_3im+Brfky|PgV&B!{j8F&70UHHT&FtS3TsS zEQxKh-q`3L_k-;OdfyYi+xLq^&`qL^jRu*Nd+RsnojZ3(X9>tE9d&^;ezW~ABPY*| zDQ`iGUV-j^?3+R4Rg|qdg_(mUjUpNwIHF5q>7r$mF~B?K|ZVNjjW}hg^?8)~0HSY35t6$98M{ z?ut8aFxJs}F?h?9+G8acyE4!Of@oIIJzqskqU>zacA3+^J1^xpeWNwshNfh3ddC)e z`l&`5Dk?X$Ow~)n-!j&rLzTgUi7;AdsM+|by1D`vYWed$9clWRYmC=UNYYsS`t%lA z*a8%8$~8T(DUH2mAQeO-J3}8lh@NrJOf6H8m-o3Oas1r#W#mp|_QwGX$H}!K&l`3W z7gcu?j&By}!E%1mD7-R&zvkwrK8MtpRA-ImrFiuWP6VKbyZdSor6%GvJKsAVnn#iw zL!LDL^Le`6ag?2tb1fPfMsfRBmkP=klcik#Fe0iB0|x88mi=Dryb$YbJ2RqnqcxXq zYM|k`vht&oMR-zOPtA+pqQbkKdCcDlE}6OJ*1=!ix7b&caPIE~Uvr9~_$LFXi{xZJ z0&)gRx$`swz(QyiJAE@;-mU@zW5{<#Uj7d4 zN_1~0N4w8UExH5G(I7K5J@J^m$L8|oR^zr=b7{>q?IPXs0^4C`aBREW35Rq5IfhT| z6@{KtVc!H_pu@tHmcBinufM}UhU&mg=c(V3mLb?>U`{}^jDcu9bN3$dWAvpI4dy}g z<$9=rB=Uh|@8QZRx9&c=bGq@thyjQjl#1OT4Rx^kK`jxkm;Fu@N!8$W;74{8X&vu4 ze|)O1c2z_~1S!m9(}nE69F5%}nx?BvvuRUfp17!}1~0dIUCjW4j??Yj+#`e~lW>@P z<10{1V4_TdvMx3Sqww_&%!keV()B7yPpmhVWM&R#E>z6UENDTx$n2`CvUpOF zPwO_bUO`O^6}90>)y(4v*Iz=MSpNQX)@ia64%UDlNVgfhL`c?) zFVA^^d;GI{6@vc{bEsnkX5_hZI&v-2h`@6>ySucbN!RvzFuac0J#7n z!(Ft#-93+W_$LQ6oLerwawT=BBL;jxGffOicRB*z6s}^KTT|Vz$#pRRB-dw_E8eradAd_**Y9YC0a{d*+4qH z=EB z?Z=Nazk6%$fw=AJ>hjTi`O10nXBB-}dHLJM#_a$S>nKK-^tGmf<@au45nT-dB})g- zi1aDRYUwL^Ra4#N7{vezz3Rb#R@41*ZrRYl!Y6kG?yP$LkCL?^Z$xFthm=#uD5QV<5__5+ z;h-pACN*ej9$!`_D|_-}w0tm6-HjCRH^;Dl$12%e`<|`Pin<`3pv;`ISypzhM8D<* zqj2jbRNYthi?wa_u`pcYBhlZKC`Q}}tiTjQx3?@FjUvpDPrAc%^$eHVrgoFeh#b&boK#5T% zDpEbk^^y!!&Y-hZUA1F+>rh9=jgtAr_n$wP2lJ|q{rO#^2WpPFBu8rQC;c@81Hk&F zH^9<@Aoqz_P+ME;Flx4P;`)Q8sdk3KL?NlE@h8hR;OkQyUWnc{OSC=X@M-JxH^Gx7 zfoxI%2(0Iz4`z{q#=o1S9ZOKg?(fQK(tZaZzA7RdHaJs-g8)) zQRy3DxzSO~f?z*>{W_;xp&a)jt`Fp2dATn`y3^cE0!PV1L+JW{kHjuPYHy`-)+M<^i z73G#e=tSga`Lkz(tAE80GCrJV7(?X}`2fBvu;=6BK~1isN0|_XCxUrYzQmn*Y~bUH zq9N|`M{Q7@F@N=%HBo42kyl?fsysk)5M-5f@zi@ZsI~_sF|jYfuxB zd$Y%)2HjK4E=f#S;(37M|@L9b9HjeSX>sTRAb6<$48Wul*X{>3|nop3~M>K z1s#a!V?*#Y_-bxNdD+Qiq~MYV&#d`R-;k4&BYZlFaZYuMKFv*BHL$5gf8E}@=TC)8 zxw2AXc@H;?e!abFU8ai^4Z8&pyuZU-|M%Vjp((-WkI*74&`Xm-(AQRwbF3y&%zkW_ z%b#&M2p;RfZ}7ifO1Svanp2-gQ&B2OHr{dHEVr-R(WETS^T=q%*9Kr%Tl;xWtpQ zSxi)vgO6_mFk=OH=(tMGgp#`mhs3G)b$St@syxA7US87J1P}#RKx(K@RG}f#%i_XJ zT%}Y3eq}QlelK6&ugp7=lzAYTlo>iFQISCJ#tuFSHp7xUCA8CPB^F*H3PEqKgjVE* zs;*ZTd)j_5CFe`7r5-_DAmT*VX$`a-`CZ~xXmDaHpQ@CUZqeFxw8E-9_pXT_?uKU|j=*uLkO2i8a~Y``j3;O#gYKpD-V z@t;HUpP84wf?+{E%Kw5~%`` zcBXLyHJF-rudcp}bQbQ~bjMw0%;KC;{1A>%+Nl67(_Y+Mx=sbVRWgzE7yVujv&;p>n`?_uMU z9m%|^1~4h=*6&}0hNuMr0!Eq|DCGpu7%9tzW2H3ARbR-9&{@s?e0ctEKK}5CJ5>CZ z5Gdpy-Q5?HlfSUlvBAf>d<9m%cYL8mnsUfw$(ngeyBlBY ze;fl$i#dL8lW64Qxmr0kqgL(kCr^0VHeGIB=!iPLt`JNEh`X}pbUokZ-M8?`ooG7` zdizOob92|pZZj^h8?A_ta3ryuX;{1RO@^uKG1SzrJin)=%F&jIoO9z1mItMBqBr_Hc3OH72Vwe?$uRK;@4CW}~8}=CO@DbMq7907}+ffEZm}U6FP! z_SN9AeOg;JH!umw>V=<|oLkMnulWWXG`ECHDS!<~lUF%8k1IxjvS!iqTaI^~Na;?` zjhupRfFh_1PM|K>%NPw#op7W72`cvRS2BxLs7^jT{IqWw`}-_~HYzI0 zVQ{FeK$Sv^-u=M`w1Owlua%+Gh_wobwzopMtgOs%|7FOegqk9BKN@h--Rkyy2zKZW znLG&nHX#M;=7VQSZD(i4{fqFOR_}JFgcH+W?`)UQYDNBcs z-9vKn0T1Afq(HD7^mJa%bId1F^h@GLGeE zNOB$M=3JhpQ7l~KbEkz4Rti2ohS1@EMqQWbf%oVxUAj~XeuM~XNOrPGY!HU*U+7&U z65X&?zV&H{x0(=pe|9vR^xBiv3a4L9B93+RT-Y@{9w6fV1P#> z(~!M*Y2F0FDY)Uni4VNwmX3&u`rw+zu~D|pOT_y+xNiG1a?`>BZYEX_Rsm#kdP*56 zkGR*9lh%T|WmMPz+#rN5wG0gN4TW+<`^3d|7Y9ntpHfb`geb_k{<%&=u4ASRNdeMR zclT~$bP=@dlI47fmH1+xQ0alN&_%wja~SCONIE6L zaj9h*1`$F(F1_Jpq>IMS1=6dH1Juz_hH7~+4x+`$f6T{X3VBcls6b%)~A+;F>=b?Gp6KT!K*%``jyy9*;R#tw(PlCl; zP5G<4OisalptOSsh+aNETd>U^R}_qok26m-EbQmwQ?Pe*^aasxT)4c(b$Q3U*u|z$ z&gEujWcw4@NlQB+hF>}&Cguw~>1eYG9!#GG;&f8PJn`_ zk3_TS8yg$T(LL}0dJhoAUWym`B*P)ce?+#o94)k^M=JgJ=PSNSEzQP&N+i3# zh~i1YltP=Lk+mf(EKI2leA9Yt#@ak9gOus1;g?Xbh^_(>fGc?0Ohzg;A@&chx2I=s zg&)&yBG#c!Z~?kSkF$j6D7qTN&z!cfcx9~sjZXdh5~_|D>H)huEs+IK>gx=K!tL7W zh-wWkv(D~SltORVfDwUx0;1~8pR72@%NFUUm@bO z_N|_6;jZ*5jpITPeAZ4(O*PDWT#d)ZxLZuSF-7%KTb`91_(U)8XHN=vlIt;A`^*^6XQf4!$&@=mjsxVUf9g z{|IdWZX{De=kp;iMgBF~)9$16oycg!_CVNf3rkCqJc$=VcYdgmIBaS-~d%Sev2wA`iPUHG`c4S}Khn#0g;wlGPjXXLx3)c(DjnLMp7cZN^ z{Q+Oc=FLs}O5nR7(1KhkDMuhlbg>~E1m4Fdck74Iin880A*(_BX4l@|-_pjjW6PG6 zQc@){29><$ie4Lo(j)j3yz)yMUV{^Mi}N-JI+IV=6|R{Lbl*f=@0}mv;h$3Ig-R!E zI6=h`{W`HQV1d|BkW~hq0yIw#Y*U4g5QfpT-$y^{=M5XgEjjO?qf<1i9G49yoDx3W zZ)wpW9&&H?0lRfxAAEsX87B`|YvFBHf<%jH;60;s@nSkUdpy=vyqA)tQG*F6v$9L7 zKPoD!TOY4TMCiN%nSU&@%GcqRz4rXh=E3~|cQ(_wG&<;40k6<*+qMP*IWbBBJ$pCu zT?@XA{2?;80r@r9yk{!b3P5Yalk&zd4tS%AH*ncX(BpXs-CCfbTLJ41I;4{c64cTx zFAKHao|RR;a7&`U727PP5e6-xwUWPs0FwWH@f1Q&cvoIte#4Gsq$OuFu-Q8>Eh-7; znuY(Tlb8K4Zu#G@c-=(n8Yg9N6;{2QcCxTwJwLUvz)BmfOE0qvMB+i?dN<8#tEwKl z%2-^Xa>O-MrW-`5?+%h??~N^V*3FkOG? z&lpx2s#bVQ0eepxnZLi!PAo}^-*v?+lBfhfI*KC(;m->f{=9`QsLDe8gZ;07|2(Xl zpU%qWADD~3=kUC@vvY-*Sb@RP>xWg>VD=F{*UK0<&LjP4g84iZF^U0UuAsn|8ku(% zE24FTRbSky@><~pOU+KfqrW&gv_hTg0cYh`N#G7*G7~QByP~J3_b8jZi_E8qoi)J1 zl>3h!t%ez*eG?-6WF_t;*dx?WwYWQMH)mz5Y%C4ev)W^e3M@z|!ZYq(A9$u_?g~b{ zJ%Lc6t&EYC-DyRyvQKi$M*b zS-EP}3JP>*P9nX6rThV$CQVvKs4o=$N z;3%t@?FLALgiln2Q@i>5chU?sXPZ7%?gcN5maY;{C`-4!*m(zJGeGN=6tsY=!HH;0 zT@zx8j){qjG;htl4Kx@H;_p>f7Qo&PxLdQ8vMq~IS{CD&7pW``m?p))*ItuX}8AK8q73c`^Jrl|yaneG~$Qszo$w_4A_)96w zP`Sr3u5lGjo5qy2V#g&Rcx6-cVOVg(2g1xi)0SGAJq(Br1V97()sG)P+#m`X5LQhi$@=TW5{3xp2=x_j4nWmrkV)v%JDOq0f1;z3l0w(OTZVw;Q!v=K+-U-8$r{E+Al?>GKDn0%7%a>g3 z_T3vb^KPzr^uI26U~B@m5mRb!n--N^a{RZ7?}7EQ)ig9 ziK5$~feDuI0Du<;WBF_5fGqZ~-Y&G%LlM3o9`271-Jb8Vl->=B>tG1h2!=Sr;ot1X zJ>LLPC8Yq)87-Qw{3#)|3_IsN7?3e0;e$=WAt;5ey?s-%a2`veSb9074;3c+;N=gTe>h{1;{1(fDc!$n;0G8>jirRc_ zw9?SyVp<`Tz@}M0D<=c^&#dgSCBCTbz5dtz!wpWRf@PJ|c?!vNfNqHnm3DTELKoxd(|q#!wT zr9KUtF{$zUymf!wn*AD?Zy@XLdi;@&p8hV{pdUZp-ZgAU+(!8Ut&4Pqv3sHl3dC$j zTD@`Qy8#AZoxc>6j>x2?r;kyb0i6P`Uxl#gI~c;gWSd?lYIm6z9U!+TarEF)hB`{v zP(0RB2sek$5QV`F&qE{oMnXd)iBRAa!p?bldk1|G780V}xzi7d4|z3VJ;9!nF$ma( z4ELzOa7OsgD2T`Qzds)idivBC+q?_F9vT`E665lrY?cw$3(0_Z?kH~f!)UUfu%GZ| zd%=wZismmF3UdcZ`YFS%SOc_e304bm3%{SN_m)BJrQE720#Jr(w-bhoTv#^9{h(da zEVQQs0;5p&1QM3}EPqDz(l=~#oEXnW2W&S=sb+bo>h3Sbc z1R3)HI%`xLJs397gj0dwk9|0dmJ%kNlWJ;=P_+pM&!?G7>+S7LL`L7DMNhM|gg#~l zXWY0(H;1!c0UGAkB1hHU^}p`~Af;jEVI5Q{G)fPaQVH-^mx3fyRaM2TFBGOAdTBDx zZj_aBO0PURzOq%vc`8^r+hNKW-XwNj-jB}@S*vFmZ$tCt!+G|}6>u-)mW$^Hcy~%V zF@of}gAz))f`kY$YZc+D;Y)u9b|opLxmgWZ?Fu+=;saH7LF)(MhUkv9SZ1d7N@%rqM-z z$%H|$NZnwwW$f*bpu`5EQk&dx1u;z1=E9NqMt1K*@R}5_`g-Le8zEs~B59pK16kX} zxn~b!O3H(ZGpA3(`VB(lQeQrZ3I>X-hQ2LFi%U|d0u(X zo;_Z89X#6LJDG&OI#_k5JZVtnaCA}Ij+k~aPc2D z(~N3~GjI8io3;$ScWfv+1iFBLfM}p1W)yaLy6xLJ0Y=NQKg&Sit)?Ik?1l}BM@B{l zz^3FBBtEs#m_W%bgnX$4<-XfPCW;o^{8kyNajYCQg+oY4$;9<%N9CHF-`Ic}AE{aC zWvGZY!v6SUId-OvS;>>)VS)JgQSVo;Udc2a&aMkE2nYo(*O$0%R3Us#{J8#Q#nGsQ ziWnv)8K-d%+V0BU#UwpO-Fo}{c-MQ&K!aVF7V1KU=z@uZ*38TdjPRvaa8*?7vhZO+ z^@3y%9w=M(V@_GIM0MDPm`7z z5(_bo`UlyVcHnwFV8xlta8P&+6IDt+?i)Z#X8zm#;j^bs?Ys1JFAGB=i>UP}6U|uj z8;4E5i}ktLa1%J6gt4(PTHvSc2*8H}!?3+kXko3p zT>%u)!GIDIjXFU5zRY^Ko{|aXTpSqmqpBW>)9tFbl}64!sO$&VA8UX81a>- z!JK090^3Hzx#{4q0L(|sitQ_bMC^5kdyS2&D>iG&aLuyw3-bk<#38*AA6B#`Of~jC z!mI}eO`Gtcq5|Elhs~Z<&!ei!L5czcM6If-YCTZDK0O_veel7@>Q8U81p=>Dxob5~ z_Xu7y`1Q#64_GRSTTF~z)KvXPh|#gHVRPX)azt(Z8+sa;63ek^#xV4`fY5S}7BC}Jt}n0|*Kn0GyQZW9rO@he0PWDwAuB zHZh{_x3aQ&2S{Qu@$+=dr)Yb)p5P~9g4$P!PJxWEVS9?-nplnJRtE3@C({RRK(kT?QF$sgM)G*FOHaufs`mx*KM)AV z0byc$9ap*mU17ljA;K8#Tm@_hn0=3+*wWH5z+|IuAQWhK?C`~B8@5%0tvT6m^|VAv zpm>%8{p_ZlM<|r$!dt?C!wl6b(6xcoU%5x~M5OiXKdtG}Xh%4IGV zUg>t0Q)G0|VP+)7QWLYQv{13P@aq)wwRJ&oyH2Jd^zJBTJqXBa7++diFi+MgVMU4{ zP$@IJqoU%)`(dtVpQ_{>t;i#mE9K*q=I4<7?cuzf(l#qG?~t4vY}!l~76|G9e1HVQ z=UQ~$5jn-36mh+$tL?c;uEQ_MpVUms^0$jjYOYpyvcJmC;tQ6Hf9SKum3@0G@9A$a z`=&SmAg;bYvmqSN6?2k$Z`@W8_n457&=muNd$3fpLcV4m?I#W~0B+(0mb-Q>wn8B4 z4{9T6WC4SA0U~#+JLhLdL3FNLZg@O9IB5R1#me{0;?5A*H;Qb)xDm4iT>I$nHXvzy zRTtpqu6iDdST0A<6B7$DZl$KCDsh~B425so_jZ)D`xrg3(?Kr-qvM&~-cZoV9&?-- zIqgj(+fI}|ETCw|W6~p|uhckw`ry>G4%!buD`~Xj)Wdd`KczS^h}-VE>^w;v?N!;4 zUS2#AA4FKSO4^wWswq4w?KG6?XDdSZR&bu>SzID;3A{2H9VR=J1o0l_`kFi1nTEs_ z@M2uDr=)Ef*1>q45=lNjzuzxEBexRgn13;4*?%vM9U*bqun3|g8Izme`*fMQ zEE>Pgh}P#QasQ%MzlzST?s#ki+&}@q_nmMoRgyZKlLF_}shXoVFe3XbJRJ1q7oeH& z%^4A5cKi^_d?8kS{;?GDNOTD=55TnzCU+w#p^C1gfJBNvtf)Q~#yw94K|#EOOxOVt znU;<&>fnKo=Ov!2LXmO&b(@&|gV5z7J)ALcJOAtmag1C+;bnyQd+ynhsHuDJFqr6P z*Ws)hlY;IEu7k@lffa|~*(KdBCWA2A%5c3VVk4A^a8=bUbc#L7VHGhsX6iCgvjX5c zsMlO5)7;5v^eid?1;SC(fC=s*#*_ha@%nr=j0b()>|fNZ$Z{gZS*n+w3}w z>gQkx$c)Hi-M;D8wxW zn_4L`g8Vjaj)o|;Va19Su=iHNbVB3YSm^KX-`MbkBt-xvwV_;NRDR^a6BsS{f)v@$ z6w_N1SxL-iFfcfcyp4cP>CN?U7LMy&Tr#srOHN%Tez0 zUdy#R7^l2Yn{xRupHA^km?28f2o%L;{XwG%i+O&~BMuH?c0=-&3ChrC*!hK_a9btZ z8(@SSW`Z^OA6Kibyp{7r067J{(l*rUSFp8^Is{|J8{!86np?egtuDOX%o$`rX$Pud z3Fs%u_gG!yipflVM~(hM7)fs5T~CTn9WBD&cqtn^t@1Z^2HB4wQ3tx_RNp z9qxU>(!~WgK0d;oMPbPa4SDbbs0a~G+61kFL!`%hwzFHj?mdo903vG0UwK|4gzrew zYX^>E_)Ffrd$$Uyw*vDUTw2`gDS&^q%rrfb&*=_0{hPh!D{MXOCw{IcV;01-3QK&Q zhNM~R5hrNKd(TOd$_qmxF)tkeE43x77FNvFt5-kAY#?}4IZ$p{W?8BiF^|0v^`nDl zpnI>Rq_)WoCaj>1IQRrA0@c9m5i`y+AU8aXO1LR#w{Q1^?~##A-V=dOt0AFSrM<4M z?z!L$y5)_nJ3On{GB6P_3(QAc^Mx4fU~bVFOWm(UlGj7^$hpuCBo-|59dJL4h1DS6 z$OMIq>$tvw0jPFIOS5J>v>l65Rd1;7i2gL)cN#kz|8P>hSWnm*R+5)JN;lT_6*d|Et3m_HyTLLqr z%sCpXZW)Bov|qm;309B{qoZ5w#%DA(XM-Nwec-@Yn0emXi3b|QZ-q&kakRcEJ(%FT zpB;tg1W=bztury;;0b1e5j5XDlnW#Az?XZrQm-L;EpcFzU83x=yyTpGIcF2`)LBm@ z(XJ$$8p-4U1~w?Sa%y^)b6|oZ11+Rl`u7^63*CX5UXErUYo0taSZgTKa67WQzk%H% zYhauBCV3w45s;bTRNdbQ?ohGkO5*sw3x_IV7w6-m)rF<`*YWNDy=225#X%frKJz1+@y9^aM2?ur=;zh;D5+oWD+EEzeTm^KB{SJ3H(G#aE zGP66GRRR+V>%(r4QU^eL8%fyQ8G>f;AR;dM+@1)Ohwfynn>U46rCj{XOBOFVc-dQ9 zi?loaJ`16m&Af1YEdgIpOuE67lRg7^eFcRK#9(IxK*@LJGgCx~hIc>@3US^3skD+MQSyM1q&pF-Y|gG})9zvYz=3UsAN#`-{ z++di7D<_Ks(t}v+-+;w~pX}s~8+^nUP4rRN9p3>8c%!s2V64F-ICvYey^_2BN1!Rk z8ph>fksEw?-K9aXRoHILDuNNX+&Ck)TV^WP5FqRy1``JJq4uK7%q{(|F>j2quQxaV zp*MZJ?u zCAOF~Ge+ZQzx$)t4uX}OXoNi)X1%5#*Wimgj6&5RkO+Lw7)E_Dc+m-Vs&2TG z#1(enJq#z4tb$Z|5;70r+5y}ycKc{e+5TE?!O;wi_K@i)6Xz!34cdVNr7Ce6MP_yh z9%f%-%G37YrnuLEdAtsPRq<}_M*I5Nho%fyo&aNhVCQmJt9+87f9+8PoP5{+C;4s9S~pQ3|k$4(GG+7U4^a;8Bo&e`#wNxD)_|6mNKZs4)xE1Tn1!LkDUSfWKc}E<5;DWb0{SO6vLrWuvO$R0+?TRlfwwWU6&&>2>hxJ=Z%nD9JRXt z^eM08@*gWQdQ1FOt*~pNK9r%TWo2J33MWZfC&|w70TcL%S*xc*&YM`Cjt!O?G=u)Zi}APQ$j8{^RU={zJh0szP`RU-k;|D z`SZwpyqK0OgBkb)EL9LO8{?k_1+f#C*`LM5xb#clgbC^EPP^=XnOtbfks67aXO|qo z96qjyB90}}G`3ag_wO3yd!w_BJ>_+M$y{q$9pgdZjBDwG+HLDKx< zad~4oL-vKRi@oI7JT1?w4Z2SjYTudt5ea+u>^XI}vCc>J`zPm5k8hF>n5)1)hkEIz#$>3q8RhAyV+zFEVdLv`BJJ5Zrv21Wu)b3lrJbc*G37 zbx_cMy=$b!uV7W}S}}~x+@oeN=-R^LO#BgGgUHz}7*=M+k{q^s?3ak?U~)RtKZc}} z732G0D+%fkm6$uVtrBD`>}IrZC;jUb`9PJ?VSDyJz8_iH|Kk|M?J^x1u3ldMFMgGn zP20EM3M~Ef`SU@m^EmoU$yF-8L;&yWS5;THg#t3_>aPe|y0E}`u?vggr(}ERmyH{b zVRS6&!Y*iY@!Q3W@KbkXSW8|m=6Chs?jdch!pT?>%tVK6-+_y5KB>vqo0B2 ze>FFgk%z z@wMmA*BC6B;Uvhqm&m-7U3+&$ssMH+w3oiO?~(eCKgnpw9;UN8J9fHY9RO!&w}Q{SnQlQ`0>SNLJ;KX16n9U&#cG$_c16Rq4qFwi-a z{V%_IG&{)agCr-L@0+)*-74hCsMmJ?>mM>G;KWt@^F@CZr%C?%rGU@*_Xiw8>p9sV zz5es{eh-d|{I4H9yz)PPsWiDtPD)A&4>zR=y7Ode22u#fT?#pk3yuklOf@MD36f7& z*|Rf{9Gn>z0^SSw@(p^kxF$f*O_aad=rXh{66~Iklu>X90}5tl9TA6~w2_O(qv%#7 z*YQ=zWTF<#0HXS_HqL^O#vZ5JxidLq35C!D?FZ>Hk0FJPW4xjhT5Tl&^~DeW@d&y7 z=S_HoYn+_sC%KCkM#Knl14-5(90??vP~rN}7LLG1VPyUH3Go~VkR#8-ucow>o)y2{|!`lGb7+fB;y(fKS<90SXB!lw`dTX$QvSU zKk&}}71B8DfjMSyEsCTbEPxsR`@5bI*2eiP>J`G9w9v;86exSabgl&BCH~8vwOumtB3q@WA4G)HIA>z;0jU4(LZM6T1 zwg9{dB(!y8=oh4?(S9<@jBb;6@ec-cbU}#{|HqSqCZ1q<$Q+j;K#P%W7>Ruz+JBZ^ zp>l}6nkWObGJTraD1j-jfhln?!_!>Vzssv`@o$DN`5(K3hx7k(7yW^b(GUYVdqDt^fsfq$e9Q_aZ*@FR9&Zl| zF-gkGzR+*{Nwf)2=yx&OlklmdqvVTCW2%-fph^_FC5jsg9FZ~zqqokH{Ejl;e`Ou> z0;mFFaNl8QViR;NuxMBCu^y=p!^1ZMPWuZ1ZIxA2aBy)|K58QuA5HD~-x+5dXoDy^ zgb+vSB1eDXbRjZ#J(Wt2!&%@R|A8|zX=Qft^KT+Ee%|*Y4i~5K6f`ms>BS550>O-6b11rzf|A)J`49jxex`uDSL;(wx z1{G9NQW``A>5!0CDe3N15Q|Rf?vid0k?w9#x{($nzIlPJwf0_X@Ao;L<2}9~ufG;7 z;J)HK=Q-w>V~z>Y4ZL&U&aSc=lOj#{P_>DMFYz}(H%t#6AnBIuR!e7rWFI$_B!ef| zo+3+Cqh88@ht!EP?Q0RuuX<@VaSqe?PpfBQMV757Beaj6_}){B=e zx&HWJ?U4TnH2``7&W&~qqA zZiUGfHwTLm@mtmFNkj9#d)3{;;{kN|tbowg9%P*0K4~A_ zItes4AcR-H*T%dnBiLkofrpXhxMvIL?^P0q_4A0o6G-MCT0pRQ4_W|W9?*9n@d}~8 zkU9snl^|3L07tDpbmT8mw*J~PG&!oSL}^&Kb+fAqHn!)3szr+mea1c)}zOFj5>1deqSJ~00HTg(B6K1_f; z&=@Mbf%r~CK{qt_*Gd2DC{WZYTLputMTFh~eH3Wh5a%IaVy+a6!y#x4XYDQ&&%x9S z5@^IjTGe5rTY8T9@bJ3yN6_-~0ur(sX_<$rC{Qy5V9|U}L*oWylj&CB;KG8`380q* z2eDoTDF6UXb)cTu=l{1+#|#)iL^uK=o)1jMk;RJ`QXvZ*$eL7H9(Hzo5Uh4lE)Nwk zLSo`kK>y$k>=N*a1xb8^211e?sps+FOWURn_aLZO!{JW`+BfiliNBB&L+NouYvXP+ zO5u%xNdA}Z-`ZWiN1Y*J<&qvJWm6KcO3y%Ig|7)EwhK^&ZYya4$;ksqqnR48!6X{> z1}uS|cejG!9Hi(SuuYZFoguO@w+LLl1=Zw#>UTIw=e6)!W%%RiA)VL%uPqc^X%|~S zIY$N+l~`&rGBhYS*!F_g6krjp0$j}FDBhXEH=Q6z1*m1r%E8#txfSeam_yGfo z2tN^k=-G@|)5n;;`y=24Am->uzyU_&6$q@(fg&0qxx0;{b>`Gfc)M_FLpwDeY-0hY}o;i+=n6}oz}>U zJ&zX8_{V}3fiVbEn1<@=7%0Re9DtH1==h(2FcR@KfR8lK=!DkF1?ZeY`VUT$*gHcZ z9g&hk?V^`eJ^eED>_a9qr(X-D#6kj@H*mCqDC6CKPGgXgK5(VrT?V5Ds8TwvdZBBo ziz@o?Tnr#X`ks!6m_u<}p(dQR zmm!_g(9rm&@G#geQbP4g|h{2|fu@hy>EL3KH-*b}1>TtKb2)ZU%)8L}-sVpg>rG=1A0t%`_2` z=|bP?RNq--|57IYB>+GGLM%_8K`{VwAbRednd?oFJR}$=&U()wvgYypE5HyVI)sNp zLib>)L9}rOU*|} ze?6XrjqDsX$#mL64v~4u?q36d`qP%LKw9#_Yzf2}1booIfSM?XPR%VfRnKR>rna^U z#7R5-RaI5~Dn}X0o8O0m-l_>i_U|hz_kcE+nOa^pYAc3LBIq%tmuiI=1>Iy{kAhWh zlkMOJXim<<&@t8)U|NAHkQuO*e`V*qv+jau zo#6z zF{nZ!vm5f}pdy4!E>WC>`*e$sk2krSbPn{Y$gww0uNv(B2OCBKUn+Phgsea-;YY~& zA-~Wa+7zjl#~+u9`uh={(=|@S?JC#WO;=`px|ecue}cZjx>_=ACF#y}q&Xb)#U9xp zc|ux!qaQCqB~cu5TgmBcK;%9kSucY^B=l={b#-0XD!Bnd69m}k{{yfI3DFH)5q%&7 zmqFH0^C9<|69wh{KYvbyOLg#yD{EFsmnyEK)9O{t(r33?th+#q`0r8UeYZHAx!*w( zJfo~-V1Na}dXFoI(OHsxTl4#Na^8+`%Z1BF6F70@&nVYkEvRM1oK zuRJuff&zQ69^>K42^;&pazgC&Ax+OW9DWDb1u@$JXZ~7HRMJ2Bgi3CKHO*{jX9KJn zIEo`pBhdB|4gM`)j?IH)|7QB=$Ylno{{`Qo+CYnhxLho+0)?ity9*s{W1z=kHpx8v z?Cf8w*1Tz_>Hmp9@fkQo1kfS>Y~_L#OsV_FJW}6UCQSysXg3-3aCiLLJ_GZgPH|Ax$^2PkWMV<95V-Xq^LY!#ceB|x)gj&5bo4qshKpzyUBL)-pzo|V727$tcs$y8H1c;VoH>WkCHCCuoYjN&jLWz*!jp;Ltj zy2XG=21)ZtsJef&-(J1e`~L0QN}!3ME5!ZUyw*PwF?C(KHk!Q2{yP4rql2xFq2i?z zj{d9!1%IX2vss8pXsFV?%|ZCvwNT!@1ARq^-yB>Udv6i&SgN+OChyzju7{M4SAqT1zR0C86?5@hiIdYL&BFjJr|@}dS*qMGai%Gd;nKR zf|}It^eHkIKL=XWbAPtM=@_xjON4CmF|x#6yXP;xQjQ7WQPp`PR#>C%4>7KE%w4cK z#6CAWn-9)+kR)6ScpxBv^u+)fo+Rf0tuPQX(I9)S1#TWKs;&|_AAXbFhB4E>Q(1?