{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "oZs0KGcz01BY" }, "source": [ "## Задание 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "id": "gz18QPRz03Ec" }, "source": [ "### 1) Подготовка рабочей среды и импорт библиотек\n", "\n", "Инициализируем рабочую среду Google Colab и подключаем необходимые библиотеки для работы с нейронными сетями и обработки данных." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "mr9IszuQ1ANG" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-12-07 19:27:47.288122: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } ], "source": [ "# Подключение необходимых библиотек и модулей\n", "import os\n", "\n", "\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.metrics import classification_report, confusion_matrix\n", "from sklearn.metrics import ConfusionMatrixDisplay" ] }, { "cell_type": "markdown", "metadata": { "id": "FFRtE0TN1AiA" }, "source": [ "### 2) Загрузка датасета MNIST\n", "\n", "Загружаем стандартный набор данных MNIST, который содержит изображения рукописных цифр от 0 до 9 с соответствующими метками." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "Ixw5Sp0_1A-w" }, "outputs": [], "source": [ "# Импорт и загрузка датасета MNIST\n", "from keras.datasets import mnist\n", "(X_train, y_train), (X_test, y_test) = mnist.load_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "aCo_lUXl1BPV" }, "source": [ "### 3) Разделение данных на обучающую и тестовую выборки\n", "\n", "Производим собственное разбиение датасета в соотношении 60 000:10 000. Для воспроизводимости результатов используем параметр random_state = 3 (вычисляется как 4k - 1, где k = 1 - номер нашей бригады)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "BrSjcpEe1BeV" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of X train: (60000, 28, 28)\n", "Shape of y train: (60000,)\n", "Shape of X test: (10000, 28, 28)\n", "Shape of y test: (10000,)\n" ] } ], "source": [ "# Создание собственного разбиения датасета\n", "from sklearn.model_selection import train_test_split\n", "\n", "# Объединение исходных обучающей и тестовой выборок в единый набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "\n", "# Разделение на обучающую и тестовую выборки согласно заданию\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 60000,\n", " random_state = 3)\n", "# Вывод размерностей полученных массивов\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "4hclnNaD1BuB" }, "source": [ "### 4) Предобработка данных\n", "\n", "Выполняем нормализацию пикселей изображений (приведение к диапазону [0, 1]) и преобразование меток в формат one-hot encoding для корректной работы с категориальной функцией потерь." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "xJH87ISq1B9h" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of transformed X train: (60000, 28, 28, 1)\n", "Shape of transformed X test: (10000, 28, 28, 1)\n", "Shape of transformed y train: (60000, 10)\n", "Shape of transformed y test: (10000, 10)\n" ] } ], "source": [ "# Определение параметров данных и модели\n", "num_classes = 10\n", "input_shape = (28, 28, 1)\n", "\n", "# Нормализация значений пикселей: приведение к диапазону [0, 1]\n", "X_train = X_train / 255\n", "X_test = X_test / 255\n", "\n", "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", "# размерность (высота, ширина, количество каналов)\n", "\n", "X_train = np.expand_dims(X_train, -1)\n", "X_test = np.expand_dims(X_test, -1)\n", "print('Shape of transformed X train:', X_train.shape)\n", "print('Shape of transformed X test:', X_test.shape)\n", "\n", "# Преобразование меток в формат one-hot encoding\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "print('Shape of transformed y train:', y_train.shape)\n", "print('Shape of transformed y test:', y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "7x99O8ig1CLh" }, "source": [ "### 5) Построение и обучение сверточной нейронной сети\n", "\n", "Создаем архитектуру сверточной нейронной сети с использованием сверточных слоев, пулинга и регуляризации. Обучаем модель на подготовленных данных с выделением части данных для валидации." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "Un561zSH1Cmv" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, { "data": { "text/html": [ "
Model: \"sequential\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d (Conv2D) │ (None, 26, 26, 32) │ 320 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d (MaxPooling2D) │ (None, 13, 13, 32) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_1 (Conv2D) │ (None, 11, 11, 64) │ 18,496 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_1 (MaxPooling2D) │ (None, 5, 5, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout (Dropout) │ (None, 5, 5, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten (Flatten) │ (None, 1600) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense (Dense) │ (None, 10) │ 16,010 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m320\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1600\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,010\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 34,826 (136.04 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 34,826 (136.04 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Создание модели сверточной нейронной сети\n", "model = Sequential()\n", "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", "\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "q_h8PxkN9m0v" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 184ms/step - accuracy: 0.7694 - loss: 0.7610 - val_accuracy: 0.9437 - val_loss: 0.2013\n", "Epoch 2/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 161ms/step - accuracy: 0.9426 - loss: 0.1908 - val_accuracy: 0.9685 - val_loss: 0.1134\n", "Epoch 3/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 173ms/step - accuracy: 0.9609 - loss: 0.1283 - val_accuracy: 0.9747 - val_loss: 0.0851\n", "Epoch 4/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m22s\u001b[0m 210ms/step - accuracy: 0.9688 - loss: 0.1022 - val_accuracy: 0.9785 - val_loss: 0.0708\n", "Epoch 5/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 201ms/step - accuracy: 0.9730 - loss: 0.0871 - val_accuracy: 0.9808 - val_loss: 0.0602\n", "Epoch 6/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 200ms/step - accuracy: 0.9758 - loss: 0.0779 - val_accuracy: 0.9823 - val_loss: 0.0547\n", "Epoch 7/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m22s\u001b[0m 206ms/step - accuracy: 0.9781 - loss: 0.0707 - val_accuracy: 0.9820 - val_loss: 0.0515\n", "Epoch 8/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 194ms/step - accuracy: 0.9805 - loss: 0.0637 - val_accuracy: 0.9858 - val_loss: 0.0468\n", "Epoch 9/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 191ms/step - accuracy: 0.9813 - loss: 0.0611 - val_accuracy: 0.9865 - val_loss: 0.0419\n", "Epoch 10/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 190ms/step - accuracy: 0.9816 - loss: 0.0574 - val_accuracy: 0.9865 - val_loss: 0.0402\n", "Epoch 11/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 190ms/step - accuracy: 0.9831 - loss: 0.0531 - val_accuracy: 0.9873 - val_loss: 0.0401\n", "Epoch 12/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 194ms/step - accuracy: 0.9840 - loss: 0.0503 - val_accuracy: 0.9880 - val_loss: 0.0367\n", "Epoch 13/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 190ms/step - accuracy: 0.9846 - loss: 0.0476 - val_accuracy: 0.9882 - val_loss: 0.0372\n", "Epoch 14/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 195ms/step - accuracy: 0.9845 - loss: 0.0479 - val_accuracy: 0.9880 - val_loss: 0.0360\n", "Epoch 15/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 194ms/step - accuracy: 0.9852 - loss: 0.0453 - val_accuracy: 0.9888 - val_loss: 0.0330\n" ] }, { "data": { "text/plain": [ "
Model: \"sequential\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ dense (Dense) │ (None, 10) │ 7,850 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m7,850\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 7,852 (30.68 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,852\u001b[0m (30.68 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 7,850 (30.66 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Optimizer params: 2 (12.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m2\u001b[0m (12.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model_lr1 = keras.models.load_model(\"best_mnist_model.keras\")\n", "\n", "model_lr1.summary()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "0ki8fhJrEyEt" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of transformed X train: (60000, 784)\n", "Shape of transformed X train: (10000, 784)\n", "Shape of transformed y train: (60000, 10)\n", "Shape of transformed y test: (10000, 10)\n" ] } ], "source": [ "# Подготовка данных для полносвязной сети (преобразование изображений в векторы)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 60000,\n", " random_state = 3)\n", "num_pixels = X_train.shape[1] * X_train.shape[2]\n", "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", "print('Shape of transformed X train:', X_train.shape)\n", "print('Shape of transformed X train:', X_test.shape)\n", "\n", "# Преобразование меток в формат one-hot encoding\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "print('Shape of transformed y train:', y_train.shape)\n", "print('Shape of transformed y test:', y_test.shape)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "0Yj0fzLNE12k" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m 34/313\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.9142 - loss: 0.2983 " ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1765125204.514834 271959 service.cc:145] XLA service 0x7f89bb2d4be0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:\n", "I0000 00:00:1765125204.514897 271959 service.cc:153] StreamExecutor device (0): Host, Default Version\n", "2025-12-07 19:33:24.515300: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", "2025-12-07 19:33:24.542060: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n", "I0000 00:00:1765125204.640642 271959 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9233 - loss: 0.2863\n", "Loss on test data: 0.28625616431236267\n", "Accuracy on test data: 0.92330002784729\n" ] } ], "source": [ "# Оценка качества работы обученной модели на тестовой выборке\n", "scores = model_lr1.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ] }, { "cell_type": "markdown", "metadata": { "id": "MsM3ew3d1FYq" }, "source": [ "### 11) Сравнительный анализ моделей\n", "\n", "Сравниваем сверточную нейронную сеть с полносвязной сетью по ключевым показателям: количеству параметров, времени обучения и качеству классификации." ] }, { "cell_type": "markdown", "metadata": { "id": "xxFO4CXbIG88" }, "source": [ "Таблица1:" ] }, { "cell_type": "markdown", "metadata": { "id": "xvoivjuNFlEf" }, "source": [ "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", "| Сверточная | 34 826 | 15 | accuracy: 0.988; loss: 0.041 |\n", "| Полносвязная | 7 852 | 50 | accuracy: 0.923; loss: 0.286 |\n" ] }, { "cell_type": "markdown", "metadata": { "id": "YctF8h_sIB-P" }, "source": [ "**Выводы:**\n", "\n", "На основе проведенного анализа можно заключить, что сверточная нейронная сеть демонстрирует существенные преимущества перед полносвязной сетью при решении задач распознавания изображений:\n", "\n", "1. **Эффективность параметров**: Сверточная сеть имеет больше параметров (34 826 против 7 852), но при этом показывает значительно лучшие результаты, что говорит о более эффективном использовании параметров для извлечения пространственных признаков.\n", "\n", "2. **Скорость обучения**: Для достижения высокого качества сверточной сети требуется в 3.3 раза меньше эпох обучения (15 против 50), что существенно сокращает время обучения.\n", "\n", "3. **Точность классификации**: Сверточная сеть показывает более высокую точность (98.8% против 92.3%) и значительно меньшую функцию потерь (0.041 против 0.286). Разница в точности составляет 6.5%, что является существенным улучшением.\n", "\n", "4. **Обобщающая способность**: Сверточная сеть демонстрирует лучшую способность к обобщению, что видно из более низкой функции потерь на тестовых данных.\n", "\n", "Эти результаты подтверждают, что архитектура сверточных сетей, учитывающая пространственную структуру изображений через операции свертки и пулинга, является более подходящим выбором для задач компьютерного зрения, несмотря на большее количество параметров." ] }, { "cell_type": "markdown", "metadata": { "id": "wCLHZPGB1F1y" }, "source": [ "## Задание 2" ] }, { "cell_type": "markdown", "metadata": { "id": "DUOYls124TT8" }, "source": [ "### В новом блокноте выполнили п. 2–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. \n", "### При этом:\n", "### - в п. 3 разбиение данных на обучающие и тестовые произвели в соотношении 50 000:10 000\n", "### - после разбиения данных (между п. 3 и 4) вывели 25 изображений из обучающей выборки с подписями классов\n", "### - в п. 7 одно из тестовых изображений должно распознаваться корректно, а другое – ошибочно. " ] }, { "cell_type": "markdown", "metadata": { "id": "XDStuSpEJa8o" }, "source": [ "### 1) Загрузка датасета CIFAR-10\n", "\n", "Загружаем набор данных CIFAR-10, который содержит цветные изображения размером 32x32 пикселя, разделенные на 10 классов: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "id": "y0qK7eKL4Tjy" }, "outputs": [], "source": [ "# Импорт и загрузка датасета MNIST\n", "from keras.datasets import cifar10\n", "\n", "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "wTHiBy-ZJ5oh" }, "source": [ "### 2) Разделение данных на обучающую и тестовую выборки\n", "\n", "Создаем собственное разбиение датасета CIFAR-10 в соотношении 50 000:10 000. Используем random_state = 3 для воспроизводимости результатов (k = 1 - номер нашей бригады)." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "DlnFbQogKD2v" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of X train: (50000, 32, 32, 3)\n", "Shape of y train: (50000, 1)\n", "Shape of X test: (10000, 32, 32, 3)\n", "Shape of y test: (10000, 1)\n" ] } ], "source": [ "# Создание собственного разбиения датасета\n", "\n", "# Объединение исходных обучающей и тестовой выборок в единый набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "\n", "# Разделение на обучающую и тестовую выборки согласно заданию\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 50000,\n", " random_state = 3)\n", "# Вывод размерностей полученных массивов\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "pj3bMaz1KZ3a" }, "source": [ "### Визуализация примеров из обучающей выборки\n", "\n", "Отображаем сетку из 25 изображений из обучающей выборки с подписями соответствующих классов для визуального ознакомления с данными." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "TW8D67KEKhVE" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xd0ZNl53gu/J1UuoJCBRqNznJ7Qwwmc4Qw55AyzKJKyrkjJtCVda2kty9c0ZfuTaF/6KlzJvrZo0fKnK/mzqGVTFmVbMpMCSYk5T57pntAznbuBRjcyCqhcJ31/AA3gefaZDlI1eii+P65Z7BdVdcI+++xzTtXz7MeK4zgWRVEURVEURVGUDmLf7A1QFEVRFEVRFOVvH/qgoSiKoiiKoihKx9EHDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXjuNfypiiK5OLFi1IsFsWyrBu9Tcr3AXEcS6VSkS1btoht39jnVe1/CrOZ/U9E+6CCaP9TbjZ6DVZuJtfT/67pQePixYsyNjbWkY1T/nYxMTEhW7duvaHr0P6nvBKb0f9EtA8qyWj/U242eg1WbibX0v+u6UGjWCyKiMj2t31QbC8tIiK9fT3wniiMoLbj0FiObfn4GSeFb6g1oJx44ZtQW0EV6oH+IWMdqbSHf6CH75C203LwScymp/VqtU7Lp20WEcfFZTTKc1DfsmsbLnNpGeonXzyO2+ia6+gp9ULdTXWrhe3dwt2UWmUJ6uVq21hHafcdUBcGtuB2bfhMFLTkwtd+Z61v3Egur+OjP36fZFMrXTa2seuGtgN1kPCtS5eLbeRELaib1GW5D6ej5hXXKSIy2X8P1NWhe6HO9mFfyAqeE66D+xVT/7QSvjhot3E7g4D7OJ4TYdCiGvs4t62ISDPE9mxGuCGtIMa67VON6/QjfL+ISERKzoDfYq9vg9+sy5d//Wc2pf+JrPfB//aRr0ouUxARkc9983fhPXXBDU6FSfsYQB3TPhvfFv51vjyMuTS344rrfFWQsE3xJih9qS3CEI/XcHFURETafks+/pe/ten971/9P78mmUxGRET8AMej89MTUC+FeL0UEQmlAvXxZ05BfaAXx/zf+vA/gLp3ZBjqj//eHxvr+D//n9+Duk1jhS04PvF5L8LjKvbfW157hzA/+g/+d6hffn4G6heefR7qR95yO25ThMf5YKpmrOOH3oyfKY6M4BsivueheyILx9WFBbwPEBH5zqc/BfVwFtsiteG+q9Zoyzv/2X/Z1GvwxMSEdHV1dW7BVx6aNoU4xo3g4bAV4HFdqpp9o9bEe1eh67br4TXYcvG4LlbxXJ2awv4rItJsYn9qUc3dr1HH/nXvaw9AXSjiNVpExG/hvjUruFBvwz17tVqVN9778DX1v2t60Lh8IbK99NqDhpvKwHv4Bt5JfNDAxuUHjbiNB9ymmy4rxs87rrn5jnvlBw2xru9Bg9dhLF/MBw2HttujTubSMi2bbybNG1huC94Oh24E7Yhqbks74fjQA87lY32Z2DMv/ptxk3J5HdmUex0PGuZNSY623wmxDSzjQQPfn4lwHUkPGpk0tpmfzeHruTzW9KDh0XGKuH8m3GvZ7vU+aFDb0XgT22Yfj6l/xXTzENNTQezgg2zEbXUNDxrWFR401t6zSTfJl9eTyxQkv/qgkfLwfPHpgpUydkAkpH18NT5o8Cqv5V6g80fh1fGgweNImsbEze5/mUxGMtmsiIg4eG9sfAnmheYXVrbQdYNueDwPx4ZiAcevrq4C1NmMuQ6zD3P/ojq+8vvptEq87l9uk8t4abw/4etlOoOv84NGNkWNKyJd1BbFLhzLJbzKgwZds4K2uY5cBrczn8HPpLPY/0Q29xrc1dX1A/+gYVzLRMSm88Z40EjhecIPGj6tNEdfcIuI2A7dYztXftAQwT8U6IGg2JX0oIHb4corP2hc5lr6n5rBFUVRFEVRFEXpONf0i8Zlunr7xFn9JWN0+y54zffxyceNSLsjIpGNT/ABfdMqC9NQLqZQbpGy8eel3cPmk2U2az5xbSSkbx0i2k7+9aFaxSZKZRJ+0aAn3CZJcl47iD9x+wX8tndxAl8/Pj1rrGPfQfzJur8fv5FZLONP4j79wnSpjq8vVlFKJSJS6i5B3bt1B9SNufLav8M2bvNmkK5dkEx75dnY5r5Dv5bxN8UiIrkIf0r0AvyZsEDLtFkKE+Nxs+lbMRGR8xPPQP3yBewLtzz8ftzOmL5Js/EnWJu/maNfSEREbPopJo74mwr6qoN+bfRJqmB8MScibTqdfZIF8a8ovAhDjpX0hTXX9KtcsOErG98cXjaFWliVeHXfX5g/Aq/NR/gtVDZhG6OAv62lXzjiiGqhugNfAVLb8xfKf51VGNtl/DBzvd+6mu+PeUNvADb9guGHeM7v7tsnIiJBYH4buBl4RZHU6hAQ0xi/ux819N964nvG54+degLqrq4+qLPdeP1sBrj/MV0vE36YvP4jbfRH+uWZJEd+3fwl4PQLx6C+8PIFqMPyRagXxnEcrZPMZO+OfmMdMX2zHfj0TTh/gPaDb4nagTlA+Hy+06/Ljrf+y43j/y34nvgGnNJXG77MsQrrCkmj5qski/IS5PN5/LWg5eP4UKdfr6Yn8R5vcQHvE+oJfZx/seQfeF1S1pQ8/sWDVAZBgqrlKmNstGHci65jDPxb0FMVRVEURVEURXm1oQ8aiqIoiqIoiqJ0HH3QUBRFURRFURSl41yXR0OicM3aHvmoIbNoFppITB0bTxVYpJkdvBwuY9uO7biANurgMkVz9oMmTaPZamFtkyjQc3kmCNSd1Rr4+UaCrjJDM1oc2otTmB7YjtPwXjiLmr80zVgwtAWnGBQRSdNsRfOL6LFotlB/59CsUrGP/hYvYQapbDdNWWxnqE5v+Pfmi+QLblty3qpHg3wIjoXHIGHSM6lHOGNH1UadrkU+D8ehmrwQXQWadUREcjU8DtOXUCu8hWZWy5J3wW9j3/Bi3M+UmN6YiKaNCgNcRuDjZxwPj2s7pG0wp6+QgL0EPGUlzQhlka6aj0eUYASJqf2N2Wfg36Y/azPIB3nJBSsz7xSy3fBaQGNeITSH15Bm7wojNjPQ7F2s2WaNfIIXjn1orEk2NMpX8VeYswCZKmgObOLaPN5XntsqySfSCXvK1bDIoxHQLE1Ze0Uj7ydMAb0Z/NXXPi/u6sx7YuN53SYN9sIS+vJERMIa9pe5ahnqioP6dJ4piae94zFSRCS+mvCej+NVZobk92cSBvesj9fDQyM41k8EeO9QXUQ/6Mw8TicajuG5LSLiuDSjIPnUbNpu1yPfIOvfk2YvopkfHZ7lbMPrlvsqmLLpeun0Jl+D14+/TTdnSaJrF80IlcrhfcJy0/QmVJbLUM/MY8QBzzrVaOK9b43q/qFBYx1hiNf1Nt0rpFK4pyO9uIw0vW4lXOfZ+GHToOtsOP+dhFkgXwn9RUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXjXJfQ1I3DtcTvFMmzItK9ubE5D/BIF2oY8z7ObZ3K4ev3vO2NUGdzqHNbKptZEOfOnYP6woVJqFlWxkmvrHnuKqAPxPXMZM60gwtNR6idrVPGRbNBXpUCzmU+vH2vsQ6PtJtNF70jsYV6vRYlGaB6VyRKSH+uk3+gWcd1yIZ52zkJfjMILU/CVQ11SErMiD0DCc/QFml7U6SpdTj9IWLfAS6TU55FRHzyPwzuwGMZeOjrqFNuQkAT06fbuE1hbHo0UqTVjcijEQeY7xDSflpuL74/NM9dPm8yafI2UX+IOWeDmiqp+0RX8Q7YG/wLdkLq9mYQWL4E1opGN3LZp2bxm43Phy7ljbA9wph7/8pz9XOfFBFxIvaBcL+mdqX51OOAsxIo4dhYo0g2hcnMpRJq3OfnF6ButSmT5ipp0Ct/TPhbh7F47ygxWi5f1xKub5vBkaMnxV5NHc5nsc0aNcyC2LUbs65ERIZ33Ab1mWNTUKdtPI7stbmavl3EsBmZrxt/4f5mnBS0fFMj32Vhf3r4ra+F+vlj56D+1Bf+HOpag3xtCYd3uYzvadbx/qU0gNfxUo48pOSlS1K4e3R/kcpiEnsmv77MwNr8LKu/KZwTxOe0ZfPoQm+gsev8+fPGOr71ve9CXShgG/b0oBe1txevf5ksXsMrdPGanJ031pmndXDGDXvU8pz3RvcmA/0JCdzUNl4K7yXYd1uge0abxzKuxfQ+hnQiVDfkzVQpb+RK6C8aiqIoiqIoiqJ0HH3QUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6TjXmTrkrn3EsdmsgsaQXYOmmeWB/aNQT5zEkJyZS5eg7u8agPrgwX1Q+77pKB3px3C8b7fRGHTpIgaotWkRbHxskknMCUwjmptGA022gIauIMTnuXoDl5Fn045rBvlU69i+7RoafMs1DOQTChEMfTIAp8xAIiEjsx1zONgGY1BS2MsNph46EgerbUMeMSOwj425ImJHaG5Px9iGLpnDbQeX6dM6Fivmc3qzdwfU+fwIbScZb8kg6JNJP0Pb4NhJRm1cRqOGkySkHHx9LfBrFeqeEjsJdk02ZgsHJpIhnYxrPq8j4SsOmyZi8GmZGzfLsm+OGdy2Q7FXwzADj3aiSZMp2OZYwbNoWGQJjckY65DZm83hCXl9hmHX47GaQ5jYuE9hmO0Az5tMQtjiaB7XeftuHIcf9/FcOzuLRlaXw8cSxpc45nGRJ2u4coCUYTBP6EI8bMQUTBqvjhExh8ptEnEzJfGqGXx5gQL7Gthm5QxdE0Skv7Qb6qCOBvKoTW3q8C0CNhpPyiEiwrl0fLJHHEopPOEBGVLpOtSuLRrrLERoBh/sxYC+W3aWoL5zez/UVQo3LE+dM9Zx7MXnod5/+HaovTSuUzysrZjNs+btl+ehqThVKEGdKa0bl30P702+HzDOUJplJGhhn64sY/+cn8MgvD/90z811vHdRx+Dmq9dLoVMFin4OZ0hQ34RzeNu1gzqzRfxWHf14P3V/Q8+AHVvHy7Tj/FYWklGf7p34HDf3m40tRv3qnw/lzD+WXzy0gXm7Jkza/+u16+9/+kvGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB3nOj0atqw9m4SoiRwqouDrgdu3GZ/eM4j6w7GB10GdSaGWmAOw/BB1vsWi6TO4665BqLtKqFv7+je+CvXsNAYWxaTn8zzyOnDgjIiU8vie3mIO6shHbWYfhVntjfH9swlHJabtsCggK0UBMdkM+i2WyLORcilMSETSGdyOkEKpog266SjefI+Ga6fEW9VXBqT2NGpOmBMRy8X+F8bY3xwKgrJsPBC+i9rMJZs0uSLSzKD2N0fBdl3+LK6TPh+mSlC7Dm5jlOARapOu1aOFnj39MtT7DqK22CIPh5codWePBh1/+soiIF12SrAvxQmBZ+xXYFF9DBr8ze9/IiJe5EoqWvWpCWl5qY2cTEJoJDfuVaT+NvXjMCCNfEIzGB4Njzw59CHL4hBB/LxDPoVMYA5QB3fsgLrIgY4cCkj9OqZzj/1hK++h8Dh6PSm8kN6By7uG95hn6OX65ng07rxrj7iplbH8/MlxeG3uEp5TjXrCOVbD/etP45jo1/EaG3PoJPUNDpwUEfGNNM7oClUC1BeK5IV6zVjJ+Eiqiv7O8vQEvi7oV3n4brw/GejCsb1RRc+GiEiuiH06pnPZy1CfdnF8cGzsS5ZremjS5Bfo24q+1mzfum/VSuOx+n4gpDDYS+MYuDc9hfdjMzN4vZyYwD7/wtGj5krauA6X2p0HzdoiehobNOZGs+QJcs3xL6Yxt037OUZhjmMP3g/1LHlRmk3To9Fq4fEuFPB+zS5RaDF5N2MO6k0K26QLuWth2/VsuHdNeWbo8yuhv2goiqIoiqIoitJx9EFDURRFURRFUZSOow8aiqIoiqIoiqJ0nOvyaMSr/xMRcWPUkB0YRm3hnkHTP1FbWoD6pWPPQn3Pa14D9dwcauOeOvoU1A++4c3GOraM7oJ6+/adUI+NoTZzfhazPKpV1E0GAWrtHNd8NktRvkJ3FrWZ7TLu99gw5oMU86idOzpvajcbdKiqV54i2dAhNpqkW+xCfZ+ISIryPFqcnbAhGyG+qh6689ihL3YQrW4LzbVusXbYFA87PPc9zUvtOKR/Jx9KQL6CRpiQaZFBzXOWshSKzYv4uodt3rCwDui4J+mb2Y7CcQIe7VcUkqeD5rW3PXNYcGklnkN6eeoOYZPazuiv5vEJW+j7ssl/AHP2BwnzjG8CcRyv+bgsbpMUjgN2Qh5JSDpZm/JG2F/BuT6cOcDyYxGzP9jGqcrrIF8a6XI9l7TAlmkMOTU9D3U+RM17UEDPWIoWYfnkx/HN/hGHV/LsJHxrdmXLz/clf//huyS3en1pPXg3vNaq4/kT+aafK5vF4+ALXh/zLjZaiufer+Myb9uBHgIRkf/PT/8dqJsN2q4G+h+qTdSe16jesQV9b2+4Y7uxznYVr+Pt8iTUvQN0zR3FZfCIVyoNiQH9rV7DHAE+7+KrfI/LGUoiIhFlPcURXmPS6fV7i3TbvP682ikv4j3d5z//eaiXymWoG5RjVqW8sEbTzHIw+r3N133yc3KuEGXH2A55GxKOG2dvsE9y6twZqK3X3gV1TxE9HGHOHGO5f2XIh+tSzlAc43ln3D0kjIfspWv72B+7utbvb5wEH+wrob9oKIqiKIqiKIrScfRBQ1EURVEURVGUjqMPGoqiKIqiKIqidJzr8mhEcSTWqmbTpTmkR/rQo5FLWnIBsx98yuL4r5/4L1C/9z0/AnU+j7kFjm3O45vyULfW3Y05GjvIs3H65HGoW60ra78d1xRFu5RRUSygP2W5hvrlbBb1y1kS9J1aNrchqKG+zqU5jLPUFhkPNYNhRLrrjJkBwfN826QP3agfZy35ZhBKtKZw933sOwFp/pO2L0VehZyLdVOw74Ql1PH2DKAeebSIfgwRkUspPA+emUB/jo+HRZpVyijIox65i3MU0MIhIiI1n3ISIuxf3f4c1EHqANRRiN83OIH5/UObTUAO6a5pzu5miH3JJ31oM07QJ9ukOSYtbGVh/Tzyr3Kebgaue2X/TJJHgz0Z/KEowj/YZH7xMnie8/tXYPEtvseyyedBvjPW3vrk76q3zHWeraH22mtidlDs4Han0zR20/Uk9s2x3W+jfjiMKJuD3m/6gGi/E3xmxrjxKjN2/PBr75eu4sr5zdlBFp2jVoKHjG1qkUdtyGM+eWWaSziW3H07Xk9FRF5zyx6o64v4mTNHH4N6fAKzFJptHOSyeRyXrdDMuBgeKkHtZnA/lpcovyiH46ybxuvhMOUeiIgskH+zMoO+kLB95SwYv0neyxDPERERN0B/yuIl9Jq4ufVrTrW6+TkaURSu5Wlx5hifOsZYJyJLlE9y4txZqNu0T3yORjSmNiOzjwch+goswbEkJl9kutgDdakf/Tw5GooyCfe2jTp6RSpLmItRoj4sNHaVa7jNi3TOiIj0dWMfLRToHs/HbQjI7xMJ9k/OZBLBrDQRkYD8Ke6GxnAizdFQFEVRFEVRFOUmog8aiqIoiqIoiqJ0HH3QUBRFURRFURSl41yXRyOMIpFVTXBAgjwvg3Otc66BiIhD+uIe0kE2I9R9u1nU0r35LW+BOpVGPbyIKalNp1AbNzSEc2F75HXgeYQjyqOwHPPZbHxyGupzKdSn7xrGdfoBto0r+P5Ls+jpEBFZaNDczuQV8RzUKjbrpKtuoF4vZZmH3jI0v/h6/Ar/3iwczxVntW1TER6HNG0760dFTM9JEFJGAel2R25/GOqd+w9BPdxl+nUqgn22dB61mi+fn4D6whTmaoxspayOAHW9YRqPo4hITH6cYAn7dL+Nn6mzX4LyCeww4ejGxiTxgC+43S2f9Mn0/jDB4mN75BWgz5w7/fL6532eI3xzsG1nLcPFI29WRGNeUtQM52hwFgd7LtgH4tD4EyXM6c5i6TDgfk/bQLkpEWl3G3X0w/hNc473FHvCqpz/gdrrdB79ekJzwoeuuY6Yxriohf06JE9CRJ00DnCbvAQPjeHRuAletCuSdVb+E5GYjqvNfi6zCUXo2MaUi9GiNvXpJHTIW2U1zfGoMo9+iJePPgn10Sceh3pxgbwLnE9DfWNsu5mjkd6LXpG+HvxMmsavxUW8ZkchbnN72bwG12hf00XWyC/h6y30ataqeC0I2gljGB2fOmWKtIL1bWiFmz8GBhJL8ApXf9PzlDAA0p/abfLakUeAc4J8uj/zA7MNOHuoSX6xnh70ZNzz4INQF3vxPoDHlbRnehOyGbzusz9noK8EdYPuT1pt7Bvd3WTmFJF0Gj8TtNHvElN/iDmDie/nwgR/35VtbeLYqQ3/Trj2vAL6i4aiKIqiKIqiKB1HHzQURVEURVEURek4+qChKIqiKIqiKErHuS6PhsTxmtDLIfGWR76EMEE/2G7iPL+DfThf8SNvQk18QPrjNunx3LSpEbNs0jhHqM3sp3UODQ1DfenSFC6QtJ1J2R3zVdyOF8+h7n7n8K1QBy2aYz6N+r6lekLbkd7WIf2dm8ZD6QtqH0MS6NmOuR8kYRaLuke8QYMZ32TtsuvgtrG2OkwQKDsO6ShJANozOgb1UgOPw3QZtcR9xZKxjmIBvUp3H94GdS9pNb/6TdQC+1XU+X7rpWehzg3RfNwisqV3BOr5M9iH76dDNTONeuSwF/NBEqTrYtF3ErYh0yV/Aul1WS/K3icRkRrNsT47MQ71pfH18ypO8iZsArZtrWnhgwA1260qjm+pjKmztXM0npBXyo6xT3IWBOuFk9xSfC5wToZr85iGr7fJ/xIF1NaW6U0i6bTkr+J9i31cZiqF7VAs4nkkIjI8SPPbF3Be+Zl5zPJokC8t6+L5/9LzLxjrMDXKlBWw2s/Zz7ZZeEVHvFVvmE9z77Og3W+ZGQPVAPvo9Bxeq5rk0ejpRZ9Bewq9DeefRf+FiMj5Ey/iMut4Xvf1D0Ld8sk/sYB69Wq1TGswvx8d2Y5jd+ziuTc0tAXqrQ76O5cW0Qtx/BTma4mIFPtw7O3fin20XL0EdaaIvpEFWkdtGfdTRKROvo3RrfuhHjp019q/s8vkbdkEmmEoqdWxm8