Вы не можете выбрать более 25 тем
			Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
		
		
		
		
		
			
		
			
				
	
	
		
			1396 строки
		
	
	
		
			61 KiB
		
	
	
	
		
			Groff
		
	
			
		
		
	
	
			1396 строки
		
	
	
		
			61 KiB
		
	
	
	
		
			Groff
		
	
.\" **************************************************************************
 | 
						|
.\" *                                  _   _ ____  _
 | 
						|
.\" *  Project                     ___| | | |  _ \| |
 | 
						|
.\" *                             / __| | | | |_) | |
 | 
						|
.\" *                            | (__| |_| |  _ <| |___
 | 
						|
.\" *                             \___|\___/|_| \_\_____|
 | 
						|
.\" *
 | 
						|
.\" * Copyright (C) 1998 - 2022, Daniel Stenberg, <daniel@haxx.se>, et al.
 | 
						|
.\" *
 | 
						|
.\" * This software is licensed as described in the file COPYING, which
 | 
						|
.\" * you should have received as part of this distribution. The terms
 | 
						|
.\" * are also available at https://curl.se/docs/copyright.html.
 | 
						|
.\" *
 | 
						|
.\" * You may opt to use, copy, modify, merge, publish, distribute and/or sell
 | 
						|
.\" * copies of the Software, and permit persons to whom the Software is
 | 
						|
.\" * furnished to do so, under the terms of the COPYING file.
 | 
						|
.\" *
 | 
						|
.\" * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 | 
						|
.\" * KIND, either express or implied.
 | 
						|
.\" *
 | 
						|
.\" **************************************************************************
 | 
						|
.\"
 | 
						|
.TH libcurl-tutorial 3 "April 21, 2022" "libcurl 7.83.1" "libcurl programming"
 | 
						|
 | 
						|
.SH NAME
 | 
						|
libcurl-tutorial \- libcurl programming tutorial
 | 
						|
.SH "Objective"
 | 
						|
This document attempts to describe the general principles and some basic
 | 
						|
approaches to consider when programming with libcurl. The text will focus
 | 
						|
mainly on the C interface but might apply fairly well on other interfaces as
 | 
						|
well as they usually follow the C one pretty closely.
 | 
						|
 | 
						|
This document will refer to 'the user' as the person writing the source code
 | 
						|
that uses libcurl. That would probably be you or someone in your position.
 | 
						|
What will be generally referred to as 'the program' will be the collected
 | 
						|
source code that you write that is using libcurl for transfers. The program
 | 
						|
is outside libcurl and libcurl is outside of the program.
 | 
						|
 | 
						|
To get more details on all options and functions described herein, please
 | 
						|
refer to their respective man pages.
 | 
						|
 | 
						|
.SH "Building"
 | 
						|
There are many different ways to build C programs. This chapter will assume a
 | 
						|
Unix style build process. If you use a different build system, you can still
 | 
						|
read this to get general information that may apply to your environment as
 | 
						|
well.
 | 
						|
.IP "Compiling the Program"
 | 
						|
Your compiler needs to know where the libcurl headers are located. Therefore
 | 
						|
you must set your compiler's include path to point to the directory where you
 | 
						|
installed them. The 'curl-config'[3] tool can be used to get this information:
 | 
						|
 | 
						|
$ curl-config --cflags
 | 
						|
 | 
						|
.IP "Linking the Program with libcurl"
 | 
						|
When having compiled the program, you need to link your object files to create
 | 
						|
a single executable. For that to succeed, you need to link with libcurl and
 | 
						|
possibly also with other libraries that libcurl itself depends on. Like the
 | 
						|
OpenSSL libraries, but even some standard OS libraries may be needed on the
 | 
						|
command line. To figure out which flags to use, once again the 'curl-config'
 | 
						|
tool comes to the rescue:
 | 
						|
 | 
						|
$ curl-config --libs
 | 
						|
 | 
						|
.IP "SSL or Not"
 | 
						|
libcurl can be built and customized in many ways. One of the things that
 | 
						|
varies from different libraries and builds is the support for SSL-based
 | 
						|
transfers, like HTTPS and FTPS. If a supported SSL library was detected
 | 
						|
properly at build-time, libcurl will be built with SSL support. To figure out
 | 
						|
if an installed libcurl has been built with SSL support enabled, use
 | 
						|
\&'curl-config' like this:
 | 
						|
 | 
						|
$ curl-config --feature
 | 
						|
 | 
						|
And if SSL is supported, the keyword 'SSL' will be written to stdout,
 | 
						|
possibly together with a few other features that could be either on or off on
 | 
						|
for different libcurls.
 | 
						|
 | 
						|
See also the "Features libcurl Provides" further down.
 | 
						|
.IP "autoconf macro"
 | 
						|
When you write your configure script to detect libcurl and setup variables
 | 
						|
accordingly, we offer a macro that probably does everything you need in this
 | 
						|
area. See docs/libcurl/libcurl.m4 file - it includes docs on how to use it.
 | 
						|
 | 
						|
.SH "Portable Code in a Portable World"
 | 
						|
The people behind libcurl have put a considerable effort to make libcurl work
 | 
						|
on a large amount of different operating systems and environments.
 | 
						|
 | 
						|
You program libcurl the same way on all platforms that libcurl runs on. There
 | 
						|
are only a few minor details that differ. If you just make sure to write your
 | 
						|
code portable enough, you can create a portable program. libcurl should not
 | 
						|
stop you from that.
 | 
						|
 | 
						|
.SH "Global Preparation"
 | 
						|
The program must initialize some of the libcurl functionality globally. That
 | 
						|
means it should be done exactly once, no matter how many times you intend to
 | 
						|
use the library. Once for your program's entire life time. This is done using
 | 
						|
 | 
						|
 curl_global_init()
 | 
						|
 | 
						|
and it takes one parameter which is a bit pattern that tells libcurl what to
 | 
						|
initialize. Using \fICURL_GLOBAL_ALL\fP will make it initialize all known
 | 
						|
internal sub modules, and might be a good default option. The current two bits
 | 
						|
that are specified are:
 | 
						|
.RS
 | 
						|
.IP "CURL_GLOBAL_WIN32"
 | 
						|
which only does anything on Windows machines. When used on
 | 
						|
a Windows machine, it will make libcurl initialize the win32 socket
 | 
						|
stuff. Without having that initialized properly, your program cannot use
 | 
						|
sockets properly. You should only do this once for each application, so if
 | 
						|
your program already does this or of another library in use does it, you
 | 
						|
should not tell libcurl to do this as well.
 | 
						|
.IP CURL_GLOBAL_SSL
 | 
						|
which only does anything on libcurls compiled and built SSL-enabled. On these
 | 
						|
systems, this will make libcurl initialize the SSL library properly for this
 | 
						|
application. This only needs to be done once for each application so if your
 | 
						|
program or another library already does this, this bit should not be needed.
 | 
						|
.RE
 | 
						|
 | 
						|
libcurl has a default protection mechanism that detects if
 | 
						|
\fIcurl_global_init(3)\fP has not been called by the time
 | 
						|
\fIcurl_easy_perform(3)\fP is called and if that is the case, libcurl runs the
 | 
						|
function itself with a guessed bit pattern. Please note that depending solely
 | 
						|
on this is not considered nice nor good.
 | 
						|
 | 
						|
When the program no longer uses libcurl, it should call
 | 
						|
\fIcurl_global_cleanup(3)\fP, which is the opposite of the init call. It will
 | 
						|
then do the reversed operations to cleanup the resources the
 | 
						|
\fIcurl_global_init(3)\fP call initialized.
 | 
						|
 | 
						|
Repeated calls to \fIcurl_global_init(3)\fP and \fIcurl_global_cleanup(3)\fP
 | 
						|
should be avoided. They should only be called once each.
 | 
						|
 | 
						|
.SH "Features libcurl Provides"
 | 
						|
It is considered best-practice to determine libcurl features at runtime rather
 | 
						|
than at build-time (if possible of course). By calling
 | 
						|
\fIcurl_version_info(3)\fP and checking out the details of the returned
 | 
						|
struct, your program can figure out exactly what the currently running libcurl
 | 
						|
supports.
 | 
						|
 | 
						|
.SH "Two Interfaces"
 | 
						|
libcurl first introduced the so called easy interface. All operations in the
 | 
						|
easy interface are prefixed with 'curl_easy'. The easy interface lets you do
 | 
						|
single transfers with a synchronous and blocking function call.
 | 
						|
 | 
						|
libcurl also offers another interface that allows multiple simultaneous
 | 
						|
transfers in a single thread, the so called multi interface. More about that
 | 
						|
interface is detailed in a separate chapter further down. You still need to
 | 
						|
understand the easy interface first, so please continue reading for better
 | 
						|
understanding.
 | 
						|
.SH "Handle the Easy libcurl"
 | 
						|
To use the easy interface, you must first create yourself an easy handle. You
 | 
						|
need one handle for each easy session you want to perform. Basically, you
 | 
						|
should use one handle for every thread you plan to use for transferring. You
 | 
						|
must never share the same handle in multiple threads.
 | 
						|
 | 
						|
Get an easy handle with
 | 
						|
 | 
						|
 easyhandle = curl_easy_init();
 | 
						|
 | 
						|
