|
|
|
@ -60,13 +60,20 @@ print(y_train[3])
|
|
|
|
|
plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))
|
|
|
|
|
plt.show()
|
|
|
|
|
```
|
|
|
|
|
>0
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
>9
|
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
>7
|
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
> 5
|
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
## 5. Предобработка данных
|
|
|
|
|
* развернули каждое изображение 28*28 в вектор 784
|
|
|
|
@ -441,9 +448,8 @@ print('Real mark: ', str(np.argmax(y_test[n])))
|
|
|
|
|
print('NN answer: ', str(np.argmax(result)))
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
> NN output: [[2.1906348e-05 3.4767098e-05 9.9508625e-01 2.6498403e-04 6.9696616e-05
|
|
|
|
|
> 1.0428299e-05 4.2126467e-03 3.0855140e-06 2.8133177e-04 1.4690979e-05]]
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
>Real mark: 2
|
|
|
|
|
>NN answer: 2
|
|
|
|
|
|
|
|
|
@ -458,9 +464,8 @@ print('Real mark: ', str(np.argmax(y_test[n])))
|
|
|
|
|
print('NN answer: ', str(np.argmax(result)))
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
> NN output: [[4.7663169e-04 4.5776782e-05 2.2629092e-03 2.0417338e-04 2.9407460e-03
|
|
|
|
|
> 1.9718589e-02 9.7267509e-01 4.5765455e-06 1.4325225e-03 2.3906169e-04]]
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
>Real mark: 6
|
|
|
|
|
>NN answer: 6
|
|
|
|
|
|
|
|
|
|