@ek93!Ft(5GGHapXkt#!KHjg$DfgE}(G`kh#>b14M(W5KHq3D6E~A zDw2bMjs)G982=k4)=Td&%9Z6iqrN;9`YHLi)c3}nx0Kg`MRIxh@*Jq_qyoLYQEF;x z;Tz%5B(^lf=8=sEs*y=r31XpV9a&kCWqck9%u)*8!Q_H%q3Oo3DKK9-OW&@VBVtD3 z8859mY3ezpzu>uC6Wv+J8zyAz>Wr1pl$j~38ph&|XSA5fY;662`l2`g@efD%4{?b) zG{%HRZQv}Q!B8pSv4dr9Qc_|1x=`C}Ak^2_vcSyiK{Wu$J48hl_R z&h(9I_%nfJ2>JJr-LtQV;Y96zKhfmHiGa)zDGYD4Y1;WrswXbD*XDU15lp=+*zCn; zExi_a`eDkYKhyD8h3skq?F)p_7Z{RE*R-;@{l30=O2VaWynXn((e@7Ca%-1c(O9^U z@fV2Rr3Rst$6NlW_zIXYx5Jo@wp)*G@n*32Rc993gvR8D5)tIwkiqtF z9A^pX7J02q@kA&3r7}g^(YtwKY?D(w`&^M!D@Maf(!jY10>G&%1gzt#Pa8Z$un`qSI~eA;DW&-nb{uP52pHywknhZYr+PeJp#tMAI6 z)iwDt-WI|oMxKS9KoYP^7k2Dv(V1xIBNquDRva5Faf$9>J@g-ePpd+xuu^J&}A3i5+ zN=@AUU5_8M=YtP9lfU$N zf+k3ZoJm#~m*EiuS=2Bs66}NJ(-obilNBgjwa~FqfV++$2A+)SfPsGicWUEX$_q$s z@D#5qdUkiz zv==|-O5TI7Rq2SR64iJaG5+Pvusy|*WzwoxWQWQJl)sU=h=>9cl+~nQD-O7deVznn zQzHKh3>HDYfd&U2(hv?TG36vM=CaCj{2C^6)v(XMbXqY5rW*COI4Kpt_7vVe*qWTE zAg^vfZ&o#W`N>f3YEHkZZ&V3tf?AQoom9Lk77DJX%J^Wz5=C`L&1* zR$Ft`F)0IIM!JK+R{qHVkY6BNA&~pP z6=pddIKn8;rvT@#(m!*pGzeq2zyu{>C8#~q%xwOG?jnjt`T65QqYL!r9ZtldjvZT4 z6GlR1d_Dx+Z)1xu+mbwMmKe^ zqqkLfgjl?%r7QM07z-%HTC1i){)^xS^%7GRQ-XRDE5sw8B zkjG_%JRe*P(IJ7NF&_rqJ!0g~3UginfVzRx%n6|MI#UwosdK!%B$9D@KtSvXge~Kr zcfBF~P`*jwV^-G~+NTnqZ>^UYZ&IBcOxTavSP;xBCd)g&FN+gfO_kB%xz+#Efoh$; zVVQYcSVROd3i0z2ko+ei1{Gyj!qT_@YV)m^?}zU;7|^om5vE)uqootghf#5}(0q9R zps@s_54(t(t~u&LHs9Q3Rl~;wHY*Y7SZiMx)8OtsY{yy39j7mdCjWdr`u+FKm$t=I zOwG=|1&O|nKQmY>1Kqp#QP#=H>2NkHbOXf+`JE#oO3#V-Q(Gcq3$Wo_$>t5q)&ZBk zyqi9L0T`sqa=M9gp5FE5nOie*?*tsKU3+v3YEz%+VTP;I5wO7?@)r(nF(q47b?c&` zGVp)ReK9~@ON{%(zt)ASbp_+4b;5)wz-x^Ro}Jz`$4?P9KTUKy6&8XENZ?EF3-2;U zXxpr|_p0;`bh~d}V_-pY^s|gR9)r*2=!i^%o#S6&ng;W(+0H&@+j}WP>vy_N6TNvZ zAy((S#d}IP*ey!6b*hwC&gxuu;@se8;-B>O+;kSAOOe$?KTv& zMN=+9c?ejTG=-cK$aE1t#0?5~SQHBJ(g&}^2hf44kpJRMQcPWaLp#SK3!(4<>&rqb zIHa!5bxUzt&gXtaDF^XXyYIE1Ssz{#M|`yQ-H3 zhIg^`TmcDxXPwOwD67RGo)^`h%B1saB$YuY#u{p8O*=2AFIKsvVCQZra+s6qDE&1< zpt%1Fy2)#>k-9ja)u!V>M;&`N>Q+4D&C<0J5szh7%^2qq^E+Gk&{Z)b)bXb2Epi|h0sP@g2}AbIn$Wzmb4rd zXpHJVcW&eo@y0N;s*)CX--jU#u`f8#KZojeHP$!WTNv=` z3087m5*@Z~*P}SHwnujk#8~_y*01Wl-go{P;~`sYH2YYU^an2F`KGFQhByXYv~?q-Ym6mCg+!s zHzaX4B6oTWu+R$~rm%GKy1oKfFM8`VJQTN)41N7?iK|VS zd0Lobbe-v+kWQrUZ?Azf9@^y@hFTwHj3ZV^2|`sdSL zg=7WeHM0ldUlom$baC!hP_jq%C(ZX5Ibf=?CF^|-gQsz>VCmApSv~S@#_qHcBm=>H zmF|K0TK>yim~2tf>T!bXbNx3}h2I3kdF%o>^Wjky8oZ-j3cLOWF(gr|&d7r3Nd7uO zk7Kl}G!w^!_D#&>$KZIKy?=7I+*ojl^V#o7)1KnXuFqAZY>+&ybcJqVcyWy)(dXX0 z++wM-^VtD;aqi-9Un`ml>71P`W|LD3B&5}UT+iEd58>$>6b}NHf92bkWWub;b*hF| zF!ie1tob#GkgO~2fy1k>(8JU*K_`bTCpoDbp&&b%V$8FT_N+I8pV#_P=^fT{b`|VN zB~m^?Gw+q0FkkGU$GMJA?#ZvP&eBg@Ha!)O=}C-joHpgmF})Ae>!uVa21%T7DIun7-U_#gXPQLh%k?TA_QiZDf4b|eSy;DE9UK6Pw!mY;Bc zlT~pO#~CsZ&W8`(ZvBW`IJi2*0me9iSE-BWwgD6~dbd*F`ln zho1c|`trJ)!@9E1r1M#HhOn}QQ>b&d90}%3?+-}U{sxur-dO<=Cz5ZyCZ|ui#yZFh z1(f*mJlo}67q}5SaYzzQk*zxRFm8#g2E4XjmE>Sc3Jmsr<%F&LKs;edAudwWau#yY z!qS737KOY=%W)z+bD^?IT&Y%dUxJ=2KEXOgN=0+#=VihU4h}??Dy3<9$f->6N=Bcn zrVOfIRh>-sSnbocV3Sg)1xc0^dBELmVc!-_hN86ZsVJ;qe?Le69x&%M99ih{N5f8jmEB4=m0&$3)Ah-s>nrd%TxhH(7U8?j`6+*IW^ zrSdkqv7DOQ%lyQC;A+F-^7zf3TgVXW6p?8%&w^yO@sxovu_GfGTE{cy9N0CtZ zx%hjcTj6%m*jR@3f|Bv6M3(SsKs51G1ZLT$#`FQp{||`b(^> zH`JP^`KC&;r5w7|9gj!i+?JtCe{1jyFRb=^LqwB#+CPv4jA~koLcn`UwU1qEk zgl`nF8vHeDs`9oD(|2pYK*Bv`GD23AQ((^udF2J(rp84QSby_WSls_R}uxJ=xzNNvFV-m}H&N@`>Dncog1w5IlZy+z6VGW7kaCZPXsuy{b1lZ4@r z|KV;6{-h6d&^H2v@{w`V)T+0js7Tsv+aPAR4NiqfI1BKP_aJvOB6P?7rUz#{y@n~C ztMI4xs(Zo@Q~V5Z_Jvr4NLrS!v*@Zky^W#z z=2TZ<4E;^Ug0`cVWfS!8!QdYmX^-OLjmP!xXgcm`>&CL~{dEh;Ki>X^n+0iEFrxI6 zBG;OJ_MV;xrwUTTl^IJ+z)Ro1?^LknEZY0{6<-ypsXD8{$+YB>-MO@XcP&qp3`3^v z!}iXQ=X?BuM|Mocf=?x@5L8G#%}bhO~T`2BLP&B7J=HAG;D1K_rd{^13O8scH`K{l9LZGS` zSG$SnofDaJXGo0#m+?JPW5tbWnC!~3a?`$=5r*rrR>qcd0FwmA3D8H#7Lg@{1YSzh z;wTanN>Fr0_(3>epP!?m^FkoT6oSI<~Hxa#u)*f06*us!VYAY6GxXY;_l}EeAwO-|ke9SF^Fv zhd@%41Xv7uKWahvSXEn#xZELCd+2jR8VRF7vSi!40xqjaKL+%~fU#%MB|CVS<&zqd z59mWWsJ9-fJ&r=oNX?#iSuo*=jx$`JYf*lLEe`G(~^ zIAHR{_Kt7SkwfL?5Y2hueYCi3Eqm*t7e6k};l=)qOh&@Yp?&IgP|y|dBzg}mZdYjp z{=$Q}_pqFovM~kRa-(`avP>a7O!S>ol$isZ+}voYg=YK2*&W$ugS`h9fJkfu)ZN3s zi-64BKzP*G5b5J#dMS2PUr05}*Hg*4IiC_*@hgLJN?>`{>9xD!o<$Q+l$peG_O1M5 zI337<^Eh7iUpbE=M`*Q$VP&3R;4q(#j88diDgloC)~%fkpNUc}59{viIT8dqsgulTPF97k>A;1*T!u@sZX63m05m2`(ioM_GFnu#{W* z9E?H`T-yxC+3J#Wt=5xls-Kx1Gr=Vpu{nc&pN0lZ;2~K}C*H_h#>0a;tTj8P0<97-jVlZ&Uc1S0vMo!Y8{c-u!E+p#kOxbT)OQy4%5itDPHu&m zfJ&vZzdyKM@H)a1Al3~3qG3g~m8lTuAMpMBBIpQ(eV5FUPT9Lo+b^*$p6j2UKMYTG zB$;tg_ED8GxOyS;WcV zsbQM+!k@HU_H9NHdf-ynKk!i0*N+wY9?py4kZ9KOYwz%zYM8g_SDyZ*LmRv`+c!Me#mYsFY`fupSh2}vzT3uzwGYm!raLf4!ZCItbLqXNQ5v6a z%w|r_l4|KmJ1aX*aa(1@VLA(jqO<29VdeY)mdPk2QcmV;yuS-&NIr56$;m0Po7S7z z*HOG*E3%=)aCNiYOc5>=gW*(NM6$=&`mbsO=ly|Ol&ViB0o$odAB2)~+^^!F+wyS-6L@uL3@QDPtjtzVI=-fbWMq*Pr)c zc@*)(=@=A7sCZuS&7`GfmU8Ax5&u+{fgS#|XF?tHImo;a#KjCW={15R4z947!A$HR zV%7rMN{335gVS+No#KVzgyIpLhhq#uy9M4Ux;j>oZ|WA7RK#8=N3*ftW_8K2y*v+@ z<#<;@4tu6;lf<@+&by32yne69XWgGH>gqd6iIl>lh9Ogit>G%U!h##qfHcRYG##eC zU4$Z-K3feE$^Nr{yUyzf6u?j2LiuFp#InxF%{<)y0Fl%=u*r_Cl;QD;|D3O@8_F0QxmqvEY474<7W`^0o#m*vk=v=g3` ziJz38yllj)l*OfZTafB9zfa0ze_QGYGKI&_B%!%~OQt}RAtjY`n#c)yB1lGQ(&g;hIUA)Q=eM6KTo*An|w z_11_;+?rzOb??%^nitRSt(`|bd;CoLrDMU0prYOE8vbgtaz%62QrV->g=Yqw0`;>h zvW|tN_am@$bRAl;H+rK2G-vy?)#hFe2F^bG)?PfV)Yooszbt4SJDyBQjGes;J`yDxq8)U*=Z*s0*o0BjYL={vZW$Qx&wR;{UN zR05)zB@EhUlJ7gz1f?~3Q|s87%-6CI-!;|SDMechx&FbzdW~;I^;-CqI>PkHJf?CJ zDdJ{Lek|l7r!Neh4k?{Tpa{Yi>B#7Qg}nFdxt0^|SKy{)Y?DgstvlF+OpC%&SQVpR zRxBm)_?e6`-euBhvz+ry%Fs~>2|M3!eV+t{a(-U$NmBaLjmI(y*7!Qqa{@{AlI_OXRW0Yv8H$r`- z-P!!1O3TKm{kn{e`A%b}?~S$Y$tgihFWuTvOJRWX62SJ zPNPuIK9Bgen6isGml@EgDIQK}xM3f$# z&sfy*EuoYE>_zs4tz^cVtxQDbUBhebKg+H%s{6YQ?_eolzjhO?lihJMO%B}ilI_X3n)EFbu~33d~4OW-EBAnM@`i23Djta2qetDjD;u>oQyf% zEQp$kN})>K*dOC8`yLy#(Q1X+Jvmfd;i>3ZJVsu*D9tzB$9b>3evd$jt*2yL)Iu|F zHPEnI$*gzoi+qrrgsQ2Zz@BNG+mLsvR0U!33w1N|+#hNTHA(piay1`ze)6KDQ2epC zdr8`&7EIZwV~@$F69%^b-kB@+_8J2SzGivU(lqAUc|Pg+)_kVg?yb2hsabAdZ%3h3 zuRbaMm#G6;bksn6akip}p@V|pJI@_=CG6Dwj`_I;e2&1&CPKr0Od5O{a2pPm`TO$C z^kv3_3}SF)t>p7Y%_@x!q-ZE!Q6bY_-SHUCiV~Hd1VNX+|4()!d(`gaU1 z3ev!JqXI11mmK$OL<)8m^bIDQwDp`g)bDcIU4RFTPhOVv6}LHb1f{+t7%9?uwKIJ$diiayo@ggXMPwZAPfi|whAbhM&enx%Ek0k{J}Om2x2|mpWp_Dg1j5HiSBT^tFyiaU zZayd)2`TB(mY=WTP|tw{h`U@8cy`A+h7bZ3*MRkKJ{v>jGvv(n@zFtj3p7lmC1HzSDNSC=)5PpHil>| z>Byc@zh2M#b|q=|;VYKC*{Yo!+*Aqq-pGwx%v`bUDL!H0%9N@Ff`_p;*I|+t-ru7= zWC^3Po>aaYfs2t#&yrDkR8aKfo>cadwe=If6@%(}-y5;WmC!0MWdGB3oRM3fTGj7+ zIh+BzdCsJg4Y?4}beYWuHhx4YI8LVgN~#T+JS}ztu~ypiv|PnW2`Pr1M3#9c;B)nj zgtXbh%jK6OJ9;3Ror*l#2MWQ76DvO~V>yW%mka4Fym&o564{=aG#dnC ze8fODqca3Td}|9&jXXzvP7a4%^BipkiW^0J-S{ZfmskI*eRO4ky_BFG7 zQ7ooMqLvAPY|6|gYr@G&TZjnU)r828zs`NK`>bsHJ4b_3ao+w<4K_kJIVe@xE@+nJ@4f|Tnk?-qTf_B?x3OGYTucz$NV zaXXM#{L!&i59RZK3ln8vR@@OywM3ZkGDd?fT!7dsK0cKpcPg0%pUWbt^@nc&o-erp zo#9?z&A5P}SmfO(WWQq@9YF{5;MlyBHG989nR&3MsHR;I(E9=wOjm&bPoddm|)I-u-p-u~c<4zz~bj=jBk zYZJxWv4U}Pj`m^(+o0%rfz&%It7(XZGT$pW)-$1#*r-)(o2%KUcb9f%y3qpy z{h963w#x1fwX?Sg&^p&e5g&KXSNIrHfcef>R*$;7r)zk<Gl-7$+bG*+3_ViwX zCwQIK7@Iv@+Y^2vFc6%!c;;G>a`{aONANO5YaO>NAs4FnQBB7L1xf=Dxo!=adBI@b zs6oS$=4Cw)9fXoDLY z8#}?ww(dF|<=R5s4Z2(w{T<0GY78>I8oGLUJO@!NGBVw=L^Vl|digi-e90QWc_*jK z&Q>zWMrKIy`HBoPNZ&}_XMV9S_{|mjmTXzox+kAsP#?1tfGrFC<*X>%)M>4aw&;%G zhKFSzm)zSsG zGf6_@+g35xC;EMaRQ0EYq(^G7@L7zVHv@0zOpj!UMJ)Hn3ab%{oPC}#<+(xB>esbv zcUB(`e-jqEOUvXPHtDVHwyJmLuYQn?PHXCHPQ-O+n8vq3JCi_+Wm_;0LS1EO*OvtE z4vWRSUY6UNFQt@}QlW2Z&PR~g=LQxGKn0VL=UIJcdcaz1{k__5%>F#Q_zf`0&MaLO z=6}DTmr*2u8130iJkX3F3Z8h?^M^Sx#xnxM;9|b#XTf5l^9HZoy_tXL&pX~l_WB_LuUeKoWz$-49QbR9F z&xmy!gJLSNS62=)iEZ>1hPP7NJ$wBkarU@KNWyI%DId767F|{ZPb#n|P~y*ykxJ{1 zl{W8+TiNAkKfj8+*!;B{vmr(}y#y7J<69A4E;)@Go{>L~PpLkp?VNFZ(M&XGJv4)_ zurq4ee7=dj^auqUW;ZWYYTe|Pwym4*ORN?NsD65xEa;Nb1$!e&ZGSZgpUXDaa%m_z zH#e7srVS>_Yr>_ph9sMh=;p^NG_5keywG`8QT z3Ml?r^ZD=&@sCgjz#sH_KpDJ-~Lay>x*l7zyB6KB&#Ya38 zq!BPCS{HC5fQUAzYEsgmx&K*{sbUJZ%Jt-JB)Y{S(M`m(cV}2Xu4v_n=Z0rRN&M&O z?ffQq5BSrESST}|4ZZn{*3nhkauOratIY28(!MH4-8x~sN`@e@4L{HBH=KZ=Ac)zs z5<8ud`!Y^Vuxe$brDKr6hQ3Ui4VRFhveTXE7|*d(c>iGeV2@{SlFq4p^k9F>I~|5= z$eINy*&WZu69aJ0ZIgIQS_J!jNCUos@{efuNDeM7)d7*abYYSQ4mwMAzTRD%jjU*{ zCpT`Pa))PyUym|=+w~CHZw&$PxM){A_co}-=x^!ilU}qwvabg@w$tHOe8l_BMvjl1 z_U6@)S-f29ZTAmP5$HJ4>4?kOS_d0?@6APy!Sn;t@l)g1okS1TeTy`Pl|Uf`x3zpm;137!Nje;{zC1zRqRwx3;XeN zWdJ(9l)&kg3Wr@@jkJLWxe$QY9wHnZeTMRMRs~;;t{q5t$VCL?N|5|uq*Ssr=;8En z20=ZW$_#bDy2|gcl=?>OkD*)zqTmYRR8r5(x2{ud|A@*j4a+=J5gt!`B`g-eYF$^2 z_PCVq#Pc04on;3i47T}8DAXrf*hG+%Z+P4iGG+G|HJML!(*I#KGxZm!=~A_H9EIY$ z?){TZxLo^TPfu6F)nowX+^ShB24ca72qscfM#UDIkQ_`U6B@; zDAbdJw5CUp^+(cs)vj_FiguoP62kGX;Fwe#NcGfpG@Wc}gi#69WG;$~HQzj2Un83C zLoaaCE5bj7n@C<56I-WQeV%E#Au;cp1W9hm>Dgtwfgy!NK>j`~lRFsr{wlPuHT}P) z1XMBLhpA*#<1Fbja3?txnPPClThmQqYbFcDws+x^CtAr?%WLymx(ZDATpRVU zc`2o$kRG1O?StGR$Y*alB53 zg(sfqQ>(5sn{qbYM)$pd1koI0xrU~jhS1=9C7%DdH8SH@fU9EdJTK)k1&kr@>7`?A zD&n$%a?Cb{U;79x#Kn9&CuL+6I;Y2dqz37HHVYaHAvpGbTRoSKjY35^Tuz%w2OQgt zpXw+-0sk?)^8FLV_~1J~av_0ql0j?bYz>V(y}zaTKVIUNv8}&z2w${stD55*k!DVDZQp-?e3{_{A`B`u2x z1EpT3%3(J?H?}Og%u|?C|08ODvH|NmK>k3@0j_^buJv?=O2(PbVHHkaM|}wfOl}_c zJ;|MZV~dPa+L}LebjvCp*7DX!GNh&jaKQbY)x5D8nfB6 zgeGUCWsLGu7|r(VEX#_Z_iGX&0R$GLfwF%h0>J_E0)x~6m&(LJd;6<8foH2zytLKm zJ2wSnD6Qo<_BJ{dMEDH>> zSWAxx8(mR^m3ou_~4d#_eHw!(O>=vDzVuhIlE%WHAbUC;6)A!<$tm!GM zl<7aKPAn>_B)N;&HkdwU$ScR{TfL6!7@CK$APeU4_vMG!M2|nHhp^5`EFvPO^)N8E z?8ic1hb*4rTGwTd2==b&e@_(cran>~vNC!)_CSB(d%wX4=7O|^sXRy>NC4nmYNtQA z1>xUCI1yJlJiNT_yq&Q~!S%AA6-rJ$&w%f0IhIH%AtPL~rQhZsQ7?w?<*UIKqSFJ+ z-j|PmIq1ZO)uIbV|SZPV3wl3mNNmPVni{%&@lr|(ltu-JrGxM`#rle6!6+R@P))!C^vxlt#^w@lwi ze$*>2c9VYp=;{38YMiX|(uxJ|izlww>6?vbvHroW4%mlr+2vC=uG+vLJSIDP3yVBr z+Zi&j+LJIWP;xne)d7jj^}=VUH(Vo(WP*R8H0xVOC${!q!NsKLDPAFv>vsg8ILzQ1 zs?5H$e8J3Vt2!+`xqAdFa<-|SQEW=QRcLE4?fAK$fCJ1mj`*I-5;a|1_;6fS)UwRC@c2y`BdDNWH4$@n3;Rq#!tRh>qWcm=CY&JcW|AUSl$0x<_ zb8Hn1YK(`$D<{ksz?yvH69&!<%;*cevA3Yj(+M5w>(D+v-|Dn)#u{`QMPFTFwgy~6 zSDBUWo)*=M@~Ke2@{Bztk=&mocGq*q&gI;A-3d{`5#Fx7S`)-6i-k2h+3&qX3|K5P zCWVB;v%y1STNyN?dZ_kS$khi-WOUa&ut8hyTR=ACnp$$#@ZHP#$hp#f=T`>VeEy-T z2*mD>W!sOHmDAka&lU|EVv%qwgNV8tpx*LUUrGukd@nK!97rx7u&V$$kdl(JliAqN zz?Wl;dL#XdjM^xHxfJc20VPZ}LTlQ~+jbr$p-R|6RoVsmjk>mY4|B7^0vS$h`cIla zWSBcxbWF)eTNxzPFSN6OGe?ZJ+R#v)I5Xcq6OBL8xHopBSIQ3^H|!FCM#TJMK2YI_O`3+JlWVw2yzd6#W}D%42s-n|#9PJ0%}LWM?wZg5nm@~Rzw z)Wpp6n-};2-uwaH=ZX&KoBks&U_SQg^qyWTePrru8lmaU`RFb!d>u$cLN2mL$!r+T z`?_2fjY#zqiC|>j7?y5)nw;NLw=*{{u5z(k`=J|kZGVZ^hXF;Xx+O8<%KB=~7WQYZ z6>sX9hP8$ad@nO>S(3=F*=W5LsTVD)qLL0B+^M;_GB9uIe7(E8Ptt$n1bA~=?R4X@ zNUY@hg@ULX>#mC2R?)qYT;DfYbTd~+N%#G@bVS_KUqqwcJfY>(;Yri%;dRwsxrNjy zH%NZ{cBJ0Kaq17YT|JB>2YaIjW&4pZM8Tq8GbkD6bnP^%?Z=QD{HPW4Jg6eskBZ!# zxY?Q6?>L6s-=bfkaB6wT&ei+V6PX+$AKw>@eu)UF3ASXiB%qU5Yz%O_f2}*!cDSBrC-u zyL=BVHkzVGLn)k63Qlrrikn63()Kbb0W9+m93J^yTRYKh8?lups(mw&Q=8MmWu#zy zPtJZL&!VFvsZl_;&Q&>*@fzLsM)kl-feJemB2@=>lOk+&WZ!GwIk8q|*c{7f^lm;< zio2IDH7!jPh}HKGM6SVj6=dVV|&xMY~^Qy(~s}AWASTw zww)*;xxH?h$(v=zyZW=g?=GrL+Op?9P#s#_!xV^0<14biuxLpGsZ=a8lo$Ya*F z63H*$sdejp$PWB{RYkRXs* zwi%KEB*>}sbEufeitw;KgJNFl zugpMs*hEJ{0XucWWiWcz_*E<38yb4z*mq9hX-)@u%y|qoGY`K>L8bVzu~rnsvn&@R zp7{pY2orl5d1#4t+S%JdnNB^Fz^fXm3Zw&~`rI=$4r4L$z^TvyhGq=p>iA`pEU~kN zi;IP^O8GK@(|Gd-`q=#+$lONY#oE9*WCI*j?;~uXfkC?CMygu>#$^=goVArH@kXN$ zzUlo8q-00IGir|E54mieDT~1=%cY1o$I+b-2xT&Wng#%vNcgoh27L90aEAm8k<6mU z*g*#eab1ushL0KAYH7Zam1AQL#$TN&#KV%{j&8%48gTt<11GB}upkiXfSCpp&yD>K8XAO~VMqX2 zZOVdQrUeXC(SzCD!eU~1vqUIfbKO$E9G-nzyudiWT5+8%J3D~CbCzY|7QK7PDV5z# zkf6fl&s{MR50EK%wC-84m(!otT5!y&A~@gp=FPc@tOTcTTm@=4!`VM-cI?<}tx8(d z%4u!{iJn|7J8_uwn``_HHm4XVG85}9{T~mhyzN48X}KJ!R$v(3+6$9DVA@E@=fZ2K z8CGDSy5aCKFZ}*y*T8I%t8r!hZKqg7W_q$LUq}Cet1`p>Glw6aF9(n$e-E8Z#xz

>w`)dGqZ;t_6AAXT8X}WvFIjZc*3jArmaXa&671AY+3mZYlyu&8G5B?-j3hr z#a)VfqXl(Xez(Kb|9tB^4ADh&-~> zzYC;JQal12ONt&LdH9au!B5TUk(tNxWncH>%MIa<@&Eku&v4tS^T!qgH2jN zKshSBX*glGQ|me^6{2+jjrP;Vje5Y-Kq1Y^mwQvpOT1!*;sL+J9e|ZPp>PbYCm;va zXXJ6yUaqpw*!zKwLf61!!H53JktS+&6JApVCns#2QLk82>B{;XXD}BeAZPXFu8F{> z9D3xoCKS&2JzHV^1JJW>8{u}6f%b|4i}PCEiiZyP19HMPDcM#YM-_`o4c@2_23@H- z9VbdsKdqa308fEZ6gKCUFr)^6wtXxX3y%EYx9;TRWV3t+liNln z$`A8?NNY<8*A^lHj?7I|d-IlCquj#oFqoId#kFFhE#}_lJ$&T4!+629I`e0Ru}b3pnWkhx zb&oTc3|*0Lc+H&`%3{vIHkv`+UpXYfWWqrAZ7^=rn|507hxsXu℘z>%cLd9mn$> z1n`ewX!xcBmgV2!cN3e?5vS#MP2q}guFJ0eL&vYi#ceJwE>>ht4GW@j^0BW^*Vy=~ z(BJ>$Ll<77F`UESQ9k>^wVH_?JXBs<%JoH2XV^;WiXRJIyG4iIW*xqiv+7>?*H1Hp zMgcC+0W8QZuZVE68u>=ioVnWshBxMWPq?CNT z(1qB$NQC6&t$Qz4LS?rC4oBUt@gC_^o0yo8ZGJz|TgNGz?y74(S?Kc4sy0GOV3DH) zqbDGr8t`(NKmxXa-nXueFne&uxbF=tUGSHazxI_0{q5m7+NBk(U}o3hO$Sv$QrKP&L*EO-x4Dt=JOy{}#dc8D-H@@K~Rc4s^$&LXM`sBXzRuJZi( zbMfCqo+K8OINZa1E7~>0gYLYTj7453?DlLcvx?h7JtZ()Rtw|2{?kuCNdhWP=EC4U z=GMs{xQ^Bvr}B;7XB77Y$wfdamdvw#p^p+!tgkbu((C>joka$O;1X+$K<$MUt0G{G zQiLZw0Mclw^{^!(P`i;1-mpVI(SNG#7M32=vZ)fe4Emv=D9aTZba(-d;zkl>+ zEs95pn&60Z%s?b8%{$!E_1L#pn6cxW8fk8O{(*_lpCdV88uGq_sWG`)lC5$yT2wZl zsLz(y{gFo6bk;;(zJmRW^-Zr2Ueb1gfZWFcA z(oog2U-n~O^&7y4Zk>91k&b8@iO`H~Pxh}9OIN4m?{?|Db^;AM>Cg-!z!h!*NNO8d zQ+c;;-I9E*C-P+E3w+dc*7Y$NMtbg?gUfhNRqaaY_$$O%$hf+FexWj&exOsrjYK}B z=_PvB+Tr`J67BzA25Q~5hfm}uH8nLx)4q*1Oc@HLBmv@e>m76C5FpFz@sc7OKp}sW zKw^D40Wy7wZz<>74^mcAhF{BLJwyH6%Jtj)()|N?bKR!C@lLT2Cbq3h!2b&_q3TQB zdj4AqcEp!>hiCh99jR1B`&YNH&Bn;fzGBDm0^;9*K$HZ-Q6apuTbDvfdjTYUr0oi8 zKn4LA_Q7y_+b7jVO4mSzk{w=4q5QFpe5>zrzBM7JY_nUxbmVw8;ihK7cd!);1=uBh88HU8B(dk(M5C7cEbGZ2aP;m;{>Rsw)v8bPmd$n!Sr@v^b8 zc@s9894sG%r&1lb@t3%`6)KesZhlMkhf89j5aPbRYD~`jv?)4VXVE7fFxQm4FPKna z0ym5o$}N@1Q0{6q5Lt&zEGW`jpK?O9+{^C{JC%I6xEaF@wJRLFW*ZW4h1)C!|?AB@v{@n69c$!67`e4>JZfq{(ofAUqMyejNk zKHDeH#a^1Z3Pq>ZoB@2nE)=&w?>B;9hXl(%lmSOS#APM%Rs%45kWPl9OpVxLjJMY4 zzoR^gL0S9?aWy(kl6tk1HOEz+!e^asj|T9j15D2VTg}~G(WPzLGtT8Zwe5@r*~zc5 zM0!YEvBf8ZyT0Q$kzOL2}d%`t_q(UxT!qi{$!=Jq?rGtaTG@w;q^x< zos{_rVMIok{eXuWHZQPZE+G*cbn974w)OkTBs(MX{SMvb{y$P{ zk$i#QgKm5^F@jFh+0`R6ToA zbK;rA_^Sg7RVdS~Q+elcc$eeb?I^6Rzmwo~taNUqBr2@TbLj0rTb`ZmMVtPH1P)0e zba=Ck_fI~)aBZiJ{_4%UwVrh^V zZ>FXx*QSnSGxbS2I<}38A}tn7XJ9goPN!oP!j1N$AtZyz$SzmcKX8EaOd>plFwI0H zQ)W3Q_mB_^N8A7jVW27HG;@27;L0Z0Frb-i#TGvQ=;)^kZ>` z6Up8$r0nnyOmQ24Fv}wzkZx_ODvE5$B+=21Iq$D)Z<410UKAU<$rsYV5eG|Tm9~8x zIMLnt5u)xWvT5U{9}_NinUWz2@y`Iz@coGIPs@0quy&Q+m10M5lg7}uqd zK}`V{F&Tkd%?YZxS<`5m z9yqEqjYddytetRl4C0*kJ5N*M72@I}MVv69a9;wX#(E-OqN)!^AuiQm7EF7KNFG6@ zB996OcyJ5ckKDn92L1l+OqPi2123F3Db5f9kLbebN zn0YF8SES}KpV*0B@8y*DbwB?44P_pO%lq%V*;RRYy#zgipUm<&BB~yZhIk{l{p(IJ zdV?H~w@2;X_#~2Sj7l{=c1#F95X)7vYpCD8-JReSf2mhYPfri2nb7m}rrqfevgJMGn=w%~>aQ?`<(9G?