It returns an easy handle. Using that you proceed to the next step: setting
 | 
						|
up your preferred actions. A handle is just a logic entity for the upcoming
 | 
						|
transfer or series of transfers.
 | 
						|
 | 
						|
You set properties and options for this handle using
 | 
						|
\fIcurl_easy_setopt(3)\fP. They control how the subsequent transfer or
 | 
						|
transfers will be made. Options remain set in the handle until set again to
 | 
						|
something different. They are sticky. Multiple requests using the same handle
 | 
						|
will use the same options.
 | 
						|
 | 
						|
If you at any point would like to blank all previously set options for a
 | 
						|
single easy handle, you can call \fIcurl_easy_reset(3)\fP and you can also
 | 
						|
make a clone of an easy handle (with all its set options) using
 | 
						|
\fIcurl_easy_duphandle(3)\fP.
 | 
						|
 | 
						|
Many of the options you set in libcurl are "strings", pointers to data
 | 
						|
terminated with a zero byte. When you set strings with
 | 
						|
\fIcurl_easy_setopt(3)\fP, libcurl makes its own copy so that they do not need
 | 
						|
to be kept around in your application after being set[4].
 | 
						|
 | 
						|
One of the most basic properties to set in the handle is the URL. You set your
 | 
						|
preferred URL to transfer with \fICURLOPT_URL(3)\fP in a manner similar to:
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_easy_setopt(handle, CURLOPT_URL, "http://domain.com/");
 | 
						|
.fi
 | 
						|
 | 
						|
Let's assume for a while that you want to receive data as the URL identifies a
 | 
						|
remote resource you want to get here. Since you write a sort of application
 | 
						|
that needs this transfer, I assume that you would like to get the data passed
 | 
						|
to you directly instead of simply getting it passed to stdout. So, you write
 | 
						|
your own function that matches this prototype:
 | 
						|
 | 
						|
 size_t write_data(void *buffer, size_t size, size_t nmemb, void *userp);
 | 
						|
 | 
						|
You tell libcurl to pass all data to this function by issuing a function
 | 
						|
similar to this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_WRITEFUNCTION, write_data);
 | 
						|
 | 
						|
You can control what data your callback function gets in the fourth argument
 | 
						|
by setting another property:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_WRITEDATA, &internal_struct);
 | 
						|
 | 
						|
Using that property, you can easily pass local data between your application
 | 
						|
and the function that gets invoked by libcurl. libcurl itself will not touch the
 | 
						|
data you pass with \fICURLOPT_WRITEDATA(3)\fP.
 | 
						|
 | 
						|
libcurl offers its own default internal callback that will take care of the
 | 
						|
data if you do not set the callback with \fICURLOPT_WRITEFUNCTION(3)\fP. It
 | 
						|
will then simply output the received data to stdout. You can have the default
 | 
						|
callback write the data to a different file handle by passing a 'FILE *' to a
 | 
						|
file opened for writing with the \fICURLOPT_WRITEDATA(3)\fP option.
 | 
						|
 | 
						|
Now, we need to take a step back and have a deep breath. Here's one of those
 | 
						|
rare platform-dependent nitpicks. Did you spot it? On some platforms[2],
 | 
						|
libcurl will not be able to operate on files opened by the program. Thus, if you
 | 
						|
use the default callback and pass in an open file with
 | 
						|
\fICURLOPT_WRITEDATA(3)\fP, it will crash. You should therefore avoid this to
 | 
						|
make your program run fine virtually everywhere.
 | 
						|
 | 
						|
(\fICURLOPT_WRITEDATA(3)\fP was formerly known as \fICURLOPT_FILE\fP. Both
 | 
						|
names still work and do the same thing).
 | 
						|
 | 
						|
If you are using libcurl as a win32 DLL, you MUST use the
 | 
						|
\fICURLOPT_WRITEFUNCTION(3)\fP if you set \fICURLOPT_WRITEDATA(3)\fP - or you
 | 
						|
will experience crashes.
 | 
						|
 | 
						|
There are of course many more options you can set, and we will get back to a few
 | 
						|
of them later. Let's instead continue to the actual transfer:
 | 
						|
 | 
						|
 success = curl_easy_perform(easyhandle);
 | 
						|
 | 
						|
\fIcurl_easy_perform(3)\fP will connect to the remote site, do the necessary
 | 
						|
commands and receive the transfer. Whenever it receives data, it calls the
 | 
						|
callback function we previously set. The function may get one byte at a time,
 | 
						|
or it may get many kilobytes at once. libcurl delivers as much as possible as
 | 
						|
often as possible. Your callback function should return the number of bytes it
 | 
						|
\&"took care of". If that is not the same amount of bytes that was passed to
 | 
						|
it, libcurl will abort the operation and return with an error code.
 | 
						|
 | 
						|
When the transfer is complete, the function returns a return code that informs
 | 
						|
you if it succeeded in its mission or not. If a return code is not enough for
 | 
						|
you, you can use the \fICURLOPT_ERRORBUFFER(3)\fP to point libcurl to a buffer
 | 
						|
of yours where it will store a human readable error message as well.
 | 
						|
 | 
						|
If you then want to transfer another file, the handle is ready to be used
 | 
						|
again. Mind you, it is even preferred that you re-use an existing handle if
 | 
						|
you intend to make another transfer. libcurl will then attempt to re-use the
 | 
						|
previous connection.
 | 
						|
 | 
						|
For some protocols, downloading a file can involve a complicated process of
 | 
						|
logging in, setting the transfer mode, changing the current directory and
 | 
						|
finally transferring the file data. libcurl takes care of all that
 | 
						|
complication for you. Given simply the URL to a file, libcurl will take care
 | 
						|
of all the details needed to get the file moved from one machine to another.
 | 
						|
 | 
						|
.SH "Multi-threading Issues"
 | 
						|
libcurl is thread safe but there are a few exceptions. Refer to
 | 
						|
\fIlibcurl-thread(3)\fP for more information.
 | 
						|
 | 
						|
.SH "When It does not Work"
 | 
						|
There will always be times when the transfer fails for some reason. You might
 | 
						|
have set the wrong libcurl option or misunderstood what the libcurl option
 | 
						|
actually does, or the remote server might return non-standard replies that
 | 
						|
confuse the library which then confuses your program.
 | 
						|
 | 
						|
There's one golden rule when these things occur: set the
 | 
						|
\fICURLOPT_VERBOSE(3)\fP option to 1. it will cause the library to spew out the
 | 
						|
entire protocol details it sends, some internal info and some received
 | 
						|
protocol data as well (especially when using FTP). If you are using HTTP,
 | 
						|
adding the headers in the received output to study is also a clever way to get
 | 
						|
a better understanding why the server behaves the way it does. Include headers
 | 
						|
in the normal body output with \fICURLOPT_HEADER(3)\fP set 1.
 | 
						|
 | 
						|
Of course, there are bugs left. We need to know about them to be able to fix
 | 
						|
them, so we are quite dependent on your bug reports. When you do report
 | 
						|
suspected bugs in libcurl, please include as many details as you possibly can:
 | 
						|
a protocol dump that \fICURLOPT_VERBOSE(3)\fP produces, library version, as
 | 
						|
much as possible of your code that uses libcurl, operating system name and
 | 
						|
version, compiler name and version etc.
 | 
						|
 | 
						|
If \fICURLOPT_VERBOSE(3)\fP is not enough, you increase the level of debug
 | 
						|
data your application receive by using the \fICURLOPT_DEBUGFUNCTION(3)\fP.
 | 
						|
 | 
						|
Getting some in-depth knowledge about the protocols involved is never wrong,
 | 
						|
and if you are trying to do funny things, you might understand libcurl and how
 | 
						|
to use it better if you study the appropriate RFC documents at least briefly.
 | 
						|
 | 
						|
.SH "Upload Data to a Remote Site"
 | 
						|
libcurl tries to keep a protocol independent approach to most transfers, thus
 | 
						|
uploading to a remote FTP site is similar to uploading data to an HTTP server
 | 
						|
with a PUT request.
 | 
						|
 | 
						|
Of course, first you either create an easy handle or you re-use one existing
 | 
						|
one. Then you set the URL to operate on just like before. This is the remote
 | 
						|
URL, that we now will upload.
 | 
						|
 | 
						|
Since we write an application, we most likely want libcurl to get the upload
 | 
						|
data by asking us for it. To make it do that, we set the read callback and
 | 
						|
the custom pointer libcurl will pass to our read callback. The read callback
 | 
						|
should have a prototype similar to:
 | 
						|
 | 
						|
 size_t function(char *bufptr, size_t size, size_t nitems, void *userp);
 | 
						|
 | 
						|
Where bufptr is the pointer to a buffer we fill in with data to upload and
 | 
						|
size*nitems is the size of the buffer and therefore also the maximum amount
 | 
						|
of data we can return to libcurl in this call. The 'userp' pointer is the
 | 
						|
custom pointer we set to point to a struct of ours to pass private data
 | 
						|
between the application and the callback.
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_READFUNCTION, read_function);
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_READDATA, &filedata);
 | 
						|
 | 
						|
Tell libcurl that we want to upload:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_UPLOAD, 1L);
