From a19dc9554b381a6653f0d219cbf98d84f105edea Mon Sep 17 00:00:00 2001 From: Yunus Date: Wed, 15 Oct 2025 18:46:59 +0300 Subject: [PATCH] labwork1 --- labworks/LW1/0n.png | Bin 0 -> 7230 bytes labworks/LW1/2.png | Bin 0 -> 292 bytes labworks/LW1/2_90.png | Bin 0 -> 358 bytes labworks/LW1/5n.png | Bin 0 -> 7243 bytes labworks/LW1/6.png | Bin 0 -> 1161 bytes labworks/LW1/6_90.png | Bin 0 -> 1205 bytes labworks/LW1/7n.png | Bin 0 -> 6901 bytes labworks/LW1/9n.png | Bin 0 -> 7266 bytes labworks/LW1/H_2l_100.png | Bin 0 -> 29490 bytes labworks/LW1/H_2l_300.png | Bin 0 -> 29632 bytes labworks/LW1/H_2l_500.png | Bin 0 -> 29718 bytes labworks/LW1/H_3l_100_100.png | Bin 0 -> 30985 bytes labworks/LW1/H_3l_100_50.png | Bin 0 -> 30170 bytes labworks/LW1/H_p.png | Bin 0 -> 33034 bytes labworks/LW1/IS_L1.ipynb | 1 + labworks/LW1/best_model_2l_100_LR1.keras | Bin 0 -> 336241 bytes labworks/LW1/p2.png | Bin 0 -> 7287 bytes labworks/LW1/p6.png | Bin 0 -> 7068 bytes labworks/LW1/report.md | 563 +++++++++++++++++++++++ 19 files changed, 564 insertions(+) create mode 100644 labworks/LW1/0n.png create mode 100644 labworks/LW1/2.png create mode 100644 labworks/LW1/2_90.png create mode 100644 labworks/LW1/5n.png create mode 100644 labworks/LW1/6.png create mode 100644 labworks/LW1/6_90.png create mode 100644 labworks/LW1/7n.png create mode 100644 labworks/LW1/9n.png create mode 100644 labworks/LW1/H_2l_100.png create mode 100644 labworks/LW1/H_2l_300.png create mode 100644 labworks/LW1/H_2l_500.png create mode 100644 labworks/LW1/H_3l_100_100.png create mode 100644 labworks/LW1/H_3l_100_50.png create mode 100644 labworks/LW1/H_p.png create mode 100644 labworks/LW1/IS_L1.ipynb create mode 100644 labworks/LW1/best_model_2l_100_LR1.keras create mode 100644 labworks/LW1/p2.png create mode 100644 labworks/LW1/p6.png create mode 100644 labworks/LW1/report.md diff --git a/labworks/LW1/0n.png b/labworks/LW1/0n.png new file mode 100644 index 0000000000000000000000000000000000000000..9b532be60c692d9a4a2dfae1edaa0fc66a7fca33 GIT binary patch literal 7230 zcmds6c{r4N-@ipl5!I273LRTgmW1q-FqP%8FC(cFFVFY3bw&AJ_Ca0tI4^PKqCe8Z z$6G}~SxG_Zki;bv$``4rsOa_W6AC{5?urlm?ft>G@cEiJAR$Q5mGkC$qL=RhL3;{e zh6dJGA5T%kE_coDYnrAAPegZ!$>&zvhT7}b-|D&pqh#{uc3inVY`0glbjU~o-w-|9 z)Z-PSlxzl98+nCt;GdAmlHtyCP_n-q?WlB;Pq|ODHz1qGk@q>;B1d}4Jxs_4TQ)S0 zr!PBV<31&@YX+HBgX-cn{kNHz+SMM~W8?-XBR$ta9fI)M+w~!6Cyx+R$HT<~DH%Xq z&>5lM98&HgUQ?X>{JH(Ur169M_xGoh-KpE4I!W4NGpu&O%1TIX?konI;LnBn^mhB* zeOf(40jN&e)5D|vq4I?#c)GuM{ly=Dw6BC9lknTs>9U8z)h>U?K;Q^Qc5uHNF)=ah z`c2{?1)927xWns*&ogN-z6?7TjE%6cuw!*lx$er>6T-W86_%A*H^uHd{e}TS-1kpM ze6Qk$w>a<}hDxPQ&9GR`Ha6WS5e>u75?-HE+I@#h_to&%jf2dcp}bw)-MN_Mxq_S= zDdM5ShfSrWr3;ISw0xFZTg^`XaQ`6}w0mWTn0`~7xE&f@>5oKSNTQ987nYaLzMLv5 zEc|XWPgbPX5HvJ%E>r}5@nY_)VP8~PS($w$4>YlfZ(Sqf%a_Xn-ybpb^72w{>Fe$N zj-Qv@H^7{4Vb05fozRatz3{z7P!KWCJRLVVIXUqHixso6vn#^mkF{5EL;M!7z#Yd= zp1hHC$RVo)GlfV|zHqar#HA!Qb{l4WdC>f)1zT8dxHLV|xWo)wFOtPxJziW~O#Gae zT6Uo+mgRj0g5WhFts3ss*R+#AY~Q$ni>?Mi$p`jslUGqGCC`qd>$xBW^Z)dWf9J9P zKRCo+?hWmpa3f=<2;=W$)7fwpyk=w4wS) zEJCWFs!9u|8KUu+>lY~S31-Nqhgj;SE4rO|bVRzniVNcRg%NmB4Fc*DQt;9o z3-}-*dAWB=s0oXWk@Y`@AfP&l`wtNMn*_zILqlt1&OFQrW>(upZQD1A?ECHPojiH6 zx6C8q%9jtBG;FXLi9{mK_BaL1e0q1bvZS!kQbOof?DGpvGDK-ef6J+>P-1d29aqKZ zDD&vFc62PPU7hmr^zoq}N~(M4bBT$GTcR4;+dDeqCz2pY?!agCraOBzEGf?DG|@eK zf}NT3%VYD)2~=K4qETv<7H*cNnVXj;8Zx&)O5xHglK6%wK{_^=(H^~1_Gl3M64k%uaBr!5oKc)u+JrL~ z#H*B!Y;{nd4!mz-cul{KD8TOv&WI~w$m%Ud(^6t$wvbiroC6YRqUmHBL1rLqpu4*p zi-;B1V-VcHuwxM;&o8zl;U}>{lX7HL0RaIlf|q{69Dw|YipnyaTsj0nGMgo!aJ~(j zp>q+?2I!$g_+L3Re|s0_p9FB%H9mEz9YC5M)aw?F>|18mG6`<);-#^OHFmyU zAP%Pb>#+ToFs*Me*f8=8Gcl2Fne0hJL)BhaYf|4iu zo12@pDc6r@N})EKlNjOuWs|?|)vrP`d(zMY9QI!f(e>)9IP6x9G&9$pzCJTEb2MbZ zH}S!P2>_?)NfAiN9ef#bvSFBlps~j?l|2{B6U}I^`YjeXcxyy zDBM6YlMyXXKxs}h-9fYha7zc73j zz2+@*9&oFQ8wByzUgxziFt`>`p8;egyXA-bx8@ksqLGmiLk0j!U0}^tMpuEA=jF?H zYP`L@d)8K$0YY>AM&EdJ7up0(7UZL*$|;2z8TxU0Yj~h!s$pv@hI0bY?jh|>78p#m zchywI1RbCS))6m#8bDq~XYRv=$%%=!nX#7cfdQP8H{qn#l`n0=cJTXn92dlmr9mk= z!4;2@7~K3~h-1~2;vSrHFzjyT`csEe85~i3b;6jB!Ncv~qUY(izjkf5M2DiiwlIoC zcoRR%kX21|Sycd9$+G_?tbQGPvU!7%XVpxzybh&5ba~2eN?vI5Yn!OGQZ#b_KiO04 zL?gJ-TGOxyqdU9X6;(}4|1aZjWe?Q#fB8hky_F4*JZVc?OlpYSl_iPghJQ=L1MLKCNZeEPrAxo;PxEaL8KP z2=VX0azDw=K5^s5joxRjC(`>KBqn~IXwPn+Zk8{BTP8r^^-V0{x|tb&pinNpduj(u zfEhzuf#ZsDlyFZ^&j$$!+3yl$=|EE`KsJ{8D@seP?wd&c45UpK4i1mb27Q(W{)qlL zKi$^Ls~C_#H}H7$IU5_BEj%0Am4Qkc0`FyFz*oz+&ZuI>hGItVs(S(fO*!V51+H<_ zz4bAxq6B~#=qfuvYRCTT(9n^4?7nBRK!br>Q&m%&BLau^4Z%5^+J+mV0!Cg(<3nGF zLP}Qy*EVxNtL&}ys;+L-O+WW^&{!dxo@Ku2cY}o$mU75+MHQvR{=f*+pP;>?`l> z*s^u24&{BC76nP_G}oIVxG4cPyc`Vuoze;XwtMPIYe{a#n(tuZ#iPL*A9chzylWik8%HHSMe`5 z5OqJxMThlX1&ausD@_l?y=!fqgG)BfgGHBE901R>xN_jsaap|eKcR5LlfuGN>VqMr zfKWJ4S!B_QGBfwPr2<|%@ZA=Vt|$KxRX%@x*I~z;ii(QsYCt6xv^QD+m>kc%H}~aZ zcA6G?^2^846fHDPQ&TgmPn+F#A_%~Py+ki50*1~wc5nNu8(Vh{9D~lCW1)7wiruGm z{;W@L8B9Y%qqov0-Hnuz>wD~}$l0p~sp>vGVAd31y?DQDT+gq`S5(X`Vg5;!rz?1%-TEWjGAs_{0D-i3s<=$Z z;XNoX512DMJ2!VMzD67@h9B%@WXI4vOeFl+8>>3ylL+B&2% z^npG}g#a~z<$p?_1En)zyGATDsaQ6!;_&+;0X#)5aIufOc;>(ikeawc{mNv&yGI+Vwn z0nJDO1?OXXZQb15(&>T!H%frlZWms?&{yHrb9m^;ETwj>8%g38)E*+_<>odb1$YJj zwsZj-F88#ks0B&ds`zq<;P$yA7mH|H2XjOxxPipsH-(_!oUsVqRdy$S?naBq-)5SH z$H-PB{ome={gkPlinarO-=98 zQh;$KtLkT6Z*aZn<~B#bs{D<-@e?y#-7N=6$o=$J`lrqX`-f-;L()QHHQo`Hx0NdM zfa>aKa^ao`gz%OdW$t9LseXc$I~m*EPe78Fb2*l#vpw55`vR31z~=?j>#M-*i|OCN zwXk#OSfbs*-TX3nC!o3v6pRx7YWSIyoV>ie+hU7i?NcC)98dy#s)<=br4MF*(`E&3 z1v4PRjK0COic}4x+xr>4m0>||(8n<9u5mNSVQZyTOOr*^h>cs9R&1~fg+{!8s4UW7@#Kj~eAkB$Pk?p6R{q?vGo;swcc{y6HK|rXRTLQ#qr!@xO+})FgY~81cdP_=CZ2@T4 zs2ya=n5KLZ!?4?Lhi+R49QOUNf;{fl1w-FW$@ zxi|X3RtehUfUQtC5B|e)VDrW{;J}KVAV{jNae$0bXf)FZ3JT(scc7+w3+C=Az=^2V zm8Xu5jt?F^^61Lc86V#J%j>cA!%e?!{#44ugO@BjIy#QJy??mXJK@ozKnL-2>8@g} z-(JtLQTh_T?Ov7)$zxF6*fq{tcUy3MnqMvtn)O^<4W-+jQ5K{r{qo|^2{a+33V{p~ z#T5V|>~8Jf#{At%TxG5eyv|6HDsd!6-rCwahZER|xuNr)63m-9*pai!v#(4<{nenV zMv`f793QS(W@s@N4#>-wdZ@vG453&gb$Ln26F?nP^ulUHMMck7Xn>IgatnNXF38;+ zKM1g?GI>m+=DqfNtj_YwQP;*8VWWNX-ugUkMI|*HNhm&B?I<3)kO^##4QOmYZRb$g z!}P`v^X}6LI;uHwf)xBiloD2s5!Q$Q*-fpqGjQ{W=0 zn_xf&Z)@nD4IE1h{i3w^yA09Y-oBkWo*5<9vB&3SCdDPpxxBnw)Bn@0T?+6^9|A@& zj{@)IfR?3kuOPjrSY;9~=nVn!yt(zp@pcM;yn>$IAaLH_U+G@AEjc>{?!UNCN%|cS zOw}b~ety%&NQ3$JDrCdt^2$mr00VF{!japSn?z{!8Z=O8jsR4-cf=)v6>Gq76%{=i zXa+MB$SY%(;u7c0iVIt5fcXam1lW4XP=7k9W|8DW1ch)Lu0V1B7&#nBc$v?jE+`ZX zlfn8yk821%elzXkv8!J*IDXpo6%Q3OYnrHudjY5Oey#yTks&-AxIlyKoYZ6tc--IL z|0r`f8_3pH|+a zI`ce0{3$FbXn(AM!ui09`}2%iz_~yWsme!AH8fx^e&u&!JPR zPc6m`y(leJ{qgNR7UR4J0%4`J`{?9B)qg4-i=C8NAC>E-{c8Aj${f(r3bqgv|ApPr z1A(&RluDjR1MpZ2s;hO}mg|GG*{Xuoat9B_=RD99v(ydm=Zxe5q`P-*BA`?ILpW&8KjZEbBCC!)3q6pjv`XSJnrgu~KvpI{H#Amn>s zIsHOw2fcdB-mR`O!_Y0sifBpWSQO~sdx~d^qQpZ#ba!>($H(2~2ZEV|`1l>kX=zhH zfZeE$mTB679Y7U~8QF2V{_*`jp{zag?Z)DS^%a_4s|GD}w#bD5epew*^;K4ZD1;AW zjT68s=0W-uMPuznQlb)M&56chfv-WEMc`axuFt2c1f0j{MU(`9sQcVo$CXjL9xAe# z2M#7(3pBB)$GR9zA}K~#z90DTez06PD3atA6s~YK%~^J!aXj<+^Y&urs-A8Nr3!p& zC1&}GIslS7qUX?P>ji;Zkbf&-aFu}uaPU*m(V>zaDmMWC-vlVO^6K>YQ0nTl|G>M1xkByIO0%90{|7aA@=jBwhh^?ds z;IXN|zfeJWKz-)g(7!M}N_}y$g_j!E5wy%Y?Y~Fe`;IpYYywey?Q0Z6-eoa{Qzvl@ zMn5n+Qz>QV~B_M+bM>8hZT5SE#;0skhs(G*wDzx zXj}Y;=*S6Pd=)EJ?bEb)`0{k$n>yC_wda0bJm}2PsQ+z()yavwrZ}B-%FaFBJwv1< z$ji`8&g#RbU|St4YV_BE!bF5Zo}@wiFoZBp%fTi#pG ke7ye&&35~L@zEXO&rIjlt*_jf1oQ-hr>mdKI;Vst08>_QV*mgE literal 0 HcmV?d00001 diff --git a/labworks/LW1/2_90.png b/labworks/LW1/2_90.png new file mode 100644 index 0000000000000000000000000000000000000000..62cf60a4d6e79a1a4ceb6cd020c536a14613826b GIT binary patch literal 358 zcmeAS@N?(olHy`uVBq!ia0vp^G9b*s1|*Ak?@s|zjKx9jP7LeL$-D$|SkfJR9T^xl z_H+M9WCij$3p^r=85o30K$!7fntTON@VBRnV~B_M+iAXhEe0H|g?`TsZQ9H~R_rQ% zc}X?c$b!i!`1rA#KU7_A+tuVAozKQ#a5Q(%j|%Dj#L|EHH@@4hdCk?q@!7`t_BNX! z{wke)iILM-C$GHZGEuENbJGm9S*I_`$}L?s?LdTSMAecbB@%35?|U9+l&(6siT@kZ z{#mnR<|-`Qwzt7J*<3|UT`aHm+LkAEw`2^LwN6^GKP7u*l4_Cs_7@+`>o z2fmmDG4VE($(klFT4RVXkR7(8A5T-G@yGywp% CuaC|E literal 0 HcmV?d00001 diff --git a/labworks/LW1/5n.png b/labworks/LW1/5n.png new file mode 100644 index 0000000000000000000000000000000000000000..9c52dd1ac0f734f2d1888ffabaf86f099c014841 GIT binary patch literal 7243 zcmds6c|4SB-@hd)`$>yKmQz$JBxjPzph6@|gqX125R&ZK38U;YLKH%b zeQZN0V;#$2?A}Yyd(N|+=Y8I%_rLf4%>D6ko4M}G@BV$4-**D^bS`sq2y#FW#I32J zst-XdufQ3<@O zo|Zm+O6)fm7Yr6IBV+%^JER?*Z_7M)zTpg3*@MwA!9ozP)%MAfshnX4K|&>(su!-i z$4yhc?shJ2)Xh;OTUf7nk@Wl8j~wLWxa-_=s||L%y|tz5QN4tEoNTE8R}RczRKhIX z-J~s`-WJ6dRpVzn{OGBcc*xE`sptb-C49-~o4chN2xyq37ZqGdC(uP|3SAFeqrT^|Gi> z27JJk)o%flHABw7Whro?3hxY(_qg<{Tmx6Uy4RIKZaQpiY_ffv92^~8U9MGgFc^$u z=Z@AYehh@MIql0qAdyUmFz4W=rlvW_9T1n_!>vPl=H>~HxqePwT3UKJ4Gs?W2L}($ zFxS2@*Z8Sm^%{wFp5t+*lp)l;|)$--xpb0v?D-XYzeJhR!I=x#$!jE3D=HN3|bI@}lD+6pVU37ESzqi=F zkB#>z1QAe5w73F?;n>4rPj=k%!wErtjr(}~Bje+#Gk8YE7YH&wx??wFc^}#Vy%h6< zprgCRAiq8T&o4bTm50PH85tR&aE(ziOq79v0Y8QKjzmlFQlzYph;BWZL{U)KU|P)9 z#*A+QT0P{@IC1oIv|IujG`Au}Y^9X-_j>IWQPEZ2DD+mc`214Q!#P=(6%zOwKL2w| zu>3%#@OjtuEzQUC*Z3hZBmHozv6dvz2ldNskl(Li&&hrvhZK_aj;8{MOb&R>biTE& zTSXLSWLyr@5VwV(Hj8T3%+k^ulU=#(;DHv}HVMMyJvFsQbkd}>cI;VgfDF%>a%M+QPnO$&M+SK$J3D(nkAF%^TAD-4?T0M+G~FS@ z>R8I_ygZ8UCPUO`dC1@NjpaSibu8}*~u`u+s#iWQIboPq5Ku^iqeUf{*2*h|BW@K7a>~ib_gwo zK#(TGSc7XcSRl!OAH~kiOdM-zzT(_R{sc6BAw^UoiC;{CgOd|M`TF&%JK<-pY%2>6 zHwueSCaSxUF@XGJ>)`?dZ!uwfFRl z6ORgGcKtcc|EtyiDhAn#haC!Ro90mw(b40?S{lQHQ2*)4%%D+udAU<3_d|mW9S?$n z$NVi6ZMz{ADcgQ$@cN~44E<$(1WwPD)B5$0Q_( zs2vV_$pUHk?%{p~-l3^~;lhQ_OZV^JAFFW8&dRzb#`h#d*1A?aUjkAIJo9H-!LD~& z;JJ8FNlD#ZM@Pp{`r6sb!Mv%dsoz&kPCm@`;6i6tmwJiX;h&~^3NA}XNCYSXNIqk% z@9VFRI0o>$&xZ=O_+S_B33+*A>$;H654_4b%IibCq@l+`*RNksJ(lRLpQNY3ppkWN z4MKhwnz7I{wagf3s@K9|;Qo{1np!VTwUTg?3(F&+*`T7lO3Sa{=g;FBrAmJ5E4Bx+ z>^@9lhqyfdK~a`@=;cgvGAyrr$#gHAsHe#J^2(glGSO$vl?)S-cUV9%=ITVf2tAd) zl{7)IYt=)uYRVLOUk)B1o`-)_a%R^j1^n{NaGi!-QsO8iGL{yTrWNH$7#|y(MX{y| z(SLMdKms3glai{i+P80K&|>1^4v}GVpjqZojIoqZPeKm~mraWS#d(kAe%A0;9rzD* zvl`f~E^TiE@x7o!-Z-#oI)8c3LWTjbETTpjD~c42HkA$B@}k!Dq>Y z3{y$|gXhlws8Zi}x{r0DR>*MyRbXAmLxxpZwg5_9Tw1C%jC!pT58rQ0mBG((l3}9w zF?g5a&vQA=SE{4&5a^}V90f#FZ>0H(wFn&3R93c#II7(? z|E;mJwY7ETEdqfER6Q)q3O(BdqWkUJH_weliXjr2O-uAOUtC;#otfD}#L`w3E7H@| z@2QBvYoGocG4=w;*(U}P6P52iH$0Y@p%eewu07qZ`r)3}+1c%J3RvlL6~Mj$U-_gW zMD_4PJ_yAUzA3P@JU0><6_t^mp031P+rR^9spA6dq2&qrY_8CNyy;n4S>@}pK?16Z zm27VFU+Z6%MURf!3M;zn5sAcxrlw9gvSNx_&;dySu8FbM6wmd!Ivm(>c23Tzq+nKv zT^^LtZN{96Uz={FSoq=#Zq@J2H7QW{=Mip0=ar{7H|qck+Z2D^n2cb?t>b4x0 zfzM08Tgfo8@|HJ>*3j4(lr3%eU8jauiZO#eOb^14e@DAeP}mMgfA7EW@Ba&8w>lyP zh_23%S+z@4yp$iwN)%l3-CDCC!wd}#6VL-5G+{FAP1T)l$nUx8KTin%{tiK5ho!iM z&YmKWG$W3B5Qvk6GDXUDBO^~jeSQ5LO72-uSnbHCuph6W#WBb3b$MJm}HHOUL zAQ?bLbovsCQFGA3oiMlJoq$eVK5$^8iWkpEA+ldoSNGnkotmE3#vJnrx@~ohhWh(E z>#|%oFi44YtS|vb1DQ-&Utx51cMD)Y11U2!G0D1?qHYIN(6sQku-?8t{@!09%UQ-g zm2D*CFo!@>NW1trn7LM-?__&Ru zp!0s7US5l{A9&GSIVLe@Yy!oza&xt#qoW(@>jM;uU%gTRQ;`oo{%>sVJ78Pc!%A5* z^Yiunc}0N_F2|X0UpF>Bd5GuoWi72n8y^Jp{tF+4H`&P0&<@yUu-hp0P!VCO2p2nU z^z+X+SJ&EpHXyYp1-O=0iq`R!09K0j5X3I4>!#AI0Qwq`gLW?wn-Lfocyo#TQufk^ z$J_?r2Q+Kzln~+b>EYqwA6>X04bB9*A21e0_zh3{o_sa%kXp$&Fk`7d6-ZJMd$mi% zT?LSeo`VA+zo1~Tp}HbJFBPFF6Ps%@QQ{jbWM3n7 z^~VRKOj7~pf}wi+Ta<;4Mgd^TA*^I^zQuow#Yo_MQ{8C!@)G$`TDbecBie5(d7|va zXhYwfFr(W#)PvBIZxcil?B4DFp`p2%?xu{c`rTjsPec8`g6zjdp=)906`SQc=JvgX z_1LESY@EaJgX~@4@ggXv%-?lmn>IJr5EL<=A2yN?$qKZb*yVH$@njV-ODcQCg8=?x zKySe#q{X~@r$~k=C6a+orFC2QH!cDB`e<0SwKcgo6FXKbO9IBVgQER2`ubC?#`Fv zu+5|ZM<8e*N$3I{C~a`=kddpaYvmg8kJ(a@O;1}p*r8&@7EE*7dI;Q`v9-1JXIaoX zvD+i(jpDl|7h{1d!zb+61~q7!-g2*!V#h&3!EN##dOs251tAI!<85ho?Cpa?46}_S z3he+$Xyfw94t>Q^ql>`uJx@%`^I2Q6Tbk-=oi;YZMc%Knyb0e4rKUBmaveX!qZRIq z#ab6v&eaM5!fbyoX>i@lEO*MA3_bV_NiCg_mF|d=iYZhCp#wGTB zXWhnHeqk~zx2R@b(?t$d_t`e^@sTHu;hJ3R52`c@e&X?$i8t$Llha%AtgI|e{-ak*Eh`6SqJXi;;D+9djY|5(VLiu^{0r^cj{<{{m6o`N5sApf-m+^TQ33`l<;9Bwz#9qSehc+D_s2_S z|7ev$1{jiofw8%@;F~Dt0(q_KoH=vmSI>p9Ad!gpcpo(jOABj}=09Eq3H~Z#n0jk{ zy3{$~0`F~4)dJU9zB1Q}oWEUJ*}zX4U6tjf{qf>X_s}5v^MM5G@dX^1UNuDjp4qr! zAk%WsB0?D*&Mm5hs;Q{~;YDZ;QV{buc}+eJsaf*RUUnv~-9Q(SR$YBDSU~n-T3Q<1 z`Rfzy0!^1JkJ7EpHJMT+fCKv&?Qoz@RBuL8Lqmf;9$zs^PRy&Vt$k^&lcEb@=Qjr%@NZSslL3TB$d}FE4^zF?@Mg&wAh#1hT z3**}ZD`3AIq!31az&!;dA1NaMOi?&3O$wEo3k(2yaiY_QZc%h6(%f@gqI|yLWN*Rk zP(sD(oo(G%7;k6ow{teTBO;y!sB?7HozWz}>&=I+*?D=!Ha2OlGXuFmrYEO*3S!Q? z5lCfaDRqkTpN@DkscuD9AJ{u7lu2NKO-nIJR+Ipy+31Dv7t&^eSVWF#QA6ekzVw16 zh{Fi^`Da#F`-xcTeH=tki4O$!0g%m7!QFHFPD|7SsgPVHm6TAx_{yy2lu<1K`U?k; z9PnmnKj7I_TSBW+puIR{GE9HR(22n3#DP>t(-|0;W+G#2#-Ceg^z7YkKE!B*u98zY z>e8hLhOwH=X%9>@F>!MtgDzjW5^QELc%fmCC0+rmzP2=N06d2a5@;w$2s&F@EW4wF zLH&Uvvs+)DBQXcOa8uo~lP|7<7!A;i)adH&ojXoQOIIAu3nh`@-)J;+TdJmMg*Oon zhvy)#y#7Z|6HF92s+*7la=P@z#o1|(DP8NA` zWYWhtaDLtyFdk(7scNI0Zbd9W%2k* zku!2~kr5I6*t>8GUZ181;v4f(l^uXpK_>44co+fVraO1{u@tw+Fyz`O;!=?_WLK zp+o}Zk}snrYIyjj=9R3;U%s*ad6s^&JGwmLnC|xcb>h^iLWi2G*RF*Db^E;dQ-CUn zhZ0V1t}cW45lon2MihUn&h{+}?IK+1{h-jvFE>Cu-}1)l!%c#JZLK_RrrFw4MWC59?*b|aR*Jdi$itgfi2$fV@#EBspDAjpm3 zl>YuHrR6WI#-^qdU`X!&j&QBlfF|9*@V|W?tKS&c^>yCGa|n~@vlI;kWIOubUJ6*u z8ezE0C#nZ6o{*XO38Y%aweiQgYDSZ?vm3W_Spo2g>_MX)JDl zM9M%5M1eez079Yfzk~HAi^J&~%t5zsX#o&5IW@=o?pp&{uM7BYWxIF^*wIo@ohbbvT+_L?dmcr1FPsWFaYh_JC2HtodjOLY;$#zY8{FgtsZ(~KQdUIXAMCwHCD(V gDjNTh5I10pb@KS$C6RoGc?cYuYC5WfiKLZ*U+R`sCEkzKl)gj5&q@hY_5?)@_euSf22N!q0z{yc?Q2YY_Kym8e z5Fvwu2%hQO!{u_psMvL#(bD64NQRTZj^-}DnS22ry9f-;mW=gZvQj}U-ZdMsK&I8^7~DvX`q=iL|PwHS4wtTcN6nWdEnxe31l$50of=M;eL^LiA zCTvbDOeW6$3gh4pz=Xu;NWy|H4)PTeb|Y6^u4;q9V6|Ft9Pe~G-EQ|UfSS!_mSy+$_5y(bgz)|ST~U-?uQxg) ztJS)(u@Q|%YqeUl*?f9>+TY)&DC)PxreP3ClJxuip-^aTZ7rYA%d!jrU>F8MC`r;N zpaene?CgX>A)2P+@%ZWKsUQd>Ns6KU=H@UA>%W)F<#;@PczF2m@Sq#i>2$Iz zYciQE7R&YZ_1)c_s;bk|(_XK4YisM~=7#6_cDt=ZNeF^$Zf?H5zG|9wb#=A8ylk`C z%x3e{)YQ?@kt9jS$H$YClez~508mx+l@cH?vD2i_Sg+d{h z%Q+klmSri5LJ$N+(Z$8ZrKP1#r^EAnwOZ9}(#>X*rfHwgH!(4xX&QuZeSLj*cbDV1 z`}_MyB=Yj|GKxbp40CdFB8uYe?QJ5F;Ca4ODy7ruU@!004&&004{<008|>004nL003F*009yY002DZ000@zy2&Ck0003i zX+uL$P-t&-Z*ypGa3D!TLm+T+Z)Rz1WdHyu&tqUGmw1*$mUCju&;pFNf7oE5W5KI2_X9m zNPRk(&BOsV2f~&Cu}e}bK=v{?=ND8KWu|A8C>UB=S}HiE zeq#Y3#=Z^K;PMj(b3UJOG`s$W+ogC2kdq`uCK4L zx3`C_tu36Mp5pHA?ynMflaPV)^Yc+tQ-kvIa^&RXAUQc1adB~oiHX7f{yt`BXR)xb zfW^f{JvTQuhrYhPV1)NU!WT0ErK+k*yk4(tZ*R-h)s?KSu8IjLySuw`e}6BgDt*r1 z)6>(YKoOtMCoY#uj4EOAUYpH){4%CspIBL2TN~=@>tO=I1VVp*KSoAIu)MsC*w|R4 zq@>{d{2VJQD@aI4fJp+0iHXR~&Bg8Qtx8Vm-$EFn&1QqC4oyu>8nCCQ2VGrVn3$Nr z($W$pCnr_H?Cfl0WMsha_hWc?7-wf^a5|kREiF~Myu8HP+S;3>5o^H;NX$zlVZR<9 zA9XO8J$uJ~v6sZ);2_%D+tJa{f${Ni6c!euwY3#>b#;i3kJmGy2qR?Rjg1ZL?Cc;l zHC2ZtDk>`IeZtMnjT*tkDCg$pCWeNF(An9k6{n}CD`|Cgb;SKJNePZQd*ShTbS*gk ztn%UEL3_+KX>4pnQBjdf9S8)Jlz#S{{VOOaKy7WU_L`H-=g+GXK}g-X7H+p&jpSKb zStuzfL1kqn8X6ijbE-i(XJ%$zf|2y#;6Q!sWpQz_#-r3MmLNYZqC5B9Tdwa#~@QcrGJ|b{?A#)4l0U3fKbJRYC#l55JZ&Tdx+9| zMARTH4lM$qBcX$Y5J)I@$GPKsbIZ)TbN_pM3@V(Qv-e(W{eIuI^61hi)IH9aco<-8J-n{E-GFqidbl`ZJRI$>N!_~P=5CL1 zR+d*%lvg|~W#{4H;;ycs;Pm4Pd5qglh39T2Zs0C_F50H<5VYkg=f#z&nPCq>B3DtT zPa58io$7IQY-6mDz8RmyNfndM*%M^eZ_0G!R?!+$kCaRoNRt-4FSob(?J21%N~dT? zdkj6yTSDZX*r_jXk=}NF|BmGI+KFAqoaK1$D~(LrwF+!3L`3yQ?hX7*p4l=O60z5> z!LqMvXi2-8uZr!5!w}i&WZ&+Il7r1^G7!Z3W$OeN1eNUPUI!_j41l2h8@EDl*Ku(} zFQpI=w0+%1=*nG)3%WqHg}pUqEG&!*CfYwS1i+KMLe7)#5KOn^FA~2PR+~v2w zB@2qFCJqh`*4b!1*sSO3`bI=VB(Ia0k%1g=QFY*fq=_##j81kIl!Ke)7ZjvOkeiz? zo11s5u#GQYuAgBdkM(kGfJ%7jUNuIBh6jZB&lH3GnTM`}c0o#Ou*Am33j*TmhEr2h zdZ8sHC9+#LS`-k;v89`vXtyNz2HvW@5p@xgckq zA2Ho31qJZ^S>XR4U39vUXMQ|~a0q0PLyQL2E!UbC3hQ@%Op>XZsb&{?&GfES)j7Fh zcS8v7$LDuDS4m6ylth7 z>D3^kKZc0XuuX`rH#R|xjf(Gu|FvBH(GocIxA%h@EjOstOjYbf-%N>w&7}kK@(YzC zJBf>dG!?I2Yz9pw{CQLqc+%%2EjGjKUT5H@of?ECdcxWyw&~eEB>4AeN~i|mS*qtm z2iD4++2iGH<-WGU1iR^5TcyxNzHAIUbxv28I8C?U`fHIY-F=Yd#F`(Ar$`SqX;)NK zfQXSaSGNVB@>H;M!+v=7WC2-&kVPOcD{VV+P2(w2t}e>@(A&h*94FD(kXc=A6$)E; zdABA}Uthn_oz|R5i*x4)*Yk*olx_RYW|o$kAVVcW+AE;|=>auFPft%hnQUxiWRyTA zSQD)X#MSa%AG*#|cZu#kXayrYL&2nD2WYfa!PDlX2(o2wvZaf#urPn% zsb^D*--bH&aY4L@3p_#_*GZ#(lYV48`%nToV}5=opdooIPC; z85NZgW$kBLbLA49Mh^W-<-Ao5!Dh}-QbOS(OQn^S7U6}!JDfW6&nQ&R-Yu`FD7yB6 z-}Bb3@qr-8j_IBX6`#e~FFFE{_HF7DA?<6LtKUM|Ma~l)An7%jRQGsF<+qQb{}9A~ zg9Cq*-|=f=JOS_D-2OJ`ho2Z7ovlm<`e#iDG~a3bJEZudd;H#`oX_%0KSV|B$66T} z8nzKA*;!fNDo17qYFBV_)bdj9f1;KD)2%_ON}X(sJ3*mGU#)$>m?$cJbAXrozglB> z_)las4u@kg%!q3%GwdS4*}Jm8xh%+U27`f{d_xl2%o`aVo*Z|=>nx1uF{YoEntIyF zeWdZxKh;6ICll!6(~EKH!kxvKK0gC3ZYVsIc6`tC7ca643+K_yZ%aP>>$q1W_(7r# z&M7B$b(!6`abv94d!{|xD5ve0UtD{9y>U1p!Jw355Mu5zHejUjRSMp`gu@=hl_`vo zv2jLAi@s&GPZ@bdR#p~>{62GMXXjibH?;W_2W&tQomqu>jvMO49Mjn@bJ5Vr2_GCB z4A?0-`PA31U!R564k&Kp4lqYh`yRlqzFT+0);1g19GT_|PiSdv{q@1#0T*Lclb${m z{5m}Ro}C7u_&vR(zd7#2PEVEAuC8pYAi;zC_Gy9C$4wPc3S9)-?vQ0XKm!Y3uCF0v_F2aC5?#$cprV zTTiC*LeiB&wAccPL5Bes6F*`fZnIP#i(b&ovqA8-RqK~8qu3B>*vfqCirEGWIU#=E zsj}v({(sNHf0kW)NBqM@--duNV6BwxTcpWomiKYTD^f0h(YX3;Qv>cuu8bn%DXKIL zf|~b2E=}bvVu1fQIRCQ+eJA)I7u7UrbMd4gLxJDSeQk)R7#bUUTk&ib%HxRkU#NE= zCW^E7B$waPqk(gg=+P_|j*Jet^X`W?&I%>g*Pnwe_TS^Q4wo;#7$GMR($mv3edR4m z6Z7+rgh;^5yr`~0JLD}g7Zw&?3IdVxiRT6@%K*PsId;r}91kn^7z?*0$K$7`r|aNo zN?to4UxHVkud%16C#UP!aoA)l9YDz=Ibg1=ibcT4_4W1omX>k0&9PaR4x}pCe6;H> zc47@|@jrlK0q18-Vf@Vn1O!;U%xbS%^6u}1!#?p-*w$4B!5?c?fa!yi(eZvPd$1o9 zzTf=xI72z{(gA5yeO+Ccw79AZB1+y;-__Oidcvm&88o%j)xpkgl(iE1xFYysKTkV_!s)i2k$CO|$Xiur zHa9nC<|HmG+yWE}*Npn!icF9}E3$56jK5ATqdmtsr@Y)u(r+?{l=vgKRNT_ z3qT3LiCn_r%Hw?(Ooeys@JsP}3mOjbcCH&+WI?}f=<(#}U6^1Kt2DBB#DGoU;7YTN6fewmmM1`1~4xR$`QJu zpqt2*RNk6o;orz0_Pc~FM&TS zWnR#WVfn+{FOuQx-0YkjBXjed%F0U7JT;HeFzJIbG8xu9z}6!&AaIWMK%u&d&`~Wd zEug#KKUR;|KKo=>(u)^6oVts307AEq{*uDk72dMqvhvO5Hc(rGbCM9Gec|tQX6)BF z?+|kw)6tT4J~BEwyULsCF!V8Ge0mxzJdY!>QC7Hvwmdvg_&pk?#y5^iwPGBDA0ZF(8$Qagegl;ZU#D!4J%Klzpz)8$Qg}wd- zFwVrb$`UF;moFBwOX<{y4Rza^%6DSct8I|GzhHhAk!d5c~BsG*6oq?6$QM7MkTIrdfiLNZT?|5ip8 zOe=2Td;QmZt3VqB%BK~aP0^Ja?%FJynHaGRD6?uGY}?XnzZG1{BSP)Z0lSrLOY`&d z>qt=w*0*Y|d^Wm#S>&S1YzN+)Hb(Oe#Y*xjYTAB)%tj38|&o6XiWR;Z-4AL*?ojDWOoS=zO>h%;Tk9p?T4*1w} zY3|02n>UfL__#Pc*a+3`kSNH+uKXL1r>mG&K)25ksurRpu*2H`ew?=xL3So(!m zd&laR!hjsL&6ZFWb%wBJ@OPAd}IASpY z6g3cJotX5ycez6(HLd(vtqEXIcBJ-`;;zGHg$L$lvJ5gDx(e;1Rb7+8NrBPqbyZWJ z=aG?Pz&K0ZlTQ+x8Bc42g=P1y#jAT}yScdmDNhA@suQc~nn;>#O6b7K9=r5*SAwm*OM>eX`^X}mp$QL{l3 zOkv=`EV|qs1SislH*el-Tm6KCTg<4=rzIvL!g<@56i0cUgN={1X5^%&@1HZlU zrDo06ZUN(fos8xAu~rqwFRwG{Nm*GaFfKozO&>T*N>T_C6c10W@r0WYHx0(zrp0;1 zl4l`ct(btf)0VW^pUDbzg63hF>@P!E{DSb%(B z4?b3SA`^-yoDj6Mw47d|C3peM<~(7lr-I_ktmyLu^;1&eGH{nMs#M_6eu&0oTY|Ro z1V>Iz_^Vdd=czto9{|eockfPdsvc~ytgLfoE{f;@<{w^QZ0AhL zvvhuUpU)X+%Et&KP%bqZRTNV>z!}#8%~j*HRgbK7~(Cy_IVD)s&?wi3UF!xq(0$(0J{hv2y ai~gq?J?9Q|XP<`c(QNV^+XjeflqM$~Ql28;BM2ZxVZUY1)0Rn`CYC$dthNg%>Km}=1 zl-?2*6{(^3DkVTDLK32cGH<+hzBb>?o$H!E!{UTRR`Q;=JbOQT?-OQhcus(SA3p>^ z0(!dICJ@At3a(^69`KG?TgGAVN7YN`vX?2!(F=3c(*ZKL>g9e5<#o&Xnxv0|C)yc> zgvlR2CV%XRHOQi$`s>SQo#7rT$P=yxu6S@rd+otORX4PQruUiWWX(>VvvYJcMjYJ7X`%A0FE z42z1)OzSp*o!%9K8y?4CS|9ne3$GURop5?*{L8&E@1kiQ9;-u^3n82#txTrSmo;2^ za7sfpqB@>(@VgX!$Pb6_mNP>6v9ic26mIA()KFjtLGIWCnh>;;n-98j2jYM(Y?Fk7 zH*<1B$FzbW=n&sF=Ly}de!dZ}khqzTPl>;J3PTlw@JVP@96j^&v#1j%nm1IP zS~g9Myt{i?UcSVR3vv$=6je@*K6sA6T+w1mm(9-Jq6)J&<28vKyE}Dd1s5rfu&N0a zvcO`?)xVF&qE6Pv4?>a%o7n|g8uwJ>sUc$ngUCyHHd#g*Yi14(4o?+b9}7yTCq-0p zL1_o#xlLbQ@aXL9Y{iq4RK~z0a&mGir*0{W`ot)+e@s^SLTf};S?Z(t!G_7I>5m`p zHotV~tU|-*&&Cc8=}!|A$>jkkRQ`cz-9`>bH)yj^i-^7dGni9zWn3l4ct$us{@;E``#l%E!_=sbLi;E>R*N^H4?>X1K+6sPw*AO5tp(D?`o?fw zOWJ?{BpD)|zV%F~p!u;q7d~b1KxtuV{z5m0i2?i}r}x1eBj&4_c5}m|jjGbQxjA#G z9bqaEG_5eoaacj2yRX=_*r8!}u3fd2n3!0_#A9nO`c!Km%HF~vLsN1aBK*OFoz**_ zE8CV-C^jb+QY$O1rKP2D^W_w;jWuQpnq87OKff0e=MHQ?zzsP|iVDif$WW@fW!45c z%FD|u<}0WjU0q!Zj6jloAW5Uw6@qvY(l$g}USF^67#hlZ{`~okVPUWaDY&MP#%jUS zr%&nmL2LRFL94Ilt7wJ-drxR%h66Cq7xodiSXP!jIk;UvRiioB_p$S{rdMLdGM zIw}YL2S%=VQS9VmtppPu`w(xdy7b+j;KZ|}(dpYPa6fzV9&GLGD=A_ZbnMsd|Ao~5bdt(@ zry*H6IU2mZtu5xB!4Aqfjg@Fh!cprIsjEA!ONRq1DGB|^$|l+c9i0$Lg2&h=EFn7W z{rmT2lRWQ}F+mp>6goDw)y2vvU@aldl|3`wsoB}*&CSi%>?ld?TNJ8NYbAngFasW;Qq!Fl_U2cw zK2vh*OREGhYAe|UrA6Kg6v}+@;!JXKa`vlN5q7)zxXtYB@+K!I1Dya4g~PP334(F; zZw9NXsYxfZb~l3+PI&`3{~gce0MAh;f<$cG+;ZQKy3>{2M}isWpGDTiaGDv3Y?B@GLV4L20CWJefsBX78>T|L6z@qJINR+TLyC!3DL&Q!wwu)O;?u zxw*CC)l^lB{Fumzi3#V9%!^h;|MEaaj=l3hnaAOyM>}^K!JirbnpTdc9P&g#n&C9j z)MPcxOqVq(GSJ4<^q?NQr*!4n=A4rVFhd{^R&Q>ERa90gde4}-^}f*oE!b$F3kr^_ zt<&Yz{ZVe!eoP!eR#tWqzB8Xe?e-&-FA!NV1)G~Qs;c05<)uTo2HJ&-7cbf{Cpy8P zZvH-5o77F2!-mxGg!TrQBzW9>uWyll|HB2}C}*EQWwv}qk7 z#73(xeLhHVA_Od30xFGr^k@R>IN6v$a8hT@!pJb7a0pIP)48QXOYlOkX%jNc!Va5G zNeC6keWo@3w*4TS3~_~6{3OGrpqnif7R{q|wQp;_#YM(FiXL6tkR9@;HI>b~&JUD( zGzr|>SX&74Xksic;|O7t56{(8$h1aDmXTt5goK8AUU^AL2{+0UyE(L`zOGJXf${h4 zAaE7A^(!?cz|K80)>Th2N>p+SFAr>et^+vqcCPmjQ8g9Y%h+{Y0(Mf*6`}&DHj(PFw~>wB$f7s zIqJ;JEd8dqFN19&jNuSxvib_f@pCa~B28bmk zmw-%b#UG63+s+x>pxHKjAK}=zXM#dWVe(e229i8IJ%48mT(J7aDq2j%Q(H$zr;aEG z^xNX9bQ$P|AFG~DPffMV4^}>kk7r{Fu|{uysu4uI^Decozn?Mn0zcE|n&0`#vT#R* zG9+1y6>MovR`aIjmY&sEUt*owA|l^0)0tE3L>6CL#0QySFr`2MJ2od}*{?6fFR|9b z`u9OmOK{$sEA(j*xa=3uSTK59M%(BN2A1G_^X6|ySpkhktv zYNR!$H)4g!de_IkW43H{Oxhy&-5LMkZDHDAgI{%P#>BoSYnh7#|R7c-MJ|Jp;_$YJ6;LUo5vzg z0W{U#+q{!!Ja9zd=P7H~TNS|N2yzv@O`qUohn)~6!*nJ70fU@opiw0vEA)DMdk_Em zYs)}6y0fouA38Bs#wfd@!m8T_9hp}#bGRu*!ya^~&99VM??rf_G$kX{>7F+Z`i-@&-FfC( zTDPsNtWLW1odhPNdZ}K{suY=wtejKQYXfGEK8Fgj?k`1kGl|UV4{m~xu5&yck?O8| zM6bS~Ay%rmsA!5l-OldHLyoK87WXN-!~xgFS`)3Vt`65eaGV#CT>B`NN+hZuwI|w~ z8umxinYkDrpTjViDNxGCOOGBoV&>%JL`uoX%QL*KDT&)9B2rtq18Cz9VyQDTE^~vG z7Wt(073rhK*48=h%AyG1S>5$ggrKN>Uskj_92y=^4`PNpOWgWTdX9gdngFdj!!X$d zgTXZBr2g*m0yW}?7r-yxNdN$xM(6*mk^#QwJoYJaW#q1qnU&Q(^xAk`tm3VnV~QtF zYAd+9xpl6uvCM(kc@oJ1IlpU{W6vemy3{c76zYxn z`T~#yaB)+hddzfmHZ25mK_9;EO6|D)4mPytX6pgHHX2zYKO$l)`#ixu zu}yQ}25VU623s9{-6csG&_TiczqxmIcjthen@@+*2+PYpRN<&=$|9nFS-bw9xJfol zAgTT`kFhUL8|v$q;OH+O!pi2Uo*(4?x@=_&@O%GigYhR|Fa-Iek`j)PaKa%R(9PO} zLeL@{h8lvCVHrj#%kWtK_oD@XyqoS&FcgovW-?0VV- zxQv5AcWkuX*1rvXF9QPjntqvxGy#bUKR^FT%)Cu;Ny(=HN5I)XIwY46JgOy~1Ii+s z1_KvoW^0=}*I(*N?aEaRSSez&J%K=Y(tp&h>hh0Aoe9U-TGnd>b)hes?wv9h*i zEcc_BEbPq844vL?R9ndd(hUI9Kkz0IK)={Hq5t?u*g6)R^5MgW+amVD*v1w3R{{;| z;_3?Oedn6;jY80@QF!8W10WT;o4tmN82% z;Ai2R0RDI-{EhdYLYiH_{^Gp8zJh8Y5YKuhY{9yP6KadifXpo{Tn8(>`>L>oZwd=R zj3TQCum&WEiJxC(SFUx2#Oerd#pF}hBG6%TFTXwwY)U(j0x?TM5Tt8B;4H#1T=blR zdgwV_uPk5aJlHJ@I0r-sL_6QnO$<66O#L#ALhc^JYY+-TfQETTiyx6s0}INF1#^(s zP{+K^-dgbQVj8wr`g`>Dr(O0Z{N_JlHcU%Il9I&Whl07wdWI=?x!@F zzvO~b&^$fz#*G^{fjASXGB7l3c39(P?fA!UJ!Xt;8G1W$n{6J_%z}ZQ z0tuijX&6-gw9)W=Mc%foiu!Hz`)kWapd=TKD(%_TKB3Bsx6q z@kBjfMTH#7EAIRD=Gc0=cJPqzm_TPo$IXfQM=Jm?AftR~S?D+oBw1IEKp8ul`T=f$ zn`p*)y>5^PzIk&3us73hE!#YY{^fzf%tX9>*F!NiuZc$%E}$M&u}k9+>ZuKwuaq;G z>Txn2xHzGa`*qzN9cf@@Zo@=d>r!OrbbE#(dh!COS8Y_`wU7MOv}U!wf~$7{*?4^& z(P~OOMRuotU>(BWl>#KAJo&xArStHMNODbju&n9JGJx=@TBqhDk7vf80hjGXDt-lr zH4R|&s{5F9o!da!@f8ny`;;v_cjtSZQX=iT1_$TBiCU8atKZ${8l&RxqMMJ}l(h_c z)QTNqT~-0+D|Q^*JPGZzF(?G&s9R6LFStY!a3F>;u1I8w6>OTguB=QMV3IZhm>}jD zKxUz?w2(MeLAnH_28a&!Rv$Td@C*nHT#!hmfyPh70M;)4kdr{74+0U~M+zb_&c9Su zRqg2Q-Ah~Ln4(KZW>KKJ|C-0QHrM>>m#eG(fDg5bi;GnQSIa))D2h{tXIH%K{TD-k%Xk3- zgC`AJwrpYGgH~&9%IyaOT2=bw=8@KMVya%cAl@!QmQU}*_GV2Xsj z9j5#V!mkAQ;Ec95lj71+stD;@NOpF1$H2fV5I0}Wk9YrPQr2qgrJQkeeCdfsUq>c3 zlS9|VdG#tN1V1wqljk5MK=>_By{;8Eb#=`d3S_y}xLp@mfkrn#UZS%BcW#pch9oB~ zO&dl0{&JqQ5m?i7Y|nsqw{5G2QIhgSkU6#WyuRMq)04Ru=C}v>Sd=XhD=`ZWivcZL zREEb2Zq&t0rN|g2Wj=p?py|o+Gaw(`2l6@1{N8-64e2tlQ6PRCPr|(R^7fY9vvr@F zqVo9U#0Hv@D^bIaxybNFNADcL6Q{0fRunW|@pGj zw5#h9h<-J42|@r~D?d8RJ{vMG6{F?96KKf_8fy&+y6$`-Sse|!oCgr1d4+}TxMB`Q z%Ne0^U{||aTSwQIOG)MR_2=VLQWn57ja$`LCSnL&2l!$G`_l6yBbZ73#jf!zQ0a3? z==pBadT~QjlQ)ovK7Pxy9_&C%?&wi(u-C_i;IHNBK)m8Q5UXEn^2*D5y}i83n8QKC z0Ti`ikjq7)K^|IUhq(G!-gbubcChQMTV6j%r4}!NADX<)EAIZ{Y^0}z|JU37<>(Bs zN$$eJ!uPFZhCYgimXs(lLC#qQGNp=#4+TrHG{;i_O{ajWA8Wb}2n@_FJ>JffJwif4 z0uns9K(dzSy5t1PHf`Bm1_~iQAz_-x$VHX2{|CcSi(}?%gfzTjnpJko+e{^?u`bQZ z5PaVY@7}FS8eVX0d@>4Tgj>Afoh=AKFhvY_CgXMRY=nEweE~EG%aMy;J~}fsoY&T9 z`kt;`ufm2VL0mNNq`^w4T$#xk6t=J#WhdR3sg_?V(_=@j;cI~49xQThx3RM$fCHKb z=Gq$%U;1rJXidq3AOX@t4(Q6YmLMTMD2nhC4RwRp@AayD55^Qc*@GZG9YgKB(^u~N E2RH8IqW}N^ literal 0 HcmV?d00001 diff --git a/labworks/LW1/H_2l_100.png b/labworks/LW1/H_2l_100.png new file mode 100644 index 0000000000000000000000000000000000000000..77b38c9c9d25807c0e7f845ab67f2e8441515de2 GIT binary patch literal 29490 zcmagG1zZ+gw?2FW0@5lWjiQ1`OGtwV0!pb!Hv-b#X@Lp?3QC6pBGTQVAl=>F-5vim z_?~m#=fw9tzaKs@_uMmk?^%1TYhCMF^G;D-iU5}q7llF*$Vf{(MxoHfP$;z8^H^|1 zrFOOv{wH8BscQek%E;bH&(;tnr)O_%Ze?$7qJPEF(ALhx%94wXlY@eCPioh9 zqh)T_C-?^4Cn%G;Yj_dw0nXUZzPri|>dKf@W@<-Faw@5B)6)yherZW+;uWU6^tp5a z=Zf52w0Rz!3)12T*X_K#u2WDDUwLsoSXLxswn*XjZVbO&Ifbl9jN1xL6}KGm#fuj| z-mjjRM|%tZb@53|PfD8qzYmjlYy2thDJljf`HtK8 z=y7-+IV%v|t7g85ddIDwW87N9f!~v^wK)G3?!@#zF7}aYAX5+Ho)7-j>(^h$#a%hr zU2XmOG-YUjkDBnieDs6Eo#pl2-6WY{22I=g8`p2#C>lseOyqQ2QjNG{70_&SjhFX} zSw`6xVYeM66Y3JjWqMA|kCl~T6B83*ycU$-P0)2C7}7KfW(LeM($-2}zC;(lcW=Kl z_QbxX*ZK5#cfLF2G8!5h%#_1@&w6KdbhYQZPKBraV$TPM#U7jWKbMIwTo7}27s@ee z{@FGwMzTS{0Gd!Cbu1{#5YNNLeJDl;yf@s#3!AL_n1g^H*GSA8C=}F)h zR*mB0_Ofvws<1m&v<9^S)2m*mg1e($qKxuUx})VD#?(?WGB~fWi5LU~B4%T~VzkR# zIbAlMF(|~~hp=5ZsiHfne2Iz2=eQI$Xm`3>ar!Yjx|!}|&9}3>M(6ZE<^BgsNq8FJ zoCa7#B70Z-F0;>MH?m#h;_6IWUZ1R`5U{^l=DIzxKO39mvN+EyT8A` zwb&czb$U4JPtE`7vbOV!wl+nunJVUt(utnY<$}?cS41Mxeq^l9D@C(=jXEbUD=NI+ z#1-lP!Cfia)%GExYuRiSRk(W>?aq)j1_cF0IBS2n$JC;pL+6@cgkJ|HsfAs0al&?oonp;mJLkDGiWhEmwzjqk*-pJRiTGY* zG002IG3q=?P%x`w*UV$I*pnug)alaD+m~Y;Xp*PiTye6UVR?ARV&K`q-d^Ey#nDEi zT&4SbVyNaJE*@SpEKRHb`}eo~-oKaaE(g#E)_|pu^V?qc(TmDn zZ527hPwK31zBAg?9xtV(AuEf&JXl~n-;rp!?BVV{B%cg6u%0A({I1HED93VG09Agl zz^t#YPtK|TIwd+IgB>wbetv!yjeLA>1<_-YDh|yYHO9l`Fl>BsvB7)`tw6V}xx3QR z=V61}F5}_h8Eh|fQ^TM_w%>C*;v$ok3ZTBq&K?M3Q|9X_vNMj7Pcrjp$~Eb%Yidfk z=Syh6Iub2K>++h;>!`hZ#3*MSEHq2^7y7sO_#!X^=acZrsh zOuI_SV@fjWu}kB&yMj4387NvaZf!kiQ4pPf3KKMlV1R#=sFAJ2AHKfPBDmU?rg3M)b&=I|XQ^Jps%+YH z6Q0IKBYOph$ASIP@v+NBJ>&dP5f>G&`Hw6cd^!+v~*Ladkv4m_crDQRh_M;MkAb{>)&MQ$F8) zg|!a;swCP7e6?{)6h9JUUcY{gD%5&&?g9yk1en`R7M62Yz_1{46!2OM=HCFn(LE!J z_}$*!?3?AD*5Z4-X7G4q6-?ZMF(+)Lm0eQwGQ7SyP@-apIb)%={!t-XT(s z$t!KNM@3U}iI-VPNvS&0s$8b?yBrdPP++4sSXn;=iX7A}yLcTAj-JQGoq)%S{U9TN zOD;J1Ns=;ouT`xr18nPOhK5DU;5z8p*wPzBjX%~@)^=iCxY+788|`#!=pokF3vAl4 z`J`9|CZ=}}*@|96kh)AqM>pcWDF@ES1#Df*qQrh)yu$N%4(<)nKUJ&bi-O30b)NM; zJddwlrzb<;JM8B>FyVVM&5=^BuCAZa-&a(KLKJ(pHP^niG8~DCN47Q{s^+8Fq935Xk0cE5<5%%RhfEK=Lrdoc2|a*BJTv2 ztQ7nC(s}lEi?Fc;%*MC{Kp=1XdJkLVVD1{PtK;l?JQd^WJ`$R!{!5GCZ2tp?k2 z-VO%l{tYJ*uC>FUN&kdr@mTNyIr zBHt@2D*AsuW!}u|)lO;Cadj=`2dKn#`*sHs{7RfwEz1vAN=OGtFJF#?&HWM?A`(u_ z2Xd47pVeKk8!mQ8=M_r~EhsSUZa`w7Nkn4kq$n7)k+}Fv3TkR|Wav0JI5VTCC%dM{ z)Dor9dJ)}GI;0m(P_(XdS4TV#Ejl_nG6$D=2AsgY_*}Pcf^$o6_moUnc}@`Y);Sus z5(G03%ffLVN+MDE37T9iX^GMrz*cIx&o9QhZ{R?T7h0>th@t)Tw(AM()(IZZlYQg+ z0n{=|N+cQO2e-h^W0HKY({G3Lpx(WGD;*!tBSue8-!TUO>R*3;wibwn5b<_wY^>AM zH5UQ8bl**E0e%5Cyybp=-HHkIbOLP6GS=!ke3zj1s~&Y{HJYGQf&h3OX7h&G+G*9Z9bM@!Y`#8bh!n+*gxB;oZURej(J?&JmM%@C7*uDczzKX7q~!BJ7vFJHcF zaeh+a^HYE);=7EtHmxra9o7|I-kqp_U0)q;%zVUc(ox-6m3%v?Q|8g5izg>1+BDuj zpBRWivIJjXxOHnGO5WFHRzV5U2-*Dzx{~3Q@sHASH@)au9auvlp1tM9B^b{QjZ%{< z3;g#vbE5-9H=1b*=jl+fwY}}5$NeK^!SkVCoTP-rLNa1$TMONOD%vj7QHKYBl5p_x zQ(ruC!N!aeP*T+tH#HJblZ>H-C-02W$<4&X^s9EZ$*U!j*Fqipnkk=6Ne`42RLUjSYPsOWffZx@(@UnBQ{Ac==~Q{KoAq|C~h zcC+&7WjpGCFL1z-|Hfl~2F}Lv_;`mTOpm;DyGKLQY1jec=s}fJHkXJAZP{mx&KUKYjWn4#rB({rmzp5v{%1 z9p^RO$4{PU4T2w59h{DO6f7o+vZbui>XVcx{bCX^MM~PcZxmtlxt7mvMwYE~O?;(r zlCXC)n~YT*wH8`&^u{>W0{~EdTf7vJt*tFNWCD;K7*+WY;L{3)rDT*xcpUCT@9;oA z*MIQg&JquY-gez${U6k-VIS4J0w{8!|?%F$9$Zd1ghYCx_vX z%mENI82|l7)3M)BY+mjbAijFK(>UVj6uU z9x9{LyT5oM#Cowrr~72f$H!-4cGh>;(&<=uu-Jha1%caOtnx*AK7`Nf*RL1Sif(s3 zL1G%1YlT0Z=t)QhCz#QFe{!@+u2!KcScrxQ9}$v#p&@X4k6+9rzy%&UMKr}(efRgolILFFEY z9pFoDiLPeV(q02hfrf!qxI+MTxR_B9v$yB$xH41^@T4W^>OE;0ndGhf{>~%?qt?Q z?YwUId)3sBNM7LG5(L`k+U}Q;`6GDY{vzH<_5eW@ff6yFl_JHlOga z+td*9z*N<&mp2}M;V|jA{#`cw_oo{V&l3<#2P=r^K}N))RU85y=`&-D^Gir3ii}=+ z9&XmPwi@qmOp{!`tRj&9^T!>u=inX8M@qxNNh$5~L-NLAH`{W9pP$0Z%d7VUqHsw$ z*p{HM>sB1#T^M<1h1V(Wv1}CIM;u~?LRw>Ed z^g=(j;OTMl7`Nt=e(*paHpkwukotzOD=Y4#*OH4vCwNpT!n~&`h z09Mx8N|e&QaG;@dB0Bx+*Dp)2SRjoW`?3s*z*D~Hp!f=3nVg-SH8svsUEAGta?{>V zRp77UxRsmSWL4XqXQqOXOgp6nRJ;g$EC`P>OE2<4evm{Qa;~-G-BB*^ln{>*&j(I% z0s+V(A~CR1>uvXlo;oiBFoFLHAsrkVQ5f_8wftwhegu0yR}vd0+|oPm8NHvJWETLtB6FK-dxtML&zG-qG>X~ zlFrB5z59owrvZQT$NkvLbs@MQ-t)Du?`F4(&bYn6d|%czv)*(=FrMoS43{7@E_A2x z+fJR=Dz;CyrzZ2mgeCS^P1&>>jz7I5+xhHhZyj-QV1gIu=yVcig-?$*g~0EzXch+H zu@#Q_FB4JoiQT`Cm6eq>D==lJpGBU|{Oh)@Jr{6{{AEBC8RV%0Gk^zvUU>Sc76jTW zLPAk6xU)b}T`d9Wt(x)VQhyHP>3*wMn4l9IL#-VdAxHK+?@WHk_RYCfxI z%gnY!hx3?`(RuD&g*+8A*xnK@!LHgF3wxzzkB!YIZVtVvX{fw zRRjpIg2+zmvGoWdla#*xH)C938HqSLUj>p+A5&0(B$Hs31p#IY7K8_FDB5I0ik$PT z{!)R*WX%UVw^HL)+Jf58T1ML4f%$X289HxfN8!3d@bfvpV(QaFX?gkd%nEn1=Sb2m zA~@Sl5qD?A`4#y1gY88rbMsWQ!@2lCO$#JYn410^w1a%QaJ`0VIA(Lgj~!h%Pkn#A zmaYhV>|EPdjDk^5L4=kYw5mwk;#Se}!|%Wc9QHQJ#UAU&tvmb&7WzjPFOSo_y;0>S z#Vf1JichDLDg$Q7V!kHAX~sj4hL=M8{Y-m^5QM2}ISbAbJQ><7FD+%cF<`da!@#jP z1O3JC>tr+O~&<>FAxvCl>?T@fEci zh7@XvndeQZC!fn_CP`gGFs}*L4>pUvJF^*uz8Yx{`My&i%yi%*)X#^%67T5y^9FqU zsG*dYG6owuVTK9SofyQ2()XVv5tPf`DBFAzf#5|!%(&vI2s8o0%12r_4D|GQKOk9z zBr)fK1wobW$Wjnyd}Pj)O3+SLI`~KOMRWVG^+7 zZ!M?cH+tkKguDeJU=#c(!r`54gjS3#F1oc${*)=csISG0C&pRB8L*%YD-<(c_sV!; z;lzPX^ql95r>2y&v@PCf7<<5HQ}9_|K_U3{%oNSWRQ2|T!fx;c%-jjo5=y{nWy$pf7SMU>qtski zGBFC=rD)Q67gjT>n=@yLL^anYDxUGoT9X_*PMEV*=TY;4h@caNm!BSs>BLb{a2VS%p5Q;c##FXXN zIK+jM0fOX^L?BTW@_V6K&TeiPMP9JN3lm6ktGV2l6LUCYoQF-xg`7EnJ_7p0cKprd z4Pe1Hfb79ogEa~c38@B$C=Kk>`Sa(;YN)Ide*CaJ$uEV}eF#`!#Mc5%^cD&80P#I{ zOGXjMY+1IgTz<6ikc>sOa;iQ!96TrBD6MG!v|EVnP$=b}kC>!xN4CE)`Tfrdk}jVh zsX(9>o%4NS05TvA@1&~0Za`D5=gEDRKL81CHZ<-yw;b{f^o zQl0C|icc8^0<9JKseVU1-&_*bWjLmCu~fPEZrS_t|<5)WYP3$!t>M5CveF?vwn zcXfOrLU>O?LO#WvVLIArL~p9@WBM^XxY?Xm5d-j)NbzIHbuo=Jom^1knp8kF6jp#; z&H)1P3!7F0xTRW)g5mqH+kn+Dny7x4kdTlGJE(krh6>mpd58@4fP5fc0fNavJ^+tg zetP0oz$3o>!Uz^*Uj3X$)bEK)0kiyX&u?w6{Q#d*UcAx340)t3JZ9wX>BkVD#sa;L zu3gq~=LDM-+UYZRW^CMBX9l!Q`N@G9t@9Wfk`paC3L?b_INh3N6w(9W9%+Hb02=bP z8nc*n)XJtzRy*VWaT z_UjW}TE#J{`_jMA^!*JI45!^(`RM5R#d zsMZ)-`Oi>`{KBr&Vi>A5lc!?(wBUY9_xr#=g%9V%k@eibsmUG43?cavgVo3qXQufh z$@d2RL^pm_B|yMmuW?ekAHb!6Eg>*!>YlErEZa=b_b?{Ea0y$Cn&K?*NYgw)ZCuD< zLH(ipw*w(TMyTq~(dbaE{a8HNj^YM%f>;`?^t<=(_4_jQ%m?$A{aX*geb0m2gF7Ha z4xq;xmJ3ZHWFxrW_4TO&phXaKa16;UKkhlBWOx9$X zcHaVLZ_P)IPs#muXlUq(i1Bp8XJqFBbchC6&0*fh;X^=G172FoBF5{)1>so%G$Du) z_?YWZcYXQNm4v&Y7e!HP&m{q)7MN*I`5(DBTgg)PgV@am<_r!X9%x;rE}~+<`NPef zm-BkV0L^_jxeY`^jPnEzLZF}kzk6K-D?i%bq!4j;UM71gY1Ge@*_Tam6d) zacrQ9Xe|{4xGr*xIcA%90kr8{L z`&QZXY%6^)74;RSqtcH-|$E>-PHI;n%TF!W7_@b>BHXR-->bXY|yDB z-8Z`FBd~iK9=b?8e*7uPS8?&5cS{W@EiJuOkoJ%Kt!v**A&RfvLYYZWFcRn(4#<)b z=5Z?zcpn)VnJp@J)|nnr1HO&7Jhz_@dYnHNlEYFQbDZZ=tEeL?>K|kjlohQyNiJpUSGGXse6M(Lq5ts*f>@wIM|9#5GBm6B zSn0D=20D~BASvLo8WH-!q9*R{enb%qD@8}fuDz7c4&@6Gj{_8>8VYbvjYz16Draaf zn?A96{bd;ME&gLJha2F4q_x)P@Y@P)Cd0Ul31huZ_#uN#=Mnh&^(%lb6o+ZoP2gQ> zw&pw0oS`yO2&GsTC_o|ACM3Op{AU^f9JbP=Hx{&l3BdQUu@I&A2vmSkfXip|Pa!56HidDbmIe!2m#?it%BT;7W)+fz z0FaVLO6Q_p<%7THrRY3DhK4i|Ab6XLs|X;!YN7R2*u8n$Px3-qQ4|!ZPY?-4G8Zj@ z*mskdEI9xtZ#?b{+Y`f2CsV8eITpe_4dj~4-Yy-u{Mhr(^S>K`Z9b<`h$(lX`2yhJ zgdHZ7%j15^xWeqntF*0~BavDV*t!^T#bT6rF-T0O^peDqenC`NfJ!4{|I1&>uJM0V zuf6J$WqnNscgKSh$u<^0>n8V~QMC?t(ds(owa=#^PV#LR4(1gFK@+T-a=YlrSc#Fd z)gA9V5BT^KNrE0Tl6VWTPEEO?%_AW~T1yeN!QD$4XYenF_XxF-8!U1mFSAhM&OH*i z00wdaaEU>W#Ll}25CCp}j18A)ZY4w;_qO!834f~qjCmC-{|Z4;XVdG({yM#jE>Lr~ z8Dagq1Tfu$?Rm zz!3}i`0fM!-{&O>1AQZm?!Jr!+OsE?2epWD4*UWKG3-F*vlSu>#EOFi*>1aAh4}Ji zUp?}sSkcqm3ibcoLSh#S-zp{#`#mDGWtROE!SR zr6&iAPfbt3hX+MOEFi@)1qq3BV4cAlCCEkcG_v$1E$}O5qH`~(CsiVg9~j7};|?`J ze2Uu%4a@iL-NPXua1f3W^%AKKq%&UX%d%YlORXhm+4O|B>8xVrO8@<)+$(L2t(`$D zguQ`^?{vNw?4{~If7-vxQ9((l9+1Bf_is~N=CVtv;Wi-{e=RHxaS26y_H!5T$XIlt zwrhC^fT8 zI+pggp8CA%9&O-tzIQ1lp-`nYY1`P?CRzM+Bs`t_+?3#y(iaf(iE7x2P`%lU)y zRGz5czkef%Kj3+Yh3|+NZ|nU&*E!&BcyvKguQ1 zgMp*|?#utYta3r@&y6|yIVeRTMPGoqXnkdFcc|`I+Ow+1@Y&Ds)NSRwF z;9=ZaTF*T_Ad_o=i&ibNy@BL0P}0A6?S7XjD-VMb-dFH}rjb&{-UyLMs-ijWs_98- z3WQx#jBsRER~N2|wV|QmI*@<>`7@LTW1bD@XDdTRJe=IE{PWskjXVfD@|c-& z%fq|$aetY21eFwD9KvUORR4-n8jZ5&s%{d(X2dPsJt2a99`g+jz78GfE`Bq89!uVX z0r8rwim0Df;t{X({siiOtDCCiJVVqG;D1I{J+35BD3%jS|D9+AI4&hmO4+}Ey@9_- zlxe*Q|89G9aCJY-v3?Z6?g&R9IQ`>J@TKv=M&3JSXCCRp6V%VZh84`N-+bcA<*!oR zhw%^}%K)BB$}p)?pOr$DN$-?18VkT^vJ7~dM~e8W7JFmYd-!TZ&IU!92u@LrB{3FP zVP4?M-*Lhroj0F#a2zF&d?vvMuBO81ajW#KW((;-+`&RZ$z8KECuwx{;V|CZ*t+}s zhf%b&2urmK^Ur87@>Zvmy6G5^U_|;a_jeB*8?G6FSgs8~^kC98C)s zlqhEtWUlgl+k?uz-SO9d1;MJ2(GrQ7{pWyVB}1^{zT7YV8_kZ0g5fG5(qgfiPV} z0oiR#=C>HomgaB2L;dtDrsKfc4a?wtb)xHLLSjh-TyXTiyrd5daW(?22-3{nXe!(U&G;#tD&wQp-}>*uxMZ%Cs$V$ zfXP?OF_L3de$?0?N?7%YFl?z?05L+lnRZl2WaL9}adbqXk{43|f&!!rsG+13ve*Y8 zr5gB*Fd>)Qi@h0)SFgSRzKD=cM6hC%~#Dt)BL&5 zu9J)gfX8?dWP|aUnL(hNL|Bc3on<^Rs5XP>!vM1U^n5bEH&D|F`t-@R;RM7iOe`$+ z!YwT=Se4_}W7b_u5s@1wKRYvcz7c#$J+9X1=yTYU_z;-P5H06H@WIr4ue3~L?S!(d z3@Tl-9Xe0Bf1pUHs2YLSEF61@2V$S8w1Saupa4zPE{lNOZM!x12>AK80RfI~+CVly zRZG~g;=f~g$_$JvOialQ7H&~%S83ngdA#pDd$s())GN(Dnc-W&3WXBm2`_z3H7r{^0HR-ds1f9TYvv* z)4WeHF)KX`z)CiLoqHQ0F`urbG z+;nXhZJ^NR8nFMUz5V_66cu&^$qTI53#gSk1HZnt-gTi>D>xqokA}nA^eVuiI{uA0 zd_`cIAY@q!gMUZ-KKRa;;N5S7Xo!$js1Axa>?o)f%779Vi2g*N1`9@9{h$o71{LMP zgD?&~bf~J$yu@Q0`{u`nAn&P}nc{R@vmkMemwzrtcHX51*A&}E-_#ioCTo%j+vsm# zI4X`wbf;;VYmW~XcH;$LfB<-h(jPzGib4T`TFCiA$*_DNt*~nD^N$*I1w*!YPA;uq$teOd<{H#?0Tc`;u*w@!UMPkqFud+8K%J27~#R?_4q)M z2KaHU@dVVr>fpTnFxW8>txno7RQ?6{lc-><3alUP&pQZjYMn3Jv<~paMyT;j zCKL~eA==FmX@lN&>Zq0{tx<4t-8^y_h?p-*xYY85K-Zk%LxNCr#e0v)ydx;2)~kNW zp8-UEGh8tONkx)9OoKl%c$1kuXvoblFynlFb7%hU{Qr|cW5YkogsIIn0rSLk`FxMh}KQ_W8eIK+Bla8&uxHi1+H9M3T46Ob#~Ktx)RLFnAUG}}iOx-_hZec#_8DN(nrGM5;fGZi4X zG6q7$SIfj|#5C&di4j7gVCt# za#&Z#IUbSHfYMb6p|S($M73dgJ8$BN(Xe7? zJ^tP5n=On4;g3F(spxIj0)@mK9p~wWppdu@!n$x!g=PcO1JsWqGNSWl1m!RG#^drn z*0d&{r9)30l#?nEEodlP;_kP7nDPGcs#hx_&43JE3-4Rv7pU`eQxK*n250FYl^*(T zYgjKJB&VR5p9wl>ECR}NViFRs&5WcMDrFYE&pIZ4uD}%7il#2Xt;K)^f_O_n=dpDW z1)6U>$SyM4(Hcy^^apEK{55Uy{BUxkyESgXmi`gdjo${%3qFB?L`X>l5wtf)@L=dd z6nI^|J_eg-%Q{Ik+klEo<$FF38o#3Fbt9)KVkJnA?o8ywBJAXXxZC0K5y zWlE~ofMe2oj>8ztyQkM+CQogZJ28Rln*vhjN9HM%9nzIWi;9XsxUyC&dh!vjapJ!m z3c#ZB1%}H^xG|y*2TEfaiY`V_9Y#bb>5hmN7^>dswIU+g0?e1RiV2wmuDuSbf=9D; zw%?yx_teKFB)kUREyu8tERNeAsadP0_1xO!1bLwkKE>nd9WLV*d$%LlA!|@K*o0u$ z%8J_G+q*za{AAjbD%IQiycuS=+q`LiV{3A>urNJ5a;$N9h0Z*;XcWRU#XOIRu0|v9@`)PCt@J~ZW7V$@dC_EKY{@& zCoh=YpFMlF<|}%H=J)3}Y$&y1HqQUb07YkElCy|h01ynwkUO>T=x(fEjgDmezy6$%0Taf z?3C>6?DIG{{1$^bxMD9}yg-y+pqMFHJ_RNA++YDaDC@hIvj@$(M=Eak(WSn>xGmCO4Whar%4-o@U6*2agiyZrxvAOb)J zBYHYJ$Ow^k84#Cn%PFU+{{d@m=IPb6WGVt0u%%A~1U;a$zeGi) zkuteK?so3=mvpNI)BdVJ?AyYEw1^3gfeFH9d;p~(q|gO~-QMA$9drnF0_B0LVhXk= zPYBTE8C0*t=AlwQRQM5uZ)hAab!eWMHWf8)p@v`n0P7$DxE$IIu7ThiN|`E=FrF|d zIA(!3KsjBr-l12^7xX^WZ!a1@F|E2Vh~aHnW9iu!JKvuLSrIo1mXrmG#t>DapyFG| z_G%T%bIYIuRu)Cr%=gUc*1~M3SGu8K#^ttSj=*}o^J56f`RC6cf2unH!1x#Kgce}) zS&yNv-S@w8?b<8oS^}AIXeJZ_z_+;aCi3Fj%>L?OpEK%jc1!LjAq&;rOg>mX4<4Q} z@)mX+mq){4N8&@R(bh1|_y-<4e-mOhBA)3_!NIM4vqMF8DO&^DH}bb=rEz+M`KTE* zo+tzX0Lw9e_?}$*liHityiYOF(dVmK=Ax!KIx0>2Mv%KFUr_Q{$ftZtD8|^jCM`_d zMIs)dS1%%c$AE}xx4=M&PJ!qFgv}Fy6v?*7L_CW)VlNG`MQQ53P;=Jc$)CPmxz)LT3Pm=cfzS@DZ+P~h-RR%6h z?qf#wBgwGjEQZPh**X}48HdMGk;!;1@ERlT-_Um;1;=xX$-VtN^3fO;cT5ogF;zg~ zT`ISUSGgdS;Nt(KMz3e3{Vc~Dg&XpgqqU`8MwPK@>}f9|;rSLYvG)y=ez|JoXV2@B z^&jXeL1KFcS8QZ1!9h%(xM!*3Y-Q@a!r1(3vZCl|-wf>VJ8a z7tI@wRYR?4^M@}s!gN%?N~S1#pzTE);%Ris2Yrk`L=a{Ol(v)sVzF%w;#S@|%kyl2 z{8dgnc&V3Iw0XgXy8Db&4Mx81&Cz@8&6Z_JFL}meXu=TG2ANTXP1*0Xr0n>^!dJ(U zYjzRAXj1_lZtPQFFgE7Xte>&B3)t}3dXCW7@EEF_zNcjQPFeW=Yk^@oBh@^vo;*ge z<(bcv&`2@ea&&c8guob+gqm7zkbk8$UJyR??NZM|)gvH|;Kthh;&UtJTgfs<=MF}!HsH8%mH#7BIBY2}H=KBk^Rgi9cI8Loa2-L-gnE%GJRsgJl z{+pxRVN<23XO()?x9&2}j|PN4Xpjjst{jEuDO6{vev`BJSnN%=~kE_ryN zWXY^#c9)#t*$Xwrqdf-_RtQ=Q5&7{`Q&GsvCnhJ6dI+LuLCQX$H<*H$>X?VL`Z=2(0Anp0g{e`{S1{ zP}R>JET5Zu4sB{sxSfSO3B>S914x%$(ozAC1HXTZpK+QfsB;ne#$z#8cI(LPx-r}z ze6eSK{PJr)o%4-Vtn&V-28Y?&?!86lpXJ2~lvE;C8APQO_u*fq$)YV4Qi5Bk?l0iX zxf~X{a1Sd$IsmHpv{EA&b=sEOEneSWx^eM#*mC?W6`?0@Sse`0%Cxn5XL0@;dnu)@ zt^IkB7pMec;(M;ehv*|)TlP?g1NBCwX`X(bI=>!0`=$gf0oV0W@n``w98Z>@dhn6M&-PHw)47vO(30DgQo>A6>ntP zZ%-YaQT0P9l}L}+$Dw9d958wZ%Z=r=y&gLn-!9ZJPb&?PT1YYYZ`1uBWbKQN#-Tf4 zn2@h{cZ7#Oioahpfb?%cXNn(^Fack?0S%?mr_cq4q(JGs#0;`yv8P9jh)O~u-+UZI zcUM7^1WZwniN*HgUOm*7y(Pm-b29UuZe4)Nd>~hQ4m$~v45imjCw;viNQ-d!GIDYb zZ?1ZSt`|wqkp2_s5g>)u;1=kRlLU2MN;7N0(C?4eq{6sOE}58^M1etrekK!0^7~BR z2&x%$WsYA+Ebh9W*zvhY{^0=%6+CtM=A2IXe`M||j-j(i>n+HlI(Gy;kM=raHcY#U z@n3b(6^`V8A=*61dETg(F7snQ<*b~RgXKVXB^eEIvHW+4<#|tso!fFI!N;znFym?% z;HF!Z;yCYm@>mY1-&($h%GQSfbVY-%ysdaCAMDg$kMvDBffhl!LOwj&r9zXwIU+$V zwXca3>k>XbLYeyiRu@ls$iYD|vq_WUNMoRLzk4-?30A2Ma#v-X0u)DwC??0g^RQ=Y zfE0X(5IL-sj!EYgLAn|rnH8zfLlal+vY>GZHk~su45~qtM1T-e_qD~1WHn5dQP1kC zS4fPef)S|wwnq8vr&beTpYCg)4Z%hcW!f~b<2%NO?#CsQ>)!f}bslJdxxb(kif}be z3mC#y7-Q*`(|iwPXVUwfd>D~r)g3OU)%r+Rb#7(vV}8xu5uLKjQtvv?2$^I6iXXI| z+dUUO?=5=3eoeR}$jbAj{DGMo&SBupk4#0QCga^+eYI^ii>i z_dC|fhQz1G;}@_47B^ves|A@*GRY8yZmbhwvwy2jR)c(VT^m+}(y>IIn{ z?KI6^z~KCDqGTk~*x$@t)^i}^0`!`xJK zA|k||jo{Pi0RrzY9+_WAZnGXS16gEr-C}d=2eQ1c(Swv)IO0y9p|D8Z<;<>q4(z4T zeQ28Riw%_m+Z7V;sV?>H7d!9Bjd0lSd%iIF&81_pe)iRtaP*)k?NdgyS9tO))8er- z?j^@J{XFG&|9<)o`Bc`4&+9rW<8{lQ%K9#L&u>s{9Y5o_gfXx1=P)zA(BZHt66NB3 z&T|+zy}3ITefIq7)SjR|ap48{G(NBj*!$6{iC%BqlO4UpAF=rN+tIEUy|sZZK>Fw* z#{*FZXi<2Q%m*`cMDeSBWNJBdKTYQ~sPRv>c3&I&KbUl+BX7khux zXCxLKd~FgDLmLj}lIJ3X^4MyZ0>br0eK2E==dmm35~XEjr`E=+KIfk<<+MVRgM$UM zvelU8*@B9&D340WIa8wqdayIu8rHQ%c*zgwQTJ?TK8}^dhG9x1s5v0@ zJ_w!9pwJ0Tm2ZF}&?^{3%67Lb=q_Ho3+e{5hYue7hWg)mG2Y1LG%aUmXRVOQ;Q=CV zwqE_P8%NhBFz};u4lOQNG z0%_wpEUe;XC=Nh#)_dr2N-y1b5aW4Z62Wcq*o5xCDxRSuORZM5E9@8F9VUHB2F+zLR(ZNr#e{#!q^BK4BJ74+nK|hNGyet8! z$wA_6v+M<{s+Mm~k)o0zvb@=ws&)^lNtC(rT-LJxXm$!|Le}6ih_!MMS+&=Z4fLWx zW5zGjJmong8-_A%-tQBByBXbr!Pc+ht0Z1iRIb#{biR59*1zl>BRGfJieESC=g|TX z7Gi`(U2y!LA*X`yD?gZj7duY$cwPatfomYbh{+#@RPFg-J}dM;eS@wO(f}1+jIM8z zcmcG+t~GSJ4$$%fLL_n!sg{?QLjz+pXSAwlAz|alsx+Q(pkF6lO>eEQ%kEJ?&v?F% z&M1ZRA2(;{1Vj`q|I)Rrn}a-%n1VtLvW@m9x{v}xCvZpS@G48xnR2GdBsMZKvJs{Y zElmRyI!VA^0ezPZAnO4}P_t2$QO?u8)x|{(v(q`#oK*qNB?9M3ef@0S4cR8!lTST? zICNGMlO+#~Cn()Lp2qzH(-=4$Cf^EVd%3f@84t=~7VXl$yw<-_zkuRv1CnY3{jmX5 z#khZl-B=~s?c2BCe)u3f%lR;TO*v=}A64+IqVdlThPj;JuTC9{?X^nq4=qiTDlg<< zUwEBt#+L4mxS987zj0eB@&yq~O#lsE<&Q`4Lu4|cZqR87;i%IJV`5o1vKCl_ z#1Du@33YW!*eJBnczj(zfYKXsYQ3z&S!lb+&w^JOfZ#I{_gF1W+4E>!3L$Et!VXB> zpe^n$(wOi$X6BQfF1dB{=-8O+Qh&*wLgW6C=c@HdPUCOZWX8Gn+rK-nAp(?;T8s;o zfHWyYJ>3&)A%|sNTI|c3WLg!YzHp%uu(nokRd8pPROR-m_ip-kjRP+ip?sRw1no*; zJKnX?_0YEK(qEr|oQ5ti7M+;=f)|tKIv>i(s6t+6kd4rY%(@kO@ht1GhOC1W;!Jbl zmfjo(d3-{US~-`AQKMn=ih&TPPV8k^gzZ4|pe}qr%yc(mE}@vQiFo&Rd$JRsSEs4M zm7`yl*0$#0!3=>{Z^k(vzxRFDMiu?MXmJ4hq$sAW(e>lswPxF2lOfW0A*YxQd|aKZ z)uU7%pgmwewT#5CG>AQ^yDUn(G1mr{X@IeO5WLiZVLV}vViVp|FsjM;W%3)t?#{-x zf(b2cG@t|+%_ZXuQSpinDpkUV(e<4cp5LlXZhN-4ez6o@8gG9Gsc;hNdfx0tZQSlK z%3s#wOYMZyKj(D`k%EDy`z^^o@+(KZ z>YoZs7?4eT4^7%M^bdM(ITnqtehA5ibZxG0MdEvs>3LLWn`n%dYc#Tji(LYLwmVXU(D&ObdjjnSP*3hO>K7A-$DR&x2aSZ&V19kd8@}9vgs&z-B5C@y5>1AbwV0nahZ$5 zcSLJ*`EL}_lMYJgK(aSZ#Tp#0()fqoL zuPYsvh8hPr>0SmmPVZO|*V_6C39EzIh=JL7a^V;1vJ6F{TO8<-TyC@Iv`eTitt*Sh zIEGi$b6(d7qk9*;`zH+?V$f(hZt+4*R-h2v%0@(W|`K z?RDq^Acw2bJ#_aHt zY>xf?xt}U396Q52sY5nOvApc`9nwswcTPA~1ick%uBNGzPjv;}?M)lR@N-1a6(9SS z2$1S>>dxn18#?GQ^(ilYi6kbOh1H$cz}N)hC(>8+yG}sa&OjX4( z#0wlu0Wau`p^Z}CzyNu3P^CAT`Dl4req+$VkA2KFUxkOF%JGdHl~=44E;(6LM9SH8 zx*V1+a}(uTPf1+OVC(;t*vf9$RARO_lf*r&^a$Yj{}+Tza+il{4OExYEdc&l)`Cj) ze-%)_9AJZtyYF1#zA$+OSxW^$DzAHoSKMh&z5AkIjMb$tHgYNYvc#VXXvWjMGU8Y5 z9y-h9h||++*H5B7hqhvb-}i^+bT+MGL~;RL39F!|IMa-Ba&o4#!iy#xnz-ellwOZ0 zQ;~)xsBQ1{R-F8Sibj~ImnV(V^=3a@I!?2Tg!u?aD|Ih zREw@7AW`twBXjn%Zeubb_u` zf3(qsIf-3x14HZZIE_J=UiK2btbkAWo~ygaQ;7td#>U3U9u2D-%*=j4K|!7Q+aP!B zpX*Et)KD$noA5&#nXJn985D%KyVSP%p#*_w;$5TuzNi8^VB09Xyu1IQBk6fQx_!4Q z!wR48;mwgel13sr-J|TF@0cYN+L@6W?jrOlc3z+SMM^WT1yo7$_E2-G+MQeSRA#fH ztFL5xw6)k4qI-(98~Y{F=Tsyn=HC%9!cgG`o_q=TPq9h9=wGqPt!;RDP9xGj1jRj+ zX6r+cm`9?)+jwTdYEyEFBAb1hjZ$(~2M!R9su!D}L_}v!D8ar_7+2Ku+~Vm6n`d}> zB^6@~<+@>kqP2qz*>$!!Rx4J&MwTv-9fh>KjO|#@qujE%3`1<+S|pdu$wVn!w(p_b zIdnGq+mZZNkhAmTDQ$G_?*9Uu)nYm!qtXM#b$TZ8zl7+q{r&wQ5Gro)cwcz#zId#S zwH5AA5eZv45my35c?8mL`?+KppRQR;9 zJ~~Gg;j)$`KHk0sn||5p>fX&1W*zG6oMUUkL895URx2li-5gt+ zL1{J%I+@sfx#x7Gul2}d(&gc$f$Pqw;^{9Me9$@!uUevqy4GfkU?8+27PDE57Ff}d zHD(Y$1L!Tudy?M#=33SJ`tfpMP!Typ(2tg3MC1Vr0~d)c`Pa6 zrom7`DMN-(A(RY7=CMR>ie!ukMMRQW_HlXNZ|`@%`}y|TYiTvycmMIa&TBZ2<9A+} z(4yx(b->i%{raf3=ga4WDb?A%KkBsYUuEzbKHnU7!052f+(Cw!_k~((cQ|!iQ*w-E z6X1TlZxdwYiu}Gb*aao>8?n6+v9ZIG)7bAGz%M079|-Ck+oh2VGdQNYE;ZI{U#CY> z2S=#tfKqENO)iCLPA}7PH0Agt<={`rJZ{c$qb*~1e0G-9j@DM&YRN?(tBO=k9`6rL zrBMrL{nnJs2zv97mKzEWR9-4WHGsIb_erpzu{bl6uN(pi~rABWPaR}-Z9Czrj zjg;&nYf?-TQ!0~t7QyY{y;w5Y5jbbo9O_hHBzr2#Kx4Fx9x_`B&9cdYAxdg zWAgMBVeyEG1Z{_;RbszlawLQ!RA)AFsN9ZkR_S;wDF2GSY1@{l5Xo}48%!JJtCHJ< z{sG7wO3&m>G762+6!>bb(jJ-=`AMMNaCWx^V@ZChbc0rsoF+HTk@4l~HtPbe%I8pR zDu=FcZsH3yJE1FLq?gkcHbhCEmMGlG_wecHk$}^U){<-4ZWftAfm(2b4<(ep)%VA?%ESJCd;_EC%5p{Y! z6e|+J=Unl#NYG$Z>Gja3>dwFFonDN0l{Y^RVor9{XLF2Uc%N%4xLtU7`kQ`qptK7V zF{|$Rta$#zs32Ud*6%qr>GET*hjrru8s)!N^2n~_$uIxOJ856< zWW7?EL#BUj*daer9AB&Ow6;R`?FxlIB?SSu zm(qbk!I$F~TGH#a4Q{Pc&n>^b-Q}gYAYaGzd-<%UIkz&0pI*xfU%gMr_l29-uETAedH_VKHsr-CHrQ zNv9VTXVruA{z^F+71t`^BQ#7g6fZE>Qmc=HMor)Hw{W#GXO6ef^lX8^xxUJ*Po@43 zZt^9Si&$*!d(>le@#dQf3$9uQzObd2Cckl^RrYM~PXe$M)d!gnp zJT&i34(D}?)@@s*dPeGi zLygx@`?$&$GOM=ga;Zd1#XkSS{zRGI|IV?1*e#bS8T&p+w;t5b3{K9V#*fjk9N4^j z;VL9vL@{m`vVDcQ=Uu1png($e)iamhaD>&CG`uZ4rMK@;my$}Wy4dFj<6rMfv-e9s z>6_cVu_?p*lQ=}*;YqfyK{g2>ypl+6!~@gYzxwEvL5p>RM8I%PTrrJ zozOSRd|0Lw>{hZD%Bq78ZIJiYGu$F7)o;oosLR%M>++wiT=s zuLd59b*T+uw}d@a*^5r_f!3hAX#JWua$b6}hy8}Ho+%$ZIyfa4kSM~Ko)h@F!tIJi zN?VQhT@&i0k%v-ZMy6X8_mNYs5{$h2d3US65n=AJIVhsOOQp@+KP({lSi_F}nbd&5 zggX^_3BiGa$`vCeSe3F{O>M6GYgYETL%h{JwV@ESG-+{8v1?TkPSi_r1tz-uef*a@ zAD%H~E#z0wd2~DLg4k_$iL;^m{$hyI9)5MQwMNLlxODQ|jqb43LBYK7F4^K{yux>d z>)9HEMjmmt$yqVn9$e8ooh29|z%t;=UFCX3M5*#w=RRdIGk0YbIxi+xMLCiDfMkh6 zXImH1juh5>j#T0;_^C~CAG2TH^Hh`HPVofU+Gc3agnQ!@7!W^JX2I_tOtIi zH&TmBrRKNnC_h}XJCIlS)>`_o!RP1dY`+>_S3ZeTzjDvkp%05Q*$}nsh(h6tO&!m3 zM9;JMO~)0u(Op^aW?~xKSXC;{yZo-w>g<^{!=tL1rL6m91jt8cy%)bz{6uU6i54;K z?aoX$7H5+ell5yv-lTEeq|Ch#j7m&wQ#2POJ;uN4zHYixeKA5=`0BG2Xp)qJ_9+Moen zGE+!Vqu|~6LH?V}+1kvSTlvK7tt0lzNc`N*ckNy^lfumE&WP-%(c?e2hBms~{W7tY zak0_2Zvv0aOawkBn2{t4$Y$B)@Z`+miY z`grqxw#eMtEa<$jUuBsCeftyoHm}UN@PM>NcNqZ||HQU!sfQ3+9+m96X=)v#(wp}C zgL%N!XC?Dj66tnS=gH>v*6Dc|iq>APSeumc`^H(y!l{dmQwQWu%hRq%@TFn4S!T_V zAbN9ckda~StAqC|p0oaC>VpK%%GCyw8(-SuU5k~p*fLmFiml zmR=b7^=o5U-n^$6Ek&u6e`>qJj|=0jViW_vbblhYt}^20%v`Q|l>S}s@SG&I(Nj8( zH}J;Uw<>z|gIDi-cipirZu+;!s~H*?Z$7-)e7Cdd>9354WlfR1hjqU8ui2N;6knvs zBj-We*Q29-(y&%;n>3%;V%Nl00p;;5-O~{iYIW$cdC}NEIj2?*mwdcaakt?aZB1U7 zclfnb-|VseQTvT$EjLP^arg*`{h@HKYlMHI{ipMlV{I1JW~=3@8<{5Q9?pBzo72p%V*Dd(Cw??stSr(iN1ClaMuxezWMKWY z?$NRDe;Ugyg}W!t`K3C{i%4i*)i2lRjtoezxDz6mxs1V|w!}Yto3i+;A78IhTdtJq z*xHD)9?8uvTle|Gc-AH^x8@chfxkZi7UM`;&rpzCcYOL(ocEc;wCrbh?~iA1*m8N@nnPwM z9e1CoPrVz(;5V&n*lSeKAIb1g=)`GJR!vH&hjBr_{tCk+$DpxPX%~*@665YXo+(!C z#|ynsg5mM^>5E60u7A*yJkBky&M(WHAS<9wSuGa1J=uBm{&ZAGHqG&)oNp*|zgPCu z-ZpLbaiv|iK7z7++u7oxW{Iq0fyJv;Tc%R;Xm_^!VTrp!t~)R#PVp+o(cFd}K`EC# zR&RsKTk-}>n+C6iWlQMK$GGVCe76l*kTHxK$RE(CUejw)ulSmz&atD;byEB^lgI*F zul(8ZsxSd)XorSh_-N*JVl(@HaN~y#&|CtA%Jx&iZYU-RHFmfC$Jp!T4UV!G#}bSR zaSY%ehT4??5-AXY3_@)KO(PpEyq~YKzC?OU4m)N9 zBSTPupvt`pT3`4gr_BN6rZ?NBExA*nGJbdmKO+1r< ziZ)?G@#TNnKv{B@O7ER=&4G>d0dmJrjPt`_jDI<)3_Luj**BZhPsC@10`nUQ9d|SU zhfLVvq#3A>3;N_ljO+v<4NL@}Yie*L0350!a4h+V*%J1y;hq#@;U~&!4%oU6nbiE- zzLMj+Jt|(4ZPo-Q1BN6(I0Tg6GWDtOLJCN>$ihYR^;rVjZ<-kYuWr+p_6Jf6H0f`9 zTmaImf~Z_mxvb$W0I2_VZ%gteW*B7vL;)swaB$FRuBoZ%`gOU5?b)VYKM&mZo;(Se zw;Hx7k)xVg$nnzO76bn|gH#CF-c%Q%h^bXT^UgO)cx-UTm?J<;^ zLd^H;ja|yQO~2wQA?0R+23YtDEbzDessE?Ur}9+iIl|~C&4_?I0et{(;!RBrtsqpz z1UimAPa^Gw6{?QxxB~10Wx>RuU^H>P(u-cJ-u7SbDfcg>H8vTO?lX<=XE(Ou<8ym-V%=XmUFg#uZrypP=EkpJ|NM0OKwi){a2l6Gl z|I+YToR6~|NQtf9d6ginQ(8yA*n!dVYCau;&qd%ycpbnUqS2K1cV$ox`c@W`$1SYV9x=Ky-`FYkl1@55M&K`ISciQN#emu3G(SX ziSEjOH|KZ%Ey?AA{kh>*NrFR0P64>8PRiU!Utiw`GmaGZf?2%2(7lsf=%8CAByPbv zLNw>t-0z%yJnZd*uKfLF*fE7BPg$$FDCRE$M8p!~Kg+)?{Lda+E(St{PS^7GVND<3 z^FXvzb!w!e`uGVGKg1D8NJwMGUg8Fx6ky(Fz@a0?yE|KTtQKZ}!%9MsSO7@w-TT}Q zsy=QA;Vqiejzif9A|#_lST zL=liRYu9cQ5pj7zNV8;b9z+x`Y}FH24eV9v8HZ(`HZ?~^Mpi>OOX&G0ODTKfy(hV$ z@c$BRpON~`9gGd9(eIElo>*V`EKI66fCg?2cb-M)^}o3nC6)yE8kr!eLwY{IjH~u^ ze*T!DR2p!6hQ~FzI}!LGW5|#|E6O_Cf0$?!fV8DP(zs*il#u-4I>Cn%l=pX6(3QE@ zuea8YSNe4IVH!7J$}+U)+Op4Nc*9SUKT}4>deQ0VR~z(tP`Fi+sv&XE0^FYv+T2Gv zvd;uDMPZNnymUqM6uuh;WyJ0{?G)SSRf~J+>%bz&=U0f+mfEuAwHH`p#&hJq$55@n znhSuLWdJq;hh+n(!7yrDJFjExR3Fk-bo72K)Kq+ha z@!9UsncWc0v=>db+w08mI(xD{gTjMQecU=)Zgr_PJ(*r=KBcJi&}5z!h5Sy23=B^G z+-ugDb8>QieDhM8PM;C%Lc=^KKB5X9$uSg13dk1&IcvxhDs9M@%T4qJ&PO5`5p_F$+dSczWJvS*W9Q2|wgC#??iGdygQ00UvK4 z0X(=o*;pJnCEMjfT2;2KWIxOXFFI5ArVma2j`Z9rDE&NI8Q< z-DXl(1NZ+=xKND!BHYP`(+!>m1_gbo7Vzl<4QypGMkF}-Tbv2MckpoiU) zKQ9W1^fqYLwrtZACxO)KUKDK@?##b~tBi#;9DZ#OY=5UsjTKLI3Cqg9tQh?5Kf!M>xztLU8XH9y zoL|fvYC&FcjsVkSoV$i|l^9$Ux{(dMfE?{$cd0UndXLby&+o0XA(QZvRPOA#j_aeHhPenDuOpf~?D_WX9@9Qy=)jE($UPi7^GhZ5d_- zL>~q#S@C|aK9X`Y=|-fFBL~iPG=d5U=PhMaH~2-2>xj750od>OgDby3)60<38M~yIwWj6%pI*+q=tf z?!fY<3U50y9!`!MhUW5tsl!yK3gUj(c6YoIaUW;xscth=An;>Zdm|`_!2GXzIKQoI zz*EsUeE4k4Lh2FZlL3ZCWZ8ROs%*nYP*H@0g-sTB6!+|YpQC#SF@UvsWijIf#+`4zK26Jd*N8q2XfNHzEZ1#!bJW}y-;PSpltdvr+#yDaq z9>JUvyx|7StG907?wP&NhQ55(xpYAWrxx0{vFE1a_YTjC$))VaXZYFykb=0bkJIWc zopv>^(071l- zU&*UgTC0g58>xsz(V7wBlE`)2PYyO!4Dc4{@hXPu*usy8cGUS>|M zndP0CW>=Y_AQ_d|qI4}U;n+3X5C(zFiJA7jLPf*cu8@)jJqz3cs zSt><=I!WF+DD5%;IiI3&+cWJGU(m7ZFw(Ui(a?}YuW;OP>iHXp?o--O*d`|-p{!XQ z7yT9#m3!`mpS&|D)!*}Q%DP07kXhd>+e7wi|1MBZ0wvA8Rs%JhrIQgS+6csq4(VC>lzZ9i|~wb+xtQ!)56`5k^ju78Vv-p!VfptQx>n+WbdrR^@p`W#w)nSEM4>*yNNK z13zHgJuC^!G3CH2shz$Ku_S-Q`SEBEd~9M1d2*K~Y?`Dscl!BYE5@BlHjwAhhI%PY=rIl$Qi%-MU|OIClduR+FvzKZ@k&Wa z)*cg)+&d6?bR?HPxK z_Tm{^>yo8z&25J7HCyBR{CS){qp_X_NR-qOfY+Jk7WgLS=0ZI^J*3DBk-q}T`)2#+ zBH)sV3zB&3iG3V379!n8+VhKFgJ+))Jt-k5bHi$ksYM@bq8TlV==diyPty{w3WgBG z{OlhT8lkh3cEc9O52)F_!zF8_H`}2&N`WJR)@n70FH{YZrND?BQu8vSm>!^%*DrW5 z1GxG5od$64AwKAT$*;^^y)RwFvS-F;ampu!m+rLE&#JW<)zHvxIlaR$vy6lhxXY-- z9CM^xNH2wyOBs49mhtimz|fVBrm#DIpCj7=eBa?qg#(qI)Iq~^oQ;d?n|#-Qa%*8u zBjRkV!E_Y-F~YqpVFkAlb@xz~i_WEC?-Ur+dorPXht0hTB{E(@N79gHz@BP^g_WN3 zas~zi+0Dm~VU$h#P*0+LmKhhMJT!RK6&R0}3IQBGOmx-c;R2YN^}1S2Xt$=luiB$> zjM2yas?ix35`dd0bXNlC2=PGyAK-Th2F1lif`Cqc_P+Wm?N4gxp*xZ~F+{6GCUED5 zbkv6Yv1WVJB`Pis5dqaPJ~TAcJ`pd=rw$da$~H$DSD*+$8LV{|Ax5Sp70Srs1kfj} zmi_QHU0_RcMFlSa8dsHpy!8_CnZPvRiHntWy+XjZ_?Ksgzr?^UgpuU|?6gEO4dnaF zWl@12oR^-&b^v$@{LmXixFyzy`vy5q;imdA!{3a0gm47hg8qsIiuD;RO*{y5aIAs_ zGWSkAVNACwn_JLcurxu5HPZpOw6|b>%i~;>Rr>`2onUSdWdjfe$Oak4EhD<{phJ#Q zC=|DM?+W(YL%aT;y<9?v^?=$2!KZ|n@n1V{`0H&34eQYZea1F~t@M8=;s{~n-7nQMw|$r5+8*^5j~a=eTqV1il9&!4R|>4 ziekfT3;e@p`$)-F!P3CiLEBm%C9Q4y(#+D<%vk4|y}q@Lv84q&GaD;2>)mTcwze;A z_*huX|N9fnmez(Wq1H;)aFnwzC6sMYC=zYt2jjbNvM~x}bN8|6{b!ER%Oehs&z>JO ztfOO^S`)b+P?i(;d49h;ap#HA9e*9eZ|P}iuk>@4NF2T?%RNiKTXN@X+ILe7^@|+W zFuYNiU%z^Kiky2YajjhX9vUtFA%qPB^JawJhLd22+lOMCnf6_S8@rC}#c0YT<48aF z!$C`K=^!F1Dw_C(0rl3;Pa-z~b@RrJ8*T3}-y?7H42E}7(ym)Q+|eUrR&aCm6k`4xLM#)10n+qWxR#>U1{;jCVL8LE>n zdHezbCO2AG3_D^4^A{ReDi40b+3@i3ZwLv+Mz9;|MAD&>jJqn_T$n2lHcYY@nVISC z-VLlg+RAEh3+5hk{pfzUM|$p@h@Rffeszbd``gQ#M(jqvuE_`=+HzS8Hx|#vN{Wb} zuJYNA*Im*~w=W9}B(x}*r_<5VSwo|f9acxnj`kLN2aDC1W8JouowpXeD=USWR15TW z*8XtH$TDk`g?GyeU-hlI4?|Qgu}x{%baHYUc0-TkS&mV|%eJ;04}A!=yOX3FGBgv5 zHn>yA_Up?B7o`09q^^6?Q`*xJTsw>$30wiWF-6(UZ- zZ+}<4#8$gKnim=UUCoN<%?{zXr6sfA0$&oEnTY_FB+W|q)>y$PxHUFI=7nq?N3IT0 zU%%eKA)>7HINGGC54>DMCM$4XNr_^zA$az;VcZtas5JLT?TEvebQG7lJq?6$1RqsSr4%9zE>(swXk1vRzSxz2>9=4R`{;;lZ_2yRR21o7Y*&EvgG=usCI z3=9mjk&>+=>I-mKD4vQSu355%#4c!}+FRE@NI;xUKKspW8gx z>~L6J94ReyYPuChwZ#LM!G*E;mOhr}kNdkT-0f#t`B#c+$~&g5Bf`|I-x?PVwY|nA ziG&?ARA|YKVKZ9hM4eT+^rNM9dwD2|Ic)L!YK~zCb+<`=WU#=7U&9fN`%d-W&CSgL zk812o;hwua3bMuMPobgVZhL>(5)u;Hy1Jfrb4YJS7{;<;Y_@Ta*%mS~F>&G&QfT4e z;zku07sI(`!Zh8DF=yaLDrablZ(n9zwl6KVnUz6TtXAy97-!==M$1|5-ffNMv6_%K zy-3>KgZJK#>N(tOP1kko1hJs6x()AE4y~-LhF{hYxgKuyPtD9=o};F24;DUZe0P=K zMBoLiar@Gk#KfD#G(xUV4|z8(tfeaal$4ZIE-<@{QZKdt=5c&f2D83m4+})6>BFtS z%j`HctnZwcNQ4j0g|*ai_NzTKFi3I<2nzZp8OEHhl=Cy8JT5M-AvAKtVm8a;kn!^6 z%Vxtxq@Eo@`+)-kN|}{M&JO%hZS}|!b$1tHRLndx4hy}Cl@M*z7verP`{vCVKD&h} zch~yMhUX|Ln_+uTj9!9qm)I@xyd1BRU%Y6%a=}w{>N_#DfP}X8^^p?0v~4x?%7|65 z+R7FiyJ7oHe*UOT_0q01MV6J)RiTRGBNqo3-G>bd~>eZ<=DR!>R^q)MZsLT85r`)Nzt6xKg))SgJb_t}@T; zcbD!^i5+rn)XS5TlV|bq`3yX^S4QAX^=u`9b2wh0$G%Lso+6`9}sb!iZP#~9pS{^Dy&(+)t zQ~RlESzb3m=6_1?x`gRJE7Pf~h4c8~?mPX5?ARw+a(gyeZUVjwH2UE*?C#|>n z*O!O8a|yu$NfBM$-O5ETuOk`e%a<=GYQyUoXK-=5i){>_Jb8k;efMr+QPDtxbh1ng z-r2KOg}kwsG#slB%Z($;)_xKUm~r8dP%m|^)L*fjN{(}%sMuerG0C?cvFpEz9#GV9 zy7eOM6QnZ7z@%s8{i}BTk6&#+Ko4MW5XK$2y8zR7bl~k(Oitnm9QC~T_*PPL$}2V zR}SXup;k&3nW^1(w9k`~@vfF_79DO6t#58lBBx7Cd;^iRbZC37^Y#7LIGvCJZqU;H z&eq0Stvs%9`Lod>eB3%-{knK2(iCDXuDiSYU6nk)zkmO#U|;a?@c7KE-dtogIX6}* zEcyBFAINOeUbxipa23?%EX7mjRq~9gT~^B*AffxcdndHA&TqF+TSFq;8p@zBkZVW+ z!RW@#n{P%+9deC2Z&(yhldqJcH5~SLb{wfa4y<4sKJ3p_cS4Ui{4R51ha^;)^Vl$Us&{%iBB-7d7es+MHXr^D&Mc-%0h8AX_V}JPcCQbo&Gg8A8P3 z-+|XSL^s&kKf<=}nYVhB_{WIoz28ps#DvbM>!!3=Ftz&ZA8}FF*L{F7I~p4swSNE5 zFFQWk*VEUx0yO4SDtV(z0>O+OJM+nL6zm3sot>Qm=wX|`^W6gPkmo|t+f5cYQ` zg~Q&r zbV$~SHVWd3B1-F3p`-aTZyf176=J9z8w z=l3jCWs{78Vs1KCLjC(5m8>08m?GA%bmd&0{iWQqXU|^ex$t&z3zc5Q(&9srB8fCdyRu)YAIgaELutnWwQ4t21m)AU85opG$sESl{DIl3eJ zSBY_Ra&qj(jNxw4eTPdx;4t!&?3xY$3gXQJ08vtojynuA9akuOZ_GtUQ=uTtnjS{} z{P`eS#xTGC=B-<#SFcKoik`WoZc7RXYEAx9B>+RYr%xx`qobk-p0%>{ZEf91eb@gi z^P$yO*K#4bpo*&gMXa%`b%P(`WFI?Bh{Sezd<4ih6J=18eC{G z!uRUctA!~;IlDlG!-&YF`6HE~Nx0oo-L>{0Ty{jmUaVs#nGOr*gL8wfE#!O1g5{x%uG!BV-;=y%H&_Xm|0f?aK}CT5{s9Y zx1l`3DdDV0;fVbeBn82slk67z@}1jsg9YoCe&;@Z@?;{Ay`9ITRMUOeTPB7t2jV(=HL5#|)WHw7XRiqY0w!`hgeCz1#6M4aA+TOc zre^C^L2ZO}0?wg_TxSL4zkaLRsV__3NA)kivMosFrcmHyT!?qI`MCm$Fc zDLHw)(`-zG$ML@A#>U1D)MJiwUwj9OZRlaM|6LvmdlW!Udf~#e00vXdoyks~P^fZDHEmQ_QvXoqskc&H#_Km56{?;R4szvprdJ7(Y>OaXG81stXa z$81pde`*()8aH1bbfp*|5g=>6ehn8U)4udS01fHy-0@$ZY{&&}0>Mj1n{mf4SBht? z=YCyBPy=DjH72GYHr;wwz~`Ao6ZkNt!yUc0=GOx1UTITsx^L5Ol&)f&zF@%lrbq9HLcv93}FOZ22K zwX+}G%ypPBcH^$Zgo=ip^~qx3Aut^Oc8WW}Whhm;AD-3ZGk{{9kXj%dii2~WfH*b) zu)zY8Wd+LS>C>mclT1Jra0?Kb{qkUEp{1r8^QHOu`Or_FtfoIHc4eybqkz${d$8(p zugsb90OG9^RH+D7hCi@3Lq2~Nla~)EZG*rVaZlfWe;ui-5VGQ6chh*RqI{oocXt;x zH9KoF=7!DzVh0dj&Bk;~@xeyR{BSXQjSrFO8fEYWQYBK)jTT!bd{REw>Lun83F;tg&w()XkeEhWs4KZUTn018MG>W5mJGi?cZd7){UCC!tZK-1{%{he3Jc!89X8XkvsKXP;5 z1_v9?{rV#C_t!&C85_=%4eh%vYrh1<+_jv0uvd)s1KJu10opo)arD+G4fhxQnL zvUBIEo-3+DHl1e+-rQ%Ptzli5mMR8jg3EkR6t+K7zAGfl=)(!qRSSusW`T;Z9qOK4 zWOE^wMve)@|TJT#uY;NKE_0M4zMXq^U38 zxbak&u;%;Lvrz8e%l6GJ!IdwJw-$O4Sk0JOg!!F#_qiw7fF(dc>;y1Ql3#r!;OWKz8zsV zn)AxM*e@(7r@}(Xe&@BS!W>4Od|?O0q$nicvzd`X zTYrYh5IR_U$Xqga1D0w#1o1{-tfb)zVYak;Q=h8=cC=j{`~>t@oWNF(LLdd(SB?F2 z(s&$lQX_iKRHe3` z;ZIkn2E-Fm0=Nb+U#3+l{HJ`RobL-mHck>LAZX(yh!{=f=uy>48#||f+m=sJCR)!g zJ?uf?wQ>5_goL;6-fi1+FMLX>q6`;9z;>A|#&@sh>V)g>5fty|7=$T@6+oDWk#zd5 z1jhI48BVdJk~kajV^JztaH$iI@I{E4vb7l7t~WP!0#)VbcZmVTnHc{WB^vV3{tH={ zB)8~A(vZDw$hVLrB2@A@318O*TBnv~*1VEjgkes7KZ5eB8y2=2b6CSs3rl6R@bPX30%(x`hlf)D zgUt)z6zDGHnDS#lWL1wYsfz+F#-x%r{#n)Hy0Gxrp(|`kAZdu92zuk|%ML3am>z;E zgrx-*Rssr9K>i2}Bf7%Xqdd0o3RCVOzM0osuU^)-*JS%K&y%i`cfaX+_-V6I@~j z&LkWv^4Ib4{zphX8c4{!dKY= zKTKgk*6kOb+(Uvu%sb={Xu2-IZKkT}Rn%} z0GzBVLzTN-U{eZ(5F>yHM!wt-7LEgcpr>iy9xy020lA!<+&DG1O1U#9OdJHw;-M`7 zh81r6_w<`D;1E(&0gm6Tp*cc{01Y!gn9u03KQvYZ$ifM7BIR>b*99dk_SauA@^GLo zH2G$7Qy;iVAgAifD}h&Z-TC8dHd+<|y!5*(7DZnMFYD5q!rI%}-)FZN<^h`XClqBx zlkfP8*6Xi8*`^IttyIK4Z&<3ZkyiHdo*OOafAr{)R3yh+sHc!O7JAcwsIe62 z!{fw(dt!9|ld0z~Bqs4z1TdHQH8x7Xy+!74d{o%5o$BadR@erz2;kZ}h}#YzWGqez z0)?{+TyHVR2`6PJA)y`w(AEg{hQkBk4;_IQ2W{a7GxNK*Wb_-5Y(D+?aqq{EABgY) zph)!5BLo!P)2$EWn^#qrhsZcXs-RVJ?klX#;5wZ@RbC5=p9TvpJAgu+&#|1SeM=oI ztM{b!V1!{0=*(36gF9?&Y(S@dub*AA=eLA9D`Tu*l>@u)*RbO2_G!6_6XgwwW_hXm zULg-P9$&6&w`OrbO7IaNMjyR=`7%fqa!dJ$VAijbJKh`3Ee!fwDT&CSiXSu82T zXn+SwSIPGWP(Nna(ZknCnel=V=ux}#c>iQ0kPO1W$T$g{s1^XigTLLfD^Xd8qmi7Z z$R>*5G$ls@A4EsJp6~KzgL!WuW?c1zVr&yo$NJu4R`-{OxYVv|_kD=2)XNGVzNxJA zc=%a~7EO7LHjF3|lZ@2(oR79v?(aycZ~!j=)c>rmj_K{Wel1f@fGO$vCMihGqLl49 zH)n*%mw=KqCruG$(uahm9XJZys)rn^bs;4l_wIi zAsv#lXtdh(t1DJM>V4&Mrt#MaRb^@PEG-q-XOv%Hpnypf>{>_*0^5-60^$ECh%wSC zDv{z*+1adn=+#w=N%L=?FmC%(#o(|&+Q$wuAkAx;o&X)j00Qz#N_r%e5Ts;elQ}G) zNCIhy-h96Qu5Shntov<-T_(S0Bhvlzw!nYMmWAuSytW8sF6kt-w`53S>9%1@^ z8i()T9dXYU7h`y(f|B+tSUbwxj?c0A5QNMou z`p7W<9mFI?;eC{+1T6{UbhK5wh;u%ES~q%~{GTMm??*1FIrE$UgEb6Hy&OHbW`epW z{SlPO*H8n7gocWOAop%R5(5h-+jZA^rDER#T~S*r3eg-T0&n>R1?lf@Os`aZjEZW3 zTA^sUV8}!uspe1BpYK9v6f_M9LiezBDar391xQ#oF*Bo!HCK{slj@qD21&<3F<+sX zfRyy>qQMHP8bl&MKI{GY>Fo-ICJ-7${c~@;y+J@nRY3`8+?#q4s2$94ke?=A5ipOZ zB*#vCkYxS?3Ljt=qJ#ahW1KrOHf8%OrB0A5=DWTH>~rh@`7ahkIsJ(*jqUD5?ng|G z*9IG}v!B2vQez1?CsbfqTEF7&Q}1iKEOXWe(~yWfdE(#DOATzl8acCCBVajMYR7Sm z65IKo6LkTC01n@G za>HM8{P5vJ>T>DcLRvBW1n*JSu!i&6(1Cy`@M)!&k^TEEoL^myefbFDr3|->b{V;V zEspi;1Jyk{enJSlINwlHw+!SY<0qausuRk?VYL}hPLgudc<+(8CQ2EN`93V1T0!f? zRYCL^qfzx;I3~Z^T&?oThP5wzB9a9A8VlR&J1fuox*BoD<-Eur1b_|W0`@h_lxR!> zZv5=Ysrb{^DB!hq5?sl;TcxV+(+~!@%kzR~Sskl;Df#;lX)%qQ(-`i08|BnZO7Mjf z6ZyzX_y|Lh$#q-e%cp}7!)S~e?#FDVqg6y$-o!8PaRq%;*VR9dV8DPgxUrAznXWOt zA_wfxgD)~VB}9;}Lz-tCsj&hWL}D`@H6{ItTQul~uTFA6*@t^4nJUpq4z-cg%#dwF ziz|}+6S;`dgZaMD`@mi}yT)7QNsHRaMfj~Mz#-oApmYMwQ1|SZkncGs z!}mTZXoZMDV#+(G0;k1*p{Z)!R5C;5^*jL5J_P3rd`4W2h;Oj5@AQRuR1XD}6;r(J z$hqh6jZvs*a8^*E8T(#P6>*@jHa^7B=w_pd4fJsN3{h;xdS`!1`gvl=?{FA15z=i-)@$bq=6u1ETQV)SW zlr%9(bpcNT4T!KvQ9-?o9HMgtVRVC6`eSI5syL8E@bvhgYORx$o&{}XwSNv#SOh*z_WEc?CMnaeI{OpW zXmx&l1hq}-i)B!FMSvAUIH-O#n;@5CK+BCC9m&800crqrM!3B?)&X%Jq}r5qB?!ZY zU_0sEW>G78UsYB0F?Cjy2S~9oYh32;c*&+K!%iiS_ajU1K%FcOVZISSqzKd}P{%cx z4e6bT7LE%k$zV4CgT&$YWuSYE`!lcF%(VVVin2(}k(QV zZcsxa0u&ffG5WLZG2-T6dV0x2)w?}pR^Ytpp%<=#>TvAHpQr;@O|8Why<&JPl{M_V91E# zwlsjyi$WB1V8=dw_<&gjIxgU0v;6*Yh?9R;$Kn9Mln>e<{u}Ub=m9tdmB$BRlYp%P z6-F~FKl;aef6pWZB&saLDJEBOnGIAywLIr8;IyHK0(Q3H6*hr{w6vY?mpj1kyRKE^ z3ILAcq~7e;^q7Y1P0z>}05{YcbWnssRDlxR!@I{D88fBtuGpoA7hqc`!nOdpaYD&7 z`_f${Ide@g8F_nqi@UY)ua+rXQa5${vW}{K>BoVPbACN(bj3K0^v`9y>K5F!;NEY^ zV0_QP%fJ(1tG~YC-*Wpd)8AwX-fy?ti&O3D^l-x z$fQmr%!Oe1v~_L1XP5PfhPe;`zdyC(G@3k@auTk$#4x_I?T+-ut7j&R(ZTUWWn$qY z=T-9Y_Ri@ue{6M)ISV21DGij0AK#}w`t_Tlh=T}uMfT(srK&2i%OO)I4!j;0Z2Zlo-f- zupqxp=X*{B-aSozu~0p5X=kAPxPQF-9HmD-r{f26Y$pvzJZnxQQZ{`~>omYSL)aX6 z_6~*pRO&Xi3N8|&NMN{ER8eONQ1PEa9+?!hpFyIYDV##ysP490G`yC1!YwUC!u4P1 z!}+d+m%#~${e~S-QEYq@QrSIbCsDQ}31YJM^XRiL*szmMKLI0P!#^}XbDK&0blIF7 z7j9*5-8uFRTQ*S$&LxTPwdXkTN|UVQYD*o=e@_eXfU6>!MugW`h_ zuz({wK?Z;d0R#atb%#p#t5$Ra?x*XTK^RCLa9>cc>C~RBWCopeZEcM*E{ffd80aE) zi0~-H$T$Vt7Af5i#*PoiQfv#gi#yJ==!KomYbX>FO$*)0B)4weLVQP3aY8Xb^kO2` z9oVi2(O;TTrvnmz*VNQh0(BO+NDt;_ z$1-N96~I1qb*l)Vrp`%h_W*tV3=U48(^V9Z3JtCmHPuw@@j7R2-(rk|A_^$)u*{x- z$=+Fle>*p+w|Bmkc;G@hfj&V`+H?qpL9AVe(hVe`gW1GjexOF^WMh{QT^7;# zDfnz}LwZQ=nH>Wi_9h+OJ-xJUA03tfbAuAtY-P8d`{f1Y^;2+VGG>+i1k$4kO6)&E^;1nBFLPT^8OGR=BNx{p zut^AbWhM7#WMGvJZSX5b{564 zfJ-XYWd%7e++S<(lx2gM8?3A5vYd~w`#{8h00}Bi$W5ul);Qn0GbmPD#8I_z=WSp8 z{ePZ`=ZTVOAy9WulC`p(h*>MZ;SuUOH8+zB#(OuozLEU`#L2@MjMubOO_db+AO zPCqc3JYgk77v96(Cm$siQ9x3KofHI-G%5@eU8<>>7q3L{1taI8z`h>x^I>K@FME1zVW zIKipSIwvk;&fciC)vr`A9-b*A{$$~?vd$ayo~oH zVD&&DkoMB1$~nguB=}$RB+(7g{F$gdD*kmy{fg8{fLE}3iZKTuV-}*BoiGS;`)5f= zW)b}c^k2I^Uf!Ri$v=;+<&g4b>RI$NlrvPVXYue**LZm&00`X!ZTIWfuRB9yM=z4E zhCUHjBee3c4>=tJwmbdiS48y(VFrcJA>fBAp8l*#!SnJO0FBg^qsO0MW~(EKWd=Sz zuQJa0qOlSR%ctA+DXjIcT!77n=J2O$uSa7h({!W79%QC z{Wu6kbot(!%7bYZM5B-MIEnxjiNce{;~)fN?tcB_#3vF|JG+yLFQgc06;5v1$+y~K z_`?8kzg!!?kJwYdd52MjNZr6QE#|#`+N86tgqydhRdHGi+Q#(Y$pMT6+UG(3Ay~(G zriq)_MD5=M#u-^Au9u%gewjfS4U>9FC^)YN4;>+Ifziqrm|QQAAo`VOryNqrA6!W} zfdIVN^cOu5OD&MA7*Na8Aclt`h~U4=UATes$m}L=CRMS=iqFl7TY5n6i~pp2_&O}W zr1`|8DugKtrWQo)fZ|sKo)9OvFTeAQKf2t{>v{b>6J?v9^oq>haE9#ih52b2q<|8n z=fu=29AdbeUUYpH1P>$#qoCSZ3HdUply7p8R{Y&fAtCS!DU~^{vkiH`hzMa?0XCio zGFsau@b|CZF6*G+0z zrMm?pxWU(hSZ_hIzxX}ez6AV5KvvS*@cgro>&uD|bm0mX+@^qHj+U=P$HWLO9gG6q zkcFQrC`7R7;_RbW4Z)cRG*gdbG!Sb2jzkIG1eeZJP&hu_>Ir*yIj-CESoJQGaMVzY z!=~u5^?{7Z4Fyrr+QJLu%KtdwoafY-ei#Ql+OS!HGAgLzqx30R5< zQWK1*=^KPHrbhE<;}UoX%5{Bcz89I;fktyu&kg-6PLSCfU>m_OGEGz*zOW_7mRxA; zn*8(sRu|H9I{mPoeqzuOyPUI~1dO7<_JD4>TJeS+v9c*>6kLee3G8zAac=f^!OVe3 zrbR_X&dZ9g&zfTwh?s?T_BD>r<_TD$kv!1En}V8p$0RGbgw(v)g=^sl<(t`H}OmhxVaIImV7!`j& zS4CgCa?M3WHLqTit(d4hmAfm87xD7Hza1cXwsit5Mf?SObF^UlninFf0Ik#(g0c)hy?EyjoilSBi|%SN19q%& zvFqCZm3-tEQMP5JWm(XDad-%Z2AK+RYu8RejJcm#N-uM0)lX8PXb&Ii@W@?NT$iH$ zv4fZi!w;+-?D5--Ut>Zty??>E>A&}3%r%lyuip!}_*M2b)>v2DKtsp83Lf}qt#8

b=Td%-y7zP-Hr6+HczT)`$q+=ytJ4u$f*F-hRc3Vh@2is_3lgN$$RFX< zFtFda;Ri*U-3WxsM-KVO4l6B2i#-mY;%N$6TE{B7ZxBjl?=xPXO; zeax3W`rI(oIu7YmnsZ$Nd3_J{tK~=3@WefLLA9xoBcyQ-8J#**l$MJYRa3r)Cw>H8 zYB)4=3BS_SGf~)i>|MXhScZlK5rFm=hR2siq{Enr+tV`8HWO;Lx-AaFJ_{@=_NQ*G z^1GF5HAhs3$lX*1c5Q<8#`8~d6jU@;kPd)@H~Rq59-A5KzeC#lLkKqq(?ep-`C)$ z%GIiVWnw=3zRm9d_Og*GVoqx4r|^OP_&-{-y5EH?Rn<1QhW_m!9fqS?}K4rP#v75II~!_6HA z7CBbiIXSQaF8(bCF%1fT0DNbn+Fm3#Wa?1Gk}xzyo9@2t@E^QqwsS3=JV9f05l#73 z$Wq~7kFWQvZM+8|AV9r?y4z(*QdX9pgCi7d?ddNVU!>*NbHO{}f|-b5_VU?~W$y2V z<*-blVCjbY??1Hex(nxI8?g?tcDT%HT`QE-Kn|#NR6*%bx0#d7`|Og%b}Z7f7G2Gi^~` z{@ugeP}o0tf-lF$$!Wi&Z>#T!sP zAJF8}1w$4IuG^GR9}N{qwk`DJP(n%>cf!5o6NAlM6E_N{vP zqM>gkN2?kWpxKBvUOZ^@u6y&z$nhru{C)!mHqw;_JEC=D25c_V;Iov9;X^t>z`R%k z(pwr+;I^^5y%9Ic-mR(lGtI8-6aEeVm^VB7+vifDY%&Kb;J@m0?>&=}=FRx~uXn(w z8|*X;EyZkLb5&T@=y=ckXzOH1 zLzKAi){D!YKK$;eYwO8>b@LJZ3(|t?YJHmoB z?#iXp&~#iOxphKPmPulK=QVQUI@2(rsZmw@nd$COq>TGpWFiuGfo~?hOFrk$fa*Wv zE(r&#jq55KW`N091v3lto#blfsVnKBo9i=Jr_2NzYWhpdI1fZ_V(9b!Ei{`>yBa~o ze0$423ofM$=;7k*z2Xj>D>P-X_rjVCRr4r7D~qJZj-N?H+o1^WXucM{<(j>&c*-vG zL#F%4<>9$zKhQ#Od8IH!n&J0SYvbn0(Lf)SvjLO1xR(XKGHzAr*wUs!@ITJNJE?+_ zVHuT>B;Nd!bQt=%_+-=}KHpG1!+CROGCHbR)ejh6URB2aR`Re6)&fu=ZSrx87&{-` zZfR|7J0l5EV)HAihbqSX;=n5-`LZyZK=brLtM`Ht*rO|-VEMg-DS$c*sJ!t?ZFFdj(Wy>mb^9^QDX5s7iW%*1ibj>xWR55c z-W`0nH`?z_3cczO^PzW6lGs_yVkbC&y-B!{iYU~o0o1~t_jP}}*l-Q6>#(@7A-a2MfGRtckYUM2$Imj0F zea?Tce1s8@fip50-u0!jZ{x_fZlP=xm;Rni;6e=M`zp`3sK1RG_vuY>79D7G4p$zY zg2hAQ3m8WKK~4t`+Jn?i;UjNe3YG7$Imqpr%e&Bo!!61ntzgD77wxHC;wX@$!}RN8 zoMpcX=$Y%v8YCiM`eKH<-vBx+5Mv9HRm}!ip)<(D>=@{Q50Q}zqu>C01w9YYHL-2P z?Yi?a*dB2~Jq+!(RbTT!{pBwUm2t;auADvhSeWMT$!=Wm?Z^5BIJOAI2{Y6RJ2xSoLgO{~Vz3&vBK7H``@!Nf? zf5@h}7OTO}?aE4oEMokY1M(*yDY@@{;O&fK(-{kD)%fv=pi~rW%||wAj}tPp-uS~yc4i*dr9uWnB~xi{*k_Y3 z{!K+)>?Mu={{1#&Q*hBy?{{~1zYPi!oG~T9$47dLz-KXIHI@u5>Y#q+fc8O&^$S$S zZ~>9)Yc z&x7Fo!6dn{lz;QEoFsc6MXdKD7Rhj1kY^Y`8yd#Ab+Hn7ZK11%Z^m>CI=#Vww1YhP zU>J>*fTym&%=%gA{37;E7<31aVOeRr<+P;0<#@;JFnq4nZkVbtAWVUOQ*S~hwzR@B zgQWBOVjAtg5hQa~CM}DGUed7w5kQwmfV>$4EveS&N^2f{Z&@F5i5!{9PbS1rJ>&8)#*E z&L0aq6c)(rj~3n{9 zX`^9%vgtG`6ei&@P{yLV2p}M_NgnlKFn6zdF07i=hxSlaXsLk86WerqZOn4psn`Z7 zPhp7kbY)CxM*^tj!pdd>w{5Jo;5y-KtJUk4+lZ9hcfoV2cB_aA=b2jZ{)Z6~wgS`3 z?baVFj|^!UeDiKY9;OtAY2rQG&6s&!{X@&&pW-}>eNPPB8Mw=H-nu3i^3y{lZ-y^o zZJo|lw7`k?w&p`|jJNjjSMzY7+`SK6qCUMkug-uRhy@Ph^u_9BO{o^a&kBcI$BTL4 zFFk~}XRaJf3rAge1;goliu#~H)_*0_`64Uc{yfv?zbampy?QmHW=Cb?S4P-j$dtF> zFm@wiRo`T>&Y^1rG~OPDYx&YF+S5!VVPCm@hY4+s3t?M;0rhx<#}tz=;%t?Z^6EyV zuo>;ZAMp(q<>9}3-1zqa`+UC*AGz#!X?pgE$a8x!X?-0V7w?CvaxP=QdR7K~vRtw+ z5{BYYH|?4^=P=ygKB=looK!@wtv`xbna}QI$<&U^Bm;~VFV&$(pujtS zKM9*e)Xl91*72_%Rerxw1Kj1!uYQFUk{vlQyTY_icbRfp`xaU1)ZF-3Xit1FitYF!W;Bneb= z5sVAIn_#YYZ9g}l$VB5F!HdB|18QuF59uUT2G5

CdmT&2+q6Y9#P)C{J9iI zt%_y)()dX!oq!2az#`DKW_I*)m*8cSf>yrnL0RY`x0-m@_j`N!0oN)M11mk&usk%@ zg2Z0K3eo@%E8^x>tVT}dM+$_sku_A7p~9CCqQ9hpHN;mwO_?m}}T6~H=l zz_WE$bFr)Ha;cx6q5znP|*KoUR0?J2p;a+`( zdu4St@Qvi`vveYpUXmx9Ynn&0N5!izK4ccKCyEnJGk+}XPkvcV#^^Y)XyVBIB4_jtB%*@FHm%16getDTb6>u3+r9)A&m}CH{SV5L1=g%twL|6P z&_wuE{!BcmS;%7%KxdkVXEQAJX9=4Of!|+?!lz+ob#=9~oQ04D)n_!Xt~};yp>r5^f~u8@86Nhx>9V|yOYJTPl1b2?jr${@ zY}g7eZwZnL(!hYIB=Gd0fjncfau>7#G*#&7=}~QQf;xVpe87v&0>U7&friVg;ky0^ z3GJ8C@xcb^8?HCSt$>rrzM^o3ls@7f8<`RaGK09dRB#{S-d;&CJqW z0^Yv05;lyaLlkIG@`aJ6L*B_ic1LImMEqO$v+rwMM)D>-nui;{>g2!xI~k2un>>$TOoR@er_ZVSUf=#pZ}Ca z>SIxKkgcSul#;x^i-VYita~6ub1Al)a*Xz^4&$P@MJkgGU!zOqw9-p2ENvkLEj;{Z z`}Z3kAL`r;MR8A=dO)%QKf918bU_=56OjK%zq8CjIO0@5x}$;TDu(6h104m_Xk5py z|Hcwo5SA&7-O>`0_+6oQcdRTh=TPD6ru$94RdJk0wpF};JJQ!^T7S}P?3#$v@!JsD zGUj0LwiH&_{GDeV=UZO~zRcl=`K$Pn+;BK;4e^glqR95hSAqhJ31wGBQ5K$dUy5Bgv9VK8_9GA(m!T!2fR)%<0vzs6+m zw5fy%clZ8%fG19F^)u#$L-YMvG%aB)4y!iBY5<0Zbwg*Bnp;|Sp{-r49HT1i^Xn)m+X};M7j@60{)gF}L$4!q+;J-RTWQN! zyKA#gKbuP%df1b)WbAo|y*PYe>-V~PB;m5F3LzH1IBEPNFf#~MFJjF7ugum+asddZ zS~&+?a&|jw+7=bN2JkcvkOJbN#6aATK;{+=4gar(^fYx=`N*?1o_&VT&1$Hp2qB-wMOEdd!&{#z2r-C z>G_$jSYtm~7_*Omyt@8^{~;eqwNstGtL}15*NFbzvB+vzU!Tp}w0`#yRt0l!XUqhv ztK7@Bx!^HJ@z}4@vZFJ=Z|8#;si$b!jr5Dr{3$vugV@6Ec*3qI+`^yRvN`6*p*Czh z+?m|$?J`=HwKO|Ra;8FKpX<<-2Dyt`7^TGI*%0N^$zMarzdXR}k8xG?SD`u25tnor zbRE3_LkfzCuX-2#+-zR>dHTh@T^osGjHleXi55wMFH31dRfl34a9lW?1TDu~0!3b| zw(0?)as^FoFgaQyQ0R)wm3Du%?@#o|^$#|DqFq_)XTDHgKTm4R0ahCK|5MqSfK$1) zd)!cMMM`DN6kF!ZgbYa;ifztRrjV($gv?4IGDha1mXIOy6d77XrX>rRi6}$HWLW6j zkG}7G`<(Bbb6w}U_P+MMw)V2tyYBaS?)SO>|KDFIQ>96A<9y5IfNT8bUqv^p_n)w_ z*xVHBBt2W`-ykS+0pGyk2Da9y3=iM8#V)z0qaHBZKey?~Bwdz8KF1a%?wNAL1 z5t(H44+dJ(Ifor)e5Eqsk; z@sT{)PB4s{8L#${M(0ML*6*8dwd{B;ux`>AxJ3|?k6~SY{v$YdWAHSG7U#u1m6Ph1 z8=FB&>ru2P6&FbRt1~eshySS17s!^cjCH=wMXE~iIG|EK#(fUA>wnAfZn@R9K(?fH z>s1#|R=cXEj48SjZ<9cx(}Q_~H_bbAA#a)=b#tALSFGM$rKOQJ+M?IXc>VDGg@Rl@ zN&g2|RMmC`kG|X?@pu&(7qa%1t91V$+0}<-_YG`y1}lWB=STYWx)T>gHOe!mi{#`Y z9&}^YJzsE^g;S)v+!em|B4Fkii_+J4a~YLC9E!??V8g-$yj4=a_3+;jZQiHEKeS2QOjYIZ)mS)UDcaGiy3E69R zyv**Yxzy!b{-#Go06w#PPAJ1j#sW z%=~2M=spV-C2nn?5Ik>KB+|256}{c6Rk~V1gUw^1U6t!LG2*qVpw zD^#klDp|D+r}}6Z3|*OVhfWp6f1l(%7<{UEH2TWr6EimZ>Yk}AT~<4*K!0G_AvLsg z*b>|?%xCUmD!V?Em(I>bhM$;Syvi8JT=xiTF00)TOFZ#R`O67Z*iwO{&+pKhXtbuB zJ@Vc9J3X6dx~=T?p>F<60%rZH>Ac9g;zfVaHvV@y3%=W=e(VRnZ4xK)4T+PEU_+(LsXBPt5YLJO(7{PFH_NvQC!owFhm3`Qq*w5K3#G2N{%a{fu zk|0W9>cxilw{>sjJIK85r9Lkx!inXfyr~u?7p>&LQ+0_#+D162T~V}+OwIj3v@uhC zLDMcXPcbIDOYQm{#xuvM>19X*e!LwhJ2P;r>?o5tr+9rtAxToR0d4dgKitV z=N^lT!ZrzX59~zDZoO*och?_oTpqMowf%qi5odShu@lcY^of@-&ue<*)@;Zf6?u+& z<<%N)v-6OZT->Lr!obycREIilf^Fo!_hp`-4)$Wx`^ zyjaziQ93-8nklPIN3P^YpQyCGLs3kmnO{^1#znBJG_5y;kCn3rv7Oqj^I2RX@WiNs zQTiCoBIco}zKLuLqj0=m2 zGjBA|Anma#!D2ONNs`vYNjmi01?`U(tt-^UKC8x>4)g(Ke`ZaSObL(>9%F4)9JAOt+*Ab6*rq(R9l!PoKL;Z%`@eYGOBK2j>$EkBl~=9ZfnPHBxt-#x<48~} zvFxI#dZo$jh3OP6eNx^b<)$jyxwsG)-ywAj|N7UR1!8hYsNpj@y(?p+mpphceLN*_ zF=&aLnY%lVQ>f}je*YD!D++$5zV~B@o4Pj3&F}$wm=qs#`CD@ObHHEQy!B~haRFq6 zOTJZMH5gfsDM?J5(+%037T(p#LP7*tTnfkhiCEbd-r^`-J%v+E_97I8Mt3%hgxm7Y z)wxKJy47(i>0BgPrO+)85uP&Je3Mf^owPs5tjUGCuGL3HzTBvEp*0A(XL=+;X}58F z<+|Di#xxn~l)gmcX!n@KRsK4BP_(xxm&X@tR`wo?hU`Hz11kUfkF^aRzRdg9NZz~1 zsMmg&^*Nt;tO+?!#g?wkTC?49R*$om{aKy{&Bve9TS~Q`q$tIODV0n(+;6+|ye(pT zB}A~GUHy7OtYwMimz>5@Z5?}TM#e;$-5;Sm4dKTftZipgNAN4v&U!9dm_PXIX3x(V z;`J#lV(~^-O0LgF9YPmBEH;g0n-8BMdwxojTP@A!Jq*yEIVyWUcA` z(8Prk3U$?|O4-Uojy?*rBwUKJ!?svsyGpgctYGV>R4lBQ_$2vih+HGpMQ*Z3icg^RlsCn;+cy&s?OV5)p*7?9Esm7`fWhC1BqD7xsiFfK%O%b9v&8p8TjJ{_NpS14hk>FE`Ij*2yq-}4^+Z3TgP&l{zGCNf@iFR5mUQbI40LgX5+@_IsZX2_ znCtQxi?za=^uxoB*Ew@*6(#4SE{fGuj2ooi-l_c{0=py}Z&Ky583r`amW?CtxJ-4>tN zF>o@FQw6wvv`8L&dH%1kJrA(1Edy=bttHu)v|5MpGjAy}F1x`|@4wOP!Ml$H^Ps4o zTwMGMRHjBSmDL^sl2zOGa)cjD10MXQ+~kz~cH!Q01kHQFq9_b}fD!3Q;t9$sB&0zA zF!&qUZ$WPb3UqBNB2Y>Y%-SH&@H_@1`j3Gn2#v?EBOr-V18d{$-*awG8188J|KAhs zT~Mq}fbb>juQd5&aQ`A*4Zv#vKe_O+^Rx5OlPBj!IXG(Ei?~3!VP^_lHgCXc0J-%B z$fFi~fa?Mf8-!WJmyKZu~hHd;Y=AUk@$gzd4`3rw%YW@aCi00Th+v9RcdHDDa<@Tz3dcJAih2uNG zsYYxLB4}GPtJf1ioFKS0bBPnsryqxeSc0%z;sARP?mkX?XEp(Vh+x&4UF{FM|L@oD z$Jw%}-iuwo?N}ZH=C6&ryuZZsFLnSlA3^;9M1tuvvSnHK@!eUw3hWs;QO$ko3nqG1 z!t`26Jvwj)N=G~Rx;x?MwF*!Uz`{0%GjNh8EV6x8Q9u4Ge@_mw5)h^@E$xUR7g zOFK+H2#Cs!on3TudcA}Nly6PVITDbbOirc3tF%0ZQ%p_)f%$l+8qZUW?^~xZcc5ZH z2??%D&4_ERVb4MT-Mc9f$V84DbN`jiOGOa>0ROwZ{HWEAvxYdC9yy38A$DPIO%CLS zK0oQ1yzBmjWBpw^FT$l(bera~8sNJM78ghMq&*xlQ#|goIlM1WR2S$jr^SFPri2c?uo7a5Nf!ANYg|9P)vnkXX{{j}{!pF>4zJZEi zzciQv8z3p-^DRQZ0&Z|SEW4xbInWqQF(0^Kig1jDr31zbDqxdHS<%Xb-$;fsBUZfC0Ji|w6kJCkRYt48lMvmE}oV=O&tOCgLDRJ(OxA!5Z#_2Q2% zW%El&#DXl!is1l!vp;Wsir>3`!@LG@E9nFb>w8}5&b`KFiU+%N zN;gA%#0%mbKs__EvEA-WlxPcmn{yI!4NjZCHm&M@y9huR;YC2DF1pU1fOpq14}+{Q zytS=ul4Mec_u||2VIm;c?8$6^5JbLKxBvkBYc{YZUx{n8PP8HXq9SzxG0Q^pnYgwm zVPO(!_a+Xm*Ft;<;j?o*Y>(x3iJ6;Vc1iHxgv^4ha2x~)CGCI0pFn$vQ-O>uS_WdV$94u_ZHQ!!@p8F~B65l1B z`)jX$02P^FS7g`@npF2Bz&<5F&DsDjGv&u+PQ}CNfcOM9UUX#S_^54>A+Y>FJ~0p~ zmwOUMUL?wwE_u%T&E;1FhlEUkHP{yRS`a3CV!gQ0HqhAIOenHa0WnJR!umog+ym#1b z$O*iMRcWg)@xpR)DPVw(NxJps)u4;UjM(b3!{GEuj&Fo?8M~c zCJYNV0qujZyqf^zdfPuVI0sW`N;-k`e_=UxH<}f|xJL)Gk;0+xy}Q});*sEwPoYkG z0dU8sKGp)lrqRAp=)S6;eVXZdP7Z_E354YW@CiuWtjdgi zX2nnx3M^!=B;St4$m0@sFZE21b(NNuGW{~i_k4YZhvWk z`ROdsq}u_W@eOXD3+}5A!x%)sY=b%w=qnK%1T7n2GhMR8&o;vX(TdU#A|l)u9cI%k zT&C~JpmYUcji*q99_OTB2)4eCMyt>jAR%6RqC~FRFy=F;5MBJnfZ5-9c9IILVF(Bd zdc2?TqNCsmfJ6x@@b9q_le%s1mDbUO-3KJ6;@-%yZ1B+f@3!S_Pp+<%UH6~zn_rHj z?i4n$h=FpjMUc!7SCyQ4WAGKKZ3ZxZ0CoOTQt}z7B4NTNHz?kVcL9^5fJyliWK3;# z`~>xygP%71#q$3BdjnaK=XrTgU_2<1fG_9UhJ_%mu~9kVV_G62f&euSD8B?@mOLvK zS+_s=_*!?oW+>B6)gwkClt=_|j7xkJzjV`&(|+~#O<>K0{mM6xyGjpUW&i&a<_)9R z9VChej@5WmY6>$DQ2=rYpydg;y%CMP*{1_K5mMA5eI4zM0EIkY8!v*wVP|U%XH(+g zoeD%8ZZ58uYQCujZ+|j@loKt1zdsC+no%dcTs1X4T?~G)^{eUSlo)OoJU-<>4=aicJAEpHl(Mt zgOYT#2A-li;EKirwQ<1;{Hw#j?JlT-%eo4Csbuxt8B5r4)<*e0;EHBZz!3~|L`z_# zJPlu<-0o1GjDro_ywkAyJKY+s89*sbi1(NX!4cxHyv|Lv`nu#Xt*)%JgCX$K6-`Y^ zu-`bHF)43HB!Z4J*WSbfb#1{4>b6i_Q!|{Af#GInl2pOqT+%z+do^`5nI7AI7us4| z+u>J?0CF|E3jByJz#rR-zTnl(>@iZH^=ImWM)WplcKaX{V;V-%R&ba14PBGrRSX+) zD0piF7cnyHa27h>uScJq3z!aJ-|Uq7p9vsJNJfL@zX7(#To?ntz z^9<3Kerve$BRq=Mp?caP5|d!lmSXeyp&hX_?$n%91eJv@2Lx|iCfJlDfV)u)wyA0R zUz`I_0(?Sme?&7LJ!)=aYkSqpM|XoNVqNN;xWoGGZ_p~WqsS1D6QL6GK&7XdRnoa- zr{@Ofe@L*{19bi?ljEQ97RYp_oXGN@9rE6v{o4<}@cednjV=TR_mIOMvx@-fTw__`S7JjDTM%L1@aw2)iD z!b<`;I$?O!g6FIasO@{uFoDE6L8Tsfzk#av1y%rP_8y) zz0TBbAl3;E+U?=RUr@zGH$EJLcB{3U;=dVPTTGm26jL+yR*M zi0?q67ttu02qyp~Hn-UU5Hz<(p+!K!V#xH0%CQ}fcUM3@@kEHf@>yR3hutb9$~9{f zN#c=kY9sBA)>XA-R;-lOqxXaNo*%xG44rslYQOgMRGrI5)p0q`&5QkF4zJ~{8JSMV3 zLBR9A4Tv-M?sHThr`1Zx?hsTYL_iS)l}5U|Ls3vE5fN!51(cNTE(t-pL%QqG z+_mxhzxwYT_Z{wG|&H4>u<_$2AiN2OE1) zE-uUedY)-P^ZvzDX!XdV2ax!I&SAUkl?&!N0mESpR>1DHki`b>wpA&Ykkn zOWAz*zVczru4Py0Z{5a_OU8(n^uFb%m!nsA&f58&bn=t``YbBd|66Wl_WyjjZGnf)3HciQPHsW^#y*@ZtSvA zr8{>p)pa}t4tG~FRV8iqfh3D1kH%Hd;wheTqPPT-5P+z6fh@KjN+f{5LOAU5E;Q!CkZ;tUn2_KT${_nOE^gJzzKO<}+j&(}25vThtFqY>Ju0iK zdu_PTQf#U7X>twsz2q9VZ9FZYvp01`nN=>RaI3b?r1A?DT8eAm#<&H&KgE& z&1(1mcrLWn%API0;-wTPZi+ekSXn~tuUGI@p$_a{lE(|mtBy)(J>{FN?26vr-dh8? z25^98gK5MbRL6)pXEhyWmoDDOzZXE3+Or_OV!S+D)cNz-k6D8diP_u}e>yMjGq8u}H z&?0PX@A`f`FVk^e84AzI;fC`)txZl#+fnMcBy2a+Y`R2hI#1#wJ@XS5L`GYic4fGT ztLTS8Q?PKX68h*1M1T*Wp|{JNR_41?E~3Z1C7%~s*cKHHuOM5EL%aM-aj`IG*)p$D zd(=HMGqaQf{ag+4I~2v3gcCgeCd&i4-?b~Ejt|jT>ovG^6E?!d`?JxV#iwwh^`n?A zhYOjQnHvoT3oWn8hS2Vq#DDoBXJfNYd6@5g>NQko8PG7buWZ>AOfx!+;j}iUsIN~S z8X9VR$kX-xX};YO#8>ele2U_5%2CudW;ea1mhPi#Gg5}o>{rVzRLU&GFN9-@T7Q*BNm^4+w2c35L=G^LZg78(aFwX7u<`W708%fadmg z2?OsaA?uEgSTS4CSlSgB$m*E(?jQs|HX+wT4@O2tn|>|lT$A7QyQ`xLkUc^qb~OrC zbdoC{qliO$@}B*`r{aIBd~3gcn*Z^$XH*x-I3~IkxR^LN@T;e9F#3G>a2XcjuAbg? zl&h;N2?>eIPt(y-0f-u_g2r357rBb7gcQRd^kPJ}H~L^;i4To>Y_%V4_b88epB`)c zc!H#b{MExD^Xvw*0$$GphmhZ&@;VP3JsTPtXp`>1xhg-}Y^$%Y@5(n;Mj^q|%fU!;WHlNk zOXvBC?Qv?3_4qBBK#JQYCamu0Rl~{JHzQt$DyG zi}OlpVcAtDQLvfR7xr}^1p;1py_8iJY&BX+1hboG*tQ3`fnA`Rxm(v|4U?Z}qcE>+ zLb-@q+@%X*^2krqFhB#ke2k3s_;`4{hv+rytf%>n209_P4!*gzFhzWU0BWSGn=ttG zF78%t6Ro`tvDeX_EhNx)M*ajeza}Ph^8srZWouXbg3xpN{g_(FDu$Ap+G2IAVwjrW z;w zAolV*FAq#w*~5%P$BH`g3Rw*3!X_WaKYyMZ_JCF8dhNx(yAhv18!3I^t_chd7Cb&a zZs*i0{Q~phR^kL35Xo_dPV-$g+i0|qfxiAPSg9RZKogfIA{gK zZbnA~C^Qwqpz!B8%X~&OO*>6nsYbxw*OGr$<{3Yh$CsTEwBE_w9WU_*(NDESWi`+3WnWv1Wy$NyF(cd)cg|TtimoFNt*XyfNQK~Ni1-OWh%fV+B zLy(A-EFZ>K_z0CDHMp`sNGm??)$zy?K&Zz?13AQsX3sJYovEdrmuA~ImD+TBUP18Z zw?_NW@bG&8#zwuHI;AnbVH&1Y)YjITF`{sAaEQprX2YtwkoU>xOu$Fi`sa}gh|`5f zRwl}K{lCHMS-4?2-$yDcuj(e(orG>QOxjG$&B@-rjR7ZrY*i`fn^}-x^rg(+XE)=2 zAb9;&C%+=hc?-ZWC-occ{EAc4(+G&|91C03G{Yw(WVv^D;ygCxhl;GdhtLSVDTmx(?V|77t{~~NlPp;#^16xphyX!6zg5$jo-c3wQ;EjjH#Qd87odltd5Ca1P2?xlp z>Aa6Z8-uQv4PT<ZhWz$EI-H6BFqn5qgNC z)KVG&(WBt&?^{?byT%f1nV}AL-u^n;-$Ky#bYl>bSV=4AR*J@VU5*zsvp0Xs(&c*W z+cgH$ENNQQIl#P#%594iM;P-9! z&CN|4Vd}qQF#ZP?790RT<^cOLN=Q^ZJG=oWL%~ycg~?c5t0}kR!7C@x*b#vK+bhEn z5T?`*JRw?MgXqV|#8lFc+@g7Q#plmApXUKirFEOX?ngk=I#giJ{vZHABMBKPb`PD)Op%g+s+lN|Zi#baeDKBqR+mz~14ZdzqMa52XIp@+~F!>DU_U z&rr*xxaA=Xn=T20VQ*JiEBlQbQ$W&^Q&UwmHJ5X5a&d)3Ta~{1_3Kyut=0@B>;#~Y z8!asHId*^VKP$9&nvNDf-tIX|Y0nD-0|3o@UxA?Ivi(~Y0hJn7&+jovA@FH$V_IO7 zBPT^6g4bq3D&C_oAiEzo<2U)9o9D!#z>}29SFbP$XvO6M$Zi66`<6l*C)vYa0%>>w z@?ht!!)4dCHNf}SxVY+Vrvof3EPT4vsP3Mg3xtG{bH`s&<(-@a0Re>HDo}$kR_S?Y z0vMrWIub&FgM&i~<_C4IETO+Rg32 zlq)iSc!gA($tZs?V}~vnQ}#lWT|mo?j1$j(f&a0fkq7th-{;213TRNt&Po;C`P8*= zU>U^>(O_>s_PEnkQ&Y2G=f`)+xkJ92nYqh*s=N7@>b|WHsQ+~y&8)fr>0;(b(U?9g z*K0q&k5N(g0cHRtTNMNVXW06QZM7dj5F=!N?ycGOBuK5R=$V-r)CWN0$LR4+p>dBo zxKWKt4-tfATMqryTc4;Y(4J1$J~AVZklYebAn1)hMctFG7h`_#rFyY9)AeM3jt3vB zj{D0$@()Y_nC81tE92e_H3ZE9e2oIw4U$3e-c-QTLW{_zlV?9oY9Q>-d0A4N%dR}Q z(XVNL>Gtj0KP`tpBlKo&WE`^YTcuc0y`o{$--$S#;#+}DyAVr4|3e_q)T9Q$7wbL@ zluIsxQwvBtf<}^)8SU)tJ4?92Cwr^v?dLj}`1rzr-iLnpFrf`NL&7;43zy)-$B$DR zaS%VU%2q`~&bAv0FkGR;ku1=gpx>9!x+fX!$O!opV2Q}pc@=d^XfgzqW}C+1&&rnce0KPvm^tjx?kJf zGTiIQT`5JD zRi#5p00PF_^S@EzCwtRK4*#xG6?grvpK5y6V7@VO%4ogz^iUA#nv^Av>j9lKz*!ct znLyRl)EuokS26JOf0}KNwx4`M4xvq6K_RKQ_zMy%;YBRaTq16Go|JTze0ioSi1}%$ ztAbTpdS>L0 zjz)ixwT{#32&~)%Sd3%4OiNk~T$+2xyfK$ySV z(PdptULCjDOx#_FFCYcIo0)l0xi@u@)^&ymS!bZTInRE0z{vuZA%sAZ zqpkSUnbVWCQ;i}ktrV_cQF1(~0#&;Z>1H~n) zWR|L0fZm~yjiEOk0suhhQq6dn_PNTZU*qHH;JzUf@i;E3*4EYSZ??##pXs6=6A&`D-1`Q(s-PIV!d;0Y(B*Q8pYz06i4`6eB1B0hURy45Vli+RyhK$=W zGVXoF@Y1-ScKTu_)>T7ATKWY5J2=an#S@tN`ua*@X~sZt0rYhN{_!KE>wrwO0J6l7 zoqPbH<)LgIdwbSgp~3I2ZE-Er)X4 zcFaPeu|L0g|G2>9_baZdqi%!I`gd0(v`-H{Y1~uSH-7O#HA4p^KX&v9uwGu!JMe~e z+!j*)W-Xo@Ns>Z%`A)Q|8TPl&;q6$h&FFSqlJ@}3aA7BWUsl-*LkK&)iqNQS6AfT9 z)#4HO%h;-RK^I%jGcwwFDvZ`Y=RxcJ^9aJmMCIXXrpgAg!E zLwfb9f`!HRqOwOx4tU=`hXIFHOd&ynoi^4D;THc_+c+a1Q(cIiC4&)$xpz36YOVnxkZO_8ChWAdd`j)@s z(aX^?XM6bj6>@S}Il1!)Fm3yMGqbSsbkd)$7?%1!atLS=u`w~!=v_FJoFy~FuY7$0 z5u{m?xXLnuxRAHxM0v2c%6mCU$4#&fugV;Vt)9Pwd<30 z5D2SXPhB99QHr~8!<~B^t`vEIA_dZ1Ab=%|hnkwd-V!ks1C#+4bn~8-CT@Hb z#Q(ct%!&xpMT9r+<0YNkL5sQ3?8W4^3G>Gbj3$|S-EXOJV3MqDXKJS36`Yn3(qNoU z+!qLX`}P{hZ-}7t5(^h|9VUgChDP!9ymSpKuPa9Eee&k&!KHUTCprMOK%j5KU}N5&}G;$DA2=)z zgs!jK0Gxm@{=6U%1y>3Jl3!9sC7HJU$2Fo&lA98q@TK3c&*9xTZ#(%M=vNj{RD)j~=ZYS-QfTN+75_g*66+ht~UW zcwD2@fvsx4-TDgvYN1hwD?o$T;5-{G{z*sTkEVUQKtXp=>qAtAq0vMB#+C|cQ;>A) z-SLyU(-O(o9#Gvo#rqMzyuq)>R}4%L3rpgZzT$48{rk80 z-h}T9LqoMT<8wGT8z65X+5(bvu8@$_g9s5R;a=zt++^5wI!H)PS()Yf^_OrQH=86+ zLZ_zm0sK>nIdPbpno7&c+OHJ!gOayxw(#5$0+OMT&0vL3-rnth^FbEyhC#NqQ{4>E zDX9G^O{H)hxALr3wp<;_*aWCt{oU1J=Hv{1bCLW>aXVlrI9X}k@k=*Fah?ogDofy` z5+OQ<_1T(taivu|kbZ&Se749RK77E70QBox=C1wqv2MZ5oaJ}xgE7r&C}N_}DCb@^ zbx`NC@rrs2#Q6KkaA1;_-L9E24$hEx zk7rRB$>t=Gl9Kz_P`!oSB2w37Fr41Yb+T>S`AbVv`7M@$Orq{cBbyzE87*SZ41}C# zxX79X0OKvsgY}s(Ww#N-JbF5hbqs_=AT$ql!x??QD)_5nlwUDbDHf!`@;fpz=OB9< zu8x#APU~6ha>r=oKD>iHNCmP`y57mj$*MvNu)1|L+F7!ooYP)3mV}h_(Zh#64O7w6 zq-yEE`4yowBJ8wGK^B1H?R~m+V3B<;ft39Tx9yZPXXT#$`+xw~`LF&I{3e$rkGI2` zum+S0jM}MWLTKB6Me^;Bu6Z?qu13M5j}7Q65vTy_SCl{i2%d<%;R_UZ6L1M1pbD>p z1r`tz%<}6u@qOv5E@Qsud&iq65{lGERl*?fAc`~-Q%ddO!XLF%Q`oJ_y1Kd*=Pl-@ zKykstON2t)91UItl@C(x+i*KM+OKbH%(I=Afl5Oj-uPCC_mMB4UmG|oSnCM*0RVdj zd_aNLi(-ZyN{z&b;)BIZ3>P>o?*al0eka}=ahVPhc&^Gsvj2woVT}CiP(`;aB<23$ zhk{U)fVqsVEzdudC`Fi>;7OKd3sT_9S2t5DkjdG9O4t5Y0y8(Km)4#t5S%8?Fd@h$0jtUSM z^lqMGn)#MFh*#g&DVcOUHgJF!s%0eca^AQoB}4YyX?ZgLqgL+;1kjpTN)t6%6NE`ySopTLIo~F5MW2PO}tYXP1&fn zRYki|W~ff-9ZB_X?-`@R_8V^P2WUN(EGv~3=<^08;Qt7X8LMe|*?;!U@Ac)$cZnn~@wyNZg+80> zMe#$q7F4*Ux!jYTejVeZy$uu;rK_i(okASR(XGKe*)6KtfNH{T$l_2MpW(4Rc!^7U zO-LvL0bqfF_?#8nD#(dCc1MNZxDks@qc`u0;Lx#&Uet@I*{8#dEG!Yvogrb_!%zIK zgr6R_K_kA=uP?T@Ml*Q~BWh%?X0@I4*aw(U)6TbZ0$Al|t#q|s5zT6zje^U~=uZ6E z0{$dz7K!sV%Wma2zf(py)OdpYm${BW^4P)LY)XZE=8Mq0drLGdFMlMoC|N z8qqv!BycQe!}CkktU#Km<$=D9?7JhVdX!(IM=M% zqOqjOnn)4x+AJLNLs7A;&%etL!R48Zau7-QtxEv><`d2}-jJyt zLU=i$>}*NtkxS8F;0bKzKCa)eXvZQ3+o{BPXIHAMef zb(P{hfP36!MY%qfbwsu`&mW|GOC`xS1ChZ6vPX_m3tx zazU~T9r}uzu}q1ml}%EZya(e%W(lVZ^I>3Udh~VVW{F{-7uhaKQ6g!EC>^;388NO2 z0kT+@uvmqc`%~6=qOf30D(0}nKOC^nD73U$2wW=G4sTi7iik<6r;P?azTpWfI=gz- zi@o(pMrLMxigTbOiW(elOg9-&$dsf&8D~`xiUI6J6?gp!1T)BnLyQP>>aN6CG{zb(I}N)4JbjBJo?fpLv$i`uR&eTg|iM0kiXhhpbUZ#W-?wW z0V)Mz_5rd0^`a+t?%rh|>Hlfk^W~POTgeX8X0Nfb&c`gKzdspHz5K-H%kO)qvKBoA znxPsj1aN0^6(1uaniPdbr6IHF>FF6;Jhzth8FQJw1iZZsC-t#%x+C}pv@6_xm%G}J zd7pZMgXc3ITEMWC1WA8hvHyxVl>8=LPrZHA{@Ms5_#6}68m_|Vh`{srG-oz za;~pr?(msEzPGba^}lZV-XLX6>$eCDFm!+_)dc0pz^bZK%3(i$|DG%@F(_<04hjCZ zsGqAN8sZu6#+9JyuY8o)Khv3&^)P5B9wh5Zog_rK&doSX|L*2Whk%?M$ih9r^D#Go zAVU5K`|#o6MF}z4Rn(`3-yB*vNQCMsr}Ba694L3?gEHVb-LO)v`yAE5+P zIzHF?Sof-+MS}O~$!fphmJJkTnm~C3-el|ll{Ydn(gWo9Baq|2*~CNfQys_BC) zID`fM>!q6Cx*9oCj2|t6O=*!sAEbiHxXAJ3{CmvSENt)sKv0m!lX84>n7$qYsv94T~fYcjbZ}qcYgunn9NYzI3I?kWeQk4Z3Zjq*$iX|-^Y7|nPl#ShWj_l8!I%%Vrs8lNR64P) z!1!;&_~jQ&bA*-5&f?l7_$q}FG-m5H#j^^jSs?O$FX~45?mYgpX@3m2_z|#w$_*s9 z{Gos$CtDDFu>CkK@#hY%MJ0osh%icyk|p|Cb$n;PO|fFFo<*_!4y|96_d2~+5;~nrKp2R_&7NTZ!Rt_Z-x=eon_HzE^yyO+@CNGO#R~ii3vc70Y$kpT_7A!-*F+eq zh7KQw-FU3ynMSoFsgq6UQ6&R^s!s1OXY($qq3+AcO~5gqN(|sk%*puxm7;K{vE*8f ziXwI;NRJTTuXA#COnche+FFcP9{)Uy1ul73Njw2F0fhH&LrW+Kx(lX71>#O0vx+gn zoL~VZxqPaHyNaTZJuC10FFf4b)|Tlo>_+MX1#D%Youk=@+Y5E8qh+qUgU0*7sysUm zV?kaBV^Mah>S%3EgbF26QO?Q9*;?Gn2Aq$G@zpP}Ko27=2+ZBx-Qq*ZDJevBblyXr z11nC;PVOZ;g3&)3y%su(*WMbT7(b8UZ@5_T5M6&M&>a$`5(X&$f8Q0L{KaEWA3^J} z2X|gAU04KOj2Kk^wndZ`iNz{?=F(AuxL(oQkilL-sjs@wewomC=AZ6a*^tQ~1)A9M zP(j1;vn@*M2msHoGm94o>w99cd7U4Sl#5h)gq^S>lYi?L#4bOZE zPpa`k@QZovvyY{Zbz*EjO&h^~bOv2BBH+;XHVY7m)(F>3hW)#=Jj7JILnc&;5$VGz z@#FM6h?-0VAtZwz#YDC6Nmw!1$owo_AVN>({W+8XX9ZWT#a-yD7fw9`#=Q{CImMVz3;%{H3;$xj zBo!1i{STeWz?GjC116V2$iUgiXK&#+#Vo(l&%>ksmq!qJs0~zQzBV2yG$xY1IFV1e z*rW7C-boS=#6CRBX#~iN4@m}Iq2&03?I)z;{)Nx05EOa;Pb^j?hdW;Vq%cW%mIhQW z!auWqb4ApegVZRU?8b`fbxa$%bTH8({-Ebf4w7D!MBc-X5)cS}G+|@Mk=AtvjMGoy zx~1I;lhIGRG5+OaD&*5C3{t;is_Fb^F(5{(V!>xQg{h7(b9F!JCfi@r61qzQ@~#dH zb(9T_X=X(IcS0ViIlPU@w#SpQF5fr@vS|9@4i=%fl#7cnNN;+e2ln=fu#pbp`OL~h z{fl_M@Me&QgXrhDi^*zU3^S zNpY&-P*O^`ITScOw2>hEm7|~bR)d$H2r4f#;;}vFAHwW_*nX#E2STdk8i72{cR}Da zEa>i9IfHTAGpw>@tHdCM`1ha+zuIp<`|B&%@DQaoM%*=TNR%awHTt}zyy4mgHJ7st zEWejn8p;6_s<7~IoNAEvs&!5_$>GE|BC@Txt6d5@AN(0mK~vJ#rw3c9$?rtI!c(Nk zCv0;KOrjvC{03e5*6ERb2ttbLxbZ_$fEKA`<#vetRoSa(vadj(W$3|53}zQxv}EGd z#WVNs9wOC&oD9=ouTkz|n}QDeuk4yKl&x9v5tNwCLF0HNp&`~k$lv>bX2lWe^zMvL zEt;rRI4)NBD9t`rUH*@~n{6M3H3J@J?KpGVR!~k5odeOqRzttGQiwXR!r*>59D=2= zV|oYqdX{*PTClC_aKg-@-Tv_^_KI=0>$Q$}-@}=Li2Yk$UUB{Tt~VS(LvvHG=7>ZA zjN%vA=ADrWC|FuARKwywfPj@z;A;%U>z0lVW?tTIgJUoN0q95u?@b{1;sK`rc@}T> zVDS8hzpT28{D3u^U4_$#5)gYoSU3Y<2|fU9?=H4AK#_52|N3zKE^@_9zygSM8XN;7 zOKv-h4FJkb|BF#UJ+cTqUEy6_U3lon8X9tXdS4-4vwlW2JR4Q>__kg3zsG)pjfB3s zd?9jqgW;d=RTYLBd+Xd3n>$z}`d=L9AF(ri(v}v-0@b- z;f;!Zw<*JcswktzM+CS#`U5!unFZFplOBtiT&f1gbN|h;N3Is>@1cZY0++_WDi{bn zwFinQD5H)TdDzYo@oy=6q)Mb6qpR=F+u6c8O{i70^ps4K>sF6%e{c#ugbSQPJLjjqjxUru?hr} zzmdjqU)8g`35oYecvae%(H6D3Jw|>L=%TGx`u>nbC>Vr zUGzYg=K%Fl6iq|@)NjB84*%D7M-5EX%HkW?>`%Ub+x8N)7^sFoH(&YM6RZK6E|YJN z43A1qPIl3(0Uz&i08~?$m15-X+NIy| z@M1c`@a7V`G3G6lT~7gtjf_JJ&EbeUqp?$KxUMyI+t=dyckw$h=QaTlP<_9To1i0U zd+dN;Cp_07#{}G{u#e|IFai((%*cEdJl< zE(tqe&bXv|*~sXMydZR*odFy*V4OlHw=a*8_y{)YIVFcz(ZOuJjfup3=t;8TcJj=; zjmYUAK0sb_fMK}@|5f?Vpb8k`;M=y*Tbl2(tWHtO3jLReK#0q@gYoUw`wEl~LEl}} zvRtnzB9~?WbP3TH!@RumfFn= z&khMuqlj-ZwBv%BPhJ)839!I7)>l{|;v)#q}$dud%s=h|-j_T?iXjhiavk_JN zcLS@SGOSURVRpUgtC%4R&*75j{|B@V;k(KjB`}J+tO-%i2^P-s#2}2z`NC**4l=W! z!#tcPl8f9C4m<~o>wHpkxd+3?>hq|FGk0CtF#>gQNqjtR4@#S~(Rzt~y!SGx{@=xi zk(Z}0ViY$QM(C%t5SCs~ge*kKhT4Axx5wE?Tm7QP>r9IkxdJQ`vAuZg*+8cV556xr z2V-|6fH{Nkg9T?5s4n>byh;QSqyfJKtkeY!M35A9j$^YGrbK;v<1ZTvwg)D8IA5## zw+?3tmc9K#-;b;CsdUvts7BfS4Oj23^7aNs^b09AAczW1m zg3ve%5k)}F552#C*Ml6z$?uf6P%Z!9v5+)^G-+Va;B?;vU%g$sK)-6nF}Ulc!Smrd z8)=OAdLT!Hf7 zTs97d24Lx<+4*^zgrttb)WX!kX5UfhlMMGNnW=kw7@kMYFR=udMU*Te_RNk0Tfe0r zEE50UDfv-0=0mV`0=K4Jg1*G&)>e8+$#@{Xz{XVcqQR0J?^Ffq?hEJ`{M+XZ)oi4#syw7YO2njj-mfq$U7@_sf9*Fs4o=m z+(7jr9Ua^-`{!_@>{sKQ7t3>Z+Bk!wJShaf zD;KO*@tWmT{%`90AIw?}^*$to<>t+H1FdJzs6fmGtGa%{v)pGtNDJSEKtJBK|B*wr zf|kn$t*;qKl0WsD9sHR!LlP;CeW<=>tg51Tvb>1*KPM}*G`=-M9gVRFYBzW<(Hcci zGIT?)Uh=7`k_6|@w#l@E=+jD%lCmIW_So~D>7GKUrQNu7BWpO)iyW|hzz2lvL`bw4 z{f4Wcv(AEo;Is7S4{+Mim9^q&0;GWo2un5MDS(-F1qhAMkYy`Am@aMCzodvR4M?Uj z)_F`GiUF{_zV!~3Ck|Sp<}FSF!-*>g!&c8ktv`y|5;%p>I|~qZ%}Yy=&=^{8e#J}1 z1HyHtz(i6%VjJ;3*^1u>zrt&7bi0*(8Wgqksb zR-(kV%kN$N>hZt82qiFc;!@uVqT5V^4!pa$ZbeAHadS3A8LCXWpGP-Q5l_8!`+rjt zAi@Shz8s;d!)4Y>=yUycR+Bg5n($&n2T}op=7P#^{3xx7y>}?Qr@7N#oDUfw=rysT z_7lGeUhbpFT$rG5>-;|E7?Y^KCP9H@$1JF9-SeBI#i24eeK(RwEV$fnzypih3Lnbo zMtzz&W$-y0dkhq$)C(#x@h=8lbPkmgW%qi55NkHLrOa1JUt5?^j8BDfB?O}HvTT)) zut6*@y^YZvQ9y@TU2t6zwZ0!>I<^cJD!EuFQMC;bVkMaWMq@v!{`iCKU+x-(iD*k4 zzAdfrJ=J&oSz(UeseG^zxl5Tk+_H8W{1P8)h!96tb^ghNf8`%3jAnHBxrAFCK^iuj z`+cfssiGb-f`?ZA*yYPg3Db-b8in~z%Azdx0p+9Y5b3j_#O3(ps>2ZtO32?Lq26?J zKZFVgJR^RJ7~ihXixc~>|FX_escjmk*+u*w(&dmOubbFXV&A(m-<**BSGI3WqNe6b zDH~)0eoZ{7OD}r~Ig9apE=-PNthX2iVS+=jE(P`Hp+hN|Pi1hy0PF1Z8UZvN{L|@a z;1l<@Ze1q!uVM&b941^A`P_!~=dJiRxQ8e+R*on09yBO#i=PBOA%e7u8iiyVhOCryK{X+^+W;v{ygDbgn!`naNFY`qa~E{L(+UTo|`ptABEMOk|C|56cTC z76Ja0Bq^c6Cn#p?Y_W;a6WA#(FEJn9?Qvz?!?_$;79HnxIAF&bcGI8tY>q;o!SK7V z{qD;4OT0WGE+F$Ms`||eTaupx2LGsY1GU|%r9>gZG34=OJLb;Xt~`7X8GMg)`=OKt z%lC%;5t@>?T78z&6Qimkcc@Mvg+wa)Iv)iqEZv_QIOmkcG|S?T5{bE-kz%P6D@s6B zOZH_2QB4Uh1!ZCEm6CfN#qvTjB(N%9q5A>ki!SI_M~ZUbzJRtrNy}l-CiI}f_!o>c z4n<(`@+euk>xZ8nq_RkOs*7gYK>K;&RA=g}eXUQQLr&h>mK(|qOch_i-Ud3KA&?Ys z>;-}HVGsEkZ`k{2qY1EiaRhW^LUjFCcZB|v`lL~@werVT|Nh~M7{T*n(&zE;^r6|Cv@j$v5HTK9AZ`h04YI>%wkmS}383y< zklkWL^Anqz^C;RN?Q_*zZO$s1Q``FBN|H8*R;ifmH^gAj~bu*sz zQHHN%m!jP}+{S}ennFz7J=nCcvR|~>Y7{SAV<=^b>sejY^c0Z#p91gJppGFtBEikF zy9qqECL_hrDgXT|I4o9o2*uY?z;<+@d~57+3T3MWWPSR6OhenQZMHX%59oYL1ep_Q za`2~hdkc2+zAUYPUbCA;@xT>$K)|wFBInSMdib!*RaHZBd*~Q{Nf8YP;jj<4XUa)$oN$H{050y8(GO)61w`3{!Jm|Q)ccwD) zyP=MWD`n$YxOl|6i0|%LwY|=&k#tBZ_HgHlda_cl`rZGV0=H#`B|sk|(y0TP+c_Kj zVTk8t8l2L%_9n0ZM(rQ3d3*PDia5+)URYRw4&WH)c+WncbktA9W3C9-z#2gj=azT%EbSU^JE8utShWtkIlA8*eJe+J5Z?Ny{|xC7_0 zbkgst3;0G68~yxPg&2Sbq@4~P#()9-UJQV0;$!(xIfC~5hMPqrDpuZ5jRm3J266X6 z0U3Gf1oFrRXgkoFH02a&ASLwGyMD4x9w`4Hsd{qeUBmEMTn#l-XJNjr3@#zC2CEg{ z6cH&IDFrlQUmDO4_MUxcM9R!}za(pcJMVPG!Ykl3zhjPO+UsQNm`FzJ&nJap8TT@0 z$U(i0OAJyfP53U@M|UrX?n-nP?qm4K-Wt5GmrMHzI@>DmV#tZVX}s;-ACo!Rr1RBL zj>tWDZc}BG_FteoU`5HhMvM^f(B#a-PxPiLpuTMNaylg&xtACqmxqtH<`3x(JVyN- zIHWBq5>|TjF05tEI`x}I=Y=bv3o2vC-RRrog;AbkCKT3Y6z!U5Vt87<{#WVjgv^w) zp;{I$xskj|Tvr(Hs1hrUYZGK~6}pO!-?nRlHSPclM~t=&3BDJ#Pq3KwOz`eLDEq5k zb7H((9_WR7s3Sx2ocUEchFbBHk|#pXbtEdj4zHu!KiZkTnN~rL$Oc+zC`Mx=3Y*@G zm#G7G_6Wu-H`oL-Yo>mr|I*3t9Ik+hfCvkol%3Oc9-DSeRANy@OPd4%YJEO!SR;R_ zSjZhp^L9!kKFM}NjJM;)f)NgRy4Fz|C4$tD5u@)`d2C zvZVD0{k|g;=POyh@q_su(ukOdVhlIl@m}$%ilH?xp-$p}r+?BcEbgMgW&K#r9|-%$IDNs=8KP(f@8igB((|Bbn}U!iY;aJ<)5=FQGF zt*>)C0*9_MVRW`;N|0p#K=Inn>*z@DPjuIj3Tx}E^YfGXQAI*siuE@A3Yr{!9ua$O+^sbMUw>2qOp32`nY(7M1JGTn-|!H)y-l`Azaq8 zJ(<^TarkJ-+856@2v~@Gnq1Ka8xibefs4ULj>A<`76(^ZeoqYprTWBXLwr&m!YS5F%Vo|FsX$o}P{NQiQ??-q^dkJ2>Z{kVIW0S~+k^c% z*h;#HIjEVFb+(eQ(zy1>dN4k2X=MzikP!CEkYR3h3cB`n!|G%Gc1hZfCau2Bi3!2I z=Qjb=H&z>~Z*I?tHM8H?bqaxgLR_ecJM%B$ID1^8@%PQASW*wMo68b=daIPE%JQn> zquem^%AtGReC&G;3h$KyV9OP#porHlynp@Z)Q`x%Mv{cUI(fmr&V_H)Q=6vOuW|Av zbqj~?)GI~J)9z<|EAr^GuaSiZ963{-bEvw&?0GRZ8|y*frR5s-J^RD>c3YwZR?$M@E;^-0kqZMoKX;3s%0h}O><@TbkZ#A=o5vxQ(P&$eW6zv zd?zGHCypONc7>|7fjyXusF3k^#FA@FDd(1XBhcL@|Or)+O{!jnd>J`P|> zc61zc!R6V{DU~{{fJDy>{gC`%Ih=uK>_AHdGc2qh__d%F44z>@JhBEJKoaPvgPjpR zJompGbKjye!na7HygxXlpQhM0isEZl6*k=w%@Z*bUNdyoTX}S`q~RP&ux_T-By7B1 z)Rc5F${buVmH*X{{Q#b2&@s>lzJj?#fWWkR=^%R}{WcLgUXjqCw>I~)^Z!K%>Nvpq ze#5`62JFa4F%Ucu&(K=re>^+ZFO~8(+mDc7N#5PPebDM>sa{ zp*2J{@2U4M-D94M?F_!fyS36X4$9Yf#MjH+CzhHn|FfO^AM;5GtC;U&O0Z=9mjR#CGcq(2Pg|OaDDuho z{<=F`ISZFKWCe+AWq3zYBY2PqdN=bTE@c5;q40AfwFUNXsA8hl+7 zJ9S~ZC{A6-qcs{v_d!3(Xvzw={Qfe*)mz&)k?`rm~n*9F4IiVl)Jc=3xOTy^N zqR6-qPQ&h3iXOXn@jxFR%R)eIWWVxD#W?XuFlX5QzDI5g4|G_E$HRn1N4FtfqW^C6 zhCUwO@uOKG1kZxkI?ip8ZFgIV1$|fY zC0Ci>hvXjIKKz=+w8d@Vbycw9LL{!tIFL)xU8tXInL^Xa&6J4ay~6WR%hq>)&xV2Q z^h0gsw)kgj$=1!4tgE(#L6^RI`)eE&giI#RhVC7@9``*3Y<3AU4{))Jm&$8aw!wu70=%qMK5k1UIe~jFH zI~p?n^Zm?6G9r?>SC56XNQlyl09s6*4}N7ORQx$nQ~mP6Btw7sSA${hV9O*XWgZ^> zm+w~mJ`A(GBMsi=7>;dgjSsOEPkU=P9Gqt{{HQua-HEBE%#ozx`MuxpzaIv7xE<=Q z10sc|08%lZ>duRI7tF*v#L^CLP%a-3=RMY)Uc$Eah}9#zS{JojyFYxg{Qop|=J8Z^ z@BZJ0$UG(_M4~8U2$3N&3q{6^ks(ut%B)B#Q$m?a%Dj!6Hf7pG84Drvm?@IX)45j9 zInVii&+|Ly^?SYQud?@T-S@rLwXXH~ygw9`_k_j9jd5F~!}I6bKFZ$rU7%M`j($v) zq|#AxoAjV0Ri^0^H|;DIhU{0r3rf^1NjDt=Tm&S}jPY={P15 zVrpvkAwJ%!SBB31nm3Q&+9Wy#(3z56_t?^_5=xP`#j!%|_FC0JVD__6$eWm8c0O<+ zfn-ow=Ni@ewYF%7x(9NwGW96Wz85^QcQpP+TF2p$pVc$AE8p8#67*%AxhqLzN{;cT z(%ko0cY)5GEz8gG7@+{!*oNxrK01Y03Wrh--Ty3I#E`;%CS7yASz-%=`r7mOmb+rQAhVYX$A$arA|{PwHfv|A&l)@o zZ<>J;>T-NH-Sd^YXB~IFq*K@=Jq5~I{IN-=7SzKChs>8B(7FZ@4(%u3B-$ZnSG1%%FP$j zB0PB%;tPuE-(50#O^X{oC%RrFEs@|$I-K2Sdw{uQ%ji^P)MN#}F$q+MrI9o*y|hH~ z)9*SQU{Y$HwlrxVWnv%cZ>NOe)PdpbZV=%ve(E&ik>X_jfFyGFwJm`J&Y~D%V{MJ5`xTYzl-EBYd`)QpXO+ImjCmSR@emg-e zZGyk6Cvx)D`RfOmv^vAN2W#|{C$7N5;TYRZMlopCtP<#!FWBP!nELQHjDx9p@N_S& zz^7osArV?vZt7{niboU?A-z;0rrsmAx|*x8HQuVS^0xa*_~oKN^&%Z_-n7Kg<1w2p zj(JG5WJM(YfI8jSmR_4T$E+UyA#&>X&%f*#)9=xLQ$JcUHa~q4 zs}Q&PYHsdR%F6i#ak z*KVD7N+RPE=N-c^syZnuQj~6t;#cI1HbDm zaW0MZx5{{(p6%i)0lLV&ZA}r4;eCxh6;tfe9!I>WGF*;e29_UUMTF>wsM#eNoRbx* z08kE8>)Pz!vbYo!`{CqVTDgj%}-mnBlc1xg~dyRRgu=QMsex;Vk9?)H)Lx z5)tC*(q>=6mtQ8iZ4Z;#i(Z&g zOeYE$80A!Sr2g#|74mmv4K^Q!yy+-XrhZPgk7s>%BaKqGTP3dBOSZlNnRBOUX*;}o&<1AM9k`rsBySf`P3$HYnW6XM@r7W?I^v!ERD}$Nt1>k= z&5eT6=A35MYIg&kV@~PQ!Mv!}ZM4HJ^ck1@prl@cE1R1tqS!ohsF=3$LQHYw+bO=u z!}s4YVQ(~S=<1X9sfrXwjga4qJLR6aLr+4?E5ej6K=CNOiBqxaWQdvOe!R|EX*&rRG>Epk$zAH8HChgab zdrubAv57S3y##ZeT_Sj$I5jK8b(kqdj^KR>*y4Pvm)G#VnF=$~K)FRo` z;@Q-~#G;=xct^(H^XO%$JEAIbd}9};_e+<@>K&Bqs_wS<9jSNWEfo?l zppRG5>0_B#R4p9Th_2>R+%*i@+1dZQoYA?QF$=HDV-Ia59)_*SiMfww>fK}t$AcbmVDc0&9a+WxxNk4@1m0LRIIJ`> z(5t+ZizU{i-$xp)ioy4O^d^fQFMTpudb5k|f{FV6nFjAKR6A(rSWBEKf{LGUhO>!T5H039Yht0w*+*1VwZVMTMadR%D#X{+_9&H@6 z($ynm*q^qoGDbMeB$fzxuUgd#$pMOS>-+SbX=;CSY18uI zU~K{a?KEw@R42w;dRV8_OYXJ8yt<*%*qF?8i<1i&uipt?i5ONs75HOBDYis1|K02m z)=J3ju~uKmM<0_SG8NtVgZBuG$}tkr#Jun)$nTYB#;4LJxHgA!l zbn7YA)yy!_tpeh&GfK|}+e54bJS7lOna5z1i*)y7n=98FiiXgUrkkNhR0AB`J}qxo z2{cOdWdGKXiE4;hyi?7~#jy{&*vg2ZE+KW&V>yB`=5H@3V5zAd)7E+Tm@(I>E2o!H zp{OB}z^D*om09R{yaqQhelc~%#3KdE*Epl9^FY3jFTnO`ZY=L~f*+SWt2u zcQF--bR^BXmsHWu@sFj;xrDPAdGKErydpV4|I|Jo)wyu11C>kv#)3wHpm#$xO?rl2mId+g$ zqo{$4Trz_Ckjna{dt54SxI*7N_H(vPQnY=pI3c~$BwVCBQW|aHe59K6m!=T&bHj+^ z<{D<2iox=Iq_K8n`XNuPg`|pfLAxLnM`zRBXeTi++B8%6t82AD^ZX@;pd46)b_d`;yXvtGgpw9W4cKxR%7@!~#|}6V`h3Sm2&sd>jo^W%xQ}E)6k3GlBK= zU2kj2xl1dZexRML2+?z|J*sqgs3y~W~knEn)Kd6y+>TMgeYsXha~b5T7tCO0^&PviH4Me54rZ~ z$Wv+yZs_#rkI3@Dif(0c{CL@zfcN`TA4|t-G>T^KlL+2kcP9>{{F&KNsuwOF+AB~; zC!f5oXZDRwu$!%m`mTjiOt%~P>*9_H$}82R*kVaZc`C_f;o+@>uG)DFW!y?Z z4y>uLvI@n2=?qeQ>*8Qc(BQ{jN}QzBZ`h}+uja0JYOcqxl~1m6Tve3$AiiAB?D8hA z;{cYj#5|MnAypvTpofgv6-Jqd7dM7Rr8f5$J~+zk_sC$HP?N9zHc&F%?s_J3 zy#7V+&qk}a7g{2y10xFY1U*s12#xawF*B4mLSI`@X~|Qj81`H@amc!vh<%;ai<8pm zNqQ4(mB{**r3Uouag%WYUZE0)_N`yC++?!$)cfNq(Cw>V2@;9wenY4&%I6pDr_C8+ zz*^jlj|0Z^_EWf0&I*TeF8M8FKGGTj)wlSX5 z7dd!kg-8j;`kMjw=lmD+-uity)|IgJ*=o#{Wz5xZ=_}=h8GXXqlx(!WU7tz?dyqfwY=54V*%fX7x*``cmGx13Fz2m8= zNQ|Q9e~oqI`=ZG#@BKBNXwGw>D)|Q%zv}@;{2$h^%o|&9LjSXWcsD*gd_VjYxU5d} z02FqKHEgtqn(cJPn`U~DirlH2Bbo*^n+=@OYNg0L1!?GKz>t&CakhZ{QqVc=FBawo z^iPc{y-)rppn&6?U+=3y(0wCvjWF=1bZ*3OPcc=G%A@;jSM&|0ih z7Yvb41HBFCob-s}a1J;Qpg_Cg$n~GBOU@&Xz`HZ^{edfW?u&(MS_adRt)|{C}LeBi{mCENIiDL2-|9yLdenAQKM5XTa#f={qlqY!(RfT@ug+3dg@d zHZSXb{F~jl;`xA&`3NG={u{#f4_PAMKreU{0q}4IAR}iG4-e=x{CGSbnBGJ|AS6S= z44*BqM8pDMF%dfL;9{Wy@GO`l`S|(CgFqO!P`wvWwJ~)F&YBxhIsiOo$Y%qp%vFuY z@SN(G-`cUtIy2x#0`#YGbTA?z@e~YuB|s!!tDgo3gk{loZ0A&4iYBV7sq_v1_+&PM1yb<* zyfX$gjh=>L}LV(vGs)sjFr$4^|M;@BX5K8Xqta~?1P5EYfXFaD!hOPqn z3kWL@A|iMo#{-5WHa>o;f%A$v_^dv4UuPu)7AfiMcTqFE2Ok(H_(eq-{s7)$8ofKk zktjkEpZgOc%R6_%eOUY@}fB_1NJ$Z5ytdw0Va*m~t;kocbGy-U6Q*!zg9xhtJhK8R zEx2dNXxNp(FsWME?^5{~Igw7o3o5*_KH!O<4ts!}@o?QjXf0$cLc$efz=yGVyZX)P zeQ$rx7J%C1W=(-UfB~Jy`$}#9vtjTSBJmdJ!Y;q{|C(ov0GjCdEzh((5{TTeYG^4c z23NKwirOH5nKAq@ycv5&FwOu71K_9I1^XOfn8M&@Edk@G1neW{cGqp-hSmb!)ByVf zhFLap4!E_M-=+gzC;wn2hPA5x)gG)dk&UY`a70lRpifBz&oT72JtowmyuCJ94X0e| z`*vwg9zQ+`qn7~!E(xcvKOuQQ1dO0Su8f(T%Q}u519g-rzfSUWfVsZD^|52e;MBD3 zw{<~IBP?~=HD*QDp}vD)Ky?`cv+2-W*X`#rUO9cBOQS5mW^0=$nbf*Ha+hvk4kWX7 z#8aS~cFMlry_o8|APP?E8!{<6o#JzQqNFW=#Hp|Vi>w&v&-@^{U|+8I zXHjGaoTS+jPr-=Hxs(8TqEm!=8GK{7uWO&yz5EXtR|i0p20-3@3Y>=C;Wwa@|JC_> zj=G9OBqV{LCG+AIr^VSY@HXRa19j|HUhc)l4)Nx_KTifLIV^0MHLK-T-UVz5DlX!Z{GW9}YyVii{9CG=FWw@0y(*uuOnv&pDR{1nBhi z^tZr}NAV9iE2T;|V7WX7sBa`8`kvy0@>hnYG#f=uo_q{L8fWT)e?3sP=}8^9b0+=t zUKkb}m;jqcYrhMkX~6`Gp32H^>FE8T?uCO`pRb^dB# zr}h~{>VSE^4{(O4Za{oDIMiLWb`>lD3lma7!}UCgjje;_dIQdyo57v~Yf;1SaPqhE|;y~{VF>YbC3e@`8~FZixAc_>V^V5v^s48 zvBuetz$Uv@P63KRp9^XNgmYbNBrzcD{Ou4Rn6_0<`Zn{ere(IF4QipJOAu5h}2Pwe^<4jlqEX zJXf;9@CQuU4n5ezKoaCRcMhSI;U>s_>*^WD2kr$Ro;aK=-ud9YvcnpGI7w{Bhn0)V zVxjIHxWpjDM$a|!hVgn|b)Y=B^;TGSven=b7C3dv4pwzsXRYH`cp<>vJ6N4iD9jW);<{~qmbVj!d;?HrUPgL6Qu2MHmfW?h}{!;5M^fphgD zw^604?O&R}8^8T^4Y(<6L4ZtUUodZlMaK%#dO%Nzk~*9vlNy%>ifqVX&B#hdX3oZwe;wuGqfEhx4|IM@IPhPP1TY{UqzN6y%oP{^EP+#g z7>Ns)FL!|m6ap`VSTymS7giens^EO~u6|v!F`B~lTzzHVo(fCAkGvam-$Z5mhr>T@ zANmGfG=zbU5;0|&76v7*<6Kr(2zUW|O8b9IfeW-1%mE+Yf!VDU=$KJ#3o8xaIB<}3 z>}t}|(UH7__!L*Krb50D9z1F{VSbr{%~T6a9M9AIem&@eAzm(SKDF%8F1RQhxbg5= zaJIUsLZUj<{~6ucZQP+30%&Y%Qb!H@h{+2rghc*K@-a`FMn-*x-+IFVP|ij1lrv+JP1Q> z!p)ijYj6vv+?_=9`BapY16x@IjfGlZmqc+L;My%8*qS4t+pxb=cB}d&gc;buJlzT^ z+h?HZluQsZw*F9Gp9m`4?6Lsx%A_NQh8-kWq2Q)vv>aALmF(&>lZ-iV3Nkq=;2zut z1t=PBF zZ$Az9{EW-M_0`$#X6LS~7&dx(OLzf4`+=%luI_GmO7;h+tZxES&rVD0kwZxz^2;QF zm&z2s7n28r+0rar?My~S_8e@&lS39(!jI>dP!Ldlv@ixNZrCGO*Y7PSA{KTe2K6D(oVGPDpD-i1Lu*(U&mjk02$j0YCu ztx6}JF_P_fgG3B5ohUvA-Iqq0%E5)#L*e1VpTUOMW$ay z7$^^sxC$2O9f%aOKIKL&0$<;0J^pB7m(% zl?9+m2h#R{OkM<)5i%zY;BP*NjKsd@3JOoIbo9;330IR~hx8f;oC!*SiJFAG8!_$9 zmHL^p3vUVIa=^wpjXDyY;@Zm=dz%Sh?6;bln0Q+r2#V)74c6}Ra4WLh$08z4H6mm$y|o}rAj3c#4Gt-;i^+WQrz z6>wlt*T7XG&mTzJ7JdL%v|+}x7{t@mgb|>+!g@CH$bTA^qOC2sTG&}h-T5tmL0ekb zB-nx*0+C=)E?VZrw3|5w%8m)JtLid_51Z6cH%O?dsnNid^f_}D&=6{7Jc&i%i9~7` zfRKMcq9zeb3@ZB}mj=7K8=bc9i}!aVpos$I z3KJlrVKW3_3LCdqjvPA{2D+T3ucod`pvhSRkM!KTRel~E;_K?$18);d+OtJ%?d|Py zpV#lwof`qV&KM9vCn2@O4$RN*V9S6(8>H+@nWy2MMx1!qsIPaX?bZW)Ov}uS0|US5 zc;wjyZdjsVQHf1SX$3^^2KT^6jPxMTf^BrKFxT5 z&W;pe5pjLE>ad&n%RhE|*p@?fLJjnM2oNHL0V@MN?69Rl@kfWYi_kN9#33CEzW>TK z3AiXqO3GWnBk(V%=y~BiL5Ko`mF(8V1Im;D(M$a)^bFZ2 z{^konu#IvCCmQ2_dF@f?Pj-Um>Q&{o`+qFE8MXhvGr^yI@4tQ6MxY6Yn4k4Uh60G_ O#Hg$2C}Wi@L;eHXI>=H0 literal 0 HcmV?d00001 diff --git a/labworks/LW1/H_3l_100_100.png b/labworks/LW1/H_3l_100_100.png new file mode 100644 index 0000000000000000000000000000000000000000..c94522b7fd9fef8cc4dd95916c5fc25f344d9719 GIT binary patch literal 30985 zcmagG2RN2-*f#zkRFujH86_jxWY0>O5h`S4%iepZ?5#p(h$LItD|?fjz4v^w*LU4| z-}nE1-}@fNzvH0de(v!b*L9xfbzZmsQ#pxC7s)T8P^e2%lH!Ue6s8yoh0%B(2Y#a5 zINu6?3D`bTu~o7#uyxS3)<-?jwzV|1ur)Q(xoNL&ZDV9%&c({X&dSbw^R=z5rHud^ zo7sOI!D?Y`$oAe^#Tw3X!BSGy28ANfM!qnyy|;`g69#;uMzI1+9DY1mv} zOWPe=s2~ieu6c8ZQe2Fg=nDnYn@g=un-oSQM8xpVJOxv&`vN{=w`{|xq^}uYiwM(; zjNc8dHpZv(qK!3O>$GeCu(D!dkjOyTy!tFsn-qrz{>=Ifbz}R%pZE8$Z(hB6mC=F7 zQ(Rm;bwmMm?dsKVYY7ZV_-_m4|KBeew{b3!zYPryO=-2{i)^mT)vl$`@bOc6in_+w zm?jq=(5$CZ>vJiD^^th0I3vp6&rh->1x1V8K?r7;pL*Y1d+g%xFL>_m?t6QCUD+Cf z{ohq14TJiO_1mI3dcQr#BOoAnjo%(>{vNA$4GO181 zVLsc1r(R2ZmJ_IW0lQzr!?9n#-f0M-4Adq?k^0>4`}TaXJ4K>$mXninV|RDHTY|b` z$dj6z;s{>_^=3q9!s5+M}LTxn**Kku0ih6Uf?wVn>Voj`0@Emm%iA{cSH#Z@w@Dp zlJl7Qm6ZuzBEP3KR_^39ChD+8AuoD-?|J5n`q9z&++216+lA`1C$ZUoswAC0!^kKX z>NZ|BFPSCzX*%=^kFC5~hOMHm#v9jY_$Q0WK=zN&8^X@_bQ^*ue-4{Z*Aj@%RGl8P zePB}VKuZ)ktdF&Q;tqtP(eRL)Gm-MvYa{$qQ&ZV5CFJBT#|t{p3kk(-PB-?HJJ~!A zCa?dhkm5N)_;$VO)P1fazBPu+aEtkHIj1TjBI4Ka?zl&Nr{i{?G8wxT3I;*v*V_w1 z$A5d6HOr%U%>IPEfB)WaWvIY#@y`#Y_E=uSqrJ^%-&MkIJ@jGMZy`F2M$dQl{4`Um zJUK8q*j?|8wW##3suK0axinR=JJwoIi40|WqWdT54|g{kZdh!1obGx!Iy%naePVj? zePXkbI$b_dB#2rxAt(snd3UXSu_t|1m&#>@gZ{}U@%6Ea{e_fJ$F-9AjlX~O2C_Aj zkNE@N-|+E!ulCAy^Bo51@<2}2N_2v-3%R+udBe%^;VL?WTGV{+;DFrhPhnnXU`Pm0 zsok>u&~}`#OFt@zcigq0%kDA-Ul%HfA;IyNNT)#o*=VU9*T~37P$YvqxsNuf%gzc1 zO80lFl+(v5bcbN@x96GUJh7|!iB=0;w`z6rNOLL=j1%^Uf0}WrtE+FdRc-gHU8;6G zTrFBfb8>M7!=00AYimD#@#3R4sn6zG**dxBW;^frV57diK3SGp5s#~@YtZ}mM78Yr zy3G-EI9fvcGm-mC2QKZNlXG(hE5k*dA{MP5S#Y#mH)?QqoK8+o8oE9|WE;-(BlX!q z`8Vm$&dlU$)nGdBtVnGy^{t|B-@d&#kV6eadXtV0+tbq%Wxq05GgjfkR>BHvA0E!n z-+vP3ao}0!I2%Tlqm<)|7bJlsESO35tA7fO`vNSgj{8N{+G4oc;sv8%9CbNkSj*ND z-48Crwl^SCnW2=vq9iVU4%Wz2sOU)(*I0c$UFR)sUS3`*x4#N14S7 zd&a$f^NAh_FtmRf%gV~ou+Z2Y*3^I1)*AJsU7BtTWw>?gv)GU5_Bo+j_|{kiVe=Hp z7+5&D*0a)=sYURsVH1S*8P9s*QWZ}f?5>SMOo6Br*wxh~)RV1I#%DDpp0KH)py24@ z@+vQ()|Wsj^94)WT={8lf2MNhiAXgJn14V3&7C_7#-ccPm9yh4G_|y}5}xwAA36TC z7?=AZ{o(acK3$4LXa`}KxH!b!0LfS$v%xA4QKdB5&)T&hIf%Q7;6=~ny~JxVMB^NdqxDGrAGqR+DHlA z^EAnfbcjk(#N^}wQBl`n12pfBt&Ns(#I`^C_N-Zi?am!Ph&Nnr2eu&;{12uZg2{xP zZ4+jVd%xBcbc(dT!Nwb`bQ4rnRV_c>8CK4!Hz=4L4%~z}!F&qqMTpyWxjz_I*hd(; z0_)k9%(deZl_+h}XPGa8VHwQFo^0oM%#wK=?OFZ){X1Jl{=?npgJlkEJh3dD#iL~o z!{b$ZL$D?~9kzD1{epsKAZ{4$tPD{IIfhM4Xlc4__tB_TNvfVbgnpjN!eHKQ(bFTF zgj!jDe}CCno?wVeWTK*?oYZxADaCvI(^fH?{lT z=VO;z_Pvc-0xLVaFB)a`P7T5v)mSSdC6Vw%RDtym5=GpyOV`TQO7Q~ge?@cXZmm2i z*;74TVG|S-?9}}H{X4VB$)4_mhYyX$%K1@n2D)3fyddt*sjhhwh*UQ=`l?w}5I0o_ zbg<($1d&DNWP9{mbMy1_(=ss3$6O~NdHn3zGcS)0npv;F6uc`}8)G^3r7K;UQ9|3j zO66NEOw8)VVem*XFwGR#uU|*529HA~>R#?+9dC78ry_N2?@xPEAhMlslnG`7Cc{z5JmAivl8n@AX%%;m97) zEwfvGY-!0p?r|!tQEGdOnR(^ga*jd@PEPsO#oLdACLlQdT^S;L_3G7SDxs$Dss)ZS z;SxyHUYSlwPIiP83(5P+50e3dxwe?PhK8+XhQx`brHj?KLxq09Gqfe$_Z}>^x(x|) z)|c8{YqsS>`Qcg_L~%^ZVY8ymYAk|{lf(4_hjmQ>hqa(~1Ks_t*%A9;vvMlHCRiez1>}WRawnPXi1bEnaoC0=B zdT=bMrlw|tS<$G$_m@BJc9v>7%@U{Rw|;yqCgwT0xMYk$87~&HZ6?K)0$~=giyQQhQ zxnzbDVrDT0X;0b{rrypOc;mb!*Ei8Z*B4x~qCH zSKGV0)Xt<9{(M#Z60kYxOFgIdN=GM|!*N6FHZ5(PrHu_2EL}a<&HC&64f=+LH(+0< zo!w%4dpn>M?o!)D9n+EGZV{Z~nc3Cn-=1;cT&8$U`gm=24+2d2RZ2=TBw3D)jXk!t zE!+e|LA*47b81D_N1^FBlZHmWnyXW&7S_ESU@{o2N2O~&&4#U)dKn?EX{Ig{hexE? zc#798>gnliK$7b!b6BS#5T%)-u)Q4S#}`b3KHua)27-Ra8g;orpa7bkE9Gibhd-k>Vd*MNR?eRq&!1U`fTb1&Sn@+#yp6QFn@0 zuf~}~gkJ)Dl_scV=L5h6;d!6x!IAt$u_#LbDMFpR2*%ByZVJB*fMqj4m&lWKa%y!k zl!9N!qeDR$8lAT5Ltz}8>$EH5wLK%;G1UcEM4C+JP#vfMeT-gmLxIS~`q41E()C+}g6Xq*EkfHE&!Nj*>w*M9aH;%R!m! z?5{slAYuR4jLnJxDtChY5vZrZ!NCzNo5pGPd{lIi_BG6m;!=p7!OyUoe0_R@5(Tpz$ zv|s2mdYoE(4!KJi+F07eIdq;-07{CA<- z8vs7wu-Dzm*nopt3MxIQFu7u6kv#l&sSl5hjm^04TRmIVk#+m_$=-A*Y)F)YgTuEM zSuMjBRq^x3p&|!<5CA48C+|Bt@dY5eQ;`ihK^R0f6R?PEJ5TF{%MnV2}#hGgAuK=7wInc#%dx;Lpjy zY}6|QpoB+Tt!(%=cvkWgIbL_&JlI*qt2W80XgFN2>I4kGFj8Xk`QQ_~Hseo^<+BXMcR;yx3Wg+QWoZQkV?&CjtVV*)G1fD^Gcf|5x!aznwhS2VaO>d@hD4=OrD1$#t zu3K4IDXYr^{8=4$ad83AYUt4`uD$Z-M_{aZDPw0jeD|+#*^P*deCT_b5<>RHzD(tL zfRz)lWaxy2DLs8I-S`ds7h-mu@a{-0FryYAS9lr^wT%d#Uf_(8y_Z2+{ktOFPxzB8 z+W1xotCV=E`j+jFTpLpcUsrR5z4<=%PT^e&yz8tpkS3B1+CMouJ6pq?Mt=BUSHE3+ zGX3;zvmOKhVyR${`Q_zS7z4om+BI*mgDChTfFc*zufAj^!2{xE*#3zdiGj#!IX&5} z`mRy-5f(kM6U%kvZcG%LsXYg8ONFpNG^2pM;aF1ge(%{}8EIKbNqD5qw#|nZ+3L-Z zyBGR0uLqNJLy&$053VsSpT4owm)Y3zfeGFBtjyl*5M2sP>GgP}Fko@R<^C)R0b4&h znUAQF;pwzka~)W@reoz~KqcULo`2^yIlDR|3a;LaTwPqc0?t)nJ}PjTQUHXAPW{~u z1fT;w@rM-!T*YzmOH_cqe8;TN;YvZ_>+UyEuiRq*LWIHupdoE;L1M$$fLXAbsK)qH zX!KA^>t@yIi68_$Kms6W;Phu}$Nnl#kDZ+VsiP)t557x6^$xH{@zb2Z7 z&~egzm%PNqXSQG-ed={SyB{CC_3_c%iA%UZNPmTtv?-W(OcDshVs8c^3@%fiKrFXO z1H^{LATqAkgSoc=f#|Ia=HZjyJCCq5_k%?S^QvQeWVB|QBV$C|1OSv*4-7;B2lO^Y@cvd=8)%Cd7Z}Xy7Cu z@blC<#42OaINNT3XXx^i`CEB18U~tO5^9BJ!#v|#uu#)LONgTI0Fi`{kTBBXq`pE7 zRE_o?U8ydrq=-U&99AVku73TCta=6f*?XPV*CB2n5qU~0E?vNvwJl_wQ!5%6EO((c ziWv&YhCodl+DPSsPfeXDBNr;X6P?n^bPd9Egt>D>T=mkRyJOgkmATP^hfe#ejf;Kr zw_ZLcu(!2?RU@_*Op@rbRw7e5KR>VhtB;5PQh-74Qr(t7%4@e3rC&;yH=O%T+D>#B zEx0}WwMSo0DTwd-UAcO-y4d8ldk;*$g`S$46ECwS-%p9m{5-B;R+YRx=GkH+dMI_R?wrPqpR|r zEZgeB8w*>U_ZA)>wE2FGwtvgpaU9jjkfSq{#kRGux}6t|=Wu8X5xb;Z(e9e9we=cR zXi`!VCR=1eLP(!+dy%ZHEIth1IUF2o&^^#COgUF5To;+LfQ2--9W7_KF)}iuRI*-t ze_^6MT$~)ZTsGr;J9b(?k8BZr5;(A9BxJfDOxgN#vu%u{d@voWMr7^LOBt(T9l)8w zAKf~}sQElX-z|0;|Ii`D;fc)>rzWtfU>$qCp|jet@Y1<($duH_tIzm{sNqWTucOM? zAeqsNzcGLWJB&FoNJ&Y3SIJARZWV^a-IgetNGWJPF*%7*4Vw@EQZi)imGP=Xpf^{k zsi|M&XvVMmVzWE{eT{H2i<3g59yqFWCoTJ-<8OL$suK$8VSc$Al|mLS5ja1VpZ4%) zix6F9%zQT_W0#_37H{Rf*;TgBXw2_C1HF0d$NGAD zmNQLPA=zymW!+iDubqID3+#a8fN|@3OuGSK!;42nZ9P2&;_GM|7GVQDy$L`%K&Q6M zIs+vvFD5@bmjqhICdAo1(;?2gFTSfJ>5n-tvuJu8+mW!m6o=HA!}k*c>)W?)b3r1K z!MO=gW@Hpit!Zs%$MVyI?_%NF#J6IRQoog@2{L=44dVmX=;f4d{c*VoV4G6`#xyQRlyRK$@iI}W`d+ZyPr=1omgYUf~QWMr(WizGjlafhzHCzW_v`=$1D_rLr5NzpjdN__O zF)Cr_D^ye=p`ipUFAKH0lOH|WL3G3Eonec{o}NfR-c(LAR~40%R@WQr>bmmvWy&im zE}TC<0a87{RiOpw%q#4_f3n_ek4`CZV#`T%e{+@EwSMjGoAot#T0DHL{NK{< zck7Ib03s0>cEn8ryUpzsw3)+)Xq4h{dIFN)Z%AKA+(E>Dh-)C@FtD<&m3jyn85!9w z_4-4g1(x0k+FNJxqd-y~Q&QB>&=3-k0rP$UEid1B+ZY+1L+$T?WtH-D9wEmAlHIR5 zJ*-kJV)*^pw;IIOb7C;0=(f|TKsM5Qudkp0r8(IL0-5v&KC@PNxF*yJG&}&Hk8YmI zV5uF`EBAdmh!NtC9(CvGN@%+8&&p8E-BmLF**M!xnqOHG>Q~_6#D=Exc_OX*wCbcV zYkH)J`TA8x#eQ2ymTxnnyYIZ|~Ek8cNG?9^!xq_VF=rZ4b2&m+Dg^R-&%n)o=DLJ`0gb)FHKmq9N ztaMdZrvQd7WVhUpo%AB><-l`!D@ZJNo3LL)U~tl;hRX&_3kwU!heW5DA4)7dclQ@7}1k?es z$T@x%Ia%wA?s`bDxjpczr_v2BHc#d9^e&5Zy;PT?B$a!y$OhKWb)1Pj2a!mPv8jx8 zPN`Pcuu2vt!BT;%;lDfkm>evEZi^IMK_nh+Qbd4)kdf=UZ$0KTPl-x!S>q>RRc}HF z5vIR41f<8=?nyI~&3%ddi{gg*gJ<1p-? zK*}G0{z0+Bsc_!D8~*3w1B|cVt+%U3=GB6zsT<7ZnMG`!Lgx((BXn>4IzIh2wXg)> zlQ%M>+Bcb^xwh6@v%-0EwP-xwVq63=?!y9uc9cqqH67GD@_hq(dwVmf=or63eB-cN zdInPFii_77A~S_5nZSl-S%N2 zOFu{56&%2lb|+Dmb?^x3P8B7ItPwPiR5@+ct5ox->;3?U?`laggMQ0<#=q<1<04hC zMvngW$b-C=uir{?u)VCT=Mc0uUL{IJMTJkn7Y1w;4Z71t9icp^nFJ7*IzZDU_{iQpS)|?-izI-Z_c9OvMpc&LL#C%;HC=$If-s3Z!Zw;?N*((Bk&k@$?1Nl$3?r_ z)l8rz=$stwBeEudc1$4MNDT;%URj6QPb{$S-|n$7pC9^eK^Z6_J{~C#A%!YXbs>XT z4rn-NZ29Abq@rf<+YDqi#_O7-YxI{LTxYgeu{<{Dn-1O0Gl-XvNt_XgZZ`;_?)0cs zggB_0uP2q@1ktY@UCQoTcjBb2nDRJyE9*2FQ~}^1cFntx)1yV)oV`Q`6l~A8sYbU) zJG;JBDC44{XNqL8*!(k4mACpjKZS`9>Z*1`o^k&5#66?0v;vJECoz5qC2icu2$YiS zr%ZVy-ckV4H^~_)25@g_>vZ|^L#>X6c08M^m_ZRUi61k3n$6DMw_ag$9OtQRSh7@f zUWO<;Wiub|@EeLxGL_1I*1FUc;UeMkq;n_Zx`*F|v-0h245uW@H@rpHw~egZ<%vi@ z?P?tuxDKg8B1+-g!j>2|N27vl zj)N9$Nb+YTBXmu!U9}2JE|m!3d!b+^L5XQ&ZziEdG3q(*B^s@@@A-NBg~3i_(e(Or zkfhAIKMi=slQ`48VzIye-E807jTOe2>JI7y!&+r@X%#`WSSx14F0=01&bfc%zeVKP z68mX2X%Q>>2~JL_oc2nmnxu$@o$YfVLv+&cWJ~NMwM@|hb15TMC)dZKi-x<2L9ly& z2Rmu2iRrwOZyri$b?dfFfBjO%CR{8VE~ealoTMY;Dob`WFngonsPrL&cpwzwKck*$ z#n&C&rtbODjoa*0d{g`j#%?^BM8Gf1Yh^L|VuRH2w{@~K|+{%>ei=pEC(V+Eh zKSkYLH$SBI$>eQsJ1oA%;=}fW($@A7++w{P#@BN6rAAwH59+8m>-1s8^6E;FZc3htpTLAdO#0Mqm*f?pdO z=|21k{r%i+D%a=#&ER_|N9~o(%;=#&R%8`40A&)NT12R`9PV|fwjJ_`l%!;m+u_d6 z?(y-l5kPCmEoo5U-|vr!iIFleNISNZmcEF3kx88SVRl}R^Q|pK zPQA0dKHrPqov_@UnzP<6SEoNHllw2A|4(A?Jh+(Ld+sKbrF-N>+n?}`iUXQw6J&)F z+s4L*5E`n!a1*&z9#&(s4M#o2R@0E^fzo3VdJMe5o$WMnahvXS&pSWD#2Xw)dW-2tIduS%!X9m0){`AiQ( z%;$at$pq>4bo(4-I$L^?un-<=Fl?*r@Vj_S90?1!cqCEbl_k8fUXbeY(PlRtWQX)u zA3-Pc^+nd7=TSzZrQCtn**dr^;DHLwN69^bFM%!)ZYT@$cxF`z#|$vO_(5&jxMk8k z>XB>7QdkNTlwKIGUA}~j)-2R1wLy~r9vK0}45%W_cb;zF?11_^yH4Ht!{zh@=Kv@J zYyu}LaM?9~97@#=>e?9}fQmMPSCuuL-T`KR2d*6st!h+qa`FO*rcy;JJ3pN9J>5Un z*R2S(Y|;wTK8I3-h%ZhO0Nn7nI9Z?tux$(FxePlBL;V8-A*+m?9Dq4M5AMemD4V#1 z1R9E?>`?F)Vvwua_=P95Sw|?e)pQ$?5PN%{0eA8B^_B47nI~Er!*C})&l8_=+hot6 zU0XsKqLcL~h4bYwZS~`C$W-E zR2m+F@;@`*`DWH5AkI&nOBhc!J9`L)Ux3Hb=5g&)WvJ6Io0}j8408Sh49V;cUQDG? zbJU21YTdn2GAMbq@L}I%j3yz#=xWV>Lx~%jw=Vw88xMxO#Qvg~BKva-uZfp?(VPp$ zs;zC?XHir?3Nwr-sQKKJ0}RU|eKJu~A!!5q5br?bGd%Da%WgMzS%a4`4%0R#chC;B znr>upbwx=G$%`Fq7nQbuqW=D5o^K46pi~Qm%)qUPiuh&po7!`1Zua|NY?J?ceBA3W z9Ey%`EnR=mZ4|RwY0be5&AEG&Ell;Y^7yoBqB+Q+`5Y&1CYQt{z_mIrcqQKQTzgVr<5hMbh@$bdh; zgKFN+v=S^nB-9p=!Rw*Yk&mU&2#4PgGs16dtbCnEy+&%aV&xVGK!%m(J^m7rY&B_| z%lgrdLcYLiPqy^m0uh2~An!BB&e3`x%UH;>uD8Y$kIw?Pi7b#yfq1>^7&Bvp3%jeO z6q;}zHaJ`WnH^Kr#*?>P6nrsDXS2il1Vb`FZnmFPYwc9>7&qi8E&;>cK%<|_|Meg+^>9vzLq_RX1{k?k25Bk+k^yw4RhBX z)LfKGto5M~gc!L@62YFR4w4fXx-P>2fhOt$VJgq<(B9R}jjbdbbP_IuHi%~FPh!Ew zFu=X7G{!A>&tKY58Es|Ho96Ua*D-}cA__LV9ILQ!JaB6Wwn2%Bm@-;u!P+8+b#;{ z`r)!VKjCg7HGRkVFHh#mm|fOh&>Ra>XlRC8{*T9gnVOn<<=QpHB-Ar{0xvS3n)i%K zjuT$E*`)3$aFc!2DC2>AUA98{KQp9}R`%#sb)k$nw}^wZTIMmEfEr%@PHlF}lmBOI z^KzFNzj8WJCw-BL0_tDcy4Jm42I&E+qw?T;xbTeL-hAw70VOJ)dD-qP9NdKk06H6x z@oP73;8g=K@(&KCV`aVUdG+>VcCBhp*H*Wa{dvTB2gz>EWgW7HE&xZQFa|D|Zm73H zjSdzMOTXsKwWZMuuu7f#sRe2?dfPIYZ^ByTq#*a?F&z{GM~Ts&LPiu=tI`o|fr9^< z=iZ*93u);ce*PG0kE6|e7mpAsVQEknkSRy(KQ%Qqi24WKo+-1(TbZL5+Om5&sK4B8 zR4r7J_qz^iOwH$c)DN@ak4*92!gfo&uIQuVWANZrt#HEHxD)U@^^PNs*tVMXIE_H; z0GETyJ-3&dC-&zM`tn6K0gF~&vSLka%}FeCCy{2q96i?g0P@yl2q&6$rC!alh5ION zeuh2W-3w=V6k=+98w1hZ@$+H~tvDK&=piD#frwO9MTrx*k3P4kI&_&8@firh8Qizm zP)YBc2t@h|m=DpZNMH-!g3uq3=<&$U*oVwJL;xQ-0YupMK?m0@0*XWG%jBR+ZDV;K z#w~#nCDr^j)`hAo_+xxDXQWEW>HB}@kj0Rcek}Rqd}b&fe<7EJLFHv{$OTx)@foo$ zoVJFo&Lk_cw2k)rWuAeMBpBdk_^-42TIde7>=zRCQwmKZ(J{3gLSO`8_j$~36H+8* zZE7)94}EKZcyJJTrp`pmdXzCv;moZ|R;SfM%$Y(#T+C-Zm$WnYBu-jRe>qR@EMCrr z!|i_$V5t$r7gZ9-Y8SLs5(i7jdAO#k0ax!Tju-S57DDw$IJ_Lsw?^P4 z&lLxO52A!hlxZ};-mCdZ%6 zalJg;Z!0h6-5=+yse?b4JpjThgM{}}~qjvCM{t48St6x_OiT0LMv%!11p@bxsW2 z!8dr#^?={(JQ zfe+D}!3(o&qPY%56jBk_;xpC?rqpD}lzaR88p`dbdOu!5ufi=bvQ+o={g52cAXiuR z@VPYYEx*Zsy_01wi?-D6i^;&k6ysk3zW?#`EUZ*DjL7q|egTFDY!cHmEbIz|e1Cr@ z>h!SaXxO23`U4=-gKNp9avzLg^*b`kam%civP-HCgtb>`OI7=~#)Vm$dD^~gv6J$h z{yzh(GPq6jET)R!si`S*cz8IfxTK^T8UmmqW9l((P=J(uUKW|Je!cdEoqQ(Y%6N1B z)!1zzkCpB|1PT46D8;?Q&HVu~(9kPtu-Og{ssQB&rx7P&_ym6vQpZ3cE=|P53lcg^NQU5w9I>puRA@RB0Vas3!oqt1qSU93o4LOZVjkU{h_?>n znagS$digFpn1)j018he!Sm8i^5#Q&~t5-s2=a7vT_y9Q#dK^~P4fXXmR|-0zREk1TlMnfuGZQM)KOVYp;K&UO)=t4mySJ6%B0Gv~#%$7Y$Tv{YJASJ6jrB zv)ZV$hygX$efD_%=cieqw))B4L`aWwPRG!X0Ys2Z-L3+u5`qVFKrMk!+FLW%fQFJK zc2B;+>15C?!aVrLb(o_7xfoGg$+)NWH>#_yY3gBJ>nw zHc`nxMDkcjmXx@7TmVFCIRMrs7DM>`Xy&1;Oh^!^3wKabi$s0+n0Ke8=!;@>_ss$m zkX-l($dEKcWOL>9ud(`n{)#HD@CNT8wR6O0AWhxEYtwKKq0zJZB> zfiVKUT?$zHO#y_TCr43*1*Q!HlCx1Pr3?@?)vHV{ise-7kS8Q0puTHXeDWt`-~_Y# zg9i^B=VA;43dI=bX~-X_xT!a%fz*Py0*UEO7?B!Et$6< zOXeQ`&LA;$G83?Q?g1iCAPe%cRVx~M&HGO?Z=-}+nD*^tg!p;R$c>2&%+LOO zA_LOg0V)Wx0g&=4;ejO(S7%a*ydT3OK10qkK891_dxi< zLJYhD_HDxVt`ZUHjdRf|&ZrC9bYj!&vJbwA_oq!?zJO@Zjxc(Nr`d;qx&ziy8)Dh( z&$@x~IN4_)W_rQ=8}rdtu_ft>+`x~p_+~aWJ9#9tm&0U%Yw{MDDPRBzWT9$%k@zkO zY2Sc4pgJsy8HH_<1dpu|Z_d&}#gwjir**=*^JK{HSyC-5hL%u*QPK3yp3-#{g zYz5k!uuo4*xD8A}D>3Y!n^v(gJu^kMgux@qi|o^K8}}miT^M_Rs6v2SQ384+96^Q( zEPWh)^hpFIMm_K)PP$!dF(L9F@``{@%0#j1gP$2F?9eZlo9}0+r)m&-9TA*e)eyWj0{pcSS2HDOuUrl&vL;XSa;vlK;h=5Q!osSr@2T z?3F#!-Sz9av6BSXioGSMoZdpx1+$HhcCJA?Insf(R*vp~=bHJ=N`X^Wn@>WZMlRa8 zlpqFk%?@)t=5gu<4IuYnw`^`~R09gSVNo9biQ8lg>arwO{xnev8Fc3cetFA6rsC9f zqwx8Rn;PKP)Thy-zX9>(=m_13v^u$yxk54aE7FTV!eIS~p734;HA!%CXse1}vN{687gE3mlYD(=XDCvS^*A{aLX?K! zX1x}!KA`E<+)`xIH!lAW#IQ`H^C=m=X3JR!0p_{aF6!8gKwbe1UAF}UJ|S+85xW5m zWy&hJ4$|ufwpC~$KtYchHpm)=P)EOK_NP}Q8(gZ)FAJMa{?yNYvT$V4zu$AH-MRkP zN~2?Vetq&VSi)(gpZsjqNOSnodjrzz0?LUQdOClhABncm)WTH-F5Lvw%+wT6DshDm zj9)aefO$7+-X{pwLf(b;9T+LUCIF$uM?^@e}HV^XY`Pv zIY8$Ng&D+(%!#ur!&m-EuE2Q@HW>7a4wN;{oq@vT}~5 z3Nr~fwAGR;{IQ~CEg!CFcihho*-R<%PH3yS0J*v^ZSE2BO0x6tL*Pp$>(#D`5K1Z}-;~ z-^Ea7Gq!yDF>TcK=TuSx0idIOzP}Vn(37IM8QKE|CUkj-zkkV+fMHv-Rs3_Qm^m_3 z@S4w)R~*%L9JL|6x=JIepOm|&IlvOYroTpUGd!~tA&dHyw`kG(0p4eUSNaBULJ@^0 zNjiAyL8eres!ipq7by56*Ur)b5wuUw_d4G}o!YCtjSX+U&P2fflL~U#b6~0beXEx- zo^Sm4f(Y$g1C8MkljTK`AgTO9KBZ@sw~kFdB@&8OeSz3GkUFNM5fm#sGNn8=&L_QL zNw_>0?3%ZAWvG+`9G*$=o3>G0^F3bF!x8s+mETTtt6jlBzoCUNP9syIW<{ECr>pHR zLn5Wnk;)W@HducvN;;2;t$+qEN#8d=Yez7m1p4DhT2jZS@BdMs2^-K>b+5Wg_^ipguNHuaszF@Os0)=%L6Evw_EqjJ#ZZS?bv3< zx_mi7dohvWjF-H>0@yjR&7gR-3MB;HTvsBNF;Plkuo@yBHb5@M|!Mvr*0GRv%+_HJ1BbjGI}-_J}~_D7dKN2;8e{<`~Jh(SZ7< zxvB)wYYz1BF*ic^&YsW!I-e*TQ1qqbt*>?dG`a+y(1Mou)(I2B6`_O7~ zUktWtrYbJ8g8Uy4i5Yf&CIN3|=?T^_m2S9Obs!W$=i=lCWzEkJyRgYcK^p-s z&;U-=CxAYXY9rD>xL%G9accwrk>lQ^FPV@dJJ_BKw`Q85eT4&@R#V0g$5Eksew>kEO^F@Oxw#HZ1goHJ{3jTXS zDNooY7LU0oR<94`2&eIQ* zbZjT2ttH3&jv9M84P?&cjR^iP6LX;L=oc@gZNp{1&3*cE`IU)FiDW_%2j}x16F;{5 zx(d(aqh!`7^WS^$0?(|-ve-$0>Ck}D=VOY%hXHu!l4oq}4df*Tn^W~jzbXnm1XJ~a zWFVvK4=n#LQcGNlsPe)ImFt*S$Ph;%cahc{&cYZU=dMQj!e&cc1>z0(FNeT@($mYr z7X&~v0jWesSJ!K#bwpQJ7s}39*1K&$8>&T4@*1h8tG%$wL0?z_dmGY01~!Zk!vv=W z5d*MtyB;j2yF&jL(oqC&SP1+0v0e`2w)m2ou6B_Gmo44XmJI16wnqQ)& zQB32vCFp_*LhlDskcu+l(@yA`t6fL|<7UVoBN5Ew=CnR_Hf^qMmGJHc@6G<1uQvGmgSMR3fca z#y(V{ybJe(GN|p?P^X`KUCHV6dLeItPVj!>)J@d_*xbf)g zHs7h;X-J9`S#)cwR_jZ z<$5rp*`sHUFWgVvnEGy3$B^iNxVaS1LqvV2x4dzYk&1XDFJVr1yi-ynvA$s3tj3`1 z=)y4^QVJ20=ws&f8{b4iw5`(L*+Gzc#9d<#GTJgjc-?~ou|70%i$W;V;p(8@$YD`Ahn>dZ-$%b zbKVansNoIB{eHWAeV04Ehm-7Jl|Db;EF@bF7>pQ(Q7B@{&_LeQ|ZCT%#(xoe+jZ|le#hM=;^wDIRVUhtZGk=Wi z?xClc;$CN{+K~OdA><*N=#a<6E+AVwIER^eEzBuy@r1BB&tP*RYS~V)5c-KA_bNUs zf0MM1Z;Ae5KF2e*d;E!Tp3~8C3FkLw0i{N~pWjh147b9?Ox#^p40 ze(2lFUB3w+Ojg6G3%N&Rvg&K~-k1|6wX_!-q;Gn!4~ts`bXTqE?HFiKvC&MuMvkbj zzjWY=^?7@vS)jQSgK&f4gJIS9ujF`tWF%A7mEbCJ30{_`1hAxDH{3G7tqcuhiTvEd zlebfCB%#beqiBw-Io{KNjcWOcN%;h3v`FANR6pgOR|8V+52>`y}zf-Jmizm{gl zZZ}QI_56MAO1^g~BSsZJIzL2Xlkx0Q$cuFt8K0XMit=smpwatxCe%98^t;x3xL5eH zg`xUHCk3NH+gC;CEQcd&+Z^3m=V=u8q%--{(8P`pMg%FKyf0ihOj0&Kzw~KSkPs^^ z@_oXiD*1th$qe{7z`nYx$%kT{p(w&pPWS2B>X=kLmBrm5a-K%OU(ib>2PKg@g-?II zsR%I$9pX;k$zxT~v)m4JPt2w>=!9|`1I<(~|6V?jS0tB5EZNGn#leLv8Q2qtMm3xoLe| zQUNnUL=Vk=Dqd&wJ^*zOUa|oVYXL}s99}^H?_`Oh1OtznEWJ`?hFX#N4hI+kT6W#% zJK|-MiNlwb_Fu6t@NQhDqg|ChIqw+ry7d;AG$zJEl_QaaeDRTZ+?!ggF0hf4iMaBC zyH^L;2h?DCGL#tP;)?%1XBR#GOL*381^F7-3}W07ng-D+&Ts_Yu_2R88NPgdh?MFj z{%5<*HohA9gq*G(6Q<$NFI~D*7e|=@)t=`QLOqFQ_kwp8L<43~s&aRumrn?SS7^Xn zJxXTwl9FyBR;?cJn}O50<+|s{=qNe}4!j08H69oI z8OcV_n|Iwutw*|v1N`0_0d9e}Y9IYQW@Az}c=je1x zxXq|I?)w(cuUx5Axu6z8yE*0-?7xA&^E=dbXZ634UIe4Og>GqIjaM%4dXT%%zE;Bx zydEw6;dX+&I0;CpYMK2iag@j3ZVA;2XKq+36;s7nxR;;8%Vm(BBlzuB1+?@0U)^1I zwRmajneOQewiCF$b&9`1oOD*eA)f{y>Y?E#S#@*A_mMy?MNcyCA#{xW2pj#;u1)r}P3Fp7G2tLTNH%J5RL zO7>~f&jO4820o^L6g!?vzX>HvFs&m!Lg3g-Gwe)2f$)QL;DD1qyLbf}ZIC&FzfPZv z&V%g}7SE@qrY4!n_5Tg}RESzW4ZYQ8BOh{d%r6^TWnkGbP~VA6zQ5e0+SJN8qSH%&O3sRSTAXm2yW8VduX|P%eOWp$u{7Ym6_l zsk){g0wPlxdF^P9o$1~9yJea^b}C}wV9eS*q|c@f5@+3K7f%#OkRoykLd~GJB92th z*xO=xJKc3`p{vHgW-RU})L_8|1YOa1TUnhtdAWAWFDj3=WI!qM3kX2UeC5!M9yQW> zThV}<`rOrEtvQsd;#9P@yT8RlDy^9edm--IAHi3^KG%VB&bf@gR1tDr<0Qs;EvOhp z3C|EC4Yis8w2DVchM`CTt^ek zF!5DJdB_5BQkKCZnRS0E&l@NkCu+3Z9lt6>o|~YQQQ{Cr^|#(RBu>h~_6rTo)ouhJLTPF+t*4+eK&v|~%@qWL?^Z9tyOl1#Ip3mN3eT&jXJx}*+`M&q|BgS1m=XT6HZ{O_p z);+7?FdsL^fH$HJ2f7QJDQn!d<8IrrB`#DVjMB1=x>)8SNkLH5sf_PIrvXY5|GJ?t>nr}E5a$hAW?bMpndj3JNFotzx1 z3Wx=ygrnlWEsuXZj=Dnkpq$0zEty)@3X*HzwL!~hgcUTu^rc;7w2EIWCvEYN|Hy-w zjVjBb_|?IJ;HVxiH-m6KkxJhI#n_=RYMrx<10vTq$HsRhUC*BDYb3-mcOGC5!HG>W z#|dQhZBO5MrSSFbt>FS!ogELjWyw}epU8OLYvncLT`QzpdDzkAjW5>+MkWvWrz+sH z1TEdU{yM&m(QvaiS!0`SWyO=3iZLHcr^vX3yeC0F1oZ@AyC4h{`GVjLRALPzhn>wYpHA7^;pMIoRj?7*cHRhG8jkUdvQoDsqnwfvutXR^5b z<1(W@hR`T#9N@6h!WUGxV2Uix)fvzhZE_aS?C?3!Su0r@^^tNlux$B))r#}soh3hq z2E{`KmOg0yE;}`%aEObk)U&Sn_UKqqLwomNPxok`Tib5!^2qY0+d~c#HiDxP*OuOV zW3h8iyR(B)W3sq3!BEqh{Yv&dDg=WZ&BfyEZGm@sBp>(jcC&dZmTuT_Xinmib6iiu zbDiX?5>=sll%?jDx2}lZ6eQKQRzOe_ka}6ZQUc*sw(Dq~MIYn%m#xDS^d4Ud^`#ZP zg&VX+XF2`$yQeBWJyb z^U~~OQhw1j^e}yqdKF??KG4zcMMI23J*Vi0TxMoZYv-pKekyYhp1r}pl9&Yqowi8cRUAL+ zsc#TLL2oCepIux*aihwjV^0U`_L5h&$1Lq$A9{~KbPaL$ z(^a_dnMO+5I^5I`d0?3pcJyx$Zb% zbCabo<}=gPD|=Y{TKk7@qBBb%iOP_@a=Tb3on6#j+?+PzRGl=Zwph(jn(m>NCu27E z!IP(=W`Y0hrmh=@D(%<;7<&7Td;jXOF{3NIFM8*#iIO}u-fH<1-VY)_&8~JgtsYql z?GSjgyqAxs?4FEt*j#wkrIn**qLyMnc6-hNfu4pDvn#)^}KtpXOptC_J(co zxMj2K4d85kX&jS3!5qBdNo2q3NLf*kXxhm7774cI>4rD8(F)g%gXp(ZaFe3uC(ZV3 zO*}u;%wM)(TV>h7XMFPot4bLq{TmXq>T}YE1WAV9T5jlhGtl-9m$Y@D*u+=UDg5S# zxKw>#w&3#moBiw4mnm9%>==dX6s8Q+`Bz%3AIi=~_bW7rZPTE6d}HKHThoR_%M!8} zaZU~>>+XdxZPj?*C}a1&PwJ=6nh&mbWrupLR`@>eb=wo!WnWU}M?t=-uX@}dPvU$O zzoKqc5a-uRIbplZ#oNA6_Y6iB8eZJq2|m8Vw1i_0}jF?b4lNujVOx z?qIs%^lOhKscwHaiVG1@QzH@YQRCnjx+SOYjxv{AZ)4GJG4s01#u(JwKQ4U)-UCBac2r`eA|MhYV374l zK)|k(16YYGY+`E402ZLxX700J4SqqXI|P2>5ZdQYaq2nK^(P6ZG?1Qy8&7id%Byfc z|HNnaenjC=7}es|qPQu&)ty;J(a+RM*|!OL)9>J}oo_TrNTkmQHf6BRJACri5K(3) zyOZ0Q_1c(9ypd|~S>*0>)ZjN+bEt=~@3>8fa$$g|MwN*i_){V4!D>AiN|(A;m%F&a z1S25GlfOJET`XV^!puU~>WU&jtYq`wUy`UG$HKQjqLgI64T8}!arVfsags(R1KMiu z?8r;wrUc`D1wRPcZlk|GhAb+K*C&rw^SVfXQbwaz)P)$GOv8yEp?zfX3r?S&T%_ZF zx$bkiDV=Ds^W<_}*u9YL|H^xymu>mCyyxJD%jjW&V^(OK@fi{^ZKn}Y^zq3EiS1wB zqX_^r31uzfaB!|dG$3+(MSJeL-0Y16O`%1$wnmF$uA5x!m%StwsDdh9PjiOGZcWS1 zw*HtT$eZy)kT;n!D){AuwHc*s*&yW;JhL~SGla9Y-CTby>8@cF7l2zkP#9vmHA4YP6yJg?=Tj1jfB4I4Jh+AdkgFn28`K}82x z#t7-`UmaHkr{wZ~=)V7O#n6W}%vu+8K9k~jf>WWuu5SX*?EW8l)%j+jD9?_`8hARu`taK1uG+-? zm&_V{DpHCoe;$r5Ian7?XLomh9_4u#tNaV&YnVqk8F<7{OeVB3Fr0yYkb0;Ip*<8v zX_|bT+}wi^apB?it=7&f6^)ILpq(U4*<_1WMA3Q88GU^Y5CF3K4%hgh0oF#% z@XJ2S5o*zuA{i6sMol{|SBv;hCMYYoZPS=eIvR5D5k;;5b8!vpTiPm_8BKfU!0s&` zaug5#w*s`LdlS;{Vze=b0oo-aEU)rh~*VJ$N6iM-hQrp7YjMJ$L0 z)pDDq*Y<1go`pS~K*gK^J$2D&9K^oa2V5LhSNIOlY0KJ~w#nLQ|BC3?wIy>~z>Pb7 zQI@ZtsR=qTGPTMxli8J9Z0t=_+%9IMVNj8M!mK)_G?JnJ^?qX zY30krj`ePmO0PY$_qwR9<|&? z$%2=5rD%_SnO^B|XrfW-2x9XJ(4kUDTKPD%B)BbB_PAWP`^NZv#r)w3qoOULXFZvc zgFas5eJv^T5Ut6y1ybOK$y*7k_BZ#vVD3?jq0%w+UhI9M!fB-d>meGN8&h|jdF?Q2 zqjp?~J+MYPZlB(zQ5(mDJG7FLBWxohQxd{hExg(N)+b57wEA=|=v72e%IS?p=8o%{ zwo@6*xHrt6k5oCsRlZRtD&k72Q}Xs6#TtQ~FT8(s_ocecDxkD2|M9idl69QXh2^IF zL8HWCpDPd221sW@vMBsSW758Kdc2OhP*BWVJ6A3E!KyM>X#Ml@P=Bg-hR4(9RMy>M zqc^*BOQ5by;g{1HT+D6pGGC~s;*Fng#s)$)Vc8Hb!lQu;IqzSf})viWfqvklw2iUv+p|5yrOH_SvOO%>>t|h&hZFhEcPNaI`#Pt(>hE*p#S{#xEK@<2~7RkiVt< z{{BMkbF{P1zI&cIC-}+lgnR7!W2a7t60AuRL!qFat^R6#w=9-e zp4L`6^|8v)>wA;%ITN;#g1ly`U5)(y!Jz^H+jjq~q0!g5u&b=r+hSUYD!|w32cJhhmrBUitd$?vLAcKkbe&$w_+Y z>FXYgP=;fF!CfV{)BD%jGkhC6dhYh#9@iaN-+Hd8s}K(WXPEa+dC`iP6`p04QRS8j z%Lg`V9|rcjp7O0)mJwbT7tQHx_3(M2_RS9;b;72M%~iwYBp%|BKX(PR9XoVuzlXtI zxfW9oD{9$plJqg|v!e@&YUHu<3qzDopWp7V*z$eknAO%6vrSI1nIV=)L^!N$wU1^u zbdgjRKTIhv$OSF`pjVRhOya-4|DDJSi+fQAJH{u*(p5&I-*{M6Q}sL+y_XeD7m(;_ zAtLJ0vM0WJFCCj(*Pi~OmKr~*xv5?CU3Ud!?TVbGi61&vawYX#cg#Cv4O>L@qu9g2 z(Of6I%g*KoPws3_7pxzFbr zUBJ-1^`WXj#^Ypr)z?S_F%<0B^ML6%8IS$MoU}68j#T5KWhttu8d~|DS&M$vERy1= zl&qa|2UAGpM&d!?alQGK?&4m%_aQ&|lq5pMw=BCHRG(DiduMhmosnv{JEcWyzV3x! zHk0bYXwKVx5-aRgvqK*I4;W1-4q1xbb~#SQd;iG8@t(M&6%CF0T~1qm_8q?$D7jl^ zbaqV6rITv**4~fJ+s(!Oiqu)35nnN2sF(6+qgB$$*8>IFYn@msm1Sz(U%gDGAG|NY zPhZP*%yf+*XP>DdeJtbYLlYt%RV#^AV%b(r?B&XPZuh+-3ou!* zr%Y_=kkS0Whay_5x&2pYPI(BY@Se6UesS>IPIuG zSSZ`@wcAv%$LO8Fw}Sn5oI6IydFEdJ@FW{J{y27}}rTDB)M$9f&kht_h>#w2ZcxuE=A;*wxwh}JSCvKHtOMu z!_oFe*{#CK_CfmgZE|WSo-q#zmHxdLOoKPr!E%g-Mk)q78@EgS)cmh0luI=-2kUEq}rcCB-JB7XUhNEqd; zu8r87aR{rj#%g2`%{w!`mhrtzZf8y7iyIVJy?*Gp?`!u9vCeMDc3b;w&nlJb(D;+G z`}ghNTlZaG?B*a!Ssdz3;VRvu!IBFad>!dtK~8Tk8=ttzQmN!#-JhRVr<6DTwJU$M z%n7}D`|uR|2P)5bvOn>g$u5wMtHy`%?*Dyy1CYkt)Xokz|M>P*acHnp>e*PjnYzaz z&YpAXS2c4Pnx2fLoFU#S`KK1uq4_)9tX`Rkl~?e*@TIPCp4p8r$f1Dro{A_T;;|z( z45$eIfmgxuE_npC0$Kp!Mj)I(07u>PCMC_1Zu9{fEBAFJT3EJPnJ`AwI z2aOl-<`AejltRW0xR72PaFl39LNvoe!Tw8R9#Au}n;qo@-farB9Q5Z*fZ2dnJ!3*&`hbl zx+n^dY#r!a_rSpWt5sNr<`Y!EU~&**6hOtBKciQCFC=7o+J=zMBH{*JJ%3WS*d3o| zOje4H-()p>1Vi`X$=ZT$>MG;hEw?cBq=ckhNeJrLt12AsM& zJGa9=ym%eBNDM%@19m8Pa5CNYD_4-4!4}qwHWO@NOoVdyPZs&_S8?M%0p%Loe|#eA z9~?Xm1Be#U-g25VP=xGniy>p16#(@WVCMN&J&Rn0~|-t>51~#n;W1 zb#-;u+~Nxtey4o^m;bZzX4@#I!+hxf+j?_Qedr3S8^O$lIglDj4>6y>!(%O6;p9rE zP7R>nOR#|nGcr=ph6KgUrcEizP)oDdClEL4z@|=$wH942bC#3+%EtrPm61W=O6!5X z=Hcy4K?e|X>yn0Ql*ly(bgw&H<~kjkgiXKfBeeA;`g(8-5Gp55E-rc|CIx7}3Fh?_ z`yjTupvkJgCqZZhre+aSOmJaz50aFmVD%y9AX`Ga7Vj!vqS0bvp&)(Pp^ z7K2SMvc~aMVn{2fEw**lm6z)de~MqbetlnGpB%VlQ=Ol4-n>KsFK@>wZbqoe*HsRR zUH&`bU@FI)g_00o2?;Ua+Yx!0gB@C;#?U_39uFIa2`Lp=u*l)a$;HQ)rFO* zxK)Bo1WF`qsrqQ6q7Wlhclf~DP93-98HUmR$<%kWSkppCE0FvTv7Wt!NnD%ZNa)-AB9J#drj>+L1{Ie7g5j-7y3J~$@kilOa(vPTd87f-5X(dR^_Hgw!s z58Ld!-jt#TCJY#_;NB=*ym&Fz5)4Fv-+~JGRW`ktZv!%Y*Xd;-*VFRns)g&uVF8## zc@y>(b*v_}SL`|m3QRYeL%#3u>k_<_WS~g~x~OQid;QBUdooWJ?*-vCfwH0+;M0lO zS;8R;+kHzJz;^`OmB1{yE{=#}IVi6 z4YEmMJdRZRjL+WKeLj;L`%T;F9s_*r@Etfr$Jn{5?_z5wrZ(Wd;R};q!4@xfPzEKtfFH86jC)S@~m5 zl>v$)n^Im}g=M&i%paDHwxLePAFoP@aR^yYQX2pz^dBA`KA9I55@HAs!ZtMNb6vh- z_6$vdX0D^{hVz=!v5wz)AY<8v{Xv)};itJ=0hIBf%Wv@`9&lo^QG?7u9-aydJ3Db8 zmu_Oxg&W-@e83|H;2vHFAGHsg6xRi(qe~h2C$%zf#*ni>l>e^oB{5o}R&s2MxurtC zx->By2@7*0$UMm>J;niv;2BYOq0|*BVvG}n< z{Gp&8HcR&C_MaU}39=gKVE?&8ZAwYGiuooKbX&HBn5+=+Nss{H^dwBiaG6Oy$+`Xx z13p0ad5+~5Zvb$in{GootN-@mlo>&QSI@Q@5c(jUk)A#e>?r{hj2R*?FmhpA>HJgu zEzjr#rvTWgM=l?*hDQRiEmg;221F%1%&<3w+SfGm!YLA5A%En^k=O-N{>ouE{NT+A z!R5f5t((bw3xxw(Y^ki^?q=sfl)@y2{zKK;4{aU1Ns zm_Ag#a*paYD!(v-6k*5meVVFnx%aAx9j0Vpw!@^E(rsV`Z;gE&dHli`x37;F?*qc? z6R>h;7x4HeU^*6Pq^}`DAl~pah!Y4h`1%W%EC?+WdKZMS2ayG~)nfk4jv|PGQ0y+K zsp0S1`3Rql8^L~d+%{6$Nep09(8bGTNGayUZtt^h9GL0qDVf6`ARwrk$^*XS=+UD_ zH`@X49gkaG@!bKc5GrvvvP#Yabq5Z;ocuVqQ=G@wc5PGe*Iov7#SE2EOdP@nezq7;c^&O@pROXrH0DL z90D@MF|i5dW4z8~kP;iAh~wQJ&0NUc}-JDq(3tpiCt;^2(2Un4yF+Sk1!$!2Kqs z{LnEn%0UstuBr7ILv^T$g|@hOPu)`b8`^_&;!i|A?M`C=PUKFBeubTv6RODALpHtm z{_8Iu7lG~eW#ZMgG=mR@tR>T2M>*s||Gz*ZMA;V4KSG#Ef1a1^Qz$(nG`Z)ExW>1y z@|Rdn){WHZEXc^etiGcvH+t3b-wM*)#Un@fvO@W^j=_DH`d$V0a5DJAODfsazloqcY z4u8VO?lsiAnC^>E@$uimA z|3>?`>7TEMvu}kGFjl}x@KZBMC%>Hf5rY71R`48jh99mP5jA2r5?!G4G-eEw552=*-TMv^%dhJiC9F_h1&H?vi`3g~G);I_H+3=I0jvMoSUZ2$9hnLh>*u$>I$6NG477eKT&LW*|x<$)Zuf)X&= zs?-f{u+$W`5Gg1LUxV^zfMAbOS0!AauqDSKV|o8`gqodHR8#`4D+?wD_-+U#r2Ubr zunyJ5Ws(x`vK`01bsy{1Htd}O_>B>O@y%-d1D1&^*mV3+5^g{{=?Og>Thvf~jh{vh zz=DK^waHtC8HGU)6cOuS+}qDOA}@H0gW!Ms;a`ki7>F+ z#|nH&H86tH7GQAF>DUD$TecN=L&KIj*$-Jf)?>*IE6T_Af85?a3nYb`Z=gcc83WZ@ z3<=zIV)_#X`Vb2H`?%&3kE51SzjWcs99--gM0SVSeR>dHe!hzBq-Si*9H}G=t{u^F zd@I#c_&N29furMlf*`#|MC1$DMWV12>J!Gpg%!p0l$*tV#8|H4hK2^E6DKM&owZuL zG#1(PSk^6yPa`%s4#pG>;yz-GlRdB(v@aVk8rnu4*a9ay1j)ny7=iRBU;aN&?Ccl9 z)EijIZ`rVNsMFvdKRt);C>?h&PuCadHxB zi4ihrJ_*;E5L_!XC&Q4e5>|O)I3>c`pK!XVykfcTcmkha};zz*EI|S&qEb= z3_UIpzO8;egsRpNj0@W0a+ls|gFxv}6QYC9il{)4rdU8`p`Q`?^(U;EZ}Vjl8Wfv} zwa4w)!Ng>=guo=%jP~{fhIZDiz!B0&=8qv|#Ar#FfyD^|h6t^nl25$^lq;s47-I(4 zJEq6rtyrAH>DEqZV^shzYMm}7UP7{rxkxwMRuM2@tjlY}2Drr-hL?oPqLC7hTzGaY zH#Zkbf<9ut6V^TtvG1>cjOTzLxVuxVCotuNu9NY!R3XJ?sUw)Y zM21ad5YC!CNY`MPw!kn{Vk`~*LhbP{B00tSd+pO>a>S=gh-7EUxH%G|2-(R+`~u63 zP+bl&0tV>GU31j0P?s1-Jq9ypEAZ$g>*ULjAwzxM>{p_%+;)kI*f$A`GP_MBNO|gXyJqL%U z(LW(=Ha0vQ>Xd&?J^RNi|Cx9^xW5hO-n+bcgve$8?*n_0_S*gD!ZEZ;PKx`oly&J> RH>MJkDJ!VTrykS2^FL!)C8a1J(%qqgf*>f3bSom=ttc(stq4d9h;(-=As{6!-Cf_@ zc<%Xr_n!L?p9j=8*4}&VwdNdij4`+G6WND2m#r@j1dF+qF>AP$suhfK$wE@i8im5sMSjpei>ALop==*WiQiRph+iJHceuL!t7(08 zg>GnT?8OIZ&g<9T;C%AG=!5grZ~1dF&9{0-CBN-t8sa4yo|?Y+znx3Kv@bN>gJ^cTAGqXas-fLoUadC+wzRQ4v-D+CWIO@hE z0SsgEhEMvu~!YzlvVY_hk@jX=(N4X(#QD zyH^h$1XA$V3Ga^F7Z*R5n3&km)U+{VoJ2%!Ts-W!*~$B&Ka&Vve*5m-k1Ulu0zA2{ zMB%tdW_7)yXD@zyJa0YM#atkC^QPz1ln3~Pgr5B-v_eAhE2HIwW}{`BJFM~wFfT3q zuZ9ZVW#v`H;*j&K^(n}$FBNtd*sp2{*ssXAxK!wmlvqw7Gox8%Gm&6FHgS5gdiq(t z*epc53{KzRXSNzPwMe}ExNFoyD#y100oVkDgx%^7@7_hLblQg5f8$F?-}CL2dQ%`} z`(VEQ>pH@>s}-BFvmG(@@Qz=_?p%^Pov?6%AiNr%v_9$2%3;uQsz)4jENe78fpUdT)IykR4BG4YgXiONG2JYCk^XOP^TN-tPZu_*=s6B9pv6DUH0o z>%n~b1)XfI%7bkEgWXkg2L}gI=ba_X4ndc_FB5Zf#v0b0+<}hy`S}l$L|nVd65%SY zd8{vF|Ud0qKn2$!^PcSRGFImS*uhHPSPI7Ve|49(`@Ed?mWX_({ewyZLSy@(MYjf z{Q1Dap(G?K%9zwkS0+(t2o=CuebmFw!phqHXD~kncGAmF>FMNNx};bnEL^CmkcU(Z z$^)lAu}P_@sG4B4P;T;=4(gzqV8Jd&lU%u?6F|y7nO*7Uqx&2$*e6~I?)2ttXNvpj z3D@)QHSD5y?)V9=lz65}M};OP;)?0$Tvz{QsymRYNt@f=-j0Qbheyo(tf4iGp7nF$ zY2~@24%!JvN5_sNQECsm$Fbi(+{dgsSYT`}A*7dOGw!0efJYV3Y9O#!=Ds(9xnw6; zJm$m*vtlh15)#5?HWDp*vX|20fLy$HpOBEy-az$9W5~^is^xafsOsY#a`+hbHLe!+ zuF=s1WQBHg$Plw?Vb{P03u-m6TIxK|KFuzL1vT(;oXXzx-FH>DKY~5~1Yd$Ei|bbYD&S z{pgciLLrg}G^yt(pB#>#a=>-KRw$W`eHqPXNz>Zenwr^Y%0qHV_X(+k2hH3S95Rl# zhV7C0?x$|3s^cAXQyy~rQQHCjf$En7EZFtQmQziz%ZXyXy&7(Ui}MQz3Jh#&Zk~(Z zUK+1XYI;wu&qH$jbU0g$v)Rf+*m>s)CFNrai?#hK?7kfJ;=zjK6GCE4>{JQFBLmFb3ik{D*wp}@8SZl*bskN`aKO>JT zY|$CzsYY0@v|YTiN!Yj+i#f#`1KRHEJHzILl$4zie;)Z0Ge>h8%Nj;7$j>l9U{ZVc z?%l-la%Ui=pda&am8+mpA#&<`v*$4}IbHTFj5?xgUt?gFZ1qT!@tSFb>~fn91~*f? z$2)G$<~wd0ZES2fK&a?e_a8N5{YIic*Oh>3XlS^a@d5Uj%XYsCGIcQN3HGbqF=a5x zZpQ~Ui$8M)Z5oMGu9CU$t?3pN6m+S{K^z+_dP!neUfEKzJX|aonY6!D?~O+y=y<3n zE+Mi0{XQPM^N#7x%BZxY5EDOuY7xe*E~6dLrQ8ch0PfMNB;2e4#I+afKFR?N3V3MjaOG6%vwW zxTePYc*1Yv;>f98*3jU3Wa9aLuz!P_VY4!VEL;K#ijG+BmwPMas}%Gst0Sdhxtirx zun>AG9IZ!2Mxwc25;HI`q+Y%aIjti>FbX1L4@3hbQ{+{jw7H*bQrFeh`2{TZrsLhX zal_?sxp-@3G;VEeZ8NtT!hFSA9aaDtrH_QI)~#D>6W-L5D=WA)$GhX*nA9#cUv%q{_yNJzWp~t`N&Q;@ zgsZ8!IZUxA7R{2y+;RsvZDdWr(x@{l-h>p^1M!YS_>>XSEo=g7$j*f1XmOcDv)B_o#>U9mj}!JmCbxlqiU6l zV~A}fTu;+Xl(yNq3m2{dENG&Q($K5eoAeKqt_z|RG=ex>S27(cjZIBWee?SDnm^w^ zc&>Nyj>i|DB^5v=O^L$J0aU_Hq+?@a55&davfC}Gra&xc*cICPe*c1wOp-{YjCR;+ z_32p2LS_~+P=xZf_6(50i`>?UcQHrO$yPDUBGVXxr39_HMkl-^x+Y4m(y>Yp*Q`W4GU^(~rynoLP_wDS8czAv~!0fkg*}!6zCDJ%vbC!W^KgpRN{9-hdR`6$Uqn(wE&qAlv zn;PE|M*ve&TmuQ7(W34m2m5??IAQNSCE-UR}37`)<9~$;k;3fk#DU<@)ZfeXIF%l~ugH z6h@2flbUU3o9z=ZVXc6k_^OX#$rAqyzD~fnMMJ~=0FpOPT<4HsxL>DHeP`$U_;`xT zmoLX_%D%h(GH7LGMU^SiYTpz=>XwdPy20`BGA1UOh0+Y%^=v)?0n;_FF<6}C%CP3y zAyu}twD_OIo?-2FK|;5>`ug>qom}GAutUOPVtn)RRvpb3R5T+}AJ((AbalD0G~?~t7H^XPdK*V6nAnvkR8$B-y3rIs!8cf0Sy2Fn?>RW^Nl@ZicjkTe z@o9Ns+_evfu(P6-r|L3o_7{$lMydysw+j}7(p`BK-%`;3-ng?efLlyP1{;tUOO!41 zv#%G!S`~A0GY{z#&M`xYATerDkMs4_a3t@z%jU;{BByN=7Z;bd4|fKVQHs9U_1D+M zdFZVYG~ql;(CgW5-@aYbxqMXJRbN+k=flT^``$HoeqdFbr7V(5?{i9N+u`H$7sGuo zG#%m?b6RAUp(CUV^Zi?$K$61+_}FMtQ~qKKv3-|vDAn8f;0RL zc-M~U5MFx@6#_(#w{PEm&r#=vbjDH=+4G$$`B5LuFKUm``7(mL;tes_^}oY&HmF%A zX3QA2m1JO!j38AY)yC0gH^vvkc4E{C0OrkKFY|sR-^FH^|uvp3{&9_32@!6KpUuKYU${tZy6nJCGz#@lSwx{&*i?d`{;BehtO$q`DvMU zB^nwUp!46$%a08VZlQ*Y%`tWA-d?g<9UEomfud}1P_=mxqIsfPq0xG;oG4V6Ero7P zkPk??o?k(+R&EiPS8fwSjQgmPr)9YCvgeZ&QbHOhxe_Dj^^5JIvX<+%k{1s713f(& z2*D$;uJ-o#pXO-^|N8pEbJUEUmi8S)MzgYcx`qBMOfeX%ZEK(8UbEhvr#WJ*CYVlo z%?$?)ipEhlX=wTtAz1iTbaix0L;gyJvw~bOxwzO4`BYLyMrh87rE*KYdEC{-WetLW zkjY0T1R_SLXsH>D!S7Z`v9MN?op)FIvQ&aD;9Rp9(6nEN+Y*wHfFsr($vpq7h%x6` z(PX5$*+fc^$mDcum|^aR?5~)gLyLkgP3qhu$l6VqE}JFUr69z|FJ;qOA^s-&XFj}} z8Sk_rb`j3%ItxqSfR^+72k);<%*-@G0+P|v8si_BItjXoPZxHnd{m2t`-D|gR1^Yg z^G6APB+zvW?@~-Py}v0ULIn^85>QuL1Y-=mVP1XAbGqw(`q0HiXnS#hb@y2pvR;3R zq^&`UawSSKlMw%80K=N&6+cR9b0X1)g5vV!F85r(t?i^drlc4bu#=Utl*J!BC@>$d z!a7N(K1@5LDaxDhR)OnE-TaX4w1d57sSOIwgFj3!Ey4<$3+0db(h(nZBZ!X zww8xUVDA=oi>Tjlw(6Q)Z>CO%V+frdZI0Ltzsgq4e*?JA8%kyp4{f*ocTj8izsxQ5 zN>0A+cDT$7Ddlk-k6~vlcSCb?Z=taq1XACipt(OkQn(-m-+TF!D!I+ZfE=fKQI=#k zXYexiPg)aJ2z2qI5K;40nYhfy;=g?PQkdAw`J(3*?AAX(E5He)0?N>^8#0Vgo->Tn zY=THv-x0(4VyJ)?xf_IZGCHvTP_V!@>hVM^0A>DwdScA|)D@8ST?ja9o16Nrp|l$A z$J<;ldfpl*I(k72NEoYhR(am}3qvs`vf6XLfoiOv;%@cPdiF2pH?lbQ6Eq`yd=#I) zzs9XMRA3n0>AsrBM|kH%MMfrI%A$wt=7WIS8wW|=4Uft?D!vANg96?T)oW!@x*4oz9E$%m8-16PykYm$4@jOH z=abu}S0rkgwSy<99tdyZCkpIPKae|4=ooP^R-vPznOv*E!27+ps6M#`|KKaHu$t&Y zZ2?s1t#Wk+>~RqfFCA*xrNR8E_|<(txFrV*S(h$frn!CF2Y8cwlm1K^ec0c#C9n2k zGO~GXGucFRvrV@69I5Vp$9%Zf7f$x+(;Qzp2M}DzYY+S{UAjao3lnT%=QvZB zf%bfTvJt@B8z7ztNJzXpji9EansYfpHU|=C+>h2V8I`k>A^su710W2Bf#PW^s+%L~-&e71hep zM%z0Dxi^V|_GTdiP`BO$d;@HjRVVjA_+DaO)j?*vh2z(YyQ+~V@D(pz zo#J7}?J+)*#SSH9V-tG`lAe@Nvt~AIQ=YgfI)CHvnZr>7#jPo2=~lC1Yv4~pV`JL@ zsY@SMc~d$0jJuyEFspz2JwJb`26h5Ki8QDIkuv!7XijwR;GjUS(N9mC$pdmPyW7#8 z-e$U7QebiM?mJ$kXI^(br?sC)95JJ?F8^A4x#y{&&>Y4w#-%7Oeo_las-;B|$|O(V zathl+{KKQ7nqfr)wL~Xc{YOH4XlQ7}vYGNzYU;%5s(aVAVhn2QwWChQEe5Ap%IZQ_a1*|*{_Y;>gNTQ~WQqCT5jQV{2=B~r@OpI}z4>U9= zMxp50!6yE8aOTv>jc1zc6{vsiU=3cf88A52%5`9T_<}dM>W7ifEr7QJ|Ca zTivQY+Q5>IWMZ)0b6hSOaF~fu0epSJUymo|c>(7l4vyjO$|&uH>skGN{U*#j2I{jmlxWpa@(r#cFFu$GPjAoM8wr1e+f6k_a)Asu#VYyyW(AdMO-4};5FRD_vvK|vb43GM7&UtNUo58{m{qJlfUI}MA_J(~hslr@ z>QFM=e>h>gYCibp8vZMRTJq9vjss6>DWSyWr8cBa5l*K@XMAxmj#&v%*#~edzt-w- zabCl2068x%3c$GA>9IY6$F;Pmpq8G3gaPHmN2@qSysC+k@ngpQyYD|63UtN6zzd$# z{1*3aNQyV~yY5YRBROnvX5#o@dkO%mQFo&7*5W{rkIzMf2^p^vhI*N`xO@ET3qn9D zlz+ji#p&^`VBj~giPgDw)@lkUQ_(RnN;ldVhpOF0QRF~RXY6u?jJaA)`Rx2hzJQde@G5` zP!A(~1hAM%P-3D7Cnd?9o*W~k^H7Q9O$g?{frGHuXytZT(=i#y?F8tj1`NaL$!>Ml zNb6qzV$a9eHqpz)6V;)j+fECgR%TMOErqs1@REeSd!kk|w{d7`josOIW zE1D#aBfMGBPR42Uz0%npRdu)`c<=uG`JPlP;K>jiyY~+q%m1eBT`a6vetv$Jll{59 zy{kVDy98Ii!=)hnB#F745!{n@5X`@izK?Ly6Os9E{ z_r!LB`u*^iq}E;EkG}g?N8r{8A2U(*9_*-4Vc>I$_0eRMd-l}BhHwZ z7@_qBLb&$7#0vY^ooav^7S!mYiqH|c>;jD=z;Sa zbJ^^qnOh8`5{`9Vt&D;cyxzu`_XV(we{M#_3pgPHRm|cWqEFVO?x_%5!+F3?VHXa`KwhWZgbJe` zA`s9={E*iS4z}h44IjsHO#o-2KUU#50vw?WXcaT^>W)uQnSpw_4K7o0D4_)&|At2G zwap9kM{+9OWnivB4 ze*_R$=xD8e1ei$(A74N|g6pXFBVrtc4GJI72l^km`7kOX*dYSI$?>7uH&ZeYu2`%B zpC~2Y*XdVU6#U)7qk2M|SLR;xYP>&Hckp`b!>HB5cEH=Ex#cSYZ#+Gb6=FYP>8*bP z`cMfJxrk`?;ll@^ucNTS+}ot&LF4_B)<0lW18rUQZmSfJ}+bdRl=VEzP?Tz6uo zq_6;a{?59TU;lFh=vQRJMaofy5TTy@WGeRikb-?6is?RmZ_AbwEYI4H+ytnx*en%i*PEe_mH6?gTT4jI~_(c7-P+5+v!D)c$z`(jnn((@d&Dy zjQE6_euQqKUv4J(BO;;U#{fcmJR~m3DDDz zl!xqboemBfBh1=YJv838p5v`}&7O+!YQxUDvz2 zB9Vtizu|p$f~vZ?