Создал(а) 'labworks/LW4/report.md'

main
VatkovAS 17 часов назад
Родитель a76617dcad
Сommit bac60e1014

@ -0,0 +1,339 @@
# Лабораторная работа №4: Распознование последовательностей
**Ватьков А..С., Харисов С.Р. — А-01-22**
## Вариант 2
### Цель работы
Получить практические навыки обработки текстовой информации с помощьюрекуррентныхискусственных нейронных сетей при решении задачи определения тональности текста.
---
## ЗАДАНИЕ 1:
### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки модули.
```python
# импорт модулей
import os
os.chdir('/content/drive/MyDrive/Colab Notebooks/is_LR4')
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import matplotlib.pyplot as plt
import numpy as np
```
```python
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))
```
### 2) Загрузили набор данных IMDb, содержащий оцифрованные отзывы на фильмы, размеченные на два класса: позитивные и негативные. При загрузке набора данных параметр seed выбрали равным значению (4k – 1)=7, где k=2 – номер бригады. Вывели размеры полученных обучающих и тестовых массивов данных.
```python
# загрузка датасета
from keras.datasets import imdb
vocabulary_size = 5000
index_from = 3
(X_train, y_train), (X_test, y_test) = imdb.load_data(
path="imdb.npz",
num_words=vocabulary_size,
skip_top=0,
maxlen=None,
seed=26,
start_char=1,
oov_char=2,
index_from=index_from
)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of y train:', y_train.shape)
print('Shape of X test:', X_test.shape)
print('Shape of y test:', y_test.shape)
```
**Результат выполнения:**
```
Shape of X train: (25000,)
Shape of y train: (25000,)
Shape of X test: (25000,)
Shape of y test: (25000,)
```
### 3) Вывели один отзыв из обучающего множества в виде списка индексов слов. Преобразовали список индексов в текст и вывели отзыв в виде текста. Вывели длину отзыва. Вывели метку класса данного отзыва и название класса (1 – Positive, 0 – Negative).
```python
# создание словаря для перевода индексов в слова
# заргузка словаря "слово:индекс"
word_to_id = imdb.get_word_index()
# уточнение словаря
word_to_id = {key:(value + index_from) for key,value in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2
word_to_id["<UNUSED>"] = 3
# создание обратного словаря "индекс:слово"
id_to_word = {value:key for key,value in word_to_id.items()}
```
```python
print(X_train[26])
print('len:',len(X_train[26]))
```
**Результат выполнения:**
```
[1, 4, 78, 46, 304, 39, 2, 7, 968, 2, 295, 209, 101, 147, 65, 10, 10, 2643, 2, 497, 8, 30, 6, 147, 284, 5, 996, 174, 10, 10, 11, 4, 130, 4, 2, 4979, 11, 2, 10, 10, 2]
len: 41
```
```python
review_as_text = ' '.join(id_to_word[id] for id in X_train[26])
print(review_as_text)
print('len:',len(review_as_text))
```
**Результат выполнения:**
```
<START> the bad out takes from <UNK> of fire <UNK> together without any real story br br dean <UNK> tries to be a real actor and fails again br br in the end the <UNK> quit in <UNK> br br <UNK>
len: 193
```
### 4) Вывели максимальную и минимальную длину отзыва в обучающем множестве.
```python
print('MAX Len: ',len(max(X_train, key=len)))
print('MIN Len: ',len(min(X_train, key=len)))
```
**Результат выполнения:**
```
MAX Len: 2494
MIN Len: 11
```
### 5) Провели предобработку данных. Выбрали единую длину, к которой будут приведены все отзывы. Короткие отзывы дополнили спецсимволами, а длинные обрезали до выбранной длины.
```python
# предобработка данных
from tensorflow.keras.utils import pad_sequences
max_words = 500
X_train = pad_sequences(X_train, maxlen=max_words, value=0, padding='pre', truncating='post')
X_test = pad_sequences(X_test, maxlen=max_words, value=0, padding='pre', truncating='post')
```
### 6) Повторили пункт 4.
```python
print('MAX Len: ',len(max(X_train, key=len)))
print('MIN Len: ',len(min(X_train, key=len)))