 | 
						|
 | 
						|
A few protocols will not behave properly when uploads are done without any prior
 | 
						|
knowledge of the expected file size. So, set the upload file size using the
 | 
						|
\fICURLOPT_INFILESIZE_LARGE(3)\fP for all known file sizes like this[1]:
 | 
						|
 | 
						|
.nf
 | 
						|
 /* in this example, file_size must be an curl_off_t variable */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_INFILESIZE_LARGE, file_size);
 | 
						|
.fi
 | 
						|
 | 
						|
When you call \fIcurl_easy_perform(3)\fP this time, it will perform all the
 | 
						|
necessary operations and when it has invoked the upload it will call your
 | 
						|
supplied callback to get the data to upload. The program should return as much
 | 
						|
data as possible in every invoke, as that is likely to make the upload perform
 | 
						|
as fast as possible. The callback should return the number of bytes it wrote
 | 
						|
in the buffer. Returning 0 will signal the end of the upload.
 | 
						|
 | 
						|
.SH "Passwords"
 | 
						|
Many protocols use or even require that user name and password are provided
 | 
						|
to be able to download or upload the data of your choice. libcurl offers
 | 
						|
several ways to specify them.
 | 
						|
 | 
						|
Most protocols support that you specify the name and password in the URL
 | 
						|
itself. libcurl will detect this and use them accordingly. This is written
 | 
						|
like this:
 | 
						|
 | 
						|
 protocol://user:password@example.com/path/
 | 
						|
 | 
						|
If you need any odd letters in your user name or password, you should enter
 | 
						|
them URL encoded, as %XX where XX is a two-digit hexadecimal number.
 | 
						|
 | 
						|
libcurl also provides options to set various passwords. The user name and
 | 
						|
password as shown embedded in the URL can instead get set with the
 | 
						|
\fICURLOPT_USERPWD(3)\fP option. The argument passed to libcurl should be a
 | 
						|
char * to a string in the format "user:password". In a manner like this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_USERPWD, "myname:thesecret");
 | 
						|
 | 
						|
Another case where name and password might be needed at times, is for those
 | 
						|
users who need to authenticate themselves to a proxy they use. libcurl offers
 | 
						|
another option for this, the \fICURLOPT_PROXYUSERPWD(3)\fP. It is used quite
 | 
						|
similar to the \fICURLOPT_USERPWD(3)\fP option like this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_PROXYUSERPWD, "myname:thesecret");
 | 
						|
 | 
						|
There's a long time Unix "standard" way of storing FTP user names and
 | 
						|
passwords, namely in the $HOME/.netrc file. The file should be made private
 | 
						|
so that only the user may read it (see also the "Security Considerations"
 | 
						|
chapter), as it might contain the password in plain text. libcurl has the
 | 
						|
ability to use this file to figure out what set of user name and password to
 | 
						|
use for a particular host. As an extension to the normal functionality,
 | 
						|
libcurl also supports this file for non-FTP protocols such as HTTP. To make
 | 
						|
curl use this file, use the \fICURLOPT_NETRC(3)\fP option:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_NETRC, 1L);
 | 
						|
 | 
						|
And a basic example of how such a .netrc file may look like:
 | 
						|
 | 
						|
.nf
 | 
						|
 machine myhost.mydomain.com
 | 
						|
 login userlogin
 | 
						|
 password secretword
 | 
						|
.fi
 | 
						|
 | 
						|
All these examples have been cases where the password has been optional, or
 | 
						|
at least you could leave it out and have libcurl attempt to do its job
 | 
						|
without it. There are times when the password is not optional, like when
 | 
						|
you are using an SSL private key for secure transfers.
 | 
						|
 | 
						|
To pass the known private key password to libcurl:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_KEYPASSWD, "keypassword");
 | 
						|
 | 
						|
.SH "HTTP Authentication"
 | 
						|
The previous chapter showed how to set user name and password for getting
 | 
						|
URLs that require authentication. When using the HTTP protocol, there are
 | 
						|
many different ways a client can provide those credentials to the server and
 | 
						|
you can control which way libcurl will (attempt to) use them. The default HTTP
 | 
						|
authentication method is called 'Basic', which is sending the name and
 | 
						|
password in clear-text in the HTTP request, base64-encoded. This is insecure.
 | 
						|
 | 
						|
At the time of this writing, libcurl can be built to use: Basic, Digest, NTLM,
 | 
						|
Negotiate (SPNEGO). You can tell libcurl which one to use
 | 
						|
with \fICURLOPT_HTTPAUTH(3)\fP as in:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPAUTH, CURLAUTH_DIGEST);
 | 
						|
 | 
						|
And when you send authentication to a proxy, you can also set authentication
 | 
						|
type the same way but instead with \fICURLOPT_PROXYAUTH(3)\fP:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_PROXYAUTH, CURLAUTH_NTLM);
 | 
						|
 | 
						|
Both these options allow you to set multiple types (by ORing them together),
 | 
						|
to make libcurl pick the most secure one out of the types the server/proxy
 | 
						|
claims to support. This method does however add a round-trip since libcurl
 | 
						|
must first ask the server what it supports:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPAUTH,
 | 
						|
 CURLAUTH_DIGEST|CURLAUTH_BASIC);
 | 
						|
 | 
						|
For convenience, you can use the 'CURLAUTH_ANY' define (instead of a list
 | 
						|
with specific types) which allows libcurl to use whatever method it wants.
 | 
						|
 | 
						|
When asking for multiple types, libcurl will pick the available one it
 | 
						|
considers "best" in its own internal order of preference.
 | 
						|
 | 
						|
.SH "HTTP POSTing"
 | 
						|
We get many questions regarding how to issue HTTP POSTs with libcurl the
 | 
						|
proper way. This chapter will thus include examples using both different
 | 
						|
versions of HTTP POST that libcurl supports.
 | 
						|
 | 
						|
The first version is the simple POST, the most common version, that most HTML
 | 
						|
pages using the <form> tag uses. We provide a pointer to the data and tell
 | 
						|
libcurl to post it all to the remote site:
 | 
						|
 | 
						|
.nf
 | 
						|
    char *data="name=daniel&project=curl";
 | 
						|
    curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, data);
 | 
						|
    curl_easy_setopt(easyhandle, CURLOPT_URL, "http://posthere.com/");
 | 
						|
 | 
						|
    curl_easy_perform(easyhandle); /* post away! */
 | 
						|
.fi
 | 
						|
 | 
						|
Simple enough, huh? Since you set the POST options with the
 | 
						|
\fICURLOPT_POSTFIELDS(3)\fP, this automatically switches the handle to use
 | 
						|
POST in the upcoming request.
 | 
						|
 | 
						|
What if you want to post binary data that also requires you to set the
 | 
						|
Content-Type: header of the post? Well, binary posts prevent libcurl from being
 | 
						|
able to do strlen() on the data to figure out the size, so therefore we must
 | 
						|
tell libcurl the size of the post data. Setting headers in libcurl requests are
 | 
						|
done in a generic way, by building a list of our own headers and then passing
 | 
						|
that list to libcurl.
 | 
						|
 | 
						|
.nf
 | 
						|
 struct curl_slist *headers=NULL;
 | 
						|
 headers = curl_slist_append(headers, "Content-Type: text/xml");
 | 
						|
 | 
						|
 /* post binary data */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, binaryptr);
 | 
						|
 | 
						|
 /* set the size of the postfields data */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDSIZE, 23L);
 | 
						|
 | 
						|
 /* pass our list of custom made headers */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);
 | 
						|
 | 
						|
 curl_easy_perform(easyhandle); /* post away! */
 | 
						|
 | 
						|
 curl_slist_free_all(headers); /* free the header list */
 | 
						|
.fi
 | 
						|
 | 
						|
While the simple examples above cover the majority of all cases where HTTP
 | 
						|
POST operations are required, they do not do multi-part formposts. Multi-part
 | 
						|
formposts were introduced as a better way to post (possibly large) binary data
 | 
						|
and were first documented in the RFC1867 (updated in RFC2388). they are called
 | 
						|
multi-part because they are built by a chain of parts, each part being a single
 | 
						|
unit of data. Each part has its own name and contents. You can in fact create
 | 
						|
and post a multi-part formpost with the regular libcurl POST support described
 | 
						|
above, but that would require that you build a formpost yourself and provide
 | 
						|
to libcurl. To make that easier, libcurl provides a MIME API consisting in
 | 
						|
several functions: using those, you can create and fill a multi-part form.
 | 
						|
Function \fIcurl_mime_init(3)\fP creates a multi-part body; you can then
 | 
						|
append new parts to a multi-part body using \fIcurl_mime_addpart(3)\fP.
 | 
						|
There are three possible data sources for a part: memory using
 | 
						|
\fIcurl_mime_data(3)\fP, file using \fIcurl_mime_filedata(3)\fP and
 | 
						|
user-defined data read callback using \fIcurl_mime_data_cb(3)\fP.
 | 
						|
\fIcurl_mime_name(3)\fP sets a part's (i.e.: form field) name, while
 | 
						|
\fIcurl_mime_filename(3)\fP fills in the remote file name. With
 | 