-zJG%uC<(nlo~tk_%t+g`W!Jp;pg$_*6HO#eh32Tu_&W7 zJANqTC6!`$T~=MLI}QdR?=$5mYXeCgqwz~fm=MoAcmBEx@#r;$@(EOceOwb`wHaNr zvasDT6g!Hy;63}%LQ<`}T-?;36q+bR)XD~ifcx;_OF$3K+QeX@8RIvKaTf)^h{GST&T9@3MzV zVmiHh;x)p7)Uv*f>c6#}_u5HCmwU*eWto1=XLx?e4=ybJ9@=L*_L$^$Qj}RSlfm## z&Mz#4k_<(E@|e(?sIQtBPXX=bh}-n?yD}OXVD+frtp9AezBc>DWHcJNY%2Z8-s&!# zScEhTlsRx|!KTKfZH}tAw4%_WxR4PpG(%AqM-0?X4v6*5-Q7V@6oEY39Y{G>Ep!NS z=1izGOD(AV$~n*0;lD&`W~3L8QW&t6gQMdQV9e~6dp=NMhF!{a!uF_*+&?OH} z1~xR~F2FI+5jy}5s+L;OT3T8Tn({bp{kg0BbI6^HRl6$wuIB|y80`!A4dAE<92lx_ zEY$C4@FjEv`M?1%4V3jjw|hgT3k^$oD8|RNa%rM-oikxl);c~BABt6OKR}$2cgTR( z03>#uhbI!iSV(kq3y2Ke2Z>O_he1kPhdkW_#d@Oqi6bK00W(jTY_Zx6WDb(8z>Gj0 zrRBts1i&2FY9rtrBl^_1b$IF{Qc$ETJW)e0PbbBd6Rlq&lXgpKfg<_q*E;C}PfyQo z0i#AgB19Hzsesdjg6J{|5xRh04`Bx~4dO~I`vcjRj)Y$B%ylyJTVGjcHi-`7HA5gi zq*_?pp&1V@+W|Gy2yB!T@J-zUEd2a2urg>i;od<#WXB}RxoWC^!obTL1&Vd^;?`DO z)<>xBc;a%FI^*kOwj*|(Si?(~g;h_YYepkWv9*3iI1BVQ_KsTBE@qh=E1la`JuY=} z|9v1_hS27$My{z(4bc&xK3L(%3CJ*KtJ@6(PclT?+J|gZKRjH1PlS_&CHLM>b>)@) zkS#Xn@A1c6oue(%+A~%XC6+%HbM71~-TLnXx6=p;miOsriKDLl-@@mE-SV$F3UV?s zsYj0jDQqwyhak4U8pHyRQ?e-k#S+wA&H zd|ILhe^L--521}P@pSw_&(#b^EfB}Fdts*wn zQf@6zLh|5-)0a@PtXTFkXTr0*Eq^1k&()*Bm&xqA9VyDbv~zB;-*=j1FhM;GHp=;@ zsL*Ono^$m}4+J-5-*DLFTO8t_#a8(nS3Rc9-9n;S<}qqsMT$mO-TBda9s;}~_WA1! znVp)btzstq#;$q_zNZIqkB~P=E{n-4)-Tqu`dwF`8;JS2zP*6)ceX|tP*P8guo}j2 zYnUS&U8+~EpWpF!=kkIxQ2L0v)mT(T=<$-7{I;aDUSr~vEDJKjF7O@85ATy@F_}n5 z4EDoT2PkdqBw*{#JVKLv^wWv$i36!=*KEDP^kBROkdTu5a4n%lq#hHq68EhMIyddv zj1>yb!Z8CcoEe9lyG-XHnnj@@`}jOtG{`Ae&R^#*=XvK{d+(VK8C zi&@!i=f0^a+l!I?(O&V4{=UDDPx}*8Xd!2ue?0ba{ekD;-;bifN6qp*QGcF~JsR`9 zpZ&|e?rf4YgkbFAWTz){mpkY@$(b1U+;VU|eSIXi(^0qP1{RD^2WpXL#3%7m*q!Ac60od2 zN;jO){X)*%u2!*mF=NQ_Z0@G(VD9EMdN43Q#^Uj?4pymb8K zG@vzN!A(n@Te;L}cFu+rQe-ACtcf^f478Flg6^~ieG0x0^bL^Kx54;kNNA0-_mv-w%71P0qallQ&vOW+>rkX9f zMJZ?4K4C*o0?A$82@*1}MIV5e2ge*BqG%vL_?z*_d9Xo`Gd20~@tuAL)S7$HfJ}RaKQmw|f$Q10xkyKOfe=4rp}sSQdaT^u9K>kNg>}ec=gytu z(}GGq4x}#*m%TNbDexmey~R{4FvIk0MJFq3>(|&`Z^TfS}BvfX<8dzTLT$(#fCgVLYwe!Nh0Eh9F^|=1RXaZlstBCe36#|uE zFIvlOB*XnX&(VN8@cZ}g^5>IH94~gTVW-I^v}uAps%s773Mr{16n2A^&bw;OsyWKp z$}jWxLAEB^d8`t$n5$?zd|yYnLSeVJF}|i^`SFYQSljlv|K=6XMDj>m;Z!B&RgA9= z>w0#pW3E4i1x^_u86YkyNa2?v`o-wNrV_Y5=Q%X`2 zDq}PcIDydMU@_4AQ2I>)x-G#s8pn29>5~vU8<;!QOos^NglZ=n{fCOpsoSGijcYv6 zz^(&=oZ^SdzUS!}-)(2larE>KrawgD6VY7XeH|dmJ^*?N8~}OXf({gLGI2cbKYhCO zkW}C%GxK|dt_S>A*kDTqoF;-ckM=CVAcHtL5J;-4t4lN>`Iv+Vs}^TXV4Y+jW}xuI z0rM=aSjoahOc1mend{sH@1U}&mY5g{IB8?oZs0N6Q@9xXIlXI7ToObgBZOR!E?-`{ zkn7s;40e2>i6d^X;@xySPuu)kPjuRKUrkD#?QJVN2vZ_7&+bXy6w3e6UlBOYlgf7% zrV1h2ZLEu`c#i6*wT>_|T>WFk2I=(URgX_c@wj3Mo#ZW@k7!Tw{*`eIU>vu)IQ_R= zP4(e&yqf}UL*dhBA^6cJ)UBCjgSxQ_(I*ZH4W)5mt*l=J&ms=NZIo1L0q-JaO;P0g zY2yTgcV}^)2>Ax%5n@rH3hr-x&7L4Rizas-ph@0ohza{}7(KP` zD$U`zFMtimUCA3gSkZ?Q?a!TdBPM?Oed~dz^hmL^0Wms*^v3(^1w>|7ztSvHhz1N2UYgE5zgh!@ws zNzjVyKg!Okg`{*Dg0|nlBpvD?TBX2Z82`U=VxJA%kaZ-)dm0K>eVaPU*F?_Q#~QL* zBUUz6(J$RvS-Ex-w;_i?r1q4=f#e!7)zPmL8NoE-_BLAsnJ4@?$gFKYD%OT{qT-6D zlHB9>hvm-@LmzU(`Oz1}mfP9&Eh-Ho&Mrna6$Y8x()|J}km;9WcmPElk_|&*0e0L8 znqnKoeX|k7ZtjoVHKfXvnz{7(ysaR*MI~+G&?WD`BZL22zLdhdc2e!zA?d>&>%Xsx zBd^AeUW|TjJSO$lGCqmtPa^ol<@aGrM>4711Cq!W?3Lgx2NSP#p!V12AY*3?hR4Ti z7>tB7D1cIeRE@Zl0$)H3yu5U;twHqif-O2E?$WcErJosv{e?+?^Mj3DssUdq zQfa<`(}GOZiN#t0K?4JZgF2Sx=1t15p(A^8h<=m6{p#G6qdHa3Acq;K_;vYL$OBrqig* zcCiVlyZEP>;SG!zW4F#FR~wQQ4p29l@tzg+eYd~{n9KxV8>wMIR-pv9p9^q+h|v%H zvPcCArcK0K1p24M7+~jGFt&7;jX`|}nUFHCx3?GV%aG}y>5Ow>)mau)CQ4oI?mIFX z`F1Sh-p)anHrCW8{O|=ep&}Wr7MIGn*Wc>ypEaH?2X@M%qk&<#PcMHmL5Z!MwyWv9 zT!f@T#61EQO@%CF=15j;S?~)}>L)raFhIo)rgj(KMN(cf3P_BsJnle}IygH=Wl%9t z7LGpX?!=pV8r+#&aaw=%SHSSKUkRF#fT{KWhhCT8Z-VzkilzF<3IN7sF<=de{ojR$ zf3zo+m6E!_!LgCONXlu14T0MZa=siCA&8PYRiRx|P%vcL(Af9`ID4?ow%d*>-Bml_ zj3cQ(=qA(AYQvh(cNt9KR4&eRSNz#ue51rID0htd@9)peSeCOFWnU;BqQW89z#T+^ z;SMn^L8ZsHa|`U_peofsHPu~)`%l5GYW|KD94F)8rSQd{?y}UyNm{79-vdAI-AqxarANT=V(E(}$SCopAyA_pfu7^k2-Y43g&Wb>_#RcUo zXwIPNj{?2}Orn2!QvIj4W9pwE1T(POw`ggB^!THi2t?pikSOAB1W(i~n6(X0j`k&f zS`NP|MlAD*&MW-Tukm8Ej2r2Gu+syj(uh;TiScOv8U~a5#`hiB_>Q)lEzR{q5fC^0 ztxZr1Ag0X;U^>H5B(y}g`xJ!WXHIh!nMTJJ>CE6>w9kcxH>eflU}GbK;Fx*AU$B8V5!=<@klo*oVnXs? zte*-5RHcWDb@e)$%!`-U<@a@uZ=5CWT;xlEYtqSf&P;>z=4x%cFLC2HAH+b7M}oW+ z*-L+aeD+&(b)ZoJ3w!@r29YjHMr}bW$~q{J0%x-ZwvnC;1^S)Uac#3kDV)AZI*ZMZ zA@f&W$&|;G-dR6dg;2ndf^}I8@lb)PheB*H3<_y%mXqS3TRAS}H@6juW#|eWe~@rT zndLK0&b{}R5;U|nk%F0XV!4f?WJeFf@TH`5c^v}t!>K_$cS0cymWVaed6js zoC>?E(nnb@V*C&*+q-C=fsPpgu?hKE0-rKmB$WpUDpv>z6%x0l9vg7f8rq{-q#xe1 zOEW02I|Tp))O_yr8}#oG@1d*WCJ;O`AVJXIx^>P2tQH*4zb9KUKQZ~tWB+>SJx^K! z7w59EQ^nZT`vm|w=mo`&Wc1|IjLy>$}J;EPZ8Jo=1Wb=#RPsLyihD!3*t4#$g` zxM0UKDRBbF;9h|LT?t009Pi zlB*txE*nxk5O)VbS%q!NhuHVvIt?K%%{)u)(_vS+FL|?qUqZCq>TE5|%);fszJD=R z!H)u`gfOBGA~#PVO-8pXp8xDibYc3e->($!AK7w+?N!pBrH7I?aF-!4ft?+L4Xg@4 zilT{GSbWj%4wfwSp*%;-7!|$K`|ImNq@I^7ElEb%^ed^bJ8eBj=u6;YC7?+LHCSp* z4>QLyfS&5LiR%@~i^ev{k;ESt#upkgHT@A%Sy?%(K@c&2&(1c1m#P_V)9eWJsGg1zNi=szs7|0J;zvv-a>Oi?UqnUE? zYZ;Nyk(@tnQ$b5(mBW@~E-*1=*nhvPEf17RCDc^D)r9Bn%B4cxnj zT`4wZ*H-@PNF00P!a_5tu+pFzqP%bF)Y0t+4BY^Gyan`ajaw){XZU1fYFdVml=@CY zR8MeKzQm-ZiHm3uK-B@$q?}{_9!Pp{t^17xUDN@o7Py(I`FSaTO^(2uXQ&sis11bu zr*|utJ4sF3F|RoD^Vbs>ntZNhPsc;KkvSf3`kg+*5V@x#r>F!#4*Z zek9>V-Y@L}o4wv;S_*@yD?TBwINd;=mq^VRw)SN!c5sp zW^%z{p^N3s*@hXHaIis>j7W`q&iYKQk^iCpKfn}L2ypGspFht)e^MlLjt2|^E0w!i z(B?I4?L~dN!k`*DQD9*oX6t7wGb(2l4Z7Id?_NGk%WAPzIUn(Jygy|kYi4Br1k-$O zcWyHRlXN`Ku+g0*w;HGR%;^7Lc7KG)u)WKB&n69YX12c_Qg@MtLqU;$@EQG5sW1C* z>ePQ5#!t$&yHsgedl0HQo^d^yeCZdGfjA-{Ab@><(pep=gzlK&Xw^LjPvGy*jDdT= zGI0VkkI+8?Hh;vdtT>>Z4fuEdCdAWqPbl4 zI24-I9kkkWX%w0J32RR&@h{$c-kbJ*ieLvcUhpxHBPb3?^+m5=h1S>SKO6`6t!F#@vma$r`U~1nT(VA@y&E(h9pXx< zog*_{_43-8i!21)wHR{0@q=yhlRaaS#mB_sn=g%fgR$(oUfC zHXwC6AY8~;$S>F8T>O%5l{BMbL`$K!`GM<9myv}K$nDukStf#6<4IMGulI?4A}WW} zYhoI?d@=ypv(LwM@-^NL8bVCXfI-eo&3v!XgZn7x2yLkGYOc4tT#Lrt>@gqS z^1+5Kc1bizlgNVsu`n&w0QAJ&_^#Tp^gV-lt+QiB$iTaaiL9@O5*Xjx+VJEVw^5f% zNp)MEr8{5bn3rB$R1vyZSn%WZ^t8>N+)^)CF z=Z>r*)BXuz&pHix?yvfyu(^)!O8074930|?_S)S03O*MFRA_9D8Rm0aEIMqueHU3f zGb%#2p~FIvHC)S z&REE9%#j9@Q2=`IMX}+DC+QeeI|?#eC-L_)hAK*Rq6)Ks<+(iBhx!V6@?d9K+Qx?K zuLCn_R~X>eWI;Piy-88e=chN%n9Gj;U}QE}wKV*PuwBQ`6$+{h4SXN2@C!N}X;1Tf z(Ul7-$sG>`jDIC%nHY{##VK&8N<)~0niC6*+K38?7|j6kjBw9Ma*`!`O z1^1rAe4#vt3|QW#`30i3`H+ovve^x>-LsTmJYkZ zl0|;8(+AjUEFfO%^gF!>;Bzi7tjAj;adM4l*EGvp`r3y7i>Y!2cdpy zX69X^Uaek!I3L{^w^Q^VdO4Be;mHWbL|TxJ37*q%)c4^LuWprld67@Q=8-(%`&728 zdilQ{D?fXYA;-j)IvEf~flloknoR^>K;`%^O6OY(Y58c^oAX!{`r?mrWSvVgExLa% zY9$dgNl_iry@re}%K~eeB@))Mkr5rNTgcR?cTuHKat237U%W~cdyT`uNB;-|PpC%Q z{kTycK77H;o$z~8gl(za zGACG0@T9u|rz;nF8d##?TA|sKJ)rPZrR-C=5PT~JTwY1ml{X&-8cer@kfQ&&@} z#>9Rx3{;AG`}iRX!$G7-hup8)yP6=7(yNyf-%f@+jh0_V)jEHX5a3k zFbR`X`U@%OZ;}0t6@78HhSsZk^-8s|`S^p9Y(&p*Siye#R_CtJTWrqB;xTRaLaqUGGzXi=O@|hM< z7$-c+pUaQw<-U1MjYelyaN4DyC0e-uM4(W$9>6g*TiQ#*Jnp`nRWOP3|YO~5P?(q_O@znxd7l!E5avG>Nf!d>U#BLUt@@NzPc z$+A2V|6~M;14LO!(GrC3Iv7pv&TQ(Ns408fyJXpu=vMmtWp@0K4bb`ImELl{b|w*9-cjA`-S3$) zJeeu-z`<0QKkSnKNt0; zr1e|^l~?WfYvb!UR>k=(?o2AG-!^-_>PPl=0*UAe><6WQ zjZS~2k}>5lR3y;ClAi%jr3hq)M?WxrtAO6ph#!8E`zC!vE2kKBaZ?HQ0c2FHYvxJX zgU(EzZmUfCvzg+Q1aJZ>*IzC=@JGFT>M&iC%~TM)SI)9>%%#X0cz~Ga>J1?KVCd0y6Mv)TIjr-d5J-`ai-sizyZ-Uf0Hk4p@C4d>d!s-c!QU z4E+B*`J|`1RQgqDkBGgQ1kIvGBkoY{y-wWIpeJ&kcX6CV0#j zFJ9~&CLMa~6yb`U9t>2g!pP*jWC^|#hw@hJ&{5ltpfsN>1LN;_aQ&@Fd)x(LLNb2(@CQgD0h2ghjuFtUD_YcwXb|t1 z{mB0cs5>UjvT%6%3XyseurRRFT;RDqpVHC@;L$)qRKgC>1_X^@w3G5jDHA(+I*X=z z%TjfPI~xhje6#B1n>N252OPh^8qX1KDIr(?{w>iA=LQXTR4>LAL|`Q2w=(c;KeIw= z0b|qcw5$HNDQtIxN$!&q*t#20pWT@ogs~Q@KdGBhFuJI0IGuF5xcm`7k_owfieuR> zZQtcBE4xN;aCgmn*NA_5x^xtz^zPltKDk*Mq z5t3hQjp^&1-J1Hv?ov`zKv1MRm2QwwQfZ|n6$BBaC8b*)LIDBk?rtRZT)z7|`#WdvKhD@= zIL15lh38r8Uh9rI=XL#N?kfcl4PMTE{Z#kdKH5)P!Y}Q}ZJy3NcM+w2PU4<&*>2Oi zc>PSL&B%VU2vQ1k`3mAmCD?~Dc@olOeJBeFJWeRS`JV3>YQ?k3FS>g0_;+GyvBf<1 z(YLSBByb{}x5zAJCnrJVlZ^byiFi7j7-H`*o`|2bN#R2)O=vIU%$=)N676;I9*vjT zzZ*g&>_s>H_Ghwg;j1=TghF&D1+&MRHdM#2dN+Bn(5^lEtEYK#T~gf>%T@vJp?H~f z!LymMZuMf$%?#v=DhwV^$-QD!4Z!*JKCRp2wC$PnljU<9G-f><=HlZT1I3Lw#Kyfg z2B!jkhr{7L*@pP2D!vcKjhF7TL>04Bkg)NuVqSi8Ik_m%u-5ysSkZ;wqr_&e?^3k7 z??=pQlI~ot=6I%AIDg&MlUDi6HEw%5un|$h>XyDz$c9JTR)PB~fM)EvnEa=cYJP7*0>m4}LBt|OcX4h7hWHSPL z>93Mh2-&EYTPaKuli~T`g;g3iq&-j)OLaev>&G-ch;ycw52rV6xTU?g@zeA4$D`-CCw z@fQpm>nDjc#?MG5zEs~~RQ>1I^%bNSc6ma_)ZM0>2ARt#OnL>^1<5s1O>XzxBXZDg z(hqv;zSnxQ#K%%10%<`!BL{qE>D$wU@46$X)SagcosG`+KGw7zcQ5y%8ErVkx)PtnvtyA#P?h>VOFTg zAlH>&J}>`lj_z>8D=RO1f)ZfEbglosa`jt5ilnJd+^U5>E`Lnxr$35KnNCwgWLOwy z5klmRIDIA^{?8i(McA7Kr-XxIAw475p++JR9$hAW=Asf^3sNH~r5xjqNoR@G2{xS# z72Kud$%%oJi#GNy6i`z_ct4Ku_f__T8?py{4417m&X_Zs$V$32n?=`h+O~HL-)Cc| zn!1{-WtttAvQbGY3wo4=X6P?#>HN5g6QbFD^~#$fm|Gu|7T* zQ6l3}7^z23c-QsfbgM7>;Zh%&XK_ml6xA=UnSZpk;u|On{_r4K3QZu*sHzB4TJi742_s3cRq{|L3cfC%|-8d7V!ls$F4E|9FNkwiCXOE zdArA5|C<+xmT>lEd>l1Iv@1fURL$Cu=N|Ap(50Cq*7e07p*pW$nzZ)$%@OXa2i)o6 zy|JlAzqh>nk34$PWtpnAskxd!pW3l=AcIvsy7-I3m%bBK{@MQe82wQpDJ7IY%*=x8eURI>v&;=49O&lywn+H z3VoIs_=878DsC{OoDx|VfgN{Z)b_iINB$^-oDI^d`PS4;E`i2bIC-je+sPbK?d9Z25>* z3>Y&vDv3$5Z8+$ACbSj~8AEl5BbcPtpS*u4SfFvfU9v%{_s-asTM&QB#jT)jAGelO z!lw*>qSn<{CSKke_%U}VWaIWnS?|c2#%D$7jymKv;PzDQj_A{X`}PisLP)I93rbq> z{EK3wC(|ToIBOSB^1qJ;-qYs5UHC)PZ)h_Z+H8R_j zCp>8Sbv^?bC;|NU&ZAPJ&lNHV9FA(gL&eS>7-HN|WWzuRDc&c$PY_u$u;tb-kAtoq z5s%v^7*axYI{^Wu09OKY<8VF|gpl% zZDp!DuD0cDO-$=SicT>Fjb%g8x4>NCp6Kj9G@E;OZjGQ>wE74pw&Jh;ZpP`AV2L+i zpyRn>F95|mKxX~Q)9pYg1l!<&L?AbiA~yHZha4eT)Ej|^}Fq${M3CJYh7`Be#IxX!U*Ou}c~^!wD5Zyv3y@ z=|AyOzkd;b(7k{4D|Yqw6MC87f&Hl--!^t*0^7NW(sd+uv1lbc-THru|lK9 z@JmgfeKT_l1r5Wh&ku)skQ!X88%=vzdpk7swz$6EZ;1&#=B^&nY`vo5;)>~TQH6W= z8pp@al8lqR@pE(Gsx_E6!0z=Ll==vQaRX>t`aL48;EV>A&tDZJ<;rkymGDwH8qrnmV*TELl{}gy-vE^&Q zNB@+iL6rDO{)x)_6WoEDNu1Rc8_s&UWI9XmtY2m8j`DwHGbM2wu=#dHzY- z)7$tL6Tj)^WQ!*W!-aVKEtf3kWU1eM#2?^4oL}fvK6k8tCC-uD)hOMKhMaa}P!Jw4 z(oDgswzEFYfbmZ*oD!mr>|YO6RO+DegMchCkwh~9UO6-h>PXx`-Gp$GV5DFWyJo}~L6VRMT}22cI=lp>mS|7W}mbrrJ%D`DnH)pNDy=9 zf#^0orvd06cR+sR27(F9crHV%Cpz}H5aKcN^T&W?JLcriz9Z;MumYaEf`9$%a{~aH zD5oDFDP8JwjJ#ph^TSk;SZ!$WO&h|lL1TikR z722Y1?#pgM#YcL)&<1hYhnOiPxnxqs3i?XPd_Oo*aa#3x)%#L2cZ9?-Mu9g)EAA0J zpYl9>X2t}Bzn$PFg=#9sRc>yQ;=}b~Oyv}@cBnqdLpA62?c0c&bhaa|7m%E-@mVPz z!MV8{Yqe+Is%mN#;46q1b{ zxz@eT*&PfVE(Ewnzok`T@$k(62(->2A}!$ob8rg5m;yrSdj4g|f21bj$uyHISqG7K zb#wy{Cy(+-5QZ!)Jk?mnMsvGfG)c9cJlQeaW#weOE zeB+~~zhvi!V+(3cp@2iJj+3{ZZ$5ug#6e2y%!2HFmAQ5z>2>GiU8S}%dwbsopx*tc?uyG>WhWFFLj9UZ17g1**Ep@wJ>W>a`mEd&&p- zL9r*NDXCF2(9rxqIn$l1o8{muA;r59LZ*syZVd-^Y}4sxrUTut?PS0*%UQ>=6(u z#SUNNIOhE$^z}jOCu?Cja{*G#e(uIparYl9O1aG`CqFp&J{)p-kx+J&u>WBFiFssuZH_4rSB3AX>cpXd2M zQV4HSUmdVx{ef?O_S$ZbA;M&Q58s=YanM}Gt_{Drcj@l^PlDXnB>3=mud(z6d0dm| zBi>`_8<3tOKcI6P8i9ZdZFGG&HdFzV~xrQOEkPjoY~{qQjB9 zh-L_(!D%K{BF<;8MB46$)oYK=R$VQe`T_`*cS#?OeG+UiJTWDaL z`~IPW2)ihvvHc`67C-xSq(|CDcS*0$oatpVMHD((?%7`S0ZDd+1QT;mWHjmhw1U$rV)$R1B{YTqlx!_%a2)>GGt$(Bbn+Hl}_IILk9md9qwN@F!RL zI!vx_Lut2^fg&PH8f>lcXYRY`(3s?nf!f8$OnQX%KojR(k%ioprsNI&(V&cy2D@l0 zoG1(bf?$KzWumgH-%jq}U)*4X00`eF2SqD;4!&sqZh0-4vgA ztKB3iS;(lF@pfTlU-hX6dTlK}ZG&EZF^C|mL^{&De8V$ir!mq6A9Zpm^BY<Zbs#*e3(=?HRcMBuZ9wad}xEaaEf91ANfm{C+^KGMv|_XGxrTB#_La#E@taa0F_fQEK5Jn6rujOAP+IjJ>JnMtM<4$Tw8?#8ON|EtPaQ*lXBwNIiD4`F zO=o-4@?#PDkzlR}`f3;_T~Ne%J4qfoN%Jz!_L8A@O1Qy}tHPEYx>xVxckm(s0wBm- zYSJk$(nR#Jn{gXDx`7RKxU<|K85U|18cKS9NS=FW`#iVlC8O^XmoFrpI2KGNF|# zStL+fPlP<`_Vs`WR^j|_y=q#M9XgGpB#}Qiu8nS(-I8ER@=ktv>u~LKMjM+;44cax z*KqSfQ>Q5YEe0Pf7=sOm*6|KvpIfe2O3J5tYX_P+W^PachD&)mB3>`~j&GeZ^qg+p zXm#6^(aY>Qb*Jv1*->^k$Q)D&m5(K2f=?dZz|~}B6RJkPO+>DRWkusb>GrxckKKy( zluzI+75Pu)pe$aWH3_;8Kd&dn&95of$YZ!X!*C-H%(`%srk7VBQ>;ddLIxq|W>glJ z`{|oZI+4%ys=c{xS|+V$W~d@^CH{2N+}q_wDf$YjNotc&Ot3I3**!fG`cfyfoCJNQ z@AkSo&x?`X-bKS_4tTd$hAGCjW&gQ}Z1h~MErVTbqoYj{GY2JLx5(BEMee=$-Ys$0 zd+t1e(nq5t#pYX^#8bRy=;TaK|*8LN2{X6@i;a`;L7AuK;O$kt| zVgUpSuz~D5yvHXex_dO#I<)|a$U}bjKi$I`>hr_fj)6+P2&ekL8m*)$ntj!x5_REF z&*>lf_z3^MVWidh{xXso`NQ{+srgSI6x=gNyC1q8TkFnKfv*2)P$erVbjQbFBV~#0VaYw;r?H+g9E_w*DB^;1qU}k zn+~LY2=zopV+8F6G&dk+vjVC5`C0`Sq|u5iQ!8Elshwuii&?3ez;Zn}IDpOxosrk1 zg&?wj;~ZTwst-t5#kHB0t}@~vVjA__Q}B6{QK{*cT~nC?;cj~qK)aSG)%wc}ExqNV z=gcjPj2OL+cIta&le(lp_>r+P;6k!LtTRWfU7*JNE+s>fa^PkB71gX|@lL-oi~0fsN$Z zG4HtdpPNvGoP&rL5t%FHmaeGh>*;3Hg6kRsL9(^RFO?D(7Zt&mntqRFW9Cd1vS&n4 z#)#T%b8{2!ya!OTfOVlYhK?I(h@=t58Thsg0r@)Ob9NHb-yocvQwwfz$f&de+!nb9 z;Q29tj}cFB%+0v45ILR~=>lqF^85ALM=)ZT0C<0#aSC!|QcXQ%$TIT5zYK|z;C2(E ziMp4vEstldHQtSr%>SX%Qc;lt6<%9MhwOwV*=Z<8oihO4@gVm)0IK;Bh44I?^BWlDXMnJdE$86p?+5UbAX5Bm z{RUAb)eEGitoXU$SR8mHa!_(7t{SzWl-nH-e1TXATc5#Sf#O1qpizzW0C;ZrRVxf` z0y?Nrf?S**!x(ZY;oP7b=7y4oJxHGvbE^4HhxG4)d&Lx^1<+=6+d%j;huDRNOj}2o zExQ#QYt&%g5M6$*V@scR;zT5&FzfogXioDH zS3BZ*t-{5@L7eQZF4|CF1}{d*vw<$|Oc;y!PBTczuvgE8#Kgu1wwo|=aTT;3Bj8ft zxFa|^m>ybrL1Z@?|3SiL0lrA=V8RcOYa@l|m{LPUMFK=AhN$ifP5UirPPbiUEWHEs zz#RsI3HriGN`!$7u{~H-?^X1D40^Bb3x#*c0;rfsW5Ie_;PuCa_3>i~;3lWbg-t=? zCj-EF;fF|l9G(+OMC2VX?6!cNUJQJ4giXk*uI+*7FW~wR)*if);P2=LD0V048lX8w zOJigD;4L7W;e(ejS#3l1o%nNs?Cfly5~8{DD{UKnM2f8yk6hi%G$Cq+Or&gV6?iP* z39Ob{1Go&@AMgSF^u|_XJAyI?mS5<^gaH^)yC5;Apr~jBN(z{wJ1{$%9|(@hz&CbLtS>M{U!SRWbFg0o=*dI5P|A9^ z=#V4^Y*OJdV9v3FEq4L70kAH=hn^TQx@HNxYoo)P`$(z`T$?I@X{b4zqX8INl7?pU z0o0|D?}QE?;qLIvf0+QPLEE;P43<$yR|IoFrMqN$9ic}-P5pRT|7;58T^@OaPC2A7 z>3nPfFpvCCa4MNVN)cG-{jXzUY9X)11EfpfV1%Iam4-L0YEhrD=&*8d0MrL91&qwg zvobO+QBf^seC8a32@FXSeX#dPLiP@DATA3%m@mMc{6x-jmJ^n11g!pi-v&I-?HwH` zqz_d5QlxP8z=gv~`E8bvARMyea zc~dRPyx8*|8;F0UMjSfjkw?4B zAXf%iCeq>Hv7Iv+>i<|UWI-@s@9KK1NZfU0@HX&azmB9JCLnl^0LU?)H2wLH0H8*Z zyq0XKHjt8Gc@AIwRcI^^Nf>~JelbQj1P~SuuZCl2#3Y}WgiMqXm|%hNpY-<|<2&b! zg2FzBz+86#B1G%Hsq=WCx#w0pE0Ww9930#Z|MGNr!?PBpxXoJvQ_1RgNwz|~_>~1{ zp`m9JpvW9A?3jrxc`#S0ko68p0HKhHO|{nF>~~SZ0(dEuAjRfEJQ`{)E~Q8t6L>(z zfYNUPd2=YN8`MZ&CZt=yH1zJWcbNUS56_nd`6a-IJp*VZ8g$EvB-GSTkqr_gAgq3XA~roLhqKDp7b_k1@)khy>za5wj|NgvQMJGrhk^c+<^?xk z&W&Lbh3BN{xzCcprS=?v=PL}RJ+kKV0uswMNyPbkVK{8wRFLH4hBYe;+>_Ms69T~C zn8}R|7JA|XKKK^Efm-zC=?;Sd=K7ZHHu^CyWRqcgnPrz|OkDUc*&;c3Oprw1K(K zQ(I}%h&xQ7b+jK8ATt)W{VIdk{6O!dzHbSVYRo%IV<6Yk@`T5tEqEaD@lDs|&&D z8A97DD)3y%fjcV{V4wMeK1?~w0%Ftf8gjuJ7TVX>XSAMw;qUuQlL1%|F^@C6N^y#`>IIX71A>d{y zxePGCEPymZgEgeRa0UGMMD$|u1qI0HSiq6Gu#N?)!;nsTq}?s?hXWeWn81k#`5B}G zAsmM=BmXCiajim~J8S^RDI6iBB??$i0S6Z`Y|2U?nza#+@W3&(>TLxDs(<%^Ii7l7`Ar|Y@=7%jZrV$*KP z2?>@MElI+T$O{FY18RUi+)53U%}`yWy-Jc@ROz(X04J#@CVF5%o?eGqAxBXzEP04n z9=S>*V`Erd?Kx_}c?c^i2q>}PNDpriO`h_ zww;L&PobZZF`PX;Ve>@Fi~zIS`0$IBF-H11Xkos8@9bn27OrR$6BHC|ecggY2oN4l zLqmlrgfk4MH=-51<$f1aK?{4HNu>f_ed%1%WH{ z(V&8FvddnAAZi}j3la1K2rr?NMKcMgxSk@4qZ`lGMk-+EBTE=4u~aLy9lt=T_nse| zk4T$EIHABf=v-%_AYL7WNno@|1`|RwNaGMaDfpce_$=QV>q0S-8ITgN_WH4=xcT<< zsMx^4MRi~vI&;A9Lkms@;0Wk=?e>GVu$Wea;!Us_4^g9?3&2)QO`%`_6nLn*xVo@0 zsuCl^`)`vR=@F%Rb8(^il@1YTTK+ey!GE5y(w1VK8aLsGgMDQS>K8kKGkkQ79^MUd`Bx@-3F zyL0cXnY(7qnm@izJ?9s1?0ELGpZ5g4l6{7UO@WO-An>G~ODG@^s3HgiN*m^N_(ZjB zxeNZ_vwx~)uW0qg-bv5a2=P+S-rB;--ojL$#?i>u&eY11gPDz$ne{P^iM_qG9UlwJ z+y8k5vz4teON_0WEj$Iw`nkFt0zsgM{0}8ZINKC~@OG4v5LI$c-k5Y!A~qgx+u8a% z`0@R7MdBZ*+$9)X!NG!#1}&2Mp-f2$2|tLX_4PC5LfPUH^n;jwT5gbJ<>cs+mEr{J zlA(Owtn=Eq=i)q^Q_WhUnP#^{>FDTq_)Xoxt9RmQ7JcwLLNQEQi5r>9wFp{2Lb3Pf z4^W{Hx_;l820#7-~jFMhvqSg|xKv#N^~^e+F7S zvzBWSAG2n)NLL(FX=P<=ON%c{!!hbpdBiJXbQTsCKKqsJ(RC^z_vfYhtJ_1Kz6u>X`-jtmb%VEW!>X#D2w&_E87$X& zUhr8poIEHhDpFHdpWWK(J3rZ@=9euV*=r#XepRT!RZvhsuU>Y)P@~dyZnI-JUsbWv zO!+YrQ?9~i?2p`UJ9o}6&W>D;CY^S6cbf+XZ<3LbB|Wi{RZ{xJG0q|(PYbKQQ!JY* z(2-x<&^eIx>}0!z;N*O-uf}=juBfP}goK14^%Khpo}Uraa?uZ7CJ1@(rFot{GU|-! z*!evES(*&y^VGzIp2N7;@OXQ6qR}gDbad4CcT{Zb(|naeYX=9T!B0}Z@{~hL4cgcp zH`JQ?MXQ~*rYt6^qsFVOmYp|sye^(9DBP@fJGvY>I$p~!UKy`qfo;(3jCoXd_P5qz zx*h2I)`tFNy4IRBy_dBYX zm{@{<3wvuYNtV~ui!4z0!%H=HuGUCy^fFur;7hW8M5Nev}ttKp2) z?6SoCu{S1aINElQQ@6}jS5wn>mtgS73 zt>Y%DE*OOgXVON#`qlc?2qh(DXhekE;r!Zg{`|~LlRpkw*%2=v-_090MBUxb6~`GR zNs6x)5;HL&#A*;&m7cXDr|uDGbE zDA6<_kIRE|;$CzQ7uoRPtWs z9_;OPc~Z?lWN>zNo>^GfFVH~)|8%j?*_ms#^Xrs~eqb~A14}?qF!yy8^Zd`St{ahl zgvj71IhZ4VuQyG&FPYaaN28LV@$!_B%l!Akh>ll}(9)#S^kR1+hfFfh4Ms*rp{sMd z^Ye2a_v4a*wUvP^jHRWeKdL^Y%$mqhhpO5>ScylHa0d&#o8%0^FJ4zQz9Y=wi>U5UVpWi z{Sid;DLZ=)hAmi53Z62m912khF|)WBn-u^?R%SAAmszJl#@YFpqxe!FPgOe;?RMs#zKEg!uBzib3zRBse@g{L?1TwZA%4?xjNP53e<_w3LPX zWJ@`cEk`Yz!q=K3pVhx=zrQjtpSTSE$-$QrzBAvpT%EMLQh(`n#?HZEr%CccPR{sn z<4??E^$!}AW+?q%Ufu>zQu}6a8a{GyJRdRo=g&a3jX@JDpR7DFg!L;mt*gd3Y3Tuory+c+F(?UN*qG59IM`B-iRJLG**b^#E|2EYOsREt6r6UiYt z++}0isX+~njU|Chm8sL{`72*F0vx~0^TJi=WP#{K+~dUgQP??!ObM(wrq`0|zYAgW zU6xKf+}#sc^-!~(MJx?|mbTv*z2WBO#;je}o~N9Di^rOV+I?H}5a})Mka#t}*#`xa zFqYY`Duh$=Huni%h1S&YBG54K4Pl-3x2DtD+n+;pRcmnP1#gr|;Uj^kA(A*v#lRaA zxZhHMJAQ@?y>j5{xHa_>(xA4vnT~kTv#i8A9lL0ftBdceMWgt+I1) zpd5gIC-29PABNOJU=p9f8#^<^17n(+L|QvLUp#vKwSe8@bib`PJ|Q8;FCc)Sx3?FW z925X}7=Zys+=)+2%#}$MP)9xsnfbtb846!lsX!Dik3dP~sjIj6Q}zNm%%^O)ZPZ+5 zF>_m6#iQfnj9`FWhulqeDu}7K#u>c(Zba3eFq6=EtN!SCvugVJ^XE-JfBwu_ z#>d8vrHnkK)s4~-;b3ST*q*>*&niV>&omiOg)NE1d)Wzh7c-K-j07Q zbw9DSocz}M{>Hsu%u<;0B1rE{2vy9My#a|OBm`&Z%gcK-G$NZH{0Pxw_EG)^4E6ZG z<5CarRFUElB5LZ0`udB;A}S^%o_!}SPyBbfF(NRq%^-yE%Il_gDvgkkP}`{_fLT9! zfw{RkdaZB!ja2tgRpf`Rx|8<}c|7G4#Q|)c*&YRf6vlY>8EPaFh6ht3mkT~`@9czq5#MA_m6nve z4w+NH{W!9q;BjSF2NBDdBqU0Ez7+YX*Z*#d&Zfu4!or%UcT?R|Nd1^eUtLpkgN)3$ z%x-Y;OIUb#IQ+YQe@o)Oi;w8f0c_|R7%0-C`fC?IlK%g1FNHTMx%u;4ebTi&wlSo}Ptq(lDue=Y(s zing{kc=Ry+GBys5c-8=Mp1i|Vn*BRcSQzY_5pB0H2$DMhrt9`=@Tmme7Zw)Y$YaO5 z>AkCdeDeC!$0c_axN%Zj|G){bG?qcRq@v5JH#71`Q`mw==V{a<%LEIyyRF zY5@R8?T)wgVC9|yrg|S1b}@2A)`+iTRoPAeTOq!dU zS0-xqa4w2$#Vvgnvt~Mr?Dw6F4+hNL>(=hymaGeot+Dydc|#0y=bXyWP~N3`$=z#O zQK#a^&$*KZ*ANoM0DpgUFc~mc6zkJ{Q$)k@91fH~sU8K<(L|S*mwzG}&v&JvjA?~= zlXF{)Do!J-1^|yl-o=fVNv1$e6c^Em_qmLGx= z5>N|7=*7wr?Ut#j)H0(kg)B+DeOJMtpdiCHZw71Zj636)a6~H2hP78N?8J)@i{*0T z$8)+x*0XQ06{}K|Ybn8S{a*o^vJ;S%m0j{B5Nhh{BLEb=v9a+!Jlu1MBpq<7@s)+S zd5EvC_@M$3%UwRcr0aMT3!@|HqG$kFq*YW%dpV#miE4~ektw^i(Lu%?}@iNtPD> zS7lXI4;dJOOG;S3TKs8FU^BS&#FFyHjT6-2h+1uN@Cm?WMn#7<|kWjA;xr+Sz_wO=EoIwU{;Wn#- zbdDRND7S6T5WyskXfe&x2r>v&2*`TD2I zih3wp&UmRi5mE5EDjev5egNRXWGuY_c(?o450vthg2V&yVIf3;RRE|%d-v|U+fOWK zmY3tRxw=SbVu`Ctb;X{EKP*mj)S5Ytbz@LPM)q_t+gktzJ7XCY%M3fR4_6bxP9f`O zdtRJYn2&@5cv1i)>7Eb&OFBPUPCMUeqgE=^h-EYQxee~u5B7_oymLpr#+L5oNAA|X zz6jWnAUf%|SD#;yKoxs(w$%uZfJefpvQXY9G+(>bkOd@)i$=L7ih_K8o@JfNWQs#u z(a!g>tn&j|@yFfwqp@lISm|{d1OQW+R9?A15x^$7>gwuZJaZhp2ea(iIlh{{={Cr^ zx2!dGm!5v5bi@hjY}h=3onu&!o1~Y5#mrb6o)oV2*4`4#KKElU2^^F)kjI|%4K5u_#|G#|xJZoTk*vra4 zr8?PBs!MiOr&lqBCD;^v=GU%K;C~VropcbOj zye`Rwg@yM|lP^U0?N^#^Th)F4-(|Qr6-UC50FdVOUw&e>o)P&F9bKMAfP<3-NDV66 zxs{dYz`0brpRgl>JBF?L;7wr8g9G z4LQp9&2sWIf^=6^4-1+uIU#iORas5HS?*2wa|WrX2hs~B78WfpZz2##B_3yv;O{cv z>?R{ccS=i3SuWP4q@*&S3@2vMP6ixbX7Ps|67$azy%t1!clRfV8Ju8=@JFfDw9s{Y z%J-64C^V3%paQYmo)HCTbpquTgg~#=Z=q6g&GgsST>05@N(suFdpTSe+05c>ezbmn z@h_-ucRu$o7Tmq^5Dvn?8DHkBaNe1_hJjIT*l`nb6Mhp^O*W2>UtsVTms&@o>Wv+A^o~)XwZ(@&m)yO2?p7zxISbgI#O(g* zdU3h!;)}t-L4;a`$qhl*eUbd(56Q{h7}W0GKz{)K1J}B7=g!+0MiHPVj?d1F1F5|s zl0xW*jQ72xBM8F#P??c5WYsnT;q#_S^O3TMJG{2{0brKVF88QA<5?mqE4j349q9xG1z8xpx*^Gt3%T<^g{cp0q5I( z1W(9|A>iytP=w8@D0y04ZQk3f1O9d8S1u70U;04RAOm<3mpLjS6_xDO<;5y|gT!M! zJz>)E%;bwB^UKR^K(d0Nbxe^_QH87Ie^&VX;?J4cubl6|sr;#RVu3o-2zZ-6eaZ!D zQAbm55lpYY_5*lW>P<0^84G=i`igdlr9VWKktaGXcX{%2pj2OsdZs^NbBy4(5A4Rh zlt6x#9jWHL@`+_swOwex5l$ueqFB40>NZ>4Yg$@bz>5RLI>NHaJl}zcb6HMtS{ceF z04%Cm=NtuND+l8SmZTd}29Mj}V^2>{0q1RRy_SF*q@+I~-(wLFEYE!RYHS|oZntQh?n z9W8O$djsD25|({stdbEBioxmr>YqNSyptdmyeidy3a-}PpCRr7rToCE{lqtikOq%4 z1^5C9D}fRq7xt`^H{&2(MN`78;Zxgr8^4CDN!YQ`$g*wb|ADh$rod4hiQ&Cf^67*w zcP?K*Nw6_mdatbkYTYI0^Sf0)F0W>i%!cy>9WS40YH5L+4HKo6mz3zjmiApVm_;#) z_$!4lSo-~9L~CjnjKMvK$J7b(m=T9#ug*Z=jyTT?a27dkwU^nWlv!{XgE8X7|>2~;XA`Ds7SsTU_^GGqEyIZEL4EvdIM`$SS<>i?b1(%s&*}Y2b ziZH$ud=3tdtZQOeA`gBJ%Cv=QbD5saTW0ESvAfverd2#rTQ7#xM*)2!;4}Rn$N)42 z8m+XfjDeG@k)CUuKK{DQtHhh!GJn?yn)%qcgyT(jQ&$%bP^XZ2+W;=6x^4hK%hjsoMn=!EF<|JM-l5~zQgT3l z#ofaLs)x`2r2(QFH=;&*=&fPuA&uGhj;IV-?RWGBIgBuKAONAD(;%1t;zr$jhHR*0 zW@c_59c4q}0^;K$sEwbOcV{&_tqlA){0_e)^k$%WWieI9dzJv~5%4+o;nc!VD!6U$ z?t+n$PE_06YfMt6QA;pQ9LT@kTF}Ew;S_Jh-FYqov%E&^jo>uuB%X3zX9E5;7x+DB zO%Xvs1=R3zP#Xq1`arJYLtuutcXsrCyuX2@W(D02fl-3k`p(z)k!lg8a-NbNL;zqm zY{2o(%~X8kzg6Q+*ITX-a6UZ0`%(6Oj%F0hEJH{c?Uk!59}wY?42`#j%qo#d(Q3NE zxItT<_^Z{ltc(mU(CMygZs*XXB4$*<_44w{8rDv@rs`;IdL_h*4 zmu#Gzj3Kn}@be4rxSN`qe){~`NLcp83sl@aBH(ZqzPiZmuekpd+A6Obub>QMo_xS? z$Sh9!bhqubLn$YR=cRJK$BERK+HvClqITxHlDAw;ptBRYTU0{`Tr-Sd6e7NlkI$bo z;qz^A$IY>WU*TQgU{D!ELb5&F96v#({d!j}AXWdgefsptdUK4+a;mO_rSZHOw)g$} z_f4&>i=}(ueMl}?_^THr58w{!+{JO;^P94sB!tJv;1z#cU0q{JfixkO5dQ0z5(MQ| zXt)8NbUb39j3)vuA-Jam7&AV{jfDC};9`OJiHBZ*z=+Fr+*=}=nwsI^{Z~4G9h~RG zp4lW z<#;^xr!fDt+$sW@#;|`R){-Q2{(w~MBk@+MM}MQICki-kw86v85iz)afb9H1;t@P@ z*?08_N9<*`scC5Fo0^`CUe+bEDHZ;C?wjw-%0nNduD5(*cQD#!hHYekxY5v zQd~vpHV5!)t5pNP#xVwek_qZ%wnyDNS&Y|75cU!R;DSpfkPs6?45p0&eMhVC zd~TwLvWBqrn$^}mz&|vc{pBZptR}KGRgcnASS%-W;s?d1-N~*I;5`>uifY#b2Edx% z7~VcMnX=N3`lc;=Kii1iUY?kM1H0`T5BQK@X-)&F8WeyvHuKjFeuhF8_VM;c01S

2iRjsdd^y zwodXYO4HefOcQ^XUw@mux%8{@{?99i;GmTJT&*}{X=J5DAc6qK*KLidxTK_nGU6eS z_kLJJsjkcrmY`rY?cSC7@S2UWVT($nu?9oUmWK2S$W-~N(0_rN@I>t3wXT?87(?8` z#S#h1t@5S&@}*8n|H_4S>YLud)wH6Ers}P+`;P^E$s}zrF2(<=7j~1crQem!AKuog zLUh)SMkU1jjP#c;Gs%NtMMFnT*Vy!DpNE;AmC?_PE~jJtNvZ#FU(7Wc6p@+_j_3XN z5MkFz|3(jR8UPYJ#xI*F+;FpEGSJg1!!g$Y`7Un6-`Jqh?qk!#OxvHr?2_|jq+EBwc#aurg} z(ER*9BFO7Nc4(LL$|`$B6z6V@jqpn(u`KpJ9+VH~jL30VULMC(#L5nUMaTqPquG%; zR9QNosN!~nF;v@sWHXmdrw{&b-D@78&G<2W)NNrz!xUjp_)yS4fUHL4`u%o-0AM~{3*-Wq+qFGecQ znL6W2W;;_ba5V^}G~UGhH?zK%sINTBZD$gUbz1t|zBI4m<;6w6ZhgyiT&Qzrqp+LD z{sccul`1|;51C@|utXTDm()HMXjmbz3*2#T%H?S(6am&Uc=Pgr+7v(teBuh>q-fHM4mDk{oIRI-<~z!0#Mu>8rKgL%)|wwV9eoC%vH% zZQIK|@p6Q9=7|2o5c@E*H0+@BT_|Tob2a)`AGY+(3X7cIQ10p|)c?J7KA8Q$aS3|> z>xjIL^+V`mbsl9H_xF1!Iq5kQRC)HObU43peG70a89QUyWx4A%Kl)eJ#7!Do?e1Wc zQ?UTWFas1rWJN0OZ`nv^O2?N9wMm+c1{g!G$5}&WYBwDGx2jU*YwyDZ?_$6hg0!Se zIR0$!O-IlC(r{RJ!4f5r-c@ePL&%KVgty)({m+ojffW%|EM)w3+wjtO}vK$8JE#;b)vdR)rqb;ZV{z-p~0`B zmCwj>pvtqdly#_#i7%?uT&`Ur2n>2R9NbEb+xC)q^q{Vy4l}QmqK<#Gjy)Ada}WJ;1I_ek7)Id7y}eYZT90yUeZtnp%}7ir4=@Kg!o>sm|R^%xTZ zXy(&CVpCpk?9GL>^Z&|9#x;-Q+~u{Y+?GA12LsxUL@14p#&X&R|4#bepH%3xV z457?v@*L~2>N{YEkn8M!yW`)&HUE%8FoX)Mi**&_30qxIGH)qXrN$eYewklxs4RQ< zVq_qj*9ZMhNXAx%k;i~Jg_cdzqh-4C*X1L{d>~I|Gfga;=M)p z_qEVk>u3KOwZx{MVIg0^Q1gcaOr@Z^awD|ndtg^YMm!w{#J*cm*Ju=HX7DdA-{~98 z9J(CWqkSU&%j;m~#>>X>=>cD1fO25*ZtFLoWCI|7WJMti87KuarZrk9MW4vtCY9~! zRI1I3AN(~EdsU}>$J@n?WoI&uVI$p`JuJHX`(DomiUSXC4xVzi*a7jm$OU#(y#VuEMS4 z4dx2Y)vH}6Uq(Zg)YF~L`2t>rW8V~*k^{V1nU4efu)APJ>=xze%gtczBf?RX2Y-`0#(e9tkE+oS-gN zg?{CiE_~MfyVTz^Qv!#BN%)|s^}lrYsn6=h&37<-WPW+-UqiC5hU(LT8_|;8yfly( zXNaq^#OJxL8VJB|!Ye^4P3ImDrQ5U3e^tFTK%|=~OUeiI_dd zcUWh;X^wNJ@i4z9pM=Uk-FJhZg%$$e4`B$a4hMn0UUIL>X8JCzH*>~F$o*q$!gWr6 zf3f)&wC~zap&X{x=Kl9+On7vPB-*B@H@i=OzoOR`0_)+gqE7mPZinu_iXjiKQXaF} zPl+BT#}Xp@*Qk+*7KxzxOU?qSs~P7&AiZNsQJ66xUdfG=$I7yyr&6nklJbe+nb!{sFBBk zmG}15@rs6N7WulZFrM_~B43cSnn11)O&Y5u)%S~I`{=o2Y8-MvPh$aoMu!nWd|-~H zVaMT$#6RvN;~nY^?>F5EKJoEnDk>^SaSLcp z1P(@lm{X{Ad<*>+DEaAVXuQ#JNDYP4qN2V(qxO&h@~PxMJt@#!H>s)9s9&<-eWgp^ z8uPLY>~X`BEmo~%$YLEaJtA7vp(huoH6iea>VV5G@`Xa%YoG$+_l zAp_yoaj-7eAUM0Q@FP3TvlAZ8BD3b)GWKlD5#`h`R@5<&`sh?j}% z{#8@1A^rWYK<;GaH#t(`9!;LF-kK5pqOG?w*J8oL{BN02 zIk=|Jp}P;N0BFA_88m{9$1Pm`FrWsq9=W|RTTp^I&$0b4R)M`BJQbvW zl9E3|xYuUHn4u(d79{o6ocrVzU4%!N_LETj|4b_Gp8;>kB^<9SZsxu zZRVlNe{OI_#-be>7WVS*Z4>>9Q`~p5UI89sT+DGM&86%aX7PrA?&6Y1Y-a*U@vtYm zR?9LE9j3a3J>$bpf=z(Ctn;!Eu)-CnrY|`>-V- zo3s37w~W!VXx&Zfh@dIoqaMCd%{S*Sf$mA_dIA&>CaVzacw2}ViZopKu%KE=>B@HVssquLzn7Rw?QTyv75ztpr ztg_VlBAWst5A2MLfN@5Tv%}9yxe7?drgsq0Lu8NvKLeJ_07!txY9-$4!()F{eMBAmpL<3FtoJ!$sXDQJG_JmfRO?*L_iic-)Qc)ehNC9)U{O z1Rc9n*DglTqqWUr5j|klYxc`dh0Ze$Ni7!%lhDib#cOI;LKe3%rou8L=qmHslc0c^ z(S6(dUKqdp?gt{SRUGUrXq28n z&05gou)$~NE7bTja=*zw@Dn!eKUIAlW!UvGIgCIB>oe3hc1endOR~`kOs7$jB+_Np zB7&3!|0-QtJN&2^s3oB^&_+@MyBjZ>n^?C^gCFdnpxD?ASYBe5u_GsK7R%H-ScPWu zwS2+8*~613cODAse-P$wJSd>%OYD3iNesD8DADo0wexO2lY1_$Qp=vTW9OuMk}mRs zU&CfEBY>)rYQ|#D<6m-$!T|yBj!EUpdc;in5i2o=IZrM6(${yNoGTeQC|HbN$JHs5 zJu&zH@rmZ|Si^-t={ewbASC+F1+@ zonXkN9YNWu#Jm6Qk%fDv9{okPvP3yTJg-N`;s5S2goOocN%yKwV4SihGCdp0-w(OV zoc|9mF4LeqUtltShN+G(yEtR{`0)ld!4_on0e}n%1NjdG*IhGJXNHs?9(%5nCx$8l zzrX_=(bk_>zbVG=ztL|-v{2JVCLV5#klcL3$E4$w_jCIV3F27qOdX8vUH9Yq&RD4M zohjfZFCG{1twmiuf_TT4&MJ|#&yLEHSpz1w{?y$i;!}B=;3VEWqBEXnzp!)Y;754rLn6qEA!-P|#n7?HSsnMlf z#eRx|L*(r;9~Mw3q%lz8Psqq-pKV-h2zdO5n_!W1Ix4aEwRhy&R_Fw24!({llgEbm zl1NYEFAQV%Lanafv=yl4%KERfmDvum?qAAz5B4=t-~0wbb1*HkwP=&{K&8<67JE9A-7Jw_#~946@S@oe+iLFxaKUb!g>t)S0?8v8wh%2^K|b zhYowe05g8~y`B#j*Vk4w@&rNZ6>jtv&pl1a_gH{|U`?^9UK_78QUMVa zO033@`@0^;b!d%6u{G1GU-ofzJoe6uw_COD+=SOs2z4X?1y87AQCW}UzfIlZG&hn4uHs?#;l zTj8;5K2_`6ZeHliZF=H9+$}Th2?uQ~x@ZwWn+9fzqT z6Y@eT)LMS`n^Lyuov^Fux7ETj?Y6F<$`*>b^*4Pz3!JW(l;6`Z=KldonHTUd5JZMS zPagsJ1juu8&~ITG8yio#Z3$+P(o5hg^NIBd<4PMRk7I{?Yi_v@_QEIk@U{wWkz785 zk1ha=yoAF(NXa;o_6LeylIhj^HYLme zq5P&n6z0I&r1D(f8AZQB(80~^aQjYzl2CPY(_@)(MmBhL@{|Zpw#DTm42_N30KFoR zhhYGZU?5MBVGw*8`qGX8ywmiUmso$A$ICLgNR@m&32SuEH7%UmICtForZZbYt@Upj zE}1}BA+Ny}ft!t+yit(A2jrbd={^EZ&;-TD$Fr>y&8-TUi4+T8)!g}-o+ZVcg3_Ot zcN*5_Z$7zp0oU@{mdH3a7I|c zEXlCDk2+ZQkB@ie>#i=(kXqCbG8T5*h38-`KkSA~(t8mr^%MQPr=2JX;}o9w@64YK z7xk`u8+p`1ji&ScPw$5ztRqul4}!DaX@%Oy;QPe3B;Ihi;Q3-_EQ(sGJ~~oa1ECC09NV~q3a;;dE_Co0K z1}fVZvVK9zLUnHXNPHA3!!;5i9lH;5Dk(IAiVt2Ai@ne8P)3-+nT&hS!WX(&8W);; z&??@JlOoON6`WE)&Rx3HAs}+`RW6g^=kH~ggts#wXBit68JHa*kd0=FgX{4Z znsTl=j;4ToXcid|FVlqXKnFdJMW+`|w9qT(5hFm5_z6@h$Z5yFu|%Kr3=A%$-OJEh zTKTvP8EOS$uP?$t(`vqDG%*FP*J#liIW6#y$}RA%Ply0WFEvX0?rQ7?tqWvePOV6y&@M32XTeL%`LYs!ZE3s<-@mQR#ow*<{l}CSv8;?=tKgZ6jIaHL z75rJi+kw#)zQZbh8IDbRZGjyD#)l8J>FMES7j){8Vn}F`A{%YV!d6MrH!z9xmQm5Z zir3JzKlfj>YD&u3-cB8hB~K~*Og`lHdnTH@!Gx>i?i#k1*H~99Kf4aJjbMy;)I!Lk zMQ|kGeQ@wyD6U6G)!^U}sFJEn&54_ZaUBxJca{~qm}0I1HnXh z`%D}N1@Oh5h}c*?|Aq==Y3kNX%Ow-<)5VmN^^^c5mbVEkIl%k4SJ4GLR(~dgDK7zg zt*)VA3#z5ILpZu)pr^Mp_!KM3s`Gc?_t}|gB4R-R%wC87xI?#vv;j&8PvhVJq)kqY z?m1x-9;suLQ%9I-0>g6MtQ{xMs)>EDh)f%glaYag%7-n(m-wU}u_?p1A>zyNJJvH7&=`{Iv+ zPojrbFJ4~*rFGP6eTYE!R8f!t4SL+xOWov10|(I^uiX+ZXabv|Gu%#x9Tich}yp@;5tID+xB6w|rS}TRp#S3l3+U zEk9EHve0ms_Scg3ov8`^gvUF*PsK6U>L~@xa7g36N+!u{p zeaP~yf7UzpQ{3MF{>)YJ0j7vabTEOk;#ItjDSv;oMx@c9g!3BnC0>YjApTH>Ezp2n zL?oJ<>Kp|qX~jYv!8wct5kpZGG{L!oX0Mui6*hOFv6*9APaHt_^j)m49@k0d9nmzD z{3*#=7fuR~FJrNbShsOF8rGNke#k1bjxcNpIfZ;3I<$U8szf4|07RmgKu98;eF{#P zFsg{t3K>P}MQ6WoyM#lbdT`Wm8U3<_wAi4y>v>%o^zR3{nAo6`3kSJ>?Dd;vbUf_e zBOsP`OIGMJIFu%o=;i20%t8^c&|OS-wa4A2kuKie{4!L>dqv}#y zn~ygD<0gC(Z8RqVbu*lMe;+@)Vwym`a^Rx7c@3*=wra`RvKG0#Zj5%G8|uEmkAH8L z=?WhjG39c2qQ^G!--O@8TSGHmJiJALVsu+XAyP9A&?lAI z9cpLJBLT|a{MR707JxRP*sW;T(o?K=lDDY>uMl0Qq8er292Rdd+TEESQ`NJ);^X;G zX}0-gOYd?@dQemYQ$8JFee)9Dw^+A+3#8Q1Kh zWqLz^>CPvALi7lj)UHCJs&2pKw&gYQ+!9+vfg1rk^qbUEL6pC5HPbVuhnKTp1|ZX3 zY*`A!^j|ym`TM#z%cveI;#mZE5d=LxTZ}EI1T?dLd7l?abe>@R#x;-3^0g0KolTZ~ zu22P3^Dzr7!vaPjev&6PEhDU+g4Or$I=EG>y%s99-vpv2Mfra9i}F3#5!%cS0= z90(_wm{2-Ncn&3!zkAhgyKQcTDeC3dR3sH?nw0eg`d*1cjrh=&e-~R5w{2Hta&R&I zn4kDz%c4JF9=MU8hW%2%1HRHG>M8E%2}ySzLHyDGxfFQ&`Yqe4x$-}w&P)?QF%??n z8L@EcF|_=Y>d_u;96khw2o{~Q`&4qTXRd^PczYL!NDQw!dD|&EJqD6W8L`<&QCL>iJvj1r?b@{x-S6+( z!c7M<(c$EmNY;Qg@L2+uK7=e%Sw3c3c#K^mD|qxJR(#!-*Hp896*0>}1s8BF)_Aid z;JAk0`XQGuZAj*=h6Pq9#i3y^XZdTuBgQdnb%L-5DdLrvmj^X6Qh8jYn**-v_qWYK54aR<^kNgYSFup-VaR#m>S|ci2Mm%FH|z(puh6u633j+ z`-L5_5y+5&7n1k)l+^R>^`PuuMUUkmP@SY3(IG3Dnh#$!8`C6L>U=}BT|$wv{4OG~ z1bU9jDIP(=6gXl9=c`ic6`0EG1fdRkN@qmVAM#r2Sjt#-@ z9C%q=&9#OAU+hvEfTd>`NA9!}krLuIsE1&$R7s{Ej_&GxsZ{iME4e;fZ^wnHYKRlT z={T~Nlud<`(&>*yi(T>mkiONT#=M4u*Oa`rehUkRATaC&D?&;Zp;J*Kv<#YTXrve( z&VTxJAI{H%(YA7U`LHnDyXTASR@AxJf!IFG_3yhTkeD%4%CAZ-wQ89-c?PLB%cIUM zDfA5EdhD@?nx8lRM4z>D=U|Esx@~aGvCB|fWE#{}VxSOjb{x-qIJnG=x!Gm@Wl9px zbUwdrH$QMEc{xJ^Ve9B9nLQMhkdR>DrLTV%cx^e46wr*jpX?&QlL+tJ>48Jk~85F1JrNgjp?;E*kdozmUmrtD>(!u{Aoc&L*_bH6UHFf#3#zPYv92`(e zw*m)Vezbbv3QLwcA2(XQa&Ss{;pE3^N`c2ofj&vP`dY9)X63?D-IB)AJC@5g!;i0F4 z`jeMWN-miv3YOeq5wSa6Elquz-)oy4tsMrtZ9J^YyJABcagxX!iG7 z9OHMgb=lIjZDr3%yQso}AormfJ|7`EWZss4pEHH!3cqcEdz*VBs1MFzFFFh8HD80; zXS;ZLeY#N?l!;Fi9K?vNBi=+YPvgRI^!5{Li$@a0zN9*0n@@1t5+dimlDba|dLLd= zxtFc+#9MtH+>5{1&r=N;DD)_;V&80l%5?sf$0J-?zZ+^~fsVpWuldvMwc4Ni9Ng2J zbbG)bvY*u;TE7;HqH7~j(0!N5&)E`kH7ng`v*wSlajTm8MHV!V3we{LvDRcxVzWWg zb@EM-E3WPU+emuUdUHw~sWM*}yf-1m)-&@Ef-Yp!1d6ch6b(4_aqm8(LG_Ho*L?06 zX_&-VgmD_9JM>->*JLG31&xtF=kv)?t)agQ?GHsHq)<|}z-qx4trvw_Lb?_&B>zFG z5@3G4w;A*0BMjyG)*cMiqc$A8DaeFTLGxk#h&oRzl`zvAc|iJ6xs(6zX$n$RCV7+( zMNP>nB~}kUW#?#VrRKBRA@cf=1y*K1XdE%ID zwtYN?am3&U-93}z28NBKYXmY@VxrOEA3Xwj zyV59+=rq^%m=gV8bOKArGq|EAXYrAGu2n%uu;}_6O~`C9#6K}k%hs2yx@aAP@^4l{PkVD6WK*Wm`eU5p)lz&TOC)XmCx2E`FjGR_ z8fCitGktE=3zT}V_ZhQlc} zFG>IlZ#OWS$cS<)5tjYOkZDE#8+Ohs)L<71l|ad|^NPrCi%EMC%6r zkIv2ls>-h0_aGujs~`m@NJxl;G$I|+-LX+5rKC$hy1UsRQqnCg($Xb$ z=Y#M4?z!iD=iYIz<8=&QU~itip0(y$&z$rB``6{=42>kOpOqeN>ha8<-|i7p#+5te zG_7({>9d^~=O=n=iXCw~C`MmN)q3tpNENF>`$!D?%I!i2eJrQ3Hd57fa zF>}MUn-BaKUM7?Jo`Gyq_f{p_<=?fE;Xf{4N|J%O<7H<~Mfh@s08J#cc{kBmxa(D2 z2S;8RHOt~T+nK(co-e92S$j2(7_K$6pPW^e3;P-8*|dpe^HWO`vPe>;;09dXWid{u zH^WsUPX12)2hX5ma#{D2JbeHQd->>V>*`pgT`A$OrMVu}VU&zHH@oeBsSCjQR^^_u zyhIlufN-bOD-;U`qsO@w6UEW$3mOrgSdz1 zqOBq_V@{xlg`{E6O1EnsYrYUK>w~Zp>ER@?ghPEgSHgpAotuVX)(|Pq4VN|rXjF@) zMNYvwqj>PU&4ir+5Bfrd-c`+v;f{}-PceL~z}uMR0}V>cB4#$3V%x+HRw~BL2am1N zUr{|}&*Gf;DX4{1Wzl{t#S)}Khs39^p8ZMqc7<(=&~T4V>9S|z479mQW)rChcs`7P z!PXZaQQ1&?;2KVh_t|0LHFT|Sz%w;6@BU~H%1AP8otOOtVOHoT@n9=tlSF9T>$EgY zjXnwMuLiPZx@$GrU&6yFu8vXS|BNYDu|M-mvnlK$F+~NpuW8|~`O7~z=M#C6%Q)1T zIm=q>Av>2adWPu|?m|nR0~?Dg7Tpi|N}=R#LoTbFS5dU|oVw74rW9$!W4Ay=tLw#K zv2fwESuly@X*et$FJ8Fs7LN0^$MF}m85J9(37?xL%0vEP+(8BL&tIo&vbwpQlqx1GV;)NVCM*1nk9NCRht%x-{y3X}6 z%{()7xE%7Jx$E#i&6qd%%8{qnH&G;DU<)rOv*|xLyLFCq=)o9U^p?BEq)QU=auDV) zpX=9y?5Qd(%lpbBx5xO`&hK-1^qv=kID1;r!Id>r8WC=$>@uPpa;%H}fbv$T%{+@= z*|1N0vsYF*v%f1}oBpIp z3CQ$i`jqAS_{f&P61Vyi_VzhS)OSW2Paamy4z_3IDK=puGYfCfS>we@hYI{i0NK6b zY3>@E)U{@TzKw*CYl(P?c-Ig*55B*juhi^trAji_U!8gU& zjA>)NmK2qA0yUbaX_1ca%QSi2rE!Z-KLj0gFrlr`@7M=3)}WhSh?uUw1wPDy!d~6^4+|23vd16>FXI| zDbEtQ?@9}&#n%^8@m1ls{i)x0Fg3ys0gQ^=k@==o*4OY|s_p_`X6Rv|d3R0Uf)cjkQaJQGrdl5>9rCstU`I6c z=X61>-}-gaq5uzxghFS&@MQw)hIMWH#^xt-p@X$i+>Y=s_W zM{K$NT67GT%DGaz_4VcZW8ttp-9{wOq-9j^9es;HnL=zZe&+%iuv}m)yO6Pv42i`r z+PjFNcOQ96by5B9u3x1{KBDx z+;>Oz-I>4F!Bd7dlG7YwSaT-aikvSAOsOA!uWu`j>ZQKIEWC1CBdR)#2hKxRjbD=R zFWM#b*X55Yj~tdobSlu#ot}u8p14CRKCUb$6x4UUyKL}$zh9gSrLb~!#dqEE(uis( zPBv83C(R*JaOzFrT|y0{iJS9BI(T~@XrGU&3JFxC3Au8;(e-qW(LxH?KBT?W#=Ie! z@y{YZ;U?}48qfIXx)SpsEh@}Jk4#!D=WQ0JIR7TRWH83-;(67 zU9NeSEcP%mf0HJC;hs+rQxr0~zV{!J+d0!&X`Hn&HCv)#Stbx1@Zy(a;Fn*)^G|}Z z5ON^i6k3{``&|c3pf}$JB(DEt1HFluLM-`TNG8UbBOywJLLs&^&u5feb5!Y*EOF9c zWFr}azlgBR4f287-k|g`tTn5GUtf62&skhBh! zgYy)zlh7eGGGo_IUJVI#2%wmS2t_?2xqkS$ugqu}%A=LF&2jp3Hd0=FGFSlRgpI#p z!~8%E_sA#9V-Y+M#C5xTrL*~}8u2Q{y9GG_kVtE5;n!~(N&JKaNm(0=gzo7&HBsg+uWD`%}PLkB}9PW@+#ygd9yW0pQ=Z+QB!&$WMge4KY4i#iP5BiU9jVLK1+ zgH&(Yj8|UXwj2NIy28P`QtuFNOT`~Bug-?)Qp7viVDfb zjxSo*9{h3>2{F3Lgs$=Bk1H1(?Ur_hWBeknT*nhcMk<)v=0@T=lieH%0Y5IGh+BEK z){7>2EG-LrrS;1{YQET{l>bs__dQRWnLl%Mg?Et2TLDW&`bLk<2;I24*}Hio?}LGO zrV(ToHMZS;bs@?Xb2Zj2LAtI5=N^5-x}cVb+Rz5&=Np-7Iyqstv_Rj4X>6a%PJ4#0 zOJ8%d<%#l1UNpmptMA2_suU}qbl-qU4awfG=RE{GY_Dq75rH71phs&p5Jj0fL-a*$ zO5)b)>tUf&60ds4LA?;X?imc;A8unf>weuZ<5zFNP(ZInVnfsf~i4qmXQDsaEv9ZoA#F4kc4 z!?E~CrWk*o1=|1L?VV2@bSF%{vR?r=Uz{xPH8d$l`(IN}G2s%XPxNQJsLx^Y0LxXd z@qOk!Cv{R9WWfm$LLa_0k(1R02NuluRMfr~(IJ80*}Ct!_$vgxF29MOQMl!oEp_+z z2{uFHw)7|J2j;|Yzd!tT+F!-wg&cHb!n|4cO4zMF{jR*sXDB3sxBTaFP3{?LK@Vy@ z7-z-X6(gJ4om9roaL=*$x(qcB7M83&U66t#|2tpEsJuVT8^g)vY5CW+0V0q%aVvTi zT}Nlesj(wV=-@YP8$XEqorFKHz&L0xrau0?rcT!m@Zi7|@ zu7>FuC)Jl9n5ZX@R>@@Yx%92fR^Dj|H7!_AHu?(jSY)Y+Jwz%%JHh@73YDC&D5mC2 zyAMindE0UIX4Z|~EZ}QYKAA$E+u%r>eYq7!I9HG$v%B<&D5mwX#ThsU>Tu3G?T6W5#c$twGSyPq%#m?UN+`5O@nUJN z37}t4^GcMt^svQu`SG&NkO@;bD3yu43cF*9F58jEJ^6BLm6J8lGmMhl^z$0PX*l<# zDe!kSZnAPntlaZPl!LINdzXi4rTfFNz=u*M5gRsSks=0yBPIMK7aZrQ3WpaB-#_lc zCU!WJ>eSatuJ;f>=ZAfrUZ!-Hevg#PsAX{97UW||Z-QO{I=AlMmy$_-;Kkwz2i_SL zCRxlErgbB>lMy%db4Y8fn;|4o()>iC8=@ckL6h}NQhcV(I!%9XMJjcbyREv90C_JV zT|kt*YiJ+2aK_U9(IDG07*Q7}MmOpr)rqjv0 z=w9Jwo@>bMm=ym!B40xSDGdIla4mR{iyYy{(0Jeoa)LeU&ZkjQ!yQSM%HMC^g!{ns z8Se>36ub60fGGe{LN-^OpNPipPs-@OYi|F^Edr=XKT6Na%7>6C15LLjaL}quK^F6+ zGv|8INpO3j5BEG*Xx5)=bp;fS^hoWjZ!ymSH)c#h{|{c|LJ_i2!Q#_V*QZs#HTMMS zXmy0FCaJ5l9ridppa5yVab5l0BBnktKKy8SJ_2m`A{m)CfEfXw@$=6%W3D$Km;Y_+ z`>$nfKnXWO|G^%}<`F^lz(6?AFE-Yu(1(T~METN|&$8aMl=yaor^*sHV;94JAn*53 z@YB36_>%Z;Sha37W`0FI`kZIwEv5q9-C0~K>5iowI8S2LDn^%`t>TI!o-+{eouv2EZLa-5IDy2?>c;|-Kx^-}0VOmd|%Y2PuE1JUE%l4ka zlVvEsdUjHyg5vGVoiv3;DpRSB}+a34zVYeVO)zl@yc{l69z z5U3^wf(!BTItvQ_!a!z)EDD6)J5l3|z)ABrK`tL09v*(g4Xrr+P5>LEr2I;2zJ@5~ z-#*qtIETr%*tU1-;qIs;#L2v@ zp0{$_i&uaArhT0D^Kj!?!R@C-%}dw0``B2zWpVl1J&p#smi-1T9*oHprYJCU$uoRY zlQx$K!zZ=B4Rl0cf0(b1^8=CiczZ~QhX4Q>agY@M2Lph}IiUUM8WR(f;v6-<11Ef| z-6bY8)C&aotja}p|GNM`pxl1yfWD;=>N<}`^zon+u$E-9?5`gG{&)wQQ}J52`jGpt z!}~OJ>M7&i=}b4AyARGLztnf1rc}Dp&{bQU%K^t@J@oonmto8IpBmpZ{Cu~M7FYhEr}a8t&hc>EfPkgtymA_gnqdUe zDbqe~?e0u&ntyC}W+{+SCezsb9OqW*Q?dtE%G+3DwZVdEcWt1iVfcTlX)Fuy!HocR z;4HTupbDU=<*t|{pRTYa!+uM$4Zery zwdQaFC+}@Ebx(?}0hCOy-ks2b4UJ0rK1;FrN#epz;RWf`KdgB`^5_9350putLtj)R zuk~%f0e~>)Ojqe!4Me&DRUXVwFo3{N`r6#=1Ctf>2M9dm6PM9t%{}xn)I;t;DFBGk zZcsP_Bo`0BZ$VNao2?6-pHpvU&h~3OFeYBD4{jpinaDdH+NVXC96e(i#mKO6Z>1&3 zz2%l+M>+7PWHFdJt0Ie*-91*hFR>51{4bjS`us;yLP)Xgvl8))-~{!GOAyF_a0K ziHY7=$pM{9`-!Ydz4;E2Le)glMPZNDLZnzSYU#fD;KiOv=hI&(jn4>_#aJmoS*O3Y ziE$%f5kwRJUD>1;aDD4d(HCwORdY>pVo0n zMBxf@EO;lBW%o*dFHWnH&IDJ;hrFShTWR->@jgM7I+yB&jaAvnUzd9fxj55*3PDEz z^cuYW9`_+jfTk0qiUcZ76uB4g6A*1AYWu%XiXzJzdHP%IGZ`=m`0luLEn8BUpH+6o z+W8$6XIyr*NEf%=lmIFA&&usr@UX#=YKs1W4rJFzOWEf@>RZq zAfEaNxj@_*j?(*EWDcvORYwmv_xrkhnAW-5O$ebSyy1Ltrc=hpo$#u`s;iCyhOKEP zhi2A!KXomrdTnBo>q{RZ@~e0FrEf3?gd|Pfp)vd0LuJ;o1L~5Iw+#VzuPoZW8^&O# zPJH=%&6L0;*Il&Z413G;NkK8^Ot#4E{6yUcP>}68uj&w~R&@NC8B}sTq^dF9*&^IZ zl7kPd@@*x*;S@Cc?odnR%*YW&E`fJm?$poQWmE=3JCf{PpBKmK%ddtq5lf95D#moE zrp*>F(!s-wr`)<2%aH4P5aL<@{wO|+_j_ryRBv()qqF)giG}HVel=`JevIU*YgiU; zZYR{q>YLQeY?x!zi3bCyN<_s6-FdMHl3VV*sL!Sv5_Ar8JA5&Wb_c}9ra3e0L0{Qj zCvHre3Tp1;;2&=6Vk;|{C%Zb|g{H2=TbhbRh)5DfLq;_J1xZ(1Udj)TnizIHg^iQjy4v5}6x%M0)J4;#<#N1TeG0nm*E8?W-j92hP*90= zL~YkSK7qw-SF>!(9b}Fu2rU5RFH$txA{03nP5$6+KBw>QYsHFn;RsE~sWGV^cr_N~E^fLbxvUyXtnz0Aaw(AN zZ||=p-qYEA>N4yc42ZJcxv&CgkPmJllRq^8c~Y;Zi%F~J@gY|WbKoI)zAFW>C^=;b zq-4>yQ(+96i7t#kp+X5WT?=47UQMcc^~Y_9yau=i1qaK|`Fvk>!zs6-f4#9uJ>1}h zC-R6w;_WGdMJV#f^TL}S)gnJfhWpIrx?(3xKWXSUN0_ZWKtJ*8ccef~W=f{@ceQth z>AK`Jj*IJbySE+Mvjspm*M4U>hvb+|xPtr`LVsA`jO{$VZA?zav0^L=Sk58$=RKOK z2Ck0YAMcXZ-_{)3c6Zz!0(WheK5lJd%SnQAFO zEjcNZwp!zsL>g5}UgN>v1Zf(WKk`>7P-cby4|+EKN&AX^}yuKU$3Q{t{w^lCOh z(;&^T9E8QZgDlVIqEdLwx9LFVQuxP=Pw!#~C16-4jQO6!Th7Z?hGtktA$fM7ig=cX zOD(tGS?qND~&?x0#OON9EoD1IDqqVZl{f=v7M+@hc9 zOmpiuW>_YX5JHtmFSI4SQ>t3AeiL5t)d;hIBr_jLuHkAa8^Pm}A1K1;vRE$hK>CqEiwh`E%OY&UN3sW}HHJmp5)J zOXZw2SS7y)iX(R0&hH*#yl1?!eg8-8Imj%837f4z6g%sVPSDlp51)em zt-f9JRLC?dnvTt7-gx-FLQi=5h!dckdILF|oY_BxR_h8lb7U@NEAT#_J1rQHJoOaO z{>1S`vO4Ai5uH4ra6s!!p>Jmn&lFJ!=N~hHjT-hR?GU415l4?Yxu^(%;{uZsffHCVq z5Uqf7>j7bD%kAQp(y*ltD`k-CB*Rwped3vJ_puTLiwlkq!`@R%Z;lOcR4H`C1}V0_ zDD+DvNO1+N6C@9CAvt2pW^AiH_3a{eLD!n)mNI&$R(#O=@+G?3sL*C7@e%e^H64-S ztVT$T>^q;_kWzjAdUh%^i_a-cJZHx$cSa261k)Ww?_&@v!^)U;=#QmTVLiQn?;;X8d~VYcQd5Zd(njGQ=utIv9T}OKW=@$G z4<_o;o28#Axv^2jY4pK0e5}mu8nA`bwCsP9nchrecO1mlU9EVec9*eYaQ*XhF54_t z-|xn~f9HjEfi>!D@)a{CRe!J1IYQd>mTao99__NLDB%6TdVLOJg32fDXOp zY-ju0r%!ESYQBSvW{A=<7AwNka_CB2?SMMqfQ4G+6 z?h4u#k8!b~Qpe%%n7gdux(&`zxkyQ%9L>!H>+{TveyXCw zlJas1qb+X~6;C{gnEjM?qnxbpwNfu0!TH;rKwSm_SpYmYbHh#r^{|cpKl%u|SH(mc z9{=CG2w@RNf)c|#W8}V zs9DTx1!2#P@0?7l?XjU&3iRczJ)Y(5unUP?c_(9@zn-eFqY9UST$ACxIx$&*s z)uw#r-Mtx28Y7sEaN4?Q;yYEzs;B>=#hcEW?|jC~i-khGG3uvBF4-U@o;qgFZ&~~2 zTyy_~CEQcCVqcopk!s_`y~*K5_wC1w<0|IXM=M`=Cw6Ra*3rpLRbhn|>)! zW2V#7oTkFb$E5qc@dv5Krtyz=ip6`26%3s4hRyyN{KucWgN)_zoLBD8pTVi`utb%k zl1@BS^rrr_xCZd=;3)A3r7NSvD402Y3JCp5G&7-5dd$$VC%c4kE@wh-p`KgeiP|in zEp@$P^&qtb6x+{6tkNS2wrQWN>sPt|viz9{V%mh)l+ZRyhpwU@$Gn+wkfU=s(OfBY z$y&P14}55fjus5fIDf;*?}dmxxubxIN~A2S^DtfPw~cSiUa{qmUoNX5SjOYrkfJ}U zyl-+tnah@fPPZNgyy%MpCugHFViWfxU}LyW<5}j3%6wvbr+%FN#NJNpzvW@gVGBjeA*`8f7wJ3AvO!tXR4BcqXJ;&4YpOGZ!A1ui8s-Y;zbJQ*fb1R!YV@a<8X!M9WX1;s<*()t9U5Mn%6uO_t*gMY z3Rb`&^B`1FE=Zi&Y8rz#g43`_qzSdrkZOjTB9`z(;>FoSRc*FHr^M32e758zSD!YG zvf%cDZ_HL1!IhdiEPo?nQhN^(vZrAf?80%KyMW^LE;VZOWHrb!`XZ`EIP4*nX{3RM zG4{U2jg`GGVRtb=#xG*n_yO?(f`=wor4ee85B7^h6N6RNx=9AcB{BB0qETB3@ zTG-BOqj&4_{YJuSN&YTYyL;4(Uk3W~Ko>-18bPaeX3nP0bJR?q=m{&^S%yHW$w^Gx zJJgpQS=DedtnM!o^nXRFkFZmAit3#sQ=ux!k}Rvjv5|KFPzeAC*nNqP@l={UTy2@; zsri<`6BV1XlG6hrsN8-X9YHG{ZAw|F6(Fm?zh*XT|cSaz= zKLhu_yg&Yq3zNm^iS}Q<82`Z>?k{<591e{)>`#Rum;itQi&F-ep<@lWIIzg$^xlviqZH-Os3>ovYrg2I?b|>3ul6Z20)<6IZvZ&~+{p|z@i<6X{%5-u z^$@8p*oVBBEWoq?ZV$Mv{PzPYBk-Ry=G+N3V&(VDr=LK2*R#5s|IVE|khMWNercM) z%r3E8-@+Jx=r7Wz$$_j;*1Wj8z1`t*48kA+THa95bRr&xpkRF_Dfu#g8Uemn5?g@AuYL$&CPS%%^?E2$j`>BY*=;v zApl3D6Qv^{c($5LY8?@{Gakpn=@0CIcn&^!98(H(+BR+;Qd3b=OMu)F+PHzB?+p}| z;K)dWBHkMqvmq%G5r|OpYXGgp%a^3!%~51L{1HrGGSx=#M?vlepGpS=Y6#~8NWWmB z^BB+<0W%1j7Az>jtHDu8EXCI{4N_)2ixY)<(mR%5B}C_Xv`r3v3fkb20+-zjFm19- zXLGRZYwxasp5ilWKs(o?mm3m51EB(7>yePvx)dMJX>bwpQZtaD2U5xzFik=zI%pr_ z!a(RQp8DAmf?Nk6W7lDjIm{;O4h|CH{eq^3gYp=mDO6IcBmsn!Jc}9yZ^Q!T@R#&(f9elHj_(tP9uesOpbh>fcg_`8 zROcq`dX}qjVL^fZXbCI8T9?NvBY?5b0gjhYR?)5!A`8BY7)ZgS;5;x_Pzax%no0x= zh-_1a-wX)l@Dd>5&FrWFsq3%{*F?T3_DN8IM-+H5oixrt3Ow^ubTl&zQQJ5)($8Cvl7Fl51 zf=yWpMk`n`76uNNnJ0sCDl}6u_m|2_=gdjzsu&RscLGK$NWlwt!&p@m_Ky!%H%qv$ z*}tGZ*j`G5;>J{ZE_-oj9^7eh7<|iRX36-(B)((Xb-ojn=}_L|Zo^`6Ae`^8gOkMz zNS22}E;PCChN9cX<9`PZ79eBh2!LEACivooYM%h_*bK1x(7^6T#~%f10It@yVpsq$ zT#w5wW)Xh?=|iv zVQ~z9DJ9zwR#KvXwU6-QVeBk{Kf639xxgVQDftFWBCGa)MF;XLeiA^RoScrtZxFM< zhd{_f&XRE7#Kgs?VM2O=;!2WI?Z@InO~ zPM~voSw+Ripr8b)`nv}3(+DjXc>j8<%**jpC%f~7_B|75(asy!uTM@-f1I%g32{tJ z4BnXD!P=Ctz@PbR4m-<{+QBUl$m9xjpTqYM5;EfF2A%Vgk@uc98OCeCWCQOX4oJYq z2)f20=v^?LL-_PyQzhmM<^i3}na;`JJxw)CKw#`WkBEa|Ka?mRwfG)7@*?^V%+QcOLwT}G^ z7=C*Z622Ki)Kvf$D9xYTq^hSVESIMs-ZSM$*bMV4M17n+Sz#THPw7dpY zJHRUa;!e$Ti34{?T?ny&5t!5nMD9p(=dX!lx{C60{`+hU92_A)Iwp_m+>zZY2d51% z^XV|(o)d#9EUK$}6Lyo<_%r@l;OGhXYrT_lPVY_&MvfjG& z9v0VfCo3CU5PbBDl$4Rq?ZCtaBb{N)yep2RE63j?XU0IRHNXEiS`88QAJV0pHF9 z2D~z`M$;8SEcReeOG{&h*rq5RaVHz3HrJacIz*Fo!Mrfj>Evj)73x=r=PffZt6zd? zWBS(0sN!t+(agk%9USUr!N^JmHo!C}8Osirm_&mW(eo6rE^9?L(@t3>L9{3ohE6>Z zVUaj2Z+lO1I1Si(CGj0hbOGBx1p*dgZx{-bh6(CSFOc5>0enQ?S{$QQ6#S!-U!+P> zHZ?Q|rK^dt2MqW zCd6h%hzn#eff0O`IL!4h%en75f+t{0pz|$=K^&OsWZ|UFt9Jd%Zn5T2j>PS z=gV@}lN!8i`yaK%tDtL>KB|N_kwT0j@7;Tmu9zE#OeMsJaeZ@Bt_D22Xr>;UoD6)0 zZ7T)1{o-IwK?X03}HhYeq$k^q1+ zr>)09e|A>`!N=Fws6QhNQHn~sowji`_7)lT`@%>5HKYeOQ+VT0&Mf+!5O*>X9mJfPH%o7rv-q)!7wD&%Wm4hj|_&nzq~0<@9n`j1iG z*cbwjpS3#%Bpd=Ag!>2O(Kju^BzEsZV&~z z9k!U@hoGYYF`~l&J(~V-!3}WLLi|ryR7(6HCe7keZfr%ia)JE&ySmJ&FroPjBw<0Giq?I`!K!z%lE>HcTO~ zIq}WTHVIe(Q|=d}O?lH>36DK3s!}2Px5Dp6rZkjzU)@r#Dg#fRn4?2D;*n)5L{~eM z`S|#3KpTrd@wrF)%Y~f<^uTgpb}KNS5rK)70=_t)e*I!j#RB%|Jvh+rs>x;0T~1r`s8=rH~o`)C^(MISlAQwRiB*aH%}_1^^sron4Yl!amIFLW&_ zE^ex?cZY*I78?lnV5bs-lP`27B!J+y4+`6gCScl$G(NvO(>5@$ldtmPE9|gGs?Cwn z(Q|fL-TLs(7)9W<-WGAUPz!wy+(M z#8}(hoPm87JQ3aq(*Mg#2eFF+*DDA&8W|{XYDDVl;8FYyY_Rsh_e^8a3EKS_PN$iI zvN9E%y)c+d52t7NkGg8} z`$K?J;wUOAV!;14!@V&xH&28ainyPzt(lF3tIk};TfpEU*g)V}27x^;nAH?ueIiNH zM4r%@@_>EgRaxm6;0&{M8s5!K%WD9(mii!u6Y!%NxliDwMR6?2GR)n`?1iK2^NgMN zF1Y1h{7!Kmf9F0Wx?QI!d*rt7Z~JrHN6qSENAwF7cS=WD4~_)HdP+>fbz0a6cxZ?W zM(@vU@@(?C##)!F7UUS^3>tkkZ#ONKnAn|&%gtGm>+iw1rk2PZVOnAF-!WPjZAbJ^lwyF1(Zg literal 0 HcmV?d00001 diff --git a/labworks/LW1/IS_L1.ipynb b/labworks/LW1/IS_L1.ipynb new file mode 100644 index 0000000..566e519 --- /dev/null +++ b/labworks/LW1/IS_L1.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":3,"metadata":{"id":"0hMyrX95nKr7","executionInfo":{"status":"ok","timestamp":1760536423901,"user_tz":-180,"elapsed":6786,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}}},"outputs":[],"source":["# импорт модулей\n","from tensorflow import keras\n","import matplotlib.pyplot as plt\n","import numpy as np\n","import sklearn\n","from tensorflow.keras.utils import to_categorical\n","from keras.models import Sequential\n","from keras.layers import Dense"]},{"cell_type":"code","execution_count":4,"metadata":{"executionInfo":{"elapsed":404,"status":"ok","timestamp":1760536444157,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"},"user_tz":-180},"id":"T-PSkrkyoaHv","colab":{"base_uri":"https://localhost:8080/"},"outputId":"a63e7f5c-8685-4a59-ec4e-fcc095127e72"},"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n","\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n"]}],"source":["# загрузка датасета\n","from keras.datasets import mnist\n","(X_train, y_train), (X_test, y_test) = mnist.load_data()"]},{"cell_type":"code","execution_count":5,"metadata":{"id":"V_KjeaXCrBb-","executionInfo":{"status":"ok","timestamp":1760536445559,"user_tz":-180,"elapsed":288,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}}},"outputs":[],"source":["# создание своего разбиения датасета\n","from sklearn.model_selection import train_test_split\n","\n","# объединяем в один набор\n","X = np.concatenate((X_train, X_test))\n","y = np.concatenate((y_train, y_test))\n","\n","# разбиваем по вариантам\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 60000,\n"," random_state = 35)"]},{"cell_type":"code","execution_count":6,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":438,"status":"ok","timestamp":1760536447407,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"},"user_tz":-180},"id":"2io3i_porcd3","outputId":"e2fdf63e-f2ab-44f8-b6b8-5aa95a33527d"},"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of X train: (60000, 28, 28)\n","Shape of y train: (60000,)\n","0\n"]},{"output_type":"display_data","data":{"text/plain":["

"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG6pJREFUeJzt3X9s1PUdx/HXFeiJ0h4rpb1WflhAwYjUjEnXoQyl0naL4VccOrPgRiC4w4n1x9ZtijCXTlw24sJ0WQzoJqImA6ZZMFhsiVowRQkx2xradaMEWgaxd1CkJe1nfxBvnrTg97jr+1qej+ST9L7f77vfNx++3Ivvfb/91ueccwIAoJ+lWTcAALg8EUAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwMdS6gS/q6enRkSNHlJGRIZ/PZ90OAMAj55xOnjyp/Px8paX1fZ6TcgF05MgRjR071roNAMAlamlp0ZgxY/pcn3IfwWVkZFi3AABIgIu9nyctgDZs2KBrrrlGV1xxhYqKivTBBx98qTo+dgOAweFi7+dJCaBXX31VFRUVWr16tT788EMVFhaqtLRUx44dS8buAAADkUuCGTNmuFAoFH3d3d3t8vPzXVVV1UVrw+Gwk8RgMBiMAT7C4fAF3+8TfgbU1dWlffv2qaSkJLosLS1NJSUlqqurO2/7zs5ORSKRmAEAGPwSHkDHjx9Xd3e3cnNzY5bn5uaqtbX1vO2rqqoUCASigzvgAODyYH4XXGVlpcLhcHS0tLRYtwQA6AcJ/zmg7OxsDRkyRG1tbTHL29raFAwGz9ve7/fL7/cnug0AQIpL+BlQenq6pk+frurq6uiynp4eVVdXq7i4ONG7AwAMUEl5EkJFRYWWLFmir33ta5oxY4bWr1+vjo4Off/730/G7gAAA1BSAmjx4sX673//qyeeeEKtra266aabtGPHjvNuTAAAXL58zjln3cTnRSIRBQIB6zYAAJcoHA4rMzOzz/Xmd8EBAC5PBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwMtW4AGOhmz57tuebJJ5/0XDNz5kzPNXfccYfnGkl67733PNf09PR4rpk8eXK/7OfgwYOeaySpu7s7rjp8OZwBAQBMEEAAABMJD6Ann3xSPp8vZkyZMiXRuwEADHBJuQZ0ww036O233/7/ToZyqQkAECspyTB06FAFg8FkfGsAwCCRlGtABw8eVH5+viZMmKB7771Xhw4d6nPbzs5ORSKRmAEAGPwSHkBFRUXatGmTduzYoeeee07Nzc269dZbdfLkyV63r6qqUiAQiI6xY8cmuiUAQApKeACVl5frrrvu0rRp01RaWqq//e1vam9v12uvvdbr9pWVlQqHw9HR0tKS6JYAACko6XcHjBw5Utddd50aGxt7Xe/3++X3+5PdBgAgxST954BOnTqlpqYm5eXlJXtXAIABJOEB9Mgjj6i2tlb//ve/9f7772vBggUaMmSI7rnnnkTvCgAwgCX8I7jDhw/rnnvu0YkTJzR69Gjdcsst2rNnj0aPHp3oXQEABjCfc85ZN/F5kUhEgUDAug0McMOHD4+r7ic/+YnnmoqKCs81V111lecan8/nuSbef97V1dWea44fP+65ZvHixZ5r4rFly5a46p566inPNQ0NDZ5rButDT8PhsDIzM/tcz7PgAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmOBhpEh58Ty484UXXohrX9/5znfiqusP/fkwUsTvG9/4hueaDz74wHNNT0+P55r+xsNIAQApiQACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgYqh1A8DFrF+/3nNNKj/VGoPb+++/77lmyZIlnmv+9Kc/ea5JNZwBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMHDSBG3ESNGeK6pqqryXLNw4ULPNcBAMmXKFOsWTHAGBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQPI0XcysrKPNeEQqEkdAJgIOIMCABgggACAJjwHEC7d+/WnXfeqfz8fPl8Pm3bti1mvXNOTzzxhPLy8jR8+HCVlJTo4MGDieoXADBIeA6gjo4OFRYWasOGDb2uX7dunZ599lk9//zz2rt3r6666iqVlpbqzJkzl9wsAGDw8HwTQnl5ucrLy3td55zT+vXr9fOf/1zz5s2TJL300kvKzc3Vtm3bdPfdd19atwCAQSOh14Cam5vV2tqqkpKS6LJAIKCioiLV1dX1WtPZ2alIJBIzAACDX0IDqLW1VZKUm5sbszw3Nze67ouqqqoUCASiY+zYsYlsCQCQoszvgqusrFQ4HI6OlpYW65YAAP0goQEUDAYlSW1tbTHL29raouu+yO/3KzMzM2YAAAa/hAZQQUGBgsGgqquro8sikYj27t2r4uLiRO4KADDAeb4L7tSpU2psbIy+bm5u1v79+5WVlaVx48Zp1apVeuqpp3TttdeqoKBAjz/+uPLz8zV//vxE9g0AGOA8B1B9fb1uu+226OuKigpJ0pIlS7Rp0yY99thj6ujo0PLly9Xe3q5bbrlFO3bs0BVXXJG4rgEAA57nAJo9e7acc32u9/l8Wrt2rdauXXtJjaH/rFmzJq66H/3oRwnuBANZXz9qcSG//vWvPdc8/vjjnmtuuukmzzVIPvO74AAAlycCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAnPT8NGarvyyis919x+++1x7SsQCMRVh/6zd+/euOrWrVvnuWbnzp2ea0aMGNEvNUhNnAEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwwcNIU1h6errnmoqKCs81M2fO9FyDS1NfX++5pqqqynPNW2+95blGkk6fPh1XnVfLli3zXDNp0qQkdAILnAEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAw4XPOOesmPi8SiSgQCFi3kRIyMjI814TD4SR0gguJ5+GYhw8f9lzT1dXluaY/FRYWeq6J56GsQ4YM8VyT6kaNGuW55pNPPklCJ4kVDoeVmZnZ53rOgAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgYat0A+paenu65xufzJaETW7feeqvnmnfffTcJnVw+8vLyPNds2bLFc83QoYPvLaiurs5zTUdHRxI6SX2cAQEATBBAAAATngNo9+7duvPOO5Wfny+fz6dt27bFrL/vvvvk8/liRllZWaL6BQAMEp4DqKOjQ4WFhdqwYUOf25SVleno0aPR8corr1xSkwCAwcfzFcDy8nKVl5dfcBu/369gMBh3UwCAwS8p14BqamqUk5OjyZMn6/7779eJEyf63Lazs1ORSCRmAAAGv4QHUFlZmV566SVVV1fr6aefVm1trcrLy9Xd3d3r9lVVVQoEAtExduzYRLcEAEhBCb8J/+67745+feONN2ratGmaOHGiampqNGfOnPO2r6ysVEVFRfR1JBIhhADgMpD027AnTJig7OxsNTY29rre7/crMzMzZgAABr+kB9Dhw4d14sSJuH6yGgAweHn+CO7UqVMxZzPNzc3av3+/srKylJWVpTVr1mjRokUKBoNqamrSY489pkmTJqm0tDShjQMABjbPAVRfX6/bbrst+vqz6zdLlizRc889pwMHDujFF19Ue3u78vPzNXfuXP3iF7+Q3+9PXNcAgAHPcwDNnj1bzrk+17/11luX1BD+7+GHH/Zcc6G/m1TQ1NTkueZf//pXEjq5PMR7TfXtt9/2XDN58mTPNal+vMbjl7/8peearq6uJHSS+ngWHADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADARMJ/JTdwIX/84x891xw5ciQJnQw8aWne/7+4fPnyuPZ1/fXXx1U32EQiEc81e/fuTUIngxNnQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEzwMFL0qwMHDli3kBIKCws918ydO9dzzdNPP+25ZjCqq6uLq+7BBx/0XHP8+PG49nU54gwIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACR5GikFp9OjRcdVNnjzZc82qVas818ybN89zzdCh3v+5Ouc816S6Tz75xHPN2rVr49pXfX19XHX4cjgDAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIKHkaJfPfPMM55rfvazn3muyc7O9lwjxfcwUvSvUCjkueatt95KQie4VJwBAQBMEEAAABOeAqiqqko333yzMjIylJOTo/nz56uhoSFmmzNnzigUCmnUqFEaMWKEFi1apLa2toQ2DQAY+DwFUG1trUKhkPbs2aOdO3fq7Nmzmjt3rjo6OqLbPPTQQ3rjjTf0+uuvq7a2VkeOHNHChQsT3jgAYGDzdBPCjh07Yl5v2rRJOTk52rdvn2bNmqVwOKwXXnhBmzdv1u233y5J2rhxo66//nrt2bNHX//61xPXOQBgQLuka0DhcFiSlJWVJUnat2+fzp49q5KSkug2U6ZM0bhx41RXV9fr9+js7FQkEokZAIDBL+4A6unp0apVqzRz5kxNnTpVktTa2qr09HSNHDkyZtvc3Fy1trb2+n2qqqoUCASiY+zYsfG2BAAYQOIOoFAopI8//lhbtmy5pAYqKysVDoejo6Wl5ZK+HwBgYIjrB1FXrlypN998U7t379aYMWOiy4PBoLq6utTe3h5zFtTW1qZgMNjr9/L7/fL7/fG0AQAYwDydATnntHLlSm3dulW7du1SQUFBzPrp06dr2LBhqq6uji5raGjQoUOHVFxcnJiOAQCDgqczoFAopM2bN2v79u3KyMiIXtcJBAIaPny4AoGAli5dqoqKCmVlZSkzM1MPPPCAiouLuQMOABDDUwA999xzkqTZs2fHLN+4caPuu+8+SdJvf/tbpaWladGiRers7FRpaal+//vfJ6RZAMDg4XPOOesmPi8SiSgQCFi3kRK+973vea558cUXk9AJUoHP5/Nc05//vNvb2z3XLF261HPNzp07PdecOnXKcw0uXTgcVmZmZp/reRYcAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMBEXL8RFf1j27Zt1i3gMvXXv/7Vc80DDzzguaalpcVzDQYPzoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCY4GGkKayrq8tzzQsvvOC5ZunSpZ5r0P/Onj3ruWbBggVx7WvXrl2eaz799NO49oXLF2dAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATPicc866ic+LRCIKBALWbQxYaWne/09x1113xbWvO+64w3PND37wg7j2lcrq6+s916xZs8ZzTU1Njeeajo4OzzVAooTDYWVmZva5njMgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJngYKQAgKXgYKQAgJRFAAAATngKoqqpKN998szIyMpSTk6P58+eroaEhZpvZs2fL5/PFjBUrViS0aQDAwOcpgGpraxUKhbRnzx7t3LlTZ8+e1dy5c8/7pVfLli3T0aNHo2PdunUJbRoAMPAN9bLxjh07Yl5v2rRJOTk52rdvn2bNmhVdfuWVVyoYDCamQwDAoHRJ14DC4bAkKSsrK2b5yy+/rOzsbE2dOlWVlZU6ffp0n9+js7NTkUgkZgAALgMuTt3d3e7b3/62mzlzZszyP/zhD27Hjh3uwIED7s9//rO7+uqr3YIFC/r8PqtXr3aSGAwGgzHIRjgcvmCOxB1AK1ascOPHj3ctLS0X3K66utpJco2Njb2uP3PmjAuHw9HR0tJiPmkMBoPBuPRxsQDydA3oMytXrtSbb76p3bt3a8yYMRfctqioSJLU2NioiRMnnrfe7/fL7/fH0wYAYADzFEDOOT3wwAPaunWrampqVFBQcNGa/fv3S5Ly8vLiahAAMDh5CqBQKKTNmzdr+/btysjIUGtrqyQpEAho+PDhampq0ubNm/Wtb31Lo0aN0oEDB/TQQw9p1qxZmjZtWlL+AACAAcrLdR/18Tnfxo0bnXPOHTp0yM2aNctlZWU5v9/vJk2a5B599NGLfg74eeFw2PxzSwaDwWBc+rjYez8PIwUAJAUPIwUApCQCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgImUCyDnnHULAIAEuNj7ecoF0MmTJ61bAAAkwMXez30uxU45enp6dOTIEWVkZMjn88Wsi0QiGjt2rFpaWpSZmWnUoT3m4Rzm4Rzm4Rzm4ZxUmAfnnE6ePKn8/HylpfV9njO0H3v6UtLS0jRmzJgLbpOZmXlZH2CfYR7OYR7OYR7OYR7OsZ6HQCBw0W1S7iM4AMDlgQACAJgYUAHk9/u1evVq+f1+61ZMMQ/nMA/nMA/nMA/nDKR5SLmbEAAAl4cBdQYEABg8CCAAgAkCCABgggACAJgYMAG0YcMGXXPNNbriiitUVFSkDz74wLqlfvfkk0/K5/PFjClTpli3lXS7d+/WnXfeqfz8fPl8Pm3bti1mvXNOTzzxhPLy8jR8+HCVlJTo4MGDNs0m0cXm4b777jvv+CgrK7NpNkmqqqp08803KyMjQzk5OZo/f74aGhpitjlz5oxCoZBGjRqlESNGaNGiRWprazPqODm+zDzMnj37vONhxYoVRh33bkAE0KuvvqqKigqtXr1aH374oQoLC1VaWqpjx45Zt9bvbrjhBh09ejQ63n33XeuWkq6jo0OFhYXasGFDr+vXrVunZ599Vs8//7z27t2rq666SqWlpTpz5kw/d5pcF5sHSSorK4s5Pl555ZV+7DD5amtrFQqFtGfPHu3cuVNnz57V3Llz1dHREd3moYce0htvvKHXX39dtbW1OnLkiBYuXGjYdeJ9mXmQpGXLlsUcD+vWrTPquA9uAJgxY4YLhULR193d3S4/P99VVVUZdtX/Vq9e7QoLC63bMCXJbd26Nfq6p6fHBYNB98wzz0SXtbe3O7/f71555RWDDvvHF+fBOeeWLFni5s2bZ9KPlWPHjjlJrra21jl37u9+2LBh7vXXX49u849//MNJcnV1dVZtJt0X58E55775zW+6Bx980K6pLyHlz4C6urq0b98+lZSURJelpaWppKREdXV1hp3ZOHjwoPLz8zVhwgTde++9OnTokHVLppqbm9Xa2hpzfAQCARUVFV2Wx0dNTY1ycnI0efJk3X///Tpx4oR1S0kVDoclSVlZWZKkffv26ezZszHHw5QpUzRu3LhBfTx8cR4+8/LLLys7O1tTp05VZWWlTp8+bdFen1LuYaRfdPz4cXV3dys3NzdmeW5urv75z38adWWjqKhImzZt0uTJk3X06FGtWbNGt956qz7++GNlZGRYt2eitbVVkno9Pj5bd7koKyvTwoULVVBQoKamJv30pz9VeXm56urqNGTIEOv2Eq6np0erVq3SzJkzNXXqVEnnjof09HSNHDkyZtvBfDz0Ng+S9N3vflfjx49Xfn6+Dhw4oB//+MdqaGjQX/7yF8NuY6V8AOH/ysvLo19PmzZNRUVFGj9+vF577TUtXbrUsDOkgrvvvjv69Y033qhp06Zp4sSJqqmp0Zw5cww7S45QKKSPP/74srgOeiF9zcPy5cujX994443Ky8vTnDlz1NTUpIkTJ/Z3m71K+Y/gsrOzNWTIkPPuYmlra1MwGDTqKjWMHDlS1113nRobG61bMfPZMcDxcb4JEyYoOzt7UB4fK1eu1Jtvvql33nkn5te3BINBdXV1qb29PWb7wXo89DUPvSkqKpKklDoeUj6A0tPTNX36dFVXV0eX9fT0qLq6WsXFxYad2Tt16pSampqUl5dn3YqZgoICBYPBmOMjEolo7969l/3xcfjwYZ04cWJQHR/OOa1cuVJbt27Vrl27VFBQELN++vTpGjZsWMzx0NDQoEOHDg2q4+Fi89Cb/fv3S1JqHQ/Wd0F8GVu2bHF+v99t2rTJ/f3vf3fLly93I0eOdK2trdat9auHH37Y1dTUuObmZvfee++5kpISl52d7Y4dO2bdWlKdPHnSffTRR+6jjz5yktxvfvMb99FHH7n//Oc/zjnnfvWrX7mRI0e67du3uwMHDrh58+a5goIC9+mnnxp3nlgXmoeTJ0+6Rx55xNXV1bnm5mb39ttvu69+9avu2muvdWfOnLFuPWHuv/9+FwgEXE1NjTt69Gh0nD59OrrNihUr3Lhx49yuXbtcfX29Ky4udsXFxYZdJ97F5qGxsdGtXbvW1dfXu+bmZrd9+3Y3YcIEN2vWLOPOYw2IAHLOud/97ndu3LhxLj093c2YMcPt2bPHuqV+t3jxYpeXl+fS09Pd1Vdf7RYvXuwaGxut20q6d955x0k6byxZssQ5d+5W7Mcff9zl5uY6v9/v5syZ4xoaGmybToILzcPp06fd3Llz3ejRo92wYcPc+PHj3bJlywbdf9J6+/NLchs3boxu8+mnn7of/vCH7itf+Yq78sor3YIFC9zRo0ftmk6Ci83DoUOH3KxZs1xWVpbz+/1u0qRJ7tFHH3XhcNi28S/g1zEAAEyk/DUgAMDgRAABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwMT/AFCry26Hl0MzAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["9\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG85JREFUeJzt3X9s1fX1x/HXLdBL1fbWWtrbO0opiLII1IxJ14gMpQLdRkT4A3/MwGJgsmIG9Ve6qKhb0g0TdboO/3EwM0HFCESzYbDaMmfBUCGEuHW06QYGWiZZ74UChdH39w/i/XqlgJ/LvT29l+cj+ST03nt6j9crT297+6nPOecEAMAAy7BeAABweSJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADAxFDrBb6ur69PBw8eVHZ2tnw+n/U6AACPnHM6evSoQqGQMjLO/zpn0AXo4MGDKi4utl4DAHCJDhw4oJEjR573+kH3Jbjs7GzrFQAACXCxv8+TFqD6+nqNHj1aw4cPV3l5uT755JNvNMeX3QAgPVzs7/OkBOiNN95QTU2NVq5cqU8//VRlZWWaNWuWDh8+nIy7AwCkIpcEU6ZMcdXV1dGPz5w540KhkKurq7vobDgcdpI4ODg4OFL8CIfDF/z7PuGvgE6dOqWWlhZVVlZGL8vIyFBlZaWam5vPuX1vb68ikUjMAQBIfwkP0BdffKEzZ86osLAw5vLCwkJ1dnaec/u6ujoFAoHowTvgAODyYP4uuNraWoXD4ehx4MAB65UAAAMg4T8HlJ+fryFDhqirqyvm8q6uLgWDwXNu7/f75ff7E70GAGCQS/groMzMTE2ePFkNDQ3Ry/r6+tTQ0KCKiopE3x0AIEUl5UwINTU1Wrhwob773e9qypQpeuGFF9TT06Of/OQnybg7AEAKSkqAFixYoP/85z968skn1dnZqRtvvFFbtmw5540JAIDLl88556yX+KpIJKJAIGC9BgDgEoXDYeXk5Jz3evN3wQEALk8ECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBEwgP01FNPyefzxRzjx49P9N0AAFLc0GR80htuuEHvv//+/9/J0KTcDQAghSWlDEOHDlUwGEzGpwYApImkfA9o3759CoVCGjNmjO69917t37//vLft7e1VJBKJOQAA6S/hASovL9fatWu1ZcsWrV69Wh0dHbrlllt09OjRfm9fV1enQCAQPYqLixO9EgBgEPI551wy76C7u1slJSV67rnndP/9959zfW9vr3p7e6MfRyIRIgQAaSAcDisnJ+e81yf93QG5ubm67rrr1NbW1u/1fr9ffr8/2WsAAAaZpP8c0LFjx9Te3q6ioqJk3xUAIIUkPEAPP/ywmpqa9K9//Usff/yx7rzzTg0ZMkR33313ou8KAJDCEv4luM8//1x33323jhw5ohEjRmjq1Knavn27RowYkei7AgCksKS/CcGrSCSiQCBgvcagkJ2d7Xnmr3/9q+eZgoICzzOStHXrVs8zP/7xjz3P/OEPf/A809nZ6XkmXs8//7znmWPHjnmeOXXqlOcZwNLF3oTAueAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABOcjHSAxHNi0XvvvdfzzO9+9zvPMxh4O3bs8DzT2NjoeSbe58N///tfzzMnT56M676QvjgZKQBgUCJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJzoY9QFasWOF55vHHH/c8k46PXTry+XyeZwbyP9V4zrz9zDPPeJ7Ztm2b5xmkDs6GDQAYlAgQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE5yMdICMHj3a88x7773neWbs2LGeZ+L1pz/9yfNMVlaW55kNGzZ4nvnpT3/qeUaSrr76as8zkyZN8jwzZMgQzzOD7D/Vc+zatcvzzOLFiz3P/POf//Q8c/z4cc8zuHScjBQAMCgRIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY4GekAKSsr8zzT0tKShE0S50c/+pHnmS1btiRhE1u3336755nbbrvN80xFRYXnmXHjxnmekaTCwsK45gbCnXfe6XnmnXfeScImuBhORgoAGJQIEADAhOcAbdu2TXPmzFEoFJLP59OmTZtirnfO6cknn1RRUZGysrJUWVmpffv2JWpfAECa8Bygnp4elZWVqb6+vt/rV61apRdffFEvv/yyduzYoSuvvFKzZs3SyZMnL3lZAED6GOp1oKqqSlVVVf1e55zTCy+8oMcff1x33HGHJOnVV19VYWGhNm3apLvuuuvStgUApI2Efg+oo6NDnZ2dqqysjF4WCARUXl6u5ubmfmd6e3sViURiDgBA+ktogDo7OyWd+xbOwsLC6HVfV1dXp0AgED2Ki4sTuRIAYJAyfxdcbW2twuFw9Dhw4ID1SgCAAZDQAAWDQUlSV1dXzOVdXV3R677O7/crJycn5gAApL+EBqi0tFTBYFANDQ3RyyKRiHbs2BHXT3EDANKX53fBHTt2TG1tbdGPOzo6tHv3buXl5WnUqFFavny5fvWrX2ncuHEqLS3VE088oVAopLlz5yZybwBAivMcoJ07d+rWW2+NflxTUyNJWrhwodauXatHH31UPT09WrJkibq7uzV16lRt2bJFw4cPT9zWAICUx8lIB0hWVpbnmb1793qeKSkp8TwTr/Xr13ueue+++5KwCc6nvLw8rrm33nrL80xRUVFc9+XVRx995Hnmhz/8YVz31dPTE9cczuJkpACAQYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmPP86BsTnxIkTnmfmzZvneaalpcXzTLyKi4sH7L4Qnx07dsQ19/HHH3uemT9/flz35dXUqVM9z8R7pu6v/u4zJB6vgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE5yMdBA7fPiw9QoXNHnyZM8zf/7znz3P3HfffZ5njhw54nlmsLviiis8zyxYsCCu+xo9enRcc4AXvAICAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExwMtJBLJ6TkT7yyCOeZ5599lnPM5KUlZXleWbmzJmeZz777DPPM9XV1Z5nJOmtt97yPLN06VLPM1deeaXnmYceesjzzIgRIzzPAAOFV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAmfc85ZL/FVkUhEgUDAeo2UlZHh/f8p3nzzzbjua+7cuXHNDYT//e9/cc319vZ6nonnxKI+n8/zzCD7TzWljB8/Pq65tra2BG9yeQmHw8rJyTnv9bwCAgCYIEAAABOeA7Rt2zbNmTNHoVBIPp9PmzZtirl+0aJF8vl8Mcfs2bMTtS8AIE14DlBPT4/KyspUX19/3tvMnj1bhw4dih7r16+/pCUBAOnH829EraqqUlVV1QVv4/f7FQwG414KAJD+kvI9oMbGRhUUFOj666/X0qVLdeTIkfPetre3V5FIJOYAAKS/hAdo9uzZevXVV9XQ0KDf/OY3ampqUlVVlc6cOdPv7evq6hQIBKJHcXFxolcCAAxCnr8EdzF33XVX9M8TJ07UpEmTNHbsWDU2NmrGjBnn3L62tlY1NTXRjyORCBECgMtA0t+GPWbMGOXn55/3B7r8fr9ycnJiDgBA+kt6gD7//HMdOXJERUVFyb4rAEAK8fwluGPHjsW8muno6NDu3buVl5envLw8Pf3005o/f76CwaDa29v16KOP6tprr9WsWbMSujgAILV5DtDOnTt16623Rj/+8vs3Cxcu1OrVq7Vnzx798Y9/VHd3t0KhkGbOnKlf/vKX8vv9idsaAJDyPAdo+vTpFzwp4nvvvXdJC+HS9PX1eZ5paGiI675uv/12zzNDh3p/38vw4cM9zwwbNszzzKXMeRXPSWPj+XcLDGacCw4AYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmfO5Cp7Y2EIlEFAgErNdAkpSUlHiemTNnjueZ5cuXe56RpNGjR8c151VPT4/nmXjOhn3s2DHPM5KUm5vreSYrKyuu+xoI48ePj2vufL/JGd9MOBy+4G+55hUQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCk5EiLV177bVxzU2dOjXBm/Tv008/HZD72bNnT1xzCxcu9DzzyiuvxHVfA+Ghhx6Ka+63v/1tgje5vHAyUgDAoESAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmBhqvQCQDG1tbQM6l242b97seebBBx/0PHPjjTd6nonHhAkTBuR+4A2vgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE5yMFMA5uru7Pc+89NJLnmdeeeUVzzNIH7wCAgCYIEAAABOeAlRXV6ebbrpJ2dnZKigo0Ny5c9Xa2hpzm5MnT6q6ulrXXHONrrrqKs2fP19dXV0JXRoAkPo8BaipqUnV1dXavn27tm7dqtOnT2vmzJnq6emJ3mbFihV65513tGHDBjU1NengwYOaN29ewhcHAKQ2T29C2LJlS8zHa9euVUFBgVpaWjRt2jSFw2G98sorWrdunW677TZJ0po1a/Ttb39b27dv1/e+973EbQ4ASGmX9D2gcDgsScrLy5MktbS06PTp06qsrIzeZvz48Ro1apSam5v7/Ry9vb2KRCIxBwAg/cUdoL6+Pi1fvlw333xz9Petd3Z2KjMzU7m5uTG3LSwsVGdnZ7+fp66uToFAIHoUFxfHuxIAIIXEHaDq6mrt3btXr7/++iUtUFtbq3A4HD0OHDhwSZ8PAJAa4vpB1GXLlundd9/Vtm3bNHLkyOjlwWBQp06dUnd3d8yroK6uLgWDwX4/l9/vl9/vj2cNAEAK8/QKyDmnZcuWaePGjfrggw9UWloac/3kyZM1bNgwNTQ0RC9rbW3V/v37VVFRkZiNAQBpwdMroOrqaq1bt06bN29WdnZ29Ps6gUBAWVlZCgQCuv/++1VTU6O8vDzl5OTowQcfVEVFBe+AAwDE8BSg1atXS5KmT58ec/maNWu0aNEiSdLzzz+vjIwMzZ8/X729vZo1a5Z+//vfJ2RZAED68BQg59xFbzN8+HDV19ervr4+7qUApJ729nbrFZBiOBccAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmBhqvQAAJNu4cePimsvKyvI8c+LEibju63LEKyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwITPOeesl/iqSCSiQCBgvQYAjzIzMz3PNDY2ep6ZMmWK55l4/eUvf/E8M2/ePM8zp0+f9jyTCsLhsHJycs57Pa+AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATQ60XAJAeTp065XmmqanJ88xAnoy0qqrK80w8J2VN15ORXgyvgAAAJggQAMCEpwDV1dXppptuUnZ2tgoKCjR37ly1trbG3Gb69Ony+XwxxwMPPJDQpQEAqc9TgJqamlRdXa3t27dr69atOn36tGbOnKmenp6Y2y1evFiHDh2KHqtWrUro0gCA1OfpTQhbtmyJ+Xjt2rUqKChQS0uLpk2bFr38iiuuUDAYTMyGAIC0dEnfAwqHw5KkvLy8mMtfe+015efna8KECaqtrdXx48fP+zl6e3sViURiDgBA+ov7bdh9fX1avny5br75Zk2YMCF6+T333KOSkhKFQiHt2bNHjz32mFpbW/X222/3+3nq6ur09NNPx7sGACBFxR2g6upq7d27Vx999FHM5UuWLIn+eeLEiSoqKtKMGTPU3t6usWPHnvN5amtrVVNTE/04EomouLg43rUAACkirgAtW7ZM7777rrZt26aRI0de8Lbl5eWSpLa2tn4D5Pf75ff741kDAJDCPAXIOacHH3xQGzduVGNjo0pLSy86s3v3bklSUVFRXAsCANKTpwBVV1dr3bp12rx5s7Kzs9XZ2SlJCgQCysrKUnt7u9atW6cf/OAHuuaaa7Rnzx6tWLFC06ZN06RJk5LyDwAASE2eArR69WpJZ3/Y9KvWrFmjRYsWKTMzU++//75eeOEF9fT0qLi4WPPnz9fjjz+esIUBAOnB85fgLqS4uDiukwsCAC4/PnexqgywSCSiQCBgvQYA4BKFw2Hl5OSc93pORgoAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJQRcg55z1CgCABLjY3+eDLkBHjx61XgEAkAAX+/vc5wbZS46+vj4dPHhQ2dnZ8vl8MddFIhEVFxfrwIEDysnJMdrQHo/DWTwOZ/E4nMXjcNZgeBycczp69KhCoZAyMs7/OmfoAO70jWRkZGjkyJEXvE1OTs5l/QT7Eo/DWTwOZ/E4nMXjcJb14xAIBC56m0H3JTgAwOWBAAEATKRUgPx+v1auXCm/32+9iikeh7N4HM7icTiLx+GsVHocBt2bEAAAl4eUegUEAEgfBAgAYIIAAQBMECAAgImUCVB9fb1Gjx6t4cOHq7y8XJ988on1SgPuqaeeks/niznGjx9vvVbSbdu2TXPmzFEoFJLP59OmTZtirnfO6cknn1RRUZGysrJUWVmpffv22SybRBd7HBYtWnTO82P27Nk2yyZJXV2dbrrpJmVnZ6ugoEBz585Va2trzG1Onjyp6upqXXPNNbrqqqs0f/58dXV1GW2cHN/kcZg+ffo5z4cHHnjAaOP+pUSA3njjDdXU1GjlypX69NNPVVZWplmzZunw4cPWqw24G264QYcOHYoeH330kfVKSdfT06OysjLV19f3e/2qVav04osv6uWXX9aOHTt05ZVXatasWTp58uQAb5pcF3scJGn27Nkxz4/169cP4IbJ19TUpOrqam3fvl1bt27V6dOnNXPmTPX09ERvs2LFCr3zzjvasGGDmpqadPDgQc2bN89w68T7Jo+DJC1evDjm+bBq1Sqjjc/DpYApU6a46urq6MdnzpxxoVDI1dXVGW418FauXOnKysqs1zAlyW3cuDH6cV9fnwsGg+7ZZ5+NXtbd3e38fr9bv369wYYD4+uPg3POLVy40N1xxx0m+1g5fPiwk+Sampqcc2f/3Q8bNsxt2LAhepu///3vTpJrbm62WjPpvv44OOfc97//fffzn//cbqlvYNC/Ajp16pRaWlpUWVkZvSwjI0OVlZVqbm423MzGvn37FAqFNGbMGN17773av3+/9UqmOjo61NnZGfP8CAQCKi8vvyyfH42NjSooKND111+vpUuX6siRI9YrJVU4HJYk5eXlSZJaWlp0+vTpmOfD+PHjNWrUqLR+Pnz9cfjSa6+9pvz8fE2YMEG1tbU6fvy4xXrnNehORvp1X3zxhc6cOaPCwsKYywsLC/WPf/zDaCsb5eXlWrt2ra6//nodOnRITz/9tG655Rbt3btX2dnZ1uuZ6OzslKR+nx9fXne5mD17tubNm6fS0lK1t7frF7/4haqqqtTc3KwhQ4ZYr5dwfX19Wr58uW6++WZNmDBB0tnnQ2ZmpnJzc2Num87Ph/4eB0m65557VFJSolAopD179uixxx5Ta2ur3n77bcNtYw36AOH/VVVVRf88adIklZeXq6SkRG+++abuv/9+w80wGNx1113RP0+cOFGTJk3S2LFj1djYqBkzZhhulhzV1dXau3fvZfF90As53+OwZMmS6J8nTpyooqIizZgxQ+3t7Ro7duxAr9mvQf8luPz8fA0ZMuScd7F0dXUpGAwabTU45Obm6rrrrlNbW5v1Kma+fA7w/DjXmDFjlJ+fn5bPj2XLlundd9/Vhx9+GPPrW4LBoE6dOqXu7u6Y26fr8+F8j0N/ysvLJWlQPR8GfYAyMzM1efJkNTQ0RC/r6+tTQ0ODKioqDDezd+zYMbW3t6uoqMh6FTOlpaUKBoMxz49IJKIdO3Zc9s+Pzz//XEeOHEmr54dzTsuWLdPGjRv1wQcfqLS0NOb6yZMna9iwYTHPh9bWVu3fvz+tng8Xexz6s3v3bkkaXM8H63dBfBOvv/668/v9bu3ate6zzz5zS5Yscbm5ua6zs9N6tQH10EMPucbGRtfR0eH+9re/ucrKSpefn+8OHz5svVpSHT161O3atcvt2rXLSXLPPfec27Vrl/v3v//tnHPu17/+tcvNzXWbN292e/bscXfccYcrLS11J06cMN48sS70OBw9etQ9/PDDrrm52XV0dLj333/ffec733Hjxo1zJ0+etF49YZYuXeoCgYBrbGx0hw4dih7Hjx+P3uaBBx5wo0aNch988IHbuXOnq6iocBUVFYZbJ97FHoe2tjb3zDPPuJ07d7qOjg63efNmN2bMGDdt2jTjzWOlRICcc+6ll15yo0aNcpmZmW7KlClu+/bt1isNuAULFriioiKXmZnpvvWtb7kFCxa4trY267WS7sMPP3SSzjkWLlzonDv7VuwnnnjCFRYWOr/f72bMmOFaW1ttl06CCz0Ox48fdzNnznQjRoxww4YNcyUlJW7x4sVp9z9p/f3zS3Jr1qyJ3ubEiRPuZz/7mbv66qvdFVdc4e6880536NAhu6WT4GKPw/79+920adNcXl6e8/v97tprr3WPPPKIC4fDtot/Db+OAQBgYtB/DwgAkJ4IEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP/B3ux/C7Yd1NpAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["7\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGmFJREFUeJzt3XFs1PX9x/FXQXogtsdKaa8nBQuobAI1Q+k6lR+mDaUkDoQtIs7AQiBgMULnNN1UdFvSjS2MaDr8DyQRZCYWoktIoNo2bi0GhDHm7GjTDQi0QJfelSKF0M/vD+KNkyJ+y13fveP5SL4Jvft+em+/+6bPfdvrtynOOScAAAbYEOsBAAC3JgIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBM3GY9wFf19vbq5MmTSktLU0pKivU4AACPnHPq6upSMBjUkCHXv84ZdAE6efKkcnNzrccAANyk48ePa+zYsdd9ftB9Cy4tLc16BABADNzo63ncAlRVVaW77rpLw4cPV0FBgT755JNvtI5vuwFAcrjR1/O4BGjHjh0qLy/XunXr9Omnnyo/P18lJSU6ffp0PF4OAJCIXBzMmDHDlZWVRT6+fPmyCwaDrrKy8oZrQ6GQk8TGxsbGluBbKBT62q/3Mb8Cunjxog4cOKDi4uLIY0OGDFFxcbEaGhqu2b+np0fhcDhqAwAkv5gH6OzZs7p8+bKys7OjHs/OzlZbW9s1+1dWVsrv90c23gEHALcG83fBVVRUKBQKRbbjx49bjwQAGAAx/z2gzMxMDR06VO3t7VGPt7e3KxAIXLO/z+eTz+eL9RgAgEEu5ldAqampmj59umpqaiKP9fb2qqamRoWFhbF+OQBAgorLnRDKy8u1ZMkSPfDAA5oxY4Y2btyo7u5u/eQnP4nHywEAElBcAvTEE0/ozJkzeuWVV9TW1qb7779fu3fvvuaNCQCAW1eKc85ZD3G1cDgsv99vPQYA4CaFQiGlp6df93nzd8EBAG5NBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARMwD9OqrryolJSVqmzx5cqxfBgCQ4G6Lxye97777tHfv3v+9yG1xeRkAQAKLSxluu+02BQKBeHxqAECSiMvPgI4ePapgMKgJEyboqaee0rFjx667b09Pj8LhcNQGAEh+MQ9QQUGBtmzZot27d2vTpk1qbW3VI488oq6urj73r6yslN/vj2y5ubmxHgkAMAilOOdcPF+gs7NT48eP14YNG7Rs2bJrnu/p6VFPT0/k43A4TIQAIAmEQiGlp6df9/m4vztg1KhRuueee9Tc3Nzn8z6fTz6fL95jAAAGmbj/HtC5c+fU0tKinJyceL8UACCBxDxAzz//vOrq6vTvf/9bf/3rX/X4449r6NChevLJJ2P9UgCABBbzb8GdOHFCTz75pDo6OjRmzBg9/PDDamxs1JgxY2L9UgCABBb3NyF4FQ6H5ff7rccAANykG70JgXvBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAm4v4H6XDFwoULPa/5zne+43nNm2++6XnNmTNnPK/BwLvrrrs8ryktLe3Xa33/+9/3vKY/823YsMHzmurqas9rMDhxBQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT3A17gBw6dMjzms2bN3te8/zzz3te89Zbb3leI0mtra2e1/z973/3vKarq8vzmoH0wAMPeF5zzz33eF4zb948z2vGjRvnec1A2rFjh/UIMMQVEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgIsU556yHuFo4HJbf77ceY1AoLi72vOYXv/iF5zV33nmn5zWSlJeX53nN0KFD+/Vag9mFCxc8r/nzn//sec2RI0c8r/noo488r5GkdevWeV5z9913e15z//33e17z3//+1/Ma2AiFQkpPT7/u81wBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmuBkp+m369Ome1yTjzUi7u7s9r/nHP/4Rh0muNXny5H6t++yzzzyvqa+v97xm1qxZntcgcXAzUgDAoESAAAAmPAeovr5ejz32mILBoFJSUrRz586o551zeuWVV5STk6MRI0aouLhYR48ejdW8AIAk4TlA3d3dys/PV1VVVZ/Pr1+/Xq+//rrefPNN7du3TyNHjlRJSUm//mgXACB53eZ1QWlpqUpLS/t8zjmnjRs36qWXXtK8efMkSVu3blV2drZ27typRYsW3dy0AICkEdOfAbW2tqqtrS3qT0n7/X4VFBSooaGhzzU9PT0Kh8NRGwAg+cU0QG1tbZKk7OzsqMezs7Mjz31VZWWl/H5/ZMvNzY3lSACAQcr8XXAVFRUKhUKR7fjx49YjAQAGQEwDFAgEJEnt7e1Rj7e3t0ee+yqfz6f09PSoDQCQ/GIaoLy8PAUCAdXU1EQeC4fD2rdvnwoLC2P5UgCABOf5XXDnzp1Tc3Nz5OPW1lYdOnRIGRkZGjdunNasWaNf//rXuvvuu5WXl6eXX35ZwWBQ8+fPj+XcAIAE5zlA+/fv16OPPhr5uLy8XJK0ZMkSbdmyRS+88IK6u7u1YsUKdXZ26uGHH9bu3bs1fPjw2E0NAEh43IwUSGI//vGP+7Vu69atntc899xznte88cYbntcgcXAzUgDAoESAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATnv8cA4DEsXjx4n6t6+jo8Lymrq6uX6+FWxdXQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACW5GCiSISZMmeV5TVFTUr9eqqanxvObw4cP9ei3curgCAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMcDNSIEHMnTvX85phw4b167W4sSgGAldAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJbkYKJIiSkhLPa3p6evr1Wr///e/7tQ7wgisgAIAJAgQAMOE5QPX19XrssccUDAaVkpKinTt3Rj2/dOlSpaSkRG1z5syJ1bwAgCThOUDd3d3Kz89XVVXVdfeZM2eOTp06Fdm2b99+U0MCAJKP5zchlJaWqrS09Gv38fl8CgQC/R4KAJD84vIzoNraWmVlZenee+/VqlWr1NHRcd19e3p6FA6HozYAQPKLeYDmzJmjrVu3qqamRr/97W9VV1en0tJSXb58uc/9Kysr5ff7I1tubm6sRwIADEIx/z2gRYsWRf49depUTZs2TRMnTlRtba2Kioqu2b+iokLl5eWRj8PhMBECgFtA3N+GPWHCBGVmZqq5ubnP530+n9LT06M2AEDyi3uATpw4oY6ODuXk5MT7pQAACcTzt+DOnTsXdTXT2tqqQ4cOKSMjQxkZGXrttde0cOFCBQIBtbS06IUXXtCkSZP6dRsRAEDy8hyg/fv369FHH418/OXPb5YsWaJNmzbp8OHDeuutt9TZ2algMKjZs2frV7/6lXw+X+ymBgAkvBTnnLMe4mrhcFh+v996DCCu+vOzzgMHDnhe09jY6HmNJD399NP9WgdcLRQKfe25zr3gAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYCLmf5IbwI1lZWV5XjNp0iTPa/p7N2xgIHAFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GakgIEf/ehHntc45zyvOXv2rOc1wEDhCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHNSAEDo0eP9rzm8uXLntdUV1d7XgMMFK6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT3IwUMPCDH/zA85p33nnH85r6+nrPa4CBwhUQAMAEAQIAmPAUoMrKSj344INKS0tTVlaW5s+fr6ampqh9Lly4oLKyMo0ePVp33HGHFi5cqPb29pgODQBIfJ4CVFdXp7KyMjU2NmrPnj26dOmSZs+ere7u7sg+a9eu1fvvv693331XdXV1OnnypBYsWBDzwQEAiS3FOef6u/jMmTPKyspSXV2dZs6cqVAopDFjxmjbtm364Q9/KEn6/PPP9e1vf1sNDQ363ve+d8PPGQ6H5ff7+zsSkBD+9a9/eV6zb98+z2uefvppz2uAWAmFQkpPT7/u8zf1M6BQKCRJysjIkCQdOHBAly5dUnFxcWSfyZMna9y4cWpoaOjzc/T09CgcDkdtAIDk1+8A9fb2as2aNXrooYc0ZcoUSVJbW5tSU1M1atSoqH2zs7PV1tbW5+eprKyU3++PbLm5uf0dCQCQQPodoLKyMh05cqRfv5twtYqKCoVCoch2/Pjxm/p8AIDE0K9fRF29erU++OAD1dfXa+zYsZHHA4GALl68qM7OzqiroPb2dgUCgT4/l8/nk8/n688YAIAE5ukKyDmn1atXq7q6Wh9++KHy8vKinp8+fbqGDRummpqayGNNTU06duyYCgsLYzMxACApeLoCKisr07Zt27Rr1y6lpaVFfq7j9/s1YsQI+f1+LVu2TOXl5crIyFB6erqeffZZFRYWfqN3wAEAbh2eArRp0yZJ0qxZs6Ie37x5s5YuXSpJ+sMf/qAhQ4Zo4cKF6unpUUlJif74xz/GZFgAQPLwFKBv8itDw4cPV1VVlaqqqvo9FJBIJk+e7HlNTk6O5zUdHR2e1wCDGfeCAwCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgIl+/UVUAP/zzDPPeF4zcuRIz2u+/PtbQLLgCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHNSIGbNHr0aM9rzpw543nN5s2bPa8BBjOugAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE9yMFLjKyJEjPa+ZO3eu5zV79+71vKa9vd3zGmAw4woIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBzUiBq8ycOdPzGr/f73nNkSNHPK8Bkg1XQAAAEwQIAGDCU4AqKyv14IMPKi0tTVlZWZo/f76ampqi9pk1a5ZSUlKitpUrV8Z0aABA4vMUoLq6OpWVlamxsVF79uzRpUuXNHv2bHV3d0ftt3z5cp06dSqyrV+/PqZDAwASn6c3IezevTvq4y1btigrK0sHDhyI+uHt7bffrkAgEJsJAQBJ6aZ+BhQKhSRJGRkZUY+//fbbyszM1JQpU1RRUaHz589f93P09PQoHA5HbQCA5Nfvt2H39vZqzZo1euihhzRlypTI44sXL9b48eMVDAZ1+PBhvfjii2pqatJ7773X5+eprKzUa6+91t8xAAAJqt8BKisr05EjR/Txxx9HPb5ixYrIv6dOnaqcnBwVFRWppaVFEydOvObzVFRUqLy8PPJxOBxWbm5uf8cCACSIfgVo9erV+uCDD1RfX6+xY8d+7b4FBQWSpObm5j4D5PP55PP5+jMGACCBeQqQc07PPvusqqurVVtbq7y8vBuuOXTokCQpJyenXwMCAJKTpwCVlZVp27Zt2rVrl9LS0tTW1ibpyq1IRowYoZaWFm3btk1z587V6NGjdfjwYa1du1YzZ87UtGnT4vIfAABITJ4CtGnTJklXftn0aps3b9bSpUuVmpqqvXv3auPGjeru7lZubq4WLlyol156KWYDAwCSg+dvwX2d3Nxc1dXV3dRAAIBbA3fDBq5y8uRJz2t6enriMAmQ/LgZKQDABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABggpuRAlf529/+5nnNiBEj4jAJkPy4AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGBi0AXIOWc9AgAgBm709XzQBairq8t6BABADNzo63mKG2SXHL29vTp58qTS0tKUkpIS9Vw4HFZubq6OHz+u9PR0owntcRyu4DhcwXG4guNwxWA4Ds45dXV1KRgMasiQ61/nDLo/xzBkyBCNHTv2a/dJT0+/pU+wL3EcruA4XMFxuILjcIX1cfD7/TfcZ9B9Cw4AcGsgQAAAEwkVIJ/Pp3Xr1snn81mPYorjcAXH4QqOwxUchysS6TgMujchAABuDQl1BQQASB4ECABgggABAEwQIACAiYQJUFVVle666y4NHz5cBQUF+uSTT6xHGnCvvvqqUlJSorbJkydbjxV39fX1euyxxxQMBpWSkqKdO3dGPe+c0yuvvKKcnByNGDFCxcXFOnr0qM2wcXSj47B06dJrzo85c+bYDBsnlZWVevDBB5WWlqasrCzNnz9fTU1NUftcuHBBZWVlGj16tO644w4tXLhQ7e3tRhPHxzc5DrNmzbrmfFi5cqXRxH1LiADt2LFD5eXlWrdunT799FPl5+erpKREp0+fth5twN133306depUZPv444+tR4q77u5u5efnq6qqqs/n169fr9dff11vvvmm9u3bp5EjR6qkpEQXLlwY4Enj60bHQZLmzJkTdX5s3759ACeMv7q6OpWVlamxsVF79uzRpUuXNHv2bHV3d0f2Wbt2rd5//329++67qqur08mTJ7VgwQLDqWPvmxwHSVq+fHnU+bB+/Xqjia/DJYAZM2a4srKyyMeXL192wWDQVVZWGk418NatW+fy8/OtxzAlyVVXV0c+7u3tdYFAwP3ud7+LPNbZ2el8Pp/bvn27wYQD46vHwTnnlixZ4ubNm2cyj5XTp087Sa6urs45d+V/+2HDhrl33303ss8///lPJ8k1NDRYjRl3Xz0Ozjn3f//3f+65556zG+obGPRXQBcvXtSBAwdUXFwceWzIkCEqLi5WQ0OD4WQ2jh49qmAwqAkTJuipp57SsWPHrEcy1draqra2tqjzw+/3q6Cg4JY8P2pra5WVlaV7771Xq1atUkdHh/VIcRUKhSRJGRkZkqQDBw7o0qVLUefD5MmTNW7cuKQ+H756HL709ttvKzMzU1OmTFFFRYXOnz9vMd51DbqbkX7V2bNndfnyZWVnZ0c9np2drc8//9xoKhsFBQXasmWL7r33Xp06dUqvvfaaHnnkER05ckRpaWnW45loa2uTpD7Pjy+fu1XMmTNHCxYsUF5enlpaWvTzn/9cpaWlamho0NChQ63Hi7ne3l6tWbNGDz30kKZMmSLpyvmQmpqqUaNGRe2bzOdDX8dBkhYvXqzx48crGAzq8OHDevHFF9XU1KT33nvPcNpogz5A+J/S0tLIv6dNm6aCggKNHz9ef/rTn7Rs2TLDyTAYLFq0KPLvqVOnatq0aZo4caJqa2tVVFRkOFl8lJWV6ciRI7fEz0G/zvWOw4oVKyL/njp1qnJyclRUVKSWlhZNnDhxoMfs06D/FlxmZqaGDh16zbtY2tvbFQgEjKYaHEaNGqV77rlHzc3N1qOY+fIc4Py41oQJE5SZmZmU58fq1av1wQcf6KOPPor68y2BQEAXL15UZ2dn1P7Jej5c7zj0paCgQJIG1fkw6AOUmpqq6dOnq6amJvJYb2+vampqVFhYaDiZvXPnzqmlpUU5OTnWo5jJy8tTIBCIOj/C4bD27dt3y58fJ06cUEdHR1KdH845rV69WtXV1frwww+Vl5cX9fz06dM1bNiwqPOhqalJx44dS6rz4UbHoS+HDh2SpMF1Pli/C+KbeOedd5zP53Nbtmxxn332mVuxYoUbNWqUa2trsx5tQP30pz91tbW1rrW11f3lL39xxcXFLjMz050+fdp6tLjq6upyBw8edAcPHnSS3IYNG9zBgwfdf/7zH+ecc7/5zW/cqFGj3K5du9zhw4fdvHnzXF5envviiy+MJ4+trzsOXV1d7vnnn3cNDQ2utbXV7d271333u991d999t7tw4YL16DGzatUq5/f7XW1trTt16lRkO3/+fGSflStXunHjxrkPP/zQ7d+/3xUWFrrCwkLDqWPvRsehubnZ/fKXv3T79+93ra2tbteuXW7ChAlu5syZxpNHS4gAOefcG2+84caNG+dSU1PdjBkzXGNjo/VIA+6JJ55wOTk5LjU11d15553uiSeecM3NzdZjxd1HH33kJF2zLVmyxDl35a3YL7/8ssvOznY+n88VFRW5pqYm26Hj4OuOw/nz593s2bPdmDFj3LBhw9z48ePd8uXLk+7/pPX13y/Jbd68ObLPF1984Z555hn3rW99y91+++3u8ccfd6dOnbIbOg5udByOHTvmZs6c6TIyMpzP53OTJk1yP/vZz1woFLId/Cv4cwwAABOD/mdAAIDkRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY+H9CzHXyKNuqQQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["5\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG7dJREFUeJzt3Xts1fX9x/HXKdADSnu6UtvTIxcLCmxy2WTSNSjT0dDWhcklRpwxuBgMrDVT5iVdpnhZ0onJZlwQl8WAZuKFjEskjgSKLZkWDLcQomsodlJDW7RbzylFCqGf3x/E8/NIC34P5/R9eng+kk/C+X6/737ffvzSF99zvv3U55xzAgBggGVYNwAAuDIRQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADAx1LqBb+vt7dXx48eVlZUln89n3Q4AwCPnnLq6uhQKhZSR0f99TsoF0PHjxzVmzBjrNgAAl6mlpUWjR4/ud3/KvQWXlZVl3QIAIAEu9f08aQG0evVqXXfddRo+fLiKi4v10Ucffac63nYDgPRwqe/nSQmgt99+WytWrNDKlSu1f/9+TZ8+XWVlZTpx4kQyTgcAGIxcEsycOdNVVlZGX587d86FQiFXU1NzydpwOOwkMRgMBmOQj3A4fNHv9wm/Azpz5oz27dun0tLS6LaMjAyVlpaqoaHhguN7enoUiURiBgAg/SU8gL788kudO3dOBQUFMdsLCgrU1tZ2wfE1NTUKBALRwRNwAHBlMH8Krrq6WuFwODpaWlqsWwIADICE/xxQXl6ehgwZovb29pjt7e3tCgaDFxzv9/vl9/sT3QYAIMUl/A4oMzNTM2bMUG1tbXRbb2+vamtrVVJSkujTAQAGqaSshLBixQotWbJEP/7xjzVz5ky9+OKL6u7u1q9+9atknA4AMAglJYDuvvtuffHFF3rqqafU1tamH/7wh9q2bdsFDyYAAK5cPuecs27imyKRiAKBgHUbAIDLFA6HlZ2d3e9+86fgAABXJgIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmhlo3ACRDVlZWXHXLly/3XFNTUxPXuby65557PNf84x//iOtc11xzjeea//3vf55rRo4c6bnmzJkznmu6uro81yD5uAMCAJgggAAAJhIeQE8//bR8Pl/MmDx5cqJPAwAY5JLyGdCNN96oHTt2/P9JhvJREwAgVlKSYejQoQoGg8n40gCANJGUz4COHDmiUCik8ePH695779WxY8f6Pbanp0eRSCRmAADSX8IDqLi4WOvWrdO2bdu0Zs0aNTc369Zbb+33MciamhoFAoHoGDNmTKJbAgCkoIQHUEVFhe666y5NmzZNZWVleu+999TZ2al33nmnz+Orq6sVDoejo6WlJdEtAQBSUNKfDsjJydHEiRPV1NTU536/3y+/35/sNgAAKSbpPwd08uRJHT16VIWFhck+FQBgEEl4AD366KOqr6/Xf/7zH3344YdasGCBhgwZEtcyIgCA9JXwt+A+//xz3XPPPero6NA111yjW265Rbt3745rbSkAQPryOeecdRPfFIlEFAgErNtACsnPz/dc8/zzz8d1rvvuuy+uuoHwySefDEiNJC1cuNBzzc6dOz3X3HTTTZ5rWltbPdccOHDAc40knThxwnPNyy+/7Lnm008/9VwzGITDYWVnZ/e7n7XgAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUqS8hoYGzzUzZ86M61wp9tfhsvl8vrjqmIfz4pmH/fv3e66ZM2eO55quri7PNQONxUgBACmJAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGBiqHUDuLI88cQTnmt+9KMfJaETIDkKCws91+Tk5HiuGQyrYV8Kd0AAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBgp4nbdddd5rqmqqvJcM3QolykuT319fVx1//znPz3X/O1vf/Nc09nZ6bkmHXAHBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwASrPCJus2bN8lyTmZnpucbn83muyciI799Wvb29cdUNhFOnTnmuOXnyZFzneu+99zzXfPLJJ3Gdy6s1a9Z4runu7k5CJ7hc3AEBAEwQQAAAE54DaNeuXZo3b55CoZB8Pp82b94cs985p6eeekqFhYUaMWKESktLdeTIkUT1CwBIE54DqLu7W9OnT9fq1av73L9q1Sq99NJLeuWVV7Rnzx5dffXVKisr0+nTpy+7WQBA+vD8EEJFRYUqKir63Oec04svvqjf//73uvPOOyVJr7/+ugoKCrR582YtXrz48roFAKSNhH4G1NzcrLa2NpWWlka3BQIBFRcXq6Ghoc+anp4eRSKRmAEASH8JDaC2tjZJUkFBQcz2goKC6L5vq6mpUSAQiI4xY8YksiUAQIoyfwquurpa4XA4OlpaWqxbAgAMgIQGUDAYlCS1t7fHbG9vb4/u+za/36/s7OyYAQBIfwkNoKKiIgWDQdXW1ka3RSIR7dmzRyUlJYk8FQBgkPP8FNzJkyfV1NQUfd3c3KyDBw8qNzdXY8eO1cMPP6w//OEPuuGGG1RUVKQnn3xSoVBI8+fPT2TfAIBBznMA7d27V7fffnv09YoVKyRJS5Ys0bp16/T444+ru7tbDz74oDo7O3XLLbdo27ZtGj58eOK6BgAMej7nnLNu4psikYgCgYB1G/gO7r33Xs81r732WhI6uVA8C5hK8S34uX37ds81Gzdu9Fzz8ccfe67Zv3+/5xogUcLh8EU/1zd/Cg4AcGUigAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjw/OsYgK9dddVV1i0kXFtbm+eapUuXeq7p6OjwXAOkG+6AAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUsStoaHBc01nZ6fnmpycHM818SoqKvJc8+ijj3qu2bp1q+eaDz74wHMNkMq4AwIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGDC55xz1k18UyQSUSAQsG4DSXLgwAHPNVOnTvVc4/P5PNdI0kD9dfjqq68817zwwguea5599lnPNUCihMNhZWdn97ufOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmWIwUA+rGG2/0XLNjxw7PNcFg0HONJPX29sZVl6pOnToVV90vfvELzzUffvih55qenh7PNRg8WIwUAJCSCCAAgAnPAbRr1y7NmzdPoVBIPp9Pmzdvjtl///33y+fzxYzy8vJE9QsASBOeA6i7u1vTp0/X6tWr+z2mvLxcra2t0fHmm29eVpMAgPQz1GtBRUWFKioqLnqM3++P+0NgAMCVISmfAdXV1Sk/P1+TJk3S8uXL1dHR0e+xPT09ikQiMQMAkP4SHkDl5eV6/fXXVVtbq+eff1719fWqqKjQuXPn+jy+pqZGgUAgOsaMGZPolgAAKcjzW3CXsnjx4uifp06dqmnTpmnChAmqq6vTnDlzLji+urpaK1asiL6ORCKEEABcAZL+GPb48eOVl5enpqamPvf7/X5lZ2fHDABA+kt6AH3++efq6OhQYWFhsk8FABhEPL8Fd/LkyZi7mebmZh08eFC5ubnKzc3VM888o0WLFikYDOro0aN6/PHHdf3116usrCyhjQMABjfPAbR3717dfvvt0ddff36zZMkSrVmzRocOHdJrr72mzs5OhUIhzZ07V88995z8fn/iugYADHosRoqUt2TJEs81zz//fFznysvLi6suVfl8vrjq4vm2cN9993mu4YfU0xuLkQIAUhIBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwASrYSMtFRcXx1X3wQcfJLgTWwO5GvZ///tfzzVVVVWea9555x3PNbDBatgAgJREAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABIuRIi0NGzYsrrpJkyZ5rrnrrrs811RWVnquycnJ8VwzkIuRxuPIkSOea2655RbPNR0dHZ5rcPlYjBQAkJIIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYGGrdAJAMZ8+ejavu8OHDnmvKy8s914wcOdJzTTqK5/9TT09PEjqBBe6AAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUigUCsVV9+KLL3qu6e7u9lzzxRdfeK7x+Xyea6T4Fhb9wQ9+ENe5BkJGRnz/xuzt7U1wJ32LZ2FR51wSOoEF7oAAACYIIACACU8BVFNTo5tvvllZWVnKz8/X/Pnz1djYGHPM6dOnVVlZqVGjRmnkyJFatGiR2tvbE9o0AGDw8xRA9fX1qqys1O7du7V9+3adPXtWc+fOjXlf/5FHHtG7776rDRs2qL6+XsePH9fChQsT3jgAYHDz9BDCtm3bYl6vW7dO+fn52rdvn2bPnq1wOKxXX31V69ev189+9jNJ0tq1a/X9739fu3fv1k9+8pPEdQ4AGNQu6zOgcDgsScrNzZUk7du3T2fPnlVpaWn0mMmTJ2vs2LFqaGjo82v09PQoEonEDABA+os7gHp7e/Xwww9r1qxZmjJliiSpra1NmZmZysnJiTm2oKBAbW1tfX6dmpoaBQKB6BgzZky8LQEABpG4A6iyslKHDx/WW2+9dVkNVFdXKxwOR0dLS8tlfT0AwOAQ1w+iVlVVaevWrdq1a5dGjx4d3R4MBnXmzBl1dnbG3AW1t7crGAz2+bX8fr/8fn88bQAABjFPd0DOOVVVVWnTpk3auXOnioqKYvbPmDFDw4YNU21tbXRbY2Ojjh07ppKSksR0DABIC57ugCorK7V+/Xpt2bJFWVlZ0c91AoGARowYoUAgoAceeEArVqxQbm6usrOz9dBDD6mkpIQn4AAAMTwF0Jo1ayRJt912W8z2tWvX6v7775ck/fnPf1ZGRoYWLVqknp4elZWV6eWXX05IswCA9OFzKbayXyQSUSAQsG7jivLNx+a9+PbPhaWSeBcjTbG/DpdtIOfh008/9Vzz2GOPea7ZsmWL5xrYCIfDys7O7nc/a8EBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEzE9RtRkV6+/r1OXm3atMlzzYIFC+I6FwbWyZMnPdcsXrzYc83+/fs91yB9cAcEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADAhM8556yb+KZIJKJAIGDdBr6DiRMneq7ZtWuX55q8vDzPNT6fz3ONJKXYX4fL9sYbb8RVt3HjRs81W7ZsietcSF/hcFjZ2dn97ucOCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgImh1g1g8Prss88810ybNs1zzauvvuq55o477vBcM5A+/vhjzzXPPfec55oNGzZ4rgEGCndAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATPicc866iW+KRCIKBALWbQAALlM4HFZ2dna/+7kDAgCYIIAAACY8BVBNTY1uvvlmZWVlKT8/X/Pnz1djY2PMMbfddpt8Pl/MWLZsWUKbBgAMfp4CqL6+XpWVldq9e7e2b9+us2fPau7cueru7o45bunSpWptbY2OVatWJbRpAMDg5+k3om7bti3m9bp165Sfn699+/Zp9uzZ0e1XXXWVgsFgYjoEAKSly/oMKBwOS5Jyc3Njtr/xxhvKy8vTlClTVF1drVOnTvX7NXp6ehSJRGIGAOAK4OJ07tw59/Of/9zNmjUrZvtf//pXt23bNnfo0CH397//3V177bVuwYIF/X6dlStXOkkMBoPBSLMRDocvmiNxB9CyZcvcuHHjXEtLy0WPq62tdZJcU1NTn/tPnz7twuFwdLS0tJhPGoPBYDAuf1wqgDx9BvS1qqoqbd26Vbt27dLo0aMvemxxcbEkqampSRMmTLhgv9/vl9/vj6cNAMAg5imAnHN66KGHtGnTJtXV1amoqOiSNQcPHpQkFRYWxtUgACA9eQqgyspKrV+/Xlu2bFFWVpba2tokSYFAQCNGjNDRo0e1fv163XHHHRo1apQOHTqkRx55RLNnz9a0adOS8h8AABikvHzuo37e51u7dq1zzrljx4652bNnu9zcXOf3+93111/vHnvssUu+D/hN4XDY/H1LBoPBYFz+uNT3fhYjBQAkBYuRAgBSEgEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADARMoFkHPOugUAQAJc6vt5ygVQV1eXdQsAgAS41Pdzn0uxW47e3l4dP35cWVlZ8vl8MfsikYjGjBmjlpYWZWdnG3Voj3k4j3k4j3k4j3k4LxXmwTmnrq4uhUIhZWT0f58zdAB7+k4yMjI0evToix6TnZ19RV9gX2MezmMezmMezmMezrOeh0AgcMljUu4tOADAlYEAAgCYGFQB5Pf7tXLlSvn9futWTDEP5zEP5zEP5zEP5w2meUi5hxAAAFeGQXUHBABIHwQQAMAEAQQAMEEAAQBMDJoAWr16ta677joNHz5cxcXF+uijj6xbGnBPP/20fD5fzJg8ebJ1W0m3a9cuzZs3T6FQSD6fT5s3b47Z75zTU089pcLCQo0YMUKlpaU6cuSITbNJdKl5uP/++y+4PsrLy22aTZKamhrdfPPNysrKUn5+vubPn6/GxsaYY06fPq3KykqNGjVKI0eO1KJFi9Te3m7UcXJ8l3m47bbbLrgeli1bZtRx3wZFAL399ttasWKFVq5cqf3792v69OkqKyvTiRMnrFsbcDfeeKNaW1uj41//+pd1S0nX3d2t6dOna/Xq1X3uX7VqlV566SW98sor2rNnj66++mqVlZXp9OnTA9xpcl1qHiSpvLw85vp48803B7DD5Kuvr1dlZaV2796t7du36+zZs5o7d666u7ujxzzyyCN69913tWHDBtXX1+v48eNauHChYdeJ913mQZKWLl0acz2sWrXKqON+uEFg5syZrrKyMvr63LlzLhQKuZqaGsOuBt7KlSvd9OnTrdswJclt2rQp+rq3t9cFg0H3wgsvRLd1dnY6v9/v3nzzTYMOB8a358E555YsWeLuvPNOk36snDhxwkly9fX1zrnz/++HDRvmNmzYED3mk08+cZJcQ0ODVZtJ9+15cM65n/70p+43v/mNXVPfQcrfAZ05c0b79u1TaWlpdFtGRoZKS0vV0NBg2JmNI0eOKBQKafz48br33nt17Ngx65ZMNTc3q62tLeb6CAQCKi4uviKvj7q6OuXn52vSpElavny5Ojo6rFtKqnA4LEnKzc2VJO3bt09nz56NuR4mT56ssWPHpvX18O15+Nobb7yhvLw8TZkyRdXV1Tp16pRFe/1KucVIv+3LL7/UuXPnVFBQELO9oKBA//73v426slFcXKx169Zp0qRJam1t1TPPPKNbb71Vhw8fVlZWlnV7Jtra2iSpz+vj631XivLyci1cuFBFRUU6evSofve736miokINDQ0aMmSIdXsJ19vbq4cfflizZs3SlClTJJ2/HjIzM5WTkxNzbDpfD33NgyT98pe/1Lhx4xQKhXTo0CE98cQTamxs1MaNGw27jZXyAYT/V1FREf3ztGnTVFxcrHHjxumdd97RAw88YNgZUsHixYujf546daqmTZumCRMmqK6uTnPmzDHsLDkqKyt1+PDhK+Jz0Ivpbx4efPDB6J+nTp2qwsJCzZkzR0ePHtWECRMGus0+pfxbcHl5eRoyZMgFT7G0t7crGAwadZUacnJyNHHiRDU1NVm3Yubra4Dr40Ljx49XXl5eWl4fVVVV2rp1q95///2YX98SDAZ15swZdXZ2xhyfrtdDf/PQl+LiYklKqesh5QMoMzNTM2bMUG1tbXRbb2+vamtrVVJSYtiZvZMnT+ro0aMqLCy0bsVMUVGRgsFgzPURiUS0Z8+eK/76+Pzzz9XR0ZFW14dzTlVVVdq0aZN27typoqKimP0zZszQsGHDYq6HxsZGHTt2LK2uh0vNQ18OHjwoSal1PVg/BfFdvPXWW87v97t169a5jz/+2D344IMuJyfHtbW1Wbc2oH7729+6uro619zc7D744ANXWlrq8vLy3IkTJ6xbS6quri534MABd+DAASfJ/elPf3IHDhxwn332mXPOuT/+8Y8uJyfHbdmyxR06dMjdeeedrqioyH311VfGnSfWxeahq6vLPfroo66hocE1Nze7HTt2uJtuusndcMMN7vTp09atJ8zy5ctdIBBwdXV1rrW1NTpOnToVPWbZsmVu7NixbufOnW7v3r2upKTElZSUGHadeJeah6amJvfss8+6vXv3uubmZrdlyxY3fvx4N3v2bOPOYw2KAHLOub/85S9u7NixLjMz082cOdPt3r3buqUBd/fdd7vCwkKXmZnprr32Wnf33Xe7pqYm67aS7v3333eSLhhLlixxzp1/FPvJJ590BQUFzu/3uzlz5rjGxkbbppPgYvNw6tQpN3fuXHfNNde4YcOGuXHjxrmlS5em3T/S+vrvl+TWrl0bPearr75yv/71r933vvc9d9VVV7kFCxa41tZWu6aT4FLzcOzYMTd79myXm5vr/H6/u/76691jjz3mwuGwbePfwq9jAACYSPnPgAAA6YkAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAICJ/wPrKBL2HrJu8gAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["# вывод размерностей\n","print('Shape of X train:', X_train.shape)\n","print('Shape of y train:', y_train.shape)\n","\n","# вывод изображения\n","print(y_train[0])\n","plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))\n","plt.show()\n","print(y_train[1])\n","plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))\n","plt.show()\n","print(y_train[2])\n","plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))\n","plt.show()\n","print(y_train[3])\n","plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))\n","plt.show()"]},{"cell_type":"code","execution_count":7,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":172,"status":"ok","timestamp":1760536452557,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"},"user_tz":-180},"id":"xeJhwRSJuRjt","outputId":"1aaebc4f-d010-4120-973e-1f2a378f13e5"},"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (60000, 784)\n"]}],"source":["# развернем каждое изображение 28*28 в вектор 784\n","num_pixels = X_train.shape[1] * X_train.shape[2]\n","X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n","X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n","print('Shape of transformed X train:', X_train.shape)"]},{"cell_type":"code","execution_count":8,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1760536453358,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"},"user_tz":-180},"id":"d0xJ4pqvvf10","outputId":"7c264b78-f193-40e4-c1fa-52c7db3480f8"},"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed y train: (60000, 10)\n"]}],"source":["# переведем метки в one-hot\n","y_train = to_categorical(y_train)\n","y_test = to_categorical(y_test)\n","print('Shape of transformed y train:', y_train.shape)\n","num_classes = y_train.shape[1]"]},{"cell_type":"code","source":["model_p = Sequential()\n","model_p.add(Dense(units=num_classes,input_dim=num_pixels, activation='softmax'))\n","model_p.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])"],"metadata":{"id":"sl7aZUOCaGlU","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1760536456637,"user_tz":-180,"elapsed":2410,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"2d46689b-b9db-451b-a5c3-135ee5dfb88a"},"execution_count":9,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]}]},{"cell_type":"code","execution_count":16,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"4HMAu6tW_wec","executionInfo":{"status":"ok","timestamp":1760536702724,"user_tz":-180,"elapsed":93709,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"bfc7554f-c6d9-4cea-9ea1-683236a3e0fa"},"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential\"\u001b[0m\n"],"text/html":["
Model: \"sequential\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m7,850\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense (Dense)                   │ (None, 10)             │         7,850 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n"],"text/html":["
 Total params: 7,850 (30.66 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n"],"text/html":["
 Trainable params: 7,850 (30.66 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["None\n","Epoch 1/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 16ms/step - accuracy: 0.2607 - loss: 2.1410 - val_accuracy: 0.6642 - val_loss: 1.5642\n","Epoch 2/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6983 - loss: 1.4582 - val_accuracy: 0.7710 - val_loss: 1.1843\n","Epoch 3/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7812 - loss: 1.1383 - val_accuracy: 0.8133 - val_loss: 0.9831\n","Epoch 4/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8073 - loss: 0.9630 - val_accuracy: 0.8300 - val_loss: 0.8611\n","Epoch 5/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8275 - loss: 0.8456 - val_accuracy: 0.8370 - val_loss: 0.7797\n","Epoch 6/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8298 - loss: 0.7795 - val_accuracy: 0.8457 - val_loss: 0.7211\n","Epoch 7/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8405 - loss: 0.7204 - val_accuracy: 0.8505 - val_loss: 0.6767\n","Epoch 8/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8490 - loss: 0.6771 - val_accuracy: 0.8545 - val_loss: 0.6419\n","Epoch 9/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8509 - loss: 0.6467 - val_accuracy: 0.8580 - val_loss: 0.6138\n","Epoch 10/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8553 - loss: 0.6186 - val_accuracy: 0.8610 - val_loss: 0.5906\n","Epoch 11/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8588 - loss: 0.5957 - val_accuracy: 0.8628 - val_loss: 0.5709\n","Epoch 12/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8601 - loss: 0.5780 - val_accuracy: 0.8658 - val_loss: 0.5541\n","Epoch 13/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8618 - loss: 0.5620 - val_accuracy: 0.8695 - val_loss: 0.5394\n","Epoch 14/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8626 - loss: 0.5477 - val_accuracy: 0.8727 - val_loss: 0.5265\n","Epoch 15/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8651 - loss: 0.5357 - val_accuracy: 0.8753 - val_loss: 0.5150\n","Epoch 16/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8684 - loss: 0.5241 - val_accuracy: 0.8772 - val_loss: 0.5048\n","Epoch 17/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8692 - loss: 0.5132 - val_accuracy: 0.8793 - val_loss: 0.4955\n","Epoch 18/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8693 - loss: 0.5087 - val_accuracy: 0.8803 - val_loss: 0.4872\n","Epoch 19/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8745 - loss: 0.4936 - val_accuracy: 0.8810 - val_loss: 0.4798\n","Epoch 20/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8720 - loss: 0.4923 - val_accuracy: 0.8822 - val_loss: 0.4728\n","Epoch 21/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8740 - loss: 0.4866 - val_accuracy: 0.8840 - val_loss: 0.4662\n","Epoch 22/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8763 - loss: 0.4748 - val_accuracy: 0.8852 - val_loss: 0.4603\n","Epoch 23/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8775 - loss: 0.4686 - val_accuracy: 0.8863 - val_loss: 0.4547\n","Epoch 24/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8786 - loss: 0.4628 - val_accuracy: 0.8880 - val_loss: 0.4496\n","Epoch 25/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8774 - loss: 0.4656 - val_accuracy: 0.8882 - val_loss: 0.4448\n","Epoch 26/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8803 - loss: 0.4571 - val_accuracy: 0.8892 - val_loss: 0.4404\n","Epoch 27/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8795 - loss: 0.4567 - val_accuracy: 0.8897 - val_loss: 0.4362\n","Epoch 28/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8837 - loss: 0.4405 - val_accuracy: 0.8910 - val_loss: 0.4323\n","Epoch 29/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8826 - loss: 0.4391 - val_accuracy: 0.8913 - val_loss: 0.4285\n","Epoch 30/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8816 - loss: 0.4422 - val_accuracy: 0.8930 - val_loss: 0.4248\n","Epoch 31/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8849 - loss: 0.4314 - val_accuracy: 0.8935 - val_loss: 0.4216\n","Epoch 32/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8844 - loss: 0.4336 - val_accuracy: 0.8933 - val_loss: 0.4184\n","Epoch 33/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8858 - loss: 0.4305 - val_accuracy: 0.8947 - val_loss: 0.4155\n","Epoch 34/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8867 - loss: 0.4207 - val_accuracy: 0.8947 - val_loss: 0.4126\n","Epoch 35/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8888 - loss: 0.4146 - val_accuracy: 0.8965 - val_loss: 0.4098\n","Epoch 36/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8881 - loss: 0.4175 - val_accuracy: 0.8975 - val_loss: 0.4074\n","Epoch 37/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8897 - loss: 0.4126 - val_accuracy: 0.8982 - val_loss: 0.4048\n","Epoch 38/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8906 - loss: 0.4071 - val_accuracy: 0.8988 - val_loss: 0.4023\n","Epoch 39/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8899 - loss: 0.4130 - val_accuracy: 0.8992 - val_loss: 0.4000\n","Epoch 40/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8870 - loss: 0.4170 - val_accuracy: 0.9000 - val_loss: 0.3978\n","Epoch 41/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8895 - loss: 0.4055 - val_accuracy: 0.9007 - val_loss: 0.3956\n","Epoch 42/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8895 - loss: 0.4080 - val_accuracy: 0.9005 - val_loss: 0.3937\n","Epoch 43/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8923 - loss: 0.3990 - val_accuracy: 0.9005 - val_loss: 0.3918\n","Epoch 44/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8908 - loss: 0.4029 - val_accuracy: 0.9013 - val_loss: 0.3897\n","Epoch 45/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8911 - loss: 0.4020 - val_accuracy: 0.9010 - val_loss: 0.3879\n","Epoch 46/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8911 - loss: 0.4015 - val_accuracy: 0.9018 - val_loss: 0.3862\n","Epoch 47/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8929 - loss: 0.3973 - val_accuracy: 0.9015 - val_loss: 0.3845\n","Epoch 48/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8940 - loss: 0.3908 - val_accuracy: 0.9020 - val_loss: 0.3829\n","Epoch 49/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8937 - loss: 0.3913 - val_accuracy: 0.9032 - val_loss: 0.3813\n","Epoch 50/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8931 - loss: 0.3913 - val_accuracy: 0.9027 - val_loss: 0.3797\n","Epoch 51/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8922 - loss: 0.3939 - val_accuracy: 0.9038 - val_loss: 0.3782\n","Epoch 52/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8923 - loss: 0.3913 - val_accuracy: 0.9038 - val_loss: 0.3767\n","Epoch 53/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8946 - loss: 0.3887 - val_accuracy: 0.9038 - val_loss: 0.3753\n","Epoch 54/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8951 - loss: 0.3847 - val_accuracy: 0.9040 - val_loss: 0.3741\n","Epoch 55/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8941 - loss: 0.3901 - val_accuracy: 0.9043 - val_loss: 0.3727\n","Epoch 56/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8960 - loss: 0.3813 - val_accuracy: 0.9045 - val_loss: 0.3715\n","Epoch 57/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8948 - loss: 0.3804 - val_accuracy: 0.9048 - val_loss: 0.3701\n","Epoch 58/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8947 - loss: 0.3826 - val_accuracy: 0.9052 - val_loss: 0.3690\n","Epoch 59/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8959 - loss: 0.3794 - val_accuracy: 0.9060 - val_loss: 0.3677\n","Epoch 60/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8988 - loss: 0.3707 - val_accuracy: 0.9068 - val_loss: 0.3666\n","Epoch 61/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8973 - loss: 0.3772 - val_accuracy: 0.9070 - val_loss: 0.3655\n","Epoch 62/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8955 - loss: 0.3782 - val_accuracy: 0.9073 - val_loss: 0.3644\n","Epoch 63/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8974 - loss: 0.3715 - val_accuracy: 0.9068 - val_loss: 0.3633\n","Epoch 64/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8989 - loss: 0.3675 - val_accuracy: 0.9070 - val_loss: 0.3622\n","Epoch 65/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8965 - loss: 0.3767 - val_accuracy: 0.9072 - val_loss: 0.3612\n","Epoch 66/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8985 - loss: 0.3673 - val_accuracy: 0.9078 - val_loss: 0.3602\n","Epoch 67/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8956 - loss: 0.3755 - val_accuracy: 0.9078 - val_loss: 0.3593\n","Epoch 68/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8990 - loss: 0.3661 - val_accuracy: 0.9078 - val_loss: 0.3584\n","Epoch 69/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8986 - loss: 0.3683 - val_accuracy: 0.9078 - val_loss: 0.3575\n","Epoch 70/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9009 - loss: 0.3644 - val_accuracy: 0.9083 - val_loss: 0.3565\n","Epoch 71/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8972 - loss: 0.3669 - val_accuracy: 0.9083 - val_loss: 0.3558\n","Epoch 72/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9009 - loss: 0.3568 - val_accuracy: 0.9083 - val_loss: 0.3547\n","Epoch 73/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9000 - loss: 0.3639 - val_accuracy: 0.9085 - val_loss: 0.3540\n","Epoch 74/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9002 - loss: 0.3631 - val_accuracy: 0.9092 - val_loss: 0.3531\n","Epoch 75/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9009 - loss: 0.3619 - val_accuracy: 0.9093 - val_loss: 0.3523\n","Epoch 76/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9007 - loss: 0.3575 - val_accuracy: 0.9092 - val_loss: 0.3516\n","Epoch 77/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9004 - loss: 0.3583 - val_accuracy: 0.9098 - val_loss: 0.3508\n","Epoch 78/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9013 - loss: 0.3587 - val_accuracy: 0.9098 - val_loss: 0.3500\n","Epoch 79/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9018 - loss: 0.3568 - val_accuracy: 0.9098 - val_loss: 0.3494\n","Epoch 80/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9010 - loss: 0.3595 - val_accuracy: 0.9098 - val_loss: 0.3485\n","Epoch 81/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8988 - loss: 0.3638 - val_accuracy: 0.9100 - val_loss: 0.3478\n","Epoch 82/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9036 - loss: 0.3485 - val_accuracy: 0.9098 - val_loss: 0.3471\n","Epoch 83/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8987 - loss: 0.3625 - val_accuracy: 0.9103 - val_loss: 0.3464\n","Epoch 84/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9008 - loss: 0.3580 - val_accuracy: 0.9108 - val_loss: 0.3457\n","Epoch 85/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9016 - loss: 0.3482 - val_accuracy: 0.9107 - val_loss: 0.3451\n","Epoch 86/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9001 - loss: 0.3557 - val_accuracy: 0.9108 - val_loss: 0.3445\n","Epoch 87/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9009 - loss: 0.3531 - val_accuracy: 0.9112 - val_loss: 0.3438\n","Epoch 88/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9027 - loss: 0.3500 - val_accuracy: 0.9113 - val_loss: 0.3432\n","Epoch 89/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9026 - loss: 0.3548 - val_accuracy: 0.9115 - val_loss: 0.3426\n","Epoch 90/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9011 - loss: 0.3550 - val_accuracy: 0.9117 - val_loss: 0.3421\n","Epoch 91/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9030 - loss: 0.3480 - val_accuracy: 0.9118 - val_loss: 0.3414\n","Epoch 92/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9038 - loss: 0.3480 - val_accuracy: 0.9118 - val_loss: 0.3408\n","Epoch 93/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9054 - loss: 0.3420 - val_accuracy: 0.9122 - val_loss: 0.3402\n","Epoch 94/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9032 - loss: 0.3470 - val_accuracy: 0.9120 - val_loss: 0.3397\n","Epoch 95/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9037 - loss: 0.3433 - val_accuracy: 0.9125 - val_loss: 0.3392\n","Epoch 96/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9014 - loss: 0.3516 - val_accuracy: 0.9127 - val_loss: 0.3387\n","Epoch 97/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9050 - loss: 0.3374 - val_accuracy: 0.9123 - val_loss: 0.3381\n","Epoch 98/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9033 - loss: 0.3464 - val_accuracy: 0.9123 - val_loss: 0.3375\n","Epoch 99/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9050 - loss: 0.3400 - val_accuracy: 0.9123 - val_loss: 0.3369\n","Epoch 100/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9045 - loss: 0.3444 - val_accuracy: 0.9130 - val_loss: 0.3365\n","Epoch 101/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9049 - loss: 0.3404 - val_accuracy: 0.9130 - val_loss: 0.3360\n","Epoch 102/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9032 - loss: 0.3453 - val_accuracy: 0.9133 - val_loss: 0.3356\n","Epoch 103/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9040 - loss: 0.3418 - val_accuracy: 0.9133 - val_loss: 0.3349\n","Epoch 104/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9047 - loss: 0.3435 - val_accuracy: 0.9133 - val_loss: 0.3345\n","Epoch 105/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9033 - loss: 0.3428 - val_accuracy: 0.9133 - val_loss: 0.3340\n","Epoch 106/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9031 - loss: 0.3458 - val_accuracy: 0.9138 - val_loss: 0.3336\n","Epoch 107/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9028 - loss: 0.3407 - val_accuracy: 0.9137 - val_loss: 0.3332\n","Epoch 108/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9043 - loss: 0.3412 - val_accuracy: 0.9142 - val_loss: 0.3327\n","Epoch 109/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9049 - loss: 0.3357 - val_accuracy: 0.9138 - val_loss: 0.3322\n","Epoch 110/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9053 - loss: 0.3365 - val_accuracy: 0.9140 - val_loss: 0.3317\n","Epoch 111/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9061 - loss: 0.3368 - val_accuracy: 0.9142 - val_loss: 0.3313\n","Epoch 112/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9058 - loss: 0.3377 - val_accuracy: 0.9140 - val_loss: 0.3309\n","Epoch 113/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9067 - loss: 0.3334 - val_accuracy: 0.9143 - val_loss: 0.3305\n","Epoch 114/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9054 - loss: 0.3384 - val_accuracy: 0.9153 - val_loss: 0.3301\n","Epoch 115/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9053 - loss: 0.3350 - val_accuracy: 0.9148 - val_loss: 0.3297\n","Epoch 116/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9045 - loss: 0.3363 - val_accuracy: 0.9152 - val_loss: 0.3294\n","Epoch 117/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9057 - loss: 0.3350 - val_accuracy: 0.9152 - val_loss: 0.3289\n","Epoch 118/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9047 - loss: 0.3422 - val_accuracy: 0.9155 - val_loss: 0.3285\n","Epoch 119/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9048 - loss: 0.3390 - val_accuracy: 0.9153 - val_loss: 0.3282\n","Epoch 120/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9051 - loss: 0.3379 - val_accuracy: 0.9158 - val_loss: 0.3277\n","Epoch 121/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9083 - loss: 0.3304 - val_accuracy: 0.9150 - val_loss: 0.3274\n","Epoch 122/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9076 - loss: 0.3304 - val_accuracy: 0.9157 - val_loss: 0.3270\n","Epoch 123/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9083 - loss: 0.3270 - val_accuracy: 0.9162 - val_loss: 0.3267\n","Epoch 124/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9038 - loss: 0.3357 - val_accuracy: 0.9158 - val_loss: 0.3262\n","Epoch 125/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9075 - loss: 0.3314 - val_accuracy: 0.9163 - val_loss: 0.3258\n","Epoch 126/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9066 - loss: 0.3286 - val_accuracy: 0.9163 - val_loss: 0.3255\n","Epoch 127/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9060 - loss: 0.3348 - val_accuracy: 0.9163 - val_loss: 0.3252\n","Epoch 128/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9061 - loss: 0.3317 - val_accuracy: 0.9160 - val_loss: 0.3249\n","Epoch 129/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9079 - loss: 0.3297 - val_accuracy: 0.9167 - val_loss: 0.3246\n","Epoch 130/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9045 - loss: 0.3353 - val_accuracy: 0.9162 - val_loss: 0.3242\n","Epoch 131/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9060 - loss: 0.3310 - val_accuracy: 0.9167 - val_loss: 0.3238\n","Epoch 132/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9060 - loss: 0.3307 - val_accuracy: 0.9163 - val_loss: 0.3235\n","Epoch 133/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9103 - loss: 0.3242 - val_accuracy: 0.9163 - val_loss: 0.3233\n","Epoch 134/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9069 - loss: 0.3309 - val_accuracy: 0.9167 - val_loss: 0.3229\n","Epoch 135/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9071 - loss: 0.3278 - val_accuracy: 0.9165 - val_loss: 0.3226\n","Epoch 136/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9078 - loss: 0.3253 - val_accuracy: 0.9170 - val_loss: 0.3222\n","Epoch 137/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9073 - loss: 0.3282 - val_accuracy: 0.9168 - val_loss: 0.3221\n","Epoch 138/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9070 - loss: 0.3277 - val_accuracy: 0.9170 - val_loss: 0.3217\n","Epoch 139/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9063 - loss: 0.3306 - val_accuracy: 0.9167 - val_loss: 0.3214\n","Epoch 140/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9065 - loss: 0.3279 - val_accuracy: 0.9172 - val_loss: 0.3211\n","Epoch 141/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9068 - loss: 0.3320 - val_accuracy: 0.9175 - val_loss: 0.3209\n","Epoch 142/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9079 - loss: 0.3250 - val_accuracy: 0.9172 - val_loss: 0.3205\n","Epoch 143/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9073 - loss: 0.3304 - val_accuracy: 0.9170 - val_loss: 0.3202\n","Epoch 144/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9071 - loss: 0.3289 - val_accuracy: 0.9177 - val_loss: 0.3200\n","Epoch 145/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9069 - loss: 0.3281 - val_accuracy: 0.9172 - val_loss: 0.3197\n","Epoch 146/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9075 - loss: 0.3274 - val_accuracy: 0.9170 - val_loss: 0.3194\n","Epoch 147/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9078 - loss: 0.3272 - val_accuracy: 0.9173 - val_loss: 0.3191\n","Epoch 148/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 13ms/step - accuracy: 0.9093 - loss: 0.3241 - val_accuracy: 0.9170 - val_loss: 0.3189\n","Epoch 149/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9073 - loss: 0.3233 - val_accuracy: 0.9175 - val_loss: 0.3185\n","Epoch 150/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9085 - loss: 0.3293 - val_accuracy: 0.9177 - val_loss: 0.3184\n","Epoch 151/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9066 - loss: 0.3235 - val_accuracy: 0.9177 - val_loss: 0.3180\n","Epoch 152/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9088 - loss: 0.3237 - val_accuracy: 0.9175 - val_loss: 0.3178\n","Epoch 153/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9096 - loss: 0.3202 - val_accuracy: 0.9173 - val_loss: 0.3175\n","Epoch 154/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9079 - loss: 0.3254 - val_accuracy: 0.9178 - val_loss: 0.3173\n","Epoch 155/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9089 - loss: 0.3214 - val_accuracy: 0.9178 - val_loss: 0.3170\n","Epoch 156/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9100 - loss: 0.3186 - val_accuracy: 0.9178 - val_loss: 0.3168\n","Epoch 157/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9109 - loss: 0.3219 - val_accuracy: 0.9178 - val_loss: 0.3165\n","Epoch 158/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9085 - loss: 0.3232 - val_accuracy: 0.9178 - val_loss: 0.3163\n","Epoch 159/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9093 - loss: 0.3167 - val_accuracy: 0.9180 - val_loss: 0.3161\n","Epoch 160/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9085 - loss: 0.3197 - val_accuracy: 0.9178 - val_loss: 0.3158\n","Epoch 161/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9097 - loss: 0.3220 - val_accuracy: 0.9177 - val_loss: 0.3156\n","Epoch 162/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9082 - loss: 0.3283 - val_accuracy: 0.9177 - val_loss: 0.3154\n","Epoch 163/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9102 - loss: 0.3180 - val_accuracy: 0.9180 - val_loss: 0.3151\n","Epoch 164/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9089 - loss: 0.3193 - val_accuracy: 0.9178 - val_loss: 0.3149\n","Epoch 165/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9111 - loss: 0.3160 - val_accuracy: 0.9178 - val_loss: 0.3147\n","Epoch 166/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9088 - loss: 0.3237 - val_accuracy: 0.9178 - val_loss: 0.3145\n","Epoch 167/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9086 - loss: 0.3234 - val_accuracy: 0.9175 - val_loss: 0.3142\n","Epoch 168/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9113 - loss: 0.3170 - val_accuracy: 0.9180 - val_loss: 0.3140\n","Epoch 169/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9098 - loss: 0.3207 - val_accuracy: 0.9187 - val_loss: 0.3138\n","Epoch 170/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9076 - loss: 0.3252 - val_accuracy: 0.9183 - val_loss: 0.3136\n","Epoch 171/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9103 - loss: 0.3156 - val_accuracy: 0.9182 - val_loss: 0.3134\n","Epoch 172/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9091 - loss: 0.3157 - val_accuracy: 0.9180 - val_loss: 0.3131\n","Epoch 173/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9121 - loss: 0.3140 - val_accuracy: 0.9178 - val_loss: 0.3129\n","Epoch 174/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9097 - loss: 0.3184 - val_accuracy: 0.9187 - val_loss: 0.3128\n","Epoch 175/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9105 - loss: 0.3139 - val_accuracy: 0.9183 - val_loss: 0.3126\n","Epoch 176/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - accuracy: 0.9103 - loss: 0.3184 - val_accuracy: 0.9180 - val_loss: 0.3123\n","Epoch 177/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9107 - loss: 0.3165 - val_accuracy: 0.9183 - val_loss: 0.3120\n","Epoch 178/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9097 - loss: 0.3166 - val_accuracy: 0.9183 - val_loss: 0.3119\n","Epoch 179/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9097 - loss: 0.3196 - val_accuracy: 0.9183 - val_loss: 0.3117\n","Epoch 180/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9111 - loss: 0.3158 - val_accuracy: 0.9185 - val_loss: 0.3116\n","Epoch 181/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9129 - loss: 0.3104 - val_accuracy: 0.9183 - val_loss: 0.3113\n","Epoch 182/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9109 - loss: 0.3165 - val_accuracy: 0.9185 - val_loss: 0.3112\n","Epoch 183/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9106 - loss: 0.3161 - val_accuracy: 0.9185 - val_loss: 0.3110\n","Epoch 184/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9108 - loss: 0.3167 - val_accuracy: 0.9185 - val_loss: 0.3108\n","Epoch 185/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9112 - loss: 0.3157 - val_accuracy: 0.9187 - val_loss: 0.3106\n","Epoch 186/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9108 - loss: 0.3159 - val_accuracy: 0.9187 - val_loss: 0.3104\n","Epoch 187/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9103 - loss: 0.3172 - val_accuracy: 0.9185 - val_loss: 0.3102\n","Epoch 188/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9085 - loss: 0.3197 - val_accuracy: 0.9183 - val_loss: 0.3100\n","Epoch 189/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9136 - loss: 0.3102 - val_accuracy: 0.9193 - val_loss: 0.3098\n","Epoch 190/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9104 - loss: 0.3181 - val_accuracy: 0.9192 - val_loss: 0.3097\n","Epoch 191/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9128 - loss: 0.3085 - val_accuracy: 0.9192 - val_loss: 0.3095\n","Epoch 192/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9130 - loss: 0.3091 - val_accuracy: 0.9192 - val_loss: 0.3093\n","Epoch 193/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9118 - loss: 0.3137 - val_accuracy: 0.9193 - val_loss: 0.3091\n","Epoch 194/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9109 - loss: 0.3142 - val_accuracy: 0.9192 - val_loss: 0.3090\n","Epoch 195/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9133 - loss: 0.3092 - val_accuracy: 0.9193 - val_loss: 0.3088\n","Epoch 196/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9121 - loss: 0.3075 - val_accuracy: 0.9193 - val_loss: 0.3086\n","Epoch 197/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9125 - loss: 0.3133 - val_accuracy: 0.9197 - val_loss: 0.3085\n","Epoch 198/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9101 - loss: 0.3145 - val_accuracy: 0.9197 - val_loss: 0.3083\n","Epoch 199/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9105 - loss: 0.3125 - val_accuracy: 0.9197 - val_loss: 0.3081\n","Epoch 200/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9132 - loss: 0.3065 - val_accuracy: 0.9197 - val_loss: 0.3079\n"]}],"source":["print(model_p.summary())\n","H_p = model_p.fit(X_train, y_train,batch_size = 512, validation_split=0.1, epochs=200)"]},{"cell_type":"code","source":["plt.plot(H_p.history['loss'])\n","plt.plot(H_p.