```
**Результат выполнения:**
```
MAX Len: 500
MIN Len: 500
```
### 7) Повторили пункт 3. Сделали вывод о том, как отзыв преобразовался после предобработки.
```python
print(X_train[26])
print('len:',len(X_train[26]))
```
**Результат выполнения:**
```
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 4 78
46 304 39 2 7 968 2 295 209 101 147 65 10 10
2643 2 497 8 30 6 147 284 5 996 174 10 10 11
4 130 4 2 4979 11 2 10 10 2]
len: 500
```
```python
review_as_text = ' '.join(id_to_word[id] for id in X_train[26])
print(review_as_text)
print('len:',len(review_as_text))
```
**Результат выполнения:**
```
<PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <START> the bad out takes from <UNK> of fire <UNK> together without any real story br br dean <UNK> tries to be a real actor and fails again br br in the end the <UNK> quit in <UNK> br br <UNK>
len: 2947
```
**После обработки в начало отзыва добавилось необходимое количество токенов , чтобы отзыв был длинной в 500 индексов.**
### 8) Вывели предобработанные массивы обучающих и тестовых данных и их размерности.
```python
# вывод данных
print('X train: \n',X_train)
print('X train: \n',X_test)
# вывод размерностей
print('Shape of X train:', X_train.shape)
print('Shape of X test:', X_test.shape)
```
**Результат выполнения:**
```
X train:
[[ 0 0 0 ... 1039 7 12]
[ 0 0 0 ... 5 2 1773]
[ 0 0 0 ... 220 175 96]
...
[ 1 3264 153 ... 157 746 14]
[ 0 0 0 ... 3459 55 680]
[ 0 0 0 ... 14 31 56]]
X train:
[[ 0 0 0 ... 241 3366 56]
[ 0 0 0 ... 18 4 755]
[ 0 0 0 ... 149 14 20]
...
[ 0 0 0 ... 2 2152 1835]
[ 0 0 0 ... 3768 3508 3311]
[ 0 0 0 ... 511 8 2725]]
Shape of X train: (25000, 500)
Shape of X test: (25000, 500)
```
### 9) Реализовали модель рекуррентной нейронной сети, состоящей из слоев Embedding, LSTM, Dropout, Dense, и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети. Добились качества обучения по метрике accuracy не менее 0.8.
```python
model = Sequential()
model.add(layers.Embedding(input_dim=vocabulary_size, output_dim=64, input_length=max_words, input_shape=(max_words,)))
model.add(layers.LSTM(64))
model.add(layers.Dropout(0.45))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
```
**Результат выполнения:**
```
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ embedding_2 (Embedding) │ (None, 500, 64) │ 320,000 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ lstm_2 (LSTM) │ (None, 64) │ 33,024 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout_2 (Dropout) │ (None, 64) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 353,089 (1.35 MB)
Trainable params: 353,089 (1.35 MB)
Non-trainable params: 0 (0.00 B)
```
```python
# компилируем и обучаем модель
batch_size = 64
epochs = 4
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
```
```python
test_loss, test_acc = model.evaluate(X_test, y_test)
print(f"\nTest accuracy: {test_acc}")
```
**Результаты выполнения:**
```
Test accuracy: 0.8519200086593628
```
### 10) Оценили качество обучения на тестовых данных:
###- вывели значение метрики качества классификации на тестовых данных
###- вывели отчет о качестве классификации тестовой выборки
###a- построили ROC-кривую по результату обработки тестовой выборки и вычислили площадь под ROC-кривой (AUC ROC)
```python
y_score = model.predict(X_test)
y_pred = [1 if y_score[i,0]>=0.5 else 0 for i in range(len(y_score))]
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive']))
```
**Результат выполнения:**
```
precision recall f1-score support
Negative 0.86 0.85 0.85 12500
Positive 0.85 0.86 0.85 12500
accuracy 0.85 25000
macro avg 0.85 0.85 0.85 25000
weighted avg 0.85 0.85 0.85 25000
```
```python
#построение ROC-кривой и AUC ROC
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_score)
plt.plot(fpr, tpr)
plt.grid()
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.show()
print('AUC ROC:', auc(fpr, tpr))
```
**Результат выполнения:**
![](9punkt.png)
```
AUC ROC: 0.9159089215999999
```
### 11) Сделали выводы по результатам применения рекуррентной нейронной сети для решения задачи определения тональности текста.
Таблица 1:
| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |
|-----------------|-------------------------------------|--------------------------|-----------------------------------------|
| Рекуррентная | 353089 | 3 | accuracy:0.85 ; loss:0.5214 ; |
| | | | AUC ROC:0.9159 |
### По результатам таблицы можно сделать вывод, что рекуррентная НС хорошо справляется с задачей определения тональности текста. Показатель accuracy = 0.85 превышает требуемый порог 0.8. Значение AUC ROC = 0.9159 (> 0.9) говорит о высокой способности модели различать два класса (положительные и отрицательные отзывы)
Загрузка…
Отмена
Сохранить