						|
\fIcurl_mime_type(3)\fP, you can tell the MIME type of a part,
 | 
						|
\fIcurl_mime_headers(3)\fP allows defining the part's headers. When a
 | 
						|
multi-part body is no longer needed, you can destroy it using
 | 
						|
\fIcurl_mime_free(3)\fP.
 | 
						|
 | 
						|
The following example sets two simple text parts with plain textual contents,
 | 
						|
and then a file with binary contents and uploads the whole thing.
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_mime *multipart = curl_mime_init(easyhandle);
 | 
						|
 curl_mimepart *part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "name");
 | 
						|
 curl_mime_data(part, "daniel", CURL_ZERO_TERMINATED);
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "project");
 | 
						|
 curl_mime_data(part, "curl", CURL_ZERO_TERMINATED);
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "logotype-image");
 | 
						|
 curl_mime_filedata(part, "curl.png");
 | 
						|
 | 
						|
 /* Set the form info */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_MIMEPOST, multipart);
 | 
						|
 | 
						|
 curl_easy_perform(easyhandle); /* post away! */
 | 
						|
 | 
						|
 /* free the post data again */
 | 
						|
 curl_mime_free(multipart);
 | 
						|
.fi
 | 
						|
 | 
						|
To post multiple files for a single form field, you must supply each file in
 | 
						|
a separate part, all with the same field name. Although function
 | 
						|
\fIcurl_mime_subparts(3)\fP implements nested multi-parts, this way of
 | 
						|
multiple files posting is deprecated by RFC 7578, chapter 4.3.
 | 
						|
 | 
						|
To set the data source from an already opened FILE pointer, use:
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_mime_data_cb(part, filesize, (curl_read_callback) fread,
 | 
						|
                   (curl_seek_callback) fseek, NULL, filepointer);
 | 
						|
.fi
 | 
						|
 | 
						|
A deprecated \fIcurl_formadd(3)\fP function is still supported in libcurl.
 | 
						|
It should however not be used anymore for new designs and programs using it
 | 
						|
ought to be converted to the MIME API. It is however described here as an
 | 
						|
aid to conversion.
 | 
						|
 | 
						|
Using \fIcurl_formadd\fP, you add parts to the form. When you are done adding
 | 
						|
parts, you post the whole form.
 | 
						|
 | 
						|
The MIME API example above is expressed as follows using this function:
 | 
						|
 | 
						|
.nf
 | 
						|
 struct curl_httppost *post=NULL;
 | 
						|
 struct curl_httppost *last=NULL;
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "name",
 | 
						|
              CURLFORM_COPYCONTENTS, "daniel", CURLFORM_END);
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "project",
 | 
						|
              CURLFORM_COPYCONTENTS, "curl", CURLFORM_END);
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "logotype-image",
 | 
						|
              CURLFORM_FILECONTENT, "curl.png", CURLFORM_END);
 | 
						|
 | 
						|
 /* Set the form info */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPPOST, post);
 | 
						|
 | 
						|
 curl_easy_perform(easyhandle); /* post away! */
 | 
						|
 | 
						|
 /* free the post data again */
 | 
						|
 curl_formfree(post);
 | 
						|
.fi
 | 
						|
 | 
						|
Multipart formposts are chains of parts using MIME-style separators and
 | 
						|
headers. It means that each one of these separate parts get a few headers set
 | 
						|
that describe the individual content-type, size etc. To enable your
 | 
						|
application to handicraft this formpost even more, libcurl allows you to
 | 
						|
supply your own set of custom headers to such an individual form part. You can
 | 
						|
of course supply headers to as many parts as you like, but this little example
 | 
						|
will show how you set headers to one specific part when you add that to the
 | 
						|
post handle:
 | 
						|
 | 
						|
.nf
 | 
						|
 struct curl_slist *headers=NULL;
 | 
						|
 headers = curl_slist_append(headers, "Content-Type: text/xml");
 | 
						|
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "logotype-image",
 | 
						|
              CURLFORM_FILECONTENT, "curl.xml",
 | 
						|
              CURLFORM_CONTENTHEADER, headers,
 | 
						|
              CURLFORM_END);
 | 
						|
 | 
						|
 curl_easy_perform(easyhandle); /* post away! */
 | 
						|
 | 
						|
 curl_formfree(post); /* free post */
 | 
						|
 curl_slist_free_all(headers); /* free custom header list */
 | 
						|
.fi
 | 
						|
 | 
						|
Since all options on an easyhandle are "sticky", they remain the same until
 | 
						|
changed even if you do call \fIcurl_easy_perform(3)\fP, you may need to tell
 | 
						|
curl to go back to a plain GET request if you intend to do one as your next
 | 
						|
request. You force an easyhandle to go back to GET by using the
 | 
						|
\fICURLOPT_HTTPGET(3)\fP option:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPGET, 1L);
 | 
						|
 | 
						|
Just setting \fICURLOPT_POSTFIELDS(3)\fP to "" or NULL will *not* stop libcurl
 | 
						|
from doing a POST. It will just make it POST without any data to send!
 | 
						|
 | 
						|
.SH "Converting from deprecated form API to MIME API"
 | 
						|
Four rules have to be respected in building the multi-part:
 | 
						|
.br
 | 
						|
- The easy handle must be created before building the multi-part.
 | 
						|
.br
 | 
						|
- The multi-part is always created by a call to curl_mime_init(easyhandle).
 | 
						|
.br
 | 
						|
- Each part is created by a call to curl_mime_addpart(multipart).
 | 
						|
.br
 | 
						|
- When complete, the multi-part must be bound to the easy handle using
 | 
						|
\fICURLOPT_MIMEPOST(3)\fP instead of \fICURLOPT_HTTPPOST(3)\fP.
 | 
						|
 | 
						|
Here are some example of \fIcurl_formadd\fP calls to MIME API sequences:
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "id",
 | 
						|
              CURLFORM_COPYCONTENTS, "daniel", CURLFORM_END);
 | 
						|
              CURLFORM_CONTENTHEADER, headers,
 | 
						|
              CURLFORM_END);
 | 
						|
.fi
 | 
						|
becomes:
 | 
						|
.nf
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "id");
 | 
						|
 curl_mime_data(part, "daniel", CURL_ZERO_TERMINATED);
 | 
						|
 curl_mime_headers(part, headers, FALSE);
 | 
						|
.fi
 | 
						|
 | 
						|
Setting the last \fIcurl_mime_headers\fP argument to TRUE would have caused
 | 
						|
the headers to be automatically released upon destroyed the multi-part, thus
 | 
						|
saving a clean-up call to \fIcurl_slist_free_all(3)\fP.
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_PTRNAME, "logotype-image",
 | 
						|
              CURLFORM_FILECONTENT, "-",
 | 
						|
              CURLFORM_END);
 | 
						|
.fi
 | 
						|
becomes:
 | 
						|
.nf
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "logotype-image");
 | 
						|
 curl_mime_data_cb(part, (curl_off_t) -1, fread, fseek, NULL, stdin);
 | 
						|
.fi
 | 
						|
 | 
						|
\fIcurl_mime_name\fP always copies the field name. The special file name "-"
 | 
						|
is not supported by \fIcurl_mime_file\fP: to read an open file, use
 | 
						|
a callback source using fread(). The transfer will be chunked since the data
 | 
						|
size is unknown.
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "datafile[]",
 | 
						|
              CURLFORM_FILE, "file1",
 | 
						|
              CURLFORM_FILE, "file2",
 | 
						|
              CURLFORM_END);
 | 
						|
.fi
 | 
						|
becomes:
 | 
						|
.nf
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "datafile[]");
 | 
						|
 curl_mime_filedata(part, "file1");
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "datafile[]");
 | 
						|
 curl_mime_filedata(part, "file2");
 | 
						|
.fi
 | 
						|
 | 
						|
The deprecated multipart/mixed implementation of multiple files field is
 | 
						|
translated to two distinct parts with the same name.
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_READFUNCTION, myreadfunc);
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "stream",
 | 
						|
              CURLFORM_STREAM, arg,
 | 
						|
              CURLFORM_CONTENTLEN, (curl_off_t) datasize,
 | 
						|
              CURLFORM_FILENAME, "archive.zip",
 | 
						|
              CURLFORM_CONTENTTYPE, "application/zip",
 | 
						|
              CURLFORM_END);
 | 
						|
.fi
 | 
						|
becomes:
 | 
						|
.nf
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "stream");
 | 
						|
 curl_mime_data_cb(part, (curl_off_t) datasize,
 | 
						|
                   myreadfunc, NULL, NULL, arg);
 | 
						|
 curl_mime_filename(part, "archive.zip");
 | 
						|
 curl_mime_type(part, "application/zip");
 | 
						|
.fi
 | 
						|
 | 
						|
\fICURLOPT_READFUNCTION\fP callback is not used: it is replace by directly
 | 
						|
setting the part source data from the callback read function.
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "memfile",
 | 
						|
              CURLFORM_BUFFER, "memfile.bin",
 | 
						|
              CURLFORM_BUFFERPTR, databuffer,
 | 
						|
              CURLFORM_BUFFERLENGTH, (long) sizeof databuffer,
 | 
						|
              CURLFORM_END);
 | 
						|
.fi
 | 
						|
becomes:
 | 
						|
.nf
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "memfile");
 | 
						|
 curl_mime_data(part, databuffer, (curl_off_t) sizeof databuffer);
 | 
						|
 curl_mime_filename(part, "memfile.bin");
 | 
						|
.fi
 | 
						|
 | 
						|
\fIcurl_mime_data\fP always copies the initial data: data buffer is thus
 | 
						|
free for immediate reuse.
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_formadd(&post, &last,