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss','val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","scores=model_p.evaluate(X_test,y_test);\n","print('Loss on test data:',scores[0]);\n","print('Accuracy on test data:',scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":524},"id":"HXL-TRG0Y6Sn","executionInfo":{"status":"ok","timestamp":1760536915332,"user_tz":-180,"elapsed":1950,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"8b848b5e-9a5b-457a-f02a-1ae7cc2dba67"},"execution_count":19,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZ4ZJREFUeJzt3Xd8FHX+x/HXbE0nBEhIaEGaCBgRFRELKF2xYQNOiqceCjZOPblTiqeiqFgRT09Af4p6eoKeIhJQRAHp2CjSQSChprfN7vz+SLIkJkCATSZZ3s/HYx/Jzs7Mfj7ZSN5+5zszhmmaJiIiIiJBwmZ1ASIiIiKBpHAjIiIiQUXhRkRERIKKwo2IiIgEFYUbERERCSoKNyIiIhJUFG5EREQkqCjciIiISFBRuBEREZGgonAjIpYaNmwYERERVpdhOcMwGDVqlNVliAQFhRuRIDVjxgwMw2DlypVWlyIiUq0UbkRERCSoKNyIiIhIUFG4ETnNrVmzhr59+xIVFUVERARXXHEFP/zwQ5l1PB4PEyZMoFWrVoSEhFCvXj0uvvhikpOT/eukpKQwfPhwGjdujNvtJj4+nmuuuYbt27dXqo6tW7fSu3dvwsPDSUhI4PHHH8c0TQBM0yQxMZFrrrmm3HZ5eXnUqVOHv/zlL8d9j3fffZdOnToRGhpKTEwMt9xyC7t27SqzTrdu3Wjfvj2rVq3ioosuIjQ0lObNm/P666+X29++ffv485//TFxcHCEhISQlJfH222+XW8/n8/HSSy/RoUMHQkJCaNCgAX369KnwkOHs2bNp3749brebdu3aMXfu3DKvZ2Zmcv/995OYmIjb7SY2NpaePXuyevXq4/YvcrpQuBE5jf36669ccskl/Pjjjzz88MM89thjbNu2jW7durFs2TL/euPHj2fChAl0796dV199lX/84x80bdq0zB/UAQMGMGvWLIYPH85rr73GvffeS2ZmJjt37jxuHV6vlz59+hAXF8ekSZPo1KkT48aNY9y4cUDRZNs//elPfPnllxw6dKjMtv/73//IyMjgT3/60zHf48knn2TIkCG0atWKyZMnc//997NgwQIuvfRS0tLSyqx7+PBh+vXrR6dOnZg0aRKNGzfmrrvuYtq0af51cnNz6datG//3f//H4MGDefbZZ6lTpw7Dhg3jpZdeKrO/P//5z9x///00adKEZ555hkceeYSQkJByIfL777/n7rvv5pZbbmHSpEnk5eUxYMAADh486F9nxIgRTJ06lQEDBvDaa6/x4IMPEhoayvr164/7cxY5bZgiEpSmT59uAuaKFSuOus61115rulwuc8uWLf5le/bsMSMjI81LL73UvywpKcm88sorj7qfw4cPm4D57LPPnnCdQ4cONQHznnvu8S/z+XzmlVdeabpcLnP//v2maZrmxo0bTcCcOnVqme2vvvpqMzEx0fT5fEd9j+3bt5t2u9188sknyyz/+eefTYfDUWb5ZZddZgLm888/71+Wn59vnnPOOWZsbKxZUFBgmqZpvvjiiyZgvvvuu/71CgoKzC5dupgRERFmRkaGaZqm+fXXX5uAee+995arq3TNgOlyuczNmzf7l/34448mYL7yyiv+ZXXq1DFHjhx51F5FxDQ1ciNymvJ6vcybN49rr72WM844w788Pj6eQYMG8f3335ORkQFAdHQ0v/76K5s2bapwX6GhobhcLhYuXMjhw4dPqp7Sp0GXnBZdUFDA/PnzAWjdujWdO3fmvffe86936NAhvvzySwYPHoxhGEfd9yeffILP5+Omm27iwIED/kfDhg1p1aoV33zzTZn1HQ5HmcNcLpeLv/zlL+zbt49Vq1YBMGfOHBo2bMjAgQP96zmdTu69916ysrL49ttvAfjvf/+LYRj+UajS/lhzjx49aNGihf/52WefTVRUFFu3bvUvi46OZtmyZezZs+eo/Yqc7hRuRE5T+/fvJycnhzZt2pR7rW3btvh8Pv98lMcff5y0tDRat25Nhw4deOihh/jpp5/867vdbp555hm+/PJL4uLiuPTSS5k0aRIpKSmVqsVms5UJWFAUZoAyc3aGDBnC4sWL2bFjBwAfffQRHo+HW2+99Zj737RpE6Zp0qpVKxo0aFDmsX79evbt21dm/YSEBMLDw49Zz44dO2jVqhU2W9l/Rtu2bet/HWDLli0kJCQQExNzvB8DTZs2Lbesbt26ZQLjpEmT+OWXX2jSpAkXXHAB48ePLxN+REThRkQq4dJLL2XLli1MmzaN9u3b8+9//5tzzz2Xf//73/517r//fn777TcmTpxISEgIjz32GG3btmXNmjUBq+OWW27B6XT6R2/effddzjvvvAoDWmk+nw/DMJg7dy7JycnlHv/6178CVuOpsNvtFS43iydWA9x0001s3bqVV155hYSEBJ599lnatWvHl19+WV1litR4Cjcip6kGDRoQFhbGxo0by722YcMGbDYbTZo08S+LiYlh+PDhvP/+++zatYuzzz6b8ePHl9muRYsW/PWvf2XevHn88ssvFBQU8Pzzzx+3Fp/PV2704bfffgMgMTGxTA1XXnkl7733Hjt27GDx4sXHHbUpqcs0TZo3b06PHj3KPS688MIy6+/Zs4fs7Oxj1tOsWTM2bdqEz+crs96GDRv8r5e89549e8pNhD4V8fHx3H333cyePZtt27ZRr149nnzyyYDtX6S2U7gROU3Z7XZ69erFp59+WubQT2pqKjNnzuTiiy8mKioKoMzZOgARERG0bNmS/Px8AHJycsjLyyuzTosWLYiMjPSvczyvvvqq/3vTNHn11VdxOp1cccUVZda79dZbWbduHQ899BB2u51bbrnluPu+/vrrsdvtTJgwocwoSMl7/bG/wsLCMqM5BQUF/Otf/6JBgwZ06tQJgH79+pGSksKHH35YZrtXXnmFiIgILrvsMqDoLDLTNJkwYUK5uv5Yy/F4vV7S09PLLIuNjSUhIaHSP2eR04HD6gJEpGpNmzat3LVSAO677z6eeOIJkpOTufjii7n77rtxOBz861//Ij8/n0mTJvnXPeuss+jWrRudOnUiJiaGlStX8vHHH/snAf/2229cccUV3HTTTZx11lk4HA5mzZpFampqpcJHSEgIc+fOZejQoXTu3Jkvv/ySL774gr///e80aNCgzLpXXnkl9erV46OPPqJv377ExsYed/8tWrTgiSeeYMyYMWzfvp1rr72WyMhItm3bxqxZs7jzzjt58MEH/esnJCTwzDPPsH37dlq3bs2HH37I2rVreeONN3A6nQDceeed/Otf/2LYsGGsWrWKxMREPv74YxYvXsyLL75IZGQkAN27d+fWW2/l5ZdfZtOmTfTp0wefz8d3331H9+7dT+h+UpmZmTRu3JgbbriBpKQkIiIimD9/PitWrKjUCJnIacO6E7VEpCqVnAp+tMeuXbtM0zTN1atXm7179zYjIiLMsLAws3v37uaSJUvK7OuJJ54wL7jgAjM6OtoMDQ01zzzzTPPJJ5/0nxZ94MABc+TIkeaZZ55phoeHm3Xq1DE7d+5s/uc//zlunUOHDjXDw8PNLVu2mL169TLDwsLMuLg4c9y4cabX661wm7vvvtsEzJkzZ57Qz+S///2vefHFF5vh4eFmeHi4eeaZZ5ojR440N27c6F/nsssuM9u1a2euXLnS7NKlixkSEmI2a9bMfPXVV8vtLzU11Rw+fLhZv3590+VymR06dDCnT59ebr3CwkLz2WefNc8880zT5XKZDRo0MPv27WuuWrXKvw5Q4SnezZo1M4cOHWqaZtEp6Q899JCZlJRkRkZGmuHh4WZSUpL52muvndDPQSTYGaZ5guOiIiIWe+CBB3jrrbdISUkhLCwsoPvu1q0bBw4c4JdffgnofkWk+mjOjYjUKnl5ebz77rsMGDAg4MFGRIKD5tyISK2wb98+5s+fz8cff8zBgwe57777rC5JRGoohRsRqRXWrVvH4MGDiY2N5eWXX+acc86xuiQRqaE050ZERESCiubciIiISFBRuBEREZGgYumcm4kTJ/LJJ5+wYcMGQkNDueiii3jmmWeOe5+Yjz76iMcee4zt27fTqlUrnnnmGfr161ep9/T5fOzZs4fIyMhj3kVYREREag7TNMnMzCQhIaHcDWsrWtkyvXv3NqdPn27+8ssv5tq1a81+/fqZTZs2NbOyso66zeLFi0273W5OmjTJXLdunfnoo4+aTqfT/Pnnnyv1nrt27Trmhc300EMPPfTQQ4+a+yi5AOmx1KgJxfv37yc2NpZvv/2WSy+9tMJ1br75ZrKzs/n888/9yy688ELOOeccXn/99eO+R3p6OtHR0ezatct/35xA8Xg8zJs3j169evkv0R5sgr3HYO8P1GMwCPb+IPh7DPb+IPA9ZmRk0KRJE9LS0qhTp84x161Rp4KX3BAuJibmqOssXbqU0aNHl1nWu3dvZs+eXeH6+fn5ZW4ol5mZCUBoaCihoaGnWHFZDoeDsLAwQkNDg/aXNdh7DPb+QD0Gg2DvD4K/x2DvDwLfo8fjAajUlJIaM3Lj8/m4+uqrSUtL4/vvvz/qei6Xi7fffpuBAwf6l7322mtMmDCB1NTUcuuPHz++wrvxzpw5U1c3FRERqSVycnIYNGgQ6enpxz3yUmNGbkaOHMkvv/xyzGBzMsaMGVNmpKdkWKtXr15VclgqOTmZnj17Bm0SD/Yeg70/UI/BINj7g+DvMdj7g8D3mJGRUel1a0S4GTVqFJ9//jmLFi2icePGx1y3YcOG5UZoUlNTadiwYYXru91u3G53ueVOp7PKfqGqct81RbD3GOz9gXoMBsHeHwR/j8HeHwSuxxPZh6XhxjRN7rnnHmbNmsXChQtp3rz5cbfp0qULCxYs4P777/cvS05OpkuXLlVYqYiI1HRer9c/L6Om83g8OBwO8vLy8Hq9VpdTJU6mR5fLdfzTvCvB0nAzcuRIZs6cyaeffkpkZCQpKSkA1KlTxz/Zd8iQITRq1IiJEycCcN9993HZZZfx/PPPc+WVV/LBBx+wcuVK3njjDcv6EBER65imSUpKCmlpaVaXUmmmadKwYUN27doVtNdcO5kebTYbzZs3x+VyndJ7Wxpupk6dCkC3bt3KLJ8+fTrDhg0DYOfOnWVS3EUXXcTMmTN59NFH+fvf/06rVq2YPXs27du3r66yRUSkBikJNrGxsYSFhdWKsODz+cjKyiIiIiIgIxU10Yn2WHKR3b1799K0adNT+hwtPyx1PAsXLiy37MYbb+TGG2+sgopERKQ28Xq9/mBTr149q8upNJ/PR0FBASEhIUEdbk60xwYNGrBnzx4KCwtPaZ5OcP5ERUTktFAyx0aX9ggOJYejTnUeksKNiIjUerXhUJQcX6A+R4UbERERCSoKNyIiIrVcYmIiL774YkD2tXDhQgzDqFVnn/1RjbiIn4iIyOnmqquuolOnTrz00kunvK8VK1YQHh4egKqCg8JNgHh9JnvT8ziYZ3UlIiISDEzTxOv14nAc/091gwYNqqGi2kOHpQJkf2Y+lz63iCfW2q0uRUREarjhw4ezePFiXn75ZQzDwDAMZsyYgWEYfPnll3Tq1Am3283333/Pli1buOaaa4iLiyMiIoLzzz+f+fPnl9nfHw9LGYbBv//9b6677jrCwsJo1aoVn3322UnX+9///pd27drhdrtJTEzk+eefL/P6a6+9RqtWrQgJCSEuLo4bbrjB/9rHH39Mhw4dCA0NpV69evTo0YPs7OyTrqUyNHITIA570Qxvn2lU6vo9IiJSNUzTJNdjzS0NQp32Sp3x8+KLL7J+/XqSkpL45z//CcCvv/4KwCOPPMJzzz3HGWecQd26ddm1axf9+vXjySefxO12884779C/f382btxI06ZNj/oeEyZMYNKkSTz77LO88sorDB48mB07dhATE3NCPa1atYqbbrqJ8ePHc/PNN7NkyRLuvvtu6tWrx7Bhw1i5ciX33nsv//d//8dFF13EoUOH+O6774CiCywOHjyYSZMmcd1115GZmcl3331X5X8nFW4CxFnqAkWFPpNTu3C0iIicrFyPl7PGfmXJe697vDdhruP/aa1Tpw4ul4uwsDD/jZ83bNgAwOOPP07Pnj3968bExJCUlOR//s9//pNZs2bx2WefMWrUqKO+x7Bhwxg4cCAATz31FC+//DLLly+nT58+J9TT5MmTueKKK3jssccAaN26NevWrePZZ59l2LBh7Ny5k/DwcK666ioiIyNp1qwZHTt2xOfzkZqaSmFhIddffz3NmjUDoEOHDif0/idDh6UCpGTkBqDQq5EbERE5Oeedd16Z51lZWTz44IO0bduW6OhoIiIiWL9+PTt37jzmfs4++2z/9+Hh4URFRbFv374Trmf9+vV07dq1zLKuXbuyadMmvF4vPXv2pFmzZpxxxhnceuutvPfee+Tk5ADQvn17rrjiCjp06MCNN97Im2++yeHDh0+4hhOlkZsAKRNufD4LKxEROb2FOu2se7y3Ze99qv541tODDz5IcnIyzz33HC1btiQ0NJQbbriBgoKCY+7nj7cvMAwDXxX8fYqMjGT16tUsXLiQefPmMXbsWMaPH8+yZcuw2+189dVX/PDDD8ybN49XXnmFf/zjHyxbtozmzZsHvJYSCjcBUvqwlEcjNyIiljEMo1KHhqzmcrkqdZuBxYsXM2zYMK677jqgaCRn+/btVVzdEW3btmXx4sXlamrdujV2e1GYczgc9OjRgx49ejBu3Diio6P5+uuv6dGjB4Zh0LVrV7p27crYsWNp1qwZs2bNYvTo0VVWc83/9GsJm83AZoDPLJpzIyIicixNmzZl+fLlbN++nYiIiKOOqrRq1YpPPvmE/v37YxgGjz32WJWMwBzNX//6V84//3z++c9/cvPNN7N06VJeffVVXnvtNQA+//xztm7dyqWXXkrdunWZM2cOPp+PNm3asHLlSpYtW0bv3r2JjY1l2bJl7N+/n7Zt21ZpzZpzE0B2W9GhqUKvDkuJiMixjRo1CrvdzllnnUWDBg2OOodm8uTJ1K1bl4suuoj+/fvTu3dvzj333Gqr89xzz+U///kPH3zwAe3bt2fs2LE8/vjjDBs2DIDo6Gg++eQTLr/8ctq2bcvrr7/O+++/T7t27YiMjGTRokX069eP1q1b8+ijj/L888/Tt2/fKq1ZIzcB5LTb8Hi9GrkREZHjatmyJYsXL8ZWalpDSWAoLTExka+//rrMspEjR5Z5/sfDVBWdal3Z2yl069at3PYDBgxgwIABFa5/8cUXs3DhwnLLS0ZvvvzyyzI9VgeN3ASQwz9yo3AjIiJiFYWbACo5Y0pnS4mISE01YsQIIiIiKnyMGDHC6vICQoelAqjkjCmdLSUiIjXV448/zoMPPljha1FRUdVcTdVQuAmgIyM3CjciIlIzxcbGEhsba3UZVUqHpQLIUTxyo7OlRERErKNwE0AauREREbGewk0AOYvPltKcGxEREeso3ASQw158WEpnS4mIiFhG4SaA/IelNHIjIiJiGYWbAHL4D0tp5EZERKpWYmIiL774YqXWNQyD2bNnV2k9NYnCTQD5r1CsCcUiIiKWUbgJIP+cGx2WEhERsYzCTQBp5EZERCrjjTfeoG3btvj+cALKNddcw2233caWLVu45ppriIuLIyIigvPPP5/58+cH7P1//vlnLr/8ckJDQ6lXrx533nknWVlZ/tcXLlzIBRdcQHh4ONHR0XTt2pUdO3YA8OOPP9K9e3ciIyOJioqiU6dOrFy5MmC1BYLCTQA5dbaUiIj1TBMKsq15VHA37orceOONHDp0iG+++ca/7NChQ8ydO5fBgweTlZVFv379WLBgAWvWrKFPnz7079+fnTt3nvKPJzs7m969e1O3bl1WrFjBRx99xPz58xk1ahQAhYWFXHvttVx22WX89NNPLF26lDvvvBPDKPof+MGDB9O4cWNWrFjBqlWreOSRR3A6nadcVyDp9gsBpLuCi4jUAJ4ceCrBmvf++x5whR93tbp169KjRw/ef/99evbsCcDHH39M/fr16d69OzabjaSkJP/6//znP5k1axafffaZP4ScrJkzZ5KXl8c777xDeHhRra+++ir9+/fnmWeewel0kp6ezlVXXUWLFi0AaNu2rX/7nTt38tBDD3HmmWcC0KpVq1OqpypYOnKzaNEi+vfvT0JCQqVncr/33nskJSURFhZGfHw8t912GwcPHqz6YitBVygWEZHKuvHGG/nkk0/Iz88Hiv6+3XLLLdhsNrKysnjwwQdp27Yt0dHRREREsH79+oCM3Kxfv56kpCR/sAHo2rUrPp+PjRs3EhMTw7Bhw+jduzf9+/fnpZdeYu/evf51R48eze23306PHj14+umn2bJlyynXFGiWjtxkZ2eTlJTEbbfdxvXXX3/c9RcvXsyQIUN44YUX6N+/P7t372bEiBHccccdfPLJJ9VQ8bGVTCjWqeAiIhZyhhWNoFj13pXUp08fTNPkiy++4Pzzz+e7777jhRdeAODBBx8kOTmZ5557jpYtWxIaGsoNN9xAQUFBVVVexvTp07n33nuZO3cuH374IY8++ijJyclceOGFjB8/nkGDBvHFF1/w5ZdfMm7cOD744AOuu+66aqmtMiwNN3379qVv376VXn/p0qUkJiZy7733AtC8eXP+8pe/8Mwzz1RViSfEqcNSIiLWM4xKHRqyWkhICNdddx3vvfcemzdvpk2bNpx77rlA0f/MDxs2zB8YsrKy2L59e0Det23btsyYMYPs7Gz/6M3ixYux2Wy0adPGv17Hjh3p2LEjY8aMoUuXLsycOZMLL7wQgNatW9O6dWseeOABBg4cyPTp0xVuTlaXLl34+9//zpw5c+jbty/79u3j448/pl+/fkfdJj8/3z/kB5CRkQGAx+PB4/EEtD6bURRq8j2FAd93TVHSl/qrvdRj7Rfs/UHle/R4PJimic/nK3fmUU1mFk88HjhwINdccw2//vorgwcP9vfQsmVLPvnkE6688koMw2Ds2LH4fD5/r6X3U9m+S35GAwcOZNy4cQwZMoRx48axf/9+7rnnHv70pz/RoEEDtmzZwptvvumfNrJx40Y2bdrEn/70J7Kzs3n44YcZMGAAzZs35/fff2fFihVcf/315eoo6fFEazRNE4/Hg91uL/Paify+16pw07VrV9577z1uvvlm8vLyKCwspH///kyZMuWo20ycOJEJEyaUWz5v3jzCwio/fFgZe363ATY2bdnKHM/mgO67pklOTra6hCoV7P2BegwGwd4fHL9Hh8NBw4YNycrKqrZDNoF0/vnnU7duXTZu3Ej//v39/wM+YcIERo0axcUXX0xMTAz33Xcfhw8fpqCgwL+Oz+cjLy/P//x4cnNz/et+9NFHjBkzhs6dOxMaGsrVV1/NE088QUZGBl6vl19++YW3336bQ4cOERcXx5///GcGDhxIdnY2KSkpDBkyhP3791OvXj2uuuoqRo8efdQ6MjMzK/3zKCgoIDc3l0WLFlFYWFjmtZycnErvxzDNSp63VsUMw2DWrFlce+21R11n3bp19OjRgwceeIDevXuzd+9eHnroIc4//3zeeuutCrepaOSmSZMmHDhwgKioqID28OQX65nxwy5u69KEMf3aHn+DWsjj8ZCcnEzPnj1r3Kl/gRDs/YF6DAbB3h9Uvse8vDx27dpFYmIiISEh1VjhqTFNk8zMTCIjI/2nWAebk+kxLy+P7du306RJk3KfZ0ZGBvXr1yc9Pf24f79r1cjNxIkT6dq1Kw899BAAZ599NuHh4VxyySU88cQTxMfHl9vG7XbjdrvLLXc6nQH/R8HtLPpx+jCC9h+cElXx86tJgr0/UI/BINj7g+P36PV6MQwDm82GzVZ7Lt1WcpimpPZgdDI92mw2DMOo8HM/kd/1WvUTzcnJKfcDKjkmVxMGoHQquIiIVLf33nuPiIiICh/t2rWzujxLWDpyk5WVxebNR+ambNu2jbVr1xITE0PTpk0ZM2YMu3fv5p133gGgf//+3HHHHUydOtV/WOr+++/nggsuICHBogs2lWL33xVc4UZERKrH1VdfTefOnSt8LdhH9o7G0nCzcuVKunfv7n8+evRoAIYOHcqMGTPYu3dvmQsWDRs2jMzMTF599VX++te/Eh0dzeWXX17zTgWvRTP2RUSkdouMjCQyMtLqMmoUS8NNt27djnk4acaMGeWW3XPPPdxzzz1VWNXJK7mIn1cjNyIiIpapVXNuarqSOTcezbkREalWtekaN3J0gZo/W6vOlqrpjlyhWP+RiYhUB5fLhc1mY8+ePTRo0ACXy1UrTq32+XwUFBSQl5cX1GdLnUiPpmmyf/9+/9lSp0LhJoBKDkvpbCkRkephs9lo3rw5e/fuZc8ei+4ndRJM0yQ3N5fQ0NBaEcZOxsn0aBgGjRs3Lnd14hOlcBNADt1bSkSk2rlcLpo2bUphYSFer9fqcirF4/GwaNEiLr300qA9o+lkenQ6naccbEDhJqD8dwXXsV8RkWp1tAu/1VR2u53CwkJCQkJqTc0nysoeg/NAn0V0V3ARERHrKdwEkK5QLCIiYj2FmwDyTyjW2VIiIiKWUbgJIKduvyAiImI5hZsAOnJYSiM3IiIiVlG4CSC7JhSLiIhYTuEmgJy2klPBFW5ERESsonATQCWHpbwKNyIiIpZRuAkgh01nS4mIiFhN4SaAdJ0bERER6yncBJDTrlPBRURErKZwE0D+w1I6FVxERMQyCjcB5D8spZEbERERyyjcBJD/xpk+E9NUwBEREbGCwk0AldxbCjSpWERExCoKNwHkKB65AR2aEhERsYrCTQCVHrnxaFKxiIiIJRRuAsipkRsRERHLKdwEkM1mYFAUanSVYhEREWso3ARYyeCNbp4pIiJiDYWbACu+1A1eHZYSERGxhMJNgNn9Izc6LCUiImIFhZsAKwk3mlAsIiJiDYWbAPOP3GhCsYiIiCUUbgKs5FI3ukKxiIiINSwNN4sWLaJ///4kJCRgGAazZ88+7jb5+fn84x//oFmzZrjdbhITE5k2bVrVF1tJNv9hKY3ciIiIWMFh5ZtnZ2eTlJTEbbfdxvXXX1+pbW666SZSU1N56623aNmyJXv37sVXgybvHjkspZEbERERK1gabvr27Uvfvn0rvf7cuXP59ttv2bp1KzExMQAkJiZWUXUnxz+huAYFLhERkdNJrZpz89lnn3HeeecxadIkGjVqROvWrXnwwQfJzc21ujQ/nS0lIiJiLUtHbk7U1q1b+f777wkJCWHWrFkcOHCAu+++m4MHDzJ9+vQKt8nPzyc/P9//PCMjAwCPx4PH4wlofR6Pxx9u8goCv/+aoKSnYOwNgr8/UI/BINj7g+DvMdj7g8D3eCL7MUzTrBFDDIZhMGvWLK699tqjrtOrVy++++47UlJSqFOnDgCffPIJN9xwA9nZ2YSGhpbbZvz48UyYMKHc8pkzZxIWFhaw+ku8/IudLZkGw1t7OadejfjRioiI1Ho5OTkMGjSI9PR0oqKijrlurRq5iY+Pp1GjRv5gA9C2bVtM0+T333+nVatW5bYZM2YMo0eP9j/PyMigSZMm9OrV67g/nBPl8Xh49dcFgEGHpHPod3Z8QPdfE3g8HpKTk+nZsydOp9PqcgIu2PsD9RgMgr0/CP4eg70/CHyPJUdeKqNWhZuuXbvy0UcfkZWVRUREBAC//fYbNpuNxo0bV7iN2+3G7XaXW+50OqvkF6rksJSJLWh/YaHqfn41RbD3B+oxGAR7fxD8PQZ7fxC4Hk9kH5ZOKM7KymLt2rWsXbsWgG3btrF27Vp27twJFI26DBkyxL/+oEGDqFevHsOHD2fdunUsWrSIhx56iNtuu63CQ1JWKLnOjVcX8RMREbGEpeFm5cqVdOzYkY4dOwIwevRoOnbsyNixYwHYu3evP+gAREREkJycTFpaGueddx6DBw+mf//+vPzyy5bUXxHdOFNERMRalh6W6tatG8eazzxjxoxyy84880ySk5OrsKpT47/9gk4FFxERsUStus5NjZaxB8czTfgwezigG2eKiIhYpVZNKK7R7C6MwlzcgIFPN84UERGxiEZuAsXu8n/rolA3zhQREbGIwk2gOEL837rx6MaZIiIiFlG4CRT7kfPvXRTqxpkiIiIWUbgJFMPAtBddLNCFR2dLiYiIWEThJpAcReHGbeiwlIiIiFUUbgLJUWrkRoelRERELKFwE0jFZ0y5KNTIjYiIiEUUbgKp5LAUBToVXERExCIKN4FUMqHYKNSNM0VERCyicBNApn/kxoNH4UZERMQSCjeBVOZUcB2WEhERsYLCTSA5iiYUuzWhWERExDIKN4FkL7nOTYFOBRcREbGIwk0g+a9zU6grFIuIiFhE4SaQ/Ne58eDRnBsRERFLKNwEUvGdwd14KNTZUiIiIpZQuAkgs9QVinW2lIiIiDUUbgLJcWRCsc6WEhERsYbCTSCVnlCss6VEREQsoXATSKUmFOtsKREREWso3ARSqQnFHo3ciIiIWELhJpBKRm6MQrwauREREbGEwk0glbq3lG6cKSIiYg2FmwAqfVdwnQouIiJiDYWbQCoTbjRyIyIiYgWFm0AqnnPjNjShWERExCoKN4GkG2eKiIhYTuEmkEpNKC70mZimAo6IiEh1U7gJpFJzbgDdPFNERMQCloabRYsW0b9/fxISEjAMg9mzZ1d628WLF+NwODjnnHOqrL4T5jgycgPo0JSIiIgFLA032dnZJCUlMWXKlBPaLi0tjSFDhnDFFVdUUWUnxyx1ET9Ak4pFREQs4LDyzfv27Uvfvn1PeLsRI0YwaNAg7Hb7CY32VLlSt18AjdyIiIhYwdJwczKmT5/O1q1beffdd3niiSeOu35+fj75+fn+5xkZGQB4PB48Hk9Aays0bTg5clgqN78Aj8sI6HtYreRnFuifXU0R7P2BegwGwd4fBH+Pwd4fBL7HE9lPrQo3mzZt4pFHHuG7777D4ahc6RMnTmTChAnlls+bN4+wsLCA1hdScIjeHBm5mTd/ATHugL5FjZGcnGx1CVUq2PsD9RgMgr0/CP4eg70/CFyPOTk5lV631oQbr9fLoEGDmDBhAq1bt670dmPGjGH06NH+5xkZGTRp0oRevXoRFRUV0Bo9GanwKzgMHzZ8XHpZN5rGBDZAWc3j8ZCcnEzPnj1xOp1WlxNwwd4fqMdgEOz9QfD3GOz9QeB7LDnyUhm1JtxkZmaycuVK1qxZw6hRowDw+XyYponD4WDevHlcfvnl5bZzu9243eWHT5xOZ+B/oULC/d+68IDNHrS/tFXy86tBgr0/UI/BINj7g+DvMdj7g8D1eCL7qDXhJioqip9//rnMstdee42vv/6ajz/+mObNm1tUWSnFE4pB95cSERGxiqXhJisri82bN/ufb9u2jbVr1xITE0PTpk0ZM2YMu3fv5p133sFms9G+ffsy28fGxhISElJuuWVsDkwMDExcePDozuAiIiLVztJws3LlSrp37+5/XjI3ZujQocyYMYO9e/eyc+dOq8o7KV7DicMswG0U6grFIiIiFrA03HTr1u2Y91+aMWPGMbcfP34848ePD2xRp8hnc4K3ADcFFGrkRkREpNrp3lIB5jOK8qKLQgoUbkRERKqdwk2A+WxFs7ndeMgvVLgRERGpbgo3AeY1isKNCw95BV6LqxERETn9KNwEmP+wlFFIrkfhRkREpLop3ATYkcNSBQo3IiIiFlC4CbAjh6UKydVhKRERkWqncBNgPlvJ2VIe8jRyIyIiUu0UbgLMVzxy4zY8OiwlIiJiAYWbACuZc1N0WEqngouIiFQ3hZsA8xafLaUJxSIiItZQuAkw/2EpCsktKLS4GhERkdOPwk2A+ScUa86NiIiIJRRuAuzIyI2HXI/m3IiIiFQ3hZsA85aaUKzbL4iIiFQ/hZsAO3JXcB2WEhERsYLCTYCVPSylcCMiIlLdFG4CzH9YyvDo9gsiIiIWULgJMJ//Oje6/YKIiIgVFG4CrMwVihVuREREqp3CTYD5/HcFL5pzY5qmxRWJiIicXhRuAsx/+wXDg2lCfqGudSMiIlKdFG4C7MhhKQ+AJhWLiIhUM4WbACs5LBViFN1XSvNuREREqpfCTYCVnAoeYhSP3CjciIiIVCuFmwA7coXi4pEbHZYSERGpVgo3AXbksFTRyI2udSMiIlK9FG4CrGRCsRMdlhIREbGCwk2AlZwK7jJ1WEpERMQKCjcBdmTkpgAwNXIjIiJSzRRuAqxkzo0NEwdejdyIiIhUM0vDzaJFi+jfvz8JCQkYhsHs2bOPuf4nn3xCz549adCgAVFRUXTp0oWvvvqqeoqtJJ/N4f9e95cSERGpfpaGm+zsbJKSkpgyZUql1l+0aBE9e/Zkzpw5rFq1iu7du9O/f3/WrFlTxZVWnrd45AbATYHCjYiISDVzHH+VqtO3b1/69u1b6fVffPHFMs+feuopPv30U/73v//RsWPHAFd3kgwbps2B4SvERSF5OiwlIiJSrSwNN6fK5/ORmZlJTEzMUdfJz88nPz/f/zwjIwMAj8eDx+MJaD3+/dld4CvEbXjIzg/8+1ippJdg6qm0YO8P1GMwCPb+IPh7DPb+IPA9nsh+DNM0zYC86ykyDINZs2Zx7bXXVnqbSZMm8fTTT7NhwwZiY2MrXGf8+PFMmDCh3PKZM2cSFhZ2suUeU5+f7sbtzaJH/iTiYhO46QzdGVxERORU5OTkMGjQINLT04mKijrmurV25GbmzJlMmDCBTz/99KjBBmDMmDGMHj3a/zwjI4MmTZrQq1ev4/5wTpTH4yE5ORlnaARkZeGmkNiExvTr1z6g72Olkh579uyJ0+k8/ga1TLD3B+oxGAR7fxD8PQZ7fxD4HkuOvFRGrQw3H3zwAbfffjsfffQRPXr0OOa6brcbt9tdbrnT6ayyXyjDUfR+bgooKDSD8he3Kn9+NUGw9wfqMRgEe38Q/D0Ge38QuB5PZB+17jo377//PsOHD+f999/nyiuvtLqcipWEG8Ojs6VERESqmaUjN1lZWWzevNn/fNu2baxdu5aYmBiaNm3KmDFj2L17N++88w5QdChq6NChvPTSS3Tu3JmUlBQAQkNDqVOnjiU9VMR0RWAAYeSRo7OlREREqpWlIzcrV66kY8eO/tO4R48eTceOHRk7diwAe/fuZefOnf7133jjDQoLCxk5ciTx8fH+x3333WdJ/UfljgQgglxyNHIjIiJSrSwduenWrRvHOllrxowZZZ4vXLiwagsKFFdRuIk0cnWdGxERkWp2UiM3b7/9Nl988YX/+cMPP0x0dDQXXXQRO3bsCFhxtVapkRvNuREREaleJxVunnrqKUJDQwFYunQpU6ZMYdKkSdSvX58HHnggoAXWRqYrAoAIQ+FGRESkup3UYaldu3bRsmVLAGbPns2AAQO488476dq1K926dQtkfbVTqZEbHZYSERGpXic1chMREcHBgwcBmDdvHj179gQgJCSE3NzcwFVXW7mLRm4iNXIjIiJS7U5q5KZnz57cfvvtdOzYkd9++41+/foB8Ouvv5KYmBjI+mon15GRm0Kficfrw2mvdZcUEhERqZVO6i/ulClT6NKlC/v37+e///0v9erVA2DVqlUMHDgwoAXWRmapw1KARm9ERESq0UmN3ERHR/Pqq6+WW17RDSpPSyXhxsgDIK/AS1RIcF9eW0REpKY4qZGbuXPn8v333/ufT5kyhXPOOYdBgwZx+PDhgBVXa7mPXOcG0FWKRUREqtFJhZuHHnrIf3fOn3/+mb/+9a/069ePbdu2lbkD9+nKdJUNNzosJSIiUn1O6rDUtm3bOOusswD473//y1VXXcVTTz3F6tWr/ZOLT2vFIzfhmnMjIiJS7U5q5MblcpGTkwPA/Pnz6dWrFwAxMTH+EZ3TWnG4CSMPGz5d60ZERKQandTIzcUXX8zo0aPp2rUry5cv58MPPwTgt99+o3HjxgEtsFYqvkIx6BYMIiIi1e2kRm5effVVHA4HH3/8MVOnTqVRo0YAfPnll/Tp0yegBdZKDjfY3YDCjYiISHU7qZGbpk2b8vnnn5db/sILL5xyQUHDHQk5+UX3l9JhKRERkWpzUuEGwOv1Mnv2bNavXw9Au3btuPrqq7Hb7QErrlZzR0LOgaL7S2nkRkREpNqcVLjZvHkz/fr1Y/fu3bRp0waAiRMn0qRJE7744gtatGgR0CJrpVLXutFhKRERkepzUnNu7r33Xlq0aMGuXbtYvXo1q1evZufOnTRv3px777030DXWTu4ooHjOTYHP4mJEREROHyc1cvPtt9/yww8/EBMT419Wr149nn76abp27Rqw4mo1/y0YcsnM81hcjIiIyOnjpEZu3G43mZmZ5ZZnZWXhcrlOuaig4L95Zg7puQo3IiIi1eWkws1VV13FnXfeybJlyzBNE9M0+eGHHxgxYgRXX311oGusnUrNuUlTuBEREak2JxVuXn75ZVq0aEGXLl0ICQkhJCSEiy66iJYtW/Liiy8GuMRayj9yk0t6jsKNiIhIdTmpOTfR0dF8+umnbN682X8qeNu2bWnZsmVAi6vV3EVXKY4gV4elREREqlGlw83x7vb9zTff+L+fPHnyyVcULErOljJyScstsLgYERGR00elw82aNWsqtZ5hGCddTFApmXNDLmk6LCUiIlJtKh1uSo/MSCUUh5twI498j488j5cQp67eLCIiUtVOakKxVEKpkRtAozciIiLVROGmqhSHmyhbcbjRvBsREZFqoXBTVUrdfgE0ciMiIlJdFG6qSvHITRi5gKlwIyIiUk0UbqpKcbix4yOUfNJ1WEpERKRaWBpuFi1aRP/+/UlISMAwDGbPnn3cbRYuXMi5556L2+2mZcuWzJgxo8rrPCnOMDCKfrwROh1cRESk2lgabrKzs0lKSmLKlCmVWn/btm1ceeWVdO/enbVr13L//fdz++2389VXX1VxpSfBMHR/KREREQuc1O0XAqVv37707du30uu//vrrNG/enOeffx4ouuXD999/zwsvvEDv3r2rqsyT546CvHSN3IiIiFSjWjXnZunSpfTo0aPMst69e7N06VKLKjqOkptnGrmacyMiIlJNLB25OVEpKSnExcWVWRYXF0dGRga5ubmEhoaW2yY/P5/8/Hz/84yMDAA8Hg8eT2BHU0r2V/LV7orARtGF/A5nFwT8/azwxx6DTbD3B+oxGAR7fxD8PQZ7fxD4Hk9kP7Uq3JyMiRMnMmHChHLL582bR1hYWJW8Z3JyMgAXpucRR9GE4l9SDjJnzpwqeT8rlPQYrIK9P1CPwSDY+4Pg7zHY+4PA9ZiTk1PpdWtVuGnYsCGpqalllqWmphIVFVXhqA3AmDFjytzRPCMjgyZNmtCrVy+ioqICWp/H4yE5OZmePXvidDqxf/JfWP8TEUYupjOUfv0uDej7WeGPPQabYO8P1GMwCPb+IPh7DPb+IPA9lhx5qYxaFW66dOlSbvQjOTmZLl26HHUbt9uN2+0ut9zpdFbZL5R/36F1gKKRm/RcT1D9Alflz68mCPb+QD0Gg2DvD4K/x2DvDwLX44nsw9IJxVlZWaxdu5a1a9cCRad6r127lp07dwJFoy5Dhgzxrz9ixAi2bt3Kww8/zIYNG3jttdf4z3/+wwMPPGBF+cdXfAuGOkY22QVePF6fxQWJiIgEP0vDzcqVK+nYsSMdO3YEYPTo0XTs2JGxY8cCsHfvXn/QAWjevDlffPEFycnJJCUl8fzzz/Pvf/+7Zp4GDhDeAID6RjoA6brWjYiISJWz9LBUt27dME3zqK9XdPXhbt26sWbNmiqsKoAiYgFoaM8AT9HNM+tHlD9EJiIiIoFTq65zU+uEF4WbWKNoEpSudSMiIlL1FG6qUkTRYal6pAHoKsUiIiLVQOGmKhWP3NQxM7DhU7gRERGpBgo3VSm8PgA2fNQlUzfPFBERqQYKN1XJ7oTQGKDojKn0HM25ERERqWoKN1Wt+Iyp+ka6Rm5ERESqgcJNVSu51g3pmnMjIiJSDRRuqppGbkRERKqVwk1VKz5jqoGRweFszbkRERGpago3VS3iyC0YUjLyLC5GREQk+CncVLXikZv6pHMgK5+CQt08U0REpCop3FS14jk3DWzpmCbsy9TojYiISFVSuKlqxWdLxdqK7i+Vkq5wIyIiUpUUbqpa8chNXTMdAx97FW5ERESqlMJNVSseuXHgpQ7Z7E3PtbggERGR4KZwU9UcbgipAxSdMaWRGxERkaqlcFMd/Ne6SdecGxERkSqmcFMdIo6cDq6RGxERkaqlcFMdiufd1DMyNHIjIiJSxRRuqkOp+0vty8yj0KsL+YmIiFQVhZvqUDznJtbIwGfCvsx8iwsSEREJXgo31aH4/lIJzkwAzbsRERGpQgo31SEiDoB4WxqgqxSLiIhUJYWb6hDdFICGvlQAXchPRESkCincVIe6iQCE+zKJIksjNyIiIlVI4aY6uML9k4qbGvvYm6FwIyIiUlUUbqpLTHOgONyk6bCUiIhIVVG4qS7Fh6aaGft0WEpERKQKKdxUl7pFIzdNjFRSM/Px+kyLCxIREQlOCjfVpXjkJtG2H6/PZI8OTYmIiFQJhZvqUjzn5gzHPgA278uyshoREZGgVSPCzZQpU0hMTCQkJITOnTuzfPnyY67/4osv0qZNG0JDQ2nSpAkPPPAAeXk1fB5L8chNrO8ADgrZsl/hRkREpCpYHm4+/PBDRo8ezbhx41i9ejVJSUn07t2bffv2Vbj+zJkzeeSRRxg3bhzr16/nrbfe4sMPP+Tvf/97NVd+giLiwBGKDR+NjAMauREREakiloebyZMnc8cddzB8+HDOOussXn/9dcLCwpg2bVqF6y9ZsoSuXbsyaNAgEhMT6dWrFwMHDjzuaI/lDMM/etPU2KdwIyIiUkUcVr55QUEBq1atYsyYMf5lNpuNHj16sHTp0gq3ueiii3j33XdZvnw5F1xwAVu3bmXOnDnceuutFa6fn59Pfv6Ru3BnZGQA4PF48Hg8AewG//6Otl97dDNs+9fTzEjl831ZFBQUYBhGQGuoasfrsbYL9v5APQaDYO8Pgr/HYO8PAt/jiezH0nBz4MABvF4vcXFxZZbHxcWxYcOGCrcZNGgQBw4c4OKLL8Y0TQoLCxkxYsRRD0tNnDiRCRMmlFs+b948wsLCTr2JCiQnJ1e4vH2aSQuKRm7Scj189NmXRDirpIQqd7Qeg0Ww9wfqMRgEe38Q/D0Ge38QuB5zcnIqva6l4eZkLFy4kKeeeorXXnuNzp07s3nzZu677z7++c9/8thjj5Vbf8yYMYwePdr/PCMjgyZNmtCrVy+ioqICWpvH4yE5OZmePXvidJZPLbYVe2DeV7RxHYBCSEy6kAsSYwJaQ1U7Xo+1XbD3B+oxGAR7fxD8PQZ7fxD4HkuOvFSGpeGmfv362O12UlNTyyxPTU2lYcOGFW7z2GOPceutt3L77bcD0KFDB7Kzs7nzzjv5xz/+gc1WdhqR2+3G7XaX24/T6ayyX6ij7rt+CwCa2/cDsP1QHl1b1c5f6qr8+dUEwd4fqMdgEOz9QfD3GOz9QeB6PJF9WDqh2OVy0alTJxYsWOBf5vP5WLBgAV26dKlwm5ycnHIBxm63A2CaNfyqv8XXuonzpgAmW/ZlW1uPiIhIELL8sNTo0aMZOnQo5513HhdccAEvvvgi2dnZDB8+HIAhQ4bQqFEjJk6cCED//v2ZPHkyHTt29B+Weuyxx+jfv78/5NRY0U3BsOH25RBLGpt1rRsREZGAszzc3Hzzzezfv5+xY8eSkpLCOeecw9y5c/2TjHfu3FlmpObRRx/FMAweffRRdu/eTYMGDejfvz9PPvmkVS1UnsMN9VvD/g2cZdvBpn0JVlckIiISdCwPNwCjRo1i1KhRFb62cOHCMs8dDgfjxo1j3Lhx1VBZFWjYoSjcGDtYmHYOOQWFhLlqxMcgIiISFCy/iN9pp2EHAM5x7QJg637NuxEREQkkhZvqFtcegPa2HQCs31v5U9tERETk+BRuqlvxyE28dw9h5LF2V5q19YiIiAQZhZvqFhELEQ0xMDnT2KlwIyIiEmAKN1YoHr05y7aDDSmZ5BZ4LS5IREQkeCjcWKE43Jzr/h2vz+Tn3ekWFyQiIhI8FG6sUHLGlPN3ANbuOmxlNSIiIkFF4cYKxeGmiWcbNnyadyMiIhJAunqcFWLOAGcYTk8OzY29rN0ZZnVFIiIiQUMjN1aw2f3Xu0mybWVPeh6pGXkWFyUiIhIcFG6s0rQzAL3CNwOwZmeahcWIiIgED4UbqzS7GIDzWA/AGk0qFhERCQiFG6s0vRAwqF/wO7EcZvHmA1ZXJCIiEhQUbqwSGg3xZwNwoW09v+zOYH9mvrU1iYiIBAGFGysVH5rqE1k07+a7TfutrEZERCQoKNxYKbErAJ2Nonk3i35TuBERETlVus6NlZp2AQzq5e2gAWks2uTC5zOx2QyrKxMREam1NHJjpbAYiGsHwKXu3ziUXcAve3SfKRERkVOhcGO1xKJ5N9dEbQJ0aEpERORUKdxYrWVPAM4rWI6Bj282KtyIiIicCoUbqzW/FNxRhOXvp6OxmdU7D7MnLdfqqkRERGothRurOVzQqmj0ZmjMr5gmfP7THouLEhERqb0UbmqCM68CoLu5HDD5dK3CjYiIyMlSuKkJWvUEu4uonB2cadvDr3sy2Lwvy+qqREREaiWFm5rAHQlndAPgzth1AHz2o0ZvRERETobCTU1RfGjqcvMHAD5buxvTNK2sSEREpFZSuKkpzrwKbE6i09fT0bmL7QdzWLbtkNVViYiI1DoKNzVFeD1oWzR681DscgDeXrLdwoJERERqJ4WbmqTjrQB0zpyPmwLmrUtlt655IyIickIUbmqSM7pDnabYC9K5N349Xp/Juz/ssLoqERGRWqVGhJspU6aQmJhISEgInTt3Zvny5cdcPy0tjZEjRxIfH4/b7aZ169bMmTOnmqqtQjYbdPwTALc4FgLwwfKd5Hm8FhYlIiJSu1gebj788ENGjx7NuHHjWL16NUlJSfTu3Zt9+/ZVuH5BQQE9e/Zk+/btfPzxx2zcuJE333yTRo0aVXPlVaTjYMCg3v5ldI06wOEcDx+v+t3qqkRERGoNy8PN5MmTueOOOxg+fDhnnXUWr7/+OmFhYUybNq3C9adNm8ahQ4eYPXs2Xbt2JTExkcsuu4ykpKRqrryK1Gnsn1g8od48AKZ8s1mjNyIiIpVkabgpKChg1apV9OjRw7/MZrPRo0cPli5dWuE2n332GV26dGHkyJHExcXRvn17nnrqKbzeIPrjf/EDALRInUvHqAz2pufxwfKdFhclIiJSOzisfPMDBw7g9XqJi4srszwuLo4NGzZUuM3WrVv5+uuvGTx4MHPmzGHz5s3cfffdeDwexo0bV279/Px88vPz/c8zMjIA8Hg8eDyeAHaDf3+nvN/Ys7EnXopt+yKeiltI34yrmfLNZq4/J55Qlz0AlZ68gPVYQwV7f6Aeg0Gw9wfB32Ow9weB7/FE9mOYFl4Gd8+ePTRq1IglS5bQpUsX//KHH36Yb7/9lmXLlpXbpnXr1uTl5bFt2zbs9qI/9JMnT+bZZ59l79695dYfP348EyZMKLd85syZhIWFBbCbwKqf+StdNz9DoeGit+9FtuRHc3VTL1c00lWLRUTk9JOTk8OgQYNIT08nKirqmOtaOnJTv3597HY7qampZZanpqbSsGHDCreJj4/H6XT6gw1A27ZtSUlJoaCgAJfLVWb9MWPGMHr0aP/zjIwMmjRpQq9evY77wzlRHo+H5ORkevbsidPpPLWdmX3xTZ+HY+8apjRfQp8N/fg61c3fbulKbKQ7MAWfhID2WAMFe3+gHoNBsPcHwd9jsPcHge+x5MhLZVgablwuF506dWLBggVce+21APh8PhYsWMCoUaMq3KZr167MnDkTn8+HzVY0Zei3334jPj6+XLABcLvduN3lw4DT6ayyX6iA7bvHWPi/62iz80N6J3Tjqz1hPJe8mRduPufU932KqvLnVxMEe3+gHoNBsPcHwd9jsPcHgevxRPZh+dlSo0eP5s033+Ttt99m/fr13HXXXWRnZzN8+HAAhgwZwpgxY/zr33XXXRw6dIj77ruP3377jS+++IKnnnqKkSNHWtVC1WlxObTsgeHz8EydTzAMmLVmN8u2HrS6MhERkRrL8nBz880389xzzzF27FjOOecc1q5dy9y5c/2TjHfu3FlmLk2TJk346quvWLFiBWeffTb33nsv9913H4888ohVLVStnv8Ew0b0tjk80i4NgEdn/6JTw0VERI7C0sNSJUaNGnXUw1ALFy4st6xLly788MMPVVxVDRF3VtFVi1e/w+0ZU5gW/hib9mXx/LyN/OPKs6yuTkREpMaxfORGKuHysRAag33fr8xsWxTq/v39NpZsOWBxYSIiIjWPwk1tENEA+j4DQIv1r3Hf2V5MEx78z48czi6wuDgREZGaReGmtuhwI7TuA94C7s18gRYxLvak53HvB2vw+nTtGxERkRIKN7WFYcBVL0BIHex7V/OfVvMJddr5btMBnpu30erqREREagyFm9okKgGueQ2Aej++zoyLDwEwdeEWZq/ZbWVlIiIiNYbCTW3T9iroPAKAzmv/wcOdQwB46OMf+W7TfisrExERqREUbmqjno9DQkfIPcRde/7Oje2j8HhNRvzfKn76Pc3q6kRERCylcFMbOdxwy0yIjMfYv4FnfM9zSYtosgu83PrWcn7ZnW51hSIiIpZRuKmtohJg4AfgDMO29RumRc+gU5Mo0nM9DHrzB37+XQFHREROTwo3tVnCOXDDNDDsOH/9D+83/phOTaPJyCtk0Js/sGSzLvInIiKnH4Wb2q5NX7j+DcDAtWYG7zeZRefEaDLzCxk6fTmfrtVZVCIicnpRuAkGHW6Aq18GwLXqTWbG/h/9O8Ti8Zrc98FaJs/biE8X+hMRkdOEwk2wOHcIXPcvMOzYf3qfl43nGNk1HoCXv97MHe+sJD3XY3GRIiIiVU/hJpgk3QK3vAeOEIzf5vLQnvt5rX9DXA4bCzbs48qXv2P1zsNWVykiIlKlFG6CTZu+MPR/EFYf9v5Ivx8GM+c6J01iQvn9cC43vr6Ul+ZvoqDQZ3WlIiIiVULhJhg1uQDuWAANzoTMvbT84maSL/yZ/mfH4/WZvDD/N/q/8j1rNIojIiJBSOEmWNVNhNvnQ/sB4Csk5OuxvFz4OG9c3YCYcBcbUzO5fuoSJvzvV7LzC62uVkREJGAUboKZOxIGvAVXPl80D2frN/RaeB3fdd/KgHPiMU2Yvng7vV5YxKdrd+uMKhERCQoKN8HOMOD82+GuJdC0CxRkET7/YZ7PG8uHNzWkUXQou9Nyue+DtVwzZTFLtujCfyIiUrsp3Jwu6rWAYXOgzzPgDIPt39F5Tj8WnruIR7o3Itxl5+fd6Qx6cxnDpy9n3Z4MqysWERE5KQo3pxObDS4cAXcthuaXQmEeziUvMOLnm/ih716GXtgYh83gm4376ffydwyfvpwV2w9ZXbWIiMgJUbg5HcWcAUM+g5vfg7rNISuVyK/uZ0LKSL4f4KX/2fHYDPhm435ufH0pN76+hG827NOcHBERqRUUbk5XhgFtr4KRy6DXE+CuAyk/0/B/f+KVrNEsvS6Pgec3xmW3sWL7YYbPWMHlzy9k2uLtZOtCxyIiUoMp3JzuHG646B64dzV0GVU0H2fPGuLm3MbEfXez/Np0RlzclMgQB9sP5jBx7m+MW2Xnb5/8wqodhzFNjeaIiEjNonAjRcLrQ+8n4f6f4eLR4IqE1F+I/uIvPLLxRlZdspoXroynbcNIPKbBJ2v2MGDqEi5//lteXrCJXYdyrO5AREQEULiRPwqvDz3Gwf0/QbcxEN4AMvfi+u5prvumF58nTOO5M37i+qQ4Qp12th3IZnLyb1wy6Rtuen0pby/ZTmpGntVdiIjIacxhdQFSQ4XFQLdH4OIHYN1nsOJN2LUM+7pZ3AAMiPo/nr7kJr5xX8E7m5ws2XKQ5dsPsXz7Icb/71c6Na1Ln/YN6d2uIU1iwqzuRkRETiMKN3JsDjecfWPRY++PeJe/he+nj3Bm7Ma15AV68wK9G3Uivdc1fF7Ymf9u8rJ6Zxordxxm5Y7DPPHFelrGRtCtdQO6nxnLeYl1cTvsVnclIiJBTOFGKi8+CV+/55nru4S+LQwcP/8HNs+H3auos3sVgzEY3LQL6X2v4qvCTny82WTVjsNs3pfF5n1Z/Pv7bYS57HRtWZ9ubRpwScsGNIkJxTAMqzsTEZEgonAjJ8xnc2G27Qdn3wBZ++DX2fDLf2HXD7BzCXV2LuEm4KbYs8i/+HLWuM9j1oEmLNiUxoGsfJLXpZK8LhWAhDohdD6jHheeEcOFZ9SjaUyYwo6IiJwShRs5NRGx0PnOokf67/DrLFj3Kfy+Evatw71vHRcCF7oiMFtcyp76XVmQfxaf7XSz9vd09qTnMWvNbmat2Q1Aw6gQLjwjhk7N6tKxaV3aNIzEade8dxERqbwaEW6mTJnCs88+S0pKCklJSbzyyitccMEFx93ugw8+YODAgVxzzTXMnj276guVY6vTuOiaORfdA9kHYes3sCkZtiyA7P0YG+fQaOMchgBD6jSh8LxL2BLRiW/yWjN/t4Mff08jJSOP2Wv3MHvtHgBCnDbObhxNx6bRdGxSl45No4mLCrG2TxERqdEsDzcffvgho0eP5vXXX6dz5868+OKL9O7dm40bNxIbG3vU7bZv386DDz7IJZdcUo3VSqWF14MONxQ9fD5I+bFofs7mr+H3FZC+C8dPM2nDTNoAIyLj8bbrxK7ws1juOYN5h+NZtjufzLxClm87xPJtR+5xVT/CTbuEKNolRHFWQhTtEurQLCYMm02Hs0REpAaEm8mTJ3PHHXcwfPhwAF5//XW++OILpk2bxiOPPFLhNl6vl8GDBzNhwgS+++470tLSqrFiOWE2GyR0LHpc+hAUZMPOpbD1W9j2LaT8DJl7sWd+TiKfkwjcZNgw49qSUS+J3xxn8n1eIvNS67BxXzYHsvL59rf9fPvbfv9bRLgdtI2PpF1CHc5KiKJ1XCQtYyOIcFv+Ky4iItXM0n/5CwoKWLVqFWPGjPEvs9ls9OjRg6VLlx51u8cff5zY2Fj+/Oc/89133x3zPfLz88nPz/c/z8jIAMDj8eDxBPYmSSX7C/R+a5KA9Gi4oNllRY/uQEE2RsqPGLtXYexZXfQ1cw9G6q/USf2V84HzgftdEXhbncO+qPast7dmeW4jlhwIY+O+bLLyC1mx/TArth8u81bxdUJo2SCcVrERtIwNp2WDCFo0CCcq1Fl1/dVw6rH2C/b+IPh7DPb+IPA9nsh+DNPCmwPt2bOHRo0asWTJErp06eJf/vDDD/Ptt9+ybNmyctt8//333HLLLaxdu5b69eszbNgw0tLSjjrnZvz48UyYMKHc8pkzZxIWpovL1VQhBYeom7OFutlbqZuzheicbTh8+eXW89hCyAhpRKqzMVtpwq/eJqzMb8zGvGgyPEc/TBXlNIkNhQYhZtGj+Pv6IeDU/GURkRonJyeHQYMGkZ6eTlRU1DHXrVVj9pmZmdx66628+eab1K9fv1LbjBkzhtGjR/ufZ2Rk0KRJE3r16nXcH86J8ng8JCcn07NnT5zOikcGajurejR9hXj2b8DYvQrbntUYe1bDwU04fXnUy9lCPbZwFnBVyfqR9fHUa8PBsDPYYW/GOk88K7Pqs/qAnZTMAjI8Bhke2JxRNgAZQLTLpE2jGJrXD6dJTCiNo0NpXLfoER3qrPWnquv3tPYL9v4g+HsM9v4g8D2WHHmpDEvDTf369bHb7aSmppZZnpqaSsOGDcutv2XLFrZv307//v39y3w+HwAOh4ONGzfSokWLMtu43W7cbne5fTmdzir7harKfdcU1d+jExp3LHqUKCyAQ1tg3zrYt774sQ4ObcPIOYAr5wDxLCYeuBC4DcBdB2/zM0gPSyTF2Yitvnh+zY9lRWYMGw96ycwv5HCBwQ/bDvPDtsPlqgh32WkSE1Ycdoq++p9HhxEV6qg14Ue/p7VfsPcHwd9jsPcHgevxRPZhabhxuVx06tSJBQsWcO211wJFYWXBggWMGjWq3PpnnnkmP//8c5lljz76KJmZmbz00ks0adKkOsqWmsLhgti2RY/SCnLgwMYjYWffejjwG6Ttgvx07HvXEMMaYuAPoz0N8SQ0YkumC29ce343Y9lUUI9fc6NZmx5OSpaX7AIvG1Iy2ZCSWWFJoU478XVCaFj8KPo+lPioI89jwl21JgCJiNRGlh+WGj16NEOHDuW8887jggsu4MUXXyQ7O9t/9tSQIUNo1KgREydOJCQkhPbt25fZPjo6GqDccjmNucKOnJ1VmicPDm+Dg5vhwCY4uKXo+4ObIOcgRlYKrqwU2gJkLaU90KdkW8OOGZdAbnhj0t0JpNrj2O2NZnt+HTbmRPBTRhjbc1zkerxsPZDN1gPZRy/PbiOujpv4qFAa1gkhNtJNg1KP2MgQGkS6iQ516vR2EZGTYHm4ufnmm9m/fz9jx44lJSWFc845h7lz5xIXFwfAzp07sdk0w1MCwBlS8UgPQM4hOLydwoNb2fjDPM5sGIo943c4vAPSdoI3HyN9F2HpuwgD4oFz/rALMyKEwrA4ckNiyXA24IBRjxQzmh2eaLbmR7IhO4L1WeEUeJ3sOpTLrkO5xyzXYTOoH+EmNspNg4iyAah+hJuYcBf1wl3UDXdRN8yFXUFIRASoAeEGYNSoURUehgJYuHDhMbedMWNG4AuS009YDITFYMZ2YPM2J6379sNecnzX54OsVEjbcSTspO+EjL2QuRcy9kDuIYzCPJwZO3Bm7CAKaFzR+4SANzSG/JA4Ml0NOGSvz34jhr3eaHZ6otmaH8Vv2aFszw2h0GcnJSOPlIy845ZvGBAd6iQm3FXq4faHn3qllke5bXh8gfzhiYjULDUi3IjUaDYbRMUXPZpeWPE6nryioFPyKB18/F9TwJuPPfcQYbmHCGM9cUAF40gQAr6Qunjcdcl1RpNlr0OaUYdDvghSvRHs9USwxxPGzrwwduaFctCM5HAOHM7xsGX/0Q+JHeFg3JoF1A13ER3mJDrURZ1QJ3XCnESHOv3Lokq+L34eHeYkxGk/+Z+liEg1ULgRCQRnCMQ0L3ocjWlC7uE/BJ5SwSdzT1EoyjkImNjyDuPOO4wbiOYoI0EAxScD+hwheFx1yXPVJdteh3RbHdKI5IAvqigQFYSxO9/N7jw3h31hZBSEsbsglN8Pn9hhX5fDVi4A1Ql1EhXqIDLESVSIg8iQku+dxd8XPY8McSgciUiVU7gRqS6G4T/8RcNjTID3FkJeGmQfgJwDRWEn+0DRvKCcA8XfHyx+7VDRc28+tsI83IV7cefspQ6QcLT9lzqb0sSg0BlJgTOSPHskObYIsggnnXDSfKEc8oVysDCU1IJQUgrcpPlCSfdGkJEZxq7MMH7DTdHVgSrP5bAVB6BSwcd9JByVDkIl4SjMZSfC7SC85OGy49Dd4kXkKBRuRGoauwPC6xc9KsM0oSCrOAQdLBV8DpYKSMUhKC8dMy8NX/Yh7KYHAxOnJwOnJ4NwoN6x3qeCS0z4DCcFzojiYBRJthFOphFOhhnGYV8Yh7yhHPSGss8Tyn6Pm2zTTY43hJxsN1lZIezHTQ4h+DjxoOJ22PyBp3T4iXA7CHXa2LfHxob5m4gKdRPhthPmOvJ6uNvuD0oRrqLnCksiwUPhRqS2MwxwRxY96iYed/VCj4c5c+bQr9flOL25kJsGeenFj7TiR/Hzcq+VWm56sZkeQgoOE8Jhoo9ZI+A6Rk22EDz2EPJtoeQRQq4RQo4ZQrbpJst0k+lzkeF1ke51k+VzkU0Iuaab7NwQcnJDyDGLQtJB3GSbIeQUh6ZFKdsq+1PEVRyWQp12Ql12wlx2Qp1FX8NcDkJLPfe/7nIQVrx+qMtOmPPIumHFjxCnHbfDpmsbiVQjhRuR05UjBEIjISL2xLc1zaK7u1cUfI4aitKKLrDoySnatiALzOIrjPvycPjyCCXt2O9rL35UksdwUWALJc8IIZei0JNdHJoyfS4yfG6yfG6ycZNrhpCd5yYn70hYyjHd7COEXH9oKtqH90SKAOw2o1xoKglLIU47IU4bIQ47bmfJMtuR5f517IQ4ip47DJNdWbBpXxaRoW7cTpt/X06NQIko3IjISTAMcEcUPeo0Orl9mCYU5hcFHU92ceDJKQo9BdnFISireFlxGPIHo1KPMtuWhCYvAE6zAKe3gHDSK67BVvw4QUWhKaQoNBmh5JWEH9NNplk0upTldZBjusjHSb7pIq+w+JHtJB8XeTjJw0W66SIVF3mUWrf4+wIcHH1Ok4Pnfl5SbqndZvhDUPmAVBSC3E47IQ47LocNt8OG22nD7SgaYTrysON22nDZy77ucpRat3h5yX4cNkMjVFIjKNyIiDUMo+gsM2cIx5ntc2JME09eNslzZtPzsq44ffmlAlDpUFQqSJUEo+Ot5ysESoemY9zIL0AnhRUYrqIwhYsCnEUBCCc5XjsFhptc00Gur3i5WfzV5yI/30lensu//pHXi5ZllF4fFwU4ivZvFn314KAAB4XYqeykcZtBmbBTPhRVEJKcR5a7SoUrh2GyIdXAs3YPIW4nLrsNp6MobLkcNpx2G067gbv4+yPLbP5lurDl6UvhRkSCi2GAw43HEQl1GkMgb0pYWFDJEaSsolGpwtyiayD5v+aBJ7foa2HeH14r9bUUl1mAyywgvFyfpb5W4dn1PgwKceDBSYHhpMB04MFBvukgHwcFpqNolKl0KCp0UFDopCDXTgHO4ocDT/E6BcXBqQAnuaaDdJx4sBetU7xeSbhavW1P0bLi9/Jgp7D4NQ+OY05Gtxn4Q4+7VPhxlQpELrtRdpn/e6OCZWW3K7+s9P4N/zJHcRBz2otGtxx2G4bPi9cHpmlW3Yd3GlO4ERGpLIcLHDFATNW9R8nhOm9+cUDKK/e1MC+bVcsW0+mc9jjMwrLrlISoo2x79K954C0oes6RP7g2TFx4cOEhvPTfYeMPXy3ixSgThgqxFwekohBUiJ0Cn4PCAnvRa2bR60WBreR7e/H6dn+QKvrejscs+j6nOFR5ircrLF6/5D2L3stGoVn8FXu5hxc7habtyLrY+fuyz8HmwLA7i0NQUQAqGZlyVPDcaTdw2GxllxWv4ygVopyOouWO4uWuUuHKH7bsR9b5YwAreV7yfv59lLyPreg1ew08HKlwIyJSk5Q5XFcx0+MhZWMe5ln9AjsyBUXhyld4JOj4v3qOBC7/9wVFX70FFX9fWFD0vMz3Jfsr3k/p9/B5ivftwfQWkJedQYjTjuH1HNm2eD5VCTsmdsNDCJ4//BwD+2OpDoWmDW+hveJwZP4hJJVe5w+vebDjLXndLLsfD3bySq9jlg9hhcWveUzHkf1UUE/Ja17sYLPjszkwbE6w2akTEc47915l2c9S4UZERI4wDLA7ix6ucgfDqk2hx8O8OXPo168fztIBzucrDkEFxUGooNT3xaHLW3gkKJUKTEXfFwe3css9R0Kd//vi/Zd8X9E2Zbb3Fq3rK9m+sNRzb1Fo8xVi+DwV9uwwfDjwlVx0vKzaFNZMOJAZDSjciIiIHJ/NBjY3OCqMADVeSUbx5Ocxd87n9Ol1BU6bURyCCo8EK5+3VEjyHPt5uSBVwfPicOVfv8x7/XHZsd/L9BZiFr9mlnnNi1G8Tp2wKEt/zgo3IiIi1c1mx2dzgisi8IcWq5jB8QeSbIDHU/EIVXXQ1Z5EREQkqCjciIiISFBRuBEREZGgonAjIiIiQUXhRkRERIKKwo2IiIgEFYUbERERCSoKNyIiIhJUFG5EREQkqCjciIiISFBRuBEREZGgonAjIiIiQUXhRkRERIKKwo2IiIgEFYfVBVQ30zQByMjICPi+PR4POTk5ZGRk4Kxlt7CvrGDvMdj7A/UYDIK9Pwj+HoO9Pwh8jyV/t0v+jh/LaRduMjMzAWjSpInFlYiIiMiJyszMpE6dOsdcxzArE4GCiM/nY8+ePURGRmIYRkD3nZGRQZMmTdi1axdRUVEB3XdNEew9Bnt/oB6DQbD3B8HfY7D3B4Hv0TRNMjMzSUhIwGY79qya027kxmaz0bhx4yp9j6ioqKD9ZS0R7D0Ge3+gHoNBsPcHwd9jsPcHge3xeCM2JTShWERERIKKwo2IiIgEFYWbAHK73YwbNw632211KVUm2HsM9v5APQaDYO8Pgr/HYO8PrO3xtJtQLCIiIsFNIzciIiISVBRuREREJKgo3IiIiEhQUbgRERGRoKJwEyBTpkwhMTGRkJAQOnfuzPLly60u6aRNnDiR888/n8jISGJjY7n22mvZuHFjmXW6deuGYRhlHiNGjLCo4hM3fvz4cvWfeeaZ/tfz8vIYOXIk9erVIyIiggEDBpCammphxScmMTGxXH+GYTBy5Eigdn5+ixYton///iQkJGAYBrNnzy7zummajB07lvj4eEJDQ+nRowebNm0qs86hQ4cYPHgwUVFRREdH8+c//5msrKxq7OLYjtWjx+Phb3/7Gx06dCA8PJyEhASGDBnCnj17yuyjos/+6aefruZOKna8z3DYsGHlau/Tp0+ZdWrzZwhU+N+lYRg8++yz/nVq8mdYmb8Plfn3c+fOnVx55ZWEhYURGxvLQw89RGFhYcDqVLgJgA8//JDRo0czbtw4Vq9eTVJSEr1792bfvn1Wl3ZSvv32W0aOHMkPP/xAcnIyHo+HXr16kZ2dXWa9O+64g7179/ofkyZNsqjik9OuXbsy9X///ff+1x544AH+97//8dFHH/Htt9+yZ88err/+egurPTErVqwo01tycjIAN954o3+d2vb5ZWdnk5SUxJQpUyp8fdKkSbz88su8/vrrLFu2jPDwcHr37k1eXp5/ncGDB/Prr7+SnJzM559/zqJFi7jzzjurq4XjOlaPOTk5rF69mscee4zVq1fzySefsHHjRq6++upy6z7++ONlPtt77rmnOso/ruN9hgB9+vQpU/v7779f5vXa/BkCZXrbu3cv06ZNwzAMBgwYUGa9mvoZVubvw/H+/fR6vVx55ZUUFBSwZMkS3n77bWbMmMHYsWMDV6gpp+yCCy4wR44c6X/u9XrNhIQEc+LEiRZWFTj79u0zAfPbb7/1L7vsssvM++67z7qiTtG4cePMpKSkCl9LS0sznU6n+dFHH/mXrV+/3gTMpUuXVlOFgXXfffeZLVq0MH0+n2matf/zA8xZs2b5n/t8PrNhw4bms88+61+WlpZmut1u8/333zdN0zTXrVtnAuaKFSv863z55ZemYRjm7t27q632yvpjjxVZvny5CZg7duzwL2vWrJn5wgsvVG1xAVBRf0OHDjWvueaao24TjJ/hNddcY15++eVlltWWz9A0y/99qMy/n3PmzDFtNpuZkpLiX2fq1KlmVFSUmZ+fH5C6NHJzigoKCli1ahU9evTwL7PZbPTo0YOlS5daWFngpKenAxATE1Nm+XvvvUf9+vVp3749Y8aMIScnx4ryTtqmTZtISEjgjDPOYPDgwezcuROAVatW4fF4ynymZ555Jk2bNq2Vn2lBQQHvvvsut912W5mbxdb2z6+0bdu2kZKSUuYzq1OnDp07d/Z/ZkuXLiU6OprzzjvPv06PHj2w2WwsW7as2msOhPT0dAzDIDo6uszyp59+mnr16tGxY0eeffbZgA73V7WFCxcSGxtLmzZtuOuuuzh48KD/tWD7DFNTU/niiy/485//XO612vIZ/vHvQ2X+/Vy6dCkdOnQgLi7Ov07v3r3JyMjg119/DUhdp92NMwPtwIEDeL3eMh8SQFxcHBs2bLCoqsDx+Xzcf//9dO3alfbt2/uXDxo0iGbNmpGQkMBPP/3E3/72NzZu3Mgnn3xiYbWV17lzZ2bMmEGbNm3Yu3cvEyZM4JJLLuGXX34hJSUFl8tV7g9GXFwcKSkp1hR8CmbPnk1aWhrDhg3zL6vtn98flXwuFf13WPJaSkoKsbGxZV53OBzExMTUys81Ly+Pv/3tbwwcOLDMTQnvvfdezj33XGJiYliyZAljxoxh7969TJ482cJqK6dPnz5cf/31NG/enC1btvD3v/+dvn37snTpUux2e9B9hm+//TaRkZHlDnnXls+wor8Plfn3MyUlpcL/VkteCwSFGzmmkSNH8ssvv5SZjwKUOcbdoUMH4uPjueKKK9iyZQstWrSo7jJPWN++ff3fn3322XTu3JlmzZrxn//8h9DQUAsrC7y33nqLvn37kpCQ4F9W2z+/053H4+Gmm27CNE2mTp1a5rXRo0f7vz/77LNxuVz85S9/YeLEiTX+Uv+33HKL//sOHTpw9tln06JFCxYuXMgVV1xhYWVVY9q0aQwePJiQkJAyy2vLZ3i0vw81gQ5LnaL69etjt9vLzQRPTU2lYcOGFlUVGKNGjeLzzz/nm2++oXHjxsdct3PnzgBs3ry5OkoLuOjoaFq3bs3mzZtp2LAhBQUFpKWllVmnNn6mO3bsYP78+dx+++3HXK+2f34ln8ux/jts2LBhuUn+hYWFHDp0qFZ9riXBZseOHSQnJ5cZtalI586dKSwsZPv27dVTYACdccYZ1K9f3/97GSyfIcB3333Hxo0bj/vfJtTMz/Bofx8q8+9nw4YNK/xvteS1QFC4OUUul4tOnTqxYMEC/zKfz8eCBQvo0qWLhZWdPNM0GTVqFLNmzeLrr7+mefPmx91m7dq1AMTHx1dxdVUjKyuLLVu2EB8fT6dOnXA6nWU+040bN7Jz585a95lOnz6d2NhYrrzyymOuV9s/v+bNm9OwYcMyn1lGRgbLli3zf2ZdunQhLS2NVatW+df5+uuv8fl8/nBX05UEm02bNjF//nzq1at33G3Wrl2LzWYrdzinNvj99985ePCg//cyGD7DEm+99RadOnUiKSnpuOvWpM/weH8fKvPvZ5cuXfj555/LBNWSoH7WWWcFrFA5RR988IHpdrvNGTNmmOvWrTPvvPNOMzo6usxM8NrkrrvuMuvUqWMuXLjQ3Lt3r/+Rk5NjmqZpbt682Xz88cfNlStXmtu2bTM//fRT84wzzjAvvfRSiyuvvL/+9a/mwoULzW3btpmLFy82e/ToYdavX9/ct2+faZqmOWLECLNp06bm119/ba5cudLs0qWL2aVLF4urPjFer9ds2rSp+be//a3M8tr6+WVmZppr1qwx16xZYwLm5MmTzTVr1vjPFHr66afN6Oho89NPPzV/+ukn85prrjGbN29u5ubm+vfRp08fs2PHjuayZcvM77//3mzVqpU5cOBAq1oq51g9FhQUmFdffbXZuHFjc+3atWX+2yw5w2TJkiXmCy+8YK5du9bcsmWL+e6775oNGjQwhwwZYnFnRY7VX2Zmpvnggw+aS5cuNbdt22bOnz/fPPfcc81WrVqZeXl5/n3U5s+wRHp6uhkWFmZOnTq13PY1/TM83t8H0zz+v5+FhYVm+/btzV69eplr1641586dazZo0MAcM2ZMwOpUuAmQV155xWzatKnpcrnMCy64wPzhhx+sLumkARU+pk+fbpqmae7cudO89NJLzZiYGNPtdpstW7Y0H3roITM9Pd3awk/AzTffbMbHx5sul8ts1KiRefPNN5ubN2/2v56bm2vefffdZt26dc2wsDDzuuuuM/fu3WthxSfuq6++MgFz48aNZZbX1s/vm2++qfD3cujQoaZpFp0O/thjj5lxcXGm2+02r7jiinK9Hzx40Bw4cKAZERFhRkVFmcOHDzczMzMt6KZix+px27ZtR/1v85tvvjFN0zRXrVpldu7c2axTp44ZEhJitm3b1nzqqafKhAMrHau/nJwcs1evXmaDBg1Mp9NpNmvWzLzjjjvK/U9ibf4MS/zrX/8yQ0NDzbS0tHLb1/TP8Hh/H0yzcv9+bt++3ezbt68ZGhpq1q9f3/zrX/9qejyegNVpFBcrIiIiEhQ050ZERESCisKNiIiIBBWFGxEREQkqCjciIiISVBRuREREJKgo3IiIiEhQUbgRERGRoKJwIyKnJcMwmD17ttVliEgVULgRkWo3bNgwDMMo9+jTp4/VpYlIEHBYXYCInJ769OnD9OnTyyxzu90WVSMiwUQjNyJiCbfbTcOGDcs86tatCxQdMpo6dSp9+/YlNDSUM844g48//rjM9j///DOXX345oaGh1KtXjzvvvJOsrKwy60ybNo127drhdruJj49n1KhRZV4/cOAA1113HWFhYbRq1YrPPvvM/9rhw4cZPHgwDRo0IDQ0lFatWpULYyJSMynciEiN9NhjjzFgwAB+/PFHBg8ezC233ML69esByM7Opnfv3tStW5cVK1bw0UcfMX/+/DLhZerUqYwcOZI777yTn3/+mc8++4yWLVuWeY8JEyZw00038dNPP9GvXz8GDx7MoUOH/O+/bt06vvzyS9avX8/UqVOpX79+9f0AROTkBewWnCIilTR06FDTbreb4eHhZR5PPvmkaZpFdx4eMWJEmW06d+5s3nXXXaZpmuYbb7xh1q1b18zKyvK//sUXX5g2m81/F+mEhATzH//4x1FrAMxHH33U/zwrK8sEzC+//NI0TdPs37+/OXz48MA0LCLVSnNuRMQS3bt3Z+rUqWWWxcTE+L/v0qVLmde6dOnC2rVrAVi/fj1JSUmEh4f7X+/atSs+n4+NGzdiGAZ79uzhiiuuOGYNZ599tv/78PBwoqKi2LdvHwB33XUXAwYMYPXq1fTq1Ytrr72Wiy666KR6FZHqpXAjIpYIDw8vd5goUEJDQyu1ntPpLPPcMAx8Ph8Affv2ZceOHcyZM4fk5GSuuOIKRo4cyXPPPRfwekUksDTnRkRqpB9++KHc87Zt2wLQtm1bfvzxR7Kzs/2vL168GJvNRps2bYiMjCQxMZEFCxacUg0NGjRg6NChvPvuu7z44ou88cYbp7Q/EakeGrkREUvk5+eTkpJSZpnD4fBP2v3oo48477zzuPjii3nvvfdYvnw5b731FgCDBw9m3LhxDB06lPHjx7N//37uuecebr31VuLi4gAYP348I0aMIDY2lr59+5KZmcnixYu55557KlXf2LFj6dSpE+3atSM/P5/PP//cH65EpGZTuBERS8ydO5f4+Pgyy9q0acOGDRuAojOZPvjgA+6++27i4+N5//33OeusswAICwvjq6++4r777uP8888nLCyMAQMGMHnyZP++hg4dSl5eHi+88AIPPvgg9evX54Ybbqh0fS6XizFjxrB9+3ZCQ0O55JJL+OCDDwLQuYhUNcM0TdPqIkRESjMMg1mzZnHttddaXYqI1EKacyMiIiJBReFGREREgorm3IhIjaOj5SJyKjRyIyIiIkFF4UZERESCisKNiIiIBBWFGxEREQkqCjciIiISVBRuREREJKgo3IiIiEhQUbgRERGRoKJwIyIiIkHl/wHqi66/luumgwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 4ms/step - accuracy: 0.9166 - loss: 0.3058\n","Loss on test data: 0.31511011719703674\n","Accuracy on test data: 0.9151999950408936\n"]}]},{"cell_type":"code","execution_count":17,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":93731,"status":"ok","timestamp":1760536812600,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"},"user_tz":-180},"outputId":"1210f569-1e36-4b4f-cf64-04b58d764a3a","id":"I9LpWl31aIKo"},"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_1\"\u001b[0m\n"],"text/html":["
Model: \"sequential_1\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_1 (Dense)                 │ (None, 100)            │        78,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_2 (Dense)                 │ (None, 10)             │         1,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"],"text/html":["
 Total params: 79,510 (310.59 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"],"text/html":["
 Trainable params: 79,510 (310.59 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 21ms/step - accuracy: 0.1505 - loss: 2.3318 - val_accuracy: 0.4090 - val_loss: 2.1818\n","Epoch 2/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4761 - loss: 2.1471 - val_accuracy: 0.5975 - val_loss: 2.0553\n","Epoch 3/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6142 - loss: 2.0241 - val_accuracy: 0.6650 - val_loss: 1.9354\n","Epoch 4/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6729 - loss: 1.9040 - val_accuracy: 0.7038 - val_loss: 1.8204\n","Epoch 5/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7064 - loss: 1.7934 - val_accuracy: 0.7268 - val_loss: 1.7107\n","Epoch 6/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7272 - loss: 1.6876 - val_accuracy: 0.7463 - val_loss: 1.6071\n","Epoch 7/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7443 - loss: 1.5841 - val_accuracy: 0.7620 - val_loss: 1.5105\n","Epoch 8/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7597 - loss: 1.4893 - val_accuracy: 0.7747 - val_loss: 1.4213\n","Epoch 9/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7672 - loss: 1.4063 - val_accuracy: 0.7865 - val_loss: 1.3396\n","Epoch 10/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7777 - loss: 1.3252 - val_accuracy: 0.7937 - val_loss: 1.2654\n","Epoch 11/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7878 - loss: 1.2556 - val_accuracy: 0.7982 - val_loss: 1.1985\n","Epoch 12/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7930 - loss: 1.1913 - val_accuracy: 0.8068 - val_loss: 1.1377\n","Epoch 13/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7997 - loss: 1.1307 - val_accuracy: 0.8128 - val_loss: 1.0831\n","Epoch 14/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8055 - loss: 1.0794 - val_accuracy: 0.8175 - val_loss: 1.0341\n","Epoch 15/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8108 - loss: 1.0317 - val_accuracy: 0.8190 - val_loss: 0.9895\n","Epoch 16/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8165 - loss: 0.9865 - val_accuracy: 0.8240 - val_loss: 0.9496\n","Epoch 17/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8202 - loss: 0.9495 - val_accuracy: 0.8295 - val_loss: 0.9131\n","Epoch 18/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8245 - loss: 0.9130 - val_accuracy: 0.8335 - val_loss: 0.8802\n","Epoch 19/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8306 - loss: 0.8769 - val_accuracy: 0.8370 - val_loss: 0.8502\n","Epoch 20/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8321 - loss: 0.8515 - val_accuracy: 0.8405 - val_loss: 0.8226\n","Epoch 21/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8314 - loss: 0.8271 - val_accuracy: 0.8438 - val_loss: 0.7975\n","Epoch 22/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8383 - loss: 0.7967 - val_accuracy: 0.8452 - val_loss: 0.7744\n","Epoch 23/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8387 - loss: 0.7776 - val_accuracy: 0.8468 - val_loss: 0.7529\n","Epoch 24/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8418 - loss: 0.7579 - val_accuracy: 0.8478 - val_loss: 0.7334\n","Epoch 25/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8422 - loss: 0.7397 - val_accuracy: 0.8512 - val_loss: 0.7151\n","Epoch 26/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8485 - loss: 0.7174 - val_accuracy: 0.8530 - val_loss: 0.6981\n","Epoch 27/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8463 - loss: 0.7102 - val_accuracy: 0.8545 - val_loss: 0.6824\n","Epoch 28/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8497 - loss: 0.6902 - val_accuracy: 0.8548 - val_loss: 0.6679\n","Epoch 29/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8526 - loss: 0.6766 - val_accuracy: 0.8572 - val_loss: 0.6539\n","Epoch 30/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8530 - loss: 0.6643 - val_accuracy: 0.8595 - val_loss: 0.6411\n","Epoch 31/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8558 - loss: 0.6491 - val_accuracy: 0.8618 - val_loss: 0.6290\n","Epoch 32/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8571 - loss: 0.6349 - val_accuracy: 0.8625 - val_loss: 0.6176\n","Epoch 33/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8576 - loss: 0.6273 - val_accuracy: 0.8638 - val_loss: 0.6069\n","Epoch 34/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8595 - loss: 0.6168 - val_accuracy: 0.8657 - val_loss: 0.5969\n","Epoch 35/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8581 - loss: 0.6056 - val_accuracy: 0.8675 - val_loss: 0.5872\n","Epoch 36/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8630 - loss: 0.5946 - val_accuracy: 0.8687 - val_loss: 0.5781\n","Epoch 37/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8589 - loss: 0.5929 - val_accuracy: 0.8703 - val_loss: 0.5695\n","Epoch 38/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8641 - loss: 0.5789 - val_accuracy: 0.8707 - val_loss: 0.5613\n","Epoch 39/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8626 - loss: 0.5762 - val_accuracy: 0.8722 - val_loss: 0.5536\n","Epoch 40/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8643 - loss: 0.5660 - val_accuracy: 0.8732 - val_loss: 0.5463\n","Epoch 41/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8671 - loss: 0.5552 - val_accuracy: 0.8738 - val_loss: 0.5393\n","Epoch 42/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8686 - loss: 0.5478 - val_accuracy: 0.8760 - val_loss: 0.5326\n","Epoch 43/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8685 - loss: 0.5413 - val_accuracy: 0.8765 - val_loss: 0.5262\n","Epoch 44/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8705 - loss: 0.5346 - val_accuracy: 0.8777 - val_loss: 0.5200\n","Epoch 45/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8744 - loss: 0.5244 - val_accuracy: 0.8787 - val_loss: 0.5142\n","Epoch 46/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8722 - loss: 0.5249 - val_accuracy: 0.8802 - val_loss: 0.5086\n","Epoch 47/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8735 - loss: 0.5182 - val_accuracy: 0.8812 - val_loss: 0.5034\n","Epoch 48/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8750 - loss: 0.5123 - val_accuracy: 0.8822 - val_loss: 0.4979\n","Epoch 49/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8758 - loss: 0.5054 - val_accuracy: 0.8830 - val_loss: 0.4929\n","Epoch 50/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8742 - loss: 0.5039 - val_accuracy: 0.8847 - val_loss: 0.4882\n","Epoch 51/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8752 - loss: 0.4980 - val_accuracy: 0.8850 - val_loss: 0.4835\n","Epoch 52/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8765 - loss: 0.4941 - val_accuracy: 0.8855 - val_loss: 0.4791\n","Epoch 53/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8789 - loss: 0.4865 - val_accuracy: 0.8862 - val_loss: 0.4749\n","Epoch 54/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8801 - loss: 0.4820 - val_accuracy: 0.8877 - val_loss: 0.4707\n","Epoch 55/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8781 - loss: 0.4815 - val_accuracy: 0.8880 - val_loss: 0.4669\n","Epoch 56/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8811 - loss: 0.4737 - val_accuracy: 0.8887 - val_loss: 0.4631\n","Epoch 57/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8783 - loss: 0.4770 - val_accuracy: 0.8895 - val_loss: 0.4593\n","Epoch 58/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8823 - loss: 0.4652 - val_accuracy: 0.8915 - val_loss: 0.4557\n","Epoch 59/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8814 - loss: 0.4652 - val_accuracy: 0.8920 - val_loss: 0.4523\n","Epoch 60/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8796 - loss: 0.4694 - val_accuracy: 0.8918 - val_loss: 0.4491\n","Epoch 61/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8817 - loss: 0.4564 - val_accuracy: 0.8927 - val_loss: 0.4458\n","Epoch 62/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8812 - loss: 0.4577 - val_accuracy: 0.8933 - val_loss: 0.4426\n","Epoch 63/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8843 - loss: 0.4529 - val_accuracy: 0.8950 - val_loss: 0.4396\n","Epoch 64/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8853 - loss: 0.4466 - val_accuracy: 0.8962 - val_loss: 0.4365\n","Epoch 65/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8841 - loss: 0.4467 - val_accuracy: 0.8958 - val_loss: 0.4338\n","Epoch 66/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8851 - loss: 0.4427 - val_accuracy: 0.8965 - val_loss: 0.4310\n","Epoch 67/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8852 - loss: 0.4412 - val_accuracy: 0.8965 - val_loss: 0.4283\n","Epoch 68/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8838 - loss: 0.4410 - val_accuracy: 0.8975 - val_loss: 0.4257\n","Epoch 69/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8857 - loss: 0.4325 - val_accuracy: 0.8982 - val_loss: 0.4230\n","Epoch 70/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8852 - loss: 0.4351 - val_accuracy: 0.8982 - val_loss: 0.4206\n","Epoch 71/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8863 - loss: 0.4293 - val_accuracy: 0.8990 - val_loss: 0.4182\n","Epoch 72/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8863 - loss: 0.4259 - val_accuracy: 0.8997 - val_loss: 0.4158\n","Epoch 73/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8865 - loss: 0.4276 - val_accuracy: 0.8995 - val_loss: 0.4136\n","Epoch 74/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8881 - loss: 0.4235 - val_accuracy: 0.9003 - val_loss: 0.4114\n","Epoch 75/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8883 - loss: 0.4191 - val_accuracy: 0.9007 - val_loss: 0.4092\n","Epoch 76/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8871 - loss: 0.4231 - val_accuracy: 0.9008 - val_loss: 0.4072\n","Epoch 77/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8886 - loss: 0.4205 - val_accuracy: 0.9012 - val_loss: 0.4051\n","Epoch 78/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8890 - loss: 0.4139 - val_accuracy: 0.9007 - val_loss: 0.4032\n","Epoch 79/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8889 - loss: 0.4113 - val_accuracy: 0.9015 - val_loss: 0.4012\n","Epoch 80/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8914 - loss: 0.4130 - val_accuracy: 0.9015 - val_loss: 0.3993\n","Epoch 81/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8917 - loss: 0.4061 - val_accuracy: 0.9023 - val_loss: 0.3975\n","Epoch 82/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8891 - loss: 0.4073 - val_accuracy: 0.9025 - val_loss: 0.3956\n","Epoch 83/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8893 - loss: 0.4055 - val_accuracy: 0.9028 - val_loss: 0.3938\n","Epoch 84/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8913 - loss: 0.4045 - val_accuracy: 0.9028 - val_loss: 0.3921\n","Epoch 85/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8908 - loss: 0.4000 - val_accuracy: 0.9028 - val_loss: 0.3903\n","Epoch 86/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8924 - loss: 0.3993 - val_accuracy: 0.9033 - val_loss: 0.3888\n","Epoch 87/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8946 - loss: 0.3935 - val_accuracy: 0.9032 - val_loss: 0.3871\n","Epoch 88/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8917 - loss: 0.3967 - val_accuracy: 0.9033 - val_loss: 0.3856\n","Epoch 89/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8922 - loss: 0.3957 - val_accuracy: 0.9030 - val_loss: 0.3841\n","Epoch 90/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8919 - loss: 0.3979 - val_accuracy: 0.9040 - val_loss: 0.3826\n","Epoch 91/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8919 - loss: 0.3944 - val_accuracy: 0.9040 - val_loss: 0.3811\n","Epoch 92/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8941 - loss: 0.3888 - val_accuracy: 0.9040 - val_loss: 0.3796\n","Epoch 93/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8924 - loss: 0.3858 - val_accuracy: 0.9045 - val_loss: 0.3782\n","Epoch 94/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8931 - loss: 0.3881 - val_accuracy: 0.9038 - val_loss: 0.3767\n","Epoch 95/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8954 - loss: 0.3809 - val_accuracy: 0.9048 - val_loss: 0.3753\n","Epoch 96/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8944 - loss: 0.3877 - val_accuracy: 0.9043 - val_loss: 0.3740\n","Epoch 97/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8954 - loss: 0.3804 - val_accuracy: 0.9048 - val_loss: 0.3727\n","Epoch 98/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8953 - loss: 0.3848 - val_accuracy: 0.9048 - val_loss: 0.3715\n","Epoch 99/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8953 - loss: 0.3786 - val_accuracy: 0.9053 - val_loss: 0.3702\n","Epoch 100/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8938 - loss: 0.3813 - val_accuracy: 0.9058 - val_loss: 0.3688\n","Epoch 101/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8964 - loss: 0.3772 - val_accuracy: 0.9057 - val_loss: 0.3678\n","Epoch 102/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8971 - loss: 0.3729 - val_accuracy: 0.9063 - val_loss: 0.3665\n","Epoch 103/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8960 - loss: 0.3783 - val_accuracy: 0.9070 - val_loss: 0.3653\n","Epoch 104/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8973 - loss: 0.3732 - val_accuracy: 0.9068 - val_loss: 0.3642\n","Epoch 105/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8977 - loss: 0.3718 - val_accuracy: 0.9070 - val_loss: 0.3631\n","Epoch 106/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8986 - loss: 0.3684 - val_accuracy: 0.9067 - val_loss: 0.3620\n","Epoch 107/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8971 - loss: 0.3720 - val_accuracy: 0.9067 - val_loss: 0.3609\n","Epoch 108/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8970 - loss: 0.3730 - val_accuracy: 0.9068 - val_loss: 0.3597\n","Epoch 109/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8960 - loss: 0.3732 - val_accuracy: 0.9072 - val_loss: 0.3587\n","Epoch 110/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8971 - loss: 0.3667 - val_accuracy: 0.9080 - val_loss: 0.3576\n","Epoch 111/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8972 - loss: 0.3704 - val_accuracy: 0.9085 - val_loss: 0.3566\n","Epoch 112/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8996 - loss: 0.3614 - val_accuracy: 0.9092 - val_loss: 0.3556\n","Epoch 113/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8988 - loss: 0.3648 - val_accuracy: 0.9092 - val_loss: 0.3547\n","Epoch 114/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8998 - loss: 0.3596 - val_accuracy: 0.9092 - val_loss: 0.3536\n","Epoch 115/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9008 - loss: 0.3591 - val_accuracy: 0.9098 - val_loss: 0.3526\n","Epoch 116/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8998 - loss: 0.3594 - val_accuracy: 0.9098 - val_loss: 0.3517\n","Epoch 117/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8977 - loss: 0.3644 - val_accuracy: 0.9097 - val_loss: 0.3508\n","Epoch 118/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9009 - loss: 0.3554 - val_accuracy: 0.9100 - val_loss: 0.3499\n","Epoch 119/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8995 - loss: 0.3597 - val_accuracy: 0.9102 - val_loss: 0.3490\n","Epoch 120/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9015 - loss: 0.3577 - val_accuracy: 0.9103 - val_loss: 0.3480\n","Epoch 121/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8993 - loss: 0.3600 - val_accuracy: 0.9107 - val_loss: 0.3472\n","Epoch 122/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9028 - loss: 0.3512 - val_accuracy: 0.9103 - val_loss: 0.3464\n","Epoch 123/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9015 - loss: 0.3564 - val_accuracy: 0.9105 - val_loss: 0.3455\n","Epoch 124/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9029 - loss: 0.3472 - val_accuracy: 0.9108 - val_loss: 0.3446\n","Epoch 125/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9012 - loss: 0.3531 - val_accuracy: 0.9103 - val_loss: 0.3440\n","Epoch 126/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9011 - loss: 0.3531 - val_accuracy: 0.9110 - val_loss: 0.3431\n","Epoch 127/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9013 - loss: 0.3541 - val_accuracy: 0.9108 - val_loss: 0.3423\n","Epoch 128/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9008 - loss: 0.3512 - val_accuracy: 0.9112 - val_loss: 0.3414\n","Epoch 129/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9026 - loss: 0.3459 - val_accuracy: 0.9117 - val_loss: 0.3406\n","Epoch 130/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9014 - loss: 0.3531 - val_accuracy: 0.9110 - val_loss: 0.3399\n","Epoch 131/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9020 - loss: 0.3498 - val_accuracy: 0.9110 - val_loss: 0.3392\n","Epoch 132/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9025 - loss: 0.3465 - val_accuracy: 0.9117 - val_loss: 0.3384\n","Epoch 133/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9027 - loss: 0.3439 - val_accuracy: 0.9122 - val_loss: 0.3376\n","Epoch 134/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9024 - loss: 0.3465 - val_accuracy: 0.9117 - val_loss: 0.3370\n","Epoch 135/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9043 - loss: 0.3420 - val_accuracy: 0.9125 - val_loss: 0.3362\n","Epoch 136/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9026 - loss: 0.3431 - val_accuracy: 0.9120 - val_loss: 0.3354\n","Epoch 137/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9067 - loss: 0.3375 - val_accuracy: 0.9118 - val_loss: 0.3346\n","Epoch 138/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9049 - loss: 0.3392 - val_accuracy: 0.9123 - val_loss: 0.3341\n","Epoch 139/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9047 - loss: 0.3418 - val_accuracy: 0.9127 - val_loss: 0.3335\n","Epoch 140/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9033 - loss: 0.3448 - val_accuracy: 0.9123 - val_loss: 0.3327\n","Epoch 141/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9040 - loss: 0.3404 - val_accuracy: 0.9125 - val_loss: 0.3320\n","Epoch 142/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9041 - loss: 0.3421 - val_accuracy: 0.9130 - val_loss: 0.3314\n","Epoch 143/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9061 - loss: 0.3345 - val_accuracy: 0.9128 - val_loss: 0.3307\n","Epoch 144/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9075 - loss: 0.3336 - val_accuracy: 0.9128 - val_loss: 0.3301\n","Epoch 145/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9059 - loss: 0.3358 - val_accuracy: 0.9132 - val_loss: 0.3295\n","Epoch 146/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9061 - loss: 0.3380 - val_accuracy: 0.9133 - val_loss: 0.3287\n","Epoch 147/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9067 - loss: 0.3318 - val_accuracy: 0.9135 - val_loss: 0.3281\n","Epoch 148/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9073 - loss: 0.3311 - val_accuracy: 0.9138 - val_loss: 0.3274\n","Epoch 149/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9069 - loss: 0.3329 - val_accuracy: 0.9143 - val_loss: 0.3270\n","Epoch 150/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9038 - loss: 0.3382 - val_accuracy: 0.9147 - val_loss: 0.3263\n","Epoch 151/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9038 - loss: 0.3352 - val_accuracy: 0.9147 - val_loss: 0.3256\n","Epoch 152/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9068 - loss: 0.3308 - val_accuracy: 0.9143 - val_loss: 0.3251\n","Epoch 153/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9064 - loss: 0.3305 - val_accuracy: 0.9152 - val_loss: 0.3245\n","Epoch 154/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9070 - loss: 0.3270 - val_accuracy: 0.9153 - val_loss: 0.3238\n","Epoch 155/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9050 - loss: 0.3377 - val_accuracy: 0.9157 - val_loss: 0.3232\n","Epoch 156/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9071 - loss: 0.3292 - val_accuracy: 0.9155 - val_loss: 0.3228\n","Epoch 157/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9050 - loss: 0.3347 - val_accuracy: 0.9155 - val_loss: 0.3223\n","Epoch 158/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9074 - loss: 0.3280 - val_accuracy: 0.9158 - val_loss: 0.3217\n","Epoch 159/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9090 - loss: 0.3284 - val_accuracy: 0.9160 - val_loss: 0.3211\n","Epoch 160/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9058 - loss: 0.3308 - val_accuracy: 0.9162 - val_loss: 0.3205\n","Epoch 161/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9097 - loss: 0.3210 - val_accuracy: 0.9165 - val_loss: 0.3200\n","Epoch 162/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9068 - loss: 0.3305 - val_accuracy: 0.9163 - val_loss: 0.3194\n","Epoch 163/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9081 - loss: 0.3294 - val_accuracy: 0.9167 - val_loss: 0.3188\n","Epoch 164/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9090 - loss: 0.3228 - val_accuracy: 0.9168 - val_loss: 0.3183\n","Epoch 165/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9089 - loss: 0.3261 - val_accuracy: 0.9163 - val_loss: 0.3178\n","Epoch 166/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9084 - loss: 0.3239 - val_accuracy: 0.9167 - val_loss: 0.3173\n","Epoch 167/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9069 - loss: 0.3304 - val_accuracy: 0.9168 - val_loss: 0.3170\n","Epoch 168/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.9097 - loss: 0.3196 - val_accuracy: 0.9170 - val_loss: 0.3164\n","Epoch 169/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9095 - loss: 0.3187 - val_accuracy: 0.9168 - val_loss: 0.3158\n","Epoch 170/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9082 - loss: 0.3226 - val_accuracy: 0.9168 - val_loss: 0.3153\n","Epoch 171/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9111 - loss: 0.3191 - val_accuracy: 0.9170 - val_loss: 0.3148\n","Epoch 172/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9116 - loss: 0.3160 - val_accuracy: 0.9175 - val_loss: 0.3143\n","Epoch 173/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9102 - loss: 0.3206 - val_accuracy: 0.9175 - val_loss: 0.3138\n","Epoch 174/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9097 - loss: 0.3201 - val_accuracy: 0.9175 - val_loss: 0.3134\n","Epoch 175/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9093 - loss: 0.3207 - val_accuracy: 0.9175 - val_loss: 0.3129\n","Epoch 176/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9083 - loss: 0.3236 - val_accuracy: 0.9178 - val_loss: 0.3125\n","Epoch 177/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9090 - loss: 0.3209 - val_accuracy: 0.9177 - val_loss: 0.3119\n","Epoch 178/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9117 - loss: 0.3162 - val_accuracy: 0.9183 - val_loss: 0.3114\n","Epoch 179/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9093 - loss: 0.3229 - val_accuracy: 0.9185 - val_loss: 0.3110\n","Epoch 180/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9087 - loss: 0.3224 - val_accuracy: 0.9182 - val_loss: 0.3106\n","Epoch 181/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9093 - loss: 0.3178 - val_accuracy: 0.9183 - val_loss: 0.3102\n","Epoch 182/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9099 - loss: 0.3174 - val_accuracy: 0.9187 - val_loss: 0.3096\n","Epoch 183/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9098 - loss: 0.3159 - val_accuracy: 0.9187 - val_loss: 0.3092\n","Epoch 184/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9089 - loss: 0.3225 - val_accuracy: 0.9188 - val_loss: 0.3087\n","Epoch 185/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9135 - loss: 0.3091 - val_accuracy: 0.9185 - val_loss: 0.3083\n","Epoch 186/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9105 - loss: 0.3172 - val_accuracy: 0.9190 - val_loss: 0.3079\n","Epoch 187/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9112 - loss: 0.3129 - val_accuracy: 0.9192 - val_loss: 0.3075\n","Epoch 188/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9116 - loss: 0.3125 - val_accuracy: 0.9190 - val_loss: 0.3070\n","Epoch 189/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9107 - loss: 0.3117 - val_accuracy: 0.9192 - val_loss: 0.3067\n","Epoch 190/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9107 - loss: 0.3140 - val_accuracy: 0.9193 - val_loss: 0.3062\n","Epoch 191/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9102 - loss: 0.3137 - val_accuracy: 0.9193 - val_loss: 0.3057\n","Epoch 192/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9139 - loss: 0.3047 - val_accuracy: 0.9197 - val_loss: 0.3053\n","Epoch 193/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9114 - loss: 0.3108 - val_accuracy: 0.9200 - val_loss: 0.3049\n","Epoch 194/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9123 - loss: 0.3110 - val_accuracy: 0.9197 - val_loss: 0.3045\n","Epoch 195/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9131 - loss: 0.3042 - val_accuracy: 0.9202 - val_loss: 0.3042\n","Epoch 196/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9126 - loss: 0.3071 - val_accuracy: 0.9198 - val_loss: 0.3037\n","Epoch 197/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9128 - loss: 0.3069 - val_accuracy: 0.9198 - val_loss: 0.3034\n","Epoch 198/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9127 - loss: 0.3055 - val_accuracy: 0.9207 - val_loss: 0.3029\n","Epoch 199/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9134 - loss: 0.3062 - val_accuracy: 0.9208 - val_loss: 0.3025\n","Epoch 200/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9120 - loss: 0.3099 - val_accuracy: 0.9203 - val_loss: 0.3021\n"]}],"source":["model_2l_100 = Sequential()\n","model_2l_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n","model_2l_100.add(Dense(units=num_classes, activation='softmax'))\n","model_2l_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","model_2l_100.summary()\n","\n","H_2l_100=model_2l_100.fit(X_train,y_train,batch_size =512, validation_split=0.1,epochs=200)"]},{"cell_type":"code","source":["plt.plot(H_2l_100.history['loss'])\n","plt.plot(H_2l_100.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss','val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","scores=model_2l_100.evaluate(X_test,y_test);\n","print('Loss on test data:',scores[0]);\n","print('Accuracy on test data:',scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":524},"id":"PQYE0zdOcJVe","executionInfo":{"status":"ok","timestamp":1760536814263,"user_tz":-180,"elapsed":1658,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"529c1c51-dd67-4b15-f417-bd7462003a9b"},"execution_count":18,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcp5JREFUeJzt3Xd4VFX+x/H3nUkyyaSHkEYNvUdBZRELSgngqthBVspaVgUba1n8KU1XrIiurrhrwV1FXAu4q4KGEhAJIE1BAek1CRBIQvokc39/JBkZEyCBJJNMPq/nuU8y9545c74ZTD6ee+4dwzRNExEREZFGxOLpAYiIiIjUNQUgERERaXQUgERERKTRUQASERGRRkcBSERERBodBSARERFpdBSAREREpNFRABIREZFGRwFIREREGh0FIBGp98aMGUNQUJCnh+FxhmEwfvx4Tw9DxCsoAIk0YrNnz8YwDNauXevpoYiI1CkFIBEREWl0FIBERESk0VEAEpEz2rBhA0OGDCEkJISgoCD69+/PqlWr3No4HA6mTp1K+/bt8ff3p0mTJlxyySUkJSW52qSlpTF27FiaN2+OzWYjNjaWa6+9lj179lRpHLt27SIxMZHAwEDi4uKYNm0apmkCYJomrVu35tprr63wvIKCAkJDQ/nTn/50xtd4//336dWrFwEBAURERDB8+HD279/v1qZfv35069aNdevWcfHFFxMQEEB8fDyzZs2q0N/hw4e5/fbbiY6Oxt/fn4SEBN57770K7ZxOJ6+88grdu3fH39+fpk2bMnjw4EpPT86fP59u3bphs9no2rUrCxcudDt+4sQJHnzwQVq3bo3NZiMqKoqBAweyfv36M9Yv0lgoAInIaf30009ceuml/PDDDzz66KM8+eST7N69m379+rF69WpXuylTpjB16lSuuOIKXnvtNf7v//6Pli1buv3RveGGG5g3bx5jx47l73//O/fffz8nTpxg3759ZxxHSUkJgwcPJjo6mueff55evXoxefJkJk+eDJQuEP7DH/7AggULOHbsmNtz//e//5Gdnc0f/vCH077GX//6V0aNGkX79u2ZMWMGDz74IIsXL+ayyy4jMzPTre3x48cZOnQovXr14vnnn6d58+bcc889vPPOO642+fn59OvXj3//+9+MHDmSF154gdDQUMaMGcMrr7zi1t/tt9/Ogw8+SIsWLXjuuef4y1/+gr+/f4WguWLFCu69916GDx/O888/T0FBATfccAMZGRmuNnfffTdvvPEGN9xwA3//+995+OGHCQgIYMuWLWf8OYs0GqaINFrvvvuuCZjff//9KdsMGzbM9PPzM3fu3Onad+jQITM4ONi87LLLXPsSEhLMq6666pT9HD9+3ATMF154odrjHD16tAmY9913n2uf0+k0r7rqKtPPz888cuSIaZqmuW3bNhMw33jjDbfnX3PNNWbr1q1Np9N5ytfYs2ePabVazb/+9a9u+zdt2mT6+Pi47b/88stNwHzppZdc+woLC83zzjvPjIqKMouKikzTNM2ZM2eagPn++++72hUVFZl9+vQxg4KCzOzsbNM0TXPJkiUmYN5///0VxnXymAHTz8/P3LFjh2vfDz/8YALm3/72N9e+0NBQc9y4caesVURMUzNAInJKJSUlfPPNNwwbNow2bdq49sfGxnLrrbeyYsUKsrOzAQgLC+Onn35i+/btlfYVEBCAn58fycnJHD9+/KzGc/Il4OWXhBcVFbFo0SIAOnToQO/evfnggw9c7Y4dO8aCBQsYOXIkhmGcsu/PPvsMp9PJzTffzNGjR11bTEwM7du3Z+nSpW7tfXx83E6p+fn58ac//YnDhw+zbt06AL766itiYmIYMWKEq52vry/3338/OTk5LFu2DIBPP/0UwzBcs1kn++2YBwwYQNu2bV2Pe/ToQUhICLt27XLtCwsLY/Xq1Rw6dOiU9Yo0dgpAInJKR44cIS8vj44dO1Y41rlzZ5xOp2t9zLRp08jMzKRDhw50796dRx55hB9//NHV3maz8dxzz7FgwQKio6O57LLLeP7550lLS6vSWCwWi1sIg9LAA7itIRo1ahTfffcde/fuBeDjjz/G4XBw2223nbb/7du3Y5om7du3p2nTpm7bli1bOHz4sFv7uLg4AgMDTzuevXv30r59eywW91+1nTt3dh0H2LlzJ3FxcURERJzpx0DLli0r7AsPD3cLlc8//zybN2+mRYsWXHTRRUyZMsUtIImIApCI1JDLLruMnTt38s4779CtWzfeeustevbsyVtvveVq8+CDD/LLL78wffp0/P39efLJJ+ncuTMbNmyosXEMHz4cX19f1yzQ+++/zwUXXFBpiDuZ0+nEMAwWLlxIUlJShe3NN9+ssTGeC6vVWul+s2wxOMDNN9/Mrl27+Nvf/kZcXBwvvPACXbt2ZcGCBXU1TJF6TwFIRE6padOm2O12tm3bVuHY1q1bsVgstGjRwrUvIiKCsWPH8uGHH7J//3569OjBlClT3J7Xtm1b/vznP/PNN9+wefNmioqKeOmll844FqfTWWEW45dffgGgdevWbmO46qqr+OCDD9i7dy/ffffdGWd/ysdlmibx8fEMGDCgwva73/3Orf2hQ4fIzc097XhatWrF9u3bcTqdbu22bt3qOl7+2ocOHaqwePtcxMbGcu+99zJ//nx2795NkyZN+Otf/1pj/Ys0dApAInJKVquVQYMG8fnnn7udZkpPT2fOnDlccsklhISEALhdhQQQFBREu3btKCwsBCAvL4+CggK3Nm3btiU4ONjV5kxee+011/emafLaa6/h6+tL//793drddttt/PzzzzzyyCNYrVaGDx9+xr6vv/56rFYrU6dOdZtNKX+t39ZXXFzsNitUVFTEm2++SdOmTenVqxcAQ4cOJS0tjY8++sjteX/7298ICgri8ssvB0qvjjNNk6lTp1YY12/HciYlJSVkZWW57YuKiiIuLq7KP2eRxsDH0wMQEc975513KtxLBuCBBx7g6aefJikpiUsuuYR7770XHx8f3nzzTQoLC3n++eddbbt06UK/fv3o1asXERERrF27lk8++cS1cPmXX36hf//+3HzzzXTp0gUfHx/mzZtHenp6lQKKv78/CxcuZPTo0fTu3ZsFCxbw5Zdf8vjjj9O0aVO3tldddRVNmjTh448/ZsiQIURFRZ2x/7Zt2/L0008zceJE9uzZw7BhwwgODmb37t3MmzePu+66i4cfftjVPi4ujueee449e/bQoUMHPvroIzZu3Mg//vEPfH19Abjrrrt48803GTNmDOvWraN169Z88sknfPfdd8ycOZPg4GAArrjiCm677TZeffVVtm/fzuDBg3E6nXz77bdcccUV1fr8rxMnTtC8eXNuvPFGEhISCAoKYtGiRXz//fdVmmkTaTQ8dwGaiHha+WXwp9r2799vmqZprl+/3kxMTDSDgoJMu91uXnHFFebKlSvd+nr66afNiy66yAwLCzMDAgLMTp06mX/9619dl4QfPXrUHDdunNmpUyczMDDQDA0NNXv37m3+5z//OeM4R48ebQYGBpo7d+40Bw0aZNrtdjM6OtqcPHmyWVJSUulz7r33XhMw58yZU62fyaeffmpecsklZmBgoBkYGGh26tTJHDdunLlt2zZXm8svv9zs2rWruXbtWrNPnz6mv7+/2apVK/O1116r0F96ero5duxYMzIy0vTz8zO7d+9uvvvuuxXaFRcXmy+88ILZqVMn08/Pz2zatKk5ZMgQc926da42QKWXt7dq1cocPXq0aZqll+M/8sgjZkJCghkcHGwGBgaaCQkJ5t///vdq/RxEvJ1hmtWcXxURaQAeeugh3n77bdLS0rDb7TXad79+/Th69CibN2+u0X5FpO5oDZCIeJ2CggLef/99brjhhhoPPyLiHbQGSES8xuHDh1m0aBGffPIJGRkZPPDAA54ekojUUwpAIuI1fv75Z0aOHElUVBSvvvoq5513nqeHJCL1lNYAiYiISKOjNUAiIiLS6CgAiYiISKOjNUCVcDqdHDp0iODg4NN+erSIiIjUH6ZpcuLECeLi4ip8CPFvKQBV4tChQ26fbyQiIiINx/79+2nevPlp2ygAVaL89vT79+93fc5RTXE4HHzzzTcMGjTIdbt8b+Lt9YFq9AbeXh94f43eXh+oxrORnZ1NixYtXH/HT0cBqBLlp71CQkJqJQDZ7XZCQkK88h+0t9cHqtEbeHt94P01ent9oBrPRVWWr2gRtIiIiDQ6CkAiIiLS6CgAiYiISKOjNUAiItJolJSU4HA4PD2MKnE4HPj4+FBQUEBJSYmnh1Mrqlujr68vVqu1Rl5bAUhERLyeaZqkpaWRmZnp6aFUmWmaxMTEsH//fq+9J93Z1BgWFkZMTMw5/0wUgERExOuVh5+oqCjsdnuDCBROp5OcnByCgoLOeFO/hqo6NZqmSV5eHocPHwYgNjb2nF5bAUhERLxaSUmJK/w0adLE08OpMqfTSVFREf7+/l4dgKpTY0BAAACHDx8mKirqnE6HeedPVEREpEz5mh+73e7hkUhNKH8fz3UtlwKQiIg0Cg3htJecWU29jwpAIiIi0ugoAImIiDQCrVu3ZubMmTXSV3JyMoZhNKir6n5Li6BFRETqqd///vf06tWLV1555Zz7+v777wkMDKyBUXkHBaA6VFhcQmpmPllFnh6JiIh4A9M0KSkpwcfnzH/OmzZtWgcjajg8egps+vTpXHjhhQQHBxMVFcWwYcPYtm3baZ/zz3/+k0svvZTw8HDCw8MZMGAAa9ascWszZswYDMNw2wYPHlybpVTJa0t20O+lb/nmgM48iojI6Y0dO5bvvvuOV1991fW3bPbs2RiGwYIFC+jVqxc2m40VK1awc+dOrr32WqKjowkKCuLCCy9k0aJFbv399hSYYRi89dZbXHfdddjtdtq3b89///vfsx7vp59+SteuXbHZbLRu3ZqXXnrJ7fjf//532rdvj7+/P9HR0dx4442uY5988gndu3cnICCAJk2aMGDAAHJzc896LFXh0b/Ey5YtY9y4caxatYqkpCQcDgeDBg06bdHJycmMGDGCpUuXkpKSQosWLRg0aBAHDx50azd48GBSU1Nd24cffljb5ZxRk0A/AHIaxl3YRUS8lmma5BUV1/lmmmaVxzhz5kwuvPBC7rjjDtffshYtWgDwl7/8hWeffZYtW7bQo0cPcnJyGDp0KIsXL2bDhg0MHjyYq6++mn379p32NaZOncrNN9/Mjz/+yNChQxk5ciTHjh2r9s9z3bp13HzzzQwfPpxNmzYxZcoUnnzySWbPng3A2rVruf/++5k2bRrbtm1j4cKFXHbZZUDpTSpHjhzJH//4R7Zs2UJycjLXX399tX5WZ8Ojp8AWLlzo9nj27NlERUWxbt061w/mtz744AO3x2+99RaffvopixcvZtSoUa79NpuNmJiYmh/0OYgMtgFwwqFLMUVEPCnfUUKXSV/X+ev+PC0Ru1/V/vSGhobi5+eH3W53/T3bunUrANOmTWPgwIGuthERESQkJLgeP/XUU8ybN4///ve/jB8//pSvMWbMGEaMGAHAM888w6uvvsqaNWuqfdZkxowZ9O/fnyeffBKADh068PPPP/PCCy8wZswY9u3bR2BgIL///e8JDg6mVatWnH/++TidTtLT0ykuLub666+nVatWAHTv3r1ar3826tUaoKysLKD0jayqvLw8HA5HheckJycTFRVFeHg4V155JU8//fQp7wBaWFhIYWGh63F2djZQepOlmvzQvDD/0jtWnnCc+w2c6qvyury1PlCN3sDb6wPvr7E69TkcDkzTxOl04nQ6AVxf69rJYziTk2dAfjvunj17uvWTk5PD1KlT+eqrr0hNTaW4uJj8/Hz27t3r1q7851CuW7durscBAQGEhISQlpZ2xjGePB6n08mWLVu45ppr3J7Xp08fZs6cicPhoH///rRq1Yo2bdqQmJhIYmIi1113HQEBAXTr1o0rr7yS7t27M2jQIAYOHMiNN95IeHj4KV/bNE0cDkeFO0FX5997vQlATqeTBx98kL59+9KtW7cqP++xxx4jLi6OAQMGuPYNHjyY66+/nvj4eHbu3Mnjjz/OkCFDSElJqfS22dOnT2fq1KkV9n/zzTc1eufQtDwAH3IckJSUVGP91kfeXh+oRm/g7fWB99dYlfp8fHyIiYkhJyeHoqLSq1BM0yRlwu9qe3gVOPJzyS6o3lmAoqIi1/+Y5+XlAaV/M8v3ATz00EMkJyfz1FNPER8fT0BAAKNHjyYnJ8fVzul0UlBQ4Pa84uJit8flr/Hbfb9VPo4TJ05gsVgoKSmhsLDQ7Xn5+flA6aSC1WplyZIlrFixgiVLljBp0iSmTJnCkiVLCA0N5ZNPPmH16tUsXbqUV199lSeeeIJFixa5ZoR++/PIz89n+fLlFBcXVzquqqg3AWjcuHFs3ryZFStWVPk5zz77LHPnziU5ORl/f3/X/uHDh7u+7969Oz169KBt27YkJyfTv3//Cv1MnDiRCRMmuB5nZ2e71haFhIScZUUVHc8rYvoPyeSVGFx+ZX8C/W011nd94XA4SEpKYuDAgfj6+np6OLVCNTZ83l4feH+N1amvoKCA/fv3ExQU5Pa3IrS2B3mOTNPEz88Pq9Xq+ltU/j/lwcHBbn+f1q5dy9ixY7n11luB0hmh/fv34+fn52pnsVjw9/d3e175rE85wzAqtKnMb8fRtWtX1q5d6/a8DRs20KFDB7eZnGuuuYZrrrmGv/71r0RERPD9998zYMAAQkJCGDRoEIMGDeLpp58mPj6eRYsW8dBDD1V47YKCAgICArjsssvc3k/gjMHtZPUiAI0fP54vvviC5cuX07x58yo958UXX+TZZ59l0aJF9OjR47Rt27RpQ2RkJDt27Kg0ANlsNmy2imHE19e3Rn9xRAb7YLUYlDhNThSZhAV73y+lcjX9s6uPVGPD5+31gffXWJX6SkpKMAwDi8XSoD5U1Ol00rJlS9asWcO+ffsICgpyHfttLe3bt2fevHlcc801GIbBk08+idPpdNVd7rePK/uZVOXnVH68vO3DDz/MhRdeyF//+lduueUWUlJSeP311/n73/+OxWLhiy++YNeuXVx22WWEh4fz1Vdf4XQ66dixI2vXrmX16tUkJiYSFRXF6tWrOXLkCF26dKl0HBaLBcMwKn3vq/Nv3aP/EkzTZPz48cybN48lS5YQHx9fpec9//zzPPXUUyxcuJALLrjgjO0PHDhARkYGsbGx5zrkc2KxGK4rwTJydDMgERE5vfHjx2O1WunSpQtNmzY95VVdM2bMIDw8nIsvvpirr76axMREevbsWWfj7NmzJ//5z3+YO3cu3bp1Y9KkSUybNo0xY8YAEBYWxmeffcaVV15J586dmTVrFh9++CFdu3YlODiY5cuXM3ToUDp06MATTzzBSy+9xJAhQ2p1zB6dARo3bhxz5szh888/Jzg4mLS0NKB05Xv5R96PGjWKZs2aMX36dACee+45Jk2axJw5c2jdurXrOUFBQQQFBbkWgt1www3ExMSwc+dOHn30Udq1a0diYqJnCj1JRKAfh08UkpGrACQiIqfXrl07vvvuO7eZkPJQcbLWrVuzZMkSt33jxo1ze7xnzx63x5VdZl7Vj7bo169fheffcMMN3HDDDZW2v+SSS0hOTq6wv3wWaMGCBXU+O+fRGaA33niDrKws+vXrR2xsrGv76KOPXG327dtHamqq23OKioq48cYb3Z7z4osvAmC1Wvnxxx+55ppr6NChA7fffju9evXi22+/rfQ0V12LDNIMkIiIiKd5dAaoKjc5+m1i/G2C/a2AgAC+/rru7+1QVeWnwI7mFp6hpYiIiGfcfffdvP/++5Ue+8Mf/sCsWbPqeEQ1r14sgm5MNAMkIiL13bRp03j44YcrPVaTV0d7kgJQHYvQImgREannoqKiiIqK8vQwalXDuR7QS7iuAtMiaBEREY/RDFBdytxPxxMr6Woc42hOsKdHIyIi0mhpBqgubfg356+4h1utSzimGSARERGPUQCqS8GlN2KMNo6RkVtUpavgREREpOYpANWlkDgAYozjFDtNsvK981OaRURE6jsFoLrkmgE6DsBRXQkmIiK1qHXr1sycObNKbQ3DYP78+bU6nvpEAagulc0ANTGy8aGYozm6GaKIiIgnKADVpYAITIsvFkyiyNS9gERERDxEAaguWSwQHANAjHFMM0AiInJK//jHP+jcuTNOp9Nt/7XXXssf//hHdu7cybXXXkt0dDRBQUFceOGFLFq0qMZef9OmTVx55ZUEBATQpEkT7rrrLnJyclzHk5OTueiiiwgMDCQsLIy+ffuyd+9eAH744QeuuOIKgoODCQkJoVevXqxdu7bGxlYTFIDqmHnSOqAMBSAREc8wTSjKrfutGlf/3nTTTRw7doylS5e69h07doyFCxcycuRIcnJyGDp0KIsXL2bDhg0MHjyYq6++mn379p3zjyc3N5fExETCw8P5/vvv+fjjj1m0aBHjx48HoLi4mGHDhnH55Zfz448/kpKSwl133YVhGACMHDmS5s2b8/3337Nu3Tr+8pe/4Ovre87jqkm6EWJdKwtAMcYxjupeQCIinuHIg2fi6v51Hz8EfoFVahoeHs6AAQP48MMPGThwIACffPIJkZGRXHHFFVgsFhISElztn3rqKebNm8d///tfV1A5W3PmzKGgoIB//etfBAaWjve1117j6quv5rnnnsPX15esrCx+//vf07ZtWwA6d+7sev6+fft45JFH6NSpEwDt27c/p/HUBs0A1TGz7BRYtHGcoyc0AyQiIqd200038dlnn1FYWPr34oMPPmD48OFYLBZycnJ4+OGH6dy5M2FhYQQFBbFly5YamQHasmULCQkJrvAD0LdvX5xOJ9u2bSMiIoIxY8aQmJjI1VdfzSuvvEJqaqqr7YQJE7jjjjsYMGAAzz77LDt37jznMdU0zQDVtZNPgWkGSETEM3ztpbMxnnjdahg8eDCmafLll19y4YUX8u233/Lyyy8D8PDDD5OUlMSLL75Iu3btCAgI4MYbb6SoqG7+trz77rvcf//9LFy4kI8++ognnniCpKQkfve73zFlyhRuvfVWvvzySxYsWMDkyZOZO3cu1113XZ2MrSoUgOqYGVS2CJrjHNEMkIiIZxhGlU9FeZK/vz/XXXcdH3zwATt27KBjx4707NkTgO+++44xY8a4QkVOTg579uypkdft3Lkzs2fPJjc31zUL9N1332GxWOjYsaOr3fnnn8/555/PxIkT6dOnD3PmzOF3v/sdAB06dKBDhw489NBDjBgxgnfffbdeBSCdAqtrJ30cRnp2gT4OQ0RETqt8JuWdd95h5MiRrv3t27fns88+Y+PGjfzwww/ceuutFa4YO1sjR47E39+f0aNHs3nzZpYuXcp9993HbbfdRnR0NLt372bixImkpKSwd+9evvnmG7Zv307nzp3Jz89n/PjxJCcns3fvXr777ju+//57tzVC9YFmgOqY6VoEfZzC4hKO5zmICPTz8KhERKS+uvLKK4mIiGDbtm3ceuutrv0zZszgj3/8IxdffDGRkZE89thjZGdn18hr2u12vv76ax544AEuvPBC7HY7N9xwAzNmzHAd37p1K++99x4ZGRnExsYybtw4/vSnP1FcXExGRgajRo0iPT2dyMhIrr/+eqZOnVojY6spCkB1rSwA2Y1CQsgjNStfAUhERE7JYrFw6FDF9UqtW7dmyZIlbvvGjRvn9rg6p8R+e0aie/fuFfovFx0dzbx58yo95ufnx4cffljl1/UUnQKra74BFFlLz6dGG8dJzSzw8IBEREQaHwUgDyjwDQfKAlC2ApCIiNSuDz74gKCgoEq3rl27enp4HqFTYB5Q4BtGSMEBYoxjpGXle3o4IiLi5a655hp69+5d6bH6dofmuqIA5AH55TNA6BSYiIjUvuDgYIKDgz09jHpFp8A8oPwUWIxxjNQsBSAREZG6pgDkAQV+EUDppfCpOgUmIlInauoeOeJZNfU+6hSYB7hOgZXNAJmm6foEXRERqVl+fn6uS8mbNm2Kn59fg/id63Q6KSoqoqCgAIvFO+crqlOjaZoUFRVx5MgRLBYLfn7ndgsZBSAP+PUU2HEKi526GaKISC2yWCzEx8eTmppa6f106ivTNMnPzycgIKBBBLazcTY12u12WrZsec6hUAHIA/J9S0+BRRpZ+FKsmyGKiNQyPz8/WrZsSXFxMSUlJZ4eTpU4HA6WL1/OZZdd5rVXalW3RqvVio+PT40EQgUgDyjyCca02rCUFJaeBsssoGtcqKeHJSLi1QzDwNfXt8GECavVSnFxMf7+/g1mzNXlyRq986RifWcYEBIHQBwZuhmiiIhIHVMA8hCzLADFGhm6GaKIiEgdUwDylJBmAMSVnQITERGRuuPRADR9+nQuvPBCgoODiYqKYtiwYWzbtu2Mz/v444/p1KkT/v7+dO/ena+++srtuGmaTJo0idjYWAICAhgwYADbt2+vrTLOihlcGoBijAzdDFFERKSOeTQALVu2jHHjxrFq1SqSkpJwOBwMGjSI3NzcUz5n5cqVjBgxgttvv50NGzYwbNgwhg0bxubNm11tnn/+eV599VVmzZrF6tWrCQwMJDExkYKCehQ0ytcAGcd0M0QREZE65tGrwBYuXOj2ePbs2URFRbFu3Touu+yySp/zyiuvMHjwYB555BEAnnrqKZKSknjttdeYNWsWpmkyc+ZMnnjiCa699loA/vWvfxEdHc38+fMZPnx47RZVRWbZKbDYshkg3QxRRESk7tSry+CzsrIAiIiIOGWblJQUJkyY4LYvMTGR+fPnA7B7927S0tIYMGCA63hoaCi9e/cmJSWl0gBUWFhIYWGh63F2djZQen8Ch8Nx1vVUprw/hz0aH0oDUGGxk8NZeV5xLyBXfTX8c6tPVGPD5+31gffX6O31gWo8l/6qot4EIKfTyYMPPkjfvn3p1q3bKdulpaURHR3tti86Opq0tDTX8fJ9p2rzW9OnT2fq1KkV9n/zzTfY7fZq1VFVS9f9wlCgiXECG0V88tUimgfWykt5RFJSkqeHUOtUY8Pn7fWB99fo7fWBaqyOvLy8KretNwFo3LhxbN68mRUrVtT5a0+cONFtVik7O5sWLVowaNAgQkJCavS1HA4HSUlJ9Bt8LebWP2M48og1MmjbfQj9O0XV6Gt5Qnl9AwcO9Nobd6nGhs/b6wPvr9Hb6wPVeDbKz+BURb0IQOPHj+eLL75g+fLlNG/e/LRtY2JiSE9Pd9uXnp5OTEyM63j5vtjYWLc25513XqV92mw2bDZbhf21ecdQXz8/jJBmkLGdWOMYR3KLveofeEO62+rZUo0Nn7fXB95fo7fXB6qxuv1UlUevAjNNk/HjxzNv3jyWLFlCfHz8GZ/Tp08fFi9e7LYvKSmJPn36ABAfH09MTIxbm+zsbFavXu1qU2+Elt0LiAxSM3UlmIiISF3x6AzQuHHjmDNnDp9//jnBwcGuNTqhoaEEBAQAMGrUKJo1a8b06dMBeOCBB7j88st56aWXuOqqq5g7dy5r167lH//4B1D6WS8PPvggTz/9NO3btyc+Pp4nn3ySuLg4hg0b5pE6TymkdLYr1sjgkO4FJCIiUmc8GoDeeOMNAPr16+e2/91332XMmDEA7Nu3z+0j7y+++GLmzJnDE088weOPP0779u2ZP3++28LpRx99lNzcXO666y4yMzO55JJLWLhwIf7+/rVeU7WUzwAZGaxTABIREakzHg1ApmmesU1ycnKFfTfddBM33XTTKZ9jGAbTpk1j2rRp5zK82hdSfjdo3QxRRESkLumzwDwptOLNEEVERKT2KQB5UtkaoLiymyEez/Pem12JiIjUJwpAnlQ2AxRq5GGnQKfBRERE6ogCkCfZgsFWeqPFWCOD1EwthBYREakLCkCeFvLrlWCp2QpAIiIidUEByNNOXgitmyGKiIjUCQUgTztpBihN9wISERGpEwpAnhZadjdojpGqACQiIlInFIA8LeTkewHpFJiIiEhdUADyNNcaoGO6GaKIiEgdUQDytJM+ELWwuEQ3QxQREakDCkCeFhIHQJBRQAh5Og0mIiJSBxSAPM3PDgHhgG6GKCIiUlcUgOqDk06DaQZIRESk9ikA1Qeh5fcCOsZBzQCJiIjUOgWg+uCkS+EP6W7QIiIitU4BqD4I/fVu0AcVgERERGqdAlB9UL4GCM0AiYiI1AUFoPrgpA9ETc8uwFHi9PCAREREvJsCUH0Q8uvdoJ2mqQ9FFRERqWUKQPVB2c0Q/Q0H4ZzQaTAREZFapgBUH/jYILApUH4pvAKQiIhIbVIAqi90KbyIiEidUQCqL0JLrwSLM45qBkhERKSWKQDVF6EtgPJ7AWkRtIiISG1SAKovwkoDUHPjKAeP53l4MCIiIt5NAai+KJsBamYc5VBmAaZpenhAIiIi3ksBqL4I+zUA5TtKyMxzeHhAIiIi3ksBqL4IbQlAlJGJjSIthBYREalFCkD1hT0CfO1A6aXwCkAiIiK1RwGovjAMt3VAB48rAImIiNQWjwag5cuXc/XVVxMXF4dhGMyfP/+07ceMGYNhGBW2rl27utpMmTKlwvFOnTrVciU1pOxeQKULoRWAREREaotHA1Bubi4JCQm8/vrrVWr/yiuvkJqa6tr2799PREQEN910k1u7rl27urVbsWJFbQy/5p20EFqnwERERGqPjydffMiQIQwZMqTK7UNDQwkNDXU9nj9/PsePH2fs2LFu7Xx8fIiJiamxcdaZ0F/vBbRIp8BERERqTYNeA/T2228zYMAAWrVq5bZ/+/btxMXF0aZNG0aOHMm+ffs8NMJqCiu9EqyZcZQDuhmiiIhIrfHoDNC5OHToEAsWLGDOnDlu+3v37s3s2bPp2LEjqampTJ06lUsvvZTNmzcTHBxcaV+FhYUUFha6HmdnZwPgcDhwOGr2fjzl/VXWrxEUiw/QjKMcz3NwPCefIFvDeotOV5+3UI0Nn7fXB95fo7fXB6rxXPqrCsOsJ7ccNgyDefPmMWzYsCq1nz59Oi+99BKHDh3Cz8/vlO0yMzNp1aoVM2bM4Pbbb6+0zZQpU5g6dWqF/XPmzMFut1dpPDXBvyiDxJ8ewmFa6Vj4Ho8kOImru5cXERFp0PLy8rj11lvJysoiJCTktG0b1vRCGdM0eeedd7jttttOG34AwsLC6NChAzt27Dhlm4kTJzJhwgTX4+zsbFq0aMGgQYPO+AOsLofDQVJSEgMHDsTX19f9oLMEc8sj+DqLieY4bboP4MqOTWv09WvbaevzEqqx4fP2+sD7a/T2+kA1no3yMzhV0SAD0LJly9ixY8cpZ3ROlpOTw86dO7nttttO2cZms2Gz2Srs9/X1rbV/dJX37QshcZC5j2bGEdKyixrsP/ra/NnVF6qx4fP2+sD7a/T2+kA1VrefqvLoIuicnBw2btzIxo0bAdi9ezcbN250LVqeOHEio0aNqvC8t99+m969e9OtW7cKxx5++GGWLVvGnj17WLlyJddddx1Wq5URI0bUai01JlQLoUVERGqbR2eA1q5dyxVXXOF6XH4aavTo0cyePZvU1NQKV3BlZWXx6aef8sorr1Ta54EDBxgxYgQZGRk0bdqUSy65hFWrVtG0aQM5lRTWAvaWBqDduhReRESkVng0APXr14/TrcGePXt2hX2hoaHk5Z16ZmTu3Lk1MTTPOeleQMs1AyQiIlIrGvR9gLxS2b2AmhtHOKAZIBERkVqhAFTfnHQzxMw8BycKvPf+DyIiIp6iAFTfhJfe1bqF5QgGTn0mmIiISC1QAKpvQpqDYcWPYqLI5MAxBSAREZGapgBU31h9IKQZUL4OSAuhRUREapoCUH1UfhpMC6FFRERqhQJQfRRWHoAOKwCJiIjUAgWg+qhsBqi5cZQDmToFJiIiUtMUgOqjk2aA9msRtIiISI1TAKqPyu4F1MI4Qla+g6x83QtIRESkJikA1Udlp8BiLRlYKWH/MZ0GExERqUkKQPVRUAxYbfjgJNY4xj4FIBERkRqlAFQfWSylnwpP6TogBSAREZGapQBUX4WVXwl2RAFIRESkhikA1VcnfSq81gCJiIjULAWg+uqku0FrBkhERKRmKQDVVyfdC+jg8XyKS5weHpCIiIj3UACqr8pmgFoaRyh2mqRmFXh4QCIiIt5DAai+CmsNQLRxHBtFOg0mIiJSgxSA6it7BNhCAV0KLyIiUtMUgOorw4CI1gC0MtIVgERERGqQAlB9Fh4PQGsFIBERkRqlAFSfRZQGoJZGuu4FJCIiUoMUgOqzshmgVloDJCIiUqMUgOqzk2aAMvMcZOU7PDwgERER76AAVJ+VzQC1sBzFSolOg4mIiNQQBaD6LKQZWG34UkyskcGejFxPj0hERMQrKADVZxaL647QrYx09hxVABIREakJCkD13UkLoXcf1SkwERGRmqAAVN+dtBBap8BERERqhgJQfeeaAdIpMBERkZqiAFTfRfx6Ciwjt4jsAl0KLyIicq48GoCWL1/O1VdfTVxcHIZhMH/+/NO2T05OxjCMCltaWppbu9dff53WrVvj7+9P7969WbNmTS1WUcvKPw7Dkg6Y7NU6IBERkXPm0QCUm5tLQkICr7/+erWet23bNlJTU11bVFSU69hHH33EhAkTmDx5MuvXrychIYHExEQOHz5c08OvG+GtAAM7BUSSzW6tAxIRETlnPp588SFDhjBkyJBqPy8qKoqwsLBKj82YMYM777yTsWPHAjBr1iy+/PJL3nnnHf7yl7+cy3A9w8cGoc0haz+tjDStAxIREakBHg1AZ+u8886jsLCQbt26MWXKFPr27QtAUVER69atY+LEia62FouFAQMGkJKScsr+CgsLKSwsdD3Ozs4GwOFw4HDU7Jqb8v6q0681og2WrP3EW9LYdfhEjY+pJp1NfQ2Namz4vL0+8P4avb0+UI3n0l9VNKgAFBsby6xZs7jgggsoLCzkrbfeol+/fqxevZqePXty9OhRSkpKiI6OdntedHQ0W7duPWW/06dPZ+rUqRX2f/PNN9jt9hqvAyApKanKbXuc8CEeiDdS+XjnIb76an+tjKkmVae+hko1NnzeXh94f43eXh+oxurIy6v6OtkGFYA6duxIx44dXY8vvvhidu7cycsvv8y///3vs+534sSJTJgwwfU4OzubFi1aMGjQIEJCQs5pzL/lcDhISkpi4MCB+Pr6Vuk5ljX7IWkx8UYaWU4/hg69okbHVJPOpr6GRjU2fN5eH3h/jd5eH6jGs1F+BqcqGlQAqsxFF13EihUrAIiMjMRqtZKenu7WJj09nZiYmFP2YbPZsNlsFfb7+vrW2j+6avUdVRr62hipHM9zkFcMoQH1+z+G2vzZ1ReqseHz9vrA+2v09vpANVa3n6pq8PcB2rhxI7GxsQD4+fnRq1cvFi9e7DrudDpZvHgxffr08dQQz12TtgDEW9IwcGohtIiIyDny6AxQTk4OO3bscD3evXs3GzduJCIigpYtWzJx4kQOHjzIv/71LwBmzpxJfHw8Xbt2paCggLfeeoslS5bwzTffuPqYMGECo0eP5oILLuCiiy5i5syZ5Obmuq4Ka5BCW4LFF5vTQRylnwqf0CLM06MSERFpsDwagNauXcsVV/y6nqV8Hc7o0aOZPXs2qamp7Nu3z3W8qKiIP//5zxw8eBC73U6PHj1YtGiRWx+33HILR44cYdKkSaSlpXHeeeexcOHCCgujGxSrT+kdoY/+Unol2BHNAImIiJwLjwagfv36YZrmKY/Pnj3b7fGjjz7Ko48+esZ+x48fz/jx4891ePVLk3alAchIZZdOgYmIiJyTBr8GqNFo0g4oXQi983COhwcjIiLSsCkANRRlASjeSGPX0RyczlPPnImIiMjpKQA1FOUzQJZUChxODmXle3hAIiIiDZcCUENRFoCaGUfxw8FOLYQWERE5awpADUVQFPgFY8VJC+Ow1gGJiIicAwWghsIwXDdEbGOksvOIApCIiMjZUgBqSE6+EkwBSERE5KwpADUkkR0AaGcc1BogERGRc6AA1JA0Lf1Q1HaWQxw5UUh2gcPDAxIREWmYFIAakrIA1MFyEDD1kRgiIiJnSQGoIYloC4aVQPKJ5riuBBMRETlLCkANiY8fRLQBoL3loBZCi4iInCUFoIamfB2QcZAdmgESERE5KwpADU1ZAGqvACQiInLWFIAamqadAGhnOciejFwKHCUeHpCIiEjDowDU0JTdC6iD5SBOE80CiYiInAUFoIYmsgNgEM4JIsjml/QTnh6RiIhIg6MA1ND42SGsBVC6EHqbApCIiEi1KQA1RGXrgNpbDvJLmgKQiIhIdSkANUQnfSbYL+laAyQiIlJdZxWA3nvvPb788kvX40cffZSwsDAuvvhi9u7dW2ODk1MonwEyDnAwM58T+kwwERGRajmrAPTMM88QEBAAQEpKCq+//jrPP/88kZGRPPTQQzU6QKlEVBcAOlsPAmgWSEREpJp8zuZJ+/fvp127dgDMnz+fG264gbvuuou+ffvSr1+/mhyfVCaqE2DQhEwiyeKX9BP0ahXu6VGJiIg0GGc1AxQUFERGRgYA33zzDQMHDgTA39+f/Pz8mhudVM4v0PWZYB0t+9imhdAiIiLVclYzQAMHDuSOO+7g/PPP55dffmHo0KEA/PTTT7Ru3bomxyenEt0Fju2kk7GPLboUXkREpFrOagbo9ddfp0+fPhw5coRPP/2UJk2aALBu3TpGjBhRowOUU4juBkAnY79mgERERKrprGaAwsLCeO211yrsnzp16jkPSKoouisAnSz7yMgt4vCJAqKC/T08KBERkYbhrGaAFi5cyIoVK1yPX3/9dc477zxuvfVWjh8/XmODk9MoC0AdLQexUsLPh7I9PCAREZGG46wC0COPPEJ2dukf3E2bNvHnP/+ZoUOHsnv3biZMmFCjA5RTCGsNvoH44aC1kcbPqQpAIiIiVXVWp8B2795Nly6l96L59NNP+f3vf88zzzzD+vXrXQuipZZZLBDVGQ6upZOxXzNAIiIi1XBWM0B+fn7k5eUBsGjRIgYNGgRARESEa2ZI6sBJ64AUgERERKrurGaALrnkEiZMmEDfvn1Zs2YNH330EQC//PILzZs3r9EBymm4rgTbx+6MXHILiwm0ndVbKiIi0qic1QzQa6+9ho+PD5988glvvPEGzZo1A2DBggUMHjy4yv0sX76cq6++mri4OAzDYP78+adt/9lnnzFw4ECaNm1KSEgIffr04euvv3ZrM2XKFAzDcNs6depU7RobhLIZoK7W/ZgmbNXl8CIiIlVyVtMFLVu25Isvvqiw/+WXX65WP7m5uSQkJPDHP/6R66+//oztly9fzsCBA3nmmWcICwvj3Xff5eqrr2b16tWcf/75rnZdu3Zl0aJFrsc+Pl46KxJdug4rjiOEkMPPh7L0kRgiIiJVcNbJoKSkhPnz57NlyxagNHRcc801WK3WKvcxZMgQhgwZUuX2M2fOdHv8zDPP8Pnnn/O///3PLQD5+PgQExNT5X4brIBwCGsFmXvpatnLz6mdPT0iERGRBuGsAtCOHTsYOnQoBw8epGPHjgBMnz6dFi1a8OWXX9K2bdsaHeSpOJ1OTpw4QUREhNv+7du3ExcXh7+/P3369GH69Om0bNnylP0UFhZSWFjoely+kNvhcOBwOGp0zOX91VS/1pgeWDL30t3YRcrBrBofb3XVdH31kWps+Ly9PvD+Gr29PlCN59JfVRimaZrVfYGhQ4dimiYffPCBK3xkZGTwhz/8AYvFwpdfflndLjEMg3nz5jFs2LAqP+f555/n2WefZevWrURFRQGl65BycnLo2LEjqampTJ06lYMHD7J582aCg4Mr7WfKlCmV3sV6zpw52O32atdSl9qn/Y8uqR/zv5Lf8VDxfTzfuwSr4elRiYiI1L28vDxuvfVWsrKyCAkJOW3bswpAgYGBrFq1iu7du7vt/+GHH+jbty85OTnV7bLaAWjOnDnceeedfP755wwYMOCU7TIzM2nVqhUzZszg9ttvr7RNZTNALVq04OjRo2f8AVaXw+EgKSmJgQMH4uvre879GbuW4vPhTewxY+lX+BJfju9Dh+jKg15dqOn66iPV2PB5e33g/TV6e32gGs9GdnY2kZGRVQpAZ3UKzGazceJExSuOcnJy8PPzO5suq2Xu3LnccccdfPzxx6cNP1D6uWUdOnRgx44dp2xjs9mw2WwV9vv6+tbaP7oa67vFBQC0NlIJJo8t6Xl0bR5xhifVvtr82dUXqrHh8/b6wPtr9Pb6QDVWt5+qOqvL4H//+99z1113sXr1akzTxDRNVq1axd13380111xzNl1W2YcffsjYsWP58MMPueqqq87YPicnh507dxIbG1ur4/IYewSElq5v6mrZw48HMj07HhERkQbgrALQq6++Stu2benTpw/+/v74+/tz8cUX065duwpXap1OTk4OGzduZOPGjUDpR2xs3LiRffv2ATBx4kRGjRrlaj9nzhxGjRrFSy+9RO/evUlLSyMtLY2srCxXm4cffphly5axZ88eVq5cyXXXXYfVamXEiBFnU2rDENsDgG7Gbn7Yn+nZsYiIiDQAZ3UKLCwsjM8//5wdO3a4LoPv3Lkz7dq1q1Y/a9eu5YorrnA9Lv8g1dGjRzN79mxSU1NdYQjgH//4B8XFxYwbN45x48a59pe3Bzhw4AAjRowgIyODpk2bcskll7Bq1SqaNm16NqU2DHHnwdYv6GbZzXup2RQWl2DzqfrtCERERBqbKgegM33K+9KlS13fz5gxo0p99uvXj9OtwS4PNeWSk5PP2OfcuXOr9NpeJbb0HkgJ1j04HCZbU0+Q0CLMs2MSERGpx6ocgDZs2FCldoaha7DrXGwCAK1IJZB8fjiQqQAkIiJyGlUOQCfP8Eg9E9QUQpphyT5IN2MPG/e3Y1QfTw9KRESk/jqrRdBSDzXrCUCCZQc/Hsg6Q2MREZHGTQHIWzS/EIDzLTvYeSSHEwXee+t0ERGRc6UA5C3KAlAv6y5MEzYd1CyQiIjIqSgAeYvY88CwEkUGMWSwUfcDEhEROSUFIG/hZ4forkDpabD1ezM9Ox4REZF6TAHIm5y0Dmjd3mOnvceSiIhIY6YA5E1c64B2cDzPwc4juR4ekIiISP2kAORNygJQd2M3PhSzds8xDw9IRESkflIA8iZN2oJ/GH4U0cnYx9q9xz09IhERkXpJAcibGIZrFqinZbtmgERERE5BAcjblAWgCyy/sCcjjyMnCj08IBERkfpHAcjbtLoYgIt9tgEm6/ZqFkhEROS3FIC8TfMLwOpHpHmMlsZh1u7ROiAREZHfUgDyNr4B0KwXAL0tW/he64BEREQqUADyRmWnwXpbtrLpYBbZ+mBUERERNwpA3uikdUBOE9bs0iyQiIjIyRSAvFGL3mBYiDPTiSWDlTszPD0iERGRekUByBvZgiE2AYALLVtZufOohwckIiJSvygAeatWfQH4nWULW9NOkJGj+wGJiIiUUwDyVmXrgC7z2wrAKq0DEhERcVEA8lat+oJhpbnzEHEc1WkwERGRkygAeauAMNf9gC6xbiJFC6FFRERcFIC8WdsrALjMsoldR3M5mJnv4QGJiIjUDwpA3qxNWQDy+RkDJ8u2HfHwgEREROoHBSBv1vwC8AsmxMymq7GH5G2HPT0iERGRekEByJtZfSH+UgAutWzmux1HKSp2enhQIiIinqcA5O3KToNd4beZ3KIS1urDUUVERBSAvF7ZQuiebCOAApJ/0TogERERBSBv16QdhLXCx3TQ1/ITS7dqHZCIiIhHA9Dy5cu5+uqriYuLwzAM5s+ff8bnJCcn07NnT2w2G+3atWP27NkV2rz++uu0bt0af39/evfuzZo1a2p+8A2FYUCHwQD0t65n++EcXQ4vIiKNnkcDUG5uLgkJCbz++utVar97926uuuoqrrjiCjZu3MiDDz7IHXfcwddff+1q89FHHzFhwgQmT57M+vXrSUhIIDExkcOHG/HMR4dEABJ9fwBMFm9J9+x4REREPMyjAWjIkCE8/fTTXHfddVVqP2vWLOLj43nppZfo3Lkz48eP58Ybb+Tll192tZkxYwZ33nknY8eOpUuXLsyaNQu73c4777xTW2XUf60vAd9AIpzH6Grs4euf0jw9IhEREY9qUGuAUlJSGDBggNu+xMREUlJSACgqKmLdunVubSwWCwMGDHC1aZR8bK7F0AMs61m16xiZeUUeHpSIiIjn+Hh6ANWRlpZGdHS0277o6Giys7PJz8/n+PHjlJSUVNpm69atp+y3sLCQwsJC1+Ps7GwAHA4HDoejBivA1V9N93smRtuB+Gz9gqG2H3gl7wa+2ZzKdefH1fjreKq+uqQaGz5vrw+8v0Zvrw9U47n0VxUNKgDVlunTpzN16tQK+7/55hvsdnutvGZSUlKt9HsqNofBYKCjcwdNOc6/l/6ILXVjrb1eXdfnCaqx4fP2+sD7a/T2+kA1VkdeXl6V2zaoABQTE0N6uvsC3vT0dEJCQggICMBqtWK1WittExMTc8p+J06cyIQJE1yPs7OzadGiBYMGDSIkJKRGa3A4HCQlJTFw4EB8fX1rtO8zcWa8iyV1AwOt6/ksZyD9BvTD7lez/wQ8WV9dUY0Nn7fXB95fo7fXB6rxbJSfwamKBhWA+vTpw1dffeW2LykpiT59+gDg5+dHr169WLx4McOGDQPA6XSyePFixo8ff8p+bTYbNputwn5fX99a+0dXm32fUpdrIHUD19u+Z05ef1J2ZzK4W2ytvJRH6qtjqrHh8/b6wPtr9Pb6QDVWt5+q8ugi6JycHDZu3MjGjRuB0svcN27cyL59+4DSmZlRo0a52t99993s2rWLRx99lK1bt/L3v/+d//znPzz00EOuNhMmTOCf//wn7733Hlu2bOGee+4hNzeXsWPH1mlt9VLXYQD0dG4mgmwWbNbVYCIi0jh5dAZo7dq1XHHFFa7H5aehRo8ezezZs0lNTXWFIYD4+Hi+/PJLHnroIV555RWaN2/OW2+9RWJioqvNLbfcwpEjR5g0aRJpaWmcd955LFy4sMLC6EYpog3EJmBJ/YFE6/d8/nM4eUXFNX4aTEREpL7z6F++fv36YZrmKY9Xdpfnfv36sWHDhtP2O378+NOe8mrUugyD1B+43raWD/P6s2jLYa5JqPmrwUREROqzBnUfIKkBZafBejk3E042/9140LPjERER8QAFoMYmog3E9MBCCYnWtSz75YhuiigiIo2OAlBj1LX0o0eGB6zBUWJqMbSIiDQ6CkCNUfcbAUgo3kQcR/lcp8FERKSRUQBqjMJaQqtLMDAZ5vMdq3YdY19G1e+eKSIi0tApADVWCbcAMNI/BTD5eN1+z45HRESkDikANVZdrgUff5oV76ObsZtP1h2gxHnqWxKIiIh4EwWgxso/FDoOBWCEbSWpWQUs337Ew4MSERGpGwpAjVnCcACG+azEDwf/+V6nwUREpHFQAGrM2vaH4DgCizNJtHzPoi3pHDlR6OlRiYiI1DoFoMbM6gM9bwPgrsDlOEpM5q7Zd4YniYiINHwKQI1dz1FgWOju+JG2xkHeX70XR4nT06MSERGpVQpAjV1oc2g/CIA/+i8jPbuQb35K9/CgREREapcCkECvsQBcb12OjSLeW7nHs+MRERGpZQpAAu0HQmgLAoqzud5nJWv2HOOnQ1meHpWIiEitUQASsFjhorsAuM/+DWDy1re7PTsmERGRWqQAJKV6jgLfQOKK9nCpZRP//eEQB47r88FERMQ7KQBJqYAw1yXxDwcvosSpWSAREfFeCkDyq95/AgwSCtfSzjjA3O/3cSy3yNOjEhERqXEKQPKriDbQ6SoAHgv+hgKHk9m6IkxERLyQApC4u2QCAP0dyTTjCO9+t5usPIeHByUiIlKzFIDEXfNe0KYfFrOYx0K+5kRBMW+t2OXpUYmIiNQoBSCp6NI/A3BV8SKaksk7K3ZzXGuBRETEiygASUWtL4XmF2F1FjExLIncohL+8a1mgURExHsoAElFhgGXPwrAtY6viOYY7363m7SsAg8PTEREpGYoAEnl2g2Aln2wlhQyLfwrChxOZiRt8/SoREREaoQCkFTOMKD/ZAAGFXxNayOVj9cdYEtqtocHJiIicu4UgOTUWvWB9okYZgkvRn6BacIzX23x9KhERETOmQKQnF7/JwGDC04s5UKfHXy7/SiLfk739KhERETOiQKQnF5Mdzh/JACvhM7FwMnUL36iwFHi4YGJiIicPQUgObMrJ4FfMHG5PzM2aDX7j+Xz9+Sdnh6ViIjIWVMAkjMLjobLSm+O+KjPXALJZ9aynew5muvhgYmIiJydehGAXn/9dVq3bo2/vz+9e/dmzZo1p2zbr18/DMOosF111VWuNmPGjKlwfPDgwXVRivf63b0QHo9/wRFeaLqAomInEz/bhGmanh6ZiIhItXk8AH300UdMmDCByZMns379ehISEkhMTOTw4cOVtv/ss89ITU11bZs3b8ZqtXLTTTe5tRs8eLBbuw8//LAuyvFePjYY+iIAQ3LmkeC7n5RdGXy4Zr+HByYiIlJ9Hg9AM2bM4M4772Ts2LF06dKFWbNmYbfbeeeddyptHxERQUxMjGtLSkrCbrdXCEA2m82tXXh4eF2U493aD4Au12KYJfwj4gMMnDzz1RZSs/I9PTIREZFq8fHkixcVFbFu3TomTpzo2mexWBgwYAApKSlV6uPtt99m+PDhBAYGuu1PTk4mKiqK8PBwrrzySp5++mmaNGlSaR+FhYUUFha6Hmdnl97sz+Fw4HA4qlvWaZX3V9P91pn+T+OzYxHRWT/yl8jvmH70Uh775Afeuq0nhmE0/PqqQDU2fN5eH3h/jd5eH6jGc+mvKgzTg4s4Dh06RLNmzVi5ciV9+vRx7X/00UdZtmwZq1evPu3z16xZQ+/evVm9ejUXXXSRa//cuXOx2+3Ex8ezc+dOHn/8cYKCgkhJScFqtVboZ8qUKUydOrXC/jlz5mC328+hQu8Uf+Qbehx4H4dhY3DBdHaaMdzQuoTLYrUeSEREPCcvL49bb72VrKwsQkJCTtu2QQegP/3pT6SkpPDjjz+ett2uXbto27YtixYton///hWOVzYD1KJFC44ePXrGH2B1ORwOkpKSGDhwIL6+vjXad50xnVg/uA7L3u9ICz2Pi9MfxtfHh3n3/I7W4baGX98ZeMV7eAbeXqO31wfeX6O31weq8WxkZ2cTGRlZpQDk0VNgkZGRWK1W0tPd7yycnp5OTEzMaZ+bm5vL3LlzmTZt2hlfp02bNkRGRrJjx45KA5DNZsNms1XY7+vrW2v/6Gqz7zox7A1442JisjbyTMxy/pLWjwkfb+Lju0pn4hp8fVWgGhs+b68PvL9Gb68PVGN1+6kqjy6C9vPzo1evXixevNi1z+l0snjxYrcZocp8/PHHFBYW8oc//OGMr3PgwAEyMjKIjY095zFLmfBWkPgMALdkv8vF9gNsTTvB019t9fDAREREzszjV4FNmDCBf/7zn7z33nts2bKFe+65h9zcXMaOHQvAqFGj3BZJl3v77bcZNmxYhYXNOTk5PPLII6xatYo9e/awePFirr32Wtq1a0diYmKd1NRo9BwFnX6P4XTwVtAs7EYBH609yJojhqdHJiIicloePQUGcMstt3DkyBEmTZpEWloa5513HgsXLiQ6OhqAffv2YbG457Rt27axYsUKvvnmmwr9Wa1WfvzxR9577z0yMzOJi4tj0KBBPPXUU5We5pJzYBhwzd/g4Hrs2bv4T8v5/H7vcP6zy8ItqSfo0TLC0yMUERGplMcDEMD48eMZP358pceSk5Mr7OvYseMp70AcEBDA119/XZPDk9OxR8D1/4D3rqZb+n95PLYdz6RewD1zNvDf8ZfQJEihU0RE6h+PnwITLxB/KVzxOAB3Zr9OX9suDmYWcM8H6ykqdnp4cCIiIhUpAEnNuPRh6DAYo6SQWb4zaWbLZc3uYzwxX58XJiIi9Y8CkNQMiwWuexMzPJ7g4qN80XQW/oaD/6w9wN+W7PD06ERERNwoAEnNCQij+Kb3cVgCCD+6ji/jPwVMZiT9wsdr9aGpIiJSfygASc1q2pHv48dhGlbaHvov/26bDMBjn/7IFz8e8ujQREREyikASY07EtIDZ+J0AC49+E9mxq/BacIDczfy9U9pHh6diIiIApDUEmevP0K/0htYDkudydNtfqLEaTJ+znqWbj3s4dGJiEhjpwAktefyx6D33QCMTH2Wx+J34ygx+dP76/h2+xEPD05ERBozBSCpPYYBidOhx3AMs4S7D09jXHwqRcVO7vzXWpK3aSZIREQ8QwFIapfFAte+Bh2HYpQU8nDGZO5pdZACh5M73lvLvA0HPD1CERFphBSApPZZfeHGdyH+coyiHB49+gSPt91DsdPkoY9+4K1vd3l6hCIi0sgoAEnd8PWHW//jmgm6M3USL3XeDsDTX25h+ldbcDp1x2gREakbCkBSd3z94eZ/QfebMZzFXL97Cu913wzAm8t38dB/NlLgKPHwIEVEpDFQAJK6ZfWF696EC+/AwOTy7c/wZY8VWC3w+cZD3DQrhUOZ+Z4epYiIeDkFIKl7FgsMfREu/TMAXX/5O6vbf0BMgJNNB7O4+m8rWL0rw8ODFBERb6YAJJ5hGNB/Elz9Klh8iNz7JcubvkDfaAcZuUWMfGs1/0rZo0+SFxGRWqEAJJ7VazSM+hwCIvA7/APvl/yFeztmU+w0mfT5T9z34Qay8h2eHqWIiHgZBSDxvNaXwJ1LoGknjJxUHjnwAP9O2IzVAl/8mMrQV77l+z3HPD1KERHxIgpAUj9ExMPtSdBhCEZJIZdue4a1HefQKRwOZuZzy5spvJz0C8UlTk+PVEREvIACkNQf/iEwfA4MfAosPoTv/oKv/P+P+zrn4jThlcXbuenNFLann/D0SEVEpIFTAJL6xWKBvvfD2AUQ2gLL8d38ed84/nfBD4TaLGzYl8nQV79l5qJfKCrWbJCIiJwdBSCpn1pcBH9aDh2HQkkR3Tc/x/fNZjCibRGOEpOZi7Zz9d9WsGHfcU+PVEREGiAFIKm/7BGlp8R+PxP8gvA7tIZn0u/miwt/INJuZVv6Ca5/YyX/N28Tx3KLPD1aERFpQBSApH4zDLhgLNybAm36YRQX0G3Tc6TEvMi9nQswTfhg9T76vbCU91bu0SJpERGpEgUgaRjCWsJt8+H3L4NfEL6HvufRPXeScn4SPaMtZBcUM/m/P3HVqyv4bsdRT49WRETqOQUgaTgMAy74I9y7CjpfA2YJsVve5dPi+3n/oj2EBfiwLf0EI99azW1vr2bTgSxPj1hEROopBSBpeMJawC3/hj98Bk3aYeQe5pIfH2dtzHNM6Z6Br9Xg2+1Hufq1FYz7YD07j+R4esQiIlLPKABJw9WuP9yzsvQzxXzt+KSuY8z2+9jU5g3u73QCw4AvN6Uy6OXlTPhoIzsO6/5BIiJSSgFIGjYfW+mnyt+/ES68Eyy++O9fzoQ9f+KHzu9zW9t8Spwmn204yMCXlzPug/X8dEinxkREGjsFIPEOwdFw1Ytw31roMRwwCNn1FU8dupP1PeZxa/sSTLN0RuiqV1cw9t01rNxxVJ82LyLSSCkAiXcJbw3Xv1l6aqzjVWA6ifjlY545MJofuv2HuzoVYDFg6bYj3PrWaoa+uoJP1h2gsLjE0yMXEZE6pAAk3im6C4yYA3cshnYDwHQSumM+j+/5I5s6vsvj3bMJ8LWwJTWbhz/+gUueW8qMb7Zx4Hiep0cuIiJ1oF4EoNdff53WrVvj7+9P7969WbNmzSnbzp49G8Mw3DZ/f3+3NqZpMmnSJGJjYwkICGDAgAFs3769tsuQ+qj5BfCHT0s/VqPLMMAgcE8Sd22/m01x03n7vO00D7Zw5EQhry7ZwaXPL2XMu2v45qc03VRRRMSLeTwAffTRR0yYMIHJkyezfv16EhISSExM5PDhw6d8TkhICKmpqa5t7969bseff/55Xn31VWbNmsXq1asJDAwkMTGRgoKC2i5H6qvYBLj5PRi/Fs6/Daw2fNJ/oP/WyXzrO55vEpZxTatiTBOStx3hrn+vo+9zS3hJs0IiIl7J4wFoxowZ3HnnnYwdO5YuXbowa9Ys7HY777zzzimfYxgGMTExri06Otp1zDRNZs6cyRNPPMG1115Ljx49+Ne//sWhQ4eYP39+HVQk9VpkO7j2NZiwBfpPhpBmGHlH6bDtTV5NH83P7d/k5W67iLEbpGcX8reyWaHh/0jhwzX7yMpzeLoCERGpAT6efPGioiLWrVvHxIkTXfssFgsDBgwgJSXllM/LycmhVatWOJ1OevbsyTPPPEPXrl0B2L17N2lpaQwYMMDVPjQ0lN69e5OSksLw4cMr9FdYWEhhYaHrcXZ2NgAOhwOHo2b/4JX3V9P91hcNpj6/EPjdfXDRPRjbvsKy/l0se77Fvn8Z17GMYf7h7G49lDdP9OWj/WGs2nWMVbuOMenzzVzWrgktTYPL8gsI8nQdtaTBvI9nydvrA++v0dvrA9V4Lv1VhWF68DrgQ4cO0axZM1auXEmfPn1c+x999FGWLVvG6tWrKzwnJSWF7du306NHD7KysnjxxRdZvnw5P/30E82bN2flypX07duXQ4cOERsb63rezTffjGEYfPTRRxX6nDJlClOnTq2wf86cOdjt9hqqVuo7e+FhWmYsp+WxbwlwHHftP+Ifz2Lfy3krpy878gNd+/2tJj0iTBIiTDqGmfh6fD5VRKRxy8vL49ZbbyUrK4uQkJDTtvXoDNDZ6NOnj1tYuvjii+ncuTNvvvkmTz311Fn1OXHiRCZMmOB6nJ2dTYsWLRg0aNAZf4DV5XA4SEpKYuDAgfj6+tZo3/VBw69vDDhLKN61FMsPH2D8spCmBbsZXrCbW3w+Iqtzf5KMPrywI47DRTbWHDFYcwTsflYubx/JwC5R9OvQlGD/BveflpuG/z6enrfXB95fo7fXB6rxbJSfwakKj/6WjoyMxGq1kp6e7rY/PT2dmJiYKvXh6+vL+eefz44dOwBcz0tPT3ebAUpPT+e8886rtA+bzYbNZqu079r6R1ebfdcHDbs+X+g8pHTLPQo/fgTr/41xZAthu7/gJr5gmI8/x9smsshyCW/ub8He7BIW/JTOgp/S8bUa9G0XycAu0fTrGEWzsABPF3TWGvb7eGbeXh94f43eXh+oxur2U1UenbT38/OjV69eLF682LXP6XSyePFit1me0ykpKWHTpk2usBMfH09MTIxbn9nZ2axevbrKfYq4BEZCn3FwbwrcuRQuvg8zpBm+zgKidn/OrTsfIdm8nY2d/sXrXbdyfpMSHCUmyduO8H/zNtP32SUMnLGMv375M9/tOKobLoqI1BMen6efMGECo0eP5oILLuCiiy5i5syZ5ObmMnbsWABGjRpFs2bNmD59OgDTpk3jd7/7He3atSMzM5MXXniBvXv3cscddwClV4g9+OCDPP3007Rv3574+HiefPJJ4uLiGDZsmKfKlIbOMKBZT2jWk+J+T5Ly8d/oG5qG9ZevMLIPErZnIVexkKsMC/ltLmK9/+/4KKsrXxyys/1wDtsP5/DPb3dj97NycdtILm0fSZ+2TWgfFYRhGJ6uTkSk0fF4ALrllls4cuQIkyZNIi0tjfPOO4+FCxe6Lm3ft28fFsuvE1XHjx/nzjvvJC0tjfDwcHr16sXKlSvp0qWLq82jjz5Kbm4ud911F5mZmVxyySUsXLiwwg0TRc6KYeF4UHuciQ9gveoFSP0Btn0FW7+C9E0EHFpFX1bRF5jZtAX7I37HsuLuzE5rxa4cWLQlnUVbSk/7Rgb50btNEy5u24Q+bZoQHxmoQCQiUgc8HoAAxo8fz/jx4ys9lpyc7Pb45Zdf5uWXXz5tf4ZhMG3aNKZNm1ZTQxSpnGFA3Hml2xWPQ+Y+2LYAtn4J+1KwZO+nVfZ+RvExtxkW8lsm8JN/L77K78rHaU05mlPElz+m8uWPqQBEh9jo06YJfdo24aL4JrRuYlcgEhGpBfUiAIl4jbCW0PtPpVtRLuxdCTuXwM4lGEe2Yj+8gQvZwIXAJHswmU0vYrNPV74+Ec9naU1Jzy5k/sZDzN94CICIQD96tgyjZ6twerYMJ6F5GAF+Vs/WKCLiBRSARGqLXyC0H1i6AWQdhF1LywLRUoz8Y4QfWMylLOZS4KmAALKbJPCTbzeSctrw2ZE4juXCoi2HWbSl9KNhfCwGnWND6NUqnPNbhnF+i3BaRARolkhEpJoUgETqSmgzOP8PpZvTCakbYe93sDcF9qVg5B8jNH0VF7OKi4FJflbymnRjl707Kx0d+PRoC345YWPTwSw2Hcxi9sqybgN86dYshG7NQuneLJQezcIUikREzkABSMQTLBbXVWVcfF9pIDr6C+xb+WsgytpP4NEf6M4PdAf+BBRHteBwUCe20IZvc+JYkBFLen4Q3+3I4LsdGa7uTw5FXeNC6RQTTHxkIL5W3a5aRAQUgETqB4sFojqVbhf8sXRf5n7Yl1K6jmhfChzZik/2fuKy9xMH9Aem+IIjLJb0oE5spQ0r85uzMCOWQ/khFUKRn9VC26ggOsUE0ykmmI4xwXSKCSE6xKbZIhFpdBSAROqrsBalW4+bSx/nZ0Laj6WX3R/aWPo1Ywe+uak0z02lOUsZAEzyBUdoFIeDOrPNaMPqghYkHY9hV1EoW1Kz2ZLqfqv4MLsvHaOD6RwbQofoYNpFBdEy3IbnPiVQRKT2KQCJNBQBYRB/WelWriAb0jaVhqHUjaVfj/6Cb95hmuUdphnLuBKYaIGS8CZkBbXjgG8rfipuxuqcKJYdb8LxvCBW7z7G6t3H3F7ObrXy3sHVtIsKpm1UEG2bBtG2aSAtI+z46FSaiDRwCkAiDZl/CLTuW7qVK8qFtM2lgah8pujIVqz5GUTkZxDBanoAIwBs4LBHcczelj3WlvzkiGNDbgRrsiNILwljw/4sNuzPcntJX6tBqyaBtIkMpHVkaSBq3SSQVk3sxIb6KxyJSIOgACTibfwCoWXv0q1cUR4c2Vq6Hd5Suh3ZCln78c07THTeYaJJwfUMGzgMG7nB8Rz2a85uZww/FTbl++xwtjmi2HHYyY7DORVe2sdi0Dw8gJZNAmkVYadVEzutysJRywg7/r66h5GI1A8KQCKNgZ/916vOTlaQDUe2wZEtcLgsIB3biZm5D1+zkLDsrYSxlQ5AIoC1dCv2DeZ4QEtSrc3Y7Yxmc2FT1uc0YXtxFHsyTPZk5FU6jOgQGy0j7DQLC6BZeABxYQE0Cwugedn3dj/9ShKRuqHfNiKNmX8ItLiwdDtJcUEuyz//N5d3b45P5h44thMydsKxXZC1Hx/HCZo6fqIpP9EDuBZKf5v4gMMWQVZACw5bo9nvjGRHURibcsPYXhjOwexIvs8u5HuOVzqciEA/4sL8SwNSmJ1m4QE0C/OnWZid2DB/Iux+WCy6Yk1Ezp0CkIhUZPUjxz8Ws30i+Pq6H3Pkw7Hdv4aijB2lwShjJ+Sk4Vt4jMjCY0QCXSibOQKwlX4p9AsnyxbLEUsUB8xIdjnC2ZIXxvaiCA7lNmFzbiCbD7pfqVbO12oQHeJPTIg/0aH+xIb4ExPqX7ovtGx/iD9+PlqHJCKnpwAkItXjGwDRXUq33yrMKQ1DZTNFZO4rvZ9R+feF2diKjhNVdJwofqZr+fMMXAGpxOpPri2K49ZI0olgf3E4uwpD2FEYQpoznLTjEaw/HoaTU4ecJoF+rkDUNNhGVLCNpq7Nn/AAC0UlNf2DEZGGRAFIRGqOLQhie5RulcnPLAtDZYHIFZLKvs/LwFpSQEjePkLYRyvgovLnnjQR5TSs5Ps1IdOnKUeMJhxyhrPXEcr2/BAOloSTnhfGvtxQfjoUQGm6qowPU39YQlSIjaZBtrKg5O8KSlHBNiKDbDQJ8iPc7qdZJREvowAkInUnIKx0i+le+XFHPpxIhexUyD4EJw6Vfi3fTqTCiTQsZgmBhYcJLDxMM+C88ueXrUMqV2LxI883nGxLGMeMMA47g0ktDmZ/YRDpJcEcdYSScTSEXUdCWEsIJZz6KrUQfx+aBNmICPQjItCPJoF+NAnyIyLQRpOyfRGBfkQG2QgP9MXmoyveROozBSARqT98AyCiTel2Ks4SyDl8UjhKheyDZcHpUOn3OYehKAers4jgwnSCSafZyX2UXc32W3k+oa6wdMQZTFpxMAccQRw1Q8goCuFoRihHMkLZYoaSh41Tzy5BsM2HiKCTwlKgjYggP8LtvoQF+BFm9yXMXvo4tGyfZplE6o4CkIg0LBYrhMSWbs16nbpdUR7kHoHco2VfD7seO0+kkbF3K5F2MHKPQF4GmE7sxVnYySKGvb/2c4rfkg6LjRyfcLIsYRwjlCPOENKL7aQW2TlmBpHpCOL4sSCOHwvmgBnEcYIoPsOv3EA/K2F2P0IDfAkPPDkouYemMLtvaXAq26cPuRWpPgUgEfFOfnbwawXhrSocKnE4WPnVVwwdOhRfX9/SWaX846UzR7lHTgpOv4amX48dBUcuvs5CwovSCCeN1id3fprfqoUWOznWELKNYDLNYI6ZQRwutpNebOe4GUxWcSDZ2Xays+wcIZAdZiDZ2Mk/w2xTkM2H0ABfQgJ8CfH3ISTAlyCblWNpFnYu2UlYoM3tWIh/6axTiL8PgX4+urWANEoKQCIiFisERpZuVVGUW0kwOgx5xyH/GOQdc/+anwmY2Jx52Jx5NCHNvb8z/CYuwUq+NYgcI5ATBJLptHPMaedYiT9ZZiDZxXayTwSSnV0amDJMO7sIJNu0syp1C4X4nbp0A4L9fQkJ8CHEvywcBZQ+DrL5EuzvQ7C/D0E2H4L9fQlyff/rfoUoaYgUgEREqssvsHQLb1219s4SKMiqGIx++7UgGwoyS9uWb85irJQQVJJFEFnEnNxvFddZOwxfco3SAJVt2sk07RwvCSDTaecEAeQW+ZNX5E9OVgB5po0cAthr+pOLjVwCyDX9ycWfPGyYldx+wDAgyM/HFY6C/EvDUrDt17DkHpx8Xe2CbD4E2nwI9LMSaPPR6TypMwpAIiK1zWIFe0TpVh2mCY680iCUn+kejAqyTgpLJx0ra2eWPTYw8TUdhJnHCTv5DtyWsq2a8vEnj9JwlOP0Jwf/0oDk9Cc3N4C8XBu5+JNrBpQGKDOAA/iX7Sv7ij95Zd8X4svJp/f8rBYCbdayUOTzm+9/fRzgY7An1SBv/UFCAmwE2qwE2Xyw+5WHqtJ2Nh8LhqHZKalIAUhEpL4yjF9nm0LiqvXUYoeDr778gqEDLse3OLfizFJ5WCrKgcITpaf1inJ+/Vp40vdFOWA6AQiggAAKaAJnFaAqjBOLW1jKxUaew59cx8n7/E+ahfLnoFkewvz5cO8e1/HyfSffzsBqMbD7lYajAD8rdj8rdt9fv3ft8/MhwLf8eysBfj6/HvctO+538nErflaFq4ZMAUhExFsZFrAFQ1AE0OLs+zHN0ns0nRyIinLLQlLO6YOT63EuFJ349XnF+QD44CTUyCWU3NOt866WAtOXHEpP5+USQK7Tn7w8Gzl5AeThT05ZWMo5KTQdK//e9CcfP/KxUWCWfs3HjwL8Kpz+s1oM7L7Wk8KUz68BybeSfZWEqYCy8OXvayHA14q/rxV/Hyv+fhYM06yZH4hUSgFIREROzzDKrqqzA01rpk9nyUnBKbfiLJTr8W+CU9ljZ2EOOcfSCfYDo/x5zmIA/A0H/jhqLFCVK8CXfLM0EOWbNgrKvuYX+FFQ8Ov+0sBkI9/0c4WpbPwoMEuDVMFJ35eHq8KTjjmwAgaGAb6GlSk/LMXu54PN14K/T2loKg9MtrLAFOB38rHyzb19+f6Ak46Xf98YTxUqAImISN2zWME/tHQ7CyUOB0tPvpWBaUJJ0UmzUpXNQp1m9qowpzRoOfLLtrzSr8UFrtf0x4G/4SAcajxcudVmGmXhqDRkFRb7UlBcMTgVuoUqX9f3x7FReNLj8ucV4vvr9pvHxfw2HFUMSb8NUTYfi2u/zec3X086/tuv5d97esG7ApCIiDR8hgE+ttItsEnN9et0lp6uOzkUVfhanX1loaqyr5Se8rIaJoEUEkhhWW01V86plJgGhfhRWOJbuuWXBqMiV2AqD0t+v3lcuuVUCFilbYvwqTRwFZq+XN+3G/cPTqj94k5BAUhERORULJZfF6LXpvIZLEceOAqgOB9Hfg4rly2mb++e+JiOsgBVUBbIfvv1DOHKkV/af3EBFBeWfi0pcr281TCxU4i9DkPX96m3AS/X/gudggKQiIiIp508gxVQts/hIDNwN2bLi8HXt+Zf0+mEkrIwVPybcFTh62mO/TZYnea55knHEuJjzjzGWqQAJCIi0hhZLGAJKP0Q4jpy8sSSH+BwOOrstX9Lt9wUERGRRkcBSERERBodBSARERFpdOpFAHr99ddp3bo1/v7+9O7dmzVr1pyy7T//+U8uvfRSwsPDCQ8PZ8CAARXajxkzBsMw3LbBgwfXdhkiIiLSQHg8AH300UdMmDCByZMns379ehISEkhMTOTw4cOVtk9OTmbEiBEsXbqUlJQUWrRowaBBgzh48KBbu8GDB5OamuraPvzww7ooR0RERBoAjwegGTNmcOeddzJ27Fi6dOnCrFmzsNvtvPPOO5W2/+CDD7j33ns577zz6NSpE2+99RZOp5PFixe7tbPZbMTExLi28PDwuihHREREGgCPXgZfVFTEunXrmDhxomufxWJhwIABpKSkVKmPvLw8HA4HERERbvuTk5OJiooiPDycK6+8kqeffpomTSq/O2hhYSGFhYWux9nZ2UDp5Xk1fYleeX+evPSvNnl7faAavYG31wfeX6O31weq8Vz6qwrDND33cbOHDh2iWbNmrFy5kj59+rj2P/rooyxbtozVq1efsY97772Xr7/+mp9++gl/f38A5s6di91uJz4+np07d/L4448TFBRESkoKVqu1Qh9Tpkxh6tSpFfbPmTMHu91+DhWKiIhIXcnLy+PWW28lKyuLkJCQ07Zt0DdCfPbZZ5k7dy7Jycmu8AMwfPhw1/fdu3enR48etG3bluTkZPr371+hn4kTJzJhwgTX4+zsbNfaojP9AKvL4XCQlJTEwIEDSz/Az8t4e32gGr2Bt9cH3l+jt9cHqvFslJ/BqQqPBqDIyEisVivp6elu+9PT04mJOf0tsl988UWeffZZFi1aRI8ePU7btk2bNkRGRrJjx45KA5DNZsNms1XY7+vrW2v/6Gqz7/rA2+sD1egNvL0+8P4avb0+UI3V7aeqPLoI2s/Pj169erktYC5f0HzyKbHfev7553nqqadYuHAhF1xwwRlf58CBA2RkZBAbG1sj4xYREZGGzeNXgU2YMIF//vOfvPfee2zZsoV77rmH3Nxcxo4dC8CoUaPcFkk/99xzPPnkk7zzzju0bt2atLQ00tLSyMnJASAnJ4dHHnmEVatWsWfPHhYvXsy1115Lu3btSExM9EiNIiIiUr94fA3QLbfcwpEjR5g0aRJpaWmcd955LFy4kOjoaAD27duHxfJrTnvjjTcoKirixhtvdOtn8uTJTJkyBavVyo8//sh7771HZmYmcXFxDBo0iKeeeqrS01wiIiLS+Hg8AAGMHz+e8ePHV3osOTnZ7fGePXtO21dAQABff/11DY1MREREvFG9CED1TfmdAaqzmryqHA4HeXl5ZGdne+WiNm+vD1SjN/D2+sD7a/T2+kA1no3yv9tVucOPAlAlTpw4AUCLFi08PBIRERGprhMnThAaGnraNh69EWJ95XQ6OXToEMHBwRiGUaN9l99jaP/+/TV+j6H6wNvrA9XoDby9PvD+Gr29PlCNZ8M0TU6cOEFcXJzb+uHKaAaoEhaLhebNm9fqa4SEhHjtP2jw/vpANXoDb68PvL9Gb68PVGN1nWnmp5zHL4MXERERqWsKQCIiItLoKADVMZvNxuTJk732nkTeXh+oRm/g7fWB99fo7fWBaqxtWgQtIiIijY5mgERERKTRUQASERGRRkcBSERERBodBSARERFpdBSA6tDrr79O69at8ff3p3fv3qxZs8bTQzor06dP58ILLyQ4OJioqCiGDRvGtm3b3Nr069cPwzDctrvvvttDI66+KVOmVBh/p06dXMcLCgoYN24cTZo0ISgoiBtuuIH09HQPjrj6WrduXaFGwzAYN24c0DDfw+XLl3P11VcTFxeHYRjMnz/f7bhpmkyaNInY2FgCAgIYMGAA27dvd2tz7NgxRo4cSUhICGFhYdx+++3k5OTUYRWndrr6HA4Hjz32GN27dycwMJC4uDhGjRrFoUOH3Pqo7H1/9tln67iSUzvTezhmzJgK4x88eLBbm4b6HgKV/jdpGAYvvPCCq019fw+r8jeiKr9D9+3bx1VXXYXdbicqKopHHnmE4uLiGhunAlAd+eijj5gwYQKTJ09m/fr1JCQkkJiYyOHDhz09tGpbtmwZ48aNY9WqVSQlJeFwOBg0aBC5ublu7e68805SU1Nd2/PPP++hEZ+drl27uo1/xYoVrmMPPfQQ//vf//j4449ZtmwZhw4d4vrrr/fgaKvv+++/d6svKSkJgJtuusnVpqG9h7m5uSQkJPD6669Xevz555/n1VdfZdasWaxevZrAwEASExMpKChwtRk5ciQ//fQTSUlJfPHFFyxfvpy77rqrrko4rdPVl5eXx/r163nyySdZv349n332Gdu2beOaa66p0HbatGlu7+t9991XF8OvkjO9hwCDBw92G/+HH37odryhvoeAW12pqam88847GIbBDTfc4NauPr+HVfkbcabfoSUlJVx11VUUFRWxcuVK3nvvPWbPns2kSZNqbqCm1ImLLrrIHDdunOtxSUmJGRcXZ06fPt2Do6oZhw8fNgFz2bJlrn2XX365+cADD3huUOdo8uTJZkJCQqXHMjMzTV9fX/Pjjz927duyZYsJmCkpKXU0wpr3wAMPmG3btjWdTqdpmg3/PQTMefPmuR47nU4zJibGfOGFF1z7MjMzTZvNZn744YemaZrmzz//bALm999/72qzYMEC0zAM8+DBg3U29qr4bX2VWbNmjQmYe/fude1r1aqV+fLLL9fu4GpIZTWOHj3avPbaa0/5HG97D6+99lrzyiuvdNvXkN5D06z4N6Iqv0O/+uor02KxmGlpaa42b7zxhhkSEmIWFhbWyLg0A1QHioqKWLduHQMGDHDts1gsDBgwgJSUFA+OrGZkZWUBEBER4bb/gw8+IDIykm7dujFx4kTy8vI8Mbyztn37duLi4mjTpg0jR45k3759AKxbtw6Hw+H2fnbq1ImWLVs22PezqKiI999/nz/+8Y9uHwDc0N/Dk+3evZu0tDS39y00NJTevXu73reUlBTCwsK44IILXG0GDBiAxWJh9erVdT7mc5WVlYVhGISFhbntf/bZZ2nSpAnnn38+L7zwQo2eVqgLycnJREVF0bFjR+655x4yMjJcx7zpPUxPT+fLL7/k9ttvr3CsIb2Hv/0bUZXfoSkpKXTv3p3o6GhXm8TERLKzs/npp59qZFz6MNQ6cPToUUpKStzeSIDo6Gi2bt3qoVHVDKfTyYMPPkjfvn3p1q2ba/+tt95Kq1atiIuL48cff+Sxxx5j27ZtfPbZZx4cbdX17t2b2bNn07FjR1JTU5k6dSqXXnopmzdvJi0tDT8/vwp/VKKjo0lLS/PMgM/R/PnzyczMZMyYMa59Df09/K3y96ay/w7Lj6WlpREVFeV23MfHh4iIiAb33hYUFPDYY48xYsQItw+ZvP/+++nZsycRERGsXLmSiRMnkpqayowZMzw42qobPHgw119/PfHx8ezcuZPHH3+cIUOGkJKSgtVq9ar38L333iM4OLjC6fWG9B5W9jeiKr9D09LSKv1vtfxYTVAAknMybtw4Nm/e7LY+BnA73969e3diY2Pp378/O3fupG3btnU9zGobMmSI6/sePXrQu3dvWrVqxX/+8x8CAgI8OLLa8fbbbzNkyBDi4uJc+xr6e9iYORwObr75ZkzT5I033nA7NmHCBNf3PXr0wM/Pjz/96U9Mnz69QXzkwvDhw13fd+/enR49etC2bVuSk5Pp37+/B0dW89555x1GjhyJv7+/2/6G9B6e6m9EfaBTYHUgMjISq9VaYYV7eno6MTExHhrVuRs/fjxffPEFS5cupXnz5qdt27t3bwB27NhRF0OrcWFhYXTo0IEdO3YQExNDUVERmZmZbm0a6vu5d+9eFi1axB133HHadg39PSx/b07332FMTEyFCxOKi4s5duxYg3lvy8PP3r17SUpKcpv9qUzv3r0pLi5mz549dTPAGtamTRsiIyNd/y694T0E+Pbbb9m2bdsZ/7uE+vsenupvRFV+h8bExFT632r5sZqgAFQH/Pz86NWrF4sXL3btczqdLF68mD59+nhwZGfHNE3Gjx/PvHnzWLJkCfHx8Wd8zsaNGwGIjY2t5dHVjpycHHbu3ElsbCy9evXC19fX7f3ctm0b+/bta5Dv57vvvktUVBRXXXXVads19PcwPj6emJgYt/ctOzub1atXu963Pn36kJmZybp161xtlixZgtPpdAXA+qw8/Gzfvp1FixbRpEmTMz5n48aNWCyWCqeNGooDBw6QkZHh+nfZ0N/Dcm+//Ta9evUiISHhjG3r23t4pr8RVfkd2qdPHzZt2uQWZssDfZcuXWpsoFIH5s6da9psNnP27Nnmzz//bN51111mWFiY2wr3huKee+4xQ0NDzeTkZDM1NdW15eXlmaZpmjt27DCnTZtmrl271ty9e7f5+eefm23atDEvu+wyD4+86v785z+bycnJ5u7du83vvvvOHDBggBkZGWkePnzYNE3TvPvuu82WLVuaS5YsMdeuXWv26dPH7NOnj4dHXX0lJSVmy5Ytzccee8xtf0N9D0+cOGFu2LDB3LBhgwmYM2bMMDds2OC6CurZZ581w8LCzM8//9z88ccfzWuvvdaMj4838/PzXX0MHjzYPP/8883Vq1ebK1asMNu3b2+OGDHCUyW5OV19RUVF5jXXXGM2b97c3Lhxo9t/m+VXzaxcudJ8+eWXzY0bN5o7d+4033//fbNp06bmqFGjPFzZr05X44kTJ8yHH37YTElJMXfv3m0uWrTI7Nmzp9m+fXuzoKDA1UdDfQ/LZWVlmXa73XzjjTcqPL8hvIdn+hthmmf+HVpcXGx269bNHDRokLlx40Zz4cKFZtOmTc2JEyfW2DgVgOrQ3/72N7Nly5amn5+fedFFF5mrVq3y9JDOClDp9u6775qmaZr79u0zL7vsMjMiIsK02Wxmu3btzEceecTMysry7MCr4ZZbbjFjY2NNPz8/s1mzZuYtt9xi7tixw3U8Pz/fvPfee83w8HDTbreb1113nZmamurBEZ+dr7/+2gTMbdu2ue1vqO/h0qVLK/23OXr0aNM0Sy+Ff/LJJ83o6GjTZrOZ/fv3r1B7RkaGOWLECDMoKMgMCQkxx44da544ccID1VR0uvp27959yv82ly5dapqmaa5bt87s3bu3GRoaavr7+5udO3c2n3nmGbfw4GmnqzEvL88cNGiQ2bRpU9PX19ds1aqVeeedd1b4H8mG+h6We/PNN82AgAAzMzOzwvMbwnt4pr8Rplm136F79uwxhwwZYgYEBJiRkZHmn//8Z9PhcNTYOI2ywYqIiIg0GloDJCIiIo2OApCIiIg0OgpAIiIi0ugoAImIiEijowAkIiIijY4CkIiIiDQ6CkAiIiLS6CgAiYicgmEYzJ8/39PDEJFaoAAkIvXSmDFjMAyjwjZ48GBPD01EvICPpwcgInIqgwcP5t1333XbZ7PZPDQaEfEmmgESkXrLZrMRExPjtoWHhwOlp6feeOMNhgwZQkBAAG3atOGTTz5xe/6mTZu48sorCQgIoEmTJtx1113k5OS4tXnnnXfo2rUrNpuN2NhYxo8f73b86NGjXHfdddjtdtq3b89///tf17Hjx48zcuRImjZtSkBAAO3bt68Q2ESkflIAEpEG68knn+SGG27ghx9+YOTIkQwfPpwtW7YAkJubS2JiIuHh4Xz//fd8/PHHLFq0yC3gvPHGG4wbN4677rqLTZs28d///pd27dq5vcbUqVO5+eab+fHHHxk6dCgjR47k2LFjrtf/+eefWbBgAVu2bOGNN94gMjKy7n4AInL2auxjVUVEatDo0aNNq9VqBgYGum1//etfTdMs/cTpu+++2+05vXv3Nu+55x7TNE3zH//4hxkeHm7m5OS4jn/55ZemxWJxfXp4XFyc+X//93+nHANgPvHEE67HOTk5JmAuWLDANE3TvPrqq82xY8fWTMEiUqe0BkhE6q0rrriCN954w21fRESE6/s+ffq4HevTpw8bN24EYMuWLSQkJBAYGOg63rdvX5xOJ9u2bcMwDA4dOkT//v1PO4YePXq4vg8MDCQkJITDhw8DcM8993DDDTewfv16Bg0axLBhw7j44ovPqlYRqVsKQCJSbwUGBlY4JVVTAgICqtTO19fX7bFhGDidTgCGDBnC3r17+eqrr0hKSqJ///6MGzeOF198scbHKyI1S2uARKTBWrVqVYXHnTt3BqBz58788MMP5Obmuo5/9913WCwWOnbsSHBwMK1bt2bx4sXnNIamTZsyevRo3n//fWbOnMk//vGPc+pPROqGZoBEpN4qLCwkLS3NbZ+Pj49rofHHH3/MBRdcwCWXXMIHH3zAmjVrePvttwEYOXIkkydPZvTo0UyZMoUjR45w3333cdtttxEdHQ3AlClTuPvuu4mKimLIkCGcOHGC7777jvvuu69K45s0aRK9evWia9euFBYW8sUXX7gCmIjUbwpAIlJvLVy4kNjYWLd9HTt2ZOvWrUDpFVpz587l3nvvJTY2lg8//JAuXboAYLfb+frrr3nggQe48MILsdvt3HDDDcyYMcPV1+jRoykoKODll1/m4YcfJjIykhtvvLHK4/Pz82PixIns2bOHgIAALr30UubOnVsDlYtIbTNM0zQ9PQgRkeoyDIN58+YxbNgwTw9FRBogrQESERGRRkcBSERERBodrQESkQZJZ+9F5FxoBkhEREQaHQUgERERaXQUgERERKTRUQASERGRRkcBSERERBodBSARERFpdBSAREREpNFRABIREZFGRwFIREREGp3/B7P2DavupsD3AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9166 - loss: 0.3003\n","Loss on test data: 0.30692651867866516\n","Accuracy on test data: 0.9150000214576721\n"]}]},{"cell_type":"code","source":["model_2l_300 = Sequential()\n","model_2l_300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))\n","model_2l_300.add(Dense(units=num_classes, activation='softmax'))\n","model_2l_300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","model_2l_300.summary()\n","\n","H_2l_300=model_2l_300.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"C7dXxGwPeYSH","executionInfo":{"status":"ok","timestamp":1760458258611,"user_tz":-180,"elapsed":94713,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"094248b4-8be2-422e-b2ca-0ff5ff866668"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_5\"\u001b[0m\n"],"text/html":["
Model: \"sequential_5\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_9 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m300\u001b[0m) │ \u001b[38;5;34m235,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m3,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_9 (Dense)                 │ (None, 300)            │       235,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_10 (Dense)                │ (None, 10)             │         3,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n"],"text/html":["
 Total params: 238,510 (931.68 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n"],"text/html":["