cmHuMbdL8nIlKhMZ7vY3yffFeU6RSTcTROyIppUhvOLeI1te3icXz26FFcJ90bRZSNFST0P44F6u/FjK0tIzh21V3c79EBHJtSCfeZhSx76aj/kL/FimkZdC9sJXg02Nvq0Fs2eppT9rU/PugvGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB1HHzQURVEURVEURek412UGj+NI4tVAKZtMI67LIVGmodklE2F/DxpkusnclyYzpeXg59u+aQjNZsgcROvMUvhPqYThLREZnDhAyzTBiuw8sA/qg6MY+BLnOGwPn+/OXUJD8GwZDVMiIul+NLOx4bNGwT6VGhrFAtoPDlgUETFz2q4QXnUTzOCWZa3tNx8XrhM/T/3HsNV62De6BtBk/fhzL0FdTKFRT0RkkCYPSPdj/9q/DZe5uG8X1J/4829A/cIEmi/dnNnna1vQdDh9Bs3ed+3DiQEmTp+GOmXhhAjd3WjWFBGJQgrTY9cshW2GNprbAjKqNRsU1CQiLzz3HNTzExegtjam/iWFCm4ClrXe9dt0zi3OLUCdzeeNz/cWSlC7NBbEbNjjSQ4iPP5syBQRsTnUj04NWqU4tE6fDJYWhwwaaxRxyKTJQYQOBQ/29ZSgHhjA8+Tv/Oh7jXXc9Zq7oI4otPT0xCTU5yfR6Dx57jzUJ04eM9bhUHhq1KBR4vJ1LyEQdDOoRzW57COthTipiFBIZishTK9Wwc+EDp6Hnov1+DMnoH78L74G9exZNECLiLBHdNtuDKzt6sNjnSfD+cIsmndnpvD66KTN25YLF/HYWzQpR5jDdea6MCzY6sZtHLvdNOOmCth2fcPYx5s+tl3AY2DoUm0amXlMcT28J/IK62O1F5n3CTear3zzm5LLr7Tt9BROOtLbh2168SKefyIiJ48+A7VfxjEzQ+ef0EQVEY0zUUIbVurYhks1rMs0LgQp7Cu33HEn1A0bjd1OwvfzzQbux+wS9tlCD/anI8/jJAp99+GEQYVcr7GOOOZ7agrkMxKWsW2MCVnihFBUY1zj+42NfTgpETQZ/UVDURRFURRFUZSOow8aiqIoiqIoiqJ0HH3QUBRFURRFURSl41yXRyOKIrFWBb9ReGWNfBSbzzAc4pXJoobZpkClbBY18z6tI0kmG1C4VETacIfSyIpF1EDapAn0UrhNu3ajHl5EZN8te6HeQRrUdAuDaxoVDJYqX0KtZTPh+S9Hejy/hfsZ2LifgU/aRQqrSxVQFysiYpOHISQPzMYQPD7+m4Ft22vHxwgls6/+zGx4NKgDLSzjcRh/ET0Zvov9da5iBhINDlGoTgt1u5RrKbNnT0E9eRw10V1t/EA3h3SJSHseA7KyKezTrodtVV0oQ33hmcegvvu+h4x1OBRaxLp/h7pbM8btbHMwU9v0cLHHIWpj/3M3+DKia5eHdpQ4itd8EV00djSWsD8066YPpbqEOu/ubu7HvEI8/i71e8szteTsooi4prDEmLS6oeH7IN9CZPqE/Ag7QOTjeFMqoc757W9/BOq77kGN8p133G2sI5XCMWuxiuNos4kBVsUu3G6LOmmhy/TQxCG2Feua19Is4833qImINOs18ZyV47O0gOdLbQnHryDhHIvoutBu42eqZyegfv4LODacPYI+lyChHQa2olbfyeD10Mvhceztwuv89t17oJ6fwf1cWEAPh4hIHwXvBi3c91odz7veMTxvLsyix2N6EfdTRGRnL3ovq3R6RyGHbeI2eC75mBL8VSGfq6Szl7CZ/O9N4qUTJyS96nNtNnH9dbpf8NJmYGmZrrFSwzHTTmdxGeT9DcgbGCTch1RpuyyXxkgaM9u0DDuF252m+4Q4Nse/OMZ1dlOC36Hd6LFdWpyBOqQx1knheCkiElC4a2Thdod8UaZtEovGfcfsf3wfH/J7rPX+6FumP+aV0F80FEVRFEVRFEXpOPqgoSiKoiiKoihKx9EHDUVRFEVRFEVROs51eTQ2EpF2tVZDDWTUjfplERHbRh0aezK6aY559nQIeR0M/awIz+4vYYg6SZ7fvbcX5yveuRM9GCnyaAwNmxkDI4OoSc13oSY1Q/NpF0h3uc/Gtno9zfEtInLmLGpGl3jOfmrvVp38Ay7qDp20qU8OSLsdkd9l4xzLsdHSN54wDCV8BW0+z/+c5NmISdjvB6Qrp/41vB11lWemUBt84sw5Yx3btuJnBvtQc1qewWyIuYlxqC3SVW+N8bjuT9Dk337H7VBXt22FuquOOut/9MMfgPqPvvQ01MvzmMMhItI3ih4N36f5zCmLIaRzk09lh/8gIhk618qks3Y3+hVugkdIhHxC1Md4PIoT9OvlefQRuKRzfcc73wx1FOE6XjqGnp4azRG/8hns52kP2zVDmvi0h+PyRBvnx/d97PfstxARGRnFTCQ7xPGGtdY09MuuXdugjuXqx3d+YQ7qchnrvhEcR/sHcawfHsXsBBGRSxdw390Mnm+p1fo65MkdpVWtSWq1bVplPC5zk+gz4MwMEZFUFvfHi3DMmz+F/as8gTkZhQIe1637zTa87W7029gZHANjCtoY24HXXDuN/bHYj+uoH3nBWKdH40mphMfaohwXJ4UeMjeH52WKPY4iUqWMi0Yd+2gXZXTZFvoRRsm70l4yM0gc8qUWh3E/Iqlu+Ld5fG80Pd09ksmuHM+FRbwHGT+H17JSqWR8fnAIc6Sm6T6l0aZrNF3v3Rz2v1aCz6UV4Ifa9B7Pcel1upel/JlsijwagemNcSL8zK6tOJ7tHhuD+oUK9o1UAV+vBQn3Z23yp9D1hVuCc+uEvSUJt3B8H9Wg/CzZ4GGrta798UF/0VAURVEURVEUpePog4aiKIqiKIqiKB1HHzQURVEURVEURek41+XRsGR9hnafNIzTM6jr3tpD+jARKZAHgyTyEkX8GdSgOQ7qS6PI1FHGrNmzsA5J5N/bi36Ku+56DdRtnsvfNXXXOZozOZ3OQW07WDvkE9myCz+/h7V1IjI+idr+hYV53K4QNX3VShXq2MZ1xCySFpGAtI0W6fU2ZldYsvnzyFuWZeRnbHxtIzwftIiIQ8cuS1rgGmnbm03Uj05eRA2014fHVUTkKGnob/PQYzF96jTUYRN9CCny82SoL+zuN/NP7tyJetD5Xaj3nHruu1DfdeAA1Dv23Av17336L4x1XJzFeb9jC3XXOfIAhTZnNWBfSifMsd7TVYK6KqhhhryH+CYFaVjWyn8iUq+zZpvmhLdQby0iErRwzOotYf9400P3Qb1n1yGoz59DD8ETjz9lrKPVQr3wnj2YS1DswnVenMLshM986vNQj0fTuLx9u4x1PvzIPVDn0+jjOHkC+/3YGHqZ+FJkJXrAUBvdbKLOeWERczV6BjH3oH8I/XV7DmD+kYjI3Cz6PNiL6KZXtjO2b45HaGF2Str1lX61cIk8GXRNqFVN/06ljNud9/E9LfK9ZEgq3jOKY97YHnM8KhQpq4q0+hemcDv5TB7euh3qpWXyNWWwL4mITI5jH97bi+vsJi+mT5r67m4cz5Yb5tg+M4vXVIs9fjn83tYfw/Mm04993vHMa3DKwWVks/ieOK4l/nuzmJqcWsvRuHAB70kaDfLQts1zeGEBj2UrpltQ8tpE5EMoU1bR/JLZx1sB9vFUFo8lZ640aB0e+WTyBRzLUo7Z56MI+9dyA/f9sScxk6u8jP3vmRNfw21qm/e2Pvsg6XeCmNouR02bYp+ca97+c5Zaijyhnru+jlbDzBF7JfQXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI5zXR4Nx7bFWZ07vhLjM8pR0g73Fc1nmJ2jqPdyHNQfuj7q1mz7WnS7SMwWDdaxkbbbc1GTNkw6Xs7RqNVQp5n0Hp5f30txW+BGsmZ6dAA1hCIie3agznqZ5uOvtlCraJGE2LJpLnPH9IGw/cEjX0dT1o9PfBM8GqlUSlKple1mzT/XSV4O16Fjn8b+VSPd7uOPobdhuorruOvA64x1WB6284VJ1OmmSGe5bw/qxP/qWfQl9O5D/4WTQ0+HiEiqQPk0tJ8uaYmdZdS6792O23D77t3GOj79u5+A2hfKYnDIc0HbUKTshQbNIy4iUr6EY0hMOlVrQ6eOw5sTZBDH0VpehkPnkENjSZzkExJ8T5q8Uu02ji9pmsN9984dUI+NYv8QEcnnUVifSWGfXCqj3+bsmRehtsl/0EUa5bFR9leI7NuL2zUzg/1+cBi9cAcOHoS6XEa9r5cyNfKRg31maQk9GcdeQB30yFbcJpc08ZPkexMRicnTZ7GEfPXw8fi6WZTn58RvrJxr1TLuf6WMuQZhYG6ka1FWUgvbNGij7t92cBnFbjzPCyXM1xERmS/jtalNmSojpJFvVbHPl2dwHLA8PAjDQ2bOlDRxTLNTuE47g/Uy+e+q5Pdp1M3xpdlAv2a9XIY6cnCZE4UTUPdRHw8pr0FExA7wb6159J5szP9oVEx/wo1m+tLU2v3OxQk8f/r68LhcvIDbLiLy4jEca3aM4fhlu5xxgedjpYnHoJbgZYjo2s/LTFHeSXkJ+9/EOO7XMvl7urtLxjpLXXgepIp4T+eT93JwDP1jF19Gv9XjR5401lGh/tcic5MfYlulKIPJuCPnm2URcaitImp/Z0MWRxSY9yKvhP6ioSiKoiiKoihKx9EHDUVRFEVRFEVROo4+aCiKoiiKoiiK0nGuy6MRSiQiK5rNJs0R//RLmB8w5Jn6rS39qEvzfXyPRbLcV4hMWH9dTJ+BTRkVMXlJLNJ28/vZb1GiOcDTGXP+f8/lfA/UtVok6OX5i13ahqFebCcRkYMHboF6dg71uCdOoj65UUPNqjglLFPmHN7sa+BMko2a8zjefJFyq91e07gbGR/0yGzzH0QkJg+Gb+OxbIW4Tz1F0h9TLMLIyJCxjkhIw1zEObdHt+Cx3U+ZFmeb+PmogHr79z5wl7HOvhT2v6lTx6EOfdJdVpeg9puoUe3vNvXxQtrtcqUMtUUaVItmx5+bpb7EIToikqHzPZ3HZW7UhMbhzfmOxLJisVZ1/MUC9o9Kvox1gg8lsvBYtZo0tzmNBfUa5ho069gfBoYwc0BExOXxKEQt95FHvwr14vR5qH/i/X8H6s/8r7+E+g2ve9BY59AAngtHjr4AdSaD50EQ4tidL6AOemIasxZERPLduF9Ly9hvh/pR+++RB/DC+QmqTY+GQ7k1kYtjguOtHJ/oJnjURETqS4si7ZX9WiAfjF/DczQp68iNUedt+3id8MhfWOzC/pbNcf81fQYNH9uwWsXtrDXw3O/uwb4ROZTD0YfnWbZojk99o6NQp/vQaznXwLaZmUEvnOfh+NRsmte3kG5pYrp98ts45tXIw9Gi/XZi9E6JiLQb2J4zZ16GesRdP37t6rXnGHSKQndKUqsZSPVTeA8y8Txed3r7S8bnx3bheR5G2P8ml9jfQ9kk5LGtJtyHBJTxxrllU4s4tizM4H4sT6KHjT1EiV/PU0bFwNgI1MU+7OMjW9CbUm/gzcXSAvqvRETagl65kO5/S934ejFPHlTejzjh/pmuT1OXMB8vbqzfO8QhjiVXQn/RUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6TjX5dHw41iiVW18EKOWa3YOtXanz6AGUkTkLQ+iDtImPSh7BPh1iVlzas4DbNum7gw+QZq+XA41qK6LurMUz8edsHxeJnsbLIv3E5dhkYYwmzO1m4ODqDndMoIawNlZnHucnyFtB49X0n6E5FFgHwQcjwQPxI0m2zMk2dXsC4fmu5eIMhcS5oj2ItTpNslPkS2i3t2dp2U0UDc5fva0sY7e4Z1Yk98hTRrn+QXUQA4PYbvu2ILLG9mCmRciIvU66lqDZaybpO2MpAx1tYk+gFLO1HaP4GkijTrqg32ab5/n35aIsj1SZv9zPfxbm7xOYWN9mbF99UydG0Ecr08/HtI+sjeCz2sREYfGOJ6bn3WzIc1VXsijF8JzTc9YJNhuDeofs7M4Z/vMTBnqpRrqwiuk7U3SXi+TH2VxET+za+dWqDNZ7FCDQ7hf05T1ISJyaRq11Dw2j4+PQ13oQT14hvx17McQEXEpsyHy2W9nwf9vNq1GXRxZ6TMWjXlRgH3JdczLe56CQZZny1A3KugRYP9hiton7ZheP8/D8WapjvcGvf2Yt9A3RJ5E8jA2KCvByZrXx4Fu8suVsL6wiD6RpnG9wP3kc1tEJJVCHb3fZtMG9pWAzl0/wHMk5ZrX0FYb19so42fiRnXDv8mHuQk0/bJEq3684VH0HfQOUF7K6IDx+dsP3QH1o48+C3W1gdfDVBrbPCRfb5RwnW+28D15fgMdp4iW6bl4ze4qYn9eWMTrpYhItYLjXTiAa905tg/qdAbHnuVZ3O+ujHnuVgPsL3XyRxXTmN3hCfZxjnNLGv98Gu8ylPNkp9fPkzgUupN4ZfQXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonSc6zKD25Yl9qoJzqZnlBaZGqenzMAlNht73pWD7lyXTdS0wCQ/qGEYR2wbdznlkbGMQ0wo8C/lUWqbiIQhGl05RzBmw1J8ZdO745g71tWFoUVbt6K58nuPfhfq2Rk0LKW37KZtMp8xLdouDnzaaPBNMmHdaOxUWuzUqhnc5qAz3J7QN8NkYuqzlottunvvYagfOPQ6qE+cOgH1hfGTxjounjkG9csWGrZuv2U/1EETjbpuhOFq2RwauuaWMXRMRMSnIMLxS2jmbccY0NduoanWnzwLdcHM2pQ9JTTIsXmtQecuB5o5HrZ9d1fJWMcMLTOi4KXshuMXhZFgS20O7VYgnrWyXRcncQKGVvXqgWkRBRkuLuCxmZ7C83b3zi1QOxxMmXQa0kBZb6Jxf24JJzV49ij24/MXnoa6pxdNhlMzeJxERGwXO83BA4eh7u9Dcy4ff26p0dERYZ59AU3slyax5vY+P45BhNvGxqDOZM2xnK8pbozXi8tjtcUTlWwSXcW05LMrBs3KNJ5zXf14TbDEPJGtKo43qQxd/xw0taZzuP8DdFxShR5zIx1cZpoC9kZGcWKTLJltLZooolLD/ttKyAmzsmhMbtKtjRPh8cpFuE3+Mi7UShgDOcy3TcGEaQeXWaviOjlIzk3heCEislRF8/f8FG7IwJb141OtmWGJN5rtO/slk10xfd9zH17LUnTcHCdhMowIDeM/8q53Qv25P8Uw0ccefw7XQf3VC8zAPofux/Zsx0lehrZhfbYHx4nYx0Fg/CSGUQeeedu8d++tUL/zh98B9de/+XWou7uxv3o27tdtB/B+TUSkGeN58sIxvNdI0RVxcQbPdZtCtr2sOZFDmgL7UnQz22isryOONLBPURRFURRFUZSbiD5oKIqiKIqiKIrScfRBQ1EURVEURVGUjnNdHg1XLHFWdbCeRUFGEeooZ6ZMLXmlgpox9i4EAWrrPI8C4yhgJIpNfR77JcxgJaopeI49HLHh+TCfzWzyC/B+Ga+TEJi30XHMIJUU+VlGKLBvYADDcRoN1G8WKPjGSQhzMrpDgJrSjftl+E42ganFJcmuejSaddQS59LYPh6L2UWkHqKmsEHvefBe1A5v34ka1G07MCxvuXzRWEelihr7sy+9hJ+hYLPzE6gPXV5GzX4jwHNmagnfLyKyWEbPxYnzL0K9pQfbZpG2O59F3WxvvmSs475btuF21cpQz9cwPCqOsE93FVCTmsuh3lREZICtTKSrDoP1Ph0EvjxuLOHGE4axBMHKhvI5FgW4A0kaZaFxs17HZVy6iP6HfAF13yGtU6IEnTaNH7kc+bu2Y79OZ4/jx1NNqrH//P8+/gfGKoeHMXTt7/7434c6m0Gfx5kz2I9vu/U2qL2UOT6xh48D03p60S9w7BRqq8+eRS9SUuheEL7ymLdxG+LIvPZsBuPnIslmVq5xtRq2eTbCkLA9W/G4iYgIXYvqs+ilTOdxLPAoOCyioNfSAIXtiUibzv0MhcXmejFIMaJrbrVOPrU8jhU2WSJFRJwiLvPCFL7p2186B3WrgutoUvgZ9wMREZfOK741CNvYJ1I2Xgs47HCpYvpYe2IMFrS34vmf2dB2tUaCkeQGU+pzJbvq2wkivFb5Dbp/SziH0zH20ZiOZbWMbeLX0McyfgJDcm0O7hURj/xTC1PYpt09OE488uaHod65aw/Un/+zv4D6Lz71KWOdPX0YQnn3a+6G+vHvfg/quInHLp3D8+7+uw8Z68h04z3f+OkjUDfmMeS0kMUxt97APh+Qd09EpN2iwMga3q/4zfXjE0fmOfJK6C8aiqIoiqIoiqJ0HH3QUBRFURRFURSl4+iDhqIoiqIoiqIoHee6PBqhRCKyokO0aD54myZ0n1vEudpFRBbK+LcgRs28R3Nbxz6uIybPRpKOknW8pt+BfR+c1XFlv0VieAfbPmgZRk0fuBa9L38mR/NJ33X4MNSfH/wrqO0MagBd29TvhqxPtrD9Uxu2IUzICLjRnEwfkHR6Ze7ntqB20yWtZpzQN5w2ahhLBWzDVLEEda2GmkbuC5WKqXHMUz7A/jvvhfqZZ49C/edfQ+1mKov9sdzG/Sh0o95eRGRqBvMczk1gvsBQCTWnMWlY/aAMdcY18wW2bkG958F9mIvQoFyWaZoPPiR/1cI86pdFRGZb5E+pY/9rb5hAP+Lsmk3Dlsvfz9gW+bmE+5w5VljUT8MQ68UF9OQ4dKwabWyjIMLjsrIS1EFnSKv7lre+F+qRbXdA/dxL6Nn42tdwDvijR583Vjk6Sjk9IW731lH0+DzzDGZ1dHfhNvaNoOZ+ZaHYVq9//euhrlS+BLVz5gzURp9J8pldZbzf/FEP+fTXyuK6K2N3izxBdoBa9P/tIcxgERG5fQz9Dl4ax0A3jf6cEmnPvQxeo9uhee3KdqEGPqBrTezh/P29g8NQd9P0/K0m9vmUmOusxHh9e+xJ7KNf/gpmC0kb+0JAfkQjGyvhPRHdv3DfyKRxmwp53O9mA/dLROTgIHpFdqC1Tarz6368evPacww6Rbu9JLa7sh+Oy7eP2ALcXiIiLl0H2g3ytdAiS+RRm6HzMWybbRBS/trCNF73T55Cn8fEBbxevvv974f6DW95BOpxyu8REXmJsjb+3//3d6F26VpRzFEeSA77RjZtjjSuhefmQBfu5/OnMFfjTe98K9S1Bt6vjG3daayjVkXvyOQFbLsXj6x766IwFHSHvjL6i4aiKIqiKIqiKB1HHzQURVEURVEURek4+qChKIqiKIqiKErHuS6PRiyWxGt+A9TauWkUE1YjU+ddrqJGzPdRD5YlL0MYoP4uIn2en6ABZI+GCOpDzbnTOdMied70tXfHCc9mV8nRMN5OumvWaSfpQ9nH4ZH35MC+A1Dfevs9UJ9uom7WFjOrIxTSO1JbeBvazk6Yg/5G01wcl2hVxNnDmu4e9C64ttn/Wj5uc6kXtcFuBnWSjQbq5avlMtSXpsaNdYztR636hRnU4f6vL30H6hdPY6bFvv2oZV948STUkW9qUmM6FoUczm3v2thWrou61/kqzl2eGzbnxu8eRN1/7wLWTTrt7BRuZ5X8LMU+3AYRkaEsHrMgwD7aaq97Znzfl0sYF7IpWKElVrjS3hblfFgRjSWOqSXnYxXTedii+dVt0qPPL6NmNk7w03R14zInJ/Ez+Sweu7sOo0ej1IP+iE/+4R9DffA2zOEQEXnbux6EenigBPVAL14fDt+O88SfOX8O6oUl3GYRkQO78NwaHd4KdcrF/XbIP8Bz7tspcyx3yLPH47+7mo0SRTfHrTE9dUmc1SyLwPBo4DlGsSEiInILeWVSWTwPW03UgeeKeNy6e3FsiB0cM0VEsrRMXkfcRu9bfQ49ZhnKffGb+P4wIQOKL8vtAM+jvbdi30lRhtK15ELxeyzKsPE87H/pDJ6bNnke/Sb62EREeizKpvCorTb4MuqtzfdoBJEvwer4F9B9iufivVbgm/cx7BPwG3gcBoZx7Dl9Ev0QdKslQ6OmD8mP8diz99Smc3phFrOLXnr+Oai378Z7q1KfeX2cPI/3Ai+fQM/G6BBmdHEXdi3cxtNn8LovIuJm0F81MIjX9UiwP331L/8IP095SKe6zP0Y27oD69HtUJ/PrB8/9WgoiqIoiqIoinJT0QcNRVEURVEURVE6jj5oKIqiKIqiKIrSca7PoxFHa16BoI16xa4e1HL5ZXOu4YUKaueaLdQ4FlzUHF7WAl4mivD1Nnk8RMy8CYvyPRyb5r5n3aWh0cV1JvknJLau+B6X5pvmmt+ftA72dXikt+vvQw3gAw++DerqEZxjPYyT9ONYc1tYG7bB9LrceB4Z8yWXXjle2UwVXnNJn1iroL9CRGRSUPubyeM80n39+Houi/vYqGF/c9NmGy6WUe/ZovOkf2QU6vSF81AvLuF2D+ev3HdE8LiIiDgxZaSQlDedQu2w5aIO2HZN/06ddNJTU3h+z5B/pWFh2zR91KBalqntTtMc/ekU1kFrfbui9tWzZ24E6ZQtmbS99u+N1Bus4Tb3MQ7wM93duI97yaMjFr7+uc9ipsXY9h3GOv7O3/kRqKenz0FdqeC587r73wj1M09hxsX01ATU73jP/cY6x7ahXrjUhftu0Rzwg0N0rhUx6+XxJx8z1tGkPIWFOfQWTV7E7cyk8TwIaSyPIrOfW3Q9CCI837zVOfrj6OZ8R/fOH3lY0qv5DH4dr58WDeAjJfM6Um1jm9mccUFmh2odj1s3rSPtmnlMC9M4Bvb2lqButnCZdQ+XkelGX4hLWR/pjJkdE7iYWXH7HejJ2HcIfUUZ8k/wGOp65n65tK8RZ4hQRoQhxOf7goScHS/GY7p8EbNgWpV1P4vfxPduBlG48t8K5DfjvpRwqxRQ1tAyndNdfXRsHfLM0n2LzcEbIpJK4XGYu4j3Pv2lAagfug/Hs+UqZnSNnzkHdYG8EiIid9+DeVnzs7jOrgL64nwfr6dLZWyHE2cw60NEJKLfBShiRA7dtg/quRnsO0tlvEeau4T3HiIi505ihhJ70Vxr/Rhfi6/pMvqLhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oKEoiqIoiqIoSse5Po9GFEocBav/Rr1rkeYWtoK9xuerJCls1nFO5TiLy2zRfMd+iO8PEnI0WMNuswzXkOWSD+Eq3oOkdbK3wfdZC0y6QtKD8vvj6OoejZTH+m98/b57XwP1ZO0FqF+aRZ2siEjssqaZXjc+sblsOfwGKeRWtLWeQ14carPulrl/fS5qfTO9OAd3qzoH9eIsZlyE9FgexaYPpHoR9cn9Q6g9f+R1eFzOn3oW6gfuux3qkR7UHruW+d2A7eBxa9dwu6bOou6yTPrRQh4zVpy2eQ5s70dvyRvvoXVShkRI89g3aX7+IDD7uEe66FyO5t/f0B/r9aZ84RN/YSzjRpPJWZLJrLTP8Chqycep3aPQ9AAI+c6KBdznLVvRa/Xd72FYyGf+1zehvutuPJYiIo+86SGou7tJA59GvfATTz4F9Te+hesY29oH9f5dI8Y6rYDm+6+jF6DZwnNvqYp6YcvFfn3bHWZWx/PPY1s89jj6OBYW8NzzfbrgULcOjcwl8z0eXU+cVd29k5CRshnc9brXrJ0X7Qa2eUTnXGMJj4GISPkCjnGFEK8juSLq19MZPG5xTLcMSRcFzikgL42bxnVm0pSfQ7lSrRpe9yU2x/agG/vP2A70Otk2jiVeCsfViP2ICd4Tl7ZT6F7BIk+GbWHNevekTC72imy943W4jPZ6W1QrFZF/+f81lnEjse202PbK8Qt8PE4x7b/vm+dIi+51QsoWsV3yBJDPKgjwnA4iM0vEoz5bLKEfbMsw5mc99LoHoP70F/C6MjuHY1WQ4M/K57E/lXpxzPRpu18+iTkbfoTn7lzF3K+du/FeYngYr9vbtuE1etc2vCeP6Jpbr5ke55npRagvXsQ8o8ryeltEUSQLi9eWpKG/aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXjXJcZ3HVscZwVg6PrkfnTRhNPvg+NKiIiLQqrqpMZ3O/Cuk2msnZA5vGEwJBYOICP3pDCP9iWafq60jqChDC9kIzIXLOBnM3hfkDGn8jcLza1szncsvAzQ/14aF97BwYq1o5cMNZxdg6DaiwyTwcbA/vszX9GbWYHxMmtbFOVwhptCma0nARDPYXItepo8jo3j0YoNjjnShgm5DrmxADFNB7L2gKGiPWme3GZEfbpfmxy2dJLwWd2wmQFNr6nkcJ67jyaRkMKSUrn0LjWomAfEZEcdcASBWT5ZHT0cmg4jvJ4vJL2o91Gw1wUUftu2IaE3MJNwXYssVcnIhgYwn2sldFw2qiZ/cOn8aNRx/C8xx57BurvPXoU6vn5MtT9PdifRESiEM/jDA1xno2d7A8/+Tmon3zySagffOBOXJ6Nx15EZGkW+0zTw2PZ1Y0hV0vLZah9Y8w0x8AwxHNrjMyP4+PjUM+RCdlLm9vNGJOBUO2shlk6CWF/m8Fr73mDdHWtjEN83eDLYdgmE7WInPkujg1lmowiFVGYXq0MdS+FsnUP4oQaIiLLFN4ZUFjnyCh+pk5j+UKZQgXTaOZNugZ7Lo7t+285DHWuC8e4iNLk2LYc8qwASe+hPsv3HjxLTEQm95hnkRGRq373u+EgpzPmZCQ3moybkYy3ch41yOAc0XFp0WQFIiJLFbz2lJfKUM/NYIjc9BKe03YR23CxhhNAiIi4Pp7nNg3Dvo3bOXEJr9H1KrbrU9/DMdlJm+f+zv04+dHYNpzMwo7xXF2ev4Tb1MJzoHwRJ20QEVmaxLboffNrcRt2lKBuNLCt+Zrb24fnlYjIyCgayHfvwzG2Xls/pn47kD/95FeMZSShv2goiqIoiqIoitJx9EFDURRFURRFUZSOow8aiqIoiqIoiqJ0nOtSOmccT5zVIJtMhj5KmtVcjJpcEZGwjfrP5QpqiZfzqEuLbFxHmnTfsaGaFGlQUBsHwvCjlUvBS2yPaJG/ou2buuuQgqGukvknPgUrmblR5vOf5+KGOSRSj0nPbpPW9uAo6rKj2NTWBkdQq3jJx4CijZr5mIWPm8DS0qIE/oruuN3CNncd8qwkfD6Xo/0J8Ti0mrhM1nS3aqhDT7nmcYr5vGiiNnNhCkMA/Roep3aDfCHUH9tNU/e6TPvh+7jMDEvTLVzGfG0K3x9RMJWICHlywjbpw0MK8Gth/whjrJNyvhqkU21TYmS84ajWGxTGtklYlivWahBXsYANe/BWDAmbnzH1wwOD6Kk4fwbHwKefPAZ1dx/6PkbHMCTw9tv2GevoKqAOP0sa969+5Qmo2ZORyeLnjz2P23T2+EljnRyg+bo33AX1gYO3Qm1RcupXv/xlqM9P4FgkIuJRSOnrXvcg1Nu2bYV6egrDDF06XxNyUSXkPkdvuqxDZz36ZtFd6peurpXjGSV4FAH2OInIdIn6XxV13JkA+2OKAtTYwxJZpl69NDAEtU3XtwqNeecmUJefLuC1qt7CBZydwLAzEZE7DqMHI0vhny5dEeyr3fokXUA48DHxTRvWwT7Ga7nbYosQjZQbWyIVbL5RzfcDcdorxzyke6PpuSl6rxk616Z7peUl9EO06R5xaAuOd14K+9vSAnrcRERqS3id9ulaFNM9XzPEdboOrsMib1jQMD2M9RqeR0JhjFkKiLxl306ojx3FQGW/bV7fGovoucpauF186+F0ccAkllFs3j9b9CYnhQvt7ln3Xrdb5vF9JfQXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI5zXSK/+sxpcdwVnex0YxJea/moJSwkzJMf7UENbUyGiDbNy5xK4XNQOmadpakPjXzUztqsQ6MytjkDg7aJdGhN0pGLiITGfOa4DJt0rays5byAKEE8nM2ibjVFmj/W2wURbSd5NkZKxipkKI/63NNPP4eL2NC2oW+2w43Glljs1dYr5FG7niY/RZikoaaskUwWNYzZIvqKWGMbkX7bD00N9Kk51JxaFmZvzC9jH2+QlrPN2SUO7qedkGHQbOC+XpxHr1MzQL1ymMJ1xCSiLlcXjHWk0yn6C557adLPs9+FLDQSJc1TT5pfz33lDJEwuDkaeSebFTe7ckz6MpgVNG9hu5d6zWM1RNkbKdrHi1MzUO/bgVregOadn5o8bqwjaByCOk1jx8QkatxdFzXHW7aMQF0kz0ad5sIXERE6N/KUs+RSXkzcwLYqOKi17i3geCUi0qZx8fxp3I9CBvdzdAuee0LZCWFg9sGUi8fHD3GZfe7KMputm+MREkvWtNZ8bWNLQL2KuUAiIkszOBe/1SpDPT15FuoUZfL0Ud+oVhMyd8hL2aqhJ2zyAt47uCn2YpagXg7xPEvlEr4fbeG4GzbQH+VmKNfHyLAgL0TC9YP9OmyRabdx/KrVsE/n87gNDg+KIuLTuObTMjMbxuHGstn2N5ql8pI0myvbUK/j/UKFtifpGhxTllUui9e3FF3/chn0aPT1YHtUK6ZncXEW+315EbfLpVyhLrrul5cSxrcNsDdFxDyW7Aez6L6y2IXrzHfhedZM8CC65Jcq9WLbZbJ4HrEvie8R+X5GJCHfijp5vOG6n5wDk4z+oqEoiqIoiqIoSsfRBw1FURRFURRFUTqOPmgoiqIoiqIoitJxrsujcfHsC2LZKxotqzUPr/F8z4W0maMxkL4P6qkx1MiP9OGc8FnSfTerrAE0tXKuh9pxz2ZfB+dmXNlfEdPrszRXtIjI7Dxq2tPkn8jlUEvHOrgGaR39tul/YI8Ga+Z5/vfqIuoMW9R2CwuoaRURefk7T0M9/jLqv+P0+jawXnUzsGxbrFUhctIc3RtJ0oemc3hcFpdQy1mhNvJoLnbWNFYT5pGeaeGzu99GnW7YxtdtmjP+1MQ5qHMp1ESLbfqS5pu4r1OzpA22sP81YtQKN8plrBPmCR8YGIDaI6FrQJ6dkHNdLMrhSMgAiEhDzzkALuTqXCVD4AYRBnUJgpV9iSvYTraLvoIt/eQREBGXvFJ7d6L+fGwY+0O5jGPL3u14HGwxNcrVMvofBnKYmfOmh++HenRbCep2E8ej3m58vauA/UdExGIrXIDHuzx7BuqeIvbj19+3H+pWiN4UEREnhW01NYlt2deHbbN/F/mjZjHDprqM+yki4rrkfSNtdbq9so56w/SQbAaOxOKs9v02nR+Bj9eVZsMc433yX02fuQB1uY59uot8bDOUA+QUUEMvIhJSdpDlYBv2UJZMqoA5L/n+MahH+3bgNm4zx6czJ1+C+sXnMBtG8rjdswt47Hn8SvKetMiXkyefIHtOFxfx+hKQ/8LMzxIp9ZSg9imvaGmDf6DZ3Pw+WF5YlFR6ZeznTBWHxvhYzGuw7eB1g32Qdgbva7oKnM9EPqt+8x6wNYz9a558k7UqfmZ8/DS9H+/xwpD8hl6Ct8ZHD1qzhf2rXcf7sZeOHYG60IXjYXe3ef/cP4hZMcUul2q8drSpvzXIN5kQgSMOZYg4dL+x0VvJ1/Qrob9oKIqiKIqiKIrScfRBQ1EURVEURVGUjqMPGoqiKIqiKIqidJzr8mi0g0Ase0WHaDdR95bySNvaMucifv6pb0N97jjqKL+5FfXo/SXU5EYu6sXCBJ32GC1jx64dULO+OCAtf53mL56eRb3zkeeeN9Z5jL0MxpzJqEEt0HzajSpp5xLyQVg7xzMYR/SHBZrD22+ShrBuztNcqaCuMHRRy7hRxRpzIMkmkMtmJbeqGa7VcFt5vvcoQQBrOeTXIa3l7DzOvd4iDWyhgLrJp58/ZqzjUgOPU08JdZV33nob1Nu2osb53KkjUM+NvwB1s23qXmeWcTt5vuz77jwA9bHjmD+weAl12gODJWMdAWXFeDTfeXfXINQunas2tX3gm9raZpP8BjYOT12l9e3i5W0WntWSlLWiG94ygPrhoSIey1xCllCK5lffsWs71C5pmM+dPQf1hSnso1u3YP8SESnPT0M9uGUY6tERrEe2oA6/soTrCBo4ng0PjBrrdCw8VhXK2jh/HnXQnodtYznYZ7dsMddR6qbt7mI/HfkEXTxf0yGOu7OBqXF3aZz1Q+z39uoc+rFt9t/N4L/9jz9e8+v5DRwDsyS6ri+iL0ZE5NwzX4O6PYdey54h7E+9Pah3b1SxPS5cMj2LY7v34nYVSlA3W3js59lK0sB1vPjlv4R6Zs7MB4ltHP+LJ/H6Z6XOQb24TN45ug9wOJRERPI0/veU8HznbJ9aHa+59RrWnDUkIjI/W4ba9fC8mt+QkdS+CVkutqx/O91s4P7w9dG28BohIkKxUYZXz6cctEwal1ETXKekzXul3l48z0slvP+anipDffR5vA+t1PCeL1/AY+DlOFNKRGz0+LTa2KltB4/V9p04lnWTFyWfxzFZRGRwsB/qbA63i7tsNoPLyKSw5nsmEfM6z+eFv+G+qulee//TXzQURVEURVEURek4+qChKIqiKIqiKErH0QcNRVEURVEURVE6znV5NLxWbS3HQGqoQQtIT91ImOa+aeEfZ0lnfe4Eeh3S5ESwSPftuOZzEmvDcznU+OUof8ImjWBA2v4q6SxrpLMUEfFbqM+j6aVlifIYOAPAc7DtnITnPzPfA1/neIWI5rAOKAMiisx1FGnDMw6+p7ZBLxpFkUwaS7ixWJa1Nnc360E58yJpjvHyAs4h39OPGtu9e3ZDzRrYBi1zqA89RCIijSnUD/dnUfNYdMpQD+ZxmWO3bYXaJvNNIyE+5MSZcaj51OvL4HFcnp2Buk5+HfbqiIj4Pr6H5zPv7kbNc083Zhi0AzxH/IQYFv6TTVkdMzPr291omlkzm0F3b0GKuZV9e/3th+G1cojH3mmaOv6Qdry/hP24WsFxdaAXdbV9A9hHu3tMj4ZFWR2tBh4bz0Y/HY8NHuWZGN4Z3xwDwxj7KQ2zks/iseT+VJ4vQ10qoDdARCRjka6e2nKBPFa5PG5ENoXnQbGA7SAiwvE7S7PoNSlPrNSN1s3pf09957E1bbXTQC9OvHQJ6jZ5bUREuku4z/kRzCvJduOY2OwqQV218TjWps3ryDJd7pbbeF6cPo9XjkXKdHI97PNbRjFXI05hXoqISJXGsOo8DpRtH9uK8xs25lOIJOcwFYt4rs7NoZZ/hLxPKdLEs2eDrz8iIsvLeK7NL2Cfb2/w6LUT/Ho3Gs/1JLU6Llt0+rh8E5KUlUR1zPclAY6ZjRD33ybfWyZjehk88rVw3sPY9iGoUync7jz5JYIGbaNjXoRbtA7bwzE442FbDPRjX+nK4X4Ui6a/pVhE70mOfBwe+aQ5lqqrG70q6Yw5/tVq2P/YG9zY4PX1ruPxQX/RUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oKEoiqIoiqIoSse5LjP4zpQtzqrhZzt5VcIYDTIxO6LFDJnjsBabzN0em5PTaNLxXHPzmy0yAVeprqCxh83gnHoSslnJMg1OXha3k0OfHDKos7HbcfHzfmAaDfkzCW/AbQrJ5E4W4aSwQ5uOkEfmrksbvJVBJJtuBnccR9zVY24EyfjY/6yE/lfI5fAzFDgkIRrRQh+PQ6WMpsbRAdOI25vP0V+w/7UXzkI9iP4uKWTx87aFfT7ixCMR2T5wK9SuiybYFJ0ni1k0kQXDGI7mmR4xichg7NAEBu0W9qdGC01l7TaZyRN8jD71WTeNG1Iur5tGm60EV/xmkHJX/hOR3iGcDMALsc8tnDfNuJk8muRbbdyPfBd2iJ5BNIxGdI5mstSBREToXKgs4nZkKPgubOMynQj7R1cOx4H5KQx4FDFDSH3qpwEZ4x0yFUcU4hb65thu2bhdbX+BauyjcR3X6WXwolUsmWFfwmGp1M+7VoMq6w1zsonNoOg5kvZWttFp4fiVKeB4FcZm36i1cf/ueNNDUNeXylCnh9B4bWfQULo4bbZDNUDT9AVK5Ftq081DBq+xbgrbvLAhqFNExPVMo2xrFvvCwiKu06NrcDaDY2S/h2M5Ty4iYl7HgxDbux3g+MV9ZH6hTAvEthQRydIEBZbDgX0b1pkQCHqj6SoUJLPadm2aEIGvyUlmY7581WmClXwWj63N13Eqo6TbIhpbslRnstjfsjkcD4cbOOZ6gtsUu+bFa7lN9wpV7CulIvW3Eu5Iipz1+bwZpufRZBbZDAWSpvB85/s3vi9NuJU17hU41C+z4bxIO9c+BuovGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB3nujwa2/ccEG81rOXewnZcEAWWxLGpHwxJUMc6epf0iBYFxkUehaI4psY2osA91vSx1SGm9/PrRnBPglfC4rAW0sZxYAz7LUKKsYkS14E7Yng2+HUKUOQlchBLwiLECVDrnWmsf6bt+yITf2os40ZSqVQkCle2yU3w52wkaf/a5MlotzAMKEf+il4KaOoizWmzgb4DERGXGnF5eYbeQG1KgUMpjzwa1IErFCwlIpLP4nbmc6j95QCskS2ou2xTeGMYUUCbiIQRth17NGrkhWo0MPQvJN1/KyGxr1IjzScFenqpdX1oeBXL0o0ijKK1UE/uY71FDJkruaYGm6wIEoTYhwoUwmQIaUPsP+kELXmrjis5fmYC6lwJl7F9pB/qbAa1vhFpwafrZr9fLOPx7u7BtpiZx3578SIGqO3djcFxJ17G8FYRkWod+0ffEK4j34s6+3oVz2+Hgrway/i6iEi7Sd6vEM+NVGbFY+NH13Xp7Bjdg4OSSa/0kXYa23z7EF6Tn3viRePzhX70CPWPDkL93SNPQf2+h14Hda2J16q5nDlWVGwcwyoxfqaLgk45zLFVx/3iYLr5RQzKExGZmsa/tQNc5zD56Qp51N17pEUPI3N8apLnorKMuvxzZ09DHVHYaot8a+WlirGOLVtxO/v6sN67/561fzcadfnDTxiLuKGkHFdSq2N/i3x7fb14PiaFHrIHNpvL08vkF6N7wCC4uhc4CLE/xZRcZzvYNxwXx9h2G8/trIvnTOxw7KBIFwUN+gGeA45gX8l5WLsRvr/UY/qrLAv3I+XhexwLrx027XdEx8NLmx4am/7G964bgy7Dq9yDweeu+Z2KoiiKoiiKoijXiD5oKIqiKIqiKIrScfRBQ1EURVEURVGUjnNdQtNG36gE3oqW8eIY6sJtH/XKqYRnGJ98G5Z9ZY8G2zxapDljvZ+ImdXBUu4ESd9VPoCl4QERkcjYV6rZJ0LLsGk/4sTJoZn4CpVIdJUd5XWKmBo+h3Il5pfXtdl+29Rp32iazabYq5p11sez1yHJw8F7XEzjZywS/sc0T7pQ+2QcUx/PORcR5WBY1O5LlD+Rc3GbMjR3e9syNdGNJdSaL9VYi4nn6vDINqgL1Fa1hplR4dm4nS2aQz26ih6UvQa5rDkXft/AENQ+nSfp+fLavxtNM2tmM3AdT7zV457NUC5LiMeB5+4XEXFyrPnHY+PRGBjSOSikBV6aNfXqIfXBSxcvQt06i56NruggrRO117kBnGc+W8B55kVEps5jtkbfEPbjA7fdAfXwNtSn5+h0nZtBD4eISCjUr8lTNTuJOTf9xRItAduunOB3Wqhg/kIc09zz/ko/DoObYxI6OX5hzU9QWcSx4MQEtulQ3y7j8327RqB+eRz9ELMx6uwffwn7V450+JWWOQba1O85Y2V5Gbf79EnsO03KJCj1lqDu6kHNvIhIKofjydQl3O6Lk5egjkL0Jd1yywGoM0YeksjLL5+C2qdzs38It7O/H70ofVS32+ZY3m7juZel69rGW6abEKMhTb8psupRsMkz246xPbJFsw3JjippD70x7MttUyaQ0Ot8PRURyaZwvTH52mLKfAsCbPOeHhzfHKH8ntC8PpboXiKfw2Ndr+BYE9B1v9SFfZozL0RE0in2kOK56ISU30b9I50yszmYdvvK11V/Q7ZYggPnFdFfNBRFURRFURRF6Tj6oKEoiqIoiqIoSse5JunU5alUgw0/m7RaKJ1h6VT815BOhQ7+9PZqlE6x7Enkb7N0iqZ6bJvSKWOa3RvA5XXUN0wny9KpkA6LH5jHqUHTcnokpeAphBlzysOENiTZSr2BP0VaAS6jzc1n4zZGtJ+8PBGRsI0/5Xr0GS/CZdZomtC2y+ugaWZFxLJxHSyd4u1qUB2TdMpxzbaOHdxOlk5tlEs1V/+9Gf1v43qq9XV51HIFZSd+jFIIx/yFXQKeLpWm7uRjZ0wRSdKpShWnHRYxpVN1moa51cJ25WWE1F/CDO6XnyAbqtLUxMsV/Eydzscqr5OuRLzNK+vAz1RoHbzMtMWyHmzLGk+nLCJ1GiNYOhUGjdXta66+vrn9b6N0wSdZiUvjUytBBtFs0v5R/2rRMhs8FtSxjRtts5PbNF1os9m8Ys1yDa75XqPVTJjSuY3nBS+D26pN0t8GTX0eJ+iSeDsMmYnF09nyftP06m2z//HfHJoqv9Gob/j3yvI28xrcaq63I8vILZtlwqb8h6VTEY0lLIXyaTrbIKJrdsJ9jBPQvWh0NekUXavoPHLoBs6PzD4f0ntsoWNP41lA188GXffdwGy7kO4d0jZNOX8V6VSQMKU8c1Xp1Ia2qtevfQy04mt414ULF2RsbOyqC1N+8JiYmJCtW7fe0HVo/1Neic3ofyLaB5VktP8pNxu9Bis3k2vpf9f0oBFFkVy8eFGKxeJVv/VVfjCI41gqlYps2bIl8deRTqL9T2E2s/+JaB9UEO1/ys1Gr8HKzeR6+t81PWgoiqIoiqIoiqJcD2oGVxRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oPEKvPGNb5Sf//mfv9mbofwtQvuUcjPR/qcoirI5nDt3TizLkiNHjtzsTbnp6IOGoiiKoijf1/zKr/yKHD58+GZvhvIqR79w2Xz0QUNRvk+5WriOotxItP8pivK3jTiOJaBgVOVvhj5oiEitVpOf/MmflEKhICMjI/Kbv/mb8Pri4qL85E/+pPT09Egul5N3vOMdcvLkSXjPxz/+cRkbG5NcLic/8iM/Ih/72MekVCpt4l4o3w9EUSS/+Iu/KL29vTI8PCy/8iu/svba+Pi4vOc975FCoSBdXV3yvve9T6anp9dev/yN3e///u/Lzp07JZPJiIjIpz71Kbntttskm81KX1+fvPnNb5ZabT21+vd///fl4MGDkslk5MCBA/K7v/u7m7a/yqsL7X/Kq5koiuQ3fuM3ZM+ePZJOp2Xbtm3yr//1vxYRkQ9/+MOyb98+yeVysmvXLvm//q//ay3x+xOf+IT86q/+qhw9elQsyxLLsuQTn/jETdwT5dXIT//0T8s3v/lN+Y//8T9CP7EsS774xS/KXXfdJel0Wr7zne/IT//0T8t73/te+PzP//zPyxvf+Ma1+kr9lQnDUP7BP/gHcuDAARkfH7+Be/kqJFbin/u5n4u3bdsWf+UrX4mfe+65+F3veldcLBbjD33oQ3Ecx/G73/3u+ODBg/G3vvWt+MiRI/Hb3va2eM+ePXG73Y7jOI6/853vxLZtxx/96Efj48ePx7/zO78T9/b2xt3d3Tdvp5RXHQ899FDc1dUV/8qv/Ep84sSJ+A/+4A9iy7LiL33pS3EYhvHhw4fjBx98MH7qqafixx57LL7rrrvihx56aO3zv/zLvxzn8/n47W9/e/zMM8/ER48ejS9evBi7rht/7GMfi8+ePRs/99xz8e/8zu/ElUoljuM4/uQnPxmPjIzEn/70p+MzZ87En/70p+Pe3t74E5/4xE1qBeVmof1PebXzi7/4i3FPT0/8iU98Ij516lT87W9/O/74xz8ex3Ec/9qv/Vr83e9+Nz579mz8Z3/2Z/HQ0FD87/7dv4vjOI7r9Xr8z//5P48PHToUX7p0Kb506VJcr9dv5q4or0LK5XJ8//33xz/7sz+71k++8pWvxCIS33777fGXvvSl+NSpU/H8/Hz8Uz/1U/F73vMe+PyHPvQhGBOv1F/Pnj0bi0j87LPPxs1mM/6RH/mR+M4774xnZmY2cY9fHfzAP2hUKpU4lUrFf/Inf7L2t/n5+TibzcYf+tCH4hMnTsQiEn/3u99de31ubi7OZrNrn3n/+98f/9AP/RAs9wMf+IA+aCjAQw89FD/44IPwt3vuuSf+8Ic/HH/pS1+KHceJx8fH11578cUXYxGJn3jiiTiOV270PM+Dgerpp5+ORSQ+d+5c4jp3794d//f//t/hb7/2a78W33///Z3aLeX7BO1/yquZ5eXlOJ1Or92oXY2PfvSj8V133bVW//Iv/3J8xx133KCtU/628NBDD619iRzHcfz1r389FpH4c5/7HLzvag8aV+uvlx80vv3tb8ePPPJI/OCDD8blcrmTu/J9ww+8dOr06dPSbrflta997drfent7Zf/+/SIi8tJLL4nruvB6X1+f7N+/X1566SURETl+/Ljce++9sFyuFUVE5Pbbb4d6ZGREZmZm5KWXXpKxsTEZGxtbe+2WW26RUqm01s9ERLZv3y4DAwNr9R133CGPPPKI3HbbbfJjP/Zj8vGPf1wWFxdFZEUSePr0afmZn/kZKRQKa//9+q//upw+ffoG76nyakT7n/Jq5aWXXpJWqyWPPPJI4ut//Md/LA888IAMDw9LoVCQf/Wv/tUPngRFuWHcfffd1/X+q/XXy/zET/yE1Go1+dKXviTd3d1/k038vuUH/kFDUTYTz/OgtixLoii65s/n83moHceRL3/5y/LFL35RbrnlFvnt3/5t2b9/v5w9e1aq1aqIrPiHjhw5svbfCy+8II899tjffGeU7zu0/ymvVrLZ7Cu+9uijj8oHPvABeec73yl/8Rd/Ic8++6x85CMf0QkJlI7BY5tt2xLHMfztsidI5Mr9dSPvfOc75bnnnpNHH330b76R36f8wD9o7N69WzzPk8cff3ztb4uLi3LixAkRETl48KAEQQCvz8/Py/Hjx+WWW24REZH9+/fLk08+CcvlWlGuxMGDB2ViYkImJibW/nbs2DEpl8tr/eyVsCxLHnjgAfnVX/1VefbZZyWVSslnP/tZGRoaki1btsiZM2dkz5498N/OnTtv9C4p30do/1NuNnv37pVsNitf/epXjde+973vyfbt2+UjH/mI3H333bJ37145f/48vCeVSkkYhpu1ucr3KdfaTwYGBuTSpUvwt42ZGFfqrxv5uZ/7Ofm3//bfyrvf/W755je/+dfa5u933Ju9ATebQqEgP/MzPyO/8Au/IH19fTI4OCgf+chHxLZXnsH27t0r73nPe+Rnf/Zn5T//5/8sxWJR/sW/+BcyOjoq73nPe0RE5IMf/KC84Q1vkI997GPywz/8w/K1r31NvvjFL4plWTdz15TvI9785jfLbbfdJh/4wAfkt37rtyQIAvlH/+gfyUMPPXTFn3Qff/xx+epXvypvfetbZXBwUB5//HGZnZ2VgwcPiojIr/7qr8o/+Sf/RLq7u+Xtb3+7tFoteeqpp2RxcVH+2T/7Z5u1e8qrHO1/ys0mk8nIhz/8YfnFX/xFSaVS8sADD8js7Ky8+OKLsnfvXhkfH5f/+T//p9xzzz3y+c9/Xj772c/C53fs2CFnz56VI0eOyNatW6VYLEo6nb5Je6O8WtmxY4c8/vjjcu7cOSkUCq/4i+7DDz8sH/3oR+W//bf/Jvfff7988pOflBdeeEHuvPNOEblyf/2Zn/kZWNYHP/hBCcNQ3vWud8kXv/hFefDBB2/4fr6quNkmkVcDlUol/nt/7+/FuVwuHhoain/jN34DDEMLCwvx3//7fz/u7u6Os9ls/La3vS0+ceIELOP3fu/34tHR0Tibzcbvfe9741//9V+Ph4eHb8LeKK9W2IQWx3H8nve8J/6pn/qpOI7j+Pz58/G73/3uOJ/Px8ViMf6xH/uxeGpqau29SWbHY8eOxW9729vigYGBOJ1Ox/v27Yt/+7d/G97zR3/0R/Hhw4fjVCoV9/T0xG94wxviz3zmMzdiF5VXMdr/lFc7YRjGv/7rvx5v37499jwv3rZtW/xv/s2/ieM4jn/hF34h7uvriwuFQvz+978//g//4T/AhCvNZjP+0R/90bhUKsUiEv/X//pfb85OKK9qjh8/Ht93331xNptd6yciEi8uLhrv/aVf+qV4aGgo7u7ujv/pP/2n8T/+x/8YZp26Un/dOOvUZX7zN38zLhaLMLnQDwJWHJMITekIP/uzPysvv/yyfPvb377Zm6IoiqIoiqIom84PvHSqU/z7f//v5S1veYvk83n54he/KH/wB3+gwVSKoiiKoijKDyz6i0aHeN/73iff+MY3pFKpyK5du+SDH/yg/MN/+A9v9mYpiqIoiqIoyk1BHzQURVEURVEURek4P/DT2yqKoiiKoiiK0nn0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigd55pyNKIokosXL0qxWBTLsm70NinfB8RxLJVKRbZs2SK2fWOfV7X/Kcxm9j8R7YMKov1PudnoNVi5mVxP/7umB42LFy/K2NhYRzZO+dvFxMSEbN269YauQ/uf8kpsRv8T0T6oJKP9T7nZ6DVYuZlcS/+7pgeNYrEoIiL7dxwQx3ZW/mhH8J7f+Ol34GcyjrGcl85MQ31poQn1U2cuQd03PAK10+1BffHcRWMdd23ZBvWDe3AZvV15qMfHZ6FutltQ53q7oS5RLSLSTGN96dgF3KbX3AL1cF8W6vayD/XzEzPGOuqNGn4Gm0Jmmrjdz13A/Xrh7BzU1tKksY7RVAB1Po1ttbRcXfu3H4bypVOn1/rGjeTyOr787aclXyiIiIhDD9DZdApqxzLjYdp0bLPZDNRp6rKeh6dHO8BlzpWrwrQDPC8qy/ieegu3IbZwR2o1PCdmp8tQjw4NGevcuq0X6v6+Llzmch3q5eUG1Db1paGBkrEOPwihfuKZl6Cemcf9yuRyUDcauA3cliIi3V14Xoz0Y13Irx+veq0m73/3Wzel/4ms98HDOwbFWf32ZukinlMxKVHjgR3GcrJ7XwN17/ZDUHcP4/jV3dsHdaGAx9Z16eCJiNA3jrFgx7biNtSpOo3Lszh27LjjjbwCY5XNBvbbdAq3Kw5xjGs1sA82eXyj/iIi0mrjOnwfl9lo0zp83M+4geeiPX/aWEdq4Rj+ob0MZRSu9Fs/COXLjz676f3vM1/4ruTzhdW/4jnpuHhcLMv8lpFjs6727bRDrzv0zWXSN5m8zKt9187vX7vHuPx5h2rb3GaLxntjs2gdURzRy1fez5W/XbntzLah8y5hu4110L6m6BqU2nDhW15elh07tm/qNfiX/sWHJJNeueExjjNdlO2EI2/R30LB49AOsU+HAd6TRFSH9H4Rs08GAY4LccTnDbYxf96jMZb7p0jSiHhlQtqGmPpjFGEtIhJLfMX38Kns+9RW1HZJ8DG1qC2cDce41WrLv//t/3JN/e+aHjQur9yxnfVGdnCD8hm82y5kzYPBN4OZFDaURwc85dEBTuHn+f0ry8T35DN4M1mgOpfG7bbpYPLrvDwREYf+lEvhZ4pZvGHqopuwdoAXxKR1SISdxMXdlCzdt6WoHfiGxHLM4+M5uJCU69DrCSfYJvyMenkd+UJBCqudmh80+Dg5lnmittvYJsaDBl2oeZBv0c1xMzT3ve3zgIGvW3Qc+EGDbwqzWewbubWbjHUKBTzRi0W8GbViXGYU0cBK96r8eRERnwapXA4fQjN1XGaW+jg/VtgJDxr8mVwez5s81SKb0/82rsexbXFXB1++CYvpchMnXJAcOnHdFPZBL4NtkMpiO6ezePxdrwMPGjHegKcyWGdy2L94P0VEYgu342oPGmLhNpnLTFgH3/w5uMzAxjqysU9GfINB47SI+eWC0LkSWdd3o94p1sbAfEHya+d75x80eG9uyoMGXWe43pwHjYRz92oPGnyjzQ9MHX7QeKXtuBFcXkcmnZZMJvlBwzhO1/CgEdCDhh3yzTFdu3ysr+lBg9qMxwH3ag8afB96sx404ut70OBzldshCePcNR40/nr3gGoGVxRFURRFURSl41zTLxqXSXnu2hPNXcP4zdpgDp+2/uKJ48bnoxBXl3HwSXH7IMqSGgF+s1Zye6Cueua3oo+dOQF1zcMn5MMHd+AyfPzJ/tj4eahH2qNQv7ZIPyWISLEX22Lrri1QO/TNea2B21RbRkmAF5o/cU2ew+26QBKdaRe/+ZyOsK3G9gzjOqdRkiEicqaFcoU9UsHPlNflDglfSN9wBnq6pNi18m17mr95pG9GGjVTehFSfyuTpMgjOWCpG7/Zt+nz6bT5DfskyU7OnUd5X4skIltGUNrXJknJ7h1bqd5urDOdxm9Hcmn6hiaH/a9ZxXXUaJvqdbOPW7Tv3d34LffiMvXpOsnK6NsUh39GEZH5Mva3wMft7C2tn2f1Om7zZrFwYUbs1W9wbP7GeHgXlIXDbzY+37fnTqh7BlEKl8/jGJjO4LGI+OfxhJ/D7QD7dTFagnosj79oONYC1OOLKKUKSDbnJnyjl6Jf6jJ0bsQx/ZLjYM3nUiPhl5pUE/sxSyLcOsqcuP9Eafy1yB+61VhHmMdxMTNzFN+wtDoOxzfHEGtZG7+5pG/pI/7G3fxWlL+hNH6RoG9NueZvVbleWa/Ff8DyKu+/+je3Zv/jXwv41Iz5F7SIvuWmb5QTdkskpF9NWJ7Ln3GMPcXPJ/waxPvaJvnLxl+nWc66GcRxvHZ8uI34y+6kvhHF9E3+Vb7qvto37EnHiX8dCEPzPMD340LMX9B4nX/zmx/+JYa3+Zp+JaA+z+NhyL8OUZ30q4k5PvAYs/56QNLUK27rNb9TURRFURRFURTlGtEHDUVRFEVRFEVROo4+aCiKoiiKoiiK0nGuy6Oxf8fA2kxQrJL8w798BurQygvT040a254x1CfvPYTTwJ6fX4Q6m0ddb7BsauW270ZdfUzTE84toYa+XMa6TdrbJdKCR8uoZxYRGduK63z6wlmoP38S67CF2rZe8nDku0zt/+69OO1lexz17HEXaouDCGdUiWg2pEwWp0QVEWnSFLnL44/jdnWva5xvhj7UkUicVS+GFaEesdlEn0udptsUEXFpRp9yBY9lg471UhWXUcjj55OaYGIS9e3jVA/S9MiD/Xjcinn0ZIQ0hWd5ccpYZ4n6S9rFY52lGch6unA/nDqeR0kzecR0XgwNDUBdqaP+c66MvgDDSZAgzo0CHI7qLdwOq7LuPWjUTQ/OZmDZ7ppHo3D7G+G10mveAvWWHejZEBF5zS705Azl0ItQadHMSST8XlrCKcBnxl8w1uHPnYR6fv4M1LPkZXhpogz1Ym4f1Dsf/AmoEyZbM2bTYv9KQHpgj2fb8tjDkTArnoe+nzZphD2arS9Fs0pVa/j5RtPUGDds9OQ1MuhF8qZWzt/Qb4vIk8bnbzRhGK6dnzZ5ABz7yl6HV/rbRngqWSti78LVPRqGcP4qOvurYXo2zPHJ8HmwYYJWadgreL8S9Ovm17KsX+dt4na4uraf/QG8HeEGk1aYtI03GMuy1tr6an0hTto8aoLoKu0eR1deR5KVgb1Kpu8A3580k9KVSJr6mPsf+x+S/BAbuZZppx0Hr49BgPdrUUxXWYvOE8OzlXCd5yl06bq/cWrgkO7BroT+oqEoiqIoiqIoSsfRBw1FURRFURRFUTqOPmgoiqIoiqIoitJxrsujsW9k61ry9teOvgiv2Rn0ZPzE3aY+eaiEeRP5HNZdlEg80o0+giULNWG9W1BLLCLSIpna7MlnoW4soifj2FQZ6sO33YH1HszEmJ02NfJPz6HWdyFE3XVvMAf16UXUSPeO4tz6XQOYeSEi0kvzgJfa81BPLKKWLksa6WweP784XzbW8Zo0pW6WBqG+FKzPS2/bV4+z7zTNZnMtpTNTzBqvbWTyEnojREQiBzXb5WXUbPttmoeaErUtixNETR1ls4neAZfSerdvw/7UU6LkZ8qbqPq4vNgy271UwvMmT0n0Ec0jXixSqncW9fFWyswwmFksQz05eQFqj/TifT14blukL81lzITzmRk8T6oNyoPYsN3u9clqO4Y1uFus1RyJ4uGH4bXurTjmFbNmOx4mP9eeLmz7JmXZtMiz8eiZJ6Aef+6zxjqqy+iPaTRI5x3gsQobOB7NXsT8ialzmCVRHDDH9jRlVKQ9zPHh7A32cHBisJfF5YmYvo1WC8/5kNLH05T4m8tj29ebpo9rcQ7H92ULPRrtkbtFRCRoNUTkvxqfv9HE8bqeOySTGCdRJ8FacdaGcxtzMvjVMi9Eru4d4FHzatkeZpZCUsYAbwd9hvXrpOP3W6h3r9bMnB6XfEg9PXh/wp4MI7/B2I+EnAlqO26LaMN+RdedR91haPMNb19CN+DznK163HfYs2GzFyIhI8PMXeEcF/ZwXCWrg7NNEnLOGpR/1W5jf8qkyT9G+UiGJyPhvOKcDK65wdnLxOMjp5OLiNjxlc9FXN613wPqLxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigdRx80FEVRFEVRFEXpONdlBt+yfZtkV0ORdtbRWLJ1EA3MuWKCUbaN5rs2xf7t3orLaFCekuPj5h7YgmFnIiKLS2jw/TYZtGZm0Pi4fQgNXb09GKiWTaOBeNJBU4+IyIUTGIi1K4v7XujF7WyPoom9a8teqF+8dNFYx8yZ01Cnu9GkuHXHQajrDpopXzh2DOre0DRC3hahgWkbNe+53p1r/2602/KZ7xmLuKHk8jnJF1YMwS6ZplsUgji9gIZYEZEmmWCFDKkc9BMuozHXJhOZFZqBX5PjGJY2uhUD+PbtxrpZw+DFPBm1u8ks3myZpyyHoVXraEzzyIjNZrlMGo1pTgb7vIhIdQLPq3oD621bt0OdzqAhvUVhkJFvGtG8AdzXdozL2Dq6bqSvVrHdNovhB98j7moQXPcwhmhmyPgfu2Zo6YuTZahHMmiadgSPxfQ8BvSNj5+AulYxgwsjmowiovO6GaCJj02uBcFj+/QX/hDq+3/0Q8Y6maUlPDe6KVCUA/uMULbQ/A7MpVA/i4yKvo/7yaGOXgr7U941+3nQZoM5hsbWVseAmM3Fm4TrOuKumtx5fwPDHJ5kFr6yuZvry5NvrK3f4eNydUOyRcltbBr229iWPplcmxS+2miYfb5Wx/GgXMbJUpbmZqBeWJijGsNbZ2fxdRGRvQdug/qnfvp/h5oDIrlt2DybFDbnuhR0SW218RrFk5dsBlEUrV0/Yk7k4yTPhHxCSziA8MrBdkZwIq0ijMzz0JiggBuaxo0W9b9qFe8dFuaxL83Pm6HNS0v4GZ/G2FwO78eGR/Bed9s2DArNZczQ5oDCe9nsHVvcV8gMTtuUFCIYWVeejAC2JyHY95XQXzQURVEURVEURek4+qChKIqiKIqiKErH0QcNRVEURVEURVE6znV5NMbnZiSz6ll4410YMmc5qIvLl1HbKiJybga1boUMrn58AXW937mIOsnbbNLzzUwa63iB/A0Li6jnvOeue6H+ypHjuA1H0G8xdQaD3+qe2WTbM/i81l1En8dMhJ/J51GXXV0q4zqnMQxNRGSRdIc9ZdyvkW7czne+6z1Q7+hGre03vvItYx1PTWPbveCgBs/rWdcNtvzN14fWGi2x3RVdsldAPaxN+m07ZXppfB/7Vxxgm7Z91DC2SAPbS/6J0WEzWHHnGP7t4sVzUDeq6KXpK5EniIJ8bBePm103+9/kJQwZiwI8T3IZbIsseTKGB1E/nxRWNTuHQZcjIyO4TPJ1+E30ifQVUKOaSTiP2gHqUuM07nsqtb7dnmX6YzaD/r13iJdZ2Reb9OpBg9qtaAaozdXxnFomXXOeQpXoUEoqhX0wjk2hN/dz7sf1JvZzstuJRVrfxvlncJvPmeassVvfArVNXpOF2QmoR3egT8218f0R+6lERGg7YxKBO3GKXmdPFpZe2hwjsgU8HyMKsPLLK9ckKyHsajPIZDzJZlbOizQFrEasTU/YRvY/tMj/UKPXY6rbFJJYqyX4Jap4HlSX8F5gYQHvA2Zm0D8xN4fX/Rpp5us19BCJiLQoIM3wcQR4TnDvCki/3k64vk1RWO873vFWqHfs2I3LjDgY7sqeQBERn3w27DewN9wDBdcRmNYpojiUKF7ZRjP8kd9t7l9M+xzFV14GhxqyL+TyttCn6DN4tBeXsX9emMD7nqkpvJeqVrEv1VvmtYc9orxftoV9eHwWz4EL5AnauxM9jyIiQz1438htEcZ07SAfZET3O0kemsgI5OTww/UPsQfkSugvGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB3nujwajalJiVbn1c4PDcFr7XwJ6v5+fF1EZLyM+s7yJfRYvGCj5vCpMs1vzD6QJdS5iYiMDhegfs8HfgLqqNgF9eNnab7t45hXsZzGJopDU9g2GdN+jaM+3bdQV53qRR3c2Rmcl9lOmCc824ftWSmXoT5+Crd75AXMzejPo/Z4266dwhyheeUvzaBusL+yrm30fXMO5hvNqTMXJZ9fyUHZNYr5J8Uu9ACMjvYbn58/dh7qyjJqGmtVzFgJAtT9sl7WyZg5CcMjmK1w/swpqE++9CLU/a99LdQhafY9ynEJA7NvTE/N0XvwvBkaQg9GqQe9EBZZCc6eRz29iEitgce7uxf3/eQp+oyFbXvn7Qeg7unG4yUiEgW4r9U2tvfk5LpPpFY1ddqbgWPb4qxqrdn74JNOl/NNRERalA0yXUGd6/5uPBhbhtDzM7ZtP9Tnjj1trGNxEbXkDR/bsU7tWmvi903Du+6C2hfcxpNf/yNjnReefRTqvfe+A+rcVswKatP4kXY5AyIhR8PFsZgzH2wb2y5NuQZN9h8k+Fu8NPbrNB3CwqoPxzcF6ZtC0G5K0F65Bj/11BPw2gx5CBp1M2umTrk9S8tYcz5NvUI1eTLaCVkOzSZeDwPyT7C2m/0R/LpFOnzLMtuej71D/ccjP5Xj4vtT5BnzXNNfVV7EcfaF545AvWPHLqg5L4RzmxzH7H9mt+L32K/w780hjuO16yDvH/sSEj0Ahq+DsqmukuvCfSXpNOR1zJD/4fR59MDO0H1OvU55by3Kr0jIjvF9HluuvF+NkH10uE6+vxMRueOWW6AeGChBHdJ4FkVUc1sl3MLF5Im5ekrOtaG/aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonSc6/Jo7OotSXZ1LvsUacqWI/IleOYczzv6Uf86cQE/055Hjfxo9xaoHzy8A+pi2lxHM0RtZW7LKNT/8398CuogRM3pwC70Qiy2cB1JGnmbdK88n35hFHXV6TbNnd+DfoI4naCtreBc5E4Xar3D1ADUf/aNr0Pt2tj22a3oJRARGdk6htvpoMb5/p3rvohGsymf//JnjGXcSGrVpsTxSpedoXmohzx8Zm7WTQ1/kzTL9SU8Tn4Tj21XF/p9zp09C/XJM+eMdRzYsRXqhx/Guda/9+0vQ71r+w6ob7n1MNQhz1UdmH2e5/S3SXzZU8JjX6S+UyVP0GNPmLr/WoCZFucvYH9sknZ7aCt6aOo053ub9csiks/idi2SXnxmZn2d9YSsj83AdhyxnZU+mE2T14U8AOyVERFpk47Wp4ydYh6zHRzKORgZ2QF1Oo/tLCJSbaAGuU2+n0odt2v7LsxEeuNbMYPn03/636G+cO6csc6F+eegPvoE5vS86e/9c6i37bkD6ii+st9CRMShv7HHIo5wv3KFItSVWfQwsKdGRCRNvquQVMrpworHz0rQ8G8GKxr5lfP78e9gGz/6nW9AbYm5fzwvPsu2PcrticnAFVLOg5XwVaWpsydvjfCx5vfTQknv7rlJ34+yPh33M2BfSPvKeRVJ6vQ4xGU+++yzUD/ylrdD7bh4LrO/gP14IqY3yaw3fqZTCvprZ6NHg4moffgYvNLyNuI42N8C6m+8yCSP0OSFS1CfOYvezEW6VoXkuw1oP5q0jqT94v3g9/A5wfEfIXk8/Ab6mkTMo33rIfRs9PRQBhD7Yeh3Bcs2jyP7o4w8kA2LMDxIV0B/0VAURVEURVEUpePog4aiKIqiKIqiKB1HHzQURVEURVEURek41+XR8FI58dIrHo2LszPwWtSDev52CvXLIiJuGvV32R7Uw8akYdzZj8u4ZTf6LQLb1Mp96Sjq6M/82Rehnp+dhnqRtHCpVQ/KZXJZ3K/yMvpIRERiDzMB2g42a5RCdZ1D2tk27YbfMj0aQXUJ6laA/pZ0jHNBz546AfWij9vw2qEfN9ax08F1dOexfs3edU1gtW56VW40l2anJbuq289nMF8gvYTtce48HmcREYs0iwMlPNZ7du2Dev8+nPv/2489A/Uzz71srMNxcJmZPOa29Pail+br3/wafj6FGulcDs8R1jOLiBQKuM7eXtTtl0qoVfc8XMexl8ehPnMONf4iIlYKl5HK4H51F1Ef6rq43YuL1F+apn68rxuXOTM/C3W1sd4f683N738iIq1WU6JVDXl3Fs97lzJ6Wm1zHwPS8rZZj04a+XQK+2x//yC+PYPHRcTMyWiS5rhUwv6xZyd6s547+hjU8/Poh+oeRO+ciMiWHXiuLCyUoT7+JHrGbnn9e6EeGN4OtZWgA4+prSxyGPBHYlI1h9QOfoK+mxcSUD8LVnXJ16NP7iTFQl4KxRXv2GvuRJ/Lk9/7BtSsbxcRsVkrzo1GY6Tj4djiZrB/uq45HoUhtmtAmSmsiedtCMnPZVu4H+mEPt8kLxNrzTn+io8fNYs4rnlrxLr6F154Aerz53Ec3bMPs4NCn3whCUETkbFdpLPfUPq+6QHbTMwcGzw/k86Rq/k2HMo74fdHFAYxS15NEZHxcbx+LS+jX7NKOS89veiRjSgXrVXGzydcgo3r8tXaIgxonKFj2U7wT5ydwP1yU+gBuuUAejZcuj9uNXA/OFNHxOx/vX14XU+l3Fd875XQXzQURVEURVEURek4+qChKIqiKIqiKErH0QcNRVEURVEURVE6zvV5NGyR1KoWLU3a8VYa9WKRi94GEZHZZZz7/tgsegAuzqAmuydGT8cXaI75qTLO5S8i8ugTOLf1Yco1WCLNXzpN89h7WDs0j3ixu2Ss09BVs5iT9OjNFmoA4wwuM1/AthURkSVsGydC7WxjfhLqygJ6FEIL/S7jk/h+EZELAWr4dsbYvttPr3sSak1znucbzez8gmQyK16M/t4SvlZGfezkhQXj8zFpfffsQJ9Hi+ayfvGlk1A3mqSJtfC4i4hcnMLjVMjhe26/AzMLfue3Pwq172O7/uiP/ii+3jZ1kf39qKMcGEANfiaDfcUS7NNnzmJfSKXQeyAi0tWDy2RvwJYRPM8Wl7D9X3oZvVOH9po5LlFUhvrSLM6HvtGLYlsJ+vpNoN1qrGn/jbnSaRzw6zi+iZgxKDMVHBsqPrZ9Xw7P23wBfSCWZ46zVR/1vaVhPDY7t6PX7dICHv9njp2COqY8gCL5jEREnBh3jPtcbRE9fccf/xK+/03/G9SFvKnDdx3OY2DYf0Cv0ucTZPjSJN2y5+G50qitjN3+TRj/RESieN1Gceh2HEvuvPd1UM/NYJuLiGSzeCzzebzW9NB53j8wAnV3ifqfbY5Hf/qnn4Z6iq41PH8/5y/ElAOUyWAfZw+HiEjbx/OI/QM++VWqlMOT8q7sjRMxM0NmqH2fe+4o1Lv3Yn4W574kwdvNbOzTrxBncUOJomht3GPfwSvla8Dn6TOOe+XcDF5Hi+6lZmfQmyoiUq+jX9OhcTmVxTau0vsDMvTwuBEn9D/O/+C6Rfd8QUD5FORNCcKE65uD2z1fRr/w8eNnaDtxnX4b7+8yaTMLqLenZK63A+gvGoqiKIqiKIqidBx90FAURVEURVEUpePog4aiKIqiKIqiKB1HHzQURVEURVEURek412UGb43ZYmdXnk36sxhykp5EE93SsmmYsUI00HF0y8UAjY8+mRoXX3gJ6pmyGdZiU6BQmbxq7QCfrbIuBxah4aaZIrOlZwbONGpossln0cjo+mjKue3AQahzOTTYvXwCw/ZERFJkmjp1Bt/TohCadFcf1JkY9zvvmWYjN4MGuMfJUB0fPba+Pn/zzbjNViCxtdKvTp+/CK8tlbH/1Rrm9qXz2DemFvEzpyiorlJBw2A7xGMQWmh4FRGpUUhbKot92ktj7ZJR7bvf+zbUb3zj66EeHkIDu4hIhgyenmtTjad5s4lt09eHfWXvnl3GOrop5O3iLPaNGTJut9p4rlfp3D9pm+NDf08Bajam7dqxbiCvVMywoc0gjGIj+PEyLTKktlsN8z1kClxo4Pgy18BlD+V4iMbxqtowzbi5EvaRgVEMw6uQKdWhbNUDh9DE2vJpwoyECTHKizQWL2PQnUPjxYWn/wrqNAW/bbvjYWMdvYNoandtCkalody2OfwQz5NmxQz17CZzdCqLdbW2sl9s3tws/CAQf3VGgdIAHuef/Nn/A+pWwzSsG6bnPE4+kCcTdIauCa7H5l0zOPP4GZz44eIFNIM7Ngcpsqn4ymF67ba5X/yZkDpDg8z7bRqn2bzrBwnXR+qjAY1pzz6LE9G85a3vhDqdwbZOMk+zGdwiB7q9oc/b9nXdvnWEMGxLGFir/+YAQiQp0C2OOIwR969FY2ZMY22DTPxBYI6xInTsLNyyIvX5xcUybkOTAiI9ui8VvN8TMcMX2zTe8QQHxpGn/SwY475ITz9ep7NpvP+IQjwXczSJwjAFrXaXzAkP+Py2qO2iDfsRGXfwr4z+oqEoiqIoiqIoSsfRBw1FURRFURRFUTqOPmgoiqIoiqIoitJxrkvkd3yoLelVedtdy6hj2yKolatUTP/EVA31XhNN1HjtuWU31PMUjFKnwLTuvkFjHTb5IRZquF35LOraUmnUqS1W8f0pQS1n2jF1lQXWvdoU5BVicFf1EgarnCNd9tNnzaAlu47hLJcorDCXQX17f9cQLoC28Z5De411+AtTUNdn8Dm0tHVdI99sbX5g1cVLs+Kt6qzHJ3BbI9LkZhMClyj/UcpLqPNv1bHvLC3jcSuWMKgslTbD0lJpbLPxyQmojz+PuvAmBRBtG8Mgu5ACjHLZJF0l6no5ZIzzhcqL2Jd279wB9fYxDHQTMfXv9Qa23Rk6Hqw/dimkq9kwhx67F71N+Qxq6nMbNKlBywxL3AzieD0oi0PCeGRIZc3gQ4vapdbGerKK2t5bhrANqhU8dvNV7LMiIkLrrdC42duLfptSF/bjVhPHQNvBPhfbZqhYvYbbFZJmPqDwqMECHr/zT3wRl9cyPTyHH/5xqNPkhQtJ5xzZrG/HOkwIxerqxrYR9nmsehauHr12Y/DDUPxV7Tv3t8FhDNdzEnwkHDIZ84lNBKSpD8jflaZzVETknrvvh/q7X0M/Tuhj/4roOLSp/y2T3j2TsE6LgnXbbexvDRpnOcTNJl9bxKG7IhJSmKpYOIa9+OILUJ89fw7qA7fcjusIzHXYfFQj8kFs8JDGkfn5G00UhRKt9omk4ER4L6eTiohl7B95GSJs48DwveE1OaErSKELj2U75HsDvAfMptCDMTmJ1+g2+V9tK8FbQyG4DoX5sucnRdfsA3vRf7Z/D/opRETSFNbqOrgfLnnvwoCCB+ka7Iemv8W3yEPDvrcNv02w7+RK6C8aiqIoiqIoiqJ0HH3QUBRFURRFURSl4+iDhqIoiqIoiqIoHee6PBrVl6alvZpTkS+ijntLDnVuy3PnjM9/5jj6CpZy6CMg2a5EIWrA2qSJHMjTBPAisjSD64gC1M7FFor67BQuM50iXS/p0JI0qQ7NZ70wcQ7qCmVeXMiiJrqcQ11wfgTnvRcRaS7hZ4J59MAM9XXj66SDXaRMksoytpOISJqExztGcZ72W3eu+wfqjaT5q28sc/MVcb0VzaZFeusstanTNvXXPd3Y327dh56gOEQ96MsvH4Oa57FOFVAjLiLSIG3wwgzqPb/95S/jdtLc1x/4u++DenR0DGr2bIiIpFKo1XRIr8x5NC3KGLFT+PrWEdzPlWXgZ+68DT0+pR7Uj9ZpDv/uIur8R4ZMf1WadKtRG/tYuGEbkvS/m4Htumv6bp7jPpXGAczyzLEiInV/tU75IlPofdnTh/36/Ax6YWpN06PhpdCj4Tq4XTFtg2XjsZmamYO62I39aWjQ7Pf93dgW1S5cZp3yGHzBfjx57hTUC03TBbHjEGr/B8Ywj8icnB63qVnHOfgLeeyzIiIO6bUDugalLo//CRr+zSAMI2ObLsMZLUkeDfapmLkNWLMe3aK+k+Tx2L8Pj8uO7TuhPnn8RdomykOh3QvICxC6Cf4J8j61yJPBkRWcmxHQeGJ4CcT0x/FhmJvFsf7I0Weg3neQPBoJORrsNTTSxjZ4NMKb4NGI43jNf8d+HyaKzddd6pN+gMeJfVOcVWI5+HqhaHr17BSOTwHleWRoG/Jb8Hq3ezse50uX0DN78ozpP67XcD8kwj6d83Cdh+/Ee4/XP3gL1KWimdHlpNGHa9u4n+fPYLbY4jxeSyzKiOOxQETEsfCY8TvsDee/fR1ONf1FQ1EURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpeNcl0eja9pe8zCkSVs+vzCJb7bRMyAi0ltC/VeLfB1LJHMrllDHHS6hNq61gJo0EZGgUcVtLvbjZtF8x0uVMtT9KdT8hTHW8xVTF+mSuSHoRs1fbhdqM3fcinq8ZdLMl6epLUUkl8NDNUm5GD0xahmfmkItt9eN8zSXHFNft2UI2+rBOw5BvWdkPUdiuYZ6580gDJy1+dItmss/Ch2qzc+nPOxvqRRqMV0bX+e516P5BagHPTNHo4tk+XaBPEIB+g7GxnC+bI+OK+usw8j0niwsohazUsW6WChB3V1CDX+N5q2vVXGuchGRHJ2ru7bhdrPngqXGrIlut+lkFxGX5rJPpzG3ZKMm1Evw4GwGqXRWvMxKW3ge6mgj7nQJGtiQ/tZoYdufuYTj6uM0tjRmMK9izzb0UYmIVCmD4sI8+rEqizgOH8ziMoI0an/LdCxj2/TGvfZO9E8c2I379dxx9GDw8DM8gv1prlY21jEzeRrqvtH9ULvUx1otHKNay3j9GN6CY6KISIaycZaqeD257M9x3Ou6dHaMKIwlWs0FiA0fAe6/lSCh5r+ZHg3sn2wjiEl3H8Xmecg5Lbff8Rqojz53FGqfzuUWecoynHGRoA1vk4eMohPEdbFt2NcWk2conTY18pyb1GyRn4AyH55+6gmo3/6Od0NdLJj3SEbOCe9qtPG9xsdvPHG01gc4K4m3PSlnI52izB7y8kUx+XHIo2E7lCuVMs9Di8blkDwaLvUVV3Cde/ejl/P++3ZA/fQRHIdERJ58Ase3kDw/r7kT7wHvuXcf1IUM7qcrpgfWy1A+Vow3G3FAy6DLD/urks4j9u8lDAAbFnDlDJ6N6C8aiqIoiqIoiqJ0HH3QUBRFURRFURSl4+iDhqIoiqIoiqIoHee6hKblRkpS4YpG9cVp1KtnL6InYGwbzp0tItI1vAvqozOXoO7uG4G6uowa2+XZC1CnC6ixFxEJLNS4t0lGViP9ep48GTWbNIK0PDdl6vKFdISei9q5XtL8dRdxPuTxSdT3LV48a6zCqqK+2BXUg55poS6xSfPQ9wzQM2VC24Wk8d3Wjxr5zIacgLZvzl99owmCpsjqvO6uSzpM0kRGsdm1J6mPLi7SfNgWtqlPPoJLM9jn6zUzwyDnYp998ehTUN9+K2oz77v3Hqjtq8xrn86Y/W9ucRaXQT6AWgO3KZNGj0aasgNabezPIqbHIkN60WKWsjyMbUDvQbWJ5+HqQnEZlGlTrazr5SuVhM9vAtl0Srx0whggIjHrq5PmkSdteCsgfTpNzj9dQ31xKsI22bHDzNzZe+BWqKukJW8vYX/I13GQvLsH9cQvL+I4nbITshNG0aMzmUFfyMw86vZZ+punY9968WVjHRMvPA712N67cBk9OF6V59HDVyLvQP+AmeUS0rjhsGfKTa/+/83xCEXRujafNfISc/8zj5OZJ3Hl1xlD1Z30AVroXfegf+epZ9CjwctYWipDff4U94UE84mN6/ToOs3+nXSG/VV4/cjlcYwUEanXcbwPKNPIJn8L54WcO30S6sN33m2sI+DYDKqtDbkmN8OjsTFHg/sXeyGshK+xA8qq8n1sU/bKtH26FlF+TcQ5I2L6Gtk7F4f4equOr585hfeZw6N4r7RnB3pZRURG+ktQd3VhRs/QCI49GY+8Ka0y1AlDrEQc1UHXgpje4JKPNWTjUsI6+Jjx6b1xkdfzK4X+oqEoiqIoiqIoSsfRBw1FURRFURRFUTqOPmgoiqIoiqIoitJxrsujUUvZ0l7VTR9vzsBrWwW1dpmmqV9/qYW6tGWek7s8B/WF0+hd6O8jbXkOdXAiIo7wXOqoW6tWcB767ADNIW/jOjh3I2WZAQ1ODvXFNukQpybQc1GdQu2wX8a52osF9HCIiOSy2FZHXpiA+vwiakxvJ/1xtYGf//Kzx4x1HN65DbfLwu3esyE7oVrf/ByN0ZHCmvZ2oYyaf5YbhgnP0BWam7+8gO2+nTIJ3vim10H9uc9+FuqgTgJnEXFLqP2dojyTN73xjVAXyCvzV3/1l1B//evfgPqee19rrLNAnh/LwmOdy2P/7OrCvtJD25zNmjkJ7NFwXdSu+z4u07bwiGQzlE8TmutYquDxmJtDD01qg16+WcPjv1nYrvuKGQqug3/neeVX/4ifIW25TcvIpPD1gDTKJ06dN1Zxyx33Qv2uR7AfN2rYzjHlGGTIL3EPzc9evmTmF80v4NidauJ+ZjJ4vAOay96nTJo4NufgP/HUV6Hu24Y5GjvveD0ug9q6bwTHt0xCP6/Wcbtsmzx6zkodOpvvURNZ0Uxf1k3HFLLAeuqINdkihsadbUTs2eDcDZvtEQlhHT755XbuOQD1v/xXvwp1sYi5LSePoyfj137pw1AvL6P/R8T0PrkW9ieLdrTZuLI3IEnAHpJ/yrawsRwKh6ks4XY+89STUN9yy23GOjjbwKLxIdpwzK/mp7kRBEEozmqWBXsyeLzjMV9ExPcxHyIgjxp7OCJq85DW4Yfm/ZhFARIB5bK4MfYVvsdrt7FvnDuLxzGTKhvrzGXxvtGj24/5GbxfKuRxuwspuhdOyAGzbdzuehW3o93Gto0Fx3GL7oksI6RFJOZsDOpkmLOT4JV6BfQXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI5zXR6N3kyPpFa1kK1l1AZ/cxJ1v68rmhrqiSmcj70whLka5YuTUNuk4x0bxDnju0vdxjoWSBfZapKXwMNdbrRwO1M2ajttEstVm6iDExEpDPVAHZHG7+y5caiHunAb+tKopVswYwwkzKEOv1rF7aj7qDM8Qcu0qpgBccA1NdCFHehR+LPvPAq1k1r3xLQTshZuNO/6obdJLr/iafj6Nx+D1yYmp6GOWGsoInGE/enQfsx62b1rC9RRG/08tQWcX7s6a65jy33oodi5czfUA4M41382hzrxYhce57/84pehfv6FE8Y6Dx06BPXx4+i/OXQratnf8paHoXZI+2nbpvckVcTtXChj27BHo7cHvSeOg22Vy5n6+GYT9bmTczheZLPrfbpaxfFms/B9X8RZ6UceaVRTJHD3Erwc3C9jG98TkzY8DLBNLJo3/uJF9GqJiJym3IH778f5+geH8Txn7a5N2+DTue6lzGMnXegJO18+AnWNPF3s+VlYxPHp0qTpA1lcwLH9uW9+BpeZwT639zB6NooJ2QgMa8BZhZxZzVCxSEu+WaBHw3ztahjjYkLWy0YsmtA/Jk8GZ/aImO4G28HxpbcP+wovY+8BHM8O3Ya5Ll/5MvrYREQydGz5OAYtvCZb5CFzXNwv9g6svIfGSQodYLtKRH3k6LNPQ/1D73qvsY6unj6oOftg47l5M3I0wiCS0FlZMXuA4oj6RoKGPyDPbJPvp6g78S5ydoSd8F25T/6wMKBcDfbBcF+g66Fl431mKzBPtMYi+XKn8V62kEe/Sr6I25TN4n1mNmVeO4YH0ZPcoHHZp3PZ8Fd5tN2+uQ5LsN9zFlS0of/xtepK6C8aiqIoiqIoiqJ0HH3QUBRFURRFURSl4+iDhqIoiqIoiqIoHUcfNBRFURRFURRF6TjXZQZ/zeCQZFfDnF5cKsNrfxUtQb2bDDUiIl0RGq3Pnj4N9QIFdPX1oPlldhYNv0t1M7iHDX9RgGZvO42GwUKpF+pWFQ02KX4WSzC/SRuNsH4Lay+D21TMoPGn1apA/cIpNMGKmCF+B3rRVEw+Z6k2cb/3l9AZ9BMjZiLMUxfQ4J8ig/nQBg9oy/QL33AmL0xLZjUYJwrIiOti33Ics2sf2r8D6re+4TVQX7yIAYVnT6OpNk0pPL2DaNwTEVlcLENdLGIfXlhA02t3F/bH17/+AaiXyHT9qU9/3ljnzPQs1BwS+K1vfQPqS5fQ1P6+9/041PPzuI0iIrsodGthEfvspSk8N8e2ouGzvw8nTOCwKxGRLJl5Byh0cm5ufT85iHOzaLcDie2Vky2gMCkrjX0w7ZljoEthUh459jLUbbeV8A+T59EEP7+AY6aIyOmzGHRaJqN1d7EENRt8hYLHIuEALLPt5yfP4DYcPwp1OkWBjWQcnZvBANjyIl5PRESEzLfpFE540T80BvVAbz/UKTLnG/u98leoOKAum14ZBO3QnExjU4hFJHoFNzibbxMuVaaB+cruWzbORtQ+VsKkGy5tl21f2bXMwW9pOo/e9LZ3Qt1OGDv6B2iSjQwu40t//mmoaxT6VyjiNdpKMLpGtF+BEXiGteNg2545ixN5nD2L9z8iInf2D0Htkyl945ATJqW63WDCKFw7XrxtbOqPEravSfclHPLH3TEkM3LMxyAw+xav1qYJN7jdYgqxlJjGGRfHGQ61FBFxKMD2crDw2jop9LRWxfdXqzimBm0zEHlpEa/z3b04qYdt8fUG1xFbZPS2Eszc9CeLjmn8ym+9IvqLhqIoiqIoiqIoHUcfNBRFURRFURRF6Tj6oKEoiqIoiqIoSse5Lo/G4W09UsiuaFSbAQaRbV9CzWoxNDVme/tRQ/b8EyehbgcofotTWM8uox65EKAOTkSkpxt13iGLbAMM7gkpVKdYQi9EY7kMdVdC0FiOVtEm8drOPRhMmEujHvTSJQynyg2Y2sZ3vu51UB/qHYV6aDvqk8vzGOS18PU/g3pbvxleNSW4b01qqzfvG1n7d63ZlI8aS7ixfPVr3xHXWznmHmkicznsC1tHULMrIvLAPRj8VF2cw7qMWvZp8jrkyW9R6jXX0SR/TkjhPl//2tehvrgfz6N77j4M9b2vRR/JV76KnxcROXbsRagdB9umUkU/xVe/+g2oX3f/g1AfvhPXKWJ6Ty5N47l4/gL6iubo/YcOocejnhC4126ijnVsdCvU+w8eXPt3pYL7tFnYliX2qrafA4si0rz6rP0VEU9wTGOvymgvjl9dDrbTUxfQC8FheiIis7N4bOYWylAPDeFnXPIuWBb5KciOMD2FYVQiIudPYR+cIe9ISP68yhLu1/ISejKihLbL96Bn59Dr3gH1nkMYTMiBiUaIW4K/gGT1awF9l6k0VtrOvxlpaSIShpGEa0J9Ckyj9zoJgWmGreAqQmsOjOM+n+S/MLYj5pA/Ckyj97cpqPeue/Had/huDEUVkbUg4cu4JKRvVbB/ff7PPwt1TLdCjmt+B8ueKy+D9woBbXeljJr6WhW34ZlnnjLWcfud99BfyKOw4bvh6wlM6xRh5K/5RDjU0HWxzdtt08fk+zj2RBG+J6Drp1jsmcLjEoZmsKJl4bF0KYyRfUhsdWJ7J/dx1zNNGjaNmZFPAZAx+0LITxFhnUkIRa1VsW3Sabx39Sz0koQhbmdkU1tZ5vGxqG3Yd2Nt8LXxsbgS+ouGoiiKoiiKoigdRx80FEVRFEVRFEXpOPqgoSiKoiiKoihKx7kuj0ZjYVac1RyNxVmc9/xOmoe60TDnWg9Ig73FQx1ao4jPPRnKjqjVUNfL3ggREfEbUHblUVd/6SLqi4M8aYMd1OSyCjIMTU3qXAXn5K41cTv3br0F6kqL5g2n/IDDh9BLICLywz/6Y1BvH0S9cnYIMx1qpHkuk4chdxE9HCIir6e8D2u2DPVke/2Y1tubn2Ngpz1xvBUtZJYCB+68A70Od965z/j83l3YZs0yahpPnkCd+bFjx6EeHdsJ9WwZ5wQXEalSvkyrgX3BIkXyiRO4jnYL33/PveiXuOXWPcY6jx/H+dgd0lW7Luo/y5TNcfIkeqUeeOD1xjrK5KloB9iHOWvhyWdegHpqpgy138bzdGUhqCHleeuHhtaPX7V6czwarWZVotW53YslPOfYN+TYppbX91mDjDXn4Tz75LegfvKpx6GOY3M8yqTxeBvbwaJk8hs0quivm5nEfJ1L4+b8/0s0tg9tRQ9ZeQGP1wXKcqnU8HUrYY73/i3boB7Zhb4fj3T6xtgt2GfbvukDCSP67o08NO6qgDtMyOnZDKJ4PUYjIo+JbWQOmBfIkDMuLPZP8P5TbgZnjySsI6ZrJNtZ2KNh6MBpeTZp/13PE4bzFSzq8w++6a1QL1XRfzhAmUiDA5jBIiLSS568Psq8eObJx6D+s0/9ES4gwnUePfK0sY75efR19A3iOm6CLQOwrJX/Vv7Nfh08js2m6dNlT0bIHo2IszmEahrLkrIg2CtHvhA/xNqm3CAn5nXQ8tn3K2KMEzH7kGzKtKBzl/0uSbe2KRfHqyLdL9fr+HozuLK/yjBkiIjL5zf72Da8nJSh80roLxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigd57qEpuPTFyS3qv9t0fTthwZ6of6Tr6HuW0Tkli7UhI2V0JswQXPC1xYw58DOos7NF3MO5eUa+iXyRdQKp7wi1JMXMSshJo3u9j7cr7Bm6g4vUv5CJoN6vUYN9eghaeV4WuYDu9ALICIyum0LrqOI/hWb5v3O9/RAbb3xEagrTz5rrKOLTC8Ht+Px+PoXvrT27+ZN8Gi8/r7bJZNd8ZFEAR6Ht7/lfqi3b0U/hohIQJ32+ARqz79C+RKOgx6iShWPY72BWQEiIkOk7b2PPRa37Id6eRn7zle/8ldQP/fcMagPHUK/j4jIS8cwW+H8OfIhsZ8ixPpzn/tTqDNZPC9FRG47jBkFEc0bztPOhwH2jxdfRP/L8pLpsXBIK+tRhkH3xLqvqFE3/TGbQdBur+lx/RZqri2e8z4ha4ElxSXyts2cfxnqo1//EtRT06jhdhN0trPTmGkyMXEO6pFh1JqnSPd86RT6aybHcSyvBKb3ZGEZz8duuh6UaLwqL2G/f/Eq2mwRkXwJtzvbjed4QJpkh0Ix2KsShOYYVm9jezoeXiL91XPJD0x/x2YQxiv/iZhyfe5uVoJ/hzME2DPGmQE8Vb5ls57dXIXh+2BbR8w1a/1pndTUSb4k9o6029ifbrkNx+H9B9EHmcmivyedNn0gjk1ZHR6OT8U83lt8i8by1gyOy+PncdwWETl18iWoh0fwuh8G6/vOx24zcBxLnNVcCotuv/i4VermvRL3WpcuHD6df+wrYI8b+5RERCz+jOEnxPPe4Rwh6rBBRNkf7LMTEZc8GIFPfTQizwa9zFlF9ZY5NrVdvN7ksnTe0P1ws4HbHRtZHgnn0VX61MZXr+dXCv1FQ1EURVEURVGUjqMPGoqiKIqiKIqidBx90FAURVEURVEUpeNcl0fjZD0rmXBFpzhN82e7FdSPNXg+XhFxi+gbSEe4+hzN99/yUacWB6gpm6+bOtl8L2YjLJKufvd+1Ga+eBy9Cs0aZgzM0NzrczTPtYhI3UetXLOO293Vg1ri3uGtuADSqLbrZIARkfIiapp7B1ED7ZMm0CFxbXEU1xk75vFpt1Eo+NwnPwv13j3r89bXm3i8N4M7b9sl+fyK1jsKUaO/hdqjumxq+J99Fuct/+Qf/XeoT54Zh3p0dDvUJZrP/a1veYOxjsO3H4Z65w7022Sz2D9dWmZ3N87n/j/+xyehPngQPR4iIh/5yP8J9WOP4nzu0zOYeXP8OPoATp3EXIRP/iHN/y4ij1zCfn/7nah53kb7+a63PwT1d76L+Q/jZ7GtRcxcg4UyZndUGuua39ZN6H8iK3P6X9b08hzw7faVMwpERPI59L9kY+ynF44/AfXJk6eg7u3Ffv7ww2801nHPXXhshoZHoJ5fQB+bTV6FhWn0LqVoN6oNMwNlag79Sr2D6FVKU8bFVvKJdHdju8zPmd+BeeSXcB32XODxaNLxyKbw/bZjriMmQ0CTfDiXL3sJ8RGbQrTRo8ESa868SAhdMDXY+B7D50GvW7TjYYJGnvMUXPZ10Ovs0eD8D5v3M8n7ROeaUTuoofey6K8ISb9eb5r+T0ewf1kOvmdkDHNe9hy8FerpWfSDNihjSUTkacrJufe+B6FOeevXD8cxvVI3miAMxAlWPRp0+jRb6MnwEzxQ7AHic5aPG+dNtNt4nPy2eZwswXZhz4XtYp0iP04qhXW7jWNAUp8PqS3igPMoqD+GlLsRox80DM1j26JckmYDrx1d3XhtmF3gayTd7ifFYHAejbB/yt7w72sfBPUXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI5zXR4NTyzxVp9NzpeX8LUManB/6IE7jc+/9BLOEd2guYd7R1FjFpEer7dUgroVmTrtSh3/VizhPPW+h89W+/cegNqpoBdikebrn6yYuso65WgEpJ1rpnAb9nWhDn+giDXPSS8i8mef/xrU74mx7bbtwLyQCnlNWgG2S99W8omIyOQp1GZbpAc/9LZ13X2lWhH5v3/JWMaNpKtUlEJhxaMx0I962LlF3N9vfO3bxucff/y7UB8/eRxqxyH9fA6P21vf+mao77r7NmMd2TRqLTMZ1AIHAWpSfR81prt274H6h3/4PVD39+MxERHZuRP9EbfditvFc5G/8DzmJPyHj30M6ueee95Yxxe/8BdQl5dQ5//+H/+7UD9w311Q99G5uziL44eIyNQs5ua06pi14Trr+uQ42PwcFxGRbCYrXmblGAek1WXJtJcy5+LP2OSHOP4o1M8/8U2offKpcT7J7j3YX0REXvtazJSJQ+xjc3Pot0nRhpeGxqCeoPn+X3gZPT0iIh7181QKa85OSHnYNoUCnmus1V75G16uOBeDpNdSJ/12EGCdSchKMHMlWDO+ojG3ORBlk4jj9baM2W9xTZt0NV31lTXyFvtAEheH7wnIUxFSiIBN/c+xKWvBZv/F1dfJb7IopyUM2G+BH+dtSNoO/p6Ws61uu+seqJ9+4ntQN5p4zRIRee7oM1BPXcRMnG3bzYytzSSOrTUPTTqN52OVMsYiDkARMY6LQ75cNjs0KAuCfXBxZHoZjKwXMpOkUrjd6RT6JiMyP9kWbmOYsFtB+8rnRUTnQEA5ZFGI22DF5tjUaGAfrlaxvQe2DEEdO+RTJU+0lzQWWFf2zFgbzl0rIcPpldBfNBRFURRFURRF6Tj6oKEoiqIoiqIoSsfRBw1FURRFURRFUTqOPmgoiqIoiqIoitJxrssMPlxwJJdeMd9QRp34fWhS3TGMplgRkdmZbqgDClY5tYTmqDIF+5QyaNYdyGAolIhII0Kj4+IyLjPjoGGrl9KoIgpxqlA4VW3JNIMvLeDfcmQ2On/+LH6AzOGZnbtxG0LTZDNNRnqHTMRvfTMG+xy/gIFoVhHNme8smW2XzeExe/v73wV1rbpuKOcApM1gcXlZ2qumqu4e7G9PH3kR6s/9+V8Znw/aeJx+8id/EmqfchKbLTRG7d2HxtvlZdPMN12dhno3mbvZXDVDYXptMomNUQjUyMiwsU421g6PbIE6k8Zjv5XCG/Nk5P1P/+k/Gev47qMYJPX5P0dzeBigQ+7gAezT+/di/aY3oGFZROT0uXNQ5/Jowtu5az1AsV4zAxk3A8/zxFtt75j2mb2iBc80lA7FOHHEV47gpAU83jgetkFA61xeKhvrWKLJKTioLkvBd+lsEWqfjNzjR49BfTIhbPHQbXuhri5TKCCNF+kMmh/7enFCjKQsKJ9cmG0yWHL+Xj6D66xTIGmUkLrnONg2bBoOVwPGQgoa2yw2msGv4d0Jf2HTKpm/yQjL62KTa1JoF3/GyBUUNvTyOvF1vhxyUKOIaSjnfbeo7xjfsFKgWlKgrc8fMvoAbsOtt2Nw5uAQTthy8YI5hs1OTUB9+mWcuGPbjh3rxU2YkMCy4rUJASIKOYwiDs9LMNS7eE6GdFx8n883dl7TcUwI3aTbRnFpAiDX4W3A7Wy1cD9sMpMHgblfAW23S9dkHrfbNFGFJXQ/lXCS82QWvAz+RERnXkgnkpPQfa42VcRGUzsb3K+E/qKhKIqiKIqiKErH0QcNRVEURVEURVE6jj5oKIqiKIqiKIrSca7Lo1FptuWyPK1BYXpt0oP5DTNMb3QMteHnpuehPjOFenXpQe1wlbTHt+5G3beIyNwy+h8cG3cxjnC7L/moSps9hX6KiWkMEassY4iYiEiGtG993ag33kb7/b2XX4barmPwytgW1HKKiMSkQX3xBC4jS3rkKgWvjIz24PIqpr+gWMT2brfRtJDvW19GxjN1sjeahXJZmqvelMVF9FscIR25H5j6wdtuvx3qd70LPSi2hW3IGsih4QGoL0xgwKGI6duYnJyEulbD7Z6fxz594AAGSA4PDULNfgsREdvmQCJ8D4cCsp70zW9+C9S3Hz5srOMPP/lHUP/Jn3wK6qefeRrqp57Ces9u1PC//vX3Geu47767obYo8GmjJrhSMc/DzcC2HLFX073SaTwHohYe221d6EMQEfFmcDwpL+Hx7+3HPtag/uKR9rfZZl20yBL1QbcbvXEOBVT59H3Ti6exX3/zySNQXxjHAD8RkcVpDPHLkgcjlcba8bCPTs/gtSBomR6IZhX3q8mhpCFrxrH2SHfPwVwiIgEto9XCMfCyv+B69MmdxLatNV9EZITp0ZuT8riM95Bf4ioGEMN/cQ3twOs0QhFpoRG9zp4O9uqIsDtCxKExMcnzA+uka3gcmR+wyA/AgWVRhH1lcHAE6n0HMEh14oJ5HvkUUPfYY49B/bqH37r275a/+aGlUdRe63d+iNsaxbg9bsI9Al+L+Pzi/heTJ4MD5ZK6a0jHzqYu2mzh61m67kchvu6TF4c9HCvbwduNy2B/RUC+kGYL7wEzKfM6v4/uDbwUfobb1qF7xpCM1Tx+iIg4VztR/proLxqKoiiKoiiKonQcfdBQFEVRFEVRFKXj6IOGoiiKoiiKoigd57o8GvP1umRW5xVfmsG8gJhyDQb27Tc+v/Mgeg9azx6B2jlyAuq8hRozK8bnom1DZhbE1547CvXWflxnTzd+5jzp7ywHtXHzM6ihThtqUJFd5CXZvR21dD//8x+E+t//zm9B/Y0nn4B6ccn0T/TRHNyeg/Prp89cxG3ajdr+4tbtUEsX6rZFRCzSHp566nmoc93rx7haM/NEbjQvv3xibf79xdkleG2W8ihKJcxLEREZHsY26SJPSiaL/