&oAAxOZ2t< z*xT!WszLx~+c58;1C&C8DksFDBVaN`%%)3cy3<{tJrO50v)KdP6#@AbC2Tg-HeG~p zadC&$XUT)!o)STn-+?$zgvS@50BRj^?c+z!jdT_ZwA(>5BY~Xex1s1wI+kLmK5x`@ z#7v|Lq}5e~srIl9x{)y2bSZ#$eqPk*o^2Q@D{`~Iy3qPLkm|Px6U^C#=Z>v8r#yyR z8PlsrM%QRfzI4F-|B1-hp4FfAoD8({aez#PN5%DOKP1XDKzBY@Pt4!rV}HLMtr7sZ zvjaBpZlzzr zfMcMBI9SQrmAW8=0O}mqC_rg7C(2-w`-i}d)lj)ahFY@2iE!1RK9osfhVA2Pjg71j zcD>aODs{)P2Q&JQt>C{(qo(&xY(jQ1!=J*l>UBK@`r#Q`xF)7zU*W_4EsJ?=Y8^S5 znVHqB-i?&6cK4y=3BlpI6Jux17RkLpI?gy7r$hO*pm@b*%6s?kRtsKS`Lj5g4bY-XK z?A`*7*z6hTWsbwsa8K^#4}L$BP=E~4w4)q&+*;s#oc71Orn=X#AgQRavlkbZQ}zdg zFTZz3v=Tv_4q~&hl&u;mj3`(H^a>LHk0A%OPr_r`Bra2R=`7NhJ2M&t{$uNMSwx35 zAHyn#a1W3}V98%l_a2G&b>Zw?tMv!h;4zfvDlkuA&Lt5qv%8I{oe5qI!u~@z3dVfQ z2FZ{jl3p#fO!Hjih4l_^O^R_iiPESyOHV?(#QZB*TriuhvoL4`3hR1H1#YB32X8+V zm{52$COWzrdPCgG zB0=Quv4!}Q8mRZ2?{5Sbo+-C@6+eGZ!~yxs?8YMnqFU!XQneBJu58`Aa}{T}w4nV4 zmLvj0U|uAorcNR2D*704pa%(C+v~j@QdoqTJ#l0h45S8*w2_(=_^d{h=@d8xZ=%7Y zQy`HO!}0;+$k3_@6Vb5hsl2Q_wG3vc3B~#bzs}6#waMUP1bK;W2>_EF1GBK;YV&53 zc$)yUVMt(WAPI>g$qqW8P_`=!wFp4-9wJBG_ZWQT0|CYgJf{hhXt1v6HHq9%(uk0N zsGvcVIL2&mj2?j~9UYx6s72_qy|D)lei>%gzm!EyIk((1f8gA)o4h>Js}QgWPaV2< zjhdvphA${@-_%Fghc>cgVR)=p=h>$}EL~uxCpZNx?7mf1(9*>~(6A&Ffxc)sx6X^> zs$x#W-zjcK4S2?8LW>~IRb#*3CU9|b_e8QG8FrY?;*8HyZrsTqrv53-tib802c#3- z5J75I;(NU8LGXDm|p+z>bnLtp>K_maqGfk~6&?k?4<`Fmwh2O%>`ZSK7Q9)cR>inDggA zohl~>Uvo%qLlQZxt9Oi7Yb|1M^gFOpQw(8fsVESy=AK+sG;<&@fCzT;AEk9JBY;$H zvWqvq$wlVz?AvIv8i9z8L}ojlK zJFnxNULDS{Q>21J3Mpow$2#T|-^nJu8dxe6n0sjxC6V|XQPxpO%YVLr`jQZl#i2r0 zW6`Y@=!znwO4+%-{(jRUXEDl_9WIZ*qoh@Xp3Bakc*kw&RYu*N5KM*AvENR()k-m* zZM{T8Jw#kZMTJC1)v4Cgr?I6*5lfIAlJ>Mhi6A<^L87J_vG6m9*o0=1V%~78VuSYF z@HJJ2RaEc?vM7+`&I5SL2grfk+%tH*7knZfhqhaksuJD;d(|T>1|nH#*MN?Br;-4$(4E zoLJif{qw8nLs`m6%jihIDCt{E3&DrKQCeE1b-wxg|Dm7rIx5Kx(nssBP)VhWzR!?$ J@3)f|{tFP#jjI3v literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_3.png b/labworks/LW2/images/picture1_3.png new file mode 100644 index 0000000000000000000000000000000000000000..db71efb2788b2710745eb033a61928a1d3d46b96 GIT binary patch literal 109347 zcmeFZXHZn#)-Kv+6cLOlNKio(ZIFy)6on>A&R{}lqGSOHf|y9!KqDE+8HFY%6%hr= zNwT2ioHN`p!Tp|Ze|J}%d#b*=zYbMNSq?7zg~kHTH@^MIv?XESb)VSz)PYOP8Ra{R6uPb|Vv`%a5jhO-zjaXiG8_nY}vL zbU&*t6-I%67|$60X50Q1gE@Jaw0rya*B5qUVMOSM>43P*_HUS%*XoXJ|0)(u^?&%) z&6AUoF0O@&I6HQhr%2zc@Wq;Xyg4U%v%vKC!afW}tN=ZL zv45e*b@STo0e5n?_u(}sKXPoQq@*+!jHahxb32tvm&(~~2E*-*%U>NYsr)ssf9pwV zLWHBV;5fA70Ej^VmK|gyJ4&?iy7y20^6V{Nf#%{;H)CL+E%Mm>(r`i z-y9|Gp`%c`I#F22p68Pg>7pe=y!?iV;^Y;v$&%Id7A=#s%t7)ffy??Oot!`ICyN&y z1tL$G<@G*`s0kmV4wP1W$6L;Wm2B+xhUiL6#=$geuHRg*UW0`i7Uy zpEr^tE!q~%lP-&b`u%$`j2F?m-tw&B|9x=0baP|8yY@b30W64Z<;8?VSjS-5n+ai7 zubv$|70sqwkQcI8_wM?++P!PPJSY#iQZk5yxf!^7pT5dDQ*wDWv(5B!)r}RQm7y4| zY~w&Cd|Gx(!$@-qGmcVp?R|Rjf|l*r&-z)R+)gW*E}KTVCjl8UL2NW4kMmq+Lwk%C zyX@7?%q%_fFDl0mwU%yVpO*_^!U?R;HD!ogPES6dxmm$op z_H63uyRK(X6wS(y=MP4V?<6X*m951E={11yoy8fOnKi>dXlxaCV91UkFRZKi&Jvkg z6D~-tSGqEi!aGKw;( zBy2Og9Y=@9vTE6i==scb-j?sgFxoVY?7)Z#h6~uT(pLdc$J&GW>sKRZ}|lh!O2o^Mh--_mH;VU_^iqdQqN>zk5!GANMGVdj3g z<=0c~=7r-;F_M(cO-)8W-`|OFx#yy?K+azDeyZD(T5rhs*aEmm&gwcWd-Hs&eund6 zm%8)nf~vD~v9Yl+$!54AdeUWeJhxyl!ioFt7qW3uqx?vH%yR*op(xu{U3G1X;_RC~ zG;#28O|!*GK|9m$Z~9nd-`;xr^{3e<8TR7Xd%jn1hMMIB3)oMj!V~ntq%+J5hU25f zvguOB?>^w+{{en558JCMIQHJ7Mb}=}cD!8`-PmPwwa4VE_o;Lj`)(L>6uK3yMbQUz zD-q`vqe$n4`f9!&os+{?y`Kb(b;U-x-G2Ydy0JrPe#S~3P`u=So@SL z574U5(u%qixhxj;;6J+U*qVy%NGt_k=Pk6Ra(rDXM)GF7&MR}DEx6JP;onVGq7hf_ zT%!{0@kc|i3;fvaG?})szB-!s+xODrjnd6^g&vnxvp@Ya_cDqXSl5b8+c>d$Mf_hI zFqm8PD=0V@z{Ao7C-P#3*1vweS-jA0;y9k&YEvt`I0Qzn zTpJ<0OLqahWGhC#d-rZ=9p4y_Zztg)tQXErx^8Mer?b=e-ZRzFv!S-w#@B(nVc|e zI*5tHPhT8n2k_lR4vrhkgSKr3LBqYz8CpbE$BzC{c=-ic-;y9hYNx|sIM3~m7`b51 z8(1vXaq81P+ks%iuPWCTf9zOc3irTZrd~xcV=(XU|46rKM zxHyh*NN7sT3|!+zBTd##=HWMz^z|Pq=(Y3SWkA+KJBZEsdF_%~YMn_&vD(r)rN~kg zGLPc92ALaj1LHal{ehl8z9H*^TPp>z>2f=-*w_x$eQLB=YpZpMhtw$#VYI1mvgFct z7aO|-#h;~XGcw^01HrH%w{p$9ND!!v%P9Do2+T6=JnNBy_U3nrO>^2Fv_A+noAY2; z6AKr#Z)u2=nV+s;FaZl7SOvdE#@h|n1gY@_IrN9O~p?3&a>5gAy@9WYiVhb z9OsSKXM#$bSRx-sBg?kaD|=4KPUBM`=||u0y1CvAfucHuM<%0a=2g6WcyiexL0Qq| z?+QCtDImc__zH|%$R?4bDuo~agq>G@^Kes zQ<1|gQ~%Dpf|EsAIbC+z5c;)3xD0*uoaa@s`XxHngEh^+K6%U||Jir?q1YYzu0nhE z(+LptBZ=(#Y&e09rQgkI+PQXBV;#8`jH92@TJ>FZ^_}MfV|AV_v%5@teKxG1vk$Ae zI(QnFf4&b-rsc9WUEx{U3d!-K#|j1`!Ag$7D4CV6FH}iaN>@g>ZY<|C_9wgva9-{Y zq8q$w)=r8Zwt!e9R!K!XeD3BkqAR!tzx--{kp2V6Fyo)+VDl?orpu{sG?H?19zfO~ zF*P$YyHn5usUv5WJ3VD(Wo1lYG}V8-)^(%Nya4=jY1yG|wpO%fc7-S1A3jcv9RtfG z>XtlqsJD@mlWS{fY56=_I8kuP>9-Hx1H;+~Gr`I4{w#+34xQF`y9o%%RB&8)u~Yf2 z`Ii@miH${TGgY2=0o##)z<@4@xmn5y^4JhI|L^xR;3m=Y>y?)>ezJA&hlk7Yw#6E? z0b;5~_~*w1&fw@_k>x-BradLjGJe774_T3JK^_iP<38L8@3y>tg(K`;kyHR@e z#cxB%51tNm4u9UXm3vWZ%jY`IkBo8E3i%7eEwG~cAMW0;gFt@q$7tPk%4!!_!tr<$ zBcpE-R+Se$hauzn>lWA~^$Yoou7p~YOs~^=*nHm4a;(y(Nm25+Gp|WYYP9voKi~aj zYHA;)PUQBuoC$321`8ms5*>SAc2-{mgAqU52&ncL9*?g-Wf-RTs0$33&iV&Oda0;+ zCqGt;^lg5QTG!@{8B6uJmoQB?NrGKi8zJfbVf$G+Wes-S$F{L?R76Jt|*^JYs^&dSTE4zz1Qr z1Jd4npBKCFXj*OyL_FInY_8Fdw;ahSDVGXUeSCb{t*Wr|4KnO_2&rrA9}k3IpCD#6G8Y{AQ)QTHn+Z%M$VE+Vj&^QiZj9AsxA{{bmqYn<`_*A^c$rzMN80 zk|)sB-kuD0Q#!Ts$6ujERb98)+=bTk{ga4Cef!6Y7rQ+#w=)(&2q##rw*UNauOqFj z2&Mm_x_2}JHi`X%D8qr*vR(|DULA_@(>i3;49nLAqeR$iqIglSI+RZ#7hJL4?Fud% z1%pxjP1Yjbg?krqv}U9?0PtN={3BSk5y7FeN0(i}@)6w9RdDUJtiZ#y*22YY2&Pl( zJ$g4K5ZQYGBc`=gsz6lIA{o8ue)O9{7i=Sh-!hshsiZ{DzQ;K?L4+KZTUSB+ZB~uI zrOc>)6!gBG^E;-eZ&`jEu-4YfO%#l>p@0tn6O5yft#FL9!r-)Rlj4&-_3jP%)`q(9 zU5=w^A$%4QBI|R?>qC;F2kv(V>AU2cy_c)pqc$sEwN^s&w2V@; zlk;{kpUu#%`H3!Vl)PRYzr+n;%dT`8@-{n7ni@52v$&Lul7c^O=kPOd*>(++WvD=B`Q@;0V{1#x2w&;4&jxrhj-Uri zPNN`P$wmxLI)i0xWeVF76|82a1e92py)!TOuPFQo<;E*9idTXC1a-1O zji%f?x%Q$*{K|r%Q5+aD0I} zC6%Tv8Tz8m>+`KznfG7PJN!9J=R8**F*pqw>-fzok*SZnvOn#m4OpvrMr)o3b%+*( zu4a^do;}-Jv2Q2tA*7WP8zKX5?_FLE6CO#7v1!LA;G2_Gwcg);65%wF|0VorXh_Ib z1X-cibzPt5u^apOhxPH#>+?aRAF|tv&`R)rf9B)_wSC&nIeD41>$ko!&`t zkG=VoZ`&cozbc8We$e4lXF{rCD-2NoM)e5W2vt>bR;`FOpv+AjKasIG84QcIS+?r; z9bVqSrOUGUjCuPDh*}G=IR68#h1DUn+(x%Z|~VI)WpSXH?6T&9>+{nNiU4$|ArKs}t2|R%ZqI zDeJVYuoPTz?xuGg1kZ~XTf54@ju0-r($v2bL$$}9h{345gDUvAPs3`Lea|r11}pcd z9xN099tPospZ7dP)>uD%_9Q2FwaEN_KE0%|)OGW74`dvzlE?W_=$Z?zQ@Tv;>ggx< z3gUzWW4$u0;Hvda%Jz~dt4)6A?gDS|>a`1PmX{0j^Ygm~zdEPtm%5}A3!&1;52^97 zt`$~4dS14!!=g0Jls9E_ZBTRtlHNHS3WV8EEDxcq4+Zj_tB$z=n3z85C{e*(< zeJ3z)xQIziKtXv;%mpH;&A}@S0CYX0`jr)g-ou~4 zO|o*HZ|IprfzqdZKps_2pRNt$$dXgDHPuTp=#pue!x9yYWme6B%bLIrp%}>-?48+` z3Po$Z8&|OG`PZ2O1|ObbUl`CXen6$}if>N|OPUQ7CkP;=7tK^gyA=k|o*bAcoNNJb znbKYCG|KL}?4_2W*JVx*(A*&C+_&3SC%xs$Tp`v9$_qZ4x{czHl6lmHd!>1nG+Yn7 z&GY+-pGRTSHDUaIA0#lC-ChXVUigU;(AsP*b>B*QKKavgQ3?S;h`5cPMteMlCQs&F5gj`w>EC!dWq)GFoe89RAZHEoW)?= zB@tJ3tnIc3g$*E{6M717uZY(Q&B}T+AMpJUOzIHX?X#=cX6)yOXb zEM!IEp@wUKBJ<2ed*v|FVe9oPz5>FQeG=I@ImzkiHPeF2JJ@D={9=}^RI0ca3^a^y zg&;h)@q`!Ztb1pcR$&NvD>YwU9xc19^d{V{9fvaD$jAs{$D}Lg8y~f38Xk}5SeRUb zpiVsfxH64DbYl<}a`@eIde)+DHa2z=1~7edPqJC$**P;}&<0)z`yJ(h-jF zY(+?e4IuxwDqszcecP@v&$%gtaN`t&=T#ni?*9hiGf6&N09QHRqrvLI?f-oU{&KMh zE_Xd`ygX(DHb0fy{EJ;YDa|Z}hG^Wr1}RMC{t3N&@9OACC}Rlg*Go25MnBw7-T1>I zdU37z_9yq~S^yv!*BC7p#@be3lWD(k#W|* zpy|FMD?^`0MK_mgeb+g=fgoC0`t8Tuzta(=%^?F)CXA1IBZA9N-l(e0G^_f6tKgm_ zYBn8>fN@V=09-E+=Y`7`x#RPMEh|1gKKfvV6%Q}(35wl+?zg0BdY1D2yzLQP3)ngq zfNs{*3LwLIQcti)l!M}Ug*^D}K1%w|iCn=`B99-Pc`pi8Y%!qmCqcC}zx_nhfjVIg ztv*p{1&NmBtkZFf+xsmpHV15==yMMu>LQ#M+D^(G^#;q#xS~-Bc9?$V`m-Tm=-5Ke z!=6C&X&tJMA)f?G!H?g(=UWM7p8C@2@?a$8eH+6|lBX>tdM6=g$)fVR5HGUyYZsV- zO9+n%arE%d6r8iOvm$W@DA;I}${^U^XvFH|-IAnti0y_d`r3j;{y=qTg3J2KF!Fh) z$znsnE+A8GanG!R!L^%*h^`MS&|JCg7OUfC`Rn78mBrFcvryeUqx!R55P{m^Cbs>7 z>RR&mI{h}+CtV9y3LX2Vf%5%zGHflJdCw4 zq7+DzDcRYogt^AZ4Hc;E^c5d)V=#d)M1a(GOM|sA0z7qTuG$_l;C>`{ zdTZ4XKrh7RWmXQCgR`W=sw!8|JEdxAYeTxVz^A0;GyruFgR1m@mGS}ma{v!WYTe9& zlvk$I`bmzvPt!|QjGcjwFg7)9vaFy>0M<$c zQBjCyLbL|e!4AkU-1on|)@YSc3V--{zax+lbAZyN2{60^s3`lVe2x&-W-ndK1nY{a z=IxM0i%VYpxQapot6QLgP&Inm{80UM#Eh>jjHdtw8-VWNuuPx15pm1g^LRG1Wb6;tl|H6OaYF8+HZp0L^YmuaoH-_FrowTh(&Y=~=s@gyK)GAc03X}bxN za($I!kaV~s+-9gw9C%ozd-r0P@DPD-ockP#m~g0*pPO<$;Oj8uf@;iZi)=xg2Cxlz z0aQh1g0)}@t#(uipFH-NEKT)#K6!|o(9YvHoy$`1yFFN+;5TK@C}smMK1RGdM4M(X zPm)!?G%6X<*!oGpi4ersiD*o(+**l&(wHotJu_7eF=0^YE9L?Pv?EtS#cgqoJhILEu#n za6x76vN|D%?0W^$Ln^d(D%v0Y_5rA7l9Zkq+jn*h z*yoM;4A)@i5H+{G#37oHHvD0D;fX6fhU0|{a+!ozJJ|{Uo+qqB* zO}WuO`n3aXM!Qjr&snFFQ^4X6LCJIhDr;_`45!738(kN?=>&5+qoL_W%hUGQq6YQZ z&gP=2fENZZ6|XOJ-2V!nzCbVyLlp`j#Ryn7brX{m0lTrpXV0E#6awtQNF4}yz6<`# z@$EsDz;AD^12NY&#|%Z!-QExMr7!~Y7_pDwD?(_mQ1RS9*qETu3bk$4XR_b6wzj}4 zWkp|xTZu)-@ftb6Gg4ePH%2=1vk(_37sg+2xdMJY0-U@uS^(q=Q_n@4Ab_4_g?=d} z`TLJxF2tNBD@2N*Ft9~1qbT4jIKe*-EN}Z=FYJLGGB^P!2fX$c?ZjXb?dC11Kl(ue zk%*D>Ycb31itn=Pkb|C7IO_Qzf*2ZMMtsi7%Km#P=~F3qe~Lk?DG|joScw20fphTW zThcNzULtE#TV_Oz%z%9@0Ji2^Ca~dGaQ$LJh2uG)c3rmWsO>|Dg{BzFP~gbLK<9?HJ_hJfn0&i@kV`;0uY;hn7!X-(@*Y9HOh6EKlDk&6!hK^=+ydM%8Iu8ys>bC1p)P7;AUB2RsE~lT1t??gv^2qYw z&gqo7-w&5(`rBbIbjw?ms7cU~NkET4kZ+M1f-{sh+AaxTMI+GeQ&gTpF%#Gnbua?3 z`JWT0bET9ZAKqTv10=F7q^2MGZ-lC=s}X(D0Mc{T>Tl(w-G!WDRt@KV~cb3CZNrM)QGg!8_xK?yi z2kM&-2Q~g~!3%{EcOn6CeO-{hQL~Zgn{hGgRGIR!rTYdA#ougA$eZP#}NbuT#*a` z(2{!3)`g6UWLnSe!xacYA!C59C2HU*>FVm<-Q^DZgD@AA18MDAjud3dBC|Q~-icce z{CLB(GidwKdv{~6X9ARi;fRNtX1;{G^s&j~;8Fmp5XZR0tH@FzG>o*Qg`z?Z8sq=c zJzQZFIPMORAWbJc+<-(}_t*^$-(dpqB++Q=xl$>nUzu7>!P$uL95~-@&r{ z=@FrO5G6-&{Q#K4g`{=$vsZsgZv6$*e$MFc9;5mFH6W>DThSPO1Kpj&k zNj(?8`qHJqDn+{jtvu3QTnIp&#pe{)P2dtp;R(xycAMvA-%@Q*ZtFGN3?Y1C-Zy5O zsM7&=NwA7BseQ|F-J*D&2;J*gC_5zqnuO#)$Gc;a@)V~8q^q3u&S9?Y;eB}?#e5_M zc%&Pr-V(SCDvu$skJzvpsF#JI%*yEz9SpN30jztjEwz2kZr_1kslXk(_8QF%)e~ZY zniU6nnj?s8`(yEQMlYM%0LnAtz#p}W9$Ef~+cr$GIx?-ZwnVJXNiM9+UiNdW zPOa&>u^h~pdwFoV=Hzb|gvALg3B_t3Fl4Zww2 zhg;WNCB#CprvU8FzwZFd%Nv>`F@S;PfvT75EdRR+AJHZh*bGNQ<2Hj3i_|5c^>~>N zOc44ZJL0T$Hc+0wcek$dd^1Q5GHjYv)rT!ySG5cAY|wMGbG}Qnm9jqVV>o^H;`UvC z?Gu-YRf3JP`OX|<1W>d9QUVV|$h6Xpl^cyhknVkFe?qj}|JMhYsKjNy7{dU^yJ-Q3 z-t;}KIa641+S=Rq>cCsONyDr*j5HEo!FuJ@B_QB~ew8@$zxSs9AHRB5ZGCl79b^~a zv)Yd=zRIJ7uD)&;$fO4R1N_kskJ5>u?AuHCeRy{B(arWe9ugw>Rh3*EP0B zny18IzXKzPgh!yuVcybyc%R~$LltL3EDk9l<{;|ffyE@PZ@fNpy{XXNqNBDt5+a5a z0oX%K9H>#?$4!4X_Kk+H)57J-j{&iuVKD-xx6yqMxeXw)kzm7!59=FC`-NnF$Nmg)*2vJ*l~~nTKdYpsv>&!Q0v?>qG8LP zJZg>huOtiV2^65TO+R>|xDK9U0-Z!?zRI`tZ<|M=9Xw{_vUZLvK}B6X0U|$9xRlPm zQxOr+P~BX@(Qw?As2>F8+^&8U*m@+23At(=kGN)lgm%z-$+dx|&Tyc*UOhDRvTFoJ z19Z3LYi`Cj{ylh9M)UyY;x_&H{#so_r(b*(WnPt-u3I>QD6rj^nejl^H=?CSiW2scrL%u?ts5s5 z$@@Dr`-V5)KmE5rRC5357>qa(N)TeC?Qlc6eLhrTiJ(FuIk`et^bJ$arLEzL1(Rug z{lfP41PgmGQE{j}I|a4Paj2R^Ep_Pgn)H2nDF7|i`KdBWL6^-i>zewF)k%g&`Mlka z?o}<$1_wc_bpPYv?b$a!jWUppHrLaYKJQ1y>#uDWk z-}YTUBFp~|0d2_cNjVZ9S<)l^Rk3acXb?3}OMn8;Qh55yQD_1an8G3L{!2x976``= zAs}`vT!bK(1RNf5Z35_TWDD_Kt8Jz&>Y9l80bRo63Ur3dmmQL(a$Q$ZYNG8R@znMMsYnNJKu~Xb zcYR-)#)q>L(Tu&&Y(Ry|7UGNkJFLBc_?nuU5<%OE)Ip%Q`^|RfNHXwnkd_c4hgIog zJGAv}vAazbx^B|Vkn2Dgrv}j6YHts<()$2+SOQ4R!*GJz#JtrcYE{*-0(;zxTcQ#4OR=c|^B`_W+Cxkws zZa8VLxIJP(T?Q`z9X6$?vzxvDwD(`|Rtmw}dB}Oj5NqOG%gLHrTT@CR%C=4I;{io~ zG8i0_NN7562A~w$!jykCvR_`+kpB!??Cmh5qD-iHV(D^a?_WH~UBn7k5Mu-m3<9?>fP$$hPKLS*oIa-~DJe-2iZ=31Xs8~)^YZVygIPQHt)}4};)-1k{E*3TZ@%4U7aaSI^s(EdhcnEt?F~h^7PK>KBx-Shb!I%^{Dz+Kgc>mWIhHYm@0@? z=7IG!24?v}(PmKT+6~lp+v3xD93cJ7p$-W!S?brXd!PVP4A>}y)8G{^RLpjb`p^h2 zfb7{(ya}t63@PB#2IKZ}M14k*-O`ojjHbG}C;$e6@}ZToGNRBz^^3+pFquf&q69%q zX9EmqZm0{epCBl)>77Rb7+T&aaxtqL)1cZNWR!K#r)++A{du0(E)}}}P+MQ=A+(_q z&}m^T30xJc@jhy3eGmBwlugnH>cN?jta1fnBUW@0=rl;$_m_*MJMlBD>x(;Z6&%|Y zGegB0Dt2`HK*!UL%W_GlUnKm8ikZDK-lhShBp}DqfGT-^%G>Q(V;)Nx#K$p#Y)}g& z`HxR_@fg)H>e_eN{#%jUoNJ-4Yu9E#i1lJCkOHV%nDg^4`4)Mt=MV=K^j0IXCi1U^ zd}PWNuL34c3w2h3U`ha4qX}pqnh^J|hjg|NYQmD*+jArupvgM~Ev6<&ui2=S4AQl$ z2aX~M-~?}aO>vF=^>Kjb|SY*oN#Fv8zgL|A5d+ zfE(MF|DS8&(RKf$F8zNh#{a(q_`fUge^=nYuYh#22a&Jman{P>WCjwsLB-JsEp=Vz zNstSxL4o&-g7$>@j=w?Z5wSh0A2oaGV==AS<`9wD(fPRZIj3vf==+Me%?ot>$uXNU*}L^Io4x+OzWgzqLoGvD&y z*>$zl*EBS-1p-Ox>=&6=xgjTr`d(+$LkV@Jq8FMisetfVCi-^Q$jD*?#jAi*O9J2r zL^P{oDF`E0;NZdK(pjY6PA{B*g4SOL`#ZCWtq~I0&xv(Jy1?|Obq2UKK+XwGn!-G< z9hk&pX=x3e`IbSbOqGhW{Qb3D_vuH-qm}cdq=Q1fK&{ZLDc(b~gicuyi?NvOqhy~~oQCopJ;F}X;R5CACn$lH{s$Kr z{ve$eurcZ^->*}`oJ9+d0_A}+^hSUa6R%$d0qZS*Egf>3P;20!`W5JVaqhq*oC?Az zIXf4}%Z0{6&!%W-i=Jlj3QavkCy)s31o1WRFZqBMc%a$$YTa3k0GZsRGtct0N8-V+ zp@${J$`$rd?l|_sU!X1ruc^biXl}rPlyBaDXXD=zs_`@QmxC#0x;3f_i~I zG(6G-8;~-mSoD-2jZzbcA5qbLqemaoHFHweDx7~3+b(F9UV{yz`p=V`dZcK!rV*uA z*n|;iU|DYmE2Ww#)^$kyX}w<)Fn-R%+|gGPtW^64Bp=yfD&W$Rk8*U-yc`K|!k z+gF85WSZcY7`M9dV*82Bgh*m$+oP&2mSxJKRo8lRbFs96-SuK~bGbJC(`RT1RP^*{ znHVnz%XTu0z4*_Aj-{mhb_t46^mSGOe4UKkw)z#&rD(dZnBWheujyt*|BJ^KgOQ~g zp+ymUlqdy{XT03Rvvqy5rxy(s*7qu0@zk^6!3`j$qY54>?ustw2-2gV0M)V#gUiXS z5RJ^Bs)zuaQkEsn`~`o`ma zc)q4_D1iO@VbWz!aMKMHS1yKiEKJe@K11dA=uYs^6IiD zM$=K~5C8QWZbp_r;NkyePO>tLS}IJJc6C5C%XHW_0Ikf{{n4d?PgV=J|L}4pI>+b@ zw}l?5YB%BOzb)G>-Dp#K5fdV*{-#o?OG5>NWUdY)?!T=abEQ{%o1u)4kCI6Wx3P*% z)t>+NU5XOZblMgc`^xLF)EIX)2&TwRp#kuBf{MJ987U^Kh1om>{X22jZXnD5Uz1bR zYl3A^VS?#V(T{{2_laV58v%XpixbDcSAMjEau6p$7l-!wmaY-~RxKR}Z1(mxf=ftv z{kK`c-Rh&y!Vuiv--7J~lTe|C2JyfD?aBKt+aOZ!vxfQB3f&`8_qW(tu{g%~npV&Sc4Ho%dMvrr0ao9@m*W812`>bsx0gnuO(;y{*DarKq*Pf` zXv(~nXi{WF{?rV6s%2tgQ?--u`E+W+SFeZjO|CdR06BNLPfpyuJkD*nAt#cOpk z$YoU`mVM=A0mR|w4n@U4w|N}D!W(-ux1d932yuTs6so6irHOl+Ka0( zGyiIV!7j^pXElSjR%U;qzY6roP?PH`dyNP-G$dM^mkM0_?~?y>xqRZZiCJKTvl>YA zjEDvj@yy9Pz=*$G2X5{4Zv5CQqh+h%jn%kdFe}{1)*R&Y*S`Ar9}-q+w-6onp!}>$ zylRAl>%?g;5ia;_jgHaBwpv;Kjjy0QG;M7H_{9HCM0oZ_uZ640>S~`?nQo4QlRy5Y zu~@vp-x*8Y)17^?&uWuhiz!X>sD-A|v#kjd>#Yl3csf6U{L}nmR>wfPi~<}l@iG1f z>8S-;JIiZ6dSRnsPafU!Nt9AMp93NTDR=G%TA%sQ3VaiLr58rcvA0j0C;Fe|c_gOy zuf-MS#6B@neDl}hcH=Wl;?s&aAmU2Aj53%b1mJOXN1EN>xzX;>03$Gtr#UvLb-xAY zhV5i^v^?~sY^XQ!Cf;?0!en<0a)a37^x&MCuij|%<}1nM$mF&@-m>Zc{sagR5?=#rz8kEVlM_r4xPDt&1A8sqWP%EuUW^M<|j2=2uDTG2GI z>%)AhALtY*5)_b}F^(l^z_1KuzNhY?2MuA=I}N6E91!<91C` zktBG2K~P9cc}Md;GG^<_uTch&X4Hlwe{G;5vo}lDzV2PC4M}N{D z|5ut-w!x{NHvF;{2&RNS5TP4Ymy}n*f-5-=dgKD<@$qMa}E@dY@w z`L1-ytlvEO$2*5fa!r&rr$I6iyZ<7{@Pz^YPWK3hq+)!?aYqqf`S686FXvQ zgNf5J4SNE|8H8E))XS_kT5N>@cxV(8hf(m~!Or1_^}!vpGTn)qYP`R^qYTy{D1N`n z<(N7<^p8~xH69T^W270LjHe47b;4rneJ;q?WhO7Rrz}9VEWu4t3TK#+SlAe(s_0Y( zlKZ2|hS&&Y(Ql+CoQHE($@%%3+UEIj=;+cg9HREhYf5Cri@sCa$%##&t)8?