 Trainable params: 238,510 (931.68 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 16ms/step - accuracy: 0.1803 - loss: 2.3055 - val_accuracy: 0.4517 - val_loss: 2.1474\n","Epoch 2/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4919 - loss: 2.1119 - val_accuracy: 0.5880 - val_loss: 1.9973\n","Epoch 3/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6154 - loss: 1.9641 - val_accuracy: 0.6795 - val_loss: 1.8558\n","Epoch 4/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6862 - loss: 1.8234 - val_accuracy: 0.7207 - val_loss: 1.7234\n","Epoch 5/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7182 - loss: 1.6952 - val_accuracy: 0.7388 - val_loss: 1.5997\n","Epoch 6/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7396 - loss: 1.5765 - val_accuracy: 0.7540 - val_loss: 1.4858\n","Epoch 7/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7591 - loss: 1.4642 - val_accuracy: 0.7807 - val_loss: 1.3821\n","Epoch 8/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7750 - loss: 1.3636 - val_accuracy: 0.7885 - val_loss: 1.2897\n","Epoch 9/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7870 - loss: 1.2736 - val_accuracy: 0.7945 - val_loss: 1.2069\n","Epoch 10/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7941 - loss: 1.1977 - val_accuracy: 0.7988 - val_loss: 1.1339\n","Epoch 11/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.7978 - loss: 1.1242 - val_accuracy: 0.8092 - val_loss: 1.0692\n","Epoch 12/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8079 - loss: 1.0619 - val_accuracy: 0.8188 - val_loss: 1.0112\n","Epoch 13/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8145 - loss: 1.0092 - val_accuracy: 0.8250 - val_loss: 0.9605\n","Epoch 14/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8194 - loss: 0.9611 - val_accuracy: 0.8288 - val_loss: 0.9155\n","Epoch 15/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8229 - loss: 0.9145 - val_accuracy: 0.8348 - val_loss: 0.8750\n","Epoch 16/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8293 - loss: 0.8717 - val_accuracy: 0.8370 - val_loss: 0.8393\n","Epoch 17/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8351 - loss: 0.8407 - val_accuracy: 0.8438 - val_loss: 0.8068\n","Epoch 18/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8351 - loss: 0.8081 - val_accuracy: 0.8442 - val_loss: 0.7778\n","Epoch 19/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8404 - loss: 0.7771 - val_accuracy: 0.8468 - val_loss: 0.7516\n","Epoch 20/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8438 - loss: 0.7550 - val_accuracy: 0.8495 - val_loss: 0.7277\n","Epoch 21/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8421 - loss: 0.7371 - val_accuracy: 0.8520 - val_loss: 0.7061\n","Epoch 22/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8453 - loss: 0.7137 - val_accuracy: 0.8537 - val_loss: 0.6865\n","Epoch 23/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8480 - loss: 0.6938 - val_accuracy: 0.8557 - val_loss: 0.6685\n","Epoch 24/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8477 - loss: 0.6807 - val_accuracy: 0.8593 - val_loss: 0.6515\n","Epoch 25/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8536 - loss: 0.6579 - val_accuracy: 0.8612 - val_loss: 0.6362\n","Epoch 26/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8546 - loss: 0.6445 - val_accuracy: 0.8617 - val_loss: 0.6221\n","Epoch 27/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8561 - loss: 0.6336 - val_accuracy: 0.8650 - val_loss: 0.6084\n","Epoch 28/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8572 - loss: 0.6224 - val_accuracy: 0.8660 - val_loss: 0.5963\n","Epoch 29/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8588 - loss: 0.6085 - val_accuracy: 0.8677 - val_loss: 0.5846\n","Epoch 30/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8598 - loss: 0.5999 - val_accuracy: 0.8702 - val_loss: 0.5739\n","Epoch 31/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8642 - loss: 0.5812 - val_accuracy: 0.8713 - val_loss: 0.5638\n","Epoch 32/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8639 - loss: 0.5755 - val_accuracy: 0.8715 - val_loss: 0.5544\n","Epoch 33/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8659 - loss: 0.5651 - val_accuracy: 0.8740 - val_loss: 0.5454\n","Epoch 34/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8658 - loss: 0.5572 - val_accuracy: 0.8748 - val_loss: 0.5373\n","Epoch 35/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8688 - loss: 0.5495 - val_accuracy: 0.8763 - val_loss: 0.5291\n","Epoch 36/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8700 - loss: 0.5405 - val_accuracy: 0.8772 - val_loss: 0.5218\n","Epoch 37/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8673 - loss: 0.5370 - val_accuracy: 0.8780 - val_loss: 0.5148\n","Epoch 38/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8721 - loss: 0.5230 - val_accuracy: 0.8790 - val_loss: 0.5080\n","Epoch 39/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8744 - loss: 0.5118 - val_accuracy: 0.8812 - val_loss: 0.5014\n","Epoch 40/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8729 - loss: 0.5143 - val_accuracy: 0.8808 - val_loss: 0.4956\n","Epoch 41/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8727 - loss: 0.5106 - val_accuracy: 0.8830 - val_loss: 0.4898\n","Epoch 42/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8767 - loss: 0.4980 - val_accuracy: 0.8830 - val_loss: 0.4845\n","Epoch 43/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8763 - loss: 0.4944 - val_accuracy: 0.8842 - val_loss: 0.4792\n","Epoch 44/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8740 - loss: 0.4967 - val_accuracy: 0.8845 - val_loss: 0.4741\n","Epoch 45/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8771 - loss: 0.4842 - val_accuracy: 0.8870 - val_loss: 0.4696\n","Epoch 46/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8785 - loss: 0.4827 - val_accuracy: 0.8888 - val_loss: 0.4648\n","Epoch 47/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8784 - loss: 0.4781 - val_accuracy: 0.8895 - val_loss: 0.4604\n","Epoch 48/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8769 - loss: 0.4760 - val_accuracy: 0.8897 - val_loss: 0.4561\n","Epoch 49/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8754 - loss: 0.4776 - val_accuracy: 0.8907 - val_loss: 0.4523\n","Epoch 50/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8813 - loss: 0.4643 - val_accuracy: 0.8902 - val_loss: 0.4485\n","Epoch 51/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8821 - loss: 0.4575 - val_accuracy: 0.8908 - val_loss: 0.4450\n","Epoch 52/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8840 - loss: 0.4528 - val_accuracy: 0.8912 - val_loss: 0.4413\n","Epoch 53/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8827 - loss: 0.4502 - val_accuracy: 0.8925 - val_loss: 0.4379\n","Epoch 54/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8809 - loss: 0.4517 - val_accuracy: 0.8930 - val_loss: 0.4346\n","Epoch 55/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8803 - loss: 0.4510 - val_accuracy: 0.8933 - val_loss: 0.4311\n","Epoch 56/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8830 - loss: 0.4440 - val_accuracy: 0.8943 - val_loss: 0.4283\n","Epoch 57/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8839 - loss: 0.4395 - val_accuracy: 0.8945 - val_loss: 0.4252\n","Epoch 58/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8848 - loss: 0.4405 - val_accuracy: 0.8940 - val_loss: 0.4227\n","Epoch 59/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8853 - loss: 0.4369 - val_accuracy: 0.8950 - val_loss: 0.4200\n","Epoch 60/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8856 - loss: 0.4319 - val_accuracy: 0.8965 - val_loss: 0.4170\n","Epoch 61/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8839 - loss: 0.4322 - val_accuracy: 0.8967 - val_loss: 0.4145\n","Epoch 62/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8849 - loss: 0.4278 - val_accuracy: 0.8968 - val_loss: 0.4120\n","Epoch 63/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8863 - loss: 0.4276 - val_accuracy: 0.8965 - val_loss: 0.4098\n","Epoch 64/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8890 - loss: 0.4170 - val_accuracy: 0.8967 - val_loss: 0.4074\n","Epoch 65/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8876 - loss: 0.4194 - val_accuracy: 0.8985 - val_loss: 0.4049\n","Epoch 66/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8852 - loss: 0.4229 - val_accuracy: 0.8980 - val_loss: 0.4029\n","Epoch 67/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8871 - loss: 0.4185 - val_accuracy: 0.8990 - val_loss: 0.4007\n","Epoch 68/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8903 - loss: 0.4060 - val_accuracy: 0.8995 - val_loss: 0.3987\n","Epoch 69/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8885 - loss: 0.4134 - val_accuracy: 0.8997 - val_loss: 0.3967\n","Epoch 70/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8890 - loss: 0.4110 - val_accuracy: 0.9002 - val_loss: 0.3947\n","Epoch 71/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8890 - loss: 0.4080 - val_accuracy: 0.9002 - val_loss: 0.3925\n","Epoch 72/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8916 - loss: 0.4038 - val_accuracy: 0.9007 - val_loss: 0.3909\n","Epoch 73/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8896 - loss: 0.4073 - val_accuracy: 0.9007 - val_loss: 0.3891\n","Epoch 74/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8910 - loss: 0.3992 - val_accuracy: 0.9018 - val_loss: 0.3873\n","Epoch 75/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8906 - loss: 0.3998 - val_accuracy: 0.9010 - val_loss: 0.3860\n","Epoch 76/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8921 - loss: 0.3969 - val_accuracy: 0.9022 - val_loss: 0.3842\n","Epoch 77/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8914 - loss: 0.3962 - val_accuracy: 0.9025 - val_loss: 0.3828\n","Epoch 78/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8898 - loss: 0.3981 - val_accuracy: 0.9022 - val_loss: 0.3811\n","Epoch 79/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8927 - loss: 0.3909 - val_accuracy: 0.9027 - val_loss: 0.3794\n","Epoch 80/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8936 - loss: 0.3874 - val_accuracy: 0.9027 - val_loss: 0.3779\n","Epoch 81/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8903 - loss: 0.3955 - val_accuracy: 0.9027 - val_loss: 0.3768\n","Epoch 82/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8929 - loss: 0.3883 - val_accuracy: 0.9033 - val_loss: 0.3754\n","Epoch 83/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8938 - loss: 0.3867 - val_accuracy: 0.9035 - val_loss: 0.3736\n","Epoch 84/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8924 - loss: 0.3900 - val_accuracy: 0.9032 - val_loss: 0.3722\n","Epoch 85/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8931 - loss: 0.3863 - val_accuracy: 0.9045 - val_loss: 0.3710\n","Epoch 86/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8928 - loss: 0.3844 - val_accuracy: 0.9042 - val_loss: 0.3698\n","Epoch 87/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8958 - loss: 0.3785 - val_accuracy: 0.9042 - val_loss: 0.3683\n","Epoch 88/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8976 - loss: 0.3705 - val_accuracy: 0.9042 - val_loss: 0.3673\n","Epoch 89/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8949 - loss: 0.3789 - val_accuracy: 0.9045 - val_loss: 0.3660\n","Epoch 90/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8942 - loss: 0.3816 - val_accuracy: 0.9043 - val_loss: 0.3650\n","Epoch 91/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8954 - loss: 0.3788 - val_accuracy: 0.9048 - val_loss: 0.3634\n","Epoch 92/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8947 - loss: 0.3767 - val_accuracy: 0.9048 - val_loss: 0.3626\n","Epoch 93/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8962 - loss: 0.3746 - val_accuracy: 0.9047 - val_loss: 0.3614\n","Epoch 94/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8949 - loss: 0.3748 - val_accuracy: 0.9053 - val_loss: 0.3602\n","Epoch 95/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8959 - loss: 0.3716 - val_accuracy: 0.9050 - val_loss: 0.3591\n","Epoch 96/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8935 - loss: 0.3745 - val_accuracy: 0.9053 - val_loss: 0.3582\n","Epoch 97/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8962 - loss: 0.3705 - val_accuracy: 0.9055 - val_loss: 0.3572\n","Epoch 98/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8953 - loss: 0.3724 - val_accuracy: 0.9055 - val_loss: 0.3563\n","Epoch 99/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8953 - loss: 0.3708 - val_accuracy: 0.9053 - val_loss: 0.3552\n","Epoch 100/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8981 - loss: 0.3628 - val_accuracy: 0.9050 - val_loss: 0.3545\n","Epoch 101/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8962 - loss: 0.3674 - val_accuracy: 0.9063 - val_loss: 0.3533\n","Epoch 102/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8956 - loss: 0.3707 - val_accuracy: 0.9055 - val_loss: 0.3523\n","Epoch 103/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8976 - loss: 0.3612 - val_accuracy: 0.9060 - val_loss: 0.3515\n","Epoch 104/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8956 - loss: 0.3702 - val_accuracy: 0.9065 - val_loss: 0.3505\n","Epoch 105/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8957 - loss: 0.3673 - val_accuracy: 0.9067 - val_loss: 0.3498\n","Epoch 106/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8980 - loss: 0.3608 - val_accuracy: 0.9065 - val_loss: 0.3490\n","Epoch 107/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9003 - loss: 0.3533 - val_accuracy: 0.9067 - val_loss: 0.3482\n","Epoch 108/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8979 - loss: 0.3616 - val_accuracy: 0.9070 - val_loss: 0.3471\n","Epoch 109/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8995 - loss: 0.3575 - val_accuracy: 0.9072 - val_loss: 0.3462\n","Epoch 110/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8973 - loss: 0.3600 - val_accuracy: 0.9075 - val_loss: 0.3456\n","Epoch 111/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8986 - loss: 0.3578 - val_accuracy: 0.9077 - val_loss: 0.3448\n","Epoch 112/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9004 - loss: 0.3538 - val_accuracy: 0.9078 - val_loss: 0.3440\n","Epoch 113/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8990 - loss: 0.3575 - val_accuracy: 0.9075 - val_loss: 0.3433\n","Epoch 114/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8998 - loss: 0.3549 - val_accuracy: 0.9088 - val_loss: 0.3423\n","Epoch 115/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9010 - loss: 0.3539 - val_accuracy: 0.9075 - val_loss: 0.3418\n","Epoch 116/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8978 - loss: 0.3590 - val_accuracy: 0.9082 - val_loss: 0.3409\n","Epoch 117/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8995 - loss: 0.3541 - val_accuracy: 0.9082 - val_loss: 0.3402\n","Epoch 118/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8993 - loss: 0.3534 - val_accuracy: 0.9083 - val_loss: 0.3395\n","Epoch 119/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9003 - loss: 0.3530 - val_accuracy: 0.9088 - val_loss: 0.3390\n","Epoch 120/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9003 - loss: 0.3507 - val_accuracy: 0.9082 - val_loss: 0.3385\n","Epoch 121/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8980 - loss: 0.3534 - val_accuracy: 0.9087 - val_loss: 0.3375\n","Epoch 122/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9021 - loss: 0.3481 - val_accuracy: 0.9095 - val_loss: 0.3369\n","Epoch 123/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9021 - loss: 0.3458 - val_accuracy: 0.9083 - val_loss: 0.3365\n","Epoch 124/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9008 - loss: 0.3513 - val_accuracy: 0.9088 - val_loss: 0.3356\n","Epoch 125/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9017 - loss: 0.3465 - val_accuracy: 0.9088 - val_loss: 0.3350\n","Epoch 126/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9032 - loss: 0.3426 - val_accuracy: 0.9092 - val_loss: 0.3343\n","Epoch 127/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9005 - loss: 0.3492 - val_accuracy: 0.9098 - val_loss: 0.3335\n","Epoch 128/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9032 - loss: 0.3406 - val_accuracy: 0.9097 - val_loss: 0.3330\n","Epoch 129/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9002 - loss: 0.3467 - val_accuracy: 0.9098 - val_loss: 0.3327\n","Epoch 130/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9029 - loss: 0.3398 - val_accuracy: 0.9105 - val_loss: 0.3318\n","Epoch 131/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9017 - loss: 0.3480 - val_accuracy: 0.9100 - val_loss: 0.3315\n","Epoch 132/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9009 - loss: 0.3480 - val_accuracy: 0.9103 - val_loss: 0.3307\n","Epoch 133/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9018 - loss: 0.3435 - val_accuracy: 0.9103 - val_loss: 0.3301\n","Epoch 134/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9017 - loss: 0.3435 - val_accuracy: 0.9105 - val_loss: 0.3296\n","Epoch 135/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9023 - loss: 0.3418 - val_accuracy: 0.9110 - val_loss: 0.3292\n","Epoch 136/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9047 - loss: 0.3378 - val_accuracy: 0.9113 - val_loss: 0.3286\n","Epoch 137/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9038 - loss: 0.3363 - val_accuracy: 0.9108 - val_loss: 0.3283\n","Epoch 138/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9016 - loss: 0.3411 - val_accuracy: 0.9122 - val_loss: 0.3275\n","Epoch 139/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9019 - loss: 0.3402 - val_accuracy: 0.9118 - val_loss: 0.3270\n","Epoch 140/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9051 - loss: 0.3345 - val_accuracy: 0.9115 - val_loss: 0.3265\n","Epoch 141/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9038 - loss: 0.3379 - val_accuracy: 0.9118 - val_loss: 0.3261\n","Epoch 142/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9040 - loss: 0.3381 - val_accuracy: 0.9125 - val_loss: 0.3255\n","Epoch 143/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9039 - loss: 0.3371 - val_accuracy: 0.9125 - val_loss: 0.3249\n","Epoch 144/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9037 - loss: 0.3371 - val_accuracy: 0.9117 - val_loss: 0.3247\n","Epoch 145/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9026 - loss: 0.3359 - val_accuracy: 0.9123 - val_loss: 0.3241\n","Epoch 146/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9036 - loss: 0.3362 - val_accuracy: 0.9120 - val_loss: 0.3236\n","Epoch 147/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9014 - loss: 0.3395 - val_accuracy: 0.9128 - val_loss: 0.3232\n","Epoch 148/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9069 - loss: 0.3290 - val_accuracy: 0.9128 - val_loss: 0.3226\n","Epoch 149/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9046 - loss: 0.3309 - val_accuracy: 0.9132 - val_loss: 0.3221\n","Epoch 150/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9026 - loss: 0.3382 - val_accuracy: 0.9142 - val_loss: 0.3216\n","Epoch 151/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9074 - loss: 0.3250 - val_accuracy: 0.9138 - val_loss: 0.3212\n","Epoch 152/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9057 - loss: 0.3311 - val_accuracy: 0.9140 - val_loss: 0.3209\n","Epoch 153/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9053 - loss: 0.3324 - val_accuracy: 0.9140 - val_loss: 0.3204\n","Epoch 154/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9050 - loss: 0.3321 - val_accuracy: 0.9142 - val_loss: 0.3202\n","Epoch 155/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9034 - loss: 0.3356 - val_accuracy: 0.9147 - val_loss: 0.3196\n","Epoch 156/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9065 - loss: 0.3267 - val_accuracy: 0.9148 - val_loss: 0.3191\n","Epoch 157/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9059 - loss: 0.3286 - val_accuracy: 0.9150 - val_loss: 0.3186\n","Epoch 158/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9051 - loss: 0.3312 - val_accuracy: 0.9147 - val_loss: 0.3183\n","Epoch 159/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9048 - loss: 0.3317 - val_accuracy: 0.9152 - val_loss: 0.3179\n","Epoch 160/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9068 - loss: 0.3235 - val_accuracy: 0.9155 - val_loss: 0.3175\n","Epoch 161/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9079 - loss: 0.3243 - val_accuracy: 0.9157 - val_loss: 0.3171\n","Epoch 162/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9031 - loss: 0.3346 - val_accuracy: 0.9153 - val_loss: 0.3167\n","Epoch 163/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9053 - loss: 0.3345 - val_accuracy: 0.9160 - val_loss: 0.3163\n","Epoch 164/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9064 - loss: 0.3289 - val_accuracy: 0.9162 - val_loss: 0.3159\n","Epoch 165/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9060 - loss: 0.3248 - val_accuracy: 0.9150 - val_loss: 0.3155\n","Epoch 166/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9058 - loss: 0.3302 - val_accuracy: 0.9165 - val_loss: 0.3152\n","Epoch 167/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9069 - loss: 0.3215 - val_accuracy: 0.9165 - val_loss: 0.3148\n","Epoch 168/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9083 - loss: 0.3195 - val_accuracy: 0.9162 - val_loss: 0.3142\n","Epoch 169/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9047 - loss: 0.3307 - val_accuracy: 0.9167 - val_loss: 0.3140\n","Epoch 170/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9086 - loss: 0.3223 - val_accuracy: 0.9160 - val_loss: 0.3137\n","Epoch 171/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9063 - loss: 0.3237 - val_accuracy: 0.9165 - val_loss: 0.3133\n","Epoch 172/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9076 - loss: 0.3239 - val_accuracy: 0.9170 - val_loss: 0.3130\n","Epoch 173/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9074 - loss: 0.3209 - val_accuracy: 0.9175 - val_loss: 0.3126\n","Epoch 174/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9070 - loss: 0.3178 - val_accuracy: 0.9172 - val_loss: 0.3124\n","Epoch 175/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9070 - loss: 0.3229 - val_accuracy: 0.9177 - val_loss: 0.3119\n","Epoch 176/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9074 - loss: 0.3210 - val_accuracy: 0.9177 - val_loss: 0.3115\n","Epoch 177/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9074 - loss: 0.3232 - val_accuracy: 0.9175 - val_loss: 0.3113\n","Epoch 178/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9080 - loss: 0.3188 - val_accuracy: 0.9180 - val_loss: 0.3109\n","Epoch 179/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9061 - loss: 0.3250 - val_accuracy: 0.9178 - val_loss: 0.3107\n","Epoch 180/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9089 - loss: 0.3189 - val_accuracy: 0.9175 - val_loss: 0.3101\n","Epoch 181/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9086 - loss: 0.3227 - val_accuracy: 0.9178 - val_loss: 0.3099\n","Epoch 182/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9088 - loss: 0.3183 - val_accuracy: 0.9185 - val_loss: 0.3095\n","Epoch 183/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9088 - loss: 0.3180 - val_accuracy: 0.9182 - val_loss: 0.3096\n","Epoch 184/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9096 - loss: 0.3157 - val_accuracy: 0.9180 - val_loss: 0.3090\n","Epoch 185/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9074 - loss: 0.3212 - val_accuracy: 0.9180 - val_loss: 0.3088\n","Epoch 186/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9082 - loss: 0.3194 - val_accuracy: 0.9185 - val_loss: 0.3084\n","Epoch 187/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9110 - loss: 0.3127 - val_accuracy: 0.9180 - val_loss: 0.3079\n","Epoch 188/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9097 - loss: 0.3154 - val_accuracy: 0.9188 - val_loss: 0.3077\n","Epoch 189/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9101 - loss: 0.3158 - val_accuracy: 0.9182 - val_loss: 0.3076\n","Epoch 190/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9105 - loss: 0.3157 - val_accuracy: 0.9187 - val_loss: 0.3070\n","Epoch 191/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9092 - loss: 0.3166 - val_accuracy: 0.9183 - val_loss: 0.3067\n","Epoch 192/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9100 - loss: 0.3109 - val_accuracy: 0.9187 - val_loss: 0.3065\n","Epoch 193/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9095 - loss: 0.3135 - val_accuracy: 0.9185 - val_loss: 0.3062\n","Epoch 194/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9096 - loss: 0.3150 - val_accuracy: 0.9183 - val_loss: 0.3058\n","Epoch 195/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9105 - loss: 0.3138 - val_accuracy: 0.9185 - val_loss: 0.3057\n","Epoch 196/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9118 - loss: 0.3109 - val_accuracy: 0.9183 - val_loss: 0.3055\n","Epoch 197/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9116 - loss: 0.3111 - val_accuracy: 0.9187 - val_loss: 0.3049\n","Epoch 198/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9092 - loss: 0.3178 - val_accuracy: 0.9187 - val_loss: 0.3050\n","Epoch 199/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9116 - loss: 0.3066 - val_accuracy: 0.9187 - val_loss: 0.3045\n","Epoch 200/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9116 - loss: 0.3090 - val_accuracy: 0.9182 - val_loss: 0.3045\n"]}]},{"cell_type":"code","source":["plt.plot(H_2l_300.history['loss'])\n","plt.plot(H_2l_300.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss','val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","scores=model_2l_300.evaluate(X_test,y_test);\n","print('Loss on test data:',scores[0]);\n","print('Accuracy on test data:',scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":524},"id":"iW3EchbGe4Bf","executionInfo":{"status":"ok","timestamp":1760458260217,"user_tz":-180,"elapsed":1579,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"de08b153-3bcc-4fa8-ac06-1befa1f0affc"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcyxJREFUeJzt3Xd4VFX+x/H3ncnMpDdCGr0LiICoLOIqSmgqimJnpayrq4JlsewPd6VZUFSsLLoqoquoawFdFTQgAYUAAqKigIBAEFJIIL1NMvf3R5KRMQECJJlk8nk9z32SuXPmzvlmIvl4zrn3GqZpmoiIiIg0IxZvd0BERESkoSkAiYiISLOjACQiIiLNjgKQiIiINDsKQCIiItLsKACJiIhIs6MAJCIiIs2OApCIiIg0OwpAIiIi0uwoAIlIozd+/HiCg4O93Q2vMwyDSZMmebsbIj5BAUikGVuwYAGGYbBhwwZvd0VEpEEpAImIiEizowAkIiIizY4CkIgc17fffsuIESMIDQ0lODiYwYMHs3btWo82TqeTGTNm0KVLF/z9/WnRogXnnXceiYmJ7jZpaWlMmDCB1q1b43A4iIuL4/LLL2fPnj216scvv/zCsGHDCAoKIj4+npkzZ2KaJgCmadK+fXsuv/zyaq8rLi4mLCyMv/71r8d9jzfffJN+/foREBBAZGQk1113Hfv27fNoM2jQIE4//XQ2btzIueeeS0BAAB06dODFF1+sdryMjAxuuukmYmJi8Pf3p3fv3rz++uvV2rlcLp599ll69eqFv78/LVu2ZPjw4TVOTy5evJjTTz8dh8NBz549Wbp0qcfzeXl53H333bRv3x6Hw0F0dDRDhgxh06ZNx61fpLlQABKRY/rxxx/54x//yHfffcf999/Pgw8+yO7duxk0aBDr1q1zt5s+fTozZszgwgsv5IUXXuAf//gHbdu29fijO3r0aBYtWsSECRP417/+xZ133kleXh4pKSnH7Ud5eTnDhw8nJiaG2bNn069fP6ZNm8a0adOAigXCf/rTn1iyZAmHDh3yeO3//vc/cnNz+dOf/nTM93jkkUcYO3YsXbp0Yc6cOdx9990sX76c888/n+zsbI+2hw8f5uKLL6Zfv37Mnj2b1q1bc9tttzF//nx3m6KiIgYNGsR//vMfxowZwxNPPEFYWBjjx4/n2Wef9TjeTTfdxN13302bNm14/PHH+b//+z/8/f2rBc2vv/6a22+/neuuu47Zs2dTXFzM6NGjycrKcre59dZbmTdvHqNHj+Zf//oX9957LwEBAWzduvW4P2eRZsMUkWbrtddeMwHzm2++OWqbUaNGmXa73dy1a5d734EDB8yQkBDz/PPPd+/r3bu3eckllxz1OIcPHzYB84knnjjhfo4bN84EzDvuuMO9z+VymZdccolpt9vNgwcPmqZpmtu3bzcBc968eR6vv+yyy8z27dubLpfrqO+xZ88e02q1mo888ojH/h9++MH08/Pz2H/BBReYgPnUU0+595WUlJh9+vQxo6OjzdLSUtM0TfOZZ54xAfPNN990tystLTUHDBhgBgcHm7m5uaZpmuaXX35pAuadd95ZrV9H9hkw7Xa7uXPnTve+7777zgTM559/3r0vLCzMnDhx4lFrFRHT1AiQiBxVeXk5X3zxBaNGjaJjx47u/XFxcdxwww18/fXX5ObmAhAeHs6PP/7Ijh07ajxWQEAAdrudpKQkDh8+fFL9OfIU8KpTwktLS1m2bBkAXbt2pX///rz11lvudocOHWLJkiWMGTMGwzCOeuwPP/wQl8vFNddcQ2ZmpnuLjY2lS5curFixwqO9n5+fx5Sa3W7nr3/9KxkZGWzcuBGAzz77jNjYWK6//np3O5vNxp133kl+fj4rV64E4IMPPsAwDPdo1pF+3+eEhAQ6derkfnzGGWcQGhrKL7/84t4XHh7OunXrOHDgwFHrFWnuFIBE5KgOHjxIYWEh3bp1q/Zc9+7dcblc7vUxM2fOJDs7m65du9KrVy/uu+8+vv/+e3d7h8PB448/zpIlS4iJieH8889n9uzZpKWl1aovFovFI4RBReABPNYQjR07ltWrV7N3714A3nvvPZxOJzfeeOMxj79jxw5M06RLly60bNnSY9u6dSsZGRke7ePj4wkKCjpmf/bu3UuXLl2wWDz/qe3evbv7eYBdu3YRHx9PZGTk8X4MtG3bttq+iIgIj1A5e/ZstmzZQps2bTjnnHOYPn26R0ASEQUgEakj559/Prt27WL+/PmcfvrpvPLKK5x55pm88sor7jZ33303P//8M7NmzcLf358HH3yQ7t278+2339ZZP6677jpsNpt7FOjNN9/krLPOqjHEHcnlcmEYBkuXLiUxMbHa9tJLL9VZH0+F1Wqtcb9ZuRgc4JprruGXX37h+eefJz4+nieeeIKePXuyZMmShuqmSKOnACQiR9WyZUsCAwPZvn17tee2bduGxWKhTZs27n2RkZFMmDCBt99+m3379nHGGWcwffp0j9d16tSJe+65hy+++IItW7ZQWlrKU089ddy+uFyuaqMYP//8MwDt27f36MMll1zCW2+9xd69e1m9evVxR3+q+mWaJh06dCAhIaHa9oc//MGj/YEDBygoKDhmf9q1a8eOHTtwuVwe7bZt2+Z+vuq9Dxw4UG3x9qmIi4vj9ttvZ/HixezevZsWLVrwyCOP1NnxRZo6BSAROSqr1crQoUP56KOPPKaZ0tPTWbhwIeeddx6hoaEAHmchAQQHB9O5c2dKSkoAKCwspLi42KNNp06dCAkJcbc5nhdeeMH9vWmavPDCC9hsNgYPHuzR7sYbb+Snn37ivvvuw2q1ct111x332FdeeSVWq5UZM2Z4jKZUvdfv6ysrK/MYFSotLeWll16iZcuW9OvXD4CLL76YtLQ03n33XY/XPf/88wQHB3PBBRcAFWfHmabJjBkzqvXr9305nvLycnJycjz2RUdHEx8fX+ufs0hz4OftDoiI982fP7/atWQA7rrrLh5++GESExM577zzuP322/Hz8+Oll16ipKSE2bNnu9v26NGDQYMG0a9fPyIjI9mwYQPvv/++e+Hyzz//zODBg7nmmmvo0aMHfn5+LFq0iPT09FoFFH9/f5YuXcq4cePo378/S5Ys4dNPP+WBBx6gZcuWHm0vueQSWrRowXvvvceIESOIjo4+7vE7derEww8/zJQpU9izZw+jRo0iJCSE3bt3s2jRIm655Rbuvfded/v4+Hgef/xx9uzZQ9euXXn33XfZvHkz//73v7HZbADccsstvPTSS4wfP56NGzfSvn173n//fVavXs0zzzxDSEgIABdeeCE33ngjzz33HDt27GD48OG4XC6++uorLrzwwhO6/1deXh6tW7fmqquuonfv3gQHB7Ns2TK++eabWo20iTQb3jsBTUS8reo0+KNt+/btM03TNDdt2mQOGzbMDA4ONgMDA80LL7zQXLNmjcexHn74YfOcc84xw8PDzYCAAPO0004zH3nkEfcp4ZmZmebEiRPN0047zQwKCjLDwsLM/v37m//973+P289x48aZQUFB5q5du8yhQ4eagYGBZkxMjDlt2jSzvLy8xtfcfvvtJmAuXLjwhH4mH3zwgXneeeeZQUFBZlBQkHnaaaeZEydONLdv3+5uc8EFF5g9e/Y0N2zYYA4YMMD09/c327VrZ77wwgvVjpeenm5OmDDBjIqKMu12u9mrVy/ztddeq9aurKzMfOKJJ8zTTjvNtNvtZsuWLc0RI0aYGzdudLcBajy9vV27dua4ceNM06w4Hf++++4ze/fubYaEhJhBQUFm7969zX/9618n9HMQ8XWGaZ7g+KqISBPwt7/9jVdffZW0tDQCAwPr9NiDBg0iMzOTLVu21OlxRaThaA2QiPic4uJi3nzzTUaPHl3n4UdEfIPWAImIz8jIyGDZsmW8//77ZGVlcdddd3m7SyLSSCkAiYjP+OmnnxgzZgzR0dE899xz9OnTx9tdEpFGSmuAREREpNnRGiARERFpdhSAREREpNnRGqAauFwuDhw4QEhIyDHvHi0iIiKNh2ma5OXlER8fX+0mxL+nAFSDAwcOeNzfSERERJqOffv20bp162O2UQCqQdXl6fft2+e+z1FdcTqdfPHFFwwdOtR9uXxf4uv1gWr0Bb5eH/h+jb5eH6jGk5Gbm0ubNm3cf8ePRQGoBlXTXqGhofUSgAIDAwkNDfXJX2hfrw9Uoy/w9frA92v09fpANZ6K2ixf0SJoERERaXYUgERERKTZUQASERGRZkdrgEREpNkoLy/H6XR6uxu14nQ68fPzo7i4mPLycm93p16caI02mw2r1Von760AJCIiPs80TdLS0sjOzvZ2V2rNNE1iY2PZt2+fz16T7mRqDA8PJzY29pR/JgpAIiLi86rCT3R0NIGBgU0iULhcLvLz8wkODj7uRf2aqhOp0TRNCgsLycjIACAuLu6U3lsBSEREfFp5ebk7/LRo0cLb3ak1l8tFaWkp/v7+Ph2ATqTGgIAAADIyMoiOjj6l6TDf/ImKiIhUqlrzExgY6OWeSF2o+hxPdS2XVwPQrFmzOPvsswkJCSE6OppRo0axffv2Y77m5Zdf5o9//CMRERFERESQkJDA+vXrPdqMHz8ewzA8tuHDh9dnKSIi0sg1hWkvOb66+hy9GoBWrlzJxIkTWbt2LYmJiTidToYOHUpBQcFRX5OUlMT111/PihUrSE5Opk2bNgwdOpT9+/d7tBs+fDipqanu7e23367vckRERKSJ8OoaoKVLl3o8XrBgAdHR0WzcuJHzzz+/xte89dZbHo9feeUVPvjgA5YvX87YsWPd+x0OB7GxsXXfaRERkSaoffv23H333dx9992nfKykpCQuvPBCDh8+THh4+Ckfzxsa1SLonJwcACIjI2v9msLCQpxOZ7XXJCUlER0dTUREBBdddBEPP/zwURe/lZSUUFJS4n6cm5sLVMwv1vX1IqqO11SuQ3GifL0+UI2+wNfrA9+v8UTqczqdmKaJy+XC5XLVd9fqjGmaXHrppfTr14+nn376lI+3bt06goKC6uRnUHWMU/2Zmqbp/lrb47hcLkzTxOl0VlsEfSK/74ZZ9e5e5nK5uOyyy8jOzubrr7+u9etuv/12Pv/8c3788Uf8/f0BeOeddwgMDKRDhw7s2rWLBx54gODgYJKTk2tcMT59+nRmzJhRbf/ChQvrdNFcaTnkl4HVgDB7nR1WRESOwc/Pj9jYWNq0aYPd3rT+8b300kvp1asXs2bNqvF50zQpLy/Hz69hxzO+/vprRo4cyZ49ewgLC2vQ9y4tLWXfvn2kpaVRVlbm8VxhYSE33HADOTk5x72ZeaMJQLfddhtLlizh66+/pnXr1rV6zWOPPcbs2bNJSkrijDPOOGq7X375hU6dOrFs2TIGDx5c7fmaRoDatGlDZmZmnd4N/pnlO5mb9AsDY1y8/NfBPnl3X6fTSWJiIkOGDPHJ+kA1+gJfrw98v8YTqa+4uJh9+/bRvn179/8oNwUTJkzgjTfe8Nj36quvctNNN/HJJ58wdepUfvjhB5YuXUqbNm245557WLduHQUFBXTv3p1HHnmEhIQE92s7duzIXXfdxV133QWA1WrlpZde4rPPPuOLL76gVatWPPHEE1x22WXH7VtSUhKDBw8mKyvLPQX2wQcfMH36dHbu3ElcXByTJk1i8uTJ7tfMmzePZ555hn379hEWFsZ5553Hf//7X/Ly8vjiiy946KGH2LlzJ4GBgfTt25dFixYRFBRU7b2Li4vZs2cPbdq0qfZ55ubmEhUVVasA1CimwCZNmsQnn3zCqlWrah1+nnzySR577DGWLVt2zPADFR96VFQUO3furDEAORwOHA5Htf02m61O/+GICqn4oArK6v7YjY2v1weq0Rf4en3g+zXWpr7y8nIMw8BisbivNWOaJkXOhr+9RIDNWuuzmJ555hm2bt1K7969eeihhwD48ccfAXjggQd48skn6dixIxEREezbt49LLrmERx99FIfDwRtvvMHll1/O9u3badu2rfuYVT+HKg899BCzZ8/mySef5Pnnn+fGG29k7969x12KUnWMqp/pxo0bue6665g+fTrXXnsta9as4fbbbycqKorx48ezYcMG7rrrLv7zn/9w7rnncujQIb766isMwyAtLY0xY8Ywe/ZsrrjiCvLy8tzP1XRtIIvFgmEYNX72J/K77tUAZJomd9xxB4sWLSIpKYkOHTrU6nWzZ8/mkUce4fPPP+ess846bvtff/2VrKysU75q5KmKDKoYei3wzSl5EZEmo8hZTo+pnzf4+/40cxiB9tr96Q0LC8NutxMYGOg+qWfbtm0AzJw5kyFDhrjbRkZG0rt3b/fjhx56iEWLFvHxxx8zadKko77H+PHjuf766wF49NFHee6551i/fv0JXzpmzpw5DB48mAcffBCArl278tNPP/HEE08wfvx4UlJSCAoK4tJLLyUkJIR27drRt29fXC4X6enplJWVceWVV9KuXTsAevXqdULvfzK8ehr8xIkTefPNN1m4cCEhISGkpaWRlpZGUVGRu83YsWOZMmWK+/Hjjz/Ogw8+yPz582nfvr37Nfn5+QDk5+dz3333sXbtWvbs2cPy5cu5/PLL6dy5M8OGDWvwGo8UEVgRgPLLdC0KERE5eb//n//8/HzuvfdeunfvTnh4OMHBwWzdupWUlJRjHufIGZSgoCBCQ0Pdt5o4EVu3bmXgwIEe+wYOHMiOHTsoLy9nyJAhtGvXjo4dO3LjjTfy1ltvUVhYCMDpp5/O4MGD6dWrF1dffTUvv/wyhw8fPuE+nCivjgDNmzcPgEGDBnnsf+211xg/fjwAKSkpHkNg8+bNo7S0lKuuusrjNdOmTWP69OlYrVa+//57Xn/9dbKzs4mPj2fo0KE89NBDNU5zNSSNAImINA4BNis/zWz4/ykOsNXNncx/vzbm3nvvJTExkSeffJLOnTsTEBDAVVddRWlp6TGP8/spI8Mw6uVMuZCQEDZt2kRSUhJffPEFU6dOZfr06axbtw6r1crnn3/O2rVr+eKLL3j++ef5xz/+wbp162o9M3QyvD4FdjxJSUkej/fs2XPM9gEBAXz+ecMPa9ZGRFUAKqtd7SIiUj8Mw6j1VJQ32e12ysuPv1Zp9erVjB8/niuuuAKoGBE63t/LutS9e3dWr15drU9du3Z1n33t5+dHQkICCQkJTJs2jfDwcL788ksSEhIwDIOBAwcycOBApk6dSrt27Vi0aJHHIuq61vg/fR8SWTkFVm4a5JeUE9m0zsYUEZEG1rZtW9avX8+ePXsIDg4+6uhMly5d+PDDDxk5ciSGYfDggw826DWP7rnnHs4++2weeughrr32WpKTk3nhhRf417/+BcAnn3zCL7/8wvnnn09ERASfffYZLpeLbt26sWHDBtatW8ewYcOIjo5m3bp1HDx4kO7du9drn3Uz1AYUYLfib6v4kR8uPPawpIiIyKRJk7BarfTo0YOWLVsedU3PnDlziIiI4Nxzz2XkyJEMGzaMM888s8H6eeaZZ/Lf//6Xd955h9NPP52pU6cyc+ZM93KW8PBwPvzwQy666CK6d+/Oiy++yNtvv03Pnj0JCQlh1apVXHzxxXTt2pV//vOfPPXUU4wYMaJe+6wRoAYWEWgnNaeYw4VaCCQiIsfWuXNnVq9e7bEWtipUHKl9+/Z8+eWXHvsmTpzo8fj3U2I1LcXIzs6uVb8GDRpU7fWjR49m9OjRNbY/77zzqi1pAdyjQEuWLKnxlPf6pBGgBhYRWLHgTCNAIiIi3qMA1MCqzgQ7rFPBRESkkbr11lsJDg6ucbv11lu93b06oSmwBqYRIBERaexmzpzJvffeW+NzdXmLKG9SAGpgVRdD1BogERFprKKjo4mOjvZ2N+qVpsAamEaAREREvE8BqIFVXQzxkNYAiYiIeI0CUAOLDLQBpkaAREREvEgBqCGteZ4RSwbyoN+bWgMkIiLiRQpADcmwYCvNIcrI0QiQiIiIFykANaSglgBEkUN2oROXSzdEFRGR+tO+fXueeeaZWrU1DIPFixfXa38aEwWghlQZgFoYubhMyC3WNJiIiIg3KAA1pKoRICMHgEMFmgYTERHxBgWghlQZgCLIw4JL64BEROSo/v3vf9O9e3dcLpfH/ssvv5w///nP7Nq1i8svv5yYmBiCg4M5++yzWbZsWZ29/w8//MBFF11EQEAALVq04JZbbiE/P9/9fFJSEueccw5BQUGEh4czcOBA9u7dC8B3333HhRdeSEhICKGhofTr148NGzbUWd/qggJQQwpsgYmB1TCJIE/XAhIR8RbThNKCht9quAP70Vx99dUcOnSIFStWuPcdOnSIpUuXMmbMGPLz87n44otZvnw53377LcOHD2fkyJGkpKSc8o+noKCAYcOGERERwTfffMN7773HsmXLmDRpEgBlZWWMGjWKCy64gO+//57k5GRuueUWDMMAYMyYMbRu3ZpvvvmGjRs38n//93/YbLZT7ldd0q0wGpLVDwIjoTCLFkYuhzUFJiLiHc5CeDS+4d/3gQNgD6pV04iICBISEnj77bcZMmQIAO+//z5RUVFceOGFWCwWevfu7W7/0EMPsWjRIj7++GN3UDlZCxcupLi4mDfeeIOgoIr+vvDCC4wcOZLHH38cm81GTk4Ol156KZ06dQKge/fu7tenpKRw3333cdpppwHQpUuXU+pPfdAIUEMLjAIqFkIf0hSYiIgcw9VXX82HH35ISUkJAG+99RbXXXcdFouF/Px87r33Xrp37054eDjBwcFs3bq1TkaAtm7dSu/evd3hB2DgwIG4XC62b99OZGQk48ePZ9iwYYwcOZJnn32W1NRUd9vJkyfzl7/8hYSEBB577DF27dp1yn2qaxoBamBmUBRG5naiyNEIkIiIt9gCK0ZjvPG+J2D48OGYpsmnn37K2WefzVdffcXTTz8NwL333ktiYiJPPvkknTt3JiAggKuuuorS0ob52/Laa69x5513snTpUt59913++c9/kpiYyB/+8AemT5/ODTfcwKeffsqSJUuYNm0a77zzDldccUWD9K02FIAaWuUIUJSRQ5YCkIiIdxhGraeivMnf358rrriCt956i507d9KtWzfOPPNMAFavXs348ePdoSI/P589e/bUyft2796dBQsWUFBQ4B4FWr16NRaLhW7durnb9e3bl759+zJlyhQGDBjAwoUL+cMf/gBA165d6dq1K3/729+4/vrree211xpVANIUWAMzg6IBtAZIRERqpWokZf78+YwZM8a9v0uXLnz44Yds3ryZ7777jhtuuKHaGWMna8yYMfj7+zNu3Di2bNnCihUruOOOO7jxxhuJiYlh9+7dTJkyheTkZPbu3csXX3zBjh076N69O0VFRUyaNImkpCT27t3L6tWr+eabbzzWCDUGGgFqaEGVa4DQGiARETm+iy66iMjISLZv384NN9zg3j9nzhz+/Oc/c+655xIVFcXf//53cnNz6+Q9AwMD+fzzz7nrrrs4++yzCQwMZPTo0cyZM8f9/LZt23j99dfJysoiLi6OiRMn8te//pWysjKysrIYO3Ys6enpREVFceWVVzJjxow66VtdUQBqYOYRU2C6EKKIiByPxWLhwIHq65Xat2/Pl19+6bFv4sSJHo9PZErM/N0p+r169ap2/CoxMTEsWrSoxufsdjtvv/12rd/XWzQF1tDcV4PO5VC+ApCIiIg3KAA1tKr7gZFDXkkZxc5yL3dIRER83VtvvUVwcHCNW8+ePb3dPa/QFFgDM4N+uw4QQGZ+Ca0jTuy0SBERkRNx2WWX0b9//xqfa2xXaG4oCkANrXINUJBRQgDFZOaXKgCJiEi9CgkJISQkxNvdaFQ0BdbQ7MGUGxVpu4WRS2ZeiZc7JCIi0vwoADU0w6DEFgZAFLlk5isAiYg0hLq6Ro54V119jpoC84ISv1ACSzNpYeQoAImI1DO73e4+lbxly5bY7Xb3XcsbM5fLRWlpKcXFxVgsvjlecSI1mqZJaWkpBw8exGKxYLfbT+m9FYC8oMSvYh42ysjloKbARETqlcVioUOHDqSmptZ4PZ3GyjRNioqKCAgIaBKB7WScTI2BgYG0bdv2lEOhVwPQrFmz+PDDD9m2bRsBAQGce+65PP744x73GanJe++9x4MPPsiePXvo0qULjz/+OBdffLH7edM0mTZtGi+//DLZ2dkMHDiQefPm0aVLl/ouqVZK/EKBilPh9+paQCIi9c5ut9O2bVvKysooL28alx9xOp2sWrWK888/32fP1DrRGq1WK35+fnUSCL0agFauXMnEiRM5++yzKSsr44EHHmDo0KH89NNP7puv/d6aNWu4/vrrmTVrFpdeeikLFy5k1KhRbNq0idNPPx2A2bNn89xzz/H666/ToUMHHnzwQYYNG8ZPP/2Ev79/Q5ZYI/caICOXDZoCExFpEIZhYLPZmkyYsFqtlJWV4e/v32T6fKK8WaNXA9DSpUs9Hi9YsIDo6Gg2btzI+eefX+Nrnn32WYYPH859990HwEMPPURiYiIvvPACL774IqZp8swzz/DPf/6Tyy+/HIA33niDmJgYFi9ezHXXXVe/RdWCewTI0CJoERERb2hUq6pycnIAiIyMPGqb5ORkEhISPPYNGzaM5ORkAHbv3k1aWppHm7CwMPr37+9u422llQEoihydBi8iIuIFjWYRtMvl4u6772bgwIHuqayapKWlERMT47EvJiaGtLQ09/NV+47W5vdKSkooKfktiFTdTdfpdOJ0Ok+8mGNwOp0eI0C5xWXkF5Xg8GtUWfSkVf286vrn1pioxqbP1+sD36/R1+sD1Xgqx6uNRhOAJk6cyJYtW/j6668b/L1nzZrFjBkzqu3/4osvCAys+6s0h9oqR4CMihGv9/+3lAhHnb+NVyUmJnq7C/VONTZ9vl4f+H6Nvl4fqMYTUVhYWOu2jSIATZo0iU8++YRVq1bRunXrY7aNjY0lPT3dY196ejqxsbHu56v2xcXFebTp06dPjcecMmUKkydPdj/Ozc2lTZs2DB06lNDQ0JMp6aicTicrP/sAgEgjDyvlnHHOQHq1CqvT9/EWp9NJYmIiQ4YM8dlFe6qx6fP1+sD3a/T1+kA1noyqGZza8GoAMk2TO+64g0WLFpGUlESHDh2O+5oBAwawfPly7r77bve+xMREBgwYAECHDh2IjY1l+fLl7sCTm5vLunXruO2222o8psPhwOGoPgRTX2cLlPoFYxoWLKaLSHLJLi73uV/upnSmxclSjU2fr9cHvl+jr9cHqvFEj1NbXg1AEydOZOHChXz00UeEhIS41+iEhYUREBAAwNixY2nVqhWzZs0C4K677uKCCy7gqaee4pJLLuGdd95hw4YN/Pvf/wYqTnO8++67efjhh+nSpYv7NPj4+HhGjRrllTqrMSwVN0UtyCDayCEzT9cCEhERaUheDUDz5s0DYNCgQR77X3vtNcaPHw9ASkqKx9Uezz33XBYuXMg///lPHnjgAbp06cLixYs9Fk7ff//9FBQUcMstt5Cdnc15553H0qVLG8U1gNyCY6Aggygjh4M6FV5ERKRBeX0K7HiSkpKq7bv66qu5+uqrj/oawzCYOXMmM2fOPJXu1SszqCUG0NLI1rWAREREGphvnHvdFAVHA9CSHDJ1OwwREZEGpQDkJWZQS6DiVHhdDFFERKRhKQB5S1DlCJCmwERERBqcApCXmB5TYApAIiIiDUkByFuOmAI7XOjEWe7ycodERESaDwUgLzGDKu5V1tLIBuBQgRZCi4iINBQFIG+pnAILNwqw4+SgFkKLiIg0GAUgb/EPB0vFJbtbkKsAJCIi0oAUgLzFMH67FpCRTUZesZc7JCIi0nwoAHnTEQuhNQIkIiLScBSAvCm4aiF0DhkKQCIiIg1GAcib3NcCyiYjVwFIRESkoSgAeVNlANId4UVERBqWApA3Bf92LSAtghYREWk4CkDe5D4LrGIRtGmaXu6QiIhI86AA5E2VN0SNIodip4u8kjIvd0hERKR5UADypsopsGgjB0CnwouIiDQQBSBvCq64DlCwUYQ/JToTTEREpIEoAHmTIxT8/IGKhdA6E0xERKRhKAB5k2H8diYYOWTk6kwwERGRhqAA5G0hsQDEGIe1BkhERKSBKAB5m3shdLYCkIiISANRAPK2yhGgaOOw7gcmIiLSQBSAvK0qAKERIBERkYaiAORtwb+tAdLtMERERBqGApC3hfx2P7DDhU5Ky1xe7pCIiIjvUwDytpA4AGKMbAAydS0gERGReqcA5G2VU2CRRh42yrQQWkREpAEoAHlbYCRYbAC01EJoERGRBqEA5G1HXA062sjWQmgREZEGoADUGBxxLaB03RBVRESk3ikANQbuAJSt+4GJiIg0AAWgxsA9BXaYdAUgERGReufVALRq1SpGjhxJfHw8hmGwePHiY7YfP348hmFU23r27OluM3369GrPn3baafVcySk64mrQmgITERGpf14NQAUFBfTu3Zu5c+fWqv2zzz5Lamqqe9u3bx+RkZFcffXVHu169uzp0e7rr7+uj+7XnSOmwDQCJCIiUv/8vPnmI0aMYMSIEbVuHxYWRlhYmPvx4sWLOXz4MBMmTPBo5+fnR2xsbJ31s94F/xaAsgpKKS1zYffT7KSIiEh98WoAOlWvvvoqCQkJtGvXzmP/jh07iI+Px9/fnwEDBjBr1izatm171OOUlJRQUvLb1FNubi4ATqcTp9NZp32uOp7HcQNaYKPifmAAqYfziQ8PqNP3bSg11udjVGPT5+v1ge/X6Ov1gWo8lePVhmGaplkn73qKDMNg0aJFjBo1qlbtDxw4QNu2bVm4cCHXXHONe/+SJUvIz8+nW7dupKamMmPGDPbv38+WLVsICQmp8VjTp09nxowZ1fYvXLiQwMDAk6rnRDicOQzfcgcu06BLyRvcebpJ+5q7KiIiIkdRWFjIDTfcQE5ODqGhocds22QD0KxZs3jqqac4cOAAdrv9qO2ys7Np164dc+bM4aabbqqxTU0jQG3atCEzM/O4P8AT5XQ6SUxMZMiQIdhsFVeAxnThNysOwyznnOK5PHjdIIb3jKnT920oNdbnY1Rj0+fr9YHv1+jr9YFqPBm5ublERUXVKgA1ySkw0zSZP38+N9544zHDD0B4eDhdu3Zl586dR23jcDhwOBzV9ttstnr7pat27OBoyEsl2jhMVoGzyf+y1+fPrrFQjU2fr9cHvl+jr9cHqvFEj1NbTXKl7cqVK9m5c+dRR3SOlJ+fz65du4iLi2uAnp2CymsBxRiHSdf9wEREROqVVwNQfn4+mzdvZvPmzQDs3r2bzZs3k5KSAsCUKVMYO3Zstde9+uqr9O/fn9NPP73ac/feey8rV65kz549rFmzhiuuuAKr1cr1119fr7WcspCKgKZT4UVEROqfV6fANmzYwIUXXuh+PHnyZADGjRvHggULSE1NdYehKjk5OXzwwQc8++yzNR7z119/5frrrycrK4uWLVty3nnnsXbtWlq2bFl/hdSFymsBxRqH+UYXQxQREalXXg1AgwYN4lhrsBcsWFBtX1hYGIWFhUd9zTvvvFMXXWt4ofEAxHCINI0AiYiI1KsmuQbIJ1VOgcXqfmAiIiL1TgGosQitCEAxxiHyissoLC3zcodERER8lwJQYxFSMQUWV3k16AytAxIREak3CkCNReUIULiRj4NSrQMSERGpRwpAjYV/OPhV3P8rRuuARERE6pUCUGNhGO5RoFgOaQpMRESkHikANSaV64B0JpiIiEj9UgBqTI44E0xrgEREROqPAlBjcsS1gNJyFIBERETqiwJQY1J1NWjjEKkKQCIiIvVGAagx+d3VoF2uo98mRERERE6eAlBjElq1CPoQZS6TzHydCSYiIlIfFIAak5CqRdDZGLg0DSYiIlJPFIAak5BYwMBGGZHkKQCJiIjUEwWgxsRqg6CWQMU6oNScIi93SERExDcpADU2R14LSCNAIiIi9UIBqLE54mrQmgITERGpHwpAjc0RI0CaAhMREakfCkCNTdUIEBoBEhERqS8KQI1N5bWA4owsXQxRRESknigANTZhrQCIN7JwlptkFuhiiCIiInVNAaixCW0NQLzlEGDqTDAREZF6oADU2FSOAAVSTCgFWgckIiJSDxSAGhtbAAS2AKCVkUVqts4EExERqWsKQI1RaMUoUJyRRWquRoBERETqmgJQYxTWBqhYCK01QCIiInVPAagxOuJMsNRsBSAREZG6pgDUGIVVnAlWMQWmNUAiIiJ1TQGoMQr9bQQoLUcXQxQREalrCkCNUeUIUNXFEDPydDFEERGRuqQA1BhVBqBY4zAWXOzPLvRyh0RERHyLAlBjFBwLhgUbZUSRw6+HtQ5IRESkLnk1AK1atYqRI0cSHx+PYRgsXrz4mO2TkpIwDKPalpaW5tFu7ty5tG/fHn9/f/r378/69evrsYp6YPWDkDigYhpsvy6GKCIiUqe8GoAKCgro3bs3c+fOPaHXbd++ndTUVPcWHR3tfu7dd99l8uTJTJs2jU2bNtG7d2+GDRtGRkZGXXe/fh1xJth+jQCJiIjUKT9vvvmIESMYMWLECb8uOjqa8PDwGp+bM2cON998MxMmTADgxRdf5NNPP2X+/Pn83//936l0t2G5zwTLZJdGgEREROqUVwPQyerTpw8lJSWcfvrpTJ8+nYEDBwJQWlrKxo0bmTJlirutxWIhISGB5OTkox6vpKSEkpLfzrTKzc0FwOl04nQ667TvVcc73nEtIXFYgXjjECsPFdZ5P+pLbetrylRj0+fr9YHv1+jr9YFqPJXj1UaTCkBxcXG8+OKLnHXWWZSUlPDKK68waNAg1q1bx5lnnklmZibl5eXExMR4vC4mJoZt27Yd9bizZs1ixowZ1fZ/8cUXBAYG1nkdAImJicd8vsPBHM6gYgQoJSufTz/9DMOol67Ui+PV5wtUY9Pn6/WB79fo6/WBajwRhYW1P2u6SQWgbt260a1bN/fjc889l127dvH000/zn//856SPO2XKFCZPnux+nJubS5s2bRg6dCihoaGn1OffczqdJCYmMmTIEGw221HbGduB998kzsii1GVw7oUJRATa67Qv9aG29TVlqrHp8/X6wPdr9PX6QDWejKoZnNpoUgGoJueccw5ff/01AFFRUVitVtLT0z3apKenExsbe9RjOBwOHA5Htf02m63efumOe+zItgC0thwCICO/jOiwoHrpS32oz59dY6Eamz5frw98v0Zfrw9U44kep7aa/HWANm/eTFxcxSnjdrudfv36sXz5cvfzLpeL5cuXM2DAAG918eSEVQSgKLJxUKprAYmIiNQhr44A5efns3PnTvfj3bt3s3nzZiIjI2nbti1Tpkxh//79vPHGGwA888wzdOjQgZ49e1JcXMwrr7zCl19+yRdffOE+xuTJkxk3bhxnnXUW55xzDs888wwFBQXus8KajMBIsAdDaT6tjExdC0hERKQOeTUAbdiwgQsvvND9uGodzrhx41iwYAGpqamkpKS4ny8tLeWee+5h//79BAYGcsYZZ7Bs2TKPY1x77bUcPHiQqVOnkpaWRp8+fVi6dGm1hdGNnmFAeFvI+InWxkFdC0hERKQOeTUADRo0CNM8+p3OFyxY4PH4/vvv5/777z/ucSdNmsSkSZNOtXve5w5AmbofmIiISB1q8muAfFp45UJo46CmwEREROqQAlBjFt4OQFNgIiIidUwBqDGrHAFqYxzkcKGTwtIyL3dIRETENygANWZHBCBAo0AiIiJ1RAGoMasMQFFGjq4FJCIiUocUgBqzgAhwVNyKo7VxkL1ZBV7ukIiIiG9QAGrMqq4FBLQ2Mkk5pBEgERGRuqAA1Ni51wFlkHJI1wISERGpCwpAjd0RI0D7FIBERETqhAJQY3fEtYBSDhUe88rZIiIiUjsKQI3dEVeDLnKWczC/xMsdEhERafoUgBq7ygDU1pIJoGkwERGROqAA1NhVBqBIcgigWAuhRURE6oACUGMXEA7+YUDFQui9WQpAIiIip0oBqCmIaA9AWyNdI0AiIiJ1QAGoKYjsCEB7I11rgEREROqAAlBTUBmA2mkESEREpE4oADUF7hGgNNJzSyh2lnu5QyIiIk2bAlBTUBmAOlrTAZ0KLyIicqoUgJqCygAURyY2yjQNJiIicooUgJqC4BiwBWHFRWvjoE6FFxEROUUKQE2BYRyxEDqNPVkFXu6QiIhI06YA1FREdgCgg5HG7kwFIBERkVNxUgHo9ddf59NPP3U/vv/++wkPD+fcc89l7969ddY5OcIRp8L/clABSERE5FScVAB69NFHCQgIACA5OZm5c+cye/ZsoqKi+Nvf/lanHZRKR1wMcX92kU6FFxEROQV+J/Oiffv20blzZwAWL17M6NGjueWWWxg4cCCDBg2qy/5JlcoA1MGaDk7Yk1XAabGhXu6UiIhI03RSI0DBwcFkZWUB8MUXXzBkyBAA/P39KSoqqrveyW8qA1ArDuJHmabBRERETsFJjQANGTKEv/zlL/Tt25eff/6Ziy++GIAff/yR9u3b12X/pEpIHPj541dWTCsjUwuhRURETsFJjQDNnTuXAQMGcPDgQT744ANatGgBwMaNG7n++uvrtINSyWLxWAe062C+lzskIiLSdJ3UCFB4eDgvvPBCtf0zZsw45Q7JMUR2hIyfaG+k8b1GgERERE7aSY0ALV26lK+//tr9eO7cufTp04cbbriBw4cP11nn5HeqFkIbqZoCExEROQUnFYDuu+8+cnNzAfjhhx+45557uPjii9m9ezeTJ0+u0w7KEVp2A6CzsZ/sQieHCkq93CEREZGm6aSmwHbv3k2PHj0A+OCDD7j00kt59NFH2bRpk3tBtNSDqK4AdLWmghN2Z+YTGRTp5U6JiIg0PSc1AmS32yksrLgh57Jlyxg6dCgAkZGR7pGh2li1ahUjR44kPj4ewzBYvHjxMdt/+OGHDBkyhJYtWxIaGsqAAQP4/PPPPdpMnz4dwzA8ttNOO+3ECmysoroAEM0hgihil06FFxEROSknFYDOO+88Jk+ezEMPPcT69eu55JJLAPj5559p3bp1rY9TUFBA7969mTt3bq3ar1q1iiFDhvDZZ5+xceNGLrzwQkaOHMm3337r0a5nz56kpqa6tyPXKzVpAREQFA1AJ+OA1gGJiIicpJOaAnvhhRe4/fbbef/995k3bx6tWrUCYMmSJQwfPrzWxxkxYgQjRoyodftnnnnG4/Gjjz7KRx99xP/+9z/69u3r3u/n50dsbGytj9ukRHWFggw6GQf4RafCi4iInJSTCkBt27blk08+qbb/6aefPuUOnQiXy0VeXh6RkZ7rYHbs2EF8fDz+/v4MGDCAWbNm0bZt26Mep6SkhJKSEvfjqmk8p9OJ0+ms0z5XHe9kj2tp0Rnr3q/pZDnAh+n5dd6/U3Wq9TUFqrHp8/X6wPdr9PX6QDWeyvFqwzBN0zyZNykvL2fx4sVs3boVqJh2uuyyy7BarSdzOAzDYNGiRYwaNarWr5k9ezaPPfYY27ZtIzq6YmpoyZIl5Ofn061bN1JTU5kxYwb79+9ny5YthISE1Hic6dOn13gNo4ULFxIYGHhS9dSXjhmf02v/WywtP5vbnXfzRP9y/E5qIlNERMS3FBYWcsMNN5CTk0No6LHvl3lSAWjnzp1cfPHF7N+/n27dKk7N3r59O23atOHTTz+lU6dOJ9zpEw1ACxcu5Oabb+ajjz4iISHhqO2ys7Np164dc+bM4aabbqqxTU0jQG3atCEzM/O4P8AT5XQ6SUxMZMiQIdhsthN+vfHLCvzevppdZisGlzzBJxMH0C225mDnDadaX1OgGps+X68PfL9GX68PVOPJyM3NJSoqqlYB6KSmwO688046derE2rVr3dNPWVlZ/OlPf+LOO+/k008/PZnD1to777zDX/7yF957771jhh+ouGp1165d2blz51HbOBwOHA5Htf02m63efulO+tgx3QFoa6RX3BT1UDGnt2l8p8LX58+usVCNTZ+v1we+X6Ov1weq8USPU1snNXmycuVKZs+e7bH2pkWLFjz22GOsXLnyZA5Za2+//TYTJkzg7bffdp99diz5+fns2rWLuLi4eu1XgwltBbZAbJTR1sjg57Q8b/dIRESkyTmpAORwOMjLq/6HNz8/H7vdXuvj5Ofns3nzZjZv3gxUXGBx8+bNpKSkADBlyhTGjh3rbr9w4ULGjh3LU089Rf/+/UlLSyMtLY2cnBx3m3vvvZeVK1eyZ88e1qxZwxVXXIHVavWdm7RaLO7rAXUyDvBzugKQiIjIiTqpAHTppZdyyy23sG7dOkzTxDRN1q5dy6233spll11W6+Ns2LCBvn37uk9hnzx5Mn379mXq1KkApKamusMQwL///W/KysqYOHEicXFx7u2uu+5yt/n111+5/vrr6datG9dccw0tWrRg7dq1tGzZ8mRKbZwqrwjdyTjAjgydCi8iInKiTmoN0HPPPce4ceMYMGCAe77N6XRy+eWXV7tWz7EMGjSIY63BXrBggcfjpKSk4x7znXfeqfX7N1lRlfcEsxzg31kFFDvL8bed3Nl3IiIizdFJBaDw8HA++ugjdu7c6T4Nvnv37nTu3LlOOydH0bJiBOg0635cTth1MJ+e8WFe7pSIiEjTUesAdLy7vK9YscL9/Zw5c06+R3J80T0B6MKvWHCxI10BSERE5ETUOgD9/n5bR2MYxkl3RmopsgP4BeAoK6Kdka6F0CIiIieo1gHoyBEe8TKLFaJPgwPf0s3Yx8/pWggtIiJyInQThaYqpmIarLslhR0ZGgESERE5EQpATVXM6QCcZqSQcqiQgpIyL3dIRESk6VAAaqoqR4B6WvdhmrBNV4QWERGpNQWgpqryTLDWpBNIMT8dyDnOC0RERKSKAlBTFdQCgmMB6Gbs48cDuV7ukIiISNOhANSUVU6DnWZJUQASERE5AQpATVlVADJS2J6eh7Pc5eUOiYiINA0KQE1Z5ZlgPa2/UlrmYtdBXQ9IRESkNhSAmrKYHgCcZtkHmPy4X9NgIiIitaEA1JRFdQOrnWAzn9bGQa0DEhERqSUFoKbMz+5eB3SG8Qs/pepUeBERkdpQAGrq4vsCcIZlNz8dyMU0TS93SEREpPFTAGrq4voA0Muym9ziMn49XOTd/oiIiDQBCkBNXeUIUG/rbsDkh/2aBhMRETkeBaCmLro7WB0EmwW0M9LZvC/b2z0SERFp9BSAmjqrDWIrrgfUy9jN5pRs7/ZHRESkCVAA8gWV02C9LL/ww/4cynRFaBERkWNSAPIFlQGor98eipzlbE/P83KHREREGjcFIF9QGYBON3Zj4OJbTYOJiIgckwKQL4jqBn4BBJqFdDDStBBaRETkOBSAfIHVD+LOAKC3sUsBSERE5DgUgHxF67MBONOyg10H88ktdnq5QyIiIo2XApCvaHMOAH+w7cQ04ft9uiCiiIjI0SgA+YrWFQGok5lCEEV8m3LYyx0SERFpvBSAfEVoHIS1xYKL3pZdrN9zyNs9EhERabQUgHxJ5TRYP+NnNu49rAsiioiIHIUCkC9p0x+A/radFJaW8+OBXC93SEREpHFSAPIlbSrOBOtr2YmBi3W7s7zcIRERkcbJqwFo1apVjBw5kvj4eAzDYPHixcd9TVJSEmeeeSYOh4POnTuzYMGCam3mzp1L+/bt8ff3p3///qxfv77uO98YxZwOtkCCXPl0Mg6wfrfWAYmIiNTEqwGooKCA3r17M3fu3Fq13717N5dccgkXXnghmzdv5u677+Yvf/kLn3/+ubvNu+++y+TJk5k2bRqbNm2id+/eDBs2jIyMjPoqo/Gw2iD+TAD6WXawfvchXC7Ty50SERFpfLwagEaMGMHDDz/MFVdcUav2L774Ih06dOCpp56ie/fuTJo0iauuuoqnn37a3WbOnDncfPPNTJgwgR49evDiiy8SGBjI/Pnz66uMxqVtxTqgc/22kVtcxrY03RhVRETk9/y83YETkZycTEJCgse+YcOGcffddwNQWlrKxo0bmTJlivt5i8VCQkICycnJRz1uSUkJJSUl7se5uRWLh51OJ05n3V5Ruep4dX3cKkabc/HjKc7z2wolJsm7DtKlZUC9vFdN6ru+xkA1Nn2+Xh/4fo2+Xh+oxlM5Xm00qQCUlpZGTEyMx76YmBhyc3MpKiri8OHDlJeX19hm27ZtRz3urFmzmDFjRrX9X3zxBYGBgXXT+d9JTEysl+NaXSWMMPxoUZ5JeyONj5NNog5tqZf3Opb6qq8xUY1Nn6/XB75fo6/XB6rxRBQWFta6bZMKQPVlypQpTJ482f04NzeXNm3aMHToUEJDQ+v0vZxOJ4mJiQwZMgSbzVanx65iHJ4PKcmca/mJz4raMmz4IKwWo17e6/caoj5vU41Nn6/XB75fo6/XB6rxZFTN4NRGkwpAsbGxpKene+xLT08nNDSUgIAArFYrVqu1xjaxsbFHPa7D4cDhcFTbb7PZ6u2Xrj6PTcdBkJLM+X4/sbBoMNszCundJrx+3uso6rW+RkI1Nn2+Xh/4fo2+Xh+oxhM9Tm01qesADRgwgOXLl3vsS0xMZMCAAQDY7Xb69evn0cblcrF8+XJ3m2ahw/kAnGvdioGLr3Yc9HKHREREGhevBqD8/Hw2b97M5s2bgYrT3Ddv3kxKSgpQMTU1duxYd/tbb72VX375hfvvv59t27bxr3/9i//+97/87W9/c7eZPHkyL7/8Mq+//jpbt27ltttuo6CggAkTJjRobV7V6izwCyDUlU1X41dW/Zzp7R6JiIg0Kl6dAtuwYQMXXnih+3HVOpxx48axYMECUlNT3WEIoEOHDnz66af87W9/49lnn6V169a88sorDBs2zN3m2muv5eDBg0ydOpW0tDT69OnD0qVLqy2M9ml+dmg3AHZ9ybmWH/lPSjvyip2E+Pv2EKqIiEhteTUADRo0CNM8+oX6arrK86BBg/j222+PedxJkyYxadKkU+1e09bhfNj1JYP9t/NawQiSd2UxtOfR10GJiIg0J01qDZCcgA4XAHC2+QM2yvhqh6bBREREqigA+aq4PhAUjcNVxNmWbazSQmgRERE3BSBfZbFAlyEADLZuZm9WIb8czPdyp0RERBoHBSBfVhmAhjt+ACDxp/RjtRYREWk2FIB8WaeLwLDSqmwfbYx0BSAREZFKCkC+zD8M2lZcAPJCy2Y2phzmYF7JcV4kIiLi+xSAfF3lNNhlgVswTfhym0aBREREFIB8XdeKi0T2Kd9CAMWaBhMREUEByPe1PA3C2+HnKuF8y/d8tSOTwtIyb/dKRETEqxSAfJ1hQPeRAIwO2ERJmYtVP+uaQCIi0rwpADUH3S8D4Hw2YsfJ/75L9XKHREREvEsBqDlofTYEx+JfXsC5li0s25pOfommwUREpPlSAGoOLBbofikA1wR+S0mZi8Sf0rzcKREREe9RAGouKqfBLuQbrJTz8eYDXu6QiIiI9ygANRftBkJAJAFlOfS3bOWrHZkcLij1dq9ERES8QgGoubD6uc8GGx+8njKXyWdbtBhaRESaJwWg5qT3dQAMKl+DPyV8sPFXL3dIRETEOxSAmpM2f4DwdtjLCxnut5FNKdnszMjzdq9EREQanAJQc2KxuEeBbgpZB8C73+zzZo9ERES8QgGouTnjWgBOL95ISw7z4ab9lJa5vNwpERGRhqUA1Ny06AStz8EwXfwpcB1ZBaW6Q7yIiDQ7CkDNUZ/rAfiTfSVg8vZ6TYOJiEjzogDUHJ1+FdiCaFG8l3OMbazacZA9mQXe7pWIiEiDUQBqjvxDoddVAPwtYjWmCa8n7/Fun0RERBqQAlBz1W88AP2LvyKCXN7b8Ct5xU7v9klERKSBKAA1V63OhLjeWFxO/hq2jvySMt7XhRFFRKSZUABqzvpNAOAG63IMXLy+Zg8ul+nlTomIiNQ/BaDmrNfV4B9GaGEKI/2/Y09WIV/8lObtXomIiNQ7BaDmzBHsHgW6LyQRgLkrdmGaGgUSERHfpgDU3PX/K1hstMnbzDm23fywP4dVOzK93SsREZF6pQDU3IXGu0+Jnxb1JQBzV+z0Zo9ERETqnQKQwICJAPTIXkEnawbrdx9i/e5DXu6UiIhI/WkUAWju3Lm0b98ef39/+vfvz/r164/adtCgQRiGUW275JJL3G3Gjx9f7fnhw4c3RClNU2wv6JyAYbp4PKZiLdCTn2/XWiAREfFZXg9A7777LpMnT2batGls2rSJ3r17M2zYMDIyMmps/+GHH5KamuretmzZgtVq5eqrr/ZoN3z4cI92b7/9dkOU03Rd8H8A9Du8lE5+B1m/5xBJPx/0cqdERETqh9cD0Jw5c7j55puZMGECPXr04MUXXyQwMJD58+fX2D4yMpLY2Fj3lpiYSGBgYLUA5HA4PNpFREQ0RDlNV5uzodNgDLOcp+KWAfDE0u26LpCIiPgkrwag0tJSNm7cSEJCgnufxWIhISGB5OTkWh3j1Vdf5brrriMoKMhjf1JSEtHR0XTr1o3bbruNrKysOu27TxpUMQrUO2sJ3R1Z/JSayyc/pHq5UyIiInXPz5tvnpmZSXl5OTExMR77Y2Ji2LZt23Ffv379erZs2cKrr77qsX/48OFceeWVdOjQgV27dvHAAw8wYsQIkpOTsVqt1Y5TUlJCSUmJ+3Fubi4ATqcTp7Nu749Vdby6Pm6diO2LteNFWH75kjnRnzFi343MXrKVC7tE4m+r/nOrSaOur46oxqbP1+sD36/R1+sD1Xgqx6sNw/TiStcDBw7QqlUr1qxZw4ABA9z777//flauXMm6deuO+fq//vWvJCcn8/333x+z3S+//EKnTp1YtmwZgwcPrvb89OnTmTFjRrX9CxcuJDAwsJbV+Iawwj0M2j4VgGtdj7CutAMXtylnWGtNhYmISONWWFjIDTfcQE5ODqGhocds69URoKioKKxWK+np6R7709PTiY2NPeZrCwoKeOedd5g5c+Zx36djx45ERUWxc+fOGgPQlClTmDx5svtxbm4ubdq0YejQocf9AZ4op9NJYmIiQ4YMwWaz1emx64rro++xbHmf56M/5pxf72RFmo3/u/Y84sL8j/vaplDfqVKNTZ+v1we+X6Ov1weq8WRUzeDUhlcDkN1up1+/fixfvpxRo0YB4HK5WL58OZMmTTrma9977z1KSkr405/+dNz3+fXXX8nKyiIuLq7G5x0OBw6Ho9p+m81Wb7909XnsUzZ4Kmz9mOjMddwct4uXUzvzZOJOnru+b60P0ajrqyOqsenz9frA92v09fpANZ7ocWrL62eBTZ48mZdffpnXX3+drVu3ctttt1FQUMCECRX3qBo7dixTpkyp9rpXX32VUaNG0aJFC4/9+fn53Hfffaxdu5Y9e/awfPlyLr/8cjp37sywYcMapKYmL6IdnHMLAPeYb2A3yvj4uwOs0mnxIiLiI7wegK699lqefPJJpk6dSp8+fdi8eTNLly51L4xOSUkhNdXzTKTt27fz9ddfc9NNN1U7ntVq5fvvv+eyyy6ja9eu3HTTTfTr14+vvvqqxlEeOYrz74Oglvhn72Ruh7UAPLDoBwpLy7zcMRERkVPn1SmwKpMmTTrqlFdSUlK1fd26dTvqVYoDAgL4/PPP67J7zVNAOAx5CBbfSsLBBfQN68u3h+HpxJ/5xyU9vN07ERGRU+L1ESBpxHpfB20HYDgLeanlewC8+vVuvk057OWOiYiInBoFIDk6w4BLngLDSvSvXzCt48+4TJj83+80FSYiIk2aApAcW0xP+GPFJQLGZb9A99ASdmcW8OhnW73cMRERkZOnACTHd/59EN0DS2Em/4mrmAp7c20Ky7emH+eFIiIijZMCkByfnwNG/QsMK1F7P2POaT8DFVNhvx4u9HLnRERETpwCkNROfF+44H4ArjjwJEPjCskpcjJp4beUlrm83DkREZETowAktffHe6HNHzBK83nePpdIf9i8L1vrgUREpMlRAJLas/rB6JfBEYYj/Vs+7LYcgAVr9vDfb/Z5uXMiIiK1pwAkJya8LVz+PADtt7/KC332A/CPxT+wce8hb/ZMRESk1hSA5MT1uBwGVFy5+5LdDzG2axnOcpO//mcjKYe0KFpERBo/BSA5OQnTK64SXZLL9MJHOCvWSmZ+KTe9sYl8p7c7JyIicmwKQHJyrDa46jUIicOSuZ2FYf+ibZiNPVmF/HublYISXSlaREQaLwUgOXmhcXDDu2ALwr53Jf/rtJhwfz/25hv85T+bFIJERKTRUgCSUxPXG656FTAI++ktlvRagb/VZMPebP684BvdM0xERBolBSA5dd1GwKVPAxD3wzxeif2YYIcf63Yf4qYFGygqLfdyB0VERDwpAEndOGsCDJkJwHlZ7/K/P2wj2OFH8i9Z3PT6NwpBIiLSqCgASd0ZeBfl5/4NgPbrpvHxBQcIsltZsyuL8a+tJ6dQp4eJiEjjoAAkdco16AF+iUrAwKTjV/fw8UWZ7umw0S+uYZ+uEyQiIo2AApDULcPgh9Z/wtXrWjDL6ZQ0icTzdxEb6s/OjHyu+Ncavv8129u9FBGRZk4BSOqeYaH80ueg3wTAJO6rKST2W8tpMcFk5pdw7UtrWb413du9FBGRZkwBSOqHxVpxZtj59wMQkjybjzt9xPmdIylylnPzGxuYu2InLpfp5Y6KiEhzpAAk9ccw4KJ/wIjZANg3vcqC0Je4sV9LXCY88fl2/vLGBrILS73cURERaW4UgKT+9f8rjH4VLH5YflrEzKzJPD8iErufhS+3ZXDJc19rXZCIiDQoBSBpGL2ughsXQ2AURtoPjFx7PZ+PLKNtZCD7s4u4al4yC1bv1pSYiIg0CAUgaTgd/gh/XQnxfaHoMB2WjuXzczYxtHs0peUupv/vJ26cv45fD+tUeRERqV8KQNKwwlrDhKXQ509gughImslLtieZNSwWf5uF1TuzGP7MV7z7TQqmqdEgERGpHwpA0vBs/nD5C3DJU2C1Y/y8lOs3XEfSqDL6tYsgv6SMv3/wA39e8I1Gg0REpF4oAIl3GAac/Re4+UtoeRoUZBD7vz/xXrtFPDisPXY/Cyu2HyRhzkrmrthJSZnuJSYiInVHAUi8K7YX3JIE5/wVAMv6f3PTjxNYMdpC/w6RFDtdPPH5doY/8xWrfj7o3b6KiIjPUAAS77MFwMWzYcwHEBQNmdtp9dE1vBM1nxdHtaJliIPdmQWMnb+eW97YwM6MfG/3WEREmjgFIGk8uiTAxHVw1k2AgfHDfxn+5aV8df5W/jKwDVaLwRc/pTPsmVVM+fAH0nOLvd1jERFpohSApHEJjIRL51SsDWrVD0rz8F/+T/6571aSrrYzpEcM5S6Tt9encMETK3ji8226krSIiJwwBSBpnFqdCTctg5HPQkAEZPxIm49G83LgPD6+IY5+7SIodrqYu2IXAx/7kllLtnIwr8TbvRYRkSaiUQSguXPn0r59e/z9/enfvz/r168/atsFCxZgGIbH5u/v79HGNE2mTp1KXFwcAQEBJCQksGPHjvouQ+qaxQL9xsMdmyq+YsCW9zljUQLvt3qXBaNbcVpsCAWl5by08hfOe/xLpn/8Iweyi7zccRERaey8HoDeffddJk+ezLRp09i0aRO9e/dm2LBhZGRkHPU1oaGhpKamure9e/d6PD979myee+45XnzxRdatW0dQUBDDhg2juFhrRpqkwMiKkaBbkqDzEDDLMTYtYNDSoSzp9hmvX9OBPm3CKSlzsWDNHv44ewWTFm7i25TD3u65iIg0Ul4PQHPmzOHmm29mwoQJ9OjRgxdffJHAwEDmz59/1NcYhkFsbKx7i4mJcT9nmibPPPMM//znP7n88ss544wzeOONNzhw4ACLFy9ugIqk3sT3gT+9X3El6XYDobwEY908LliSwKLTvuSdP3VjQMcWlLtMPvk+lSv+tYYr/7WaT74/gLPc5e3ei4hII+LnzTcvLS1l48aNTJkyxb3PYrGQkJBAcnLyUV+Xn59Pu3btcLlcnHnmmTz66KP07NkTgN27d5OWlkZCQoK7fVhYGP379yc5OZnrrruu2vFKSkooKflt/Uhubi4ATqcTp9N5ynUeqep4dX3cxqJB6os/C8YsxtidhCXpESypmzG+epL+fnN5s9fV7DjnBl7a7s8n36eyKSWbTQu/JSrYzpV947m6Xyvatwg6pbf39c8QfL9GX68PfL9GX68PVOOpHK82DNOLN1w6cOAArVq1Ys2aNQwYMMC9//7772flypWsW7eu2muSk5PZsWMHZ5xxBjk5OTz55JOsWrWKH3/8kdatW7NmzRoGDhzIgQMHiIuLc7/ummuuwTAM3n333WrHnD59OjNmzKi2f+HChQQGBtZRtVIvTJO4nI10S1tMWFGKe3dGSE9+jBjKuwV9WZ1hJc9puJ/rHGryh2gXvSNN7FZvdFpEROpDYWEhN9xwAzk5OYSGhh6zrVdHgE7GgAEDPMLSueeeS/fu3XnppZd46KGHTuqYU6ZMYfLkye7Hubm5tGnThqFDhx73B3iinE4niYmJDBkyBJvNVqfHbgy8U98lYD5I2b5kLN+8jLH9U6LzfiQ670cGRXTAOfTPrPAfzMIf8vlqRyY7cw125lr52N+Py3rHcWmvWPq2CcdiMY7/Vvj+Zwi+X6Ov1we+X6Ov1weq8WRUzeDUhlcDUFRUFFarlfT0dI/96enpxMbG1uoYNpuNvn37snPnTgD369LT0z1GgNLT0+nTp0+Nx3A4HDgcjhqPXV+/dPV57MbAK/V1uqBiy06Bb16Bja9jHN6NffmDDPN7hGE9RpH5p+tYmNqKdzf8yv7sIt5ct4831+0jLsyfi3vFcekZcfRpE45hHD8M+fpnCL5fo6/XB75fo6/XB6rxRI9TW15dBG232+nXrx/Lly9373O5XCxfvtxjlOdYysvL+eGHH9xhp0OHDsTGxnocMzc3l3Xr1tX6mNLEhbeFITNh8k9w6TMQ3RPKiuH7d4h6bxR3bhvDV+f9wLvXtubKvq0IdviRmlPMq1/v5op/reG8x1cw67OtfLcvG5fLazPEIiJSj7w+BTZ58mTGjRvHWWedxTnnnMMzzzxDQUEBEyZMAGDs2LG0atWKWbNmATBz5kz+8Ic/0LlzZ7Kzs3niiSfYu3cvf/nLX4CKM8TuvvtuHn74Ybp06UKHDh148MEHiY+PZ9SoUd4qU7zBHgRnTai4htD+jbBxAWz5ADJ/xrJsKv2B/m0H4Bx+JavtA/nw51KWbU1nf3YRL636hZdW/UJ0iIPB3aMZfFoMAztHEaBFQyIiPsHrAejaa6/l4MGDTJ06lbS0NPr06cPSpUvdp7anpKRgsfw2UHX48GFuvvlm0tLSiIiIoF+/fqxZs4YePXq429x///0UFBRwyy23kJ2dzXnnncfSpUurXTBRmgnDgNZnVWzDHoUt78P370HKGkhJxpaSzCDDwqAOF1A68kpWWvqzeFsBSdszyMgr4e31+3h7/T78bRbO6xzFoK5RlOui0yIiTZrXAxDApEmTmDRpUo3PJSUleTx++umnefrpp495PMMwmDlzJjNnzqyrLoqv8A+Fs/5cseXshx8XVQSiA9/CLyuw/7KCIVY7QzoPwXnFZXxj7cPS3WUs35rB/uwilm3NYNnWDMCPN/at5o9dWjKwcxR/6BhJiL9vz9GLiPiSRhGARLwirBWcO6liy9oFP34IP3wAB7fC9k+xbf+UczE4N643M85OYG/EH/jsUGs+35bF979ms+tgAbsOFrBgzR6sFoM+bcIZ2DmKAR1b0LdtOP42TZeJiDRWCkAiAC06wfn3VWzpP1WsFfr5c0j/AVI3Y6Rupj1wuyOUW9udxwZ7NHk9b+DLjEBW78xkT1YhG/ceZuPewzy3fAc2q0Hv1uGc3SGSczpE0q9dBKEaIRIRaTQUgER+L6ZHxTb4QchLg10rYOcy+GUFFGZh+fkzzgE4sIDBLTpDz8EcjDmPlcWdWZlSwrpfssjIK2HD3sNs2HuYeUm7sBjQPS6Uvm3D6d06nL5tw+kYFVzraw+JiEjdUgASOZaQWOhzfcXmckHqZsp//oLsDR8QWbgLI2snZO2kJS9xlWHhqtgzMPudy8HIfqwp68rq/Sbr9xxib1YhPx7I5ccDubxJxRWrQxx+9GodRu824fSp3GJCtVBfRKQhKACJ1JbFAq3OxBXdi69zu3PxRedh+3VN5ehQEhze454uiwZGAaNadofu55IdfTYbzNNYl+ngu305/LA/h7ySMtbsymLNriz3W8SG+tMzPpQe8aH0iKv42iYiUCNFIiJ1TAFI5GT5h0L3kRUbQO4B2LumclsNB7dVLKg+uJVwXiUBSAiJg7g+lHfrw/6Abmx0tmNdhh+b92Xzc3oeabnFpOUWs3xbhvttguxWusf9Foq6x4XSJSaYQLv+8xUROVn6F1SkroTGQ6+rKjaAgkxISf4tEKX9AHmpkJeK9ecltAXaAleEtYFWZ1Laty+77N3YVNKa7zJNtqbmsT09j4LScvd6oiO1jgigc3QwXaKD6RIdQueYYDpHB2uxtYhILSgAidSXoCjPEaKS/IoQlLoZDmyuuPZQ5s+Qsw9y9mH/6SO6A92BMWFtIbYX5T16khbQmR9dbdmQE8rWtHy2puaSmV/Kr4eL+PVwEUnbD3q8bUyooyIQRVcEok4tg2kfFUhMiL+m0kREKikAiTQURzC0G1CxVSnJqwhC+zdWbt9C7q+QkwI5KVi3f0oroBUw1B4MMT2hz+kUhHXiVyOerc4YvssNYWdmITvS80nLLSY9t4T03BK+3pnp8fb+NgvtIoNo1yKQDlFBtGsRRPsWgbSPCiI2VOFIRJoXBSARb3KEQIfzK7YqhYcg/UdI3wJpWyquRZSxDUrzYd862LeOIKBb5TbKzx8iO0GnTpSEdyLVrzU7XXF8XxTFD1kGuzML2He4iGKni+3pFdNqv2f3s9AuMpB2LYJoHRFAbKid9CyD1r/m0K5lCC2C7BiGApKI+A4FIJHGJjASOvyxYqtSXgZZOyoD0RbI2gmZO+DQLxV3us/4ETJ+xAG0r9wSAAKjIKoLri6dyQlsy6/WinC0pSCCXw6XsjerkJRDhZSWudiRkc+OjPwjOmLltZ/XARWjR/HhAbQKD6B1RMXXVhEBtAoPpFVEADEhDvysFkREmgoFIJGmwOoH0d0rNq7+bX95WcV0WWbF9YjI2lERjLJ2Viy4LsyElEwsKclEABFAL+AKwwoR7SCmA66ubch1xJNqRLOnvAU7SyPZnudgy550igx/MvJLKHa6+OVgAb8cLKi5exaD2FB/4sP9iQn1JzbUn9iwyu/DKh5Hhzpw+On2ICLSOCgAiTRlVj+I7FixMdTzuZL8ylC087cRo6wdFfc9K82vGD069AsWILxy6175UtPqoNAaRkBsJ8yQVuQ7osmytCDVjGSvM4KdxSFsywvg15xSUnOKcJab7M8uYn920TG7GxFo8whFVd+3DHbQMsRBVIiDqGC7gpKI1DsFIBFf5QiG+D4V25FMs+IWH1k7IDul+pa7H6O8hKDyDEipuB5RWOXWERhYdRzDCiGxmO3jKQmIIcfekkxLFOlmBL+WR/BLSTg/Fwbxa56LtNxiSstcHC50crjQyba06uuQjhTq71cZhhy/haNgO1HBlfsUlkTkFCkAiTQ3hgGhcRVbTcqdOA/tZe0XHzKgZzv8CtIrptNy91dc7DH3QEWAMssrwlLufvwBfyAG6Pn74wVGYbaOxxkUR4GjJYf9WpJBCw64ItlTGsaO4lB+LbCQmV9CZn4JznKT3OIycovLjjrldqQQfz9aBNmJCLITGVj5NchORKCdyCBb5dffng8L0HWSREQBSER+z2qD8HYcCu6G2fNisNUQGFzlkJ9RGYYqQ5E7IB0RlspLoDATozATO99jp2IdUsffH88WBMEtMVu2pMw/ikJ7JHnWSA4bYRw0Q0krD2W/M4i9xcHsLbCRWVDqDkt5xWXkFZexJ6uwVuVZDAgLsGE3rfznwHoigxweASkiyE54gI2wQBthATZC/Su++tssOhNOxIcoAInIibNYjxhF6ldzG9OEosNHBKP9leGo8vu8yu9LcsFZAIcLMA7vwcZvU26tazqu1Q5BLTEjoygLaEmRPZJCayi5Rgg5ZjCHzEAyywJJdwaSWhrAr8X+HCiycqjQSV5xGS4TDhc6AYP0vdm1LtlutRAaYCM0wI+wAJvHVhWSwgJsNbYJdvgpPIk0MgpAIlI/DKPilP7ASIjtdfR2JXkVo0kFB3/76v4+o+KWIlX7S3KhvNQ99WYDbEAoEHusvlj8ICgCs0UETkcYJdYQUg6X4h/dgXxLKIfNILJcgRx0BnKgNIB0ZwD7S/w5UGQjp8RFucuktNzlnqY7URYDQn8XmkL8/Qiy+xHs70eIw48gR8X3wY7ftiCHHyH+v33v8NMolEhdUQASEe9yhFRsLTodv62zuDIgZUD+wd++LzpcuWUf8f3hiotKlpeAqwwKDmIUHMQO2Klcq5T/9bHfz7BghoVj+kdQ5gijxBZGsV8ohdZQ8o1gco1gDruCyHb5c8jpINPpIKPUTnqpg9RiG5nFUFrmwmVCdqGT7ELnKf2obFajIigduflXBqXfhSZ/P4MdmQZBPx8kLMi/WrCy++m6TdK8KQCJSNNh84fwNhVbbTmLPENR0WHK8g6yffNaTmsXg7Ukp+YA5SwA04VRdAij6JA7OIWcSH8ddszQEMptIZTZQij1C6bYGkSRJYhCI4h8AsknkFwzgGyXP4fLAzhU7s8hp50sp42DJTYOltrIKa0Y9XGWmycYpKy8vuPbGp+x+1l+G3mq3ALsVgLtVvfXIPuR+/wItFkJclR+b7cSYKtsV/Vam1UXxJQmQwFIRHybLaBiC4137zKdTnamtqDrRRdjrWmRN0BZSfURpaNtJXmeW2nlaf7lpRiFWfiRhR8VZ8qFnmj/LWAG2THtwbhsQZT7BeL0C8JpCaDEEkixJZAiw59CAsg3HeS5/Ml1+XO4zM6+7FLKAlqQVWYns9TBwVIrh512SrBRWuYiq6yUrILSE/+ZHoPdanGHporNr9pjd8iyVXwf6KgIUwE2K/6VW4Ddir/N8tt+uxV/Pys2q6FpQKkTCkAiIjXxc0BITMV2olzlFRebrApExbkV65eKc37bSnIr9+f97vuciotYlhZUTN8BRnkpRtEhLEWH8AMcJ9KXIy+5ZK3YTAxMP39cfoGU+/lTZvHHaQmg1BpAiSWAYiOAIiOAIvwpwJ8Cl4MC00Z+uY28cjt55TZyy21kO/3IKfPjsNOPApedIuwUlTvIKbKRU1Q/IcVqMQiwWXH4WTDLrDy/czUBdr8jQlJFAPMIU7aKMOVf+bqqrw6bBYdfxXMOv8p9Rz62WbTuyocpAImI1DWLFfzDKrZTUVZaEaRKC377WpJ3lO/zK7/Ph5J8XCV55GUeINRhwajaX1YMgIGJUVaEpazoxAPV7xlUzA0eoSpglVsDKLf6U2b1x2nxp9RwUGo4KMFOieGgyLRRjJ1Cl41Cs+JrgctGocuP/PKKLa/MSl6ZlWKzYuSqxLRRUmqjpKTitWkHiyjBjhNrZWfqnt3P8rtwVHNQcgcrv+pB61jPVQthlc9ZTLNe6pEKCkAiIo2Vnx38Ks+kO0HlTidJn33GxRdfjK1qmq+8DMqKKtZFlRZUfHUWVax3Ki08ImwVHBG68ivbFP7uaw37yium044MWKd82UkL1QJWTUwMyq0Oyi12ygw7ZRYHTsOO07BTSuW0H7aKEIWNYtNGkWmjyGWj0LRR5PKjwOVHYWXwKjYr22GnxFURuEpKbBXhDRv5Rzxfig0X9bP2yc+w8o9NX+Lws2Cv2qwWdyir2GfFbj3isbUiWFW1O/J1VW0cflaPY9XUxu5nwWat2ByV31stvjMapgAkItJcWP3AWnnWXX04MmDVFJhKCypGoZxFv311FlW+pvi315aVVG7FlV+Lfve4GLOsBKNyRAsqQpdfeTF+5cWnNqJlqdxOtHTDj3KLgzJ3ALPjxE6pUbG5R6+wU2L6UWJaKTGtFLusFLv8KHJVfF/oslBq2ijFDyd+OE0rpU4bTqffEfsqvi/BRg5Vx/wt3Dnxq7dAZrUY2KyGOzjZjvxqtWDzs+CwWrD5VbSxHbnvd6/5Q8dIBnaMqJd+1oYCkIiI1I36DlhHKHM6+ezTT7l42GBslFcLSEcLTh7fO4treM2xXnvk64rAdP1WulmGtbwMe/nxb99yVCcZvmriwkq5xY8yw0654UcZfjgNG2XYKDUqQpQTP0qxUWpaKcWPUtNCieu3cFbqslJsWivb+VFW+b3T5YfTZcXp/C2kOfGjjIrjlFWGtCJ+v99KOb/duy+gvIcCkIiIyAkzDPDzr/l2LQ2hvKyGcHWsUFUZnspLf7c5f/u+7Lf9rrISDqYdoGVkGBaX07NtWUnl1yOCHL+tGbJQjsVVjo0Tv3AnULGcqp7vM7y34Fagb/2+yTEoAImIiJwMqx9Yg8ERXC+HL3c6WVu5jstyvJBnmp6BqioglTsrzib8XbiqFrhcziOCmNMzlLnKfhfWqo5ZVvm6373G3f7IfZXfu8oAAwyDdtFhnNqlQU+NApCIiEhTZxgVl27wO6UVUA3P6b0IpEt2ioiISLOjACQiIiLNjgKQiIiINDuNIgDNnTuX9u3b4+/vT//+/Vm/fv1R27788sv88Y9/JCIigoiICBISEqq1Hz9+PIZheGzDhw+v7zJERESkifB6AHr33XeZPHky06ZNY9OmTfTu3Zthw4aRkZFRY/ukpCSuv/56VqxYQXJyMm3atGHo0KHs37/fo93w4cNJTU11b2+//XZDlCMiIiJNgNcD0Jw5c7j55puZMGECPXr04MUXXyQwMJD58+fX2P6tt97i9ttvp0+fPpx22mm88soruFwuli9f7tHO4XAQGxvr3iIivHexJREREWlcvHoafGlpKRs3bmTKlCnufRaLhYSEBJKTk2t1jMLCQpxOJ5GRnvfKSUpKIjo6moiICC666CIefvhhWrRoUeMxSkpKKCn57WJRubm5ADidTpx1fIpe1fHq+riNha/XB6rRF/h6feD7Nfp6faAaT+V4tWGYpvduN3vgwAFatWrFmjVrGDBggHv//fffz8qVK1m3bt1xj3H77bfz+eef8+OPP+Lv7w/AO++8Q2BgIB06dGDXrl088MADBAcHk5ycjNVa/dKW06dPZ8aMGdX2L1y4kMDAwFOoUERERBpKYWEhN9xwAzk5OYSGhh6zbZO+EOJjjz3GO++8Q1JSkjv8AFx33XXu73v16sUZZ5xBp06dSEpKYvDgwdWOM2XKFCZPnux+nJub615bdLwf4IlyOp0kJiYyZMiQ3+7Q7EN8vT5Qjb7A1+sD36/R1+sD1XgyqmZwasOrASgqKgqr1Up6errH/vT0dGJjY4/52ieffJLHHnuMZcuWccYZZxyzbceOHYmKimLnzp01BiCHw4HDUf3qmTabrd5+6erz2I2Br9cHqtEX+Hp94Ps1+np9oBpP9Di15dVF0Ha7nX79+nksYK5a0HzklNjvzZ49m4ceeoilS5dy1llnHfd9fv31V7KysoiLi6uTfouIiEjT5vWzwCZPnszLL7/M66+/ztatW7ntttsoKChgwoQJAIwdO9ZjkfTjjz/Ogw8+yPz582nfvj1paWmkpaWRn58PQH5+Pvfddx9r165lz549LF++nMsvv5zOnTszbNgwr9QoIiIijYvX1wBde+21HDx4kKlTp5KWlkafPn1YunQpMTExAKSkpGCx/JbT5s2bR2lpKVdddZXHcaZNm8b06dOxWq18//33vP7662RnZxMfH8/QoUN56KGHapzmEhERkebH6wEIYNKkSUyaNKnG55KSkjwe79mz55jHCggI4PPPP6+jnomIiIgvahQBqLGpujLAiawmry2n00lhYSG5ubk+uajN1+sD1egLfL0+8P0afb0+UI0no+rvdm2u8KMAVIO8vDwA2rRp4+WeiIiIyInKy8sjLCzsmG28eiHExsrlcnHgwAFCQkIwDKNOj111jaF9+/bV+TWGGgNfrw9Uoy/w9frA92v09fpANZ4M0zTJy8sjPj7eY/1wTTQCVAOLxULr1q3r9T1CQ0N99hcafL8+UI2+wNfrA9+v0dfrA9V4oo438lPF66fBi4iIiDQ0BSARERFpdhSAGpjD4WDatGk+e00iX68PVKMv8PX6wPdr9PX6QDXWNy2CFhERkWZHI0AiIiLS7CgAiYiISLOjACQiIiLNjgKQiIiINDsKQA1o7ty5tG/fHn9/f/r378/69eu93aWTMmvWLM4++2xCQkKIjo5m1KhRbN++3aPNoEGDMAzDY7v11lu91OMTN3369Gr9P+2009zPFxcXM3HiRFq0aEFwcDCjR48mPT3diz0+ce3bt69Wo2EYTJw4EWian+GqVasYOXIk8fHxGIbB4sWLPZ43TZOpU6cSFxdHQEAACQkJ7Nixw6PNoUOHGDNmDKGhoYSHh3PTTTeRn5/fgFUc3bHqczqd/P3vf6dXr14EBQURHx/P2LFjOXDggMcxavrcH3vssQau5OiO9xmOHz++Wv+HDx/u0aapfoZAjf9NGobBE0884W7T2D/D2vyNqM2/oSkpKVxyySUEBgYSHR3NfffdR1lZWZ31UwGogbz77rtMnjyZadOmsWnTJnr37s2wYcPIyMjwdtdO2MqVK5k4cSJr164lMTERp9PJ0KFDKSgo8Gh38803k5qa6t5mz57tpR6fnJ49e3r0/+uvv3Y/97e//Y3//e9/vPfee6xcuZIDBw5w5ZVXerG3J+6bb77xqC8xMRGAq6++2t2mqX2GBQUF9O7dm7lz59b4/OzZs3nuued48cUXWbduHUFBQQwbNozi4mJ3mzFjxvDjjz+SmJjIJ598wqpVq7jlllsaqoRjOlZ9hYWFbNq0iQcffJBNmzbx4Ycfsn37di677LJqbWfOnOnxud5xxx0N0f1aOd5nCDB8+HCP/r/99tsezzfVzxDwqCs1NZX58+djGAajR4/2aNeYP8Pa/I043r+h5eXlXHLJJZSWlrJmzRpef/11FixYwNSpU+uuo6Y0iHPOOcecOHGi+3F5ebkZHx9vzpo1y4u9qhsZGRkmYK5cudK974ILLjDvuusu73XqFE2bNs3s3bt3jc9lZ2ebNpvNfO+999z7tm7dagJmcnJyA/Ww7t11111mp06dTJfLZZpm0/8MAXPRokXuxy6Xy4yNjTWfeOIJ977s7GzT4XCYb7/9tmmapvnTTz+ZgPnNN9+42yxZssQ0DMPcv39/g/W9Nn5fX03Wr19vAubevXvd+9q1a2c+/fTT9du5OlJTjePGjTMvv/zyo77G1z7Dyy+/3Lzooos89jWlz9A0q/+NqM2/oZ999plpsVjMtLQ0d5t58+aZoaGhZklJSZ30SyNADaC0tJSNGzeSkJDg3mexWEhISCA5OdmLPasbOTk5AERGRnrsf+utt4iKiuL0009nypQpFBYWeqN7J23Hjh3Ex8fTsWNHxowZQ0pKCgAbN27E6XR6fJ6nnXYabdu2bbKfZ2lpKW+++SZ//vOfPW4A3NQ/wyPt3r2btLQ0j88tLCyM/v37uz+35ORkwsPDOeuss9xtEhISsFgsrFu3rsH7fKpycnIwDIPw8HCP/Y899hgtWrSgb9++PPHEE3U6rdAQkpKSiI6Oplu3btx2221kZWW5n/OlzzA9PZ1PP/2Um266qdpzTekz/P3fiNr8G5qcnEyvXr2IiYlxtxk2bBi5ubn8+OOPddIv3Qy1AWRmZlJeXu7xQQLExMSwbds2L/WqbrhcLu6++24GDhzI6aef7t5/ww030K5dO+Lj4/n+++/5+9//zvbt2/nwww+92Nva69+/PwsWLKBbt26kpqYyY8YM/vjHP7JlyxbS0tKw2+3V/qjExMSQlpbmnQ6fosWLF5Odnc348ePd+5r6Z/h7VZ9NTf8dVj2XlpZGdHS0x/N+fn5ERkY2uc+2uLiYv//971x//fUeN5m88847OfPMM4mMjGTNmjVMmTKF1NRU5syZ48Xe1t7w4cO58sor6dChA7t27eKBBx5gxIgRJCcnY7VafeozfP311wkJCak2vd6UPsOa/kbU5t/QtLS0Gv9brXquLigAySmZOHEiW7Zs8VgfA3jMt/fq1Yu4uDgGDx7Mrl276NSpU0N384SNGDHC/f0ZZ5xB//79adeuHf/9738JCAjwYs/qx6uvvsqIESOIj49372vqn2Fz5nQ6ueaaazBNk3nz5nk8N3nyZPf3Z5xxBna7nb/+9a/MmjWrSdxy4brrrnN/36tXL8444ww6depEUlISgwcP9mLP6t78+fMZM2YM/v7+Hvub0md4tL8RjYGmwBpAVFQUVqu12gr39PR0YmNjvdSrUzdp0iQ++eQTVqxYQevWrY/Ztn///gDs3LmzIbpW58LDw+natSs7d+4kNjaW0tJSsrOzPdo01c9z7969LFu2jL/85S/HbNfUP8Oqz+ZY/x3GxsZWOzGhrKyMQ4cONZnPtir87N27l8TERI/Rn5r079+fsrIy9uzZ0zAdrGMdO3YkKirK/XvpC58hwFdffcX27duP+98lNN7P8Gh/I2rzb2hsbGyN/61WPVcXFIAagN1up1+/fixfvty9z+VysXz5cgYMGODFnp0c0zSZNGkSixYt4ssvv6RDhw7Hfc3mzZsBiIuLq+fe1Y/8/Hx27dpFXFwc/fr1w2azeXye27dvJyUlpUl+nq+99hrR0dFccsklx2zX1D/DDh06EBsb6/G55ebmsm7dOvfnNmDAALKzs9m4caO7zZdffonL5XIHwMasKvzs2LGDZcuW0aJFi+O+ZvPmzVgslmrTRk3Fr7/+SlZWlvv3sql/hlVeffVV+vXrR+/evY/btrF9hsf7G1Gbf0MHDBjADz/84BFmqwJ9jx496qyj0gDeeecd0+FwmAsWLDB/+ukn85ZbbjHDw8M9Vrg3FbfddpsZFhZmJiUlmampqe6tsLDQNE3T3Llzpzlz5kxzw4YN5u7du82PPvrI7Nixo3n++ed7uee1d88995hJSUnm7t27zdWrV5sJCQlmVFSUmZGRYZqmad56661m27ZtzS+//NLcsGGDOWDAAHPAgAFe7vWJKy8vN9u2bWv+/e9/99jfVD/DvLw889tvvzW//fZbEzDnzJljfvvtt+6zoB577DEzPDzc/Oijj8zvv//evPzyy80OHTqYRUVF7mMMHz7c7Nu3r7lu3Trz66+/Nrt06WJef/313irJw7HqKy0tNS+77DKzdevW5ubNmz3+26w6a2bNmjXm008/bW7evNnctWuX+eabb5otW7Y0x44d6+XKfnOsGvPy8sx7773XTE5ONnfv3m0uW7bMPPPMM80uXbqYxcXF7mM01c+wSk5OjhkYGGjOmzev2uubwmd4vL8Rpnn8f0PLysrM008/3Rw6dKi5efNmc+nSpWbLli3NKVOm1Fk/FYAa0PPPP2+2bdvWtNvt5jnnnGOuXbvW2106KUCN22uvvWaapmmmpKSY559/vhkZGWk6HA6zc+fO5n333Wfm5OR4t+Mn4NprrzXj4uJMu91utmrVyrz22mvNnTt3up8vKioyb7/9djMiIsIMDAw0r7jiCjM1NdWLPT45n3/+uQmY27dv99jfVD/DFStW1Pi7OW7cONM0K06Ff/DBB82YmBjT4XCYgwcPrlZ7VlaWef3115vBwcFmaGioOWHCBDMvL88L1VR3rPp279591P82V6xYYZqmaW7cuNHs37+/GRYWZvr7+5vdu3c3H330UY/w4G3HqrGwsNAcOnSo2bJlS9Nms5nt2rUzb7755mr/I9lUP8MqL730khkQEGBmZ2dXe31T+AyP9zfCNGv3b+iePXvMESNGmAEBAWZUVJR5zz33mE6ns876aVR2VkRERKTZ0BogERERaXYUgERERKTZUQASERGRZkcBSERERJodBSARERFpdhSAREREpNlRABIREZFmRwFIROQoDMNg8eLF3u6GiNQDBSARaZTGjx+PYRjVtuHDh3u7ayLiA/y83QERkaMZPnw4r732msc+h8Phpd6IiC/RCJCINFoOh4PY2FiPLSIiAqiYnpo3bx4jRowgICCAjh078v7773u8/ocffuCiiy4iICCAFi1acMstt5Cfn+/RZv78+fTs2ROHw0FcXByTJk3yeD4zM5MrrriCwMBAunTpwscff+x+7vDhw4wZM4aWLVsSEBBAly5dqgU2EWmcFIBEpMl68MEHGT16NN999x1jxozhuuuuY+vWrQAUFBQwbNgwIiIi+Oabb3jvvfdYtmyZR8CZN28eEydO5JZbbuGHH37g448/pnPnzh7vMWPGDK655hq+//57Lr74YsaMGcOhQ4fc7//TTz+xZMkStm7dyrx584iKimq4H4CInLw6u62qiEgdGjdunGm1Ws2goCCP7ZFHHjFNs+KO07feeqvHa/r372/edtttpmma5r///W8zIiLCzM/Pdz//6aefmhaLxX338Pj4ePMf//jHUfsAmP/85z/dj/Pz803AXLJkiWmapjly5EhzwoQJdVOwiDQorQESkUbrwgsvZN68eR77IiMj3d8PGDDA47kBAwawefNmALZu3Urv3r0JCgpyPz9w4EBcLhfbt2/HMAwOHDjA4MGDj9mHM844w/19UFAQoaGhZGRkAHDbbbcxevRoNm3axNChQxk1ahTnnnvuSdUqIg1LAUhEGq2goKBqU1J1JSAgoFbtbDabx2PDMHC5XACMGDGCvXv38tlnn5GYmMjgwYOZOHEiTz75ZJ33V0TqltYAiUiTtXbt2mqPu3fvDkD37t357rvvKCgocD+/evVqLBYL3bp1IyQkhPbt27N8+fJT6kPLli0ZN24cb775Js888wz//ve/T+l4ItIwNAIkIo1WSUkJaWlpHvv8/PzcC43fe+89zjrrLM477zzeeust1q9fz6uvvgrAmDFjmDZtGuPGjWP69OkcPHiQO+64gxtvvJGYmBgApk+fzq233kp0dDQjRowgLy+P1atXc8cdd9Sqf1OnTqVfv3707NmTkpISPvnkE3cAE5HGTQFIRBqtpUuXEhcX57GvW7dubNu2Dag4Q+udd97h9ttvJy4ujrfffpsePXoAEBgYyOeff85dd93F2WefTWBgIKNHj2bOnDnuY40bN47i4mKefvpp7r33XqKiorjqqqtq3T+73c6UKVPYs2cPAQEB/PGPf+Sdd96pg8pFpL4Zpmma3u6EiMiJMgyDRYsWMWrUKG93RUSaIK0BEhERkWZHAUhERESaHa0BEpEmSbP3InIqNAIkIiIizY4CkIiIiDQ7CkAiIiLS7CgAiYiISLOjACQiIiLNjgKQiIiINDsKQCIiItLsKACJiIhIs6MAJCIiIs3O/wPvBDJT65CoJQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9155 - loss: 0.3049\n","Loss on test data: 0.3119920790195465\n","Accuracy on test data: 0.9139000177383423\n"]}]},{"cell_type":"code","source":["model_2l_500 = Sequential()\n","model_2l_500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))\n","model_2l_500.add(Dense(units=num_classes, activation='softmax'))\n","model_2l_500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","model_2l_500.summary()\n","\n","H_2l_500=model_2l_500.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"O6l-e8cHfeIY","executionInfo":{"status":"ok","timestamp":1760458638502,"user_tz":-180,"elapsed":93908,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"4c9da120-cd6b-4b78-9b7e-a2fc3c032adc"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_6\"\u001b[0m\n"],"text/html":["
Model: \"sequential_6\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m500\u001b[0m) │ \u001b[38;5;34m392,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_12 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m5,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_11 (Dense)                │ (None, 500)            │       392,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_12 (Dense)                │ (None, 10)             │         5,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n"],"text/html":["
 Total params: 397,510 (1.52 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n"],"text/html":["
 Trainable params: 397,510 (1.52 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 16ms/step - accuracy: 0.2202 - loss: 2.2868 - val_accuracy: 0.5052 - val_loss: 2.1290\n","Epoch 2/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5460 - loss: 2.0884 - val_accuracy: 0.6242 - val_loss: 1.9659\n","Epoch 3/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.6475 - loss: 1.9314 - val_accuracy: 0.6770 - val_loss: 1.8161\n","Epoch 4/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.6943 - loss: 1.7853 - val_accuracy: 0.7212 - val_loss: 1.6758\n","Epoch 5/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.7223 - loss: 1.6492 - val_accuracy: 0.7638 - val_loss: 1.5472\n","Epoch 6/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7498 - loss: 1.5208 - val_accuracy: 0.7755 - val_loss: 1.4307\n","Epoch 7/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.7656 - loss: 1.4106 - val_accuracy: 0.7878 - val_loss: 1.3266\n","Epoch 8/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7815 - loss: 1.3081 - val_accuracy: 0.7948 - val_loss: 1.2337\n","Epoch 9/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7896 - loss: 1.2217 - val_accuracy: 0.8092 - val_loss: 1.1517\n","Epoch 10/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7974 - loss: 1.1436 - val_accuracy: 0.8193 - val_loss: 1.0798\n","Epoch 11/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8086 - loss: 1.0697 - val_accuracy: 0.8237 - val_loss: 1.0173\n","Epoch 12/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8166 - loss: 1.0124 - val_accuracy: 0.8312 - val_loss: 0.9610\n","Epoch 13/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8215 - loss: 0.9571 - val_accuracy: 0.8337 - val_loss: 0.9123\n","Epoch 14/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8253 - loss: 0.9115 - val_accuracy: 0.8395 - val_loss: 0.8695\n","Epoch 15/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8328 - loss: 0.8691 - val_accuracy: 0.8403 - val_loss: 0.8315\n","Epoch 16/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8358 - loss: 0.8336 - val_accuracy: 0.8447 - val_loss: 0.7976\n","Epoch 17/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8374 - loss: 0.8032 - val_accuracy: 0.8488 - val_loss: 0.7670\n","Epoch 18/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8395 - loss: 0.7735 - val_accuracy: 0.8532 - val_loss: 0.7398\n","Epoch 19/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8455 - loss: 0.7463 - val_accuracy: 0.8543 - val_loss: 0.7154\n","Epoch 20/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8451 - loss: 0.7265 - val_accuracy: 0.8555 - val_loss: 0.6936\n","Epoch 21/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8467 - loss: 0.7051 - val_accuracy: 0.8600 - val_loss: 0.6730\n","Epoch 22/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8520 - loss: 0.6828 - val_accuracy: 0.8600 - val_loss: 0.6549\n","Epoch 23/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8539 - loss: 0.6610 - val_accuracy: 0.8615 - val_loss: 0.6383\n","Epoch 24/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8566 - loss: 0.6466 - val_accuracy: 0.8642 - val_loss: 0.6226\n","Epoch 25/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8558 - loss: 0.6351 - val_accuracy: 0.8672 - val_loss: 0.6087\n","Epoch 26/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8563 - loss: 0.6223 - val_accuracy: 0.8678 - val_loss: 0.5951\n","Epoch 27/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8574 - loss: 0.6089 - val_accuracy: 0.8702 - val_loss: 0.5830\n","Epoch 28/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8620 - loss: 0.5948 - val_accuracy: 0.8700 - val_loss: 0.5719\n","Epoch 29/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8615 - loss: 0.5852 - val_accuracy: 0.8718 - val_loss: 0.5615\n","Epoch 30/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8650 - loss: 0.5732 - val_accuracy: 0.8735 - val_loss: 0.5516\n","Epoch 31/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8634 - loss: 0.5624 - val_accuracy: 0.8753 - val_loss: 0.5421\n","Epoch 32/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8668 - loss: 0.5485 - val_accuracy: 0.8763 - val_loss: 0.5331\n","Epoch 33/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8689 - loss: 0.5415 - val_accuracy: 0.8783 - val_loss: 0.5251\n","Epoch 34/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8673 - loss: 0.5390 - val_accuracy: 0.8787 - val_loss: 0.5175\n","Epoch 35/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8707 - loss: 0.5292 - val_accuracy: 0.8783 - val_loss: 0.5105\n","Epoch 36/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8708 - loss: 0.5214 - val_accuracy: 0.8803 - val_loss: 0.5035\n","Epoch 37/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8711 - loss: 0.5163 - val_accuracy: 0.8812 - val_loss: 0.4974\n","Epoch 38/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8722 - loss: 0.5067 - val_accuracy: 0.8837 - val_loss: 0.4908\n","Epoch 39/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8735 - loss: 0.5060 - val_accuracy: 0.8850 - val_loss: 0.4849\n","Epoch 40/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8749 - loss: 0.4964 - val_accuracy: 0.8848 - val_loss: 0.4798\n","Epoch 41/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8749 - loss: 0.4934 - val_accuracy: 0.8867 - val_loss: 0.4744\n","Epoch 42/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8769 - loss: 0.4841 - val_accuracy: 0.8858 - val_loss: 0.4697\n","Epoch 43/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8771 - loss: 0.4820 - val_accuracy: 0.8875 - val_loss: 0.4644\n","Epoch 44/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8800 - loss: 0.4697 - val_accuracy: 0.8877 - val_loss: 0.4605\n","Epoch 45/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8761 - loss: 0.4801 - val_accuracy: 0.8895 - val_loss: 0.4557\n","Epoch 46/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8796 - loss: 0.4704 - val_accuracy: 0.8895 - val_loss: 0.4515\n","Epoch 47/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8791 - loss: 0.4628 - val_accuracy: 0.8910 - val_loss: 0.4475\n","Epoch 48/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8782 - loss: 0.4620 - val_accuracy: 0.8923 - val_loss: 0.4437\n","Epoch 49/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8806 - loss: 0.4569 - val_accuracy: 0.8913 - val_loss: 0.4402\n","Epoch 50/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8816 - loss: 0.4512 - val_accuracy: 0.8923 - val_loss: 0.4368\n","Epoch 51/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8817 - loss: 0.4450 - val_accuracy: 0.8937 - val_loss: 0.4331\n","Epoch 52/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8829 - loss: 0.4482 - val_accuracy: 0.8922 - val_loss: 0.4306\n","Epoch 53/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8842 - loss: 0.4422 - val_accuracy: 0.8948 - val_loss: 0.4268\n","Epoch 54/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8831 - loss: 0.4375 - val_accuracy: 0.8950 - val_loss: 0.4240\n","Epoch 55/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8823 - loss: 0.4395 - val_accuracy: 0.8962 - val_loss: 0.4210\n","Epoch 56/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8834 - loss: 0.4355 - val_accuracy: 0.8958 - val_loss: 0.4181\n","Epoch 57/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8830 - loss: 0.4342 - val_accuracy: 0.8970 - val_loss: 0.4154\n","Epoch 58/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8857 - loss: 0.4282 - val_accuracy: 0.8970 - val_loss: 0.4129\n","Epoch 59/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8818 - loss: 0.4318 - val_accuracy: 0.8977 - val_loss: 0.4104\n","Epoch 60/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8877 - loss: 0.4173 - val_accuracy: 0.8977 - val_loss: 0.4083\n","Epoch 61/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8853 - loss: 0.4214 - val_accuracy: 0.8982 - val_loss: 0.4057\n","Epoch 62/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8894 - loss: 0.4122 - val_accuracy: 0.8982 - val_loss: 0.4037\n","Epoch 63/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8861 - loss: 0.4173 - val_accuracy: 0.8990 - val_loss: 0.4013\n","Epoch 64/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8881 - loss: 0.4119 - val_accuracy: 0.8995 - val_loss: 0.3992\n","Epoch 65/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8890 - loss: 0.4100 - val_accuracy: 0.8993 - val_loss: 0.3974\n","Epoch 66/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8907 - loss: 0.4033 - val_accuracy: 0.8987 - val_loss: 0.3953\n","Epoch 67/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8888 - loss: 0.4048 - val_accuracy: 0.9000 - val_loss: 0.3932\n","Epoch 68/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8878 - loss: 0.4087 - val_accuracy: 0.9007 - val_loss: 0.3910\n","Epoch 69/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8864 - loss: 0.4079 - val_accuracy: 0.9012 - val_loss: 0.3891\n","Epoch 70/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8877 - loss: 0.4061 - val_accuracy: 0.9015 - val_loss: 0.3881\n","Epoch 71/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8879 - loss: 0.4025 - val_accuracy: 0.9012 - val_loss: 0.3865\n","Epoch 72/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8882 - loss: 0.4019 - val_accuracy: 0.9013 - val_loss: 0.3844\n","Epoch 73/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8911 - loss: 0.3960 - val_accuracy: 0.9013 - val_loss: 0.3825\n","Epoch 74/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8924 - loss: 0.3870 - val_accuracy: 0.9015 - val_loss: 0.3808\n","Epoch 75/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8925 - loss: 0.3881 - val_accuracy: 0.9022 - val_loss: 0.3797\n","Epoch 76/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8903 - loss: 0.3936 - val_accuracy: 0.9023 - val_loss: 0.3781\n","Epoch 77/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8901 - loss: 0.3948 - val_accuracy: 0.9028 - val_loss: 0.3764\n","Epoch 78/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8920 - loss: 0.3876 - val_accuracy: 0.9027 - val_loss: 0.3750\n","Epoch 79/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8933 - loss: 0.3863 - val_accuracy: 0.9028 - val_loss: 0.3737\n","Epoch 80/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8924 - loss: 0.3819 - val_accuracy: 0.9027 - val_loss: 0.3722\n","Epoch 81/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8915 - loss: 0.3853 - val_accuracy: 0.9035 - val_loss: 0.3708\n","Epoch 82/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8943 - loss: 0.3812 - val_accuracy: 0.9038 - val_loss: 0.3701\n","Epoch 83/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8938 - loss: 0.3792 - val_accuracy: 0.9047 - val_loss: 0.3685\n","Epoch 84/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8939 - loss: 0.3810 - val_accuracy: 0.9032 - val_loss: 0.3671\n","Epoch 85/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8929 - loss: 0.3813 - val_accuracy: 0.9053 - val_loss: 0.3665\n","Epoch 86/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8958 - loss: 0.3762 - val_accuracy: 0.9043 - val_loss: 0.3648\n","Epoch 87/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8935 - loss: 0.3790 - val_accuracy: 0.9053 - val_loss: 0.3637\n","Epoch 88/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8960 - loss: 0.3742 - val_accuracy: 0.9055 - val_loss: 0.3626\n","Epoch 89/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8942 - loss: 0.3782 - val_accuracy: 0.9050 - val_loss: 0.3613\n","Epoch 90/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8951 - loss: 0.3696 - val_accuracy: 0.9055 - val_loss: 0.3602\n","Epoch 91/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8953 - loss: 0.3741 - val_accuracy: 0.9065 - val_loss: 0.3593\n","Epoch 92/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8941 - loss: 0.3747 - val_accuracy: 0.9057 - val_loss: 0.3585\n","Epoch 93/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8955 - loss: 0.3707 - val_accuracy: 0.9062 - val_loss: 0.3575\n","Epoch 94/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8963 - loss: 0.3698 - val_accuracy: 0.9073 - val_loss: 0.3565\n","Epoch 95/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8970 - loss: 0.3652 - val_accuracy: 0.9067 - val_loss: 0.3552\n","Epoch 96/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8965 - loss: 0.3695 - val_accuracy: 0.9063 - val_loss: 0.3543\n","Epoch 97/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8952 - loss: 0.3677 - val_accuracy: 0.9073 - val_loss: 0.3532\n","Epoch 98/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8966 - loss: 0.3639 - val_accuracy: 0.9080 - val_loss: 0.3527\n","Epoch 99/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8955 - loss: 0.3688 - val_accuracy: 0.9070 - val_loss: 0.3514\n","Epoch 100/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8976 - loss: 0.3631 - val_accuracy: 0.9067 - val_loss: 0.3505\n","Epoch 101/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8965 - loss: 0.3635 - val_accuracy: 0.9078 - val_loss: 0.3498\n","Epoch 102/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8988 - loss: 0.3615 - val_accuracy: 0.9067 - val_loss: 0.3489\n","Epoch 103/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8981 - loss: 0.3563 - val_accuracy: 0.9080 - val_loss: 0.3481\n","Epoch 104/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8973 - loss: 0.3584 - val_accuracy: 0.9067 - val_loss: 0.3472\n","Epoch 105/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8949 - loss: 0.3640 - val_accuracy: 0.9073 - val_loss: 0.3465\n","Epoch 106/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8978 - loss: 0.3587 - val_accuracy: 0.9075 - val_loss: 0.3462\n","Epoch 107/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8972 - loss: 0.3600 - val_accuracy: 0.9078 - val_loss: 0.3448\n","Epoch 108/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8967 - loss: 0.3601 - val_accuracy: 0.9078 - val_loss: 0.3439\n","Epoch 109/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8994 - loss: 0.3568 - val_accuracy: 0.9077 - val_loss: 0.3438\n","Epoch 110/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8989 - loss: 0.3597 - val_accuracy: 0.9078 - val_loss: 0.3426\n","Epoch 111/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9000 - loss: 0.3490 - val_accuracy: 0.9077 - val_loss: 0.3422\n","Epoch 112/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8999 - loss: 0.3506 - val_accuracy: 0.9075 - val_loss: 0.3414\n","Epoch 113/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8985 - loss: 0.3560 - val_accuracy: 0.9073 - val_loss: 0.3409\n","Epoch 114/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9008 - loss: 0.3519 - val_accuracy: 0.9083 - val_loss: 0.3397\n","Epoch 115/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9023 - loss: 0.3540 - val_accuracy: 0.9082 - val_loss: 0.3392\n","Epoch 116/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9022 - loss: 0.3422 - val_accuracy: 0.9093 - val_loss: 0.3382\n","Epoch 117/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8955 - loss: 0.3614 - val_accuracy: 0.9080 - val_loss: 0.3379\n","Epoch 118/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9004 - loss: 0.3484 - val_accuracy: 0.9080 - val_loss: 0.3373\n","Epoch 119/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9005 - loss: 0.3503 - val_accuracy: 0.9088 - val_loss: 0.3370\n","Epoch 120/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9014 - loss: 0.3476 - val_accuracy: 0.9087 - val_loss: 0.3360\n","Epoch 121/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9029 - loss: 0.3431 - val_accuracy: 0.9095 - val_loss: 0.3352\n","Epoch 122/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9015 - loss: 0.3447 - val_accuracy: 0.9093 - val_loss: 0.3346\n","Epoch 123/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9019 - loss: 0.3446 - val_accuracy: 0.9085 - val_loss: 0.3343\n","Epoch 124/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9004 - loss: 0.3467 - val_accuracy: 0.9102 - val_loss: 0.3333\n","Epoch 125/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9013 - loss: 0.3438 - val_accuracy: 0.9095 - val_loss: 0.3331\n","Epoch 126/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9011 - loss: 0.3462 - val_accuracy: 0.9097 - val_loss: 0.3325\n","Epoch 127/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8998 - loss: 0.3451 - val_accuracy: 0.9100 - val_loss: 0.3319\n","Epoch 128/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9012 - loss: 0.3457 - val_accuracy: 0.9102 - val_loss: 0.3316\n","Epoch 129/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9033 - loss: 0.3352 - val_accuracy: 0.9100 - val_loss: 0.3311\n","Epoch 130/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9039 - loss: 0.3387 - val_accuracy: 0.9110 - val_loss: 0.3303\n","Epoch 131/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9029 - loss: 0.3418 - val_accuracy: 0.9118 - val_loss: 0.3295\n","Epoch 132/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9023 - loss: 0.3407 - val_accuracy: 0.9108 - val_loss: 0.3295\n","Epoch 133/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9028 - loss: 0.3401 - val_accuracy: 0.9108 - val_loss: 0.3291\n","Epoch 134/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9007 - loss: 0.3389 - val_accuracy: 0.9110 - val_loss: 0.3285\n","Epoch 135/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9028 - loss: 0.3365 - val_accuracy: 0.9110 - val_loss: 0.3277\n","Epoch 136/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9017 - loss: 0.3405 - val_accuracy: 0.9112 - val_loss: 0.3276\n","Epoch 137/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9025 - loss: 0.3364 - val_accuracy: 0.9105 - val_loss: 0.3273\n","Epoch 138/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9022 - loss: 0.3386 - val_accuracy: 0.9128 - val_loss: 0.3261\n","Epoch 139/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9028 - loss: 0.3390 - val_accuracy: 0.9130 - val_loss: 0.3259\n","Epoch 140/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9046 - loss: 0.3341 - val_accuracy: 0.9133 - val_loss: 0.3253\n","Epoch 141/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9021 - loss: 0.3397 - val_accuracy: 0.9132 - val_loss: 0.3246\n","Epoch 142/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9028 - loss: 0.3348 - val_accuracy: 0.9125 - val_loss: 0.3247\n","Epoch 143/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9029 - loss: 0.3356 - val_accuracy: 0.9137 - val_loss: 0.3239\n","Epoch 144/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9051 - loss: 0.3301 - val_accuracy: 0.9133 - val_loss: 0.3234\n","Epoch 145/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9041 - loss: 0.3346 - val_accuracy: 0.9133 - val_loss: 0.3233\n","Epoch 146/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9014 - loss: 0.3406 - val_accuracy: 0.9140 - val_loss: 0.3225\n","Epoch 147/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9052 - loss: 0.3286 - val_accuracy: 0.9128 - val_loss: 0.3227\n","Epoch 148/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9035 - loss: 0.3338 - val_accuracy: 0.9138 - val_loss: 0.3217\n","Epoch 149/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9045 - loss: 0.3349 - val_accuracy: 0.9147 - val_loss: 0.3213\n","Epoch 150/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9048 - loss: 0.3331 - val_accuracy: 0.9143 - val_loss: 0.3208\n","Epoch 151/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9039 - loss: 0.3288 - val_accuracy: 0.9147 - val_loss: 0.3206\n","Epoch 152/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9025 - loss: 0.3350 - val_accuracy: 0.9147 - val_loss: 0.3203\n","Epoch 153/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9033 - loss: 0.3292 - val_accuracy: 0.9147 - val_loss: 0.3198\n","Epoch 154/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9045 - loss: 0.3328 - val_accuracy: 0.9140 - val_loss: 0.3197\n","Epoch 155/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9042 - loss: 0.3274 - val_accuracy: 0.9143 - val_loss: 0.3190\n","Epoch 156/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9054 - loss: 0.3280 - val_accuracy: 0.9148 - val_loss: 0.3182\n","Epoch 157/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9026 - loss: 0.3332 - val_accuracy: 0.9152 - val_loss: 0.3181\n","Epoch 158/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9054 - loss: 0.3242 - val_accuracy: 0.9152 - val_loss: 0.3180\n","Epoch 159/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9039 - loss: 0.3288 - val_accuracy: 0.9162 - val_loss: 0.3176\n","Epoch 160/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9049 - loss: 0.3286 - val_accuracy: 0.9155 - val_loss: 0.3173\n","Epoch 161/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9057 - loss: 0.3258 - val_accuracy: 0.9167 - val_loss: 0.3170\n","Epoch 162/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9078 - loss: 0.3232 - val_accuracy: 0.9162 - val_loss: 0.3163\n","Epoch 163/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9058 - loss: 0.3299 - val_accuracy: 0.9160 - val_loss: 0.3161\n","Epoch 164/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9045 - loss: 0.3287 - val_accuracy: 0.9157 - val_loss: 0.3159\n","Epoch 165/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9054 - loss: 0.3233 - val_accuracy: 0.9157 - val_loss: 0.3150\n","Epoch 166/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9067 - loss: 0.3240 - val_accuracy: 0.9165 - val_loss: 0.3148\n","Epoch 167/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9065 - loss: 0.3232 - val_accuracy: 0.9165 - val_loss: 0.3149\n","Epoch 168/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9060 - loss: 0.3210 - val_accuracy: 0.9167 - val_loss: 0.3148\n","Epoch 169/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9049 - loss: 0.3290 - val_accuracy: 0.9158 - val_loss: 0.3139\n","Epoch 170/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9074 - loss: 0.3251 - val_accuracy: 0.9158 - val_loss: 0.3135\n","Epoch 171/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9082 - loss: 0.3189 - val_accuracy: 0.9172 - val_loss: 0.3131\n","Epoch 172/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9076 - loss: 0.3223 - val_accuracy: 0.9170 - val_loss: 0.3133\n","Epoch 173/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9056 - loss: 0.3221 - val_accuracy: 0.9158 - val_loss: 0.3126\n","Epoch 174/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9064 - loss: 0.3231 - val_accuracy: 0.9163 - val_loss: 0.3124\n","Epoch 175/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9062 - loss: 0.3229 - val_accuracy: 0.9163 - val_loss: 0.3121\n","Epoch 176/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9083 - loss: 0.3166 - val_accuracy: 0.9167 - val_loss: 0.3116\n","Epoch 177/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9071 - loss: 0.3219 - val_accuracy: 0.9165 - val_loss: 0.3116\n","Epoch 178/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9061 - loss: 0.3220 - val_accuracy: 0.9168 - val_loss: 0.3114\n","Epoch 179/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9075 - loss: 0.3155 - val_accuracy: 0.9167 - val_loss: 0.3110\n","Epoch 180/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9073 - loss: 0.3213 - val_accuracy: 0.9168 - val_loss: 0.3107\n","Epoch 181/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.9073 - loss: 0.3193 - val_accuracy: 0.9178 - val_loss: 0.3101\n","Epoch 182/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.9101 - loss: 0.3125 - val_accuracy: 0.9168 - val_loss: 0.3104\n","Epoch 183/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9070 - loss: 0.3246 - val_accuracy: 0.9173 - val_loss: 0.3099\n","Epoch 184/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9063 - loss: 0.3255 - val_accuracy: 0.9172 - val_loss: 0.3092\n","Epoch 185/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9097 - loss: 0.3115 - val_accuracy: 0.9167 - val_loss: 0.3092\n","Epoch 186/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9098 - loss: 0.3090 - val_accuracy: 0.9172 - val_loss: 0.3091\n","Epoch 187/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9081 - loss: 0.3161 - val_accuracy: 0.9168 - val_loss: 0.3087\n","Epoch 188/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9096 - loss: 0.3164 - val_accuracy: 0.9175 - val_loss: 0.3084\n","Epoch 189/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9085 - loss: 0.3182 - val_accuracy: 0.9173 - val_loss: 0.3080\n","Epoch 190/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9074 - loss: 0.3176 - val_accuracy: 0.9172 - val_loss: 0.3076\n","Epoch 191/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9092 - loss: 0.3154 - val_accuracy: 0.9173 - val_loss: 0.3078\n","Epoch 192/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9086 - loss: 0.3183 - val_accuracy: 0.9173 - val_loss: 0.3070\n","Epoch 193/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9069 - loss: 0.3164 - val_accuracy: 0.9180 - val_loss: 0.3071\n","Epoch 194/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9108 - loss: 0.3122 - val_accuracy: 0.9178 - val_loss: 0.3065\n","Epoch 195/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9095 - loss: 0.3133 - val_accuracy: 0.9173 - val_loss: 0.3067\n","Epoch 196/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9086 - loss: 0.3206 - val_accuracy: 0.9178 - val_loss: 0.3066\n","Epoch 197/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9075 - loss: 0.3199 - val_accuracy: 0.9175 - val_loss: 0.3061\n","Epoch 198/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9094 - loss: 0.3152 - val_accuracy: 0.9180 - val_loss: 0.3058\n","Epoch 199/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9080 - loss: 0.3178 - val_accuracy: 0.9177 - val_loss: 0.3056\n","Epoch 200/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9107 - loss: 0.3106 - val_accuracy: 0.9180 - val_loss: 0.3051\n"]}]},{"cell_type":"code","source":["plt.plot(H_2l_500.history['loss'])\n","plt.plot(H_2l_500.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss','val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","scores=model_2l_500.evaluate(X_test,y_test);\n","print('Loss on test data:',scores[0]);\n","print('Accuracy on test data:',scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":524},"id":"nbSODB7VfnBl","executionInfo":{"status":"ok","timestamp":1760458640220,"user_tz":-180,"elapsed":1711,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"5a1d51c4-6eec-4a29-f652-c4681c517c25"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc4JJREFUeJzt3Xl8FPX9x/HX7Gazucl9cd8gp6BSwCpIOC2KoihSOepRFaqWehR/VY6qKCpaK6JVEa3iLdhWQQENyCEIiIgCcp9JgEDua5Od3x+brKwJkECSTTbv5+Mxj2Rnvjv7/WQiefud78wYpmmaiIiIiDQgFm93QERERKS2KQCJiIhIg6MAJCIiIg2OApCIiIg0OApAIiIi0uAoAImIiEiDowAkIiIiDY4CkIiIiDQ4CkAiIiLS4CgAiUidN378eEJCQrzdDa8zDINJkyZ5uxsiPkEBSKQBmz9/PoZhsGHDBm93RUSkVikAiYiISIOjACQiIiINjgKQiJzVd999x9ChQwkLCyMkJIQBAwbwzTffeLRxOBxMnz6dtm3bEhAQQFRUFJdeeilLly51t0lNTWXChAk0adIEu91OQkICV199Nfv27atUP/bs2cPgwYMJDg4mMTGRGTNmYJomAKZp0qJFC66++upy7ysoKKBRo0b88Y9/POtnvPXWW/Ts2ZPAwEAiIyO58cYbOXjwoEebfv360blzZzZu3EifPn0IDAykZcuWvPTSS+X2d/ToUW655Rbi4uIICAigW7duvPHGG+XaOZ1O/vGPf9ClSxcCAgKIiYlhyJAhFZ6eXLRoEZ07d8Zut9OpUyeWLFnisT07O5t7772XFi1aYLfbiY2NZeDAgWzatOms9Ys0FApAInJGP/74I7/97W/5/vvveeCBB3j44YfZu3cv/fr1Y926de5206ZNY/r06fTv358XXniB//u//6NZs2Yef3RHjhzJwoULmTBhAi+++CJ333032dnZHDhw4Kz9KCkpYciQIcTFxTFr1ix69uzJ1KlTmTp1KuCaIPz73/+exYsXc+LECY/3/ve//yUrK4vf//73Z/yMxx57jLFjx9K2bVtmz57Nvffey/Lly7nsssvIyMjwaHvy5EmGDRtGz549mTVrFk2aNOHOO+9k3rx57jb5+fn069ePf//734wZM4annnqKRo0aMX78eP7xj3947O+WW27h3nvvpWnTpjz55JP89a9/JSAgoFzQXLVqFXfddRc33ngjs2bNoqCggJEjR5Kenu5uc8cddzB37lxGjhzJiy++yH333UdgYCDbtm07689ZpMEwRaTBev31103A/Pbbb0/bZsSIEaa/v7+5e/du97ojR46YoaGh5mWXXeZe161bN/PKK6887X5OnjxpAuZTTz1V5X6OGzfOBMw//elP7nVOp9O88sorTX9/f/PYsWOmaZrmjh07TMCcO3eux/uvuuoqs0WLFqbT6TztZ+zbt8+0Wq3mY4895rH+hx9+MP38/DzWX3755SZgPvPMM+51hYWFZvfu3c3Y2FizqKjINE3TfO6550zAfOutt9ztioqKzN69e5shISFmVlaWaZqm+eWXX5qAeffdd5fr16l9Bkx/f39z165d7nXff/+9CZj//Oc/3esaNWpkTpw48bS1iohpagRIRE6rpKSEL774ghEjRtCqVSv3+oSEBG666SZWrVpFVlYWAOHh4fz444/s3Lmzwn0FBgbi7+9PcnIyJ0+ePKf+nHoJeNkl4UVFRSxbtgyAdu3a0atXL95++213uxMnTrB48WLGjBmDYRin3ffHH3+M0+lk1KhRHD9+3L3Ex8fTtm1bvvrqK4/2fn5+HqfU/P39+eMf/8jRo0fZuHEjAJ999hnx8fGMHj3a3c5ms3H33XeTk5PDihUrAPjoo48wDMM9mnWqX/c5KSmJ1q1bu1937dqVsLAw9uzZ414XHh7OunXrOHLkyGnrFWnoFIBE5LSOHTtGXl4e7du3L7etY8eOOJ1O9/yYGTNmkJGRQbt27ejSpQv3338/W7Zscbe32+08+eSTLF68mLi4OC677DJmzZpFampqpfpisVg8Qhi4Ag/gMYdo7NixrF69mv379wPwwQcf4HA4uPnmm8+4/507d2KaJm3btiUmJsZj2bZtG0ePHvVon5iYSHBw8Bn7s3//ftq2bYvF4vlPbceOHd3bAXbv3k1iYiKRkZFn+zHQrFmzcusiIiI8QuWsWbPYunUrTZs25ZJLLmHatGkeAUlEFIBEpJpcdtll7N69m3nz5tG5c2deffVVevTowauvvupuc++99/Lzzz8zc+ZMAgICePjhh+nYsSPfffddtfXjxhtvxGazuUeB3nrrLS666KIKQ9ypnE4nhmGwZMkSli5dWm55+eWXq62P58NqtVa43iydDA4watQo9uzZwz//+U8SExN56qmn6NSpE4sXL66tborUeQpAInJaMTExBAUFsWPHjnLbtm/fjsVioWnTpu51kZGRTJgwgXfeeYeDBw/StWtXpk2b5vG+1q1b85e//IUvvviCrVu3UlRUxDPPPHPWvjidznKjGD///DMALVq08OjDlVdeydtvv83+/ftZvXr1WUd/yvplmiYtW7YkKSmp3PKb3/zGo/2RI0fIzc09Y3+aN2/Ozp07cTqdHu22b9/u3l722UeOHCk3eft8JCQkcNddd7Fo0SL27t1LVFQUjz32WLXtX6S+UwASkdOyWq0MGjSITz75xOM0U1paGgsWLODSSy8lLCwMwOMqJICQkBDatGlDYWEhAHl5eRQUFHi0ad26NaGhoe42Z/PCCy+4vzdNkxdeeAGbzcaAAQM82t1888389NNP3H///VitVm688caz7vvaa6/FarUyffp0j9GUss/6dX3FxcUeo0JFRUW8/PLLxMTE0LNnTwCGDRtGamoq7733nsf7/vnPfxISEsLll18OuK6OM02T6dOnl+vXr/tyNiUlJWRmZnqsi42NJTExsdI/Z5GGwM/bHRAR75s3b165e8kA3HPPPTz66KMsXbqUSy+9lLvuugs/Pz9efvllCgsLmTVrlrvtBRdcQL9+/ejZsyeRkZFs2LCBDz/80D1x+eeff2bAgAGMGjWKCy64AD8/PxYuXEhaWlqlAkpAQABLlixh3Lhx9OrVi8WLF/Ppp5/y0EMPERMT49H2yiuvJCoqig8++IChQ4cSGxt71v23bt2aRx99lClTprBv3z5GjBhBaGgoe/fuZeHChdx+++3cd9997vaJiYk8+eST7Nu3j3bt2vHee++xefNm/vWvf2Gz2QC4/fbbefnllxk/fjwbN26kRYsWfPjhh6xevZrnnnuO0NBQAPr378/NN9/M888/z86dOxkyZAhOp5Ovv/6a/v37V+n5X9nZ2TRp0oTrrruObt26ERISwrJly/j2228rNdIm0mB47wI0EfG2ssvgT7ccPHjQNE3T3LRpkzl48GAzJCTEDAoKMvv372+uWbPGY1+PPvqoeckll5jh4eFmYGCg2aFDB/Oxxx5zXxJ+/Phxc+LEiWaHDh3M4OBgs1GjRmavXr3M999//6z9HDdunBkcHGzu3r3bHDRokBkUFGTGxcWZU6dONUtKSip8z1133WUC5oIFC6r0M/noo4/MSy+91AwODjaDg4PNDh06mBMnTjR37NjhbnP55ZebnTp1Mjds2GD27t3bDAgIMJs3b26+8MIL5faXlpZmTpgwwYyOjjb9/f3NLl26mK+//nq5dsXFxeZTTz1ldujQwfT39zdjYmLMoUOHmhs3bnS3ASq8vL158+bmuHHjTNN0XY5///33m926dTNDQ0PN4OBgs1u3buaLL75YpZ+DiK8zTLOK46siIvXAn//8Z1577TVSU1MJCgqq1n3369eP48ePs3Xr1mrdr4jUHs0BEhGfU1BQwFtvvcXIkSOrPfyIiG/QHCAR8RlHjx5l2bJlfPjhh6Snp3PPPfd4u0siUkcpAImIz/jpp58YM2YMsbGxPP/883Tv3t3bXRKROkpzgERERKTB0RwgERERaXAUgERERKTB0RygCjidTo4cOUJoaOgZnx4tIiIidYdpmmRnZ5OYmFjuIcS/pgBUgSNHjng830hERETqj4MHD9KkSZMztlEAqkDZ7ekPHjzofs5RdXE4HHzxxRcMGjTIfbt8X+Lr9YFq9AW+Xh/4fo2+Xh+oxnORlZVF06ZN3X/Hz0QBqAJlp73CwsJqJAAFBQURFhbmk7/Qvl4fqEZf4Ov1ge/X6Ov1gWo8H5WZvqJJ0CIiItLgKACJiIhIg6MAJCIiIg2O5gCJiEiDUVJSgsPh8HY3KsXhcODn50dBQQElJSXe7k6NqGqNNpsNq9VaLZ+tACQiIj7PNE1SU1PJyMjwdlcqzTRN4uPjOXjwoM/ek+5cagwPDyc+Pv68fyZeDUAzZ87k448/Zvv27QQGBtKnTx+efPJJ2rdvf9r3vPLKK7z55pts3boVgJ49e/L4449zySWXuNuMHz+eN954w+N9gwcPZsmSJTVTiIiI1Gll4Sc2NpagoKB6ESicTic5OTmEhISc9aZ+9VVVajRNk7y8PI4ePQpAQkLCeX22VwPQihUrmDhxIhdffDHFxcU89NBDDBo0iJ9++ong4OAK35OcnMzo0aPp06cPAQEBPPnkkwwaNIgff/yRxo0bu9sNGTKE119/3f3abrfXeD0iIlL3lJSUuMNPVFSUt7tTaU6nk6KiIgICAnw6AFWlxsDAQACOHj1KbGzseZ0O82oA+vWIzPz584mNjWXjxo1cdtllFb7n7bff9nj96quv8tFHH7F8+XLGjh3rXm+324mPj6/+TouISL1SNucnKCjIyz2R6lB2HB0Ox3kFoDoVKTMzMwGIjIys9Hvy8vJwOBzl3pOcnExsbCzt27fnzjvvJD09vVr7KiIi9Ut9OO0lZ1ddx7HOTIJ2Op3ce++99O3bl86dO1f6fQ8++CCJiYkkJSW51w0ZMoRrr72Wli1bsnv3bh566CGGDh3K2rVrK0yLhYWFFBYWul9nZWUBrnRZ3VcLlO2vvlyFUFW+Xh+oRl/g6/WB79dYlfocDgemaeJ0OnE6nTXdtWpjmqb7a33qd1WcS41OpxPTNCscAarK77thln26l915550sXryYVatWnfUBZmWeeOIJZs2aRXJyMl27dj1tuz179tC6dWuWLVvGgAEDym2fNm0a06dPL7d+wYIFGjIVEann/Pz8iI+Pp2nTpvj7+3u7O17TtWtX7rzzTu68887z3teqVasYPnw4+/bto1GjRtXQu8orKiri4MGDpKamUlxc7LEtLy+Pm266iczMzLM+yqpOBKBJkybxySefsHLlSlq2bFmp9zz99NM8+uijLFu2jIsuuuis7WNiYnj00Uf54x//WG5bRSNATZs25fjx4zXyLLClS5cycOBAn3y2i6/XB6rRF/h6feD7NValvoKCAg4ePEiLFi0ICAiopR6eP9M0ufzyy+nZsyfPPvvsee/v2LFjBAcHV8v/2CcnJzNgwADS09MJDw8/5/2Ypkl2djahoaGVPrVVUFDAvn37aNq0abnjmZWVRXR0dKUCkFdPgZmmyZ/+9CcWLlxIcnJypcPPrFmzeOyxx/j8888rFX4OHTpEenr6aS+Zs9vtFV4lZrPZqvUfjgJHCcdyi8kqqv591zW+Xh+oRl/g6/WB79dYmfpKSkowDAOLxVKvrqY69ZTQ6fptmiYlJSX4+Z39z3lcXFy19a2sP+f7My2rsez4VPazDcOo8NhX5Xfdq78JEydO5K233mLBggWEhoaSmppKamoq+fn57jZjx45lypQp7tdPPvkkDz/8MPPmzaNFixbu9+Tk5ACQk5PD/fffzzfffMO+fftYvnw5V199NW3atGHw4MG1XuOpXvxqF5c/8zVLDtWf/wBFRMQ7JkyYwOrVq3n++ecxDAPDMJg/fz6GYbB48WJ69uyJ3W5n1apV7N69m6uvvpq4uDhCQkK4+OKLWbZsmcf+WrRowXPPPed+bRgGr776Ktdccw1BQUG0bduW//znP+fc348++ohOnTpht9tp0aIFzzzzjMf2F198kbZt2xIQEEBcXBzXXXede9uHH35Ily5dCAwMJCoqiqSkJHJzc8+5L5Xh1b/Ec+fOJTMzk379+pGQkOBe3nvvPXebAwcOkJKS4vGeoqIirrvuOo/3PP300wBYrVa2bNnCVVddRbt27bjlllvo2bMnX3/9tdfvBRQe5Dr3nFd8loYiIlKjTNMkr6i41peqzDp57rnnuPjii7n11ltJSUkhJSWFpk2bAvDXv/6VJ554gm3bttG1a1dycnIYNmwYy5cv57vvvmPIkCEMHz6cAwcOnPEzpk+fzqhRo9iyZQvDhg1jzJgxnDhxoso/z40bNzJq1ChuvPFGfvjhB6ZNm8bDDz/M/PnzAdiwYQN33303M2bMYMeOHSxZssR9u5vU1FTGjBnDH/7wB7Zt20ZycjLXXnttlX5W58Lrp8DOJjk52eP1vn37ztg+MDCQzz///Dx6VXMigl1Dc7kKQCIiXpXvKOGCR2r/b8VPMwYT5F+5P72NGjXC39+foKAg933ttm/fDsCMGTMYOHCgu21kZCTdunVzv/773//OwoUL+c9//sOkSZNO+xnjx49n9OjRADz++OM8//zzrF+/niFDhlSprtmzZzNgwAAefvhhANq1a8dPP/3EU089xfjx4zlw4ADBwcH87ne/IzQ0lObNm3PhhRfidDpJS0ujuLiYa6+9lubNmwPQpUuXKn3+udC5mFpUNgKU69C9KERE5Nz9ev5rTk4O9913Hx07diQ8PJyQkBC2bdt21hGgU6+gDg4OJiwszP2oiarYtm0bffv29VjXt29fdu7cSUlJCQMHDqR58+a0atWKm2++mbfffpu8vDwAOnfuzIABA+jSpQvXX389r7zyCidPnqxyH6qqztwHqCGI0CkwEZE6IdBm5acZtT8vNNBWPU8y//Xjou677z6WLl3K008/TZs2bQgMDOS6666jqKjojPv59aRhwzBq5J5DoaGhbNq0ieTkZL744gseeeQRpk2bxrp167BarXz++ed88803fPHFF/zzn//k//7v/1i3bl2lL446FwpAtSgiSKfARETqAsMwKn0qypv8/f0pKSk5a7vVq1czfvx4rrnmGsA1InS2KSPVqWPHjqxevbpcn9q1a+e+WaGfnx9JSUkkJSUxdepUwsPD+fLLL0lKSsIwDPr27Uvfvn155JFHaN68OQsXLmTy5Mk11ue6f/R9SHigawSoyGlQWOzEh69MFRGRatCsWTPWr1/Pvn37CAkJOe3oTNu2bfn4448ZPnw4hmHw8MMP1+rdo//yl79w8cUX8/e//50bbriBtWvX8sILL/Diiy8C8L///Y89e/Zw2WWXERERwWeffYbT6aR9+/Zs2LCBdevWMXjwYGJjY1m3bh3Hjh2jY8eONdpnzQGqRaEBflhKp/9k5J15WFJERGTSpElYrVYuuOACYmJiTjunZ/bs2URERNCnTx+GDx/O4MGD6dGjR631s0ePHrz//vu8++67dO7cmUceeYQZM2Ywfvx4AMLDw/n444+54oor6NixIy+99BLvvPMOnTp1IjQ0lJUrVzJs2DDatWvH3/72N5555hmGDh1ao33WCFAtslgMGgXaOJnnICPPQZMob/dIRETqsjZt2rB69WqPmwSWhYpTtWjRgi+//NJj3cSJEz1e//qUWEVXYmdkZFSqX/369Sv3/pEjRzJy5MgK21966aXlruoG3KNAixcvrvWbVGoEqJaVzQPKyPfNBxSKiIjUBwpAtazsUviTeQpAIiJSN91xxx2EhIRUuNxxxx3e7l610CmwWhYe6BoBytQIkIiI1FEzZszgvvvuq3BbdT8k3FsUgGpZeNkpMI0AiYhIHRUbG0tsbKy3u1GjdAqslpWNAJ3UVWAiIiJeowBUy8I1CVpERMTrFIBqmU6BiYiIeJ/mANWmYz/TKf0rehh5ZOSFe7s3IiIiDZZGgGrTT4voufEBrrOu0GXwIiIiXqQAVJuCIgGINHLIyNckaBERqVktWrTgueeeq1RbwzBYtGhRjfanLlEAqk1BrmdfRBjZZOYXV3gbchEREal5CkC1KSgagCiyKHGaZBcWe7lDIiIiDZMCUG0qHQGKNLIByMjVPCAREanYv/71Lzp27IjT6fRYf/XVV/OHP/yB3bt3c/XVVxMXF0dISAgXX3wxy5Ytq7bP/+GHH7jiiisIDAwkKiqK22+/nZycHPf25ORkLrnkEoKDgwkPD6dv377s378fgO+//57+/fsTGhpKWFgYPXv2ZMOGDdXWt+qgAFSbSgNQI3Kw4NTNEEVEvMU0oSi39pcqTH24/vrrOXHiBF999ZV73YkTJ1iyZAljxowhJyeHYcOGsXz5cr777juGDBnC8OHDOXDgwHn/eHJzcxk8eDARERF8++23fPDBByxbtoxJkyYBUFxczIgRI7j88svZsmULa9eu5fbbb8cwDADGjBlDkyZN+Pbbb9m4cSN//etfsdls592v6qTL4GtT6SRoq2HSiBwFIBERb3HkweOJtf+5Dx0B/+BKNY2IiCApKYl33nmHgQMHAvDhhx8SHR1N//79sVgsdOvWzd3+73//OwsXLuQ///mPO6icqwULFlBQUMCbb75JcLCrvy+88ALDhw/nySefxGazkZmZye9+9ztat24NQMeOHd3vP3DgAPfffz8dOnQAoG3btufVn5qgEaDaZLVhBjQCXKfBdDNEERE5k+uvv56PP/6YwsJCAN5++21uvPFGLBYLOTk53HfffXTs2JHw8HBCQkLYtm1btYwAbdu2jW7durnDD0Dfvn1xOp3s2LGDyMhIxo8fz+DBgxk+fDj/+Mc/SElJcbedPHkyt956K0lJSTzxxBPs3r37vPtU3TQCVNsCI6EgkwiyNQIkIuIttiDXaIw3PrcKhgwZgmmafPrpp1x88cV8/fXXPPvsswDcd999LF26lKeffpo2bdoQGBjIddddR1FR7fxtef3117n77rtZsmQJ7733Hn/7299YunQpv/nNb5g2bRo33XQTn376KYsXL2bq1Km8++67XHPNNbXSt8pQAKplZlA0xsm9RGkESETEewyj0qeivCkgIIBrrrmGt99+m127dtG+fXt69OgBwOrVqxk/frw7VOTk5LBv375q+dyOHTsyf/58cnNz3aNAq1evxmKx0L59e3e7Cy+8kAsvvJApU6bQu3dvFixYwG9+8xsA2rVrR7t27fjzn//M6NGjef311+tUANIpsNpWOg8owsgmQyNAIiJyFmUjKfPmzWPMmDHu9W3btuXjjz9m8+bNfP/999x0003lrhg7V2PGjCEgIIBx48axdetWvvrqK/70pz9x8803ExcXx969e5kyZQpr165l//79fPHFF+zcuZOOHTuSn5/PpEmTSE5OZv/+/axevZpvv/3WY45QXaARoNoWWHopPNkc0giQiIicxRVXXEFkZCQ7duzgpptucq+fPXs2f/jDH+jTpw/R0dE8+OCDZGVlVctnBgUF8fnnn3PPPfdw8cUXExQUxMiRI5k9e7Z7+/bt23njjTdIT08nISGBiRMn8sc//pHi4mLS09MZO3YsaWlpREdHc+211zJ9+vRq6Vt1UQCqZWZw2b2AsvhBI0AiInIWFouFI0fKz1dq0aIFX375pce6iRMneryuyimxXz+doEuXLuX2XyYuLo6FCxdWuM3f35933nmn0p/rLToFVtsCTz0FphEgERERb1AAqmVm0C+nwHQVmIiI1Ia3336bkJCQCpdOnTp5u3teoVNgtS2w7Inw2ZzIVQASEZGad9VVV9GrV68Kt9W1OzTXFgWg2hbseiBqJNnkFZVQ4CghwGb1cqdERMSXhYaGEhoa6u1u1Ck6BVbLzFPmAAGkaxRIRESk1ikA1bbSOUAhRgF2ikjPKfRyh0REGobqukeOeFd1HUevngKbOXMmH3/8Mdu3bycwMJA+ffrw5JNPetxlsiIffPABDz/8MPv27aNt27Y8+eSTDBs2zL3dNE2mTp3KK6+8QkZGBn379mXu3Ll142Fs9jCcWLFQQgTZGgESEalh/v7+7kvJY2Ji8Pf3dz+1vC5zOp0UFRVRUFCAxeKb4xVVqdE0TYqKijh27BgWiwV/f//z+myvBqAVK1YwceJELr74YoqLi3nooYcYNGgQP/30k8cD2E61Zs0aRo8ezcyZM/nd737HggULGDFiBJs2baJz584AzJo1i+eff5433niDli1b8vDDDzN48GB++uknAgICarPE8gyDIr8QAooziTKyOZGjACQiUpMsFgstW7YkJSWlwvvp1FWmaZKfn09gYGC9CGzn4lxqDAoKolmzZucdCr0agJYsWeLxev78+cTGxrJx40Yuu+yyCt/zj3/8gyFDhnD//fcD8Pe//52lS5fywgsv8NJLL2GaJs899xx/+9vfuPrqqwF48803iYuLY9GiRdx44401W1QlFPmFElCcSYSRTXquToGJiNQ0f39/mjVrRnFxMSUlJd7uTqU4HA5WrlzJZZdd5rNXalW1RqvVip+fX7UEwjp1FVhmZiYAkZGRp22zdu1aJk+e7LFu8ODBLFq0CIC9e/eSmppKUlKSe3ujRo3o1asXa9eurTAAFRYWUlj4SxApu5W4w+HA4ajemxU6HA4K/Vwz8SPJ5lhWQbV/hjeV1eJLNf2aaqz/fL0+8P0az6c+q7V+XHnrdDopLi7GarXWmz5X1bnUWFxcfNptVfl9qDMByOl0cu+999K3b1/3qayKpKamEhcX57EuLi6O1NRU9/aydadr82szZ86s8BklX3zxBUFBQVWqozIuKgtARhZbduzhs5Jd1f4Z3rZ06VJvd6HGqcb6z9frA9+v0dfrA9VYFXl5eZVuW2cC0MSJE9m6dSurVq2q9c+eMmWKx6hSVlYWTZs2ZdCgQYSFhVXrZzkcDtLmzQdcl8IHRsQybFiPav0Mb3I4HCxdupSBAwf69JCtaqzffL0+8P0afb0+UI3noioPg60TAWjSpEn873//Y+XKlTRp0uSMbePj40lLS/NYl5aWRnx8vHt72bqEhASPNt27d69wn3a7HbvdXm69zWarkV+6Qj9XqIokm5P5xT75i11TP7u6RDXWf75eH/h+jb5eH6jGqu6nsrx6XZ1pmkyaNImFCxfy5Zdf0rJly7O+p3fv3ixfvtxj3dKlS+nduzcALVu2JD4+3qNNVlYW69atc7fxtiK/EMB1CuyEJkGLiIjUOq+OAE2cOJEFCxbwySefEBoa6p6j06hRIwIDAwEYO3YsjRs3ZubMmQDcc889XH755TzzzDNceeWVvPvuu2zYsIF//etfABiGwb333sujjz5K27Zt3ZfBJyYmMmLECK/U+WtF1rJJ0Dmk6zJ4ERGRWufVADR37lwA+vXr57H+9ddfZ/z48QAcOHDA41r/Pn36sGDBAv72t7/x0EMP0bZtWxYtWuQxcfqBBx4gNzeX22+/nYyMDC699FKWLFni/XsAlSoqnQQdYeh5YCIiIt7g1QBkmuZZ2yQnJ5dbd/3113P99def9j2GYTBjxgxmzJhxPt2rMWWXwUcbrsv+03OLaBwe6M0uiYiINCi+eW/tOq7I5poEHWHkYODU88BERERqmQKQF5SNAFlxEk6OngcmIiJSyxSAvMA0/DADIwCIMrL0PDAREZFapgDkLUHRAEQbWZzQCJCIiEitUgDyEjO4NACRyXHdC0hERKRWKQB5S1AMoFNgIiIi3qAA5CVlI0BRRqZOgYmIiNQyBSBvKZsDRBbHFYBERERqlQKQt7hHgPQ8MBERkdqmAOQlZrDmAImIiHiLApC3lAUgMsktfR6YiIiI1A4FIC8xT7kPEKC7QYuIiNQiBSBvKR0BCjXysVPE8WzNAxIREaktCkDeYg8Diw2ASLI5rgeiioiI1BoFIG8xjF/mARmZpGsitIiISK1RAPKmssdhGJkc0wiQiIhIrVEA8qbSEaBoI0unwERERGqRApA3uS+Fz+K4ToGJiIjUGgUgbzrlbtC6CkxERKT2KAB5U0gs4JoErVNgIiIitUcByJvK5gChOUAiIiK1SQHIm055HtjJPAeOEqeXOyQiItIwKAB50ylzgABO6HEYIiIitUIByJtOuQweTI5pIrSIiEitUADyptIHotooJow8zQMSERGpJQpA3mQLcD0TDNfdoHUvIBERkdqhAORtpZfCR6NL4UVERGqLApC3BbsCUIyRqZshioiI1BIFIG8LKQtAGRoBEhERqSUKQN4WEgdoDpCIiEhtUgDythDXpfAxmgMkIiJSaxSAvK10BEinwERERGqPApC3nXIK7ERuESVO08sdEhER8X1eDUArV65k+PDhJCYmYhgGixYtOmP78ePHYxhGuaVTp07uNtOmTSu3vUOHDjVcyXkovRt0jJGJ09TjMERERGqDVwNQbm4u3bp1Y86cOZVq/49//IOUlBT3cvDgQSIjI7n++us92nXq1Mmj3apVq2qi+9XDPQKUhYFTp8FERERqgZ83P3zo0KEMHTq00u0bNWpEo0aN3K8XLVrEyZMnmTBhgkc7Pz8/4uPjq62fNap0BMhGMY3IJV1XgomIiNQ4rwag8/Xaa6+RlJRE8+bNPdbv3LmTxMREAgIC6N27NzNnzqRZs2an3U9hYSGFhb+MvGRluZ7O7nA4cDgc1drnsv39sl8Dv8AIjPyTxBiZpGbmVftn1qby9fke1Vj/+Xp94Ps1+np9oBrPZ3+VYZimWSdm3RqGwcKFCxkxYkSl2h85coRmzZqxYMECRo0a5V6/ePFicnJyaN++PSkpKUyfPp3Dhw+zdetWQkNDK9zXtGnTmD59ern1CxYsICgo6JzqqYr+26YQVnCY0UX/R2zTDlyRWCcOiYiISL2Sl5fHTTfdRGZmJmFhYWdsW29HgN544w3Cw8PLBaZTT6l17dqVXr160bx5c95//31uueWWCvc1ZcoUJk+e7H6dlZVF06ZNGTRo0Fl/gFXlcDhYunQpAwcOxGazAWA9+QrsO0wMGUQ3acWwIe2r9TNrU0X1+RrVWP/5en3g+zX6en2gGs9F2RmcyqiXAcg0TebNm8fNN9+Mv7//GduGh4fTrl07du3addo2drsdu91ebr3NZquxXzqPfZ96L6Bch0/8otfkz66uUI31n6/XB75fo6/XB6qxqvuprHp5H6AVK1awa9eu047onConJ4fdu3eTkJBQCz07R+4AlMXRLF0FJiIiUtO8GoBycnLYvHkzmzdvBmDv3r1s3ryZAwcOAK5TU2PHji33vtdee41evXrRuXPnctvuu+8+VqxYwb59+1izZg3XXHMNVquV0aNH12gt56XscRhGBkezC7zcGREREd/n1VNgGzZsoH///u7XZfNwxo0bx/z580lJSXGHoTKZmZl89NFH/OMf/6hwn4cOHWL06NGkp6cTExPDpZdeyjfffENMTEzNFXK+yu4FRCZHszUCJCIiUtO8GoD69evHmS5Cmz9/frl1jRo1Ii8v77Tveffdd6uja7UrJBZw3Q06u6CYAkcJATarlzslIiLiu+rlHCCfE1wWgDIANA9IRESkhikA1QWlp8AijWwsODUPSEREpIYpANUFwdFgWLDiJJJsjmkekIiISI1SAKoLLFYIigLKrgRTABIREalJCkB1hfup8Jk6BSYiIlLDFIDqirIrwcjQJGgREZEapgBUV5SOAMXqFJiIiEiNUwCqK0LjAQUgERGR2qAAVFeEup5VFmuc5JjmAImIiNQoBaC6ovQUWJxxkvTcIopLnF7ukIiIiO9SAKorSkeA4owMTBOO5xR5uUMiIiK+SwGorjhlDhCYuhReRESkBikA1RWlASiAIsLI1aXwIiIiNUgBqK7ws0NgBOA6DaYrwURERGqOAlBd4p4HdFLPAxMREalBCkB1SelpsDhOag6QiIhIDVIAqkvc9wLKIE1zgERERGqMAlBd4n4cxknSsjQCJCIiUlMUgOqSU+YApSoAiYiI1BgFoLqkbA6QcZLjOYU4dDdoERGRGqEAVJecMgfINNGl8CIiIjVEAaguCf3leWBgkpqp02AiIiI1QQGoLimdBO1PMeHkaCK0iIhIDVEAqkv87BAUBbhGgVI0AiQiIlIjFIDqGo97ASkAiYiI1AQFoLom5Jd5QJoDJCIiUjMUgOqashEgFIBERERqigJQXXPKvYB0M0QREZGaoQBU15QGoPjSAGSappc7JCIi4nsUgOqasMYAxBknKCp2cjLP4eUOiYiI+B4FoLomLBGAJpYTAJoHJCIiUgMUgOqa0hGgSDKxUaxL4UVERGqAAlBdExwNVn8smJoILSIiUkO8GoBWrlzJ8OHDSUxMxDAMFi1adMb2ycnJGIZRbklNTfVoN2fOHFq0aEFAQAC9evVi/fr1NVhFNTMM92mweNJ1N2gREZEa4NUAlJubS7du3ZgzZ06V3rdjxw5SUlLcS2xsrHvbe++9x+TJk5k6dSqbNm2iW7duDB48mKNHj1Z392tOWBMAEo0TpCkAiYiIVDs/b3740KFDGTp0aJXfFxsbS3h4eIXbZs+ezW233caECRMAeOmll/j000+ZN28ef/3rX8+nu7WnbATISGeHToGJiIhUO68GoHPVvXt3CgsL6dy5M9OmTaNv374AFBUVsXHjRqZMmeJua7FYSEpKYu3atafdX2FhIYWFhe7XWVlZADgcDhyO6r0MvWx/Z9qvJTQBK5BgnCA5I7/a+1CTKlNffaca6z9frw98v0Zfrw9U4/nsrzLqVQBKSEjgpZde4qKLLqKwsJBXX32Vfv36sW7dOnr06MHx48cpKSkhLi7O431xcXFs3779tPudOXMm06dPL7f+iy++ICgoqNrrAFi6dOlpt7U8dpKuuALQwfRsPvvssxrpQ006U32+QjXWf75eH/h+jb5eH6jGqsjLy6t023oVgNq3b0/79u3dr/v06cPu3bt59tln+fe//33O+50yZQqTJ092v87KyqJp06YMGjSIsLCw8+rzrzkcDpYuXcrAgQOx2WwVtjF+NuCDN0kw0skvMbhswCBC7PXjUFWmvvpONdZ/vl4f+H6Nvl4fqMZzUXYGpzLqx1/VM7jkkktYtWoVANHR0VitVtLS0jzapKWlER8ff9p92O127HZ7ufU2m63GfunOuO+IZgAklt4M8XhuMREhgTXSj5pSkz+7ukI11n++Xh/4fo2+Xh+oxqrup7Lq/X2ANm/eTEKC6wnq/v7+9OzZk+XLl7u3O51Oli9fTu/evb3VxaorvRliVOnNEA9n5Hu5QyIiIr7FqyNAOTk57Nq1y/167969bN68mcjISJo1a8aUKVM4fPgwb775JgDPPfccLVu2pFOnThQUFPDqq6/y5Zdf8sUXX7j3MXnyZMaNG8dFF13EJZdcwnPPPUdubq77qrB6oexmiCVFxBknFYBERESqmVcD0IYNG+jfv7/7ddk8nHHjxjF//nxSUlI4cOCAe3tRURF/+ctfOHz4MEFBQXTt2pVly5Z57OOGG27g2LFjPPLII6SmptK9e3eWLFlSbmJ0nVZ2M8ST+0ggnSMKQCIiItXKqwGoX79+mKZ52u3z58/3eP3AAw/wwAMPnHW/kyZNYtKkSefbPe8Ka+IKQMYJjmToXkAiIiLVqd7PAfJZp9wMUafAREREqpcCUF3VyDUROsE4weGTCkAiIiLVSQGorgr7JQClZhVQ4jz9qUIRERGpGgWguqo0ACUa6ZQ4TY5max6QiIhIdVEAqqtK5wA1Lr0Zoq4EExERqT4KQHVVo6YARJGBnSIOaR6QiIhItVEAqquCIsEWDLhOg+lSeBERkeqjAFRXGQaEu54J1sQ4plNgIiIi1UgBqC47JQDpXkAiIiLVRwGoLisNQI2N4xoBEhERqUYKQHVZuGsitEaAREREqpcCUF3mPgV2nOyCYrIKHF7ukIiIiG9QAKrLSgNQM8sxQPcCEhERqS4KQHVZeHMAYjmJPw4OnVAAEhERqQ4KQHVZUBTYggBINI5z4ESelzskIiLiGxSA6jKPewEpAImIiFQXBaC67pRL4Q8qAImIiFQLBaC6rtEvl8JrBEhERKR6KADVdafcDfrgyTxM0/Ryh0REROo/BaC6rjQANTWOUeBwciyn0MsdEhERqf8UgOq60kvhm1nSATQPSEREpBooANV1pSNA0ZzAH4fmAYmIiFQDBaC6Ljga/AKxYJJgpHMgXTdDFBEROV8KQHXdKfcCamYc5eBJjQCJiIicr3MKQG+88Qaffvqp+/UDDzxAeHg4ffr0Yf/+/dXWOSkV2QqA5kaaToGJiIhUg3MKQI8//jiBgYEArF27ljlz5jBr1iyio6P585//XK0dFDwCkCZBi4iInD+/c3nTwYMHadOmDQCLFi1i5MiR3H777fTt25d+/fpVZ/8EILIl4ApAqVkFFBaXYPezerlTIiIi9dc5jQCFhISQnu66LPuLL75g4MCBAAQEBJCfr0m61a40ALW0pGGacPikfsYiIiLn45xGgAYOHMitt97KhRdeyM8//8ywYcMA+PHHH2nRokV19k/AfQqsmXEUAycHTuTRKibEy50SERGpv85pBGjOnDn07t2bY8eO8dFHHxEVFQXAxo0bGT16dLV2UHA9D8ywYqeIWDI0EVpEROQ8ndMIUHh4OC+88EK59dOnTz/vDkkFrDbXpfAn99LCSGPfcQUgERGR83FOI0BLlixh1apV7tdz5syhe/fu3HTTTZw8ebLaOienKJsIbUll7/EcL3dGRESkfjunAHT//feTlZUFwA8//MBf/vIXhg0bxt69e5k8eXKl97Ny5UqGDx9OYmIihmGwaNGiM7b/+OOPGThwIDExMYSFhdG7d28+//xzjzbTpk3DMAyPpUOHDlWusc455VL4vcdzvdwZERGR+u2cAtDevXu54IILAPjoo4/43e9+x+OPP86cOXNYvHhxpfeTm5tLt27dmDNnTqXar1y5koEDB/LZZ5+xceNG+vfvz/Dhw/nuu+882nXq1ImUlBT3cupoVb116r2ATuZTVOz0codERETqr3OaA+Tv709enmseyrJlyxg7diwAkZGR7pGhyhg6dChDhw6tdPvnnnvO4/Xjjz/OJ598wn//+18uvPBC93o/Pz/i4+Mrvd96IcJ1CqyVJY0Sh8mBE3m0idWVYCIiIufinEaALr30UiZPnszf//531q9fz5VXXgnAzz//TJMmTaq1g2fidDrJzs4mMjLSY/3OnTtJTEykVatWjBkzhgMHDtRan2pM2QiQ5Shg6jSYiIjIeTinEaAXXniBu+66iw8//JC5c+fSuHFjABYvXsyQIUOqtYNn8vTTT5OTk8OoUaPc63r16sX8+fNp3749KSkpTJ8+nd/+9rds3bqV0NDQCvdTWFhIYWGh+3XZKJbD4cDhcFRrn8v2V+X9hjbGD4NgM49IstmVlkW/tpFnf18tO+f66hHVWP/5en3g+zX6en2gGs9nf5VhmKZpVsunnifDMFi4cCEjRoyoVPsFCxZw22238cknn5CUlHTadhkZGTRv3pzZs2dzyy23VNhm2rRpFV7Cv2DBAoKCgirVn9owaOu9BDpOcG3hNOwxbbixteYBiYiIlMnLy+Omm24iMzOTsLCwM7Y9pxEggJKSEhYtWsS2bdsA18Tjq666Cqu15p9R9e6773LrrbfywQcfnDH8gOueRe3atWPXrl2nbTNlyhSPq9eysrJo2rQpgwYNOusPsKocDgdLly5l4MCB2Gy2Kr3XeuJl2L+aZsZRDgf1Ytiwi6u1b9XhfOqrL1Rj/efr9YHv1+jr9YFqPBdVmYd8TgFo165dDBs2jMOHD9O+fXsAZs6cSdOmTfn0009p3br1uey2Ut555x3+8Ic/8O6777rnHp1JTk4Ou3fv5uabbz5tG7vdjt1uL7feZrPV2C/dOe07qjXsX01LSwqr0/Pq9H8QNfmzqytUY/3n6/WB79fo6/WBaqzqfirrnCZB33333bRu3ZqDBw+yadMmNm3axIEDB2jZsiV33313pfeTk5PD5s2b2bx5M+C6vH7z5s3uSctTpkxxX2EGrlNSY8eO5ZlnnqFXr16kpqaSmppKZmamu819993HihUr2LdvH2vWrOGaa67BarX6xiM6otsB0No4wrHsQrILfPe8sIiISE06pwC0YsUKZs2a5XH1VVRUFE888QQrVqyo9H42bNjAhRde6L6EffLkyVx44YU88sgjAKSkpHhcwfWvf/2L4uJiJk6cSEJCgnu555573G0OHTrE6NGjad++PaNGjSIqKopvvvmGmJiYcym1bikNQO2tKQC6EkxEROQcndMpMLvdTnZ2drn1OTk5+Pv7V3o//fr140xzsOfPn+/xOjk5+az7fPfddyv9+fVOaQBqTgoWnOw9nkvXJuHe7ZOIiEg9dE4jQL/73e+4/fbbWbduHaZpYpom33zzDXfccQdXXXVVdfdRyoQ3A6sdfxw0MY6x55hGgERERM7FOQWg559/ntatW9O7d28CAgIICAigT58+tGnTptzdmqUaWawQ3RZwzQPao1NgIiIi5+ScToGFh4fzySefsGvXLvdl8B07dqRNmzbV2jmpQHRbSNtKG+Mwq47qqfAiIiLnotIB6GxPef/qq6/c38+ePfvceyRndsqVYG8cy6G4xImf9ZwG8kRERBqsSgegXz9x/XQMwzjnzkgllAagttYUigqd7D+RR+sYPRRVRESkKiodgE4d4REvKgtAliOAyc60bAUgERGRKtK5k/omqg1gEGZmE0k2P6dpHpCIiEhVKQDVN/5BEN4UgDbGYXaklb8fk4iIiJyZAlB9FO16/lpryxF2KgCJiIhUmQJQfXTKlWB7juVSVOz0codERETqFwWg+qj0ZogdrEcodprsS9cNEUVERKpCAag+ir0AgA7WQwDsSNVpMBERkapQAKqPYjsCEO1MJ5xszQMSERGpIgWg+iggDMKbA9DRckCXwouIiFSRAlB9FdcZgA7GAX7WCJCIiEiVKADVV3GdAOhgHGRfei75RSVe7pCIiEj9oQBUX8W7RoA6+x3EacL21Cwvd0hERKT+UACqr0pPgbU1DmLByY9HFIBEREQqSwGovopoAbYg/M0iWhip/Hgk09s9EhERqTcUgOori9V9OXwH44BGgERERKpAAag+K5sIbTnA9pRsHCV6JIaIiEhlKADVZ6XzgLpYD1FU4mTXUd0PSEREpDIUgOqz0hGgTn4HAdh6WPOAREREKkMBqD4rDUCxJWmEkaN5QCIiIpWkAFSfBUa4rgYDulr26kowERGRSlIAqu8SewDQ1djNT0eycDpNL3dIRESk7lMAqu8auwLQhda95BaVsC8918sdEhERqfsUgOq7xj0BuNBvDwBbDuk0mIiIyNkoANV3Cd3AsBDtTCeWk3x34KS3eyQiIlLnKQDVd/7BENMBgG6W3Xx3MMO7/REREakHFIB8QdlEaMsefjqSRYGjxMsdEhERqdsUgHxB4wsBuMi2l2KnyQ+6IaKIiMgZKQD5gtIRoC7GHsBk037NAxIRETkTrwaglStXMnz4cBITEzEMg0WLFp31PcnJyfTo0QO73U6bNm2YP39+uTZz5syhRYsWBAQE0KtXL9avX1/9na9L4jqD1Z8QZzbNjKN8dyDD2z0SERGp07wagHJzc+nWrRtz5sypVPu9e/dy5ZVX0r9/fzZv3sy9997Lrbfeyueff+5u89577zF58mSmTp3Kpk2b6NatG4MHD+bo0aM1VYb3+flDfBcALjR2sunASUxTN0QUERE5Ha8GoKFDh/Loo49yzTXXVKr9Sy+9RMuWLXnmmWfo2LEjkyZN4rrrruPZZ591t5k9eza33XYbEyZM4IILLuCll14iKCiIefPm1VQZdUPTXgBcbN3J0exCjmQWeLlDIiIidZeftztQFWvXriUpKclj3eDBg7n33nsBKCoqYuPGjUyZMsW93WKxkJSUxNq1a0+738LCQgoLC92vs7JcDxV1OBw4HI5qrAD3/qp7v0biRfgBffx3gQM27DlObJf4av2Myqip+uoS1Vj/+Xp94Ps1+np9oBrPZ3+VUa8CUGpqKnFxcR7r4uLiyMrKIj8/n5MnT1JSUlJhm+3bt592vzNnzmT69Onl1n/xxRcEBQVVT+d/ZenSpdW6P7sjhyFAi5J9hJDHRys3w0FntX5GVVR3fXWRaqz/fL0+8P0afb0+UI1VkZeXV+m29SoA1ZQpU6YwefJk9+usrCyaNm3KoEGDCAsLq9bPcjgcLF26lIEDB2Kz2ap13+ahZ7Bk7OdCyy6Omn0YNqxPte6/MmqyvrpCNdZ/vl4f+H6Nvl4fqMZzUXYGpzLqVQCKj48nLS3NY11aWhphYWEEBgZitVqxWq0VtomPP/3pILvdjt1uL7feZrPV2C9djey72W8gYz8XWX7m2bSu5BSZRAT7V+9nVFJN/uzqCtVY//l6feD7Nfp6faAaq7qfyqpX9wHq3bs3y5cv91i3dOlSevfuDYC/vz89e/b0aON0Olm+fLm7jU8rnQh9qX03AOv2nvBmb0REROosrwagnJwcNm/ezObNmwHXZe6bN2/mwIEDgOvU1NixY93t77jjDvbs2cMDDzzA9u3befHFF3n//ff585//7G4zefJkXnnlFd544w22bdvGnXfeSW5uLhMmTKjV2ryi2W8A6Gz+jJUSvtmT7uUOiYiI1E1ePQW2YcMG+vfv735dNg9n3LhxzJ8/n5SUFHcYAmjZsiWffvopf/7zn/nHP/5BkyZNePXVVxk8eLC7zQ033MCxY8d45JFHSE1NpXv37ixZsqTcxGifFNMB7GHYC7PoYBzkmz3h3u6RiIhIneTVANSvX78z3rCvors89+vXj+++++6M+500aRKTJk063+7VPxYrNLkYdi+np2UHb6a24ERuEZFemgckIiJSV9WrOUBSCc1dc50GBu4EYJ1Og4mIiJSjAORrWrlOKfY0f8CCU/OAREREKqAA5GsSuoO9EUEl2XQy9rF6twKQiIjIrykA+RqrH7T8LQCXWX9g19EcDmfke7lTIiIidYsCkC9q1Q+AIUGux38k7zjqxc6IiIjUPQpAvqg0AF3g+IkAClmx45h3+yMiIlLHKAD5oqg2ENYYq+ngIsvPrN51nKJi7z0YVUREpK5RAPJFhuEeBRpo/4ncohI27NdjMURERMooAPmq0gCU5P8jgE6DiYiInEIByFe1vgIMC40Ld5FAOit+VgASEREpowDkq4KjocklACRZN7E9NZtDJ/O83CkREZG6QQHIl7UfAsC1IT8A8PmPad7sjYiISJ2hAOTL2g8DoGvR9wRRwJKtKV7ukIiISN2gAOTLottBREuspoPfWrawYf9JjmYXeLtXIiIiXqcA5MsMA9oPBWBU6FZMU6fBREREQAHI95UGoD7OjVhw8vnWVC93SERExPsUgHxds94QEE6g4ySXWLazdk86J3OLvN0rERERr1IA8nVWG3T8HQA3h2ygxGny+Y8aBRIRkYZNAagh6DwSgCvMb7BSwsffHfZyh0RERLxLAaghaHEZBEUT6Migr+VH1u89wcETuimiiIg0XApADYHVDy64CoAJ4d8B8MlmjQKJiEjDpQDUUHS6FoC+jrXYKObj7w5jmqaXOyUiIuIdCkANRfM+EBKHvyOLJNsP7DmWy/eHMr3dKxEREa9QAGooLFbofB0Af2y0DoCPNh7yZo9ERES8RgGoIbnw9wB0zV1DJFks+u4weUXFXu6UiIhI7VMAakjiLoDEHljMYv4Qtp7swmL++/0Rb/dKRESk1ikANTSlo0A32VYAJm+vO+Dd/oiIiHiBAlBD03kk+AUQmbubnn772HIoky2HMrzdKxERkVqlANTQBIZDR9c9gf4StRaAt7/RKJCIiDQsCkANUc/xAPTKXU4YOSzafJj0nELv9klERKQWKQA1RM37QGwnrMX53B25nsJiJ//+Zr+3eyUiIlJrFIAaIsOAS24DYLTxBQZO3ly7n/yiEi93TEREpHYoADVUXUeBvRHBuQcYGbadE7lFfLhJN0YUEZGGoU4EoDlz5tCiRQsCAgLo1asX69evP23bfv36YRhGueXKK690txk/fny57UOGDKmNUuoP/2D3JfH3hn4FwKtf76HEqeeDiYiI7/N6AHrvvfeYPHkyU6dOZdOmTXTr1o3Bgwdz9OjRCtt//PHHpKSkuJetW7ditVq5/vrrPdoNGTLEo90777xTG+XUL5fcCoaFJumruSTwMPvT83RjRBERaRC8HoBmz57NbbfdxoQJE7jgggt46aWXCAoKYt68eRW2j4yMJD4+3r0sXbqUoKCgcgHIbrd7tIuIiKiNcuqXyFZwwQgAHo1eBsDzy3dSXOL0YqdERERqnp83P7yoqIiNGzcyZcoU9zqLxUJSUhJr166t1D5ee+01brzxRoKDgz3WJycnExsbS0REBFdccQWPPvooUVFRFe6jsLCQwsJfLgPPysoCwOFw4HA4qlrWGZXtr7r3e856343tx49pe3wpXQOvZMtxWLjpICO6J57T7upcfTVANdZ/vl4f+H6Nvl4fqMbz2V9lGKZpem3Sx5EjR2jcuDFr1qyhd+/e7vUPPPAAK1asYN26dWd8//r16+nVqxfr1q3jkksuca9/9913CQoKomXLluzevZuHHnqIkJAQ1q5di9VqLbefadOmMX369HLrFyxYQFBQ0HlUWD/02v0M8VnfszqgH2Mybic6wOSh7iVYDW/3TEREpPLy8vK46aabyMzMJCws7IxtvToCdL5ee+01unTp4hF+AG688Ub39126dKFr1660bt2a5ORkBgwYUG4/U6ZMYfLkye7XWVlZNG3alEGDBp31B1hVDoeDpUuXMnDgQGw2W7Xu+1wZh6LhjWH0KVrNBUGj+CkvnPy4roy6qEmV91UX66tuqrH+8/X6wPdr9PX6QDWei7IzOJXh1QAUHR2N1WolLS3NY31aWhrx8fFnfG9ubi7vvvsuM2bMOOvntGrViujoaHbt2lVhALLb7djt9nLrbTZbjf3S1eS+q6xlX2h5GcbelTyX8DmD9t7Ac1/uZkSPpgTbz+1XpE7VV0NUY/3n6/WB79fo6/WBaqzqfirLq5Og/f396dmzJ8uXL3evczqdLF++3OOUWEU++OADCgsL+f3vf3/Wzzl06BDp6ekkJCScd5991oCpALRN/S+XR6RzLLuQl1fs9nKnREREaobXrwKbPHkyr7zyCm+88Qbbtm3jzjvvJDc3lwkTJgAwduxYj0nSZV577TVGjBhRbmJzTk4O999/P9988w379u1j+fLlXH311bRp04bBgwfXSk31UpOLoMPvMEwnT0b+F4B/fb2HIxn5Xu6YiIhI9fN6ALrhhht4+umneeSRR+jevTubN29myZIlxMXFAXDgwAFSUlI83rNjxw5WrVrFLbfcUm5/VquVLVu2cNVVV9GuXTtuueUWevbsyddff13haS45xRUPg2Eh/vAXjElMo8Dh5InF273dKxERkWpXJyZBT5o0iUmTJlW4LTk5udy69u3bc7qL1wIDA/n888+rs3sNR2wH6HYTbH6L/7PO5x3jfv7z/RFGXdSUS9tGe7t3IiIi1cbrI0BSxwx4BPxDCTr2Pc+2+QGARz7ZSmGxHpQqIiK+QwFIPIXGQX/XnKvhx1+hdUgRe47n8lLyHi93TEREpPooAEl5l9wOMR2w5J/g1aZLAJjz1S52pGZ7uWMiIiLVQwFIyrPaYNhTALTY+x63tzhOUYmTye9vpqhYzwkTEZH6TwFIKtbyMuh2EwYmDzheJDrQ4McjWbzw5U5v90xEROS8KQDJ6Q16FIKi8Evfzr87up7LNid5Nxv3n/Ryx0RERM6PApCcXnAUDH4cgI47XuSO9vmUOE3ufuc7MvN89+nEIiLi+xSA5My63gDthkBJEffnzqJNhJXDGfn89eMtp70Xk4iISF2nACRnZhhw1QsQHIv1+A7ebfEpNqvB4q2pzF+zz9u9ExEROScKQHJ2ITFwzVwAore9ycs9DgDw6KfbWLPruDd7JiIick4UgKRy2iRBn7sB6L99Ond1LKDEaXLXgk0cSM/zcudERESqRgFIKm/AVGjVD8ORx30np9M30UJGnoM/vPGtJkWLiEi9ogAklWf1g+teh/DmWDL2My/0JRqH2dh1NIfb/r1BzwsTEZF6QwFIqiYoEm58G/wCse9P5j8XfEmo3Y/1e08w+f3vKXHqyjAREan7FICk6uK7wNUvABC1eS4fXXoYm9Xg0y0pPPKfn9DV8SIiUtcpAMm56XId9L0HgHZrH+Dty3OwGPD+xsMs3G/RPYJERKROUwCSczdgKnS6FpwOLll/N/P6FwOwIsXCzCU/KwSJiEidpQAk585ihWtehraDoDiffhsm8s/LXaHn9TX7eeSTH3FqTpCIiNRBCkByfvz8YdSb0PxSKMrmd1v+xN1ND2AY8O9v9jP5/c26OkxEROocBSA5f7ZAGP0OJPbAyD/BXSefYO7gEPwsBos2H2HcvPW6T5CIiNQpCkBSPQLC4PcfYcZ0JKA4g8Hr/8D7VwcRYvfjmz0nGPnSGg6e0B2jRUSkblAAkuoTFEnxmIVkBLbAyDtOjy9v5tOrID4sgF1Hc7jmxTVsOZTh7V6KiIgoAEk1C45mddu/4mz6GyjMovmnN7Hksj10iA/leE4ho15eywcbDnq7lyIi0sApAEm1K7YGUTL6A+g8EpzFhC+7j/+0/i8D2kVS4HBy/4dbuP+D78kv0uRoERHxDgUgqRm2QBj5GvT/GwD+G//Fq36zeOiKBCwGfLDxENe8uJrdx3K83FEREWmIFICk5hgGXH6/6zJ5WxDGni+5ffutfDyyEdEhdranZnPVP1fxwYaDummiiIjUKgUgqXkXXA1/WAJhTeDEbrovGcmX/fbQq0UEuUUl3P/hFm55YwOpmQXe7qmIiDQQCkBSOxK6wR9Xlt41uoCwZffzTtSr/F9SE/ytFr7cfpSBz67gw42HNBokIiI1TgFIak9wFIx+D5Kmg2HF8uNH3PbTBJaObkS3Jo3ILijmvg++Z8L8b9mfnuvt3oqIiA9TAJLaZbHApffChMXuU2LNPx7Ox13W8uDgNvhbLSTvOMbAZ1fy9Oc7yCsq9naPRUTEBykAiXc06wV3fA0dh4OzGOtXj3LnrjtZProRv20bTVGxkxe+2kXSMyv4dEuKTouJiEi1UgAS7wmKhFH/hhFzwT8UDm+k6YfDeDPufV4d1YbG4YEcySxg4oJNXP/SWtbtSfd2j0VExEcoAIl3GQZ0vwkmfQudrwNMjA2vkrRsGF8NPMK9A1pj97OwYf9JbvjXN4ybt56thzO93WsREann6kQAmjNnDi1atCAgIIBevXqxfv3607adP38+hmF4LAEBAR5tTNPkkUceISEhgcDAQJKSkti5c2dNlyHnIywBrnsNxv4HottB3nH8/zuRe/fczjc3WBjTqxl+FoMVPx/jd/9cxV1vb+THIwpCIiJybrwegN577z0mT57M1KlT2bRpE926dWPw4MEcPXr0tO8JCwsjJSXFvezfv99j+6xZs3j++ed56aWXWLduHcHBwQwePJiCAt1nps5rdTncsdp1pZh/KKR8T8RHo3gs+2FW/j6CEd0TMQz47IdUrnx+FePmrWf93hPe7rWIiNQzXg9As2fP5rbbbmPChAlccMEFvPTSSwQFBTFv3rzTvscwDOLj491LXFyce5tpmjz33HP87W9/4+qrr6Zr1668+eabHDlyhEWLFtVCRXLe/PxdV4rdsxl+cxdYbLDnKxLfH8Jz1n/w5ZgoruqWiMWAFT8fY9TLa7lu7hqWbE2lxKnJ0iIicnZ+3vzwoqIiNm7cyJQpU9zrLBYLSUlJrF279rTvy8nJoXnz5jidTnr06MHjjz9Op06dANi7dy+pqakkJSW52zdq1IhevXqxdu1abrzxxnL7KywspLCw0P06KysLAIfDgcPhOO86T1W2v+reb11RrfX5N4IBM6DnLVhXzMSy9UP4cSEtf1zIc20G8cCNd/LCrig+2nSYDftPsmH/RhIbBXDTJU0ZdVFjIoL8z78PFfD1Ywi+X6Ov1we+X6Ov1weq8Xz2VxmG6cXri48cOULjxo1Zs2YNvXv3dq9/4IEHWLFiBevWrSv3nrVr17Jz5066du1KZmYmTz/9NCtXruTHH3+kSZMmrFmzhr59+3LkyBESEhLc7xs1ahSGYfDee++V2+e0adOYPn16ufULFiwgKCiomqqV8xWaf5B2qf+lccY6DFy/tsdCOrI5ajjvZXdh7VELucUGADbD5MJok9/EOmkV6pprLSIivi0vL4+bbrqJzMxMwsLCztjWqyNA56J3794eYalPnz507NiRl19+mb///e/ntM8pU6YwefJk9+usrCyaNm3KoEGDzvoDrCqHw8HSpUsZOHAgNputWvddF9R8fX+k+MRurGuex/jhfWJytjEwZxsDEntQdM0f+U9hD97YkMqPR7JZf8xg/TELzSODuPbCREZ0TyAxPPC8e+DrxxB8v0Zfrw98v0Zfrw9U47koO4NTGV4NQNHR0VitVtLS0jzWp6WlER8fX6l92Gw2LrzwQnbt2gXgfl9aWprHCFBaWhrdu3evcB92ux273V7hvmvql64m910X1Gh9cR3gmhfhiodg9fOw6Q0sRzYRcOSPjAqK4vpuo/mx3zW8+bONT7eksP9EHs8u38VzX+6ib+toruvZhMGd4gn0t55XN3z9GILv1+jr9YHv1+jr9YFqrOp+Ksurk6D9/f3p2bMny5cvd69zOp0sX77cY5TnTEpKSvjhhx/cYadly5bEx8d77DMrK4t169ZVep9STzRqAsNmwb1b4fIHITQR8tIx1r5A548HMCt7ChuvPsGz17bnN60iMU1Ytes49763mZ6PLmXSgk189kMK+UUl3q5ERERqmddPgU2ePJlx48Zx0UUXcckll/Dcc8+Rm5vLhAkTABg7diyNGzdm5syZAMyYMYPf/OY3tGnThoyMDJ566in279/PrbfeCriuELv33nt59NFHadu2LS1btuThhx8mMTGRESNGeKtMqUkhMdD/IbjsAdi1FDa+ATs/h/2rCdi/mmsCwrmm242k9r+Bd/eH8NGmQxw8kc//tqTwvy0pBNqs9O8Qw9DOCVzRIZZgu9f/sxARkRrm9X/pb7jhBo4dO8YjjzxCamoq3bt3Z8mSJe5L2w8cOIDF8stA1cmTJ7nttttITU0lIiKCnj17smbNGi644AJ3mwceeIDc3Fxuv/12MjIyuPTSS1myZEm5GyaKj7H6QfuhriXzMGx+Gza9CZkHYd1LxK97iXvjOnNPj8HsjLyMj1Ji+ezHVA6eyOezH1L57IdU7H4WLm0TTb8OsfRvH0OTCE2CFxHxRV4PQACTJk1i0qRJFW5LTk72eP3ss8/y7LPPnnF/hmEwY8YMZsyYUV1dlPqmUWO4/AH47V9g91ew8XXYsRjStmKkbaUdzzAlogV/7TGSXXGD+fhwIxb/kMK+9DyWbz/K8u2uG3G2jQ2hf4dY+rWP4aLmkfj7ef3WWSIiUg3qRAASqTEWK7RNci256bBrGfy8BH7+HE7uw1j1DG15hgdjOvJAz9+xL7ofnx2PI/nnY2zcf5KdR3PYeTSHf63cQ4jdj9+0iuSSFhEU54JTN10UEam3FICk4QiOgm43uJaiXFcQ+uEj17yhY9swjm2jJU8xMTSBie2GkNsniRWO9izbncvKn49xPKeIZduOsmzbUcCPV3Yl07t1FL1bRdG7dRStY0IwdMMhEZF6QQFIGib/YOg80rXkn3SdHtvxGez6ErJTYOPrBG98nWEWG8Oa9sL52/7sCbuELzPjWbX7BN/sPs7JPId77hBARJCNC5tF0LN5BBc2C6dbk3BNqBYRqaP0r7NIYAR0v8m1OApg36rSMLQUMg7A/lVY9q+iDdAmMIJbW1zGlpZh2DoPZ2V2Iiv35bLpwElO5jn4cvtRviydP2S1GHSID6VHaSjq0SyCppGBGiUSEakDFIBETmUL+GXOkGnCiT2w5yvXROq9KyH/JJZtn9Ad4PC/6WT1584Wl1I8bCC7AzqzJieeDYdy+G7/SY5kFvDjkSx+PJLFv7/ZD0CjQBudG4fRObERnRo3okvjRjSPDMJiUSgSEalNCkAip2MYENXatVx8K5QUw+GNlOxcxrHvPyeuJAUj9yjs/hK/3V/SHmhvtTMhvgt060lGZBc2l7RmZXoYmw5m8uORTDLzHazelc7qXenujwmx+3FBoisUdW4cRof4MFrHBmP3O787VYuIyOkpAIlUltUPmvXCmdCDdTmdGTZ0KLbMfa6bLu5JhsMbXfOJDm+AwxsIB/oB/QIaQWIPSvr14FBwR74rac2GdBs/HM5iW0oWOYXFrN97gvV7T/zyURaDFlFBtI8PpV1cKO3jQmkXH0rzyCD8rLoUX0TkfCkAiZwrw4CYdq6lz59cp8xO7oXDm1xh6PBGSPkeCjJhz1dY93xFc6A5MCKsCTTuQUnnbqTYW7LF0ZhvTwSzNSWbHanZZBUUs/tYLruP5bonWQP4Wy20jg2hdUwwraKDaRUTQsvoYFrFBBMa4NvPChIRqU4KQCLVxTAgspVr6XKda12JA47+9EsgOrwJjm6DrEOQdQjrtv/QBGgCDPMPgZgOmBd2JDusLXutzdlalMjmE/78fDSHn9NyyHeUsC3FNXL0a9Ehdlq5g1EwLaNDaBUTTNOIIN3AUUTkVxSARGqS1QYJ3VzLRX9wrSvMdo0MHdoAaVtdgejYDijKgcMbMA5vIAzoVrqMCYqC2AswW3bgZFBL9pLAdkc8P2QFsyc9j73HczmWXcjxHNdy6qk0AIsB8WEBNIkMollkEE0jgmgaGej6PjKImBC7JmGLSIOjACRS2+yh0OJS11KmxOG64uzoT65AlPaj6+uJPZCXDvu+xtj3NZFAJNATwBbsmqDdvi0F4a1J82/ObmciPxTGsOtEMXuO5bD3eC55RSUcySzgSGZBuXAE4O9noWlEIE1Lw1FCeACxIf4cyIJDJ/NpEmXFpnlHIuJjFIBE6gKrDWLau5ZO1/yyvigPjv/8SzBK3wXHd7rmGjlyIXULpG4hANzzi64wLBDeDBo1xWycQL49hnRLBClmFLudCfyQH8XeDCcHTuSRkplPUbHTPd/Ikx/P//i1a6pTiJ3E8EASwwNIaBRIQqOA0teBJDYKIFqjSCJSzygAidRl/kGQ2N21nKrEASf3ucLQ8Z9P+brDNen65D7Xs86AoNKlKXAJMBrDFZCatKWkc3Oy/ONJM6I5WBLFrqJwduWFcCizkN1HTpBZbMFRYnI0u5Cj2YVsPlhxN60Wg+gQf2JDA4gNtRMbVvbV7l4XFxZAdIi/rmITkTpBAUikPrLaILqta2HYL+tNE3KPucJQVorrsR45aa6vJ/dD+k5XQMrYDxn7sQIRpUsHYCCAYcUMSyQ9JIiIFl0oDE7kpDWKNKI5XNKIPUXh7MwN4EhmESmZBaRlFVDiNEnLKiQtq/CM3TYMiAr2J6Y0FEWF+BMdYicq2J8o99dfvg+w6V5IIlIzFIBEfIlhQEisa6mIaULucVdASt/letRH5qHS5SBkHQZnMUbmQaIBftzhHkFqDPRwf44VQhMgJgFnywQK/CPIJZAMQjlqxHDIjGSfI4Ld+aGk5jg4mlXIsZxCSpwmx3OKOJ5TxLaUs5cT7G91haEQf6KCPQNSdIg/kcGu9RHBNiKCFJhEpPIUgEQaEsOAkBjX0qJv+e3OEshJozh9H9+t+C89WkVjzUmD7COQdcQ1qpSTCmaJ+1J+C7+cZosB2np8nsU16TsgFDMyEkdQPDn2WDL8ojluRHHcGUpqcQhHHMEcKAzkcK6V9FwHJ3KLKCpxkltUQu6JPA6cyKtUeXY/CxFB/oQH2QgPsp3yvT8RQTbCA12vQ/wtpObB8ZxCokKtuk2ASAOkACQiv7BYISwRMzCGIxHH6N57GFbbr26wWFIMuUdLA1HpUpDhurw/56hrFCnzkHs0iYJMKMjEyDqEP1vcV7K1qujzrf4QFI0ZEUlJYBQFtghy/RqRZTTipNGI4yXBpJWEcrgoiEOFQezPs3Msr5iMPAfFTpPCYiepWQWkZhVUolg/Zn6/AnA9jqRRoI1GgTbCAv0IC7ARVvY6wHNdWICf62vp98H+fpoALlIPKQCJSNVY/SAs0bWcibPENR+pIAuKsl2n3rIOu0aRso645iXlHYe8E65txflQUgTZRzCyj+AHhJQucaf9EAMCIzAToigJjKLIHkG+LYJcSwi5Tjs5ZgDpZhjHTNdI0+GiYA4XBnI01+RYdh75JQamCTmFxeQUFnM4I7/KPw6LAaGnhqRTvg8NsBES4Eeo3Y+QAD9CSr+e+jrUbiPYbtXkcJFapgAkIjXDYoXQeNdSGUW5rnse5R53ffX4/jjkpp/y/XHXqBMm5J/AyD+BHzvxw3UqLuosH2VabBTZ7dhCozD9Q3D4hVBoDabAEkS+EUyuEUiOGUiWGUiGM5CTxXaOloRy2BHCIUcwKfn+ZBUUU1TixGlCZr6DzHwHUPUAVSbAZiHEbiO0LChVEJZCTtkW5O9HsN1KkL8fQf5Wgv39CPS3Emy3Eqi5UCJnpQAkInWDf7BrCW9WufYlxZB/4pSgVBqWctNdp90cua7TcrmlgSn3mKuN6cRwOrDjgIwcAKxAANCosn212qFRKKZhxWn1xxEQRaE9kgJLEAUEkEcAudjJdgaQ47ST5bRz1BlGWkkI6cV20gv9SC/y43iRlVyH6/RZgcNJgcN1N+/zZRgQaLNiNa08vf1rgu1+BNtdQcm1lIYmux+BttLQ5O9HsMc2K4E2z5AVaLPqdJ/4DAUgEamfrH5nvuKtIk4nFOXgyD3J10s/5bLfXIhfcZ4rKHksWaVL6euCzF9CVFEOlBRCXiEGrvBkzTpYtQDlrgFMf39Mv0CcfkGU+AVSbA3AYQmkyBJAgRFEniWYHCOYbILJNAPJcAZxoiSAzBI7GQ4/skr8OFnkR4bDyokiKwXYKTL9yCsqAQyyT577qFRFygJTWSgKsFmx+1kIsFkJsJV+9fvle3vZej+rZ5vSdXaPdVYC/H753qqwJTVIAUhEGg6LBQLCwBpIdmBjzMYXwa8neZ9NUZ5rEnhRrmueU3HBLyNQhTmukaeiXy3uAHX0l3WYABglRRglRVgKM/ED7OdcG65hLHCNTNmCyXdasQZFUOwXhMMSRJE1kAIjkAIjgHyjdKTKtJPjDCDHaSOvxCC/2CC/xCCv2CDLYSWz2I+MYj/yTDv5+FPgsJPv8Ock/pRQs6fa/CyGOyzZ/TyDkt1qkHnSwpKs7wm0+5ULXqeGMfuvAtbpQpndz4JhKHQ1FApAIiJV4R8E/i3Obx+mCcWF4MhzhSFHfmlwyvP8vijHNdep9Eo6j8WR73q/Ix8cBa7vzRIADLMEa1EWIQBZJ8+vrxbAv+JNTouNEqtr1KrYEkCxxY7DEkCRYaewdCnAteTjT57pWnKdriXH6UdOiT/ZJX5kldjILLaRX2LBiquOXDOAnMIgsgsDOY4N+HU4sfDjybTzq+9XTjeaZS83QuUKZf5+FtdidX21/+q15zbr6duUvbZadJqxligAiYjUNsMAW4BrCYqsvv2WOEoDVR6OvAxWf7WUSy/pjl9JoStMuUelcn41SpXjClLO4l+WEodrdMuR7xm2in85pWZxOrA4HdgcWdXTfz9O+1fJabHhtAZQYrXjtPhTbNjIKXTiFxhKscUfBzaKDBtF+FOEH0WmH4WmjXxsZJtBZJpB5Dn9yC+xUOC0kF9sIb8E8kssFJpWiildSlxLQYE/2QSSZgZSgpViLDixUIyVEiyUD2PVx2Y13OHI6bDy1PavS0NTaYCqIFyd+tpu82xjs7oWf6sFm5+Bv9WKzWpgK21vs5a1M371+pf32KwW/CyGT42QKQCJiPgKqw0Cw0uXGDKDdmI261P103xn4nS6glFxwSkjUL/++ut1BWfYdsq64gLXrRAsNsB0hbPCbMB0hy0/R7a7K6EA2afpZ2VYSpcqKjFsFPqFUWgNotiwUYwfDsOPYlyLAz+KTCsO/Cg0/XCYVgrdix8FTj8KTSv5TtdS4DwlgGHFYVopKbbiKHa9Lsm04sBKsemHAyt5+HECfwrwp9C0UYg/hdgowg8/nPhRXNoPK9UZ1AyDX0KR1XAHpbLQ5ApXvwSusjY2Pws2yy/f+5eGqb5torm0dUS19a+qFIBERKTyLJbS04BBuG5pWcNKJ65TmOUKUsUFUFJIcUEu69d8zSU9u+NHMRQXubdRXFT6tdAVrgqzXacSiwt/Gd1yOlxXEjqLT/ne4Tn6VZDlMeJVxmo6CHKkE+RIP7/a3LPoz283p+PEoNjwx2G4RsyKDH+KsLnDUTFWikpDVZHpCm2FpV8LTD8KnVbXaFppqHOYrqWo2LU4StebpoFhmBi4FsDVrjSU5ZR+dYU1GwX4U2D6E2J0UQASERGpUNnE9YAwj9Wmw8GxrScx2w6q3hGuX3OWlIakkl9ODxbllt79PMc1YuUOVKXflxSV/764qHyb4sJfvnc6XJ9Rti9nCc7iIjJPHCM8LATDWVL6fofrfe5RuHzKJtSX+9Fh4m8W4m9W8dYKRulSw/fmPJB9K9C1Zj/kDBSARERETsdidS2nCooEmtb4R5c4HKz87DOGDRuG7XQhzzRLQ1G+66vFz3Uq1Fl8SlD61dcSx69CW/EvQc1ZXD6ceYS5U9eXhjFMwHA9+88wSvtU9p7SkbiyfRYXuvrqyKdZXDSOGv8pnp4CkIiISH1lGODn71rqI4f3IpAePiMiIiINjgKQiIiINDgKQCIiItLg1IkANGfOHFq0aEFAQAC9evVi/fr1p237yiuv8Nvf/paIiAgiIiJISkoq1378+PEYhuGxDBkypKbLEBERkXrC6wHovffeY/LkyUydOpVNmzbRrVs3Bg8ezNGjRytsn5yczOjRo/nqq69Yu3YtTZs2ZdCgQRw+fNij3ZAhQ0hJSXEv77zzTm2UIyIiIvWA1wPQ7Nmzue2225gwYQIXXHABL730EkFBQcybN6/C9m+//TZ33XUX3bt3p0OHDrz66qs4nU6WL1/u0c5utxMfH+9eIiK8d7MlERERqVu8GoCKiorYuHEjSUlJ7nUWi4WkpCTWrl1bqX3k5eXhcDiIjPS8I2lycjKxsbG0b9+eO++8k/T087xjp4iIiPgMr94H6Pjx45SUlBAXF+exPi4uju3bt1dqHw8++CCJiYkeIWrIkCFce+21tGzZkt27d/PQQw8xdOhQ1q5di9Va/p7jhYWFFBb+cqfMrCzXg/0cDgeOar5HQdn+qnu/dYWv1weq0Rf4en3g+zX6en2gGs9nf5VhmKZZ8T20a8GRI0do3Lgxa9asoXfv3u71DzzwACtWrGDdunVnfP8TTzzBrFmzSE5OpmvX099Oe8+ePbRu3Zply5YxYMCActunTZvG9OnTy61fsGABQUFBVahIREREvCUvL4+bbrqJzMxMwsLCztjWqyNA0dHRWK1W0tLSPNanpaURHx9/xvc+/fTTPPHEEyxbtuyM4QegVatWREdHs2vXrgoD0JQpU5g8ebL7dVZWlnty9dl+gFXlcDhYunQpAwcOPP2tzesxX68PVKMv8PX6wPdr9PX6QDWei7IzOJXh1QDk7+9Pz549Wb58OSNGjABwT2ieNGnSad83a9YsHnvsMT7//HMuuuiis37OoUOHSE9PJyEhocLtdrsdu91ebr3NZquxX7qa3Hdd4Ov1gWr0Bb5eH/h+jb5eH6jGqu6nsrx+FdjkyZN55ZVXeOONN9i2bRt33nknubm5TJgwAYCxY8cyZcoUd/snn3yShx9+mHnz5tGiRQtSU1NJTU0lJycHgJycHO6//36++eYb9u3bx/Lly7n66qtp06YNgwcP9kqNIiIiUrd4/WGoN9xwA8eOHeORRx4hNTWV7t27s2TJEvfE6AMHDmCx/JLT5s6dS1FREdddd53HfqZOncq0adOwWq1s2bKFN954g4yMDBITExk0aBB///vfKxzlERERkYbH6wEIYNKkSac95ZWcnOzxet++fWfcV2BgIJ9//nk19UxERER8UZ0IQHVN2YVxVZlMVVkOh4O8vDyysrJ88pyur9cHqtEX+Hp94Ps1+np9oBrPRdnf7cpc4K4AVIHs7GwAmjZt6uWeiIiISFVlZ2fTqFGjM7bx6n2A6iqn08mRI0cIDQ3FMIxq3XfZJfYHDx6s9kvs6wJfrw9Uoy/w9frA92v09fpANZ4L0zTJzs4mMTHRY/5wRTQCVAGLxUKTJk1q9DPCwsJ89hcafL8+UI2+wNfrA9+v0dfrA9VYVWcb+Snj9cvgRURERGqbApCIiIg0OApAtcxutzN16lSfvSeRr9cHqtEX+Hp94Ps1+np9oBprmiZBi4iISIOjESARERFpcBSAREREpMFRABIREZEGRwFIREREGhwFoFo0Z84cWrRoQUBAAL169WL9+vXe7tI5mTlzJhdffDGhoaHExsYyYsQIduzY4dGmX79+GIbhsdxxxx1e6nHVTZs2rVz/O3To4N5eUFDAxIkTiYqKIiQkhJEjR5KWlubFHlddixYtytVoGAYTJ04E6ucxXLlyJcOHDycxMRHDMFi0aJHHdtM0eeSRR0hISCAwMJCkpCR27tzp0ebEiROMGTOGsLAwwsPDueWWW8jJyanFKk7vTPU5HA4efPBBunTpQnBwMImJiYwdO5YjR4547KOi4/7EE0/UciWnd7ZjOH78+HL9HzJkiEeb+noMgQr/mzQMg6eeesrdpq4fw8r8jajMv6EHDhzgyiuvJCgoiNjYWO6//36Ki4urrZ8KQLXkvffeY/LkyUydOpVNmzbRrVs3Bg8ezNGjR73dtSpbsWIFEydO5JtvvmHp0qU4HA4GDRpEbm6uR7vbbruNlJQU9zJr1iwv9fjcdOrUyaP/q1atcm/785//zH//+18++OADVqxYwZEjR7j22mu92Nuq+/bbbz3qW7p0KQDXX3+9u019O4a5ubl069aNOXPmVLh91qxZPP/887z00kusW7eO4OBgBg8eTEFBgbvNmDFj+PHHH1m6dCn/+9//WLlyJbfffnttlXBGZ6ovLy+PTZs28fDDD7Np0yY+/vhjduzYwVVXXVWu7YwZMzyO65/+9Kfa6H6lnO0YAgwZMsSj/++8847H9vp6DAGPulJSUpg3bx6GYTBy5EiPdnX5GFbmb8TZ/g0tKSnhyiuvpKioiDVr1vDGG28wf/58HnnkkerrqCm14pJLLjEnTpzofl1SUmImJiaaM2fO9GKvqsfRo0dNwFyxYoV73eWXX27ec8893uvUeZo6darZrVu3CrdlZGSYNpvN/OCDD9zrtm3bZgLm2rVra6mH1e+ee+4xW7dubTqdTtM06/8xBMyFCxe6XzudTjM+Pt586qmn3OsyMjJMu91uvvPOO6ZpmuZPP/1kAua3337rbrN48WLTMAzz8OHDtdb3yvh1fRVZv369CZj79+93r2vevLn57LPP1mznqklFNY4bN868+uqrT/seXzuGV199tXnFFVd4rKtPx9A0y/+NqMy/oZ999plpsVjM1NRUd5u5c+eaYWFhZmFhYbX0SyNAtaCoqIiNGzeSlJTkXmexWEhKSmLt2rVe7Fn1yMzMBCAyMtJj/dtvv010dDSdO3dmypQp5OXleaN752znzp0kJibSqlUrxowZw4EDBwDYuHEjDofD43h26NCBZs2a1dvjWVRUxFtvvcUf/vAHjwcA1/djeKq9e/eSmprqcdwaNWpEr1693Mdt7dq1hIeHc9FFF7nbJCUlYbFYWLduXa33+XxlZmZiGAbh4eEe65944gmioqK48MILeeqpp6r1tEJtSE5OJjY2lvbt23PnnXeSnp7u3uZLxzAtLY1PP/2UW265pdy2+nQMf/03ojL/hq5du5YuXboQFxfnbjN48GCysrL48ccfq6VfehhqLTh+/DglJSUeBxIgLi6O7du3e6lX1cPpdHLvvffSt29fOnfu7F5/00030bx5cxITE9myZQsPPvggO3bs4OOPP/ZibyuvV69ezJ8/n/bt25OSksL06dP57W9/y9atW0lNTcXf37/cH5W4uDhSU1O90+HztGjRIjIyMhg/frx7XX0/hr9Wdmwq+u+wbFtqaiqxsbEe2/38/IiMjKx3x7agoIAHH3yQ0aNHezxk8u6776ZHjx5ERkayZs0apkyZQkpKCrNnz/ZibytvyJAhXHvttbRs2ZLdu3fz0EMPMXToUNauXYvVavWpY/jGG28QGhpa7vR6fTqGFf2NqMy/oampqRX+t1q2rTooAMl5mThxIlu3bvWYHwN4nG/v0qULCQkJDBgwgN27d9O6deva7maVDR061P19165d6dWrF82bN+f9998nMDDQiz2rGa+99hpDhw4lMTHRva6+H8OGzOFwMGrUKEzTZO7cuR7bJk+e7P6+a9eu+Pv788c//pGZM2fWi0cu3Hjjje7vu3TpQteuXWndujXJyckMGDDAiz2rfvPmzWPMmDEEBAR4rK9Px/B0fyPqAp0CqwXR0dFYrdZyM9zT0tKIj4/3Uq/O36RJk/jf//7HV199RZMmTc7YtlevXgDs2rWrNrpW7cLDw2nXrh27du0iPj6eoqIiMjIyPNrU1+O5f/9+li1bxq233nrGdvX9GJYdmzP9dxgfH1/uwoTi4mJOnDhRb45tWfjZv38/S5cu9Rj9qUivXr0oLi5m3759tdPBataqVSuio6Pdv5e+cAwBvv76a3bs2HHW/y6h7h7D0/2NqMy/ofHx8RX+t1q2rTooANUCf39/evbsyfLly93rnE4ny5cvp3fv3l7s2bkxTZNJkyaxcOFCvvzyS1q2bHnW92zevBmAhISEGu5dzcjJyWH37t0kJCTQs2dPbDabx/HcsWMHBw4cqJfH8/XXXyc2NpYrr7zyjO3q+zFs2bIl8fHxHsctKyuLdevWuY9b7969ycjIYOPGje42X375JU6n0x0A67Ky8LNz506WLVtGVFTUWd+zefNmLBZLudNG9cWhQ4dIT093/17W92NY5rXXXqNnz55069btrG3r2jE829+Iyvwb2rt3b3744QePMFsW6C+44IJq66jUgnfffde02+3m/PnzzZ9++sm8/fbbzfDwcI8Z7vXFnXfeaTZq1MhMTk42U1JS3EteXp5pmqa5a9cuc8aMGeaGDRvMvXv3mp988onZqlUr87LLLvNyzyvvL3/5i5mcnGzu3bvXXL16tZmUlGRGR0ebR48eNU3TNO+44w6zWbNm5pdffmlu2LDB7N27t9m7d28v97rqSkpKzGbNmpkPPvigx/r6egyzs7PN7777zvzuu+9MwJw9e7b53Xffua+CeuKJJ8zw8HDzk08+Mbds2WJeffXVZsuWLc38/Hz3PoYMGWJeeOGF5rp168xVq1aZbdu2NUePHu2tkjycqb6ioiLzqquuMps0aWJu3rzZ47/Nsqtm1qxZYz777LPm5s2bzd27d5tvvfWWGRMTY44dO9bLlf3iTDVmZ2eb9913n7l27Vpz79695rJly8wePXqYbdu2NQsKCtz7qK/HsExmZqYZFBRkzp07t9z768MxPNvfCNM8+7+hxcXFZufOnc1BgwaZmzdvNpcsWWLGxMSYU6ZMqbZ+KgDVon/+859ms2bNTH9/f/OSSy4xv/nmG2936ZwAFS6vv/66aZqmeeDAAfOyyy4zIyMjTbvdbrZp08a8//77zczMTO92vApuuOEGMyEhwfT39zcbN25s3nDDDeauXbvc2/Pz88277rrLjIiIMIOCgsxrrrnGTElJ8WKPz83nn39uAuaOHTs81tfXY/jVV19V+Ls5btw40zRdl8I//PDDZlxcnGm3280BAwaUqz09Pd0cPXq0GRISYoaFhZkTJkwws7OzvVBNeWeqb+/evaf9b/Orr74yTdM0N27caPbq1cts1KiRGRAQYHbs2NF8/PHHPcKDt52pxry8PHPQoEFmTEyMabPZzObNm5u33XZbuf+RrK/HsMzLL79sBgYGmhkZGeXeXx+O4dn+Rphm5f4N3bdvnzl06FAzMDDQjI6ONv/yl7+YDoej2vpplHZWREREpMHQHCARERFpcBSAREREpMFRABIREZEGRwFIREREGhwFIBEREWlwFIBERESkwVEAEhERkQZHAUhE5DQMw2DRokXe7oaI1AAFIBGpk8aPH49hGOWWIUOGeLtrIuID/LzdARGR0xkyZAivv/66xzq73e6l3oiIL9EIkIjUWXa7nfj4eI8lIiICcJ2emjt3LkOHDiUwMJBWrVrx4Ycferz/hx9+4IorriAwMJCoqChuv/12cnJyPNrMmzePTp06YbfbSUhIYNKkSR7bjx8/zjXXXENQUBBt27blP//5j3vbyZMnGTNmDDExMQQGBtK2bdtygU1E6iYFIBGptx5++GFGjhzJ999/z5gxY7jxxhvZtm0bALm5uQwePJiIiAi+/fZbPvjgA5YtW+YRcObOncvEiRO5/fbb+eGHH/jPf/5DmzZtPD5j+vTpjBo1ii1btjBs2DDGjBnDiRMn3J//008/sXjxYrZt28bcuXOJjo6uvR+AiJy7anusqohINRo3bpxptVrN4OBgj+Wxxx4zTdP1xOk77rjD4z29evUy77zzTtM0TfNf//qXGRERYebk5Li3f/rpp6bFYnE/PTwxMdH8v//7v9P2ATD/9re/uV/n5OSYgLl48WLTNE1z+PDh5oQJE6qnYBGpVZoDJCJ1Vv/+/Zk7d67HusjISPf3vXv39tjWu3dvNm/eDMC2bdvo1q0bwcHB7u19+/bF6XSyY8cODMPgyJEjDBgw4Ix96Nq1q/v74OBgwsLCOHr0KAB33nknI0eOZNOmTQwaNIgRI0bQp0+fc6pVRGqXApCI1FnBwcHlTklVl8DAwEq1s9lsHq8Nw8DpdAIwdOhQ9u/fz2effcbSpUsZMGAAEydO5Omnn672/opI9dIcIBGpt7755ptyrzt27AhAx44d+f7778nNzXVvX716NRaLhfbt2xMaGkqLFi1Yvnz5efUhJiaGcePG8dZbb/Hcc8/xr3/967z2JyK1QyNAIlJnFRYWkpqa6rHOz8/PPdH4gw8+4KKLLuLSSy/l7bffZv369bz22msAjBkzhqlTpzJu3DimTZvGsWPH+NOf/sTNN99MXFwcANOmTeOOO+4gNjaWoUOHkp2dzerVq/nTn/5Uqf498sgj9OzZk06dOlFYWMj//vc/dwATkbpNAUhE6qwlS5aQkJDgsa59+/Zs374dcF2h9e6773LXXXeRkJDAO++8wwUXXABAUFAQn3/+Offccw8XX3wxQUFBjBw5ktmzZ7v3NW7cOAoKCnj22We57777iI6O5rrrrqt0//z9/ZkyZQr79u0jMDCQ3/72t7z77rvVULmI1DTDNE3T250QEakqwzBYuHAhI0aM8HZXRKQe0hwgERERaXAUgERERKTB0RwgEamXdPZeRM6HRoBERESkwVEAEhERkQZHAUhEREQaHAUgERERaXAUgERERKTBUQASERGRBkcBSERERBocBSARERFpcBSAREREpMH5f1ocM3xiTxGvAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9138 - loss: 0.3062\n","Loss on test data: 0.3137015998363495\n","Accuracy on test data: 0.9122999906539917\n"]}]},{"cell_type":"markdown","source":["Лучший результат при 100 нейронах 0.9154999852180481"],"metadata":{"id":"jSd6gmTnhDcC"}},{"cell_type":"code","source":["model_3l_100_50 = Sequential()\n","model_3l_100_50.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n","model_3l_100_50.add(Dense(units=50, activation='sigmoid'))\n","model_3l_100_50.add(Dense(units=num_classes, activation='softmax'))\n","model_3l_100_50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","model_3l_100_50.summary()\n","\n","H_3l_100_50=model_3l_100_50.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"s16pQqb3g5n2","executionInfo":{"status":"ok","timestamp":1760459222536,"user_tz":-180,"elapsed":90899,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"674474b4-b1d1-4410-f515-abc8736ce4f0"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_7\"\u001b[0m\n"],"text/html":["