h6bxMUB9ZUCfV5EZGgIcy44F4N9Hzt37oR6YAA1+hbN4e37pj7Z866mq8RlpDO4nyRJleER9BSJiPwfH/x5qN/8th+C+vkX0SNTolyEM+dQ99/TXTLWUSzidrVaOM98218X2/L8/5tFEPtixSvHsNXAY9mXQjHwSJqCWUTkc9/4KtRz1G9HqT9kctSPSZ9eb5o67Rr1MbeF75mfQz/EE0+in+bRxzEzJQww20NCc7/mZ3DMsmwau6kf8/z4Lcq4SNIKly+dg3p6/CTUxcEdUPP569KY6bfNc6nVRm+h59Ic/KvafyvY/ByhFSy5bL7gc8D0XyT4DK5y2nDOxtVI8nSwb+Oq28meDPKNcC4CZ32s/I1qm/5A/ckxjCOUo2Gswcz74O3m/U5RBs5dr30A6kuzeM0WEUmTB69veAzqRmP9XG42Nt+j4fsNsayV8YU9GUHIfgvzXomvf5xHwzkbptGIfHEJfcGmz3A7pdOUo0F2MK59ys1IWKX4AY8llNlDfgjfp4wL6nBOyvwNoKunBHW7gWMuj6k8/nGnTrqGxjHvB5+bf73rrv6ioSiKoiiKoihKx9EHDUVRFEVRFEVROo4+aCiKoiiKoiiK0nGuz6MxtySp1Xnch2k+40wNvQwvHsOcBxGRffdugTqVRQ3jgS2oT19s0TzpDdQKc36AiMhW8m3sHEKt+MjWEtTtcdzu2Qg1hLdsw22uNU1d7xbyA/R24X5ZIc53/M/f9z6oB2nu/KcS2u7i7CzU/V2Yi3HHoYNQ3/2GO6Be9slTEZj6TjufhXqgH9vur/78G2v/brRIt70JBE1fnFWN5tRF1Lce2L8P6pFh3HYRkQMHMHclTXP9V2mefpYj2qQ7L5VKxjp6u9GrxB4N7rOscW5Q/gzrgpMUkhnaD55PO5XC/shZDJUKeiGqdaxFROpN1N8uLGOfdlLZK77+xDNHoN4xZmbFDA3gMfNJL1+prPe5Wg2Xv1m0Gk2JVr1idfIpHd6Nx35x2sxZOfI8esiaDWzrVpM8AnRseXr/hKnQZXEZt2thCTNHnnoc5+b/wue/AHWK1nnXoT1QB0vozxMRaVZwnYZmnueZp9ddyijI50x9d2X+AtSnn3sU6i3774G6dxD9UiGZkYK2mfVkkUbZsVkTHsP/bz6xJDsIRK5FT23Itmk/boT3ydC0cx+ml9meE8nVt5H/Fkasq8e1BPR+x8jISFgHbajxlhj/0Ka8otsOvwbqXfvMHDAeq9Mp9K2lN+TR8Di/GTSbdYmildtGx+NcBvJfJGRZhSH7d67s3bKE81CwfeyEOK8mjaFt8p6mPFxms4nHqU1+Mc7AMLwPYvbxVvPKx4a9ll4Gr5+HbsX7ORGR2hL6+ZqUJWV4iPicMPJnzP3gc493daMP6XqyhPQXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI5zXR6N6dmyeO7KRyyak3whRC36he/hXOwiIs+No65+99AQ1AcGUOPcN7AL6icv4fzvToJAubWMWvLnZ1ETPTOD3oZSL27DI/ffDbXbRJHapedfMtY5VMJmPHz7Dqi7cWps6d+Pc+X/yzsOQX3q3ISxjvGLk1AXSGd4/xsfhrqaQo1g5THUZYek2xYRaQ2jFntwD2ZvbBtb96vUGqaO/0ZTXapJe1VPOTqCGv+D5NHYNobHVUQkl8c+e/rUaXwDzd9eKmHWSK6AXpzA0DyaJ1TKw4O/XEUte4syDsKI5sKm5dVq5nHLZEjXm6Y8EBe3qt1Ef8O5CdS+nzx1zlhHmTwXS6TJr5C/xchBCLE/tpumxyedRsFtLotegY0S6LjzUvJrot1YXtMi3znWBa/dNozt/uQTU8bn/Rj1v14Kj41Pnh4WzbIOt5aQZ1MuL0K9TFre0+fOQG2RLjyXRQ/P3PgpqBsVzLAREUmRxj20rqyRf2WfwQrZlHlpCkkrPX7061BfuBU9GsXud0Dt0/malMfA2vyAtvuy9r+dcO5vBnEcr/kqkjIsNpJ0ilyvB+Ov49m4mh/H2Gw6DDEPemxMSvh6NKIgAvbCRRZvRHSlUmzLXAlHc1wttsSiHeWMiL5e8xrFuRDcVhu9J+xD2QxaLX9Nm5+hNorYA5Xo0aDcMjK+xNQZzHEerxFhaB6nSgXHiXSaPLPUN/wgoJquVeyzTDglDG+J4QHC7S52oSejfxAzvjIp03yy0MBrcJpyv0JjPCOvSYhjquUk/c7A49or/xZxPZk7+ouGoiiKoiiKoigdRx80FEVRFEVRFEXpOPqgoSiKoiiKoihKx7kuj0YQrc8lXQ9RY12KMb+i5ZpCtp0RasYGuvNQH7rjNqj7+lAj73wNNblRwjzoLR/X25vHZVycxe0+ewnnuv+773wz1KUq5mzsOLjVWGdQRO1+JoPa7b6d6HVIF0pQp1Ko3XzNVpz/XUTk/vTroPbruO+1JdyvYAn9LOl+1IO6g2aOwewEekOKNJf9bRtyTir1m5Fj4Ii12mV53v2pS5egLpEGUkRkYhy16wODmF8yPIxtVG+iNrMVog8hkyHzjYjkXFxvZRk/c/L0OagXymWoLTpvXNLB9vVgXxMR2b4Dj6VNORnVOvaNFmWqvHQcc1uePXLCWEerTV4Bi2vUtWZIB+uQ9jNpDu58geaMz+B+yIa2sFgwvUkcHslIetU7cs8O7D9BE70Q4+SFEBHZsQvHggMHDkBN06vL+CR6syLSZfP8/yIi7QZuh99CP9X8HI5pTernGQc3YraK87ez9lxExHUdeg9rr5GY+nVMGvqkGdq78/iZxUVsm+e+8sdQ925Bj9/gdmxrssus/I28bw6dS5a1sp/uTfqKLoqitXPHyMAwAygSuJqv48qeDNaeJ3k4DI8G+x3Yk2F8/oqbYHo2EpZh/OWq+QD0cfZ0JC3SsI5cue3YnxAGCR2QN4OOqbXB5xHfBI9GEERrx5xzadptHDf4dRGRgLx6cUwZFdRVbAdvUSNqY9831+HTtapYwGsy91n2hbR9HA/rlN9m+A9FxCUPRpb8E8PDeE+3e+8OqHNZ3Mbzp88a65gYx/Fu+/YS1Jx/5NiUs0FtFyVcQx3O2Uk6D9Zee8WXDPQXDUVRFEVRFEVROo4+aCiKoiiKoiiK0nH0QUNRFEVRFEVRlI6jDxqKoiiKoiiKonSc6zODe45Y/3/2/jzKrqs888ffM935Vt2aJJWkkmRZg+XZeBTGDAFiQhhC+DZeLH5f4BsIJMRhTDBpMJisThYrTKGTzmR6tem1kgDdISRpYncIUzwBtvEoyZIsa1ap5uHO90y/P6pUqufZRzWYqypsvx+WF3rr3nuGffbZ55x7n2c/s6a/DBl/1lhoOAw7eozP9wygeXLjOnzPjk3roR4fxYC/HR1ovrWLpuF3LRldJY1mvj4KeuvbgObMp06gqThN4VR5Bw03IiKnx9GYfXQCjTyZHjSxX38xBvR5a7EdEnyyUs/Tvlq4X0EZjdxuiIbPjvX9+PmtFxvr6OzAgLFwGpdhzfM3LeAROm8cP35SPG8mfOf04DF4bed2NH5GIQY3iojs3ImBhNsuvBDqRgOP4xN7n4K63kRTWFcXBkyKiKzpQkP58DAa0J94AgMfT4+g0dYmM2rYQrPcxRfhNouIdHaXoK6U8bjVycyWyaGLq0mBRCPDo8Y66jzvAhnq0jRxQJHCN7dvxZDKHdvxWIiIpNN4bo2O4Hbs2bP/7PbUzcC/lWBHd1ayuZkTIUWvDQ4PQX1oz2PG53MduI8Fj4LGaLwauPoqqJsNHGerYxi2KCJycPQgvqeBY3WLQh8v2IJj4K5dGH655757oK5NTRrrZBOnZYSwUbgX56eRwdJOMpyTUzFPAY+n9v4U6if/45+gvuFNeG4We2hMlASzs42XyPCMEXsR4+/5wo9m/pvdCIC/NUwyC/MkDhxsx+ZjNsouabc5rIzNs7ShiwUPmgGA5vt5u6NFUgL5OHP/DRPWwW3H18CIDgibw7np7CUY6XnihfmTaCRNqHG+SaVTkvJmzgk2cnMonU/XrpnP4P6EFLTIIX82TXbRbODrtYp5nXcpoJa3q0qTo3AgX7NBBnULP88hvCLmeRRz6iTVZZq85+QxvA8YPInXEhERv4nLKOQxfDqXxcmV4hjHecvic8BYhRmuuUAfW+g1Rn/RUBRFURRFURSl7eiDhqIoiqIoiqIobUcfNBRFURRFURRFaTvL8mhsybiSntW/pdKkP/RQsZxai34LEZEq6V1bZfRTPHXkCNQTpL8bb6FWbkuCtPPCDejB2HUJ6o3/7aHH8QMj6G1o1FBT/93/eAjqjk4MJhQReQmFbjkuBvHc/U93Q70xj2EuF3YXcYEuBZWJiBPhvjcb2HZhDbXblRTq9ZqksbcolEZEJNODunqrhGGH6S1ndfYWBdGtBE8+/qTYs3rLzk70rFSrGCDoOmbX3rVrF9RjYxhquGfvXqhPDaFnhQNqRkawr4iIHE2htnJsFNvpmUPoLRmfwGVEFGyXonMmkzb1oWv7UXseBaQrp6Aox8P+VyzicY4T4q8mJ3E7bQrhalIQZimL23D55ehL4pBBEZFKFdvq8LPoP3h639kAvGbT1OauNK0Az6Enn3gE6slx1N2KiLQq2IkeJh8at30mh2OD59CxCczgTIeWEUZ4rDavRU/GFddhUGpAQaguLe+MRhshjXzEWv+FNfQcRBgnyH8jEhVnszhOTtEYOPjEj6A+uv0lUA9c8SpjHSm6jlk2BU3ObnezaerPV4Iwiub5RBCb2swREx7DWJNteBuMUC/yIXAYn4jYhs9jYW14klYcPt+GYLqYAySXkzZ25jOLhBVy2CGHy7HviPtzIsa+n92PMFx5j4Y1+z8R0yPCPoWkGEXzPXi+RRGeb3FInsVgYU+HiMz5OOdtNFCr4PgWhrhOi/p0ikI7XYfdeSIBhS/W6Pp08CD6dk+cxHsLoTE6SBhfMmm85+npphBmF7crCKgt6XY/pnsNEZEoZh8Sn6zGR5aE/qKhKIqiKIqiKErb0QcNRVEURVEURVHajj5oKIqiKIqiKIrSdpbl0cgW8pKe1as1YtSknSIPQHc/ZmaIiBQ81NNNkODr6HHMsLBiVJnaLdSBl+umTvtUA7frAhvfs2EX6tpKmRLU/mQH1OEO1KYfOm1mDKTzqKPe0U+adwe3Kb8ZfSNxN/pZ4oSQihbN/dysox5ZKLfEdrHtImq7sEp5IyIiGc4IwWWk5/kF0rapUzzfeJ4j9qz34tprr4PXLtmFuQw7L9pufL5cwXmlDx9G3eShQ4eg3nERZo1UKUxiZMTsC6dPo+b+yJGTUJ86ibp99omwvnltH55HcWwqr4MQPzN0egRq1r3WmujzmCCfSDabkBVzCvfDJu/I1CRmdxRoEdksrpPnLp9ZBh6foSFsm8OHz/qp/ASP0UpgWdbc/PeDp9FD8ugjD0Jts2heRCzKv+F55F3SxMeUB5NdswXqdAHHKxGRoInndlTHdpUI+/Hen34X6to0vx/b2vPM76fM+fFZzMseDVoF6dV5GnqRBM076b1zGWzbjhS+vzvG87VZxvNERMTPoU+Ndc9ndpOzZ1aKKI7nfBTGPPZL0PyzzyCiwBNDk03rYEtGbHg4RCLSmzt0PTOyOxbZ7sVeT/yM8QfOOTh3PsVz3Q7Ds8F92vCqmMtbbB3RPD9BFJoa+/NNHEcSnfG70HFtUW6G7Zj74pOnguyDYtuUD0bjo+/jPjuO6WfN0H2MkU3CHowUeRfo/ZksehqbNfPcn55Cr9yZrKW57bQ524Nuvem4NxNywDo7MTejt3cNvQPHde7TURRQbfYfO8bt4raaf2It57zUXzQURVEURVEURWk7+qChKIqiKIqiKErbWZJ06sxPSU3/7E9jTZJO+T4+s7Ra5k8/Dfopp+7iTy8NmtLLlE7hT1a1Bum1RKRFkoo6vafRwO1q0M9NPk1L1gpwmwL+rU9EmrSvdZpLNqYpEssVlDZkaarYMEE6FZFsp0nLaNGvYBUH267mo3RqOml6Wmpfi6RTtnu2u5z5PP/MeD44s475PxVz/2rUcf94ulsRkUoFp4er0XSYTeor/LrZl8z+16Rj71ObBtSfeOpZnnaR38/Ln9lO3NcGyer4J1QvhZ2F2y7p3I2M7aTX6WdY3u4K9VfXNX925WPWaOB2zZdL+bNj0Ur0v/nrqc9rqzq1W0BShjBhWk6ektKcPZR+5qf3+z4eB9s3p0EM6D0RTXMYCclESOLF8oaAtoHlXiJJ0il+z8LT2/J0tkmHlaVTi02Ry9NWtujcieqmfNQWkradQzrVmv3sive/eec6S6dskjIkfYvI7zHkPiTdFJZW0ULN6UpNuQVLp6xlSqeeC7xE8zRb/nFbvnQKX+eWSlraYutw57VttbpyffDMOkC6ZOH5xbImPh+T3sPqL+5OgTGd7cKfT3oP92l+3Wa5arzwOrme2Q4eM2kd1sLbIDQdOH9exBz76w26X3Oxbrbw/S2fx8+k6W2xtvledN4iWrPbs5T+Z8VLeNeJEydkYGBg0YUpLz6OHz8uGzduPK/r0P6nnIuV6H8i2geVZLT/KauNXoOV1WQp/W9JDxpRFMmpU6ekWCyel28flOcfcRxLuVyW9evXJ36r1U60/ynMSvY/Ee2DCqL9T1lt9BqsrCbL6X9LetBQFEVRFEVRFEVZDmoGVxRFURRFURSl7eiDhqIoiqIoiqIobUcfNBRFURRFURRFaTsv+geNOI7lfe97n3R3d4tlWfLYY4+t9iYpLzCOHDnStr717ne/W37t137t516OoijKSqFjoPKLyitf+Ur58Ic/fM7Xt2zZIn/6p3+67OXecccdcuWVVz7n7XohsaQcjRcy99xzj9x1113ywx/+ULZu3Sq9vb2rvUnKC4yBgQEZHBzUvqW8oLnjjjvk29/+tn5ZoxjoGKg8X3nooYckn8+v9mY8r3nRP2gcOnRI+vv75aUvfWni661WS1KpVOJrirIUHMeRdevWnfP1OI4lDENx3Rf96agoygsQHQOV5yt9fX0Lvu77vniet+B7Xuy8qKVT7373u+V3f/d35dixY2JZlmzZskVe+cpXyq233iof/vCHpbe3V26++WYREfnRj34k1113naTTaenv75dPfOITEgRnkxfL5bK84x3vkHw+L/39/fLlL3950Z/klBcO99xzj7zsZS+TUqkkPT098oY3vEEOHTokIqZs4Ic//KFYliV33323XH311ZJOp+W+++6b+6n1r//6r2VgYEByuZy87W1vk6mpqee03vnr/ta3viWvetWrJJfLyRVXXCEPPvggLOe+++6Tm266SbLZrAwMDMgHP/jBxHR15YVNFEXyJ3/yJ7Jt2zZJp9OyadMm+aM/+iMREbnttttkx44dksvlZOvWrXL77bfPJbTfdddd8tnPflYef/xxsSxLLMuSu+66axX3RFlpdAxUnq8EQSC33nqrdHZ2Sm9vr9x+++1zidcsnbIsS/7yL/9S3vSmN0k+n58bHz/3uc/J2rVrpVgsynve8x5pNBqrsSu/kLyoHzS+8pWvyB/+4R/Kxo0bZXBwUB566CEREfna174mqVRK7r//fvmrv/orOXnypLz+9a+Xa6+9Vh5//HH5y7/8S/nv//2/y3/5L/9lblkf/ehH5f7775d//ud/lu9+97ty7733ys9+9rPV2jVlhalWq/LRj35UHn74Yfne974ntm3LW97yFomi6Jyf+cQnPiGf+9znZN++fXL55ZeLiMgzzzwj3/zmN+Vf/uVf5J577pFHH31UPvCBD/zc6/3kJz8pv/d7vyePPfaY7NixQ97+9rfPPSgfOnRIXve618lb3/pWeeKJJ+Qb3/iG3HfffXLrrbe2oWWU5xN/8Ad/IJ/73Ofk9ttvl71798rf/d3fydq1a0VEpFgsyl133SV79+6Vr3zlK3LnnXfKl7/8ZRERueWWW+RjH/uYXHLJJTI4OCiDg4Nyyy23rOauKCuMjoHK85Wvfe1r4rqu/PSnP5WvfOUr8qUvfUm++tWvnvP9d9xxh7zlLW+RJ598Un7jN35DvvnNb8odd9whf/zHfywPP/yw9Pf3y1/8xV+s4B78ghO/yPnyl78cb968ea5+xSteEV911VXwnv/8n/9zvHPnzjiKorm//bf/9t/iQqEQh2EYT09Px57nxf/rf/2vudcnJyfjXC4Xf+hDHzrfu6D8AjIyMhKLSPzkk0/Ghw8fjkUkfvTRR+M4juMf/OAHsYjE3/72t+Ezn/nMZ2LHceITJ07M/e3uu++ObduOBwcH4ziO43e9613xm9/85iWtN47juXV/9atfnXvPnj17YhGJ9+3bF8dxHL/nPe+J3/e+98Fy7r333ti27bherz/nNlCeX0xPT8fpdDq+8847l/T+z3/+8/HVV189V3/mM5+Jr7jiivO0dcrzDR0DlecDr3jFK+Jdu3bB/d1tt90W79q1K47jON68eXP85S9/ee41EYk//OEPwzJ2794df+ADH4C/XX/99ToezvKi/kXjXFx99dVQ79u3T3bv3i2WZc397cYbb5RKpSInTpyQZ599Vnzfl+uuu27u9c7OTtm5c+eKbbOyuhw8eFDe/va3y9atW6Wjo0O2bNkiIiLHjh0752euueYa42+bNm2SDRs2zNW7d++WKIpk//79P9d6z3xbKCLS398vIiLDw8MiIvL444/LXXfdJYVCYe6/m2++WaIoksOHDy++88oLgn379kmz2ZRXv/rVia9/4xvfkBtvvFHWrVsnhUJBPvWpTy3Yv5UXFzoGKs9XbrjhBri/2717txw8eFDCMEx8P/fbffv2yfXXXw9/2717d/s39HmKOq8S0BkGlOXyxje+UTZv3ix33nmnrF+/XqIokksvvVRardY5P9OOfrbU9c43q50ZUM9ICyqVirz//e+XD37wg8byN23a9HNvo/L8IJvNnvO1Bx98UN7xjnfIZz/7Wbn55puls7NTvv71r8sXv/jFFdxC5RcZHQOVFwt6j7g89EFjCezatUv+4R/+QeI4nhug7r//fikWi7Jx40bp6uoSz/PkoYcemhuUpqam5MCBA/Lyl798NTddWQHGxsZk//79cuedd8pNN90kIjPGwufCsWPH5NSpU7J+/XoREfnxj38stm0n/jrWrvW+5CUvkb1798q2bdue0zYrLwy2b98u2WxWvve978l73/teeO2BBx6QzZs3yyc/+cm5vx09ehTek0qlzvkNoPLCRsdA5fnMT37yE6h//OMfy/bt28VxnCV9fteuXfKTn/xE3vnOd8IylBn0QWMJfOADH5A//dM/ld/93d+VW2+9Vfbv3y+f+cxn5KMf/ajYti3FYlHe9a53ye///u9Ld3e3rFmzRj7zmc+Ibdvwc5zywqSrq0t6enrkb/7mb6S/v1+OHTsmn/jEJ57TsjKZjLzrXe+SL3zhCzI9PS0f/OAH5W1ve1vi1JDtWu9tt90mN9xwg9x6663y3ve+V/L5vOzdu1e++93vyp//+Z8/p/1Qnn9kMhm57bbb5OMf/7ikUim58cYbZWRkRPbs2SPbt2+XY8eOyde//nW59tpr5Tvf+Y784z/+I3x+y5YtcvjwYXnsscdk48aNUiwWJZ1Or9LeKCuJjoHK85ljx47JRz/6UXn/+98vP/vZz+TP/uzPlvVr7Yc+9CF597vfLddcc43ceOON8rd/+7eyZ88e2bp163nc6ucP6tFYAhs2bJB//dd/lZ/+9KdyxRVXyG/91m/Je97zHvnUpz41954vfelLsnv3bnnDG94gr3nNa+TGG2+UXbt2SSaTWcUtV1YC27bl61//ujzyyCNy6aWXykc+8hH5/Oc//5yWtW3bNvn1X/91ef3rXy+//Mu/LJdffvk5Z69o13ovv/xy+dGPfiQHDhyQm266Sa666ir59Kc/PfeNovLi4fbbb5ePfexj8ulPf1p27dolt9xyiwwPD8ub3vQm+chHPiK33nqrXHnllfLAAw/I7bffDp9961vfKq973evkVa96lfT19cnf//3fr9JeKCuNjoHK85l3vvOdUq/X5brrrpPf+Z3fkQ996EPyvve9b8mfv+WWW+T222+Xj3/843L11VfL0aNH5bd/+7fP4xY/v7DieHayYKWtVKtV2bBhg3zxi1+U97znPau9OcrzAE1WVhTlxYyOgYrywkOlU23i0Ucflaefflquu+46mZqakj/8wz8UEZE3v/nNq7xliqIoiqIoirLy6INGG/nCF74g+/fvl1QqJVdffbXce++90tvbu9qbpSiKoiiKoigrjkqnFEVRFEVRFEVpO2oGVxRFURRFURSl7eiDhqIoiqIoiqIobUcfNBRFURRFURRFaTv6oKEoiqIoiqIoSttZ0qxTURTJqVOnpFgsatK1IiIicRxLuVyW9evXi22f3+dV7X8Ks5L9T0T7oIJo/1NWG70GK6vJcvrfkh40Tp06JQMDA23ZOOWFxfHjx2Xjxo3ndR3a/5RzsRL9T0T7oJKM9j9ltdFrsLKaLKX/LelBo1gsiohIJpU+59Ms//25PPVGUbTg6/l8Huq1a9ca7+ksdS74Hl6Gl/KgTqfSUNsOPqlZCds4PTUJ9cjYONTjE/j68MgYvn9kBOpmvW6sY7nNybMWx0KzGCcskI/ZQjMfx3EsURTN9Y3zyZl1fO/ffiCFfEFERI4fPQrvsULa1oRNt6i7RxG1AXYFeeb4Hqj//n9/FeqCHRrruHLnDqi7urqhLnVgXShgf42CBi7Qwf7mexljneWmD3WrHuAyQ3y93JiAOqDXg5bZx/PZPqhzGdruVo0+gcuwLDyPkr4B4b/FsQP11S+5ce7ftVpN3v7/vWtF+p/I2T74B3/wB5LJzByDOp2nPH719/efczlnmJychDoMsU85DrYBn6NntmWh7Wi1Wgsug8dI18XzZGpqCupqtWqsk9fh+/6Cr/N+8liTSqWMdfC+cn/hOp1OL1gnrYPfw22Ry+VEZKb//af/9J9WvP8dOXJEOjo6RMRss6VccyMf2705VYG6VcHzeGgUr037njkG9cnTQ8Y6mjUcX5ohXu/iDPbpsNkB9fg4bkOjgWNi5JvXxxPHDkF9/NhBqFst7I+xYDukHDzO2zbh+CYiEgr2F5uO/aZtl0CddXCs337RxVD/p7e9wVhHZz4LtR/gdo5OnL23qFQqct1LXrKi1+D//t++KLnszDYa9xjcH23zImxZ2M5WQH02xuPkBzjWVKo4FrV8HFdml4oljaEBXd4ytJ2deWzPVBZr2zXHjSjifeVxm+4juW3iYKFydkNwvSHdm4qN+83jocV1knPCN/8E2zXvGNdqdXnXe9+3pP63pAeNMwOYZVnn9UFjsc9ww/FFWMS8MHge3j3yxcV40Egv9qBh3lway6R18jYZHWAJbdf2XyuX8KCxtMWc/59Rz6yjkC9IoTDzoJHP4QOjFdLokfiggcclXORBg29sHBePm5swkKapP2XS2DeymfSCdRTQMulBw6UHYRERn2/i6QY9CvH1Vozb5FCXti3zQSNN+5Hh7bb4vGj/g0Z+9iYPl7syP+OfWU8mk5nrF3xh5ZvnbBZvGkTO3qieodlsLriMdjxoLLYM3iYer/ghIekLIV4H13xs2/Ggsdg6eCznzz+XBw3+omql+19HR0d7HzQibLMm3SBV6WE6l8W+ksmYfdwK6UEgxDY1HjSEjwtuI/e3UMxr8GLXWNvmL9H4pgxrl2/iRMSitrFpndyfUg6N9dR2Z44j/G2RB41mYN4JruQ1OJfNSi53Ph808HWf+msY4XjpOEn7/vM9aOSy1B9zeEye24MGj1V8v0JfDiY+aGB/+nkfNOyEB414GQ8ac8tdQv9TM7iiKIqiKIqiKG1nSb9onGGhXzSW+vmFamaxb+bWrVtnfGZgYAPU3d1dUJ/5RvwMLClKG79OYB0F5k91+Rw+AXf14DqbLXw8HSVp1Z49e6E+8uxhYx0sRVhMZmbIoIw3LPjxRZcZx7HxreT5JpX25r5ZtxfZP9syn6H5p++Y3uIEKCPYXMJvL3/jV18P9Zq8+Ytab7EEdST4LdYF2/HndTeDr586tg/qyYkTUI/UysY6U1n8ZqyVxf4nMX4Tst7dCXWtjstsNkm+JSLNBn6TlKJf7SwH2yqiX/4i/rYroQPyr4cB/bpTr5/drkbd3MaVoLu7e+6XCpY8spSKf60QmZE7zIe/IVrur5/8fhFznORfJLZt2wY1fxMbBDhedXejBGRiAqUxIiJHScq4mFSKxzPeL35dZPFftBdrq8WkVknL5HH2TFslbd9K4DjO3DY+l180/DoelzJJp8ZHUeY0NT0NdYv6dK1m9nGWpLYaKK1olklWF+I2TE/hOgMf1xFFi7d9iq7bAUlsGk2sUx4e994evE+YWQaea4GLY/fEILad04ev5+kXzlSCIsPo4/Rte3fpbFsm/aJ+vgnDcMnXfR5HRESsmO5bSIlQr+Oxr02fhHpi5DjUqYx5nDq71uAyathOTfp1IUO/IoX0a3yLfkVy7CQlDV4P+RwIqM0iOo9atUmoDx44YKxjrIzXl2tf9kqoO7rwuh9S2xpqraRfJ5bwnqW8xugvGoqiKIqiKIqitB190FAURVEURVEUpe3og4aiKIqiKIqiKG1nWR6NhVjazEkLv4f1xqyX5dcj1vuJSJE8GD1dJag7aCou12NtHWrpWEveTJpNTVCfnitg3fRRq5imGXvYbyDGDAYz0xrOh/WPi+rlDE+D+f7novldSRzbFWd2GkJTS43bbid4AFjb61l4MJ1oEuqUgzrKro04XWkQmdN8+jTzQ0dHL36GplEcmcDpISenUOfbmEQ/jxuaHbBRJ520h+dF1xrUrObyPVBXK7gfzZY5fWSNtLPNJn6m1SQ9KOlY+RuNxK7Ff7TweM33PDRbpjZ8JVizZs3cLE08Hg0ODi76eT5vazWeFhhhfwTPisQz3CVtF8+UxLPd8PSEQ0PYJxebGUskeQbA+Sx3LEnaL97Ovj6ccpn9FNzWPE1q0jS9vAxuqzP7udj+ni+iKJq3jTyGLz49ebOB53ZIY2K1hn6JE0PoQxqdxjar+wk6bxv7aJnGk0YF60oVPWLTFax98lfw7H8iIk3ycdgu3TuwD6mO+2Ho7i1zelueWc+l/Qx8XIZH5yH7PyXxmk3XMdpVb54XwHPNc+T8E8uZbVzsliPJJ8kfiWKaVSrEc7RWnYQ6TT6+zg7yI4pIlq5v+S4cN8ar2Me9NB63mKafDMKFvV8iIjyBpU2eH66tFPp6owj7+InTp4x1PLUfp5bevPNKqHt6cZrygGZnW0qoo0X+lJjGw/nHbzljuv6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0naW59GwrDkdtaHPYv1Xon5rsURsejfp8UpdqJdNpUydbLNFmmfKveBcZZe0c7UGaeBpLmI3QZiYNuayxx3JUqJjT2cJ6xLqDDn1WkSksxM1o+zZ4LntWZ9sHI0lzYHMkyov9/Pt5qw+lPeIY0XChAR3O0Zdbhyg/6FRR2261UBfQoaTYXNmSrebxePUWUSPRquM/XNqEPMHYtYj26jlTLdMXXlIGujKBOpcyxbOE8661lwG+1scmN8/BDZquWMX+1fQWjjp2cw4SPiOgyfxFlzH/OwC30+KTj3/2LY9ty+c/F0qlaBmb4SISG8v9odnnnkGaj6PF8vZSNLJcoYFexMOHjwINXsf2Kewfv16qDkLRMT0OyyW88PeB04n7+9HP5SI6cng9mbfBO/38eM4B//U1JSxDvbA8Hacae+l6J3PC1Z89jxZJBwp6RKcpcwnh/TrgydwoWPT6JeYJP9EvWn6ueqUuTNdxr4xOXYa6kYd+5NP12yPkphjDkASkRZ5tjJ0DXUc1N1PUz4Ipyb7gZn+zFkImQydi9T+qTRlDf2c2VUiIu48j5/rtM1iu2Rsy57zXkTsJ6Ft5ddFRCy6B2SbST3m/B0c5zs7cAyo1c1GbYTYFzp68Jqcz1MiO2c+eTgGWNR3JCmji3eVkud5bLI4A4jytOyEfBAvX4K6xtdc7mB0/8zWXzvBC8zLiG32fS2wvgXQXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHajj5oKIqiKIqiKIrSdpblJrJsa86cZGRrcZ30eQoDceg5J0UhTYUiGmQ6CliXOkzDTI7C8GIycIVkELR9CugjIxqbxGzDsCrClvQUGQpdw1zEwT643+627cY6SmQYz2TQ1PfYY49BzWY3NmcmhenYNh+1xUP+VhTLm/lPRFyPwhtbZKJtmqbpuInmzyichDpsodHRjdGI5qSxvyXkRUpzCpdRizGAz6E2LJDZN0rjcZ3isDROBhKRkIyQOTq01dHDUI/n0OjY27sB6pZlGjzzGVyo56ARuklJlj6Z+Hiz3SQjGbWnTWfW/I+sVpZks9mcM/axIZjD9ZIM0Wx6XruWQpZ4EgdrYVNhkil5sWWwwZlN0zx2sGmaly8iUq9jn+HAPTZ/s7GbDelstBcx247XwTUbu/nz5TKeqyKmGZ+XeaYtkwIFV4Z5E2IsetE1T5KAAj/HRjGQb3gCJ8iYpjYKabKKODDHiqlxXEaFAkVr1N8aFCLo03iWSlE4LQ8UYk7qkvLoWEfmsZ4PT6AwNDZuvCeTxj6ZzpAZV+jega4fjSZOBBImjA88+UNIk9Hg+b/yg6DtOGKf2QbafmNyn6TbBbrvCGkygWoZxx6X7o0yBRw3vNAcJ4IIP9OsYX9yC3j9K5Qw4C+2ORiartGRGRbrxGyapnE5poBhapyI3t/RgSG7IiJXXb0J6q4u3G6eACei+7klDA/GmWX00HmfiZbxM4X+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2luXRcCx7ToeXIk1kNo26t0zK1LDy31hims2SJ4N0vRxal/fMwLSQ9KAjzVGogynU7m8voUa6k8L1JmzUXZYjCvQTkSaHrHnYFmnSVTd9DD+bmJyE+uQpDI4TETl+4gTUp06dgpo1pqzdZl11nCCgZN8G60WTwsFWEtfJiuvkZrcFt602sR/fWzY1thYF1Dhp7P55OvapFHmAqMnKVdSTiohUq6g/jihYLkXrCAPsr7ZtJP9AVWuZx63axP7khxiAFQvqkxvDuA2BR76lBA1+5FPgnqA21nWwb/jUVWKuzTxFselvDula56/CWaWuaFnzfWockLZwLWL6AnhMM4LEFllmkg8kJF8af4b9EFu3boWaw/dGRlDHP0njlYjpGWM/BO/nYvuRtF88Hi1W8zrYs5G0H7VabcH3FAozY4JPY/hK4QdV8YMz5wUFxDnY5nHC94gtCrQdHB2E+vAprPm64tO1rtkyr4eBj+uIQxxfUg4e2zoFrFUpFHCK+rOXMvers0jBphSW1yJfWr6A729SyODx09gOIiJdneiTFBqr0+Thq1XQ71Oma1IYmeNstYrbwVbKfO7sNWu1r8cGHOKb5AOl61mDwmY59LBvDfoSCgX0l9kOjmUzf8RjXW1QwCjdmhYKeJ/Z9LF/8hW31TQvXuxftSlM0bKdBWvHwfHEscxb87iF/WV6jHypa7F/WqlFbu+T+s8iYyiPsUtFf9FQFEVRFEVRFKXt6IOGoiiKoiiKoihtRx80FEVRFEVRFEVpO8vyaBTzxTntf3cn6hE78qh5zGdQJyciUsijrjuXw8+kKEPAJZ1bJoMa1HzOzNHwUrjeiLRzHklre0OapznAdQ41JqEux6g/FTFzMWqkcbZpXuaQdW7G3NmmBpC1sgzrj9mTkTTfPrOYHvy56vPahSdn5ZXpCHW/w8efhnr8yDPG5zOkob1gxw6o0+Q78pvYhqzfnphC7bqISLOFHSwgj0ZHRwlq1kxzm/M2TEyiLlNEpF5HTXNMBohmE19vVkkbHOLr6SyehyIiPp0Xdho193aM550rPG84a1RNfWiUZNzAT53j3ytHNpud8x9wf2BfQVIWBMPnZalUgprPe+4f7KdI2i4eC5599lmo2RcyMDAA9bZt2xZcftJ2LJb3wR4H9kIkZXWwD4Tf47qki16Cn4Xh7eL9OrPOpHZfCSanT0kYzxwvv4F9I58p4ZsTNNhTlJNx6NhJqCemUc/O+TjVOu53rWG2Q5109w3SyLcoO6FWw9cbNCZylkSQkCXkku/Dsdmfg9f5UncJ6uHh01BPljE7RkTEpv5V7Kb7GR43XfRblCt4veBMExGRAt3TRJyNMK8PL6U/t5s4js95H8B/Zb+FiBhGPIvqTCYPdS6H2UTpAl53xDLHWIuOUzXE/sTnbjfGUcgUZWF1UoaZ7Zr+44h9cU6KavqMcW+Fnz998rixjqf2og+1fx3mXw2sKUHduxH9LM0Qx7bwOVxD54+py/EI6S8aiqIoiqIoiqK0HX3QUBRFURRFURSl7eiDhqIoiqIoiqIobWdZHo2U685pbT3S4GY8XFRn3tTO5bPoI0innQXrVJo9HahfLLJeT0RyNEd8nuZv7yDtXC7AdbYaqP3v6+yFOpPQYg5r9mLUTvqk0w8C1GamPHzeW7+uz1hHhuZEXrsGhYWDg5i9ceDgQahHhoahZk2hiPnUaXEWR8JnVhInjsSZbVvLJ63w1BjUBw+gnlFEpFTCY7l+ADWMDTq21Spqh4dOYxuX65PGOlzKUPFbpN0U8s44NG816SanSDPdaJj6eNYwhyEuc2IMt3O4hdkyY6OY0dJZMucm7+5aA3WuSGanFH7GdvBcjWnycs5sEREJKBuF+2g4T68cRqvTF+fnaKTID8a+hCQNK/sIFvNosGdgKb4p1m7zdq5btw5q9lzs34/nzvr166HmfRAxvSTcFot5zHg/6vW68R5eBm8He2IW0xD39PQYfxsfRw8D+0AqlZnzMcmnshJM149K5M54hFIO6tlrMY4VlTqe5yIizzyD7zk+iJ6vbB7PWy+N66gHNJ5VzCwhn7KBmj7lZNRw7GZfW2TkMeA6A9889ysV/FuarqmdGbwP6KSMrukytkMQm/0vEDzm5cok1MVO8pR24DZNTOP1o94w/XZ93XjtZxcGuNR+4b8mNscmzo0KfLzfSlPOVEDXsiDmTBVzHZaLrdbdV4I6m8U+Hfi4jL5ezFZzaJzxK2bf4EwUPm6uzZ41fMck3b8MDZsejSb5hU+fxPNm7xNPQP3yDTjOc5hV4ui4mO1CPRqKoiiKoiiKovyioA8aiqIoiqIoiqK0HX3QUBRFURRFURSl7SzLo1Fv1Oc0xTnyU8R51NYl6bccB59rXJrr2qMcgzxpbjtIV1komFryIk2K3NOH2vIOmos9ClDnliJ13QYXt2m6ippCERGfNKZhkzWpOC8z6w49G+uOHLaliIgrJaizlFPiUHuXp3Ee8OokamlrFXP+c4ulsVwbn1hZIjuSaHbe7TrNvX7yBOpfh8cT5igvkgfAR63l2DAep5ERnPf85En0MrSS5kEvlqCuZ1BTWiujztd1sVWzlC2TzuA50E3zv4uIVEgzOjyE2z02jsfeJ531JOmT8wXMqxERadV57ntsi0wf6vitDPbhKMQ6dJNyNMjLFP5izSEvItJsNuf8BzzGcf5NUhbEYt4F9mywd4H9Fp2dpk8tn0cNMi+zrw914Px+3qapKRxLOHdDZPG2WMzTwNvYpDE0aRnDw+g7Y88GL4M/n7RNnOdxwQUXQH3GQ5N0bFcCJ++JW5jtA5QB1VlEz1lHB177RESOP7MX6m070Le2afMmqCtlvE7s27sP6umELKFaDftHvY7tPDaBn6lVcWzh7Aj2broJmVA++R7LZRzLC5Tz5dAyBtZhW1Wbpn8ipvwOl+4VeD+eeByznDpLeB7927/9s7GOyy7bBXVPNx7TXLY092/ex5Vm0dwtyxyja5PogYrJc5jO4T0e2QokaOH9V5JNwBW81jge1qVOzOaoVCjLiq4tTfJqNujeQ0TEp3sBm/advZkph66HZLiJEvp4ivxSneQf9puUVxPi+BdHeC/hWOYYFttmGgq8Pu96ZC0jV01/0VAURVEURVEUpe3og4aiKIqiKIqiKG1HHzQURVEURVEURWk7y/Jo+GEg9qxOkec5DwKamzhBw+qSPpnnPc9QzfrjYifq93JZnPNbxPRx8DqbPuvqUUtnU16FncLPOz7WIqbXxCavicTo4WDtYjaH+x34prbRI/0x65F90lV3FrFtUpRzUksSN5LmbjnzJK8EoRNJ6My0TYN8MYNDqAuu1CnbRESKxS6oI5rDe3wM57JukrbYEsp1SDhOE2Ook6zRfO6DLVxHEOA2bN66Aep8Ec+rpCgTshlxjIvUGviGkUncxv51eJ6lEs6rSh31npOTqDfuoK5S7MPz0E5jnTQJfETzrse0I1MTZ3XT9YbplVoJqtXqnE51sfMj6XX2lrCPgD0c6TRqedmjkcuZfhoee82xGl8/ffo01It5TThrQsT0cfB+jI5ipgMvo1pFL0BS7gb/bTEvyZnMizPwfnmeOUZ0deEYsXnzZqhf9apXiUhyzsdKUEgXpTCr1S66W+G1rIfa81pj0Ph8PoP9Zd2F6Mno6ilBnR7ATIHyJPorvv99M6vDb2GfrtCxrZTxuPC1yyZzIOvXnZR53OoNXKdPWv5CEfebfUmFIo6BpZK5DolwHHXomip0TZ6u4H4FDdzvh3/yqLGKwWPoO+pdgzr8+RlHtdrq9MElQ+0lItKooq/E5XsOzptw+F4Kx89WgpfLuLZY5CeOsD/GQp5a8mTwOJ7i+zsRIdujNJvY/8KQ7ocz5E8mL/AF6zca67igbxvU/evRP5bLYHsHdK9reXSfySZcSbpmndujsRyXpP6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLazLDN4HMdzdk02MbKJhE11IiL5AppR0mlcfSGPJtR8AQ1bGTJGJpn5AnLGHjt+HOoWGX26yHBe6sKajd0TCUbIoVNouktR2EqxA/eLvUop2g8jM0VEohA/FJBJvaerBPXWLWhiHD6NJrNqxQyrCmWRhL7VNodH1sx/IlJrotFpuoxm8N4OM/Swp4DH4fjhk1C3yMQYkJnNr+M6oxhDoEREWhGut95Awx4bzFNkFj99Cs2WoWCdzplGbZu+L4iaaHbLkNGsWsfjHMRoMB4amzTWEZKhPCZjfG0I21I8DM6MaT/Hy2b/m67guVWgiRnq84IFmwlm4ZWg2WzOhcux4ZlD59jILWKauTmQbzEjN4flseFZROTQoUNQb9qEhl82Rf/FX/wF1E8//TTUPPEEB/6JmKZpfk+DzPvcNjyJh++bRlI2f3PgHk8ewm3N69iwASdeEDkbyHeuZaxZsyZx3StFuTEmkprpE50daAb3Q+wLY6Nm6Fyzisd+ZOgA1Onj2IdfctVVUBfzeA33eSYKEanRmMeToeTo2tWgC41Hte2wGddYpdgO9tFWC62qdQqG6+7B+5PeHhyvPEmYjKCBxvfQwbbk63ijwRPi4DnQbJjBl0OD2P6TdL53dp01tTcaCUboFYQntuDxL2yYY1NEwYrpTmx3x6NrKi3TobHIdvH8FDH7At/HBCGduxYdxzQFM9I6g9i8bbYojJrHcR5zp8s4cQWHAGYTAvvcDPbZjhKO683GKah5kgXXo/6YcKPp0D2gxY03fyKjhEDGc6G/aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLajDxqKoiiKoiiKorSdZXk0rNn/iYgUSe/e24NhQV0dppY8n0U9XSaLOt0CLZP1sRzoVa2bOtk9zzwL9RNP7oE6Jq3wts2oc7v8souh7ulDDeEoeR1ERL733X+HmnVur3zVK6Hu68cQHo4+cWzTC8EhMbUaav7qpPGzaJlremk/RjA4TkRkchp1g6GPmj7w4ST4SM43TmyLE888G7sU7MO63Y6s2bWPjaJ2+Kn9x6DOZ/G5u5DDhbIG10nQUYYU1NMgvTLr+lnneuQE6oBrIe5HKKbu1aKD0Z3DdWQyeF6l0+Q1obChiYlJYx2tGuqBu8jL1CLPz+BRPA8bAepHjw+ZQV9COUjr16LO347PtmWzZWrDVwLXdee8YexLY78EB+GJiIxRKCQH2Y2MoCdneHh4wdeTwvPY1/Hrv/7rUN9///1QP/LIIwuug71w3d041ouY3gZumyRfx3w4vJWvBSLJ4YQLvc7L4NeTPDS83bzvZ3wiHDC4UsShSDQ7LE+U0Rs4PIHenOa46SHzfdy/A0/j9bGQw8/0dBahHh7CdYYJXqkoxL8VUrjO7hKe6CeHcPxyaUwM03gfkM6YY3sxjccp9HGZXop8k3k89t3dOJ7lc2bfqDXwb2NT2BZxk3yqBWxL28H9cJIiz2zyIVVxP1rzvIlJoZbnmziODV/Z3GtUVyfNscmlS2YmT8GuHK5HAX02GVzZPzH7JqwXsZZyqDN7US2+zocJ3gbyhfB1nYmoDSvTk1BPTJr+KsnguGu3cLs8wf7VJB+r5eB1oRWZobdxQO+hZTTm3d/U60sPzdVfNBRFURRFURRFaTv6oKEoiqIoiqIoStvRBw1FURRFURRFUdrOsjwaHYXc3FzJO3fgHN6bNqyFOp8xn2EKWdRRFmhe8zTpdFOsoXXw85ylICLikVi/u4S6tvGhIajHSI9ep/mPm6Slc7OY7SEicuF29HU4lDHgebgfDmk1XcoL4IwSEZEowu1K0Vzkrou6wukp1PhNTKFe0o9MjXtEWkZWGdrztYzn0GmeTxz7rMYzQ56VNLXh0Cj6TUREJgV9KlEB6yrNr91VLEHNfdptmRrFFHZh8UP8Q62J7c7zgA9VcN704+M0H7dltntMc3RXCridvXiaSYv8Db7P2Q3meRXQuRa08DxI2XjeRbUy1Bv6cSM2rkNvlIiIT7rWyEaNszXPl8MepJXi3//93+e8Y5xXwd4GzrwQMc9t1vrz/OvsGWAvQz5vjke9vegBY1/IccoW4nWyB4N9CpxHkfQenjc+k8FjyevgbT6TV7HQMthjwW3Fbc0emokJUwfNy2Bfx5l8j9XK0Th8+pDkKzPtEIeH4bX6NG5Tj32J8flUGo8dHyeWs58mj9CRY0ehrpQnjXWElK3RiCmngLTda2w8l6fp1I4dHPNSafPeIkf3FsVePE88ymcoFnDctShToKuHfZQifZl1UAfHcRll8sxk6RLrObgNa3pLxjpSaexvU2UcdzPz/CpNshasBFY885+IiBPT+VbFa26rRXkqIpKjbDQji4jvjcj7YNO9lM3+ChGJIjyWMV1XLNulmvoTXWJ5eVbE+SgiPmWGxPQdfj5XwtfpvMuTN8qivBoRkRb5VZpG++J2nTzyDNQeGWTihFw0z1o4Hw/Wv4wcF/1FQ1EURVEURVGUtqMPGoqiKIqiKIqitB190FAURVEURVEUpe0sy6Nxwaa14rozmrgNlAWRTtP842lTO5fO8nzYqLdjzS3rjy3Ss9ueqSV3SGW6lvTEUxMDUPf0oRZ44MILofZpTuZUZDbZpdddBzXPwN2sol49JO2m45AOO23Of27oBin7oFTEecA7Cjj/eZ3m3G4lBGFkivgZmzwx1jw9ZBRFUqmZmQ7nlbA185+IOBHqA23SEk5WTQ3/S7bj/m2IKCfDxXn3XZu8NqTjzXSYOl4vhRpbzoIpk06ccxCyWfx8HjdZ6r65X40a6vxrDTzW46Qp9VvYdrkc7kd3t5lX0KhQbgDpc0OftN426Vh9PAdKCW1nu7jeWkw+JO9sWzYS/FkrQWdn59wx5WPb04Oen/Xr1xufZ49Fkc65zk48j9kjsJhPQcT0XBw+jFr+/v5+qLu6uqC2SbPM27B7925jnZyjMTWFem3OtOCa9+OMF2Khv/F28vz+nCfCvopGI2EeeVrGudaZ9NmVYN+zBySTm+l3uTxei7ojvHbZPHiISM2nnIYaeQCoT09WcawYGsHcl3rNzBNpNbHdPbpuD1LehIRYN+jalKeshGLevD72dFP/on1Pp7HmPp3ysC/5Cf67ztIGqHduvhrq6RZ6n54dehTqegP7X03Mtpsq4/WBYg2kp+PsfiTmcJxn5ns0AsqIqk9h38jkTJ+Bl+a/kX+CPBexzfkU5L8g/4+I6TvizAqbfLxWTMeezvmIliexOTbZ9DfLwfEspuwNXmSpG3OGXvHa1xrrOH0K+8vQIPqNT5xGz2C1A6+5AwN4r5vKmF67NHl9XQfbZn4+SLyMpwf9RUNRFEVRFEVRlLajDxqKoiiKoiiKorQdfdBQFEVRFEVRFKXtLMuj0dvVKSlv5iMkaZS0hzrMTvIMiIjk86iLZL0y52iwjpL1eo5n6pNd8miki6j5G9iAHg2x8XXW801No2ZylHI4REQqk5NQezRvcyHH3hPMHEmlSTPIBgwRcXk+Y1pHizTDXaT17l+LuuypmjkXNLs2QvaFQL3y+tBmrSKN2X43PoxzlgeUBVHqMefh37QWteiNSVzG2CTmHkyRBrWrD30FrcjUCk+M4GfiFnowuoukRW/icct72K45l+dRx74iIhLR3zrJL5UmjfMIzbd9xnd1hlbL9D9E3N9iyvcg4xHFKkijifrStEfnoYh0lvC8aLp0HszzS9Ubq+PRuPbaa+fGpcsvvxxeS/IVMIv5H9izwfkUo6Oogy6XUYeb9DeeC33jxo0Lvs4eD/ai7Nq1y1gneywOHjy44Ou8Ds64SMqp4GUYGRC0H+yjYM9GUj9nznVMeVkrRcMPRPyZPjQ9iMd5uoLXpjUY7yQiIuUyemdc0sRnMngN5lGePWVJVwH2B0Z0rFvkM6rTlefMPcYZerrxWra2x/SelMiLabu4H0GI510QYN9xLKw7sqaH0Y1w38tksQiCEtQXDqCX6fTEXqiroZnjEpPwPWOTb7B4drtcb+WzrKK4JVE002emy5jPE9K5UszjtouIxOSH4HMwsvB1slNIq7XwOS8iEtH9E48TOQv7n0++j4A9GpylRp4jERHbwuPmU5ZMHON44bjoPy524P2K3zLHdWc9riNo4Ri5b88RqDvpfttz+Ww1czBi8q0GlN0x38PG7boQ+ouGoiiKoiiKoihtRx80FEVRFEVRFEVpO/qgoSiKoiiKoihK21mWR6OQyUlqVjPcUUDdZKFA871nTR1lmvIhWOsWhqgHY62ck8bNTdLY+rSMFmn3vRbWrPFrTqIGenRiEuqnHsG5sUVEThw5guuwcRuuueYlUPetLeE6fdyG2Df9E6xppugNsUhH6JDWsX/tOqiHJ8wMjEYT27sV8PzRZ1fKOsiVwPdr4s/qk6foOLEee+Om7cbnu7rRoxGmcH8bJHn1aZ7pY5P4/mps6sh5/uyp06hj7Ulju/XkSLNP+TMlen+1Yeoqix2o9+zpwG1oNHEZ45O4Dos0qtUp9KqIiPg+6/bxXPZSNN+5hcssdFDOS2fJWAf32biJOtV4npY7WqUcjXK5PHcust/CdRcfnzinodnE48meAPZwOKSpr1bNufjZ38AeC87N4LGFt7u3F71Ja9eil0bEzP9gD8Pw8PCCr3M7sDclaTvZN8TwfvA6kjTGvF6+PpxZ5lL8HeeDsGVJMDv4Bw08B5sBblNnyfRJTk+jL8Ch87RcxXN/soaejuPHn4W6UjG15La1sOadnR29PbidecpfKHXifmYT5v/3Uvi3bA79ARZp6Kt0jkxN4HnkhOY1uFbFthjYfhXUTzzyJNTsL7jiup1QT6cPGOtokbY/nMLtOFU/OffvZmNxT1i7CaOWhLMeDT/ANsvQNcCxTS+DkM82pPEwoD7M5zifsqmEcUIs8hUIfsgP8HVeB48qjoPbbCXcNlPcmsTkYYzJFxnSNgUBtUPTPLZZ8l7u2I6+2878L0FdmcBcF2oWiQNzHQHdWFrkeZ4/HnKmyULoLxqKoiiKoiiKorQdfdBQFEVRFEVRFKXt6