*{U)?o>EUv_z2&YoW@=kVd={upM zf+O#|KyI6(dJ0s#RC1xba&VANyl~hFlwO;Qn;Vfi-Hs+m6{#S)PD01mk*o^Hf|tG2 zQLMM#`RIqmJl_WdbHY(&9=iVHwh@`0;ry`37|DtpU;Y1m+dgk@&Wm+_13|BkVv3I)RH<@ zU(SXGrkCm!EZt4|z|r1Mqo|q4hQdr-@!9<*rWLoHH}auld}O}v{dVB&C%2L02U^Rm(AzsOiDa}<9)}vBL{*)E zCYKtLqM`B_wYi9mNaR*e)rr&(Oi8dkAQUm!aR2jtGhTYljG!|6$3IzgRu-pZq8rW$ zG6!yQb7Q4_WmUxZ^9Gk}=qk$dT(FD!jl5SX?`IiPSUNT3=2ZTC&)nE2|%b$ujXA^L}O1x7Y(l;une6*GJSd)yW!0q$?`?E`i)y!nPys!UhAMdfG_qfpt zY|Wgmz3d`gpiZPwt|$-pvG83c8F|-i2P2_hKHRF%R(6Qov~9rJR>s=8Z}LO29y@EX z{7AojIXy`S&i|knl>qnRYPBBzpI8&q(pKmflsK=Vqj*3;6!a6dx#2`l6`mc=D(XJ! z^&IbpuFN24t*KiLvU32VfoKdXa7v+T%`<8y;FX13L+aCjmkN6{$mN& zgC{oV7k_XKj}>C?Tb_PS>%8>Nj-x0iS^ZCQnr2KHMMg#GlsiqUHajWvjP3#m14dmo zp>*<^zqzv}Qrl%AIESamuDvwwk+1k~Tf@qP$oTY)_bs_SBe%;&l}7oif2=mrvX>-2 zgTre@B6F3O$i=Jk`8uO0cNNv7Ew&l9w@$5q%(f1WtnLbRJ?Xu=aOvoIqyE9j!WF%^ z7MyyTR=;EWPj_Nf5PK`M@1x*=gdVi~!V{w6^t%dd8-b=mCw+YwMD>s=6;9B{gKd{~ zk^YfALZ>MnX-J{lqXrGk>+B{?sCW38oZV>Z*Qb%XPi*Yi;*p8c(kc6dns7w?7@aT` zIJuAFbmC>_#Ajcv3TwjfTPNf^ZY_G!C^vfgtjsAggu-d4y}506+GfX_U9`m)x=q*( z?Azkzo|1XzOAEj|3e5Zo&bbX4p8Y?~;UA%d@wdF!;Rxnk*Gn(Jd^L;mhO+O`^{%RE zIP9Z;=mrq(&N1?fDi%^M!ymdG>${xz6W51gqFe0@q${(p$jv|BdA&}a)$$N7za8iQ zN^i2bimh@Y->}!V_zu%FNUOgs(0}s_v2DdV7SGBHUJQ-4E$%5GBMx;|pj9n^!#cJ|H4M5u=xfhP{Q)tGimq-r$n9^8n?8P-nOIO=LFaO{$G$*O4o` z%HTVF@%7?;LI!7uzw2x^taMy-b?d7R=~&#p|1+qwY4hxzfJkc`mvp z4iGP`z;-mAUf9tH&S145nJs9vqw(le9XiAYnxR$zlF6VggX28OAigX3Ly!@|=KhE7 z8q%ZoPF3FxmW@yBkyd%1Cs6i)F=DB_x&A}5)v(P~lrK4`6bx<)-h6I;j}Q}9Uv~B8 z?Jr_N%}F5>^Qku}b616i*lwMCk&wJpLwXF#cJu}wrNNQ;U=xg`L-N$9|*ezt*^vovcOhR6BK3*exmP8{s_`~TX}vvO8B1Tq@vx#c5q z9Gs|M2kCti9E=&UKh7xEH*)D!XvtD}c1<-Omy)gOeS$k6oUy^cC!^{%WLoDXuZqjm zIA1wyq*=nfFt05)xMS9WXHoIwgF4P}+kn5R7_|Z6H6_`1%i$e7AfbX6$vB@Wn}KC+ zg_j`2BWWz;Sw)Zy!%0hCILV0=b8ztCz9v2$3G7a==_Dfg96G5D8udib(dJy?uLT*q zs)>}Q9>{r-X1W?q*`UdzG~NZ-RRB&;I0x;xcq87x*0R0(&IGwyN625q10~B<(~2RL zp>I)1fBFT?B8VnJ-T=81j0GrPZ^Irgeeo(#k6ibnW=FjRbbbb%VQ+^MWlT6U5@a2) zY?|maP&b@phcjg8y;%s**n%3J+O|^57rlN5P81jP8v-1;;OGpxyGQ2Fd=C%;WUGt| zUNi3rCW?_7^xjAu60aJ1jSoJ3U+XMrCQ_7n!uRzZ)QT_mC7=>QeQpZQeg!d&1M|Lu zUWzlP2?Vz-yhp?c6xv(bW~T*HbQl}G%7y#(N4FW7g8`Rn{3UpFzxBPY&MCd{HM=-1 zhle_G=tE6R(84Pwt4Bj8=-i3l73JfZ2L(F=6;45}^=%GJY* zv5W<)88)W&;gnzPU7#=uHhu z8%0F+ppDg@&P|;E!a%Rr30$qvIn~dhx5JU-yh zKyP(*!{!Ey^QxJH!HoOrQH95QutAqK&*IRb1k;2zIE6&+Ith(rmlL~oKOg9AK7*si ztdL}%F^wN>b{~tWq_VHe%vNnT;~TEK9tWrKU0o_ppMz?!;oF=3+Dk_G8q$vkak~z^ zJ|wCmusW6}qb!1O`Zv;LedgWRj6!*VKUC0#Zg5V|z1tnx5Q2B8ztK?lt|7wdraiqv z$A^>1E(Rte$?Qj4s_jBRtX4P$9sA<-%X`W8?V46$OEJ^F7)->c<}vRGbRR0G8@qO; zuiIBSUW&_bU_)ecZDtT&?=-Pl!NBgSCoVJVGnT9h1d0|xLyH-CRj zzcd?Zy~(b@SiJmTu7AJ(a&Cw=#Ys^Gt9S#KPXCM&LcGGFC<8nH3E}DEq`Bm0p=Muv zWUEGg@fe*N*i*)8q**hQm$zKTK@Bv=rR$v?A3}V)NPLtTOmo{PUsGx3t&G zM-F+xe`KrpW1$rGVlvv#bii3lEuG0gt3gQUl*VBFZz1(leI+iQ4r6=kB_F(Q2*YdQ zzrmsrPLgD$ud-@_u}U`|ZGdkdLgc_>ANmMB5R||rdXHuoS*wGIfp(9b+CX3SdB1qo40HcR zwHJ71K=P#L|0?`7#j8NnUpqbfIO}1;aAw=(>Waf9vEKB0a@3jpOi2#>!Nl($1^o0n zKe6pTH!-UIwn{taGF-%MsHN6EJ>I`~g^Dr^czAhk%3N2v{!D*10Pew)Q3k~0KHN~z z1b6DZNA-@wKlP4PU&$FVYlkYLC!d8V1iyX3L^A0k9>lSjUYW`qU-zIW1GA6CN8-0R zk00uFoMrndAF@n@mPii{xZj8*Hv8Dp3%58JyjWd1ZWj-7ihPGhadeYvtHru@K&pit zPG_2+RD<*KsnUWh0v7|#T$91{$YoNe_Xd|#VW_6O7HJ(t9PpJkQOJE zf`Cf9Pf*Z$_v7#klI@e3lZ$>tc=N!W`$Z!A=p<-3nHD#-EpY557w8^8d_Sw;Wt_ar z;i`T-b0cT+c*XqZqYw|s+497Ac1%9njXj(U7C2$hhAT{xj%HfKpMq0OT!uO8!cKPl zRZ=O&$wKFEY#ZeG$v+=VBGenwGwy4he;y<&6Y{(a2gY>gfffx`pT4`uKRu*o7nGD` z$uU$UStfmP8C>Pwyl9U@Zac?glN74pNXP9erI%2D$GwM`{>Pm5mtNiRL!{(nTUKE}gV zIk8q;*s@OQ=pQ8RzOx$M^M{M`xaO$5^E_&IV;j%-i0@%R84Bv%n}PUK0o*MNeFc** zc2$?H|Lcyc{i|KO8qWFz6L(`}WUOYVz+7zz&t4how$sZK)c`I8Dy_GZUqP26H1n?iW&(2y7DyWQ(*%fVc4)No_d-{Mip-*pSXR)hn!gd zGd{<=NnV22DL*CtiDC{Weo7))rv|M@fFM@=*KYKD8Yn z6I0sTcczh317AhDJb3M-!Hp<_iq;+uioQd3XHHsLNV*e;Z{aI)gT$DewLYV*n8Tkc zF+QM0zz^$n+9n5_V|5>)Qm<7OWs_$68z@u{XvcFWb15+FVK1Dw*qtZS zrwhx2r+vZVGZ+Lb^i@+qO1qArCS@?qb$?rzm)EYgW-vZIMbaq|T3jVqO)xcbUhTYp2&=)kzFZqu>NP__AGW&b!xww_ zTp!j;{j0UcdH+>v`z{f)UDL7CZ=+!cq89l=o~s8Q3rlmuFflh~D!CJJigM0~N@Kx| zroB5eaYW*r58o-ZmeiMpyQg0jy3;+VYnUj`i@j@8xnC(L6l$;7~7^*FT#Kc5%9Y0d}Q?${>=c$bL?aHO>9)-hQEV`G$=` zW7SUP7wVnI;aE8lN5=Rk4yA+edtLXn+UKuE#LiOp8JZu7czV7M3{iv=o5n%qH*3Ow z7MWq|P;X#+f`Jl~17k!K7dD)2!E(F@|N83zi}pb4ZkdJ!tzvXUQKs9k$532|l7QE9N{P3E9XnXfKco$@A09fSBW* ztWXuZ@AYRDIdK{G`QoTisyod%$e2eI5359y;Ftlv|AE%Cd|^UFn=+O_s!54+SE`wm zZCFTNkgdwwCy+81W$^rvnQOw7X=? zUlRC>qk|OPoCQl`Cc3$;RHc}Zp8QjEe}^4xkh$cl%VNel3$~*ZYn*}%C)P_}ve@kN zA+4{)8K+t;Lb$MvO6ry=VX#<>Nzy@2qawA{1~ZrfA_sa=pee-1=;ToE#vXkc#hmOh z{pB?=%0P>?^iGg9^ogUrV(q&x7LPIUQ2KE;9$9eLun6|Hsi12Z&rKN2^H#n(Dug@k z=uWK3=nCPIESS1B++|K>!ld+!Vq=~r)QHCfLq{r&Rz|d(mS*QT7%Dc@e)D>}5 zbcr#S;YWz-2B!yurFGH5kVAdrjZ(@Au#Dzuiamn9uuq9na_U z^?GH6Tdr!Q;#67TGSJ?Gc7Gf22}aD8qJx&dwn=S9#7&%Q3t{)#kH%M@F|Q9-h-QDa}sDfleL+U*oOpN)-CZO}!r z5f^^1yWgOFX4_O*}cY!NdCO4fIr4 z^rg?`@{lR1NwGiNcpQ#;82)R-NL&@!s_6835p&01X^Mye6;TsP#J=QXi=Cz9s&z)8 zTc1kuULf{p%au0v;mIqJ9Y?*8T%EyhGMcVqNtjg8TlxScuod|6>iz5M3|3oK7T&RE z$tHSfm(HzPB|bSTFupi(=j~&=kqo6Nf9{rWR8>mS-@$2% zIsdcPc{#X<%3Ba49uipplHG44SI+Gr%I|rm!%AQ32GB} zO9sZe!{}P22i`~4S+C%;!DdACo4>`p;uHQP#)jHIm7^<8Mtm%iI(};e2hQDXhcKqF zgJqdkYV2?u#1tV3{|481+Z(#)5xUD;iAA?IBTU5;5-_Pf_&^!3C`Cz}q0I=cbU|Jai|FuDv&5U<$Mo{+oeO83jLa*RQ?ygi^m)vMzTCW%Ir`_dib3f>c z8kQ3@BQj3ULjsLS#qIn+N1Ki3=>0ArIo<4$O45F#1vw58m*nd}*!|)1=knWs2#u#> zo)hZq7gJn?#q)C11;m=66(XwSKj8dOszA!I;&`Vz!HsQ0rkl#Ts2}-*=+Wu*S@B0K za_cbWnIUB{VXlrwl$2J6Xdb`>i0Z7$?;mVFtM_Uy$sL^gSgq^TasEYWm`fi%Gt*<{McN(Kz8#^*km~=s%WcPmvn@4vP@1 z5e?d=^)G=vfy+r(*<)fB6^70g-j)qNF(4>p0~-RjhqY+#d6uQ5I~yCFpk`y9GAKwG^zukxryy?_>55=W z;+R_zBBC93(=D->P=yXdiW#-Z-R>cYsquRIZ#tCnpAPbJo>M_0Cl1M3j~pY+QTFFv z#KRrMEcd&UHu6nUoI4k7>rZ&cNnri@oJbqcT1)ZTC5a1po|=-OMGH!%J3ow64Zmo; z{!HTp!a5;ztN+{AbCdapL8#2UE2^$Eb@-K_GNb0`tAGt zyWo^eY*$laRY?QreHIgZd^3dJR&N*T2)_#yRVj4AiCwhk7|eI)f2zX@x9dUYg(`jn zb5wUggXt+u#VmfFMUtUG{=R=niix;HYuW`wLwjeiYI4#tpA+WSKAkSmp}ZCl=f!HC%1$5*lfS}7X*YuKPN6&Bi3VHB`%4n+pLBxH z?Ypuu!Y$k34_h{}9o4UVa#?52CLAHgy3OAuzbn-Lq-$W4=cM{r z6kT;N72=*DXyWqbGQkOTYV68Em(S(Gcv5)b9uMW47$Dht6|W&{Xd^03<>*m~@-7)N z1;P+5!yYe93a&}%D28)sj^oue`-8c4^dyfldAyJD=Hq7AjNGg0RQtY4{j*C)C!%Qhxhv`?O{YP4ZMwL_Y&Rr1 zeG8gD0voaTn0-X~1G>DsrOUkyDYCQJYCtuu8HVh>N*pGI^+nDuSTTB#E9qS1P9$b?)v!0N7J$2 z$3Hx8ts$4q9AVDPNkMi%GMhO0sr)LO-kmI5^NZ#8t`bxE`?yLs*SUux17C*69`3a> zFbIa7x`0nlGqAdy=VYcUiiA-D$=>Zje+1?^Nh^yYdqs+RoD80BL|kt8U7*`aot0=Q z8*xfCj!wMN2Ps>}c`Ef|X(58H_=x)r;samxI#TZ^R#Q?F^U}xDap5S`0KIS4r!-}= zjx$QlUu2(u9)Tfs?^t>0no^mJ>)19OgDVr6p}GD&FV}tCE;kKZbhuetT+{iJ(RLSvDXL5J*b`rHAZk%_k!x3QJG=o(B*@c^X!0vwgNm|VTc2McsuIU zaf4I(Xg&{8B7tYT_?5xyyh8w)!_08}x*UBUtW_3%9!#^Eoch^mJ#4LyN(%e@& z>y8pS&baqnubX@&pdx$weL0&ejwR9aY@s0Irp5Oo6^)3O`D>qq=P+0OLfTWXts6)eCAaEahs*qdJS(SyIyfwzH zCM@#^bYr=7d2p2}_PBMv_E_C?Zup|NY)tMI<@3h`#gJ!{>HJTPbWbb)|v>SMAeGz*!G&Y%~ z*tIls4`0c`8MD24O6RxjCuEZjCu>5=14u}1!&o`q1q^vIPZ*HMfpUwzm& zok5r7HDT;P^SBuJ^{|%%cqjcV96G3>Yd0_Cz9*KV9;i zK2w`Aev@LCi~v$RzxPn$q?elP*a;!JY6?JDvih!^m=yE#25n&Mw~`W0Oc_#+@%@q1 z6A%j3-uY8E&*^L5S#J@I{6R_6OO~ddJFLBfI}2ok=`S zFE7d_m^Wvn;O^+XuCN3*{G8e}(m{-^4X!z;*M7qIk0{(DlXM7ojIZl#Mr3I5)I);4 zBzyt92Rx{XXs1ca!(WfKB{xIzw>2wc(8TR?dAh#@-{_5pOyd)bjc51 z?8F_|*nb|pIF^$Ni5SFZHC|@iw&NeO*8Z%l0f=zxwOQFS3}J8SzH;UUmbp3|SyrdDF?PH2`B zqlI|74F5fH|Df)TPt)ZTDzW`eZkZzi8l9$TsMcpY9R+UHhIhBl@dP~CYG}_6!ECmZ zid=?24$8Y|3DP8foAsy;D;FAN`YjF7$QyQO)u_`3{V(}E@Y%-N0}+~10E=4a{9t&c zJlvI-XNUl=CF@GiiqfbEr;&H%rG;x;orw9d(-pfk}=CnUlMP8 zhr(tXt%@4S+YiKvu>yV#MxxQ#i19r`O|^5nS&RUp+QwB{aN`|Rm3Keq=|KY+vINu~ z?Xir0p_RJA=k4Cw&xE)t2ucuHt_ z+!EG-1q_Pn@A}~T={RX4EBF-iuMmJ(i`(1=kv6DTT+YXl;J3{fMg%Vo#6#cLGu3Vi z=FL}@Lr5Y!>h!!x@7syc_naUi@o8=Coe1ro2q!AR5*=x$HeJtTK|mlOTe}|s`-J(@ zNOnoGj>gRC{X|3eEL`Yx#zfvwLB7vBgX=Kl!uyHhqlAaqgcO+<-slf&C6sf5VOgXr zhUnw;HvBb2rI-iVgavo)b{zvU<>NK5fSXcO_agt*)pg48 zoA!Bx0j;G~Ue7dS%7=R{=hkO$y1Z)_2$@$r88DH`ln`N}<@%>?7ETwOP_?Wh_!IOd z`EKBZOWfmvNto@Z+QXU}!@>Nw1VOP}QNBQDjF~ zOyeaovr75}#MtuSATyx$_7MFNAAnmRbQM_xQsQS#`)^`>zcX0sQOCk%k#|$hJtlch zjr9)cEv-bqv%Y&35luDd&{UTKLxY^t7Z5oe0ScqlB#eZ_g7Qa$U(nJJ56Ty&3*Y|e zp$B~$%zEwnmE;!iNv?WeTXgdXtYxc98h~Oawo-|4yFMo=vk!3=Iu3Q-3=e zC7$S@K@fct9CT`=aSmE*Vjn`x7r(NPCf z1X`~($ak2dV@iv{8B?1mt;C&fEBDJ9>tk)XPV+O#a%;&gaWxR=_{LTCKYX};LR$JH zowg*_AZ1b$K687WFv%rz~2UyW?+*a8#PyLIhsh#tGFwK+FY$coTe9%r>3D+%&Ix z2$ezdqv?9s8J< z0oz}Ox1)}bB_S9^ldU}A@ZV!4B>b{)0Z2qLMDSOiBMaD@AwA9wuCd~<(mLlCd}F^; z!~%FT$7%}fllRpxwiz8TC0RQ_ujwX zi+hQF{o1cOh<+>Cr>4MU_cF}dR5u<10PZPD5f}R4H|Jf)=2OiHT6$DzA%my~0qeRr zd>vLUc$o}@OCrP_)c^nj=K84%>L%!DU2wDI-D*Yx3y>sAKqOB>ivez3kfrKdtNhZtqE}wQ_@W;u9hoL0Epd; zFu#{A&9o`MQag5PY~)#Vs(t#V+54&?H7pqq<79!9-G`iZ;{1_ZC32>QYIUdJMOLr+ z^!4fiPWXMpI)K8Gzj=>9HEl)XKh|7PfWfsKANs8=3@Q#V?e)xTPUS0v>J7kkdhm@enIt}7_#>`ng0ktNg%KM_yavz!L6w3a_2ahFF-3S#bs7~ zDbEmk2kEsDNs#+jW-=GH~|v7uipIb9qJKGi+F~gf@k~8*8iU zcINvGBVR*rfJc9jSpGDNPgSMe?r~t5STi-!^ zU1UgcFHLTaZC!)jV6;4Z75VsvP&nL57U~(Qr6??<#80Ho|_<1trd(jS*!>-XoJ4UD?>?=SDi{EK(cv2 zQpN#vXN)EvkvpjO4PpP8wP|{vwt`dxv@{_QFkZL?drRnT*B_Y}qcQ$7&71gvis|NVCxhzB4AyATp|w5?TfM~Jm?a;^`* z)bP~H{K?A7bwvahX9p${+@b#V`VTKKeY9b1R}8!;Y1hNeUUDh;Y^Oc&AUnyrmPk6b zHx*y>PTvahU84gQ2^YY>9ZY-1hUG2K<^3BR1SerhdAp;76uu|@K3E=T*IdzWFAF5a zk8CFM5n~{06-K8Ip4`<4jWFeb02gv0Bxy`OR08Xo<)Xb!fCrmHp^}r2-90gpRY5ac^ zxSNMpxB3@1x=%X4n^$XT5I6E~uZF<`v<>M315Fs)Ua{PfQbzQdY?}YK+Q7Apo zbph_x>8woP+sjMr;;xP#PAic@Thd$L~N6q4LV$``C z0YWNhz}LJ-3ci#$KBu(Dge3Z#ez+xI_1U_BhJ2<`0u(+@sGNm+#clk)Ai)SayD%r# z`jdiP+IQu_8?$SoqHvC9eo5IVq5+q3$1=@c26)bD69WZywcDU$;J!co3EJ&!5-HU% zB#&SRLP)ssO2TAL3w=R83JAtGhjXj|#`Fv2R*7k9{BYC)k_Uu0551@K!5Fbv`&)ht zp#?n`6gQfI?b}(t{v0Hb1>t>^O?_ag*O-^PoBu4I;XPM-0u}=_Nf5u*uz6zt8 z>rj6CdG^0pKpL^O_5a@DVX&lTdfTC{`vX6EieCPOxJ-r(I_yl}itM`uXh%q2UN_{y z#-C}hJcNKK|Ew2M^m~gwJ&}MJ=tyc~;kvT+3qh0jOwrY(CZo@^f_5xcp4$eXok2b? z)jZD$FtfMQV(%qZDe_~&M9SK@<>zOlM@P2_oj1_RW74<8q1e3;Mn^A=j9!w^J@>9S z7t(d$DlUJfb<$hSc&8WCK0#V42I{%5I+S|1-%+&?U7pC1`2@~8^`s@^%;Po27I7kx za`DMUI&IDw#K-BUw+^3C{`S&J4-$us6?A>hLsgL6M=ucE{Up)0MMnMp7s2yb zCa9%=A@O5;kl%?lnbKkA24Qw%BgC)d-PvQJI59pvMyFvTpQz0Y6D~)VGMR>3O)-jA zjcZ%KLoyzFLaaru5MpVz5BTw`Lejzju%n~ydVm6*bRAQnE7}h#frOJ2cIfJjk}p4o zbRCq1w@ncqLc|3Gm0XqpsWnuwP#d2UIYZ!&8;JMke6*j>3l*H|krGayX>OA97xtJ~ z=oo18cXwM(`w0zNP{VVivL1|VUPTj>L_3`c1?G&i9y(5_+JY+(_Q?C^^nZ~u!XIci z(g#z7C9^&sqrU7~4+q4-l#l6S%7@RtSWrT97_<{csl%Syc&&z|Q>P$M==RzM!P3pD z+!Rj~s9*Fzxw*Z<#6X+3L(O%Jou=#(PYfzs8Oy;@IVG(TY64h`5B10xud_JCv?E|+ z)i>~@w3R#DD52cIekx6wknb<+3(~`gNTGZ39o2t&V1FdXZ{RG_l@u0SlKJf+1Gmi* z+6|>%7%=ftjx2N!FW@<&rQtbqI|+-{rSO^&6@;sT$qOsfq%!9?=*c(OI3fd(QA6en z$UX?tfzJ-#k$VMTBU;ge;?P)qPC;%%4KPB5mYu0WV0l|)y~^>gE|QoS@h7ZOsFi?{ z;Hm-3BZ?ou39!%U0|#a7)apzK=O$KkZ)@@Ml=Rkxy{_T>EGVp*5u0W|A+=8T8ERv#aI`jjMT~ zC3{>1^h$AJRv{teR2<+29q-mw3`!fvr_{~HxHB!4 zJ^pfcZSWG{9V(3LR(4Jsb~34kQ)#>=N&P?;cRf@`1kvD(f@w{p(01QWM1yTLz!iSm zEmvTS7|j{aUPsttwKqJfg2Zd7{ks(D3E57rpu3k;ka-1!&f|RyvLs~VSx$^CnH}m1 z{0)kNL7~+O`IhRy50T~j#kR%=UkCF*QP#SaVXt6GU$(O>_{ZY8$x?YAZDP5{2FAGg z(8ay4%({TbgLumZ<+JiC6=JBoQ&9Eo8)@$wS2uk$#C2-p>eGJN2g#o`>Mg2b7)4@2 zB(uCH;ko~QKk!VpToA3h-5gtHoROi={mAj9m!PEW?%u1LzQTPd2I{O8)*}6WDh6te zJ*_XuWPDi6==@@<5ADj&2c&r1Mg!xfz^++s~ne~^blGln?raum7 ztVV87*22dKgOs7Foe^z#`v?FLBiDJ%F!G9V?XvTP6We|T@Cb0u=6Qsa9yx5Am1lT? zIy72}tUr1s!04JR@TMAZtfysJaLsx&m?q|zWe8`Bj1T_fBNvTbd=aMd@0UisG$4W@ ziO9g#w9{+s*6V|(QoN)iO-t{0H5oXeaBsdGw#Vlq@*&eyMDW^Fs~H2if^8^N#->-F zh_>aqT(83aFsP(NhZin^b~d$Nf(LcxG1jspCngOk5HQ=<@tk&y=v@6g8b^fpZznVG zrFwFZ5$ZLH8F&OttAT;{8uR75JAodzoKR{;UR5ELbz^g@r;Z-#tZQc7)JKU7d)suF zZAuT`_9iK0&mVpeP_33s0JgAVt$PM|W)4gALaEwa>9`+LEzv8o(?bk63u{ zB9$_+jvlW+6!5v6L<;Bsvh0NG7v*Ke0K|45t`lxMN^PKB&1p2Lwj(_tZ7pozi5#6) zvj0)<-;WsrTrYPDNvD;91{Fend4GHMg3doTgQLC&&dEMQxAj4r-KZt+ z?)La3{Ln#*&onPcuXjp@Q9V8mp2YZG-5wO z&6X9?yS7hZ^wyl9Zq*r}v+oh(oI23@s)-*II!6$Sfk;h(JX(7ZgardFn-7EdeqH`a zHoM>b=Nch>0Pq?_GT`4qmIBat{*F5DBY+g;Z~qJ8&W!snAVPvS>b0Ba^sLrIh!L4? zLGbo}fGrd8PPB&<0K664%J!*K-JQFx?S;qu`}QrxOc5EKogd7h5=!>ur#LCF*pRR5 zzE$`U5{+Lw2J1HVzl7}FGcxb*-!mQh$JHCX%m;B>34Rv>b?98PDy+PDl&=p;*@&!T z0*Hm;v#-KGBmfMUB|``f`Vx-n7q?no26#=qZc;nn=T?Ik>|}M8rCA=~V8BERxMLL? zwaaaKurNKB-RQ4pDl@5Bp>SuqJ8gk4OWX^T3N)t$zoiyvZD+FvTou;OK=bI16RwzE zgzocth$TJG97x0#Nb=OpdLJ-O@f}w^4 zQ++fFx5)DoyMB7%&#!LiV9XTQD+qdda{fn`mK(Fgc);=3itlW42e=C0-QOYqU)u>7 zKNz*>-BJD23q^(oh3rB3f;OOM!nSF7T8Xv&Z9=xI@=#nQKq982E6;7TL&XrSJ`WCJ1(vkki0DZhZU7o8866Ft5I{*)F62&Q2bd|+3THqA4x*}% zy`JeE8lE6!Oav?SC(PN1z;6p}{oCJscYbgh2#Cg1%r7eZ&_bvOcx*K2Q;CKk{5;q3 z%+wi$va@m?3BZmz1m z&L*%74Muk9p+5^jh-(G=3LX2FX0DZY8lR__90Yh1_QBf;<*Z0r#;NatR0;?cq9Lpe zT-DZYkX(Q;F8nwKkQJT%3JW~YIPmLA*6!2+D3^L4jG#aVo?k$VCp@@@Qy*Tc{;Y>o zS|G^iWx~+82AH-2qgr9~P=7y4*r#4N{lJ#$2(xj7t*xN|TVC7C!^0xSA>Vc}{9CcG zfrf+g?vGL%`1A-HktP-*F0QTCR!z&ZzT8S@aExyvee6L*%_Af4e za5_>2f0M#zAxly?d8fLSkqoU}pPUsROzW9(CD*h2^Rp}`>;em_3JQLNruJA?a`HVr z}KH7(3^0WNoTEWQ$#T|Fkq;jxSl9exc<^HX|3zo7s02K@yLI!j($u#QVG8w zUGP4o)!8nkqJtQrNTs@YVlC}d+=JIED?=*Tvvk^*To3caaou3NyPU%5^3a-+#v$7Xkty$c`q8b@VU#RAm9OSI&Z(m<3@N{#lZY-~G zIoPc^M=3gQXVX46%2YFN$o>&BVZPokrI)65voB)pi{M%0Y4xDDrOVw_RR^*}<9cg) zEW3A!<@H0a6M?a>V-6@s%w>{u1^xZ+y)d2_Q|ARY|F?Bpk4zNj)jsiVNSkCfFy<`jC^5`2-iY2Ko-*H->-sn%J)|2Z> za-0?4tSoolgga zsj;J0`L(sF!FZclUrFp>RSEy`&B7=A$2~m>jP|Le7wHqZ3vg9g6cy$D4Opz3tZfUU zc!T5IUBC2d9NH?R0)e0EUWy2_Tp86aTr6w(0`I+T_hA~A)m~NAk88E<>~Ier+0_k0 zXzN&*qAXRr(YXoo4-F>mHVHdX>xU^+D7t0(l1%b|NmrE*1^ELFwacq+XI;A1`1~hr zklg&6&Y4ydf6AT8@{I86@}3VLz9!wADdk0$`~P(8wWW?g-`*bK9Ce`sp5s9WT0>|s z<50(kA!fnCi6o)_nh!${-?wX%&`*X1RrTQ$KGzsybd$=mk1JUbt7VN6$PSxd!`0gT z%$C13@Rd6MEq8Ewwq*zL9WH{SnHb2ac#c~XuP@qgZwGbOM+B}9?^vi< zUd?COUrae`UqYhi?XRN8z`O!dhC1UcGID1Cs{U5YS3@4;VTA{pYMJDJbtaOQG_wpd ziw=)8kHygQT7ztO%#HQ@9^;HBdE6Smg5AotOE&m4{V5x>*|M3|q%&z+*mRW;{=h5$ zTNixu+@>0=N<|N4OGDcgZv9qfcy(0}-%gLVYQLs0nI7z1hY3hOf4R9K2wDnr7gL+N z3m4Ka_XRdisV(4@^pq2vR|UQO^L;MTdJ8btR3dHMS#Ok6=1GhX~y)*5m zpCMvxO1(h^n;wv^S@*WsCJk>e^-LTGDzm42nZ~s$l-BBv6|MOjQ*kiiy(UHyiyWAT zMn7uR*J%k4b}ZCBWt}Gy2sg&kl|!peUG>Xww~8NX0{dU-*0`+e5*kGcR(_ zhldQUvHOb9D&bxY82Xd8(|Y^R5!QumDIkUc!#$UT!*;rct>RzX2@05C};mhn~dR}sRwRwg`!fuN5j)}mY z`7yzF@&-a}^oUW&MmTj@%h4qRHh%qKrxsrEs(l0*9Rq%LKnca|Wk5~HoKCiKop0m&)gfdo5ATsb;5Brq*ga^iL(I#S;Y1-0@=H^~_;y39DtEeNt-H+*$lJbt zh7L2mY&cC;jHtILU6z2RFVSM1bhnHVAnH2Iqd<)OrVbj0*Beeagj`r4OWI)jsDd6!DKf$|JO@KPqUm0i zE;<-#&)dn@6oYfi*qMctx2Ba~|6X11HP0WXPit?yi;;9QX>w6$SbEiSOUnAXSr)X# zIyMs4xL$isvd+n9W6l63+8UsD(A|}Sz1H-zF3dB+5FzVEreZQqwZPOhqR`=Pk? z^(zQAfE8eA1jYzLc2zE|>u9f+jn5&Q4!D)~RZSbES700~;6bjY$E&+t zE2St6eDT=GksQ1BF!