Model: \"sequential_7\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_13 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_14 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m5,050\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_15 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m510\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_13 (Dense)                │ (None, 100)            │        78,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_14 (Dense)                │ (None, 50)             │         5,050 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_15 (Dense)                │ (None, 10)             │           510 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n"],"text/html":["
 Total params: 84,060 (328.36 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n"],"text/html":["
 Trainable params: 84,060 (328.36 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 27ms/step - accuracy: 0.1225 - loss: 2.3840 - val_accuracy: 0.1647 - val_loss: 2.2899\n","Epoch 2/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.2040 - loss: 2.2820 - val_accuracy: 0.1755 - val_loss: 2.2745\n","Epoch 3/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.1817 - loss: 2.2701 - val_accuracy: 0.2053 - val_loss: 2.2633\n","Epoch 4/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.2338 - loss: 2.2596 - val_accuracy: 0.2228 - val_loss: 2.2521\n","Epoch 5/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.2481 - loss: 2.2478 - val_accuracy: 0.2772 - val_loss: 2.2404\n","Epoch 6/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.3295 - loss: 2.2371 - val_accuracy: 0.2857 - val_loss: 2.2282\n","Epoch 7/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.3099 - loss: 2.2242 - val_accuracy: 0.3733 - val_loss: 2.2151\n","Epoch 8/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.3743 - loss: 2.2098 - val_accuracy: 0.4220 - val_loss: 2.2012\n","Epoch 9/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4274 - loss: 2.1971 - val_accuracy: 0.4130 - val_loss: 2.1863\n","Epoch 10/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4302 - loss: 2.1822 - val_accuracy: 0.4330 - val_loss: 2.1702\n","Epoch 11/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4430 - loss: 2.1650 - val_accuracy: 0.4730 - val_loss: 2.1528\n","Epoch 12/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4754 - loss: 2.1474 - val_accuracy: 0.4983 - val_loss: 2.1337\n","Epoch 13/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4887 - loss: 2.1280 - val_accuracy: 0.5120 - val_loss: 2.1132\n","Epoch 14/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5124 - loss: 2.1067 - val_accuracy: 0.5085 - val_loss: 2.0908\n","Epoch 15/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5091 - loss: 2.0847 - val_accuracy: 0.5313 - val_loss: 2.0666\n","Epoch 16/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5303 - loss: 2.0582 - val_accuracy: 0.5437 - val_loss: 2.0403\n","Epoch 17/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5445 - loss: 2.0343 - val_accuracy: 0.5515 - val_loss: 2.0119\n","Epoch 18/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5457 - loss: 2.0034 - val_accuracy: 0.5652 - val_loss: 1.9816\n","Epoch 19/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5643 - loss: 1.9727 - val_accuracy: 0.5613 - val_loss: 1.9491\n","Epoch 20/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5612 - loss: 1.9400 - val_accuracy: 0.5833 - val_loss: 1.9147\n","Epoch 21/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5766 - loss: 1.9060 - val_accuracy: 0.5898 - val_loss: 1.8787\n","Epoch 22/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5867 - loss: 1.8687 - val_accuracy: 0.5948 - val_loss: 1.8410\n","Epoch 23/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5951 - loss: 1.8305 - val_accuracy: 0.6007 - val_loss: 1.8023\n","Epoch 24/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5966 - loss: 1.7935 - val_accuracy: 0.6075 - val_loss: 1.7627\n","Epoch 25/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6043 - loss: 1.7539 - val_accuracy: 0.6210 - val_loss: 1.7226\n","Epoch 26/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6163 - loss: 1.7129 - val_accuracy: 0.6282 - val_loss: 1.6824\n","Epoch 27/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6250 - loss: 1.6724 - val_accuracy: 0.6387 - val_loss: 1.6420\n","Epoch 28/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6357 - loss: 1.6352 - val_accuracy: 0.6447 - val_loss: 1.6023\n","Epoch 29/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6412 - loss: 1.5965 - val_accuracy: 0.6525 - val_loss: 1.5631\n","Epoch 30/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.6494 - loss: 1.5569 - val_accuracy: 0.6627 - val_loss: 1.5248\n","Epoch 31/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6554 - loss: 1.5205 - val_accuracy: 0.6690 - val_loss: 1.4872\n","Epoch 32/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6696 - loss: 1.4800 - val_accuracy: 0.6805 - val_loss: 1.4507\n","Epoch 33/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.6782 - loss: 1.4446 - val_accuracy: 0.6875 - val_loss: 1.4152\n","Epoch 34/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6877 - loss: 1.4117 - val_accuracy: 0.6978 - val_loss: 1.3809\n","Epoch 35/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.6959 - loss: 1.3778 - val_accuracy: 0.7062 - val_loss: 1.3475\n","Epoch 36/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7018 - loss: 1.3448 - val_accuracy: 0.7128 - val_loss: 1.3153\n","Epoch 37/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7101 - loss: 1.3115 - val_accuracy: 0.7215 - val_loss: 1.2839\n","Epoch 38/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7166 - loss: 1.2837 - val_accuracy: 0.7285 - val_loss: 1.2537\n","Epoch 39/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7269 - loss: 1.2527 - val_accuracy: 0.7370 - val_loss: 1.2244\n","Epoch 40/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7328 - loss: 1.2209 - val_accuracy: 0.7437 - val_loss: 1.1961\n","Epoch 41/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7366 - loss: 1.1961 - val_accuracy: 0.7507 - val_loss: 1.1688\n","Epoch 42/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7464 - loss: 1.1697 - val_accuracy: 0.7545 - val_loss: 1.1425\n","Epoch 43/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7514 - loss: 1.1425 - val_accuracy: 0.7605 - val_loss: 1.1173\n","Epoch 44/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7618 - loss: 1.1128 - val_accuracy: 0.7648 - val_loss: 1.0931\n","Epoch 45/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7598 - loss: 1.0952 - val_accuracy: 0.7692 - val_loss: 1.0696\n","Epoch 46/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7689 - loss: 1.0653 - val_accuracy: 0.7732 - val_loss: 1.0470\n","Epoch 47/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7705 - loss: 1.0463 - val_accuracy: 0.7745 - val_loss: 1.0258\n","Epoch 48/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7740 - loss: 1.0271 - val_accuracy: 0.7788 - val_loss: 1.0049\n","Epoch 49/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7806 - loss: 1.0052 - val_accuracy: 0.7813 - val_loss: 0.9852\n","Epoch 50/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7835 - loss: 0.9843 - val_accuracy: 0.7863 - val_loss: 0.9663\n","Epoch 51/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7826 - loss: 0.9693 - val_accuracy: 0.7875 - val_loss: 0.9481\n","Epoch 52/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7829 - loss: 0.9530 - val_accuracy: 0.7903 - val_loss: 0.9309\n","Epoch 53/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - accuracy: 0.7888 - loss: 0.9340 - val_accuracy: 0.7940 - val_loss: 0.9142\n","Epoch 54/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7940 - loss: 0.9123 - val_accuracy: 0.7945 - val_loss: 0.8985\n","Epoch 55/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7920 - loss: 0.9047 - val_accuracy: 0.7977 - val_loss: 0.8832\n","Epoch 56/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7983 - loss: 0.8883 - val_accuracy: 0.7990 - val_loss: 0.8688\n","Epoch 57/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7988 - loss: 0.8730 - val_accuracy: 0.8003 - val_loss: 0.8547\n","Epoch 58/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8025 - loss: 0.8583 - val_accuracy: 0.8023 - val_loss: 0.8415\n","Epoch 59/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8018 - loss: 0.8458 - val_accuracy: 0.8037 - val_loss: 0.8287\n","Epoch 60/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8041 - loss: 0.8347 - val_accuracy: 0.8053 - val_loss: 0.8163\n","Epoch 61/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8040 - loss: 0.8228 - val_accuracy: 0.8070 - val_loss: 0.8045\n","Epoch 62/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8102 - loss: 0.8035 - val_accuracy: 0.8092 - val_loss: 0.7934\n","Epoch 63/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8122 - loss: 0.7944 - val_accuracy: 0.8122 - val_loss: 0.7824\n","Epoch 64/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8109 - loss: 0.7906 - val_accuracy: 0.8133 - val_loss: 0.7719\n","Epoch 65/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8107 - loss: 0.7786 - val_accuracy: 0.8162 - val_loss: 0.7616\n","Epoch 66/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8143 - loss: 0.7691 - val_accuracy: 0.8172 - val_loss: 0.7519\n","Epoch 67/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8174 - loss: 0.7579 - val_accuracy: 0.8185 - val_loss: 0.7426\n","Epoch 68/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8195 - loss: 0.7475 - val_accuracy: 0.8208 - val_loss: 0.7334\n","Epoch 69/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8216 - loss: 0.7357 - val_accuracy: 0.8222 - val_loss: 0.7246\n","Epoch 70/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8220 - loss: 0.7294 - val_accuracy: 0.8232 - val_loss: 0.7162\n","Epoch 71/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8247 - loss: 0.7208 - val_accuracy: 0.8243 - val_loss: 0.7080\n","Epoch 72/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8258 - loss: 0.7107 - val_accuracy: 0.8255 - val_loss: 0.7000\n","Epoch 73/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8271 - loss: 0.7056 - val_accuracy: 0.8282 - val_loss: 0.6923\n","Epoch 74/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8285 - loss: 0.6943 - val_accuracy: 0.8282 - val_loss: 0.6848\n","Epoch 75/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8284 - loss: 0.6888 - val_accuracy: 0.8303 - val_loss: 0.6776\n","Epoch 76/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8320 - loss: 0.6803 - val_accuracy: 0.8323 - val_loss: 0.6703\n","Epoch 77/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8305 - loss: 0.6777 - val_accuracy: 0.8333 - val_loss: 0.6635\n","Epoch 78/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8333 - loss: 0.6713 - val_accuracy: 0.8343 - val_loss: 0.6569\n","Epoch 79/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8341 - loss: 0.6656 - val_accuracy: 0.8355 - val_loss: 0.6504\n","Epoch 80/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8376 - loss: 0.6525 - val_accuracy: 0.8370 - val_loss: 0.6441\n","Epoch 81/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8346 - loss: 0.6525 - val_accuracy: 0.8385 - val_loss: 0.6378\n","Epoch 82/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8400 - loss: 0.6436 - val_accuracy: 0.8398 - val_loss: 0.6318\n","Epoch 83/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8396 - loss: 0.6358 - val_accuracy: 0.8405 - val_loss: 0.6260\n","Epoch 84/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8388 - loss: 0.6380 - val_accuracy: 0.8417 - val_loss: 0.6202\n","Epoch 85/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8434 - loss: 0.6217 - val_accuracy: 0.8435 - val_loss: 0.6145\n","Epoch 86/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8443 - loss: 0.6170 - val_accuracy: 0.8450 - val_loss: 0.6091\n","Epoch 87/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8441 - loss: 0.6155 - val_accuracy: 0.8455 - val_loss: 0.6039\n","Epoch 88/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8447 - loss: 0.6130 - val_accuracy: 0.8477 - val_loss: 0.5986\n","Epoch 89/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8463 - loss: 0.6046 - val_accuracy: 0.8478 - val_loss: 0.5935\n","Epoch 90/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8479 - loss: 0.6017 - val_accuracy: 0.8495 - val_loss: 0.5887\n","Epoch 91/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8482 - loss: 0.5957 - val_accuracy: 0.8498 - val_loss: 0.5837\n","Epoch 92/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8498 - loss: 0.5914 - val_accuracy: 0.8518 - val_loss: 0.5790\n","Epoch 93/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8505 - loss: 0.5860 - val_accuracy: 0.8527 - val_loss: 0.5742\n","Epoch 94/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8499 - loss: 0.5863 - val_accuracy: 0.8540 - val_loss: 0.5697\n","Epoch 95/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8556 - loss: 0.5724 - val_accuracy: 0.8545 - val_loss: 0.5652\n","Epoch 96/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8526 - loss: 0.5746 - val_accuracy: 0.8557 - val_loss: 0.5609\n","Epoch 97/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8547 - loss: 0.5674 - val_accuracy: 0.8570 - val_loss: 0.5565\n","Epoch 98/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8558 - loss: 0.5660 - val_accuracy: 0.8580 - val_loss: 0.5522\n","Epoch 99/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8567 - loss: 0.5615 - val_accuracy: 0.8582 - val_loss: 0.5482\n","Epoch 100/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8598 - loss: 0.5525 - val_accuracy: 0.8593 - val_loss: 0.5441\n","Epoch 101/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8591 - loss: 0.5489 - val_accuracy: 0.8600 - val_loss: 0.5400\n","Epoch 102/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8599 - loss: 0.5456 - val_accuracy: 0.8610 - val_loss: 0.5362\n","Epoch 103/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8594 - loss: 0.5422 - val_accuracy: 0.8622 - val_loss: 0.5324\n","Epoch 104/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8622 - loss: 0.5384 - val_accuracy: 0.8635 - val_loss: 0.5287\n","Epoch 105/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8620 - loss: 0.5355 - val_accuracy: 0.8650 - val_loss: 0.5250\n","Epoch 106/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8652 - loss: 0.5289 - val_accuracy: 0.8658 - val_loss: 0.5213\n","Epoch 107/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8650 - loss: 0.5248 - val_accuracy: 0.8672 - val_loss: 0.5176\n","Epoch 108/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8665 - loss: 0.5198 - val_accuracy: 0.8680 - val_loss: 0.5141\n","Epoch 109/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8652 - loss: 0.5225 - val_accuracy: 0.8690 - val_loss: 0.5108\n","Epoch 110/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8679 - loss: 0.5097 - val_accuracy: 0.8705 - val_loss: 0.5073\n","Epoch 111/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8660 - loss: 0.5141 - val_accuracy: 0.8705 - val_loss: 0.5042\n","Epoch 112/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8701 - loss: 0.5083 - val_accuracy: 0.8712 - val_loss: 0.5009\n","Epoch 113/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8686 - loss: 0.5068 - val_accuracy: 0.8717 - val_loss: 0.4977\n","Epoch 114/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8719 - loss: 0.4982 - val_accuracy: 0.8720 - val_loss: 0.4947\n","Epoch 115/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8671 - loss: 0.5019 - val_accuracy: 0.8725 - val_loss: 0.4915\n","Epoch 116/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8697 - loss: 0.5016 - val_accuracy: 0.8735 - val_loss: 0.4885\n","Epoch 117/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8708 - loss: 0.4956 - val_accuracy: 0.8737 - val_loss: 0.4856\n","Epoch 118/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8717 - loss: 0.4918 - val_accuracy: 0.8748 - val_loss: 0.4826\n","Epoch 119/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8738 - loss: 0.4869 - val_accuracy: 0.8753 - val_loss: 0.4797\n","Epoch 120/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8741 - loss: 0.4799 - val_accuracy: 0.8760 - val_loss: 0.4769\n","Epoch 121/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8746 - loss: 0.4857 - val_accuracy: 0.8765 - val_loss: 0.4742\n","Epoch 122/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8761 - loss: 0.4739 - val_accuracy: 0.8772 - val_loss: 0.4715\n","Epoch 123/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8747 - loss: 0.4788 - val_accuracy: 0.8778 - val_loss: 0.4689\n","Epoch 124/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8747 - loss: 0.4789 - val_accuracy: 0.8795 - val_loss: 0.4663\n","Epoch 125/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8738 - loss: 0.4773 - val_accuracy: 0.8803 - val_loss: 0.4637\n","Epoch 126/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8757 - loss: 0.4716 - val_accuracy: 0.8812 - val_loss: 0.4611\n","Epoch 127/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8784 - loss: 0.4647 - val_accuracy: 0.8810 - val_loss: 0.4588\n","Epoch 128/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8776 - loss: 0.4659 - val_accuracy: 0.8813 - val_loss: 0.4563\n","Epoch 129/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8785 - loss: 0.4632 - val_accuracy: 0.8827 - val_loss: 0.4539\n","Epoch 130/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8798 - loss: 0.4573 - val_accuracy: 0.8833 - val_loss: 0.4515\n","Epoch 131/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8800 - loss: 0.4579 - val_accuracy: 0.8843 - val_loss: 0.4491\n","Epoch 132/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8827 - loss: 0.4530 - val_accuracy: 0.8850 - val_loss: 0.4470\n","Epoch 133/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8814 - loss: 0.4539 - val_accuracy: 0.8855 - val_loss: 0.4448\n","Epoch 134/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8822 - loss: 0.4484 - val_accuracy: 0.8862 - val_loss: 0.4425\n","Epoch 135/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8833 - loss: 0.4442 - val_accuracy: 0.8868 - val_loss: 0.4404\n","Epoch 136/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8818 - loss: 0.4457 - val_accuracy: 0.8882 - val_loss: 0.4382\n","Epoch 137/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8820 - loss: 0.4438 - val_accuracy: 0.8883 - val_loss: 0.4363\n","Epoch 138/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8842 - loss: 0.4408 - val_accuracy: 0.8895 - val_loss: 0.4342\n","Epoch 139/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8820 - loss: 0.4448 - val_accuracy: 0.8898 - val_loss: 0.4321\n","Epoch 140/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8829 - loss: 0.4425 - val_accuracy: 0.8903 - val_loss: 0.4301\n","Epoch 141/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8850 - loss: 0.4349 - val_accuracy: 0.8898 - val_loss: 0.4283\n","Epoch 142/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8858 - loss: 0.4319 - val_accuracy: 0.8907 - val_loss: 0.4264\n","Epoch 143/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8868 - loss: 0.4268 - val_accuracy: 0.8902 - val_loss: 0.4246\n","Epoch 144/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8876 - loss: 0.4247 - val_accuracy: 0.8912 - val_loss: 0.4227\n","Epoch 145/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8878 - loss: 0.4230 - val_accuracy: 0.8922 - val_loss: 0.4208\n","Epoch 146/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8890 - loss: 0.4225 - val_accuracy: 0.8927 - val_loss: 0.4191\n","Epoch 147/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8887 - loss: 0.4230 - val_accuracy: 0.8923 - val_loss: 0.4174\n","Epoch 148/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8895 - loss: 0.4193 - val_accuracy: 0.8927 - val_loss: 0.4156\n","Epoch 149/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8899 - loss: 0.4193 - val_accuracy: 0.8935 - val_loss: 0.4139\n","Epoch 150/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8888 - loss: 0.4168 - val_accuracy: 0.8935 - val_loss: 0.4124\n","Epoch 151/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8871 - loss: 0.4199 - val_accuracy: 0.8942 - val_loss: 0.4106\n","Epoch 152/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8899 - loss: 0.4146 - val_accuracy: 0.8943 - val_loss: 0.4091\n","Epoch 153/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8904 - loss: 0.4126 - val_accuracy: 0.8950 - val_loss: 0.4076\n","Epoch 154/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8898 - loss: 0.4126 - val_accuracy: 0.8957 - val_loss: 0.4060\n","Epoch 155/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8899 - loss: 0.4141 - val_accuracy: 0.8960 - val_loss: 0.4045\n","Epoch 156/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8902 - loss: 0.4094 - val_accuracy: 0.8962 - val_loss: 0.4030\n","Epoch 157/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8928 - loss: 0.4042 - val_accuracy: 0.8963 - val_loss: 0.4015\n","Epoch 158/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8889 - loss: 0.4087 - val_accuracy: 0.8965 - val_loss: 0.4000\n","Epoch 159/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8906 - loss: 0.4071 - val_accuracy: 0.8967 - val_loss: 0.3986\n","Epoch 160/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8915 - loss: 0.4033 - val_accuracy: 0.8973 - val_loss: 0.3972\n","Epoch 161/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8937 - loss: 0.3998 - val_accuracy: 0.8973 - val_loss: 0.3959\n","Epoch 162/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8942 - loss: 0.3943 - val_accuracy: 0.8980 - val_loss: 0.3946\n","Epoch 163/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8915 - loss: 0.3981 - val_accuracy: 0.8982 - val_loss: 0.3932\n","Epoch 164/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8917 - loss: 0.4014 - val_accuracy: 0.8982 - val_loss: 0.3919\n","Epoch 165/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8930 - loss: 0.3959 - val_accuracy: 0.8983 - val_loss: 0.3907\n","Epoch 166/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8921 - loss: 0.3997 - val_accuracy: 0.8985 - val_loss: 0.3894\n","Epoch 167/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8929 - loss: 0.3965 - val_accuracy: 0.8993 - val_loss: 0.3880\n","Epoch 168/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8937 - loss: 0.3914 - val_accuracy: 0.8998 - val_loss: 0.3868\n","Epoch 169/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8932 - loss: 0.3932 - val_accuracy: 0.9000 - val_loss: 0.3857\n","Epoch 170/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8931 - loss: 0.3923 - val_accuracy: 0.9000 - val_loss: 0.3845\n","Epoch 171/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8923 - loss: 0.3908 - val_accuracy: 0.9003 - val_loss: 0.3833\n","Epoch 172/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8954 - loss: 0.3847 - val_accuracy: 0.9012 - val_loss: 0.3821\n","Epoch 173/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8940 - loss: 0.3866 - val_accuracy: 0.9003 - val_loss: 0.3809\n","Epoch 174/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8954 - loss: 0.3784 - val_accuracy: 0.9008 - val_loss: 0.3799\n","Epoch 175/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8939 - loss: 0.3855 - val_accuracy: 0.9012 - val_loss: 0.3788\n","Epoch 176/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8956 - loss: 0.3836 - val_accuracy: 0.9013 - val_loss: 0.3777\n","Epoch 177/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8965 - loss: 0.3825 - val_accuracy: 0.9018 - val_loss: 0.3765\n","Epoch 178/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8963 - loss: 0.3791 - val_accuracy: 0.9017 - val_loss: 0.3755\n","Epoch 179/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8949 - loss: 0.3837 - val_accuracy: 0.9025 - val_loss: 0.3745\n","Epoch 180/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8978 - loss: 0.3768 - val_accuracy: 0.9027 - val_loss: 0.3735\n","Epoch 181/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8967 - loss: 0.3796 - val_accuracy: 0.9027 - val_loss: 0.3724\n","Epoch 182/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8952 - loss: 0.3792 - val_accuracy: 0.9025 - val_loss: 0.3713\n","Epoch 183/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8963 - loss: 0.3750 - val_accuracy: 0.9033 - val_loss: 0.3704\n","Epoch 184/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8981 - loss: 0.3714 - val_accuracy: 0.9032 - val_loss: 0.3696\n","Epoch 185/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8989 - loss: 0.3698 - val_accuracy: 0.9033 - val_loss: 0.3685\n","Epoch 186/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8972 - loss: 0.3728 - val_accuracy: 0.9033 - val_loss: 0.3676\n","Epoch 187/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8975 - loss: 0.3699 - val_accuracy: 0.9037 - val_loss: 0.3666\n","Epoch 188/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8984 - loss: 0.3706 - val_accuracy: 0.9038 - val_loss: 0.3656\n","Epoch 189/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8979 - loss: 0.3679 - val_accuracy: 0.9042 - val_loss: 0.3646\n","Epoch 190/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8981 - loss: 0.3677 - val_accuracy: 0.9040 - val_loss: 0.3638\n","Epoch 191/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8983 - loss: 0.3671 - val_accuracy: 0.9037 - val_loss: 0.3630\n","Epoch 192/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9010 - loss: 0.3617 - val_accuracy: 0.9043 - val_loss: 0.3620\n","Epoch 193/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8991 - loss: 0.3649 - val_accuracy: 0.9048 - val_loss: 0.3613\n","Epoch 194/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8995 - loss: 0.3633 - val_accuracy: 0.9048 - val_loss: 0.3605\n","Epoch 195/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9007 - loss: 0.3576 - val_accuracy: 0.9047 - val_loss: 0.3596\n","Epoch 196/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8997 - loss: 0.3622 - val_accuracy: 0.9050 - val_loss: 0.3588\n","Epoch 197/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9002 - loss: 0.3603 - val_accuracy: 0.9052 - val_loss: 0.3579\n","Epoch 198/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9007 - loss: 0.3570 - val_accuracy: 0.9052 - val_loss: 0.3570\n","Epoch 199/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9006 - loss: 0.3556 - val_accuracy: 0.9053 - val_loss: 0.3563\n","Epoch 200/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9020 - loss: 0.3573 - val_accuracy: 0.9055 - val_loss: 0.3554\n"]}]},{"cell_type":"code","source":["plt.plot(H_3l_100_50.history['loss'])\n","plt.plot(H_3l_100_50.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss','val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","scores=model_3l_100_50.evaluate(X_test,y_test);\n","print('Loss on test data:',scores[0]);\n","print('Accuracy on test data:',scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":524},"id":"E6PO-aYziOWk","executionInfo":{"status":"ok","timestamp":1760459224520,"user_tz":-180,"elapsed":1647,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"dbf1541f-6817-4154-9dee-8a572985fd0d"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdUZJREFUeJzt3Xd4FPXaxvHv7ibZ9N5poUszICCCDaSLCIgNUYrtqKAitsN5VYr1oCIW7CI2wApWkAAC0kINvQuEkoSaTpJNdt4/AuuJCZBAkk029+e65oKd+e3s82RCcjPVZBiGgYiIiEgNYnZ2ASIiIiKVTQFIREREahwFIBEREalxFIBERESkxlEAEhERkRpHAUhERERqHAUgERERqXEUgERERKTGUQASERGRGkcBSESqvGHDhuHr6+vsMpzOZDIxcuRIZ5ch4hIUgERqsGnTpmEymVizZo2zSxERqVQKQCIiIlLjKACJiIhIjaMAJCLntX79enr37o2/vz++vr507dqVlStXFhljs9kYP348jRs3xtPTk5CQEK666iri4uIcY5KTkxk+fDi1a9fGarUSFRVFv3792LdvX6nq+Ouvv+jZsyc+Pj5ER0czYcIEDMMAwDAMYmJi6NevX7H35eTkEBAQwL/+9a/zfsaXX35J27Zt8fLyIjg4mNtvv50DBw4UGdO5c2datmzJ2rVr6dSpE15eXtSvX5/333+/2PqOHDnCPffcQ0REBJ6ensTGxvLZZ58VG2e323nzzTdp1aoVnp6ehIWF0atXrxIPT86ePZuWLVtitVpp0aIFc+fOLbI8IyODUaNGERMTg9VqJTw8nO7du7Nu3brz9i9SUygAicg5bdmyhauvvpoNGzbw1FNP8eyzz7J37146d+5MfHy8Y9y4ceMYP348Xbp04Z133uH//u//qFu3bpFfugMHDmTWrFkMHz6cd999l0ceeYSMjAwSExPPW0dBQQG9evUiIiKCiRMn0rZtW8aOHcvYsWOBwhOE77zzTubMmcOJEyeKvPfnn38mPT2dO++885yf8eKLLzJkyBAaN27MpEmTGDVqFAsWLOCaa64hNTW1yNiTJ09y/fXX07ZtWyZOnEjt2rV58MEHmTp1qmPMqVOn6Ny5M1988QWDBw/m1VdfJSAggGHDhvHmm28WWd8999zDqFGjqFOnDv/973/597//jaenZ7GguXTpUh566CFuv/12Jk6cSE5ODgMHDuT48eOOMQ888ADvvfceAwcO5N133+WJJ57Ay8uLbdu2nffrLFJjGCJSY3366acGYKxevfqsY/r37294eHgYe/bsccw7fPiw4efnZ1xzzTWOebGxsUafPn3Oup6TJ08agPHqq6+Wuc6hQ4cagPHwww875tntdqNPnz6Gh4eHcfToUcMwDGPHjh0GYLz33ntF3n/jjTcaMTExht1uP+tn7Nu3z7BYLMaLL75YZP6mTZsMNze3IvOvvfZaAzBef/11x7zc3FyjdevWRnh4uJGXl2cYhmFMnjzZAIwvv/zSMS4vL8/o2LGj4evra6SnpxuGYRgLFy40AOORRx4pVtf/1gwYHh4exu7dux3zNmzYYADG22+/7ZgXEBBgjBgx4qy9iohhaA+QiJxVQUEB8+bNo3///jRo0MAxPyoqijvuuIOlS5eSnp4OQGBgIFu2bGHXrl0lrsvLywsPDw8WLVrEyZMnL6ie/70E/Mwl4Xl5ecyfPx+AJk2a0KFDB7766ivHuBMnTjBnzhwGDx6MyWQ667p/+OEH7HY7t956K8eOHXNMkZGRNG7cmD/++KPIeDc3tyKH1Dw8PPjXv/7FkSNHWLt2LQC//fYbkZGRDBo0yDHO3d2dRx55hMzMTBYvXgzA999/j8lkcuzN+l//rLlbt240bNjQ8frSSy/F39+fv/76yzEvMDCQ+Ph4Dh8+fNZ+RWo6BSAROaujR4+SnZ1N06ZNiy1r1qwZdrvdcX7MhAkTSE1NpUmTJrRq1Yonn3ySjRs3OsZbrVb++9//MmfOHCIiIrjmmmuYOHEiycnJparFbDYXCWFQGHiAIucQDRkyhGXLlrF//34Avv32W2w2G3fdddc5179r1y4Mw6Bx48aEhYUVmbZt28aRI0eKjI+OjsbHx+ec9ezfv5/GjRtjNhf9UdusWTPHcoA9e/YQHR1NcHDw+b4M1K1bt9i8oKCgIqFy4sSJbN68mTp16nD55Zczbty4IgFJRBSARKScXHPNNezZs4epU6fSsmVLPv74Yy677DI+/vhjx5hRo0axc+dOXn75ZTw9PXn22Wdp1qwZ69evL7c6br/9dtzd3R17gb788kvatWtXYoj7X3a7HZPJxNy5c4mLiys2ffDBB+VW48WwWCwlzjdOnwwOcOutt/LXX3/x9ttvEx0dzauvvkqLFi2YM2dOZZUpUuUpAInIWYWFheHt7c2OHTuKLdu+fTtms5k6deo45gUHBzN8+HBmzJjBgQMHuPTSSxk3blyR9zVs2JDHH3+cefPmsXnzZvLy8nj99dfPW4vdbi+2F2Pnzp0AxMTEFKmhT58+fPXVV+zfv59ly5add+/PmboMw6B+/fp069at2HTFFVcUGX/48GGysrLOWU+9evXYtWsXdru9yLjt27c7lp/57MOHDxc7eftiREVF8dBDDzF79mz27t1LSEgIL774YrmtX6S6UwASkbOyWCz06NGDH3/8schhppSUFKZPn85VV12Fv78/QJGrkAB8fX1p1KgRubm5AGRnZ5OTk1NkTMOGDfHz83OMOZ933nnH8XfDMHjnnXdwd3ena9euRcbdddddbN26lSeffBKLxcLtt99+3nXfdNNNWCwWxo8fX2RvypnP+md/+fn5RfYK5eXl8cEHHxAWFkbbtm0BuP7660lOTubrr78u8r63334bX19frr32WqDw6jjDMBg/fnyxuv5Zy/kUFBSQlpZWZF54eDjR0dGl/jqL1ARuzi5ARJxv6tSpxe4lA/Doo4/ywgsvEBcXx1VXXcVDDz2Em5sbH3zwAbm5uUycONExtnnz5nTu3Jm2bdsSHBzMmjVr+O677xwnLu/cuZOuXbty66230rx5c9zc3Jg1axYpKSmlCiienp7MnTuXoUOH0qFDB+bMmcOvv/7Kf/7zH8LCwoqM7dOnDyEhIXz77bf07t2b8PDw866/YcOGvPDCC4wZM4Z9+/bRv39//Pz82Lt3L7NmzeL+++/niSeecIyPjo7mv//9L/v27aNJkyZ8/fXXJCQk8OGHH+Lu7g7A/fffzwcffMCwYcNYu3YtMTExfPfddyxbtozJkyfj5+cHQJcuXbjrrrt466232LVrF7169cJut/Pnn3/SpUuXMj3/KyMjg9q1a3PzzTcTGxuLr68v8+fPZ/Xq1aXa0yZSYzjvAjQRcbYzl8GfbTpw4IBhGIaxbt06o2fPnoavr6/h7e1tdOnSxVi+fHmRdb3wwgvG5ZdfbgQGBhpeXl7GJZdcYrz44ouOS8KPHTtmjBgxwrjkkksMHx8fIyAgwOjQoYPxzTffnLfOoUOHGj4+PsaePXuMHj16GN7e3kZERIQxduxYo6CgoMT3PPTQQwZgTJ8+vUxfk++//9646qqrDB8fH8PHx8e45JJLjBEjRhg7duxwjLn22muNFi1aGGvWrDE6duxoeHp6GvXq1TPeeeedYutLSUkxhg8fboSGhhoeHh5Gq1atjE8//bTYuPz8fOPVV181LrnkEsPDw8MICwszevfubaxdu9YxBijx8vZ69eoZQ4cONQyj8HL8J5980oiNjTX8/PwMHx8fIzY21nj33XfL9HUQcXUmwyjj/lURkWrgscce45NPPiE5ORlvb+9yXXfnzp05duwYmzdvLtf1ikjl0TlAIuJycnJy+PLLLxk4cGC5hx8RcQ06B0hEXMaRI0eYP38+3333HcePH+fRRx91dkkiUkUpAImIy9i6dSuDBw8mPDyct956i9atWzu7JBGponQOkIiIiNQ4OgdIREREahwFIBEREalxdA5QCex2O4cPH8bPz++cT48WERGRqsMwDDIyMoiOji72EOJ/UgAqweHDh4s830hERESqjwMHDlC7du1zjlEAKsGZ29MfOHDA8Zyj8mKz2Zg3bx49evRw3C7flbh6f6AeXYGr9weu36Or9wfq8UKkp6dTp04dx+/xc1EAKsGZw17+/v4VEoC8vb3x9/d3yW9oV+8P1KMrcPX+wPV7dPX+QD1ejNKcvqKToEVERKTGUQASERGRGkcBSERERGocnQMkIiI1RkFBATabzdlllIrNZsPNzY2cnBwKCgqcXU6FKGuP7u7uWCyWcvlsBSAREXF5hmGQnJxMamqqs0spNcMwiIyM5MCBAy57T7oL6TEwMJDIyMiL/pooAImIiMs7E37Cw8Px9vauFoHCbreTmZmJr6/veW/qV12VpUfDMMjOzubIkSMAREVFXdRnKwCJiIhLKygocISfkJAQZ5dTana7nby8PDw9PV06AJWlRy8vLwCOHDlCeHj4RR0Oc82vqIiIyGlnzvnx9vZ2ciVSHs5sx4s9l0sBSEREaoTqcNhLzq+8tqMCkIiIiNQ4CkAiIiI1QExMDJMnTy6XdS1atAiTyVStrqr7J50ELSIiUkXdcMMNtG3bljfffPOi17V69Wp8fHzKoSrXoABUiQzDIPFENidynV2JiIi4AsMwKCgowM3t/L/Ow8LCKqGi6kOHwCrRC79uo+sbS/kzSV92ERE5t+HDh7Ns2TLeeustTCYTJpOJadOmYTKZmDNnDm3btsVqtbJ06VL27NlDv379iIiIwNfXl/bt2zN//vwi6/vnITCTycTHH3/MgAED8Pb2pnHjxvz0008XXO/3339PixYtsFqtxMTE8PrrrxdZ/u6779K4cWM8PT2JiIjg5ptvdiz77rvvaNWqFV5eXoSEhNCtWzeysrIuuJbS0B6gStQi2h+A3em6EkFExJkMw+CUrfIfL+Hlbin1VUyTJ09m27ZtxMbG8vzzzwOwZcsWAP7973/z2muv0aBBA4KCgjhw4ADXX389L774Ilarlc8//5y+ffuyY8cO6tate9bPGD9+PBMnTuTVV1/l7bffZvDgwezfv5/g4OAy9bV27VpuvfVWxo0bx2233cby5ct56KGHCAkJYdiwYaxZs4ZHHnmEL774gk6dOnHixAn+/PNPoPAmlYMHD2bixIkMGDCAjIwM/vzzTwzDKFMNZaUAVIk6NCi8AdfBLMjMzSfI3d3JFYmI1EynbAU0f+73Sv/crRN64u1Rul+9AQEBeHh44O3tTWRkJADbt28HYMKECXTv3t0xNjg4mNjYWMfr559/nlmzZvHTTz8xcuTIs37GsGHDGDRoEAAvvfQSb731FqtWraJXr15l6mvSpEl07dqVZ599FoAmTZqwdetWXn31VYYNG0ZiYiI+Pj7ccMMN+Pn5Ua9ePdq0aYPdbiclJYX8/Hxuuukm6tWrB0CrVq3K9PkXQsdiKlGtQC9qB3pix8T6xFRnlyMiItVUu3btirzOzMzkiSeeoFmzZgQGBuLr68u2bdtITEw853ouvfRSx999fHzw9/d3PGqiLLZt28aVV15ZZN6VV17Jrl27KCgooHv37tSrV48GDRpw11138dVXX5GdnQ1Ay5Yt6dq1K61ateKWW27ho48+4uTJk2Wuoay0B6iStY8J4mBCEqv3neS65hf3HBMREbkwXu4Wtk7o6ZTPLQ//vJrriSeeIC4ujtdee41GjRrh5eXFzTffTF5e3jnX4/6PIxEmkwm73V4uNf4vPz8/1q1bx6JFi5g3bx7PPfcc48aNIz4+HovFwu+//87KlSuZN28eb7/9Nv/3f/9HfHw89evXL/daztAeoErWPqbwuOqqfRWfbkVEpGQmkwlvD7dKn8p6F2MPDw8KCs5/rtKyZcsYNmwYAwYMoFWrVkRGRrJv374L/OqUXbNmzVi2bFmxmpo0aeJ4XpebmxvdunVj4sSJbNy4kX379rFw4UKgcHtceeWVjB8/nvXr1+Ph4cGsWbMqtGbtAapkl9f1A2DjoTRybAV4ltP/BkRExPXUrVuXVatWsW/fPnx9fc+6d6Zx48b88MMP9O3bF5PJxLPPPlshe3LO5vHHH6d9+/Y8//zz3HbbbaxYsYJ33nmHd999F4BffvmFv/76i2uuuYagoCB+++037HY7TZs2Zc2aNcTHx9OzZ0/Cw8OJj4/n6NGjNGvWrEJr1h6gynRkGw2/604X963YCgzWJWovkIiInN3IkSOxWCw0b96csLCws57TM2nSJIKCgujUqRN9+/alZ8+eXHbZZZVW52WXXcY333zDzJkzadmyJc899xwTJkxg2LBhAAQGBvLDDz9w3XXX0axZM95//31mzJhBixYt8PPzY8mSJVx//fU0adKEZ555htdff53evXtXaM3aA1SZlr+D6cQe3rK8Qb/88azae4JODUOdXZWIiFRRjRo1YtmyZZjNf++vOBMq/ldMTIzjcNIZI0aMKPL6n4fESrrMvLSPtujcuXOx9w8cOJCBAweWOP6qq65i0aJFxeaf2Qs0Z86cIj1WBu0Bqkx9XsNeqx1+ZPGp+0TWbt2FraDydlGKiIhIIQWgyuTuRcEtX5DhHkY98xGeOvYfRk/9nczcfGdXJiIi4vDAAw/g6+tb4vTAAw84u7xy4dQA9PLLL9O+fXv8/PwIDw+nf//+7Nix45zv+eijj7j66qsJCgoiKCiIbt26sWrVqiJjhg0b5rht+JmprDd1qjA+Yaxq9Dh5HkG0Mu/j3wdH8NSUGaSk5zi7MhEREaDwRosJCQklThMmTHB2eeXCqQFo8eLFjBgxgpUrVxIXF4fNZqNHjx7nfP7HokWLGDRoEH/88QcrVqygTp069OjRg0OHDhUZ16tXL5KSkhzTjBkzKrqdUsv0jMZ07zxyAhpSy3Sc/6Y9yX/fepsdyRnOLk1ERITw8HAaNWpU4hQeHu7s8sqFU0+Cnjt3bpHX06ZNIzw8nLVr13LNNdeU+J6vvvqqyOuPP/6Y77//ngULFjBkyBDHfKvV6rh1eJUUVB/PBxaQ89Vg/A4u41Xbi7zy/mG63Pl/dGqkE6NFREQqUpW6CiwtLQ2gTA9hy87OxmazFXvPokWLCA8PJygoiOuuu44XXniBkJCQEteRm5tLbm6u43V6ejoANpsNm81W1jbO6cz6bDYbuPtiufNbTv08Gq8tM/k/pvLZZ4c53Pdl+rWpU66fW1mK9Oei1GP15+r9gev3WJb+bDYbhmFgt9sr9d44F+vMVVZnandFF9Kj3W7HMAxsNpvjJotnlOX73WRU9ONWS8lut3PjjTeSmprK0qVLS/2+hx56iN9//50tW7bg6ekJwMyZM/H29qZ+/frs2bOH//znP/j6+rJixYpiXyyAcePGMX78+GLzp0+fjre394U3VVqGQYPkX2iV/C0ACwra8Gv4g1xTx5My3jRURET+wc3NjcjISOrUqYOHh4ezy5GLlJeXx4EDB0hOTiY/v+hFRNnZ2dxxxx2kpaXh7+9/zvVUmQD04IMPMmfOHJYuXUrt2rVL9Z5XXnmFiRMnsmjRoiIPdPunv/76i4YNGzJ//ny6du1abHlJe4Dq1KnDsWPHzvsFLCubzUZcXBzdu3cv9gwWtv4Isx/E3chjo70+s5q9wZMDOuFuqT4X652zPxehHqs/V+8PXL/HsvSXk5PDgQMHiImJcfxHuTowDIOMjAz8/PzK/AiN6uJCeszJyWHfvn3UqVOn2PZMT08nNDS0VAGoShwCGzlyJL/88gtLliwpdfh57bXXeOWVV5g/f/45ww9AgwYNCA0NZffu3SUGIKvVitVqLTbf3d29wn5wlLju2JshpD6nPh/IpXl78d32AM9mTGT80D74WqvEpiq1ivzaVRXqsfpz9f7A9XssTX8FBQWYTCbMZnOl32zvYpw5JHSmdld0IT2azWZMJlOJ274s3+tO/YoahsHIkSOZNWsWCxcuLPVTXydOnMjzzz/P3Llzadeu3XnHHzx4kOPHjxMVVQ2evl67LV73z+eUdy0amJN58tCjjHr3e47oMnkRESmjmJgYJk+eXKqxJpOJ2bNnV2g9VYlTA9CIESP48ssvmT59On5+fiQnJ5OcnMypU6ccY4YMGcKYMWMcr//73//y7LPPMnXqVGJiYhzvyczMBCAzM5Mnn3ySlStXsm/fPhYsWEC/fv1o1KgRPXv2rPQeL0hoI7weWMCpwMZEmk4yIfXfjHzne/YfP/vtAURERKT0nBqA3nvvPdLS0ujcuTNRUVGO6euvv3aMSUxMJCkpqch78vLyuPnmm4u857XXXgPAYrGwceNGbrzxRpo0acI999xD27Zt+fPPP0s8zFVl+Ufhde9v2IIaEW06wRu5zzL6gx9JPJ7t7MpERESqPacfAitp+t8HvS1atIhp06Y5Xu/bt6/E94wbNw4ALy8vfv/9d44cOUJeXh779u3jww8/JCIionKbKw++4bjf/Sv5QY2oZTrOm7nPMuqDHzlwQiFIRMTVffjhhzRr1qzY5eH9+vXj7rvvZs+ePfTr14+IiAh8fX1p37498+fPL7fP37RpE9dddx1eXl6EhIRw//33O462QOHv58svvxwfHx8CAwO58sor2b9/PwAbNmygS5cu+Pn54e/vT9u2bVmzZk251VYeXPOsKlfiF4nb8F/ID2pAbdMx3sx5lsc++oUjGTonSETkghkG5GVV/lSGC69vueUWTpw4wR9//OGYd+LECebOncvgwYPJzMzk+uuvZ8GCBaxfv55evXrRt29fEhMTL/rLk5WVRc+ePQkKCmL16tV8++23zJ8/n5EjRwKQn59P//79ufbaa9m4cSMrVqzg/vvvd1zJNXjwYGrXrs3q1atZu3Yt//73v6vcyfjV69Kimso/Crfhv5I/9XrqpO7lpaxxPPSRD5880IMA76r1DSUiUi3YsuGl6Mr/3P8cBg+fUg0987zLGTNm0L17dwC+++47QkND6dKlC2azmdjYWMf4559/nlmzZvHTTz85gsqFmj59Ojk5OXz++ef4+BTW+84779C3b1/++9//4u7uTlpaGjfccAMNGzYEoFmzZo73JyYm8uSTT3LJJZcA0Lhx44uqpyJoD1B14R+N27CfyfeJoon5EE+ljuehz5aSYytwdmUiIlJBbrnlFn744QfHveq++uorbr/9dsxmM5mZmTzxxBM0a9aMwMBAfH192bZtW7nsAdq2bRuxsbGO8ANw5ZVXYrfb2bFjB8HBwQwbNoyePXvSt29f3nzzzSLn644ePZp7772Xbt268corr7Bnz56Lrqm8aQ9QdRJYB7chP1DwSU8uz9vB4MMv8dS3/ky+/TLMZte8SZaISIVw9y7cG+OMzy2DXr16YRgGv/76K+3bt+fPP//kjTfeAOCJJ54gLi6O1157jUaNGuHl5cXNN99MXl5eRVRezKeffsojjzzC3Llz+frrr3nmmWeIi4vjiiuuYNy4cdxxxx38+uuvzJkzh7FjxzJz5kwGDBhQKbWVhvYAVTcRzbHcMRO72YPrLatouPVtXo/b4eyqRESqF5Op8FBUZU9lvKOzp6cnAwYM4KuvvmLGjBk0bdqUyy67DIBly5YxbNgwBgwYQKtWrYiMjGTfvn3l8uVp1qwZGzZsICvr79uvLFu2DLPZTNOmTR3z2rRpw5gxY1i+fDktW7Zk+vTpjmVNmjThscceY968edx00018+umn5VJbeVEAqo5irsR845sAPOo2i8TFX/DzBif8T0ZERCrcmT0pU6dOZfDgwY75jRs35ocffiAhIYENGzZwxx13lNtDUwcPHoynpydDhw5l8+bN/PHHHzz88MPcddddREREsHfvXsaMGcOKFSvYv38/8+bNY9euXTRr1oxTp04xcuRIFi1axP79+1m2bBmrV68uco5QVaBDYNVV6zvgyDZY/havun/Abd/VpWHYIJpHl++zy0RExLmuu+46goOD2bFjB3fccYdj/qRJk7j77rvp1KkToaGhPP3006Snp5fLZ3p7e/P777/z6KOP0r59e7y9vRk4cCCTJk1yLN++fTufffaZ40kLI0aM4F//+hf5+fkcP36cIUOGkJKSQmhoKDfddFOJDx13JgWg6qzbOIyUrXjumc8bpkk8+EUtvn64B4HeetqxiIirMJvNHD5cfC9/TEwMCxcuLDJvxIgRRV6X5ZDYP5+N3qpVq2LrPyMiIoJZs2aVuMzDw4MZM2aU+nOdRYfAqjOzBdPAj7D7FT437OHMt3j6uw3FvolFRESkKAWg6s47GPOtn2E3u3ODJZ7gHTP4YuV+Z1clIiJVyFdffYWvr2+JU4sWLZxdnlPoEJgrqNMec7exMO8ZnnX7kn6/tKRtvYG0iA5wdmUiIlIF3HjjjXTo0KHEZVXtDs2VRQHIVVwxAmPn73jv+5NXLe/w5MwYZj1yLVY3i7MrExERJ/Pz88PPz8/ZZVQpOgTmKsxmTAPex271p7V5D12Pf8Xk+bucXZWIiEiVpADkSgJqY77+NQAedpvFwiWLWZd40slFiYhUDeV1jxxxrvLajjoE5mouvRU2f4/Hrt95xe1DnvqmEb+M6qxDYSJSY3l4eDguJQ8LC8PDw8Px1PKqzG63k5eXR05ODmaza+6vKEuPhmGQl5fH0aNHMZvNeHhc3C1fFIBcjckEN7yBMaUDbfJ2c83JH/hwcV0e7lr1nsQrIlIZzGYz9evXJykpqcT76VRVhmFw6tQpvLy8qkVguxAX0qO3tzd169a96FCoAOSKAmph6vE8/DKK0W7f0uuPTtwQG039UJ/zv1dExAV5eHhQt25d8vPzKSgocHY5pWKz2ViyZAnXXHONy16pVdYeLRYLbm5u5RIIFYBc1WVDMRK+wufgap40fcEzsxvy5T0dXPZ/ESIi52MymXB3d682YcJisZCfn4+np2e1qbmsnNmjax5UlMKrwq5/DQMTN1pWUPDXn8zdnOzsqkRERKoEBSBXFt0aU7vhAIx3m8Yrv24mx1Y9dv2KiIhUJAUgV3fdsxheQTQ1H6RTxhw+WbrX2RWJiIg4nQKQq/MOxnTt0wCMdvuOT//YTEp6jpOLEhERcS4FoJqg3T0YQfUJM6Vxp/1H3lygO0SLiEjNpgBUE7h5YOo2FoD7Lb+ycPVG9h7LcnJRIiIizqMAVFM07w+12+NtyuVf5h95fd4OZ1ckIiLiNApANYXJBNc9C8AdloWs2biZzYfSnFyUiIiIcygA1ST1r4F6V2E12XjI7SfeiNvp7IpEREScQgGoJjGZoMsYAG63LGTb9q3aCyQiIjWSAlBNE3MV1L8WD1MBI9x+5O2FuiJMRERqHgWgmuj0fYFutixm3ZbtbEtKd3JBIiIilUsBqCaq1wnqdMBqyucet7m8s3C3sysSERGpVE4NQC+//DLt27fHz8+P8PBw+vfvz44d5788+9tvv+WSSy7B09OTVq1a8dtvvxVZbhgGzz33HFFRUXh5edGtWzd27dKhHgeTCa56DIDBlvn8uXk3+3RfIBERqUGcGoAWL17MiBEjWLlyJXFxcdhsNnr06EFW1tl/GS9fvpxBgwZxzz33sH79evr370///v3ZvHmzY8zEiRN56623eP/994mPj8fHx4eePXuSk6NHQDg07gnhzfEzneJOc5yeESYiIjWKUwPQ3LlzGTZsGC1atCA2NpZp06aRmJjI2rVrz/qeN998k169evHkk0/SrFkznn/+eS677DLeeecdoHDvz+TJk3nmmWfo168fl156KZ9//jmHDx9m9uzZldRZNWA2w5WjABjuNpfZa//iRFaec2sSERGpJFXqHKC0tMJLsoODg886ZsWKFXTr1q3IvJ49e7JixQoA9u7dS3JycpExAQEBdOjQwTFGTmt5E4Z/LcJM6fS0L+XzFfucXZGIiEilcHN2AWfY7XZGjRrFlVdeScuWLc86Ljk5mYiIiCLzIiIiSE5Odiw/M+9sY/4pNzeX3Nxcx+v09MKromw2GzabrezNnMOZ9ZX3ei+Uue09WP6YwN2WuQxe1pV7OtXF091yweurav1VBPVY/bl6f+D6Pbp6f6AeL2Z9pVFlAtCIESPYvHkzS5curfTPfvnllxk/fnyx+fPmzcPb27tCPjMuLq5C1ltW7vmR9DB70Jz9NM3dyEtf5XJFuHHR660q/VUk9Vj9uXp/4Po9unp/oB7LIjs7u9Rjq0QAGjlyJL/88gtLliyhdu3a5xwbGRlJSkpKkXkpKSlERkY6lp+ZFxUVVWRM69atS1znmDFjGD16tON1eno6derUoUePHvj7+19IS2dls9mIi4uje/fuuLu7l+u6L5TJfTWs+5R7LHN4PasD43tfgclkuqB1VcX+ypt6rP5cvT9w/R5dvT9QjxfizBGc0nBqADIMg4cffphZs2axaNEi6tevf973dOzYkQULFjBq1CjHvLi4ODp27AhA/fr1iYyMZMGCBY7Ak56eTnx8PA8++GCJ67RarVit1mLz3d3dK+ybriLXXWadRsC6T+lqXseElN0kHGrJ5fXPfh5WaVSp/iqIeqz+XL0/cP0eXb0/UI9lXU9pOfUk6BEjRvDll18yffp0/Pz8SE5OJjk5mVOnTjnGDBkyhDFjxjheP/roo8ydO5fXX3+d7du3M27cONasWcPIkSMBMJlMjBo1ihdeeIGffvqJTZs2MWTIEKKjo+nfv39lt1g9hDaGhl0xmwwGWxby2fJ9zq5IRESkQjk1AL333nukpaXRuXNnoqKiHNPXX3/tGJOYmEhSUpLjdadOnZg+fToffvghsbGxfPfdd8yePbvIidNPPfUUDz/8MPfffz/t27cnMzOTuXPn4unpWan9VSvt7wHgFssiFm45QFLaqXOPFxERqcacfgjsfBYtWlRs3i233MItt9xy1veYTCYmTJjAhAkTLqa8mqVxT/CvRUj6IXqwkhmrmjG6exNnVyUiIlIhqtR9gMSJLG7QdhgAd7nN5+vVieQX2J1bk4iISAVRAJK/XTYEw+xGO/NOgjJ2sXD7EWdXJCIiUiEUgORvfpGYLukDwG2WP5i+KtHJBYmIiFQMBSApqs1dAPS3LGPFzsMcOFH6m0qJiIhUFwpAUlTD68AviiBTJteZ1vH16gPOrkhERKTcKQBJUWYLxN4OwC2WxXy/7iAF9ot/NIaIiEhVogAkxbW+E4BrLRsoSEtixZ7jTi5IRESkfCkASXGhjaBOBywY3GT5k+/XHXR2RSIiIuVKAUhK1nowUHgYbM7mw2Tk2JxckIiISPlRAJKStRiA4eZFQ3MSzfN3MGdTsrMrEhERKTcKQFIyT39MzfsBcLNlMd/pMJiIiLgQBSA5uzaFh8H6WlaycW8Sicd1TyAREXENCkBydvWugsC6+JlO0cu8WidDi4iIy1AAkrMzm4ucDP3D+oPYdU8gERFxAQpAcm6xgwDoaN5K3olDrNp3wskFiYiIXDwFIDm3oHpQ5wrMJoMbLCv4fq0Og4mISPWnACTn1+pmAPpZlvPbpiSy8/KdXJCIiMjFUQCS82veH8Nk4VLzXsJtB4nbmuLsikRERC6KApCcn28YpoZdALjRvJyfNxx2ckEiIiIXRwFISqdl4WGwGy3LWbzzCKnZeU4uSERE5MIpAEnpXNIH3DxpaE6iiX0vv2/RozFERKT6UgCS0vH0hyY9gcK9QD/pMJiIiFRjCkBSeq1uAaCvZQUr9xzlSEaOkwsSERG5MApAUnqNuoPVn2jTCdqyg183Jjm7IhERkQuiACSl5+4JzW4EdBhMRESqNwUgKZtWAwG43hLPpsRjHDihJ8SLiEj1owAkZRNzDfiEE2zK5GrzJu0FEhGRakkBSMrG4gYtBgBwg2WlboooIiLVkgKQlF3LmwDoYV7D3uTj7EzJcHJBIiIiZaMAJGVX+3Lwi8bPdIqrzZu0F0hERKodBSApO7MZWvQHoM/pw2CGYTi3JhERkTJQAJILc/o8oB7mtSQdT2XL4XQnFyQiIlJ6Tg1AS5YsoW/fvkRHR2MymZg9e/Y5xw8bNgyTyVRsatGihWPMuHHjii2/5JJLKriTGqhWO/CvjY8ph2vNG/hFN0UUEZFqxKkBKCsri9jYWKZMmVKq8W+++SZJSUmO6cCBAwQHB3PLLbcUGdeiRYsi45YuXVoR5ddsRQ6DxfPrJh0GExGR6sPNmR/eu3dvevfuXerxAQEBBAQEOF7Pnj2bkydPMnz48CLj3NzciIyMLLc65Sxa3AQr3qGbeS1PnUhj06E0mkX4OLsqERGR83JqALpYn3zyCd26daNevXpF5u/atYvo6Gg8PT3p2LEjL7/8MnXr1j3renJzc8nNzXW8Tk8vPJ/FZrNhs9nKteYz6yvv9TpFeCvcAurgk3aAzuYEflzfmEZdGwAu0t9ZuNQ2PAtX79HV+wPX79HV+wP1eDHrKw2TUUWOW5hMJmbNmkX//v1LNf7w4cPUrVuX6dOnc+uttzrmz5kzh8zMTJo2bUpSUhLjx4/n0KFDbN68GT8/vxLXNW7cOMaPH19s/vTp0/H29r6gfmqK5odm0vjIb/xScAXPmh5m7GUFmEzOrkpERGqi7Oxs7rjjDtLS0vD39z/n2GobgF5++WVef/11Dh8+jIeHx1nHpaamUq9ePSZNmsQ999xT4piS9gDVqVOHY8eOnfcLWFY2m424uDi6d++Ou7t7ua7bGUyH1+P2aXeyDSttc99j6t2dOLJtlcv0VxJX24YlcfUeXb0/cP0eXb0/UI8XIj09ndDQ0FIFoGp5CMwwDKZOncpdd911zvADEBgYSJMmTdi9e/dZx1itVqxWa7H57u7uFfZNV5HrrlR120NgPbxT99PFnMC87U1pjQv1dw7qsfpz9f7A9Xt09f5APZZ1PaVVLe8DtHjxYnbv3n3WPTr/KzMzkz179hAVFVUJldVAJpPjnkB9LCv5bXMy9iqxT1FEROTsnBqAMjMzSUhIICEhAYC9e/eSkJBAYmIiAGPGjGHIkCHF3vfJJ5/QoUMHWrZsWWzZE088weLFi9m3bx/Lly9nwIABWCwWBg0aVKG91GinA9B15gQy0tPYp0eDiYhIFefUQ2Br1qyhS5cujtejR48GYOjQoUybNo2kpCRHGDojLS2N77//njfffLPEdR48eJBBgwZx/PhxwsLCuOqqq1i5ciVhYWEV10hNFxULwQ3wOvEX15nXs/54B2dXJCIick5ODUCdO3c+583zpk2bVmxeQEAA2dnZZ33PzJkzy6M0KYszh8H+fJ0+lpU8ffwKCuwGrn3EWkREqrNqeQ6QVEGnD4N1sSRQYMthbeJJJxckIiJydgpAUj4iWkJIIzyx0dW8jt82pTi7IhERkbNSAJLy8T9Xg91gWcncLSkU6HIwERGpohSApPycDkCdzRvIzUol/q/jTi5IRESkZApAUn7Cm2OENMbDlE838zp+2ZTk7IpERERKpAAk5cdkwt68P1B4U8S5m5PJL7A7tyYREZESKABJubI36wfAtZaN5GedZIUOg4mISBWkACTlK+wS0j1r4UE+3cxr+XWjDoOJiEjVowAk5e5QYOGdoPtY4pm7JRmbDoOJiEgVowAk5e5wUHsArrFswp59kmW7jzm5IhERkaIUgKTcZXrWwghvjjv59LSs4RcdBhMRkSpGAUgqxJmTofuY4/l9SzJ5+ToMJiIiVYcCkFSIMwHoKstmLDkn+XPXUSdXJCIi8jcFIKkYIY0gshVuFNDDskZXg4mISJWiACQV58yzwcwriduaQo6twMkFiYiIFFIAkopz+q7QnSxbcMs9wZKdOgwmIiJVgwKQVJyQhhAVixt2elrW8KueDSYiIlWEApBULMdhsBXM12EwERGpIhSApGKdPgzW0bINz7wTLNpxxLn1iIiIoAAkFS24PkS3wYKdXpbV/KyrwUREpApQAJKK1+ImAPqYV7Jw2xGy8/KdXJCIiNR0CkBS8Vr0B6CDZTu+tuP8sV1Xg4mIiHMpAEnFC6wLtdphwU5Py2p+2XjY2RWJiEgNpwAklePM1WCWlSzcfoSsXB0GExER51EAksrRvPDZYJebt+Off5z521KcXJCIiNRkCkBSOQLrQO3LMWNwvWWVng0mIiJOpQAklef0YbA+lpUs2nmUjBybkwsSEZGaSgFIKo/jMNgOgvKPMW+LDoOJiIhzKABJ5QmoBXU7AnC9JZ7ZCYecXJCIiNRUCkBSuRyHweJZtvsYR9JznFyQiIjURApAUrma3QiYaGfeSYRxnJ826J5AIiJS+ZwagJYsWULfvn2Jjo7GZDIxe/bsc45ftGgRJpOp2JScnFxk3JQpU4iJicHT05MOHTqwatWqCuxCysQ/Cup1AqCvZbkOg4mIiFM4NQBlZWURGxvLlClTyvS+HTt2kJSU5JjCw8Mdy77++mtGjx7N2LFjWbduHbGxsfTs2ZMjR/QU8iqj1S0ADLAsY/OhdHalZDi5IBERqWmcGoB69+7NCy+8wIABA8r0vvDwcCIjIx2T2fx3G5MmTeK+++5j+PDhNG/enPfffx9vb2+mTp1a3uXLhWrRHyweNDMncokpUXuBRESk0lXLc4Bat25NVFQU3bt3Z9myZY75eXl5rF27lm7dujnmmc1munXrxooVK5xRqpTEKwia9ASgv2UZs9cfxm43nFyUiIjUJG7OLqAsoqKieP/992nXrh25ubl8/PHHdO7cmfj4eC677DKOHTtGQUEBERERRd4XERHB9u3bz7re3NxccnNzHa/T09MBsNls2Gzle7O+M+sr7/VWFaXtz9T8Zty2/Ux/yzImpt7Gyj1HaR8TVBklXjRX34bg+j26en/g+j26en+gHi9mfaVhMgyjSvzX22QyMWvWLPr371+m91177bXUrVuXL774gsOHD1OrVi2WL19Ox44dHWOeeuopFi9eTHx8fInrGDduHOPHjy82f/r06Xh7e5epHikds91Gz80P41GQzaC8/8MU2ozbGtqdXZaIiFRj2dnZ3HHHHaSlpeHv73/OsdVqD1BJLr/8cpYuXQpAaGgoFouFlJSidxhOSUkhMjLyrOsYM2YMo0ePdrxOT0+nTp069OjR47xfwLKy2WzExcXRvXt33N3dy3XdVUFZ+jObF8P6zxlgXsoL6bF82KMzVreqf1TW1bchuH6Prt4fuH6Prt4fqMcLceYITmlU+wCUkJBAVFQUAB4eHrRt25YFCxY49iTZ7XYWLFjAyJEjz7oOq9WK1WotNt/d3b3Cvukqct1VQan6az0I1n9OH7dVPJsznGV/naRni7MH1arG1bchuH6Prt4fuH6Prt4fqMeyrqe0nBqAMjMz2b17t+P13r17SUhIIDg4mLp16zJmzBgOHTrE559/DsDkyZOpX78+LVq0ICcnh48//piFCxcyb948xzpGjx7N0KFDadeuHZdffjmTJ08mKyuL4cOHV3p/ch51roCAuvikJdLNvI5Z6+pWqwAkIiLVl1MD0Jo1a+jSpYvj9ZnDUEOHDmXatGkkJSWRmJjoWJ6Xl8fjjz/OoUOH8Pb25tJLL2X+/PlF1nHbbbdx9OhRnnvuOZKTk2ndujVz584tdmK0VAFmM1x6K/z5GgMsf/LQ9k6czMojyMfD2ZWJiIiLc2oA6ty5M+c6B3vatGlFXj/11FM89dRT513vyJEjz3nIS6qQ0wGos2UjvrZUfkw4xLAr6zu7KhERcXFV/4xTcW1hTSGqNW4U0Meykm/XHnR2RSIiUgMoAInzXXobADdb/mTL4XS2HE5zckEiIuLqFIDE+VrdDCYLseY9NDId5Ns12gskIiIVSwFInM83HJr0AuAWy2J+TDhEXr5uiigiIhVHAUiqhjZ3AnCL21Iysk+xYFvKed4gIiJy4RSApGpo3B18wgkmjS7mBJ0MLSIiFUoBSKoGizvEFp4MfYtlMYt2HOFIeo6TixIREVelACRVR+vCw2BdLesJMVL5Yf0hJxckIiKuSgFIqo7wS6B2eyzY6W9ZyjdrDpzzRpkiIiIXSgFIqpbTJ0Pf5raYv45msi4x1bn1iIiIS7qgAPTZZ5/x66+/Ol4/9dRTBAYG0qlTJ/bv319uxUkN1OImcPOikekQbUy7mbkq8fzvERERKaMLCkAvvfQSXl5eAKxYsYIpU6YwceJEQkNDeeyxx8q1QKlhPP2hRX8AbrEs4ueNh0k7ZXNqSSIi4nouKAAdOHCARo0aATB79mwGDhzI/fffz8svv8yff/5ZrgVKDXT6MFg/t5WYbNnMWqdL4kVEpHxdUADy9fXl+PHjAMybN4/u3bsD4OnpyalTp8qvOqmZ6l0JQfXx4RTXm1cxfVWiToYWEZFydUEBqHv37tx7773ce++97Ny5k+uvvx6ALVu2EBMTU571SU1kMsFldwFwp/tCdqZksnb/SScXJSIiruSCAtCUKVPo2LEjR48e5fvvvyckJASAtWvXMmjQoHItUGqoNneB2Y02pp00M+1nerxOhhYRkfLjdiFvCgwM5J133ik2f/z48RddkAhQ+IDUZn1hyywGW+YzYVN9nuvbnEBvD2dXJiIiLuCC9gDNnTuXpUuXOl5PmTKF1q1bc8cdd3DypA5VSDlpdzcAN7ktxz0/i+/0fDARESknFxSAnnzySdLT0wHYtGkTjz/+ONdffz179+5l9OjR5Vqg1GAxV0NII7w5RT/Lcp0MLSIi5eaCAtDevXtp3rw5AN9//z033HADL730ElOmTGHOnDnlWqDUYCaTYy/QELf5/HU0k/i9J5xclIiIuIILCkAeHh5kZ2cDMH/+fHr06AFAcHCwY8+QSLmIHQQWK5eY9tPatEcnQ4uISLm4oAB01VVXMXr0aJ5//nlWrVpFnz59ANi5cye1a9cu1wKlhvMOhpY3ATDYMp85m5M4kpHj5KJERKS6u6AA9M477+Dm5sZ3333He++9R61atQCYM2cOvXr1KtcCRc4cBrvRbSVeBRnaCyQiIhftgi6Dr1u3Lr/88kux+W+88cZFFyRSTO32ENESa8pmBlr+5MuVITzUuREebheU30VERC4sAAEUFBQwe/Zstm3bBkCLFi248cYbsVgs5VacCHD6ZOjh8OvjDHVfwKeZvfhtUxL929RydmUiIlJNXdB/oXfv3k2zZs0YMmQIP/zwAz/88AN33nknLVq0YM+ePeVdowi0uhU8/IjhMFebN/Hp8n3OrkhERKqxCwpAjzzyCA0bNuTAgQOsW7eOdevWkZiYSP369XnkkUfKu0YR8PSHNoMBuMftdzYcSGV9om66KSIiF+aCAtDixYuZOHEiwcHBjnkhISG88sorLF68uNyKEyni8vsBE53N66lvSmKa9gKJiMgFuqAAZLVaycjIKDY/MzMTDw89q0kqSEhDaFx4z6mhlt/5dWMSKem6JF5ERMruggLQDTfcwP333098fDyGYWAYBitXruSBBx7gxhtvLO8aRf52xQMA3Ob+J172LL7SJfEiInIBLigAvfXWWzRs2JCOHTvi6emJp6cnnTp1olGjRkyePLmcSxT5Hw26QNgleBmnuMWymOnx+8nNL3B2VSIiUs1c0GXwgYGB/Pjjj+zevdtxGXyzZs1o1KhRuRYnUozJBB3+Bb88xt3u85iW2ZNfNiQxsK3uQC4iIqVX6gB0vqe8//HHH46/T5o0qVTrXLJkCa+++ipr164lKSmJWbNm0b9//7OO/+GHH3jvvfdISEggNzeXFi1aMG7cOHr27OkYM27cOMaPH1/kfU2bNmX79u2lqkmqgUtvh/njqZ2TwnXm9Xz0ZwA3XVYLk8nk7MpERKSaKHUAWr9+fanGleWXUFZWFrGxsdx9993cdNNN5x2/ZMkSunfvzksvvURgYCCffvopffv2JT4+njZt2jjGtWjRgvnz5zteu7ld8P0epSry8Ia2Q2HZm9zr/ju3J7dl8c6jdG4a7uzKRESkmih1MvjfPTzlpXfv3vTu3bvU4/95ftFLL73Ejz/+yM8//1wkALm5uREZGVleZUpV1P4+WP4OV7CZpqZEPlwSogAkIiKlVq13jdjtdjIyMorcjwhg165dREdH4+npSceOHXn55ZepW7fuWdeTm5tLbm6u43V6ejoANpsNm81WrjWfWV95r7eqqLT+fCKxNO2DeftP3Oc2hyf21GX9vuO0rOVfsZ+L629DcP0eXb0/cP0eXb0/UI8Xs77SMBmGYZTLp14kk8l03nOA/mnixIm88sorbN++nfDwwv/9z5kzh8zMTJo2bUpSUhLjx4/n0KFDbN68GT8/vxLXU9J5QwDTp0/H29v7gvqRiheUtYdrdo7HhoWrcyYTFRLEsCZ2Z5clIiJOkp2dzR133EFaWhr+/uf+D3G1DUDTp0/nvvvu48cff6Rbt25nHZeamkq9evWYNGkS99xzT4ljStoDVKdOHY4dO3beL2BZ2Ww24uLi6N69O+7u7uW67qqgsvuzfHEj5sTlfJR/PS8X3EncqKuoG1yxodXVtyG4fo+u3h+4fo+u3h+oxwuRnp5OaGhoqQJQtTwENnPmTO69916+/fbbc4YfKLxkv0mTJuzevfusY6xWK1artdh8d3f3Cvumq8h1VwWV1t/Vo+Gr5dzp/gdv5/fn85UHGN+vZcV/Lq6/DcH1e3T1/sD1e3T1/kA9lnU9pXVBN0J0phkzZjB8+HBmzJhBnz59zjs+MzOTPXv2EBUVVQnVSaVr1A3CW+BlnOJOy3y+XnOAE1l5zq5KRESqOKcGoMzMTBISEkhISABg7969JCQkkJhY+HiDMWPGMGTIEMf46dOnM2TIEF5//XU6dOhAcnIyycnJpKWlOcY88cQTLF68mH379rF8+XIGDBiAxWJh0KBBldqbVBKTCa58FID7POZh2HL4fMU+59YkIiJVnlMD0Jo1a2jTpo3jEvbRo0fTpk0bnnvuOQCSkpIcYQjgww8/JD8/nxEjRhAVFeWYHn30UceYgwcPMmjQIJo2bcqtt95KSEgIK1euJCwsrHKbk8rT8iYIqEOQkcrNliV8tnwf2Xn5zq5KRESqMKeeA9S5c2fOdQ72tGnTirxetGjRedc5c+bMi6xKqh2LO3QcCXOf5kGP35iRfR1frUzkvmsaOLsyERGpoqrdOUAiJbrsLvAKoraRTG/zKj5Y8hen8vSQVBERKZkCkLgGDx+4/H4AHrH+wrHMHKavSjzPm0REpKZSABLXcfm/wN2bpsZfdDYn8P7iPeTYtBdIRESKUwAS1+ETAu0Lb3b5lHUWRzNy+Hr1AScXJSIiVZECkLiWTo+AmxfNjd10Nm/gvUV7yM3XXiARESlKAUhci2+4Yy/QE9ZZJKef4ts1B51clIiIVDUKQOJ6rnwU3LxoaeziWvNG3lu0h7x8PSRVRET+pgAkrud/9gI9bp3FodRsvlurvUAiIvI3BSBxTZ0eATdPLjV2crV5E28t2KUrwkRExEEBSFyTXwS0uxsovCIsOf0UX6zY7+SiRESkqlAAEtd15aPg5kkrYwdXmzcxZdFu0nNszq5KRESqAAUgcV1+kY69QM94fkdadi4fLfnLyUWJiEhVoAAkru2q0eDhS1P7bq43r+KTpXs5mpHr7KpERMTJFIDEtfmGFR4KA57x/Ja8vFym/LHbyUWJiIizKQCJ67viIfAJJ8qexO2WP/gqfj8HTmQ7uyoREXEiBSBxfVZf6Pw0AE9aZ+FecIo34nY6uSgREXEmBSCpGS4bCsENCLCncp/lV2YlHGLzoTRnVyUiIk6iACQ1g8Uduj4HwIMevxFipDHhl60YhuHkwkRExBkUgKTmaN4foi/D0zjFKI/ZrNp7gjmbk51dlYiIOIECkNQcJhN0Hw/AIMt8GpgO89Jv2/SIDBGRGkgBSGqW+tdAk15YjAKe95zOwZOn+GTpXmdXJSIilUwBSGqeni+B2Z0rjXV0Nq9nyh+7SUnPcXZVIiJSiRSApOYJaQhXPAjAi17TseXlMnHuDicXJSIilUkBSGqma54EnzBqFRxiiOV3vl93kA0HUp1dlYiIVBIFIKmZPP2h61gAnrDOJpQ0nv1xMwV2XRYvIlITKABJzdV6MES1xsuexb+t37LxYBpfrtzv7KpERKQSKABJzWU2Q++JAAw0/UFL01+8+vsOktN0QrSIiKtTAJKarW4HaHULJgwm+XxOdm4eE37Z4uyqRESkgikAiXR/Hqz+NMnfyTC3OH7blMzC7SnOrkpERCqQApCIfxR0GwfAvz2+IZpjPDt7C9l5+c6tS0REKowCkAhA2+FQpwMe9lNM9P6cQ6nZvLlgl7OrEhGRCuLUALRkyRL69u1LdHQ0JpOJ2bNnn/c9ixYt4rLLLsNqtdKoUSOmTZtWbMyUKVOIiYnB09OTDh06sGrVqvIvXlyL2Qx93wSzO1fZ19DbvIqP/9zLpoNpzq5MREQqgFMDUFZWFrGxsUyZMqVU4/fu3UufPn3o0qULCQkJjBo1invvvZfff//dMebrr79m9OjRjB07lnXr1hEbG0vPnj05cuRIRbUhriK8GVz1GACveH2Bjz2Tx79NIDdfD0sVEXE1Tg1AvXv35oUXXmDAgAGlGv/+++9Tv359Xn/9dZo1a8bIkSO5+eabeeONNxxjJk2axH333cfw4cNp3rw577//Pt7e3kydOrWi2hBXcvXjENKIgIITjPX6hp0pmbwRp0NhIiKuxs3ZBZTFihUr6NatW5F5PXv2ZNSoUQDk5eWxdu1axowZ41huNpvp1q0bK1asOOt6c3Nzyc3NdbxOT08HwGazYbPZyrEDHOsr7/VWFdW/Pwum3q/j9mU/BhpxfG9uz4dLoEuTEC6rGwi4Qo/n5+o9unp/4Po9unp/oB4vZn2lUa0CUHJyMhEREUXmRUREkJ6ezqlTpzh58iQFBQUljtm+fftZ1/vyyy8zfvz4YvPnzZuHt7d3+RT/D3FxcRWy3qqiuvd3aeh11D+2kLes73Pdqf8y8ot4nrq0AA/L32Oqe4+l4eo9unp/4Po9unp/oB7LIjs7u9Rjq1UAqihjxoxh9OjRjtfp6enUqVOHHj164O/vX66fZbPZiIuLo3v37ri7u5fruqsCl+kv71qMjzsTenIv//X+ggezH2CTuQHPXn+J6/R4Dq7eo6v3B67fo6v3B+rxQpw5glMa1SoARUZGkpJS9AZ1KSkp+Pv74+XlhcViwWKxlDgmMjLyrOu1Wq1YrdZi893d3Svsm64i110VVPv+3APhpo9gag9625fQ29yGz1dCr5ZRtK8XUDikuvdYCq7eo6v3B67fo6v3B+qxrOsprWp1H6COHTuyYMGCIvPi4uLo2LEjAB4eHrRt27bIGLvdzoIFCxxjREqtTnu4qnDP4OtenxLGSR77JoETWXlOLkxERC6WUwNQZmYmCQkJJCQkAIWXuSckJJCYmAgUHpoaMmSIY/wDDzzAX3/9xVNPPcX27dt59913+eabb3jsscccY0aPHs1HH33EZ599xrZt23jwwQfJyspi+PDhldqbuIhrn4bIS/EuSOdtn6mkpOfw9A+bsRvOLkxERC6GUw+BrVmzhi5dujhenzkPZ+jQoUybNo2kpCRHGAKoX78+v/76K4899hhvvvkmtWvX5uOPP6Znz56OMbfddhtHjx7lueeeIzk5mdatWzN37txiJ0aLlIqbR+GhsA+u4YqCtQxxX8jnO7sSUM/EDc6uTURELphTA1Dnzp0xjLP/V7qkuzx37tyZ9evXn3O9I0eOZOTIkRdbnkih8Eug21j4/T+Mdf+CNfkN+TmxHncdTKNd/VBnVyciIhegWp0DJOI0HR6Exj2x2POY5jsFb+MUo77eQNop170/h4iIK1MAEikNsxkGvA8BdQi3HWKS9SMOpp7i399vPOdeTBERqZoUgERKyzsYbv4Uw+xGD1M8Q93nM2dzMh/9+ZezKxMRkTJSABIpizrtsV83FoDn3L6kpekvXpmzncU7jzq5MBERKQsFIJEysl/+AEkBbbEYNj7znYKfkcnD09ex71iWs0sTEZFSUgASKSuTifV178UIrEeILYnP/N4lKyeX+z5fQ2ZuvrOrExGRUlAAErkANjcf8m/+HNx9aG1L4EXvGew6ksnorxOw6y6JIiJVngKQyIWKaAE3fQDA7fbfGOy2iHlbU5g8f6eTCxMRkfNRABK5GM36QpdnAJjgPpV2pu28tXA336w+4OTCRETkXBSARC7WNU9AiwFYjHw+83mbWhxlzKxNLNpxxNmViYjIWSgAiVwskwn6vQuRl+KTf5LvAibjY89gxFfr2HwozdnViYhICRSARMqDhzcMmgF+0UTl7uUb/7fIzzvF8GmrOXAi29nViYjIPygAiZSXgNpw53dgDeCSvM1M9fuA4xmnGPbpKk5k5Tm7OhER+R8KQCLlKaIFDJoOFitX2lbwmvcX7DmayZCp8XpwqohIFaIAJFLeYq6CgR8BJm6y/85TXj+z+VA6wz5dpRsliohUEQpAIhWheT/oPRGAh4yZPOA5n/WJqdwzbTWn8gqcXJyIiCgAiVSUDvfDNU8B8G+mcrd1IfF7T3D/F2vIzVcIEhFxJgUgkYrU5T9w5aMAPGf6mLs8FvHnrmM8+OU6cmwKQSIizqIAJFKRTCboNh6uGAHABPNH3Ob+Jwu3H+Gez1aTnadzgkREnEEBSKSimUzQ80W4/H5MGLxieZ/bPJazbPdxhnyyivQcXR0mIlLZFIBEKoPJVHhSdNvhhSHIPIXhnotYs/8kd34cz0ndJ0hEpFIpAIlUFpMJ+kyC9vdhwmAsH/Ko1xw2Hkzj9g9XkpKe4+wKRURqDAUgkcpkNsP1r8JVowF4zPiCZ7x/YEdKOje9u5xdKRlOLlBEpGZQABKpbCYTdBsLXccCcK/9O173m8nh1CwGvrec+L+OO7lAERHXpwAk4ixXj4brXwNgoO1nvgz4kNycbO76ZBU/bzjs5OJERFybApCIM11+H9z0EZjduTJ3Cb8FTMS3IJWHZ6zn/cV7MAzD2RWKiLgkBSARZ7v0VrhrFngG0DB3K/P9J9DQdIhX5mxn9DcbdMNEEZEKoAAkUhXUvxrumQ9BMQTnHeY3n+fpZNnGrPWHuO2DFSSn6QoxEZHypAAkUlWENYF7F0Dt9ljz0/nS42X+5bWADQdT6fvOUtYlnnR2hSIiLkMBSKQq8QmFoT9Dq1swG/mMMT7hfb9ppGVkcvsHK/ly5X6dFyQiUg4UgESqGnevwhOje7wAJjO9bHHMDXiFwILjPDN7M4/OTCAzV88QExG5GApAIlWRyQSdHobB34FnIA1yt7HIfyxXWLbz04bD3Pj2UrYnpzu7ShGRaqtKBKApU6YQExODp6cnHTp0YNWqVWcd27lzZ0wmU7GpT58+jjHDhg0rtrxXr16V0YpI+WrUFe7/A8Kb4513jBkeL/Bvn1/YeyyDfu8sY+aqRB0SExG5AE4PQF9//TWjR49m7NixrFu3jtjYWHr27MmRI0dKHP/DDz+QlJTkmDZv3ozFYuGWW24pMq5Xr15Fxs2YMaMy2hEpf8EN4N75EHsHJsPOAwXT+TlwEn75J/n3D5t44Mu1nNDDVEVEysTpAWjSpEncd999DB8+nObNm/P+++/j7e3N1KlTSxwfHBxMZGSkY4qLi8Pb27tYALJarUXGBQUFVUY7IhXDwwcGvAf93gU3L1rmrGOx/7Nc7baF37ek0HPyEhbvPOrsKkVEqg03Z354Xl4ea9euZcyYMY55ZrOZbt26sWLFilKt45NPPuH222/Hx8enyPxFixYRHh5OUFAQ1113HS+88AIhISElriM3N5fc3FzH6/T0wnMrbDYbNputrG2d05n1lfd6qwpX7w+c3GPLWyEiFrcf7sbn2A4+d3uJb7368WxGf4ZOXcVdHerwZI8meHlYLupjXH07unp/4Po9unp/oB4vZn2lYTKceALB4cOHqVWrFsuXL6djx46O+U899RSLFy8mPj7+nO9ftWoVHTp0ID4+nssvv9wxf+bMmXh7e1O/fn327NnDf/7zH3x9fVmxYgUWS/FfDOPGjWP8+PHF5k+fPh1vb++L6FCkYljsubQ8+BUxxxcBcMBcm/tPjWCbUY9QT4NBDQto5O/cGkVEKlt2djZ33HEHaWlp+Puf+4dgtQ5A//rXv1ixYgUbN24857i//vqLhg0bMn/+fLp27VpseUl7gOrUqcOxY8fO+wUsK5vNRlxcHN27d8fd3b1c110VuHp/ULV6NO2ci+W3xzBlHcVududd0+1MyuqJHTN3dqjD490b42st+47eqtRjRXD1/sD1e3T1/kA9Xoj09HRCQ0NLFYCceggsNDQUi8VCSkpKkfkpKSlERkae871ZWVnMnDmTCRMmnPdzGjRoQGhoKLt37y4xAFmtVqxWa7H57u7uFfZNV5HrrgpcvT+oIj226AsxHeHnRzFv/4WRfMGNwWu59+RQvoyHP3Yc4+WbWnFNk7ALWn2V6LECuXp/4Po9unp/oB7Lup7ScupJ0B4eHrRt25YFCxY45tntdhYsWFBkj1BJvv32W3Jzc7nzzjvP+zkHDx7k+PHjREVFXXTNIlWOTyjc9iX0mwJWf+pmb2Wu1zM85zubo6npDJm6iodnrOdIup4nJiJyhtOvAhs9ejQfffQRn332Gdu2bePBBx8kKyuL4cOHAzBkyJAiJ0mf8cknn9C/f/9iJzZnZmby5JNPsnLlSvbt28eCBQvo168fjRo1omfPnpXSk0ilM5mgzZ0wIh6a9sFst3F3/jcsDRxHO/NOft5wmK6vL+az5fsosOu+QSIiTj0EBnDbbbdx9OhRnnvuOZKTk2ndujVz584lIiICgMTERMzmojltx44dLF26lHnz5hVbn8ViYePGjXz22WekpqYSHR1Njx49eP7550s8zCXiUvyj4favYOts+O1JwrP28p3HOOZbu/N02k2M/WkL3609yLgbW9C2nm4NISI1l9MDEMDIkSMZOXJkicsWLVpUbF7Tpk3PevdbLy8vfv/99/IsT6R6MZmgxQCofy3EPQvrv6RbbhwrfFfyev7NfHzoOga+t5wbY6N5uvcl1Ar0cnbFIiKVzumHwESkgngHF54XdM98iIrFIz+DMXzKn4HjaG8ufKbYda8tYtK8HWTp4aoiUsMoAIm4ujrt4b4/oM8k8AwkOmcP33pM4POgj/HPP85bC3dz3euL+H7tQew6P0hEaggFIJGawGyB9vfAw+ug7TDAxDWnFrLC50me8/2RjPQ0Hv92A/3fXcbSXcf0gFURcXkKQCI1iU8I9H0T7lsItS/HrSCbu/O/Zo3/kwy3/sGWgye485N47vp0DXsznF2siEjFUQASqYlqXQb3zINbPoOg+njnHWes6SNWBj5LT7f1xO89weTNbtz3xTq2HE5zdrUiIuVOAUikpjKZoEV/GLEKev0XvIIJy9nHB26vsiD4VdqbtrNo5zH6vLWUEdPXsedoprMrFhEpNwpAIjWdmwdc8QA8mgBXPQZunjTMTuBb6wTmBr1OO9N2ft2YRPdJixk5fR3bktKdXbGIyEVTABKRQp4B0G0cjFyDvfWd2LFwyam1fGedwJzAV2nHNn7ZmETvN//k3s9Wsy7xpLMrFhG5YFXiRogiUoUE1qGgz2T+yGtDV+sGLBtm0CxnPd9Y17PDqw1j025g/jaD+duO0KlhCCO7NKJjwxBMJpOzKxcRKTXtARKREp2yhmG/fhI8sg7a3Q1md5qeWs9Mj+dZFPQSvSxrWbHnKHd8HE//d5fz84bD5BfYnV22iEipKACJyLkF1oUb3ig8R6j9vWCxEnNqC++7v0584DPc7r6ErQeO8fCM9Vz76iI+/vMv0nNszq5aROScFIBEpHQCakOf12HUJrhqNFgDCM/ZxyuW91nn/wSPeP1OauoJXvh1G51eXsjzv2zlwIlsZ1ctIlIiBSARKRu/COg2Fh7bDN0ngG8kfnlHGG18xnrfUbzm/zXBeYf4ZOlern31D/71xRrdXVpEqhydBC0iF8bTH658FDo8ABu/hmVv4XF8FzfzIwOtP5HgeTmT0zszb0srft+SQoMwH+7sUI+BbWsT4OXu7OpFpIbTHiARuThuVrhsSOENFQd/B426Y8KgTU48n3n8l9UBY/iXdR5Hjh5lwi9b6fDSfP79/UY2H9IdpkXEebQHSETKh9kMjbsXTsf3wOqPYf2XhOYeYIxpGk/4fMNcS2cmZ3Rh5mo7M1cfoFWtAG5tV5sbY2sR4K29QiJSebQHSETKX0hD6PUyjN5WeOJ02CW4F2TTN+83FlifZEHQSwxyW8Rfh5J59scttH9pPo/MWM/SXcew23WukIhUPO0BEpGKY/UtvHS+3T2wdzHEfwg759Lw1GZedtvMBOsXLLRcyUcZnfhpQwE/bThMrUAvbm5bm5vb1qZOsLezOxARF6UAJCIVz2SCBp0Lp4xk2DAT1n+B+/Hd9CyYT0/rfI5Z6/Bl7tVMT72SNxec4s0Fu+jUMIQBbWrRs2Uk/p46RCYi5UcBSEQql18kXDWq8AqyA/Gw/gvYPIvQ3AOMYjqPes5kg2c7Ps7oQNyetizfc5z/m72Zbs3CuTG2Fp2bhuHpbnF2FyJSzSkAiYhzmExQ94rCqdd/YetsWP8lpsQVtM5ZxTvuq8jz9GGhqQOfZXdk7qZm/LYpGT9PN3q3jKRf61pc0SAEi1nPIBORslMAEhHns/pCmzsLp2O7Cg+RbfwGj7REerGQXh4LSXcP48eCK/nq1BV8s8bGN2sOEu5npW9sNNe3iqJNnUDMCkMiUkoKQCJStYQ2hq7PQpf/gwMrC2+yuGUW/jlHuYvZ3GWdzVGPOszOa8eszPZ8sjSHT5buJdLfk14tI+nVMpL2McHaMyQi56QAJCJVk9kM9ToVTr0nwq55hXuGdsURlneA+zjAfdZZHHGvxY957fgxoz3Tlp9i2vJ9hPp60KNFJL1bRnJFgxDcLbrjh4gUpQAkIlWfmxWa9S2ccjNg5++F5wztiiPcdoj7TIe4z/ojx92j+MnWnllZ7Zken8v0+EQCvd3p1iyCHs0juKpxKN4e+rEnIgpAIlLdWP2g1c2FU25m4Z6hrbNh5zxCbEkM5yeGW3/ipHskv+a355ecWGavbcJ3aw9idTNzZaNQOjcJwch1diMi4kwKQCJSfVl9oeVNhVNeFuyKg60/ws7fCbIlcyc/c6fHz+SYfVjBpfyaeymLtrdm4fYjgBvfJK+gW7NIujePoEW0PyaTzhsSqSkUgETENXj4QIv+hZPtFOyeD9t/hV1xeGYfowsr6OK+Atxhl1tjfs1pxcKkNrx1uD5vLthFpL8nnZuGcW2TMDo1CtUT60VcnAKQiLged6+/zxmy2+HwusJDZTt/h6QEGufvYpTbLka5/UC6JZAF+bHEZcby2+pWzFx9AIvZRJs6gVzbJIxrm4bRMjpAl9iLuBgFIBFxbWYz1G5XOHX5D2Qkk7/jd44s/YKo7G3456UywLSYAR6LsWNho6UZv+W04o/ENry+vxavx+0k2MeDqxuHcm2TMK5qFEq4v6ezuxKRi6QAJCI1i18kRuwdrD4UyPU9u+F+eE3h3qFd8zAf20nrgs20dt/Mf5jBcbdwFtlasvhUc5YltODHhMMANAr3pVPDEDo1DOGKBiEEens4uSkRKasqcXOMKVOmEBMTg6enJx06dGDVqlVnHTtt2jRMJlORydOz6P/GDMPgueeeIyoqCi8vL7p168auXbsqug0RqW4sHtDgWuj5IoxcDY8kQO9XoVE3sFgJyT/CQNNC3vJ4hzWeD/KHz394xu0Lah/7k+9W7OCBL9fR5vk4bnj7T176bRt/7DhCVm6+s7sSkVJw+h6gr7/+mtGjR/P+++/ToUMHJk+eTM+ePdmxYwfh4eElvsff358dO3Y4Xv/zyo2JEyfy1ltv8dlnn1G/fn2effZZevbsydatW4uFJRERh+D60OH+wikvC/avgL/+gL8WQ8om6hfs4163fdzLHAqwsNXSlPk5zVh2uAVTDzXiwyVuuJlNxNYJpFPDEDo2CKF13UDde0ikCnL6v8pJkyZx3333MXz4cADef/99fv31V6ZOncq///3vEt9jMpmIjIwscZlhGEyePJlnnnmGfv36AfD5558TERHB7Nmzuf322yumERFxLR4+0Lhb4QSQdQz2Li4MQ38twpK6n1YFW2nlvpXH+J5csxcbacKyvIasOdCUqfsb8fZCL9zMJlrUCuDymCDaxQTTPiaYYB8dMhNxNqcGoLy8PNauXcuYMWMc88xmM926dWPFihVnfV9mZib16tXDbrdz2WWX8dJLL9GiRQsA9u7dS3JyMt26dXOMDwgIoEOHDqxYsaLEAJSbm0tu7t93RUtPTwfAZrNhs9kuus//dWZ95b3eqsLV+wP16AouqD+PAGh6Y+EEcHIfpn1LMO9djGn/UqzZx2nPBtq7bQDAjpndpnqssDVi7aGm/HagMR/9GQqYaBDqQ/uYQNrWDaJdTCC1A73K/R5E2obVn3q88PWVhskwDKNcPvUCHD58mFq1arF8+XI6duzomP/UU0+xePFi4uPji71nxYoV7Nq1i0svvZS0tDRee+01lixZwpYtW6hduzbLly/nyiuv5PDhw0RFRTned+utt2Iymfj666+LrXPcuHGMHz++2Pzp06fj7e1dTt2KiMsy7PjnHCQ4cxfBWbsIztqJT96xYsOOEMSqgqassTdhjb0J24x6FGAhwN2ggb9BjJ9BPV+D2j7gXiXO0BSpXrKzs7njjjtIS0vD39//nGOdfgisrDp27FgkLHXq1IlmzZrxwQcf8Pzzz1/QOseMGcPo0aMdr9PT06lTpw49evQ47xewrGw2G3FxcXTv3h13d9e70Zqr9wfq0RVURn+2jCRMB1dhOrAK08F4TMmbCDdOcoNlJTdYVgKQg5X19oastjdh7cmmzD/emAy8cbeYaBbpR2ztAGLrBNK6dgB1g8u2l0jbsPpTj2V35ghOaTg1AIWGhmKxWEhJSSkyPyUl5azn+PyTu7s7bdq0Yffu3QCO96WkpBTZA5SSkkLr1q1LXIfVasVqtZa47or6pqvIdVcFrt4fqEdXUKH9BdctnC69ufB1XhYcWgcHVkJiPBxchWdOGh3NW+lo3gqAHRN7qEN8fmPWJDVl8eHGfBEfDpgI8nandZ1A2tQNonWdQC6tHVCqy++1Das/9Vi29ZSWUwOQh4cHbdu2ZcGCBfTv3x8Au93OggULGDlyZKnWUVBQwKZNm7j++usBqF+/PpGRkSxYsMAReNLT04mPj+fBBx+siDZERM7PwwfqX104QeEdqo9uLwxEB1ZB4krMJ/fSmEQauyVyJwsAyDT5srEghg159dm4qwHf7KzPJCMMMFE7yItWtQJoWSuAFtH+tKoVQIhv8f/MiUhxTj8ENnr0aIYOHUq7du24/PLLmTx5MllZWY6rwoYMGUKtWrV4+eWXAZgwYQJXXHEFjRo1IjU1lVdffZX9+/dz7733AoVXiI0aNYoXXniBxo0bOy6Dj46OdoQsERGnM5shonnh1O7uwnkZKXAgvnBKXAnJm/AtyKSTeTOdzJsdb03Djw0FMWzMaMDmrfWZuaUeB4zCPUVRAZ60rBVAs0hfTp000S4jl1rBrr33QORCOD0A3XbbbRw9epTnnnuO5ORkWrduzdy5c4mIiAAgMTERs/nvswFPnjzJfffdR3JyMkFBQbRt25bly5fTvHlzx5innnqKrKws7r//flJTU7nqqquYO3eu7gEkIlWbXwQ0v7FwAsjPg6Pb4HACHF5fOKVsIcCewTWWTVzDJsdbM/Fmi70uW7PqsXVHPeZvi2GXUZuPti8mzM9Ky2h/WtYK4JJIf5pG+hET4o2bRWdaS83l9AAEMHLkyLMe8lq0aFGR12+88QZvvPHGOddnMpmYMGECEyZMKK8SRUQqn5sHRMUWTm2HFs7Lz4WULX8HouSNcGQbvgXZdDBvp4N5u+PtNizsstdmy6l6bN1dj1U7Y/jcqEMavljdzDSO8KVphD/NovxoGlk4hflay/2SfJGqqEoEIBERKSU3K9S6rHA6o8AGR3dA8qbT00aM5I2456TR3Lyf5ub9RVaRYgSxw16b7Sl12Zlcm9nr67DLqE0uHgT7eHDJ6TB0SaQfl0T60zjCV3ezFpej72gRkerO4g6RLQsnBgGQn5fHHz9+wXXNQnE7uvXvcJSWSITpJBGWk0UOoRVgJtEezva8OuzeX4vde6P53KjFX0YUp/CkVqAXjcJ9HVPj03/qQbBSXSkAiYi4IpOJUx6hGE2vh5b9/p6fk1549dmRrZCytfDPI1uxZB+nvjmZ+iQDq4us6qARyu6sWuz+K5rde2rxvT2a3UYtUvEj1Nfj72AU5kujcD/qh/kQ5e+J2axDaVJ1KQCJiNQknv5Q5/LC6QzDgMwjp8PQNji2A47uLPwz+zi1TceobTlGZzYUWdUxw589edHsTqzFnv3RLDSi+dBeiySC8XBzIybEh5hQb+qH+lL/9J8xod46z0iqBAUgEZGazmQqvALNLwIadim6LOv46UC0A47t/PvPtAOEmtIJNaUXOfEaINdwJ9EIZ/+JcPYfj2Tf9gh+MyLYZ0RwyAjF0+pJTKg3MSE+NAj1ISbUh3ohPtQN9ibU10PhSCqFApCIiJydTwj4dIJ6nYrOz82E47v+3lN0Jhid+Aur3UZj0yEac6jY6vINM4eMUPYfiWBfSiT7jXB+MyLZZ0RwwAjH7O5FnWAv6gZ7UzvIm7rBhVOdYG/qBHvpZGwpN/pOEhGRsrP6QnSbwul/FeRD+kE48dfpae/p6S84uRe3/BzqmY5QjyNFTsI+I8kI5tDJUA6eCOWQEcouI4xFRigHjTAOGaH4+fpSJ9ib2oGe5B43k7X2EPXD/Kgd5EWEvycebrq3kZSOApCIiJQfixsExRRODa8rusxuh8zkvwPR6VDkCEq56USZThBlOkE7dpa4+qO2AA4lh3IwKYyDRihbf15A3OmAdJhQfP0CiA70IjrQi1qBXkQFeDr+Hh3oRZC3uw6xCaAAJCIilcVsBv/owinmyqLLDAOyj8PJ/ZCWCKmJkHqg8M+003/mZRJmSiPMlEZr9pT4Eam5PiQlh5CUFEySEUKSEcxmI4Qkgkk2gjnpFkpQYFBhIAooDEVRgZ5EBXgS4V84+Xu6KSTVAApAIiLifCYT+IQWTrXbFl9uGHDqpCMMFZzYx76EJdQPcsOcfgAj9QCmnFQCTVkEmrJoRuJZPyo13YektMJwlGwEk2iEsIpgx+sMtyC8/UIID/Ai0t+TCH+rIxxFBngS4edJuL8VT3dLBX5BpKIpAImISNVnMoF3cOEUFYvdZmPzsbrUvf56zO7umKDwHkfphwqntEOQfrjwfKT0w5B2CCP9EKa8zFKFpNwsd45mBXDkUCBHjUCOGgHsMoJYTgBHjMJ5OZ5huPtHEBLgS+TpkBTuZyXU10qYX+EU6mvFx6pftVWRtoqIiLgGT//CKbxZiYsLQ1KaIxAVhqV/hKTMZEw5aVhNNmpzjNqmY2f/PANIg+Opfhw1AguDEQHsN4JYY5wOSgSS4RaM4RuBl28QYX6ejmD0d0jycMzTXqXKowAkIiI1h2dA4XSukGQ7VXhjyMyUwikj+fTrwj+NjGSMjBRM2Ucx2fMJMWUQYsrgEg6c/XOzITfLjZMpfpww/Dlm+HMCPw4Y/iSc/vsJw59s9yDsXiGYfELx8Aki66SZLfN2EubnRYhv4bPaQnysBPt6EOLjocB0ERSARERE/pe7FwTVK5xKYDo9YbfDqROnA1LK/0xHICMZIzMF43R4MudlYDXlE8lJIk0nz/35OYWT7ZiFk/hxPL4wHJ3Aj32GP+tO//2YEUC2WwB27xDwCcPTN4QgX0+CfT0I9vYgyNuDAG93grw9CPJ2J9Dbg0Bvd9wtulUAKACJiIhcGLP57xO3aVlssSMoAeRlQ/YxyDpWeLVb1rH/eX0MI+soBRnHMLKOYT51HIstE3dTAeGkEm5KPXcdpwNTwTETJ/HjhOFHKr6kGT6k48Mhw4c0w4c0Cv/Mc/fHsPpj8grC7BOEh08wPr6FD7YNOh2YAk8HpjPByRWvjFMAEhERqWge3uBRFwLrlrjYxD9+IdtysKWnsGzebK66rBluuamFYSnr6OnAdIyCzGMYmccwnTqGW146FpNBKIWPJzmvvNNTWuHLXMPdEZDS8CHd8GYvPiScfp2BL/nu/uRbAzA8AzB5BWHxDsTNOwgvH38CvD0I8HLH38sNfy93Ak5P/l7u+FmrZnhSABIREalq3D3BP5o07xiMBl3A3b3I4mKBqcBWdM/SqZNwKhVyUgtP/D6Viv1UKgVZJyk4vcySm4ZbXjom7FhNtvPvbTJw7G3if4blGRbST4enM3/uPh2i0iicl+fuT75HAHZrAHgWhqcOLRvTMzamPL5aF0QBSEREpLqzuINfZOF0FubTU5EoZbdDXmZhUDoTmP7xZ352KrbMExRkn8Q4lYo5JxVLXjoetnTMRj4epoLz73kygNzT0+lha3IHQezbF97zRVIAEhERqanM5r9vH3CWw3NunCUsGAbkZRXuYTpLgMrPPkl+5gkKTqVinErFlFO458ndlk5UZFQFNVU6CkAiIiJSdiZT4UNxrb4QUKvEIWcNT0Atux1bQUGFlXc+uhZOREREKp/ZuRFEAUhERERqHAUgERERqXEUgERERKTGUQASERGRGkcBSERERGocBSARERGpcRSAREREpMZRABIREZEaRwFIREREahwFIBEREalxFIBERESkxlEAEhERkRpHAUhERERqnLM9pb5GMwwDgPT09HJft81mIzs7m/T0dNzd3ct9/c7m6v2BenQFrt4fuH6Prt4fqMcLceb39pnf4+eiAFSCjIwMAOrUqePkSkRERKSsMjIyCAgIOOcYk1GamFTD2O12Dh8+jJ+fHyaTqVzXnZ6eTp06dThw4AD+/v7luu6qwNX7A/XoCly9P3D9Hl29P1CPF8IwDDIyMoiOjsZsPvdZPtoDVAKz2Uzt2rUr9DP8/f1d9hsaXL8/UI+uwNX7A9fv0dX7A/VYVufb83OGToIWERGRGkcBSERERGocBaBKZrVaGTt2LFar1dmlVAhX7w/Uoytw9f7A9Xt09f5APVY0nQQtIiIiNY72AImIiEiNowAkIiIiNY4CkIiIiNQ4CkAiIiJS4ygAVaIpU6YQExODp6cnHTp0YNWqVc4u6YK8/PLLtG/fHj8/P8LDw+nfvz87duwoMqZz586YTKYi0wMPPOCkistu3Lhxxeq/5JJLHMtzcnIYMWIEISEh+Pr6MnDgQFJSUpxYcdnFxMQU69FkMjFixAigem7DJUuW0LdvX6KjozGZTMyePbvIcsMweO6554iKisLLy4tu3bqxa9euImNOnDjB4MGD8ff3JzAwkHvuuYfMzMxK7OLsztWfzWbj6aefplWrVvj4+BAdHc2QIUM4fPhwkXWUtN1feeWVSu7k7M63DYcNG1as/l69ehUZU123IVDiv0mTycSrr77qGFPVt2FpfkeU5mdoYmIiffr0wdvbm/DwcJ588kny8/PLrU4FoEry9ddfM3r0aMaOHcu6deuIjY2lZ8+eHDlyxNmlldnixYsZMWIEK1euJC4uDpvNRo8ePcjKyioy7r777iMpKckxTZw40UkVX5gWLVoUqX/p0qWOZY899hg///wz3377LYsXL+bw4cPcdNNNTqy27FavXl2kv7i4OABuueUWx5jqtg2zsrKIjY1lypQpJS6fOHEib731Fu+//z7x8fH4+PjQs2dPcnJyHGMGDx7Mli1biIuL45dffmHJkiXcf//9ldXCOZ2rv+zsbNatW8ezzz7LunXr+OGHH9ixYwc33nhjsbETJkwosl0ffvjhyii/VM63DQF69epVpP4ZM2YUWV5dtyFQpK+kpCSmTp2KyWRi4MCBRcZV5W1Ymt8R5/sZWlBQQJ8+fcjLy2P58uV89tlnTJs2jeeee678CjWkUlx++eXGiBEjHK8LCgqM6Oho4+WXX3ZiVeXjyJEjBmAsXrzYMe/aa681Hn30UecVdZHGjh1rxMbGlrgsNTXVcHd3N7799lvHvG3bthmAsWLFikqqsPw9+uijRsOGDQ273W4YRvXfhoAxa9Ysx2u73W5ERkYar776qmNeamqqYbVajRkzZhiGYRhbt241AGP16tWOMXPmzDFMJpNx6NChSqu9NP7ZX0lWrVplAMb+/fsd8+rVq2e88cYbFVtcOSmpx6FDhxr9+vU763tcbRv269fPuO6664rMq07b0DCK/44ozc/Q3377zTCbzUZycrJjzHvvvWf4+/sbubm55VKX9gBVgry8PNauXUu3bt0c88xmM926dWPFihVOrKx8pKWlARAcHFxk/ldffUVoaCgtW7ZkzJgxZGdnO6O8C7Zr1y6io6Np0KABgwcPJjExEYC1a9dis9mKbM9LLrmEunXrVtvtmZeXx5dffsndd99d5AHA1X0b/q+9e/eSnJxcZLsFBATQoUMHx3ZbsWIFgYGBtGvXzjGmW7dumM1m4uPjK73mi5WWlobJZCIwMLDI/FdeeYWQkBDatGnDq6++Wq6HFSrDokWLCA8Pp2nTpjz44IMcP37cscyVtmFKSgq//vor99xzT7Fl1Wkb/vN3RGl+hq5YsYJWrVoRERHhGNOzZ0/S09PZsmVLudSlh6FWgmPHjlFQUFBkQwJERESwfft2J1VVPux2O6NGjeLKK6+kZcuWjvl33HEH9erVIzo6mo0bN/L000+zY8cOfvjhBydWW3odOnRg2rRpNG3alKSkJMaPH8/VV1/N5s2bSU5OxsPDo9gvlYiICJKTk51T8EWaPXs2qampDBs2zDGvum/DfzqzbUr6d3hmWXJyMuHh4UWWu7m5ERwcXO22bU5ODk8//TSDBg0q8pDJRx55hMsuu4zg4GCWL1/OmDFjSEpKYtKkSU6stvR69erFTTfdRP369dmzZw//+c9/6N27NytWrMBisbjUNvzss8/w8/Mrdni9Om3Dkn5HlOZnaHJycon/Vs8sKw8KQHJRRowYwebNm4ucHwMUOd7eqlUroqKi6Nq1K3v27KFhw4aVXWaZ9e7d2/H3Sy+9lA4dOlCvXj2++eYbvLy8nFhZxfjkk0/o3bs30dHRjnnVfRvWZDabjVtvvRXDMHjvvfeKLBs9erTj75deeikeHh7861//4uWXX64Wj1y4/fbbHX9v1aoVl156KQ0bNmTRokV07drViZWVv6lTpzJ48GA8PT2LzK9O2/BsvyOqAh0CqwShoaFYLJZiZ7inpKQQGRnppKou3siRI/nll1/4448/qF279jnHdujQAYDdu3dXRmnlLjAwkCZNmrB7924iIyPJy8sjNTW1yJjquj3379/P/Pnzuffee885rrpvwzPb5lz/DiMjI4tdmJCfn8+JEyeqzbY9E372799PXFxckb0/JenQoQP5+fns27evcgosZw0aNCA0NNTxfekK2xDgzz//ZMeOHef9dwlVdxue7XdEaX6GRkZGlvhv9cyy8qAAVAk8PDxo27YtCxYscMyz2+0sWLCAjh07OrGyC2MYBiNHjmTWrFksXLiQ+vXrn/c9CQkJAERFRVVwdRUjMzOTPXv2EBUVRdu2bXF3dy+yPXfs2EFiYmK13J6ffvop4eHh9OnT55zjqvs2rF+/PpGRkUW2W3p6OvHx8Y7t1rFjR1JTU1m7dq1jzMKFC7Hb7Y4AWJWdCT+7du1i/vz5hISEnPc9CQkJmM3mYoeNqouDBw9y/Phxx/dldd+GZ3zyySe0bduW2NjY846tatvwfL8jSvMztGPHjmzatKlImD0T6Js3b15uhUolmDlzpmG1Wo1p06YZW7duNe6//34jMDCwyBnu1cWDDz5oBAQEGIsWLTKSkpIcU3Z2tmEYhrF7925jwoQJxpo1a4y9e/caP/74o9GgQQPjmmuucXLlpff4448bixYtMvbu3WssW7bM6NatmxEaGmocOXLEMAzDeOCBB4y6desaCxcuNNasWWN07NjR6Nixo5OrLruCggKjbt26xtNPP11kfnXdhhkZGcb69euN9evXG4AxadIkY/369Y6roF555RUjMDDQ+PHHH42NGzca/fr1M+rXr2+cOnXKsY5evXoZbdq0MeLj442lS5cajRs3NgYNGuSsloo4V395eXnGjTfeaNSuXdtISEgo8m/zzFUzy5cvN9544w0jISHB2LNnj/Hll18aYWFhxpAhQ5zc2d/O1WNGRobxxBNPGCtWrDD27t1rzJ8/37jsssuMxo0bGzk5OY51VNdteEZaWprh7e1tvPfee8XeXx224fl+RxjG+X+G5ufnGy1btjR69OhhJCQkGHPnzjXCwsKMMWPGlFudCkCV6O233zbq1q1reHh4GJdffrmxcuVKZ5d0QYASp08//dQwDMNITEw0rrnmGiM4ONiwWq1Go0aNjCeffNJIS0tzbuFlcNtttxlRUVGGh4eHUatWLeO2224zdu/e7Vh+6tQp46GHHjKCgoIMb29vY8CAAUZSUpITK74wv//+uwEYO3bsKDK/um7DP/74o8TvzaFDhxqGUXgp/LPPPmtEREQYVqvV6Nq1a7Hejx8/bgwaNMjw9fU1/P39jeHDhxsZGRlO6Ka4c/W3d+/es/7b/OOPPwzDMIy1a9caHTp0MAICAgxPT0+jWbNmxksvvVQkPDjbuXrMzs42evToYYSFhRnu7u5GvXr1jPvuu6/YfySr6zY844MPPjC8vLyM1NTUYu+vDtvwfL8jDKN0P0P37dtn9O7d2/Dy8jJCQ0ONxx9/3LDZbOVWp+l0sSIiIiI1hs4BEhERkRpHAUhERERqHAUgERERqXEUgERERKTGUQASERGRGkcBSERERGocBSARERGpcRSARETOwmQyMXv2bGeXISIVQAFIRKqkYcOGYTKZik29evVydmki4gLcnF2AiMjZ9OrVi08//bTIPKvV6qRqRMSVaA+QiFRZVquVyMjIIlNQUBBQeHjqvffeo3fv3nh5edGgQQO+++67Iu/ftGkT1113HV5eXoSEhHD//feTmZlZZMzUqVNp0aIFVquVqKgoRo4cWWT5sWPHGDBgAN7e3jRu3JiffvrJsezkyZMMHjyYsLAwvLy8aNy4cbHAJiJVkwKQiFRbzz77LAMHDmTDhg0MHjyY22+/nW3btgGQlZVFz549CQoKYvXq1Xz77bfMnz+/SMB57733GDFiBPfffz+bNm3ip59+olGjRkU+Y/z48dx6661s3LiR66+/nsGDB3PixAnH52/dupU5c+awbds23nvvPUJDQyvvCyAiF67cHqsqIlKOhg4dalgsFsPHx6fI9OKLLxqGUfjE6QceeKDIezp06GA8+OCDhmEYxocffmgEBQUZmZmZjuW//vqrYTabHU8Pj46ONv7v//7vrDUAxjPPPON4nZmZaQDGnDlzDMMwjL59+xrDhw8vn4ZFpFLpHCARqbK6dOnCe++9V2RecHCw4+8dO3Yssqxjx44kJCQAsG3bNmJjY/Hx8XEsv/LKK7Hb7ezYsQOTycThw4fp2rXrOWu49NJLHX/38fHB39+fI0eOAPDggw8ycOBA1q1bR48ePejfvz+dOnW6oF5FpHIpAIlIleXj41PskFR58fLyKtU4d3f3Iq9NJhN2ux2A3r17s3//fn777Tfi4uLo2rUrI0aM4LXXXiv3ekWkfOkcIBGptlauXFnsdbNmzQBo1qwZGzZsICsry7F82bJlmM1mmjZtip+fHzExMSxYsOCiaggLC2Po0KF8+eWXTJ48mQ8//PCi1icilUN7gESkysrNzSU5ObnIPDc3N8eJxt9++y3t2rXjqquu4quvvmLVqlV88sknAAwePJixY8cydOhQxo0bx9GjR3n44Ye56667iIiIAGDcuHE88MADhIeH07t3bzIyMli2bBkPP/xwqep77rnnaNu2LS1atCA3N5dffvnFEcBEpGpTABKRKmvu3LlERUUVmde0aVO2b98OFF6hNXPmTB566CGioqKYMWMGzZs3B8Db25vff/+dRx99lPbt2+Pt7c3AgQOZNGmSY11Dhw4lJyeHN954gyeeeILQ0FBuvvnmUtfn4eHBmDFj2LdvH15eXlx99dXMnDmzHDoXkYpmMgzDcHYRIiJlZTKZmDVrFv3793d2KSJSDekcIBEREalxFIBERESkxtE5QCJSLenovYhcDO0BEhERkRpHAUhERERqHAUgERERqXEUgERERKTGUQASERGRGkcBSERERGocBSARERGpcRSAREREpMZRABIREZEa5/8BcTfUf/SI9EYAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9067 - loss: 0.3484\n","Loss on test data: 0.3573007583618164\n","Accuracy on test data: 0.9021999835968018\n"]}]},{"cell_type":"code","source":["model_3l_100_100 = Sequential()\n","model_3l_100_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n","model_3l_100_100.add(Dense(units=100, activation='sigmoid'))\n","model_3l_100_100.add(Dense(units=num_classes, activation='softmax'))\n","model_3l_100_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","model_3l_100_100.summary()\n","\n","H_3l_100_100=model_3l_100_100.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"PsdALlCkkCAE","executionInfo":{"status":"ok","timestamp":1760538395520,"user_tz":-180,"elapsed":91053,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"20637a50-6d27-43c8-a4e8-34909096a6f8"},"execution_count":20,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_2\"\u001b[0m\n"],"text/html":["
Model: \"sequential_2\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_3 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_3 (Dense)                 │ (None, 100)            │        78,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_4 (Dense)                 │ (None, 100)            │        10,100 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_5 (Dense)                 │ (None, 10)             │         1,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n"],"text/html":["
 Total params: 89,610 (350.04 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n"],"text/html":["
 Trainable params: 89,610 (350.04 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 16ms/step - accuracy: 0.0956 - loss: 2.4088 - val_accuracy: 0.1248 - val_loss: 2.2986\n","Epoch 2/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.1356 - loss: 2.2938 - val_accuracy: 0.1328 - val_loss: 2.2876\n","Epoch 3/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.1345 - loss: 2.2842 - val_accuracy: 0.1958 - val_loss: 2.2788\n","Epoch 4/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.1998 - loss: 2.2756 - val_accuracy: 0.1888 - val_loss: 2.2696\n","Epoch 5/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.2143 - loss: 2.2666 - val_accuracy: 0.2223 - val_loss: 2.2602\n","Epoch 6/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.2532 - loss: 2.2573 - val_accuracy: 0.2412 - val_loss: 2.2508\n","Epoch 7/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.2566 - loss: 2.2467 - val_accuracy: 0.3153 - val_loss: 2.2401\n","Epoch 8/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.3149 - loss: 2.2370 - val_accuracy: 0.3047 - val_loss: 2.2296\n","Epoch 9/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.3226 - loss: 2.2261 - val_accuracy: 0.3795 - val_loss: 2.2180\n","Epoch 10/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.3815 - loss: 2.2137 - val_accuracy: 0.4060 - val_loss: 2.2053\n","Epoch 11/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4106 - loss: 2.2015 - val_accuracy: 0.4135 - val_loss: 2.1923\n","Epoch 12/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4130 - loss: 2.1879 - val_accuracy: 0.4558 - val_loss: 2.1777\n","Epoch 13/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.4583 - loss: 2.1741 - val_accuracy: 0.4448 - val_loss: 2.1620\n","Epoch 14/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4634 - loss: 2.1575 - val_accuracy: 0.4672 - val_loss: 2.1449\n","Epoch 15/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4745 - loss: 2.1393 - val_accuracy: 0.4698 - val_loss: 2.1260\n","Epoch 16/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.4846 - loss: 2.1209 - val_accuracy: 0.5052 - val_loss: 2.1054\n","Epoch 17/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5100 - loss: 2.0989 - val_accuracy: 0.5200 - val_loss: 2.0831\n","Epoch 18/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5247 - loss: 2.0773 - val_accuracy: 0.5228 - val_loss: 2.0589\n","Epoch 19/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5389 - loss: 2.0539 - val_accuracy: 0.5345 - val_loss: 2.0324\n","Epoch 20/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5446 - loss: 2.0271 - val_accuracy: 0.5332 - val_loss: 2.0035\n","Epoch 21/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5470 - loss: 1.9937 - val_accuracy: 0.5487 - val_loss: 1.9725\n","Epoch 22/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5619 - loss: 1.9646 - val_accuracy: 0.5780 - val_loss: 1.9396\n","Epoch 23/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5808 - loss: 1.9312 - val_accuracy: 0.5700 - val_loss: 1.9043\n","Epoch 24/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5773 - loss: 1.8949 - val_accuracy: 0.5888 - val_loss: 1.8672\n","Epoch 25/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.5928 - loss: 1.8599 - val_accuracy: 0.5952 - val_loss: 1.8283\n","Epoch 26/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5992 - loss: 1.8198 - val_accuracy: 0.5955 - val_loss: 1.7883\n","Epoch 27/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6093 - loss: 1.7795 - val_accuracy: 0.6092 - val_loss: 1.7468\n","Epoch 28/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6150 - loss: 1.7372 - val_accuracy: 0.6313 - val_loss: 1.7045\n","Epoch 29/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6347 - loss: 1.6975 - val_accuracy: 0.6277 - val_loss: 1.6621\n","Epoch 30/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6324 - loss: 1.6488 - val_accuracy: 0.6447 - val_loss: 1.6193\n","Epoch 31/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6459 - loss: 1.6086 - val_accuracy: 0.6617 - val_loss: 1.5764\n","Epoch 32/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.6590 - loss: 1.5698 - val_accuracy: 0.6603 - val_loss: 1.5341\n","Epoch 33/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6596 - loss: 1.5230 - val_accuracy: 0.6767 - val_loss: 1.4926\n","Epoch 34/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6722 - loss: 1.4868 - val_accuracy: 0.6792 - val_loss: 1.4517\n","Epoch 35/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.6761 - loss: 1.4449 - val_accuracy: 0.6887 - val_loss: 1.4122\n","Epoch 36/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6853 - loss: 1.4070 - val_accuracy: 0.7003 - val_loss: 1.3734\n","Epoch 37/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.6949 - loss: 1.3670 - val_accuracy: 0.7037 - val_loss: 1.3363\n","Epoch 38/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7021 - loss: 1.3312 - val_accuracy: 0.7097 - val_loss: 1.3003\n","Epoch 39/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7062 - loss: 1.2970 - val_accuracy: 0.7180 - val_loss: 1.2658\n","Epoch 40/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.7130 - loss: 1.2644 - val_accuracy: 0.7248 - val_loss: 1.2323\n","Epoch 41/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7208 - loss: 1.2290 - val_accuracy: 0.7338 - val_loss: 1.2002\n","Epoch 42/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7276 - loss: 1.1976 - val_accuracy: 0.7353 - val_loss: 1.1697\n","Epoch 43/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7324 - loss: 1.1669 - val_accuracy: 0.7400 - val_loss: 1.1404\n","Epoch 44/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7374 - loss: 1.1391 - val_accuracy: 0.7457 - val_loss: 1.1123\n","Epoch 45/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7401 - loss: 1.1130 - val_accuracy: 0.7498 - val_loss: 1.0856\n","Epoch 46/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7476 - loss: 1.0865 - val_accuracy: 0.7565 - val_loss: 1.0599\n","Epoch 47/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7517 - loss: 1.0605 - val_accuracy: 0.7595 - val_loss: 1.0357\n","Epoch 48/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7587 - loss: 1.0354 - val_accuracy: 0.7635 - val_loss: 1.0127\n","Epoch 49/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7616 - loss: 1.0163 - val_accuracy: 0.7722 - val_loss: 0.9899\n","Epoch 50/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.7666 - loss: 0.9910 - val_accuracy: 0.7743 - val_loss: 0.9688\n","Epoch 51/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.7686 - loss: 0.9709 - val_accuracy: 0.7802 - val_loss: 0.9484\n","Epoch 52/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - accuracy: 0.7719 - loss: 0.9559 - val_accuracy: 0.7815 - val_loss: 0.9294\n","Epoch 53/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7772 - loss: 0.9298 - val_accuracy: 0.7840 - val_loss: 0.9113\n","Epoch 54/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7815 - loss: 0.9163 - val_accuracy: 0.7882 - val_loss: 0.8934\n","Epoch 55/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7820 - loss: 0.8962 - val_accuracy: 0.7917 - val_loss: 0.8766\n","Epoch 56/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7885 - loss: 0.8800 - val_accuracy: 0.7908 - val_loss: 0.8609\n","Epoch 57/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7863 - loss: 0.8668 - val_accuracy: 0.7953 - val_loss: 0.8454\n","Epoch 58/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7946 - loss: 0.8518 - val_accuracy: 0.7987 - val_loss: 0.8307\n","Epoch 59/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7962 - loss: 0.8348 - val_accuracy: 0.8012 - val_loss: 0.8168\n","Epoch 60/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7966 - loss: 0.8200 - val_accuracy: 0.8032 - val_loss: 0.8035\n","Epoch 61/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7984 - loss: 0.8130 - val_accuracy: 0.8082 - val_loss: 0.7905\n","Epoch 62/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8032 - loss: 0.7945 - val_accuracy: 0.8122 - val_loss: 0.7782\n","Epoch 63/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8048 - loss: 0.7857 - val_accuracy: 0.8138 - val_loss: 0.7663\n","Epoch 64/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8084 - loss: 0.7740 - val_accuracy: 0.8152 - val_loss: 0.7550\n","Epoch 65/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8081 - loss: 0.7649 - val_accuracy: 0.8160 - val_loss: 0.7442\n","Epoch 66/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8135 - loss: 0.7472 - val_accuracy: 0.8195 - val_loss: 0.7335\n","Epoch 67/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8141 - loss: 0.7418 - val_accuracy: 0.8203 - val_loss: 0.7232\n","Epoch 68/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8169 - loss: 0.7308 - val_accuracy: 0.8238 - val_loss: 0.7134\n","Epoch 69/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8181 - loss: 0.7193 - val_accuracy: 0.8268 - val_loss: 0.7040\n","Epoch 70/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8253 - loss: 0.7041 - val_accuracy: 0.8278 - val_loss: 0.6949\n","Epoch 71/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8230 - loss: 0.7057 - val_accuracy: 0.8317 - val_loss: 0.6861\n","Epoch 72/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8245 - loss: 0.6956 - val_accuracy: 0.8342 - val_loss: 0.6777\n","Epoch 73/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8223 - loss: 0.6889 - val_accuracy: 0.8343 - val_loss: 0.6696\n","Epoch 74/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8270 - loss: 0.6785 - val_accuracy: 0.8370 - val_loss: 0.6616\n","Epoch 75/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8287 - loss: 0.6728 - val_accuracy: 0.8375 - val_loss: 0.6538\n","Epoch 76/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8317 - loss: 0.6667 - val_accuracy: 0.8392 - val_loss: 0.6467\n","Epoch 77/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8314 - loss: 0.6543 - val_accuracy: 0.8418 - val_loss: 0.6393\n","Epoch 78/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8329 - loss: 0.6478 - val_accuracy: 0.8428 - val_loss: 0.6322\n","Epoch 79/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8329 - loss: 0.6435 - val_accuracy: 0.8437 - val_loss: 0.6258\n","Epoch 80/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8359 - loss: 0.6325 - val_accuracy: 0.8445 - val_loss: 0.6190\n","Epoch 81/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8403 - loss: 0.6259 - val_accuracy: 0.8453 - val_loss: 0.6126\n","Epoch 82/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8422 - loss: 0.6203 - val_accuracy: 0.8473 - val_loss: 0.6065\n","Epoch 83/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8411 - loss: 0.6140 - val_accuracy: 0.8480 - val_loss: 0.6004\n","Epoch 84/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8444 - loss: 0.6070 - val_accuracy: 0.8492 - val_loss: 0.5946\n","Epoch 85/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8426 - loss: 0.6070 - val_accuracy: 0.8512 - val_loss: 0.5888\n","Epoch 86/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8435 - loss: 0.5976 - val_accuracy: 0.8510 - val_loss: 0.5834\n","Epoch 87/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8458 - loss: 0.5923 - val_accuracy: 0.8528 - val_loss: 0.5779\n","Epoch 88/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8484 - loss: 0.5901 - val_accuracy: 0.8532 - val_loss: 0.5728\n","Epoch 89/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8492 - loss: 0.5813 - val_accuracy: 0.8547 - val_loss: 0.5676\n","Epoch 90/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8492 - loss: 0.5762 - val_accuracy: 0.8553 - val_loss: 0.5628\n","Epoch 91/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8491 - loss: 0.5718 - val_accuracy: 0.8558 - val_loss: 0.5577\n","Epoch 92/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8513 - loss: 0.5659 - val_accuracy: 0.8560 - val_loss: 0.5533\n","Epoch 93/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8497 - loss: 0.5647 - val_accuracy: 0.8578 - val_loss: 0.5486\n","Epoch 94/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8524 - loss: 0.5583 - val_accuracy: 0.8577 - val_loss: 0.5441\n","Epoch 95/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8538 - loss: 0.5539 - val_accuracy: 0.8587 - val_loss: 0.5396\n","Epoch 96/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8537 - loss: 0.5501 - val_accuracy: 0.8593 - val_loss: 0.5354\n","Epoch 97/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8582 - loss: 0.5447 - val_accuracy: 0.8607 - val_loss: 0.5313\n","Epoch 98/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8571 - loss: 0.5371 - val_accuracy: 0.8612 - val_loss: 0.5272\n","Epoch 99/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8589 - loss: 0.5373 - val_accuracy: 0.8615 - val_loss: 0.5234\n","Epoch 100/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8588 - loss: 0.5325 - val_accuracy: 0.8620 - val_loss: 0.5193\n","Epoch 101/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8623 - loss: 0.5238 - val_accuracy: 0.8628 - val_loss: 0.5155\n","Epoch 102/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8599 - loss: 0.5266 - val_accuracy: 0.8645 - val_loss: 0.5120\n","Epoch 103/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8621 - loss: 0.5196 - val_accuracy: 0.8655 - val_loss: 0.5084\n","Epoch 104/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8648 - loss: 0.5097 - val_accuracy: 0.8670 - val_loss: 0.5047\n","Epoch 105/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8654 - loss: 0.5058 - val_accuracy: 0.8685 - val_loss: 0.5012\n","Epoch 106/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8621 - loss: 0.5145 - val_accuracy: 0.8690 - val_loss: 0.4979\n","Epoch 107/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8656 - loss: 0.5053 - val_accuracy: 0.8697 - val_loss: 0.4945\n","Epoch 108/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8638 - loss: 0.5063 - val_accuracy: 0.8703 - val_loss: 0.4912\n","Epoch 109/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8673 - loss: 0.4996 - val_accuracy: 0.8715 - val_loss: 0.4885\n","Epoch 110/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8672 - loss: 0.4985 - val_accuracy: 0.8717 - val_loss: 0.4851\n","Epoch 111/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8682 - loss: 0.4922 - val_accuracy: 0.8718 - val_loss: 0.4821\n","Epoch 112/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8672 - loss: 0.4935 - val_accuracy: 0.8730 - val_loss: 0.4792\n","Epoch 113/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8691 - loss: 0.4902 - val_accuracy: 0.8740 - val_loss: 0.4762\n","Epoch 114/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8693 - loss: 0.4863 - val_accuracy: 0.8750 - val_loss: 0.4734\n","Epoch 115/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8721 - loss: 0.4826 - val_accuracy: 0.8758 - val_loss: 0.4706\n","Epoch 116/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8711 - loss: 0.4814 - val_accuracy: 0.8757 - val_loss: 0.4678\n","Epoch 117/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8734 - loss: 0.4717 - val_accuracy: 0.8762 - val_loss: 0.4652\n","Epoch 118/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8718 - loss: 0.4759 - val_accuracy: 0.8785 - val_loss: 0.4625\n","Epoch 119/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8744 - loss: 0.4688 - val_accuracy: 0.8780 - val_loss: 0.4601\n","Epoch 120/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8729 - loss: 0.4704 - val_accuracy: 0.8792 - val_loss: 0.4574\n","Epoch 121/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8723 - loss: 0.4770 - val_accuracy: 0.8800 - val_loss: 0.4550\n","Epoch 122/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8759 - loss: 0.4632 - val_accuracy: 0.8802 - val_loss: 0.4527\n","Epoch 123/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8779 - loss: 0.4600 - val_accuracy: 0.8803 - val_loss: 0.4502\n","Epoch 124/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8791 - loss: 0.4557 - val_accuracy: 0.8810 - val_loss: 0.4479\n","Epoch 125/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8766 - loss: 0.4571 - val_accuracy: 0.8825 - val_loss: 0.4456\n","Epoch 126/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8789 - loss: 0.4536 - val_accuracy: 0.8827 - val_loss: 0.4434\n","Epoch 127/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8795 - loss: 0.4524 - val_accuracy: 0.8832 - val_loss: 0.4414\n","Epoch 128/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8801 - loss: 0.4486 - val_accuracy: 0.8840 - val_loss: 0.4390\n","Epoch 129/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8773 - loss: 0.4510 - val_accuracy: 0.8842 - val_loss: 0.4370\n","Epoch 130/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8793 - loss: 0.4457 - val_accuracy: 0.8850 - val_loss: 0.4349\n","Epoch 131/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8796 - loss: 0.4424 - val_accuracy: 0.8855 - val_loss: 0.4329\n","Epoch 132/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8817 - loss: 0.4409 - val_accuracy: 0.8858 - val_loss: 0.4308\n","Epoch 133/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8817 - loss: 0.4379 - val_accuracy: 0.8872 - val_loss: 0.4289\n","Epoch 134/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8834 - loss: 0.4354 - val_accuracy: 0.8873 - val_loss: 0.4270\n","Epoch 135/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8805 - loss: 0.4358 - val_accuracy: 0.8890 - val_loss: 0.4250\n","Epoch 136/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8829 - loss: 0.4305 - val_accuracy: 0.8883 - val_loss: 0.4233\n","Epoch 137/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8826 - loss: 0.4344 - val_accuracy: 0.8895 - val_loss: 0.4213\n","Epoch 138/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8851 - loss: 0.4295 - val_accuracy: 0.8912 - val_loss: 0.4195\n","Epoch 139/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8858 - loss: 0.4229 - val_accuracy: 0.8907 - val_loss: 0.4179\n","Epoch 140/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8838 - loss: 0.4286 - val_accuracy: 0.8907 - val_loss: 0.4162\n","Epoch 141/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8843 - loss: 0.4294 - val_accuracy: 0.8910 - val_loss: 0.4144\n","Epoch 142/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8852 - loss: 0.4240 - val_accuracy: 0.8917 - val_loss: 0.4127\n","Epoch 143/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8844 - loss: 0.4251 - val_accuracy: 0.8912 - val_loss: 0.4113\n","Epoch 144/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8854 - loss: 0.4169 - val_accuracy: 0.8922 - val_loss: 0.4095\n","Epoch 145/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8856 - loss: 0.4186 - val_accuracy: 0.8923 - val_loss: 0.4078\n","Epoch 146/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8856 - loss: 0.4151 - val_accuracy: 0.8932 - val_loss: 0.4062\n","Epoch 147/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8872 - loss: 0.4143 - val_accuracy: 0.8942 - val_loss: 0.4047\n","Epoch 148/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8879 - loss: 0.4103 - val_accuracy: 0.8947 - val_loss: 0.4032\n","Epoch 149/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8878 - loss: 0.4097 - val_accuracy: 0.8950 - val_loss: 0.4019\n","Epoch 150/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8906 - loss: 0.4051 - val_accuracy: 0.8950 - val_loss: 0.4003\n","Epoch 151/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8875 - loss: 0.4079 - val_accuracy: 0.8957 - val_loss: 0.3989\n","Epoch 152/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8888 - loss: 0.4053 - val_accuracy: 0.8955 - val_loss: 0.3976\n","Epoch 153/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8888 - loss: 0.4104 - val_accuracy: 0.8957 - val_loss: 0.3961\n","Epoch 154/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8906 - loss: 0.4023 - val_accuracy: 0.8960 - val_loss: 0.3949\n","Epoch 155/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8914 - loss: 0.4037 - val_accuracy: 0.8967 - val_loss: 0.3932\n","Epoch 156/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8900 - loss: 0.4014 - val_accuracy: 0.8963 - val_loss: 0.3921\n","Epoch 157/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8885 - loss: 0.4030 - val_accuracy: 0.8968 - val_loss: 0.3908\n","Epoch 158/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - accuracy: 0.8898 - loss: 0.4021 - val_accuracy: 0.8975 - val_loss: 0.3894\n","Epoch 159/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8890 - loss: 0.3990 - val_accuracy: 0.8975 - val_loss: 0.3883\n","Epoch 160/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8896 - loss: 0.3998 - val_accuracy: 0.8980 - val_loss: 0.3869\n","Epoch 161/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8917 - loss: 0.3928 - val_accuracy: 0.8988 - val_loss: 0.3856\n","Epoch 162/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8924 - loss: 0.3900 - val_accuracy: 0.8993 - val_loss: 0.3844\n","Epoch 163/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8917 - loss: 0.3922 - val_accuracy: 0.8998 - val_loss: 0.3832\n","Epoch 164/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8930 - loss: 0.3885 - val_accuracy: 0.9002 - val_loss: 0.3821\n","Epoch 165/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8925 - loss: 0.3892 - val_accuracy: 0.9008 - val_loss: 0.3809\n","Epoch 166/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8927 - loss: 0.3867 - val_accuracy: 0.9008 - val_loss: 0.3799\n","Epoch 167/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8905 - loss: 0.3910 - val_accuracy: 0.9010 - val_loss: 0.3788\n","Epoch 168/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8955 - loss: 0.3823 - val_accuracy: 0.9020 - val_loss: 0.3777\n","Epoch 169/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8920 - loss: 0.3873 - val_accuracy: 0.9017 - val_loss: 0.3764\n","Epoch 170/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8929 - loss: 0.3819 - val_accuracy: 0.9022 - val_loss: 0.3755\n","Epoch 171/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8933 - loss: 0.3852 - val_accuracy: 0.9027 - val_loss: 0.3743\n","Epoch 172/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8952 - loss: 0.3836 - val_accuracy: 0.9020 - val_loss: 0.3734\n","Epoch 173/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8943 - loss: 0.3779 - val_accuracy: 0.9030 - val_loss: 0.3724\n","Epoch 174/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8933 - loss: 0.3829 - val_accuracy: 0.9027 - val_loss: 0.3712\n","Epoch 175/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8950 - loss: 0.3776 - val_accuracy: 0.9030 - val_loss: 0.3702\n","Epoch 176/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8940 - loss: 0.3790 - val_accuracy: 0.9032 - val_loss: 0.3692\n","Epoch 177/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8981 - loss: 0.3679 - val_accuracy: 0.9033 - val_loss: 0.3683\n","Epoch 178/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8969 - loss: 0.3735 - val_accuracy: 0.9042 - val_loss: 0.3670\n","Epoch 179/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8958 - loss: 0.3714 - val_accuracy: 0.9047 - val_loss: 0.3663\n","Epoch 180/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8979 - loss: 0.3701 - val_accuracy: 0.9040 - val_loss: 0.3656\n","Epoch 181/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8949 - loss: 0.3726 - val_accuracy: 0.9048 - val_loss: 0.3644\n","Epoch 182/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8964 - loss: 0.3661 - val_accuracy: 0.9053 - val_loss: 0.3634\n","Epoch 183/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8961 - loss: 0.3682 - val_accuracy: 0.9053 - val_loss: 0.3626\n","Epoch 184/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8982 - loss: 0.3666 - val_accuracy: 0.9050 - val_loss: 0.3617\n","Epoch 185/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8977 - loss: 0.3638 - val_accuracy: 0.9053 - val_loss: 0.3609\n","Epoch 186/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8976 - loss: 0.3617 - val_accuracy: 0.9055 - val_loss: 0.3601\n","Epoch 187/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8963 - loss: 0.3677 - val_accuracy: 0.9055 - val_loss: 0.3592\n","Epoch 188/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8969 - loss: 0.3661 - val_accuracy: 0.9062 - val_loss: 0.3581\n","Epoch 189/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - accuracy: 0.8967 - loss: 0.3674 - val_accuracy: 0.9058 - val_loss: 0.3573\n","Epoch 190/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8966 - loss: 0.3649 - val_accuracy: 0.9063 - val_loss: 0.3564\n","Epoch 191/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8990 - loss: 0.3626 - val_accuracy: 0.9063 - val_loss: 0.3557\n","Epoch 192/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9018 - loss: 0.3560 - val_accuracy: 0.9068 - val_loss: 0.3547\n","Epoch 193/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8989 - loss: 0.3581 - val_accuracy: 0.9063 - val_loss: 0.3540\n","Epoch 194/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8963 - loss: 0.3623 - val_accuracy: 0.9068 - val_loss: 0.3533\n","Epoch 195/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8994 - loss: 0.3601 - val_accuracy: 0.9072 - val_loss: 0.3525\n","Epoch 196/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8990 - loss: 0.3574 - val_accuracy: 0.9075 - val_loss: 0.3516\n","Epoch 197/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8992 - loss: 0.3582 - val_accuracy: 0.9075 - val_loss: 0.3508\n","Epoch 198/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8989 - loss: 0.3578 - val_accuracy: 0.9075 - val_loss: 0.3500\n","Epoch 199/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.8989 - loss: 0.3584 - val_accuracy: 0.9077 - val_loss: 0.3494\n","Epoch 200/200\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.9004 - loss: 0.3551 - val_accuracy: 0.9075 - val_loss: 0.3486\n"]}]},{"cell_type":"code","source":["plt.plot(H_3l_100_100.history['loss'])\n","plt.plot(H_3l_100_100.