 | 
						|
              CURLFORM_COPYNAME, "message",
 | 
						|
              CURLFORM_FILECONTENT, "msg.txt",
 | 
						|
              CURLFORM_END);
 | 
						|
.fi
 | 
						|
becomes:
 | 
						|
.nf
 | 
						|
 part = curl_mime_addpart(multipart);
 | 
						|
 curl_mime_name(part, "message");
 | 
						|
 curl_mime_filedata(part, "msg.txt");
 | 
						|
 curl_mime_filename(part, NULL);
 | 
						|
.fi
 | 
						|
 | 
						|
Use of \fIcurl_mime_filedata\fP sets the remote file name as a side effect: it
 | 
						|
is therefore necessary to clear it for \fICURLFORM_FILECONTENT\fP emulation.
 | 
						|
 | 
						|
.SH "Showing Progress"
 | 
						|
 | 
						|
For historical and traditional reasons, libcurl has a built-in progress meter
 | 
						|
that can be switched on and then makes it present a progress meter in your
 | 
						|
terminal.
 | 
						|
 | 
						|
Switch on the progress meter by, oddly enough, setting
 | 
						|
\fICURLOPT_NOPROGRESS(3)\fP to zero. This option is set to 1 by default.
 | 
						|
 | 
						|
For most applications however, the built-in progress meter is useless and
 | 
						|
what instead is interesting is the ability to specify a progress
 | 
						|
callback. The function pointer you pass to libcurl will then be called on
 | 
						|
irregular intervals with information about the current transfer.
 | 
						|
 | 
						|
Set the progress callback by using \fICURLOPT_PROGRESSFUNCTION(3)\fP. And pass
 | 
						|
a pointer to a function that matches this prototype:
 | 
						|
 | 
						|
.nf
 | 
						|
 int progress_callback(void *clientp,
 | 
						|
                       double dltotal,
 | 
						|
                       double dlnow,
 | 
						|
                       double ultotal,
 | 
						|
                       double ulnow);
 | 
						|
.fi
 | 
						|
 | 
						|
If any of the input arguments is unknown, a 0 will be passed. The first
 | 
						|
argument, the 'clientp' is the pointer you pass to libcurl with
 | 
						|
\fICURLOPT_PROGRESSDATA(3)\fP. libcurl will not touch it.
 | 
						|
 | 
						|
.SH "libcurl with C++"
 | 
						|
 | 
						|
There's basically only one thing to keep in mind when using C++ instead of C
 | 
						|
when interfacing libcurl:
 | 
						|
 | 
						|
The callbacks CANNOT be non-static class member functions
 | 
						|
 | 
						|
Example C++ code:
 | 
						|
 | 
						|
.nf
 | 
						|
class AClass {
 | 
						|
    static size_t write_data(void *ptr, size_t size, size_t nmemb,
 | 
						|
                             void *ourpointer)
 | 
						|
    {
 | 
						|
      /* do what you want with the data */
 | 
						|
    }
 | 
						|
 }
 | 
						|
.fi
 | 
						|
 | 
						|
.SH "Proxies"
 | 
						|
 | 
						|
What "proxy" means according to Merriam-Webster: "a person authorized to act
 | 
						|
for another" but also "the agency, function, or office of a deputy who acts as
 | 
						|
a substitute for another".
 | 
						|
 | 
						|
Proxies are exceedingly common these days. Companies often only offer Internet
 | 
						|
access to employees through their proxies. Network clients or user-agents ask
 | 
						|
the proxy for documents, the proxy does the actual request and then it returns
 | 
						|
them.
 | 
						|
 | 
						|
libcurl supports SOCKS and HTTP proxies. When a given URL is wanted, libcurl
 | 
						|
will ask the proxy for it instead of trying to connect to the actual host
 | 
						|
identified in the URL.
 | 
						|
 | 
						|
If you are using a SOCKS proxy, you may find that libcurl does not quite support
 | 
						|
all operations through it.
 | 
						|
 | 
						|
For HTTP proxies: the fact that the proxy is an HTTP proxy puts certain
 | 
						|
restrictions on what can actually happen. A requested URL that might not be a
 | 
						|
HTTP URL will be still be passed to the HTTP proxy to deliver back to
 | 
						|
libcurl. This happens transparently, and an application may not need to
 | 
						|
know. I say "may", because at times it is important to understand that all
 | 
						|
operations over an HTTP proxy use the HTTP protocol. For example, you cannot
 | 
						|
invoke your own custom FTP commands or even proper FTP directory listings.
 | 
						|
 | 
						|
.IP "Proxy Options"
 | 
						|
 | 
						|
To tell libcurl to use a proxy at a given port number:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_PROXY, "proxy-host.com:8080");
 | 
						|
 | 
						|
Some proxies require user authentication before allowing a request, and you
 | 
						|
pass that information similar to this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_PROXYUSERPWD, "user:password");
 | 
						|
 | 
						|
If you want to, you can specify the host name only in the
 | 
						|
\fICURLOPT_PROXY(3)\fP option, and set the port number separately with
 | 
						|
\fICURLOPT_PROXYPORT(3)\fP.
 | 
						|
 | 
						|
Tell libcurl what kind of proxy it is with \fICURLOPT_PROXYTYPE(3)\fP (if not,
 | 
						|
it will default to assume an HTTP proxy):
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_PROXYTYPE, CURLPROXY_SOCKS4);
 | 
						|
 | 
						|
.IP "Environment Variables"
 | 
						|
 | 
						|
libcurl automatically checks and uses a set of environment variables to know
 | 
						|
what proxies to use for certain protocols. The names of the variables are
 | 
						|
following an ancient de facto standard and are built up as "[protocol]_proxy"
 | 
						|
(note the lower casing). Which makes the variable \&'http_proxy' checked for a
 | 
						|
name of a proxy to use when the input URL is HTTP. Following the same rule,
 | 
						|
the variable named 'ftp_proxy' is checked for FTP URLs. Again, the proxies are
 | 
						|
always HTTP proxies, the different names of the variables simply allows
 | 
						|
different HTTP proxies to be used.
 | 
						|
 | 
						|
The proxy environment variable contents should be in the format
 | 
						|
\&"[protocol://][user:password@]machine[:port]". Where the protocol:// part is
 | 
						|
simply ignored if present (so http://proxy and bluerk://proxy will do the
 | 
						|
same) and the optional port number specifies on which port the proxy operates
 | 
						|
on the host. If not specified, the internal default port number will be used
 | 
						|
and that is most likely *not* the one you would like it to be.
 | 
						|
 | 
						|
There are two special environment variables. 'all_proxy' is what sets proxy
 | 
						|
for any URL in case the protocol specific variable was not set, and
 | 
						|
\&'no_proxy' defines a list of hosts that should not use a proxy even though a
 | 
						|
variable may say so. If 'no_proxy' is a plain asterisk ("*") it matches all
 | 
						|
hosts.
 | 
						|
 | 
						|
To explicitly disable libcurl's checking for and using the proxy environment
 | 
						|
variables, set the proxy name to "" - an empty string - with
 | 
						|
\fICURLOPT_PROXY(3)\fP.
 | 
						|
.IP "SSL and Proxies"
 | 
						|
 | 
						|
SSL is for secure point-to-point connections. This involves strong encryption
 | 
						|
and similar things, which effectively makes it impossible for a proxy to
 | 
						|
operate as a "man in between" which the proxy's task is, as previously
 | 
						|
discussed. Instead, the only way to have SSL work over an HTTP proxy is to ask
 | 
						|
the proxy to tunnel everything through without being able to check or fiddle
 | 
						|
with the traffic.
 | 
						|
 | 
						|
Opening an SSL connection over an HTTP proxy is therefore a matter of asking the
 | 
						|
proxy for a straight connection to the target host on a specified port. This
 | 
						|
is made with the HTTP request CONNECT. ("please mr proxy, connect me to that
 | 
						|
remote host").
 | 
						|
 | 
						|
Because of the nature of this operation, where the proxy has no idea what kind
 | 
						|
of data that is passed in and out through this tunnel, this breaks some of the
 | 
						|
few advantages that come from using a proxy, such as caching. Many
 | 
						|
organizations prevent this kind of tunneling to other destination port numbers
 | 
						|
than 443 (which is the default HTTPS port number).
 | 
						|
 | 
						|
.IP "Tunneling Through Proxy"
 | 
						|
As explained above, tunneling is required for SSL to work and often even
 | 
						|
restricted to the operation intended for SSL; HTTPS.
 | 
						|
 | 
						|
This is however not the only time proxy-tunneling might offer benefits to
 | 
						|
you or your application.
 | 
						|
 | 
						|
As tunneling opens a direct connection from your application to the remote
 | 
						|
machine, it suddenly also re-introduces the ability to do non-HTTP
 | 
						|
operations over an HTTP proxy. You can in fact use things such as FTP
 | 
						|
upload or FTP custom commands this way.
 | 
						|
 | 
						|
Again, this is often prevented by the administrators of proxies and is
 | 
						|
rarely allowed.
 | 
						|
 | 
						|
Tell libcurl to use proxy tunneling like this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPPROXYTUNNEL, 1L);
 | 
						|
 | 
						|
In fact, there might even be times when you want to do plain HTTP
 | 
						|
operations using a tunnel like this, as it then enables you to operate on
 | 
						|
the remote server instead of asking the proxy to do so. libcurl will not
 | 
						|
stand in the way for such innovative actions either!
 | 
						|
 | 
						|
.IP "Proxy Auto-Config"
 | 
						|
 | 
						|
Netscape first came up with this. It is basically a web page (usually using a
 | 
						|
\&.pac extension) with a JavaScript that when executed by the browser with the
 | 
						|