&2hz3v)S2UAeBvCiv1e4!pexl@R!wy3fvzv8z~6ip3=7HcCn zul8`eE>G-qEiCCPjtOY_#w1lasRxnQo+ye=YzTT2$fMU_&f$Nb|9!KjwdW=BdvQ`}L*swECQi^%nakBc+XZVD}_&Kx;^%cW+y-}PNomE*gMabu@Kp^+7BH0xkP zZ^31emhxUP#YLobdG6Y(RQEuTW7mp}SJ~CB3C#eOU0=BTr9F8i=d1dC47y*&zn~)f zuHcWfS@FM^Lq#1-jdg=r);}5s8$y<~;xqit$-DHT8HjjLJcrMiiJclXy>8F` zX=tDoIcIR@uOdh^`_H|aNVgWb%-)*xFOsgcd8m!vT2gcilA{gZ?iQ=yfI7@ zUJthi@p&YFaYaNz*FP`MP7~@{1Lad*Un^y z*13Z$ujvLtaaFnf;>-|ky1LLD1`Q8QYwS^$L&}atX*G;)&bcT^t;6(A&>EiB!M6TfV z3ZKl4cp^PAU6`Rt4^S&)3#T{XyzkYvNI>&)5~&!ARcj7O`;9N|In^CF=n(U2<=GMX znq@)lJ7?%s2yljzn$H?M*fnfh|L&W$Fr0k>rmMNFaEpC@_YqDOG|qdPA_bGj zgw5eJs>!8|dAdGz5+1tSiVF)&?JOo}e#c*z7W><;YcxI1J%z8dH4z`55MOzHT97%m zQVDmSTvA}_8F9osD{8^tpEQk^ZA32`u~y0o~lAx3}P!k^jBBQ>}=yJJoPj!*;djeSqThg|k%#M(%~9YlMC=g7+b4WpIVfil$Jw*o5(Re_DJ9NyyrHKk-iNmbQA)f>v4 zC!NtMj0PAK!ELmWtIRlg$xMc%WzzfQ%lAc@M4vWmeCzi{cc!Gir+Gn5sY2m(LC1tta-cQsKoky>& zAWhXEVr)uA9kgQ9S4)1&U-_$UBK|7tfilPUnu>eqGsjF9hpcmCFVmErbEsPu+P*(f zpWK3>n`TLT%x;y5>>gtA{+A?X`}=Lc;zU4N=aC=Z zA4jhdf7J3yL6U*tsu{&Q9*cK7{78mXK;Gwz3XQ<0d7+~v9<{i~%rs+|e*bw6A_t0g zRIGacjoj0juG+yuTApAAsoOCLWJ}t>e+Qa9juf(&#FYoJg40_q z6>)uTSNuj42X+tt(fpdGBkDKgXIB-pB%7xHUB~gQ z?^b0^2P~G0+JGnyRF|y-e;GJqJENNw1E!b}npZSKYG$j`dhH85|KxzmVXN7hN{txa z9V69EvlqE0m?Mv5esnc)$LW@AU$vB^esX$=G9c+A&LO3}x2pYTRu$Wwd~J~Y@@bU! zkw-0*TE7ZUC^kKo3>}Ju(@UmmMs^Rt6i#8&NMlv@pTcR)Fi0msN<4CP_UfjE)wSu! zUi%G!m2k@3IEzf?bY_(bM}$2vI&e&X#>Z3-CW20H8Jto#&dDP+v?5s-)#84*1-{=s zF+BAFW4ASUs6t>|@bogMP|X;$qplrfm59=k4!d7Ea=kt$0 zg&5S)hSlZP@zvXnTTyoV)}VsM$p&{slSzGD#|EzUN!dr!d}G3<=73j+G?@ki@40i# zC$95%eG}bU6od3!XZG&grGFzQCbYndF)Kz?%2cQAA4G;?(#mBxZ_UWmii)`L*S*jldgwBVp6a#Lb$|%@-E7=F#`eE%fwUnNXNCs|}A+gXNt1vbQl(jXAh&by00U(;Tp|&Pt&ait*2WD@UfRq4w4$X_% z%2#%(IWf0neEatB=3f+Q#9?3**L{621QmLYBoVk!5p`;2TDhWM$gBjkv+b(n10&9* zP{)@1L&)hM3;FeL7_shq@YinnO1RBxYx8t}7&~VZq2loV{;OWPk$BfDL(C4;)(ohO zI{}=~Skl^UD`+QUXi$0(2Vc?WF}C17=)COd#uQmq5e-c1aA)^jjAKDZcUb*z4VESs zn*i2-b0|3xgF*KiQyqt)k%|A&pGum|@ioCUB!x?qa?*SBg%C8#rUsMOD{>?W16IPK&!2g8E zt4DR9(8Xa;{XTSgEGT2K5;K2ljG#CcnU&lmi|?aG2Wc;yMXo#y?t}6c+;$6_hJcmS zWFPdT!m6ucS8paiKc-Ar80rPPLSG8Y+$5k<87b zOi;H(_MZLbl%6s$H<$IXYiAeK76J|1)IpqwlDjidP0*Mkl+N_JM1<63v+IL9Sb_B1 zK{xxI(7Fa7{lX^>1^PJg!kw8w{ori${NYA99~QEdzU=d#I70!wlGUIV>T(c1%oW@~ z<(bHeLoQG$3`%Vvdk%f1dq*@Y_HWq|Rhz1uc~D2iZX#5#6nS0Ua5&e z9pL}GyYOX3(N49yQEFS76QKIwbyKLDP>ZLy4H|ol=Q(r6qM!;mfE*y}TM#buI@<~4 z_1s%q5L8OSFo^azL&bK%@E4#ecWI>Rl2fDV`6sdl=VIYVc9k)nCNDR4o!R3gd{lHr zpxe-A<-L_fQ~F&%4{Jhs4P{wr+IX+uVwrbPsGA2q5qIKJxDw7l+zM+#q3U10`X{^D z=dtqb7AWQeQvIcMuP-9Fn`W1Gfh7MITnMWWYH;w9Jr@@+7%i{5F%T>QhdF6n2$gPf z`|3o@bp~$Lf$F*n=#MB|L}{Ys$~|-OPX>3(n2v2!7xvx6Sr6$V&X6ra~X0!zVMst5$ZzrlyF!0$EPS#he;4qHsAW z@nd4vGrO&Cy60Z)L^bl_{g~b~ibBfSlx2U_wO2~W(W(X2(Ob{ndn$|OcLKFli-GO| z#Po~jt0P*T1!h(Q`<9}g1P=v%)NJL{uz9}zN!{xv8Ze*3fVbieo~+V@Qdp8;ta%ev z`(;3}$oB5N`4;W|tWuD>XR@BvFYcJ&A042*@`Rp5l^d)1Y?n-7SCs+5?@%ewdP@Y6 zZ8Jc8$bz}Q$+ z1MK}yb)dZdQ7Fn5s+p`^^di^XSGY41_68%(`^ka)0opd1>%aw&O+M2SE%=znhe*Yf zDPqKWZj~+JRze8BV?ZO6twM($w7xRO&RALd)ZSo6pX5Bb1uSAlo2S)b*bvgn6lr6c zO!l)k<|rod=I3!XPpTJEU78tSLaN&D^t)_FK`A>Q6THGDZE$-^y_W-4fq~Op7E1HY zZ(uu)Vt7;rdb&D`c=ulz`c3=e8nIzo<)tfVK~-{EDN6r`r7MqzdjH-}1*?(vH{{FeIdt0uV z&*!|)d7kGy=e*B7LAed#!Qf_?DF*A=U^|kGyTIi?KWe8ug9mLrqkL-Sp)F|l)%>dv zomRe7IY1fx8G9$A!0OOxSPWGG(|UHOuxc34@_#Pxg7=HI;ujs`YMMBq`m5wQeU~C{QG%j z#CfkVT`>LloZXEJJfAPT9wl*e#;ao0B8~hhopmdps9B3fOW-;ePcg zMo*sh7g}vcz85Qod7(saikw6BQfq6sFCrmMwzI>cj~HjJo)YJNW0Y2?X=$ zkHqh>k(FUHiCn=#u!T+|oki_yO9S7w-q*&Yfx|m>@G21oFaL6xf1cqZK zj=!8W@y$**p`3|g6u&=jPO~60vy=y)xEk(a=eI201zExC@bR3U4 zI1q;8%Le?Wu4}|(uxUEtj&MR&2LL>nxnq6bl^@s7p4*8ok?wbsl!Nt4Gx>5y!AVq{ zbAi0g3`T7Y*J{jPeRdN>)n%v@{A`9d<~I1BWSg%Qw?&g|QMms%i==P6%)vZalK)cj z-oSTgWAgq*y4O z3@Ly5d&o=T9&-_ofl0lYV?AmX=EU`oLZ0LYwzl;8OuB zHeBuDuH4)TcOoW$_qgvp%#b|fXM#8mvubd%?Gy+92et^qTvaa?px`~{H3wne`|QZQmA7tg>~hxn6LnGMxo4hw$X`* z&owW2aPTzp@A5Bj=`of(y?#z8-n60<-48#T3%sfaTPa`#L>3+}I5N}L<=p7z&i-wt zcMK$uh>U{0axne|^a^u-V7?Dn+Bv>DIe+l;q}*;vptgN{S=-_X1}uolvgC_|H2f17 zD>So71h4!I93+lpaGs@;)R?ZcP5-$=6iVR7gKzf-8^hUxNfW$Nr}T0i8deh9!Tf{B zPxUj`RAp8MJHhVf?z*VX8T+eL?`ax=kz>m*1tw&GkxVaRcZG9#KvyBl_s&miGQelXCF6gy|8*rY{|)bji@B<% zo&p1cU?S1k5HN4;|8>djliXu z%fc)9ow(wX*}HZPxG9_yf;{XIf*}q%%RzH+$Z-{>43AvjNUKWe(H;a!&<}Qba|_|| zfBWioffo+a-JtGM!{2VT-(W7XY_HNKLqOwwUS#fH!?_*@U6QE_V}t(g=*&tnM%JZ>K!FUF48aRYOz%O{%}D zwoqIN2_1%^?igXN!?$Ai04xtFty@tBjup;yrBbdpIb zc!^>-PvqWnyUIJj!M{+=QZ-yuMIO|;8%{rP(N)6se=-!5CWq*>^S1~4L39AXt zIc6r);V(l`Th#t}=Y4Rigt7bbKqidHg6&QLoQ`dRPlStWVc{Ti5BUGT=llWoI=M5j z^&v@VB0?|Vk^;waMwFEsa|agGrRvPJ(VR+>t!;Bhu&c<=h8{ceeO@Ktxk?81|L;)U zBXo0e%<;%u*u!z}C`tMoOsu%M_1}ZZpv1sg(VM(Z3=c-)UvQR(Zqfo!kk9(3$6-?N zL@XtA7@V9(gKcpc5n$UGl{zq~WMeTMVqF=#axpwUqD_Z%|!7QKhxqeq5Mr5zQ*&pKX#cNOx@5S1{cF zO-gO)@_?Vl=H$lP`B>-Myc^Y+?9b@e^RUc72ep0BI^?DhdNiFwl( zi#E))PoDF?zTI~13F;+3%7J02+LC5$=Z8wuz1%YAa$o})b1vodP3B0wq$ShpzfouL zY^Lc(r}x&YVWUs;i@k6m^SZ`kg4#f%;Vr2Q-n4&*QlN^>1BNJ-!I}vb#G3{-xa%nv zQ-Yn$l)v;jGHc&v!len=afTO??&qgG8f($pA=RC&+*v(6KHc`&_pF7}4v zJV*BmUFq#lSFxO_bs4zx9>!%8dJ?C*Lyb?(N2}35 zJ=P<^*NODO&aU*X7>iz|Dh~5|KS&%y>u?`6?5#>rDRpmZ*cgAWZiGd5p_|fbV18sz zF^oCS*SU^3jupV!pV9@vjnU~+Cn}L*ZX5dN%JML}qO`p%1)aFmr=$G))MV4vV%354 zbWe_RAbm;)U1?!!)?habG%>qI{t{AM3EV(Y$T@b~a|BlYnba^Xib#li0h*aUSOc6^KOHFB^ zVP<8RJz!?yH*>M*P;`vgx<0G!yd zliNJLSWRvX*}G-R@2G`wP?_C2#|}sk3nxQ<7*mwFOZ=iCywKaR)It`s%sG zRJYUGer4t2=uk$+DnlSN=%>5pN-{oasc3CbA!VQNsKdf-Wo{>wVE~WWi?HaU7_4d5 z69ZhU3pZiP+n7=5as1CZgCg(KHAM?){QJ&BD0nkytJdwmjHCKEIhIS@h?V1lN3V2> z+udh;L^1{|!0_NYoAQ9tZHtxV;4sInCg79gZ=JlpkAPQXc!W!qZo3$3s4*3k`s-k% zPD2C-qDN-qCg7z_`J$-_7@Ucy>2Ycfjy)$2s_G>|Z(Lx7j!ZT4j+nDpW z?CC;i<0Pva!-KbW^|~ppXt_chZ7>!s5!BIqt7|4Pf4`i#mV)-8Fj^dgWxuvUId*g# z-YS1C6^o?pG$RQguB|h`uaGK_`zniPTX*+LMcs z=d}vP(T5KE{2WZ;;1?qbn)}?#&;~>j;`PD2D>$cfr>IfBtxm^1qq@%>*kHN?>5%#sH7dhqIi_MoW#4O}@QHmT z#<+(E9J@RF6t4E7Kb=p)%XTyex4zBCaPOAos3P+?R?lOOqitCYE@7}MX}xwT3X41G zL{e>AHX9zkL>8{P?_gWCsf7W;crlFlLI1iW+T@4B4l zxx1-yMkJDWYlVy$jAG8cVXJj1EEUjaq?U`J$s7DWjCqN5qa@Q60T`h>ffT*Ipco*`uyA`d0dqfS&2=ZTO zYazv~#Umx4I-NrxvYZ5oBBw6&%g%<9eZhp@`xfG8pUL#j<-XlZmv9FTP^TI)3C2!A zuq}v_L@GT{lN|tK0ByukiDKdwLj)bH#{*lv(<0Wy&~2K`sPSRh)~nDs?g&%gMHJ#? z{H5H^oue@hy*^1l={Eg}5!8ySgw>nhL>>o*Q%-)5aa}hvqGrXHT&dK+Q})48!O7AY^~!o zs^3V?RCBN{Hab>^cRGhcNxm9CHX@sZZ@iCp)qml-!!!x+DVQykjGu3?aXxWaTLNu> zw1_zfqSz7fjEKF|1Z6gb_!|P&FXYlE;M9GzO|In?GwaJO(;Ja?TT_c@plLO zinp59EdoA&{B}IPh+4i+9ZeR=+6L#l_SMY?Mp)a71;`RROr;=aA$pf^bX}|j@04=N zU0?WjdZ}b!bw|(L{t&Im)4g->4b(5yMBFoKlOmGZW+~BMiB71`&5s1p;=xtQ()YWQ zr7+k;OlobayAlCkTP`P#)=F~J2K~qiA)n^xIuTf1Jgbn)569c)%0!$nr_n8v(>{iW zCE=9waI|H6qVYms_GJY-6b~P?+b=%l2X7)z&oS5cbeH@ z+K!HmXiK8u`qV{~I-g-yw{}nU_NlOVhLyA3Mj(Z=8nklC26Go5D#mRkmF?#$F)udOH zhfGP%EJ_pxK%Repp$_mSg#SVUap&HQZv z5~*aPN{BPoAnW(t;%rA*j%9e|Ndb*SQW>UtH^YMunJlKr$7s9|83>R-udPnZ(jq8H zYuR$prL`4kE+fTyVg-*Ndi&ox{Kw`Hhj%i=rAJ=0XQ9f!KSHKR!DS4J`TGwjj$0*Z z4G~E)lh^75d_stuGq|ni&|f+WrGlq~LfNC_-8&fv#j@h61+G#!mEtIW?TeK1+%6*j zhu?jxUO{?oClUFV+rANng`2uNt+IbhTm7($t4N^igRiJO8NU5{-wnRl!(@v0V6Tt+ z;2a`SXW%?0d)Kpiea^nUZFBoRfdROnmo$oSzo(_W7#)e(k~&MYN-B zxc{zQVM@akd&`pRmbm_YYY5Adu@E*uJksT_m!6d;m{f7Lm?Gjs6??ePXLL049c(KY z%{<$&(Rz31N@_$geJx%ew;CtNqE3ICcDkdN(yCf72EntH@lLhAX_ycuAMbyBgXVFH zBXqjry@Lp~T$g}vXn1AqKKWtl83xOToOO7(Vk3|sMvS$tKk7fuzjjuH>bZ2Q%J|KP zG6mr+>Aj++)=RP+?iExM5wwBVu|9!kXbwdonPRG(Ui!d`Xp2=!yH{d<$19?+!)`7C z|84v(&$i!s@t`j8zoWV;UHcWcS=b&2-Xmy@VgSt zTU5{GLE4gUpHp8F9*QUHLZHlegq$?N+oXRB6Jr@OY%^3!IurZan5N>^T|O~mYe90VV7CbgShW&)($kR)iE%(BE;*@m_|Bc_U+L+gfRRKAJ5c_D9RpV* zCT9&U$wJ0xhYd4Bn6_v4`Qy|>55h~_^rt{Q%SevqUL`6cr^7vEF&dR=@`2Lj5y4HKK zXy1W{@y|sL8QZ1oIXo~~(A(wJG5Jyq?K<8+Mz5R_JF~U!Z5r5;FlHdZt4tdGpl)HW zLywf4dpxi5_$q4V&|Yu9sWO)bR5{1?+|&rd?T4Gn7*tRazBYhdujkXDFy<02KmDmj z2TGchur%+42jR`p_#95(*+v&5t)cK^3a!7_cAk>tfTt83%xa?7Hi|!8@Dz^QldMsO z`s$@C8;i6XYCm>gNi?ATS_F6SNTqC`jJ0;`XK63DTiT26k^9yCNtQw4>9^Fv7CGHdUm`Jq++asE%d`p~K%VBiNTcVYXrN5(tbFRS>L#HPO}&SK z`VrikGuB^{+;n3wrpjQbXOH+NU0e|cJMc1XCReh|xgw;=n1Ih68v&TmdtXozAy1{~ zUr*x_&EL|}#S*f7tksmXIZ{F)Z6%l(iE{;V0o(H4a65rsTf1~=xT2%LNtZCH>~{Xk zvS{`T+q{UWRz-Zjrr`koI&VkwOZ+)~fT5*ijc+b8-|^N9y~gyaN59HP_0%*fsV1eS z@Qk~c4297^Dx=SyFyAeB?@(j}=I9ui(%s?i8eENZ=5!u(%{V&SFm8l1Q6%_$q!o~+ zZ3yeDOSiil6;E=;eth)btw)|Q`>m4kwZ1p|<)r|l+mt)uS`+zb{(ZR@%0 zMNnkRh&a7qta5bl$J?GrN2+IxLV9QlU%6h^1&A1fyWY!3BG2LAR*2E{RtZ5tfEBSV zJ0E<1`uFhDLyACby5(ab29}ap`7)+n&E+pWNaE2xzZkE>VcVW(D{I+ImJzA;+3Wg~_Eyn8N2)t!A04 z);}*}2$z1Pf1f#_pa;`dzDAK>+>?JcJjN!c`!G+7Q(IzSNVYm!OSjFK zMEdXf6Hl3yY``>8ZzU5bw@6fz!QD@CDMU`uq#zcz`S<22!Mo22P)*c&EiA=@GlLFP zlrfOrG!?NgU+R zzpgMTlbGsn^AuK4{#6W+;l6f6l(UqQL?HC;xKh_V3xhQeoB*-mEM!Fl z$q?o=zr7SA3GZ~~JsH*5QI$Y3+qj>h$OcRdUQGVxR~=;10b^*@JfRtYKT0HZ9Wx!O zZ&yxXDTmh3H?@h?T;O-_f>o3!h{BTSGzuk55Bm@$O%isxEuq_HZt+=0Vsr|=dkO9N ze)Xh1c(-{Gqag$2?I{k+wu?%q(myKmAq8(P{%u*|Rjb`Rn;+o+c;}7J@H9G_w}+BQ z90+0pQE9;w8F5Wf{}Qgq)k0W|0X^`dEk!EzqJG*u1PzlU5}k^Z@TGcbdi%>NxAKzk z^UF+b#drrK;!@Ckp?oU!%cdjc9#u|;>UnaPOk=1CEda5C9EW-Gcmy8z*28OMCHD(mnX_Af7 z8IUkV%rw0+AT+gjT=QJvCz|SFv+NDyOZS_R&PzUxSd+Twog;>3zzW$OYXM+iFW!?V z^4c66lP|qLkbho0!hIDrB#pt+t``Ox!FFDiUU|P3(3;*yg6F9FUA^mLnWt2$d}r~f z=AL5*p}HoysQiOc#qG@w5@=V)#%Y^gl@!{1TC8#QgZ{FQ9`SfZIXkzXR^uj~wfXCd z3ln881REP4!#XLzKa!eo4WlcJw#^EObZ%MDxBAF+77gbVmVaXrE3!PS z=@<$CnoVcX0P%LeknLce=w5`kS+(9a8DBbV5KQUc)Drb;{0#XDh)~-E%|zXf2r3Ta zPkk~z*9W^3VmiLSs13e;Kmz`UQW4ceJzoNCJxZhA;KClGxyn~3;g1uY^hr)>x>zs; z`-G@m*Wd7hAoy!%0nyq*pQ6bnQQF&7RgK^)7#%xCj0c*nII6M>>7xVt*sR!1z&HBX zda1Mh&|?M!M+NIA1L<4*X~*s}KWp9TR!-d-uapa{ zp5nD}eeZ~}OQKS*M;`2Qid==C~*P)?444Nu*dKtN@joPic2Xl~!u7 zw>qL`gwR^;%?23{odnU018;wVa8i*1;5q8&eo3?`XcM3Ac{%Gk5w87_Qhh0D7lkwLCD=YS9ff(s%X&DkAh8~rNg!Tez z-2C`c3T06n66%+U5%+qaL_7cd{W-b(L4Zwh_}Jh1lt;jMSMLHqwQfLD3z#s|P=)l< zLif4Y;2fOa*XO?H+zXqoWVH+F3klXI;6Vj=7kr~@m+#sFoX zMylISWl6}4GRHA(P3yuXr+MryA0Uxrm;?+i<$XV!_axJk{dtSXtBvKVPE}Pv0ys+p zKoRGMk}Y}WVJR;T;l<#}!Tb2UUGV6M|D;JIL~i>wSTXrGILjx@>ScNt-_dO$48HHH zQynYM$@`t|i=meXWH#2@Pp?izv%iJ=6aF-Fu)(6~Y|(IdHx7l4g_t&rIQ-qCyvJ@? zbU*k@@fJtB_7(*s(w^$0+BhRW?20d)vAULkuYB-qUy+P?kE+c$TZh>JPb-V!#d@{P zGk;!lu*}vcZW2zj`TyASJ$TloUY&z#qI6Iyni+);|5B28GIdZ^qPr|FzYei~Ri7w5 zt|5u6e9&O&wMh(7|9j=Tz}8K59aRT-QKg$_WT^AS_B&^4L^swG3EPJMKHS_?_V!Vz ztXrF5Ep1TTQ1x^BS(Cpx^@^3Yr6aKan2*`26+g`(H6p`fZTc0tfMuL88|n(BnU*OC zaBNwsbbV{u{nc_~N+;F_`2d=A99|ky?Z^IP%xOe?$F>j062BO2=hDmTG&m1}Zvr0P zPWblzi+5!Z@}1INd-wIy3|8r;pbam8eY=t;4)%WYv0UA{&lSe+M=3a$HOsmJdGIQ# zw7EU)Ro{&Qg5S3nn?pfRqE_W{ZrAfFU_!G1fgeW)L&>_I^-U26-D^omhxg0uZ82C8 zbi*qQRAeibxsO?|L^8IS7NoPzsculz1iH7&xd@^_!Y7rSP&ocp_1lF`r{n0ISNCk& z+VtD-Qb~)b+g&8}DXq4@z1iv71x3<+02{3)7C4qbomIJO7db4uywV~#_I(01W-fy} z72dZb+8~2f0x2_gk8nYps#F2Rv*|Vau^m$f&vn51Oijh)eQrEy^r6 zh+}dg-^$b*Zv_npFHHppY1cj(CsQc#$F9Zi-v%AQE&WNYnVN#R;Qk}%Bu&*H*^IHC zSag-mF%oG%hbpJ9Ej+khoooX{Z}3k=uoA!N-1mE99d&^8upK4$Tz|gl!M|NktbH;2 zl;V95bDStVny#9R@17GXrkb$vlc~-Ok3@l+y_dPMAj`G3Ci@l!R3FIyt_lD)_h*g1 zuTi>VQ>VN-eJl@TLSJu+1(F6~>K7_;O&sk|^B(bnl$P@vWH6P);q~{=l#d=gh5bJ2 zr5_N-Gt(IEFP7zDr;aukwu7o6hE#v^T=X45!w~2RmCV9F9YZEMvEG{ z#|dxGdN$xfR@U{fbRlDHeQJVdEIb@(E-Y7(IYT6}jA~NP)@x(ImL<{ZZIpG0CiKK$M^#rq+A01ZdnN8XUfwc!1DZf zPxC$|y7oB8SNX7T)t99mDA$Fq%16&k#V6wmn6$LIrGVrrd);KGqmSGEYA9jPC{q2Z zHrY~8p;M^Th*M%vIDgO*;JNb08H|lcL`g0m)E0-9PP5O-Q$UW@!-DQf8mFX0Ut8w3xsM@6De_~{$VXr&TvGvZU2#4w$Wn}xhJ!mo;H8e$jEMir{~Ber$^s@ z%iy)k=(>|Ehs=3|jC=YHYU~uPe2^)Rvs|GjT)nIJS|sO?Z;`{D?Xr4sX#01G1RPIS z2&_IJ4RSK?CBLt?!u`EPcIPjT1RBZR%F6zBd)x_ydP+m%m`EdKs-i_z6*iPrdct2m z!mkD)cmWi1K!(Y9#dnXT)m{y&+VqySrmEG=)vabiZS|Qh6Z;p_2P$i2&!ieC=p0AC zOpjOt2~E(N1(Jb-IEcl+9b%&>-W8_&2-0@q9poF_0UeTX@-dL{_4Y_#G;d7SL()!m zTwu{g(vm6A{*b#*Id%X8l1Q<@BghCn+oJ>g^)-G~dc9fkFP1Ne?12vy;euFj}yq<@S=-O#@C)Glm3%oq3^FmCHuVBy5?^C5O z8;mnSt6dXA+XhEYKS?z-L%!vkWv!xskE0vpgM0&a z9y3ebk^^sPW0*FvJi=Ax_YbV*4ssU#E`)~4-y7y`3Vo~sr;kGDx2l;%?2#oDsk#8B z;s*Lr%z_Qbuep0QR#M%r6`$ZW<8nI89BuvibF{pZOb@gimP-HW0&B$D#kqu4gc|65IVL?Cf5$X zNrgU5h#1icyjAe@Ov?2m@F>jj?bK3vxPEpa@ERT8t$hyrYz7Gc^d#6cp>5_Oec zb0~21rs)&~v_Ur*3h3_X*XJ~PGF=>YMn0t^&HnUiFk1Lyu|nCgun|SqF;>qH`EuNd zfGAlBr4zv@>>oobS_x{MeWCh_G$BSuz|js z4s5|3m;U}j5k%mtmj@p~=m9RE*UE!hrqJnVjx)@@1-{0PmmufIQsun4aKdP7-pCKv z6?9zhSbem%m*q&rUu0tR=8B_HS5a<4=+OuD1_oM-pmK3T!2<~eYDv;gxltwFfECK) zk;JFE%-4wp0+9`UL=0Bq^R@{+Y>mFpqkt?4WHZQXD9i&0EcD>S&@aLDP|J57_uc}8 zZXFOhga+Yif$>pV!g-Hh+PKzXaUVlKY9uG9nAyI$nhfgkXTY6+?94Os zasR^5op71ZnmNCUvfv}dM;q_7Plw6NJwLZhH$ zqETDi#0YeB(r&Q8t=2#1p4FvjhCqFJ8!H(jS+=8bvE-tCrssbFYm_AZz`gh3*3IMl zq9ak#G8lbOe$J8kQsHS1?+I^FT_+}n@t&p+JAg2IKLJ0#c5tN)Y#VIQ?@pKs6a_eO z8H43Q5S(VA>ntEgHq^~VxR))Q%jj9JK~})ug~?ZzP3-ma(Q2`twJdZY$Cg8S}vxThb|X`Uz3BLuvdFIVtGjtg`HPKzF5&Na zLE!OjhHj>@^!8@BM~9z52vMHiYFg>=cD*LFb5z-*MHn#o7c~34Ak>#I!aA|0!8jSu z7%%AJW?4b;^Y;NkTzst!2&e6pSC>LTjlXPgN47SC6a$XlZWD-j4RJrG$~|z}_4?@N zIKGe4b@E%K))(yjk9)j3{Ay{SH?{_JMqO;hi>(PAaap)6K#`+%c;&$JAJMOPn!fti z>ym^kSd&z|7te}~jab^37^x_N^+yoZniF^O)zerOonu#xPB@C%J#alYD@dFIVtng;J|1KaNgztxq-H4_ull6!hAzhCIAu5_w| ze-Lmt9B@3aTRvr_J^<+G>XbpqHuqX_TR~RwmbDo7`%HaiQC&h2lCQR=FT=wc_3pB3 zvBopXt%u0W4>BdwlhIMQu~apgqOpE_kb*y0#LRC-gahlNG9BXsV=O<^+8jvR0PV{&IirFuF?OyGb zA>I$RCxmd}Hrym#GOQ&eP=UMuz7-AI+UyN3_4k7%O>XYh$2VBRDtdS28@e`jK2%M@ zE1JXVMVn_np)1($aav(*(%2?~f1Y|wX=&h=vcoQq_q>zKUY$s0Q%PldT^TVBpI>hr zj0>5)BRunwAw$KAiL7&-X zfs@ns*dLakl^wvCz+g2sCgrtv9Zpq5ZuSQSB8V9hD8mZZOwpU^OGhgf{2eN zVlHy?N9t&Um^53ekxZGQJBy&nqd6JdY9oJr1;Xhlb)RB3+){YymHL|ekR)XE{68$e z&&37lV)^Yt8#Y&7v(dIHmH)owTK%c`fKt0VU{=j5AZ>TT@J8w8Mm>YNl}jXPLd&yp zY$R-r*Np1fT}ZLz(D`R$%9r6?TpEaBvkN58-6=G}W>Gz_Z2Q|4x-dS_tx+Newa^<{ z{0CL0p_zMI>%5x1no+P_@8!IEEr7L8)9KTDWx6$rH&%ieXdt${ZGW?)>$ulfS35<%gzQ+3cR{Vr14rErY5R~ z<=@4&81mA`!-`T;TQ#YKiXP`-&H0_r}-ukx8PX6p*~czU*x#it4C zp`!vFGZXK!GXvW#~;-jml<--8?wH}aH1Jg-w^CK2O0Xzp$+ z(w$Ue29%E4S;&}+^GTXLlW2}ia;e!=cyi{5Ey1ncM?{Sodi?Iec@Ysp*9Egd@+x|F zc?g4jh4i%$|5y5qb+M)==D}709xypAB{2ZTP6_WT#J>1kgbn_zS z-;tu4R81YIPR17*VZ)=iOt}PG9TgrLVFzbC_Ccn!t@V`ySZxsQZw4KJ<&u={C00+&B$D2P^kmBK8N;b8O!dIs#$S541N$6Lpnb;QilBQ!RtNol!cq1_gL>S_ z3d@P)<;)O0VXli|)N&*@e+*q2P_2(MOf?RTsBMft6j@MLSA+T}^14(} z{KQ*mN4e$aU!s6MTXsquy*-pi6Z)ml+R#JD17`VSZI%c*{bmFV?#`6m`IV5h!gmS zRUYFb5u|Vu99bLZSf|C;qc)=AoM$Vs?mL-z&accr>|e zfD-^&zE(3sCb4%XckQ$ly_tSxQY0z=&ZKVJ(QyBHa4#Mr0I;ctj5oaQJipb-Ufx{A2ns3 zwP-zX`>L=&E6B8Vei8Z**WUDe&Q;>uj=O=9&iMF2o&yM@R66CcE2>mw49jeg7(CiP zAYIi`;Pk9ze?~-a(+yw_nb8B;!uKir2B$5{p2p!