diff --git a/labworks/LW4/readme.md b/labworks/LW4/readme.md index ccfb8e5..4011707 100644 --- a/labworks/LW4/readme.md +++ b/labworks/LW4/readme.md @@ -184,6 +184,7 @@ model.add(layers.Dense(1, activation='sigmoid')) model.summary() ``` +``` /usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:97: UserWarning: Argument `input_length` is deprecated. Just remove it. warnings.warn( /usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:100: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. @@ -203,6 +204,7 @@ Model: "sequential" Total params: 184,897 (722.25 KB) Trainable params: 184,897 (722.25 KB) Non-trainable params: 0 (0.00 B) + ``` ```python # компилируем и обучаем модель batch_size = 64 @@ -242,6 +244,7 @@ y_pred = [1 if y_score[i,0]>=0.5 else 0 for i in range(len(y_score))] from sklearn.metrics import classification_report print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive'])) ``` +``` 782/782 ━━━━━━━━━━━━━━━━━━━━ 8s 10ms/step precision recall f1-score support @@ -251,6 +254,7 @@ print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Nega accuracy 0.86 25000 macro avg 0.86 0.86 0.86 25000 weighted avg 0.86 0.86 0.86 25000 +``` ```python #построение ROC-кривой и AUC ROC from sklearn.metrics import roc_curve, auc