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss','val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","scores=model_3l_100_100.evaluate(X_test,y_test);\n","print('Loss on test data:',scores[0]);\n","print('Accuracy on test data:',scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":524},"id":"I5SwJ-jRkKMa","executionInfo":{"status":"ok","timestamp":1760538397082,"user_tz":-180,"elapsed":1540,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"6c6905cc-c2d7-44dc-9dae-83c82c0b7120"},"execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeHVJREFUeJzt3Xd4FPXaxvHv7qb33ui9E4rAwYIoHURALBSlHCuCDct58RxpFhQVK4INsVFsYEE6ht4hdJAeShJqEpKQZJOd94/AagwlgSSbbO7Pdc2V7OxvZp8nE8ntVJNhGAYiIiIi5YjZ0QWIiIiIlDQFIBERESl3FIBERESk3FEAEhERkXJHAUhERETKHQUgERERKXcUgERERKTcUQASERGRckcBSERERModBSARKfUGDRqEj4+Po8twOJPJxLBhwxxdhohTUAASKcemTp2KyWRiw4YNji5FRKREKQCJiIhIuaMAJCIiIuWOApCIXNXmzZvp0qULfn5++Pj40K5dO9asWZNnjNVqZcyYMdSqVQsPDw+Cg4O5+eabWbhwoX1MQkICgwcPpmLFiri7uxMZGUmPHj04dOhQgeo4cOAAnTp1wtvbm6ioKMaOHYthGAAYhkHVqlXp0aNHvuUyMjLw9/fn0UcfvepnfPPNNzRv3hxPT0+CgoLo06cPR44cyTOmbdu2NGzYkI0bN3LjjTfi6elJtWrVmDx5cr71nThxggcffJDw8HA8PDyIjo7myy+/zDfOZrPx3nvv0ahRIzw8PAgNDaVz586XPDw5e/ZsGjZsiLu7Ow0aNGDevHl53j937hxPP/00VatWxd3dnbCwMDp06MCmTZuu2r9IeaEAJCJXtGPHDm655Ra2bNnCCy+8wEsvvcTBgwdp27Yta9eutY8bPXo0Y8aM4bbbbuPDDz/kv//9L5UrV87zR7d3797MmjWLwYMH89FHH/Hkk09y7tw54uLirlpHTk4OnTt3Jjw8nPHjx9O8eXNGjRrFqFGjgNwThO+//37mzp3LmTNn8iz766+/kpKSwv3333/Fz3j11VcZMGAAtWrVYsKECTz99NMsXryYNm3akJSUlGfs2bNn6dq1K82bN2f8+PFUrFiRIUOGMGXKFPuY8+fP07ZtW77++mv69+/Pm2++ib+/P4MGDeK9997Ls74HH3yQp59+mkqVKvHGG2/wf//3f3h4eOQLmitWrODxxx+nT58+jB8/noyMDHr37s3p06ftYx577DEmTZpE7969+eijj3juuefw9PRk165dV/05i5QbhoiUW1988YUBGOvXr7/smJ49expubm7G/v377fOOHz9u+Pr6Gm3atLHPi46ONrp163bZ9Zw9e9YAjDfffLPQdQ4cONAAjCeeeMI+z2azGd26dTPc3NyMkydPGoZhGHv27DEAY9KkSXmWv/POO42qVasaNpvtsp9x6NAhw2KxGK+++mqe+du2bTNcXFzyzL/11lsNwHj77bft8zIzM40mTZoYYWFhRlZWlmEYhvHuu+8agPHNN9/Yx2VlZRmtW7c2fHx8jJSUFMMwDGPJkiUGYDz55JP56vp7zYDh5uZm7Nu3zz5vy5YtBmB88MEH9nn+/v7G0KFDL9uriBiG9gCJyGXl5OSwYMECevbsSfXq1e3zIyMj6devHytWrCAlJQWAgIAAduzYwd69ey+5Lk9PT9zc3IiJieHs2bPXVM/fLwG/eEl4VlYWixYtAqB27dq0atWKb7/91j7uzJkzzJ07l/79+2MymS677p9++gmbzca9997LqVOn7FNERAS1atXijz/+yDPexcUlzyE1Nzc3Hn30UU6cOMHGjRsB+P3334mIiKBv3772ca6urjz55JOkpqaydOlSAH788UdMJpN9b9bf/bPm9u3bU6NGDfvrxo0b4+fnx4EDB+zzAgICWLt2LcePH79svyLlnQKQiFzWyZMnSU9Pp06dOvneq1evHjabzX5+zNixY0lKSqJ27do0atSI559/nq1bt9rHu7u788YbbzB37lzCw8Np06YN48ePJyEhoUC1mM3mPCEMcgMPkOccogEDBrBy5UoOHz4MwPfff4/VauWBBx644vr37t2LYRjUqlWL0NDQPNOuXbs4ceJEnvFRUVF4e3tfsZ7Dhw9Tq1YtzOa8/9TWq1fP/j7A/v37iYqKIigo6Go/BipXrpxvXmBgYJ5QOX78eLZv306lSpVo2bIlo0ePzhOQREQBSESKSJs2bdi/fz9TpkyhYcOGfPbZZzRr1ozPPvvMPubpp5/mzz//ZNy4cXh4ePDSSy9Rr149Nm/eXGR19OnTB1dXV/teoG+++YYbbrjhkiHu72w2GyaTiXnz5rFw4cJ808cff1xkNV4Pi8VyyfnGhZPBAe69914OHDjABx98QFRUFG+++SYNGjRg7ty5JVWmSKmnACQilxUaGoqXlxd79uzJ997u3bsxm81UqlTJPi8oKIjBgwczffp0jhw5QuPGjRk9enSe5WrUqMGzzz7LggUL2L59O1lZWbz99ttXrcVms+Xbi/Hnn38CULVq1Tw1dOvWjW+//ZbDhw+zcuXKq+79uViXYRhUq1aN9u3b55v+9a9/5Rl//Phx0tLSrlhPlSpV2Lt3LzabLc+43bt329+/+NnHjx/Pd/L29YiMjOTxxx9n9uzZHDx4kODgYF599dUiW79IWacAJCKXZbFY6NixIz///HOew0yJiYlMmzaNm2++GT8/P4A8VyEB+Pj4ULNmTTIzMwFIT08nIyMjz5gaNWrg6+trH3M1H374of17wzD48MMPcXV1pV27dnnGPfDAA+zcuZPnn38ei8VCnz59rrruu+66C4vFwpgxY/LsTbn4Wf/sLzs7O89eoaysLD7++GNCQ0Np3rw5AF27diUhIYGZM2fmWe6DDz7Ax8eHW2+9Fci9Os4wDMaMGZOvrn/WcjU5OTkkJyfnmRcWFkZUVFSBf84i5YGLowsQEcebMmVKvnvJADz11FO88sorLFy4kJtvvpnHH38cFxcXPv74YzIzMxk/frx9bP369Wnbti3NmzcnKCiIDRs28MMPP9hPXP7zzz9p164d9957L/Xr18fFxYVZs2aRmJhYoIDi4eHBvHnzGDhwIK1atWLu3LnMmTOHF198kdDQ0Dxju3XrRnBwMN9//z1dunQhLCzsquuvUaMGr7zyCiNGjODQoUP07NkTX19fDh48yKxZs3jkkUd47rnn7OOjoqJ44403OHToELVr12bmzJnExsbyySef4OrqCsAjjzzCxx9/zKBBg9i4cSNVq1blhx9+YOXKlbz77rv4+voCcNttt/HAAw/w/vvvs3fvXjp37ozNZmP58uXcdttthXr+17lz56hYsSJ333030dHR+Pj4sGjRItavX1+gPW0i5YbjLkATEUe7eBn85aYjR44YhmEYmzZtMjp16mT4+PgYXl5exm233WasWrUqz7peeeUVo2XLlkZAQIDh6elp1K1b13j11Vftl4SfOnXKGDp0qFG3bl3D29vb8Pf3N1q1amV89913V61z4MCBhre3t7F//36jY8eOhpeXlxEeHm6MGjXKyMnJueQyjz/+uAEY06ZNK9TP5McffzRuvvlmw9vb2/D29jbq1q1rDB061NizZ499zK233mo0aNDA2LBhg9G6dWvDw8PDqFKlivHhhx/mW19iYqIxePBgIyQkxHBzczMaNWpkfPHFF/nGZWdnG2+++aZRt25dw83NzQgNDTW6dOlibNy40T4GuOTl7VWqVDEGDhxoGEbu5fjPP/+8ER0dbfj6+hre3t5GdHS08dFHHxXq5yDi7EyGUcj9qyIiZcAzzzzD559/TkJCAl5eXkW67rZt23Lq1Cm2b99epOsVkZKjc4BExOlkZGTwzTff0Lt37yIPPyLiHHQOkIg4jRMnTrBo0SJ++OEHTp8+zVNPPeXokkSklFIAEhGnsXPnTvr3709YWBjvv/8+TZo0cXRJIlJK6RwgERERKXd0DpCIiIiUOwpAIiIiUu7oHKBLsNlsHD9+HF9f3ys+PVpERERKD8MwOHfuHFFRUfkeQvxPCkCXcPz48TzPNxIREZGy48iRI1SsWPGKYxSALuHi7emPHDlif85RUbFarSxYsICOHTvab5fvTJy9P1CPzsDZ+wPn79HZ+wP1eC1SUlKoVKmS/e/4lSgAXcLFw15+fn7FEoC8vLzw8/Nzyl9oZ+8P1KMzcPb+wPl7dPb+QD1ej4KcvqKToEVERKTcUQASERGRckcBSERERModnQMkIiLlRk5ODlar1dFlFIjVasXFxYWMjAxycnIcXU6xKGyPrq6uWCyWIvlsBSAREXF6hmGQkJBAUlKSo0spMMMwiIiI4MiRI057T7pr6TEgIICIiIjr/pkoAImIiNO7GH7CwsLw8vIqE4HCZrORmpqKj4/PVW/qV1YVpkfDMEhPT+fEiRMAREZGXtdnKwCJiIhTy8nJsYef4OBgR5dTYDabjaysLDw8PJw6ABWmR09PTwBOnDhBWFjYdR0Oc86fqIiIyAUXz/nx8vJycCVSFC5ux+s9l0sBSEREyoWycNhLrq6otqMCkIiIiJQ7CkAiIiLlQNWqVXn33XeLZF0xMTGYTKYydVXdP+kkaBERkVLqjjvuoHnz5rz33nvXva7169fj7e1dBFU5BwWgEmQYBnFn0jmT6ehKRETEGRiGQU5ODi4uV/9zHhoaWgIVlR06BFaCXp2zi3bvrGBZvH7sIiJyZYMHD2blypW8//77mEwmTCYTU6dOxWQyMXfuXJo3b467uzsrVqxg//799OjRg/DwcHx8fGjRogWLFi3Ks75/HgIzmUx89tln9OrVCy8vL2rVqsUvv/xyzfX++OOPNGjQAHd3d6pWrcrbb7+d5/2PPvqIWrVq4eHhQXh4OHfffbf9vR9++IFGjRrh6elJcHAw7du3Jy0t7ZprKQjtASpB9SL9ADiUqisRREQcyTAMzltL/vESnq6WAl/F9O6777Jr1y6io6N5+eWXAdixYwcA//d//8dbb71F9erVCQwM5MiRI3Tt2pVXX30Vd3d3vvrqK7p3786ePXuoXLnyZT9jzJgxjB8/njfffJMPPviA/v37c/jwYYKCggrV18aNG7n33nsZPXo09913H6tWreLxxx8nODiYQYMGsWHDBp588km+/vprbrzxRs6cOcPy5cuB3JtU9u/fn/Hjx9OrVy/OnTvH8uXLMQyjUDUUlgJQCWpaOQCAo6mQlW3D1dWx9YiIlFfnrTnUHzm/xD9359hOeLkV7E+vv78/bm5ueHl5ERERAcDu3bsBGDt2LB06dLCPDQoKIjo62v765ZdfZtasWfzyyy8MGzbssp8xaNAg+vbtC8Brr73G+++/z7p16+jcuXOh+powYQLt2rXjpZdeAqB27drs3LmTN998k0GDBhEXF4e3tzd33HEHvr6+VKlShaZNm2Kz2UhMTCQ7O5u77rqLKlWqANCoUaNCff610LGYElQtxBt/TxeshondCeccXY6IiJRRN9xwQ57XqampPPfcc9SrV4+AgAB8fHzYtWsXcXFxV1xP48aN7d97e3vj5+dnf9REYezatYubbropz7ybbrqJvXv3kpOTQ4cOHahSpQrVq1fngQce4NtvvyU9PR2Ahg0b0q5dOxo1asQ999zDp59+ytmzZwtdQ2FpD1AJMplMNKkYwNK9p4g9mkzzaiGOLklEpFzydLWwc2wnh3xuUfjn1VzPPfccCxcu5K233qJmzZp4enpy9913k5WVdcX1uP7jUITJZMJmsxVJjX/n6+vLpk2biImJYcGCBYwcOZLRo0ezdu1aLBYL8+fPZ82aNSxYsIAPPviA//73v6xdu5Zq1aoVeS0XaQ9QCWtSyR+A2CNJji1ERKQcM5lMeLm5lPhU2LsYu7m5kZNz9XOVVq5cyaBBg+jVqxeNGjUiIiKCQ4cOXeNPp/Dq1avHypUr89VUu3Zt+/O6XFxcaN++PePHj2fr1q0cOnSIJUuWALnb46abbmLMmDFs3rwZNzc3Zs2aVaw1aw9QCWtSKQCA2CPJji1ERERKvcqVK7Nu3ToOHTqEj4/PZffO1KpVi59++onu3btjMpl46aWXimVPzuU8++yztGjRgpdffpn77ruP1atX8+GHH/LRRx8B8Ntvv3HgwAHatGlDYGAgv//+OzabjTp16rBhwwbWrl1Lp06dCAsLY+3atZw8eZJ69eoVa83aA1TCoiv6YcLgyNnznErVDYFEROTyhg0bhsVioX79+oSGhl72nJ4JEyYQGBjIjTfeSPfu3enUqRPNmjUrsTqbNWvGd999x4wZM2jYsCEjR45k7NixDBo0CICAgAB++uknbr/9durVq8fkyZOZPn06DRo0wNfXl2XLltG1a1dq167N//73P95++226dOlSrDVrD1AJ8zu9hXBPSDgPm+OS6FA/3NEliYhIKVWzZk1WrlyJ2fzX/oqLoeLvqlataj+cdNHQoUPzvP7nIbFLXWZe0EdbtG3bNt/yvXv3pnfv3pccf/PNNxMTE5Nv/sW9QHPnzs3TY0nQHqCStGUGLlM7M9ZlCi5kszmu+M9yFxERkfwUgEpS6gkMTHS0LuZbt9fYvHsfaZnZjq5KREQkj8ceewwfH59LTo899pijyysSOgRWkm56kpzA6th+eJBW7Obds0N5+e3H6dXnIVpVD3Z0dSIiIkDujRafe+65S77n5+dXwtUUDwWgEmbU6sTyOqNofexTwlMO8HrWa8z+YilvNX+JYd1a4lFE94gQERG5VmFhYYSFhTm6jGKlQ2AOkOpRAdfHlpLZ6glsmOlpWcnAzffx6ttv6rwgERGREuDQADRu3DhatGiBr68vYWFh9OzZkz179lxxmU8//ZRbbrmFwMBAAgMDad++PevWrcszZtCgQfYn516cCvtck2Ln6ol7l1cwP7SQNL8ahJqSeTljHAc+fYB3f9tAZnbJP6RPRESkvHBoAFq6dClDhw5lzZo1LFy4EKvVSseOHUlLS7vsMjExMfTt25c//viD1atXU6lSJTp27MixY8fyjOvcuTPx8fH2afr06cXdzrWpeAPeT6wio9WT2DDT27Kcu9ffx//encz2Y7pZooiISHFw6DlA8+bNy/N66tSphIWFsXHjRtq0aXPJZb799ts8rz/77DN+/PFHFi9ezIABA+zz3d3d7U/PLfVcPfDo8jI06Eb6zIeomHaEN879l88nr2LZrS/y6O31sZgLd/t0ERERubxSdRJ0cnLuHo+goKACL5Oeno7Vas23TExMDGFhYQQGBnL77bfzyiuvEBx86SutMjMzycz8667MKSkpAFitVqxWa2HbuKKL67vkeiOb4zpkGenz/ovX9mk8bPmNHcu28czeMbzYpwPBPu5FWktxuGJ/TkI9ln3O3h84f4+F6c9qtWIYBjabrUQfD3G9Lt5o8GLtzuhaerTZbBiGgdVqtT9n7KLC/L6bjEvdCtIBbDYbd955J0lJSaxYsaLAyz3++OPMnz+fHTt24OHhAcCMGTPw8vKiWrVq7N+/nxdffBEfHx9Wr16d74cFMHr0aMaMGZNv/rRp0/Dy8rr2pq5DeNImGh7+HB/bOU4bvjxve5IGtetQ0zmuPhQRKTEuLi5ERERQqVIl3NzcHF1OiWrcuDFDhgxhyJAhVx0bGBjIN998Q7du3UqgsmuXlZXFkSNHSEhIIDs777300tPT6devH8nJyVe9XL/U7AEaOnQo27dvL1T4ef3115kxYwYxMTH28APQp08f+/eNGjWicePG1KhRg5iYGNq1a5dvPSNGjGD48OH21ykpKfZzi4r6fgdWq5WFCxfSoUMHXF1drzCyK6QM5vz0/gSf2s4n5nG8vHsAcW2H8Eib6phL6SGxgvdXdqnHss/Z+wPn77Ew/WVkZHDkyBF8fHzy/K0o7QzD4Ny5c/j6+hb6KfIXmc1mPDw8Cvy3zNPTs0Tv83MtPWZkZODp6UmbNm3ybc+LR3AKolQEoGHDhvHbb7+xbNkyKlasWKBl3nrrLV5//XUWLVpE48aNrzi2evXqhISEsG/fvksGIHd3d9zd8x9ecnV1LbZ/OAq07uCquD66iOzZw3DZ8QNjXKcyY+khnkv4P8bf1xJPt9J7z6Di/NmVFuqx7HP2/sD5eyxIfzk5OZhMJsxmc4k/b+p6XDwkdLH2a1WY5Uv6Z3QtPZrNZkwm0yW3fWF+1x36m2AYBsOGDWPWrFksWbKEatWqFWi58ePH8/LLLzNv3jxuuOGGq44/evQop0+fJjIy8npLLnmunrjc/RlGh5exYaaPSwyD9j7BkMm/c+JchqOrExGRYvLJJ59Qr169fOfG9OjRg3//+9/s37+fHj16EB4ejo+PDy1atGDRokVF9vnbtm3j9ttvx9PTk+DgYB555BFSU1Pt78fExNCyZUu8vb0JCAjgpptu4vDhwwBs2bKF2267DV9fX/z8/GjevDkbNmwostqKgkMD0NChQ/nmm2+YNm0avr6+JCQkkJCQwPnz5+1jBgwYwIgRI+yv33jjDV566SWmTJlC1apV7ctc3Cipqak8//zzrFmzhkOHDrF48WJ69OhBzZo16dSpU4n3WCRMJkw3PYn5/u/JdvOjuXkvr59+ghEffMXuhILv7hMRkQsMA7LSSn4qxGm399xzD2fOnOGPP/6wzztz5gzz5s2jf//+pKam0rVrVxYvXszmzZvp3Lkz3bt3Jy4u7rp/PGlpaXTq1InAwEDWr1/P999/z6JFixg2bBgA2dnZ9OzZk1tvvZWtW7eyevVqHnnkEfthrP79+1OxYkXWr1/Pxo0b+b//+79StyfSoYfAJk2aBEDbtm3zzP/iiy8YNGgQAHFxcXl2i02aNImsrCzuvvvuPMuMGjWK0aNHY7FY2Lp1K19++SVJSUlERUXRsWNHXn755Use5ipTarbH5dEYsr65j4ize3kv8yWGTUpjUL/+tK3j3LcsFxEpUtZ0eC2q5D/3xePg5l2goRdv9jt9+nQ6dOgAwA8//EBISAi33XYbZrOZ6Oho+/iXX36ZWbNm8csvv9iDyrWaNm0aGRkZfPXVV3h759b74Ycf0r17d9544w1cXV1JTk7mjjvuoEaNGgDUq1fPvnxcXBzPP/88devWBaBWrVrXVU9xcGgAKsgFaDExMXleHzp06IrjPT09mT9//nVUVcoF18Dt0SVYp/XDJ245k41Xefyr86TcO4g7ox3wH7OIiBSbe+65h6effppJkybh7u7Ot99+S58+fTCbzaSmpjJ69GjmzJlDfHw82dnZnD9/vkj2AO3atYvo6Gh7+AG46aabsNls7NmzhzZt2jBo0CA6depEhw4daN++Pffee6/9VJPhw4fz0EMP8fXXX9O+fXvuuecee1AqLUrFSdBSSB5+uD7wA7bvBuCxdz6TXd7iqe8ySct8kL4tKzu6OhGR0s/VK3dvjCM+txA6d+6MYRjMmTOHFi1asHz5ct555x0AnnvuORYuXMhbb71FzZo18fT05O677yYrK6s4Ks/niy++4Mknn2TevHnMnDmT//3vfyxcuJB//etfjB49mn79+jFnzhzmzp3LqFGjmDFjBr169SqR2gpCAaiscvXA3OdbjB8fxm3nLD50eY/nZmeSYxvC/f+q4ujqRERKN5OpwIeiHMnDw4NevXrx7bffsm/fPurUqUOzZs0AWLlyJYMGDbKHitTU1KseJSmoevXqMXXqVNLS0ux7gVauXInZbKZOnTr2cU2bNqVp06aMGDGC1q1bM23aNP71r38BULt2bWrXrs0zzzxD3759+eKLL0pVACo71wNKfhZXTHd/jtGkPxaTwTtuk1j/y2S+W3/E0ZWJiEgRubgnZcqUKfTv398+v1atWvz000/ExsayZcsW+vXrV2R3jO7fvz8eHh4MHDiQ7du388cff/DEE0/wwAMPEB4ezsGDBxkxYgSrV6/m8OHDLFiwgL1791KvXj3Onz/PsGHDiImJ4fDhw6xcuZL169fnOUeoNNAeoLLObMF054cYLp6YNnzG266TeWS2N+6ug+nRpIKjqxMRket0++23ExQUxJ49e+jXr599/oQJE/j3v//NjTfeSEhICP/5z38KdSPAK/Hy8mL+/Pk89dRTtGjRAi8vL3r37s2ECRPs7+/evZsvv/zSfpuZoUOH8uijj5Kdnc3p06cZMGAAiYmJhISEcNddd13yiQuOpADkDMxmTF3fxMhKwWXrd3zk8i4Df/AmyPt+bqkV6ujqRETkOpjNZo4fz3++UtWqVVmyZEmeeUOHDs3zujCHxP55YVKjRo3yrf+i8PBwZs2adcn33NzcmD59eoE/11F0CMxZmM2YenyEUbszHiYrky1v8drXv7HtaLKjKxMRESl1FICcicUV091fYItqRqAplY8Yx/Cpi0lI1h2jRUTKs2+//RYfH59LTg0aNHB0eQ6hQ2DOxs0Lc7+Z2D5tR7XkOF7JeoMhXwUx/bFb8HAtvc8OExGR4nPnnXfSqlWrS75X2u7QXFIUgJyRTxjm/t9j+6w9rbJ2c2fiR7zwgz/v9WlyzU8UFhGRssvX1xdfX19Hl1Gq6BCYswqri/mujwEY7DIf87bv+Gr1YQcXJSIiUjooADmzut2gzfMAjHP9jOlzFrLlSJJjaxIRcZCiukeOOFZRbUcdAnN2bUdgHN2A54E/mGD5gKHfVmb2k7fj71U+j/mKSPnj5uZmv5Q8NDQUNze3MnE6gM1mIysri4yMjDwPBXcmhenRMAyysrI4efIkZrMZNze36/psBSBnZ7Zg6jUZ20c3Uv/8YfqmfsnIX8J4r09TR1cmIlIizGYz1apVIz4+/pL30ymtDMPg/PnzeHp6lonAdi2upUcvLy8qV6583aFQAag88I3A3ONDmNGXR1zm0HdrE36tF053PT1eRMoJNzc3KleuTHZ2Njk5OY4up0CsVivLli2jTZs2TnulVmF7tFgsuLi4FEkgVAAqL+p2heaDYeMXvOHyCffOqkOLqp2I8PdwdGUiIiXCZDLh6upaZsKExWIhOzsbDw+PMlNzYTmyR+c8qCiX1vFlDP+KVDaf5NHsb/nvrG35bn0uIiJSHigAlSfuvpi6vw/AQMsCkvcsY+72BAcXJSIiUvIUgMqbmu2g6QOYTQavuk5h7M9bSD5vdXRVIiIiJUoBqDzqMBbDK5g65qPccf4X3pi329EViYiIlCgFoPLIKwhTh7EAPO3yI0vWxeqp8SIiUq4oAJVX0f2gYkt8TBn81+Ubxvy6QydEi4hIuaEAVF6ZzdDtbQyTme6WNdji1vLLlrJzgzAREZHroQBUnkU2xtT0fgD+5/oN4+bs4nxW2bhBmIiIyPVQACrvbvsfhqs3zcz7uCEthi9WHXR0RSIiIsVOAai88w3HdPPTAPzHZQafxewmKT3LsTWJiIgUMwUggdbDMHyjqGQ+STfrQiYt3e/oikRERIqVApCAmxemNs8CMMxlNtNX/kl88nkHFyUiIlJ8FIAkV9MBGP6VCDclcY+xgEkx2gskIiLOSwFIcrm4Ybr1BQAec/mFn9fvJTElw8FFiYiIFA8FIPlLdF+MwKqEmlK4x1jIx0sPOLoiERGRYqEAJH+xuGK6JfdcoIdcfue7tfs4cU57gURExPk4NACNGzeOFi1a4OvrS1hYGD179mTPnj1XXe7777+nbt26eHh40KhRI37//fc87xuGwciRI4mMjMTT05P27duzd+/e4mrDuTS+D8M3kgjTWboYy/l8ue4LJCIizsehAWjp0qUMHTqUNWvWsHDhQqxWKx07diQtLe2yy6xatYq+ffvy4IMPsnnzZnr27EnPnj3Zvn27fcz48eN5//33mTx5MmvXrsXb25tOnTqRkaG9GVfl4o6p9VAAHrP8yvS1h0jJsDq4KBERkaLl0AA0b948Bg0aRIMGDYiOjmbq1KnExcWxcePGyy7z3nvv0blzZ55//nnq1avHyy+/TLNmzfjwww+B3L0/7777Lv/73//o0aMHjRs35quvvuL48ePMnj27hDor45oPwvDwp4Y5ntbWNcxYF+foikRERIqUi6ML+Lvk5GQAgoKCLjtm9erVDB8+PM+8Tp062cPNwYMHSUhIoH379vb3/f39adWqFatXr6ZPnz751pmZmUlmZqb9dUpKCgBWqxWrtWj3flxcX1Gvt0iZPTA3fwjLyrd51OU3hqy4hf4tKuLmcvW8XCb6u07qsexz9v7A+Xt09v5APV7P+gqi1AQgm83G008/zU033UTDhg0vOy4hIYHw8PA888LDw0lISLC/f3He5cb807hx4xgzZky++QsWLMDLy6tQfRTUwoULi2W9RcXdWoWOJgvNzPuIOLeDcd+m0yLUKPDypb2/oqAeyz5n7w+cv0dn7w/UY2Gkp6cXeGypCUBDhw5l+/btrFixosQ/e8SIEXn2KqWkpFCpUiU6duyIn59fkX6W1Wpl4cKFdOjQAVdX1yJdd5EzrYBt3zHYZR6Tz/0fIwe0xmQyXXGRMtXfNVKPZZ+z9wfO36Oz9wfq8VpcPIJTEKUiAA0bNozffvuNZcuWUbFixSuOjYiIIDExMc+8xMREIiIi7O9fnBcZGZlnTJMmTS65Tnd3d9zd3fPNd3V1LbZfuuJcd5Fp/Ths+45u5rWMS4xj09GG/Kt6cIEWLRP9XSf1WPY5e3/g/D06e3+gHgu7noJy6EnQhmEwbNgwZs2axZIlS6hWrdpVl2ndujWLFy/OM2/hwoW0bt0agGrVqhEREZFnTEpKCmvXrrWPkQKKagqVW+NqyuF+l0V8ueqQoysSEREpEg4NQEOHDuWbb75h2rRp+Pr6kpCQQEJCAufP//UgzgEDBjBixAj766eeeop58+bx9ttvs3v3bkaPHs2GDRsYNmwYACaTiaeffppXXnmFX375hW3btjFgwACioqLo2bNnSbdY9rV6DIB+lsXE7DzK8SQ9JFVERMo+hwagSZMmkZycTNu2bYmMjLRPM2fOtI+Ji4sjPj7e/vrGG29k2rRpfPLJJ0RHR/PDDz8we/bsPCdOv/DCCzzxxBM88sgjtGjRgtTUVObNm4eHh0eJ9ucU6t4BfhUINp2jI2v4Zs1hR1ckIiJy3Rx6DpBhXP2qopiYmHzz7rnnHu65557LLmMymRg7dixjx469nvIEwOICzQfBH69yv8siHl1/O0+2q4WHq8XRlYmIiFwzPQtMrq7ZAAyzCy3MfxKavo952y99OwEREZGyQgFIrs43AlPdbgDcb1nENN0ZWkREyjgFICmYFg8B0Muygh0Hj7HvRKqDCxIREbl2CkBSMFVvgeBa+Jgy6GpZy8z12gskIiJllwKQFIzJBE36AXC3ZRk/bDxKZnaOg4sSERG5NgpAUnDRfTBMZlqZd+Nz/ijzdyRefRkREZFSSAFICs4vClP1tgD0tiznx41HHVuPiIjINVIAksJp0h+A3ublrNibyImUDAcXJCIiUngKQFI4dbuBux+VzCe5gT38suW4oysSEREpNAUgKRxXT2jQC4C7LUv5cdMxBxckIiJSeApAUngXrgbralnL4fgT7Dye4uCCRERECkcBSAqvUisIqo63KZPO5nXM2qyToUVEpGxRAJLCM5kgOncvUG/LcmbHHic7x+bgokRERApOAUiuTXQfDEzcZNmB27mjrNh3ytEViYiIFJgCkFybgEqYqt0CwF2W5czarJOhRUSk7FAAkmt34TBYT8tK5u+I51yG1cEFiYiIFIwCkFy7ut0wXDyoYY6nevZB5m5PcHRFIiIiBaIAJNfOww9TrY4A3GFZw0+bdDWYiIiUDQpAcn0a3gVAd/Nq1hw4TXyyHo0hIiKlnwKQXJ9ancDVm0rmkzQx7WeenhAvIiJlgAKQXB83L6jbFYDultX8rvOARESkDFAAkuvXsDcA3Sxr2HLkLGcyHVyPiIjIVSgAyfWrcTu4+xNhOksL0x5iT5scXZGIiMgVKQDJ9XNxh3rdgdzDYJtO6ddKRERKN/2lkqJx4WqwLpZ1HE+zcfhMuoMLEhERuTwFICka1W4Fr2BCTCm0Nu9k7jadDC0iIqWXApAUDYsL1O8B5N4T6PftuhxeRERKLwUgKToXrgbrbFnH/oQzHDiZ6uCCRERELk0BSIpO5dYYPhH4m9K52byN37bGO7oiERGRS1IAkqJjtmCrewcAncwb+G3rcQcXJCIicmkKQFKkjDrdAOhg2cD+xGT+TDzn4IpERETyc2gAWrZsGd27dycqKgqTycTs2bOvOH7QoEGYTKZ8U4MGDexjRo8ene/9unXrFnMncpFRuTWZLr4EmVJpad7NHB0GExGRUsihASgtLY3o6GgmTpxYoPHvvfce8fHx9unIkSMEBQVxzz335BnXoEGDPONWrFhRHOXLpZhdSPBvBkBn8zrm6dlgIiJSCrk48sO7dOlCly5dCjze398ff39/++vZs2dz9uxZBg8enGeci4sLERERRVanFM5x/xuocnopnS3rGZ2YzIGTqVQP9XF0WSIiInYODUDX6/PPP6d9+/ZUqVIlz/y9e/cSFRWFh4cHrVu3Zty4cVSuXPmy68nMzCQz868neKakpABgtVqxWq1FWvPF9RX1eksLq9XKKd/6GG6+hGcl0dS0j9+31uHRNtUcXVqRcfZtCM7fo7P3B87fo7P3B+rxetZXECbDMIwi+dTrZDKZmDVrFj179izQ+OPHj1O5cmWmTZvGvffea58/d+5cUlNTqVOnDvHx8YwZM4Zjx46xfft2fH19L7mu0aNHM2bMmHzzp02bhpeX1zX1U941OzSJSmdX83F2N6Z59GN4oxxHlyQiIk4uPT2dfv36kZycjJ+f3xXHltkANG7cON5++22OHz+Om5vbZcclJSVRpUoVJkyYwIMPPnjJMZfaA1SpUiVOnTp11R9gYVmtVhYuXEiHDh1wdXUt0nWXBhf761w5E/efHybOCKVN5rsse+5WIv09HF1ekXD2bQjO36Oz9wfO36Oz9wfq8VqkpKQQEhJSoABUJg+BGYbBlClTeOCBB64YfgACAgKoXbs2+/btu+wYd3d33N3d8813dXUttl+64lx3aWCu3RFcPKmcfZL6psMs3nOKwTc5z2EwcP5tCM7fo7P3B87fo7P3B+qxsOspqDJ5H6ClS5eyb9++y+7R+bvU1FT2799PZGRkCVQmdm7eULMdAJ0s63U1mIiIlCoODUCpqanExsYSGxsLwMGDB4mNjSUuLg6AESNGMGDAgHzLff7557Rq1YqGDRvme++5555j6dKlHDp0iFWrVtGrVy8sFgt9+/Yt1l7kEurdCUBn83rWHzrDqdTMqywgIiJSMhwagDZs2EDTpk1p2rQpAMOHD6dp06aMHDkSgPj4eHsYuig5OZkff/zxsnt/jh49St++falTpw733nsvwcHBrFmzhtDQ0OJtRvKr3QnMrtQxH6Uqx1m0U0+IFxGR0sGh5wC1bduWK52DPXXq1Hzz/P39SU9Pv+wyM2bMKIrSpCh4BkD1W2HfIjqb1zN3ezR9Wl7+dgQiIiIlpUyeAyRlSL3uQO55QKv2nyL5vPPez0JERMoOBSApXnW6gclMtPkAYTkn+GP3CUdXJCIiogAkxcwnFCrfCEAnywZdDSYiIqWCApAUv78dBov58wTpWdkOLkhERMo7BSApfvXuAKCFeQ8+1rMs+/OkgwsSEZHyTgFIip9/RYhqhhmDjjoMJiIipYACkJSM+hdviriOxbtOkJVtc3BBIiJSnikAScmom3se0I2WnZgyk1i5/5SDCxIRkfJMAUhKRkhNCKuPCzm0M29mvg6DiYiIAykAScmpm3sydGfLehbsTCTHdvm7gIuIiBQnBSApORcuh29j2cr5tBTWHTzj4IJERKS8UgCSkhPRCAKq4EkWbcxbmb9Dh8FERMQxFICk5JhMf7sp4gbm70jApsNgIiLiAApAUrIuBKD25k2cSk5l67FkBxckIiLlkQKQlKyKLcE7DD9TOq3NO3RTRBERcQgFIClZZjPU7QZAJ/MG5m2PxzB0GExEREqWApCUvAuHwTpaNhB3OpU/E1MdXJCIiJQ3CkBS8qreAu7+hJqSaWray9zt8Y6uSEREyhkFICl5Lm5QpzOQe1NEnQckIiIlTQFIHONvd4XenZDCoVNpDi5IRETKEwUgcYya7cDFk0qmk9Q3HdZNEUVEpEQpAIljuHnnhiCgk2U98xSARESkBCkAieNcvCu0eQOb45KITz7v4IJERKS8UAASx6ndCcwu1DUfoZopngU7Eh1dkYiIlBMKQOI4noG5l8QDncy6GkxEREqOApA41t8ejrr24GnOpGU5uCARESkPFIDEsep2A0w0Ne8j1DjDop06DCYiIsVPAUgcyzcCKrUEch+NobtCi4hISVAAEse7cBiss3k9K/edJiXD6uCCRETE2SkAieNduCv0vyy78MpJ5o/dJxxckIiIODsFIHG8oGoQ3ggLNtpbNumu0CIiUuwcGoCWLVtG9+7diYqKwmQyMXv27CuOj4mJwWQy5ZsSEvL+wZw4cSJVq1bFw8ODVq1asW7dumLsQoqE/aaI6/lj90nOZ+U4uCAREXFmDg1AaWlpREdHM3HixEItt2fPHuLj4+1TWFiY/b2ZM2cyfPhwRo0axaZNm4iOjqZTp06cOKHDKqVavdzDYG0s2zBZ01j6p7aXiIgUH4cGoC5duvDKK6/Qq1evQi0XFhZGRESEfTKb/2pjwoQJPPzwwwwePJj69eszefJkvLy8mDJlSlGXL0UprD4EVccdK23Nsfy2VVeDiYhI8XFxdAHXokmTJmRmZtKwYUNGjx7NTTfdBEBWVhYbN25kxIgR9rFms5n27duzevXqy64vMzOTzMxM++uUlBQArFYrVmvRXpF0cX1Fvd7S4nr6M9fuimXNh3S2rOf/dt9ESloGnm6Woi7xujn7NgTn79HZ+wPn79HZ+wP1eD3rK4gyFYAiIyOZPHkyN9xwA5mZmXz22We0bduWtWvX0qxZM06dOkVOTg7h4eF5lgsPD2f37t2XXe+4ceMYM2ZMvvkLFizAy8uryPsAWLhwYbGst7S4lv4C04JoA9xu3kx2ZgbvzFxAk2Cj6IsrIs6+DcH5e3T2/sD5e3T2/kA9FkZ6enqBx5apAFSnTh3q1Kljf33jjTeyf/9+3nnnHb7++utrXu+IESMYPny4/XVKSgqVKlWiY8eO+Pn5XVfN/2S1Wlm4cCEdOnTA1dW1SNddGlxXf4YN44NP8TkXzy3mrSS6daVr1+jiKfQ6OPs2BOfv0dn7A+fv0dn7A/V4LS4ewSmIMhWALqVly5asWLECgJCQECwWC4mJeR+nkJiYSERExGXX4e7ujru7e775rq6uxfZLV5zrLg2uub/6PWHtJLpZ1vLfPS3JNsyl8jAYOP82BOfv0dn7A+fv0dn7A/VY2PUUVJm/D1BsbCyRkZEAuLm50bx5cxYvXmx/32azsXjxYlq3bu2oEqUwGuSeEN/JshGb9Tx/7NHVYCIiUvQcugcoNTWVffv22V8fPHiQ2NhYgoKCqFy5MiNGjODYsWN89dVXALz77rtUq1aNBg0akJGRwWeffcaSJUtYsGCBfR3Dhw9n4MCB3HDDDbRs2ZJ3332XtLQ0Bg8eXOL9yTWo2AL8KuCdcow25q3M2VqFro0iHV2ViIg4GYcGoA0bNnDbbbfZX188D2fgwIFMnTqV+Ph44uLi7O9nZWXx7LPPcuzYMby8vGjcuDGLFi3Ks4777ruPkydPMnLkSBISEmjSpAnz5s3Ld2K0lFJmc+5hsDUT6WZZw4jdrUjPysbLrcwfrRURkVLEoX9V2rZti2Fc/iqfqVOn5nn9wgsv8MILL1x1vcOGDWPYsGHXW544SoNesGYiHS2b+E/Gef7YfZJujbUXSEREik6ZPwdInFDFG8C/El5k0NYcy5xtxx1dkYiIOBkFICl9TCZo0BOAOyxrWLL7BOlZ2Y6tSUREnIoCkJROF64Ga2/ZDNbzLNmtq8FERKToKABJ6RTVDAIq40kmt5lj+W2Lng0mIiJFRwFISieTyb4XqJtlDUv2nCD5vPM+D0dEREqWApCUXn87DGbJTmf+jgQHFyQiIs5CAUhKr8gmEFgVD7K43RzLz7HHHF2RiIg4CQUgKb3+dhisu2U1q/af5kRKhoOLEhERZ3BNAejLL79kzpw59tcvvPACAQEB3HjjjRw+fLjIihOh4d0AtLNsxtdI5ZctuieQiIhcv2sKQK+99hqenp4ArF69mokTJzJ+/HhCQkJ45plnirRAKeciGkJYfVzJpotlvQKQiIgUiWsKQEeOHKFmzZoAzJ49m969e/PII48wbtw4li9fXqQFitDoHgB6WVay9WgyB06mOrggEREp664pAPn4+HD69GkAFixYQIcOHQDw8PDg/PnzRVedCECj3MNgLc27iOQ0P8dqL5CIiFyfawpAHTp04KGHHuKhhx7izz//pGvXrgDs2LGDqlWrFmV9IhBQGarchBmDOy2r+Dn22BUfoisiInI11xSAJk6cSOvWrTl58iQ//vgjwcHBAGzcuJG+ffsWaYEiwF+HwVxWcuh0OluPJju4IBERKctcrmWhgIAAPvzww3zzx4wZc90FiVxS/R7w+/PUtcVR23SE2bHHiK4U4OiqRESkjLqmPUDz5s1jxYoV9tcTJ06kSZMm9OvXj7NnzxZZcSJ2XkFQqyMAPS0r+XVLPDk2HQYTEZFrc00B6PnnnyclJQWAbdu28eyzz9K1a1cOHjzI8OHDi7RAEbvGuYfBerqs4nTqeVbsO+XggkREpKy6pkNgBw8epH79+gD8+OOP3HHHHbz22mts2rTJfkK0SJGr3RncfInKOsUNpj/5fkMFbq0d6uiqRESkDLqmPUBubm6kp6cDsGjRIjp2zD00ERQUZN8zJFLkXD1zzwUi9zDYgp2JJKfrCfEiIlJ41xSAbr75ZoYPH87LL7/MunXr6NatGwB//vknFStWLNICRfK4cBjsTte1kJ3JL1t1TyARESm8awpAH374IS4uLvzwww9MmjSJChUqADB37lw6d+5cpAWK5FH1FvCNxNdI5TbzZn7YcMTRFYmISBl0TecAVa5cmd9++y3f/Hfeeee6CxK5IrMFovvAine4z2Up/z7akj8Tz1E73NfRlYmISBlyTQEIICcnh9mzZ7Nr1y4AGjRowJ133onFYimy4kQuqcn9sOId2pq3EM4Zvt9whP92q+/oqkREpAy5pkNg+/bto169egwYMICffvqJn376ifvvv58GDRqwf//+oq5RJK+QmlC5NWZs9LYsZ9bm41hzbI6uSkREypBrCkBPPvkkNWrU4MiRI2zatIlNmzYRFxdHtWrVePLJJ4u6RpH8mj4AQB/XpZxKzWDpnpMOLkhERMqSawpAS5cuZfz48QQFBdnnBQcH8/rrr7N06dIiK07ksur3ADcfKpNAC9Mevt+ok6FFRKTgrikAubu7c+7cuXzzU1NTcXNzu+6iRK7K3Qca9ALgPpcYFu86wenUTAcXJSIiZcU1BaA77riDRx55hLVr12IYBoZhsGbNGh577DHuvPPOoq5R5NIuHAa7w7IWD1saP8fqnkAiIlIw1xSA3n//fWrUqEHr1q3x8PDAw8ODG2+8kZo1a/Luu+8WcYkil1GpJQTXwoNMulnWMmN9HIahB6SKiMjVXdNl8AEBAfz888/s27fPfhl8vXr1qFmzZpEWJ3JFJhM0vR8WjaKPy1JmJt7GhsNnaVE16OrLiohIuVbgAHS1p7z/8ccf9u8nTJhw7RWJFEZ0X1g8lqb8SQ3TMb5Zc1gBSERErqrAh8A2b95coCk2NrbAH75s2TK6d+9OVFQUJpOJ2bNnX3H8Tz/9RIcOHQgNDcXPz4/WrVszf/78PGNGjx6NyWTKM9WtW7fANUkZ4xsOtTsBcJ8lhrnbEnQytIiIXFWB9wD9fQ9PUUlLSyM6Opp///vf3HXXXVcdv2zZMjp06MBrr71GQEAAX3zxBd27d2ft2rU0bdrUPq5BgwYsWrTI/trF5ZpveC1lQdP7Yc/v9HFdztvn7+H7jUd57NYajq5KRERKMYcmgy5dutClS5cCj//nCdavvfYaP//8M7/++mueAOTi4kJERERRlSmlXa1O4FcBv5RjdDGvY9raAB65pTpms8nRlYmISClVpneN2Gw2zp07l+eGjAB79+4lKioKDw8PWrduzbhx46hcufJl15OZmUlm5l+HTVJSUgCwWq1YrdYirfni+op6vaWFo/ozN3kAy7LXGei2mNlnbuaP3Qm0qRVSLJ/l7NsQnL9HZ+8PnL9HZ+8P1OP1rK8gTEYpuW7YZDIxa9YsevbsWeBlxo8fz+uvv87u3bsJCwsDYO7cuaSmplKnTh3i4+MZM2YMx44dY/v27fj6XvqJ4aNHj2bMmDH55k+bNg0vL69r6kdKlrs1iY7bn8FMDl0yx+ESUImH6ur5YCIi5Ul6ejr9+vUjOTkZPz+/K44tswFo2rRpPPzww/z888+0b9/+suOSkpKoUqUKEyZM4MEHH7zkmEvtAapUqRKnTp266g+wsKxWKwsXLqRDhw64uroW6bpLA0f2Z/npQcy7fubb7Ha8lPMgMc+2IdLfo8g/x9m3ITh/j87eHzh/j87eH6jHa5GSkkJISEiBAlCZPAQ2Y8YMHnroIb7//vsrhh/IvWdR7dq12bdv32XHuLu74+7unm++q6trsf3SFee6SwOH9NfyIdj1M71dVzIuuy8/bDrO8I51iu3jnH0bgvP36Oz9gfP36Oz9gXos7HoK6pruBO1I06dPZ/DgwUyfPp1u3bpddXxqair79+8nMjKyBKoTh6p6C4TUxsPIoJdlBTPWH8Gao8NgIiKSn0MDUGpqKrGxsfZ7Bx08eJDY2Fji4uIAGDFiBAMGDLCPnzZtGgMGDODtt9+mVatWJCQkkJCQQHJysn3Mc889x9KlSzl06BCrVq2iV69eWCwW+vbtW6K9iQOYTHBD7mHOQa6LOXEug3nbExxclIiIlEYODUAbNmygadOm9kvYhw8fTtOmTRk5ciQA8fHx9jAE8Mknn5Cdnc3QoUOJjIy0T0899ZR9zNGjR+nbty916tTh3nvvJTg4mDVr1hAaGlqyzYljRPcBVy9qcISWpt18tuKgng8mIiL5OPQcoLZt217xj9PUqVPzvI6JibnqOmfMmHGdVUmZ5hkAje6GTV8xwHUxw47UY1PcWZpX0eMxRETkL2XuHCCRq7pwGKyzZR0hJPP5ioMOLkhEREobBSBxPlFNoGILXIxsHnBZyLztCRw5k+7oqkREpBRRABLn1HooAP92W4SbkckXKw85th4RESlVFIDEOdXtDgFV8LWlcLdlGTPXx5GS4by3kxcRkcJRABLnZHGx7wUa4j6P81lWvlt/xMFFiYhIaaEAJM6rSX/wCKCCLZ4O5o18sfIQ2boxooiIoAAkzszdB274NwBD3H7nWNJ55u3QjRFFREQBSJxdq0fB7EoT9tDM9CefLDugGyOKiIgCkDg53whofB8Aj7r9ztajySzfe8rBRYmIiKMpAInzu3EYAB1N66lsSuTDJfscXJCIiDiaApA4v7B6ULMDJgwedZnLukNnWHPgtKOrEhERB1IAkvLhxicAuNclhlDOai+QiEg5pwAk5UO1NlCxJa5GFkNc57Bi3yk2xZ11dFUiIuIgCkBSPphM0PY/ANzvspgQkrUXSESkHFMAkvKjRjuo0Bw3I5OHXeawZPcJth9LdnRVIiLiAApAUn6YTHBr7l6gQa6LCCKFiX9oL5CISHmkACTlS62OEBmNu5HBgy6/M3d7AnsSzjm6KhERKWEKQFK+/G0v0IOuC/EnlbcW7HFwUSIiUtIUgKT8qdMVwhvhYZznQZe5LNyZyMbDuiJMRKQ8UQCS8sdkgltfAOARtwX4kcob83brGWEiIuWIApCUT3XvgLD6eNjSeMxtLusOnmHpnycdXZWIiJQQBSApn8xmuO2/ADzkMo8Qkhk/bw82m/YCiYiUBwpAUn7V7ZZ7XyDbeZ5x/5md8Sn8uvW4o6sSEZESoAAk5ZfJBO1GAtDHvIgKnOTtBX+SlW1zcGEiIlLcFICkfKveFqrdisXI5r+ePxJ3Jp2ZG444uioRESlmCkAiHcYAJroay2hi2sd7i/4kJcPq6KpERKQYKQCJRDWFJv0AeNXzW06lZvLB4r0OLkpERIqTApAI5J4L5OpNA9seephX8sXKQ+w7keroqkREpJgoAIkA+EbALcMBGOX5Ha6284z9badujigi4qQUgEQuaj0M/CsTlHOKx13nsOzPkyzedcLRVYmISDFwaABatmwZ3bt3JyoqCpPJxOzZs6+6TExMDM2aNcPd3Z2aNWsyderUfGMmTpxI1apV8fDwoFWrVqxbt67oixfn4+oBHccC8Jjrb0Rympfn7CQzO8fBhYmISFFzaABKS0sjOjqaiRMnFmj8wYMH6datG7fddhuxsbE8/fTTPPTQQ8yfP98+ZubMmQwfPpxRo0axadMmoqOj6dSpEydO6P/kpQDq94TKN+Jqy2SU53ccPp3O5ysOOroqEREpYg4NQF26dOGVV16hV69eBRo/efJkqlWrxttvv029evUYNmwYd999N++88459zIQJE3j44YcZPHgw9evXZ/LkyXh5eTFlypTiakOcickEnccBJjoby2lu2sOHS/aRkJzh6MpERKQIlalzgFavXk379u3zzOvUqROrV68GICsri40bN+YZYzabad++vX2MyFVFNYFmDwDwpvfXZGRZGf3LDsfWJCIiRcrF0QUURkJCAuHh4XnmhYeHk5KSwvnz5zl79iw5OTmXHLN79+7LrjczM5PMzEz765SUFACsVitWa9HeEO/i+op6vaWF0/TX5kVcdv5M9YwD3O+yhK92tOe32KN0ahDuPD1egbP36Oz9gfP36Oz9gXq8nvUVRJkKQMVl3LhxjBkzJt/8BQsW4OXlVSyfuXDhwmJZb2nhDP1VC7mTxke/5j+uM/k1uyUv/hjLuf05eF34r8YZerwaZ+/R2fsD5+/R2fsD9VgY6enpBR5bpgJQREQEiYmJeeYlJibi5+eHp6cnFosFi8VyyTERERGXXe+IESMYPny4/XVKSgqVKlWiY8eO+Pn5FWkPVquVhQsX0qFDB1xdXYt03aWBU/Vn64jx+Sa8T+zgDZ8ZPJL6CLFGFUZ1qO08PV6GU23HS3D2/sD5e3T2/kA9XouLR3AKokwFoNatW/P777/nmbdw4UJat24NgJubG82bN2fx4sX07NkTAJvNxuLFixk2bNhl1+vu7o67u3u++a6ursX2S1ec6y4NnKM/V+j+HnzegY7ZMbQ1t2DmBujeODL3Xafo8cqcvUdn7w+cv0dn7w/UY2HXU1AOPQk6NTWV2NhYYmNjgdzL3GNjY4mLiwNy98wMGDDAPv6xxx7jwIEDvPDCC+zevZuPPvqI7777jmeeecY+Zvjw4Xz66ad8+eWX7Nq1iyFDhpCWlsbgwYNLtDdxEpVawL8eB+Bd7y/xIZ3/zt5Jlm4NJCJSpjl0D9CGDRu47bbb7K8vHoYaOHAgU6dOJT4+3h6GAKpVq8acOXN45plneO+996hYsSKfffYZnTp1so+57777OHnyJCNHjiQhIYEmTZowb968fCdGixTY7f+DPXMIOHuIsV7fM/zMQOYdNdPT0XWJiMg1c2gAatu27RWftXSpuzy3bduWzZs3X3G9w4YNu+IhL5FCcfOCOz+AL7tzl20+35lbsOR4PTYePsu/aoY5ujoREbkGZeo+QCIOU60NNB8EwAfeU3Ani+d+2Ma5DOe9PFVExJkpAIkUVIex4BtFqPU4/3X/jqNJGYz+ZaejqxIRkWugACRSUB7+0P1dAO43zeMW8zZ+3HSUOVvjHVuXiIgUmgKQSGHU7kRO0wGYMJjk/QlBpPDirG3EJ593dGUiIlIICkAihWTr8AopHhXwsZ7mY9/PSD6fxbPfbcFmu/wJ/SIiUrooAIkUlqsXG6o+jmFxp4V1A4+4LWDV/tNMWrrf0ZWJiEgBKQCJXINznpWwtX8ZgP+4TKOB6RBvL9jDyn2nHFyZiIgUhAKQyDWyNR8MdbphsVn5wncSHkYGT07frPOBRETKAAUgkWtlMkGPD8E3irCsI7zv9zWn0zIZ+u0msrJtjq5ORESuQAFI5Hp4BUHvz8Bkpn3WHwzwWM6muCRe+32XoysTEZErUAASuV5Vb8p9XhgwyvIF9UyHmbrqED/HHnNwYSIicjkKQCJF4aZnoGYHLDmZTPf7gEBS+M+PW9l2NNnRlYmIyCUoAIkUBbMZ7voEAqsSkHmc6f4TybFm8eCX63VStIhIKaQAJFJUvIKg7wxw86Vu5jbe9/2aE+cyeHDqBtIysx1dnYiI/I0CkEhRCqsH93wBJjNdrAt50msBO+NTeGrGZnJ0p2gRkVJDAUikqNXqAB1fAeAZ42s6uG5h0a4TujJMRKQUUQASKQ7/ehyaPoDJsPGR+4fUNcXx+YqDTF150NGViYgICkAixcNkgm4ToMrNuGan8YPv20RxitG/7mT2Zl0eLyLiaApAIsXFxQ36fAOh9fDJOsnPARPwJ5Vnv9/Cop2Jjq5ORKRcUwASKU6egXD/D+AbRWjGIWYHvo+LLZOh0zax9sBpR1cnIlJuKQCJFDf/ivDAT+DhT7Xz25kR9AnZ2VYe+nID24/pRokiIo6gACRSEsLq5d4jyOJO0/RVfBr4DamZWQyYso5d8SmOrk5EpNxRABIpKVVutD849fbz8/ko4FvOpmXQ79M17DiuPUEiIiVJAUikJNW/E3pOBkx0yZjLxIBpnE3Pov9na3U4TESkBCkAiZS06PugV24I6prxOxMDppOUnkW/T9fo4akiIiVEAUjEEaL7QM+PABPdMn7jw8CZpGRY6ffZGjbHnXV0dSIiTk8BSMRRmvSDHhMBE3ec/4VPA78mLSOLfp+uJWbPCUdXJyLi1BSARBypaf/cEGQy0+H8PKYFfkq2NZOHvtygO0aLiBQjBSARR2vaH+6ZCmZX/nV+KbODJ+Jiy+DpmbF8tvyAo6sTEXFKCkAipUH9HtBvBrh40iBtLfND3sWXdF6Zs4txv+/CZjMcXaGIiFNRABIpLWq2hwGzwd2fKqlb+CN4PBGc5uNlBxg6bRPpWdmOrlBExGmUigA0ceJEqlatioeHB61atWLdunWXHdu2bVtMJlO+qVu3bvYxgwYNyvd+586dS6IVketT+V8w6DfwDiUk7U/+CHiZaMsh5m5P4N6PV5OQnOHoCkVEnILDA9DMmTMZPnw4o0aNYtOmTURHR9OpUydOnLj0VTA//fQT8fHx9mn79u1YLBbuueeePOM6d+6cZ9z06dNLoh2R6xfZGB5aDKF18cw4wU+er9DTayvbj6XQY+IK3StIRKQIODwATZgwgYcffpjBgwdTv359Jk+ejJeXF1OmTLnk+KCgICIiIuzTwoUL8fLyyheA3N3d84wLDAwsiXZEikZgFXhwAVS/DUt2Ou8Y43nBfwmJKRnc8/Eqft1y3NEVioiUaQ4NQFlZWWzcuJH27dvb55nNZtq3b8/q1asLtI7PP/+cPn364O3tnWd+TEwMYWFh1KlThyFDhnD69OkirV2k2Hn4Q//vodlATIaNxzM/48vgrzGsGTwxfTNjft1BVrbN0VWKiJRJLo788FOnTpGTk0N4eHie+eHh4ezevfuqy69bt47t27fz+eef55nfuXNn7rrrLqpVq8b+/ft58cUX6dKlC6tXr8ZiseRbT2ZmJpmZmfbXKSm5T+e2Wq1YrdZrae2yLq6vqNdbWjh7f+CAHju/hTmwGuYlY7k1bR4xQYe45+wQvlgJW44k8d59jYnw8yjSj3T27ejs/YHz9+js/YF6vJ71FYTJMAyHXV97/PhxKlSowKpVq2jdurV9/gsvvMDSpUtZu3btFZd/9NFHWb16NVu3br3iuAMHDlCjRg0WLVpEu3bt8r0/evRoxowZk2/+tGnT8PLyKmA3IsUrNGU7zQ99hHtOKulmH57IGsri7Gh8XA0G1rJR21+XyotI+Zaenk6/fv1ITk7Gz8/vimMdugcoJCQEi8VCYmJinvmJiYlERERccdm0tDRmzJjB2LFjr/o51atXJyQkhH379l0yAI0YMYLhw4fbX6ekpFCpUiU6dux41R9gYVmtVhYuXEiHDh1wdXUt0nWXBs7eHziyx66Q3BfbD4PwStjCZy7jmepzP2OTOjFpl4Uht1ZnWNvquFiu/8i2s29HZ+8PnL9HZ+8P1OO1uHgEpyAcGoDc3Nxo3rw5ixcvpmfPngDYbDYWL17MsGHDrrjs999/T2ZmJvfff/9VP+fo0aOcPn2ayMjIS77v7u6Ou7t7vvmurq7F9ktXnOsuDZy9P3BQjyHVc0+O/v05TJu/ZnDG17QIPUjfk4OYGHOA1QfO8F6fplQKKpo9l86+HZ29P3D+Hp29P1CPhV1PQTn8KrDhw4fz6aef8uWXX7Jr1y6GDBlCWloagwcPBmDAgAGMGDEi33Kff/45PXv2JDg4OM/81NRUnn/+edasWcOhQ4dYvHgxPXr0oGbNmnTq1KlEehIpVq4e0OND6P4eWNxoeG4Fq4PH0srjMJvikuj63nJ+jtVzxERErsShe4AA7rvvPk6ePMnIkSNJSEigSZMmzJs3z35idFxcHGZz3py2Z88eVqxYwYIFC/Ktz2KxsHXrVr788kuSkpKIioqiY8eOvPzyy5fcyyNSZjUfBBGNYOYAfFLimGF+iW9DHmDkqXY8NSOWxbtOMObOBgR6uzm6UhGRUsfhAQhg2LBhlz3kFRMTk29enTp1uNy5256ensyfP78oyxMpvSo0h8eWw69PYdr1C/enfsGt4Vvpc2IQv2yBVftP81qvhnRscOVz6kREyhuHHwITkevkFQT3fgV3fgiu3lRK3shS3//ycOBGTqVm8MjXG3l6xmaS0rMcXamISKmhACTiDEwmaPZA7t6gqGa4ZKXw3/NvsyDyE8JMScyOPU77Ccv4dcvxy+49FREpTxSARJxJcI3cq8TavghmV2qfXcoq3xE8GrCeU6m5d5Ae9MV6jpxJd3SlIiIOpQAk4mwsrtD2P/BIDERG45KVzIiMd1gSOZmqltMs/fMkHd5Zykcx+7Dm6FEaIlI+KQCJOKuIhrlPlb/9f2B2pfrZ5SzxfJ7XwxaSY81i/Lw9dHlvOcv3nnR0pSIiJU4BSMSZWVyhzfO55wZVuQlzdgZ9Ur5gU8gounjtZt+JVB74fB0Pf7WBuNM6LCYi5YcCkEh5EFYPBs2BXp+Adxi+qQeZZBvLnMjPqWA+y8KdibSfsJTx83ZzLsN5H7woInKRApBIeWEyQfR9MGw9tHwUTGYanF3Mcu8XGBe+BHIy+ShmP7e+GcPU1YfJ1ulBIuLEFIBEyhvPAOg6Pvck6YotMFvT6Jv8GVuCXuQh/42cTcvg1d/38GqshZ9jj2Oz6bJ5EXE+CkAi5VVkNPx7AfSYCL6ReKYf43+Zb7Mh/HU6ee/jTKaJ537cTrcPVhCz54TuHyQiTkUBSKQ8M5uh6f3wxEa47b/g5kNw8nY+zhnJr37jaeZxnF3xKQz6Yj19PlnDqv2nFIRExCkoAIkIuHnDrS/Ak5vhhn9jmCw0yorlR57nlwpfU9XlNGsPnqHfp2u59+PVLPvzpIKQiJRpCkAi8hefMLjjHbIfXcGxgBaYMGh8ei5/uD/L9EqzqOJyhvWHzjJgyjp6fbSKJbsTFYREpExSABKR/IJrsaHaE2QPXgDV2mDKyaL1ye+JcXuan6O+opHrMWKPJPHvqRvo/uEK5m2PJ0cnS4tIGaIAJCKXZUQ1gwG/wAOzoeotmGzZRJ+Zx6+W51kUPpFb3Paw/Vgyj32zidvfjuHLVYdIz8p2dNkiIlelACQiV2YyQY3bYNBv8PASqN8DMFEzeSVfm8ewKmQcvTw3E3c6lVG/7KD1uCWMn7ebxJQMR1cuInJZCkAiUnAVmsO9X+VeNdZ8MFjciUrdzjvGm8QG/4/H/VZy/nw6H8Xs5+Y3ljD8u1i2H0t2dNUiIvkoAIlI4QXXgO7vwtPb4Obh4O6Pf9ohXsiayNaA53k5dDHuOWn8tOkYd3ywgh4TV/LDxqNkWHMcXbmICKAAJCLXwzcc2o+C4Tug4yvgG4VHxgkeOPc5W3yf4dOoX6loOcuWI0k89/0W/jVuMa/O2cmhU2mOrlxEyjkFIBG5fu6+cOMT8NQW6PERhNTBYj1HhzPTWe72JIsqfk53370kpWfx6fKDtH0rhgc+X8ucrfFkZmuvkIiUPBdHFyAiTsTFDZr2h+i+sHc+rPoQ0+EV1Dy1mA9YzOuh1Znt0pk3E5qwfC8s33uKAC9XejapwN3NK9Kwgr+jOxCRckIBSESKntkMdbrkTok7YcPnsGUG3ucO0J+P6Oflzq6AW5mYfBO/p9Zg6qpDTF11iHqRftx7Q0V6NKlAkLebo7sQESemQ2AiUrzC60O3t+HZ3dD1LQhvhCknk/qnFzAxexQ7g0fwQYVFVLKcZVd8CmN+3Umr1xbx4NT1/Bx7jLRM3VdIRIqe9gCJSMlw94WWD0OLhyA+FjZ9Ddu+xzPtCN3TpnCH21SOB7dmZkZLppxqwOLdBot3n8DD1Uz7euHcGR3FrXVCcXexOLoTEXECCkAiUrJMJohqmjt1fAV2/gybv8Z0eCUVTq1kOCt52tudff438U3aDcxMrs9vW+P5bWs8fh4udG4YwZ3RFWhdIxiL2eTobkSkjFIAEhHHcfOCJn1zp1P7YPsPsO17zKf3UfvMEsayhFG+Pmz3u4Upyc35LbUO3204yncbjhLi40aH+uF0bBDBjTWCtWdIRApFAUhESoeQmtD2/+DW/0D8ltwwtP0nLCnHiD49l/eYy1v+QWzwuZWPzzRlaWp1pq87wvR1R/Bxd+G2umF0rB/ObXXD8HHXP20icmX6V0JESheTCaKa5E7tx8KRNbDtB9g5G9f007TOnEVrZpERFMkmr5v48mwjFqVV59ctx/l1y3HcLGZuqhlMxwYRtK8XTqivu6M7EpFSSAFIREovsxmq3Jg7dXkDDizN3TO06zc80uO5Mf0HbuQHsv0D2eF3EzPPRfNjUi3+2HOSP/ac5EXTNhpXDKBt7VDa1gmlccUAnTckIoACkIiUFRZXqNU+d7rjPOxfArt+gz/n4nL+LNEnfyOa33jFx4sDAf9iTkZjvjlVmy1HYMuRJN5bvJcgbzfa1Arh5prBZFod3ZCIOJICkIiUPa6eULdb7pSTDYdXwu7fYPcczCnHqHlqCU+xhKc84Ix/A1aZm/PtmbqsSavM7NjjzI49jgkL3yWs5ba6YdxSK4TGFQNwtejWaCLlRan4r33ixIlUrVoVDw8PWrVqxbp16y47durUqZhMpjyTh4dHnjGGYTBy5EgiIyPx9PSkffv27N27t7jbEBFHsLhA9Vuh65vwzA54+I/cE6mjmgIQlLyDO85+xXTTi+wJeIpfK37Lw4Gx+JLOlqPJvLtoL70nrabJmAX8e+p6Plt+gF3xKdhshoMbE5Hi5PA9QDNnzmT48OFMnjyZVq1a8e6779KpUyf27NlDWFjYJZfx8/Njz5499tcmU95j+uPHj+f999/nyy+/pFq1arz00kt06tSJnTt35gtLIuJETCao0Cx3uu1FOJcI+xbCn/Nh/x+4ZZymUcYcGjGHER4mzvjVZ6OlEbOTahJzvjpLduewZPcJAIK93bixZgg31QjmppohVArycnBzIlKUHB6AJkyYwMMPP8zgwYMBmDx5MnPmzGHKlCn83//93yWXMZlMREREXPI9wzB49913+d///kePHj0A+OqrrwgPD2f27Nn06dOneBoRkdLHNxya3p87ZWflXlG2dwHGn/Mxn/qTkJQddGIHnQCblyuJvg1YazTkp7PVWZtWnV+3ZPHrluMARPl70KJaEC2rBdGyahA1w3zy/c+XiJQdDg1AWVlZbNy4kREjRtjnmc1m2rdvz+rVqy+7XGpqKlWqVMFms9GsWTNee+01GjRoAMDBgwdJSEigffv29vH+/v60atWK1atXKwCJlFcublCtDVRrQ/Zto1gy+xva1XDDJW4lHFyGOfkIkcmx9CSWnhawublzxKcxK7PrMSupBpuTq/FzbAY/x+YGoiBvN26oEpgbiKoFUT/SDxedQyRSZjg0AJ06dYqcnBzCw8PzzA8PD2f37t2XXKZOnTpMmTKFxo0bk5yczFtvvcWNN97Ijh07qFixIgkJCfZ1/HOdF9/7p8zMTDIzM+2vU1JSALBarVitRXupyMX1FfV6Swtn7w/UozOwWq1kuAWRVbcDRqN7wTAg6TCmQ8sxH16R+zXtBFWS11OF9fRzhWxPL+J8olmVU5+fkmoSm1aJBTsTWbAzEQBvNwvRFf2JruRPk0oBRFf0J9iBT7QvD9vw71+dkXq89vUVhMkwDIed6Xf8+HEqVKjAqlWraN26tX3+Cy+8wNKlS1m7du1V12G1WqlXrx59+/bl5ZdfZtWqVdx0000cP36cyMhI+7h7770Xk8nEzJkz861j9OjRjBkzJt/8adOm4eWl4/4i5Y5h4JN5nJBzuwhN3UXIuZ245aTlGZJp8iDOpSpbbNWJyazDyuw6nMUvz5gQd4MqvgZVfXK/VvACF+0kEik26enp9OvXj+TkZPz8/K441qF7gEJCQrBYLCQmJuaZn5iYeNlzfP7J1dWVpk2bsm/fPgD7comJiXkCUGJiIk2aNLnkOkaMGMHw4cPtr1NSUqhUqRIdO3a86g+wsKxWKwsXLqRDhw64uroW6bpLA2fvD9SjMyh0f4YNa+IO+94hU9wq3LNSqWXdTS12c7fL7+ACSd7V2eVan+UZ1ViYXIn9mVGcyjSz8VTuatxczDSM8qNJRX8aV/SnQZQvlQO9MBfDzRm1Dcs+9Vh4F4/gFIRDA5CbmxvNmzdn8eLF9OzZEwCbzcbixYsZNmxYgdaRk5PDtm3b6Nq1KwDVqlUjIiKCxYsX2wNPSkoKa9euZciQIZdch7u7O+7u+W+X7+rqWmy/dMW57tLA2fsD9egMCtVfpWa5081P5t576NSfcHwzHF0HcWvg5G4C0g7QmgO0Bl5wh2wXbxK867DNqMGSc5VYnVGFTXE5bIpLsq/W192FBhX8aFTBn4YXpmrB3kUWirQNyz71WLj1FJTDrwIbPnw4AwcO5IYbbqBly5a8++67pKWl2a8KGzBgABUqVGDcuHEAjB07ln/961/UrFmTpKQk3nzzTQ4fPsxDDz0E5F4h9vTTT/PKK69Qq1Yt+2XwUVFR9pAlInJdLC4QXj93ato/d176mdwgFLcajm2C45txsaZRMXkTFdlEFwB3yHAL4rBHHTZlV2PJuUpszKzGmgPZrDlwxr56bzcLDaIuBiI/Glbwp3qIt06yFilCDg9A9913HydPnmTkyJEkJCTQpEkT5s2bZz+JOS4uDrP5r//oz549y8MPP0xCQgKBgYE0b96cVatWUb9+ffuYF154gbS0NB555BGSkpK4+eabmTdvnu4BJCLFxysI6nbNnQBsObl7iY5tzA1ExzZC4g48ss5QJ2s1dVhNXwtggVTPChxyr8NmayWWpUQQm1WZdYeyWXfor1DkZjFTM8yHuhG+1I30pW6EH3UjfAn1ddfl+CLXwOEBCGDYsGGXPeQVExOT5/U777zDO++8c8X1mUwmxo4dy9ixY4uqRBGRwjFbIKxe7tT0/tx51gxI3JEbho5fCEWn/sTn/DEanj9GQ+CBC6Eowy2Yo+412JZThRWpkcRaK7E7PpKd8Smw+a+PCfJ2o054biiqF+FHnQhfaof74qJMJHJFpSIAiYiUC64eULF57nRRRjIcj809nyhhW+50ei8eWaepmXWamqyjlxlwhxyLB6c9q3LQVJGtmZGsTwtlb3oF1h0IY/WB0/ZVmkxQJcgLX5uZXa57qR3hR80wH6qH+uDjrn/2RUABSETEsTz8c59lVv3Wv+ZlpcOJXZCw5a9QlLgDizWdsNTdhLGbVsDDF873zDG7csq9MgeoyJaMCLZkRrD3TAV2GxFsW3Ywz8dF+ntQM8yHGqE+1AjzoWaoDzXDfAjxcdOhNClXFIBEREobN6/8e4psOXDmIJzcfWHak/v11F4s2ecJP7+fcPbTGuDC/RdzsHDKvSIHTZXYlhnB1swI9qVUYF1yJMv35r1Jo7+nKzVCvakR6kPVEG+qhXhTJdiLKsHe2mskTkm/1SIiZYHZAiE1c6d6d/w132aD5Li/AtGFr8bJ3Viy0gjPPEw4h/kX2IORDTNJ7lEcNldiR3YUm9LD2JtRgb1xEWyKy3/z1xAfd6qF5IahqhdC0cWA5Ovh3Jdni/NSABIRKcvMZgismjvV7mSfnZ2VxZKfv6Fdowq4nN13IRjtgZO7MGckE5R5lCCO0hS4/28ZJt01iASXChw0ItiVGcr2zDAOpUWwLTWc9Yfy3y8t2NuNKsFeVA32puqFUFQx0ItKgZ66Qk1KNQUgERFnZDKR4RaMUeN2cP0rGGEYkHoi72G0k3vg9F5ITcTLeobq1jNUZxvtwL7XCCDVLYyTljCOGiHszQxiX1Ygx86HcPRICL/HhZBB3oDk7mKmQqCnPRBVDPSiUtBfr4O8dd6ROI4CkIhIeWIygW947vT3E68BMlLgzAE4ve+vr6f3537NSMIn6wQ+nKAacAvAP45+pVoCSDSHEpcTwv6sQI4aIRw9HcqxUyHEGiGk4J1nvKerhYqBnlQK8iIqwINIf08qBHgS6e9BVIAn4X4euOnhaVJMFIBERCSXhx9ENcmd/in9TO5J2MlxkHQEko/kfk2Ky/0+MwWfnCR8cpKowV5uu8Rfl/Nmb06YQzmSE8L+7CCO2kI4diqEYydD2GqEcgo/4K89QiZT7vlHUQGeRPnnBqSogNxwFOrtQnIW2GwOe563lHEKQCIicnVeQbnT369M+7vzSflDkf3rEUg/hactjSq2NKpwiJsv3PDx77JM7py0hHLMCOGgNYi4nBCOpYVwNDWE2COhzCcQG3/fI+TC2M2LCPfzINLfgzA/d8J8PQj38yDc/r07YX4e+Hm46HCb5KEAJCIi188zIHeKaHTp97PSIPnohb1Hf9+LdOH7c/G4GZlUyD5KBY7S0gz84+hXjsnCWUsoiaYQjuf4czjLjxNGACdSAjmREsAeI5AVRgApePH3PUkAHq5mwv08CPPNDUTh9nDkTrivR+48P3d83BWUygsFIBERKX5u3hBaJ3e6lOwsSDmWNxT9fS9S8lEstmxCshMIIYEGcNm/YFaTG2fMwZwkgOM5/hzL9ueELZATZwM4cTaAfUYAK41AkvDhn0HJ09Vi33sU7ONGiI87IT7u9u9Dfd0I9nYnxNcdbzeLwlIZpgAkIiKO5+IGQdVyp0ux5cC5BHsYykk+zoGtq6kR5o05LRHOJUJqAmQk42pkEZ4TTzjxNITL/qXLNrly1hzISSOA47YAjmf7c8IWwImkAE6eDeCY4cc2/Dhl+OW7wg1y9ypdDEOhPheDkduFwOROiI8boRe+D/B0xWxWWCpNFIBERKT0M1vAv0LuBNisVnaerkLVrl0xu/7tcjTr+dyglJr4t6/xfwWkcxdenz+Di2ElNOcEoZygPlzxL2KmyYNkkx+n8ONkji8nbb6cMvw4c86X0yn+nMaXXYYfpw0/TpM/MFnMJgK93AjydiXAy40gLzcCvXNf586/8Ppv37uZdIJ3cVIAEhER5+HqeeU9SRdlZ/0tJCVcIiwlQvppSDsFOZm4GxmEGRmEcSL3qJnlyqvPMLlzFn9OG76cyPHNDUYZfpw+70cSPpwxfNlj+JKED2cNH5Lx+ccJ3uBqMeFltjDpwCqCfNztASn3q+uFAOVGoJcb/p6u+Hm64uvuoj1NBaQAJCIi5Y+LGwRUyp2uxDAgKxXSTkLa6dyv6adyg1Haqb99f/JCYDoJOVl4GJlEcoJITlw1LAHYMJFm8iYJX07bvDlt+yscnT3lS9Kp3O/340OSkTudxYfzuPP385jMJvDzdMXf05WAC6EowMsNf0+XC/P+CksBXrnj/C987+lavs5pUgASERG5HJMJ3H1zp6DqVx9vGJB5Lm9IsoemCwHp/JncsJR+Bs6fhcwUzBj4Gqn4kkqlAuxhusiKCyn4cNbwJsnwJtnwJtnqTXKWNynJF14b3iTgzR7Dm2S8STG8OIcXaXjw9/DkajHZA9FfwcjtEvNc/9rj5OGCn4crXmXwhHAFIBERkaJiMuXeUNLDr2CBCSDHmhuE0s9cCEe5X3POneTAjg3UiAzEnJGUO+b8mb/G2qy4kk0wSQSbkv55QdvVPxYzqXiRYnjaQ1FKphfnMr1IOetFCl6cM3K/Jhp/vT6Hl3181oXbgVvMJnw9XOyB6K+vrvh5uuR+vTDv4uvKQV5E+DruYboKQCIiIo5kcQWfsNzpb2xWKzuTfs9/ojdcODSXBvZgdDb3ZpQZSVf/mpEMtmws2PAnFX9TaqHD00UZhutfgSjbi5RzudO5fwSmI/8ITufwoseNjXi6c+Nr++AioAAkIiJS1phM4O6TO/lXLNyyhpF7tVxmSm4YykiBzOS/vs9IvvDe37//x3uZKQB4mKx4kEyoKbnQLWw/+QDwTqGXKyoKQCIiIuWJyQRuXrmTb8S1rcOWk3uuU54Q9c+glHyF91JoWL0S1qLtrFAUgERERKRwzJa/Hn9yrWw2yMkpqooKzXz1ISIiIiJFzOzYCKIAJCIiIuWOApCIiIiUOwpAIiIiUu4oAImIiEi5owAkIiIi5Y4CkIiIiJQ7CkAiIiJS7igAiYiISLmjACQiIiLlTqkIQBMnTqRq1ap4eHjQqlUr1q1bd9mxn376KbfccguBgYEEBgbSvn37fOMHDRqEyWTKM3Xu3Lm42xAREZEywuEBaObMmQwfPpxRo0axadMmoqOj6dSpEydOnLjk+JiYGPr27csff/zB6tWrqVSpEh07duTYsWN5xnXu3Jn4+Hj7NH369JJoR0RERMoAhwegCRMm8PDDDzN48GDq16/P5MmT8fLyYsqUKZcc/+233/L444/TpEkT6taty2effYbNZmPx4sV5xrm7uxMREWGfAgMDS6IdERERKQMc+jT4rKwsNm7cyIgRI+zzzGYz7du3Z/Xq1QVaR3p6OlarlaCgoDzzY2JiCAsLIzAwkNtvv51XXnmF4ODgS64jMzOTzMxM++uUlBQArFYrVqu1sG1d0cX1FfV6Swtn7w/UozNw9v7A+Xt09v5APV7P+grCZBiGUSSfeg2OHz9OhQoVWLVqFa1bt7bPf+GFF1i6dClr16696joef/xx5s+fz44dO/Dw8ABgxowZeHl5Ua1aNfbv38+LL76Ij48Pq1evxmKx5FvH6NGjGTNmTL75n332GV5eXtfRoYiIiJSU9PR0HnroIZKSkvD397/yYMOBjh07ZgDGqlWr8sx//vnnjZYtW151+XHjxhmBgYHGli1brjhu//79BmAsWrToku9nZGQYycnJ9mnnzp0GoEmTJk2aNGkqg9ORI0eumiEceggsJCQEi8VCYmJinvmJiYlERERccdm33nqL119/nUWLFtG4ceMrjq1evTohISHs27ePdu3a5Xvf3d0dd3d3+2sfHx+OHDmCr68vJpOpEB1dXUpKCpUqVeLIkSP4+fkV6bpLA2fvD9SjM3D2/sD5e3T2/kA9XgvDMDh37hxRUVFXHevQAOTm5kbz5s1ZvHgxPXv2BLCf0Dxs2LDLLjd+/HheffVV5s+fzw033HDVzzl69CinT58mMjKyQHWZzWYqVqxYoLHXys/Pz2l/ocH5+wP16AycvT9w/h6dvT9Qj4V11UNfFzj8KrDhw4fz6aef8uWXX7Jr1y6GDBlCWloagwcPBmDAgAF5TpJ+4403eOmll5gyZQpVq1YlISGBhIQEUlNTAUhNTeX5559nzZo1HDp0iMWLF9OjRw9q1qxJp06dHNKjiIiIlC4O3QMEcN9993Hy5ElGjhxJQkICTZo0Yd68eYSHhwMQFxeH2fxXTps0aRJZWVncfffdedYzatQoRo8ejcViYevWrXz55ZckJSURFRVFx44defnll/Mc5hIREZHyy+EBCGDYsGGXPeQVExOT5/WhQ4euuC5PT0/mz59fRJUVPXd3d0aNGuW0YczZ+wP16AycvT9w/h6dvT9Qj8XNoZfBi4iIiDiCw88BEhERESlpCkAiIiJS7igAiYiISLmjACQiIiLljgJQCZo4cSJVq1bFw8ODVq1asW7dOkeXdE3GjRtHixYt8PX1JSwsjJ49e7Jnz548Y9q2bYvJZMozPfbYYw6quPBGjx6dr/66deva38/IyGDo0KEEBwfj4+ND7969893RvLSrWrVqvh5NJhNDhw4FyuY2XLZsGd27dycqKgqTycTs2bPzvG8YBiNHjiQyMhJPT0/at2/P3r1784w5c+YM/fv3x8/Pj4CAAB588EH7fcYc7Ur9Wa1W/vOf/9CoUSO8vb2JiopiwIABHD9+PM86LrXdX3/99RLu5PKutg0HDRqUr/7OnTvnGVNWtyFwyf8mTSYTb775pn1Mad+GBfkbUZB/Q+Pi4ujWrRteXl6EhYXx/PPPk52dXWR1KgCVkJkzZzJ8+HBGjRrFpk2biI6OplOnTpw4ccLRpRXa0qVLGTp0KGvWrGHhwoVYrVY6duxIWlpannEPP/ww8fHx9mn8+PEOqvjaNGjQIE/9K1assL/3zDPP8Ouvv/L999+zdOlSjh8/zl133eXAagtv/fr1efpbuHAhAPfcc499TFnbhmlpaURHRzNx4sRLvj9+/Hjef/99Jk+ezNq1a/H29qZTp05kZGTYx/Tv358dO3awcOFCfvvtN5YtW8YjjzxSUi1c0ZX6S09PZ9OmTbz00kts2rSJn376iT179nDnnXfmGzt27Ng82/WJJ54oifIL5GrbEKBz58556p8+fXqe98vqNgTy9BUfH8+UKVMwmUz07t07z7jSvA0L8jfiav+G5uTk0K1bN7Kysli1ahVffvklU6dOZeTIkUVX6FWfFiZFomXLlsbQoUPtr3NycoyoqChj3LhxDqyqaJw4ccIAjKVLl9rn3XrrrcZTTz3luKKu06hRo4zo6OhLvpeUlGS4uroa33//vX3erl27DMBYvXp1CVVY9J566imjRo0ahs1mMwyj7G9DwJg1a5b9tc1mMyIiIow333zTPi8pKclwd3c3pk+fbhiGYX8Q8vr16+1j5s6da5hMJuPYsWMlVntB/LO/S1m3bp0BGIcPH7bPq1KlivHOO+8Ub3FF5FI9Dhw40OjRo8dll3G2bdijRw/j9ttvzzOvLG1Dw8j/N6Ig/4b+/vvvhtlsNhISEuxjJk2aZPj5+RmZmZlFUpf2AJWArKwsNm7cSPv27e3zzGYz7du3Z/Xq1Q6srGgkJycDEBQUlGf+t99+S0hICA0bNmTEiBGkp6c7orxrtnfvXqKioqhevTr9+/cnLi4OgI0bN2K1WvNsz7p161K5cuUyuz2zsrL45ptv+Pe//53nAcBlfRv+3cGDB0lISMiz3fz9/WnVqpV9u61evZqAgIA8zxhs3749ZrOZtWvXlnjN1ys5ORmTyURAQECe+a+//jrBwcE0bdqUN998s0gPK5SEmJgYwsLCqFOnDkOGDOH06dP295xpGyYmJjJnzhwefPDBfO+VpW34z78RBfk3dPXq1TRq1Mj+VAiATp06kZKSwo4dO4qkrlJxJ2hnd+rUKXJycvJsSIDw8HB2797toKqKhs1m4+mnn+amm26iYcOG9vn9+vWjSpUqREVFsXXrVv7zn/+wZ88efvrpJwdWW3CtWrVi6tSp1KlTh/j4eMaMGcMtt9zC9u3bSUhIwM3NLd8flfDwcBISEhxT8HWaPXs2SUlJDBo0yD6vrG/Df7q4bS713+HF9xISEggLC8vzvouLC0FBQWVu22ZkZPCf//yHvn375nnI5JNPPkmzZs0ICgpi1apVjBgxgvj4eCZMmODAaguuc+fO3HXXXVSrVo39+/fz4osv0qVLF1avXo3FYnGqbfjll1/i6+ub7/B6WdqGl/obUZB/QxMSEi753+rF94qCApBcl6FDh7J9+/Y858cAeY63N2rUiMjISNq1a8f+/fupUaNGSZdZaF26dLF/37hxY1q1akWVKlX47rvv8PT0dGBlxePzzz+nS5cuREVF2eeV9W1YnlmtVu69914Mw2DSpEl53hs+fLj9+8aNG+Pm5sajjz7KuHHjysQjF/r06WP/vlGjRjRu3JgaNWoQExNDu3btHFhZ0ZsyZQr9+/fHw8Mjz/yytA0v9zeiNNAhsBIQEhKCxWLJd4Z7YmIiERERDqrq+g0bNozffvuNP/74g4oVK15xbKtWrQDYt29fSZRW5AICAqhduzb79u0jIiKCrKwskpKS8owpq9vz8OHDLFq0iIceeuiK48r6Nry4ba7032FERES+CxOys7M5c+ZMmdm2F8PP4cOHWbhwYZ69P5fSqlUrsrOzr/qcxdKqevXqhISE2H8vnWEbAixfvpw9e/Zc9b9LKL3b8HJ/Iwryb2hERMQl/1u9+F5RUAAqAW5ubjRv3pzFixfb59lsNhYvXkzr1q0dWNm1MQyDYcOGMWvWLJYsWUK1atWuukxsbCwAkZGRxVxd8UhNTWX//v1ERkbSvHlzXF1d82zPPXv2EBcXVya35xdffEFYWBjdunW74riyvg2rVatGREREnu2WkpLC2rVr7dutdevWJCUlsXHjRvuYJUuWYLPZ7AGwNLsYfvbu3cuiRYsIDg6+6jKxsbGYzeZ8h43KiqNHj3L69Gn772VZ34YXff755zRv3pzo6Oirji1t2/BqfyMK8m9o69at2bZtW54wezHQ169fv8gKlRIwY8YMw93d3Zg6daqxc+dO45FHHjECAgLynOFeVgwZMsTw9/c3YmJijPj4ePuUnp5uGIZh7Nu3zxg7dqyxYcMG4+DBg8bPP/9sVK9e3WjTpo2DKy+4Z5991oiJiTEOHjxorFy50mjfvr0REhJinDhxwjAMw3jssceMypUrG0uWLDE2bNhgtG7d2mjdurWDqy68nJwco3LlysZ//vOfPPPL6jY8d+6csXnzZmPz5s0GYEyYMMHYvHmz/Sqo119/3QgICDB+/vlnY+vWrUaPHj2MatWqGefPn7evo3PnzkbTpk2NtWvXGitWrDBq1apl9O3b11Et5XGl/rKysow777zTqFixohEbG5vnv82LV82sWrXKeOedd4zY2Fhj//79xjfffGOEhoYaAwYMcHBnf7lSj+fOnTOee+45Y/Xq1cbBgweNRYsWGc2aNTNq1aplZGRk2NdRVrfhRcnJyYaXl5cxadKkfMuXhW14tb8RhnH1f0Ozs7ONhg0bGh07djRiY2ONefPmGaGhocaIESOKrE4FoBL0wQcfGJUrVzbc3NyMli1bGmvWrHF0SdcEuOT0xRdfGIZhGHFxcUabNm2MoKAgw93d3ahZs6bx/PPPG8nJyY4tvBDuu+8+IzIy0nBzczMqVKhg3Hfffca+ffvs758/f954/PHHjcDAQMPLy8vo1auXER8f78CKr838+fMNwNizZ0+e+WV1G/7xxx+X/N0cOHCgYRi5l8K/9NJLRnh4uOHu7m60a9cuX++nT582+vbta/j4+Bh+fn7G4MGDjXPnzjmgm/yu1N/Bgwcv+9/mH3/8YRiGYWzcuNFo1aqV4e/vb3h4eBj16tUzXnvttTzhwdGu1GN6errRsWNHIzQ01HB1dTWqVKliPPzww/n+R7KsbsOLPv74Y8PT09NISkrKt3xZ2IZX+xthGAX7N/TQoUNGly5dDE9PTyMkJMR49tlnDavVWmR1mi4UKyIiIlJu6BwgERERKXcUgERERKTcUQASERGRckcBSERERModBSAREREpdxSAREREpNxRABIREZFyRwFIROQyTCYTs2fPdnQZIlIMFIBEpFQaNGgQJpMp39S5c2dHlyYiTsDF0QWIiFxO586d+eKLL/LMc3d3d1A1IuJMtAdIREotd3d3IiIi8kyBgYFA7uGpSZMm0aVLFzw9PalevTo//PBDnuW3bdvG7bffjqenJ8HBwTzyyCOkpqbmGTNlyhQaNGiAu7s7kZGRDBs2LM/7p06dolevXnh5eVGrVi1++eUX+3tnz56lf//+hIaG4unpSa1atfIFNhEpnRSARKTMeumll+jduzdbtmyhf//+9OnTh127dgGQlpZGp06dCAwMZP369Xz//fcsWrQoT8CZNGkSQ4cO5ZFHHmHbtm388ssv1KxZM89njBkzhnvvvZetW7fStWtX+vfvz5kzZ+yfv3PnTubOncuuXbuYNGkSISEhJfcDEJFrV2SPVRURKUIDBw40LBaL4e3tnWd69dVXDcPIfeL0Y489lmeZVq1aGUOGDDEMwzA++eQTIzAw0EhNTbW/P2fOHMNsNtufHh4VFWX897//vWwNgPG///3P/jo1NdUAjLlz5xqGYRjdu3c3Bg8eXDQNi0iJ0jlAIlJq3XbbbUyaNCnPvKCgIPv3rVu3zvNe69atiY2NBWDXrl1ER0fj7e1tf/+mm27CZrOxZ88eTCYTx48fp127dlesoXHjxvbvvb298fPz48SJEwAMGTKE3r17s2nTJjp27EjPnj258cYbr6lXESlZCkAiUmp5e3vnOyRVVDw9PQs0ztXVNc9rk8mEzWYDoEuXLhw+fJjff/+dhQsX0q5dO4YOHcpbb71V5PWKSNHSOUAiUmatWbMm3+t69eoBUK9ePbZs2UJaWpr9/ZUrV2I2m6lTpw6+vr5UrVqVxYsXX1cNoaGhDBw4kG+++YZ3332XTz755LrWJyIlQ3uARKTUyszMJCEhIc88FxcX+4nG33//PTfccAM333wz3377LevWrePzzz8HoH///owaNYqBAwcyevRoTp48yRNPPMEDDzxAeHg4AKNHj+axxx4jLCyMLl26cO7cOVauXMkTTzxRoPpGjhxJ8+bNadCgAZmZmfz222/2ACYipZsCkIiUWvPmzSMyMjLPvDp16rB7924g9wqtGTNm8PjjjxMZGcn06dOpX78+AF5eXsyfP5+nnnqKFi1a4OXlRe/evZkwYYJ9XQMHDiQjI4N33nmH5557jpCQEO6+++4C1+fm5saIESM4dOgQnp6e3HLLLcyYMaMIOheR4mYyDMNwdBEiIoVlMpmYNWsWPXv2dHQpIlIG6RwgERERKXcUgERERKTc0TlAIlIm6ei9iFwP7QESERGRckcBSERERModBSAREREpdxSAREREpNxRABIREZFyRwFIREREyh0FIBERESl3FIBERESk3FEAEhERkXLn/wGvn9T8uFv64AAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9062 - loss: 0.3420\n","Loss on test data: 0.35140201449394226\n","Accuracy on test data: 0.9049000144004822\n"]}]},{"cell_type":"markdown","source":["Лучший результат по итогу показала сеть с одним скрытым слоеv со 100 нейронами"],"metadata":{"id":"7iI0uJLUmhiY"}},{"cell_type":"code","source":["model_2l_100.save(filepath='best_model_2l_100_LR1.keras')"],"metadata":{"id":"ro7-VdKSmhNG","executionInfo":{"status":"ok","timestamp":1760541541921,"user_tz":-180,"elapsed":27,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}}},"execution_count":22,"outputs":[]},{"cell_type":"code","source":["n = 70\n","result = model_2l_100.predict(X_test[n:n+1])\n","print('NN output:', result)\n","\n","plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n","plt.show()\n","print('Real mark: ', str(np.argmax(y_test[n])))\n","print('NN answer: ', str(np.argmax(result)))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"id":"9BfuAjEdnG9-","executionInfo":{"status":"ok","timestamp":1760465005070,"user_tz":-180,"elapsed":178,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"4fcccd9c-0d2d-4787-a071-54f88ce6ea80"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n","NN output: [[2.1906348e-05 3.4767098e-05 9.9508625e-01 2.6498403e-04 6.9696616e-05\n"," 1.0428299e-05 4.2126467e-03 3.0855140e-06 2.8133177e-04 1.4690979e-05]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG+NJREFUeJzt3X9sVfX9x/HXLT+ugO1ltbS3lR8W/IET2mVMuop2KA2lM0aETHEuw8WAsIsZMn+sm4o6k24s2YyO4bIsdG6CSCIwyUKixZboWggo6cy0oV21ZdCiLNxbihRGP98/+HrnlQKey719916ej+ST9J5z3ve8+XByX5x7L5/6nHNOAAAMsAzrBgAAFycCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACaGWjfwRX19fTpw4IAyMzPl8/ms2wEAeOScU3d3twoKCpSRcfb7nEEXQAcOHNC4ceOs2wAAXKCOjg6NHTv2rPsH3VtwmZmZ1i0AABLgfK/nSQug1atX64orrtAll1yikpIS7dq160vV8bYbAKSH872eJyWANmzYoBUrVmjlypV65513VFxcrIqKCh06dCgZpwMApCKXBNOnT3ehUCj6+NSpU66goMBVV1eftzYcDjtJDAaDwUjxEQ6Hz/l6n/A7oBMnTmjPnj0qLy+PbsvIyFB5ebkaGhrOOL63t1eRSCRmAADSX8ID6JNPPtGpU6eUl5cXsz0vL0+dnZ1nHF9dXa1AIBAdfAMOAC4O5t+Cq6qqUjgcjo6Ojg7rlgAAAyDh/w8oJydHQ4YMUVdXV8z2rq4uBYPBM473+/3y+/2JbgMAMMgl/A5o+PDhmjZtmmpra6Pb+vr6VFtbq9LS0kSfDgCQopKyEsKKFSu0cOFCfeMb39D06dP17LPPqqenRz/4wQ+ScToAQApKSgDddddd+vjjj/XEE0+os7NTX/va17Rt27YzvpgAALh4+ZxzzrqJz4tEIgoEAtZtAAAuUDgcVlZW1ln3m38LDgBwcSKAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmhlo3gNSVmZnpuebtt9/2XDN16lTPNfH617/+5blmw4YNnmvWrFnjuebQoUOea3p7ez3XAAOFOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmfM45Z93E50UiEQUCAes28CXk5+d7rvn3v/+dhE4uDk1NTZ5rbrnllrjO9Z///CeuOuDzwuGwsrKyzrqfOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmWIwUcRs5cqTnmvvvv99zTXFxseeaG264wXONJI0YMcJzzeWXXx7XuQZCPAuYStJjjz3muWbr1q1xnQvpi8VIAQCDEgEEADCR8AB68skn5fP5YsbkyZMTfRoAQIobmownve666/TGG2/87yRDk3IaAEAKS0oyDB06VMFgMBlPDQBIE0n5DGjfvn0qKCjQxIkTdc8996i9vf2sx/b29ioSicQMAED6S3gAlZSUqKamRtu2bdOaNWvU1tamm266Sd3d3f0eX11drUAgEB3jxo1LdEsAgEEo4QFUWVmp73znOyoqKlJFRYX+9re/6ciRI3rllVf6Pb6qqkrhcDg6Ojo6Et0SAGAQSvq3A0aPHq2rr75aLS0t/e73+/3y+/3JbgMAMMgk/f8BHT16VK2trcrPz0/2qQAAKSThAfTQQw+pvr5eH374of7+97/rjjvu0JAhQ3T33Xcn+lQAgBSW8Lfg9u/fr7vvvluHDx/WmDFjdOONN6qxsVFjxoxJ9KkAACmMxUiBz4nnreIZM2Z4rlm6dKnnmquvvtpzTbwLpe7du9dzTUVFheeajz/+2HMNUgeLkQIABiUCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmWIwUSBETJkzwXPP+++/Hda4RI0Z4rnnrrbc819x0002ea5A6WIwUADAoEUAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMDLVuAMCX89FHH3muueWWW+I610svveS55qtf/arnmrFjx3qu2b9/v+caDE7cAQEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDBYqRAGmtsbIyrbsOGDZ5rfvKTn3iuKS8v91xTU1PjuQaDE3dAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATLAYKYAzNDU1WbeAiwB3QAAAEwQQAMCE5wDasWOHbrvtNhUUFMjn82nz5s0x+51zeuKJJ5Sfn68RI0aovLxc+/btS1S/AIA04TmAenp6VFxcrNWrV/e7f9WqVXruuef0wgsvaOfOnRo1apQqKip0/PjxC24WAJA+PH8JobKyUpWVlf3uc87p2Wef1WOPPabbb79dkvTiiy8qLy9Pmzdv1oIFCy6sWwBA2kjoZ0BtbW3q7OyM+TW7gUBAJSUlamho6Lemt7dXkUgkZgAA0l9CA6izs1OSlJeXF7M9Ly8vuu+LqqurFQgEomPcuHGJbAkAMEiZfwuuqqpK4XA4Ojo6OqxbAgAMgIQGUDAYlCR1dXXFbO/q6oru+yK/36+srKyYAQBIfwkNoMLCQgWDQdXW1ka3RSIR7dy5U6WlpYk8FQAgxXn+FtzRo0fV0tISfdzW1qa9e/cqOztb48eP1/Lly/XMM8/oqquuUmFhoR5//HEVFBRo7ty5iewbAJDiPAfQ7t27dfPNN0cfr1ixQpK0cOFC1dTU6JFHHlFPT48WL16sI0eO6MYbb9S2bdt0ySWXJK5rAEDK8znnnHUTnxeJRBQIBKzbAC5qM2bM8Fzz7LPPeq7ZtWuX55pQKOS5BjbC4fA5P9c3/xYcAODiRAABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAw4fnXMQBIf6NGjRqQ89x5552ea55//nnPNR988IHnGiQfd0AAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBgp0tKQIUPiqhs5cqTnmhtuuMFzzdGjRz3XtLa2eq7p6enxXCNJFRUVnmvGjh3ruWbMmDGea5A+uAMCAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABggsVIMaCGDvV+yS1atMhzzaxZszzXSNK8efPiqks3Pp/Pc008C6zG8/dUW1vruQaDE3dAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATPicc866ic+LRCIKBALWbVxUMjLi+3dIUVGR55rHHnvMcw0LhA68eBYjjeelpLu723PN9773Pc8127dv91wjST09PXHV4bRwOKysrKyz7ucOCABgggACAJjwHEA7duzQbbfdpoKCAvl8Pm3evDlm/7333iufzxcz5syZk6h+AQBpwnMA9fT0qLi4WKtXrz7rMXPmzNHBgwejY/369RfUJAAg/Xj+9ZSVlZWqrKw85zF+v1/BYDDupgAA6S8pnwHV1dUpNzdX11xzjZYuXarDhw+f9dje3l5FIpGYAQBIfwkPoDlz5ujFF19UbW2tfvnLX6q+vl6VlZU6depUv8dXV1crEAhEx7hx4xLdEgBgEPL8Ftz5LFiwIPrz1KlTVVRUpEmTJqmurk6zZs064/iqqiqtWLEi+jgSiRBCAHARSPrXsCdOnKicnBy1tLT0u9/v9ysrKytmAADSX9IDaP/+/Tp8+LDy8/OTfSoAQArx/Bbc0aNHY+5m2tratHfvXmVnZys7O1tPPfWU5s+fr2AwqNbWVj3yyCO68sorVVFRkdDGAQCpzXMA7d69WzfffHP08Wef3yxcuFBr1qxRU1OT/vSnP+nIkSMqKCjQ7Nmz9fOf/1x+vz9xXQMAUh6LkULf//7346qrqalJbCMpqqury3NNXl5eEjpJnIFajHSgxPuf4e+//37PNUePHo3rXOmIxUgBAIMSAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMBEwn8lN1LP5MmTrVs4p56eHs81v/3tb+M6VzAY9Fzzhz/8wXNNVVWV55pbb73Vc028+vr6PNfs2rXLc01JSYnnmnjcfffdA3IeiRW0veAOCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkWI8WAimdh0cWLF3uuWb9+vecaSRozZoznmo0bN3quKSsr81wzkB599FHPNc8995znmunTp3uuWbhwoeea++67z3ONFN8iptdee63nmuXLl3uu2bFjh+eawYY7IACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZYjBQDqru723PNW2+95bnmnnvu8VwjSU8//bTnmsLCwrjONRBuuOGGuOoaGxsT3En/4vm7feeddzzX/PWvf/VcI0kPP/yw55obb7zRc82rr77quWbTpk2eayRp6dKlnmv++9//xnWu8+EOCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAmfc85ZN/F5kUhEgUDAuo2LyoIFC+KqW7duXYI76V9XV5fnmksvvTSuc40aNSquOq/27dvnuebOO+/0XPOPf/zDc40k9fX1xVWXbuK5Hn72s595rgmFQp5rMjMzPdfEW9fT0xPXucLhsLKyss66nzsgAIAJAggAYMJTAFVXV+v6669XZmamcnNzNXfuXDU3N8ccc/z4cYVCIV122WW69NJLNX/+/LjeQgEApDdPAVRfX69QKKTGxka9/vrrOnnypGbPnh3z/uCDDz6o1157TRs3blR9fb0OHDigefPmJbxxAEBq8/QbUbdt2xbzuKamRrm5udqzZ4/KysoUDof1xz/+UevWrdMtt9wiSVq7dq2uvfZaNTY26pvf/GbiOgcApLQL+gwoHA5LkrKzsyVJe/bs0cmTJ1VeXh49ZvLkyRo/frwaGhr6fY7e3l5FIpGYAQBIf3EHUF9fn5YvX64ZM2ZoypQpkqTOzk4NHz5co0ePjjk2Ly9PnZ2d/T5PdXW1AoFAdIwbNy7elgAAKSTuAAqFQnrvvff08ssvX1ADVVVVCofD0dHR0XFBzwcASA2ePgP6zLJly7R161bt2LFDY8eOjW4PBoM6ceKEjhw5EnMX1NXVpWAw2O9z+f1++f3+eNoAAKQwT3dAzjktW7ZMmzZt0vbt21VYWBizf9q0aRo2bJhqa2uj25qbm9Xe3q7S0tLEdAwASAue7oBCoZDWrVunLVu2KDMzM/q5TiAQ0IgRIxQIBHTfffdpxYoVys7OVlZWlh544AGVlpbyDTgAQAxPAbRmzRpJ0syZM2O2r127Vvfee68k6Te/+Y0yMjI0f/589fb2qqKiQr/73e8S0iwAIH2wGCni/gxu586dnmuKioriOtdg1tLS4rlm9uzZnms+/PBDzzVIDTk5OZ5rhg6N6yP8uFamiTcmWIwUADAoEUAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBo24padne255plnnvFcs2TJEs818frzn//suebxxx/3XNPe3u65Bkg1rIYNABiUCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUgBAUrAYKQBgUCKAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgwlMAVVdX6/rrr1dmZqZyc3M1d+5cNTc3xxwzc+ZM+Xy+mLFkyZKENg0ASH2eAqi+vl6hUEiNjY16/fXXdfLkSc2ePVs9PT0xxy1atEgHDx6MjlWrViW0aQBA6hvq5eBt27bFPK6pqVFubq727NmjsrKy6PaRI0cqGAwmpkMAQFq6oM+AwuGwJCk7Oztm+0svvaScnBxNmTJFVVVVOnbs2Fmfo7e3V5FIJGYAAC4CLk6nTp1yt956q5sxY0bM9t///vdu27Ztrqmpyf3lL39xl19+ubvjjjvO+jwrV650khgMBoORZiMcDp8zR+IOoCVLlrgJEya4jo6Ocx5XW1vrJLmWlpZ+9x8/ftyFw+Ho6OjoMJ80BoPBYFz4OF8AefoM6DPLli3T1q1btWPHDo0dO/acx5aUlEiSWlpaNGnSpDP2+/1++f3+eNoAAKQwTwHknNMDDzygTZs2qa6uToWFheet2bt3ryQpPz8/rgYBAOnJUwCFQiGtW7dOW7ZsUWZmpjo7OyVJgUBAI0aMUGtrq9atW6dvf/vbuuyyy9TU1KQHH3xQZWVlKioqSsofAACQorx87qOzvM+3du1a55xz7e3trqyszGVnZzu/3++uvPJK9/DDD5/3fcDPC4fD5u9bMhgMBuPCx/le+33/HyyDRiQSUSAQsG4DAHCBwuGwsrKyzrqfteAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYGXQA556xbAAAkwPlezwddAHV3d1u3AABIgPO9nvvcILvl6Ovr04EDB5SZmSmfzxezLxKJaNy4cero6FBWVpZRh/aYh9OYh9OYh9OYh9MGwzw459Td3a2CggJlZJz9PmfoAPb0pWRkZGjs2LHnPCYrK+uivsA+wzycxjycxjycxjycZj0PgUDgvMcMurfgAAAXBwIIAGAipQLI7/dr5cqV8vv91q2YYh5OYx5OYx5OYx5OS6V5GHRfQgAAXBxS6g4IAJA+CCAAgAkCCABgggACAJhImQBavXq1rrjiCl1yySUqKSnRrl27rFsacE8++aR8Pl/MmDx5snVbSbdjxw7ddtttKigokM/n0+bNm2P2O+f0xBNPKD8/XyNGjFB5ebn27dtn02wSnW8e7r333jOujzlz5tg0myTV1dW6/vrrlZmZqdzcXM2dO1fNzc0xxxw/flyhUEiXXXaZLr30Us2fP19dXV1GHSfHl5mHmTNnnnE9LFmyxKjj/qVEAG3YsEErVqzQypUr9c4776i4uFgVFRU6dOiQdWsD7rrrrtPBgwej46233rJuKel6enpUXFys1atX97t/1apVeu655/TCCy9o586dGjVqlCoqKnT8+PEB7jS5zjcPkjRnzpyY62P9+vUD2GHy1dfXKxQKqbGxUa+//rpOnjyp2bNnq6enJ3rMgw8+qNdee00bN25UfX29Dhw4oHnz5hl2nXhfZh4kadGiRTHXw6pVq4w6PguXAqZPn+5CoVD08alTp1xBQYGrrq427GrgrVy50hUXF1u3YUqS27RpU/RxX1+fCwaD7le/+lV025EjR5zf73fr16836HBgfHEenHNu4cKF7vbbbzfpx8qhQ4ecJFdfX++cO/13P2zYMLdx48boMe+//76T5BoaGqzaTLovzoNzzn3rW99yP/rRj+ya+hIG/R3QiRMntGfPHpWXl0e3ZWRkqLy8XA0NDYad2di3b58KCgo0ceJE3XPPPWpvb7duyVRbW5s6Oztjro9AIKCSkpKL8vqoq6tTbm6urrnmGi1dulSHDx+2bimpwuGwJCk7O1uStGfPHp08eTLmepg8ebLGjx+f1tfDF+fhMy+99JJycnI0ZcoUVVVV6dixYxbtndWgW4z0iz755BOdOnVKeXl5Mdvz8vL0wQcfGHVlo6SkRDU1Nbrmmmt08OBBPfXUU7rpppv03nvvKTMz07o9E52dnZLU7/Xx2b6LxZw5czRv3jwVFhaqtbVVP/3pT1VZWamGhgYNGTLEur2E6+vr0/LlyzVjxgxNmTJF0unrYfjw4Ro9enTMsel8PfQ3D5L03e9+VxMmTFBBQYGampr06KOPqrm5Wa+++qpht7EGfQDhfyorK6M/FxUVqaSkRBMmTNArr7yi++67z7AzDAYLFiyI/jx16lQVFRVp0qRJqqur06xZsww7S45QKKT33nvvovgc9FzONg+LFy+O/jx16lTl5+dr1qxZam1t1aRJkwa6zX4N+rfgcnJyNGTIkDO+xdLV1aVgMGjU1eAwevRoXX311WppabFuxcxn1wDXx5kmTpyonJyctLw+li1bpq1bt+rNN9+M+fUtwWBQJ06c0JEjR2KOT9fr4Wzz0J+SkhJJGlTXw6APoOHDh2vatGmqra2Nbuvr61Ntba1KS0sNO7N39OhRtba2Kj8/37oVM4WFhQoGgzHXRyQS0c6dOy/662P//v06fPhwWl0fzjktW7ZMmzZt0vbt21VYWBizf9q0aRo2bFjM9dDc3Kz29va0uh7ONw/92bt3ryQNruvB+lsQX8bLL7/s/H6/q6mpcf/85z/d4sWL3ejRo11nZ6d1awPqxz/+saurq3NtbW3u7bffduXl5S4nJ8cdOnTIurWk6u7udu+++6579913nST361//2r377rvuo48+cs4594tf/MKNHj3abdmyxTU1Nbnbb7/dFRYWuk8//dS488Q61zx0d3e7hx56yDU0NLi2tjb3xhtvuK9//evuqquucsePH7duPWGWLl3qAoGAq6urcwcPHoyOY8eORY9ZsmSJGz9+vNu+fbvbvXu3Ky0tdaWlpYZdJ9755qGlpcU9/fTTbvfu3a6trc1t2bLFTZw40ZWVlRl3HislAsg5555//nk3fvx4N3z4cDd9+nTX2Nho3dKAu+uuu1x+fr4bPny4u/zyy91dd93lWlparNtKujfffNNJOmMsXLjQOXf6q9iPP/64y8vLc36/382aNcs1NzfbNp0E55qHY8eOudmzZ7sxY8a4YcOGuQkTJrhFixal3T/S+vvzS3Jr166NHvPpp5+6H/7wh+4rX/mKGzlypLvjjjvcwYMH7ZpOgvPNQ3t7uysrK3PZ2dnO7/e7K6+80j388MMuHA7bNv4F/DoGAICJQf8ZEAAgPRFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDxfz5n+yltfcIOAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 2\n","NN answer: 2\n"]}]},{"cell_type":"code","source":["n = 888\n","result = model_2l_100.predict(X_test[n:n+1])\n","print('NN output:', result)\n","\n","plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n","plt.show()\n","print('Real mark: ', str(np.argmax(y_test[n])))\n","print('NN answer: ', str(np.argmax(result)))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"id":"ffvJLRAEneTQ","executionInfo":{"status":"ok","timestamp":1760463820385,"user_tz":-180,"elapsed":162,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"c16b9d85-88d2-4936-c007-9506cadc8031"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n","NN output: [[4.7663169e-04 4.5776782e-05 2.2629092e-03 2.0417338e-04 2.9407460e-03\n"," 1.9718589e-02 9.7267509e-01 4.5765455e-06 1.4325225e-03 2.3906169e-04]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGwhJREFUeJzt3X1slfX9//HXAeGA2B5Wa3t6pGC5ERa5cWPSNSriaHozQwBxEecyWBwEVsyEoVuXCd7FKks2w8J0SwydTlDZBCJZumC1ZZsFQ5EQdDa0qaMGWmY3zinFFtZ+fn/w83w90IJXOafv9vB8JJ+k57qu97ne/XClL65zXb3qc845AQDQz4ZYNwAAuDIRQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBxlXUD5+vu7taxY8eUkpIin89n3Q4AwCPnnNra2hQKhTRkSO/nOQMugI4dO6bs7GzrNgAAl6mpqUljxozpdf2A+wguJSXFugUAQBxc6ud5wgJo06ZNuuGGGzRixAjl5ubqvffe+1J1fOwGAMnhUj/PExJAr732mtasWaP169frwIEDmjFjhgoLC3XixIlE7A4AMBi5BJg1a5YrKSmJvu7q6nKhUMiVlZVdsjYcDjtJDAaDwRjkIxwOX/TnfdzPgM6cOaPa2lrl5+dHlw0ZMkT5+fmqqam5YPvOzk5FIpGYAQBIfnEPoE8//VRdXV3KzMyMWZ6Zmanm5uYLti8rK1MgEIgO7oADgCuD+V1wpaWlCofD0dHU1GTdEgCgH8T994DS09M1dOhQtbS0xCxvaWlRMBi8YHu/3y+/3x/vNgAAA1zcz4CGDx+umTNnqrKyMrqsu7tblZWVysvLi/fuAACDVEKehLBmzRotWbJE3/jGNzRr1iw999xzam9v1w9+8INE7A4AMAglJIDuvfde/fvf/9a6devU3Nysm2++WRUVFRfcmAAAuHL5nHPOuokvikQiCgQC1m0AAC5TOBxWampqr+vN74IDAFyZCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmEjI07ABxN8NN9zguWblypV92tfXvvY1zzUFBQV92heuXJwBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBM8DRs4DKlpKR4rnn66ac913z/+9/3XPO///3Pc43Ek63RPzgDAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIKHkQKX6Y033vBcM3fuXM81ra2tnmvuuusuzzWSVFtb26c6wAvOgAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjgYaTAFyxfvtxzTV8eLPrf//7Xc01fHiz63nvvea4B+gtnQAAAEwQQAMBE3APosccek8/nixlTpkyJ924AAINcQq4B3XTTTXrrrbf+bydXcakJABArIclw1VVXKRgMJuKtAQBJIiHXgI4cOaJQKKTx48fr/vvv19GjR3vdtrOzU5FIJGYAAJJf3AMoNzdX5eXlqqio0PPPP6/Gxkbdfvvtamtr63H7srIyBQKB6MjOzo53SwCAASjuAVRcXKzvfOc7mj59ugoLC/WXv/xFJ0+e1Ouvv97j9qWlpQqHw9HR1NQU75YAAANQwu8OGD16tG688UbV19f3uN7v98vv9ye6DQDAAJPw3wM6deqUGhoalJWVlehdAQAGkbgH0Nq1a1VdXa2PP/5Y7777rhYuXKihQ4fqvvvui/euAACDWNw/gvvkk0903333qbW1Vdddd51uu+027d27V9ddd128dwUAGMR8zjln3cQXRSIRBQIB6zYwyN188819qjtw4IDnmv/85z+eayZNmuS5pi8PMAUshcNhpaam9rqeZ8EBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwkfA/SAdcrlAo5Llm586dCeikZ4WFhZ5reLAowBkQAMAIAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAET8PGgHfHHXd4rsnOzu7TvrZt2+a5pra2tk/7Aq50nAEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAw4XPOOesmvigSiSgQCFi3gQHkwIEDnmsmT57cp33l5uZ6rjl8+HCf9gUku3A4rNTU1F7XcwYEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADAxFXWDeDKMnXqVM81U6ZM8VwTDoc910g8WBToT5wBAQBMEEAAABOeA2jPnj2aN2+eQqGQfD6fduzYEbPeOad169YpKytLI0eOVH5+vo4cORKvfgEAScJzALW3t2vGjBnatGlTj+s3bNigjRs36oUXXtC+ffs0atQoFRYWqqOj47KbBQAkD883IRQXF6u4uLjHdc45Pffcc/rFL36h+fPnS5JeeuklZWZmaseOHVq8ePHldQsASBpxvQbU2Nio5uZm5efnR5cFAgHl5uaqpqamx5rOzk5FIpGYAQBIfnENoObmZklSZmZmzPLMzMzouvOVlZUpEAhER3Z2djxbAgAMUOZ3wZWWliocDkdHU1OTdUsAgH4Q1wAKBoOSpJaWlpjlLS0t0XXn8/v9Sk1NjRkAgOQX1wDKyclRMBhUZWVldFkkEtG+ffuUl5cXz10BAAY5z3fBnTp1SvX19dHXjY2NOnjwoNLS0jR27Fg99NBDeuqppzRp0iTl5OTo0UcfVSgU0oIFC+LZNwBgkPMcQPv379edd94Zfb1mzRpJ0pIlS1ReXq5HHnlE7e3tWr58uU6ePKnbbrtNFRUVGjFiRPy6BgAMej7nnLNu4osikYgCgYB1G0iQgoICzzUVFRWea3q76/JSQqFQn+oAXCgcDl/0ur75XXAAgCsTAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMCE5z/HAAwGo0aN6lPd2rVrPdf4fD7PNfv37/dc88EHH3iuOXHihOcaoL9wBgQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEDyNFUkpJSelT3YYNG+LcSfx0dnZ6rlm/fn2f9jWQ5wHJgzMgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJngYKfrV9773vX7Zz5kzZ/pU15f+3n33Xc8199xzj+eakpISzzXPPPOM5xpJmjdvnueaZcuWea756KOPPNcgeXAGBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQPI0VS+v3vf9+nuj/96U9x7qRnGzdu9Fzz4osveq5ZvXq15xpJWrNmjeeaffv2ea5ZtWqV55qXX37Zcw0GJs6AAAAmCCAAgAnPAbRnzx7NmzdPoVBIPp9PO3bsiFm/dOlS+Xy+mFFUVBSvfgEAScJzALW3t2vGjBnatGlTr9sUFRXp+PHj0bF169bLahIAkHw834RQXFys4uLii27j9/sVDAb73BQAIPkl5BpQVVWVMjIyNHnyZK1cuVKtra29btvZ2alIJBIzAADJL+4BVFRUpJdeekmVlZV69tlnVV1dreLiYnV1dfW4fVlZmQKBQHRkZ2fHuyUAwAAU998DWrx4cfTradOmafr06ZowYYKqqqo0d+7cC7YvLS2N+Z2DSCRCCAHAFSDht2GPHz9e6enpqq+v73G93+9XampqzAAAJL+EB9Ann3yi1tZWZWVlJXpXAIBBxPNHcKdOnYo5m2lsbNTBgweVlpamtLQ0Pf7441q0aJGCwaAaGhr0yCOPaOLEiSosLIxr4wCAwc1zAO3fv1933nln9PXn12+WLFmi559/XocOHdIf/vAHnTx5UqFQSAUFBXryySfl9/vj1zUAYNDzHEBz5syRc67X9X/9618vqyEktw8//LBf9tPR0dEv++lP7e3tnmueeuqpPu1r9+7dnmt27drluebJJ5/0XPO3v/3Nc83HH3/suQaJx7PgAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAm4v4nuYGLOXDggHUL+BL27dvnuWbdunWeazZt2uS5ZsWKFZ5rfvazn3muQeJxBgQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEDyPFgOfz+TzX/PCHP+zTvp599lnPNa2trX3aV7JpbGzsl/1kZWX1y36QeJwBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMHDSNGvqqurPdds3brVc83ixYs910hSRUWF55qnn37ac82uXbs815w9e9ZzTV/l5uZ6rnniiSc81/TleyovL/dcg4GJMyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmeBgp+lVnZ6fnmrVr13quGT16tOcaSSoqKvJc8+c//9lzzQcffOC5pqury3NNX40dO9ZzzahRozzX9OXf9p133vFcg4GJMyAAgAkCCABgwlMAlZWV6ZZbblFKSooyMjK0YMEC1dXVxWzT0dGhkpISXXvttbrmmmu0aNEitbS0xLVpAMDg5ymAqqurVVJSor1792r37t06e/asCgoK1N7eHt1m9erVevPNN7Vt2zZVV1fr2LFjuvvuu+PeOABgcPN0E8L5fy2yvLxcGRkZqq2t1ezZsxUOh/Xiiy9qy5Yt+ta3viVJ2rx5s7761a9q7969+uY3vxm/zgEAg9plXQMKh8OSpLS0NElSbW2tzp49q/z8/Og2U6ZM0dixY1VTU9Pje3R2dioSicQMAEDy63MAdXd366GHHtKtt96qqVOnSpKam5s1fPjwC26BzczMVHNzc4/vU1ZWpkAgEB3Z2dl9bQkAMIj0OYBKSkp0+PBhvfrqq5fVQGlpqcLhcHQ0NTVd1vsBAAaHPv0i6qpVq7Rr1y7t2bNHY8aMiS4PBoM6c+aMTp48GXMW1NLSomAw2ON7+f1++f3+vrQBABjEPJ0BOee0atUqbd++XW+//bZycnJi1s+cOVPDhg1TZWVldFldXZ2OHj2qvLy8+HQMAEgKns6ASkpKtGXLFu3cuVMpKSnR6zqBQEAjR45UIBDQAw88oDVr1igtLU2pqal68MEHlZeXxx1wAIAYngLo+eeflyTNmTMnZvnmzZu1dOlSSdKvf/1rDRkyRIsWLVJnZ6cKCwv129/+Ni7NAgCSh88556yb+KJIJKJAIGDdBga5vl5X/Pw/Ul7cc889nmvmzp3ruaY/vfzyy55rysvLPdfwYNHkFg6HlZqa2ut6ngUHADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDB07ABAAnB07ABAAMSAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADAhKcAKisr0y233KKUlBRlZGRowYIFqquri9lmzpw58vl8MWPFihVxbRoAMPh5CqDq6mqVlJRo79692r17t86ePauCggK1t7fHbLds2TIdP348OjZs2BDXpgEAg99VXjauqKiIeV1eXq6MjAzV1tZq9uzZ0eVXX321gsFgfDoEACSly7oGFA6HJUlpaWkxy1955RWlp6dr6tSpKi0t1enTp3t9j87OTkUikZgBALgCuD7q6upyd911l7v11ltjlv/ud79zFRUV7tChQ+6Pf/yju/76693ChQt7fZ/169c7SQwGg8FIshEOhy+aI30OoBUrVrhx48a5pqami25XWVnpJLn6+voe13d0dLhwOBwdTU1N5pPGYDAYjMsflwogT9eAPrdq1Srt2rVLe/bs0ZgxYy66bW5uriSpvr5eEyZMuGC93++X3+/vSxsAgEHMUwA55/Tggw9q+/btqqqqUk5OziVrDh48KEnKysrqU4MAgOTkKYBKSkq0ZcsW7dy5UykpKWpubpYkBQIBjRw5Ug0NDdqyZYu+/e1v69prr9WhQ4e0evVqzZ49W9OnT0/INwAAGKS8XPdRL5/zbd682Tnn3NGjR93s2bNdWlqa8/v9buLEie7hhx++5OeAXxQOh80/t2QwGAzG5Y9L/ez3/f9gGTAikYgCgYB1GwCAyxQOh5Wamtrrep4FBwAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwMeACyDln3QIAIA4u9fN8wAVQW1ubdQsAgDi41M9znxtgpxzd3d06duyYUlJS5PP5YtZFIhFlZ2erqalJqampRh3aYx7OYR7OYR7OYR7OGQjz4JxTW1ubQqGQhgzp/Tznqn7s6UsZMmSIxowZc9FtUlNTr+gD7HPMwznMwznMwznMwznW8xAIBC65zYD7CA4AcGUggAAAJgZVAPn9fq1fv15+v9+6FVPMwznMwznMwznMwzmDaR4G3E0IAIArw6A6AwIAJA8CCABgggACAJgggAAAJgZNAG3atEk33HCDRowYodzcXL333nvWLfW7xx57TD6fL2ZMmTLFuq2E27Nnj+bNm6dQKCSfz6cdO3bErHfOad26dcrKytLIkSOVn5+vI0eO2DSbQJeah6VLl15wfBQVFdk0myBlZWW65ZZblJKSooyMDC1YsEB1dXUx23R0dKikpETXXnutrrnmGi1atEgtLS1GHSfGl5mHOXPmXHA8rFixwqjjng2KAHrttde0Zs0arV+/XgcOHNCMGTNUWFioEydOWLfW72666SYdP348Ov7+979bt5Rw7e3tmjFjhjZt2tTj+g0bNmjjxo164YUXtG/fPo0aNUqFhYXq6Ojo504T61LzIElFRUUxx8fWrVv7scPEq66uVklJifbu3avdu3fr7NmzKigoUHt7e3Sb1atX680339S2bdtUXV2tY8eO6e677zbsOv6+zDxI0rJly2KOhw0bNhh13As3CMyaNcuVlJREX3d1dblQKOTKysoMu+p/69evdzNmzLBuw5Qkt3379ujr7u5uFwwG3S9/+cvospMnTzq/3++2bt1q0GH/OH8enHNuyZIlbv78+Sb9WDlx4oST5Kqrq51z5/7thw0b5rZt2xbd5p///KeT5GpqaqzaTLjz58E55+644w734x//2K6pL2HAnwGdOXNGtbW1ys/Pjy4bMmSI8vPzVVNTY9iZjSNHjigUCmn8+PG6//77dfToUeuWTDU2Nqq5uTnm+AgEAsrNzb0ij4+qqiplZGRo8uTJWrlypVpbW61bSqhwOCxJSktLkyTV1tbq7NmzMcfDlClTNHbs2KQ+Hs6fh8+98sorSk9P19SpU1VaWqrTp09btNerAfcw0vN9+umn6urqUmZmZszyzMxMffTRR0Zd2cjNzVV5ebkmT56s48eP6/HHH9ftt9+uw4cPKyUlxbo9E83NzZLU4/Hx+borRVFRke6++27l5OSooaFBP//5z1VcXKyamhoNHTrUur246+7u1kMPPaRbb71VU6dOlXTueBg+fLhGjx4ds20yHw89zYMkffe739W4ceMUCoV06NAh/fSnP1VdXZ3eeOMNw25jDfgAwv8pLi6Ofj19+nTl5uZq3Lhxev311/XAAw8YdoaBYPHixdGvp02bpunTp2vChAmqqqrS3LlzDTtLjJKSEh0+fPiKuA56Mb3Nw/Lly6NfT5s2TVlZWZo7d64aGho0YcKE/m6zRwP+I7j09HQNHTr0grtYWlpaFAwGjboaGEaPHq0bb7xR9fX11q2Y+fwY4Pi40Pjx45Wenp6Ux8eqVau0a9cuvfPOOzF/viUYDOrMmTM6efJkzPbJejz0Ng89yc3NlaQBdTwM+AAaPny4Zs6cqcrKyuiy7u5uVVZWKi8vz7Aze6dOnVJDQ4OysrKsWzGTk5OjYDAYc3xEIhHt27fvij8+PvnkE7W2tibV8eGc06pVq7R9+3a9/fbbysnJiVk/c+ZMDRs2LOZ4qKur09GjR5PqeLjUPPTk4MGDkjSwjgfruyC+jFdffdX5/X5XXl7uPvzwQ7d8+XI3evRo19zcbN1av/rJT37iqqqqXGNjo/vHP/7h8vPzXXp6ujtx4oR1awnV1tbm3n//fff+++87Se5Xv/qVe//9992//vUv55xzzzzzjBs9erTbuXOnO3TokJs/f77Lyclxn332mXHn8XWxeWhra3Nr1651NTU1rrGx0b311lvu61//ups0aZLr6Oiwbj1uVq5c6QKBgKuqqnLHjx+PjtOnT0e3WbFihRs7dqx7++233f79+11eXp7Ly8sz7Dr+LjUP9fX17oknnnD79+93jY2NbufOnW78+PFu9uzZxp3HGhQB5Jxzv/nNb9zYsWPd8OHD3axZs9zevXutW+p39957r8vKynLDhw93119/vbv33ntdfX29dVsJ98477zhJF4wlS5Y4587div3oo4+6zMxM5/f73dy5c11dXZ1t0wlwsXk4ffq0KygocNddd50bNmyYGzdunFu2bFnS/Setp+9fktu8eXN0m88++8z96Ec/cl/5ylfc1Vdf7RYuXOiOHz9u13QCXGoejh496mbPnu3S0tKc3+93EydOdA8//LALh8O2jZ+HP8cAADAx4K8BAQCSEwEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABP/D5kZmvOKAiZWAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 6\n","NN answer: 6\n"]}]},{"cell_type":"code","source":["from PIL import Image\n","file_1_data = Image.open('6.png')\n","file_1_data = file_1_data.convert('L') #перевод в градации серого\n","test_1_img = np.array(file_1_data)"],"metadata":{"id":"De7O50auuv4D"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["plt.imshow(test_1_img, cmap=plt.get_cmap('gray'))\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"id":"yI1QHJaOxV_n","executionInfo":{"status":"ok","timestamp":1760465409619,"user_tz":-180,"elapsed":85,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"b7764516-00b7-499a-a90f-057d2711a76f"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHQBJREFUeJzt3X1slfX9//HXKbanqO2pFeiNFCyooHLjROkY2sHoaLvFiBLj3RJcjA5WjMrUpXOKumXdcNmMjql/LDCj4E0iENnG1GJLNgpKBYmbdLR2UkdbhNhzoECp7ef3Bz/O1yMU/BxO+27L85F8EnrO9ep5c3nZF1fP1asB55wTAAB9LMl6AADAmYkCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImzrAf4qu7ubu3evVtpaWkKBALW4wAAPDnntH//fuXm5iopqefznH5XQLt371ZeXp71GACA09TU1KSRI0f2+Hy/+xZcWlqa9QgAgAQ41dfzXiugpUuX6sILL1RqaqoKCgr07rvvfq0c33YDgMHhVF/Pe6WAXnnlFS1atEiLFy/W+++/r8mTJ6u4uFh79uzpjZcDAAxErhdMnTrVlZWVRT/u6upyubm5rqKi4pTZcDjsJLFYLBZrgK9wOHzSr/cJPwM6cuSIamtrVVRUFH0sKSlJRUVFqqmpOW77jo4ORSKRmAUAGPwSXkB79+5VV1eXsrKyYh7PyspSS0vLcdtXVFQoFApFF1fAAcCZwfwquPLycoXD4ehqamqyHgkA0AcS/nNAw4YN05AhQ9Ta2hrzeGtrq7Kzs4/bPhgMKhgMJnoMAEA/l/AzoJSUFE2ZMkWVlZXRx7q7u1VZWalp06Yl+uUAAANUr9wJYdGiRZo3b56uuuoqTZ06VU899ZTa29v1wx/+sDdeDgAwAPVKAd1888367LPP9Oijj6qlpUVXXHGF1q1bd9yFCQCAM1fAOeesh/iySCSiUChkPQYA4DSFw2Glp6f3+Lz5VXAAgDMTBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAE71yN2wAiZeU5P/vxaFDh8b1WsnJyd6Z9vZ270xnZ6d3BoMHZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABPcDRswEM/dpidOnOidue2227wzkpSVleWdqaqq8s787W9/8860tLR4Z7q7u70z6H2cAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDBzUiB03T22Wd7Z6655hrvzL333uudmTFjhndGklJSUrwz3/rWt7wzaWlp3pkXX3zRO7N3717vDHofZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDNS4EvOO+8878x3v/td78yPfvQj78zMmTO9M5988ol3RpI+//xz70xqaqp35rLLLvPOhEIh7ww3I+2fOAMCAJiggAAAJhJeQI899pgCgUDMGj9+fKJfBgAwwPXKe0CXX3653n777f97kbN4qwkAEKtXmuGss85SdnZ2b3xqAMAg0SvvAe3cuVO5ubkaM2aMbr/9du3atavHbTs6OhSJRGIWAGDwS3gBFRQUaPny5Vq3bp2effZZNTY26tprr9X+/ftPuH1FRYVCoVB05eXlJXokAEA/lPACKi0t1U033aRJkyapuLhYf/3rX9XW1qZXX331hNuXl5crHA5HV1NTU6JHAgD0Q71+dUBGRoYuueQS1dfXn/D5YDCoYDDY22MAAPqZXv85oAMHDqihoUE5OTm9/VIAgAEk4QX0wAMPqLq6Wv/973+1ceNG3XDDDRoyZIhuvfXWRL8UAGAAS/i34D799FPdeuut2rdvn4YPH65rrrlGmzZt0vDhwxP9UgCAASzgnHPWQ3xZJBKJ62aDwJdlZGTElZs7d653Zv78+d6ZeH5O7l//+pd3ZuXKld4ZST2+Z3symZmZ3pnm5mbvzEcffeSdaW9v987g9IXDYaWnp/f4PPeCAwCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYKLXfyEdcLpSUlK8M4WFhXG91oIFC7wz48aN886sXbvWO/P88897Z9577z3vjBTfzTuTkvrm37Pd3d198jrofZwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDds9HsXXnihd+amm26K67Xy8vK8M2+++aZ35plnnvHObNmyxTtz5MgR70y8uEs1fHEGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQ3I0WfCgaD3plrr73WOzN16lTvjCTt3r3bO/PKK694Z2pra70zfXljUaAvcAYEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABDcjRZ/Kzs72zkyfPt07EwqFvDOS9M4773hnampqvDMdHR3eGWCw4QwIAGCCAgIAmPAuoA0bNui6665Tbm6uAoGAVq9eHfO8c06PPvqocnJyNHToUBUVFWnnzp2JmhcAMEh4F1B7e7smT56spUuXnvD5JUuW6Omnn9Zzzz2nzZs365xzzlFxcbEOHz582sMCAAYP74sQSktLVVpaesLnnHN66qmn9POf/1zXX3+9JOmFF15QVlaWVq9erVtuueX0pgUADBoJfQ+osbFRLS0tKioqij4WCoVUUFDQ45VCHR0dikQiMQsAMPgltIBaWlokSVlZWTGPZ2VlRZ/7qoqKCoVCoejKy8tL5EgAgH7K/Cq48vJyhcPh6GpqarIeCQDQBxJaQMd+yLC1tTXm8dbW1h5/ADEYDCo9PT1mAQAGv4QWUH5+vrKzs1VZWRl9LBKJaPPmzZo2bVoiXwoAMMB5XwV34MAB1dfXRz9ubGzUtm3blJmZqVGjRum+++7TL3/5S1188cXKz8/XI488otzcXM2ZMyeRcwMABjjvAtqyZYtmzpwZ/XjRokWSpHnz5mn58uV66KGH1N7errvvvlttbW265pprtG7dOqWmpiZuagDAgBdwzjnrIb4sEonEfSNJ9K1AIOCdKSkp8c786le/8s4Eg0HvjCQ9+eST3pnXX3/dO/PFF194Z7q6urwznZ2d3pl4Xwv4qnA4fNL39c2vggMAnJkoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa8fx0DcExycrJ35rLLLvPO5OXleWe+/DurfFx66aXemYcfftg7M2TIEO/MkSNHvDP/+c9/vDOStHHjRu9MQ0ODdyaeu4Jj8OAMCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAluRoq4paene2cuv/zyPnmdsWPHemck6eKLL/bOpKSkxPVafeHzzz+PK/fmm296Z3772996Z3bs2OGdweDBGRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3IwUcRs5cqR35oorrvDOnHWW/2GamprqnZGkjRs3eme2b9/unTl8+LB3Jp79PXXqVO+MJJWWlnpntm7d6p1paGjwznR2dnpn0D9xBgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAENyOFAoFAXLmsrCzvzPDhw70z8cwXzw1CJemJJ57wznzwwQfemY6ODu9MPPuuvLzcOyNJP/jBD7wzEyZM8M6cd9553pk9e/Z4Z9A/cQYEADBBAQEATHgX0IYNG3TdddcpNzdXgUBAq1evjnn+jjvuUCAQiFklJSWJmhcAMEh4F1B7e7smT56spUuX9rhNSUmJmpubo2vlypWnNSQAYPDxvgihtLT0lL8tMRgMKjs7O+6hAACDX6+8B1RVVaURI0Zo3LhxWrBggfbt29fjth0dHYpEIjELADD4JbyASkpK9MILL6iyslK/+c1vVF1drdLSUnV1dZ1w+4qKCoVCoejKy8tL9EgAgH4o4T8HdMstt0T/PHHiRE2aNEljx45VVVWVZs2addz25eXlWrRoUfTjSCRCCQHAGaDXL8MeM2aMhg0bpvr6+hM+HwwGlZ6eHrMAAINfrxfQp59+qn379iknJ6e3XwoAMIB4fwvuwIEDMWczjY2N2rZtmzIzM5WZmanHH39cc+fOVXZ2thoaGvTQQw/poosuUnFxcUIHBwAMbN4FtGXLFs2cOTP68bH3b+bNm6dnn31W27dv15///Ge1tbUpNzdXs2fP1i9+8QsFg8HETQ0AGPC8C2jGjBlyzvX4/N///vfTGggDR2pqqncmnptwnuwy/p6sXbvWOyNJ7733nnfmyJEjcb2Wr5aWFu9MT++9nsqBAwe8M/HcWDQtLc07w81IBw/uBQcAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMJHwX8mNM8cXX3zhnTl06JB3Jp47aO/YscM7I0mdnZ1x5fqrk925PtG6u7v77LUwOHAGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQ3I0XcN6zct2+fd6atrc07M2rUKO9MRkaGd0aSAoGAd6avbviZmprqnRk+fHhcrzV06FDvzP79+70z7e3t3hkMHpwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMMHNSBG3//3vf96ZhoYG70xBQYF35hvf+IZ3RpL+8pe/eGc+++wz70xycrJ35qqrrvLOxLPvJKmrq8s7s3PnTu9MOBz2zmDw4AwIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACW5Giri1trZ6Z9577z3vTGlpqXdm5syZ3hlJ+vjjj70zO3bs8M7k5+d7Z4qLi70zU6dO9c5I0vbt270z7777rnemo6PDO4PBgzMgAIAJCggAYMKrgCoqKnT11VcrLS1NI0aM0Jw5c1RXVxezzeHDh1VWVqbzzz9f5557rubOnRvXt2oAAIObVwFVV1errKxMmzZt0ltvvaXOzk7Nnj1b7e3t0W3uv/9+vfHGG3rttddUXV2t3bt368Ybb0z44ACAgc3rIoR169bFfLx8+XKNGDFCtbW1KiwsVDgc1p/+9CetWLFC3/nOdyRJy5Yt06WXXqpNmzbpm9/8ZuImBwAMaKf1HtCxX6ebmZkpSaqtrVVnZ6eKioqi24wfP16jRo1STU3NCT9HR0eHIpFIzAIADH5xF1B3d7fuu+8+TZ8+XRMmTJAktbS0KCUlRRkZGTHbZmVlqaWl5YSfp6KiQqFQKLry8vLiHQkAMIDEXUBlZWX68MMP9fLLL5/WAOXl5QqHw9HV1NR0Wp8PADAwxPWDqAsXLtTatWu1YcMGjRw5Mvp4dna2jhw5ora2tpizoNbWVmVnZ5/wcwWDQQWDwXjGAAAMYF5nQM45LVy4UKtWrdL69euP+2nuKVOmKDk5WZWVldHH6urqtGvXLk2bNi0xEwMABgWvM6CysjKtWLFCa9asUVpaWvR9nVAopKFDhyoUCunOO+/UokWLlJmZqfT0dN1zzz2aNm0aV8ABAGJ4FdCzzz4rSZoxY0bM48uWLdMdd9whSfr973+vpKQkzZ07Vx0dHSouLtYf//jHhAwLABg8As45Zz3El0UiEYVCIesx0EvGjx/vnXn44Ye9MyUlJd4ZST1erXkyhw4d8s4MHz7cO3POOed4Z+K9qOcPf/iDd+b111/3zhz7UQ4MTuFwWOnp6T0+z73gAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm4vqNqEC86uvrvTPHfg1IX7jyyiu9Mye7229PGhsbvTMffPCBd2b9+vXeGUnauHGjd4Y7W8MXZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMBJxzznqIL4tEIgqFQtZjoB8JBoPemfz8/Lhe69JLL/XOpKamemc++eQT78zHH3/sndm7d693RpK++OKLuHLAl4XD4ZPerJczIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa4GSkGpUAgEFcuKalv/k3W3d3tneln/6sCp8TNSAEA/RIFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATZ1kPAPSGeG/c2dXVleBJAPSEMyAAgAkKCABgwquAKioqdPXVVystLU0jRozQnDlzVFdXF7PNjBkzFAgEYtb8+fMTOjQAYODzKqDq6mqVlZVp06ZNeuutt9TZ2anZs2ervb09Zru77rpLzc3N0bVkyZKEDg0AGPi8LkJYt25dzMfLly/XiBEjVFtbq8LCwujjZ599trKzsxMzIQBgUDqt94DC4bAkKTMzM+bxl156ScOGDdOECRNUXl6ugwcP9vg5Ojo6FIlEYhYA4Azg4tTV1eW+//3vu+nTp8c8/vzzz7t169a57du3uxdffNFdcMEF7oYbbujx8yxevNhJYrFYLNYgW+Fw+KQ9EncBzZ8/340ePdo1NTWddLvKykonydXX15/w+cOHD7twOBxdTU1N5juNxWKxWKe/TlVAcf0g6sKFC7V27Vpt2LBBI0eOPOm2BQUFkqT6+nqNHTv2uOeDwaCCwWA8YwAABjCvAnLO6Z577tGqVatUVVWl/Pz8U2a2bdsmScrJyYlrQADA4ORVQGVlZVqxYoXWrFmjtLQ0tbS0SJJCoZCGDh2qhoYGrVixQt/73vd0/vnna/v27br//vtVWFioSZMm9cpfAAAwQPm876Mevs+3bNky55xzu3btcoWFhS4zM9MFg0F30UUXuQcffPCU3wf8snA4bP59SxaLxWKd/jrV1/7A/y+WfiMSiSgUClmPAQA4TeFwWOnp6T0+z73gAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAm+l0BOeesRwAAJMCpvp73uwLav3+/9QgAgAQ41dfzgOtnpxzd3d3avXu30tLSFAgEYp6LRCLKy8tTU1OT0tPTjSa0x344iv1wFPvhKPbDUf1hPzjntH//fuXm5iopqefznLP6cKavJSkpSSNHjjzpNunp6Wf0AXYM++Eo9sNR7Iej2A9HWe+HUCh0ym363bfgAABnBgoIAGBiQBVQMBjU4sWLFQwGrUcxxX44iv1wFPvhKPbDUQNpP/S7ixAAAGeGAXUGBAAYPCggAIAJCggAYIICAgCYGDAFtHTpUl144YVKTU1VQUGB3n33XeuR+txjjz2mQCAQs8aPH289Vq/bsGGDrrvuOuXm5ioQCGj16tUxzzvn9OijjyonJ0dDhw5VUVGRdu7caTNsLzrVfrjjjjuOOz5KSkpshu0lFRUVuvrqq5WWlqYRI0Zozpw5qquri9nm8OHDKisr0/nnn69zzz1Xc+fOVWtrq9HEvePr7IcZM2YcdzzMnz/faOITGxAF9Morr2jRokVavHix3n//fU2ePFnFxcXas2eP9Wh97vLLL1dzc3N0/eMf/7Aeqde1t7dr8uTJWrp06QmfX7JkiZ5++mk999xz2rx5s8455xwVFxfr8OHDfTxp7zrVfpCkkpKSmONj5cqVfThh76uurlZZWZk2bdqkt956S52dnZo9e7ba29uj29x///1644039Nprr6m6ulq7d+/WjTfeaDh14n2d/SBJd911V8zxsGTJEqOJe+AGgKlTp7qysrLox11dXS43N9dVVFQYTtX3Fi9e7CZPnmw9hilJbtWqVdGPu7u7XXZ2tnvyySejj7W1tblgMOhWrlxpMGHf+Op+cM65efPmueuvv95kHit79uxxklx1dbVz7uh/++TkZPfaa69Ft/noo4+cJFdTU2M1Zq/76n5wzrlvf/vb7t5777Ub6mvo92dAR44cUW1trYqKiqKPJSUlqaioSDU1NYaT2di5c6dyc3M1ZswY3X777dq1a5f1SKYaGxvV0tISc3yEQiEVFBSckcdHVVWVRowYoXHjxmnBggXat2+f9Ui9KhwOS5IyMzMlSbW1ters7Iw5HsaPH69Ro0YN6uPhq/vhmJdeeknDhg3ThAkTVF5eroMHD1qM16N+dzPSr9q7d6+6urqUlZUV83hWVpZ27NhhNJWNgoICLV++XOPGjVNzc7Mef/xxXXvttfrwww+VlpZmPZ6JlpYWSTrh8XHsuTNFSUmJbrzxRuXn56uhoUE/+9nPVFpaqpqaGg0ZMsR6vITr7u7Wfffdp+nTp2vChAmSjh4PKSkpysjIiNl2MB8PJ9oPknTbbbdp9OjRys3N1fbt2/XTn/5UdXV1ev311w2njdXvCwj/p7S0NPrnSZMmqaCgQKNHj9arr76qO++803Ay9Ae33HJL9M8TJ07UpEmTNHbsWFVVVWnWrFmGk/WOsrIyffjhh2fE+6An09N+uPvuu6N/njhxonJycjRr1iw1NDRo7NixfT3mCfX7b8ENGzZMQ4YMOe4qltbWVmVnZxtN1T9kZGTokksuUX19vfUoZo4dAxwfxxszZoyGDRs2KI+PhQsXau3atXrnnXdifn1Ldna2jhw5ora2tpjtB+vx0NN+OJGCggJJ6lfHQ78voJSUFE2ZMkWVlZXRx7q7u1VZWalp06YZTmbvwIEDamhoUE5OjvUoZvLz85WdnR1zfEQiEW3evPmMPz4+/fRT7du3b1AdH845LVy4UKtWrdL69euVn58f8/yUKVOUnJwcczzU1dVp165dg+p4ONV+OJFt27ZJUv86Hqyvgvg6Xn75ZRcMBt3y5cvdv//9b3f33Xe7jIwM19LSYj1an/rJT37iqqqqXGNjo/vnP//pioqK3LBhw9yePXusR+tV+/fvd1u3bnVbt251ktzvfvc7t3XrVvfJJ58455z79a9/7TIyMtyaNWvc9u3b3fXXX+/y8/PdoUOHjCdPrJPth/3797sHHnjA1dTUuMbGRvf222+7K6+80l188cXu8OHD1qMnzIIFC1woFHJVVVWuubk5ug4ePBjdZv78+W7UqFFu/fr1bsuWLW7atGlu2rRphlMn3qn2Q319vXviiSfcli1bXGNjo1uzZo0bM2aMKywsNJ481oAoIOece+aZZ9yoUaNcSkqKmzp1qtu0aZP1SH3u5ptvdjk5OS4lJcVdcMEF7uabb3b19fXWY/W6d955x0k6bs2bN885d/RS7EceecRlZWW5YDDoZs2a5erq6myH7gUn2w8HDx50s2fPdsOHD3fJyclu9OjR7q677hp0/0g70d9fklu2bFl0m0OHDrkf//jH7rzzznNnn322u+GGG1xzc7Pd0L3gVPth165drrCw0GVmZrpgMOguuugi9+CDD7pwOGw7+Ffw6xgAACb6/XtAAIDBiQICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIn/B4TEMwmYl70kAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["test_1_img = test_1_img / 255\n","test_1_img = test_1_img.reshape(1, num_pixels)"],"metadata":{"id":"EhNSlmtOxeje"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["result_1 = model_2l_100.predict(test_1_img)\n","print('I think it\\'s', np.argmax(result_1))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"pWXwCka7xj86","executionInfo":{"status":"ok","timestamp":1760465411815,"user_tz":-180,"elapsed":83,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"fa4189c2-2dd2-4288-e8af-23cfbe8619d2"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n","I think it's 6\n"]}]},{"cell_type":"code","source":["file_2_data = Image.open('2.png')\n","file_2_data = file_2_data.convert('L') #перевод в градации серого\n","test_2_img = np.array(file_2_data)\n","plt.imshow(test_2_img, cmap=plt.get_cmap('gray'))\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"id":"pPv_ECsZ6hHZ","executionInfo":{"status":"ok","timestamp":1760465455745,"user_tz":-180,"elapsed":102,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"1a37307e-7a78-41d4-ad1f-a72d91c06df9"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGjVJREFUeJzt3X9MVff9x/HX9deVtnAZIlyoqKitLvXHMqeM2LJ2EoEtxl9ZtOsfujQaGTZT13ZjWbVuS+7mkq3p4mR/LLJm1bYmU1OzmVgsmG1go9UYs42IwYoRcDXxXkRBI5/vH36981ZQ7/Ve3pfr85GcRO45x/vu6a3PHu71g8c55wQAwCAbZj0AAODRRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJEdYDfFFfX58uXLig9PR0eTwe63EAAFFyzqmrq0v5+fkaNmzg+5ykC9CFCxdUUFBgPQYA4CG1tbVp3LhxA+5Pum/BpaenW48AAIiD+/15nrAAbdu2TRMnTtTo0aNVVFSkTz755IHO49tuAJAa7vfneUIC9P7772vjxo3avHmzPv30U82aNUtlZWW6ePFiIp4OADAUuQSYO3euq6qqCn998+ZNl5+f7wKBwH3PDQaDThIbGxsb2xDfgsHgPf+8j/sd0PXr13Xs2DGVlpaGHxs2bJhKS0vV2Nh41/G9vb0KhUIRGwAg9cU9QJ9//rlu3ryp3NzciMdzc3PV0dFx1/GBQEA+ny+88Qk4AHg0mH8Krrq6WsFgMLy1tbVZjwQAGARx/3tA2dnZGj58uDo7OyMe7+zslN/vv+t4r9crr9cb7zEAAEku7ndAo0aN0uzZs1VXVxd+rK+vT3V1dSouLo730wEAhqiErISwceNGrVy5Ul/72tc0d+5cvfXWW+ru7tb3vve9RDwdAGAISkiAli9frv/+97/atGmTOjo69JWvfEUHDhy464MJAIBHl8c556yHuFMoFJLP57MeAwDwkILBoDIyMgbcb/4pOADAo4kAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMJGQ1bCBeCovL4/6nO3bt8f0XBMnTozpvGidPXs26nO2bNkS9Tm1tbVRnwMMFu6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjnHPWQ9wpFArJ5/NZj4EHMFirVA/WCtWpKJZVtyVW3kZ8BINBZWRkDLifOyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwASLkSJm7e3tUZ/j9/sTMAniraenJ+pzKisroz6HBUxTG4uRAgCSEgECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABggsVIofLy8pjO+9vf/hbnSezV1NREfc5nn30W9TmBQCDqc5JdLAuYpqWlJWASJAsWIwUAJCUCBAAwEfcAvfnmm/J4PBHbtGnT4v00AIAhbkQiftNnnnlGH3300f+eZERCngYAMIQlpAwjRozgJ18CAO4pIe8BnT59Wvn5+Zo0aZJeeuklnTt3bsBje3t7FQqFIjYAQOqLe4CKiopUW1urAwcOaPv27WptbdVzzz2nrq6ufo8PBALy+XzhraCgIN4jAQCSUNwDVFFRoe985zuaOXOmysrK9Ne//lWXL1/WBx980O/x1dXVCgaD4a2trS3eIwEAklDCPx2QmZmpp59+Wi0tLf3u93q98nq9iR4DAJBkEv73gK5cuaIzZ84oLy8v0U8FABhC4h6gV199VQ0NDTp79qz++c9/asmSJRo+fLhefPHFeD8VAGAIi/u34M6fP68XX3xRly5d0tixY/Xss8+qqalJY8eOjfdTAQCGMBYjhdrb22M6L5n/rpfH47EeIe5+/OMfR31Osi96mor/nvA/LEYKAEhKBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJFiOFrl27FtN5o0ePjvMk/aupqYn6nMrKygRMMvQk2X/ed2Ex0tTGYqQAgKREgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEyOsB4C9LVu2xHReIBCI+hxWtgZwG3dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJj3POWQ9xp1AoJJ/PZz0GkBKS7D/vu3g8HusRkEDBYFAZGRkD7ucOCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMcJ6AAAPpry83HoEIK64AwIAmCBAAAATUQfo8OHDWrhwofLz8+XxeLR3796I/c45bdq0SXl5eUpLS1NpaalOnz4dr3kBACki6gB1d3dr1qxZ2rZtW7/7t27dqrfffls1NTU6cuSIHn/8cZWVlamnp+ehhwUApI6oP4RQUVGhioqKfvc55/TWW2/ppz/9qRYtWiRJeuedd5Sbm6u9e/dqxYoVDzctACBlxPU9oNbWVnV0dKi0tDT8mM/nU1FRkRobG/s9p7e3V6FQKGIDAKS+uAaoo6NDkpSbmxvxeG5ubnjfFwUCAfl8vvBWUFAQz5EAAEnK/FNw1dXVCgaD4a2trc16JADAIIhrgPx+vySps7Mz4vHOzs7wvi/yer3KyMiI2AAAqS+uASosLJTf71ddXV34sVAopCNHjqi4uDieTwUAGOKi/hTclStX1NLSEv66tbVVJ06cUFZWlsaPH6/169frF7/4hZ566ikVFhbqjTfeUH5+vhYvXhzPuQEAQ1zUATp69KheeOGF8NcbN26UJK1cuVK1tbV6/fXX1d3drTVr1ujy5ct69tlndeDAAY0ePTp+UwMAhjyPc85ZD3GnUCgkn89nPQaQdNrb26M+Z6D3XpOFx+OxHgEJFAwG7/m+vvmn4AAAjyYCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYiPrHMQB4eOXl5VGfk+wrW9fU1FiPgCGGOyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwITHOeesh7hTKBSSz+ezHgN4YLEsLLpr166oz8nMzIz6nMHk8XisR0CSCQaDysjIGHA/d0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgIkR1gMAyYSFRW+pqamxHgGPAO6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATLEaKpBfLAqHbt2+P6bkmTpwY03nJKtZFRSsrK+M8CXA37oAAACYIEADARNQBOnz4sBYuXKj8/Hx5PB7t3bs3Yv+qVavk8Xgitli+hQIASG1RB6i7u1uzZs3Stm3bBjymvLxc7e3t4S2WH9gFAEhtUX8IoaKiQhUVFfc8xuv1yu/3xzwUACD1JeQ9oPr6euXk5Gjq1KmqrKzUpUuXBjy2t7dXoVAoYgMApL64B6i8vFzvvPOO6urq9Ktf/UoNDQ2qqKjQzZs3+z0+EAjI5/OFt4KCgniPBABIQnH/e0ArVqwI/3rGjBmaOXOmJk+erPr6es2fP/+u46urq7Vx48bw16FQiAgBwCMg4R/DnjRpkrKzs9XS0tLvfq/Xq4yMjIgNAJD6Eh6g8+fP69KlS8rLy0v0UwEAhpCovwV35cqViLuZ1tZWnThxQllZWcrKytKWLVu0bNky+f1+nTlzRq+//rqmTJmisrKyuA4OABjaog7Q0aNH9cILL4S/vv3+zcqVK7V9+3adPHlSf/rTn3T58mXl5+drwYIF+vnPfy6v1xu/qQEAQ57HOeesh7hTKBSSz+ezHgMJEsuqGLH8RebMzMyoz0l2sSwsyqKisBQMBu/5vj5rwQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBE3H8kNx4drGwdO1a2BrgDAgAYIUAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMsBgpYlpUVErNhUVZJBQYPNwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmWIw0xcSysGgsi4pKyb2waCyLikosLAoMJu6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATHuecsx7iTqFQSD6fz3qMIau9vT3qc/x+fwImiZ9YFhZlUdFbYlmcVpK2b98e9TkTJ06M6bmidfbs2ajP2bJlS0zPVVtbG9N5uCUYDCojI2PA/dwBAQBMECAAgImoAhQIBDRnzhylp6crJydHixcvVnNzc8QxPT09qqqq0pgxY/TEE09o2bJl6uzsjOvQAIChL6oANTQ0qKqqSk1NTTp48KBu3LihBQsWqLu7O3zMhg0b9OGHH2r37t1qaGjQhQsXtHTp0rgPDgAY2qL6iagHDhyI+Lq2tlY5OTk6duyYSkpKFAwG9cc//lE7d+7UN7/5TUnSjh079OUvf1lNTU36+te/Hr/JAQBD2kO9BxQMBiVJWVlZkqRjx47pxo0bKi0tDR8zbdo0jR8/Xo2Njf3+Hr29vQqFQhEbACD1xRygvr4+rV+/XvPmzdP06dMlSR0dHRo1apQyMzMjjs3NzVVHR0e/v08gEJDP5wtvBQUFsY4EABhCYg5QVVWVTp06pffee++hBqiurlYwGAxvbW1tD/X7AQCGhqjeA7pt3bp12r9/vw4fPqxx48aFH/f7/bp+/bouX74ccRfU2dk54F929Hq98nq9sYwBABjCoroDcs5p3bp12rNnjw4dOqTCwsKI/bNnz9bIkSNVV1cXfqy5uVnnzp1TcXFxfCYGAKSEqO6AqqqqtHPnTu3bt0/p6enh93V8Pp/S0tLk8/n08ssva+PGjcrKylJGRoZeeeUVFRcX8wk4AECEqAJ0e32o559/PuLxHTt2aNWqVZKk3/72txo2bJiWLVum3t5elZWV6fe//31chgUApA4WI00xSfavE0gKPT09MZ2XlpYW50keLSxGCgBISgQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAR009ERfKKZdXf0aNHJ2ASIHnU1tZaj4B+cAcEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJhgMdIUs2XLlqjPCQQCCZgEj5qampqoz6msrEzAJBgquAMCAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEx4nHPOeog7hUIh+Xw+6zEAAA8pGAwqIyNjwP3cAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATUQUoEAhozpw5Sk9PV05OjhYvXqzm5uaIY55//nl5PJ6Ibe3atXEdGgAw9EUVoIaGBlVVVampqUkHDx7UjRs3tGDBAnV3d0cct3r1arW3t4e3rVu3xnVoAMDQNyKagw8cOBDxdW1trXJycnTs2DGVlJSEH3/sscfk9/vjMyEAICU91HtAwWBQkpSVlRXx+Lvvvqvs7GxNnz5d1dXVunr16oC/R29vr0KhUMQGAHgEuBjdvHnTffvb33bz5s2LePwPf/iDO3DggDt58qT785//7J588km3ZMmSAX+fzZs3O0lsbGxsbCm2BYPBe3Yk5gCtXbvWTZgwwbW1td3zuLq6OifJtbS09Lu/p6fHBYPB8NbW1mZ+0djY2NjYHn67X4Cieg/otnXr1mn//v06fPiwxo0bd89ji4qKJEktLS2aPHnyXfu9Xq+8Xm8sYwAAhrCoAuSc0yuvvKI9e/aovr5ehYWF9z3nxIkTkqS8vLyYBgQApKaoAlRVVaWdO3dq3759Sk9PV0dHhyTJ5/MpLS1NZ86c0c6dO/Wtb31LY8aM0cmTJ7VhwwaVlJRo5syZCfkHAAAMUdG876MBvs+3Y8cO55xz586dcyUlJS4rK8t5vV43ZcoU99prr933+4B3CgaD5t+3ZGNjY2N7+O1+f/Z7/j8sSSMUCsnn81mPAQB4SMFgUBkZGQPuZy04AIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJpAuQc856BABAHNzvz/OkC1BXV5f1CACAOLjfn+cel2S3HH19fbpw4YLS09Pl8Xgi9oVCIRUUFKitrU0ZGRlGE9rjOtzCdbiF63AL1+GWZLgOzjl1dXUpPz9fw4YNfJ8zYhBneiDDhg3TuHHj7nlMRkbGI/0Cu43rcAvX4Rauwy1ch1usr4PP57vvMUn3LTgAwKOBAAEATAypAHm9Xm3evFler9d6FFNch1u4DrdwHW7hOtwylK5D0n0IAQDwaBhSd0AAgNRBgAAAJggQAMAEAQIAmBgyAdq2bZsmTpyo0aNHq6ioSJ988on1SIPuzTfflMfjidimTZtmPVbCHT58WAsXLlR+fr48Ho/27t0bsd85p02bNikvL09paWkqLS3V6dOnbYZNoPtdh1WrVt31+igvL7cZNkECgYDmzJmj9PR05eTkaPHixWpubo44pqenR1VVVRozZoyeeOIJLVu2TJ2dnUYTJ8aDXIfnn3/+rtfD2rVrjSbu35AI0Pvvv6+NGzdq8+bN+vTTTzVr1iyVlZXp4sWL1qMNumeeeUbt7e3h7e9//7v1SAnX3d2tWbNmadu2bf3u37p1q95++23V1NToyJEjevzxx1VWVqaenp5BnjSx7ncdJKm8vDzi9bFr165BnDDxGhoaVFVVpaamJh08eFA3btzQggUL1N3dHT5mw4YN+vDDD7V79241NDTowoULWrp0qeHU8fcg10GSVq9eHfF62Lp1q9HEA3BDwNy5c11VVVX465s3b7r8/HwXCAQMpxp8mzdvdrNmzbIew5Qkt2fPnvDXfX19zu/3u1//+tfhxy5fvuy8Xq/btWuXwYSD44vXwTnnVq5c6RYtWmQyj5WLFy86Sa6hocE5d+vf/ciRI93u3bvDx/z73/92klxjY6PVmAn3xevgnHPf+MY33A9+8AO7oR5A0t8BXb9+XceOHVNpaWn4sWHDhqm0tFSNjY2Gk9k4ffq08vPzNWnSJL300ks6d+6c9UimWltb1dHREfH68Pl8KioqeiRfH/X19crJydHUqVNVWVmpS5cuWY+UUMFgUJKUlZUlSTp27Jhu3LgR8XqYNm2axo8fn9Kvhy9eh9veffddZWdna/r06aqurtbVq1ctxhtQ0i1G+kWff/65bt68qdzc3IjHc3Nz9Z///MdoKhtFRUWqra3V1KlT1d7eri1btui5557TqVOnlJ6ebj2eiY6ODknq9/Vxe9+jory8XEuXLlVhYaHOnDmjn/zkJ6qoqFBjY6OGDx9uPV7c9fX1af369Zo3b56mT58u6dbrYdSoUcrMzIw4NpVfD/1dB0n67ne/qwkTJig/P18nT57Uj370IzU3N+svf/mL4bSRkj5A+J+Kiorwr2fOnKmioiJNmDBBH3zwgV5++WXDyZAMVqxYEf71jBkzNHPmTE2ePFn19fWaP3++4WSJUVVVpVOnTj0S74Pey0DXYc2aNeFfz5gxQ3l5eZo/f77OnDmjyZMnD/aY/Ur6b8FlZ2dr+PDhd32KpbOzU36/32iq5JCZmamnn35aLS0t1qOYuf0a4PVxt0mTJik7OzslXx/r1q3T/v379fHHH0f8+Ba/36/r16/r8uXLEcen6uthoOvQn6KiIklKqtdD0gdo1KhRmj17turq6sKP9fX1qa6uTsXFxYaT2bty5YrOnDmjvLw861HMFBYWyu/3R7w+QqGQjhw58si/Ps6fP69Lly6l1OvDOad169Zpz549OnTokAoLCyP2z549WyNHjox4PTQ3N+vcuXMp9Xq433Xoz4kTJyQpuV4P1p+CeBDvvfee83q9rra21v3rX/9ya9ascZmZma6jo8N6tEH1wx/+0NXX17vW1lb3j3/8w5WWlrrs7Gx38eJF69ESqquryx0/ftwdP37cSXK/+c1v3PHjx91nn33mnHPul7/8pcvMzHT79u1zJ0+edIsWLXKFhYXu2rVrxpPH172uQ1dXl3v11VddY2Oja21tdR999JH76le/6p566inX09NjPXrcVFZWOp/P5+rr6117e3t4u3r1aviYtWvXuvHjx7tDhw65o0ePuuLiYldcXGw4dfzd7zq0tLS4n/3sZ+7o0aOutbXV7du3z02aNMmVlJQYTx5pSATIOed+97vfufHjx7tRo0a5uXPnuqamJuuRBt3y5ctdXl6eGzVqlHvyySfd8uXLXUtLi/VYCffxxx87SXdtK1eudM7d+ij2G2+84XJzc53X63Xz5893zc3NtkMnwL2uw9WrV92CBQvc2LFj3ciRI92ECRPc6tWrU+5/0vr755fkduzYET7m2rVr7vvf/7770pe+5B577DG3ZMkS197ebjd0AtzvOpw7d86VlJS4rKws5/V63ZQpU9xrr73mgsGg7eBfwI9jAACYSPr3gAAAqYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMPF/FQeeSN9YW+AAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["test_2_img = test_2_img / 255\n","test_2_img = test_2_img.reshape(1, num_pixels)"],"metadata":{"id":"CmPqh-AN60w6"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["result_2 = model_2l_100.predict(test_2_img)\n","print('I think it\\'s', np.argmax(result_2))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"NcsSdmcG6_fu","executionInfo":{"status":"ok","timestamp":1760465535789,"user_tz":-180,"elapsed":141,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"0b2889ce-d247-431c-898a-516997c25b3f"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step\n","I think it's 2\n"]}]},{"cell_type":"code","source":["file_3_data = Image.open('6_90.png')\n","file_3_data = file_3_data.convert('L') #перевод в градации серого\n","test_3_img = np.array(file_3_data)\n","plt.imshow(test_3_img, cmap=plt.get_cmap('gray'))\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"id":"d0fC7xPM7mmm","executionInfo":{"status":"ok","timestamp":1760465779394,"user_tz":-180,"elapsed":106,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"96a83bc5-5e02-4bd8-82ab-25d75aba0717"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHKxJREFUeJzt3X1slfX9xvHrAO0BsT2lQJ94sgWFRYQ5VmqHooZKqYsRdZk6k+FiZLhipviwsKjotqQbS4xxYbr9AzMKOhceokswWmmZrqCg0OCkoV1dy2jLg/YcKLbU9vv7g59nHqHg93AOn7a8X8k3oefcV8/Hm5te3j137wacc04AAJxnQ6wHAABcmCggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmBhmPcDX9fb26sCBA0pLS1MgELAeBwDgyTmno0ePKi8vT0OG9H2e0+8K6MCBA5owYYL1GACAc9Tc3Kzx48f3+Xy/+xZcWlqa9QgAgAQ429fzpBXQqlWrdMkll2j48OEqKirSe++9941yfNsNAAaHs309T0oBvfLKK1q2bJlWrFihDz74QDNnzlRpaakOHjyYjJcDAAxELglmz57tysvLox/39PS4vLw8V1FRcdZsOBx2klgsFos1wFc4HD7j1/uEnwGdOHFCO3fuVElJSfSxIUOGqKSkRDU1Nads39XVpUgkErMAAINfwgvo8OHD6unpUXZ2dszj2dnZam1tPWX7iooKhUKh6OIKOAC4MJhfBbd8+XKFw+Hoam5uth4JAHAeJPzngMaMGaOhQ4eqra0t5vG2tjbl5OScsn0wGFQwGEz0GACAfi7hZ0CpqamaNWuWKisro4/19vaqsrJSxcXFiX45AMAAlZQ7ISxbtkyLFi3Sd7/7Xc2ePVvPPPOMOjo69JOf/CQZLwcAGICSUkC33367Dh06pCeeeEKtra369re/rc2bN59yYQIA4MIVcM456yG+KhKJKBQKWY8BADhH4XBY6enpfT5vfhUcAODCRAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMJL6Ann3xSgUAgZk2bNi3RLwMAGOCGJeOTXn755Xrrrbf+9yLDkvIyAIABLCnNMGzYMOXk5CTjUwMABomkvAe0b98+5eXlqaCgQHfddZeampr63Larq0uRSCRmAQAGv4QXUFFRkdasWaPNmzfrueeeU2Njo6655hodPXr0tNtXVFQoFApF14QJExI9EgCgHwo451wyX6C9vV2TJk3S008/rXvuueeU57u6utTV1RX9OBKJUEIAMAiEw2Glp6f3+XzSrw7IyMjQZZddpvr6+tM+HwwGFQwGkz0GAKCfSfrPAR07dkwNDQ3Kzc1N9ksBAAaQhBfQww8/rOrqan3yySf65z//qVtuuUVDhw7VnXfemeiXAgAMYAn/Ftz+/ft155136siRIxo7dqyuvvpqbdu2TWPHjk30SwEABrCkX4TgKxKJKBQKWY8BADhHZ7sIgXvBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMJH0X0gHnKtAIGA9whn1s/v5AgMGZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABPcDRtKTU2NK5edne2dGTdunHdm1KhR3pmUlBTvjCR1dnZ6Zw4ePOid2b9/v3cmEol4Z7q7u70zEnf4xvnBGRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3Iy0Hxs2zP+vZ8qUKd6Z66+/3jsjSYWFhd6ZgoIC70xGRoZ3ZsSIEd4ZSQoGg96ZQ4cOeWd2797tnfnoo4+8M3v37vXOSPEdE7W1td6ZF1980TuDwYMzIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACa4Gel5Es9NLmfNmuWdWbJkiXempKTEOyNJo0aN8s60tLR4Z44dO+adiecGppI0evRo78y4ceO8M9OnT/fORCIR70xzc7N3Rorv2Fu/fr135r333vPOfPLJJ96ZEydOeGeQfJwBAQBMUEAAABPeBbR161bddNNNysvLUyAQ0MaNG2Oed87piSeeUG5urkaMGKGSkhLt27cvUfMCAAYJ7wLq6OjQzJkztWrVqtM+v3LlSj377LN6/vnntX37do0cOVKlpaXq7Ow852EBAIOH90UIZWVlKisrO+1zzjk988wzeuyxx3TzzTdLkl544QVlZ2dr48aNuuOOO85tWgDAoJHQ94AaGxvV2toac1VVKBRSUVGRampqTpvp6upSJBKJWQCAwS+hBdTa2ipJys7Ojnk8Ozs7+tzXVVRUKBQKRdeECRMSORIAoJ8yvwpu+fLlCofD0RXvzy0AAAaWhBZQTk6OJKmtrS3m8ba2tuhzXxcMBpWenh6zAACDX0ILKD8/Xzk5OaqsrIw+FolEtH37dhUXFyfypQAAA5z3VXDHjh1TfX199OPGxkbt2rVLmZmZmjhxoh544AH95je/0aWXXqr8/Hw9/vjjysvL08KFCxM5NwBggPMuoB07duj666+Pfrxs2TJJ0qJFi7RmzRo9+uij6ujo0OLFi9Xe3q6rr75amzdv1vDhwxM3NQBgwAs455z1EF8ViUQUCoWsxzijQCDgnZk6dap3Zvny5d6Z0tJS70xfVyieTVVVlXdm9+7d3pn29nbvTDz7W5JuvPFG78zMmTO9M59//rl3pqGhwTsT73uqmZmZ3plwOOydef/9970zf/vb37wz//jHP7wzUnzHHv4nHA6f8Rg0vwoOAHBhooAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCY8P51DJCGDPHv7WnTpnlnrrzySu/M138b7TexevVq74wkrVu3zjtz+PBh70w8N2xPSUnxzkjx3TX5scce887MmjXLOxPPbHV1dd4ZSSosLPTOzJ492ztzww03eGfi+bf0/PPPe2ckaePGjd6Zzz77LK7XuhBxBgQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAENyM9T4YPH+6dGTp0qHcmEol4Z/bu3eudkaRDhw55Z+K5sWg8Tpw4EVdu9+7d3pna2lrvzPe+9z3vTDzWr18fV+6tt97yzlx11VXemR/+8Ifemfnz53tnfvrTn3pnJOnYsWPemb///e/emePHj3tnBgPOgAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJjgZqRx6O3t9c40NTV5Z1paWrwzl1xyiXemoKDAOyNJKSkp3pl4bxJ6vnR1dZ2XTDziuTntF198EddrNTc3e2cOHjzonfnvf//rnYnnGJozZ453RpIWL17snWlvb/fOVFVVeWe6u7u9M/0NZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDPSODjnvDP//ve/vTO7d+/2zlx++eXemRtuuME7I0kfffSRd2bHjh3emc7OTu9MvMaOHeudGTduXBImOVU8N+Hs6elJwiSnF89NWeM5Hv785z97Z0aNGuWdkeL7txHP8XrkyBHvzK5du7wzUnw3U04WzoAAACYoIACACe8C2rp1q2666Sbl5eUpEAho48aNMc/ffffdCgQCMWvBggWJmhcAMEh4F1BHR4dmzpypVatW9bnNggUL1NLSEl3r1q07pyEBAIOP90UIZWVlKisrO+M2wWBQOTk5cQ8FABj8kvIeUFVVlbKysjR16lTdd999Z7zCo6urS5FIJGYBAAa/hBfQggUL9MILL6iyslK/+93vVF1drbKysj4vB62oqFAoFIquCRMmJHokAEA/lPCfA7rjjjuif77iiis0Y8YMTZ48WVVVVZo3b94p2y9fvlzLli2LfhyJRCghALgAJP0y7IKCAo0ZM0b19fWnfT4YDCo9PT1mAQAGv6QX0P79+3XkyBHl5uYm+6UAAAOI97fgjh07FnM209jYqF27dikzM1OZmZl66qmndNtttyknJ0cNDQ169NFHNWXKFJWWliZ0cADAwOZdQDt27ND1118f/fjL928WLVqk5557TrW1tfrLX/6i9vZ25eXlaf78+fr1r3+tYDCYuKkBAAOedwFdd911Z7wZ5xtvvHFOAw1Whw8f9s5s2bLFO3PNNdd4Z6699lrvjCRddNFF3pnt27d7Z+LZd4FAwDsjSZMnT/bOFBYWemc+/fRT78y+ffu8M93d3d6Z8ymeG6zGcwPTl19+2TsjSZdddpl3Jp5/T1+9eOubqqur885IJ28m0F9wLzgAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImE/0punN4XX3zhnampqfHOPPfcc96ZH//4x94ZSZoxY4Z35sorr/TOdHZ2emfiNXLkSO/M8ePHvTObN2/2zsRzPPT09Hhn+rt47ubc0NAQ12t99tln3pnx48d7Z7Kzs70zKSkp3pn+hjMgAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJrgZaT925MgR78z69eu9M/HeqLGwsNA7M2XKFO/MxRdf7J0ZOnSod0aK7+aTe/bs8c5s2bLFOxPv39NgM2SI//83jxo1Kq7XGj58uHemqanJO1NVVeWdieemrP0NZ0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDPSQSYcDntn3nnnnbhe6/333/fOhEIh78zIkSO9M/E6evSodyaeG5h2d3d7ZxC/1tbWuHLvvvuud+bjjz/2zrzxxhvemcFwDHEGBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwETAOeesh/iqSCQS1w0rAaAv8d7QNicnxzsTzw2BP/30U+9Mb2+vd+Z8C4fDSk9P7/N5zoAAACYoIACACa8CqqioUGFhodLS0pSVlaWFCxeqrq4uZpvOzk6Vl5dr9OjRuvjii3Xbbbepra0toUMDAAY+rwKqrq5WeXm5tm3bpjfffFPd3d2aP3++Ojo6ots8+OCDeu211/Tqq6+qurpaBw4c0K233prwwQEAA9s5XYRw6NAhZWVlqbq6WnPnzlU4HNbYsWO1du1a/eAHP5Ak7d27V9/61rdUU1Ojq6666qyfk4sQACQaFyHYSOpFCF/u6MzMTEnSzp071d3drZKSkug206ZN08SJE1VTU3Paz9HV1aVIJBKzAACDX9wF1NvbqwceeEBz5szR9OnTJZ38veupqanKyMiI2TY7O7vP38leUVGhUCgUXRMmTIh3JADAABJ3AZWXl2vPnj16+eWXz2mA5cuXKxwOR1dzc/M5fT4AwMAwLJ7Q0qVL9frrr2vr1q0aP3589PGcnBydOHFC7e3tMWdBbW1tfX4vNRgMKhgMxjMGAGAA8zoDcs5p6dKl2rBhg95++23l5+fHPD9r1iylpKSosrIy+lhdXZ2amppUXFycmIkBAIOC1xlQeXm51q5dq02bNiktLS36vk4oFNKIESMUCoV0zz33aNmyZcrMzFR6erruv/9+FRcXf6Mr4AAAFw6vy7ADgcBpH1+9erXuvvtuSSd/EPWhhx7SunXr1NXVpdLSUv3xj3/8xpczchk2gETjMmwbZ7sMm5uRAgCSgpuRAgD6JQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJjwKqCKigoVFhYqLS1NWVlZWrhwoerq6mK2ue666xQIBGLWkiVLEjo0AGDg8yqg6upqlZeXa9u2bXrzzTfV3d2t+fPnq6OjI2a7e++9Vy0tLdG1cuXKhA4NABj4hvlsvHnz5piP16xZo6ysLO3cuVNz586NPn7RRRcpJycnMRMCAAalc3oPKBwOS5IyMzNjHn/ppZc0ZswYTZ8+XcuXL9fx48f7/BxdXV2KRCIxCwBwAXBx6unpcd///vfdnDlzYh7/05/+5DZv3uxqa2vdiy++6MaNG+duueWWPj/PihUrnCQWi8ViDbIVDofP2CNxF9CSJUvcpEmTXHNz8xm3q6ysdJJcfX39aZ/v7Ox04XA4upqbm813GovFYrHOfZ2tgLzeA/rS0qVL9frrr2vr1q0aP378GbctKiqSJNXX12vy5MmnPB8MBhUMBuMZAwAwgHkVkHNO999/vzZs2KCqqirl5+efNbNr1y5JUm5ublwDAgAGJ68CKi8v19q1a7Vp0yalpaWptbVVkhQKhTRixAg1NDRo7dq1uvHGGzV69GjV1tbqwQcf1Ny5czVjxoyk/AcAAAYon/d91Mf3+VavXu2cc66pqcnNnTvXZWZmumAw6KZMmeIeeeSRs34f8KvC4bD59y1ZLBaLde7rbF/7A/9fLP1GJBJRKBSyHgMAcI7C4bDS09P7fJ57wQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATPS7AnLOWY8AAEiAs30973cFdPToUesRAAAJcLav5wHXz045ent7deDAAaWlpSkQCMQ8F4lENGHCBDU3Nys9Pd1oQnvsh5PYDyexH05iP5zUH/aDc05Hjx5VXl6ehgzp+zxn2Hmc6RsZMmSIxo8ff8Zt0tPTL+gD7Evsh5PYDyexH05iP5xkvR9CodBZt+l334IDAFwYKCAAgIkBVUDBYFArVqxQMBi0HsUU++Ek9sNJ7IeT2A8nDaT90O8uQgAAXBgG1BkQAGDwoIAAACYoIACACQoIAGBiwBTQqlWrdMkll2j48OEqKirSe++9Zz3Seffkk08qEAjErGnTplmPlXRbt27VTTfdpLy8PAUCAW3cuDHmeeecnnjiCeXm5mrEiBEqKSnRvn37bIZNorPth7vvvvuU42PBggU2wyZJRUWFCgsLlZaWpqysLC1cuFB1dXUx23R2dqq8vFyjR4/WxRdfrNtuu01tbW1GEyfHN9kP11133SnHw5IlS4wmPr0BUUCvvPKKli1bphUrVuiDDz7QzJkzVVpaqoMHD1qPdt5dfvnlamlpia533nnHeqSk6+jo0MyZM7Vq1arTPr9y5Uo9++yzev7557V9+3aNHDlSpaWl6uzsPM+TJtfZ9oMkLViwIOb4WLdu3XmcMPmqq6tVXl6ubdu26c0331R3d7fmz5+vjo6O6DYPPvigXnvtNb366quqrq7WgQMHdOuttxpOnXjfZD9I0r333htzPKxcudJo4j64AWD27NmuvLw8+nFPT4/Ly8tzFRUVhlOdfytWrHAzZ860HsOUJLdhw4box729vS4nJ8f9/ve/jz7W3t7ugsGgW7duncGE58fX94Nzzi1atMjdfPPNJvNYOXjwoJPkqqurnXMn/+5TUlLcq6++Gt3m448/dpJcTU2N1ZhJ9/X94Jxz1157rfv5z39uN9Q30O/PgE6cOKGdO3eqpKQk+tiQIUNUUlKimpoaw8ls7Nu3T3l5eSooKNBdd92lpqYm65FMNTY2qrW1Neb4CIVCKioquiCPj6qqKmVlZWnq1Km67777dOTIEeuRkiocDkuSMjMzJUk7d+5Ud3d3zPEwbdo0TZw4cVAfD1/fD1966aWXNGbMGE2fPl3Lly/X8ePHLcbrU7+7GenXHT58WD09PcrOzo55PDs7W3v37jWaykZRUZHWrFmjqVOnqqWlRU899ZSuueYa7dmzR2lpadbjmWhtbZWk0x4fXz53oViwYIFuvfVW5efnq6GhQb/85S9VVlammpoaDR061Hq8hOvt7dUDDzygOXPmaPr06ZJOHg+pqanKyMiI2XYwHw+n2w+S9KMf/UiTJk1SXl6eamtr9Ytf/EJ1dXVav3694bSx+n0B4X/Kysqif54xY4aKioo0adIk/fWvf9U999xjOBn6gzvuuCP65yuuuEIzZszQ5MmTVVVVpXnz5hlOlhzl5eXas2fPBfE+6Jn0tR8WL14c/fMVV1yh3NxczZs3Tw0NDZo8efL5HvO0+v234MaMGaOhQ4eechVLW1ubcnJyjKbqHzIyMnTZZZepvr7eehQzXx4DHB+nKigo0JgxYwbl8bF06VK9/vrr2rJlS8yvb8nJydGJEyfU3t4es/1gPR762g+nU1RUJEn96njo9wWUmpqqWbNmqbKyMvpYb2+vKisrVVxcbDiZvWPHjqmhoUG5ubnWo5jJz89XTk5OzPERiUS0ffv2C/742L9/v44cOTKojg/nnJYuXaoNGzbo7bffVn5+fszzs2bNUkpKSszxUFdXp6ampkF1PJxtP5zOrl27JKl/HQ/WV0F8Ey+//LILBoNuzZo17l//+pdbvHixy8jIcK2trdajnVcPPfSQq6qqco2Nje7dd991JSUlbsyYMe7gwYPWoyXV0aNH3Ycffug+/PBDJ8k9/fTT7sMPP3T/+c9/nHPO/fa3v3UZGRlu06ZNrra21t18880uPz/fff7558aTJ9aZ9sPRo0fdww8/7GpqalxjY6N766233He+8x136aWXus7OTuvRE+a+++5zoVDIVVVVuZaWlug6fvx4dJslS5a4iRMnurffftvt2LHDFRcXu+LiYsOpE+9s+6G+vt796le/cjt27HCNjY1u06ZNrqCgwM2dO9d48lgDooCcc+4Pf/iDmzhxoktNTXWzZ89227Ztsx7pvLv99ttdbm6uS01NdePGjXO33367q6+vtx4r6bZs2eIknbIWLVrknDt5Kfbjjz/usrOzXTAYdPPmzXN1dXW2QyfBmfbD8ePH3fz5893YsWNdSkqKmzRpkrv33nsH3f+kne6/X5JbvXp1dJvPP//c/exnP3OjRo1yF110kbvllltcS0uL3dBJcLb90NTU5ObOnesyMzNdMBh0U6ZMcY888ogLh8O2g38Nv44BAGCi378HBAAYnCggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJj4P08ma02OSZDHAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["test_3_img = test_3_img / 255\n","test_3_img = test_3_img.reshape(1, num_pixels)\n","result_3 = model_2l_100.predict(test_3_img)\n","print('I think it\\'s', np.argmax(result_3))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"OOWSXHcR7t-3","executionInfo":{"status":"ok","timestamp":1760465781505,"user_tz":-180,"elapsed":81,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"73ae1567-21a0-45e4-c200-0feb3fc166c8"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n","I think it's 9\n"]}]},{"cell_type":"code","source":["file_4_data = Image.open('2_90.png')\n","file_4_data = file_4_data.convert('L') #перевод в градации серого\n","test_4_img = np.array(file_4_data)\n","plt.imshow(test_4_img, cmap=plt.get_cmap('gray'))\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"id":"0pesAuMV8CaV","executionInfo":{"status":"ok","timestamp":1760465842804,"user_tz":-180,"elapsed":102,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"b588c804-62b1-467f-ebb9-e29da5b0c69a"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGiZJREFUeJzt3X9MVff9x/HX9QdX28JliHChol611aX+WOaUkbaujURgi/HXEnX9Q43RyLCZ2h/TZdW6LWFzSdN0cbi/ZM2q7UympiYjsVgw29BGqzFmKxGDE6MXWxPuVSxo5PP9w2/vehWkF+/lfe/1+Ug+idx7Dvfd0yNPL/dy8DjnnAAAGGRDrAcAADyaCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAxzHqAe/X09Ojy5cvKzMyUx+OxHgcAECPnnK5fv67CwkINGdL385ykC9Dly5dVVFRkPQYA4CG1tbVpzJgxfd6fdN+Cy8zMtB4BABAH/X09T1iAdu7cqfHjx2vEiBEqLi7WJ5988o3249tuAJAe+vt6npAAffDBB9q0aZO2bdumTz/9VDNmzFBZWZmuXr2aiIcDAKQilwCzZ892VVVVkY/v3LnjCgsLXXV1db/7hkIhJ4nFYrFYKb5CodADv97H/RnQrVu3dPLkSZWWlkZuGzJkiEpLS9XU1HTf9t3d3QqHw1ELAJD+4h6gL774Qnfu3FF+fn7U7fn5+QoGg/dtX11dLZ/PF1m8Aw4AHg3m74LbsmWLQqFQZLW1tVmPBAAYBHH/OaDc3FwNHTpU7e3tUbe3t7fL7/fft73X65XX6433GACAJBf3Z0AZGRmaOXOm6uvrI7f19PSovr5eJSUl8X44AECKSsiVEDZt2qQVK1boe9/7nmbPnq23335bnZ2dWrVqVSIeDgCQghISoKVLl+rzzz/X1q1bFQwG9Z3vfEd1dXX3vTEBAPDo8jjnnPUQXxcOh+Xz+azHAAA8pFAopKysrD7vN38XHADg0USAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEzEPUBvvvmmPB5P1JoyZUq8HwYAkOKGJeKTPvPMM/roo4/+9yDDEvIwAIAUlpAyDBs2TH6/PxGfGgCQJhLyGtC5c+dUWFioCRMm6KWXXtLFixf73La7u1vhcDhqAQDSX9wDVFxcrNraWtXV1ammpkatra16/vnndf369V63r66uls/ni6yioqJ4jwQASEIe55xL5AN0dHRo3Lhxeuutt7R69er77u/u7lZ3d3fk43A4TIQAIA2EQiFlZWX1eX/C3x2QnZ2tp59+Wi0tLb3e7/V65fV6Ez0GACDJJPzngG7cuKHz58+roKAg0Q8FAEghcQ/Qq6++qsbGRl24cEH/+te/tGjRIg0dOlTLly+P90MBAFJY3L8Fd+nSJS1fvlzXrl3T6NGj9dxzz+nYsWMaPXp0vB8KAJDCEv4mhFiFw2H5fD7rMeJu8+bNMe+zbdu2mPcZMWJEzPsEg8GY95GkVatWxbxPXV3dgB4LQOrp700IXAsOAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBxUgHSZId5rjo6OiIeZ+B/FoOLmCavgbrIr0DOVclLrj7sLgYKQAgKREgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEV8MeJEl2mM1wBW18XTr+vQgGgzHvk65X3eZq2ACApESAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOBipIMkyQ5zShmsC5hKqXGBx3RSU1MT8z7r1q1LwCS2Lly4EPM+gUAg/oPEGRcjBQAkJQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABBcjHSRJdpij7Nq1a0D7JfNFIQdyAVNpYBcx5QKmg4sLmN5VUVExoP0G83zlYqQAgKREgAAAJmIO0NGjRzV//nwVFhbK4/HowIEDUfc757R161YVFBRo5MiRKi0t1blz5+I1LwAgTcQcoM7OTs2YMUM7d+7s9f4dO3bonXfe0a5du3T8+HE9/vjjKisrU1dX10MPCwBIH8Ni3aGioqLPF7+cc3r77bf1y1/+UgsWLJAkvfvuu8rPz9eBAwe0bNmyh5sWAJA24voaUGtrq4LBoEpLSyO3+Xw+FRcXq6mpqdd9uru7FQ6HoxYAIP3FNUDBYFCSlJ+fH3V7fn5+5L57VVdXy+fzRVZRUVE8RwIAJCnzd8Ft2bJFoVAostra2qxHAgAMgrgGyO/3S5La29ujbm9vb4/cdy+v16usrKyoBQBIf3ENUCAQkN/vV319feS2cDis48ePq6SkJJ4PBQBIcTG/C+7GjRtqaWmJfNza2qrTp08rJydHY8eO1YYNG/Sb3/xGTz31lAKBgN544w0VFhZq4cKF8ZwbAJDiYg7QiRMn9OKLL0Y+3rRpkyRpxYoVqq2t1euvv67Ozk6tXbtWHR0deu6551RXV6cRI0bEb2oAQMrjYqSDJMkOcxSPxzOg/dLxopAXLlyIeZ9AIBD/QZAUkvnv7UDOVWlwz1cuRgoASEoECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwEfOvYwC+UllZOSiPM5hX0B4/fnzM+5SXl8e8T11dXcz7YPDt2rUr5n0G63wdyLmabHgGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY8DjnnPUQXxcOh+Xz+azHiLskO8xRPB6P9QgPlMzHTpI6Ojpi3mf58uUx78MFTAff5s2bY96nuro6AZPEz2D+fQ+FQsrKyurzfp4BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmuBjpIEmywxwl2S9GWlNTE/M+69atS8Ak8cMFTFNDMv+9vXDhwoD2CwQC8R3kAbgYKQAgKREgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJoZZDwD0p7KyctAea7AuYpqdnR3zPn//+99j3icYDMa8jyStWrUq5n2S+cKnmzdvth4h7rZv3249wkPjGRAAwAQBAgCYiDlAR48e1fz581VYWCiPx6MDBw5E3b9y5Up5PJ6oVV5eHq95AQBpIuYAdXZ2asaMGdq5c2ef25SXl+vKlSuRtXfv3ocaEgCQfmJ+E0JFRYUqKioeuI3X65Xf7x/wUACA9JeQ14AaGhqUl5enyZMnq7KyUteuXetz2+7uboXD4agFAEh/cQ9QeXm53n33XdXX1+t3v/udGhsbVVFRoTt37vS6fXV1tXw+X2QVFRXFeyQAQBKK+88BLVu2LPLnadOmafr06Zo4caIaGho0d+7c+7bfsmWLNm3aFPk4HA4TIQB4BCT8bdgTJkxQbm6uWlpaer3f6/UqKysragEA0l/CA3Tp0iVdu3ZNBQUFiX4oAEAKiflbcDdu3Ih6NtPa2qrTp08rJydHOTk52r59u5YsWSK/36/z58/r9ddf16RJk1RWVhbXwQEAqS3mAJ04cUIvvvhi5OOvXr9ZsWKFampqdObMGf35z39WR0eHCgsLNW/ePP3617+W1+uN39QAgJTncc456yG+LhwOy+fzWY8Rd0l2mKP093NdfUnmi08OVE1NTcz7DNYFTJG+Lly4EPM+gUAg/oPEWSgUeuDr+lwLDgBgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACbi/iu5kXoGcgVoKTWuxhurysrKQXkcrqCdvrq6umLeZ/v27QmYJPnxDAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMOFxzjnrIb4uHA7L5/NZjxF3A7ngZ7JfsNLj8ViP8EhJx3Mo2Q3kwqIDuaBtbW1tzPukglAopKysrD7v5xkQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCi5EmsST7X3MfLkYK4EG4GCkAICkRIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACaGWQ8AexcuXLAeAcAjiGdAAAATBAgAYCKmAFVXV2vWrFnKzMxUXl6eFi5cqObm5qhturq6VFVVpVGjRumJJ57QkiVL1N7eHtehAQCpL6YANTY2qqqqSseOHdPhw4d1+/ZtzZs3T52dnZFtNm7cqA8//FD79u1TY2OjLl++rMWLF8d9cABAanuo34j6+eefKy8vT42NjZozZ45CoZBGjx6tPXv26Mc//rEk6bPPPtO3v/1tNTU16fvf/36/n5PfiPo/g/UbUQf6JoRAIBDfQQCklYT+RtRQKCRJysnJkSSdPHlSt2/fVmlpaWSbKVOmaOzYsWpqaur1c3R3dyscDkctAED6G3CAenp6tGHDBj377LOaOnWqJCkYDCojI0PZ2dlR2+bn5ysYDPb6eaqrq+Xz+SKrqKhooCMBAFLIgANUVVWls2fP6v3333+oAbZs2aJQKBRZbW1tD/X5AACpYUA/iLp+/XodOnRIR48e1ZgxYyK3+/1+3bp1Sx0dHVHPgtrb2+X3+3v9XF6vV16vdyBjAABSWEzPgJxzWr9+vfbv368jR47c9yL0zJkzNXz4cNXX10dua25u1sWLF1VSUhKfiQEAaSGmZ0BVVVXas2ePDh48qMzMzMjrOj6fTyNHjpTP59Pq1au1adMm5eTkKCsrSy+//LJKSkq+0TvgAACPjpjehu3xeHq9fffu3Vq5cqWkuz+I+sorr2jv3r3q7u5WWVmZ/vjHP/b5Lbh78Tbs/+Ft2ABSWX9vw36onwNKBAL0PzU1NTHv89U/BGJRWVkZ8z6SVFtbO6D9ADwaEvpzQAAADBQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMcDVsAEBCcDVsAEBSIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJiIKUDV1dWaNWuWMjMzlZeXp4ULF6q5uTlqmxdeeEEejydqrVu3Lq5DAwBSX0wBamxsVFVVlY4dO6bDhw/r9u3bmjdvnjo7O6O2W7Nmja5cuRJZO3bsiOvQAIDUNyyWjevq6qI+rq2tVV5enk6ePKk5c+ZEbn/sscfk9/vjMyEAIC091GtAoVBIkpSTkxN1+3vvvafc3FxNnTpVW7Zs0c2bN/v8HN3d3QqHw1ELAPAIcAN0584d96Mf/cg9++yzUbf/6U9/cnV1de7MmTPuL3/5i3vyySfdokWL+vw827Ztc5JYLBaLlWYrFAo9sCMDDtC6devcuHHjXFtb2wO3q6+vd5JcS0tLr/d3dXW5UCgUWW1tbeYHjcVisVgPv/oLUEyvAX1l/fr1OnTokI4ePaoxY8Y8cNvi4mJJUktLiyZOnHjf/V6vV16vdyBjAABSWEwBcs7p5Zdf1v79+9XQ0KBAINDvPqdPn5YkFRQUDGhAAEB6iilAVVVV2rNnjw4ePKjMzEwFg0FJks/n08iRI3X+/Hnt2bNHP/zhDzVq1CidOXNGGzdu1Jw5czR9+vSE/AcAAFJULK/7qI/v8+3evds559zFixfdnDlzXE5OjvN6vW7SpEnutdde6/f7gF8XCoXMv2/JYrFYrIdf/X3t9/x/WJJGOByWz+ezHgMA8JBCoZCysrL6vJ9rwQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATCRdgJxz1iMAAOKgv6/nSReg69evW48AAIiD/r6ee1ySPeXo6enR5cuXlZmZKY/HE3VfOBxWUVGR2tralJWVZTShPY7DXRyHuzgOd3Ec7kqG4+Cc0/Xr11VYWKghQ/p+njNsEGf6RoYMGaIxY8Y8cJusrKxH+gT7CsfhLo7DXRyHuzgOd1kfB5/P1+82SfctOADAo4EAAQBMpFSAvF6vtm3bJq/Xaz2KKY7DXRyHuzgOd3Ec7kql45B0b0IAADwaUuoZEAAgfRAgAIAJAgQAMEGAAAAmUiZAO3fu1Pjx4zVixAgVFxfrk08+sR5p0L355pvyeDxRa8qUKdZjJdzRo0c1f/58FRYWyuPx6MCBA1H3O+e0detWFRQUaOTIkSotLdW5c+dshk2g/o7DypUr7zs/ysvLbYZNkOrqas2aNUuZmZnKy8vTwoUL1dzcHLVNV1eXqqqqNGrUKD3xxBNasmSJ2tvbjSZOjG9yHF544YX7zod169YZTdy7lAjQBx98oE2bNmnbtm369NNPNWPGDJWVlenq1avWow26Z555RleuXImsf/zjH9YjJVxnZ6dmzJihnTt39nr/jh079M4772jXrl06fvy4Hn/8cZWVlamrq2uQJ02s/o6DJJWXl0edH3v37h3ECROvsbFRVVVVOnbsmA4fPqzbt29r3rx56uzsjGyzceNGffjhh9q3b58aGxt1+fJlLV682HDq+Psmx0GS1qxZE3U+7Nixw2jiPrgUMHv2bFdVVRX5+M6dO66wsNBVV1cbTjX4tm3b5mbMmGE9hilJbv/+/ZGPe3p6nN/vd7///e8jt3V0dDiv1+v27t1rMOHguPc4OOfcihUr3IIFC0zmsXL16lUnyTU2Njrn7v6/Hz58uNu3b19km//85z9OkmtqarIaM+HuPQ7OOfeDH/zA/exnP7Mb6htI+mdAt27d0smTJ1VaWhq5bciQISotLVVTU5PhZDbOnTunwsJCTZgwQS+99JIuXrxoPZKp1tZWBYPBqPPD5/OpuLj4kTw/GhoalJeXp8mTJ6uyslLXrl2zHimhQqGQJCknJ0eSdPLkSd2+fTvqfJgyZYrGjh2b1ufDvcfhK++9955yc3M1depUbdmyRTdv3rQYr09JdzHSe33xxRe6c+eO8vPzo27Pz8/XZ599ZjSVjeLiYtXW1mry5Mm6cuWKtm/frueff15nz55VZmam9XgmgsGgJPV6fnx136OivLxcixcvViAQ0Pnz5/WLX/xCFRUVampq0tChQ63Hi7uenh5t2LBBzz77rKZOnSrp7vmQkZGh7OzsqG3T+Xzo7ThI0k9+8hONGzdOhYWFOnPmjH7+85+rublZf/vb3wynjZb0AcL/VFRURP48ffp0FRcXa9y4cfrrX/+q1atXG06GZLBs2bLIn6dNm6bp06dr4sSJamho0Ny5cw0nS4yqqiqdPXv2kXgd9EH6Og5r166N/HnatGkqKCjQ3Llzdf78eU2cOHGwx+xV0n8LLjc3V0OHDr3vXSzt7e3y+/1GUyWH7OxsPf3002ppabEexcxX5wDnx/0mTJig3NzctDw/1q9fr0OHDunjjz+O+vUtfr9ft27dUkdHR9T26Xo+9HUcelNcXCxJSXU+JH2AMjIyNHPmTNXX10du6+npUX19vUpKSgwns3fjxg2dP39eBQUF1qOYCQQC8vv9UedHOBzW8ePHH/nz49KlS7p27VpanR/OOa1fv1779+/XkSNHFAgEou6fOXOmhg8fHnU+NDc36+LFi2l1PvR3HHpz+vRpSUqu88H6XRDfxPvvv++8Xq+rra11//73v93atWtddna2CwaD1qMNqldeecU1NDS41tZW989//tOVlpa63Nxcd/XqVevREur69evu1KlT7tSpU06Se+utt9ypU6fcf//7X+ecc7/97W9ddna2O3jwoDtz5oxbsGCBCwQC7ssvvzSePL4edByuX7/uXn31VdfU1ORaW1vdRx995L773e+6p556ynV1dVmPHjeVlZXO5/O5hoYGd+XKlci6efNmZJt169a5sWPHuiNHjrgTJ064kpISV1JSYjh1/PV3HFpaWtyvfvUrd+LECdfa2uoOHjzoJkyY4ObMmWM8ebSUCJBzzv3hD39wY8eOdRkZGW727Nnu2LFj1iMNuqVLl7qCggKXkZHhnnzySbd06VLX0tJiPVbCffzxx07SfWvFihXOubtvxX7jjTdcfn6+83q9bu7cua65udl26AR40HG4efOmmzdvnhs9erQbPny4GzdunFuzZk3a/SOtt/9+SW737t2Rbb788kv305/+1H3rW99yjz32mFu0aJG7cuWK3dAJ0N9xuHjxopszZ47LyclxXq/XTZo0yb322msuFArZDn4Pfh0DAMBE0r8GBABITwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAif8DGqT8i/oh9tMAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["test_4_img = test_4_img / 255\n","test_4_img = test_4_img.reshape(1, num_pixels)\n","result_4 = model_2l_100.predict(test_4_img)\n","print('I think it\\'s', np.argmax(result_4))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"L9EDZyHt8Dsp","executionInfo":{"status":"ok","timestamp":1760465845509,"user_tz":-180,"elapsed":98,"user":{"displayName":"Юнус Юсуфов","userId":"02479076271460851883"}},"outputId":"fafc2d0c-d481-4fca-9b8e-5d63a026db6d"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n","I think it's 5\n"]}]}],"metadata":{"colab":{"provenance":[],"gpuType":"T4","mount_file_id":"1K6EFayR7IhhQ-ZP-iOuyUinHEQLjm-FU","authorship_tag":"ABX9TyMIwqVgPsiFzQqZRx7bfnpP"},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"accelerator":"GPU"},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/labworks/LW1/best_model_2l_100_LR1.keras b/labworks/LW1/best_model_2l_100_LR1.keras new file mode 100644 index 0000000000000000000000000000000000000000..d820b2808405300a9345ca06e4d8962a6f42bd24 GIT binary patch literal 336241 zcmeFY3tWv|wMGsug^+t%a}bgc zLJ~p7m47E6tvvt~NtW zNtLa{Ksj3b*lu!k=xLv&Hfzpwb+zg0b9m}=IO^IQwOLBrjsG;1w)9Zh1w&Y@o{u;) zl)a~ildE&@K<=Iner}FEn0^k~Gl0FDt&fkjhpqe1=2eax{Tw}fU2WZd_WgX90pF(7 z2jKHJ0BiLg5MOUwR}WjepGbYZ{TzEp_TA#ugKV49KOIibgaI}7baS=e@(;#ya`UwH zoz2XWLG115?CRs|==xMj!(cahEwTD&ev*)PIQJ znuc1>>u$DN7!EUi7XOa28NGcB)SvmW*u%@u*Qn>kztCrA>uc{~%?$i=susTpnX9F- zjzQ7K0Hr?Sdr0)M_4euEij%FIPY;*8ZJnKeE^1#xABSCghP3`k5X0hsJa4AwKR*vW zM-OK7p6UJjC3WcO`#)thd*oEOwHEb*L9PvZ|~0Vadme0WLCHbjG@}j z)wTz+SMnI4_HcBwc4gjYB-nK;vugi=7|!^+exIK_`O_9yATv))ydP_{Vy!@ zas0VtJ*)jcTo|Puy8b8WFn9F!{6*g1mh68#X7B8oUE=3v>)kv1-W~Fjp8v3?_bo;) ze17g_UxsCW|I)wf_{T&rYhvf;>gHhmcS80{n*W1+vYo;6|EK)U>RGCPA#L<;LjLb% z+|$X|-PZrNjQ?5D_Xys;ASU{_#d&K>nd+`!DP#293R^yO*n*7@mSQfe?4>OYHDaP zrgs)Y)MiIlXBS^<2S*m)pMz3b- zQT>kYwoF5x^<-++?w;<9@8Z{kQ*DN}HZyilt0&`EZT5C$+$bmSpUw;8Yy1t7nMsMH=4WX<>=UOg747wAtz_E;+q#~u&G za}xvdleB-VEqi);hG!s^>=_O^dwRPvgjm}%YTt($*W1(Ur&IKk#9vJO`+*&O8StJ4 z3&uj)`+3_k)9R77Uy#hsVSLP9h+bN~{XDE4ZJiyx-Fg_%$GD#pvi5THws!P)wD;?^ zv+4|{^{&2*B>j{q2ENC{ZvQ)9({}4}3q`5a35BBuvU)y}J#MY1gQMGwURr0k%!xG6 z(;qrSp7BJPM@)<*@)PQ3?dR8z-lymNo~N(=v%-AY^#0SYw~Xj5OZ)%&ryr~5kHwPh zZI|lB|5rGZl?xZL7|1^SeP!=!td?KHv&8xuewY7Gall}qj&aX~&3b38(p%Q{%2{uf zwTbcJd;b4*T41sMrapTC`s7rt?}dL-_G1nBll)5d%CE|xUoYD9zW+;p|80N#Ret}; zFu%M1FXzBt<+o3dMfB>mzUlYL=TBkpYy6)mS1ntv*CWF{y1(a%82zj48>hUtUN85n zy-!bziT@(34^FMOZanl?dmsJm0e{A4&|7!;%e;O;{p)`B*{#3MPvU35sK;^*WJxpD zsmB59nWbF6em{BM!}ni2{Kc_8eo8Ry5xqL3r)|-KN;h1jL-v@Pi>V0aj z7X_;~Lcpx_ujkM0vlzSn>*?!f9K_z1Uq!_5KUIHMeskbA2Yz$lHwS)m;5P?;bKo}z zeskbA2Yz$lHwS)m;5P^U7jWPo#mWB~pZRBTa#quA?ub2EUL;{6h67(n;tM${Pk)dUjN>D8v8$u^8ZP|zI@qV`Sst;m-Xbc`toHx zxv!pl+s`%WU6_6>m7jd>*Z)_8WN)I&p_luAtq)*sr1U^avB&l1#@MXUVyw|Sd*KH% z642A%zyB|UV!bz52K1|)&w@Wwk;?1FIbUz_c{ey%GCSyy{2&%;{fcraw(e?@(J)=frNW=!v%nLyOXR5&VuM&2d zr9q~HHoV_%i=0>i?C94{zYcjoWDmclFTfQwF3*JqnH|7VIH|32_Z4xo%Ow6{9$=R- z4vY@1fzPhdP`-)>TB{$D^vq;nNh@+~T;s91ML@(l0-@py4|Ue1;1G8aY`LJ$?asFZ z^BXT|X@VMPL>Gfx;TAL=83)~|8HAV6Soy)7g-r^9w0q!VvR`%_E>cLs=#~^LOOk~O zT@6Std`~l_bims_7rI*-sfKI{&QJ*i)y|Rl!9o}H-ae%3PsO7HFCWg8mY|;0YKRyG zG;wGG_`8RrjqOvCe0VLkdbU&csX~|)9*jpzVgH#hBaxk1oB*I-A!wdFnuPD7s2a z7q(E5cth~Lp$-})A*517mDMWt7k-!jIT z-Fm2cz6AK8BRQsf1&|q;4_faENR*B;>J1x+cJZNjvLz9{1Z-xXFUR?^eAJ3mgDNRa zs5p9*L|IJ%eP08-@kA0%MzYXmb_&_pF2L4n)x>Og9Mon=)6SZ`gg?%f(>1e_ly4nJ zYmybfvP>FUH06j_c&jki#z5FDAB&ClbJ04@97V=oA(~Z5aQxUr5Y#79k-{`Ii@rkU z?+C%WA;oAk$QXPdWYYE9^swMa7zTU{2FXnVY#Y1-oRUSbqay`OEYnG+seo>Ei-ER9 zSBR{JHI&!na?fOEqRrW7T$YS6R4(g>U9qd7O6xYUHd4lp4}3_Lwukb!yI`!cCk7;b zC-XLEqra~Qp4C!<^3Z&)aZv(x1?LjKhyBp_)=Q$gB$kTw?+*!T$yk!Ei(PBRqn)J* zPI#-1YK>N4x_K~Ijt?d}+Y+$jx-qy-`$V6qheNmXcQQFX2!{+*1<4IODz;03zH`pN z!nrv(>&qyZ`Q97-({_^(qX#72p%7S3=|btxF+hx?VXcl4deBCi=$-(N#O7eNs0-9u ziqTAA2AG`B19!^^Y#zP=7Yd5eeO)qIe$F5+qNzmxW)`?;m{Uy>gt;filFZ~-@Gp+T z`totqZ0bF7YJ)i3*9pTZMQJE76LKT`o)g(io1uGK7|ngdCeyQ0aoW^yY z3cg(C2HZ^{S~dyfYp^AzIo>C3M>1h+eKF1VI7nIbwc3U9F~C2f4^56M;6wFxOy!P) zpq)w}aUmS4TZ_S%M$%&Wb?CKVI5id?5o)MrLzJim@=i5#`Wp@b{*FQ1s*@i%%!WBO=HDy}OUh@DjrNx-ON?6h0} z5mR?T)25O~_S0-s5YhsL@6fyk<3 zc~~5X1V<9d51)u~lNyp?3n2SsG~D=>0v|_)VD9S4^zMc)RA%yf+FFzkWsf(3*~&?z z{-PsvFE$0uMVSzB^d-GEWe~1i5rr+oZG><4N@J7Hb25HIDY708AXSGRk}C3m^jk3- zhyJifhsjB3v?d?kuTDqa>{8D0Gt)p!#T6bm8e;Y9B;ad?(Y=94I#`fVV>nq1UU z;?c+XDj;k2j_i6BkN%vsl=o!*L_6S>u`I=9sDpb*7pVFb~@<4Er z`9|vhxW;YyY{G5syg@7WPK5NqMXKi1mxO_3sxGtuHDd2$q4(7E)Mo&kT$;J!sy*1-Rs0ILJ;*q~+r2gmpv-)rz(N zyITvcj(SZel}2KS|9B`|;RL*=W1#9(0O4mntxSHwh1`#$xvbJCka4|Cjac*0NM8RQBU?x^I{Oy?7HL;bjbJ z&CY|mrhJIcU4o}A<1uFSTDaWhg2rB7g(^|c2=C%eu1kv_Rbf9hSj2?^%qQy|vp%3iA`$+w55!!aPhN=ySr>dTOqBUkE*xBu+>=kUP z*O&yp$wfp`tAjW^asyJdossKZ5ViL+z2Q0p`iD;jy*;C_^KdiCzdIOt!-s;K#|Ak5 zPzp+)IunQz|7gI7aon-b|Af&@H1SVhT8OK8s80cwwLbERuifG6K5)V%(UX37K;76t)dO30Dj70l>l zG43(pLNtGrkGV(B3AJ*!Qx#?}+?bdKyjS^^sh`F`?R+i~SrtLjHta-x?tHGA*96*B zyBx*KCt+Ks9j5VYpk<#0G_TtY$t(1sQzMaEagu|&4>F*wOb42-c~dnrMOxb&3tBS- zP!1j3>p=xLVY3RF6&Dln;U(x^5r#%lJE3}EEIqsMK5a>LhV;WZSl(|gv<2=W-HU9I z)!j`z()hss7$~e5#inp#Aa-qF&KiP3)VmOaQ!gN`*VCunViqv(Z7~?_3xH~^amao- zj9%m}!mURtX}Nj~SV%9x=Qnm?Q-~oH4yz$uCHrZ!xHcFM6Qy=eY0&!c6qywn$>@%I z9GiV#=+zg_C=pZ)HqW9!^2v7cl~YYB>f+IBx({t%HUe3V<2llIO!1wYG`MK4gAq0= z=)ZX#DU0Z!RqgLNvEP#Ll7c@vY#sO6mkX62N0<#rI@KNieiriP&-bY zm`yK4mcpV+V}q?2vRxTdhaRU(9!G$5QZ7{Hj0d{~VW7<31gz9m+-aHp@N1JSn2mHJ zviwKnsJ#pxh?m9sc_Q@c=SgsCqY7%MuYs7TXe5UO`-;J!b;^wT zFI!8G8eSzM-tti6NCwni(I&p?yMcF~@$XW%(kf8_O5dX7YEeHZA3}-b@UNuoQxK_m zs}H3`{$vDmc4SW*By9fhh}PCeLF2J>I4i3R%T8p%(ba8)r8u5!D`Dp3CtsPie-Zg^ zoCN+C+)(DpMDSWyLR6PZ0jn;MMAUeJ?n-O4X(7-pI*HitT!y!nOvhMbE&LFygdyDnGtgE^xyLJoh z5M2X_x!Kr!?mDTD)2A9^R55I(BX(Jb60_U8Am`a!oD$-UrIHo&l8hLpElq>k*K3GL z(oV496>wP(`6nBW#*)JO+rVJ51*sbDB`kHUqUCoTQ1xLFkmx{SkuV*bM3;i?VLqBE zXahfQQ{`^HDh|wuL(NmSsiuGhts~D7>D1FiZL=L-+7tmpF4-VkI8QhtWEyz2G5Soa ztkT4B1K7kC3RNn$GB_xidaWNCu%f_b`b#<~w-C1sl0f6D9As%UQe(3+dUg0N@ZB9s z-R8u=;mRd={OU@qmkCAABY8#!=3vodON=rJMys0f&^~zzn(Uhn9d~Y$s>?jC%g_L* zTK<`8S?EAyt~S;=&IR3TfNGP5QybY^!hA>ou`i=A|D6FQzl^}cW!rJ0^c3_r&&K5j z8OUnc2+|j_z-f3fL_BsN23sPbtBaARUE4sWQW-XVNdi{I)5`R3A<${RoD}aAAn#-# znUyvGzdFr=O%po90s9)`M4K!*thRPW9zkd}(V zs%1mbYn~sy?Wv5lOFf95CkOne1tGQCh7EQ{N&l@G;C8=+yjva$f}ysQA9I>(leif? zOK0Pzqn-4@4G}C+TZ3%1x5Aid-Z;yKiEEg8gW~Qd)ZkVgXh zY#iZtghu3h=^dIa#I=qe<9Rb z@29dV2GqkU49D;E#O?{t$x+F7L~r5(sH~7ctxu1LjjlW?OFmCBMVWX~!bVzlHXK3* z%R`HnIJYHFU#J@r31SPjfFNoJ$osTVUguWGpZgGoJZJZ=-Zb}n=uNFgb-y$4UI0I7qm!jLaF4DZ!5FMu$lZ`EFaANxk zRHd^pfl5GJY9hQ_`GvGYJe5ezpt}M>xx*P*cbK^i%Jo<)8^Q8W9eKI>6cu|i8W-%8qw|xq=qLRYTFuSCl^PRKVbTG5{eFW`x445Exmx4Q zAG2YA{UhOcZVo(LR4E)dDH~l5EuosG+hN^6=FBiM8Rv*cC+&o-Bf8-J!VJV2Lnt>lUi)VWqWRZ6F?LF2KcM zbK&u(rNpXZD0al2rrnh*P*ZI(7GGuL{!kp;m5wHC^*s7Yemgl@Iu1 zWtQ53gJ}*FY9`=d*9cVh|3r_tPA87$0{Y`+2Fe)~5=UM(Imtaho^x){`Dcr9+9hS= z-QmE!>I>w|Y(-E$=RgK;PJuG9DOk50GFP1zHA~|FTT7@) z7oo=2HOX=#TR^iSNLZ8(29gGJt;iNk{+Nq*BG*>Vm@Y~^+|4oZu_Iacr5N0&R8p~0 zPjC;?fSF$gYUS;`Nah=!B^$4b;_)m#xiEYYl#DI}T<-?s#5Iuna0(pL+6=*!+hM@# z82r?6k7%M3H940Bv4R{xl`oCkP#iXlqfbD{=~wM4s9 zL3n$I4r9LuCul#fEG!d0jomw@sMqfp|AIQrM=10U=- zRzu}M#KIY1;uQ2zOvI=isW@yx7D%cWK+MWmjNCsQ$=0*vU2__mL=-~(kMY2twiIOT zzmoKbEYz14g;rq;QRY9U1 zb@13ffbs1tY4^(jdXzbvXY7teb|!F5E-|r;vU@`Q*67N60fyL8^@X_IF#@{z4NY?x zM*J@nlG@dAARW5`jbqJ;>>*vMR_H{X`n{lqF(ptYTS-qn7lZ0(9?UivfX5$~VA*A7 zocjDR&5_MQySX(q;++TZ)1Gr;byCoFS`oVFI)RaA8lAN#A6Z2joR%R2sM6s&TK^#s zx}4L=WgkO)c25!bRxwRJV0P-9F?BTUe&Lz*mjlYz3L3qf^FD82P52Jghi zq1N|_geP0iSvRc&EBd)X#YjbRJZ%E1+;awv$-1!YSUkk3-=dRrR-;2+B~8(bK^Ltg zs^OpxKgJc{)|_EzL7?(L1wwhY0-Y3}0p=tV_$SYh?iC(zT4O8P@SM1J zB!^+M(=E!oRL^Cd9|=v%oJbiH&yF0w6c;xupwh+?7!o=Fct_bnfuL0Aayp%sIi^83 z)88;M4+_~S5F1f|=C7lG_3V{U^_C%guZcjF31#fz0VMu*6_5Yj& zA*wFO_nlE$@tK1nr=Afio=nSMCesJ!7=1G&7K>Z6@%5K6D7m1V7|e`-rYqL4EHDS1 z3S&U7nmGe_N5IkeH6Yl&n&_S-Nj4Fdi(szo!$a=DYNSzPH?ki4|Kl~K!c20yQ6FD%x&*TCt2GTB`DN4p?5LSD8 zrR0-T+If9DWV)-PmI{E4&vaqAv<}t(l8x=@2WjJ~321U=C@lFV1(xsCL2%&+SJ5{N z1n0v^#F9wwLjHn5T;F4#XsygM!k0Kr4Ua^k z$~0H9VQGKlS8t_7LLTy5X94TS7Y-{m5Aqj;p_zptY`Z-NCG{L}N&i%+y4y;8cjhoL z^}(Q!vJt%2I{<6$@=8-q7;+?cq6r$q4pK;~7CaUT(z2|lfdZ44ybT7 zLrvGg;42wKOrPw6%7KRHZ5a;p=8eQOxkT!+V+XeFaYySZ1Cc$s0Eop7XkFuttQ>nX zqN6`tRh@^D-YM{PxD%?h4kD^<^D#Zb7-7?g?4T(B;jzZ1Wn}y6rYiZw|y}Orc>TCSZHn zczDv9gH@-;ki#{huq^5TZ8BSrF8#!4{rn&pu4aHNpJ;7*gbnP{{?ILz42|Qs=y1~$ zznkucTpfK_GA9pBrpFM~s(B!Y-%AAjkkDdJV2!fie4VutF1yUeM@w^&uDwP)PMG6? z#4uoKZiMi*1XSVLK>Z*$D#nh-?r|(CGFJ^vgVk}4O#p@{@#(CfJd9X7f~XaZfRJs& zKz`i_Y?2>=wYeK$?Rf!SSQmg*5&TN6uLV%)I0}X;hhyRZMbNr_i^}eqK)Z%7hk)X( z;Ie)NF$kW6XXm8jse!U^w>||ug3=-7h%MTz*5-#KD6wbjG`{t@bPR3$|~uA?B3}hyLkp_S!+h= zCJk^>^Fp4L4k*T_V6o;E>Z4$f_cs*a*Ed<9w#}D%kCMc9b4oy8Wi)Du4?*u8E*K{x z3H(3_(pVpiO^*GEa+EKahvY*;j2+}>CIZXOowJ0A;SUUoMkDPi(){u<6{!iQy1PD8 zu>w=n_YTCf-@0l2kE3MSa!0HlbcKjroI~41xfrr-E(p>S@Z$mjL|q#IwKZEXceE!} zp7@4_jTeCNw9U{og^i8vpXn!s9XM-oIK~gu!}YZjvEh>xROhS&o_8d9&^;g3-kzcd zwuWJ0d?!^_wZzpEBT>U`AhUOxX;+Ca#2j~lCb4yt_d=a}SNRxaSxl&W!kUj=pSnp) zWgGWEP$pVla|Aih5S*#J4p%m`(2kZxu)c%Y=f~$!UQQ>+_sDrt=bHdFL!zPcyCKyy ziA00OnUFi1FH{q$A{$h5@bUd1G+o8yq8xVtPqC)5^e~e8{5;aa#IM;+rozrEB~7ISQ0V?G%d98$Uy;C z-MCNAF=x_J^A*I)`4ef~bBanlt)sKg&BNR!#ax$j>BMW-W-{Y0rThqOcsDx>#GY=Y z9WHv%Sw9a8>&i%8;38DGbDPPr+~a!P+Xia;S77%EU9ehI0IHJdq)lcRX}hTcifzNd z*C`w=k1(;%eTyk;ayS`sBMXWj+@P7QiqQQr4qNSJfuigOs&+S?%a^o;tW{CS5fR7! z_rKGKmNif%sVB_7n2f38wxNXD5Be4&ux(H>JuDM}rtgR2GsfrFdCfv)@g%}}a8&qA zP7L2SC1HJT2s!=E6+2HGf}nLS5+<+SEMWpH{rj|Z!AeS`r@}}13i|bSBc1qGAM-m$ zfbqw{Ac(jpeCLc|C2}nM7qpBtR9+q5k}CT06`Pd=pJ!bh9ju zeVvU*3;F@y=q;&w>Vs;*O#Wct1M>ZQ6x1m%2lfC>B0G}OZdo~!`rl3zkDxs2s;3Wj?q(O=Nu7-Kc!R z0d1<}xcY3y{`!3*D#B%8bAU%@E}Dbl)*G?F$QoldCc~`LN?;sdgqu!=f@w<%#BIri z&gyquOBXMwVRC;BGiL%n;DYd-wF|P|lxTOFwh>(~1)Mr76l?EGQ`PHppn;o9+82m| zEOXWyK3xj4&kA6T&IIgC+eHK!N4Q6$GRd9HSs1;29_F`?gtx`F>+1 zHbu>%%Co1Saq1S5Fg+1xtNWvizX;9ABHk@ZwwIKo5<**i3# zV)S%s`OqFV?N0#Kc`o%;GXXW{z1*$~<&+&52&_jeqWLTWM9n&=*QHwF*MPOS!K4`L z5(GGYk|b6+C~_}ciNsm5Kd1~p25lUt5Sd~o2ev#68Y}XcScNi?wfI2lPCTYwD$}7* zVJ$?Q(Ihu81*?2Zg>hC}k-c#_j9M6phu0{fky{Q_C}v^O)o5%s4urIvFT_QOLnS|K zBl412aA;3BmQV7;D#6jpNixNtD&Y?rd$S<(rYGcj9^?9s83ql8#mpJ>8@0KiE3{iz zNdrctfexe7H7*(g|J^XWyUPP}lY&vZ-3fUrH@TV;68O%8@!8FaA#aL4p1m##(#2xX z`mK&U*wsNro()35#*s8_QWFug(88cWr)VRivzyl@k@8YDwc8Vj2j&(-=8+JZKVur& z=@!FB+hTfdWi*PM9fp^d|0q83Lv9hV=WB zVldTrz{H_hD19db_(^ZM?czh>YqAEaT(Tnd#_4GMO&zvL^vCkc3z6-)9yC3^QiHvW zpRHO1ZY9o;_jv{S4oaX3Ej9FOwm78u3?!u`3iN?-Dl|W{150^rSaLZOn%1~b$>@{Z zK}=XeD~hzgrxi0v1=NVl@@5niNbAzijcMJGeGM@ib+fb;ZxaVHa{Yj>q{yveHxpLLI$@pEe&Rcb1=4>c zL9@&rT9IWBM(ZSizl+Z`=)VdZqg-)i=U@nU-UyK3A5@AOc7mWio2tCDz z4z?S(NiTw!o$7Enq=ZT?cLO@TmX7lukAm?9!us9aLWBCv#Hck8^_Era%zY)8i2{{3MACOK27n=SD@qaRZYk)vWC=Dd@;xIV`cr$EEVAaY7R3%uBc z#3u6?mJsN)&^j_;kz^ zsU~(Oi_z3QAB+V>n5t=y-$%tVXPXmT7HgbV+GSbnj8rDICroLr6d!W+N`>q1$HQ&+ z-B=pxL0AVJxU++@@#-x;`s?NZ$K4wrc27dL#88Y0h$Q7@I|-}eiB{M7Hln)G4MXN8 z6TN~B&}GHs!TEk#ER`1(xeH}z$7BTnSN2=#vX!C7;t|(P;tDChI01MHrd%6!flzVf6db)#22Jj!g4nrK zSeKoRW=c}D`=SB8J3j*jQ}n?(TnBSyHSztjP^=`^X!C7pR2Z8B;K;xhdPF+$Ah4v2# zxoVFi3Sz;{Y6l#C^oo{^k0CBY?1=ogG4ObT4t7I-Vmf~}D2xloI)w7x@E&IG>gD(K5peLk4C;m2o?*FW3ZSSJr`E<_1VuH62ZOE>P9In6X1cm^=lg z9RuRY;N9M6yf*;%o*4u;*IS_N2|3*CJP${zXkzfpFjOs$N7M2MJi6x|{o?6>X4NH7 zZ>mDe^xqI0D-rS`A`UaB3UEk5GdtjeQgpq!nuW7IWl)$28Yno zeq%9a=UtLMBOab8I-}OhS48ZB33K*)OZiUzT;Is`uxzsl@}ArgrY^onmz{_MWnL!a zGiO7W$#c=BDW6J@h(=2hH;j27Pj8f2qj6#_m*t(yRq8hu_AYhCmJQit*4l}1WAacG z_2z@aO&;!ln1tN|8?0Rz3`cgvWBpjlE!+5kc0aVE8qWvdfib(GWxq42my3e0GK^2S zBoE>i-JtByP+|2+Pnl5LPF?Rb5T^W)FrGM7f9OXfnHamgjL4O9pJ^rob@I#;C#pc_erH<|Fl5d zVWEa+FX|$zQWw$~Tk-nSL0WMrlc>23r1d)%kOq4KtvNSIr}ZRyD7FB3GM|aagBlWX z-vQWll3ZTwUarH)4iXS%ffZ&uVBgS&|tv~!hIx$oiF)tt!Nk4k4O|ouQ%-g@Fma#tIm|ggy|UA&oV)B$ zF5GN%N6AlbxQDf;fyC0;V7V!X$arKU=gw~MkduIp4^~XvGzY>SM`OF4Hu_cNVQbeB z+B|$L@Pb}&t8~N&%Xu=#$~+2U*8d=;OpK)YWe)l|EkrZJmEg4`0@|j!QMIwt&`Q%8 z+h@z+>nTR~DJUKlhVKM#pByHioPtIV4L~$B5}Lo9rDuO}ma%i0sO+`HtfFBYnWQhc5M^x$1 zqbCHgwc87)KCPuHYx5!K+F-PK?j}rgP6x5wWkfAgh4SZ$a;nqc68%ewP%FmV1sk}W z)QYB4d*>m@wjRXfO*pio&46yI7zYjx@~9Ov1(N43hu!Q9G;oR{otp|lujm4?5{jS$ zL}O?S8sl-oqVu)iy_pQ@E5e{taSAmaatn&wjEKO<7k8EkYv{VAr=Z?V`rCi7rPbCjeYBTpN$D+dX zkzk^!3tmrC(L3A}<}i2IIjzMgKYBOZSeOJ^XU4%cjs!{;rPF0=A8`D61voEb1Z+M9 z@Mv=p)Lx6kW$zyldy6pSuAMB5{G3P(QX*0ELP+(tQh?w(_7 z@#Uab!Wyw+Oc(vi6>**k+PZf5V$>|CD#@e^B1&l1lO^~znuGc~3K3U|K)Lu+?w+)A zBI>V5)Nu_io;n9}_B^MNDOO-NCJ%k9$5eW(-baTF&!D_J73AGiW8AnRqtZh?0=AtB z#V?+Vpq$COjq%@#v%jRE;ky(JksZp!|I$IFYXf`<2Y4sVLdB#yI%KUIuD=q>9cu8M zGg|TrDN_x{1$*bh(l30<9&(ZBJvYPKE~R+XN*m)}iId#6D7?LeMFb;vpv6!f()8XF zUd2?Awr%N91a|n2-c0!Wc8pt*lsoolHY9yMfrSO_3{$U ze6HictU-LY?#ov8&nL6;c&}jxJ?6vL0c}8Tb{4DhM{#-VqOwF zogg44ue>VT-Pd9Ei4(#X$#dz*YCjlT`IM&I9ZT*$nvWsg@97SgF~o0JBK_jB;pB|9 zMMT-G{bW{7G(M+AsGpro_J8(7&!Y>GR!oO;dzM1eSZ^|gD?={4l7xqiFDaTkV$joA zj5}*YHheV4`KI~g=*dJBX-kAiTIz75>3n*|ly9O$F@L8$w74zvGXk^mY+ZdBi) z4ptht**ptBx~4(S!k3k|MmyrOjtz7mCk8HW&BsKAc#@ftfo2yEy3e!5N9jwcX-m|}_nKp|Ff<45`l;gcZ~-*bR*-Xc77(PM1q&Us5I6hc zJELHsu}A{`@RvdZ{v-&vXM>3uMf8EsGa+8u43SOBWX@+Z+(2t+U05oNi(HBy_VVFL z*$1KC125F`Sp@bQ&QP;cr7+7k4;NTvLlDEGk9U3X$@Wq_@xuah4-bbwu5BdJU){Lw z%~`^{!HjJiGz=fOEhHoR*O2KuHq%=3vD|wYPNvH2CK(~jZvv7QP)Ru_+?X{H&mS*9 z9d8E^*~cbk@;-1VI~zVvSVYzcY@yC{H@)E(1CmaTpk5+HoQ7Q_HJ5o9t*{tvn4Evc z6F!vh=HR(+BcX0d9tt{!Qsaew5S*z)+OmU4P3%M)A~dfq6+Vl(cJ_xsB0z6T`CPh^OY$q$wJjpswBjA7gbdoLsswH$vtp- z7n%00iG(y*;w+QnjS5b`P(qN2 z^%t~RLa13L9pK``>3=>0E3YWflP*Zoiw<&+4{hLzk51<%6stpi&I8Jo8^E2zDGZbR+(ku?%n-C11ZZ|89CBmT8F@j!D zy-NPrq=U!r6@&js8JsA)1CMA`a;P&9o%0{)K^DiwFgLw`2ioN9WRzh5j(8_##PI)Jc7Vv_WG?I+@XQ zj+&b*!O}6d_(n>aif8!2%yk>#RDW4v64oBDW z9N11Q;8I8=hMkI}(-tm;elweC%a#mK-e-psweo4TSpg>Zcf}8eX6U(39ryc(kYRP^ z_@&MdiOD2*uM`Uc&tnw#t-yXeBJucB9&<wI zW$<7kC;Uop+|A%vnlNLA-X?ojSrh9^{&3JN7aGnFrQf*8WKDPu1ni6iuB99d{~-w> z1M}h4A05K8Z)DL@(FuxPap3J09%2{=req%^NewG-6aNBt$IdKz3Ijp*{CB$XwGQ0M zXJV40!=a)u7@pNGfl=Qk;>_(Cc<9Madh&iS)(2P7Qh5&$GYuwm=U$wPad=UGChXa7 zP7;+C;X|)tbopFB#uI<$o|80)*X|;kk#TTrzcECX%4yg(gUOAUCxG(J5I7}WK~*z-;c~qw z$}I$l^4JCkHsq4xWyx@P)gyYYaW*cWApGa+jM^Sh@O7QTP!BP^aJkArmKlYpA zvMg;JyDpy!+0l4z&L%WF<^VR=Sipbb3RV}jnb@K@iT=8bZvXt5Y+vAx3009;n-xj} z^)_NxL?-!?Sx=wsZX%JvkGNB(vB4;A9bFe4jF|I+|@Jjkg7;digrNyJjqKN}A}Gg-Vbgrb!ki z$bf=&Iqm*#hsG<}MEf)ozaMpq+>vrXBcqLYVofk=P0K;sB1L>NQ4&{=kHbZ;2czxw z6bMn#p)(as$(OxRxc2~aw)vid{~tx?9nRJJ#&Myjj8v47h(t(M;XJpIQ6WmGlu(EW zNo170_uhLJ8onBw=PruUP|?=XjB zke=Th33aCy(2TJa#MLVomtGabx$2qV8)J(OK?h*-nsQuu(hbY!{vjy|BL=+(`&sK? zBM7j~gju^TlWQ%>c*8Xv`#LJ|3zuVDJUR=YcbKXC8Hyf0oAAjI85D7u0}iEki2Z;1 zc#A0D31N5G+H{F9xqC_c97&8|aZg!%Xj`XypCdLpKc6L%^>j z^qQ4JHdhIem*4!*`g;ks73e^*IQPEJCHQDhsMPRmNH_aClgj&g&Y{LROy!&ep z?Oz!Jcja?&(UMPeRf976j|;L3{BKd`<$J&=t`QFM<-;A-AbR)J$1@EOM=r1Avck8) zOsD5XMmzK#%~VLlpylTYv$+WyPnYAmIwu(C_~EI859y&pwNy*~Gjm){oo-+Igbu`i zr{!wb>99g79PU~MW*fxeuS+>Gc#*)djGmY(mI$~sf$OM+k@xSfQ2yw)0axYY2{4(*fO8+UxMCoYU!T*QMa1T3Mm+L$oO$XRB z8|tl1>6m&04*wjcFIGpxV0}70l9GU9>om|a@L%U?6(v~kMi0I|NCo+s8X#w&fo