{bTnJqyx2V3T_8+qj}}Dt$o0nK zfAIRu-nf#}5QKXV*J>1%Nz}qt+EncZ<1jSEYR_JW z&~g?)`X6&I-|naj4#wfbDa3^y5mGP;;s-Q(iWCmfvo+dx;D|d41z@2A34_czaM>aK z(PV4A39_&O_{$2I!Wx>Gi zl0cO4JR`wWF+Nx@?SoVBE8v=irXv{Q;5V852!jCelrrfu&;LpTY@q!JCsO>UwH=X! zF{VH1d#^;81y?Z~+|$>;cI~m!>7(xl*jz-Rs5P~yexnTCSsq+n7Se4Kf}mEvaF#Qc z|2HjR2gHH6K5Gv2is^r0iCVA1HQG#Cv;~;d_&sTze50GnZ;f%jK0OR`xQJGYH2SS( zfnUD2!KSVc60z-I*P%!qP<&bqfUwo2xTe&B=L}L!@mOz|1_ENnEpuR-(3>>O?D4W8 zl4jI^6N0}J?7i-%b_ik*wy=1y0#Oum3eW6S{{TbaWg}of^1K z=ulN}aiJ#4r5_(bN7veKJAxXQ5rnmIvWKnc+m+!rcHR0(r5o7;UYWjKnZeO)lV84GfNaWhQM?m z@vwT0ZBrU_R64GJHUq2l$1{Vk&K;MUsbTYuxe)iq_6K6(J%9i`oBUR z<5^4ZUdB=xgMQ&n>m;}TMy6DZ*;-4b57)Mw1r0X@4>IhG6>vcbL@$lAkjq+@_oEim zGhD4d5APgu*z(X`8(-c(v7w)+79Gvt|C*!?_O9q}GymFev>PE~W9dR#>rK;&-yiVM zo1z|&YjgGvN?oEI0$;?#9sH{_0<=xm%U&+l(S?4+C{Y{D{TiYuM4b4?W#2_nupq?f z$J09D{;IbHqkCnx`3?50>(4gsg*z5E?$jmV^L}HA6z^R>_9$?KP6~q?Bt3R7)w4bI z{R4;J}x*z&AS>XXQX#N|9n3&j1rq9Uz&()avw#LHJVZ zd0gwLOVPdKUO|aF@5LImfd?Z+6X8uZc5~RV(D?Z39^jq>QJnX}+57CDhLKsnOzS>K zxT2X3dj9sAI*v2*y5Ccp_F3XgplhMqR*+p3Dh(SfZrpeo@b_EItNe`oS*+df;z{V^ zb0~{t70%Sjcr@>ygC>5dn~qL(zm868;RoQvyt&ZZgN6^AmjpuI6;;%eZXWi6+e~r3 zd6#UThplKUwlfrkY5N}o&z6ppe)TKrOR}Y+M5X?xwDd~{O%WvhF}d;atwh**xXbWN z?pzfx^cSF)A37_7)NE~T_C^M!HWm{<9JVBe)-uG$Mp(cF04bxcZaTh)0X~eph_3AY zw<@iaoBmE3@rBM#u^OtBY&JlB(uu*eHG&44q#AADaM){%xYgr#)D+=`eyiZxtyA%w zFy@hxamak55IekFMKfXx`NO)=@bag1xTnUTTboh#eUtT=wZyO%oq^Fx7Sy1qol zkQbLD1`-Jm+p|8GYvVl|FyHt_xP@ zHZ?6C`7_@(6Z9TtK!TYVm@5h~#kC^Qw-vd&eMKHwix_qj09BLKz1-a~mswslZ6+^q z6~(^e{MWnLK?^hzL8sWOZ_M_8|J*RnNg|OAS_1OkPCY`ob{4=YU{q329}^Ijp%{3+ym#7U)AIl${RB^;MT#OI%$=BNtK zOHE|tpLim+;uWu}M?J%de)(9%z#8YA-OaDWj*v5sL2Y-FtOD}VbiqRrZw!7K&{;bwnR`wRd0RBhkJ=XO)w-Y=$z(*0Vo=8HkU&+NI7BfTor zS>q?4k`s~O(_-_HF(#^US zQET9wKy;*mN+fG`{h)yh@0(~OcQVBrU2d?^h?Y72^GTqLxtV5Pn0csalx9YtZ3>&9 zDyI?5h```gjXO%^OS+S2A)~OyYjD|n<$BL+(LjH9cL$B(!IIfWw;YM92eigsK|{n6 z+*qFcd*LIgMqK2OF+s$uUKE#NY#)B}xVO1(OqH`(@Hp_6mFZE^1e%jV?oJZ-d2lyV z0P0`qQ__raq2so9&}NA+z6fDR|E?YORFg$fqSxbDO!ESh;Vg#$edO9sVhCvO zdHYln3rFJ;E}i=jUAC`2gi7=TGtuVN7zGpBiNg}eB%k>ZMe|X(6f~DGZRpBViTI?b zmo6_cY=cBK4u%IbLvWP$@*ErwVxjE_h-@z(Z7jm&o~~cav!k7Wrj$83k}2N;#>eig ziN!^)l7aNV4RP)kOqIe(%Jj5EkilR5QT9*VO8G9Xdr^bL zK}vYe+OvD5n=N~nh2SDtApqxtDtnHj!66mBmIk9%EOX$;t0{9=VtC|IcC_!cps#^g zwOkS!mQ8v5*&Zein1&r0k`q`2%)nc)Jf~L-$}oV=z}a%J(pc<*)42K!+kY8w-X~S zhx^;GUejIpqY9%3!wbtkJTHLCiC2rm@C_<*bppr@gikNo_XLvy zk>4Dli0?J~@#vVfggfZxhc#6tWWQkGPfoXe@IGS4l7AKlGZ(g^$!eTNc1*9})4Uz0Z(kJW zJf!yR0l;_Jb=6jAY`~1yV*}jSC~z!zAIz?iiPG6Bm>u9s$VLSZx+gN3F)pxK^9Xep7z1N~Jb&;zjh@3J2BA7G5i$Km)IWe1F4 zXuYDi@IV!WA%HaVvlCuJu%oBII}qmT!Pbe{v>D|bC?KtdfHyAHSH)rHj~1AW@>fa} zQAiA#4-V#hMBzT@wlnQ(>Db75-v3;-UwBaVL-+zr4#D6R2AdOb5K5;dgDUYAILKbz zODP7?t*UxhXEo^B9yu8Kq4FqLNDQ^>zy|eyG<|nG)&2Xw6dK|#m5fk{C}d|HN|BZ9 zI#wlg?9IV38YH2zcj4G09DA0PEi?1jn`7_8?>c?HzklvOZjU(U{eF$>dalb{&p2VS zRRIZ*x{=K1TVOI>b9+Kx4#-C7R)$qay(V%%^Qo~qvdMTB1*X?NGlqk#tnwYveK4+zM`P}hQ833f#};b1wGRFadr$WK$l*y zv?(^HLg)V_fm%^%n2bfd|D4Siae@2rxEnC10zpiACXdYtycXbM`*3o2e-l`&OH?3Q z*#SX78PN1Fuom$wQizKfpVFzGG?9Tj!Fa09NsyMFE-@j|w?PwWa+SxD&SN!D7ib@> zh8#)v#FdSDuL`XTHnX&IivIyh0amkoSK&DXAna-WiB9WaZu_txa?0|zKW+nlCLLTl z+In6}ufqBR7^dI@Opi16Np|+77|)h>C*w9C9B%N(+(9|0`%4KB?WBPcGg02+=Yii0 z3%8V?ycpDFC#67Xd6ivz1QalmS{c($2JhhdfS#gLouW?K3CiliRg-s#|JMFDk@Oo% zUO0KM>XWew}h}e zT#L93=Z4Wu9(o=-x<8-@LD@z>M3sOnWpDm;EtE3w+xzqfPlMl*zHhcIR#eqkm+3cO$~o3|S$L1kg3g20<*UIT22i&d#u~HomNz()Q`eXY&Xmkgoc!8={#6Dis=H3)m0&fZS{y*)X zah}+T5cD@1Am=Ta1h1+5spk&eD{GWRDNJ!smUBJF8h zxpZ;A=_O2go8-Ux;egJHyWuUS)C3g!gL(gCICp z6L=47kAJLr4uuDCVOsKUljE-wqrJM(K_HYmINbK8dwf!qmY(qE0rlLSyN|B(XdTsk zcdXyw?Gd1kbQ?l*uGI0(dnQKs(r4lv_Et|{rEz$|BjEn18E)N@vrrcx)~WB+EJKKGyW-exTZ(#{d_VG+D6rqG4$A65tI@Z00 zQ^ojvrxTR-Uag{3+DN~!WnXD(X7sDQXPD`UK=Xsg|Lk9&1%;VRL>BOm4}kBAVw}Gu z|Mh$H-S@Z)mKNQqdz%*$`l!BygoS46)!aD-Zl?=qp%2;*XmxU5`NgB}%4~BfY-+uD z+bYSNIuolHLrp`zzZ{L&j&&vvlIq=I5|*}WP*D>szC>KJ_NNzB{hbQ36UuS^w6hO( zqd$DT433q??Uu-=Q}IU+usO7McSd&*@K8^4qqtNZ+!rbo)Mm|DvbWA5Ku>Zru~VSd zGsx@aj4X`;eJ)?ci5QI2g!O!dMG`g};ph5N<6YFHA+W`0qDpFL<~$wGv1NR#d#4%R zCR(W`3C95j%HsX~IsdFmg!8cHM8LEW0C{9KWA9&hyG%MwtRuirpY}KdgLxg>|MCpc zwt)G*hz4R;Vcptp(3~C$9g9lz#I|Fv!jZr8>ov!dJGXeI#Nr=`f_(A!b&b02j2v>9 zLEe@UW%Z#`UC&&x>sJh&}1!_4VkRv0RVAZs6QCBQdvlk%LBwR=i zt)D4SA)m0g4St{_-sFaaUAw}q3M!I*NoKOoFN7N|KmPr`j;~YFz2A6KA`MK%>io`e zV0&{Cx>_cE0dA#Zo)9J>f*xHtRePQ9`E+X{pU6$P3Z5?*u`HKTX`xWpK0(C3tI zW!vd=@+s@vtuy=t;y6AJFvzT3$Y zYnQDxIHCeiMTCT15PVt^WAseEIIiIVW5r?Vp?ja6qDR~1q#Hf)nTkl0iky#qhACgd zo*iEWc11M6_?opH{xdvUppbGxMF%IH8Q0v`o-#wGBQz4nH1=t(0^+04{6&3cO3Y_^ zI1lYYQaf<1aqt*L`DQ5o7VbMiBl#oy^4IU&JQ5PE67OEVL1tjDT!0qomc^f%Iw`XP z8xnV8{pPX|*O|)9R>Q=_v3L=YlVbs}W852%B#DDV8dAy9hR z7OzOOTsKb>bUw!9W9#ubtVh4)=i_^}M*1TQ+jrL&Fg_vEqc42F7ydfkispidhgM8D z*Hf1NOjt&GjA?N*Mp!mk1LlS;R2mRSL#BvpvRM630M$W$r8vjBLg>jErX)fKM*_h{%KLE1t(Z#=+ z96t#ZV8Cu52U^yU@W8XJDMde>^UG0l}8Tk$5O9dJIj8ZZ{4PU z=;9-Z6B;RC{Ii^nNJrl#$>tV&9N&>Nn0S>YDF!%mMAk1t%?{P$s}E1qBcJc7Z2d_p ztAdRl1c?C8&B5&-yZh)i$>%+csU)sfgzKq|}xK+y!Hf@WiE9@Jm>h z5ka0+5eg`|!wFjs<*}aS@ zD`Yuz{=%#xsqI%}QK+{=TgvnKQ1Jt+EZXCn2~tFG+8`$HL#GDU0!Slyk}axC!B5D= z12F=!VC(|Jr_0g+SzwmS2K2CQz&L=^GM#Yi9WJvcYX3+Pd-!;&@B$cAcRfOjI> zQWt982Fao637zU~jK8T9h0?`Q8A)~!Ha+_DSW&6xLJ3mXSzH{8JvDv^U=V07hiloB z(Zxf5<~yG>tAqquB=3&6Ezba450&9ulfUGD{qwOXwjM4H3U>u1DDlinpul%f*`Pr6 z_k@Zk)5lZP*0ww6hLA|1_us#UAQNv73;2Tb>P-cBg2ByH0X6Krt;FXr1VQ751Zl}D(VXtK zy(!1WB0T!(6X+s6dDT&A>#M~V-tVs3eF+mc9MFWImRFMgXcs{3Z%>aU3t7(fv*}Xd z6j5C9T_APt(i`MBO~!bf|03vD#S$+M8UbIWpagqChh&w}D>`)>Cj9>ErJ8>?OO`Ks zyX@`FI|_p6p60pYoKeL85c-b-Ks$NM*4m;4m^I)d7=^&sIb%1mFsR{^quOj%z;BjX zTm;SBJra=sz^^gbWBjf@zs_R`_M1mN~C`;FU27O5vgY#g))1YQrRDsWRq>TLAYw zLjkcaL|TVx(4%Ap2Xit(uVeszt1B0nUf$yAQOE=@Qx-WLM|ag3c_QFPQOw{f0LWFJ zZax$Aj#q%?b?gJPSH_fpwZXb0q}=HJ_*N-HpFAcrA?W942%A|4g&LS+2?V*trFY=B zNWwk_BDf5m7BA^%T=9f!Gmf<%vh;l5dTW1$jJrH2Vp>}Q#wJ5UA_7!>A@tv}ZILqB zOt9_@7LPlC%@=p#wOKQK`BD{ihL=NttUaTImjh_ZyaC{>z)S{*i5ED4F{O0R(NP(; zjl-rPU>-VOdK94@0^I%<4=l8Oi!eVo^3{e;2EmV{9qiw^Yt`$oL*Qz+k@4at@(1xo1?I&dsV5?&>P5`s{M%sSf zOT*6wfUcOD+Q#yRP@8*INIn?p&SfWMG7KH2=_eUq0?9jl z4iJG@LeEc4R%Q0cp_xe#H%I!0KZJdR&Qj_+5&jZTV@r0{Q84hHq9|zv*!%6u}& z62F;u6HJ0}GH{z_JIO%KhHlq;SPYnAD}=F`63`WJb^B&of@6gqiwpTuq^e~0?BiNr z4B&MC@MRnlLI}Dfy~>mofv@+cpMmMJ1=k_cCi}d8HbpEDwqHo_8??y!AV14N6ko7p zp@A{0j=|Oiddffpc6Lr$-DB>e7(2E`!cPRR$bAJS6vY7kFAe0hF^iSDwx3)7HJydE z*8;Td&@wLB|G6gkuib&0h!({aBudI$7)ydY4H17zfDLp#(l#HwPY0o=l%AJ*{7b6w zXT=>-^-WM~-%i^Gwb?#kGvgrjXs4R8*A#e?0*NEtaJHejc&17Uvh}*r)&Qm>l8ga` zKJ-8y0T|Vf#}BaKFIxDpx$xOj(*ByWEH<$nyMh=xe8s?sykAp5x^AW=1rul`-T7H;|n zuCRYQ(m1733DRdskkJF=JozeQe&~5P^<3b9UKK9973GJCRV~rArf?ck^9bT z*ZDk()S?$Xd|NXxvQTsikfZuj$8AQ0P8=aLYw@ zp$~VbjeuaOdk#o&L&_93oIFT6TQvh1vfPGFki?Z${H~Fd1oGXIJbGRm8hAK6(*M*n zU-}?V3F;7~&V4yrD!6RezHJ**D@|sRU_mh9LyC^GNMT^+#pyBD9hvo92m(oOgU*(a zcP7AR0!c=e{#N0^JC?(_R$JL!Lc5w)V?F{;?(Q+{#AR z+)SE=w>%5#aSfDkBHmgH;qq*8ACbHuD9Ryu1J$Gp=hHXa(J(kh?YwmrMsnSziQHf^ zLkp1nB5LSR9yx#Uk+}q_NhzBz842xQa_cSyfWkwQP}OJ9x+{E7cw4*SEVvqGFGZlg zA$$5TtL2~`U1^Y>&p8X25g!0_vvCJ4rmwgE+x|YjRD_zD z%EBe>;11Tpy`!xZr3vMNEB)=go{1Z1vlF(vkq9Dcdy^d6u`Cf5WPvP2oG5@V_NIOPCJ z`Y;$F>K)Is&PVl`g;8Ry0Ofh^)KoK=3b6*ENa1O;l6PW15O8!hKPl#HBcZn#J_rr- zax2nIvTpX5WLs#d$*DqM+Kd8^RqhWvd?^}s3Yhr|#vgQXxeYzKkz*MA#jhQ4 z%#=}2k4X?>xYLw_>z%-FGv$WIc=KTznWctAR*TMEgE$9BFtGgD_h+m~Mr@XCv_p0Q zuab`3J>&+pd}ye9i!}?V~TD^>dEG2a;48p)Y5}cV+ zJ|0h>{?dBR^lo(qLQk3~q zAP#Ybr|?nhb;o;xFM+^xhx)7fq7E78D>6$=T+3%=B*_9u>KHxK*bOnh3L(t$8Qw=d zpzRYhIu?%JnQRQeW5`!QC65a&DUHstmuFkfh-#lj`1{2ZUUK=PcM$tzo=0v2PT*@{ zU0=zg82?jpxp>USM7nBixA0(aJ|_SqDYVdRLe|wp>4H~AjtHGZ>8V5o2D3MTBu(=S z7I!d8#Z=|&FdLdX-me*K!vG}l{I4F$P~5>j-dmQ2KVI7S^vXWIud10nG6)h@Xk*C@ zL2Fe%27w@&*Xl2R;56T`DR^8uU)3sk5RE?pvh(SMDGvp!LA%c)r>}AGC}0S@WwWB5 z$ACW5aGWfeA$P`~Wkx3*N&?#?V`ykpIcbV?)*n6G*9h)e$Wg_A55Qe$zcpZE%K2k= zdd?@^3+3?{gdcGe5pP0&xAWv^*H8nUeDo<( zD1PDJi{CD@Aljevb|G_qPV+?$?j0qyKd=*P(hAQOcHO?Z53i^>Cs0f} zWk%o8IOzrFe~brQz@R|YS?82a^doVx^D#uInM*IZBTO7honE^3k;9(6W}Pe}2_=J8 zp3KZTO{#Q`iY?tsmbmx06N{VK>L_;anbr)?wwEl~_9_W`kR;@iw*CFS2Mv?n^jM{$ zQUP=K2INO_#5-|xs*mho*}_0qyPf_jjC!+JK~2_=h4)+OtM4tAD!ZLrJU#nSkD4W+ zZ?L@&>R(WwbMMM7RdJ}8#dfM!h6kDHk)pS;A0Y7U(nDmFh}OfBxfU0dC3WVMt-gXN z4?Tat*#P4Q=(ACCSC3A4R}-@YfuU=6)AtgSyThFzozF5#5&3a@dcdL2JJDAHl!dI@n>v39q*@kBv1dLRFq-ctpo#A^ctJ;sgIx;iu(hV zc4T$&B~IR8Z8$O&k^kC?gy?dURn(~t;7mPA!Tmt)O4i>}qpN^yA}T9`6=cm>gN+4B zIlaP4aFs$gvQ!J-;*mBT==>W1#L_UBtxtkv)rTdek6wtig609F`cSjQqn~@3R5C+| z<1Z*=K{N47IIirG61{iCdq{>$0q97RV4Cg=g>Aay+l-*D0&7Pjy>3%zk0CRGLpW+E zY*K~dQF;?!_EuL6X`S;5g*PV9N z;WzXQSloqR5A5i?WDcAbLqa20r4W}BX1Y`lEC4Kn_ z`Z;)(3mh$#7;oy+T-FeY0C^n$%xfX^0lA@J9Kl9xz#}9>+MkzpAJ2u6b-Q5J>aNDR}7$`Oa zhi^D@hUApR0l4DiFe@qpt@@)bh|Yv1@hS5UC~rTM!{x9s;&6vz93_f1zSOCn0xwYx zq5_o2K(i8-z-5=~1v~{qF+{VZoxhZ<@K=eiN8+bK@Zv77z<)sjvwyyXb<^Ae3*c*Z z9)D8O+x}KSAXOCOv_6c*9Zd52My}MBv6<vs3yEp5m#hLAhG?HtXhg+f|X+SV}u-qJ1yf))V$ zwNFu}{>e;0XH}@+CrLK=sQKuy=&&E2D<`lbSrev z9?0GlQp5;U%1C$~Yv4+Rw|MArG~0{*9F|RjTQr-ap!dn~g90nyTXtCyoU6Ca^|-3e zxpAuU_DZ@po|nencu(^4Ku+=Lg7CS>DRh=)jiQWIJTPxsmc30NTYv@^tglIsX{5kI z7mF_Dd6Y&AQU{Et$M^^|&diHVAtn|eJ&p2h-tCsMFNlKB5V$~|9H$Ndl=!#2#sBwT zp8N}aQhw)}^idk{mXUB=!aic(Fl~QLz;*XjL7#+xH+@YEP}AK? zQZnv_EnMvaB{Qe%*@DBycY!qSj(pVg=zJMLwF|T61MO_yH?{rmw-F%T8iCknlQJL_ zn*j_2=b&a;saq6CfV+DBCShG@lk;q#50yL?P&*JKw!EJ)LH}L|1PZO;zTi@bjrN;q z1gIcVHhouZCj0vx%Y*3OIdLqIN(*Wr_*|tjl7)M8^Ihul9UzEB#b$!&)7sn_d!vqA znGN!{4V3oYC@67~D~9slezB11DB**q8b|M2j_Oni#Pd0`y?mjcAuR2yTnGvJqSxuR zNs=xPrk#=PsP^`k;xJ#WYA)H~+U&Kn6qHOEmI;zhI0uHt53{s`^_J}%3 zy&fDCCse9i-5j>#uoT!gnPq@y*^&tCi zWv_2TV(!ewCicpxuk>PN_~}SJ zXdB3@)#Q)GA36~C1)6t)!@v?)H<_9*2we;>t@!UgA_SA*59NX@GU&G9H1jM6{*>{_;OL9RNSat&!ZXbA^@M7+h3olKSowGf;`F$3=jv2C6JO(zffuf z6CU1Uf!BBqhwRz^(&~@H!Bz=qp9-_T#gn31WX%loh*+|}hQ%MSuZ;V%g@3lnN6KVL zfJ|qeZ3Mz6kFgS86N_*9gIE06I&%mdTZ9EAWcsGpea4TQJ~8niogn2-3OZ^SKFol6 zOT`B^zZvE~$J;slZGdM>xE43-*uQ3D(KxzcR5G=ggter5+7^Ac@5H8lbW4rS)9;6v zicPS4uvyZ^#=d~tP@4>_bi2joZQR!>Ar7R-U{bX{gsatjlyp-<_2&Zu|!I!b4Bb#B{~? zSw`U)l@fO!0FB9tr=#{vS*xyJ!^}UZ$nZzlTyc56chnW%mW(^0?#M!>9BU?GNgd0! z2UMKIJRDbWWs8q>tH{8qn>F&AAbWVb?=6JvU~&hoK*vzlo+w8v3PyH!q=AE4>F6^L z^k_65H**7=Q4spQ)T~VW4(i=}CQD3?oq@yj*m*nHB46G~h;K|>s$&+-P*v)4;hNBh zS3H7W(bS&uHB5A9)LP7qu0>N zBY5yGi5}Ky{#&xybd~S0yyFEiv~U0#*tADZq|6^|6)m6^WGovHNmJu>9*Rn2JHO~V zkMO&X?Mv;D!1NtL!wVQbh@^Xt;+L6^g||PuI3M)}5W%O!-&1Qd(tXnL_B6!9GKdPc z&_G5h|1sJnIm6}UpMY%q;egvx==4OV(!>|I`kIZy1L&oOfVUol@VMy&-Xckvb$3r} zXjIp?uVK8RT7ZOyDvDcWmfP*^TYJcIf(Z;em7YOvcvN~=lmM6bI_0qf6+=g@^#R;T zNSVp}KLwW#O3cH3J_a)r+lm5}U;0jqsaIl9wkI%Emb0@bgTP>9{>KV6J`wNOg%dz>a`7hF=iQXdR@s`J~)Aq9#kiT(;!4u_?kKC`(K5WTOlW}a2B zh|Vq0kNzid9h9oIg$;Xs%VIlt&=0C_L_rT^;77E`S+1xdPk&;iCFQX8YtiJTMe2!) zi+f?VDNNc<6yirbD)i`6Kl(wY-}Z_Q=I$0oT7BYi9!WWWM+2V8zz7JcsMBwyb@MK&e&Ae^bQ;a49AEvN zt_CZqXjl10?vx0^5{cvs5=(YeZ00vw3u58D4rVn}*Ted}W)Y8g$r7=%U|YCrNL8}b zY?SS~RBVfi7q{p5v0Co|NFn5Y*~_y;o(^~w{!-wh2<>)m9^Gzm?wHRU2fjzAFGy{V zON_R3JLZMu|A)(W9*sY&S(wWu4Dvngjm75(qXo!ag!kPZBgGQ99 z(lPzWkK!fcAFY1rvuFV74;Rga^oJTu{G0lPB58=6%i(Z??t0j{8I%`iD{Iqt3fx~v zm|cIM8%FOUf;Dz_HhKnfR%Di1-K+HL^R|PM;jTkaOnJo^>X!~$>KtWiWRaXDz@Ajg zl-f^jIJ|m~vPwyBy=gz&ak8Gf*PskdbIu>i$tD0#AN;dSHFFw*C$Lxl1;702g1k4x zvtQ>~2Tw{(@`%GOslQ0aWC5ucBLA)b{ae3JCpsNVf9t^MnHA3@%DbehJVWBz$)iEZ z-B&O-6=uFzb94Q67YEi$)rO5?vFm?u0_>6!`yYwfj-K255=|OzP z`8qS=DbR*;i|AG}9qT%%1yS4}*{b(4PBn8hYaicxK3I#W~W?3lRPBV{a>8jpT^3T}u}4`wNGgN>EIzypXX{Fh@W zke2F}lKsteO$t!(I*>3KLl@kbaL<7DiKxWX!7j5XiEuq}N90E9|9prfZg#58U(vOn zODtKsb1lEsp`hn;QP6E>CgaEC*1_q6I0Jc zyDO0M27KQjhZUfz!!)Ryr>0!-pd|t?>R6Y$&%!fHV8Z^V?vKk@(dqyTT5zWTaLl4% zg;4nG>2MLcKwN!ccI{~}J&HjCrBFc&kN*uX^2d_L8bRP^JQcWfnf=AnzPe@q{#hvF zCy>f3od+)1{o0eYiDhyecabQ7a;_%cAASWDTzXoj`w^7u&3X4KowY%zOPgISq6zWu zNZz6t4-01I+deqz*ukg^e&Rio5&Y97O#e-H3AD>d0>qK7N{T#z`sh=6NZ7bRvc0(Y z_!kK8!HQe|h7;uq>G8el6cB_knWUAowb!3O297#OPIy5JK66_1-6!|d+_uBIwSNaGE?q?)5v+*_L|Lh2w-Q?*~4|@u1MF5Xj#Y z!ZkZL_tR<6l2q)**W1T??4cH`jt(OPj8Aiio^F#qIv5ui;9a>&60c6RdEG~*bB99P ztlPZ^AYhQ{EyLfive#|sVI0YAn1nrBVD_pM8aQBK=c_^5N(Te3<&e<0%_sZFK&c^+ z3o2r`Lm{RW{OHQtA1_M9h(CTZ3iAzkY}Qs#k@O&6(Sys+AEHs!lyOZd*jrbEO9he$ zI`kOWA^s4AH}~`&02R}YBDF9;Vg$fPh^qnE&7OD@iQ;NM2O^Iz+9T6r2}gGdm{>(s zU=6k9+XwhIbdC)0q{k}q?Cm_ial9@{E zTW5TgFH=~wgA+f5YUwEyo*(kQrL$4MbH(Y)o~;euL~xK!QTB2$5?y)fI6XFwSx|OE z{!4<^m-xk7Jn#UtS~>dx3BUmaFhL6WX;=r`pqtU}R+)T73Kcqwwt=Iw{Nz8+1%R?( z5$jh3vuqL;Ed8$w*8tr}JE?`79_tcF;!T@tI=t=e4u&<76+8Q@3qXWKVn90~Z~WMh z$u9&sIVq@B6?ZWn?FK%HpFdp3RGM=ap;i48mNbQ) ziScDPkchDmLY@5`!9t3~J%Q?>`SrlJqcP-u- zeg_B7koOSU)ShJx4yS15TCXg@mQoool%{=&)OrVFGSrdN_mCs@suQD6DPgaqV22Fg z_*^*H*p;L8T;Lh?rkcm6B~87h6^WBQRXZVZN_*^@q29;;j+F#}miB+cBg8d?*y1`n z!@(Q!pwT8Rsb`&fxA{G8anZsHjI4w{=k4kxueQ{&|NBMb_|l;VD@~qzH?92K7h*Fpjo9Ja&-- zvr61LOD%-^^J;Z`qtxu8f=*w@YUTSgfBp^V=pZHE(TTSuE`)U|x4IUQXTi zSFcLRq6$?sGCcRx@D=-&E0>>))IBfwn3PzPLCgG0-&vTK_Xm!Uaxl>hJvlE|V(dF|ajnOyN2_JT`3BsqHR1a!6ns2f zo$#(iXzuMX&c8G?WR=OJsp9Jf?G$mERrr@*U z&mx?9W@w>}<-L71{!cH~7>#HDcFy!n-!pTQDRnYSb$gwugdq}BslnSlR?oyVBh<|6 ze{a|M)N$*oVa<`oQMNsLKBq$b&$h>w7_IdbH;>bMdwWl=Fk3Xm&mM^!l5&J^&&nBw6vm`v?t+T`PANl!QhR5H&Rhf8%O-w`wO5XkOQHV-m z3t#o~!n2U@<=FJ?ba+Jz=J-)Iv*X8;94)`H%VOM?g5w`-=6G5j=xgxpQ&M*1zE-O+ zaC8<85EhB3x9uA$;UaVvcYluz-YHCb5GAciN#%QE`$R|Y6uG55vU0Om_wwb-)$dNx zF$Ste+&R{c*tfv#$2j&ryGz{YiVnm>$#Hq<PN9I-~K zh+TGrSdp`2Kc-qDBQi^9$d)~4ua;k5@> zUMG0UHzYjV`Q~5|HTKNd0%1g1a=_}o^P>FX-Or1{cgPI&n}^E?f!oO{HOmEzVaGZo z%rC{cZ2a*N=bi|ZAk^-UxE#;mBgVDF2c7ov4x~9C1c=@-o?ETLqdA?P{UD1ao8I0U zr%8(mLoW$0R&K1D!=sc>QK_-ApLt2Gu5Lcv5_xvXYWZOI>Al8=U?4?ud9^~`_Z{3& zVk;A*Upi0L>#~Qk6wj$R6gQFFyXmAEh(D@6{xomc=`XSA)-kf9gU;|f_5(N{)3u*( zMhyPy9ainkXSkRQ2z_!}7Awcw#p%(Cx=)4r96Gj@5ynTbReYjGa_C&g>~Z@S2upk0inga=9e_jPBiCKel&F+IOXQ#oM_Z|zGcYO zTp6AaS+!>z=F)=h{9#5;g%7{|^z(;<6~|g&I+HWwz!Vidk6G#&vO7%GCx#oz3}X3@ zt6uKhTRGVM@A`I2fBtGm=epBh3&G5TTDr3{96j90s_}@83b!`q#VHpW`b*oJV~w0~ zuU}{6k9aUySL|F9X^SYVK2N4;v@UVDO1r3Vmw@N1k`&Um1f;aym2-Y0%zj#^^;8@z zw({bQ?bzv-pDwbDo<|MRclQ1oqKg}S~9y{2Q?T(z`$P5+th?aTq&8X* zZYa`LVfpmO>vLA|B4-CH*J-qEWA>{=@yt;Yzn|vWTy-U*W!P|&Xn(M z4a%;c@vi)nXlriBs_inLmYh4_b5y=|Iu6bVDMEQ7#`Eo&OLrBrOlc68`IMu50>P2s zxE3J#qq8$W?;-*8d_qB&{%bGGnLfCI!JNeqaJp8g9Zax}!B1r8b{Pb3JG4fd#&DL4 zdm={M4{R+`c9*1SrH8s{X}7i~D&3a(v#n1UxGnHVrl;j-z-o+Ez|(JTiEN5qP=>d# zaJXId_lcMXUi!