requested URL as input, returns information to the browser on how to connect
 | 
						|
to the URL. The returned information might be "DIRECT" (which means no proxy
 | 
						|
should be used), "PROXY host:port" (to tell the browser where the proxy for
 | 
						|
this particular URL is) or "SOCKS host:port" (to direct the browser to a SOCKS
 | 
						|
proxy).
 | 
						|
 | 
						|
libcurl has no means to interpret or evaluate JavaScript and thus it does not
 | 
						|
support this. If you get yourself in a position where you face this nasty
 | 
						|
invention, the following advice have been mentioned and used in the past:
 | 
						|
 | 
						|
- Depending on the JavaScript complexity, write up a script that translates it
 | 
						|
to another language and execute that.
 | 
						|
 | 
						|
- Read the JavaScript code and rewrite the same logic in another language.
 | 
						|
 | 
						|
- Implement a JavaScript interpreter; people have successfully used the
 | 
						|
Mozilla JavaScript engine in the past.
 | 
						|
 | 
						|
- Ask your admins to stop this, for a static proxy setup or similar.
 | 
						|
 | 
						|
.SH "Persistence Is The Way to Happiness"
 | 
						|
 | 
						|
Re-cycling the same easy handle several times when doing multiple requests is
 | 
						|
the way to go.
 | 
						|
 | 
						|
After each single \fIcurl_easy_perform(3)\fP operation, libcurl will keep the
 | 
						|
connection alive and open. A subsequent request using the same easy handle to
 | 
						|
the same host might just be able to use the already open connection! This
 | 
						|
reduces network impact a lot.
 | 
						|
 | 
						|
Even if the connection is dropped, all connections involving SSL to the same
 | 
						|
host again, will benefit from libcurl's session ID cache that drastically
 | 
						|
reduces re-connection time.
 | 
						|
 | 
						|
FTP connections that are kept alive save a lot of time, as the command-
 | 
						|
response round-trips are skipped, and also you do not risk getting blocked
 | 
						|
without permission to login again like on many FTP servers only allowing N
 | 
						|
persons to be logged in at the same time.
 | 
						|
 | 
						|
libcurl caches DNS name resolving results, to make lookups of a previously
 | 
						|
looked up name a lot faster.
 | 
						|
 | 
						|
Other interesting details that improve performance for subsequent requests
 | 
						|
may also be added in the future.
 | 
						|
 | 
						|
Each easy handle will attempt to keep the last few connections alive for a
 | 
						|
while in case they are to be used again. You can set the size of this "cache"
 | 
						|
with the \fICURLOPT_MAXCONNECTS(3)\fP option. Default is 5. There is rarely
 | 
						|
any point in changing this value, and if you think of changing this it is
 | 
						|
often just a matter of thinking again.
 | 
						|
 | 
						|
To force your upcoming request to not use an already existing connection (it
 | 
						|
will even close one first if there happens to be one alive to the same host
 | 
						|
you are about to operate on), you can do that by setting
 | 
						|
\fICURLOPT_FRESH_CONNECT(3)\fP to 1. In a similar spirit, you can also forbid
 | 
						|
the upcoming request to be "lying" around and possibly get re-used after the
 | 
						|
request by setting \fICURLOPT_FORBID_REUSE(3)\fP to 1.
 | 
						|
 | 
						|
.SH "HTTP Headers Used by libcurl"
 | 
						|
When you use libcurl to do HTTP requests, it will pass along a series of headers
 | 
						|
automatically. It might be good for you to know and understand these. You
 | 
						|
can replace or remove them by using the \fICURLOPT_HTTPHEADER(3)\fP option.
 | 
						|
 | 
						|
.IP "Host"
 | 
						|
This header is required by HTTP 1.1 and even many 1.0 servers and should be
 | 
						|
the name of the server we want to talk to. This includes the port number if
 | 
						|
anything but default.
 | 
						|
 | 
						|
.IP "Accept"
 | 
						|
\&"*/*".
 | 
						|
 | 
						|
.IP "Expect"
 | 
						|
When doing POST requests, libcurl sets this header to \&"100-continue" to ask
 | 
						|
the server for an "OK" message before it proceeds with sending the data part
 | 
						|
of the post. If the POSTed data amount is deemed "small", libcurl will not use
 | 
						|
this header.
 | 
						|
 | 
						|
.SH "Customizing Operations"
 | 
						|
There is an ongoing development today where more and more protocols are built
 | 
						|
upon HTTP for transport. This has obvious benefits as HTTP is a tested and
 | 
						|
reliable protocol that is widely deployed and has excellent proxy-support.
 | 
						|
 | 
						|
When you use one of these protocols, and even when doing other kinds of
 | 
						|
programming you may need to change the traditional HTTP (or FTP or...)
 | 
						|
manners. You may need to change words, headers or various data.
 | 
						|
 | 
						|
libcurl is your friend here too.
 | 
						|
 | 
						|
.IP CUSTOMREQUEST
 | 
						|
If just changing the actual HTTP request keyword is what you want, like when
 | 
						|
GET, HEAD or POST is not good enough for you, \fICURLOPT_CUSTOMREQUEST(3)\fP
 | 
						|
is there for you. It is simple to use:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_CUSTOMREQUEST, "MYOWNREQUEST");
 | 
						|
 | 
						|
When using the custom request, you change the request keyword of the actual
 | 
						|
request you are performing. Thus, by default you make a GET request but you can
 | 
						|
also make a POST operation (as described before) and then replace the POST
 | 
						|
keyword if you want to. you are the boss.
 | 
						|
 | 
						|
.IP "Modify Headers"
 | 
						|
HTTP-like protocols pass a series of headers to the server when doing the
 | 
						|
request, and you are free to pass any amount of extra headers that you
 | 
						|
think fit. Adding headers is this easy:
 | 
						|
 | 
						|
.nf
 | 
						|
 struct curl_slist *headers=NULL; /* init to NULL is important */
 | 
						|
 | 
						|
 headers = curl_slist_append(headers, "Hey-server-hey: how are you?");
 | 
						|
 headers = curl_slist_append(headers, "X-silly-content: yes");
 | 
						|
 | 
						|
 /* pass our list of custom made headers */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);
 | 
						|
 | 
						|
 curl_easy_perform(easyhandle); /* transfer http */
 | 
						|
 | 
						|
 curl_slist_free_all(headers); /* free the header list */
 | 
						|
.fi
 | 
						|
 | 
						|
\&... and if you think some of the internally generated headers, such as
 | 
						|
Accept: or Host: do not contain the data you want them to contain, you can
 | 
						|
replace them by simply setting them too:
 | 
						|
 | 
						|
.nf
 | 
						|
 headers = curl_slist_append(headers, "Accept: Agent-007");
 | 
						|
 headers = curl_slist_append(headers, "Host: munged.host.line");
 | 
						|
.fi
 | 
						|
 | 
						|
.IP "Delete Headers"
 | 
						|
If you replace an existing header with one with no contents, you will prevent
 | 
						|
the header from being sent. For instance, if you want to completely prevent the
 | 
						|
\&"Accept:" header from being sent, you can disable it with code similar to this:
 | 
						|
 | 
						|
 headers = curl_slist_append(headers, "Accept:");
 | 
						|
 | 
						|
Both replacing and canceling internal headers should be done with careful
 | 
						|
consideration and you should be aware that you may violate the HTTP protocol
 | 
						|
when doing so.
 | 
						|
 | 
						|
.IP "Enforcing chunked transfer-encoding"
 | 
						|
 | 
						|
By making sure a request uses the custom header "Transfer-Encoding: chunked"
 | 
						|
when doing a non-GET HTTP operation, libcurl will switch over to "chunked"
 | 
						|
upload, even though the size of the data to upload might be known. By default,
 | 
						|
libcurl usually switches over to chunked upload automatically if the upload
 | 
						|
data size is unknown.
 | 
						|
 | 
						|
.IP "HTTP Version"
 | 
						|
 | 
						|
All HTTP requests includes the version number to tell the server which version
 | 
						|
we support. libcurl speaks HTTP 1.1 by default. Some old servers do not like
 | 
						|
getting 1.1-requests and when dealing with stubborn old things like that, you
 | 
						|
can tell libcurl to use 1.0 instead by doing something like this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_0);
 | 
						|
 | 
						|
.IP "FTP Custom Commands"
 | 
						|
 | 
						|
Not all protocols are HTTP-like, and thus the above may not help you when
 | 
						|
you want to make, for example, your FTP transfers to behave differently.
 | 
						|
 | 
						|
Sending custom commands to an FTP server means that you need to send the
 | 
						|
commands exactly as the FTP server expects them (RFC959 is a good guide here),
 | 
						|
and you can only use commands that work on the control-connection alone. All
 | 
						|
kinds of commands that require data interchange and thus need a
 | 
						|
data-connection must be left to libcurl's own judgement. Also be aware that
 | 
						|
libcurl will do its best to change directory to the target directory before
 | 
						|
doing any transfer, so if you change directory (with CWD or similar) you might
 | 
						|
confuse libcurl and then it might not attempt to transfer the file in the
 | 
						|
correct remote directory.
 | 
						|
 | 
						|
A little example that deletes a given file before an operation:
 | 
						|
 | 
						|
.nf
 | 
						|
 headers = curl_slist_append(headers, "DELE file-to-remove");
 | 
						|
 | 
						|
 /* pass the list of custom commands to the handle */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_QUOTE, headers);