^V*Tz0PyhxoJ> zb=@mT^m%10S}I7@KMizlJv0;8JD14ouf?EI!jIdHl$nZBJ!oIc%@@xXf}KeR5nQ|l z?#!D5a`T>(WUnpA+O2`Z$pxSxQ;VfdUJz(q1*xqq^y`D2U>}~2x%213{GJTpwHl_U z=Vp-X*uV5M$49)nC4v2I(RinFEq!REaOQ5h4zy@pqzBSFnPT2Vcq-L^XSPP+q8lk_ zu2;`xBHu`HtRC!rF-a@7>cWg64J5thY*srpP+a0pPpZ_yJIQq5<p`)p+5K|S*`Q)Ev~!pqY`|5O^BFS9Pa;;h>LGT(^m&JvGp54wAY$VKaXI4%ire5yE@e6(O~#ByPJcR0B{v;gny z--p+GJBVRHI&6|I#)+OfJe(*<_lP;-K;KSqax$jp9J64Q784W~hu+NRjG6Hq^b0vn zQlsXOcM?2Iktd+Bss-B2Rv}-%ajd;dG+Z1hrLUqLsajMpobH-KzBS)tOBxJ`s7L~e z_czn)N8V9wZg+gC;V^1SCE)du12mq?m-j`5VogO1{$81mpB*L*X6$*z=53aT$(kCB z-6sakE58`}A zxJoW-lOYHawm~@c!UU-nGNn8h9+MSOg)sErRDd4|u*N)_WV_@tdpO4A><>#kHj58F z@l;V)kwhAjIG-#~D+HYv3*gl{FFd5Kfism?keb7LsK?z=1A$)XREgw;*wvxvHS~*~ zX%->d|CC|H+g>L8T0OJ;g&BTQ+ky*vOUb4GO35>U^%zicm#iphgih|9s4-O&S}w$c z@Q^cnDS1yP)Dy_HGm4~GK@WK4S;7;$6wUb)sBug>zUb~EhUH-p5?_ryxdB9HXbT5< zyrSJNO3|n+jvD%<(Sqn4$Zg7|?^=Y>mVbmeJ##|7t*!L_$2zq2;TVeTJLygzVK9*X zM;1>?!a)J9$H?-5gmef#U#JKs{+TpHS_*!bO47hf5+Jm^4>cDT*76*buVNkf3gx&XKmRzu>Z;E1Zw%l$Uipjvb z2YKj!B^U%ly_phwZ4_;p57Ka)NJhV>v+9nLGW~0ey=w~aDkPv|RyVULGZ!0XN?`NW zLg>3ZO8ulp=u!cQ@H(Zi92K$IdC~|9eSAFrK@Td zz}b;3u)LiL=ae^K>e@rJV5us8v5mk?nJt9=Q)hB=lfY-737d42@o~*+7#lpyip>?q zWRYLA?a*_2Iy@5RSi~cjZNhH16wXa@1OhZx;_uX2u-s*VisosAscyutb#*u@9)dyF zv&o@4P1toL9-Y!-K%rWzGkEY8`;r7Jk^gR}W%fAA!-JXoi!K!dT-HNO&$bi#F4M49#iO!x3 z#;-qJ>0VY6{!nQ!nBoNYW_>5lYlH9%m)KgW<>FtrNGfKbON_>I@$$YLxa?C$c9dwd z5sRYn+>i}~&KHG_wT1Xcu|bcq%%v{t0;!u|A~XG0J>^^Dhs*9|!_+m0z&S>NOrG2c z&U=Gl(QI45>}|-;Cjic?uM<1fT+r#uW&$O+_w+eF5axNprn>dgZ2wB8(yN&3%`Srd zO)k`aUOlY4qE2mgX+h01Z&2nfq;e$(v7@AjiJiU~)`%EFe_9EQ6f6a^(i|M$xX<9c zg#^`!Yeea1xg?x#CO&Yh1mWpcM1uP~eoA@bqHn1n?OaX0Yv*+F9Z%{}H9JAD`A-2|=3O9feq`ge9)ouN33|2Y96dPLOWQI+v3Acm`4{$+C+S{=8H{mVDcBKjGU4t6z7G;%-%$k|USfpjxem&cu}Bo(@{{?OlM1nC zJfJVhgE&2Cr0HjSX_VVls@?tO|o;qTi=I?EOPq?6H9vF z$12(xI?4QvGr+#)rTQO6Yr)9cgM_E@!BMd%#AWs`V)#A)CyclZd&xuQb$Jce-<82~ zUq^`e@q&5svl=eWDP)fDv&^Wy1x_TcN2>pY%i9dVSJw+yH$ciTHctQp}lihFHCI2CejDdZpwp-J6p(mB@IwNn&iudAZ(X$x3tS^*P7T&GKF8`0=eK$8yz>{Z=mxY)u6M*7O}VB#cO zawH#>wc1&?V~LPlkp~V*yl6jGMxDFT$lrU}BtE4P0%E41pk*TIJ-C5<4P8J!>kP87 z*Ot*I&RZd!zY!itUn26R>G*5@Gvy-Vv1pg|aH3^?~tX%E#DJ^+EMSAof5D;jWL z0GAgFak+E~k$AF>&fb{}y@Mv$X4Z%*Jr$rQnN3PnV&JmwH0&GW_KY{zL54>ewzkG% z@rX40{zMw?eNqnW22JpcHOBCnf2qkETX?GC3GHN%>^r#ziudr+gO5x|(V7k>GsO*$ z%h<3d{){tUe4H`&$O)>Ipbg(Sht~MI3V8n|jc)2Rpr58m)A0uj$sI3aaN+kSzGrUI z@rxq(Ji-UAckV#ZC}((NeU6wd`#^fC;<2=35p1v$0ZF3-R^(13${f$3noEV*lSQ19 zX0`^E;o(P(U>RcR!Hc`NIqB#tTPV1<7*3w8#D{-c8KEsT9VGk$852%}E2awQuXm1( z{bUG6k#rEr(iG^KEl>ZE zRA}T)?o|3+0j3*g!JNn0q_57EaV?I;kWy=CavW!Sq;%8M{zR*X-L0mqyd|WhDRuS1!aymd3bBtBsT}gGA%M3i9Ex zCcwA@X}D;E$L9U+d|gz8kv{gQ8Bv7mW#=*>ezl+=oCA&l+02WE2AGsiz*#d3K|)v> zlgwo?P-lWn?OucLypbF+$br?XG-2O|ZaVo~kqEaa8#v7qg5v%L_WLIVR&8XI^y}83 z;-w5W@T)3HSY_kj-cme$kuZNAj*}lds|ep+2e{RegtE#m;J`$oaWm&u;)w>)K`+qu z`9-Dw&d?vevLB2_6j7hCfQ>Rb@Zn_|J#4(3C_Gq7LX5*h8kFiz+mA*Z*@KqEgN+%R;8 z#yysz0}{e;{>e*fB2^r`EoceVdQPJ_k&0!)`>f~nFIsS(n)APdTX$kN~a2J$yB;d7k z)ifim5G>Cw#`jIS2Blm+;Z>3gjvm!`O-=(dY-Ui=2rI&>*Tb>sQTi|~36{5Hpa|2? z%H|e=quxr;ovgz}mEXz9&foO2V+yqGP$xT%i-CYlDw+pu!-&;Zu+NP1a2RjG__y4C z+VBDW?Y+jJXYE^7I#dlqSMI=pg^94~#(iSxq5&5V7t!c%M)bXT4i0X6NOubKkf*aa ze(JLUc$)kr9a>e89T1Ak);7V=jRe?r+YIA2Bw&3)6i(YP153J-xjar5a`lF&x!Mrp zccT*4DbbG8IqCdZY6BDiWn*fG-WwA<9k*w#8+T zi$Y46=EAvhxZiu_I-!Jl84S;|#{&*`7vrN9!4P#rlC8?$!VI?w z)0g)HA^1ZM&a!z*vc438;;ekM2~I}G_DH0)1KtXdEQNB~?y(Pe zj#}Vc*BH0I`V{1A!ZcF^0otm4zZ z7{=4ComyLYqs97Mv@hx;`FhnTad#ekDx5{r4yQs@yA)%**o-*6t;SUvgfKGl8~rM`1uu8m!^-rt8=KAaZ-ku)a|cZ!E~h2@eM4 z4nAl3cR!;uF0R8ruPX6VR6nEK8$zB6)nXIR2vyFGg@7AZ8K-}|K>fJP&P6m!b(zL*C#C4QqKCVBAlg#~z|-Wmy-z33pG}i^TagBHbKHTJxV6vUZ(;+y>(6B$`g56G^=57#cytS!3a z6X&M6ZI=jz?s|CS(+L_kkx1q$r$Nw=C0@H%3u8k^iSijqY8KCc$YLdk;ogChucP4+ z*9X}hppC=Hkql?2B5w^-33E>mJtHLGLBSln>EFY;-VOl0-shyVzmLv(ww220Tf=?6 zb%g)tE-*1N;CTF1puesOO$KW)>cV4o$FTy=`yoM&#-_v4qd=h0%*X=B*uN;d9vbFIczjB#;SeMtm10{ zIFefe8Q&jpou~UGKsOX_%v8ti@`owU`|(Z-;X1Teu){b?g5zWt%AVyYnE(F)`lUkZXZYspVTW2oXkz-+hn#;l?{jNs`&%Hz6> zX;L%6uKUj^QRg_fSJ4>qx(+LjMWI)Y2MEP}CnF+U-&ZOL4hbY+ci>jM-p%c_j+mg| z)kf+iUq;TLFZgr31Z$FxUbLP#HBJGikt|$i!_AJ|J}@Ys^Z(VIBTs7MKu6C8(#EtQ z>rOUEv>d|7z+~)_wqdF^_p-|a#@Si#1EB6$As&BpmbE>;4cqBL41QS#Ep0h4xqTVO z4oc81&CwWj$P!lX4?&?+`%;r&txR9j~aHVM8Q7jIhR8ZoOn;NCfC!f zx_|7&J%yNes+SzUHG`TJnZq)TH#DJoCwebeM;p#DDlj)1Be=7^+7Cl;Y~XsQaocd% zU55>b&!snu9`v$t zkiheNTz0L^v2rGlX_i(r*O61C2aHTEpO%1K{dERS1<^2E=?Os#6>(PY2yNqB z0Pccch^yv0{JK&D%NC`=DbqTPOD~5O#~>J%?P1P~WB|{!7tC4iuXHc20l67rWY{i` zJ#{(-tKM*qWbc{qp{Ws;&}!saV8-M7X~~hfclC^#w-yNPF*R;`MSn%w4h@{meNwFgB=A+ilX)yT2 z5I^}xL5gx29-qZ|qxaq+6TXu8D6EdYlvxAYTwCebLL->)P61+520{TYpkzM-o?Q1v znP=SDCTADE%2vQA?i|$ivH^z8R?`nhrbGVa|JW9F&J(l11+_PEyC2zFZ0#$;ufuxK zYqg8+nN-8+<<@9y!7+iAjX2HnC>@)$0_(-fK!evnV)St$s=*64&q^@o_0u5g;|;Rb zJ{z<5UZ(SIS^-}6C9NR`h-a@Rrokf2d&UD#K9^u+n-e}Q)kcY~ba3OmpFw^*Aj~li zJ#8e|{Bm!UU$PFx1`KeIoB;kkY09~3_^1{)8#|?2qsG(@l0V%9`3^iGum4Mi2j?{) zBqtkwCzs=$u{jv7XF`bc1bw%o5}yfX!l&wm@KR9{H~!}hH#ToXvkeC!VeVtH@W&{# z(WoA;D*UEvNI#=>D++m!aBRQhe8|<=58aIgcrIUt)VT10VkB3He{2L-cPf*>@2g?^ ze1P&VTt1d00V$Tk7~)YvRpo9Hy}bw6-*yKv^RfizapW9i!Zo1eYf4g1h~jQxV{iyh zMOE`WTK3fq{DKX!?C&QgzET0y!=^HZCIM(U_JOv2c};(~e4*a9wV1Q637)r>lTB@} z>Dq&}jL(=g_4{|1IrrKgnj1N0MnD>VM31t*$r6};QxXb(bGpreR@#1`02lf-dL@A1CtAd}lFq-{L%h_aiBvS_wQ#i>4!uwv5NG zetOCF0o~rc3Z#z6BGmH3l!Zy~;lm1I-yck+vfq<)-!{PPvLx_bB#XyxYQlfH&LIDO zD)WIUq7SnJ@yl{)7-)=#>Mzz9dS@^G*=CKtD?8b*&(AQ=E(gN5@0GNxkYzRnOxNG9 z!9ZOPKfb;lfE%Curtd$BbFRlmOgeL&J{(_<7xYq)f9?u2l+9%L&hhI1m(O(&Di&g& z)dIS*+8zI#*#KYOB%%!016-f|f;j1_1AS|Pb6nJjyYD?xF%kq>n>i-6=@|*ud(uh1 z_0wkq+ZjDl1VN{ifbW?vK31Eg%CrU>ZGgqJ z@Kr0sSMMUg{DKXLebm9Ex*~Y(V9$E?E8&ajgGA-|RA$Q*8%XzQKibXm)gi{v5TzV=7yUR^ziHDL$t@$8fS7Hp6byaa-o~hSuYu37pz1LNT{$kr8F)RmM+TBNdBN8U zRWQetI9R(MXL%HZb!98p z)mw(iq9NRTGaqKW6vVTG0_Y&{nV$Gr3ojpLkcxdHOvR=ml2~${>EReZ_v^Z>>zpK{ zrUm3~*n1QRbMh;tG}z z6EObLd=!5xL?)M)!cf2|y;rXbLFro~Zu_?uzjvsS_P~BRU{Zn)6#0R7iVQwX3xuk{ z9MJCj%p`^x;c)O9#`>rQ`@+hYsBenHstuZ?S|JEm$Z^luGh3NJ9nL+af1A0t+8?ei zbjHC+UHI?KCTLeog{uX<^ueM)99bzv5|=E%kF}m4vtbK!$|D~SG{}&p=dvKCsS-}q z?WZ%J7Lyu}7M8tR4scr?8@Iz-OV21WW0lBJ=` z$kD`|*xoCOMM=+@6H1(GTp%CAI?W;N^=H!hIRU-*9)wJpsZ`@pA|2r^;#}F8pxhKj zWv4u2uj%imx1I;H#nQ15p?8g}UslFg{fNY`dGX|NLkKhuaQY=Te}X>s)`jo&4PYI)34SS`Wp1YBg5qjn zykW5g9$dRkpNKE^8!Gh$CYgNq&t!GQ2e~;iiV>$0NW) zdMd0QE~IyUg@A2m3}arMO7|Sw%sG>G!T06qn0EO9Ccc%X(pqjXmt12v1=f;m!TDIG zv<&oJt6-$03Yyo|6Fs|)*d)GyDuuoyd`fS~@BNKXxL29*%#(z>(^A^cK2@YohZ)GY&`a9%i!ey%`fG83{oK9Q#zmLTX~qWwFA zP*`6OZv~f9hn?m)*{_8buNyIkbEQXD%);O67NGylyYyUnI40hZ#Hy-vvh@|mviqfg z-la<B-?fJ*!b!5KOA$k6&w^P3hv5zgN{!rLRmW(Y& zm72`X)zxlPY(Wy0l)g?E-YJJEuDnpI9ShG_mU4Zx6f~N&H3+}g$KK?)$`_p+bExYB zA^xpo;}IdI;iftU_$xDIKg?0r!-Wp$Il;TG<=l>~7^76Y(1q_l@yg=7@|ymrPE(=p zYyhO~D*qw}l_N{#Q=}syw36lW-#p__>x|LkcunBIPKBXZm zg0REH8b$uvlZQ?z`0B(okeI2;x#mpp_Tv`VF7Swz5UKo{^!8WK@-MM?d&r$TYi1#{J_`(XNFW?c?5OJVgz}@8*^4%YkaY@a z#6m&*6A*<<7F$B~Eh}7jBNcbOjH2KBxQw_g2VU!?p%Z^3mzgfYoI4MxXwh`CrYjVV zXFq0E>%5`DtM=ek!7P;dCkPAtb)hY2jFtBa1HD)KQGQ$<%{my^Y?y}aj|*YTbZ)}Q ziHEc$vGnuY3h)WPN2*Kf!Hsh*xq9b{}Zk`32p9nODeJAOAn#lPY2gqN{kRGkg zsCZtUwC7G|r{4~QJ*Py`bDb9d)MS|o|DTX)cA!(e>yQJ5U!-2-9gIOpzTDSYh6 zkOBE@IQw9Br|w7|ec_n|3yWN6XO9!6CXTYhhHr?5{}#?6{g~({MzbmL%Ah1IiQiRJ zz_xrl%xI2-?1;ZKHFGXhPHDvU*J89R#vLE2<>2KVnxvyvnJydP!;qFL{C)p3akicg zGn7g|v3?`$9}%Y)t>VDiLY)y>kpzz<1G!m-%j34@!_bpny+3sgBv~^Em$1Fer)g`j z{i6$tt^Ghse?=f~_-2eA<=Ckm8t^2io5n1Vg+J|ORP}8UKG-%5N@*On5hsqF$O3Db z0YRzU02x$i3H*c@E84;9_G?qcc;Fo`P1(ZA`?+U-Y$Rm|z( zYt!*Z1lOmQDS=gCDqwe=bIa!JK;p?CkUOz~I`7K|r)w+W z*5C#D%jN{xx`<)J=H92?;mNpi-hb#k%8$e>2LEL%k+6xoWGHbr@E!O{JzecU_*0O9 z_>OQ;T+hw@)k7r7LjtjfC2bwG*p>1S2su_r5<&~WLHI?@IGTazT+Zg2lkNYcV4iyeH|>H zS4T`r7eZBhDmsjxr>R!2I)9mWkkgv;(WN|-DsNwn*%6tbcu@*&c&-6mIXYqA7eo(z2FaEo1mQE>jHAFN2eLYm6laes9h z9Ip+63#-*2=ZqB|bhhRm59JKs*ZcHjvjW_8J&YToE5Uu^2H13H9-Iraf#BFBFt@pb z7Hi+45w|m7?S-wlr|1Ya3@xH#LAsb6=K#`=vhg^_Sbj=~N7Jj$u=i^&N=oEm;jC;j zd^Z_m*6PAMOCgxK_!(7O#ND%WWED;M9gElH?D4!O*KxL22k{vq__FsH_?+RzqQ8I1 zi$HS>B$Mn}zgV>VmJP`V$B8O5QJn+o_+CC7yH>0PU)vaXvnC%}C8x0#Ofz%Se=Bb5 z@&Lam3ED7HiZd4Lf`9N58fJ46-@R3)PnWo&;YBBWSEPaMXDVnwc_^HFE{V5?<>{%p zH(2k09AFPEfhl9&)TaL*75HO_{J-xr11G=IXQI=Yo&auUS59^dWv42MeM4o9U%|XueghwS> z-Y2ZkwMPsp&xYfta%tp-0s7muj@d|z!TUiC1g`r>evbtJ>wTHY@^hdDZ=2v`T^{(K zy++?^AHZeawbaULF}-3VMkFOS5xI`FIKFKgEG)G}jXqUU_5VJK@@=v);WC}J%pXJl z97m=l^c(eC24fSh*#Tv4h@Yo9H9vwBf`!SuySR~Nr2}z*2XAwrd9HQAtTfiWE zCPa)~qRZ2ghIhamNoPW_I!Fbe+lK@3c7T!l2lkHK`WbN!U7}zWY|GdsHFQ-`1_p-sb z(w^-c7)-*6$BB4)xf1BUNg&BGHSkGfCO96m0L>P86y|!|JHOjt`903H9JPRBgc*8q zSq%IqpNZ$MwX(L&i@2Rk2ti(VHYUODTQy|$3_7RAS5^NL3r{8%kgn=NbJV_kykTsiPa-#L-JOa^QD6 z474vuGbQg&GY7)c@W6+cxhB=1v946eUd!n-cdU%k784rB>Uk^6ZyDr2MqlBLzrNF zyxmuZyW+N^gRmtEOe@0&GOOUwk2sK?wwPlBWFdAmgLSEu!tSp}QBtm%#0@CW;xPf- z5R<^|XpX|eQLf{vVhU$B)xpd;KG-?)7~5}HjnldPxGUEeJ1>w<^ygAc=0*EuqYkHY%!OiRQC3z|7+WtdvuMD|SJ6dBZ6ZccK}GICuWgfrIcaWj3hz zn1kXXmg_`*A%|p6;XD81C@<~?J#R07gTZ^!EfNi0aq?u^o<<^T(h6DPp5)eTu4nZ9 zDZA9J1#{}BQ@fdQuv6C^Wl!c|9O2mOFQ3TdoCGkan?j#({fASJ>OdyAnyhn~Mt|yB z(b-uZa9|a|9(6S!--^j%dtope;@kuc&D49RBq$!7izkG#nFEQIcr&k)YP~}Ic%=l> z#BPzPg?cdKeH;q#u7}T?ozQuyG4h$bU@h*BlEu4KNsD+i6rQZYQR^BIS?`Gz6$!A6 z^MV{*uLPmpdy#p640FHdum&HF!uL~E$X{y(`CLyzK=CT$bu9}LxW3fZ!d6(QT?)dH zrC@be1Xfn=!`%J5uu`K2PURlL6T7*bdh#4>w3mkmHUW${uQ7;yHO8B+b?o~Y#dzq| zAZeHFqxCEO$$_L$6p#$%-YZLp)p0+vRWFbJ#}k2@xNc5Cek3;VZNieTsgSuSlNeo< z0PV6!Fp8Q>e>i7T*@xt z*4Hu8Oc+HKw_?LvPaJ&Z1#yp8;J@4dVSe{5x_yB*&JMI7S31n$xmf^Iaqr-!M~)Dt z=ZjA^KI|k}-2FsRLcn|d4>`+QfEqVfLDI)Cw0;pzegCx>h_(BmgJKzO?-Rwq>KNjA z%oxYk{G%5dPSA7GQMf-W8lko)FctS ze%v6(8^r0^@3El6&ZfC-e0WE9Dd){MAWe??*!F!22_AV&-%ayI%ZIzcc*j2cX6gq{ zEgraX{T!6MR7JG=({XS93ixR)0;>$8@THwRe$V~IYR#2GuR|6X$CplprY2%zrwD!< zc}->dDV0AbiP!G@)xQ|F7}H02U(O*@z`te<|{huSo3RRE?{;H_1up9&Ko`j(t<#4$q3E~%25D&c;`u$r5 z*Kw+W@j5MhTP2QFGGzvj&*=cq176IWp$D%v{$g(mwZiz2JQ~me^8FhxdRHF8`Q8ig z$B77h^C=QM{eLo98{N3MsSeIx-+{I}j?(NpHFQ7H&F;W0t>M87dM+gFG=Y(g)2&N_|QfQu4j~y)^p)_CrTR{ z>(7&`wPoPeyNu(Q((qCBQI3NFSRSkd+UNUev&KETc+wHSTD)Tv`pUq#&I{MRv%;l6 zb5UiV89CEc1;SE!)O`AW(l0kcJ7xM=>HBF|9vVusI0o?a$0J~5b5=j7*9sLweHoYe zvfy_zo$g#WPBTAblUlbVrhR`d{FC0sgY%4!bq;KnTy5-mrUE{=x>K^mZDRLa~m`bw_Y+7nq`IXZU# zXvYi1U1az1RPe8TL-OtR!Xs66Jigl(4$d#4fn3htt*A+wyL2${S`eP)_yqrfML4tl zAegoa<6(~9EK2%FGy@mH@M;_UGMR=ytUc(;WI2+yIU3UqV(6-nHZbSAES3ezW7Tz1k8sln(k_>q`8ctb+XTC{v3OP*AnMx%Z{&Rv$zdVWqNUV8grN)PAy zD9ZrVZSR=fRXK3!(+oKBs0E*CP{`%>8;ef}fU3wm?!Fpl+?c-+&t^?@9P(&pd&hrK zzq~3O2-Sy=n=~+|FdN*QjL@+n87Bgak$JlfzpV8pb}`EM#Vr_az7vC87otFDdlK9_ zQV*Zc31i{&-FVZX0FDYR#L=X5Ecv(+w0B0(lAzzDx-FPW$h~1+uA7Y+zdlpBXKrZ5 zHIXmhNd<+$0`4w`7OYoh;cTPcn7aVpnDiis*3+%kPJDFn>Osdh0j2XdVS$j+8Qat~)^f%PH2ksg`&* zl+jYNS7eic9=2bTg=h0c*&k{v!CZF>xuw4!y@Pp4CB06*?K?)Uszh;n@h@RR}t~ zOF#?Gvwy=6p&hRvm>#ZUd1h||d5+!sw@ew2P84DwtVW~qUv#E~865uN0n!@Q=p&KG zzPr-GtPfjEyCPyi#UctXzU!f_!WFo+Sqjn@N5NsXkoEBAGVtu3IQ3d2hLfo%IBZU0 zV;w+e^HO$4;W5k#*?^y`cu`M@W0-T|=z%4PRH7snB-OK__FpBMkPiC9u>igada#xw z`yuyjBF#S=kBtM>jKvks=RR&khJHxn)yfleQC2>l*jhkU+h;()%5!9c@lN!sh{otu z_7GK>K&8ZeQ8eKpeQv8s7T2f2zCH)Mp}P^!mH%a9N0MoVS1op~hhJB|}>uu(o9 z)l+q8idi$6>aYyW42rnFC6sWb7E+X|1y__EDD}=o`94Lk7)XPa&O!Lm)ezEEml+)Y zlZQbvtsx(%TDjOzw= zML~quaWZ%1epET_0r%} z3g7}eQCxkBW8s4GsG5{EJPve&4CQK?=(qsbh95NAUzbGRh=&~&X?Wl3G1YY1!Tw|3 zbnvKhj-wmdcyx9k*6xeKk6DpW_HP>wE+?4%VK;R>s)(<}+;M?#8dQ2KVc>lel7Id! zQI6P+5sgZ4X}vJhW!(sCb)2ZRWV0{G`a(>U~ zST*o8eneyg-_y#dbe#Rsk7P9+Ac0qEuw5z%ipj1rihQ5#!Q;aDecW2c0 zB}d3s?M!GDu7a@-NV_Ku$r05a+I2StV)yZ%O9@4G?WVbF?WdF z95>K-Vh0Lq>v50UQjRlgAlv3_Ln}UQJhROkHbv*K?ICK2+*G^MGU@xyxKS z<%q`Xf}nIF5%`)uGwuyaxO2J*+qm&2S-spGYVR~tul)t+zA+m1IoNd^2$9DR=iJ%7 zXKdN~p`oC8S{^;blkwIIUh>^Vf!sKgg3)6^0MX5~&e#)flGw~PqoZ|g61+(Yy zuoc%TVOi@kQ2DZ*DTpn`e`eoF$B{mwr7@Fa@0KLr`Sf88cc;wnwputVdV~BJDg*DQ z%25AqKb}3obzQnH5vN{qOT1LY+lh_%YV%(Bd)gDX6{u2$XB=B}Hv>k6(sAmb z7?YyG^@k&zAuRF`DY0fd4`yWHvq@(XqxzKVK{%65^TknGqL3tv_Y>hNZLE{Yp}Tvx z6HmcvFuk6K?>{}Ic~V}Ku2+Hck?B~Y2U8L<@;X z_qi&SN+L-~Q6aPy8XB}qd+$9I4cX~FS5`KW%rX;Y_cbHqcb?~e_}rg!&UL-tuUAKf z8Md#fqRv*Oc&;Iu@iQI}iD>3Xx+hOBD?j7|{>IUSRWT6JIt#+?$3an^G@AMtfrnfL zBtCQp??vyq`B{7L(E5$g`}aOMe_|t8yfs7d$1$*GLI%0#orX>t4tL>b8TM0I zXwA4qgi`#$R67xOcG%&=xzA}tXC`)TFQG$olb~bN1aBpzpvH-*xVB*DO1XaQ5P0`@)sXC;MeL zOqj`-g!3HX_;o+rec2D5JT1ovrTNfel!XEH8W^>Cw_)y%F(6{Y_`43$)5}jo(~ZLDeN~3JPNo>TTify`!#C)S;xxKrLOk9$d77xvC@{a&Omv#8VOrui zysc}G^1sKzFRc-(F(wEM(hJD4xwaVAFct$si}BRgava=mgk^t%(L}JM{o&c|v~^)T zEGmk^$2NA*Gc_LzYZE|QwI02fiDN)kF5SnnYLXr=N$;09@VB=^`QgQ&(IQIK2MTdY zLI&Ka@WtmBR=}#5SnQQE#|E+aFwnLL{+ShG=>TEQV_)k2z?tgCXAnu#^>|4!3n_E#!2tA1c`fFaKK{=s6-`j zl|i>SflKm+6JzG!=BFCaK%}7Z)H7~F_D=lsNgrd!$l+OG1!(oI;1>l2Vdbw@E@I;V z@w=mg0x{9B`9=&p&m1Oib#tNivII)bE2E0@OKDDVEP{hF`mV}A>1cnTmx^#yY&8x| z)`I8HCv!v6GsxNhg1Abv%e>?ZZ)i0#CSqw}C?6|Hf5~2>4{w)3t8zc@$=qkeI12tb z$l=qN>7W>-i6>u5flhcS7Om6AOz#7na&jlVeL)f=Zr0<_CQov$Ss2dh1yWhHUg~U7 z!o0=ipx3nHGAf$4ff%kR{mUC8MQ#5nicCh9={mq{-14${y^; zh+hSS%muhD^@d~)mBaD-r--D5KHVlI0J?jbclIQ6`KtPmovb%H{L_?POlQ4=$Y#z_ zDGll8J)kqs5R|1h;qSrSV7~A$F@BhWQO`}d*IkKtf7=B3VkUu}619+OBaKa(nMB~d ze7mznDwr(&!3j9la}5b4G=;sz=$!R<(kKILSf3{;c_-XW+Y6x+z3GCH5*&Exh#vik z^l0xXYG7ze?iv^Te-`~Y!~+ zk5tm4<$^9VuRO~Fh-@*SChzXGi>x=L zkM2*wq_79nq|Tieiuz4@Bgdd_d=D3OrvP_nCc*^MuVnSWT5{y#L_C@(&iZAWQEy-( z#64RIO~;EMhVko$4o#zNw`6HtcM>7&eE(>9g_?wJ;e_-%hz89;--$M0chD4x8`3Fd zLKsngo(?U{p<5R-kLki(;@2dLBkS^D-B(H6y<;gD_|3-WBJ4k8^A~zN(H8|Iq9At* z%iJ0$gSk*T>N#s;QivDHTqp#??~I`^Hij6PYk=Y;WQ=etynnd})z6hMmq{@i7^mWn z_ud#-{|8FrA9yEsuAKuYYqwi!D#KMjE zX5xO8v3!I3Igegz_!!3+V-}fkQurd3UM-J`ZpI)vr-H6c&Opzn%oUU3ilq&Cq;;b* z?FgO;?mM@_jHwNHSN|t{Egs7HXtVIZN(oqW(Ff1!E&_|E2kDdnS5(X|h9*uCWzT1W zz(#f2-{y@*1>+%kN-Vg>`eB5PE$b6SLaF`{G7#8AH0%@M_sqk@veLuupGr$ z*U2I&5!)12;(^fuVm{^+IWAv=cKup-q^F*aR3`BEVma7lB!dcP8JCImX;Vt_!Ps~< zSHxN1-J_e(`c^Fr4R%n)tUAWRNTAn`SL0rbJ0xc2dVJ=qL(@CVAgr|xBj&s%K069= z&cBstx$+~qx_Uo6Kam2;lha`8)1Bz2dYIQc`ggYRNZz;A;Pyz5PF zH=H;DVxj{;S#lZP=-Ww7_2kOl3h1T=|KN-&j0ZStoxh|=Pm(sDP&;T zyZIod^_FZXy3YyRiouM(<)EfiLBG$;0=suw?M8k@TzJtq$QT$)|9xDIo`LQp{2bfq zYh>eJ_Z!6boh$}-^l~W$z0_pOEO2D`(;a;}FsfHYv!5=+(FT7o?8}E(9X)uXc$;)d zR}$ezRdli@wx2%kfpv9niN=Sg{G9e8GJbI=)@}*K?h+s;??0usd*+aJ#VN2(h;&o6Uwt8EK$BwE?u^M4;Gy3gZ`SpjR~4LDZzw_A!w? zbX5N^T^O5>pgG>s`pQV<_z;-6y_LNA ztpnDK_vsz$10SZ&#IUs!sFqbSOc%J%8OQq=eypa{CF>2@CLc#Tg9=ICp_#PEaUvZX zmk5LH+L$bp2%o*P@uhkhNseGFnNtC{D3o=Wqif-pbP+Dq7>mAt1M%0j^(Yb>OO3`Q zkfhf#M5})r@e^K7XVOHl&M1OkjrG`fSRCh;d&11|?0(~C2MxCqxXl|E!>CgYNSz3v z=gZ1r^mix}w54Fgl~}O6poDx(9rm)l#HQzUIPi2PX5{_Sl3b95J(v>^fAN-e3% zt0Wv_eu)?!oq{y|0NxUmq!UA$$X;P7ckenG!RwjQAgJ(@Dn`x%dDRGfpi%}(cFbc^RD!aB>EQc>^<=xlU~6DDSd8q%V|%MG zeEnJS_)2xVE^}}VA4A3m2SFKdn%+K-2$^rE78K@3K?2ij^9q5CM(8_@;iU% zgV(Je)bP=CEST9%zeLXh(Y6A3y>%fzaF)kk&(hKOcLSLJG3N)ro*-*Fmy>Z})^M+= zmJ?r=1)UBDx&HhY{0GfKT(ly{?T1dCCT};FHdd#WXj4ivP;P4nRI(elyJ=@hm&aNmS8(*rxqs$L9FJ?Iz zzsLfW?0$1nDNC`>)e{^F9Z7y)EXY_dq7&j}G4QAvy_3N*nL4%Y-eqzS@s^!?KLRj9 zVh5^fm%;KI6Cr;f98xkYO~c%V`FI`VVP&%-_}P?VqvV{$ z`qP}?Uv3GtbZUSD9|-I?nMT}Y*5JotankfS9k*)=z?-3EEK3s=NZPES-n4^AdPh>J1CC zqCnt^8{B^_3Ew6v@clYgxaiIT?Ah;)i`OL4Wj^&7G$_ZMX%|T7tcl$Bb?Tu0Ocj&g z)?vezWXRZ-#Fqz60NXh>xP4v$WV(vOz30w7zujT%jlr@Rt#Chg25 zwtXUa>fus4B)bOwzMTU5cVxg&QVHx!6^Av8OG&<(ELP;JgIdvbQg(bMjP+VVrWR$R z?1wsh)+L6sb`_A||ANR^dH{;Ur;&Nli^0et7re}Zu~BsvbP1TEOwT9M(AP+m^0#5h z*xBglFHD*?D!_ckPCbmeuzBJz{~>7tPRcpL<+03SW49WZ8{a3Yrm1-GmlRsF^H$?n zJsx{>kVNU_keq%=zUI3l#;c@&nqMa&!}rO96D$|ysmduG0JI1mgJL=#iH^D_7MH#x zvrjcs3#ok|_--vOV($n?wHz+|w=mXr&IbqSoy5#)4YD3UpdV?7OJ9HD z9=%?VkDgRwPUtG$E|PhUZ?}<=z^RZ?a)yrA@B+sYO1g}g2S9l`&U`CI8-_k}rhCs{qu-B*JmcA_z{O4~d0a!6C<=KDE9|Jg&12>$e`FCSri)>gpIULjWpF6gh3n zk5o2O9tEy;lH=Ez$HhPa-%cnZ%O7S@mkWc$&h{j~a=QSWe0qsC%qYPH3(BE7-Wkhc zcG1X0J1j_wq<^m{V568Qq_2+#ce!T#o_UH}GG!u2hnqq6g%J8X#~dEFT_me+){w@8 zd>HuLLstB9g^4OB$lkrXa7a7_qfg0Vrpg;4rWs{;#o-^aj)sOSusn@y$e8SRw^hZuy^Xp zBv9XTj$fnhfseMFqlL+?ZPg`!a#2&^?}s?D?NR(+=C^n<>>n9*Ey?) zlVR8*5z5S&k7`*zxqDI+J#=EAYvX55^?Wejrzn9@vf9L`LX>>?X$&q4BjL14JvE}a zoOJp$I&^3ZEFdj-^7MKrFE1bqwYCCb=b&gq1&TILz+u(>^jBse?7Llt+2Z?fSMWD( zdTtEFDOhthXBhhphN*_HJ$(Cb1CF@ZlR%M8kd+(6NhDWOFZl)xI#`R7V(w7siIdTj z4}g-HZ>d>x5!#0B1ea6w_@mbh8`7@Qh}BxybFzZyhIaDn@5nF)FGtUQ(1AY(7QpRL zE#3!%aYEK-E+fnYKBl_DZKD}DaZnVqd=%i$)Q#Bv^FcO!FjbeHnsc5c7>8o0N;=-(yBCsLjcIp86xH7=0AuGL#b2u@!>X^*ut`r5 zTYpc3j$1moSY;yI?nuM-i%t0C^(a-^V8yi!&w=5)c0@2-nVi4N;V0AGXfas;PZg!m zU59x(%iP59^cQFNWUB=7ZP6HTGLhU)?dCp@VY$n5BJesg5tDDO!kbd*sJ{LjFHpgp zMC?8BYRYNYcg75TJrN^3CW4dh257yqmqy#VV-1dQ0YUQgLi8@iMbP7wjlyyFDNP)4 zn}U&wGw}4+A^=Ts9Q8~iWus{*`6dN>0a+h3P zpo)7-bE&<|Cc0NLj{9)S6+Gt(GFE1@q0jnwI4b***bNtgs%I-bc4-Hkc74gU<8c^R z6^EB@pJ02U$>>v-&PUu&fD`kXlbqeJr}Q19F(c(DVV%s^{&b>m6&c6cy0Ll3zsyHQ&$&mk#oo{|Vyy!7}*ewF6F#SB9{zRFHBVA%aS()cLM7e)zf^ zRW7_FbNAHo&-ZHa2mV&mn8`Od|97Ia#K9i411;!+ydh#9I~62DJh=sBi-}6d5h@`a zM}A&jPv=xU2CejCDCCq()CDE+^7X@~8-4pA#irKK%-stfTLsdUX%>(W?u)_i;~~W8 zl;I5hU@DS28*-*(@a`M-qs96x^8UII7zDf^$D6*ln>}XPXyJ`$YQivDd=qy+zLqoD zKM($^n~yX6qqtZ$3v3ISj3rYFL7we}KlK&kAzkJkke$^2{^cvOvo{95#jC?_=2Bam zR7^Ww72*0TGx7InC$eSpDEDV>8%!M01zswjy4lhp^OE1)Lq88ylGQ&pW6)L!G+!r%ziM2G=*35570WTdy~#St+of>X3N@To z^pCtT6U3%?Tl{Esh%UMDlWg2~mCZ3uLd2(IG-y!@v6`!g(~8^Bn%_d}w0r4yxhB|q zDgv%I<-yzoi}92%B^$IdaF%B=OqbMy_dmwdr=Huuv%wUbVnRTCavf)QHw`&ywg>w& z2kvf{0b#=u#Fh>+IbWHCR1MRz*b2ivll>X9%o&beNa1JYXraj4YOeOd82TjRhT*WR z36X!954ysw@U-|fpEgtk0lxpJx86>aXt9O*cWa2{o`u{>&nJ9uyc|x{l0kEc`Dm6A z1;6hJAHQt*1GjW>*@pzHGivN`;qVe7|SD5+cwD?&6NSNl7cEzEos;)lui z#O=6w*&axScp~%n2=;~bwb#DtJSCQx+t&Nkg%ek*1(PNv>^_l*?|pMIar$Qn-Oz-) zcSV8RDqBe1szw#kr=h7zGG;v91LGwRQ7j*WLkXGfpZ^V#A$gYl?ubIWl9#k9!xR<@ zhr%t!kpC;U8vO;saQ(qFye)Q=+!S&l8(sI|jKGh?^V3UOmobDXZ`gbF-9LJCbPesP zkS4xA14xHQG|BH#MeS#eID26}(yH6E!9EgO)K*}<42Prbvf!6iM8B?bgGcjC_!(y% zX>-0NPIpryeezK-_(YkQgp@;x*XMSnG&P!DQ$T9-V&Gt?c*m(DV~}$&r(gHT!Z(#& zaDPG@adGqki6d|LXaCfgi!urwx{GLjC54onY49s-Hzubqfb7O`_}8EZ;+9KtUeP+_ zpL;2hJ1b9LM`yr}Wifae%kk-}cJTRA3H0G~;1my#C-;glG4we(3N?71c;bkNAY*lA zpmK68E-g0&CG!RpJyp;5xdg-gK{rlx;vZPdm=b>D7K1V4O`i|qfHU>IM|+?S0Lh*X#+)?6*c#h;yt@a#Gs21CGwcOZc) z=JBPGo8e1KCcgd>0iNoA=-ZG~?C*Gjcb&I@_u@84a-Iltb_f{V>t`9%fjywKB7saI zcWC=0=0iKCi*MpRA-;j-%plTF9dT2w4I~d_ zkl0lRVA@-xdmhNchm+^Xi=jVU*&bcQyf@I@QO)Lh$6@5gBr^5EI!JQzq1HEdqx#b# zBBi+rOQo$~III9P=NH4*d%pa81-3)86(g3lmtjSpC5&@Cc3N<2e}Go$FwPS%e$7$Abbzw-5JL0DUU7uqDmAn<-N7qf9}hyTn+ z{Mmh#SQoB=JFQ!obJ!LIN7;_uS{V+VOht#OsQ^pM&{(1Yo@z0k&^rNgpkRQ^ymy*9 zYVM)aLy{4dFLIomB5^nT$*oUJAO=$$xbnO;aHiZ6TZ~rFsHQl)w>%RSzE8v-$*H&? z&KAF)2n1c)MTI0PQAu_lS@brV*k~Bjw~S}9c6}+Af2NHLc>kvQUAesPub=c$%L6*N zCl!LPEypHZu2NH zJKpu)16zCJiNH`aZLA7_%u_KiWhjA0O{;^F@Ia(J-DH|fEPwnc4{6MITRkruU*iHY zf3GP_FZfICSGTs`d$E_!?6=3;y#aKtm?eBX{B!Vz`~if4Bxhp{v*QoI9ABKv7H(*ylDBQkx5TyUJ$8~J@eKPD8n(UGX z@f(#~OPn`u`Rj|{6zAg&oz)=jJpomm-{9F;2}tu0M$fcjZrFvuuV0~9b2yPK)N};* zzCuvEA`QAbr{b0Khq33TH)yD~r9p#t$TL@4D0`j+0eaSWM0YwKd+-P^aUyVRSt{-R zRn1M4cEb;^6rs#N9G*ACpp-&1y-}frRbP@|a7z!JT`vls{8``NUmGmnmkOWNdpP?s zrl_~9i0+wYie@eb{CrCjn3krF)33&3Vq^vFd|iUdqAfVRwHD7Qp9HBj1@LNBJH&4r zg?6_Gbn>z^th9^)|BW9YTc!}?uKy-C6v{Ak!w5Z~bpf0%_d;Z~Dhgg0B{g~K^j7o> z?4J|{uP>+K?`}VQ7Z8q@Y-?Trsh8HZC~W%Hw-yxpJ7*p8AFRQ=3o2Yy zi7+7_7=M>#ivC?WXV~60pAgkacw?V4R2dw^NclJIB@IhJPE)CU>+KMBFWU^)c1S@0 z^PuflY{X56578I965#8xN(}U#Nt74qLcxbpw2qpD|7ar!%w#;h6nW@fa2n&=cN51u zDOA&4i5&5lCtevGbnY(4P>Wg|Xe}oTkabrS(!tA_b&`ubAmXVO-L`NFCXca)C7-Ti zZ{7#GyZ;^k!;v}s79W7Il^a4KIId<6BExMAT@2h!!XjbxkOrv<19LSm8-P!~?7 zF=p1Zt};Bo$`X4PpQZ}(;qc(`Z2bAV3C35ra8{qSP_XJ6eB9j*lfx&WXe{e`h)I)) z;}?=;At^ZbUmg^?GM^9YEe+n=&u{hIg+Edcqt4v7Sf>uy+7yckt4`7D3*^vmFq{l! z3&A->DX`pZk0EiRgd7iI`FV3*Q%wlspHAiV*ql&kbT#JPzf7}@E|Iz0?vtTDYwVHR zj!|sJsN7YBt5P$Ft(gF0Z0y6kuaana&KWY}n+mxqU_-y$^#bpuPGF~+2JYWKQ70Qs z__oQqea)-Wq{99)RbSdj?`|0jQ8!BIgxQ63saX{f64C}k?`0@U458p!K3DeO0)9>i zLhGDNIB;VU6~8Quhvwd*Uk~TOrn#jM;;xLIYmO3?fQ3*$C5OH}p$gjS(J=OxGDfdm z1o?Fmc-8$p7nwYdo6x{^#3xnY)A$QyeZm25VfSyk<>zv^IJF*@NarI1GV=-@IlO|M zDD2fd0nM&OhVx@~fZo)#w0;SPg~vRh`u$u~v#x~YMbAn0DlPogY(UeJW{|jxwX7R1 zhCYqg_^_{;bakvh{8#db`?f-mu2a**X>VqM%Dzcpz0em`zeeC}C1qUMvl|y|H>E~7 z0`SRhGYVU626?e9xXIcQ`*+x(UQZUk@nZ{SH+i$JtRAME%rGpN^p^~$)RH?wWq6ix z0ZN2kkh1&7$ZxYqytC5>x`on+{)c;HXj}mKAfgV^8zNE7JQzmYZ?s3=)j-f#PECv} zAo6M+aXc&uXASq0YxnfAs_+8Yn3Dl_mz1H){G-HSK#cgB%?B^NgJ7C1L(G;lu6ox= z{%A=6FZntfMy6{()eCFr^uNu2oU{>dIOLL^5Hsw)unRwg9K_KmUwro|8V8qVqkecj z+Ri9t%mf7pKH*vug5neJX!MZ);5N?(;{)ATTyY7@ z{~RV4e<#wjcK68oTd|wqh!LgQZN?Tj19NTz`@}d(B3+J^=2*1 znOO!`f=}U#50d<>zt{M_8>M8>U<(e;b|H;(7))`yN`rU0@(!=9_yog$+>5h%`_|3`iYups_QN5RQeI`eZuB}F)vUQ+yG6Sj@yE|f44G~OPN#q#Q zB)D%SeQDiAWj-!te3AF<8=^bN`-;nCZIl{y`s;zkA>k;v+8PJKx9}^X#6gtx+D%*C zaVKtqmwD!>@6UG1mlfdCIO1@M9`AO7CTaxH!}+Jf*a2{Sd(V=vz$qXns|&xP zi|B?;iLV>iD5tB-hd-#64ip+Pu(EWDNQLGdUcU5;J`>S#Gt5_}wN&~4sA zc>F*Gce@DT+ehv6{%=1x_Lbtvm|Rr)RR;Hx4e-K(9H19mu_@^_P4iZOZpA9<^6fWC z%oj!T{9-h}RSK^sd7*HA8A=^V1>r5b@Xg>PoXC%mOUqx;;_I8Sq_h}gFV+%~WhOA& zDV{|4jlqvThe*%T2naEoN^<1u;H2CENDO*L)&F?Hq1TM8o0S84`V~~Omw6x*L_teE z4mL&0LW(2HKPCF3NXA;ClR1+F9Z^BoNsOT_{+(V~6OQ7mACVJ>b1_iq27l7#Ffoe~Gw{5cX7re|{}bzG=RNgG*rdIK(K zlA#Ax)uG0ZebbSbiJw{mUXlCDbzaU#`7~oZ946iVME3xQOj5u%>dYxy8b!y#dL)jm z*mR)=Jz1XU{?S}GF_m=!oSSjw7(tL?J*Et~Y%EGYLj*jRz#?w&TKVP_=6V7s%S@5E>iC(;?1d^I;7B23L;&VEgNA@ZG_=ok#)_kEF`>P=< zwT=!RNk>7!6g;oE2QJvv62oglq{{6mSrM6lv2zp2Cgr7gRqOz9wD!e^R@eD;vYBwP z@j4N{U<>FX=Y zVUwmNiAr!FUfsvI41;yxImr`1-3TQeuTz_!hIry+3iusxz%M`g_>Uzk@QFe>t$7!Z zHxr(6KYVhqz^sy79ZSH5#)GwS5zMGQ05gB9!=`<)WKVSfzVcKcBv30iJpu3LO^TNhF&oj_8_UdF3XQ7^4I32R{(`XUcSf zWD+>`6ho-tBDnYGA?>}n9o*z4ark-?K4HA^(x1Y(w>BG3?D|UPyiY)nyj(K0SsDz^ z_fUzBMGzSqLoY<;wKVaRC`D!)wXwEl0ag zCtP^893PmZLCeosD1WE|Bb3c>pEm32vfa|eDY9rKZ3!~dT#C1Cnm{mr|-Mi%qc1v0@}`T zQ7=Z?#m*1VfImw?GQNU8YhMRvO>Aj~OEtbeF9t%oCLq5=mX?NFLfdCs5;Z%AJL@`~ z3Yc7K|34p&GU=rfy4x_7{WgQfGEbQ7CMYz|qt~U1@cp@JxKaI*dTIwzlLiZ7vbdiQ zIP3^h!pq_Lg*baS_Gs%#M1tfnfgyAJWdGqjKFcB?5vdsiScUTj7;d(Go zr{t8pGbY`>O`Z#u;OaeBxxelIXcTjV7hZIO%zU7^V~a831M@n)DWXn`S@x3oYu?>9 zLxJkE)P1EsxjkbEh|C`cnf9lNvuX;e#BG2HPd9?^=42=?4@3c1ul6XJxqRWSRGd|l z4=e0MQBOG=Y}S^7^P(V3Pff*S?~Bwk*^6|4--;@mR&cx5n88CgUAWX(4fkHypn}b8 z5V-h_RxZ9sOky+{>y)5M(OwepM;;pfKBl^?{~j=~8s>|R!P>Jv(ED#2o;hBJs=vxG zrBDv_`o_cRgxkcVK#i`hIKyq=&0qtaf+N3GK|t>q2_2t=y2(Ge0FH5XU!UP##LJ+K zvl|?I;DrO(6~x-265SZv)#k=gl6fo~MBIzvhSz!8QA$u_V;ed2E)KOaqaitCIvkaY z1%Wv>?IN>9iA`1+n5?NqT^VW6`0Wi3Pv}#T!KEPZBJQ-OfB@-SRS55IT0px(Bnp%r zjzMUnw|_x{E9U$!Rya-^=>Qw_CIE<8LeG!w~~h^Bm}!kPHj;l0Y%Z z0%BTAVECyo!OIhHb?-JRHI#`FYgT}}$Re!N9ih+jEtn6x7N0v;uuOj(ZGF6yVtO)vOiR?j^S&#I?9Nbd9jggL_O8%v&`1>7?#M0u3Fmg-8%_)s^TWzg zboy{P3|KrOEBeZzN^c2XpHmM-7g@p%FNK>i)sXP^WF9vg7{ooX<3(!h0GCK~4K0HsTn7*thFvRh&xdG-ey zl)$<)``o}XFa_?&JtX%()^dBo?vr;8n{kYG9o1X0n9O*3m+o#%fV25*|I@bvS8Q4f z(YIW%?>}AqBV0wh^&`-(E1XF52NRdiPV{hECieJm!k2o=v~Efv+LR9Rzs7EZ5YMsb z@6MQe2^(mjPBNCSOr!T~6OniIEXr?xb53Z!)1ZX z@aFY6{`~bZWn2l-Xz zhv=$=y%2lt0nMb@ls z7VG;;FlT=tV_sxHU~?jDy1#}f2YW%x?gDtUi+vCKuaoGDhNwEOk$)&}0*9r7z+(o7 zp3_Cz-BQv()kPnd-j2c3y2)^EUNkQ0mV(gmKlJpZLdc(xioLTGFlJ zgUYW-^pT&m=xHlC@lYDFW6x7#DPP*7KD`alK~= z)GH|C8c$8?y;UE-XRYGDyuU?_QZwM3{`+>Xdyk2`S_uqHSOw#c^^kMpKT`qUY3N{= zhrgD_gWRnY*t*~^DP%K%5)Do4W(?&;@+bJ%i;Tn3>Q67|&w~oJWGJ{Wj+|)z&7D=s zB&937@vxgdZt1(o&kNPybjC%ZvA87e{N)SFqXb}hS0pw$Cc;69h4fF10jjC#L8I~> zxIPe#TjRAba4;JUVweNmG>$mcA0dOiu6WV3l_KqRIMOHWZWtaKgsoz6SU#?k$Zabm>&}Yc?4teTU-Ebq{BH@` zomdE^=Nz%q>t_3pe&i3&9Bt3>Zh%AWPq~x*X>{wslk~!^G@SRZou->>!-_kpM&JCtS<0_3jOc-TUBi6HzEptR6>m68h zFBQECE>ZJO6L4;)Jef2n4y_l~;LGMIsM zxw!aJ4hftV0aMjBQWPr0gMOLN)LV(hQfag{x{hurOM#~18 zN9n5fbTI#1J82aHIr|zM->gO-^k_gn`ySFOw&GOz0-US3hTe3T1Uhbvxjtt-{9K##FZzT#3hdDJXBi#KX9#2Gi!DN<4YAi^`$u^xt zA}|i4Ds%98lQ?sMl<*#Zb4YP!GpEUN(47Y>$vbg&4`uAK3Gr^siy04%K9TU^zefI7 zc(md5jd7UOX9l}kH;|uB%P{KtTy}oTL(kt6)JBogJvSu4@X$8uvm0Q-Bo%sdrxt8E zT!=0z9Q0h1hP;kT^sTHz%S|IRNH&fH2qBQdResuH2!n34YchMhNG8%QCq9=ogD}%Zo>s{gJ2cwKmYre%^0m~v9m3Qu9Eb{ zOubw5aMU$gmmCPVkvVSz_P48-Unil5(qY9Tb)2HeL0XXpd~Vx_QNC8-s2ISFBJ?&xBud< z7Bq35mJ`uEUJt_ERmiBS0Dg^Jh|Oc7@Pt0=LQ#Zk;Dt^|3n>%nt9*79-wuh z3;t{q#e&A?oK1xi6*Shs3rhc%n3{`WsEHVKKGI-pF%K9l{6N)*!|?Z|In;Tj4hCv( zL1$y;(vmNLkJHn*hdIT#(bNHo_GQE7wletG&OF|7pXiIaT&&e)F1|G`L^MPY>^)-;V*OGuXGOh-^n5gYr{|@shl1>vK9aPR7e6`tYP=rKXmSQf{%C? zNb`M1c!wNVT5yX9du4K#@o{|1^D%JEEfhP_|D1j?Yb_PGn!@-i8zICt3;kwaqUVM6 zIGz>Yb8ptcf;qsgUJwOa%I)#@S#~yh9L1jSY4~22u`KS_kZ*gYkd;54w)cP82I_Z8 zN!@~Q5Nv0=QLVe!+FQW)UiYPk-v+>|@LHm_VkPYIhy+jXQ#ego7K+D>fvw^ZwEGz4 zB7aVVfL1+R@ZA*NZ%T$|K{w&@sqZw0Ww#ry0r|fBC^+@0khQY4B)-i9oxR7Hd%Eey4r5odcXyzJX?-Ge^yY5+-hR@ z32FY=d34;Z(_pv@;FO{xnoaB?pFXUI=VIINOKAh3P&-avYKE7OjD@KU?)1@y)2L)K z2l65>kpF^`P8V2uUI}?6~oJf*_~_wgjPBk zDs8VMDxr<|#$kfd;U^ua*z<#Pna=tIYv%G6yBETqv}2%kAPh}=;;`<{Ve)r;50_I# zFmk&F@Vb2@0Ea`?9<9aC4!G3Js6J|DbG<}Mop{@JTABD@PEGIF8gKUqBd zz@8ibpD@_<1QQ?ETM#1^0qGNx(ete{oZoPXoLRXLrk}T=Zo+HO+$@VP-58G@TNmS> z+lts_u1Y_cY0-6?t>M9;P|P%PILyG`jbd?%#C_KRt4R&uel(^Z9Ff zr&UN6QUn#iIbT0|qpFx6R-Z1~?A$rB64J>SD;Zu#<=ryN>2B`L7VRtsYelrpy zU*9Jla>DR-_H61d6NlKHNM_8?#AW;}T%j%n8m`~aG$ROBEVLj-gI7TDUngBPbC6y< zatA%c+aZFz(>|Sl$akqeC*6I15cBOQyn8KR6z&lObu5o~>~AxY=L*#8wJtuZ+K0Ub z?7bZ!VPr3K8)V}1$?~NV?0;Dc)Zc$6O#(XbtT+$TpT6Q`RHtK@MjJQA`4;ql%*TDv zYIOdYEMmQ*1$A^s;rV$DVyJ(GQx2Vnp^uAEO}ZZso3gC+$qA6Lw3ko#dJ_6~?1xXw zlR)5?BOY(+Cs{MrGZ!kuq>RmhCyy)8K;R2LYtVrHbp-}mYJ0I!?I2v>FXE}pAv`e7 zkqu!oaAbHEJ^yzWnrt`4{LZbktno0prdW#ci`z(x_-6F6HHKIehK{a9sApA$V(%KL zQ*06_ux?S)m{uIWax?LGVMwm)&%)4E4>%ivWB6KP6V|>z151(wI})83qw;A!$trH8 zEq9vGXXa#BHlY;f>I#8Kr#Z`8-v;B37<{oZfK17Brz@Bf)h{yupL{Rlul#-nCO@X& zY+OkU6jl>|(HXR+ak5dwx^Aqyn#bvdUV+E$vrs$y8|Vm0V|Mio*!p-iMl3%9D~*%E ztZY2Gx#f^a9#!xr{u2GKG8Fbc4&tjr1kqsrbiPuEvE!EhBEs&1?Eg56{F+q$}0q2V?pryCRK! z_qU^_0e8k6?LOSF{vs~BG8OKY`rx9`$)N4Z?rKZ2aPN+KEI2qo*X=osCq}k{a9A@KJfM(v zB^qOHchjR5qiFdz6)bh+j9QKA>8D+7AQ53j@+F&~;p|U1v%Y|_R}H~PQVM2VH-g32 zlBweFI(nl&g71zQZ`7re3bp;AWR2xoxF;hGZdoS?3CCiXd0S?YQvGn8FCz)t`USz}i3WGK`yp_j^%kY*6#mb1&TuYe zB_8iA0rO!4$lMZ6wI^F4yGpv8Go9t%D3#HYdU3Eg9*)nm4uQq5J@h=tV~+Ai-0|8{fr4~N2+6Lril)*a!l{{ooS1ggtShcI^$lZ0X!=+u1AGFPX= z^0VO}ccu~(?lqu~qd5N2%f#>F1cPR35^cEzl3scT4QH@C(#A@f^QIj$t%XghhM$4R z(v4uez6JCid?o8w{6dAEt=y%FdSu`JQu-%EmaJNy53fBJp1dUK(%>Pq^O^*2g$m%SbOwsQm;&aelljXe zP2q87Jz8E5qpkwc*ki8F_6?q6q56L$d1F8BSbGfaP8??{Q}symZ7DeM0GZ^3>&#B| zDIj8O4$}29a9K!@@+XEkc0P4@Q+ z-jf(~#~lWapM_Eb4H6&n7H)Ld;dEOEnA?AltWjT!vQr)4`LZfv;F3)bJAZ{R1s)jg z6Eq>m4UoI_0Lv;H#hDf#NMyAGwo1!!HyAoKjNd10cq%rzaOmA+c$v6^_1MRtSEM3M_SIl>LLn%oa|-V~ zn1*SpBh;F=k3QwKVtZO0`m9_)73=(A_7XHscy@sVAHRV&8W+>ozw|k8ceP>AyC%4P zIu$4NokfA3Y+QEk3oUboDPDHki$?h%#H7zo?45l`4}f&PkM;;H8c z50|bYIWw$4W5ZV3H;K(^nXSb=MKWNghvTy2BH z7vJIZG69p9_AINM#E@y7r{QOf4i*;*LB^~kB2_;Ly4>~?=R+|#{x6s}w|^N(Yt*9Y zR$~wnu*2b#%izM29N;mPXi(dXUs=}HpG|y7U3?$^UDN{mnL7Bb_$00>%w~4`?c^=d z|Arh_1DGyfOnvMuc?*v_V6k=!{}ImC4U7DIL}3Ei#5pGH;en>TPF!{zCh)(Gho`;l`s? z`1Ont+lM+pZvM(-VrQ{k6(ySjK$+dw1B@)#X%@WMpdxCrR zJ_ocg90!(gFx!Q zcQV|X2k)lM!4+584p@CFY!VNo<}I_?3{rNpfIukf%CIlph6|*^e2Cj*T}X3Xydc7O zfctda0P<9)pt79}E+t8@JH7xE9;Rx!|c2Inzf;RkO-65|zXlZc(lUb+N^ut#%<>D2ts~e9K#7qJk z=L&pU+e?FIuxzx^-54fjfct8%K&NOdK23JOS49hw{rSJFj@#!L3!6u(Ny=6;g5ZUy$3A}luGKLlnSXmO zSHer1tS4_^Ms+Kh`db2;?rkOFuhw#v=g-3TtJ(9V_A1xR8p^|B4FRk8jQ{V}RGO%6+x`~9+@tye^zW~R~)3XV{reVa^~DB_l~{d%6MDb!Z7ZlaENj4h4BVTm$axcDYI z9Zo>rbap;_eI67Xlw-RZbGW~fp3wITDb%y~#-7ivRFuu3Et@k!&aK)9$%`tWrfC+{ z6J!}5e`85(6Bj*L_TsbsTBuc>3&jooU>_lX^{qo-b1ofLt!}{pM-MRe%p(n^>u89` zXU24+3;SIsjzU)o;P)Xx?0m-KWISIBGTTowgIx*VcK%8a> zfKp>T@1t!j>Xxj>v$=n0cUupwPS=MYs!8auMg&*=)PX}WP28;WPpDW%6ipT~#V!Sw zc^{Gwxi8<7Wv!=(NKZc1>3PYtgw7_z7YmtFhcfB+q%jWSrKZQ84Zmyu6+i}T+9F9n2pxC{9 zT0HYE&D~avlH&u6RA2|hA2P>M1#N8XumuY`7P{lF^ zOFUu3_z{g`&q&G{B82IcgZP%eFfwr3_{F_&+-A!1M6xS!onr%RmaKv6kNA-Eg7w|& zHxpB54)@iU3bZdCp%dZXA?Tba_S=6Tk_SRzbHhydPnk>XylmM$K>}t}UZwdVY+r2F z60BW2g=DRiBxFr0jba%J@fugDlXV8>KbQgTdhXEa*^ejk#yDry&*8P|M53a1oV_R4 z&~C$QO6IPE++TY5@^1$|60XDxwYTwAs3Wf05e^5BN^=VyRbx_V9e(f(h1GPFwgnM< zSofS5B|6Z#IRiAh#TT14q=4H&KK&G@Oni7l9HkI(mY+QXpY1-4!3zGM)_H?irWWAg zHVZJ)_(zqeg<(w4RS?P{z|NK+=5VGeC_B?pakt^oGaUYgL)HEGh zlJY??Oo;T)6Qb4_hWw8)73I=6%O0vu056pU3HC*$GDvt^>iNqTsMS^j>uo4o?!!LA6_L9^ac59sth^~5!hT+PMvpMqDK1>V#lX)&7wu|!`~FBt35?8 z)hq!emR&9V#~)5RtD^a*)yUYXAWpCyRO*hr#fRvJkZ7o&e+g%v2i`xDOoCrrXLtRl z7^P1>jQbpxJAFV7-fa%VkUja}C_GH31)hT+-XBPC9lK8r_F(VbrN}$Lu-V95DsmwM z-imC%3U8KCxqK?e{7NKYCbx1-0~pX5C?yj$l=|H$BW?w1kU#qf_(Z1Cs@*-LigN_l zuw`$Hv^Y59y&AJbCCJLSY~Hp!IVkej#9jKl9BtUV*U*0UOs$+pRmzbh4!-1G3e7-4 z7bP0L_#u&vw8y9OnyHlql8L$ynBlbrqld<*kbDFjPVFL2J7%)p08uOo%pgsxSx#@( z9zvNwm`(TLEJ-hR$CJ%W7VM<+Sa)I8$SopSG6#8<|A>#P7u_Hl3i9=f$hPwNkP$cy zhE0M{mA{Kl6KdmyZLY*O2U4JPQVuv>E+zHTOJLJ%fRBocK-23iygtQ8jeK)_c5XM! z6x{&R|B8T0lLmI=^ic~Rb4U-$#&u({aPD>p9?ggc<0>gkE48I7r%uLVng|*g&LuMjI5P%YhdZf}0L1;BIe9yJxM1OUJW7M`;}z zdaZ=>D(Rr`oUpE%rqWm$&;ObNCSAGs)%gMj*{8$cv-xmn2RnZ)Q31UW70$f*&2(Ku1io=+ z9ccl{SiJNqbqSBB$4{(ex>;78Aav8leXg*#yb2Elnt|JbZRC>_8vvwX@;Qcm4))PBLvb9l6~1HFh%n)BYNOxXe;?o%q8&l3_&ld6~c= z#Q;?Q{E664RRXEK^YHqZH;CQ<{n>|+&CTmloZKm$|l%kahBOWaSTEu zYGJ8#Iq}TjPFqJDpl>(_PS481X>z3?aVQsj3sZ37+7Sq{`9otCT&7oLs!60lFlpHk z4F1ujOhEoSBJ=bOk#OzdO4wTA$JAEx^S%`PTm6}^i+OtH`C1r$z7l_}nazyESCYV; zNx)H#$CMw*WZ&o`a==gvjy-wJJ;P>))`fYaUs)-ZaKAJD(wW$8dXFn7c>+hrvtX)a zBxu)_K=@`AZc)<$I8s@L>2(%hSyT#9*~hRtb_+hVUI^_P$H_^7ELhc2!O7dtW1pE+ zyw)d)#uriv<6nv*-#0hdd;40amLpLlrFqA&fDss2CwCnz-!hpjb~>t>vl)L zBmEvGcaA*l%DzeXI>u;Ln~heH0@%F4om8(VM1U$(*5MpwpX6e@E@a<~U1u zTPcLSEJshj;4?9;UJXK@@^DX~1Ek2ad!bbgMCi0KdT{h{=Q>-c{>J9C>k?p0Lx$?S z`b3{NEQ9ZALv$VMC}bZ;x=b{QBpX~@-eGwx?%IXJ&Pi8RErpSLgp2=~mVBRg(TjrXkI)%!G+ z-=D`zv9*F*W{0St?p)g2m_l~5j>Bx0ugn{vbeEVlb_pGaIe%^wOwxx$mVMTr8xD^< zicpqYO#s$*&i$_%!h{M2|O`vL1h+^fURB_i8?wn^8#4ObZVm2wmfMy9U zpHqrA7Nmh7GYf<}ys(UC3#!w~kbTGVe*CN>6K~jD^&UUmHs6|j&dA2cUPtLz)E5#U zy_M`)S3w_zpEtJI^OkGEGo~rLOC*HuAxB<~)0$XCY%!B<*7Q8Waw+TS6PdO27rzQt zis_@;z+$GX(;c7v3x^ukDJY~GPSW=U!MWf}?9i9SKjZ#Tx_>wM7Pud|4Q!_C)+TUz zyq4(Ng^-|ofjFf-ig>De!e8&_boRWz#DBmYx|j19?=1__OxKNb`ei&E-PlZ*7|7%E z9ZB$v?XPT^%=$|^(&>}*9PDf-Q1Mn4CLf=HU2ZeD9*Z|Ok9kwV}Fp-20=3(2tU9i(Rg09xfW#1nhbk#gU-aVN_FNp&UnC=YYENkM) z6Ca!_l|z&DSs&O2H5^Hn#ve5oNoHp_-Yqyq%`U2=*)4B)v_2L~u4v&khv!7{lqALf zGEg!`k~}Y3iB?Bk$a1EgUYt4~x~53O<k74-afx|Wn+K^MUXw4!^5LuOKB^gS0D9)Lu*jK^+>3X12Ets~6xiE6!7UYwpt8z}Xn8glX6@Go zkDsx2^lyA;i7B<3DIMdH~`_VZoSV5V{`+#0NcZuYz5#}!K5&Gy5rFi}v{ zSdTB)_LKJ!3*fts2&R^0!%}Ni^2h&~ar{I)`4+-yVf%$X8+tty;+@ejjw1Fwm1 zKq@HSdPgf2KGHRNGC(wOE+s_^VLU~S42}3eR)i+_$E+s9lt-rOEC-uZS(bl49ipwLgMIi`lDgfF zz7jJ;`7g5gpz|xqzV84AzmG!8aUWuw>%g*~by51s3bY!mgmWI2ps5r_=H$DFQZQ0kx;xqq{Ph_X4`?LOsTnktP0K5@|b#smx5ea?)q z3xvP6pY!ff8<7xv*$WF*==*VC2?B5*&*o*1N^AHG4K*zORFW+(nEV%NalK z?1_8&H{g^_=48^x$&mO)l{Q{J0pHlHsu!EB-y`NrYla_?0H^u5_33}yH`2SHd~O~_ z9<4;j3&pVhZXVokZepJ7I0(aUj-oT{m6l~IImBC z7fh%3S#rv%^$RpQkhJ8*U5QsCB~Cfg^raXafH>A$!@K(@DZxNMjUvgPnfRvL;u zqtLA@f!F0{Nk6Z$N0+P@bZJc@WV1}L6N-uW>`ehCl=M)QL%}fjc^R&oo5Z@F;~`&H z2Ln9a>AF`^c;}okW}hv?U4QeT%iN3geOSPfGz+YkV$a3_?d0!P)?pdhO^=;b#iYVw z%t%^}DQEW3DZEgsJIJD*?@olw4y{beoFiU`qN5ZJiSR9-4T?CE>8}PxZIwGl84Dq9p#5pVz z_wzDgvOqC@WVBgsaVE!jE+2EJC6Mdk3V3RX7R`D1lXO>DgLkY9%s9>F$|uxt_8)cZ z^wES@FD2peon2J)4-eLAt-$HlKD5NY1c1#t%NCe(<5L!*MfEtf@@jz3jcakN>_3W4 zY$t^MosK(f0A-m{ygK%sx*RwPd#**`^R*0hFdQZu)ypgzcD3W(m#3_G+ zFpAf1g_b4_ICSb5`YMKVH|H;fmE9TSi%UCs-lk0_-8RGRR@3NNK@CVW3I`=?HbXk| z0M32&sv$-BhPX}_m|^*|_$>I>l8`EuOfcSh*LJM%C?ArzfzlHtZmC-4+W z#qbNl zF6_YGFf-bE#2sQzECiQd5fC?ciPYt_fzif?%(V;S$uJI7BRV;&>3p_w)&S7HjvJEq=RN(xj z4&tJSbdTao625ye4d}~f9=%~%uh%NkZ`E_Q^Dj&9JF(|KQ$xHd?*iHn(s5cfk2qaS z1_5pt(;9~K*b^h1_*;z6(^6aN z=WIHy4?7G$t2SaR^6o2?ENnpiH+3L$ouIEp#U~j>)@%$o_M0+HGT@QN3Go*+^*s#Zk+UHjFZ`h z$ELg|dh3_M$Za;m)e-}KYHW@(eJAQ(HAOQIX$VX5qz482cx|7uiHcD&G0Igz_XVdo zhWBG&q1$?N8;FLPBS}nTdpxwcaq-@=skkfn3n^+7hqzl?ab939^sP(8hp}n6dqpMN zp}Wf1ep-v(t>@|Y_{CW9GJw1aYJ{csZgk?c3Vvz!hw`_j7&W+v=$>yNkqgh`(c^|x zJx&exU-zN6HzR%Y>Kwf=Y6to<=TLA;4thyC;tSjWgQgx3!CM8cAJ|>N6B}4NewWUF zZ;b0@rg804J86+6>jQ|kq6Z-zgSAfLN=;8@(l-hEMaKxm+NOc}nG!Gx_>FU4c`!qU zIm9!zm87do#pgRO!X3RFUW>Rj=Fo3&u?tzBuO|E_(#p7;5W_5?$K=J|2TY=@4c>5@ zj!SB@iQ+|N@U6PWjo6k5g>o7uX;0H3h8s%5PWr<81&Va`&b631aGeP53neFG8|an? zz`i2_kb3Qh`d!yC!cYlw{$-O%YgSU@s5K<;syEzW_apnp{m|Fz0#+}W3~_A6yZ`)O zdhS&uvF>>aM;#uJtgQkl%6>nl|Gr1HKdgcSNowRJm4M`tt&sIX6uobTGY*rslAR0m z*q>FG3+zl_xkNj;by@-A*t_NRWs}g}$N^OqtLvUhNOdr&*!(+e+dkT0{^1ol9B_*&VP;6Q)*#ku9qvkhfZkWe~*SquD*AxM4Ty zdQ?-dgbcVD#K#cxQz-4c1PW|xuc=H_2Lcd zIafA3RFj>wUOPVUV zyOk5+N`DM%LB*B#JeB6Jym8^IANG_*ZL*&Cgx-WSbM%*_c zZ#lIXdqM|O3ZFss*O_SgcOh=P-U3N2-6+!U>BYIMtm4&-lp@Z^wQ<6&O^G zcETft0r-!7j(X=bgHzWVBDhz8Z}(;=N+w4!n_1pk`cN(`|M>#n?YaUYuG-+ueMgk0 zN1$PuCwY>NINr7nua92G4ck4bKvy7`+3!LLg=1*UcC%B{rEoH5DTD}?!V)%bebcd* zNzr5D=0W;cWSNILbFE=Zg#b)>kdMvIU&z__HK0R3)06fIG&o{EN?eGC;#<8q^)4T0 z_OaPK^||=K?=4*s#lWM@WpJkYAZ|au5$Y#<;jxSB!6#~wN#GoFTyDGxzA!U!{vNi6 zH~#@Rz%=|dhdpB*Z$XdyDOBO*3}P=Hg|3B?RNY{u$?OkmsB=Uv#7NBzUz(I;PKz=`2b68Pt zOOJrS@tqj7?i6V9LgDWX0h8wGzC>LD@IcTe`tV9F`e&Cgb#lTcncmY_S6?-B4RT;` zehO5p1>>%Bd&u89Zwg8MkhiW!nBdK)?M@>4kHHblvi9W@X6|ywB$L&#=6w8NXlA-+uR)mg0DFNai=0 zy`dcQSWo#bRTUI!UrTm=)k11`462n*Go0C5>9;Eq{6+E0G40h&oc}z9Tz)i6eiajH z@I4owo-^R8mRHeigABN=qSPFxy8}BqIe6D97{*OA>4Br!IP0&LiQgkXOrIraG8$Nc zjwK0n+O>P2%G40$-;ZGTA4`;3EDpMTt)Tc~8MKNuL1e>6-lr3f7+<+hFfnlppZM8R zzI_h(ClrDE+jQ7@c`ux=ons=;J5H-ICg_$-Q6kpA0_OZ;J%6F=;c8+J@${L6uMU1i zv6Dx@i|uj?U2lQ_jao3D(1X33pMzA9ImDa$VZf49aNcqc1JcgXcmExNGu)Hl!E($a z)ThE3vXOO!PA5O6Zbn|8f=No}Q8C>`|^CpIu#xcHY7h&*V zGNQ*Z)Fwus2M|6ZK{Jkf@V;)sFr+QKaL?grkkW+ zw!qfca!>(lGLgSL=QN#K4PmpNz#yo$VN5;SNp~uDGyV0oqfq!rVF2 z_;>%RQ^A6FkYQ+wi`K_LZrd$-W^g+mNqI-4)R6WcZ(`)GexTyIv1si14nCHPz%;Mb z5a)dY^R+IM?aJ%P@)Nn#$q~@!D?8(_mIvBY??;$HVftOx!11CS>&o z91JqU8QGb*L|`cp=Sh5{LOBTIv3!UQz?G4|Q8#WEeUh>Q16tHEC_>t#)wK(g)b4@5 z$}x0QnhU!^&ryZW>Bh_C7np=3oq06>ck?rni-)`AZd^;b+0?bYFJ~n%&ca z=^tj1`vbM;=#!3ne@>A29nbK|w~s7Ca+K=EDS-F&Td?MIJo*nQLG7ASDB=g3y(fO)B<>fwO|%=g|0@D3 z{h9o)>lWj(ELpzp88Ps^l+7$#*N#nrAB-hqxv(HXp2XiRCk6eL^lry8mbpC{F3 zpUbbZKS(A*@8)+S%MgEhfeo0E_7AHLGNn_KCdM^Yxk z-Hq}Cc+XdlVa&qT-tICu2j$A3n_K6*=Sk3 zyx=Kb{yPb07P3xN~PcsfY9Npqn~CLDw^HdCmMAUevWkb74IraI)17L83*@M{QN zKB!KbEd1e#3Ds25N`dW62t8I`u*WlVTr;DULau3*i!|{8yaw z6XHQW_iD{$WX%RaG93dJfyrI zDKsc9gbt5opjM(jimvfDfq6|d#7;0YgZd{_ojE^pCWQ`qFK&oL@4910hE51?_|AQ5QZ%M=jgjm4t#xCHdK-lx}JJ8>(MqQGqL6|%7?0B0@xOLnzh z2cIr3t}D7jH|IFOqrSP2fA=JgU0+J)KCXw19mh~kX&-F&UCxEWlE6QdNgO;xL3)g> zVJ26A!0bqn_Y0u^c9dfKhY4~$F$)W?IG}V?6=nKGA$!_UnE5(}$Tyo}9Q4vOpA+QP zoouib^CN9$ea7E%b8ysAiOwlvXI^_QVB#J2|CV2kIkK0@Nw*j<_7}w0rp+kMGGSK! z2&cYBIx+0`Z*bgj1D{1ngT|*22K}ON)5CClC$|Ppu9G2aHl@PZ!DLvt=@a!bw}u+G z)5O=efN1w$22RLDv~Wv+jIV-t>TW&DMu@>q**20Be-;AfykJJy{PbS_T;NY#Lf-h4 zV^(4s{C=vAcaE3SMLIq7&3g;7M#>y3>w9ti`YGV6zLV}(U52}}B_TrKDdaz5JxThK z`1Gw29guFts}`SW_Q+3gKb1?qt*ztqu`QkjN4?11LwV4AB!~44mD5*hD|lIyL#JrI zWeyn!kW)%maP}bEWmQNANwE&}Dp*Y9(9;mP%Ui6g*5^F;f~q4$lScXZC*mGd37HB)N~zoy32s_wKnc@KUes*NC-9rUp5x{B+dP|zLPF& zU5Q_6PLhIa*NEoVEjTZLM^^s!24X2-lCs4NE+kcwB&lWyPaKB+^z}G;XpoL1o`n?M zTG+by9@<%Y;CY)Q0PWNCfCeAFhuRTA(PV}ntcLfCSdRnCU;NQC$z*loOIn)Of|AO) zWTlz_>ClP71)M@udVUg@e$T@Dp$R1ZQw6^Dc!ZU^+%Y4rhiQ?Ig98;6*fUs$u~9(6 z-6t_61Ga!4L?EnhK8)^8!o}fP@HBlZ@^-X=%nUp7d`$zqEMYUTu!-LL=uI1+%)p(V zD`D56^IZFO4jia0r@XyJEMH2Bgbu96#la=`u+tbV`DgLk{gb%={cTQ85!)|+eh}X+ zS&G_%hG6{4%UD`q1{@p>hH0O=X}-k?XdEgdw~NCqwUox9^kUf_QuiRuc;~lTC_9z~!r~p&(?^W$GP%O?MXa;_ z&KFX?D~ol5B;t)6JJh%<41?e6$>3-x3gz2@n)4^RKPC*;h^s+gQ8!t4K&=^X9(__<6Q9q4#OeC>> z+M3GXTnY_Wev)DAdly0*YG;ucZgW!(~(Il?~;>A}H*PA!U_m?rS>s1zd_5A@+ z{WCa^%`=?&kOJ~wOfWjh7WH1?<-KB7Ob~WBj zC<9M%WibBulMY1af<@h=|RD z*P59y=co^~kKgC=Uu;6(5=&UMbr$@%Bu20ObEJKv;k*x9t!U+%OPsxZlknPtJz$eN z7gT<4A*+)8=;g9>Zl5-LC&^Ie+Pr>B9^Z)J7)ZzAe7_cI^fMloWH*9dfDF+-T0mR9 zLK)?|1yIc1ozCbe!j~9r?0kL;za>Va!JAxoCgi{rE2ZMg;k{`7)Sa1iu!2^Iq~N7N zmfOAV3{!OO1zFynKzpYMGyI-h`sd(!94X00<72mQ-GTq{db+sJKH9>_DqUD!>Vnk? zZ|P~VyEOgM1?1Gl(MX#}9LiWP6Xp110F>p9kLcLA)+96*SITgQ1Wl z`Ro>nZ}!yF@~sDr>o=c()L>my+v^Q`?pI*5gCYD8bwrOIN&Mw(&T_ot>HeILq_ZIi zu4M*@Iu<%;0PK^LZCt}mK=Vfgn#5V3uK%5c14M`PbJs&w`XkzV^f@Ej zI~5}&Uy<))Zs5~i3_e@>jhr#lToMl2$b6S!OJ2piu{)gCXK(C>6#57!)DhXl~r+r&5yF#fkfC9 zTmX`F&p0i;iuhP-C-QH9pk|leQH4G4Xx74oY!|Jctm%`ZW?TF)p=yW>Nma0a7j;yv zw}uoY6%>20i8iDQ!k?g}V0SnMEHbvi#fNG1Zj&z_sK~>xnj?%^n>hN^nRDGw$bo3k zD`s+&3$$9qgNpN9QmRI%%5W)6b+y2`w;h>zf;+ILI~pQu#KHMPAvdTa8WhAeSti_m zuFI$aJXFuZc4J3ew>AOQ3i_z{@;;(;YA^nk9U_f$t3jh$1Pkt%!OKAb-0(A;Nl_}M zBF+cV#37&UrmX{`#fI=x_!{|}5rKbr3(@eN5aQ`n!kZom&R*)AxE*|X{%DiM-cv3LvP|49zzMFU{%`*gaOGgv{&_etWfn+=nN$CACo;_< zogN#I#M-YWIQyzT%KJzY37Jd0pTQa2@&+UNefa{Yi0$T{-V+QP8$Qva6&$$VFb4y@ z*P?4~JlGj1P?djTXg7BmiSbIMZZ|f<+RS@YLUsWiXIVHQa`CAB{Qyz;`Dt%&1TDfvAJG zxwC4wQQ?CdV9~N$ByiO@V{#)I7uqHhCyO)W?lUpWeDs~G^D2?dFFy$7+Ii%=>1143 zI2V7#g(7K>fXqJ@P#YP~t@pNuj8(BXuc4k=URTEh`o1W3p%Q6a4|yf52Rr$GAay+q zYUfrH&D=4n$lPR^R|SL#FoARLD%rf4IHp`p!Z|u+D57G6pP583vh*UmyI)c(ss~rg zm9b&@c2qgK5SNtTC${L2r-(BkE=XRAL@6CwORhR(yEt1pb>NV3a}Bn>5@lI@=7 z+fqu(NJ1f$(vFNsA$!m42pJ_L3HLlo5|yZEh)TtemWHIIe)li%^7`I;&pFTeeBST# z?~X&#*?=sq^Qt)e3WejeIL$p3@1gTGJIfs&5UR|y`pIz zp44oqKW+^Or`|Ve$x*#Qvf)z-$~OnGFRyF`t!1`!rN0waqy~XP`V1J5jls{Yd(c>a z4bJR%LGRbjq&0chnXskSVDc)KgvOddzHS1%KE?-n?h)8uXF`(Za^B%)iC-BI1i?hJ7BG7_lXInoVU@-v>a%Ss_?_^9K?611KDPk; z92JQ0VHfz|sDgCU8W5aw0Gh;N(C@n`&b|O}q0bl>KL16gWn{vwJdXE#vXb&~Gg9N< zvtY)`XwVBS#oqDdxVR(@I!Y43cycgSJkP`OTOFjP`5bvxs|1Q0gK>}kcOu|ti|fQg zsgrdQ4E)O>!4V;TT>I2>@4)SvycLKz78KL-|W}Sokl7 z1ZNyVYLNzsv%FA%jS628)F=@*_NAL2yuqJUfmutSl@+A!#KUES( z(KidhQraDtq~xKzPzjWe=aQ4kIdpS(0zO!FncW&x$65$wlGD{6sGH(fGBnSJI;0+B z7ks@#Z@&qp8w~b=%7a%-+;?A&Ej=4LT6fTU88J9lX(rmsZ3efS2jNXF$3M)=1AlJ5 zAJ>@z^-sm2`A#Nw`US&9)$>%ZH5hvpB*;^Z47}&}-S|^`D!HI>iWnxC;NWX3@Md1o zPR>`G=oU=Qtqo?9!c@39VGdSmjnPK_n=~+$^G!K*5?-?-29Gz=(^2Z6_~I7{-8mOB zGc7=Fr#?oHq+;B1N$|F}M%Qm#=Q82~5#PP8!Rcr|;h6=3s=@?)Ka{{ZEbL))V;yZc ziDbd{RK~*m4?QxwjLxktAWztRCP z)$|NBn@nQtueyTdV-aj>u4K(;CZf`d$3%Lk7i_!OP3BbtQiU7z#@t*mSBpop*^BUm z`$1aA$9Y-I(=ahQ5Bb&AK|R78ubmA+=N?7$n(78Crg7(}kTdAqI}^|3*0J{v1;NL; zhp?e(1D-l&1&53+;HIz~W?RSLuBF@XFverx?N3x~RSC*UmcTxVga&)ig0@fI_+q6M zRuv?Gg1j4kYQ93=r58di{6{2K=V7}p!Lh8lVC+91i~rf7)VCHo-8~Ewl{R2(MF3b1 z>SM?A4zhohG=4g(497}1mu~NL*bC21LS&6hC|}T_}gX3sMI`? zTAa#{aTlx8x|;1A6LTS1>{ozxqN;dCMH|JI`{H%^ zWHk63i&^n|U`x$Kh+&Svey$&N!Wl zJM+{Kk9l(Uibtt!whm^#ZDnt)EMby1GF;!%Z$BB zhVHCfQ2!|aI^s^Slz%^2t9%ld;R1}X;GxnFS=g>oKu)a60$z14aeWYs)4aTKe3uNw zByr!M+Y4Yv>Iuw@31j~p;<|F}X2h~Voh_T)M=l)|A|4AQ(65*Cci)Kw(E`p5QE$TT z8q2~xCb>AUaDepIU8ZFv5%|D!jOxFuqJi9dzWUE+#wuGF_RltiI~)tmW=NenJYI?6 zC!Nq;O9m1awqTu5E-kedgV_(gahhNa5xk#|f6KSvjpic|=Lqm5ate0&TT;2eZ&c>* zUeI0KOkejnV}eH*U3+5_xp4kIo^U+VaIf?p(Kj_fJ^u5sc!ed}aE_7b>$u*zS1Vjx zUV&?ibC@|xN+Go5JZf~!!D*Xv;qllG4CeSSel|uRyQhnu^3`Qq`W)z-nkrcT@fycN z4>o?}kcBE<+$^?xI&Jl3Agc^;)5-T_{x)COZyQcRs!Z|mbswB1@Q7v$J|}NuDloz; z7k7t-lU^5s+pNwr6B!#}Wk?8cyMI`@a3|f>LKIXB$bffF=I7DHC?=SH%vFbr+($2sVA}#9!R~e4FhT zy1t+a)0Wp^cdiqScDqfszTwU*N4C?G6Xxj8bqSX~iou@$xHICcL!@w*7Q3%(Imo=> zVT8jt+b^TQY&W(WM$IB*+f4TV%(AT5t{s!AEtq&~erQ|9#Wo$8!JJT4Zn?1T)@*B3GReLLIg&_tVu%V1%|FqmUC>Df{NiA&dlyudu%@S}oR zxls*+PWIE|X$yG44t2n{wvO{U`EgxmD|j&;ircg}XUV-D+<@EgzRoapIVOSp*&8|6 ziaLg^>V(i7X)I7$SHJexWq9-ZS%Zb)Gsw&5<_@oCV`}Mn+@mXKJjta1qfG;0cG+#% zq}NIA=9E)0_8?A;HAU&6t?*a3jSAnkqCxA+=q9*=O!Y5%b8i*Rl!?OHHjdwvyB3~# zAEr|?{?J#$uFw*ihHn3wU{6>!=pUU;I%D#2~er85Gg}tB;6O+gi|G-b}NU zgHVz4q`K#p(%h>fbg+0enY(fY$9p`>^*kQI$MG;Gd1(ZM3caJt;}ziD&Fl25*erAw zNx^{VblRIC1iKbRuv^Dkskdh-JlkDG?h71)m-Akt7I$y@w|NiRnFr&(xOg^tw>0uQ z?SfZXV+|6v|3S&8J6N4Ooe|j<2fo!AIHmU<+1*|RpLv3~SoO8BwWt#gs;Y5aos%$w zQxhbdmZKjgF2d81hm4lPY~IJAU=XipXA6El}RIBH$Qbr$R)!@2>62Q5(N>s!=_F2}lROK^BNPO>B$ z$y&+524Rl|@^NcK!+zVtXgw*Pro2d}zZ1Oi-|LSg?Fc`{wh3c+%SALBI0Onm9}~xy z37l(B0+KuU89&=BY8JZ9xOeYwD$j9P97L3{aHkpRs_?;Z-XQb+tS0H!i-htwo5^Rl z-5|SioL=ODmv)WyxWFa?kA>Ug@Sz+O!*r6p>;rjpNsWBqID;2Wo*O0S$I;B~dG!2f zFFr8ly5rZhAU(W`eo`5tYA*gbKD-axZMq5H{NMHO^VMKyqzwt<^6MYERdD0Uf9$yy zeN5XO1PfKS;NlMrxOHMbtkr#vxHp4-zN*E$@?5&nDcKX6xNnB}z#BG-H_RZ{i~2Nw zC%#Ls!hre4X!a`^@1!+8scgQ7Mx6E~DUYfo&>gdp4ufRD?N3b>Ea6?e0-w!Dk^ zw`hQzc~Xf6YtqQ^2~+Sma}cWgc3`F-=Z3EdqiNxacvy*Bb0?Y8;Alyln%2V12$jOg zw?e>Gy9Tz;5{5Ga&&hm;3jE28Q+xiqD6cymd-{?fUsw$XU2<@9SrhvHn#WXDjWZ2> z<;+ph9^&be4)GBMP$d|Fa~7L{((n#iFLMN^>n}l@)Qb&%Zckt-c?tK-o{)jX0rcVX zYO>uo2q$KIAiXCl5x+-~)_0+>F{lxbW)|S&Ehq4reG2Cj4T6!WsmR{v7&cv^=z3iq zw^qG|p2`e3JNFCg%{dwjCBMPYH9dHcJB1$He+M3ZGe}*v7+Ys%fX;zl_Ca?k z+Oz~f@}#{aUfF=8)%<1#4JN2_Z#e89uLG;#FXU*D7+kqB7h`&Vz`oPLI4gvQuTSNp zd#F8L^4drrpBLx$OuOO1-upBp@-o*6x=!A$TLNt`A8xjt2YPM?^lpmOl))5Bisb>qPZlp9wO?Y8h z`xZ=1b%DK27H}sm0T<|=Ljm_XqBYwV;*_M=M;>z6qnQM;t4?9xggvWl&-pG-?LfgB zanLDE>4fK7BJ}h;70+_VoT8(U(NWfLarRo;Gw4NE4d>B+@R_#M%m5n$aeTIDl#v%c zg1n0-$ddqp#-Fn;L$T5WLEn*GEoFRX>pLK#T=_Kt4ZW{Rn| z+(BYY5^UdGpx=2V`N=>)G|K2(-AL0Y$4g9>7iNoma3oz)JOHZzLM9+Ig z&~I#yTOZ$I7EHcE4a%b-wrM?dR2#sYig$4Qm>{pqO^syrjWIDBUX$8`Q+aZK!pP!! zP4aj;#nIVW$g9br>aPo^VX_cZ*BRjQZ;N5<@*Fr*yb9bmtY_D}nu>O}UodHxB4I4K zjvZ@0i0hP-K!6uQ+}ea`VB`wAuEz|#djuioUJ9zL7h)Da)dkISzsZTiQ(>VV$1+iW z0ds{`!_P(LWZ#q<)N8a3R{q(Bti7_@eQG&X@2b7GhVhd4@eoN#16rqzQr~ci%FOnOtW6Gajj&3>hgg*rX=_ zR}3~{t$+bdJ;|}PRF81O0&6IF{lWNs?`b+3bR2!sc}#7xabu^82Z7LDHb^3poD7qM zF_nF!*7*X8j06#Bqlch)^Dh;-ECn9gsrcfB1g~;m48B^tmF_T&rv(qRm>b)M>6TkU z^#1EiG;#iquKP6&Mz(*1XLUJHJmWX%S8gFsa#X2dXFe3|tOP^1AheQ`;|(1Rz^exb zz)Sl#`T0Hz*8HbJwnWt;#>bOi3*xDjXbuRuDKzq8chaNWZ?0jw8pzIQB5pE;YM+b; z%L!>X|9ds`Cp|)imvYAYA_d@|zKikAt1{ersR57fXyC|_DUI`77UPPKhvCwLHS}@M zQ!2mR5#DdHCJU~Z-Kx8fA(%4yO zri1`*NIBI+q_J;;w`)ps>d#4`sOBLC> z!7DJBuLsTe^)NIl5^GZ4v-_B5&@lZQxtr<+er?$xY=4DBnoNT~@;wlKcRCtZ$nokN zy|6H=9$wn{V9S{bmaHF?@y-s-6#`f8Iwx&eNSR zhtHP;~a<$-X9X`qd1<235GT%U_hTNbMo3P<5HPiqoO@(bZJ06CS~>D z)eRyjpT#C5FVIuJ905};B+8oxX8=PZa z+_tF0dePNzeMFo0H1{N2Y_9}?y^_2_szUWowd3Ao5AKXPPIp+(ZZsLa0n}H3EcOyZ zk-Yg3dAt&OcAci3j(TurR}wC1u|f6h7{F0+qEk2-1{`L=vLQ`4b-RE$ghGw`xOt9w zlO7EI3xDh%*%H^oi z^oeYoGaKs?e>Z4bn1Ij7BKRUY6%u`}(zyQRjNVpRXz>ZcgSGJ(@tX5`-QxTMFG}H! zfjzx)$rVFZ@bQF_B^wQ%OVBqqn>p{o9J~^<3)uF_jk`;`(7ov=_Dd{|g$f+6zKW&0i`PumI zmnNw6o@LJ*y99Si%5hw97EfV`3EuwkgDjMbg0CGN%=vu&M(tHkaa%!%@j#w+->-WILnqDG!{y%!lcoSL})e;9=7dWtFGQ_5e@%T;Z zAz`}~^3VFqp1)TQ-r=u^#xfm}V!obkwzGu|YYeI3+AQw5_(Ff^Ps4PtHtO%522Y-^ zz*bXrh`V$j-#8ZH-w6%uZgn&M^(GxJerRCtjSO@A%n2eqJD#1mU500?CNgD zLY`NnbPTsG%7?=;G8p+?6t9HefXHwmdMGZPu6?3Gz+oE%+0A2I$`&;GSO^o|Y;pMA zT8*pc%QwEBr9~d9NH#w1+=7*-&cnrb&CvKD8duL0X*^v#sc~`ii+at{C@}CU#t8c= z^6;w$Of#DSs|Ob0<$)XUEh&~wIb1~Qxju@O+W@AYI0h1r9x_Y9=8|Q#T%N3r4=h|4 z0l!5q<}aDaW!OTAOS}ll2z!j@Tn3>mIRWeK*YT8}hoED)4Docxg^rm)$gVF(Ucnt= z8Xp0p-m4k|WDP*P)EdH?JYgEIC`-a8j5z2Gqaz-!|-V^eD5sjJNy;DCkC>QSFgl@?_8HA z{xU;Me~_1(Bpdfj{30!LbEzG34Ye`_8tFk%Y@0Md4)VI$B?4XayJaBV7*qp4;~wDr zWoel8+Zg!8LmJMjI^zw~BuE%|0BzrONlqJ=7vCw?IQD%%p74l*zI7>N-nmQgq;3#r z1}71w=O#{jH;-l5XN#_(le0eh-t9?@G*6nl1 z?!|$?g#5t$QETwUqb9SI7VKY%+m_9gV;U|kl%BgYCXS%VsB$mL+LtB zD|yALs-MNN3N^SWq|+D{U4R0Eu{d4Am>w8Biqg8N5MdEV+<%Oc;i>iHt(^vHl#1b! z=)Y9`ry-HyKLlTsdyF@HQ-lxh+E~0ZfeW^;C0Ca_5}Te=#%nBh;KDpB_@@|ytLn=k zVO=~i%!9sF6kBNG#8>(`Y9VUWlu;Gchwxy_AM!U;0)%_C;LvRoG@S1O zBa>6;Own;hZ7h*~*s%{i$9kY!xtA_nTEHaTl0xa>o7}yjE{f@$#gOYs=+#+8nPx#? zH_Jlzg)F1YUG|vX#dAxZMxzk8|hPhGUR)jr&&a z2nJ*O1CV914?3c`e#gPd@bxOgcAcnWJeS#`faVt>uEjCc7Egk1vmAP@tDE_F?ga^u zsxuBukD&ACrLwBuR?xO{_vy#-i`4e(VtT{1dasoz)M0LUOh-fEw?24EN~{+!FeK>(aBl`OakvB zD;l~f0M{yHfR&UAx<*@3gJfUSpVtd+I}cJpiK$$c^avXL5`aIlljw~_zscB<^SID( zH#ONk8LsF!8t5GKvZ zXSP<{LWy2uboTyBERWQ~su)vj|Hoyu#urk}Bksi7>K8e(U^@B)9K{~t7Lu`_fg@w* z*;a2B%9bs`N&X+`H;0{|5vd0{fvaPh1-Fjz*V76MCtSsm`<} zAx-~iaeO4b>tg`T55-XYwl@B#kfgc3wRk|Ak3M)g57y3<0}-hpJglEgr`lg7Gh4cd z+E!(_@;x7))FguM%XPTu#Xhvy8I5WRktBARI*3kOV~2iLR_b>-j~0%Lz)|l)Fxq&N^q+i4bqi*}f@#;_ z%)bKoqLqM!O$*8Lzlp3&cnGbQol! zwZ9kC`e)~ER zHrpEVT}2hnWXsa8U9oWCqAop~&hf16UXs~|LlMu`(*4V=;8c+Y(UHugeD9rrSrSFA ze7}m3k2m7+zAl0u=kcp^1&9_Qz2JC(%Qf9)rIn6Q#~1?)^PUD#d>WW%D1nxRcj=QB zH+ai2pp^d{r5XvFQ6x|dnz=hRN!L|upUed?xRe96ro~X~r3j9T)1R3L$Ov2JnM5CaGJ&*WL?`1skVy)}4UGy= z^Ew3WTUe6I+$6Ufrl4uTbmFBh4d0Abq8;d9&AlR&JYqnWG0#}NCYCmSxP*}on=#Ed z21S-dz|WbRXh$W#V;7|x?l^BV>s6AX>)YXF$4jp8^Ao8 zLUTncaVy8_o;Q0Axjf@4EFYM{vz83S!R>7%dT(_@rT%hARI{V*+!@&KhcOK9Xs3+D z54zeZ6)$t^5A)R)hhyW=B-WE%w(c~V{%a!hhhtz(BIl_XO9ED97TvJ_GPrHZ!u+*) z*f{Sy%XcGzmOaa3%loZ94f#u~q z#_(4nE8<|!xZlg6VO_x}ckUY;+iC*Izw&X&av{{Nxy)EDnFI@`pM$AuuR~3q2J^zx z6N1&fI1u0$;wqny8;Yx-BmXI5?mt3O_h%ay_g*6+w(CI9wH@b4alP(+@(mx)ydbmh zFU5_{-Oy=wlJ+g@MKM7)e7Y_O&!tNe!%wzwEw2Qp$=6^`#d z`Jn&ME@IoEk1fIZbbWX|S;ALA+Faw|)$Ez*_vA9^asNf!v^>bo8UH}Q8Srj?D45Ps zL$}jIj1R{ad3jhJ##P1evy=oGE{w+3{gup-n1>kW_=}F{tK((*5F#AnVO%%Z*r~4( z?1!t!+G>ukoooRe&VNDR#zUeaF;wqAClge=rR!Jk)rJ87WcXWun~astfzfLza7QR^SODEd#eFp9=7r?}t z+jll`86m|kShACIEGc^!Clv?M;_vRXql2FYOa+KbjiE6TXP|%FhI$3MQ?sAkzD>0S zUCvj5w%=v)^|c^qFH3~7h!A6=p-@(S_W;RT8U*)#2GSoh_5pk340-oE3jDXKqx;Yi z5ZAJ0Pgx~^DRL~hz>D;ijUS=hIikeb7}IoeP^XuNyM1O--^MF=s5S=G#@`Z8!}x~2 z{0#j2A_PZo?!bRqnWQH~2-l=;fUb|;pkm)lzB8w=C3__-aGt?+kMlqy_Uk zr=argmCU6>dBklA=aqHZ1~uYUR4*Jz#0)9!n-Y!_qsb8Y)*tyS=YaQ}C=8MPMC7(` z-VcXJB4*=<=f}dy^V4;t?c1q_n5J;pcJ&f18Qp?ofx@uo_c1W)N`hyDvh-43BOUV0 zfXhuz$ag&!;ealtAIQNOBpkz%2I%RKxzuJPke+_QPhN0ywO1#0l6O>e>(uanoWZ;c+PP6!x&~dMo zDlc)wZ{D0k`G+qKgsX8mfyq?vA*G#at{_#J15KKVIPcYbNb&T=g_dEA&M9e(Q|vT8 zGGjN5t5n9NtD|A>fGLWay=$o5D-X77@>sLC8=+|M3~?8^Lwr77CsFEWFkCVQ-W`;p z!=wZqUv4Hk*T2y@E!_EAEf>NfRnX%^JTC5treq8gSuP8bA8!wsGY{JzAQG!-*@Enu%S(xc1bkdMoIE>2ntN%361euW|& zU0;9;-mYeXYqfD6_dNaQoy6|fIZl-A_ObbwiyB&}72vcm*qms`?VWt^`sS@PDyp44 zvhYPFVH2hgao%Jzedg-CAI$upF%6UTr$T7V40^ahfO&a(J;pkwkQ%NxYTE4zuP0Z~ z(=Jw+w9uJeHZLS{bs5a16Q{`MyI;tj^0UatpNv(Gxo9INgkzg)NKCr|#N2#EZO%?Y zWzW_0`lY4D>wmB;DO?9Lr1yYM$RsjPc_WC}so=gE&VO!k3}^03BQbwj;xxkzA}o{O z>$^Yn{BmK=>uOK$E!m5DRsndug%axmKU}w24R!cek?decbU#{x_m3)IoVY(8d=v=O zCzZ_0Y$N*Zn;^C}fl4SQVoXOSmKh{sNiFAkw%Y}A9H-a0?hWyK`ILD+NZF0NB`|83 z1Y$q-k&nwG;ggmvYFCG%(9aAEF;m3_?c1Q>gD<@4t05cu*WlI3`Ha8(3o>`hFS z&?XmQaQvRiY!?Z^Pjezb_S*^Q=rG4qhbY~Te(Z^D0_0}yCg|;sN2ZQPUfbt`<}!lW zErM`oNEKAmR*-G$d|~v0Cn-zb2+zcI@OtWAOj!4odT{6S7u)_LZM)}FuMTtaJS-Ad z9NJFosveS*p2KMIv5TyKYKG?yZ9}Ujbz1XC0(+|}Xh2jd6)+3Owq4V}-jol5dh%KK zj5fOH$X$Af{l=WJ4nT!Ru4MVhQ9Sua&$9|kU7u&1O z;AhIx_={>xXYoSFk%_0df*I(Ta+$n27ml~MY?a1!b9lmWpKMDqz-Wl$G^~t3m5YWD z;I$m*CZD0#dPc~p+$NIPWyfs#mx{qT4P@EYY-mwQfr6qiRJ|vOaopZSwk;n-d>e@K zX;(O|(%mqlDTU+>SfX@8A^te1NJ{eOpco|5^F5JRm8c6hEOYQ!K_bfWL@}+k09)FH z@Je4S&Q`I4>w2@e-{;qx{#Sf!N;U&h}M z{kpB-kQl?xUM36o{zc>1+f6y=f!vrE%gHq7~lsRe(R__-oPn)7%z@?3I2f zgV&jM@U?OZ__P60(9M4?5Y6uBg!L_$4g0ry0K+bG8znA%Up z?f%k(soV_HTM7p@NfV=(FbHRzpv*i7iVx+Xr`la2Hl9`gC+8h4yjzM1<+7ZoLz*2d ziUG&h@#OEOX%x?ez``AQ^b0rti1*%&uC_W*W3!7ae4+q8?|ty)nm5cGv2&!mBNKwF z&#)d-IHqlJ5uTFU4yE1(M5`U?cD}2mpPJU!RxawheX&$IQ=f{_S_u~4f5YG9eiqQ?T z=!4N|;G?7m?7K*u@}Laf?y*3Axk7v`8c6@!FN+H%O_1!PoLj>%gnA83W@0%W_<)cB zZT&mMo<5=mVL~zZTI#S-_(U|MC`7{2F*mwGR2xLEHBx)44062uJKd0APY#yPgqt#) z6Hqq}6y^Xf`fCU?WK(GP%wWjase!^jDaogCf4y;EJeWW8z@UTLp` z@X0E0fYE@&-QLjbn2hrqrje>neh^7iC3-=!EZ+}t*z7$APf-Tzq_p9^ViN7+?<D zJc{i0H;iI}ENaR0Q?aO{SUx)p?w`6%-#xMg#gP(bO79oS{Md_W*T>mdnu2#W^pkVS zhD=ko2BaUaHogLBaC6Hcw6?Pb2Z=vq$w)5bDhy+ngD%Y3$FYX@O=FT0i;3@_!#KI$ z8dinwrK`*yQs)=@U|H)`dLyM2wfdW3H+Ns&SsVynB3>Ano=moHna-xT$x*G=Tg*XQ zcNl)L8rEO7BaoCAz{^^Dt6>jAD1ujpTQ4TJy^6WbU zFfQGd4iC95{OUCWaO+wM9$^mFZ%Ww*{0pvwhW8*9mQIGe`#tRbgH~X3Y*)jnnnt?O zKm`A|6yk;R-|5DNvk>tkjO)`#lJ{KKvE>?PmcMj~-F+n+108A@eQT~GDHleHYO8@w zcS3RLbVzK=fMrZ33_c2Ny)BNUvUZ~XFt0b~bzfzgjF zI_1q3JQ4MU^wp2iN^4hG6nc(Z3poDWqzdTnHNvK%UD&h}@z<6!bVgt-ge}nmU4uh7 zE|N;(vd&@u@#WYqe+swl&;}Vh0%7~y=vaI$DhnzQyRkB|*EEyJD<{*QqP3hm_X4IR z@FcVW(e{8c+tGbeqX#SUeXh?a(g{>IT#sa>ay4mbbaPW;JqfUAdUuZ$Eef~=4A5VqR zn_s9xrZIhdVT^V##bBN*3zib{ATb(LKDE#DF*&rX0UuBh<;vW0{>mJhB^K*a79C! z*F6$J`!ffrht381WrZX2ByJs8Hb$ZBAC3{5EW)u2=Ha~{0gw}vVvNs3Q_bIw7&krv zc>{uUh8rI!e&2vwVKXthF^dFpXOK1PnwgXz0vIm09aF`h(f;56k>MT2P_xb(zg-j{ z!5V$Upi>WW-tR>9Rfl0Ce==b+CgVAecG8#R0xrk*!(FvRs(G#u+ivsY8HZMfElk9X%(GqY!RB&#nPkFmVFICHid#=Ctc=;r`Ihs7}VbtKlA zR+04fOL&dkpnI$0u;sTsSpD6=bsnc+>h8}(UsnSf-*$mPWE%Zs@P?{Qv!ut2{PDkg z!(@J4H@Wdvowv!npY~R-1r?<%@I0Z9Z!)iwXZ)jNwn-GV&RR^|E!|;D_#=9``y~0z zdj~%Sm+=f<--Aczt3f+56#35Wleg$RnTj2)EfIwv)*>t`Dx7R9?pDV3F`AsPHca1S8#-G4d=b89uteHIh z{scp>b~1~KcadY7anQKn7TgJ230i?GX~x7l()5-4?xt=ar=vo!MZ}8fEb+oD|1R=+ z#sJ!1VR5z3G2*+FySL7&#HRvN8mWUNdFGhNHt)VbN?(azRpvWQD|mgl;o~##C}ZJB zjTJ@}zh_eB?;)3-NjILqxE~^^f~_tjxm@^l4ZtNwX1_T zIY|{<8`ZJ-%2{yZ*4-`Y{ot251@-Ifk=m<}U!(i5H!c}Uc>ScMu9f~YPXo*Q;b6Xe z5{d=fgUbO2NO9yZj+5gLy0)bxsmhQl+ir#H{>LyTXFoWd`-#eal8yhF?;&o2Q(^k` z2W0*D7hLVoNB-3QfvMra&|vHV>KV(pj7%x`R7PU*j3Sg;dxu>d9*ITlWA;GV16=m3 zm88EDL5YzJOkWd7H)qRH&5<_{Js|{-KIlN$@))GSEktn01QI#s)5xwh8Ts%m&j%TLAa@20kJEO!?dQE;ShpUMk*Is%T@s$yxIwc$F zdm_&B<~X^tQleNnzFzd=6GEOmJPqGhz2g^qngt*!CuS!?6hM zgSow7wFrhiJA=cTJ@}AsEef1^#k{L8p!YwxKtRg{+9@E-e9TQJb_Tl`m)QXz`Z@(o zxy|UOX?pMjSK}JTgQqiot7$RT}l)oAi-XLuimxJP=D~5Fw7f4i18G78j zf!}plc5BIesBY!@a20->Cu}`^^G}i(U6JM(w7FpVdJlIOVuKL_QTV#k5~Hj%uxEh@ z{@~U%loVocEyrK+(!y4;)3D)uG)R_wBUbvCLHj2UT}3$V#Wf35`0)Vb!%JvwErNjI zWT;f1(-^Cu2q)fOA^iHg;KnX_+&MU(4(qej()$?u$ zi!Y7wa&jna3Rq0uH00xviGJc{`H5YpKdDhfbUWwIvPW;jhZr+=Ihwzcf#PmyaQ@Ro z4*%?+*NIxANGsRfcI(HNoL{|kJOhD5LY^-_@8zsa+OfD39$l8(x?+s? zR)Iqr4{+DP8XA9g9SC`a!ibI;4mk}nPIJEy#lPclx`Che-u{kGp4DLCosZH}^Fd5G z07dWW@N|s%d6Vu)G=Af_9BlV6S-4XLat6&Bon`NmHOiS(fZJO{UV!?yVLRx5;XA3R z&j^S)FJb@Hn9*$>Jd3#)FE}S@>dl2oG&D!@5zS#^LW)7~**q>wg`_yw$fc zl+lICC>s=6xg0(;J)uR9&eGw7>Qq+b3GO#qih%|H!7FYi+HQ84@?N?SZdQf&zHEZ@ zyYi7NQHX%D9tCWO>5P9F%5!zam z2t^_-h0yq&CeZQ~k^?E+Z`NStE zzqgYJefk3l4Fl-Kdjf$k{^1orC+J^u9wqZ7c&C0$a{Dd`@-mjQ4nH;n-O<(xTi2c? zN4ig=2mFtGpsexGA|vSfkFd;TBS0Zp968|X2!KJQ^+>RYv z@VRy$oQt{3cwFjZS(oKywlEmniWY@h6Ss5)=(DL*}{_@3BkT_dtvZ$NYA0lL?P ziwkTmdG4TwlPu>>Mn(h`x7mTF`))X&6GbDwECsWOD@@*0chHG_hD0zP=FJ<1n~B%) z&(7RSJG@(0W)cEG=D|1#egNwj?C2OZ`zJZaOpyo|b9a=7j#UN|vC8swDW z88e^5U!ee9K9pTAXmVDw4szz}Zj_aMMAi7!I48V&@J{{?4!1`T)uRr=vFML5dyy`> zo=roJeg*zl6$e6iiYFv6oujo#mHy@Kpv^~?q0_|<_&PL#$x(i=)jEsb+y0SzV-^Q3 zkL8m4SPDIdquA%g3=Va!B_)zlC>*!}^afv%<<(O-IG75b+FOWvUOOx)48)7a6gZX^ zv#?t^fhhLZe6sA}N}1-d<`TQ&`!xeRbEyRYHzdIesSgAe?XUk83WlCavC1L{(m zSio7pn?{X!dagH_BOm8*B)n6|b6iSRHjP1TVF`*VPvZ#5_h422Rp?FmhpQ4C;OF}n zW)=OSy!%E;*q^3P-x`0QoVRkk7bQ2SsQskbkcKKRcrD8+`B?*%NZ}1Z)&qasU>HefZ`q5AHh%Df-APQpatL*|_rRX7e7r0% z8Tec-OFBNVOndz{rYPzvezDTzcx$wfSDRCb=hzsA9*Bp7uL97d+m>Twd=NwP3^-2v zp1_1e5PE!ZfY2F5%`K>#S4DB66bB*>i=RPu}pr^J>eXXV(oPt+1C|92MgT+|UEN zkmV>fZ4K+MNuUw`O#{go4~~E7Ca|__Vxq3wqaQnSn^N$vLDYh{ z_FSCM5I(Gki33`(W zU08J!k9+b#_@yX}FsP*aPfuWk|1NkHuEn{nsKU!RoCn3e>~C&GIv%JK( zb#@{J``18dr5?{{QvoiGk4DRF?x4Ok0>=#2g1x&d>bIuC$m!E$r)wYMW3&saJ`}*x zb=BOQcZYD_LTz|5^CUP{r=i+dHPK~z>XI9lLsIY#d}jWdX4IL&%+Y+d>tO*)9TviN znKV$o7(|agYa#W&#BhbjGMwx=0}f6A9-6t_+e6c7lz$pXKTD-b@y*zL<{OS_KOl$X z#38G96ADK?f$Z5+F|X}0J{6Yb2~8{qWto2Jde;=DzWM?`BBNk*nlN|Xodm+|$fjP8 zQ}9<%5pB#C`x1q8 z3C_3g6Vzu*BGD?`2Xm4|dG|yr={xHKX#YjqNhbOv9~fAR=Yb=LHk@Z z`<;iQ-&<(HJaH&m&-Q7PbYYe630z<0ihCtF*f(7Sjl8F#rO-mKS!NEFD=z@9WuMLe z#X`@@I-(a6kL9`Xjj{V*!p-e(n)3eG;$oc~?D~_5USaHcbM-L3u##Zj+YI4Nxluaa zXaa%z&Jmx**I`Av1PVvr!l=LT@ayL^*eY}#gmh=&xBL!hU~_ZN3MQ%3?wiO9IDvQi zucA$jD)6bKus#Gy$Yi^;|7|M6%{pS(yXrl7Xl-TvqNyM;O#=>At$-u?h_GNQd7|lx zDVFKP`=bcQ$9^_=S^$ix#F9JRvh;*Fdq!l=CetcpVIc4#><@KAjkzw=ZmBEwuARfa zQ}qz1Eh4bQONn#r@-PVhEQIryCYrjMuEDpjZ_w$LIdgMd0aH_gG5W=6s5ksfh7Pxr z@L&ZPQh7k5&b~MMIgyW@9=q6QTPCp*=0ZZnQj|Tz@*e&(1)pYN*s-|*!!~Tj$(&%A zZ}u34UK?XZ$aY-q5(%|;-KokUJ7m8&U?ty$GkhD-a{elO@0UuB6)Yju1rnT)x4PtY z>`5}Y{{`LqTh8q9!(hzNItGH4Q*azu*5ri{{PE5n$+|LZZ0(~xJMIJgi$@_;=Iy#U z2VTmGai)K}g#H$RV6xi;%2q|dmgr@4Uxr(goYo#_J01qjx}`*ZTQ(Fv@qw$S8&T) z0@y-O?)O*v)BYQTC~c%8l1>nua|stpjic7vF0%D|J?U6%%T-kR2jP`PFt=5fqn6MJ zf*Iv-`BM}cb*}|C%Y`tU6$BM0*=+OyP56yEfHv0u(V6Hxf_HKd}y8(LiqBQdRj8H}; zo&rgucjdA$IZ3Pcj)P<17rG z;{<986S>>zc3hzo3Tw9CL(9@Q80`zj|L)7efA4-1jWRbh%}ir9`EOwzCIajoe=X@d zG6&|by@1njA9PmyB}WVgxlh8D5qjYv{otnoaQP7Pf&DzX7%wU$hpSXFd_MUhYzg7;jBzi!wa)5f~-Guc5znE)B7<4s?fXANkSj2YnSB1qA zg8+H*c~>J&{wpOTPtL(fqdho$A_7wQ>#?>1ntSqr#M!Q2t{oLsj5I!^c8MtnCPMc$Sy_|_K--GQq3f_1b9Km?YZ z73a0gyH9rc3vreR&%kt+^BZFP5Z2E=$=zl$i#EKvO#)YRa8+$npp2d4%?->a{+n2z zWWYmGW^)jdMyi|oW*(!xaUD26DxPJ`R%1*_2fcM;66+JiQF;^06mr;z+uwTOzshXT z+%y|SWJAd9|32Y@FIuqpaTBO_<*<8QXEvLw#cS1BgFEb&Vnw7p_&v4+aU(sBY~=|3 zed;55u5Ez#Zm;61re@KDlG5nEi32K{EYGuzoonjPr!(24*U$KKC>=5dj%`Rl-TQ(t zzDE_d{rw2R8l}*Dc$Dg2@k6n!RvegHL(j-BM%!)X^mWo=yt_PrNj~0%N-vhcQ1mKn zI+Bk2=f%_Muf55YYt!NMwHMGSVNf2^nH^*b+3HMZq~Rkrw<5ph8z8xpR&6$O6S-JZ2+_N^-JPzThEs zd=t+^L|G7LWoh2}SNBPq_H^PHA;Gg(b%m9W#^J%GY)F_)CgG+s;8^sP$lu$5c6kao zJk^-aJk$vfdb7DgJvmro@P&wcRRjyQ5tN9Rf_uuZv0;>p27aZu%fTD%+nkX3D+sG% zvr&DbotyDE0w1d%MLwTblv7s;$%`D|nf+mqumkW}`JA47b`Cwfl4;$t+tgC35Y}(u z!ps$=c&l3q4w&|U{D&CO>5RvDA5B2Yv>8`~gfMDkB5urVCOfMo$a`h#F#~(^^wcuE>?ry z@i4NfT#@tbl`gE?-HCrqs=58n^=!^?h`xG10BO&~fxh#HAmdV6Z=A*5mZDAeg-T$) z(>U4K$MX9H0B|S|cZHd}MmPAG2n4$)r^#GW2Jvu&ye-{Bx~sC_!Qm2i zX08evj;U0^$_xct22j`|jOuVJ;8&kJR6JkKIHs604_vj#>${zpg2K3Od?kDoiiGB_ zNVv4r3Y;E^K=-RDu<7wRIQ3->^p1p+TgBD1J|`KMwG}bf{qIcn121 zx`X+?Qc#VYg2#M3K&vl$ZScWcPoiMYx^YJdp?j!h3Xb-&At|YlXqhYGLEp&{}XU0T2n0Cdbu=@N-P&sZ& zMK!*X!kdlE=d-3@dAP00eknE1k_Usj-ypH6rD5nx@fgESyn8lU|t1n1a@rrk=bNrtK)L^}r1 zi?io(U-ZgDiVYK;?^SSog;c z2V3J|`DF*pwb>2U7uC7+5bHe}9 zwR-koAs`M)YEfAHCKvL1S!dP_mSg>S9<-0U;*|DG|< zS<)z`|BvQ>b7Hep&ct(J6g;d6BmVH<(FdOQsDS3Nr7?NVSXX09W++yGuTCP4{Yb}b??U3) zJeQrxJK_0`3Py5GB#3kOAih08eFGvebX^tq$LD>d(lP~`F0?YkITbJGafUmm?FG1T?N$LWbkH@0g^L6nlv33 zgVoKI0J~?heZ79Fp?ins?>|rDT{9rDznYc&`CE=ZT=-^*G$3>xUO5j$xfdG3Gd&f&O4c2>Z?YXZ{^W zkEeT~DJ`3IRW#CZWgWKXY>NpFl0>CMo;kcE24cQ8lRH9Ds2Kf{q@844%KZ6wz~BjS z`OY!}Pd_Fbo?j(W263=n(~4fMjYrLiSU9;ih?_PPPqZJ0Vrlgu+#+xYFZS=oBdXKz zUu`-)#Cjz&>qBtxsSN(qeNLz8$5V$18Jhn^jVL>4^K=|A)c|MuQU?TWAHsS-a1M?ulm35NE+$W zv;f)rffzP*3+QPpHzvp2ppPS!fLVJKb7tj|*004lGcOo!I0}QL?K0ZcQbt28!m&Ed z4=1E{qPg!rsvw(*2_Iw7UegRF{F33}$8R)2KogIBWHVtNnlxN1({z#rpYExW#lomm zcEt0Aym8sdOsl=e_y+HwO&3GJvu*)?Rhf_WR{u!h=6NJPJ_-fh@?cNIMY^JT2S^Gz zL;2(^Tr?^L)vt{~u^sw6%bEAD5zx`eJ;wBnGW*gu!-hJlNmd z2mv2lm?h!sP>k(ZoJ)|wqt|)#kN8U19uN=y(~`N~;YAQolTK%|UWC#E^RcmL3QGRR zr9GOLS?+-=@;+=MZ-W=IEW@uv?cWJ37)$}tDj78WewkdH7lCtBB_YNp3Re$3BdYsn zP~Ofd0BNkpU6Bv>4d!9>r2tqF5suFXtjSBkZCI@A1OKg`0kNlFHd*|49DYyTjxPKO zxWxP_6-eU4%jflB{EsKTP_u?j4+Q8PzQ?q=Vh^l;=>w~#yFdbSsmXea0L+zpPIB{~ z5#=0T42fVfA+hf8t^X7Cov(rq_FpFlj=o@fui^OA`V|?PD}zV++%fo*Gc+%2roPSx z;ks)mJQ`U+RTHc+F5@J47fwg#s|L7v<~EvVJVMt_dI9BQ_wiohS;Qc16jPYFPbjCfLRd(_CA9RPy9Qhc;cNd>zZWauvY!Klg)j+%Y&?vy|jV z?8fp1im)telr&y2gcOSk2#hWvS&?Dz>lk|<%`nEv-K+z5mOj0Is*_Z7p1?pVOgeTd zVD_e5P#c_!PYPFq<@+-vcI`$u_(mRKTp6^Df^g?PA;{mU30B5sa|nSNPEMb)h8b?M&k89J8SfN`|mad@KZO~(K;PU z*;@yROH=_@q4^MfPy_$On&Q6WRkVA&K(h0M!fNzyi) z8L$cHMj6}_8wIrjbJ3vgG9A3lIvhGFh^L;yk=k(P06QnzwWA*HU6KL5G;dgz)5&eI z)xuqb3&&+=QWxbsEDFj3)#wBaau2~Bn}pzTXDM??NsJ_155|o$`yuSOG4>3{LHn98 zc=IC_F1g3k%38KHJhBNEnuIR>DjtrbFO@*T4arvX3g|Z44^JA{%xYd=)86TAMDday zipaBlz)N+Yd3YtwbG=T!PCA0UA;E>dQZ&-q8*V$Tf~`$S*|eBvy2$VorC;48YC`k5zBI2O=801;GmKoJh>5oJ%8MR7P^3`aTrwF zbaShVuVJIIGrFAMpw-(#Fu8mVTIXrt)*=pkarnSZ{u+r^XY$Blw=1yv=us3*jYcUK z1FA41hlbe2f&QjysD5cg>GK!=N^VOhO9$NP=hWMZiH#RrSxB&3{LsFA8o!~#o?5Wrm^S8@u$jt{60QF zw683{X|Cr9M|2_UmAcL7#-)R+-fUR%NEz)P1mT=35|G?ph<}X3Ay}r1d^c<)x!n<@ z!YUTF-l>Lu|2hba%*OiimrY9tgz%?+C$o9^M!;B0D(4wMlVWDV7I6*oSF(^k^?6Ry z?rkM8{c+3#%LWLne#kxjVF?w}mcW3!*_hoJhbup{F@B2-P;zVmn7GE%;|W>N-l=RB zr5;2_HpRlbE0?h#$q7H5)Ih&mT9Ec+JDe8OL^0C@P*&E5HB+XdcvCZJ`qcuvACJ%$ zIRc~F><(%9Zm<%_!14Q$uP$GtH;M;YdyRvaZ@}?57^wyS)W7rK{+Z zxM#GZ;1x22<+$nA13_(wS-u)}NM6HBEm}0b|1GgP{FJL#w+NSOwwN8h-Gr{c{@{0m z8+gd$6}QuW6<(5#rUO%0*X|7sSXs@^TxTd?{1p-Wc`A%rt!3ey#m1=a{F>bPHx={8 z6Hvp3gXvYN;Fe#663tP-*&l%ZOT^50Y=bTPu1yCZ;2$5@yA4s%GL|ng_KoY;F$1byw*kNCQQ9>o2g^43FHrV7hWLcw0ZBN$+3L zH`|)I`UWn@x40AsuO_05zB;|aa%=9kJcq6u#ZY>sjvPMQit9!XtW4i7cMfM~~{y5c+h zVDt!Qj^4yhqg_NLaVhl9ETHb6!q7jk2p0@0!=l-&{^W}?IJ0?VXYCU9u6C75Ke~p3 z(x&kGP6gGxRf3ng#o*4bF1q206}kG1izmz1l9|cu9mT8?jqYWDMN}KNu`ZplxunQl zm3fXV^i4LMPY|W*+2PGMe?*wF2gW*6gyK7M0q-Te-hv5$g*L;cIGIb7vP`-WUWUjS9HI^(;5k zT7>g5Xg0@w^GVtwkq=_51H5T(1evgA9inN0Z2!fsN#UtJZ@On2j>M;u`-UCNLh~jZ zNKQoFo_^2^mxc{qiS+t&Px^|>cKDuHVDh*v-eWmuBA)YUY)A!MyI6~AFHd6VB_Z_B zuAw`o&)_OtSxpCX=i!Lf7k2+)K(6H`kZ(JVfS$P|98^$)u69{0KNv>_bOuNnzatKZ z-9-OcqP!)Aoy0fmJq^^-hZ*e7hEH-bT@^qho9L~GOnhk{ z!4*BV9S*4!qF_xlPP5XXclJ-^E)Yrr*>lBB8w1@Tad{E0n=nMlUtgPu%xX9jp^OrV z0@RkT4}%{&Qa;tiIGV7A4zJMy{*;y2GE*3Sn{5QEAQhZ{cpZAHr&6iQ9vEgHhohK; zcQ{F;t}vYVZBoIB0M>K<=L=B$J{xgT1m|z-L)Dq0&=|-vVnb~({GBswX+MU;d5bXU$YI+0D}XNU z8pF${uVJD>8w}ZgfLgw13hms`|f4nET8CGLmk=e*uOtR-XaBK@1ACcY@=b&A9XC6WDRm78Y9< zp_r-{E@tmZS+9e@Y}qH~#9A?Yw@(La*gJ+y_g=VHRYj*%h|xlJr*Ag>1axb5aC>xR zaN8|@vmmyk*f-r51fPANJL9ioO5inOELaCKGurUZE|w+zf_JW8q0AQ-)3 zf8+8Fxbtu;YHf+2kF>tw$WgZ2SFMNlnpu`XqzK2t&j60^Nu@_fI3&%>V%)UY`JKyk zEEZZp_>XPGfaP3xRZ#=Hh%WfWL{PgGb1;-I2|ZVeb5s3OK(1g0&UCv@2OL+j@{H&7 zLGpEGe9tJc6V&1Ke(8b)J|W2bCJeiFen8E2*BEo|8Srhn$h>e0gLMkZJkzg6WQC$3 zJdRDJY6ej(ztaWwJ>cW?Zkxi%8)iEV7zD4D2Z8FJ5bm?aZ`f7T0MZ2tWRBGs5frng ziz?>xJW@}CeR%>@N{f)Fr@KhNvIoE*Xq})5@eTN}5==-T@q~c4Ya5&S13d2$+8M#f67i zR@cuVsw>yZC`<;EPu{srhVIg^`_LV1VEOLvWBg&+-+$oYD8o7sZsJ5v4~<`$%(_SU zA+ke>$CbVdRcyapkF$rnVQnsyE3xjg>y4x>-;&tPUxBx(c;t1WF9;~qLo(MHBOD`$ zxScFl<9rTT*S-_}c56b&+Oss(*9unDbVA}tD)#Q_Vce!PgT@IX$hNx;c^4P*He{8M zh=TQK`jXB5c5WlpDovo=ok54~oan(|E6}(RP3+Yp@ml_Ic;?3LB~24hd7lI{WL$O_yH>TrRF8*1(?r>vM=m_8xCPA%+v#?hK2WW)f%c=- zFqa0xe-Mt9zbs(5q8pzpa7o|zWs;{SiB}5q@q_R^>htqGSx=V2y|Q%b8IsLikzax7 zU&MKl!u!zXR6l4L?L^)086c2zofybp$5W^6n4#&p;G4XSS>gTyXSa1iUE~yUS!ge{ zxxse7oP5ZURV~<8pvJQvJw|=gMu>Maq zBZAuB+5pKT#rS?kG@B1TgV>Wn1r9%FPNeT)K2(TcSlJTzckmnOe{>SGzv*+MB7f1; zS@NK$`~{vZ)1e~&8DPJ}FFJ+30Bvn&^!d&9gI|YWXUH`i)9VGd8<|ji z{2n)}L<&C}T*hGmRo)!Obts;!!Vx}|PA*p2f!^FrxM;^~`c%;v6?)i?K*>Xzui`?x zO!k1Yy9$WS%fV-hcj9TQ5)@-R@c7YqG^u?`f^v4jr1mB<^Wj7EnMgI;|8g%FdCBlZ zdIQnz!kFz#Y=G5e(9k3$QT zE2=}6lqzzUWl-LT8Ejj-1HP;E(-HZFke3nzgRlOg(U1pyaifGR_*Bldj6Vt)2h!0* zbS|gkr!A-R#a*;ivPOf(W^}JtqQ>V8u#?Jj_S6dU`gH19r)>_NkI*KEk6uC&tjT$V zJQUc&zE@jVn5mt6!(FjU8ar73gK4f3P}zNC-G8T{)si1IC*`?GmM%m)`UK2)zX)cB zh%+UQY1kHZ1#Irv;;;HrsOh>4O4F+8OaI;M?r9h^nxb%IXn=d}Umev6pUNxS{RoS5 zn(5rf$5Enbge)l%geaDCaZNjz_oIvLo+rt1dSCV8o4z_&ozLdt{w8Cx;8)-o27=at zC@|D~K;0NF6x1Cda}T7^n=;E$c$p%vy5ublS?rCev2$SQyI3shm7x9FeHhm@45QYw z$(iGpyxkK0_@&Sa#Ye<>)pLJCwthAmJS&97YbL!peQVwqs%$fV#uw3s)$6Q5 z{LFI_Z#xRF6}mzDy#`OJaXF@#XOJ@u`yqJf9X1ba=B#RXhDL_`obnmIP#Yo2S!cQc z-SlR2X6w4(+8i$a%*>?%pVFaX;47^vS46=$Tex$o3~t(6WAN(>^u)VFQ2*CW5|X0e zCVMw)o-`o4H*SEV5`FAlF&i>#1ew}r2RIzsk15sd(6iT_H>f)o(;qG-VMAxo*zN~z zl+MDO9S^zh?u}F5(Ky(1pqjetNb-zFrt(U>4RPMc82OUh!*Cn)@bM2tSm40^@4m@^ z+A$$&?4d)yS+M)o1^k?Qizh3&ydMWPs|k zsN#8z1aN#X*>gGcz7N9{5r}+-!KC>48%jce(GM+Tl#8ROPSbY0{_qAlP`e17lv?1v znHc9v!rI2a)jtXE-9oV47=Z8Q%X1*w4DACmFmR3@$FXV-Z!oDFMqO^A+v8fACE5%t zwB=#_ldG5)bDA71`2-baADO0U@8Rf%TlC6LVcy&G3cTeXq**taG@jmdk(L(dLwm$d z2siV^)pt9nwf#y`5gCtDKD3|<`2?2?t8vE%3Et~Z#gO6ioo@I#7rT;^uyfUa=-+&U z?JrxRvPB*tlZw>-Ybs1qHB_4QhHetP3Mct4;vIKNnG>C8wM~s9SYXCU(H7$6SF#-~ zyDsdK4ni@NatwNP43ALxX#9t!jwA&KMU^f4LNC|_spP+p`U9jAQ|TlkPpaYJym2gT zH{k8~EssuSQN;4c8<_v8iEdmi$0>6wCnq(naPurvvhg>(K!Mk4m7e!wxG_r09$2T9{H3hNp)Np?>!= zShMXCXy1BBmVK0gB@gbA%>(L?;k}&Gv`r8`mid8vUKS3eb;I`nbJqRofwG!;O>#@a zP)_?f(dDaVrat=(bCYw-w8#Hq<=n%d)~1e@DI72pnV=%Gl9@31QkK=#4vM#G@VtTu z^{)@b2M=w)Hk5+X2?cDsFNa?Z9iaA^2Itj_GDdXidT?>v%bw42INN>!ufx+70}BSR z@26=~*H&xTFXusPd@~ zE@BJ7V}~ry5>|w0^#J7OizME0S{PkeMy_~&CjFnx*-TO@cq}SH4}BfZxSu}`*E%v& zw^u=wQzAXc&+^8PxRVpv3Qf5+yCL$0Ca2qL2)B;Bg74x|m|1fbYp0ZA;IvLKmZ`v7 z+__-5G?@8%-XDf{Cc_<}2qGi)8eauWr#!2haN`3%C&}jlH^n~-FDcZ**~OnQG$#-@ zx9)?B;25<{MbI#R_lqx}kaK59TK?7$@01+}%~@;Zb57Ey>IwPm1|q`|NJgKU0X; zn#=AlT5jNu<_k^9-ks#_f+Xs_^9lFUr)fOHL%~=&?KgFUYVM*l3sF9)kve|Y1Q8>t|3hWQFIaIe=ZUKjT<6PL5qt!aLas7`5s<`hF;< z1J9?!*)>_r~8M zdo#s}JnNDBb-IGsGLn=dZVS85c~Pb=7S_*;hlVg!%s+dA3`$JLJ$d?gIsGR2t$PBZ z12V{YB^}&$#S6}4Uq_P*{J^(&D)?ky03V0vbP17VnH#Cl*3}PZzAQoWPwYL0#kJ5l8k;D{Wc$Zba#=CiPwzF z3VojV(Qw%H>m#xDZ$MXdY1kPX!gA=1cpv1=(5`+z2nhcmB5OoB9TQVvhQJJ*I4sNj z+bl+F_)Zs znM%F2b7AGn1f1{kiwt|2L8bQvyl?S<8@@0dmwb*R!^v#k;fx;JvtEET8xBzOXT4mb zV>YNiqyw#?UZCRBK*as5@L%{U^3z`oYAR~br2PVUE;dO|=p6zHi~V@srUs&_bg(1O z8XhL_fo4nu%zj~sGILeH!aEtW1X5wjOM4>Y+)rNQ>vC_2)sRVI#qM{9an12PAaJAy z>#wNO?P}LC>g_ogGt$RA_X;eDFX6^$&7)Fx8t|xm16^!r4-1P$cziQIk%mQ6IC9Vo z|0ObbccT<1W5HYE@%tsM54S?8kPLc0+Zk_8S7L5fr&DgIAx{0XmYV!`8`DzTm^X=K zcv^WQ7*;Qa*Y^PRPpt%HCnF;7%_S0od(Ccs3TrxCYC~op@kJJ8j3ugh)MP~@XnJx< z@k%G0V&02s)dj?H+EkDj>@iC*5&|YI5skPT;H;JdvE)|Lnq@M)(0NhJ{ghI`gU?~c zg)z{*lY#?j@|<y)u91>&ZV=^KLDxlxL1eKHT(1*{+OkCAF5pcPk7dC@yI2%Z3xQ6x7#tN| zz$g`I(;Z{k)bF+=SMa7Hh8otAraKuZ>eT|rT?L5!8Xv62G z&_~%MKHj4DrI<4I2fdD0qZ8}jRb2IsDnHIAPwihqG{+eqD-!fqS%+-;7qB#5k8U%x&DETupW1crTdtx!X5(xzNHCtih*2Bmd?g!l` zU0~OjfEmJqSeGF|W%#+|fw(g6=T}CD>NQXxx(18WxddL!$(B5=O8i3i-I+V4aDxic6boriI$Z|soZi4GUXc| zFJ*lV4!-h2q0}Z4Zc{EEziast^80a zHb{?1%YgsxT6!W@0XufS!QCxkIPh;TDD_Ih2R?DmX||JiXafbuU-uxHHw+F_PEv(C zvE+x1KZ<#o!o_v%U@SS6P9E_l+csUr*5!*(di!!1n+yS?HQK0X=n4Nq8=(JF9BzE= z3vcASaC8qB8Y*)j_>C>Go-lyWg|}(xx^--i6LI>?yk zGvVP)?9A;AbG&>29;g>{9jgrKRj1#K)XEcZI6IPbZl6N7&dY$iH^WG6=VM~*e*)Vt zo`yulrz9z$4g6G_q3KsDJX_pCToi(t1@^h*XQT_L54ymW>jIEY`rzN^3GTdJH5`3J zVCy_XOk5+3v2u^-SR>1(r18wQVOPMD@2KMZhotIrAANda0fxzi!bh_o^u-iEVkx+V zdwa1V8u_;X?*p4>`O-+Ww(P_``E%*Y>vouQJrnuvupGGXFR)=wHtN+0!{jx77$4dI z8@?z(Qkn&u6POCarfpoCcYDZN{u+8Qmjm{dp;&W%J}tfCWp=Pp3wE;iuICQwbo!&I zaN>Cg9W|51jQbgQMDGVVtG^1bef5E&N|v3St_TMO9B{@KUG5^s)A;b;?xv%kTQTCF z5!kd5NUyj6mJ>^`NZyII@QD*?6NjeOL%-Nh|T#IAj9@XY8Ac7W3*kl`H(b`SES?I&2Mh8p`UIsjqQ1W~8N%G=Du32Ti zG>A9s=l(f3PE)LvV3a+_t6g-+=JS#GKG&h?*!n7>m~B9htk)*fUhQQ%hpdT|TP+-7 z`RBS^a~!+N_Uor^goyd!kd-kP)@tdZxuPG9w4VvAj25eWQ=wgmrC68?(_{lBHY08d zHxgNG&rM@24_%Iai@5Yq-f8@7nt}&yDc74b$oy(Gfgf@yaO6J)ygy=vANs#B3vD~7 zgqHxAXE9W&c{VP16A4$Iub^uo4>d{_qm}&&GJkR(X0PNx)QqC0S@pY6hu!Dw3q-;Z z+e`=4AJMm;B`_*U3XR{6(4P~bkgPLK;~c+J73cj_WH1Dd#hR0tRzuPrHxr*K)l>gt zW8`w|DRT6-KkQciM|!sHY3jZe3QNcK<6MUW7+{w{LPCo{F7E<~RIY&3Zq{3H!S(;$ z=zGtru;)c5!*}rj^R_7m9(+Cl_Q&$^sCgD#9m~M)4|U*jSq#jbz6$56Dq-hwS5RnU zIc97QV#+jjw{^>%98XRoUH^rHJ1+=zI zCJeMH0{8Xjx%t)uO`znU1S#$}W6H7K*cjg|wJncTcPaPp9d=+YJ zV|y__p0a(@BK%vl0krMJz*xr|bJAwxlQqlm4x2mt`}!B{m^A~|l|(`lgu_tnFZxD| z?Ma=qr8}4ZVsf9YBW@N^++3-7=-b{vR@Po5<{^_rV4e}yu6Z+teDz^BW}Xt*T~ce}NdW-m6O&E}TZetAIl?)XbwMJ%DnVuH$^k%8a7%|z^D z0!qDj#H@Tj3#!VOLc@F!qIt@ltp6E}F*c&`Yn3*9E-Qu;ZhkOLbPL&|&`f%qPoX)y zquaJN(t&TwVB$wAZVfNSO{H0Y>!nac;zHBZo@3B=>Mgb3%g)5}cA%`EIV~1xFw>AP zgsmL~U|CJ+qBp_d`D%cknGuV+vFq_cr3ZXVn2$5UJ;Bn<7G8)-A-blMv*QPG{g-G) zD=Y;q-)qAAf7j{r*p)D`i}ge0k$O>trlgP3CoN0EXUB3LeTu>BnJMzL=<#q;FQ*1w0NDtk{}-!sGNLCi-+>) z`9e>8=cbIwA`ZZIY@3$Mts=lNVTNK#}pWRxP5CY6?*ku7@@Nr;AV zpU*Xtk(P!sS}IZcN~vh*d;S5xIQN|A`FvjQ*ZV~T_-osvM2|AOQh81Pd-;jU*yM_S z{~pp;UsE~P3HxkMRsosW`-z31B}U(Lgk6=pq0S-@d|Wn?xaXT;`i~XZT--(9e==n@ zoHhk^Olk;Rvw_32B}u=>B+ z2zWr}E9%qd#$15dHzdpS|<*Ux({6lN0AuA5ksCz|r zMTFsx3IY7{mSw>59k9+qVxs%u;|kA?$qa+z}M) z(V*`>rJ?)wA|hXV5eMceK$VaTGvw)p8}72cj{+^smRSRb;{7o-MH{PG_sra*@hnfJ zj#81kv0+sxm>6sWHI}p0K06a##)N2du|6&^VKR&5q|pm`hc+KYrD|&! zy?zG&-mt=LhKZy#E*74!xr6vWoA95dGQ8X^iI47Gp{eT)=vK3AJZG)~k<$d|H|aHa zkj*(9366k!^*3mqz9}7I&l(%NV{m14H}g%|hmJ?rlas86;7~~rGzUE*#RIq#3VW+}nnC6^e3d;!ordj%g}+6n8nhJapn6bzVpL(B6Ga9`IR(q7NR5H{;* z*WrOqWoK!`S07w+NfkbiuLt!;8JIc{j`>O#@oA9&)DNV?u}k}~mc37C+*gHp)rWa9 zb))nK%gJ}RDC4;XTU61Ne6#{s=@+{gckAn+YNO)8R~lz13kpgmp{oe;;iq~?OW?uo>++!%$%;toaYoPQ27h<)yo9dld4z=%E zN%j0nMt`*e%nh%>ed8m%XHzAJPJ%L&+_EF;%@MHL=_+A<`s1@j)v!Hs2Nu>J1n!Sm zQ15r3f(CK0c9;WAu#p~?mV$q69JC0GfmMb{=xNS{%bL3IqalDuj-^A2O)S3daYyx% za^8E_b-4c98l?UKuzBhoGE^%DKCx}|cuEJA8Y{&0SzpLBW0_iAJAaxwwvXpi;{-~Z zH-M3*ei;j*R>nKp^J^Dl8 z>%nwoInWoiBU<)LF{enF?OC5rHn|_8v+SSnmR&c%Ka$sQ#@cF}X!Qfp<}7CS2OoUZ z$L_m2?J)Ty2cEWF!0DlSP-EK&8})q{vHd1g_1<)pJ7^5EYj)$Yp!Mh+L)5pE= zpWp>rbo~%)C{=>KK^0iULPgBVXm(by32*uu!SC4-xaR=}gM;}rb@E#j*RIB9u?i;h zb3Ve4K)m=*7T1?$gXvjWNNikB#zg}0@ta08?NZ0@U1jY3xSqJatHdu637pxL3Ap31 zE4c+1*?s>BEJ&?FkMSSm?$s7%w{bq}wupwFX_2_?t`a;Hj)uWmy!+Y<8oxbb##Z-wS^}E+K2Rd1!Iv3i0U6BZa@;;=I@Uu*0~WSvGnW z9v*hXcW*AiwJ2vIYZ{G+8N8(iThKgW3cM6{!56jruuxGO6mI13Y&*=UZT@xoWJ6bV zRE-W6AD9aP{-Wk@QQU1Lop#L9sOK?emrzl`nT#|0$i!wxl(#T|f!N)!JN^<}Qr(0l@sH4Cj}B(uo`ut$ zhKS!T_8T~_h`K(%O7}jmz`fe(=xx`*DLT6sg?5ke#M`6EwOd|n9@`6_4F*8hZ)t3B zs|LuEhK!(mdWn?Mwl9&W+u%gzC`UrJ!VCy4G$AfSYv|Y;8?yblI?kM*z*{qa31ctv zidtsfhk{=_k*W#Nl0+?tnSTyn#~G6=70I>jSJ*ql&Z&5$H3tftU-R1R9Pz}91)%Ht zo6dD=hVhK$FlC<%Y>|(q@$*zk{rnIda1+J3I!DN?^&P<5R1dwvTR}h9okj>x!~ce| zaCFN&>@48Lmb^GAXaz2JO>%^sNnrcJV~KvP+OZt{#H+ zvMk5Cll5R-7e%|2t@O}GAqYHMgKu9v;LSAh0hjZKU`60DC_KTVo)V{-IAb>R>zoc7 zFB`%~23YT3A1r>L4KHr$gU`H38vjn8ie3!?+e32jUt0$D{P|4(On;2?tuGU$fvY&Q zXNXi-H{fqOHqSk)o%Dy4)AJD}Gm(}bN$v6gxba^g$a$M!oM=4+dtAjp)&p=@J{0v<`apE{N~}|`u+w>@$7d24{nbSr=bgv(MRaJ!Vt#^XvgK~T)G#g##3Nrh`zmdxd zXW)Z1AznVy(D`L6%xcYtPEAkxbS~RJAdx_qHOzv4=U$OtE!CuLryZyB(PwmjGmT2W z4~1yoCsc9CWZDxShH+8JpgFG^y#MwR!IDh+so@>j_Oy>zd~pxPq&(%Qjjbl+<}ef0 zeE}j$l=urd7n#)~!u*%Io3QVU9GnVV27zpVA>+?lPUaAPr3G4akf4 z*Fm>ciHNAnaHZBYL$4D%kB{Ai8|@F`XjB;->wnH{ce@1P<&sc#JrpEuR3Kx)5gPW_ z2VXZTQ}a_@u;H;W*!NdcwNE-+`}-^l$8MmGnCn7o>lP}vZ3VVWHHGFbX?(QJpW4T` z!+Q0*@V&Q%@Mmu$D?8ppUs^QwtXhYw^HcDJNc?^jh}I!s zrpmKE>A$3oy%RlHtAW)44cu-eDV=BEtY^>v>F;K z?!)T-Wl)#(oUz~CfG+MMyy?^AQEfT_UqN+Lsb-x|=8ov^Cd9AFI|uIP&Vq5>OZu?H)x9&m>N}+TxD?vy-g4@T& zVPMunw0?)2lDiAQyJuXW_nqJ1NC>LaIs6cakd#$;}1$szeBRRXy2gaS& zagHo`0p^d5>D1Qp+7n`|+X7aC`~FPMkb^r09+(0x&5F$FvSc`3Edm!u#j$b>iRJMc zP&y&ZKT~_1bwA8vv@e-bF`ZdZSt-qp{gjJ#D|Mkr;5@VDv@%MUUVy{y7Vz+-0RMI3 zecqA!UfQa5mAo9S!pcL%1JZG!q^0wnYNA<;P&es0x!G%I2VXPuNc9XehPJ z!IqjORJY_O4G0T>{Fm>@+{}D*Nn1gzl>O0ItsdgO?t`%h;^f&y8SYEz?YJpwC!OXu z6}Uc*=(%G*9)-m?DQYA9s_!BqHL2JexQ3+cI8TSC&f=SgZ^F5XjbvLFd)|MVPj@Vz z4c8*F$lf&>@L6XCwQdZ;q@h5lqh9y|xyZ{~hRUzr0gp1c+kP+JZk~bVF={Bd@Eq#S z*~-p}KM}XW-}v#pG(_iKK%C-@%R@WK#JjKfS&e`y8!Ab^xf{+{471!|CO8MmV!o<6 z_o=ZyvuC`Fn6WHrzMLSp(0?P$&s<5S{dq+k4J6UZ={C4FUxXJEVQe>9eC=Z<1hSvR zz{BgU&>f?Wnm&4<^Ru0t`?nmgU($oeCl$HBCM%(6+iXtZ_I&su=!0&oBjsyyD_FKp z;j8^t<|#);f)}|2gDDL}u`>`h-44WqtOx!fZl=vLaVTeN4ece4aL?f?$xpq7TMD9h zW9G`3{OcNaTg1XPaevI6;0FfaHaG!7$U3KPDpkJx%590^F;&~xE%tH z#brnqQQ{8w@xkm{KL#FsLtf{bL*$?yHQf_}nu~OZ>CXkEwMUc2)LYRRo=Z@DXCwW~ zy58np*oV8eT4Rdtdhi!aqwX6DX!sWk{CEBXZ8$6hLRFHy4U&Cy!?}ONNXUg|Jo!i@ zz8}Nceb32NHdiOVS_w4u1DNBpQ(>v)E12wThVSF#F#Apm1|MFGo4&QdF{(;(k>W_HMeeZrzIJJ+Ije< zQXC8qy1?{9*FjowFU*w9BbK&L;EZV|z|S#W+tYe*EIkK*(;kyMdAo2^nIMRgsd!i3 zlN?=;NWT*WE;UJm1K*>tW9&4@3Z12#)eJPNQ4)J&D%Z%c7T4_wpz6~O(Bor2czs5R z=ulhKRRjJ(d1&vGCo3Kf!mBg0=<(z?G$8LQEK-Pq z5O&`*>o41J?Ea6Kk3E3Qk}BfydXVniVaN@T8%E1z3fwDtCVcHU3sP2yFcSEJuAV-G zdOd#_qfiOFqqYnJ?=aw<`WR=K{lbf-qWtS#1vnBLfdwz(>9y=dBzUVjR#!XlO^GZf zolBv+^aZh}T!R0`q>MPUFJgB^j|gGE8!4Xa`7N^P$X~yk-nqj^hr|<%{8|H=@~0g& z7OBHLsrMKtIgEq1b5Ts7lC0IA#;;eI%UvAOiq>mxL&2INa>eKgb|y^4Ck>tWl=W?t zvbp3^ue&fim-PtPiF1!EU4S{(uSxe`WA44{x8aqr4-A`Tz`FPAA!J%E^GP5U22bwB zl~s$d;?n|>%ah=zpZDfUXsB_+RwrV;&qHz|z8br#>=@BcpFt?u5MnLc&TXN5Ts)LKHjyNk(9NmnF>2}DqLYi(*t1i6_U2q&|O@OveP zgkQc%UkDNCwKjnXW&~Xo<#3^&KV)X!r1DLRsDB>edVbO4%eW>%>ZlUmCr_+;P6Qn;Rq6PHQ*qwS@`=Jh)_!kNx zzDj7Ml!($Ua`1!4fq3>=pFQO+85I9Q>VxJ|&nGq{d(;oiwqK!lCfy>rZ$!8fqF(go z&|luSR6(xL2n&Jt4$$G#MfAB@G+e3@r_LtCR@8BjYthO`FDd_FF-{ zmOfx4{6f%VS_T>xm!Lx(o9X>F!jrk{M|8f)qQlQ&?D}BBe_Er)l*EtX>gLlprehC# zQ@>GD#)_|1wj95{X@)Av5mM%U2G^e64;oGvP;T-+T*8=vb4WL4ew86^LtE+Czn^HK zIgVvny)a{gD-pAZg7U*Xa5~MLdM;jyn_Z_<%cvwG*Ef&NO|d<_|6FL>o7*sL+XJlq z#rm-F&eKQy1$5Q(cvMW@O^n7$L1pu8xO_|(e}+!QjN}#E!+jSZLE{LC>g}~ z$z*Qms@dSNK!|=14rlj(PLSXDkglkH4@!c|;QS926nkn&8+}tC`fLk*{Npr$^-t)q z7KVZS55au(1)lxaOzh~egKq+_z-r?|_!piIX69lj&iM#k6?=FSVKX4@Q!1>y>xK_K z4#Rr)NbKCW1k{gqf^2dsDh@_aTPJtAV#QI2HC;y%oBsow`m6MH%v7-Y8A`9MaezPP zqw!LwFJy8DfJrlhPmyMLyH^-P2HwNm9sTf4F#>LDwV>cOE&g+T4?GYWhIhvOQ7enx zbBYv!`Q|$?-+ea!0NZ^q^0^2WoE+uFZBNFV@z;r0gb?57O*tiIMv$WU2`ls7kQ9-A z)O6tTzdXxAr&1$QxV96lGoJC@&J6?AEu$oHhcKJF55$;@CeYXIgU(z}vh}MZx2vTC zmj2e^Tgg2{o2G^M;PXFvf4~H;I$noYqAi3r7C=0Pe-@!Q+nvxrwI+@n{{}V_$1U zixe!;Ml77|ikHX3{Xe1T)EB~4e}cPfF7fPqX259XaP7j#T^Qcp4fRIenCk5gxznG@5} zT&9RxYuR~UP79pe^PVgUc#BBtkmE6l42SgK(df(QYr=ku&-9?du|K$uyN9%^xH50M z4&rmGJp62NiF&`CNgQoKBc+Bgk|*l@Y(iKG4MY@Yb+1 zq%(JI3HR9!*e=%0_MWmkPsb|uKC%XE@2GMMJR7Ne!DR3bK7hT-h{Jn(c*C`gkYvb1 zPrXU7;q4b{%sQ7>KGVm+Zhw5C{u*Vn>!?HZ0&cmJLm}wE%k9uHpjLNi`{o*oS{2g$LL0?AUG)Ze~8rju3#e zb22ec=`H?dLU2=V2;4d7gQ4Hf3ox5R1>41w>TXIJnqqThitIL(-&^E&!--( zvFOotf!=RXfywhbuvw6G@jWO4pXMhx&TB)yNFAzPx4;b6H2n}|P z@|IM+=B25nQU4{AVaDoE_|z2wPwzC4_J(4fPca9~=LvDS=|AC?<`g)ww+L@d*5|6L zrqg8-_HfVn9`C)@5p+Ewh1(r;A(ufBj7*zPFX&b&K}GW0vckVE4|vDu9R1%Fy*-9z+aX zfXR!@G0^iS&cD_|4R1!%Bh9bq@!6WF=TQh7?sVdld8{X=shwp)k3o2`3ue8r14Er% zxJPd-Y?Zx94^C)s7K@MZMAYK2;WFh+)@FN4cBEqrn^S$G-^khjs*U_?m>@U*+lA3% z)#w*p!Yf}r1tikG(EEFrz_Im;WTC}OSncTwxgvjoXf4@D0jnZ29s(Csw%N6CSly!pU=@gXpjmB?l_rnwEUC?a{ zASIE?@?7cUmT@9o!m<{c4!TUuXdZsp5XY-n8$z^8H{jbuLog3jWnKRXz&NnpuP}xt z3<_|qa!!#8TY_+%xfVTqzmuNa_zd1DiE^*xh;xMQJfXU0#<8h}-A(8q-6%2%zgC(- zz&=As3Q0A9&6)A|B#&Y$W(Pm2_W;<$~bik=5WC>H;4QEJTSf17O>r zhI{6+{GtGt2-`g*fiwrC-&a$;T~hoA>pG(RHv-PQsq8%`1qVfA$(;H+=D*ah`1M~h zWPggqMZ$5Arr3$~?o(j2qLt%h@E#Y-onr)idBpJ+@Y}iU>^CW&^ISuXe?{d1Ja?)B zgVG=p$luDV)cXtHoib6(rwj%Bdtv92V7oYUJ_zEK4{U$#tN{4Yt;X<*lyR+T9=2RDVYn4B#6l{c z7kl6)dtYs1J70JxA0x{*FwlUk0z-1$FhIk>%=k=-`ktmzFazM>G=Q zm1j6C`R55vH5bV%!eEUfN0& zs=UFrUy(2duTWs?1=NzWVm@h_gWRwnX>PNFS;t>fpR3;qHJAfi9HO8rTAK`8Zv)q| zXxLSFlYCt}8z*0p0hI4E;}`6+}hJ`{y2y==$Pii?;SbpTMt3+iS};+lOR zKY_ng@GL4zhrv~@Kgo%*#9W;VFgkLumQ3wp&XNXlH$seG+3JYq#__Q1^%=H* z(4QJ^&!gF_-@rBfB%X7gjY$D%un9ks)yGz|eDE-R=GDoJ8wH`AQ#4aBYC^th%VT|9 zI5m;EMQsfoVacm>jFOpyf!^EjZ2x9dPtL)4y&{mj>>ymbHG&sctwhiEO!{x;J~j`W z3SqN@VP6hI1N|33^2%SdUvUocd7VLKio_As<|iw&shHHXwW6Lz0yov`VqpTNu=`Aw#niX~>B(l!!)A->^4{e#g4!*QakeSma zkv8ppU{N0i4B~9Lj956i6`-8X8O_Sk>PbTSq!|~eUM97kF zgriZn$=hl6IFOXW)6NnijnX9~b)pI!cP|Cop6_xoqC?;)inGHhv10I04Y9r9?Cw6La<^SwR&p@%OnJ_ zzc3%Zd{x1bzkp27A@E)t4PW|{vFTDciGO2?bNoHw-FkK0yLk?7xl#!C!3bA;oJ=Hl zuwBAA3yIpki{SfV2d^f~3jIddo<~7>*rK-(G|H!-k;`#<^mroNl88j{etSITk$?v6 z32?oE^~E)q@WwUA$@}3Tnz8l(SVsM%x~yx@W9cD$em)LGtbFj_%Y1qxQwI{oEI13# z%)rvzm2mLB2E3`NA@oHUbsfoocS%yzAlicD4aC#(#R}BWD;TP;=);AOqgZxu1?5TP z;ENTHX=auUXguj5hl~Qi;8`-#>U(5cojJa(KMj*(%Bgn!jM|5Ki;2(NMlz4=a~zB_8=1PzdT8pki=ET5?DY3^SYDe0 z50>^a&2@1Q=Dd!*kI%-UbUW%h(*dqV^wJu~vpA|$09`jiQQ?#^BRa*6iTmKhgx}i@ zHw&L?GX|>lh7LzX}dHC$j3{X9Mo94MG;-rn) zu7?n?g5+sP>CNAhKKMB7ZgJJnmcRIx0H|1+ii@*ttTiEcgqAH9-)6nBr@p>F>syI%fv?2li0^ znml~^h-Lgz3$S#70P9$_qtzUChA+DeN+k$Pd0|24SGhS2apjbM1DVY9j z4FH*z1oUNw2nN4k4jtc&6?c{4+vGA5G|QO`g+{}9rL}Bldnu`6`2ZKGN+QK5;M7`G zG~HkiMJ&JSICX%mVi~^Bc2Us7Ai%IJIBj#3*7|M5$Dx<0is3fGQ_Z2X(nH~$s|YTt z|4l-|FL4C-KVeMQgfJ`D%z&jkq~XQ9rMNS75$(FMrhZt-%$A>EE5N|dQ63?Bdku{qjymUU6 z<{t!;3!T(hO9BcU<=L5|JHGs5h31hlu*Qu8yj#X-q{HsN{Ma1g;4)-bUx5C*c{C^Y z7gexhJ&@BY=)+e)jDNA+xv9E1Bk?aS-oUc^QWA85;2ChQxX&Au>fnfud*T!;)?@bj z9~o@Vg16D7yuj}n^nTL{u-%@*c@u32f9#@xuN_44M9W#mxezX-I`WDhT>#<3cHpde zm0Ue)0v(yA#5dz2+|YE!x%YZWbUa|cb_5;OlSaeEDL63sFsf>A#`#8Jz>6v&w>Zx1 zT_cRQ%9=36{#j7BY&sfT&WG(MR9OZq1trd&V~jTbAh%`H@O%&JcFGFHdAD*P=ks2C zR~ZIpSU!ecm;#gjyrDLlyRpwa0^IH6NQuf>gJaLPvVGX$kXUt(+_SBrnlnF!a` zhMR+%Z68xso{3*CCBTo`7`*axDF{#<{1T#tOT9PaP3n1U?IHEVqhv9g6<}uw zwWzE|val5W3`7ZEIsh~VQhD0TRpE8URFrko$EU+`7{T^$JV_1(^YHT+d!(#(#(y9fhK_|Dw^?Fd=)F!ox+VamQ8Q*C-xYgzoUlTqbs2P@KHDxV@DR32jkw!0q}T`-Py+PfwVX_!_yW5(SDa9 zC^Z?LzsZ0t(vIkRNR`;D*TI%ss^FmEhS%HjP*(K_da?CEY^OW*Vx6a_{S%0RZxX3c z^aFua+K_Na6NH?{$lbY<&{&)8FWi^{Udyv-sfaJYvXAsQznDnA@UQKWs)UJO`6#Hg z7QFv)K`hspw&)mOo39FX)LP-p)2t`7FA)lE&%k?4NtiY71nAlnL#l@diq7Fe-=yXA z-q!Pw=Jty~Y%tCIzMZ@+Q6O_v^XLZ4qcH9k#2m~`B0F`duQ)oT~zr@25~3t~L|1*%PPN#z4A35H=pvK#hSUNUGm$82EXG)IUAXF2NF3Mb!}HyqyrV63>`q-A4qVd&+y5L;=GY+E+W-?q{J^3t10>e*KxX?->fM=2wsbz{75pm2S;9Q>?OQO*H6;<^f}~}{ z4}#cU=7o|oaKEw;Z_+ClobBC299PLv(?%n@@RJzctm!2V>z4BTy3@$!@A0@}mNb4n zH%K>aok=a0Ym%2j_V~8$6Wu~A&`vN4kHb_(#qkDJ67xYdeljW+oh5P84`R%pzA3F1!2o3L?1<4LhAJhkc{($%s54I*lRTudWI4gmsrSdmP7Hx z^^hS_%dwM}gVf_}ZuW#0+YcKHAFWeKV1OVvX@=qbN2_svlQ4TP&H$_Mg)~+&79uXN z-JtFZpySw0^7~T}%-G`(0}Guo_a}q#H6u*=EFSf~*-Nue4pK?!k3`jM8n)H@Ax9vM zE`OcR{0Ml%o8#?>A6eFCeQ+3#X|929O6P%R)yUHeNh9a}YN00Xfbz+WBu9Q4ERh5H z{$VIpPW+GgAkqi{UW;ISFaz}>(m7J#P0Mi<<|~ zW5;>kc18uSCd8t`wqPPV`jt2rZbi$JVKBfn&@}02+)`75Grn457ju=CRra&Lzl*Rn zYdwl4%hC@qQ7G!JjwRi(n8Ddfw&@nYa`7%A+#G}uB0{R$7QmHzOHt+NOsJl_ity)O zqOOUez`0_CP&rIC#R|a_Az%E~d5Ml?xkJD9B~YqgPQMX~1{pE<_OD9q$LW_~J8ufn zU^}%{Sw3$$>xTYlX~L{b^TS1-GjTGz6S#6Xfi7ofuDcI7;Eqspytn%t=I5v9PLFF{tE+Cg@0?q=#=EXD5kNnjXp42{>mqv;_ZK;l&d(TvT-=dZh1*CdyE zBs4(ojEk7*I32Qt)M%W825xB&CKE}CpmNm^Hm}+XosRZkeQ^`0O-;e+-pi%bC zI0sMkf8sO0v(QtV3itNy1YON?=#KTqn93($K4l#Z{3wD#TZ*v#^<2{7{fx>q7m|28 zGaB&}*gK#Qv#w$zEb_jGF2OV5`WJVc6=e(aoJ{DRtsHRru?B0m>5^NTVz_2YJA4|; zz`J_)pmr#S7sN6-K?9<=C{BxKc3TRH+_Z3Ppqt!V{guvC`w7iowvo!E=kfLBRg3% z17H2$%#y|I`^@wX?JLg4rE&7ysy8|K_n;blSaXIZP)~eW5QM+mDw*T#ta{m;mE04y zlQBr?Ev$bNLEA2Our7sX#PnnZb{x@X%(tk}yUN8NWS*;n1c< zpjvSl`Y1aGjue3M{4{#^*1rdAghA%H`f-r9_h8oCm3s11l>-im2 zc<|8wCn;OTR(DRSQsz!uHebHY=`FsL)yJyBXqip@dxi~Q1_B0bX7_YK1wg-`=i_fXL989ESMO)h{ZFk z(fUUp?rHgnUb2_T9)-&wd_;`jSu~BCQ`|sBf4#s~%k9WXvSht@%FLGJPHI%(O$x^K zFf9T=G%5~?rjLMZz$V=F_6_7*a6l=EdMFRcC+4SmAW%FE631GRnWYS|Edb&|-4K!0 zPFC&7t9iq0J&1hqth-CCR+co^?hq;05;$cvRGj*xs?G<#M^uwIZL+3dqKk zx4N{pB#X4>v$@0(U9O0{H}7(+1PUoi$|<46G+v$up!ackOR8ErYF10^m_i>rIEbyDLo{BZ-~$RlX*K%hv7g~0z~=EgveQ}bMj{h zd_EC|E=~J6+V|h_R!(ccW_2TOmFpvDNH?cHCUr2Ywsu0-_-yq1^94^0OM#QjLNaCV zG_J9u8~#YE#cLNI!3qnucSra*dnOab2XfNLSvf$$txCwylq8-ewo!+V2UvH%FxIp= z5%;NW_;r~SjXLoVXD7;0jq59kgwk@@GED}Oq8DP!r>`{h*ba>5%_We}<~>jVKEAn3 z?Hcd#q)pd@SwbG}<8L7yA%%>+zW`RTGvfvE{t&t8CS83s9?mN+L$5RI`NiW$NXZ)3 z{n(v>_l?caVTvD=wu;jY+w5S@$PSqFcNVwrTs)ns)52UMsW4QU0zr~7aP*KRiGQ2` z-1B0fxoMa*D%)deaWZr-`N5RNu*{+13U2lH7tH>v@pQmLiEFT^h-a~G18>h#HBNZN zAFz9UjdxW`7;dL^LW|ukhN4@&Q=wF+qZtu#AY0 zIc`67k|}tbhR%`8K}XPybe!>Fw)N`qbL3t?MAJ*^V;_dz^Y1cSjCN7OOcl&EScIv& z{v*G(u;)-6UGAj|txV-Fag5Rt=K9Jd(RbM)*ndw0<$GmllC3oge@)Y zbCJ6x6CYHmg8`daubkRQezU(5V=9ks+X^vo$1H9~b2>5b5l8dFEOPMgSBl@cr0+uj zu_wX6FEv9$mjiI~nIlSv5n@(&lLo)Ogg0hT{QBb+^p1JL&za)kqGK) z8*s<&L~xeY0#zp;n5LLWn!1BP^^re37T${zBo}wsY=q56YiLu!Gv3nFOVG}r4VV2V zVffEGWJ$nWboIFgi&T3tqGTuB78j!h@+$aNxSn+8UxsJWKCrme3|!JLGI62lQ1sl6 zd1X@9|tCAXuS`daX3z&RhyCOa&}(X5{BtDJ#?>84@mgeljF{{pf>Xs&cC=2{;|IJ zm2C$>OX?+z7^i}s^B%}?w8PQ~V@y`xiDsX#(TJ2fNUIry>_wYM{6Hoal{ixGs90>g zc?EOr*3vnnt7+AxUidM{z$eu}h?j98TemCG#<&*V#1%G&{j>mN#ZQs`>GhDOvK=-@ z|AW_A2XRc=1=Q9E!Z(L-$|*aBKI}blU(;ra$9z!f7Rx3!nZQ;tZBj1&3*w#UObVDS3chX`?#IBQo9_b7QSNeQ4S`pTuB^$=EGP(NKJy2Kb7RULr$nQ z_w4<7@X~7myO#>Y-Tu!RoAT#$@3M#RqDq+>%jIK0%R)Gydy%)1w}89+gdzzND#q?T zmMD1n7}-533(8k7;Ev_?5GKMNJs1I0|8a$}Wp_YuZJ6}CR`Y6)=Yz9D53_Ic|fZ28m?t$^ei(7fvKLE#!YQRD{{;X3)6$7W|B0aHmuUm8@V{ zs(f#VxnlxeCr;P;PKfi%bZ>)Ca5O!do{Y>kNWQHJ{ z{h8#3A13pGJdEH#e4%@8xMtttLw0ebndAGnDaB=Z@9f2LY+`V8aZP z&+;xLoz}wDM`GL;<$16)AldMRb`9fN5k++F%5Xz{r}6pez8H1H6V>;O(Wa!;+`yN! zxPxX-d6zhjJejwWloNZ6^`feCe`VhQ_kN$7O7oYBN|aJ54Mkdt=y(1AFJ8_)_k7Rud_M2DHfPqz zUTXfq95_{#%{i|=#uwog`@6)b$cj!IIRq{fg zX~pPqfddy;&0>tsaB!5}uluxk;`xn&9O;suATc;WuQ*BYTX!q*J!SsUhqjaX*pz|3 zW2-o~VpPFv)k1z$WHyBEUM0tjXp!{BNvbl(ZP_r zTp#UGlw7p4A;D8($Yjy^;PiAV$IHH)l&$uF--q&HjR%+ZWoU6qZ%pDe4Cp|is2yB# zx=t*ULqL9|0n|UN;JK(Y^QJr)qOS!bF+}t%WT$kpo-J=|*svWQ>|}f7rlS0lF6AJU z{Q(pj<6S66AwzHp??Xi;6nkd5QuP()Thi6%=k(ow%S(a}@gfORAUKV!e-sDz#ohM-R zoSfbJ1%s9E($)nWSbppS1KnkiTy_TMTzr5JME61U{WSPtz$ca6r|5N&n=B7Vi1Vu^ zj$D(-g+!4=?5v-U){n13#$JYgi=4Xn;D)Fw%P|0`Fzy z;FfuahP%>HQfU;s%+g@OA(YJ*h2k1BS$^ZbN&JVu??KM+0JZkZ!&W^Ab>=NN#pM^2-m{xC}J5G9eGrC>9Yb$NeXOD6bicG&DOu|8Ui#z#8v z>xBT?|JDh+z6vvz*UiAiPKV#wIzcREcQI`jkgB}&iJL9Ump#=*ZY1x8vt`$? zJt7}2yyMZ)z`59w77m4m1`y2eBPKfrsn*d+{0`d?lx#_WZ%YwGqHH@%iHF~ z0`Bl=kse;lP-gQdb70_R0X=iz8MS}Y4nMA6<=Jc8Bs(i>sM?lJbL%b&Nr|CQF8=|7 z^Gw)mV<#5;_Y=o8*nCOSKAgBW8#l<#rFWYKi2mLNT=hbn-|Ek1`-M`t<4-MV^L;16 zcQV6OQG$HU&C>YoX$*)B(OHk1x%o!^*;S0^Sf@Zl>u;{NQ)r{GNR>s22uEa8?RA(FS zq{~;39*;qxn;)UR<0hR|DTz}*d&1zd0lerC11Z9~P<6@}=iZ%;Pv3}xS9jop6?}5cI3GeaI|4id({N2Ff4*g z$I4-;W)J;+?h)L%!@8kkuE7is4c6;0h8EmYU?cb#b;VUcu1$y|yRnMdC;f`9&a}rc z_Y_Qw^+#Q;AvnnPYweu`IX-8?VYVB^Is8I2n`cPMJ2#-(5+UqcY)^+Gr-07+#n9g! z&F(4hg5~MYR4`@?v%1+i#JDLO3VMYr`6(DO*#;-M4l&hfe`xCG>CC(Dxm3hMgwHk8 z!5i20;MTzlSn^DdXY#77Ine1a&hlwx4tI#7*YGG+9xTP=%L7EgU6|Mp+L3_KbI^0X z6|X#Xfre2N*r2~2WUC#q`dShwpO^VZ)-rgC?5Rw7E!ib0lRyWFtEf6UVCqW9&v39K4?H@t9%4$HF5rm z>MzV>^AdP>JQo)`{-9Ite<8BDu_W)&3-U&s4Ru=Yg`L4O;L7q3RI;Uzyq%*53r~&1 zyqqD6)h3a+Ik=McEl-Eq?qT{OF$x3Mnqc&p8ei@o>n>LtMzMw4;c{&*g#3MmtHVoB zBjqY@U*J?IOsaqgtJTbpL*?YqpI7jgIe@QrF{rpSiC5p9Ms~HHARZ$zL|RA>Ta=^l z){cJ2o0&vSmX45@VLISrCCD$ivj+|DZD95#vtHh)f0U6HfX)?{i85`b2`Mx1a%nRi zGgIJO{`P@b&mykY#ZZdX`k0m;37kLyD3nta@uN;#+ zlA&tWDZJtIi&|Srg7?^y=F&5o%%I^WQhH_<{HOW_mS0Imbrlg*Ked_GZOMmk?tHw` zHwR_kG7#`7lNk0GkfQCnOk4LwSlO2jz6EJ;Sj8PHyN}_ErU}qm$j;yV8z6A(8=f

4U}PEh%0*Jw$kU^i##voa-1%>o}JIW zLG5RsEv_$PNQ1!%SaIww!|Tq665$cLry>M>K0U;vlkefbpm91orW$>=y<~j;UW1LR zzti=yDa0#u5?NvLlQyg&_@IYN{P#|SCq>2Zdj1M3xvGSB_4O(&uW#YDs>YJ8$@>7} zsx3ZUaK{kik1$s7kP2sGplcMA@pg_ex2_CH=mx1htk5;%VV@+Q_~?%6xv0=ZE*A^_6BCx^gl1&R>0Ayy7*0 z(D_;9ebodpZu>-JL@iMAKnPvi68Y`36YT%^;SC>a+>w|K%T8$$ z(VJ|)aYiJTWydpHP?;m2qfbiRw!&?hHeR+9CIjlnT2_^@gz#z8?$~#fKX-~HGgc+Xt!R6wGSe}+OdH~hpXYcijU-Y zWDXA7z9d@v>~M_j=H(hoaJ*%%(ngU|Ugn#{u=Q*O9gndF6J89;XGoC2=j-soha6D0 z@*s&luBdz4kupoz-P~e%K2tHwa3K@*e<_j7(Z9%56@!*ftAQXR5%Kb>mcUks7=+Ny1gifTBrtSh!iA7VcLW9KWVVfUbz3{2CcO!L50g_P^w%5EaY-QT4+A>?dhet##?#M z)+FMM22G6GnM!?pMc~cgZuk-F1YcBUv)RrP%%AK4oC8PbtiBnjpD%`{?w6UtBDTND zI)QJ$YbJX?U4{?BSx_cz#(a3a0U~BkkOsX7dQv+H!j5Ocvix$3`-QJ)Et{#_;LJL8 z*HrUv&Ur{zm|O$zpeTCq=^|KAa|6^ud&oTTMeH>TVZ4Te*j%$EOnAF;7dEToo3=E% zdYUQC&3Xo>R@xJ>!{KnqTaj1@sN${L#dN&o9C;$Ti5mUw!0LzPP{`3H+aI38tBH}I zB+Edp%>~^4K^t0Lvka)}L5!T&MK&LFVso{WqLeQ^H~JqG`&2TeJ^@_a*i5=uC7aj? zhmyAQ*BQTqOEK<-4%Wn5GfwycJ-x+=l6fEf*(eN77f#~~srlqv>`ywJIUTKy570X< z>QMaf6CRlNmMEsYp)=8 zk7=8_1y-offy($Q)?0BFeUJEn)6xLQty>Nmdvam3oeXAf5`guyTY0P3+oJ$~oC(=5 zAEJ5|QRO%hDz3T;AB!KMI(Lmg-FqQCOJ7X=#)?r&#f55o^@TxWE@&&BgdN+@VwAlL zZYz^!p89v!d0L__WW z!jEebm(Tb$nu%Km11z0E_i(F0jagC;rAs;Tr~cRIJMM)!+YRmIK{x! zUllB?-5Lhv>abuim?jEJvp?%jFIzsP>6PYKpW4j+j%FNFdq@RXX1KzqKrq?59U^xZ z(Zd;eFt14xR~XdcWoP!><&}uU9-&APA zF^4ho-$6Yx6fvJJdBL)ij#+z$6cdo2Ued zg=-o6r59mEHtX3wCJH;PSD>b54&)wEfjt9mJZ{iY%ul??Tkjx%9f$5Q-c?2*L3YDR z*Gag}VFeue+X!90C1^0$k{4fHM6@1xqRh5x?AkROD}^4>-;ju-SdB_Li;xcPrF!lm zFkQb2Z*RLnL*H$I?qAP%KeSSD+HZ6G(Ns;(x-7>JvHI}&o+Mp+v=-eSv0Ss$vRK_U z8_oaDhYJTU(_ih|NaD0D=(BY)BnlLf?blfb=hzG0{K#hdK6W1#41Xd~C7Vf8Wj6QN z`%Dxl&7;-3&!C+4NqR^>2Aezs&{r-Mat`LPJ4G|RaxWa_)jQ&Z=ofPC+yp_L(n)q!HZHk^pn{* z9r@u1e{&7sy0;z3bV{?`a8IbNP{Ggo23YlTkgl&^i^t-U*}eZSuDPuvl^Hgp{`(s# zJsgWBRhwbqjbhAAup^15?2%egy7cZZI>o63Y<1(oq9u&fx=+PQl~nvTbr!JR5|#-DFO9t=%}A)WWs zWz>nW{ks_2m1>!2om>o;S&T)2zMw9b53ftS@z(PH=gAe+)5p;!PfN;@;HAdJ!9J+Zqnm3MW; zF?d(PX1m$Ug-WC~9OszRPN^aCxg{R2wVj~4YNdF%HS}7ag$mfCqU| z%+0e?Q1hoR<_<;R_BDYRXmA9YhS~S@sT-)`zZmeCvjtsWu=|0d5ojQLgzI!N54Rbo z;Un8p*u`VH3!lTW<>PVstU8i+utpD@4V%c70vFtspNJQeRq3vef2s0edEhUYi{#5+ z+G_uV^w=ICjz)3lr4Rh?XkoaBd@4d7UgNg{-SknU(yR4ZSYM9z+Z1| z(0a>qT(#OAUIm@O)aM2m>MDy%#$VC7v5my1UI`UN9?@FwVtn~$7i6p%qrv<9iA!Y+ zj%@TtQ=Qi&!rqGtmHR+r-!Yn7qzz^})NsgCnZCJ^N{yQZsS-yX(o}BHpf@ak$mTEa zd~Fn!?An28rioG)ny306Ip;$514ktUy$0RC&1g=*AI zm!vn-7dw~1?fKz!Pq8}ucs3I~6QnJ&miZGokFzLbsFH||E>Sbv$*PsTl6k4d0N`A{R_*_{Gtz&`wc*TZ#;mUC%A`+;r^FtjO@My z{4x;--!rbzm*~i}y6q;D<=I)jtuBgvw?TjH6R@T}gSUP5d8!!BrMoAVGfn*ja@{Wx z*ZB{Ka@I}SxV@GnkL82)3w55!x%<31{gIIHriJIV^9d&<8Z%w{>GZK>mA;IuvzJ}}2sZ2w%U`ZTZ;Olh*d31=7l8J|LU^&Km{j&u(wPH?={!w&)XZN8{VTV^x#DHy zaV3(gW=ZhaG7o<)onhKZj6?2@Oo0kf9_dEDMk~S$6;twlZ*>%++ntk5U5s4 zQish?EvAfag3c%G|3W7h^y3KeeQre@v?4(G^g=M(GKJ)Rd&r~?H(NxQTk-CUD-hG) zMkG+f1fH;5C0W*8qj}YdZk>G)FUyL6XKxK@bFAYDHlD_{eG5pnG0@I55KBiJsyR@lAh2e{PP%h}J%0V7HnSkC)xkM@QFNr@;3wz|;&~!;H@VTdmvbs39MQ?&v zhAYuP;uxk%Sb?^z1PS`J6E&2=!Qx*&Ev`63$EgOaFO8uQ_fNpB`X(ydH|k80w|ze00#lW@vr4l>t|F|Svhq1y*T;oJ3}JiBLeiPW7Sm^*I^ zSe$!+W^V-Wez!RY`Fh~#cxzB!(!=EKIR{qn4e?1uJfk488N7?ksnEM25^bW4g9{(g zq~Nod)xhH&^HzqZ+zVK`<~w)y=CzPLlnSqQCE=jeTv~WohLk#{LD~2!w3|&}OezXw z=>>MC(1wR@gdu0?Q{v2aRQe($;p{J4d}z`{Mb~)2TzVX9*pAOu!J{b2GWs>1bdy`w zMdav;KNiA!i*Z~vAIObS#^FRV{ChM)A2i3Ar`eoEzTr*W5x5qE<}HDnJK}IpNF3&5 z-zV2k$e=^pQ)<3643x%y(cV-3FnNb16h5+r2gNf*L`hQFsD#iOi??~73v6SZb83i=+w__P%2IxhenavM2z9uPK{PvKG>l!zq z|Kl3kVxEkhHU3bTxE(i+vhO74K3ND?Yr&tdli}d{v-tOS0u?-B3WMua!QrDTehZ%h zYJY;^-jjOv-RlTW+!5jjPG3v!)J32&`yNs1+e@v7J~G-1H0T>6XKZY$z!6g?JQshE zajg}mh zEN8QARyFu1wgEaHu^xgAjgTS4GO(|{qaD+JlNim*kZ~~*pC6nF{!P>2+2~=2SbGj8 zf|Hnq#WHj#qzp`rLukc(Z3yrR=4~!chsVLK=vxqnU5ZTv<=nu1z=Tu$yNou~UZA}y zA3!W*GKyH*quPvp7!dy%6JmNnZ0r(zsn|tFX1)cln}j(oc9Svc7U7>bq(@dQy-i;Z zsBv_gbRacg5a+H_<(v@MfX|ZUaQ~J@#8b{_=`fFF@#ZjUm-@{c!nDC(zYeu-H_`rT zH}I=>gUZTUdS}gXwDZ$Ly(7*R)v5cT{o7=^Q}Ha+Cp7WiZiv9o5P`8Q>%5OR;;~t? zvDmGS$Z9>O&S}3fG}jb49zr;yV}O2T_h<_>K^fNc?A=39JpfJ1{3ycEVeBTr85%_L7@8|m@6Mc4Z`bSthNz7%HqJF z^f3H;8jfiTZ$p>Bd~$xlW%s=)-wg9T;^z10eV&;Z8aO54N4cug7cY=8c2&!`7KJ@&;NsKRt(v zS}pXx>M+)yS`N0?9Kk~|8($b~W&3WEP}=P?BT+k>5&cgL%uhNnQlD)=Z1pDiK3kE$ zzxofZ;*0QS>@Web<&SXtj3jb%Wi&OrI?7WY%potIz6PhpOd`8tH}e0EaXWV+c$&T> z_fAM~X08w->&lm)wTvI6-yf$J_X=~?&RmAc_EX@J_7ga}p^4a-Dzdph5srDTBy7md zfp0EDbi2AO{P5BP1<7ojKQ9TQ-n`?Ub`=3fmicHjw;In+na1W~v`E`G0m$-;B9$dV z^u;T8PEEHZsQeuxp-0W=?@}kcG3f`rpQi|>_8J)V>ILK)T9HJH&G0Iulu?@O4+oOZ zqwMz!O)bf8XuE$hm0vm^PEWOhxAkc>r@anlw3Xvmb0Pj_J2^a@NL*jDLhd80xr{UfNhr#K3OP(1Gc%aNzBCJ)xYVS+G&w2>r|N2K5~g9ofLu7Vxrh! z-v}0ulc8_Kjb%DH!QV6eQ2fA}&F)`fco%X=%%+P(GAW*1ZMcOgw}$Xp4eOD}45TBo z&q4R$>pa<>c=Fb|1B@kiKtpRk%TqcG|D_zFiq50-^&|#l#D{5iY#D65BEbnAnS~XL zK9k$38{wa$4em7Ei;lCWT1@5KK^18O&WR&uAV{JND+(1jQ$xGxzMK z$=!y}MX~7d%$DZW+ui<{3aQ#g%oT@ZvM5oEBbqsf|8Mp* zj)l}mkfW>@Md=J&yta&PvChK^bI&Hr& z-|KlYIHnEY6cJ<6GxHa2INL&udz3MIpc(~ttCFCW8hn`g0+S{Q@GrnBY}6d3Kk~v! zApZ);&4|FfRlz7R9)UY=Rm0RT!klYEio8qH6tQK0134PV_T;}xlhlT0v^F}7w$h@! zR*zVkX>yb=AxKMr-289JVZAD=;urw3eRiD77_qw>VYaQp{##DHI zv=v4?+K7zCR!sYwfUVWQ@fqrbIyUnc@pFJ4Tzm<7k`v%9X`vE3osKqJ1V@?eyW+hRH=6Dd+%LzfM$RggPWgqav7BSAdra9nI{2Gm<;^=5} z2kL9a;kEjB{2?RC-#>pE^fwxz>Di;$Zg-a0uAR;=9J^0fu>OT7?I}3?vXfcI`9e0W{j`igkkD;_OV zDV9_SH-+v$ZNbHcL~e4D&yX|KzRLVD@cCI$90}TB=5;i zXjqsBhALWA$lMR@R)~UWnkHvfur+h?vIJ}`IRoWKud-PL9?pBGNM`Ap;*7ud;E3K+ zRFSNp+sRM5Z`xndrD2P|S>IgB0SS&&gdz>UybSt-5&W5Zbcbv_{jo>{AC^>u4ZGuc z`E{7o`0j{kc(u*TPC3t$O4ku}TH$-l&2c6kFabC=Buz$saJE?JC>bH*4SO`PP!?5$uNluFG0HkPV;WLTNn4Tno_PLQn&SoLUPehfo zgW=z$62F(0g42A!9Vj22=ucb1G)FO>y$ENX3rxt-Zw#{ z~Zaqx?SOJbH z&gjn*=5Kqk2qM_e@Z8H0++q`b{>nY(C~nyg%=Ft}$;^fAk7vUwk5BmO))svE=p5Fq z7vo%KGsjccUm>+AQ~7bMljNA;Wh|CZ!TFZ0tbcwVj!Bi_n5!IE%=ko;g4mh+C2fA` zgF)DSp%B(}Bv9^eIaD=bIq2;l(T`;$eXbDzqqQ%H$f-@>Gj#w%9Gh9wc+BbzOj7S4YL1R@T~rsZS~ipFwD}w!kDc?b83pe< z$#nVA78)Ka1jaALI1Mh=_=(N)^Ea>Krav~~tCbpYuD>jVFNI&J*+xZjGd&3}oY{ci zcO}Ap6$8!_hXxWBmxxNTyP>4j3#>LxsF&4OuuX#J-^zrf8H1s^Un6JO#AImF?!Rix^oJ->|@b6+fpKz66z=Jgwg(Thp#&>{Q^?_P9;*WrS%nkx8NbXDO5*mF9E()uo&l0 z)JfjmdIg&C=^8xCo&|o3jsv7BK>F$yw9;oldG~KJWl}3~+Yk*8TLd^|a%|S2_#;XD zbd#M|yo6T)14Q@nDN-7K9d>vta!#CYq_0Pxf%3ACNWSUu`!CPuaQAA0%dGi81Eo1) zy^ffqABN6V`s76#g3b2zc<50BHL+^LAMaz(JNYH;@UEku?>~dB*Az&1ay#9+L4cTU zN<_sqqFD#$w`$pb9_cwIL zcYE^2n&lYeCQz$60`OJtFVFkrFqj-FfuXAR^!tP^JF$9$13h&t1F4Z^o5^tA46^L_ zZAH}Htpxq|8R2PNEB@k%X!yFXo0p-RLUUQa&2cvszSqc1{Jq+kIU4<#4zm0`3xi&s zFEh51P-L^&iIqYj7DB8x}Z z+_sH(cdsfDvs7Ta3pyn9ust~4-A{-2?SZOjBa(Dz306f-#`(&F@S)2Z_V3Wd_RhJW zapN)TpjZ$4*sf|;q&7$lC&L2$`}poA%Ssu01oyTEqLYh0`04G$U;BTd%K|$(pAo=W z3!d|${bqC4niSD&@#XwSt5fig#CACOCk)roUBDX<9%L*j?lj z5ru^`WSt1-*X!>z)%83?YaU`VyG!ApW;y-tFomxitWilXZSjLECuP!L}F9u#(5 zLaDhrBxTQRw%g`TFYG-5Np&5$fW?p{tivLm9=b7;2NHMD3NkG}Wb-1xt1m-?(ggaG3IAeD$(Pg<8b6%z5Qk`&|H*lJy z8|?#+ExD+Zo{rDLR>I$lpNPqR8J3S=30qI7;DZ6yhY+C1zxqlQ;%~-z6hp0XSE8f#izZ)Q4rfdb=o1AfU9*rsqi38ZPxxcNjWm27UIfn9gh__fQW7IB#2kMu z&3}5)h2;jjFy~)qVZqBrP<&-hxu4IX=L|>kMJJc(61WOyW>?{)LTfyBzKyDktf04B z3TQ(3Ahat?;!Hd&$IrLc;kt`?^!id$Jhj<U$M|_E#tH|Ev#;UOU;Q`V`(@nap3fPzj^=Z$O!l??ir4J@8@#Iopkv6XU8X2E9Z$ z+a1@lGsY(TVRw$Y@4bR|zD_3+H=^mmBmKl}Oaclzr1)cZx-tJj5Am+3C-c_-B%<7O z{5|#zGDE|m^x6=98{UA^>)N>P$!js|{wlbhDu-@Tmzblr!D!Y!Mwje$h3mqL_>I@I z(5bi9_J%yANB`VIT8AI2Lt zA;?o%3Rl%5c&^U>Fmt~Les`S17k?+pF<8*eNXs6gE1j(|^r#I)eu;tL(0Y9Lcy8CDbz}I2)*tV5S#FAM1?BhWbZQYc(Z`SzS6)i1qx`oJO!`t5bk6G%Rf~jMzJliwb#K1@z{3hl>jq6U&`_m%FO9Km#w0wC zU*TPQ9oBjkg89vH6#edw7I(Di>!a3m&zF886fq61Y}y1meW~zwX&XsWd4$uCe5NTE zuClouahU8CN=jB*(|aASiI5o|+!u^9USega879w|+a^JM?rFwq>;))q?I%TYVz}^t zGW?R1Lb)5~anDO}NZ~oaf;&=F!FCC*-66nKI+{Skc@=!cW(eLs3`CNB2z?c@fH(6v zN-T=N&KV78vD_0j6joyqyEb?ex)>tZe4WZb3n2?Wk&H{{u z-4$nAG-|;ARagy+4qQd|p+fvw62X)72;(iQn~LjaWWhqA=O}HyhklPIc)Z3K;~Tj! zoMDQ8%llxo7|ez}5jRV5*6C|;mmNNY%~fY%M863w3dA6S zX(35w1P)*Lz^l7E2MnG!!|%-^oMLu&P?NBQHyWT%Y`1AbI9Uz1!cw8bN}1%zrPCEQ zPUx09pXdAXGd>bq!5iEwMzd9PFEm1WIo=N zz6<_sMP&M@3`#18Fc&SIfyT$9R7C`R_(l#7W!K}df;uP(yrs-bL$X5TBzH#TI+iK1 z8;@!WV;Vmfr5CB9$Cx(jLg}IvVPDBpgPZgpR{;a_;&@@RRw6OhgXV@n3_p2`RBh%1 z_m?=hvKcay#%4SzcN7(pN@z{y1zIBzV)0N#11**mg0q$s`V6`e(`$aA1++l*MWZa)9{1-Ie0%en=WvxC1nRK!0}ldH5Y25|FzyG9b?H@ zUDyLMqPDE#(SY3S?;%H{qk!WZff_?I;Lvj+j5p~eT!(6Sw`Lvo3&~=1j|Sxadd`hV zDrH`;J%vAAQ(@RroOXzK(UH_+P#*dYhBD>h@a>mm;BP(>7O`EWI~_tUH(N!*h!fHH9=D06laHT|&%9N657 zc*ZK|vAKr)K2`j*q8c?t9boCfL~>H5pK4h>VLpzgfcXAAxVZiR?jIfOP|rU7Dw0v1=dG{N^e#VdroEwE5(+?K0*dn_GKb zRR@i}iZDBAGq@K|!jPLs@WkF`i}okU=&U*uE)H`^__wuKHgzLz3`&ECLbKpSAfH~W z$N{01Iha4NhkkHf05MJmq<{Pk)4BdQ6kS$_m25A0V0;71IoJc?O2=XL(juPt-RW?t z!W*3|LzyZ8J=9!ahe}gV&`otkXj-C7YS%ea>5tj?K2;R_y*DAxSPE4Xlkrk(IJkS} zfNEDaGtVvwe&$cZ`@2kB?|Gq=<$3# zmSvlX&ItolCy&h~zAxo&{<#!h+};iE7HUBB?h?#gAp;?9<21>r9-<=SdEuuw!M^f0 zCec^?!EWp2K3^ne8U)m%(OWIE_F6<6+?yCv95 zZxiRixv*o~ZgTD5Q^r8(A-(B*o8GbK(+G414F*_ZRsUKj@Metu*DFN{nv zDZtF6Tzbng7weRgp)!qi^CT+ZYIZL!weTm+@{Pjyb~#vi_cCKr{*c_9JQvk=rUReN zJ+1$^oV_Ob@Zy&WyPGTo%Tr6pySv74mhF33v3adV(cRdgC&=c2W9WBa2) zY~db4k80xRx{n*Z2Z z>4zmGAT$7U9Ew=?cr#t;aSCVDX9EAY2|lrErb2a>2tBa{?0yTNT*GEaOF0Lj;^J%v zlA-0tPQxz0XlM_Of{i^N$kv;Ys8M6X#MB(Zew_@ESXoE@Xs4o>!g?OOnbd zm1L!zGs_QnO1G6P#g60vuzorV=I525h=eZ)SLfpa6ZY(J_ATY^i6*JLbNcL) z5;QHD14`cu@I<+b1yDIIN^sso<+kp`TL~m_9L3C-ADX}GQeo4 zmfO3(m{i@6MML?eu=-dzw_=qH)UC9BmI{#G#bo16(ymPfKcr4}w+Ww4ysuji1u%!efEJhiHt-|>J)_wZQ^cUIx z-Jb?Ow1a=%rPM~Lj0XNnWM@cSgd0DLJ(qXUnpFaLE$AQZcU}z~TV39g7sW93!VGw4 z`;Ig}S&ZdF>2Tv^7OwEqW&IM9i2Bb)>Nt3Y2>-|ShM5A)cXolojgoZEU@GnG9pWmd z%j0k1b-9g*?vJj04}vI_NCOXV0BZkbU(TXpEh1)JL{j-5deGHBh3}I$H_D=eK<3Rb@@J63(=brP$A$1BoCej zxyyxk^SUCua|y+kXQEidGP`~s$zVHv%V0;J40r`6f~8#^v+d6eBDMM_ozmq;`)*W_ zVfVe*-F_Ty8z-*WhysbGE97_36p$OOqF2~i>eKa)dDFAB zdE082;f}ImQr>$SvlO0D-HloJ@YfEi+V_`t+%p5J%kr_~Ksp^2@1w2-zOX;>AYNj- znOVASG&C&(1@|g|nS~PTb8tg-!zfsPP@GYXIZY0mNTTGf$pelMsbnVG>I#WXp>o%@|50@<9TDuPGAUaEX47{1A_ZEVSEe9@N%!2W}a4?*E z9OV|QB`cOrqvbg~nz-*Qx10Ro&HI@No(;a3nG%Ti>SnV&u0s@@bD-$rPLTf*1#^i% zuC;haI``yoL!3|1Zx?gHYMCQgaulh<%t&};wG4}rchhs8o8a`NP3XoOB)#%S(JnBX zh!k#wi!WqBC*F>g&R=DJrFulB5)+%#{l7UMCbOQlf|=k*NF> zX_6vS=6RMW8A?f!;p}xNsZfYYG>|lpqDj$rzJI{=a(U0$d#&fWZ*ZpBbcS^bvh$p& zU~mJx$O`K8H zm9uD}^oG<%TEdUR7wEWL6Fk7XGE({fi#hV^@l?DANYy66tl#3eHEekhxcPT*v*#9*>w+>)7yHf5PLd?%%S@?)91mS|5fDYo+P;^NCm{IRkQ^g|HcZ^<;(W zM0CsG9RjwR`2Ni{G%8JCXEq*z*aPMCYDktKX|pCaoTqg4l!v5ywjbJ9c=C><8|1XL zG&oKi4^%u9y0_@?ZUqB=PtvHru;^yZcz(uNk@u~->HCWvJSRE;KJ))*^xz-1*&6aJ*97PyXRA6ZVO z-4KJ5w<~}<9|u3PqIvgoFwW3Yz-RK4XvnRX-3KY7&Y3)hJ@OBMP~&5tYsrJtKcBR?@iz7LtpbViu}1GH_`we%S*%i zZ85mC;v%2h-iwuyQn+%jJ@3Tf&vV>Dl>Zu6lem(9?$T1si9APg-j-9n&J1KfALP$o z2SICNAWZ1ohOh73qD$ZG0$bTFn9FB3zJ7J!xvS-@qF)9|$n!hO$366|at`cWV-DRz zxiEIN8h)Rhh&OHWA+D?#hn@LOdSw9y6uqSiVukeL1w~YgJ%nzTZeY^TIyk-{6R+Q1 zOn)8gv97Cz9^XsY34CTPdejW8y%RC+Pa3%|TtZ8G!{MQJ1@4|L3pNWQPX=IdTzA4AgGJWvjGcB<1 zpMg0w?NoDJGJIg2FfO5urik-7K*u}?)4T$^CQ0CSv7@lXmS+dpoyNSBaM-vo9liPf zjF#L5wobm6cPWO@lyi|VzkdpjRDPmmZZ>c|p7%CLxR3;=J9wjeFRTf?#_y}kfiBx?22CQ2Lnb1SXx%WCmU%CLU?-Zhv$^)?S zwJ-jhbB~rNcF;L`wJ>&wB|-Dg!btKtn&5v8Zi`5xy+a`BA55ZolA3g$!hE6^B2F%x z6lWUpvhYg=@5;WEL?nFM$X1`l;4j?^8gc(!Tvn8LPp`IXj@Fc_mnNg|ckU zeQMh+z@`31aPhG`+|-ev^xKRXDq{2p8|~roMqy$YL5f$va>p9lo*Tcradg{T^?a zFu2LX0dMbI2NTlHL$r@H&y`C9)5)43qO~7h+9Xo9UwmHT*beyX)PaZN&4{DoJkI>g zA$E3CIL3XArTWc3$ZUmDm|7x(mLdF^ahfQsdNY6{M{dxckDReCHH!S+8%=J;@mZn= zujwOGp6z$$8rYvOCfUI|@Ym8FGCg)Ggoj8#c0eXv`!R*Fy6S;z4X4AqiBHHLH*e&~ z6Hw=h_@4O>qJ6ZS8V!LU-=mqzS){>b{yuXitBz!FGJ<^~7s0*wGu&tNAR%fp=EKxjK;W-A&l698EQ2JwR#mJJ{421m0!KNejPQ%^JN05nqm> zq`?V6_a0d;mFIU!@n`VzOO2S$ zdxs!6W06Y#-r7l%Py^o86{AguEcO>wqp#IT`s{-e-W;#XDQtFx=%8^}(Dn_D*eJH@ zz7iS#ClTzW7GTi2X-vyVI@WXrLCfh>!31*+;vPC4A7!k7<(eIWZC#!ao4$<78vD?V zmGO98y&fOG?Zo`GnYifZD^Pknnc2Cv2939#0XxZcpw~5xe7dp_%N>^xIM_#pom1GV zmV;<{_aR2SvcZ!N9?(S}gqX0i!YEslAo%m9nQZFLq(_*KM1Ob&b2CewRMy%MV+H=_ z6=w3iKPT|LA3(htpTOHg?(o)D1K%%k5xmSXVh%ILuzU(T>{emsshn2njY_?fhb0+$mWhWm?O;7D04?r0PUrip9eiYiN0wjn^ByQQiCv zZ8y&ZckwkC&mo-J&G%u%6zOz)I&Rpx;1JlyJ!-^sb za?)lHP$A3sjkHjCaWyM~&UDPWWDi4tYJpQNRX6e{1R_v@E3 z$N2kYkc>8S;VJKw%RR;Zbne4_uJ56A;&hI?eF*HQs52kdFTzsu_w>HTQ5dwkhQha+ zi7=Omc1LVU&3oP{Y#NPowxy%I!U#3Yd5yPT>f_F2bLwC##hubzNY1;q;^3ysB<4vb z4xQEIu6lhU8gdGp`SU{5AFalL`(si3#81#2`xLi(tYVJm_F(XC5$>*W3O!bF7RvV( zfcJh%PiOoRY%;ltyHyi3ABx$Y*97aOjkwCDrY*u-MY2Ffg-Ibe(;c;!8yM8Js^+kiuIwb*$X-{CH4$pqE zYNVEazHr$87QR`if=fn9@y3sK__whF?*CFlCubY<(U9hp9lD^cxezzYK7l=@;ouef zojST0@jj$Jft#;63OOE!6-%CA?e)z}S;2J_E)GGzv`T0LFUV?~3qx0T!oq9`Jb%#x zzU}vAG-pdP1D97ak@?%;@-h~lYZ@^DdZHi~yNM)ipTTTxn#)ve5rV_~d_+ku5ZuPQ zazan0vOTiVnBDOhpOpjy5nsYB*~)?cv*nDfT@zk-I-ZNXyaRoT_MyURS$NRX4spx1 zuxrg^nj?LT%#JmNk;iw4w|qICZ|TC>k5)74Kci{ViY$DUF-WsgXK>3b^Khk2Bbjpa z6gBm`Ocbv~!{3q%u=uPvD%fV}Ic|SNy@fv0dETw)`ExCtU8BZ-H&-%CGJ*iLvZ%Ob zBHRy`1HI5D@?Y&0@}O1{?{L>(aNr)jXD|`DmK2(=>q|Rk4b$w{RvhbL4a?SUCxQPh zVU{S&fWMccp)s}q96Q|bZ15UhBy5oV;eRzvc*YD~Iy6byKN=Zi#N5RXd6(j$Fj^CU|P~Qp@G<@QraT%I#NU2Kl>OrmhkGekshM+BDoUun65UC&AtN zDCh|fgOnW!U^n#`o{yf(Sh$UlA6>4rG20U!Dl0QTkNHEILM)y=x);2R6VO7ylF5$7 zm>jeTenzfjTaPuuZt01P$C$6=uSgs}cQwUZv04y6B+5y&Rl$j94dk>}GmfSC?9}1$ zTzAGsM)-9DNSd4=n*x&{d==07PG5=-y=9m$ZqI<`T9DPRGSO*+hv4*}CRx2`I=3xc zfjOhFhWS|VgsrgSyT3=T;@g1(^iud4X#VgPo=xh6bo(;+;;+NGS z$a2#9dDJC;3v-Fj)11E~c3n9^R2!Ln{1xIhr9$V+?_*}7HN_@ zHW%>gs!4*j@f`Vis}7Uii^JHiBnWh9!xeiGHcKa>Ns9zyrbXe|nzQ8ShZ6KRxymke zNB#G0-^rto3&CR32z*+iPM&_A!@Z8uVsc9-Vg8t-bUxo%8*929qB_H2Te1{(JqUvD zf5vdGcaFiZ&QqME#(S@YB_YQ3KLRtqflPEUgj=`40h3O?1NxHWtd&O79iPA{=m}kX z!-Y9mrv<@v5}b#JC^Ne;2QtDpfLx7N&9%eN>9-@RY54B*01{bX;UtIU*H*%mNoDkL zTP%2O{D#p73h9myBFs5ygpdCQ;9cAp>}qYqX{%N7)Y}Cxq@GOBxDZADTZzw= zCvj`5USV2hGHM9<(B3Oe;CSf?m>3A5TiD4OFPThfYZM-GN*<<2(iC-jR5+^=CA^|5gLB=W}4}pFG}q?}|oaqw!1j1Xwz%&a`(- zhe~-DI>t$q>3S+gZ(O~AmLg+7@^liW8)vd>JX9dzq603?HN(R)g{FYa%pN?VxfCXB z{sAerU6>&+#xy32;}1C#e%JJa??d;)D=SKGK3%{>r1oQl!w&B7)JwElb2_tPq5vJ1 z+@WRO|IqkYEL}6<0OoJtISl)QVDenv7hAl6FkjygwfsVi(0L1MPjy3GAnzFEKH|Bg zbv)Nl0d=&i@pL}Jt(bdD&)L8PRS!rp|4be6?A`^qFx?JhDmIh1P9n@>zc)1FNiLk+ zb&dChhd?i8)oA(7<`&)xrug6?s`^#H@!ye9_j4Mme)qs#kK}2o_7)JDH;+^PEY76& z$#XNV^K*xY2$<^1&&$--;D+P`6yMKxzoVn+(=2rqOqYNGfi65wyaC(o#bEhIhIcVd zpvA~DDJIC{jl4FDDP(yLngk=AHWlw*4~KgDML5twQA$1)tofeq2cceeI6sGm*>++8 z`vn{|Zjzj2et+_x6Cvg?8xK2f+=5uMi+EUGgbNns_`9tzvu}jY0~OZ5iVhBS$1UPAyWUZY$`J^T z;JM{hC&rWb|-memDp;q z`=`gY>(|43(Ma@2%YiyOO>RwIBK6(4RIu`v6!xr+0D0Y7V6Il9Ezi!{KYWdfD9**N z9>R>~^0nL{-{YVy?}CySUG(hsiG#dlD)vZJ!$6}e&&n{uiv5eg=Rq8mjkkv<#^-QC zZ=b+9K@s94R>2*^^>}{FRy-@70roHDAn3p8+|T<(cqWY@0aKI7VnYcuIhBGoleg;k z6(*9-yUDclc`+>8St8gt`kl(QZzV#!H^q7|5xNhX!5HN-_?nu68@K4sM)k)-aS~`m5I4N43z&Tj*;(!(dF7_+SnJ0GxD@)1;5k2$U9X_6L^p1 zu}J(ca1OXww&0j32mC6Q0qaE%qVdz8*nOA5mcI$K>Ut2qTWBx%elCoZXiOv<9AwDF zX&tcF_aT{-y9Xq6uIQiG>W(W5SCG7-QJns^8r=hSRF~FTK>5$x@a5tFS?uxxOLa@J zuW=mOXr96q67Jw|@;>f$+Y77AjtKmmLrLcT9-_Kc1Ww-Jb8Q>9k<#%ip*Zsy=1a$5 zfM5zf9v2Df!=JDte=4q?ArBGnC&354j~cMQf$dG;`v4b|Fz9#;{z{n&&C|`XVtWGF zRry8Wua%BHqbuP5)2L79Ey&>e&+OOn_u!0kFqP3XhurmY*#7bcK8<+{lh^Z(ikT9i zx{m*RObZ>%i3ZtyI{4N{gt@gl71qS3*F?E2#2eW*pu4<<3V0qyXyrWSxWNJ#`}-fO zvTKCgDPF*x@RH`PzYu0jCh}*|WNUQ%cbZ;o%LnDWLiFEynex|QP+{i@R3$CZ4uhd+ zO&O?mJRs*Bl3}?^IzBjm09yuUaieKE;OyMNf3Amg9e-Zk<2Xuud&D@=g*VvmhTbqn zPlnn)YJyUw>CFAyU)0-i8pO$uLf}G2>~Zl&jk{yGp~W`^>ileOP1zcJ@}~@>WA?z) z3<)ak5sPsf2LzKMu2X~00jT0rhmDuZ;MTk4D0aOc_suy;Crn+88djqCH8d2e_bK5c zE*%EjtFV3S3jTbx1?>4Q>{r$X%EpC5U#$>G4M=dBc{6ECr4(em*oCJ~CWHRSF{tDm zFyys21}NBKkD!pAG0`T0t;U#kXcXew-U*n1SWc=)3iFeZcF)WECVX6;c)jT!O zzr2A>{9OW9BW7aVTv;eRyP5x=UI6o!Z=g}bAK_D=C^FIFkQq9a8*=g@wrlkmi(QZD zhkJgIQW(b05jbN?&~&b4trt9OHiJ2yPjSlGiQLwCO+-vRlJ}KXlN}F(a1~b2Z(kGX z_h&3SRqPG%00MrhkyLVKJ-WtDfsw=8ad;>e{#X_gWvYWx{ImaBhCA!1`5s?go&Xsq zQfRnG49$G8AG{Cjf%eM-Y>MC!bybR|_PVB^)16GTr*-1#HI`)G3lT=WFcC(N2Z6qr z8vIg`;_~*^>mNShO{}gr02h-;EVa%dliE%u=4^$^V|*7sq>PTs(n7Cd{ySHgD_E$V z1YfrP61aNApoxt%bU**j*8bAsE-kQx8;hp!yG|7xSZ9J6#%5&eni=qAraZTxdJ?YL zF-*cT4&v=|IfA-~V)*Zb5zhluqmNa`7Q}{Z3?|7FEM9tu2ct@hoR5cJ04G@^ogY42`bMo_nJ}yw)3=I}T zAX0l55+ldpX+s^@nVEpbi85SRRW$Xix`oBMMYzwan<||whHIBpxvISxbo7uTLWdgu zc4O#;alh%RUn1aGYeB5LdFDWZ2$y~>9~z1$b2nV4qw>6VSfPpJr0y*!Impi?TU9ul zlMnIn{p++UF_pAgFGHp36ZBwGIo8)z5});=;DUeXK*?mmM4^0K>UIISAJNn%>o)NT zmWL@jx~TXRfBeAT?>w5*NNdU|sJi!%X8zPc!+%%7U|9p4*#X$C5sc$1lF`W5h?*SJ zM9U+G^xrv6W$fC&;Es3e(RpPJl*^@Kro0(sST3bmGvDK!g|~3;r7Uc}CPXcKg3#mK zCu;TN6LdUQCY_1j&@7&X^q(47*5pEK&WUs1x&pz|Iuuqu)P)1t+2DTl3E`2?biIZN zro{v0T=K~7ImUu}&#qy1vOB)}?n#bD%;$vaClR&f0#N4Xt1Us9X!gSq#r$8fNw!Zh zad`#rhdu~H86jA}X9xR7!_cRn_Yq7ofHkS&L`8fmy1bbVbM~)>_~BUe{ZJrKI(QhP z7y8j@yXHXXnNfj?+NfZCQNpi=I&Et;ndCN|||3R*6;BIMe+HT?xcOTT!E6r2s zrJYl`dtWcG-8ze~K`|e_Kc)%TH}bHzPZ5Tvd9hc1y#bp6E4=TUM~%{Xm-pIBRBP68 zebY5T7+q6{YZFq*zBGPF!Ddmtb2o83|9*JP|4!rLuj4F%I~liMh?%%b6CJ~i(Ea{T z@+#mdX_-C)HNH;6Q|Y51wo@2OPAkBV${*nQQkJ7$I&e@Vk4%AdIw*Aqf3(YCqewLl z_f_Jx-?7-F*9Cb=sqnq74wXtd7@ejL+eUBUj`CG_;!+&W>du7azANBf+yMJR?IYD0 z6k(3N%p+qx9q8oK8iL4x0tm{Q35AViOy}a+tgFbg{!LK=f&{=r_*5&-;IYR|lHYFRa??};$YKsLY8a#o#HKbOGrd0Uq zWbA&^M4KKQL36_xx`^L>1u9AK{Bch@9LxKKY78-F|7kcoSPGw#qWDZtDtKg-!G@B9 z06`sen#>(Koqa91*_HqswwNPx?J$kF(1KA{wDIflcxox9jUgdT5ci{qoD!8q-*MyN zK=ok|+crowdR~xsM=IfoUm$F`{fe$6A;j%SC>s(~Dq!M#!R?Va+6hb_$=jUxlOfw;f*I;?)#M<*7uw0K`9J?m8jm4#9GZS`l;^eY0E?Cc$kB4a-e&^tnHhpOGN;=QJEipA9+l z>*$|cW7=V-g@sRU(iL@oX`EuQV48s&Cjaq(pw??7Gx`(x@W_z0cZdL$rfzs!xgWM& zh(?F^j`VbDG5s@95&{ey;70E@I_0?z`2U*{tBNeLdI5`}NpRx~ZDHMWa!(PJe?xYV3)?#aG4mce8OEn*vp^iy0WckS8 z!HSn;-_Eo2r@#T)zbr#RlN-m~|LMRaw9GT@F&42Z4Y3>P1mLw)$wntrpx z*sLChp$DXJea6R{^QNQ3CE^`fIz5>09`h`TB4M~_90iSTYw)-56!^jWVy7i)qxel{ z{{5swSB?fiapgqPQaB4n9fAa_XOxpdKBqisbs{c$xSZ#?L}0ml5*+`KMh&kYg1WWS zVZudks-A8P1|8ybk7O*JdOV8c=N*C4KP8aR`i8EYze+HVQN)Oa<~Y=v0n3?82(wPd zou8JV>`!-)+%Xo%YMAizPhC9l=A|IQRU9kpqw)UUrzCR=?`RZAuyNV4bo;^rvRZg1 zKK7d{nDD|69z}`aMMrym!&!GpNT(A#czToC%ytLy9|P1U+Z>kOoC2Lirsx|k1l)?{ zEZJDWKB_;3KlFGmR6`hsPUs~gmD-r_rrsV27U?{Aa~K z>#`&0)=B!nef8G+;5G(YtrwEr!x6kgG8C+@`VnjOD)#qj3mi2`1+5xDWz`ULj{ihM z_zdNF=hJY1P7oMt+X>9wko@;~2kmJ%ht?hoF+#|zW}TEW*t{yI$vTR7MI#b?ZRSI# za5Y(5!}sBemC+$DkGhQn5%*RQ#80(fto9UMz(VrkT)KU`|?I zAI6TklW}>$I-D()Kpqw4L&xFE#Nn3#M)E8l<;mx0T6+$A801K=ktu|!xMOszH!j)u zk8T+~jmK|Zq)Uaa(j{+Rk)vLjFqjyR!r!Cuwr3jru$_%Q=^=vV{!jGb^ANg5?l2UH z24hD=3{HxmRI(zBuKKOYzLzM(=r5J@-TlS%llBklj%VS&;|Wj^C`*Hvdy)3-x2wk< z%q1Ro^iW#g3@Td#uνfRSyZk7o|k<2H-n!Sg#rc2yM2?2SSV?Nf9tB%w^WE((4a zL0m&SYd9o_3LkIkH81#14+X8m@UPBz^6Vf9dbJPQRvBW9b4AUux)6Mnn+P9uZW8I{ zqsV#2z%$)Qu(Y)Tl@T$h(*xcgk%`t-Nr01b;kMx}8l`iWT@~d9LKgGDw#ytuXInsX zSQ~w~@eJNP2D5N=`d?~X z8$;QgX5yEd3|H1Jqt;;$*bmiWIHV;7E&sA{N1!h-ZAW27vmUNtTG*%2DsZAg83N9^ zW8S-^xcB=`xcKWNPEg84C;Jq%|M*)lV}#$WEJ}p7?b)z!t{>i7z6c`I_#CqNcu2mp zgI=#%M^4Q6Ok8y~pt49iyXLVJ$fg>A&9v{t`iC99j17gO_s>!p$(5jDKBne!c{21K zdPlm$9Pl%rBXL&JV2!@#P}36$P&@fQwDPMItX-6gOt1mWJC*|_>#xunSPOUF*kI?; zPqZ&fiQ4+7!#%?=q7trz+6Sm$zws$j<+vZWWMrb-Ms>1vXCC+;NrC6$0x19O3u)W3 z;g3iZJXdUCcWCm?#MuIrRX7FJhr=NDX&><@Zl>G5dc(JxJ-Dx}o?Uu7m<-sPfe61N zu55258FAAIF6PD=Csn!4cnBc7L58yxpw;b9RT}Mnii(Q_x*=Jo*fn zPP$C?-gic$7!5c&MG^juXu|P7??~t^FLY}#f?%~hSoJp>tiLJKl}$ykI%+0$?Y&d; zhj$75t6C)}Pbt>F?_z=pe6DVC;U|*xbr!TfD8zT4mcbWS71-m$J8<~jz1$-=Pynnd$KcOiQjEfbFL6Y_3Ozw-AcjDzAgCXo*PQ8>7jC}U1Ugf zKJA&9Px0*y5}&OEQGF2*$ln;UjAX}n=#t|5XQ1&JpLbpNj23Kfqi;JyXz+YT z@Lw1SD=`zcC+{I&LLy+fMgo?}2;Wsh{U^v0-2Z*Qt)>d z$zOB~rxY!u^MX>yh}kwe$14%b?Z+ec_%gAR$-z}Ur^$srGbvHAtKRxo8IKg~fZ-(mxe_D8?^YCX=5iq%xgiZb zW4xiyP!!ip^u)do3o)c46U?$#;lZu5aU>@b)~5!Ns>`wbZoY}C&-hBB)n*aDLy5S* z#1jJQ<3M=BOuRQYo*47YBx{s`8kHt;Og0=?B~2_*c}4RdHLy1amqDkNBD&8%s8{(o zlZeiY$0tQa#4cqPCa|?L-@xy9Q`UncFo;N@($+cPcP(mQ)|5;uw*Acuk0tKqe^6$X(CyA+Yo>4 z$7%a_L4EoLkZf|o%HjxoW-3IspV7oeo78A+$TITHZj_b3z5sn5=8~N;Mlkd>6|<)W zz{m4psKGrTbx{haI5!LXqe6Mx4F9`4|44)Tj#9l?8(bhBM~mGu>58B^bm<7+WmAiW zhvL0tYEcZ-bqC|uUsEB#=Ok!2RO%JV^6bPDKCq_QpD^4Jy5XT2em3A8&v`j`ea;Q~ z>h>(b`}Zn>O-CXTpUROFLvB?42H)e1`ACj_)&r$YuH=XlgWs-Zp>lE_S}aW^D=*g* z{rzd+d5%HtsCbC6$%UO}NdohpbTAC{$DcG)KTL8nY%ZS&HakN|{2zXv-Z%$uk4q#P zKKE$Rkphw@N-R4eo zUmj(j@&3pBgQr+&^Zl4QF#wJT&qbN?I9TT^hqWUvbXS8E!jeGr^W6vSn%Aiodk*Zy znjY=C8NNacLoPcm8YEGbR)!lvj|D;qg#u7Yj<|_E04KP@tWD zh6;F2T*722Sl`uMeOzi9ZPwil-yj4Ii3WgK!c)2lBcj`Ga^C?x(WNwR8)oONdz-tM}O#WS_3 zabFsYc!z>u-9ZeBw3LQ_9Z^==lwnCr3x7(ml z^*Fd7^?_Q1yF%yO5NLgQ9a%?hD*rG6b_H!i-r5Tn=TE@R`FV6)dOd7ZKgmBsV#rp} z4t&31fChO7z@7Dzz(AY|_Fle7A4evVuTLAv{vB6{LqP@z)!&8#{BxpAYb}Vy=it6K zh0x>3JLl23#;0d4_UT>5+~!*XCtH8$f%(|}HVqG@$Iz*t#UbO7SWTw1fE;|vdt}s( zqmYz+&5AqoxD(;G=%ENzG(5Kx+RerB)iFJ8vaCOOv8fzyROextkQF(u%J-rVMPbI6 zhp4pcB>Yzrh4aI6=!E}X3r2OG5*77T^j6XZni_E)!seO644ZQNZaE*kE^MVCW}@7_ zM!@Y~v}lM^D_r?`5&jDaByCIVKqE5{n`k<=8vkZDKU)PQw^v}vwse^Ayn#LZC4#IN z2qCAscqT(vG0A;mh^ZcZHJe|u?DnUh(7wfsrGgR&+-V01oCtO$Zi0K+AL$;gpZxQ| zjO2Ja!3O#iLiv5ltGT8K_n$(^^`oR=#TZ8Ku0P$fQR@$JbNF3dQwlh1ECj=|<>WO8G5fkIaqTuy z#G1GB{+iYxn&3h1w?@;^3I6>8oL=vcJi>HbM%o(VQX+V)Af5@__#?br*G?_jRpKWZ%RI!UR{EjVJ-kL+! zj9(3@x>_{i!#$W$5Qy`1rqJjGE5K0k0~GKX(U=rbGGj0vo@RCspFdU9`Ev~%u^G#$ z&yK~hwNl(gMO&0py`Ud{b|KUaY@%~gDq)7xA#}AmM0`~qqJ>dUP5SR*8f|0&^Y0v_ zYX^(*F+G4KiJ$0~Ijt~mbv3biSB=x%>u81kbo|q|nrt%o0Ap>|koqkXnAj{0()ala zeridEfWPJR^3XJRwx^lrWo@U+B;+8qRF84-RzaN^15m^BXnH-P;izFN6?(HDm$a6_ z$`$W`?XQLQZe6-}d=P%QHxYwB^kbW*8#>ijLFM&p5dS9@4t1A+clIL)J??>T4vB%= zx)gB2ZupTqK&Gkn!B6mpw#O8gxX!2d?4#j&ryu%DSqq%9{NZ(BJjT4J5%?Y6P7X8{ z;POs{d52Wk6AGWOqD-G`_$OKo zpC6pajZ5_ex8Y5=!Fn=tqJO;L0Drd~O$ddIp<0N|Q70`jTL3S-A(g}h7kf!^c3!IR zeM>L;26v$9`~;N#S&q^Ab+A$;kZc`mOHexvbMJcMXonE${I&K|ykXMTi(S>{$8uzE#zF9;&cx#Nhsolt(e3jRi& zA%op6q<=>WT{O1?wmi#(s{7HrM^+tWY(9e7e`iT%%_~S&5=zGLf6Yfjj}-Ju8zIvTi}3jPbM$#3&tX(Hz_8cVU>M2o z3p*d-(I#2UJadxm^xlg7neJrncq48tf2Nr0aS8*M6{6D;Q7niM<_=blhdEcuQ7QQ` zedHj^KHo|3)ahs#NhsI1yfq9uX8AP|^aG!zy+@SB%>y;_SyX9WK2!+&X`M)+uA*BP zT`TuRaJt3;(^gXK+ZT;iE`KqsWif;cjNzK%VN8?corgI`_=KwzKHbXCjvh&a&YvRK z^Tet8{JNW%Sez)(TW5paX0hNBWrxYKa6 zM#*8~aJv<|_DM54`8oZTb3w3r(?-}tgE3*A82Ua_WY#(w!>_HO@UFZYJft(B>C!dG zzn@K%8vX;vAAk8cce`Nq$X5KKmq%!gfbVsxap6z(>EosP5P6D&-m-7-eSa(5Teq7; zT~}p~#9f0ACemOtDHz24363l|L#t0bfvLr(sMpZyy2wRStwR*|#6;t^?IZZ3Gz&NR zrC{~$40JW3I6mDTqZ;PJMwx!<7~BiPLl-b=(^ziSg;PZ1P8X)a0z99s8&!f+OV~x)hHQd?%cw4WzR^!$xJkH^b=UJF4QP< zDHMpgL(!Qdg8E8;GPVfg))_*p!z;R2Qyg^oyJueDe6FMG0SW%hd&SGH3d}NZf#ES* zn(ZdbtoV}&-*!L5AMYkHm5H4&;<%PkxW5>Ry3Syyj?0W;L%3(He% z1bepzLS=(FKAWBcZWAxTwt`PQ1K$@@|2E*?ia5NO=7y?Xp>&JZGH}nzBh_W|nLQDc zV3}$cq?&e<#l8Ws=G8a4MWlykh@B^&ZRO!`{|2CWh+q`1k$S@hC{T{LllC~6jF)|htz zXZSLJIN5!{L0thF$p6JdLp$}SFI~uZ@Mli#WpkJ-#WtMl$vIqt%kk>;erJ7dZZ_}w zRA6pYenF?9jvfkAsTERZDZdjUBGp&4cK{dCoIwU zfc+8U7@4GV`0M&4=9^s#zCGE583rquJaZl9SlUC7UFHFax*}XNk%LJuzwy5BP{_Py z#$3Ji0NTrQ`3~GzCSoavSg;SwH?3waPM^+54WC7!E8)=a)tvuKa-7)UMHo9?nyWt; zPd*qG!Z`7Xoc-I+U@+YaOdiSO!q{Mx+u#J_w_U@_<11Ot?) zBW#&}hqPJ-gNIlf{^2u~-a$3g($t=u?|TO0PFQdQ;nN6RGP%aOI~mNDOY`@u4WQ<- z7+qJF5c}n;VOxC>l{>Hjq}`funPE2id^bSnfD#1?-PWhS)Re@nG}&J(=(AqS9jtC7>ZQAw z=q-D}z(R~Uf2ggdwxI;h_J+WpHfQp7^?m9~_A~Qku7j1;1TK7w4t$eK1XmARZtR&g zVDgpcfb^+j-a&Q9T)lxS$^_WsJe!%=xtj!W&vBvlO;REsLVg@{gEG}o(j5JhUGTRM zSA~V+`dO1<(L%n{nCy$9f?g;*GKHBixdYN}@oqS+0y-m1hqL|n4og+4u_L1jFZA_* zK~E(+JM<%F&KiSZJvlHSbc4DKU&W%XU7YXjYf!O72WMDJV!V&%z*oU#KGU7UW+@7R z!ZHo;JLkxE7sN4j*AtR)aRQc1)xl~zEokhNgX}9FFy-qGoNGQ7PI`zi#wxv#9GVXP zJJlF-&9it{<^W3JBqo{P;P3m_O{JC|#hPCqSz^)Mh9MI> z`X96$9nUo!T!3S@S7Wn+BBS=Q0hjEaz#Q;8${D9k8`9$ZB%Z+9VNrf~1vUa&V072}4JXDOpx zOWeX&k!@k2ARWAj`y}{5N+it4S${{~l_!UXrp{)TeiC5}-{|9KKBx3{(ckoBnS*pP}M8#b+~M-{R-cR5Y6t zX-tJ@r;ozuVNr8IiS-SqzQ zmAEkP7pb}tMb>x7!tk+rk~$8!&kHlaASD%Ar!L^uJL;pSej;e;Ok%!U&mwW|1R7p{ zM58q?iLQYnw=Beh=VgpzeCP2$Z|X8E;5)uA_+7bCXd|@me2Z6Zt8j{o)bQ&+LX7W@ zV{8uxqra*XC-GB^aa3E#Yz$2WlcfSa6Z;CUmn-8K#WdLXeI`@?GZ|}U|7N8Y33Go` zm(rm-h%er!^XGDD=7Z)nm|On| zU~MOV#uAIoTt>eXx7Q;H?JTRo)XoY$Cw^eJkKYCHRV(0ytcRXKgeW5~+m2rzkAV{F zi_p2z5W;MCA2b zXX%<}|LD1Yck#a!KiM0BVI-u(A2j|w2hG}v_*TALm(#ir8w!l^UXeHqcK^iTMrV3W z&mRtzSYzw4aquyOhmF8e&g72^wF>Kn^2#=NW-iYRb;xjU^ouaG2CFqhO`z*?8SV*v zM)h~daSOCIk{cqyDBW}y*UX3`nRf9Ynw3g2endf03C}duJqm|QENrZ~C8~bZC<)c79#Kxuksr zWEe+A;ofX|Yn>ol?!tN+xUd5HMrCl3(-*KlFM;QaB5*@_KGoRVN>dMoa0G87`Ka`f z2)=#+OM{oN7x+e@(JfQ%`dgaZw!$%3`tFd0F8qT0t97_X-408I8^H6Q0Qa12DyEiC zaAqEQ$lSk$LGq$4tLdH_)3MKh>$iNN=;Q_ZqHz%Uln8#;JHfemgYj#gxJo|GdJA-a zHsqXqLcNMlp}^2NfX5CPvr~v&+ouOVdXKTB9sa_UY&OjL!^~rUIUw)n3-kx5!To#k zjQ`{jc=yPn|I@2@UZ@+q^*v!>&>XM`m=8AEEtvm(igblllLtEYEs`8!V1GD8&cH9S z-DoeyT1CTVp;OKEk3Q2}8)f!Bog~)D@>Fa;kP7;#O^{J|j0o?4NIMn_u$}(3kqay3 z@zdK2_@4hHCaU}5?rCjcJ$R45qMqU2G=}-`cniZrUj%x^syKb=1p3|{$V29({ zt|f5TGX!*mc9E9p+3e*%Gw7{s1#XYDFjv(&j5FnT51kd#z!t>0fz2~8_(3)2zP=<# z>AA6-WGjK)!t~QL3ZUC94Yu43hJyu3bY7PwzP0JZ<<|f&HW;$lvHcbC+7s~1l$nK|dLagX(8dID z#xWY84py3D0I$j!C+u#{0?XI5Ttbl6A3Z|L4Ej0ubzY%IBR^}(y>DazzB8PW ziF_(|Y=n%aEdJu1D3W^Er;L3EIj;li-yIx;&v-n z965H>4}VU}44Lc#=TeAdEAvYUg4$CEjt z!`HxB$L9Z;SaR&55r|m_V+@n6Neb4&)W^{ld!=5HQ(o4fB3VZlw`bB*HFubtY$3ys zTn--I7g_pCo?(UTXA*XeVHFv_Aoo~o2({Xef&!Ibn5=_`?T$f71P{5dnMkx$q;PCG zKOWT9#v9om>7O6{kju=GGj1$`jxT8_?%+yddvv(b0wQnl zP_yuva4Mq&CcSq)ps$y@O($KSCGbF+}X8hXcxJ?acH3wV*QFcojcZX=sbRWQ_+ zAO4$r72c>>5eJ?InCW^D^YhPxGFK1hNQmQ?Q;f^9;}SYD+~LW7ruPMrpgq(heq&wn9lxq2Xc*N3e3hz5swlI&Zn&fo_2HB4B4n-g!F-dyQENZSlA zW5lUqnE7}O^|}<*#F6YED?j|hiSgZ3boe1;H|wx8{Z@cdaslif6Gy$qVfu4Wl+BuG z#E|zdV7M~@pDPIAaqCKWw`vERet($+Fujz4_2+RW870!syXn>b5BA&B1(3nvRE0H!ETP;R@8%3xkgI22gnC#fcK`0NJK} zWZrek_~;JfU}`$wN5`lRRISGIFU}C-@O7m{RZ&fQ7)BgRY$iw2`m^kz_{pe zY@VJ=cMg`pUW5Cv{ks*KnXLovCq5uf99-$TfCl%^<46ZDgy#*jvE@i7xDQ#At3v8f zC{he*LuvTgEd|Be_LB|1Q*^zV5!tz66WqOYg2Z;GQV9hKl6T`7C-UiUFxHYoUj0mq z#m-i^dnz7gOPJ7w3M=q?y#~}St>-xY6X870;DgIC5%ktAHHc7^AnpxKxbTx93TW;? zIictDvVRKXhY!FGv+eleLIr9Z(FA*uR;(S{0r$d+NV9w>`Sx5FwiZ-^PF+H?b={rj z0l_I`^VMKYhApo1OGAOU^T?BH2(@3VG3IwF>uuIDOq1G!_WMHN%bneL(DDKm3%iKt z2cN_CFEi+GTUk`gaw@E^_VVdiTy51VeuXw?$-MqL}-35aXEDk zS8x7`yZyXiY;g^kO$m~?S3;=3UrEzl+Q^;m_e5(d2B(E=i97Rm4h&*JaPJcoUSO_U^({pOeTN#jT)P zSb#PKD;N*PM)KI!2oL=t7=FJCR97>u&X$`HHywn>^^@Sv-3#!ffMJp;s#Dkc6PR*7 z6^j(LsjtTge0_HXmg}T~SJEw-x4E587{6p@4Y%<22|mhMwi{!7_`qh}1orI5*hp+s*5MGJ zBQ7mG0a?QySdv*m>UwsRKd*nf9?O)bN&<#%dlXy(OlEb`DgJ8>G4w1rW`2ExYvto+rgAZpI zpJ_1c8Qz5%{L7gPaU@F{wxP@FIGi!Ml++zL3P1n5#u>cqMk62Vz?oIsuy*%DI$|uPS?drgNWHpViBedUxsSv$-a5m@H-gRsYKBe+$0qEWJxcKq~XRHYe_qA z1f1Cthe{?%U@!HO9IRcBu6jwhiZ2Hq{h5OwXIqlIr9Y?&FC{W*7;K=jHH9+&E|pGjBJMWkE7jpcMsEz%wAHnr_x;UyAJ;MzzO8$Ed^Uc zCJT0`hL+Aa1M{Er!qR8FP;xL2gK{Q07g>v7GwU9?eW#z3*HI4s8QJ(%hL0wnT!SS? z7)H~|mvrmO9#$Z44*Ak9Mfh+fu0H-BO)Xo;WOc^ry+JjQTD1}nu>~P4XD!rxOrx4N z<7kUOJmxVup8cMyK(|kauHEPli>%jB!;5vzg*k^Hd|VCF-X@^2SvjWvcto>(&513O zP4&)=gI(4N_~xM)h)bDbCjUorx8Xf;x*5UbHb=#_;q|Q`XrRV75_-=S{Mc?dxFsZt1;Ct{7Uk?S7JhH7}|_4 zLXF*DiG$!}>UJ!YR`M`+F!P@z;#(XEc=VYBSj2eeIKDw6Fv~3^;TJo6lR0`hN`atUPY+~IXj|)6Z!B<5BOBM@J8POtS))}lc=e-br z;|xfJhL9z>Fb4%iFuEWNy@%Go!{J(sLqjh}$nj{<>P!Wt>p;%!*a>O5 zc5w7wF^&4}2b+#F9h8|4-U15Z38-^836wp@L-_pmq2yDJIK6yM^wJ8 zhTxTMa5(oo$Kk6Mik?wGyGlKVcOD7bGEU>$bRqctHUoD~ex)Vs*)X(7gz+glq7yxV zhe;W0Qk@^VEIrU9+S0WZCO&__jX=M%Nuhm&#Cr z9S6`+aW>po%Q#;%^k96!4NBGpftYU`a2-nFyWwu=jNO1?oBL@ltDW>)21DIo0X|4Q zMPFY!L7$$B<0Qo-!dS{EdAQpE?c6;fW+2i+B2OBxn`^_+_%V3WZ;4k!GvHIB8LsS; zz}GW+SevB`!8cnTg{IQbL?jm@>=W=?=tpw>&w7aeQiOsZkK%AfEZVxd(gl*{SbSOy z{*|r3mKkEOLraqLT+4`I;-=$m_0O`!<~OzzPh$=CH&{a*=&%-nFaVMmVu_7umfjkJ5@# zav+%yUT=5koiZSs-ef{c`Al>UU4k3!&M-Z*e9-#CcyybS@KJ9wUHzjJ{KQi6#n?YO zde;a}x%oopA9ZNTKL&G#s;SV+JY3>Y3_F7tfwv^n|Jt#O@ILm1;in@MMkHak_D|B# z%ygNRRKPy%8nxMX8ZI#VI(PGaIwTl|G;}#!=+r@%^SvZ)ZvrH!MsRK&k;HR8p)g0< z4=g6Ok)Z@OP4f}PTV*9!J(x=yzZ}6{5fRuuI)k-)=T@>}xRJG(eHg!N6~v^Mr5L1| zPp2%40jy*3>3umA;@<>~D*wo*%M7O>tqg1qWkBuwC`{1z1=Tz2F)+#yG>fX}mz*8s zA@h5&$hV1nN=pZsluT5zFT$6+OMt_lkE-Jx)V<|7nLl)x^Nld>7vEnqD>f~IU99WDvqN1QNR!WqCH_gOPeCogv z@Id>F9Ng+lVD6DjRGsW5!)NpuhovT}8YTTDfct+I$q`tbA~6;Y?_8%)}!< z+hDD<0M50sheMSMsEJn|{`kC_o;X;E#fxmvo|Qs2oi~QYxoWJ9r_JH{O2)IhFr3WW zvY%Lw?E%L{-Ob+~Ccq}~M*Qw(ZlMwsiLbtSqQg=NR>ndH&a8bGEsnJKlIi1BL^|?6 zy2$bfu?pCZ|2ltO)19#eZtEptjPU`+(_RCE`;?KLn?h5=buj1GLfEA-LT>dKVG!dM zFHw!gx}Qj=*X@AbpDL)JxE`Xk7Lo~fXBZAqCG)EC(X+=MG^Y~jE9Tv$yW}(Z$S_Gh zGiQd$L`wIo&wzMMCD=Gwh{=^+&=a_s{1CcLA24}O8;OOimtW(cdi87Cmvg1rGIk5x zXj(}nDu0qd7}DR2iO-9g@LO&m^|HGH0fe?PGZZ@R>}v@ z_r>GeALlVJcNY=h>fosW0UA2eMLH{L=>*4$ga{-sJ=<)CcX1HJ7yl;T^L$`&;SzXZ zl@8O^2PjYTFYq@r$2b8+sQOzB3hy67>*PbK+nEjz?uElI@o4DjGs2|UY4XC@iHN94 zVq0AjNJdt`)yi@#+rAN;ER7&^kscI$xd*!#CWPA@A$E<`H!`WF43~z2QRs3D`Mu#V zoU?lg)}QZLNG#Ri`0hi_m1pg_Gy*v-)QL$2XJX^ zVRb9(vLcPz8TT14anxK1UFje2YDWxFa%#ud;?`*Ry$D;q<51{UI?i=f;Vu%g!qVb* zm@oQ<^;evSq?qz?`}9|l$?vaoVyERwP9ecWQAYs=Roi=WaTrxT&^eM zVmz6QrmjEHB{-MP`6a?Vu=FX6+>v8_lat03kt-ln{{_pn@ECQ{Bgk%fhEAF5(Rx-j zog7Fa&h{~QJY5Gz)RIB^avZsNAf5K@{DBeLJtXYk4gAAAm)SqxK#KTUlwP!t^m&M~ zcg`KgASrn~T)`1Rs814rPaD3l(lk6V z>vAyiJe-L?UGEXu>S2b9$~c%yN??zpGj`p{#CPKaYmFx8((g++PLpj|;p5EG36vD4Y+I?&__XY12nP^??hJ$-#+3zyyn}v3Efx5?Qs(sjkj`yiS zWXd3(Q%;T8Od(DOmV3o3Kv3AmlRQjoFJJHZGm;#AxH(3-gignT^vc z(%|b7Un0G93+ynLq6%MLU_ggAxSR06*Xs{xfoT}Nh#ulpZWrT@%I<*AY0OSeu9Wou zQDYBl$gv|H$Z{}u61p#+1c|sT;5pezR@h~NsMmYC)NU5^&W_;tsnmh{IW8z_c2FOk zAiOer4P3Q0gQ-9b_?DGU4c{x1b7rkX`mr2cMrV+=of5#)&;av01<=!(>C3+qW*@jZ zK%Pq#p>v-yj6Zr#3*Q(*^Cu@x)P4(m%FO%f9C^6Q#ii(XrVIbOAeqLPi(=_$1>Vhx z#zkEr%nn8ho~JXpx7mLmx zb{U+6yGNwCqBgT&Xn`YsHTe(4gSE+eOEK<}RUzQwpi0aZKIeQ^;N#NL4d^I$g(R)Z zAR8jwvF3+AoUILot`QC7YdDHMij_Eswyt0mdllkPNDA`dQFMH2Q41-5XuB%OI+IohViVqUd83>{J>EtxVf@^u;% z7K&lq8&#Zxi}CZj1?-cR;}ErJ48COQ(L$X%v=j8feI4iUZ0dRZRU$_e3xz;u-(C{p zCBe4hEujxmE}-@*52$ijjuC74+51ZvhlPn0UNLa+|CxnnKPZBbdxUkT_6l&Y!sY#L&5x`FJ+p z5}V`lAvZRwDLjtZFV(5D_bv{F-C-1GE!mChm))jGn|-n4n;5JR(d4?kkzys@)+J|z zc%g~m2iWQ{eX`RxfjfW1d{vGh_sDBknvlcCUVrQ=>_Zb+nH@#PrBX4zG8fbhy-CJ~ zNqBa47{)p_57c3=@vdeMhfFFDbIe@<`lUPL49B)Qw;!rn}JGQguwq0vQ*`T%HeZvJO zjK7gkLqYalO(|TXScz}Zqw$tb z9jc_4p3AaM>g>UnIeH*oT8~rZCt%CQf3)>Qp2cyww?t&i8*mOchYptsV#uS-_5C)8 zFT3k4T0#nNx7dDcc=w9tNzPy!T&pFzXJ2Du-wgIXqaSeQpBS6ZIGNz4gBWG8n_hml z0jloiv)&F=L%eh+kt^dsKtve$O@z}>dFHIU+LSF?Da!t)VvQ?(vO(nd1sJG~#_KCQ zAVpu0yJ-1e^7K8xBdzd#V<_13Z;WLuE6@-kdAV@Wpq`Y0_5OTs0`F2M4g5vZVJ zff!Q(cBB%^Pp$(W9p>NBTo64k&Sgz;tD8mSO~EkgHO|-W2Jw_znAGF}acM17LQn>; z9g_t?30>~THJ!Nfj4W69{4=8TJqI7vpMjKj%aj)mwns8ndI`u0TWo~-X561 zba_7uKmR)X`e`m6Z+3#vMk5T!3&Hs+mszcgR8f?%SX4aY;nt>hFifF!m^={&rWc0L zhpxW!vETRZE z`L$!==bc!d6-e%9bfNb=Jvz1bAKDyR5A!~~#*OV!4A)PCt!u->{>!lMlimGc>lG>P zQRjB#Yf@#8PD#VDMeEp_8fxranrC5~;&1RX>%`HeO*D(Mg01>3xA{p|C)z)MN+g`E zSO+C-xO#>!Ikrn@a?g(?;`q!gn648hD;IV^{dZq7DF2s?q@-hwel*;Oj04%49Qt0h z7BZI~rOC#6%`r@_hVRo!tcs)1^Zq=VZa)wGvkbs~TmZCZormXIckx6O5415{tvXc^ zuF-HLPMu=rF3jEGR)q$4t-2?~yIm&FlU?EbNkwk(hij;#CJ4hq^3C6`Sh8=PLO3y^ zgg?fAqxzs0eZaCb5Ngb=4z^PYcm z(XOnH$wBVMPhP877FERzLp2BXWX@!(4rapah0bt>FBS&xd?!nH&10T>8+L8WV$Lj& zx!l~+}VxAdVRON;wD%8T|WZp90R zpHRPy1>!?e%-mLss06C9uQqCcTa+}nFSdw=&-3EGb=G4$_+O{~M|Ig}_gHal6;@%$ zcV(`LWiIyWiE>Y)2W}d^j(Sg@5f954)Ou^greFaHBTrco4{mcx4&DXl+9pW5l8U2m zN+4iC4g9P#=SEIuV9|Ppm%OVSKfDrWXa05}TVodC{%0@IKFEZ-ZlwmH^7Gj2tlQKi z%n2pL)VXK=QEby4!FhA_n5^hSmgB2!@K=zR+pjMNd`&mN=+|8ubC<#D_{@gjf+IkB z9&@Bk#Myp(`tVGbFX`ys$ZfFK#&?13WV_}iFex;pMu+lO)q4Z^Rc_M3DGdoX3y!~gS;k^WI?DCd)WUeR8Rh(ikq6~ zp7dBcQ>u>2A5h||+Y&Utx(JVBCf={!0P7ng$nItK+@H5z;;4upE}3?KC$bd~wI&)? z&7DHdamGn!B*E3G5#-MPvVwa(lj(sE2|~{e7Ig}Bg`T7F@ZE6_sztlv^~ceOhhkW> z9>k*X&Hw0bSuboqe4kp0ALTB{Fu`<{A~|6B$T%ihE7#FKX_kWF? zP;)7EZ0kJs;j3v-n6JoXctDV+p^KN?oZ&@S4~#w#27R^p=>9?qm-rQs{=e$nlk9a6 zk;KdXTECb*@pXc6V*ewHO%w5C{c$*PQk$!6%(!m%Pe5JRT1XeXgVE1r*kj?AaAD&m zNVvxflWvdEZdD1KtWHMxox^Z2t%Z5kK4ax2AF8cW3~W6sc)2SDOcq*m=ggbIZOo9M zTb#ULqjD%mgEN2;D}`9CO)hXbU5G1i=pyzl47G@BIR~FBc5)o@u2RPt{jBi7OEAZC z5QzOCNl8@WDpX5yGjBe^Cb=dISZc-m%+>hi(qj_mtH-tr9wt#fVOX1{L{dLp#WRnx z;a~SK8J3k{2XE}9;>vd5DLa69T>{*v?NZzW8L9YeTpi}!yhx^q4!%k;B62GN=yjC< zD19D=xc(L_R=$q&J{)1(PJwVxbSp0Vt-wuCpFvDs>#&{Qy<#aH)kl$pLOA57hymm8 z89sUt{XOP_-;M{QN^)<% zv4Gm&UU<{;H$*f^a?`n&AjNKk`tqjXx;B5X&0K`LQif2iP#pC8bIFoDyW%kP<_s>+gcKYd5abGvDs#0eHe#S=4Lp8ZPLKRmgY{LD&Eq@Q z!b}HYE^j8VYrJ)+Xs#d2>c2D)YjA|vi*I4?jCW}MPz2X)m&MbHju?>e0MuW`(xTh^ zm{|0K@ZJc7=RG;tw(uXk=Q+idEeyphk5`bBc^*&i-$#uVw837z93I=qVAsP^T6DIW zK7=U}w8Drzh(gpeZauzaGJmU2^}vTONAc&ejd;;RimmU>Fbo4@(Y)aw@d`e~GR+po zuF;uf{QM<`v$C9<88QHDyL2>=;9KZ+&Y!nYs2cN%-d|EeM&7U>)cZ7e zdx)`>n7pBs!z&zj*hYSd4nxe&Xne6Q3Z8k&aP_}D#>>NU*cdj!a5pyM{nOte>dFla zmaQNr8+9-@G94^G-huH1eijpfz%POCSza#Lv}S4+DRjJprm>N@AlHC~j!9yNHsJlB zrFeRl8&Pl9A*Vt$LFsck$oBcc6rT|^w(rEbNo!%f$~I!7q=}{y{2(*O2U(+US*byn z;GD}5l-P0-ZZB&jv&}_8#O4uLjLqZ9opo!PSbPy$h4{Ezcuu0EmpvX&eMG1}CCYL4 zN!+t0I&@(TF~6b2=AJd9Gpm~*H=J>?Zj)ov`2>>h@Z;L=6do$fhkt1a$kKX8KL`(@ z3-<yE`A6LfoP`xkL&K@-tdDsaF>Vr&q~7Urd{-iiXXg_ zP(aP=%J8Wxh5UM(&FP+*1`9S%5Pr)_qJ1G3N}^3^Zj3m+t~(DacoP|}?E>^YyNvYP z7Q*ttRUpb2N?ygx#ABWTczwtbY-YscgKM4i*(qUeUt2a7zhW{w^?zx4453@kUV=>q zLeM(9n!h<6M%&S8J3g;?OzTB6X^Jk2(zuY7ZTPgPb34@b-*6`nlohaf;6o(kTdu!6v|6OdW$1a2euh}_r{a`vE?jd%V+G)~L0`yD-TOnxukyqp9x_x-}nx95SwF*WLT z$B<@5FT(2^?n3juh2$NJ4KY{UZOCy3P_Lx33PPft@=TjrU=YWcIba zOC)jktV`IlDS_pFB>-=SFN3e&WKmHv7si{!fxGY`J}Ku~tRKCE;Qtr}!{TsS+895z z$1?MXc61X+hPSd&uu|3!dJ7t139}=h!;D95%OW`OCk45c(J)mLjN_4^7T4V_psDRg za&vzy4c+z^GQXDLrc*XhC1OA&&NKWm|4AY^t;!WB_JMdIKm7c;7%K-~f@AzbXkJU8 z>Q*r}ZQsOt#LA(sW!mB1yn{qZ;08^Yn?*wYeB$r~A^7G*Kx>Nu<9pZ*H5 zAjgH>vvG_HyJz0mldP7iO*a9yw zv*fdaMi_m1JLGx~gGvnJr#x(qoC1a+=x+vdMFhBQwx)2&{3h|-a2aoA=;PUuV4}z5 z$Mau)CqH%6vCPm2y4UuS*9zg#-7ErhI*}Gzhr=s|6SEJ;Dd(&mobPMJc*i1(Wl~E> zcPNX<`h;M<$_*MLKMO23G}7s_`#>$_HQDioxl8{(N7j7b0_49B7Sbg#^xg4`uuX3l z4DA0(+@ra$=%z0y{uSY_{pJe8;Zd}H=UE(ROr~CQWbx_pSd2PS4?ziMNNx3du-o>O z75^oQ!{5)P_nd_>Aaa0&Th0V`i59v!GZRdDq={X|PW(Mfn(FW`B$pX)z~=lAi0E<0 z_X(>}Su>Y@YX3#a?(K}XOaX3wya5i`W-#!`7CD)6P%fH+ev!e@;I*3ddTI&At-ef* z-7uC*YVXF`I2iM81Cl1=Uh~u;d4- zd+(+ZJbko(MmSuaNTUjORuK7-NJwuy2aZFAc>0-fvyAd>+H>(1>#K<(@OGFH2@f`@ zFo`9zA8UYT6h-B}6{M+U0e-aJL;SUi(A?S<&n+*f5&k^%%k(Hc&GbJm9LnR|YzRij zLM=GwaS*MannJ)(DV6*0Jm*rFFkCDQfUKyqCTpN@MhpM8RlCACOZviW;P?m?M0!H}g2g9+g ziH5+FeYA*Vz|_7D8hAStP9I==mJ2J%#W-Q`d~z7)JTZYKJ9KcVLqfC58ByHR_l>oz zZv)4{Sslw0`N4hHZG7EhMfjc<5M_psr`vKDb{;ID2Nl9eulPOs#I%+kerw7)Wgm-* zp0|i~;e9fT^|@*Gel5<#6c4f&m!P`10*qg)A|uMLP-J=%I~X2<+<*({G*mLq2teh8 zBX~;XA)L73ixQri9Al<~I(M`IPuxuf^OPRU3KYQszcT8#^-Przq4?g_% z11zqxA!T+HKzem^kT%1P*L;X9vKev_6bkiQMr?u zgT@i=U0$M)&SdD1np;Q*=2MQU5;clRBXwPDJSkPr(er;`Q8L2}qaVgo*-#ECTpmNp z-=>pMo!3~KbDD~Ex=^;oa=IoWlX8z7MP{u}7S8Gh)8moMeRP_n&b~pnhQCDii#a%2 z`kAwH%}evM$&s9wwJt;=A(Qp8u>>8DT*SOGdAze>2K=<;p>l)r*pw7UpJ|AK!hx5p zV?Vv{!^Sd*(%1|VJzF8`Ycmm8;)VUm8!&ajVwf-VhKz}SA>_^n`YlEsAFJ}?g_rzz zCd?M(j!S}@bq>SppJ3&(d_mfIJHxrI#fe*lL`hkqf6IALGgP5DaW!~r#xH#S=MAg2 zBA>M7wL_^4(?5;2qsHI5LAv!Ij;8jIoD2m>tVn=~U)P(JA3el>Tb&se{YuvT+ELEy zk$f0RVZ+jwe)M2!HW-SI5P|7!%q(01eTIO_t<VWF-E{7; zAv(VD7wg?uq@~CBVU>0eXFN_CA3og&QcO?^9TnA}M) zikwIQ6Bd(Sd$tQpOueE0eIBW;-$@Fccf;OIvZy&!%F@0w%~83efVYq9Lhx`Ls79OP z(6jZ_v?vxoY?q;&p=NOYQHiJT2BM#54M}RDoUXj}uxP6j4fnaqk@nsTOKYczn7}dc z|8=K%Rr4WGc7H<+w#U%-a0*DJ6usJFMhz3gK;T(04bM!WvN~Uz=U>`Dk{^bm-qs?h z%F<_5Fi80t<{g%0%s6W#RuS9ziJ1D)1gHK~p|@)-jmS;KzY*T(yo$+3CEO)iUTl1_ z@Ek^$wpf%(W#W8CA-o*nLZ(OFQ7wVh^lfbnsJ3!g#qJD?)K>s@eEY!B58gr}*k>X0 zM>E-)6pR7C+NgCg4_UWt9ei9U3N!wm0I^MxkhVJwKEF7C2R&UNzV#LL8eM>Y{^Jt! z<;j>ReS&p+ESK?%?Ll40!?h2Daf{A2^c$Xun;HgbM@1S85`etAUsnT*g^zKhXA)@WALIBfcEisjPUO1VM#$_oquSFYuyf5Ra-j4SHq@6ukSZ@G zFwg3yD}H!vm>1N?Ss=C32-xSOQOb}Phn_Oe_yLByx|Lzf`0ruqV=&G5#xMngHlq%2 z6`1>og3|^~5a4Cz&6DqGd%GeTYOn*fu%lqh?2=wvUgvZ_b|m+n9W8Pj{&l6)*Mt@xrEsBNdkAqMs$t&$Ev;&X7O{6 z8nm^B3@eX4Rj7Uf^Jk?gzw zaXeh2U~Wkk?w7D8s}l*+B6Vs)5Vj@nJAWXh~ty{ zoAc~S9L8t3!KFt_VRqnc`l&&WVUgWyp4Oia12s{2Iwb|9endfkS}n(*GJ{;TUIG{8 z)$xZqvj0;zID{-9+eLZw&W%EAV++26Va?0DrPPBuO2? zL?%ls^^pfw%H5*{?aa=}sJtm%D3O%-uEX|LS-ATvniEu;OsfMk@Y{^lR5qRQn6wDd z%in!Sm+ESm?UF)E)*0hn%UN{p=t?YpngIntFUapFsUWdIiu2_8DI5+~CI^Ij$zh)D zL=kmRJ90h9jO2okw+Qmod2tr30<<_Pg?cAlQOuPGd~SQevRSw23)L;q)6NG|20_?v zB#bf*x!5!&8#K}FH^THqp zx{T#exBMM>tf~Z=49B)7dmH-aYLZvGO0nBLlhXnRsP##L!LPl+WKA)4OQo{L9X&uU zLkIr$dEwxV1ysnk6xvjCX_oalR5OnOfhQNpr_D-eh<;GL?=scM$hpKWU=x zO2Q-j*+L+FE-dv3rE9x0;1AV-r3(qY_VE(UWbYvT*M)IrK{S4t??ATO=+TBNYq88W z1UCIpB{y3?(ZTheH1W|p;zn7QoZseCTsO2HP4!;L{&_Xe&H}yYqk3 z`P!mzJ2Vu}OmAYGgoPNzFND+eyWqb~&gdGDN{=#mp}iO9k>aM=tW9J!=B`){*Z(_+ z3#1d!F>{bEymboqUO7r@hN5u1;2M)hnZ;ytQc--=ko7<(k@Ccq;?3m>tPB1{kiOUx zFKQ^^{l}t=1Dy|f?9Y?YMm9DDhoH8@JiKYUlW~n&(I@-biT$>6n0OeA{xqBZ4PAyo zOkcN#IhWO2R*+k2IoS1TJDO+D2X1Ojv&EncD^aYO{yfcOjb+#4_<1?FoLB_M8@q_v z`g53;9Lt=+1d&g7h@5d%#E#`ouyV^uoNZD=y~P7@r@A~Iezy)r@(2ywS<U-|1Ie z3u%5ur0=g9KGqe3j?6?(yXHZh*<1m8TT40Lcf{c8sI8<{*AymQ^wH~fD{(n?0NTXj z(O!!O-ZAF@mCAfh+J#;8PJ20(?LI&@DkYHhHrGiwwY8XHdK#;ua`8z?BaKf^!nN)q z%|4R(IA?hX$S~aQza9}#v_Otl{7ZuP{jsku+2?O9Ym#6;2-az_G>hu;rN~I;v$rsOf$vYES`> z7g50Xj!VA(6h!ww;V_dq2L){0N96YN!BXZ7bAssrI!CLclH-U)=l3GGs_qOngTF|} zh7NMTGZYIAJm6n78{AVP@y5keoWmus?^zy%E=j}POU&V0kOLf3WEdv1OtJ3iK9c@; zD?BTA25Of{^V!o>`Qaf}-e%&xUh+GGa&waC)ibJeSD7koUH_5rZB9YobFXMdOFn8JK2MPGy5#PSBR1?xlJR;U zXXt!1R)`wm@74*HX>S)tRHcrp8H6&k`GfRnQzGPym2fOx&tWw)%<)sN7NRGAF?fqQ zVyBoDUa@4@??C}LdUywFc`;my1WkPKW+_o!>`e}bnb6@4Yry}16rE`}m0uT!jVV*1 zWUkCjl1g#*I)sX%5>XM7G)MSHk<2q8bIOn*nah0kIw7P&DGj1Xl!`=?=J$C&x-K7F z*KwX_@3nrv`}R*^g`WOFp6f0r{(-BZcTEtAf7e5!5)=Bc#0-kwr2_-%h$;J(vj5&obc=2rm)8khSq4Eo}P-Rs#1dETdPF60)7k@qQajr9&e_|Uh;PFI( zmnnGdR0(OVcuq*i-?zvttpf)*}~cSLfq#Pg(R{FNPiR zSK*#`9Hxxd5hu%Z8X;3my8dIByFccl6vrMzB98+6x<-}{Uj+lEx7U_wMv63oaP_Bc z=m5-2(|Hd4{{0yz;bag-3OaJ862|G|$9$sro#Frb29iUSL$qvh2xi>3fiC;`M1^t3 z9ZI#pWuJetq_{C~s`M}s^*)U+_@`*gMJ;mDQU~k>&f?dL>X5JAM4s=|qIC8ov1FJQ zwyUb>_9QX1_l<@FWFNkoxeVV~HIXe=VdP!YBGOj76we*d#30cjTH|{Vr-p)X-u^^* zc=QnJs0iSPi)V4}Ykt&kmqHQsI_y%OqNmLKL8^a{oHF;toQYeUSHEkiuwD~9FC>0vDuGKAYZG||&&HZ{^Rq~=1MG~K3`JbOGvMbN8%V*B z6Hi$Vfzhz?a~8Ea;QIgmE`B=ykjO_f9ap(^kZE`kghcqzXgZI2xE>&He0u5HYgIHk znwc4uhpszuu>_CZTaE*vL1g5wAe2VvfP|DD9kymi(+ly$WM(DfXR2aKF$#RhY$1Ke zZaJ0&b@$3)!8=i6v{(eQc$27WYcxs-K1SD{9`L#DEqTgxX|v5u;9>YURjU)njU*7~ zn6AQI&OYFIGXg|14>EkKSnv&NgQ$)nXuy*gGg5`ZCxc0Kb|y&W+23gDq7s?{O^+y(k7#%$>Bw$_}GP5-JP)(^D{$%WELeFy9mK+JZ^u(S@W-o=PC1?is zM1FESK8vyK>K|Zn++|2rm%%?brdi)j;wdLHk$#vMBJ1DGV#`cM5TUnug!$yj-J?Ir zUpa9yakwAN9_r)xtX?e1{(=>nfTk8X*u=^N?V!21a$OhJJLYlLy%pp9)*oi>V1O(C z8^Vn*ZqZE#yc@bhGFiVi2g8F*hMh3tMovw9AQO5I(c_K=*T;U8sH>`?k z-E1ZQbz4)>HpZoPaycqQiGx^UHSjF?1h@Chfp2m5>B9*<{B>D_e7f=y#e?op?+dkX zC+awSnz4`sA2cT6sZk_UES>z9!-kUW<{0_)Fima^KoiFIvQOy~eR8$|I3CQr{BJPp zhP)QLa?xD!`}Q&#waXr4BZZm#XESpypWrNF95tTaGa>zA8OqK|Adeh1aeTfockqq` z1gn zVY)rz8pG0FhWFfEu=eAAl2{i)uC0Cy-dt5&|C7ndACMy7zLsF%XKup{Yem?7I|u%o z-hz7!q;U4rOlTiF3XV%B&_``8TU5)7b^4$Vxb6xeE@_wX9#1qi5%j_)0}UDwc^$l+ zMY)%DYQc)EZdO-c3M@;gqwoLA#-5yDNP66iqrKW}KF<&oSffhjrf6~ncckLWH~F;t z_+{)Hou*EM8!^c*kQ}%)ieNQNTSv=K$ngmgWGzOkzX|9j+}_ZduEcd@p8I^SyWq8D zE$mq30iioRp!B93Xuh2RL8Ve$H*rN8%{=Rb+l9F9Hre>8SOX$#@`_)F3``xi0c8>Y@l8FaX75}x+-Z|rm$Z;dHnODDr# zjNXSz?kBKpu`L9BQ)8c>)kEIDts~dZ2(vfy&7)aji`jkAg6x_9vG6NMp!J?$^jg=) znlN|@e@EmnerDLR}zc2v)Q?)BTyg*Eg;7egm+0hv)r)6czZxGEV7U$QcAS%NMm zYvv(-0)|JzC1zRo(fmg&X6FQ><1#KM=3E~pcFbY&xTP%qb%U&3>j7a^1gCRFB5+F# zxazDE*fH}a$LX#f*d_PT{*8^$zn_CuXDu)#r5Y!e-XKHovY=%lFIQ?sDyTGasaDlR zB~mjpXR|74U4> zo)gEMnVQQOu8tz(ZyS(?$2If0tF&cM$2y$J__dJ?hSh2R!iG2tHDi67KeSwrr|ahz zL+qyp5Yl*$4l%B{vpo-fO+81yTvh7x#t~8+7qCwJsiYqpTj^3qK1etk1Drok(R98i ztb<*2WZaOZ*!h#cJ7n=_+FN|OpXU>C6T1$RX>0kaqJv zoU&Pr8;(YS_M={iOKwH?wfWHh;~6o`e1Zxx3Pf-rle=MNp|bBq@!abZaPGY*cStji zuD=xl61w^H+|z!Vv#W#EpJt97+&1QYAwW{Z?O~Lcc`xkgfSrAHG^OwtJbzmV>2gbf ztLgzku0ymbN{$=I?}o4YuM?BatEj7VzgQh? zu)oMrdv^e0FD9T_Yc2X1Czz-`uQQ5y2+Kuo*3Zy=4Iknzpze_h z>ewgDRv&PI>%5n6lWl%OUf6kPx6P-Y6uaTTE2e9zpu^qk@ex&iE#oRyEQISi&qk)K zyWpFbJh+I|5>9>~lvFnq++4>nQaJ@8U6Yf!WJ&#{*m)z^)~;wrA)aFDk-eE{SsWYlEpM~Bny2%+p(H2hojRLdS@@!MT`0VOdGR}0#aDc4xeCB_$Ev(55<8q?>WL# zIcRVz9$wwO48C(^*{`;&=JY$sa}P4PCSKb#ypnR8Q-3!EBF^nVMP5lLdHRJ_-k$~~ zQL*^yKm>ZFuVRZVSr6|G!f~$E5hynPM|x*I0iSDIxgAB5u!?;P)RW!GR@-$98+Jbx zxhuh*ntY8GFRM6DTxN5NUu&}ew$H|dQWLhGz7t)w`!QbJyMggcRe(#EI=kIym?WC= za9QgI=%*ZjZ9Ap$ws{?_)RpBnx$v+pKHP&NnrYY^`Hi#R$B3>TeFtv8x?|mS>T4pH@z@xjc@*Q!b1!ho%~@Q5osD$j-C}sMawY0d6aYVAGG}8(+(@iJ zCwCR@_HaK4n{|SQ9SI^+x0P_#iCCzXsK)2*64<-UhWjr|fa_9}L0ldfL4*DYJuw9t zwo;}xOD2c$pt!jq+dLNSK0l+Ud9Gl^m443C{H;*v`3nXWlP6cF$3J}mnPZ>m*Nbb}svF&4S=nDa`mP@O9Mv(_Q3=DU)YuQLiZK4a z`G|E)=P2+2t0t-#g`6xI&iF4#y?z27hqiIts^cO3%?mmya1~y^|3No?6eVp-E|Q;{ zoxyJ^otBCKD^xHCX0va@bbl79Q~g3L+$iu!3t{%XDF|*0!?@3C+)vdEH$b@t6x*JH z-*hUSxNrfVUozk()y)8*^m{aNK|{md8+q8^)lComD+Ns^zwfa912(zM!@<3s;1ab2 zv;XqrQpJn#w?~FOEIbZr&m8dZlVo%=9HH8|@33y+KZZy10%te%Qk(4`i7|f({1i|D zmVy{gDVoE@=1W-pP>C%vvJd9ma0O$AW1*C`mTXceMwQMdXmZ>E`P-s#$$%j0ZdJq3 z@T~e3e{R5bPSv`AGH2Rd8;V~x|E4j?hFm415BO-}AjdIv0~YY7(3Ef`vVTefv@PVR z&uapnyH>#4iClOr)&Yv45>S6D1h(fUBP&IVEuqy17UCtu!e|j&WwIH5J08T1E9zll z|9tLA?Evh&*?`r8rKIAYDR;VKjJR!10gW?!?8A$r$h`2IbgPX7=MlpSOw|0slBznv z$=)?hY&RLx?+sV6MpX)mEDOQiFau6_zrk3Br?(@p0cLN#i7GvnMDkiD4l%jjIUla! z%oRyA-J%UzQ*MFw?LyRERFBuq$2TFQNf?a|0;`}LV5 zau(rkZ*?ry<`AP_d$H1Ajyvya5;&Y)0H-xZ$$yJJ!Ys#yxGbmwp4<( z_vaGj?aQg2Knb`RRN;HoZ^ZNZ00bU6iTmW^z&>1^`^`0*s@Q&mlx{WdVNng(osmR} zO=dGrSYhOoF+qdVoABrLIqVf<5#YsQoPuwz(51E^c;1TwXDAdF8ymq*qRFls`3YYB z-|?7K0^HIW!!;{nQOQITEWdwbX3Yz5{+3|aV7DC_nxr7*ofw2PZ(&#w#`x{#IWX+m zN+yn)qUTd3+WEGX{#xvcV>cE+nD|B<8J1z+{&xW{*Xpw4B$a4l$wPeI#&EYJ!|=h{ zi+Hb65tRn!pr0DUR!i8xJ|fSH+fH!NdWxdnvtXEOR)h_!`PuK1<+)kTYjOHdEi4Kb z=61*yvIg%rk=aSK!TnMv!@uY!K0JG&_E;*ZGWg7zZjj+BE_p+CZ}>sKTBf4YmFvha zVGoa-W5Dg_LBfrW!JjJ7;JDC;9?Q^!>l)S|xT&2!)r_sbs`d?h$ChI2w=ckZRg#n} z)PBE_+z{3VrlEjduB%l7l>t;eyFDjg&M5g<=(MQ%Dqj`EeVG*`&f{ zT3_&aMlP0ypTsVA71CXsO+VI(adalhYt4oc~b;}u?4=zCfLAGva%B6F7GTl^4pm#tzeH;3S{=PPl7 z$pAmCjYgYsPh50il+>MW=^zAt6aih$8fvAa3)j-kaYC#Rb?icM8^bJG=-bBWJrxGU zW^c&x_*eAOS~t{q)dfjEhJh`V2n(|8i8ZZbH4Cxf^3&s>o!mo|YYX+m3|Tma>)H28 zH{pS`j_|K!16A+uqdTu!o3{!+sg&yHtt_Qan4H!q=MqM(T?PJ|2T{r*8O~07)6d0cAbM6fHY=#1<0oD~ zp;m|(TF2}Sr&+VZu9I|iBQmDP@Lm;|Zol6yy5I7HkAh^FfdytzA%S|c9`YBg%u%2Fiz7x_Zb);07S!`{iR`wQ|m6pk-j0=;D{=KZoB z^tR1sH@kRq8n#!$uBj2+(lUTU!i@V-HJ(Zz4JOYz4sty1D63h7XId}(&zwq{4ewH7&mssa4x{eT$w4^fl0wIs>M8@4Xq1Zqd`;Jja% zXrz(^=Uz3#jja(R^RN(Gc9uWu(`Pd%0ZkH8x*xAt@ZpQKJ+S(@3O8u?QB;=KMDtez z7)mxXoU{nE`=Cr0#F=4WZZnxRIu5@k#bJECAooqLEY$6Ifyti(KymR!dREJbDh*~q zutyqIetZgVmF59U%oP>*+*< zmqg?6hft1WCu01$6|4>wE%epM0$8Mm`x^`37~|mDwUr=96_C+Y;$+2)NYHUI#})%K zY>egQ%9(Z$QT0G%`E^ijoww*XY=v?=|8dR>5%_PjF$r2b7c)<=pnp;f9IvLq;i(DS zEfYx=EgHp#UQ7=oGy(p5vXO*Xh~dbQVk%z7c+NNSb5pG&Nz`;Q=)9Dq7BVe39pR4~ zemcRb-aJmW!&xFD7L8G>S(sU}7-wdxp_JBl0@78oogR0FhU zbjxTDCilK3YYn79<#;DGopBsoN7Yg9WhLl&8N*^`KC}3pBPK0ik+6%ih~lSJ#6)j7 zsb;fa6<;vAP76Vb)D$f_dJ>LKT432jQS82}O}}mKz^-;3cw)Oruj%BYOF*CzM$bPQ@A-UD$6J}tZ{T^gbrh=pSHQeeN3L*k?h)8iCxbE%5khg4@ZQVrE zB@^+a0j2rsUZn7H@4Ax;X;jclhBO)3gUhxG*1|&{Smh!yxNyEC7!3S|Jx&E6^HUCP zs7ykAcpJ7=mCzT9nVlSGfG(9PgLgs4i64`@x~jMUWJhB$;fgs7)-p;t>_h`^@aL{t@)Zlf>`Ery(c80njA{^(KSR zQe+t@dK%!9dz!?Jad|BF9f1;a9pv{9!}vB!h_GGG(flu+1}pf(mM>q)tKMO_+R_Q( z_p-5k!)(I(_=Tt)l!KPqAXw;|kCpL~U?}f{`~1V<&Vd{pGYX_89}?ip=5Q+fvzFdX z>cca`pJ-opG%R{u1COjuVA$qraG^!Oc^Je>{<#8ISXZHTQyX3UVj3dac43uvADOEr z2))uVtbXf87~5J8JM8Q@aw8sam`iqTnoTd!W6ZsB4Q@O8 z0$mthn9COnlEQJoz99{`#;I)(4sRq*v6|qV843#D|02KSc`TplgHGzDbnt8-mZf)M z z@c58NUvW}Udh9RhUv~k7W}PA~d*2bI#0WH*eV^qaT@A&nmY^=bInHWVAiRY+^z(V< zd2gGCay3P0J~V^0dgs9{hQ(<%y#j}S2f?4!K~U!!LPx)8(-YAJFwgEAv3y_yj+qxp z?xr5fr(A^_7v|trjq~_nO$+F|?jn9nC*b|;rI`MHn0TzZObpkD0B8LY6yPnTH{3#D zX7U5VZ?~T`l^=l0Odf0-)FpR6=fTlj9uW8%4DD14n|(ZKtcesW%18`uoH2kq$L^9Q zlP#=u%N8Kd97svdW}LeBuio7xizQK(L~X;;A=O?A^5&gk_4b(30e5}y5zGVO zU}YK~nF$=@U*y^qK|K8ED>3AY$90;$_1hN5!&@(57CY0Nc9n8jmYuWVsarBy_!f}q z#0t_NxCb3$oX9eT^E5wgFZ{9HgJyxou%B_$ZS9K&Mb{k4L;K13%W9x-Yy;}q4YTAM zgTbQp9~rPs0pS22blEHbN=~am?YStbz8fQUBBuCgLWP`FACHYLYHjFTy>AI~8(Q69?V{==%CaFp7jN_<9RNKME=D%`#t?tL2~AFQt7 zfvj5Ea_kB|{9H@%1?WF*;gNrztDQ4VdVuE2WFOYq`^A9OLh^`22Vvii(n@?RI@ z2LBd-_nR&PYx*0>kniC*`_IFP%10~@DTaS}NgYgA@!^#@f9R@^%@BAz9&C%!;cQnb z>vv8fP91Rv0h>X6+tXga%TC0cBce#;{?X}&wRE_=h2>-_f&Z4d(n}jFuzTb#{Uq*2 zlB>?cj*IV!MA&+qp73FqYMLy0*G=Fq-_W3aP7l4lnBn^eL9pF76r`bu zrZzc2kXsj!VQesKE1K%HFt!{n9A^HF%^A-HHWMrLFskg(G&WM}nF{S7{PG&&+5-k%Ky ze#dMi>VowDGY12$0HRrQ0Z$)RWNo+9qJmE^kxN-oSkyQRW7at^e`_fDRw~o*CM^Sl z{#inT^(m~~V#DMk0Zev9p~T>67^nH5@WqPGt*WO!q32nN5<5{fJ`f_xZqxOOcPLy` zBu~1;;9;M&{@vd$C=zoK+j*3rA}@`GH4aio4I?t(YQ)EIh1Pq22 z!^Hss}>wH=hlnO7> zv%%x+X)IkONyXYvg5oY8n4u;|zC~VyZ$6J{hIm#Tf#9SwR7Y^N4}Xx26C2PfB%F+Pd4h|%AXat< zak#%*^ae-FpzC!lY1wIxmVeH3%08!pZ#*x^`ah*|P3Ixy^$A=c_S`Y?3*kq74g z$-vD1LQ>Lojm|r4hU#Pav}8dpsq2jf(Y#EUW6@1A&li%Rw`pMiVLkQ;KO?u9+U!&| zFK(EXj(i6aKyu@DoH?VJt_X6*XMN1?UEd6+p4i|z)hhbmg;@M_tAlmqas+;oxJlmx z?!~_8^T^}UU*B^<6INS~(~hzfYV9Ba$JCTzY_>a`fjattVFEA8yn;?qMI4}vlhsJ4*YBU@=YDb;UInmr5JF(zxHVB9wLjR%=Xnf#-KHh#*fbll((((d_!+a3G z_aJ>Rp$9$QOt01V5<2<0fx|;!Sa{Dl3ah=baaA)})Nus^4o@~5QOboGXYSJnJO(6A zzKB*mKM8UpyzuN>5@*MWIQrqW3<{rpLrT<7V|$T1et%O%R|_AaVO61+=)D1UUH3zs zXY0sfzeL>qVI4iYCI-4UI>WNpV)zVvN#xKXl!;CSS0?}1a^e6c`jrwd?MBYOlWLIf zB17k?T)@^#i}88+G<`ee3jPnH&~;@h2)V7r%?%RNNh}O4w;y8h?_ut$0gc3AX(kA* zw#3W2%i&4XRrF!bOY8I8;oufgY!p<0;%mzpm*^t+9=4JQdR3EwZH)g!J&CpHupF-a zV}n0Vr;in8$U)(XW^AfA*;WoTJLz&i`SqfTOu^33h z@SBJxxY%yS1qG$#XlfqFne0dV4jWXk55Nb`xwLO04tOe=Ggy2g(Ot{}X|c6n=a~r4 z&d!J5Ni3A>$-v`Gu63g)lV{(vj`J_i9XCnd(y#G;NB9dagK~c}*49O! zwM-mFwD}S5wdLgU6)Tb_XoM@yxI)n(S6b_61Y&DKpkqM;u}U}yeK&_Wk2iNy`;Aht zC9SY{>no4|-;BSS1f{4#ncaryB5y ze0G#0mv1)7hj{Q5y~ZpED9V4GyYJq<@^rZ%Rdg z@ta}JY!Mzf?YRk+GQ9BLQcbWi^rju=xeZ2bhiH>d5ab`o0cV-xq$l7syjm1Z>(6cl zox)XU;-SY`F_MRN!ztMFz7V#ghEeIA!3~8XYp|{(lV*LO7((0LO7J9dFg4VuGS#~>VU{tvBJ2mswO8_Ra)(uI~*L~^|&SSO#v ztGh<%uv;W5=fuIDfk{qYK0k(Dy^6eSS5TaL0kyUWQNMz2!kxB8hcJJrQ0<^UcAUqt zUAM``idDo#GZ#+_U+2tw?~c{`Q$e!UkI}j;!qF|7r1$tTqL5KRukSho^A5^k(VAN% zN^XECFnd^PvK2pHswY>A!%39oE=&;f!>mh(=yIbU4VBMM!)rNR7?9n9K3+#Lx^EMz zOEJ673l${nNHdKrT}$qC8zXz4HdU^ej{$ti5PReZv<$X3Sd3Z18SC@(+5N4!M=zed zS$mt63k)yPTpfN`r@-Rnb70)2k|Us%2N`20IDOh_tW7)S;2^&(s?H1r>Dx{8l4%i> z{ojOs@y4*=pbf4XFoDjmDfnx@7!?za07;cM#I*J&$IaaqMn9Z@?|WX*;EXOJB9ct> ztnF~hcQv}R9I?bd5<8n!(CN-TIB2KJQQ{A#1L27%Hp>$|Lj&>bTqjch(GOPs$sx^p zDySm(m-5(bM6<4)=pGb|o0*=avwkgpjLM)3{}U#aI%#NL{gXa6vLVl-v^k;Cr#R{# zdMLL-f%Sc~lSt)?qFRPI1{^2>woHgVcaJ3mByZNYU3r~jW+H)Ew(fYuAs&=JGWqHT zF1e?^ot$_g4Q(YY9Jzff>5gDFRI}%TiBkaW59lR}XIn#qK@+XQvz(o!ict7H6pel%kLLh}7wTEXg zJzaI!=q3a?Ha=)v^Ux>u<{0hAOWb$}>k9UN11m z&%wb!d^W=F3zMAZu@S6(b6L2Yu#Mtg#6t(RV4C7dOqtP$p$Gk-mVZ7+BlISu$&@ks zHg9~9zlEbP=QQ^FM1kA`I}~4%RG&G0sDZ6fjG~dsBq{C}=h5j}h85$)Ib9b6b_sgu zZ1Nu*mGLJmo(kA4D~>PcKjq~7kZzDSY=3@+BeC`tXBNK> z9*=iN`7KZIeq0^eGjpV+KO*46vKsJHk424$pA1WDfEI2^#me#TRGxE{%3V<9^xilI zKUL1drqNFL`Pv9a8_+3Hy2`Ih)OAHgx)LW5qdNp+Uj*Xu32P#d}`B zx`7g`Y5Rx@zDr1r2h+XS{0}b5q{3pq&7`KKkRChbMeZ{5pmwPuNDvF9vbSw%)OlXo zbkL0oV^u80Gty*viC)^E_5VN)*gNG%J?a*GAYCu2_c+` zVvssB4aKkau$m3yAXN=ljOV>Gz@V@uogL+;$kJPb#5FYa0&SsfE=e zhD`4K8_nAL5N8#;;L9tAVgBp4P_y+4;U>(1B>SffXGII;ln!B0?iyTGxSrH)TaGUm zZ(#c4Zt$Du3#Tx;fE+ss?Cg;m2(H==$FkbsTw84w)>91q z_yfKr72?mjLJ$qr!}VQdL{nxD5pbBKiGHT=_G=KP8x+FJD=!&;VFs1Auz*1EtN2Ce zA%^XGM7FP4O%2Mlx$89Vf>rrv;{7KNWP23o2X%kKpE?Se3CWZt9m(`a=d&+w9irCe zve;K|fZg+T$hGlCR)fn43_ZrB6^5=j8S$IdowWpo#&2>ypHifb*S12;&3;n6W))_d zU4tW0dl(*L4~q4)q5Z%fFip#X>H=wSc)J=jO0Ur_n>EnnB*$Ge{+DX>GYmof^<;-G zA6Dw{;?^Cb;MsD8vtcg7&Wp={zXl0tX~($bIh*isZ8DT?*MZAhok1|B7g@(dphDLV zOHV5>j@Js7Z&C<&y_4sDV(mp=gKDs;{t5Q(NyOYf2!!2N!K+J|Xc=$?mUSq?CV_A` z$Mg{WYwW0inl)SI)or}#=&)uWzHd!%Vn#qDKExt2J)!D1y=K?{y1ehe&~AIJKBG!nny2+&Yj7DZi3o zStJ+D2d{IYTW(UV$3dL?n@qVjKJ8$$#vS6j?7>~)4;i_t%34=c1{K;bsAWm4zN>^R zySuOnyvjAv!l?)M5;HB;j8K6 z(w)(GCFmZeJLQlCQWT62u7&^Bw8DkXmteK@J7Gwiu_kz~GH zJNaW6%b6Vihp}$ITo1y>q$R}x=q-=RI#YxK*$%ag2rhI<+P62~OB zax=0Eaq8n9x+L@$a^)K7wJ*hx-1Z-i2edPpy326iXau8|FQ?nPL?N_PnEm|YD4hP5 z$DA^p@xZ?Y3{RRvuj@S}+usTR|Mn%ccx4+3g><3eur=I2%3>FV@so~@I-J^BPrR(Z zaX#^t5|3d;s?&A5UObO+rxp*9TQ+Z5FMFn_-Xe9BG^Fs=&yIXd(Z@4^3~yP-4|HFe zVJz<>Tx`>b>wCXI=vQU#nJ>(&VbNov8==XWd4CBpdzWXxf%=3pk9sr@gJ!uX(h+E2@;p4$sTxeWK&wtz!?ET=D60@OYm)8t_`8h&@cp_m2G{%#|7ykp_S^b3~k zBPB@jJ&w|674cp`4fdB`MV)t9oJPeY;4`p<=8lVyj+ylBz+*hRE);ST{5k$Jf(YL( zJL(cUNzX;5V4KYqG9$E`xQRZ7&Q=XV9@c{JA$64LOvj{s-(gf=m0jg-ivM1BVXd(u z2^w!DJtHw_F#G__2L1y9w*^>a_I{mc(pfla!}!D>5|Uv1h4d)R!OIEDkXvs9P9KiJ zYrk3CWp3FNZuDS7vLO3uTRY0Wjt8HDB8=$EfQ67lpDrner+EwLuTc@ox49J3?5?tk zZTL~+Su{2Zr9#a_Agn%6fMb)BSb2}xTbymgjFTxiX;7*^CdA}L%5&+NU>{s*YzBK< zEQr{YC1xxsBsc!{gGWp_X;ILALQGKf3!4 zFA1MrfIdu-H^!?1x%Y3Q8P7Bn_&z!c=K*6RpwKH9i~>0bbSIyYaw~sD~CN#OmVMf6|>9aWv@9I1rG9E zI93#b8=Bw4a%SEkW!T74)eVE}V^&x-Y65ao&Zx417qvB+{L@)&IJ||~DarKX4Xqu( zIp7YH*DT@04Ca1n?}krPm>rntef?X5zrnkm#ck**qs@1tSPsmtS-h)|b;(+qv**tn z7(KiWbLTYUj)CnY?!Y2=pl}TCSuE!c&M&~*m+-beE(&H|eZ6_lZz135vN37ADcS{>T`rn51x?FmuOu{5v>n17@%-2X3SDUB;y< zmj|zx3g8*vD^T@W7*$%s;mAHSTVcc`+;!4~TPHh;xycUBl z@ltW^To?>p0JC&rF{b1le%WFMPIITxn0W_`81Zpy)Rov5i?$G6b}-!}REkZ%juTzR z!|?LJF*LWofr@iE4Iwl1aru$MR7=B@nJa#R;$5v!{i>c5{jeBH=Y62HPQobUzaFhz zuhD_jYn-Thb8MbZ}_h{*+3_H}w+)N5u4-A_mDy zLjpFP1RphqK}&Nml0A!IMGqg_eU2@JM<$X>1NMwlrUeYD$B}zCmM(w&5h|~RL0L)$ z$(u50VzeD}Lr<`?S4Xi4o`^5US z0c@ABXLzrwY(b{u`ASNN`*$pzwu?^@?{hoZAG{}V&(HU$D9G^E$5P;AUIOwh*M#Fw zo}okfUN}ErnccEB3Ku3iB7a;w$M@xDh;=Lh*;7(@{vX3uGT?rkk!N^D<{4h3 z{TOj27e(*$WAtu8cq0-^7I$r8aRepNSgAq3K5PwlZ!0fpjxP2Vi$}WE{8Iq zy_i~NL}!W3#V>1_FnDwp>Z>WRQii#(OY0#@_0Q!_Bo0G&?Ku3nE{1O5354^#g~SUB zb7%Oj#YKAxFw-y=PfIZV?e@(u_Rtw{ZvlMY{}np?AHw*BM<}1Z24toJKx*F=(6}6m zqn6TaRcmwTpY@nwe7~VhxAJh4U?~VJ=!A}nXexA)@kuU7z%VTpcGC|{Tyyg-Ye2ac zoL(xjb?>*6;rFwMr;Z9N8uW*?exI_-=N^ z1}-`E-kjwYEscSICDp%>)$838Cs9)RULB)MNdUnK@M2XN8q9uz$+z%HUM@Z$IiZfUqOJJ|g=N$o!e zl|c#UYyX2|!bhpY@0r}Fo))y2mCU)gs2bJJ$U=#+3|m597CcUwLhiC)h<|hp<-bb- zf8G!Jy#69wBWJPC#+Y5b>ky-T~%Y{g6LcX&rz z_N?JH^RLGDce!v72flLtah2()Wj>tzyN>J0%vC)qwAdEY-TId|gdlgR zJLJl(raSk2g&XT)(N$m+dH<9k=$2uQwW%3+%kfOp1q^d`r#f~8@GE~GCv@|1 zINN#;B~A*mmBVYO;Gs2)tN1ghY}|t#WzRYKAB)h4BSPT*hnh#e2H$Nx4Tt=^iTZ#3 z#563Knya{g+N){M9*zMOjS-er?<}@QQ#tLrFAA^hO33>59@5g9LH?}W0Gs6-QOQ`7 z)mC?h?pdtT5Wlk%H3x>s<8|&FX~|j$TzV1)51prHMP~pVNCKF8jr}t&(QB3Yoa{n;OSWZDA1pcL!M^bps{Vl``G$CJfQvfQ!Dr$2GsiQGcAk z&rbtHyuS-C$ZqAzxOj17pE>FetDc0tCs++HoMf8CA?gWg_nIuE8 z&1>5B{S{eHwgITfu`9B3slbT_Ca-rDh2I&%TCrTF&z6lk62Tnr*UCuhv|)PZ1r(FN zNbi3s!*%|P>4S0}sQKIl9mnJJ@4-0kOp1eol`N8O_&0F~ z|M*KX9*h)}_^yUu?1Z?{oGNlgpsK4 zsDFo_U8V8V3|_X^P$7ADybUJYA8|Y@i$UK>uYqTHyusbW9TVElV#YgO=&`s)`AcqN ztC2s;ZpHx2+pz%kwU#kHoS#&g;UWJEX1GUv%8)fBjsD`n*zCCyUUVvP#Xc>?Kd)3liUEkl*0}G}kaPGY+GOoHAzrE4{E1_8!n99qJ*~kk;KP7Ru z=@)R&(}I16&g0U;L{y3YPQrK&l34wCa#~cITXtd%Cwxc`E+1da^}Qp=j@RnJKEe55 zB`-;WZpN@Y%d2rvQyy$~%ivadYudLd2-Z|@A^KF;ps^%vVui?n_bh5cBhk6MC3d&`3sD zk!aMz3#W&h{zuVyKh*fXalEBeLR3^FB#ER*bnfevG$o;kk}|SI5=DDx@3fQlR8cgZ z`#NM)R+3$b@*$FBQ^xoH{sHHwbI$YJ_jSGBuNR64DoO6a%k*E>He5IS3?lSDkb$?Z z@Oo}LeHLbgyPxkvi&!DSnY)yHI6cJEP^utjJ2cRZ%mlqHSHN=GYK)rA-jmwT$ko&U zly}H8@UBm#&xiAI{{dls&XT9-_3sVw(q%ik{52SVosWJw`Y0HEN%pI%!>4QY0K+?| z*Os$j_MnO74C;tg#9MmcrzpHB-Uv16u~h5%1zcxy7xuI+4dL0NGeh>6I-@-`i;R@bCOT@ARVG!P&6z#}MgAE}}{v zwyVFSqh+aZT1bu>q+i5~TbL*KZy>5n79|tPENQu-2`P(p!1JfX@Zc6R(2J18uWlP) zf|?QBB^B_orxhGUKalK$%;8(K9C{6oqkFgrSa*sE(zL7LweA@h(w&Lzff>Zewgk79 z7eHsRH~7xYhK%^{RC#_5jsNuxl0=e;ettE8(J z7Sm1P2k8QlZghEhiJIMPCr#J%`QFlsAo6mIKvj`q(fTGLB-I4@72!}NvIu%Kf~jEp zTCTO1qDHe8MxPyrV|$CBVWI>^t6d`}#-1htf-|^3eFI+gPQmYUHi3@4EcOH_V|~II z{1H50@H8c#yJVJ0>i;Bg&Nj9*_<14KyWI$jlsbr_bql(`o`Nq9N})6B&VJXuOU3Kb zV8;YW?0uR7Gn%*K;jA!jx~UWF$8N?#Oy|DEwUC8-?&3a8mUEf(2!gK;lMUwPXezV{ zQ<@&amx_4I>}`ULH+rFPp(%bjYDCxl7ePjAityX47_5kvffe#4?A~Axs;g9Ch3`ei zMB$<0{z6z;+{QccR}#w$L@}-?1ZK4yCh0wwFlJ)i@=NCSXnlQ%G+p#TewYH(Vja(x zIU4O^N~zeb0^Z@w$yoC%A4VVu{xdWHv)9+L!geRxx_hI~nGkZGE+sYBR)JfK7cG<@ zp{ruY7`)lr%JK-S(JZx=*a$>m(vjCtWKs(=^B>W*8;ViM?G??QSPcCqI-sI-BD^a4 zNt})t!1isSuq*u<*&%kFSLVJA-_CUgm$e7!yjjI~K3W@$?=_RVdAeB4I(}bPFs8rS zTQX;7KAR&c;+Gm7`o3rm|AvnkwmJUJ=y!Hjk`ZS4PY~pT|EkPUO)k=0loL2`PaW zNNT1H{^+HSJaS6xaiEMHHA(0pi2r3|f z?ta9!Ul|Od%;AhS%NO)tgpcmKfcKys9AsnhYn%eE+ERoO{?EBg)f5OLnz*cSfcq8P z#r#NXP+0B-3H};}C;io#2P_%K=ugKel_zjJPn^FweJ$FvISbkJio4^kO(q3PkQzTr z^jua7a{mc4XW5JfjY<=cmRO3q$}L=Nb|ehF8^z;pL0I>@8t3Kq&>v++U|%(hyq3&GZMfIG_dBwkX1$#Mzj$ppndd zI0f92l+a=NKjs&m1&Om654=W|7kngyN`?%A<)w4vgBc$$NGgKa)eiLiZ~?4CUh%?H zqlsVhUbJ4j9mUoEQ2X|2B-|{T7@WTbd-sd-^)++AeSHWzc`O7yy(s9GPsP;3UO10` z5a+FaOeZzmSf=sC5F?gY!D9EzC}Y7g9|xw21+)T^C8Ygb5t6T0)+61>@=Y%V@sq zEZq8%@e*f#rLDe4;ak>bx>8L9b5$vv48KNXHZr$jLSn9v1iL@q#G7{+5Az|* z(O<9TjgFN-`IX6Z@0TQ$V6*krGS;~6OC+pvJH?4Oejq&7RWeUDLYr&eoW~?l@b*~@ z$$R~9U9AK2AX?Hp-#EPHaTY2soI*FZAMo`~I=H4)L7$Q#7--hxbFFKr7Z;3ugNdB& za05&){g1jXXr_+u_rv)q8SqSpg8tY=u%MlX%a@$xT@N;eu0liH8ZS>I4p-n`xv{7o zB!{2UwNc0VF7rt&0mU{km|78vze@~pi)a&ku8ME;9(NeEbV5)~@+2I;xEvope?&*F zSK-&JnOwv^PZ0i_1Fu~!)0TQU2$(C!n@?jJyUv@VUdm~b8+(B6-8KbQ_Qt@a3sLx2 z(-DUE1+k8u9jZL_TtHx-pwEfUH&nQ#HEI@S%29tXzeS%c|C2e|_2=LQ3Tr+6C6|8YTw=U|s}G5qHdOBesy zOeapZhg-qV4c^}D;;GF%iQxlL)UXaMB+k6V;;8cyJBmXh`9^%kg+p zQVxSZ%xC{YF*=%)O}2zSCuTo#sDJEPo~J`84W(t^`~4_al&y;uiP0$deUny8YZLFI zEp+wwI`SqtpG;E^!vvQFM55$YWBe}Whm~Zrg@wyGUxUwdQTuXiw5Wy6^DA)sWpRkA znMgn1T>vjd)^cB^I>|rfIM(yZffC*}-b}_lS7Q7A?(^B0X=+C9sFc9OTX$(_|8~$* zIt15TR3KR{fi9SB!CO9g8W?#k!kz!_;@0z#jrLx>RP*Q_5_%#7%5Va_n7jwQrz^ns zAGW9|JW4k#&;xNb<_&K$fvqf8KIW$(?U!NCf>oIeM|}a-T@k{HTR%yjstLTdSq$pE zA++@8Nvt#uf${<&ObA>B*UqWpyKAoaVb^7Nb1sS-jY=mn4+E&cp^1EN;A)}(vmP}znG$*``pB!(?c?$hRFJ!kf||X<&fX8yoO$ zWE6o*p*Aty_JC)6=_^@2Ycu*boaU~uJgk9L1M7;tBVRrQ;<3IkK;ASg# zv?UcEnr|dl<)V-`U{0{_5jC8s3wMWC!2x#0{I^=0XLFtp8}-d0_V{}ISrd*8y)iVf zaxZnZ^M}gGS@`Ly5h_Ue!<63}aF%Z*%YFbl?