#Sj8N&HMyQm)$+wyD-u`othNjIEONkH6onY&>DIeES8L;IfA z<=zd+DqVqdHc)E0Ql(|()H&A&{IB4CFI_y+KWnKL9^ZhIS^t`o}O6yXPTo?VJZ5Lc$t)~dZ`&RC+ zf4*_8h>~LB!#lGgM$2_SQn8{>SfezXnyYrMiJfJ;sPI9oKFKJkPFs3cp@u-IW)BzPiLXg79*f8P=#b}%$1xbVEft)QvBP7wg_(~a12WE{Y^ktqq3@|t zz$B;iuHSljoj*M%0V>Z9{3iy%^JI;>))k=}TU#_`Rh8}T917|$oN5dSi~R~meU-g7 znS}5v=2ENC(YFPCH)J}U+ob}w(ZtOpLVCv6k^cPPpFP@4;?~a_t^|*aj3gb!*ndK8 z!fdim&(*pCJmnT%y0!VL@8uj-uO#Qy@ucmaRIS@PdwpFFTm31A)G!T;h#0hv-#~0U z5di&D@BWj+Js5_x!%KT9&T2x_(>nv{U80r1U-JxM8!9Krc-bCs48R>ZV#2jxE z<@ZBt-qX9rO5Zh67PxD6VQy$7-0-n0D-2V+{GErI+2y$r!?SrU{Kni*ODmgSCtSsd zv+`$`P|s6h=g~VoIhn@aGF0ChHEVnn=fbO!swPxKQ0`kfm@ETMz6wplAX+J*xoDVASLr+wY2b{0rnDHX3*@M400 znib?qiVU_4$q8YyhNMM@*Jl%3QH@4zoCvj}r2x^dKjY$j97YU0iLZXXq1d!HaN|j> z6q1|?;Zne}9{t_9t&ze(l-^UD#`!MuqXl;L<^?y8Hc~cA_m-@qyXajk6htqk~FRV zqgD&^t5w38qbc=(fjjM#5^Y!5iWFT13`4?+@Fr#G~XV$HHX_w+pYcpOrcQNrstBm0wFO-WJWekb}~=blPE+>#XKsh(-%g^#-NA7ZX5}~_*aMN z$ksm4%LVj-9&n)2%`Lc6*J`!N{wOWw>wJnxPDW1LhQ6C+r-Y|RRJ{bDyV<5_xWy4O zXc^swbm~tkD$?-6fpHP2?yta63Fdzjy5CO+bPL{u^EBT-zAt1C5|sEU>Q zQE@^#1;n%N%l5KHu6Qk-8x?{k?3g}-L6>%{{kuvDf(37lA6>9_R#9*A@OF@=P-~CR zvfJbr6du~DPUnTJP1}3v=BGYyAXXm;tbC_sSjTTSNQ-QtZslZF;Z3C_y76bT^B;G5 z4xm~cVSruqh%K-ZqWJZ~!LNt$huwO~K!@(p+_rB!BzTCb92HgdR5g^?ci{;YePY(k zdd8tbRZV||H}>n9L{pCDGa8>`)!W-w8#pUyr5FBFuA452@Vc|4-=y& z-rXK4HDVmTL994*75Lj9$u1*cnpMC!lTF7xra4IVRv|%Z1ndQqvI&X#`5rCf>)&N7oIP z*#li~(_@k;3$o$3`Cuk5?^?lQriXpgwrrKro`ck(H~WasrD@dB-W+|aHtf1!QE5)m#^;!&N*nJ< zq%AceoO_XHdLVuZrj;zEsW=W%u^@EJ$_O-&-9)UO+^cl(ZF6o?cW`n<;f=5bh`MR&%NPTLWz3D_k@jOS}GDtE2&Bsr-pnAU(O#l6V?>AbW6<{ zc;Q>mN{%VgVn(3Mq@+*=Jaam(u8hq(3iheef|L2ZJyU&z^Kk`q9fiY4dHFrbXsf8h zVOx2ksC;d2RDFttW6fD_Rm^Fig1;N7Y-WwUh>FiQL&tqTm}lE$>S=3pWl)Vd$?SS_ z#ov&c7zeqYMwkz4F^Mh3kpWn}NLM-sWy~f=`p;M00lU zu)b=|xP4}RnS>>+8$nyoyHy*9%?iqS4Di*~Pfba4EF$rHgT zO+|{kxdIo42d&j4g*x}(;g6W{8H)acE!{3c^4T>^?7Fly@ z=Ig#WcSv4N0L$=SYlY2x%5TZ5`%ll}R#LmoQ2pncDoi5ybbt(K>hw6z7@96#l)-F6 zCN64_&XsaP=}Vk->e0!QNbP5CmJaUo8k@(}8MXXxogJ1mNsU`rPVBBqUJt3v@5)O) z<~6`*e%Uhz1xXXrZ9R^C6e9g6ig%}d*3%Q^<`y#Saui3!Yc-1;?574I_o=sk;zCzbz0WxWNK_MT9i#U4o<$ zGW6$991TOabE%k%sk5`MEA=YrfDk+|gXQMDr3DP=I#=}Sqe*jIN$9X1yI z4IBJ(s?z;t^yhn+qvX9OnrtiuJn7)ApC#BK?#rCjJ5_vq^#jh~MCt(T@1+JUlVq_+ znI2E8FT8qOnL-WzFm64_pjD2VWc?t2Wg_+G)7o8u`vX|7?3`{aXMGVQg_%_dZZ@oK zCM@~Dw77sk%V_DjQMwPD0O(q^=p0{7{f`hJV5QO2phY=Oyd7}8^MqpA;@qmPeDr)N zVLEv^ZjG@|*tB=pc`o0UE$)J43S>*usY;&nW%alVWs5nff`r+k>$%T=k~7=Zo+I1@$SP!P6JNMZhFXa;jYFHvuA4)r*}&?_+{{~cyZ4#==2OA@FXmGnkH;TKQKGoS z)gf)Q^x*HM7uWb8{D%G^(nQ5DfCa*f^D>%;p6!1PQ#!u-`9Bc#Z|Rf{*-dfsn6~^d zOmPdEf2lUoqsbYw<_zfkFwvc(y3j8=i}of2`MDJpQl#(chpTqItPPP@l+tC4Nj+8g z0q8X$ak~O-^R{?v$RYwmuWF_L+0)9vk6MDd!St)j65e>tTb)LnyoS@Y_+y8Pq;SqN zzvTZq)erS~-vUvCUesAT#$B1J`g+4C^h6zVZC9qTXKIsC9qt03L>`# zfKd5>y7Ax;U24Q@p}w9Do+-~9I0;|N9{J<+QY*D?2clE7XvuHYp!=4 zX>NvCKtNzafVrM-#G0g;X6(01GYd`iCXL2!hCn@Dd^lL>&2zndc8vSw1KJcjO0Q_p z23{0yRZIMR2~E~QXb;DAOGRh)LUcp;bO6M$St=k|Tt>Ykq})UvOKobl#E8*FTUUx% zl}v?wAC=6h+~ZDHpMt`@4_rUG)R?0`K_2f|p%(t@*r#tBeja0A`zy(yizgik>Ovl; zo&yjaH|+we(QCH#SP;^zOiiPFp4=E{`EVZ}f0_x^-;Y|(l$zRp6^bpk2G^8)&-C$l z^PU;dtn{Qu;zEL&gPptH982xHfezPc)df;-4s!_<+&n+Hh@TXZ1CQkBQ2o3xE@H&} z5&Q?!PXFZ81!2SUr?rrUZy;1TIYu^=v`tvz0ixjq zNQZ-1Q$QaUiL-Eq%<9M#-b+)BkYp?X+4m#(!oT!4VE~^lDRL$#3#X~2MlQ0}CVULs z^`yw7r!s0jO)F23(?DXxNr6)wCT%^W#x}cvzns|B{6!$+1SL zElR}r!6D3t5yu+eg2*8ziPC*s8R;7e1vtN~GzI+?$u=0R_W=TD9*Pr*whBspf^+p3 z`g}s?&{K|$0?pm}jE#;7Fe?VQYVg_mfE(mLQc^W)-V_Y8rLBJ;m{o#{M}PP0ImqKu zLc$bSu;)YA66J#kKS3V~Wp1WntLOcYOAmq*l27+BLyP{TTq?Twf>+&1P!QIA4NLy{ zH!QI3m;;9gd-9l8zYvp;yiOiMj`(HU~7fpbq7>K1_<5TMeN`LDsK zrx*{QnBhIDd>AW@S4K7|@|ILY*M|wf{D?>xRuLwkJjE5{|K=`ORX`{T#2rY1<|)}! z!P(>#3ZA+5*-q!-F@eH7-IL{~I~n9PsXr7|MlzE86Ytv=dvP_LZ7>KIhC!0DlvX<$ zX|Z%!J@c@H3RJCR@$nxIJ=PPNv@d1PW_-6<>KJ$;w{9a$OUK!nT?DS_pymfzu9Y!9 zPyZiL=N(V=-~WFz86_X92&pJLDzb}^y~(jE9XfW|J1w&J%-%a3dsQ+b)G@OT*<>E` z2*2m)`rdB8fBRfl@gA@Db37jRM_|ygoLFQ(8!L~$J4jCLu3CWDS0VUWmjdXRl=QS? zhDd!4t&s90=V7 z08JpI!8~|u{Be}YF(cbh4YEc6*U-lbs{7?d0+K+khwK;4=3C~MxIVEo0wZi$&kp%` zlv>ltf;{$>uMNtsOvc~YO*GM z}+6j@z?#{Y?!UT+|KDR5{Fl8(c|h zWG^8mRu}v%krmG(`?O2=AstWshut5NoxcsB=-=Z7MM>YCP52kb>}_N_$T=`C*2eK9 zzB_{}9YFKeQRl115Rl#~DK8GLzg(K5fQ&E0UdopA#NEj)dz zK5zp;Ob<)j_Dce736Bf?Kn_pbQWv%M3lu1s_T|Cy1X~0d*!h*hPsN!}dbbebAecH| z$b5ZTu2Vqk4Uf0ML=hflRc0_46|w;J3Zw^#NUP)8ndLOutw?uk zJw_u){>XY?OSpu!G!q9;J`4N#X88%QEoF{9+Tbi4z~AK*P`_^g@vLLs%8Zcm>JMrs zFm<4d*ptzEkUI!u49atiFxzQr0WmEkbEF-p9pUn1C)~}zHSM!o;CHeW&+3Qs=gCiA zndofkMozs@N|%Q{zB;OICTypV;-c2c#fk&IEg%RLE-q2R^*%bIqkO9H^3Cmw!?#5- zI$@WZ+F5q`N#nelmY zw=TB^B@2Iuu&rUU6f_BZA1;BoDa!oZ70U zXurRtwSQlLNWWr1Azti~?LBZsqMC<{C`ORXfN}o5fX7QkYLkHx4g+Y6#nf-krOE^( zK2UaYjS7|d6@HmAL58x^*ZCHjz%l}P4YJp`GgW%5tnxU3EE5bu*)gvwy6dHFa@U{d zPRj4u51F@2b{x%cgtmmU#F{DTpV2zJVw}czd8NxE!Y}&ydK1BJX}tWRMochQoz3Bn2bm(K-Y5dOu1os~zLy_^snlh9hJgtx1 ze}XNLJ25oI27EflK(Nw&#vjpRKO_L&#ZMhF zr(o!XbBO7&BN6G#c=J*}GrKC=?77)* zizjnJ!ZWmfpRzfQ&!r^W7q*mUT}ioeGEEDaMoH|DFFb5Y0Z}3-tnC)c1Kjk?Ee}sL zxTw{SHh(JRS@eFo+a$AyQHxR>R(j!wD8U@k6Psg4gaOq*KV4M(q?aDTfNs*ZEU>#Z zKLtBjy!l!0lS8nu4~n^!HcR+mMX^H zum#VlJ}G)yjpTRXY|iI+3$vbZBAj5U`J03 zFJoGMQ$1R(V)da-dZe49v&MB-JC;(HniYj&%{IxN14fjertBH1jhE80){`%9ys#dx zRgA{-BcIBHqJ?k{fX+Wi3xhF`)qh)US1xqJBr70!Kwc*KjFH|e(YB0kICo3CO8Lla zk=991fgxc%$&ZDI8oB9cIBj+{s9g_G1<1 zPQ{VaBbd&uRG+OOVDIRf{-EQ6Xd5H(OBnj|z-JMS`uUW7k{2pdkJ>e##RsZb(=}+V z;x$#%(CR;=8-gP^q?4M78NoPFXLXwEdHy;dM4M15fFZXD3o)63P{)E=7z$MNWGibw zxut&Z`OE<)o>d-*3hJ+lgo+33t5XrgF!d|b=JUBMM;a)I-N2L-&DKx5`dgcI5D8u*FdAEZU&?} zB!t{Uagi*wvXuZ%IfDksa{`D9C?dytfzw~_T%p0@lAYPp$2paUzI9+a0IJMe{vz)n z($*rXjR6@*6VFON;kCiZ3o2L(ir>PV!N3NcpSEVpj_?F_2vpHXun3Jc=mXvf!dZJ^ zdXOFM`5iJ;x+$t;w=Y~76sNd*?bUS)8BjgCg`S9jI3qfajqOtxpB4Cq%Bh`)iI0!( zn&RZG54R~b6u=*_w{@GABB@*W9drg7P&}C4vIVCqJuZK*qRvHY-Re~tgt;ulVa%a3 ztWOnq>e~f{J6y77Z^ABt&aog=1X6i(D@YcJ*-Tzn+uVy51D_`roT+rAGJ8?|&rSJy zc|h^cjY@nwQk4M-oIuJ011j)m$8($cAX7%qK6i0?6@mwit|E7M04O>A50j5TAP%>Yd!(%h7Qn za4VsgDC$iZA_3!-{ysvYZY?8M8)|*12rGxqOV^hl@jr|>Cb%c&bC;T+u=E+GtY2KO z-p#*~spb)x5m)E#OJ%~Vn9_DH@bVZ?qH8?vJgUwH7ai1i@(xCOwH{tv5ZcE6NsO`0rCp5>V z38|IOa*%XT%I|RJVlWvGF1~_{9|9lR+RN=+10n}$Q2U@81g^;|^o$wVTy60tP(Z;D zC27)uJsTM{0{T3Q*q-$`P)5SrUNBj-@C_0&Z)K>dbe9S~%8A`x`n9|^QjSMkKs<+Y zn~P|)IkwHKvkEQ@l-#AFYFvcy0P?TnA3^B5-1vyBGkm2J0b! zEf3e49+emX`RXBLquKz?kBGY%NI?`GM?*;51QX?$o zA)b8#-z~aI(b*aa-j8kgtdD-qJ&x6XMvpXyd=;=Oa!QSw!b|fBgm^lPv{0r37f5p1 zN)>o#UjO}U<#`4HtZ$!DK_J%fLH#41*BH!OfB!ow-M=b(S`z0UNZ7~!<1l5%0&H2um@a81>VIWZ6oskxG^ubp5k^C_90nC zz%Kov%aT@6&b_B(Kx`%lQ!4xKeqc)8n!8Q=FCFCy6d1QoivRCUgP$Cp0)U<-zC{n@ zl&$<7yxvVBs?R%TMgqY)!8Y9*h$Kws?>2e%SANxGdmkn9R-z9wA=# zwab5c7bNaUVfzztz9Ea#GW1w*Zv}6IL7Cdb(XP7fQluW}dX>U=$4-Ypa^a4R2+w@9 z=#I})mo&NrJ`(a!yOQgIB$gUvrt4OYAH~1iB8SorsMG+*gv;Ry7E;?=zXqHHV?Wv- zv)nuvUK{S65(*9nuKCq|k^fx{#C!%?ucwt_Ez-Ab zst8k8(|XZZhtmU;d8p?|ov%dpC&(=v9HN#e(&Zz-WC73`ZZ~|wN-hahg6(K2`O%7# zT_3v&aD-T>e%>;Hwu{UKF0I5V4i~+nn=Tq3pG6+jNWmmx20T>^mGaoVGSVFBwm^1` z1JjTlc$34z+7IqS*FI>T=AF_5-2X>ZQ$j3SxEZ{LKj|#CkVeKj_IeCu<5GO?_W57|s7tL+t^IukY zqMQ2ouimUGDeSv%^z@q}oos!DOKi6xA zNkaZn@n}ouGOsRv6(sZ--PppSq_Q0t+`VJgN7enZoX4uGbgQ(LqMZxk4a}Q1y(A&z z$VKNJf&;YgP;vUv^u74C4N|U3oi)~@3BW!ql;HYTuW&p-JbUj8L#wF zZ=PH)Ez(<@NgIt1dagWhfsp|u+Bip|1X*mOFo!XUhv6gl;%GMnNjmv3&NA@#$R7Ux zGrF2o$@CAK=kk3#3U9Ea7%Hj#^Gg z4a~$-v_3e>Igx1*_doxnPVo4^c(8@ONcR#5=IvkD7a5E8yZ1NT0C^I5bfGKxOW6E` ziF4b%-kTWy&}?$edCvXEy&k(EMUf><#?dXxGC5P3^{uG6OWiLtdZq@ca z_ISvh4Q{tUI`DWTCH-B7h?}>$JV)Vl3zrmJhQuH**kyovtFJN{Sh7szPo|Yon{#ULj>iW zgIP58gUp0aN$+Ly4c%Cc56`eqcb69A7S6z%ki4Z+L@awO{Bgo{DYus=Z=_$lZ0Dc} zVRx%LH#dh@0D7Gf-@|#F9Hq>2hv;<#=EmMjsxJOtx4KEOcmv!43@kGGw$~cw zu>(~u1}<4e_RDyGR(m4R@gFBEa=?_fwwUFAEzMR>{vb*dz=GiL|2vTPQVgrce10L#L8fo^GEu&4LmA}D z>KuNiB`IqjZM-fDVGNd$G2cR7_WW(FdVY`c(f!Zm9VBH|RU$0iMWU zqtwwY$DKj@Xq(s#eK47hVsy)A!d%~;R#5iC^;j|@48YMi3f9}YWBgKr)6ve_!d8hG zte+dVqmGU(+V|nRIG-*7Epl-EK?W`H$&o{S-S$Q+f!vJrU8`H#r1i<)l%PUUGAJQZ z9p&mHyrS$Nr1lyB?{}x4zK; z(Eb1kv3mF<4QJ<(Bb{%KXYN;fbq8GogG)bbm>BB(@;%&X%pZdh#o}CHwK4)uJYrKX zH!xoYk)-*)0%i)yz0MAw4C<@ts(k^FVNXgtoSB2DTCc?mPTEnQf`-I)Btg^@h-W%J zS9Kx*%+*_?&I?X$e6p4(K-#wzY%x(7nS$Bq@Uo)w*~py#CR?6zepB~JhxdG|SKTMN zAe>T|mSP;%37cQ4>q;-jp!Jv=?}FFy)3_!C2ll3=9p^!mh{>@f>^jo$d2yPlgenx* zF36>BJvNvUua6SMVMCP-?dI16EgKuJi)%`K_) zWus|;J~9ht`s8h}=tckF1@m1qh0F2nkbf07oK&WJ20w=v@`gVCBTCPzBSyJxV{kUN z>*bgEF&@xeDB2dGbWa&${R`M0bo0{-LdFfD{HBCzJ-ZfH7qC_tG6HO;owr3T(PbI< z$?`-(!6RdNx!Tj9=pb@nc~3j*SrDB+3?#2aKA6nr$`M#7A@FuD6#gd!e}8qxbde?Q zHf?y_quyniQ;vKB@{@I_$9ALN0ZjWrN0ZR&?oOxxhs#U5niFCk2<%Fj3cj>4<6bCg z!LkQ-kdM`};Mbn!g9-5+g+5mtm+Zd?kP=t}b8wE)Tr7y zn4uRP{D_RR?nnZNO#}4>=!5IQ8V4km?ETx7K7FqU#K^~21jx%7fi+16zQ57%{r@&a zX19a@6G?XW`D%8x9ASr3&ppuGg}Cq{9cntLhN0Bo&`;Fz_9=9Pzn$e3+Exi{o+v{y z)Y9SEu~-69!A=DWtRKcqTY$>YLi!BzE74jtYJcy{fR*0zgC*$l0JD$morQvN)ZDKn z(K+X?Pdjim_#yo>wA8y>7q#SRU=BOu;8Fx2pUHsDI$t$OwmtWlaI|IqgAjdV;0P4k zI|G{)_%-HBMFE_tgRper%g)UsO%4zvL;ziJCiAxwIq!6t0~k*Uo(B;G1FAJU7%|O? z808TJGx5Ol<{&K&t~6?BP8gzJL$%2(2cx(?!C_>714Qpp)>68RT@6iQW{qToHX*hd zZw%}kVgFl^MGza%PV?2`HT2BGLjOfn>yNn?#OVX}CIE5>bHBLe*o`@AW$=vwdFl}V zhx$vzX3&!_rxz!jo(lg<%&hddlXDVQ0H7E6`4eB%3+AMQFJ=E`mriK1p_Z~n9X}h!=8lE(!M#RB1i>kw?Qrm<7B+4oFVrv1E#yKz zHq5XK_?e7;`%27C_y6Ze9}Xoc4vgu9{FBXGnVV3Li1P{18#ZZwqgF|~Z5hJhfra%R zJWGerULBcbV??@hla`uG$z3`V5`X{>Z1%5tIkZdvLFxE61Ezjk4Vg(RqoAb#O045Q zK13m0b#MIq`Rp7)T9Oydm5^Kt75puTz1-b~paFI0akn`Id<0lc_QHrwN8yb+1CT%n z?aD@nC=h(!fI!<*i#d}VIo}@@8}}3@7B?W{gJ771uuV;zBNgh`&*{{S#0a3G05VaH z{i^cJRc(#ofuBKW3y@QAdHO`ed$`9{Uj`nuLLJByO5Z2K&&w3dyE$*1hXj7Jc3io# zs-frdsW59-#c#pE0LET__&*Zc-!?MLQ}$B11=(U6_!D0Gpo2mQ@u4dHu}r?J=V)E% zm|vsO6RJKAxmz^aKfXoa;Kvvj1AA%?GQO~T*+ zk!nv`PI*7@FIX-I^#|ZzfHCPKF*b&L`-$C*95`N8T(ONpMYi)H;|8 z{LskGvH6=G0siCUuN=S%f{q>rK2)0qaD(2UZ_)kCz-dx((tO1H2b&?iPWmLss7?iY zHXkg0fwikI0=~|Tu(OXgpNuxa6U6IrNhs+$8^J6etBDoC-D}|c7eIH~;r7TYRaD~D zUwBGzVDrJ|TjmQ4Yg~r)i{`We8Fa^L1 zUVC6N`XC%$ zDym)Ms_zhM%Z>bB2_2dMDIA_Rub-*Bo->!P-FASstpZN;?fm42Wgq26n)F7vS>d;* zUEIRK4p;EzRkn)j2PQXSwJ(rt^0zb|UNn{Q^8E6iqwZ*XclnTL_|aO@*RGxTCoDs} z0Cy4}^wRBdF`;HOJ={%ftYupN*R{W>g=b%eFeZiDVrpEqL;Slbh7er7QHG8>XoRU* zGqo>FOpu0%iJzM5V;gp+3dnC6CIun}^kqx}Tq?Z5yNiOqibVcQ5z(K9j~n&|3PSt#C%tz1wlXL0f84(l zv1|IW3&l=A%dD8!+h2@csqU4gBCo(;2I31k>;SafEIQ|WR+9hB zs7^t)MN!`one!^@&j@~jT1c%sw?XoVhNy!*`S|3IRnI{`=Ssuavn!91?Y_6bBDf>0 zD*6Gl`G;eytMQ|fs__HjXEQBDO+K?%c*IQ#h{UiT*m00^j=!Vgt6wV`<$@}D=(URG zC!Wfat;$oVbE6rs{-k^@Ck=K4M<*%k`}FZ%>nX=+5>?_p7bI@q$|(~&K!+gN1u@}B zc34X6RC{#s;I{!FVd4sdkOY7Ce0#^I7oF5_cnp;Jz(o;H_uO3ArP)*&4t%Iko!?_ z9UQb^+5JSXNo18Wm{8+3S>P9!#tC8xkbCqF4;qpRH4=Sr3X?uVuZE0)+&E@SPOWQN z_4RVMX-`%i{H;=-N6&6KfqKlGzy36tDJ$^Nr^c`vvXJhx(Q-lz%%caj2Y?h8+<;+% zXk`^tPQ!8v!ySd(qVZ-_QYYSca|*fvg||@d@XEqQsz7ia#m+9F4Py)tIjnhi{Z{lD zZaH?rvkTSd`-VWIB%KZSo5HV#4>{SQt-j|AiMRw7ptB20x6Xc@88z9s$5(pBV*%P! ze@}6U-4JTLQ8Hs_@>rwB6o$iM>;$O9{C{k0JOu||sF&Oeqpsz8Yqjf4yD<|Dnb5nh zRymKG0YP>|(=VxcrCUgBK{J3qdk)t}3i+ajkaXPrEqYa@+ajF&_|SZ6(rd}$tb)KI z%OON`HmyUbj@KXUz80Fq2YcnCT>zb+V*}SQ-gfI<$_lH<$Phb^>LFQWeTs#lPklz*0ZT;d&VuhCSa(!azU_Bb6vVE*FM&Sl@p1`pozqVDpkL zau*G+FiF;bv*X8zT=l#Yu~yvhJ-~Ebb@d0Rb=lkoPC(^hs?rVE$-=9Z3HJj&Ij=J5+b5=B*Mxu z6=%gYfk0AP#ycw2$fityDMRkaLg&@272lXm)d?Eo=WX*gwlh(bMw1f~E47CX0GJF$ zlPyxI`k$8(u&HvssWy48lKkD)uY~uj{W{I5zdJrw_M7Cwc*cOY$0nfMqQ8ofF;^7A z@Cbwi`;nq0-S)?Ytk*Y7vF`FG5a#e}!gOzaNwOF6;PCiihT+1U41_u^C;4XAfdvLi z6&iBF&{RUIYl;Pgh!{fxX1TsioDrT>yY$mLj287Z>RgPFS^*I?n*V~cfg@W8%%s9T z1ukuUpz=wXKw$ibP>fqGQx8F)`VX^TY;Z)fNn{D%MYv{$+m3A05-`dIgn&yR&`wG^ zgb$V2KociAqQ++tb^!^{yKGEUVbBo#68mU=$m)QUO4txk4G6!Ldo}Xl2mfgwxB5^K zHWQU@<>)UyG)d=L^SBh!p?UCW$0w+C7h4jN4Ds8BoP-^{%UV$`(6Av>+>M3_k|*Ah zTL25~G8Wo8w)~;1w(QUsx03vP_`kd_w(CJuV_!yY{{$KjAp#Jl-7xqahHtH?Q#n*v zkaGFvzjle)95jCrx>)afVQ9o(sC=R6WOKHQ*y;svY|s|Z<#XXhvRSbC;~bEZf{+cR zJM9o*%H{`!MuTX5;NBS-rSU%JQbc&AeQm841A*Z3OAtgnWubI|0hxvWx%7ZW6hb#4 zI!}KQpIs0Ym$6Ea-$8D~y_7ud2j}{0qZkJi8mX2)gn;&ebW`hb{SZ)cF2@1jz_DUZ zxv6HIyC?`aRqBD|&01LX>(Ft316U>#4DEBJfbx-<2CQsA#4_Cj4siuBR9)Y1B&v2} zy8#jVPaeh%$oZbu!M+$9{o2#-&OG}>+#Im}9j zpbGu>=1e)rs?mov@*VN~KU-b;kjbiAD@hWXSrM0D)@~7@3~4`ZX^?SY0aJYMUw1c! zQsQCtw*R>G75O~2D;p9}t{Nm=+f{|$fc-aEObzs@Zi>!2BeHZf4FRk0WhHqk+)+h%Lfu( zLZY9(m_-&N6yh?!6q7I_*~JBfWR9gQG(TW&CU5~sZ@Sa((+VL7@)noXZyhyhv~sVn zx9Pz>#YH`l&^;oD+r#PD)p_pnvf8fmxxhSpvEk z(yQS2{Vw~p$y-?x`!WC~_txe{rvO~?Iy5#89$*IOi(uXBoOdtYKoZ92RNQIzjC<0` z5Fn++DCExq`qk7M5vPqpkw8eKK&1g5eT!2FI*8Q9eHzG$wWcyXfMp|mC-@0GBV=c` zuvJdZO*ZJC8gGb3Qh`Fkpvd`VJ@g+&^VBcXPynKMv`_K-{d1v%hQEI$#4b=Xli(Is z`V6N>FWSXobcV$`uKPj8blkmPkld8`j&#?}%D7fHO`ol1aHTz5^CTc*fm;i2X?P6V zBp>`y@xT2N99_-F^#?WQSAs`C%cV%`_BpnL(csx%$PcMsjqYsK{|K*c>siI?$BM_gC-AkCRouhsG;T9Wo+Hl|HuZ0$3L_kqL ze8%{|YrcmnsDNFI9ZFjGFud-CaIARr#U;=^NolQVHgAw0i9^>D0*of>3+>(uB3zTzE~tx2W3efqAthaNy@TZCEOd&PfFe9$@9jmCH%yK@yTvae5r{QR~ zrvnc5VC8JVQ20>$$6XhwnxCd%PdHv*CUG4v-xS+4lR5n5Dbp)ic6_M79J!_{Vb!nR zf0AsAahFp5&g#BA+XCOW^yY_S7PL5VdhW$=_(Jb)4;;>h`=U3+*q}j*M&2Q0T#D88 z#Y}Hqus&p$L(J!(Ltv#+=qIzIcO=dY`iZ8>DlubeY20`G!qHw$Ucv5rzA{@4F+SU1 zr!j|aK~>e0_?BY7V?awz|^ym_E2qQ@xV@K*>GcpxCS8RcrQD!}_D6^YYac zK4nB)k7Z*EMM}WnC|p{Ui_5^Atrjwg#JO|kIF5-R2jr8?;g9v2L4!{vH6%_8xzs5Q zYu0~LKvK;T*zuQiU?8f_t!##PIe}w-K&iNA9AdTCM3mqeB=6L-#`o*D)pb5mbd{hr1QnRF&@`P z;W|P*;;|6Z*?3_2XtL2#?k)&Y#qC%&;#-Ig*T&ADzM`De4;vGV7l)7Y%qGZ@Wqf9` z!b$q`##S~-X^8-I`@xmvhK<2dt$NOEA+`0ypS4q|?j*HGySIcyeimI3sN6n*v4^24 z<3lU9sZ_5o>!d$?5M8)-&>jl5G$!W%*r6i<%?i6sv!n|zw2UaWQ5QqP^~tFZTwAM_ z4KMMN-u#NDHG-Ukf;<*KT~fKizSICsd*ZR* z_vxCfk*rWIrUFJrFejcVuGEPt&ZBVOY{Ms%%7ZwqPm*@TzCq7+V?ejyV7r|)ucfW9 zh|`AWxe(TCbUr@WmIU^V5^<*&MZdvV-`>ZhXmBNaBd1=q{FXO$YlzvxOz6ns!Eod+^i^Z@TCBCOa~;cck4S-Wo1KPR}~2?vuM-) zHwrWuh8IdrV6hGD>W#DoD+A@l7Z318dtq(jBrlHAKsorE`DmS|DASo*a(IgEpFk6` zR$Qwp#!D?=c{O(f^`GO`x1I%`DN^({nSm+eJ|><;nV@kgchtW&9vgHpD)qn0bSZ?5 z+WQ!{v#y($>n9Rt-dx`Nrz(EfM|lB~Sekp5W8%#JJ{dJkIvvqC)gL!(CV5o(xGP4F zZU>hp22lh)*OL=PoUhJGtYrJ~b^-md^k}35)00!2&E>Lotxvl>l(ZSgHsyu2X&izP zi1r=A*tlEPa)awaEY-$l_~C?cOr(Uv;#&2dSG9r%xZkFTKee1p>?fCM#zz7n-T1@U z=^MN-nj`j}zZu#Aw8=Vi0SQk6?9QhJ2|W=$AR!P8I^H*Kc)Y*^m}_-`ptl%Se`!W@ zWuCb(Q`$LtoLuF?!ee&dKjl64F88t5;{5_K6M-)m>}IrOdw*E+VYAK9i&s zeii3p2s3UZ=-@qB?%j>+OnRlMKQw{;^BEqCx?)&Z{&K`G3 zz{R)BXNv(!the@pd6#K%8>y-DFPMDNK!^m6B&=z~p&W4Jw^N77PndiF!O)29Xl|$`6HR&lHv(fm8pM(`PpzJV6K=+jpq{7IaT4Cv^pcCIlOL zrKGya^wfgn2ScsdXgq2NTQ#}8QZQYW>9LG83I4vCW528g*QSJ|N(MBKo6_9ViucT1 zMuvu;f*@q8?jcB@bHX}6n0HBFd)g@LNo{moW+Q-KrSx)2L#IVR(aH*` zP=v6_F%5Vw6!