 | 
						|
 | 
						|
 curl_easy_perform(easyhandle); /* transfer ftp data! */
 | 
						|
 | 
						|
 curl_slist_free_all(headers); /* free the header list */
 | 
						|
.fi
 | 
						|
 | 
						|
If you would instead want this operation (or chain of operations) to happen
 | 
						|
_after_ the data transfer took place the option to \fIcurl_easy_setopt(3)\fP
 | 
						|
would instead be called \fICURLOPT_POSTQUOTE(3)\fP and used the exact same
 | 
						|
way.
 | 
						|
 | 
						|
The custom FTP command will be issued to the server in the same order they are
 | 
						|
added to the list, and if a command gets an error code returned back from the
 | 
						|
server, no more commands will be issued and libcurl will bail out with an
 | 
						|
error code (CURLE_QUOTE_ERROR). Note that if you use \fICURLOPT_QUOTE(3)\fP to
 | 
						|
send commands before a transfer, no transfer will actually take place when a
 | 
						|
quote command has failed.
 | 
						|
 | 
						|
If you set the \fICURLOPT_HEADER(3)\fP to 1, you will tell libcurl to get
 | 
						|
information about the target file and output "headers" about it. The headers
 | 
						|
will be in "HTTP-style", looking like they do in HTTP.
 | 
						|
 | 
						|
The option to enable headers or to run custom FTP commands may be useful to
 | 
						|
combine with \fICURLOPT_NOBODY(3)\fP. If this option is set, no actual file
 | 
						|
content transfer will be performed.
 | 
						|
 | 
						|
.IP "FTP Custom CUSTOMREQUEST"
 | 
						|
If you do want to list the contents of an FTP directory using your own defined
 | 
						|
FTP command, \fICURLOPT_CUSTOMREQUEST(3)\fP will do just that. "NLST" is the
 | 
						|
default one for listing directories but you are free to pass in your idea of a
 | 
						|
good alternative.
 | 
						|
 | 
						|
.SH "Cookies Without Chocolate Chips"
 | 
						|
In the HTTP sense, a cookie is a name with an associated value. A server sends
 | 
						|
the name and value to the client, and expects it to get sent back on every
 | 
						|
subsequent request to the server that matches the particular conditions
 | 
						|
set. The conditions include that the domain name and path match and that the
 | 
						|
cookie has not become too old.
 | 
						|
 | 
						|
In real-world cases, servers send new cookies to replace existing ones to
 | 
						|
update them. Server use cookies to "track" users and to keep "sessions".
 | 
						|
 | 
						|
Cookies are sent from server to clients with the header Set-Cookie: and
 | 
						|
they are sent from clients to servers with the Cookie: header.
 | 
						|
 | 
						|
To just send whatever cookie you want to a server, you can use
 | 
						|
\fICURLOPT_COOKIE(3)\fP to set a cookie string like this:
 | 
						|
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_COOKIE, "name1=var1; name2=var2;");
 | 
						|
 | 
						|
In many cases, that is not enough. You might want to dynamically save
 | 
						|
whatever cookies the remote server passes to you, and make sure those cookies
 | 
						|
are then used accordingly on later requests.
 | 
						|
 | 
						|
One way to do this, is to save all headers you receive in a plain file and
 | 
						|
when you make a request, you tell libcurl to read the previous headers to
 | 
						|
figure out which cookies to use. Set the header file to read cookies from with
 | 
						|
\fICURLOPT_COOKIEFILE(3)\fP.
 | 
						|
 | 
						|
The \fICURLOPT_COOKIEFILE(3)\fP option also automatically enables the cookie
 | 
						|
parser in libcurl. Until the cookie parser is enabled, libcurl will not parse
 | 
						|
or understand incoming cookies and they will just be ignored. However, when
 | 
						|
the parser is enabled the cookies will be understood and the cookies will be
 | 
						|
kept in memory and used properly in subsequent requests when the same handle
 | 
						|
is used. Many times this is enough, and you may not have to save the cookies
 | 
						|
to disk at all. Note that the file you specify to \fICURLOPT_COOKIEFILE(3)\fP
 | 
						|
does not have to exist to enable the parser, so a common way to just enable the
 | 
						|
parser and not read any cookies is to use the name of a file you know does not
 | 
						|
exist.
 | 
						|
 | 
						|
If you would rather use existing cookies that you have previously received with
 | 
						|
your Netscape or Mozilla browsers, you can make libcurl use that cookie file
 | 
						|
as input. The \fICURLOPT_COOKIEFILE(3)\fP is used for that too, as libcurl
 | 
						|
will automatically find out what kind of file it is and act accordingly.
 | 
						|
 | 
						|
Perhaps the most advanced cookie operation libcurl offers, is saving the
 | 
						|
entire internal cookie state back into a Netscape/Mozilla formatted cookie
 | 
						|
file. We call that the cookie-jar. When you set a file name with
 | 
						|
\fICURLOPT_COOKIEJAR(3)\fP, that file name will be created and all received
 | 
						|
cookies will be stored in it when \fIcurl_easy_cleanup(3)\fP is called. This
 | 
						|
enables cookies to get passed on properly between multiple handles without any
 | 
						|
information getting lost.
 | 
						|
 | 
						|
.SH "FTP Peculiarities We Need"
 | 
						|
 | 
						|
FTP transfers use a second TCP/IP connection for the data transfer. This is
 | 
						|
usually a fact you can forget and ignore but at times this fact will come
 | 
						|
back to haunt you. libcurl offers several different ways to customize how the
 | 
						|
second connection is being made.
 | 
						|
 | 
						|
libcurl can either connect to the server a second time or tell the server to
 | 
						|
connect back to it. The first option is the default and it is also what works
 | 
						|
best for all the people behind firewalls, NATs or IP-masquerading setups.
 | 
						|
libcurl then tells the server to open up a new port and wait for a second
 | 
						|
connection. This is by default attempted with EPSV first, and if that does not
 | 
						|
work it tries PASV instead. (EPSV is an extension to the original FTP spec
 | 
						|
and does not exist nor work on all FTP servers.)
 | 
						|
 | 
						|
You can prevent libcurl from first trying the EPSV command by setting
 | 
						|
\fICURLOPT_FTP_USE_EPSV(3)\fP to zero.
 | 
						|
 | 
						|
In some cases, you will prefer to have the server connect back to you for the
 | 
						|
second connection. This might be when the server is perhaps behind a firewall
 | 
						|
or something and only allows connections on a single port. libcurl then
 | 
						|
informs the remote server which IP address and port number to connect to.
 | 
						|
This is made with the \fICURLOPT_FTPPORT(3)\fP option. If you set it to "-",
 | 
						|
libcurl will use your system's "default IP address". If you want to use a
 | 
						|
particular IP, you can set the full IP address, a host name to resolve to an
 | 
						|
IP address or even a local network interface name that libcurl will get the IP
 | 
						|
address from.
 | 
						|
 | 
						|
When doing the "PORT" approach, libcurl will attempt to use the EPRT and the
 | 
						|
LPRT before trying PORT, as they work with more protocols. You can disable
 | 
						|
this behavior by setting \fICURLOPT_FTP_USE_EPRT(3)\fP to zero.
 | 
						|
 | 
						|
.SH "MIME API revisited for SMTP and IMAP"
 | 
						|
In addition to support HTTP multi-part form fields, the MIME API can be used
 | 
						|
to build structured email messages and send them via SMTP or append such
 | 
						|
messages to IMAP directories.
 | 
						|
 | 
						|
A structured email message may contain several parts: some are displayed
 | 
						|
inline by the MUA, some are attachments. Parts can also be structured as
 | 
						|
multi-part, for example to include another email message or to offer several
 | 
						|
text formats alternatives. This can be nested to any level.
 | 
						|
 | 
						|
To build such a message, you prepare the nth-level multi-part and then include
 | 
						|
it as a source to the parent multi-part using function
 | 
						|
\fIcurl_mime_subparts(3)\fP. Once it has been
 | 
						|
bound to its parent multi-part, a nth-level multi-part belongs to it and
 | 
						|
should not be freed explicitly.
 | 
						|
 | 
						|
Email messages data is not supposed to be non-ascii and line length is
 | 
						|
limited: fortunately, some transfer encodings are defined by the standards to
 | 
						|
support the transmission of such incompatible data. Function
 | 
						|
\fIcurl_mime_encoder(3)\fP tells a part that its source data must be encoded
 | 
						|
before being sent. It also generates the corresponding header for that part.
 | 
						|
If the part data you want to send is already encoded in such a scheme, do not
 | 
						|
use this function (this would over-encode it), but explicitly set the
 | 
						|
corresponding part header.
 | 
						|
 | 
						|
Upon sending such a message, libcurl prepends it with the header list
 | 
						|
set with \fICURLOPT_HTTPHEADER(3)\fP, as 0th-level mime part headers.
 | 
						|
 | 
						|
Here is an example building an email message with an inline plain/html text
 | 
						|
alternative and a file attachment encoded in base64:
 | 
						|
 | 
						|
.nf
 | 
						|
 curl_mime *message = curl_mime_init(easyhandle);
 | 
						|
 | 
						|
 /* The inline part is an alternative proposing the html and the text
 | 
						|
    versions of the email. */
 | 
						|
 curl_mime *alt = curl_mime_init(easyhandle);
 | 
						|
 | 
						|
 /* HTML message. */
 | 
						|