=GX~vMo`qJC+32z2#|U+e1k}AOxQB zhFQmc((}in@W!iCP&lXzAEpIiyxUi@`zy=v`nZ5!h91ao6VSB3U+BB1*+igom}E0Q z+Suk;oKw1lfxzp-DJZ$MjnjJ~iMdG%_@CMaxNvDT-Rx3=546p& zCY`y~Om^XxW)b}L*k7MGD?^u=Db@9hq}4KMRHSS%46PZ5inmsQb$tUZSK9?YZMMO~ zY-2R_KZUhD7l_E98J;qn%v-SRH*Z9CEZ9Y7Vc^J8mN_s6)3+yBpRJ`azS0MGowUQ6 z?6ELz`%##ucZfVx93V0Kqv60bKfI%$1H#T%=+uu9n8~s@r(gZ0Zw`y1u^+$a)3rbgM4UD0|lyMS?EjRe%O-y}&+9uE1Kpw>B-fv@vbB?-({VkH=7hoEMH8y*N$~WW`J^&+6{zmn4U-l1ad1f< zIrJe4&ld@Sa8WLn?;qu6OFF_F|LMd)x0Jj(7>S@i6Z$`dkz*&6cy*$?*nJ|4xAd|t zy{eo`5*@O5n|oB~hc$UPBA>zhlE3s2~(GKuVbW5K(*PvTzk{zEd3 zZ_& zjgBV&ji1c+Nh?6r{|Nm4tOze%Tp(V)o}4{>lXvCxDeTy-jD>rP*^JhYj5|{Vo{Lyk zbNB+=O-#c|h{GLUO>q^=ufELitfR4E{2Y<@0!f9$Tbj$K~Qn{D0?T)X4rw832eMBCwSRR1iKV2Z;ml^JWF zzCv)-*G4Z(9jdz18xtArJ=rD%RxK0-jhJKbbgm)Yu5$q2u8Dv#hxg*J0`nBwv%A&A z5VVN#1*5z6;A6W7gjzKl0?wQ>n5J1z-WVGjD9k=eBlj1;=erB3$$@-`)ySrwwuJJY z^HsR^(4QnGWdnGP*8|5(-wjf=a&h0L-<*8^OxEiHoV$9EEQ?5@_rwhGo@)el{1}6Z z5o@sLR{`o&J>WHHI>5G8cJ8ojChzyEGj^{Kyj`pT&7+H9VZRr4%w=a78V4EnhO}!) zj4s%&3f?K1P~GechkL82QjR|5o$vxR|3w%SaGtJ?Jq*B@q%_xpJ-ue7?P{ zU&Z>wKT>V+mCq^MQRWC2sy*O#!F-tht(&f_iN{TwOi<#94tCp}hDC>Wp?+Z)x(@o& z)$;~OkF^y_I-Vxs*0#_sm;$#{7m+e|eN1Crk5{jJ@ZUs2A~VBL?ZJF#`WJ;6QP=3O z{0`1D{1o#(=0XIUPbhn`nd4mn5j!BoGKr4JthX$E$rL}1hD-3(+=3UCh8(e8LH&JEH!dta~xiCnuZzs#E9GO6R@{o8u!9wfJ7gaK%Gfm zWI=HO*Z=uA85in8C(%4g!j$S`3=To<4KdhT9RR^GijBfMPGd>icPg*EpZvo@n30qP z2RmlL%ed>*a_Ls&L`3n^#$?9HasY8NS^AuHwLI^*(Ad8=sHoz~rJdtrepV!`9Vn(r z;a8|@$r*@@+KL{shspce3$T+P!=0Vl+qkVF5>@&w;pCAL@an7Orh55fu$wV`?ywPM z9~qH>(8x%@Ic9OF=5i7@Ex19BS*(W|T`{v_rLgDF{T=dAYLL+5c=vf*IM=!pn3%LU%dG0rA_MaDMS}HNVZy-dqS5U*S z*}QVT6u6kwgFEX{xi)Ij*eg|7_i{U!ywQZg4UD-L)k_}57Zc%SVK5#Q>6&sY_#zhq zEq^j;?yq1hKfDocYX2cczNg>;FBN$gRftw{1B4$kCo?71!82|W{M=qmk}m3lU=5*X zS5|<5*e0SjF@xl_ID&e7H(BVMNB6#uCewa~VMv<@#EoFLrFbJ!6v`sxG3A}U!2+)#`rzYfy!cawu6`YgKcn($<6rR6#HJJ;y~qIT zz6#o$5CDN`@eot{mMpZL05Y|C+@6vzM7q%dmK-TSF%c)|f1!>~lIL>|Y#I$d`m;OJ z1qV2;dV@N?azr_nhZ0&N-FiEt>AgvXoU<)lb<=RO8+_IaY;Cvlqo zU=CLP+Jkx4@?2wIDD}I)8d}9C!;P|1@_2U$7Uj#)Dp5^TXPo7vw|B^s2x&OvejEyn z*WxabS`6>qh4=i=b8ag*2sTK<*+L?u_U%%Vdvqyecz?i_q691{s-PLw@#LiKB@iz@ zj-#W8;6BShFFs)k7aDB9?uHs{uw$q-l5lOR{}ZF^1*-r5hac zs7?~gNI(KD7-TzNcHYey4I;bpm{UQFxi=|CGQA?ne{-gw{htLe@sujAidE;V*#4i( z3c_-qH~2)m1MHt@phWjvGO%kI$omG-bsHub6!EX4!qQms{L41bAFo3d6x=|%OdXwj z>fyck0dns2Qyd?aN7Adr$>WttBuPga?_KT2X-$ERhmPGOQ@5-}uTM%4wDke0nEacX z92_Rh0#4InAJT<^S$K1?76#ms6BzAZ3)SlDaozI)dh&V}x}91ClI=poU->ltzG#N- z?L~Oxi7lFqzBVvHFR-y#0n?^$B&Pn8(CXJSqFphI%El+*XoG~nxilEI-F?in)2fAC zrjKCKQwOXZI*%r&m>ciz6y|+A0B%>38)tM2p;_gAE_uBsDAzX-w|OigI&vOIrE);y zp)g7rkB|dS&zJ}B7q7ZljPI$yJipQcGWc5-v(NRyExEVoSM(8!L!-#jkB1raSeo(S z9*_%Fw=w%Sn*lAC1GAQ9u!7T=(^P}$JKSL5coBYN_&EqVzl>P8&qjaNJJ^4JAyiu( zhYJc3FfX8z*RkaYuJ#UtLy|Y3+4re|Q6S?>TeQQ9T~pz#+zP-Y2yp=zeJa>@b^9~9Of`Z#&r1KSQ9kU8uYW8sF*H41x!?(D6Jy)o* zkP-yW+Qtpr5H@R1hqlE1cuL0^7qwJD=7Db1^tFbApS z14VX!Okb3Raj(blW*J|?$x98$bQqDq<7P%f(}@;ydD=B+3{4jWCISd z{$x)s_%F4kYVTf=;|F}$^Dm3%n(K}iKR%#}kB{KJGlN{RWf{5|pTZVtC6uyWh35Gs zJdcojbV#>??lNFp$_mPDNzWr9MwOr`l7^pkPr>kbO>}LL#P=+h7NM#pIJ+Sc$M;2o zWUGvUdHrI{9&d|%Gt98FH=Mq==z~k90*pw_2iKYq;(78tnJSeGLFM6iYi2EqvG+ow z>qhd_;X8dRwTrZ7orN7Y-(gb6WX#VS1nFH<`AY7d`2E#msvyWTI2!H;4-XW;8_k{A z@pL)d6cWP+RUgRn)Sa;I!%ft9vKFk#W-#jy!aa{S!2QxLvg4%_R2vqddhTspmz+p_ zO3h#<|0K3VoG0&Q3!(g+Ixt;fggaH5KxLyOw0~PdE#EbRpV3RS@?_kNhrx|`VIEL< zsTt~%15x{10h)Q8MZW}!m+!7be=}B2{Hcsjr)B_u$4QJ?P=oc$XQ8IWWh{=Q25&Pa z^RZAW{s@6t>Bd`69SubnM8FMFQ&OqHZgmy)RHv^rjrUoL&!Cy)O& zQVe@w2wdBD7?;fE1G_fU7Y(KYsS|bF)TDCKcS;X`n_Q);6TBEp#Sbpm_2C+c8oc|t zm@#sU=!?&@aiZ-R+@KIge(hfgzO}OONTQ2mhIgY}%rxen38scHp5Ha`H4LlxqOP-u zU~iZm_kiWuZ7lDDi%l`OF8&VUO}ZGpxED<{e42wQZApYn5@RHe7j8{92y%*ZCV`PTl{P7OnoX43s%lZplb!iIA`>w{eKa8b% z_zosFFMz<^!h#Lg=RxE_7rs1mXZ%+wEZ9{18taxe>A4O)mdq#Njyo|roXtbzt-;kp6(=b-!Ihp@Bwjj*7v3=))x#9~Q_q8 zJ97q>d0pWaL?LN1WV06L(DwPg8Se+|Mz=R3^jf4o_ovGU{64arcD@4@`<_JZI6bGu zDyw-OTYMojE)2hfzX50EarClIGREajg#!1bAbo5QPQ|O>*;}vRW!+8Y0%^pqfTTa$9rismY=mR5BBUf<;7~t2uht3=_Tz?xc==s=9Vi5Sp5*@ zR-A{srtM&UK@ZLy48s$*mAPw0m2hEVEiBaOf<^sF_>5&!K3*P+{ue4R*Woe_Cai$> z7cUc`on!ec&zWK4xjiuVO&sxWzK-_;lVObFHP|8jnX{jkhNa`@;)mP+sB4ct>O`9p zJIiGPDTgiCE8PZnkA>o;Z_hDBFocU%#PWiFXpkFJ68iTo=G#jJQgPu=jm}4H1XD^E z3NCf*reF89VwnfyE_znN$@&-=$2<{BZ5Ug7PAMFCHVe1Z?LkP9$GdVm(5CyDn4G@L z+cY5pd%btU)ygPZZs7qo`!ADcp~;YQKLNree`Dq|idu&!@+QA;fT{7@VP>`j-+rJ2 zV>C1b{|OnQPRv4hud9Udd$nm#{!84pZ8AUpxF_#NQwc~LGMDY;@q$Nlyy3SbW6?I% zY_r2_K3VwG$bcVr zrNJOD|A6X#QUn>&PbJq;G2U@bo!2POX!A*N#P!_oC4>asjDK@x{p_r@(ht zCfMCmrbZ&?piA^BH_{-F*Jdt+WZU^D^=!YoF8x_p=O`@5ocEMxn6{QYe72ph zQm%-Xy!x^5wh?+uJMqVR#-nma3-LE!A~-3>yc{ud{QP}k9YF?pR~h|*VjnQqATRlcWDg!GC?2`ItCA}nIO0am#J0hWd2&l z0o$CVFBrP%3*{%XdAXHxH0AFdENhR$4SVNfMzs+=dqM{EjFT|>SU&NtU&1(HOZYx^ zi$TO)fsU1b&H9v0Snh2HIaiwDz@_ix*r9f6VuN-(H#)II)SuX zO7T}7t|e1!PN7TeFwFcplX2n|_{rTdxW%E4aaw=D*qn*{K0|3i zx0->^sz<+-UUw+TQzx#HBvp+kRUCY3}JO^AgwBWNRo8wLDL#@&v za60G;=0+;GKi>@1uVlg6#y4cVR5tRpCPB7w7yK?h#*L(`#DT@v;GDx-=n0vE9qF0i zUZW(CJGT@)JU-&aH|wao$vfr`=!N4}h1k%aiwk4iiSg@rY<<;1HZ9+bT`MA4PqrA= zy_yao9fP<&W(C!J`hi$w_)|ae2IMVIqGDFn2BifbAnC0?dN^*w<+DkRv{ z`X8|qQGxwM0l0ki2+*1lQZDlr4K)pU>rQPV8;X_r7QI=GO%BX!ZzU|Koc>{1!^@9E zlP@HgTc?5r;7SSkvQu2`TF)39uUlfY_npFYCDUOM~`s@Aw@9Fc07#jazT;!uk?dO1$kh-k9THPBfK?z zkMqUe)42;fp!)f0=CHhkI~U&qN0o7y)9VL$JB?`5{b*?V(#l;-Sc6U#(*-N!ng1jr z0}2UqR$Lz=P}jQ$&lcpt3x5f`QZ5On{eRH$PBL(NQ8%^(vn&1F0FwQO%`)A);Z&tF z3Z>45>X*rw7<>hGPYZzqmv_K$fGYSUUV;U?Vt84XJRteF3<$sP;Qc&r4A~zAxL`zy z6ZCIH?|?YQ@=&3#XR4y|)+xB6b_I+CnqvX`KPyzl!_xPq(DkB%ig;u;X1dp4kG(3{ zdaaFf8x5uWkI7_$uQSWc|K|L@R`BXWKX4tQ%gMNwJ^1tRa_X$@MP4p3#M%!X=pb80 zw!59AGNS3Y)X5ZDkGbJ0rSmZTavu0N%E4*BO!QdrfOk`zmL7}URjh(X{A7pKY zm7X!^v`vQk&T7Q>2ldh7nixudd`A0wf~n8%7POe>2?pl7SdQcj&YU?G-_K>P!GC>p zK`5Ujxaz{*gs)U~dj{{t$XNKgndN_f?}3JZWGxrlX-Em^S4- z&e&5#R&|_bnLa*@IJ0|aPZPYn?FOCc=cviR85C6bFb2bHc+&rbc6FY@*-lsSruqSV zX(mdiCEcc`w+$h$yP2fV^d;NZ9*6BRp=f8m1Ajga1WV`ZbStat+a^iyl~#M<LfWO-)b9!tPdhSsh5jH9r%jwP!)@ z;8GOxd_;zx1rsrzFbGY$P5s7{;*ju9(5sz}PEVO!^JXli2-9BlAa^}G((lw7RV;P<%aOKR>tl+ol2+{A( zg7UbD7}Umc!2)Y2(@&r`70h6)^9G!J@-`7v9BEvA#T;HpO2GAU12AvNhSSy7c-eFv zh$v897lUw_EM1YHOFVx)M2($6B;-OK)J(oZrsX^Xp>HCB zloPdN=Ez+t5+4G@ZXziAhmhNmSHXXK8L9~-p#IiCjLmO=2o+m$V(2Ela(ykv;RZPHfF+&QRatR7K@34 zH)%_g2Hf1h9AxK2;g@43sEOEiN(OexTt`Hfu8-;bX@N@AL(37rH5P<}vz%vp91%h%e$ z)0ldEvC!Fo`t*`jJLaQ>uO$k^waA4cJ5uxdF#u!5z>5f;=k|MOeo6)I4=@h8S~Cc5 z9YFWJC2+Dlr*WXs6LiNtCiOdIXv7_TwD$}L&9Tb(s4WXcYl{rtW^O=D`>|Bd<2qeb zdIyH)oF+<3?I18?q;aBf6+L~x4jkCr;Mk&IFpw2c^OLrXQysdfR(}`ECJW==)Li(! zC>byP?WIb7H*ZBFS5LgD(b=eDKLgtq z_pu&>4D7f&h}_>%)b(=fw~{Rg$7-mzXqaA7Vx0 z)JY`u=P?{m+=`QA?%_lOX`Ej=8C!*?Vc(h$bl%7%&~sS<%{!0N2WxV8!5-6z~6e;8|1#C^XpNP<5$+ z)SL07edr(UY1l}0zQmB>>~?Aq*G+z<*kk4V9@4c;9Fj$+;;88|Y_>3Ll=*fVwO-7? z?JvdP=#U6)^S=S1SaGdGi%8@BZ#;SO3d(L3(2rS(VBh+PgqN|b z@cmDCWfH>66b`3W7{iz8pUBrIY%a6W5Q4U|v*qc9aKfpb=-od< z`T zMbMv%ONo|R7GC*X2+AX2aCM3X)f1?bmO*i}dpZt1@Agq2jT(X*ns|3IufX3Z4w76y zaz|cf(Nw8bpzfr^8+NUu!sd$D5q}cr^fh4JE@v=vmZD?&ZIS*8g)*lch@5-`xv;gQ zNR;`fZpY)iGwboS$p9ywHUM36o5wI=jlwjEC>lt!GN~cBs1-t>f$7v*Eb&(cLd@7 zYpKN8*_?eg8I1$Sf^5VL5PuyGQ^vcYNzzRWwOs|@k^@10XexTy?C0LWb+E|^T)uXl z7!0SL;Z3UcglXO@X*=s6#CrO$P6s=GclA@3Nr^OgcoO3!YQS%)?ZoZh8t#^A2;Dnh z8f5otkmp@lbnt91Z`aWv)D!oE8#Ai#xuOa__;imL%sq|HR~1lNs-AJ_Za~kD0wR|n zg!^JMAbU*?s=9071KxEm_-G5px9PC?xe}W9vcKa)V_Y z;|}3=i_4IFNs_7-z>E=JnP2a&LZ>!025wnjlvI+v9G)Kj|uN^uuWwKKGH`O?RUH z`U;-l;|ns~a1!&)g<-{xz4-F)JX$bO6h+mq; z5Q7AHN>zct!dmFxP=Xcf7enoM7joTQ5vqXYS2E^q%%J`r5sk=pM;KQQ>qfo&TO3XZebZ^g>LQ93_Dlf=GP& zCbX?qfl!G9_+!+P>|GlU$yM`d&EeDFl@v-pB)ul|^W`&JJ}g#^cm$59rBZap)Mg3D0U4LxY6_UWpomQ;zRJ%YEml z@DC}nhuvwkRORWu^gwK!f3k7yq%Gw0`#)qI^G4;h?|~&k$=s9s%EVkc04{w^2FJK& zV$b$KKU_s=@;{C&2)RWf?oEW*heXKW-`>Vq>jKeIOBhZ$dZPF44bWV$o#mR7$lKd` zcwcD`bvl&K?KeBmgDYt~DR0Jg9dw3ym`t*tBr~>GKRMxck3Jai!$*%F(-C$SkCT{3 zk3KRap?4nA{io7#?HWS9)_LQSz$*>q<67u{ov#{%mR;apecTF*cgCTwh6Q+yx}u75 zG0GL>fi+(N`+qn=5E&v{kBI>02h-@=Z|E9fQLNf6gOabpz=6)gf?r4BzK9zP4a|Ve z!mT{>_^sTIt^259-6m=&zMWdS{i4n*3USp2J*+wq4u&6nVVj*iKEA9*_DDs7&x|j` z`@~mHko}QP(`+Jlrys`JGxM=xLml_b@H!Pw6=69FZJ0Bdhc5R&&~m;f&We3Ptq&x@ zG^=2|e>DN$^%t@Z|88BEbbfLmCfb)y{p8p3zDiRrBF% zUjgs9&v=y0PC%oTVYodd8d3w912lh-BrGl`fxM(~uEfU=a{mIRl?96iK z34Q+U2aWprhF&}8WX$h*XuPNp?G4#)wZ@z7R?lKg?o;@D>wf4wAwg%a z7ojiI0w8QdAbKpG4A(Lo>5yMI$mvrrgge zWk`~9z|`z~uvykf%G(c9>DnGr@!kc!e3{qj{&6h#YNgKUe@NqtarkBCX5<;N{Q6;k zD00|J7m6d_y#^N4_O?XTw8;>)VPN6pI0-Uu)%ib;`c{&N( z4o;-^0O_C3G4!0c5}XYFL!7_pqJ331L=Aa@k>Uh=v`Lm;S1X1`g@#NoTpTWR9+=6osjBPl%ba9XVB=h{{D`(A409KNHu&Ku{0O-4~Db zf8}wTAde*W0GY~B_QpsjwMo8TG(vvvHzce5h=9JImQ)C}Ikv-`2$Z5kwg zn}{7Bx1w|12uTQ7fLH4n4}9Vaddp)RmAzrPmsr7lpv^G?g*`&fr_^c{r?>2rC`d!izK+YzXlV=azx>zUd&k@Fd1hy~{F*dQgvqsfB(tj)vy4x~&Z$1T}&Wm#x_H72t zvEBmrjM8b-u0OonH5pKHH6Bddm%zQuRq$lBEn1YFAUj174~8X@O_Ca5G+K%JPmbZc z{by*4}>(B6ekK@ro!P*BV;lN0!$%^Y11Cv8Ci`ZZ>?1 zRH8p*_Tl%`L*Spa6M}Z+6H8tr7=`~N&y}NT8auDMM@f(+2Bk2${Ts>Gm`CcpR+EdB z;gF^)#7S@NX*7|_11-l-TvnqqDET?SPL>Be+BqL)x^96PL&5Mhei@2LZ^RSUL0r47=zP}KZ^j60$VcWx+ik}W&%!joHENyjV$mREpE?PP2lm;l>OY2)$H zxnxOmC27Co3+m&ykwv-fjRo)4klot@ajc^^(U}+oCTS}mJ>(<|+h}9Npa&fcIZc!6 zf*{x|kM?C2kr%wJC_j51$n5AL&Rtt*<@!+cycGx+&8nd3 zdDEQM;l{n8M0)BVIru9I+Xl&x{t{9t_ZZ#9%88ZLUFeDyWBa>t zAisAb@%}3b3H6!yB=QLy&+NxhM?1!|al)M$Q%S;V|Gh(cQp+dWK{z=J-&o%30P-k8O5T4%d?L!!TF>I{Twt<%A6OcvZ7C`5^+ zpLw6wI8ddU=QQx%i^gv&n#lt3vuG1gOvf0nAU&TX(QC6QS?-Yp4rR+|i0e73dS-~& zuZYIZPpiRplP3;|wi>s0wdY@@-5be1P^X9bU{Y|FuZRQIqK6BUqI64o1s^9mI zqs**~>=`PwG>mg!2MI}0G*B58rBaEcL9(|sw0`gJ z?;r5s{W#A3zOU=~dcIg=CCgxL@dy>Y8wRuevKaPl9Ez9jL9I((jKhirnJaX-X1aAS zHzS`l?Hi6SZ!X8XJx|bsEknQ0v;u_#-spI{5UfR&abc<#@Eq)g-sT+;v(yaqH&mdS zFAuxo+z}jZIY{NJ1~I-j7KeXi;+)(U7F&nZE!f)I$+36YM_F3@9`Os&y<=vb$TCevq0%iUajD`yUBTMBX4#}6h=R@x~2 z^AX`PjCg!Fa^gQ2pmeP!)iK&f>#v5u@jOH7oDvH^E*Qe50ud7L@)rZlXFAPn2NILz}pgny#Nkhzwju2~D6vAz&Q+|Hr)gfM$< zmKqiKaS#q08bf*740@*H4r*NJz>Ydqu07*h7gW7MG))jC>%Y)ktADVJSiv8sPMB>m zlk2DS47!*s^Uu7?bRex04?BLOkr9y?T&RHaUNd~Xg&`gxF6d{h zKR=J~vpX+nA=VC16*(82GgllAGW!X8jxZh`%_OE8UO0Dlm`TN}t5`1HNBeqqaZY(@ zL$r4`Xbz8)FFb;DdguYRyR~6l*EnretD$z<=P>zf73WF0Jm;gA0^!#Y@4OCLj2>hXoL8+N_Ww~H;OmW$!Zb)TM|gi#!5+>#-xe#nazaf{ak z%_r$kVu^O;H7XxoNk;y}Vd;No(R9T;{8Bvw|Js@2ThUOQ8FGQlJQc!ZxbktXay(|b zUMBDIe-dliRXF`ZoHi>LklA`OV6I$hqs&hNk2hMvaQq#Vl@noe7Zy|HkjM1#f2(om zZ5G|}r;cQKq{6?}7*=U%5i`?Zyc#h9)FnC#NLMLY%p*m*cdq0#u|76_Z(c|J{Dn|L zLmCZ7=L5gfThP52OT&+=!W-){*43PyxbGbczxl?{6D@*t*8Onud|fNO@m_=#d;ABs zELen}uFG-bC9|kR+G;4QufeIVY_$LHA-bv6;mDsT4BD^D>EaV)6K0Mk=klHkAJXCO zYe|Befq7)QW-dv{`A+(4c-e=;`oQ9BHc~!2?yYWhX4Zd*iC|_xcjge;^WFm-rs7#9 z`n6=^c4wHd2&LBIS7=jS5m{+7$Z!j{fk#xt*#5&9%0C7Sc-#obK1dO#CMn93%z~_z zS5!qf0d#{UpzZN&$5z|C%Ilz@MDr6O)dm+1{8U?wv(>dxjmiQ`UlX`reT!5 zoC=aFJBY5~Tqrp4nB^VB#!o9`$PouaS{Z+aW88TGOnGa`+jVl>zu|vq`)Cel%Qg+N zp+pjotzHN>g{8SQzC!ff?pJhSVGfKq&x0!vf^S3fP@eG!@iQ*V&XR9%EH(oy&%2`* zXO@Xc>jpafM3_51Y6s?j9)bKDXR;_h8<#$IfV+nRaCfl?H{DYXdcN_&=~W*fcI7B) zO0Oe=6KlbH`)ZE6`4q8JYatfj6M#kgfghOb>abiLFVc(u^tijXMZwsC^Qiu3D-;jd!MNHq>a_iCjBl0U>NzIjjC=(=>Qq1i zO?R;8zKTa-r-IYzWUd)dhm9>xx%eCV7 zwa=N%6%W@=t`AN<5^D5#kpqPrui~vG)|{U9Q?M+i9z+H%;j=@tAg_NLY;r2W$j5K! z_Q0!95%`Pjo3%L>mt|>M@J^a7`vkSry0HDkb%;pU zfxQyGWXBVE?nc)^5IpyQ>L2FA`M#Hc6C%#m&#xt0u0DidKPMP4I*tm)TQGzeEaAmHq4sM9b`N} z-DmP3b5${}Z}cXsYf`9q=sNV`{SU3bXM!7_F}KR18>Hn4TSeTBc&uTNgsoCspL-2V zZ+9Cj_D?IrWe2l6_`^_eQj&Y}ixF2&>@=>U3$aN^feUeCkfdG)A7h$eL$nUOsdeJI z9}&jaGU*ujAebIDIe^FC@?h8a2{P$!fdZ@32`Vx0wL6y>9M+>cT5V`j7L4B1Fc73)mcPI1rzu;g)8~HMI66A{$(Yx&+ib?I^lzE(@6J|AZ#{IJF_73igDon044jQtv!6BavFp|_osMB& zad@5*qcTwE1u#%j1X3<^3*UX3LiDIm_`h{y+jlh^U7at6kgI>n~3G3br z(p`sek2fDz^hgG*N=(I8D!R@g@%PtZ2B zmX^lrvp!KZ4<~lQuQZUFaTvccck^o%xn$qVMYMlsH7Z8m1tCiT_Ssk-+IU8Z-FeT9 z{yHWHE4BaOx|y}`r|JM~sSU@c@qFCuHSWwzaW?zFj=OZ7qy)ro=plj!Tfr}72h)Q! z(oiO!f*oToaNg+=lN;%-c&JtdvX-p^j@(<>U@=Vg+-t4!bG5*=>GT|VxY*QIc7+YNlG zBY|6s#A#tbE@eHEgoJ(-)X~i*#9}^%#$BfTb@RB3#Ro`-v^o5qGsMa+$cHU%w;}qn zI4(`mVcq{wje>6k@v+%l_TJE0-1wvYC^3--$+61BEh>VHWXRywwkkAL8$gfEA^4d) zLav;zz`))*=wWg&<fM~8{f=uA9q&}t&a%v!tdS+hv_H#$=C zkVFpsqc=3B!LYLh5{x(~`{@fLr7B^n=p^~E@jpB%vI$~lz9J6>?_g@&D)P?j1&w@^ zMUUhpWA_q@OYbk>UMeZYRQyIK_EsZj^K!ToxSL2sNiaP-lGrO%2fi;9$%ozJGRBPQ0kdhi7N z+}#1+0tV6UPbrQwt^>zR=KFl$9r&Mpf%nes!1hzabl!i(;H-TIe)2~{N$-06T5p5u z1@ZXHkE~{L zPS#Ks?gvvjiR8S?Ynaqe#RG36XrfsefyF=Q-y#XJqdOlXK4xN{YB{>zO2alL165(NOUbAMccN1qf=AgYilg}*N0}5Ws7`sFh+s#wx zi9<8s@-cB-b5a@7%B5&W-A&GgW3j|Ns15P{Ut+q<34MOg;+!lTCnf$*S^MY5W8l+s zkjbkLr*cK8YVlXjs!WFYYP*El4pGP}7tOL+UxS)NifSagV)8mQvcJleVUt$F;P^|F zUj3MUOt?-Jubac#4ri)5_XI5cdKOBGS0ZG!6UW4C-0ruKyw{GT9mXK%j7C~gNHghk32APwLdseHTlQMh-ZYH~t=i=|ky^c|O>y0LCq>C6|>yO3& zS$Ft1=16%D%FtJ1Q}p@6Iyf-jiL-yfQF2A=4?VU`mo%+x2N_ifIGA+|f^Jn}@7=$Q zk6;B}m?(s>pA~SfvlumQPSQHv3dX@^$>H6j2a$J`aLIdRIPblc@rP+MKKVu%sj4PV z*Ygk`(~Dp$ej0CIT?Yeqhp6IrYohYf8C#jXfbD}}Ode69OQ!tk(v}_QDYsng2_dE_fH5jt?&|K5+90oPBf`)SEwIX>^%jc0(B5yQLpS z59NW_mb#N#u@kW5gig4QgmIqch>e7*54oWcI zCAE)Vsiln(itJtiX14c9MOhuRzN&*AHs>JV`)eW}p#m3Po*{EzyTa`;IhcKZGs$-w zVc8k9fY{d|tafAA_u&khAS(q+F%$GJt*5t!XM#C-f@+ReiNZxf=l?rM@AwCkZ?%h1 z>1G(`o4F7DMe|vcjh~6LO(OXD`M~mklT06d5~tx!6fRIP!Y^9Gkl~^LvPx`NPa9l_Q$iTN#yq4BeV;}FugyGHX7(*)B}cdTh)mT8pB|sI8Hc8`iKT?D6?`i z=1n-jXB7&4|0ST(_bE83tIL|dMjcweQi!=52zn-;ko@NWU7?!rHk*0&JjYDBhh@2! z^!Z7b|1NxN5Ce8QvdM=YaU#3_EN5!ZLzAe6a+dDYG#&r-mxf8ZVs;xpU6}BhzA4bh z)Y9iPG_j)5Ryz*#7;kXOV{^RT*#I}%q97$Wo3p@S2X5N6nk-_RDis@x;GU-VhS z=D1(RnxAd7u;e0X%+em@B2OM;&`Q;PXvF4oR zjY^Msx$*AhSaYWoL;W{k+Q%X?*I+ZY?vrPSi-lok!!U`{6~@e~6Cf7o0*^BO(V%fR z4BpqwsWFL!B!T_3&vZFWeY+NZ$*skn8=Gl5uNp>GSJD5L3!?4ToA`m@I@SfpKzepO zR*#Nyq8y#jW~7ki9a4tdEk;ZP!>>Z6;UX}*o&Z)H#<#KNEry-k4fdCL*;7j@$pWbi z94cK;J=*u+qP$3`9*x1Mp-~hocY^fU&iMB37gE2h9Qq}Bx#L&%k|)QqV5j&!n$^#A zUv^e-Y|8iId&y7?JIpMZ{kG#h_kSdHeH^Xr(f~dC1fsKgm@bt0NAELk(V4fdLc*gB z3`4S$l(-dPUnsMWlwFL^LW|LC6HvpG1;}CcH5=#Dl8I>nwEP%@9jZTx&pLjb_be5T zJT?I19lZ=wv>iP9+2nQLMYy}v1{Q^12BV*Sn8$dbKa1WVj*|Kuf7Sr$-+hzTr(Z<9 z=4xzTH~=zC)>kB*;kTdOq+Wh`OqbSC$oDB@&G!<8S2ZUgrA!WvZIR{%RDULA3Qx!z z(`8gVwvMtFTC;ksUy!fms_-x87spvg61#?q@!j%S?A7g=Xi*n{ZT+k1Lz!TF)pis+ z9(B@-hh1>@?C*F&Uk%;7`GMat0<$U|VBqZ#y`NS^n)ymmG*}+5NbqtWg)B$uzdtx< zS{T+cI+{$BzM}%Gd#KlsBJe4kf4A*w-0rin~h}!uG?$1kPSO8_l$A6W)KdKJf z%aRb!%z(mE3gn4)2>#5^z#?u3n7%!O8PCjcmE#&Re9s2AZhei*`9knzt3Uou48{8w zUQvm6QNYWu1QKcsh|B&s2(*oc?7a%)``%lm;9e0L=%vFqt30B2cQr@z_XW<&Ng3>Q zxCP}=U7Ts+25&?2@qyY_Sac$WHu3ks66Y;Aw^xq6Vo^0sKVSiWe(wQZ89A7E^9t__ z&!P&SmP6IEIFNt)7@8OdjEh(&G2VF$Q*;XGE7i~NJf96lGgQGlyONwTzd{yT#^8Ou zY?lA#5$bqL3@nr!K%hSXKHGM}_d^EI{W=!DbThl$Bg~F3feQybB$?jMFRbA}AIy;a zNB(q=FVAnov4JEwu9!j}x=NvfR2%1H8}rN)!tvmE3wm29p@fVk z?BBBwxAxoP@A7)iBJ~3-afUH}r5wuIR#8fi-;76-{xfjb=PD<5ZV24E`4h|~^KpT9 zA$^znjukxQjmr-x;P5P4Wckg9627x|`0iE=l!>J3>oxIWt}SLiTTgE0W>L>8#pHpk z7@qgKjAh{_pzJAv0qy(1gcF1hId-t4NfUy8jZrb7L$GYaL(0|xT)URxcO(+YTay*| zw>Fbl?i+$whAVUXy#y5$;yHh+lW@(lxvpBYjxqNA9|DlAj0ePej4WMWf)T#lvNDPXVq=VfH1lV7bc{N=`JOZHp(IvA72XGyG|E z-)wFU)9WKB9FD91-X!uqy4d8MK$>j7fnAd?`Y%{U(&Iy5{@OeYnpqEOo=lJQ&iiQC ze4FqokC5mdL;TyB#mNmGY&;;PN4~bIL2h6gE|>gBb`;FR;ZZ%TKXn;0BUZzH7cNfg z&p?I0=V2Dp>$^Mk6s$SojQ!JsFj^@F1}~VolTaya*x`Vgy%`v`atrA6C&Lnp11zs9 zCH(K6HgYc6nT+eCk=PhfuoqV%c2C1_X=p96IV=Nw=E6`FxYp#rxj-<8Q@|wSIC8|c z70MOn?TsMY%VSNtcZNV_UNr1 zLJlvSf_>k0;ksri-RI+qF@6pxYjd3Nh&y9OkA?Biwh>bn?X*9&ouIit)y1tr!b6?mcdkeF??qjmF=Ssh*#Blaw3_@0$bT3J0lyPHBDkc z{sKS&cso(%`m?p z1YH(0Zr3N*$+psHSjl87ZXIv}x2jn3XwwIdkNIO<*~d>N4)Wl9880k46Ax~|X&AFB z4lJHB4%H>k$eNjA=o#~x9&`I=@_TqcesGe2-C_Q?_LUYMTv-5>N3Y>`M>mMQ&-7v) z3CHUnEWn&`+GO!1Asi)mce@J1IG0nlvpblE>Y-fjWe8nUi6LcyI4NfEB%&M2%U9iXn6D(ogcmeSmfulnt0E@j=NsOLXxxwSvKQA~T7s;>Pjs`ED-|CQ#fF&csBkS6qo*V3 zTaUANs>~RYT3PUP-Fnawy5C^kUWMO68K)lq5|Z(=ggz3o<_u1E5>0m&HWrPOa&JpK z7C)EvPRs@KO}x-f8<~6Z8KN$m1$J}Pu&`7R3YdP3u3#0I!+2BHGfstlgZi+MmqojO z>msdTlXd+oVOnw<%$vyz4mPJTI42Y~g~tPXnGW=|?SwUbnPg&PCQ95mgCFl@;CROg z`gNSyCy0(wy|6@TIP*12rJYNbMA_h$&u+k!$H7SN9<+ZP30tMNksR(O(1{d>Rh5+> zS^t5qIIRbZ+rE+JCT*-OQiSe~G~oSs7BD{X`UAsvYFSH6)?G&nYNed-!e#@_*;2A^vBvawQ%AGWn)lIfF5wIzEPA=|}Mu~aM&hyD6jX8A= zhQ?0dPg7_7_%0WejCX)si3FNluOW4z+i1p5707rWK~4nL(wB2*z71iskd7Y2bLw!~F;9Y!B3!JppIV6=2M6bte~Ame7Zs2mAXe*Ez4 zLLzwcme4E>Hby7M0M%N8f(++ZU?ByYj)sBn#m!*x>ot|Uk;eF^zfe(YCzMifz$~jn z@Zhv7lCyWow7Dg9W`1tUDs^njF2?Y_OiXgQ3~x<$;`O~5g!h{cu8){zO-ZDg{UyJRAC-4+UY`#w%EeV!x!=0 zhzJVxG3?^G1l-Xa4DtP!p*pjd>EPWB8BV2i&F@e;XXRQtc1H&4_{5=hy#P&2qGY$= z@rKQdCrK--gYL96fLA*;NoA8C#-~T&_sA9WKIf{*y5XilXT@1E2s!L2Qtk2 z_}sGz&|^}^y1rZrYdYd^fjE=hRWXIpJ<)ib$zoNH+$EY8Vx-}Zr}3wZRJ7yY0LhSu zHHU!&Ppx6{w*n+6)QV$Z?uEzqWrAdiIL`O-KW!lOuUBq-zKtU9HHA zhxW8ZIR*tDsp1#aAQBpIiTdYlrcFtos72vyy!+jadI(zK>WFAq@OL4c)H8-R%s!rX zjU{b+Ws2LGS^iPemn3^*Jc_(%q#Ao$sQ{~v4jN0LQlbgGU!{Z3D}qQ4GiRz|WCb3M zwy-{94_;ck7L86M!-|KgXy|o`v+K%lvQ5E@LX9kBtvv=pE3Z@W9L6R8U@Q2m-Q-ZY z<4~6vjTdS?L2!-)ZWkyd>vJcGxAA)to-T@38E0tWylnEz+#0>+pT~*{Hip(kGTj#* zOzzMb7%MNNq*_41emR`)&r4fJw?gA3mBz;{Kk3yC=iwAzBn;iNf;TlMQAQ{cbtA`U z`)-D*jbDQxwEM5WDU*ya}J(u z-Ub-_h6Ws4#1US6pR7{%MZP8nFx)vwmv3e=*-O^Lqeo^qSwBkke>>q6GiP+yKF^wU zOd3_3Wl!>-33PvX`ykg zIVNAT1%Zo3!5nbZSWqW~MVuv~$bJ<{j~{qbeI#F*D%N?a?qP zMW9B&7wlhe1KXy2bb7UtLv^EZ`ATQFS?ffH3T2QL~ebhEeg!(th0_@5srY}!WovkNeJnk3CmDeX<`S)VX zzGMh4+(Q*Pi%>XWCS2ARLWeRj?1)~ErRV_eU;XjNXT}xrw*U;nH=~!IAx0lOjAwTs zjs58ZJ1fuO)2=kgv5!UfP{vu@dxWa}x<+3t+(ifeEyIHs597fC#+&TUFh?)6A^4;^ zIC*D6YO*Zq#=YbiDP}?VtS~a;Tmr-#o)2knXMY>(Ylk-Epw&KYK7Z=Kx--!ilIuCVso^LynmxL&`xc|Br) zr&M>LX?zrH74^eW%`DWh2!Xquc{K6Y0tnqI%gm@vao*k?aLUJtah_~|_V_HC5N`={ z?xaG}!y<;OIEoAA^MSzfEtq?-l#a)31-5oPo&MEASN=MNQ%PS~{>*!v?)nVaE1U?^ zR`x8eoDz;I{3fA~kHV6r1w>uGg(JTHBm`cOg1RKY=k>_?wC{zn6UT$h`FH_6TT-Yk z{~mf=Z!XN6_J#6)--+Aw7R>zgg~}SZ1r<)+-ZtKHOU|l^L|UW+-YfCcOHQK zRR=ZHgkf@H3BCG}2M^UB$BMFxpw~9S(i08G_k8KZ+E9erw8xR&j9qa5>sGk zosJUK(IEV&TtOp}7-zJF9{k%>j7LB2f&V@|W93b}VO?`h!o0Lf#&^_8(v-F7o5Dn9 z4rz^%S87>PS3F>el@-pu<^|GPMvxs6MNZ=w8G5-I{2SR2|Jxtm^s>>mRG6zFcaYg5 z9-wB-op9fTAqlWB0*kGxXqpj2HhErx4S)3EaM%-i+vyx~TvfqwU?!Tsy1_7o!r&v! zxRCSHsmyevNw&dlTv8oE&W4|dH!Yv=mPZEN)T%)D?8=9Wmcx)^Btuwzx#U^-80%Kw z9<+;BfmPmrIVz>QnKL3320s|mg8bDmeqjTiuQ^Za+;%{~{W*BU^(5nv)c_ak^VH&| z9UT9xj@C@p?{A6|+_pAGzb*FUSCS09YceAR7^ALZE4>;4B`6p7$4!#4G4uOZg8{HXRh z2+vGzL^Ji%@R&I>%=bRUr#qQGEuKl%!B|5u$;^a;ORsR>qhvV5aAr?#-lyqX*20gW zLZWk~G!ry}n zFmSdbHp`9E`2q6?J0hC&z#!-!3r5ztdRTZ`0xoGuuqV3majCHt{<`Z!%*R-`>~=ZR z?U|2jL*_wcQ5#NYgRdRka8*Eqc?^sG z`U_UNgrj2547SFvO7IQ1&+1Zb2hV?DFw<=a9)G_8r+va;-&iXyXepwn7p!UgFH4w7 zC?-HT^ZQ=isTAfcT5@9x&?89e5)~fBa?rZXR^K*rm3>NK7?#xGdaF)mW}Z?K7O+c zSZU$->rX3HzmkKC4lO~`U-DGQTe1KM)%|0)Zao*tsc$Mvp#VvKQr$?CZnPXEMAAch+&T_Maim)s`l? ztrbWL%b|(Mwl*>R%SI_vj5uioX1t@+cfJWet5rpmx-FwBK@|XW1-;T05M$HeQU3MF3+LelRixcSI&6n}kzhum~{R~C>q=~pgKfTCs zuxASI!>o*3XqtK)d5^VnE^MpDU(1ZqFd!BGEL#L)?aCy7C>D1;S;^)Pzd+yqyo%XZ zqEW2gk?i=y&!yMXQ8c_0p5z)rWf&i3DyBo*94}mZmj#oX?=at|-&vA$rACIzv(d?Su|sm1;e-uRX*0EFTV8(Zk@Hdz#6G{WPf<=m+~M0i5gR0n4~N zn3;^w8Gjw`2+D%BZUa8=>86W5_~CHzHWD}W1dBoiamBKwSgG&{Zfu~OA6L7`gx@W+ zxfO$T-N|_Q+$8;{as@>VijmxrhPt0cDD}{Z@l{yErwB86x#$aRJmG+Qw?|Tq*9XAv zDKi^PErEJ*W$ylfO;Duu1wYQUh3cOr*!#T(8a@l6;Ezl){;vWab&sImkqlHmQv=o# z7Z5&fg$u6Vpkzo6{EUUkHNG-{S^Lme!4m`in8K2CPe6S8GSD)~WgXw^wt(*?x`d+H6a{Tp;>3TKGAnXKL?p|Le7f%nN-Q8S}$krm+yH7*i z@~5<tjy!c$-N~6e!_gPvX>vZO#cLZSjy@&vW55m z@pDD)a^cjqbwu*{Qs~JvM_#SBc;jX~=QiWkUiw#r%jYo%a;$yv*lflDSgVc;_ZE&;ph-&tCdsC@Sw$M^$b% zMsMFv`yOZmUGj~14pnnEgfxN}vAy)`!!|r(o6@o9Y_BtK{~i7h*Myff&$mt(5?45v^3p=;uCGS&D4$v6_v1@ zCNARFh6pT&Ynbz94R>E|59!|D1{)G%P`~0GZi#pX8}dHmrGMEFs=E$^AOE4gS(FUa zufgH~rk5or37ksT<2kN2StcBcj_Nm1_cDj3|I=p9sw}3rqXuK|y?`y2|AE+I6NtJk zk2nv!HBEm-)t3FR+NSA=Fez*2Gg&xLksAvV!cz)~xN zPy1KG6`40=L2VTXg}w#D3Cc3sAVYJ0>*Mc}!#MQqC8X)Q(aayII5WNxO(wh1Yk4ky z$ZDf@%3*LcHiE3ZAjUR+{gXalQ4YdNXTZRH3a|c`Km#q8U~$z)(6{>zTB(|l$~jDY zHZ4S_=qPf_UKl*8Js@D97iYS>#!dgu)3XaxFtN@J-M@SQ zJ4aYCCx_m7_rKCsHSpcli=&x5Y?1BX(VMRUPr5L9RyztpCkLqbOe?%t77FRtMqu8} z-_-JXIMmk7;Ck8kkiV;hxl=3O&?Oi5pjf2}9v+C`2sB5sHtZGQR&P#bT{{#<=v8TU zipxqScd87cpE}4UJ7Mm$=WYDF#)_2RRDzj-&uMRO5v-Veh~0B)z$7@7v+COhvNNxx zaq7ZP8moJSRjis0^HB_5zn5Z1yUk%hzg)V}t`)u0o>Ev)g8wZlV)+}-hx(%)Xky)s za{uu{vuYJeCDzedhXrBmpghEj|AnV%_4I_3AY3B-kcD>Gym%d4+^`bn1SOlqORQz< zdB0@sdg0CREqRR7zlS{Z9wvM1FGI=Sxu}@+l18naPxLgy@odd9xLWWS7i<)PS1)Ry zOy)bbXbsbt%wn>62EmLiJs9Y|1xL>qa20Mb%&v|)yH-RMm)}z6+UX?2rI1PVX&)h= zGYHSb)bTdXLiP(5SDf!1efWdJDRU3RWL_s&vmg%d<;>=;vRukNj2U>A@x5%k@E%*m z=YdjrF$mPU!|bFqx_3c2<1MKMl_&wOeuNMHdKZY{+XAregCP4i%NImOt4I~+0xNbw z9_w{(G3;0QN!^`QX`iJXs^;i&y>?b$>VMZ@uS*+fXoj&m_Z@=9Ju|sGJQjgsVUO{7 zIX}AZei1A2IvbzXtFUMB?85aezlffBA1i!@AbYMIb4N4{p!>h(Q_WRZ>G;hAC~T-A z&l8wzM?nYn9hSiza_8~m?JY3w_=2@!qzXP5nh={UFR}lx2;7YeX55IXICxVQgkG-) zcdresW4o5K_r9rso3HNElPU|LBcKJMKb4WGz*}&)y^qzY)PNRUt5M@rEnZb>qXq)$ z)Uqodx-S2LviC~dTIOCG%ofM{{ab0c&>W^aCYMC}e8wLbX~s@ zJ3QaP^zRt>pza73QY>2K%)v-LC7gKv0ZUWv;o1$sps-a5+ea?queq}9g#GH=M|tP4 zb=7NhnKw)uT}@nYXDnG^tmCkwO@6ROqSXG!RAI?I<`42$; zN*w%ClZLN>E5U#7GcfAxA;Z=stoj^&SY<=0<#06=w65j^e_?X$>z{(qy#%}wJWMQ? z8be>WHp9`Z;}}QEaT^!$a5t3@_!oVTewWX|O=be9e#svn-pZv8_UA!(vJVUJwDNVmgzwdlVZ;8$Z!#i8C{*W@Zj4I-GSzY8bALZ~{-Dlkx zW%9F5KgivkQN*Xf3-4c_L+8wTPdeo6p~oqn@LBAIo2j=jE~)S zaS_*Bw2(9!8c;DOBg}u_!pX8K2A$Yh>;>La^k82Kh}PGT*x!rj)S7tg62D2*&s`Yzvrd!e93tX zesTvdRo$RchnNiH5o>&E{R(Q@55hyaSMWW;5Tot~!AXIo7~D_@>f9;X^i2b|7#x7E z|N2Sy@=5BmwSmqvKY>cIP8iGQP50&`(rc9rf3a&F9(22hf(@Z2Sw?H{NAxAs)#!kh zFeAt*{eVwSsh~9H1({r%#Ci;6oM^{5Tol|*=Wlc{Ii+_Vx0`OH?6x%~x}TiTJMRG& z>_m+7C`Rw6O*DEygRr7bqZ4lq=mf{X`y0p6dXG5~mKO#7{}_k*!Fi~%+mdBi#0$QP zc;m@0dzNa=Dyqek0Rcg`$k?-9+uc2VqD;! z5I(ququBZf?{7K`7@kQ2GqW*yUnlVz`w3Ai-V?#+>xn}th1q?%FradeCCp?~f4?fi zmS=`EM;(W6G)UDhUjW$78#ej3FddTlBXKVck7w5}@ZkHY2 z>J))h;}xOAOg3T1E7ARccSM(#)xgk}7qXoB}6$z%+~s9=X5?Z&(W@ zXJjB@MFILB2!L4g5pv;t7G(Jj&@@s(Y`i)k^_)MRJFSajcN}nc)Nbgz(m~HUzoU=t zc#%7+UgEdM*Wlrvn@r|g9yho}!<9!XIN3)Of%n;EQdIi_v!*EuR_dd*+ANq^p$z2o zB{0|*L-nVxL%sYi$iEYTqej7~b?^}AOYWlFFk^_S8-ih{RO}A!z+l^F9F4Xh40O>k zY5pzG^by8^T=NBvTj?Fj6IjejIGzQ%tsLZKGT6z@^SIISi)mVv6EQLRN51UY2G?x9 zlWo_-AXI_rF?JY6ZJjglE3lT#wHhOa@dillorQNr=}^tgX$sqmpvBsr25oAEmrs)M zt3oE2Fdvsv6JtnWPGA|nzeK2@4u@Hy>_uO!shtiFZP|AWQd)hnTqKVq$NIxA!Xm!6 zEI`Mg4>s!PqS)Lx{BOlg{N8s0n^Q&Dwz4v4Z`cBzTF#ixbVY18oy`@_93``d8?e;z zC;V7th(n?=aOUt0BBgVgUgfBP5+@XIK6QczJ~7ZA%H-Sfl8NxwxzH48L~G-!uzPn5 zH1~2*lVRS1SuRlYZZWtV562J2%o+5NVeQh^ldf}$@FZFZ-|Ac7=;>UP>jF3}ev1A* z>HybIvvH57IBg9N=RBF=iC^1$u}r`lzICO-bdU`^kVydJru}Gc`i`?!ZWyA6gHey| zf@9ax@wb&472UD{njb_!<&T$*l0pn?++2)a>0RWT#C807eE=WIo4}3Z`*1^$2-Dl- z!b#rwm5M#%5cf!NdYF}kS9~wxF#8pJsDgYVM&Fq#KMSN7H!UmCreAele4M6@ZsbZ zTFU26kN;f_JU;Gpt!x73FuT5*=ULP&C=D!K<6wd7Z)O*efV*~Iz|!xET(7&!!2V<+ zJXHv%ZLtOnu&11dy+}fvYZ@v^3%9?<$5DN> zcE%xUwtk$oG(8#A5;tRvUKL(iCJEJE7qKXcpS{1j6}M08L%lvPw7NY2z6N8mp7C4V zkgFvLixM#XQY6S)D-)xKwdC@{$8`4oRZyeoLIuME;Edo#7?+j>)rXGs$_IwT`jLcD z*T;zX)Ovj4xfzF-39zq6sBtTnzo$0q66v-kK3wQq4dnq6Xng!Kc(Gz|MbTXBTlEh| zhGw%pyIx?Z#x5}UnvH|P)5JVs3dlkmrf*UXhT9X7^OA>L9dRWAa}VO5FZOu$k{6n- zsmAosX5{baVAUiVf%Y~ztbi(pG5L>fWiejC@+Hvl#h31xaRokkYyinrPg)!OnL5TW zcedl@P^BqKexy7nr-~NhdAG<$pO3x@LpXt~+S3WQ5~3CzKR1^U2OGL2ifERa*8( z3i2HOG{S=yaC~?O-7fix#VO!PTdaj=tRv`5j7}siSYng~m6m#nZuHeBm1jRrLec1*cg*L>`l^3oa6q ztJO4>=_{}tEn%tEK1Dr0VT=|Rgv!cRjMq}ehWUr+!nIp*{P7o1xW(*kd@ zR6;aL6y+mIhLV&hl`%6R^E{J8hze&t2T^EHk&;T2MpBBTLErtp|9~HkbM{{AdG7nV zqKRmS08ivyDT>(|lRx+4h)Z4o#`(#SOW{!n(y{<=ZZSE{XNYS!gYU~vf>T2e?7wx2 z7;c&i!>mV2i>8C#u3zMS?liofy9~UoUePL#VpK6220Jc46VYym%V#E{WcVH2c*B~g zM&6^#=2=4u+oLdSh{LS)XQ8fJ6LW@xKr7z~pVS>ggIOhD{XL8BoyCV+R(+)LGm}BN za4{n?v=1~6&f_TY{=*GL*GYDUGitaP;ZyxbWQFnq2wc}stap}RI1lk|&0Q)$58;m) z8E|py7U1{Zi9E}H@NQ=pH(}#6xYSia?)^(82Y%kd12vJTU|!E0Sk_Hq^h?3Cz7JE@ z*}xA~mKCr{5T|YUM?BQn+<`(3^t=otYv!!R1A!sv?z@j<$uFlPT2qnt_cE##6a%-~ z1`;e9vA0PACVgaKk9{9)dhiA|4-b*sP7x$>i0x{!&q&k{VVMAtxSKbZXdd~=teLDP zyJ9wjpUxm=_1_}F>iJZq?HK$`7i7IrQ+X0A&(UuG#TY%9K{g(kK`bAc;u6~!di$0K z%x3+h`C;!U=!I|%)*fXx7WEK|ia@-0HKyUD^iFmUyab{>pF!6*X`YKo96a*qL`bL^0&BzC_myA~DJ*HJh z5>GALME*XW4zcWg+N@uK6LR`HE}m8k8YjNn3afsOCMLpKm))=foQDL&po12=5%3dV_?AlP-P zkSt57GfZc>A87}qVD*|B#wxB0VhRqB!tG6vnN$orEaT~{^WwbyH~+%dmjH7W%^+AR z2<{)74M)y9z`=2My#A${2+D0mCi?<>%wG;tyCq;kun~8iZ%58>F|>3F!u+xb=7(24 z`CKD~&aE41mc%0bxa$&Ar}dlED}g~6(iB(14^Z37^m0@lj*kHdBU~uPeUF| z#XDEEOB0m)S&Sp)rnD!s9^y7s!N<2Y&OXU@zQ&r} z;pHV=n9x%}v9cgKn$bq}>K@^{?DgVBZYGBk-EpvE0lkrP0dK~<=E^*k#5+Pq(J8nWa(CHKS8SOyh9zdSU_yYC^U2k=Fj@Ubv0ZH-YyOpSI_eFWz(tG%uYD`u!9D+1hL#}5mItX zyx!;o(yPw%z-v(@*MQ%NJ3N>P`+HrOanpYCcjHpru`(ayzAJ!Zk1o6<`a~@D205_v zHgUgW1bZH;V52IV$?q$I?F)88N!CX=9Q2u;L8ap&+lA=-E}S@sNCWBNgD>4F_-~aB zrY_Ee!?uYu;VPR`o3;?NKSjZQ9|5?NZ-~zpZ-Brg5n$dNr~TVP;5o|xUF<6b6YLC1 zKV=oUxm_L4h&o{Fc7NQ}6-&#xzFhI2)?{na0F_o12HS+MjM&|LXe^Py_^1LZG}{m^ zupE8$q^I0r#Sf%GY(Jj$tU{SmJ-m{6ov6v0b35lZ(ybEG@UyTEMz$NEN~S&@i@roU zZ4*$}IuB>{av_BEb?<$)oz0ku;Yj=$+@rshtcpk`4H}2x+xgqfmM_cT^|KwAogf2F zJwb4KZZ_3*dqST*RHIWf^3YR~?c%O=gO=wJsCF&|v%FFec=_<9q=zcHoP~CeA$p*{ z7^ClZk={MM#D&vFgKCe$&!#lI$!|`+W~rmpn*nOH>jQV7eJwP5xzNNVQ5fwsM)a(0 zalz;xy4yh*Wae~{H)pMJUH5c0|8)`;-dKul%j;;ak}MX_RbjH$Zif!>d?;BKhNGp{ z%a5pYSk-b((XFFB3e!g?^T1=r6r(|*-s5??vXN+brYp59f3erJ7#|v|Ah0rRQvv{#A6Hinug^Qj!=y)jvl;^wP$oOphpkoN$%`A_q zX*u4OWuWI-3pb`b7iYfZL#x0EvX;%_5BOA2(PQJ>ad$L>9WN1Gn;RmYr} zYcV@KpWUCbnZXH5=BX|p)!Mh5@Ww@l_-+IBuwRaI`|7E$A?uS1h(ImJBX~4079=lfKy;)S zF8bq$aSwv=tjipg~tI+ct3FnH>7VAZh>fo%+b+f>+zQiJBpB#5IlHTz!-9B9>xFb1Ab#v>4gD7CGi<3UO?9YJ6ijM!YW~ zDWTc;x9Tz}pS1{<$Cfau^Hp%!vvfGhI5s%fCy@@B)pTTv5gI?vW5(N);dyO5D8E|5 z*i64j_>!lf!-uILrfNmTX84i~OW0>p_bf;*NC2JGjo7~>9QqrMfcwlDcrr@}ch$g`|`(jJcc{NEQUh z;gd~sP-v9}DgDX^3n$H?^?EWs5A&uU(j#F7o6l|LXF1FgJzR~fOh~$)$n~i{!sd%h zNyK0V>wsTGbL0e>XNT?CouL`)%*%wOYhys&Zxh_ik& zZT}?!ryeZCeKkU`Q#u@O7H@^A59UL&=ymSs<&_w44IphRCAyeJvL&Ef1bn6~| zW=ftotWA4C)NWbezi9<*c6mLvhUtQmv=b)Sgn{}Rmh<@|8Mc>(;E=92ytHtKFv%R~ z4zotDU&i=J%MG;$Rmj)A6ee%HpGo;TMmJpuWW8t;hQ=nLbW)*`UY5K?C53JA=%!e( zW3vQ5broRwc?}5VrlagW9oqXN2v5wh#j(aBj96g=KY52~zlktJD9=Ry(IXi0-y7;Z zD;!_Xk%2Yrj?l134_hB4pqcCp*wl6&{M%ANug(!H9<(vTR|~-2g-d^0=+Zsol4#VT z0K*Ak@RAor`I5fV<@29YZRazjH)1C)T6&Bupm|ITyJPcgX7hwnD~M~yOz58{1os^r z;8AWcmJ4cw__Q4?CdP;;nM+~$vIz23(1Thz9EC!DIV_Rvr&88NXy6e@hDAicYncS* z`Gj!K+$%xvCvjN5;y65%yGpb##J~cFOALwnLG1UGLYCr2cv%zz2HE{|&94Y@qVX7X zMth<3_HZ;?=nwY?_G7EI8Tb@jpz^O*;91oj+%>=RagXaJV!rP)xjZ!vH9H-!dF4Dz z|CEgHYxP0g$B|61F623C8FcNU397fZkKD8vBs22FaqcoTU>uX-S?v{WS6?xT#;hgV zm>%L`R*cG1Ezna=0p6<0l7LT}!CStY8=Lu;sy>>a?h8+V?c#it$o@@ke@#R)#~~(O z^DvYP&xAR7Q8YX~7i*q~g8R?cT&J3Ja_8?6@|15jHdR)TYfER7DLpbUHOY)hA776& z^*@>~z7n0U%hKbSQc!tc0D>dqA@-jQXt>RV-*!o`qw+bK!Sg}wrEAb5$O_|=OyI!z zR}9YkcFlCZJ??no37%`NGvBVp({sz-Q4xVwy3JI1OGIigmCp__WTeHm*=PA;xC0DzDpkde0fFg3q``n zlze32N>IF^g1f-(G3o00zxQGe@Lo!w*Ef4SWs*#6I_?lY>uqqJvYc=BUbJ@gB1qFM z#Qxq?IA#<_-tPTK=_ntWyDbA|m}+2TtqfGM-@_Gqvp~w4<&dc7qv&)CIKcQbU2nzF zwz3d(n>vW%za$jwQ6LJJeBpdnEDbI*M1$!AhUW|bMfdu^c9h0eb6*e+-48YnGT=&T zs2kp*?>By^6L4cWCi8Y+|Bgv+t$rT7kyuQ6C;8$2CDv6s)0H@u?S+m6K7_vSlt3=T zce35BgxB<ES3Ys0@%*@k1(GRzKcBsY?xkVx=1n1?5W z^6}*kPqZr0hePohbla4_baxheAJ?0TeXGUb^{0ON&t@lCRcZi6l{qBGQ5H_iSmB7i z3Um!j#r5|xz{2|-bN@jN%Tc*PR)h+m!v1D*aWV{xkGo>6dn!D3x5QT#E<{0PR#W0(_bNGQ;uo^04#)05YODyq7qsg&+Akq7P8W=i%GV6mD)sFAa?{z(2VMQ8A$w5~t~+ z_tjujQWHfX1C}AvznP|3Z-(4OKe$#oMewBf33JUo92K0K+5ck^*8cK>m1pvh^C*T` z2!&%(TNiQ1+2n1*gYYx3DSiQ6-YY>u zlrMu$s~%3<+e55BHBq~9Ids+T1A&=hpjnnd{iV{Nss1_Yp5A~5|4gFDiE{krI_IVCXoB^LRPM?)aXrn{!9gdBx*T9{abtD2^Ql#D$6y#5AO*AH_S zr0Bv!#of5=x*y9sc*a%biG%J=Yh3%R7PWqaav!^0fX9prI&N@BouQ>@c{vGJ=9Z$$ znISs&Zw>itybZMjQqU&X1_pOa(r*jD!NP$xNdJ^mH;q_0{(1zBbju;cumi7}c+(d} zMW{Q4%jWR5lI_}2+^to|U^(vLnzK6zGxOhMQI9&?Wwpb>vDrBNvU-ayaf?3S9S=ixt{#9R!GfTcSb{BL zZZONR8$73{;=KbGNa5k1Wcw#I;Nx=O?bBGgGyfa)p7{(OZ8-#xGm{!DgJhQ2=TM+pY69d}kItib=G$mC$i^8ZOjS;=Wa1h^-n8wBL~Jq21Sk z+YOcQzV9liX&Te3FI_->iZ*xQga|RW+r#Z)_lvm;7dBX)j=_0#znL-_JAB`-jKkeE ztn2j-UHBywZ>8uUd3~JAS+W8rM|LRk0b9Rx4r0@RwCqjB!FJO45n|*X8t9X!=h7K zyo23a4B<%%t_rNcJ(fIj!&!>Rn@aJ<_rAet#_M2x!Fsgj+@==S&%s|g2Us$#r(sF| z7&sXhf?(rTeCdTScI+cF8h3*Bn#jXtaHT6g&VrBZPNKoExj|%Lv3C;> z$dg2z6B|gy@{Qm&%L&`?Es%`G8<9NOOm1YcJKS8HPaZaI;^@>W;gT_TX4ixu#`a62 zvPKxHZ_2=zJPl5By$#voGJ-c#OW<-eA5TDP3g;Zl`a5v!8}spi2bs;zrxxYj#BZ}k z=z}XQRF3drPz4`PYsGa~GGi@VQ8&lc=FdR)`C_o9ZSZW}9e8p48Fl%jh|+*MW^d5e`YP0 z9JI-!(p&F=VDo2UQYZq~8?J$1Vj2zgSL0NcMRVImba1wuI12a)A`{Ezz}+p#Mi2IT z67>WQ91o^X5}pySoEFSc9U?(-yUAvo3i`~0!!v1FiLVxw(K5q!;_^KmlV2R?T3^+o zZ>Ah1GZu?+_#M))Hdlz6rrjiMVk~cxvznc8B%t5lcwJ}F+w7a=h3Hb+=M;E(L2dmn}}mb`<%S2j#CsUW)YA-!6@l6TE$18hr~#;aWB2-R)rglo}37O&vvZ1=l~ zF$yBQeYV>mgUy!<`cB6e2J?AO=BvV9H*2WzVOfkP2e{`sRakn&fbDDvaa3B@!7T4X zp!nn(Zre1E|;Kz`RPE1k_1A&qtF1(-4QT`yt@;B6p z$vbya*0v2R7V4mPXfKSO5W+(HEW4-;L@6dAK1ZARu!UFhgD8|w7i@;&oD7aWTi~P5$3HtXdL2@-ir$?y+ zZv&fM5bq`p6)WjWL1m7cWj1bUg{jfR7Kb>unM)zOT+Jo1BJ~!?v7XS0gE>s0_WYG{DanvOG4+%aJXRWEvwr zkT)Yg$%R@U81voMIS`=@D5ZS86_7xWn-Bhc%)0PZW`~y@ZP|s$*pu%MIXb zW&NmguxI!r%48qMlP%MDArd@v`C$YihjI<2YyI&G>yN9+n~GKe<#1^4OSCYyghAtc z`awLDeysiu^xiczcxpr)o~w|APDReG@3W!)qYUr)qjj`;uMHNR_ygM98hW^YJ>ETf z2^;e=v6}5q8D3XIkBm?B@NFr)*QXC!-`9cJQwnmir(k33FSaZCkx=nW^z?N``r$9= z3|xU94pr2+>MP6r@L;oV{phmoFkEGG3b)4kFrzaHhi>%X?)W?KueuKZ%9PNhr&yos z(z(2uPBvf>xQ(`jeZ$HZ_4uYxon@w}^X^W*Bd;tRI0@W&=JM>_ zTp8P6uyloz$9?2b-wyiYog2=Hh+3t|xzhI(A01@5AN+Udv!n97^d;K(VT}|SU3?366-?s95owNPaUxz=zZ|?j z-^VW233uY`Su!4Sj{AN5KAc`UNX>j`j_ z?;0YAAkH71AXPu!@3j125+%FvJzCXu7!?*iJ>+;s0dY9D8OPYn-AUmq(0MT&r2k9C5{Ecq`Zynx z^bgaDjw0MqA_}tdtjAnz8w8Am!9O=C*kL{g)xZ3q+tMoF$N5JjP_hHB**_x>t9oh1 zpOx@wa~TYdy@g-d%kkP#4YaF!ink-DQ1^d%V7M_GMtv#Q%3^>!oL&RYYu3Q2tLu4n zZ2tOURvEo~rIzV4OMvp`%D$HdIYCfd~J|a{PrafVtTm>>a7a-~N_#p{5Y;{p2h>7z?mg?-@)S(?=t*7Tj<# zmEH5EljyK88eyT!_N%OLtqngX?AI##6iPDP)d_Ak0vh!n1XF z4kt7s$%+{#xp^vvEY};!ylui9i;`nF?cOqU_TNJLKJUW42i&oe^}mX}5kK3AkLnHjeVP7=xPZzMrc5U_i-}2Rg5D(-cOr^O7Yc^ zU~uogK*WYa8qDl{iAmH~pmUV5^G6dMe-Vqi)CqQruL8}XDEjHF5I#_fM_Z^R_y6(W z%u-uy7ZQf`^-DCLZN9S$$uM+%>EDL ziX%wI)J~Gk?jOwO3DUHhsql78-kEwEU$EBI!0PJM%n@WDmhE+cW4H_od;wKt7fJyo}Q@BN`R@ zhtNhbnliAKmUann6s_megp0|ba-t5UV~5CP&I61SzlGgJ&+2~}l~M7XSLoHPDf zqY(dTkWnoxz$d4};j{Q|v|Tq3-syRfW%;&b$(&bI^zK*YX~Q6W*{F+BsawJ3(FQVN zR0H9^Gte03(KP}I_(kUezW6DGmsi{Z^}Jy0^&CcLi(L4xjhzKIZl$8%@4$oMR*-)F zjqqdMDa~| z_@&k!vyZ;OMP*B1Coc!&FO_0GaYCgl_u%%|VTk&?h3GXL$5kdQuXcX~itXrxm97y) zc9hNbU236DPY>bXsbnl|w#I;!bMVxKxh(VOKK1;u83VY9;Od%(Gv8>V<3UR@x$_@f z33P?)g=(mOsF)dM`F9412C$u-C%0Rb;XPR$G+(XZs|m)MB~9R^ z&PPsozapO>D?*~E1W!Fz5e@Dp;l7OxuuGE=%W`qB^gj+-**^(?@G z1U94}LjQp~WWD?}($usK)(5*||08qqbVoEuuFY;xDe_}y5*L|~@Fi?-+>HiZoe$EE z7jXRPKUi4%jqEzwO9PERG>FSBfH`sR=$u(e^i(3EwC^pLdGQqHdaF_M-%(WCww}pr zox|QiZsVQQ5~}9m$DO0nLh@(EGk%e(@UopP`IcA1y-gkvY++1VHc!Py{X5)V%Vn@X zBcGIb#{xK-0tpuwHnOZh3SV9))h@YKSVrd0oc;!z&t~DVrgGdnVhyj^ zF5|IXXQ1AH3pOQo!HH?!ueV2d^j40bJ`zL9cvfZIuyf*RW9V6VtZFh zK2;I*F%igen_wy*3~>1mq+_0;8>RMT(AfEwJ{S?;O}n`dxr_AJ9_4Z9mQ&>n z>*+jUD{I&jZgS{4oA#A9F&z@xJI^(obzZL_Q|COH(zXIt=O>WwjRKt6cb^i0nX;fT8UXV*O29Jt+3@PO zA?{nEkHr?McxcxH;x9N%$?s4I(hS2rd^d4Xem0lK`9!|`ibEc|Z|Kv%ggs4Fu=7(n z9#1Qw|33W2tZgUADWg#G$d3mmMa#*?%%yla{1jZCI}Niof2BWyf1%eRM{>qzf;J_{ zG2bPhL13FW+SqziFOyEH-`s}6t9dk1(;VBR!%%s75WF}SMk>?#@#>E%w7f~kNOCZ| zI2lQ#ST^K8-9UWJF{5H~W~(f=Ux3b*M)2)P#-V#wLTQ4$A_5 ze<1_p<*LwY`4~F`KZc`wx^Xqzca8m8O8dTxY2OWcLirEZV&gexXxS&a^K}#)U68;{3~$60N(d$y7r6tg zv<*GqRWRY(X*Ji{$~XQTG*XyzB%NYn!t6w4idRS z2tKv7 zJsqd>`<2<*WH03}4T7$)$%fF`@i^ElO1DaWBi&L`klPdr!7NnW=T9^9RBtQz2Q=cB z0Rj3YFBJCsuEK)BDV)`BcH(vyfboelL~KEE0U<(eb#$GqjB928yIV!AaGrjX01L40p~)=l+iEH zvGE=_-kXML6W8Eu#9~sC>r0O9O~I-~jre@?RnlZ!U&q1E+m@Z(%O$#E{EN%Gf_ zDKCX$cIWlYEdbghlEFB)4^BUL!#IddQpNeNX`^ipF?uvkLVs@{0ZS4fQsO&|xi%Qi z8-9g>MhyMA@i{d)n@K&V+<-&UX{^gz6uR9y>EDvKaC~VB9?wXDfp?uq%A`^F%R=CV zUci0IEx6^!Z2I_36j?bdzLm~juZ*}M03u~CpB$HAlO40|69Wk2U|Q1Fcd?@Q6x z+PoKq6=mRicNVtj-L6a9q()}#3MJLU736K=YvQ3l6`pLo1ke3e18+|vn%4z`+!1lE zf9*OvLek*<++N14E8Q^o!A{WQv0Y)3MQExhHjWv<#41hpjD8Cr=&`$_GY^T@Ap87r ztz??oTAA`M`@sHSCNW>YGR$L?A$MImaM2H6n6my7n}aZLz=LY>JJ754uNt@)@)_8= z0I#KS8S(p7)aXAu(5{w1qiL&|^@S;PQn>;bJolh>DM9euo`>7ZBS3r47~@*3gDV~k z)42H?F}X*aylX56r^LtH3jKB%j=E1W_S!>}4IdNbCWL&e4&iIoMWEKgBkP|(r9nJ% zxb}W8nu?vl&9~Z!I@geFE4aeF@MQ~ByQqS@eFi?-r3CqV9jR6q`P~y%% z=)1Ui3jjm0!VM;jI zb;w{rmlllf=|iv2qHx&P6v}8JSoKMh$0uaCUk^F3=dE*8`0yb}n~Wq!*g5XX;RHN; z`y-jM#sM^s43jfaL1a_>67=f?Y|st^W0?@}n7F}>^Zv~|yOE4H<*wlD6LR#!)1CB& zFu~HFQg~)u2q#6}(1&++VMwPZzAfI%X8Thx;iDJ)k~T$CiCX$sZ5@8U9A=Iddws|;P+77rJb&EXzL3%2DvF?0F z;u&2^>1ma>{PT{!HY0pePy&A@)}iSq89e7%#62=S5xhfk$*OlVL0XC*-!3%5 z@7tZ>u4xIjwa%h_Pg%y*Kns1h^aK<%C1Ze3ef^mIPW-)Co19QQ21dzd_>s+eEx)@6 zcbc)iJq=}COs%Mo$^@xVPQrDQi*fw@H4?040iuh|pp17ErW{N{`Jy=bVIUYpKgQs~ zi~Vf2>KR?@SwURhP0-`5o1w05F&5grVXmICBQ*lXxUkC(>-0)sORyzv-&=%s9_e7a z&L51$KJ8x%^T{($E6g{HJ8m zXA`I{%fWY9{CFX4C3jv#G(OTTB){4Vk=tKGX_Ft2@l^ONC&ZoV>;qLwHH^fNBNTTs zVBs`DAI*w_QnduaH@2lgm`?_4lU=A)^*s2M+{FF!cs|$;J0nl9kILNIhX)%w+X?Mw713xclDHlkqMKMZy6o>v zc0L!2;)aXJqXK#O@jV#UoZZSjt(QOoe^zs4N4&7Cgw2?CC)41de6XqEqwRU;QE_?$ zy;G?PrPe|uaIYp@8kmN^{HNj?Cq1~67DQ$SM!-wOA!g372nLS4CRzt)!mGaH*xI@h zJjSlky(v%Wv!s4aQMK2&l@6sA4BJiGsqOWqUqsS3|u8o-S;nq(c_`eq-sqa z9CyHnf!$CV&VU2!i|XCs1)Dbcfp$hc^CvcfJi8=uFP46 zJYtGA|6bEsZ?>ax)KSd4P|fT*F$;Y*mBN#c^Dt|BBHEl__X?(p=owMN+&Vm+^~gFJ zuJe|}T4oCJ-=7ZDeHXlP34n9<5h#+eoHlOs1IyT8a9x(dRT^WvB90oUy>T0!;ah<` zGh;?isR(Ce$w3v{GcPvyNUI(16Y-HD(yu6rk6P2<#tdt&;&>4p;S{WF3vh*@lWbN$ zPY*LsCc*WzQkbzh9bUC-5w_=X67T;`#>n?)pl)?OTDt=d4}K!o;+)YS(}ae)Zi2PW>Ns@N4lgSngpi_6 z=Cx)A@tQk}yP-#g?oARV&x5MD6({wWGVU@Qe&bBD{npTMEw)SVD?xhN&2jdRDnSx9=c*%XTQE*!P8J_5rkH9Ra~Hl29vp0yWjw z!!*xeP?A>D>{-cR?}Q=HxsI5Z z+e717PwzvgQ0#9?2hZ2xWPElcZqW55obEBh%L95acbNpH^lEVx!b@?s)l(A6w*<>K zM!|gk>43_uBp}BK=Y-_bx2JO8a7Ga^Pz}Y}0~Wx)FqZXl??C4pVQ6q`K5TdSP2^ct zx`vY<;aj)_w5Q6_!`_DM{I{Df-2R$&5IMYLpNNVJ^cr%a!swbilXOI33b8nJ0RMI? z((k6h;P-AP))gw?*(7%VP$tFB?UrKyKUJ(ecpUxM^OOmn2;6v^1bnxmaIR7%-B1^X z);|2;6r2Tv_GfW&IK%Muq2J`#sbjP&r+~z0go5Jw546s04^Hts04vM(;FFDo;D&DC zKK}&UgVHfn;>^}AAjlo_TyDZOp>Vq9&nEid#XrNl%lD#r z%w3w;bcD3o0`oBBf7DQPGk--majAJVl~WZ|zb%T5khO44juHk;-{`t%zmPA`q&?vENQ(Mp1q zUb)PbtzVe`Y}b%iRgw5;O$@|zvCgvVQK)g}A+0$$4>w*)fPL5HA@($z{h;wcusrO{+TP%q@yoHFeFnubnO!>Gua7Rp(4 zk3{(PGE9L9p6bbmk8&Cf-}W|xu#zZ}(?MWa!@7P1JxSUpPuORvgWOFcWS&X~oE|8m zAAB0%($=L^yXqu7ZQKV}PRhY~{an&=Y75MrqJ*Bh3}i)@!noNN=Gopj&{ge%AirT| zzlI^~)Dr}cQfHXK+YE7v_qm?0Q;?ZRqSu68&_}bmu&T=iWHX&`#iI#gCa(;e7uvww zo9@WUxai)NOw{<}d5ZohI##5$i*NbEKGd<`-exuEq4jZ&URC zS4ZCSGU!~Bo2;|S6C>XF(41|?C|j`&m=Q@>@T&~=JYG%wMH0xvRd>#R zfqpe9*xw+CuOIutdz;JfGCPY}+ZsT%a2KSd?8bYJ!mS+_OTE+kgtN$WH||n+6cSWtN=|*N%*1k6kn`d3Qc>?!N$U0q+@kH zy}iX7M)HJ!-&YUpRA#|`g*#aGkdK>g){GyYTXC5zF~&sc1Pm^-XW|)gG$=90N-Yk& zoA|_4=v9NHH>I@U_*(4ah~aaoy>OQ|kKE!_7>+2Zz~w`oc)PrTda9R^yNc?>_o^`d zvEk$S%(sSiP4@1&ibs4?SA+FpdAL2NgxnnoWc?+3$#TV;TpKpK*zunRZugPGwiVBD z`_@5vmJ?1csik0e%UVcq)r7lxo5|1>9sGV(g!kj05#zvi-ahV;WOK6&OiI*ZrFS`2 zTIS#~PeGayd=1*QM@Y1mE9_`?rAC{1)HGOxM5M{Vsm3_Cc~lj7U(;Z7HPXebcQQ@k zF*v(_M1%TPy65p0;wQlmYAdS2wvPQgH@+l~zq`PpCyiLMVg>!%e9N$EQ43r>|BZZ- zq~zeMF4)#MAD}{rvtHp6T^r*Jn-zc3UE4BohIx0xPlsCE+WUqmKYK#j_k1z@A4lgM z*W>s8@fO-DDkTj~?^0-Bm*C9C`C8~)?C{^%8${a%Nj^1TBYm*(h8js>)q-du-c2Zy2S z8$-wLo}ue!KW457rqTK{FCd9yp~_7(fwE#S7?{jK`-u#g@id(>;V~p|tugeC*T6F~ zKrfCT)tzrle80TMJ@?vKMekaoWY5#4`N$utWbDxO#7^3uX9YPclZm|eR2mbN1^Qw3 zuu6&_1Ac{}nqLNv-%lhqZhN6+DL_%DjrC2_1HC$it0HSVk8GsHMl5lQ1 zbLxf;K3%;X^QMZCv6bPN5N*TpEuIn8f5BM$;RN2in@aW`eZuIT97p|c7vS4ZbNqSi zIW5`A>zP7oimkR7)FSokqi-6;^JdVAui@n>Q6D{5z zG+Y(V6eRVM2djoyrvYu?oo`LMI4SDXce-fKvkRG6Eiz->aW?*$n!f+}Bj`0AOB(*Y zrS}7xaNENYym^W9J3l!FiKl$AD#8~_5|+VeiUR()^9h#9*5I8|0obuoNMD0}NWXD2TAnX0{G|~yIHl8UD-vUzRi%5J zi?47hNOK+9!A$_s1F~(;^xoo6x5w1dLLbg= z`MgFDX{SspZ4beq1_KQaddztA&tG*-KZ7!m{48Vp*ixfy;X?A<>X9vE;e z$fFjZD&+)HJL_@f+>h)$)#F$iAkp^e@c^#+JB6$|I)c@FT%XzQ5w6_$3gTW1gDuC@ zoFW)Si|5`WVu@l9G+iC4D}va7MH&l}avC2_X@OHym#4#6wWQH8N)Tt2xB?_|_*eU_6b@beP& zIC!5r%qc{t7)@;KFeE>d+iA7%RS5O{4gB}gN#uJ`+;-`nr$_Ii!f^KB@k5Lg)_xj=$)Mf?BT!kXPg*0UH*a0yL<|K z!sar)3%ZHr+{5IXnF;%_Zz1Y_3dZnlukbxjAjB_?gZXutG(V;t=31`>XN+&Q$mSRMEI)PkXUD0!t@2pc(f(cVWxI49nn@!hTp%K1l7^`8ZP@ln9WoCIw6 zFA6=zB-`qKeP&--%HhVFsod`pAyHx@^g)9tN@wzudEDW#W?42lap^X8d8U9>BIj5# zUI+zdUeLL?lgpa_VWqfi3X{7Zk|eFrm79S&DyWj+<@{|!OMbvV&d(cHri&ixN^m|V zv^77n0^)WpWjt1&r$1+zn{{g$r9**cl1ejyapEqTHFKohL& z^2F+(OlaFu1>$b@cq+UTEoLr4y*h5Tb2)&v8|V_HT`DwuJP{kX{MNL9?<5%2@ar># z>ocsFf$DPh$e985sv4y^zitq(>SxTL)%YwR+4-C8@-8azcK zh=A(_IIutqUaXD9KS6qUJW37uf=kHBjfHf{mxpx2Swno}&XhVJVAMD4C7GV()xR0Ib&`)Nxw4lvC%RKuIAlCoz5CuwNIVq z?CHmpY*jGi^+wI(sgN%(js11vWK%&UCK^x2Lv}kcW6T|}+#-w#E-A3-k^(9yo#FhG+D8QY2*K)3z8ny$r(Yuy4puC|IBP{>4 zJ}dJjDMe9u&^VKBe19Ik31z{rpta1ER57?Zv>J;{H$X?gBqPvliNAhbWc&P%G3V~b z(1fi!5Vi+13i*w6n)pUGW&c_H)BKMPtn9#U z7Pb|#+byE;$L$}m^N)C2(o1)owP!wHBoD;Cp4xWhOA~q3v5IjjzDfOO-2}PbH&l6E zFrN9N3o<5Mt%eViK-7SH`yDWZ|M4bcY=&^r>T|SW$|YjrD1wp-%Ru;nLR;yc`E5cI zl%fFze!+xaGjY3uk62P)gh##x8({P&~8r|>WKok*Y}=Q+oqjUUG3AHuz^ z51EISSHb!fmv2~JK>ubn!2VP9Fuf}nA1F`3YL8M{yeJs!M7_c1`$^76FaYJhIfm7` zOgL`82}j*ea9ndF`viKxj_WudJTV1cHD(j5)(JY;KZ2%)(@=EeC$Wnzf<7f>$YPem zSHX2yw0sU2v5elM6(?BbwjH>uFq{@X&c|`rcD&SH!TEZtNKYoezWUxqtQ-k~RjN(o zCOMB6zW&u4n}3L=%pC%rY6g?0`Et^N-x#C5tAh;jjJSoA} zc{kBS=^CnKQ*z$45hXeE0bDrh*>Ul3U|uLlf(L-FiCe6?RAZy)6&WyULX{n4+!aZjIYP; znjAbim_|Ck1;ZM%nV9Yoio4wuKm(L|J5fx&jq)4LMf=eQpfvM0oHI-y**^qf{={?)Hh6$`JdfBO{tTFMNe8s8 zn&}6(Rbclg5!S&3^nch3&zC2FQo}afy*(Kg$8kLP`m^|Ri6_LQod=!^7l}vna-8$J zjeRs63^9*h{c$ta{COr-C_rfDNd4{S$;78%>lZl=oi~RF&lULRzftFYjpJ) zhd(nn5vL#AoHiv2?lnX(8G(aj;%^fX$hQQwj2Do2shc%N^4A z##$i1p1|AR3sL+1S$fSy1}h>y(?#+pAUE(eRX@VH-8rV&9CiUQUHpkI&-K8o{Nr%^ zkrlUx5JhEG5lq`1Ov>EsVVbuPH;=KVLCOh4vg9;#{PG?&OH#vsFSg*wIddBKQlEL@ zFa_m!1L?b%K8P9Hg|{}>VV*j-M}EeTtkh}x>w}We!b22vGk>!(qyKU5V1H`&HyxCe zS3|P&ad=U48P!vp>CZ#lKAPL7B#U^kJ`3e>Z%qc>w&Dxy(40fpU*O*7CqOT3bs&<# zU*xc55KMQiXIAzE;}#cRG`O@IBx)mxS_sFgJgEu!7ypte#oy_~rC&IcKNweV`;lgy zUaB0%^&L$Mp~*`WwT43I$AJuVeceFS{%gTSx&MfnRxJ}`J(Dbs$RyReXShy*6NY`Z z#Tt(!c&={GG2|AZN_7p!=LSN;lweqB9ECkC%b-5r*}AU%s}!aRB*-Tev*o zCM;FkM^m;fgFla*Atr;sw#U*qW8pF2t62+u?W63&_);|5oB@Jj*31h{!M2uPr^%<^ zr8qO$l$xik$Ljf9IL)t)_EZm}a?AtbpJhn*HzZ){oH_7P`Uxl&pCgxe#nGtmCD9%j zW;>cM!W4rT;=9lal%8KE=51MIfbSfQa(hLGlev7mj2x_A=7b6Z^I@ufTx)mja}rX1 z7CFT%{N+0WB75Q(|KHc}DYx5CUp5XQHZQ1hRW0U7nqd#eQyO2G2@8Ma)A`QhWd9Bs zT#|AP?T&Vn^N%A)m$4pPT@wLuZ(_K!)CSdF%w=bE-J%|gQb>4{G)~!5Od9@Fpt#&= zrn+YZI^?=BPA-EaLw=O(^IQt4KQ7=03lE&*lttE$@230st`i~oA!Y%`__}ti27cad zqjg?mxOAZl=60RK=Vyx1`@e_qOYIW2Py0uXc$AWjGG~|!BB^g}FGCByEQPsEkyOD+ z3p|Ii@l;$1Fv$)Duk<^yCwNdftDGadGN3cw}zjw0Wd`ybKZN42UuG2ldP)KAdoQ=mP^({ zd1Mx>>EDX)(?5|byIN2=a6TBn8-M;brOOd`UMg(0$06@6Jva>p`_ zTx?PTZ4+&1|B(l6Uyfj`K@51L{-gZfm%&L*i4E~QjzbdG;5#cG2H(}-$A1i+RLWwN z?5?4tm@@_(+mBXTW@F*}oAl<<5S+H|G~VCH+vcZw9ri6x!JgOsY>L>B-uVBz4ACj% zOzk={MOmzE!L>U$UG*?5J1h%l(-L8;yd|Dd^&`1Fyr|mo6gqk8*(oEOuPvT{^?L<4 zejT&ar6G((~V6j3gGv?OCEMj)U(v=oC$#v-Nf@&W5D@_;mfF^OZR# zix-*kwis7jG)2nYeJ|)HA>O@3-MgC@OPO2L&@=*LwAO%?)p9&f1u!w95Tv+h;BXgi-6W2L<9s&M-cc^^Q5!^OWL&R#mP<2xpSr>AG zaW_*2i;8M6x8t&1g`q^FIg9S2O=$8{j&pGC0qd+pjQExd4{Ky0EBgVOZ8N09OLDNIIIgFW=CUvrP>NoyUuXwM!Mv)?vTtp#a?9>Y$PN#r3(k+in9((&x+R9{dp(C& zH(KFZDWATm)%jH))>_fm3cPK<1?}dmqnGJ-sag0u z;56#|vcRLtUKmmT2!|JqP>uPB8n+oe)}PC*586^M!E)%UQsF!^e`(du5mu01qG!C# zN#?;SMxow}+*%z7?r&8&?|3B`o1A0BeVkC2KNLTCmEbho1mPEQ@!%UP=&nA5^Tn=E z<&FQro$bqE`}j7z?eB$Uhos@m${>35&vfc^HY)X2@&6hW}!=Q4;xD)wv#%|UyP4pRE)v*u9w%x{{73bm6rS&*On}D)OE`vA7 zeWyvNz}heq&RlOx>)xlp826so$E<=USN226?+uu5j}|S> zL&bY<*puZIC^bF}q_i}!R6YtHZhpds*{8z0BkSSbIM-)#@F54>+(Cf%9?@=V0P~Ob{T%cOZl^ZKf0Jzsli~FHM##GKoA8NTq!C;$@X6yB#CpFT zoH1>IB~JOkEN_KV1zX{N^EkD%Fi<|HPTSw`gHLKE$Vk1wy9zeopdN%B_JyRn+Z7|j zzA@?C4o1d56v`!L!K(uyM6<~UhlXxqxSb5HaW12i18;~%-D7&a)fwdtZo$;_9Bh$@ zVtiwAN&CAj_&GcecAdFK)O7Vh|36`jp95^v?k{lW@l2d|c#_@{ze;S~xs{B-0(Rf3 z>2!KhDU&F)6NcaRqv91g>Xm(T%u$642H&XAj8bVEMiG0bA4QjW(F@_f zh)!)5F3OL<#ab_@zbg+DT-pRn<()vSB$VpC_r!*fKSU_m6f+!F&~5V3xZPp_{@8yK zv=91_d)#;F+fN+ky}=Zmc>JM{Ln7?(380;K8wam(vp7A@r@KuXmG8{J zTifMfL-9Tc>CS-@7tFDPTqX-j^|7I)s)W$%nDc1p}i+Dbap-+*^~ef z5sM}Yd2~rp4#ZARL|gMCXss85I%O`XDO<+49OC>4i$Y+NodTp?-c4s4NP|z=1XCn; zi*{_Dh0nr#;Zdy~(LU`;PJW7{hte(a8Y76-UytLQ6R+svk0tc>0L5qKmx+aMIJ}5b zU=2e)QqOPx;Ck~aGd)%YoqXI-V}UX}E31I}qL<0E?&D;Rr~vRD%tCo417y3oj9(f* zvr~U3eiC^@pl&0~p2$Uo?V51w*%Da${T9(FZy=v!_JP!T8`-$e!;?rjZ-)CS2N>0LXXx5DQ;6ol)%0cQ46NM{ zOco3mqlKFkDhzK$P)meP4OcqtWGxxh3r1Iqxuj5R7syNokx% zb=52KeRciHG{e}3fISf?pWx<3F0b|S~fTz~y(uBTp;ExHW-acyhtv7|-&g1SX zt97}|c+Asd~yK!C*t7%>b1`JLOy@+W`ah8sIi1j$?5&(toM@^c-UCVTY zue0!FdnA_0Eu-=KxxcG=%Id;`I9#p$j8yTYLGRi^D8K)S711=s|JI*EW4A0Q@R$wX zx%^Mq$qaBfb_5m`|D$Jz4$_BZ8E9~*n>vWw;=`Zj%#`;b@|G5ZYy2?ws z`(+-L-aZw3X(3*BNT=QsE79HNA@K{I4VS(4lW7A7Q72|CYj&)KIC7q`#)(Rz-c+HN z!0kT|zuH6iaSHr1aRZ0skBsipWAHm~Iy?Cx0u${vajeZum?N%?JzKnCF2~8}T);hZy8u(m%wcbUD3&N6LV*HtyxS6r`_GKgbn9Y>UlUB03l!sW zr>QVc+YKeu7ejoK6&ly&kVDd2NyP1Et@>&EINn(~R(URgIUP#4{=PaXyD|eG3OK^e zB92vF*+sj;X0Zpv6ru5N3t4**1%YoI4 z#s!(&zB0U)u1`&diggUs|K*j~F$SVX+sV_vwyZ};Tl8&8Ie$#n(3Q+K$5LrK#472Dl81<|m`ewp#zeEXl z=Y>!Ku}~-)e@;`l8OYoC!{8AsMgrB7@cas4T+a1mzPnu`bF7L`x#$5CH4;q^zqP{A z2`S=ptO$?sa~xogW3boNf_RQTCl)_LsE|Z$tIhFjSidzB=Jv$WCF5GSLsS_?-@GGX zN6qncV>w&hss}#;DnRu2bbOy?1@-@NnVhTkIINt@e&q`T&8kvvE_sDKij#w`;GJM{ zmLD2SPjXzySn^<@5j1Vx%JCpMx3QBwoQ*MI^W-=mgs(S^8C?no_4X2z>7Uq%v|0Fl zr#{h%Hsn0x$Ml4fP0+X@g^tgT!6yR0XipnIc&MtPa*z=jlr-R61fiS*sTgaY?E(|w zLR$CdC7Y{tip`8E#mZv@sX-hV+~B+dS%+Y5Mi42Pn~18NJ*2|4pQ!dOBrhYm+2Xc4 z^g?kKLg}ue zIUwUK4M*16;@Q?MPJ=CZo1eQ;C0V!L+ zr#|=ClUvHk{`co8ZBJSP~ z+rt{^zM5NvyztR`yWWcmME*xQ>t$NYqn2+u ztyjq=onp;w%4RciXt^b7w(z1yP)tku!7^~iVDfFj37T;w6$95w(u)1lfjXbW_UP^8 znn5;Pmsf<2scCR1si3vmI(MzCl#cgHc zI4L}A$=?F5{TGO7#wzfUj>BQa`7m)|Gn%n}sAv)f{=S@(L2-!WnFr%E#_wE^ZvegpHcp~6N`!Se3MDPQ*x4(V+7zoF?F-h^isp-Z5&>t5> z@fA6c-2036eF%fkKjP5zxGBe$SqA>|lyTn6vCWF!?o3Yf86+<+&BiOZk%+JAIs-SYk&v zTs{kdVv(eKo+lpKa}_xI6o%9!kpAQf5_dNnf)5PSUWIJv3*$UNHuGLNj;5eX}Ha~?7$cQlc5fy}TZkeCpo4^I`sy=ywus*Yn` z-?2vvV*^xMe3(5jSqI}cccS@F0gmf$hqKp9N#WHjoaGme*Iyx1 zlj_*#-Ld3PaW@``Sx9UPI8Kh}2{gK$!}&_XA)?)B}WpMC14Bx#EBVeo_9uy%Jk+va~!IB2X9PvbW)nOI@I{P8dCJ6+yq78agbhfh9S|3C|yMxW><& z=>zEm5|@B#K?IvLJBt>|Cg1^!2&|HhfFzp@L?P6dH2r6dhfj%-Et?dmPoDwmtG|W| zG6`gdGE0g(uO1wVk3>Q3v886c~EE>`SEypw_hkM&z zS-TN79yCEw>FeD6L>S*@RfGQ1>(n5r7B7Dbq2d$M+U5i|Gxs>g)`5Sg(8n``i0w|n zU&Aknw8|&4^0yA>kbOqO;?pr8vyN7=VjfrwQVMAXSisa2?SL;mB=NGMs zz+Xl9Rds{JZJU6l_Fd#*vk=`Tx{*xzQb*(?grVfEH8D6{P7fR`BSJ0v(d1zY+)0T+ z4bM25!?6>u-kO4&f|N*oa68Pu6^>7%B`~Mw0M(x-Nwx2vhM}&Pux|EOy_0t@K=WWM z^2#fdJWN9Q)uEV{w}<_llZ0sB6Y)F8F?Fghs`%`}>F1-#kL|oj zv{%6+=d1XiOSpu~u z?X6{}?!ramJLKMq#TX!@4<5@;;p>4nV0b5uibiLm_u4V~>Z>I_bebg7FCU?C7JY=d zD2gt#-_q!)*AQ@^n%rti2aP`h&=$Q6wS{NE&-1N}&D#JlSNur#T@A$ePoHR`%T`7- zbT`g>T@8{srBEOli_g8UFu7It@$P3OYMT5CjPaL>f!}3rhCZpJKX8TfU`KOKT|Gaf<)i4!amQS5N0IR-H@O+M z5E(s`N&@d*0?C>qRJx1@O?pL1Wrhx@&OZzMb&bF)%(->0JHw)moe;3e12=R`g-uFH z@P4N`>uG$Ptm*tnR!lJjort~gaMMFtce#iykMhUC+Y#{4Q5lc#y+s=;69FXxAiD4} z)#O|%TWk)}IfnVzw@iU~>br!73>d@UMI9{VSBAnd6$p`jN32e~#2&gI+BzoamJ>1{ zE;~tGEJ>&(Y#U%KEzp&_;T#<|b@QvkK2s91zIsB(GynbVSpQLi?(w3Xtb3!!Me+KxiO z4H~YifHubp@m9SI?IGIevg0XnA51`BV_njumdyNcc}hvmRE}Ne07CmUaLePP$h&J9 z9vslcBBucApDY0{yf|K{tOTA3-;8SE$031-%Pmb=O#1FLfGsb>?Wb(WW8J4@Vas*q z>z|qUt}7m|$0>ugh6|SScQgKjCHO+21*n__&KhBefIpJ0T%L5+a4Gq7J|C}7O~Jy) z+w^wC43ckq3h_#Q5SYBLC9hLG@X1^+v`F;9sz+tqJ@zgs_jyenLq&OkvBPVFp(LGzDz{4V{z6#8x-`_0uPCGaBqtS+6GF&+`qM8H^i~}6Wr!NpzBXJ)i00yAHIto8ru+8Q>|S zgXHaXJojP~Mo+2&?|3|s)#`+t5L)Ttnu_e21!eN%89 z@`1Id6bAGclY=VVSU=2w+OA}5y3t69ygV*9ypQF3Tgl0X0$`@D0mHf6&eiB9D7|PW z0#`W(y#Ggb{;6uasAj^FYzbx0ouV*a5Y+!=Y7?#b6 zeu=uG;&9+IA-hz!K>J)3x_fyjD*B4Ujbrw7?i`M9x_bl8%?xHT+Z@pB)^~bf_hoc7 zcuyxJH*uV%bQJUV#@09UAulBn`QlUQDlV7!Z+ae=<=X|VyV7Zr^$7E0M+5d-=fQE& z?^N$FMFFV+TsMCyHW!UBS!1W#^`2R69DAqa$bID>WgEoy4G7C@8bc;RdDf{VKb{Cmf%_SK!N>ip$5JQRCh7$;w^EVD(Z5%_J`{9UB`^h@W#H&)a~3 zI+@ToxdFtj#@NX1BJ94MQy}QzGyF4df>YY$;AoCCp4Was>TX!VM&|_VZ7L))+o$L& zi;U3xdt8QU`8(J-E`pK6M(B_&2?;fKVU3;*7%GI&cf0>$U0f%A?gSS6=w^O;D?;6CJuG@7#oSA|K@ygPVUtuU2yySQ8B;QF(dJrgc&vy) zox|uO=Z(OBj;IBDvH4n$vE=&$@Ly^Qt-UtrXwJ>?_eg{-c8Ez_9IR{8aT2e&4sD+vf;E{e&UB z<<9R<&d=!8Ef=vM(vyyFoex3Md0>C!C)xGjCnI+LH2d4pA9xm`u1-LJx7v@FkgO;Zf+AI}o6Xr98=bfAbQA7jM zdh!{sUlUA;q8+$A<9_B%66VQmLfL);Hc$5}HS6HsJ&!p~;~XLV(WSSEZb%8cWW*K% z-8n{!Q9sjE>H>wIf;figTb%7Wf|lKs6|9se4>tM{p3yiqx2=)xcO2zr5UpUpSe5IW z@wLq@(DyF>Y3(j}kh>bn@Q1Dv>2IEsS@H%XDi<6dH)29HgLP zewA5kA&&LCq`BTm~*7G z`xta^JSk&b0h_PoLXTGwX8w3XPk&xYx9b*Dg;#F0`=BH?+1 zv-FZY+t?_bB0OIe#9Yd}3z1(kshn6NxoMF_dOd!^1MiQNm)jFgzh8lmg>9+#(HJh9 zoxzCARp7E2k#y_pci?qpoczag5u4sz!)GIX^tg)vXt{pIYPD>lr4@>+)h3}yevkw? zEr30f(&(!77K2>6i0jZa4(lY0V!{mwOZnQ|X*b;>e3ALQhGQNxQOuMZT$V*Z9^a*Z zCAL4*aI98loM>6p|b>g=#8#E zq92ycrjPnl<3;h1ubQCO<6laiutE@YD-XwlvM|@R6Q3GKki`u>Fw8OQd3dbpu~$Mg zvE?3j*Rw^HUCEH}^b}DLH-m!Wx74k01zfAXfis;7@mIn+cr4|J2P|Xp&ZG)5Lln-b zSWz*-dFl0zx$P7|>LeFJ``>QtIJp;pJW*l-t2o!{&|J{?CrTe2e*z@VK7>f9|uwI49${gE73>Q$b*l6&y1vgVV*~nNvLT%&&n7o;?%))9_+n{V&gObyuy#@08$Cpsn63Tu(_*{ zc#9|D<>YrH$6-{Dr|$wO-d3qsI-r7^O{i&Jaib9uSmMY*%|%NJzp6}xfY z_a0caM~360*tW9c{SfQsNum;bshf%v3SW&x-PnJmcd&tu*mSbC-98wTkb?EfakS>7 zKR77eCE5n{pj>0p+MH^o_jmU-Xwr=3m_Vu^=xGCsLPF5$`Wi4aOktxY74d=neN;ce zj~e!i;IT*mURRQWq!rnCnqv>yI+?)~?b|ejc?55rTglL#P>{__#8;;P?caTatA``O zbRowfE}RLxzYn3#R6P=ImjPK~o>YlriW%Nq!Jh7|!Ckfn*v2u>Hw~Tv|EiZX(<2;r zo}MJSb%J=HVDJAk8AUqo0nBqiDcccxzGM|HH7=*ov*RFFo)1kgG*Xu;McBD*KirhM z1>$v3C0Zx7pz7aVnA!6M#BY9tT_0Rk+DTpJH-WXRIhcf}wieEjLfN5*uSfzM4Xse)`fo~z)pJ4$01domZM zPkDtWWOgtQq%Pq5VRu-rR|t$p6WzYQp5Ct5ffH9ahd`J=)Qx1qy$4^(Bk3OKTop;z zou2`1rIFlcrABY_SQ3e^s-*iCv>|Wj9jf+H0j3^ZhaWlas!r84+H~_QILQVP>5@3C zUAmR7{i}GjmO#uU{g-7zgZkSOH@;o9HM*tc^Z2nU{m2|F3Mw^alRTJsry z$LZ`^*&WpDn-RHL#^vtSztNvs+ri@SGzc0Fr{~SB;KBMM(3zfzHwzYmAlKO$j|~Um z%J<}Zm;`Oi&LcYUP2ifG31)sDn1SnxV5F^r{|pB4z2zP>c+!tTZdrJ6s0Jc8?pXbD z4~s7*c}XqDN%*~ZCdW;efcf{^^fH6LlgjQ!{BpVkUgc)P$jhlT$!alfID8eh8V5s2 z$PU;h*^APT`{~xk61q1~7SB992aKyK#65XI+t2U-Kh1$Kl7Oy***r5pVz-7bl}n122{cjS~0oi_mz-7g{jb2y63y5avf7eN`=qi-e=d;rrEO zza)2O+@6L`gPe2u)*IrQ-UTk3H=&hxzAuNPymHQK-yg{AP0?SZooorWaK>8O7}0y7hsXT53$%*iN(GF!$?GdWD+ zcddl@33XUD5C>=7tuV$|7|ywupw+-Z(C(cA)1uw+)*nMGyq8X|ZQTPOa$E7NO*xpZ z+YF~_?pEsM_w^{EL|Rey6z0g-s>H)D0P?0%WsA7b|BH5K+7;x)^v;-q7@=<>aM zkgLnG;^!oo7mD#o*T%qQfnInU6hh)#*z+&ugYFN*L9ECM6jmI@hLRdQDQpequG08v zr7gN1JIfP5KNv_Hq?N7H(KW4`F8x)=op5r-tf2LspIdIzn(HZ`c~KjSeX6j0y(L;) zcuaHp7Gs?FGNSWvB1D+!zM1vD*~rUOoWf;;^49o%h)Vd!z+(c zNS-mvS)SA)&y04Xbg>2m9nPa~UaMl*%>aC*_K)m*+e+L%%^>~zPQVd6mc3kY6X*G4 z;_;V>w5K@~n2efkaV$p)gK#>_0b6VGP|iq*inETHQ|y1F^=krzPF;^TRSY0%bqe)Y zwFl22CGuS&p9j{q81#^N9*44VUCSBXd(n8fTO16ZY*Mh*!~%y6qp{pc4o8=G(%DNI zFnfz79=_2+>eghlzs72K;;O>wvOcrZk4>c8UKCqr9-)~7HRSYdmX9wMpf6*lqO5Wj z8TW36iBj^UD{Lkno|#X--?JmVJ}c==@gMZGGUF;=%Z8IL=i@=AnW!O_2?`0mxSQuf zYP~uUZ0lf$Z3(_sOX!^XYdf9`IYvyATp)kjWc+8z-e0i;Fgz{F<|_ITL}&M4NDaG39`Jx?cU91uGH$1vE_q_Y2b-Fv zQHPi@3hU;uJBKT~AB2FDSs`{wO(xQ7qNwhwU!8y4-Ed}~BJEhT2E_w5!@bIr-0KZW z%)2+#xlvO9X2&go33vJM*VGhLl8-@QeRj9zt3kT{D1`nwPPv>4awNS7=wkNVwW!0= zwENV5w=)sia0Gg1s-kya0Xq9cLXX%DDqf|*NnO_9zP43D!|4i0pK_I6eKZ9XHs-?s z%T!e?kw=^x2z_axsNoN&Wza(sytVLbe+j;ipT|`=c9T_K;$d-^5tLMm;G!3muy(^9 z99|O(!+mYE=Bg&iJDvxd7$>d%!j`-@=kI)U9;x6g{sp6dPd^RY zKMhWwFhr}7VBDsF)PIgDoXXe_a|^{g=LBe=^CNM5ENG4=BaHB~S_$5jZ{%hy@Zcu9 zMp5}ZLcg@J{m>^9Vl!zQTu#V^MGd#eFXIw=L-rJT41g->%548qL*Hm zkIrORrS*a{_#{mgsdlHb^Ad72jPYhdYgt~}mz>N@hNsgbF`2Puu5`v@)7AnsjhKgu zUIOSjpM(4&UpyO)en1xr_mkMY zDRBAgYnmFC3oiQ)g1o;uIc$(g4gDRNzr7r8?%aze`&e)8#|54oKR@Vc7eMKYR21(r zhhUv3R4?|X9U8i%CbfvFsn16D2UBsDv^&(S-i*hRO<=M%KPCi1cl$6z>MWe z#K#=L!8jED-v3D_YiOY0LJ#P@Y=gyGE3tf79W+JPfbEGP?#sbs)ZX=ic30Hk8Q(~q4IzaGzMYeDDSdhBl(z}!D7<|Ee(&1H71hs6yhaQd|`+$&eba_$*%a6;bN zX{nI4sSZ8#+;D%r0|qZ&X`W}E1Y&1;c@wNTOej1{F0V_X3vVtUtMiX@iow3*HQ2F6GXFgE|O`R%0&P)-u zJ(-8$I*NvG0(VX3f*sRgaJ}(NYS%uGCgPqx=B>h>USBP*#S=p-cEx>Sk}3G z#0OL!J2U6>Fl~q}$D;JP;Qg_L_b4qD+v1}kgL9^qixa3)^+FhP*$Th;3b93T4vIZn zj4&?{UwaetkN5ur&(R{#v0M%z{vP10$$rkN93r?y0X5~~fL^Qj(T#uw7Pl$-UPqn9({SYx zX9&waPR#sbNQgxVaqX-o#}*vn30cO&BfcthQjD)eSnP!1 z_Z;Efh$Qe0KkfXz{6GBKJs)ZAAZe6|#_pZ+G&-4er575*_r^+?T^>xj>o1y*j$PxO z+geR%X*~R%SOfQWc?Q`2QysRi zj>Uc9VX%Ge7&SG%MxFi?fW-it{XJvnuCMY$MddjyWn78&Zxy&Y73X^Uz-8}z^M;~M?hW4-x<^l*YTVA^N!F*~fu6>Wp2y$lR&1gPOQJyA zFAon6rQ@tii5O{Y%sQtv(DOh9_ioq;QPm&G^PCEr_ahOsf~JB>Yc;N~jDvE42BK`9 z*x|}v@1ef}u=92*>a8;Zb6FrKKAGS}qqlV5(hN}1@<(H%37A@uPdw^l7*Eg&rAI3; z+Kjz$e;Dig*KZnK&z#gh{847`3;8?!5G)N!L(Ra~)bMOIiC20}PMzHfwuW12n9L07 zb5W8zA8dm)x*w@UUl|&Rncy9{g?KF|oalWohtl`c@w2cJvuR#w8+Joj#->=;zN2| z@E<2+mWF;$_TvPntzfxq9>k3l(k+|Q@n%^O)d@4ivDyB(P^bdprj(Pya{{~~ja}g2 zeuUaL?8EVvbSy9520eeCl7Ov!B&Veu@~uno?A+yKeNqV)a}rQi;EKy-J`>-bL^A1V zAv&2cZ|Z_NSR%0zo&^|yPU=sZ>L&tiXZ;|cJqaYf%XVJ)4{+o4gHSCVhIJ?QLB7sh zI0|W?!|wY+X^|kKoCpRxrU2jeH84k9ns&sjpl|hS;jch8T-Y)T#q6R|4B4#M{sb?$Xn0h3xEJUls(H+Di9Zf}am(~N_!q!S1S zj(Wo>t7f|IodPeX#s(ac>p276BrJ)I;eB$82a#)^=$&0vutFgeHm@r|uL5uSue}7$^fhE1E{(?hWh@^LiK-}K(;gwEscNBfgc0h{HZFqsP`lZnUDZ}XOG|<$r<=L z&kO=(MZr6|7(5r{!j9+XiIsH#ci{|U*5(%C5SyW_=-7t`ZZ5(&M*ulf9n60z58Evq zz`xfMR^_C2JRN;W{&+Dy{{+Tgw%rCdvu!#r_BXl6c1hd!Z`5t_*hjHi)*}b+uSL*!1o1-TF^(_ztpk|#8$S8@PK{c_29VS zG=f+ zqjY6dB6za9!jDgz;cWY1diGigjGuW-QRyyMcPk4mLTzBi?HRt#teE^a+ZFLfBhEv;%2bMpu;TRk7}WFZQ+?cf!CkAW{b zugQ0!OcLU5kyZJz=rLs~JQ5dx>3>d=sOfTK-}>V;!SNhTU~Iy32Mh>*cO)p9I>9_! z-Hw48GiYU;v+!^`41bV?t=DzQEOsA#c;od%H5o;lyw-ilI%!P0BN^s{>1GxW61==mI(6ZTz*u9mVM<0g+pG*jr1Wbm`={&r+ zc{+sN^Z+lbbe2DPNz@M{V5XQmFFgDP&rb9WiCD;o^;fr|neYw_O@BpRtt_DOU*w@; z{yd1cUkdkFb&gw9&N`A6$C}ra?Qv(8rBt ztRJNfPi#QMSqRcLu)K$37yYTUiTm;5ADO@D7ahHS85$}a(N$9c?sQ*<$|Y;bv1P?1 zqhU2|eizBL7DR!U{W9>RP58v!7qu@j7n&HLfMXpeKQSEg+*8r5l!A6eEL=AdfS$-~ z=C4VC<{km$uCw#Wh5&P2<6peuzHP9j<`sfKCOE}K4V0YE z&{tmY$V@mHwGbX&mx86^p19-IE~@YQ3bY!RL+pQ6_`dK5HGWY*QAEgY>e|4)mJrN}gG2La1~U?g~l8 zfh8r--{i>tzuCmcg2cXb>U-^4Xtd5k9mp6uqbSb~{igV%?xsXsz+K=PLpU%EjmNFa z&(k~t?rx$6R~ow6TNb$qbycMfcxb_G@n z+T!E7M`TwVW0cj*!R+YiWXi4QL_ESDUNtM@zhy;ep(|(+bdu26z$0YI<^80m_aUk4 zn+zpaSq4ca64I?wVadd8;Bqk(X8Js*ve5&)xX=u^F87SM*u_9gry+U{$%ECz9yI*a z0@%~U3$Cl?EoAJ+o%KSLr!bdHeY+g;50&sf&b@$h4X0uGmn0Is#}`)YCn%e$i%LOn z8N2f@eW%KNUpGFJ!^7=3B5TAl)<~{jnE|4wMN#QtFUEN7HSZL*2ch+BA9N)H_lGs% z7pXy%SSH-1>na4FH26^Q^ayDddXJmq1;EH)j80{L>m^&mK{hgr#!B(=(gHQnRkECC zqxY4{PEf`DnYGkya}~Z{A=u?Iw5*fk2nNtmmMzQZ*x|7otTMf@>wX(NHB6?jBU&Nr zkH{7O%XnNkfiv*er8#z*Ex0a!Lwr`xU^M z%wV9~Z-D)&eNZ}hk0`8?1QS6IT$ybRDT69l$Ig6DJYA9Qng=@W56%Cb??d}XMQ~X` z8K>8z!z0l!sQ7Y$Od8NbF1ndzd(Oh7yWu#wauTd=7PD|;&szL0wx>PlPAA=+i-kkN z#Ao|Hda__Lui&QvO0+FUThB(kAnSxNgW}XYx{nS$afhvL!DPqg6cWi8Wob!@IMbG& z8oagz=dN1(*OEv4)!5E@g(M)=KGVV5J9r! za6TN!k3@x1ce1d!yK^*O3J%r#l1+gD@X{<7|8+Xj>>YWeGPVb1%v()bo0h_cw}Q+m zk_`8YM~Lx{2(s{BKE6Af1Wso&kgbQodC^h)crqJ$Wq$B3)kH9cM;h>D8k4Hy6S^F< z9+7ifX5*}Qdw9=1BEec`=$vCtbj`t1I9YFkJ9_g-^p7;ixSI)MIyrDZ$PIRu{w3Sy zPlh>3H!%BbG)VSH(OH8mXCCiNT9y8g{_M$gaOzf?y?PPsSZD?`Hk#)AHY7&wK48(f zpMK8xMcUQ(lRwH;cr@+`R_@Qm-eZgfdg~a7&A(2r1(?#>2wC`}8c$_QBGGZFC-3?) zVUXCX51&=v(9#Dz_}4E9A0H~i+c{N`CbJjEli#vlc@ipKh(*C^59mv?3uW)9@>W%BWkeXRRSz)%jAtW z<dY3F!IJGQ0Wu{`@=D?FlGU5?!QiKI$g+#hXEM+A_)$*+<={K zVxW{W0nOF+K>qr6{K}mtLM~xMrZo{`ez9De`fqX}S`3b8FbCe3N?JO>1t*Ri0!`y% zJPFhQ^NCleLT@8vvU{p?*$l_*K=92$Ky`4qK2hVggc=d}| zzIaNG_)so!?GO%6UW!6KvyiF>z=ekW@MwV#3r)&*HT;(95>h`5Z>%SFO%qasyL0Y? z%w7xnUE6^atc&0*Mq2SG`|kIibrRluea?IJ=MGA*oC~Se1SW_t>vVc|5ye(L!nC>@ zq~NX%@{s^skfi`k#SfvlJPkwG?CD>3JKmeB2SJ9jV9`)J%==Nv?R?otu0EJyv9@Io z^t+_;n%{d7{l6kz_XIcL`om_}wm1w{ZtKDR6|9SSllAx95@4~7`R+ zpeH|07A@HhD_P6p-OM;YUA8?Myg;K74#_&h}eQr2bT z^Ve!L_x(xgVqZ!Q{!PMDM<3Diyqi!GIoDi=s&)w}=HcowB^q_?CH-hF2}hTVlB+4| zME=BP_^iPgwM%^2%&dz~dbc@iyBkt{z8d!#nW1Uf9rG`9qPn^q`MMHMj*@<@ zXon(H*pj-#F2H&!OUzMIs^_;?~-jMlIXd9WP2H z_k`+Dh0O*Tw+tjClr8GT?t{qWnO%zVQWjFG*QsjpH4ORLg^psE@cFvTZH=w^ft`E{Gy~*S!L- zHcA)U#6tMp-?-LBv@7GVA{kkcNG9&N$&=SAp?zYG@Z5e0ZqKiyyP92aQpioRK})1- zOmGEVX7eAUNVK7^&LKF_`;GDDR>AZcLi8mNY9Q`L?pq(ga~IFSL&FM1EI)Xu$1#sQQ91zf$$QyX$-!V(~CyckYlSfx-iN#Md;_oqyo>{#P z_bfh3b(MthgvUL$$KDDOfAX-atrqS4l1b*?zo=>d75ylObLJ~^j`=Ui8NqRsO3{bl zrfU4lJ?G#q`<=zM!^j^ki@Xd+kmd7(>cKJkHcQc>cgj($l2T$$m3p%0r!}|szC1Nd zt2N_Hqv48MD%tm+HH7Nkz?U2DK-%jp-h@@s#8cQ9cRpx@RAU{qa80LXUVL5MCRT7W zB)F4P`pr3vXT!I)v*hYzK^#5LcvIO|NX@R-)O@uq>|b6C&$lI#=gs~2*+dmKG&V8k zbOYG!OakpMOX1EbWqRAc4}xF!$nz3!9(v62EVlgo4Y&2g)bS97Cw6e(-Tr2ZjYq7b|&nD)oZ>LYKnd5R{F5E3U2D%}y$@E(p zypPNmC9-0W%m2I=ZqHT39-C#IIR}o>)%PzzI^%w23PfUmYy>4&!ttUP%UDiXK*olh z;k(Cnu6MKmgr0sRGZH6*YG@P0S^gvfO^4}V)^E~XqtLb7|0?U7EP~k+BJj$v3oSTV z%5&BG%sgKzEZ5w{`!`~NA5_&)WcoLd+ISu8F&at^97XP8J7}=)x%l2e`u5m)RJwA^ z++(H?l&Oh;zAKyGvE7w=^?TScG>H4|uo>&1Fpku}r?Vs{fSHN7#r$8MIKuAjuI(=P z=xHOFe?gLGwmcGF#aM!`l`giQ--wfpA|Xnyhz4!`kFv`S(a-%(8`P@EnZ3`^#qv68 zvOC1g3FpW)migcvT?Q3g7jFCRj=Ad%x)l5dVCd=qF0n3!q|Ec^*6&9@dDIZOHXc@f zYlRaVUU9!4DtBqGcu4;hZYK->)9F&w{>^y8+R$eZ0_!g>W*yX{kUr9esTNnrCGj}$ zFiR)Z-MQd@OciX44pEV;5z;CD593~~2K76B=&Y(erg({pLjFiZ@&R!fo;SipK7RFU=B$A8KeA( zPhrghA?g=+5#s%xvBkF|uDN}LK2R}4XriQ^uQWn{+``Ij1lx|je z%t=l3z)6ospm2E`_C+eAw%cN8xNv~zzG@=u)gsL5K(%}P85d$BO5Cxa@AeLJE8CC2 z=j-R`#%T_89zS2#^ACJDGgS~nmg%7LRbOyh>kQgfQlMKjofNceguM>C$;Q5Epnfic z+D5(SWll!uG7__>5>~=5)9f+1sS1Vui^GvO>B!c5&}wrR|JrPW@(f#)eXEH5bA-@) zgfT?kuY)k34fxo~s%wGb3W!|xgjfBd9%ZgRp+HTOw0d1bhljpg%Qq>D!@nLwLhKv!w}*@1)yi$; zq2O=Qw2vPXgJz?^K@F5$>PrsZkEVQ!yYN?_1K#6Kl3(vvGrsFFxP4_Q=vq3!BX?8$ zvW$6;U(Y9>wO(PA;wVwf+Ci25gUP9Tf9S=Ic=XmXp~o#oxYcDE_%qOzJ6>K&)Eg$C zUl=_+dGn;IsfRESB0=0wVB)&}>CSG#KuGP*5yfmXOX)J_z)`=hM1Fwl;DK*pMJNk9}_J8p{8<`v*$8V)Gmf>-_5 z!n5$H81&>Yyt{Z3Cka=wKG6vh9$^l*s_bC5lLb)?c}ZUD=0eK3Kt%bO&{6D*Vp8ur z^$j9$Bz!&gbxY#74`R8t9o1BSNBD=gf|bBJkn6m`6Hz=3x$@PZ;@k|!y4Hhg+h(G2 zDhVc>&jrKmVklB*;F+yAf*64~+{VtgJ%c6Wu}T$b`gRe6Y{N(+%QF7Wc*8mZPiRC; zB8qk~CiMD3*yM5+PX?vakFhuKhr>C1@YnO5*JPq{&g?M^n~9WE z37mdm0cv{cG&k1_wfEG)H;WPGqs)M_gH_mZeHv7V*r546S$uH*C#*WR86(vqG2uGJ zwkFnpxnKf@$Inq+Qw^T+tr>8@DUizh57T9?`sDbcW^U;~FerGR24zK6d}`;+=AewP zchL#$R~C^Y?T>JGHV+PEc7Q}=0+DuzN1d;m=-qG)GNI=?v76C{6PMoR0&6DWdPNWdng4fWD51cGwcvf-6asgu;|W0_)VM544zSMUiPsgpO|Poq(rrn5V3U@Yk(zV)mDA0TmVx6RS!*d}xvL6!O zD?(XzAd1-V!|%vqIJ@H z9NcUPx&}d{bVDXwr*p7!sIhbB-w$Nks5rf$aR{czY2)`@?4Ef21V-%@x3H2Hp^B;} zfj7kAvCtA6Pvt?tPEGJnXoiD7ip)Q0r4#d}jS&7#9|dgk*?e39HYF6$o2{F0>D3LG zdB2<3uLQ=&oXGu}QA_V=9E6=eLt)^P588gpq4HKjIPR2+F{4(rrr8hoq##~>r-*TR zvS636oW84UqO05UsE+1;aQlo8%uJ?WFB44On+Om}bnt7zJ`iaiq}OMLQ<*V8i2mjX zdl$8kt~2xCdq*(XiPz8{VaD*fJ%m&~2nU}jjp(#&7JTd|g#z$G#d!i49q$d+(*j^* zNk5ezNCEG&zsS~i1@y4xB$SSiHgJmqWDq~ z@AZG6+rQXhTz?K^$f>}x`TIy*jx3&k#`uuAK5VzL8{+!Ycp9I^NhH?NHth`NWzZpy zO{-zKg(2RZaS%T}tV13~!jt>4XjvcuX=DREkspUnhTnJ)J0I4uz3>l}A)Gd7Pn(5r zncLRgK>fqsocP5UZU_b7vWy@;6tM!ikg4FfLm0c2XJfLU0&cdo$IoFVaF+ihJscc@ zH})OIE6wY`ebNC8^UH+}wNko}(U6V2KMlD%n&)|C!{q)G@a z{BW5Re9^~K#+^`*F4C#)z7}sau=$_&OeniljOMyC%om>#1+Dkyq?X@9 z$RDK_FaLSEJ+E z_w?kYr<}H=4{V+Cm)d=|ggYx5sP(&rFngH?2DTn&d!sDgNbN^5UUr;3rFP`PHY?n6 zFb!{rrjXd^BUDdB8t-KqaP1HF!CS^YtvF}TyXK()Xb_HV0&0zakH{%HTwr1*ZKbwEf%{ zo{RDr$zEYVo^_V+q#br+(9gs0eEzo1GHpH-=Z~Wb2FVce#uF#aDuxTqmGI_;D;7;= zZ1buOh#l7W-e6)UJ?jf%yuF>f%x+P!^h9p_g#`FT?*UVvI0!9EBh~7HVH1 z4>TW*5DJ;_9Cti&Wbf$$YK2ueM3A>9}SF?;hnXUvs z`Rj1Swl!G2JWGF9@Zhv))oAsYOuuBZ69f%i-1QEP|5`C#c9zJ><*yOk)DdxO;b{cpp6{(S;?E zp#FA{^s7YCwU@SIpR_1mJ+O_o-$1A; zn46rZm42acVp<(2si;HzSpyQbeHJ;Gbct9f-y%QRbE|qCzhu0 z!i7C=ifQCnc^lDu|Ad&<%8~Ab2pYFt7L#5Yp{;)jxfUM`4!th$YhF8uS{;YH+7eiP zzn!e&`svhgYqTi#CbGLqxRVB}akgzZ9ui7`iC!1+kiBf0Ky!rl;bUv5O{%gflVjCpj1RujR9MCg4c1#a{) zy}TkGui07SlIvBtnYoh(ek77i)~iU-y-L*H7r+!}7m!|ll@?vPMB2~KCiI;)$li?v z_at{XUz81B3k}fj0oxa?*=IiJ^_AWV48eia1u%T$Gf2m~d?8M>8xpvPrco=vuZ)Mk{B%WndSXMahj#Iad;<3$Gae5!z= zh095GLOS^KW%GKYGvM<gfefbwc;df_aNK}>&gsk{;2sSx_2cmO)r7VNO^=Hyp*d!C4R;%dzykKHTUT{hheh7Egn5`vp`8x z72M`5r52M_$U{B}+_b{R{6ujZZ}UAp@-UenRFsxMxYr)SX|IQE`spy5pGZDR=L4?0 zLAIK2!KJbm%-`Vy&-67&*#yQdi5TqM6W&d=1{BQC*6uYgBsWOyQeirLD+gcVI8_p{ zg%IZ;(0j&#iq~eKa-W2#Y^AoiVil9QN-Z)(@33F;1=p`Ksdhyf+ zdZySEZysekEg?IOmA#08oH3&NJF=)*9>#GB*)`{Kr)66Mk-yT*duca9A~{j`!0rJH z+9uG4(Zjq;Eh^wqrGYo~VlYOqnwPoz49RNF2610G*tu+!c3KyZb2%C2_rHFl-6=`j zgH9E^WS9@rr?_F20PA5I$0MKJ0ra~y8Am>7alP*aA@vq>_&rL%wG$bOyS9}Vnz4zx z&(X!Oo~hKuI2Qg;1C);XW1hH(^&R8W@N$7Qlw?QIrS|%)j~jvFA_gFGH3R>+XHy^6 z+0bZ+2j!U6!ZBX!}hB-1=N`pv?|ft#P2IE@_~rkrYt$N0qaAzU%g zJpZ9F#LY-S$%mG}$2e<#?)B8KI0p)TO5=As83?`bmOg*O`YXE+kmK4M<&)Itu)SFT zucWJx?}LK5+TL#J3Ff@pynNJKTFnI-7s5;7`4GK|pk;y*?@G@dy17V=F=(5)o5FqM ze8_YxANNLW%W9N#$sls+Mxenp5V>*_xOn?Ns%7ho=js!QGk?Z@7hcnpC6QhT}x0 z{u((GmH{s%-SEkgYh2;UZRqkmn7T;ZCZ?*%l&{&gGx$>p==n>+y7zflF8PDIt71e< zEMxJRM?TJ;R{*nvi$QLa6}b|#0`%f#iDy{`5!!i~{@zm#R|>Y^-O&INoS#6Wn`)?~ z?blAJVg(4DvV!d&ZgH<14bWm4+aWi1(aHbPk?;M8S^8%!lI>kgZ`KBTb#Q_< zrD7c2lK>+2x%7#aJ54^+LjG(NMdc|9P^?l3GPkxvd#VpKMhww2Wx+UY*HUzvP>)aE z)$rCwDuU;Nt>|<)o2pNY$Jv8+C~)KjvF9a0%QhPfW-Jjsg)$misEd9Fm&2zOOHfk6 zpLTCq&YKk1LgyXKCg%pr2wy}9ID1Orlj+GYI)0WO`xy!UT~EcCYwnZnJ92PShao;J z$%1#ueMCcIEtHBELGj;gIP_`;@NsWDMmI)svlaH^&u43?&+Dnw+q#XeQk_Mdg5J?T zhqSS~DVOK&@r2w}5`n8ri$QP3GI(`ClWuFM!|sbAq~#5zAF5(dF((P%S9qa~+A7eg zzCdSRvF5D`5G7g@RKaqQIks@F5NxMJ+f#NydFf8>b5k|A7agI+WI3qatSH{8n;^cB9$mlhI=_D$^H{UT=42}vNc7J6Zrgw*gJ&b)&uLwef61i-JJE1v(1vX z{iz#t{g{eJ6Ex|#c_^>)^e|Q9A|WvOJ8#;SI?mKtgw2{x5iivZo#zkPK<{uSHMUHI zmf73zXEaCrc3Q!+!&%^HmI=FgvvJoq=<_ zvva@G{XZPxjkzZzTvf;Hu7!B6CJrCn+yWhuCwapw{*sH@ne>fE0PrAH5RsAI5@Bb8_3wLePv(7i4O^@dYOs%L0Nh(I6j?#2{cymy-U zgekhPcB~S$6iRR;Wg3=9AEQ@Sdg9FcwwPj(O2SIwusb1{YO-9zzi+ERs@epf?w<|w z)ylA>WeR!bXAbpmo4Iot1-RtO2J$XtF~(0W#PB}_bY5-_9-UJMQAKH3TeJsF>df#_ zu{%${zY?Q=KjcJ~Hju^EiEtxE8Fy^>MTH|L{(t|;mH(8Z`t|JR8m4tRCEw^g5+p}8 zhPqAnO%9}D`nohUI|^b9w?H8DlLKl2 z^5bdIO;Bily7Qi-1e&uRYkCLk6^tZ9p4cR_<+bMtU1f~Q10T6#b8K*Ipal97D;X;K=cTa_^t?-4!9AE38OHy%^tnG#3RfiNS+ki7+jF zGW>TZlKyVLNK)dTkbk}@uuW4H?U{@1%fu{jYTQd&*jXoNTm`p}DPTuSEy6b;E|^Yw`I%#{B)7&kgjX^7@awVrP(S=IjfH(Yq(n zCulbByUsb%cQ2dDWDgUWcafdrU;{GOG;#VYPn>%87O7d`jYdyB;Gv8FPIxs3eAFM& z&)Xw;>+MFkegp21K( zDROlFTjKie7&)H%focdUbG>&T(4T^W*m86Z%qSkDhumH9{DEX#Jof;JI$4L|JC#Y> z!x(t*wGcuS3h~F*JP7Yx1HmKNIFO$NY6{x;X59=TPh&B;Q37V3xk`z}51L%IiiX^Y zhnn@j$hnk%#Q23i+G~b@RGcL|-jz(v(lY7P;aza1HU@bb&G^hMk>?Yz2%%aT_MDOh ziw7lem^neU-3!Rjv~~=i&%=h-r$J$dF@0{C0-us%NzTj`xPNdxD7c;?w+DsE!8>wv zP-PZGzn_CUFaDtqGQx55!BQ%2mJN*?N-^NIHW~Z>Z;}lcf-D#k4`+^-TsSf_iWkA{ zXI#FAG-KT^qW3rv!xx<;hF`L1qQe0Bu?XqY+WGLb_Z`#~sxucoJ{ot{&YXhY&40PDld)hYvYDJQ7lm2fbI|fBKg?r1a7SNJSouDP zXKK0!8c$wF?w}w1=)OZlFU1m3(KHApSGdUav(0B@){@pc&7I4nWML$G0_dnD(rbDB zq^7Bb$N%jGd45C*oxS&AV0sEZnk&ot7*o-B{yo(Ba1opIW#bKamQL(kA3PgHSvNCtS!Fh!-|XPoQMcdpMb z9$SO*VAcGiP>??rA4Ft>q}fldC$#oztEx5{=1-%&lAB5U_uWLe&I4QWenE<)EoA*S z7ft>~*N5vZL#`!=ZiHQ=u*RCmhbw}cNeErc=FBMe49FW7f>W6Qww`}XWN(&J&CSBN z$>0yjFLXk=+&~O2^wEuY7N9%P|Hi&wXDN{1IIvnW&q`XED1hZi+Qyp)zpQ)z^^`fbU5n*j!R!BvmI}N zq5r4)uNHTS?0XIP;wy*sTce05^Y?c!-a9%4UwM7E4QJjHLnH4lIL|bOak&k&eb+g3 z)&D@I)u>V-qbERJC(|W6wRqkyrEqV{BBG+U4Z2os!S}yU!AUm!4rEK>oy6_X-ZKIB zGcNUWS%A}GufW*%Ii76Gz!e9TU^)LVO_(v681DX$Yz&`=E`RS}*%vLWGv%YzbE+Vx zL>HVk6{6j3F+I(w1iH08pzNDtx^yLcSBb{@Qn z%fL%0lF$k3aSb2iU`_9Uh}q>>lNp3JObd8T!a3yitB+5=j7YP7xfGJdSdA%=--Kx$9}W($_WtE(Zf z{97sZ@E4I?AIk7rNIt0$aK!hXOL0hPG88u$qRrSZdc}q@X%=}9mqQ|OBrOJbZP)Sl z?CIFu{)R4fRmJ47X&86?4O;z>#@3lBuyJn#)~}AGPfQV>v=pO!oOr`}=N;rm^D_8g z%!gJA1=Ov76|M=A(0dfe4AO7O!KSy*@|n^s+a zNN;8r!%veM3NfkBeP#gdD;x05x>0go--nbnQK(~GdF4hA!6QnBWiZ#nz(^QAS#*-V zR;qx_!{4dGohDlR6zT0*1j&D%SoYKu{paV?_uhvw>7^euH!z+PWAe|*y^3AK%OJ0y zuU`MZbI|d63;5+oV29X52oO684btlH`=dCm-L?=4XGP20VZ%D zI;To`vMl2zS!{`G49|g+nmhj3u%0VjnTK;cMc6#kLPaYdajVv*5TC$6^j5h}kEb)H zmfB^QSsVx5CsfhrTQJ0AEP{btW%~8iN|^jco&T6hHxXj#c|ASekUMB+njKv z1y40joay@ow4i*9Hz`Z40p{ys-qiP0j?Eomz))OZAS_azJiZ!&}ktDON z_2B>A#?Ry@>qWmw#`LI2l47PuqW+eWofqEGwNfAJBc+-khUvVK=gvUeB4u1vR|3K+ zMZ{Lx4~=pLaLTM;ve!DBd2>7=KrsfJ_N`-VRT-jGu17yCDCTKAyGUiqcr?;?D!y4< zLqFM_gigCDdV)MpQ0lw}7MtTy`tJyxdOr(omZxFsb3t-tx-RE7H-@(F_JUFO+1M9- zALb@Lr8SdFK{4$g94_2U?YBjc@VD=9$)72DaicG(RLuwmYAKL8g~xd_Yh>`{lt)-( z`Ub*M`iR}HCCFm_^ts3jp5w-Eyt+G0gpW5HYHG{53EibUUuP9~EbEOvyYA3=NO4AV zGp!l;0DnvCXz_K{W%6M*47tn%?Tsz)+Vcs>bRR>jhJ3uP8-ta7v(bP3e%(jATA{XT zBl+Vl2#aQxF^rsv>W!~x=>zMnA>SdP!7iY$s~ zLZchYz~pNlB=+(*cm?ayxejNEfq5ob@A#Z_mIlItv(jYHK^?PC*AbB?^4yEDXuMJ% zjQ1`qCUr06>A|iZyr9E4w{;ryUQZLW58t3ateS~txjBSxu7xI^3fHju8Ch|B9eM>; zgV;zq97>)DZ;zF8p7bU?boMO#TEkexl;vkPkD>L;4xFh`0ZV7d!9vGN=%g`5#Fj;Z zUZ4&f%oGNTgzw~|!CBbsmd-dm2jN-2ByPiUs?Yq}bNbEEptO@N&U6ALzT0Hq)=0RM zd>7sPX5%609D1=etiD)e2lK4HrbWKRs3so{Ei?S#O`Z|#{h|t9SwXOLbTuYcSW>w| zRg9~zht9f5(3gXx=Dikf*t!t5U9G2;>k1$*AdtBAi{gwDOPs~Jxu;K(#u+aPc@JH; z!2O3Dq`Laxl*E}>zd-_i32q}F{Of7y#CYz$@c}$=h2jm1V|c4`3ccaD3MY#wVu%7i zHA-pY2??wxev5w4$sf{jbZs>Bd>J4*b}As8xdI3MF6t`l#_wl3!R7@TFyg>WML(3N`0R-)D$OO!Y`ks8bXpl@$Hpt)?X z$&HQB&o*y3PuatecX_nF`HDCx^vc5H4^F|8u0ZhO5?QX8k396*0#(IJU;Gm+On(@`#?)p! zDDsI8eRagIqEn&C%7wNY&xeNMMOd|U4=uc`jE^oe4fUEUkB?syxEW@!?eJCVyyi4M zS~Hb(>0IG)hm>*c?MF2EX&vTmQ=lcE5+Nsl1{{lb;hn?@*lQ^ZXRP_^?IOiMZl)w2 zw&O#;w~6#g{ZHQF*QQXn+?aAGEhL{nG@ zCF&=_m71Saw8M_&w^Tsq(gX-Z6vT2g2GNxGWz-Eo3xV2RsZCyUo zPQjIMH2VU|Soy<&iWYDPk;k&A=e(WTzQnOT705el)Ycn?13@k%jOBgG&-^9pmx{xE z{(2()!U2vyZlh;Luka#bb9l#=S5eVF$6#AYJ}PuOkwLJBQsNIWBoJS_-T7nHgi5SP`(QSX!aP7tm*rAXHG)Nq?>K4K29@c#+K0;($ zjW})XDooru$a}TE2HJ$st(p1Pg*9)ySo>=_D6b0(rDG*yk z=X>PPrV|*o-w-xj-HAhwSm*M8)_6ml;?J9j_#$kGXTCQEdMt}*(`Fud?K6Wh#ud3>7&!tkW(4ieD}yyLMU;jcP^6eL0aFV%E@*UG15e!p`lNG6edj66*1d%e3McX9gFU#aEe`aopL6SXZ{xzfF3`JY zt?By#TilTFnFwYRXb=};?3;zi3(tpy3oBq;=sT=QO9#V{2>N3m(^J>_lfbYz%sB1= zLW*DL{y!N+Blj_}xz)yvzD~eJEay3#(TDzRmAK-xG=%2dqWjKU(lNhq^i+0a%y>go zDLV^qB&G0p=WX)P-U{aWq`};aOas1@Mfbc7Br2We^%^RgL`KCM{sl&(t|Vieedwo| z8y2A{^PnWPsbfiQ9GUQ+4p>X)pwQHGP=3TCeEl4Zy$OPJWf$1Nct@uWHB*_|sf=TJ zoIDe(fi1q9;iXO&PIK8yt~sYbmfJMAG-Cc>%RjZh?{2Y-UX z=z0rV-m9rL=$Il8@5~p#s7yAU|CCX0QdFl56yNMnot@wj@Z|)xe7=e(3IdN}sIK!QdlzP-j;r5b0^0H|x^e z7oCWC?oY_>A9vui#8Q}laV1*EZAV41C`|d63|?zK(5oUBuqL^MlV{puYr|o(K6V}E zj!U3UMF`ppFt5)7XI>7=?8W$Q#)Nmqx@kQLc;;p(`p3G#RX?P)ZH(U_5RZZH?4kL0 zZ2hNQ@#LCeG`!&-C%l}Ev}tWMrmLTYIa}l4@+lKI9d#5B2}$FN8~gEcpCgFr@GxoT z8F-y=h1a(t9*!hM!ne;kBCgDJm#LdIq@*7xJv<^->#E0uet`OS)f}7|tKpM0C zQR#UK)3hEyn-Ad0Jp-IC`%JgA*?w;lfqZ9UI4^yb)a*^ALIQWlE@N3(dWFE<`vlXf zAJLw&H_%m@0n_f}(Nj8a>HLaD`qW@MX6(LNU#lAiwtsvfTqYN7o-hmxT1E$1-fcYIqxBxCv1P~gVKFtd=%S`l8j9uX2Gh@8YG~9w=aez=%T^U9pWl@ z23LDp0&jnNm-kHXqFdXA&O~(AE`5<$>{pwi1A<64|Lwy7) zp|~&*?Ye#usc&h-P*VsaVzY?W*$Y^1FaZm4PC|#E6&=@a;0mf^i0%PruyKear)PQ6 zF{><8uuGvsZ}-8xKq+)C$)taN$>W{PA~3X98;h?M(m#w9x$cZN{TP0TC^L;#Qbrl9 zzx2_0&FSF&h=-S@RzTf5Ar$Jo%d2QS2)^CVcm^sPS%%Jw_hM-XX0)z>bUStQsMN>Q z6@m0vFOTvE3V_7%4x(q14RcjBAfV(2@4@3{a_f{mwp~68+wXeA8rBUfXRHG9HX)#? z@4!oNNhe2UD{b-vrt(A?$JIyg@n^s6(NY90({+ZA*FAEO) z*-&}4jc~W}BmFcs3+tngqv3?Pc;G-cHeXzbzf(5hT-khF)?H339+biPzfG{osDa4* ziv{&7ZR|YMMqO85w0UoVN-K(CdAkOD|DFxsX6Mq9z`3~8rk^CbGsfbx7}CE_m2&)R zU@FE#>C1KaC2}fmcJzS`UO1aegt2x0CC)Bh9r#$GI%RxAT`yPA4eI3y3CGfPW^3ug zEO)rL|0s6-$-;8RW>K~tqhIza!&d7lkmdSLXXmFgcqKd(@5D!<=Eep1MrIcDd}SQg zW*xX67Y2_e#-Jl-g`aX=h*Yx(G^r@#NZCr*wrUBEM`?ifs~r4q;~Fp;c7@-(omlnY zDAoOK4?pFD!B{+-F7a-pGuuzW?a|fTCxINWSUe4bC3a(0o-1)okB7}4_rfK=jqoqp z5}$kg;02mwBX?>$?u!)EJ*c;b&Rnn)KO891@fl#AVy!(;+nWxrE;9amOa*>U%0`P7 ze)!$g2NcKe^9mviP^|6&<=+roW7#BxQaXE+#j)TEaO0^^QV%DBzaPQqrY|MN@)q*|~(PP5s zFkS)LnTv5s@(~c$5`^KVdz`YA4Q~D%gkou|YsibzobU&{pZDzHq2D^*;SMA4ZwTT9 zJBz8q{w6YEw2<_UCez8aarn?XtlmgK1D>n-gPike5cT$DnY2;5&D9AM6}m|NU)w)nEF zy+8D7@>91x#*i(qiYpfy>{W1K*b$!MyqF zInL4Vq4&h~C8hh+qL^f?F?hAg5+cFpAHgt_o@D1ZuC zcG4aRPgGGZCX35sx!KFp@r0#6I4muN`o|4ds|-5Hf4?cczQmUMms80+dJ$lF)*Hnq zzoKFCePrhF|DOpjxbZg*V>oZ{yBx%A+;0W~?*@oHV@7>H@RHc)72@;lxjM-bsXW;( zZFHTrg2p5+2H)kb_|Hul)wpaR@>fV@qFQ~>@*>z%dWl#JYh&+E6&RT6PhEd>P`CCo zF#EzJ+@dZBHd~|cVO1_nQIrDqSWu6qD4Zv51UJ%h(PI~f>X+?_WXm5~H`NrabIw7Z ztROsSbHwB}dGNgzLJ}onalKVM^b1bK%cC1e_uwg_9d89H2}f|#-DEs(-~p%2YUsaP z!C+>VgMCp;;8BeqJiH+Qmp{0pb?s^RTayO6H5QQj3HNmC}*2(=BeWKA8`yUD-Jyc!@|`O(Ca5?Lo109tt?g;(G2O`RMKo ztNr7ket#M{$2>q+8rKu>@gc_#q@aU<9eR#t;BBiojMm(6)%kWi=Owk5@u;LBtV|b) zO(e`WG>2H-r*vL$E!nt_{k|QXVa<|0Qr-2Q#vX|v`}ZgChQ|pW?0>}D?xqEX16lCq zWd>?i{$N=JbKIb2OmD=UBX!@T;g*>l8lN7BY6J9TYpUo{PqAGTLW=hfHQ8|3^o7do&aB9FD>P?Qir! zRtf~Pd0|UOG40g4MMURa=H6JHgL4m*c}LXsh;}o}2c+Di)eDN?&x_}z__Y)8d8b2j zxev_Pzn$ret4T~!I^Gw%Q7_bb4mbA)!>)@n>G(x;`g~XqD_Z8m64w|~VO2Jwg4H=0l~bJo7|Z!TXms#MV^}1Ve|YU1mzQvNOllO$uPFAu@DSChdiF`ebJ%DA35Ut;$q6|O&B2@xO8!44y-PmfHgfFrZw}3TcRfj_+`L~_o6T~ zECg}vY};&;OXt|}sLTZ;3=(sPsN7>1kdqC0K|cztwM`>o*IQ_y!Bp&DfTV0jI`Um`;L)~1$lSdWa$}Cu zsFZJ{r9~Wt>>CN6%D;O5wPCP$wi@j0Oo9F7a;WNc0H57Hg^@yl#rJYxOSmfZ+_%PU zsHQ*nf3Ei3j}Xv7JZL9`2^g508@ReaVoqVmIc36}F4(VReNBoM89S`|d};-{u?< ze;$ej6*iz3nhI3`5_IABujKpiY=~2?q-A$fScY>J^JMs_*?+F zKZ_vhD?i-u*F}rVA&fQ2CoDFr_sQ{l(XE9$%B;I=7S_U08%`G$UbuUnc(d zrk;KdKLXDV%R{`oO&m(|9BxT=sJV`!)aKSy&J;KwJ~$*Zg?o2hx_-olDeo3 zbo4?jRP6P~@d07vFJFq!t`)%m?-+)e??nsEqqv6rrKSs3Qa;&-Ix1)|Y!1$Tgka18Dc8C;X&d+pw-|7q%ted!a<^?id z@srF`Itw?Ora;T2y%2W4fbg}%>w5l|4yNOC;kvdhgvrIiyp98~tY!yF-<5;5v}aS$n}b~JcCwI>KGhMHcwZC$u$u; zq*)C9*1eps&mrLJ)1Z%j#F1&qVkllK0dwMt$VR;_=sPctwEsDUua! zxg7kM)kg1pN`mnwnNb1a$S`(dmiM@8^$Clt1d4mQTmGNdc^XB@J)ppM%+KUm4W}Lf0)Rr*bm0=wCY@Z1B-&VpDwv&;!Dgv?HtQ+>%ThiTKOpoyIK&vCg zv_EqSYAmTFQ|`HP8%Lhe(VtcHp<@np5CsgrPe_Vq`ON&8HI2-k%{Y`E>wL*cAC83IEs5m)_gsj1X^Zy<$H{`X@pxyfk9W5!1e8mQ7@uKG*K;5j zXS;CtR_*6BzlGtIMie=)ij#DKKKB2<0GvRO`%_*d^RYAs)h`)>zQ&uu}N_Fy#(9Jxsn z)HERFPzV<<$I+6n8}WAh%K2z&aE(pq%{SQ{}JFr=Q%PGU4Z5LHt@U)0w6&C0e!hM z2aJX$f<&VgNbQMbedT&Ma?lezveUWoXIrqu_8RZRZFh+5_5?fAI3hi~0L@L;Fy81| zFt+l+M{=yoVOksx>=cHP-Q8Dxd4jb2k!`)?g*@0ZsQ?a4+YSahtX~4~{iO^!UYfU~MuPWrvr5 zn6(XkUzJWi8ad;osQYBc8%MhJR5yJdnv6SQ2{AAgh3ZEh(D+^*OxiL!I!MOOtVCxEDM)ycfg3*{ZQ2wK<;-s-9~Fh07M=moj6v>;^;dE)B?X@|j{9o; zRGgA~iX3m9isq_Qh}BMa91=xh?ivebl^OWAE)f%LU-C9i7Q=gb$KgYLHy!DDrMq?$ zyHB?rf=3M=oNHbbMoiD4e4Rq1;mTUZgFQ67)5D!eXZ_(7^a*FE(#OUG`fa zdR+{k(s$9Rf|;Zq&#_CyITEL~nHZ1hU`XR@60TwZ3LaBn(~@&Y3ck_Qtd*#2vK{;m zPs76MC9tu8P4{71Si$T~kVKdl%mI)GAe#3WTMR zxr4prXs9xsP-zTe8ilB!l8oVpwn69o7@U0l41F}745|8wkbU_eiYd+`mn|b8{Zs+3 zM?4?R^Y=q{KpgMBni;KiG(%q*X_gg>#qOWcydO)YFepZl{1-{-ldm@Tt@JnDrjiZC z9_Qg@-9^%qe_#szdn^pHmkrRynu!3h(_naLGHN(QgSqEf{CfHU{n)MxzhzcnqoEA(42i<& zdZJ|UA3YKvo`AW8Wq&7VV}_Fsk&~SZ6->7o8MsG(t6E{}y?nZE_hr}!i$H&I0&joL z1uFk=6K@yR=M)2A>h}V?vt=GMHt^$XqkWK&rpvqNCJ)ap8A4Rj8~Rt= z5`SN8<|(%`Z-wki%&&+cdJ(~N&$Eeeu{s`I3|eS9e+YN_Y$MUmaAiH&;^25d4h?IU zK(HkTu`-cpXH$i3hxe0CXKfHVRE~1DQ&Bb|mUD0kMXN?N$lP{~6l?dAiA4_7VA~_w zr)(ME3o*-)=MgxL0=*99J2n-9Ng!yr#+f7&z zKsveihV3Wwo$0$~C+J?yI##Sh$U%*2u-M9e6j?K-O#p@{%`E{Qz?aZ{Wk32ZFg$I~}sCPYqM+*nYKd2_5KX zzUKlX9954+fkV^bZj2g8MlsKkLI)Q4r@Wq1Jw;E)h6v5-^h+fa5Kp|%hDhEBG?E#O;uYoPNk-wB4cfAh(rAT43i8x~2J|lc? zG9TNQS%JexW2iRyM!)-?hb3;&v_ppQ#2YNh%C56;tnemDJJCnVHHzshcGs?3d=;#2Y{r+<3uxxfF?#!1 zs&3-HV6H3_>F%aL+`3K$zobah(Znt~QR*^zx8wrZvGywOaOYzxBJzfee-#9S%qd{u zKT5}Lm0|TI8*1}dANT!9gTv>f@bTP2{JzBxW@T1_$A_Clpz15#yeQ6Jm%SsuCFfvlP%KVMGT^k1 z`+-4N7M_z9feAle(Y&u!aO}@#y6w&rRJp$bCYZ4NMq?E&YUR@lm#m^&*w4>6=6AO+MwS-#C!3QO<2>Rcp+nb;*we)x zXX#TnwgVWMkIP?J;>r82_=+bCqP3y)a9Ri~WOJvJ++sK%`J1dOzQl5TZ)i?IBNQmw zquG|zL}hXc{*I6*JBOUP1pjTQs+t9>`poE++F`0j1!2g~{4auqZW8`7Q5BCuXF9iN^kr>nkS1m5IU)HbN)jP#npYe6&WSLEZJ8UN28uuf(5 zE5xjFBF$+PriX6ZvJAo>oIu^+)4yS#u_lFxH0f_7IReavq<#h=aiW z4(e3Er`OOGN<@2Bf&E!4d`Fb9)$}mT501jIp?q%erUdCY5`2EsCXpe-?) zG2@IeaODE>bh|9du_+B!(t%8RVSEeUfK8q7%-Gr6gG%E+y;+TDN39m|KK>Hy(czz%Y`9r0+zTt92vyZ$OyJWCU4Z#Pmk}>pe zKE2kTOgG2A0>2t|*KhB}9adpfCguqpy(I`o!%g8J%c7obbHH^P{op5-jN3PxLZy;F zzEqn^`*xY~UVZCAqeZLX&>bf@SRf0f#{$5jAQWTyFQE{-uiJj5BsHp zRTl-~`-^8a?vLPDl>>z z!`(_EURFoA*d4emyN2?_l;HW27E(I<0*0Uk!09CP)zlNR$@i>0oHvRg#VZi+uDf_ukAihdXy_@Ldkg&veX1MZ^n^1&LOaE zEk7pje*gjEZZK!M99SI9gBc1laNxmBrVn`V=IABhsa5Cc;%C?CUGHBQcy|-&zg&cB zFBGs~%15F`)nFGnfuI?NT2It5CQSs-W{AV}SsI|(t4#!A6YIPBOC2~%5vpZ_WObAs(YRdnbIzi2X>?*T2_S55zJIfOPxwNZJ{moXTF z;96-91kRY=FfcqwJLR|H_#c+5n7fINJKP0X_RJ~@E&@{?wI7!%H<8kpr7py zuxT{HtC2~x8$N#J?5fpN4RSTJV|?AUzL6ZEgC||Y>6-Ql+8R0*P4t;UvIPiiHErFh(FwmRfBl} zjl+jzTS`7Y+#Ay$!n?8lDk+D^oYbyDkm#^w!t0wjW~0V&kJE<|2(glvyd#h#;kA>h(~rEA<3yMZ!w6ylf;mBJpijw6Ds#9pk{y#)CPx8iLl&y6$fp+eR~tND4)(* z$-g7B5*zXGqzo8c+D6siOwd~1*2^6WcfMmh_^-HsvR*!O~LjCI5RoZHCu-c|4k zLb*#ff?;`+7V7O%M0Jmg_;^kf&is|Y3ug0hZ0S^dJ;w*z$^voXv?$QuHwj#(cHmAs z1*}#mA%A(DcrY><7FV^vowOI6mwFZ_YL|zjE zYF)uX!EbcSb!G6|upAR-E~BgRV@VOW47$Bm@uGYG(9jwEG>pw2hF{#!SoJ*oI%$ks zM_ z$5JR9*nwxYO<={a4Bl6b$14q+sf%j{JM(hj{z(Vcwf2}ysV{@28}~u4%4+i3WDS)0 zUI4|a2z;PZi4NRasPo{1v<)e=V(wW?KfjL`dg2*b>1PC5V1?k55JOki>t}?6Ki05AV0UG8;uC$@t^LK0L?y+rNqtK)`!_Fxjf4a1MOLV2+! ziJB$@d4)f*(OCsol}=-4+!QWDbtT-b-wglK!^om#`$+R^YfyS&N<%-d!aa)VSaD_| zzWXSO_u(LA4+>`2A4uT)5KU?wfQ6oJL;4p4VtDLz`@h8aW8vBiw-GUi9a zy01C-Xx2?sS@xbt?)HJGCtt2EJDq?TUVZe>%V^%wA0o7=Otj%6mq;f@?S#+GOc$NQ z@@6YO}v$j{s_~mbP^!a;W9Vtofm8yF{jx_?7?RBNBEl(2WpA( zIE&rSsGU1}ZK|O;7ZaiFY7=pv(g@lA*cx5$8Lrk2LJ4#}yl`snW%*01iA5eC!Jf9ruWJQa5d>Qh@{AvT(j}Do&0N zh5q{v`0$@5xGX+QdKZ@CrFBQ~dsYlwZ}gx#scHCQk|N0sHb+R`iF4Wx;1SP8^!TaA z_PlE$YL-0>c-Kz19f`%vj!Wc*ku()9h`~I0U5x2@j5E&!VAiA#dUmxa+M8XWpZ`aU7`#)2Yi{#l^Tb3TT0oLCZ_%}re}aj{ThOm+!(BB=D5vU5&&%`>!_v9fDt8A0 zS1m>TTh>t5@eJQA8RAisV!B1E3`pb_YIZptUFXeXo|{{wh%s99b^T$Fk`$EvP{g}; zmY}e@9kl8Xl82lpKHfDGj|D`*-t2|Ruk zh3jrJFT}ZbbzUpvDW7l-zRCc+a@ZRRqm~0rjf8xuLK3)Mm?)?Xpl?G2oD4kyZZoMVMIRqwP4mko zJ=^C&d0iVyGmd0fWjOKc-h|S7_Q0m(1bFL|LnRd$BXq(x`1tfViN6>Ort)_%FiVsu zyg&t2b!}U@z%P(CEvaUq88IZV{eWSz1|3X_SX!jI(lMq z3uEtJI|fcnOEWZ?1{%9hq1BW@Qns-WMjoo6^s-gB(jGM^^j+zQ+ z*i{1y{w#!p$`x3U_Lu9+uS5GXifN^X;B;UT_rWTFwBGe2FRK^AD|WukPnSlT-U*k! zu)V5e7k#Xv2hTOKz`@iHho2Z@kI*jM%$>qN60>oMvKB32vv*dH3q=3A!rh%;NaFtr zk&D9n2o;Rwe#9MM9vvS#He!uqlBUpAavt+y;$TMQ2O_RCjfQ9JNB;GJylRPKz)7TN z>*cJV0pF%!hhz#QZ`%W(HtlD*5-ogC!~T95Mt8(9?d2~Y$@@DMZvV6(CuZ9cw+#rV z%REW2MgZD(XVSAlnH;wzl-`>+k(_;^!Olg0h&?9^rw07->GWb8Q(6Y`jrHsyn}~x` zF0(VW0n2mKiOR>*)W`4wy{CPT_ul_KiDd79-IBWG=(c@S(l7v2EMoBI=oy?eJA~eB z--%zkq(R!i2!@s^qm6bDHUw@a=UkSOlFS&aSC7O$^Xur*LTMOl6$S5(`8az*KT$(> z+LXOix8=kJH2k85u?;V&zM(3ZulBQ+ie6SCp*GI(27PlDq_aJ}> zcPZnM?aZ53lnHZ}oT0zo%VCzj9i$#T3)h5CK+w@c*mZv%w8^W`?yoCg)ADlkdOI5+ zB9~lEo8^t}KO~}H&Bd#Jv1O#qsQ_no?nL>H zM7mFEn2sg5(vP1-AUb*us@qQjd}Ia%P5Ss;`^eQ3nwEGZxe&qMA8h_zq|iA=o*eh2 z2c87MhqwTk!zV-TJBV_YVJ37yK?_ed2h&5t9+0{>3Fp1b#K#v-;5o}Y?70?1o&I>E zr@bcX%6WsaY&6OG_Y9K!kifaha^?cLObFbuhp_nlS20FF$8#_0B*D+ZT#$Jqw|iaYsIXRD;m- zKgf0F8`|ELPQ0Xk5T~kCj6M|&L3tYVR^ujeSbig{%3)p0!pu`}(E^=S4DiU(V&MHz zN5}dA)(;fU8}kl9LwXGV)D_d{`g(Hwg9~mdJOQhyFL*WG;ik+Cqw{qKiJ;~f_t)4Q zY9^gP{~7Di_e3*&8kh(+^H?81Y!og!IZAx}mcjVXD0-9i)~;iGxTB17DdxBjM6TT9 zm1z}XUD{lD%JgKxI}>$}icFwqEV?;CCu0nn@{KI`A4TUK*W=g5@u(<8NxP6jTcLfQ zE0v6r3L&M11`SD(B<;QT-b+Y!b)SnQDI?h=WbgH}vY+$(&Fe*c@9%xib$veXccUZ> zq&%l>+kMF%TgHgv~h0uYpSg0!EVgKe)UtzS1lp5Kjz-_EGCz4GFR?dZCK){f#a3!z`@ZQzB{GjqZ>}-tw$*JiV=s!nFV<4 zu_fI5=m>7t;^4A}7r9v;2O1~JF>P-jul9m@+vj~C<+m$guB07ImS2V+9_@s|-V~US z;f0Dur%4p!T!n%gHb2nD%jHURmcnus!JATZvHV6aDIKt-=k^i!ulOZx`<01f zQ#D|()mU!0ItzPVFlSBm7ZSbrC$Gn{FyrMPke8#E=-!ErSTt4;Qs)%H=X(>;PJzv5_Qb@o`7i;fvDe8M}Cit2P=6U6uWE=Ut}}!kM&AobEW|V6c^!{f2Ghfv?}W|4}mk=tY`RsEgkVw~)y}c~JP@XZkMp1sVS> z46e_)(6QGBCBI}d7NmFq`Jlj@*1xsYW4(S_LR3>fF;1XF%7wyIbbb{*UT z8lSYN+MHO#VLf7Zx1To0d?3vSmM|ZJ5AhbPruuIjK|k?3eXV+zTcLBzEW@sf+E0E+ zcRrqq{STGEL}`2{?3svziIQNduZTC!PJ|jf5(4f~C7PCyMR@IGYuKpOo1=S-|~t3h(^ z1N!{QV7pFZ1*PlX(~bSi4SB+c^&0NcLD2zD<7+kPvIr$dfGrn?*$ia+KAO8p94afK z;lSzFB>brpW3`lkkYgS>y?X|l{O|+odEW`W{DM5%pMn9^#SnjZ19a6@a3|FBA(fVZ z)^%MVrU^9JRhJq!&PEH5kDXrpTvSxsh`&LZ9T)2X7iWM1Ct`t(JZY!L02SD1 z4l|`YsQ~jLezRz!A8)K7p3Fac*eC-<0$-8nhwseZ3#5m zOQV9d6o#WVQQlU7)idMxb&qRsoYY!War5N_{LL`9UZd0)MP9c8D&Y>!!dGM#6Jp+!hXyK_vgjTKxnN8ZryBOjo83Cx2 zmxAo?&NMsI4u{xI=rQB)1RrNUu&1o+X7rC7W1sC;|EaSK^D8=-|CrBznh$e_gfV=P zJa{OXpw;)WsP=aXw)b72gBdH}*ki_^;oUgVm6^=XVvoZKt>+el) zndKZsmg^GfjnhCVDUJw83Ypy5&N`xZTxjI^c<>MsL+>(YTsCz%dTL$g=A$A;zl%nJ zi_wt3ndOzj1@O+}odCkjg|}%rM9kfZe!4BBsXiMI`D&xf&N8eYZv=}UXQO=P17acH z#QYKtC>ooBp05s5yD>$ubapJMKEd%qB~cKr>QB3N=YYU)iCOgV0<(R8im)rbg0U#3 zQN=YC`0@Qt__$~m^sTu~+E_Lxy0U`ryJ`;d58ephSpSqZ z3lnnZt{pM+NrK|gFo>Ku0SaHGf%Dfgx|#J{RMD_?`*q#in&V(|BS zQ&2W;ME(CV`4JU=FbUrTbp{exXCI8g&FjEb+7Cr0OhVyLLb!iW1EsYUa9V2*&6b}* z_jZoO{whthv#h4+@7X)#I(w!423%5nwJl4NEwT7{m zk43O7e+M~riSbx1kJGtlt8AZoeq#ZaRT(l=ugRo+`hlsbyAVTmnfc6ZV?duM8)&U)ed z4e|Y@^HjikQRiZsipm>j!c5m1T5cbN)tOJpjegeDuaDzIRQZI>?1j){&vj?s;IXTSis->)@DK zCKQ_$(&4pRAv^gA2^QEu1T2D2jy=qJj2&-?Cq}Scc0IOP89{R027J2fCKYh`W;*Xx zB9yP_Bk7OXTyrP@VyOcq!vrh>f zl-daTTR^4u9pAMvh3nh32wF;$p?>8jYBXB|P9?cw;04Qk7~bIsI)C3&lR9U}?Y~d;xwAx1FcYnFlZdH;5k`z@ zKnuS@GmX$xIyirrAGY6wURz=@c{xw4H8r5RCjbT7e(_W>862bCAX?BGqy3Bd{Gkzg zLnj4Il3k%?uLiigWF3X>SmsS{n$+DSv%ESjpzSTgk zEX$@!F2G3+QfToogO-1^hS-upDqv+u3YtvO@%UC48F|2k8>`b~=SH%Wrc(0j9r0Q_ z5kD3`pqu^`!OQMS=F!YSwXqv8JS80;Jx<1bmL90mC&vlwdDls1XToN?A{-NxjNg)1 zp~~PLzPVu!HF1|G0>3>$-?f3H?_%ejNzQ1oY% z1&8;fLmn4_rWl2@LoHybCu6K^ErET45)dzAj60t@(EVlyNpnUHef)0=I&CP!dpqhd zV|5&?TC$3krk274%TWI8_aPqErIOZQP3#Gq3gJzA@X3`Fd}L=$M{IK_tW5{ei*|JH zuK=pIJR8fd-XxX2LiDCoG@Sio0kWkc7~J1aqB0cdnZU^?vvE0Jb`Qylxdm7}`kWjS zUWwVhk&K@e58aB*crr*Gg7qTF#F`)wSyfC+LpOn_#V84W)ylUN>T*{EuW`@cC6Hig zOMLq72$TQCQC4)IRu}KLFB+YLEpO+;n|qOX!ltoP_=qihQm_H?QvF@Lc{@qW)rwN06f&#ROS%HFQF;pr$^Pg4# z9Xy>IR0l^2-LcwYh%B@ZW!+wDqW&(P?N_qNku{cBb=M2ef3JqO-$MWI8RC{4sD}e3 z_IT)_BzCOug5=+!sH(_%i54RG>(^8iu4EafsY-O-tqU|wB_ESTvr+d|4GiqNMDNxX z5z#&Dvo_O(quciIy%j~c{KPflf4u^q&zE9Zp+exJj9}D|@k@u8qx!QBoWh;dt+NU5 zy^o=*ttnZ3J_kiSj6wdaGmKO3Ar{XCKzcwE5;q&b?w$#_OmjRus+Yri^HWep`9(+i z?b=RiABaw$m*Hujxv=o`84QzOa40wlUD(;FWcz+pXx1TP&sM=am-%#z(<<1gEDvjJ-xJG%XjsQw zry46a!@`gveDqTh_Km+!8X`=vWq%hjuUpLjlw(;Nx@q$Gc%c;aJyd*@`h&OL*ZyRG%gXO>)DQGw;#$KsmC>bN9g-$Iv5xl zKzHb6f!HBml6Bh{4F6srhTJ8(BDxI!9LU8QH$jNjZp3E$K^nj^A*Y39d5Ps2W)`~3 zsF1BS{)>A~gN=_;?G+jHU4bkl1?xe6ye{z=mj|O0>d{8C6g9`)<1acsCiXpJL549M zt<)m%-^m)@acLM4$T7le#mSuIpGIEWF(3DyX@s~r^T}yPAJ~6H2InT5g4Z0ji|&aB zrPoC;?%ig3{HZf8SkXpC_cw6blSPQ+qSY{5Dgc3IMi|pA2jj}d!u&P^a((?N)={h` z4ZZ$kZlDG1nX{juX#<=N3C1lBRtP^GAX1CN@dX`Zs@85aexD3MQ`NYt39b0}?;vUV zTZ)_PEwR|B9-hUf!naASRH~^E^M@T_eYp{?yn2dQu$|tCle2KcglY)UU4v^E9Vd>- zB{*JHlS;kcO$*j#fY;3x+CN)a*nSu3TCIU&)Qgy}$po!C(&(#lVVc~XPZt_= zkgCEHMAwRC?-vw;!?IU2#a@@+*Qf$&_bTAWLv|i}9*yDu#Ar#$9?agg7a9*+L09~8 zGDbWDFGw##!;2}nufG~677X5?MIRhukQF;meOn{mhSKByfnt-JS;@KJSPAC_!vt zXTra1R_f^Vh?Zaak1V>Mfy!3-@T5E!d_Q^P(TIJdX;wbUjT414`Hb_ebCPBh)xy-X zwnX}-1(Dqo4Ays}QRtTkx|vFBYY(oBq`x5#WzIt+)B_>Hez$#S?t_Xgl~^OAS1dQT-)@4C>bO| z*1zrdZvE-)+?An)#>v{}ez8Z59b;eQSkj1p; zay_qlTn+>GQkLQ0{)NnP-Au{`DBU$@ z8kR|yQnh)`ASK`-ShH%=!5?KIr*N?|HU*dH^~R!;A{ z;xvI8Ungf1q*&{vE3vHDS%I&1ks62@kYN;q4)W;?&vp;h$(NQ-Ns zi$d1m^=u`0EI8bm*;_+HWfE|acoJB8#GvP5JCN)0fMmH0c++M86FU7M`1daCZQ71- zK@?BDyhmEyAJa{PdD!tKkQ_c$0gAuF$lTTgc)5BmteTTW>&^v%#%CYQ61+wOPVS>e zj+YT<)*Z~qT?<(|*-U*#6&3MS$Lh=Kv}dC*fOrOcn-PExw2HhL6kvC{jgYir9>!M} zV&UF6tWN|O@3fB$q%qcaODFjfpO4S-jnVYj2;pN5VN&#Ebh3O(hh$?=BRK`Vb(7&= z*A$Xk+YB}m{&dd^acJMT0|x`Ikqdne;P@od?9%--66IRKdimS&oQD_9{1!shx9O0# zUyEUzx(NK&yA6d;-lKx-9yg-69CH-iA@j2v)~tU`CU&~Q_>X#U!p0wD>tE1kg|=vA zQ_9(T9mUwM3)$YF08}UL#QTaAo`xl%-PIP8+AYg?S^XeT%sN9;rk3E_d-5>$?Ar#i}DWmH1uwNjKF_(ON-CUfs6c|y#_Y>a<=gN`>$ zBj0jlsfT0^UQXVNhmCbf%5Vai)i4iMSw1C?PfthljzpAOIGJ19FN`nF%)~413Yb{3 zita1B0u2|oaVI5QJGsBYSp24g_|5QuJ8ZWi>C}$NAMf*lQCawlb!tZi{6O@@2?$F1 zL@%l-p~21ybW*M+j+W^-Eg_cdzt_-752}Oqay=}}-3INR#@xhL2XUNHJGrrn@fS2$ z=jOW(HcUH751iVM7yq@eGhG8zeDokeM-R|9-F>W2ZUVnIE}^4yKJeex_QFtk5PGe# zhenodlKvi#Ef3qF&tVGu9;47`-I z5q2CrhVITYxZ|Qqa5;4=JYGvcY<3DcV<=4=7yKg6mvvHwlYcqyHS)Yn>q9zGM-vQV zv&dJ~Cp5onKlndZ##WaSJhlHEozQTZxPPpIs;7dWc8qa{PB8DE`f9k4+71&wdr_5X zGStrZ6nCt_kTiJ}Z~=z5s6bL8y>Ma!d1ulB(GPFX=z$+(-RT~Py`m=aTlsPH&f?D`Cyn3M-P=x$Dx5M zbahuM##`)UeEV_O)>YWPC{7i}eClQUNhfd)UW@bAN|D`0rf~4%2fBJ}6q@X)fuWGO zX#8X+IsdYhV3!m~N`#_>V=kz$PD^-W0^$NXDTXf&%-aRY1lg&hqHxi>HXM=ptI~L(aV#8h;zfZaaj~y>>@?pH0H6N zrxtgz%#3tf4awV^2b0t~$lJhw^mS@7zk|(_2i_&|N^E|kOIW@ayZKDVNV>DMUnNh_7RoW0`Sw; z5KP!_;v6kWW)9@f_Nex-39IMS;q=J|xEpeo zuzR&KzgwjZL`@HKUkb(&ixcdQpK1zGb_-xfk1g$=nF%vqIl&*@S=jzJpIpy4hDJ$^ zjDO}xifs0Cnd>zC^97+kL^3!Y zAN@arUOx_mbW0#1@EGkE%Z4W#rQt(f9IW>0p|g#8u;-@&%(QoR<;_Oxff0$RxZo2mrJAJzqK(% z_!L~~?jpIT#6VAg&5B!c@zB##u=-O2DXG-NPdjaKYv(?g=3<3A+C=D<5)QUYx^nK# z;V3E>iLri-7#6MwPrhfPo2&p0(j2AB&nJO@U);Km=)tM-79A#;oodrWK&N5dG+TzEA@8$)(UgMn5TI=J@Y zP@6KbvK@;-!9j2II`(6t+3w*{oPHt-AErare{Lh z^$R$(XDK`xnvO5NX5wS-+wfySC7FCJ0dBH0aPp#KxFS{_qKB`d{J~vt;$SLFYzZX8 zsk>2Lw18hbl!hX$eXu=33FKVn!iT>%I}gTnVd~lz6#R4)gr5Lo|ILDHO;+G?nUbNy z1yGYOgnDYB`~uNI>Uu5)-kupDU&~&Sn{VYwlua?-ys-d3Ojv=tqH?fr+GW~dV21#s?) z8=liJMZ=0v=H`fng=cq~ZiOzvpOId^eUV`gtXCk-a5y^8)<~AQ;ygBLXR5d<;m>GZOH_-ir*dAeL z=CQEc@GqH_8biB(n8DSudU$%#g?x=MHu_79*^v1nUW@7wsDVX?ghlray*m>|Lb(Hs`PZY&L>yIf`1#ZXKXYP3OY&F`j z{>I)(>!I)T3Ox7T7q9qgK<+#}x>P_Cu11TatEMc3S%*T(t59mJ5CXmm+SL42BmNxr zVxFo*TxXnz&nN0&v(6Gcl{uT&IW+^zeSvX7U(afR%IF%+(i5b&$G_P+LK48$N;yeiijP(OM<_<;2IYn zy3{`!wO${>H?!wsRAmtQj|l{^z81#YV0@{o=Ge{NV-Ft)gMVi_&DP9^g{O=_RZ|u8 zeS;zXeh19Bqy~#Wi*Sm|YjBmkGdzlE#g)d^IL`bCIt~QEx6y;R-{@n>^S83|p z7w17HDRCTkej+Z?a>fK(5vV>og;*cGNtAYCe{9{@E$`b@2)^ zBQ=dAW*#>iNP9rb^=II7b;dXNSPR@VZxTL_bxfNra8=+9{5PBVo$4hqE#j5gD(NC< zdc(4N@8W2(OexkcXI$BNbzGxl0M_|lp;upJg6)AhShnRLNH3@X*>w`=G^?AM)KAA9 zN5(_#q#RhXehj%GrOuhJYGN#}lPKh~9+bMLqhg3Hax%X7R=W_VORNIFqGI?w#BvFF z6JUebHaKM+2pe)+5#_33$HlQ2pf8U~KRUR^!pUTb6M~xJFRnMh6;q4#aoukZl${v| zFNbq5hTS#78hnXLwlvE67D1`p9q9EQ!)eFdCx0wgK!j%yR^G3`-g(iWa5SBG$|*r+ zlQ_y8r`SK|BJs%{CTH2t6}Vmln`+PS_oE6yL3o5LSIVGc(yvhizZEbx%>lpV{Nj7A zY$EFTGLO`Bx1n5gfYzH zeCPoyV{TS)7bZ02g3mg05>gt1B^N2b;YJEfTiHz`O6TINjIns&aR9Dl-NNZsF`!eI zL)wn70o$1=M53k~gLKEh#o8DsY;HzPSLS++6M|5F1+Cc_15!t#!FzNb%RxLO8>f%O z^l4%=NNpL61{A<48#@rv>o9w4&Ui)t9PzjM5}Z2A7;U=DsOOp0=(%tbvAFt>ym-bO zm{Xk~)kzPNldSlboKiAxVjH}^xgJy-4pWtot&9&;hSxS(AmK7V{+S`3n3f9{tirK% z{Mk;$z8d(H5r!A76sS>=F>VuGLzbRdPdZCkZcOPK)tQlwXBgLLqFXu_EXDqv;$?~O ztk3l8ye71X6QWI%H^ZB%v&8hDJ2|&+0epyXCY}L3R8#E_>6S@>rw1;;ivu|@TV*mN zM~QNoHy?6?0W5cSa6gWfvBDUcB@ml_jA(c>zqRfOdYaxL`fNYDe8)5Tr&a;q)}@13 zg&?M-8PUHE^{o5#f{Ys|Bp+<7(dtwhPE!3#!ZM>^+59?^{!AUz50=xLGTU&>{n?l_ zT1ygEhmj`zJw&FJlDj#@&=MU49s__Ml@7ChW+RHdO{8k`**kN|U2=T)TKt-l2Er!I zWWB*#{@s^Da8K?q#+;GDB@zIu0@86+nG!a4)bP`q!iaTX3MBh3!T|4CbZCJSJ+gll zE|%Lu^8PsCIKzby7E;QGoi2sGcQ<(Vh!ynLeovS`at=1%EGMOhD#`dsVc70wiU)60 zp$gdxC%VHSB76mJn=Obw{j10*`@7CPAqyRy8DMXwi%i&ua#PD`a`6N5%{39Ho>E3N zp)gpwiMe)!eZkK;jr6pHLQYBuSlLwIyK_3^V`MZtkLw^GdzAXtdE?q2cEDLqf=OQ& zpx6&j((__I_`fj(wFe2z!MqMkKL$ZX>@yOvbSqxopASa6^dajJrB?$gP-?gg6o?C* z>XVJH?9IXPV>G=hG>XF($=wP9v}~Qt()lq zVO9DiJRco$oMFr%2XuE@jK-KlezwO!7&%jyD0`wv6LEWSGhXSN z2(FE_a3^*q7+$xgfmf3d_Z#5nLm_na0v*^M)lVwu9W-PMEcJCU&{3hWkR3A9hJqV< zJ}ZT5m1$;*zqDb3F>*rMRq*oTPIM7_L_LCIab8jcc_lDPfBvllF)J}JnaB2(*3CV-u1XKTMDJWCeZGL7+C&d5^O$RN|k=< zK;8Ukbls7N2TT*lx_MQcbhbT)HXEaMq!6xnuZ9bio{`OaL})-z58EGa0lB^DTu?_d zQBGY({~k1DzdjDbvuq%;EsT~kM*D;XK6qx`4w8??@H<=;a<9vpt@H>4zW54naDE9l zMNtd$Zj?iVC>ekUVWH3g?&8?P!!@te?Z)lHo9Gzjztmh&4?|u}fkSVOl3!uh>B;S5U}K~KT&%A~iAP?bE|~`H zvl8&3>{}Y~@(A7aw-78+XTkfagQR5G57+z!Fx?o2g66dl;G+%mf@Z+4_n!3NU?faq ze7U`+Qt{h|Mzgu|Q{e0&dEok1QrF^{P~)%%!lxNR!$<+^?tCsP?ir8XI&JO_r`5Sa_e*2qx(Ht7mO-)IRVXtP1!7W9z?DkCet?t(w%CP zz`~FD14r3jTGS3ia(>hF4~uB+4n;ISsR;T1rs6k+)#P$+4rp6tqiGAvsa6%j?FDP_ z-J8X9-TFop%2Vs~2#lil9~t9~Wl6C1l0AQUT{xZd`Yw@wxe{^%ZSbhzTsZx#94j=l zxVAsZBs%dZohT{;TYm}RhyPaNQKew2ZS$4{JRXC(THeeXo5{`X&H#-`_T09o;&AhQ z5)6h{!x)nc;B0rWUBqd!QS}))@b40@HvS`L9MXjG?&`SyL=nvLlfWxoZ)oi`0p9e& z1ken6M^&#zkyj}SI6biewGF!Hie=ki$A||cc-6H#OO^B8{iVo1GepKRFX%jw>G$8qY@Fm@{AumUjl93(a0an@7#_)@KPX{#Ef}F zgRV2@Bg+8A?}~wGLP2zNM-%V0>Jm}cSc!56%^;1_!!B1}QeAS3Opd6fap5bW$Tl36 z9-XDTiWcFHq$r4R(8H>i-$_oY0{;4x%Z(lNph`-GaPxHwiw91>)8f8O%2)$>+1V^6}lmWar@`=yQ!hm*r}ZwDBIxjhH~K$#ar5HKOy_ z{mp#q1q&E@>JA%4>*2cWKeDKK7fi^vgp_O6xCtfj(VuiSvwKMfK2(8oq#KY!3mIFo zjCmGJ8EajiWL}#K{UQBkwmEg^{ChQb?Ab2jGhsD3QKLl#ESF-2US!+&a*hS%JeDGT^uW8@X*-h=&>b*7SZN zy;f_BZ!PQbYIY-4_hTN9i9+~$nhHL$O~J+Y@-R8d3U#LV;u3{LSh{&33^xC!LG1tT zl%6Asy)TDf)l-Sz?PA8Wh{mgb+)(SfIG%dd2nCOaIyE&;)0@F)me%rzth`(dx?bKm zR9lSs|1Og$x6^nd@40+h(+N%|&KPgsX3XGi-gx}z8g4;DCW`J{OpYp;Akj#~Z6Ce( z(V+%hJv|Uc*Y=T%elt-(;xS+NDvI$>YXE}h!Yn}zXgAaW_bruh<){Me5(#Hn^M3B6 zS}{DRNkfUQY^*#3cqQyG*}X3pcb|A=>M;8tb*K}E_jamiAN-T@75ZfO8*`7IW4Wz? zUb5ld4))!Wj1gRtnZPe6NN?K+CC9~Jb?7Jhe0>|$kE)~Xtx4RXbu}Oq5(l5=2-0i% zhTN_AL@+V7BLW%Tbkm6yFrl&vJ^$_GhW>u0HY<$q#=~jQBBKd^mCNv>_83%oa*~^U zIRi|7PN&zr)KDklEXmK9kHNa{NM)osCbupk;wMXKxXUa+$pSRfn*u|%2~aN=3*GB= zpvy-9`#hi0wybixOMV=Zt)pblKp!;~OTxi3C75jC1R94nQ=KOP&^4}%M(=*k--!~U zA}b0=WAj4P2!2Kl7$5D5?bfgk!su9#ES8a9KUq);$I5TQNxLj zupRZW&Gw+O>pwEK_%(gGd@F8x^?>y46GP8MnS4-*IZD1M!eGf|G~e7CbQ&1r@y{qP z^56_hMex2; z9`E$&V)Q{NF8-wn%sjx(wxhFg@$5jfcZ-JBpcu&S{*RiRTMms{*${b)WwAGflj@VL zT=XhsUWD~-x~_&nbax6Dyt;vx+@b(|hQ3rI-xOXf8jAy_rC_1!%Eh|t;pgSTXkT6d zuiY9kySkkdxDx|0EPvIR|AW?^)KU9JgzmnegKFvUWsL=Fy2e<$nv=<>*KW8Z><#*?i+f{F z9VAYah7+T+K)EFz^qY6nt`h~kWBO(yo38`mm)2pj$pX;&Fdmk7moXNl0Y+MP6GwGf zSU*q-S`BMaa=RUKZ_G7|zN$<26ldX;ql~{?6H6Le^YE=!ApG8t4y)z@THFcYB=1he zK*Ks5l-@-5dPQS9H=QiCwgz(vc?e$ik=Id)f|2fE(sMiwTue4$uv82e@J1QBPBA7; z5A*Zf(SxvGvRGa9leC|G60{oD@BKpriapwo zMKQPe*y)(PD49!M-bXxb^?C885YU(V$LV=SV3wOL3b+|?GwT9jPN^_Bo1USge--J8 zclpr1&7Uka&!p8`4pa6$Pl7eQ;Hhvje3aP*$?kUO?iPhAd!xBQvr-}@Tnid%Q$bvB z0bKI_McTfz&r4b?-~G81L_&^{bjO7->#QA0UY?DC2_bkul|Acj_C)!c36$^4#J-hr z^y9L{pid*o=;2LRDAR!cdI?zV;Kn=?5Bd5$Nw_2vPpqmMY0q41Xuj$M(T+Zx=UXju zaWEb8oMz+io_%Efqa0djo`{k&){<;pOK|jG3xkc$ve)HFu_X!M^16@HhK+IPw6L}O|Gb77t8;*u$@+SUExOVuAo~& zZqudvonXN#b!=5$hx25kQDn3p>2_tX2*}~vpD0t=s}oQqTaSyq!2ZmImpi`vmqrW! zF{VyQ4beC(Nk>hdGk4z-6z`73k>X^kV;zHAZYF`n?NT$MQ369#g79AKIy8C!_%wSH zj1wN9(Q6k$SOnvS%bus{=4-%0?Lz0_r_z|F%<|A9%#riR9!JKgLi^)TD!*?#8TY22 zYNarj)0j;pIH;04*ES2+tWO0$8CCjPR2x2Yg);>HbmTH=lJ^WE<%G8O^NY z6ouwK{`gkN8U`y0K-jY$g{x{%Kop?&mJx2fG7l}%&B)Mkma+E=1QVV6Wc~$hjNTXt zwL(wn?=d^zrSBXF`H_fAf6ZqeQZcHrx||ApttTTz<4L_|EsNc1XuT6kXx zvgg-QPL(-;R!stZ3vXP>?jHJ;r+JmTl{h8H7<(BLq`GB4x3uaWS+lDV$7t1Jn^+mO zzo!n>lkA~O^SGJ5a3DNzxJt8^mD21l7dY{tLAt4YF(y{mU_4{I8}1TEwK*jy@+*fr z4OEf%^XcT+tQca^okE7Qd+ErAQnU^%2A@d@prXX_7M7E++WIo5GV=;Atz!!Bhsr?z zw=F2YTMqh~iZpnX@$w(!L7%D{F$rA)eZLD~u=F1vdf^Y1ergKZS4z+)G8&8P!pKFX zEhv!koF567q^JIif#@gkP%V|it4^$fe-3OvB38-n7|$tb*ot2cZHMp%J>vOWk<;s9 z%z959((WEbs*9GA>fyyi34B-H#aD?k4VEBk_03A*$+;1nZj`pt-;wkBB^{ zI!QJVF2MFiL4shqH3jvj_`%E9UT9#;q4@k~bjh!0bWYP8s<5yaMEk}Nt+Qfa{74rC zFIA%K!O0{@qYmuz(=mZaL&_Kd4A4!3#@+E$`u8Se4PIQBrVOjDt^^^2X((Ixi&oHL zs{L&XS2E`gFSz13*Kj5VJ}XCI%Z+sU{Dn6rkEvmt(_MVGy$Z@Nm&UhOX2RR&)3E+` z5k9mt$FD2{?Dbojh%GLqOZ)1u;Q4m8uPPwUm-C?cvksl$BL#bwGw+H*Bs>w0LB05i z^i+)rG#wO!tkB11x%1O`L%rpAd#(f~mPHe#&$BU#4fsniaG8N<7iseSF`46=5(pmMf$qGgM0og z1zN=maNocZ?pn41q*)rF`-)mTz0C%5+}=@@$_;SLu$=4nQ^cTFHg8B^eDf(a{A=Yv z*le2sXA7)|&ihrgRx}d+F+TeR-9iZ7!F+@VO{i--n;%)^k`<$4Aam9_T;!1oM~QR1v4w6NaF><0kj%Qup7o{~2V6~e)Ph)ZNcxkicPAdGR z9CPf~W!V6$Sj>K1$MPIbRGIB`UpnPeiNP0Cr*=9#JX!`|&Ut^t0^ zv%zD*D)MMsG(G?J164cM2zQL1kv&fj(6C7^*z-9RUG{6h{K6&(pY4UBjpii5WHty1 zEx@4c>G&(x9ha?&#z!N~{7?C9#CCij%Jj!W-645A|Db}7-VF!2;kj_7-T)Vsg;CMc zO8j-D9<@sop+mPErpsEv(+*2+uKr5Y|9F9B?O#BT@tbktloSwHT1aa@jl*9>MX+Ou zHS2dfp-NmXMjx%wksQ-c@#pP^DNkGWPtAzCS&TyMIc+)gtK)w!^V4tm~zP$*N>S`{LABTf6_eg zcxMe}S|{n0G0AXkwh|N+Btj))5pBw}#i94?UATEQ#>SMvgDWx^(klg!_=QHh2cgKA z1V~ylk2LR{Np>}uqGsz4Dl&t0a_q}MQFbrhi=W0a?}hj%I+o_$i~<|O6O=4lLvuD4 z5=rxuTvW{?dftb5ki91{=KXH=y{3UGe}!-gAuuw*2s;n9@sb&ySl4lbm`Nq_gKL>f zD?*#Z755Mi&0g|0Di+hO}72^g2t9TFfiR5tyE=*e)bxSllF$^SB+ua zHF?~@cJlXz>me+l1lF%Kf$@FfFyG$9(Fg&sz+)ZK=UY_b$-R+%%YH?MuZwI!H0!NzDd&%@X=$ z(7bad=#ANi2a+biJCh8wjkv%IO$#`-_d`JUEX+*-Ju@;!cdWVC8zF@r29(6+^U~0QKC~s&atL4Un%~=O-iEcQqt*Igd zS^D66K^YWUtKh~`Ys_l51o6&E7;jwz7rnKR*OWty)NqD*>4caV=QN!Rhefq!2zJO(tx`~42OVX2Dk1c7*?4Gy;bW?v* z7xPTB`d(+u_nd+b*-BI_nDs2JL#g@UN?5_%G`~Z4!uQ-r^nU4t*{gC;Y`B)JvGBme z>#oSEwzy@-bZ|cKnLc}Wfzy2Zj=+OV_@+^e;WuYMzWh;ora1!Up&#oLh~a62WOVRw zavd}4qv;i$8J&qjOo}$T8@n_zxq-E@ z^f9}y&A#v->A2g^M<1|;H*;(;_|#jnFC-N{FRtScPCaL~gfS=fFXUj#U?yg0D$z;% zrgth{YsAjG`|0iTrtqVE47YHknAbP1#jzqFW)7@lm1hse+%7zn7vHFKuIEA9o+(iw{n8}nhw>IhJ_%z>GM z@$lfh9lX)pgGbk~dFvYvgYIjv+3XJzSSSePPg$<-R~-N1$#YWrN*0Bx#b6_i#hl}< z#A4(e#Ze^V^)*N-j2uVb(5DRNVfC z?l!d{p{9v+Oyfr8?F@rY;W1cnT?0LKrjnfPqPi4V+M#HOoR#Bn4g`KfUSB-@a?QHYF}Op|Fz2F-U*E7 zJ~oIJ?%0cyA56g+BUW(X{$5Zm6-C>h6x8_nmcgEzlS&Q*j--*&?mZke&d*1<6RkNi_RzZ>?h>DU- zsE7i;!s*oq1QY}j6cr<2#Do|?ej|beMRE|y83`s-R8FrxC@5wzpom#9C(Ibox4r00 z%|CVDRNbmKb>GZA)IPm4z1Lp5_c|+lpYL$8->`u=Z%GAh*F*t-ARVhNmXq$i=d;NI z=7xc2HI7r5BE$S!vZ8>1_U$65vQ>VOy4N95oz0Y^`>cR!@^Tglz*$f}Q%4DsO9 zP8ik#7(IS0ZZMC=L7p;Tk~WdJB@9LVf}4_#(_PTXC=kxKnxoWwGiZ|hMeT6=|H@TT?JGKg(LgUaStx{sV$pMPgqww?RC}@7fSzSQ_eDN^D z&=OgI3t!k(2Q!jY=m_89GhltgTFhL#mps~kOj0A%5Ny6Ia0!_7Cx^GZmrOn74p-); z!T^CARy4{EcI>lZElu{gC8!q+=>3X(Q0$8(6~p1&(my5HOZBl$u6|a*%f99e) zp8<9Af`Q77#f@)uAT{O&3r<`PVUspt%FH98lUHTIc5P<}a8JPK!LDHH6D4qBM&P_p z{ouQ71XMqqj=}E*Zi69N;Cn9vK5d=}8m9fp6CR0)!tc3)?Ix)7YAIaQbH_4^@nBX(1`rvG{Rg9$Xq7NtPvd zL`M@xa6LE!u9-!Pc6oMVTQ*L|OYaNe;dXzh>3&FLQXq>q)(OzNQ49X~p@6r|t4YzP z*Cew^3F1~MI)an5AHUoz4ay1LH7tpf#Y2pWNRgQwu)T|$n~b9b!J^~X5R94I!N z0agv6c>dfJbc_gwEy-cH>UJLV$SonG0$oVyup*Mu`)MvZHA;;BZwZHrmDs z@`i`u@s(GYW$}5|Q^gsx)3QN!(+x>t>^A7HnaT!!C=t2M*g-B97GkN|5GWil8|E5C zLvrInTz6v-C|>S`t>ISa_)G%=zr7$%y|ZBTI~(xom=D%XPLi5E>2P}LR+gwE)U`ag zPwGy^LCw`v_VSEBb9pWc&s)Dsrj!WdX5BiU&+Q z;{l81hrn3_8Rlq~3pJm2z)JH}a8h(eXO9VF@pDgDplU}#@0&sRj}b7+xyjlnDgrL{ zScLY6Uy;$-&QRgGoCRmi$GNE;*qi1;veB$R;Gz~8^4FP|`9fI_Zk~KmO-I;<-u(Mv1sju&ZdvC_!W3ep`=0kCU>~IqK zK90-|73vPH%%F{?f`0Q^*66ntj=b*;;euZ?a^Z4(CR@a^g1SOSi!Ku7Q910=Lg9D5 z#~fUqu@kD}i(vIvW0AeZR`O-L5dYn$${u%&V=t|0h?nXP)Ld8&wxiFGQTqA#vAUVW z9~Er6v_vu>$WPSsofp(yFoI5d)?mv`D;WF1nN7I4o%Fx3j@_L!3(YV9%K8t0kON29 z4(Bi!H9Z?s&NY!AntO?sk2{;YDw^1<2)P=EW?}2sUSMI<4{hsIu>XZH9C6$dV{f5pwL7dLED* z^Sfa^I6nfjro_Os=t_~9e=-K8=D|C!=^(kj0nN_t!ofF3!d9UcVvmhAo*f5Je7=U< z_g{&w=`x^?-LSh+2XapuY?Y`b)GbTzlV>@pXkxSz{N8OsqZ`rqW#Jy{W&ZW#O8F{i zIfrb@j7-t9KRn>!rc$Q4F$FIQHtJr90o-!U6!C` zs26}j*G>2$R<){{SU_9xF{W_OfxXCGhMuvvMTcrWGK;`_l1aLH_+v~*64THZTw4X( zMereyOBx36LWkjcWJOT+V^>G?S3czq&{9h?oftQL@0<+n(u{C7mE9s!Hf92w3DhbZ`;r?GM2>tTiaOblAKg*o)PY<*yX4IJ#e z2(IpNWKkhe=+r|8Ykf@E+#Q7y>faeBpUK76AAE2ox>G!j8cKq%8aiyPCWf^%VA#LocVJmPQbZsUW!3 zd=Y4z$RoX?E|TN@_Ce~&$q z{7kIYs;e`yxS`HJT#q1 zCpe(L?{?N>Q8#Sb*#j<|4TIsI8`zO$Nuv7lc#J4l77h9%489-F$H|XWAaEANYhSiO z7x8pVRNIaLmG_8gOAIQRhJmU}1ygWUV=9Zsz`3{$Ed9ISm%Nybsu^QMJ9llxIUmoG z21o6xX*v$9sZ^I_rws?wPI;uM?K}&y%E3{w3*m|5Mhry_T;d!J9aW=%z3hb^0@usO zQ(KsqySeDy#c!nVd_xqyDS_cGCQMCp6Rf={hgnym;j`LyqR}xJ9t(Jy{zEije)(p2 zeutBT=O?k8#zrQysf>B=?@wALr;=m~MXb|~1J^Yj1TJ!ZRV`(gDZGX|bp~(Rfw32S-L0LdD^Hj9({UydH~(OS-D;%-dvmw;%&`Ci+P% z8w^nO`4)V9b}8&Szesp*X_E=heHpu%4ZYj~;lS`jh&GPFWpjezpm-q(n!Sq^R~q8S z+;C{Bu)y!n`$DHGFPJ_}QxsR+6_U%B;5>y<@X$MmlwI)^<)x{k?p&d+Co%?4^Tn7~ zw*ZyB_0Vs0KCV1F3e=nQaEYo89Q5+XmTBr}|9A<`Hxb5v_2cZIa%Xa=U=~{0mJr|4 z80aXzLRyB#67Tpz(U1UH(cFW^q=4oSON|(~wOby38Yn``4Kt(LP8fuPhv*zHPwv_}m2awzgHbio%g(Z7xg3aMX z2v=MU^0E=4{ILsJNavAo#d;O4EtG|gOQKL3BKZ6l+2Iz;M3nJ4G%_Q+jI{LKf~G1< ziH?Q_M824gGbai8f#Mhe^UsMjl-y!RQ&V6{*dlz^?-*OQbUHrKR|MNFu_Nl03h`NZ z0(6=mNBH9u{LyVNB*vRUz|m{0+-)bx6pDF^Yloo|+JW-AtL)&$Fo|M}5p;hV25xiT zkWL?M1^f*WVfTRGW($pt4SyZ%i%(9-Js)aoX#3aXFVh4mgP!x^b^paa3FqM6a(dpISZK@hS!RN zAbS2q(rdq%oS(0bt=Sfm*WOjE=vgD{(mjQw&q>93A4lUTZDZ8SiWTs1E#Ym66%fx3 z%vZqYY}x0-_N-6FyN|8dZqsOdpf4{v{zQaOEAV5heiNDM7r|nY77iV8fL$MSP9*P| zO03l?C6x^VFYm2%R8rUiz5%{yUojYH&2%UeWfL=|L{2_GFIq0XP70&-;EOtECj{T& z#!yuhzuR!cq-;4e{Jszd+{y*AN=xv0je}=bMzT^*eaZgR9bmY#k_27Y3TkaZxYNxU zZKn*vALk>;1=*GGI%5NFYl}m#cW>Evxfq<9cAXsZc19PKQ&op9z7**Tn3?46OwyXR z7#hoT@X5DXl6}V8Ft=tshBxh&s4uA(wGeBRl=~9v?%q&3A`UBcb6uXo}A@Tkc z`240n+~2tYcJ|m#zAhR>0&DDX!tjxh>l+Hrg9EX7z&Ld5`++jAr(dJ=zoO##s)|fqF4s5FG z3X9)v1>?MG)+f;&GiZ8M@W_df+M_KBADT ztE_{~JK;Dp(%9=@r>x7fng6;UYe?Fx8kAw8O6x^R| zhVoqvaK&s}?EPS~MA26jo6I9X{f-Jmj21Yl4M(%Ck3!M%=6YN@@>RkKfxwPAv&gKST}m4Mq!jOM@A86`|Ex7kn@}7Z1B-;{Ka`s-9O{LSxA> zR$9Cr?+SPYhV@d3#DbvZ=s~Qv$yb)$zeRG(=}%1S>x~&MHmJ5j26MQ!WdFKM96wv& zku(-K-82S((!lSm+khm{yc3H0Uk5V1oSA5rw-8RN3pf?&17YCdATr);n?#GxVcy2g zY~7T2^1e)fN1PFi$DIW1fjc=Y&NmVU@ADV(duzy~vW24A=ZYcAaX7|SZG!$oJL66+ zA(u@jV)^21ra3hMKG-Ic8P%H1KzS#`YnlVQq5)@)yHy!XG<9Wv$doCYbKLcOlmFip*rDa)q*>-1uW78kz2JTS))1#F0JbY)Dz#OkI9yxA=i zZT1DT=KR~tU#9>X9VZDK%d)5?wE;I}52h8snWxuE<}W{pX$$qIYI@30{XMNJqxLD$ z(m6>Y%i>^%fUEoBrBH|3O&?l2xWi<3OROGd#?0P3Lvw8|a|=wDEHPI{&)WjNy3Y<= zGerY?=?d{B`*&o&-8AeRvk6u^FGgax0h({NGUnd}A{)J6y>mazS$tnIdhTOpKS{u_ z86)tm#x94O22a@#t8BqO*#xQQV_A$4|7r5wj*HBmv0y_BHulI6xH=b^#n5=tRGx>k zAI-+v5#hu;g%Xbo@i6vy3i>;ziIfcr;BMMH)C$N4nPXJ6%_S0hKk5mM5XKs}Oor>i zZwV%FXC-KDf_|w5tUh5O1l{dIP8!LvX7}?XdUUFg-{XdnHOfS0OHcSQS zju=@m0S3&RguS=N;bfU~h^w!Z+`FTPZVxv}4tT|3eFqhk=~`;#QGAJ{-RXh@e8pgB z91SzpSirVNHmDR50gkI*kXcjHptvF%SG}}`7`?%;Q{Xz0IgmY4=E)1|U{9~AM!Htu z5{w|dhZf?1dHN(Z#fMm*HUbaj?WB79R;sof9{ z)t1^&(MqfYE4VP~2iFm>2*Xjwj=cuz`5@`Fl3`ak23GV<#wAN23f+MALm1 zILA;OV+G6)6V)`ZRyxGEY!Du3Tmo@dw3)r16D%4l2fo@=h$(5Z>OU>u?%-5OV?Z5i zHhI8y{uxUY3H6c_fIhM?ZKu+FGl|{tJ#Wr6MPc=j>tTU5b4+E z!QhUM+1=`AjEpZPt}n77xMrT{jhBG=nR`eyVQLZtM}4iTSzUxTKiwf_Wh=qAZxQBr z1&cJ^SBtLNa;EV35*v~*1I>2Wu(@`LIAgdAe7U_2{Vyw%GXb5jF```XWp^g}NejR+ zk`r%_S)%!cQ*qSdVC<{E0E0p=6OAJ^60;4S7_{&Ycq+dQ*I9*u%DV`B-hU8!%e9d~ zyTY;GwHVmdJrpZadPAI91c|JgNha*q!HNXVEWHvjWTY0TPEA5HgWJq$Sr6=(KA8md zk|he(X|Q7WCOmvuiJdqngDz(ra6_~VPIMh_FDoM_(^01VbJ+0L%-?A=ey!JdrSNz5 z_}{r&Rz^`q_UEPl?dxaL{cnPhm2F=!_m^0HxAMaFpIbEb`^dCQQeQ@=qm0hRU;8Nv zcjV`GIXSt%ouK2d^U2HVzi!_@uKmQn_Lq@~{I|J(hM8M^j)7=7CkYm-MdPNIlSAsK zpz=sAQ&A0K>4##xH8=ryFj=REa}&B^{H#12F!wVXa^W*h9iIo1hEjMOdzgt;&EehQK)C&C4I!gGkY4c* zVDLv%_iDeE!2q68G@<%{;)96*b?3M9xs5tbGwLAEp;3pa$3P#GhX6}0K6!nA9p zpm#FuPjX{RyEe7HZErm$I5_;&-XDMY{MIS6kL~;Y9xr~c|5y9JLjsNtwr)SK)brQn z{(c{Hf7h-Tzoii9vts4X`QL+-M_4$~5(?B}y|-cKRu3ij8}XZ`2YF6;I;*KfIZ z5Y|Wj{1QI$!t|f*xB-9LCfja?$;|!Rl8lVI8k39sYNH{x zIR{bGb?S6=r?WIE^Z?m+=Lz+`J)QRxknx{x(UP`$%1AeUYUb~qKJrW@196$ykFMG9 zNEEF#g!Y;^7rtdGiz7SLQ?2ZqxIOEez?-ftEqksiu6+NQYmN=0KIP*ed4Ds1a^;Z3 zg~&@i@5zd-BA)VzFT2twUmEG>D_zA;_&(BYc{v8yjpGsJm3-RyL)Db<#KV& zL_MN{CyyJ%p6=5UcimdcJzvVvYY)aipUtgY-FGzT@y*mCTSjVbU?Of2DM_b=n2O&f z`GRzyoz&%)j<_t{gQs>fp$FBoppxeC;D!P8h?NN>mQ_Pu$Q{~uT`Mn`p3Wy8QWnot zPTj|BfXiI$|o~C7A zrkkjdcxXR;I!^8~)zJIE<$XQ560f3*n)-{)%_j3R^H%WkM*^2l{tw=NYbWXSgXd}3 zaAm4pqQ~tz=h0RncJ<)hYPxLGZ928~F;&?Z&GkH%&`gCQdNae5+rLQUD$i2+o`nYR zF>5#6-0>%!vZw=nyTbrVf)c5}tgdu$QYh8%JBXR-g;0K}lqxAW(Akye_{%kS>5zQ~ zc*q3K3-qPbe)K>bby``xJoOlVEayN2MK#>s>j#tt-sK9>#yEDSm?ky+pz@zig3Q!< zIN56;9oevh`!9{AEs9NixIq?&8Ls)%5HnWXqEXXRpkqmCG!-XM!)Cwe=)zx;jw0 z(kGIhQQyb+C*I{o&f#pzNPV%q@?k3K`4KDk2GV6`HlXc`Zqgqvj=X8#4;V1F7!{vo z!K_c=T>j29_FmhJ^WM*>+rG;*4U}hs@23colWt2kMmq5jL>0@t+@FB zP+dh`>5txCM03SSdQxDWP3UX$KOpK?N^0Krn%$qXJB>q-c zmKv{=6RR9Kzz4i>=cjfniyam{<<>sYe8S;7;J31XcQ~<USYzYEY0U4MP=rBPf^^ZVGnpU^^o4s-N?hsrm{8N4X|y4 zHE+le!4r#0-r=+y?;i1;^NR1?v7T=TJw?An zRC2GWI@C*I$Lrspq#IqF=&VG}n`eHd5qG*u11)rUhW!U#yuG9Nee-7SRXqq&x+qG6 z1$vUv_FM4O{0&pDV=k`tsd;<&--9Vu~(TZP-ccy9}#Z-DLnDb$B^fONyuG zhpKbq?+Ri|?8(RZou#ik-lWWarRdh)F47&LJ;ZhEzwqy`H&Um;Rs4xo29KNEhpgs< zrMDc2xGmdQeD(YedcRObI__gW--2@DZ(2IM!_HD3bZ;`h>#j?0e40uZXileQv=md`!cXt{Yv=Pt1~$UYHg@kN77+K>lk=*bpuk zlT0sndO_{$hf6=M@}*-RYD?!%ZsxTmKWLiaH=&^S8SOlhaee(_9+s^vjSmR7p7p1` zcu}`ds!O`yW(Otd-Fr!V>cKd^qN}d>zI*{6ar_A#wMSRlIy(fuFSZY2BHGLy z508X%v$~7N?J@6iI*mdn|vgE ze2Ka=xAqWCeW)p3v$>3ixO-5?L)*CaFyv~gg}l*2hFU@~f4b`hExNcz;8D%tvhlb1 z=D42X1-05z6Q(aNwXI;OLSA&klv;Y!Se@5459iue!L-BvQ+(qV4eDU0DK516z%xSz zaqIm*_~V33KKsygI!5w|4XeIS7vFix13o>WA06*-uOFe*&-*)EG}uCA#*eX6#G97 zrpLReLiZEK;N)B$5$$g zdwemcw>qcsS0m2S$nOoHv*b8!3)se=PfLNj)QO7IZ*%+U6S$gUXWp9~qH50!rO}!< zc!Qr%`*q_6(~NF~>$~>z;cMHdaq%&_>0&UQKc_p7Oi^U_r#I3Ir;*3LZNUygq~^|Q z5Z}3w!6nwAboZ$Q^vgfZ4VpgEaVvtMQ=7zlV>~;w^w9VmZLlyrS*|c+T=ht^ivm?dmf+-C34cbcYo5;tBd%Qv|`Y@(v`jm ze@t^`+wl<{6r{ZzvS^WUD)a2VhfeR&fzL6_hex_d_srM~ZD0T3@s8?Jn-|`^r_@`h z@9rXP4jzINa+cGl*_-&uiEYf!Sx>4o=mv=281t)MjZ9(rQz|=9!j~wN)4g@seCxIb zzB^+YKin~cS1Y^FCtU|}b6Z7B&ds2Hy_ETT^Fvgho?+Q49i{3geW@dRL;Krwkq%V7 zNiW$Ha+|Yuu;{B9@9h;%wKFRCwJKStyHSDx8;qz#;V7O+2;?IgqG-8b&u9+5&Alai z_>;a_yv!+(kE_2%UA=m8<&sgF7F?_BE6Bi#kkVZC*o*` zcr~v|mcYk`G(M*|1}+HqXNef7XzV>2{b(!B_vD z`Yw9u72@Ob-rUFLH6{*jAO>8K{k7f3{W-#0aB!i_ePpxYlE z$Ywrc%v(4-Ta&w-2&Xp6m#KH0Iq&1tM|`-U9tTd`!ZVdaah;)&^mJM(yeNy}o|o0d z8znEe&-J4MAfT#rS!j2zXY!S=9TUp^WCn^qtzE_Ik8I=awrjb@nPz&z%~)I%XUSdE zJBe>yOM)G1g84(W>v%J82o&{+q510@shU+I-}dMlC5ytaHmOLYx91*L$xVg0Jsre_ zo+UzU(S5o?uz?C=W)VX-{pt^%jKt_k=dN2z+$Q$FoX0{=E#xUWqhU0>Tv zny7BfM-Hi>pGzX?{T^TG_gktox6^tkDdu46ETPx6O8I4e6gKFGa;xS{%oSaxaq~39 zS%(y)u`ces%Qq^$vQbCe@Jd#?cI6LndiIGcoaiXNdMl0IUT_D8Xa-~U<%hi7+)A*~ z^~4J2jHRT+l5Y;b#UDB&3|=sp&ogHH(4#|0&rhPOvrXt#pKthGIKF$d0m-|sBF*eM z7iQ3>nD;q`d(Jl$Kkgkz%A5UR*yS7^5qn&~ZDo9qlc~6q*)jaC?Z@ACJjzd5G0Lrc zagE15>Nc?-JsPVf^{eRmcwYJK4QbMp48>>Kxw$e3Hn9lHaE~U;`I|p@!?A=dDK15_r|!03;p7$ zep+wwrX_FqchL^kloZGpw7T#R`)PdQ%z1PnpNA{cjm0;}cL=mI$F+%L_=)jZxON<) z*=Absr1U(OE-j)HhW+4QdmiA8)gS3}^(0!iLRKp7F^(SGd73uXo#Gj~iG0eFD?eSaU)gtV zIC&)34XQ)^`!9I-h39m@6D=O$KZT3dc9-@XIf3?idl-9sJHtmk*XFI|d)UC(D|Frb zu{5pDNZRYuCVs9kl}F`t6l<|<_~?_q_<^^Y)M)xPYNnS;+w`~7BdRKR(L9qo-5!S* zoML!N+cR2LR6!5C=_1{IGXwQJyy>~#=O9MyB!55W3*5iL@$GkSh*2L#6^31h6;-z4 z4rzm=H*2Qxlc)XgzLqgv372VOA7$}rc9=VT8V%tsy~MR$r=h}uA=1tYnY`1RCjR*K z3^<>%k0sxIi{WkOA*1hi5dM!0XK==$rZnecNWvH5Z2R3$`k#I>nb>knb%0?7fbL z90|4lYy7V9mp}CHxe0#zJ?lHQ`$7NSe*fFn|7X8XyJzrs{O-5E=Xd*$`+4pvw@bd= zuk`P7j{Nu8e}cK{oi*(405#0tE97&h8=%KnHMk+AT2GnVu_uJkjm^PlaD_BY+{`y?+!sD93C2&>z-*a%B9LNx2| zz$q}!vD|1Q7Of1mv)oKwDLMBJQZ<+S9re)Y~kCe(Lql8vzRb5a$i-=E;WJ%mf= zt@4@cv&zSG(aL3he?8PnOSQY5VEg}^RDK^Pw865Ah3`4b{N^uQ@ShI!Su=imZ_N~= z0zra5r{B8!^Y~!dYr?6PE}J`ViRtQj3m5pVT50NQ>E^7c^mD7c@K+(UCHg;Q|9=1q CJ7h!v literal 0 HcmV?d00001 diff --git a/labworks/LW1/p2.png b/labworks/LW1/p2.png new file mode 100644 index 0000000000000000000000000000000000000000..dba486c81a53acc84c4a65c085939b19ede50122 GIT binary patch literal 7287 zcmc&(2{hDe|9{Zs-fTru2yc;4mL_BwBW>h{LaHHkWhoiUknCE$_L7J&DoeJJtufXc zp|Xr@V_#!144Gjvw*NET|LuJ{?|bj*z3=~=|L@Ek=lss&`8~hq`F=m!gqRv1=iex{ z5dgq%XmI2-030dsoAe_$ykp*)p#cAAc^p0KVdi4*;dRN~4xGH?;d;%*bgR8t%D zGHm<)z?>(cS`RUMyTc=g3-)?oZW-)Ud8hxZHg@9tk9#H?i=J8++qFE~+lLO_att+y z`s_n_#F^Ys;m^E~9QE-bBN;ouEMIbUw@LI>#<3Ey#sKiW!N^a5a&5*aBFu|s;Y)Cspgt^XrlWe(<~z5%%sjO_0l$7Kk zVPkEbt0%o_haZ;!P!bp)yp^4mb^4%0B)kNuu>f#M53dXEk&`=q_#WRWOH0efMLb^V zhug0ak<8`Q`Q_CR3>Q#&E4w1#_<3$PLESmws*}_6UKWdGjz(vto zLq!yeT!;1jN5uzQ7?W)a(}kq0jEv)`&#wie-L!z-#uFz%zbDz6^?5XE;f=7#i^4)P zo8=yIk#p}WMCD@uN^UGAVw+1tNMT2IZrs4x=?s99=|PDzXU=q z|IMNQU*3WR6x9AGK7NuoK0_E>v_g1JnUmB$vB*_xV?_I!d;G~xojK=5iQ_F#4<|eM z`1&Hrfa|XIzgFV+Ey}N1)1m(j<>=1MKX7tT)#qeCQYgOoC1%xn(j8+Zfs-dsCOct> zW3eU83%K5ghJl%0X>${4e%%?=0$q?vEEnCZ3${l?VX+J zPcWs1{r&x`lD`-GXkCPnhY<)mv}c&Z{M@7qet(qEfT6G-#*yoGxo@m zg{;iVIx*~ePzzo{{X*d4rV}gz*Rd$c-0Zx{^ZWMgTc!Qh1@FFefz0YU#}1^Ad2Vj* zdlJcHF%tlJnPCn_%VELH%E}8;0iU0)tud>pk=nGD`+qy^!R+^vW0`}XEwOWip~cz3 zyt3I!bg-aQ=VMh{kI@K?to-~_wsql#4E99fwFWmyA(Y&a?FjoD_;aNmnUn;$iXQCA za^5sre;FBj5-y*T5QSRn!t$Ty346c^xMjb^x$mnkc+du$g?IlvXGLFIo~`%9Z{Bt6 z2Hu;ROVAA-&$y4{yQls3;je#5)f02Nb}c*`^Q8j= z<{#p2;N_K-nO0_IW}`&z+rnPowc2l|{qmYGx5)<~4ydV}BLszkue02tfS!EYU`*MJ zy2zF-Zz=RE^zkOu#aud5UI)6;^2(~llKTBTu|C%YYR9k9>R zdtIumqZuP%%8&v~o@lsq-ui)8DF+SodJHBU^qifYr>3XFm(gmbK%3gJJoFJtC z6F2B{v9UJ#cVbX3oej&%&KCJ`!!z5y61R|RKLHhk_&{F#Kbj#2%?bE|?r@u`Y>Scc z^z^K~Haj&HN?YDpHJF!^lk=DZ7zF;rpHf|||HJJ=9i5%W2oS4g`iN#}X=x!kB0##< zdu?mqhv&yTT3dzu`(Te&_%ao=wb7&XQRMlthJ{81X(B5dfBMp;r;>pyZg4jpX??_y zX>o9WM2DvZ*1IRYN#nRw-r0QpXf~~Mw6{+@I4*h0#3X8~@`apT$0H{ombAZe?)7*l z8z+Nz0($T1nv_IOVVr2lku5)NfE=!L6=B~9s~j>BEVp8(I7)))o{vOs_3Gg{O%z#U zeX9f*8aeX)W&LfT3@?#Y;XXV+79n<@-seq8N_I*PT=OQWN%_s)q=?B#eXX1Sw0&Up zwYEY88Oiz$kiVdC6WmTDx#-m^AN=Ixc9#ZFNhy{zL`+ zDLT{|sHWT#SO|Ex?|ji)Y*Ws;LLIU}Yq>XlB+E!c7e~UL)Zxvkqcb7xQ~#^Z`ur`& zTbb|QKeFs)aO%_pNWxd!YW+f9zQtKtSFyT8Rkw~|W z;Ud?AuncnwX%vCqwcnhCp7!OMbe}1Ld0b>lMraMI1>KG2R&e@I?Rz zxKfP;3k=4Kl9IF8mU+5VRqS}>P3-tYt*DK;vvY31 zQiDwvWCl2!7E}yX^-y3bZu;>^J=B=L@y-0o*1n~^XJ1OQ=uie)n46~>KHQy&#~T;g zH))N2&dO5AJ)6IibxDqk_JW;*gCgug6XZh7I0=_`QRPKv=NaVu+g+ve z?-ecJ8MM@KfXpT=m>H-*YYh5f8J`?*gL|z?OrgFxWoGtpjgf(3( zpF*`oDl@rr3T88^gV6Et{8@*6a{txcFr{8w3AZ3dvzqOz!YmiG4P?pUmv7tKmdL!({-yYkuXuKwSw zuXo#(GFpw)0@qeb2J|^Vs)h-Nxs6Sp>7LZOx?>eEp8HZb0uUogsdT;M}{FUIO(hkx1+*bclNY{{0q#;DvhB+9{}= z+x8Lqb{d{9yPk`$SUj($u0Hi-aK(N^iwC3@@v`{#NC+537ZeuC8u~6ye|Yy$&f>xa zNu>S!$9H0=fO6;oS^km#1U_y&rZzUXSY;bL)R2zvW8|Y#o12aKrF5;HACHRERR7Hr zuIie2dKPou)bj`z*H9XO9#CF}1~%T+_nEC=GUgkUZA`f=EG#w#*L;AN+aVGUFyK$t z=yfkG_VDKs<`iqwmpt*s+O`^D+*WGCH~xx*wi1Aa|S&19#00uj_*Dr>n;|JSf{s?sb zO!{9`Jq`3u!}kLhP5+-P^Vennal;|7<3BI?RX)zY{4V;AI&^^k$(%1BT|PB6h=_>r zSzRD|&VMv)N=Bj~>#Np7Wn#c1C>b7Uk$pzC=nBxA5}z6yg6To64n8yU6b6Hb=k^@B z;EBZtyN)Yth+?^Df-(BlwNnt|w6wKl4WTvIbu8S}$tj!NTP}gi zy`|Fy4ejmisXS7CrgnCA(1)COF9l$jQ|?E5URX{dT%S2lNyN^~%;0l!8liH~t{R-h zm(QPI&eaIwnEt<#c!O)kXVLrN4vbdUFI`ynUzgf@`f+5{u^@hsp`AP|J3q*O?O}jIV^X)9t2_}OuU+c_${EMWq z?e8C>H1BO5Hu^ArlsG*FsrA0@w=ZuH56)Nk6yr-qHd?#ClU0zH|A4nH%R!5|n&>X2 z`svyd>K^*?7GA^wptUD`KmNs3@9n=|psI(G@d>8>CrY?%OoWDwc&uF9e&!!C5aVIZtE4 z^`f7fWFi(bTz!|e*z2M(S^xg&;ow9WOBfY zng0uh=xFxjNjl#9$9>pEQx_$L>m=8RQic)A6^v+iclQH!@3%mZob1ZC-8z%hk%A6q zgy}AQ6i(9eJmKx_t=dbUpJ%-0k=o{I_dGTAh?<&O>3D*Z$K22%16s7#(?jv zJOa^HiWG)vbaead!l&-au-ZgT>;abn9g(eDvxLr*yiy?hH8uKUpkPKJ>jQ-gGOBiCA!edHENMKAnkIEtv&*fFJ zvMv$wx&6U#pn{^}bCjrvNG4nx9ND6nSN@DGwqGLnxOunk{rj2@^klFmA;=m+tI`HN zFQ2wiB$RnjI?O)%EWxm9Ru>EtRgU~Ja*RS@hrCyvojagO<1TFq;Aatr*xPjZ?R`XL zZR-~Sm+w#1@x-PnETbO_H=O&WvYOAGs6 zUo?f5t_4=nFOeo>>hLvs3l9FIU?^rzu1OJ08LkO-f`Tb4H#Y(U_r(m_$`eLL{MvIZ_bAztut)>1@gPm<$XzAe0Xl{;E(~EcnXTx{Os&( zEDWG%Fc!Z)Ha4atCsz-DIn3SWZazI~oBn7U^z zH?TDRG%c+bxyoq6Flqhx+}tMi^G_xo`~W@rb}vaqSqIk@Z7{a7494*O^?v7^?|r|{_r6!}_jOToJ=b&1{oMES`~S8sS{^nQT`sj8 zK@d?>6C*1G;kyIB>B2&A#ilV^5&qG^?zhKU`+H(TjslwzRaL(~?oja$@>0DSWFG|IvMj*F0fQjo#}^c>;dmj?`6Kj|K#wADV z&fRrNUe@ti(M+@ICDu$N{jg=*l1&a|_hOG!!F|_PVl|6$?h843YSnLly{ys1JHxm*zWzf8sV#tflthDy__BG4TtDiI(WoZkj zL|>KG%^Di=Wosfxa!yW;>4`U225`J+uCU6MEw9Of$li_4gRIb({HL0-%*mfGY*0V` zO1QVLZ?K%x!L`Cg3<)7MpREjOt5@wUD4$AcedKU|l1*p7I3tj<^TdVaD^}pTUR^XA z5<}D^NK0;MppulfZ@)+x85|6{Yxy=YG0~+^bEBB9sfbWar9{u>jbd&SEIfl2U7x0X zzrEeDm&Gzp7M0v(G&3`ko0CIw=hoLB-oNSkEk48~GEn@Eg(1(z#l_`aUELK2!tL8R zeSLi^o~bG+S<9{bO>87uAX+JA#wFmvg9poFs~Q@bn@=)VA$Me7@i@_qO-&lue#_#b zqE|coy}gg9Nj!HCujo{*=#(9WqY!Y0hqxdvOT4|?E4Q$47x__HnG-zjyV}~zoDl?x zvH6v7?y)CTO4*^%sB`*_mO83+hdzga@$vVki${*deA}|{7WwFra*ivH+quw6#<80j zj7O>d6o<8I*RE&Wg7+9SlZL4$UsSzhv}ySg{#HK(QL)~$@u-iFPXU`cdR72&zAY?= zL@(nPM%>RL{Kzf2Xaw2%FE5$AZFp@rmTw`z{gRPN!3*G-w)vf`a(=^+e}1 zzW)K3?_lV!E{&=Ce%kdQGxIbtbao(HpB}Nm?c_L*S1j;on7CIr@*52I2>jd6`cFHG zz0RLJ5U15K=Da&(#F?g%pPx@ajgZ+YG>rrsC#R3uIxkk#|67OfPhY%vdY_JEzF5D* zjl#f~yUFaB?Od3r|NT=(_-H7RZ+3;(?=xh?5a@qWEpvm$x-4m(b?71o4e#9fS0W!1 z+hiWb&M%qw-)0w>vkY0O^m9!>i>=*u36ZT``Fx1!rl0B2S2t?kvsB3Z(p}A-=Z?}F z?i+_QpFMqQeceRf6G0N(7y=4fT6Vp?y}1t`z8|L<7QA_LfEmdh_CcZ8fn0!_Ape>E zxApZ`L(Gt9K7|oJ8)xT7qY*6K6azdNW@<9IVs8I73qmuyprWID>Q8*H8BGH0TD}|= zlh6+#jO_F|N+ zi%WjI;k^AQg-cwg;{5RLzSuzucjPjM2%EQO7@ppkaTp}u;wtc z%nm-gJP#2>Bwj_-YkM(Yt>3@tCqaHbwx-%!X2duZpQ{`2DVmkCFvl_^pthQ)^pLVt z#nl9NoUc0eAS-K%Oz^7wK|Ed`Gc;N1Ote(!A$hXu)0g#UdYwOio`5?2SmA{v(4+8Q z(Bof0`%eY~C* zVf&IZd_6#wa3~f8Mm8RJHH@eoF&&UGB`9AOu;)>8bF(WQBlLZW|Cf7sW!ozH>D?~e zpbbp}K>WpdwOFh^-9*oRO~1vT8z2arq7n2{wEPLb-n|xKkP$re;isn^+SxdE>vkn2 zv(3g=Z6YHn0O?f)k$~@)7^JwQ1oh^MWP6dfbv#?k_rsmI4O)Ze*So%_;JNBP%?fMR zt;@ZCzq>G15Rn(BY5lxr{rbGp($Z>Nz4jtS&c0TSygM__GD~m`8`$FE>FHB_Roe0S z=`X#w6^MycV7XB9hYt_?`aHj}Ki~+CB{wT8t2*VslfUR4xWm-S)6=u=Yh7JkKY1L` zynUsxk#TTvu$~h?B4XJWQkj^Pq_|Pc*x1_o1`cK^awQ#EE)v&;lC|4-c$^{Hg}n(aq%K^|Zw)(WZq|rt9DiPEJlX(BtCb zbWV@mX>4p%4<54DpLoA7Y%nKV-Mdk~x2LDS!C2N-VNK&%!4+L?T8R6#@r`@AoKbpu zNQWf898|-!F=30DjjJosSSHkHczD>65ST+y;|tXV3D}G~gBjDy)qC)#}%~mKlSHv%;cqk}05dNVL-GAI1DRmSHs_ zB6R;i+@LiR_&}dN9brJzfF}obuUsm7ny4Mvb&e%*W-Z!p4EwO#Jg+t+#N4C*Gwr6eV$@3j}jtfl# zKo`$SNk~{l)1c{%Utvj^F2bFa;!&FvN}TDxAFoH33;oabG|L-}>dYn^@&+sdM>4%O zXrU*Z$Ga}8!rscmieW{^r=D@F6g+n-l;}|GlgLU*c8hGohzf1}Q_X06MP4)+YO0pS zT}u;#3=7@hq2C-Tume^z5tLg;Y;4wiX8;R6u35WwVERjU!xI?TTAx+OwFte=bCw_& zU0q$5(cK*GS`i^GV+|rVv!zGM($+R{*REaapHa9m{J!FIdK1^9TZYDj(ME+M{z87odK9?Memo;=97#PScC>RYa?;N!Q zpHqh*@)hTnzTcJ+aj&)YD9qiKFgqmrmsjJ)0ojMsFKMTG`}#Il#w>+N&MGQW*Poy6 zb}Tw|{cPnOP_T)&o8wP`!BpI_;|i)9iLRt#km1e>w~&rduZc+(-9KrE!#!3;lxwV* zbffJ2*wS>pP%AiG@Ihf;Yqs@rxZQLO#QinN${nzPAtj&)FyjWpD9#9zfC?UN?sItnWp&&Oe zPoM6~B)4FwU9T^L`dIDXf1Z_+oe|lNp%Pun^yq2&;jQ4pzG+`**Trpm^oibZMO9Uf zbIh5G{}CD3dU<8DQi@UZFrp;bAs9kMMa8eq<1E94HVk#CY{Vy0R$g8$EFLGV+lrw+ zJaT_=@y;pW=`a7V`b%pB=3yYo34P??!AmeeMeddSEiEmteE}bLfmmF^hl|O5DX5}T z4VxA-MX@*X;uC9oG;H72%IaQuIL8N2qZ2;$X!-Kx%^e*wOwY-|mauWERd2 ze;)djGTTz%Gulx;+ox3_Sy9i2#I$?32teFP$b@Mzwes`JuP5l|&CSjAYk~)8fMsm0 zt(&^Tfp-;GU3?{i?ET8dAh?ha_T5;S#{80w+#Kudg9$0AsTvW}V=K^SsC9KV7z`$U z)cWYrti5t8rQ6!t@P5k>wcjSRqYoZDh@BogRz5qJm)x?~+dJpw=K!p_hK5Tk7Zfwr zfVXKd*EX*RMOPVaduj~X@}i2kP>c?y?+VDBBxYT6W8*z{wGZ9lGrY(d-aMs<4@{(9 zI-fSH$frfouan~9U%`786clv4m6oP$U3Ed!`kOSnxTIf|(a(MU{P{Fi1Tk4os9$`P zB9Gd2!wi!3_U+pn*g9wS?p-u5ax32pi0j?aK(#6;E1N^a4I8UmnwXqiEe&ERLE!J7 zVPz!CQ*ZCy<~h?xO)Un#HEk@2;-MCE=jCn2k0iv>v{{c*r|+4_ z-`gwa&J+?NQC#ij<_xV|85o*A0o7NZ&L(9Umd|~yC7>WM>eI*E8+z7>#U`etw6ntq zf=j=f*uOJD-?>x?$qrfe?QelqKPvQpRT_L}z5l;U=duw+C8Z|i62`roH`jQaJb9|} ztRT$G&`(^X9Z05`JE5h*^P=Nfs(J(3eNi0@1Wiwvv&RV6TrGedV zNZ?~HqwO3V2INVzv$Hbv5G=MdV9!Qrb93{)8*kjzB(BuTCNGz>php{&zyu7p7n_Ao z4K>`_c|wKkhei|Sb0`$o)msmhx`TiwcaDylZ2+~bvqrR86Q5$leYjJ@Ai!3K57%!& ziOJ|Gn7(`WZqPag%x%y1e;N@VG&)Hh>~-8mZ7Wex(e^@*%M{+QKf4`O&;rq~C~VS) zO3-&|%C@k03#F4p=5uGx5!H-wzmDf^+AId7S|+fPi=$%-SZFk;@W|&_SxOHp+6|7C zYFKhoO+w^NZ@d|Ah{IcOmsI=R#3IqPaKrz_F#Iq$cYfl33qh41krPvy9FKS*XzApX z3h5(yPiZp^ld-`)dn1#{)CnHCWo2d6Gd^>?6%wt7mscJXWWXQ?q}xx()F1o(M^bqF zQ<^n=0|clGA_F`H!SP_M{~|6?g6WRCc?7ny1? z0%8tak+{oXI734h-l{xVRxJ~L$RI=2^U&>GugUr6K0ft|2cFBeRFKc0WlQS@zj_o> z?+q3Mkka_}`sT!pi~``z59+CVlT%_Jm?gUgM1aR^Q%{ux>LvFkIYFOz52i}l{_$S$ zg*!iDvDk;1nMQQi@O&bvPfFRb$ONL*0qJdTl5fXqWBQx}^d8widHJxLAbJT28!o07 zK?GXdi~Ktc;-oYVLfRkf@9$?FUd^@|moweJfB(+v>ehTG?vtulc|_t-Q`3u6 zBg{NzSqK}zs;Hn~86F;vO>N1uV^g&{n<3RhftY`y`s%<)*{J4_&OD_~&!n-?qxSgK zSXfR1$5^2yT$iFz3*=+u7J|c(plg7W5-A&uV$%ykc6-)6MpxaGF9B!Y4}B|oy@(J~ zHEO1|zwpL33!RG2(PwC;&--Hwd!l60FzA|uE$I2VnXNqg#VB>72ly@>!mK8Y%4-<8;d|d?4ni9($3&m#&RDP+VO6jz)`D*#H>( zIzA4Pe&WOJICyOeYnFS@O@ART%yV%Q{YThIhcq-bb4euazG>kl{O_pL@=fvaxw(pq zeEYSh#*q~Cz|qMm-|67PfIT}*51N_XkO#ILgtOXNU3GK2HKf}QnFccT8L_nTukVx& zT3FDVbF6J09dm&foQmjqd>pmLaXj>Zz>mMD@k98D2IB)RZEvYm+t5%FlpBw_tK->U zs%7cJC7r~oSaGGra#?>hl}b%$?*8&+hOD&z$dT(K6fPR#^TWG$e=%H`q1i%+NlB3s zmDXt{mzOS<+55!xGoAd)ZLPBpCt^oVOBh6y9*CEbe(JYNR$QMNBai2lb+!P{Lcxvg zfB!RYBHIuGOnS%ZZqX|A3DIff<-&Fqm8+5Z_*pC%P9H{TU>I+bKKVjGTq5|w8TT(; zuNw-o%~P|0|4}c`EdwfTWRNhTx@K3vRny$T!68LA zga~0o{n*QM^XR9>0`r?oCnm7)*b`^V>>V8)*N6zkk)Mp3p%hz!=<-mL>ct!}C&Om9L{T)&1&P0ZxO>4{7u zQm}K7$s9mpe<7gG_UKWt%(Tb5!yzf&e5wzhovoYu6sCY~Ey&YSuO#m7YlLrmWxK>d!s(+~6VntxjYJ*uIj8nINsOiBoh2!%gqg{j+c$U3Q#pJad>k4{080NN8#Mz66QRQ3*LZGTU)yuW?n@@ z9A3)E#chNDC_6%++d)H_h=w^rgKc<|UM;nTuO|&tF+=rdfPrR?eXe3Ya(K$E(mZPLU)TQFM|s%czij|X&I+pcXW^G`YT(^lJ>CbnU{D_HjwM;4zV~~ zCIAcm?;_o=X<5LN&^`FsA|(ZdfW=yMgQo8-C=k+|p7}a7^0wt?kGds%d>)FyrqT?! zb-aFK!yvbrcXo^xJGWuzY5T9r8lve~erF#U@Wg|jG{P{{QfZx|Awa6w#TdIHw(412 qMl7^Dh}zCi1yKGc{7^}>AbwjiW&9HV)}sjgG2MUIi1@4f*}nl=B|f Shape of X train: (60000, 28, 28) +> Shape of y train: (60000,) + +## 4. Вывод элементов обучающих данных +* Вывел 4-е элемента выборки +``` +print(y_train[0]) +plt.imshow(X_train[0], cmap=plt.get_cmap('gray')) +plt.show() + +print(y_train[1]) +plt.imshow(X_train[1], cmap=plt.get_cmap('gray')) +plt.show() + +print(y_train[2]) +plt.imshow(X_train[2], cmap=plt.get_cmap('gray')) +plt.show() + +print(y_train[3]) +plt.imshow(X_train[3], cmap=plt.get_cmap('gray')) +plt.show() +``` +>0 +![Первый элемент](0n.png) +>9 +![Второй элемент](9n.png) +>7 +![Третий элемен](7n.png) +> 5 +![Четвертый элемент](5n.png) +## 5. Предобработка данных +* развернули каждое изображение 28*28 в вектор 784 +``` +num_pixels = X_train.shape[1] * X_train.shape[2] +X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 +X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 + +print('Shape of transformed X train:', X_train.shape) +``` + +> Shape of transformed X train: (60000, 784) + +* перевели метки в one-hot +``` +from keras.utils import to_categorical +y_train = to_categorical(y_train) +y_test = to_categorical(y_test) + +print('Shape of transformed y train:', y_train.shape) + +num_classes = y_train.shape[1] +``` + +> Shape of transformed y train: (60000, 10) + +## 6. Реализация и обучение однослойной нейронной сети +* 6.1.Создали модель, объявиил ее объектом класса Sequential и скомпилировали. +``` +model_p = Sequential() +model_p.add(Dense(units=num_classes,input_dim=num_pixels, activation='softmax')) +model_p.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) +``` +* 6.2. Вывели архитектуру модели +``` +model_p.summary() +``` + +> Model: "sequential" +> ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +> ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +> ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +> │ dense (Dense) │ (None, 10) │ 7,850 │ +> └─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 7,852 (30.68 KB) +> Trainable params: 7,850 (30.66 KB) +> Non-trainable params: 0 (0.00 B) +> Optimizer params: 2 (12.00 B) + +* Обучил модель +``` +H_p = model_p.fit(X_train, y_train,batch_size = 512, validation_split=0.1, epochs=200) +``` + +* Вывели график функции ошибок +``` +plt.plot(H_p.history['loss']) +plt.plot(H_p.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss','val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график функции ошибки](H_p.png) + +## 7. Примененили модели к тестовым данным +``` +scores=model_p.evaluate(X_test,y_test); +print('Loss on test data:',scores[0]); +print('Accuracy on test data:',scores[1]) +``` + +> accuracy: 0.9178 - loss: 0.2926 +>Loss on test data: 0.3017258942127228 +>Accuracy on test data: 0.9168999791145325 + +## 8. Добавили один скрытый слой и повторил п. 6-7 +* при 100 нейронах в скрытом слое +``` +model_2l_100 = Sequential() +model_2l_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) +model_2l_100.add(Dense(units=num_classes, activation='softmax')) +model_2l_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) +model_2l_100.summary() +``` + + +>Model: "sequential" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_34 (Dense) │ (None, 100) │ 78,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_35 (Dense) │ (None, 10) │ 1,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 79,510 (310.59 KB) +> Trainable params: 79,510 (310.59 KB) +> Non-trainable params: 0 (0.00 B) + +* Обучили модель +``` +H_2l_100=model_2l_100.fit(X_train,y_train,batch_size =512, validation_split=0.1,epochs=200) +``` + +* Вывели график функции ошибки +``` +plt.plot(H_2l_100.history['loss']) +plt.plot(H_2l_100.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss','val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график функции ошибки](H_2l_100.png) + +``` +scores=model_2l_100.evaluate(X_test,y_test); + +print('Loss on test data:',scores[0]); +print('Accuracy on test data:',scores[1]) +``` + +> accuracy: 0.9166 - loss: 0.3003 +>Loss on test data: 0.30692651867866516 +>Accuracy on test data: 0.9154999852180481 + +* при 300 нейронах в скрытом слое +``` +model_2l_300 = Sequential() +model_2l_300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid')) +model_2l_300.add(Dense(units=num_classes, activation='softmax')) +model_2l_300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) +model_2l_300.summary() +``` + + +>Model: "sequential_5" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_9 (Dense) │ (None, 300) │ 235,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_10 (Dense) │ (None, 10) │ 3,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 238,510 (931.68 KB) +> Trainable params: 238,510 (931.68 KB) +> Non-trainable params: 0 (0.00 B) + +* Обучили модель +``` +H_2l_300=model_2l_300.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200) +``` + +* Вывели график функции ошибки +``` +plt.plot(H_2l_300.history['loss']) +plt.plot(H_2l_300.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss','val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график функции ошибки](H_2l_300.png) + +``` +scores=model_2l_300.evaluate(X_test,y_test); + +print('Loss on test data:',scores[0]); +print('Accuracy on test data:',scores[1]) +``` + +> - accuracy: 0.9155 - loss: 0.3049 +>Loss on test data: 0.3119920790195465 +>Accuracy on test data: 0.9139000177383423 + +* при 500 нейронах в скрытом слое +``` +model_2l_500 = Sequential() +model_2l_500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid')) +model_2l_500.add(Dense(units=num_classes, activation='softmax')) +model_2l_500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) +model_2l_500.summary() +``` + +> Архитектура нейронной сети: +>Model: "sequential_6" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_24 (Dense) │ (None, 500) │ 392,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_25 (Dense) │ (None, 10) │ 5,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 397,510 (1.52 MB) +> Trainable params: 397,510 (1.52 MB) +> Non-trainable params: 0 (0.00 B) + +* Обучаем модель +``` +H_2l_500=model_2l_500.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200) +``` + +* Выводим график функции ошибки +``` +plt.plot(H_2l_500.history['loss']) +plt.plot(H_2l_500.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss','val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график функции ошибки](H_2l_500.png) + +``` +scores=model_2l_500.evaluate(X_test,y_test); + +print('Loss on test data:',scores[0]); +print('Accuracy on test data:',scores[1]) +``` + +> accuracy: 0.9138 - loss: 0.3062 +>Loss on test data: 0.3137015998363495 +>Accuracy on test data: 0.9122999906539917 + +Наилучший результат получился у ИНС с 100 нейронами в скрытом слое (0.9154999852180481). В следующих пунктах будем строить 3-х слойную сеть на основе этой конфигурации. + +## 9. Добавление второго скрытого слоя +* при 50 нейронах во втором скрытом слое +``` +model_3l_100_50 = Sequential() +model_3l_100_50.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) +model_3l_100_50.add(Dense(units=50, activation='sigmoid')) +model_3l_100_50.add(Dense(units=num_classes, activation='softmax')) +model_3l_100_50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) +model_3l_100_50.summary() +``` + +>Model: "sequential_7" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_13 (Dense) │ (None, 100) │ 78,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_14 (Dense) │ (None, 50) │ 5,050 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_15 (Dense) │ (None, 10) │ 510 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 84,060 (328.36 KB) +> Trainable params: 84,060 (328.36 KB) +> Non-trainable params: 0 (0.00 B) + +* Обучили модель +``` +H_3l_100_50=model_3l_100_50.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200) +``` + +* Вывели график функции ошибки +``` +plt.plot(H_3l_100_50.history['loss']) +plt.plot(H_3l_100_50.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss','val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график функции ошибки](H_3l_100_50.png) + +``` +scores=model_3l_100_50.evaluate(X_test,y_test); +print('Loss on test data:',scores[0]); +print('Accuracy on test data:',scores[1]) +``` + +> - accuracy: 0.9067 - loss: 0.3484 +>Loss on test data: 0.3573007583618164 +>Accuracy on test data: 0.9021999835968018 + +* при 100 нейронах во втором скрытом слое +``` +model_3l_100_100 = Sequential() +model_3l_100_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) +model_3l_100_100.add(Dense(units=100, activation='sigmoid')) +model_3l_100_100.add(Dense(units=num_classes, activation='softmax')) +model_3l_100_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) +model_3l_100_100.summary() +``` + + +>Model: "sequential_2" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_3 (Dense) │ (None, 100) │ 78,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_4 (Dense) │ (None, 100) │ 10,100 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_5 (Dense) │ (None, 10) │ 1,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 89,610 (350.04 KB) +> Trainable params: 89,610 (350.04 KB) +> Non-trainable params: 0 (0.00 B) ' + +* Обучили модель +``` +H_3l_100_100=model_3l_100_100.fit(X_train,y_train,batch_size = 512,validation_split=0.1,epochs=200) +``` + +* Вывели график функции ошибки +``` +plt.plot(H_3l_100_100.history['loss']) +plt.plot(H_3l_100_100.history['val_loss']) +plt.grid() +plt.xlabel('Epochs') +plt.ylabel('loss') +plt.legend(['train_loss','val_loss']) +plt.title('Loss by epochs') +plt.show() +``` + +![график функции ошибки](H_3l_100_100.png) + +``` +scores=model_3l_100_100.evaluate(X_test,y_test); +print('Loss on test data:',scores[0]); +print('Accuracy on test data:',scores[1]) +``` + +> accuracy: 0.9062 - loss: 0.3420 +>Loss on test data: 0.35140201449394226 +>Accuracy on test data: 0.9049000144004822 + +Количество Количество нейронов в Количество нейронов во Значение метрики +скрытых слоев первом скрытом слое втором скрытом слое качества классификации +0 - - 0.9151999950408936 +1 100 - 0.9154999852180481 +1 300 - 0.9139000177383423 +1 500 - 0.9122999906539917 +2 100 50 0.9021999835968018 +2 100 100 0.9049000144004822 + +По значениям метрики качества классификации можно увидеть, что лучше всего справилась двухслойная сеть с 100 нейронами в скрытом слое. Наращивание кол-во слоев и кол-во нейронов в них не привели к желаемому росту значения метрики качества, а наоборот ухудшили ее. Вероятно связано это с тем, что для более мощных архитектур нужно увеличить обучающую выборку, чем есть сейчас у нас, иначе это приводит к переобучению сети. + +## 11. Сохранение наилучшей модели на диск +``` +model_2l_100.save(filepath='best_model_2l_100_LR1.keras') +``` + +## 12. Вывод тестовых изображений и результатов распознаваний +``` +n = 70 +result = model_2l_100.predict(X_test[n:n+1]) +print('NN output:', result) + +plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) +plt.show() +print('Real mark: ', str(np.argmax(y_test[n]))) +print('NN answer: ', str(np.argmax(result))) +``` + +> NN output: [[2.1906348e-05 3.4767098e-05 9.9508625e-01 2.6498403e-04 6.9696616e-05 +> 1.0428299e-05 4.2126467e-03 3.0855140e-06 2.8133177e-04 1.4690979e-05]] +![alt text](p2.png) +>Real mark: 2 +>NN answer: 2 + +``` +n = 888 +result = model_2l_100.predict(X_test[n:n+1]) +print('NN output:', result) + +plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) +plt.show() +print('Real mark: ', str(np.argmax(y_test[n]))) +print('NN answer: ', str(np.argmax(result))) +``` + +> NN output: [[4.7663169e-04 4.5776782e-05 2.2629092e-03 2.0417338e-04 2.9407460e-03 +> 1.9718589e-02 9.7267509e-01 4.5765455e-06 1.4325225e-03 2.3906169e-04]] +![alt text](p6.png) +>Real mark: 6 +>NN answer: 6 + +## 12. Тестирование на собственных изображениях +* загрузили 1-ое собственное изображения +``` +from PIL import Image +file_1_data = Image.open('6.png') +file_1_data = file_1_data.convert('L') #перевод в градации серого +test_1_img = np.array(file_1_data) +``` + +* вывели собственное изображения +``` +plt.imshow(test_1_img, cmap=plt.get_cmap('gray')) +plt.show()) +``` + +![1-ое изображение](6.png) + +* предобработка +``` +test_1_img = test_1_img / 255 +test_1_img = test_1_img.reshape(1, num_pixels) +``` + +* распознавание +``` +result_1 = model_2l_100.predict(test_1_img) +print('I think it\'s', np.argmax(result_1)) +``` +> I think it's 6 + +* тест на 2-ом изображении +``` +file_2_data = Image.open('2.png') +file_2_data = file_2_data.convert('L') #перевод в градации серого +test_2_img = np.array(file_2_data) +plt.imshow(test_2_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![2-ое изображение](2.png) + +``` +test_2_img = test_2_img / 255 +test_2_img = test_2_img.reshape(1, num_pixels) + +result_2 = model.predict(test_2_img) +print('I think it\'s', np.argmax(result_2)) +``` + +> I think it's 2 + +Сеть корректно распознала обе цифры + +## 14. Тестирование на собственных повернутых изображениях +``` +file_3_data = Image.open('6_90.png') +file_3_data = file_3_data.convert('L') #перевод в градации серого +test_3_img = np.array(file_3_data) + +plt.imshow(test_3_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![1-ое перевернутое изображение](6_90.png) + +``` +test_3_img = test_3_img / 255 +test_3_img = test_3_img.reshape(1, num_pixels) +result_3 = model_2l_100.predict(test_3_img) + +print('I think it\'s', np.argmax(result_3)) +``` + +> I think it's 9 + +``` +file_4_data = Image.open('2_90.png') +file_4_data = file_4_data.convert('L') #перевод в градации серого +test_4_img = np.array(file_4_data) + +plt.imshow(test_4_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![2-ое перевернутое изображение](2_90.png) + +``` +test_4_img = test_4_img / 255 +test_4_img = test_4_img.reshape(1, num_pixels) +result_4 = model_2l_100.predict(test_4_img) + +print('I think it\'s', np.argmax(result_4)) +``` + +> I think it's 5 + +Сеть не смогла распознать ни одну из перевернутых изображений.Связано это с тем, что мы не использовали при обучении перевернутые изображения. \ No newline at end of file