>u)&>ewRsl8TcZsIAYjzvk2@mzmJLxYFO4*mYrQ5Iv2Xe0co}z~Nk?R3;5*D=t3Gr40>OKwm>NEDWhK+7xc)K2(Kh(XXspg~H4Ogx$coj8Z zT~H=<0qW!Wy#kF0s1;pr(1sVBVocAM>wbV3^}eKY$y=4lj(siq)Xu?{$@!JeBAAP& zYb)n?z5B7iD+f zVql0H?v_ap)BoSVG#xA<^4$Ny#55%(w1X^zFby`XOWgX++mLt@M8p~cX){}5ORRwb zTQa6}6QiG{q-epJGHxgxzvJ`%Jq2VF=B$DWb2L*K#WN}e{{?I!B2o3}de9hN7r-fk zfy?JTknDV_5bV&rqeC`(?NIv>aj{e%zl%KHBkqz%RAZz}J^^*S-e^b#vI?Hdd;qqd z0f0KCy?Zb2?X-rXL(11e)e&)@;oqfPgg1(?(CF^%ZFlCmUo_5KxX`^SKuefY{7=QC zvb_PzEWo`EKWWX;)AL(jw&th5myhJE>Vo;cayKRY_CoCgRb3^%7$eTtCA_T;3fmiv zuZ`ZMhk!4uKOIpbTxN7F4b+J0RJS=oW`U7w(ZI|qAjA6~Js~egE5XBEE#!U<*Wg0t zSs7|iHqGDWg{1Bv+$P$;AJnhSss~s!8#jUaR9L` zQXiJhrbETX7tr$Cj%iZu2^?B#?*keJA4m^vZ|CpWn;UKff@M5}2t!Je&scB{MoQ?E5x z%KWisVWemZc;NVJwl5l(?ab^CGmyon?7ASh^j-m|_TF2=D$8S{&#D-fSOazj@18(a z3A)MRrCyU~@G*Im|1mb_kHzGD1WYl+=yVkv+9|&# zaO7LI8?8q}2d9Z$0Vy3RY*wgmpQGjKtG@ICRw2u$AS@;k{q*4t6OfkA%Qupr*?)9c7xUg_@$yN8JotEac#gzZ%CP&UT*BZ8XtB=hlD8~!|x0O zn_{c2!wq8igGmCYU*z34w7q>*pUlpBX`K;M0zaKIgq);2d`y0FNL&KWj3>eP1zNw_ zO|d%J7}K*~4U9;9yX={t?Ek|#gVRqCdk8VieyI}ren%ZL1}C-%$)^fK&(*oJ^x}0z zfw6v6x!j*dRp&S9?Q|p#CV|TDk7o~cx*m?JnjMx@YV05RquG;1RbVZJ)I!)dxg6n6 zu_pB4dRA^IeI8p6!N@C#qJz-4T-4xDBH9>kA!)%gI%1U9wg*>Ss6st(%UG~81+Y^| z;nbFe=7D*imYj##vN2b6(=jxmyYuJ9k$AvG5~=NTP}+ThR!4JIJ=i`voKH8kS4NVJ zfm?$Nz&P6@+e?Jpxv0jwCX9DsRROVxF2lrr`|?NbPjiqWzEa0EKNS<)e<7zElo?Kv zk*B}v7JSu5Sl*`PfTa>+;cxxD2EYuF`R=#QAKw)#kG^KKcLoC2 z${I<4h4gWy6#OMQ!@4-umnN}sHIq~yJb6D3oAD5@yb4AC-3;&dyzL?Kac}a|O!!J4 z9|Bbe4u>{oQiw|X;9=S5Y-p6TDH*Gm^>@wYpLYOpNCQp7IZ4e#Tv#M$IvlzZ zg{Qil=u}FZg<-k^Z--bl+jFvwb-z5;K`fq0Am!XX)HmUpees85q-P(zzp`VRkS=4x z7aM16NB+S}5Mtp!i7(tb<}TA#3?%`G#+0TXiH4+rugrjqKO#;7^2MQXE(A=r_hJTG zNOt3sbF;LQ<>*?tgo@wMf-LRd1=)fN+uyGBudlo=p4rBpr0#|ut}Ym+#hbJ5@03B9 zAqgb*ee}{yjOz7YYhu2$!ha+VgWe!FpC9+o9!0goU*CTc@+JPe>M(5)_Og_H1 zB;Yl=ajo9j4w~6d^(#qz#&)-9>>C8;n-2xsL)cU`{SqK9Me&N_D~~%7f*ZS&$#Jwh zo)f>3$A9sAFykAv#y#yJQz3e#g?Vu>*Z(&B3`nC$V};cAMA^(CF(HU=85=GoazvWc zeW{viijamddwAafaTdrl?#}({)3LjoKrDm;?KU96tuNB(lG2ZlN7OZ3p)PK@G-znz4Ff2XZE$*Ew#2uJ{sHHcvL1 zmRr;QuUU+T`=7;WBRs3hN4m}CIbjhpFrp4FIDtk9*-WjF7y!V3%X^bBkRGxw_-)f3 zvONMy$(9qJ{iBydyaN8tttJ$Sm&y$K)wdcM%9cl--K2N>@7K^1Qaq`}^Y5(HZuh+bbqK#xhCq#N>WsE} zLbybi+S9|kH5wN*RJwU|AwJJF&24}BJY*nj>;ctnPq5)fKSwSYTL0CLzu6uA-{AE#%p|3?Bs;Q{IQNh_iEN4=>D^NA3$k81sUFj zM_X%sT?0b+ebOxSiR(L+5k|(qJhl1hEX6u?UyB`17+MNqBH`q1z124q8F%+e2FGt> z4Ik0L|8g0f_}RQ4G#77hVeNnjV(?BC0v$KQ?DI0H_jO+J z35#Uhzv-mNbN4;F8R*C%w+Ir8kvPW;!VLWT)?Xyz1N9r4muiUIXUsV{*6fqZi_?%I zBs7|b1e&nO))uOu^#Ks3uM`$2R}I<&RUhsv2ketYK+(nhyL?hOmcf zCEED0rf#W=&um$9r>=|E&JS82RKo!mtIDp`(QXhO$2r?X!!0mI4FTzU3haAbswkd; zEfTP-{c#d;i+N_*dz~CUqXp~^RWNj*UR*8lgXyaHIJg7AvhmxIJ@CkPPJ$r_#&{xX zP%LK##DlmgiJ2pcmk)^4X=lhFAF=pGQ`rN_<2n!qTn2lJ;)O$RURY7UlWqOWa_OXU zNXU>V5BSZc5=m{$mu`pv$+@{75;evYPfyQ!RyUe%XmQ4OJHkfdkRR&=aO!wEHN+5I zKVcH>;m$v+0Hegv8H5@{sY#By?{;0ML0%E)e#R~c)&_;d*>Vqeix4&!Kw)vr5Rr@-;3xEZ- zRM3V*V(7h$7UX0;UsA&swEXJji@GYT5DVfO&JC{bU60sP-OQQ#rN-ZkK&}^x2J*`! z!;uV6K`dbfm%+lpY<@aqT==`OR4Z#M7@jm`Kb29)>PF;B{D*>XK^kF zd||v0Z&5SRmnTs8=D!~>wC=ut19n+VC>^7#6^+;8;d?K}5p~l6Y#R^ldJMRc*94R* zJlsz+38GKd2bbEs>8sAhcU5p3n& zYKTf)xGD%kXe*r*kODxE9dhfLrzY~^wmj2a!hVAvF;`Fj8g2Veo|5SDil3W3W4Zl2 zy>mRKA|!th5=yNe7wX=rDe!PF0H>Ze2w8G+g2bJ^l z8=Ql3uQRK<2>kH5SLD0c?uy9%(x0vBfoy?RS9t^iBo!+>YR?L129O?uxkuBITY$Rl zMpBbVCJbhzgy3%mzc6j&9H_qGR+F~Rep~Vbz&C)=dpfE|yS#k^9Xed0@^Kx@2>-@n z^Hj4>k9k(a$TIQIUgWe+trqy)xX$FMDW3#1)2FEXU%XgAe7akIjj=ECW-be?*InZx z0+~OM3%8SFjU49_d9=4H(+>B-T_v3b2e{0W3@{p!chUh8+OTQ2;h zE=Ej*KiR&vEm(8$RJc@>V&_4Kd`ikvg0TIECiPftRKdJ*1i>E2lb7wX9K`o`eb1kk z2!?Gg$EjXPelRxK$_&PAdPb|i?APquGh4nW(|wqi5Dd)K9!!~8kA=v5ro|(uo_C&Q~+rc|)l47;dNkXu!QN(fBbnTX4EPA3~d#d?H?!%B(_CHhyIX4GW^Q z7gR75otF7f)+EX$Gi;Q1uy=XXzdLUZzd|b1qSmciatg}KGcHnz5{zQN_Z;y`^Le&R zWu6uckCo$EoxOQ(^}5F^70YjHX1!AM5TMt(GN3M&c$iqRT~bs`BDH6N7k9W^b$a?9 zP0pO_SmNRR3#%%KFufQ^0Zy{Pcy9iXN0~=2G?AT^X1KFIWjQ&GUqLxtCW7HC=8Vhp zHBf`J9P4WaztYttZ$7d+x`T^v`GNb=N%qePb|&3AOVGMwaDX_UnkG%zYSD*BM!*;; zGmn!&+@@sSi=^bHm-ChsG&4E*0J(yHM1m8|{#2iP(Pteidf>|Aa((Z6;hUe4HW{$K zm<*x}w;{b^b3zFBEU>*2svaxCE16Ga$@b3pQtJ7mi^$hMa~*?)o2`79bERUyV6~1z zCZ@gNJ@)Yxf*BOmpox@CN@jkQacJhyC56+pa8MZ?N~g&bg;-2Ic&%xCmQsuLm37sx z8k zU&ticjG-&JG5tb-NqyOlzHX3e_8uax+^)cJPT0nW7b>n|Jhqg&I+7{y8ujdp^nsoc zC>w9gHJpCY1CzdIv*nycyVoF6!;nt$V=86E?d}Kn)ZpLAg?^{5aeLrBWn;1|B;iL{dw`4k+yKY_dz%a3 zuSMfcm(R&v5=JFvGOpizhp8BZP_dY}RU$+4xGDz$xE|S_1J$~Y1_;bFl%bjWYv#6( zFco2!O|UVMP`*lWyw9Hd@^%xG2}7*4WN}Y-uZ&`g9g*%^zCt!K7h2E4B{+Vz^R&tq zl=>e%+|R?JuSh0U@xQKT?DqBV2%r7@89zcX5q_IJ*8dG9%siGhxCAVeXv6&tk^{kP zm}W&Tzz6Pf`%c9n`nv@`|BL4P6B|5*f0QHuR6!mdjuEj*vCKhwWrVEUWP7q#g&aBe zH0D1$%;ocMGalsq$bjMlo<-6&BOII0eMB zSP_`L+Olf|2xXWlLKP3wSpTW>V2;e}^1XWMcVthiQh0A%97>Hx2es7C-Ss0^Nn#XP z9G24O`a$(3)xBi&X~oA6U4P-Nf?ltS?EiqoR)WLRh-n0V-%3FmMG&MguIt+Q4O-7g zY8_z%ZMx8lv15gTEez-^4|f>LKuyYhpM^TA!hWRgQCH14`<$@v)z)||p)25))>Ji4 zde;6jPsuAs+Hj* zL7q3hkn{Dl9UToltR@4tTl2L)eY@5m^w7=pQC29XZy_~VniTRR@i4ObzOeWpDgo@= z9ufREQR1%rA9se97S?@-*GDU8f@&s{j?G<-Kp$F}b6badKmz^B_GeXxu10}SeQAr# zkq|!G)b-nN-rVz!oD6r86ORs_V<~ecpmMGFJ#Y|7Z5>_lhhb{ zra5vI`ifKtnzP^_<1?TyUL(9H`4{qrd_3v>Z>Vdt=zgwH@+E*i;ek$xde}Tf@ zdebeWc~Vx-`>}()ZFb=e{j$ZZ`3d5?v~g&^X4&2u>!a|ujU{7Y(xOK#dy{KUZR1wo z6Y%3XG$Rfzp0Zar>iVj#^1c1y=Cj)-lzWn=5t_!#2w8@BzcIVYq6mG0ApX%Cd-EG= z4_qf0-Ph`zzbO4OD%N{R!J$_6>q+pR3$@Fg-_2Gi7w&8Em(x?-OOH zl6+V|v^P!)7PF6o2EM~UT^qNcox+}+GBBY#FD7V=fW;s}uLy#Wbl4-iF^DQ$X8=y5f8K!b&H_mZT0L$DeLjUcAo;{%bL-gkE8WsXkFJ>C%a0e&|LRQ;;qsa1Qhix9+`GUIvDVC{ zWZt`#=z||JhuJHEv4$G&yPKQ$4=DW?11!Hk7;Cc#KPYn`vC84q{YjcO4UO89v8oV!ZO*v&tqBr^KrXXM)W{w3Pqc9?8Mj83Xrj5>-k`+ka+ zF+QC?n=3*?@ySa#?cV0=(sO6~Z9T6GnkDcrFGxWtGXc{#OS#s251TGw;KTC_FImOt@ zc`lrCmE{31Jo?cT%I5DjV}-px?*wyNWDfltuI}b3M8wf3rh-f7+cR^Tj-3nSNOt23 z0&Q@fggkx=vjRO#1)FQ|yP5Pmpl#^hkSXwpP%e(F?PRCy?9bzR9Z3#taa^5@?!xs} z%H>0CQnwrDOURI~KhogD6g_U}tjPbr=Ds?rs_pxCBM2e~5K%(nsH6%?C>NfxB6SD}36Tcr?r!+at@qyXyWjVIZ@lsTdS^I>aQ0^HwdR`f zS#z&7Kf>v8w49ZHwI?g*l4B?-Y+s5~-mkvZ*og*j?^1ZB-bG$l=G#^VXhz4ktP?O& zpW#7`-dA?JgerDMrieVF6c(J<@9_aqP^8B5b6n`q((^cQfAT-eGs+{pxl;z)L6up* z#)Q5q=~3M8kYVPO9^vKnrEcKzGz8MCs}t2g)QiEFG6~efTpHtU?K`gotK;HIv>&pK z8+ag?mjS?y-Wc>!X6VcI!!)}Jz1M9};3R0HMkbD_5ZC*r?PO3ZRV9t;*JQ)OZOOOM zuyHN-+F$bp6DpJ^>G_pL5YCw7Hqk(gp3N#0BEm@V<*8tCU$IOPe?Ej^APeVcuR=ZS z9nZC?&Iw6B5yBlfBQn>$1|^}v#J=&Zw@5RZDoQp-MN4ULX|u}iE@&N!geChntT(Ch zuM*@dx=-+~w-_hHDe2IBgS6hx{W0$W3NCa<_99cVBzk&9$+ml%e8 z@cgOox3z7+)!;iCYUMyi!*Wy(OLMi~h6vr1aheg#xUm&rsbww8g~ z36ESHL+_p^8q5}t9PFqKE#X${4OL$`oSO*L-8&!GI$zND72cydtiDgy3@3UN*K5u@ z1pz04n4*y?&+MV-#*~%1y)l z^4bX{4eQCc3Mj_}9I+ewTISq5OvZ4&VQF^||C2HQNl^`($++>jU7lW|wDhpdWJcF? zo3ha}Of90+>QB(K9!Fm&(D>^7roo)BA57$lkrNmbqc-%OSTZB(H-Wgcxq zU?{xs21nyUWBTW~vUJLjI&-vLgmEE`;8ddR#O? z`egAw+`ZV+*T;yW7?}8q6uD`Fat+~R3@;6a&~Qut&kLO4e|8A!y`mQ(G0YQp=B6OK zEG%Vi9cREr^T011&YSd4+LhO$O}*v%E+a>X!~4}>e~zDbV+aLZX^}B{BW!_AZ!+S7 zHsP_S2zBoB^kU^peSY1dol1j|>NywwA}-Ej5`C=qOE#%q?dWefS~9fkji2{V_%>#M|DZJ}OJC~TpKX>*Pno^D8B$owMG^H6wcm>hpHfgE0jK|}0<$N0E0 zQp7p)1whZ;IisD&RxlV3BBcJjaJ=8cHO&s~;8pq9WBu0Ng8-af9iWYQSAO;V#)ohD zIisUkFOOK=^p|vgPcB?-dlW>F0%F1g-||cL=sxUt?ljJV2Nah@IohJQrBs~p&L#mpx-J$A?@~e3YXYZ|MfWZ zsR0EnoLOHsG-I7do(s(9wJ%L2hZ=nP#)pe{U3jkX>7i*$ITV$*Zj~S!{>l_uZ5S%* zyT8##4lFR(_{TFJp4$DI*MEkV1c4bNh2I;QC$d<&YQ5GbJ?hUCQsGNy=`RO3F!%-YvjD!9Wig8fF!E8w+WpfaDqze}&=?xhDH8|6 z8?8X8B+ckTkQ!^-(3zK>Dj#PUN?T7)&&(X?DOo=uZBVCo-#PEL$JW9| zT$&`7-kegN;$wFfU3cdrANaHhVKyBFtbU3h*Ta~b?fSy<+-5ThxwyEzh$&gG(kF1~ zABlJ0(3ro*Yux-JUfga%etz3H&Vfo%e1GlTs99$5L%qy@&$&O1co}K|wzyK4)$F~M zMy(c8x$n8hV0afu8=9a#c zSG_#OezL#&u4zpNeGeV}Nfypri8ed)F-@q&Lhifm-q!N_jz`X`-}vc5%C{$CUJKZ~ z-H3ip$@VyIa9|*KVPV17(6BCqw8cIKd^0yLSDA}u{)nYFMryWl{zavUXb}SsO~%ne z2|{qP&GW4(*{4hzuZ!Hjf4}=tT81^qlAM8#p1yj%a4>|yv0K9R8=3H2tF;&+pCC5i zEcV|t`j^U^z}YZUVgx4bJel~OwfUFz&TioNvN_nEGz6{=ff0Wu1o2~Vq)~;JhbRvi z;zg+_fcJT!XFI)u;n(|J@?^u~u)kWag!a7I0IJa|j||Gi9x z9Mz>+lB#LIzy90Qf}XZU0_^+umzdh6qkvuht?PuzcVVB?FSY+~7hWAlP2k_R2HklA zaqV*1mVrDJS{4-*g}cjoSeP8@OjjSTE|3YG!CfMDv7W`+=jJ)ka7fo6q4KXVDBx~r_w|YnE!@^2e-*O zwe1vw&RjbVW!3qb1x7Jnxm}7u`D|=jL^p?$vHR?*_Z{xty?DCc8b?YB>3KVp?k5|H zuP3Ia5}_tS?zx34#b(^*G8L?{`9E;2rgdl-a`iF-mkWQ0@PdHIQU(5NF?S)L*@Gpg zs~+f~;#&sfiV|%LZ*q0zMA@K{wubmkHXvtvd1A zBAZd)=Ivo}Pk)jtr6;1aZHXD(mLxbnHSu)A%;h*Qk0jZV!G;wPAjCs^X<0JO+7DL* zCSDtAF3Vt~`i5ienkzvG>>v#*UQ-VBO5h8@EwstN%OxgL^p<`YDQyn*Yy{<-MYU&s zk-N9w70A{^H@fl7U?tD!GDZ>Wx=_5e;8Y%nmb2fSyo4b({KK%%qEG>3RFt%ckB?vf zF)cG1HA>E=)85=7+-9BWz`V3M;KU{y#%wp)tRN&T91ilboQj3i^dPa<*un0iQW&!= z@N`AqP3tfMb~(w(J&0DQI}7K~$o;dMNRO-c)at}Hxz77e14cV*)AgC37ouaWtB7U8 zP^T6ENsxrtIdF-!gG59`;o!MgCm~d|<`mmavJMOk)GvB$erA>p8+&6MFN-jfi>|e{ z3W9{~?tHi#)&!!NJ zg0c9n29ITbk+0x1`q=dHgB?L}WgESe@ncdj-KdyQ4pYgxj~y2s;k8A-=ixqQ6DgTnA(iec}xu9 z#@xiO@k+T!L7(MkUq=DQId#;VN=~93e6O13yi`dP=t@JFtN_(-ghw`jools4oE(9$ z&t?tJ9$~_6A45>pX!GxwSSUaAC_UU?lvV@EQbEuJHjuGk(;ME@#MF9fhKyz;*}?gD z;A_o3fsY2iA#e>A%9%7l!_OgRfq&4gR1}_n1~x;3a6ufjcW}@LTPK}V1Y$?%F1?U+ zmsE`vh7cD5VUaLYY=<4}B)-5!Q_hLGL&& zmCnZxJxVX0h*mK5A2d?qm`4k_0R%ah?WxmDTJ;3=*&SNj7xy(8_%z^M=YHI4bv^3E| z*{-EFyw`zWQASNvtb&H9F9tByZ9V6{=!(^GU%!W}I~v7=D#i-rT#zyH^c4T;GRXjH zK!~Rc{&YFm$_=uNYpFT)tTFJuhP+0teCOV;K#T%`n@p-Pbi}K7SvjS-N=ix~2c|U) znuQhO6A6z)_NlkK1;R!jI=%w zP=-l#WmI+D*T=xrWf(oShK&H{$T)WE`y~zT?(T+z;Ry5q+ztb+5rJ9N3X4$HydVhN z$-mvaWC&wCGwK^km%&bWr>CZ5JV4Kxuaqv`Sm_%);G-3NY`+o%E8eNtPc34?w8D<& zE0f}fg4+<$Bj!FYmeog_WxnCi%rlva{j$+}36hMnSy`9i^v;8)h3kAs+7A2ife}h>^1Tx<&(Mm zc`n!YS6o?in-s1Gs|kZkW0KgN+fezqy0Fz8fAPUo#*KQ`Hu zS>ND<3}t<@@M0{gNI)y2X}i&5Oug>!lL)c$`3Mc;~~=r-Xg;v`;om~hC|Q=770~V^nJEbjKZ~{f`uBP`kN=-8EmebQ@~v(2mv0Am<*VIyh~SG; z9R|2?=DhM^$!sRNH2Uk$kbef}%kS80%9alLj(CY5EQhM+nNUoZ93`QGO_Mv62)tV1 zs{%cb&|>@>ss}kjYV|MNjVAzli-(}0`T$@{cqZ%;oCR8-r@pg)-;R;u{ilb=Dw6yd z18$`p@v=OBSss_xagj`L>_z_ynwa_3Vjg;E^7qfjDm2Y9d{9S*SVLen=uFq>T-61T ziLyf>UgTigu$ihOy197Rm(IEZj|c@4(n?C?wIK|FK>l_nHNis&1yl`Pd8X~wU(fkL z-HgsEo<nIg0RMwP-F6S!h{M63`*nZZKeRzSYO-BZHN2Ag0v;tDgPs zmBuTNkgRMUpX#t3|FJbB3^eg5jzQ^m!_t<&~ltAWA6KJu(M2m}a1N=m9; z?jg!5{~C$7)iL?yn!od0UX6K>}+of7q|vr|6+*^`htDA=3=9mOeR179Zd=@M zguRt==W9y~|L&LX?d?a+%*^UtppA1ZEHy@2`^MID-Q4E{1iIh5%gYD#EI;@6_kV2g zj)ejwBYsm#s;ah@&};a^&^!AmVF3Yj0XDKK*lKIzdG5H z{Pyh;tmhuLR1nRR+FGe+zP=+65v1G?0VtsA#+sUtfOVYj_4#Dn0+Vvwj~pv?=g!Ig z{{Ct{Sgk%)O}nY67~*_|jg3e%qjQLoii$O|u%O^PJG)F%KM4s54ixhCy?Z`SpB^C~ zBs_vN#|nD8tWFFMy-L~5UM&lI_9h{u&}Tk z1yw#qLL#ZGOmX!LX+U5gx6^_);%R(RjJPg@LDJTi=g5&G)wN{2F(yzJ330K zs#0CnF7jGgu}#-4XS|hi(!#>RKOi8iDNiEKFQFaQEcSy|$bA3wf` zit;mUe zy--}eM{jTMGp#~P+Wz*IFxR`jqX5v@I`@aX$%7gkgyK$|KF!kEQ*4*29Je4Zhdc!| zc3VZo(6LFnEkPX7hs7c5Z!Qi}^Il+6h&HlKU$EVaD1LM?FfTn_zNrFI8~hiu($Xk-IaE|s z6v~9jv0|rq)fwpNpG{0W^j?W?srd0(0yS2(rab2J=g;pDy-iN8G5cUHx4*lyuBD}w zV^~LqT-Ve*v$wY=U$D8fbp6(?<49s+VuhY~H5j--SLS`BgomThYVdOL;M*HXUV(vf zR%MYdL8a$rbuSX^){YdHf zUdMJtUo%6HxVX6Y>FIghukXyw&1Ji8TB>Vk(DoPR=2iuqzJws0oSfFSwpDBiZU(tv zVi;ry5;7H_mQ5jr7JYm{^n%}~$}}@-SH>Ih?B`v2c>8So3M|lt0wf*0e*Cx_zSx{7 z;r${a;%Lg9=V0>mLiRGYj5<0xtb?Q=gSTY{tzlraQ&_0t(^Y+4Pe+H5K!S_CYuaAG zdI&)(U?Dy<6a#w5O>>%pLf=Sc>WAl}nc>$-87_WVnupX#_|mR}Or3 z!n0?1$8@cEsM4E)mX;VPa@*!PbLI^5Zcso#?i76#hsJr@><;o{x}P1ty&a8S0WWE= zwKUAyxQ3rkLdD^gpTEvD+tJk}7jn(Ko2w~7TsL z5xuF_ByiVw$R~+G$P29IeDQ|aT^p=QMEy^jI4D()QT<8eKAUZVpj~ZZX&!K%9qe54 z$~-%eDB*dyDJMSr4Xk@=%yPd478o@pg_Z*+L4(q2W+ABdMqznnC5(ek$lfGj_D#$xL7tUzP;GxRD;3OGHWGSFv3}G$5{)K@FN#@4 z?#SWr5_58LbVnVGRgYX(Q3-b*7{oV!oLpS2QHpYeYN>g?$@LI+-@y}<%lY&voTHtb zDn|J1lx$1QNjr}pt1lYI4O&$XUDQYRXHC1a_4jAOVWQu&O^er~=C7Q!wX;)IR|n3L z>gdsz@KYbYz5;Ec-DTxos_8yO>gSNFOwZSs?zPa3o`{TGfyFz4F2Q-3( z;+oAx_a$Et2J{tL#c(dp&7I=qSWoaf*fj>nn0*uvo$&VB@nKYaRH)y1_-1@!;>eb( zX;FUuHL5E*=06@byt**5-t)SCDi`!ru_IEes9x@l?<((B5$0A%FkWwsZdB@^l{9fnF<9jQu zG4I~7#tPVs$SS6(0mi6NsZgk|ucyfRJgA&#cEQQSgdG`zb$d;y_`%i|t1O7+hcreL zop=qI&67(ZA!M*#l);>h);vRI&mcvK#gZceP7Cy5VPQ>|mCD?A`8MWy41d%$L|no{ zAY46v{yeO*1^z4?^>zH$jY zy|YN-moE$&8X8jL3=9nZfq}RL&x7qhQ#&s~f|0vezO=NI9^5Kn>uKi=aNg`nii*Aw z5vT2i7(kHLs}lByw{-vcNpBzA?{5gDFe~;iRtoQIDZuvw;QvK-Yz?%|MaDjze zn1$HR6w|AysL?7PlI}8hVZ}HhpYg^hTvr$M#>PgG-6Yw}%*^dOcb>v~k;=L{X$+&I zoSYo6N3$h%JbDR7SQ{E{rE3?T6cZD>&3>xLWtH{f#f#QULlWjcOKHIr4f=o{ln~aD z=%oV7f#Xh2PR_2bfpP=)wY95L+UfW${{REZy#Lu3V5$UQmY&=Ps6M#6ivnG<&CHJr zNCjZ}Y=fHPBnKs-U4RXShliiQ-<<_`0kBX#TMrMA>1{PNzosVnyJ~7oXU`&&EeW2z z?bofHV)0b5BU>Ra((!|8XOEt}X#!mt@phNM$Y_}Q^IDFAv zXqDi6g@@-PK)~GKJ0HMDvYnu#3w-ibhhd&I5o?(T~Ac1rMof9UAM*W*7?&Cv9zg2JHjqI7`uUo@s1W{N&+ zq5)Z*7Z#>_^5h8(w*f(VM#k{S$kP`uPPjq-Nx*$)t$gB#wL9;_CNGGe-&5pdHOuISH_DR z=g)}kElI-rIR6Xe|U;yglT3)0)6Ai2CZ^A4bZD wzpM);9(2L$cNG2g3k50rZ`bkv^QA+4^R3I8lV(*c2z+F3D*lmqL+|N-0SIQOSO5S3 literal 0 HcmV?d00001 diff --git a/labworks/LW2/images/picture1_4.png b/labworks/LW2/images/picture1_4.png new file mode 100644 index 0000000000000000000000000000000000000000..b23ae877d8c21934ecaa76331fbb39a571f2d18c GIT binary patch literal 32388 zcma&O2UJthw?2p!8(=R~3y7kC2#9nP6%lDd=tV?&6$mXf8(0t&MWlvaLYH0wDp)C@ z_auTqAb~_`=*+(Oe((R*yqPuQS}rm7=9GPQ`S!Q>;klNE3fnHuT`VjtY^pb}-C<$b zGS0%X`P7c>@JXPw(J}Z(#^btyhmMQ2hnIz$6^pushpVHDhojxSMkQH>h#}lh`6}fh`w_(aD!2Hy52N&XJO&6K>lvZRLrnrVe$W~dhLp? zcibcqR>YLal&ojm-=%GyoMmv}xpFC1o$Swy9}$Z(^^As>Ml?g%dHllgw7e>hW@*ZqQ>RjXn#;rmERA2`>s}5a zsI})B7TuT`ZPM}a@p(&_TV;|RzJ(r>p=PFZBq_6|rKZ|0{2laN7z{zfzv&!@Sz4Sg z-;-xyvCVxiY@A->zf5h{RP6lriVHp4sv@;y;)0)hzc!npxUbsiM}uhXdDvWI<85K% z(%W7npNx?QKY#u-`gmXU)7;LTI~Af_Dn<@lSzA+6-)gkUGOF8C3yFR+O);08Vkpx# zSpRetUY~1HM31-IId~^30>)aB)P3X3SE>4y!x3ul;^Mfc`~#=oV#odt*4?^w%f9XC zJ*TD^$r#1J8j-4ri)aQ3-%43rCa>qc6sf!kGsnpJd<>JNUq+!&Y5x2qLd< za?cDwF<+b@r&Cc;;XC;B$fID7kh&!Ewdp7}1v(sdXPJvRoSvGUo!u+WD!YlELWL+< zkFi8#PnO@qI>$4xyt4tU9K5=e=J>jRxF=7Z1c`Eeu`27|Vtt@kKUT`6OCZW5d0@Z< z&m>`f{rWXM;5pZ+@9^i_t0mYIZ{5C=`v=$9HwBH>yBue+ePY${{;Z@V$|fHDUZnc( zRS^04-yiPMJa_NjZB^7e+bB-B>86>z){b4{S5;__R)?88*rWy$L5u=|f(|W-SA2gz zWW9g%#wSaK^_3Z!#o@P|g_bIFW39?jCT`DPym;XkCcQe_jvjdMeZ1eLwlh;Zr6Ws6 z(8|V!R(Gu_l4(w{CKC^JP_a3*49zt zpdatvEZtY?6gxtz@?Z8eeem_ruOC0O+}u8f$qO;c)34zoIHIY`3&(PwRw6kC~{i(|;zf6=@Cd6Z z+zIj&ck^t5CqFhDs*#bA3g5RGM-0{m46JYmfE6#TG6M69izU$X0YeHlum)7m zkM3|Zm=4>XqZ5teWzcPK_One=J=6{%iYux=p>tyNq2rzaBBqv1?Dy z%E`GMuCSCDfOrJO^~G?42MLd1QbWa?TeclBNd$E=Ku%f`Gw;X~xH8457*NfhRa&YC zj;2&E-z-;6q~cn)876lg&J~rdHx5Uwx4yP|ij!Py*FL*4L!cpw70kw!4)&-CcBc1< zrhVs5GT-W$3T$_2(j_n(#FlGPaR*k6x_