IOGoiiKoiiKoihtZ1keDdf1xJ3VxKVSqANnLWucoOFnfXIUczYEljZptkPSxQYNcy5z1k37JEyr1lBTWqc558fIk1Gtk46NcjdERGIH19nRifpQ1q/X66TLpv1Opcx1RBFpN33cd9fGtm1RPoNFutl1/ajvExHxBdfrpXE/Thw7q/kLEzSs55sgrEkQWrPrx/ZIp9ATVCiYc3jX6uhL6aFMi+2F9VBPNPG4jT5xEurHnz5irKNF/T4XoRa4c1M31GvWod69Wsb3dzUo46Bq+ieE5hZnjWmF/CtN1n+Sb6mT8mxEROoOHW/WrdK5bUV4TjSpz49PnDLW0U06/3STdK3z+nDQWnl9ssiMv4F9E2dYzOsgYo6BPF7xMth7xJ9P2hb+DOdPsGdjsW1ctw79XaVSyfgMZyJddtllUB87dgzqAwdQn86ejaT8CvansLaaP8PtwO/n/UxaBq/zzPHh47RS1P0hidyZa3Cx1AOv5Rp4/ngpM2eqUChB3dWDdYbGxGPHj0LdXUI/WFAzvZgT05Tjwt4l9iGQDryjiGN3Vwk9RW4Wt0FExKbPpCnDwaH8hp61ONZnM7jMSs30PtVt3K8n9pyA+sAe9GgUOrDvXE75M5dteo2xjiPln0I9EaEvpDF1dkyJopXvg81mXZzZe40wIs+TcTtnZlyEnF/i8b0O+yf4PhLfHybcZzp0j5ZK43gXkXfETS18GxyTF8F1TF+I7+N1m70NmQz5kel+rEGewzih7SIKNrMof2btGszicCMcU8uUe+KkzPEvpPbne3B4LwetLYD+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2sywzeGw5EltnwlrQhJMmQ42VZJqm2jQsowFmeprDktD85HqmqdGiIDEOAaxU0OTFYUJscJmYJDNWwwy66yCDXO9aNOXkixgmFFNgjB9hO4SB+fwXU5BNrY6faXGYFZlMG2TGnR6fNNaRKqLprlBCo2mh56yROUgIeznfNBsN8WbNmRNTeBwvufQaqHdegSGJIiITJ56GOkeewqaPbZQmd1tvVwnq7vyQsY4wxuO0sRuNtJvWoEmxtwPbOE3JP1Nl3KZM2jSicfiUTFCwYA23qVrFPlxr4DaUOsygL88isxqdqx5NiMCTBUxOTkIdxWb/aTVwP9Z09kGdTp01HJ8JjVpp4jieMxFz4Bsbh8/1+fkYk2jQ69PTaP4/dQpN9EnGbv4bT4zAoXSL7ceGDRugLhZNAzCbo9kw3tGBYyCHBj7zzDNQj45iIKeIadTmsMLF2naxtk76W9J7VhPLSotlzRy/Mk1sElTwvE655uV9YON6eg8e+3qAyyhTSF2hiIPmaSvBUE+TINRqNHGJR8FuMW5Ds477NT5BkyqMm+dZehInI9i682KoJ0YGobZCvH6WujCUMpU2+7hDY++a9Tg+vfEtvwZ1dycuY/uWLVBHkTmWD2RugnrLRXgeVCtnAxfrtaaI/NBYxvnk+JFnJDNrru4oYpu7WRxnYjchTI+M1QEF0FoOvp7K4bUooHG/1TIDbPle1LG4v+H7bZ49hSYOCOgeMvZMo7bt4SQKNs3wk3fxvIkcHovoXjc27wFTFt3btvC8atA9mZPF67oX4PujwJysJEvtnUrhMQ3mT0Dg4Tm0EPqLhqIoiqIoiqIobUcfNBRFURRFURRFaTv6oKEoiqIoiqIoSttZlkejXK9LalaLmyYdcByjJo11wCIiEb3HorAV1n1XSHPKvpBOCvIREQnJ9zExMQH10YMYFFUrowbasnG7ffJs+OOmdtglfXoph7q2VoO0xRT845CWNrKSwlpQT8dhVKdGMIzl5BBu54lTWI9MmIFEPQ5qAPOkXcwVz+r3At/U951vrMgSK5ppm2wBNbWXXLYFag5kEhFpTaKnwnKwDfw6egSmp7D/RbTPA32oOxcRyWYoGCqHmtKONJ0DpJss5LD/ZbL4edthQalIVxd5KlwOA8LzJptFPengKJ4jsW3qrgs5PN9TFLRkuRSkRLr/ZpOCM83uZ4QDWTGus7t09vUGhw6uELVabckejaTQOdb8c1AdB/gtFvCXtI58HvXA7I/gcL3FtpE9HmNjONaImOGEHNDHr/N+cPBgkg+kRl4kbn/GpXGVjw97NpK2ayntvZLkM12Syc6cF5PV0/CaL3hSWba5f91d2BcC8lKdHsUQunQWx6NcgbTmCcFiLbpOxzGug7/d5MPg+/j+rOA601nTl5RNc7gnejI27kCv3JE9D0E9MY5hrLGY9y/NFq43kylB7WWwbU+P4p4+c+QI1B0lvIaJiNjUZ7u6cKx+5ateOffvaqUmIn9tLON8MjF+WtKpmbbJ5y6A1ywLz+EWJ/iJiNDYElAoayqD7Z4iz60bYftUqqZPgPtPTJ/hayiHCNp0WxyyryQ2gxJt8lz4Pl3/aPzLkG/X8mncTzh3YxvX60e4zBbdSwR0puU78RzIUNuKiBSK2CfZX5Wdt0jHNQOzz4X+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2luXRGBwcEndWix2FqFXNpPuhbjRNDX+jRvOeBzgHMmtwq6QPS6VRr9homvq8kDS0gydQKzw5Ogx1LkPzH5P+LqrhNham0NMx8yHSDQ7iOhpV3A8vQxpT0vfVG+bc0JxLEEaoMzw2iP6DJ/ajF6VJ80/nit3CBKSf5OyD1DzfTeybOsXzTTaVk1xqRgf60pteC6+xzteyzGfoYifuc1DB/takPjs+OgL19CRpP1umRjFF+veQtJk+bWcUoya15WOfdjw8zumMeco2aB0R5bRwrgJL9CfJpzQ6be6X65F23aIsGGM+c+xLnod60KR4gjDC9q356JHJBmfbqr4KOS4iM+cE+6POkKbxKckLwb4Azp9gf8Vi2RDs8UjaDv7MyZOoR+fMijVrMAeo2cRjm5QtwevgPsfbxBkY/PmktmPfH18v+LgkeTDmw/4LEfN4nMszs1r5Go1wQuLZ86BF8/t7rCUPzDE6KXdgPhZlDghdZ4p51OGnXLMNMyT97iqhx8cir2Y2Q8e+iMssrMH92rjZ9MZdeenlUJe6MeOiQRkE3f3YP48cfhzqet0cX1J8TYnHoUzb2Kd7O7fjMiu4n5PTeB6KmL7APU/h+e1kzq6Ds7FWgnVre+ZyNDzKMRudQO+pZMxzJKTshlYZP9O3tgfqAuVJ8CnNHiMR0x/BcTI2+R84j82hsStF/sMgMvtGxD4P8u02aTtTlJuRNvLfTP+ZFfE4jMssFNGrmc2jh9m2cQzu6MC2FhHxW3jMwhp6nWTeOqNlDIH6i4aiKIqiKIqiKG1HHzQURVEURVEURWk7+qChKIqiKIqiKErbWZZHY3RiQpxZ7Vk6TfNr0/zHfhO1hiIiMWmwW6T9DUlT6tgL6/NGT5N+bGbFUNo+ahx7elHHlnZxu7Mx6vGapNWsJ+RPVF3cMCvE94Q0j3OzRrp90rOz9lhEpEW5ARXyjrBHo9Yg/S75QpzY1ADWJtFbUh7HedpTqbMav8XmsD8f1Mo1sWdzNFIZnGefteqtpqldt1xsgzHy2wydxv0tk3fBs1GfnKM8ihlI40hCRp5bfLJCukuaK9ulTIxs3lxnrYn9rUX+GdvhzBsSV1J2TD0wxZflKvZJhz0/WWwbsXAZnGFgJ+jnQ8N3gW3jR2f3M2ku85Wg1WrN6fZZv8/7mKSR52wHzo9gb8JiWRDDw3jOiog88sgjULM/Yu3atVD396O/bvPmzVDv3LkTavZwJLFYHgX7KXjMK5N2W8QcczhnaXwcNfM8JnAdRWYmDW8Xv+fM8eDjslI0KrbE4UxbVscpH4f8EtWa2YYdRfIkUmaOa2P/yqbRX9Hdhbpu1omLiKRSuB2cn5VN4zovuBi15KleGr+68P0d682xI78et/vy7RdB3aRMnoEN6J/o3YzrePbEXnMdlI+1phvPo6KHHsDt/buhtlvoGzl2cr+xjn0Hfwr1YfJT2Z2TZ/+dWvksq7Sbkcysp6FSw/Pv6EnMYDk+NGV83qHvtm0a8y+6GMeaImWNWMJ5FaZfwiafEfeWaBF/Fec5eR4uz4vN7+cbLfLtkacxoHPApeuj38Txr1XBbCsRETvE9nToGtrVtQHqJvlGWjSWWRm6ZouIR34Uy8P7ysrU5Ny/6/Vkr2IS+ouGoiiKoiiKoihtRx80FEVRFEVRFEVpO/qgoSiKoiiKoihK21mW0DSbz4k7qxFmze3UFOrHmlUzbyJDvo4s+QayBZxDPsvzwbO0Lmk+d9LGZXK4Ts5X4DyIiPwTrNltJOQYFDaiVjO3HrWYMWUIiOB+VygPxE/KCKB5l2ujk1BXOasjhW2XTvM2mG0XUIYDa/mb8+bAjqKV92g0mi1xnZn292ku65ByXWzH3L6uNXicThxHPfw0+XGCGOtCBx6D7kLJWAfnA1Qn8bwo+zTXfRP7p0N+n6agrrKaMA9+jY5bQH4eidkLhcvM0zz2ubzZx13K8yApt+RJ2xk5tAw67+wEfXyK/hTTfOhB8+y5GrRWx6MRx/HcecH6YPZktFqmhpr9Euw7YA8Gn4P8el8fjjUiIoUCasm/+93vQr1p0yao161bBzXnbLBPgT0cIiLd3ahPL5VKUHd2ojeOvSkZCl/o6DCzEjjXh5fB65ienl6w5muWiNnevO9n2n81PGoiIoWgW9L+zPWjtzQAr1XIRzU0bHoY16/F/sL5OBwV0d+PfeXkiVNQV1umn5BF8X4dz4PtO3Acvnw37Yc3CfVEgF4APzLP/f2n0O+QzuPYfsXWV0Ddk7sQ30+Dz0AvbpOISGeuBPXaHvSBSIRjeYauucXseqjXJ+SBrNuG23HZFOruu0tnj1+lXBeRvzOWcT6Jw0DiYLaT0PiXjvE4jZ0+any+6lMbkSet8TQexyZlxey4ED0crZZ5HeFcFof8VBb5cl0Ha5uuXXzPaCVkx0QtzljBbYhoP8bHxqAOKJOrNm1672LKlcrlccytkN/TS+P46NF2Bwn3mZOj6LM5TccwCs5uZyMh7+1c6C8aiqIoiqIoiqK0HX3QUBRFURRFURSl7eiDhqIoiqIoiqIobWdZHo1moy7BnEejBK9lSHucp1wNEZFCHjWLKdKjC+lhbdKnp1OkpbPN5yS2bQQhzclNcw9bDq4jpCbJrCNN6xqc11lExOvFecAlh7pDaeI6IvITWGQ+cUnvPvMh3O5iEXMkcjmcM539LOk8+l+shByDmHTHIflXnHni29XQKMfx2ePL+2eR5yRJfygW9p9S70aot9EypqZGoD4xiJrnkdM4x7SISLOBeuR6jfM9aLtCXGcmg/r6SHCbxyqmJrpex+OUFjwXPepOZIWSXC5NNXqIRES8NC6kSH3coePRamH/sGw8r3wnwWORYT8VZdrM8081fwE8GqznNzxNTVPDyr4NznbgPAnO1fA8bKNUyjxW1113HdTsTbjnnnugfuihh6Bmf8TPfvYzqNevR625iOnzYB/HwABq3nt7cRxlfwV7UURMvxyPYZzv0dWF4zLvV5K/hX0b3HZnjs9qeTQGipslm525jhbJi/P4s5j9cOo0em1ERC67+BKobQevoSmPcjby2Ma8TMczryN+A8+DNI0dpQ3YZ30al8MqXU+pqWPHnP/fp6yDIxPPQL25irkZGza8FGpbboTada8x1mF7eO5mU+g1sWJsu4hygIIIc15OTz5mrOPQ6T1QFx0crEeHzrZ/tbp0jXz7iGb/E/EsvK/pKuBx3bQOz2kRkacOUy5Dne75prA/PfrEk1CfHsFr8gVb8BouIrJ+HY4tTbpUZJwS/oFyN4w8JxrXXdu8bbaoD1uUxzbf2yAiUq5P4iooey1omR7nlI1tEwTYHyvlUdzOBo4PPGL5vpkJNz2KHiyP/FDuvPt827T5nhP9RUNRFEVRFEVRlLajDxqKoiiKoiiKorQdfdBQFEVRFEVRFKXt6IOGoiiKoiiKoihtZ1lm8Kmp6TkD9vo1aKRjY95SzMYRmW89MkHHZERpNrD2EgyDbCB1FnmWCildKCDDedSJpmsOcxERicmwGQa4ny5lyoQU7BXZ+AbPMw2eVozL5ECsXgpFmqxTeEseDXRhQuBeIYPv6e5AM1c0zxzu+748ffBpYxnnlciaM8U71HUtOo5hQiCcxWFnPf1Qd+dwsgK/iWFJDQrXGx9+1ljHxDCauEbGKcgyIgeVi3XKouPm4DYFCRMgBBFNYJDC41gsokmRs9AyGTKAJsxFkKLzIk0BazzpQjSFkxP4NWwXp5cmTBARvxP3w2XD7by2Wy0zrmVZc2ObS0FQSQZmZrGQv8VqDpDj10XMSTJe/vKXQ82hgY8++ijUI2S43LdvH9SHDx821skhgWy07unpgZoD/ti4vXYtGm2TPsPXmDxNeMHrZLM4b3PSMng7xsdnDL0czLlS5ItZyc2OU00bzcVNZwLq4XEzsK/JIVvUZS2bQ72wfw0NoVk0lzavh9Oj2Mc7S3iu9/ZTG6/H4zQ+hp/vzuI43VEwg+5aFo4vdgrDzU5XsA+vb2JdLF4KdaVmnlc5u5v+QoHCNl63+RrlxPh6TyeGIYqIVP0fQn1sCM+1/t6zbVXzzUDQ8/4Vt90AAOO3SURBVI1lzfwnImLThaJA587WzThBhIhIrYUTOhw5hsF1NQq2szqxzZ89hpMRTJcTQjfDbVCvX4vm8CiD7Zam+x4vTRPnBHjcvBCPu4iIE+P1sd5A83elgvvZrOO5KhGOJ27KdFrbDl2nLeyjVoR9vkX3gBWaeKTZNMcwj0Jy03xPHp89PkFCYPa50F80FEVRFEVRFEVpO/qgoSiKoiiKoihK29EHDUVRFEVRFEVR2s6yPBpBGIs9q8uq11FrF3WSrk1M/VbkcxCKIRBdsI5D1NZFCRpFhwKIIlpGgzRoEYWvNEgjODqBGkDPNf0TpW5aJ3k0AvIPsJabLBriJojkA8G2a7VQbxfHqNeLWctNQXJF0lOKiHRk0I8SUfNOT5zVwSZpw887UUtk1o/Qor4UUxtaLD4WESGfi03HIZVFzXbaRU3kwEbUfoZNsy84FLDHloyOXvS9ZDvQ61AnzWlA+2mlTX1otUbnIp2bmQz2z0IO9zOTxm1oNM3zqjyJ+s/aFAbLZXzs47khfN2uoF7UapjjQ4ZCKGPyr1jzwsGSPGArgW3bcx4IPo/Z+5B0jvDfeBkcwMf7yd6UpZyH7Ou4+OKLoeaQOg62e+KJJ6AeG0O9sYhIuVxe8D3sfeCAPva7JAURbtqEmvZdu3ZBzZ6MM36KM7C3hI+XiBkkeC5vCQcnrhSng+OSCWa3O41t7pUocHXI7BsT1CY5um5zCFitOgl1FOLYwkGyImZYZ0eONPAT6Nm4Zgd6iALqC1NN9Jqs60LPhojI0Ogw1BM13M8KecQeH/zfUG/sPAi1VTM9Qrkshv45srAvNSa/qC3YDj35K411XLH5NNQPTn4f6lOjZ8+rRi0hlPa8Y83+Z56zMY1lXUVzjL+EAvYsStM7eGIS6okIr10hXVAnh0wf0toCnte9WdwuN8J7J8fCscjnQGUbr4+ebY4bFt1K1+p4vZyexuM6cgrHor5uvCZ7nnl/5gfYvyLySHhU062wpOlGsxmYgY+2xfdNuMxw3vgQBkv3COkvGoqiKIqiKIqitB190FAURVEURVEUpe3og4aiKIqiKIqiKG1nWR6N+QovVt8ZvoNEDTUJ6T18zrE5w4L8FFaIa82mTJ0s/80nfXKTvAoN0ghOVFG/N11Grbnjmro2nk84R7kaLul5SXpuzo3vm9raKEDdoMt2FmrbRh3nSF5Dums3No/P6BDqXOMAN9SfNwf2auQYjI0fl0Z9pm1tmrO8kMf9S4gJkVaIbeI4+KYMHaeQRI7r1uK84CnXPH1KlAVxsY+a1A7yZNguae5beJwrNZqPm31OIjIxgfrj6gTqQ21qC5oaW+o1fH+9Ya7DtnC/sjTXeLqK59WAg/Of9xSwbQ9OY18TEZkexLnFC+vJMzSv00dsylkhHMeZG+tarYU1qqxhFjG1/XzuP5dlMrxMPldZS37hhRdCzRk9/P6HH37YWGezieMi7wfXtRqOq0vxPBw/fhzqgwdRV3/ZZZdBvXXrVqjZf5HU1pUKngv79++H+kz2Rp3mpF8ppoIhafozbdWqY1/oT++AOt9l5hg0aG79nrWYLVKnnI3RUdSWx9QXyhVzrIjp+8tt2y6COhfj9fG7//hTqN/xrt+C+qIN10E9XT1krPNoDbNgnj6OfSPjoq+ji8a440f+Cer+HPrxREQcdxTq0TL6QIT2qyu9BepSJ/o+slm8FoiI7Fr3UqjTDfzM/3n4f879O6qtfI6G6zjizl5AgoDHFbxfSLtmVlIvRaBcsgN9V6GD/evECPrH0lns82u7zCycUoGzILCdXPJYBOTJcNN4gfTIw2iH5v1Zo4LX4KBF12DB2rPpPrSOn88VTI8a3/MI3cPFAY77kUXnJvlb3IRMuCZ5/iwfPVmWnG3bIF66R0h/0VAURVEURVEUpe3og4aiKIqiKIqiKG1HHzQURVEURVEURWk7y/JopLzU3Bzy7MFgHa+TkAVh2TQnL2m8ghg3x2ENGS0zSshKSKdQF5gi/0StifXQxAjUR0/ivMxOBue+TqVNLXEwjfo6nwwCmQxq/HiOeKMt2csiIhKhds6m9zhsueDMCHLVzNfanSH0OaeE9OONs7rkMMkEcZ7JpUVy6Zn9iKnvVKZQSzw9jXPMi4ikCvhc3dmJWk3Xo+Pk4euZPHoGurrM+bQ7C9iGFm1nzPPQh6iJdlzsb1YKRa1DY6QLFpEhDzMLpi3UtXJbhaTdrJRxmzes22Kso6PYhdtF52KatNqlE6hhDwcnoW75pkdoeJIya3rxeLjzzCVxuDoejfk5GuyFYH1/UtbHmc+eYbEcDPYucPZDkreB18HbwdvN+RRbtmyBmvMqNm5E35GIyH333Qf1iRMnoGZPA+83e0/Y8ydi+kCGhoagZs8G78dv/uZvQs15IiLm2Dw8jF6iffv2JW7LSjExNSjp1kxbOSFmfHT19EGdy5eMzwfku6uRzt+i3KlJykeZquL45SdcBvhYdnXidtxw2SVQ/58f3AP1v/6fr+P7fwW9NydGnzTWeew09oUGbWfdPQV1LOhfsep43zA9avpARiexLUZIlz8ygR6OrFOCureHfGvdpr9gfccWqKMynu/1obPnbqOx8mNgHEZzY6/FuQ1kHA05J01ErBzuTxddYy93sQ9v34jXXDZfpguYgSEismUb9pdiaQC3i8ZDl+4ZvRyu0yfvw9TEEWOdjTIeeyum8ypAT1p3F64zoHsticzfADyHvb/YdpyrYfio6bzMeSVjHbUmXbcruF9R6+x+xIv4Ceejv2goiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nWV5NHy/Naf/HR9HrfiaLpxXP582n2Fs8g1IjDrdehN13jbNw+xaqPmbSsgUaEyjztslre/xUfRkPL4P50mfpnnGU1nUzOcT5r5OUTBBg7Ta3V2ozXSLqAG0PTwMYWhq3yjSQTLkFSnmyUsyQdraSTxeKds89EELdYI+ZYwE/tm2CaOV14eODQ1KPTOjSwxaqMGtliehzufN41Tqw7nUW1U8TpJCzWwqjf0vov7aqmIuh4iIS328RjkYPNd4sYDeB3HxuNpp1Iznaubc5AFlw/ik9+RDXepCXev2bZg3kE1hfxUxj3cQ0H5lsG4GeE5MC55X9XHz+GQLuKGNJh7jbOZs20Sr4BESmcmkOJNLwd6HLOXnJHk0YtLRssdiMT8FewOqCX2Q/Q+cWcHLXCzDIp/HsZ09GyIia9fifP9PP/001E899RTUY2PoK+KsD97GpL+xF4Xb5sCBA1A/+SRq+3/lV37FWAf76bq78VzomM0j4jZdKRreqETezLlVsvG4dOVwW1Mxvi4i0mrgOVWr437UG3jdKNN+pnK4TCdltkOOrAdWhOOTTbkFm/uw7/z4P36EC1iD+TpOj3l9rFNYUG/3eqjTafSzVCaxr4xNoRcnbJn3FuU63jtISNd9ilYZC9AXMka+kfhZ8uuJSF6wz/ZkcayOW/PGj9Zq+NQiOZOHxn4eHpItO8F/FrPXFMeenhJ6Z+wuXOj0NI4bXWs3G6vI5vBY11p4Xcl04zXXS+PrLl2jJ0fQ/9mo4j2miEhMHlqLHBI2XYRj8sg6LmUfBeywELHIkxxFlKNB46Hj4r1DRMeLt0lEpCOD57dP98/18tlz0ZGl+9T0Fw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2szyPRhCKPatfc2gOX7ZfhHVTfxhapNmjxxw/4nmZ8fWANGVJOt4ayaKbpLV8eA/OtT42jdvZ01WCOkVau3SCf4LnPI4oY6BJ3pNigfR7JG6MQlPbyJq/OMZ9z5OWv7cTfSDTZdTS+k3z+AQ0X7RHB8CeNy92GJn68/PNqaFxyczuZyaNbZzLoUelfyNqdEVELBv3r076Y6+P9fJ4XKco56E8gdphERGHdJItH48lz9OfIk1kQMe5XEYfCXujREQa1Mf7+lHn2tvbC7WXwrbLZkpQR6H5/UOjiV6AiHTXvkM67E7sO5MTqOcMC2b/6exFcTdnjoTzsjPCVcrR8DzvnJ4G9lew3l/EzIfgz/Cy+f2co9FKmMuc/QPsXWA/RIN0+1NT2M/Zb3HRRRcZ6+TtZL/KJZdgdsKhQ5hT8Oyzz0LNXpYk+D3s2WC++c1vLrhOEZF16/DcYe/JzTffvOTtOx80mr5Es36EUgG16J15zCBo1swxvkrHtm9gA9StFvaV6SpmRRQ78BytdZlehjplGPWsw3X0bNgC9ZYKvv8QZbAc2XcM6m0vX2Osc7yC+7WmiBkpNYpV2nf8UahT1HWchCyrBvlZOKggCPDc9Vw8Vyt1ytnxzduvJt1fVMgXkpPCvPeabX++iSWSeLZt+PaLPQROyjxHWuT7THl4n9LRgf6JShWvsaks7nMmk+AnpDy2VI68Cuy1pHuhagXX2SD/jifm/VnA/YWz0RzK3KJ7LYdvoJN+A4jJk8GeDeFrC11LyLMRW2bOidh0bcvjZxqts9tgxeb4ci70Fw1FURRFURRFUdqOPmgoiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nWWZwUWsOZOL77OhEE1klSAhyAd9JeJl0HgShmge8imIzKLNteKE56Q0GjCPnUIz1QiZv70smpEiMtx4Nm6TlWDU5qCUBpsvyYCXzVPoWpZMOoEZRhb6ZPoko7JFbZejEJpKlYz0jmnGpdxBCSkQcf4hXw0v7satOyU3G5hIGYeSy1BfsE0j2smTz0Cdz6IRm425bPhk8zgfAxGRgPpPvcUTIJBJehoNglVaxwQZK48cPWmss9iJZu/1Wy6Aek0vBhWmyaQ4TWGHtRoaQEVEWiFuxySZ9KoUdHnqEBo6RwcxvKp7LaV6iYhLIZRZF8/N+Ub72FmdwL7Jyck5QzYboDs7O5M+ArguHn82XnMf5LC8o0ePQs3mcBHTiM1m8Hodk8WGhoag5kk2BgcHoWZzuIi5HxM0UcJi5mluSzasi5htw+Zvbn8O5OPwPd7vpPX++7//O9Q//vGPz7l9K0Ep1Sfp1Ewf2tb7EnjNogk6qhUzWKxewWMf00QmbOjNZvAczBfwvC12mBeCsInXqjQFCZY27sB6CPvXBf04kcczxzDELk6YrCJPIW2TEzjujozjMniClphPI8s0uvplHANtD9vKbuK5msvhQn26J3Ia5hhoNym0lLpZYJ89l1vBypvBRaK5mX9cMhd7Do47QUwJhiJiUUBfPsdjJo4TPBZ1dmDf8FLmmMsByPU6hvxJDRs1bNJ2+lg7ZB53bfPeyafxwKHJefgeMfJxGa6N73cdulkW856bJwgSmuTFirH2PJqcJCGwj430EZ0YduZsn7MTju+50F80FEVRFEVRFEVpO/qgoSiKoiiKoihK29EHDUVRFEVRFEVR2s7yPBqOJTKrT6tQeM1UhbR3HaZ2uEl6dT9CjZdNASKUdSZRSBo0MYOzggZ+6MQY6lR9i0LoKJQuJN19aKFGsOWbmlSL/QAcZkb6vdND6BspFlGryb4QERGPZIFsDwgCCvQj/SaHupVRti0iIq6DC7UpQNGapzOMWB+4ApS6uiSfm9GBWjEH/1DQ3TTpMsXUiRdIbxzR/rou6Srp87W62YgNCmVqUTBPijTQp0dwO4eHMBzIp5Og0TB1uaU+1F7GFPoWk5aWw4MCasupqhkKWK6gb2NkbBLqZ46iJ2PkFO5Hbwfql72Uee461L4cbpib5z3w2PuyQvzkJz+Z81ls2rQJXuNwtyR4nyYnJ6Fm/wOvY8+ePVCz30LEDApk/8NigX78fvZCcMCfiIhPfi4+tzhoktfJlEol42/sb+FlXHjhhVAvFr5XLKL/QETk4EEMdOV1Hjgwo/VfrcC+gfTlc6GlF3RdBq/ZAW5rb0Ib1qvYZlNTGMQZkCa+o9gBdcrFYNQgNH0gNgXWTpXxPXlaZu8aDBrsLuD4FA3iuW5NmudZbwG366nhB6FOF3CbihG2VUzXXD/hO9jYw+t4vUIBdTG2bRxj25ZbeN6lEiwWPR76HNJpCo2tnL0RaLVW/ntix8qJM+snsFN8HcH2aSWENjsu7p+VxrpWw3HCo/EyncNAvzghtLAyNYrbJfierIN9PKZrrM1he3TPGEfmOi1ZOOyYw6hj8k+wryTJY+r7eG8htB2ejeOZTW3H97q2mxAoG+F1uUW+omCeOTdYhlFXf9FQFEVRFEVRFKXt6IOGoiiKoiiKoihtRx80FEVRFEVRFEVpO8vyaGTz+Tm9rks5DDync8NPyGlwSdNF3oUW6dzqIS4joHl/Lda1icj4BOoiRyukm0yjlrNG3gaX9HwZQ0ru8B8kJq1axsPnN1aTT1dxG6ukN8975vNfqYB6OtYEkgRQLNJLWha+oRWYGveA/CcerSM1fxnRygdpOHEozux+eXwYQvTFVCdNn0GrQfNjO7wQ6gukafRIrx0m6LQLRZzX+8QpnCM+oANVqaDu8tQgzu2fSeFxd72E3IQ8zcfuYqet07kZUV1toP9ifNL0t5w4gZ6LI0dOQz02gXPMp0iL6zp43tmReR45NGYE5CuK5mXksJ9mpSiVSuLNemA88sKwD8HsX6bfgeeJ5wyMMs3d39eHenbuPyIiVRpfOOOi1aKcA8ri6O3FXBbOjOjpwcwCETPjgjMqeJv4/exFYY9H0nrHxrCfco7Gk08+CTX7L5J8IrydvMydO3eKiEgQBPLII48Ynz/fbPAukVxqpo+4Fh63Mm17HJhjNGcfVMv4mdDGvsEelWwOvVZOQh6Tl8HtGhlHzXy9he2e60LPhevhNvaUBqBujuM5ICLiZjGn55rLtkPdncPPHNiPmUqD5OWstEz9ulDbNOpYp7LkZSKPQnkCa6dl+lsyvdienR0boa5Onx1TooQx9Hzzo/seFm82cCug+4MgxvZwEoboMMJjG5BXwbXwviSka3KLPp9zzHuliDyH3b0lqK+55hJcp4PjuE2ZFjFlY4UJ9z6W0HnAtl32atJ1nYZDCRPy2njMpFs6CX3KwPDJ60TjuJdwn2nT+JBy8Vyd37ZRvPQsIf1FQ1EURVEURVGUtqMPGoqiKIqiKIqitJ0lSafOTOU3/2f+kH7GCehnGT8wf1ZhaZQj+B7+scg3pFMsB0qQ/9B2sDTBqOnz/LOYsRsJP5vFMX+GavpZLaC2i2m/gqSpzQKOn19YOsXvZ/kDt8PMhnDbYB3O+63uTDutxDSPZ9ZRnTeVp8e/y9LUgrWGKYuoN0leRT9tOy5Kq8IIn8P5/bUGLk/EbOcGyeKcJk87jK+3+Dhb3AHNPt+g/eJ9d2zcbl4Cv5+nQhYRadIUgD73cepPNtU8xXMrMCUXTZJORT5+xp3XVmfabaWmGT2znvnTuLIEiXku0imeJpaXwa8HCRJI7oPLrXmZ/HoS/LM+f4aPE9eLbdNStotf521arC2Xs44zf1/p/lefNwZVWIJbI+mUb059XKPpkJ0aS6fw9TqNeSw3S2xDGiuaND6VyzQFeAW3gcfVJo1H9YRpxd0qfiaka1c6ojGuhsts1mkcbpnHtUVyFr+JfcMmLUvI1/UmTavaSrhHoun5m3Xczta8ZbRmryUreQ2ef19hSqfoHiNROkVtwpdxut6xdCqgz/sJ+86Snhb1xzr1L5emu3UdHqtobPMTrvs8btCUuE26lrHiy6bLYdL9mSGdcqj/hSSdsvDcDR2+v0m4PlGcQ62B09vOHw/OTHO+lP5nxUt414kTJ2RgYGCxtykvQo4fPy4bN25c/I0/B9r/lHOxEv1PRPugkoz2P2W10Wuwspospf8t6UEjiiI5deqUFItF46lKeXESx7GUy2VZv3698S1tu9H+pzAr2f9EtA8qiPY/ZbXRa7Cymiyn/y3pQUNRFEVRFEVRFGU5qBlcURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7eiDxjl45StfKR/+8IdXezOUFyna/5R2cuTIEbEsSx577LGfe1nvfve75dd+7dd+7uUoisjiY92WLVvkT//0T5e93DvuuEOuvPLK57xdiqK0hyXlaCiKoijPXwYGBmRwcFB6e3tXe1MUZVk89NBDks/nV3szFGVR7rjjDvn2t7/dli90Xkjog4aiKMoLHMdxZN26ded8PY5jCcNQXFcvCcovFn19fQu+7vu+eJ63QlujKMpyUemUiFSrVXnnO98phUJB+vv75Ytf/CK8PjExIe985zulq6tLcrmc/Mqv/IocPHgQ3nPnnXfKwMCA5HI5ectb3iJf+tKXpFQqreBeKM9XtP8p7eCee+6Rl73sZVIqlaSnp0fe8IY3yKFDh0TElE798Ic/FMuy5O6775arr75a0um03HfffXNyk7/+67+e609ve9vbZGpq6jmtd/66v/Wtb8mrXvUqyeVycsUVV8iDDz4Iy7nvvvvkpptukmw2KwMDA/LBD35QqpR+rbwwCYJAbr31Vuns7JTe3l65/fbb5xKHWTplWZb85V/+pbzpTW+SfD4vf/RHfyQiIp/73Odk7dq1UiwW5T3vec9ccrGiLIcoiuRP/uRPZNu2bZJOp2XTpk1zfey2226THTt2SC6Xk61bt8rtt98uvj+T0H7XXXfJZz/7WXn88cfFsiyxLEvuuuuuVdyTXxz0QUNEfv/3f19+9KMfyT/90z/Jv/3bv8kPf/hD+dnPfjb3+rvf/W55+OGH5Z//+Z/lwQcflDiO5fWvf/1cB7v//vvlt37rt+RDH/qQPPbYY/La1752rmMqymJo/1PaQbValY9+9KPy8MMPy/e+9z2xbVve8pa3SBRF5/zMJz7xCfnc5z4n+/btk8svv1xERJ555hn55je/Kf/yL/8i99xzjzz66KPygQ984Ode7yc/+Un5vd/7PXnsscdkx44d8va3v12CIBARkUOHDsnrXvc6eetb3ypPPPGEfOMb35D77rtPbr311ja0jPKLzte+9jVxXVd++tOfyle+8hX50pe+JF/96lfP+f477rhD3vKWt8iTTz4pv/EbvyHf/OY35Y477pA//uM/locfflj6+/vlL/7iL1ZwD5QXCn/wB38gn/vc5+T222+XvXv3yt/93d/J2rVrRUSkWCzKXXfdJXv37pWvfOUrcuedd8qXv/xlERG55ZZb5GMf+5hccsklMjg4KIODg3LLLbes5q784hC/yCmXy3EqlYq/+c1vzv1tbGwszmaz8Yc+9KH4wIEDsYjE999//9zro6OjcTabnfvMLbfcEv/qr/4qLPcd73hH3NnZuSL7oDx/0f6nnC9GRkZiEYmffPLJ+PDhw7GIxI8++mgcx3H8gx/8IBaR+Nvf/jZ85jOf+UzsOE584sSJub/dfffdsW3b8eDgYBzHcfyud70rfvOb37yk9cZxPLfur371q3Pv2bNnTywi8b59++I4juP3vOc98fve9z5Yzr333hvbth3X6/Xn3AbKLz6veMUr4l27dsVRFM397bbbbot37doVx3Ecb968Of7yl78895qIxB/+8IdhGbt3744/8IEPwN+uv/76+Iorrjhv26288Jieno7T6XR85513Lun9n//85+Orr756rv7MZz6jfS6BF/0vGocOHZJWqyXXX3/93N+6u7tl586dIiKyb98+cV0XXu/p6ZGdO3fKvn37RERk//79ct1118FyuVaUJLT/Ke3i4MGD8va3v122bt0qHR0dsmXLFhEROXbs2Dk/c8011xh/27Rpk2zYsGGu3r17t0RRJPv37/+51nvmFxMRkf7+fhERGR4eFhGRxx9/XO666y4pFApz/918880SRZEcPnx48Z1XntfccMMNYlnWXL179245ePCghGGY+H7ut/v27YMx8swyFGU57Nu3T5rNprz61a9OfP0b3/iG3HjjjbJu3TopFAryqU99asHxVZlBnX+KoigvAN74xjfK5s2b5c4775T169dLFEVy6aWXSqvVOudn2jGbz1LXO9+we+am8oy8qlKpyPvf/3754Ac/aCx/06ZNP/c2Ki8sdBYq5XyQzWbP+dqDDz4o73jHO+Szn/2s3HzzzdLZ2Slf//rXDU+lYvKi/0XjwgsvFM/z5Cc/+cnc3yYmJuTAgQMiIrJr1y4JggBeHxsbk/3798vFF18sIiI7d+6Uhx56CJbLtaIkof1PaQdn+sSnPvUpefWrXy27du2SiYmJ57SsY8eOyalTp+bqH//4x2Lb9tyvbOdjvS95yUtk7969sm3bNuO/VCr1nPZDef4wf3wTmelz27dvF8dxlvT5Xbt2JS5DUZbD9u3bJZvNyve+9z3jtQceeEA2b94sn/zkJ+Waa66R7du3y9GjR+E9qVTqnL/CvZh50f+iUSgU5D3veY/8/u//vvT09MiaNWvkk5/8pNj2zDPY9u3b5c1vfrP85m/+pvz1X/+1FItF+cQnPiEbNmyQN7/5zSIi8ru/+7vy8pe/XL70pS/JG9/4Rvn+978vd999N/wUrChJaP9T2kFXV5f09PTI3/zN30h/f78cO3ZMPvGJTzynZWUyGXnXu94lX/jCF2R6elo++MEPytve9rbE6XHbtd7bbrtNbrjhBrn11lvlve99r+Tzedm7d69897vflT//8z9/TvuhPH84duyYfPSjH5X3v//98rOf/Uz+7M/+bFnfFH/oQx+Sd7/73XLNNdfIjTfeKH/7t38re/bska1bt57HrVZeaGQyGbntttvk4x//uKRSKbnxxhtlZGRE9uzZI9u3b5djx47J17/+dbn22mvlO9/5jvzjP/4jfH7Lli1y+PBheeyxx2Tjxo1SLBYlnU6v0t784vCi/0VDROTzn/+83HTTTfLGN75RXvOa18jLXvYyufrqq+de/x//43/I1VdfLW94wxtk9+7dEsex/Ou//uucFODGG2+Uv/qrv5IvfelLcsUVV8g999wjH/nIRySTyazWLinPI7T/KT8vtm3L17/+dXnkkUfk0ksvlY985CPy+c9//jkta9u2bfLrv/7r8vrXv15++Zd/WS6//PJzzuDTrvVefvnl8qMf/UgOHDggN910k1x11VXy6U9/WtavX/+c9kF5fvHOd75T6vW6XHfddfI7v/M78qEPfUje9773Lfnzt9xyi9x+++3y8Y9/XK6++mo5evSo/PZv//Z53GLlhcrtt98uH/vYx+TTn/607Nq1S2655RYZHh6WN73pTfKRj3xEbr31VrnyyivlgQcekNtvvx0++9a3vlVe97rXyate9Srp6+uTv//7v1+lvfjFworj2cmqlbbym7/5m/L000/Lvffeu9qborwI0f6nPBc02VZRFEVpJy966VS7+MIXviCvfe1rJZ/Py9133y1f+9rXdB5vZcXQ/qcoiqIoyi8a+qDRJn7605/Kn/zJn0i5XJatW7fKf/2v/1Xe+973rvZmKS8StP8piqIoivKLhkqnFEVRFEVRFEVpO2oGVxRFURRFURSl7eiDhqIoiqIoiqIobUcfNBRFURRFURRFaTv6oKEoiqIoiqIoSttZ0qxTURTJqVOnpFgsatqwIiIicRxLuVyW9evXz6VYny+0/ynMSvY/Ee2DCqL9T1lt9BqsrCbL6X9LetA4deqUDAwMtGXjlBcWx48fl40bN57XdWj/U87FSvQ/Ee2DSjLa/5TVRq/BymqylP63pAeNYrEoIiKb/9+/EzuVExGR0oYN8J448KEOw6qxnGptAuqp6Umos5kC1KXePqjXrevC9zuRsY7JqWncjkYAtRM2oW42Q6jtcZztN66O4Tpt/LyISG9Yg7qngm2RK49A3V2bxNencZnFwNwvCctQjk1jfdI/DfXWNRdD/ZoPfArqH9Xw8yIi950YhDq69EKoR+bNhBw0qnLfba+d6xvnkzPruOHlO8R1HRERmazg9qeLGag7cjljOVEL+0K5XIG6p68D6kq1AfXJE9i3gnrLWAf/bX3vWqjX9mCfzufzUDcC7EvlMq7T8xJOWZqhutHA7fbp3IzoGymLvo3oLmI7iIgUM9iezTr22WoVt7sZYDv4EfbpVMoz1pFLpaGOI9yv+Z/xg1C+++ATK9L/RM72wcNHnpFix8y/A8H+lLJxLGkdHjeW8+z/+ld8T4zj5MDuq6CuhjSuUrvbCWNFWMfjn+3DPte9dRvUVi4FdTqPdUjHwcfdFhGRmL7kDGJsi1wGz09p4OtBGfuPReeziIiksJ9GTexjnot9yo+xbaZozEunzXXEPq6jOo3nXyY/cx6UKxW58rqXrnj/+9tvfVtys2OG5zjwHp6pns9rERH+Ltqiv9g8NgjXixPL8mbMj+k4xaTojiLscMce+Y6xjOjkA1BnM7gMJ90Jdaq4BmqvazPUTcF7ERGRySaOvRdejOeq5+LrEY15S/nVgcMG+NeDIDx73lSrVfn1N75+Ra/BsuZVIvbsfqboWuRifxQvof85+DcvjWMNX98CGv/SGXzdTTiHq1UcF3hsMrbJ6PP0uu0sWIuIWA61BR1r7tMW1xa/P2GjaUfiEMfQMMA6CvG8ieg+wIrMgZzv4yOhc3N+W4W+yFPfWlL/W9KDxpkDYadyYqdmBjmHHgp4AyXhYmTTTb6dojqNNzNOBm/C3Cyu00t40HDpwcESftDAXQ6FHjRS9KDh4wXQTRgsvJBuojzsiGkXb6AyLp5cWQfXmaOLtIhIHONFNGPjfqQtXGfWwfcXqe2ykdl2qRS2f0ifcRMiV1biZ9Qz63BdZ+5Bw3HxOLg0yLmeORhEtP28DI8+w8u0aZC0bXPf+W8OD6x0MeKBNaRT0tgvHsxFjKsTvyem/hTSMeMLoJewDt7OiO42eZ1hTNtATeU6Cevg7aYb3KTtWqmf8c+sp9hRlI6OmQexRR80ijQmikiBbrhbdGyK9OBph3jRDOk8T3rQCOgilcvjed1BFwbjQaPQhgeNiB40sll8QwoXEghdzDuW8KDRoAcNb+EHjYjG2UyatknMBw2bxslMAY/PSve/XD4/9+WERzc3z+lBg8eCX8QHDbrZzGbweioiEqWxLXJpetDIYN9IZbGPp3LY35zY7BtNuubmC3Q/ssIPGud6z/lgbh22K5btzf0b4DHdWfxBw6L7FIu+LOBd49dtupeaeQ//wXgLreN8PGjwe5b3oJG40TzIWnyvS7XF66T9DBP6Y8xtQdeXeW0Vz/1p8f6nZnBFURRFURRFUdrOkn7ROMO67TvEzcx8G8ZSiNHjx6DOFcxvHaw8Sp9yWfxmrUqSIx+VLVI7iT9jd+TMb/N61+A6Sh5uR6GAT31TUyehnvzWf0BdPH0YP19HiZKISOf4JNRbG/iUPWDhN28pD1+f7ECpymSP+W3e8BQ2xmO1U1Afb6I8axv9JNk4uR/q/DgeLxGR3c/grzc/pG/vTubPblfYMKVx55t01hZ39ufYguBxbfnYxuUp82vXrhK2c08v9r9mC/d/chzbfGp4EuokedYASQoH+rGWAL/pqFZwnTXahpC+hSjlzW/aOvIl/EyAX4tVSarXDPCXRM/D/mZ8+ywiPslUYvp1wUnhMlz6DiND3/Zl0+b4YFt4zPibklTqbJ92k75WXwGaUzVpzv5aY7k4/hzfvxfq8l48R0VE0jtR5zx58CDUufWodbWpXx//wU+gtizzG87KFMo9G6dxO9aQTCmbweNdGR3Cz9PXrHnbHJ98+kz+mu34+nHcpnqtDrV7MUpXco+b48vInmegLu28CNcxQlK1qUkoo54S1FuuQemLiMjxp5+GOt2NY4a1buZ8blbo4rRC2LEl9uy3juavDVwnfKPM397yLxqL/BrB60j8ttjQqpBKgFfBkhAL3xDRt/i2lbCN/AVyjONDHOG9hZdHKVW6A6VUU+Pm8bVtlnvidkfRwvvJryd9EWz8orHQGxIUBuedXFrkTDuwNMrBrXXT5u1lmu5LsnQ9c+kXj1KxF+o1/ShFPj6I9z0iIvXWFP6BNnOxc8BoVfolyuJfckTEpl9mYuPXK/pVhH9toF+qrQS9F//CL3ReOPSLuh/RMlkxkPDrmB3h8bHpF41o3mbFgSvmEpLRXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazrI8GnaxIPasr6JJ+tcmzQwRx6jvFxHpuxCnS03lcfUnDhyHeuQE6n6rk6gtjkrm5hdpasbsDtT4rQtR05f9zj9Dbf/436Gut9DDEUemtryVW4/bedG1UO8jKf9wCzXyQwE+7/kl9JmIiDxrYXuO1qgtpnHq4FwTNYNjh3Hq2nKItYhIYRT9J52nu6HOdJxty7CJ618Jao1I3GBGJEgTlUgnaT3LZXP7eJpEshWI7WDf2dCPfSdHOsycZ3o01nTiVKJBC8+L6TpOsdlsolY9S7OjFEk/v3EAtewiIldddSPUBfJsPPTwj6AeH8VjX6OpaZNmR0lnaVaWNKoza9QfyBolxSz+IeWa09vGgvvKs+jM3y47YeaPlcDPxOJnZrar+ewReG30+/dD7W3AcUFEZKqGPjM+b70e7FPVaZp5y8e6exNqlkVEykM4ZhWyuMzNr8TxySJPz9gXfgq121eCuuflOHW2iEi1hf1h3Sb0aDz5/QNQr714J9Trb/wVqKcfRi+KiMjg//k+LuNVr4R6rIK+jrHH0NORdXCbpo/h9UVEpHliEuruC3Eq4PzAJhERCWl68ZXCsqw5fbcxUw3JupNmxTNmiDFKnqnmuW0jEi9QiQhpz3nmK9aBV8bN45ajhdrsVyGPRtzE42fR7JKJM+nQ3xwaJ3ncjMnHmjQL2CKrMP0E85a5KsF5KU9k9jpou7j+dB6vEYWkaU9pk9Pk4yiRX7WziPc9ZbpWTZVNL42Topmo2GNheDQW2Ui+1iTNOsW+jUU8GDZ7MqhOmpOX+5PYNFsbeTSE3h9G7FtKcFgYf6Mpc+f5o+LAVo+GoiiKoiiKoiirhz5oKIqiKIqiKIrSdvRBQ1EURVEURVGUtrMsj8bYpCNOY0ZLNoVSY4nsEtSthpnYOEz6V7FQXzd95ARuHM21vnFjD9T9faZG3vYpQp20l/Zx9IGU730M6kmaI34sjZr7kwX0LYiIlNZeAnWw7Xr8zCSuc8oZhro2gZ6NQsV8/iv17YDaoUTMemsSar+J2u/MDahPvvimNxnr2P/lv4F669VbcTv9s3pwv1GRJ4wlnF+q5aY4s3NB2zbNi045DWFgegBaTdQ9ZnOcFovvD0njfPFFu/D9ttnHG+UG1LUQ+3Aug5/JU0JtjrwQLiVyb9qMx0RE5CUveSnUk5N4XnV2YR/2fdymRgO3ud4w/S085TYnoTopbMuIzsNWSPrQBPU3JztzCm4UnF2GH6xOjkbrREWahZltP/4oZmBs+TX0GXRtvcD4/PQ+zOU5QGPi0KPoK2j62AZeJ44/gYfpxCIihX7sI9SscvrBn0Gddsk/04cZA/G6Em6TbSaeB+TBCRp4fPIXYZ5MeQLHwMH70UcUjWDuhoiI04OeqYnTo1B75EVx1vRD3SR/S9ww+1AuR+PIGF6TKp0z52d1lXI0LMs+t0eD3A/WUjwa/PpzSAJfbB1mbgYdB4s9GjTff2wMPsY6nRRq+20Hr6nsj7AizKeJaEzMF/BeQ0TEr9N6OYOEkrE55eu5eCoWynxYDY+Gk0mLNetlLBTxWpWia1vdN3M+YvIJ9PbhOd3RhWPPs0fx/AspHyXXie8XEanV6FpjLeylMX1KdFy5PyZ4bYwcDK6NJPBFPBoJZx6fR5yDEYeURM8eDTqPogSPBvtYhb1N8z0aIoJn2bnRXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHajj5oKIqiKIqiKIrSdpZlBh95dkzs1IyJqlFHs57lT0Kd9SgNTUTiaTTQNaJxqKeOH4K6rxOXsSGHRsjikSfNdQi61DfseAXU+TqapEu33Az1+hvRWPvjr/5fqKdHjxjrbOVxu45V0OjYDCiUrY7Pd0GuBLXdZxrRJMAwKj/CZdbJJDUWoFGyJfj6aBHNmSIiB3txvVtKWIfT8wL7EoILzzfpjIjrzpiRpqYwcIkD3Op107BqUaBNoaMEdV8fmqbXdKOZd8cFV+PrPfh+EZFmHY9Lq452qbxL5wUbCsn8HZBhiw13IiKeg8vMZ3CZl1+C2z3YjYGQg6cwqHFicspYh99CY1lE31H4IZorMx5uZ+Th+xsJUT/pNG53QAbyYJ4BPAiWGhXUXobqFanOdjVrHbbjySYe60MHnjU+n4/x+FqXXwr10ycwTDEkg2+hG82PUYxGfhGRVg8aY7Pc56awXR0Lj527A7fJp2M3NsE2VxGbzqVDQzj+hGvQ9OmlccKBEQoUlax5/fCuvw7qoSae4xmeSOFafH+TJj04lWQqXoMhi+URvJ7k8jPrrFTN8WUlsC1rLtCOg+2M9yZZuRcwF898ht7+nOzgxkqhcjwywsYcZkYTSwTYP9Np8/vRFE0GEgkuoxHi9Wp0EK8fXdEpqPMbzNDcmM5dh8zfRkBiRG29hMC+hUJKuU4KVj3f9PX1iT2bxsq5eK2AJrVJuAfkNmo16Zw8ifc5Fh3XFE1C0lEwJ8PgoWO6xhMDsBGbzwGu2chttjsbzhc1hy8S4MfLEzH7RkzXQA70i0IO7MP3h5x6LCIR3UfGIW5HJGgGXyr6i4aiKIqiKIqiKG1HHzQURVEURVEURWk7+qChKIqiKIqiKErbWZZHo7L/brHcmVQzQ/9lUbBH/4Dx+a78JqjXrkOfwIU7UG+3uR9FgFdswAAm938+aKzD/skD+IcjR/H1GPV3F27DZV6/DTW62Wsvg3rPwbyxzqaFzThaQ/1nPUQdok1eASuFz3teaOqu/SnUMAfNEXzdweNxtIFelJ1Hh6A+eQy9BCIiR4Yp6O3IMaht72zb2Y2VD6zqX18SLzWjZczksM2qZdQW9q1BnbqISJq8C9yHMynU5V562Y1Qb78QgxgLWTMw0iMNaYp0tFmbAsEoRKdFITwtH/WljYbpn6C8K+nuRs9QH3l+NqzfCPXkBOrQ773v+8Y6Tk2ghnmawjSbpM/t7cJtsPKoQXUSNKhRC8eQWg11/PM9GyEnCK4Q3/jXb0k6PaNR3tCJ27d9DD071QZqy0VEmkYYmekTgNcp9suawPBPzzPb0ffxXMg4Raj71uKYl83hmFZr4PhlNamt44R1UihgZQrHp0Iaz5WA9N1RHsf+RmyG6XkUsubkaQwgvwprkO0s6aQd8/jYLp5Mo6fwM63RmXXUakuNqmov4NGgscXQ9yd4OAzPBXs2jPfz2+kvRhqfucxqpUw1jmHpPPbPFPm7pkbx2nfyFF7LRETydD1IZUq4jgyOgaNTuA21YfQGbCgm+NQC7KOus7B2P7YpQHEJAXsLBfQZ9SoE9nV05sWZ9WgUC3jSO3TuFArmNbjZwPPGoV3IpPHYexQE22zhWNRoml4ptmfGgudwEPBxMcN952NzoKSdNGYvEubIngy6D7Cp70QJ/jGLLBUW/SGgczGk8L0oxIYJE87dIKL7E+rj8z8RJVzDz4X+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2luXRCMtTYjkzGjs7g/Oid/VvhXr9FRcbny83UQs30kKN7MA21FH+6uWomQ+feATq6gjmVYiIvMRFbXjnaXoDyXL9Q0/j+3/2p1Bfl0H96EVpU5df7MR1ThazWIc0sXMT9XdZB7WfTt30P7Qm8Zlwfxm1jHurqLdrlVEj3ZhE/bLfMvV5jQA1fyODe6HuX39Wt8rZICtBsxVJNOuxyedRV16vTkIdRqb+Ogyx/3V3oVZ957ZroV7Tg32atelxZGpkI9I9Bja2aTOF2+VTVoRPc137MXmfxNSuO+TPcVNYpz1sq/41m6G+6cbXQH3w4AFjHQeefgbqGmVGNCPcTvYn2Da+PzEDgHxejTr22TPeCBGznVeKcHpSwlkd8Y03bofXrnvpLqijCuq+RUQmK9gOTx9EH1Sjice3twfHFp/GTNc1h/BmE8/NoIXjiS14LLMhjlctykSJyUeUcswMnUKK8l8mcfwppnA/AtI9WyGOiUXX/A4snaJzi/IVeJ547iMD/egR7Czh2C4i4tLc/4/Rdh0YnumTgW/66FYEyxY5480gj4bF50RCzoKRGWB4APgTtEzDo2HOxR8L+z7wuJw6+CjUTzyBeVgjdK2anEK/4egg+pRERIqUp3DBRuzzl+/A91t0I9CkXKhxymkSEVm7+UKobfLjxdT/2EOzFI/GL3qORmRbc3kgNFSJR99bVxumf4K7S0xtGFL+iZCfgj1tTsL4lybjRzbA/tQk/xf7JdiZZBtemwT/hJG1sbAnw2GPBvk+7ISUCvZohPSZiMbpMCJvSsj+UPPcDULO2uB8mrPbFS3DI6S/aCiKoiiKoiiK0nb0QUNRFEVRFEVRlLajDxqKoiiKoiiKorSdZXk0sptfK5Y3o4X0elD33bGpBHXfZtRMioh4p1FrWaJ5eK/YgMts/QBzMp74+t9CPTF+0ljHAXp26g4mcTtDfH1A0Ovw6jJ6T65fdwXUzay5X90XovbXL6B2rUW5GS7pfj3SuoUhzs8vIlKbvAjqyXE0n+w5egHUx5/dA3W6grrtjQka4835EtSjR34M9frs2fnLo+bKzyM/NdES151pu4DayCdtIedXiIg0m6hJ7OvBPIl1a9CT4dL82iFlh/hiZjlYpBl1PFxGQLrWiHS9QnUcYTvHsal75XnBfQo18FzUH9sOvr51KwqY3/Crv2as4+m9+6Ae3b8ft4H6cL2G/cshba1tmUOP7WDj1MmjMX+e+tXK0ShXWtKclXf/yw/w/Dg0MQp1vWZuoxPQvPAN3EeOqDg2jse7RRkZkZF0IGLZpJGP8NzPkMeikCVdNGd9uDhGhkmnPscOxJgpMjhG202b7ZBXKe2Y/SOkefqbDcrJoO12qT5RxY20rTFjHTZ5Q04N4zWp0Llz9l/mebgSWLY1d3wX0/wnvk5/i9krw32HcqfYQ2CqvEUsWmahWIJ63QbMzzr89M+gHq7jcWmUcdztKuHyRESyGfTWTJE/6ql9B6Gm00jsFPqULu3aYqxjwwXboDZyM6g1bJe0/EvwlVnRwtkb8+uleD7azcR0VWxvpvE4C8l1KKfGNX2cDl2XHfIZeA4eN5v6o0PXLivxOkLtHuA4nHH5WrSwl4ZvJSzD05GQk2GxB8OjmnM0aOxK8GhEdHEIYvYIoe8oovvMkHLDgijBo+GwzwPHufndM4yW7pPUXzQURVEURVEURWk7+qChKIqiKIqiKErb0QcNRVEURVEURVHazrI8Gt2X7BA70yEiIp1r8LVCL+q1urtN/eDGNaijvHAz6l+vSKP49z++gdrNUw5q0Br964x1TFFmwH4fvQxT0+gTyU6iJjCmnIz/J4XbfCIy/RM/OP4Y1G4Happ7Q2ybbGcH1MU1mB+S6TLnd09vxzn6txSuhHqjvAnq6r5DUP/4H/4B6uBH9xjreHUf5iv8x+jj+Jl52RxBa+U1yuXpmjizGmrHIb12C7XuHR2kOxeRzhLmsnR1oh8nlULtequBfcOvY91MyDtxSB/K87unXdaDkmaVNKge6SwboXle8XzYPgmQmzZp9DM0FznpQ2+84SZjHc0P4L5/4YtfhPrg0cNQR5T34DusWTX1nSnStVqkU50/T32coC9dCSrNWLxZrfVXH8A8gK5jJ6DuLmB2hIjIwAbyc1Gfavg4BrL3iAXDcYIXyfNo7vMGLjOfKUGdyeI2tHzMEEhRRoZLY6KIyHQFzwWPvElhhH0yCHj8IO1/wvHlP7kObodr47jLfgLXxXNnqoqeGhGR4WnM/8g1BqD+f189k51S91en/9liiT3ry+EMDD6jkjT8tsPjzcJZHLwE9h34odkOtSr2hSnyLu0/eATqch3X2d+P4/RlV2F+RbVq7lc6hfuRSmF/O/os+jmHTqNfJ57Get9jDxvr6OpdC/XlV98Itevh9YMtGUvK0TAyG9ijYSf+e8WwvZn/JMFnwB4N29xfvj667NlwOH+CPBqGFyIh04K8A+zXNPJN2JdkeDTYV2K2u+HRMDwY3FYL52hYnCciIjGNoWELr+sh9y++DpBXOEjIAQvJk0X2FgnndWrO2FgI/UVDURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7SzLo+FOD4nTnPEoZGPUkHUGqNWMyfsgIuKnSI8s6EWYCmmO5CJq6J0L0UPgmNM0S1cH+jbiOuo9o+AZqIfqz0K9fwrrI4d/CvXenZi1ICLySDgO9fQx1PmuGUNfR2kQ5wlfW0TPRq4Dt1lExCt0Qt25Bk0y63p3Ql0fHcRtGj4CdXa/qW0srtkOtT2N210vndVVt1bBoxFFTbFmc1DyeZz3vLOzBHWcoKG2I/zMmh7sKy5pHGs11Bpb5IVotUwdJec7VMrYNzwPvQulTvTnpD3y58QLaz1FRCLSpFZrpLknvwTrQ7M0h3zMYQ4i8ppfuhnfQ+rtz//XP4F68DT6FWIL9aWtlpkxYduouWe9ru+f7XPhKnk0WtKU+IwavgvbzV6PnoxqbPaPU/4k1H0lPN6bejBjoFJGvwTLnj3XXEejjgOjIyWoY8oS8lI0l32Ey4yp31uW2fa5rLvge1Lk64hoHS3ypjgJ34E51J4u5Xv4MfaxU8Poz2tSJo2fkALRotPLclG7X5vN3miI6dVbCSzbFmtWI75QxoKI6ccQESmTFyEMcRzv7sZrLueKPPnUE1D/+P77jHWcPn4Et6tFmUc+9s9CDn2RA1vQC1Hqxr5z8iBew0VEHOpvhbXkeyyUoO4p4fvHJyahPn3CzOh66Pv/CnWtMg31Zde+DOqOErYlZ5IkOTbixY7pvAGA/QsrQcpLiT3rRfHYP0E+A9cxt8+l97DfwWMPB3uK2F+REOVgc8sa/olzt6lIUpvzNifkaNDfuC1M7wl5MshvEyV4NIoWXsc39+P4N1TGxjhdxj4e8vU0NBuPbuONYzzfwxEk3CecC/1FQ1EURVEURVGUtqMPGoqiKIqiKIqitB190FAURVEURVEUpe3og4aiKIqiKIqiKG1nWWbw0pFvievNGLO6smgsSbloLGlU0AwqIuJTUNi6X/5PUGfSaJ4yzLgZDOPr6i4Z6yhSiFMrQqOZzyEnZNCKYjTY7CtiENyxK/qNdWanMKjn1DOncDuvRAO5S2FV6QqZ5abRtCgicmz0KNTbqhdAvWEI92vo9FO4ABfNt5mKuY5y5UmowyE0UwZdZ9s/8FfeDJ6yU2fNYAEZmaj/TU/gcRMR2bkFw9J6S2gGb1TZtIjmqyBEs6nrmoZ6NoEFFLCXIQNWk0Iqy1N4HF0X+1YPmTVFTGNZtYKTDTQt3K9cDg3IGQ9NzRyKJCIS+rjdr3n166CeqqPJ9Mt/+gX8PAd7OQnrICN9jkyi80Pc7ISgsJXAa0bizQYHNp4ZhtcmpzhQyTS8D5NPcYjM/3ka4xoU6JfLYn/oovBPEZEsvcehIMpsZj1+wMLJJ1y3D18mc2SjgeeFiEgQ475yCFZIrs0gwLbyA1wmm0JFRDIpMkh6OFa3aIIAp4xtKS18PU3mcRGRfP041JPDOO6ODuwXEZFmwxxfVgLLmvlvBmzTOk0CcOTQfuPzP7n3e1CfPnEM6g6aIKNF49VTj2GIbpMM0SIia3tx4hI+bp00AUL/OpxEIZvG148ewMC/jG+2fSpNfb5JIYC9aA7v68RtPHIUzd/laZyEQUSk1cKx+sSRA1D3bsDrfKED18mGYDNiUUSihL/NZ75peBUC+zKeJ/ZsGCd7vT36g5cwGQGbwfk9LgfZUZs5NBa5nIoophmcgy0tI1iQQ3QXCexLGJvYIM7LdOhewaVJPCzB10O+vxGR67fiJAm/fBWO448dwz77T/fi+R/Q7b4fmcenReNyGLIZ/Ox2BbHZDudCf9FQFEVRFEVRFKXt6IOGoiiKoiiKoihtRx80FEVRFEVRFEVpO8vyaPQHx8WzZnSx1vQEvFYfx7ojj4FyIiISoC6ycgh9HMMuLmP8NOplC1sGoN6w2QzPi2uo3xwivXo6h7rdYhPrqSpqjfe2hqCeOImBRSIiGQpV6y6hT6TWQh1ruhc10eEUelEqDdS7i4g8PnIY6hRpE3etJz1ygOuMm6j17ksIPONwnB4KZBmbPKv1Zy3fSjA1UZ4LoeolHbBLev5LL77Y+PxLrrgO6oA09HGIXoaWj/WTe9D3MjY2aazjNa95DdQnj6D2d3Icj+1NN92Ir09gwN9992Ig1mWXXmWs85JLdkEdRXgOsM6/WSxBbVEYZFJgX0TfSUSk3X7Zy34J6v/7f/8N6gceeBDqfJ6CCcXUQMfUx+d7OKJVCuyL/Uji2aC3+gEcG+LDfN6aOttUEf0w44LHu5LGsaOQx7pMwWTZNaZXqkXDetRCDfyFAxgKWMyg32tqGjXxE2UMMR2fwHFZxAwWDCkwMxY818KIt5v8LAl9MJ0qQG2RnjuTRb9KVzdeLzb14vUi7ZqXvyNjdP04jjr85sTMudRsmh63lcGSM1FvLdqGxx95AOrv/ss/Gp8eIk9GGGC7Tzz6WML6zpLPYv9dR9cyEZGuTjy3bWrnLJ/7Fnpt1pTwOKdjPCZxcZuxzkIX+ookQL9KOo2a+BEah50Y+2M2bQamCfsB6BrIPdYIVOSAPfKHzrxnYY/G/GXy8lcC13Hm/AYerT7FfoqEwD6PvAtplz0bFGxH9yTsv3ATYg8d+psR8sceDa4t/vzCng0REcfwlnCN/ckjfxlfcwtFc7+uuRj9wWnB82I93RN15tC31KBbNr6mi4g0W7jegLwiYXR2vPDDpfc//UVDURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7SzLo7Fx+xslnZ7Rwo9P4Pzihw//L6jX9JJnQER6+lDP+fCP7oG6mEKtnJ/HOpdFLXpPL+kyRWRyGPXFQvNrF0uYQ+DXUFvsp1H3NpWmzAsb9e4zq0Bt3DD5VSZPTkK9zcb5kKWFc8j7VdOjMVFBPfjwadTKTnnYtlXSWVt19Bt0iOmxcOi5c+dG1G4Hm876IBqtpsi9PzKWcT5ZO9A1l13hkHZz646dWG+6yPi8xZpsm+f2R13vxATNrT6FuQkXbN5urCOVRq/I936IbfTMkYO4CSjVlJfv3g11i/rnP3zzfxrrPP3SG6C++qpLoQ583K9hC499Vwm17dyfRUR88kQEIZ4XHUXsfzff/KtQP/HE41CHkTkXfjpDumjSMDcaZ7dhtTwaZb8mrsxsZ5NyGbrzeOx715vteGYO+jP4pIHN5PC8zubI71XDY3nq+IixjkIG17tlAMfNEnl0Ih+1/lOT6J2bnERd/8gI9mERkdFh9G2EAc0r76AXIBIcR9euuRDqYm6zsQ6J8GSp0Pk4dOpRqCdHsF/70zielTrQqyIiYjVx7N3Wj+NKV+dMP280VylHw7bn5ugfG8cx/olHHoJ6aszsG16KxkDSo69dg9kPWZf7K16rosi8jlTLk1Dn6Lyuh9iHD0/idj79BPogLdLxJ8QzyMb1eC/QkcO+YlPOy3QZfZFVys1o+aZXwnFxxWU6V4MG9mljMy0ul6BxZ5/HvHFvFSwaknLPejTS5F3gTAzPNnMWFvNocO3aOMba1Kp2QpaIRZkW4uEYapwCIY5/NvnF2H/heAn+HfJgOBZ+hvNDXBfbLiY/3yXb8DwUEenrxn2dHML7zIce3Qd1Ko3ngEM5dlGCz5ZuwSXwz50L1hLN0VAURVEURVEUZRXRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2luXRKF11pWRyM3NgFwKcm32qjnOtr+s1NWZRQNkbdaxrE6ibTG9GDa1l0RzLLgncRSQkzV5sk56ORPEO6feKBZqbnZa3aaupy9+8/TKos4/gOg6NoHY2R9q6NbQOz0NfiYjIlhTqrtdl0QPjkFY2S5rATguX6UQ0b72IBKS/LRVxnbsvfdncv6uNmoj8lbGM80lXKS2eN7Nf3BesCLe9VkVPiohIVwfqIH3yLrSa7L/BvnDF5ZjDsWWL6QM5dnIQaoeOQ383nhcTw6hPdmN8/63vvxXqZ/fvMdbJuuuUh9phnqd+dBSzG7pPn4J6/Ub0GoiICPWvgHT9foRte9FObJvrrse2e+CBe81VkO+iSTp43z+7DRHPab9CrBtYK6nUTHsOXLAeXuvowWOb7zbHJzfCYzV4DL1X9RbucysgnwFZA+pl87uirixux9pezB2wYxw7Jik7Im+j3r1rDY71nc46Y525aC/ULcqoCSkLoRXjGFjKYe5SNlsy1lEnvXDGwj44PInXj21rcT/6N6Auemr8tLGOdAr7vudi5kNhNgPCdZZ16WwrZ/ZiegrbcHgY96fZStBge9iGMV0HJsZxDKx52L94PJPYXAfZcyRssc4bX2/6uIz5eTkiIkLXx6Rzf/AU7ntnAcfAQhbPxQZ5o3xaZdL1sVjAe4VmFdvqxNFnoN5+2dVQpzK4TVFotl3MnowF6tXI0cinXHFnrzcp8mhwjkaKvRIikiIfR5o+k/bID0E+SvZkJLUB/ymK0H8TVdCHddEWHMezadwGnw+TY3o0yg3OBaK8I8pHyhdwv7u6SlBfvN3MofNs8lqOYVbad/7l/0J96U2/AnUn5dv4DbxnEhGh2w8JPdx5Pzy7X02+t14A/UVDURRFURRFUZS2ow8aiqIoiqIoiqK0HX3QUBRFURRFURSl7SxLaJrpLEomP6MZtsuo8710O2qyr9yGumARkace+wmtHPWwNs0Z74e0eTSvfjZvasmLpRLU07kC1FOsG0yjzqzbRy/DGGmohydM7X9vSHkfBdyGHppTuW8atXWdNGe3m8FtFhHZWUAdYV8W/RMWze1sO6hJLXV20Oumvs4mzV48jBrU8NBZDXTYMtvhfJNO2eLNaoYtoe2nWIVC3swwYO1mgzwZFnkEeBmOjX1jdHTMWMex40egtklj2pnH86YjTxp86guFTtSZX//SlxvrLJdRczpBc8JXKEOFvThDg5gXkk6hllNExElhfwpJJ00WDWNe8It3XQz14CBmNYiIHD+OXpFmEzX4kJ3CK1whLrt2u2SyM+NUsQfb0SIdbisyM3e8GN+zbQKzHWoNPFZN8jpUp1ELbAXmeby+B5fZ04HHE7dAJOfgicEZNd0lPPa5LOa0zGwI/s2l8Si2sK0qlBU0ROdSq5Kgwz80CfWRY9i+L9m+Feqrr7kE6quux/qZ/bg8EZEn9qDHqlEjL9Ksr8tns8xK4dclnvWqrMuiZvstr0SvYLVq+gkj8h6Mj6C3Yd8+9BmMTJC+nQwW41XWpoukyD+YzeO4WavgdqcoO8EjP4VN+UcNQw8vElImQKuJ/S306N6BMjG4TiV4cChSRIImnqvjx5+G+tknfgz11suux3UWcOwXEbFoXDU8CNY5/r1CFD1HXC/Zo8EZGOzZSPpbmsYa7gticY4G9r8MBz+ISJ4trjUca9JZXMYvXbUR6q5OvrdCb02Y8P18pY79rVzDvpGiPLfuHsyd6u3F2mafkohYPt3vOnjdPnH0CNRX7sZtWFPE/awl5GBwtEYY4jgXzNuupuZoKIqiKIqiKIqymuiDhqIoiqIoiqIobUcfNBRFURRFURRFaTvL8mhs3pyR3Oxc0oceQO1q1kZd5vjwsPH54488CfX6PGrfai1c5mhMokjSKxYKZt5E5ON2nGQZWUj6UNJudrmog3vixBGoD/zrt4x1BsdRKzd6GvXn+YOYMZJq4X43yC/RzJreE9dD3eAUaR2f8kehLoeore3pR31e/7UvNdYRPIJ5H7Wjh6AeevKnc/+uB3isVoKujpKkZufwDmhO/TQdNzuha/st1Pa6Duo/WVeecrF/BaRPbjZx3n4REdcNqMbP1Bv4+mQF/TrDk6gn7amRRrKI/VtEZIoky6xgtkmDX8hRzgb5W6YmMWdDRCSTw/a1SDftpXGZGZoz3qO2zSb08TR5HNasQa12d/dZTXMQhDI0ts9Yxvmmw/EkO5vfs9HB7fVsmmc/naBhdcl/1d0LZWRj/2i2cLyKQtRwe5aZ1ZH3sI8M9OB7NvTiOnt7sM6QicMmv42VoM21qI9Z5E2yaLyyKI8htui8scyMgeEjk1AfefYY1Nt2bYLay+D52wxRs7xxnan1H9iKnrx//7cfQD1VnrmusX9opYglknj2hE1R5sCFWzdD7XrsxhEJKbshDndAvXv3VVCPjeP41Gpgf9z7rJlFcvgkjh9ejG3VRVlV9Qpnx5A+ncYaJ8E/kc/h+LK2A/f90gtLUG/ZTDlfnA9Cfr2ZP1HOT51yv8hjevoo3u/c/dQTUF//asw5EBHZQNlMFuVGzM+R4EyJlaBgu+LNtj9nYmQoo8VNuLtMkRcmzd4Y9jTm8PUuMmCs7zX9hNy/ipl+2i7OY8PjOjSE92//8WO8Lyp1o59CROSqK18C9QUbcJ1ZGlQ9yoAbOXEU6kyKrtEiUqIMri0X4nj3O791C36A/CvVscNQd3aYeUh0i2TUwTxfjh0u3SSkv2goiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nWV5NNYMliWfn9FlbepYC69Ffaj9/Pb//kvj8/fvQ71r33r0DaxrobbY6sA6lcLnItc1dZSNOnoTWpSVIKQXZZ1hijTPvo/zI089+oixzswxXGZnDdc5OoUejkcpS+EC0so1TqPfQkSkFqNuNYyxvestrP06blPHAM7hPfDyNxjrOEGCvGMHUZt48vDE3L+bkamhPt+4qZS46Zku29G5Bl7r7Ua9YjZtatc90rRmUjiPuWNRFgnNEx4EqMnlOaZFROIA/7bzwgvoddJIR3gKTtK89mNd3VBXpkzd9Sh9JpPBZVqkd8+ynyKFfgnXM4cFns7dMb6iwHOxq4Q61l27MMPgiaceM9ax/1n0BO3ajjkAv/zqV879u95oygM/XXmPRn+xT/KzfpW1PdgfPA/9F2VBPbuISJ00rw71Uy+HutqWTzkaVRzfqlNmlkuaNO6XX4Q6/K5ezGaJLdRFhxGOHXFEGx2b30/FMXsuqMPENFZTDkpI3pOJGu6niIjdhefnjmtRz96k+fKFxu6QcoJ6Os1zqWcj9rn9R5+CutA745VzG6uTo2Gni+KkZ/tZB44tx05PQD01hOeTiEh1Aj0orRa2STpDY4GLxzGmcb+vZGrJrQh184dPYn9q+pRhQX6tLvJbsDdOOAtLRNZvRP16bzd6Gjv7cBy1Slg7Nm6TlRBSkcvjfvG4KpSXdf/3cHx64D9+CPWZPJ75lLrxvqqzG69zy5DFnxcKnjXna0175Lfg+zPH3FjOvQgoN+jQ09hm2zfh/nud2FfGIzrnRWTkBGURsZ+Krm+nR9BPfPI0niP/9n28b/V9895nXT/ew120DcfcN//qr0K9ezd6ZCtVHE+On8RtEBFp7j8IdXcP9vnrr8cso/9x199CffTkJNS3vP29xjrSAbaN38TjNT/ny43Uo6EoiqIoiqIoyiqiDxqKoiiKoiiKorQdfdBQFEVRFEVRFKXt6IOGoiiKoiiKoihtZ1lm8J4nh6WQmTHaPPv4f8Brg0/eC3X30UeNz18wjcbFnw1jMIq74XKo85vQ7OY5aBi0LTKJiYht098oWI79Ky6ZGNMUnlciE6PdNI1AHRU0fw9k0ex9vBONsR0UbFMgw122aZrcHQpKqgoaURs1NGz25tZDfdX2G3CBY+Yz5gj5GweFDOfVs+tsxmbbn29KpTWSzsyYZ3tKGE6VzaAxyonNULEMheRk0mgsc2w89rHgPvrkxKtNmYbVgPrbBVsGoPbYIBfhdoYBHvvBk2jonJ7GAC0RES+Fp3F/PxroghD7RiaN/TOTR1N8OsFIz+FQNgUt2RTIF9OJ1kWm9htuoP4oIieHBqGulHFfSx1ntzPtrY4ZN/J9CWdNxrUqnoOpLLabWzQDRbesx/OSQ5gyHXRexTh2tBp4LPftfdBYx+nj2C+bNVzm+DhONhGRGTyTwf1Iu3hsHTZ6i4jlsLkb1xnROBpHFNLWRFNyFGAtImJRgGuTJlYIqfa4G8e43W5C2OH4FG5XnQJee/Mz/d61V+c7OsexxZmdiaHUQ4FbO66EkiemEBGpjeE1N27gOVbz8VoW0yQPFpn4JTKvAxlqml4KzztVQ7OuUP9asw7HryjA96cTwj77enEM66DJKCIKnXz20DNQV+kans6VjHV0b9gGtUPBb8eePQL13f+G90g27cfYiBlqzGNKVw+aw+efqqvhCy+kYkmnZjYiRWG0abqP8RIS+2ieEvGKeA5aG3A8LE9j+OPxYxh+zMGwIiLNJp6zfkDXvyyOyyHdy8Q0Trzqla/BbaK+IiIyNIxj6uNPHcBtauEynz50HOoaTX6xn0KeRUQCmjCjpwsnPDh2FAP5bJqc4GUvvxnqYt4c/6ImTYBjY9uF8xaZXsbjg/6ioSiKoiiKoihK29EHDUVRFEVRFEVR2o4+aCiKoiiKoiiK0naW5dEYvu8/pOrNaOL2//Sb8Jo9gfqwawqomRQRudZBffL/jjGU5BgFvsSkq8x4qK1zxNTh26zDJa2+7aKmr0D60C5qkp0O6tj22WYI1x4LdYS7bFznVb0YTLjJosC0gMKqPFP7H5HetuKjdo79BL1dFGBUQI385AHU6oqIPDN4FGt/EurCvHCnFgdwrQClUq9kMjN9wHVQ9xuH2OYOHVcRM4jOdfAzLn3GomCoWPC4dXWhDlhEpKMTQ9s42C7lcJ9lXSv2N/aN5Armflnkn7AoaLCzUMJ1pPA8smi/MznchyQi0rXaNp+7uA0W6fqLRXMdN1x3DdQnj2B/rJfPnnv11QpMiy1xZgPruL/YZAroWNtrfH7jlguhPrIPx47Bx09BfdU1JagjHz1A+5/EcVdEpEbhTyeOox54mkJNmy0c0zo6cOzesoH8UCn0+IiINMm7VuxCHX2Kssm4/6TIF5SncDQRkYh8Pz552fwm9sFmHf0HdQrs278HddQiIiMVbLtmBQPBgtbU7P9TCNgKYVlnwzMtOue6+/A6415xo/H5OnkAGgeegDqkAD8nRecxHYMWh+mJiE/+mo4CHvzSDtzOgIIVp6cmoc6R92nXNdca67zwosug7luHAa5RhH3l1NH9UB94HIN4Hc/U/mey+Dduy0LfBqg/8NGPQF2dRB3/xs1bjHV09aA/hRwxMLbzmLoSdHiRpL2ZtsyTNzBDHg32bYmIsP2vs4DXgcu3Xwe1R/1vbAxDKcOE3GCL7r/4LreQx7Gps4DjWUgL5YA+P6nPk3eJzwu+HnII5fAQ9o01a7H/iogMbMJxmMMzjx05AnWWBt2LdmKgX5DgNw7JOxdZ5K2b5zG1EwIZz4X+oqEoiqIoiqIoStvRBw1FURRFURRFUdqOPmgoiqIoiqIoitJ2luXRsE8fE9uZ0Xd3tXBO6O4samrXWabGsW7jZzaTBj6dwWUc9MkHEOH7g5apAWzVaf52H5+lvDTOPVxooSatRJkDG2ge8cdpTmYRkRTlZmzJoh+CPRlFIZ09LdOLzOe/lEV5Hxbq74r0kc4Y/+AfPwl1vYPmMheR7+3HLJQHplH/vUVKZzdZVt6jEUWBRLO5E6GFbeY6NN+7ZfaNxTSt7DPg96c97J9W3vRLCLVLQHpll5YZkNfGJk9GPk96+IRdaLV8egvltOTQK5Ar4jkQk6Y1jM2VuJSTYUe4zhZp1nkb2M9S6sRtEBHZfiFqUHduwRydrvzZZdTqpldqJYgtS6KzInl4LZvDY7W2Hz1pIiJxjP1y8Bh6pU6dRK3u2rV7ofY81NWmYjI/iIiTwT7I/q6AfB4S47Fskvb81FH0eAQ1s9+PT+B2lXpxzLvsJVugTudxLPdc1E3bjrkO28GxfWpyEuqRYfT8FfPoRRobR7/FgX2o0xcRcdK43p4cHuPCrMfKMbxWK4Mllliz3w/yWcp1Z7fZ/y66/rVQF7rQE1CfQs+Q0Dg6ehxzfZwaZmOJiGRjFOLbLh6HVAbrag3P5RblFfWswSyJdNH0f6Zy+DeP7iVYz14ooYcx3dkHdb1qesBa45NQO3lcxo03Yd5CVy/mnIR0b2EYMEQk4ssqHdT516TV8GisKaQkeybLinx2KdqeSt3Mm0in8bzppmtoVw7rVJauTTT21Grm/Rjnm0Q2NrRH2S9+BT1rEeXxcDtnHPO2OUf+TyuPbWOx95LGt60bt9ISzWPrU9YQd5YLevB8r9ZwHG9R/kfcNNsurONnOIMknudFadXNe8hzob9oKIqiKIqiKIrSdvRBQ1EURVEURVGUtqMPGoqiKIqiKIqitJ1leTTWOykpzGrNugZwzntvGj0AmYapoX46hfrjfIA6tI0p1GI+45ag9un9lbK5jnoF9cchzfvtuLjLNmkiU3Wa07uB+r2sbWrnrvNwu6/K4zzhTVrGRAtrh8SagWXqf4sOa9pR01wnf8FAB87pbY8PQ32ajpeIyP6xY1AXXNQZrs30z/3bj0KRKmqizzeRX5bImTm+1TpqaJ0iasIjB3XAIubc1iwDt6mv8KG26Lh4rulDYm9IOoXHyaL8gIbQfpBvqVhEHbDNwRwi0mhgn2+RlpPn/bZJX+5R/kOclJFCelCXzqM66XFblM2QpuyO/nXoxxARydJ7Ih+327XmrdNe1tDVNuqNxtxc9mPTqPm3O1CT3Sgn+Lk6sX9ceBlqw0v9uM/5Tva6YH+47pfMPtigvIieNbhd66mPuqSbTlM+yNDxQahHqpPGOr0UfmZ6Gsf6eh23O0PZLuxtChP6oEX99gf33g/1Qz9+EOrd118N9f/5znehProP/QYiIu/5/70V6qu2Y+5JpmtmrK/VVscjNB9Do0/+nyQNf++6LVB39+F8/Ty+1Ok6/oNv/RXUU8PPGutgH5rr4DKmJ1ED73bj9fLVb38nbmMJ/V3Dp58y1hmFrCXnjBXKR6mxFh2XV1pjjk+ZNF4P12/DXILuXrwPaNE6OReMfWwzfzOSMxaoV96jkYkCycz6XVrT6OeJaFxJilmwyE9YmyKvXw3HVMuizAryntpJWWp07DnvIfTxuPBYY1z3bfZ8JPiz6G8W+x8oj81azGGV4JO0KG8tDrGOqG5GeB2IyPMc0nVCRKTRRN+FH2AdzTt+jYR7/HOhv2goiqIoiqIoitJ29EFDURRFURRFUZS2ow8aiqIoiqIoiqK0nWUJnTdm10rHrC7d6t4OrzWcfVCfPvWE8fkKacgGXNQOVzpQD5vtQG1mQHq8iSlzHt9aDfXqQbxwroEds24NPz8ZonhzYwG3SURkZ9c2qDtIqz3UPIDrJD2el0Ydf76AWlARkT4L9etN2o8m6ZfXrtkC9XRtEupxDt4QkSCD672A9v2Ggcvm/t0IWvJPpx83lnE+yWc8yWZntOA81zp7I4z5yEXED1Hv6bGWk+bXZo2pLfg6ZyLMbAe2q0OaZ9bgZrKUsVJAL05PD+p+I/J4iIhkMqg5bTRIj9zEPl0nfXK6C3NfeJtFZjJM5sPSWYvapklzbHvkqaDFiYiI3yQfyCplFSxE2rYlPeuH4tyMSg239+lH0dsgIlLsI//EOpzvf7oyAvV3/hl9CFET27mQNT0al15yEdTP7MPxpxliO6ezmMXR0Yl1/zrMKFg7gLksIiKxhcvs6tkCNbdVENJ54tF5ktDPYzp/J8vTUO/d9zTUPQUcM72Ycpy2mGN52sWOmadTPDebJ2N7CR14tTE8Gwnv4TGPBOlcO5QPIB5eq8amKJNFRDIWto1HAymP3d1rcJmdvQNQZzux77hjZv6JzRp5bgujafAPMWn/+y/YZaxj/QBe530ydoR0vWQvHJNw+TD+xvux2jkatalJiWevL47Fvj3cnpRnZuFEAbZz0KI8HepvrrVwtlUSLuVcONT/LPPCjtu4yNfvVpI/0Lju08vsi6O2SmewrYKE+5d6SPd8dfSBROzhoHvbuEX3wk1zjG1QrlcU4vldhO1c+vVZf9FQFEVRFEVRFKXt6IOGoiiKoiiKoihtRx80FEVRFEVRFEVpO8vyaAyl81LzZjTB3SXUdWda6K8YP4ZzmouIDNKcvP1rb8Bl9KE2M5NGTVrs4lzEk9PmPL7jkxNQN+qoR69VUIPW5aBGWmKc/727A/XIXnaNsc61G6+AOiKtecbBfIpUjrI8KI8hnUJNqohIykXddDHA/QhIFBi1sO0OncJtKP76G4113LAJNaYH/ulvoc72z2sL39Tmnm+iOJBoVkvrONgeFs3DbyXknUQ8t3oLvQwURWLM228u0hTZOi4uxHXpuNA2FDK4H93ddF6Rfr5C/goREcvDdeRS2KfdJp43PukwA9J+eh6uU0QkIvFwi9rOb+C5bcxVHuAy016CvpONHwtsQxSvjka+2ajPeXdOPI1ZNPlOHCsqNdNDdqpyBOqrrsf5+h9/Er1tf/ut70BdoLFia8n0S1SP4xj45Cnczhp55Vhb3gow52fnRTguf+ijv2ms84Kd/VBzf/FbuI6Ajl8cYH9xE/pCs4rtmc9jn/KoT12xEzMi/r9fvQ7qkHIORETK///23jzcjqrM93+ras97n/mcJCfzSAaGgGEwBggyiNIo2q1yuXYjLeLUIGiL0FcR9IrNg4pi32ureB/Ba/tTux1vt7GhUWKYRQgCCZnnnOTM5+x5qKrfH0n2Od/vqpwBds5JzPt5Hh7y7qpda9WqVWtVnf39rjeL90KeciA5h81FTpDJaLIZQx4NM0sD6bqNHATYpg1NOP8NZM3r1F/AMSoWwWOwty2Wxv19yvvjlthXaRRpejSMwZq/xLkT2Ath/g3WKJY08JxnKcjDd6JTKZelfLitPb4QlPvB8QP+jk3eA/b+udT/HPY+0CQdcJmkTM9GDvuQ2IPIfcVMoEWxWaZPf7P3fXw29SieOQPH7XlzcfwsVswcTAcOYN6S3f3oUetP832C18cm44fnmkaQAs3jjTE82RlTh55PsgHz29HQXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc8ZlBv/HvY9JxDlkLD2tpwW2/e2CVRBnouY7zJ5eNNYtSaFplRO8sIEmQibp/l7TGNtzEBNeeRksUzwsoyWMdYiSmbc+gcn3ZrRgokIRkfokGuTyOayDFcJ6e4ImmpKLxp9CbsAog43xIfJie5REJueh0bGr0A9x/+BBo4wp8+dDvK0Br3GPPWTSK9gjG3ePBZFoSCLRQ+dZpuINPxc7u0WkQibDXCELsSd4HSwyajsh7Dt+gBncskZOFhRy8BjJFPaNMN0DGTJKFjzsByJinHyI4ngdJmJ0B7F/FagdOLlQEIUs3ld5us/KRWxLP4axG2B2szmxFxnO3dLQd/J5cyGIiSAUCkkodOgaZ0t4E770/HMQW2Ka6rN0r/d3YlI/l9ySM6bNhbi7bz/u32KaktvOovt29x8gLvI6DnQveUIJ11LYJ8tOQDYpWvRAKpy8DO9Hz+NKYB/0fXOxgGef2wDx9u3YdnFKXhiN4iIIQmbdfMFc0MKlhRE8SuJZOtyvS0Wz/04MlgS6USUgCd0YjsaGZTZB81gyONAPcXevOVdxwtAoJWGLhvGYTWRK5THTpe1+gMndpiRtlpGFjRLzUv/kxQusgPnDTALI7T0+8/dY0u0Z+wwfm8cwTteagVxOCofnUb6neQ4OOeZcxclgHVoogI3bUVqM4MjYe4Qgvz1fJu5PbPxnPLqOFZ8XzwhYZIHm/TAtTtCQwrkgFcXnyqjNC9XgeCgiEqUxsyGK43LnQVwEJFeiBMNs/g5Y0IIXXghTEsD+nqE4mzcX0zga+ouGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzRmXR2Nzs8gRiVzHno2w7aoVl0M8pRmTJYmIOPt+D3EhdwBiawC9DX4S34PcEmnMSqZWLtfdD3GMvArR2FSIm8NNWAcSLNtOI8RL5p5tlBmmJCdlH7V0XgrLEKseQoc0gEHKy1CE/AEZ1KjbpD+2KSlbtAG9AE/98b+MMhINmNBqwXlvhjicHDqGWxq7Pq9WhOyohOzoofKpK1ikZuVYxNR/emVKIkbidS9EWk1hHW+Q1jNM8chJnTxKntbf3w+xQxrVeMpM5uiSjrxM5xGmY0RDUYhL1H8919TWui6WUcxi/yuTZ4L3z9ioH61UTH1oMYO6VD7GcI00Jz6cKGzbqSYxe2XPZtj27Es4nrXWUTJQEWltaoA4ncZr0dYwHeJzFpyO+w+gR8yyTS/DgS14zPmtmFA0Gcc+VKBET4lEAuIFzZiM9U+/w/MUEdm3EceDeAL9EqEwjuWJJN47ra2UjLXX9JD98bEXIV66COeYtlOxbVpipOd2sIxIU5tRhkveo5CF90Ykeqjtyu5k/Y1uyKPh+zz+0DwSIGAfPYUf4pGvra8fPRn9GdPnks9TwjQL7/WGOkremcB7wmGvJo3Tvj/6vc/nzsnJ2KPBdgfD4zGGMsZp0QgswUwKeHwl/evJ5SRypO1oLuMEt0E5WcPk0YgUMY6SB6NosQ9k9OvCFgw7xD4QSq5H3/d87PMVml+9gESElo1jS4LOoz6Elerr6sFjFnGcydE4JCIy0If7DKSxD+fIJzlYoqSpFb4HzHneJw9hJo1lpnNDCa0Lhtnv6OgvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVnXB6NxUuWSyRySF+Zj++Cbc/mBiE+oxlzMoiIzI7NgrjQheug1zehLjc1tRXizADqwI11rcXUjvsexm1J0s5lUHM6QNrgGdPnQdxXMnN3dA7shbgp1QxxXQtqnN0yauds0qJHHPO8ypTroBLphZj9BHYCz9MNo2Z60+anjTIW9eG5nnfeRRAX+4baJlyYhDwGXvTQfyISskljS2v/VwLyNFgWahQjlDPFLaPOvES6SYfWanfEFKFyDgKfPBu+RxrUIuok2ZORIK17OGB99xJdC5v1yaUyxdjfXPLzcP4KkYC8FaRRD5Fe1/exHdKD6NEoFs0yvBK3HRU57JNK2fR4TASZgWy1/cpZ7B+ZIp7jwCCObyIiO/eTb4Budc4FkYyjnysRwZwoUcfM1bHjALZcKomeC9vGY4RjeO1KlX6IN23oxO9vZB+SCHuTQpSDpkx5dzy6f/NFnD9i5CMSETn7NPSrnHfqQoj9RXheFmn5iznsc3Y0wMdFem7OFWAd7oPWeAX5NcOXcZsBxnN0ajPfo7JsvM65oplPaSCL7czeOCeCevbGtnaIo+QhyvSiJ4hze4gEe/KG4xnnRd452t8OOB5/YsR8WUa5TEEeGjOvyViybUwcmUpJIoerZFnYF8I0mDlBPkn6iOezEHUnl+Zslxp5tJwYIuZ18Wja5j5v9BVhQ6g5B7NnsEiJvrr6ca4YLOAzYzyO90SpaPonCjmcp7MFHEP76V4skP+z4uL+5bLpseC536O8XT35oWOWygE5vY6C/qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc8bl0UjVJyQaPaQhjixCPf+eaairtBaeZXy/J4K6tGbSis9fgt85lfSgB1K4Lr0boAH0wqh1qxTwGMsKWGZq03qI+0k7/HJmC8T7up80yuwYQG32vGmoJV69FHOMzAmjZjpcRJ9IqmyuE+5mcZ/eQdRN91t4Xr0RvLSP9GHbdzimzrq1G30f+/fvgDg0TK9bKE68R8OyhtbILhRovXtat9q2UK99eC+IorReu2OhPr5EngHLRv1iLGbq49k74JHoNGTYOlgPin26QDku8nn06oiYul6H2oK/U8jjeRTJi1IsmWWU6V6tS+La9+EwllnxUE+az6OeM8ijESLta5k0pencUL3yhYnP4yIi0tDULMnDvpnTz6Qxrg3zOuQH8H4SEXEL2A4796GPo0xD2kAFr8WBNK6/Xi6ZXiTWn/ucG4hEy+a9g9fBofwTIcucNmwSpLukc86RHpivrUdr1Z+69DSjjL9e9U6sRyvWo9CD9S70o5/Opz7s26bPxwvjBYjTPZ48nMfGnyTt/HCHxmtyahi+APIE8HbOPURr8Q9mcOwQEcmQnytM3rYG+vtmY8sUiHlc7ivR8cjjIWKOeayrN2PE9EYYRRiGKjP3xvh4LddveJmGJ2QCKJZKcuQxIOJgBcJGHhfz++xZ5JNwPepv9sieFT8gj5Btj3ydfI/yaBg5V8goYlzYAG8N9a8S+zepTxdyuH8v5UUrVUzvk0vPhRXy+hbIT8X5P9i3WnJNj0ahgp+5Ho6R2WFllsvm3HM09BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmjMuj4af6RGvdEizmh1AjfwB0mhvD9AOdzSij6Nx8TKIe86/EOIzWtGTsYB8BQcOojdCRMSVMyCeSttXpnF99koRNWmdUdSLbvf34wFCqE0XEZEcivi6U9Mg/l0Uj5HZh+uCd27fBvG0lOkvcEmn2juAWu2Z8zBXR8FDH8j2xhkQLz79TKOMfLYL4gP7dkNcFxo6z2LJ1PcdayzLFuuwfvyIV+gInov9r+yaPhfPp5wVNvaFsMPHRB9ALod6ZF5/+1AdsS+UHCzTCuO7PWvTWS8aZh+JM4ZbdpRLU6Y1unOUAyfIf5OIN9InqEHN0X2UzWNbDaSxjEolYA1u8nX0DfRDfLBrqH8WA8aXiWDW3LmSOqzTP23F2bDtlFU4NsxsMrXkA3t2Qrx9B/qgMnRt0rRWencftuOfXnrJKOPAQfRvuTb2a4fG0bokjjeVCulyMzjWO46pUeZcLMkoljFv9kyIPdIT9/ahn6LBMTXKfdtfgHhWAucPm9b1L3NOGwvr6ARorV3yIPRk0SPjpQ7lfMjmJiGPkLBHg8XnpGc/yvdhHxqv2FvDeURmzMJcWE7YHI9KBRwLPAevQ0trG8TTpuPcZFNuhTLlNwoHGCgsyuPDeTUs+psqtwOXaQXkShjNVcHXIyhPxqjQdyYrW8vRcCvlqm3HornLFvZAmf6JEt33HvkGOOeK5bJHQyg2rxN7fIweSmVwLg6H82rQUOT55tjkGzm16L6ifBQSYk8jnmepYvrHKpSbw2XPGXs0yGtSpLYuBOTRKPK87ON3httC1KOhKIqiKIqiKMqkoi8aiqIoiqIoiqLUHH3RUBRFURRFURSl5ozLo1EZHBQ7fEjXFRfUZ+V6ME+DF6BPTJLu7A8vvgjx/h7UHzdOQS2nhFFTX8gFrDVMZcQWov6z7xxc637/rCbcf2ojxH/VjPrmdMVcv78cboG4dxBzXhSL6Kfo7UANdffzGyCOTGs3yqj4eF7RbjymV4968I1PPQXx9NNWQLzigkuMMp57+FcQD/ahR6PoDemoS+PQ5x0LHBv9Pm4ZdeZlU+IoHmm2c3nUYiZi6Gux2Q9Ba0oXS2YhoRDqHtnH4dH62NxfDc20Gxlx+6EyuA4j60UL5DUpkr8iGjXzg5D8UzKUm4NzbwwO9uP+WdL5B/yJo1jAY3T39hw1LgVd4AkgXciJ5xxqzyzVIdmM7daYMnPVRFJ4LaYux3xEJVrjvT+NZbg+bj93CX5fRCSdwXE0Vo/ekfp6HPPKObz+e8g30t9zEOJkwuwfOdLRT5vSCPH82TimuZRHo6eX8+KY+u6Ij/1253acc6bMwjKcJI7dLs0XqThuFxERm9eixzhef2ic8YM68ATg+35V+294AAx9f5CXwfgEIzoG50dZduYbIL70cswRJSLy+0cfgThM8/aFF18M8ay52If52YF1+E5A37BG8asIjcM87rK+PQgzAwmXMeohxl3G5GRrOTp2JS+2dajtPPK1uOSRKgXk23E9nM8454VN959N3hv2U3DOHxGRSoXyBNH2MHnMYnQInrMNu6dl9j+fcqxwXKK2kjIew/CU+ub85tA+ZGmUMuVPKtIzmkt+F5/NJyKSL+E4XihTfo9hvg/OyzES+ouGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas64zODrX9paTfaUzWASuvZprRBPa0WDtIhIcwI/67bQnNJP5uN8fwfEvoOGX78ckDCNDICbHDSY7tzwJ4i7du2BeNriUyDeOxvN47GomUwvEkXjjk3JWBqSaFK0mjERYUs7mnLmnoZJB0VE7BglGhxEk86zv/8ZxHs6dkL8xre+A+LmZjLai0hrC6Y3jMexDLc4PGFfQMK1Y0zJLYvjHno3dgWN2wUPzVfFipmMxnc5+Qy2e7mIhtRkCk20voVGNo/dWCJSIDNVmcxUrs3thvWOULIhnwxeVkASJCdEJrwSm8DwGOUi9tewg+ZezzMtiNkiJlQrkvm3pwsNw5k0tmVdfT3EQcmsigVOXkhmam/YfTUG8+axoGLbUjls7IvQ4gENNDZYAUnnfLpW2RyOT2UyMuYpYVyhgP2nIWkmBUxGcXxxPbwXYh6axVvbsJ+3ty6FeH8Hbq+UzXs/FcHzsun6ZHqwP3hkew3T95vbMempiEg0iX2oq7sX4t4t3RCX8pjQNUR1mjHFLCOWwHHWons8fDgRZaUwOQn7PPGrbWfeAWO5J/jeZuM1bvdo7Ghtwzni2g99zCjh4svfCnE4jH10zrxFEKfqsH/xre1zgjTf/Puo7eC4aBh6aez3aDECixPFGSWYY7HpP699wj527w8/5ms6/uvErZTEPvzcVqbLYJGBOeSbj5eOPXJCSMMMbuMxbLoyTsDiKC4ZxCvchlRv2+HrirG5qIJZpkdGa4/M4ELzts8mdorDAR0wRNe7RB2QE+hVXBynfVoAge9tEZESPb9kS2wGHzoGL6gwEvqLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs0Zl0dj6vzTJRw+pOc+uAv1Yd2d6NnI50391rQm1L/mY6jd7OpAv8SZjagHba/H77c0oBZZRGTQxnK7s6jj3bd/G8Q9u9Gz0TeAyfO8Z9FXErEClLEl1K9bPurxGhowaaBLMvvOHqzjwCZMZCgikmpDn8fChahzzfdj2/mkqbfLqIHu2od6ZhGRZATbd2bLTIhdb0gjnS+YiQuPNeWyK6HQIb1ugTwYFRfr7rkBIkfSXpIsVwpFPKdSGbXB8QRqiUO2qXFkDWlFyB8heMwwafZ97l90GzmcRFBEwpwUkLTEFdZmUrWLlHinUDT9LQPkuejsPADxvn3orypQ/6irw3s1EjG9BRbpWstUr737h8qsVEz/w0TQk+6TvHuofXbu3o4bXbw2zXHsLyIiOTqnrgOYvLPrIMaJBHrOOLliOByQFJDaNjeI1y4rmAhxIIZxYyv6txIJ9Eaw/0ZEJENJ/0KU9DHaOh1im5KuxWN4Hvkcjl8iIqVCF+7Th3OOW0Y/Cyefy5exf+3ImGOYR5rwKa2NEEfaDl0/9kFNGL4MeQOMpHQcjl/DbyaMI+8CjZmtU/C6iohMaZ9F36EkpKztNjLhUdLECmnNA5IlsiaedfVcpkdxUOI3ptaeiKDjGZ+M4PuYDI9GvlKS8uE5LUp9wQqTxy7gWali4T4hjxLysVfGwvvMoetkeB3ETOrHs7TtUBnkr7BojuZ7QNh/IWJ4LNjHwf4IrjfHxQD/Q5nmPJr2xXZxe0y4z+N9VMyZ4x+Xy96myjAfCCddHQn9RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmjMujEZ85U8KRQ5rh05tQv3+QvA52JCBPQz1q4bbtQS9CfwfqvLf3Yh6NwYYmiOsDPBpdg+h3kASubV8kX0jaQo1guRe9CwkL15yXFK6dLyJik7Z/kHTUA0Vcz70xmYTY57WLu8116kPuAMSFRrx0PmmaXRLw7d3+MsTpdM4owyljvXenURNd3zDUVoXi2PV5tSIaiUv0sI+Ei/c91naa79Dsb+C8GhFa7519KIV+7Bsp0s+LiNgx1KZbwutr4zE90qxWWPtNMteQbWryi6WR/TKs5S1SroaBNPad7i7Tv9PdiX0hlyWdvkVeFFrTu6MD7+VkysxHY5E+vuMA+kC6uobqwLlBJoqFCxZK6nDd68nTlIrjmFefDLhHyFvUPAX17As9yu1SxmM4DmuazX7OuVi8ysjH5DXew+SvSNC1StD4JWKuI18JUb1o3PXo3hPKF1Li/iWmr4NTyrjkf7Ho72g2TXdWQL4Y38J92AmUPJx/KJ0xPSQTgu8PibMNj8bIORiCdjHyaLC2nPY2s3AE6PDp3je/RGXShfToHvA88lME9HnW5RuZD4y8BbQ/HZN9JYcYub1rkUfD/A77A/zgf08Q6VxWQofzhFWM+w8/iHkB8yO1s8f3NM0BERrvhPOlBOS08A2/DuWfoEQtHnlJbHJ1GF0hII8L9y+OzTpRO9B5lPgeEhEhD4aQR8LlfDN030gFzytkmT5Hy8dnT/ZHlcGjMXafpP6ioSiKoiiKoihKzdEXDUVRFEVRFEVRas6YpFNHfs4rD0tHXipR+nOSBNiWKecolXnZOvx5yGXZAC1RWqKfinhZThGREi8LRvuUaYnDCh2zQpKMioXbywHLjtnGMWgpM5ePwaniR94uIlIq409YhSKmhi/Tdv75uVTC61Ok74uIOHQNfY+kQ8Whny2PLLM5EUvsHSmjUBiqH6+uWyqTLCrgHdqxaXk4aneb5GbDyxMR8eiYoaCf8Ck2pVPU5+nnR5bGmNIp8+fKICkBHGIU6RQvRctLqIqYy3myNMqUTtE9QfeNId8REcvm8QHPdbhc6sgSvhO1xOORcjKZIYlPNkvyQw/lP7ZvnmM2h/cdL4dsjIGvQTpVCuO18egn88oo0qkQjYEeyQDcgCZn6ZTL0ika0wzpVI6lU6a083iQTnmRQ5KpzGGp10T3v2x2SLIVDoV4Jwh5qdBDjLxcbbBkaPi3WZ519LoedR/a7tCFdEnykcthXwgFjO1pkn+Wy9iHh9+3IuZ9mMvjmJcJkMbZUZRNezQmWizreS3SKY9lO3TvDevjR+o4kXPw8PmKphEpU99wnIBnJUNSREvO0xzAa7Hz0u1OQH/lMdU25IE0Vh2H0iljfhV5DdIpfp6mOTpgiXiep/n5ZHh85N9j6X+WP4a99u7dK7NmzRptN+UkZM+ePTJz5szRd3wdaP9TjsZE9D8R7YNKMNr/lMlG52BlMhlL/xvTi4bnebJ//36pq6sb9S8eysmB7/uSTqdl+vTpo/5F/fWi/U9hJrL/iWgfVBDtf8pko3OwMpmMp/+N6UVDURRFURRFURRlPKgZXFEURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi8YxYufOnWJZlqxfv36yq6KcgFx00UVyyy23THY1FKWmPPjgg9LY2DjiPnfddZeceeaZ1fi6666Td77znce0Xoqi/PlSy+cxHY/Gz0n3oqEPcIqinCyM5cH+eONTn/qUPProo5NdDeUEg19QFeUIs2bNko6ODjnttNMmuyonJWNK2Hcy4fu+uK4rIU6GpCiKohxzUqmUpFKpya6Goih/JjiOI9OmTTvqdn3uO7acVL9oXHfddbJ27Vq5//77xbIssSxLHnzwQbEsS9asWSMrVqyQaDQqjz/+eODPY7fccotcdNFF1djzPLn33ntl4cKFEo1GZfbs2XL33XcHlu26rnzgAx+QJUuWyO7du4/hWSonGtlsVq699lpJpVLS3t4uX/3qV2F7X1+fXHvttdLU1CSJRELe9ra3yZYtW2CfBx54QGbNmiWJRELe9a53yX333XfC/SVbMfnNb34j559/vjQ2NkpLS4tceeWVsm3bNhEReeyxx8SyLOnv76/uv379erEsS3bu3CmPPfaY/O3f/q0MDAxUx7u77rpLREbvU0d+Cfn3f/93Wbx4sSQSCXn3u98tuVxOHnroIZk7d640NTXJxz/+ccgWO5a+KiLyi1/8QhYtWiSxWEwuv/xy2bNnT3XbaH+Z9jxP/vEf/1HmzZsn8Xhcli9fLv/2b//2GltYOZ4YaU697bbb5JRTTpFEIiHz58+XO+64o5pB+cEHH5TPf/7z8uKLL8Lcrpw8jDRWsnTqyNjJz31Hxp5vf/vb1fn0ve99rwwMDLymcoeX/bOf/Uze/OY3SyKRkOXLl8tTTz0Fx3n88cflggsukHg8LrNmzZKPf/zjks1mubgTkpPqReP++++XlStXyg033CAdHR3S0dFRzXZ5++23yz333CMbN26UM844Y0zH+4d/+Ae555575I477pANGzbID3/4Q5k6daqxX7FYlPe85z2yfv16WbduncyePbum56Wc2Nx6662ydu1a+eUvfykPP/ywPPbYY/L8889Xt1933XXy3HPPya9+9St56qmnxPd9ueKKK6qT7BNPPCEf+chH5Oabb5b169fLZZdddtQXXuXEIpvNyic/+Ul57rnn5NFHHxXbtuVd73qXeJ436nff9KY3yde//nWpr6+vjnef+tSnRGT0PiUiksvl5Bvf+Ib86Ec/kt/85jfy2GOPybve9S759a9/Lb/+9a/l//7f/yvf/va34SF/rMe9++675fvf/7488cQT0t/fL//tv/23MbfJP/7jP8r3v/99+da3viWvvPKKfOITn5C//uu/lrVr1475GMrxyUhzal1dnTz44IOyYcMGuf/+++WBBx6Qr33tayIicvXVV8vf//3fy6mnnlrt61dfffVknooywbyWsTLouW/r1q3yk5/8RP7f//t/8pvf/EZeeOEF+djHPva6y/3MZz4jn/rUp2T9+vVyyimnyDXXXCOVSkVERLZt2yZvfetb5a/+6q/kT3/6k/z4xz+Wxx9/XG688cYatMxxgH+SsXr1av/mm2+uxr/73e98EfF/8YtfwH7vf//7/auuugo+u/nmm/3Vq1f7vu/7g4ODfjQa9R944IHAcnbs2OGLiL9u3Tr/kksu8c8//3y/v7+/lqei/BmQTqf9SCTi/+QnP6l+1tPT48fjcf/mm2/2N2/e7IuI/8QTT1S3d3d3+/F4vPqdq6++2v+Lv/gLOO773vc+v6GhYULOQZk4urq6fBHxX3rpperY1dfXV93+wgsv+CLi79ixw/d93//e975n9IOx9Knvfe97voj4W7dure7z4Q9/2E8kEn46na5+dvnll/sf/vCHx33cp59+urrPxo0bfRHxn3nmGd/3ff/OO+/0ly9fXt0+fCwuFAp+IpHwn3zySTin66+/3r/mmmvG0oTKccpocyrz5S9/2V+xYkU15n6jnNwMHyuPPI+98MILvu8f/bnvzjvv9B3H8ffu3Vv9bM2aNb5t235HR4fv+8HPhkcr1/eHngW/+93vVvd55ZVXfBHxN27c6Pv+ofHrQx/6EBxn3bp1vm3bfj6ff81tcLxwUv2iMRJnn332uPbfuHGjFItFueSSS0bc75prrpFsNisPP/ywNDQ0vJ4qKn+GbNu2TUqlkpx33nnVz5qbm2Xx4sUicqifhUIh2N7S0iKLFy+WjRs3iojIpk2b5Nxzz4XjcqycmGzZskWuueYamT9/vtTX18vcuXNFRF6X/HIsfUpEJJFIyIIFC6rx1KlTZe7cueCfmDp1qnR2do7ruKFQSM4555xqvGTJEmlsbIR9jsbWrVsll8vJZZddVvVypFIp+f73vw9yBeXEY7Q59cc//rGsWrVKpk2bJqlUSj772c+qDFmp8lrGyqDnvtmzZ8uMGTOq8cqVK8XzPNm0adPrKne4Uqa9vV1EpDp2vvjii/Lggw/CmHb55ZeL53myY8eO0U/+OEedL4dJJpMQ27Ytvu/DZ8N//o/H42M67hVXXCE/+MEP5KmnnpKLL7749VdUUZSThre//e0yZ84ceeCBB2T69OnieZ6cdtppUiqVqg/8w8ep4WPU6yUcDkNsWVbgZ2ORcdWKTCYjIiL/8R//AQ8DIiLRaHTC6qHUnpHm1Keeekre9773yec//3m5/PLLpaGhQX70ox8Zfjbl5GWksfJo8HPfsSx3+NhpWZaISHXszGQy8uEPf1g+/vGPG8f/c5Dan3S/aEQiETAvHo22tjbp6OiAz4avwbxo0SKJx+OjLsP40Y9+VO655x55xzveoRpixWDBggUSDoflmWeeqX7W19cnmzdvFhGRpUuXSqVSge09PT2yadMmWbZsmYiILF68WP7whz/AcTlWTjyOXOfPfvazcskll8jSpUulr6+vur2trU1EBMYpXic+aLwbS596LYz1uJVKRZ577rlqvGnTJunv75elS5eOWsayZcskGo3K7t27ZeHChfDfEb+dcmIy0pz65JNPypw5c+Qzn/mMnH322bJo0SLZtWsX7DPWuV3582O0sXI87N69W/bv31+Nn376abFtu6oyOBblvuENb5ANGzYYY9rChQslEom8pvM4njjpftGYO3euPPPMM7Jz505JpVJH/WvcxRdfLF/+8pfl+9//vqxcuVJ+8IMfyMsvvyxnnXWWiIjEYjG57bbb5NOf/rREIhFZtWqVdHV1ySuvvCLXX389HOumm24S13XlyiuvlDVr1sj5559/zM9TOTFIpVJy/fXXy6233iotLS0yZcoU+cxnPiO2fehvAIsWLZKrrrpKbrjhBvn2t78tdXV1cvvtt8uMGTPkqquuEpFD/evCCy+U++67T97+9rfLb3/7W1mzZk31rybKiUlTU5O0tLTId77zHWlvb5fdu3fL7bffXt1+5OH6rrvukrvvvls2b95s/IV37ty5kslk5NFHH5Xly5dLIpEYU596LYz1uOFwWG666Sb5xje+IaFQSG688UZ54xvfOCa5X11dnXzqU5+ST3ziE+J5npx//vkyMDAgTzzxhNTX18v73//+11x/ZXIZaU5dtGiR7N69W370ox/JOeecI//xH/8hP//5z+H7c+fOlR07dsj69etl5syZUldXp79ynSSMNlaOh1gsJu9///vlK1/5igwODsrHP/5xee973xu4PG6tyr3tttvkjW98o9x4443ywQ9+UJLJpGzYsEEeeeQR+V//63+9pvM4rphsk8hEs2nTJv+Nb3yjH4/HfRGpmhOHGyqP8LnPfc6fOnWq39DQ4H/iE5/wb7zxxqoZ3Pd933Vd/4tf/KI/Z84cPxwO+7Nnz/a/9KUv+b7vG+Yj3/f9r371q35dXR2YJRUlnU77f/3Xf+0nEgl/6tSp/r333guLFvT29vp/8zd/4zc0NPjxeNy//PLL/c2bN8MxvvOd7/gzZszw4/G4/853vtP/4he/6E+bNm0SzkapJY888oi/dOlSPxqN+meccYb/2GOP+SLi//znP/d93/cff/xx//TTT/djsZh/wQUX+P/6r/8KZnDf9/2PfOQjfktLiy8i/p133un7/uh9KshEHmS2ZWPkWI/705/+1J8/f74fjUb9Sy+91N+1a9dRy+EyPM/zv/71r/uLFy/2w+Gw39bW5l9++eX+2rVrx9W2yvHHSHPqrbfe6re0tPipVMq/+uqr/a997WvQRwuFgv9Xf/VXfmNjY3VuV04eRhorj2YG5+e+I2PPN7/5TX/69Ol+LBbz3/3ud/u9vb3VfXg8Gm2MDnoW7Ovr80XE/93vflf97Nlnn/Uvu+wyP5VK+clk0j/jjDP8u+++u8atNDlYvk9GBEVRTnhuuOEGefXVV2XdunWTXRVFURRFOe6566675Be/+IUhQVVeHyeddEpR/hz5yle+Ipdddpkkk0lZs2aNPPTQQ/LNb35zsqulKIqiKMpJjL5oKMqfAc8++6zce++9kk6nZf78+fKNb3xDPvjBD052tRRFURRFOYlR6ZSiKIqiKIqiKDXnpFveVlEURVEURVGUY4++aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmjGl5W8/zZP/+/VJXVyeWZR3rOiknAL7vSzqdlunTp4ttH9v3Ve1/CjOR/U9E+6CCaP9TJhudg5XJZDz9b0wvGvv375dZs2bVpHLKnxd79uyRmTNnHtMytP8pR2Mi+p+I9kElGO1/ymSjc7AymYyl/43pRaOurk5ERH79hfdKMhYWERGbXmotC9NxBL3zWpZNscN7QGS8JTlh3DuaNMsIxfADrwKhWylRGViHUCgCsZFkxDLf3MIRrJcdwWb1Qxh7FHMZtnC7iFRKLn7g4nlYbhHiqJQhjvi4v+Njuxw6CNWEQtcdqkM6X5KzPvydat84lhwpY8+ePVJfX3+oapT+5WT5K8tYkt4ci5Z4vcl2XkuduMzh13xwcFDmzJ49If1PJLgPKq+d0fpTUH9xKzimrfnVLyFubMTrsvKCN0HshOMQb9r0slHGlm3bIL7gwtUQ16caReRQ/5s9a+6E97+m1pRY1ckXW6lULMtoeB7OI5aD85lXxitTKeM8EY3j/FgqmWXyMVpmRyEO4XQpfhbnw1mnpCAuV/ALvQfNMisVD7+Tx/kwm8lBXCrgMTyPe5zZQyNRPPdQhNrOpTnJwWPmMzgHhyPmPB9PJSCet6QJ4t1b08Pq7ElPR8+kzcHMwEAvxPu7dhr7bN/9KsS7dm/BY/R1Q1wpFiAOW3jdmi163hMRCWMb2jb2eZce4Uo+bq/Q81cihf2xqanFKDKRws8ako1Yz8Y2iJONuH9T/RT8fgqv+/HI4OCgzJo1a0z9b0wvGkce4pKxsKQODzTHx4sGDmAiIlaYXzSwY7plLoNeNMJ4zLG8aERGe9EI84sG7j+mF40w3gx+Bethu3heUTpGxMftjm+WwdeQUzkOf9EY+s6xf8A/UkZ9fb2+aIxhn5PhRaN63Am67kF9UHnt1OJFI5HAB4pkEmO+TvyikaIHiKBj1tfjJFqfwmNOdP+zbEvso7xojKUuvI8Zj3d/s0z+yKaHBZpyxaftoRA9wJOV1HbMOdimDsXPDq/lPJhxt509/jK5rUIhh7ab5z5ZczDj+3h/DuYD7q8k3oOxOD5vFfL4MudY+MwRoVONW7i/iIiE8bPRXjTsUV404lTHRMJ8uUkk8Lx4LEql8I/iqTpsG25THmeOZ8bS/8b0onEEz/fE8w/95cCz8Ks2PYDzi4iISIhvfpse6i16AKeHfjeMFytUP9Uow0nim6Dj5vGYuTTEkTgeM9nYDHHFxzrTH04OHxQ/dGkgLdH2Mj2wWzRhuAF/JSr5eB5lF9vfoheoOA28CXrhqgubLxqxEB6D//ol3rDzmOQH+3KZXiBd/Msbt+mRTyHil+NRzsn3+eIH7G88QY3zEZ3r4I+8OfAQVC9fRn6BDDjAWD4a1x5jqTfXi6+HEw4ffecJolKpSKVyqK85Dt5Dr+XlN+jl6c8B/pOER/0jbNO9VMlCWM5jLCKS6emDeP1v10Cc6+mAuO+VZyFunNoO8cOPPW6UMX3+IoidCy6G+MjYHDRGTwR2ZOhFo1LENuT7PhIxH8IKRfxLP4/xHo1xRvekLs1/ZBMx5zvbofGH9vfok3gM59xkBB/Kug8OGmXyL/6hED/a0BxL3c+jDxzHvHf5M/6Fg/92FwrhMXNpnMOjSfP6NE7Bz+ob8IE1Wjd07jw9TwR9A73iHlZDbNj6ImzbsPmPEO/fu9X4fm4A7+FyHtvEGsD+GY/jQ709FZ8Jw8YvUSIp+oNEITOAZdAvSRH6A/Yg3VcHeg5CvGPnK0aZBQ+vE983UYefEfG83nHp+yC+9KIrjTKOt7liPPXRVacURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzrg8GnYoKvbhVZn8GJlVIgnaOeAdhkxePq0Q5ZLvwyOzuBvCMiop0/3v0YoDjk86SDIEliNYBz/RCHGxQqtweAGGVPIL+OQXKNJKV8UixqUcrqxQzuEKGSIibhn3YU+CUGzTqlQNpJP1kqa2NkwfsY1juI6VPTkTzZO//P8g3vL8WojDEbzOIiIV0rQ6pA2O8GpgpEFk/bLlB7UB9Y8QXgffp1uONKZ56l9l6n/xgCLZCxAmA6FFivkQ1dGja1kJ8FvYRltgzAZNhxyfbNZ0+WKIiGNh+za0TYf4nPdcX/13Oo1eq4nCsqyh9mZzZ8C+zGg+jmNh7OQyjTpwzY0qjCLUl9Hr7RUzEGf690Gc68DVZ/ZvMnXQB3fuhnhhHPXd9iz011npLoi3deyHOBU2NfLvuOrduE8DzjGlw6sweQGLaUwEtu1UDcH5DN4D7DNgD8Gh7+N9yvehw9tp7GBfkgR4FqNROkaRtpOBsK4Z61nM4ffryVNsWeaKidkB7F8h8hsW8uTpo0OY92WA/pzG3hgZfN0Q+oq8EjZONIZzUjjAQxON0yQcwfNyGoaeDazKxGv2n3nhKUkcNjo/9+LzsK3YvxfifBZXkBIRCRfoOYX6n4ePOSJhHmNx/iwOms9KZbpQJXqeCqfIW0P3iVWk57cc9p1+en4TESlRmeUyXnsvi31jkDxoxfPxOgdxvC14M5766C8aiqIoiqIoiqLUHH3RUBRFURRFURSl5uiLhqIoiqIoiqIoNWdcHg0rHBXrSG6LVCtsizRTCnJOnCcipRJ5E9irQGuTF3OowXV91NrZecxEKSJiRVHkF4vhusu8FnYxi2tyZ0lD6LJmvmyun25zngISgHqUEMYrk2djELW2+QFc9/nQl0jrT1pZi7wnvlAG1zLWoRCwDrzloa5wWj3p7IeVabFWd0Lw5YhevGPDc7Bl02O/gtiOm9kqs9TfwqRHZm9DkTPtsr8iQMdbEbz2JdJNpyghGHs0OMcK2ZrEq5DgWcw+GiV/RJh0riFKcpMrjZzXRUQkRkkn2SPkUVvY/DcMw9tkluFRH6+bOgfi5NJzq//OZs08CxOB7/tVPbflYRtUSLDuBvwdJ2KxRwfbvljE83IpM7Plc+6OAJ0s9esY9TkjYRrVu8LJPTlHkmdq5EtZHMMyPejBSHfugNgdRP9E51bMGLx/K3o2RES6D6Dm26L7MTUF8yotOfds3D5tBsQPP/qUUcZWKnfqglMg9g/PH15AnoWJoFIcurwhB88/X8b5shDg9eNxm4dxi/NLGKmD8D42xkgxvW7c4TzqbzZdx6Zm7K/pNPkNG8xEvbtexXMXmnP9ceb5CbqvykVK7EZzqk2+kHJh5EzhfoDPx/Px3sqQf3PW1KE8YZWyJ7tkdG1/LSmVSxIqH7pe82csgW3b9qAHaiBjehkyafJL2JQPrIJtVGfjc0wqgd7g2Y1mBu08PWdWMjimVug6HhzENs5kqE0pOXKDmIkIy3TdDhzE8XDvAXzOtFLkB5XJycszUegvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak54zOD17eLlThs8m5ox42pNggrAYl8Mpk+iPu60CDTc+AAxMU8GoccMutGYmZStkQdmoXqGxog5jxzeSqjFMdjxqkMyzVPzLfxszIl6OMyfReNP7agwdf2OWuNiFtAc5ETRkMcm8GFkiFaZFgPhUzzUSKGJqlIiJKqDUtYF7IDLvAEEkni+RY9bOQIG7dFJEzOaofMey4ZuqwwG2+xDY3kVSJikwm/UuCFAbDdnBBexyj18YRNixNEzEUWfHIylksjG7VdagdbsMxQgBEyEsF9SmSQC7HDmPobm8djAfeuS4bNDJnUX3r55eq/8wXzHpkILN8X60g/4ISN1M5ehQyqItK1Fw2TnZtfgrinayvEnIgsn8U2yZfMBQlK1Pcb2tAkPX3hYogXLD0N4vrmRojTg2jC7t+3yShzcP9mrFcfjuVeHtuiNIgLXvTuw/0Hu80FMSo57EPxGJqGSwNYxs7N2yAODaApdMcWbGsRkZbm2RDbtDiDd/j+nKzUWclUuJocs0wJ4ewSziOcGFZExCajdohXm+DuRONVqUjjV4Ap3qYxLIp57STXj9sLJZyDTz0TnyX6B7DMcMhMNsv5gX2aD3jdDjco0+Dw7/vmfeUacz8l6q3QGJmnRRZoIZn0oDkHT50xDeJ4aArEzS1D169cckUEk+QdaxKpuCQPz70HtuDCCRYtMnLK0nOM70dtHPfz6X6It770IsQhWjzDp0R4fQVzjOWEtNEojhOREG6fl0JD+ZatOPZYtH9rGy6EJCKSTOBz5r4mnJ+iCRz3iw6eR9FY3MTsf7xAwXGWv29E9BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmjMuj4bXOFO85CG9W6iuGbdR4hW3ZCYLkgrq0Eo59Gz0dKOOrUL62OZW1Cuyhl5EJE8Jr4rdqHEOOfhuVaaEWOUy6fnCqMezDS26GMmBWLZqkRfAo2NYLulmk6Z+veKi5s8nnWooht4APs8Y+S2mk25WRKS5Hv0CsRjpXIdp5qNi6mSPOUP5+sQnH0LUZk1ugJeGsk+xf4KtCZzQj7dbATrfZATbxamg1rJSwevACfpsMvQMkN8nGQvwaNjkDaBjuGSYcijhWpgTbAUo0IucOI4S+IWpj1fYpOXi9nCA1yRKPo4yac67ujqr/y4UzcSFE4Ml1faxyMNDmvgdz641vr3/2UcgDmXQm2AJHqPQiz62gTTqut0QJYAUEaHPtm9B3fOf1v4W4vlLToV4yamLsA5prKOfx2R7IiKlNI7daUpCms1Q/6GEoRFKXBjyTX9BfRTbO0552zhh2sD2XRDv34hJAzv2ofdEROSU5cshDlPC12LFTFY4kTRPiYtz2FeRy1GC2zzd90E+A6q/79FcRLe+E6YxkJPPBlWSxiPWlmf78d4NUxndnTTm1eH2rs6AZwsesiyuQ1BFx4fr4kHq63ASzebYa0neN4eSCAaI7Dv34X1T34BllIZZUMuUMHAisKQi1uGktDb1hanTF0DcPg+TXYqIxBN4Pps3vABxmRK7hukm98m7sG/fQaOMQhY9Fg7NVdEo+iniNP9Z5DFyKcFfuRyQiJW8valWfA5YHJ0P8UAGr/NgVz/ElbI5/oXIl8s+Ius4Nm3oLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1wejUqpIuXD+RfKDq5f7NmoKSsXTR1lyR05v0Qkij4Dm9atDpHWLpEw9ckh0tuVyCvCOS5YZVopo87S80hLHDE9GiGf/AoUW/SdXAF9JCxnd+yAHBDJRojtCOr1IuSniDh4ns20FnRD0tTzHcjiNT24F30hg+khvXg2b2oIJ5I8aY3zFvkQAkS5Pnku7DD2N8sb2S8RZu2mb2pkK3QMx8Fr6ZA/p8T+HsMogn0p7JjnZbEemfw5HuleOXdHmO67IP8D6z+5Fh55Zoy8LWRcKpXMPBg++VVcyu/hDtvuuROvTxY5ZDU5YjdhP8WOPz4O8aY1PzW+Py2B936qDs8xncXrnUjWQRxKYX/ybLx2IiKWjf6XqZTvxXKw7UulVyHe+zzGDUnUNEuANrycxevvUE6BJN2fUdI0c7fOBeTBKVLagb4CfhBjb0CG+lOB2rau0Sgj3txsfDYc+/C4YtdC9P8aiCTsau4Lt0J5HCiPgQTcIqbHkO5r8raFIzTn1mGcGzA9K3zvF9AmKeU81jsUwr6w5VX0zpy9aiZ+v4z6dpEAffoo45UxZvq83ZwfORdHZhDnywLNiSXybIWjNJ+ETZ9jPIbtu/FF9D4tDQ3lxKlMgkfD833xDjdWsr4Rtv3h6Wchfn4T5rEREXnzRW+GOJ1BD1qB8u0cOIh+sPZmzAk0ZQbGIiKlAubFyBdxvIvFMNfawT37cP8c9q/+LH5/oGD2jXSO8gTRfTSYxr6QGezHY85A/7HxcCymP+VEQn/RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTnj8miE/YJEqhpy9EcUKD+Aa3ghRCqUx8Amz0VzawvEvHZ/JIJ6ZCdgvX+X1md3S5zjgtf/p7wHpG/36bzsgPwMHXs6ILZ8PMas+bOxTAfPo0J+Cs82da9tCTxmfQKPEU7geXFbhxy8Xls6sM4iIr995g8Q7+0ZoD2GNIKlSdCHDk9h4LB/gnIaRAN8LnnK0+BT/2GJc4WuNTWpRPgLIuKQHp7zZjjk83BobXaHyrA5Pw0LhcX0dXC9LOrTljOyflls8+8PRbqfLfJIJOg+8kiTXyEvSqlsejTISiIFav/4MCE1ryE+UVQsVyrWoXMp9uyGbfuf/y+IWyxTS97Y0ghxltZL5/wkcW5X2r9SMdvR9vCzBHlyhPIPRaiPVQqUyyONOumALigOeeOiVAaPoxUal0m2L735gHGW8i80TJkGcaSZ8hUV6f4l38i8eUuMMlJNqO82auEdbcPEYPlWdX5xy3i+IR573AA/F40NbAnzKd+NTeaZZBLLGOg2/VwR8hmUs3gMsl6KR32jtwt9TIO92J+bGqg/i8gePg86T5tO1KfBxryc5thu27hX14EeiCtl9n1QGZSzpFwKMtFguYU8nvuLT+w56vEnArfiVXMkxZvQH1Gg8+nqxfYRMecam7wwCcpbUyBjVpb8Fs0J9FuIiLglvE4DA2gSikTxWSicxGepgRzWsq4RfXLxejMJWZS8dJaHc+hgD+bwKVP/ygU8LzN8uTkvmEV9nO91jicS/UVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5ozLo5Hw05LwD2nmLBt1araN2jqvFKTzRpFZNIrrvXsoc5N8dy/E5RLq2PyoqXHs7+mDeN26pyCuq8c14c89bwXEjY14XiFap96xzHXrn1j3NNaLtr9rOmqJk02oKwxFUIddzKFGVUSk3sV8ICkLtbEOaeJ3dR+E+JUdGG/cfsAoYy+1nRXBY5YLQx6H8mR4NIbBvgOyPkiIzQ4ikiSNYklYQysU43a2LvgBeTQ80kWHaO10WupfHMoV4dEOLgkzA+w74nHFqN4W/T2hUMR6+5TIJciH5JMnhj0yBY800bReP+uJ2ctyeC+IImHU0g5f2z5onfuJwPGtqiemfx+ucS/deE9FU6aGuhyi/uDiGGiFaC3+PF5wSh8jfoAOPx4hP1cM26pICRa4JXnMY/VwNsveLZFoBI8STuB84FO/LlBOpZyHY2BnyTyvltPPhvgvrvkbiNc9+kuId23ehHVI4dh+xoK5RhkpyhthsQ7awv9PNJl+V5zDvon6RvLphXACPbgf81GIiBTJf+OER76v3Qqe6MF9mC+gHHCdQiH8TjZD8zbd5yXS4fPYsekV1Pqf8YbpRpk2je0ezU8+59Vgjx8NoRU2kkhAnhIa08xUHvhBpUzHDMgF5FHOEc5rUhrmW50Mj0a5XJRy+dD1KXt4jzeTZyrRYPon2EfEuUQcarMizU0813WWzOeYSD36rE474y0QNzS1jlinJOVnY59lNheQI47ySHFOlTlLlkPMXqgk+Y5279ojTCyG+WZSKYzjnJuI/MiWBM25E4P+oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJzxuXRsIs94jiHtGReFvVe8SSuqRxOos5NRCQRIu2viz6DwcwgxB7pJDP9KGDs7THXae7v7Yf4wL5OiHu68RhtLagrHEi/AjEtDy9nnXm6Uebqiy6CmNcmD0XxvAsktLY5P0iARn5fD9Z759aNEGdzqMftHUR/y+6D6PvYsd/UGXYcxGM0N6Gm2XKH3kvdAA3rsWcokUaJNI4Fl7TGAeugRygnQYgSAlRCeF0cXre6zGp18z2dJfOsouUcBBbt4bJvhPpCUH4QlxNQ0DEc8gVEKY+GZbFm39RyFkgry4YVi24Ui/Yv0BryIcdsO74eYQev1/Hg0bCkIpYc6ie5QfQ0+WXUr/txc21010I9ukN+iAz5s3Kk9Q2FcX87oB1Z5xyO8Hdwu5vFtekth/00I+drEBFx2Cdk47XLsSeD7t9+8qL0Fczx5cJVb4Z47unorztAvrRte3HsF+pPi0891SgjGiFvCd9bk2zS6O3qq/oRZs/FvFO93eTnCfAAWOwzo3HcIrNbqYD91aNxNqgZ8lnKw5JnYxF+qVxm4xnW+2AHeoKyWdTgi4hEY1hvl3T1EfIChB0cr9J5ygcSkHPA9OiNnIeJB3+bGp/HdhGRCPk1XbqGw4dZ3/clXzbzmBxLbNuv5hPZuul52DadcgS1zznT+H6YnoU4N1qxhOfj0TyestH3MZDBe15EpL0d74tIvA3ijoP4nMl1aGnEvnHwII4jT/7hj0aZBXo2KBaxT3ucRwqnChHKA/aDnz5qlME5Rqa04bPrpZdcCPHb3noRxJP5q4L+oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSaMy4zeNjLSdg7ZHKxCmjC8Sw0v0TrZxrfjzY1Q5wpooHGJbOUTwn+Sll00Bw8aCZrKWXSEJ+1bBbEFUFDzbPPoaHpiT9izG9ib+/qFebvbvwgxE0taFjKZtF8NEhxmAyIYgeYLZOYZGbQQ6P2i9vQoBSl5Id2Ix4zwgY9EXG70ZyWzaGBKTEsEZjhP55gjFxF5KureKYR0qfP4mR8jFCiKZ9Mii6ZYHMVsxHYnFvIoZkyRqYv8iSKSwnCOHEUJxEUEbHJdVh0ydROZje/gvddPS9GEDb7X8SjY1JbRCMYl2n/MJn6+Foc+pCSupXRGB0d1jY+Z1ecIHzfrSZqLLGjz2ITtfl3nEgYL3ixQCbBEvYXalaJh3i1AbM/eJUyfUJJAi00nJZKOGaymbyuDpMKhgNmDYfKqND1zpfQcO7SggPpPLZlyTPNuLweAfOGlRdA3D5nLsQ2GdRnzZ4XcBQ2tVM9jvS7yUoYadliHy6bDdDpNM0rvJKJiFTI2G8kfBzF8Mz9jZPviYhk0nRvcyI7c4kM4xhQJarTKy+Y836ZkpCGKBnwuWedCfGy2SmIn3oOF1dZv2mfUYZF9bQ4SSAnd6TtLnVgY6EBMZ83InFOHjcsYZ/nS14m1gwunle9Bzr374VNAzRXdffvMr5eLOC8UMrjGJ/N4yI1fgmPme/DcSTs4XUUEWmfsgDivfsw+d3O3R0QWw7Of7PacbEBzsvrB4xNDiVJHejrh5jzWmZxyJXebtzfokUBRERCEUzIl9+A51EO4fZLL14FcTiO40FQwsdjtciK/qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc8bl0QhZh/4TEXF81AYWi6gPLZcwwZyIiJOaAnGUtHHlMmqLbdKBs667YmQ9EfEpMVQyxondUPM3c1Y7xMsrZ0HMOuwlS5caZbIuv1zBtolHUW9XKWOzu6TtDgWIoONN6PtYvAjr8dLGFyDe34H6yWlzMGlN2zTU84mIFLINEFsV9IHEY0PnWakEaOyPOb5UsyCxHt7GmJPziYjYQsmnSI5YItuK61GCJc6255h6xhD5ayzyOxzIUaJESkzGiaWK1M6uz/p7kSjp+AtlrGeSEva1NKOu9cA+rNOCdrP/OdbI9Upn8H5nPbPvYyVjAT6QmINtUbLIuzTcw8WZxyYIS8JiyaG2cGzUgVs+Jw0zvx8O4XfcECVkJL9MiJKXhYS9MmYfdCmpY5nGPJcqxsk3LZtjPF48TtdFRMrUj7NpGv+pzFQCTWQzozj2ZA+QiFlEiqTnZpwojldz5i8bcX8vSKPMOnxje/DnE0U2XRrS/vs07xRw3gmqY4R8Gz4lZ2TdNid35L4UVIYp8z5K0sPqZk4giptd8sJ1d5nPFmGaM+cvmA1xxMb+F6rg88pH/vsbIL7zf5sJbbv7MXEge0fYz2P0JU7kGzHH2VgC7/9Fp6HXtbNjqN6u68lgr3mfHEsy6XR1/BjMo1+isH83xL5gG4uIZLM4f6WSjbgDzZ9l6jsD5MGti5MZVUQiEfS1bN/5KsQvb0dvQ54SRdtn4biRNZLvmddt325M6lckj2KhjBc/Qn2lsR7r7IXNhNch8utE4ngv9mfwevQP4n2SiJvPfBOF/qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc8bl0bBtS+wjwkQSKPpGfgDUIouIhGOkQ6M1vMOkTx9tnWqORURKJfRoxEjzTFJ+mT4F81NMm4HazgMH90Pc0GhqAlmoGqbkCBbnICB9eSiMdbQoFjF109OmTYX4lAVnQrx7LWoGK3m8Po2NpgawN4661K0b8dyntg/lQWFd90TDWmLWw9pBGn5aRz9H+QbY52HZpI/n62abt88g5QsY9FHP7iQwrrioq06l0D9hk6ej5JkeDc/H/pWk2zpUwbbZdwC1xvUR0o8GaNcz1Ie5Fg61Bcu0K9R2uYC/cfDtnPfxg8lTmA5hWVZ1rfFoEj0BBfKUZftMD1mP243xALarT/fV3KnoXYhYeMyIHXAfks6ZvUU50vJ6tMh7xSEvXAH7YDRiju2daaxXjnLQzJiN45VD88WODtQThyLmGNjc0mJ8NhyPx6QA/8pwxuKzmOR0QQaDg8Vq/9u+Ge9jzlHA3gYRcz7kYbJMeVxG9VsEYNO8zbk4gtbvRyj/BPtCAi5cmPIOTG/G83Sp3mlBz2ORcpCcMb/RKOO/niOPRhgbL0z3P1v6kinKZ8TJn0Tk1DPnYD1WYj069g7de+WSK9teRl/EsaaQy4p1OLFEXQTrH4rh+eVcM8eFZ6HHokxevzL5Idj/WiHP2kAWr4mIiENev+nT8RmvoxfH4H7OXUTPof05fKYssplTRPp6cUyVEO6TzZFHiHKoxBI4u1l1Ac+ZDehxjlBeloE8xh0HuyCePhV9uppHQ1EURVEURVGUExp90VAURVEURVEUpeboi4aiKIqiKIqiKDVnfB4NyxL7iIaLPBoO+QrsOOqXRURK9F5TKqM+nfNosF50LORI0x6yUesWi6I3oUQ5LwYGUas5vR11wZUKafFEpL+vF+Kmelz7uqenB+LBNOoKm1pRexcOB2hYSfAZozWRV61ajcdswWMO5PZBXBGsk4iIVcZj7traB3FHx5C20fMmQb08PI0GaQkt6o8RJ8C/46PW0iXtcJh1kyHS3FewjH39Zl/oI49QqoF0vC4es6sbjxGm/B/xKOrhe7uxv4qIxKi/lOg+8shfkS2QJjWBZfbm8RxEzJwjtjdy+zukP7Zpeybg1nbJa+I74xqeJga/cug/EalraYRNFdIoeyUz38QgLc//9BZc0z1DO5y3FD1jy2bieFYX0M9jMewzHuX3yOXQD1GicZa15CHSv2cDNMpuFM81Woca+HhTE8QW6e4LB/C8p8xfYJQxa+EpXCpEjsW+rdcCHYM1y5OdSMN3q4X3dPXDpgLdt5EAn4tPY1yZvDR8n3JsWdTfxqDz5ng0jwbvz17MoK/nsth/BigHVHsrzuO9efK1JdFDtHSxeV89+jz6ISKjjE825S/iajc2m89IYUqK9PTvDkCczw31eXcScllZZVes0KFy45QKKUMXxg+ZuZIqNOdWfM4ThTHffmSDMXL8iJj5cVooB9nUemr3LG5PpfAZMU0eDStu/n2+oRGPmaH+6PDVZ/8x+RGdthlGGfYZb4K4lMYyerc9C/Hm7bsgXnEG5gcZ1SpVQ/QXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJozzjwa9pBmk9ZBt0lbbodNfbIn+B1eQ7lC2nLWh3KejXjcXFnfIRFfx37UQLfPwHWqk0nU4zlh/P7CBbh/y5RmYeJxPNfuLly/uKcT40gUz6OQxzXorYC2i3BeElojvqUF19s/95wVEB/oRM9Gd+9eo4yQjZreefNxvelXXh5qy0nxaFhS1UZHIth1fdI4VjxTR+6E8DtOmfK40KLyRdKL7k1nIc5b5nVaMBO1vqkU9umKi21cl8IyUwms497d/RA3UN8REelxsR4v7UOf0SVvwj7cTnkW+nbjPTIQIP2NeVTvKNa7YOGXIuTZ8siP1Ryg37VJU95XIq33Uf49sQx1QjuE9U3WoQ+h7JkNua2jH+LeLPlnyAe0/SB6qZaTZ8NyzDL2UT+1KX9RhsbVWAyvRSiOY00P5WEZrJjXLlvCMstpXC+/rqER4lwW+0Mn2kZk1VvQcyYi0joDvW+lMmqnwyHTk1BrjvgLRs8FcWywxKnmDHJdc4wbDufXERHxfRxfKhVa35/GyNHW1bcC8hWxp4KPwfN6UD6skb4fVCc+Rq6Ac2pfXz/G3Ti3/UsP6vTfcuFyo4w3LMPcVBu37Qys71ClsI8UCujHO1gwPX7796Pf0yF/VWnYNZ+MPpisa5fE4ZwP4SQ+QzRPx30LgmOAiIhP45VDbZTt4z47cl+KRs1nQM/FfX77299DvGPbHohzWbwOs2bPHXF7YxPm5RARWboU+0//AJ77vr3otenro/wf9DydDMixMjWFc/9gmXyPPo6pL730MsTveuubIY5GzeeXY4X+oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJzxunRcMQ5rO8m6aA4tGZ0mPJViIhUSBNWLOA6wBZpx1lDxrkj6ptMv4RNmlFPcO3rbJ70y+T7SNXhOvW5TD/EyXpT1xYivXk+jRr5QgYFyF4FjxEhnaFbNpMMVEjzzusw+4aWEbWOdUn0cFTKpra7i3wb7dOxfXfvHNIVup4n0mlqMI8tw0wapMl16fydkOllsGgN77iD7Vx0sU16SxjH6vA6hQIkso1N2O+7D5I/J4y68jnTcX33zgHsK24Y61w3xdSHTqVz70vjtV80G9fkbm3F/tdZh/dM146DRhkk3Raf+h81nVTIRWGTpyYmAR4Nkl4nIjFjn0nHtw79JyKDvXifF4u8Jrx5jvsO9kPs0TrwU1pSELe14LWa2o4eoDxp0UVEuvqwX5/zprfhd/ZugXj/i09CPJDBProrj3WopNqMMvt6UfM+fwquK2/ZeLMc7EXvST2tGz9nwWKjDMshH6DHeTN4TPzzw3Lsqk6drQ02558I0PBXyNfBFgv2tvEhQjQecV4OERG3wnkvKJ8Eed/Ya8AeDsfwc5ll2lRGc30jxF0H0Yfmuahn37Yfnws2bcHnABGRa99zPsSf/Qpq/TmvBZ+XR56tcEAejgglp4gn8Ri9XUPt7/siI7t0jgFWROSwN9FyGmFTinLlRDxsUxGRVHIaHs7GsSYziLm7PBfHslSSngHD5jNgfT3Wo7UF50ybfEr9AziOR2iy6+/BOkXC5rzEjopcBr8TcihvS4KeGYuUz23LeqMMv3MnxDxfDnShh+jJvVshfvltl0B89tlvMMsYZ46bsaK/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotSccXo0QmIf0RSHSI9IgvVoGDW6IiKlEOq7HIpt0uAWi6jPs2it4VjS1FHGUo0QJ1pQA19mTbOL9XZIH2qTHtSvmKrIQgnXWa74I68LXsiidjGWRF12NEAn51E9eY1uiwR7IdJ/Gn6XmKkzjIVxLeh6at8pU4bqWal4snU7agKPPb4c0ef6hh4W9wy6BhZ95FIbZij2HOwLDSn0X7AmX0Rk5859ENdznpYIXocXXsT1tafPRT3p8tMx/0nBMT1CpQyuyX3a5WdCzP6KFMksu2zsCw1RMx9BLEprwpewMRupv3FOHI/+pOEFrBNeoVwcvkNrpA/Xh75Grejrx5Yjf58JkQ+oh7S8XQfx2oqI9GVQixtxsK2bYtjO7Q24fbAP77k9vZSAQkSmLDwL4nlnvAni53bvgrizCzXKlo197IwLr4L49DdfYZR5cNM6iCt7n4c4TvNDmf7GVa5bAHFjE47bIub96/D0xcPm5CVbOWZY4lW9KD55zlzyAIQCxgqPvAwO3bc+NbJF+Zpi1DeCcmBUyjhHFvKow+exerQ8Gzy3BcH+FIs8ozzfVYo01lPneWULjuMiIm9Ygj7HJTNxbH5pJ3ocizkcA8P0fBMOyIkUbcJ6lyjPTmiY18n3fcHR5NiTHhyQyuH8Nbksjj2JOD7H+JXR+59LeaWsMG6PJ7B/JRM4J7TVm57FGO1z6rKlED/8n7+FOEF5g1IpjCM0dmX60XcpYnobXHrGS1J/TNG4zrZcfn4TEUmQryNZh89rC2aid66lGf0r2Sx6onM500MToecTzks3/DzHk8dFf9FQFEVRFEVRFKXm6IuGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzRmnGdweMmrZHm0bi2GLPyEzCZlLjpiOjlDIo5mlWDStUBYZNCNxNKUnKSGfUHKhCH0/mkBjULIBDTgiImky1VhkZouTIZizmxmJlQJMNoZJnZIbki/Q8EWGyNgcp+SHIiKxKJrdenrIOD88uZhtGqEnEofOJ0KmpUqAHz9kkaGZTYhkCmslw5ZboYUDSuZ1ikWw/7ROQUPWXjIIexb24dYm7F/T2tAUu2svJp4SEWmges+fgwa5gQE0i+/b1Q/xL3/7KsQXzDcXWeD8ei6Z7aPkOPcsrFOR/qQRdXEBBRGRLJnrBz2839uGmfWDEoVNBJ5liXe43/T04LUo59AMfrAP6y8iImSYnDMdE1jNacbtrVFMirnvAJrBEwvOMYo49y3vgdima5Hpw2MO9GI961saIV6w9HSIW1pNo7bdj59l+/HeOdCBbbVnAPvP+ReiYb2hAesgYiYl5cUaeNw8Fl7wI8bl15q46vUSb0hUzdGRGBo3GymZbHcH3vci5lzT0IDzY38/JQylucqx2ExuJqXkBHvhCPaFXA7nlUpp5ER3pnvcKNL4Ti6LfZzN4FMpielLr7wMcW/A/PHsn/DemzWnHeL1W/fTN7AdeMiyw+aJtM3BtsjswfEgP2wsH4cXt2asWHG2pFKH6rRvFyZD3r4VE8RNmzHL+D4niLRdbKOIj3OPX6Z7nh47wnXmwiW5PPavadNwjD333BUQ/+mllyAuFHBuuu5v/zvE9QHPgBFabMelenOyYMfhhZAwXvOf/2mU0TYFzd5z587DHchoP38+LrDR1Iz1ztMiDYc+w+eROD1bBD03jgX9RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmjM+jYQ33aKC2jn0JQdpN1rGFw1g8ydTEJk19qYTau3LR1JhVCqgxc0jHWglTkhyXxJgkIkxFUZPmshlCzKRH1BQStlFH6FicLMhsK8YiTTwfgw0wnIAoTI2bjJvJdObOmQNxVw8mpukfHNKglyuTmw3LofONU0KccJCAlXTVFR/7j0enVChRm1JficbMNmhqQ0/G7j3deEzyFS2YPxPixnrU5B7owMRRiYD7qo7uq8GDvRCXS1jmI39ALe3ebkzYVphJniIR8cusu8Z4wMfEUnkb7zPPontATI9PLEweLQ/LGH7Jx2AJOyZ4h1OmiYhUKFlZmRKVpZowoZeIyPTF6HdoJ49GE53X7ud+A3Eohf1j2VLTo5FqwHJtEjZPmY3a3Y1x9GY5CYxT9axJpuxSIpLtx37ecxDjvZ3oYzv3ze+GeMnpb8ADBnggLBrzzFucvzM5Pp5jSVNbSuzD3hQ7jueXSuI9Vh9rMr7vko47FME+29szsvfOH8VXKSJi0d8vXRo33SADHeyPdWBdf1ACP/ZoFPI4ptWlcFxubZsK8YwZuH9f70GjjE17cT7MDqKWPxIiT59HSUtdSvYb8Gde38Nxs5DBZ55QxB6278T379NPO1PqD48HT659ArZ9+5vfgXjZGacZ359J3pjWJuyj3IYVnzy3NO/4runTLdEc29CAvo/Tl2O9OFF0E3kwZkxHL05Ds3lfTZmC/SnMz5nj5Ge//IXx2Xe+822I3/1uHEOXLT0V4u07NkN8SmgxxK1t6PkQEcmTv2UwjV6n4UNsnpNfj4D+oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJzXnMeDZ/yaPC64k4U198VEQnRetpJWqPXS9Ga3uTh8Em7yV4IERGHl9wmb4NLuTk80lXnBlGr6fpYZlPQGvJUkVIFj2mRrjBCa3o71sh+FxFTfWyRVtb3Rr4efEiHDQki0lSH+u9zzzoD4rAzpDktFEryX/+10TjGRJGhtdd70qiXnT8jIN9JBa+9HUUd5WCaPD95vI6NzejXCUolUizgMfrT2J8WzENPxhTSSfYc7MHtU+k8Aq6bTxro3m7UEocSeJ5ZWj/7TfMx70Z7o7lWti/sV8GTpxQjEraw7dwK6pXJ0iEi5vVwnNencz0W+GJV26K5Df0VoQReq+XLzzW+v+D8SyDm9dNTLrbTrhdRB93YNhvi9tmLjDJc0m6HKMdJw1TUEyea8fpLhMZl4+9RZh90S3hB91MOB6ce/V9Lz8S8GRbnYXHNm4trYbNdYAJ8O0e8AEauhwniwN7e6tjeTPlOYuT1a6o35xE7jP6tAiW4iSbQ71XMYX/M5zn/TUA70GTjuyPPVaNlPKlUeN4PmB9pvhvoxf6XSuK92dmN4+zMmZiTIB418zMM9OJ3Fs5GL9uMKfj8su6FbRBzHph4zCwj20P5QDJ47qHQ0HmO7HQ59qy64AKIr//QhyH+/370Q+M723dsh3jWLMy1MW82jhOtLTg2WRbOTZyDRUTEpf5VoDl5+7a9EDc24TPdgnlYp94evGdKFbPMCo1/LS14TM7j4lEdeYz+2+v+1iiDyVO+j3gC24bz12zftRPLjJjza0M9+vMyGfRo9HUNPVuk2b8xAvqLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs0Zl0fDsqwhLSQtbm3kzQhcB50+I51rLouarxzpw0pF1KSVSuZ67h4JdZMR1GYmScdWIs3pYA+u/y6C2rtE3NRVsj69UMT1heNJ1OdFKYdFMo51CgXkSmBPhkUKTVMpS/uTV4VjEREpY9uFXKznjJYhf0E+b65fPZHwmvqOwz4ZU0fpkx4+X8bv1DXhetu2hf2rQnlb0oNmGe3TcL32WbMwp8F5K9H38sLzL0IccrFOEbpDy+UA7XoMtZbzad3vrgJe6/mtqC1e0kBlBujPi6T792iN+HCY1jfnnCRlrEMpyGtC7euG8V7zh40ffsD4MiFYVnVsa6S109vnYH6KOUvMdeQXLsPr75NZxSmip2fekiUQRyjHRSyBunARkTLn2KGcJeEw+7lw+4H9qGHu7+uHuGX2XKPMdA7PY8d+1MifQtprJ94IMWdEcoL+BManxfHkpvaZEGwZOk2P7qlcHnOVVDhHlIg01eE9ZdON6pZxPrQpZwWPs6yHFwnIc8H5Huje5XwQ5nMCHS7gvNgz0z+I/W+OPRfivXswx0BbK+ry+6jPi4gMkH8zFm6E+KxFONa/Qnk3Ovfj80xDE35fRKS/B+sdayZf4bD8ZZ4rIvy4MoGcceaZELeR92vd4+uM77y68VWI17+4AeK9O3HsmTsH826UluJ1smeht0ZEpNlljwY+q1TILzhrKnrt2D/BeWEKBfYpifT19UHMvsm2aVhGnPzJ7FuaPRu9eCIiH/rQhyDevWs3xOzJ4Lwt2X7sf88++bRRRhf5kIRyMJ2++JTqvzNZHG9GQn/RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTnj8miErEP/iYgUbdSz57wk7Ruw1jB5FzI9qGvLkq6ymMf92QeSzeD6xiIipRJqGmNJyn1A3hJDD0phiHNk5HJGmRVaJzxDXhOb/RFNTbidRKi2FaB7pfbkPXyb1qGnd0iXvlGumB6LSpk8CbQ2dPfBofMqFCfXo1FHa5DXJzEuu6bPoERa4FQd9o1lZ6AuMjOA/dOlvtXTaWo1Z85Ef0RdPZaxfftOiAsF7ONzZuD3szls53TBbPf5C1D/XqRb7+H/egniBh/Pw7Kx7QJSXAjbhmwW0dN9Ymi7acnukGMK6iOUmydD/gVrmA7bmqQ8Bo5fEedwvRxa+zzSiDlRgvLhOFRv18aGsUIY1zeiljeXQ11sqWxeLcu0kQEVF9t+sBf7eTSO5xGta4TYC1jB/2BXP8SbO3CcXNqMGmUnROMTaZoNnb+I+CzWN7wof/74rl+do/IZHH+cMI41bsFsn7iNN3IC7VoSDZMenbTjPAdbVkBOC7q2nD+iUmZ/4cjX0Zijg/ahe+20hQshXjIf+9+WPeg/zKTxWSKRMPOAlcrYWHt7cJ5PJrGeZyxFz8bANHp+KZvPEkXKwZWsx/Ggr2to7GZvy2Tj0dh21vJlxj7ZND7j7dmHJpNMFp9BXt60E8sg38FA2myD9gXLIea8K1F6dohS/qZwlPK3efh9fk4SEeFZuX8Az/PgC/+JZZK3ruW0N0Pc1dlhlPHqq+gr2r0P9+khf0WmH8f1Ohq2t3Whh0hEZCCLffLNq1dBfM7yId8he11GQn/RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTnj8mh0VXwplA9p4p58/mXY1ltGzeOl78D1jkVEognMadHTeRDiAcphEQmjdq65GXMUdB08YJSRodwbiT7UyonL2mDU/IUieB6hGOpec0Ve8V1EKqQvJg2qTX4Bi+ISeVHckFlGyEnhB6SRZ7kmq+d46fGg9c9zRdR/96dx3fCXN2yp/rsUoFOcSMLstbHZk2Lqetm70ED+nTI1e1cPaqDnTEPdbmwq9hURke4u1EXGKO9KdxdqgZuaWiD2yacQi6EuuByk+6dr+bvHt0DsZ1BBOnMGnrfh+AkoI+zgUMF5SnoKeB/Vh1CPHA3T9SBvgoiIVyIfEifjOA6wLVfsw36pEGl5p8ybD3Eoap6jT/lHfIe04KSBD0WxDUqDeI8W8+Za5gkaZzkRQUMbrk0/dzFqqWcvOw/iqZQDo1zOGGXGHOxDMxYsgnjeMswHwli0XrtYZi4h37inObfQ8ddfao1X8atpKHIl1FPXNeFYEw6b03s4hp/VN+J1a5mCY8OeXXit+ZhegE/AJa2+TX2afZI+eW1G82RwzgwRkRkzsE8vXoB+uxl1NF/OQs/GnoOody/mzflt7kz8Tl0Ex9XtezshXtbcCnF7M+rye0jHLyKSyeH1SPdR25SGzTm+L6Y7YPJIJfEZZcli857/E+XNsC3KP+HQtfXxum3fhfNn0TMNaRfTMxp3p1SK530sM+/h99vbMT9INmt6a1wXx69iBY/RveHfIa5074B4TxHn+b5+s288thbzkjz7Aubg8ulZtuJiH25uwBxMdc3oIRIRmUNj/Yqzz4HYiQ95sx137OOt/qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmjMuM/gPf79eYocNjs+9iIbTN5xzPsSFsmk29shE47lsAERzSSSCRp9EHI2Tc+bONcvYvh3igR40D1WKaJiJxtGEk6pHI2WxjHUMSpETpeRSPplzS5RkrUyJ30IRvAxsLBIRKRbQmGyYoSl5GNt0DNtOgKGut68f4j370azfMczoXK4EpXU71lhy5EzY4BXiaxDgU6qQ6WswjW3aVkDz1JQ2NGon6vD7AzkzYd+BDkyCU9eA/WvGLEzIFybPa18/mi/LJVzcoKWJFgUQkV278DoV0niMpWT+jhjJNMlwHJDsMJPHc7XJHB6L4nlGY2iEjnh4D1iWOfRYITxGOs33nh/474nEtQ79JyJiR/Acp82aCXFmwOwfrj9asjKM4y1oQLUzOHZUCtg/RERCguZFj65viAy9U+biwh1TFszFMkP4fS+Li1eIiCQdPNdzzjkN4ilT0Hjokfmbk2opwbhupWqWjlFSOY/6TrLRNDSXqEtms3hts2mco/NZvG8TSVwAIygpZVCqRfwO7e+NZv7GuLGhydhnejuawaNxvDdLZTqIi+c5px2N28XunUYZy5bi/T1vAfbp5zfhvbh/936Imx0c36Y0TjfKOKUVyw3NwmvshocMveVyRR5++L+MY0wUHj3nNDTgs9Pc+Zg0UcRcbKdMSd8q9FwRCeP+9PgmuaI5FuXzeG1bW3ERoTA9V/7hmRcg/q9H1kK8+iJ8tn3DitONMmNRPGZTYyPEU5ethtjJoum6RHWcMXOuUYYl+LCQoXE4Ss/HU6di/5w2DeOWADM4t83mrdsgfmXjpuq/CwVzfjsaOroriqIoiqIoilJz9EVDURRFURRFUZSaoy8aiqIoiqIoiqLUnHF5NH712CviHE4U10za4WmzMOmTLZicRkSkRJqycpE1pCMn7mHvQjzGicdEZs/GRD2DfaibTGfMZCtYBtYhSzr8SIwSbIlIgvTqXX2YhCabxTqk6rBtCoU8bTd1+OxnMXTXMdTveZQEyacEa06AktayUHP54kuoXdy5c0ivF5TwbyKpUHIazkgYiZj1a6Dkebv243WySTd+yimoybV91Itmsvh9EZH2GW0QhyOUuC6K/aeYRz9FshGT6lQoMeLujh6jzN37sP/UR9kfgW3hkU8gRMn1XNfUdh9MY3vPbMbvNIRwu0fa23wBvQVl3/wbRyKMn8UsPA97WJ+drORslu+LdVg0zjXo7UR/TvcBs39MWXAqxKEQjyc4ljTNWgrxhld3Q7xrG2poRUQap2C/tUI43riD/RBX8ljPsuC14tR5xQEzYV85i8k9W+bgOByNcnJLbD3bnpzreaJhWVZ1XrRpfozRWJOImPdYnobN7h4cE2Ok8/Y8nC8zafRshMyclIZvI0w72TaNN5QwlBPyWdQ3GppwjBQRicfxWSAVxzn01U6cg/1BvFfnT8U6JhOmBzGXx2P89glMltnc1AhxmOrQT88FK5YtMMqYNwv9VQODOLZHhiW0KxZL8rBxhIljtMSKF192ufHZvIWnQPyLX/wK4h/+y48g3rNnL8RRMjVmBk2P2tq1v4f4oosugHg2jU1bt26CeMcOTKa3d98+iF9+GZMOiojMmz8P4vkL0Pe2dNGZGJ/9VxBHKTGv75uP5g312O+ntqPHJxynZNOU9LT7ACa43n8AvZ0iItt2Y3tv2oxt84Yzh7x3xeLYk0XqLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1wejR2vdld1eXuiqE/s2/8QxH88a73x/dNOQU0iSy0TMXzvqUuibo3XVM6mURcsYuoGp0xHL0m4HzV93T2om0yTJ8OyUbtpeWaTdfbiMbq7UP85bwHq9wYHBiDu6emGeOZs1FiLiETJG1ImT4JTIt19BNtOSJfvBeTBsAU/K+SwXrY1pBf1rcnJY1CF5KF83YM0/E3UvzIZbKMD+1B7HomipnHuDOywtmX6QKa143rYPu3D69CTnUIKtKa8TZ6OQtFcu3o+LgEvbgb3KebRe9IYRe2mw5Uom31jehO2XUOclPs+fqfMniDKOeEFJDpx2XfD13RYPJo++Fhh+5bYh+teLmB9//jcixC/+spm4/uNc5ZAvOjUMyC2bFpn3sK16V/ajHrhLdtMz07rjEUQz1q8GGKP/BROGXXglmd6dIZTYqG/iBQpR01klOGBdfjMZF3f451wOFxtG4e8VZEwXpdkEvuOiEhnJ15bK4Z+nIYmHG9OWYY68D27sL9x3o1DB8XQdWgscLDenEOFvZjRMPlIIqZPskJ5u7YexHp1H0Q9etzDsb7fxzGzO2J6TJvpI/aUNdbhfML+vP4erOO+zl1GGdEmzK9QIYdU77C8JqXS5PokGb6nQyHzWWkxjUV//8lPQLx69YUQ/+hH6Nn43W/Rf9F5EJ9RRER+//snId60CXO+velNb4S4XMFr39hchwekoWrz5q1GmX19OKbu2IXXdsOGjRAvWI8ejnCc+7Q5/uWy+MxtO9j/RvNMRCh/Ul3KHB86yBPTQZ6NN3zg2qH65Eb2Ow9Hf9FQFEVRFEVRFKXm6IuGoiiKoiiKoig1R180FEVRFEVRFEWpOePyaNilUFX7XqAcGBs3oG5t8wZcf1dEpLUeNWGLF+Ga0eedezrG57wB4ro6XCt75izUuYmIdHZ2Qrx3P2ozWQZezKNGtZ/XiPd5FXlTO1fI9ELc3IhizvYp7VgH0rP307r2VoB+mXWsHuX78ChPgeeR7rWC2zsPotZbRGTHrlcgnj4Fr1d9Ykj7XSq78uruPxnHmCjsEOURCaFelddqFxERH7W/05rxO6ki6uPzHahB3F9CDWSiiXwwIrJ7N+Y5mNqGBgrjupWxTj09qMOcNhO/v2D+XKPM/l17IO5Iow/Jo+4UonXto7Q+d6kX+7OICEm3xXX4bxTYdjb1P5tyc7C+VESEbRtuCe8Te5hY1mfh7ARhWRGxrEOa8Xgd3tdvee/fQnxuf7/x/abmFjoe9QcaX9qm4prvN9zyPyAu5k3PTlML9hmL+r1TjxrkSNtciEPCF5v8F62YK0ZEpG4Oaq9zlK8on8N+nazDPse6fB7vxsLJ4OtINaWqbdPYhPOMZVHOhbjZhpz/KJrAscKKYO6H5na8To1tOAdv3dhhlNF9AI9ZIb+WRwMSXzfO69PUhL63cMz0T2RKWEaz4HhzGuVEGhxATX1vmXPHmP6HlIuPS/OmN0K8ZTe2RSPlGps6HZ9XdneYeQxmh2hcIy9meFg+Gv846+9juf886n+2g9954xvPg/iss5ZD/Pjj6L94+D8fNcr42U9/DvG2beiX6OxET+28ufgcOn8Gjp+xBPa3jVtNb83+A+hl6O1Dn27Xgf0Qd3eityRKOTA8z/TB5ckTwZ6NtjYcl6+44m0Q16VwXN+1C/OFiIhk0/j8fOVfXAzxxRe/ufrvwUHTI3009BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmjMuj4YrfnVpe8vHd5SQhRoz3zc1ZgcHUbvZ9UfUeG3dg7q2nn7UWb7tLRdAPG2KuQ5w21TU223YuBPiVzegLq1CGsjOA6hRc0hLHo2aTdZYj+eeIu02ydMlRPlAmhtRgxokT/ZtWqM6gmuLey7qWtO9/RB392JOiD37thll5POoXWxrxPatiw9pgIsl8/oee3w5sqi1VyENLemAA5ZBl4rLmn+MW+LUpjG8TsUi7t+z2/Qy2LRGfE8a+3SJtZe0/nupQhpdymmR7jfLLGTQV+TS+upR0sGWSCd7oAPrmAjwTyRbmyBmfXCOctrUt2Cf7u/GepfLZq4GdtV4LJMe7l0aJQ/DhEA+oJa2KSPGIuZa86xZ5kXbHVqLflo75jUIgjXwnENn42YcA3+55rcQz1uM+uH/Pgv9F3zriYi8tGknxH96Ef1bB0uo/X/7Ve80D6KMSqXkimUfvgAh9IzlBvGe2r+n3/h+uYD+LH8A+1ee8klke1AX3joVr+OM+WbOp0IB9eq5QfI9Uh/n/FizF54C8axZWEZdxPTflXk4ILtApoCdtr4BfUoxnD7ECnh+GfSw7fb1okY+Rb6jjl4cE7MFbEvfwflGRMSK4jGKBTzGtGG+wEKR8h8dZwR5NkbzcfB4GKU8Updcgp6BlW/EnBgiIqedtgzif/7WtyHeuX0nxOUi+XPi6HVaOHshxN29mAdNRGTnbvS8Zsp4H+VyeB0LRSyDfZOlkum9Y58t57E4cACf8UqUV6O3F3PgrFiBOZxERG6hvCZnn3MOxPUNQ/1zPJ44/UVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5ozLo+FYQx4Nj3SWFVqrnXWYIiI2qbAtMiN0dKL27V9/9muIed3gq999pVFGfR1q+nYfwLWqn37pZYjdMtapnEMd3LR6zJUwLSB3QtN01KMnkrjW+MEerEMz6ddnzkZfSSZvagBLpPGLGfk9sMwdu1Az+MKLz0NMslgREalrRJ1gOYc6wlJhqP1LJb7eE0uhiOWXXNQLJgLWoQ5Z2N9itGZ8voCaxmgC+3CcynCsAI2tjbeUQ7eBxeui26RzpHXUiz3om+kfNP82YJOOvz6O90DSwTItC/tOgdaQD7AhSTmHfTKWwLZLhMnLRJ4iPk8nZOqsMwX8Tr5Iel2zWhOOZVlVbSorVA2/RZCPZBRdK+teOeZ8E4HHoLa26O9J7XNRw3zBZW+H2AljByiSyYy16CIiKy54C8TN7fMhjjU24jFJPxyNjn51JyNPBntqJptMOldth3AMx7jGerzvvUqA1yqF1zZH+vQi5WPqPYA68N6D6LNMNZhr6ccTOBdlB3De5iadMRfzSyxZhB6NM2ZjXoPmRvMe2LOP6lnAtrEiPKhh2zQnce4LxczxKV+i9vSxrRopf1a2gm1TojwcjUlz/ihTfrKQjfUqDpt3J3sOPhbwPc73H8fRmDlu/M21/x3i0884DeIf/N8fQNxFudZ692+BeN8eypvBplsRiZFvKE3PTnxePT09I26XgDwucTrXGTNnQLxsGY7rc+fOg7ipGZ873/lOHPdFRKaSx5nnm+FznOkvPDr6i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzrjM4LGQL0d8hkWXjY/4zsI5ow7tgx9aFNsWVidLCdL+fc1aPFyAF+WU2ZjQau/LmyBu8dF005fHMgpkIht0MHFKfQMa7kREHHJWu4ZJBo8ZSaHBK5ZC81zFR6OkiEhmkIxlPpqN+HrsPYAm4qefexXr6KKRTUSksRkNvnHKB5QYFnOiw4nBkiMWXDuOCZdcMnYXQtimIiIVMkGXqf+5lKTJEjTrhcglbbl4DUREXJcXSaAyHDwGJ/irkCHdiuH+vm/+baBA2aqKIdynQgZ1m5IAelSHQI9hEcvIlTAJV5n6vJ1Bs1uIzW4Bxt4y1VPY6DfczG9Nzt9IcrmchA6b721azILjIOM27+NQ249m9h6tTBERrzzyvTlj7iKI51CCNBE0O1aoz1WM1IoiS5efM2LMjHaek2H8DuJ4qccRIrFQtU6FDLZhuJmSQQZMkGVKJBZ20MBcoQUvplKCvsamFoj379ljlNFzsB/ic895A8SxGM6hroPxouk07tpoQD+QxjqIiHTSYhUNNPyXaemGOhpXi5TwNRmU8dVFU3vXAI6BA4PUtnE8RmcfzuHpAXPBkkQK22Iwi9fQKw3VISjp6URyLO6N0Y45mln80GcYn3nmcojZNM3JRW//1K0Qd+/FBKZuwH1V34D3yQc+9AGIm8mI3deHz2fhMD5sTZliJnudSp/NmTMH4vbpmCg6kTAXLhoNNnjblJR2ePMHzT1HQ3/RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTnj8mi01CXEOazLOjiACXJYc+155juMRcYN1oOxYtG3ULeWK6OO8pFHnzDK2DEVtXBT86jvXEY+kFwCNWj7PPQu7M2jrnJrl6ktTu5GfV6xgFrN2aegli5G2vMyJUlqTjYZZVikx92/FzXwOw7geT6+7o8QH6RES+Wy6dE4eAA1qAnSzNcNayp3khNZnfOO90GcJo/GxpdfMr5Tov7Dp+CTpJETn9nkC/Adsy+M5lyxR9GgVuromJzALUAfXyF9sR3GWgzw3xM81rlSQr8A7aVNCfZYG1upsL8FcfiYAd3H4TEkhHF925BGNUL32ETR0dEh6fShe6mzsxO2sSY2EjETchWo3vE4islZg8w67FIJ79sgnSyXwcdsbmmDeP5cHJ/ClHyR7TDRgD9PGcMB9SmP/XmjJCYM0mqPlrxrPJrhE5VUQ2P1PE+dPxe2RUM4r2zetc34fj6N87bnYP+a1jYb4pZW1IWnGnB+bZuGnkgRETeLfonTTluIdcjjddu5pwviQgH7juuhb6GxDf15IiKtU/C+6Ni1E+LprdjnpzXivdmZRm9cZw/OlyIizfX4nVisHmJOIiukb585Db0lBw7i+CEiMpglj2iWniXahtqfx4KJ5nhIZjkWnwg/Z4ZoLjvt9FMhXnHeeRD/4uc/hziTMZNUXnDhBRB/5MMfhriu3uyztYavx2gJ9YLabrQxdHgZ47n+f/4js6IoiqIoiqIoE46+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJozLo9GYyohocMarjz5LfqyqHEM0qKHQ+i58C1az5+05rwcvE2egVzB1Ch29/RCvKAedautLmpUozYWMrMR6xjJoD70T/1mjosdWzogDudR9zqlfRrEIWr2IulDB/rxHERENvwR13revvsAxl24pveOnfshdmnJ7RD5X0REHJLcRV18D00M8wdMtkdjyvRZEJ+58s0QJ1txu4jpZWAngWXEiKERt80+zp+Yx6CYtzv4DYfuATfI3EDYFq+nT3WiXDL814bAFDhcBsUW78B+C26JoPXPyeHikx1l5vQZ1X9ns+gnmigcx6nm0WAPBveP/v5+4/vsuRhN58qa2SNlH6FYNMej0daaTw9ivTZtRh04r51eLFJ+gLA5dnA9uJ6pFHqojvhcjlbnIJJJzEuQyWSOsmdwHbgdcjnyGYp5buyhmTbt0FjO9Z8o5sxcWD2v1jb08qUHsT2Wn7bE+H7HQTznPsrP5IRxvuvpw2Nm8jiGRjnXjYjMWzgXP/DwOkxrwf7V1Yd9fNN2mv8i5GncsN0o84xTMRfMDJoffPJe7uvF+5AeTWRhu5lHY9sBbLsy5UwapLZsa0MPR4jyMkW4UBGJOPhM5NMzTktyqN7FsJmHYyI53nLMHA0eQ3kc4LwuH//430E8ZQp6a/YE5I75y7/8S4jZk8F+idHabiz+h9fic3u9DD/meI6vv2goiqIoiqIoilJz9EVDURRFURRFUZSaMybp1JGfcSrDfv7hNOy8fGHQLz8eCTB8jkdZvtCQmQQUwpKeEv1kVfRGLqNIpVR4ybDAMrGMsos/LxdK+DNtLo9ShLJFUoWCKYco8DKXtJxohco0rscobS1iLs3K12t42x7590QscXekjOE/TWdIOsMyiiBZhOvyGY4slTIrQmHAa/q4j8GbeUld2oGvSRBcLeOsWUo16hHNehoSsVGkU/6YpFMsTcPtw+VSR67vRC2xeKSc4f2M5Vv8Ez0vMytiSqdG+/mZt3MZQUtc8s/03EZcB16a+FhIpxi+X8fyMzyfx+uVTuXz+VG/49K4ekQydeT/E93/3GHXiq9juYzXMVQ225SvNZ+f69J2Wqbe5XmnYg6CxpLMtD5ysYT9i+vk8TGpz/P+h46J94HL4w9Jp3xaJtyle6ZQNPs432ssnRptKWoeiHn/Q/tURtynOOxZonT435M1B5+ocHvx2MOySB7Hg+SqPBdwO02GdOpYc+Qcx1RXfwx77d27V2bNMjXvirJnzx6ZOXPmMS1D+59yNCai/4loH1SC0f6nTDY6ByuTyVj635heNDzPk/3790tdXd0JYwBSji2+70s6nZbp06cf80RZ2v8UZiL7n4j2QQXR/qdMNjoHK5PJePrfmF40FEVRFEVRFEVRxoOawRVFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EXjKFx00UVyyy23THY1lD9zfN+XD33oQ9Lc3CyWZcn69esnu0rKnyk6pinHI6P1y7lz58rXv/71cR/3rrvukjPPPPM110tRXg87d+7UOf0wY0rYpyjKseE3v/mNPPjgg/LYY4/J/PnzpbW1dbKrpCiKctzwhz/8QZLJ5GRXQ/kz4aKLLpIzzzzzNb28Kq8NfdFQlElk27Zt0t7eLm9605sCt5dKJYlEIhNcK0UZHe2bykTQ1tY24vZyuRyYrV5RXgu+74vruhIK6eNxrVDplBxKH3/ttddKKpWS9vZ2+epXvwrb+/r65Nprr5WmpiZJJBLytre9TbZs2QL7PPDAAzJr1ixJJBLyrne9S+677z5pbGycwLNQTjSuu+46uemmm2T37t1iWZbMnTtXLrroIrnxxhvllltukdbWVrn88stFRGTt2rVy7rnnSjQalfb2drn99tulUqlUj5VOp+V973ufJJNJaW9vl6997WsqlVEMPM+TT3/609Lc3CzTpk2Tu+66q7pt9+7dctVVV0kqlZL6+np573vfKwcPHqxuPyJF+e53vyvz5s2TWCwmIiL/9m//JqeffrrE43FpaWmRSy+9VLLZbPV73/3ud2Xp0qUSi8VkyZIl8s1vfnPCzlc5MahUKnLjjTdKQ0ODtLa2yh133CFHUnyxdMqyLPnnf/5necc73iHJZFLuvvtuERG55557ZOrUqVJXVyfXX3+9FAqFyTgV5Tjmuuuuk7Vr18r9998vlmWJZVny4IMPimVZsmbNGlmxYoVEo1F5/PHH5brrrpN3vvOd8P1bbrlFLrroomrseZ7ce++9snDhQolGozJ79uxqf2Rc15UPfOADsmTJEtm9e/cxPMvjD33REJFbb71V1q5dK7/85S/l4Ycflscee0yef/756vbrrrtOnnvuOfnVr34lTz31lPi+L1dccYWUy2UREXniiSfkIx/5iNx8882yfv16ueyyy47a2RTlCPfff7984QtfkJkzZ0pHR4f84Q9/EBGRhx56SCKRiDzxxBPyrW99S/bt2ydXXHGFnHPOOfLiiy/KP//zP8v/+T//R774xS9Wj/XJT35SnnjiCfnVr34ljzzyiKxbtw76sKKIHOpbyWRSnnnmGbn33nvlC1/4gjzyyCPieZ5cddVV0tvbK2vXrpVHHnlEtm/fLldffTV8f+vWrfLTn/5Ufvazn8n69eulo6NDrrnmGvnABz4gGzdulMcee0z+8i//svqQ+C//8i/yuc99Tu6++27ZuHGjfOlLX5I77rhDHnroock4feU45aGHHpJQKCTPPvus3H///XLffffJd7/73aPuf9ddd8m73vUueemll+QDH/iA/OQnP5G77rpLvvSlL8lzzz0n7e3t+kKrGNx///2ycuVKueGGG6Sjo0M6Ojpk1qxZIiJy++23yz333CMbN26UM844Y0zH+4d/+Ae555575I477pANGzbID3/4Q5k6daqxX7FYlPe85z2yfv16WbduncyePbum53Xc45/kpNNpPxKJ+D/5yU+qn/X09PjxeNy/+eab/c2bN/si4j/xxBPV7d3d3X48Hq9+5+qrr/b/4i/+Ao77vve9z29oaJiQc1BOXL72ta/5c+bMqcarV6/2zzrrLNjnf/yP/+EvXrzY9zyv+tn//t//20+lUr7ruv7g4KAfDof9f/3Xf61u7+/v9xOJhH/zzTcf61NQThBWr17tn3/++fDZOeec4992223+ww8/7DuO4+/evbu67ZVXXvFFxH/22Wd93/f9O++80w+Hw35nZ2d1nz/+8Y++iPg7d+4MLHPBggX+D3/4Q/jsf/7P/+mvXLmyVqelnOCsXr3aX7p0KYxvt912m7906VLf931/zpw5/te+9rXqNhHxb7nlFjjGypUr/Y997GPw2XnnnecvX778mNVbOTFZvXo1zIu/+93vfBHxf/GLX8B+73//+/2rrroKPrv55pv91atX+77v+4ODg340GvUfeOCBwHJ27Njhi4i/bt06/5JLLvHPP/98v7+/v5ancsJw0v+isW3bNimVSnLeeedVP2tubpbFixeLiMjGjRslFArB9paWFlm8eLFs3LhRREQ2bdok5557LhyXY0UZKytWrIB448aNsnLlSrEsq/rZqlWrJJPJyN69e2X79u1SLpehzzU0NFT7sKIcgf9S197eLp2dnbJx40aZNWtW9a97IiLLli2TxsbG6jgnIjJnzhzQzC9fvlwuueQSOf300+U973mPPPDAA9LX1ycihySp27Ztk+uvv15SqVT1vy9+8Yuybdu2Y3ymyonEG9/4RhjfVq5cKVu2bBHXdQP3P/vssyHeuHEjzNFHjqEoY4X71Ghs3LhRisWiXHLJJSPud80110g2m5WHH35YGhoaXk8VT1hO+hcNRTne0BVWlGMFm2YtyxLP88b8fe6bjuPII488ImvWrJFly5bJP/3TP8nixYtlx44dkslkROSQf239+vXV/15++WV5+umnX//JKCctOkYqtYb7lG3bVQnoEY7I5UVE4vH4mI57xRVXyJ/+9Cd56qmnXn8lT1BO+heNBQsWSDgclmeeeab6WV9fn2zevFlERJYuXSqVSgW29/T0yKZNm2TZsmUiIrJ48eKqvv4IHCvKa2Xp0qVVb9ARnnjiCamrq5OZM2fK/PnzJRwOQ58bGBio9mFFGY2lS5fKnj17ZM+ePdXPNmzYIP39/dVx7mhYliWrVq2Sz3/+8/LCCy9IJBKRn//85zJ16lSZPn26bN++XRYuXAj/zZs371ifknICMXx+FRF5+umnZdGiReI4zpi+v3Tp0sBjKAoTiUSO+kvZcNra2qSjowM+G54TY9GiRRKPx+XRRx8d8Tgf/ehH5Z577pF3vOMdsnbt2tdU5xOdk379rlQqJddff73ceuut0tLSIlOmTJHPfOYzYtuH3sEWLVokV111ldxwww3y7W9/W+rq6uT222+XGTNmyFVXXSUiIjfddJNceOGFct9998nb3/52+e1vfytr1qyBn4IV5bXysY99TL7+9a/LTTfdJDfeeKNs2rRJ7rzzTvnkJz8ptm1LXV2dvP/975dbb71VmpubZcqUKXLnnXeKbdvaB5Uxcemll8rpp58u73vf++TrX/+6VCoV+djHPiarV68eUVLwzDPPyKOPPipvectbZMqUKfLMM89IV1eXLF26VEREPv/5z8vHP/5xaWhokLe+9a1SLBblueeek76+PvnkJz85UaenHOfs3r1bPvnJT8qHP/xhef755+Wf/umfjNUfR+Lmm2+W6667Ts4++2xZtWqV/Mu//Iu88sorMn/+/GNYa+VEZO7cufLMM8/Izp07JZVKHfUX3Ysvvli+/OUvy/e//31ZuXKl/OAHP5CXX35ZzjrrLBERicVictttt8mnP/1piUQismrVKunq6pJXXnlFrr/+ejjWTTfdJK7rypVXXilr1qyR888//5if5/HESf+LhojIl7/8Zbngggvk7W9/u1x66aVy/vnng07+e9/7nqxYsUKuvPJKWblypfi+L7/+9a+rMoRVq1bJt771Lbnvvvtk+fLl8pvf/EY+8YlPVJd/VJTXw4wZM+TXv/61PPvss7J8+XL5yEc+Itdff7189rOfre5z3333ycqVK+XKK6+USy+9VFatWlVdUlRRRsOyLPnlL38pTU1NcuGFF8qll14q8+fPlx//+Mcjfq++vl5+//vfyxVXXCGnnHKKfPazn5WvfvWr8ra3vU1ERD74wQ/Kd7/7Xfne974np59+uqxevVoefPBB/UVDAa699lrJ5/Ny7rnnyt/93d/JzTffLB/60IfG/P2rr75a7rjjDvn0pz8tK1askF27dslHP/rRY1hj5UTlU5/6lDiOI8uWLZO2trajLjV7+eWXV/vUOeecI+l0Wq699lrY54477pC///u/l8997nOydOlSufrqq6WzszPweLfccot8/vOflyuuuEKefPLJmp/X8YzlswhNqQk33HCDvPrqq7Ju3brJropyEpLNZmXGjBny1a9+1fjriqIoiqIoykRw0kunasVXvvIVueyyyySZTMqaNWvkoYce0nW8lQnjhRdekFdffVXOPfdcGRgYkC984QsiIlV5n6IoiqIoykSjLxo14tlnn5V7771X0um0zJ8/X77xjW/IBz/4wcmulnIS8ZWvfEU2bdokkUhEVqxYIevWrZPW1tbJrpaiKIqiKCcpKp1SFEVRFEVRFKXmqBlcURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJz/n/+yBemVWWhlQAAAABJRU5ErkJggg==", "text/plain": [ "
Model: \"sequential_1\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential_1\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d_2 (Conv2D) │ (None, 32, 32, 32) │ 896 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization │ (None, 32, 32, 32) │ 128 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_3 (Conv2D) │ (None, 32, 32, 32) │ 9,248 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_1 │ (None, 32, 32, 32) │ 128 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_2 (MaxPooling2D) │ (None, 16, 16, 32) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_1 (Dropout) │ (None, 16, 16, 32) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_4 (Conv2D) │ (None, 16, 16, 64) │ 18,496 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_2 │ (None, 16, 16, 64) │ 256 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_5 (Conv2D) │ (None, 16, 16, 64) │ 36,928 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_3 │ (None, 16, 16, 64) │ 256 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_3 (MaxPooling2D) │ (None, 8, 8, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_2 (Dropout) │ (None, 8, 8, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_6 (Conv2D) │ (None, 8, 8, 128) │ 73,856 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_4 │ (None, 8, 8, 128) │ 512 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_7 (Conv2D) │ (None, 8, 8, 128) │ 147,584 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_5 │ (None, 8, 8, 128) │ 512 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_4 (MaxPooling2D) │ (None, 4, 4, 128) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_3 (Dropout) │ (None, 4, 4, 128) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten_1 (Flatten) │ (None, 2048) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_1 (Dense) │ (None, 128) │ 262,272 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_4 (Dropout) │ (None, 128) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_2 (Dense) │ (None, 10) │ 1,290 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_4 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 552,362 (2.11 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m552,362\u001b[0m (2.11 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 551,466 (2.10 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 896 (3.50 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m896\u001b[0m (3.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Создание модели сверточной нейронной сети\n", "model = Sequential()\n", "\n", "# Блок 1\n", "model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n", " activation=\"relu\", input_shape=input_shape))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Dropout(0.25))\n", "\n", "# Блок 2\n", "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Dropout(0.25))\n", "\n", "# Блок 3\n", "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Dropout(0.4))\n", "\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(128, activation='relu'))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", "\n", "\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "3otvqMjjOdq5" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m214s\u001b[0m 295ms/step - accuracy: 0.3409 - loss: 1.8087 - val_accuracy: 0.4302 - val_loss: 1.6950\n", "Epoch 2/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m210s\u001b[0m 299ms/step - accuracy: 0.5008 - loss: 1.3835 - val_accuracy: 0.6096 - val_loss: 1.1257\n", "Epoch 3/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m209s\u001b[0m 297ms/step - accuracy: 0.5871 - loss: 1.1704 - val_accuracy: 0.6310 - val_loss: 1.1089\n", "Epoch 4/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m205s\u001b[0m 291ms/step - accuracy: 0.6421 - loss: 1.0381 - val_accuracy: 0.6666 - val_loss: 0.9580\n", "Epoch 5/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m195s\u001b[0m 277ms/step - accuracy: 0.6788 - loss: 0.9402 - val_accuracy: 0.7004 - val_loss: 0.8947\n", "Epoch 6/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m160s\u001b[0m 227ms/step - accuracy: 0.7065 - loss: 0.8630 - val_accuracy: 0.6856 - val_loss: 0.9637\n", "Epoch 7/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m159s\u001b[0m 226ms/step - accuracy: 0.7256 - loss: 0.8078 - val_accuracy: 0.7604 - val_loss: 0.6995\n", "Epoch 8/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m159s\u001b[0m 225ms/step - accuracy: 0.7458 - loss: 0.7463 - val_accuracy: 0.7388 - val_loss: 0.7766\n", "Epoch 9/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m160s\u001b[0m 227ms/step - accuracy: 0.7601 - loss: 0.7104 - val_accuracy: 0.7420 - val_loss: 0.7523\n", "Epoch 10/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m159s\u001b[0m 226ms/step - accuracy: 0.7770 - loss: 0.6658 - val_accuracy: 0.7782 - val_loss: 0.6714\n", "Epoch 11/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m196s\u001b[0m 278ms/step - accuracy: 0.7876 - loss: 0.6321 - val_accuracy: 0.7852 - val_loss: 0.6610\n", "Epoch 12/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.7978 - loss: 0.6006 - val_accuracy: 0.8026 - val_loss: 0.5872\n", "Epoch 13/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.8073 - loss: 0.5754 - val_accuracy: 0.7994 - val_loss: 0.5945\n", "Epoch 14/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.8146 - loss: 0.5536 - val_accuracy: 0.7776 - val_loss: 0.6921\n", "Epoch 15/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.8226 - loss: 0.5308 - val_accuracy: 0.8016 - val_loss: 0.6051\n", "Epoch 16/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m173s\u001b[0m 246ms/step - accuracy: 0.8295 - loss: 0.5097 - val_accuracy: 0.8082 - val_loss: 0.6001\n", "Epoch 17/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m162s\u001b[0m 231ms/step - accuracy: 0.8333 - loss: 0.4900 - val_accuracy: 0.8204 - val_loss: 0.5621\n", "Epoch 18/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m175s\u001b[0m 248ms/step - accuracy: 0.8399 - loss: 0.4763 - val_accuracy: 0.8202 - val_loss: 0.5716\n", "Epoch 19/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m199s\u001b[0m 283ms/step - accuracy: 0.8458 - loss: 0.4535 - val_accuracy: 0.8132 - val_loss: 0.5784\n", "Epoch 20/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.8494 - loss: 0.4406 - val_accuracy: 0.8276 - val_loss: 0.5378\n", "Epoch 21/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m177s\u001b[0m 251ms/step - accuracy: 0.8536 - loss: 0.4293 - val_accuracy: 0.8132 - val_loss: 0.5989\n", "Epoch 22/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m174s\u001b[0m 248ms/step - accuracy: 0.8591 - loss: 0.4120 - val_accuracy: 0.8398 - val_loss: 0.5143\n", "Epoch 23/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m183s\u001b[0m 260ms/step - accuracy: 0.8610 - loss: 0.4031 - val_accuracy: 0.8216 - val_loss: 0.5681\n", "Epoch 24/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.8668 - loss: 0.3945 - val_accuracy: 0.8358 - val_loss: 0.5374\n", "Epoch 25/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m180s\u001b[0m 256ms/step - accuracy: 0.8708 - loss: 0.3810 - val_accuracy: 0.8166 - val_loss: 0.6225\n", "Epoch 26/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m181s\u001b[0m 257ms/step - accuracy: 0.8706 - loss: 0.3787 - val_accuracy: 0.8380 - val_loss: 0.5285\n", "Epoch 27/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m182s\u001b[0m 259ms/step - accuracy: 0.8771 - loss: 0.3634 - val_accuracy: 0.8410 - val_loss: 0.5138\n", "Epoch 28/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m177s\u001b[0m 251ms/step - accuracy: 0.8776 - loss: 0.3538 - val_accuracy: 0.8280 - val_loss: 0.5548\n", "Epoch 29/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m168s\u001b[0m 238ms/step - accuracy: 0.8824 - loss: 0.3486 - val_accuracy: 0.8390 - val_loss: 0.5372\n", "Epoch 30/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m173s\u001b[0m 246ms/step - accuracy: 0.8838 - loss: 0.3398 - val_accuracy: 0.8434 - val_loss: 0.4986\n", "Epoch 31/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m183s\u001b[0m 260ms/step - accuracy: 0.8876 - loss: 0.3322 - val_accuracy: 0.8380 - val_loss: 0.5392\n", "Epoch 32/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m185s\u001b[0m 262ms/step - accuracy: 0.8899 - loss: 0.3235 - val_accuracy: 0.8086 - val_loss: 0.6294\n", "Epoch 33/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m191s\u001b[0m 271ms/step - accuracy: 0.8931 - loss: 0.3156 - val_accuracy: 0.8430 - val_loss: 0.5467\n", "Epoch 34/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.8920 - loss: 0.3133 - val_accuracy: 0.8454 - val_loss: 0.5099\n", "Epoch 35/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m181s\u001b[0m 256ms/step - accuracy: 0.8965 - loss: 0.3024 - val_accuracy: 0.8468 - val_loss: 0.5167\n", "Epoch 36/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m180s\u001b[0m 256ms/step - accuracy: 0.8956 - loss: 0.3030 - val_accuracy: 0.8296 - val_loss: 0.5907\n", "Epoch 37/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m181s\u001b[0m 257ms/step - accuracy: 0.8980 - loss: 0.2956 - val_accuracy: 0.8426 - val_loss: 0.5412\n", "Epoch 38/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m181s\u001b[0m 257ms/step - accuracy: 0.9006 - loss: 0.2887 - val_accuracy: 0.8438 - val_loss: 0.5187\n", "Epoch 39/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.9013 - loss: 0.2874 - val_accuracy: 0.8478 - val_loss: 0.5139\n", "Epoch 40/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.9029 - loss: 0.2824 - val_accuracy: 0.8068 - val_loss: 0.6571\n", "Epoch 41/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.9062 - loss: 0.2758 - val_accuracy: 0.8542 - val_loss: 0.5129\n", "Epoch 42/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m180s\u001b[0m 255ms/step - accuracy: 0.9060 - loss: 0.2727 - val_accuracy: 0.8538 - val_loss: 0.4998\n", "Epoch 43/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m187s\u001b[0m 265ms/step - accuracy: 0.9096 - loss: 0.2650 - val_accuracy: 0.8504 - val_loss: 0.4944\n", "Epoch 44/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m179s\u001b[0m 254ms/step - accuracy: 0.9100 - loss: 0.2646 - val_accuracy: 0.8480 - val_loss: 0.5352\n", "Epoch 45/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m175s\u001b[0m 249ms/step - accuracy: 0.9109 - loss: 0.2560 - val_accuracy: 0.8510 - val_loss: 0.5218\n", "Epoch 46/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m177s\u001b[0m 252ms/step - accuracy: 0.9130 - loss: 0.2518 - val_accuracy: 0.8552 - val_loss: 0.4983\n", "Epoch 47/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m181s\u001b[0m 257ms/step - accuracy: 0.9124 - loss: 0.2525 - val_accuracy: 0.8578 - val_loss: 0.5095\n", "Epoch 48/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m177s\u001b[0m 251ms/step - accuracy: 0.9161 - loss: 0.2456 - val_accuracy: 0.8488 - val_loss: 0.5426\n", "Epoch 49/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m174s\u001b[0m 247ms/step - accuracy: 0.9171 - loss: 0.2449 - val_accuracy: 0.8530 - val_loss: 0.5429\n", "Epoch 50/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m197s\u001b[0m 280ms/step - accuracy: 0.9195 - loss: 0.2354 - val_accuracy: 0.8454 - val_loss: 0.5250\n" ] }, { "data": { "text/plain": [ "