 curl_mimepart *part = curl_mime_addpart(alt);
 | 
						|
 curl_mime_data(part, "<html><body><p>This is HTML</p></body></html>",
 | 
						|
                      CURL_ZERO_TERMINATED);
 | 
						|
 curl_mime_type(part, "text/html");
 | 
						|
 | 
						|
 /* Text message. */
 | 
						|
 part = curl_mime_addpart(alt);
 | 
						|
 curl_mime_data(part, "This is plain text message",
 | 
						|
                      CURL_ZERO_TERMINATED);
 | 
						|
 | 
						|
 /* Create the inline part. */
 | 
						|
 part = curl_mime_addpart(message);
 | 
						|
 curl_mime_subparts(part, alt);
 | 
						|
 curl_mime_type(part, "multipart/alternative");
 | 
						|
 struct curl_slist *headers = curl_slist_append(NULL,
 | 
						|
                   "Content-Disposition: inline");
 | 
						|
 curl_mime_headers(part, headers, TRUE);
 | 
						|
 | 
						|
 /* Add the attachment. */
 | 
						|
 part = curl_mime_addpart(message);
 | 
						|
 curl_mime_filedata(part, "manual.pdf");
 | 
						|
 curl_mime_encoder(part, "base64");
 | 
						|
 | 
						|
 /* Build the mail headers. */
 | 
						|
 headers = curl_slist_append(NULL, "From: me@example.com");
 | 
						|
 headers = curl_slist_append(headers, "To: you@example.com");
 | 
						|
 | 
						|
 /* Set these into the easy handle. */
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);
 | 
						|
 curl_easy_setopt(easyhandle, CURLOPT_MIMEPOST, mime);
 | 
						|
.fi
 | 
						|
 | 
						|
It should be noted that appending a message to an IMAP directory requires
 | 
						|
the message size to be known prior upload. It is therefore not possible to
 | 
						|
include parts with unknown data size in this context.
 | 
						|
 | 
						|
.SH "Headers Equal Fun"
 | 
						|
 | 
						|
Some protocols provide "headers", meta-data separated from the normal
 | 
						|
data. These headers are by default not included in the normal data stream, but
 | 
						|
you can make them appear in the data stream by setting \fICURLOPT_HEADER(3)\fP
 | 
						|
to 1.
 | 
						|
 | 
						|
What might be even more useful, is libcurl's ability to separate the headers
 | 
						|
from the data and thus make the callbacks differ. You can for example set a
 | 
						|
different pointer to pass to the ordinary write callback by setting
 | 
						|
\fICURLOPT_HEADERDATA(3)\fP.
 | 
						|
 | 
						|
Or, you can set an entirely separate function to receive the headers, by using
 | 
						|
\fICURLOPT_HEADERFUNCTION(3)\fP.
 | 
						|
 | 
						|
The headers are passed to the callback function one by one, and you can
 | 
						|
depend on that fact. It makes it easier for you to add custom header parsers
 | 
						|
etc.
 | 
						|
 | 
						|
\&"Headers" for FTP transfers equal all the FTP server responses. They are not
 | 
						|
actually true headers, but in this case we pretend they are! ;-)
 | 
						|
 | 
						|
.SH "Post Transfer Information"
 | 
						|
See \fIcurl_easy_getinfo(3)\fP.
 | 
						|
.SH "The multi Interface"
 | 
						|
The easy interface as described in detail in this document is a synchronous
 | 
						|
interface that transfers one file at a time and does not return until it is
 | 
						|
done.
 | 
						|
 | 
						|
The multi interface, on the other hand, allows your program to transfer
 | 
						|
multiple files in both directions at the same time, without forcing you to use
 | 
						|
multiple threads. The name might make it seem that the multi interface is for
 | 
						|
multi-threaded programs, but the truth is almost the reverse. The multi
 | 
						|
interface allows a single-threaded application to perform the same kinds of
 | 
						|
multiple, simultaneous transfers that multi-threaded programs can perform. It
 | 
						|
allows many of the benefits of multi-threaded transfers without the complexity
 | 
						|
of managing and synchronizing many threads.
 | 
						|
 | 
						|
To complicate matters somewhat more, there are even two versions of the multi
 | 
						|
interface. The event based one, also called multi_socket and the "normal one"
 | 
						|
designed for using with select(). See the libcurl-multi.3 man page for details
 | 
						|
on the multi_socket event based API, this description here is for the select()
 | 
						|
oriented one.
 | 
						|
 | 
						|
To use this interface, you are better off if you first understand the basics
 | 
						|
of how to use the easy interface. The multi interface is simply a way to make
 | 
						|
multiple transfers at the same time by adding up multiple easy handles into
 | 
						|
a "multi stack".
 | 
						|
 | 
						|
You create the easy handles you want, one for each concurrent transfer, and
 | 
						|
you set all the options just like you learned above, and then you create a
 | 
						|
multi handle with \fIcurl_multi_init(3)\fP and add all those easy handles to
 | 
						|
that multi handle with \fIcurl_multi_add_handle(3)\fP.
 | 
						|
 | 
						|
When you have added the handles you have for the moment (you can still add new
 | 
						|
ones at any time), you start the transfers by calling
 | 
						|
\fIcurl_multi_perform(3)\fP.
 | 
						|
 | 
						|
\fIcurl_multi_perform(3)\fP is asynchronous. It will only perform what can be
 | 
						|
done now and then return control to your program. It is designed to never
 | 
						|
block. You need to keep calling the function until all transfers are
 | 
						|
completed.
 | 
						|
 | 
						|
The best usage of this interface is when you do a select() on all possible
 | 
						|
file descriptors or sockets to know when to call libcurl again. This also
 | 
						|
makes it easy for you to wait and respond to actions on your own application's
 | 
						|
sockets/handles. You figure out what to select() for by using
 | 
						|
\fIcurl_multi_fdset(3)\fP, that fills in a set of fd_set variables for you
 | 
						|
with the particular file descriptors libcurl uses for the moment.
 | 
						|
 | 
						|
When you then call select(), it will return when one of the file handles signal
 | 
						|
action and you then call \fIcurl_multi_perform(3)\fP to allow libcurl to do
 | 
						|
what it wants to do. Take note that libcurl does also feature some time-out
 | 
						|
code so we advise you to never use long timeouts on select() before you call
 | 
						|
\fIcurl_multi_perform(3)\fP again. \fIcurl_multi_timeout(3)\fP is provided to
 | 
						|
help you get a suitable timeout period.
 | 
						|
 | 
						|
Another precaution you should use: always call \fIcurl_multi_fdset(3)\fP
 | 
						|
immediately before the select() call since the current set of file descriptors
 | 
						|
may change in any curl function invoke.
 | 
						|
 | 
						|
If you want to stop the transfer of one of the easy handles in the stack, you
 | 
						|
can use \fIcurl_multi_remove_handle(3)\fP to remove individual easy
 | 
						|
handles. Remember that easy handles should be \fIcurl_easy_cleanup(3)\fPed.
 | 
						|
 | 
						|
When a transfer within the multi stack has finished, the counter of running
 | 
						|
transfers (as filled in by \fIcurl_multi_perform(3)\fP) will decrease. When
 | 
						|
the number reaches zero, all transfers are done.
 | 
						|
 | 
						|
\fIcurl_multi_info_read(3)\fP can be used to get information about completed
 | 
						|
transfers. It then returns the CURLcode for each easy transfer, to allow you
 | 
						|
to figure out success on each individual transfer.
 | 
						|
 | 
						|
.SH "SSL, Certificates and Other Tricks"
 | 
						|
 | 
						|
 [ seeding, passwords, keys, certificates, ENGINE, ca certs ]
 | 
						|
 | 
						|
.SH "Sharing Data Between Easy Handles"
 | 
						|
You can share some data between easy handles when the easy interface is used,
 | 
						|
and some data is share automatically when you use the multi interface.
 | 
						|
 | 
						|
When you add easy handles to a multi handle, these easy handles will
 | 
						|
automatically share a lot of the data that otherwise would be kept on a
 | 
						|
per-easy handle basis when the easy interface is used.
 | 
						|
 | 
						|
The DNS cache is shared between handles within a multi handle, making
 | 
						|
subsequent name resolving faster, and the connection pool that is kept to
 | 
						|
better allow persistent connections and connection re-use is also shared. If
 | 
						|
you are using the easy interface, you can still share these between specific
 | 
						|
easy handles by using the share interface, see \fIlibcurl-share(3)\fP.
 | 
						|
 | 
						|
Some things are never shared automatically, not within multi handles, like for
 | 
						|
example cookies so the only way to share that is with the share interface.
 | 
						|
.SH "Footnotes"
 | 
						|
 | 
						|
.IP "[1]"
 | 
						|
libcurl 7.10.3 and later have the ability to switch over to chunked
 | 
						|
Transfer-Encoding in cases where HTTP uploads are done with data of an unknown
 | 
						|
size.
 | 
						|
.IP "[2]"
 | 
						|
This happens on Windows machines when libcurl is built and used as a
 | 
						|
DLL. However, you can still do this on Windows if you link with a static
 | 
						|
library.
 | 
						|
.IP "[3]"
 | 
						|
The curl-config tool is generated at build-time (on Unix-like systems) and
 | 
						|
should be installed with the 'make install' or similar instruction that
 | 
						|
installs the library, header files, man pages etc.
 | 
						|
.IP "[4]"
 | 
						|
This behavior was different in versions before 7.17.0, where strings had to
 | 
						|
remain valid past the end of the \fIcurl_easy_setopt(3)\fP call.
 | 
						|
.SH "SEE ALSO"
 | 
						|
.BR libcurl-errors "(3), " libcurl-multi "(3), " libcurl-easy "(3) "
 |